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Abstract

Incorporating heteroatoms into graphene allows the modification of its electronic and
magnetic properties. One way to achieve this is by implanting dopants via ion irradia-
tion. For 2D materials such as graphene, the energy of the ions has to be within a small
energy window to allow them to be retained in the atomically thin lattice. In this thesis,
the implantation of different atoms into a single layer of graphene is modelled with the
use of density functional theory based molecular dynamics. The goal was to find out
which initial energies allow B, C, N, Al, Si, P, Mn, Ni and Ge to be implanted at four dif-
ferent impact points in the lattice. The minimum and maximum implantation energies
were successfully calculated for these nine elements and some systematic trends were
observed. These results will help improve experimental ion implantation into graphene
by giving a first estimate of how high an irradiation energy should be chosen for each
ion species.

Zusammenfassung

Heteroatome in Graphen einzubinden erlaubt es, seine elektronischen und magnetischen
Eigenschaften zu modifizieren. Eine mögliche Vorgangsweise ist die Implantation von
Dotanden durch Ionenbestrahlung. Für 2D Materialien wie Graphen muss dabei die En-
ergie der Ionen innerhalb eines kleinen Energiefensters liegen, um es dem atomar dünnen
Gitter zu erlauben, sie zu halten. In dieser Arbeit wird die Implantation verschiedener
Atome in eine Graphenschicht mittels Dichtefunktionaltheorie-basierender Molekular-
dynamik modelliert. Das Ziel war es, herauszufinden für welche Energien B, C, N, Al,
Si, P, Mn, Ni und Ge in vier verschiedenen Einschlagspunkten implantiert werden kön-
nen. Es ist gelungen, die minimale und maximale Implantationsenergien für diese neun
Elemente zu finden, und einige systematische Trends zu beobachten. Diese Ergebnisse
werden die experimentelle Ionenimplantation in Graphen verbessern, indem sie eine erste
Einschätzung über die benötigte Energie der Ionenbestrahlung für die jeweilige Ionenart
geben.
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1 Introduction

1.1 Motivation

Graphene1 is a two-dimensional material of sp2-bonded carbon atoms arranged in a 2D-
hexagonal lattice. It exhibits many interesting properties, such as excellent electrical2
and thermal3 conductivity and remarkable mechanical strength,4 making it an ideal
material for novel devices.5

Graphene is the strongest material ever measured with an intrinsic strength of 130 GPa4
and a Young’s modulus close to 1 TPa, demonstrating the potential of graphene in ap-
plications such as flexible electronics and ultra-strength composites.6 Its thermal con-
ductivity at room temperature has been measured as large as 5 · 103 W/(mK),3 much
larger than that of graphite, which has about 2 · 103 W/(mK).7 At room tempera-
ture and lower, graphene has a negative thermal expansion coefficient (TEC) of about
−7 · 10−6/K, which is a larger magnitude than for graphite, which has −1 · 10−6/K.8 A
negative TEC means that graphene contracts with rising temperatures. For annealed
suspended graphene, an electron mobility of 200 000 cm2/(V s) has been measured, which
is among the highest electron mobilities of any material.2

Graphene-based electronic devices have shown promise for applications in DNA-
sequencing,11 photovoltaics,12 and gas detection.13 It has a very high conductivity which
changes rapidly when gas molecules adsorb on its surface, making it an excellent candi-
date for high-sensitivity sensors.9 However, pristine graphene is a zero-bandgap mate-
rial,14 which severely limits its potential uses in electronic devices due to the poor on-off
current ratio,1 which makes the electronic devices have low operation controllability.10 A
bandgap may be opened up by various means, such as reducing graphene’s dimensions15
(graphene nanoribbons and nanodots),16 applying an electric field,17 introducing defects
or adatoms,18 or incorporating heteroatoms into the material.19

Doping graphene with boron or nitrogen causes it to have p-type or n-type conductiv-
ity respectively. Moreover, N-doped graphene behaves as a semiconductor with a large
on/off current ratio. However, it has lower carrier mobility (about 200 – 500 cm2/(V s))
and lower conductivity than pristine graphene.9 Doping graphene with other het-
eroatoms can open up different new areas of research, for example the introduction
of local magnetism into the lattice by incorporating transition metal atom impurities
with magnetic moments.10

Introducing substitutinal impurities into graphene allows for the modification of its elec-
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1 Introduction

tronic and magnetic properties,20 making it possible to use graphene for new applica-
tions, such as graphene sheets doped with non-metallic atoms, which have been shown
to be promising sustainable metal-free catalysts.21 Graphene-based materials doped
with various heteroatoms have also been suggested for applications in supercapacitors,
sensing, energy conversion and storage.22

There are various ways of incorporating heteroatoms into graphene. There are chemical
methods, which have certain disadvantages, such as poor control over dopant concen-
tration and bonding configuration, contamination and inferred secondary impurities,
instability, and site selectivity.19 Low-energy ion irradiation is an alternative to chemi-
cal methods, and it is the subject of this thesis.
Low-energy ion irradition is a way of implanting heteroatoms19 that has many practical
advantages, such as being a clean, highly efficient method which is universally usable for
most dopant species.10 It is a highly developed technique used in semiconductor manu-
facturing to modify material properties, and thus ion implantation doping in graphene
can be directly compatible with integrated circuit (IC) technologies.10

Being able to selectively implant heteroatoms into graphene would open up many pos-
sibilities, such as creating spatially non-uniform graphene-based materials where differ-
ently doped areas could be made.19

Although ion implantation is widely used in the semiconductor industry23 to introduce
dopants into materials, it is challenging in the case of 2D-materials. Successful implanta-
tion in a graphene layer can only occur for ions within a small range of kinetic energies,
because an energy that is too high would send the ion right through the lattice, while an
energy that is too low obviously does not allow the ion to eject a carbon atom in order
to implant. Thus, the initial energy of the ion has to be between these two cases. As it is
very work-intensive to implant ions into materials in practice, it is useful to simulate the
implantation beforehand, in order to find out which energies have to be used to achieve
implantation.
So far, the optimal energy has only been predicted for a few elements, and there are
no systemical studies for implantation of ions in graphene. It has been predicted from
molecular dynamics (MD) simulations that direct doping of B and N atoms in a graphene
lattice could be achieved via low-energy ion implantation,24 and this was later realised
experimentally, with the successful doping being confirmed using high-resolution trans-
mission electron microscopy.19 The implantation of Si into graphene has also been sim-
ulated,10 and the implantation of P has been demonstrated experimentally.25 However,
in most previous computational studies, theoretical modelling of ion implantation was
performed using classical interatomic potentials, which lack the accuracy of the density
functional theory (DFT) approach when it comes to chemical bond breaking and forma-
tion. It has also been theoretically as well as experimentally demonstrated recently that
an ion as heavy as Ge can be implanted into graphene.26 This is important information,
as heavier ions are expected to be more difficult to implant than lighter atoms, due to
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1.1 Motivation

the fact that heavier atoms do not transfer as much of their energy in a head-on elastic
collision, as will be discussed in Section 1.1.1.
Studies of heteroatoms in graphene using atomically resolved microscopy have been
performed for N,27 B,28 P,25 Si29 and Ge.30 Elements with a larger covalent radius than
carbon cannot directly fit into the 2D lattice as a single carbon substitution, and tend
to form stable structures by protruding outside the graphene plane, or by substituting
for two carbon atoms.

1.1.1 Goals and Approach

For the process of ion implantation, a positively or negatively charged ion is accelerated
to a certain kinetic energy to collide with the material it is to be implanted in, so that
it knocks out at least one C atom and takes its place in the lattice (substitution). In
this work, this process is simulated by giving the atom that is to be implanted a certain
initial energy to move towards the graphene in a perpendicular direction. To reduce the
complexity of the simulations, the atom that is implanted is not simulated as positively
or negatively charged, and thus, it is not actually simulated as an ion. However, it has
been shown that for small charges, this does not make a difference,31 since graphene
effectively neutralizes incoming charged particles.32 The atom that is being shot at
graphene will nevertheless be called an ion in this work, for the purpose of linguistic
clarity when comparing these simulations and experimental studies.
Graphene is a single layer of atoms, therefore there is just a small energy window for
implantation: if the initial energy of the ion is too low, the ion is reflected by the
graphene layer or becomes an adatom, but if the energy is too high, the ion is transmitted
through the graphene layer. Only for an initial energy between these two cases does the
ion implant into the lattice. This work’s purpose is to predict the initial energy that
different ions need to implant into the lattice. For this, four impact points have been
considered:
(a) head-on impact on the C atom (‘head-on’, Figure 1.1a);
(b) impact in the center of the bond between two carbon atoms (‘bond-center’, Fig-

ure 1.1b);
(c) impact in the center of a graphene-hexagon (‘hexagon-center’, Figure 1.1c);
(d) impact between the center of the hexagon and the head-on impact point, so that

not only high-symmetry points are included (‘asymmetric’, Figure 1.1d).
Nine elements have been examined: B, C, N, Al, Si, P, Mn, Ni, and Ge. B and N
are natural choices of dopants for graphene, having one electron less and more than
C, respectively. They are also of a similar size to carbon, so they can be effectively
incorporated into the lattice with almost no distortions of the surrounding lattice. Al,
Si and P are have the same number of electrons in their outer shell as B, C and N.
These elements as well as Ge were chosen to see whether the mass and radius of the ion
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(a) head-on. (b) bond-center. (c) hexagon-
center.

