
Dissertation / Doctoral Thesis

Titel der Dissertation / Title of the Doctoral Thesis

Provably Finding and Exploiting
Patterns in Data

verfasst von / submitted by

Stefan Neumann

angestrebter akademischer Grad / partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften (Dr. techn.)

Wien, 2020 / Vienna, 2020

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on the student
record sheet: A 786 880
Dissertationsgebiet lt. Studienblatt:
field of study as it appears on the student record sheet: Informatik
Betreuerin / Supervisor: Univ.-Prof. Dr. Monika Henzinger

iii

Abstract

In the last decade, there has been immense progress and growth in
the fields of artificial intelligence, data mining and machine learning.
This development was enabled by specialized new hardware, the ever-
larger availability of data and breakthroughs in the development of al-
gorithms that find and exploit patterns in the data. While these methods
are known to be extremely successful in practice, our theoretical under-
standing of them is still limited. However, formal guarantees for these
algorithms are highly desirable, because they yield important insights
into the strengths and the limitations of these algorithms.

In this thesis, we make an effort to narrow the gap between theory
and practice. To this end, we develop algorithms for provably finding
and exploiting patterns in data. The results are summarized as follows:
• Provably Finding Patterns: We provide algorithms that provably ex-
tract a set of planted clusters from random bipartite graphs. This
problem has applications, for example, in the analysis of online shop-
ping data, where one wishes to identify groups of products that are
frequently bought together and groups of customers who purchase
similar products. We present the first algorithm which can provably
extract tiny planted clusters. This result provides a theoretical justi-
fication for the success of existing heuristic methods that are used in
practice. We further present the first streaming algorithm which, af-
ter two passes over a bipartite graph, returns a set of planted clusters
and which scales to much larger datasets than existing methods.

• Understanding the Complexity of Finding Patterns: We study the com-
putational complexity of frequently-used subroutines of data mining
algorithms and provide new hardness results. We show that for ap-
proximately computing the number of triangles in a graph and for
approximating the support of itemsets in transactional databases, ex-
isting random sampling algorithms cannot be significantly improved
unless popular conjectures in computational complexity are false.
Furthermore, we present a hierarchy of the enumeration complexity
of several maximal frequent pattern mining problems and we provide
a condition under which this hierarchy collapses.

• Provably Exploiting Patterns: We formulate a theoretical model that
captures the structure of the patterns in real-world communication
networks. We provide algorithms that reduce the network traffic by
exploiting these patterns and we show that the competitive ratios
obtained by our algorithms are asymptotically optimal.

To obtain our results, we use beyond worst-case analysis, i.e., instead of
considering worst-case inputs for our algorithms, we consider inputs
that satisfy the properties of real-world datasets.

v

Zusammenfassung

Im letzten Jahrzehnt gab es immensen Fortschritt undWachstum in den
Bereichen der Künstlichen Intelligenz, des Data Mining und des Ma-
schinellen Lernens. Diese Entwicklung wurde durch spezialisierte neue
Hardware, die immer größere Verfügbarkeit von Daten und Durchbrü-
che bei der Entwicklung von Algorithmen, die Muster in Daten finden
und ausnutzen, ermöglicht. Obwohl wir uns in der Praxis täglich vom
großen Erfolg dieser Algorithmen überzeugen können, ist unser theore-
tisches Verständnis von ihnen weiterhin eingeschränkt. Allerdings wä-
ren formale Garantien für diese Algorithmen höchst wünschenswert,
weil sie wichtige Einblicke in die Stärken und die Grenzen dieser Algo-
rithmen erlauben.

Das Ziel dieser Dissertation ist es, die Kluft zwischen Theorie und
Praxis zu verkleinern. Dafür entwickeln wir Algorithmen, die beweis-
bar Muster in Daten finden und ausnutzen. Die Zusammenfassung der
Ergebnisse ist wie folgt:
• Beweisbar Muster finden: Wir entwickeln Algorithmen, die beweis-
bar eine Menge von versteckten Clusterns aus bipartiten Zufallsgra-
phen extrahieren. Eine Anwendung von diesem Problem ist die Ana-
lyse von Onlineshopping-Daten, in denen Gruppen von Produkten
gesucht werden, die häufig gemeinsam gekauft werden, und Grup-
pen von Kund⋅innen, die ähnliche Produkte kaufen. Wir präsentie-
ren den ersten Algorithmus, der beweisbar winzige versteckte Clus-
ter finden kann. Dieses Resultat liefert eine theoretische Begründung
für den Erfolg bereits existierender heuristischerMethoden, die in der
Praxis verwendet werden. Außerdem präsentieren wir den ersten Da-
tenstromalgorithmus, der nur zwei Iterationen über die Knoten eines
bipartiten Graphen vornimmt und anschließend eine Menge an ver-
steckten Clustern ausgibt. Der Algorithmus skaliert auf viel größere
Daten als bekannte Methoden.

• Verstehen der Komplexität des Musterfindens: Wir betrachten die
Komplexität häufig verwendeten Subroutinen von Data Mining-
Algorithmen und erhalten neue Härteresultate. Für die approxima-
tive Berechnung der Anzahl der Dreiecke in einem Graphen und
für die Approximation der Häufigkeit von Itemsets in transaktiona-
len Datenbanken zeigen wir, dass existierende Algorithmen, die auf
zufälligen Stichprobenverfahren beruhen, nicht signifikant verbes-
sert werden können, außer gängige Hypothesen der Komplexitäts-
theorie sind falsch. Außerdem präsentieren wir eine Hierarchie der
Enumerationskomplexität von mehreren Maximal Frequent Pattern
Mining-Problemen und wir bestimmen eine Bedingung, unter der
diese Hierarchie zusammenbricht.

vi

• Beweisbar Muster ausnutzen: Wir formulieren ein theoretisches Mo-
dell, das die Struktur von Mustern in realen Kommunikationsnetz-
werken abbildet. Wir entwickeln Algorithmen, die die Muster in den
Daten ausnutzen und damit den Datenverkehr im Netzwerk reduzie-
ren. Wir beweisen, dass der kompetitive Faktor unserer Algorithmen
asymptotisch optimal ist.

Um unsere Resultate zu erhalten, verwenden wir die beyond worst-case
Analyse: Anstatt von worst-case Eingaben für unsere Algorithmen aus-
zugehen, nehmen wir an, dass die Eingabedaten die Eigenschaften von
praktischen Datensätzen erfüllen.

vii

Acknowledgments

This thesis would not exist without the support of many people.
First, I am deeply grateful to my generous supervisor Monika Hen-

zinger. Thank you for giving me a great amount of freedom to work on
projects of my own and for having faith in me, even when I doubted
myself. During this Ph.D., I have learned a lot and a lot of it I have
learned from you. Thank you!

Next, I am happy Aris Gionis and Rasmus Pagh agreed to be the
reviewers of this thesis. I could not have hoped for a better committee.

Two major influences for the results in this thesis have been Pauli
Miettinen and Jilles Vreeken. What I learned in your courses and our
discussions has had a lasting impact on my research. Pauli, thank you
for our collaborations and for hosting me in Kuopio! Jilles, thank you
for giving me advice and some cheering up whenever I needed it!

I am highly grateful to Eli Upfal for hosting me at Brown University
and for inviting me to the CaStleD workshop in Bertinoro. I have thor-
oughly enjoyed this time. The stay at Brown would not have been the
same without the great discussions with Vincent Cohen-Addad, Phil
Klein and his group, everyone in Eli’s group and my superb office mate
Leonardo Pellegrina. Thank you all!

I am indebted to all my other coauthors from whom I have learned
a lot. I am grateful to Andy Wiese for writing my first paper with me
and for our more recent collaborations, to Rainer Gemulla for helping
me connect matrix rounding tricks and communication complexity, to
Sayan Bhattacharya for studying cell-probe lower bounds with me, to
Andrea Lincoln and Virginia Vassilevska Williams for our joint project
on conditional lower bounds, to Kailash Budhathoki and Julian Ritter
for turning our Twitter discussions into a workshop paper, to Harald
Räcke and Stefan Schmid for getting me interested in online algorithms
and, most recently, to Holger Dell and Wolfgang Dvořák for bearing
withmewhen Iwanted to connect approximate counting and frequency
estimation in databases.

Being a part of the TAA group for the last few years has been great
and I could not have asked for better colleagues than the ones I have
had. Thanks to Veronika Loitzenbauer for the warm welcome and a
lot of advice during the start of the Ph.D., to Gramoz Goranci for all
the discussions about life (academic and non-academic), to Wolfgang
Dvořák for being a true “Hawara”, to Alexander Noe and Wolfgang
Ost for being the most tolerant officemates I could have hoped for, to
Alexander Svozil for resolving the mystery of the beeping noise, to Yun
Kuen Cheung for our long discussions about all aspects of computer sci-
ence research and to Marcelo Fonseca Faraj, Sebastian Forster, Kathrin
Hanauer, Rudolf Hürner, Wanchote Jiamjitrak, Sagar Kale, Shahbaz

viii

Khan, Dariusz Leniowski, Richard Paul, Ami Paz, Pan Peng, Christian
Schulz, Bernhard Schuster and Xiaowei Wu for being such bright and
nice colleagues. Furthermore, I am grateful to everyone who helped
me battle the bureaucracy of University of Vienna: Birgit Aubrunner,
Ulrike Frolik-Steffan, Iris Gundacker, Christina Licayan, and Werner
Schröttner. Especially the chats with Ulli always cheered me up after
frustrating administrative tasks.

Also, I am grateful to the fellow Ph.D. students at the Vienna Gradu-
ate School on Computational Optimization for all the drinks we shared
after our lectures.

Next, thanks to everyone who supported my career by writing rec-
ommendation letters and all reviewers of my papers for their helpful
comments and suggestions.

Finally, I am indebted to my friends and my family. Without their
support, I would not be where I am today.

Funding Acknowledgments. The research leading to these results
has received funding from the European Research Council under the
European Community’s Seventh Framework Programme (FP7/2007-
2013) / ERC grant agreement No. 340506, and the Doctoral Programme
“Vienna Graduate School on Computational Optimization” which is
funded by the Austrian Science Fund (FWF, project no. W1260-N35).

ix

Bibliographic Note

The chapters of this thesis are based on the following publications
and manuscripts, which are related to my work on finding and exploit-
ing patterns in data:

• Chapter 2: Stefan Neumann. “Bipartite Stochastic Block Models
with Tiny Clusters”. In: NeurIPS. 2018, pp. 3871–3881.
Stefan Neumann. “Finding Tiny Clusters in Bipartite Graphs”. In:
INFORMATIK. Session Best of Data Science Made in Germany, Aus-
tria and Switzerland. 2019.

• Chapter 3: Stefan Neumann and Pauli Miettinen. “Biclustering
and Boolean Matrix Factorization in Data Streams”. In: PVLDB.
2020. To appear.

• Chapter 4: Holger Dell, Wolfgang Dvořák, and Stefan Neumann.
Conditional Hardness for Approximate Counting Problems. Manu-
script. 2020. Authors ordered alphabetically.

• Chapter 5: Stefan Neumann and Pauli Miettinen. “Reductions
for Frequency-Based Data Mining Problems”. In: ICDM. 2017,
pp. 997–1002.

• Chapter 6: Monika Henzinger, Stefan Neumann, and Stefan
Schmid. “Efficient Distributed Workload (Re-)Embedding”. In:
POMACS 3.1 (2019), 13:1–13:38. Authors ordered alphabetically.
Conference version in SIGMETRICS’19.

• Chapter 7: Monika Henzinger, Stefan Neumann, Harald Räcke,
and Stefan Schmid. Tight Bounds for Online Graph Partitioning.
Manuscript. 2020. Authors ordered alphabetically.

The chapters are written in such a way that each chapter can be read
and understood on its own.

During my Ph.D., I have also published about other topics in data
mining [143, 152, 155] and algorithms [32, 98, 99, 102, 103, 156], but
these results are not included in this thesis.

Contents

1 Introduction 1
1.1 Provably Finding Patterns . 3
1.2 Understanding the Complexity of Finding Patterns 5
1.3 Provably Exploiting Patterns . 7

2 Bipartite Stochastic Block Models with Tiny Clusters 11
2.1 Introduction . 11
2.2 Related Work . 14
2.3 Recovering the Left Clusters . 15
2.4 Recovering the Right Clusters . 17
2.5 Implementation . 21
2.6 Experiments . 22
2.7 Conclusion . 30

3 Biclustering and Boolean Matrix Factorization in Data Streams 31
3.1 Introduction . 31
3.2 Preliminaries . 33
3.3 First Pass: Recover Right Clusters 37
3.4 Second Pass: Recover Left Clusters 41
3.5 Implementation . 43
3.6 Experiments . 46
3.7 Theoretical Guarantees . 52
3.8 Related Work . 57
3.9 Conclusion . 57

4 Conditional Hardness of Approximate Counting 59
4.1 Introduction . 60
4.2 Our Results . 61
4.3 Related Work . 66
4.4 Preliminaries . 67
4.5 Approximating the Support of Itemsets 69
4.6 Approximate Triangle Counting . 74
4.7 Approximate #SAT . 81
4.8 Conclusion . 83

xi

xii CONTENTS

5 Reductions for Frequency-Based Data Mining Problems 85
5.1 Introduction . 85
5.2 Preliminaries . 88
5.3 Related Work . 91
5.4 Maximality-Preserving Reductions 92
5.5 Constraining the Set of Patterns . 96
5.6 Algorithms and Experiments . 101
5.7 Conclusion . 104

6 Efficient Distributed Workload (Re-)Embedding 105
6.1 Introduction . 105
6.2 Model . 108
6.3 Online Partition for Two Servers . 111
6.4 Generalization to Many Servers . 122
6.5 Distributed and Fast Algorithms . 135
6.6 Lower Bounds . 142
6.7 Applications: Union–Find and Online 𝑘-Way Partitioning 147
6.8 Related Work . 149
6.9 Conclusion . 151

7 Tight Bounds for Online Graph Partitioning 153
7.1 Introduction . 154
7.2 Preliminaries . 158
7.3 Algorithmic Framework . 160
7.4 Adjusting Schedules . 162
7.5 Analysis . 173
7.6 Randomized Algorithm . 182
7.7 Lower Bounds . 188
7.8 Omitted Proofs . 195
7.9 Conclusion . 198

Bibliography 199

CHAPTER 1
Introduction

In the last decade, the world has witnessed unprecedented progress in the fields
of artificial intelligence, data mining and machine learning. This has lead to the
immense growth of these areas, both in the industry as well as in academia. This
development was enabled by specialized new hardware, the ever-larger availability
of data and breakthroughs in the development of algorithms that find and exploit
patterns in the data.

While these algorithms have been highly successful in practice, many of them
are heuristics, i.e., they do not come with provable guarantees. As a result, even
though we can see their success in real-world applications on an everyday basis,
our theoretical understanding of many of these algorithms and the underlying com-
putational problems remains limited. Indeed, one may say that the progress in the
applied algorithm development has happened at such a rapid pace that the gap be-
tween what is practically possible and our theoretical understanding has widened.

Nevertheless, a solid theoretical understanding of practical methods is highly
desirable: The rigorous mathematical analysis of an algorithm yields important in-
sights into the algorithm’s strengths and it also uncovers its limitations. Thus, for-
mal guarantees can help us assess an algorithm’s quality and they give us a better
understanding of how much confidence we can have in its output. The latter is
particularly important when the data contains sensitive attributes, such as race or
gender, or when the algorithm’s output is used to predict whether a certain patient
has a disease or not.

The fact that only few practical algorithms have theoretical performance guar-
antees, is, however, not a coincidence. Many of the computational problems related
to finding and exploiting patterns in data are NP-hard and often they are even NP-
hard to approximate. Thus, it seems that the classic worst-case analysis approach is
too pessimistic for these types of problems: While it is possible (and often relatively
easy) to come upwith artificial worst-case instances such that a given algorithm fails
spectacularly, real-world data usually does not exhibit this malign behavior and in-

1

2 CHAPTER 1. INTRODUCTION

stead is much more good-natured. Therefore, to obtain algorithms with theoretical
guarantees, we will have to go beyond worst-case analysis.

In this thesis, we follow the beyond worst-case analysis approach and present
algorithms that provably find and exploit patterns in the data. We thereby narrow
the gap between what is practically possible and our theoretical understanding.

The contributions of this thesis can be classified into the following categories:
1. Provably Finding Patterns: We provide algorithms that provably extract a set of

planted clusters from random bipartite graphs. This problem has applications, for
example, in the analysis of online shopping data, where one wishes to identify
groups of products that are frequently bought together and groups of customers
who purchase similar products. We present the first algorithm which can prov-
ably extract tiny planted clusters. This result provides a theoretical justification
for the success of existing heuristic methods that are used in practice. We fur-
ther present the first streaming algorithmwhich, after two passes over a bipartite
graph, returns a set of planted clusters and which scales to much larger datasets
than existing methods.

2. Understanding the Complexity of Finding Patterns: We study the computational
complexity of frequently-used subroutines of data mining algorithms and pro-
vide new hardness results. We show that for approximately computing the num-
ber of triangles in a graph and for approximating the support of itemsets in trans-
actional databases, existing random sampling algorithms cannot be significantly
improved unless popular conjectures in computational complexity are false. For
instance, our results imply that for approximating howmany customers of an on-
line shop bought a given set of products, a simple random sampling algorithm is
almost optimal (unless a conjecture computational complexity is false). Further-
more, we present a hierarchy of the enumeration complexity of several maximal
frequent pattern mining problems and we provide a condition under which this
hierarchy collapses.

3. Provably Exploiting Patterns: We formulate a theoretical model that captures the
structure of the patterns in real-world communication networks. We provide
algorithms that reduce the network traffic by exploiting these patterns and we
show that the competitive ratios obtained by our algorithms are asymptotically
optimal. We further show that our model captures applications such as imple-
menting distributed union–find data structures. Our algorithms rely on a new
technique that combines efficient integer linear programming (ILP) with theman-
ual maintenance of optimal ILP solutions.

To obtain our results, we make heavy use of beyond worst-case analysis. For in-
stance, the algorithms of Point 1 are analyzed for random graphs instead of arbi-
trary graphs and when deriving the theoretical guarantees, we take into account
the properties one would expect from real-world data, such as the sparsity of the
graph and the size of the patterns. For the results of Point 3, we introduce a formal
model for the patterns in a communication network and we provably obtain better
efficiency than what is possible when no assumption on the patterns is made. The
hardness results from Point 2 are derived using classical worst-case analysis, but

1.1. PROVABLY FINDING PATTERNS 3

they may motivate to study these problems with beyond worst-case analysis in the
future: Indeed, the established lower bounds are tight, i.e., the lower bounds show
that the running times of the existing algorithms cannot be significantly improved
under worst-case analysis. Hence, to obtain further progress, one has to take into
account the properties of the data and further research in this direction may be
worthwhile.

We will now describe each of the obtained results in more detail.

1.1 Provably Finding Patterns

A popular problem in knowledge discovery and unsupervised learning is to find pat-
terns in bipartite graphs. This problem is also known as biclustering, co-clustering or
Boolean matrix factorization and its study dates back to the 1970s [96]. The problem
has received attention in diverse areas of computer science such as data mining [63,
142, 218], machine learning [131, 207, 219, 220], and bioinformatics [134].

In this problem, the input is a bipartite graph 𝐺 = (𝑈 ∪ 𝑉 , 𝐸) and the patterns
are clusters 𝑈1, … , 𝑈𝑘 ⊆ 𝑈 and 𝑉1, … , 𝑉𝑘 ⊆ 𝑉 such that each bicluster (𝑈𝑖, 𝑉𝑖)
satisfies certain interestingness criteria. Popular criteria for interestingness include
that the subgraphs induced by the biclusters (𝑈𝑖, 𝑉𝑖) either form a biclique [82, 161]
or contain “many” edges relative to the global density of the graph [172, 219] (see
below for the concrete problem we study).

In applications, the two sides of the bipartite graph represent objects of differ-
ent types and an edge indicates the interaction of the corresponding objects. For
example, in online shopping data, the vertices on the left side 𝑈 of 𝐺 correspond
to customers and the vertices on the right side 𝑉 of 𝐺 correspond to products. An
edge (𝑢, 𝑣) indicates that customer 𝑢 purchased product 𝑣. Each bicluster (𝑈𝑖, 𝑉𝑖)
corresponds to a group of products 𝑉𝑖 which are purchased by similar customers 𝑈𝑖.

Real-world datasets often exhibit two crucial properties: First, the degrees on
one side of the graph are bounded and, second, the right-side clusters 𝑉𝑗 are tiny
compared to the size of 𝑉 . Sticking with the above online shopping example, note
that almost all customers purchase at most a few hundred different products and,
thus, the degree of the vertices in 𝑈 is bounded. Next, in experiments, it is often
observed that the product clusters 𝑉𝑗 usually consist of at most a few dozen prod-
ucts. For instance, typical product clusters are the seven Harry Potter books or the
23 films from the Marvel Cinematic Universe. Therefore, the clusters 𝑉𝑗 are much
smaller than 𝑉 , which often consists of millions of products.

In this line of work, two of the major challenges were as follows: (1) While
practical algorithms have been known to find tiny clusters 𝑉𝑗 highly successfully,
the best theoretical results could only guarantee to recover medium-sized clusters
(see below for details). Can we bridge this gap? (2) Existing practical algorithms
deliver excellent results for graphs with thousands of vertices, but they do not scale
to graphs with hundreds of thousands or even millions of vertices. Can we obtain
more efficient algorithms by exploiting the sparsity of the data?

4 CHAPTER 1. INTRODUCTION

We answer both questions affirmatively.
The Case for Random Graph Models. The fact that previous algorithms

were mostly heuristics without provable guarantees is not coincidental. Indeed,
under worst-case inputs most problems for finding patterns in bipartite graphs are
NP-hard [161] and there are strong lower bounds even for approximation algo-
rithms [52].

To bypass these hardness results, we consider a standard random graph model
(see below for the formal definition). This model has been popular in different
communities, ranging from machine learning over theoretical computer science to
mathematics and physics [1]. The model has the nice property that we can obtain
polynomial-time algorithms which guarantee to return “the right answer”, i.e., they
guarantee to find the set of planted ground-truth clusters 𝑈1, … , 𝑈𝑘 and 𝑉1, … , 𝑉𝑘.
Furthermore, several practical algorithms (without theoretical guarantees) were de-
rived under similar random graph models, e.g., [172, 180], and these methods pro-
vide excellent results on real-world data. This suggests that the assumptions of the
random graph model are quite realistic.

More concretely, the random graph model is formally defined as follows. Let
𝐺 = (𝑈 ∪ 𝑉 , 𝐸) be a bipartite graph with 𝑘 planted clusters 𝑈1, … , 𝑈𝑘 ⊆ 𝑈 and
𝑉1, … , 𝑉𝑘 ⊆ 𝑉 on each side of the graph. Further, let 𝑝, 𝑞 ∈ [0, 1] be probabilities
with 𝑝 > 𝑞. We assume that edges (𝑢, 𝑣) between vertices 𝑢 ∈ 𝑈𝑖 and 𝑣 ∈ 𝑉𝑖
are inserted with probability 𝑝 and that edges (𝑢, 𝑣) with 𝑢 ∈ 𝑈𝑖 and 𝑣 ∈ 𝑉𝑗
with 𝑖 ≠ 𝑗 are inserted with probability 𝑞. Thus, there are “relatively many” edges
between the vertices of each bicluster (𝑈𝑖, 𝑉𝑖) compared to the global density of
the graph, where there are “relatively few” edges. Now the computational problem
is as follows: Given a random graph generated from the above distribution, recover
the planted clusters 𝑈1, … , 𝑈𝑘 and 𝑉1, … , 𝑉𝑘.

Finding Tiny Clusters. As we argued before, in real-world data it is natural to
assume that the right-side clusters 𝑉𝑗 are tiny. While practical algorithms have been
highly successful at identifying these clusters, existing algorithms with theoretical
guarantees [131, 138, 207] were only able to recover right-side clusters of size |𝑉𝑗| =
𝛺(√𝑛), where 𝑛 = |𝑉 |. This is unrealistic in the practical scenario described above
(for example, if |𝑉 | ≥ 106 then √|𝑉 | ≥ 103). Hence, there is a stark contrast
between the practical results and their theoretical justification.

In Chapter 2, we close this gap between theory and practice by providing a prac-
tical algorithm which provably recovers tiny clusters. More concretely, we show
that for any 𝜀 > 0, one can recover clusters 𝑉𝑗 of size |𝑉𝑗| = 𝑂(𝑛𝜀) if some con-
ditions on 𝑝, 𝑞 and the sizes of the left-side clusters 𝑈𝑖 hold (see Theorem 2.1 in
Section 2.1 for details); previous algorithms only allowed 𝜀 ≥ 1

2 . The algorithm’s
guarantees hold even when the graph is extremely sparse and the degree of each
vertex is only polylogarithmic in the total number of vertices.

Furthermore, the experiments show that on synthetic datasets the algorithm
outperforms practical heuristic methods and that on real-world datasets it finds tiny
clusters of high quality. Thus, the algorithm combines theoretical guarantees with
state-of-the-art practical performance.

1.2. UNDERSTANDING THE COMPLEXITY OF FINDING PATTERNS 5

Efficient Streaming Algorithms. A second important question in the study
of algorithms for finding patterns in bipartite graphs is to make existing methods
more scalable.

In Chapter 3, we study the above problem in the streaming setting, where the
input is a stream of left-side vertices 𝑢 ∈ 𝑈 together with all of their incident edges.
The goal is to provide an algorithm which only performs a few passes over the
stream and uses little memory.

We present the first algorithm which after a single pass over the stream returns
the right-side clusters 𝑉𝑖. The algorithm is extremelymemory-efficient and its space
usage is only a 𝑂(log 𝑚) factor higher than simply storing a single vertex for each
cluster. Specifically, its space usage is 𝑂(𝑘𝑠 log 𝑚), where 𝑚 = |𝑈| is the number
of points in the stream, 𝑘 is the number of clusters and 𝑠 is an upper bound on the
degrees of the left-side vertices (recall that we argued above that 𝑠 is small in real-
world datasets). For a version of the algorithm, we prove that it finds the planted
clusters in the random graph model using information-theoretically optimal space.

We further show that after a second pass over the stream, the algorithm can
recover the left-side clusters. We also provide an extension of the algorithm to com-
pute Boolean matrix factorizations (BMF), which is a popular problem in data min-
ing [104, 133, 142] andmachine learning [172, 180]. This provides the first streaming
algorithm for BMF in the literature.

In experiments on real-world datasets, the algorithm is orders of magnitude
faster and more memory-efficient than a static baseline algorithm. Specifically, the
algorithm never uses more than 500 MB RAM on any dataset, even when the graphs
contain millions of vertices and edges, and it has the desirable property that its
running time scales linearly in the number of edges of the graph. The quality of the
clusterings returned by the algorithm is within a factor 2 of the static baseline.

1.2 Understanding the Complexity of Finding Patterns

Next, we develop a better understanding of the computational complexity of funda-
mental problems related to the task of finding patterns in data.

Complexity of Approximating Pattern Frequencies. Some of the most
heavily used subroutines in data mining algorithms are for computing the supports
of patterns in the data. For example, when the data is a graph 𝐺 and the pattern is
a triangle, the goal would be to count the number of triangles #Triangle(𝐺) in 𝐺.
In transactional databases, the goal would be to compute the support of an itemset.
That is, let [𝑑] = {1, … , 𝑑} be a set of items, then an itemset is a subset of [𝑑]. An
𝑚 × 𝑑 transactional database 𝒟 is a (multi-)set 𝒟 = {𝑇1, … , 𝑇𝑚}, where each 𝑇𝑖
is an itemset over [𝑑]. Now the support #supp(𝑇) of an itemset 𝑇 is the number
of transactions 𝑇𝑖 ∈ 𝒟 such that 𝑇 ⊆ 𝑇𝑖, i.e., #supp(𝑇) = |{𝑖 ∶ 𝑇 ⊆ 𝑇𝑖}|. As an
application, suppose the items [𝑑] are the products of an online shop, each transac-
tion corresponds to the products bought by a customer and #supp(𝑇) counts the
number of customers who bought the products in 𝑇 .

6 CHAPTER 1. INTRODUCTION

Despite the prevalent tasks of computing #supp(𝑇) and #Triangle(𝐺), subrou-
tines for computing these quantities are still considered slow in practice and, indeed,
#supp(𝑇) is usually implemented using exhaustive search over the database. Thus,
if we could speed up the subroutines for computing #supp(𝑇) or #Triangle(𝐺),
then many practical algorithms could be made faster.

Unfortunately, existing complexity conjectures imply that practical algorithms
cannot compute the exact values of #supp(𝑇) or #Triangle(𝐺) faster than using
exhaustive search. For example, Williams [202] showed that under a popular hy-
pothesis in complexity theory, the exact computation of #supp(𝑇) cannot be done
much faster than simply reading the whole database 𝒟.

Since computing #supp(𝑇) and #Triangle(𝐺) exactly is slow, some algo-
rithms resort to computing these quantities approximately to obtain faster running
times [130, 136, 174, 175, 194]. Now it is a natural question to ask how fast this
approximate computation can be done.

In Chapter 4, we study the fine-grained complexity of approximating #supp(𝑇)
and #Triangle(𝐺). Fine-grained complexity [204] is a relatively new area in the-
oretical computer science that aims at providing tight running time lower bounds
for computational problems. These lower bounds are obtained under hypotheses
which are stronger than the standard P ≠ NP assumption.

In particular, we consider gap versions of #supp(𝑇) and #Triangle(𝐺). That
is, for a given threshold 𝐾 , the task is to decide whether #supp(𝑇) ≥ 𝐾 or
#supp(𝑇) ≤ 𝐾/3. If 𝐾/3 < #supp(𝑇) < 𝐾 , the algorithm may return any
answer. This problem has already been studied in several previous works [130, 136,
174, 175, 194] from an upper bound perspective because efficient subroutines for
this question can be used to speed up existing algorithms.

One of the results in Chapter 4 is as follows. Suppose that we want to solve the
gap version of computing #supp(𝑇) for a transactional database with 𝑚 transac-
tions and suppose 𝐾 is parameterized as 𝐾 = 𝑚𝛾 for 𝛾 > 0. The problem can be
solved by a simple randomized algorithm which samples 𝑂(𝑚1−𝛾 log 𝑚) transac-
tions and then computes the support of the itemset 𝑇 on this sample. We show that
this algorithm cannot be significantly improved. More concretely, we show that
under a popular complexity conjecture, the gap version of computing #supp(𝑇)
cannot be solved faster than in time1 𝑚1−𝛾−𝑜(1) (seeTheorem 4.4 for details). Thus,
we settle the complexity of solving the gap version of #supp(𝑇).

We further provide matching upper and lower bounds for solving the gap ver-
sion of #Triangle(𝐺). More concretely, we show that if a popular computational
complexity hypothesis holds, then any algorithm, that decides whether an 𝑛-vertex
graph satisfies #Triangle(𝐺) ≥ 𝑛𝛾 or #Triangle(𝐺) ≤ 𝑛𝛾/3 and does not use fast
matrix multiplication, requires time at least 𝑛3−𝛾−𝑜(1). This lower bound is again
matched by a simple random sampling algorithm. See Theorem 4.8 for the formal

1 When a problem “cannot be solved faster than time 𝑇 𝛼−𝑜(1)”, this is equivalent to the following
statement: “For all 𝜀 > 0, there is no algorithmwith running time𝑇 𝛼−𝜀.” Hence, there is no algorithm
with run-time polynomially faster than 𝑂(𝑇 𝛼).

1.3. PROVABLY EXPLOITING PATTERNS 7

statement. Moreover, we show that our lower bounds for approximate triangle
counting imply lower bounds for approximately computing important graph mea-
sures in social network analysis, such as approximating the clustering coefficient or
the transitivity of the graph.

We also present matching upper and lower bounds for deciding whether a SAT
formula has at least 2𝛾𝑛 satisyfing assignments or none at all. In particular, we
show that if a popular complexity conjecture is true, then this problem cannot be
solved faster than in time 2(1−𝛾−𝑜(1))𝑛.

Enumerating Patterns. Another important subroutine in data mining algo-
rithms is to find all maximal frequent patterns. That is, for a threshold 𝐾 and a
transactional database 𝒟, an itemset 𝑇 is frequent for 𝒟 if #supp(𝑇) ≥ 𝐾 and,
otherwise, 𝑇 is infrequent. Furthermore, 𝑇 ismaximal frequent if for all itemsets 𝑇 ′

with 𝑇 ⊊ 𝑇 ′ it holds that 𝑇 ′ is infrequent. This problem has also been studied for
other types of data, where the databases consist of graphs or sequences.

In maximal frequent pattern mining, the task is to compute and output all max-
imal frequent patterns. Since there can potentially be exponentially many maximal
frequent patterns, it is suitable to measure the complexity of this problem not only
in the size of its input but in the size of the input and output [117]. This then leads
to enumeration and extendability problems. For example, a typical problem would
be to decide whether a set of patterns can be extended: given a (set of) maximal fre-
quent patterns, compute another maximal frequent pattern which is not contained
in the given set or return that no such pattern exists. Such problems are studied
under the term enumeration complexity [113].

In Chapter 5, we develop a hierarchy of the enumeration complexities of maxi-
mal frequent pattern mining problems over different types of data. The data types
we consider include databases of transactions, sequences and different graph classes
(ranging from trees to general graphs). We also show that if we slightly generalize
the problem and allow to constrain the set of feasible patterns, then the hierarchy
collapses and all problems obey the same enumeration complexities.

1.3 Provably Exploiting Patterns

The final two chapters of this thesis are devoted to exploiting patterns in data and
we study algorithms for serving communication requests in distributed systems. In-
deed, it can be empirically shown that the communication requests in such systems
often include patterns and that datacenters that adapt to these patterns have a lower
cost than demand-oblivious datacenters with the same performance [83, 91].

In Chapter 6, we introduce the following formal model which captures the struc-
ture of the patterns in real-world datacenters. Suppose the datacenter contains
ℓ servers and 𝑛 workloads. Initially, each workload is assigned to one of the servers
and each server has enough capacity to store (1+𝜀)𝑘 workloads, where 𝑘 = 𝑛/ℓ and
𝜀 > 0 is a constant. Now the workloads start communicating and at each time step,

8 CHAPTER 1. INTRODUCTION

two workloads communicate with one another. This sequence of communication
requests is presented to an algorithm in an online manner.

Our assumption for the communication requests is that they induce small pat-
terns. More formally, consider the workloads as vertices of a graph and the com-
munication requests as edges. Then our model assumes that after observing all
communication requests, all connected components in the resulting graph contain
at most 𝑘 vertices, i.e., each of the patterns can be fit on a single server. These con-
nected components are the patterns of the workloads. Furthermore, we assume that
when the communication requests finish, all workloads from the same pattern must
be assigned to the same server.

The cost paid for communication requests and relocating workloads are as fol-
lows. If the communicating workloads are assigned to the same server, this request
has cost 0, and, otherwise, the cost of the request is 1. After each time step, an
algorithm can decide to relocate workloads between the servers while maintaining
the capacity constraints of the servers; for each relocation, the algorithm has to pay
𝛼 > 1. We analyze the algorithm using competitive analysis, i.e., we divide the cost
paid by an online algorithm ONL by the cost of the optimal offline algorithm OPT
which knows all communication requests in advance.

In Chapter 6, we provide a deterministic algorithm with a competitive ratio of
𝑂((ℓ log ℓ log 𝑘)/𝜀). Note that for ℓ = 𝑂(1) servers, the algorithm is 𝑂((log 𝑘)/𝜀)-
competitive (ℓ = 𝑂(1) could be the case, e.g., when the servers correspond to a
few large datacenters which are distributed around the globe). Without the above
patterns model, the best possible algorithm would have a competitive ratio of 𝛺(𝑘)
for ℓ = 𝑂(1) [20, 23]. Therefore, by exploiting the above pattern model, we have
obtained an exponential improvement over the worst-case analysis approach.

Furthermore, for the algorithm in Chapter 6we showhow it can be implemented
in a distributed settingwith little communication overhead andwe believe that (with
some adjustments) it can be implemented in practice.

As an application of our patternmodel, we show that it can be used to implement
distributed union–find data structures. Thus, as a corollary, we obtain competitive
algorithms for running union–find data structures with almost optimal network
communication.

In Chapter 7, we provide asymptotic improvements upon the algorithm from
Chapter 6. More concretely, the main result of this chapter is a randomized algo-
rithmwith competitive ratio𝑂𝜀(log ℓ+log 𝑘). Here, the𝑂𝜀(⋅)-notation hides terms
which only depend on 𝜀. We also provide amatching lower bound of𝛺(log ℓ+log 𝑘)
for randomized algorithms. Therefore, our results are optimal when ignoring con-
stant factors and terms which only depend on 𝜀.

Furthermore, we also provide a deterministic algorithm with competitive ratio
𝑂𝜀(ℓ log 𝑘) and a lower bound of 𝛺(ℓ log 𝑘). The results are again optimal up to
constant factors and terms only depending on 𝜀.

To obtain the results of Chapter 7, we introduce a novel technique which com-
bines efficient integer linear programming (ILP) with the manual maintenance of
optimal ILP solutions. More precisely, when new communication requests arrive,

1.3. PROVABLY EXPLOITING PATTERNS 9

we use an ILP to assign the workload patterns to the servers; this is similar to exist-
ing approximation schemes for scheduling algorithms. However, we cannot obtain
our competitive ratios if we run the ILP after each communication request. Instead,
we identify certain types of communication requests, after which we can manually
obtain an optimal ILP solution at zero cost without resolving the ILP.

Let us briefly compare the results of Chapters 6 and 7. The results of Chapter 7
are asymptotically tight w.r.t. the parameters ℓ and 𝑘, but they come with a super-
polynomial dependency on 𝜀. The algorithm of Chapter 6 has asymptotically worse
guarantees w.r.t. ℓ and 𝑘, but its competitive ratio only polynomially depends on 𝜀.
Thus, the results of the chapters are not fully comparable. From a pratical point of
view, the algorithm of Chapter 6 is much simpler than the one of Chapter 7 and
appears to be more likely to deliver good results in applications.

CHAPTER 2
Bipartite Stochastic Block
Models with Tiny Clusters

We study the problem of finding clusters in random bipartite graphs. We present
a simple two-step algorithm which provably finds even tiny clusters of size 𝑂(𝑛𝜀),
where 𝑛 is the number of vertices in the graph and 𝜀 > 0. Previous algorithms
were only able to identify clusters of size 𝛺(√𝑛). We evaluate the algorithm on
synthetic and on real-world data; the experiments show that the algorithm can find
extremely small clusters even in presence of high destructive noise.

2.1 Introduction

Finding clusters in bipartite graphs is a fundamental problem and has many ap-
plications. In practice, the two parts of the bipartite graph usually correspond to
objects from different domains and an edge corresponds to an interaction between
the objects. For example, paleontologists use biclustering to find co-occurrences of
localities (left side of the graph) and mammals (right side of the graph) [75]; bioin-
formaticians want to relate biological samples and gene expression levels [67]; in
an online shop setting, one wants to find clusters of customers and products.

Discovering clusters in bipartite graphs has been researched in many different
settings. However, most of these algorithms were heuristics and do not provide
theoretical guarantees for the quality of their results. Thiswas recently addressed by
Xu et al. [207] and Lim et al. [131] who initiated the study of biclustering algorithms
with formal guarantees. They considered random bipartite graphs and proved under
which conditions their algorithms can recover the ground-truth clusters.

In this chapter, we consider a standard random graph model and propose a
simple two-step algorithm which provably discovers the ground-truth clusters in
bipartite graphs: (1) Cluster the vertices on the left side of the graph based on the

11

12 CHAPTER 2. BIPARTITE STOCHASTIC BLOCK MODELS WITH TINY CLUSTERS

similarity of their neighborhoods (Section 2.3). (2) Infer the right side clusters based
on the previously discovered left clusters using degree-thresholding (Section 2.4).

Our algorithm allows to recover even tiny clusters of size 𝑂(𝑛𝜀), where 𝑛 is
the number of vertices on the right side of the graph and 𝜀 > 0. Previously, exist-
ing algorithms could only discover clusters of size 𝛺(√𝑛). Note that finding tiny
clusters is of high practical importance. For example, in an online shop with mil-
lions of products (𝑛 ≥ 106), finding only clusters of at least a thousand products
(√𝑛 ≥ 103) is not very interesting. One would want the product clusters to be
much smaller.

The formal guarantees of our algorithm are provided at the end of this section.
From a high-level point of view, the algorithm can be seen as a way to leverage
formal guarantees for mixture models and clustering algorithms into biclustering
algorithms with formal guarantees. This partially explains why heuristics such as
“apply 𝑘-means to both sides of the graph” are very successful in practice.

Finally, we implement a version of the proposed algorithm (Section 2.5) and
we evaluate it on synthetic and on real-world data. The experiments show that
in practice the algorithm can find extremely small clusters and it outperforms all
algorithms we compare with (Section 2.6).

Bipartite Stochastic BlockModels. We now introduce bipartite stochastic block
models (SBMs) which we will be using throughout the chapter. Let 𝐺 = (𝑈 ∪ 𝑉 , 𝐸)
be a bipartite graph with 𝑚 vertices in 𝑈 and 𝑛 vertices in 𝑉 ; we call 𝑈 the left side
of 𝐺 and 𝑉 the right side of 𝐺.

The left side 𝑈 is partitioned into clusters 𝑈1, … , 𝑈𝑘, i.e., 𝑈𝑖 ∩ 𝑈𝑗 = ∅ for 𝑖 ≠ 𝑗
and ⋃𝑖 𝑈𝑖 = 𝑈 . For 𝑉 there are clusters 𝑉1, … , 𝑉𝑘 with 𝑉𝑖 ⊆ 𝑉 ; we do not assume
that the 𝑉𝑗 are disjoint or that their union equals 𝑉 . The 𝑈𝑖 are the left clusters of
𝐺 and the 𝑉𝑗 are the right clusters of 𝐺.

Fix two probabilities 𝑝 > 𝑞 ≥ 0. For any two vertices 𝑢 ∈ 𝑈𝑖 and 𝑣 ∈ 𝑉𝑖, insert
an edge with probability 𝑝; for 𝑢 ∈ 𝑈𝑖 and 𝑣 ∉ 𝑉𝑖, insert an edge with probability
𝑞.

The algorithmic task for bipartite SBMs is as follows. Given parameters 𝑘, 𝑝, 𝑞
and a graph 𝐺 generated in the previously described way, recover all clusters 𝑈𝑖
and 𝑉𝑗.

MainTheoretical Results. We propose the following simple algorithm:
1. Recover the clusters 𝑈𝑖 by clustering the vertices in 𝑈 according to the simi-

larity of their neighborhoods (see Section 2.3).
2. For each recovered 𝑈𝑖, set 𝑉𝑖 to all vertices with “many” neighbors in 𝑈𝑖 (see

Section 2.4).
To state the formal guarantees of the proposed algorithm we require two para-

meters. We let ℓ be the size of the smallest cluster on the left side, i.e., ℓ = min𝑖 |𝑈𝑖|.
Furthermore, let 𝛿 denote the smallest difference between any two clusters on the

2.1. INTRODUCTION 13

right side; more formally, 𝛿 = min𝑖≠𝑗 |𝑉𝑖△𝑉𝑗|, where𝑉𝑖△𝑉𝑗 = (𝑉𝑖\𝑉𝑗)∪(𝑉𝑗\𝑉𝑖)
is the symmetric difference of 𝑉𝑖 and 𝑉𝑗.

We now state the main result of this chapter. In the theorem, 𝐷(𝑝 ∣∣ 𝑞) de-
notes the Kullback–Leibler divergence of Bernoulli random variables with parame-
ters 𝑝, 𝑞 ∈ [0, 1], i.e., 𝐷(𝑝 ∣∣ 𝑞) = 𝑝 log(𝑝

𝑞) + (1 − 𝑝) log(1−𝑝
1−𝑞).

Theorem 2.1. Suppose 𝜎2 = max{𝑝(1 − 𝑝), 𝑞(1 − 𝑞)} ≥ (log6 𝑛)/𝑛. There exist
constants 𝐶1, 𝐶2 such that if ℓ ≥ (𝐶1 log 𝑛)/𝐷(𝑝 ∣∣ 𝑞) and

(𝑝 − 𝑞)2

𝜎2 > 𝐶2𝑘𝑛 + 𝑚 log 𝑚
ℓ𝛿 , (2.1)

then there exists an algorithm which on input 𝐺, 𝑘, 𝑝 and 𝑞 returns all clusters 𝑈𝑖
and 𝑉𝑖. The algorithm succeeds with high probability.

To give a better interpretability of the theorem, consider its two main assump-
tions: (1) The condition ℓ ≥ 𝐶1 log 𝑛/𝐷(𝑝 ∣∣ 𝑞) is necessary so that the vertices
in 𝑉𝑖 have sufficiently many neighbors in 𝑈𝑖. (2) To get a better understanding of
Equation (2.1), consider the case where 𝑚 = 𝛩(𝑛), 𝑘 = 𝑂(1), and 𝑝, 𝑞 are constants.
Also, ignore logarithmic factors. We obtain a smooth tradeoff between 𝛿 and ℓ: The
inequality in Equation (2.1) is satisfied if 𝛿 = 𝛩(𝑛𝜀) and ℓ = 𝛩(𝑛1−𝜀). That is, if
the right clusters are very small or similar (𝛿 is small), the algorithm requires larger
clusters on the left side (ℓ must be large). On the other hand, if the right clusters are
very large and dissimilar (large 𝛿), the algorithm requires only very small left clus-
ters (small ℓ suffices). More generally, if 𝑝 − 𝑞 = 𝛩(𝑛−𝐶) and 𝑝 ≫ 𝑞, the algorithm
requires ℓ𝛿 = 𝛩(𝑛1+𝐶).

The fact that the algorithm can recover clusters of size 𝑂(𝑛𝜀) is interesting since
previous algorithms required min{ℓ, 𝛿} = 𝛺(√𝑛) (see Section 2.2). Furthermore,
the lower bounds of Hajek,Wu and Xu [90] show that breaking the 𝛺(√𝑛) barrier is
impossible in general graphs. Hajek et al. also provide lower bounds in the bipartite
setting which show that one cannot find biclusters of size 𝑘 × 𝑘 for 𝑘 = 𝑜(√𝑛). We
bypass this lower bound through the previously discussed smooth tradeoff between
ℓ and 𝛿. We conjecture that the tradeoff we obtain is asymptotically optimal.

We also study the setting in which the algorithm only obtains an approximate
clustering of the left side of the graph (Section 2.4.2). In this setting, we show that if
the approximation of the left clusters is of good enough quality, then the right clus-
ters can still be recovered exactly. We also observe this behavior in our experiments
in Section 2.6.

Experimental Evaluation. We implemented a version of the algorithm from
Theorem 2.1 and present the practical details in Section 2.5. The experimental re-
sults are reported in Section 2.6. In the experiments, our main focus will be to verify
whether, in practice, the algorithm can find the small clusters that the theoretical
analysis promised.

14 CHAPTER 2. BIPARTITE STOCHASTIC BLOCK MODELS WITH TINY CLUSTERS

On synthetic data, the experiments show that, indeed, the algorithm finds tiny
clusters even in the presence of high destructive noise and it outperforms all meth-
ods that we compare against.

The algorithm is also qualitatively evaluated on real-world datasets. On these
datasets it finds clusters which are interesting and which have natural interpreta-
tions.

2.2 Related Work

Stochastic Block Models (SBMs). During the last years, many papers on SBMs
have been published. We only discuss bipartite SBMs here and refer to the survey
by Abbe [1] for other settings.

Lim, Chen and Xu [131] study the biclustering of observations with general la-
bels. When constrained to only two labels, their results provide a bipartite SBM.
However, in the bipartite SBM case, [131] has two drawbacks compared to the
results presented here: (1) The data-generating process in [131] rules out certain
nested structures of the sets 𝑉𝑖. E.g., [131] does not allow to have clusters 𝑉1, 𝑉2, 𝑉3
such that 𝑉3 = 𝑉1 ∪ 𝑉2. (2) The main result of [131] relies on a notion of coherence,
which measures how difficult the structure of the clusters is to infer. Due to this
dependency on coherence, the results of this chapter and [131] are only partially
comparable. In case of a constant number of clusters or “worst-case coherence”,
though, the algorithm of [131] only works if both ℓ and 𝛿 are 𝛺(√𝑛).

Zhou and Amini [219] study spectral methods for bipartite SBMs. [219] consid-
ers a more general connectivity structure and obtains sharper bounds for the recov-
ery rates than in this chapter. However, in [219] the clusters 𝑉𝑖 cannot overlap and,
hence, the results of this chapter and [219] are incomparable.

Abbe and Sandon [2, 3] and Gao et al. [79] study optimal recovery for SBMs
in general graphs. Their results apply to bipartite graphs with a constant number
of overlapping communities of linear size. Zhou and Amini [220] improve these
results for bipartite SBMs under a broader range of parameters.

One can use the result of McSherry [138] to recover the clusters of a bipartite
graph but this has two caveats: (1) It does not allow the 𝑉𝑖 to overlap. (2) Both ℓ
and 𝛿 must be of size 𝛺(√𝑛).

Florescu and Perkins [73] provided an SBM for bipartite graphs with two linear-
size communities on each side of the graph. Xu et al. [207] consider a biclustering
setting with clusters of size 𝛺(𝑛).

Boolean Matrix Factorization (BMF). Another way to find clusters in bipartite
graphs is BMF. BMF takes the biadjacency matrix 𝐷 ∈ {0, 1}𝑚×𝑛 of a bipartite
graph and finds factor matrices 𝐿 ∈ {0, 1}𝑚×𝑘 and 𝑅 ∈ {0, 1}𝑘×𝑛 such that
𝐷 ≈ 𝐿 ∘ 𝑅, where ∘ is the Boolean matrix-matrix-product. In other words, BMF
tries to approximate 𝐷 with a Boolean-rank 𝑘 matrix. The interpretation is that the
columns of 𝐿 contain the left clusters and the rows of 𝑅 contain the right clusters.

2.3. RECOVERING THE LEFT CLUSTERS 15

This setting is more general than the one presented in this chapter as it allows the
clusters 𝑈𝑖 to overlap.

BMF was studied from applied [142, 144, 172, 180, 181] and also from theoret-
ical [28, 52, 74] perspectives. Section 2.6 provides an experimental comparison of
BMF algorithms and the algorithm from this chapter.

2.3 Recovering the Left Clusters

We describe how the clusters 𝑈𝑖 can be recovered. Our approach is to cluster the
vertices 𝑢 ∈ 𝑈 according to the similarity of their neighborhoods in 𝑉 . The intu-
ition is that if two vertices 𝑢 and 𝑢′ are in the same cluster 𝑈𝑖, they should have
relatively many neighbors in common (those in 𝑉𝑖). On the other hand, if 𝑢 and 𝑢′

are from different clusters 𝑈𝑖 and 𝑈𝑗, their neighbors should be relatively different
(as 𝑉𝑖△𝑉𝑗 is supposed to be large).

Technically, we will apply mixture models. We use the result by Mitra [147]
since it is simple to state. We could as well use other mixture models such as the one
by Dasgupta et al. [60] or clustering algorithms such as Kumar and Kannan [121],
Bilu and Linial [34] or Cohen-Addad and Schwiegelshohn [56]. The different meth-
ods come with different assumptions on the data.

2.3.1 Mixture Models and Mitra’s Algorithm

Mixture Models on the Hypercube. From a high-level point of view, the ques-
tion of mixture models is as follows: Given samples from different distributions,
cluster the samples according to which distributions they were sampled from. We
will now present the formal details behind this.

Let there be 𝑘 probability distributions 𝐷1, … , 𝐷𝑘 in {0, 1}𝑛 and denote the
mean of 𝐷𝑟 as 𝜇𝑟 ∈ [0, 1]𝑛. Let 𝜎2 be an entry-wise upper bound on all 𝜇𝑟, i.e.,
𝜇𝑟(𝑖) ≤ 𝜎2 for all 𝑟 = 1, … , 𝑘 and 𝑖 = 1, … , 𝑛. For each distribution 𝐷𝑟 define a
weight 𝑤𝑟 > 0 such that ∑𝑟 𝑤𝑟 = 1.

From each distribution 𝐷𝑟, create 𝑤𝑟𝑚 samples and denote the set of these
samples as 𝑇𝑟. In total we obtain 𝑚 samples and denote the set containing all
samples as 𝑇 , i.e., 𝑇 = ⋃𝑟 𝑇𝑟.

The algorithmic problem in mixture models is as follows. Given 𝑇 and 𝑘, find a
partition 𝑃1, … , 𝑃𝑘 of the samples in 𝑇 such that {𝑇1, … , 𝑇𝑘} = {𝑃1, … , 𝑃𝑘}.

Mitra’s Algorithm. Mitra [147] provided an algorithm for solving the mixture
models problem. To state its guarantees, we define a matrix 𝐴 ∈ {0, 1}𝑚×𝑛 which
has the samples from 𝑇 in its rows. Thus, by clustering the rows of 𝐴, we obtain a
clustering of 𝑇 . The following lemma gives a condition under which Mitra’s algo-
rithm returns the correct clustering. In the lemma, we write ||𝑣||2 = (∑𝑖 𝑣2

𝑖)1/2.

16 CHAPTER 2. BIPARTITE STOCHASTIC BLOCK MODELS WITH TINY CLUSTERS

Lemma 2.2 (Mitra [147]). Suppose 𝜎2 ≥ log6 𝑛/𝑛. Let 𝜁 = min{||𝜇𝑟 − 𝜇𝑠||22 ∶
𝑟 ≠ 𝑠} and 𝑤min = min𝑟 𝑤𝑟. Then there exists a constant 𝑐 such that if

𝜁 > 𝑐𝑘𝜎2 1
𝑤min

(𝑚 + 𝑛
𝑚 + log 𝑚) ,

then on input 𝐴 and 𝑘, the output {𝑃1, … , 𝑃𝑘} of Mitra’s algorithm satisfies that
{𝑃1, … , 𝑃𝑘} = {𝑇1, … , 𝑇𝑘} with high probability. That is, the algorithm recovers
the clusters 𝑇𝑟.

2.3.2 Proposition and Analysis

Let us come back to our original problem of recovering the left clusters of 𝐺. To
find the left clusters 𝑈𝑖, we apply Mitra’s algorithm to the rows of the biadjacency
matrix 𝐷 of 𝐺. Formally, the biadjacency matrix 𝐷 ∈ {0, 1}𝑚×𝑛 of 𝐺 is the matrix
with 𝐷𝑢𝑣 = 1 iff there exists an edge (𝑢, 𝑣) ∈ 𝐺.

Proposition 2.3 states under which conditions this approach succeeds.

Proposition 2.3. Let all variables be as in Section 2.1. Let 𝛿 = min𝑖≠𝑗 |𝑉𝑖△𝑉𝑗| and
ℓ = min𝑖 |𝑈𝑖|. Suppose 𝜎2 = max{𝑝(1 − 𝑝), 𝑞(1 − 𝑞)} ≥ log6 𝑛/𝑛. There exists a
constant 𝐶 such that if

(𝑝 − 𝑞)2

𝜎2 > 𝐶𝑘𝑛 + 𝑚 log 𝑚
ℓ𝛿 , (2.2)

then applying Mitra’s algorithm on 𝐷 returns a partition { ̃𝑈1, … , ̃𝑈𝑟} of 𝐷’s rows
such that { ̃𝑈1, … , ̃𝑈𝑟} = {𝑈1, … , 𝑈𝑟} with high probability. That is, the algorithm
recovers the left clusters 𝑈𝑖 of 𝐺.

Proof. Observe that 𝐷 is a matrix arising from a mixture model as discussed earlier:
Consider a vertex 𝑢 ∈ 𝑈𝑖 and its corresponding row 𝐷𝑢 in 𝐷. Then the probability
that entry 𝐷𝑢𝑣 = 1 is 𝑝 if 𝑣 ∈ 𝑉𝑖 and 𝑞 if 𝑣 ∉ 𝑉𝑖. Furthermore, for two vertices
𝑢, 𝑢′ ∈ 𝑈𝑖 these distributions are exactly the same.

Hence, we view the rows of 𝐷 as samples from 𝑘 distributions 𝐷𝑖 with distri-
bution 𝐷𝑖 corresponding to cluster 𝑈𝑖. For each cluster 𝑈𝑖, we have |𝑈𝑖| samples
from 𝐷𝑖. For the mean 𝜇𝑖 of 𝐷𝑖, we have component-wise 𝜇𝑖(𝑣) = 𝑝, if 𝑣 ∈ 𝑉𝑖,
and 𝜇𝑖(𝑣) = 𝑞, if 𝑣 ∉ 𝑉𝑖. Thus, partitioning the rows of 𝐷 with a mixture model is
exactly the same as recovering the clusters 𝑈𝑖 of 𝐺.

It is left to check that the conditions of Lemma 2.2 are satisfied. By assumption
on the 𝑉𝑗, ∣∣𝜇𝑖 − 𝜇𝑗∣∣2

2
≥ (𝑝 − 𝑞)2𝛿 for 𝑖 ≠ 𝑗. Since we have |𝑈𝑖| samples from

distribution 𝐷𝑖, the mixing weights are 𝑤𝑖 = |𝑈𝑖|/𝑚 and 𝑤min = ℓ/𝑚. To apply
Lemma 2.2, we must satisfy the inequality

(𝑝 − 𝑞)2𝛿 > 𝑐𝑘𝜎2 𝑚
ℓ (𝑚 + 𝑛 + 𝑚 log 𝑚

𝑚) = 𝑐𝑘𝜎2 (𝑚 + 𝑛 + 𝑚 log 𝑚
ℓ) .

By rearranging terms and noticing that 𝐶𝑚 log 𝑚 ≥ 𝑐(𝑚 + 𝑚 log 𝑚) for large
enough 𝐶 , this is the inequality we required in the proposition (Equation (2.2)).

2.4. RECOVERING THE RIGHT CLUSTERS 17

2.4 Recovering the Right Clusters

This section present three algorithms to recover the right clusters 𝑉𝑗 given the left
clusters 𝑈𝑖. The first two algorithms are very simple and have provable guarantees,
but they require knowledge about the parameters 𝑝 and 𝑞. The third algorithm is a
heuristic, which tries to estimate the correct values for 𝑝 and 𝑞.

2.4.1 Exact Left and Right Clusters

First, we present an algorithm for which we prove that it recovers the right-side
clusters 𝑉𝑖 exactly when it is given the exact left-side clusters 𝑈𝑖. The algorithm
is very simple: For each given cluster 𝑈𝑖, ̃𝑉𝑖 consists of all vertices from 𝑉 which
have “many” neighbors in 𝑈𝑖. We will show that the algorithm succeeds with high
probability. We also prove Theorem 2.1 at the end of the subsection.

High-DegreeThresholdingAlgorithm. The input for the algorithm are 𝑝, 𝑞 and
the clusters 𝑈1, … , 𝑈𝑘. For each cluster 𝑈𝑖, the algorithm constructs ̃𝑉𝑖 by adding
all vertices 𝑣 ∈ 𝑉 which have at least 𝜃|𝑈𝑖| neighbors in 𝑈𝑖, where we set

𝜃 = log (1 − 𝑞
1 − 𝑝) (log (𝑝(1 − 𝑞)

𝑞(1 − 𝑝)))
−1

. (2.3)

Proposition and Analysis. In Proposition 2.4, we show that for a fixed cluster
𝑈𝑖 of sufficiently large size, 𝑉𝑖 = ̃𝑉𝑖 with probability 1 − 𝑂(𝑛−2). A union bound
implies that ̃𝑉𝑖 = 𝑉𝑖 for all 𝑖 = 1, … , 𝑘 with high probability. In the proposition, we
use the notation 𝐷(𝑝 ∣∣ 𝑞) to denote the Kullback–Leibler divergence of Bernoulli
random variables with parameters 𝑝, 𝑞 ∈ [0, 1], i.e., 𝐷(𝑝 ∣∣ 𝑞) = 𝑝 log(𝑝

𝑞) + (1 −
𝑝) log(1−𝑝

1−𝑞).

Proposition 2.4. There exists a constant 𝐶 such that if |𝑈𝑖| ≥ 𝐶 log 𝑛/𝐷(𝑝 ∣∣ 𝑞),
then ̃𝑉𝑖 returned by the high-degree thresholding algorithm satisfies 𝑉𝑖 = ̃𝑉𝑖 with
probability at least 1 − 𝑂(1/𝑛2). The algorithm runs in time 𝑂(|𝑈𝑖|𝑛).

Proof. Consider a vertex 𝑣 ∈ 𝑉 . The vertex 𝑣 has an edge to 𝑢 ∈ 𝑈𝑖 with probability
𝑝, if 𝑣 ∈ 𝑉𝑖, and with probability 𝑞, if 𝑣 ∉ 𝑉𝑖. Let 𝑍𝑣 be the random variable
denoting the number of edges from 𝑣 to vertices in 𝑈𝑖; 𝑍𝑣 is binomially distributed
with |𝑈𝑖| trials and success probability 𝑝 (if 𝑣 ∈ 𝑉𝑖) or 𝑞 (if 𝑣 ∉ 𝑉𝑖). To find out
whether 𝑣 ∈ 𝑉𝑖, we must decide whether 𝑍𝑣 is distributed with parameter 𝑝 or 𝑞. If
we decide for the correct parameter then the decision to include 𝑣 into ̃𝑉𝑖 is correct.

We make the decision for the parameter based on the likelihood of observing
𝑍𝑣 edges incident upon 𝑣. Parameter 𝑝 is more likely if:

(|𝑈𝑖|
𝑍𝑣

)𝑝𝑍𝑣(1 − 𝑝)|𝑈𝑖|−𝑍𝑣

(|𝑈𝑖|
𝑍𝑣

)𝑞𝑍𝑣(1 − 𝑞)|𝑈𝑖|−𝑍𝑣
= (𝑝

𝑞)
𝑍𝑣

(1 − 𝑝
1 − 𝑞)

|𝑈𝑖|−𝑍𝑣
≥ 1.

18 CHAPTER 2. BIPARTITE STOCHASTIC BLOCK MODELS WITH TINY CLUSTERS

Solving this inequality for 𝑍𝑣 gives that one should decide for parameter 𝑝 if 𝑍𝑣 ≥
𝜃|𝑈𝑖|, where 𝜃 is as in Equation (2.3).

The maximum likelihood approach above succeeds with probability at least 1 −
𝑂(1/𝑛3); this follows from [27, Theorem 6] if |𝑈𝑖| ≥ 𝐶 log 𝑛/𝐷(𝑝 ∣∣ 𝑞), where
𝐶 is a sufficiently large constant. The probability for obtaining a correct result
for all vertices 𝑣 ∈ 𝑉 is at least 1 − 𝑂(1/𝑛2); this follows from a union bound.
Conditioning on this event we obtain 𝑉𝑖 = ̃𝑉𝑖.

Given Proposition 2.4, we can now prove Theorem 2.1.

Proof of Theorem 2.1. By Proposition 3, the clusters 𝑈𝑖 can be recovered with high
probability. By Proposition 4 and the statement before the proposition, all 𝑉𝑖 can be
recovered with high probability given the correct 𝑈𝑖. Now a union bound implies
that both events happen simultaneously with high probability. Furthermore, the
conditions of the propositions are satisfied because they are the same as those of
Theorem 1.

2.4.2 Approximate Left and Exact Right Clusters

Next, we show that given a good enough approximate clustering of the left side of
the graph, the clusters on the right side of the graph can still be recovered exactly.
We obtain this result using the same high-degree thresholding algorithm as in Sec-
tion 2.4.1, but we change its analysis; the new proof does not require the exact left
clusters as input, but this comes with slightly stronger assumptions on the sizes of
the clusters 𝑈𝑖.

The results from of subsection explain a phenomenon from the experiments on
synthetic data (Section 2.6.2): Even though the recovery of the left-side clusters
was not perfect, the algorithm from Section 2.4.1 still returned the exact right-side
clusters in many cases.

To simplify our analysis, we assume that each cluster 𝑈𝑖 contains exactly ℓ ver-
tices. Thus, the left side of the graph contains 𝑚 = 𝑘ℓ vertices. Furthermore, we
assume that 𝑞 = 𝐶𝑝 for 𝐶 = 1 − 𝛺(1), i.e., 𝑝 and 𝑞 differ by at least a constant
factor.

We will be working with the following definition of an approximate cluster-
ing. Let 𝑈1, … , 𝑈𝑘 and ̃𝑈1, … , ̃𝑈𝑘 be partitions of a set 𝑈 of size |𝑈| = 𝑚. Sup-
pose that 𝑈1, … , 𝑈𝑘 are the ground-truth clusters. We say that ̃𝑈1, … , ̃𝑈𝑘 is an 𝜀-
approximate clustering of 𝑈1, … , 𝑈𝑘 if there are at most 𝜀𝑚 misclassified elements.
More formally, we assume that

1
2

𝑘
∑
𝑖=1

|𝑈𝑖△ ̃𝑈𝑖| ≤ 𝜀𝑚 = 𝜀𝑘ℓ,

where △ denotes the symmetric difference of two sets.
We now state our main result which shows that given an 𝜀-approximate clus-

tering of the left side of the graph, the clusters 𝑉𝑖 can still be recovered exactly if 𝜀
is small enough.

2.4. RECOVERING THE RIGHT CLUSTERS 19

Proposition 2.5. Suppose ̃𝑈1, … , ̃𝑈𝑘 is an 𝜀-approximate clustering of 𝑈1, … , 𝑈𝑘
and let 𝑞 = 𝐶𝑝 for 𝐶 = 1 − 𝛺(1). Then there exist constants 𝐷1, 𝐷2 such that if
(1) ℓ ≥ (𝐷1 log 𝑛)/𝑝 and (2) 𝜀 ≤ 𝐷2/𝑘, then there exists an algorithm which returns
the clusters 𝑉1, … , 𝑉𝑘 with high probability.

For the proof, we need the following Chernoff bound (see, e.g., Theorem 1.1 in
Dubhashi and Panconesi [64]).

Lemma 2.6. Let 𝑋1, … , 𝑋𝑛 be independent random variables in [0, 1] and set 𝑋 =
∑𝑖 𝑋𝑖. Then for 𝜀 > 0,

Pr (𝑋 > (1 + 𝜀)E [𝑋]) ≤ exp(−𝜀2E [𝑋] /3),
Pr (𝑋 < (1 − 𝜀)E [𝑋]) ≤ exp(−𝜀2E [𝑋] /2).

Proof of Proposition 2.5. Let 𝛼 < 1, 𝛽 > 1 be constants such that 𝛼/𝛽 > 𝐶 . We are
going to reuse a version of the high-degree threshold algorithm from Section 2.4.1:
For each 𝑖 and 𝑣 ∈ 𝑉 , include 𝑣 in 𝑉𝑖 if 𝑣 has at least 𝛼(1 − 𝜀𝑘)𝑝 ⋅ ℓ neighbors in ̃𝑈𝑖.
Otherwise, do not insert 𝑣 into 𝑉𝑖.

Fix any 𝑖 ∈ {1, … , 𝑘}. We show that given ̃𝑈𝑖, 𝑉𝑖 can be recovered with prob-
ability at least 1 − 𝑂(𝑛−2). Using a union bound over the 𝑘 clusters, all 𝑉𝑖 are
recovered with probability at least 1 − 𝑂(𝑛−1).

To show that 𝑉𝑖 can be recovered from ̃𝑈𝑖 with the desired probability, we show
that with probability at least 1−𝑂(𝑛−3), it can be decided whether 𝑣 ∈ 𝑉𝑖 or 𝑣 ∉ 𝑉𝑖
for each 𝑣 ∈ 𝑉 . A union bound implies that 𝑉𝑖 is recovered exactly with probability
at least 1 − 𝑂(𝑛−2).

Observe that by the definition of an 𝜀-approximate clustering,

ℓ − 𝜀𝑘ℓ ≤ | ̃𝑈𝑖| ≤ ℓ + 𝜀𝑘ℓ.

This implies that if 𝑣 ∈ 𝑉𝑖, then there are at least ℓ−𝜖𝑘ℓ vertices in ̃𝑈𝑖 to which
𝑣 has an edge with probability 𝑝. Thus, the expected number of neighbors1 of 𝑣 in

̃𝑈𝑖 is at least

𝜇1 = (1 − 𝜀𝑘)ℓ𝑝.

On the other hand, if 𝑣 ∉ 𝑉𝑖, then the expected number of neighbors of 𝑣 in ̃𝑈𝑖
is maximized when ̃𝑈𝑖 contains ℓ vertices to which 𝑣 has an edge with probability
𝑞 and 𝜀𝑚 = 𝜀ℓ𝑘 vertices to which 𝑣 has an edge with probability 𝑝. Thus, if 𝑣 ∉ 𝑉𝑖,
its expected number of neighbors in ̃𝑈𝑖 is at most

𝜇2 = ℓ𝑞 + 𝜀ℓ𝑘𝑝 = (𝐶 + 𝜀𝑘)ℓ𝑝.

1 Note that if 𝑣 ∈ 𝑉𝑖, 𝑈̃𝑖 might contain vertices to which 𝑣 has edges with probability 𝑞. However,
we can safely ignore these when computing the the lower bound on the expected number of neighbors
of 𝑣 in 𝑈̃𝑖.

20 CHAPTER 2. BIPARTITE STOCHASTIC BLOCK MODELS WITH TINY CLUSTERS

Now setting 𝐷1 to a large enough constant and applying Lemma 2.6, we obtain
that the following event occurs with probability at least 1 − exp(−3 log 𝑛) = 1 −
𝑂(𝑛−3): (1) If 𝑣 ∈ 𝑉𝑖, then 𝑣 has at least 𝛼𝜇1 neighbors in ̃𝑈𝑖. (2) If 𝑣 ∉ 𝑉𝑖, then 𝑣
has less than 𝛼𝜇1 neighbors in ̃𝑈𝑖.

To see that (2) holds, it is left to show that the gap between 𝜇1 and 𝜇2 is suffi-
ciently large. Note that the only interesting case is when 𝜇1 and 𝜇2 differ only by
a constant factor. To show that (2) holds, we prove that 𝛼𝜇1 > 𝛽𝜇2 for constants
𝛼 and 𝛽 as set at the beginning of the proof. We obtain that:

𝛼𝜇1 > 𝛽𝜇2
⟺ 𝛼(1 − 𝜀𝑘)ℓ𝑝 > 𝛽(𝐶 + 𝜀𝑘)ℓ𝑝
⟺ 𝛼(1 − 𝜀𝑘) > 𝛽(𝐶 + 𝜀𝑘).

Note that by condition on 𝜀 we obtain

1 − 𝜀𝑘 ≥ 1 − 𝐷2

and

𝐶 + 𝜀𝑘 ≤ 𝐶 + 𝐷2.

Hence, the inequality 𝛼𝜇1 > 𝛽𝜇2 holds if

𝛼(1 − 𝐷2) > 𝛽(𝐶 + 𝐷2) ⟺ 𝐷2 ≤ 𝛼 − 𝛽𝐶
𝛼 + 𝛽 .

Observe that 𝛼−𝛽𝐶 is always positive since we assumed that 𝛼/𝛽 > 𝐶 (and, hence,
𝛼 > 𝛽𝐶). We conclude that the inequality 𝛼𝜇1 > 𝛽𝜇2 can be satisfied by setting
𝐷2 to a sufficiently small constant.

2.4.3 Heuristic for Estimating 𝑝 and 𝑞
Note that both previously discussed algorithms for recovering the right-side clus-
ters require knowledge of the parameters 𝑝 and 𝑞, which is usually not available in
practice. Hence, we now discuss a heuristic for estimating the parameters 𝑝 and 𝑞.

Consider the high-degree thresholding algorithm from Section 2.4.1. Recall that
for a given left-side cluster 𝑈𝑖, the algorithm sets 𝑉𝑖 to the set of vertices containing
all 𝑣 ∈ 𝑉 with at least 𝜃|𝑈𝑖| neighbors in 𝑈𝑖. Here, computing 𝜃 = 𝜃(𝑝, 𝑞) requires
knowledge about 𝑝 and 𝑞.

Now suppose we obtain a set 𝑉𝑖 that was computed in the previously specified
way for parameter 𝜃 = 𝜃(𝑝, 𝑞).

By assumption of the SBM model, we know that in a case without noise (i.e.,
𝑝 = 1, 𝑞 = 0), all vertices in 𝑉𝑖 would have |𝑈𝑖| edges to vertices in 𝑈𝑖 and 0 edges
to vertices outside 𝑈𝑖 (here, we assume that the 𝑉𝑖 do not overlap). In the noiseless
setting, there would be a total of |𝑉𝑖| ⋅ |𝑈𝑖| edges from vertices in 𝑉𝑖 to vertices
in 𝑈𝑖.

2.5. IMPLEMENTATION 21

Input: 𝐺 a bipartite 𝑚 × 𝑛 graph, 𝑘, 𝑝, 𝑞
1: procedure pcv(𝐺, 𝑘, 𝑝, 𝑞)
2: 𝐷 ← the 𝑚 × 𝑛 biadjacency matrix of 𝐺
3: 𝐴 ← rank 𝑘 SVD of 𝐷 ▷ Step (1)
4: ̃𝑈1, … , ̃𝑈𝑘 ← the clusters obtained by running 𝑘-means on the rows of 𝐴
5: for 𝑖 = 1, … , 𝑘 ▷ Step (2)
6: 𝜃 ← compute 𝜃 as in Equation (2.3)
7: ̃𝑉𝑖 ← all vertices in 𝑉 with at least 𝜃|𝑈𝑖| neighbors in 𝑈𝑖

Algorithm 1: The pcv algorithm

Similarly, we can compute the number of edges which are present in the random
graph. To this end, let |𝐸(𝑈𝑖, 𝑉𝑖)| denote the number of edges between vertices in
𝑈𝑖 and 𝑉𝑖 and let |𝐸(𝑈 \ 𝑈𝑖, 𝑉𝑖)| denote the number of edges between vertices in
𝑈 \ 𝑈𝑖 and 𝑉𝑖.

Now we can estimate the parameters ̂𝑝 and ̂𝑞 from the cluster 𝑉𝑖 that was com-
puted from 𝜃(𝑝, 𝑞). For this purpose, we set

̂𝑝 = |𝐸(𝑈𝑖, 𝑉𝑖)|
|𝑉𝑖| ⋅ |𝑈𝑖| and ̂𝑞 = |𝐸(𝑈 \ 𝑈𝑖, 𝑉𝑖)|

|𝑉𝑖| ⋅ |𝑈 \ 𝑈𝑖| .

Note that here ̂𝑝 (̂𝑞) is simply the fraction of edges which should (not) have been
there in the noiseless setting and which were observed in the random graph.

Obviously, if 𝑝 and 𝑞 were the correct parameters for generating 𝑉𝑖, then we
should have 𝑝 ≈ ̂𝑝 and 𝑞 ≈ ̂𝑞. In particular, |𝑝 − ̂𝑝| + |𝑞 − ̂𝑞| should be small.

This gives raise to the following heuristic algorithm for estimating good para-
meters 𝑝 and 𝑞: Let 𝒫 be a set of candidates for 𝑝 and let 𝒬 be a set of candidates
for 𝑞. Now iterate over all tuples (𝑝, 𝑞) ∈ 𝒫 × 𝒬 such that 𝑝 > 𝑞. For each such tu-
ple, generate the set 𝑉𝑖 with parameter 𝜃(𝑝, 𝑞) using the high-degree thresholding
algorithm. Given the set 𝑉𝑖, estimate ̂𝑝 and ̂𝑞 as described above. Of all the tuples,
pick the one which minimizes the objective function |𝑝 − ̂𝑝| + |𝑞 − ̂𝑞|.

We experimentally evaluate the heuristic in Section 2.6.2.

2.5 Implementation

While so far we have been concerned with theory, we will now consider practice.
The pseudocode of the algorithm we implemented is presented in Algorithm 1. As
stated in Section 2.1, the algorithm performs two steps: (1) Recover the clusters

̃𝑈1, … , ̃𝑈𝑘 in 𝑈 . (2) Recover the clusters ̃𝑉1, … , ̃𝑉𝑘 in 𝑉 based on the ̃𝑈𝑖. We call
the algorithm pcv, which is short for project, cluster, vote.

While for Step (2) we use exactly the algorithm discussed in Section 2.4, we
made some changes for Step (1). The main reason is that Mitra’s algorithm dis-
cussed in Section 2.3 was developed in a way to give theoretical guarantees and not
necessarily to give the best results in practice.

22 CHAPTER 2. BIPARTITE STOCHASTIC BLOCK MODELS WITH TINY CLUSTERS

Instead, for Step (1) we use a simpler algorithm for recovering the clusters ̃𝑈𝑖:
Project the biadjacency of 𝐺 on its first 𝑘 left singular vectors and then run 𝑘-means.
This delivers better results in practice and is conjectured to give the same theoretical
guarantees as Mitra’s algorithm (see [138, 147]).

We implemented Algorithm 1 in Python. To compute the truncated SVD we
used scikit-learn [166]. The source code is available in the supplementary material
of the conference pupblication [150].

When developing the algorithm, we also tried using other clustering methods
than 𝑘-means. However, none of them delivered consistently better results than
𝑘-means and the differences in the outputs were mostly minor. Hence, we do not
study this further here.

We note that due to 𝑘-means, pcv is a randomized algorithm. On the synthetic
graphs we will consider, this had almost no influence on the quality of the results.
On real-world graphs, this randomness resulted in different clusterings in each run
of the algorithm. However, some “prominent clusters” were always there and the
computed clusters always had an interpretable structure.

Parameters. The parameters 𝑝 and 𝑞 are only used to compute the parameter 𝜃
from Section 2.4 and, in settings in which they are unknown, they can be picked via
the heuristic from Section 2.4.3. We note that in practice it might be reasonable to
pick a different threshold 𝜃 for each cluster depending on its sparsity; we leave this
to future work.

It suffices if 𝑘 is a sufficiently tight upper bound on its true value. pcv will not
necessarily output exactly 𝑘 clusters; if 𝑘-means outputs less than 𝑘 clusters, then
pcv will do the same. In practice it is sometimes handy to use different values for
𝑘 in the SVD and in 𝑘-means.

We further added a parameter 𝐿 ∈ ℕ. In practice, often some of the ̃𝑈𝑖 returned
by pcv are tiny (e.g., containing less than five vertices). To avoid creating too much
output, we use the parameter 𝐿 to ignore all clusters ̃𝑈𝑖 of size less than 𝐿. In the
experiments we always set 𝐿 = 10.

2.6 Experiments

In this section, we practically evaluate the performance of pcv. Throughout the
experiments our main objective will be to understand how well pcv can recover
small clusters on the right side of the graph. In the synthetic experiments, we will
be most interested in how small 𝑝 can be so that pcv can still recover clusters of
size less than 10 on the right side of the graph. We picked real-world datasets from
which we expect that they contain only very small clusters on the right side.

The experiments were done on a MacBook Air with a 1.6 GHz Intel Core i5 and
8 GB RAM. The source code and the synthetic data are provided in the supplemen-
tary materials of the conference publication [150].

2.6. EXPERIMENTS 23

2.6.1 Algorithms

pcv was compared with the lim algorithm by Lim, Wu and Xu [131], message by
Ravanbakhsh, Póczos and Greiner [172], and the lfm algorithm by Rukat, Holmes
and Yau [181]. For each of the algorithms, implementations provided by the authors
were used. message and lfm are BMF algorithms (see Section 2.2).

When we report the running times of the algorithms, note that the quality of
the implementations is incomparable. For example, lim is implemented in Matlab,
message and pcv are purely implemented in Python and lfm is programmed in
Python with certain subroutines precompiled using Numba.

During the experiments on synthetic data, all algorithms were given the correct
parameters for the parameters 𝑘, 𝑝 and 𝑞 whenever the algorithms allowed this. For
lim and lfm we optimized their parameters as follows.

lim takes as input a weight matrix 𝑊 which is a weighted version of the biad-
jacency matrix 𝐵 of the graph. After a correspondence with the authors of [131],
we set

𝑊 = log (𝑝
𝑞) 𝐵 + log (1 − 𝑝

1 − 𝑞) (1 − 𝐵).

As output, lim returns a denoised version of the data. To obtain the left and right
clusters of the graph, we applied 𝑘-means first to the rows of the output and then
2-means to the columns of the submatrices of the output; this is similar to what was
reported in [131]. Further, lim has a parameter𝜆which [131] set to

√
2𝑛 (this is 44.7

in our setting); we have run the algorithm with parameter 𝜆 = 20, 25, 30, 35, 40, 45
as sometimes this gave better results.

For the lfm algorithm we inverted the data (i.e., we ran the algorithm on the
complement graph) to improve its performance and we fixed the value for 𝜆 to 0.5
for the first 100 iterations. Furthermore, we set the number of latent dimensions to 𝑘.
This procedure was suggested in a correspondence with one of the authors of [181].
Since the results of the lfm algorithm depended heavily on the randomness of the
algorithm, we ran the algorithm 10 times on each dataset; all other algorithms were
run once.

Some of the algorithms returned fractional values in the interval (0, 1) and we
rounded them to 0/1 with threshold 0.5.

2.6.2 Synthetic Data

Let us start by considering the performance of the algorithms on synthetically gen-
erated graphs. The graphs were generated as described in Section 2.1.

The ground-truth clusters 𝑈𝑖 and 𝑉𝑖 were picked in the following way. For each
𝑈𝑖, ℓ vertices were added to the (initially empty) left side of the graph. On the right
side of the graph, we inserted 𝑛 vertices. Each of the 𝑉𝑗 consists of 𝑟 vertices which
were picked uniformly at random from the 𝑛 vertices. Due to the randomness in
the graph generation, some of the 𝑉𝑗 will overlap and most of them will not. By
size of a cluster we mean the number of vertices contained in the cluster.

24 CHAPTER 2. BIPARTITE STOCHASTIC BLOCK MODELS WITH TINY CLUSTERS

When not mentioned otherwise, the parameters were set to 𝑛 = 1000, 𝑘 = 8,
ℓ = 70, and 𝑚 = ℓ ⋅ 𝑘 (i.e., 1000 vertices on the right, 8 ground-truth clusters on
both sides and left-side clusters of size 70). The size of the right-side clusters was
set to 𝑟 = 8. The parameters 𝑝 and 𝑞 were set depending on the dataset.

For each of the reported parameter settings, five random graphs were generated.
The results that are reported in the following are averages over these datasets. When
an algorithm was run multiple times on the same dataset, we report the best result
on the right clusters of the graph.

QualityMeasure. Consider the 𝑘 ground-truth clusters 𝑈1, … , 𝑈𝑘 and the 𝑠 clus-
ters ̃𝑈1, … , ̃𝑈𝑠 returned by an algorithm. The quality 𝑄 of the solution ̃𝑈𝑗 is com-
puted as follows. For each ground-truth cluster 𝑈𝑖, find the cluster ̃𝑈𝑗 which maxi-
mizes the Jaccard coefficient of 𝑈𝑖 and ̃𝑈𝑗. Then sum over the Jaccard coefficients
for all ground-truth clusters 𝑈𝑖 and normalize by 𝑘. Formally,

𝑄 = 1
𝑘

𝑘
∑
𝑖=1

max
𝑗=1,…,𝑠

𝐽(𝑈𝑖, ̃𝑈𝑗) ∈ [0, 1],

where 𝐽(𝐴, 𝐵) = |𝐴 ∩ 𝐵|/|𝐴 ∪ 𝐵| is the Jaccard coefficient. Higher values for 𝑄
imply a better quality of the solution. E.g., if 𝑄 = 1 then the clusters ̃𝑈𝑗 match
exactly the ground-truth clusters 𝑈𝑖. We used the same quality measure for the
clusters 𝑉𝑖.

Remark. Let us briefly motivate why we used the quality measure 𝑄 instead of
using the reconstruction error. Let us first recall the definition of the reconstruc-
tion error. Let 𝐵 be the biadjacency matrix of the graph 𝐺. Then for the outputs

̃𝑈𝑖, ̃𝑉𝑖 of an algorithm, define an 𝑚 × 𝑛 matrix 𝐴 by setting 𝐴𝑢𝑣 = 1 iff there
exists an 𝑖 such that 𝑢 ∈ ̃𝑈𝑖 and 𝑣 ∈ ̃𝑉𝑖. Now the reconstruction error is defined
as ||𝐴 − 𝐵||22. The main advantage of the reconstruction error is that it does not
require knowledge about the ground-truth clustering. Thus, it can be easily com-
puted also on real-world datasets. However, it has two major drawbacks for our
purposes. First, the reconstruction error does not allow us to understand how well
the algorithms perform on each side of the graph. With the quality measure 𝑄,
this is possible. Second, in the experiments we consider scenarios with very high
destructive noise. For example, in random graphs with parameter 𝑝 = 0.4 and
ground-truth clusters 𝑈𝑖, 𝑉𝑖. Then it is more likely that an edge (𝑢, 𝑣) from 𝑢 ∈ 𝑈𝑖
to 𝑣 ∈ 𝑉𝑖 is not present than that is this present in the graph. Thus, an empty graph
has a lower reconstruction error than the ground-truth clustering, which is a highly
undesirable property. The quality measure 𝑄 does not have this drawback.

Varying 𝑝. We start by studying how much the results of the algorithms are af-
fected by destructive noise and vary the values for 𝑝 = 0.2, 0.25, 0.3, 0.5, 0.75, 0.95,
while is fixed to𝑞 = 0.03. The results are presented in Figures 2.1a–2.1c.

We see that on both sides of the graph, pcv and message outperform lfm and
lim for 𝑝 ≤ 0.3; for 𝑝 ≥ 0.5, lim picks up and delivers very good results.