(d) asymmetric.

Figure 1.1: The four impact points for the ion in the graphene lattice.

makes a significant difference to implantation. Mn and Ni were chosen as ions because
they are transition metals, which are interesting impurity atoms to take a closer look at
as they can introduce magnetism33,34 and significantly improve the catalytic abilities of
graphene.21,35

For each of these elements, multiple simulations have been done for each of the four
impact points shown in Figure 1.1. The minimum as well as the maximum implantation
energy for each case has been found using an approach similar to the bisection method.
For example, to find the minimum implantation energy, the first step is the calculation
of the trajectory of the ion colliding with graphene at a certain point and with a certain
initial kinetic energy. This trajectory is analyzed to verify if the ion implants, is trans-
mitted, or does not penetrate the lattice. The next calculation is started with the ion
having its initial energy in the middle between the energy it had in a trajectory where
the ion implanted and the energy it had in a trajectory where the ion didn’t penetrate
the lattice. This process is repeated until the energy is found which does allow implan-
tation, and for which the energy that is 1 eV smaller does not allow implantation. The
maximum implantation energy is found in an analogous way.
For the impact point in the center of the hexagon, implantation is not possible, as
no C atom is ejected. For this case, only one energy is found, namely the minimum
initial energy the ion needs to have in order to be transmitted through the lattice Etrans

(transmission threshold).

Elastic Energy Transfer

The equation for head-on elastic collision energy transfer was derived from energy and
momentum conservation laws. The result is:

E2,f = 4m2m1E1,i

(m1 +m2)2 (1.1)

where E2,f is the final energy of the atom that is being hit, and E1,i is the initial energy
of the atom that is doing the hitting. The hit atom is initially not moving, so E2,i = 0.
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1.2 Theoretical Background

Figure 1.2 shows the proportion of kinetic energy that is transferred to a carbon atom
by ions with different atomic mass during the head-on elastic collision.
As Figure 1.2 shows, heavier elements transfer a smaller portion of their energy to the
C atom in a head-on elastic collision. 100% of the energy is transferred if the incoming
atom has the same mass as the C atom.
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Figure 1.2: Proportion of energy that is transferred from different ions to a C atom
in a head-on elastic collision, depending on the mass of the incoming ion,
according to Eq. 1.1.

1.2 Theoretical Background

1.2.1 Density Functional Theory

All properties of a quantum system can be known by solving the system’s Schrödinger
equation. However, in practice, solving the Schrödinger equation exactly is not feasible
for most systems, and so, approximations have to be made. In Density Functional
Theory (DFT), all properties of the system are determined from just the electron density,
instead of the many-electron wavefunction. Functionals of the electron density are used
to model the quantum-mechanical ground state of the many-electron systems, so that
all ground-state properties can be calculated without having to solve the Schrödinger
equation of the many-electron system exactly. This substantially reduces the required
computational resources and makes it possible to model systems with more electrons
than would otherwise be feasible. The wavefunction of an N -electron system depends
on 3N spacial variables (3 coordinates for each of the N electrons) whereas the density
is a function of only three spacial variables.36
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1 Introduction

The modern DFT approach is based on the Hohenberg-Kohn theorem.37,38

Theorem 1. The ground-state wavefunction of a nondegenerate electronic state is a
unique functional of its electron density.

Theorem 2. Only the true ground-state electron density leads to the lowest energy,
allowing the ground-state energy to be approximated.

From Hohenberg-Kohn Theorem 1 it follows that there is a one-to-one mapping between
the ground-state wave function and the ground-state electron density,39 and that all
ground-state properties are uniquely determined by the electron density.36 In this way,
the Schrödinger equation can be solved by finding a function of three spatial variables,
namely the electron density ρ(~r), instead of the wavefunction that depends on 3N spacial
variables.39 However, Hohenberg-Kohn Theorem 1 says nothing about the form of the
functional of the electron density. Hohenberg-Kohn Theorem 2 allows the functional to
be approximated with the variational principle, to find the electron density associated
with the lowest energy, i.e. the ground state of the system.39 Thus, the problem of
solving the many-body Schrödinger equation exactly is bypassed, replaced with the
minimization of a density functional.36

In the practical application of DFT, a reference system (Kohn-Sham system) with the
same ground-state electron density as the original system is defined. The electrons of the
reference system are independent particles that do not interact with each other. Thus,
the many-body problem of interacting electrons in a static potential is reduced to the
problem of non-interacting electrons moving in an effective potential Veff = Vext + VXC ,
where Vext is the sum of the attractive potential exerted on the electrons due to the nuclei
(VNe) and the classical Coulomb potential due to electron-electron interaction (VC), and
VXC is the exchange-correlation potential generated by the exchange-correlation energy.
Instead of interacting with each other, the particles interact with the effective potential
Veff that is implemented in such a way that the electron density of the reference system is
the same as that of the original system. The total energy of the system is a functional of
only the electron density, therefore the total energy calculated from the reference system
will be the same as the total energy of the actual system, as the two systems have the
same electron density. Methods for calculating the kinetic energy for the interacting
system have proven too inaccurate for most purposes, therefore the kinetic energy of the
non-interacting reference system is calculated instead. Since the kinetic energy of the
non-interacting reference system (TS) is not exactly equal to the kinetic energy of the
interacting system (T ), this is corrected for within the exchange-correlation energy.
In DFT, the energy of the (original, interacting) system is calculated as follows:

E(ρ(~r)) = TS(ρ) + ENe(ρ) + J(ρ) + EXC(ρ) (1.2)

where TS is the kinetic energy of the non-interacting system, ENe is the electrons-nuclei
interaction energy, J is the classical electron-electron repulsion energy, and EXC is the
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1.2 Theoretical Background

the exchange-correlation energy. The exchange-correlation functional EXC(ρ) consists
of the non-classical electron-electron repulsion (self-interaction correction, exchange and
correlation) as well as of the difference between the exact kinetic energy and the energy of
the non-interacting system. It is the only component in DFT which cannot be calculated
exactly.40

If VNe, VC (the potential corresponding to the energy J), and VXC are all explicitly
known, then Veff can be calculated from their sum. Veff is needed to calculate the
orbitals that define the non-interacting reference system with the same electron density
as the original system. However, trying to find Veff leads to a circle of dependencies:
Veff depends on the density ρ through the Coulomb-term, but to calculate ρ, Veff is
needed. Therefore, the Kohn-Sham equations have to be solved iteratively.40

There are many different approaches to obtaining an explicit approximation of EXC . The
local density approximation (LDA) assumes that EXC is the same as it would be for
homogeneous electron gas. This approximation tends to overestimate the strengths of all
bonds near equilibrium, though it is exact for any uniform electron gas.36 The generalized
gradient approximation (GGA) depends not only on the electron density at each point,
but also on its gradient at each point. This allows it to better describe inhomogeneous
molecular densities.36 In this work, the Perdew-Burke-Ernzerhof41 (PBE) GGA was
used, which gives accurate geometries, but tends to underestimate binding energies.

1.2.2 Description of the Wave Function

To solve the Kohn-Sham equations numerically, different methods can be used to describe
the wave functions. With the finite-difference (FD) method, the wave functions are
expanded on a real-space grid.42 Another possibility is the plane-wave (PW) approach,
where the wave functions are expanded in plane waves.42 Plane waves are the solutions
of the Schrödinger equation of a free particle.40 The plane wave cutoff energy Ecut is
the parameter that determines at which energy the basis set is truncated, so that only
plane waves with an energy lower than Ecut are included in the basis set. For the FD
mode, the precision is instead determined by the grid spacing.
In this work, instead of FD or PW, the linear combination of atomic orbitals (LCAO)
expansion43 of molecular orbitals is used to describe the wavefunctions. In the LCAO-
expansion, the Kohn-Sham orbitals are linearly expanded with the help of L predefined
atomic-orbital-like basis functions to increase numerical performance while in most cases
retaining accurate geometries and forces.40

1.2.3 Description of Core Electrons

Near the nucleus, the wavefunction oscillates rapidly and is therefore difficult to com-
pute requiring a high computational cost.44 One solution to this problem is to use a
pseudopotential45 to describe the Pauli repulsion of the core electrons.44 This is possible
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because the core electrons’ contribution to chemical bonding is negligible (frozen-core
approximation).46 The pseudo wavefunction merges with the actual wavefunction above
a chosen distance from the core (cutoff-radius rC).
However, pseudopotentials also come with disadvantages, such as the loss of information
about charge density and wave functions near the core,44 or the fact that the cutoff-radius
is often specifially chosen for a system such that the results are in good agreement with
experiments, or such that they are in good agreement with all-electron calculations. This
leads to transferability problems, meaning the pseudopotential might only give accurate
results in systems that are chemically similar to the one it was tailored to.47

An alternative to pseudopotentials is the augmented plane-wave approach (APW),48
an all-electron method. Within non-overlapping spheres around the positions of the
nuclei, the potential is approximated as spherically symmetric. In these atomic regions,
the basis functions are composed of atom-like partial waves. In the interstitial regions
in between these spheres, the potential is approximated as constant. At the interface
between the atomic and interstitial regions, continuity is enforced.44

In this work, the projector augmented wave method (PAW)44 is used instead to describe
the core electrons. It is an all-electron method that uses concepts from both APW
and the pseudopotential approach. Instead of the oscillating wavefunctions near the
core, this approach uses smooth wavefunctions which are easier to work with. A linear
transformation can then be used to transform the smooth pseudowavefunction into the
real wavefunction, so that all-electron properties can be calculated. This method is used
because it is very accurate and does not lose the information about the core electrons.49

1.2.4 Molecular Dynamics

In this work, density functional theory is used in combination with molecular dynamics
(MD). DFT is used to calculate the energy and forces at each time step. The particles
are moved according to the forces by integrating Newton’s equations of motion numeri-
cally. In this work this is done using the Velocity Verlet algorithm, which preserves the
total energy of the system, the number of atoms, and the volume of the system (NVE
microcanonical ensemble). In this way, a trajectory of all the particles in the system can
be obtained. How far the atoms are moved before the forces are re-calculated depends
on the chosen timestep dt. The optimal choice of timestep depends on the system.
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2 Methods

The DFT calculations were performed using GPAW50 versions 1.4.0 to 1.5.2, a Python-
based code using the PAW method. In GPAW, the wave functions can be described with
plane waves (PW), atom-centered basis functions (LCAO), or real-space uniform grids
with multigrid methods and the finite-difference approximation (FD).42 In this work,
GPAW’s localized atomic basis set (LCAO-mode51) was used for the main calculations.
For large systems, LCAO calculations tend to be much faster than FD or PW calcula-
tions, but also less precise.42 It is very efficient for periodic low-dimensional systems with
vacuum, which is why it was chosen for this work. A double-zeta polarized (dzp) basis
set was used, meaning two basis functions per valence state and a polarization function,
the Perdew–Burke–Ernzerhof (PBE)41 functional was used to approximate EXC , which
is an excellent approximation for carbon materials.
GPAW relies on the Python package ASE52 (‘atomic simulation environment’), which
interfaces with the DFT calculations, describing the atoms, performing molecular dy-
namics calculations, and handling visualization, geometry optimization, and more. Its
aim is to set up, steer, and analyse atomistic simulations.53 ASE versions 3.16.2 to 3.17.0
were used.
Periodic boundary conditions were used to mimic an infinite graphene layer. The
graphene was set up in the xy-plane, and consisted of 162 C atoms (9 × 9 unit cells).
In z-direction the graphene sheet and its periodic replicas were separated by a vacuum
of 40 to 100 Å, to avoid interaction between the layers and provide sufficient space for
moving ions. To visualize the trajectories, ASE’s graphical user interface was used.
To calculate the electronic properties, an integration over the Brillouin zone should be
performed. In practice however, this would be far too computationally expensive, and
so the Monkhorst-Pack54 grid is used for k-point sampling of the Brillouin zone. Fermi-
Dirac smearing was used for the occupation of electronic levels.

2.1 Convergence Tests

To test the computational methods, a primitive cell of graphene was simulated (Fig-
ure 2.1). Using periodic boundary conditions, this cell becomes equivalent to an infinite
graphene layer. It is used in the following to test for which k-point mesh and which
amount of grid-points the energy of the system converges, as well as to determine the
lattice constant of graphene with different computational methods.
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Figure 2.1: The primitive cell of graphene. The lattice constant a is marked.

2.1.1 k-points

The energy of a graphene layer was calculated for different k-point meshes using the cell
shown in Figure 2.1, in the LCAO mode with the PBE exchange-correlation functional
and the dzp basis set. The simulations used Fermi-Dirac smearing with a width of
0.01 eV, and a lattice constant of a = 2.4817 Å as calculated in Section 2.3. The in-
plane k-points were varied in steps of 3. The results can be seen for a grid spacing
h = 0.1 Å in Figure 2.2, and for h = 0.2 Å in Figure 2.3. As can be seen from the
plots, the calculated energy depends on the chosen grid spacing, but the convergence
behaviour is identical. The same calculation was done for the PW mode, for which the
plot can be seen as Supplementary Figure 5.1.
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Figure 2.2: Number of k-points and the corresponding energy of the graphene unit cell
for LCAO-mode with h = 0.1 Å.
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Figure 2.3: Number of k-points and the corresponding energy of the graphene unit cell
for LCAO-mode with h = 0.2 Å.

2.1.2 Grid Spacing

To test which grid spacing should be used in the LCAO mode, the same system as
in Section 2.1.1 was used. Grid spacing h was varied and the corresponding energies
calculated, and the results are shown in Figure 2.4. A spacing of 0.2 Å provides a good
compromise between accuracy and efficiency. The convergence of the PW cutoff energy
can be found in Supplement 5.
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Figure 2.4: The energy of the system for different grid spacings in LCAO mode.
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2.2 Atomization Energy of a C2 Molecule

The atomization energy of a C2 dimer was calculated and compared to literature val-
ues. This was done by first simulating a cell with just one C atom (with broken cell
symmetry) and finding its potential energy EC , and then simulating a cell with two C
atoms (Figure 2.5) separated by a distance of 1.4 Å, which is close to the experimental
bond-length of C2, letting the system relax, and finding the system’s potential energy
EC2. The atomization energy Eatom was calculated as

Eatom = 2 · EC − EC2 (2.1)

The cell size was chosen to be 10 × 10 × 10Å so that the C atoms in periodic images
do not influence each other. LCAO-mode was used with the dzp basis set and the PBE
exchange-correlation potential. Fermi-Dirac smearing was used with a width of 0.01 eV.
The BFGS optimization algorithm was used for optimization of the molecule.

Figure 2.5: The system that was used to estimate the C2 dimer atomization energy.

The result of the calculation is an atomization energy of 6.20 eV, and a bond length
of 1.287 Å. In the computational chemistry comparison and benchmark database, the
experimental bond length of C2 is given as 1.243 Å, and the calculated one as 1.261 Å.56

The bond dissociation energy of C2 according to the Active Thermochemical Tables is
given by Ruscic et. al.57 as 602.52 kJ/mol, which converts to 6.24 eV/bond, very close
to the result that was obtained here.
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2.3 Finding the Lattice Constant of Graphene

2.3 Finding the Lattice Constant of Graphene

The lattice constant of graphene was calculated using different methods, and compared
to its value in existing literature. To this end, the PBE exchange-correlation functional
was used, with a k-point mesh of 24 × 24 × 1 and Fermi-Dirac smearing with a width
of 0.01 eV. For LCAO mode, the dzp basis set was used, for PW mode, a cutoff energy
of 500 eV. For each mode, the equilibrium lattice constant was estimated by calculating
the energy for different possible lattice constants and finding the minimum. The lattice
constant in the z-direction (the distance between the graphene layers) was held constant
at 20 Å. The lattice constant a for the 2D hexagonal lattice was varied between 2.45 –
2.58 Å. When finding the lattice constant using ASE GUI, the volume of the relaxed cell
is given. To calculate the lattice constant, the following formula was derived: the lattice
constant of a graphene cell can be calculated from the volume (given by ASE GUI) as:

a =
√

V

d · cos(30◦) , (2.2)

where a is the lattice constant (see Figure 2.1), V is the volume, and d is the height of
the cell.
In PW mode, the Stress Tensor (ST) can be directly calculated, which allows automatic
optimisation of the unit cell and finding the equilibrium lattice constant. Table 2.1
shows the results for the lattice constant a for the different simulations.

Table 2.1: Lattice constant of graphene [Å] calculated with different methods. h is the
real-space grid spacing [Å].