2.6. EXPERIMENTS 25

(a) Vary 𝑝: Left Cluster Quality (b) Vary 𝑝: Right Cluster Quality (c) Vary 𝑝: Running times (sec)

(d) Vary 𝛿: Left Cluster Quality (e) Vary 𝛿: Right Cluster Quality (f) Vary 𝛿: Running times (sec)

(g) Vary ℓ: Left Cluster Quality (h) Vary ℓ: Right Cluster Quality (i) Vary ℓ: Running times (sec)

Figure 2.1: Results on synthetic data. Figures 2.1a–2.1c have varying 𝑝, Figures 2.1d–
2.1f have varying sizes of the right clusters, Figures 2.1g–2.1i have varying ℓ. Mark-
ers are mean values over five different datasets; error bars are one third of the stan-
dard deviation over the five datasets.

In Figure 2.1a we see that on the left clusters, pcv and message deliver similar
performances with pcv picking up the signal better for 𝑝 ≥ 0.5; the results of lim
improve as 𝑝 increases and they are perfect for 𝑝 = 0.75, 0.95; lfm always delivers
relatively poor results.

For the right clusters the situation is similar with message having slight advan-
tages over pcv for 𝑝 ≤ 0.3; pcv and lim deliver better results than message in
settings with less noise (𝑝 ≥ 0.75). It is interesting to observe that pcv already re-

26 CHAPTER 2. BIPARTITE STOCHASTIC BLOCK MODELS WITH TINY CLUSTERS

covers the ground-truth clusters on the right side for 𝑝 ≥ 0.4 and even for 𝑝 = 0.3
the results are of good quality.

The running times of the algorithms are reported in Figure 2.1c. pcv is the
fastest method with lim and lfm being somewhat slower. message is by far the
slowest method and we see that when 𝑝 is small, message takes a long time until
it converges.

Varying sizes of the right clusters. We now study how small the right clusters
𝑉𝑖 can get such that they can still be recovered by the algorithms. To this end,
we vary the size of the right clusters and note that this corresponds to varying 𝛿
(for example, when all clusters are disjoint, 𝛿 is exactly twice the size of the right
clusters).

Previously, we saw that pcv, message and lim did well at the recovery of right
clusters of size 8 even for 𝑝 = 0.4. We study this further by fixing 𝑝 = 0.4, 𝑞 = 0.03
and varying the size of the right clusters from 1 to 8. The results are reported in
Figures 2.1d–2.1f.

The results for clustering the left side of the graph are presented in Figure 2.1d.
We observe a clear ranking with pcv being the best algorithm before message; lim
is the third-best algorithm and lfm is the worst.

For the right side of the graph (Figure 2.1e) we observe that pcv outperforms
message for ground-truth clusters sizes less than 7; even for clusters of sizes 2 and
3, pcv finds good solutions. The performance of lim improves as the cluster sizes
grow.

The running times (Figure 2.1f) are similar to what we have seen before for
varying 𝑝.

Varying ℓ. We study how ℓ, the size of the left clusters 𝑈𝑖, influences the results
of the algorithms. We used values ℓ = 20, 30, 40, 50, 70. The other parameters were
fixed to 𝑝 = 0.5, 𝑞 = 0.03, 𝑘 = 8 and the size of the right clusters was set to 8. The
results are reported in Figures 2.1g–2.1i.

On the left clusters, pcv is the best algorithm with message also delivering
good results; the results of lim are of good quality for ℓ ≥ 40. On the right clusters,
message is initially (ℓ ≤ 30) slightly better than pcv and for ℓ ≥ 40, pcv and
message deliver essentially perfect results; lim finds good right clusters for ℓ ≥ 40.
The running times are similar to what we have seen in previous experiments.

It is interesting and maybe even a bit surprising that even for ℓ = 20, pcv and
message can find very good clusters on the right side of the graph which only
consist of 8 out of a 1000 vertices.

Varying right cluster sizes with wrong parameters. Next, we evaluate how
sensitive the algorithms are towards wrong parameters. We repeated the experi-
ment for varying sizes of the right clusters that we reported before, but this time
we executed the algorithms with incorrect values for their parameters. This should

2.6. EXPERIMENTS 27

(a) Vary 𝛿: Left Cluster Quality (b) Vary 𝛿: Right Cluster Quality (c) Vary 𝛿: Running times (sec)

Figure 2.2: Results on synthetic data. Figures 2.2a–2.2c have varying sizes of the
right clusters and the algorithm were executed with wrong parameters. Markers
are mean values over five different datasets; error bars are one third of the standard
deviation over the five datasets.

affect pcv, message and lim since they take the most parameters. The results can
be seen in Figures 2.2a–2.2c.

Recall: pcv and lim take as parameters 𝑝, 𝑞, 𝑘. message takes as parameters,
𝑝, 𝑞, 𝑘 and the sizes of the clusters on the left sides and the right sides; we were
generous and provided message with the correct values for the cluster sizes.

The true parameter values were 𝑝 = 0.4, 𝑞 = 0.03 and 𝑘 = 8. We gave the
algorithms the incorrect values ̃𝑝 = 0.6, ̃𝑞 = 0.01 and 𝑘̃ = 12.

For the left clusters we see that for clusters of size 1 and 2, pcv is better than
message, for sizes 3 and 4 they are on par and after that message is better. For the
right side clusters we observe that until size 4 pcv is better than message and after
that they are on par with perfect or almost perfect results. For lim we see that its
performance improves as the cluster sizes grow.

Compared with the results when parameters are set correctly, the performance
of all algorithms was relatively robust. pcv’s performance on the left clusters de-
cayed while on the right clusters its results were relatively stable. For message
the results were very robust and its performance on the right clusters even slightly
improved; the latter might be down to much higher running times as reported in
Figure 2.2c (apparently the algorithm takes a longer time to converge when run
with incorrect parameters). For lim we observe that the change in the parameters
has only a small influence on its results.

The fact that the performance of pcv decayed on the left clusters is down to
the following two facts: (1) Rank-12-SVD picks up more noise than the rank 8 SVD.
(2) When clustering the left side into 12 clusters instead of 8, 𝑘-means will partition
the left side into too many sets. Due to (2), each left cluster is smaller than with
the correct value for 𝑘. This causes the inference of the right side clusters of size
at least 5 to be slightly less robust than when the algorithm is run with the correct
parameters. However, note that for the right clusters these effects are only minor.

28 CHAPTER 2. BIPARTITE STOCHASTIC BLOCK MODELS WITH TINY CLUSTERS

(a) Vary 𝑝: Right Cluster Quality (b) Vary 𝛿: Right Cluster Quality (c) Vary ℓ: Right Cluster Quality

Figure 2.3: Results on synthetic data for pcv and pcv with the heuristic from Sec-
tion 2.4.3. All plots report the quality for the recovery of the right clusters. Fig-
ure 2.3a has varying values for 𝑝, Figure 2.3b has varying sizes of the right clusters
and Figure 2.3c has varying values for ℓ. Markers are mean values over five different
datasets; error bars are one third of the standard deviation over the five datasets.

Evaluation of the heuristic. We evaluate the heuristic which was presented in
Section 2.4.3 and compare it with the version of pcv which knows all parameters.
For the heuristic, we set the candidates for 𝑝 to 𝒫 = {0.3, 0.35, 0.4, … , 0.95} and
the set of candidates for 𝑞 to 𝒬 = {0.01, 0.02, 0.03, … , 0.1}.

We used the same synthetic datasets as before. We only report the results on
the right clusters since the results on the left are exactly the same (because the the
clustering of the left side of the graph did not change). The results are stated in
Figure 2.3.

We see that (surprisingly) for varying values of 𝑝 (Figure 2.3a), the heuristic
version of pcv is slightly better than pcvwith the correct parameters for very small
values of 𝑝. For varying sizes of the right clusters (Figure 2.3b), the heuristic is
slightly worse than the version of pcv which knows the correct parameters. For
varying ℓ (size of the left clusters) in Figure 2.3c, the heuristic is visibly worse. The
latter is perhaps to be expected because for smaller left clusters the inference on the
right clusters might overfit easily when the heuristic is used.

Note that in all experiments the standard deviation of the qualities returned by
the heuristic is much higher. This is not surprising since the solution returned by
the heuristic depends more heavily on the randomness in the data (whereas pcv
with the correct parameters mainly requires a good clustering of the left side of the
graph).

Altogether, we observe that when the left clusters and the right clusters are both
large enough, then the heuristic delivers results of good quality.

Conclusion. We conclude that pcv was very good at finding tiny clusters even
with high destructive noise. In most cases, pcv delivered the solutions of highest
quality and pcv was the fastest algorithm.

2.6. EXPERIMENTS 29

2.6.3 Real-World Data

pcv is qualitatively evaluated on two real-world datasets. Since the parameters re-
quired by pcv are not known, pcv was run with different parameters settings and
the quality of the clusters was manually evaluated; the final setting of the parame-
ters is reported for each dataset.

Datasets. The BookCrossing dataset2 originates from Ziegler et al. [221]. It con-
sists of users on the left side of the graph and books on the right side of the graph;
if a user rated a book, there exists an edge between the corresponding vertices. The
dataset was preprocessed so that all books read by less than 11 users and all users
reading less than 11 books were removed. The resulting graph has 6195 users and
4958 books; the number of edges is 83550.

The 4News dataset is a subset of the 20Newsgroups dataset; it was preprocessed
by Ata Kabán (see [141]). The data contains the occurrences of 800 words (right
side of the graph) over 400 posts (left side of the graph) in four different Usenet
newsgroups about cryptography, medicine, outer space, and christianity; for each
newsgroup there are 100 posts. The graph has 11260 edges.

Qualitative Evaluation. BookCrossing. For the BookCrossing dataset, pcv was
run with parameters 𝑘 = 20, 𝜃 = 0.2 and 𝐿 = 10; pcv finished in less than 2
minutes.

pcv returns 12 user-clusters (i.e., on the left side of the graph) with size at least
𝐿. Out of these 12 user-clusters, 9 have a non-empty book-side (right side of the
graph). The largest user-cluster contains 4268 vertices and has an empty book-side
(right side). We will now discuss some of the clusters with non-empty right sides.
All of those clusters have a natural interpretation.

The returned clusters mostly consist of books written by the same authors (as
one would expect). Two clusters were consisting of the Harry Potter books by
Joanne K. Rowling; the first cluster contained the five Harry Potter books that were
published until 2004 (when the dataset was created) and contains 92 users, the other
one consisted of the first three books of the series and contained 60 users. There is
one cluster containing four books written by Anne Rice (64 users), one cluster con-
taining seven books written by John Grisham (67 users), and one clusters containing
46 books written by Stephen King (12 users). pcv also returns two clusters contain-
ing a single book: The Da Vinci Code by Dan Brown (215 users) andThe Lovely Bones
by Alice Sebold (261 users).

4News. For this dataset we observe that it is useful to set the parameter 𝑘 in
the SVD and in the call to 𝑘-means to different values. With this, we can obtain
more general or more specific clusters: Setting the value 𝑘 for 𝑘-means to a smaller
(larger) value, creates less (more) clusters on the left side of the graph. This will also
make the right-side clusters more general (specific).

2http://www2.informatik.uni-freiburg.de/~cziegler/BX/

http://www2.informatik.uni-freiburg.de/~cziegler/BX/

30 CHAPTER 2. BIPARTITE STOCHASTIC BLOCK MODELS WITH TINY CLUSTERS

Weused 𝑘 = 30 for the SVD and 𝑘 = 50 for 𝑘-means to obtain relatively specific
clusters. The value of 𝑘 is so large, because the dataset contains many outliers that
create a lot of left-side clusters of size 1. Further, we set 𝜃 = 0.3, 𝐿 = 10.

For each of the four newsgroups, pcv finds clusters. In total, pcv finds five
clusters of which one has an empty right side (225 posts). The cluster (18 posts)
returned for the cryptography newsgroup is public, system, govern, encrypt, de-
crypt, ke(y), secur(ity), person, escrow, clipper, chip (a clipper chip is an encryption
device developed by the NSA). For the medicine newsgroups, pcv finds the cluster
(24 posts) question, stud(y), year, effect, result, ve, call, doctor, patient, medic, read,
level, peopl(e), thing. The cluster (19 posts) concept, system, orbit, space, year, nasa,
cost, project, high, launch, da(y), part, peopl(e) explains the topics of the outer space
newsgroup well. For the christian religion newsgroup we obtain the cluster (24
posts) christian, bibl(e), read, rutger, god, peopl(e), thing.

2.7 Conclusion

We presented pcv, the first algorithm which can provably recover tiny clusters in
bipartite graphs. In experiments, pcv outperformed state-of-the-art methods on
synthetic datasets and it found interesting clusters in real-world data.

An interesting challenge for future research will be to study random graph mod-
els, where the clusters on both sides of the graph are allowed to overlap (in this
chapter we allowed the right-side clusters to overlap but the left-side clusters had
to be mutually disjoint). This would immediately imply theoretical guarantees for
the Boolean matrix factorization problem [142] under random inputs.

CHAPTER 3
Biclustering and Boolean Matrix

Factorization in Data Streams

We study the clustering of bipartite graphs and Boolean matrix factorization in data
streams. We consider a streaming setting in which the vertices from the left side of
the graph arrive one by one together with all of their incident edges. We provide
an algorithm that, after one pass over the stream, recovers the set of clusters on the
right side of the graph using sublinear space; to the best of our knowledge, this is
the first algorithm with this property. We also show that after a second pass over
the stream, the left clusters of the bipartite graph can be recovered and we show
how to extend our algorithm to solve the Boolean matrix factorization problem (by
exploiting the correspondence of Boolean matrices and bipartite graphs). We eval-
uate an implementation of the algorithm on synthetic data and on real-world data.
On real-world datasets the algorithm is orders of magnitudes faster than a static
baseline algorithm while providing quality results within a factor 2 of the baseline
algorithm. Our algorithm scales linearly in the number of edges in the graph. Fi-
nally, we analyze the algorithm theoretically and provide sufficient conditions un-
der which the algorithm recovers a set of planted clusters under a standard random
graph model.

3.1 Introduction

Bipartite graphs appear in many areas in which interactions of objects from two dif-
ferent domains are observed. Hence, finding interesting clusters (also called commu-
nities) in bipartite graphs is a fundamental and well-researched problem with many
applications; this problem is often called biclustering. For example, in social net-
works the two domains could be users and hashtags and an interaction corresponds
to a user using a certain hashtag; finding clusters in such a graph corresponds to
finding groups of hashtags used by the same users and groups of users using the

31

32 CHAPTER 3. BICLUSTERING AND BMF IN DATA STREAMS

same hashtags [200]. Biclustering has many applications across many domains such
as computational biology [67, 134], text mining [63] and finance [107].

Many real-world bipartite graphs have three natural properties. First, the num-
bers of vertices on both sides of the graphs are very large, while at the same time
their density is extremely low, i.e., the graphs are very sparse. For example, consider
a bipartite graph consisting of users on the left side of the graph and movies on the
right side of the graph, where an edge indicates that a user rated a movie. Such
graphs often consist of millions of users and movies, but the average degree is con-
stant. Second, the degrees on one side of the graph are usually bounded by a small
constant, while on the other side of the graph a few vertices have extremely large
degrees. Continuing the example from above, note that users usually do not rate
more than 1000 movies, but a small number of popular movies is rated by millions
of users. The third property is that the clusters on the high-degree side of the graph
are usually relatively small. Again continuing the above example, those groups of
movies which are watched by the same users typically do not consist of more than
50 movies.

Furthermore, for many real-world bipartite graphs, it is natural to assume that
the left-side vertices appear in a data stream, for example, in Natural Language Pro-
cessing [84], market basket analysis, network traffic analysis and stock price analy-
sis [50]. For instance, in market basket analysis the left-side vertices correspond
to transactions in a supermarket and incident edges indicate which products were
bought. To efficiently find interesting clusters in such datasets, we need to develop
streaming algorithms for the biclustering problem. Another motivation to study
the streaming setting is that current static algorithms do not scale to the previously
mentioned real-world graphs with millions of vertices, because these methods have
prohibitively highmemory consumptions and running times. Streaming algorithms
could mitigate this issue due to improved memory efficiency and speed.

Our Contributions. We address this question and provide the first streaming
algorithms for the biclustering problem. In particular, we study a streaming setting
in which the vertices from the left side of the bipartite graph arrive one after another,
together with all of their incident edges. Then after a single pass over the stream,
the algorithm must output the set of right-side clusters of the graph. The algorithm
is then allowed a second pass over the stream in order to output the left-side clusters.
See Section 3.2.1 for the formal definition of the problem.

To obtain our algorithms, we heavily exploit the previously mentioned proper-
ties of real-world bipartite graphs. Formally, we assume that there exists a number 𝑠
such that the degree of all left-side vertices and the size of all right-side clusters is
at most 𝑠. This implies that, in total, the graph contains 𝑂(𝑚𝑠) edges, where 𝑚 is
the number of vertices on the left side of the graph.

We introduce the sofa algorithm which returns the right-side clusters of the
graph after a single pass over the stream and using sublinear memory. To the best
our of knowledge, sofa is the first algorithmwith this property. The running time of
sofa is 𝑂(𝑚𝑠⋅𝑘 log 𝑚), where 𝑘 is the number of clusters to be recovered; note that
this running time is within a 𝑂(𝑘 log 𝑚) factor of the size of the graph. During its

3.2. PRELIMINARIES 33

running time, sofa uses 𝑂(𝑘𝑠 log 𝑚) space; observe that this space usage sublinear
in the size in the size of the graph as long as 𝑠 = 𝑜(𝑚/ log 𝑚) which is realistic
in practice (as we argued before). Furthermore, we show that the left-side clusters
of the graph can be computed using a second pass over the stream and using space
𝑂(𝑚), which is optimal since we have to output a cluster assignment for each of
the 𝑚 left-side vertices of the graph.

We also provide theoretical guarantees for a version of sofa. We show that
under a standard random graph model, a version of sofa returns a set of planted
ground-truth clusters with information-theoretically optimal memory usage; see
Theorem 3.1 for details. We also provide similar yet weaker guarantees for the
practical version of sofa.

Next, we show how sofa can be extended to solve the Boolean matrix factoriza-
tion problem, which is popular in the data mining and machine learning communi-
ties. We obtain similar guarantees on space and run-time as above. Unfortunately,
we cannot provide any quality guarantees here, because the lower bounds from [52]
rule out obtaining non-trivial approximation ratios for practical BMF algorithms
(see Section 3.8 for details). Thus, sofa is a heuristic for BMF, but our experiments
show that it works well in practice.

We evaluate sofa on synthetic as well as on real-world datasets. On synthetically
generated random graphs, our experiments show that sofa returns clusters, that are
close to the planted ground-truth clusters and that its running time scales linearly
in the number of edges in the graph. On real-world datasets, our experiments
show that sofa is orders of magnitudes faster and more memory-efficient than a
static baseline algorithm, while at the same time achieving objective function values
within factor 2 of the baseline. In concrete terms, sofa can process a graph with
millions of vertices, for which the static baseline algorithm runs out of memory,
using only 500 MB of RAM and, further, sofa can process a graph with hundreds
of thousands of edges within less than three hours, while the baseline algorithm
requires several days to finish.

Outline of the Chapter. The chapter is arranged as follows. In Section 3.2
we formally define the problems we study. Then in Section 3.3 we introduce sofa,
which performs a single pass over the left side of a bipartite graph and then returns
the right-side clusters. We show how the left-side clusters can be recovered during
a second pass over the stream in Section 3.4. In Section 3.5, we discuss certain
adjustments of the algorithms that we made during the implementation and then
we evaluate sofa experimentally in Section 3.6. Section 3.7 contains our theoretical
analysis. We discuss related work in Section 3.8 and conclude in Section 3.9.

3.2 Preliminaries

In this section, we formally introduce the problems we study, we discuss their rela-
tionship and we introduce an important subroutine of our algorithms.

34 CHAPTER 3. BICLUSTERING AND BMF IN DATA STREAMS

3.2.1 Biclustering in Random Graphs

We study biclustering of random bipartite graphs. Let 𝐺 = (𝑈 ∪𝑉 , 𝐸) be a bipartite
graph, where 𝑈 is the set of vertices on the left side of the graph and 𝑉 is the set of
vertices on the right side of the graph. We assume that 𝑈 is partitioned into subsets
𝑈1, … , 𝑈𝑘 for 𝑘 > 1 and 𝑉1, … , 𝑉𝑘 are subsets of 𝑉 (it is not necessary that the 𝑉𝑗
are mutually disjoint or that their union is the set 𝑉).

Now let 𝑝, 𝑞 ∈ [0, 1] be probabilities with 𝑝 > 𝑞. In our random model, vertices
𝑢 ∈ 𝑈𝑖 have edges to vertices 𝑣 ∈ 𝑉𝑖 with “large” probability and to vertices in
𝑣 ∈ 𝑉𝑗 with 𝑖 ≠ 𝑗 with “low” probability. More concretely, we assume that

Pr ((𝑢, 𝑣) ∈ 𝐸) = {𝑝, if 𝑢 ∈ 𝑈𝑖, 𝑣 ∈ 𝑉𝑖,
𝑞, if 𝑢 ∈ 𝑈𝑖, 𝑣 ∈ 𝑉𝑗, 𝑖 ≠ 𝑗. (3.1)

Now the computational problem is as follows. We assume that our algorithms
obtain as input a graph 𝐺 generated from the random model above and the para-
meters 𝑘, 𝑝 and 𝑞 (but have no knowledge about the sets 𝑈𝑖 and 𝑉𝑗). The task is to
recover the clusters 𝑈𝑖 and 𝑉𝑗 from 𝐺; that is, the algorithm must output clusters

̃𝑈1, … , ̃𝑈𝑘 ⊆ 𝑈 and ̃𝑉1, … , ̃𝑉𝑘 ⊆ 𝑉 , such that { ̃𝑈1, … , ̃𝑈𝑘} = {𝑈1, … , 𝑈𝑘} and
{ ̃𝑉1, … , ̃𝑉𝑘} = {𝑉1, … , 𝑉𝑘}.

We decided to study the above random graph model for two reasons. First, the
model has been widely studied theoretically, e.g., in machine learning [150, 219]
and in mathematics [2, 220], and similar models have been used to derive practical
algorithms [172, 180]. Second, when dropping the random graph assumption and
assuming worst-case inputs, biclustering problems are NP-hard [161] and require
prohibitively high running times [52].

In the streaming setting, the algorithm’s input is a stream of the left-side vertices
𝑢 ∈ 𝑈 , where each vertex arrives together with all of its incident edges. We further
assume that for some parameter 𝑠, each 𝑢 ∈ 𝑈 has at most 𝑠 incident edges and
that |𝑉𝑖| ≤ 𝑠 for all 𝑖. Note that the stream only contains left-side vertices 𝑢 ∈ 𝑈
and does not contain the vertices 𝑣 ∈ 𝑉 . After single pass over the stream, the
algorithm must return the right-side clusters ̃𝑉𝑖. Then, the algorithm is allowed a
second pass over the stream to output the left-side clusters ̃𝑈𝑖.

Next, we state our theoretical guarantees. We prove that after a single pass
over the left-side vertices of a bipartite graph, the planted right-side clusters can be
recovered if some conditions hold. We write 𝐴△𝐵 = (𝐴 \ 𝐵) ∪ (𝐵 \ 𝐴) to denote
the symmetric difference.

Theorem 3.1. Let 𝐺 = (𝑈 ∪𝑉 , 𝐸) be a random bipartite graph with planted clusters
𝑈1, … , 𝑈𝑘 and 𝑉1, … , 𝑉𝑘 as above. Let 𝑝 ∈ [1/2, 0.99] and 𝑠 = max𝑖|𝑉𝑖|. There
exist constants 𝐾1, 𝐾2, 𝐾3, 𝐾4 such that if

• 𝑞 ≤ 𝐾1𝑝𝑠/𝑛,
• |𝑉𝑖| ≥ 𝐾3 log 𝑛 for all 𝑖,

• |𝑈𝑖| ≥ 𝐾2 log 𝑛 for all 𝑖,
• |𝑉𝑖△𝑉𝑖′ | ≥ 𝐾4𝑠 for 𝑖 ≠ 𝑖′,

then there exists an algorithm which returns clusters ̃𝑉1, … , ̃𝑉𝑘 such that with high

3.2. PRELIMINARIES 35

probability { ̃𝑉1, … , ̃𝑉𝑘} = {𝑉1, … , 𝑉𝑘}. The algorithm uses 𝑂(𝑘𝑠) space and has a
running time of 𝑂(𝑚𝑘𝑠).

Let us briefly discuss this result and for simplicity assume that the 𝑉𝑖 are disjoint
and have size |𝑉𝑖| = 𝑠 = 𝛺(log 𝑛). Then the bounds for 𝑝 and 𝑞 essentially require
that 𝑝 > 1/2, 𝑞 ≈ 𝑝𝑠/𝑛 and |𝑈𝑖| = 𝛺(log 𝑛). While this is much weaker than
bounds derived for static algorithms for this type of random graph model (e.g., [150,
219]), the static algorithms do not use sublinear space. Furthermore, the bounds on
𝑝 and 𝑞 are almost optimal when one wants to ensure that a greedy clustering of
the left-side vertices succeeds.1

We also show that any algorithm recovering the planted right-side clusters must
use space𝛺(𝑘𝑠). Thus, the space usage of the algorithm from the theorem is optimal.
We prove the theorem and the proposition in Section 3.7.

Proposition 3.2. Any algorithm solving the above biclustering problem requires at
least 𝛺(𝑘𝑠) space.

3.2.2 Boolean Matrix Factorization (BMF)

In the Boolean Matrix Factorization (BMF) problem, the input is a matrix 𝐵 ∈
{0, 1}𝑚×𝑛 and the task is to find factormatrices𝐿 ∈ {0, 1}𝑚×𝑘 and𝑅 ∈ {0, 1}𝑘×𝑛

such that ||𝐵 − 𝐿 ∘ 𝑅||2 is minimized. Here, ∘ denotes matrix multiplication under
the Boolean algebra, i.e., for all 𝑖 = 1, … , 𝑚 and 𝑗 = 1, … , 𝑛,

(𝐿 ∘ 𝑅)𝑖𝑗 =
𝑘

⋁
𝑟=1

(𝐿𝑖𝑟 ∧ 𝑅𝑟𝑗) .

In the streaming setting, the algorithm’s input is a stream consisting of the rows
𝐵𝑖 of 𝐵, where we assume that each row 𝐵𝑖 has at most 𝑠 non-zero entries. After
a single pass over the stream, the algorithm must output the right factor matrix 𝑅.
Then, the algorithm is allowed a second pass over the stream to compute the left
factor matrix 𝐿.

While the biclustering problem and the BMF problem might appear quite differ-
ent at first glance, they are tightly connected. Indeed, there is a one-to-one corre-
spondence between bipartite graphs 𝐺 = (𝑈 ∪ 𝑉 , 𝐸) with 𝑈 = {𝑢1, … , 𝑢𝑚} and
𝑉 = {𝑣1, … , 𝑣𝑛} and Booleanmatrices 𝐵 ∈ {0, 1}𝑚×𝑛: The rows of 𝐵 correspond
to the vertices 𝑢𝑖 ∈ 𝑈 and the columns of 𝐵 correspond to the vertices 𝑣𝑗 ∈ 𝑉 ;

1 Roughly speaking, the condition on 𝑞 ensures that the left-side vertices have more “signal edges”
than “noise edges”. More concretely, in our setting with small right-side clusters 𝑉𝑖 of size |𝑉𝑖| ≈
𝑠 ≪ 𝑛, we have that 𝑛 − 𝑠 ≈ 𝑛. Thus, in expectation every vertex 𝑢 ∈ 𝑈𝑖 has 𝑝𝑠 “signal-edges”
to vertices from its corresponding right-side cluster 𝑉𝑖 and 𝑞(𝑛 − 𝑠) ≈ 𝑞𝑛 “noise-edges” to vertices
in 𝑉 \ 𝑉𝑖. Now, if 𝑞 ≫ 𝑝𝑠/𝑛, then 𝑢 has 𝑞𝑛 ≫ 𝑝𝑠/𝑛 ⋅ 𝑛 = 𝑝𝑠 “noise-edges” and, hence, more
“noise edges” than “signal-edges”. In such a case, the Hamming distances of vertices from the same
cluster 𝑈𝑖 are essentially identical to the Hamming distances of vertices from different clusters 𝑈𝑖 and
𝑈𝑗, 𝑖 ≠ 𝑗. Therefore, clustering the vertices in 𝑈 based on their Hamming distance cannot succeed
anymore and, hence, the analysis of our algorithm is tight w.r.t. the choice of 𝑞.

36 CHAPTER 3. BICLUSTERING AND BMF IN DATA STREAMS

now one sets 𝐵𝑖𝑗 = 1 iff (𝑢𝑖, 𝑣𝑗) ∈ 𝐸. This is yields a bijective mapping between
bipartite graphs and Boolean matrices; 𝐵 is often called the biadjacency matrix of
𝐺.

Furthermore, there exists a correspondence between clusterings 𝑈1, … , 𝑈𝑘 ⊆
𝑈 and 𝑉1, … , 𝑉𝑘 ⊆ 𝑉 and the factor matrices 𝐿 and 𝑅: The clusters 𝑈𝑖 correspond
to the columns of 𝐿 and the clusters 𝑉𝑗 correspond to the rows of 𝑅. More precisely,
consider the 𝑟’th column of 𝐿 and set it to the indicator vector of 𝑈𝑘, i.e., we set
𝐿𝑖𝑟 = 1 iff 𝑢𝑖 ∈ 𝑈𝑟. Simililary, we set 𝑅𝑟𝑗 = 1 iff 𝑣𝑗 ∈ 𝑉𝑟.

There are two main differences between the problems. First, while in biclus-
tering we try to recover a set of planted ground-truth clusters, in BMF we try to
optimize an objective function. However, when 𝑝 > 1/2 > 𝑞, a “good” biclustering
solution will also provide a good BMF solution and vice versa. Second, in bicluster-
ing each vertex 𝑢 ∈ 𝑈 belongs to exactly one cluster 𝑈𝑖 (since the 𝑈𝑖 partition 𝑈).
This would correspond to the constraint in BMF that each column of the factor ma-
trix 𝐿 must contain exactly one non-zero entry. However, in BMF we do not make
this assumption and allow each column of 𝐿 to contain arbitrarily many non-zero
entries. Thus, in BMF the vertices 𝑢 ∈ 𝑈 are allowed to be member of multiple
clusters 𝑈𝑖1

, … , 𝑈𝑖𝑡
(and the clusters 𝑈𝑖 do not have to be mutually disjoint). To

address these differences, in Section 3.4 we use different algorithms for computing
the left-side clusters 𝑈𝑖 for biclustering and for BMF.

3.2.3 Mergeable Heavy Hitters Data Structures

Next, we recap mergeable heavy hitters data structures, which we will use as sub-
routines in our algorithms.

Let 𝑋 = (𝑒1, … , 𝑒𝑁) be a stream of elements from a discrete domain 𝐴. The
frequency 𝑓𝑎 of an element 𝑎 ∈ 𝐴 is its number of occurrences in the stream, i.e.,
𝑓𝑎 = |{𝑖 ∶ 𝑒𝑖 = 𝑎}|. In the heavy hitters problem the task is to output all elements
with 𝑓𝑎 ≥ 𝜀𝑁 and none with 𝑓𝑎 < 𝜀𝑁/2 after a single pass over the stream for
𝜀 > 0.

Misra and Gries [146] provided a data structure which solves the heavy hitters
problem using 𝑂(1/𝜀) space. In fact, their data structure can approximate the fre-
quency of each element 𝑎 ∈ 𝐴 with additive error at most 𝜀𝑁/2. For the rest of the
chapter, we will denote Misra–Griess data structures by MG.

Agarwal et al. [10] showed that Misra–Gries data structures are mergeable: Let
MG1 andMG2 be two Misra–Gries data structures which were constructed on two
different streams 𝑋1 and 𝑋2. Then there exists a merge algorithm which on input
MG1 andMG2 constructs a new data structure, that satisfies the same guarantees as
a Misra–Gries data structure which was built on the concatenated stream 𝑋1 ∪ 𝑋2.
We write MG1 ∪ MG2 to denote such a merged data structure.

Remark. While we use the mergeable version of the Misra–Gries data structure,
we could as well other mergeable heavy hitters data structures such as the count-
min sketch [57]. See [10] for more details on mergeable data structures.

3.3. FIRST PASS: RECOVER RIGHT CLUSTERS 37

3.3 First Pass: Recover Right Clusters

We describe two algorithms for computing the right clusters ̃𝑉𝑗. As described in Sec-
tion 3.2, we assume that the algorithms obtain as input a stream 𝑈 = (𝑢1, … , 𝑢𝑚)
consisting of vertices from the left side of the graph, where each 𝑢𝑖 arrives together
with all of its at most 𝑠 edges to vertices on the right side of the graph. After a single
pass over 𝑈 , the algorithm must return clusters ̃𝑉1, … , ̃𝑉𝑘 on the right side of the
graph.

It will be convenient to identify the vertices 𝑢 ∈ 𝑈 with bit-vectors 𝑥𝑢 ∈
{0, 1}𝑛, where we set 𝑥𝑢(𝑗) = 1 iff (𝑢, 𝑣𝑗) ∈ 𝐸, i.e., 𝑥𝑢(𝑗) = 1 iff vertex 𝑢 is
a neighbor of 𝑣𝑗 ∈ 𝑉 . For two vertices 𝑢, 𝑢′ ∈ 𝑈 , we let 𝑑(𝑥𝑢, 𝑥𝑢′) = |{𝑗 ∶
𝑥𝑢(𝑗) ≠ 𝑥𝑢′(𝑗)}| denote the Hamming distance of 𝑥𝑢 and 𝑥𝑢′ , i.e., 𝑑(𝑥𝑢, 𝑥𝑢′)
measures the number of vertices in 𝑉 which are incident upon 𝑢 or 𝑢′ but not both.

We will first describe a simplified greedy algorithm to highlight our main ideas;
this is the algorithm mentioned in Theorem 3.1. Then we provide a second, more
practical, algorithm in Section 3.3.2; we implement and evaluate this algorithm in
Sections 3.5 and 3.6.

3.3.1 Warm Up: Greedy Biclustering

We start by discussing a simplified greedy algorithm to explain the main idea of our
approach. This greedy algorithm has the guarantees stated in Theorem 3.1.

Before describing the algorithm, let us first make two observations about the
properties of the random graph model in Section 3.2.1: (1) Suppose we know a
planted left-side cluster 𝑈𝑖 and we want to recover its corresponding right-side
cluster 𝑉𝑖. Then observe that by Equation 3.1 every vertex 𝑣 ∈ 𝑉𝑖 has 𝑝|𝑈𝑖| neigh-
bors in 𝑈𝑖 and every vertex 𝑣 ∉ 𝑉𝑖 has 𝑞|𝑈𝑖| neighbors in 𝑈𝑖. Thus, if 𝑈𝑖 is large
enough and 𝑝 is sufficiently larger than 𝑞, we can find a threshold 𝜃 such that with
high probability all 𝑣 ∈ 𝑉𝑖 have more than 𝜃|𝑈𝑖| neighbors in 𝑈𝑖 and all 𝑣 ∉ 𝑉𝑖
have less than 𝜃|𝑈𝑖| neighbors in 𝑈𝑖. Hence, recovering the cluster 𝑉𝑖 essentially
boils down to identifying those vertices in 𝑉𝑖 which are frequently neighbors of
vertices in 𝑈𝑖. In other words, we want to find the heavy hitters among the neigh-
bors of vertices in 𝑈𝑖. (2) The second insight is that when processing the stream,
the vertices 𝑢, 𝑢′ ∈ 𝑈𝑖 from the same cluster will have similar neighborhoods in 𝑉
and, hence, 𝑑(𝑥𝑢, 𝑥𝑢′) is small. More concretely, assume that 𝑑(𝑥𝑢, 𝑥𝑢′) < 𝛼 for
some suitable parameter 𝛼. On the other hand, if 𝑢 ∈ 𝑈𝑖 and 𝑢″ ∈ 𝑈𝑗 with 𝑖 ≠ 𝑗,
their neighborhoods will be quite different and 𝑑(𝑥𝑢, 𝑥𝑢″) > 𝛼 is large. Thus, a
greedy clustering of the vertices 𝑢 ∈ 𝑈 based on the distances of their correspond-
ing vectors 𝑥𝑢 suffices to recover the 𝑈𝑖. In Section 3.7, we show how 𝜃 and 𝛼 can
be picked under the conditions from Theorem 3.1.

Roughly speaking, the algorithm works as follows. It assumes that it obtains
parameters 𝜃 and 𝛼 with the above properties as input. Now the algorithm greed-
ily forms clusters of all left-side vertices which have distance at most 𝛼; this corre-
sponds to Observation (2) above. To save memory, the algorithm only stores a single

38 CHAPTER 3. BICLUSTERING AND BMF IN DATA STREAMS

1: 𝐶 ← ∅
2: for 𝑢 ← next vertex from stream
3: 𝑑 ← min𝑐∈𝐶 𝑑(𝑥𝑢, 𝑥𝑐)
4: if 𝑑 > 𝛼 ▷ open 𝑢 as center
5: 𝐶 ← 𝐶 ∪ {𝑢}
6: 𝑛𝑢 ← 1
7: else ▷ Assign 𝑢 to its closest center 𝑐(𝑢)
8: 𝑐(𝑢) ← arg min𝑐∈𝐶 𝑑(𝑥𝑢, 𝑥𝑐)
9: MG(𝑐(𝑢)) ← MG(𝑐(𝑢)) ∪ MG(𝑢)

10: 𝑛𝑐(𝑢) ← 𝑛𝑐(𝑢) + 1
11: for all 𝑐 ∈ 𝐶 ▷ Postprocessing
12: ̃𝑉𝑐 ← {𝑣𝑗 ∈ 𝑉 ∶ the counter of 𝑗 in MG(𝑐) is at least 𝜃𝑛𝑐}

Algorithm 2: Greedy-clustering (𝑈 , 𝛼, 𝜃)

vertex for each cluster. Furthermore, for each cluster consisting of left-side vertices,
the algorithm keeps track how many of its edges are incident upon each right-side
vertex 𝑣 ∈ 𝑉 . Since we do not have enough memory to store a counter for each
vertex 𝑣 ∈ 𝑉 , the algorithm uses the mergeable heavy hitters data structure from
Section 3.2.3 to approximately keep track of how many times each right-side vertex
appeared; this corresponds to Observation (1) above.

Now we describe the algorithm more formally and present its pseudocode in
Algorithm 2. The algorithm obtains as input 𝑈 , a distance parameter 𝛼 and a round-
ing threshold 𝜃. It maintains a set of centers 𝐶 which is initially empty. For each
center 𝑐 ∈ 𝐶 , the algorithm stores a heavy hitters data structure MG(𝑐) with 𝑂(𝑠)
counters and a counter 𝑛𝑐 denoting how many vertices have been assigned to 𝑐.

Now the algorithm processes the vertices 𝑢 ∈ 𝑈 as follows. First, it checks
whether 𝑥𝑢 has Hamming distance more than 𝛼 from all centers 𝑐 ∈ 𝐶 . If this is
the case, the algorithm opens 𝑢 as a new center. That is, it sets 𝐶 ← 𝐶 ∪ {𝑢} and
sets 𝑛𝑢 ← 1. Else, there exists a center 𝑐(𝑢) ∈ 𝐶 with 𝑑(𝑥𝑢, 𝑥𝑐(𝑢)) ≤ 𝛼 and the
algorithm assigns 𝑢 to 𝑐(𝑢). When assigning 𝑢 to 𝑐(𝑢), the algorithm first creates
a heavy hitters data structure MG(𝑢) containing all 𝑗 such that (𝑢, 𝑣𝑗) ∈ 𝐸 (note
that the algorithm has access to this information since 𝑢 arrives together with all
of its incident edges). Then it mergesMG(𝑐(𝑢)) andMG(𝑢) and updatesMG(𝑐(𝑢))
to this merged heavy hitters data structure. Furthermore, the algorithm increases
the counter 𝑛𝑐(𝑢) by 1. Then it proceeds with the next point from the stream.

When the algorithm finished processing the stream, it performs a postprocess-
ing step. It iterates over all centers 𝑐 ∈ 𝐶 and sets ̃𝑉𝑐 to all vertices 𝑣𝑗 ∈ 𝑉 such
that the counter of 𝑗 in MG(𝐶) is at least 𝜃𝑛𝑐, where 𝜃 is the rounding threshold
from the input and 𝑛𝑐 is the number of vertices that were assigned to 𝑐. Then the
algorithm outputs the clusters ̃𝑉𝑐 as its solution.

Remark. Note that Algorithm 2 only delivers good results when the parameters
𝛼 and 𝜃 provide exactly those guarantees whichwe discussed at the beginning of the
subsection. In Section 3.7 we show how 𝛼 and 𝜃 can be set when the parameters 𝑝,

3.3. FIRST PASS: RECOVER RIGHT CLUSTERS 39

𝑞 and 𝑘 are known for random graph models as introduced in Section 3.2.1; under
this assumption we show that the algorithm indeed returns the planted clusters
𝑉1, … , 𝑉𝑘 after a single pass over the stream and using essentially optimal space.
However, in practice it is unrealistic that one has knowledge about these parameters.
Especially setting the parameter 𝛼 seems troublesome; for example, when setting 𝛼
incorrectly, one cannot even guarantee to obtain 𝑘 clusters in total. We show how
to resolve this issue in the next subsection.

3.3.2 Biclustering Using Importance Sampling

We introduce the sofa algorithm which constitutes our main contribution; sofa is
short for Streaming bOolean FactorizAtion. sofa performs a single pass over the
vertices 𝑢 ∈ 𝑈 and afterwards returns clusters ̃𝑉1, … , ̃𝑉𝑘. One can view sofa as the
more practical version of Algorithm 2, since it it does not require the parameter 𝛼
which is not available in practice. In a nutshell, wewill replace the greedy clustering
from Algorithm 2 by the streaming 𝑘-Medians algorithm from Braverman et al. [44]
which is based on importance sampling. The pseudocode of sofa with all details is
presented in Algorithm 3.

Roughly speaking, sofaworks as follows. sofamaintains a set of centers 𝐶 which
is initially empty; we impose that 𝐶 is never allowed to contain more than 𝑐max
vertices, where 𝑐max is a user-defined parameter. As before, for each center 𝑐 ∈ 𝐶 ,
the algorithmmaintains a heavy hitters data structureMG(𝑐). When sofa processes
the vertices from the stream and a new vertex 𝑢 arrives, sofa computes the distance
𝑑 = 𝑑(𝑥𝑢, 𝑥𝑐(𝑢)) from 𝑢 to the closest center 𝑐(𝑢) in 𝐶 . It then opens 𝑢 as new
center with probability proportional to 𝑑; if 𝑢 is not opened as a center, sofa assigns
𝑢 to 𝑐(𝑢). Thus, if 𝑢 is “close” to 𝑐(𝑢) then 𝑢 is unlikely to become a new center
and more likely to be assigned to 𝑐(𝑢); on the other hand, if 𝑢 is “far away” from
𝑐(𝑢) (and, hence, all centers), then 𝑢 is likely to become a new center. As before,
when a vertex 𝑢 is assigned to 𝑐(𝑢), the indices of all neighbors of 𝑢 are added to
MG(𝑐(𝑢)). Next, suppose that after opening a new center, the set 𝐶 contains 𝑐max
centers. Then sofa restarts on the streamwhich only consists of the 𝑐max centers in
𝐶 and all unprocessed vertices of the stream. When sofa restarts on the centers of
𝐶 and one of the previous centers 𝑐𝑖 is assigned to another previous center 𝑐𝑗, then
sofa merges their corresponding heavy hitters data structures MG(𝑐𝑖) and MG(𝑐𝑗)
as described in Section 3.2. Finally, after processing all vertices from the stream and
obtaining a set of centers 𝐶 together with their heavy hitters data structures, we
run a postprocessing step. At this point 𝐶 can contain more than 𝑘 centers (but at
most 𝑐max). We run a static 𝑘-Medians algorithm on the vectors 𝑥𝑐 for 𝑐 ∈ 𝐶 to
obtain a clustering of 𝐶 into subsets 𝐶1, … , 𝐶𝑘. For each 𝐶𝑖, we merge the heavy
hitters data structures of the centers in 𝐶𝑖 and denote this merged data structure as
MG𝑖. As before, we set ̃𝑉𝑖 to all vertices 𝑣𝑗 ∈ 𝑉 which have a counter of value at
least 𝜃|𝐶𝑖| in MG𝑖.

We now elaborate on the details of sofa. At the beginning, sofa initializes a
lower bound LB on the 𝑘-Medians clustering cost of the points 𝑥𝑢 in the stream

40 CHAPTER 3. BICLUSTERING AND BMF IN DATA STREAMS

to 1. It also maintains an approximation of the current cost of the clustering which
we denote cost and initialize to 0. After that, sofa starts processing the vertices from
the stream. We maintain a set of centers 𝐶 for which we ensure that |𝐶| < 𝑐max at
all times. For each center we store a heavy hitters data structure from Section 3.2.3
with 𝑂(𝑠) counters.

When starting to process the vertices from the stream, sofa computes a weight
𝑓 ← 𝐿𝐵/(𝑘(1 + log 𝑛)). As long as there are unread vertices in the stream, |𝐶| <
𝑐max and cost < 2LB, sofa proceeds as follows. It reads the next vertex 𝑢 from
the stream and sets 𝑑 to the distance 𝑑(𝑥𝑢, 𝑥𝑐(𝑢)) of 𝑢 to its closest center 𝑐(𝑢).
Now it opens 𝑢 as a new center with probability min{𝑤(𝑢) ⋅ 𝑑/𝑓, 1}, where 𝑤(𝑢) is
the weight of 𝑢. sofa maintains as invariant that if 𝑢 was a previously unprocessed
vertex from the stream, then 𝑤(𝑢) = 1, and, if 𝑢 was a center before, then 𝑤(𝑢)
is the number of vertices which were previously assigned to 𝑢. If 𝑢 is opened as a
new center, we set 𝐶 ← 𝐶 ∪ {𝑢}. If 𝑢 is assigned to its closest center 𝑐(𝑢), then we
increase cost by 𝑤(𝑢) ⋅ 𝑑, increase the weight of 𝑐(𝑢) by 𝑤(𝑢) and set MG(𝑐(𝑢)) to
the merged heavy hitters data structures of MG(𝑐(𝑢)) and MG(𝑢).

If at some point |𝐶| = 𝑐max or cost > 2LB, then sofa doubles LB. Further-
more, sofa restarts on the stream which consists of the 𝑐max vertices of 𝐶 and all
unprocessed vertices from 𝑈 (in this order). Note that the vertices 𝑐 ∈ 𝐶 still have
their previously assigned weights 𝑤(𝑐), whereas the vertices in the unprocessed
part of 𝑈 all have weight 1.

After sofa finished processing all vertices from the stream, we perform a postpro-
cessing step. We start by running a static 𝑂(1)-approximate 𝑘-Medians algorithm
on the points 𝑥𝑐 for 𝑐 ∈ 𝐶 which uses only 𝑂(|𝐶| ⋅ 𝑠) space and which runs in time
poly(|𝐶|⋅𝑠); this can be done, for example, using the local search algorithm by Arya
et al. [19]. This provides us with a clustering of 𝐶 into disjoint subsets 𝐶1, … , 𝐶𝑘.
Now for each 𝑖 = 1, … , 𝑘, we set MG𝑖 to the merged heavy hitters data structure
of all vertices in 𝐶𝑖 and |𝐶𝑖| to the sum of the weights of all vertices in 𝐶𝑖. Finally,
we set ̃𝑉𝑖 to all vertices 𝑣𝑗 ∈ 𝑉 such that the counter of 𝑗 in MG𝑖 is at least 𝜃|𝐶𝑖|.

Space Usage and Running Time. We briefly argue that sofa’s space usage is
𝑂(𝑘𝑠 log 𝑚) and its running time is bounded by 𝑂(𝑚𝑘𝑠 log 𝑚). Observe that the
main space usage comes from storing the set of centers 𝐶 together with a heavy
hitters data structure for each center. Recall that we ensure that |𝐶| ≤ 𝑐max at all
times. Furthermore, each center has 𝑂(𝑠) incident edges (by assumption on our in-
put stream) and we set the number of counters for each heavy hitters data structure
to 𝑂(𝑠). Thus, the total space usage is 𝑂(𝑐max𝑠).

Remark. We use the streaming 𝑘-Medians clustering algorithm from [44], be-
cause the centers it maintains are points from the stream. Thus, if these points are
sparse, the space usage of sofa for storing centers directly benefits from this. Algo-
rithms for streaming 𝑘-Means (e.g., [187]) often include steps, which cause the cen-
ters to become dense. Thus, if we used such an algorithm as a subroutine, sofawould
require more space. Here, however, we focused on setting close to the information-
theoretically minimum space usage and, hence, we decided to use the algorithm
by [44].

3.4. SECOND PASS: RECOVER LEFT CLUSTERS 41

1: LB ← 1, cost ← 0 ▷ Process the vertices from the stream
2: while there exist unread vertices in 𝑈
3: 𝐶 ← ∅
4: 𝑓 ← LB/(𝑘(1 + log 𝑛))
5: for 𝑢 ← next vertex from stream
6: 𝑑 ← min𝑐∈𝐶 𝑑(𝑥𝑢, 𝑥𝑐)
7: openCenter ← True, with probability min{𝑤(𝑥) ⋅ 𝑑/𝑓, 1}, and False, otherwise
8: if openCenter = True ▷ open 𝑢 as center
9: 𝐶 ← 𝐶 ∪ {𝑢}

10: 𝑤(𝑢) ← 1
11: else ▷ Assign 𝑢 to its closest center 𝑐(𝑢)
12: cost ← cost + 𝑤(𝑢) ⋅ 𝑑
13: 𝑐(𝑢) ← arg min𝑐∈𝐶 𝑑(𝑥𝑢, 𝑥𝑐(𝑢))
14: 𝑤(𝑐(𝑢)) ← 𝑤(𝑐(𝑢)) + 𝑤(𝑢)
15: MG(𝑐(𝑢)) ← MG(𝑐(𝑢)) ∪ MG(𝑢)
16: if |𝐶| = 𝑐max or cost > 2LB
17: break and raise flag
18: if flag raised
19: 𝑈 ← the stream consisting of the (weighted) vertices in 𝐶 and all unread vertices

of 𝑈
20: LB ← 2LB
21: (𝐶1, … , 𝐶𝑘) ← clustering of 𝐶 using an 𝑂(1)-approximate 𝑘-Medians algorithm

▷ Postprocessing
22: for all 𝑖 = 1, … , 𝑘
23: MG𝑖 ← ⋃𝑥∈𝐶𝑖

MG(𝑥)
24: |𝐶𝑖| ← ∑𝑐∈𝐶𝑖

𝑤(𝑐𝑖)
25: ̃𝑉𝑖 ← {𝑣 ∈ 𝑉 ∶ the counter of 𝑣 in MG𝑖 is at least 𝜃|𝐶𝑖|}

Algorithm 3: sofa (𝑈 , 𝑘, 𝑐max, 𝜃)

3.4 Second Pass: Recover Left Clusters

In this section, we present algorithms for computing a clustering ̃𝑈1, … , ̃𝑈𝑘 ⊆ 𝑈
of the left side of the graph during a second pass over the stream 𝑈 . We assume that
our algorithms obtain as input a set of clusters ̃𝑉1, … , ̃𝑉𝑘 ⊆ 𝑉 from the right side
of the graph. We will present two different algorithms for biclustering and BMF,
respectively.

3.4.1 Biclustering

We now present an algorithm which performs a single pass over the stream 𝑈 and
assigns each 𝑢 ∈ 𝑈 to exactly one cluster ̃𝑈𝑖. We will use this algorithm for the
biclustering problem, where each vertex 𝑢 ∈ 𝑈 belongs to a unique planted cluster
𝑈𝑖 (see Section 3.2.1).

To obtain the clustering ̃𝑈1, … , ̃𝑈𝑘, the algorithm initially sets ̃𝑈𝑖 = ∅ for all

42 CHAPTER 3. BICLUSTERING AND BMF IN DATA STREAMS

𝑖 = 1, … , 𝑘. Now the algorithm performs a single pass over the stream of left-side
vertices 𝑢 ∈ 𝑈 . For each 𝑢, let 𝛤(𝑢) denote the set of neighbors of 𝑢 in 𝑉 , i.e.,
𝛤(𝑢) = {𝑣 ∈ 𝑉 ∶ (𝑢, 𝑣) ∈ 𝐸} ⊆ 𝑉 . Now the algorithm assigns 𝑢 to the cluster 𝑈𝑖∗

such that the overlap of 𝛤(𝑢) and 𝑉𝑖∗ is maximized relative to the size of 𝑉𝑖∗ . More
concretely, the algorithm computes

𝑖∗ = arg max{|𝛤(𝑢) ∩ ̃𝑉𝑖|/| ̃𝑉𝑖| ∶ 𝑖 = 1, … , 𝑘} (3.2)

and then assigns 𝑢 to 𝑈𝑖∗ .
Space Usage and Running Time. Observe that the algorithm uses space 𝑂(𝑚)

(where 𝑚 = |𝑈|), since for each vertex 𝑢 ∈ 𝑈 , we need to store to which cluster
𝑈𝑖 it was assigned. Furthermore, the running time of the algorithm is 𝑂(𝑚𝑘𝑠):
For each of the 𝑚 vertices, we need to compute 𝑖∗ as per Equation (3.2). Since we
assume that each vertex 𝑢 has at most 𝑂(𝑠) neighbors and that all ̃𝑉𝑖 have size 𝑂(𝑠),
it takes time 𝑂(𝑠) to compute |𝛤 (𝑢) ∩ ̃𝑉𝑖|/| ̃𝑉𝑖| for fixed 𝑖. Thus, computing 𝑖∗ can
be done in time 𝑂(𝑘𝑠).

3.4.2 BMF

Next, we present an algorithm, which performs a single pass over the stream and
computes clusters ̃𝑈1, … , ̃𝑈𝑘, where every vertex 𝑢 ∈ 𝑈 may be contained in mul-
tiple clusters 𝑈𝑖1

, … , 𝑈𝑖𝑇
. Recall from Section 3.2.2 that this corresponds to com-

puting a factor matrix 𝐿 for the the BMF problem.
Our approach for computing the sets ̃𝑈𝑖 is similar to the greedy covering scheme

used in [142]. The main idea is that for every 𝑢 ∈ 𝑈 , we greedily cover the set
𝛤(𝑢) ⊆ 𝑉 using the clusters ̃𝑉1, … , ̃𝑉𝑘 similar to the classic set cover problem.
However, unlike in standard set cover, we do allow for some amount of “overcover-
ing”. Note that this greedily minimizes the symmetric difference of 𝛤(𝑢) and the
sets ̃𝑉𝑖 used for covering 𝛤(𝑢); thus, also their Hamming distance is minimized.

Before we present our algorithm, let us first define our score function for the
covering process. For sets 𝐴, 𝑋, 𝑌 , we define the score of 𝐴 for covering 𝑋 given
that 𝑌 was already covered as score(𝐴 ∣ 𝑋, 𝑌) = |(𝑋 \ 𝑌) ∩ 𝐴| − |𝐴 \ (𝑋 ∪ 𝑌)|.

To better understand the score function, consider the case that no elements of
𝑋 were covered before, i.e., 𝑌 = ∅. Then score(𝐴 ∣ 𝑋, ∅) = |𝑋 ∩ 𝐴| − |𝐴 \ 𝑋| is
the number of elements in 𝑋, which get covered by 𝐴, minus the number of those
elements in 𝐴, which do not appear in 𝑋 (these elements “overcover” 𝑋). Now
suppose that 𝑌 ≠ ∅, i.e., some elements of 𝑋 were already covered before and these
elements are stored in the set 𝑌 . Then the score function takes this into account by
not adding score for elements in 𝐴 ∩ 𝑋 ∩ 𝑌 that are in 𝐴 and 𝑋, but were already
covered before. Also, the score function does not subtract score for elements in 𝐴
that are not in 𝑋, but which were already overcovered before (and, hence, are in
𝑌); more precisely, it does not subtract score for the elements in (𝐴 ∩ 𝑌) \ 𝑋.

We now describe our greedy algorithm for computing the clusters ̃𝑈𝑖. Initially,
we set ̃𝑈𝑖 = ∅ for all 𝑖. Now we perform a single pass over the stream 𝑈 and

3.5. IMPLEMENTATION 43

for each 𝑢 ∈ 𝑈 , we do the following. We initialize 𝑌𝑢 = ∅ and, as before, let
𝛤(𝑢) denote the set of neighbors of 𝑢 in 𝑉 . Now, while there exists an 𝑖 such that
score(̃𝑉𝑖 ∣ 𝛤 (𝑢), 𝑌𝑢) > 0, we compute

𝑖∗ = arg max
𝑖=1,…,𝑘

score(̃𝑉𝑖 ∣ 𝛤 (𝑢), 𝑌𝑢). (3.3)

If score(𝑉𝑖∗ ∣ 𝛤 (𝑢), 𝑌𝑢) > 0, we assign 𝑢 to 𝑈𝑖∗ and we set 𝑌𝑢 = 𝑌𝑢 ∪ 𝑉𝑖∗ . Other-
wise, we stop covering 𝑢 and proceed with the next vertex from the stream.

Space Usage and Running Time. The space usage is 𝑂(𝑘𝑚) since each vertex can
be assigned to as many as 𝑘 clusters. The running time of the algorithm is 𝑂(𝑚𝑘2𝑠):
First, note that evaluating score(̃𝑉𝑖 ∣ 𝛤 (𝑢), 𝑌𝑢) takes time 𝑂(𝑠) because all sets have
size 𝑂(𝑠). Second, for a single iteration of the while-loop we need to evaluate the
score function 𝑂(𝑘) times to obtain 𝑖∗ and there are at most 𝑘 iterations. Hence, we
need to spend time 𝑂(𝑘2𝑠) for each of the 𝑚 vertices in 𝑈 .

3.5 Implementation

We implemented the sofa algorithm from Section 3.3.2 for recovering the right-side
clusters and the two algorithms from Section 3.4 for recovering the left-side clusters.
In this section, we present certain adjustments that we made to improve the results
of the algorithms and we discuss how to set certain parameters of the algorithms.

We implemented all algorithms in Python. To speed up the computation, the
subroutines for finding the closest centers (Line 6 in Algorithm 3) and for finding the
clusters with maximum score (Equation (3.3)) were implemented in CPython. We
did not use any parallelization, i.e., our implementations are purely single-threaded.

Our code will be available online and when the final version of [153] gets pub-
lished.

3.5.1 Asymmetric Weighted Hamming Distance

During preliminary tests of sofa on real-world data, we realized that sofa picked
extremely sparse centers which often only had a single non-zero entry. This resulted
in almost all vertices being assigned to this particular center (because the Hamming
distance of a vertex 𝑢 to a center with a single non-zero entry is the degree of 𝑢
plus/minus 1 and, due to the low degrees of the left-side vertices 𝑢, these distances
are usually small) which made the cluster recovery fail.

Hence, we needed to find a way to promote denser centers. To this end, we in-
troduce an asymmetric weighted version of the Hamming distance which we define
as follows. Let 𝑐 ∈ 𝐶 be a center maintained by sofa and let 𝑢 be a vertex which
needs to be clustered. For each entry 𝑖 of 𝑥𝑐 and 𝑥𝑢, we assign the following costs:
If 𝑥𝑐(𝑖) = 𝑥𝑝(𝑖), then the cost is 0; if 𝑥𝑝(𝑖) = 1 and 𝑥𝑐(𝑖) = 0 then the cost is 1;
if 𝑥𝑝(𝑖) = 0 and 𝑥𝑐(𝑖) = 1 then the cost is 𝛼 < 1. Now the asymmetric weighted
Hamming distance of 𝑐 and 𝑝 is simply the sum over the costs for all entries of 𝑥𝑐
and 𝑥𝑝.

44 CHAPTER 3. BICLUSTERING AND BMF IN DATA STREAMS

Note that by setting 𝛼 = 1 the above results in the classic (symmetric) Hamming
distance. Furthermore, setting 𝛼 < 1 promotes denser centers because the case of
𝑥𝑐(𝑖) = 1 and 𝑥𝑢(𝑖) = 0 is penalized less than in classic Hamming distance.

For example, consider the vectors 𝑥𝑐1
= (1, 1, 1, 1, 0), 𝑥𝑐2

= (0, 0, 0, 0, 1) and
𝑥𝑢 = (1, 0, 0, 0, 0). In vanilla Hamming distance, 𝑢 would be assigned to 𝑐2 since
their distance is 2 and the distance of 𝑐1 and 𝑝 is 3. With asymmetric weighted
Hamming distance and 𝛼 = 0.1, 𝑢 is assigned to 𝑐1 because their distance is 0.3
and the distance is 𝑢 and 𝑐2 is 1.1. Note the assignment of 𝑢 to 𝑐1 instead of 𝑐2 is
also much more suitable for the thresholding step in Line 25 of sofa.

In practice, our experiments showed that setting 𝛼 = 0.1 was a good choice for
all datasets and the performance of our algorithms benefitted heavily from using
asymmetric weighted Hamming distance.

3.5.2 Biclustering Algorithm

To solve the biclustering problem from Section 3.2.1, we implemented sofa (Algo-
rithm 3) together with the biclustering algorithm from Section 3.4.1 for recover-
ing the left clusters. The only adjustment that we made was to use the 𝑘-Means
implementation of scikit-learn [166] in order to implement the 𝑂(1)-approximate
𝑘-Medians algorithm in Line 21 of sofa.

3.5.3 BMF Algorithm

To solve the BMF problem from Section 3.2.2, we implemented sofa (Algorithm 3)
together with the BMF algorithm from Section 3.4.2 for recovering the left clusters.

During preliminary tests we observed that on some datasets we achieved better
results when we completely skipped the 𝑘-Median algorithm in Line 21 of sofa.
Instead, we compute a cluster ̃𝑉𝑐 for each center 𝑐 ∈ 𝐶 . Note that this might lead
to more than 𝑘 clusters ̃𝑉𝑐 but to at most 𝑐max. Then we use the BMF algorithm
from Section 3.4.2 to compute a cluster ̃𝑈𝑐 for each of the (potentially more than 𝑘)
clusters ̃𝑉𝑐. While computing the clusters ̃𝑈𝑐, we keep track of the total score of
each cluster ̃𝑉𝑐; this can be done by maintaining a counter 𝑠𝑐 for each 𝑐 ∈ 𝐶 and
increasing 𝑠𝑐 by score(̃𝑉𝑐 ∣ 𝛤 (𝑢), 𝑌𝑢) whenever we compute 𝑖∗ in Equation (3.3).
To ensure that our algorithm only returns 𝑘 clusters when it finishes, we sort the
clusters ̃𝑉𝑐 by their score values 𝑠𝑐 in non-increasing order and only keep the 𝑘
clusters with the highest total scores. This ensures that at the end we only return 𝑘
clusters.

While sofa and the algorithm from Section 3.4.2 return clusters ̃𝑈𝑖 and ̃𝑉𝑖 in-
stead of Boolean factor matrices 𝐿 and 𝑅 as required for the BMF problem, we can
transform the clusters into factor matrices 𝐿 and 𝑅 as discussed in Section 3.2.2.
This gives raise to a matrix 𝐵̃ = 𝐿 ∘ 𝑅 which approximates the biadjacency ma-
trix 𝐵 of the input graph 𝐺.

3.5. IMPLEMENTATION 45

3.5.4 Setting the Rounding Threshold 𝜃
Next, we discuss how to set the rounding threshold 𝜃.

A Heuristic for Determining 𝜃. In Section 2.4.3, we presented a heuristic for
setting 𝜃. It essentially works by observing that 𝜃 is a function of the parameters
𝑝 and 𝑞 of the random graph model from Section 3.2.1. Then it performs a grid
search over different values of 𝑝 and 𝑞 and picks the pair (𝑝∗, 𝑞∗) for which the
resulting rounding threshold 𝜃∗ maximizes the likelihood of the counters observed
in the heavy hitters data structure from Line 23 of sofa. We refer to Section 2.4.3
for the details of the heuristic. We will refer to the version of sofa which uses this
heuristic as sofa-auto.

UsingMultipleThresholds. Note that the only place in sofa, where the round-
ing threshold 𝜃 is used, is in the postprocessing step. Thus, given multiple rounding
thresholds 𝜃1, … , 𝜃𝑇 , it is possible to compute a set of clusters ̃𝑉 (𝑡)

1 , … , ̃𝑉 (𝑡)
𝑘 for

each 𝜃𝑡. Then for each 𝑡 = 1, … , 𝑇 , we can compute corresponding left-side clus-
ters ̃𝑈 (𝑡)

1 , … , ̃𝑈 (𝑡)
𝑘 using the algorithms from Section 3.4. Note that computing the

clusters ̃𝑈 (𝑡)
𝑖 for all values of 𝑡 = 1, … , 𝑇 still only requires a single pass over the

stream: For each 𝑢 ∈ 𝑈 of the stream, we can run the algorithms for computing
̃𝑈 (𝑡)
1 , … , ̃𝑈 (𝑡)

𝑘 in parallel for all 𝑡 = 1, … , 𝑇 .
In our experiments we will use the above strategy to generate clusters for mul-

tiple thresholds. Then we will evaluate their quality in a separate postprocessing
step (see Section 3.6.2). We will refer to the version of sofa which uses multiple
thresholds simply as sofa.

3.5.5 Static to Streaming Reduction

Since many static algorithms do not scale to datasets of the size considered in this
chapter, we describe a reduction for turning static biclustering/BMF algorithms into
2-pass streaming algorithms. We will use this reduction to compare sofa against
static algorithms in our experiments.

In a nutshell, the reduction works as follows. First, we sample a subgraph with
𝑚̃ left-side vertices and 𝑛̃ right-side vertices, where 𝑚̃ ≪ 𝑚 and 𝑛̃ ≪ 𝑛 are para-
meters of the reduction. Then we run the static algorithm on the sampled subgraph
to determine a set of right-side clusters ̃𝑉1, … , ̃𝑉𝑘 (see below for details). In the
second pass over the stream, we use exactly the same procedure as used by sofa
(see Section 3.4) to infer the left-side clusters ̃𝑈1, … , ̃𝑈𝑘.

Now, we elaborate on the first pass over the stream. First, we use reservoir
sampling to obtain 𝑚̃ left-side vertices from the graph uniformly at random; let
𝑈 ′ = {𝑢′

1, … , 𝑢′
𝑚̃} denote this set of left-side vertices. Let 𝑉 ′ be the set of right-

side vertices which are adjacent to vertices in 𝑈 ′. Note that possibly |𝑉 ′| > 𝑛̃
and let 𝑉 ″ be the set of 𝑛̃ vertices in 𝑉 ′ with highest degree to vertices in 𝑈 ′

(breaking ties arbitrarily). Now we run the static algorithm on the subgraph with
the 𝑚̃ left-side vertices 𝑈 ′ and 𝑛̃ right-side vertices 𝑉 ″. This gives raise to clusters

̃𝑉1, … , ̃𝑉𝑘. Next, we add the (low-degree) vertices 𝑣 ∈ 𝑉 ′ \𝑉 ″ to the clusters ̃𝑉𝑖 by

46 CHAPTER 3. BICLUSTERING AND BMF IN DATA STREAMS

assigning each 𝑣 to the cluster ̃𝑉𝑖 which “on average” has the most similar left-side
neighborhood compared to 𝑣. More concretely, for each vertex 𝑣 ∈ 𝑉 ′ we define
the vector 𝑥𝑣 ∈ {0, 1}𝑚̃ such that 𝑥𝑣(𝑖) = 1 iff (𝑢′

𝑖, 𝑣) ∈ 𝐸. Next, for each cluster
̃𝑉𝑖 define the vector 𝑥𝑖 = ∑𝑣∈ ̃𝑉𝑖

𝑥𝑣/| ̃𝑉𝑖| which describes the “average left-side
neighborhood” of the vertices in ̃𝑉𝑖. Now we assign each 𝑣 ∈ 𝑉 ′ \ 𝑉 ″ to ̃𝑉𝑖∗ with
𝑖∗ = arg min𝑖 𝑑(𝑥𝑖, 𝑥𝑣). This yields the final clusters ̃𝑉1, … , ̃𝑉𝑘.

3.6 Experiments

We evaluate sofa on synthetic and on real-world datasets. We conducted the exper-
iments on a workstation with 4 Intel i7-3770 processors at 3.4 GHz and 16 GB of
main memory.

3.6.1 Synthetic Datasets

We start by evaluating our biclustering version of sofa from Section 3.5.2 on syn-
thetic data. We ran sofa with different numbers of centers 𝑐max ∈ {100, 200} and
with 100 and 200 counters in the heavy hitters data structures.

We compare sofa against three different algorithms. First, a version of the algo-
rithm from [150]which does not use any spectral preprocessing; this algorithm is de-
noted static sofa. static sofa can be viewed as a non-streaming version of sofa, i.e., it
performs the clustering offline using 𝑘-Means (instead of streaming 𝑘-Median) and
then it performs the thresholding step (Line 25) using the exact frequency counts (in-
stead of the approximate frequency counts from the heavy hitters data structures).
Thus, static sofa essentially provides an upper bound on how good the streaming
version of sofa can potentially get. Next, we turn the static biclustering algorithms
by Dhillon [63] and Zha et al. [218] into streaming algorithms via the reduction
from Section 3.5.5, where we set 𝑚̃ = 𝑛̃ = 5000, i.e., we sample subgraphs with
5000 vertices on both sides. We denote these algorithms RSdhillon and RSzhaEtAl,
where RS stands for random subgraph.

Data Generation and Quality Measure. We generated the synthetic data as
follows. We start with an empty graph and then for each ground-truth cluster 𝑈𝑖,
we insert ℓ vertices (see below for which values of ℓ we used in the experiments).
Then we inserted 8000 vertices on the right side of the graph (i.e., |𝑉 | = 𝑛 = 8000).
To generate the ground-truth clusters 𝑉𝑖, we simply picked 𝑟 vertices uniformly at
random from 𝑉 for each 𝑖 (see below for how 𝑟 was set in the experiments). Now
the random edges were inserted exactly as described in the random graph model
from Section 3.2.1.

When notmentioned otherwise, we have set the parameters for the graph gener-
ation as follows: 𝑛 = 8000, 𝑘 = 50, ℓ = 200 (and, hence, |𝑈| = 𝑚 = 𝑘⋅ℓ = 10 000),
𝑝 = 0.7, 𝑟 = 30. Furthermore, we set 𝑞 such that in expectation every left-side ver-
tex obtains 20 random neighbors.

3.6. EXPERIMENTS 47

To evaluate the output of the algorithms, let 𝑈1, … , 𝑈𝑘 be the planted ground-
truth clusters and let ̃𝑈1, … , ̃𝑈𝑘 be the clusters returned by one of the algorithms.
We define the quality 𝑄 of the clustering ̃𝑈1, … , ̃𝑈𝑘 as

𝑄 = 1
𝑘

𝑘
∑
𝑖=1

max
𝑗=1,…,𝑠

𝐽(𝑈𝑖, ̃𝑈𝑗) ∈ [0, 1],

where 𝐽(𝐴, 𝐵) = |𝐴∩𝐵|/|𝐴∪𝐵| is the Jaccard coefficient. That is, for each ground-
truth cluster 𝑈𝑖, we find the cluster ̃𝑈𝑗 which maximizes the Jaccard coefficient of
𝑈𝑖 and ̃𝑈𝑗. The quality is then simply the sum over the Jaccard coefficients for all
ground-truth clusters 𝑈𝑖, normalized by 𝑘. Clearly, higher values for 𝑄 imply a
clustering closer to the planted clustering. For example, if the clusters ̃𝑈𝑗 match
exactly the ground-truth clusters 𝑈𝑖 then 𝑄 = 1. We evaluate the quality of the
clusters ̃𝑉𝑖 in exactly the same way.

Experiments. Next, let us discuss the outcomes of our experiments in differ-
ent scenarios, where each time we vary one of the parameters. For each set of
parameters we generated 15 different datasets and we will be reporting averages
and standard deviations for the recovery quality of the algorithms. Our results are
reported in Figure 3.1.

Varying Amount of Signal. First, let us consider a varying amount of signal,
i.e., we set 𝑝 ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. One can see in Figures 3.1a and 3.1b that
the quality of all sofa-versions improves as 𝑝 increases. Furthermore, static sofa
achieves the best quality for recovering the left and right clusters. The second-best
sofa-version is sofa with 200 counters and 200 centers and achieves between 0.05
and 0.1 less quality than static sofa; we ran significance tests and these differences
are significant. When only providing 100 centers, sofa has some problems for values
𝑝 ∈ {0.5, 0.6}; this is not surprising since we planted 50 clusters and thus only
maintaining 100 centers is quite restrictive for sofa. The right-side recovery of
RSdhillon and RSzhaEtAl is relatively constant, where RSdhillon is performing on a
high level; we explain the flatness of the curves by the spectral methods used in the
algorithms, which “denoise” the data well even for small 𝑝. The left-side recovery
of both algorithms is clearly worse than those of the sofa-versions. Regarding the
running times (Figure 3.1c), we see that all versions of sofa are about a factor 3 faster
than static sofa; note that sofa with 100 centers is also significantly faster than the
versions of sofa with 200 centers. RSdhillon and RSzhaEtAl are about factor 1.5–2
slower than sofa.

Varying Size of Right Clusters. Next, we varied the sizes 𝑟 ∈ {15, 20, 30, 50} of
the planted right clusters𝑉𝑖. We can see (Figures 3.1d and 3.1e) thatmost algorithms
benefit from larger 𝑟 and that once again static sofa is the best method, followed
by sofa with 200 counters and 200 centers. When the right clusters are very small
(sizes 15, 20), sofa is much worse than static sofa and RSdhillon. Indeed, for small
values of 𝑟, the vertices become much harder to cluster for sofa, because the Ham-
ming distances of the vertices get dominated by noise. However, for 𝑟 ≥ 30, the
version of sofa with 200 counters and 200 centers only has a 0.1 gap in quality com-

48 CHAPTER 3. BICLUSTERING AND BMF IN DATA STREAMS

pared to static sofa. Furthermore, observe that the performance of sofa with only
100 counters in the heavy hitters data structures drops dramatically for 𝑟 = 50; this
is caused by the frequency estimations of the right-side vertices getting too inaccu-
rate due to the too small number of counters in the heavy hitters data structures.
RSdhillon’s quality is again relatively constant at roughly the same level as before,
while RSzhaEtAl clearly benefits from larger cluster sizes. The running times of the
algorithms (Figure 3.1f) slightly rise as 𝑟 increases since the datasets contain more
non-zero entries.

Varying Size of Left Clusters. Finally, we varied the size ℓ of the left clusters
𝑈𝑖 and set ℓ ∈ {100, 150, 200, 300, 400, 500, 600}. Note that this implies that we
are also varying the number of left-side vertices of the bipartite graph and, hence,
also the total number of edges in the graph. Figures 3.1g and 3.1h show that the
recovery quality is relatively unaffected from this change in ℓ and that the ranking
of the algorithms is as before. However, note that the running times of static sofa
increase much more rapidly than those of the streaming algorithms. For example,
for ℓ = 100 the running times of sofa and static sofa differ by a factor of less than
2 but for ℓ = 600 this is already approximately 7.

Conclusion. We conclude that sofa can achieve recovery qualities close to the
static baseline evenwhen its number of centers is only 4𝑘 and its number of counters
is within factor 4 of the size of the right-side clusters. Furthermore, sofa’s run-
time scales much better than the static baseline’s. While RSdhillon delivered good
quality for right-side recovery, its left-side recovery was rather poor. RSzhaEtAl
performs badly overall; we blame this on the data being too sparse, which does not
allow the algorithm to find good cuts.

3.6.2 Real-World Datasets

For the real-world experiments, it is more realistic to allow the left-side clusters 𝑈𝑖
to overlap. Thus, for the real-world experiments, we use the version of sofa which
solves the BMF problem from Section 3.5.3.

Methods and Measures. For these experiments, we use sofa and sofa-auto.
For sofa, we set the threshold 𝜃 using a line search and we use the values 𝜃 ∈
{0.3, 0.4, 0.5, 0.6, 0.7}. The remaining parameters were set as follows: 𝑐max = 20𝑘,
where 𝑘 is the desired number of clusters; 𝑠 = 𝑃99, the 99th quantile of the degrees
on the left-side vertices (see Table 3.1 for the values for each dataset); and we set
the number of counters in the heavy hitters data structures to max{3𝑠, 0.05𝑛}.

As for the synthetic datasets, we compare sofa against RSdhillon and RSzhaEtAl.
We used 𝑚̃ = 𝑛̃ = 15000 in the reduction. With these parameters, RSdhillon and
RSzhaEtAl have running times comparable to sofa and already for 𝑚̃ = 𝑛̃ = 20000,
our workstation would often run out of memory. Further, we compare against
the static (i.e., non-streaming) algorithm basso2, which is an efficient implemen-
tation of the asso algorithm [142]. basso has one hyperparameter, 𝜏 . We try values

2basso v0.5 from http://cs.uef.fi/~pauli/basso/

http://cs.uef.fi/~pauli/basso/

3.6. EXPERIMENTS 49

(a) Vary 𝑝: Left Cluster Quality (b) Vary 𝑝: Right Cluster Quality (c) Vary 𝑝: Running times (sec)

(d) Vary |𝑉𝑖|: Left Cluster Quality (e) Vary |𝑉𝑖|: Right Cluster Quality (f) Vary |𝑉𝑖|: Running times (sec)

(g) Vary |𝑈𝑖|: Left Cluster Quality (h)Vary |𝑈𝑖|: Right ClusterQuality (i) Vary |𝑈𝑖|: Running times (sec)

Figure 3.1: Results on synthetic data. Figures 3.1a–3.1c have varying 𝑝, Figures 3.1d–
3.1f have varying sizes of the right clusters 𝑉𝑖, Figures 3.1g–3.1i have varying sizes
of the left clusters 𝑈𝑖. Markers are mean values over 15 different datasets; error
bars are one standard deviation over the 15 datasets.

𝜏 ∈ {0.2, 0.4, 0.6, 0.8} and report the results with the best value. For run-time and
memory usage analysis, we report average values over different thresholds. The
time complexity of basso is 𝑂(𝑘|𝑈|2|𝑉 |) and thus we flipped 𝑈 and 𝑉 in the input
for basso when |𝑈| > |𝑉 |.

For all datasets, we computed clusterings consisting of 𝑘 = 50, 100, 200 clusters.
Since for the real-world datasets no information about the ground-truth clusters is

50 CHAPTER 3. BICLUSTERING AND BMF IN DATA STREAMS

Table 3.1: Real-world dataset properties. Datasets are considered as bipartite graphs
𝐺 = (𝑈 ∪ 𝑉 , 𝐸) and density is |𝐸|/(|𝑈| ⋅ |𝑉 |). Average degree deg and the 99th
percentile degree 𝑃99 are calculated from 𝑈 and rounded to the nearest integer.

Dataset |𝑈| |𝑉 | |𝐸| density deg 𝑃99

20News 18 773 61 056 1 766 780 0.0015 94 548
Reuters 38 677 19 757 978 446 0.0013 25 498
Book 105 282 340 550 1 149 779 < 0.0001 11 174
Movie 138 493 26 744 20 000 263 0.0054 144 1113
Flickr 395 979 103 631 8 545 307 0.0002 22 268
Wiki 1 562 433 1 170 854 19 753 078 < 0.0001 17 177

available, we use relative Hamming gain and recall as quality measures to evaluate
the obtained clusterings. Formally, let 𝐵 be the biadjacency matrix of the bipartite
graph and let 𝐵̃ an approximation thereof. The relative Hamming gain is defined as
1 − |{(𝑖, 𝑗) ∶ 𝐵𝑖𝑗 ≠ ̃𝐵𝑖𝑗}|/|{(𝑖, 𝑗) ∶ 𝐵𝑖𝑗 = 1}|, and it indicates how much better
𝐵̃ approximates 𝐵 than a trivial (all-zeros) matrix would. The recall is defined as
|{(𝑖, 𝑗) ∶ 𝐵𝑖𝑗 = 1 ∧ ̃𝐵𝑖𝑗 = 1}|/|{(𝑖, 𝑗) ∶ 𝐵𝑖𝑗 = 1}|, and it indicates the fraction of
edges (1s) in 𝐵 which are “covered” correctly by the matrix 𝐵̃ returned by one of
the algorithm.

Explanation of Datasets. In our experiments, we used six real-world datasets.
Their basic properties are described in Table 3.1. Notice that all datasets are very
sparse, and their left-side degrees (even in the 99th percentile) are small compared
to the number of vertices on the right side of the graph. This empirically validates
two of the three properties we discussed in the introduction.

Let us briefly discuss each of the datasets. 20News3 contains newsgroup post-
ings on the left side and words on the right side; edges indicate a word appearing
in a posting. The datasets Reuters and Flickr were taken from the KONECT4 [123]
website. Reuters has articles from the news organization Reuters on the left side
andwords on the right. Flickr encodes the groupmemberships (right) of Flickr users
(left). Wiki5 is from the SuiteSparse Matrix Collection[61] and consists ofWikipedia
pages on both sides of the graph; an edge (𝑢, 𝑣) indicates that page 𝑢 links to page 𝑣
(note that this relationship is asymmetric). Book6[221] is a rating matrix consisting
of users on the left side and books on the right side; an edge indicates that a user
rated book. Movie7 is a rating matrix between users and movies [95].

Experiments. Results for relative Hamming gain and recall are presented in
Tables 3.2 and 3.3, respectively. Note that basso did not finish on the Wiki dataset,

3http://qwone.com/~jason/20Newsgroups/
4http://konect.uni-koblenz.de
5https://www.cise.ufl.edu/research/sparse/matrices/Gleich/

wikipedia-20051105
6http://www2.informatik.uni-freiburg.de/~cziegler/BX/
7https://grouplens.org/datasets/movielens/20m/

http://qwone.com/~jason/20Newsgroups/
http://konect.uni-koblenz.de
https://www.cise.ufl.edu/research/sparse/matrices/Gleich/wikipedia-20051105
https://www.cise.ufl.edu/research/sparse/matrices/Gleich/wikipedia-20051105
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
https://grouplens.org/datasets/movielens/20m/

3.6. EXPERIMENTS 51

Table 3.2: Relative Hamming gain different real-world datasets

𝑘 Algorithm Relative Hamming gain
20News Reuters Book Movie Flickr Wiki

50 sofa-auto 0.0298 0.0450 0.0198 0.0805 0.0380 0.0617
sofa 0.0424 0.0454 0.0212 0.1188 0.0453 0.0695
basso 0.0545 0.1005 0.1226 0.1394 0.0719 −
RSdhillon 0.0042 0.0273 0.0008 0.1056 0.0040 0.0001
RSzhaEtAl 0.0001 0.0274 0.0008 0.0297 0.0000 0.0000

100 sofa-auto 0.0411 0.0792 0.0298 0.1028 0.0486 0.0730
sofa 0.0574 0.0777 0.0333 0.1367 0.0668 0.0824
basso 0.0793 0.1097 0.1783 0.1739 0.1068 −
RSdhillon 0.0059 0.0307 0.0028 0.1378 0.0137 0.0262
RSzhaEtAl 0.0006 0.0342 0.0030 0.0696 0.0000 0.0000

200 sofa-auto 0.0624 0.1253 0.0427 0.1247 0.0663 0.0861
sofa 0.0930 0.1254 0.0472 0.1598 0.0817 0.1061
basso 0.1171 0.1334 0.2531 0.2376 0.1556 −
RSdhillon 0.0092 0.0402 0.0024 0.1771 0.0203 0.0270
RSzhaEtAl 0.0014 0.0291 0.0017 0.1104 0.0007 0.0001

because it ran out of memory.
The results for relative Hamming gain in Table 3.2 show that, when it is able

to finish, basso is always the best method. This is to be expected as it can make
unlimited passes over the data. On all datasets except Book and for all values of 𝑘,
the results of sofa and basso are within factor at most 2.2. For 𝑘 = 200, the results
of sofa are at most 50% worse than those of basso on 20News, Reuters and Movie.
With Book, on the other hand, sofa is significantly worse (up to factor 5.8) but still
much better than RSdhillon and RSzhaEtAl. We believe this results from Book being
too sparse; indeed, the 50% percentile of the degrees of the left vertices in book is 1
and thus sofa’s clustering seems to fails. Overall, the results of sofa and sofa-auto
improve significantly as 𝑘 increases, showing that it can be used for small and large
values of 𝑘 alike. RSdhillon and RSzhaEtAl perform well when |𝑉 | is small (e.g.,
Movie and Reuters), but as soon as |𝑉 | increases, their results decays dramatically
(e.g., Book, Flickr andWiki); this appears to be a limitation of the random sampling
approach.

The results concerning the recall in Table 3.3 look very similar to relative Ham-
ming gain: For all datasets except Book, sofa has approximately 50% of the recall
of basso, and in Book it is again significantly worse. For Wiki, sofa has results that
are comparable to other datasets, thus, the size of Wiki datasets does not seem to
affect the quality. For RSdhillon and RSzhaEtAl we observe a similar behavior as
above.

Using the heuristic in sofa-auto to set the threshold typically leads to slightly
worse results than setting it using line search. Given that the heuristic is usually
3–4 times as fast, there seems to be a tradeoff which version one should pick.