LCAO PW FD ST
h = 0.1 2.4817
h = 0.18 2.4752
h = 0.2 2.4746 2.4656

PWcutoff = 500 eV 2.4680 2.4664

The literature value for the lattice constant of graphite is 2.462 Å,55 so if we can assume
that the lattice constant for graphite is the same as that of graphene, LCAO seems to
overestimate the value somewhat, while both PW and FD values are more accurate.
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2 Methods

2.4 Energy Conservation in a Collision of Two Atoms

In order to check whether the simulations behave in a physically realistic way, energy
conservation is tested for different timesteps dt, because the timestep has a significant
influence on the simulations. For one thing, changing the timestep has a large effect on
the amount of computing time that is needed to perform a simulation, so it is critical
to set the timestep to be as big as possible in order to be able to do a fair amount
of calculations in a given time and with a given amount of computing resources. On
the other hand, setting a too large timestep causes the simulation to yield unphysical
results. Therefore, before the main experiment is done, a suitable timestep should be
chosen. For this reason, test simulations are performed for different timesteps, to see
how big of a step can be chosen while still gaining accurate results in the simulations.
Specifically, two C atoms are made to collide repeatedly while the change in energies
is observed. For this test, a cell with dimensions 10 × 10 × 10 Å with two atoms in
it is used. Giving the first atom an initial kinetic energy in the z-direction, it collides
with the second atom, and due to periodic boundary conditions, the collision is repeated
in a periodically replicated cell. By letting this collision happen many times, energy
conservation can be verified, as small changes in energy will add up, and it will become
clear if the energy diverges over time. If the peaks in kinetic energy line up, then
the collisions are elastic, as is expected. Peaks which are not aligned suggest that the
timestep was too large. This allows the selection a timestep which is as large as possible
to have minimal computational cost, but small enough to yield physically realistic results.
In this way, a value for the timestep can be chosen that is a compromise between accuracy
and computational cost.
Unless specified otherwise, all simulations were done using the LCAO method, the PBE-
functional and dzp basis set, with a density convergence criterion of 10−5, a k-points
mesh of 1 × 1 × 1, and grid points gpts = (48 × 48 × 48), leading to a grid spacing of
h = 0.2083 Å in this cell.
An interesting aspect of the results is shown in Figure 2.6. Even for a timestep and
density convergence criterion small enough so that the first few collision peaks show
elastic collisions and therefore energy conservation, after a few periodic collisions, the
two atoms stop colliding. This is because after a certain amount of time, the velocity
gains components in x- and y-direction, even though the starting momentum was only
in z-direction. Most likely this is due to numerical errors adding up over time. An
example of the change of the x, y and z velocity components over time is shown in
Figure 2.7 for the first C atom, and in Figure 2.8 for the second C atom. This effect can
be observed for all choices of density convergence criterion and timestep, and is shown
here to explain why there is only ever a certain amount of peaks in the following energy
plots (Figure 2.9 – Figure 2.14).

14



2.4 Energy Conservation in a Collision of Two Atoms

(a) The system
after 0 fs.

(b) The system
after 400 fs.

Figure 2.6: Two carbon atoms in a cell with periodic boundary conditions. The arrows
indicate velocities. The initial kinetic energy was 22 eV, the timestep 0.1 fs.
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Figure 2.7: The velocity components of the second C atom over time, for a starting
energy of 22 eV and a timestep of 0.1 fs.
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Figure 2.8: The velocity components of the first C atom over time, for a starting energy
of 22 eV and a timestep of 0.1 fs.
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2.4 Energy Conservation in a Collision of Two Atoms

2.4.1 Choosing the Timestep

The effect of the timestep on atomic trajectories and energy conservation has been tested
in simulations of a head-on collision of two carbon atoms. The initial kinetic energy of
the first C atom was set either to 22 or 100 eV, while the second C atom was at rest.

An initial kinetic energy of 22 eV

Figure 2.9 shows variation of the kinetic energy of two C atoms with time in the simu-
lation of their head-on collision, where the initial kinetic energies of atoms were set to
22 eV and 0 eV.
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Figure 2.9: Variation of the kinetic energy of two carbon atoms in a simulation of their
head-on elastic collision. The initial kinetic energies of the atoms was set to
22 eV and 0 eV, and the timestep was set to 0.1 fs

For timesteps of 0.1, 0.5 and 1.0 fs, the resulting energies look similar as in Figure 2.9.
Before the 5th collision (at about 175 fs), the peaks of the kinetic energy are at the same
level (Table 2.2), thus confirming that this is an elastic collision. After the 5th collision,
the x- and y-components of the velocity become large enough so that the next collision
does not take place. (see Figure 2.7 and Figure 2.8).
On the other hand, for timesteps of 1.5 and 2.0 fs, the energies are far less-well conserved
for a starting energy of 22 eV (Figure 2.10 and Figure 2.11). Therefore, for an initial
ion energy of around 22 eV, the timestep should not be chosen to be larger than 1 fs.

More grid points For a starting energy of 22 eV, a timestep of 0.1 fs, and a density
convergence criterion of 10−5, a simulation was done with increased number of grid points
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2 Methods

gpts = (56 × 56 × 56) (grid spacing h ≈ 0.1786 Å) instead of gpts = (48 × 48 × 48) (h ≈
0.2083 Å). Figure 2.12 shows that in this case, the kinetic energy stays well-conserved
until the 7th collision, instead of the 5th. However, there is no great difference in how
well the peaks align with each other.

Table 2.2: The difference [eV] of the second, third and fourth energy peaks to the first
energy peak, of the first C atom for an initial energy Ein = 22 eV. The case
where the timestep dt = 0.1 fs and the density convergence criterion is 10−5

is shown in Figure 2.9.
density convergence 0.1 fs 0.5 fs 1.0 fs 1.5 fs

10−4 0.0007 −0.0101 0.0006 −0.2427
−0.0053 −0.0329 0.0555 −0.2566
0.0031 −0.0544 0.0344 9.8516

10−5 −0.0034 0.0060 0.0219 −0.2140
−0.0079 −0.0226 0.1035 −0.2420
−0.0022 −0.0170 0.1387 7.0957
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Figure 2.10: The kinetic energy of the two C atoms over time for a starting energy of
22 eV and a timestep of 1.5 fs.
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Figure 2.11: The kinetic energy of the two C atoms over time for a starting energy of
22 eV and a timestep of 2.0 fs.
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Figure 2.12: The kinetic energy over time for a starting energy of 22 eV, a timestep of
0.1 fs, and grid spacing h ≈ 0.1786 Å.
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An initial kinetic energy of 100 eV

For an initial kinetic energy of 100 eV, a smaller timestep is necessary to have an energy
that is as well-conserved as with 22 eV. As shown in Figure 2.13 and Figure 2.14, a
timestep of 0.5 fs is now needed to reach a reasonably converged kinetic energy, whereas
for 22 eV, a timestep of 1.0 fs was small enough. As for the lower energy case, the atoms
still drift apart after the 5th collision.
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Figure 2.13: The kinetic energy over time for a starting energy of 100 eV and a timestep
of 1.0 fs.
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Figure 2.14: The kinetic energy over time for a starting energy of 100 eV and a timestep
of 0.5 fs.
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2.4 Energy Conservation in a Collision of Two Atoms

Additionally, it was tried to use an adaptive timestep, so that the distance, ds = v · dt,
overcame by an atom during one timestep is independent of its velocity. This approach,
however, has not been further used in the simulations of ion implantation, but the test
simulations are described in the Supplement 5.

In summary, a timestep as large as 1 fs is sufficient to allow physical results, if the
atoms move at low velocities. Larger timesteps than that, such as dt = 1.5 fs lead to
collisions that are no longer elastic, either because the atoms move too close to each
other before the forces can push them apart, thus causing energy not to be conserved,
or due to numerical errors in the integration of the equations of motion. If the velocities
are higher such that the corresponding C kinetic energy reaches magnitudes of about
100 eV, a timestep of 0.5 fs is needed to achieve elastic collisions. The density convergence
criterion has only a small effect on these tests. Unless specified otherwise, a timestep of
dt = 1 fs and a density convergence criterion of 5 · 10−5 were used for further simulations.
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3 Results and Discussion

For the main part of this study, a graphene layer consisting of 162 C atoms was simulated
in a 22.23 × 22.23 Å xy-plane with 120◦ and 60◦ angles. The cell was 40 Å high in the
perpendicular z-direction for the cases where the initial energy of the ion was below
100 eV. For higher energies, the ejected C atom tended to reach the next periodic layer
of graphene before it was clear whether or not the ion implants. Therefore, for higher
energies, the cell was was given a height of up to 100 Å in z. For the simulations, a
k-point mesh of 3 × 3 × 1, a density convergence criterion of 5 · 10−5, and LCAO mode
with PBE and dzp basis were used.

3.1 Binding Energies of Heteroatoms in Graphene

The binding energy in graphene was calculated for each examined element, in order
to compare the results to literature values and provide equilibrium geometries of the
substitutions. For this purpose, a system where a heteroatom is incorporated in a
graphene layer was simulated and relaxed. The grid spacing was chosen as h = 0.18 Å,
and spin polarization was taken into account for all calculations. The BFGS optimization
algorithm was used to relax the systems, such that the force on any individual atom was
less than 0.02 eV/Å for convergence.53

The binding energy Ebind was calculated using the formula

Ebind = Esub − (Evac + Ehet) , (3.1)

where Esub is the energy of a graphene sheet doped with a heteroatom which replaces
one or two C atoms, Evac is the energy of a graphene sheet with a mono- or divacancy,
and Ehet is the energy of only the heteroatom.
The binding energy was examined for two cases: the case where the heteroatom replaces
one C atom in the lattice, and the case where the heteroatom replaces two C atoms in
the lattice. For each of the two cases, three systems were needed to calculate the binding
energy:
(a) Graphene layer with a mono-/divacancy with no heteroatom (Figure 3.1a)

Fermi-Dirac Smearing was used with a width of 0.025 eV, and the energy of the
relaxed system Evac was calculated.
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3.1 Binding Energies of Heteroatoms in Graphene

(a) Graphene with vacancy. (b) Only the heteroatom. (c) Incorporated heteroatom.