52 CHAPTER 3. BICLUSTERING AND BMF IN DATA STREAMS

Table 3.3: Recall in different real-world datasets

𝑘 Algorithm Recall
20News Reuters Book Movie Flickr Wiki

50 sofa-auto 0.0446 0.0649 0.0201 0.1262 0.0480 0.0657
sofa 0.0483 0.0652 0.0214 0.1779 0.0474 0.0700
basso 0.0683 0.1677 0.1226 0.2855 0.0760 −
RSdhillon 0.0069 0.0316 0.0009 0.1999 0.0088 0.0001
RSzhaEtAl 0.0004 0.0447 0.0014 0.0614 0.0001 0.0000

100 sofa-auto 0.0570 0.0991 0.0307 0.1597 0.0636 0.0777
sofa 0.0649 0.0987 0.0341 0.2030 0.0721 0.0840
basso 0.0959 0.1907 0.1783 0.3143 0.1124 −
RSdhillon 0.0103 0.0430 0.0060 0.2400 0.0246 0.0302
RSzhaEtAl 0.0017 0.0500 0.0040 0.1182 0.0002 0.0000

200 sofa-auto 0.0788 0.1441 0.0435 0.1926 0.0837 0.0924
sofa 0.0991 0.1442 0.0479 0.2353 0.0906 0.1087
basso 0.1321 0.2100 0.2532 0.3521 0.1603 −
RSdhillon 0.0159 0.0619 0.0030 0.2812 0.0317 0.0299
RSzhaEtAl 0.0022 0.0454 0.0027 0.1644 0.0021 0.0002

The running times of the algorithms are presented in Table 3.4. For sofa and sofa-
auto, presented is the total running time (with full line search in sofa); for basso, the
presented time is the average time for a single value of the threshold parameter 𝜏 .
Still, basso is consistently the slowest method, often by orders of magnitude. The
run-times of RSdhillon and RSzhaEtAl scale well in 𝑘, since the size of the sampled
subgraph and, hence, the time spent on the static computation, is largely unaffected
by the choice of 𝑘.

The memory usages of the algorithms are presented in Table 3.5. basso again
needs significantly more resources. sofa and sofa-auto can compute clusterings of
graphs with millions of vertices and edges, while never using more than 500 MB
of RAM. RSdhillon and RSzhaEtAl have relatively large memory footprints (using
gigabytes of memory) due to the spectral methods they use.

Overall, the real-world experiments show that sofa can achieve results that are
not too far from a static baseline method, while using only a fraction of resources.

3.7 Theoretical Guarantees

We prove the theoretical guarantees of our algorithms.

3.7.1 Proof of Theorem 3.1

For all proofs we assume that the conditions from Theorem 3.1 hold. The concrete
values of the constants 𝐾𝑗 are set inside the proofs. We start by characterising the

3.7. THEORETICAL GUARANTEES 53

Table 3.4: Algorithm run-time on different real-world datasets

𝑘 Algorithm Run-time in CPU minutes
20News Reuters Book Movie Flickr Wiki

50 sofa-auto 2.1 3.2 1.7 45.9 9.7 14.1
sofa 6.2 10.3 5.5 120.0 24.0 42.9
basso 22.7 13.2 2951.8 598.1 4667.8 −
RSdhillon 28.1 23.1 16.4 27.8 21.0 49.7
RSzhaEtAl 36.0 75.2 75.4 35.9 98.5 76.3

100 sofa-auto 5.2 8.3 4.7 102.2 19.9 25.8
sofa 15.6 25.4 16.5 311.6 52.7 70.4
basso 24.6 13.6 3003.8 932.3 5066.0 −
RSdhillon 26.9 23.7 18.1 31.2 23.0 55.5
RSzhaEtAl 41.6 81.2 80.7 39.7 172.3 63.7

200 sofa-auto 12.2 34.8 14.2 229.1 63.7 57.1
sofa 43.5 142.8 60.4 959.0 161.4 157.5
basso 26.7 14.3 3097.4 1441.2 5574.1 −
RSdhillon 25.3 23.1 20.8 42.2 25.8 68.3
RSzhaEtAl 39.4 90.0 68.6 51.5 350.8 100.9

distances of vertices from the same cluster 𝑈𝑖 and vertices from different clusters
𝑈𝑖 and 𝑈𝑖′ .

Lemma 3.3. Let 𝑢, 𝑢′ ∈ 𝑈𝑖 and let 𝑢″ ∈ 𝑈𝑖′ for 𝑖′ ≠ 𝑖. Then with probability at
least 1 − 𝑚−3,

𝑑(𝑥𝑢,𝑥𝑢′) < 1.01 [2|𝑉𝑖|𝑝(1 − 𝑝) + 2(|𝑉 \ 𝑉𝑖|)𝑞(1 − 𝑞)] ,
𝑑(𝑥𝑢,𝑥𝑢″) > 0.99[|𝑉𝑖△𝑉𝑖′ |(𝑝(1 − 𝑞) + 𝑞(1 − 𝑝))

+ 2|𝑉𝑖 ∩ 𝑉𝑖′ |𝑝(1 − 𝑝) + 2|𝑉 \ (𝑉𝑖 ∪ 𝑉𝑖′)|𝑞(1 − 𝑞)].
Proof. First, recall that the neighbors of 𝑢, 𝑢′ and 𝑢″ are random variables such
that if 𝑢 ∈ 𝑈𝑖 then Pr ((𝑢, 𝑣𝑗) ∈ 𝐸) = 𝑝, if 𝑣𝑗 ∈ 𝑉𝑖, and Pr ((𝑢, 𝑣𝑗) ∈ 𝐸) = 𝑞,
if 𝑣𝑗 ∈ 𝑉 \ 𝑉𝑖. Since 𝑢’s neighbors are random this implies that the vector 𝑥𝑢 is
a random vector with Pr (𝑥𝑢(𝑗) = 1) = Pr ((𝑢, 𝑣𝑗) ∈ 𝐸). Next, observe that we
can rewrite the event {𝑥𝑢(𝑗) ≠ 𝑥𝑢′(𝑗)} as {𝑥𝑢(𝑗) = 1 and 𝑥𝑢′(𝑗) = 0}∪{𝑥𝑢(𝑗) =
0 and 𝑥𝑢′(𝑗) = 1}. Together, this implies for vertices from the same cluster,

Pr (𝑥𝑢(𝑗) ≠ 𝑥𝑢′(𝑗)) = {2𝑝(1 − 𝑝), 𝑣𝑗 ∈ 𝑉𝑖,
2𝑞(1 − 𝑞), 𝑣𝑗 ∈ 𝑉 \ 𝑉𝑖.

Similarly, we obtain for vertices from different clusters,

Pr (𝑥𝑢(𝑗) ≠ 𝑥𝑢″(𝑗)) =
⎧{
⎨{⎩

𝑝(1 − 𝑞) + 𝑞(1 − 𝑝), 𝑣𝑗 ∈ 𝑉𝑖△𝑉𝑖′ ,
2𝑝(1 − 𝑝), 𝑣𝑗 ∈ 𝑉𝑖 ∩ 𝑉𝑖′ ,
2𝑞(1 − 𝑞), 𝑣𝑗 ∉ 𝑉𝑖 ∪ 𝑉𝑖′ .

54 CHAPTER 3. BICLUSTERING AND BMF IN DATA STREAMS

Table 3.5: Algorithm memory usage on different real-world datasets

𝑘 Algorithm Memory in GB
20News Reuters Book Movie Flickr Wiki

50 sofa-auto 0.15 0.12 0.10 0.24 0.21 0.20
sofa 0.16 0.13 0.10 0.24 0.20 0.22
basso 0.40 0.66 10.81 1.80 11.48 −
RSdhillon 8.95 8.70 6.12 8.99 7.16 5.61
RSzhaEtAl 10.72 10.43 7.26 10.73 8.63 6.57

100 sofa-auto 0.19 0.14 0.11 0.33 0.27 0.30
sofa 0.20 0.17 0.13 0.33 0.26 0.30
basso 0.40 0.67 10.95 1.80 11.79 −
RSdhillon 8.96 8.70 6.09 8.99 7.20 5.54
RSzhaEtAl 10.71 10.40 7.26 10.73 8.58 6.63

200 sofa-auto 0.25 0.18 0.13 0.49 0.36 0.43
sofa 0.26 0.22 0.17 0.50 0.36 0.42
basso 0.40 0.67 10.99 1.80 12.22 −
RSdhillon 8.96 8.68 6.00 8.98 7.18 5.57
RSzhaEtAl 10.72 10.46 7.30 10.73 8.54 6.63

Next, using linearity of expectation we get that

E [𝑑(𝑥𝑢, 𝑥𝑢′)] =
𝑛

∑
𝑗=1

Pr (𝑥𝑢(𝑗) ≠ 𝑥𝑢′(𝑗))

=2|𝑉𝑖|𝑝(1 − 𝑝) + 2(|𝑉 \ 𝑉𝑖|)𝑞(1 − 𝑞),
E [𝑑(𝑥𝑢, 𝑥𝑢″)] =|𝑉𝑖△𝑉𝑖′ |(𝑝(1 − 𝑞) + 𝑞(1 − 𝑝))

+ 2|𝑉𝑖 ∩ 𝑉𝑖′ |𝑝(1 − 𝑝)
+ 2|𝑉 \ (𝑉𝑖 ∪ 𝑉𝑖′)|𝑞(1 − 𝑞).

Since |𝑉𝑖| ≥ 𝐾3 log 𝑛 and |𝑉𝑖△𝑉𝑖′ | ≥ 𝐾4𝑠 ≥ 𝐾3𝐾4 log 𝑛,

E [𝑑(𝑥𝑢, 𝑥𝑢′)] ≥ 2𝑝(1 − 𝑝)|𝑉𝑖| ≥ 2𝐾3𝑝(1 − 𝑝) log 𝑛,
E [𝑑(𝑥𝑢, 𝑥𝑢″)] ≥ |𝑉𝑖△𝑉𝑖′ |(𝑝(1 − 𝑞) + 𝑞(1 − 𝑝))

≥ 𝐾4𝑝(1 − 𝑞)𝑠 ≥ 𝐾3𝐾4𝑝(1 − 𝑞) log 𝑛.

A Chernoff bound and setting 𝐾3 large enough implies the lemma (we will set 𝐾4
later independently of 𝐾3).

Next, we show that when setting 𝛼 = 0.49𝐾4𝑠 in Algorithm 2, the algorithm
clusters all left-side vertices correctly.

Lemma 3.4. The following events hold w.h.p.: (1) When Algorithm 2 finishes, |𝐶| = 𝑘
and for all 𝑖, 𝐶 contains exactly one center 𝑐 with 𝑐 ∈ 𝑈𝑖. (2) For all 𝑖, there exists a
center 𝑐𝑖 ∈ 𝐶 s.t. all points 𝑢 ∈ 𝑈𝑖 were assigned to 𝑐𝑖.

3.7. THEORETICAL GUARANTEES 55

Proof. First, we condition on the event from Lemma 3.3 occurring for each pair of
vertices from 𝑈 for the rest of the proof. A union bound implies that this happens
with probability at least 1 − 𝑚−1.

Second, consider 𝑢, 𝑢′ ∈ 𝑈𝑖. Then

𝑑(𝑥𝑢, 𝑥𝑢′) < 1.01 [2𝑠𝑝(1 − 𝑝) + 2𝑛𝑞(1 − 𝑞)]

≤ 1.01 [𝑠/2 + 2𝑛𝐾1𝑠
𝑛] ≤ 1.01(1/2 + 2𝐾1)𝑠,

where we used 𝑝(1 − 𝑝) ≤ 1/4 and 𝑞 ≤ 𝐾1𝑝𝑠/𝑛 ≤ 𝐾1𝑠/𝑛.
Third, for 𝑢 ∈ 𝑈𝑖 and 𝑢″ ∈ 𝑈𝑖′ for 𝑖 ≠ 𝑖′,

𝑑(𝑥𝑢, 𝑥𝑢″) > 0.99[|𝑉𝑖△𝑉𝑖′ |(𝑝(1 − 𝑞) + 𝑞(1 − 𝑝))
+ 2|𝑉𝑖 ∩ 𝑉𝑖′ |𝑝(1 − 𝑝) + 2|𝑉 \ (𝑉𝑖 ∪ 𝑉𝑖′)|𝑞(1 − 𝑞)]

≥ 0.99[𝐾4𝑠𝑝(1 − 𝑞) + 0 + 0] ≥ 0.98𝐾4𝑠/2,

where we used that |𝑉𝑖△𝑉𝑖′ | ≥ 𝐾4𝑠 and further 𝑝(1 − 𝑞) ≥ 𝑝 − 𝐾1𝑝2𝑠/𝑛 ≥
𝑝 − 𝐾1𝑝2 ≥ 0.98

0.99 ⋅ 1
2 , since 𝑝 ≥ 1/2 and since we can pick 𝐾1 small enough to

satisfy the last inequality.
Pick 𝐾1, 𝐾4 with 𝐾4 ≥ 2.02

0.98(1/2 + 2𝐾1). Then 𝑑(𝑥𝑢, 𝑥𝑢″) > 0.98𝐾4𝑠/2 ≥
1.01(1/2 + 2𝐾1)𝑠 > 𝑑(𝑥𝑢, 𝑥𝑢′).

Next, we show that Algorithm 2 satisfies the properties of the lemma with 𝛼 =
0.98𝐾4𝑠/2. To prove (1), suppose a vertex 𝑢 ∈ 𝑈𝑖 is processed and for all 𝑐 ∈
𝐶 , 𝑑(𝑥𝑢, 𝑥𝑐) > 𝛼. Then 𝐶 cannot contain any point 𝑢′ ∈ 𝑈𝑖 (if 𝐶 contained
such a point, then the previous computation and the event we conditioned on imply
𝑑(𝑥𝑢, 𝑥𝑢′) ≤ 𝛼). Thus, opening 𝑢 as a new center is the correct choice and 𝐶
contains exactly one center from 𝑈𝑖. To prove (2), suppose that a vertex 𝑢 ∈ 𝑈𝑖 is
processed and 𝑑(𝑥𝑢, 𝑥𝑐) ≤ 𝛼 for some 𝑐 ∈ 𝐶 . The previous computation and the
event we conditioned on imply that 𝑐 ∈ 𝑈𝑖. Thus, all 𝑢 ∈ 𝑈𝑖 are assigned to the
same 𝑐 ∈ 𝐶 .

Next, we show that all left-side vertices have degree 𝑂(𝑠).

Lemma 3.5. With probability at least 1 − 𝑛−2, each vertex 𝑢 ∈ 𝑈 has degree 𝑂(𝑠).

Proof. Let 𝑢 ∈ 𝑈𝑖 and let 𝑑(𝑢) be the degree of 𝑢. Then we get that E [𝑑(𝑢)] =
𝑝|𝑉𝑖| + 𝑞|𝑉 \ 𝑉𝑖| ≤ 𝑝𝑠 + (𝐾1𝑠/𝑛)𝑛 = 𝑂(𝑠). Since E [𝑑(𝑢)] ≥ 𝑝|𝑉𝑖| ≥ 𝐾3𝑝 log 𝑛,
we can apply a Chernoff bound to obtain that for large enough 𝐾3 it holds that
𝑑(𝑢) ∈ [0.99E [𝑑(𝑢)] , 1.01E [𝑑(𝑢)]] with probability at least 1 − 𝑛−2.

Now we show that Algorithm 2 indeed returns the correct right-side clusters if
we set 𝜃 = 0.75𝑝.

Lemma 3.6. With high probability Algorithm 2 returns clusters ̃𝑉1, … , ̃𝑉𝑘 such that
{ ̃𝑉1, … , ̃𝑉𝑘} = {𝑉1, … , 𝑉𝑘}.

56 CHAPTER 3. BICLUSTERING AND BMF IN DATA STREAMS

Proof. Condition on the events from Lemma 3.4. Let 𝑖 ∈ [𝑘] and suppose 𝑐 ∈ 𝐶
satisfies 𝑐 ∈ 𝑈𝑖. We show ̃𝑉𝑐 = 𝑉𝑖.

Consider the heavy hitters data structure MG(𝑐). Recall that when a vertex
𝑢 ∈ 𝑈 is assigned to 𝑐, we added all 𝑗 ∈ [𝑛] to MG(𝑐) with (𝑢, 𝑣𝑗) ∈ 𝐸. Hence, the
stream 𝑋 of numbers that were processed byMG(𝑐) satisfies that the frequency 𝑓𝑗
of 𝑗 is exactly 𝑓𝑗 = |{𝑢 ∈ 𝑈𝑖 ∶ (𝑢, 𝑣𝑗) ∈ 𝐸}|.

From the random graph model we get that E [𝑓𝑗] = 𝑝|𝑈𝑖| if 𝑣𝑗 ∈ 𝑉𝑖 and
E [𝑓𝑗] = 𝑞|𝑈𝑖| if 𝑣𝑗 ∉ 𝑉𝑖. Using a Chernoff bound and |𝑈𝑖| ≥ 𝐾2 log 𝑛, we get that
when 𝐾2 is large enough, 𝑓𝑗 > 0.99𝑝|𝑈𝑖| if 𝑣𝑗 ∈ 𝑉𝑖 and 𝑓𝑗 < 1.01𝑞|𝑈𝑖| ≤ 0.5𝑝|𝑈𝑖|
if 𝑣𝑗 ∉ 𝑉𝑖 with probability at least 1 − 𝑛−2. Using a union bound, we get that the
previous event holds for all 𝑗 ∈ [𝑛] simultaneously with probability at least 1−𝑛−1.
We condition on this event for the rest of the proof.

The total number of points inserted intoMG(𝑐) is |𝑋| = ∑𝑢∈𝑈𝑖
𝑑(𝑢) and using

Lemma 3.5 and a union bound, |𝑋| = 𝑂(|𝑈𝑖|𝑠) with high probability. Thus, if we
runMG(𝑐) with 𝜀 = 𝐶𝑝/(2𝑠) for some suitable constant 𝐶 , we get thatMG(𝑐) uses
space 𝑂(1/𝜀) = 𝑂(𝑠) and provides an approximation ̂𝑓𝑗 of each 𝑓𝑗 within additive
error 𝜀|𝑋| ≤ 0.1𝑝|𝑈𝑖|.

Thus, if 𝑣𝑗 ∈ 𝑉𝑖 then ̂𝑓𝑗 ≥ 𝑓𝑗 −𝜀|𝑋| ≥ 0.89𝑝|𝑈𝑖| and if 𝑣𝑗 ∉ 𝑉𝑖 then ̂𝑓𝑗 ≤ 𝑓𝑗 +
𝜀|𝑋| ≤ 0.6𝑝|𝑈𝑖|. Setting 𝜃 = 0.75𝑝 we get that the algorithm satisfies ̃𝑉𝑐 = 𝑉𝑖.

Lemma 3.7. W.h.p. the space usage of Algorithm 2 is 𝑂(𝑘𝑠) and its running time is
𝑂(𝑚𝑘𝑠).

Proof. Conditioning on Lemma 3.4, the algorithm only stores 𝑘 centers. Storing a
single center takes space 𝑂(𝑠) to store its neighbors by Lemma 3.5. Furthermore,
for a single center we need to store its heavy hitters data structure. As we argued in
the proof of Lemma 3.6 it suffices to use the heavy hitters data structure with 𝑂(𝑠)
counters for each center. Thus, the total space usage is 𝑂(𝑘𝑠).

Observe that for each 𝑢 ∈ 𝑈 the running time is dominated by computing
𝑑 = min𝑐∈𝐶 𝑑(𝑥𝑢, 𝑥𝑐). As there are only 𝑘 centers 𝑐 ∈ 𝐶 and since all 𝑢 ∈ 𝑈
and 𝑐 ∈ 𝐶 have only 𝑂(𝑠) neighbors, we can compute 𝑑 in time 𝑂(𝑘𝑠). Merging
the heavy hitters data structures can be done in constant amortized time. Thus, the
total running time for the pass over the stream is 𝑂(𝑚𝑘𝑠) since |𝑈| = 𝑚. In the
postprocessing step, we only spend time 𝑂(𝑘𝑠) because each of the heavy hitters
data structures only contains 𝑂(𝑠) counters.

3.7.2 Proof of Proposition 3.2

Any algorithm to solve the biclustering problem must be able to output the planted
clusters 𝑉1, … , 𝑉𝑘. Suppose that each 𝑉𝑖 consists of 𝑠 vertices and that all 𝑉𝑖 are
mutually disjoint. Then there are (𝑛

𝑘𝑠) possibilities to pick the 𝑉𝑖. Thus, any algo-
rithm that is able to return the 𝑉𝑖 exactly must use at least log (𝑛

𝑘𝑠) = 𝛺(log 𝑛𝑘𝑠) =
𝛺(𝑘𝑠 log 𝑛) bits. Since the standard word RAM model of computation is consider-
ing words of size 𝛩(log 𝑛), this yields a lower bound of 𝛺(𝑘𝑠) space.

3.8. RELATED WORK 57

3.8 Related Work

Random graph models for bipartite graphs as presented in Section 3.2 are usually
studied under the name bipartite stochastic block models (SBMs) [1]. This problem
has received attention in the past [131, 207] and recently it was shown that in bipar-
tite graphs even very small clusters can be recovered [150, 173, 219]. Furthermore,
if all clusters have size 𝛺(𝑛), algorithms achieving the information-theoretically
optimal recovery thresholds were presented [2, 3, 220]. However, these algorithms
do not work in the streaming setting and (on the hardware we used) none of them
would be able to process the real-world datasets we considered in Section 3.6.

Yun et al. [215] studied SBMs in a streaming setting and provided algorithms
using 𝑂(𝑛2/3) bits of space when the clustering does not have to be stored explicitly.
However, their algorithm does not apply to bipartite graphs and it assumes that all
clusters have size 𝛺(𝑛) which is unrealistic in bipartite graphs as we discussed in
the introduction.

Alistarh et al. [15] consider a biclustering problem in random graphs which is
similar to the one studied in this chapter. They provide guarantees for recovering
the left-side clusters of the graph, but they do not provide recovery guarantees for
the right-side clusters. Furthermore, their data generating model is more simplistic
than the one used in this chapter and their algorithm can require up to 𝑂(𝑘𝑛) space
in practice.

The BMF problem was introduced in the data mining community by Miettinen
et al. [142] and has been popular in this community ever since [104, 119, 133, 140,
144, 162]. Recently, the problem was also studied in the machine learning commu-
nity [122, 129, 172, 180, 181] and the theory community [28, 74]. The only streaming
algorithm for BMF is by Bhattacharya et al. [31], who provided a 4-pass streaming
algorithm which computes a (1 + 𝜀)-approximate solution for BMF. However, their
algorithm is of rather theoretical nature since it requires space 𝑂(𝑛 ⋅ (log 𝑚)2𝑘 ⋅
2𝑂̃(22𝑘/𝜀2)) and since it uses exhaustive enumeration steps which are slow in prac-
tice. Chandran et al. [52] showed that under a standard assumption in complexity
theory, any approximation algorithm for BMF requires time 22𝛺(𝑘) or (𝑚𝑛)𝜔(1); this
essentially rules out practical algorithms for BMF with approximation guarantees.

We are not aware of any algorithm which (like sofa) performs a single pass
over the left-side vertices of a bipartite graph and then returns a clustering of the
right-side vertices.

3.9 Conclusion

We presented sofa, the first algorithm which after single pass over the left-side ver-
tices of a bipartite graph returns the right-side clusters using sublinear memory. We
showed that after a second pass over the stream, sofa solves biclustering and BMF
problems. Our experiments showed that sofa is orders of magnitude faster andmore
memory-efficient than a static baseline algorithm while still providing high quality

58 CHAPTER 3. BICLUSTERING AND BMF IN DATA STREAMS

results. Furthermore, we proved that under a standard random graph model, a ver-
sion of sofa can find the planted clusters under a natural separation condition. In
future work it will be interesting to consider streaming settings in which the edges
arrive one by one. Since the main building blocks of sofa (coresets and mergeable
heavy hitters data structures) extend to distributed settings, it will be interesting to
make sofa distributed.

CHAPTER 4
Conditional Hardness of
Approximate Counting

Problems

A fundamental task in data mining is to compute pattern frequencies in datasets.
For example, how often does a specific itemset occur in a given binary database,
and how many triangles does a given graph have? Recent results in fine-grained
complexity theory suggest that we cannot determine these quantities exactly other
than by exhaustive enumeration or by using fast matrix multiplication. Both of
these methods are often impractical. However, in practice it is often sufficient to
compute these quantities approximately, so long as we have guarantees on the ap-
proximation error and success probability. As it turns out, random sampling is in
many circumstances sufficient, and faster than exhaustive enumeration. Thus, a
natural question is this: Is it possible to beat the running time of current random
sampling algorithms?

We show that this is not the case for key problems in data mining. For exam-
ple, suppose that in a binary database with 𝑚 transactions we want to distinguish
between whether the support of an itemset is at least 𝑚𝛾 or less than 𝑚𝛾/3 for
𝛾 ∈ (0, 1). We show that any algorithm solving this problem takes time at least
𝑚1−𝛾−𝑜(1), unless the Strong Exponential Time Hypothesis (SETH) by Impagliazzo
and Paturi [109] is false. This lower bound matches the running time of a sim-
ple algorithm based on random sampling and a Chernoff bound. We also obtain
tight lower bounds with similar running time tradeoffs for approximating important
graph quantities, such as the number of triangles, the transitivity and the clustering
coefficient.

Furthermore, we give a very simple proof showing that if SETH is true, then
deciding whether a SAT-formula has at least 2𝛾𝑛 satisyfing assignments or none at
all takes time 2(1−𝛾−𝑜(1))𝑛 for all 𝛾 ∈ (0, 1).

59

60 CHAPTER 4. CONDITIONAL HARDNESS OF APPROXIMATE COUNTING

4.1 Introduction

Many data mining algorithms employ subroutines that count occurrences of pat-
terns in a dataset. For example, it is a common task to compute the support of
an itemset in a binary database; algorithms using such a subroutine include the
a priori algorithm [13] for computing association rules or compression-based algo-
rithms [199] for mining a small set of interesting patterns. In bioinformatics [145,
211] and social network analysis [94, 157, 201], it is an important problem to count
triangles in graphs. Many more applications can be found, such as algorithms that
need to count occurences of subsequences [217] or subgraphs [208].

In particular, many data mining algorithms, that aim at extracting a set of inter-
esting patterns from a dataset 𝒟, build upon the following algorithmic framework:

1. Generate an initial set of candidate patterns 𝒫
2. until convergence or timeout do:

a) Generate a new set of candidate patterns 𝒫′

b) For each candidate pattern 𝑃 ∈ 𝒫′, compute the support of 𝑃 in 𝒟
c) If score(𝒫′) < score(𝒫), then 𝒫 ← 𝒫′

In the above paradigm, the function score(⋅) refers to the objective function that shall
be minimized. For example, in compression-based algorithms such as krimp [199],
score(𝒫) encodes how well the set 𝒫 compresses the database, or in Boolean ma-
trix factorization algorithms such as asso [142], score(𝒫) encodes the Hamming dis-
tance of the dataset and a low-rank matrix factorization. Almost all of the score(⋅)
functions we are aware of have in common that they heavily rely on knowing the
support for each pattern 𝑃 ∈ 𝒫′. Thus, Step 2b is crucial to compute score(𝒫′), but
it is usually considered expensive because it requires a full pass over the dataset.

Next, observe that in the above paradigm all steps are algorithm- and problem-
specific except Step 2b, which only depends on the type of the data. Thus, if we could
provide a very fast subroutine for computing the support of a pattern in a dataset,
we could speed up extremely many data mining algorithms. Hence, a fundamental
question is as follows:

How fast can we compute the support of a pattern?

Unfortunately, existing results in fine-grained complexity theory show that if
the support of a pattern is supposed to be computed exactly, i.e., when no error is
allowed, then we cannot be much faster than a full pass over the dataset. For ex-
ample, Williams [202] showed that computing the support of an itemset in a binary
database exactly essentially requires reading the whole database, unless a popular
conjecture in complexity theory is false (see below for details).

However, for our application of speeding up existing data mining algorithms,
it often suffices to only compute the supports approximately. That is, we can still
speed up many algorithms if we can answer the following question:

Is the support of pattern 𝑃 ∈ 𝒫′ at least 𝐾 or less than 𝐾/3?
(If the support of 𝑃 is between 𝐾/3 and 𝐾 , return either answer.)

4.2. OUR RESULTS 61

Note that the above subroutine indeed helps us to distinguish frequent patterns
(with support at least 𝐾) from truly infrequent patterns (with support at most 𝐾/3).

With a very efficient subroutine for the above problem, practical algorithms
could still be sped up as follows: Whenever the support of a pattern 𝑃 needs to be
computed, we first run the fast subroutine for deciding whether 𝑃 ’s support is at
least𝐾 or less than𝐾/3. Then if the support of𝑃 is less than𝐾/3, we can discard𝑃
and proceed with the next pattern. Else, we compute the support of 𝑃 exactly (with
a full pass over the dataset). In practice, this approach can still provide significant
speedups and thus the above gap problem and versions thereof have been studied
in many different settings [130, 136, 174, 175, 194].

For gap-problems of the above type, we know that simple random sampling
algorithms provide faster running times than a full pass over the database. In this
chapter, we study whether the existing algorithms can be improved or whether they
are essentially optimal.

4.2 Our Results

We study the computational complexity of the above gap-problem for different
types of data. We prove that for approximately computing the support of an itemset
in a binary database and for approximately counting the number of triangles in a
graph, one cannot do much better than very simple random sampling algorithms,
unless popular conjectures in computational complexity are false. We also provide
a matching upper and lower bound for approximately counting the number of solu-
tions of a SAT formula.

While our upper bounds can solve the gap problem from Section 4.1, our lower
bounds hold even for the even more idealized version of the gap problem where we
need to decide whether the support of a pattern is at least 𝐾 or 0. That is, the lower
bounds hold even when we only have to distinugish between frequent patterns and
patterns which do not appear in the database at all.

In the following, we formally define the problems we study and discuss our
results in detail. Wewill also summarize the existing hardness results for computing
the supports of patterns exactly.

4.2.1 Approximating the Frequencies of Itemsets

We start by studying support estimation in binary databases 𝒟, that is, databases
where each row has only attributes that are either true or false. The corresponding
counting problem is this: Given a set 𝑇 of attributes, how many rows of 𝒟 have
all attributes in 𝑇 set to true? In frequent itemset mining, the attributes are usually
called items, and sets of attributes are called itemsets.

Definition 4.1 (FIS). Let [𝑑] ∶= {1, … , 𝑑} be the set of all items. An itemset 𝑇 is a
subset of [𝑑]. An 𝑚 × 𝑑 database 𝒟 is a multiset of itemsets 𝑇1, … , 𝑇𝑚 ⊆ [𝑑], where
the itemsets 𝑇𝑖 ∈ 𝒟 are called transactions. The support #supp(𝑇) of an itemset 𝑇 is

62 CHAPTER 4. CONDITIONAL HARDNESS OF APPROXIMATE COUNTING

#supp(𝑇) = |{𝑖 ∶ 𝑇 ⊆ 𝑇𝑖}|, i.e., #supp(𝑇) is the number of transactions in 𝒟 that
contain 𝑇 as a subset. The frequencies of itemsets problem (FIS) is defined as follows:
Given a database 𝒟 and a set 𝒯 of itemsets, return #supp(𝑇) for all 𝑇 ∈ 𝒯.

Note that FIS takes a set 𝒯 of itemsets as input and produces an output of
|𝒯| numbers. This way of defining the problem models the situation where we
receive a batch of |𝒯| itemsets and need to compute all of their supports at once.

Clearly, by performing a pass over the database 𝒟 for each itemset 𝑇 ∈ 𝒯, FIS
can be solved in time1 𝑂̃(|𝒯| ⋅ 𝑚) when 𝑑 ≤ poly log 𝑚. Is there a faster way?
Probably not: Williams [202] proved that every algorithm for this problem must
use time2 at least |𝒯| ⋅ 𝑚1−𝑜(1) when 𝑑 ≥ 𝜔(log 𝑚), unless the Strong Exponential
Time Hypothesis (SETH) is false (see Conjecture 4.3 for a formal definition). Thus,
there does not seem to be an algorithm that computes the support of an itemset for
worst-case binary databases much faster than performing one pass over the whole
database — not even when all itemsets in 𝒯 are presented as a batch.

Note that in FIS, we need to compute #supp(𝑇) exactly. Now what is the
situation for the simpler problem in which we only need to distinguish whether
#supp(𝑇) ≥ 𝐾/3 or #supp(𝑇) = 0? We now formally define this problem. In the
definition, we parameterize 𝐾 as 𝐾 = 𝑚𝛾 (i.e., 𝛾 = (log 𝐾)/(log 𝑚)).

Definition 4.2 (gap#FIS(𝛾)). Let 0 < 𝛾 < 1. The input to the gap#FIS(𝛾) problem
consists of an 𝑚 × 𝑑 database 𝒟 and a set of itemsets 𝒯. For each 𝑇 ∈ 𝒯, output 1 if
#supp(𝑇) ≥ 𝑚𝛾, and 0 if #supp(𝑇) = 0.

Anatural approach to solve gap#FIS(𝛾) is using random sampling. When given
an itemset 𝑇 ∈ 𝒯, the random sampling algorithm uniformly samples a row 𝑇𝑖 ∈ 𝒟
from the database and increments a counter each time 𝑇 ⊆ 𝑇𝑖 holds. By repeating
the sampling 𝑂̃(𝑚1−𝛾) times, it is possible to distinguish between #supp(𝑇) ≥ 𝑚𝛾

and #supp(𝑇) = 0 with high probability. Since checking 𝑇 ⊆ 𝑇𝑖 takes time 𝑂(𝑑),
the random sampling algorithm runs in time 𝑂̃(|𝒯|𝑑𝑚1−𝛾). See Lemma 4.16 for
the details of this procedure.

To argue that the running time of the random sampling algorithm can proba-
bly not be significantly improved, we rely on the following hypothesis from fine-
grained complexity, which essentially states that solving SAT takes time 2(1−𝑜(1))𝑛,
where 𝑛 is the number of variables of the formula.

Conjecture 4.3 (Strong Exponential Time Hypothesis (SETH) [109, 110] + Sparsfi-
ciation Lemma [49]). For all 𝜀 > 0, there exists a positive integer 𝑘 such that deciding
whether a 𝑘-SAT formula with with 𝑛 variables and 𝑂(𝑛) clauses cannot be done in
time 𝑂(2(1−𝜀)𝑛).

1We use the 𝑂̃(⋅) notation as a variant of 𝑂(⋅) notation that ignores polylogarithmic factors.
2 When we write that an algorithm “requires time at least 𝑇 1−𝑜(1)”, this can equivalently be

rephrased as follows: “For all 𝜀 > 0, there is no algorithm running in time 𝑇 1−𝜀.” That is, it is
impossible to obtain algorithms which are polynomially faster than time 𝑂(𝑇).

4.2. OUR RESULTS 63

We prove that, if SETH is true, then no algorithm for gap#FIS(𝛾) can be poly-
nomially faster than the previously described random sampling algorithm.

Theorem 4.4. Let 0 < 𝛾 < 1. Then:
• There is a randomized algorithm that solves gap#FIS(𝛾) for 𝑚 × 𝑑 databases

in time 𝑂̃(|𝒯| ⋅ 𝑑𝑚1−𝛾) with high probability if |𝒯| ≤ poly(𝑚).
• If 𝑑 = log2 𝑚, 2 ≤ 𝑡 ≤ (log 𝑚)𝑜(1) and |𝒯| = poly(𝑚), then any algorithm

for gap#FIS(𝛾) requires a running time of at least |𝒯| ⋅ 𝑚1−𝛾−𝑜(1) unless Con-
jecture 4.3 is false. This holds even in the case that, for each 𝑇 ∈ 𝒯 and 𝑇𝑖 ∈ 𝒟,
either 𝑇 ⊆ 𝑇𝑖 or |𝑇 ∩ 𝑇𝑖| ≤ |𝑇 |/𝑡.

Let us briefly discuss the theorem. (1) The upper and the lower bound from the
theorem match: The lower bound instance considers databases with 𝑑 = log2 𝑚
items. In this case, the upper bound becomes 𝑂̃(|𝒯| ⋅ 𝑚1−𝛾) and, hence, matches
the lower bound of |𝒯| ⋅ 𝑚1−𝛾−𝑜(1) up to 𝑚𝑜(1) factors. (2) The lower bound holds
even if we have that for each 𝑇 ∈ 𝒯 and 𝑇𝑖 ∈ 𝒟, either 𝑇 ⊆ 𝑇𝑖 or |𝑇 ∩ 𝑇𝑖| ≪ |𝑇 |,
i.e., either 𝑇 is a subset of 𝑇𝑖 or 𝑇 and 𝑇𝑖 only have “very few” items in common.
Thus, even these two properties do not help us to obtain much faster algorithms,
unless SETH is false. (3) The lower bound holds even when the number of itemsets
𝒯 is much larger than the number of transactions in the database (the lower bound
holds even 𝒯 is extremely large, e.g., even for |𝒯| = 𝑚1909).

We also consider the online data structure version of the gap#FIS(𝛾) problem.
In this version of the problem, we are given the 𝑚 × 𝑑 database 𝒟 in advance
and we can preprocess it for poly(𝑚) time. Then we obtain the itemsets 𝑇 ∈ 𝒯
one after another and we need to support a query operation that outputs whether
#supp(𝑇) ≥ 𝑚𝛾 or #supp(𝑇) = 0. We show that even for this data structure
version of the problem, each query operation must take time 𝑚1−𝛾−𝑜(1), unless
SETH is false (see Lemma 4.19 and Proposition 4.20).

Our lower bounds also apply to the problems of estimating the frequencies of
(sub-)graphs in vertex-labeled graph databases and of (sub-)sequences in sequence
databases. This follows from the reductions in Section 5.4.2 and also [154, 209].

4.2.2 Approximating the Number of Triangles and Related
Measures

Next, we discuss our results for triangle counting. We start by defining three exact
triangle counting problems.

Definition 4.5. Let 𝐺 = (𝑉 , 𝐸) be a graph. A triangle is a triplet {𝑢, 𝑣, 𝑤} ⊆ 𝑉
such that (𝑢, 𝑣), (𝑣, 𝑤), (𝑤, 𝑢) ∈ 𝐸. We define the following quantities for 𝑢, 𝑣 ∈ 𝑉 :

• #Triangle(𝐺): Return the number of triangles in 𝐺.
• #Triangle(𝐺, 𝑢): Return the number of triangles in 𝐺 containing 𝑢.
• #Triangle(𝐺, 𝑢, 𝑣): Return the number of triangles in 𝐺 containing 𝑢 and 𝑣.

64 CHAPTER 4. CONDITIONAL HARDNESS OF APPROXIMATE COUNTING

All three variants of #Triangle(⋅) can be solved using exhaustive search, in time
𝑂(𝑛3), 𝑂(𝑛2), and 𝑂(𝑛), respectively. While exhaustive search is useful when the
input is small, it is natural to wonder whether faster algorithms are possible.

This is indeed the case when we are allowed to use fast matrix multiplication:
If 𝐴 is the adjacency matrix of 𝐺, then 1

6 ∑𝑢,𝑣(𝐴3)𝑢,𝑣 is equal to the number
of triangles in 𝐺. Thus, triangle counting reduces to matrix multiplication [149],
which can be solved in time 𝑂(𝑛𝜔), where 𝜔 < 2.373 is the optimal exponent of
fast matrix multiplication [77, 203]. Unfortunately, due to the large constant hiding
in the 𝑂-notation, fast matrix multiplication is usually considered impractical [126],
except in highly engineered settings for extremely large data [116]. Therefore, it is
preferable to develop so-called combinatorial3 algorithms, that is, algorithms that
“do not rely on current methods for fast matrix multiplication”, since the hope is
that such algorithms are more practical.

When prohibiting current fast matrix multiplicationmethods, the fastest known
algorithm for triangle counting [213] runs in time 𝑂(𝑛3/ log4 𝑛 ⋅ poly log log(𝑛)),
i.e., it is only polylogarithmically faster than the trivial exhaustive search algorithm.
However, there are reasons to believe that this result cannot be much improved.
VassilevskaWilliams andWilliams [205] proved that deciding whether a graph con-
tains a triangle (that is, to decide whether #Triangle(𝐺) > 0) not only reduces
to Boolean matrix multiplication (BMM), but is in fact equivalent to it, in the sense
that 𝑂(𝑛3−𝜀)-time combinatorial algorithms for triangle detection imply 𝑂(𝑛3−𝜀′)-
time combinatorial algorithms for the multiplication of two 𝑛×𝑛 Boolean matrices.
A popular conjecture in fine-grained complexity states that any combinatorial al-
gorithm for multiplying two 𝑛 × 𝑛 Boolean matrices requires time 𝑛3−𝑜(1). The
conjecture is called the the BMM conjecture and it was used, for example, in [7, 59,
127, 177].

Conjecture 4.6 (Boolean Matrix Multiplication Conjecture (BMM)). Any combina-
torial algorithm computing the matrix-matrix product of two Boolean 𝑛 × 𝑛 matrices
requires time 𝑛3−𝑜(1).

Thus, due to Conjecture 4.6 and the equivalence of BMM and triangle counting,
there may be no practical algorithm that solves #Triangle(𝐺) significantly faster
than exhaustive search (see Lemma 4.25 for details).

While the above discussion essentially settles the situation for exact triangle
counting problems, what if we again consider a gap versions as above? Let us first
formally define these problems.

Definition 4.7 (gap#Triangle). Let 𝐺 = (𝑉 , 𝐸) be a graph with 𝑛 vertices and
𝑢, 𝑣 ∈ 𝑉 . We define the following problems:

• gap#Triangle(𝛾) for 𝛾 ∈ (0, 3): Output 1 if #Triangle(𝐺) ≥ 𝑛𝛾, output 0 if
#Triangle(𝐺) = 0.

3 We note that the term “combinatorial” is not well-defined [97]; informally, it means that the
algorithmmust not use currentmethods for fast matrixmultiplication and should have small constants
in the 𝑂(⋅)-notation.

4.2. OUR RESULTS 65

• gap#Triangle(𝛾, 𝑢) for 𝛾 ∈ (0, 2): Output 1 if #Triangle(𝐺, 𝑢) ≥ 𝑛𝛾, output
0 if #Triangle(𝐺, 𝑢) = 0.

• gap#Triangle(𝛾, 𝑢, 𝑣) for 𝛾 ∈ (0, 1): Output 1 if #Triangle(𝐺, 𝑢, 𝑣) ≥ 𝑛𝛾,
output 0 if #Triangle(𝐺, 𝑢, 𝑣) = 0.

The following theorem summarizes our results for the gap#Triangle-problems.
We again obtain that if Conjecture 4.6 is true, then the existing combinatorial ran-
dom sampling algorithms cannot be significantly improved.

Theorem 4.8. Let 𝐺 = (𝑉 , 𝐸) be a graph with 𝑛 vertices and 𝑢, 𝑣 ∈ 𝑉 . We obtain
the following lower bounds for combinatorial algorithms under Conjecture 4.6:

• Solving gap#Triangle(𝐺, 𝛾) takes time at least 𝑛3−𝛾−𝑜(1) for 𝛾 ∈ (0, 3).
• Solving gap#Triangle(𝐺, 𝛾, 𝑢) takes time at least 𝑛2−𝛾−𝑜(1) for 𝛾 ∈ (0, 2).
• Solving gap#Triangle(𝐺, 𝛾, 𝑢, 𝑣) takes time at least 𝑛1−𝛾−𝑜(1) for 𝛾 ∈ (0, 1).

All lower bounds are matched up to 𝑛𝑜(1) factors by simple sampling algorithms.

Note that for some values of 𝛾, the theorem implies lower bounds for sublinear
time algorithms. For example, consider the lower bound for gap#Triangle(𝐺, 𝛾)
with 𝛾 = 0.5. Then the lower bound states that it takes time 𝑛0.5−𝑜(1) to decide
whether #Triangle(𝐺) ≥ 𝑛2.5 or #Triangle(𝐺) = 0. However, time 𝑛0.5−𝑜(1)

is not enough to read the whole graph 𝐺 or even to read all neighbors of a vertex.
Hence, in our reduction we ensure that we can support the following operations in
𝑂̃(1) time: (1) Sample a vertex uniformly at random, (2) sample an edge uniformly
at random, (3) given a vertex, sample a neighbor uniformly at random, (4) query
the degree of a vertex, (5) given two vertices 𝑢, 𝑣 ∈ 𝑉 , return whether (𝑢, 𝑣) ∈ 𝐸.
Indeed, the random sampling algorithms from the tight upper bounds only use these
operations.

Furthermore, we study dynamic versions of the gap#Triangle problems. In
these dynamic versions, we allow vertex insertions and query operations asking
for the number of triangles incident upon a single or multiple vertices. We derive
lower bounds under the Online Matrix Vector (OMv) conjecture [97].

Definition 4.9 (Online BooleanMatrix-Vector Multiplication (OMv)). Given an 𝑛×
𝑛 Boolean matrix 𝑀 and a sequence (𝑣1, … , 𝑣𝑛) of 𝑛-dimensional Boolean vectors
that are provided in an online fashion, one has to return the result of the matrix-vector
product 𝑀𝑣𝑖 before the next vector 𝑣𝑖+1 is provided.

Conjecture 4.10 (OMv Conjecture [97]). Any algorithm that solves OMv with an
error probability of at most 1/3 requires time 𝑛3−𝑜(1).

In the dynamic setting, we show that unless the OMv conjecture is false, for
dynamic versions of gap#Triangle(𝐺, 𝛾, 𝑢) and gap#Triangle(𝐺, 𝛾, 𝑢, 𝑣) either the
update operations must take time 𝑛2−3𝛾/2−𝑜(1) and 𝑛1−3𝛾−𝑜(1), respectively, or
the query operations must take time 𝑛2−𝛾−𝑜(1) and 𝑛1−𝛾−𝑜(1), respectively. Note
that since we use theOMv conjecture to derive our lower bounds, the lower bounds

66 CHAPTER 4. CONDITIONAL HARDNESS OF APPROXIMATE COUNTING

hold for any type of algorithm (i.e., we can drop the combinatorial assumption). See
Proposition 4.28 in Section 4.6.2 for the formal statement of the results.

Using our lower bounds for the (static) gap#Triangle problems, we further
derive lower bounds for approximating graph metrics such as the transitivity
𝑇 (𝐺) [94, 157] and the clustering coefficient 𝐶(𝐺) [201]. To formally define these
quantities, let 𝜏(𝑣) = (𝑑(𝑣)

2) where 𝑑(𝑣) is the degree of vertex 𝑣 ∈ 𝑉 and set
𝜏(𝐺) = ∑𝑣∈𝑉 𝜏(𝑣). Now for a graph with 𝑛 vertices, we define

𝑇 (𝐺) = 3#Triangle(𝐺)
𝜏(𝐺) ∈ [0, 1],

𝐶(𝐺) = 1
𝑛 ∑

𝑣∈𝑉

#Triangle(𝐺, 𝑣)
𝜏(𝑣) ∈ [0, 1].

For these problems, we obtain the following results.

Theorem 4.11. Let 𝛾 ∈ (0, 3) and let 𝐺 be a graph with 𝑛 vertices. We obtain the
following lower bounds for combinatorial algorithms under Conjecture 4.6:

• Deciding whether 𝑇 (𝐺) ≥ 𝑛−𝛾 or 𝑇 (𝐺) = 0 takes time at least 𝑛𝛾−𝑜(1).
• Deciding whether 𝐶(𝐺) ≥ 𝑛−𝛾 or 𝐶(𝐺) = 0 takes time at least 𝑛𝛾−𝑜(1).

4.2.3 Approximate #SAT

Finally, we also study an approximate version of #SAT. Suppose that 𝐹 is a SAT
formula with 𝑛 variables and 𝑂(𝑛) clauses and denote the number of solutions of 𝐹
by #solutions(𝐹). Now suppose we need to decide whether #solutions(𝐹) ≥ 2𝛾𝑛

or #solutions(𝐹) = 0 for 𝛾 ∈ (0, 1). We show that any algorithm solving this
problem takes time 2(1−𝛾−𝑜(1))𝑛 unless Conjecture 4.3 (SETH) is false. We also
give a matching upper bound.

4.2.4 Outline

We present our results for approximate versions of FIS in Section 4.5. In Section 4.6
we present our lower bounds algorithms for approximate triangle counting. We
study an approximate counting versions of SAT in Section 4.7.

4.3 Related Work

Enumerating all itemsets 𝑇 ⊆ [𝑑] with #supp(𝑇) ≥ 𝐾 for a given minimum sup-
port 𝐾 has been an important problem since Agrawal and Srikant [13] introduced
the a priori algorithm in 1994. Gunopulos et al. [87] showed that this problem is
#P-hard. Later, Yang [209] showed that even computing the number of maximal
frequent patterns is #P-hard. This has led to several works studying the enumera-
tion complexity [113] of frequency-based problems, e.g., [42, 117, 154]. We refer to
the book by Aggarwal [11] for more references.

4.4. PRELIMINARIES 67

The FIS problem over 𝑛 × 𝑛 databases is a special case of the batch partial prob-
lem. For batch partial match, a sequence of papers shaved 𝑛𝑜(1) factors in the run-
ning time [6, 51, 53, 176] but still all of them require time 𝑛2−𝑜(1).

Using random sampling to approximate the supports of itemsets in binary data-
bases was first proposed by Mannila et al. [136] and later refined by Toivonen [194].
Liberty et al. [130] and independently Price [168] provided tight space lower bounds
for data structures solving gap versions of the FIS problem. Their results show
that any algorithm deciding whether the support of an itemset is at least 𝑚𝛾 or
less than 𝑚𝛾/3 for 𝑚 × 𝑑 databases and |𝒯| ≤ poly(𝑚) itemsets, must use space

̃𝛺(𝑑𝑚1−𝛾); this matches the upper bound from random sampling and a Chernoff
bound. If |𝒯| = 2𝛺(𝑑), they show that one needs ̃𝛺(𝑑2𝑚1−𝛾) space and this is
again matched by the number of samples required by a random sampling algorithm.
Riondato and Upfal [174, 175] showed that when one wants solve this problem with
|𝒯| = 2𝛺(𝑑) itemsets and if the data is not worst-case, then one can do with fewer
samples (and, hence, less space) than suggested by the lower bounds from [130, 168]
using tools from statistical learning theory such as VC dimension and Rademacher
Averages.

Enumerating and counting triangles in graphs is a fundamental problems with
applications in many fields, such as social network analysis [94, 157, 201] or com-
putational biology [145, 211]. The problem has received considerable attention in
static graphs [35, 183, 195], as well as in data streams [48, 111, 137, 191]. We refer
to the survey by Latapy [126] for more references.

Fine-grained complexity has recently received a lot of attention. Several hard-
ness conjectures such as SETH, 3SUM, BMM, OMv and many more were proposed
and used to derive lower bounds for static (e.g., [25, 26, 45, 132, 205]) as well as
for dynamic algorithms (e.g., [7, 97, 98]). Recently, also results for hardness of ap-
proximation in P were obtained [5, 54, 179]. We refer to the survey by Vassilevska
Williams [204] for more references.

4.4 Preliminaries

Let 𝐹 and 𝐾 be numbers (it is instructive to think of 𝐹 = #supp(𝑇) and a fre-
quency threshold 𝐾). Our lower bounds are concerned with the question of de-
ciding whether 𝐹 ≥ 𝐾 or 𝐹 = 0. Our upper bounds will, however, consider a
harder problem. More concretely, in the upper bounds our goal will be to compute
an approximation ̂𝐹 of 𝐹 such that

|𝐹 − ̂𝐹 | ≤ max{𝐾/𝛽2, 𝐹/𝛽}

for constant 𝛽 > 1. Observe that ̂𝐹 satisfies that if 𝐹 ≥ 𝐾 then |𝐹 − ̂𝐹 | ≤ 𝐹/𝛽 and
if 𝐹 ≤ 𝐾/𝛽 then |𝐹 − ̂𝐹 | ≤ 𝐾/𝛽2. In other words, if 𝐹 is “large” then the error of

̂𝐹 will be small relative to 𝐹 , while if 𝐹 is “small” then ̂𝐹 will have a small absolute
error of at most 𝐾/𝛽2 (and this error may be very large relative to 𝐹). Since ̂𝐹 is

68 CHAPTER 4. CONDITIONAL HARDNESS OF APPROXIMATE COUNTING

an approximation of 𝐹 , our lower bounds also hold for approximate counting in the
above sense.

The following lemma shows that if we can compute a number ̂𝐹 with the above
properties, then we can decide whether 𝐹 ≥ 𝐾 or 𝐹 ≤ 𝐾/𝛼 for 𝛼 > 1. This
immediately implies that ̂𝐹 can be used to decide whether 𝐹 ≥ 𝐾 or 𝐹 = 0 and,
hence, all hardness results we derive for the latter question carry over to computing
numbers ̂𝐹 with the above properties.

Lemma 4.12. Let 𝛼 > 1 and let 𝛽 > max{𝛼, (𝛼 + 1)/(𝛼 − 1)}. Given a number ̂𝐹
such that |𝐹 − ̂𝐹 | ≤ max{𝐾/𝛽2, 𝐹/𝛽}, we can decide whether 𝐹 ≥ 𝐾 or 𝐹 ≤ 𝐾/𝛼.

Proof. If ̂𝐹 ≥ (1−𝛽−1)𝐾 , we output 𝐹 ≥ 𝐾 , and, otherwise, we output 𝐹 ≤ 𝐾/𝛼.
We now argue that we output the correct answer. First, suppose 𝐹 ≥ 𝐾 . Then

|𝐹 − ̂𝐹 | ≤ max{𝐾/𝛽2, 𝐹/𝛽} = 𝐹/𝛽 and thus ̂𝐹 ≥ (1 − 𝛽−1)𝐹 ≥ (1 − 𝛽−1)𝐾 .
On the other hand, suppose 𝐹 ≤ 𝐾/𝛼. Then

|𝐹 − ̂𝐹 | ≤ max{𝐾/𝛽2, 𝐹/𝛽} ≤ max{𝐾/𝛽2, 𝐾/(𝛼𝛽)} = 𝐾/(𝛼𝛽)

since we assumed that 𝛽 > 𝛼. Thus,

̂𝐹 ≤ (𝛼−1 + (𝛼𝛽)−1)𝐾 ≤ (1
𝛼 + 𝛼 − 1

𝛼(𝛼 + 1)) 𝐾 = 2
𝛼 + 1𝐾.

Now using that 𝛽 > (𝛼 + 1)/(𝛼 − 1), we obtain that

(1 − 𝛽−1)𝐾 > (1 − 𝛼 − 1
𝛼 + 1) 𝐾 = 2

𝛼 + 1𝐾.

Hence, we always output the correct answer.

Next, we provide a simple random sampling lemma which we will use to obtain
the estimates ̂𝐹 in our algorithms.

Lemma 4.13. Consider a bag with 𝑛 balls. Suppose that each ball is either yellow or
black and let 𝐹 denote the number of yellow balls. Let 𝛽 > 1, 𝑠 ≥ 0 and 𝐾 ≥ 1. Then
we can return a number ̂𝐹 such that |𝐹 − ̂𝐹 | ≤ max{𝐾/𝛽2, 𝐹/𝛽} with probability
at least 1−𝑂(𝑛−1−𝑠); to compute ̂𝐹 , we need to pick 𝑂(𝑠𝛽6(𝑛/𝐾) log 𝑛) = 𝑂̃(𝑛/𝐾)
balls from the bag uniformly and independently at random with replacement.

The proof of the lemma is based on a simple Chernoff bound.

Lemma 4.14 (Chernoff Bound, e.g., [64, Theorem 1.1]). Let 𝑋1, … , 𝑋𝑛 be indepen-
dent random variables taking values in [0, 1] and let 𝑋 = ∑𝑖 𝑋𝑖. Then for 𝛿 > 0,

Pr (𝑋 > (1 + 𝛿)E [𝑋]) ≤ exp(−𝛿2E [𝑋] /3), 0 < 𝛿 < 1
Pr (𝑋 < (1 − 𝛿)E [𝑋]) ≤ exp(−𝛿2E [𝑋] /2), 0 < 𝛿 < 1
Pr (𝑋 > (1 + 𝛿)E [𝑋]) ≤ exp(−𝛿 E [𝑋] /3), 𝛿 ≥ 1.

4.5. APPROXIMATING THE SUPPORT OF ITEMSETS 69

Proof of Lemma 4.13. Let 𝜀 = 1/𝛽2. We draw ℓ = (1 + 𝑠) ⋅ 3 ⋅ (1/𝜀)2 ⋅ 100𝛽2𝑛/𝐾 ⋅
log 𝑛 balls from the bag. Let 𝑌 be the random variable denoting the number of
yellow balls we drew. Then,E [𝑌] = ℓ𝐹/𝑛. We set ̂𝐹 = 𝑌 𝑛/ℓ and thusE [̂𝐹] = 𝐹 .

Now suppose that 𝐹 ≥ 𝐾/(100𝛽2). Then the choice of 𝜀, Lemma 4.14 and a
union imply

Pr ((1 − 1/𝛽2)𝐹 ≤ ̂𝐹 ≤ (1 + 1/𝛽2)𝐹)
= Pr ((1 − 𝜀)E [𝑌] ≤ 𝑌 ≤ (1 + 𝜀)E [𝑌])
≥ 1 − 2 exp(−(1 + 𝑠) ⋅ 100𝛽2𝐹/𝐾 ⋅ log 𝑛)
≥ 1 − 2 exp(−(1 + 𝑠) log 𝑛)
= 1 − 2𝑛−1−𝑠.

Hence, we obtain that |𝐹 − ̂𝐹 | ≤ 𝐹/𝛽2 ≤ max{𝐾/𝛽2, 𝐹/𝛽} with probability at
least 1 − 𝑂(𝑛−1−𝑠).

If 𝐹 < 𝐾/(100𝛽2) then using the third inequality of Lemma 4.14 with 𝛿 =
𝐾/(2𝛽2𝐹) − 1, we get that

Pr (̂𝐹 > 𝐾/(2𝛽2)) = Pr (𝑌 > ℓ/(2𝛽2𝑛))
= Pr (𝑌 > (1 + 𝛿)E [𝑌])
< exp(−(1 + 𝑠)20𝛽4 log 𝑛)
< 𝑛−1−𝑠.

Thus, we get that |𝐹 − ̂𝐹 | ≤ 𝐾/𝛽2 ≤ max{𝐾/𝛽2, 𝐹/𝛽} with probability at least
1 − 𝑂(𝑛−1−𝑠).

4.5 Upper and Lower Bounds for Approximating the
Supports of Itemsets

In this section, we present our upper and lower bounds for problems related to
approximating the supports of itemsets in transactional databases.

Let us briefly recall the problem definition. We assume that the set of items
is [𝑑] = {1, … , 𝑑}. An itemset is a subset of [𝑑] and usually itemsets are denoted
𝑇 ⊆ [𝑑]. A database 𝒟 ∈ {0, 1}𝑚×𝑑 is multiset of itemsets 𝑇1, … , 𝑇𝑚 ⊆ [𝑑];
the itemsets 𝑇𝑖 ∈ 𝒟 are often called transactions. The support #supp(𝑇) of an
itemset 𝑇 is #supp(𝑇) = |{𝑖 ∶ 𝑇𝑖 ∈ 𝒟, 𝑇 ⊆ 𝑇𝑖}|, i.e., #supp(𝑇) is the number of
transactions in 𝒟 which contain 𝑇 as a subset.

In the following, we will derive upper and lower bounds for approximately com-
puting #supp(𝑇). In Section 4.5.1, we consider approximating the support of item-
sets 𝒯 in a static setting, i.e., we are given a database 𝒟 and a set of itemsets 𝒯 and
we need to return an approximation ̂supp (𝑇) of #supp(𝑇) for all 𝑇 ∈ 𝒯. After
that, in Section 4.5.2, we consider the data structure version of the problem, i.e., we
are allowed to preprocess the database 𝒟 and after that we obtain queries to return

̂supp (𝑇) for a set of itemsets 𝒯.

70 CHAPTER 4. CONDITIONAL HARDNESS OF APPROXIMATE COUNTING

4.5.1 Static Bounds

We start with the static setting and provide a simple sampling algorithm which effi-
ciently approximates the supports of itemsets. After that, we prove a lower bound
which matches the guarantees obtained by the algorithm.

Upper Bound. Let us first define the approximate counting problem est#FIS𝛽(𝛾)
for 𝑚 × 𝑑 transactional databases and parameters 𝛽 > 1 and 𝛾 ∈ (0, 1). The
intuition for est#FIS𝛽(𝛾) is we wish to obtain estimates of #supp(𝑇) such that for
“infrequent” itemsets (with support less than 𝑚𝛾/𝛽) there is a small absolute error
(of at most 𝑚𝛾/𝛽2) and for “frequent” itemsets (with support at least 𝑚𝛾) there is
a small relative error at most #supp(𝑇)/𝛽, i.e., the error is within a factor of 𝛽 of
the true support.

Definition 4.15 (est#FIS𝛽(𝛾)). Let 𝛾 ∈ (0, 1) and let 𝛽 > 1 be a constant. In the
est#FIS𝛽(𝛾) problem, the input consists of an 𝑚 × 𝑑 database 𝒟, parameters 𝛾 and

𝛽 and a set of itemsets 𝒯. Now for each 𝑇 ∈ 𝒯, we must output a number ̂supp (𝑇)
such that

| ̂supp (𝑇) − #supp(𝑇)| < max{𝑚𝛾/𝛽2, #supp(𝑇)/𝛽}.

Recall that via the discussion at the beginning of Section 4.4 and Lemma 4.12,
est#FIS𝛽(𝛾) can be used to solve gap#FIS(𝛾).

We now show that a simple sampling algorithm can solve est#FIS𝛽(𝛾) effi-
ciently.

Lemma 4.16. If |𝒯| = poly(𝑚), the est#FIS𝛽(𝛾) problem over 𝑚×𝑑 databases can
be solved in time 𝑂̃(|𝒯| ⋅ 𝑑𝑚1−𝛾) with high probability.

Proof. For each 𝑇 ∈ 𝒯 we apply Lemma 4.13. More concretely, we consider
the database 𝒟 as a bag and each transaction 𝑇𝑖 ∈ 𝒟 as a ball. We say that
a ball 𝑇𝑖 is yellow if 𝑇 ⊆ 𝑇𝑖. Observe that the number of yellow balls is
#supp(𝑇). Now applying Lemma 4.13 with 𝑚 balls, 𝐹 = #supp(𝑇), 𝑠 =
log |𝒯|/ log 𝑚 = 𝑂(1) and 𝐷 = 𝑚𝛾, we obtain an estimate ̂𝐹 = ̂supp (𝑇)
satisfying | ̂supp (𝑇) − #supp(𝑇)| ≤ max{𝑚𝛾/𝛽2, #supp(𝑇)/𝛽} with probabil-
ity at least 1 − 𝑂(𝑚−1−𝑠) = 1 − 𝑂((𝑚|𝒯|)−1). To obtain ̂supp (𝑇), we sam-
pled 𝑂̃(𝑚1−𝛾 log 𝑚) transactions; computing whether a sampled transaction 𝑇𝑖
contains 𝑇 (i.e., to check whether the corresponding ball is yellow) takes time
𝑂(|𝑇 | + |𝑇𝑖|) = 𝑂(𝑑).

Since we perform the above procedure for each 𝑇 ∈ 𝒯, the total running time is
𝑂̃(|𝒯| ⋅ 𝑑𝑚1−𝛾). A union bound implies that with probability at least 1 − 𝑂(𝑚−1)
all returned answers are correct.

4.5. APPROXIMATING THE SUPPORT OF ITEMSETS 71

LowerBound. Next, we provide our lower bound for gap#FIS(𝛾) (Definition 4.2).
In this problem, we have to decide for each itemset 𝑇 ∈ 𝒯 whether #supp(𝑇) ≥
𝑚𝛾 or #supp(𝑇) = 0.

Now we prove our lower bound for gap#FIS(𝛾). Note that via Lemma 4.12, the
lower bound also carries over to est#FIS𝛽(𝛾).

Proposition 4.17. Any algorithm for gap#FIS(𝛾) for 𝑚 × 𝑑 databases with 𝑑 =
𝑂(log2 𝑚) and |𝒯| = poly(𝑚) itemsets, requires time |𝒯| ⋅ 𝑚1−𝛾−𝑜(1) unless Con-
jecture 4.3 is false. Our lower bound holds even when for each 𝑇 ∈ 𝒯 and 𝑇𝑖 ∈ 𝒟 we
have that either 𝑇 ⊆ 𝑇𝑖 or |𝑇 ∩ 𝑇𝑖| ≤ |𝑇 |/𝑡 for 2 ≤ 𝑡 ≤ (log 𝑛)𝑜(1).

To prove the proposition we need the following lemma, which we prove in Sub-
section 4.5.3 and which follows from [5, 54, 179].

Lemma 4.18. Let 𝑁𝜔(1) < 𝑀 < 2𝑜(𝑁) and 𝑡 ≥ 2 such that 𝑡 = (𝑁/ log 𝑀)𝑜(1).
Let 𝑎 ∈ (0, 1]. Let 𝒜 and ℬ be two collections of sets over a universe [𝑁] with |𝒜| =
𝑀𝑎 and |ℬ| = 𝑀 . Then no algorithm can distinguish the following two cases in time
𝑂(𝑀1+𝑎−𝜀) for any 𝜀 > 0 unless Conjecture 4.3 is false:

• (YES case) there exist 𝐴 ∈ 𝒜 and 𝐵 ∈ ℬ such that 𝐵 ⊆ 𝐴,
• (NO case) for all 𝐴 ∈ 𝒜 and 𝐵 ∈ ℬ, |𝐴 ∩ 𝐵| < |𝐵|/𝑡.

Now we can prove the proposition.

Proof of Proposition 4.17. We will now take an instance (𝒜, ℬ) for the problem of
Lemma 4.18 and create an instance (𝒟, 𝒯) for gap#FIS(𝛾). We will have that ℬ
corresponds to the set of itemsets 𝒯 and 𝒟 contains multiple copies of each set
𝐴 ∈ 𝒜. We will then show that for 𝐵 ∈ ℬ there exists an 𝐴 ∈ 𝒜 such that 𝐵 ⊆ 𝐴
if and only if #supp(𝑇𝐵) ≥ 𝑚𝛾, where 𝑇𝐵 is the itemset in 𝒯 corresponding to 𝐵.

More concretely, let 𝑐 > 0 be a parameter to be set later. Consider an instance
(𝒜, ℬ) for the problem of Lemma 4.18 with the following parameters: 𝑁 = log2 𝑀 ,
|𝒜| = 𝑀𝑎, |ℬ| = 𝑀 , 𝑡 = (log 𝑀)𝑜(1) and 𝑎 = 1/((1 + 𝑐)𝑆) for an arbitrary
constant 𝑆 > 0.

We create an instance for gap#FIS(𝛾), where 𝒯 = ℬ and where 𝒟 contains
𝑀𝑎𝑐 copies of each set 𝐴 ∈ 𝒜. Thus, 𝑚 = |𝒟| = 𝑀𝑎 ⋅ 𝑀𝑎𝑐 = 𝑀𝑎(1+𝑐) and
𝑑 = 𝑁 , where we set 𝑐 = 𝛾/(1 − 𝛾). Note that |𝒯| = 𝑀 = 𝑀𝑎(1+𝑐)𝑆 = 𝑚𝑆.

Now observe that for 𝐵 ∈ ℬ there exists an 𝐴 ∈ 𝒜 with 𝐵 ⊆ 𝐴 if and only
if for 𝑇𝐵 ∈ 𝒯 it holds that #supp(𝑇) ≥ 𝑀𝑎𝑐, where 𝑇𝐵 is the itemset in 𝒯
corresponding to ℬ (there is always such an itemset since we set 𝒯 = ℬ). Thus,
(𝒜, ℬ) is a NO instance iff for all 𝑇 ∈ 𝒯, #supp(𝑇) = 0, and (𝒜, ℬ) is a YES
instance iff there exists a 𝑇 ∈ 𝒯 with #supp(𝑇) ≥ 𝑀𝑎𝑐.

By definition, the gap#FIS(𝛾) algorithm correctly outputs for each 𝑇 ∈ 𝒯
whether #supp(𝑇) ≥ 𝑚𝛾 or #supp(𝑇) = 0. Now observe that

𝑚𝛾 = 𝑀𝑎(1+𝑐)𝛾 = 𝑀𝑎𝛾/(1−𝛾) = 𝑀𝑎𝑐. (4.1)

72 CHAPTER 4. CONDITIONAL HARDNESS OF APPROXIMATE COUNTING

Thus, the gap#FIS(𝛾) algorithm returns #supp(𝑇) ≥ 𝑚𝛾 = 𝑀𝑎𝑐 for some 𝑇 ∈ 𝒯
iff (𝒜, ℬ) is a YES instance. Also, (𝒜, ℬ) is a NO instance iff #supp(𝑇) = 0 < 𝑚𝛾

for all 𝑇 ∈ 𝒯.
Now suppose the algorithm for gap#FIS(𝛾) has running time 𝑂(|𝒯| ⋅𝑚1−𝛾−𝜀).

Then the total computation time is

𝑂(|𝒯| ⋅ 𝑚1−𝛾−𝜀) = 𝑂(𝑀 ⋅ 𝑀𝑎(1+𝑐)(1−𝛾−𝜀))
= 𝑂(𝑀 ⋅ 𝑀𝑎(1−𝛾−𝜀)/(1−𝛾))
= 𝑂(𝑀1+𝑎−𝜀′)

for 𝜀′ = 𝑎 ⋅ 𝜀/(1 − 𝛾). Thus, we have derived a too efficient algorithm for the
problem from Lemma 4.18 which contradicts Conjecture 4.3.

4.5.2 Data Structure Bounds

Next, let us consider the data structure versions of est#FIS𝛽(𝛾) and gap#FIS(𝛾).
The difference between the static and the data structure versions is that in the lat-
ter, the algorithms obtain the database 𝒟, 𝛽 and 𝛾 first and are allowed to pre-
process 𝒟. After the preprocessing finished, the data structures must offer a query
procedure which is given an itemset 𝑇 and then returns an estimate of #supp(𝑇).
More concretely, for the data structure version of gap#FIS𝛽(𝛾), the query routine
must return whether #supp(𝑇) ≥ 𝑚𝛾 or #supp(𝑇) = 0; for the data structure
version of est#FIS𝛽(𝛾), the query routine must return an estimate ̂supp (𝑇) such
that | ̂supp (𝑇) − #supp(𝑇)| ≤ max{𝑚𝛾/𝛽2, #supp(𝑇)/𝛽}.

Upper Bound. Let us first look at an efficient algorithm for solving the data struc-
ture version of est#FIS𝛽(𝛾).

Lemma 4.19. The data structure version of est#FIS𝛽(𝛾) over 𝑚 × 𝑑 databases can
be solved without any preprocessing and with query time 𝑂̃(𝑑𝑚1−𝛾). The queries are
answered correctly with high probability.

Proof. To obtain the claimed algorithm, we completely skip the preprocessing phase.
Then for each query, we run exactly the same routine as described in the first para-
graph of the proof of Lemma 4.16. This provides the desired the guarantees.

Lower Bound. Next, we give a matching lower bound for the data structure ver-
sion of gap#FIS𝛽(𝛾).

Proposition 4.20. Let 𝜀 > 0. Then for the data structure version of gap#FIS(𝛾) for
𝑚 × 𝑑 databases with 𝑑 = 𝑂(log2 𝑚) and |𝒯| itemsets, there exists no algorithm
with preprocessing time 𝑡𝑝 = poly(𝑚) and query time 𝑡𝑞 = 𝑂(𝑚1−𝛾−𝜀) unless
Conjecture 4.3 is false. The lower bound holds even when for each 𝑇 ∈ 𝒯 and 𝑇𝑖 ∈ 𝒟
we have that either 𝑇 ⊆ 𝑇𝑖 or |𝑇 ∩ 𝑇𝑖| ≤ |𝑇 |/𝑡 for 2 ≤ 𝑡 ≤ (log 𝑛)𝑜(1).

4.5. APPROXIMATING THE SUPPORT OF ITEMSETS 73

Proof. Let 𝑘 be such that for the preprocessing time of the data structure we have
that 𝑡𝑝 = 𝑂(𝑚𝑘). We construct an instance with |𝒯| = 𝑚𝑘. Consider an instance
(𝒜, ℬ) from the problem in Lemma 4.18. Now we and build the same gap#FIS(𝛾)
instance (𝒟, 𝒯) as in the proof of Proposition 4.17, the only difference is that we
set 𝑎 = 1/(𝑘(1 + 𝑐)) and 𝑆 = 𝑘; all other parameters are set as before.

Now build the data structure for 𝒟 with preprocessing time 𝑡𝑝 = 𝑂(𝑚𝑘). Then
for each𝑇 ∈ 𝒯, we run the query procedure in time 𝑡𝑞. Again, we return that (𝒜, ℬ)
is a YES instance iff one of the queries for 𝑇 ∈ 𝒯 returns that #supp(𝑇) ≥ 𝑚𝛾;
otherwise, we return that (𝒜, ℬ) is a NO instance. The correctness of the returned
result follows from the same arguments as in the proof of Proposition 4.17 and the
computation in Equation (4.1) (note that we set 𝑐 = 𝛾/(1 − 𝛾) as before).

Thus, we only need to analyze the running time of the algorithm. The time spent
for answering queries is

|𝒯| ⋅ 𝑡𝑞 = |𝒯| ⋅ 𝑂(𝑚1−𝛾−𝜀)
= 𝑂 (𝑀 ⋅ 𝑀𝑎(1+𝑐)(1−𝛾−𝜀))
= 𝑂 (𝑀1+𝑎(1−𝛾−𝜀)/(1−𝛾))
= 𝑂 (𝑀1+𝑎−𝜀′) ,

where 𝜀′ = 𝑎𝜀/(1 − 𝛾). Furthermore, the time spent for the preprocessing is

𝑡𝑝 = 𝑂(𝑚𝑆) = 𝑂(𝑀𝑎(1+𝑐)𝑆) = 𝑂(𝑀).

Thus, the total running time of the reduction is 𝑂(𝑀1+𝑎−𝜀′). This implies a too
efficient algorithm for the problem from Lemma 4.18 and thus contradicts Conjec-
ture 4.3.

4.5.3 Proof of Lemma 4.18

To prove the lemma, we will use the following result from the literature.

Lemma 4.21 ([5, 54, 179]). Let 𝑁𝜔(1) < 𝑀 < 2𝑜(𝑁) and 𝑡 ≥ 2 such that 𝑡 =
(𝑁/ log 𝑀)𝑜(1). Let 𝑎 ∈ (0, 1]. Let 𝒜 and ℬ be two collections of sets over a universe
[𝑁] with |𝒜| = 𝑀 and |ℬ| = 𝑀 . Then no algorithm can distinguish the following
two cases in time 𝑂(𝑀2−𝜀) for any 𝜀 > 0 unless SETH is false:

• (YES case) there exist 𝐴 ∈ 𝒜 and 𝐵 ∈ ℬ such that 𝐵 ⊆ 𝐴,
• (NO case) for all 𝐴 ∈ 𝒜 and 𝐵 ∈ ℬ, |𝐴 ∩ 𝐵| < |𝐵|/𝑡.
Now we prove Lemma 4.18. We proceed similar as in Abboud et al. [4].
Let 𝒜′ and ℬ′ be an instance of the problem of Lemma 4.21, i.e., |𝒜′| = |ℬ′| =

𝑀 . Now arbitrarily partition 𝒜′ into sets 𝒜′
1, … , 𝒜′

𝑘 where 𝑘 = 𝑀1−𝑎 and where
each 𝒜′

𝑖 has size |𝒜′
𝑖| = 𝑀𝑎. Observe that there exist 𝐴 ∈ 𝒜′ and 𝐵 ∈ ℬ′ such

that 𝐵 ⊆ 𝐴 iff there exist 𝑖 ∈ [𝑀1−𝑎], 𝐴 ∈ 𝒜′
𝑖 and 𝐵 ∈ ℬ′ such that 𝐵 ⊆ 𝐴.

Furthermore, for all 𝐴 ∈ 𝒜′ and 𝐵 ∈ ℬ′ we have that |𝐴 ∩ 𝐵| < |𝐵|/𝑡 iff for all
𝑖 ∈ [𝑀1−𝑎], 𝐴 ∈ 𝒜′

𝑖 and 𝐵 ∈ ℬ′ we have that |𝐴 ∩ 𝐵| < |𝐵|/𝑡.

74 CHAPTER 4. CONDITIONAL HARDNESS OF APPROXIMATE COUNTING

Now assume there exists an algorithm with running time 𝑂(𝑀1+𝑎−𝜀), that
solves the problem for sets 𝒜 and ℬ of sizes |𝒜| = 𝑀𝑎 and |ℬ| = 𝑀 . Then for
each 𝑖 ∈ [𝑀1−𝑎], we run the algorithm on the instance 𝒜 = 𝒜′

𝑖 and ℬ = ℬ′.
If any of the 𝑀1−𝑎 instances is a YES instance, we return that the instance 𝒜′,
ℬ′ is a YES instance; otherwise, we return that 𝒜′, ℬ′ is a NO instance. By the
previous paragraph, this returns the correct answer. Furthermore, the total running
is 𝑂(𝑀1−𝑎 ⋅ 𝑀1+𝑎−𝜀) = 𝑂(𝑀2−𝜀) which contradicts SETH by Lemma 4.21.

4.6 Upper and Lower Bounds for Approximate Triangle
Counting

In this section, we present our upper and lower bounds for counting the number
of triangles in a graph. In this setting we are given a graph 𝐺 = (𝑉 , 𝐸) and are
interested in triplets {𝑢, 𝑣, 𝑤} ⊆ 𝑉 such that (𝑢, 𝑣), (𝑣, 𝑤), (𝑤, 𝑢) ∈ 𝐸. We study
three different types of numbers of triangles here:

• #Triangle(𝐺) counts the number of triangles in G,
• #Triangle(𝐺, 𝑢) counts the number of triangles in 𝐺 that contain 𝑢, and
• #Triangle(𝐺, 𝑢, 𝑣) counts the number of triangles in 𝐺 that contain 𝑢 and 𝑣.
For our lower bounds, we study the gap versions of these problems, i.e., gap-

#Triangle(𝐺, 𝛾), gap#Triangle(𝐺, 𝛾, 𝑢), gap#Triangle(𝐺, 𝛾, 𝑢, 𝑣), where we need
to decide whether #Triangle(⋅) ≥ 𝑛𝛾 or #Triangle(⋅) = 0 (see also Definition 4.7).

For our upper bounds, we consider the the estimation versions, i.e., we consider
est#Triangle𝛽(𝐺, 𝛾), est#Triangle𝛽(𝐺, 𝛾, 𝑢), est#Triangle𝛽(𝐺, 𝛾, 𝑢, 𝑣), where
one has to compute an estimate ̂#Triangle(⋅) of #Triangle(⋅) such that

| ̂#Triangle(⋅) − #Triangle(⋅)| < max{𝑛𝛾/𝛽2, #Triangle(⋅)/𝛽}.

Note that upper bounds for the estimation versions immediately give the same
upper bounds for the gap versions and lower bounds for the gap versions imply
lower bounds for the estimation versions (cf. Section 4.4). Thus, we will state our
lower bounds in terms of the gap problems and our upper bounds in terms of the
estimation problems.

In Section 4.6.1 we consider approximating the number of triangles in a sta-
tic setting, i.e., we are given a graph 𝐺 and we need to return approximations
of #Triangle(𝐺), #Triangle(𝐺, 𝑢), or #Triangle(𝐺, 𝑢, 𝑣). After that, in Sec-
tion 4.6.2 we will consider the data structure version of these problems, i.e., we
are allowed to preprocess the graph 𝐺 and after that allow insertions of vertices
with adjacent edges and queries to return approximations of #Triangle(𝐺, 𝑢), or
#Triangle(𝐺, 𝑢, 𝑣). In Section 4.6.3, we exploit our lower bounds for the gap-
#Triangle(⋅) problems and derive lower bounds for approximating the transitivity
and the clustering coefficient of a graph.

4.6. APPROXIMATE TRIANGLE COUNTING 75

4.6.1 Bounds for Static Algorithms

Let us first consider the static setting. We start by providing simple random sam-
pling algorithms which efficiently solve the est#Triangle𝛽(⋅) problems. After that,
we prove matching lower bounds for these problems.

Upper Bounds. The following lemma shows that simple random sampling algo-
rithms solve the est#Triangle𝛽(⋅) problems efficiently.

Lemma 4.22. Let 𝐺 = (𝑉 , 𝐸) be a graph with 𝑛 vertices and let 𝑢, 𝑣 ∈ 𝑉 . The
following upper bounds hold with high probability:

1. est#Triangle𝛽(𝐺, 𝛾) for 𝛾 ∈ [0, 3] can be solved in time 𝑂̃(𝑛3−𝛾).
2. est#Triangle𝛽(𝐺, 𝛾, 𝑢) for 𝛾 ∈ [0, 2] can be solved in time 𝑂̃(𝑛2−𝛾).
3. est#Triangle𝛽(𝐺, 𝛾, 𝑢, 𝑣) for 𝛾 ∈ [0, 1] can be solved in time 𝑂̃(𝑛1−𝛾).

Proof. We first prove Claim 1 using Lemma 4.13. More concretely, we consider a
bag that contains each triple {𝑥,𝑦,𝑧} ∈ (𝑉

3) of vertices in 𝐺 as a ball, i.e., there
are (𝑛3) balls. We say that a ball 𝑇𝑖 is yellow if its vertices form a triangle in 𝐺.
Observe that the number of yellow balls is #Triangle(𝐺). Now apply Lemma 4.13
with (𝑛3) balls, 𝐹 = #Triangle(𝐺), 𝑠 = 0 and 𝐷 = 𝑛𝛾. This provides an estimate ̂𝐹
satisfying | ̂𝐹 − #Triangle(𝐺)| ≤ max{𝑛𝛾/𝛽2, #Triangle(𝐺)/𝛽} with probability
at least 1−𝑂(𝑛−1). To obtain ̂𝐹 , we sampled 𝑂̃(𝑛3−𝛾) triples; computing whether
a sampled triple is a triangle can be done in constant time. Thus, the total running
time is 𝑂̃(𝑛3−𝛾).

The proofs of Claims (2) and (3) work similar to the one above. For Claim (2) we
just sample pairs {𝑦,𝑧} ∈ (𝑉

2) and check whether {𝑢, 𝑦, 𝑧} is a triangle. Similarly,
for Claim (3) we sample single vertices 𝑧 and check whether {𝑢, 𝑣, 𝑧} is a triangle.

Lower Bounds. Next, we provide lower bounds for exact and approximate tri-
angle counting problems based on the BMM conjecture. To this end we turn to a
conjecture that has been shown [205] to be equivalent to Conjecture 4.6 (BMM).

Conjecture 4.23. Any combinatorial algorithm requires time 𝑛3−𝑜(1) to decide
whether a graph with 𝑛 vertices contains a triangle.

Conjecture 4.23 immediately implies hardness for the problems Triangle(𝐺, 𝑢)
and Triangle(𝐺, 𝑢, 𝑣), where we need to decide whether a vertex 𝑢 or a pair of
vertices {𝑢, 𝑣}, respectively, is contained in a triangle.

Lemma 4.24. Let 𝐺 = (𝑉 , 𝐸) be a graph with 𝑛 vertices and let 𝑢, 𝑣 ∈ 𝑉 . Then
unless Conjecture 4.23 is false, any combinatorial algorithm:

1. requires time 𝑛2−𝑜(1) to decide Triangle(𝐺, 𝑢), i.e., whether 𝐺 has a triangle
containing 𝑢.

76 CHAPTER 4. CONDITIONAL HARDNESS OF APPROXIMATE COUNTING

2. requires time 𝑛1−𝑜(1) to decide Triangle(𝐺, 𝑢, 𝑣), i.e., whether 𝐺 has a triangle
containing 𝑢 and 𝑣.

Proof. To prove the first claim, suppose that we have a combinatorial algorithm
solving Triangle(𝐺, 𝑢) in time 𝑂(𝑛2−𝜀) for 𝜀 > 0. By running this algorithm for
all 𝑛 vertices 𝑢 ∈ 𝑉 , we can decide whether 𝐺 contains a triangle. Thus, we have
obtained a combinatorial algorithm deciding Triangle(𝐺) in time 𝑂(𝑛3−𝜀). This
contradicts Conjecture 4.23. The proof of the second claim is similar.

Furthermore, the lower bounds for the decision versions of triangle detection
immediately imply lower bounds for exact counting versions #Triangle(⋅).

Lemma 4.25. Let 𝐺 = (𝑉 , 𝐸) be a graph with 𝑛 vertices and let 𝑢, 𝑣 ∈ 𝑉 . Then
unless Conjecture 4.23 is false, any combinatorial algorithm:

1. requires time 𝑛3−𝑜(1) to solve #Triangle(𝐺),
2. requires time 𝑛2−𝑜(1) to solve #Triangle(𝐺, 𝑢),
3. requires time 𝑛1−𝑜(1) to solve #Triangle(𝐺, 𝑢, 𝑣).

Proof. This follows immediately from the fact that if we can compute #Triangle(⋅)
exactly, then we can distinguish between #Triangle(⋅) ≥ 1 and #Triangle(⋅) = 0.
Thus, we can solve the decision versions of the problems. Now the running time
lower bounds follow from Lemma 4.24.

Next, we use Conjecture 4.23 and Lemma 4.24 to prove lower bounds for algo-
rithms solving gap#Triangle(⋅). Note that via Lemma 4.12 these lower bounds also
hold for algorithms solving est#Triangle𝛽(⋅).

Proposition 4.26. Let 𝐺 = (𝑉 , 𝐸) be a graph with 𝑛 vertices and let 𝑢, 𝑣 ∈ 𝑉 . Then
unless Conjecture 4.23 is false, any combinatorial algorithm:

1. requires time 𝑛3−𝛾−𝑜(1) to solve gap#Triangle(𝐺, 𝛾) for 𝛾 ∈ (0, 3),
2. requires time 𝑛2−𝛾−𝑜(1) to solve gap#Triangle(𝐺, 𝛾, 𝑢) for 𝛾 ∈ (0, 2), and
3. requires time 𝑛1−𝛾−𝑜(1) to solve gap#Triangle(𝐺, 𝛾, 𝑢, 𝑣) with 𝛾 ∈ (0, 1).