Figure 3.1: The three geometries that were used to obtain the binding energies.

(b) Only the heteroatom (Figure 3.1b)
This system is not a periodic structure, so only one k-point was used, and it obviously
did not need to be relaxed, as it only consists of one atom. The total magnetic moment
was fixed to the initial value according to Hund’s rule, and Fermi-Dirac smearing was
set to a width of 0.0 eV. An exception had to be made for the Ni atom: for Ni, Fermi-
Dirac smearing was set to a width of 0.2 eV, because otherwise the calculation did not
converge. The energy of the single heteroatom Ehet was calculated.

(c) Heteroatom incorporated in the monovacancy/divacancy (Figure 3.1c)
Initially, the heteroatom was elevated slightly out of plane in z-direction, and
Fermi-Dirac smearing was used with a width of 0.025 eV. The total energy of the
relaxed system Eimpl was calculated.

The calculated binding energies of different elements in graphene are shown in Table 3.1
and compared with the results by Pašti et al.,58 that were obtained with the same PBE
functional but with the use of the plane-wave basis set. The optimized geometries of
different heteroatoms incorporated in a mono- and divacancy are shown in Figure 3.2
and Figure 3.3 respectively.

Table 3.1: Calculated binding energies [eV] of heteroatoms in graphene in mono- and
divacancy configurations, and literature values for the monovacancy case.

heteroatom divacancy monovacancy Pašti et al.58

B −7.680 −12.502 −12.91
C −7.544 −15.227 −15.69
N −7.227 −11.764 −12.02
Al −4.796 −5.534 −5.15
Si −7.091 −8.419 −8.21
P −6.640 −8.262 −8.31
Mn −4.496 −6.270 −6.18
Ni −6.344 −7.035 −6.64
Ge −5.054 −6.494 −6.30
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3 Results and Discussion

(a) Boron. (b) Carbon. (c) Nitrogen.

(d) Aluminium. (e) Silicon. (f) Phosphorus.

(g) Manganese. (h) Nickel. (i) Germanium.

Figure 3.2: The optimized structures of heteroatoms substituting one C atom in the
graphene lattice.
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3.1 Binding Energies of Heteroatoms in Graphene

(a) Boron. (b) Carbon. (c) Nitrogen.

(d) Aluminium. (e) Silicon. (f) Phosphorus.

(g) Manganese. (h) Nickel. (i) Germanium.

Figure 3.3: The optimized structures of heteroatoms substituting two C atoms in the
graphene lattice.

Figure 3.4: Top-view of graphene with a Si atom implanted in a divacancy. The four C
atoms bonded to the Si are numbered to allow them to be referenced.
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The way the ions are incorporated in a divacancy was examined further for all the ions
that substitute for two C atoms. Firstly, the average z-position of all C-atoms was
subtracted from the z-position of the ion to get a measure for how much the ion sticks
out from the lattice (∆ion). Additionally, the z-position of the ion is subtracted from
the z-positions of its four C neighbours (labelled 1 – 4 in Figure 3.4). The results are
shown in Table 3.2, where ∆ion shows by how much the ion protrudes from the graphene
layer, and C1 – C4 show how much difference there is in z-position between the ion and
the respective C atom as shown in Figure 3.4.

Table 3.2: Difference in z-position between the ion and the average of all C atoms
∆ion[Å], and difference in z-position between the ion and its four neighbours
C1 – C4 [Å], as marked in Figure 3.4.

heteroatom ∆ion C1 C2 C3 C4

B 0.04 0.33 −0.35 0.34 −0.34
Al 0.71 −0.39 0.14 −0.43 0.08
Si 0.11 −0.31 0.29 −0.31 0.28
P 0.12 0.00 −0.01 −0.01 0.00
Mn 0.79 −0.58 −0.58 −0.58 −0.58
Ni 0.28 −0.09 −0.10 −0.10 −0.09
Ge 0.34 −0.38 0.30 −0.41 0.28

When looking at the relaxed structures of a heteroatom incorporated in a divacancy (Fig-
ure 3.3), it can be seen that the heteroatom and its four neighbours are often slightly
out-of-plane. This is quantified in Table 3.2, where it can be seen that the heteroatoms
are up to 0.8 Å out-of plane. In most cases, two of their neighbouring C atoms on oppo-
site sides of the heteroatom have a higher z-position, while the other two C neighbours
have a lower z-position. P is an exception, in that all for of its neighbours appear to be
in almost exactly the same z-position as the P ion. For Ni and Mn, all four neighbours
are out-of-plane, but all in the same direction instead of half going up and half going
down. C and N were not examined, since they substitute for only one C atom, and leave
a monovacancy.
For most ions, the C neighbours alternately lie above and below the impurity, creating a
tetrahedal-like geometry, and for some ions the C neighbours protrude out of the plane
in the same direction, creating a pyramidal-like geometry. The elevation of the Al ion
is higher than expected. As a test, the calculation was repeated for Al with an initial
geometry closer to the tetrahedal one, and the result remained the same.
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3.2 Choice of Computational Parameters

3.2 Choice of Computational Parameters

To find out how the choice of computational parameters affects the results of the sim-
ulations, some additional test calculations were performed for implantation of Al, Si
and Ge atoms, namely head-on collision simulations were done with different density
convergence criteria and timesteps.

3.2.1 Silicon

For Si, it was first tested how different the kinetic energies of the Si atom and of the
ejected C atom would be for different parameters after 160 fs (Table 3.3 and Table 3.4).
The initial energy of the Si atom was 14 eV. The energies of the Si atom and the ejected
C atom can be seen for one case in Figure 3.5. The time of 160 fs after starting the
simulation was chosen because at this point, it is clear whether the ion will implant in
the lattice (Figure 3.5 and Figure 3.6).
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Figure 3.5: Kinetic energy of the Si atom and the C atom that it hits for a starting
energy of 14 eV, a density convergence criterion of 10−4 and a timestep of
dt = 0.5 fs. The timestep at 160 fs is marked with a dot.

Table 3.3 and Table 3.4 show that there are only small differences in energy for the dif-
ferent parameters. However, this method of comparing simulations is not ideal, because
what is of interest here is not the energy after a certain time, but rather whether or not
the initial energy is enough to replace a C atom in the lattice, and this is what should
be accurate for the chosen parameters.
Therefore, to ascertain whether different parameters give similar results, the minimum
energy the Si atom must have in order to eject the C atom it hits from the lattice was
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3 Results and Discussion

(a) Arrows indicate velocities. (b) Arrows indicate forces.

Figure 3.6: The state of the system after 160 fs if Si has an initial kinetic energy of 14 eV.
The grey spheres correspond to C atoms, the orange sphere to the Si atom.

Table 3.3: Energy [eV] of the Si atom after 160 fs.
density convergence 0.1 fs 0.3 fs 0.5 fs 1.0 fs

10−4 1.321 1.269 1.299 1.313
5 · 10−5 1.332 1.344
10−5 1.345 1.338 1.315 1.270

Table 3.4: Energy [eV] of the C atom after 160 fs.
density convergence 0.1 fs 0.3 fs 0.5 fs 1.0 fs

10−4 1.751 1.760 1.299 1.415
5 · 10−5 1.391 1.209
10−5 1.375 1.367 1.389 1.399
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3.2 Choice of Computational Parameters

compared for different parameters. Assuming that the smallest timestep and electron
density convergence criterion give the most accurate result, if larger timesteps and less
demanding density convergence give a very similar result, then that is a good indica-
tor that these values can be used to speed up the calculations without great loss of
accuracy. For this purpose, the minimum energy needed for Si implantation was deter-
mined to within a precision of 0.25 eV even though for practical purposes, this would be
unnecessarily precise.
To find the minimum initial kinetic energy of a Si ion Ein = Emin needed to make C
leave the lattice, the simulations were done for different energies Ein, checking each time
whether or not the C atom has escaped the lattice. Table 3.5 shows the tipping point:
for the lower respective energy in each field, C does not get ejected, and for the higher
one, it does get ejected and the Si atom gets implanted into the lattice.

Table 3.5: Initial kinetic energy [eV] of Si atom needed to eject the C atom from the
lattice in a head-on collision. For the first value, C does not escape, and for
the second, it does.

density convergence 0.1 fs 0.3 fs 0.5 fs 1.0 fs
10−4 [13.00, 13.25] [13.25, 13.50] [13.25, 13.50] [13.50, 13.75]

5 · 10−5 [13.25, 13.50] [13.50, 13.75] [13.50, 13.75] [13.50, 13.75]
10−5 [13.25, 13.50] [13.25, 13.50] [13.25, 13.50] [13.25, 13.50]

Another important factor for choosing a set of parameters is how much of a difference
they make in terms of simulation time. Therefore, the time needed to simulate 200 fs is
determined from the outputs, by checking how much time has passed between the first
timestep and the timestep corresponding to 200 fs. The time it took to simulate 200 fs
is shown in Table 3.6; this was chosen because after this time, the Si atom has been
clearly implanted into the graphene lattice. (Figure 3.7 and Figure 3.8.)
As seen in Table 3.5 and Table 3.6, the difference in results for the different timesteps
and density convergence criteria is less than 1 eV. However, the simulation time in CPU-
hours ranges from less than 400 h to over 4000 h. Clearly, much can be gained from
a sensible choice of parameters. Subsequently, similar tests of parameters were carried
out for an Al ion and a Ge ion, to see if different ion mass and electron configuration
has an impact on the viability of certain parameters.
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Figure 3.7: Kinetic energy for the case where the Si atom has an initial energy of 13.5 eV.
The density convergence criterion is 10−5 and one timestep is 0.1 fs. The
timestep of 200 fs is marked with a dot.

(a) Arrows indicate velocities. (b) Arrows indicate forces.

Figure 3.8: The state of the system after 200 fs if Si has an initial energy of 13.5 eV.
The grey spheres correspond to C atoms, the orange sphere to the Si atom.

Table 3.6: CPU-time [h] required to simulate 200 fs for different combinations of com-
putational parameters and initial kinetic energy of the Si ion of 13.5 eV. The
numbers in parentheses are added for the cases where the C atom does not
escape for 13.5 eV as seen in Table 3.5, corresponding to an initial energy of
13.75 eV instead.
density convergence 0.1 fs 0.3 fs 0.5 fs 1.0 fs

10−4 3233 1306 611 383 (405)
5 · 10−5 3219 1412 (1399) 916 (968) 423 (440)
10−5 4238 1809 844 540

30



3.2 Choice of Computational Parameters

The maximum implantation energy Emax was found by finding the maximum initial
kinetic energy that still allows the ion to implant and not be transmitted through the
lattice. The Emax was also tested for several different timesteps, because the higher
velocity of the ion means that a smaller timestep might be necessary, as the ion covers
greater distances in one timestep. For the density convergence criterion a value of 5 · 10−5

was chosen, as Section 3.2.1 has shown this to be a good balance of computational time
and accuracy. An accuracy of 1 eV was deemed enough for the maximum implantation
energy. The results are shown in Table 3.7. They don’t have a strong dependence on
the timestep, therefore a timestep of 1 fs can reasonably be chosen.

Table 3.7: Initial energy [eV] of Si atom needed to be transmitted through the lattice
in a head-on collision. For the first value, Si implants, and for the second, it
goes through. The density convergence criterion is 5 · 10−5.

0.25 fs 0.5 fs 1.0 fs
[144, 145] [144, 145] [145, 146]

Finite differences (FD) calculations were performed for Si to compare the results of
the FD method and the LCAO method. As the calculations take much longer with the
FD method, only the head-on and the hexagon-center impact points were tested, using a
timestep of 1.0 fs and a density convergence criterion of 5 · 10−5. The results are shown
in Table 3.8, along with the results from the LCAO method for comparison. The LCAO
results differ from the FD results by 2 – 4 eV. Where each LCAO calculation took about
400 or 500 CPU-hours, each FD calculation took around 40 000 CPU-hours.

Table 3.8: Minimum Emin and maximum Emax initial kinetic energies [eV] of the Si ion
that will lead to an implantation for a head-on collision, and minimum energy
the ion needs to be transmitted through the lattice (Etrans) at the center of
a graphene hexagon, obtained with the FD and the LCAO methods.

impact point Emin[eV] Emax[eV] Etrans[eV]
FD

mode
head-on 12 140 -

center of hexagon - - 27
LCAO
mode

head-on 14 145 -
center of hexagon - - 29
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3 Results and Discussion

3.2.2 Aluminium

As in Section 3.2.1, the goal is again to determine which timestep and density conver-
gence criterion combination is needed to achieve a good balance between accuracy and
computational time. It is important to check if the same parameters can be used for
different elements, so here it is tested for Al which has a similar mass but a different
valence configuration than Si. The minimum energy Ein that the Al atom must have in
order to eject the C atom it hits in a head-on collision is found for different parameter
combinations (Table 3.9.)
Note that C does not get ejected if the energy of the Al ion is increased by about 2 – 4 eV
from the energy given in this table. However, for higher energies, C is ejected again.
The reason for this is presumably that in this small energy window of no implantation,
Al is fast enough to knock out the C atom, but also fast enough to follow the C atom
through the graphene layer for a small distance. The prolonged interaction between the
Al atom and the C atom causes the C atom to be pulled back to the lattice instead of
escaping, knocking the Al atom back out of the lattice. This behaviour was observed
for all tested sets of parameters.

Table 3.9: Initial energy [eV] of Al atom needed to eject the C atom from the lattice.
For the first value, C does not escape, and for the second, it does.

density convergence 0.1 fs 0.25 fs 0.5 fs 1.0 fs
10−4 [18.00, 18.25] [18.00, 18.25] [18.25, 18.50] [18.50, 18.75]

5 · 10−5 [18.25, 18.50] [18.25, 18.50] [18.25, 18.50] [18.25, 18.50]
10−5 [18.25, 18.50] [18.25, 18.50] [18.25, 18.50] [18.25, 18.50]

CPU-time needed to simulate a certain period of time with different sets of computa-
tional parameters is shown in table Table 3.10. In this case a time period of 250 fs
was chosen because after this time it was clearly visible that the C atom was being
ejected and not becoming an adatom (see Figure 3.9 and Figure 3.10). As can be seen
from Table 3.10 and Table 3.10, the kinetic energy of the Al ion at which the C atom
is ejected stays very consistent, however computational time strongly depends on the
chosen parameters.
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3.2 Choice of Computational Parameters

Table 3.10: CPU-time [h] required to simulate 250 fs for different combinations of com-
putational parameters and initial kinetic energy of the Al ion of 18.5 eV. The
numbers in parentheses are added for the cases where the C atom does not
escape for 18.5 eV as seen in Table 3.9, corresponding to an initial energy of
18.75 eV instead.

density convergence 0.1 fs 0.25 fs 0.5 fs 1.0 fs
10−4 3863 1829 1064 447 (484)

5 · 10−5 3954 1962 1130 508
10−5 5300 2621 1542 647
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Figure 3.9: Kinetic energy for the case where the Al atom has an initial energy of 18.5 eV.
The density convergence criterion is 10−5 and one timestep is 0.1 fs. The
timestep of 250 fs is marked with a dot.
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(a) Arrows indicate velocities. (b) Arrows indicate forces.

Figure 3.10: The state of the system after 250 fs if Al has an initial energy of 18.5 eV.
The grey spheres correspond to C atoms, the pink sphere to the Al atom.
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3.2.3 Germanium

As in Section 3.2.1 and Section 3.2.2, the minimum implantation energy Emin is deter-
mined for different computational parameters. Ge is heavier than Si or Al, therefore it
may behave differently and need different parameters. The minimum energy Ge needs
to eject C from graphene upon a head-on impact is shown in Table 3.11.
As described for Al in Section 3.2.2, Ge also has a small energy range where C is not
ejected if the energy of Ge is a few eV higher than the minimum implantation energy.

Table 3.11: Initial energy [eV] of Ge atom needed to eject the C atom from the lattice.
For the first value, C does not escape, and for the second, it does.

density convergence 0.1 fs 0.25 fs 0.5 fs 1.0 fs
10−4 [23.00, 23.25] [22.25, 22.50] [23.00, 23.25] [23.25, 23.50]

5 · 10−5 [22.75, 23.00] [23.00, 23.25] [23.00, 23.50] [23.25, 23.50]
10−5 [23.00, 23.25] [23.00, 23.25] [22.75, 23.25] [23.00, 23.25]

To check how much of a difference the timestep and density convergence criterion make
in terms of computational time, the time it takes to simulate 250 fs is compared for the
different parameters in Table 3.12. As before, the simulation time of 250 fs was chosen
because at this time the C atom has been clearly ejected from the lattice (see Figure 3.11
and Figure 3.12).

Table 3.12: CPU-time [h] required to simulate 250 fs for different combinations of com-
putational parameters and initial kinetic energy of the Ge ion of 23.5 eV
for different computational parameters. The numbers in parentheses are
added for the cases where the C atom does not escape for 23.5 eV as seen in
Table 3.11, corresponding to an initial energy of 22.5 eV instead.

density convergence 0.1 fs 0.25 fs 0.5 fs 1.0 fs
10−4 3799 1264 (1698) 1097 473

5 · 10−5 3989 1995 1182 526
10−5 5325 2568 1536 670

Based on all these tests with Si, Al, and Ge, a density convergence criterion of 5 · 10−5

and a timestep of 1 fs were chosen for simulations of ion implantation. The only excep-
tions were cases with a very high initial kinetic energy, and all calculations involving N.
In these cases, a smaller timestep was used.
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Figure 3.11: Kinetic energy for the case where the Ge atom has an initial energy of
23.5 eV. The density convergence criterion is 10−5 and one timestep is
0.1 fs. The timestep of 250 fs is marked with a dot.