Proof. Let 𝐺 = (𝑉 , 𝐸) be an instance of Triangle(⋅) with |𝑉 | = 𝑛 vertices. Let
𝛿 > 0 be a parameter which we will set later. We define a graph 𝐺′ = (𝑉 ′, 𝐸′)
which for each vertex 𝑣 ∈ 𝑉 contains 𝑛𝛿 copies 𝑣1, … , 𝑣𝑛𝛿 of 𝑣. The copies 𝑢𝑖 and
𝑣𝑗 of two vertices are adjacent in 𝐺′ iff the original vertices 𝑢 and 𝑣 are connected
in 𝐺, i.e., 𝐸′ = {{𝑣𝑖, 𝑢𝑗} ∶ {𝑢, 𝑣} ∈ 𝐸, 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝛿}. Note that |𝑉 ′| = 𝑛1+𝛿 and
|𝐸′| = 𝑛2𝛿 ⋅ |𝐸|. Further observe that by construction each triangle {𝑢, 𝑣, 𝑤} in 𝐺
corresponds to 𝑛3𝛿 triangles {{𝑢𝑖, 𝑣𝑗, 𝑤𝑘} ∶ 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛𝛿} in 𝐺′ and, moreover,
each triangle in 𝐺′ corresponds to a triangle in 𝐺. Thus, 𝐺 contains a triangle iff
#Triangle(𝐺′) ≥ 𝑛3𝛿, and 𝐺 does not contain a triangle iff #Triangle(𝐺′) = 0.

To prove Claim (1), set 𝛿 = 𝛾/(3 − 𝛾) and note that 𝛾 = 3𝛿/(1 + 𝛿). From
the above arguments we obtain that if 𝐺 contains a triangle then #Triangle(𝐺′) ≥
𝑛3𝛿 = |𝑉 ′|𝛾 and if 𝐺 is triangle-free then #Triangle(𝐺′) = 0. Thus, if the algo-
rithm for gap#Triangle(𝐺′, 𝛾) returns that #Triangle(𝐺′) ≥ |𝑉 ′|𝛾 then 𝐺 must

4.6. APPROXIMATE TRIANGLE COUNTING 77

contain a triangle and, otherwise, 𝐺 is triangle-free. Now, towards a contradiction,
assume that there is a combinatorial algorithm for gap#Triangle(𝐺′, 𝛾) with run-
ning time 𝑂(|𝑉 ′|(1−𝜀)(3−𝛾)). Since |𝑉 ′| = 𝑛1+𝛿 = 𝑛3/(3−𝛾), this implies that
the algorithm for gap#Triangle(𝐺′, 𝛾) solves Triangle(𝐺) in time 𝑂(𝑛3−𝜀). This
contradicts Conjecture 4.23.

To prove Claim (2), set 𝛿 = 𝛾/(2 − 𝛾) and note that 𝛾 = 2𝛿/(1 + 𝛿). Sim-
ilar to above we have that each triangle in 𝐺 containing 𝑢 ∈ 𝑉 corresponds to
𝑛2𝛿 triangles containing 𝑢1 ∈ 𝑉 ′ in 𝐺′; more precisely, each triangle {𝑢, 𝑣, 𝑤} in
𝐺 corresponds to the 𝑛2𝛿 triangles {{𝑢1, 𝑣𝑗, 𝑤𝑘} ∶ 1 ≤ 𝑗, 𝑘 ≤ 𝑛𝛿} in 𝐺′. Thus, if
𝐺 contains a triangle then #Triangle(𝐺′, 𝑢1) ≥ 𝑛2𝛿 = |𝑉 ′|𝛾, and if 𝐺 is triangle-
free then #Triangle(𝐺′, 𝑢1) = 0. Thus, the algorithm for gap#Triangle(𝐺′, 𝛾, 𝑢1)
returns #Triangle(𝐺′, 𝑢1) ≥ |𝑉 ′|𝛾 iff 𝐺 contains a triangle with vertex 𝑢. Now,
towards a contradiction, assume that there is a combinatorial algorithm for gap-
#Triangle(𝐺′, 𝛾, 𝑢1) with running time 𝑂(|𝑉 ′|(1−𝜀)(2−𝛾)). Since |𝑉 ′| = 𝑛1+𝛿 =
𝑛2/(2−𝛾), we can solve Triangle(𝐺, 𝑢) in time 𝑂(𝑛2−𝜀). This contradicts Conjec-
ture 4.23 via Lemma 4.24.

To prove Claim (3), set 𝛿 = 𝛾/(1−𝛾) and observe that 𝛾 = 𝛿/(1+𝛿). Similar to
above, each triangle {𝑢, 𝑣, 𝑤} in 𝐺 corresponds to the 𝑛𝛿 triangles {{𝑢1, 𝑣1, 𝑤𝑖} ∶
1 ≤ 𝑖 ≤ 𝑛𝛿} in 𝐺′. Thus, #Triangle(𝐺′, 𝑢1, 𝑣1) ≥ 𝑛𝛿 = |𝑉 ′|𝛾 if 𝐺 contains
a triangle and #Triangle(𝐺′, 𝑢1, 𝑣1) = 0 if 𝐺 is triangle-free. Hence, the gap-
#Triangle(𝐺′, 𝛿, 𝑢1, 𝑣1) algorithm can be used to decide whether 𝐺 contains a
triangle with vertices 𝑢 and 𝑣. Now, towards a contradiction, assume that there
is a combinatorial algorithm for gap#Triangle(𝐺′, 𝛿, 𝑢1, 𝑣1) with running time
𝑂(|𝑉 ′|(1−𝜀)(1−𝛾)). Since |𝑉 ′| = 𝑛1+𝛿 = 𝑛1/(1−𝛾), we can solve Triangle(𝐺, 𝑢, 𝑣)
in time 𝑂(𝑛1−𝜀). This contradicts Conjecture 4.23 via Lemma 4.24.

Note the following two subtleties when constructing 𝐺′: (A) Consider gap-
#Triangle(𝐺′, 𝛾) with 𝛾 < 1. In this case, 𝛿 < 1/2 and 𝐺′ contains at most
|𝐸′| = 𝑛2𝛿 ⋅ |𝐸| = 𝑛3−𝛺(1) edges. Hence, we can construct 𝐺′ explicitly in
truly subcubic time and a more efficient algorithm for gap#Triangle(𝐺′, 𝛾) would
still break Conjecture 4.23. (B) For all other cases (i.e., gap#Triangle(𝐺′, 𝛾) with
𝛾 > 1, gap#Triangle(𝐺′, 𝛾, 𝑢) with 𝛾 ∈ (0, 2) and gap#Triangle(𝐺′, 𝛾, 𝑢, 𝑣) with
𝛾 ∈ (0, 1)), the running time bounds of the algorithms do not allow to process the
full input graph 𝐺′ = (𝑉 ′, 𝐸′) (because 𝐺′ might contain up to 𝛺(|𝑉 ′|2) edges
while the running time bounds only allow time 𝑜(|𝑉 ′|2)). Hence, we argue that in
our reduction we can provide typical oracle calls used by sublinear time algorithms:
(1) Sample a vertex or edge, resp., from 𝐺′ uniformly at random: Sample a vertex
or edge, resp., of 𝐺 uniformly at random then uniformly at random pick one of the
copies of this vertex or edge, resp., in 𝐺′. (2) Given a vertex 𝑣𝑖 ∈ 𝑉 ′, sample one
of its neighbors in 𝐺′: We sample a neighbor 𝑤 ∈ 𝑉 of the corresponding vertex 𝑣
in 𝐺 and then uniformly at random pick on of the copies of 𝑤𝑖 in 𝐺′. (3) We can
compute the degree of a vertex 𝑣′ in 𝐺′ by computing the degree of the correspond-
ing vertex 𝑣 in 𝐺 and multiplying it by 𝑛𝛿. (4) Given 𝑢𝑖, 𝑣𝑗 ∈ 𝑉 ′, check whether
(𝑢𝑖, 𝑣𝑗) ∈ 𝐸′: We simply check whether (𝑢, 𝑣) ∈ 𝐸. All these operations can be

78 CHAPTER 4. CONDITIONAL HARDNESS OF APPROXIMATE COUNTING

performed in time 𝑂̃(1).

4.6.2 Bounds for Data Structures

Next, let us consider the data structure versions of est#Triangle𝛽(⋅) and gap-
#Triangle(⋅). The difference of the static and the data structure versions is that
in the latter, the algorithms obtain the graph 𝐺, 𝛽 and 𝛾 first and are allowed to
preprocess 𝐺. After the preprocessing finished, the data structure must offer the
following operations: (1) An update procedure that allows to add a vertex together
with its adjacent edges into 𝐺. (2) A query procedure which, given a vertex 𝑢 or a
pair of vertices (𝑢, 𝑣), returns the number of triangles containing a given vertex 𝑢
or the pair (𝑢, 𝑣), respectively.

Upper Bounds. We obtain an upper bound for the data structure version of est-
#Triangle𝛽(⋅).

Lemma 4.27. Let 𝐺 be a dynamic graph undergoing vertex insertions and let 𝑛 be
the number of vertices in 𝐺 after the final insertion. Then the data structure version of
est#Triangle𝛽(⋅) be solved without any preprocessing, worst-case update time 𝑂(𝑛)
and the following worst-case query times:

• 𝑂̃(𝑛2−𝛾) for gap#Triangle(𝐺, 𝛾, 𝑢) queries with 𝛾 ∈ (0, 2), and
• 𝑂̃(𝑛1−𝛾) for gap#Triangle(𝐺, 𝛾, 𝑢, 𝑣) queries with 𝛾 ∈ (0, 1).

The queries are answered correctly with high probability.

Proof. To obtain the algorithm, we skip the preprocessing altogether. During an
update, we insert the new vertex together with all of its neighbors into the graph
data structure in time 𝑂(𝑛). For each query, we run the respective routine from
Lemma 4.22.

Lower Bounds. Next, we derive lower bounds for the gap#Triangle(⋅) problems
based on Conjecture 4.10 (OMv). Note that the query time lower bounds we derive
are the same as in the static setting and that the lower bounds of this section hold
for any type of algorithm, i.e., we can drop the combinatorial assumption that we
previously required from Conjecture 4.6 (BMM).

Proposition 4.28. Let 𝜀 > 0. Let 𝐺 be a dynamic graph undergoing vertex insertions
and let 𝑛 denote the number of vertices in 𝐺 after the final insertion. Then for the data
structure version of gap#Triangle, unless Conjecture 4.10 is false:

1. There exists no algorithm for gap#Triangle(𝐺, 𝛾, 𝑢) with preprocessing time
𝑡𝑝 = poly(𝑛), amortized update time 𝑡𝑢 = 𝑂(𝑛2−3𝛾/2−𝜀), and amortized
query time 𝑡𝑞 = 𝑂(𝑛2−𝛾−𝜀) for 𝛾 ∈ (0, 4/3).

2. There exists no algorithm for gap#Triangle(𝐺, 𝛾, 𝑢, 𝑣) with preprocessing time
𝑡𝑝 = poly(𝑛), amortized update time 𝑡𝑢 = 𝑂(𝑛2−3𝛾−𝜀), and amortized query
time 𝑡𝑞 = 𝑂(𝑛1−𝛾−𝜀) for 𝛾 ∈ (0, 2/3).

4.6. APPROXIMATE TRIANGLE COUNTING 79

In the proof of the proposition we will use the following lemma from [97, Corol-
lary 3.4]. The lemma provides lower bounds for the data structure versions of
Triangle(𝑢) and Triangle(𝑢, 𝑣). In these problems, the input is a graph 𝐺 which
can be preprocessed. After that, the data structure must offer the following opera-
tions. (1) Update operations that allow to insert vertices together with all of their
incident edges into the graph. (2) Query operations which return whether a vertex
𝑢 or a pair of vertices (𝑢, 𝑣), resp., is contained in a triangle.

Lemma 4.29 ([97, Corollary 3.4]). Let 𝜀 > 0 and let 𝐺 be a dynamic graph under-
going vertex insertions and let 𝑛 denote the number of vertices in 𝐺 after the final
insertion. Then unless Conjecture 4.10 is false, the following holds:

• There exists no algorithm for the data structure version of Triangle(𝐺, 𝑢) with
preprocessing time 𝑡𝑝 = poly(𝑛), amortized update time 𝑡𝑢 = 𝑂(𝑛2−𝜀), and
amortized query time 𝑡𝑞 = 𝑂(𝑛2−𝜀).

• There exists no algorithm for the data structure version of Triangle(𝐺, 𝑢, 𝑣) with
preprocessing time 𝑡𝑝 = poly(𝑛), amortized update time 𝑡𝑢 = 𝑂(𝑛2−𝜀), and
amortized query time 𝑡𝑞 = 𝑂(𝑛1−𝜀).

Proof of Proposition 4.28. Consider an instance of the data structure version of
Triangle(⋅) from Lemma 4.29 with a dynamic graph 𝐺 = (𝑉 , 𝐸) which after the
final vertex insertion contains 𝑛 vertices.

Let 𝛿 > 0 be a parameter which we will set later. First, consider the prepro-
cessing phase and let 𝐺0 = (𝑉0, 𝐸0) be the graph which is the initial input to
the Triangle(⋅) instance. We now construct a graph 𝐺′

0 = (𝑉 ′
0 , 𝐸′

0) with 𝑛𝛿 many
copies 𝑣1, … , 𝑣𝑛𝛿 of each vertex 𝑣 ∈ 𝑉0. Then two vertices are adjacent in 𝐺′

0 iff
the original vertices are connected in 𝐺0, i.e., 𝐸′

0 = {{𝑣𝑖, 𝑢𝑗} ∶ {𝑢, 𝑣} ∈ 𝐸0, 1 ≤
𝑖, 𝑗 ≤ 𝑛𝛿}.

Next, suppose in the 𝑘’th update a vertex 𝑢 is inserted into the graph 𝐺 of the
Triangle(⋅) instance. Then we insert 𝑛𝛿 copies 𝑢1, … , 𝑢𝑛𝛿 of 𝑢 into 𝐺′. Each 𝑢𝑖 has
as neighbors the vertices {𝑣𝑗 ∶ (𝑢, 𝑣) ∈ 𝐸(𝐺)}, i.e., 𝑢𝑖 is connected to all vertices 𝑣𝑗
which are copies of vertices 𝑣 such that (𝑢, 𝑣) ∈ 𝐸(𝐺). Observe that a single vertex
insertion in 𝐺 with 𝑂(𝑛) edges corresponds to 𝑛𝛿 vertex insertions insertion 𝐺′

with 𝑂(𝑛1+𝛿) edge insertion.
Further let 𝐺𝑘 = (𝑉𝑘, 𝐸𝑘) denote the graph 𝐺 after the 𝑘’th vertex insertion.

Note that after the 𝑘’th insertion into 𝐺, the gap#Triangle(⋅) instance 𝐺′ is a graph
𝐺′

𝑘 = (𝑉 ′
𝑘, 𝐸′

𝑘) with 𝑛𝛿 many copies 𝑣1, … , 𝑣𝑛𝛿 of each vertex 𝑣 ∈ 𝑉𝑘. Also,
two vertices are adjacent in 𝐺′

𝑘 iff the original vertices are connected in 𝐺𝑘, i.e.,
𝐸′

𝑘 = {{𝑢𝑖, 𝑣𝑗} ∶ {𝑢, 𝑣} ∈ 𝐸𝑘, 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝛿}. Observe that by construction for
all 𝑘 ≥ 0, each triangle {𝑢, 𝑣, 𝑤} in 𝐺𝑘 corresponds to 𝑛3𝛿 triangles {𝑢𝑖, 𝑣𝑗, 𝑤𝑟},
1 ≤ 𝑖, 𝑗, 𝑟 ≤ 𝑛𝛿, in 𝐺′

𝑘 and moreover each triangle in 𝐺′
𝑘 corresponds to a triangle

in 𝐺𝑘.
Now to prove Claim (1), set 𝛿 = 𝛾/(2 − 𝛾). By the same argument as in

the proof of Proposition 4.26, the query for gap#Triangle(𝐺′, 𝛾, 𝑢1) returns
#Triangle(𝐺′, 𝑢1) ≥ |𝑉 ′|𝛾 iff 𝐺 contains a triangle containing 𝑢. Thus, the

80 CHAPTER 4. CONDITIONAL HARDNESS OF APPROXIMATE COUNTING

data structure for gap#Triangle(𝐺, 𝛾, 𝑢1) can be used as a data structure for
Triangle(𝐺, 𝑢). Now, towards a contradiction, assume that there is an algorithm
for gap#Triangle(𝐺, 𝛾, 𝑢1) with preprocessing time 𝑡𝑝 = poly(𝑛), update time
𝑡𝑢 = 𝑂(𝑛2−3𝛾/2−𝜀), and query time 𝑡𝑞 = 𝑂(𝑛2−𝛾−𝜀). Note that the update time
spent by this algorithm is

𝑛𝛿 ⋅ 𝑂(𝑛(1+𝛿)(2−3𝛾/2−𝜀′)) = 𝑂(𝑛𝛿+(1+𝛿)(2−3𝛾/2−𝜀))
= 𝑂(𝑛𝛾/(2−𝛾)+2⋅(2−3𝛾/2−𝜀)/(2−𝛾))
= 𝑂(𝑛2−𝜀′),

where 𝜀′ = 𝜀/(2 − 𝛾). Finally, to answer a query Triangle(𝐺, 𝑢), we evaluate gap-
#Triangle(𝐺′, 𝛾, 𝑢1) which requires time

𝑂(|𝑉 ′|2−𝛾−𝜀) = 𝑂(𝑛(1+𝛿)(2−𝛾−𝜀)) = 𝑂(𝑛2/(2−𝛾)⋅(2−𝛾−𝜀)) = 𝑂(𝑛2−𝜀′).

Hence by Lemma 4.29 such an algorithm contradicts Conjecture 4.10.
To prove Claim (2), set 𝛿 = 𝛾/(1 − 𝛾). By the same argument as in the

proof of Proposition 4.26, the query for gap#Triangle(𝐺′, 𝛾, 𝑢1, 𝑣1) returns that
#Triangle(𝐺′, 𝑢1, 𝑣1) ≥ |𝑉 ′|𝛾 iff 𝐺 contains a triangle containing 𝑢 and 𝑣. Thus,
the data structure for gap#Triangle(𝐺′, 𝛾, 𝑢1, 𝑣1) can be used as a data struc-
ture for Triangle(𝐺, 𝑢, 𝑣). Now, towards a contradiction, assume that there is an
algorithm for gap#Triangle(𝐺, 𝛾, 𝑢, 𝑣) with preprocessing time 𝑡𝑝 = poly(𝑛),
update time 𝑡𝑢 = 𝑂(𝑛2−3𝛾−𝜀), and query time 𝑡𝑞 = 𝑂(𝑛1−𝛾−𝜀). To imple-
ment a single update for Triangle(𝐺, 𝑢, 𝑣) we need to perform 𝑛𝛿 updates of gap-
#Triangle(𝐺′, 𝛾, 𝑢𝑖, 𝑣𝑗) and this can be done in time

𝑛𝛿 ⋅ 𝑂(𝑛(1+𝛿)(2−3𝛾−𝜀)) = 𝑂(𝑛𝛿+(1+𝛿)(2−3𝛾−𝜀))
= 𝑂(𝑛𝛾/(1−𝛾)+(2−3𝛾−𝜀)/(1−𝛾))
= 𝑂(𝑛2−𝜀′),

where 𝜀′ = 𝜀/(1 − 𝛾). Finally, to answer a query Triangle(𝐺, 𝑢, 𝑣), we evaluate
gap#Triangle(𝐺′, 𝛾, 𝑢1, 𝑣1) which takes time

𝑂(|𝑉 ′|1−𝛾−𝜀) = 𝑂(𝑛(1+𝛿)⋅(1−𝛾−𝜀)) = 𝑂(𝑛(1−𝛾−𝜀)/(1−𝛾)) = 𝑂(𝑛1−𝜀″).

Hence by Lemma 4.29 such an algorithm contradicts Conjecture 4.10.

4.6.3 Bounds for Clustering Coefficient and Transitivity

Finally, we illustrate how our lower bounds on gap#Triangle(⋅) can be used to study
the limits for approximations of graph metrics, such as the transitivity and the clus-
tering coefficient of a graph.

Proposition 4.30. Let 𝛾 ∈ (0, 3) and let 𝐺 be a graph with 𝑛 vertices. Then unless
Conjecture 4.6 is false, any combinatorial algorithm:

4.7. APPROXIMATE #SAT 81

• Requires time 𝑛𝛾−𝑜(1) to decide whether 𝑇 (𝐺) ≥ 𝑛−𝛾 or 𝑇 (𝐺) = 0.
• Requires time 𝑛𝛾−𝑜(1) to decide whether 𝐶(𝐺) ≥ 𝑛−𝛾 or 𝐶(𝐺) = 0.

Proof. Let us first consider approximating the transitivity 𝑇 (𝐺). Consider an in-
stance of gap#Triangle(𝐺, 3 − 𝛾) given by a graph 𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑛.
We now have the following correspondence between gap#Triangle(𝐺, 3 − 𝛾) and
𝑇 (𝐺). First, 𝐺 has no triangle iff 𝑇 (𝐺) = 0. Second, 𝐺 has at least 𝑛3−𝛾 triangles
iff 𝑇 (𝐺′) ≥ 𝑛−𝛾 (since 𝜏(𝐺) ≤ 𝑛3). Towards a contradiction assume we could
decide 𝑇 (𝐺) ≥ 𝑛−𝛾 or 𝑇 (𝐺) = 0 in time 𝑂(𝑛𝛾−𝜀) for 𝜀 > 0. This implies an al-
gorithm for gap#Triangle(𝐺, 3 − 𝛾) with running time 𝑂(𝑛𝛾−𝜀). This contradicts
Conjecture 4.6 via Proposition 4.26.

Now we consider approximating the clustering coefficient 𝐶(𝐺). Again con-
sider an instance of gap#Triangle(𝐺, 3 − 𝛾) given by a graph 𝐺 = (𝑉 , 𝐸) with
|𝑉 | = 𝑛. Now observe that

𝐶(𝐺) = 1
𝑛 ∑

𝑣∈𝑉

#Triangle(𝐺, 𝑣)
𝜏(𝑣)

≥ 1
𝑛 ∑

𝑣∈𝑉

#Triangle(𝐺, 𝑣)
𝑛2

= 3#Triangle(𝐺)
𝑛3 .

Thus, (similar to the proof for the transitivity) we get that (a) 𝐺 has no triangle
iff 𝐶(𝐺) = 0 and (b) 𝐺 has at least 𝑛3−𝛾 triangles iff 𝐶(𝐺′) ≥ 𝑛−𝛾. Towards a
contradiction assume we could decide 𝐶(𝐺) ≥ 𝑛−𝛾 or 𝐶(𝐺) = 0 in time 𝑂(𝑛𝛾−𝜀)
for 𝜀 > 0. This implies an algorithm for gap#Triangle(𝐺, 3 − 𝛾) with running time
𝑂(𝑛𝛾−𝜀). This contradicts Conjecture 4.6 via Proposition 4.26.

4.7 Upper and Lower Bounds for Approximate #SAT

Let 𝐹 be a SAT formula. Denote the number of satisyfing variable assignments to 𝐹
by #solutions(𝐹). In this section, we show that if SETH is true, then distinguishing
between #solutions(𝐹) > 2𝛾𝑛 and #solutions(𝐹) = 0 cannot be done faster than
in time 2(1−𝛾−𝑜(1))𝑛. We also provide a matching upper bound.

More concretely, we will be studying the following two problems.

Definition 4.31 (gap#SAT). Given a SAT formula 𝐹 over 𝑛 variables and 𝛾 ∈ [0, 1),
the gap#SAT𝛼(𝛾) problem is to output:

• 1 if #solutions(𝐹) ≥ 2𝛾𝑛,
• 0 if #solutions(𝐹) = 0.

Definition 4.32 (est#SAT). Given a SAT formula 𝐹 over 𝑛 variables, 𝛾 ∈ [0, 1) and
𝛽 > 1, the est#SAT𝛽(𝛾) problem is to output ̂#solutions(𝐹) such that:

| ̂#solutions(𝐹) − #solutions(𝐹)| ≤ max{2𝛾𝑛/𝛽2, #solutions(𝐹)/𝛽}.

82 CHAPTER 4. CONDITIONAL HARDNESS OF APPROXIMATE COUNTING

Next, we first present an upper bound for est#SAT and then a lower bound for
gap#SAT. Note that the upper bound for the estimation version implies the same
upper bound for the gap version; furthermore, the lower bound for the gap version
implies a lower bound for the estimation version (see Section 4.4).

Upper Bound. Wefirst give an upper bound for est#SAT using random sampling.

Lemma 4.33. The est#SAT𝛽(𝛾) problem over SAT formulas with 𝑛 variables and
𝑂(𝑛) clauses can be solved in time 𝑂(2(1−𝛾)𝑛 poly(𝑛)).

Proof. Let 𝐹 be a CNF formula over 𝑛 variables. To approximate #solutions(𝐹),
we apply Lemma 4.13. More concretely, we consider a bag containing 2𝑛 balls,
i.e., one ball for each truth assignment 𝑇𝑖 over the 𝑛 variables of the formula. We
say that a ball 𝑇𝑖 is yellow if 𝑇𝑖(𝐹) = 1, i.e., if the truth assignment 𝑇𝑖 satis-
fies 𝐹 . Observe that the number of yellow balls is #solutions(𝐹). Now apply
Lemma 4.13 with 𝑠 = 0 and 𝐷 = 2𝛾𝑛, we obtain an estimate ̂#solutions(𝐹) satis-
fying | ̂#solutions(𝐹) − #solutions(𝐹)| ≤ max{2𝛾𝑛/𝛽2, #solutions(𝐹)/𝛽} with
high probability. To obtain ̂#solutions(𝐹), we sampled 𝑂̃(2(1−𝛾)𝑛𝑛) truth assign-
ments 𝑇𝑖 and for each 𝑇𝑖 we can test whether 𝑇𝑖(𝐹) = 1 in linear time. Thus, the
total running time is 𝑂(2(1−𝛾)𝑛 poly(𝑛)).

Lower Bound. We next give a lower bound for gap#SAT.

Lemma 4.34. Let 𝛾 ∈ [0, 1) and 𝜀 > 0. If there exists an algorithm which
for all 𝑘 and 𝑛 solves gap#SAT(𝛾) for 𝑘-SAT formulas over 𝑛 variables in time
𝑂(2(1−𝜀)(1−𝛾)𝑛), then Conjecture 4.3 is false.

Proof. Let 𝐹 be a 𝑘-SAT formula over (1−𝛾)𝑛 variables. We construct a new 𝑘-SAT
formula 𝐹 ′ by adding 𝛾𝑛 free variables to 𝐹 (a variable is free if it does not appear
in any clause). Note that 𝐹 ′ has 𝑛 = (1 − 𝛾)𝑛 + 𝛾𝑛 variables. Observe that if
#solutions(𝐹) ≥ 1, then #solutions(𝐹 ′) ≥ 2𝛾𝑛 since for each solution of 𝐹 we
obtain 2𝛾𝑛 solutions for 𝐹 ′ by assigning different values to the 𝛾𝑛 free variables. If
#solutions(𝐹) = 0, then #solutions(𝐹 ′) = 0 since the free variables do not satisfy
any additional clause.

Now apply the gap#SAT(𝛾) algorithm on 𝐹 ′ and return that 𝐹 is satisfiable iff
the gap#SAT(𝛾) algorithm returns 1. Indeed, the answer is correct: If 𝐹 is satisfi-
able then #solutions(𝐹) ≥ 1 and, hence, #solutions(𝐹 ′) ≥ 2𝛾𝑛. If 𝐹 is not sat-
isfiable then we have that #solutions(𝐹 ′) = 0 and the algorithm for gap#SAT(𝛾)
outputs 0.

The running time for this algorithm is 𝑂(2(1−𝜀)(1−𝛾)𝑛). Thus we have derived
an algorithm solving 𝑘-SAT over 𝑛′ = (1−𝛾)𝑛 variables in time 𝑂(2(1−𝜀)𝑛′) which
contradicts Conjecture 4.3.

4.8. CONCLUSION 83

4.8 Conclusion

We showed that for several computational problems, simple random sampling algo-
rithms cannot be significantly improved unless one of several conjectures in com-
putational complexity is false. In particular, we provided matching upper and lower
bounds for approximating the support of itemsets in transactional databases and for
approximating the number of triangles in a graph.

Our results essentially settle the worst-case complexity of the above approxi-
mate counting problems. Hence, it will be interesting to further the study of these
problems using beyond worst-case analysis similar to the works of [125, 174, 175].

CHAPTER 5
Reductions for Frequency-Based

Data Mining Problems

Studying the computational complexity of problems is a fundamental question in
computer science. Yet, surprisingly little is known about the computational com-
plexity of many central problems in data mining. In this chapter, we study frequen-
cy-based problems and propose a new type of reduction that allows us to compare
the complexities of maximal frequent pattern mining problems in different types
of data (e.g., graphs and sequences). Our results extend those of Kimelfeld and
Kolaitis [117, ACM TODS’14] to a broader range of data mining problems. Further-
more, we show that, by allowing constraints in the pattern space, the complexities
of many maximal frequent pattern mining problems collapse. These problems in-
clude maximal frequent subgraphs in labelled graphs, maximal frequent itemsets,
and maximal frequent subsequences with no repetitions. In addition to theoretical
interest, our results might yield more efficient algorithms for the studied problems.

5.1 Introduction

Computational complexity is a fundamental concept in computer science, with the
P vs.NP question being one of the most famous open problems in the field. Yet, out-
side some NP- and #P-hardness proofs, the computational complexity of central
data mining problems is surprisingly little studied. This is perhaps even more true
for frequency-based problems, that is, for problems where the goal is to enumerate
all sufficiently frequent patterns (that admit other possible constraints). Problems
such as frequent itemset mining, frequent subgraph mining, and frequent subse-
quence mining all belong to this family of problems. Often the only computational
complexity argument for these problems is the observation that the output can be
exponentially large with respect to the input, and hence any algorithm might need
exponential time to enumerate the results.

85

86CHAPTER 5. REDUCTIONS FOR FREQUENCY-BASED DATA MINING PROBLEMS

MaxFS(G)

MaxFS(BDG3)

MaxFS(PLN)

-extendible⟨𝑘⟩ is
NP-hard for 𝑘 > 2

MaxFS(BTW2)

MaxFS(T)
-extendible⟨𝑘⟩ ∈ P for all 𝑘

MaxFIS
-extendible⟨𝑘⟩ ∈ P for all 𝑘

MaxSQS MaxFS(DAG)

MaxFS(DirG)

Trivial or known reduction
Maximality-preserving reduction

Reduction for feasible frequency-
based problems

Figure 5.1: The hierarchy of maximal frequency-based problems with the results
from this chapter. Arrows point from the “easier” to the “harder” problem. See
Section 5.2.2 for the abbreviated problem names used in the picture. Maximality-
preserving reductions are defined in Section 5.4 and feasible frequency-based prob-
lems are defined in Section 5.5.

We argue that this view is too limited for two reasons. First, there are more
fine-grained models of complexity than just the running time. In particular, for
enumeration problems we can use the enumeration complexity framework of John-
son et al. [113]: in short, instead of studying the total running time with respect to
the input size, we can consider it as a function of the total size of input and output,
or study the time it takes to create a new pattern when a set of patterns is already
known (see Section 5.2.3 for more details). This framework allows us to argue about
the time complexity of enumeration problems with potentially exponential output
sizes. Another approach is the counting complexity framework of Valiant [197] (see
Section 5.2.4).

The second reason why we argue that the “output is exponential” is a too lim-
ited view for the computational complexity is that a significant question in compu-
tational complexity is the relationship between the problems, that is, questions like
“can we solve problem 𝑋 efficiently if we can solve problem 𝑌 efficiently?” The
main tool for answering these kinds of questions are reductions between problems.
In this work, we introduce a new type of reduction between frequency-based prob-
lems called maximality-preserving reduction (see Section 5.4). Our reduction maps
the maximal patterns of one problem to the maximal patterns of the other prob-
lem, thus allowing us to study questions like “can we find the maximal frequent
subgraphs on labelled graphs using maximal frequent itemset mining algorithms?”

Surprisingly, the answer to this question turns out to be positive, although it
requires that we consider specially constrained maximal frequent pattern mining
problems; we call the general class of such problems feasible frequency-based prob-
lems (see Section 5.5).

5.1. INTRODUCTION 87

Our Contributions. We study a number of maximal pattern mining problems,
including maximal frequent subgraph mining in labelled graphs (and in several re-
stricted graph classes), maximal frequent itemset mining, and maximal frequent
subsequence mining with no repetitions (see Section 5.2.2 for definitions of these
problems). We summarize our results in Figure 5.1: the arrows showwhich problem
can be reduced to which other problem either using non-constraining reductions
(black and red lines), or with possible constraints on the feasible solutions (dashed
lines). As can be seen in Figure 5.1, all problems can be reduced to each other
(potentially with constraints). Given that the constrained reductions are transitive
(Lemma 5.12), we can state our main result:

Theorem5.1 (Informal). Maximal subgraphmining in labelled graphs (and in several
restricted graph classes), maximal frequent itemset mining, and maximal subsequence
mining with no repetitions are equally hard problems when we are allowed to constrain
the pattern space.

In some sense, our results unify existing hardness results for frequency-based
problems by putting them into a general framework using maximality-preserving
reductions. These reductions preserve all interesting theoretical aspects like NP- or
#P-hardness, but are still restricted enough to maintain the special properties of
the transactions.

In fact, from a practical point of view, our reductions show that if we have an
algorithm that can effectively find, say, the maximal frequent itemsets that admit
the constraints from the reductions, we can use that algorithm to solve maximal
frequent subgraph mining and maximal frequent subsequence mining problems ef-
ficiently. Luckily, as we will see in Section 5.6, the constrained maximal patterns are
indeed easy to mine in practice. Alternatively, the reductions may be used to guide
how ideas from algorithms for one set of problems can be transferred to algorithms
for the other set of problems (e.g., from frequent subsequence mining to frequent
subgraph mining or vice versa).

Outline of the Chapter. We will cover the basic definitions and frameworks
used in this chapter in Section 5.2, where we will also formally define the prob-
lems we are working with. Section 5.3 presents related work and existing hardness
results for the problems we consider. We introduce the (unconstrained) maximality-
preserving reductions in Section 5.4. In particular, the reduction corresponding to
the solid red line in Figure 5.1 is presented in Section 5.4.2. The feasible frequency-
based problems, and the corresponding constrained reductions (dashed red lines in
Figure 5.1) and related results are presented in Section 5.5. In Section 5.6 we show
that our reductions can be used in practice and yield efficient algorithms.

88CHAPTER 5. REDUCTIONS FOR FREQUENCY-BASED DATA MINING PROBLEMS

5.2 Preliminaries

In this section we cover the basic definitions of frequency-based problems, enumer-
ation problems, and counting complexity. In addition, we present the definitions of
the problems we consider in the chapter.

5.2.1 Frequency-based Problems

A frequency-based problem 𝒫 consists of1:
• A set of labels ℒ; for example, ℒ = {1, … , 𝑛}.
• A set transactions(𝒫) consisting of possible transactions over the labels ℒ.
• A set patterns(𝒫) ⊆ transactions(𝒫) of possible patterns over the labels ℒ.
• A partial order ⊑ over transactions(𝒫).
Given a frequency-based problem 𝒫, a database 𝐷𝒫 is a finite multiset of ele-

ments from transactions(𝒫). For a database 𝐷𝒫 and a support threshold 𝜏 , a pattern
𝑝 ∈ patterns(𝒫) is called 𝜏 -frequent if

#supp(𝑝, 𝐷𝒫) ∶= |{𝑡 ∈ 𝐷𝒫 ∶ 𝑝 ⊑ 𝑡}| ≥ 𝜏.

In other words, a pattern 𝑝 is 𝜏 -frequent if it appears in at least 𝜏 transactions of
the database. When 𝜏 is clear from the context, we will call 𝑝 only frequent. A
pattern 𝑝 ∈ patterns(𝒫) is amaximal frequent pattern if 𝑝 is frequent and all patterns
𝑞 ∈ patterns(𝒫) with 𝑝 ⊏ 𝑞 are not frequent. Given a database 𝐷𝒫, we denote the
set of all maximal frequent patterns by Max(𝐷𝒫, 𝜏), i.e.,

Max(𝐷𝒫, 𝜏) = {𝑝 ∈ patterns(𝒫) ∶ 𝑝 is a maximal 𝜏 -frequent pattern in 𝐷𝒫}.

When the parameter 𝜏 is not part of the input but fixed to some integer, we
write 𝒫𝜏 to denote the resulting problem.

5.2.2 Concrete Frequency-Based Problems

All problems considered in this chapter are frequency-based problems. For the sake
of brevity, we only define ℒ, transactions(⋅), patterns(⋅), and ⊑ for each problem
(see, e.g., [11] for more thorough definitions).

The maximal frequent itemset mining problem, denoted as MaxFIS, is as follows:
We have 𝑛 labels ℒ = {1, … , 𝑛}; transactions(MaxFIS) and patterns(MaxFIS) are
given by 2ℒ; ⊑ is the standard subset relationship ⊆.

The maximal frequent subsequence mining problem, denoted as MaxSQS, is as
follows: ℒ = {1, … , 𝑛} is the set of labels. A sequence 𝑆 = ⟨𝑆1, … , 𝑆𝑚⟩ of length
𝑚 consists of 𝑚 events 𝑆𝑖 with 𝑆𝑖 ∈ ℒ; we require that each label appears at
most once per sequence. The sets transactions(MaxSQS) and patterns(MaxSQS) are
the sets consisting of all sequences of arbitrary lengths. For two sequences 𝑆 =

1A similar definition was given in Gunopulos et al. [87].

5.2. PRELIMINARIES 89

⟨𝑆1, … 𝑆𝑟⟩ and 𝑇 = ⟨𝑇1, … , 𝑇𝑘⟩, we have 𝑇 ⊑ 𝑆 if 𝑘 ≤ 𝑟 and there exist indices
1 ≤ 𝑖1 ≤ ⋯ ≤ 𝑖𝑘 ≤ 𝑟 such that 𝑇𝑗 = 𝑆𝑖𝑗

for each 𝑗 = 1, … , 𝑘.
Let 𝒢 be a class of vertex-labelled graphs, which contain each label at most

once. The maximal frequent subgraph mining problem, MaxFS(𝒢), is as follows:
We have 𝑛 labels ℒ = {1, … , 𝑛}; transactions(MaxFS(𝒢)) and patterns(MaxFS(𝒢))
are given by all labelled graphs in 𝒢 with labels from ℒ; ⊑ is the standard subgraph
relationship for labelled graphs (i.e., we consider arbitrary subgraphs, not necessar-
ily induced subgraphs).

In the remainder of the chapter, we will consider the following graph classes, all
of which are labelled and connected:

• T — undirected trees,
• BDG𝑏 — undirected graphs of bounded degree at most 𝑏,
• BTW𝑤 — undirected graphs of bounded treewidth at most 𝑤,
• PLN — undirected planar graphs,
• G — general undirected graphs,
• DAG — directed acyclic graphs,
• DirG — directed graphs.
Throughout the chapter wewill only consider labelled graphs in which each label

appears at most once. In this restricted setting, the subgraph isomorphism problem
can be solved in polynomial time. This a necessary condition for our reductions to
work since Kimelfeld and Kolaitis [117] showed that for certain unlabelled graph
classes 𝒢, MaxFS(𝒢) is not an NP-relation.

5.2.3 Enumeration Problems

An enumeration relation ℛ is a set of strings ℛ = {(𝑥, 𝑦)} ⊂ {0, 1}∗ × {0, 1}∗ such
that

ℛ(𝑥) ∶= {𝑦 ∈ {0, 1}∗ ∶ (𝑥, 𝑦) ∈ ℛ}

is finite for every 𝑥. A string 𝑦 ∈ ℛ(𝑥) is called a witness for 𝑥. We call ℛ an NP-
relation if (1) there exists a polynomial 𝑝 such that |𝑦| ≤ 𝑝(|𝑥|) for all (𝑥, 𝑦) ∈ ℛ,
and (2) there exists a polynomial-time algorithm deciding if (𝑥, 𝑦) ∈ ℛ for any
given pair (𝑥, 𝑦).

Following [117], we define the following problems for an enumeration rela-
tion ℛ:

• ℛ-enumerate: The input is a string 𝑥. The task is to output the set ℛ(𝑥)
without repetitions.

• ℛ-extend: The input is a string 𝑥 and a set 𝑌 ⊆ ℛ(𝑥). The task is to compute
a string 𝑦 such that 𝑦 ∈ ℛ(𝑥) \ 𝑌 or to output that no such element exists.

• ℛ-extendible: The input is a string 𝑥 and a set 𝑌 ⊆ ℛ(𝑥). The task is to
decide whether ℛ(𝑥) \ 𝑌 ≠ ∅.

• ℛ-extendible⟨𝑘⟩: The input is a string 𝑥 and a set 𝑌 ⊆ ℛ(𝑥) with the
restriction that |𝑌 | < 𝑘. The task is to decide whether ℛ(𝑥) \ 𝑌 ≠ ∅.

90CHAPTER 5. REDUCTIONS FOR FREQUENCY-BASED DATA MINING PROBLEMS

The problem ℛ-extendible is the decision version of ℛ-extend. Note that by re-
peatedly running an algorithm forℛ-extend, one can solveℛ-enumerate. Further
observe that any algorithm solving ℛ-extend can be used to solve ℛ-extendible.

Enumeration Complexity. Johnson et al. [113] introduced different notions for
the complexity of enumeration problems. Let ℛ be an enumeration relation. An
algorithm solving ℛ-enumerate is called an enumeration algorithm.

For enumeration problems, it might be the case that the output ℛ(𝑥) is expo-
nentially larger than the input 𝑥. Due to this, measuring the running time of an
enumeration algorithm only as a function of |𝑥| can be too restrictive; instead, one
can include the size of ℛ(𝑥) in the complexity analysis. Then the running time of
an algorithm is measured as function of |𝑥| + |ℛ(𝑥)|. This consideration gives rise
to the following definitions:

• An enumeration algorithm runs in total polynomial time if its running time is
polynomial in |𝑥| + |ℛ(𝑥)|.

• An enumeration algorithm has polynomial delay if the time spent between
outputting two consecutive witnesses of ℛ(𝑥) is always polynomial in |𝑥|.

• An enumeration algorithm runs in incremental polynomial time if on input 𝑥
and after outputting a set 𝑌 ⊆ ℛ(𝑥), it takes time polynomial in |𝑥| + |𝑌 | to
produce the next witness from ℛ(𝑥) \ 𝑌 .

Note that ℛ-enumerate is in incremental polynomial time iff ℛ-extend is in
polynomial time. Additionally, observe that a polynomial total time algorithm can
be used to decide if ℛ(𝑥) ≠ ∅ in polynomial time.

Relationship to Frequency-Based Problems. We note that frequency-based
problems are special cases of enumeration problems. Let 𝒫 be a frequency-based
problem. We define the enumeration relation ℛ corresponding to 𝒫 by setting

ℛ = {(𝑥, 𝑦) ∶ 𝑥 = (𝐷𝒫, 𝜏), 𝑦 ∈ Max(𝐷𝒫, 𝜏)},
i.e., ℛ consists of all possible databases 𝐷𝒫, support thresholds 𝜏 and all maximal
frequent patterns 𝑦 for the tuples (𝐷𝒫, 𝜏).

Observe that ℛ(𝑥) = ℛ(𝐷𝒫, 𝜏) = Max(𝐷𝒫, 𝜏) and thus ℛ-enumerate is ex-
actly the same problem as outputting all maximal frequent patterns in Max(𝐷𝒫, 𝜏).
The problem ℛ-extend is to output a maximal frequent pattern in Max(𝐷𝒫, 𝜏)\𝑌
for a given set of maximal patterns 𝑌 . The corresponding decision versions of the
problems are ℛ-extendible and ℛ-extendible⟨𝑘⟩.

Since ℛ and 𝒫 yield the same enumeration problems, we write 𝒫-enumerate,
𝒫-extendible, 𝒫-extend and 𝒫-extendible⟨𝑘⟩. Often we will write 𝒫 to denote
the problem 𝒫-enumerate.

5.2.4 Counting Complexity

For a given enumeration relation ℛ, the function #ℛ ∶ {0, 1}∗ → ℕ returns the
number of witnesses for a given string, i.e., #ℛ(𝑥) = |ℛ(𝑥)| for 𝑥 ∈ {0, 1}∗. The

5.3. RELATED WORK 91

complexity class #P (pronounced “sharp P”) contains all functions #ℛ for which
ℛ is anNP-relation; it was introduced by Valiant [197]. A function 𝐹 ∶ {0, 1}∗ → ℕ
is #P-hard if there exists a Turing reduction from every function in #P to 𝐹 .

For two NP-relations ℛ, 𝒬 ∶ {0, 1}∗ → ℕ, a parsimonious reduction from #ℛ
to #𝒬 is a polynomial-time computable function 𝑓 ∶ {0, 1}∗ → {0, 1}∗ such that
#ℛ(𝑥) = #𝒬(𝑓(𝑥)) for all 𝑥 ∈ {0, 1}∗. Note that a parsimonious reduction from
a #P-hard problem ℛ to a problem 𝒬 implies that 𝒬 is #P-hard.

An example for a #P-hard problem is counting the number of satisfying assign-
ments of a SAT formula. Note an algorithm that counts SAT solutions can also
decide if the given formula is satisfiable or not (by checking if the number of satis-
fying assignments is larger than 0). Hence, #P is a superset of NP.

In fact, Toda and Ogiwara [193] showed that all problems in the polynomial-
time hierarchy can be solved in polynomial-time when one has access to an oracle
for a #P-hard function.

Observe that an algorithm solving ℛ-enumerate can solve #ℛ by counting
the number of witnesses in its output.

5.3 Related Work

Counting Complexity. The study of counting problems was initiated when #P
was introduced by Valiant [197]. Provan and Ball [169] showed #P-hardness for
many graph problems such as counting the number of maximal independent sets
in bipartite graphs. Later, more #P-hardness results were obtained for even more
restricted graph classes [108, 196].

Johnson et al. [113] introduced the notions of polynomial total time, polyno-
mial delay, and incremental polynomial time to obtain a better understanding of
the computational complexity of enumeration problems.

Computational Complexity of Data Mining Problems. Gunopulos et al. [87]
introduced a general class of problems similar to frequency-based problems. For
this class of problems, they proved #P-hardness for mining frequent itemsets, and
provided an algorithm to mine maximal frequent sets.

Yang [209] proved #P-hardness for determining the number of maximal fre-
quent itemsets and other problems.

Theorem 5.2 (Yang [209]). All of the following problems are #P-complete: MaxFIS,
MaxSQS, MaxFS(T), MaxFS(G).

Boros et al. [42] showed that given a set of maximal frequent itemsets 𝑌 , it is
NP-complete to decide whether there exists another maximal frequent itemset that
is not contained in 𝑌 .

Theorem 5.3 (Boros et al. [42]). MaxFIS-extendible and MaxFIS-extend are NP-
complete.

92CHAPTER 5. REDUCTIONS FOR FREQUENCY-BASED DATA MINING PROBLEMS

Kimelfeld and Kolaitis [117] proved structural results on mining frequent sub-
graphs of certain graph classes. Their results allow to distinguish the computational
complexities of MaxFS(T) and MaxFS(𝒢) where 𝒢 is either G, PLN, BDG𝑏 with
𝑏 > 2, or BTW𝑤 with 𝑤 > 1. This is also depicted in Figure 5.1.

Theorem 5.4 (Kimelfeld and Kolaitis [117]). For fixed 𝑘, MaxFS(T)-extendible⟨𝑘⟩
can be solved in polynomial time.

For fixed 𝜏 , MaxFS𝜏(𝒢)-enumerate can be solved in polynomial time for any class
of graphs 𝒢 from Section 5.2.2.

The following problems are NP-complete:
• MaxFS(𝒢)-extendible for 𝒢 ∈ {G,PLN,BDG𝑏,BTW𝑤} with 𝑤 ≥ 1 and

𝑏 ≥ 3.
• MaxFS(𝒢)-extendible⟨𝑘⟩ for 𝒢 ∈ {G,PLN,BDG𝑏,BTW𝑤} with 𝑤 ≥ 2 and

𝑏 ≥ 3 and for every 𝑘 ≥ 3.

Kimelfeld and Kolaitis [117] also give computational hardness results for sub-
graph mining problems in which the set patterns(⋅) is more restricted than the set
transactions(⋅). For example, they consider the computational complexity of min-
ing maximal subtrees from planar graphs. They also consider mining unlabelled
maximal subgraphs.

MiningMaximal Frequent Patterns. Many practical algorithmswere proposed
to mine maximal frequent patterns from different types of data such as itemsets [47,
93, 114], subsequences [14], trees [206, 216], and general graphs [124]. However,
the main focus of those papers was not to investigate the computational complexity
of these problems. See (for example) the book by Aggarwal [11] for many more
references to algorithms for efficiently computing maximal frequent patterns.

Constraint-based Pattern Mining. Furthermore, many algorithms were pro-
posed to mine frequent patterns with constraints on the structure of the pat-
terns [38–40, 81, 85, 158, 167]. We cannot review all of them and instead refer
to Han et al. [92] for references to papers on constrained pattern mining. Greco et
al. [86] presented techniques for mining taxonomies of process models which can
also be viewed as constraint-based pattern mining. The work on constraint pro-
gramming for itemset mining by Raedt et al. [170] and follow-upwork (e.g. [89]) can
also be used to mine itemsets or other frequency-based problems with constraints.

5.4 Maximality-Preserving Reductions

In this section, we introduce maximality-preserving reductions and state some of
their properties in Section 5.4.1. In Section 5.4.2, we prove reductions between the
problemsMaxFIS, MaxSQS, andMaxFS(𝒢) for 𝒢 ∈ {T,BDG3,G}. Combining our
reductions with the statements from Section 5.3, we arrive at the following theorem.

5.4. MAXIMALITY-PRESERVING REDUCTIONS 93

Theorem 5.5. Our reductions imply the following hardness results:
1. For any fixed 𝑘, MaxFIS-extendible⟨𝑘⟩ can be solved in polynomial time.
2. For any fixed 𝜏 , MaxFIS𝜏-enumerate can be solved in polynomial time.
3. The problems MaxFS(G) and MaxFS(BDG3) exhibit exactly the same hardness

w.r.t. the notions of Sections 5.2.3 and 5.2.4. More concretely, let 𝒫 be MaxFS(G)
or MaxFS(BDG3). Then the following statements are true:

• 𝒫-enumerate is #P-hard.
• 𝒫-extendible is NP-hard.
• For 𝑘 > 2, the problem 𝒫-extendible⟨𝑘⟩ is NP-hard.
• For fixed 𝜏 , the problem 𝒫𝜏-enumerate is solvable in polynomial time.

The proof of the theorem follows from our reductions later in this section and
the theorems from Section 5.3.

5.4.1 Definition and Properties

We formally define maximality-preserving reductions to make explicit which prop-
erties are required by reductions in order to be useful for understanding the com-
plexity of frequency-based problems w.r.t. the notions of Sections 5.2.3 and 5.2.4.

Definition 5.6. Let 𝒫 and 𝒬 be two frequency-based problems, let 𝐷𝒫 be a database
for 𝒫, and let 𝜏 be a support threshold. Amaximality-preserving reduction from 𝒫 to 𝒬
defines an instance (𝐷𝒬, 𝜏) using a polynomial-time computable injective function
𝑓 ∶ transactions(𝒫) → transactions(𝒬) with the following properties:

1. 𝑓(patterns(𝒫)) ⊆ patterns(𝒬).
2. For all 𝑝, 𝑝′ ∈ transactions(𝒫), 𝑝 ⊑𝒫 𝑝′ if and only if 𝑓(𝑝) ⊑𝒬 𝑓(𝑝′).
3. The inverse 𝑓−1 ∶ transactions(𝒬) → transactions(𝒫) of 𝑓 can be computed in

polynomial time.
4. 𝑝 ∈ Max(𝐷𝒫, 𝜏) if and only if 𝑓(𝑝) ∈ Max(𝐷𝒬, 𝜏), where 𝐷𝒬 = 𝑓(𝐷𝒫) =

{𝑓(𝑡) ∶ 𝑡 ∈ 𝐷𝒫}. Additionally, for all 𝑞 ∈ Max(𝐷𝒬, 𝜏) the preimage 𝑓−1(𝑞)
exists.

Intuitively, the properties can be interpreted as follows: Property 1 asserts that 𝑓
maps valid patterns from patterns(𝒫) to valid patterns in patterns(𝒬); this condition
is necessary if patterns(𝒬) ⊊ transactions(𝒬). Property 2 asserts that 𝑓 maintains
subset properties. Property 3 will be necessary to recover patterns in 𝒫 from those
found in 𝒬. Property 4 requires that the maximal frequent patterns in 𝐷𝒫 are the
same as those in 𝐷𝒬 under the mapping 𝑓 ; here, the database 𝐷𝒬 is given by apply-
ing the function 𝑓 to each transaction in 𝐷𝒫.

Properties. Observe that Property 4 implies that there exists a bijective relation-
ship between the maximal frequent patterns in 𝐷𝒫 and in 𝐷𝒬. Hence, we have
|Max(𝐷𝒫, 𝜏)| = |Max(𝐷𝒬, 𝜏)|. This shows that maximality-preserving reductions
are special cases of parsimonious reductions and that they preserve #P-hardness.

94CHAPTER 5. REDUCTIONS FOR FREQUENCY-BASED DATA MINING PROBLEMS

In fact, maximality-preserving reductions are slightly stronger than parsimo-
nious reductions. They do not only preserve the number of maximal frequent pat-
terns in both databases, but they enable us to recover the maximal frequent pat-
terns in 𝐷𝒫 from those in 𝐷𝒬: By injectivity of 𝑓 and due to Property 4, we can
reconstruct Max(𝐷𝒫, 𝜏) in polynomial time fromMax(𝐷𝒬, 𝜏). Hence, maximality-
preserving reductions can be used to argue about the complexity of extendibility
problems as discussed in Section 5.2.3.

Further, note that by choice of 𝐷𝒬 in Property 4, 𝐷𝒬 has the same number of
transactions as 𝐷𝒫, and that no dependency within different transactions is created
by the mapping 𝑓 . Additionally, by Property 2, the support of a pattern 𝑝 in 𝐷𝒫 is a
lower bound on the support of 𝑓(𝑝) in 𝐷𝒬 (since for each transaction 𝑡 ∈ 𝐷𝒫 with
𝑝 ⊑ 𝑡, 𝑓(𝑝) ⊑ 𝑓(𝑡)).

However, although the number of transactions and maximal frequent patterns
in both databases remains the same, the number of frequent patterns in 𝐷𝒬 might
be exponentially larger than the number of frequent patterns in 𝐷𝒫. For example,
this is the case in the reduction in Lemma 5.9.

5.4.2 Reductions

In this section, we present three maximality-preserving reductions. Reductions sim-
ilar to ones in Lemmas 5.7 and 5.8 were already presented by Yang [209], Kimelfeld
and Kolaitis [117] and other authors. We only prove Property 4 of maximality-pre-
serving reductions. The proofs of Properties 1–3 are straight-forward and follow
from the definitions of the mapping 𝑓 .

Reduction from MaxFIS to MaxFS(T). We show how to mine maximal item-
sets by mining maximal subtrees.

Lemma 5.7. There is a maximality-preserving reduction from MaxFIS to MaxFS(T).

Proof. Consider MaxFIS with labels ℒ = {1, … , 𝑛}. We construct trees over labels
from the alphabet ℒ′ = {𝑟, 1, … , 𝑛}, where 𝑟 is the label of the root nodes in the
trees. For simplicity, we do not distinguish between vertices and their labels.

Construction of 𝑓 . An itemset {𝑖1, … , 𝑖𝑘} ∈ transactions(MaxFIS) is mapped to
a tree of depth 1 with root 𝑟 and children 𝑖1, … , 𝑖𝑘, i.e., the tree has an edge (𝑟, 𝑖𝑗)
for all 𝑗 = 1, … , 𝑘.

Maximality-preserving. Observe that there exists a bijection between itemsets
𝐼 ⊆ ℒ and trees 𝑓(𝐼). Further note that for two itemsets 𝐼 and 𝐽 , 𝐼 ⊆ 𝐽 if and only
if 𝑓(𝐼) ⊆ 𝑓(𝐽). It follows that an itemset 𝐼 and a tree 𝑓(𝐼) must have the same
supports in 𝐷MaxFIS and in 𝐷MaxFS(T), respectively. The maximality then follows
from the subset-property we observed.

Reduction fromMaxFIS to MaxSQS. We show how to mine maximal itemsets
by mining maximal subsequences.

5.4. MAXIMALITY-PRESERVING REDUCTIONS 95

Lemma 5.8. There exists a maximality-preserving reduction fromMaxFIS to MaxSQS.

Proof. Consider MaxFIS with labels ℒ = {1, … , 𝑛} and assume the labels are or-
dered w.r.t. to some arbitrary, but fixed, order ≺.

Construction of 𝑓 . Let 𝐼 = {𝑖1, … , 𝑖𝑚} ⊆ ℒ be any itemset with 𝑚 items.
Assume w.l.o.g. that the items in 𝐼 are ordered w.r.t. the fixed order, i.e., 𝑖𝑗 ≺ 𝑖𝑗+1.
Then 𝐼 is mapped to the sequence ⟨𝑖1, … , 𝑖𝑚⟩ of length 𝑚.

Maximality-preserving. Observe that there exists a bijection between itemsets
𝐼 ⊆ ℒ and sequences 𝑓(𝐼) (under the fixed order). Further observe that for two
itemsets 𝐼 and 𝐽 , 𝐼 ⊆ 𝐽 if and only if 𝑓(𝐼) ⊑ 𝑓(𝐽). It follows that an itemset 𝐼 and a
sequence 𝑓(𝐼) must have the same supports in 𝐷MaxFIS and in 𝐷MaxSQS, respectively.
The maximality then follows from the subset-property we observed.

Reduction fromMaxFS(G) to MaxFS(BDG3). We show that mining maximal
frequent subgraphs in general undirected graphs reduces to mining maximal fre-
quent subgraphs in undirected graphs with degrees bounded by 3. Note that this
is the tightest result we could hope for, since graphs with degree bounded by 2 are
simply cycles or line graphs.

Lemma 5.9. There exists a maximality-preserving reduction from MaxFS(G) to the
problem MaxFS(BDG3).

Proof. Construction of 𝑓 . Let 𝐺 = (𝑉 , 𝐸) be a graph with unbounded degree and
suppose the vertices have unique labels ℒ = {1, … , 𝑛}. Denote the label of a vertex
𝑣 ∈ 𝑉 by label(𝑣). We construct a graph 𝐺′ = (𝑉 ′, 𝐸′) with bounded degree 3
over the set of labels ℒ′ = {1, … , 𝑛}2.

Intuitively, the construction of 𝑓 maps every original vertex 𝑣 ∈ 𝑉 is split onto
a line graph consisting of 𝑛 vertices 𝑣𝑖, where each 𝑣𝑖 has an additional non-line-
graph-edge in 𝐺′ iff vertices 𝑣 and 𝑖 share an edge in 𝐺.

Formally, for each vertex 𝑣 ∈ 𝑉 , we insert vertices 𝑣1, … , 𝑣𝑛 into 𝑉 ′ with edges
(𝑣𝑖, 𝑣𝑖+1) for 𝑖 = 1, … , 𝑛 − 1. Each vertex 𝑣𝑖 is labeled by (label(𝑣), 𝑖). For each
edge (𝑢, 𝑣) ∈ 𝐸, we insert an edge (𝑢label(𝑣), 𝑣label(𝑢)) into 𝐺′.

Observe that the resulting graph 𝐺′ = 𝑓(𝐺) indeed has bounded degree 3:
Consider any vertex 𝑣𝑖 ∈ 𝑉 ′. The vertex has at most 2 neighbors from the line
graph (𝑣1, … , 𝑣𝑛). The only additional edge it could have is to vertex 𝑖label(𝑣).

Maximality-preserving. We need to show that 𝑝 ∈ Max(𝐷MaxFS(G), 𝜏) iff 𝑓(𝑝) ∈
Max(𝐷MaxFS(BDG3), 𝜏). First, by construction of 𝑓 , #supp(𝑓(𝑝), 𝐷MaxFS(BDG3)) =
#supp(𝑝, 𝐷MaxFS(G)); hence, 𝑓(𝑝) is frequent in 𝐷MaxFS(BDG3). Next, we show that if
𝑝 is maximal then 𝑓(𝑝) is also maximal. For the sake of contradiction, suppose there
exists a maximal frequent pattern 𝑞 with 𝑓(𝑝) ⊏ 𝑞 in 𝐷MaxFS(BDG3). Then 𝑞 must
contain an edge (𝑢𝑖, 𝑣𝑗) with 𝑖 = label(𝑣), 𝑗 = label(𝑢), which is not contained in
𝑓(𝑝).

Case 1: 𝑢𝑖 ∈ 𝑓(𝑝) and 𝑣𝑗 ∈ 𝑓(𝑝). Consider the graph 𝑞′ = 𝑓(𝑝) ∪ (𝑢𝑖, 𝑣𝑗).
Then 𝑓−1(𝑞′) exists and is frequent in 𝐷MaxFS(G) by Property 2. This contradicts the
maximality of 𝑝.

96CHAPTER 5. REDUCTIONS FOR FREQUENCY-BASED DATA MINING PROBLEMS

Case 2: W.l.o.g. assume that 𝑢𝑖 ∈ 𝑓(𝑝) and 𝑣𝑗 ∉ 𝑓(𝑝). Then, since 𝑞 is maximal
and by construction of 𝑓 and 𝐷MaxFS(BDG3), 𝑞 must contain the line graph 𝐿 with
vertices 𝑣1, … , 𝑣𝑛. Consider the graph 𝑞′ = 𝑓(𝑝)∪(𝑢𝑖, 𝑣𝑗)∪𝐿. Again by construc-
tion of 𝑓 and 𝐷MaxFS(BDG3), 𝑞′ has a preimage 𝑝′ = 𝑓−1(𝑞′) which is frequent and
satisfies 𝑝 ⊏ 𝑝′. This is a contradiction to the maximality of 𝑝.

Case 3: 𝑢𝑖 ∉ 𝑓(𝑝) and 𝑣𝑗 ∉ 𝑓(𝑝). Since 𝑞 is connected and 𝑓(𝑝) ⊏ 𝑞, one of the
first two cases must apply as well.

The second condition of Property 4 (the existence of the preimage 𝑓−1(𝑞) for
𝑞 ∈ Max(𝐷MaxFS(BDG3), 𝜏)) is also implied by the previous three case distinctions
(observe that in the case distinctions, we only considered the preimages of con-
crete graphs 𝑞′ and did not use the preimage of 𝑞). It left to prove that 𝑓(𝑝) ∈
Max(𝐷MaxFS(BDG3), 𝜏) implies 𝑝 ∈ Max(𝐷MaxFS(G), 𝜏). This can be also be done
similarly to above by assuming that 𝑝 is not maximal and then showing that this
contradicts the maximality of 𝑓(𝑝).

5.5 Constraining the Set of Patterns

In this section, we generalize frequency-based problems by allowing to constrain
the set of patterns using a feasibility function. We introduce maximality-preserving
reductions for this class of problems and prove that all problems discussed in this
chapter exhibit exactly the same hardness after introducing the feasibility function.

5.5.1 Feasible Frequency-Based Problems

A feasible frequency-based problem (FFBP) 𝒫 is a frequency-based problem with an
additional polynomial-time computable operation 𝜙∶ patterns(𝒫) → {0, 1} which
can be described using constant space. For example, if 𝐺 is a graph then 𝜙(𝐺)
could compute whether 𝐺 is connected or whether all vertices of 𝐺 have constant
degree. We note that the operation 𝜙 is part of the input for the problem and this
is the reason for restricting the description length of the function to constant size;
otherwise, the description length of the function might be larger than the database
for the problem and this would defeat our goal of measuring the input in terms of
the size of the database. We call 𝜙 the feasibility function.

Given a feasible frequency-based problem 𝒫, a pattern 𝑝 ∈ patterns(𝒫) is a
feasible frequent pattern (FFP) if 𝑝 is frequent and 𝜙(𝑝) = 1. The goal is to find
all maximal FFPs; we denote the set of all FFPs by Max(𝐷𝒫, 𝜏 , 𝜙𝒫). We define
MaxFFIS, MaxFSQS, and MaxFFS(𝒢) for a graph class 𝒢 as before for maximal
frequency-based problems.

Note that FFBPs are generalizations of frequency-based problems since by set-
ting𝜙𝒫 to the functionwhich is always 1, we obtain the underlying frequency-based
problem.

The main result of this section is given in the following theorem.

5.5. CONSTRAINING THE SET OF PATTERNS 97

Theorem 5.10. The FFBP-versions of all problems discussed in this chapter exhibit
exactly the same hardness w.r.t. the notions of Sections 5.2.3 and 5.2.4. More concretely,
let 𝒫 be any FFBP-problem discussed in this chapter. Then the following statements are
true:

• 𝒫-enumerate is #P-hard.
• 𝒫-extendible is NP-hard.
• For 𝑘 > 2, the problem 𝒫-extendible⟨𝑘⟩ is NP-hard.
• For fixed 𝜏 , the problem 𝒫𝜏-enumerate is solvable in polynomial time.

Theorem 5.10 shows that the hierarchy given in Figure 5.1 for frequency-based
problems collapses when a feasibility function is introduced to the problem. Note
that many practical algorithms (like the a priori algorithm) for finding maximal
frequent patterns allow to add such a feasibility function. Hence, our reductions
give a theoretical justification why many of these algorithms can be extended to a
broader range of problems.

The proof of the theorem follows from the reductions presented later in this
section and the theorems from Section 5.3.

5.5.2 Maximality-Preserving Reductions for FFPPs

We start by definingmaximality-preserving reductions between two FFBPs 𝒫 and 𝒬.

Definition 5.11. Let 𝒫 and 𝒬 be two FFBPs. Let 𝐷𝒫 be a database for 𝒫, let 𝜙𝒫 be
the feasibility function for 𝒫, and let 𝜏 be a support threshold.

A maximality-preserving reduction from 𝒫 to 𝒬 defines an instance (𝐷𝒬, 𝜏 , 𝜙𝒬)
using an injective function 𝑓 ∶ transactions(𝒫) → transactions(𝒬) which is polynomi-
al-time computable and which satisfies the following properties:

1. 𝑓(patterns(𝒫)) ⊆ patterns(𝒬).
2. For all 𝑝, 𝑝′ ∈ transactions(𝒫), 𝑝 ⊑𝒫 𝑝′ if and only if 𝑓(𝑝) ⊑𝒬 𝑓(𝑝′).
3. The inverse 𝑓−1 ∶ transactions(𝒬) → transactions(𝒫) of 𝑓 can be computed in

polynomial time.
4. 𝑝 ∈ Max(𝐷𝒫, 𝜏 , 𝜙𝒫) if and only if 𝑓(𝑝) ∈ Max(𝐷𝒬, 𝜏 , 𝜙𝒬), where 𝐷𝒬 =

𝑓(𝐷𝒫) = {𝑓(𝑡) ∶ 𝑡 ∈ 𝐷𝒫}. Additionally, for all 𝑞 ∈ Max(𝐷𝒬, 𝜏 , 𝜙𝒬) the
preimage 𝑓−1(𝑞) exists.

Note that compared to Definition 5.6, we only had to change Property 4 to assert
that the maximal patterns are feasible. Further observe that in general the function
𝜙𝒬 = 𝜙𝒬(𝜙𝒫, 𝑓, 𝑓−1) constructed in the reduction will depend on 𝜙𝒫, 𝑓 and 𝑓−1.

Properties. The rest of this subsection is devoted to proving properties of maxi-
mality-preserving reductions for FFBPs. First, we show that maximality-preserving
reductions are transitive, i.e., that one can use multiple reductions in a row. Second,
we show that maximality-preserving reductions for frequency-based problems im-
ply maximality-preserving reductions for FFBPs.

98CHAPTER 5. REDUCTIONS FOR FREQUENCY-BASED DATA MINING PROBLEMS

The following lemma shows that maximality-preserving reductions for FFBPs
are transitive. Themain challenge will be the construction of the feasibility function.

Lemma 5.12. Let 𝒫, 𝒬, ℛ be FFBPs. Assume there exist maximality-preserving re-
ductions from 𝒫 to 𝒬 via a function 𝑔 and 𝜙𝒬, and from 𝒬 to ℛ via a function ℎ and
𝜙ℛ. Then there exists a maximality-preserving reduction from 𝒫 to ℛ.

Proof. Let 𝐷𝒫 and 𝜙𝒫 be an instance for 𝒫. We construct an instance (𝐷∗, 𝜙∗)
for ℛ: We set 𝑓 ∶ transactions(𝒫) → transactions(ℛ) to 𝑓(𝑝) = ℎ(𝑔(𝑝)) for 𝑝 ∈
transactions(𝒫). For a pattern 𝑟 ∈ patterns(ℛ), we set 𝜙∗(𝑟) = 1 if and only if the
following four conditions are satisfied: (1) ℎ−1(𝑟) and 𝑓−1(𝑟) exist; (2) 𝜙ℛ(𝑟) = 1;
(3) 𝜙𝒬(ℎ−1(𝑟)) = 1; and (4) 𝜙𝒫(𝑓−1(𝑟)) = 1.

We check the properties from Definition 5.11. Property 1 and Property 2 are
satisfied since 𝑓 is the composition 𝑔 and ℎ. Property 3 holds since 𝑓−1 = 𝑔−1 ∘ℎ−1

and both 𝑔−1 and ℎ−1 can be computed in polynomial time.
The rest of the proof is devoted to proving Property 4.
Let 𝑝 ∈ Max(𝐷𝒫, 𝜏 , 𝜙𝒫). Then 𝑝 is feasible w.r.t. 𝜙𝒫. By the reduction from

𝒫 to 𝒬, 𝑔(𝑝) ∈ Max(𝐷𝒬, 𝜏 , 𝜙𝒬), where 𝐷𝒬 = 𝑔(𝐷𝒫). Note that 𝑔(𝑝) is fea-
sible w.r.t. 𝜙𝒬. Using the reduction from 𝒬 to ℛ, we obtain 𝑟 ∶= ℎ(𝑔(𝑝)) ∈
Max(𝐷ℛ, 𝜏 , 𝜙ℛ), where 𝐷ℛ = ℎ(𝐷𝒬); additionally, 𝑟 is feasible w.r.t. 𝜙ℛ. Now
observe that 𝑟 = 𝑓(𝑝) and that 𝑟 is feasible w.r.t. the operation 𝜙∗ defined above.
Note that 𝑟 is frequent in 𝐷∗ since for each transaction 𝑡 ∈ 𝐷𝒫 with 𝑝 ⊑𝒫 𝑡,
𝑟 = 𝑓(𝑝) ⊑ℛ 𝑓(𝑡) by Property 2 of 𝑓 . To prove that 𝑟 ∈ Max(𝐷∗, 𝜏 , 𝜙∗), it
remains to show that 𝑟 is maximal. Suppose not. Then there exists a pattern
𝑟′ ∈ Max(𝐷∗, 𝜏 , 𝜙∗) such that 𝑟 ⊏ℛ 𝑟′. Since 𝑟′ is feasible, let 𝑝′ = 𝑓−1(𝑟′).
By Property 2 of 𝑓 , we have that 𝑝 ⊏𝒫 𝑝′ and that 𝑝′ is frequent since 𝑝′ ⊏𝒫 𝑡 for
𝑡 ∈ 𝐷𝒫 if and only if 𝑓(𝑝′) = 𝑟′ ⊏ℛ 𝑓(𝑡). This contradicts the maximality of 𝑝.
Hence, we proved that 𝑟 ∈ Max(𝐷∗, 𝜏 , 𝜙∗).

Let 𝑟 ∈ Max(𝐷∗, 𝜏 , 𝜙∗). Since 𝑟 is feasible w.r.t. 𝜙∗, there exists 𝑝 = 𝑓−1(𝑟) ∈
patterns(𝒫) that is feasible w.r.t. 𝜙𝒫. By Property 2, 𝑝 is frequent in 𝐷𝒫. It re-
mains to show that 𝑝 is maximal. We argue by contradiction. Suppose there exists
a frequent pattern 𝑝′ with 𝑝 ⊏ 𝑝′. Then 𝑓(𝑝′) ∈ Max(𝐷∗, 𝜏 , 𝜙∗) by the previous
paragraph, and 𝑟 ⊏ 𝑓(𝑝′) by Property 2 of 𝑓 . This contradicts the maximality of 𝑟.
Hence, 𝑝 ∈ Max(𝐷𝒫, 𝜏 , 𝜙𝒫).

The next lemma shows that if for two frequency-based problems 𝒫 and 𝒬 there
exists a maximality-preserving reduction from 𝒫 to 𝒬, then there also exists a re-
duction between the FFBP-versions of these problems.

Lemma 5.13. Let 𝒫 and 𝒬 be two frequency-based problems, and let 𝒫′ and 𝒬′ be
the FFBP-versions of those problems. Suppose there exists a maximality-preserving
reduction from 𝒫 to 𝒬 via a mapping 𝑔.

Then there exists a maximality-preserving reduction from 𝒫′ to 𝒬′.

5.5. CONSTRAINING THE SET OF PATTERNS 99

Proof. Construction of 𝑓 . We set 𝑓 ≡ 𝑔. Given a pattern 𝑞 ∈ patterns(𝒬′), we set
𝜙𝒬′(𝑞) = 1 iff 𝑓−1(𝑞) exists and 𝜙𝒫′(𝑓−1(𝑞)) = 1.

Maximality-preserving. Note that Properties 1–3 of maximality-preserving re-
ductions for 𝑓 are satisfied since they are satisfied for 𝑔. We prove Property 4 of 𝑓 .

Let 𝑝 ∈ Max(𝐷𝒫′ , 𝜏 , 𝜙𝒫′). We show that 𝑓(𝑝) ∈ Max(𝐷𝒬, 𝜏 , 𝜙𝒬). Observe
that 𝑓(𝑝) is feasible w.r.t. 𝜙𝒬′ since 𝑓−1(𝑓(𝑝)) = 𝑝 is feasible w.r.t. 𝜙𝒫′ . Note that
𝑓(𝑝) is frequent in 𝐷𝒬′ by Property 2 of 𝑓 . We need to argue that 𝑓(𝑝) is also maxi-
mal. Suppose this is not the case. Then there exists a pattern 𝑞 ∈ Max(𝐷𝒬′ , 𝜏 , 𝜙𝒬′)
such that 𝑓(𝑝) ⊏ 𝑞. Since 𝑞 is feasible, there exists a feasible pattern 𝑝′ = 𝑓−1(𝑞) ∈
patterns(𝒫′). By Property 2, we have 𝑝 ⊏ 𝑝′. Additionally, the pattern 𝑝′ is fre-
quent in 𝐷𝒫′ : for each transaction 𝑡 ∈ 𝐷𝒬′ with 𝑞 ⊏𝒬′ 𝑡, 𝑝′ ⊏𝒫′ 𝑓−1(𝑡) (by
Property 2 of 𝑓 and definition of 𝐷𝒬′). This contradicts the maximality of 𝑝.

Let 𝑞 ∈ Max(𝐷𝒬′ , 𝜏 , 𝜙𝒬′). Since 𝑞 is feasible, 𝑝 = 𝑓−1(𝑞) exists and is feasible
w.r.t. 𝜙𝒫′ . We show that 𝑝 ∈ Max(𝐷𝒫′ , 𝜏 , 𝜙𝒫′). Note that 𝑝 is frequent in 𝐷𝒫′ by
Property 2 of 𝑓 . We prove themaximality of 𝑝 by contradiction. Suppose there exists
a pattern 𝑝′ ∈ Max(𝐷𝒫′ , 𝜏 , 𝜙𝒫′) with 𝑝 ⊏ 𝑝′. Then by the previous paragraph the
pattern 𝑓(𝑝′) is a feasible frequent pattern in 𝐷𝒬′ with 𝑞 = 𝑓(𝑝) ⊏ 𝑓(𝑝′). This
contradicts the maximality of 𝑞.

5.5.3 Reductions

Reduction from graphs to feasible frequent itemsets. We show that any al-
gorithm solving the MaxFFIS-problem can be used to mine maximal frequent sub-
graphs in general graphs.

Lemma 5.14. There exists a maximality-preserving reduction from MaxFFS(G) to
MaxFFIS.

Proof. Let 𝐷MaxFFS(G) be a database consisting of vertex-labelled graphs fromGwith
labels from {1, … , 𝑛}, let 𝜏 be a support threshold, let 𝜙MaxFFS(G) be a feasibility
function.

Construction of 𝑓 . For MaxFFIS we use the labels ℒ = {1, … , 𝑛}2. Let 𝐺 =
(𝑉 , 𝐸) be a graph from 𝐷MaxFFS(G). We construct an itemset 𝐼(𝐺) ∶= 𝑓(𝐺) by
mapping the graph onto the labels of its edges, i.e., we construct an itemset 𝐼(𝐺) =
{(label(𝑢), label(𝑣)) ∶ (𝑢, 𝑣) ∈ 𝐸}.

Given an itemset 𝐼 ∈ patterns(MaxFFIS), we set 𝜙MaxFFIS(𝐼) = 1 iff (1) 𝑓−1(𝐼)
exists and 𝜙MaxFFS(G)(𝑓−1(𝐼)) = 1, and (2) for each pair of tuples (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝐼
there exists a sequence (𝑎, 𝑏) = (𝑒1, 𝑒′

1), … , (𝑒𝑘, 𝑒′
𝑘) = (𝑐, 𝑑) of tuples (𝑒𝑖, 𝑒′

𝑖) ∈
𝐼 with the following property: For each pair of consecutive tuples (𝑒𝑖, 𝑒′

𝑖) and
(𝑒𝑖+1, 𝑒′

𝑖+1), there exists ℓ ∈ {1, … , 𝑛} with ℓ ∈ {𝑒𝑖, 𝑒′
𝑖} and ℓ ∈ {𝑒𝑖+1, 𝑒′

𝑖+1}.
Intuitively, Condition (2) of 𝜙MaxFFIS asserts that the graphs corresponding to feasi-
ble itemsets 𝐼 must be connected.

Maximality-preserving. Note that any feasible frequent itemset in 𝐷MaxFFIS cor-
responds to a frequent connected graph in 𝐷MaxFFS(G) due to the choice of 𝜙MaxFFIS.
Observe that there exists a bijection between connected subgraphs 𝐺 and feasible

100CHAPTER 5. REDUCTIONS FOR FREQUENCY-BASED DATA MINING PROBLEMS

itemsets 𝐼(𝐺) ⊆ ℒ′. Further observe that for two frequent subgraphs 𝐺 and 𝐻 ,
𝐺 ⊆ 𝐻 if and only if 𝑓(𝐺) ⊆ 𝑓(𝐻). It follows that a graph 𝐺 and the itemset 𝐼(𝐺)
have the same supports in 𝐷MaxFFS(G) and 𝐷MaxFFIS, respectively. The maximality
then follows from the subset-property we observed.

Note that the reduction simplifies when 𝜙MaxFFS(G) ≡ 1, i.e., when we consider
the reduction from frequency-based problemMaxFS(G) to the FFBPMaxFFIS. Then
the mapping 𝑓 stays the same and 𝜙MaxFFIS only needs to check Condition (2). We
believe that many algorithms for mining itemsets can be augmented with this fea-
sibility function 𝜙MaxFFIS to mine graph patterns as we will discuss further in Sec-
tion 5.6.

Next, observe that while Condition (2) looks rather technical, it can be easily
implemented using a graph traversal or a union–find data structure. Additionally,
when computing the union of two feasible patterns, an algorithm only needs to
check if both patterns share any label.

Note also that the reduction above works as well for directed graphs (we just
need to distinguish between edge labels (label(𝑢), label(𝑣)) and (label(𝑣), label(𝑢))).
This immediately gives us the following lemma.

Lemma 5.15. There exists a maximality-preserving reduction from MaxFFS(DirG)
to MaxFFIS.

Reduction from sequences to feasible DAGs. To finish the hierarchy of Fig-
ure 5.1, we need one more reduction, from MaxFSQS to MaxFFS(DAG).

Lemma 5.16. There exists a maximality-preserving reduction from MaxFSQS to the
problem MaxFFS(DAG).

Proof. Let 𝐷MaxFSQS be a database of sequences over labels from ℒ, let 𝜏 be a support
threshold, and let 𝜙MaxFSQS be a feasibility function. Recall that a sequence contains
each label at most once.

Construction of 𝑓 . For MaxFFS(DAG) we use the same labels ℒ. Consider a
sequence 𝑆 ∈ ℒ𝑟 of length 𝑟 such that 𝑆𝑖 ≠ 𝑆𝑗 for all 𝑖 ≠ 𝑗. This sequence is
mapped to the graph 𝐺(𝑆) with vertices 𝑉 (𝑆) = {𝑆1, … , 𝑆𝑟}, where each vertex
𝑆𝑖 is labelled by label(𝑆𝑖). The graph contains the directed edges

𝐸(𝑆) = {(𝑆𝑖, 𝑆𝑗) ∶ 𝑖 ∈ {1, … , 𝑘 − 1}, 𝑗 > 𝑖}.

Given a DAG 𝑝 ∈ patterns(MaxFFS(DAG)), we set 𝜙MaxFFS(DAG)(𝑝) = 1 iff
𝑓−1(𝑝) exists and 𝜙MaxFSQS(𝑓−1(𝑝)) = 1.

Maximality-preserving. Clearly, Properties 1–3 of maximality-preserving reduc-
tions for 𝑓 are satisfied. We prove Property 4.

Let 𝑆 be sequence from Max(𝐷MaxFSQS, 𝜏 , 𝜙MaxFSQS) of length 𝑟. We show that
𝐺 ∶= 𝑓(𝑆) ∈ Max(𝐷MaxFFS(DAG), 𝜏 , 𝜙MaxFFS(DAG)). By construction of 𝐷MaxFFS(DAG)
and due to Property 2, 𝐺 is frequent in 𝐷MaxFFS(DAG). We need to argue that 𝐺 is also

5.6. ALGORITHMS AND EXPERIMENTS 101

maximal; we do this by contradiction. Suppose there exists a feasible graph 𝐻 such
that 𝐺 ⊂ 𝐻 . Observe that adding any edge to 𝐺 would introduce a cycle. Hence,
𝐻 must contain more vertices than 𝐺. Since 𝐻 is also feasible, it corresponds to a
sequence 𝑆′ = 𝑓−1(𝐻) of length at least 𝑟 + 1. By Property 2, 𝑆′ is frequent and
𝑆 ⊏ 𝑆′. This contradicts the maximality of 𝑆.

Consider any maximal feasible frequent DAG 𝐺 ∈ 𝐷MaxFFS(DAG). Since 𝐺 is
feasible, let 𝑆 = 𝑓−1(𝐺). Then the sequence 𝑆 = ⟨𝑣1, … , 𝑣𝑟⟩ must be frequent
in 𝐷MaxFSQS by the choice of 𝑓 and the construction of 𝐷MaxFFS(DAG). Additionally,
𝑆 must be maximal. Assume it is not. Then there exists a maximal sequence 𝑇
with 𝑆 ⊏ 𝑇 . By the argument of the previous paragraph, the graph 𝐻 = 𝑓(𝑇)
is maximal and frequent. But then we also have 𝐺 = 𝑓(𝑆) ⊏ 𝑓(𝑇) = 𝐻 , which
contradicts the maximality of 𝐺.

5.6 Algorithms and Experiments

In this section, we discuss the practical consequences of our reductions and show
that the reductions can be used to develop efficient real-world algorithms.

5.6.1 Reductions as Algorithms

In addition to providing us the theoretical understanding of the relationships be-
tween the problems, the reductions also provide us a direct way to solve a maximal
frequent pattern mining problem in one domain by using a solver from the other
domain. As an example, consider the reduction from the frequency-based problem
MaxFS(G) to the FFBP MaxFFIS (Lemma 5.14) and let 𝐷MaxFS(G) be the graph data-
base for an instance of MaxFS(G) and 𝐷MaxFFIS be the transaction database built by
the reduction.

The mapping of patterns 𝑓 is straight forward, as we only need to generate a
transaction for each graph, and an item for each unique edge label. The crux of the
reduction lies in the feasibility function𝜙: it has to ensure that the returned frequent
itemsets correspond to connected frequent subgraphs in the original problem. As the
feasible frequent itemsets are a strict subset of all of the frequent subsets, we could
simply prune out the results at the very end. A naïve algoritm for solvingMaxFS(G)
could then work as follows: (1) build 𝐷MaxFFIS following Lemma 5.14; (2) compute
all frequent itemsets from 𝐷MaxFFIS; (3) prune out the non-feasible frequent itemsets;
(4) prune out the non-maximal feasible frequent itemsets.

More efficient implementations are possible, however. In particular, we can add
the feasibility constraint in the mining process, thus reducing the number of candi-
dates to consider in each iteration. The connectedness constraint is not monotone,
though: it is possible that two itemsets 𝐴 and 𝐵 do not correspond to connected sub-
graphs, while their union does (e.g., 𝐴 = {(𝑎, 𝑏), (𝑐, 𝑑)} and 𝐵 = {(𝑏, 𝑐), (𝑑, 𝑒)}),
and vice versa (e.g., 𝐴 = {(𝑎, 𝑏)} and 𝐵 = {(𝑐, 𝑑)}). On the other hand, if 𝐶 is a
feasible (connected) frequent itemset in 𝐷MaxFFIS, then it can be split into subsets of

102CHAPTER 5. REDUCTIONS FOR FREQUENCY-BASED DATA MINING PROBLEMS

any size that are frequent and feasible. This means that we can prune all infeasible
itemsets at the same time when we prune away all infrequent itemsets. In other
words, we can in fact work with less candidates (or at least with no more) than if
we would be doing standard frequent itemset mining.

The final question in our case study is how to implement the feasibility check
efficiently. Let label(𝐴) denote the set of unique (vertex) labels in an itemset 𝐴, i.e.,
label(𝐴) = {𝑙 ∶ edge (𝑙, ⋅) or (⋅, 𝑙) is an item in 𝐴}. Then 𝐴 ∪ 𝐵 is a connected (i.e.,
feasible) itemset iff label(𝐴) ∩ label(𝐵) ≠ ∅ and both 𝐴 and 𝐵 are connected (i.e.,
feasible). Hence, if we store the sets label(𝐴) together with the candidate itemsets,
we only need to test the disjointness of these two sets to test the feasibility of 𝐴∪𝐵.

The above example shouldmake clear that the reductionswe presented can yield
practical algorithms, and it is not too hard to see that similarly efficient algorithm
can be designed following the reduction of Lemma 5.16. However, note that in
this reduction it would not be a good idea to add single edges during the candidate
generation; an efficient implementation would ensure that whole nodes with edges
to all over vertices are added. This ensures that the preimage of the reduction exists
at all times and that fewer infeasible candidates are generated.

To further validate our approach, we present some experimental evaluation of
the above algorithm in the next subsection. Before that, let us however discuss the
general approaches for using the maximality-preserving reductions.

The first observation is that the type of the feasibility constraint obviously has a
big impact on the efficiency of the final algorithm. The study of constrained frequent
pattern mining is well established (see, e.g., [92] or the references in Section 5.3),
and that research gives characterizations of constraints that can be implemented ef-
ficiently in standard algorithms. Similarly, the constraint-programming algorithms
for data analysis can often be easily adapted for the feasibility constraints used in
frequency-based reductions.

The second observation concerns the number of (non-maximal) frequent item-
sets. Our reductions are only guaranteed to preserve the maximality, and can, in
principle, yield an exponentially larger number of non-maximal frequent (and feasi-
ble) itemsets. This would, naturally, make it practically infeasible to use the reduc-
tions together with standard frequent pattern mining algorithms. There are a few
possible solutions to this. First, some of our reductions do not grow the number
of feasible frequent patterns. This is, for example, the case with the reductions in
Lemmas 5.7, 5.8, and 5.14. Second, a clever implementation of a reduction would
only generate candidates which may be generated by the mapping from the reduc-
tion. This can dramatically decrease the number of possible candidates. In fact, if
the implementation manages not to generate any candidates which have no preim-
age under the mapping from the reduction, then the number of possible candidates
will not increase at all. We believe that this is possible for all reductions we pre-
sented. Third, the maximal frequent patterns can also be found by first finding all
the maximal frequent and minimal infrequent patterns [88]. Unfortunately for this
approach, we do not yet know the behaviour of minimal infrequent patterns under
our reductions. We leave further studies in this for future work.

5.6. ALGORITHMS AND EXPERIMENTS 103

0 5 10 15
100

101

102

103

104

105

Itemset size

N
um

be
ro

fi
te
m
se
ts

All frequent
Only feasible

Figure 5.2: The number of frequent itemsets and feasible frequent itemsets when
solving the MaxFS(G) problem using MaxFFIS algorithms. The 𝑦-axis is in loga-
rithmic scale.

5.6.2 Experimental Evaluation

For the experimental evaluation, we implemented the reduction from MaxFS(G)
to MaxFFIS (Lemma 5.14) in a custom version of the a priori algorithm [12]. The
constraint on the feasible patterns was straight forward to implement, as discussed
above.2

We tested our approach on a discussion forum data from the StackExchange
forums.3 The data contains 161 different question-answering forums (we excluded
the meta-forums). We concentrated on the most recent year’s activity, and con-
structed one graph for each forum where the users are the vertices and there is an
edge between two users if one has answered or commented to the other’s question
or answer. The vertices are labelled uniquely using the global user-id. The data has
1 627 946 different users, and in total 8 264 675 uniquely-labelled edges. Hence, the
dataset does not pose a significant problem for frequent itemset mining algorithms.

We wanted to study the effects the constraint has for the number of candidates.
Recall that the constraint is used to enforce that we find only connected subgraphs.
In Figure 5.2, we show the number of frequent itemsets and feasible frequent item-
sets of different sizes with minimum frequency 3.

As can be seen from Figure 5.2, the total number of frequent itemsets is approx-
imately ten times the number of feasible candidates, indicating that the feasibility
constraint allows us to prune significant amounts of candidates (there are no feasi-
ble candidates of size 17 or 18). In total, the data has 265 111 frequent itemsets, of
which 29 752 were feasible and 549 were maximal feasible itemsets.

2The code and sample data are available from https://people.mpi-inf.mpg.de/
~pmiettin/frequency-based-reductions/.

3https://archive.org/details/stackexchange

https://people.mpi-inf.mpg.de/~pmiettin/frequency-based-reductions/
https://people.mpi-inf.mpg.de/~pmiettin/frequency-based-reductions/
https://archive.org/details/stackexchange

104CHAPTER 5. REDUCTIONS FOR FREQUENCY-BASED DATA MINING PROBLEMS

3 4 5 6 7 8 9
0

200

400

600

Minimum frequency

N
um

be
ro

fm
ax

im
al

ite
m
se
ts

All itemsets
Only feasible

Figure 5.3: The number of maximal feasible frequent itemsets with different mini-
mum support thresholds.

The number of maximal frequent itemsets and maximal feasible frequent item-
sets with respect to different minimum thresholds is presented in Figure 5.3. We
can see that their numbers are mostly aligned, with the number of maximal item-
sets dropping almost exponentially as the minimum threshold increases. No pattern
has support higher than 9.

5.7 Conclusion

We studied the computational complexity of several frequency-based problems and
provided a unifying framework for the existing computational hardness results. We
showed that when considering a generalized version of frequency-based problems,
the computational hardness of many frequency-based problems collapses. Addition-
ally, our reductions give a formal explanation why algorithms similar to the a priori
algorithm can be used for such a wide range of problems by only slightly adjusting
the candidate generation.

In the future it will be interesting to study the computational complexity of
frequency-based problems in which labels can appear multiple times. A daunting
question is whether the following two problems exhibit the same hardness: Mining
subsequences without the restriction that each label appears only once, and mining
graphs with possibly multiple vertices of the same label.

The reductions we provide hint that many practical algorithms for frequency-
based problems can be augmented to solve more complicated problems. We pro-
vided such an example in Section 5.6. It will be interesting to see if our insights can
lead to more efficient algorithms for the problems we considered or to algorithms
which can solve a wider range of problems.

CHAPTER 6
Efficient Distributed Workload

(Re-)Embedding

Modern networked systems are increasingly reconfigurable and this is enabling
demand-aware infrastructures whose resources can be adjusted according to the
workload they currently serve. Such dynamic adjustments can be exploited to im-
prove network utilization and hence performance, bymoving frequently interacting
communication partners closer, e.g., collocating them in the same server or datacen-
ter. However, dynamically changing the embedding of workloads is algorithmically
challenging: communication patterns are often not known ahead of time, but must
be learned. During the learning process, overheads related to unnecessary moves
(i.e., re-embeddings) should be minimized. We study a fundamental model which
captures the tradeoff between the benefits and costs of dynamically collocating com-
munication partners on ℓ servers, in an online manner. Our main contribution is
a distributed online algorithm which is asymptotically almost optimal, i.e., almost
matches the lower bound (also derived in this chapter) on the competitive ratio of
any (distributed or centralized) online algorithm. As an application, we show that
our algorithm can be used to solve a distributed union–find problem in which the
sets are stored across multiple servers.

6.1 Introduction

Along with the trend towards more data centric applications (e.g., online services
like web search, social networking, financial services as well as emerging applica-
tions such as distributed machine learning [128, 159]), comes a need to scale out
such applications, and distribute the workload across multiple servers or even data-
centers. However, while such parallel processing can improve performance, it can
entail a non-trivial load on the interconnecting network. Indeed, distributed cloud

105

106 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

applications, such as batch processing, streaming, or scale-out databases, can gen-
erate a significant amount of network traffic [148].

At the same time, emerging networked systems are becoming increasingly flex-
ible and thereby provide novel opportunities to mitigate the overhead that distrib-
uted applications impose on the network. In particular, the more flexible and dy-
namic resource allocation (enabled, e.g., by virtualization) introduces a vision of
workload-aware infrastructures which optimize themselves to the demand [24]. In
such infrastructures, communication partners which interact intensively, may be
moved closer (e.g., collocated on the same server, rack, or datacenter) in an adap-
tive manner, depending on the demand. This “re-embedding” of the workload al-
lows to keep communication local and reduce costs. Indeed, empirical studies have
shown that communication patterns in distributed applications feature much local-
ity, which highlights the potential of such self-adjusting networked systems [30, 83,
178].

However, leveraging such resource reconfiguration flexibilities to optimize per-
formance, poses an algorithmic challenge. First, while collocating communication
partners reduces communication cost, it also introduces a reconfiguration cost (e.g.,
due to virtual machine migration). Thus, an algorithm needs to strike a balance
between the benefits and the cost of such reconfigurations. Second, as workloads
and communication patterns are usually not known ahead of time, reconfiguration
decisions need to be made in an online manner, i.e., without knowing the future.
We are hence in the realm of online algorithms and competitive analysis.

We study the fundamental tradeoff underlying the optimization of such work-
load-aware reconfigurable systems. In particular, we consider the design of an on-
line algorithm which, without prior knowledge of the workload, aims to minimize
communication cost by performing a small number of moves (i.e., migrations). In
a nutshell (more details will follow below), we consider a communication graph be-
tween 𝑛 vertices (e.g., virtual machines) which can be perfectly partitioned among
a set of ℓ servers (resp. racks or datacenters) of a given capacity. We assume that the
communication patterns, which partition the communication graph, consist of 𝑛/ℓ
vertices and that once the whole communication graph was revealed, each server
must contain exactly one communication pattern.

The communication graph is initially unknown and revealed to the algorithm in
an online manner, edge-by-edge, by an adversary who aims to maximize the cost of
the given algorithm. The cost here consists of communication cost and moving cost:
The algorithm incurs one unit cost if the two endpoints (i.e., communication part-
ners) of the request belong to different servers. After each request, the algorithm
can reconfigure the infrastructure and move communication endpoints from one
server to another, essentially repartitioning the communication partners; however,
each move incurs a cost of 𝛼 > 1.

In other words, we consider the problem of learning a partition, i.e., an optimal
assignment of communication partners to servers, at low communication and mov-
ing cost. Interestingly, while the problem is natural and fundamental, not much
is known today about the algorithmic challenges underlying this problem, except

6.1. INTRODUCTION 107

for the negative result that no good competitive algorithm can exist if communi-
cation partners can change arbitrarily over time [23]. This lower bound motivates
us to focus on the online learning variant where the communication partners are
unknown but fixed. At the same time, as we will show, the problem features in-
teresting connections to several classic problems. Specifically, the problem can be
seen as a distributed version of classic online caching problems [189] or an online
version of the 𝑘-way partitioning problem [184].

6.1.1 Our Contributions

We initiate the study of a fundamental problem, how to learn and re-embed work-
load in an online manner, with few moves. We make the following main contribu-
tions.

We present a distributed 𝑂((ℓ log ℓ log 𝑛)/𝜀)-competitive online algorithm for
servers of capacity (1 + 𝜀)𝑛/ℓ, where 𝜀 ∈ (0, 1/2). We allow the servers to have
𝜀𝑛/ℓ more space than is strictly needed to embed its corresponding communication
pattern (which is of size 𝑛/ℓ); we denote this additional space as augmentation. Such
augmentation is also needed, as our lower bounds discussed next show.

We show that there are also limitations of what online algorithms can achieve in
our model: We derive a lower bound of 𝛺(1/𝜀 + log 𝑛) on the competitive ratio of
any deterministic online algorithm given servers of capacity at least (1+𝜀)𝑛/ℓ. This
lower bound has several consequences: (1) To obtain 𝑂(log 𝑛)-competitive algo-
rithms, the servers must have 𝛺(𝑛/(ℓ log 𝑛)) augmentation. (2) If the servers have
𝛺(𝑛/ℓ) augmentation (e.g., each server has 10% more capacity than the size of its
communication pattern), our algorithm is optimal up to an 𝑂(ℓ log ℓ) factor. Thus,
our results are particularly interesting for large servers, e.g., in a wide-area network-
ing context where there is usually only a small number of datacenters where com-
munication partners can be collocated (e.g., ℓ = 20): if each datacenter (“server”)
has augmentation 0.1 ⋅ 𝑛/ℓ , our algorithm is optimal up to constant factors.

The distributed algorithms we present not only provide good competitive ratios
but they are also highly efficient w.r.t. the network traffic they cause. In fact, we
show that for ℓ = 𝑂(√𝜀𝑛) servers, running the algorithms introduces only little
overhead in network traffic and that this overhead is asymptotically negligible (see
Section 6.5.1).

While the previous algorithms require exponential time, we also present pol-
ynomial-time algorithms with a competitive ratio of 𝑂((ℓ2 log 𝑛 log ℓ)/𝜀2) in Sec-
tion 6.5.2.

As a sample application of our newly introduced model we present a distributed
union–find data structure [78, 192] (also known as disjoint-set data structure or
merge-find data structure) in Section 6.7.1: There are 𝑛 items from a universe which
are distributed over ℓ servers; each server can store at most (1 + 𝜀)𝑛/ℓ items and
each item belongs to a unique set. The operation union allows to merge two sets. In
our setting, we require that items from the same set must be assigned to the same
server. To reduce the network traffic, our goal is to minimize the number of item

108 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

moves during union operations. For example, when two sets are merged which are
assigned to different servers, then the items of one of the sets must be reassigned
to another server. We compare against an optimal offline algorithm which knows
the initial assignment of all items and all union operations in advance. We obtain
the same competitive ratios as above. We believe that this distributed union–find
data structure will be useful as a subroutine for several problems such as merging
duplicate websites in search engines [46].

We also show that our algorithms solve an online version of the 𝑘-way partition
problem in Section 6.7.2.

6.1.2 Organization

We introduce our model formally in Section 6.2. To ease the readability, we first
explore centralized online algorithms that efficiently collocate communication pat-
terns for ℓ = 2 servers in Section 6.3, and then study the general case of ℓ > 2
servers in Section 6.4. In Section 6.5 we show how the previously derived central-
ized algorithms can be made distributed and how the algorithm can be implemented
in polynomial time at the cost of a slightly worse competitive ratio. We provide
the lower bounds in Section 6.6. Section 6.7 provides a distributed union–find data
structure and a result for online 𝑘-way partitioning; these problems serve as sample
applications of the problem we study. After reviewing related work in Section 6.8,
we conclude our contribution in Section 6.9.

6.2 Model

We start by formally introducing the model which we will be studying in this chap-
ter. We consider a set of vertices 𝑉 (e.g., a set of virtual machines) which interact ac-
cording to an initially unknown communication pattern, which can be represented
as a communication graph 𝐺 = (𝑉 , 𝐸) with 𝑛 = |𝑉 | vertices and 𝑚 = |𝐸| edges.
The vertices of 𝐺 are partitioned into ℓ sets 𝑉0, … , 𝑉ℓ−1 where each 𝑉𝑖, forming a
connected communication component (the workload), has size1 𝑛/ℓ; the connected
components of 𝐺 coincide with the sets 𝑉𝑖. The sets 𝑉𝑖 are the communication pat-
terns which need to be recovered by the online algorithm, henceforth called ground
truth components.

The communicating vertices 𝑉 need to be assigned to ℓ servers 𝑆0, … , 𝑆ℓ−1.
Accordingly, we define an assignment (the embedding) which is a function from the
vertices to the servers. The load of a server 𝑆𝑗 is the number of vertices that are
assigned to it. An assignment is valid if each server has load at most 𝑛/ℓ+𝐾 andwe
call 𝑛/ℓ+𝐾 the capacity of the servers and 𝐾 the augmentation. If 𝐾 = 0, the total
server capacity exactly matches the number of vertices. The available capacity of a
server is the difference between the server’s capacity and its load. An assignment

1Note that in general 𝑛/ℓ is not always an integer and we would have to take rounding into
account. However, we ignore this technicality for better readability.

6.2. MODEL 109

Figure 6.1: An illustration of the model we consider. In the picture there are ℓ = 4
servers each depicted by a blue circle. Vertices assigned to a server are represented
by black dots whereas white dots represent unused server capacities. Note that
there are 𝑛 = 24 vertices and each server has capacity (1 + 𝜀)𝑛/ℓ = 8 for 𝜀 = 1/3.
In the picture, server 𝑆0 has load 5 and server 𝑆1 has load 8. When two vertices
communicated, we draw an edge between them depicted by a black line. Observe
how this naturally gives rise to connected components and note that 𝑆1 contains
a ground truth component of size 𝑛/ℓ = 6. If the adversary were to insert the
edge (𝑢, 𝑣) next, the algorithm could, for example, move the connected component
containing 𝑣 to 𝑆3 at cost 2𝛼.

is perfectly balanced if each server has load exactly 𝑛/ℓ. We assume that when the
algorithm starts, we have a perfectly balanced assignment. We will write 𝑉 (𝑆𝑗) to
denote the set of vertices assigned to server 𝑆𝑗 and 𝑉init(𝑆𝑗) for the set of vertices
initially assigned to server 𝑆𝑗. We say that an assignment is a perfect partitioning if
it satisfies {𝑉 (𝑆0), … , 𝑉 (𝑆ℓ−1)} = {𝑉0, … , 𝑉ℓ−1}, i.e., the vertices on the servers
coincide with the connected components of 𝐺.

The communication graph 𝐺 = (𝑉 , 𝐸) is revealed by an adversary in an online
manner, as a sequence of edges 𝜎 = (𝑒1, … , 𝑒𝑟), where 𝑟 denotes the number of
communication requests and 𝑒𝑖 ∈ 𝐸 for each 𝑖. Note that the adversary can only
provide edges which are present in 𝐸 and that each edge can appear multiple times
in the sequence of edges. We assume that the sequence of the edges provided by the
adversary reveals the ground truth components 𝑉𝑖, i.e., after having seen all edges
in 𝜎 the algorithm can compute the connected components of 𝐺 which (by assump-
tion) coincide with the ground truth components 𝑉𝑖. We present an illustration of
the model in Figure 6.1.

Now an online algorithmmust iteratively change the assignment such that even-
tually the assignment is a perfect partitioning.

The reassignment needs to be done while minimizing certain communication
and migration cost. If an edge 𝑒 = (𝑢, 𝑣) provided by the adversary has both end-
points in the same server 𝑆𝑖 at the time of the request, an algorithm incurs no costs.
If 𝑢 and 𝑣 are in different servers 𝑆𝑖 and 𝑆𝑗, then their communication cost is 1.
Reassigning, i.e., moving, a vertex 𝑢 from a server 𝑆𝑖 to a server 𝑆𝑗 costs 𝛼 > 1.

When measuring the cost of an online algorithm, we will compare against an
optimal offline algorithm denoted by OPT. OPT has a priori knowledge of the

110 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

communication graph 𝐺 = (𝑉 , 𝐸) as well as the given the sequence of all edges
𝜎 = (𝑒1, … , 𝑒𝑟). In other words, OPT can compute the assignment of vertices to
servers which provides the minimum migration cost from the initial assignment.

Now let the cost paid by an online algorithm be denoted by ONL and let the
cost of the optimal offline algorithm be denoted by OPT. We consider the design of
an online algorithm ONL which minimizes the (strict) competitive ratio defined as
ONL
OPT .

The Role of Connected Components We will briefly discuss how connected
components are induced by subsequence of 𝜎 and how we will treat connected
components in our algorithms. We then give a reduction which helps us to avoid
considering communication costs in our proofs.

Recall that the adversary provides a sequence of edges 𝜎 to an algorithm in an
online manner. As this happens, an algorithm can keep track of all edges it has seen
so far. Let this set of edges be 𝐸′. Using the edges in 𝐸′, the algorithm can compute
the connected components 𝐶1, … , 𝐶𝑞 which are induced by 𝐸′. Here, 𝑞 denotes
the current number of connected components.

To obtain a better understanding of the relationship between the connected
components 𝐶𝑖 and the ground truth components 𝑉𝑗, we make four observations:
(1) When the algorithm starts, all connected components 𝐶𝑖 = {𝑣𝑖} only consist of
single vertices (because 𝜎 has not yet revealed any edges). (2) When a previously
unknown edge 𝑒 = (𝑢, 𝑣) is revealed which has its endpoints in different connected
components 𝐶𝑢 and 𝐶𝑣, these connected components get merged. (3) Suppose a
subsequence of 𝜎 induces 𝑞 > ℓ connected components 𝐶𝑖 (i.e., 𝜎 has not yet re-
vealed the whole graph 𝐺). Then for each ground truth component 𝑉𝑗 there exists
a subset ℂ ⊂ {𝐶1, … , 𝐶𝑞} of the connected components such that 𝑉𝑗 = ⋃𝐶∈ℂ 𝐶 .
(4) When an algorithm terminates (and, hence, 𝜎 revealed all edges in 𝐸), there ex-
ists a one-to-one correspondence between the connected components 𝐶𝑖 and the
ground truth components 𝑉𝑗.

By assumption on the input from the adversary, when all of 𝜎 was revealed,
𝐸′ reveals the ground truth components 𝑉0, … , 𝑉ℓ−1. Thus, in total there will be
exactly 𝑛 − ℓ edges connecting vertices from different connected components.

All of the algorithms we consider in this chapter have the property that they
always assign vertices of the same connected component to the same server. This
property implies that the communication cost paid by such an algorithm is bounded
by its moving cost (we prove this in the following lemma). Hence, in the rest of the
chapter we only need to bound themoving costs of our algorithms to obtain a bound
on their total costs.

Lemma6.1. Suppose an algorithm𝒜 always assigns all vertices of the same connected
component to the same server and pays 𝒞 for moving vertices. Then its communication
cost is at most 𝒞. Furthermore, its total cost is at most 2𝒞.

Proof. Suppose the adversary provides an edge (𝑢, 𝑣). We distinguish two cases.
Case 1: 𝑢 and 𝑣 are assigned to the same server. Then 𝒜 does not pay any commu-

6.3. ONLINE PARTITION FOR TWO SERVERS 111

nication costs. Case 2: 𝑢 and 𝑣 are assigned to connected components 𝐶𝑢 and 𝐶𝑣
on different servers. Then the algorithm needs to pay 1 communication cost. How-
ever, in this case 𝒜 must move 𝐶𝑢 or 𝐶𝑣 to a different server at the cost of at least
𝛼 > 1. Hence, the moving cost is larger than the communication cost. We conclude
that 𝒜’s total communication cost is at most 𝒞. By summing the two quantities, we
obtain the second claim of the lemma.

While in Lemma 6.1 we have shown that algorithmswhich always collocate con-
nected components immediately are efficient w.r.t. their total cost, in Section 6.6.1
we show that any efficient algorithm must satisfy a similar (slightly more general)
property.

Throughout the rest of the chapter, wewrite |𝐶| to denote the number of vertices
in a connected component 𝐶 . For a vertex 𝑢, we write 𝐶𝑢 to denote the connected
component 𝐶 which contains 𝑢.

6.3 Online Partition for Two Servers

In this section, we consider the problem of learning a communication graph with
few moves with two servers. As we will see later, the concepts introduced in this
section will be useful when solving the problem with ℓ > 2 servers. We derive the
following result.

Theorem 6.2. Consider the setting with two servers of capacity (1 + 𝜀)𝑛/2 for 𝜀 ∈
(0, 1), i.e., the augmentation is 𝜀𝑛/2. Then there exists an algorithm with competitive
ratio 𝑂((log 𝑛)/𝜀).

The proof is organized as follows. We first characterize the optimal solution by
OPT in Section 6.3.1. We then present an algorithmwhich is efficient whenever OPT
incurs “significant cost”, in Section 6.3.2. In Section 6.3.3, we describe an algorithm
which is efficient whenever the solution by OPT is “cheap”. We prove Theorem 6.2
via a combination of the two algorithms in Section 6.3.4.

6.3.1 Costs of OPT

The following lemma gives a precise characterization of the cost paid by OPT in the
two server case. It introduces a parameter 𝛥 which equals the number of vertices
moved by OPT and which we will be using throughout the rest of this section.

Lemma 6.3. Suppose ℓ = 2 and the vertices initially assigned to the servers 𝑆𝑖 are
given by the sets 𝑉init(𝑆𝑖) for 𝑖 = 0, 1. Then the cost of OPT is 2𝛼𝛥, where

𝛥 = min{|𝑉init(𝑆0) ∩ 𝑉0|, |𝑉init(𝑆0) ∩ 𝑉1|}.

It follows immediately that 𝛥 ≤ 𝑛/4 (as |𝑉init(𝑆0)| = 𝑛/2).

112 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

Figure 6.2: The initial assignment considered in the proof of Lemma 6.3. The green
and grey areas of the servers correspond to subsets of 𝑉0 and 𝑉1. Server 𝑆0 (𝑆1)
contains most of the vertices from 𝑉0 (𝑉1). Here, OPT would move the green part
from 𝑆1 to 𝑆0 and the grey part from 𝑆0 to 𝑆1.

Proof. Recall that our model forces OPT to provide a final assignment satisfying
{𝑉 (𝑆0), 𝑉 (𝑆1)} = {𝑉0, 𝑉1}, i.e., OPT must produce a final assignment which co-
incides with the ground truth components (even if paying for each communication
request individually and not relocating any vertices might be cheaper). Thus, we
can assume that OPT performs all vertex moves in the beginning, to avoid paying
any communication cost. Since the edge sequence 𝜎 = (𝑒1, … , 𝑒𝑟) provided by
the adversary is assumed to reveal the connected components 𝑉0 and 𝑉1, OPT can
compute 𝑉0 and 𝑉1 before it performs any moves.

As there are only two servers, one of them must contain at least half of the
vertices from 𝑉0 in the initial assignment. Now let us first assume that this server
is 𝑆0; this setting is illustrated in Figure 6.2. In this case, OPT can move the 𝛥
vertices in 𝑉init(𝑆0) ∩ 𝑉1 to 𝑆1 and those in 𝑉init(𝑆1) ∩ 𝑉0 to 𝑆0. It is easy to
verify that this yields an assignment satisfying {𝑉 (𝑆0), 𝑉 (𝑆1)} = {𝑉0, 𝑉1} and
that the moving cost is minimized. Further, the cost for this reassignment is exactly
2𝛼𝛥.

The second case where 𝑆1 contains more than half of the vertices from 𝑉0 in
the initial assignment is symmetric.

While in Lemma 6.3 we have presented the lower bound w.r.t. server 𝑆0, we
could also express the lower bound in terms of server 𝑆1. We then obtain the fol-
lowing equality:

𝛥 = max
𝑖=0,1

min
𝑗=0,1

|𝑉init(𝑆𝑖) ∩ 𝑉𝑗|.

6.3.2 The Small–Large–Rebalance Algorithm

A natural idea to obtain a small number of vertex moves is to proceed as follows.
Whenever two vertices 𝑢 and 𝑣 belonging to different connected components com-
municate, the algorithm merges their connected components. If the two compo-
nents were already assigned to the same server, no vertex moves are required. If 𝑢
and 𝑣 are assigned to different servers, we move the smaller connected component

6.3. ONLINE PARTITION FOR TWO SERVERS 113

to the server of the larger connected component. This algorithm is efficient in that
it never performs more than 𝑂(𝑛 log 𝑛) vertex moves (see Lemma 6.4).

However, the algorithm could require much augmentation, as it does not ac-
count for server capacities. Thus, we propose the following extension called the
Small–Large–Rebalance Algorithm: Whenever a server exceeds its capacity, the al-
gorithm computes a perfectly balanced assignment of the vertices which respects
the previously observed connected components; we call this a rebalancing step. We
provide pseudocode in Algorithm 4.

Section 6.5.2.1 shows how such a rebalancing step can be implemented in 𝑂(𝑛2)
time. Later, we show that there can be at most 𝑂((log 𝑛)/𝜀) such rebalancing steps
which implies that the total running time Algorithm 4 is 𝑂((𝑛2 log 𝑛)/𝜀).

Note that Algorithm 4 also works in the setting with ℓ servers for ℓ > 2. We
will analyze this more general algorithm in Section 6.4.4.

6.3.2.1 Analysis

To analyze Algorithm 4, we first consider the algorithm from the first paragraph
which does not have the rebalancing step. When the algorithm moves a smaller
component to the server of a larger component, we call this a small-to-large step.

Lemma 6.4. Consider the algorithm which always moves the smaller connected com-
ponent to the server of the larger connected component when it obtains an edge between
vertices from different connected components. The algorithmmoves each vertex at most
𝑂(log 𝑛) times. Its total number of vertex moves is 𝑂(𝑛 log 𝑛).

Proof. Consider any vertex 𝑣. We use the following accounting: Whenever 𝑣 is in
the a smaller component that is moved, add a token to 𝑣. Now observe that when-
ever 𝑣 gains a token, the size of its component at least doubles. This implies that 𝑣
can be in the smaller component only 𝑂(log 𝑛) times. Thus, 𝑣 cannot accumulate
more than 𝑂(log 𝑛) tokens. Since this holds for each of the 𝑛 vertices, the total
number of moves is 𝑂(𝑛 log 𝑛).

The following lemma provides the analysis for Algorithm 4 which performs
small-to-large steps and rebalancing steps.

Lemma 6.5. Suppose both servers have capacity (1 + 𝜀)𝑛/2, i.e., the augmentation is
𝜀𝑛/2 for 𝜀 ∈ (0, 1). Then Algorithm 4 performs 𝑂((log 𝑛)/𝜀) rebalancing steps and
𝑂((𝑛 log 𝑛)/𝜀) vertex moves.

Proof. We prove the bound on the number of vertex moves; the claim about the
number of rebalancing steps is proved along the way. Note that all vertex moves
performed by the algorithm originate from either small-to-large steps or from re-
balancing steps. We bound the number of each of these vertex moves separately.

Note that the token-based argument from Lemma 6.4 still applies to the small-
to-large steps of Algorithm 4. This implies that the total number of vertex moves
due small-to-large steps is 𝑂(𝑛 log 𝑛).

114 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

Input: A sequence of edges 𝜎 = (𝑒1, … , 𝑒𝑟)
1: procedure SmallLargeRebalance(𝑒1, … , 𝑒𝑟)
2: for 𝑖 = 1, … , 𝑟
3: (𝑢, 𝑣) ← 𝑒𝑖
4: if 𝐶𝑢 and 𝐶𝑣 are not assigned to the same server
5: ▷ We must move 𝐶𝑢 and 𝐶𝑣 to the same server.
6: Assume w.l.o.g. that |𝐶𝑢| ≤ |𝐶𝑣|
7: if the server of 𝐶𝑣 has available capacity |𝐶𝑢|
8: Move 𝐶𝑢 to the server of 𝐶𝑣
9: ▷ Small-to-large step

10: else ▷ Rebalancing step
11: Move to a perfectly balanced assignment respecting the con-

nected components
12: Merge 𝐶𝑢 and 𝐶𝑣

Algorithm 4: The Small–Large–Rebalance Algorithm

Now consider the vertex moves caused by the rebalancing steps and recall that
the initial assignment is perfectly balanced. Whenever a server exceeds its load,
the small-to-large steps of the algorithm must have moved at least 𝜀𝑛/2 vertices
(because the augmentation of one of the servers is exceeded). This can only happen
𝑂((𝑛 log 𝑛)/(𝜀𝑛)) = 𝑂((log 𝑛)/𝜀) times since the total number of vertex moves
due to small-to-large steps is 𝑂(𝑛 log 𝑛). Hence, the number of rebalancing steps
is at most 𝑂((log 𝑛)/𝜀). Since each rebalancing step performs 𝑂(𝑛) vertex moves,
the lemma follows.

6.3.2.2 More Efficient Rebalancing

We next propose a better rebalancing strategy which makes Algorithm 4 more effi-
cient. So far, we used 𝛩(𝑛) vertex moves for each rebalancing operation at the cost
of 𝛩(𝛼𝑛). We now bring the rebalancing cost down to 𝑂(OPT).

We adjust Algorithm 4 in the following way: Instead of rebalancing by taking
any perfectly balanced assignment respecting the connected components (Line 11),
we choose a perfectly balanced assignment respecting the connected components
which minimizes the number of vertex moves from the initial solution. We call such
an assignment cheap.

To find a cheap assignment, the algorithm could simply do the following: (1) Re-
call the initial assignment. (2) Exhaustively enumerate all perfectly balanced assign-
ments respecting the connected components. (3) Among all of these assignments
find one which is cheap. While such a simple algorithm can in principle be compu-
tationally costly, we can here exploit the online model of computation which allows
us unlimited computational power. In Section 6.5.2 we show how less efficient re-

6.3. ONLINE PARTITION FOR TWO SERVERS 115

balancing strategies can be implemented in polynomial time and we obtain slightly
worse competitive ratios.

With the improved rebalancing strategy, we obtain Proposition 6.6.

Proposition 6.6. Suppose all servers have capacity (1+𝜀)𝑛/2, 𝜀 > 0. Then the num-
ber of vertex reassignments performed by Algorithm 4 with more efficient rebalancing
is 𝑂(𝑛 log 𝑛 + (𝛥 log 𝑛)/𝜀), where 𝛥 is the number of vertex moves used by OPT.

Proof. First, note that the number of vertex moves for moving smaller components
to larger components (Line 8) is 𝑂(𝑛 log 𝑛), by exactly the same arguments used in
the proof of Lemma 6.5.

Second, we bound the number of vertex moves required for the rebalancing
operations. Whenever the algorithm needs to rebalance, we can assume (for the
sake of the analysis) that the algorithm makes the following three steps: (1) Roll
back all changes done by small-to-large moves (Line 8) since the last rebalancing
operation. Thus, after rolling back we have the same assignment as after the last
rebalancing operation. (2) Roll back to the initial assignment (by undoing the last
rebalancing operation). (3) Move to a cheap assignment.

Observe that Step (1) and (2) of the previous three step procedure increase the
number of vertex moves only by a constant factor compared to when the algorithm
does not roll back: In total, Step (1) only adds additional 𝑂(𝑛 log 𝑛) vertex moves
because each small-to-large move is undone exactly once. Step (2) only doubles the
number of vertex moves for moving to cheap assignments as each rebalancing is
only undone once.

Thus, we can complete the proof if we can show that the total number of vertex
moves for moving from the initial assignment to the cheap assignments is bounded
by 𝑂((𝛥 log 𝑛)/𝜀).

By Lemma 6.5, the number of rebalancing steps is bounded by 𝑂((log 𝑛)/𝜀).
Now we argue that for moving from the initial solution to each cheap assignment,
the rebalancing moves at most 𝑂(𝛥) vertices: Every time the algorithm computes
a cheap rebalancing, the final solution obtained by OPT is a perfectly balanced as-
signment respecting the connected components. Thus, the number of vertex moves
to obtain a cheap rebalancing is bounded by the number of moves performed by
OPT which is 𝑂(𝛥). This finishes the proof.

6.3.3 The Majority Voting Algorithm

We now present an algorithm which works well whenever the cost paid by OPT is
small, i.e., when OPT only needs to move few vertices. The issue with Algorithm 4
from Section 6.3.2 is that during its execution, it might deviate much from the ini-
tial assignment (and thus move many vertices). The following algorithm has the
property that it always stays close to the initial assignment.

For ease of readability, we will often refer to the two servers as the left and right
servers, respectively, instead of calling them 𝑆0 and 𝑆1.

116 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

Input: A sequence of edges 𝜎 = (𝑒1, … , 𝑒𝑟)
1: procedure MajorityVoting(𝑒1, … , 𝑒𝑟)
2: Color all vertices assigned to the left server yellow and all vertices assigned

to the right server black
3: for 𝑖 = 1, … , 𝑟
4: (𝑢, 𝑣) ← 𝑒𝑖
5: Suppose w.l.o.g. that |𝐶𝑢| ≤ |𝐶𝑣|
6: if 𝐶𝑢 and 𝐶𝑣 are on different servers
7: Move 𝐶𝑢 to the server of 𝐶𝑣 ▷ Small-to-large step
8: Merge 𝐶𝑢 and 𝐶𝑣
9: if there exists an 𝑖 ∈ ℕ s.t. |𝐶𝑢| < 2𝑖, |𝐶𝑣| < 2𝑖 and |𝐶𝑢 ∪ 𝐶𝑣| ≥ 2𝑖

▷ Majority voting step
10: if 𝐶𝑢 ∪ 𝐶𝑣 has a yellow majority
11: Move 𝐶𝑢 ∪ 𝐶𝑣 to the left server
12: if 𝐶𝑢 ∪ 𝐶𝑣 has a black majority
13: Move 𝐶𝑢 ∪ 𝐶𝑣 to the right server

Algorithm 5: The Majority Voting Algorithm

Our algorithm starts by coloring vertices on the left server yellow and on the
right server black. Throughout the execution of the algorithm, the vertices will
keep this initially assigned color. The algorithm then follows the idea of always
moving the smaller connected component to the server of the larger connected
component; we will refer to this as small-to-large step. To stay close to the initial
assignment, whenever the number of vertices in a newly merged connected com-
ponent surpasses a power of 2, the algorithm performs a majority vote and moves
the component to the server where more of its vertices originate from. More for-
mally, we say that a set of vertices (e.g., a connected component) has a yellow (black)
majority if it contains more yellow (black) vertices than black (yellow) vertices. In
the majority voting step, the algorithm moves a component with a yellow (black)
majority which is currently on the right (left) server to the left (right) server. The
pseudocode for this procedure is stated in Algorithm 5.2

The reason for introducing the majority voting step is that it keeps the assign-
ments produced by the algorithm during its runtime close to the initial assignment.
Due to this property, we can show that the cost of Algorithm 5 is always close to
the cost of OPT. The formal guarantees are stated in Proposition 6.7.

2Note that in Algorithm 5 the following is possible when a component 𝐶𝑢 is merged with a
component 𝐶𝑣: 𝐶𝑢 is moved from 𝑆 to 𝑆𝑣 due to a small-to-large step and immediately after that
𝐶𝑢∪𝐶𝑣 is moved back to 𝑆 due to amajority-voting step. Thus, it would bemore efficient to compute
the result of the majority-voting step earlier and to move 𝐶𝑣 to 𝑆 immediately (without ever moving
𝐶𝑢 to 𝑆𝑣). This modification would be slightly more efficient but it would affect the competitive
ratio of the algorithm only by at most a constant factor. Thus, to simplify our analysis, we ignore this
modification.

6.3. ONLINE PARTITION FOR TWO SERVERS 117

Proposition 6.7. Let 𝛥 be the number of vertex moves performed by OPT (see Sec-
tion 6.3.1). Then Algorithm 5 is 𝑂(log 𝑛)-competitive and the load of both servers is
bounded by 𝑛/2 + 4𝛥.

Wedevote rest of this subsection to the proof of the proposition. We start bound-
ing the augmentation. For the proofs recall that 𝑉0 and 𝑉1 are the ground truth
connected components of 𝐺.

In the following we are interested in what happened to a connected component
since its last majority vote. To this end, we decompose it into a sequence of smaller
connected components such that first a majority vote is performed and after that,
only small-to-large steps are performed. For all of these small-to-large steps, the
component will stay on the server that was picked by the majority vote. The follow-
ing definition makes this notion formal.

Definition 6.8 (Doubling Decomposition). Let 𝐶 be a connected component and let
𝑠 ∈ ℕ be such that 2𝑡 ≤ |𝐶| < 2𝑡+1. Consider 𝑘 disjoint sets of vertices 𝐶𝑖 ⊆ 𝑉 and
let ℂ𝑗 = ⋃𝑗

𝑖=1 𝐶𝑖 for 𝑗 = 1, … , 𝑘.
A sequence (𝐶1, … , 𝐶𝑘) is a doubling decomposition of 𝐶 if the following proper-

ties hold:
1. 𝐶 = ℂ𝑘 = ⋃𝑘

𝑖=1 𝐶𝑖,
2. during the execution of the algorithm, first ℂ1 ∪ 𝐶2 are merged, then ℂ2 ∪ 𝐶3

are merged, and, more generally, ℂ𝑖−1 ∪ 𝐶𝑖 is merged before ℂ𝑖 ∪ 𝐶𝑖+1,
3. for each 𝑖 = 1, … , 𝑘 − 1, |ℂ𝑖| ≥ 𝐶𝑖+1 and the algorithm moves 𝐶𝑖+1 to the

server of ℂ𝑖,
4. |𝐶1| < 2𝑡 and |ℂ2| = |𝐶1 ∪ 𝐶2| ≥ 2𝑡.

Note that when considering a doubling decomposition, there will be exactly one
majority-vote for the components ℂ𝑗 — the one after 𝐶1 and 𝐶2 are merged. Thus,
𝐶 and all ℂ𝑗, 𝑗 ≥ 2, will be assigned to the server that was picked in the majority
vote of 𝐶1 ∪ 𝐶2.

The following lemma shows that doubling decompositions are well-defined. Its
proof provides the construction of a doubling decomposition for a given connected
component.

Lemma 6.9. Let 𝐶 be a connected component. Then there exists a doubling decompo-
sition (𝐶1, … , 𝐶𝑘) for 𝐶 .

Proof. Suppose (𝑢, 𝑣) was the last edge which caused the algorithm to set 𝐶 =
𝐶𝑢 ∪ 𝐶𝑣. W.l.o.g. assume that |𝐶𝑢| ≤ |𝐶𝑣| (in case of ties let 𝐶𝑢 be the connected
component that is moved by the algorithm). Then set 𝐶𝑘 = 𝐶𝑢 and set ℂ𝑘−1 =
𝐶𝑣. Now repeat this procedure for ℂ𝑘−1 in place of 𝐶 to obtain 𝐶𝑘−1 and ℂ𝑘−2.
Continue this procedure until 𝐶1 is of appropriate size.

Note that Properties 1 and 2 follow immediately from the above construction.
Property 3 follows from the definition of small-to-large steps and the choice of 𝐶𝑢
above. Property 4 is guaranteed by the stopping criterion of the above recursion.

118 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

Lemma 6.10 will be crucial for the proofs of many upcoming claims in this sec-
tion. The lemma asserts that when a connected component 𝐶 is currently assigned
to the (say) right server but at the end it will be assigned to the left server, then it
must contain relatively many vertices that were initially assigned to the right server.

Lemma 6.10. Let 𝐶 be a connected component with |𝐶| ≥ 4. Suppose that 𝐶 is
currently assigned to server 𝑆𝑖 and that 𝐶 will be assigned to server 𝑆1−𝑖 when the
algorithm terminates. Then 𝐶 contains at least |𝐶|/4 vertices which were initially
assigned to 𝑆𝑖.

Proof. Assume w.l.o.g. that 𝐶 is currently assigned to the right server and it will be
assigned to the left server when the algorithm terminates. We show that at least a
1/4-fraction of the vertices in 𝐶 must be black. This implies the lemma.

Let (𝐶1, … , 𝐶𝑘) be a doubling decomposition of 𝐶 which exists by Lemma 6.9.
Observe that 𝐶 must be assigned to the same server as 𝐶1 ∪ 𝐶2 after they were
merged and after the algorithm processed the majority vote for 𝐶1 ∪ 𝐶2 (by Prop-
erties 3 and 4 of doubling decompositions). Thus, 𝐶1 ∪ 𝐶2 had a black majority, i.e.,
it contains at least |𝐶1 ∪ 𝐶2|/2 black vertices. Since |𝐶1 ∪ 𝐶2| ≥ |𝐶|/2, 𝐶 must
contain at least |𝐶|/4 black vertices.

Now we bound the augmentation that is used by Algorithm 5.

Lemma 6.11. The load of both servers is bounded by 𝑛/2 + 4𝛥. Hence, Algorithm 5
uses at most 4𝛥 augmentation.

Proof. Assume that at some point during the execution of the algorithm the (w.l.o.g.)
right server contains more vertices than the left server. We bound the load of the
right server.

Recall from Lemma 6.3 that 𝛥 ≤ 𝑛/4. We start by considering the case where
𝛥 = 𝑛/4. In this case, even moving all 𝑛 vertices to the right server only causes
augmentation 𝑛/2 = 2𝛥.

Now consider the case where 𝛥 < 𝑛/4. Since 𝛥 < 𝑛/4, the initial assignment
of 𝑆1 must contain more vertices from either 𝑉0 or 𝑉1. Thus, exactly one of the
ground truth components 𝑉0 and 𝑉1 must have a black majority (as the algorithm
colored all vertices initially assigned to 𝑆1 black). We assume w.l.o.g. that 𝑉1 has
this black majority. This implies that 𝑉1 has 𝑛/2 − 𝛥 > 𝑛/4 > 𝛥 black vertices
and 𝑉0 has 𝛥 black vertices. Further, as the algorithm proceeds, the vertices from
𝑉1 must be moved to the right server.

The right server contains at each point a (potentially empty) set of vertices from
𝑉0 and a (potentially empty) set of vertices from 𝑉1. For the latter set we use the
trivial upper bound of 𝑛/2, while for the earlier set we give a bound of 𝛥/4. The
lemma follows.

Consider a component 𝐶 which is on the right server and a subset of 𝑉0. By
Lemma 6.10, 𝐶 contains at least |𝐶|/4 black vertices.

As there are only 𝛥 black vertices in the ground truth component 𝑉0 and each
component 𝐶 ⊆ 𝑉0 on the right server has at least a 1/4-fraction of black vertices,

6.3. ONLINE PARTITION FOR TWO SERVERS 119

it follows that all components on the right server which are subsets of 𝑉0 can only
contain 4𝛥 vertices.

Having derived the bound for the augmentation, our next goal is to show that
the cost paid by the algorithm is bounded by 𝑂(𝛼𝛥 log 𝛥). We start by bounding
the cost paid by the algorithm for each connected component.

The following lemma implies that the algorithm pays nothing for components
in which all vertices have the same color.

Lemma 6.12. Let 𝐶 be a connected component and suppose all vertices in 𝐶 have the
same color. Then the algorithm has never moved the vertices in 𝐶 .

Proof. We prove the claim by induction over 𝑠 = |𝐶|.
Let |𝐶| = 𝑠 = 1. Then 𝐶 consists of a single vertex. But the algorithm never

moves single vertices unless they become part of a larger connected component.
Hence, 𝐶 is not moved.

Now let |𝐶| = 𝑠 + 1. Consider the last edge (𝑢, 𝑣) which was inserted that
forced the algorithm to merge 𝐶 = 𝐶𝑢 ∪ 𝐶𝑣. Since in 𝐶 all vertices have the same
color, all vertices in 𝐶𝑢 and 𝐶𝑣 must have the same color. By induction hypothesis,
the vertices in 𝐶𝑢 and 𝐶𝑣 have never been moved before. Thus, 𝐶𝑢 and 𝐶𝑣 must
be assigned to the same server. This implies that a small-to-large step would not
move 𝐶𝑢 or 𝐶𝑣. Further, a majority voting step would not move 𝐶𝑢 ∪ 𝐶𝑣 since all
vertices vote for the server which they are already assigned to. Thus, no vertices in
𝐶 are moved.

Next, we bound the cost paid for any connected component.

Lemma6.13. Let𝐶 be a connected component. Then the cost (over the entire execution
time of the algorithm) paid for the vertices in 𝐶 is at most 𝑂(𝛼|𝐶| log |𝐶|).

Proof. Consider a vertex 𝑢 ∈ 𝐶 . We perform the following accounting: we assign a
token to 𝑢 each time when it is reassigned to a server and we show that the number
of tokens for 𝑢 is bounded by 𝑂(log |𝐶|). This implies that the total number of
reassignments for the vertices in 𝐶 is 𝑂(|𝐶| log |𝐶|) and the lemma follows.

First, consider the case where 𝑢 is moved because it is in a smaller connected
component (Line 7). Whenever this happens the size of the connected component
containing 𝑢 at least doubled. This can only happen 𝑂(log |𝐶|) times.

Second, consider the case when 𝑢 is moved because of a majority vote. A ma-
jority vote is performed every time when the size of the component containing 𝑢
doubled. This can only happen 𝑂(log |𝐶|) times and, hence, this can only add an-
other 𝑂(log |𝐶|) tokens for 𝑢.

Thus, the total number of tokens assigned to 𝑢 is 𝑂(log |𝐶|).

Note that Lemma 6.13 is only useful for components of size at most 𝑂(𝛥): If we
were to apply the lemma to a component 𝐶 of size 𝛩(𝑛) then the cost would only
be bounded by 𝑂(𝛼𝑛 log 𝑛). However, this can be much worse than our desired

120 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

bound of 𝑂(𝛼𝛥 log 𝛥) when 𝛥 ≪ 𝑛. Thus, we need a more fine-grained argu-
ment to obtain our goal of showing that the cost paid by Algorithm 5 never exceeds
𝑂(𝛼𝛥 log 𝛥). To do this, we first prove two technical lemmas.

Lemma 6.14. Suppose 𝐶 is a component which is moved from 𝑆𝑖 to 𝑆1−𝑖 and the
vertices in 𝐶 are never reassigned after this move. Then 𝐶 contains at least |𝐶|/8
vertices which were initially assigned to 𝑆𝑖.

Proof. There are only two possible reasons why 𝐶 is moved: Either due to a small-
to-large step (Line 7) or due to a majority voting step (Line 9). We consider both
cases separately.

Case 1: 𝐶 is moved due to a small-to-large step. Then by Lemma 6.10, 𝐶 must
contain at least |𝐶|/4 vertices which were initially assigned to 𝑆𝑖.

Case 2: 𝐶 is moved due to a majority voting step.
First, consider the case when 𝐶 contains at most 7 vertices. Then at least one

vertex was initially assigned to 𝑆𝑖 (if all vertices had been initially assigned to 𝑆1−𝑖,
they would all have the same color and a majority vote would not move 𝐶 due to
Lemma 6.12). Thus, at least a 1/7-fraction of the vertices were initially assigned to
𝑆𝑖 and the lemma holds.

Second, suppose that 𝐶 contains at least 8 vertices. Consider the last edge (𝑢, 𝑣)
that caused the merge 𝐶 = 𝐶𝑢 ∪ 𝐶𝑣. Suppose that the small-to-large step moved
𝐶𝑢 to the server of 𝐶𝑣. Note that 𝐶𝑣 was assigned to 𝑆𝑖 and 𝐶𝑢 was moved to 𝑆𝑖.
Now apply Lemma 6.10 to 𝐶𝑣. This implies that 𝐶𝑣 must contain at least |𝐶𝑣|/4
vertices that were initially assigned to 𝑆𝑖. As |𝐶𝑢| ≤ |𝐶𝑣|, 𝐶 must contain at least
|𝐶|/8 vertices that were initially assigned to 𝑆𝑖.

We are now ready to show that the cost incurred by the majority-voting algo-
rithm never exceeds 𝑂(𝛼𝛥 log 𝛥).

Lemma 6.15. The total cost paid by Algorithm 5 is at most 𝑂(𝛼𝛥 log 𝛥) and the
final assignment is a perfect partitioning.

Proof. When the algorithm finishes, the final assignmentmust be a perfect partition-
ing because the connected components were completely revealed. We only need to
prove that the cost of the algorithm is 𝑂(𝛼𝛥 log 𝛥).

Recall that OPT moves exactly 2𝛥 vertices (Lemma 6.3). We can assume w.l.o.g.
that OPT moves 𝛥 vertices from 𝑉0 that were initially assigned to 𝑆1 to 𝑆0 and
𝛥 vertices from 𝑉1 that were initially assigned to 𝑆0 to 𝑆1. We will argue that
the cost paid by the algorithm for moving all vertices from 𝑉0 into the 𝑆0 will be
𝑂(𝛼𝛥 log 𝛥); the same will hold for 𝑉1 and 𝑆1 symmetrically.

Consider time 𝑇 during the execution of the algorithm where the following
happens. A connected component 𝐶 is reassigned the left server and 𝐶 has the
following properties: (1) 𝐶 is a subset of 𝑉0 and (2) the vertices in 𝐶 never leave
the left server after time 𝑇 . Since each vertex of 𝑉0 is assigned to the left server
when the algorithm terminates, each vertex of 𝑉0 is contained in a component with

6.3. ONLINE PARTITION FOR TWO SERVERS 121

the above properties (when a vertex or component is never moved, we set 𝑇 = 0).
We call a component with the above propertiesmixed if it contains at least one black
vertex. Note that whenmixed component 𝐶 is assigned to the left server, 𝐶 contains
a black vertex and, hence, 𝐶 must be moved from the right to the left server.

We now bound the cost for mixed components. Let 𝑋 be the set of all mixed
components and let 𝐶 ∈ 𝑋. Since 𝐶 is mixed, Lemma 6.14 implies that at least
|𝐶|/8 vertices of 𝐶 are black. As the black vertices in mixed components form a
partition of the 𝛥 black vertices in 𝑉0 moved by OPT, we obtain that the number
of black vertices in mixed components is 𝛥. Thus, the total number of vertices in
all mixed components is ∑𝐶∈𝑋 |𝐶| ≤ 8𝛥.

By Lemma 6.13, the total cost paid for each 𝐶 ∈ 𝑋 until (including) its final
move is 𝑂(𝛼|𝐶| log |𝐶|). Since (by assumption) the vertices in 𝐶 never move be-
tween the servers again, their cost never exceeds 𝑂(𝛼|𝐶| log |𝐶|) until the algo-
rithm finishes. Hence, the cost paid by the algorithm for all mixed components
is

∑
𝐶∈𝑋

𝑂(𝛼|𝐶| log |𝐶|) ≤ ∑
𝐶∈𝑋

𝑂(𝛼|𝐶| log 𝛥) = 𝑂(𝛼𝛥 log 𝛥).

Now consider the vertices of 𝑉0 which are not part of mixed components. These
vertices must have been part of components in which all vertices are colored yellow.
By Lemma 6.12, these vertices have never been moved. Thus, they do not incur any
additional cost for the algorithm.

Proof of Proposition 6.7. Lemma 6.11 gives the bound for the augmentation used by
the algorithm. By Lemma 6.15 and Lemma 6.3, Algorithm 5 obtains a competitive
ratio of

ONL
OPT = 𝑂(𝛼𝛥 log 𝛥)

2𝛼𝛥 = 𝑂(log 𝛥) = 𝑂(log 𝑛).

6.3.4 Bringing It All Together: Theorem 6.2

Proof. Proof of Theorem 6.2. Consider the following algorithm: Run the majority-
voting algorithm until we have seen all edges or until at some point it tries to ex-
ceed the allowed augmentation. In the latter case, compute a perfectly balanced
assignment respecting the connected components and start running Algorithm 4
(Section 6.3.2.2).

To prove the theorem, we distinguish two cases based on 𝛥.
First, suppose 𝛥 < 𝜀𝑛/4. By Proposition 6.7, Algorithm 5 uses at most 4𝛥

augmentation. Thus, in the current case the augmentation used by Algorithm 5 is
bounded by 4𝛥 < 𝜀𝑛 and it is 𝑂(log 𝑛)-competitive. This proves the theorem for
this case.

Second, suppose 𝛥 ≥ 𝜀𝑛/4. In this case we run Algorithm 5 until it tries to
exceed the allowed augmentation; this serves as a certificate that 𝛥 ≥ 𝜀𝑛/4. At
this point we switch to Algorithm 4.

122 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

When we switch algorithms, Algorithm 5 has paid 𝑂(𝛼𝑛 log 𝑛), by applying
Lemma 6.13 to each connected component, and then summing over these costs. For
switching to the perfectly balanced reassignment, we only need to pay 𝑂(𝛼𝑛) once.

By Proposition 6.6, Algorithm 4 never uses more than 𝑂(𝑛 log 𝑛 + (𝛥 log 𝑛)/𝜀)
vertex moves. Using the bound 𝛥 ≥ 𝜀𝑛/4 and the fact that OPT pays 2𝛼𝛥
(Lemma 6.3), we obtain the desired competitive ratio:

ONL
OPT = 𝑂 (𝛼𝑛 log 𝑛 + (𝛼𝛥 log 𝑛)/𝜀

𝛼𝛥) = 𝑂 (log 𝑛
𝜀) .

6.4 Generalization to Many Servers

We extend our study to the scenario with ℓ servers. As we will see, while several
concepts introduced for the two server case are still useful, the ℓ-server case intro-
duces additional challenges. We derive the following main result.

Theorem 6.16. Given a system with ℓ servers each of capacity (1 + 𝜀)𝑛/ℓ (i.e., aug-
mentation 𝜀𝑛/ℓ), for 𝜀 ∈ (0, 1/2), then there exists an 𝑂((ℓ log 𝑛 log ℓ)/𝜀)-competi-
tive algorithm.

Our algorithm will be based on a recursive bipartitioning scheme, described
in Section 6.4.1. We will use this bipartitioning scheme to derive a static approxi-
mation algorithm of the optimal solution (Section 6.4.2). Then we provide a recur-
sive version of the majority voting algorithm which we will compare against the
approximation algorithm (Section 6.4.3). In Section 6.4.4, we analyze the Small–
Large–Rebalance algorithm in the ℓ server setting and we conclude by proving The-
orem 6.16 in Section 6.4.5

6.4.1 The Bipartition Tree

We establish a recursive bipartitioning scheme of the servers which we will be using
throughout the rest of this section. All algorithms in this section which use the
recursive bipartitioning create such a bipartitioning at the start of the algorithm,
before the adversary provides any edge. After that the bipartitioning will never be
changed.

We obtain the bipartition scheme by growing a balanced binary tree on a set of
ℓ leaves, where each leaf corresponds to a server 𝑆𝑖. We call this tree the bipartition
tree and denote it by 𝒯.

We denote the internal nodes of 𝒯 by 𝑤1, … , 𝑤𝑠. For an internal node 𝑤𝑗, we
write 𝑇 (𝑤𝑗) to denote the subtree of 𝑇 which is rooted at 𝑤𝑗 and we define 𝑆(𝑤𝑗)
to be the set of servers which are leaves in 𝑇 (𝑤𝑗). We further write 𝑉 (𝑤𝑖) to denote
the set of vertices which are assigned to the servers in 𝑆(𝑤𝑗). See Figure 6.3 for an
illustration.

6.4. GENERALIZATION TO MANY SERVERS 123

Figure 6.3: An illustration of the bipartition tree 𝒯 for servers 𝑆0, … , 𝑆7. The
internal nodes of the bipartition tree are denoted 𝑤1, … , 𝑤7. We highlighted
the subtrees 𝒯 = 𝑇 (𝑤1), 𝑇 (𝑤3), and 𝑇 (𝑤7). Here we obtain the server sets
𝑆(𝑤1) = {𝑆0, … , 𝑆7}, 𝑆(𝑤3) = {𝑆4, … , 𝑆7}, and 𝑆(𝑤7) = {𝑆6, 𝑆7}.

Observe that 𝒯 defines a bipartition scheme: let 𝑤 be an internal node of 𝒯 and
let 𝑤0, 𝑤1 be its children. Then3 𝑆(𝑤0) and 𝑆(𝑤1) are disjoint and their union
is 𝑆(𝑤). Thus, 𝒯 implies a bipartition scheme of the servers and internal nodes
correspond to bipartition steps.

Note that since 𝒯 is a balanced binary tree, there are ℓ − 1 internal nodes in
total and each server is contained in at most ⌈log ℓ⌉ subtrees of 𝑇 . Hence, for each
server 𝑆𝑗 there are at most ⌈log ℓ⌉ internal vertices 𝑤 such that 𝑆𝑗 ∈ 𝑆(𝑤).

In the following we will refer to the internal nodes in 𝒯 as nodes, whereas the
vertices 𝑉 from the graph 𝐺 are called vertices.

6.4.2 Offline Approximation Algorithm

We are not aware of a concise characterization of the optimal solution used by OPT
(unlike in the two-server case in Section 6.3.1). Thus, to get a better understanding of
the solution obtained by OPT, we provide an offline approximation algorithm, called
APPROX, which exploits the previously defined bipartition scheme and which ob-
tains a 2-approximation of the optimal solution. However, unlike the solution ob-
tained by OPT, we allow the approximation algorithm to use unlimited augmenta-
tion in each server; its only goal is to move all vertices from the same ground truth
components to the same server using few vertex moves.4 Later, APPROX will play
a role for the design and analysis of our online algorithm.

Intuitively, APPROX traverses the bipartition tree 𝒯 top–down and greedily
minimizes the number of vertices “moved over” each server bipartition. We now

3If 𝑤𝑗 is a leaf corresponding to server 𝑆, we set 𝑆(𝑤𝑗) = {𝑆}.
4In this setting, a trivial solution assigns all vertices to the same server at cost 𝑂(𝛼𝑛).

124 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

Input: All edges 𝑒1, … , 𝑒𝑟 at once
1: procedure APPROX(𝑒1, … , 𝑒𝑟)
2: Compute the connected components 𝑉0, … , 𝑉ℓ−1 of 𝐺
3: for 𝑖 = 0, … , ℓ − 1
4: RecursiveStep(𝒯, 𝑖)
5: procedure RecursiveStep(𝑇 , 𝑖)
6: if 𝑇 contains only a single server 𝑆
7: Move all dirty vertices of 𝑉𝑖 into 𝑆
8: return
9: Let 𝔯 be the root of 𝑇 and denote its children 𝑤0, 𝑤1

10: 𝐴𝑖𝑗 ← 𝑉 (𝑤𝑗) ∩ 𝑉𝑖, 𝑗 = 0, 1
11: 𝑛𝑖𝑗 ← |𝐴𝑖𝑗| and suppose w.l.o.g. that 𝑛𝑖0 ≥ 𝑛𝑖1
12: Mark all vertices in 𝐴𝑖1 dirty
13: RecursiveStep(𝑇 (𝑤0), 𝑖)

Algorithm 6: The static approximation algorithm APPROX

describe the algorithm in more detail.
APPROX is given the sequence of edges 𝜎 = (𝑒1, … , 𝑒𝑟) a priori and it also

knows the initial assignment 𝑉init(𝑆0), … , 𝑉init(𝑆ℓ−1) of the vertices to the ℓ
servers. Using the knowledge about the edges in 𝜎, APPROX starts by comput-
ing the connected components of 𝐺 and thus obtains the ground truth components
𝑉0, … , 𝑉ℓ−1.

Now, for each ground truth component 𝑉𝑖, APPROX does the following. Let 𝔯
be the root of 𝒯 and let 𝑤0 and 𝑤1 denote its children. Let 𝐴𝑖𝑗 = 𝑉 (𝑤𝑗) ∩ 𝑉𝑖,
𝑗 = 0, 1, denote the vertices from 𝑉𝑖 which are currently assigned to servers in
𝑆(𝑤𝑗). Define 𝑛𝑖𝑗 = |𝐴𝑖𝑗| and assume w.l.o.g. that 𝑛𝑖0 ≥ 𝑛𝑖1. The algorithm
marks the vertices from 𝐴𝑖1 as dirty. Now the algorithm recurses on the subtree
𝑇 (𝑤0) in place of 𝒯 and marks more vertices of 𝑉𝑖 as dirty. The recursion stops
when 𝑆(𝑤0) only contains a single server 𝑆. Then the algorithm moves all dirty
vertices of 𝑉𝑖 into server 𝑆.

The pseudocode of APPROX is stated in Algorithm 6.
By overloading notation, we let APPROX denote the cost paid by APPROX. Fur-

ther, we let APPROX𝑖 denote the cost paid by APPROX to move all vertices from
𝑉𝑖 to the same server 𝑆.

We now show that APPROX indeed yields a 2-approximate solution of the cost
of the optimal offline algorithm.

Lemma 6.17. APPROX ≤ 2 ⋅ OPT.

Proof. Fix any 𝑖 ∈ {0, … , ℓ − 1}. Let OPT𝑖 denote the cost paid by OPT to move
the vertices from 𝑉𝑖 to the same server. We show that APPROX𝑖 ≤ 2 ⋅ OPT𝑖.

6.4. GENERALIZATION TO MANY SERVERS 125

This claim implies the lemma since

APPROX = ∑
𝑖

APPROX𝑖 ≤ 2 ∑
𝑖

OPT𝑖 = 2 ⋅ OPT .

Observe that while APPROX𝑖 proceeds, it traverses 𝒯 from root 𝔯 to one of
the leaves, and at each step, it increases the level of the current internal node by
one.

Using the solution of OPT𝑖, we can define a similar traversal of 𝒯: Let 𝔯 be the
root of 𝒯 and let 𝑤0 and 𝑤1 be its children. As OPT𝑖 must move all vertices from
𝑉𝑖 to the same server 𝑆, OPT𝑖 moves the vertices from 𝐴𝑖𝑗 = 𝑉 (𝑤𝑗) ∩ 𝑉𝑖 to a
server 𝑆 in 𝑆(𝑤1−𝑗) for 𝑗 ∈ {0, 1}. We call the moved vertices dirty. After this
move, OPT𝑖 still needs to process the vertices of 𝑉𝑖 which were initially assigned
to a server in 𝑆(𝑤1−𝑗) but not to 𝑆. We can view this as processing 𝑇 (𝑤𝑗−1). Thus,
OPT𝑖 traverses 𝒯 until the final server 𝑆 is reached and marks a subset of 𝑉𝑖 dirty.

The previous paragraphs define to two different traversals of𝒯 and two different
sets of dirty vertices. Let ℎ be the smallest level where the two traversals picked
different internal nodes in 𝒯.

Until level ℎ−1, both vertices have marked the same 𝑊 vertices dirty. At levels
ℎ and below, we obtain the following bounds. Let 𝑤 be the internal node at level
ℎ−1 that is traversed by both algorithms and let 𝑤0, 𝑤1 denote its children at level
ℎ. Let 𝑛𝑖𝑗 = |𝑉 (𝑤𝑗) ∩ 𝑉𝑖| be defined as in the definition of APPROX. APPROX𝑖
marks at most |𝑉 (𝑤)| = 𝑛𝑖0 + 𝑛𝑖1 vertices from 𝑉 (𝑤) as dirty. Since the two
traversals split at level ℎ and APPROX𝑖 moves 𝑛𝑖1 ≤ 𝑛𝑖0 vertices (by definition),
OPT𝑖 moves at least 𝑛𝑖0 vertices.

Recall that for each algorithm, its sets of dirty vertices and its set of moved
vertices are identical. The following calculation proves the claim that APPROX𝑖 ≤
2 ⋅ OPT𝑖:

APPROX𝑖
OPT𝑖

≤ 𝛼(𝑊 + 𝑛𝑖0 + 𝑛𝑖1)
𝛼(𝑊 + 𝑛𝑖0) ≤ 𝑊 + 2𝑛𝑖0

𝑊 + 𝑛𝑖0
≤ 2.

6.4.3 The Recursive Majority Voting Algorithm

We now describe an algorithm which works efficiently in the setting with ℓ servers
whenever OPT does not perform too many vertex moves. The algorithm can be
viewed as a generalization of Algorithm 5 to ℓ servers, by exploiting the previously
defined bipartitioning scheme.

6.4.3.1 The Algorithm

The algorithm consists of two parts: A single global algorithm and multiple local
algorithms, one per internal node in 𝒯. The global algorithm maintains a recursive
bipartitioning scheme (as defined in Section 6.4.1) and runs a local algorithm on
each bipartition. The local algorithms are used to “reduce” the setting with multiple
servers to the case with two servers.

126 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

We now describe the two parts in more detail and state the pseudocode in Algo-
rithm 7. We write 𝑆𝑢 to denote the server which vertex 𝑢 is assigned to.

Global Algorithm. The global algorithm starts by computing the bipartition tree
𝒯. On each internal node 𝑤 of 𝒯, the global algorithm instantiates a local algorithm
which we describe below.

Furthermore, the global algorithm iterates over all vertices and does the follow-
ing for each 𝑣 ∈ 𝑉 . The algorithm finds all internal nodes 𝑤𝑖 such that 𝑣 ∈ 𝑉 (𝑤𝑖)
and labels 𝑣 with 𝑤𝑖. This labelling of the vertices only takes into account the initial
assignment of the vertices and will never be changed throughout the running time
of the algorithm. For example, if the vertices 𝑢 and 𝑣 in Figure 6.3 are assigned to
servers 𝑆0 and 𝑆3 in the initial assignment, their labels will be {𝑤1, 𝑤2, 𝑤4} and
{𝑤1, 𝑤2, 𝑤5}, respectively.

When the adversary provides an edge (𝑢, 𝑣), the global algorithm does the fol-
lowing. It locates the servers 𝑆𝑢 and 𝑆𝑣. If 𝑆𝑢 = 𝑆𝑣, the algorithm merges the
components and continues with the next edge. If 𝑆𝑢 ≠ 𝑆𝑣, the global algorithm
finds the internal node 𝑤 in 𝒯 which is the lowest common ancestor of 𝑆𝑢 and 𝑆𝑣.
(For example, in Figure 6.3 the lowest common ancestor for 𝑢 and 𝑣 is 𝑤2.) Then
the global algorithm gives the edge (𝑢, 𝑣) to the local algorithm corresponding to
𝑤.

Local Algorithms. A local algorithm is run on an internal node 𝑤 of 𝒯. Let 𝑤0
and 𝑤1 denote the children of 𝑤 in 𝒯. Note that each local algorithm corresponds
to a bipartition step where the servers in 𝑆(𝑤) are partitioned into subsets 𝑆(𝑤0)
and 𝑆(𝑤1).

An instance of the local algorithm only receives edges (𝑢, 𝑣) from the global
algorithm when (1) their endpoints are assigned to servers 𝑆𝑢, 𝑆𝑣 ∈ 𝑆(𝑤) and
(2) 𝑆𝑢 and 𝑆𝑣 are in different sets of the bipartition, i.e., 𝑆𝑢 ∈ 𝑆(𝑤𝑗) and 𝑆𝑣 ∈
𝑆(𝑤1−𝑗).

When the global algorithm provides an edge (𝑢, 𝑣) with the above properties,
the local algorithm locates 𝐶𝑢, 𝐶𝑣, 𝑆𝑢 and 𝑆𝑣. Assume w.l.o.g. that |𝐶𝑢| ≤ |𝐶𝑣|.
Then 𝐶𝑢 is moved to 𝑆𝑣 and 𝐶𝑢 and 𝐶𝑣 are merged.5 As before, we call this a
small-to-large step.

Finally, the local algorithm checks whether the new component 𝐶𝑢 ∪ 𝐶𝑣 has
size 𝑛/ℓ or it surpassed a power of 2, i.e., it checks if |𝐶𝑢 ∪ 𝐶𝑣| = 𝑛/ℓ or there
exists an 𝑖 ∈ ℕ s.t. |𝐶𝑢| < 2𝑖, |𝐶𝑣| < 2𝑖 and |𝐶𝑢 ∪ 𝐶𝑣| ≥ 2𝑖. If this is the case, the
local algorithm triggers a majority voting step for 𝐶𝑢 ∪ 𝐶𝑣 which we explain next.

Majority Voting Step. When a local algorithm triggers a majority voting step
for a connected component 𝐶 , the algorithm does the following. Let 𝔯 be the root

5When 𝐶𝑢 changes its server, all local algorithms corresponding to internal nodes 𝑤 with 𝑆𝑢 ∈
𝑆(𝑤) or 𝑆𝑣 ∈ 𝑆(𝑤), must be informed about this move. This can be done by recomputing 𝑉 (𝑤) for
each internal node 𝑤. Note that this is just an internal operation of the data structure and does not
incur any cost to the algorithm.

6.4. GENERALIZATION TO MANY SERVERS 127

Input: A sequence of edges 𝜎 = (𝑒1, … , 𝑒𝑟)
1: procedure GlobalAlgorithm(𝑒1, … , 𝑒𝑟)
2: Create a bipartition tree 𝒯 ▷ Initialization phase
3: for each internal node 𝑤 of 𝒯
4: Instantiate LocalAlgorithm(𝑤)
5: for 𝑣 ∈ 𝑉
6: Label 𝑣 with each internal node 𝑤 of 𝒯 s.t. 𝑣 ∈ 𝑉 (𝑤)
7: for 𝑖 = 1, … , 𝑟 ▷ Processing of the edges
8: (𝑢, 𝑣) ← 𝑒𝑖
9: if 𝑆𝑢 = 𝑆𝑣

10: Merge 𝐶𝑢 and 𝐶𝑣, continue
11: 𝑤 ← the lowest common ancestor of 𝑆𝑢 and 𝑆𝑣 in 𝒯
12: LocalAlgorithm(𝑤, (𝑢, 𝑣))
13: procedure LocalAlgorithm(𝑤, (𝑢, 𝑣))
14: 𝑤0, 𝑤1 ← the children of 𝑤 in 𝒯
15: Suppose w.l.o.g. that |𝐶𝑢| ≤ |𝐶𝑣|
16: Check if moving 𝐶𝑢 to 𝑆𝑣 triggers the stopping criterion
17: Move 𝐶𝑢 to 𝑆𝑣 and merge 𝐶𝑢 and 𝐶𝑣 ▷ Small-to-large step
18: if |𝐶𝑢 ∪ 𝐶𝑣| = 𝑛/ℓ or there exists an 𝑖 ∈ ℕ s.t. |𝐶𝑢| < 2𝑖, |𝐶𝑣| < 2𝑖 and

|𝐶𝑢 ∪ 𝐶𝑣| ≥ 2𝑖

19: MajorityVotingStep(𝐶𝑢 ∪ 𝐶𝑣)
20: procedure MajorityVotingStep(𝐶)
21: 𝔯 ← the root of 𝒯
22: 𝑤0, 𝑤1 ← the children of 𝔯 in 𝒯
23: 𝑛𝑗 ← the number of vertices labeled with 𝑤𝑗 in 𝐶 , 𝑗 = 0, 1
24: if 𝑛0 ≥ 𝑛1 𝔯 ← 𝑤0 else 𝔯 ← 𝑤1
25: if 𝑆(𝑟) contains only one server
26: Check if moving 𝐶 to 𝑆(𝑟) triggers the stopping criterion
27: Assign 𝐶 the single server in 𝑆(𝑟)
28: else Go to Line 22

Algorithm 7: The Recursive Majority Voting Algorithm

of 𝒯 and let 𝑤0 and 𝑤1 be the two child nodes of 𝔯. For 𝑗 ∈ {0, 1}, let 𝑛𝑗 denote
the number of vertices in 𝐶 with label 𝑤𝑗. If 𝑛𝑗 ≥ 𝑛1−𝑗, the algorithm recurses on
𝑤𝑗 in place of 𝑤; else, the algorithm recurses on 𝑤1−𝑗 in place of 𝑤. The recursion
continues until a leaf in the bipartitioning tree is reached which corresponds to a
server 𝑆. Then the algorithm moves 𝐶 to 𝑆.

Note that the above majority voting procedure is very similar to what APPROX
does for a single ground truth component 𝑉𝑖.

128 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

Stopping Criterion. To ensure that the algorithm does not exceed the augmen-
tation of the servers, we add a stopping criterion.

To define the stopping criterion, let 𝑤 be an internal node of 𝒯 with children
𝑤0 and 𝑤1. For 𝑗 ∈ {0, 1}, we call 𝑤𝑗 overloaded if 𝑉 (𝑤𝑗) contains at least
𝜀𝑛/(ℓ⌈log ℓ⌉) vertices with label 𝑤1−𝑗.

Intuitively, the condition states that an internal node 𝑤𝑗 is overloaded when its
servers 𝑆(𝑤𝑗) obtained “many” vertices which were initially assigned to the other
side of the bipartition, 𝑆(𝑤1−𝑗).

The stopping criterion is checked before each component move (i.e., before each
small-to-large step and before each majority voting step). It is triggered if the com-
ponent move would create an assignment in which there exists an overloaded inter-
nal node 𝑤. When the stopping criterion is triggered, the global algorithm and all
local algorithms stop and Algorithm 4 is started instead (we show in Section 6.4.4
that Algorithm 4 also works for ℓ servers).

6.4.3.2 Structural Properties

To obtain a better understanding of the algorithm, we first prove some structural
properties about it and defer its cost analysis to Section 6.4.3.3. We consider the
setting where each server has capacity (1 + 𝜀)𝑛/ℓ for 𝜀 ∈ (0, 1/2).

In Subsections 6.4.3.2 and 6.4.3.3, we only analyze the cost Algorithm 7 with-
out the cost of Algorithm 4. We analyze the cost of Algorithm 4 for ℓ servers in
Sections 6.4.4 and 6.4.5.

We begin by showing that as long as the stopping criterion is not triggered, the
vertex assignment created by Algorithm 7 is close to the initial assignment.

Lemma 6.18. Suppose the stopping criterion is not triggered. Then:
1. Each server contains at most 𝜀𝑛/ℓ vertices that were not initially assigned to it.
2. Each server contains at least (1 − 𝜀)𝑛/ℓ vertices that were initially assigned to

it.

Proof. Consider any server 𝑆𝑗. We show that since the stopping criterion is not trig-
gered, 𝑉 (𝑆𝑗) obtains at most 𝜀𝑛/(ℓ⌈log ℓ⌉) vertices for each of the ⌈log ℓ⌉ subtrees
in 𝒯 containing 𝑆𝑗.

As argued in Section 6.4.1, there are at most ⌈log ℓ⌉ internal nodes 𝑤 of 𝒯 such
that 𝑆𝑗 ∈ 𝑆(𝑤). Since the stopping criterion is not triggered, no internal node of 𝒯
is overloaded.

To prove Part (1), consider an internal node 𝑤 of 𝒯 with 𝑆𝑗 ∈ 𝑆(𝑤). Let 𝑤0, 𝑤1
be the children of 𝑤 and suppose 𝑆𝑗 ∈ 𝑆(𝑤𝑟). Observe that 𝑉 (𝑆𝑗) can obtain
at most 𝜀𝑛/(ℓ⌈log ℓ⌉) vertices that were originally assigned to servers in 𝑆(𝑤1−𝑟)
(if it had received more vertices, then 𝑤1−𝑟 would be overloaded). As there are at
most ⌈log ℓ⌉ nodes 𝑤 with the above property, the number of vertices which were
not initially assigned to 𝑆𝑗 is bounded by 𝜀𝑛/ℓ.

Now let us prove Part (2). Consider an internal node 𝑤 of 𝒯 with 𝑆𝑗 ∈ 𝑆(𝑤).
Let 𝑤0, 𝑤1 be the children of 𝑤 and suppose 𝑆𝑗 ∈ 𝑆(𝑤𝑟). Now observe that the

6.4. GENERALIZATION TO MANY SERVERS 129

servers in 𝑆(𝑤1−𝑟) can have obtained 𝜀𝑛/(ℓ⌈log ℓ⌉) vertices that were originally
assigned to 𝑆𝑗 (if they had received more vertices, then 𝑤1−𝑟 would be overloaded).
As there are at most ⌈log ℓ⌉ nodes 𝑤 with the above property, it follows that the
number of vertices assigned to servers {𝑆0, … , 𝑆ℓ−1} \ {𝑆𝑗} that were initially
assigned to 𝑆𝑗 is 𝜀𝑛/ℓ. Hence, 𝑆𝑗 must contain at least (1 − 𝜀)𝑛/ℓ vertices that
were initially assigned to it.

As a corollary of Lemma 6.18 we obtain the following lemma.

Lemma 6.19. (1) As long as the stopping criterion is not triggered, the load of each
server is bounded by (1 + 𝜀)𝑛/ℓ, i.e., Algorithm 7 uses only 𝜀𝑛/ℓ augmentation.

(2) When the stopping criterion is triggered, the augmentation still does not exceed
𝜀𝑛/ℓ.

Proof. Part (1) of the lemma follows immediately from Part (1) of Lemma 6.18. Let
us prove Part (2): The stopping criterion is checked every time before a component
is moved. Hence, at the time when the algorithm checks the stopping criterion, the
algorithm did not exceed the augmentation bound due to Part (1). If the algorithm
triggers the stopping criterion, then the component was not yet moved and the
augmentation is still the same as before.

Define thefinal assignment to be the assignmentwhich is created byAlgorithm 7
once it has seen all edges in 𝐺. We show that the final assignment of the algorithm
provides a perfect partitioning if the stopping criterion is not triggered.

Lemma 6.20. If Algorithm 7 stops and the stopping criterion is not triggered, then the
final assignment is a perfect partitioning.

Proof. By definition of the algorithm, vertices of the same connected component
are always assigned to the same server. When the algorithm finishes, all edges of
𝐺 were revealed and each component has size 𝑛/ℓ. By Lemma 6.18, the augmenta-
tion of each server is at most 𝜀𝑛/ℓ. Since 𝜀 < 1/2, no server can have more than
one component assigned. As each component is placed on a server, each compo-
nent is placed alone on a server. This proves that the algorithm creates a perfect
partitioning.

Indeed, we show that the final assignment of Algorithm 7 is not only a perfect
partitioning, but it is the same assignment as the one created by APPROX from
Section 6.4.2.

Lemma 6.21. If Algorithm 7 stops and the stopping criterion is not triggered, Algo-
rithm 7 and APPROX have the same final assignment.

Proof. By Part (2) of Lemma 6.18, Algorithm 7 moves at most 𝜀𝑛/ℓ vertices out of
each server compared to the initial assignment. Hence, in the final assignment each
server must still contain at least (1 − 𝜀)𝑛/ℓ > 𝑛/(2ℓ) vertices from its original

130 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

assignment since 𝜀 ∈ (0, 1/2). Thus, in the final assignment each server contains
more than half of the vertices that were originally assigned to it.

Consider any server 𝑆𝑗 and let 𝑉init(𝑆𝑗) be the set of vertices initially assigned
to 𝑆𝑗. Then there must exist a ground truth component 𝑉𝑖 with |𝑉𝑖 ∩ 𝑉init(𝑆𝑗)| ≥
𝑛/(2ℓ). We show that APPROX and Algorithm 7 both assign this component 𝑉𝑖 to
𝑆𝑗. This proves the lemma since this claim holds for any 𝑆𝑗.

First, consider APPROX. Note that at each step of the traversal of𝒯, themajority
of the vertices in 𝑉𝑖 will vote for the internal node containing server 𝑆𝑗. Hence,
APPROX will place 𝑉𝑖 on 𝑆𝑗.

Second, consider Algorithm 7. When the algorithm stops, all edges were re-
vealed and the connected components agree with the ground truth components.
Now consider the component 𝐶 = 𝑉𝑖. When the 𝐶 grows to size |𝐶| = 𝑛/ℓ, the
algorithm performs a majority voting step (by definition of the algorithm). At this
point, more than half of the vertices in 𝐶 were labeled with 𝑆𝑗 (because more than
half of the vertices from𝐶 = 𝑉𝑖 were originally assigned to𝑆𝑗). Hence, Algorithm 7
will also place 𝑉𝑖 on 𝑆𝑗.

6.4.3.3 Analysis

The rest of this subsection is devoted to proving the following proposition about
Algorithm 7.

Proposition 6.22. Suppose there are ℓ servers and each has capacity (1 + 𝜀)𝑛/ℓ for
𝜀 ∈ (0, 1/2), i.e., the augmentation is 𝜀𝑛/ℓ. Algorithm 7 has the following properties:

1. If the stopping criterion is not triggered, the algorithm creates a perfect partition-
ing, its cost is bounded by 𝑂(OPT ⋅ log 𝑛) and at no point during its execution
it uses more than 𝜀𝑛/ℓ augmentation.

2. If the stopping criterion is triggered, the cost of the algorithm is 𝑂(𝛼𝑛 log 𝑛)
plus the cost of Algorithm 4 and the cost of OPT is at least 𝛺(𝛼𝜀𝑛/(ℓ log ℓ)).

We prove the proposition at the end of this section. We start by proving a se-
quence of lemmata and begin by reasoning about the cost paid by Algorithm 7. As
shown in Lemma 6.1 we only need to bound the moving cost paid by Algorithm 7
to bound its total cost.

The following lemma bounds the cost paid for any connected component 𝐶 .

Lemma6.23. Let𝐶 be a connected component. Then the cost (over the entire execution
time of the algorithm) paid for moving the vertices in 𝐶 is 𝑂(𝛼|𝐶| log |𝐶|).

Proof. We can use the same accounting argument as in the proof of Lemma 6.13.
That is, we assign a token to a vertex 𝑣 whenever it is moved. Now, whenever
the component 𝐶 containing 𝑣 is moved due to a small-to-large step, the size of
𝐶 doubles. This can only happen 𝑂(log |𝐶|) times. Furthermore, there are only
𝑂(log |𝐶|) majority voting steps involving 𝑢: Each majority voting step is triggered
because |𝐶| = 𝑛/ℓ or because |𝐶| surpassed a power of 2; the first event can happen

6.4. GENERALIZATION TO MANY SERVERS 131

only once and the second event can happen at most 𝑂(log |𝐶|) times. Hence, 𝑣 will
never accumulate more than 𝑂(log |𝐶|) tokens. Since the above arguments apply
for each 𝑣 ∈ 𝐶 , the total cost paid for moving the vertices in 𝐶 is bounded by
𝑂(|𝐶| log |𝐶|).

Let 𝑓 ∶ 𝑉 → {0, … , ℓ − 1} be the function which maps each vertex to its server
in the final assignment by Algorithm 7. That is, when Algorithm 7 processed all
edges, each 𝑣 is assigned to 𝑆𝑓(𝑣). For a connected component 𝐶 , set 𝑓(𝐶) = 𝑓(𝑢)
for 𝑢 ∈ 𝑉 . Note that 𝑓(𝐶) is well-defined since all vertices of 𝐶 are assigned to the
same 𝑆𝑓(𝐶) when the algorithm terminates.

In the following proofs, we will write #𝑤(𝐶) to denote the number of vertices
in a connected component 𝐶 which are labeled with 𝑤. We further write #𝑤(𝐶)
to denote the number of vertices in 𝐶 which are not labeled with 𝑤, i.e., #𝑤(𝐶) =
|𝐶| − #𝑤(𝐶).

Lemma 6.24 shows that whenever a component 𝐶 is assigned to a server which
is not its final server, it must contain relatively many vertices which were not ini-
tially assigned to its final server 𝑆𝑓(𝐶).

Lemma 6.24. Consider any point in the execution of the algorithm at which a con-
nected component 𝐶 is assigned to server 𝑆 ≠ 𝑆𝑓(𝐶). Let 𝑤 be the lowest common
ancestor of 𝑆 and 𝑆𝑓(𝐶) in 𝒯 and denote the children of 𝑤 by 𝑤0 and 𝑤1.