(a) Arrows indicate velocities. (b) Arrows indicate forces.

Figure 3.12: The state of the system after 250 fs if Ge has an initial energy of 23.5 eV.
The grey spheres correspond to C atoms, the green sphere to the Ge atom.
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3.3 Ion Implantation

3.3 Ion Implantation

In the analysis of the results of ion implantation simulations, a successful implantation
event has been determined by two main conditions: incorporation of an ion into the
lattice and sputtering of one or more C atoms. Events where a C atom escapes from the
lattice but remains in the structure as an adatom were not considered as implantation.
A study has shown that for Ge at room temperature, configurations where an ion is
implanted but the C remains as a nearby adatom spontaneously relax such that the
result is non-defective graphene and the ion as an adatom.26

Stability of such structures was also tested in this work for individual simulations with B,
N, Si, P, Mn, and Ni by extending simulations for a longer time after an ion got implanted
but a C atom remained in the structure as an adatom. In many cases it was observed that
the C adatom indeed replaces the heteroatom. However, for some impurities, such as B,
N and Si, the replacement was never observed during the simulation time. Nevertheless,
for consistency of results, the cases where C came back were classified as cases where
the initial energy was too low to facilitate implantation.

3.3.1 Head-On Impact Point

Table 3.13 shows the minimum initial energy the ion needs to have in order to eject a C
atom, which it hits head-on (see Figure 1.1a). It also shows the maximum initial energy
the ion can have so that it is not transmitted through the graphene layer and escape. In
other words, for any initial energy between Emin and Emax, the ion ejects one C atom
and implants in the resulting monovacancy. Cases where the C atom was almost ejected
and it looks like the ion implanted in the lattice, but then the C-atom is pulled back,
were not counted as implantations. Emax is not given for some heteroatoms: the reason
is that for these atoms, no instance of the ion going through the lattice could be observed
for any initial energy, where the highest initial energy that was tried was 500 eV. This
happens for ions with a mass similar to C, and so according to Figure 1.2, they transfer
almost all of their kinetic energy to the C atom, and so the ion has no kinetic energy
left with which to escape the lattice. For N, attempting to implant it with an initial
energy lower than 11 eV may result in implantation of the N ion without sputtering any
C atom, so that the C atom becomes an adatom.
The displacement threshold energy in graphene is 21.14 eV,62 yet in the head-on colli-
sions, the energy transferred to a C atom by an ion with minimum implantation energy
can be significantly lower than this value. This may be due to chemical interactions
between the incoming ion and the C atoms neighbouring the displaced C atom.
As can be seen in Table 3.13, lighter ions tend to have a larger energy window than
heavier ones, probably due to the mass-energy transfer peak for head-on collisions with
similar mass shown in Figure 1.2. In cases where heteratoms have similar masses, C
has a larger energy window than B and N, and Si larger than Al and P, which suggests
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3 Results and Discussion

Table 3.13: Minimum Emin and maximum Emax initial kinetic energy [eV] of the ion
that results in the implantation for the case of a head-on collision. Mion is
the atomic mass of the element that was implanted, and RvdW is its van der
Waals radius.59–61

ion Mion[u] RvdW [pm] Emin[eV] Emax[eV]
B 11 192 10 -
C 12 170 6 -
N 14 155 11 -
Al 27 184 19 112
Si 28 210 14 145
P 31 180 12 116
Mn 55 245 25 40
Ni 59 163 21 45
Ge 73 211 24 40

that the energy window in the head-on case is larger for heteroatoms that have the same
number of valence electrons as the C atom they replace.
Interestingly, it has been found that there is a correlation between the minimum im-
plantation energies and the calculated binding energies of the corresponding heteroatoms
(Table 3.1), which can be seen in Figure 3.13. A possible explanation of this phenomenon
is that elements that interact stronger with graphene, i.e. have lower binding energy,
have a stronger effect on the weakening of the interaction between the knocked C atom
and its neighbours in the lattice, which reduces the minimum sputtering energy of C.
This, in turn, results in lowering of the minimum energy needed for implantation.
Tripathi et al.26 used DFT-based molecular dynamics to simulate head-on collisions of
Ge and a C atom in a graphene layer. Their result was Emin = 26 eV and Emax = 42 eV,
which is close to the result that was obtained here (Emin = 24 eV and Emax = 40 eV).

3.3.2 Bond-Center Impact Point

If the ion impacts in the center of the bond between two C atom (Figure 1.1b), it usually
ejects two C atoms (an example is shown in Figure 3.14) and then implants either in
a divacancy, or, in the case of N and C, implants in place of one C atom, leaving
a monovacancy empty. Table 3.14 shows the minimum and maximum implantation
energies for an impact point in the center of the bond between two C atoms (Figure 1.1b).
The ion usually ejects two C atoms, but in some rare cases it was observed that only one
C atom is sputtered, while the second one is attracted back to graphene. This happens
only if the ions have low energies very close to Emin, and even then only rarely. In these
cases, the ion implants in place of that one sputtered C atom, just as in Figure 3.2.
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Figure 3.13: Binding energies in a monovacancy, and minimum implantation energies for
a head-on impact of B, C, N, Al, Si, P, Mn, Ni and Ge. The continuous
lines were added as a guide for the eye.

Figure 3.14: An Si atom ejecting two C atoms from graphene, after impacting in the
center of the bond between two C atoms. This image shows the system
after 45 fs. The arrows indicate velocities.
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Table 3.14: Minimum Emin and maximum Emax initial kinetic energy [eV] of the ion that
results in implantation in the case where the ion hits in the center of the
bond between two C atoms.

ion Emin[eV] Emax[eV]
B 32 57
C 25 53
N 39 49
Al 29 92
Si 30 103
P 32 92
Mn 25 27
Ni 24 36
Ge 28 33

Curiously, for an initial energy of 32 eV, the Ge ion does not eject a C atom, even though
it does for lower and higher energies. For C, the lowest energy for which implantation
was observed was 25 eV, with one of the graphene atoms being ejected and the C ion
implanting in the resulting monovacancy. However, for some higher initial energies such
as 33 eV or 35 eV, none of the graphene C atoms get ejected. Then, for any energy ≥
36 eV (but ≤ Emax), two graphene C atoms get ejected, and the C ion implants in the
resulting divacancy. For N, for an initial energy of 37 eV and 38 eV, N implants but the
C atom is left as an adatom.
To compare binding energies and implantation energies, the minimum implantation en-
ergies were plotted in Figure 3.15, together with the binding energies from Section 3.1,
shown in Table 3.1. No clear correlation, as in the case of a head-on impact point, can
be seen.
Comparing the results for the head-on impact point and the bond-center impact point,
it is of note that in general, more energy is needed to achieve implantation in the
bond-center case. This makes sense, since in that case, the kinetic energy of the ion is
transferred to two C atoms instead of just one. In the bond-center case, Emax exists
for every heteroatom, even those that don’t escape the lattice for high energies in the
head-on case, and Emax is higher in the bond-center case. The reason for this is that for
a sufficiently high energy, the incoming ion can simply pass between the two C atoms
without removing them from the lattice, which is not possible for the head-on case.
Combined, these effects lead to a situation where the energy window for the bond-center
case is smaller than for the head-on case, since it has a higher Emin and a lower Emax.
Therefore it is more difficult to implant an ion in the bond-center impact point than in
the head-on impact point.
In the bond-center case (Table 3.14), Al, Si and P have the largest energy window due
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Figure 3.15: Binding energies in a divacancy, and minimum implantation energies for an
impact in the center of the bond between two C atoms of B, C, N, Al, Si,
P, Mn, Ni and Ge. The continuous lines were added as a guide for the eye.

to their large Emax. Again, C has a larger energy window than B and N, and Si has a
larger energy window than Al and P.
It is interesting that, when implanting in a monovacancy, the minimum implant energy
is strongly correlated with the binding energy, especially for lighter ions (Figure 3.13),
but when implanting in a divacancy, the minimum energy is much less correlated with
the binding energy in a divacancy (Figure 3.15).