If 𝑆𝑓(𝐶) ∈ 𝑆(𝑤𝑗) for 𝑗 ∈ {0, 1}, then:
1. 𝐶 contains at least |𝐶|/4 vertices which do not have label 𝑤𝑗, i.e., #𝑤𝑗(𝐶) ≥

|𝐶|/4.
2. 𝐶 contains at least #𝑤𝑗(𝐶) vertices which were not initially assigned to 𝑆𝑓(𝐶).

Proof. To prove Part (1), consider a doubling decomposition (𝐶1, … , 𝐶𝑘) of 𝐶 (see
Definition 6.8); the decomposition exists by Lemma 6.9 which also applies in the ℓ
server setting. After 𝐶1 and 𝐶2 were merged, Algorithm 7 performed a majority
voting step and placed 𝐶1 ∪ 𝐶2 in a server 𝑆 ∈ 𝑆(𝑤1−𝑗). Thus, #𝑤𝑗(𝐶1 ∪ 𝐶2) ≤
|𝐶1 ∪ 𝐶2|/2 (otherwise, the majority voting step would have chosen a server in
𝑆(𝑤𝑗)). Since |𝐶1 ∪ 𝐶2| ≥ |𝐶|/2 and 𝐶1 ∪ 𝐶2 ⊆ 𝐶 ,

#𝑤𝑗(𝐶) ≥ #𝑤𝑗(𝐶1 ∪ 𝐶2)
= |𝐶1 ∪ 𝐶2| − #𝑤𝑗(𝐶1 ∪ 𝐶2)
≥ |𝐶1 ∪ 𝐶2| − |𝐶1 ∪ 𝐶2|/2
= |𝐶1 ∪ 𝐶2|/2 ≥ |𝐶|/4.

For Part (2) note that each vertex which was initially assigned to 𝑆𝑓(𝐶) has label
𝑤𝑗 (because 𝑆𝑓(𝐶) ∈ 𝑆(𝑤𝑗) by assumption).

In the following, we show that the cost paid by the algorithm is 𝑂(OPT ⋅ log 𝑛)
when the stopping criterion is not triggered. We start by showing that when a
component is moved for the last time, it contains a large number of vertices which
did not originate from the server it is assigned to.

132 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

Lemma 6.25. Let 𝐶 be a component which is moved to server 𝑆𝑓(𝐶) and suppose the
vertices of 𝐶 are never reassigned after this move.6 Then 𝐶 contains at least |𝐶|/8
vertices which were not assigned to 𝑆𝑓(𝐶) in the initial assignment.

Proof. Note that 𝐶 is moved due to one of two reasons: Either because of a small-
to-large step or because of a majority voting step. We distinguish between these
cases.

In case of a small-to-large step, 𝐶 is assigned to a server 𝑆 ≠ 𝑆𝑓(𝐶) before the
move. Lemma 6.24 implies that 𝐶 contains at least |𝐶|/4 vertices which were not
originally assigned to 𝑆𝑓(𝐶).

Now suppose that 𝐶 is moved due to a majority voting step. Let (𝑢, 𝑣) be the
last edge which was inserted and which triggered the majority voting step for 𝐶 .
Then Algorithm 7 previously merged components 𝐶𝑢 and 𝐶𝑣; suppose w.l.o.g. that
𝐶𝑢 was moved to 𝐶𝑣 and |𝐶𝑢| ≤ |𝐶𝑣|. Prior to the majority voting step, 𝐶 is
assigned to the same server 𝑆 ≠ 𝑆𝑓(𝐶) that 𝐶𝑣 was assigned to before (𝑢, 𝑣) was
inserted. Hence, we can apply Lemma 6.24 to 𝐶𝑣 and obtain that 𝐶𝑣 contains at
least |𝐶𝑣|/4 vertices which were not initially assigned to 𝑆𝑓(𝐶). Thus, the number
of vertices in 𝐶 which do not originate from 𝑆𝑓(𝐶) is at least

|𝐶𝑣|/4 ≥ 2|𝐶𝑣|/8 ≥ |𝐶𝑢 ∪ 𝐶𝑣|/8 = |𝐶|/8.

The next lemma considers the cost paid by Algorithm 7 when the stopping cri-
terion is not triggered.

Lemma 6.26. Suppose there are ℓ servers and each has capacity (1 + 𝜀)𝑛/ℓ for 𝜀 ∈
(0, 1/2), i.e., the augmentation is 𝜀𝑛/ℓ. If the stopping criterion is not triggered and
Algorithm 7 stops, then the cost paid by the algorithm is 𝑂(OPT ⋅ log 𝑛).

Proof. Fix some 𝑖 ∈ {0, … , ℓ − 1}. Recall that APPROX𝑖 denotes the cost paid
by APPROX to move the vertices from 𝑉𝑖 to the server 𝑆𝑓(𝑉𝑖). We show that for
𝑉𝑖, Algorithm 7 pays 𝑂(APPROX𝑖 log 𝑛). The lemma follows from this claim and
Lemma 6.17, since the total cost paid by Algorithm 7 is bounded by

∑
𝑖

𝑂(APPROX𝑖 ⋅ log 𝑛) = 𝑂(APPROX ⋅ log 𝑛) = 𝑂(OPT ⋅ log 𝑛).

Consider any ground truth component 𝑉𝑖 and let 𝛥 denote the number of ver-
tices APPROX𝑖 moves to server 𝑆𝑓(𝐶). Note that as APPROX𝑖 moves 𝛥 vertices
into 𝑆𝑓(𝐶), we get APPROX𝑖 = 𝛼𝛥.

Consider time 𝑇 of the execution of the algorithm where the following happens.
A component 𝐶 is reassigned to 𝑆𝑓(𝐶) and 𝐶 has the following properties: (1) 𝐶
is a subset of 𝑉𝑖 and (2) the vertices in 𝐶 never leave server 𝑆𝑓(𝐶) after time 𝑇 .
Since each vertex of 𝑉𝑖 is assigned to 𝑆𝑓(𝐶) when the algorithm terminates, each

6Note that when a small-to-large step is performed, two components are merged due to the cor-
responding edge insertion. In this case, the component 𝐶 in the lemma is the component which is
being moved (i.e., before merging).

6.4. GENERALIZATION TO MANY SERVERS 133

vertex of 𝑉𝑖 is contained in a component with the above properties (when a vertex
or component is never moved, we set 𝑇 = 0). A component 𝐶 with the above
properties is a mixed component if 𝐶 contains at least one vertex which was not
initially assigned to 𝑆𝑓(𝐶). Note that when a mixed component 𝐶 is reassigned to
𝑆𝑓(𝐶), 𝐶 contains at least one vertex which was not initially assigned to 𝑆𝑓(𝐶) and,
hence, 𝐶 must be moved from a server 𝑆𝑦, 𝑦 ≠ 𝑓(𝐶), to 𝑆𝑓(𝐶).

We bound the cost for mixed components. Let 𝑋 be the set of all mixed compo-
nents of 𝑉𝑖. Recall that Algorithm 7 and APPROX create the same final assignment
(Lemma 6.21). Hence, Algorithm 7 moves the same 𝛥 vertices from 𝑉𝑖 into 𝑆𝑓(𝑉𝑖)
as APPROX. Lemma 6.25 implies that for each 𝐶 ∈ 𝑋 at least |𝐶|/8 vertices from
𝐶 are part of the 𝛥 vertices moved by APPROX. Thus, the union of all 𝐶 ∈ 𝑋
contains at most 8𝛥 vertices.

By Lemma 6.23, Algorithm 7 pays at most 𝑂(𝛼|𝐶| log |𝐶|) for each 𝐶 ∈ 𝑋 over
the entire execution. Thus, its total cost is bounded by

∑
𝐶∈𝑋

𝑂(𝛼|𝐶| log |𝐶|) ≤ 𝑂(𝛼𝛥 log 𝑛) = 𝑂(ONL𝑖 ⋅ log 𝑛).

Consider the vertices of 𝑉𝑖 which are not in mixed components. These vertices
must have been part of components in which all vertices were originally assigned
to 𝑆𝑓(𝑉𝑖). By Lemma 6.12 (which still applies in the ℓ server setting), these vertices
were never moved. Thus, they do not incur any cost to the algorithm.

Next, we show that when the stopping criterion is triggered, the recursive ma-
jority voting algorithm pays 𝑂(𝑛 log 𝑛) and cost of the solution obtained by OPT is
𝛺(𝛼𝜀𝑛/(ℓ log ℓ)).
Lemma6.27. When the stopping criterion is triggered, (1) the cost paid byAlgorithm 7
is 𝑂(𝛼𝑛 log 𝑛) and (2) the cost paid by OPT is 𝛺(𝛼𝜀𝑛/(ℓ log ℓ)).
Proof. Let 𝑌 denote the set of all connected components. Part (1) follows from
Lemma 6.23 since the total cost paid by Algorithm 7 is

∑
𝐶∈𝑌

𝑂(𝛼|𝐶| log |𝐶|) ≤ ∑
𝐶∈𝑌

𝑂(𝛼|𝐶| log 𝑛) = 𝑂(𝛼𝑛 log 𝑛).

Now we prove Part (2). Let 𝑤 be an internal node of 𝒯 with children 𝑤0, 𝑤1
and suppose w.l.o.g. that 𝑤0 is overloaded. Since the stopping criterion is triggered,
𝑉 (𝑤0) contains at least 𝜀𝑛/(ℓ log ℓ) vertices with label 𝑤1.

Let 𝑋 be the set of all connected components 𝐶 with the following properties:
𝐶 is assigned to a server in 𝑆(𝑤0) at the time at which the stopping criterion is
triggered and 𝐶 contains at least one vertex which is labeled with 𝑤1.

To show that OPT performs 𝛺(𝜀𝑛/(ℓ log ℓ)) vertex moves, we prove that OPT
performs 𝛺(#𝑤1(𝐶)) vertex moves for each 𝐶 ∈ 𝑋. Part (2) of the lemma follows
since the components in 𝑋 contain at least 𝜀𝑛/(ℓ log ℓ) vertices with label 𝑤1 and
thus

OPT ≥ ∑
𝐶∈𝑋

𝛺(𝛼#𝑤1(𝐶)) = 𝛺(𝛼𝜀𝑛/(ℓ log ℓ)).

134 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

We prove that OPT moves at least 𝛺(#𝑤1(𝐶)) vertices for each 𝐶 ∈ 𝑋 by
distinguishing two cases for𝐶 ∈ 𝑋. We define 𝑔 as the functionwhichmaps𝐶 ∈ 𝑋
to the server it is assigned to in the solution of OPT, i.e., OPT assigns 𝐶 ∈ 𝑋 to
server 𝑆𝑔(𝐶).

Case 1: 𝑆𝑔(𝐶) ∉ 𝑆(𝑤1), i.e., in the final assignment of OPT, the vertices in 𝐶
are assigned to 𝑆𝑔(𝐶) ∉ 𝑆(𝑤1). Then OPT must perform at least #𝑤1(𝐶) vertex
moves because it must move all 𝑤1-labeled vertices of 𝐶 from their initial server in
𝑆(𝑤1) to 𝑆𝑔(𝐶) ∉ 𝑆(𝑤1).

Case 2: 𝑆𝑔(𝐶) ∈ 𝑆(𝑤1), i.e., in the final solution by OPT, the vertices in 𝐶
are assigned to a server 𝑆𝑔(𝐶) ∈ 𝑆(𝑤1). We show that 𝐶 contains at least |𝐶|/4
vertices without label 𝑤1. This implies the claim since OPT must move at least
#𝑤1(𝐶) ≥ |𝐶|/4 vertices from servers not in 𝑆(𝑤1) to 𝑆𝑔(𝐶) ∈ 𝑆(𝑤1).

Consider a doubling decomposition (𝐶1, … , 𝐶𝑘) of 𝐶 (this decomposition ex-
ists by Lemma 6.9). After 𝐶1 and 𝐶2 were merged, the algorithm performed a ma-
jority voting step and placed 𝐶1 ∪𝐶2 in a server in 𝑆(𝑤0). Thus, #𝑤1(𝐶1 ∪ 𝐶2) ≤
|𝐶1 ∪ 𝐶2|/2 (otherwise, the majority voting step would place 𝐶1 ∪ 𝐶2 in a server
in 𝑆(𝑤1)). Hence, #𝑤1(𝐶1 ∪ 𝐶2) = |𝐶1 ∪ 𝐶2| − #𝑤1(𝐶1 ∪ 𝐶2) ≥ |𝐶1 ∪ 𝐶2|/2.
Since |𝐶1 ∪ 𝐶2| ≥ |𝐶|/2, we get #𝑤1(𝐶) ≥ |𝐶|/4.

Proof of Proposition 6.22. The first statement of the proposition is implied by Lem-
mas 6.20 (perfect partitioning), 6.26 (total cost) and 6.19 (small augmentation). The
second statement is proved in Lemma 6.27 (guarantees when stopping criterion is
triggered).

6.4.4 Small–Large–Rebalance Algorithm for Many Servers

To obtain an efficient algorithm in cases where OPT moves many vertices, we reuse
the Algorithm 4 from Section 6.3.2.2. Observe that Algorithm 4 also works with
ℓ servers because it did not use the fact that there are only two servers. In the
setting with ℓ servers, we obtain the following result.

Proposition 6.28. Suppose that all servers have capacity (1+𝜀)𝑛/ℓ for 𝜀 > 0, i.e., the
augmentation is 𝜀𝑛/ℓ. Then the cost paid by the more efficient version of Algorithm 4
is 𝑂(𝛼𝑛 log 𝑛 + (OPT ⋅ℓ log 𝑛)/𝜀).

Proof. The proof of the lemma is almost the same as the proof of Proposition 6.6.
The only difference is that we need to bound the number of rebalance operations
differently.

The number of vertex moves performed by the algorithm which always moves
the smaller connected component to the server of the larger connected component
is 𝑂(𝑛 log 𝑛) and, hence, it incurs cost 𝑂(𝛼𝑛 log 𝑛). Now, whenever a server ex-
ceeds its capacity, the algorithm must have moved at least 𝜀𝑛/ℓ vertices. This can
only happen 𝑂(ℓ log 𝑛/𝜀) times. By the same arguments as in the proof of Propo-
sition 6.6, each rebalancing operations costs 𝑂(OPT). Hence, the cost for all rebal-
ancing steps is bounded by 𝑂(OPT ⋅ℓ log 𝑛/𝜀).

6.5. DISTRIBUTED AND FAST ALGORITHMS 135

We should point out that as in Lemma 6.5, we could also do the repartitioning
step of Algorithm 4 by taking any perfectly balanced assignment respecting the
connected components. In the analysis this would incur 𝛩(𝑛) vertexmoves for each
such step and, hence, yield an algorithm with 𝑂((𝑛ℓ log 𝑛)/𝜀) vertex moves in total.
However, unlike in the two-server case, finding a perfectly balanced assignment
respecting the connected components is an NP-hard problem. Nonetheless, the
problem can be solved approximately in polynomial time at the cost of a constant
factor in the competitive ratio. We discuss this in further detail in Section 6.5.2.2.

6.4.5 Bringing It All Together: Theorem 6.16

Proof of Theorem 6.16. Consider the algorithm which first runs Algorithm 7 until
the stopping criterion is triggered and then switches to the Algorithm 4 from Sec-
tion 6.4.4.

If the stopping criterion of the Algorithm 7 is not triggered, then by Proposi-
tion 6.22 the cost of the algorithm is 𝑂(OPT ⋅ log 𝑛). Thus, its competitive ratio is
𝑂(log 𝑛).

If the stopping criterion is triggered, then Algorithm 7 pays 𝑂(𝛼𝑛 log 𝑛) by
Proposition 6.22 and the cost of OPT is 𝛺(𝜀𝑛/(ℓ log ℓ)). Furthermore, the cost of
Algorithm 4 is 𝑂(𝛼𝑛 log 𝑛 + (OPT ⋅ℓ log 𝑛)/𝜀) by Proposition 6.28. Hence, we
obtain the following competitive ratio:

𝑂(𝛼𝑛 log 𝑛 + (OPT ⋅ℓ log 𝑛)/𝜀)
OPT = 𝑂(𝛼𝑛 log 𝑛)

OPT + 𝑂 (ℓ log 𝑛
𝜀)

≤ 𝑂 (𝛼𝑛 log 𝑛 ⋅ ℓ log ℓ
𝛼𝜀𝑛) + 𝑂 (ℓ log 𝑛

𝜀)

= 𝑂 (ℓ log 𝑛 log ℓ
𝜀) .

6.5 Distributed and Fast Algorithms

In this section we show how the algorithms from Section 6.4 can be implemented
in a distributed setting (Section 6.5.1) and how they need to be modified to work in
polynomial time at the cost of a slightly worse competitive ratio (Section 6.5.2).

We should point out that even thoughwe discuss the distributed and polynomial
time versions of the algorithms separately, they can easily be combined to obtain a
distributed algorithm with polynomial computation time.

6.5.1 Distributed Algorithm

While in Section 6.4 we presented algorithms in a centralized model of computation,
we now show how Algorithms 4 and 7 can be implemented in a distributed model
of computation. For realistic parameter settings, the network traffic caused by our
distributed algorithms does not increase (asymptotically) compared to the traffic
caused by moving around the vertices between the servers.

136 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

In our distributed model of computation we assume that all servers have access
to: (1) the number of servers ℓ, (2) the ID of the root server 𝑆0, (3) a shared clock,
and (4) all-to-all communication.

When computing the network traffic, we will asymptotically count the num-
ber of messages sent by the algorithms and we further assume that each message
contains 𝛩(log 𝑛) bits. For the sake of simplicity we assume that moving a vertex
from one server to another incurs cost 𝛼 = 𝛩(log 𝑛).7 Because of this simplifying
assumption we do not have to distinguish between the number of messages sent by
the algorithm and the number of messages used for moving algorithms.

In this distributed model of computation, we obtain the following main result
for the distributed versions of the algorithms.

Theorem 6.29. Consider a system with ℓ servers each of capacity (1 + 𝜀)𝑛/ℓ (i.e.,
augmentation 𝜀𝑛/ℓ) for 𝜀 ∈ (0, 1/2). Let 𝑀 be the number of vertex moves performed
by OPT.

Then there exists a distributed 𝑂((ℓ log 𝑛 log ℓ)/𝜀)-competitive algorithm and the
number of messages sent by the algorithm is at most:

1. 𝑂(𝑀 log 𝑛) if 𝑀 = 𝑂(𝜀𝑛/(ℓ log ℓ)),
2. 𝑂((ℓ2 log 𝑛)/𝜀 + 𝑛 log 𝑛 + (OPT ⋅ℓ log 𝑛)/𝜀) if 𝑀 = 𝛺(𝜀𝑛/(ℓ log ℓ)).

In particular, if ℓ = 𝑂(√𝜀𝑛), then the algorithm’s communication cost does not exceed
its cost for moving vertices.

We show for Algorithm 7 (Section 6.5.1.1) and for Algorithm 4 (Section 6.5.1.2)
individually how they can be implemented distributedly. After that we prove Theo-
rem 6.29 in Section 6.5.1.3.

6.5.1.1 Making Algorithm 7 Distributed

We start by considering the distributed implementation of Algorithm 7 and obtain
the following result.

Lemma 6.30. Algorithm 7 can be implemented in a distributed model of computation
such that the guarantees from Proposition 6.22 still hold. Furthermore, if OPT performs
𝑀 vertex moves, then we additionally have the following two properties:

1. If the stopping criterion is not triggered and the algorithm terminates, then the
algorithm sent 𝑂(𝑀 log 𝑛) messages.

2. If the stopping criterion was triggered, the algorithm sent 𝑂(𝑛 log 𝑛) messages.

Proof. We start by presenting the necessary modifications to the algorithm and an-
alyze the number of sent messages at the end of the proof.

Let us start by observing that each server can maintain a local representation
of the bipartition tree 𝒯: Since the number of servers ℓ is known to all servers and
𝒯 does not depend on any other quantity, each server can compute 𝒯 locally. Next,

7Note that this is a realistic assumption since in order to move a vertex, a server must send the
ID of a vertex to another server. Sending the ID of the vertex requires 𝛩(log 𝑛) bits.

6.5. DISTRIBUTED AND FAST ALGORITHMS 137

the data structure stores for each vertex its ID (requiring 𝑂(log 𝑛) bits) and the ID 𝑗
of the server 𝑆𝑗 it was initially assigned to (requiring 𝑂(log ℓ) bits). Thus, the data
structure uses 𝑂(log 𝑛) bits of storage for each vertex. In other words, it takes 𝑂(1)
messages to move a vertex between different servers.

Next, we provide the modifications for checking the stopping criterion, small-
to-large steps and for majority voting steps.

Before the algorithm moves a component 𝐶 from server 𝑆 to server 𝑆′, 𝑆 and
𝑆′ need to check whether the move would trigger the stopping criterion. To do so,
𝑆 and 𝑆′ do the following. First, 𝑆 asks 𝑆′ for its ID using 𝑂(1) messages. Second,
𝑆 distinguishes between two cases: (1) 𝐶 contains at most ⌈log ℓ⌉ vertices. Then
for each vertex 𝑣 ∈ 𝐶 , 𝑆 sends a message to 𝑆′ containing the ID of the server 𝑣
was initially assigned to. This requires 𝑂(|𝐶|) messages. (2) 𝐶 contains more than
⌈log ℓ⌉ vertices. Then 𝑆 locally computes all internal nodes 𝑤 of the bipartition tree
𝒯 which contain 𝑆′ as a leaf. For each such node 𝑤, let 𝑤̄ be the sibling of 𝑤 in 𝒯.
Now for each 𝑤, 𝑆 computes the number of vertices in 𝐶 which were initially as-
signed to a server in 𝑆(𝑤̄). Then 𝑆 sends these values to 𝑆′ using 𝑂(log ℓ) messages.
Note that in both cases the algorithm does not send more than 𝑂(|𝐶|) messages
and these messages can be charged to the moving cost of 𝐶 (which requires 𝛺(|𝐶|)
messages) which happens after the checking of the stopping criterion. Third, 𝑆′

receives the messages from 𝑆 and checks locally whether receiving 𝐶 would trig-
ger the stopping criterion. If the stopping criterion is not triggered, 𝑆′ tells 𝑆 to
start moving 𝐶 . If the stopping criterion is triggered, 𝑆 sends a message to the root
server 𝑆0 about this event. Then 𝑆0 informs all other servers about switching to
Algorithm 4. This requires 𝑂(ℓ) = 𝑂(𝑛 log 𝑛) messages.

Now suppose the algorithm performs a small-to-large step and the stopping
criterion was previously checked and not triggered. In this case, no modifications
are necessary: The component 𝐶 can just be sent from one server to the other at the
cost of 𝑂(|𝐶|) messages (since each vertex in 𝐶 can be sent using 𝑂(1) messages).

Now suppose a server 𝑆 needs to perform a majority voting step for a compo-
nent 𝐶 . First, observe that 𝑆 can locally decide whether a majority voting step is
necessary for 𝐶 since it must only check the size of 𝐶 . Second, when a majority
voting step is necessary, 𝑆 can locally compute which server 𝑆′ will be the recip-
ient of 𝐶 : For each vertex 𝑣 ∈ 𝐶 , 𝑆 knows which server 𝑣 was initially assigned
to. Hence, for each 𝑣, 𝑆 can compute the labels of 𝑣 w.r.t. the bipartitioning scheme
from Section 6.4.1 locally. Since 𝑆 also knows 𝒯, 𝑆 can compute to which server
𝑆′ the component 𝐶 should be moved to. These operations do not require any
communication between the servers.

To conclude the proof of the lemma, observe that the distributed algorithm per-
forms exactly as many vertex moves as the centralized algorithm. Hence, the guar-
antees from Proposition 6.22 still hold. Next, we analyze the number of messages
sent by the algorithm. A small-to-large stepmoving a component 𝐶 requires 𝑂(|𝐶|)
messages. Checking the stopping criterion before moving a component 𝐶 requires
another 𝑂(|𝐶|) messages. Checking whether a majority voting step is necessary
requires no communication at all. Hence, the number of messages used by the al-

138 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

gorithm is linear in its number of vertex moves. Thus, Proposition 6.22 implies the
two additional properties which are claimed in the statement of the lemma.

6.5.1.2 Making Algorithm 4 Distributed

For the distributed implementation of Algorithm 4 we obtain the following result.

Lemma 6.31. Algorithm 4 can be implemented in a distributed model of computa-
tion such that the guarantees from Proposition 6.28 still hold. Furthermore, if OPT per-
forms 𝑀 vertex moves, then the algorithm sends at most 𝑂((ℓ2 log 𝑛)/𝜀 + 𝑛 log 𝑛 +
(𝑀ℓ log 𝑛)/𝜀) messages.

Proof. We start by statingwhichmodifications need to bemade tomakeAlgorithm 4
distributed.

First, suppose that Algorithm 4 performs a small-to-large step moving a com-
ponent 𝐶 and that this move does not make any server exceed its capacity. In this
case, no modifications are necessary and the number of messages sent is 𝑂(|𝐶|) as
we have seen in the proof of Lemma 6.30.

Second, suppose that a small-to-large stepwants tomove component𝐶 to server
𝑆 which would cause 𝑆 to exceed its capacity. Then the algorithm performs the
following operations:

1. 𝑆 informs the root server 𝑆0 that a rebuild is required.
2. 𝑆0 asks all ℓ servers to send the edges that were inserted and caused the merge

of two connected components since the last rebuild. The servers send of all these
edges together with the timestamps when they were inserted.

3. 𝑆0 locally simulates the whole system from the beginning and obtains knowl-
edge about all connected components and which servers they are assigned to.

4. 𝑆0 tells all other servers 𝑆𝑗 which components need to be moved and all
servers perform the necessary moves.

Since the distributed algorithm performs exactly the same vertex moves as the
centralized algorithm, the distributed algorithm is correct and provides the same
guarantees as provided in Proposition 6.28. We only need to analyze how many
messages the algorithm sends. To do so, we analyze each step separately.

Every time Step 1 is performed, it requires 𝑂(1) messages. As the total number
of rebuilds is at most 𝑂((ℓ log 𝑛)/𝜀), Step 1 sends 𝑂((ℓ log 𝑛)/𝜀) messages in total.

To bound the number of messages sent in Step 2, recall that in total there are
only 𝑂(𝑛) edges which merge connected components. Hence, sending these edges
requires 𝑂(𝑛) messages. Furthermore, when a server did not obtain an edge merg-
ing two connected components between two rebuilds, it can inform 𝑆0 about this
in 𝑂(1) messages. As this can be the case for at most ℓ servers and since there are
𝑂((ℓ log 𝑛)/𝜀) rebuilds, at most 𝑂((ℓ2 log 𝑛)/𝜀) messages are sent when servers
did not receive new edges.

In Step 3, 𝑆0 locally simulates the system. This does not incur any network
traffic.

6.5. DISTRIBUTED AND FAST ALGORITHMS 139

Now consider Step 4. During a rebuild, the number of components which the
algorithm needs to reassign is trivially bounded by the number of vertex moves
performed during the rebuild. Thus, Proposition 6.28 implies that only 𝑂(𝑛 log 𝑛 +
(OPT ⋅ℓ log 𝑛)/𝜀) messages are required for all invocations of Step 4.

In total, we obtain that the algorithm sends at most 𝑂((ℓ2 log 𝑛)/𝜀) + 𝑛 log 𝑛 +
(𝑀ℓ log 𝑛)/𝜀) messages, where 𝑀 is the number of vertices moved by OPT.

6.5.1.3 Proof of Theorem 6.29

To prove the claim about the competitive ratio of the algorithm observe that the
distributed algorithm performs exactly the same vertex moves as the centralized
algorithm. Hence, the cost paid by both algorithms is the same and the distrib-
uted algorithm has the same competitive ratio as the centralized algorithm in Theo-
rem 6.16.

The claim about the number of messages sent by the algorithm follows from
Lemma 6.30 and Lemma 6.31 and summing over the number of messages.

To prove the last claim of the theorem, we distinguish two cases. If the stopping
criterion was not triggered, then the claim holds by Lemma 6.30. If the stopping
criterion was triggered, then if ℓ = 𝑂(√𝜀𝑛), we obtain that the total number of
messages is

𝑂((ℓ2 log 𝑛)/𝜀) + 𝑛 log 𝑛 + (𝑀ℓ log 𝑛)/𝜀)
= 𝑂((𝜀𝑛 log 𝑛)/𝜀 + 𝑛 log 𝑛 + (𝑀ℓ log 𝑛)/𝜀)
= 𝑂(𝑛 log 𝑛 + (𝑀ℓ log 𝑛)/𝜀),

which is exactly the number of vertices moved by Algorithm 4.

6.5.2 Fast Algorithms

In this section, we discuss the computational challenges when computing perfectly
balanced assignments. These computational problems occur when Algorithm 4 per-
forms rebalancing steps (see Section 6.3.2 and Section 6.4.4). So far, we were only
concerned with algorithms which try to minimize the vertex moves while using po-
tentially exponential running time. We now consider polynomial time algorithms.
The only step where our algorithms might use exponential time is during rebalanc-
ing. Thus we show next how to perform the rebalancing operations in polynomial
time. In the case of ℓ > 2 servers, our polynomial time algorithms perform slightly
more vertex moves than the exponential time algorithms.

We discuss the two server case which can be solved optimally in polynomial
time in Section 6.5.2.1. In Section 6.5.2.2, we argue that in the general case with
ℓ > 2 servers this problem is NP-hard. We resolve this issue in Section 6.5.2.3 by
computing approximately balanced assignments in polynomial time.

140 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

6.5.2.1 Computing Perfectly Balanced Assignments for Two Servers

We consider computing a perfectly balanced assignment respecting the connected
components for two servers. Specifically, we provide a dynamic programwhich can
find such an assignment in polynomial time.

The dynamic program works as follows. Suppose 𝐶1, … , 𝐶𝑞 are the connected
components assigned to the two servers. Now let 𝑘𝑖 = |𝐶𝑖| for 𝑖 = 1, … , 𝑞. We
create a set𝒮 consisting of integers with the following property: Each number 𝑠 ∈ 𝒮
corresponds to a set of connected components ℂ such that | ⋃𝐶∈ℂ 𝐶| = 𝑠. That
is, whenever 𝑠 ∈ 𝒮, there exists a set of connected components which together
contain 𝑠 vertices. For each 𝑠 ∈ 𝒮, the algorithm maintains a set of connected
components explicitly. We denote the components corresponding to value 𝑠 ∈ 𝒮
by components(𝑆).

At the beginning of a rebalancing step, the algorithm sets 𝒮 = {0}. The con-
nected component corresponding to value 0 is simply the empty set of vertices,
i.e., components(0) = ∅. For 𝑖 = 1, … , 𝑞 the algorithm does the following. Iter-
ate over all 𝑠 ∈ 𝒮 and over all components and add 𝑠 + 𝑘𝑖 to 𝒮 if 𝑠 + 𝑘𝑖 ∉ 𝒮
and 𝐶𝑖 ∉ components(𝑆). Whenever a new value 𝑠 + 𝑘𝑖 is added to 𝒮, set
components(𝑠 + 𝑘𝑖) = components(𝑠) ∪ {𝐶𝑖}.

As soon as the value 𝑛/2 is added to 𝒮, the dynamic program stops and assigns
all vertices in components(𝑛/2) to the left server and all remaining vertices to the
right server.

The correctness of the above algorithm is clear by construction. We only need
to show that it finishes in polynomial time.

Note that the above dynamic program runs in time 𝑂(𝑞|𝒮|). Now observe that
𝑞 is bounded by 𝑛 since there are at most 𝑛 connected components. Furthermore,
for each subset ℂ ⊆ {𝐶1, … , 𝐶𝑞}, we have that ∑𝐶∈ℂ |𝐶| ≤ 𝑛 (because the com-
ponents in ℂ cannot contain more than 𝑛 vertices). Thus, |𝒮| ≤ 𝑛 + 1 because each
value 𝑠 ∈ 𝒮 corresponds to a subset of components ℂ ⊆ {𝐶1, … , 𝐶𝑞} and each
value 𝑠 ∈ {0, … , 𝑛} is only added once to 𝒮. Hence, the algorithm runs in time
𝑂(𝑞|𝒮|) = 𝑂(𝑛2).

6.5.2.2 Computing Perfectly Balanced Assignments for Many Servers

We consider computing a perfectly balanced assignment respecting the connected
components for ℓ servers.

Let 𝐶1, … , 𝐶𝑞 be the connected components which are assigned to the ℓ servers.
To find a perfectly balanced assignment respecting the connected components, we
need to find a partition of the set 𝒮 = {|𝐶1|, … , |𝐶𝑞|} into ℓ subsets 𝒮1, … , 𝒮ℓ such
that for each subset 𝒮𝑖 we have that ∑𝑠∈𝒮𝑖

𝑠 = 𝑛/ℓ.
Unfortunately, the above problem is known to be NP-complete, see, e.g., the

result about multi-processor scheduling in Garey and Johnson [80]. However, since
we prove our results in the online model of computation, which allows unlimited
computational power, the algorithm can solve this NP-complete problem. We note

6.5. DISTRIBUTED AND FAST ALGORITHMS 141

that this problem has also been studied in practice, see, e.g., Schreiber et al. [184]
and references therein.

See Section 6.5.2.3 for how this problem can be solved approximately at the cost
of a constant in the competitive ratio of the algorithm.

6.5.2.3 Computing Approximately Balanced Assignments for Many
Servers

Previously we have we seen that perfectly balanced assignments for ℓ servers can-
not be computed in polynomial time unless P = NP (Section 6.5.2.2). Thus, we
now consider computing approximately balanced assignments for ℓ servers which
is sufficient for our purpose: Let 𝜀′ > 0 be a constant. An assignment is (1 + 𝜀′)-
approximately balanced if each server has load at most (1 + 𝜀′)𝑛/ℓ. Using this
definition, we obtain the following result.

Proposition 6.32. Let 𝜀 > 𝜀′ > 0 be constants and suppose each server has capacity
(1 + 𝜀)𝑛/ℓ. Then a (1 + 𝜀′)-approximately balanced assignment for ℓ servers can be
computed in polynomial time.

Using the proposition (which we prove at the end of the subsection), we obtain
a polynomial time algorithm with a slightly worse competitive ratio than that of
Theorem 6.16.

Theorem6.33. Given a systemwith ℓ servers each of capacity (1+𝜀)𝑛/ℓ, for constant
𝜀 ∈ (0, 1/2), then there exists an 𝑂((ℓ2 log 𝑛 log ℓ)/𝜀2)-competitive algorithm which
runs in polynomial time.

Proof. First, observe that Algorithm 7 runs in polynomial time. Thus, the result of
Proposition 6.22 also holds for polynomial time algorithms.

Second, consider a modification of Algorithm 4 where at each rebalancing step
we compute a (1 + 𝜀′)-approximately balanced assignment for 𝜀′ = 𝜀/2. Such
an approximately balanced assignment can be computed in polynomial time due to
Proposition 6.32. Thus, the modified algorithm runs in polynomial time.

Observe that now all steps of the resulting algorithm can be computed in poly-
nomial time. It is left to bound the competitive ratio of the modified algorithm.

We start by bounding the cost paid by the modified version of Algorithm 4.
Note that each approximate rebalancing step incurs cost at most 𝑂(𝛼𝑛); recall that
𝛼 denotes the cost for moving a vertex to a different server. Now we bound the
number of approximate rebalancing steps. Recall from Lemma 6.4 that the number
of vertex moves due to small-to-large steps is at most 𝑂(𝑛 log 𝑛). Now whenever a
new approximately balanced assignment is computed, the small-to-large steps must
have moved at least 𝛺((𝜀 − 𝜀′)𝑛/ℓ) vertices to exceed the capacity of one of the
servers. Thus, the total number of approximate rebalancing operations is bounded
by 𝑂((ℓ log 𝑛)/(𝜀−𝜀′)) and, hence, the total cost of Algorithm 4 with approximate
rebalancing steps is bounded by 𝑂((𝛼𝑛ℓ log 𝑛)/(𝜀 − 𝜀′)).

142 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

Altogether, we obtain the following competitive ratio by following the steps
from the proof of Theorem 6.16 (Section 6.4.5):

𝑂(𝛼𝑛 log 𝑛 + (𝛼𝑛ℓ log 𝑛)/(𝜀 − 𝜀′))
OPT = 𝑂 (𝛼𝑛 log 𝑛 + (𝛼𝑛ℓ log 𝑛)/(𝜀 − 𝜀′)

𝛼𝜀𝑛/(ℓ log ℓ))

= 𝑂 (ℓ2 log 𝑛 log ℓ
𝜀2) ,

where in the last step we used that 𝜀 − 𝜀′ = 𝜀/2.
To prove Proposition 6.32, we consider the makespan minimization problem in

which there are 𝑘 jobs with processing times 𝑝1, … , 𝑝𝑘 which must be assigned to ℓ
identical machines. Given an assignment of the jobs to the machines, the maximum
running time time of any machine is called the makespan. The goal is to find an
assignment of the jobs to the machines which minimizes the makespan.

The makespan minimization problem is known to be NP-hard but Hochbaum
and Shmoys [105] presented a polynomial time approximation scheme (PTAS).

Lemma 6.34 (Hochbaum and Shmoys [105]). Let 𝜀′ > 0 be a constant. Then there
exists an algorithm which computes a (1+𝜀′)-approximate solution for the makespan
minimization problem in polynomial time.

Using the result from the lemma we can prove Proposition 6.32.

Proof of Proposition 6.32. Suppose the system currently contains connected compo-
nents 𝐶1, … , 𝐶𝑘. We consider these connected components as the jobs of the
makespan minimization problem with processing times 𝑝𝑖 = |𝐶𝑖| for 𝑖 = 1, … , 𝑘.
The machines correspond to the ℓ servers.

Note that the optimal solution for the instance of the makespan minimization
problem is 𝑛/ℓ: Since we have made the assumption that in the final assignment all
servers have load exactly𝑛/ℓ, theremust exist a perfectly balanced assignment from
the components 𝐶𝑖 to the servers 𝑆𝑖. In other words, there exists an assignment of
the jobs to the machines such that each machine has running time 𝑛/ℓ and, hence,
the optimal makespan is 𝑛/ℓ.

By running the algorithm from Lemma 6.34, we obtain a (1 + 𝜀′)-approximate
solution for themakespanminimization problem. Since the optimal solution for this
problem is 𝑛/ℓ, each machine has load at most (1 + 𝜀′)𝑛/ℓ in the solution returned
by the algorithm from Lemma 6.34. Assigning the components 𝐶𝑖 to the servers in
exactly the same way as the corresponding jobs are assigned to the corresponding
machines, we obtain a (1 + 𝜀′)-approximately balanced assignment in polynomial
time.

6.6 Lower Bounds

To study the optimality of our algorithms, we derive bounds on the competitive
ratios which can be achieved by any deterministic online algorithm.

6.6. LOWER BOUNDS 143

The following theorem provides a lower bound of 𝛺(1/𝜀 + log 𝑛). The lower
bound has the following two main consequences: (1) If an algorithm is only allowed
to use constant augmentation (i.e., servers of capacity 𝑛/ℓ + 𝑂(1)), then the lower
bound implies that any algorithm must have a competitive ratio of 𝛺(𝑛).8 (2) The
lower bound holds even in the setting in which there are only two servers. Thus,
the algorithm from Section 6.3 for the two server setting is close to optimal (up
to a 𝑂(min{1/𝜀, log 𝑛}) factor) and the generalized algorithm from Section 6.4 is
optimal up to a 𝑂(ℓ log ℓ min{1/𝜀, log 𝑛}) factor.

Theorem 6.35. Suppose there are two servers of capacity (1 + 𝜀)𝑛/2 for 𝜀 ≤ 0.98.
Then any deterministic online algorithm must have a competitive ratio of 𝛺(1/𝜀 +
log 𝑛).

To prove the theorem, we show in Section 6.6.1 that there exist input sequences
such that either an algorithm always assigns vertices of the same connected compo-
nent to the same server or it has prohibitively high cost. Using this fact, we prove
our concrete lower bounds in Section 6.6.2.

In the next chapter, in Section 7.7.1, we will partially improve upon the above
lower bound by presenting a lower bound of 𝛺(ℓ log(𝑛/ℓ)), but this lower bound
only holds for a smaller range of values for 𝜀. Hence, we still present the full proof
of the theorem in this chapter.

6.6.1 Assigning Connected Components to Servers

In this subsection, we give an important reduction which will be useful to derive the
lower bounds in the next subsection (Section 6.6.2). This reduction lets us assume
that every competitive algorithm will always assign vertices of the same connected
component to the same server.

More concretely, we show that every sequence of edges 𝜎 can be manipulated to
a new edge sequence 𝜎′ such that: (1) 𝜎 reveals the same edges as 𝜎′ and (2) on input
𝜎′, every algorithm either moves the vertices of the same connected components to
the same server, or has prohibitively high cost and, hence, cannot be competitive.

We first prove the following technical lemma.

Lemma 6.36. Consider a sequence 𝜎 which reveals the edges ∅ ≠ 𝐸∗ ⊆ 𝐸. Let
𝐶1, … , 𝐶𝑞 be the connected components induced by 𝐸∗.

Then for each initial assignment there exists an input sequence 𝜎′ consisting only of
edges in 𝐸∗ such that either (1) at some point during the input sequence the algorithm
assigns all vertices from each 𝐶𝑖 to the same 𝑆𝑗 or (2) the cost of the algorithm is at
least 𝛺(𝛼𝑛3).

Proof. We will construct an input sequence 𝜎′ provided by the adversary such that
either Property (1) or Property (2) must hold.

8To obtain servers of capacity 𝑛/ℓ + 𝑂(1), we must set 𝜀 = 𝑂(1)/𝑛.

144 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

Consider an arbitrary initial assignment and pick the ground truth components
𝑉𝑖 such that they do not coincide with the initial assignment of the vertices to the
servers, i.e., 𝑉𝑖 ≠ 𝑉init(𝑆𝑗) for all 𝑖, 𝑗. Let 𝐸∗ = {𝑒′

1, … , 𝑒′
𝑡} be the edges revealed

by the adversary and suppose that 𝐸∗ contains at least one edge (𝑢, 𝑣) such that 𝑢
and 𝑣 are assigned to different servers in the initial assignment.

Now consider the input sequence 𝜎′ = (𝑒1, … , 𝑒𝑟) with 𝑟 = ⌈𝛼𝑛3𝑡⌉ which
consists of the edges (𝑒′

1, … , 𝑒′
𝑡) in 𝐸∗ concatenated ⌈𝛼𝑛3⌉ times.

Suppose that while running the algorithm there always exists a 𝐶𝑖 such that
not all vertices from 𝐶𝑖 are assigned to the same server 𝑆𝑗, i.e., Claim (1) does not
apply. We show that then Claim (2) must apply.

Consider the state of the algorithm prior to a single subsequence containing the
edges (𝑒′

1, … , 𝑒′
𝑡). By assumption at least one edge 𝑒′

𝑖 must be between two vertices
from different servers. Now the algorithm must either pay 1 for communication
along this edge or it must move one of the edge’s endpoints at the cost of 𝛼 to avoid
paying for communication along this edge. Thus, the algorithm must pay at least
𝛺(1) for the subsequence (𝑒′

1, … , 𝑒′
𝑡).

As there are ⌈𝛼𝑛3⌉ such subsequences, the algorithm must pay at least 𝛺(𝛼𝑛3)
in total.

As we will see, the lemma essentially allows us to assume that every algorithm
which obtains an edge between vertices on different clusters, must move their con-
nected components to the same cluster. That is, given an input sequence 𝜎, in our
lower bound proof, we can employ Lemma 6.36 to obtain an input sequence 𝜎′

which does not reveal any additional edges and which forces every algorithm to
have Property (1) or Property (2).

Now observe that if an algorithm has Property (2), since the cost of OPT are
always bounded by 𝑂(𝛼𝑛) (OPT moves each vertex at most once), the algorithm
cannot be competitive: the competitive ratio must be at least 𝛺(𝑛2), much higher
than the competitive ratios derived in this chapter. Hence, in the following we can
assume that every algorithmwith a competitive ratio better than𝛺(𝑛2)must satisfy
Property (1) of Lemma 6.36.

6.6.2 Lower Bound Proofs

In this subsection, we prove Theorem 6.35 by proving two different lower bounds:
The first lower bound asserts a competitive ratio of 𝛺(1/𝜀) and the second lower
bounds asserts a competitive ratio of 𝛺(log 𝑛).

In the lower bound constructions we heavily exploit that we provide hard in-
stances against deterministic algorithms, i.e., we will rely on the fact that at each
point in time the adversary knows exactly which assignment the online algorithm
created.

Furthermore, we assume that after each edge which was provided by the adver-
sary, the algorithm creates an assignment such that all vertices of the same con-

6.6. LOWER BOUNDS 145

nected component are assigned to the same server. This assumption is admissible
by the discussion in Section 6.6.1.

We start by proving the lower bound of 𝛺(1/𝜀).

Lemma 6.37. Consider the setting with two servers which both have capacity (1 +
𝜀)𝑛/2 for 𝜀 > 0.

Then for each deterministic online algorithm ONL there exists an input sequence
𝜎 such that the cost of ONL is 𝛺(𝛼𝑛) and the cost paid by OPT is 𝑂(𝛼𝜀𝑛). Thus, the
competitive ratio of every online algorithm is 𝛺(1/𝜀).

Proof. Choose an arbitrary initial assignment of 𝑛 vertices to the ℓ servers. Let
𝐾 = 𝜀𝑛/2 denote the allowed augmentation of the servers. The initial assignment
is as follows. In the left server, there are 𝑞 = 𝑛/(2(𝐾 + 1)) connected components
𝐶1, … , 𝐶𝑞 of size 𝐾 + 1. On the right server, we build one connected component
of size 𝐾 + 1 denoted 𝐶 and one large connected component of size 𝑛 − 𝐾 − 1
denoted 𝐶′. First, the adversary provides all edges of these connected components
at no cost to the algorithm.

Then the adversary inserts an edge from a vertex in 𝐶1 to a vertex in 𝐶 . Since
𝐶1 has size 𝐾 + 1 and the right server currently has 𝑛/2 vertices, the algorithm
cannot move 𝐶1 to the right server. For the same reason, the algorithm cannot
move 𝐶 to the left server either. Thus, the algorithm’s only option to bring 𝐶1 and
𝐶 to the same server is to replace 𝐶 with some 𝐶𝑖 at the cost of 2𝛼(𝐾 + 1).

We will refer to the merged connected component of size 2(𝐾 + 1) as 𝐷. Note
that 𝐷 must be on the left server. Now let 𝐶𝑖 be the connected component of size
𝐾 + 1 on the right server. The adversary adds an edge from a vertex in 𝐷 to a
vertex in 𝐶𝑖. By the same reasoning as before, the algorithm must now pick some
𝐶𝑗, 𝑗 ≠ 𝑖, of size 𝐾 + 1 from the left server and swap it with 𝐶𝑖. This costs another
2𝛼(𝐾 + 1).

The adversary continues the previous procedure until only a 𝐶𝑖 of size 𝐾 + 1
is left on the left server and then she connects 𝐶𝑖 and 𝐶′. This gives the final
partitioning of the vertices.

We observe that each vertex which is on the left server at the very end, has been
on the right server exactly once during the execution of the algorithm. Thus, the
costs paid by the algorithm must be 𝛺(𝛼𝑛).

Note that OPT pays exactly 𝛼(𝐾 + 1) because it can determine beforehand
which 𝐶𝑖 must be moved to the right server and only move that connected com-
ponent. Before, we have seen that any deterministic algorithm must pay at least
𝛺(𝛼𝑛). Thus, the competitive ratio is 𝛺(𝑛/𝐾).

Next, we prove the 𝛺(log 𝑛) lower bound for the competitive ratio of deter-
ministic algorithms. Later, in Section 7.7.1, we will prove a stronger lower bound
of 𝛺(ℓ log(𝑛/ℓ)) in Theorem 7.28, but this stronger lower bound only applies for
smaller values of 𝜀. Furthermore, in Section 7.7.2, we will also see a randomized
version of the lower bound from the lemma (see Proposition 7.37).

146 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

Lemma 6.38. Consider the setting with two servers which both have capacity (1 +
𝜀)𝑛/2 for 𝜀 ≤ 0.98.

Then for each deterministic online algorithm ONL there exists an input sequence
𝜎 such that the cost paid by ONL is 𝛺(𝛼𝑛 log 𝑛) and the cost paid by OPT is 𝑂(𝛼𝑛).
Thus, the competitive ratio of every deterministic online algorithm is 𝛺(log 𝑛).

Proof. Choose an arbitrary initial assignment of 𝑛 vertices to the ℓ servers. Since we
want to prove a lower bound, we can assume that 𝑛 is a power of 2. Thus, suppose
that 𝑛 = 2𝑎 for 𝑎 ≥ 1000.

In our hard instance, we are creating a sequence of edge insertions which pro-
ceeds in 𝛩(log 𝑛) rounds. When round 𝑖 starts, all connected components have size
2𝑖 induced by the previously provided edges, and when round 𝑖 finishes, all con-
nected components have size 2𝑖+1. We show that ONL pays 𝛺(𝛼𝑛) in each round.
This implies the claimed cost of 𝛺(𝛼𝑛 log 𝑛) for ONL. The cost for OPT follows
immediately from Lemma 6.3 which states that OPT never pays more than 𝑂(𝑛)
when there are only two servers.

When ONL starts and no edge was provided by the adversary, all connected
components have size 1 = 20, i.e., the connected components are isolated vertices.

Now suppose round 𝑖 = 0, … , log 𝑛 starts. By induction, all connected compo-
nents have size 2𝑖. We now define a sequence of edge insertions for round 𝑖 which
forces ONL to pay 𝛺(𝛼𝑛) and after which all connected components have size 2𝑖+1.

Let 𝑧 denote the current number of connected components of size 2𝑖. When
round 𝑖 starts, there are exactly 𝑧 = 𝑛/2𝑖 = 2𝑎−𝑖 connected components of size 2𝑖

each. Recall that each server has capacity (1 + 𝜀)𝑛/2. Thus, at most

𝑦𝑖 = (1 + 𝜀)𝑛/2𝑖+1 ≤ 1.98 ⋅ 2𝑎−𝑖−1

connected components of size 2𝑖 can be assigned to each server.
Now suppose there exists an edge (𝑢, 𝑣) such that 𝐶𝑢 and 𝐶𝑣 are of size 2𝑖 and

they are assigned to different servers; we call such an edge expensive. When the
adversary inserts an expensive edge, ONL must pay 𝛺(𝛼2𝑖) for moving 𝐶𝑢 or 𝐶𝑣
to a different server.

The strategy of the adversary is to insert expensive edges as long as they ex-
ist. Once no expensive edges exist anymore, the adversary connects all remaining
components of size 2𝑖 arbitrarily until all components have size 2𝑖+1.

Note that expensive edges exist as long as 𝑧 > 𝑦𝑖 (because when this inequality
is satisfied, not all connected components of size 2𝑖 can be assigned to the same
server). Furthermore, observe that when the adversary inserts an expensive edge, 𝑧
decreases by 2.

Now we prove a lower bound on the number of expensive edges 𝑝. By the
previous arguments, 𝑝 must be large enough such that:

𝑧 = 2𝑎−𝑖 − 2𝑝 ≤ 𝑦𝑖.

6.7. APPLICATIONS: UNION–FIND AND ONLINE 𝑘-WAY PARTITIONING 147

Solving this inequality for 𝑝, we obtain

𝑝 ≥ 2𝑎−𝑖−1 − 1.98 ⋅ 2𝑎−𝑖−2

= 2𝑎−𝑖−1(1 − 0.99)
= 0.01 ⋅ 2𝑎−𝑖−1.

We conclude that that adversary can perform 𝛺(2𝑎−𝑖) expensive edge inser-
tions. Since for each of these edge insertions, ONL must pay 𝛺(𝛼2𝑖), we obtain
that the cost paid by ONL in round 𝑖 is

𝛺(𝛼 ⋅ 2𝑎−𝑖 ⋅ 2𝑖) = 𝛺(𝛼 ⋅ 2𝑎−2) = 𝛺(𝛼𝑛).

6.7 Sample Applications: A Distributed Union–Find
Algorithm and Online 𝑘-Way Partitioning

In this sectionwe provide two sample applications for ourmodel and our algorithms.
First, we show that our results can be used to solve a distributed union–find prob-
lem and we give an example where a union–find data structure is used in practice.
Second, we show that our algorithms imply competitive algorithms for an online
version of the 𝑘-way partitioning problem.

6.7.1 Distributed Union Find

Recall that in the static union–find problem, there are 𝑛 elements from a universe
𝒰 and initially there are 𝑛 sets containing one element each. The data structure
supports two operations: union(𝑢, 𝑣) and find(𝑢). Given two elements 𝑢, 𝑣 ∈ 𝒰,
the operation union(𝑢, 𝑣)merges the sets containing 𝑢 and 𝑣. The operation find(𝑢)
returns the set containing 𝑢.

In the distributed setting we consider, elements are stored across ℓ servers. Each
server has enough capacity to store (1 + 𝜀)𝑛/ℓ elements and we have the natural
constraint that elements from the same set must always be stored on the same server
(in order to maintain locality for elements from the same set). We consider a setting
in which all sets have size 𝑛/ℓ when the algorithm finishes.

Note that if the sets of 𝑢, 𝑣 ∈ 𝒰 are stored on different servers when the opera-
tion union(𝑢, 𝑣) is performed, one of the sets containing 𝑢 or 𝑣 must be moved to
a different server. The goal of an algorithm is to minimize the moving cost caused
by union-operations.

When analyzing the moving cost, we will compare with an optimal offline al-
gorithm which knows in advance which union-operations will be performed. Thus,
the optimal algorithm can move from the initial assignment to the final assignment
at the minimum possible cost. For our analysis we will compute the competitive ra-
tio between an online algorithm solving the above problem and the optimal offline
algorithm (as also detailed in Section 6.2).

148 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

Using the algorithms from Sections 6.4 and 6.5.1, we obtain the following result.

Theorem 6.39. Consider a system with ℓ servers each of capacity (1 + 𝜀)𝑛/ℓ for
𝜀 ∈ (0, 1/2). Then there exists a distributed 𝑂((ℓ log 𝑛 log ℓ)/𝜀)-competitive algo-
rithm for the distributed union–find problem. Moreover, for ℓ = 𝑂(√𝜀𝑛) servers, the
algorithm’s communication cost does not exceed its cost for moving vertices.

Proof. The theorem follows immediately fromTheorem 6.29 by the following reduc-
tion from the model in Section 6.2. We identify vertices in the model from Sec-
tion 6.2 with elements from the universe 𝒰 in the union–find model. Furthermore,
for each operation union(𝑢, 𝑣) we insert an edge (𝑢, 𝑣) into the model from Sec-
tion 6.2. Since all algorithms we considered always collocate vertices from the same
connected component, they satisfy the constraint that elements from the same set
must be assigned to the same server. Moreover, in our analysis we were able to
focus on the number of vertex moves due to Lemma 6.1. In our proofs, we showed
competitive bounds for the number of vertex moves performed by the algorithm
from Theorem 6.29 compared with an optimal offline algorithm. Thus, the same
bounds as derived in Theorem 6.29 apply.

For ℓ = 𝛺(√𝜀𝑛) servers and the exact number of messages sent by the algo-
rithm, seeTheorem 6.29. The guarantees fromTheorem 6.29 carry over immediately.

An examples where distributed union–find data structures are used in practice
is search engines [46]. A search engine stores many different documents from the
Web over multiple servers. Now union–find data structures are used to collocate
duplicate documents on the same server, i.e., when documents 𝑢 and 𝑣 are identified
as duplicates the operation union(𝑢, 𝑣) is used to collocate these documents (and all
previously identified duplicates) on the same server. Furthermore, union–find data
structures are used to find blocks in dense linear systems and in pattern recognition
tasks (see Cybenko et al. [58] and references therein).

6.7.2 Online 𝑘-Way Partitioning

The model and algorithms we study in this chapter can also be used to solve an on-
line variant of the 𝑘-way partition problem [184]. In the static version of the 𝑘-way
partition problem one is given a (multi-)set of integers 𝒮 and the task is to partition
𝒮 into 𝑘 subsets 𝒮1, … , 𝒮𝑘 such that the sum of all subsets is (approximately) equal.

Our model and our algorithms can be used to solve the following online version
of this fundamental problem. Initially, 𝒮 contains 𝑛 integers and all integers are 1.
Each integer is assigned to one of ℓ bins and each bin has capacity (1 + 𝜀)𝑛/ℓ. Now
in an online sequence of operations, an adversary picks two integers from 𝒮 and
these integers are added. For example, after adding integers 𝑎, 𝑏 ∈ 𝒮, 𝒮 becomes
𝒮 = (𝒮 ∪ {𝑎 + 𝑏}) \ {𝑎, 𝑏}. During this sequence of operations an online algorithm
must ensure that the load of all bins is always bounded by (1 + 𝜀)𝑛/ℓ. We work
under the assumption that after each operation there always exists an assignment

6.8. RELATED WORK 149

from the integers in 𝒮 to the bins such that each bin has load exactly 𝑛/ℓ. We further
assume that at the end of the sequence of operations there are ℓ integers and each
integer is 𝑛/ℓ.

Note that when two integers 𝑎, 𝑏 ∈ 𝒮 from different bins are added, either 𝑎 or
𝑏 must be moved to a different bin. This might cause that bin to exceed its capacity.

We will analyze algorithms which have small moving cost. That is, the cost of
an algorithm is the sum of the numbers it has moved. We consider the competitive
analysis of online algorithms compared with an optimal offline algorithm which
knows the sequence of additions in advance and which can move the numbers at
optimal cost.

We then obtain the following result for the 𝑘-way partitioning problem.

Theorem 6.40. Consider a system with ℓ bins each of capacity (1 + 𝜀)𝑛/ℓ for 𝜀 ∈
(0, 1/2). Then there exists a 𝑂((ℓ log 𝑛 log ℓ)/𝜀)-competitive algorithm for the 𝑘-way
partition problem.

Proof. We can relate the online version of the 𝑘-way partition problem to the model
we study by identifying integers and the sizes of connected components. Initially,
we identify each 𝑠 ∈ 𝒮 with a single vertex. Note that this can be done since initially
𝑠 = 1 and thus 𝑠 and the size of its corresponding connected component are the
same. After that, when two integers 𝑎 and 𝑏 are added, we take their corresponding
connected components 𝐶𝑎 and 𝐶𝑏 and insert an edge between them. Note that the
resulting integer 𝑎 + 𝑏 corresponds to the connected component 𝐶𝑎 ∪ 𝐶𝑏 and their
sizes agree, i.e., 𝑎 + 𝑏 = |𝐶𝑎 ∪ 𝐶𝑏|. Now observe that summing the moving cost for
integers is the same as counting the number of vertex reassignments for connected
components. Thus, the result of the theorem follows from Theorem 6.16.

6.8 Related Work

Thedesign of more flexible networked systems that can adapt to their workloads has
received much attention over the last years, with applications for traffic engineer-
ing [106, 112], load-balancing [65, 163], network slicing [186], server migration [33],
switching [43, 72], or even adjusting the network topology [83]. The impact of dis-
tributed applications on the communication network is also well-documented in the
literature [55, 76, 128, 148, 188]. Several empirical studies exploring the spatial and
temporal locality in traffic patterns found evidence that these workloads are often
sparse and skewed [16, 83, 115, 178], introducing optimization opportunities. E.g.,
studies of reconfigurable datacenter networks [83, 91] have shown that for certain
workloads, a demand-aware datacenter network can achieve a performance similar
to a demand-oblivious datacenter network at 25-40% lower cost [83, 91].

However, much less is known about the algorithmic challenges underlying such
workload-adaptive networked systems, the focus of our work. From an online al-
gorithm perspective, our problem is related to reconfiguration problems such as

150 CHAPTER 6. EFFICIENT DISTRIBUTED WORKLOAD (RE-)EMBEDDING

online page (resp. file) migration [29, 36] as well as server migration [33] prob-
lems, 𝑘-server [71] problems, or online metrical task systems [41]. In contrast to
these problems, in our model, requests do not appear somewhere in a graph or met-
ric space but between communication partners. From this perspective, our problem
can also be seen as a “distributed” version of online paging problems [70, 139, 189,
212] (and especially their variants with bypassing [8, 66]) where access costs can
be avoided by moving items to a cache: in our model, access costs are avoided by
collocating communication partners on the same server (a “distributed cache”).

The static version of our problem, how to partition a graph, is a most funda-
mental and well-explored problem in computer science [198], with many applica-
tions, e.g., in community detection [1]. The balanced graph partitioning problem is
related to minimum bisection problems [68], and known to be hard even to approx-
imate [18]. The best approximation today is due to Krauthgamer [120]. In contrast,
we are interested in a dynamic version of the problem where the edges of the to-be-
partitioned graph are revealed over time, in an online manner. Further, the offline
problem of embedding workloads in a communication-efficient manner has been
studied in the context of the minimum linear arrangement problem [171] and the
virtual network embedding problem [214], however, without considering the op-
tion of migrations. In this regard, our results feature an interesting connection to
the itinerant list update model [160], a kind of “dynamic” minimum linear arrange-
ment problem which allows for reconfigurations and, notably, considers pair-wise
requests. However, communication is limited to a linear line and so far, only non-
trivial offline solutions are known.

One of the applications of the problem we study is a distributed union–find
data structure (see Section 6.7.1). Union find data structures have been initially
proposed in the centralized setting and efficient algorithms were derived [78, 192].
Later, parallel versions of union–find data structures were considered in a shared
memory setting inwhich the goal was to derive wait-free algorithms [17]; also exter-
nal memory algorithms were considered [9]. To the best of our knowledge studies
of union–find data structures in a distributed memory setting were only conducted
experimentally, see (for example) [58, 135, 164, 165].

The second application we presented was as online 𝑘-way partitioning (Sec-
tion 6.7.2). The 𝑘-way partitioning problem is known to be NP-hard as it consti-
tutes a very simple scheduling problem [80]. The problem has also been researched
in practice, see, e.g., [118, 184] and references therein. We are not aware of literature
studying the online version of the problem which we have considered.

The papermost closely related to our results is by Avin et al. [20, 23] who studied
a more general version of the problem considered. In their model, request patterns
can change arbitrarily over time, and in particular, do not have to follow a parti-
tion and hence “cannot be learned”. Indeed, as we have shown, learning algorithms
can perform significantly better: in [23], it was shown that for constant ℓ any de-
terministic online algorithm must have a competitive ratio of at least 𝛺(𝑛) unless
it can collocate all nodes on a single server, while we have presented an 𝑂(log 𝑛)-
competitive online algorithm. Thus, our result is exponentially better than what

6.9. CONCLUSION 151

can possibly be achieved in the model of [23].

6.9 Conclusion

Motivated by the increasing resource allocation flexibilities available in modern
compute infrastructures, we initiated the study of online algorithms for adjusting
the embedding of workloads according to the specific communication patterns, to
reduce communication and moving costs. In particular, we presented algorithms
and derived upper and lower bounds on their competitive ratio.

In Chapter 7, we will improve upon the upper and lower bounds of this chapter
asymptotically but this comes at the cost of a super-polynomial dependency on 𝜀 in
the competitive ratio. It is an open question whether we can obtain asymptotically
tight competitive ratios that only polynomially depend on 𝜀.

The algorithm from this chapter appears to be quite implementable when one re-
places the exhaustive enumeration step from Section 6.3.2.2 with suitable heuristics.
Thus, it would be interesting to see how the algorithm performs in practice.

In the future, it will be natural to consider algorithms which do not collocate
all communication partners (by considering more general pattern models than the
one we proposed). Also, studying collocation in specific networks such as Clos
networks, which are frequently encountered in datacenters, would be intriguing.

CHAPTER 7
Tight Bounds for Online Graph

Partitioning

We consider the following online optimization problem. We are given a graph 𝐺
and each vertex of the graph is assigned to one of ℓ servers, where servers have
capacity 𝑘 and we assume that the graph has 𝑘 ⋅ ℓ vertices. Initially, 𝐺 does not
contain any edges and then the edges of 𝐺 are revealed one-by-one. The goal is to
design an online algorithm ONL, which always places the connected components
induced by the revealed edges on the same server and never exceeds the server
capacities by more than 𝜀𝑘 for constant 𝜀 > 0. Whenever ONL learns about a
new edge, the algorithm is allowed to move vertices from one server to another.
Its objective is to minimize the number of vertex moves. More specifically, ONL
should minimize the competitive ratio: the total cost ONL incurs compared to an
optimal offline algorithm OPT.

The problem was recently introduced by Henzinger et al. [101, SIGMET-
RICS’2019 and Chapter 6] and is related to classic online problems such as online
paging and scheduling. It finds applications in the context of resource allocation
in the cloud and for optimizing distributed data structures such as union–find data
structures.

Our main contribution is a polynomial-time randomized algorithm, that is as-
ymptotically optimal: we derive an upper bound of 𝑂(log ℓ + log 𝑘) on its competi-
tive ratio and show that no randomized online algorithm can achieve a competitive
ratio of less than 𝛺(log ℓ + log 𝑘). We also settle the open problem of the achiev-
able competitive ratio by deterministic online algorithms, by deriving a competitive
ratio of 𝛩(ℓ log 𝑘); to this end, we present an improved lower bound as well as a
deterministic polynomial-time online algorithm.

Our algorithms rely on a novel technique which combines efficient integer pro-
gramming with a combinatorial approach for maintaing ILP solutions. More pre-
cisely, we use an ILP to assign the connected components induced by the revealed

153

154 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

edges to the servers; this is similar to existing approximation schemes for sched-
uling algorithms. However, we cannot obtain our competitive ratios if we run the
ILP after each edge insertion. Instead, we identify certain types of edge insertions,
after which we can manually obtain an optimal ILP solution at zero cost without
resolving the ILP. We believe this technique is of independent interest and will find
further applications in the future.

7.1 Introduction

Distributed cloud applications generate a significant amount of network traf-
fic [148]. To improve their efficiency and performance, the underlying infrastruc-
ture needs to become demand-aware: frequently communicating endpoints need
to be allocated closer to each other, e.g., by collocating them on the same server
or in the same rack. Such optimizations are enabled by the increasing resource
allocation flexibilities available in modern virtualized infrastructures, and are fur-
ther motivated by rich spatial and temporal structure featured by communication
patterns of data-intensive applications [30].

This chapter studies the algorithmic problem underlying such demand-aware
resource allocation in scenarios where the communication pattern is not known
ahead of time. Instead, the algorithm needs to learn a communication pattern in an
online manner, dynamically collocating communication partners while minimizing
reconfiguration costs. It has recently (in Chapter 6) been shown that this problem
can be modeled by the following online graph partitioning problem [101]: Let 𝑘 and ℓ
be known parameters. We are given a graph 𝐺 which initially does not contain any
edges. Each vertex of the graph is assigned to one of ℓ servers and each server has
capacity 𝑘, i.e., stores 𝑘 vertices. Next, the edges of 𝐺 are revealed one-by-one in an
online fashion and the algorithm has to guarantee that every connected component
is placed on the same server (cc-condition). This is possible, as it is guaranteed that
there always exists an assignment of the connected components to servers such
that no connected component is split across multiple servers. Thus after each edge
insertion, the online algorithmhas to decidewhich vertices tomove between servers
to guarantee the cc-condition. Each vertex move incurs a cost of 1/𝑘. The optimal
offline algorithm knows all the connected components, computes, dependent on the
initial placement of the vertices, the minimum-cost assignment of these connected
components to servers and moves the vertices to their final servers after the first
edge insertion. It requires no further vertex moves. To measure the performance
of an online algorithm ONL we use the competitive ratio: the total cost of ONL
divided by the total cost of the optimal offline algorithm OPT. In this setting, no
deterministic online algorithm can have a better competitive ratio than 𝛺(𝑘) [101].

Thus, we relax the server capacity requirement for the online algorithm: Specif-
ically, the online algorithm is allowed to place up to (1 + 𝜀)𝑘 vertices on a server at
any point in time. We call this problem the online graph partitioning problem.

Henzinger et al. [101] (and Chapter 6) studied this problem and showed that

7.1. INTRODUCTION 155

the previously described demand-aware resource allocation problem reduces to the
online graph partitioning problem: vertices of the graph 𝐺 correspond to commu-
nication partners and edges correspond to communication requests; thus, by collo-
cating the communication partners based on the connected components of the ver-
tices, we minimize the network traffic (since all future communications among the
revealed edges will happen locally). They also showed how to implement a distrib-
uted union–find data structure with this approach. Algorithmically, [101] presented
a deterministic exponential-time algorithm with competitive ratio 𝑂(ℓ log ℓ log 𝑘)
and complemented their result with a lower bound of 𝛺(log 𝑘) on the competitive
ratio of any deterministic online algorithm. While their derived bounds are tight
for ℓ = 𝑂(1) servers, there remains a gap of factor 𝑂(ℓ log ℓ) between upper and
lower bound for the scenario of ℓ = 𝜔(1). Furthermore, their lower bound only
applies to deterministic algorithms and thus it is a natural question to ask whether
randomized algorithms can obtain better competitive ratios.

7.1.1 Our Contributions

Our main contribution is a polynomial-time randomized algorithm for online graph
partitioning which achieves a polylogarithmic competitive ratio. In particular, we
derive an 𝑂(log ℓ + log 𝑘) upper bound on the competitive ratio of our algorithm,
where ℓ is the number of servers and 𝑘 is the server capacity. We also show that no
randomized online algorithm can achieve a competitive ratio of less than 𝛺(log ℓ +
log 𝑘). The achieved competitive ratio is hence asymptotically optimal.

We further settle the open problem of the competitive ratio achievable by de-
terministic online algorithms. To this end, we derive an improved lower bound
of 𝛺(ℓ log 𝑘), and present a polynomial-time deterministic online algorithm which
achieves a competitive ratio of 𝑂(ℓ log 𝑘). Thus, also our deterministic algorithm is
optimal up to constant factors in the competitive ratio.

These results improve upon the results of [101] and Chapter 6 in three respects:
First, our deterministic online algorithm has competitive ratio 𝑂(ℓ log 𝑘) and poly-
nomial run-time, while the algorithm in [101] has competitive ratio 𝑂(ℓ log ℓ log 𝑘)
and requires exponential time. Second, we present a significantly higher and match-
ing lower bound of𝛺(ℓ log 𝑘) on the competitive ratio of any deterministic online al-
gorithm. Third, we initiate the study of randomized algorithms for the online graph
partitioning problem and show that it is possible to achieve a competitive ratio of
𝑂(log ℓ+log 𝑘) and we complement this result with a matching lower bound. Note
that the competitive ratio obtained by our randomized algorithm provides an expo-
nential improvement over what any deterministic algorithm can achieve in terms of
the dependency on the parameter ℓ. We should note, however, that the competitive
ratio of the algorithm derived in this chapter has a much worse dependency on 𝜀
than the previous work.

Technical Novelty. We will now provide a brief overview of our approach
and its technical novelty. Since our deterministic and our randomized algorithms

156 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

are based on the same algorithmic framework, we will say our algorithm in the
following.

Our algorithm keeps track of the set of connected components induced by the
revealed edges. We will denote the connected components as pieces and when two
connected components become connected due to an edge insertion, we say that the
corresponding pieces are merged.

The algorithm maintains an assignment of the pieces onto the servers which we
call a schedule. We will make sure that the schedule is valid, i.e., that every piece is
assigned to some server and that the capacities of the servers are never exceeded by
more than the allowed additive 𝜀𝑘. To compute valid schedules, we solve an integer
linear program (ILP) using a generic ILP solver and show how the solution of the
ILP can be transformed into a valid schedule. We ensure that the ILP is of constant
size and can, hence, be solved in polynomial time. Next, we show that when two
pieces are merged due to an edge insertion, the schedule does not change much, i.e.,
we do not have to move “too many” pieces between the servers. We do this using a
sensitivity analysis of the ILP, which guarantees that when two pieces are merged,
the solution of the ILP does not change by much. Furthermore, we prove that this
change in the ILP solution corresponds to only slightly adjusting the schedules, and
thus only moving a few pieces.

However, the sensitivity analysis alone is not enough to obtain the desired com-
petitive ratio. Indeed, we identify certain types of merge-operations for which the
optimal offline algorithm OPT might have very small or even zero cost. In this
case, adjusting the schedules based on the ILP sensitivity would be too costly: the
generic ILP solver from above could potentially move to an optimal ILP solution
which is very different from the current solution and, thus, incur much more cost
than OPT. Hence, to keep the cost paid by our algorithm low, we make sure that
for these special types of merge-operations, our algorithm sticks extremely close to
the previous ILP solution, incurs zero cost for moving pieces and still obtains an
optimal ILP solution. The optimality of the algorithm’s solution after such merge-
operations is crucial as otherwise, we could not apply the sensitivity analysis after
the subsequent merge-operations. To the best of our knowledge, our algorithm is
the first to interleave ILP sensitivity analysis with manual maintenance of optimal ILP
solutions.

More specifically, we assume that each server has a unique color and consider
each vertex as being colored by the color of its initial server. In our analysis we iden-
tify two different types of pieces: monochromatic and non-monochromatic ones. In
the monochromatic pieces, “almost all” of the vertices have the same color, i.e., were
initially assigned to the same server, while the non-monochromatic pieces contain
“many” vertices which started on different servers. We show that we have to treat
the monochromatic pieces very carefully because these are the pieces for which
OPT might have very small or even no cost. Hence, it is desirable to always sched-
ule monochromatic pieces on the server of the majority color. Unfortunately, we
show that this is not always possible. Indeed, the hard instances in our lower bounds
show that an adversary can force any deterministic algorithm to create schedules

7.1. INTRODUCTION 157

with extraordinary servers. Informally, a server 𝑠 is extraordinary if there exists a
monochromatic piece 𝑝 for which almost all of its vertices have the color of 𝑠 but
𝑝 is not scheduled on 𝑠 (see Section 7.4 for the formal definition). All other servers
are ordinary servers. Note that we have to deal with extraordinary servers carefully:
we might have to pay much more than OPT for their monochromatic pieces that
are scheduled on other servers.

Thus, to obtain a competitive algorithm, we need to minimize the number of
extraordinary servers. We achieve this with the following idea: We equip our ILP
with an objective function that minimizes the number of extraordinary servers and
we show that the number of extraordinary servers created by the ILP gives a lower
bound on the cost paid by OPT. We use this fact to argue that we can charge the
algorithm’s cost when creating extraordinary servers to OPT to obtain competitive
results.

The previously described ideas provide a deterministic algorithm with compet-
itive ratio 𝑂(ℓ log 𝑘). We also provide a matching lower bound of 𝛺(ℓ log 𝑘). The
lower bound provides a hard instance which essentially shows that an adversary
can force any deterministic algorithm to make each of the ℓ servers extraordinary
at some point in time. More generally, the adversary can cause such a high com-
petitive ratio whenever it knows which servers are extraordinary. Hence, to obtain
an algorithm with competitive ratio 𝑂(log ℓ + log 𝑘) we use randomization to keep
the adversary from knowing the extraordinary servers.

Our strategy for picking the extraordinary servers randomly is as follows. First,
we show that our algorithm experiences low cost (compared to OPT) when two
pieces assigned to an ordinary server are merged, while the cost for merging pieces
that are assigned to extraordinary servers is large (compared to OPT). Next, we
reduce the problem of picking extraordinary servers to a paging problem, where
the pages correspond to servers such that pages in the cache correspond to ordi-
nary servers and pages outside the cache correspond to extraordinary servers. Now
when two pieces are merged, we issue the corresponding page requests: A merge
of pieces assigned to an ordinary server corresponds to a page request of a page
which is inside the cache, while merging two pieces with at least one assigned to an
extraordinary server corresponds to a page request of a page which is not stored in
the cache. This leads the paging algorithm to insert and evict pages into and from
the cache and our algorithm always changes the types of the servers accordingly.
For example, when a page corresponding to an ordinary server is evicted from the
cache, we make the corresponding server extraordinary. We conclude by showing
that since the randomized paging algorithm of Blum et al. [37] allows for a polylog-
arithmic competitive ratio, we also obtain a polylogarithmic competitive ratio for
our problem.

The chapter is organized as follows. Section 7.2 introduces our notation and
Section 7.3 gives an overview of the algorithmic framework. We explain the de-
terministic algorithm in detail, including the ILP, in Section 7.4 and analyze it in
Section 7.5. Section 7.6 presents the randomized algorithm. Our lower bounds are
presented in Section 7.7 and Section 7.8 contains two omitted proofs.

158 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

7.1.2 Related Work

Theonline graph partitioning problem considered in this chapter is generally related
to classic online problems such as competitive paging and caching [8, 66, 70, 139, 189,
212], 𝑘-server [71], or metrical task systems [41]. However, unlike these existing
problems where requests are typically related to specific items (e.g., in paging) or
locations in a graph or metric space (e.g., the 𝑘-server problem and metrical task
systems), in our model, requests are related to pairs of vertices. The problem can
hence also be seen as a symmetric version of online paging, where each of the two
items (i.e., vertices in our model) involved in a request can be moved to either of
the servers currently hosting one of the items (or even to a third server). The static
problem variant is essentially a 𝑘-way partitioning or graph partitioning problem [1,
198]. The balanced graph partitioning problem is related to minimum bisection [68],
and known to be hard to approximate [18, 120]. Balanced clustering problems have
also been studied in streaming settings [15, 190].

Our model is also related to dynamic bin packing problems which allow for lim-
ited repacking [69]: this model can be seen as a variant of our problem where pieces
(resp. items) can both be dynamically inserted and deleted, and it is also possible
to open new servers (i.e., bins); the goal is to use only an (almost) minimal number
of servers, and to minimize the number of piece (resp. item) moves. However, the
techniques of [69] do not extend to our problem.

Another related problem arises in the context of generalized online scheduling,
where the current server assignment can be changed whenever a new job arrives,
subject to the constraint that the total size of moved jobs is bounded by some con-
stant times the size of the arriving job. While the reconfiguration cost in this model
is fairly different from ours, the sensitivity analysis of our ILP is inspired by the
techniques used in Hochbaum and Shmoys [105] and Sanders et al. [182].

Our work is specifically motivated by the online balanced (re-)partitioning prob-
lem introduced by Avin et al. in [20, 23]. In their model, the connected components
of the graph 𝐺 can contain more than 𝑘 vertices and, hence, might have to be split
across multiple servers. They presented a lower bound of 𝛺(𝑘) for deterministic
algorithms. They complemented this result by a deterministic algorithm with com-
petitive ratio of𝑂(𝑘 log 𝑘). This problemwas also studiedwhen the graph𝐺 follows
certain random graphs models [21, 22].

7.2 Preliminaries

Let us first re-introduce our model together with some definitions. We are given a
graph 𝐺 = (𝑉 , 𝐸) with |𝑉 | = ℓ ⋅ 𝑘. In the beginning, 𝐸 = ∅ and then edges are
inserted in an online manner. Initially, every vertex 𝑣 is assigned to one of ℓ servers
such that each server is assigned exactly 𝑘 vertices. We call this server the source
server of 𝑣. For a server 𝑠 we call the vertices which are initially assigned to 𝑠 the
source vertices of 𝑠. For normalization purposes, we consider each vertex to have

7.2. PRELIMINARIES 159

a volume vol(𝑣) of 1/𝑘, so that the total volume of vertices initially assigned to a
server is exactly 1.

After each edge insertion, the online algorithm must re-assign vertices to fulfill
the cc-condition, i.e., so that all vertices of the same connected component of 𝐺 are
assigned to the same server. To this end, it can move vertices between servers at a
cost of 1/𝑘 per vertex move. As described in the introduction, the optimum offline
algorithm OPT is only allowed to place vertices with total volume up to 1 onto
each server, while the online algorithm ONL is allowed to place total volume of
total volume of 1+𝜖 on each server, where 𝜖 > 0 is a small constant. For notational
convenience, our algorithms will place a total volume of 1+𝑐⋅𝜖 for some constant 𝑐,
which does not affect our asymptotic results as the algorithm can be started with
𝜖′ = 𝜖/𝑐.

Formally, the objective is to devise an online algorithm ONL which minimizes
the (strict) competitive ratio 𝜌 defined as 𝜌 = cost(ONL)/cost(OPT), where cost(⋅)
denotes the total volume of pieces moved by the corresponding algorithm. For de-
terministic online algorithms, the edge insertion order is adversarial; for random-
ized online algorithms, we assume an oblivious adversary that fixes an adversarial
request sequence without knowing the random choices of the online algorithm.

The following definitions and concepts are used in the remainder of this chapter.
Pieces. Our online algorithm proceeds by tracking the pieces, the connected

components of 𝐺 induced by the revealed edges. The volume of a piece 𝑝, denoted
by |𝑝|, is the total volume of all its vertices. For convenience, every server has a
unique color from the set {1, … , ℓ} and every vertex has the color of the server it
was initially assigned to. For a piece 𝑝, we define the majority color of 𝑝 as the
color that appears most frequently among vertices of 𝑝 and, in case of ties, that is
the smallest in the order of colors. We also refer to the corresponding server as the
majority server of 𝑝. Similarly, we define the majority color for a vertex 𝑣 to be the
majority color of the piece of 𝑣. Note that the latter changes dynamically as the
connected components of 𝐺 change due to edge insertions.

Size Classes and Committed Volume. To minimize frequent and expensive
moves, our approach groups the pieces into small and large pieces, and for the ILP
also partitions them into a constant number of size classes. The basic idea is to
“round down” the volume of a piece to a suitable multiple of 1/𝑘 and to call all
pieces of zero rounded volume small. However, pieces can grow and, thus, change
their size class, which in turn might create cost for the online algorithm. Thus, we
need to use a more “refined” rounding, that gives us some control over when such
a class change occurs.

More formally, let us assume that 1/4 > 𝜖 ≥ (10/𝑘)1/4. We choose 𝛿 such that
1
2𝜖2 ≤ 𝛿 ≤ 𝜖2 and 𝛿 = 𝑗 1

𝑘 for some 𝑗 ∈ ℕ. In addition, we assume ⌈1⌉𝛿 − 1 ≤ 𝛿/2,
where ⌈⋅⌉𝛿 is the operation of rounding up to the closest multiple of 𝛿. Claim 7.38
in Section 7.8.1 shows that we can always find such a 𝛿 provided that 𝑘 ≥ 10/𝜖4.
We will also use a constant 𝛾 = 2𝛿 < 1.

We partition the volume of a piece into committed and uncommitted volume. The
committed volume will always be a multiple of 𝛿, while the uncommitted volume

160 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

will be rather small (see below). We refer to the sum of committed and uncommitted
volume as the real volume of the piece. We extend this definition to vertices: Each
vertex is either committed or uncommitted. Now the committed volume of a piece
is the volume of its committed vertices. For a piece 𝑝, we write |𝑝|𝑐 to denote its
committed volume and |𝑝|𝑢 to denote its uncommitted volume. Hence, |𝑝| = |𝑝|𝑐 +
|𝑝|𝑢.

We introduce size classes for the pieces. We say that a piece is in class 𝑖 ∈ ℕ
if its committed volume is 𝑖 ⋅ 𝛿 (recall that committed volume is always a multiple
of 𝛿). Since the volume of a piece is never larger than 1, we have that 𝑖 ≤ 1/𝛿 and
thus there are only 𝑂(1/𝛿) = 𝑂(1/𝜀2) = 𝑂(1) size classes in total.

Large and Small Pieces. Intuitively, we want to refer to pieces with total
volume at least 𝜖 as large and to the remaining pieces as small. For technical reasons,
we change this as follows. We say a piece is large if its committed volume is non-
zero and small otherwise. This means that the small pieces are exactly the pieces in
class 0. As the algorithm decides when to commit volume, the algorithm controls
the transition from small to large. Note that committed volume never becomes
uncommitted and, thus, a piece transitions only once from small to large.

Monochromatic Pieces. Pieces that overwhelmingly contain vertices of a sin-
gle color have to be handled very carefully by an online algorithm because OPT
may not have to move many vertices of such a piece and thus experience very lit-
tle cost. Therefore we introduce the following notion, which needs to be different
for small and large pieces since we use different scheduling techniques for them: A
large piece is called monochromatic for its majority server 𝑠 if the volume of its ver-
tices that did not originate at 𝑠 is at most 𝛿. A small piece is called monochromatic if
an 𝜖-fraction of its volume did not originate at the majority server of the piece. We
refer to pieces that are not monochromatic as non-monochromatic.

7.3 Algorithmic Framework

In this section we present our general algorithmic framework. Some further details
follow in Section 7.4.

(1)The algorithm alwaysmaintains the current set of pieces 𝒫, where each piece
is annotated by its size class. If an edge insertion merges two pieces 𝑝𝑠 and 𝑝ℓ, into
a new merged piece 𝑝𝑚, it holds that |𝑝𝑚|𝑢 = |𝑝𝑠|𝑢 + |𝑝ℓ|𝑢 and |𝑝𝑚|𝑐 = |𝑝𝑠|𝑐 +
|𝑝ℓ|𝑐. We say that a merge is monochromatic if both 𝑝𝑠 and 𝑝ℓ are monochromatic
for the same server 𝑠. Note that 𝑝𝑚 is then also monochromatic for 𝑠. Throughout
the rest of the chapter, we let 𝑝𝑚 denote the piece that resulted from the last merge-
operation.

Invariants for Piece Volumes. Whenever the algorithm has completed its
vertex moves after an edge insertion, the following invariants for piece volumes are
maintained.

1. A piece 𝑝 is small (i.e. has |𝑝|𝑐 = 0) iff |𝑝| < 𝜖.

7.3. ALGORITHMIC FRAMEWORK 161

2. A large piece has committed volume 𝑖 ⋅ 𝛿 for some 𝑖 ∈ ℕ, 𝑖 > 0. If it is
monochromatic, all committed volume must be from its majority color.

3. The uncommitted volume of a large piece is atmost 2𝛿, while the uncommitted
volume of a small piece is at most 𝜖.

Now suppose that before a merge-operation, all pieces fulfill the invariants. Then af-
ter the merge, the new piece 𝑝𝑚 might fulfill only the relaxed constraint |𝑝𝑚| < 2𝜖
if 𝑝𝑚 is small (no committed volume) and the relaxed constraint |𝑝𝑚|𝑢 ≤ 𝜖 + 2𝛿
if 𝑝𝑚 is large (with committed volume). Before the next merge-operation, our algo-
rithm will perform commit-operations on the piece 𝑝𝑚 until 𝑝𝑚 fulfills the above
invariants. More concretely, if |𝑝𝑚| ≥ 𝜖 then a commit-operation is executed as
long as |𝑝𝑚|𝑢 > 2𝛿. It selects uncommitted vertices inside 𝑝𝑚 of volume 𝛿 and
sets their state to committed (which makes 𝑝𝑚 large). If 𝑝𝑚 is monochromatic, the
commit-operation only selects vertices of the majority color, of which there is a
sufficient number since for large monochromatic pieces, the volume of vertices of
non-majority color is at most 𝛿.

(2) The algorithm further maintains a schedule 𝑆, which is an assignment of
the pieces in 𝒫 to servers. The algorithm guarantees that this schedule fulfills cer-
tain invariants—the most important being the fact that the total volume of pieces
assigned to a server does not exceed the server’s capacity by much.

Adjusting Schedules. To reestablish these invariants after a change to 𝒫, we
run the adjust schedule subroutine. We provide the details of this subroutine in Sec-
tion 7.4 and now give a very short summary. When the set 𝒫 changes, this is due to
one of two reasons: a merge operation or a commit-operation. Both types of changes
might force us to change the old schedule 𝑆 to a new schedule 𝑆′. To do so, we
first solve an ILP (to be defined in Section 7.4) that computes the rough structure
of the new schedule 𝑆′. The ILP solution defines, among other things, the number
of extraordinary servers in the new schedule 𝑆′. Then we determine a concrete
schedule 𝑆′ that conforms to the structure provided by the ILP solution. Crucially,
we have to determine an 𝑆′ that is not too different from 𝑆, in order to keep the
cost for switching from 𝑆 to 𝑆′ small.

We note that the subroutine for adjusting the schedules only moves pieces be-
tween the servers and hence does not affect the invariants for piece volumes.

Handling an Edge Insertion. We now give a high-level overview of the algo-
rithm when an edge (𝑢, 𝑣) is inserted. If 𝑢 and 𝑣 are part of the same piece, we do
nothing since the set of pieces 𝒫 did not change. Otherwise, assume that 𝑢 is in
piece 𝑝𝑠 and 𝑣 is in 𝑝ℓ with 𝑝𝑠 ≠ 𝑝ℓ and |𝑝𝑠| ≤ |𝑝ℓ|. Then we proceed as follows.
Step I Move small to large piece: Move the smaller piece 𝑝𝑠 to the server of the

larger piece 𝑝ℓ.
Step II Merge pieces: Merge 𝑝𝑠 and 𝑝ℓ into 𝑝𝑚. Run the adjust schedule subroutine.
Step III Commit volume: If |𝑝𝑚| ≥ 𝜀, then

while |𝑝𝑚|𝑢 > 2𝛿:
Commit volume 𝛿 for 𝑝𝑚.
Run the adjust schedule subroutine.

162 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

7.4 Adjusting Schedules

Now we describe the subroutine for adjusting schedules in full detail. In the follow-
ing, we define an ILP that helps in finding a good assignment of the pieces to servers.
We ensure that when the set of pieces only changes slightly, then also the ILP solu-
tion only changes slightly. We also show how the ILP solution can be mapped to
concrete schedules.

Beforewe describe the ILP in detail, we introduce reservation and source vectors,
as well as configurations. In a nutshell, a server’s reservation vector encodes how
many pieces of each size class can be assigned to that server at most. A server’s
source vector, on the other hand, describes the structure of the monochromatic
pieces for that server. A configuration is a pair of a reservation and a configuration
vector and solving the ILP will inform us which configurations should be used for
the servers in our schedule.

A reservation vector 𝑟𝑠 for a server 𝑠 has the following properties. For a size
class 𝑖 > 0, the entry 𝑟𝑠𝑖 describes the total volume reserved on 𝑠 for the (commit-
ted) volume of pieces in class 𝑖 (regardless of their majority color). The entry 𝑟𝑠0
describes the total volume that is reserved for uncommitted vertices (again, regard-
less of color); note that these uncommitted vertices could belong to small or large
pieces. An entry 𝑟𝑠𝑖, 𝑖 > 0, must be a multiple of 𝑖𝛿 while the entry 𝑟𝑠0 is a multiple
of 𝛿. Note that 𝑟𝑠 does not describe which concrete pieces are scheduled on 𝑠 and
not even the exact number of pieces of a certain class, as it only “reserves” space.

A source vector 𝑚𝑠 for server 𝑠 has the following properties. For a size class
𝑖 > 0, the entry 𝑚𝑠𝑖 specifies the total committed volume of pieces in class 𝑖 that are
monochromatic for 𝑠. Again recall that a monochromatic piece only has committed
volume of its majority color. The entry𝑚𝑠0 describes the total uncommitted volume
of color 𝑠 rounded up to a multiple of 𝛿. Observe that similarly to the reservation
vectors, (a) the entries 𝑚𝑠𝑖 in the source vector are multiples of 𝑖𝛿 and (b) the entry
𝑚𝑠0 is a multiple of 𝛿. In addition, (c) the entries in 𝑚𝑠 sum up to at most ⌈1⌉𝛿 as
only vertices of color 𝑠 contribute. Observe that the source vector of a server 𝑠 just
depends on the sizes of the 𝑠-monochromatic pieces and on which of their vertices
are committed; it does not depend on how an algorithm assigns the pieces to servers.

A vector 𝑚 is a potential source vector if it fulfills properties (a)-(c) without nec-
essarily being the source vector for a particular server. Similarly, a potential reser-
vation vector 𝑟 is a vector where the 𝑖-th entry is a multiple of 𝑖𝛿, the 0-th entry a
multiple of 𝛿, and 𝑟 is 𝛾-valid. Here, we say that 𝑟 is 𝛾-valid if ‖𝑟‖1 ≤ 1 + 𝛾. Note
that there are only 𝑂(1) potential reservation or source vectors since they have
only 𝑂(1/𝛿) = 𝑂(1) entries (one per size class) and for each entry there are only
𝑂(1/𝛿) = 𝑂(1) choices.

A configuration (𝑟, 𝑚) is a pair consisting of a potential reservation vector 𝑟
and a potential source vector 𝑚. We further call a configuration (𝑟, 𝑚) ordinary
if 𝑟 ≥ 𝑚 (i.e., 𝑟𝑖 ≥ 𝑚𝑖 for each 𝑖) and otherwise we call it extraordinary. The
intuition is that servers with ordinary configurations have enough reserved space
such that they can be assigned all of their monochromatic pieces. Next, note that

7.4. ADJUSTING SCHEDULES 163

as there are only 𝑂(1) potential source and reservation vectors, there are only 𝑂(1)
configurations in total.

Claim 7.1. There exist only 𝑂(1) different configurations (𝑟, 𝑚).

Proof. Note that both 𝑟 and 𝑚 are vectors with one entry for each size class. As
argued in Section 7.2, there are only 𝑂(1) different size classes. Furthermore, by
definition of 𝑟 and 𝑚 each entry is a multiple of 𝛿 = 𝑂(1/𝜀2) between 0 and 1 + 𝛾.
Hence, there are only 𝑂(1) choices for each entry of 𝑟 and 𝑚. This proves the
claim.

In the following, we assign configurations to servers and we will call a server
ordinary if its assigned configuration is ordinary and extraordinary if its assigned
configuration is extraordinary.

We now define the ILP. Remember that the goal in this step is to obtain a set of
configurations, which we will then assign to the servers and which will guide the
assignment of the pieces to the servers. Thus, we introduce a variable 𝑥(𝑟,𝑚) ∈ ℕ0
for each (ordinary or extraordinary) configuration (𝑟, 𝑚). After solving the ILP,
our schedules will use exactly 𝑥(𝑟,𝑚) servers with configuration (𝑟, 𝑚). Further-
more, the objective function of the ILP is set such that the number of extraordinary
configurations is minimized.

The constraints of the ILP are picked as follows. First, let 𝑉𝑖, 𝑖 > 0, denote
the total committed volume of all pieces in class 𝑖 and let 𝑉0 denote the total un-
committed volume of all pieces. Note that the 𝑉𝑖 do not depend on the schedule of
the algorithm. Now we add a set of constraints, which ensures that the configura-
tions picked by the ILP reserve enough space such that all pieces of class 𝑖 can be
assigned to one of the servers. Second, let 𝑍𝑚 denote the number of servers with
the potential source vector 𝑚 at this point in time. (Recall that the source vectors of
the servers only depend on the current graph and the commitment decisions of the
algorithm and not on the algorithm’s schedule.) We add a second set of constraints
which ensures that for each 𝑚, the ILP solution contains exactly 𝑍𝑚 configurations
with source vector 𝑚. Now the ILP is as follows.

min ∑(𝑟,𝑚)∶ 𝑟≱𝑚 𝑥(𝑟,𝑚)

s.t. ∑(𝑟,𝑚) 𝑥(𝑟,𝑚)𝑟𝑖/𝛿 ≥ 𝑉𝑖/𝛿 for all 𝑖

∑𝑟 𝑥(𝑟,𝑚) = 𝑍𝑚 for all 𝑚
In the ILP we wrote 𝑟𝑖/𝛿 and 𝑉𝑖/𝛿 to ensure that ILP only contains integral values.
Further observe that the ILP has constant size and can, hence, be solved in con-
stant time: As there are only 𝑂(1) different configurations (Claim 7.1), the ILP only
has 𝑂(1) variables. Also, since there are only 𝑂(1) size classes 𝑖 and 𝑂(1) source
vectors 𝑚, there are only 𝑂(1) constraints.

Next, we show that an optimal ILP solution serves as a lower bound on the cost
paid by OPT.

164 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

Lemma 7.2. Suppose the objective function value of the ILP is ℎ, then we have that
cost(OPT) ≥ (𝛾 − 𝛿)ℎ = 𝛺(ℎ).

Proof. Consider the solution of OPT, i.e., an assignment of the pieces to servers
at minimum moving cost. We show that this assignment implies an ILP solution
with small cost. In particular, for each server 𝑠 for which OPT assigns at least a
(1 − 𝛾 + 𝛿)-fraction of its source vertices on 𝑠 itself, we show that we can construct
an ordinary configuration. For all other servers (for which OPT assigns at least
a (𝛾 − 𝛿)-fraction of their source vertices on other servers), we assign an extraor-
dinary configuration. Note for each server which has obtained an extraordinary
configuration in the previous construction, OPT has cost at least 𝛾 − 𝛿. Since
the ILP minimizes the total number of extraordinary configurations, we get that
cost(OPT) ≥ (𝛾 − 𝛿)ℎ.

We now construct the configurations for ordinary servers. Fix a server 𝑠 for
which OPT assigns at least a (1 − 𝛾 + 𝛿)-fraction of its source vertices on 𝑠 itself.
Let 𝑣 be a vector such that 𝑣𝑖 is the real volume of pieces in the 𝑖-th class, that OPT
assigned to 𝑠. Note that the 𝑣𝑖 are not rounded to multiples of 𝛿 and that ‖𝑣‖ = 1.
We construct a 𝛾-valid reservation vector 𝑟 for server 𝑠 as follows.

For every piece 𝑝 in class 𝑖 that is assigned on 𝑠, we decrease 𝑣𝑖 by the uncom-
mitted volume of the piece and add this value to 𝑣0. For a piece 𝑝 of class 𝑖 which
is not assigned on 𝑠, we just consider the source vertices of 𝑠 in 𝑝. We increase 𝑣𝑖
by the committed volume of these vertices and 𝑣0 by the uncommitted volume.

The above modifications did not increase ‖𝑣‖1 if the piece 𝑝 is assigned on 𝑠. The
total increase of ‖𝑣‖1 due to pieces not assigned on 𝑠 can be at most 𝛾 − 𝛿 because
each such increase is caused by an element with source-server 𝑠 that is not assigned
on 𝑠 (and the total volume of such vertices is only 𝛾 − 𝛿). Now we round 𝑣0 up to
the nearest multiple of 𝛿. This increases ‖𝑣‖1 by at most 𝛿. Therefore, ‖𝑣‖1 ≤ 1 + 𝛾.

We use the final vector 𝑣 as our reservation vector 𝑟. By construction 𝑟0 is at
least as large as the total uncommitted volume with source server 𝑠, i.e., 𝑟0 ≥ 𝑚𝑠0.
Further, 𝑟𝑖 is at least as large as the committed volume of monochromatic pieces
with source 𝑠, i.e., 𝑟𝑖 ≥ 𝑚𝑠𝑖. Finally, the 𝑟𝑖 value is still as large as the total
committed volume of class 𝑖 elements assigned on 𝑠. This means that the first set of
constraints in the ILP still holds.

7.4.1 Schedules That Respect an ILP Solution

Next, we describe the relationship of schedules and configurations. A schedule 𝑆 is
an assignment of pieces to servers. The set of pieces assigned to a particular server 𝑠
is called the schedule for 𝑠. A schedule for a server 𝑠 with source vector 𝑚𝑠 respects
a reservation 𝑟 if the following holds:

1. The committed volume of class 𝑖 pieces scheduled on 𝑠 is at most 𝑟𝑖.
2. The total uncommitted volume scheduled on 𝑠 is at most 𝑟0 + 14𝜖.
3. If 𝑟 ≥ 𝑚𝑠 then all pieces that are monochromatic for 𝑠 are placed on 𝑠.

7.4. ADJUSTING SCHEDULES 165

A schedule respects an ILP solution 𝑥 if there exists an assignment of configurations
to servers such that:

– A server 𝑠 with source vector 𝑚𝑠 is assigned a configuration (𝑟, 𝑚) with
𝑚 = 𝑚𝑠.

– A configuration (𝑟, 𝑚) is used exactly 𝑥(𝑟,𝑚) times.
– The schedule of each server respects the reservation of its assigned configu-

ration.
The next lemma shows that servers respecting a reservation only slightly exceed
their capacities.

Lemma 7.3. If the schedule for a server 𝑠 respects a 𝛾-valid reservation 𝑟, then the
total volume of all pieces assigned to 𝑠 is at most 1 + 𝛾 + 14𝜖 = 1 + 𝑂(𝜀).

Proof. The committed volume in large pieces can be at most 1 + 𝛾 − 𝑟0 because
‖𝑟‖1 ≤ 1 + 𝛾. The uncommitted volume scheduled on 𝑠 can be at most 𝑟0 + 14𝜖
due to Property 2.

7.4.2 How to Find Schedules

In this section, we describe how to resolve the ILP and adjust the existing schedule
after a merge or commit-operation so that it respects the ILP solution, in particular,
that the schedule of every server respects the reservation of its assigned configura-
tion, i.e., Properties 1-3 above. It is crucial that this step can be performed at a small
cost. We present different variants: In most situations, the algorithm uses a generic
variant that is based on sensitivity analysis of ILPs. However, in some special cases
(cases in which OPT might pay very little) using the generic variant might be too
expensive. Therefore, we develop special variants for these cases that resolve the
ILP and adjust the schedule at zero cost.

Before we describe our variants in detail, note that it is not clear how to assign
small pieces to servers based on the ILP solution. Hence, we define our variants
such that in the first phase they move some pieces around to construct a respecting
schedule but they ignore Property 2 while doing so, i.e., they only guarantee Prop-
erty 1 and Property 3. After this (preliminary) schedule has been constructed, we
run a balancing procedure (described below), which ensures that Property 2 holds.
The balancing procedure only moves small pieces and we show that its cost is at
most the cost paid for the first phase. As it is relatively short, we describe it first.

Balancing Procedure for Small Pieces. We now describe our balancing
procedure, which moves only small pieces and for which we show that Property 2
of respecting schedules is satisfied after it finished. The balancing procedure is run
after one of the variants of the ILP solving is finished.

For a server 𝑠, let 𝑣𝑢(𝑠) denote the total uncommitted volume scheduled at 𝑠.
We define the slack of a server 𝑠 by slack(𝑠) ∶= 𝑟𝑠0 − 𝑣𝑢(𝑠). Note that because
of the first constraint in the ILP with 𝑖 = 0, there is always a server with non-
negative slack. Next, we equip every server 𝑠 with an eviction budget budget(𝑠) that
is initially 0. Now, any operation outside of the balancing procedure that decreases

166 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

the slack must increase the eviction budget by the same amount. Such an operation
could, e.g., be a piece 𝑝 that is moved to 𝑠 (which decreases the slack by |𝑝|𝑢) or a
decrease in 𝑟𝑠0 when a new configuration is assigned to 𝑠. (Note that increasing the
eviction budget increases the cost for the operation performing the increase; we will
describe how we charge this cost later.) Intuitively it should follow that budget(𝑠)
roughly equals − slack(𝑠) and indeed we can show through a careful case analysis
that budget(𝑠) ≥ − slack(𝑠) − 2𝜖 (Claim 7.6).

This eviction budget is used to pay for the cost of moving small pieces away
from 𝑠 when the balancing procedure is called. We say a small piece 𝑝 is movable if
either its majority color has at most a (1−2𝜖)-fraction of the volume of 𝑝 (the piece
is far from monochromatic), or its majority color corresponds to an extraordinary
server. The balancing procedure does the following for each server 𝑠:

while there is a movable piece 𝑝 on 𝑠 with |𝑝| < budget(𝑠):
move 𝑝 to a server with currently non-negative slack
budget(𝑠) = budget(𝑠) − |𝑝|

We show in the following lemma that after balancing procedure finished, we
have that slack(𝑠) ≥ −14𝜀. This implies that when the balancing procedure fin-
ished, Property 2 holds since 𝑣𝑢(𝑠) = 𝑟𝑠0 − slack(𝑠) ≤ 𝑟𝑠0 + 14𝜀.

Lemma 7.4. After the balancing procedure for a server 𝑠 finished, we have that
slack(𝑠) ≥ −14𝜖.

We prove the lemma in Subsection 7.4.2.5.

7.4.2.1 Overview of the Variants

Next, we give the full details of the main algorithm for adjusting the schedules in
different cases.
Step I Move small to large piece: Move the smaller piece 𝑝𝑠 to the server of the

larger piece 𝑝ℓ.
Step II Merge pieces: Merge 𝑝𝑠 and 𝑝ℓ into 𝑝𝑚. Then adjust the schedule as follows:

– If 𝑝𝑠 is small, then the ILP does not change and no adjustment is neces-
sary.

– Else: if the merge is non-monochromatic or 𝑠 is extraordinary, use the
Generic Variant, otherwise, use Special Variant A.

Step III Commit volume: If |𝑝𝑚| ≥ 𝜀, then
while |𝑝𝑚|𝑢 > 2𝛿:

Commit volume 𝛿 for 𝑝𝑚.
If 𝑝𝑚 is non-monochromatic or 𝑠 is extraordinary, use the Generic Vari-
ant, otherwise, use Special Variant B.

7.4. ADJUSTING SCHEDULES 167

7.4.2.2 The Generic Variant

We now describe the Generic Variant of the schedule adjustment. Suppose the set
of pieces 𝒫 changed into 𝒫′ due to a merge or a commit-operation.

The algorithm always maintains for the current set 𝒫 an optimum ILP solution.
Let 𝑥 be the ILP solution for 𝒫. When 𝒫 changes, the algorithm runs the ILP to
obtain the optimum ILP solution 𝑥′ for 𝒫′.

In the following, we first argue how to assign the configurations from 𝑥′ to the
servers and then we argue how we can transform a schedule 𝑆 (respecting 𝑥) into
a schedule 𝑆′ (respecting 𝑥′) with little cost.

We first assign the configurations given by 𝑥′ to servers by the following greedy
process. A configuration (𝑟, 𝑚) is free if it has not yet been assigned to 𝑥′

(𝑟,𝑚)
servers. As long as there is a free configuration (𝑟, 𝑚) and a server 𝑠 that had been
assigned (𝑟, 𝑚) in schedule 𝑆, we assign (𝑟, 𝑚) to 𝑠. The remaining configurations
are assigned arbitrarily subject to the constraint that a server 𝑠 with source vector
𝑚𝑠 obtains a configuration of the form (𝑟, 𝑚𝑠) for some 𝑟.
Now that we have assigned the configurations to the servers, we still have to ensure
that the new schedule respects these new server configurations. We start with some
definitions.

First, let 𝒜 be the set of servers for which the set of scheduled pieces changed
due to the merge or commit-operation. For a merge-operation, these are the servers
that host one of the pieces 𝑝𝑠, 𝑝ℓ, or 𝑝𝑚, and for a commit-operation, this is the
server that hosts the piece 𝑝𝑚 that executes the commit. Note that |𝒜| ≤ 3. Second,
let ℬ be the set of servers that changed their source vector due to the merge or
commit-operation. Note that for a commit-operation |ℬ| could be large, because the
committed volume could contain many different colors and for each corresponding
server, the source vector could change by a reduction of 𝑚0. Third, we let 𝒞 be the
set of servers that changed their assigned configuration between 𝑆 and the current
schedule 𝑆′. Note that |𝒞| ≤ |ℬ| + ‖𝑥 − 𝑥′‖1.

Observe that for servers 𝑠 ∈ 𝒜 ∪ 𝒞 neither their assigned configuration (since
𝑠 ∉ 𝒞) nor their set of scheduled pieces (since 𝑠 ∉ 𝒜) has changed. Thus, these
servers already respect their configuration and, hence, we do not move any pieces
for these servers now. For the servers in 𝒜 ∪ 𝒞 we do the following:

1. We mark all pieces currently scheduled on servers in 𝒜 ∪ 𝒞 as unassigned.
2. Every ordinary server in 𝒜∪𝒞 moves all of its monochromatic pieces to itself.

This guarantees Property 3 of a respecting schedule. Note that this step may
move pieces away from servers in 𝒜 ∪ 𝒞.

3. The remaining pieces are assigned in a first fit fashion. We say a server is free
for class 𝑖 > 0 if the committed volume of class 𝑖 pieces already scheduled
on it is (strictly) less than 𝑟𝑖. It is free for class 0 if the uncommitted volume
scheduled on it is less than 𝑟0.
To schedule an unassigned piece 𝑝 of class 𝑖, we determine a free server for
class 𝑖 and schedule 𝑝 there. The first set of constraints in the ILP guarantees
that we always find a free server.

168 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

This scheduling will guarantee Property 1 of a respecting schedule, i.e., for all 𝑖 > 0
the volume of class 𝑖 pieces scheduled on a server 𝑠 is at most 𝑟𝑠𝑖. This holds because
𝑟𝑠𝑖 is a multiple of 𝑖𝛿. If we decide to schedule a class 𝑖 piece on 𝑠 because a server
is free for class 𝑖 then it actually has space at least 𝑖𝛿 remaining for this class. Hence,
we never overload class 𝑖, 𝑖 > 0.

In the following, we develop a bound on the cost of the above scheme. For the analy-
sis of our overall algorithm we use an involved amortization scheme. Therefore, the
cost that we analyze here is not the real cost that is incurred by just moving pieces
around but it is inflated in two ways:
(A) If we move a piece 𝑝 to a server 𝑠, we increase the eviction budget of 𝑠 by

|𝑝|𝑢.
(B) Whenever we change the configuration of a server from an ordinary con-

figuration to an extraordinary configuration, we experience an extra cost of
4(1 + 𝛾)/𝛿. This will be required later in Case IIa of the analysis.

Observe that Cost Inflation (A) clearly only increases the cost by a constant factor.
Cost Inflation (B) will also only increase the cost by a constant factor as the analysis
below assumes constant cost for every server that changes its configuration. Note
that the Generic Variant is the only variant for adjusting the schedule for which
Inflation (B) has an affect; the other variants do not move pieces around and do not
generate any new extraordinary configurations.

The following lemma provides the sensitivity analysis for the ILP. Its first point
essentially states that for adjusting the schedules, we need to pay cost proportional
to the number of servers that change their source configuration from 𝒫 to 𝒫′ plus
the change in the ILP solutions. The second point then bounds the change in the ILP
solutions by the number of servers that change their source vectors from 𝒫 to 𝒫′.

Lemma 7.5. Suppose we are given a schedule 𝑆 that respects an ILP solution 𝑥 for a
set of pieces 𝒫. Let 𝒫′ denote a set of pieces obtained from 𝒫 by either a merge or a
commit-operation, and let 𝐷 denote the number of servers that have a different source
vector in 𝒫 and 𝒫′. Then:

1. If 𝑥′ is an ILP solution for 𝒫′, then then we can transform 𝑆 into 𝑆′ with cost
𝑂(1 + 𝐷 + ‖𝑥 − 𝑥′‖1).

2. Then we can find an ILP solution 𝑥′ for 𝒫′ with ‖𝑥 − 𝑥′‖1 = 𝑂(1 + 𝐷).
3. If the operation was a merge-operation, then 𝐷 ≤ 3.

We prove the lemma in Subsection 7.4.2.6.

7.4.2.3 Special Variant A: Monochromatic Merge

Special Variant A is used if we performed a monochromatic merge-operation of two
large pieces 𝑝𝑠, 𝑝ℓ and if the server 𝑠 that holds the piece 𝑝ℓ is ordinary. Then OPT
may not experience any cost. Therefore, we also want to resolve the ILP and adjust
the schedule 𝑆 with zero cost.

7.4. ADJUSTING SCHEDULES 169

Since 𝑠 has an ordinary configuration and 𝑝ℓ is monochromatic for 𝑠, we know
that 𝑝ℓ was scheduled at 𝑠. Hence, our new piece 𝑝𝑚 (which is generated at 𝑝ℓ’s
server) is already located at the right server 𝑠.

We obtain our schedule 𝑆′ by deleting the assignments for 𝑝𝑠 and 𝑝ℓ from 𝑆
and adding the location 𝑠 for the new piece 𝑝𝑚. Now let 𝑖𝑠, 𝑖ℓ, and 𝑖𝑚 denote the
classes of pieces 𝑝𝑠, 𝑝ℓ, and 𝑝𝑚, respectively (note that these classes are at least
1 as all pieces are large). Then the new ILP can be obtained by only changing the
configuration vector 𝑚𝑠 and setting

𝑚′
𝑠𝑖𝑠

∶= 𝑚𝑠𝑖𝑠
− |𝑝𝑠|𝑐

𝑚′
𝑠𝑖ℓ

∶= 𝑚𝑠𝑖ℓ
− |𝑝ℓ|𝑐

𝑚′
𝑠𝑖𝑚

∶= 𝑚𝑠𝑖𝑚
+ |𝑝𝑚|𝑐

, 𝑍′
𝑚𝑠

∶= 𝑍𝑚𝑠
− 1

𝑍′
𝑚′𝑠

∶= 𝑍𝑚′𝑠
+ 1

and
𝑉 ′

𝑖𝑠
∶= 𝑉𝑖𝑠

− |𝑝𝑠|𝑐
𝑉 ′

𝑖ℓ
∶= 𝑉𝑖ℓ

− |𝑝ℓ|𝑐
𝑉 ′

𝑖𝑚
∶= 𝑉𝑖𝑚

+ |𝑝𝑚|𝑐
.

To obtain a solution 𝑥′ to this new ILP, we change the reservation vector for
the server 𝑠 as follows.

𝑟′
𝑠𝑖𝑠

∶= 𝑟𝑠𝑖𝑠
− |𝑝𝑠|𝑐

𝑟′
𝑠𝑖ℓ

∶= 𝑟𝑠𝑖ℓ
− |𝑝ℓ|𝑐

𝑟′
𝑠𝑖𝑚

∶= 𝑟𝑠𝑖𝑚
+ |𝑝𝑚|𝑐

.

This does not change the ‖⋅‖1-norm of the vector 𝑟 because 𝑟𝑖𝑠
≥ 𝑚𝑖𝑠

≥ |𝑝𝑠|𝑐 (this
follows from the definition of 𝑚𝑖𝑠

and the fact that 𝑟𝑠 ≥ 𝑚𝑠 holds) and because
|𝑝𝑠|𝑐 + |𝑝ℓ|𝑐 = |𝑝𝑚|𝑐. We obtain the ILP solution 𝑥′ by setting

𝑥′
(𝑟𝑠,𝑚𝑠) ∶= 𝑥(𝑟𝑠,𝑚𝑠) − 1 and 𝑥′

(𝑟′𝑠,𝑚′𝑠) ∶= 𝑥(𝑟′𝑠,𝑚′𝑠) + 1.

Note that 𝑟𝑠 ≥ 𝑚𝑠 implies 𝑟′
𝑠 ≥ 𝑚′

𝑠. Hence, our new ILP solution does not in-
crease the objective function value of the ILP (i.e., the number of extraordinary
configurations). In Lemma 7.39 in Section 7.8.2 we show that merging two large
monochromatic pieces of a server cannot decrease the objective function value of
the ILP. Therefore, the new ILP solution 𝑥′, which has the same objective function
value as 𝑥, is optimal.

Finally, observe that we only changed the configuration of server 𝑠 and that we
did not move any pieces. Hence, we can transform 𝒫, 𝑥 and 𝑆 into 𝒫′, 𝑥′ and 𝑆′

with zero cost.

7.4.2.4 Special Variant B: Monochromatic Commit

Suppose we perform a commit-operation for a monochromatic piece 𝑝𝑚 that is
located at an ordinary server 𝑠. Then OPT may not experience any cost. Therefore,

170 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

we present a special variant for adjusting the schedule that also induces no cost.
We perform a routine similar to Special Variant A. Recall that in a commit for a
monochromatic piece, we commit volume exactly 𝛿 and all of the committed volume
has color 𝑠.

Let 𝑖 and 𝑖′ denote the old and the new class of the piece, respectively. Then the
source vector vector 𝑚𝑠 of 𝑠 changes as follows:

𝑚′
𝑠𝑖 ∶= 𝑚𝑠𝑖 − |𝑝𝑚|𝑐

𝑚′
𝑠𝑖′ ∶= 𝑚𝑠𝑖′ + |𝑝𝑚|𝑐 + 𝛿

𝑚′
𝑠0 ∶= 𝑚𝑠0 − 𝛿

.

Note that the above is also correct for the case that 𝑖 = 0 (𝑝𝑚 small) because then
|𝑝𝑚|𝑐 = 0. The new ILP is obtained by setting

𝑍′
𝑚𝑠

∶= 𝑍𝑚𝑠
− 1

𝑍′
𝑚′𝑠

∶= 𝑍𝑚′𝑠
+ 1 and

𝑉 ′
𝑠𝑖 ∶= 𝑉𝑠𝑖 − |𝑝𝑚|𝑐

𝑉 ′
𝑠𝑖′ ∶= 𝑉𝑠𝑖′ + |𝑝𝑚|𝑐 + 𝛿

𝑉 ′
𝑠0 ∶= 𝑉𝑠0 − 𝛿

.

We obtain a solution to the new ILP by adjusting the reservation vector 𝑟 at the
server 𝑠 where 𝑝𝑚 is scheduled (recall that 𝑠 is ordinary, i.e., the monochromatic
piece 𝑝𝑚 must be located at 𝑠):

𝑟′
𝑠𝑖 ∶= 𝑟𝑠𝑖 − |𝑝𝑚|𝑐

𝑟′
𝑠𝑖′ ∶= 𝑟𝑠𝑖′ + |𝑝𝑚|𝑐 + 𝛿

𝑟′
𝑠0 ∶= 𝑟𝑠0 − 𝛿

.

Observe that we reduce 𝑟𝑠0 by 𝛿. Usually, if we reduce 𝑟𝑠0 we increase the eviction
budget of 𝑠, so that 𝑠 can evict small pieces in case the uncommitted volume sched-
uled on 𝑠 is larger than 𝑟𝑠0 + 14𝜖. However, here this is not necessary because the
commit also decreases the uncommitted volume that is scheduled on 𝑠 by 𝛿.

Observe that ‖𝑟𝑠‖ ≤ 1 + 𝛾 implies ‖𝑟′
𝑠‖ ≤ 1 + 𝛾, i.e., 𝑟′ is 𝛾-valid. The new

solution 𝑥′ is
𝑥′

(𝑟𝑠,𝑚𝑠) ∶= 𝑥(𝑟𝑠,𝑚𝑠) − 1
𝑥′

(𝑟′𝑠,𝑚′𝑠) ∶= 𝑥(𝑟′𝑠,𝑚′𝑠) + 1 .

Note that the configuration (𝑟′
𝑠, 𝑚′

𝑠) is ordinary because (𝑟𝑠, 𝑚𝑠) is ordinary. Over-
all only a single server changed its configuration and this server keeps an ordinary
configuration. Therefore the number of extraordinary configurations did not in-
crease and we still have an optimum solution to the ILP. See Lemma 7.40 in Sec-
tion 7.8.2 for a formal proof that the new solution is indeed optimal.

Also the old schedule still respects this new ILP solution. Therefore we do not
experience any cost.

7.4.2.5 Proof of Lemma 7.4

We want to show that slack(𝑠) = 𝑟𝑠0 − 𝑣𝑢(𝑠) ≥ −14𝜖. We prove the lemma by
contradiction, i.e., assume that slack(𝑠) < −14𝜖. We will use the following claim,
which we prove at the end of the subsection.

7.4. ADJUSTING SCHEDULES 171

Claim 7.6. budget(s) ≥ 𝑣𝑢(𝑠) − 𝑟𝑠0 − 2𝜖 = − slack(𝑠) − 2𝜀.

First, we argue that the total volume of small pieces is 𝑟𝑠0 +4𝜀. Let 𝑚̄𝑠0 denote
the total uncommitted volume for 𝑠 not rounded up, i.e., 𝑚𝑠0 = ⌈𝑚̄𝑠0⌉𝛿. Since
slack(𝑠) < −14𝜀, the above claim gives that the budget is at least 12𝜖 ≥ 2𝜖, i.e., it
is larger than the volume of small pieces. Thus, the only reason to not perform an
eviction is that all small pieces scheduled on 𝑠 are close to being monochromatic for
𝑠 and 𝑠 is ordinary. But the total volume of such pieces can be at most

𝑚̄𝑠0/(1 − 2𝜖) ≤ (1 + 4𝜖)𝑚̄𝑠0 ≤ 𝑚̄𝑠0 + 4𝜖 ≤ 𝑟𝑠0 + 4𝜖

, where used 𝜖 ≤ 1/4 and that 𝑠 has an ordinary configuration.
Second, the following claim gives a bound of 10𝜖 on the total uncommitted vol-

ume in large pieces; we prove the claim at the end of this subsection.

Claim 7.7. If 𝛾 ≤ 1, then the total uncommitted volume in large pieces at a server 𝑠
is at most 10𝜖.

We conclude that Property 2 holds, i.e., 𝑣𝑢(𝑠) ≤ 𝑟𝑠0 + 14𝜖. However, this is a
contradiction to our assumption that 𝑟𝑠0 − 𝑣𝑢(𝑠) = slack(𝑠) < −14𝜀 since this
inequality implies 𝑣𝑢(𝑠) > 𝑟𝑠0 + 14𝜀.

Proof of Claim 7.6. In the initial state of the algorithm budget(𝑠) = 0, 𝑣𝑢(𝑠) = 1,
𝑚𝑠0 = 𝑟𝑠0 = ⌈1⌉𝛿. Thus, the statement holds. The following operations affect the
slack:

– A piece 𝑝 is moved to 𝑠 outside of the balancing procedure. This increases
both sides of the equation by |𝑝𝑢|.

– A small piece 𝑝 is moved to 𝑠 inside of the balancing procedure. This is only
performed if the slack on 𝑠 is non-negative. Note that the move causes the
slack to increase by at most |𝑝| ≤ 2𝜖. Hence the equation holds afterwards.

– A piece is moved away from 𝑠 outside of the balancing procedure. This only
decreases 𝑣𝑢(𝑠).

– A small piece is moved away from 𝑠 inside the balancing rouine. This de-
creases both sides of the equation by the volume of the piece.

– When adjusting the schedule by the generic routine (see Secction 7.4.2.2) and a
new configuration with a smaller 𝑟𝑠0-value is assigned to 𝑠, then the eviction
budget is increased by the change in 𝑟𝑠0. Hence, both sides of the equation
increase by the same amount.

As no operation can make the equation invalid it holds throughout the algorithm.
Note that when we use Special Variant A for adjusting the schedule (see Sec-

tion 7.4.2.3) 𝑟𝑠0 will be decreased but the committed volume scheduled on 𝑠 will
be decreased by the same amount. This means the slack does not change in this
case.

Proof of Claim 7.7. Consider the set 𝐿 of large pieces that exclude the piece 𝑝𝑚 that
resulted from the last merge-operation. Let ̄𝑣𝑐 and ̄𝑣𝑢 denote the total committed

172 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

and uncommitted volume for pieces in 𝐿 that are scheduled on 𝑠. Pieces in 𝐿 have
volume at least 𝜖 and uncommitted volume atmost 2𝛿 (Invariants 1 and 3). Therefore,
the factor 𝑓 ∶= ̄𝑣𝑢/(̄𝑣𝑐 + ̄𝑣𝑢) between uncommitted and real volume of these pieces
is at most 2𝛿/𝜖. We can derive a bound on the total uncommitted volume for pieces
in 𝐿 as follows:

̄𝑣𝑐 + ̄𝑣𝑢 = (1 + 𝑓
1−𝑓) ̄𝑣𝑐 ≤ (1 + 2𝑓) ̄𝑣𝑐 ,

where we use 𝑓 ≤ 2𝛿/𝜖 ≤ 1/2, which holds because 𝛿 ≤ 𝜖2 and 𝜖 ≤ 1/4. To obtain
a bound on the total uncommitted volume in large pieces, we have to also consider
the piece 𝑝𝑚. For this piece we have |𝑝𝑚|𝑢 ≤ 𝜖 + 2𝛿 according to Invariant 3. We
get

𝑣𝑢 = ̄𝑣𝑢 + |𝑝𝑚|𝑢 ≤ 2𝑓 ̄𝑣𝑐 + (𝜖 + 2𝛿) ≤ 4𝛿𝜖 (1 + 𝛾) + 2𝜖 ≤ 10𝜖 ,

where the second step uses that |𝑝𝑚|𝑢 ≤ 𝜖 + 2𝛿 due to Invariant 3, the third step
uses that the committed volume at 𝑠 is at most ‖𝑟‖1 ≤ 1 + 𝛾, and the final step uses
𝛾 ≤ 1.

7.4.2.6 Proof of Lemma 7.5

The third claim holds since only the servers for which one of the pieces 𝑝𝑠, 𝑝ℓ, or
𝑝𝑚 is monochromatic can change their source vector.

Next, consider the first claim. The cost for the second step in the above scheme
is at most 𝑂(|𝒜 ∪ 𝒞|) because only pieces that are monochromatic for a server in
𝒜 ∪ 𝒞 move. The cost for the third step is also at most 𝑂(|𝒜 ∪ 𝒞|) because only
pieces that were scheduled on servers from 𝒜 ∪ 𝒞 in 𝑆 move. This gives the first
claim since

|𝒜 ∪ 𝒞| ≤ 3 + |ℬ| + ‖𝑥 − 𝑥′‖1 = 𝑂(1 + 𝐷 + ‖𝑥 − 𝑥′‖1).

The rest of the proof is devoted to the proof of the second claim. We use the
following general result about the sensitivity of optimal ILP solutions. It states that
a small change in the constraint vector of the ILP implies only a small change in the
optimal solution 𝑥.

Theorem 7.8 ([185, Corollary 17.2a]). Let 𝐴 be an integral 𝑛𝑟 × 𝑛𝑐 matrix, such
that each subdeterminant of 𝐴 is at most 𝛥 in absolute value; let 𝑏′ and 𝑏″ be column
𝑛𝑟-vectors, and let 𝑐 be a row 𝑛𝑐-vector. Suppose max{𝑐𝑥 ∣ 𝐴𝑥 ≤ 𝑏′; 𝑥 integral} and
max{𝑐𝑥 ∣ 𝐴𝑥 ≤ 𝑏″; 𝑥 integral} are finite. Then for each optimum solution 𝑧′ of the
first maximum there exists an optimum solution 𝑧″ of the second maximum such that
‖𝑧′ − 𝑧″‖∞ ≤ 𝑛𝑐𝛥(‖𝑏′ − 𝑏″‖∞ + 2).

To apply the theorem, we bound how much the constraint vector in our ILP
changes. Every change in the value of 𝑍𝑚 represents a change in the source con-
figuration of some server. Hence, ‖𝑍 − 𝑍′‖ ≤ 𝐷. Every change in a value 𝑉𝑖
represents a change in the committed volume of a piece. For a merge operation

7.5. ANALYSIS 173

there are at most 3 pieces that change their committed volume (pieces 𝑝𝑠, 𝑝ℓ, 𝑝𝑚
in a merge-operation). For a commit-operation only the piece 𝑝𝑚 executing the
commit changes its committed volume. Hence, ‖𝑉 − 𝑉 ′‖1 ≤ 3/𝛿. Overall the RHS
vector in the ILP changes by 𝑂(1 + 𝐷).

Let 𝐴 denote the matrix that defines the ILP. Then the number of columns 𝑛𝑐 is
the number of configurations (𝑟, 𝑚). This is constant due to Claim 7.1.

An entry in the matrix 𝐴 is either 0, 1 or 𝑟𝑖/𝛿 ≤ ‖𝑟‖1/𝛿 ≤ (1 + 𝛾)/𝛿. Hence,
𝑎max ∶= (1 + 𝛾)/𝛿 is an upper bound for the absolute value of entries in 𝐴. As
the number of columns is 𝑛𝑐, we can use Hadamard’s inequality to get a bound of
𝛥 ≤ 𝑛𝑛𝑐/2

𝑐 𝑎𝑛𝑐max = 𝑂(1) on the value of any subdeterminant.
Now, Theorem 7.8 gives that we can find an optimum ILP solution 𝑥′ for 𝒫′

with ‖𝑥 − 𝑥′‖∞ ≤ 𝑂(1 + ‖𝑏 − 𝑏′‖∞). As the vectors 𝑥 and 𝑥′ have a constant
number of entries, we also get ‖𝑥 − 𝑥′‖1 ≤ 𝑂(1 + ‖𝑏 − 𝑏′‖1) = 𝑂(1 + 𝐷), as
desired.

7.5 Analysis

We first give a high level overview of the analysis. Let 𝒫∗ denote the final set of
pieces. A simple lower bound on the cost of OPT is as follows. Let NM denote the
set of vertices that do not have the majority color within their piece in 𝒫∗. Then
cost(OPT) ≥ 1

𝑘 |NM|, because each vertex has volume 1
𝑘 and for each piece in 𝒫∗,

OPT has to move all vertices apart from vertices of a single color. Hence, the total
volume of pieces moved by OPT is at least 1

𝑘 |NM|.
We want to exploit this lower bound by a charging argument. The general idea

is that whenever our online algorithm experiences some cost 𝐶 , we charge this cost
to vertices whose color does not match the majority color of their piece. If the total
charge made to each such vertex 𝑣 is at most 𝛼 ⋅ vol(𝑣), then the cost of the online
algorithm is at most 𝛼 ⋅ cost(OPT). When we charge cost to vertices, we will refer
to this as vertex charges.

The difficultywith this approach is that at the time of the charge, we do not know
whether a vertex will have the majority color of its piece in the end. Therefore, we
proceed as follows. Suppose we have a subset 𝑆 of vertices in a piece 𝑝 and a subset
𝑄 ⊆ 𝑆 does not have the current majority color of 𝑆 . Then regardless of the final
majority color of 𝑝, a total volume of vol(𝑄) of vertices in 𝑆 will not have this color
in the end. Hence, when we distribute a charge of 𝐶 evenly among the vertices of 𝑆,
a charge of vol(𝑄) ⋅ 𝐶/ vol(𝑆) goes to vertices that do not have the final majority
color. We call this portion of the charge successful.

The following lemma shows that to obtain algorithms competitive to OPT, it
suffices if we bound the successful and the total vertex charges.

Lemma 7.9. Suppose the total successful charge is at least chargesucc while the max-
imum (successful and unsuccessful) charge to a vertex is at most chargemax. Then
cost(OPT) ≥ 1

𝑘chargesucc/chargemax.

174 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

Proof. Note that successful charge only goes to vertices in NM. Hence, |NM| ≥
chargesucc/chargemax, and, therefore, we obtain that cost(OPT) ≥ 1

𝑘 |NM| ≥
1
𝑘chargesucc/chargemax.

Another lower bound that we use is due to Lemma 7.2. Let ℎmax denote the
maximum objective value obtained when solving different ILP instances during the
algorithm. From time to time, when vertex charges are not appropriate, we per-
form extraordinary charges or just extra charges. In the end, we compare the total
extra charge to ℎmax. We stress that we only perform extra charges when extra-
ordinary configurations are involved. This means if ℎmax = 0 we never perform
extra charges, as otherwise, it would be difficult to obtain a good competitive ratio.

In the following analysis, we go through the different steps of the algorithm. For
every step, we charge the cost either by a vertex charge or by an extra charge. If we
apply a vertex charge, we argue that (1) enough of the applied charge is successful
and (2) the charge can accumulate to not toomuch at every vertex. For extra charges,
we require a more global argument and we will derive a bound on the total extra
charge in terms of ℎmax in Section 7.5.1.1.

7.5.1 Analysis Details

When merging a piece 𝑝ℓ and 𝑝𝑠 with |𝑝𝑠| ≤ |𝑝ℓ| we proceed in several steps.

Step I: Small to Large. In this first step, we move the vertices of 𝑝𝑠 to the server
of 𝑝ℓ. If 𝑝𝑠 and 𝑝ℓ are on different servers we experience a cost of |𝑝𝑠|. Also, we
have to increase the eviction budget of the server that holds piece 𝑝ℓ (if 𝑝𝑠 is a small
piece). The cost for this step is 0 if 𝑝𝑠 and 𝑝ℓ are on the same server and, otherwise,
it is at most 2|𝑝𝑠|. We charge the cost as follows.

Case (Ia) Merge is monochromatic. If 𝑝𝑠, 𝑝ℓ, and 𝑝𝑚 are monochromatic for the
same server 𝑠 we only experience cost if 𝑠 is extraordinary because otherwise 𝑝𝑠
and 𝑝ℓ are located at 𝑠. We make an extra charge for this cost.

Case (Ib) Merge is not monochromatic. We make the following vertex charges:
• Type I charge: We charge 2

𝛿 ⋅ |𝑝𝑠|
|𝑝𝑚| ⋅ vol(𝑣) to every vertex in 𝑝𝑚.

• Type II charge: We charge 2
𝛿 ⋅ vol(𝑣) to every vertex in 𝑝𝑠.

Claim 7.10 below shows that the Type I and Type II charge at a vertex can accumu-
late to at most 𝑂(log 𝑘). In the following, we argue that at least a charge of 2|𝑝𝑠| is
successful. We distinguish several cases.

• If either 𝑝ℓ or 𝑝𝑚 is not monochromatic, we know that at least a volume of 𝛿
(if the non-monochromatic piece is large) or a volume of 𝜖|𝑝ℓ| of vertices does
not have the majority color. Hence, we get that at least min{𝛿, 𝜖|𝑝ℓ|} 2|𝑝𝑠|

𝛿|𝑝𝑚| ≥
2|𝑝𝑠| of the Type I charge is successful. The inequality uses |𝑝𝑚| ≤ 1, |𝑝ℓ| ≥
1
2 |𝑝𝑚|, and 𝛿 ≤ 𝜖2 ≤ 𝜖/2.

• If 𝑝𝑠 is not monochromatic then at least 𝛿|𝑝𝑠| volume in 𝑝𝑠 has not the ma-
jority color. This gives a successful charge of at least 𝛿|𝑝𝑠| ⋅ 2

𝛿 ≥ 2|𝑝𝑠|.

7.5. ANALYSIS 175

• Finally suppose that 𝑝𝑠 and 𝑝ℓ are monochromatic for different colors 𝐶𝑠 and
𝐶ℓ, respectively. If in the end 𝐶𝑠 is not the majority color of the final piece
then we have a successful charge of at least (1 − 𝜖)|𝑝𝑠| ⋅ 2/𝛿 ≥ 2|𝑝𝑠| from
the Type II charge. Otherwise, 𝐶ℓ is not the majority color and we obtain a
successful charge of (1 − 𝜖)|𝑝ℓ| ⋅ 2|𝑝𝑠|

𝛿|𝑝𝑚| ≥ 2|𝑝𝑠|.

Claim 7.10. The combined Type I and Type II charge that can accumulate at a vertex
𝑣 is at most 𝑂(log 𝑘 ⋅ vol(𝑣)/𝛿).

Proof. A vertex 𝑣 only experiences a Type II charge if the piece that it is contained
in just increased its volume by at least a factor of 2. This can happen at most log 𝑘
times and therefore the total Type II charge at a vertex is at most 𝑂(log 𝑘⋅vol(𝑣)/𝛿).

Fix a vertex 𝑣 and define 𝑎𝑖 ∶= |𝑝𝑠| and 𝑏𝑖 ∶= |𝑝𝑚| at the time of the 𝑖-th Type I
charge to vertex 𝑣. Then the total Type I charge to 𝑣 is

2
𝛿 vol(𝑣) ∑

𝑖≥1

𝑎𝑖
𝑏𝑖

.

To estimate ∑𝑖
𝑎𝑖
𝑏𝑖

, we use the fact that 𝑏𝑖 ≥ 𝑏𝑖−1 +𝑎𝑖 and that each 𝑎𝑖 is a multiple
of 1/𝑘. We define 𝐴𝑖 ∶= ∑𝑖

𝑗=1 𝑎𝑗. This gives

∑
𝑖≥1

𝑎𝑖
𝑏𝑖

≤ ∑
𝑖≥1

𝑎𝑖
𝐴𝑖

= ∑
𝑖≥1

𝑘𝑎𝑖

∑
𝑗=1

1
𝑘𝐴𝑖

≤ ∑
𝑖≥1

𝑘𝑎𝑖

∑
𝑗=1

1
𝑘𝐴𝑖 − 𝑗 =

𝑘𝐴𝑡−1
∑
𝑗=1

1
𝑗 ,

where 𝑡 denotes the total number of charges to vertex 𝑣. Since, 𝐴𝑡 is at most 1 we
get that the sum is 𝑂(log 𝑘). This gives a total Type II charge of at most 𝑂(log 𝑘 ⋅
vol(𝑣)/𝛿).

Step II: Resolve ILP and Adjust Schedule. In this step, we merge the pieces 𝑝𝑠
and 𝑝ℓ into 𝑝𝑚 and run the subprocedure for adjusting the schedule, which finds a
new optimum solution to the ILP and finds a schedule respecting the ILP solution.
Due to Lemma 7.5 this incurs at most constant cost. In the following, we distinguish
several cases. For some cases, the bound of Lemma 7.5 is sufficient and we only have
to show how to properly charge the cost. For other cases, we give a better bound
than the general statement of Lemma 7.5. In the following, 𝑠 denotes the server
where the merged piece 𝑝𝑚 is located now (and where 𝑝ℓ was located before).

Case (IIa) 𝑝𝑠 small. In this case, the input to the ILP did not change. This holds
because no volume was committed and no uncommitted volume changed between
classes. Therefore we do not experience any cost for resolving the ILP.

However, it may happen that 𝑝ℓ was not monochromatic but the merged piece
𝑝𝑚 is. Suppose 𝑝𝑚 is monochromatic for a server 𝑠′ ≠ 𝑠, and this server has an
ordinary configuration. Then we have to move 𝑝𝑚 to 𝑠′ for the new schedule to
respect the configuration of 𝑠′. We incur a cost of |𝑝𝑚| + |𝑝𝑚|𝑢 ≤ 2|𝑝𝑚|, where

176 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

|𝑝𝑚|𝑢 is required to increase the eviction budget at 𝑠′. We charge 4/𝛿 ⋅ vol(𝑣) to
every vertex in 𝑝𝑚. We call this charge a Type III charge.

Howmuch of the charge is successful? Observe that 𝑝ℓ was not monochromatic
for 𝑠′ before the merge as otherwise it would have been located at 𝑠′. This means
vertices with volume at least 𝛿|𝑝ℓ| ≥ 𝛿|𝑝𝑚|/2 in 𝑝𝑚 have a color different from
𝑠′ (the majority color in 𝑝𝑚). This means we get a successful charge of at least
𝛿|𝑝𝑚|/2 ⋅ 4/𝛿 = 2|𝑝𝑚|, as desired.

To obtain a good bound on the total Type III charge accumulating at a vertex 𝑣
we have to add a little tweak. Whenever a server 𝑠 switches its configuration from
ordinary to extraordinary, we cancel the most recent Type III charge operation for
all vertices currently scheduled on 𝑠.

This negative charge is accounted for in the extra cost that we pay when switch-
ing the configuration of a server from ordinary to extraordinary. Recall that in Cost
Inflation (B), we said that we experience an extra cost of 4(1 + 𝛾)/𝛿 whenever we
switch the configuration of a server 𝑠 from ordinary to extraordinary. This cost is
used to cancel the most recent Type III charge for all pieces currently scheduled
on 𝑠.

Lemma 7.11. Suppose a vertex 𝑣 experiences a positive Type III charge at time 𝑡 that
is not canceled. Let 𝑡′ denote the time step of the next Type III charge for vertex 𝑣,
and let 𝑝 and 𝑝′ denote the pieces that contain 𝑣 at times 𝑡 and 𝑡′, respectively. Then
|𝑝′| ≥ (1 + 𝜖)|𝑝|.

Proof. Let 𝑝 be monochromatic for 𝑠 and 𝑝′ be monochromatic for 𝑠′, i.e., the
Type III charges occur because we have to move 𝑝 to 𝑠 and 𝑝′ to 𝑠′. We distinguish
two cases.

First assume that 𝑠 ≠ 𝑠′ and let 𝑣(𝑠) denote the volume of vertices of color 𝑠
in 𝑝′. Then

(1 − 𝜖)|𝑝| ≤ 𝑣(𝑠) ≤ 𝜖|𝑝′| ,

where the first inequality follows because 𝑝 is monochromatic for 𝑠 and the second
because 𝑝′ is monochromatic for 𝑠′. We get that |𝑝′| ≥ (1 − 𝜖)/𝜖 ⋅ |𝑝| ≥ (1 + 𝜖)|𝑝|,
where the last inequality holds for 𝜖 ≤

√
2 − 1, which holds as 𝜖 ≤ 1/4.

Now, assume that 𝑠 = 𝑠′. This means that 𝑝 was moved to server 𝑠, subse-
quently a piece 𝑝″ ⊃ 𝑝 was moved away from 𝑠, and in the end 𝑝′ ⊃ 𝑝″ was
moved back to 𝑠.

The server 𝑠 cannot be extraordinary at time 𝑡 as then there would be no need to
move 𝑝 to 𝑠 and no Type III charge would occur. Also, 𝑠 cannot become extraordi-
nary between time 𝑡 and 𝑡′ because then the Type III charge at 𝑡 would be canceled.
Hence, 𝑠 is ordinary.

The only reason for moving 𝑝″ away from 𝑠 is one of the following:
• The eviction routine does it. As 𝑠 is ordinary, this routine only moves 𝑝″ if
at most a (1 − 2𝜖)-fraction of its vertices have color 𝑠. Let ̄𝑣(𝑠) denote the

7.5. ANALYSIS 177

volume of vertices in 𝑝″ that have a color different from 𝑠. Then

2𝜖|𝑝″| ≤ ̄𝑣(𝑠) ≤ 𝜖|𝑝| + |𝑝″| − |𝑝| ,

because at most a volume of 𝜖|𝑝| did not have color 𝑠 at time 𝑡 and after that
at most a volume of |𝑝″| − |𝑝| has been added. This gives |𝑝′| ≥ |𝑝″| ≥
(1 − 𝜖)/(1 − 2𝜖) ⋅ |𝑝| ≥ (1 + 𝜖)|𝑝|.

• 𝑝″ is moved just before being merged with a (larger) piece 𝑝ℓ. Let 𝑝𝑚 denote
the piece obtained by merging 𝑝″ with 𝑝ℓ. Then |𝑝| ≤ |𝑝″| ≤ |𝑝𝑚|/2 ≤
|𝑝′|/2, which gives |𝑝′| ≥ 2|𝑝|.

• 𝑝″ is a large piece and we determine a new location for it when resolving
the ILP and adjusting the schedule. However, then we only move it away if
it is not monochromatic for 𝑠. But this is a contradiction to the fact that 𝑝′

is monochromatic for 𝑠 at time 𝑡′ because large pieces cannot become mono-
chromatic by merging them with other pieces.

Corollary 7.12. The total Type III charge that can accumulate at a vertex is only
𝑂(log 𝑘 ⋅ vol(𝑣)).

Proof. Since, between any two uncanceled Type III charges to a vertex 𝑣 the volume
of the piece that 𝑣 is contained in must grow by a factor of 1 + 𝜖, there can be at
most 𝑂(log 𝑘) such charges, each charging 4/𝛿.

Case (IIb) 𝑝𝑠 large, merge not monochromatic. We resolve the ILP and adjust
the schedule 𝑆. According to Item 1 and Item 3 of Lemma 7.5 this incurs constant
cost. Let 𝐶IV denote the bound on this cost. We perform a vertex charge of 𝐶IV/𝛿 ⋅
vol(𝑣) for every vertex in 𝑝𝑚. We call this charge a Type IV charge. In the following
we argue that at least a charge of 𝐶IV is successful. We distinguish two cases.

If one of the pieces 𝑝𝑠, 𝑝ℓ, or 𝑝𝑚 is not monochromatic we know that at least
vertices of volume 𝛿 in the piece do not have the majority color. Hence, we get that
at least 𝐶IV/𝛿 ⋅ 𝛿 ≥ 𝐶IV of the Type IV charge is successful.

Now, suppose that 𝑝𝑠 is monochromatic for server 𝑠 and 𝑝𝑚 is monochromatic
for a different server 𝑠′. Regardless of which color is the majority color in the
end, there will be vertices of volume at least (1 − 𝜖)|𝑝𝑠| that will not have this
majority color. Hence, we obtain a successful charge of at least (1−𝜖)|𝑝𝑠|⋅𝐶IV/𝛿 ≥
(1 − 𝜖)𝜖 ⋅ 𝐶IV/𝛿 ≥ 𝐶IV, where the first step uses that 𝑝𝑠 is large and the second
that 𝛿 ≤ 𝜖2 ≤ (1 − 𝜖)𝜖, which holds because 𝜖 ≤ 1/4.

Claim 7.13. A vertex 𝑣 can accumulate a total Type IV charge of at most 𝐶IV/𝛿 ⋅
vol(𝑣).

Proof. Whenever we perform a Type IV charge for a vertex 𝑣, the piece that 𝑣 is
contained in just increased its volume by |𝑝𝑠| ≥ 𝛿. This can happen at most 1/𝛿
times.

178 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

Case (IIc) 𝑝𝑠 large, merge monochromatic, 𝑠 extraordinary. In this case, we
also resolve the ILP and adjust the schedule, which according to Item 1 and Item 3
of Lemma 7.5 incurs constant cost. Let 𝐶 denote this cost. We make an extra charge
of 𝐶 . Observe that 𝐶 = 𝑂(|𝑝𝑠|) because 𝑝𝑠 is a large piece. This will be important
when we derive a bound on the total extra charge.

Case (IId) 𝑝𝑠 large, merge monochromatic, 𝑠 ordinary. Suppose that the server
𝑠 has an ordinary configuration. In this case we do not want to have any cost, be-
cause we cannot perform an extra charge as no extraordinary configurations are
involved and we cannot charge against the vertices of 𝑝𝑚 as the piece is mono-
chromatic. We use Special Variant A for adjusting the schedule. This induces zero
cost.

Step III: Commit-operation. We analyze the commit-operation. We will call a
commit-operation monochromatic if it is performed on a monochromatic piece and,
otherwise, we call it non-monochromatic.

Case (IIIa) 𝑝𝑚 not monochromatic, 𝑠 ordinary. The commit-operation may
change the source vector of several servers. Let 𝐷 denote the number of servers
that changed their source vector. The cost for handling the commit-operation is at
most 𝑂(1 + 𝐷) according to Lemma 7.5. Let 𝐶V denote the hidden constant, i.e.,
the cost is at most 𝐶V(1+ 𝐷). We split this cost into two parts: 𝐶V is the fixed cost
and 𝐶V𝐷 is the variable cost of the commit.

We charge 3𝐶V/𝛿 ⋅vol(𝑣) to every vertex 𝑣 in 𝑝𝑚. We call this charge a Type V
charge. In 𝑝𝑚 at least vertices of volume 𝛿 have not the majority color because 𝑝𝑚
is not monochromatic. Therefore we get a successful charge of 3𝐶V/𝛿 ⋅ 𝛿 = 3𝐶V.

Clearly, the charge is sufficient for the fixed cost. However, the remaining suc-
cessful charge of 2𝐶V may not be sufficient for the variable cost. In the following,
we argue that the total remaining successful charge that is performed for all non-
monochromatic commits is enough to cover the variable cost for these commits.

Lemma 7.14. Let 𝑋nm(𝑠) denote the number of times that a non-monochromatic
commit causes a change in the source vector of 𝑠. Then the variable cost for all non-
monochromatic commits is at most ∑𝑠 𝐶V𝑋nm(𝑠) ≤ 2𝐶V𝑁 , where 𝑁 denotes the
total number of non-monochromatic commits.

Proof. We analyze 𝑋nm(𝑠) for a fixed server 𝑠. Observe that a non-monochromatic
commit can only change the entry 𝑚𝑠0 in a source vector as the other entries
concern volume of monochromatic pieces, which does not change due to the com-
mit. Let 𝑣𝑠 denote the uncommitted volume of server 𝑠, i.e., 𝑚𝑠0 = ⌈𝑣𝑠⌉𝛿 where
⌈⋅⌉𝛿 denotes the operation of rounding up to a multiple of 𝛿. Let 𝜉𝑖(𝑠) denote
the reduction in 𝑣𝑠 caused by the 𝑖-th commit-operation (monochromatic or non-
monochromatic).

Then the total reduction in 𝑣𝑠 throughout the algorithm is exactly ∑𝑖 𝜉𝑖(𝑠).
Observe that in the beginning of the algorithm 𝑣𝑠 = 1. Furthermore, by choice of 𝛿
we have that ⌈1⌉𝛿−1 ≤ 𝛿/2 which is equivalent to 1−⌈1−𝛿⌉𝛿 ≥ 𝛿/2. This ensures

7.5. ANALYSIS 179

that the first change in 𝑚𝑠0 can occur only after 𝑣𝑠 decreased by at least 𝛿/2. Every
other change occurs after 𝑣𝑠 decreased by an additional value of 𝛿. Hence, if at least
one change in 𝑚𝑠0 occurs, we have

𝛿(𝑋m(𝑠) + 𝑋nm(𝑠) − 1) + 𝛿/2 ≤ ∑
𝑖

𝜉𝑖(𝑠) = ∑
𝑖∈𝐼m

𝜉𝑖(𝑠) + ∑
𝑖∈𝐼nm

𝜉𝑖(𝑠) ,

where 𝐼m and 𝐼nm denote the index set of monochromatic and non-monochromatic
commits, respectively, and 𝑋m(𝑠) denotes the number of times that a monochro-
matic commit causes a change in the source vector of 𝑠. For a monochromatic com-
mit 𝜉𝑖(𝑠) is either 0 or 𝛿. This gives that

𝛿𝑋nm(𝑠) − 𝛿/2 ≤ ∑
𝑖∈𝐼nm

𝜉𝑖(𝑠) . (7.1)

For 𝑋nm(𝑠) ≥ 1 we obtain

𝑋nm(𝑠) ≤ 2𝑋nm(𝑠) − 1 ≤ 2 ∑
𝑖∈𝐼nm

𝜉𝑖(𝑠)/𝛿 ,

by multiplying Equation 7.1 with 2/𝛿. Next, observe that ∑𝑠 𝜉𝑖(𝑠) = 𝛿 since every
non-monochromatic commit switches a volume of exactly 𝛿 from uncommitted to
committed. Hence, summing over all servers gives

∑
𝑠∶𝑋nm(𝑠)≥1

𝑋nm(𝑠) ≤ 2 ∑
𝑠

∑
𝑖∈𝐼nm

𝜉𝑖(𝑠)/𝛿 = 2 ∑
𝑖∈𝐼nm

∑
𝑠

𝜉𝑖(𝑠)/𝛿 = 2𝑁 .

Observe that the total remaining charge for the non-monochromatic commits is
2𝐶V𝑁 (a charge of 2𝐶V for every commit). Hence, the previous lemma implies that
this remaining charge is sufficient for the variable cost of all non-monochromatic
commits.

Claim 7.15. The Type V charge at a vertex 𝑣 can accumulate to at most 3𝐶V/𝛿2 ⋅
vol(𝑣).

Proof. A vertex 𝑣 can participate in at most 1/𝛿 commit-operations as each such
operation increases the committed volume of the piece that 𝑣 is contained in by 𝛿
and the committed volume of a piece can be at most 1. For each monochromatic
commit-operation the vertex is charged 3𝐶V/𝛿 ⋅ vol(𝑣). This gives the lemma.

Case (IIIb) 𝑝𝑚 monochromatic, 𝑠 ordinary. Suppose we perform a commit-
operation for the piece 𝑝𝑚. Here we use Special Variant B for resolving the ILP
and adjusting the schedule. This incurs zero cost.

Case (IIIc) 𝑝𝑚 monochromatic, 𝑠 extraordinary. We resolve the ILP and adjust
the schedule. The cost for this is 𝑂(1), since we can use Item 1 of Lemma 7.5 with
𝐷 = 1, because 𝑝𝑚 is monochromatic and thus we only commit volume of color
𝑠. Let 𝐶1 denote the upper bound for this cost. We perform an extra charge of 𝐶1.

180 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

Since the committed volume has only color 𝑠, the total number of monochromatic
commits for a specific server 𝑠 is at most 1/𝛿 = 𝑂(1) because each commit increases
the committed volume of color 𝑠 by 𝛿. Consequently, the total extra charge that
we perform for monochromatic commits of a specific sever 𝑠 is at most 𝐶1/𝛿. To
simplify the analysis of the total extra charge in Section 7.5.1.1 we combine all these
extra charges into one extra charge of 𝐶1/𝛿 that is performed whenever the server
𝑠 switches its state from ordinary to extraordinary for the first time.

7.5.1.1 Analysis of Extra Charges

In this sectionwe derive a bound on the total extra charge generated by our charging
scheme. Let us first recap when we perform extra charges:

(I) During the merge-operation we perform an extra charge of 𝑂(|𝑝𝑠|) in Case Ia
and Case IIc, when the merge-operation is monochromatic for server 𝑠 and 𝑠
has an extraordinary configuration.
We stress the fact that whether a merge is monochromatic only depends on
the sequence of merges and not on the way that pieces are scheduled by our
algorithm.

(II) Whenever a server changes its configuration from ordinary to extraordinary
for the first time, we generate an extra charge of 𝐶1/𝛿 = 𝑂(1) to take care of
the cost of monochromatic commits (Case IIIc).

Now let ℎmax denote the maximum number of extraordinary configurations that
are used throughout the algorithm. Clearly, if ℎmax = 0 there is never any extraor-
dinary configuration and the extra charge will be zero. If ℎmax ≥ 1, we show that
the previously described deterministic online algorithm guarantees an extra charge
of at most 𝑂(ℓ log 𝑘).
Lemma 7.16. If ℎmax = 0, there is no extra charge. If ℎmax ≥ 1, the total extra
charge is 𝑂(ℓ log 𝑘).

Before we prove Lemma 7.16, we prove the following claim which bounds the
total extra charge for a single server.

Claim 7.17. The total extra charge for a server 𝑠 is at most 𝑂(log 𝑘).
Proof. Suppose whenever we perform an extra charge of Type (I) for server 𝑠, we
place this charge on the vertices in the smaller piece 𝑝𝑠 such that each such vertex
𝑣 receives a charge of 𝑂(1)⋅vol(𝑣). Then the charge that can accumulate at a vertex
can be at most 𝑂(log 𝑘)⋅vol(𝑣), since a vertex can be on the smaller side of a merge-
operation at most 𝑂(log 𝑘) times. Since the volume of all vertices originating on 𝑠
is 1 we obtain 𝑂(log 𝑘) for the extra charge of Type (I).

Clearly the extra charge of Type (II) can be at most 𝑂(1) for any server.

Proof of Lemma 7.16. For ℎmax = 0, there are no extraordinary servers and thus we
do not make any extra charges. For ℎmax ≥ 1, the lemma follows from Claim 7.17
since there are only ℓ servers.

7.5. ANALYSIS 181

Next, we show that the maximum vertex charge (successful or unsuccessful) is
𝑂(log 𝑘 ⋅ vol(𝑣)).

Lemma 7.18. The maximum vertex charge chargemax (successful or unsuccessful)
that a vertex 𝑣 can receive is at most 𝑂(log 𝑘 ⋅ vol(𝑣)).

Proof. We have the following vertex charges:
• Type I charge and Type II charge:
Accumulates to at most 𝑂(log(𝑘)/𝛿) ⋅ vol(𝑣) according to Claim 7.10.

• Type III charge:
Accumulates to at most 𝑂(log 𝑘) ⋅ vol(𝑣) according to Corollary 7.12.

• Type IV charge:
Accumulates to at most 𝐶IV/𝛿 ⋅ vol(𝑣) according to Claim 7.13.

• Type V charge:
Accumulates to at most 3𝐶V/𝛿2 ⋅ vol(𝑣) according to Claim 7.15.

This gives the lemma.

Combining Lemma 7.16 and Lemma 7.2 for extra charges and our arguments
about vertex charges with Lemma 7.9, we obtain the following theorem.

Theorem 7.19. There exists a deterministic online algorithm with competitive ratio
𝑂(ℓ log 𝑘).

Proof. All the cost is either charged by successful vertex charges or by extra charges.
Therefore, the cost of the online algorithm is at most the total successful vertex
charge plus the extra charge. Lemma 7.16 together with the observation that no
extra charge is performed if ℎmax = 0 gives that the total extra charge is at most
𝑂(ℓ log 𝑘 ⋅ ℎmax) = 𝑂(ℓ log 𝑘) ⋅ cost(OPT).

Lemma 7.18 shows that the maximum vertex charge chargemax (successful or
unsuccessful) made to a vertex 𝑣 is at most 𝑂(log 𝑘) ⋅vol(𝑣) = 𝑂(log 𝑘) ⋅ 1/𝑘. From
Lemma 7.9 we obtain

chargesucc ≤ (𝑘 ⋅ chargemax) ⋅ cost(OPT) = 𝑂(log 𝑘) ⋅ cost(OPT).

Hence, we can bound the total extra charge and the total successful vertex charge
by 𝑂(ℓ log 𝑘) ⋅ cost(OPT). This gives a competitive ratio of 𝑂(ℓ log 𝑘).

Note that we obtain an even stronger result if ℎmax = 0: the cost is at most
𝑂(log 𝑘) ⋅ cost(OPT) because of the bound on the total vertex charge (and the fact
that we do not have extra charges). Otherwise (ℎmax > 0), the total extra charge
is at most 𝑂(ℓ log 𝑘), which means that we are 𝑂((ℓ log 𝑘)/ℎmax)-competitive. So
the worst-case competitive ratio occurs when ℎmax = 1.

182 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

7.6 Randomized Algorithm

How can randomization help to improve on the competitive ratio? For this observe
that the cost that we charge to vertices is at most 𝑂(log 𝑘 ⋅ cost(OPT)). Hence, the
critical part is the cost for which we perform extra charges, which can be as large as
𝛺(ℓ log 𝑘) according toTheorem 7.28. A rough sketch of a (simplified) lower bound
is as follows. We generate a scenario where initially all servers have the same source
vector but some server needs to schedule its source-pieces on different servers (as,
otherwise, we could not fulfill all constraints).

In this situation, an adversary can issue merge requests for all vertices that orig-
inated at the server 𝑠 that currently has its source-pieces distributed among several
servers. Then the online algorithm incurs constant cost to reassemble these pieces
on one server, and, in addition, has to split the source-pieces of another server be-
tween at least two servers. Repeating this for ℓ − 1 steps gives a cost of 𝛺(ℓ) to the
online algorithm while an optimum algorithm just incurs constant cost.

The key insight for randomized algorithms is that the above scenario cannot
happen if we randomize the decision of which server distributes its source-pieces
among several servers. The online problem then turns into a paging problem and
we use results from online paging to derive our bounds.

7.6.1 Augmented ILP

Let 𝑀 denote the set of all potential source vectors. We introduce a partial ordering
on 𝑀 as follows. We say 𝑚 ≥𝑝 𝑚′ if any prefix-sum of 𝑚 is at least as large as the
corresponding prefix-sum for 𝑚′. Formally,

𝑚 ≥𝑝 𝑚′ ⟺ ∀𝑖: ∑𝑖
𝑗=0 𝑚𝑗 ≥ ∑𝑖

𝑗=0 𝑚′
𝑗 .

Observe that 𝑚 ≥ 𝑚′ implies 𝑚 ≥𝑝 𝑚′. We adapt the ILP by adding a cost-vector
𝑐 that favors large source vectors w.r.t. ≥𝑝. This means as a first objective the ILP
tries to minimize the number of extraordinary configurations as before but as a tie-
breaker it favors extraordinary configurations with large source vectors. For this
we assign unique ids from 1, … , |𝑀| to the source vectors s.t. 𝑚1 ≥𝑝 𝑚2 ⟹
id(𝑚1) ≤ id(𝑚2). Then we define the cost-vector 𝑐 by setting

𝑐(𝑟,𝑚) ∶= { 0 𝑟 ≥ 𝑚
1 + 𝜆 id(𝑚) otherwise , (7.2)

for 𝜆 = 1/(|𝑀|2 ⋅ ℓ). Given the cost-vector 𝑐, we set the objective function of our
new ILP to ∑(𝑟,𝑚) 𝑐(𝑟,𝑚)𝑥(𝑟,𝑚). The choice of 𝜆 together with ‖𝑥‖1 = ℓ imply
that ∑(𝑟,𝑚)∶𝑟≱𝑚 𝜆 id(𝑚)𝑥(𝑟,𝑚) ≤ 𝜆 ⋅ |𝑀|ℓ = 1/|𝑀| < 1. Thus, the ILP still
minimizes the number of extraordinary servers.

Note that the sensitivity analysis for the ILP still holds (Theorem 7.8 is inde-
pendent of the cost vector and also Lemmas 7.39 and 7.40 hold for the cost vector
defined above). This means if we have a constant change in the RHS vector of the

7.6. RANDOMIZED ALGORITHM 183

ILP, we can adjust the ILP solution and the schedule at the cost stated in Lemma 7.5.
Similarly, when we manually adjust the ILP solution (Case IId and Case IIIb), we
do not increase the cost because only the configuration of a single server 𝑠 changes
and this server keeps its ordinary configuration, i.e., it does not contribute to the
objective function of the ILP.

A crucial property of the partial order ≥𝑝 is that source vectors of servers are
monotonically decreasing w.r.t. ≥𝑝 as time progresses and as more merge-opera-
tions are processed.

Observation 7.20. Let 𝑚𝑠(𝑡) denote the source vector of some server 𝑠 after some
timestep 𝑡 of the algorithm. Then 𝑡1 ≤ 𝑡2 implies 𝑚𝑠(𝑡1) ≥𝑝 𝑚𝑠(𝑡2), i.e., the source
vector of a particular server is monotonically decreasing w.r.t. ≥𝑝.

Proof. 𝑚𝑠 changes because of the following operations:
• A monochromatic commit on a piece 𝑝 in class 𝑖 executes 𝑚′

𝑠0 ∶= 𝑚𝑠0 − 𝛿,
𝑚′

𝑠𝑖 ∶= 𝑚𝑠𝑖 − |𝑝|𝑢, and 𝑚′
𝑠,𝑖+1 ∶= 𝑚𝑠,𝑖+1 + |𝑝|𝑢 + 𝛿.

• A non-monochromatic commit may decrease 𝑚𝑠0 but does not increase any
entry.

• A monochromatic merge executes 𝑚′
𝑠𝑖𝑠

∶= 𝑚𝑠𝑖𝑠
− |𝑝𝑠|𝑢, 𝑚′

𝑠𝑖ℓ
∶= 𝑚𝑠𝑖ℓ

−
|𝑝ℓ|𝑢, and 𝑚′

𝑠𝑖𝑚
∶= 𝑚𝑠𝑖𝑚

+ |𝑝𝑚|𝑢.
• If the piece 𝑝𝑚 is not monochromatic after a merge (and 𝑝𝑚 is large) then
entries in 𝑚𝑠 are only reduced.

• A merge between small pieces does not change 𝑚𝑠 (only the following com-
mit may do so).

This means operations either reduce entries in 𝑚𝑠 or they shift the mass of 𝑚𝑠 to
higher entries while not changing ‖𝑚𝑠‖. This gives the observation.

7.6.2 Marking Scheme

The total extra charge that is generated by our algorithm is determined by how we
assign extraordinary configurations to servers. We use a marking scheme to decide
which servers may receive an extraordinary configuration. Formally, a (random-
ized)marking scheme dynamically partitions the servers intomarked and unmarked
servers and satisfies the following properties:

• Initially, i.e., before the start of the algorithm, all servers are unmarked.
• Let ℎ𝑚 denote the number of servers with source vector 𝑚 that are assigned
an extraordinary configuration by the ILP, i.e., ℎ𝑚 = ∑(𝑟,𝑚)∶𝑟≱𝑚 𝑥(𝑟,𝑚).
The marking scheme has to mark at least ℎ𝑚 servers with source vector 𝑚.

The cost cost(ℳ) of a marking scheme ℳ is defined as follows:
• Switching the state of a server frommarked to unmarked or vice versa induces
a cost of 1.

• If a marked server experiences a monochromatic merge, the cost increases by
|𝑝𝑠|, where 𝑝𝑠 is the smaller piece involved in the merge-operation.

Suppose for a moment that the marked servers always are exactly the servers that
are assigned an extraordinary configuration. Then the above cost is clearly an upper

184 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

bound on the total extra charge as define in Section 7.5.1.1 (up to constant factors).
This is because the marking scheme pays whenever switching between marked and
unmarked, while in our analysis we only make one extra charge of constant cost
when a server switches to an extraordinary configuration for the first time.

In the following, we enforce the condition that a server only has an extraordi-
nary configuration if it is marked by the marking scheme. However, the marking
scheme couldmark additional servers that are not extraordinary. Thus, by enforcing
this condition our algorithm incurs additional cost. Suppose, e.g., that the marking
scheme decides to unmark a server 𝑠 that is currently marked and has been assigned
an extraordinary configuration. Then we have to switch the (extraordinary) config-
uration (𝑟, 𝑚𝑠) assigned to 𝑠 with an ordinary configuration (𝑟′, 𝑚𝑠) that currently
is assigned to a different marked server 𝑠′. Note that we always find such a server
because there exist at least ℎ𝑚𝑠

marked servers with source vector 𝑚𝑠. The switch
can then be performed at constant cost. We make an additional extra charge for this
increased cost of our algorithm. Note that the marking scheme accounts for this ad-
ditional cost as it incurs cost whenever the state of a server changes. Therefore, the
cost of the marking scheme can indeed serve as an upper bound on the total extra
charge (including the additional extra charge). This gives the following observation.

Observation 7.21. Let ℳ be a marking scheme. The total extra charge is at most
𝑂(cost(ℳ)).

Next, we construct a marking scheme with small cost. For simplicity of ex-
position we assume that we know ℎmax, the maximum number of extraordinary
configurations that will be used throughout the algorithm, in advance. We describe
in Section 7.6.3 how to adjust the scheme to work without this assumption by using
a simple doubling trick (i.e., make a guess for ℎmax and increase the guess by a
factor of 2 if it turns out to be wrong).

We will use results from online paging. In the online paging problem1 [37] a
sequence of page requests has to be served with a cache of size 𝑧. A request (𝑝, 𝑤)
consists of a page 𝑝 from a set of ℓ ≥ 𝑧 pages together with a weight 𝑤 ≤ 1. If
the requested page is in the cache, the cost for an algorithm serving the request
sequence is 0. Otherwise, an online algorithm experiences a cost of 𝑤. It can then
decide to put the page into the cache (usually triggering the eviction of another
page) at an additional cost of 1.

The cost metric for the optimal offline algorithm is different and provides an
advantage to the offline algorithm. If the offline algorithm does not have 𝑝 in its
cache, it pays a cost of 𝑤/𝑟, where 𝑟 ≥ 1 being a parameter of the model, and then
it can decide to put 𝑝 into its cache at an additional cost of 1. In [37], the authors
show how to obtain a competitive ratio of 𝑂(𝑟 + log 𝑧) in this model.

1Note that our problem definition slightly differs from the model analyzed by Blum et al. [37],
which has 𝑤 = 1 for every request. However, it is straightforward to show that the results of [37]
carry over to our model.

7.6. RANDOMIZED ALGORITHM 185

The Paging Problems. Let 𝑀 denote the set of potential source vectors and
recall that |𝑀| = 𝑂(1). We introduce |𝑀| different paging problems, one for every
potential source vector 𝑚 ∈ 𝑀 .

Fix a potential source vector 𝑚. Let 𝑆𝑚 denote the set of servers that have a
source vector 𝑚′ ≥𝑝 𝑚. Essentially, we simulate a paging algorithm on the set 𝑆𝑚
(i.e., servers correspond to pages) with a cache of size |𝑆𝑚| − ℎmax and parameter
𝑟 = log 𝑘.

Note that a server may leave the set 𝑆𝑚, but it is not possible for a server to
enter this set because the source vector 𝑚𝑠 of a server is non-increasing w.r.t. ≥𝑝
(Observation 7.20). The fact that servers may leave 𝑆𝑚 is problematic for setting
up our paging problem because this would correspond to decreasing the cache size,
which is usually not possible. Therefore, we define the paging problem on the set of
all servers andwe set the cache size to ℓ−ℎmax, but wemake sure that servers/pages
not in 𝑆𝑚 are always in the cache. This effectively reduces the set of pages to 𝑆𝑚
and the cache size to |𝑆𝑚| − ℎmax.

We construct the request sequence of the paging problem for 𝑆𝑚 as follows.
A monochromatic merge for a server 𝑠 ∈ 𝑆𝑚 is translated into a page request for
page 𝑠 with weight |𝑝𝑠|, where 𝑝𝑠 is the smaller piece that participates in the merge-
operation. Following such a merge request, we issue a page request (with weight 1)
for every page/server not in 𝑆𝑚. This makes sure that an optimum solution keeps
all these pages in the cache at all times, thus reducing the effective cache-size to
|𝑆𝑚| − ℎmax. The request sequence stops when |𝑆𝑚| = ℎmax.

The Marking Scheme. We obtain a marking scheme from all the different
paging algorithms as follows. A server with source vector 𝑚 is marked if it is not
in the cache for the paging problem on set 𝑆𝑚, or if |𝑆𝑚| ≤ ℎmax. The following
lemma shows that this gives a valid marking scheme and we prove it in Section 7.6.4.

Lemma 7.22. The marking scheme marks at least ℎ𝑚 servers with source vector 𝑚.

Let cost(𝑆𝑚) denote the cost of the solution to the paging problem for 𝑆𝑚. The
following two claims give an upper bound on the cost of the marking scheme.

Claim 7.23. We have that

cost(ℳ) ≤ ∑
𝑚

(cost(𝑆𝑚) + ℎmax + 𝑂(log 𝑘) ⋅ ℎmax)

= 𝑂 (∑
𝑚

cost(𝑆𝑚) + log 𝑘 ⋅ ℎmax) .

Proof. Initially, we have to choose for every paging problem ℎmax servers/pages
that are not in the cache. The marking scheme marks these servers and experiences
a cost of 1 for each marking. This gives a total cost of |𝑀|ℎmax for the initialization.

As long as |𝑆𝑚| > ℎmax, a monochromatic merge-operation on a server with
source vector 𝑚 introduces a request of weight |𝑝𝑠|. If the marking scheme has
to pay for the merge (because the corresponding server 𝑠 is extraordinary) then

186 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

the page 𝑠 is outside of the cache in the paging problem for 𝑆𝑚 and the paging
problem has to pay for the request. The total extra charge formonochromaticmerge-
operations that occur after |𝑆𝑚| ≤ ℎmax can be atmost𝑂(log 𝑘)⋅ℎmax because the
total extra charge for a specific server 𝑠 is at most 𝑂(log 𝑘) due to Claim 7.17.

Claim 7.24. There is a randomized online algorithm for the paging problem on 𝑆𝑚
with (expected) cost cost(𝑆𝑚) ≤ 𝑂((log 𝑘 + log ℓ) ⋅ ℎmax).

Proof. Note that an offline paging algorithm for the constructed request sequence
on 𝑆𝑚 can simply determine the ℎmax elements that leave the set 𝑆𝑚 last and
put all other servers into the cache. It then experiences a cost of at most ℎmax +
𝑂(log 𝑘)/𝑟 ⋅ ℎmax = 𝑂(ℎmax), where the first ℎmax-term is due to the initializa-
tion. The second term comes from the fact that the total weight of all requests to
a specific page is equal (up to constant factors) to the total extra charge for a spe-
cific server. The latter is at most 𝑂(log 𝑘) due to Claim 7.17. Hence, by not moving
any page after the initialization OPT pays 𝑂(log 𝑘)/𝑟 ⋅ ℎmax for serving the page
requests.

Since 𝑟 = log 𝑘 and since the online algorithm of Blum et al. is 𝑂(𝑟 + log ℓ)-
competitive, we obtain cost(𝑆𝑚) ≤ 𝑂(log 𝑘 + log ℓ) ⋅ ℎmax.

Now combining the two claims above with Lemma 7.2 and the analysis of vertex
charges from Section 7.5, we obtain our main theorem.