3.3.3 Hexagon-Center Impact Point

In the case where the ion hits in the center of a graphene hexagon (Figure 1.1c), no C
atom is ejected, and no implantation of the ion into the lattice was observed. Etrans in
Table 3.15 is thus the transmission threshold energy, that is, the minimum initial energy
that is needed for the ion to be transmitted through graphene. A Si ion is shown in
the process of transmitting through the lattice in Figure 3.16. For Mn for an initial
energy of 21 eV, the Mn ion goes through the graphene, but isn’t sputtered, instead
becoming an adatom on the other side of the lattice. This was not counted as the ion
being transmitted through the lattice, as the ion does not really leave the lattice.
In the hexagon-center case (Table 3.15), the transmission threshold energy Etrans tends
to be higher for heavier elements. The only exceptions are Mn and Ni, the only sub-group
elements that were examined. They are found to have a lower Etrans.
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Table 3.15: The minimum initial kinetic energy Etrans [eV] of the ion that results in
transmission through the graphene lattice in the case where the ion hits
exactly the center of a graphene hexagon.

ion Etrans[eV]
B 9
C 15
N 19
Al 27
Si 29
P 35
Mn 22
Ni 23
Ge 47

Figure 3.16: Si atom being transmitted through the center of a graphene hexagon with
an initial energy of 31 eV. This image shows the system after 57 fs. The
arrows indicate velocities.
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3.3.4 Asymmetric Impact Point

For the asymmetrical impact point (Figure 1.1d) shown in Table 3.16, implantation
occurs for only three of the ions, namely for Al, Si and P ions. For these three, there are
initial energies that lead to the ions sputtering a C atom and implanting in the lattice.
An example of this is show in Figure 3.17a, where an Si atom is shown being implanted.
If the ion is implanted after hitting the graphene in the asymmetric impact point, the
end results looks the same as the head-on outcomes in Figure 3.2, because the ion also
ejects exactly one C atom.
On the other hand B, C, N, Mn, Ni and Ge ions did not implant into the lattice for any
energy that was tried. There are cases where the ion is transmitted through the lattice
like in the hexagon-center case (an example of this is shown with Ni in Figure 3.17b,
where Ni can be seen just before escaping the lattice), but more often, it knocks out a C
atom when it is transmitted. Regardless of whether or not a C atom was knocked out,
when there was no energy for which implantation took place, the transmission threshold
energy Etrans is given instead of Emin and Emax.

Table 3.16: Minimum and maximum initial kinetic energy [eV] of the ion that results
in implantation in the case where the ion hits between the center of the
hexagon and a C atom. In this case, for some elements, ion implantation
could not be observed for any energy. For these elements, the transmission
threshold energy Etrans is shown.

ion Emin[eV] Emax[eV] Etrans[eV]
B - - 30
C - - 36
N - - 30
Al 36 46 -
Si 32 49 -
P 29 54 -
Mn - - 36
Ni - - 36
Ge - - 38

In the asymmetric case (Table 3.16), only Al, Si and P could be implanted in the lattice,
and surprisingly, P has the largest energy window. The rest of the elements transmit
through the lattice at similar values of Etrans.
In general, the energy window that allows implantation is widest in the head-on case,
followed by the bond-center case, and then for some elements by the asymmetric case.
Most tested elements do not implant at all in the asymmetric case, and none do in the
hexagon-center case. A wider energy window means that implantation is more easily
achieved.
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(a) Si after 71 fs. (b) Ni after 103 fs.

Figure 3.17: Ions being fired at the asymmetric impact point with an initial energy of
40 eV. The arrows indicate velocities.
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4 Conclusions

Density functional theory molecular dynamics calculations were performed to system-
atically study ion implantation into graphene. Four impact points were considered and
minimum and maximum implantation energies were found for nine ions, namely B, C,
N, Al, Si, P, Mn, Ni and Ge. For energies lower than the minimum implantation energy,
the ion does not eject a C atom from the lattice, while for energies higher than the max-
imum implantation energy, the ion goes through the lattice. It is found that the widest
range of energies that lead to implantation corresponds to the case of a head-on collision
of an ion with a C atom of graphene. On the other hand, for an impact in the middle
of a graphene hexagon, no implantation was observed for any energy. For an impact
between these two points, some ions show a behaviour similar to the head-on case, and
others similar to the hexagon-center case, meaning no implantation was observed for the
latter ions. For an impact in the center of a C-C bond, the ion can eject two C atoms
from the graphene and implant in the divacancy.
The obtained results suggest that the most common geometry of the implanted het-
eroatom will be the one where it substitutes only one C atom. In general, the energy
window for implantation narrows down with the increase of the ion’s mass. This hap-
pens due to the fact that the proportion of the kinetic energy transferred to a C atom
becomes smaller for heavier ions. Interestingly, it was found that there is a correlation
between the minimum implantation energies and the binding energies of the correspond-
ing heteroatoms in graphene.
The cases of a heteroatom replacing two C atoms were examined further, finding that in
the relaxed structures, the four C atoms neighbouring the heteroatoms tend to exhibit
one of two possible geometries if the structure isn’t flat: either all four neighbouring C
atoms and the impurity ion protrude from the lattice, creating a pyramidal-like structure,
or the C neighbours alternatingly go above and below the impurity ion, creating a
tetrahedal-like geometry.
In the future, these findings could be expanded to statistically analyse which energy to
use when using ion irradiation to dope graphene. DFT is too computationally expensive
for this endeavour, which is why machine learning is a more promising avenue of future
research. The trajectories that were obtained for this thesis can be used in the training
of a machine learning algorithm, which can then be used to predict the trajectories for
different impact parameters much more cheaply.
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k-point convergence in PW-mode
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Figure 5.1: Number of k-points and the corresponding energy of the system for PW-
mode with a cutoff energy of 450 eV.

PW cutoff energy convergence

In PW-mode, the energies for different cutoff energies were calculated.
k = (24 × 24 × 1), a = 2.4678, c = 20.0. (Figure 5.2)

51



5 Supplement

200 300 400 500 600 700 800
cutoff-energy [eV]

−18

−17

−16

−15

−14

−13

−12

−11

en
er

gy
 o

f t
he

 s
ys

te
m

 [e
V]

Figure 5.2: The energy of the system for different cutoff energies in PW mode.
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Varying the Space-step ds

So far, to check what the largest possible timestep is that still yields results with rea-
sonable computational accuracy, the same simulation was done multiple times using
different timesteps and comparing the results. However, this does not take into account
that a smaller timestep is needed if the atoms are moving faster, as they then cover a
greater distance during a given time. Above, the simulations were done for 22 eV and
100 eV, and it was shown that a smaller timestep is needed to reach energy conservation
for the higher initial ion energy.
For the purposes of this thesis, the distance that is covered during one timestep will be
called a space-step ds. Here, a different approach analogous to that in Section 2.4.1 is
be tried: Using the same cell as before, and gpts = (56 × 56 × 56), the initial space-step
ds0 and the initial energy Ein were varied. The timestep dt was calculated from the
initial energy and the initial space-step ds0 as follows:

dt = ds0

v0
= ds0√

2·Ein

m

(5.1)

where v0 is the initial velocity of the ion and m is the mass of the ion. Thus, if a low
value is chosen for ds0 this results in a small timestep dt and high computational time.
As the velocity of the ion v changes in the course of the simulation, the space-step ds
changes too. However, the timestep dt is only calculated at the very beginning from the
initial energy v0, thus dt remains constant during the whole simulation. The units of
the space-step ds are

1ds = 1 fs
√

eV/u ≈ 0.0982 Å (5.2)

As shown in the following figures, the computational accuracy still depends on Ein.
The reason for this is that the velocity of the atoms changes during the calculation.
Presumably, if dt were re-calculated at every timestep so that ds stays constant, then
the results of the calculations should not depend on Ein.
Figure 5.3c and d show that lower energy is the least-well conserved especially for high
ds0. This is probably due to the fact that for a low initial velocity a small change in
absolute velocity means a large change in relative velocity. However, interestingly, lower
energy also results in more collisions in a row than higher energy, but only if a low value
is chosen for ds0.
For Ein = 1000 eV, an error occurs, even for ds0 = 3 where dt = 0.23 fs, which is not an
unreasonably small timestep.
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(a) ds0 = 0.5, therefore dt ≈ 0.55 fs.
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(b) ds0 = 1.0, therefore dt ≈ 1.1 fs.
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(c) ds0 = 2.0, therefore dt ≈ 2.2 fs.
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(d) ds0 = 3.0, therefore dt ≈ 3.3 fs.

Figure 5.3: Kinetic energy of the two C atoms for Ein = 5 eV.
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(a) ds0 = 0.5, therefore dt ≈ 0.26 fs.
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(b) ds0 = 1.0, therefore dt ≈ 0.52 fs.
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(c) ds0 = 2.0, therefore dt ≈ 1.0 fs.
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(d) ds0 = 3.0, therefore dt ≈ 1.6 fs.

Figure 5.4: Kinetic energy of the two C atoms for Ein = 22 eV.
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(a) ds0 = 0.5, therefore dt ≈ 0.12 fs.
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(b) ds0 = 1.0, therefore dt ≈ 0.25 fs.
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(c) ds0 = 2.0, therefore dt ≈ 0.49 fs.
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(d) ds0 = 3.0, therefore dt ≈ 0.74 fs.

Figure 5.5: Kinetic energy of the two C atoms for Ein = 100 eV.
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(a) ds0 = 0.5, therefore dt ≈ 0.05 fs.
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(b) ds0 = 1.0, therefore dt ≈ 0.11 fs.
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(c) ds0 = 2.0, therefore dt ≈ 0.22 fs.
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(d) ds0 = 3.0, therefore dt ≈ 0.33 fs.

Figure 5.6: Kinetic energy of the two C atoms for Ein = 500 eV.
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