Theorem 7.25. There is a randomized algorithm with competitive ratio 𝑂(log ℓ +
log 𝑘).

Proof. Analyzing the cost for the vertex charges is identical to the deterministic case.
Combining Observation 7.21 with Claim 7.23 and Claim 7.24 gives that the expected
total extra charge is only 𝑂(log ℓ + log 𝑘) ⋅ ℎmax. As cost(OPT) = 𝛺(ℎmax) the
theorem follows.

7.6.3 Marking Scheme Without Knowledge of ℎmax

In Section 7.6.2 we showed how we can construct a marking scheme when ℎmax
is known in advance. We now argue how this assumption can be dropped using a
simple doubling trick.

In particular, when the algorithm starts and no edges were revealed, we set
ℎmax = 0. After that, when the object function of ILP is at least 1 for the first time,
we set ℎmax = 1 and run the marking scheme with fixed ℎmax from Section 7.6.2.
After that, whenever the objective function of the ILP is larger thanℎmax, we double
the value of ℎmax and restart the marking scheme from Section 7.6.2.

It remains to analyze the cost of this scheme. First, let ℎfinal
max denote the final

value of ℎmax used by the above procedure when the algorithm stops and let ℎ∗
max

denote the highest objective function value of the ILP at any point in time. Now
observe that ℎfinal

max ≤ 2ℎ∗
max. Second, note that for fixed ℎmax, Claim 7.23 and

7.6. RANDOMIZED ALGORITHM 187

Claim 7.24 imply that cost(ℳ) ≤ 𝑂((log 𝑘 + log ℓ)ℎmax). Third, observe that the
first two points imply that the total cost paid by the above procedure is

log ℎfinal
max

∑
𝑖=0

𝑂((log 𝑘 + log ℓ)2𝑖) = 𝑂(log 𝑘 + log ℓ)
log ℎfinal

max

∑
𝑖=0

2𝑖

= 𝑂((log 𝑘 + log ℓ) ⋅ ℎfinal
max)

= 𝑂((log 𝑘 + log ℓ) ⋅ ℎ∗
max).

Hence, the cost paid by the above procedure which does not know ℎ∗
max in advance

is asymptotically the same as that of the procedure which knows ℎ∗
max in advance.

7.6.4 Proof of Lemma 7.22

Beforewe prove the lemma, we first need to prove another claim and another lemma.

Claim 7.26. Suppose we have an ILP solution 𝑥 with 𝑥(𝑟,𝑚) > 0 for a configuration
(𝑟, 𝑚) with 𝑟 ≱ 𝑚 but 𝑟 ≥𝑝 𝑚. Then we can reduce the cost of 𝑥 by at least 1 +
𝜆 id(𝑚).
Proof. We change the extraordinary configuration (𝑟, 𝑚) into an ordinary configu-
rationwithout creating additional extraordinary configurations (i.e., for all 𝑚′ ≠ 𝑚:
∑𝑟∶𝑟≱𝑚′ 𝑥(𝑟,𝑚′) will stay the same). We change entries of 𝑟 in a step by step
process startingwith the highest coordinate. Suppose that we already have 𝑟𝑖 ≥ 𝑚𝑖
for 𝑖 > 𝑗 and that still 𝑟 ≥𝑝 𝑚. Assume that 𝑟𝑗 = 𝑚𝑗 −𝜉. Then we set 𝑟new

𝑗 ∶= 𝑚𝑗
and 𝑟new

𝑗−1 ∶= 𝑟𝑗−1 − 𝜉 as the new entries for coordinate 𝑗 and 𝑗 − 1, respectively.
Note that ‖𝑟‖1 does not change. However, the ILP now has

∑
(𝑟̄,𝑚̄)

𝑥(𝑟̄,𝑚̄) ̄𝑟𝑗−1 ≥ 𝑉𝑗−1 − 𝜉 and ∑
(𝑟̄,𝑚̄)

𝑥(𝑟̄,𝑚̄) ̄𝑟𝑗 ≥ 𝑉𝑗 + 𝜉 . (7.3)

Since ∑(𝑟̄,𝑚̄) 𝑥(𝑟̄,𝑚̄)𝑚̄𝑗 ≤ 𝑉𝑗 there must exist a configuration (𝑟′, 𝑚′) such that
𝑥(𝑟′,𝑚′) > 0 and 𝑟′

𝑗 > 𝑚′
𝑗. We choose such a configuration, decrease 𝑟′

𝑗 and in-
crease 𝑟′

𝑗−1 by the same amount. This does not change ‖𝑟′‖1 and we can choose the
increment so that 𝑟′

𝑗 ≥ 𝑚′
𝑗 still holds. Repeating this process can fix the constraints

in Eq. (7.3) without generating new extraordinary configurations.
Fixing all coordinates in 𝑟 results in an ordinary configuration for the source

vector 𝑚 and this will reduce the cost of the ILP by 1 + 𝜆 id(𝑚).
Lemma 7.27. Suppose the optimal ILP solution uses an extraordinary configuration
for some source vector 𝑚, i.e., 𝑥(𝑟,𝑚) > 0 with 𝑟 ≱ 𝑚. Then it does not use any
ordinary configurations of the form (𝑟′, 𝑚′), 𝑚′ ≥𝑝 𝑚, i.e., ∑𝑟≥𝑚′ 𝑥(𝑟,𝑚′) = 0.

Proof. Assume for contradiction that the lemma does not hold. Let𝑚′ ≥𝑝 𝑚, where
𝑚 and 𝑚′ are source vectors with reservation 𝑟 and 𝑟′, respectively. Further assume
that 𝑟 ≱ 𝑚 and 𝑟′ ≥ 𝑚′.

188 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

We switch the reservation vector between the configurations, i.e., we increase
𝑥(𝑟′,𝑚) and 𝑥(𝑟,𝑚′) and decrease 𝑥(𝑟,𝑚) and 𝑥(𝑟′,𝑚′).

If 𝑟′ ≥ 𝑚 then this step decreased the cost of the ILP because we decreased
the number of extraordinary configurations of the form (⋅, 𝑚) and we (may) have
increased the number of extraordinary configurations of the form (⋅, 𝑚′). This de-
creases the overall cost and contradicts that 𝑥 is an optimal ILP solution.

Now assume 𝑟′ ≱ 𝑚. We may have increased the cost of the ILP solution by
1 + 𝜆 id(𝑚′). However, 𝑟′ ≥ 𝑚′ ≥𝑝 𝑚 implies 𝑟′ ≥𝑝 𝑚. This means that we
can reduce the cost of this solution by 1 + 𝜆 id(𝑚) due to Claim 7.26. Altogether
the cost decreases because id(𝑚) > id(𝑚′). This contradicts the fact that 𝑥 is an
optimal ILP solution.

Now we prove Lemma 7.22. First, suppose that |𝑆𝑚| ≤ ℎmax. Then all servers
with source vector 𝑚 are marked and the lemma clearly holds. Otherwise, let
𝑋𝑚 ∶= {𝑠 ∣ 𝑠 ∈ 𝑆𝑚; 𝑚𝑠 ≠ 𝑚}. Since the paging problem for 𝑆𝑚 must leave
at least ℎmax pages from 𝑆𝑚 outside the cache, there are at least ℎmax − |𝑋𝑚| of
these that have source vector 𝑚. The ILP has at most ℎmax extraordinary configura-
tions. If at least one server with source vector 𝑚 is extraordinary (i.e., ℎ𝑚 > 0) then
all servers in 𝑋𝑚 are assigned an extraordinary configuration due to Lemma 7.27.
Hence, ℎ𝑚 ≤ ℎmax − |𝑋𝑚| and the lemma follows.

7.7 Lower Bounds

In this section, we derive lower bounds on the competitive ratios for deterministic
and randomized algorithms. In particular, we show that any deterministic algorithm
must have a competitive ratio of 𝛺(ℓ log 𝑘) and any randomized algorithm must
have a competitive ratio of 𝛺(log ℓ + log 𝑘).

We note that the lower bounds derived in this section also apply to the model
studied by Henzinger et al. [101]. Their model is slightly more restrictive than ours
in that eventually, every server must have exactly one piece of volume 1 (resp. 𝑘 in
their terminology); in contrast, in our model, servers may eventually host multiple
pieces smaller than 1. However, our lower bounds are designed such that they also
fulfill the definition of the model by Henzinger et al.

7.7.1 Lower Bounds for Deterministic Algorithms

Theorem 7.28. For any 𝑘 ≥ 32 and any constant 1/𝑘 ≤ 𝜀 ≤ 1/32 such that 𝜀𝑘 is a
power of 2, any deterministic algorithm must have a competitive ratio of 𝛺(ℓ log 𝑘).

We devote the rest of this subsection to prove the theorem.
Set 𝑚 be a positive integer such that 𝜀𝑘 = 2𝑚. As 𝜀 ≤ 1/32 it follows that

𝑘 ≥ 2𝑚+5. Fix any deterministic algorithm ONL. We will show that there exists
a sequence 𝜎ONL of edge insertions such that the cost of the optimum offline algo-
rithm is 𝑂(𝜀), while the cost of ONL is 𝛺(𝜀ℓ log(𝜀𝑘)). The sequence 𝜎ONL depends

7.7. LOWER BOUNDS 189

on ONL, i.e., edge insertions will depend on which servers ONL decides to place
the pieces.

Definitions. We assume that the servers are numbered sequentially. As be-
fore, each server has a color and every vertex is colored with the color of its initial
server. For simplicity, we assume server 𝑖 has color 𝑖. The main server of a color 𝑐
is the server that, out of all servers, currently contains the largest volume of color-𝑐
vertices and whose index number of all such servers is the smallest2.

A piece is called single-colored if all vertices of the piece have the same color.
If a single-colored piece with color 𝑐 is not assigned to the main server for 𝑐, it is
called 𝑐-away or simply away. Any piece of volume at least 2𝜀 is called a large piece,
all other pieces are called small. We say two pieces are merged if there is an edge
insertion connecting the two pieces.

Initial Configuration. Initially each of the ℓ servers contains one large single-
colored piece of volume 2𝜀 and (1−2𝜀)𝑘 isolated vertices, each of volume 1/𝑘. The
large pieces of on servers 1, 2, and 3 are called special. A color 𝑐 is deficient if the
total volume of all small 𝑐-away pieces is at least 𝜀.

Sequence 𝜎ONL. The first two edge insertions merge the three special pieces
into one (multi-colored) special piece of volume 6𝜀. As we will show any algorithm
now has at least one deficient color. Note that all small pieces are single-colored
and have volume 20/𝑘 = 1/𝑘.

Now 𝜎ONL proceeds in rounds. We will show that there is a deficient color at
the end and, thus, also at the beginning of every round. In each round only small
pieces of the same (deficient) color are merged such that their volume doubles. As a
result, all small pieces continue to be single-colored and, at the end of each round, all
small pieces of the same color have the same volume, namely 2𝑖/𝑘 for some integer
𝑖, except for potentially one piece of smaller volume, which we call the leftover piece.
A leftover piece is created if the number of small items of color 𝑐 and volume 2𝑖/𝑘
at the beginning of a round is an odd number. If this happens, it is merged with
the leftover piece of color 𝑐 of the previous rounds (if it exists) to guarantee that
there is always just one leftover piece of color 𝑐. To simplify the notation we will
use the term almost all small pieces of color 𝑐 to denote all pieces of color 𝑐 except
the leftover piece of color 𝑐.

A round of 𝜎ONL consists of the following sequence of requests among the
small pieces: If there exists a deficient color 𝑐 such that the volume of almost all
small pieces of color 𝑐 is 2𝑖/𝑘 for some integer 𝑖 and 2𝑖/𝑘 < 𝜀, then 𝜎ONL contains
the following steps.
If there are small pieces of color 𝑐 and volume 2𝑖/𝑘 that are currently on different
servers, they are connected by an edge, otherwise two such pieces on the same
server are connected by an edge. Repeat this until there is at most one small piece of
color 𝑐 of volume 2𝑖/𝑘 left. Once this happens and if such a piece exists, it becomes
a leftover piece of color 𝑐 and if another leftover piece of color 𝑐 exists from earlier

2The difference between majority and main color is that we added the second condition to guar-
antee that the main server of a color is unique.)

190 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

rounds, the two are merged. Note that almost all pieces of color 𝑐 have now volume
2𝑖+1/𝑘 and the leftover piece has smaller volume. If 2𝑖+1/𝑘 ≥ 𝜀, merge all non-
special (i.e. the small and the non-special large) pieces of color 𝑐 and call color 𝑐
finished. As long as there are at least two unfinished deficient colors, start a new
round.

Once there are nomore rounds wewill show that there is exactly one unfinished
deficient color 𝑐∗ left and there are at least 2𝑗+3 small pieces of color 𝑐∗ and volume
𝜀/2𝑗 for some integer 𝑗 ≥ 1. Furthermore there exists the special piece of volume
6𝜀 (which is not single-colored) and for every other color there exists one piece of
volume 1 (if it does not belong to {1, 2, 3}) or of volume 1 − 2𝜀 (if it belongs to
{1, 2, 3}).

Final Merging Steps: To guarantee that each piece has volume exactly 1 at
the end, the remaining pieces of volume less than 1 are now suitably merged. First
2𝑗+3 of the pieces of color 𝑐∗ and volume 𝜀/2𝑗 are merged into 3 pieces of volume
2𝜀 each, the rest is merged into one piece. Then consider two cases: If 𝑐∗ ∈ {1, 2, 3},
let 𝑐′ and 𝑐″ be the other two colors of {1, 2, 3}. In this case 𝜎ONL merges the first
small piece of volume 2𝜀 of 𝑐∗ with the non-special piece of 𝑐′ and then merges the
second small piece of volume 2𝜀 of 𝑐∗ with the non-special piece of 𝑐″. Then all the
remaining pieces of color 𝑐∗ are merged with each other and with the special piece.

If 𝑐∗ ∉ {1, 2, 3}, then 𝜎ONL merges the small pieces of volume 𝜀/2 of color
𝑐∗ with the non-special piece of color 1 and then does the same with color 2 and
3. Then all the remaining (small and large) pieces of color 𝑐∗ are merged with each
other and with the special piece.

Note that as a consequence all piece now have volume 1.
We show first that all the assumptions made in the description of 𝜎ONL hold.

Specifically the next three lemmata will show that (1) after initialization and after
each round there exists a deficient color for any algorithm, that (2) for each color 𝑐
almost all small pieces of color 𝑐 have volume 2𝑖/𝑘 and the leftover piece of color 𝑐
has volume less than 2𝑖/𝑘, and that (3) at the beginning of the final merging steps
there is exactly one unfinished deficient color left and there are at least 2𝑗+3 small
pieces of this color that have volume 𝜀/2𝑗 for some integer 𝑗 ≥ 1. Then we will
show that algorithm ONL has cost at least 𝛺(𝜀ℓ log(𝜀𝑘)) to process the sequence.

Lemma 7.29. At the beginning of each round there exists an unfinished deficient color
for algorithm ONL.

Proof. After initialization and after each round there exists (1) the special piece of
volume 6𝜀 that is not single-colored and (2) for each color there exist small single-
colored pieces of total volume at least 1 − 2𝜀. Now suppose by contradiction that no
color is deficient. Then for each color 𝑐 the total volume of small 𝑐-away pieces is
less than 𝜀, i.e. the volume of the small pieces on the main server for 𝑐 is at least
1 − 3𝜀. As no server can have pieces of total volume more than 1 + 𝜀 assigned to it
and 𝜀 ≤ 1/8, it follows that the non-special pieces on the main server of 𝑐 require
volume more than (1 + 𝜀)/2, and, thus, each server can be the main server for at

7.7. LOWER BOUNDS 191

most one color. As there are as many colors as there are server, each server is the
main server for exactly one color and each color has exactly one main server.

Now consider the server 𝑠∗ on which the special piece is placed and let it be the
main server for some color 𝑐. Then the total volume of the pieces on 𝑠∗ is 6𝜀 for
the special piece. If 𝑐 is not deficient, 𝑠∗ has load at least 1 − 3𝜀 for the non-special
pieces of color 𝑐. Thus, the server’s load is at least 1 + 3𝜀 which is not possible.
Hence, there must exist a deficient color.

Next we show that there is always an unfinished deficient color. This is trivially
true after initialization as all colors are unfinished. Let us now consider the end of
a round. Note that every color 𝑐 that is finished has a non-special piece of volume
at least 1 − 2𝜀 and, thus, the special piece cannot be placed on the main server of
a finished color 𝑐. Recall that every non-deficient color has pieces of total volume
at least 1 − 𝜀 on its main server. Thus, the special piece cannot be placed the main
server of any non-deficient color. Thus, the special piece can only be placed on a
server that is not the main server of a finished deficient or a non-finished color. If
every deficient color is finished, every color has a main server and the special piece
cannot be placed on any of them. As, however, there are as many servers as there
are colors, it would follow that the special piece is not placed on any server, which
is not possible. Thus, there must exist a deficient unfinished color.

Lemma 7.30. For each color 𝑐 it holds at the beginning and end of each round that
almost all small pieces of color 𝑐 have volume 2𝑖/𝑘 for some integer 𝑖 and the other
small piece has even smaller volume.

Proof. By induction on the number of rounds. The claim holds after initialization for
𝑖 = 1 for every color. During each round for some color 𝑐 the pieces of color 𝑐 and
volume 2𝑖/𝑘 are merged pairwise, and the possible left-over piece of volume 2𝑖/𝑘
is merged with the leftover piece of earlier rounds, if it exists. From the induction
claim it follows that the leftover piece of earlier rounds has volume less than 2𝑖/𝑘.
Thus, the resulting leftover piece has volume less than 2𝑖+1/𝑘. Furthermore, the
pieces of the other colors remain unchanged. Thus, the claim follows.

Lemma 7.31. At the beginning of the final merging steps there is exactly one unfin-
ished deficient color left and there are at least 2𝑗+3 small pieces have volume 𝜀/2𝑗 for
some integer 𝑗 ≥ 1.

Proof. Lemma 7.29 holds after each round, thus, also after the final round. It shows
that there is still at least one deficient unfinished color. As there are no more rounds,
there at most one deficient unfinished color, which implies that there is exactly one
deficient unfinished color. As it is unfinished, all its small pieces have volume less
than 𝜀. For the rest of the proof we only consider small pieces of this color.

Recall that 𝜀𝑘 = 2𝑚 and 𝑘 ≥ 2𝑚+5. Initially there are 𝑘−2𝜀𝑘 ≥ 2𝑚+5−2𝑚+1

small pieces of volume 1/𝑘 each. Let 𝑘′ be the largest power of 2 that is at most
𝑘 − 2𝜀𝑘. It follows that 𝑘 − 2𝜀𝑘 ≥ 𝑘′ > 𝑘/2 − 𝜀𝑘 ≥ 2𝑚+4 − 2𝑚. Thus, initially
there are at least 𝑘′ small pieces of volume 1/𝑘 = 𝜀/2𝑚 each. Let 𝑗 be any integer

192 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

with 0 ≤ 𝑗 ≤ 𝑚 such that exactly 𝑚 − 𝑗 rounds were executed for this color. Thus,
there are at least 𝑘′/2𝑚−𝑗 pieces of volume 2𝑚−𝑗𝜀/2𝑚 = 𝜀/2𝑗 at the beginning of
the final merging steps. Note that 𝑘′/2𝑚−𝑗 ≥ (2𝑚+4 −2𝑚)/2𝑚−𝑗 = 2𝑗+4 −2𝑗 ≥
2𝑗+3. Thus, there are at least 2𝑗+3 pieces of volume 𝜀/2𝑗. As the color is unfinished,
each small piece has volume less than 𝜀, i.e. 𝑗 ≥ 1. Thus the lemma holds.

Next we analyze how many rounds are performed for a given color until it is
finished. Consider any color 𝑐. The number of rounds necessary to increase the
volume of almost all small pieces of color 𝑐 from 1/𝑘 to 𝜀 is log(𝜀𝑘) as 𝜀𝑘 is a power
of 2. Each round roughly halves the number of small pieces. Thus, we only have
to show that there are enough small pieces available initially so that log(𝜀𝑘) many
rounds are possible for color 𝑐.

Lemma 7.32. For each finished color log(𝜀𝑘) many rounds are executed.

Proof. Fix a color 𝑐 and consider in this proof only pieces of color 𝑐. As 𝜀 ≤ 1/8
and each initial small piece is a single vertex, there are 𝑘 − 2𝜀𝑘 ≥ 3𝑘/4 many such
small pieces initially. Let 𝑘′ be the largest power of 2 that is at most 3𝑘/4. Note
that 𝑘′ > 3𝑘/8. Thus the number of small pieces of volume at least 𝜀 is at least
𝑘′/2log(𝜀𝑘) > 3/(8𝜀) ≥ 3. Hence for each finished color log(𝜀𝑘) rounds will be
executed.

As there are ℓ different colors, it suffices to show that in almost every round
algorithm ONL moves pieces with total volume 𝛺(𝜀) to achieve the desired lower
bound of 𝛺(𝜀ℓ log(𝜀𝑘)) for the cost of ONL.

Lemma 7.33. In one round of the above process, except in the last round for each
color, ONL moves vertices with volume 𝛺(𝜀). In total, the algorithm moves vertices
with volume 𝛺(𝜀ℓ log(𝜀𝑘))

Proof. Fix a color 𝑐 and only consider pieces of color 𝑐 in this proof. Note that
when two pieces of different servers, of volume 2𝑖/𝑘 each, are merged, at least one
of them has to change its server, resulting in a cost of 2𝑖/𝑘 for the algorithm. We
proved in Lemma 7.29 that at the beginning of each round a deficient color exists. A
deficient color has away pieces of total volume at least 𝜀, i.e., there are small pieces
of total volume at least 𝜀 not on the main server. During a round, as shown by
Lemma 7.30, almost all of these pieces have volume 2𝑖/𝑘 for some integer 𝑖 and
their total contribution to the total volume of all away pieces of color 𝑐 is larger
than 𝜀 − 2𝑖/𝑘 (subtracting out the volume of the potentially existing leftover piece
of even smaller volume). Thus, as long as 𝜀 − 2𝑖/𝑘 ≥ 𝜀/2, i.e., in all but the last
round, the total volume of all the away pieces excluding the leftover piece is larger
then 𝜀/2. In the following when we talk about a small piece, we mean a small piece
that is not the leftover piece and we fix a round that is not the last round. We will
show that at least 𝜀/2 volume is merged by pieces on different servers in this round,
resulting in at least 𝜀/4 cost for the algorithm.

7.7. LOWER BOUNDS 193

Now consider two cases: (1) If the main server 𝑠∗ contains small pieces of total
volume at least 𝜀/2, then every away piece can be merged with a small piece either
on 𝑠∗ or on a different server. Thus at least 𝜀/2 volume is merged by pieces on
different servers. (2) If, however, the main server contains small pieces of total
volume less than 𝜀/2, then every server contains small pieces of total volume less
than 𝜀/2. Small pieces of different servers are merged until all remaining small
pieces are on the same server. However, this server has less than 𝜀/2 volume of
small pieces, i.e., more than 𝜀/2 volume must have been merged between different
servers. Thus in both cases the algorithm has cost at least 𝜀/4. The second claim
follows immediately from the discussion preceding the lemma.

Next, we prove an upper bound on the volume of vertices moved by OPT.

Lemma 7.34. In total, OPT moves vertices with volume 𝑂(𝜀).

Proof. Right at the beginning OPT places the special piece of volume 6𝜀 on server
𝑠∗ and moves the small pieces of color 𝑐∗ that are merged in the final merging step
with a different color to the main server for the corresponding color. Thus, none of
the other steps cause any cost for OPT. Thus, OPT only has cost 𝑂(𝜀).

The previous two lemmas imply a lower bound on the competitive ratio of
𝛺(ℓ log(𝜀𝑘)) for deterministic algorithms. This finishes the proof of the theorem.

7.7.2 Lower Bounds for Randomized Algorithms

Theorem 7.35. Any randomized online algorithm must have a competitive ratio of
𝛺(log ℓ + log 𝑘).

Proposition 7.36. If 𝜀 < 1/6, then any randomized online algorithm must have a
competitive ratio of 𝛺(log ℓ).

Proof. We use Yao’s principle [210] to derive our lower bound and provide a ran-
domized hard instance against a deterministic algorithm. The hard instance starts
by merging the vertices of each server into monochromatic pieces of volume 2𝜀
each. Now the hard instance arbitrarily picks three pieces with different majority
colors andmerges them into a piece of volume 6𝜀 andwe call this piece special. Next,
the hard instance proceeds in ℓ − 1 rounds. Before the first round all servers are
unfinished. In round 𝑖, the hard instance picks an unfinished server 𝑠 uniformly at
random. Now the hard instance uniformly at random picks monochromatic pieces
with color 𝑠 of total volume 1 − 2𝜀 and merges them in arbitrary order; after that
we call 𝑠 finished. When all ℓ − 1 rounds are over, a final configuration in which
all pieces have volume 1 is obtained as follows. First, observe that there is a unique
unfinished server 𝑠∗. Now the hard instance merges the special piece and mono-
chromatic pieces of color 𝑠∗ of total volume 1 − 6𝜀. The remaining monochromatic
pieces of color 𝑠∗ are merged with the components of the finished servers from

194 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

which the vertices of the special piece originated. All other monochromatic com-
ponents of volume 2𝜀 are merged with the large monochromatic components with
the same color as the piece itself.

For a given schedule, we say that an unfinished server 𝑠 is split if monochromatic
pieces with color 𝑠 and of volume at least 𝜀 are not scheduled on 𝑠. Now observe
that after each round there exists a server which is split: First, observe that none of
the finished servers can store its monochromatic piece of volume 1 − 2𝜀 together
with the special piece of volume 6𝜀. Now if none of the (unfinished) servers was
split, one of them would contain all of its monochromatic pieces of total volume at
least 1 − 2𝜀 together with the special piece of volume 6𝜀. Thus, the total load of the
server is 1 + 4𝜀 which is not a valid schedule.

Next, we show that if a server 𝑠 is split, then the algorithm has moved mono-
chromatic pieces with color 𝑠 of volume at least 𝜀: First, suppose the algorithm has
scheduled all monochromatic pieces of color 𝑠 on some server 𝑠′ ≠ 𝑠. Then the algo-
rithm has paid at least 1−2𝜀 ≥ 𝜀 to move the monochromatic pieces of color 𝑠 to 𝑠′.
Second, suppose the monochromatic pieces of color 𝑠 are scheduled on at least two
different servers. Then the algorithm must have moved at least one monochromatic
piece of color 𝑠 away from 𝑠. Since 𝑠 is unfinished and all monochromatic pieces
of 𝑠 have volume 2𝜀, the algorithm has paid at least 𝜀 for moving monochromatic
pieces of color 𝑠.

Now we analyze the cost paid by the algorithm. Observe that before round 𝑖
there are ℓ−𝑖+1 unfinished servers and at least one of them is split. Let 𝑠 be a split
server. Thus with probability 1/(ℓ −𝑖+1) the hard instance picks the split server 𝑠.
It follows from the previous claims that the algorithm paid at least 𝜀 to move pieces
of color 𝑠. Since the above arguments hold for each round, the total expected cost
of the algorithm is

ℓ−1
∑
𝑖=1

𝜀 1
ℓ − 𝑖 + 1 =

ℓ
∑
𝑖=2

𝜀1
𝑖 = 𝛺(𝜀 log ℓ).

Next, observe that OPT never moves more than 𝑂(𝜀) volume: Indeed, the hard
instance only merges pieces in which all vertices have the same color except when
(1) creating the special piece of volume 𝑂(𝜀), (2) merging the special piece with the
vertices from 𝑠∗ and (3) merging the small pieces from 𝑠∗ with the large pieces of the
servers fromwhich the special piece originated. All of these steps can be performed
by only moving volume 𝑂(𝜀).

Thus, the competitive ratio of the algorithm is 𝛺(log ℓ).

Proposition 7.37. Any randomized algorithm must have a competitive ratio of at
least 𝛺(log 𝑘).

Proof. We use Yao’s principle [210] to derive our lower bound and provide a random
instance against a deterministic algorithm. In the instance all pieces initially have
volume 1/𝑘, i.e., the pieces consist of single vertices. The lower bounds proceeds

7.8. OMITTED PROOFS 195

in log 𝑘 rounds. In each round, we pick a perfect matching between all pieces uni-
formly at random. Thus, after 𝑖 rounds, all pieces have volume 2𝑖/𝑘. Note that after
log 𝑘 rounds all pieces have volume 1 and we have obtained a valid final configura-
tion.

We claim that in each round the algorithm has to move volume 𝛺(ℓ). Suppose
we are currently in round 𝑖. Now consider two pieces 𝑝1 and 𝑝2 which are merged
during a single round. Then the probability that 𝑝1 and 𝑝2 are assigned to different
servers is 𝛺((ℓ − 1)/ℓ) = 𝛺(1). Furthermore, observe that each piece has volume
2𝑖/𝑘 and in total there are 𝑛/2𝑖 pieces. Now by linearity of expectation we obtain
that the expected volume moved by the algorithm in round 𝑖 is 𝛺(2𝑖/𝑘 ⋅ 𝑛/2𝑖) =
𝛺(ℓ).

Next, observe that the total cost paid by the algorithm is 𝛺(ℓ ⋅ log 𝑘) since there
are log 𝑘 rounds. Furthermore, OPT never moves volume more than 𝑂(ℓ) because
it moves each vertex at most once. Thus, the competitive ratio is 𝛺(log 𝑘).

7.8 Omitted Proofs

7.8.1 Claim 7.38

Claim 7.38. Let 𝜀 ∈ (0, 1
4) and 𝑘 ≥ 10/𝜀4. Then there exists 𝛿 such that (1) 1

2𝜖2 ≤
𝛿 ≤ 𝜖2, (2) 𝛿 = 𝑖 1

𝑘 with 𝑖 ∈ ℕ and (3) ⌈1⌉𝛿 − 1 ≤ 𝛿/2, where ⌈⋅⌉𝛿 is the operation of
rounding up to a multiple of 𝛿.

Proof. Set 𝛿∗ = max{𝑖 1
𝑘 ∶ 𝑖 1

𝑘 ≤ 𝜀2} and observe that 𝜀2 − 1
𝑘 < 𝛿∗ ≤ 𝜀2. Thus,

𝛿∗ satisfies (1) and (2). Next, if (3) is satisfied, we have found a value 𝛿 = 𝛿∗ with
the desired properties. Otherwise, we set 𝛿 = 𝛿∗ and then we keep on decreasing 𝛿
by 1

𝑘 until (3) holds. Clearly, when this procedure stops, (2) and (3) are satisfied. It
remains to show that (1) holds.

Observe that for every 𝛿, we have that ⌈1⌉𝛿 = ⌈1
𝛿⌉𝛿, where ⌈⋅⌉ denotes rounding

up to the next integer. Note that when the above procedure decreases 𝛿 by 1
𝑘 , we

still have ⌈1
𝛿⌉ = ⌈ 1

𝛿∗ ⌉: After the first decrease, the value of ⌈1⌉𝛿∗ drops by ⌈ 1
𝛿∗ ⌉⋅ 1

𝑘 ≤
2
𝜀2 ⋅ 𝜀4

10 ≤ 𝜀2
5 . Thus, for 𝛿 = 𝛿∗ − 1

𝑘 we still have ⌈1⌉𝛿 − 1 ≥ 0. Using that 𝛿 ≤ 𝛿∗

implies ⌈1
𝛿⌉ ≥ ⌈ 1

𝛿∗ ⌉, gives the claim for 𝛿 = 𝛿∗ − 1
𝑘 . Now the argument can be

extended using induction.
Now we show that (1) holds when the procedure finishes. Observe that every

time the procedure decreases 𝛿 by 1
𝑘 , the RHS of (3) decreases by 1

2𝑘 ≤ 𝜀4
20 and the

LHS of (3) decreases by ⌈1
𝛿⌉ ⋅ 1

𝑘 = ⌈ 1
𝛿∗ ⌉ ⋅ 1

𝑘 ≥ 1
2𝜀2 ⋅ 1

𝑘 ≫ 1
𝑘 . Since we have that

⌈1⌉𝛿∗ − 1 − 𝛿∗/2 ≤ 𝜀2/2 and we just saw that the procedure decreases the LHS
much faster than 𝛿, the above procedure finishes with 𝛿 ≥ 1

2𝜀2.

196 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

7.8.2 Optimality of Monochromatic Merges and Commits on
Ordinary Servers

Let 𝑐 be a cost vector for the ILP from Section 7.4. Note that 𝑐 has an entry 𝑐(𝑟,𝑚)
for each 𝛾-feasible configuration (𝑟, 𝑚). For the deterministic algorithm we simply
have

𝑐(𝑟,𝑚) ∶= {0, 𝑟 ≥ 𝑚,
1, 𝑟 ≱ 𝑚, (7.4)

and for the randomized algorithm 𝑐 is defined as in Equation 7.2.
Recall the definition of the partial order ≤𝑝 from Section 7.6.1. We say that a

cost vector 𝑐 is ≤𝑝-respecting if it satisfies (1) 𝑐(𝑟,𝑚) = 0 for all ordinary config-
urations (𝑟, 𝑚) and (2) 𝑚1 ≥𝑝 𝑚2 ⟹ 𝑐(𝑟1,𝑚1) ≤ 𝑐(𝑟2,𝑚2) for all extraordinary
configurations (𝑟1, 𝑚1) and (𝑟2, 𝑚2). It is easy to see that the cost vectors for the
deterministic and the randomized algorithm both satisfy this condition.

Lemma 7.39. Suppose the ILP is equipped with a ≤𝑝-respecting cost vector. Let 𝑠 be
a server and let 𝑝𝑠 and 𝑝ℓ be two large pieces monochromatic for 𝑠. Further, let 𝑥 be an
optimal ILP solution before the pieces 𝑝𝑠 and 𝑝ℓ get merged and let 𝑥′ be an optimal
ILP solution directly after the merge. Then the objective function value of the ILP for
𝑥′ is not smaller than the objective function value of the ILP for 𝑥.

Proof. We prove the lemma by contradiction. Suppose the new solution 𝑥′ has a
smaller objective function value than 𝑥. We show that this implies that the solution
𝑥 before merging pieces 𝑝𝑠 and 𝑝ℓ was not optimal.

Let 𝑖𝑠, 𝑖ℓ and 𝑖𝑚 denote the size classes of 𝑝𝑠, 𝑝ℓ and 𝑝𝑚. Now consider a sched-
ule 𝑆′ respecting the ILP solution 𝑥′. Let 𝑠′ be the server on which 𝑝𝑚 is scheduled
(note that in 𝑆′ it might be the case that 𝑠′ ≠ 𝑠) and let (𝑟′

𝑠, 𝑚′
𝑠), (𝑟′

𝑠′ , 𝑚′
𝑠′) de-

note the configurations of 𝑠 and 𝑠′ in 𝑆′, respectively. Now we set 𝑆∗ to the same
schedule as 𝑆′ except that piece 𝑝𝑚 is replaced by 𝑝𝑠 and 𝑝ℓ. Note that in 𝑆∗ all
server configurations are the same as in 𝑆′ except that 𝑠′ has reservation 𝑟∗

𝑠′ and 𝑠
has source vector 𝑚∗

𝑠 with

𝑟∗
𝑠′𝑖𝑠

∶= 𝑟′
𝑠′𝑖𝑠

+ |𝑝𝑠|𝑐
𝑟∗

𝑠′𝑖ℓ
∶= 𝑟′

𝑠′𝑖ℓ
+ |𝑝ℓ|𝑐

𝑟∗
𝑠′𝑖𝑚

∶= 𝑟′
𝑠′𝑖𝑚

− |𝑝𝑚|𝑐

and
𝑚∗

𝑠𝑖𝑠
∶= 𝑚′

𝑠𝑖𝑠
+ |𝑝𝑠|𝑐

𝑚∗
𝑠𝑖ℓ

∶= 𝑚′
𝑠𝑖ℓ

+ |𝑝ℓ|𝑐
𝑚∗

𝑠𝑖𝑚
∶= 𝑚′

𝑠𝑖𝑚
− |𝑝𝑚|𝑐

.

It follows that 𝑆∗ and 𝑆′ have exactly the same extraordinary servers.
Now based on 𝑆∗ we derive an ILP solution 𝑥∗ by setting 𝑥∗

(𝑟,𝑚) to the number
of servers in 𝑆∗ with configuration (𝑟, 𝑚) for all (𝑟, 𝑚). It is easy to see that 𝑥∗ is a
feasible solution for the ILP before 𝑝𝑠 and 𝑝ℓ were merged. Nowwe distinguish two

7.8. OMITTED PROOFS 197

cases. First, suppose 𝑠 is not extraordinary in 𝑆∗. Then 𝑥∗ has the same objective
function value for the ILP as 𝑥′. This contradicts the optimality of 𝑥 before 𝑝𝑠 and
𝑝ℓ were merged. Second, suppose that 𝑠 is extraordinary in 𝑆∗. In this case note
that we have 𝑚′

𝑠 ≤𝑝 𝑚∗
𝑠 and hence 𝑐(𝑟′𝑠,𝑚′𝑠) ≥ 𝑐(𝑟∗𝑠,𝑚∗𝑠) since the cost vector 𝑐

is ≤𝑝-presering. Thus, the objective function value of 𝑥∗ is upper bounded by the
objective function of 𝑥′. This again contradicts the optimality of 𝑥.

Lemma 7.40. Suppose the ILP is equipped with a ≤𝑝-respecting cost vector. Let 𝑠
be a server and let 𝑝𝑚 be a large monochromatic pieces for 𝑠. Let 𝑥 be an optimal
ILP solution before volume is committed for 𝑝𝑚 and let 𝑥′ be an optimal ILP solution
directly after the commit. Then the objective function value of the ILP for 𝑥′ is not
smaller than the objective function value of the ILP for 𝑥.

Proof. We proceed similar to the proof of the Lemma 7.40. We prove the lemma by
contradiction. Suppose the new solution 𝑥′ has a smaller objective function value
than 𝑥. We show that this implies that the solution 𝑥 before committing the volume
for 𝑝𝑚 was not optimal.

Let 𝑖𝑚 and 𝑖′
𝑚 denote the size classe of 𝑝𝑚 before and after the commit, respec-

tively. Now consider a schedule 𝑆′ respecting the ILP solution 𝑥′. Let 𝑠′ be the
server on which 𝑝𝑚 is scheduled (note that in 𝑆′ it might be the case that 𝑠′ ≠ 𝑠)
and let (𝑟′

𝑠, 𝑚′
𝑠), (𝑟′

𝑠′ , 𝑚′
𝑠′) denote the configurations of 𝑠 and 𝑠′ in 𝑆′, respectively.

Nowwe set 𝑆∗ to the same schedule as 𝑆′ except that we undo the commit for piece
𝑝𝑚. Note that in 𝑆∗ all server configurations are the same as in 𝑆′ except that 𝑠′

has reservation 𝑟∗
𝑠′ and 𝑠 has source configuration 𝑚∗

𝑠 with

𝑟∗
𝑠′0 ∶= 𝑟′

𝑠′0 + 𝛿
𝑟∗

𝑠′𝑖𝑚
∶= 𝑟′

𝑠′𝑖𝑚
+ |𝑝𝑚|𝑐 − 𝛿

𝑟∗
𝑠′𝑖′𝑚

∶= 𝑟′
𝑠′𝑖′𝑚

− |𝑝𝑚|𝑐

and
𝑚∗

𝑠0 ∶= 𝑚′
𝑠0 + 𝛿

𝑚∗
𝑠𝑖𝑚

∶= 𝑚′
𝑠𝑖𝑚

+ |𝑝𝑚|𝑐 − 𝛿
𝑚∗

𝑠𝑖′𝑚
∶= 𝑚′

𝑠𝑖′𝑚
− |𝑝𝑚|𝑐

.

It follows that 𝑆∗ and 𝑆′ have exactly the same extraordinary servers.
Now based on 𝑆∗ we derive an ILP solution 𝑥∗ by setting 𝑥∗

(𝑟,𝑚) to the number
of servers in 𝑆∗ with configuration (𝑟, 𝑚) for all (𝑟, 𝑚). It is easy to see that 𝑥∗

is a feasible solution for the ILP before the commit was performed. Now we dis-
tinguish two cases. First, suppose 𝑠 is not extraordinary in 𝑆∗. Then 𝑥∗ has the
same objective function value for the ILP as 𝑥′. This contradicts the optimality of 𝑥
before the commit. Second, suppose that 𝑠 is extraordinary in 𝑆∗. In this case note
that we have 𝑚′

𝑠 ≤𝑝 𝑚∗
𝑠 and hence 𝑐(𝑟′𝑠,𝑚′𝑠) ≥ 𝑐(𝑟∗𝑠,𝑚∗𝑠) since the cost vector 𝑐

is ≤𝑝-presering. Thus, the objective function value of 𝑥∗ is upper bounded by the
objective function of 𝑥′. This again contradicts the optimality of 𝑥.

198 CHAPTER 7. TIGHT BOUNDS FOR ONLINE GRAPH PARTITIONING

7.9 Conclusion

We studied an online graph partitioning problemwhich has applications in resource
allocation problems in the cloud. We improved upon the results of Chapter 6 by
obtaining new randomized and deterministic algorithms together with matching
lower bounds. Thus, our derived bounds and algorithms are asymptotically optimal.

Two open research questions are as follows. First, the dependency of our algo-
rithms on 𝜀 is superpolynomial and thus the algorithm is of rather theoretical nature.
It is an interesting question whether we can obtain a polynomial dependency on 𝜀
(similar to the algorithm from Chapter 6) or whether this cannot be done when ob-
taining asymptotically tight competitive ratios. Second, it would be interesting to
shed light on the competitive ratios achievable by randomized online algorithms in
scenarios where request patterns can change arbitrarily over time (i.e., when drop-
ping the cc-condition). We currently do not know whether this problem variant
allows for polylogarithmic competitive ratios, or whether the competitive ratio is
inherently linear, as in the deterministic case [20, 23].

Bibliography

[1] Emmanuel Abbe. “Community Detection and Stochastic Block Models: Re-
cent Developments”. In: J. Mach. Learn. Res. 18.177 (2018), pp. 1–86.

[2] Emmanuel Abbe and Colin Sandon. “Community Detection in General Sto-
chastic Block models: Fundamental Limits and Efficient Algorithms for Re-
covery”. In: FOCS. 2015, pp. 670–688.

[3] Emmanuel Abbe and Colin Sandon. “Recovering Communities in the Gen-
eral Stochastic Block Model Without Knowing the Parameters”. In: NIPS.
2015, pp. 676–684.

[4] Amir Abboud, Raghavendra Addanki, Fabrizio Grandoni, Debmalya Pani-
grahi, and Barna Saha. “Dynamic set cover: improved algorithms and lower
bounds”. In: STOC. 2019, pp. 114–125.

[5] Amir Abboud, Aviad Rubinstein, and R. Ryan Williams. “Distributed PCP
Theorems for Hardness of Approximation in P”. In: FOCS. 2017, pp. 25–36.

[6] Amir Abboud, Richard R. Williams, and Huacheng Yu. “More Applications
of the Polynomial Method to Algorithm Design”. In: SODA. 2015, pp. 218–
230.

[7] Amir Abboud and Virginia Vassilevska Williams. “Popular Conjectures Im-
ply Strong Lower Bounds for Dynamic Problems”. In: FOCS. 2014, pp. 434–
443.

[8] Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke. “An
O(log k)-competitive algorithm for generalized caching”. In: SODA. 2012,
pp. 1681–1689.

[9] Pankaj K. Agarwal, Lars Arge, and Ke Yi. “I/O-efficient batched union-find
and its applications to terrain analysis”. In:ACMTrans. Algorithms 7.1 (2010),
11:1–11:21.

[10] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips,
Zhewei Wei, and Ke Yi. “Mergeable summaries”. In: ACM Trans. Database
Syst. 38.4 (2013), 26:1–26:28.

[11] Charu C. Aggarwal. Data Mining - The Textbook. Springer, 2015.

199

200 BIBLIOGRAPHY

[12] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen,
and A. Inkeri Verkamo. “Fast Discovery of Association Rules”. In: Advances
in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996, pp. 307–
328.

[13] Rakesh Agrawal and Ramakrishnan Srikant. “Fast Algorithms for Mining
Association Rules in Large Databases”. In: VLDB. 1994, pp. 487–499.

[14] Rakesh Agrawal and Ramakrishnan Srikant. “Mining Sequential Patterns”.
In: ICDE. 1995, pp. 3–14.

[15] Dan Alistarh, Jennifer Iglesias, and Milan Vojnovic. “Streaming Min-max
Hypergraph Partitioning”. In: NeurIPS. 2015, pp. 1900–1908.

[16] MohammadAlizadeh, Albert G. Greenberg, David A.Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan.
“Data center TCP (DCTCP)”. In: SIGCOMM. Vol. 40. 4. 2010, pp. 63–74.

[17] Richard J. Anderson and Heather Woll. “Wait-free Parallel Algorithms for
the Union-Find Problem”. In: STOC. 1991, pp. 370–380.

[18] Konstantin Andreev and Harald Räcke. “Balanced graph partitioning”. In:
Theory of Comput. Syst. 39.6 (2006), pp. 929–939.

[19] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Mu-
nagala, and Vinayaka Pandit. “Local Search Heuristics for k-Median and Fa-
cility Location Problems”. In: SIAM J. Comput. 33.3 (2004), pp. 544–562.

[20] Chen Avin, Marcin Bienkowski, Andreas Loukas, Maciej Pacut, and Stefan
Schmid. “Dynamic Balanced Graph Partitioning”. In: SIAM J. Discrete Math.
2019.

[21] Chen Avin, Louis Cohen, Mahmoud Parham, and Stefan Schmid. “Competi-
tive Clustering of Stochastic Communication Patterns on a Ring”. In: 101.9
(2019), pp. 1369–1390.

[22] Chen Avin, Louis Cohen, and Stefan Schmid. “Competitive Clustering of
Stochastic Communication Patterns on the Ring”. In: NETYS. 2017, pp. 231–
247.

[23] Chen Avin, Andreas Loukas, Maciej Pacut, and Stefan Schmid. “Online Bal-
anced Repartitioning”. In: DISC. 2016, pp. 243–256.

[24] Chen Avin and Stefan Schmid. “Toward Demand-Aware Networking: AThe-
ory for Self-Adjusting Networks”. In: Comput. Commun. Rev. 48.5 (2018),
pp. 31–40.

[25] Arturs Backurs and Piotr Indyk. “Edit Distance Cannot Be Computed in
Strongly Subquadratic Time (Unless SETH is False)”. In: SIAM J. Comput.
47.3 (2018), pp. 1087–1097.

[26] Arturs Backurs, Liam Roditty, Gilad Segal, Virginia Vassilevska Williams,
and Nicole Wein. “Towards tight approximation bounds for graph diameter
and eccentricities”. In: STOC. 2018, pp. 267–280.

BIBLIOGRAPHY 201

[27] Thomas Baignères, Pascal Junod, and Serge Vaudenay. “How Far CanWe Go
Beyond Linear Cryptanalysis?” In: ASIACRYPT. 2004, pp. 432–450.

[28] Frank Ban, Vijay Bhattiprolu, Karl Bringmann, Pavel Kolev, Euiwoong Lee,
and David P. Woodruff. “A PTAS for ℓ𝑝-Low Rank Approximation”. In:
SODA. 2019, pp. 747–766.

[29] Yair Bartal, Moses Charikar, and Piotr Indyk. “On Page Migration and Other
Relaxed Task Systems”. In: Theor. Comput. Sci. 268.1 (2001), pp. 43–66. Con-
ference version in SODA’97.

[30] Theophilus Benson, Aditya Akella, and David A. Maltz. “Network Traffic
Characteristics of Data Centers in the Wild”. In: IMC. 2010, pp. 267–280.

[31] Anup Bhattacharya, Dishant Goyal, Ragesh Jaiswal, and Amit Kumar.
“Streaming PTAS for Binary ℓ0–Low Rank Approximation”. In: CoRR
abs/1909.11744 (2019).

[32] Sayan Bhattacharya, Monika Henzinger, and Stefan Neumann. “New Amor-
tized Cell-Probe Lower Bounds for Dynamic Problems”. In: Theor. Comput.
Sci. 779 (2019), pp. 72–87.

[33] Marcin Bienkowski, Anja Feldmann, Johannes Grassler, Gregor Schaffrath,
and Stefan Schmid. “The Wide-Area Virtual Service Migration Problem: A
Competitive Analysis Approach”. In: IEEE/ACM Trans. Netw. 22.1 (2014),
pp. 165–178.

[34] Yonatan Bilu and Nathan Linial. “Are Stable Instances Easy?” In: ICS. 2010,
pp. 332–341.

[35] Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri
Zwick. “Listing Triangles”. In: ICALP. 2014, pp. 223–234.

[36] David L. Black and Daniel D. Sleator. Competitive algorithms for replication
and migration problems. Carnegie Mellon University, Tech. Rep. CMU-CS-
89-201, 1989.

[37] Avrim Blum, Carl Burch, and Adam Kalai. “Finely-Competitive Paging”. In:
FOCS. 1999, pp. 450–458.

[38] Francesco Bonchi, Fosca Giannotti, Claudio Lucchese, Salvatore Orlando,
Raffaele Perego, and Roberto Trasarti. “A constraint-based querying system
for exploratory pattern discovery”. In: Inf. Syst. 34.1 (2009), pp. 3–27.

[39] Francesco Bonchi, Fosca Giannotti, Alessio Mazzanti, and Dino Pedreschi.
“ExAnte: Anticipated Data Reduction in Constrained Pattern Mining”. In:
PKDD. 2003, pp. 59–70.

[40] Francesco Bonchi and Claudio Lucchese. “On Closed Constrained Frequent
Pattern Mining”. In: ICDM. 2004, pp. 35–42.

[41] Alan Borodin, Nati Linial, and Michael E. Saks. “An optimal on-line algo-
rithm for metrical task system”. In: J. ACM 39.4 (1992), pp. 745–763. Confer-
ence version in STOC’87.

202 BIBLIOGRAPHY

[42] Endre Boros, Vladimir Gurvich, Leonid Khachiyan, and Kazuhisa Makino.
“On Maximal Frequent and Minimal Infrequent Sets in Binary Matrices”. In:
Ann. Math. Artif. Intell. 39.3 (2003), pp. 211–221.

[43] Pat Bosshart et al. “P4: Programming protocol-independent packet proces-
sors”. In: Comput. Commun. Rev. 44.3 (2014), pp. 87–95.

[44] Vladimir Braverman, Adam Meyerson, Rafail Ostrovsky, Alan Royt-
man, Michael Shindler, and Brian Tagiku. “Streaming k-means on Well-
Clusterable Data”. In: SODA. 2011, pp. 26–40.

[45] Karl Bringmann and Marvin Künnemann. “Quadratic Conditional Lower
Bounds for String Problems and Dynamic Time Warping”. In: FOCS. 2015,
pp. 79–97.

[46] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey
Zweig. “Syntactic Clustering of the Web”. In: Comput. Networks 29.8-13
(1997), pp. 1157–1166.

[47] Douglas Burdick, Manuel Calimlim, Jason Flannick, Johannes Gehrke, and
Tomi Yiu. “MAFIA: A Maximal Frequent Itemset Algorithm”. In: IEEE Trans.
Knowl. Data Eng. 17.11 (2005), pp. 1490–1504.

[48] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-
Spaccamela, and Christian Sohler. “Counting triangles in data streams”. In:
PODS. 2006, pp. 253–262.

[49] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. “A Duality be-
tween Clause Width and Clause Density for SAT”. In: CCC. 2006, pp. 252–
260.

[50] Toon Calders, Nele Dexters, Joris J. M. Gillis, and Bart Goethals. “Mining
frequent itemsets in a stream”. In: Inf. Syst. 39 (2014), pp. 233–255.

[51] TimothyM. Chan and RyanWilliams. “Deterministic APSP, Orthogonal Vec-
tors, and More: Quickly Derandomizing Razborov-Smolensky”. In: SODA.
2016, pp. 1246–1255.

[52] L. Sunil Chandran, Davis Issac, and Andreas Karrenbauer. “On the Parame-
terized Complexity of Biclique Cover and Partition”. In: IPEC. 2016, 11:1–
11:13.

[53] Moses Charikar, Piotr Indyk, and Rina Panigrahy. “New Algorithms for Sub-
set Query, Partial Match, Orthogonal Range Searching, and Related Prob-
lems”. In: ICALP. 2002, pp. 451–462.

[54] Lijie Chen. “OnThe Hardness of Approximate and Exact (Bichromatic) Max-
imum Inner Product”. In: CCC. 2018, 14:1–14:45.

[55] Cisco. “Cisco Global Cloud Index: Forecast and Methodology, 2015-2020”. In:
White Paper (2015).

[56] Vincent Cohen-Addad and Chris Schwiegelshohn. “On the Local Structure
of Stable Clustering Instances”. In: FOCS. 2017, pp. 49–60.

BIBLIOGRAPHY 203

[57] Graham Cormode and S. Muthukrishnan. “An improved data stream sum-
mary: the count-min sketch and its applications”. In: J. Algorithms 55.1
(2005), pp. 58–75.

[58] George Cybenko, T. G. Allen, and J. E. Polito. “Practical parallel Union-Find
algorithms for transitive closure and clustering”. In: Int. J. Parallel Program.
17.5 (1988), pp. 403–423.

[59] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Morten Stöckel. “Finding
even cycles faster via capped k-walks”. In: STOC. 2017, pp. 112–120.

[60] Anirban Dasgupta, John E. Hopcroft, Ravi Kannan, and Pradipta P. Mitra.
“Spectral clustering with limited independence”. In: SODA. 2007, pp. 1036–
1045.

[61] Timothy A. Davis and Yifan Hu. “The university of Florida sparse matrix
collection”. In: ACM Trans. Math. Softw. 38.1 (2011), 1:1–1:25.

[62] Holger Dell, Wolfgang Dvořák, and Stefan Neumann. Conditional Hardness
for Approximate Counting Problems. Manuscript. 2020. Authors ordered al-
phabetically.

[63] Inderjit S. Dhillon. “Co-clustering documents andwords using bipartite spec-
tral graph partitioning”. In: KDD. 2001, pp. 269–274.

[64] Devdatt P. Dubhashi andAlessandro Panconesi.Concentration ofMeasure for
the Analysis of Randomized Algorithms. Cambridge University Press, 2009.

[65] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao
Shang, and Jinnah Dylan Hosein. “Maglev: A Fast and Reliable Software Net-
work Load Balancer”. In: NSDI. 2016, pp. 523–535.

[66] Leah Epstein, Csanád Imreh, Asaf Levin, and Judit Nagy-György. “Online
File Caching with Rejection Penalties”. In: Algorithmica 71.2 (2015), pp. 279–
306.

[67] Kemal Eren, Mehmet Deveci, Onur Küçüktunç, and Ümit V. Çatalyürek. “A
comparative analysis of biclustering algorithms for gene expression data”.
In: Briefings in Bioinformatics 14.3 (2013), pp. 279–292.

[68] Uriel Feige and Robert Krauthgamer. “A polylogarithmic approximation of
the minimum bisection”. In: SIAM J. Comput. 31.4 (2002), pp. 1090–1118.

[69] Björn Feldkord, Matthias Feldotto, Anupam Gupta, Guru Guruganesh, Amit
Kumar, Sören Riechers, and David Wajc. “Fully-Dynamic Bin Packing with
Little Repacking”. In: ICALP. 2018, 51:1–51:24.

[70] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D.
Sleator, and Neal E. Young. “Competitive paging algorithms”. In: J. Algo-
rithms 12.4 (1991), pp. 685–699.

[71] Amos Fiat, Yuval Rabani, and Yiftach Ravid. “Competitive k-server algo-
rithms”. In: J. Comput. Syst. Sci. 48.3 (1994), pp. 410–428.

204 BIBLIOGRAPHY

[72] Daniel Firestone. SmartNIC: FPGA Innovation in OCS Servers for Microsoft
Azure. Online. https://ocpussummit2016.sched.com/event/68u4/.
2016. Accessed: 2020-05-12.

[73] Laura Florescu and Will Perkins. “Spectral thresholds in the bipartite sto-
chastic block model”. In: COLT. 2016, pp. 943–959.

[74] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, and
Saket Saurabh. “Approximation Schemes for Low-Rank Binary Matrix Ap-
proximation Problems”. In: ACM Trans. Algorithms 16.1 (2020), 12:1–12:39.

[75] M. Fortelius (coordinator). New and Old Worlds Database of Fossil Mammals
(NOW). Online. http://www.helsinki.fi/science/now/. 2003. Ac-
cessed: 2015-09-23.

[76] Carlo Fuerst, Stefan Schmid, Lalith Suresh, and Paolo Costa. “Kraken: Online
and Elastic Resource Reservations for Multi-tenant Datacenters”. In: INFO-
COM. 2016, pp. 1–9.

[77] François Le Gall. “Powers of tensors and fast matrix multiplication”. In: IS-
SAC. 2014, pp. 296–303.

[78] Bernard A. Galler and Michael J. Fischer. “An improved equivalence algo-
rithm”. In: Commun. ACM 7.5 (1964), pp. 301–303.

[79] Chao Gao, Zongming Ma, Anderson Y. Zhang, and Harrison H. Zhou.
“Achieving Optimal Misclassification Proportion in Stochastic Block Mod-
els”. In: J. Mach. Learn. Res. 18 (2017), 60:1–60:45.

[80] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979. isbn: 0-7167-1044-7.

[81] Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim. “SPIRIT: Sequen-
tial Pattern Mining with Regular Expression Constraints”. In: VLDB. 1999,
pp. 223–234.

[82] Floris Geerts, Bart Goethals, and Taneli Mielikäinen. “Tiling Databases”. In:
DS. 2004, pp. 278–289.

[83] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil R. Devanur,
Janardhan Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman
Rastegarfar, Madeleine Glick, and Daniel C. Kilper. “Projector: Agile recon-
figurable data center interconnect”. In: SIGCOMM. 2016, pp. 216–229.

[84] Amit Goyal, Hal Daumé III, and Suresh Venkatasubramanian. “Streaming for
large scale NLP: Language Modeling”. In: HLT-NAACL. 2009, pp. 512–520.

[85] Gösta Grahne, Laks V. S. Lakshmanan, and Xiaohong Wang. “Efficient Min-
ing of Constrained Correlated Sets”. In: ICDE. 2000, pp. 512–521.

[86] Gianluigi Greco, Antonella Guzzo, and Luigi Pontieri. “Mining taxonomies
of process models”. In: Data Knowl. Eng. 67.1 (2008), pp. 74–102.

https://ocpussummit2016.sched.com/event/68u4/
http://www.helsinki.fi/science/now/

BIBLIOGRAPHY 205

[87] Dimitrios Gunopulos, Roni Khardon, HeikkiMannila, Sanjeev Saluja, Hannu
Toivonen, and Ram Sewak Sharm. “Discovering all most specific sentences”.
In: ACM Trans. Database Syst. 28.2 (2003), pp. 140–174.

[88] Dimitrios Gunopulos, Heikki Mannila, Roni Khardon, and Hannu Toivonen.
“Data mining, hypergraph transversals, and machine learning”. In: PODS.
1997, pp. 209–216.

[89] Tias Guns, Siegfried Nijssen, and Luc De Raedt. “k-Pattern Set Mining under
Constraints”. In: IEEE Trans. Knowl. Data Eng. 25.2 (2013), pp. 402–418.

[90] Bruce E. Hajek, YihongWu, and Jiaming Xu. “Computational Lower Bounds
for Community Detection on Random Graphs”. In: COLT. 2015, pp. 899–928.

[91] Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R Das,
Jon P Longtin, Himanshu Shah, and Ashish Tanwer. “Firefly: A reconfig-
urable wireless data center fabric using free-space optics”. In: SIGCOMM.
Vol. 44. 4. 2014, pp. 319–330.

[92] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. “Frequent pattern min-
ing: current status and future directions”. In: Data Min. Knowl. Discov. 15.1
(2007), pp. 55–86.

[93] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. “Mining Frequent Pat-
terns without Candidate Generation: A Frequent-Pattern Tree Approach”.
In: Data Min. Knowl. Discov. 8.1 (2004), pp. 53–87.

[94] Frank Harary and Helene J Kommel. “Matrix measures for transitivity and
balance”. In: Journal of Mathematical Sociology 6.2 (1979), pp. 199–210.

[95] F. Maxwell Harper and Joseph A. Konstan. “The MovieLens Datasets: His-
tory and Context”. In: TiiS 5.4 (2016), 19:1–19:19.

[96] John A. Hartigan. “Direct Clustering of a Data Matrix”. In: J. Am. Stat. Assoc.
67.337 (1972), pp. 123–129.

[97] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatch-
aphol Saranurak. “Unifying and Strengthening Hardness for Dynamic Prob-
lems via the Online Matrix-Vector Multiplication Conjecture”. In: STOC.
2015, pp. 21–30.

[98] Monika Henzinger, Andrea Lincoln, Stefan Neumann, and Virginia Vas-
silevskaWilliams. “Conditional Hardness for Sensitivity Problems”. In: ITCS.
2017, 26:1–26:31.

[99] Monika Henzinger and Stefan Neumann. “Incremental and Fully Dynamic
Subgraph Connectivity for Emergency Planning”. In: ESA. 2016, 48:1–48:11.

[100] Monika Henzinger, Stefan Neumann, Harald Räcke, and Stefan Schmid.
Tight Bounds for Online Graph Partitioning. Manuscript. 2020. Authors or-
dered alphabetically.

206 BIBLIOGRAPHY

[101] Monika Henzinger, Stefan Neumann, and Stefan Schmid. “Efficient Distrib-
uted Workload (Re-)Embedding”. In: POMACS 3.1 (2019), 13:1–13:38. Au-
thors ordered alphabetically. Conference version in SIGMETRICS’19.

[102] Monika Henzinger, Stefan Neumann, and Andreas Wiese. “Dynamic Ap-
proximate Maximum Independent Set of Intervals, Hypercubes and Hyper-
rectangles”. In: SoCG. 2020. To appear.

[103] Monika Henzinger, Stefan Neumann, and Andreas Wiese. “Explicit and Im-
plicit Dynamic Coloring of Graphs with Bounded Arboricity”. In: CoRR
abs/2002.10142 (2020).

[104] Sibylle Hess, Nico Piatkowski, and Katharina Morik. “The Trustworthy Pal:
Controlling the False Discovery Rate in Boolean Matrix Factorization”. In:
SDM. 2018, pp. 405–413.

[105] Dorit S. Hochbaum and David B. Shmoys. “Using dual approximation algo-
rithms for scheduling problems theoretical and practical results”. In: J. ACM
34.1 (1987), pp. 144–162.

[106] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill,
Mohan Nanduri, and Roger Wattenhofer. “Achieving high utilization with
software-driven WAN”. In: SIGCOMM. Vol. 43. 4. 2013, pp. 15–26.

[107] Qinghua Huang, Ting Wang, Dacheng Tao, and Xuelong Li. “Bicluster-
ing Learning of Trading Rules”. In: IEEE Trans. Cybernetics 45.10 (2015),
pp. 2287–2298.

[108] Harry B. Hunt III, Madhav V. Marathe, Venkatesh Radhakrishnan, and
Richard Edwin Stearns. “The Complexity of Planar Counting Problems”. In:
SIAM J. Comput. 27.4 (1998), pp. 1142–1167.

[109] Russell Impagliazzo and Ramamohan Paturi. “On the Complexity of k-SAT”.
In: J. Comput. Syst. Sci. 62.2 (2001), pp. 367–375.

[110] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which Prob-
lems Have Strongly Exponential Complexity?” In: J. Comput. Syst. Sci. 63.4
(2001), pp. 512–530.

[111] Alon Itai and Michael Rodeh. “Finding a Minimum Circuit in a Graph”. In:
SIAM J. Comput. 7.4 (1978), pp. 413–423.

[112] Sushant Jain et al. “B4: Experiencewith a globally-deployed software defined
WAN”. In: SIGCOMM 43.4 (2013), pp. 3–14.

[113] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. “On
Generating All Maximal Independent Sets”. In: Inf. Process. Lett. 27.3 (1988),
pp. 119–123.

[114] Roberto J. Bayardo Jr. “Efficiently Mining Long Patterns from Databases”. In:
SIGMOD. 1998, pp. 85–93.

[115] Glenn Judd. “Attaining the Promise and Avoiding the Pitfalls of TCP in the
Datacenter.” In: NSDI. 2015, pp. 145–157.

BIBLIOGRAPHY 207

[116] Matti Karppa and Petteri Kaski. “Engineering Boolean Matrix Multipli-
cation for Multiple-Accelerator Shared-Memory Architectures”. In: CoRR
abs/1909.01554 (2019).

[117] Benny Kimelfeld and Phokion G. Kolaitis. “The Complexity of Mining Max-
imal Frequent Subgraphs”. In: ACM Trans. Database Syst. 39.4 (2014), 32:1–
32:33. Conference version in PODS’13.

[118] Richard E. Korf. “Multi-Way Number Partitioning”. In: IJCAI. 2009, pp. 538–
543.

[119] Petr Krajca and Martin Trnecka. “Parallelization of the GreConD Algorithm
for Boolean Matrix Factorization”. In: ICFCA. 2019, pp. 208–222.

[120] Robert Krauthgamer and Uriel Feige. “A Polylogarithmic Approximation of
the Minimum Bisection”. In: SIAM Rev. 48.1 (2006), pp. 99–130.

[121] Amit Kumar and Ravindran Kannan. “Clustering with Spectral Norm and
the k-Means Algorithm”. In: FOCS. 2010, pp. 299–308.

[122] Ravi Kumar, Rina Panigrahy, Ali Rahimi, and David P. Woodruff. “Faster
Algorithms for Binary Matrix Factorization”. In: ICML. 2019, pp. 3551–3559.

[123] Jérôme Kunegis. “KONECT: the Koblenz network collection”. In: WWW.
2013, pp. 1343–1350.

[124] Michihiro Kuramochi and George Karypis. “Frequent Subgraph Discovery”.
In: ICDM. 2001, pp. 313–320.

[125] Branislav Kveton, S. Muthukrishnan, Hoa T. Vu, and Yikun Xian. “Find-
ing Subcube Heavy Hitters in Analytics Data Streams”. In: WWW. 2018,
pp. 1705–1714.

[126] Matthieu Latapy. “Main-memory triangle computations for very large
(sparse (power-law)) graphs”. In: Theor. Comput. Sci. 407.1-3 (2008), pp. 458–
473.

[127] Lillian Lee. “Fast context-free grammar parsing requires fast boolean matrix
multiplication”. In: J. ACM 49.1 (2002), pp. 1–15.

[128] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. “Scaling
Distributed Machine Learning with the Parameter Server.” In: OSDI. Vol. 14.
2014, pp. 583–598.

[129] Lifan Liang and Songjian Lu. “Noisy and Incomplete Boolean Matrix Factor-
ization via Expectation Maximization”. In: CoRR abs/1905.12766 (2019).

[130] Edo Liberty, Michael Mitzenmacher, Justin Thaler, and Jonathan Ullman.
“Space Lower Bounds for Itemset Frequency Sketches”. In: PODS. 2016,
pp. 441–454.

[131] Shiau Hong Lim, Yudong Chen, and Huan Xu. “A Convex Optimization
Framework for Bi-Clustering”. In: ICML. 2015, pp. 1679–1688.

http://dx.doi.org/10.1137/050640904
http://dx.doi.org/10.1137/050640904

208 BIBLIOGRAPHY

[132] Andrea Lincoln, Virginia VassilevskaWilliams, and R. RyanWilliams. “Tight
Hardness for Shortest Cycles and Paths in Sparse Graphs”. In: SODA. 2018,
pp. 1236–1252.

[133] Claudio Lucchese, Salvatore Orlando, and Raffaele Perego. “A Unifying
Framework for Mining Approximate Top-𝑘 Binary Patterns”. In: IEEE Trans.
Knowl. Data Eng. 26.12 (2014), pp. 2900–2913.

[134] Sara C. Madeira and Arlindo L. Oliveira. “Biclustering Algorithms for Bio-
logical Data Analysis: A Survey”. In: IEEE/ACMTrans. Comput. Biology Bioin-
form. 1.1 (2004), pp. 24–45.

[135] Fredrik Manne and Md. Mostofa Ali Patwary. “A Scalable Parallel Union-
Find Algorithm for Distributed Memory Computers”. In: PPAM. 2009,
pp. 186–195.

[136] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. “Efficient Algo-
rithms for Discovering Association Rules”. In: AAAI Workshops. Technical
Report WS-94-03. 1994, pp. 181–192.

[137] Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. “Better Algorithms
for Counting Triangles in Data Streams”. In: PODS. 2016, pp. 401–411.

[138] Frank McSherry. “Spectral Partitioning of Random Graphs”. In: FOCS. 2001,
pp. 529–537.

[139] Manor Mendel and Steven S. Seiden. “Online companion caching”. In: Theor.
Comput. Sci. 324.2–3 (2004), pp. 183–200.

[140] Pauli Miettinen. “Dynamic Boolean Matrix Factorizations”. In: ICDM. 2012,
pp. 519–528.

[141] Pauli Miettinen. “Matrix decomposition methods for data mining: Computa-
tional complexity and algorithms”. PhD thesis. Helsingin yliopisto, 2009.

[142] Pauli Miettinen, Taneli Mielikäinen, Aristides Gionis, Gautam Das, and
Heikki Mannila. “The Discrete Basis Problem”. In: IEEE Trans. Knowl. Data
Eng. 20.10 (2008), pp. 1348–1362.

[143] Pauli Miettinen and Stefan Neumann. “Recent Developments in BooleanMa-
trix Factorization”. In: IJCAI. 2020. Survey Article. To appear.

[144] Pauli Miettinen and Jilles Vreeken. “MDL4BMF: Minimum Description
Length for Boolean Matrix Factorization”. In: ACM Trans. Knowl. Discov.
Data 8.4 (2014), 18:1–18:31.

[145] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri
Chklovskii, and Uri Alon. “Network motifs: simple building blocks of com-
plex networks”. In: Science 298.5594 (2002), pp. 824–827.

[146] Jayadev Misra and David Gries. “Finding Repeated Elements”. In: Sci. Com-
put. Program. 2.2 (1982), pp. 143–152.

BIBLIOGRAPHY 209

[147] Pradipta P. Mitra. A Simple Algorithm for Clustering Mixtures of Discrete Dis-
tributions. Online. https : / / sites . google . com / site / ppmitra /
invariant.pdf.

[148] Jeffrey C. Mogul and Lucian Popa. “What we talk about when we talk about
cloud network performance”. In: Comput. Commun. Rev. 42.5 (2012), pp. 44–
48.

[149] Jaroslav Nešetřil and Svatopluk Poljak. “On the complexity of the sub-
graph problem”. In: Commentationes Mathematicae Universitatis Carolinae
26.2 (1985), pp. 415–419.

[150] Stefan Neumann. “Bipartite Stochastic Block Models with Tiny Clusters”. In:
NeurIPS. 2018, pp. 3871–3881.

[151] Stefan Neumann. “Finding Tiny Clusters in Bipartite Graphs”. In: INFOR-
MATIK. Session Best of Data Science Made in Germany, Austria and Switzer-
land. 2019.

[152] Stefan Neumann, Rainer Gemulla, and Pauli Miettinen. “What YouWill Gain
By Rounding: Theory and Algorithms for Rounding Rank”. In: ICDM. 2016,
25:1–25:14.

[153] Stefan Neumann and Pauli Miettinen. “Biclustering and Boolean Matrix Fac-
torization in Data Streams”. In: PVLDB. 2020. To appear.

[154] Stefan Neumann and Pauli Miettinen. “Reductions for Frequency-Based
Data Mining Problems”. In: ICDM. 2017, pp. 997–1002.

[155] Stefan Neumann, Julian Ritter, and Kailash Budhathoki. “Ranking the Teams
in European Football Leagues with Agony”. In: MLSA@PKDD/ECML. 2018,
pp. 55–66.

[156] Stefan Neumann and Andreas Wiese. “This House Proves That Debating is
Harder Than Soccer”. In: FUN. 2016, 25:1–25:14.

[157] Mark E. J. Newman, Duncan J. Watts, and Steven H. Strogatz. “Random
graph models of social networks”. In: Proceedings of the National Academy
of Sciences 99.1 (2002), pp. 2566–2572.

[158] Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang. “Ex-
ploratory Mining and Pruning Optimizations of Constrained Association
Rules”. In: SIGMOD. 1998, pp. 13–24.

[159] Mohammad Noormohammadpour and Cauligi S. Raghavendra. “Datacenter
Traffic Control: Understanding Techniques and Trade-offs”. In: IEEE Com-
munications Surveys & Tutorials (2017).

[160] Neil Olver, Kirk Pruhs, Kevin Schewior, Rene Sitters, and Leen Stougie. “The
Itinerant List Update Problem”. In: WAOA (2018), pp. 310–326.

[161] James Orlin. “Contentment in graph theory: covering graphs with cliques”.
In: Indagationes Mathematicae 80.5 (1977), pp. 406–424.

https://sites.google.com/site/ppmitra/invariant.pdf
https://sites.google.com/site/ppmitra/invariant.pdf

210 BIBLIOGRAPHY

[162] Petr Osicka andMartin Trnecka. “BooleanMatrix Decomposition by Formal
Concept Sampling”. In: CIKM. 2017, pp. 2243–2246.

[163] Parveen Patel et al. “Ananta: Cloud scale load balancing”. In: SIGCOMM.
Vol. 43. 4. 2013, pp. 207–218.

[164] Md. Mostofa Ali Patwary, Jean R. S. Blair, and Fredrik Manne. “Experiments
on Union-FindAlgorithms for the Disjoint-Set Data Structure”. In: SEA. 2010,
pp. 411–423.

[165] Md. Mostofa Ali Patwary, Peder Refsnes, and Fredrik Manne. “Multi-core
Spanning Forest Algorithms using theDisjoint-set Data Structure”. In: IPDPS.
2012, pp. 827–835.

[166] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: J. Mach.
Learn. Res. 12 (2011), pp. 2825–2830.

[167] Jian Pei, Jiawei Han, and Wei Wang. “Mining sequential patterns with con-
straints in large databases”. In: CIKM. 2002, pp. 18–25.

[168] Eric Price. “Optimal Lower Bound for Itemset Frequency Indicator Sketches”.
In: CoRR abs/1410.2640 (2014).

[169] J. Scott Provan andMichael O. Ball. “TheComplexity of Counting Cuts and of
Computing the Probability that a Graph is Connected”. In: SIAM J. Comput.
12.4 (1983), pp. 777–788.

[170] Luc De Raedt, Tias Guns, and Siegfried Nijssen. “Constraint programming
for itemset mining”. In: KDD. 2008, pp. 204–212.

[171] Satish Rao and AndréaW Richa. “New Approximation Techniques for Some
Ordering Problems.” In: SODA. Vol. 98. 1998, pp. 211–219.

[172] Siamak Ravanbakhsh, Barnabás Póczos, and Russell Greiner. “Boolean Ma-
trix Factorization and Noisy Completion via Message Passing”. In: ICML.
2016, pp. 945–954.

[173] Zahra S. Razaee, Arash A. Amini, and Jingyi Jessica Li. “Matched Bipartite
Block Model with Covariates”. In: J. Mach. Learn. Res. 20 (2019), 34:1–34:44.

[174] Matteo Riondato and Eli Upfal. “Efficient Discovery of Association Rules and
Frequent Itemsets through Sampling with Tight Performance Guarantees”.
In: ACM Trans. Knowl. Discov. 8.4 (2014), 20:1–20:32.

[175] Matteo Riondato and Eli Upfal. “Mining Frequent Itemsets through Progres-
sive Sampling with Rademacher Averages”. In: KDD. 2015, pp. 1005–1014.

[176] Ronald L. Rivest. “Partial-Match Retrieval Algorithms”. In: SIAM J. Comput.
5.1 (1976), pp. 19–50.

[177] Liam Roditty and Uri Zwick. “On Dynamic Shortest Paths Problems”. In:
Algorithmica 61.2 (2011), pp. 389–401.

BIBLIOGRAPHY 211

[178] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Sno-
eren. “Inside the Social Network’s (Datacenter) Network”. In: SIGCOMM.
2015, pp. 123–137.

[179] Aviad Rubinstein. “Hardness of approximate nearest neighbor search”. In:
STOC. 2018, pp. 1260–1268.

[180] Tammo Rukat, Christopher C. Holmes, Michalis K. Titsias, and Christopher
Yau. “Bayesian BooleanMatrix Factorisation”. In: ICML. 2017, pp. 2969–2978.

[181] Tammo Rukat, Christopher C. Holmes, and Christopher Yau. “Probabilistic
Boolean Tensor Decomposition”. In: ICML. 2018, pp. 4410–4419.

[182] Peter Sanders, Naveen Sivadasan, and Martin Skutella. “Online Scheduling
with Bounded Migration”. In: Math. Oper. Res. 34.2 (2009), pp. 481–498.

[183] Thomas Schank and Dorothea Wagner. “Finding, Counting and Listing All
Triangles in Large Graphs, an Experimental Study”. In: WEA. 2005, pp. 606–
609.

[184] Ethan L. Schreiber, Richard E. Korf, and Michael D. Moffitt. “Optimal Multi-
Way Number Partitioning”. In: J. ACM 65.4 (2018), 24:1–24:61.

[185] Alexander Schrijver. Theory of linear and integer programming. Wiley-
Interscience series in discrete mathematics and optimization. Wiley, 1999.

[186] Rob Sherwood et al. “Carving research slices out of your production net-
works with OpenFlow”. In: Comput. Commun. Rev. 40.1 (2010), pp. 129–130.

[187] Michael Shindler, Alex Wong, and Adam W Meyerson. “Fast and accurate
k-means for large datasets”. In: NeurIPS. 2011, pp. 2375–2383.

[188] Arjun Singh et al. “Jupiter rising: A decade of clos topologies and central-
ized control in Google’s datacenter network”. In: Comput. Commun. Rev. 45.4
(2015), pp. 183–197.

[189] Daniel D. Sleator and Robert E. Tarjan. “Amortized efficiency of list update
and paging rules”. In: Commun. ACM 28.2 (1985), pp. 202–208.

[190] Isabelle Stanton. “Streaming balanced graph partitioning algorithms for ran-
dom graphs”. In: SODA. 2014, pp. 1287–1301.

[191] Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, and Eli Upfal.
“TRIÈST: Counting Local and Global Triangles in Fully Dynamic Streams
with Fixed Memory Size”. In: ACM Trans. Knowl. Discov. 11.4 (2017), 43:1–
43:50.

[192] Robert E. Tarjan and Jan van Leeuwen. “Worst-case Analysis of Set Union
Algorithms”. In: J. ACM 31.2 (1984), pp. 245–281.

[193] Seinosuke Toda and Mitsunori Ogiwara. “Counting Classes are at Least as
Hard as the Polynomial-Time Hierarchy”. In: SIAM J. Comput. 21.2 (1992),
pp. 316–328.

212 BIBLIOGRAPHY

[194] Hannu Toivonen. “Sampling Large Databases for Association Rules”. In:
VLDB. 1996, pp. 134–145.

[195] Charalampos E. Tsourakakis, U Kang, Gary L. Miller, and Christos Faloutsos.
“DOULION: counting triangles inmassive graphswith a coin”. In:KDD. 2009,
pp. 837–846.

[196] Salil P. Vadhan. “The Complexity of Counting in Sparse, Regular, and Planar
Graphs”. In: SIAM J. Comput. 31.2 (2001), pp. 398–427.

[197] Leslie G. Valiant. “The Complexity of Computing the Permanent”. In: Theor.
Comput. Sci. 8 (1979), pp. 189–201.

[198] Luis M. Vaquero, Félix Cuadrado, Dionysios Logothetis, and Claudio
Martella. “Adaptive Partitioning for Large-scale Dynamic Graphs”. In: SoCC.
2013, 35:1–35:2.

[199] Jilles Vreeken,Matthijs van Leeuwen, andArno Siebes. “Krimp:mining item-
sets that compress”. In: Data Min. Knowl. Discov. 23.1 (2011), pp. 169–214.

[200] Junhao Wang, Sacha Levy, Ren Wang, Aayushi Kulshrestha, and Reihaneh
Rabbany. “SGP: Spotting Groups Polluting the Online Political Discourse”.
In: CoRR abs/1910.07130 (2019).

[201] Duncan J. Watts and Steven H. Strogatz. “Collective dynamics of “small-
world” networks”. In: Nature 393.6684 (1998), pp. 440–442.

[202] Ryan Williams. “A new algorithm for optimal 2-constraint satisfaction and
its implications”. In: Theor. Comput. Sci. 348.2-3 (2005), pp. 357–365.

[203] Virginia Vassilevska Williams. “Multiplying matrices faster than
coppersmith-winograd”. In: STOC. 2012, pp. 887–898.

[204] Virginia Vassilevska Williams. “On some fine-grained questions in algo-
rithms and complexity”. In: Proc. ICM. 2018.

[205] Virginia Vassilevska Williams and R. Ryan Williams. “Subcubic Equiva-
lences Between Path, Matrix, and Triangle Problems”. In: J. ACM 65.5 (2018),
27:1–27:38.

[206] Yongqiao Xiao, Jenq-Foung Yao, Zhigang Li, andMargaret H. Dunham. “Effi-
cient Data Mining for Maximal Frequent Subtrees”. In: ICDM. 2003, pp. 379–
386.

[207] Jiaming Xu, Rui Wu, Kai Zhu, Bruce E. Hajek, R. Srikant, and Lei Ying.
“Jointly clustering rows and columns of binary matrices: algorithms and
trade-offs”. In: SIGMETRICS. 2014, pp. 29–41.

[208] Xifeng Yan and Jiawei Han. “gSpan: Graph-Based Substructure Pattern Min-
ing”. In: ICDM. 2002, pp. 721–724.

[209] Guizhen Yang. “Computational aspects of mining maximal frequent pat-
terns”. In: Theor. Comput. Sci. 362.1-3 (2006), pp. 63–85. Conference version
in KDD’04.

BIBLIOGRAPHY 213

[210] Andrew C. Yao. “Probabilistic Computations: Toward a Unified Measure of
Complexity”. In: FOCS. 1977, pp. 222–227.

[211] Esti Yeger-Lotem, Shmuel Sattath, Nadav Kashtan, Shalev Itzkovitz, Ron
Milo, Ron Y Pinter, Uri Alon, and Hanah Margalit. “Network motifs in in-
tegrated cellular networks of transcription–regulation and protein–protein
interaction”. In: Proceedings of the National Academy of Sciences 101.16 (2004),
pp. 5934–5939.

[212] Neal E. Young. “On-line caching as cache size varies”. In: SODA. 1991,
pp. 241–250.

[213] Huacheng Yu. “An improved combinatorial algorithm for Boolean matrix
multiplication”. In: Inf. Comput. 261.Part (2018), pp. 240–247.

[214] Minlan Yu, Yung Yi, Jennifer Rexford, andMung Chiang. “Rethinking virtual
network embedding: substrate support for path splitting and migration”. In:
Comput. Commun. Rev. 38.2 (2008), pp. 17–29.

[215] Se-Young Yun, Marc Lelarge, and Alexandre Proutière. “Streaming, Memory
Limited Algorithms for Community Detection”. In: NeurIPS. 2014, pp. 3167–
3175.

[216] Mohammed Javeed Zaki. “Efficiently Mining Frequent Trees in a Forest: Al-
gorithms and Applications”. In: IEEE Trans. Knowl. Data Eng. 17.8 (2005),
pp. 1021–1035.

[217] Mohammed Javeed Zaki. “SPADE: An Efficient Algorithm for Mining Fre-
quent Sequences”. In: Mach. Learn. 42.1/2 (2001), pp. 31–60.

[218] Hongyuan Zha, Xiaofeng He, Chris H. Q. Ding, Ming Gu, and Horst D. Si-
mon. “Bipartite Graph Partitioning and Data Clustering”. In: CIKM. 2001,
pp. 25–32.

[219] Zhixin Zhou and Arash A. Amini. “Analysis of spectral clustering algo-
rithms for community detection: the general bipartite setting”. In: J. Mach.
Learn. Res. 20 (2019), 47:1–47:47.

[220] Zhixin Zhou and Arash A. Amini. “Optimal Bipartite Network Clustering”.
In: CoRR abs/1803.06031 (2018).

[221] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen.
“Improving recommendation lists through topic diversification”. In: WWW.
2005, pp. 22–32.

	Introduction
	Provably Finding Patterns
	Understanding the Complexity of Finding Patterns
	Provably Exploiting Patterns

	Bipartite Stochastic Block Models with Tiny Clusters
	Introduction
	Related Work
	Recovering the Left Clusters
	Recovering the Right Clusters
	Implementation
	Experiments
	Conclusion

	Biclustering and Boolean Matrix Factorization in Data Streams
	Introduction
	Preliminaries
	First Pass: Recover Right Clusters
	Second Pass: Recover Left Clusters
	Implementation
	Experiments
	Theoretical Guarantees
	Related Work
	Conclusion

	Conditional Hardness of Approximate Counting
	Introduction
	Our Results
	Related Work
	Preliminaries
	Approximating the Support of Itemsets
	Approximate Triangle Counting
	Approximate #SAT
	Conclusion

	Reductions for Frequency-Based Data Mining Problems
	Introduction
	Preliminaries
	Related Work
	Maximality-Preserving Reductions
	Constraining the Set of Patterns
	Algorithms and Experiments
	Conclusion

	Efficient Distributed Workload (Re-)Embedding
	Introduction
	Model
	Online Partition for Two Servers
	Generalization to Many Servers
	Distributed and Fast Algorithms
	Lower Bounds
	Applications: Union–Find and Online k-Way Partitioning
	Related Work
	Conclusion

	Tight Bounds for Online Graph Partitioning
	Introduction
	Preliminaries
	Algorithmic Framework
	Adjusting Schedules
	Analysis
	Randomized Algorithm
	Lower Bounds
	Omitted Proofs
	Conclusion

	Bibliography

