
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

„Towards Measuring Releasability Impact of Microservice
Patterns“

verfasst von / submitted by

Gabriel Alexandru Kovacs, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2021 / Vienna, 2021

Studienkennzahl lt. Studienblatt / A 066 926
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Wirtschaftsinformatik
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dr. Uwe Zdun



Contents

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . 3
1.3 Solution . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . 4

2 Fundamentals 5
2.1 Microservice Architecture . . . . . . . . . . . . . . . 5
2.2 Microservice vs Monolith . . . . . . . . . . . . . . . . 7

3 Related Work 9

4 Background 11

5 Implementation 14
5.1 Microservice patterns . . . . . . . . . . . . . . . . . . 15

5.1.1 Database per service . . . . . . . . . . . . . . 16
5.1.2 Shared Database . . . . . . . . . . . . . . . . 16
5.1.3 API Gateway . . . . . . . . . . . . . . . . . . 17
5.1.4 Publish subscribe . . . . . . . . . . . . . . . . 17
5.1.5 Message bus . . . . . . . . . . . . . . . . . . . 18
5.1.6 Service Orchestration . . . . . . . . . . . . . . 19

5.2 Architectural decisions . . . . . . . . . . . . . . . . . 19
5.3 System services . . . . . . . . . . . . . . . . . . . . . 26

5.3.1 Show Stock Reports (SR) . . . . . . . . . . . 26
5.3.2 Order Products and Receive Ordered Products

(OP&ROP) . . . . . . . . . . . . . . . . . . . 31
5.3.3 Show Delivery Reports (DR) . . . . . . . . . . 44

5.4 Deployment . . . . . . . . . . . . . . . . . . . . . . . 53

6 Measurement Generation 58

7 Data Evaluation 60

1



8 Conclusion 73
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . 73
8.2 Threads of Validity . . . . . . . . . . . . . . . . . . . 75
8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . 76

A Zusammenfasung 85

2



Abstract

In the last decade, microservice architecture has seen an increased ad-
option rate among big tech giants (e.g. amazon, Netflix) as well as smaller
companies that want to take advantage of the promised benefits. While
much work has been done to describe the architecture and its patterns
there is still little to no work on how to successfully manage the trans-
ition from a monolith to a microservices architecture. This is especially
challenging for small and medium enterprises that don’t possess the seem-
ingly endless resources of large businesses. This work describes a roadmap
that enables a team to acquire and expand its know-how, aid the team in
making the best architectural decision in accordance with their needs, and
continuously evaluating the implemented system. The proposed solution
is low cost, it yields results after every step and lastly, it creates a working
environment that promotes change and architectural evolution.

1 Introduction

1.1 Motivation

Just as [10] noticed, all most all successful companies started with
a monolith. Starting with a monolith implementation is the easiest
approach that enables a team to ship a product as fast as possible
and with a rather reduced risk of failure. In time most of the mono-
liths become a big ball of mud. This usually happens because there
was no ongoing documented evolution of the architecture or if there
was one it was not enforced. The project becomes too big to grasp,
dependencies between the different modules become convoluted, the
fear of changing something and breaking the systems inhibits any
refactoring of the existing codebase. Thus in an ever faster passed
competitive market companies have to be able to adapt and scale
their services continuously if they hope to remain relevant.

1.2 Problem Statement

Thus the challenge is how to make the transition from an unstruc-
tured monolith to a microservice architecture. The main points
that have to be addressed are data management as well as how
to ensure communication between the different services. It can be
daunting to start with the decomposition of the monolith if one has

3



no previous experience or any guideline which can provide a start-
ing point. Hence two research questions can be distilled from the
previous statements:

• RQ1 How should we structure and organize the transition
from a monolith to a microservice architecture without to much
emerging resistance from the involved stakeholders?

• RQ2 Which microservice patterns to choose based on the exist-
ing requirements of the underlying system that is being built?

1.3 Solution

Our approach to addressing these challenges is to provide a blue-
print, guideline which can empower a developer to take the first
steps towards refactoring the code to achieve the desired outcome.
In [20] the authors provide different levels of modularity in which
a software system can be. Just as Kent Beck [4] mentioned be-
fore making a change it has to be made easy. Thus to be able to
transition from a monolith to microservices the software has to have
reached at least a modularity of level 2 (i.e. the modular monolith).
Before making the transition one has to decide which microservice
patterns should be taken into consideration based on the systems
requirements. Thus the proposed solution is to develop a statistical
model having as variables all the requirements and the patterns that
come into question. The desired outcome is to determine if a spe-
cific implementation performs as expected, what are the differences
between the distinct solutions, and what could be the drawbacks of
a specific solution.

1.4 Structure of the Thesis

The work is structured as follows: Section 2 provides information’s
regarding the differences between the different architectural styles;
Section 3 presents the existing related work; Section 4 provides an
introduction to the The Common Component Modeling Example
(CoCoMe); Section 5 describes the different microservice patterns,

4



the implementations, and the reason behind the decisions; Section
6 details how the measurements have been performed; Section 7
specifies how the data has been evaluated and presents the resulting
findings, lastly Section 8 contains the summary of the work and the
future work.

2 Fundamentals

2.1 Microservice Architecture

In the past, the teams involved the development and the deploy-
ment of the application were rather isolated from each other. As a
testament for this stands the waterfall model which has been pre-
valent for many years as the de facto standard for software develop-
ment. With the advent of the agile movement[1] another movement
emerged namely DevOps [2], [28]. DevOps as the name already
implies addresses the developer and the operations teams which
are encouraged to work together on an application from its incep-
tion and through its entire life cycle. This approach leads to the
need for continuous development and deployment which in turn lead
to a plethora of new tools like: Jenkins1 , Prometheus2 , Docker3

and Kubernetes4. Another evolution also took place within the ar-
chitectural styles which started with the monolith and continued
with Service-Oriented Architecture [13], [6] (SOA) followed by the
Microservice Architecture [37], [25]. Thus many companies (e.g.,
Amazon, Netflix, Ebay ) started adopting the microservice architec-
tural style and move away from their previous monolithic and SOA
oriented architectures [19], [14], [18]. Some of the benefits provided
by microservices which are properly implemented are:

1. They are easier to reason about because they are build to do
one thing and do it well. This entails that prerequisites like
high cohesion and the Single Responsibility Principle [26] are
being met.

1https://www.jenkins.io/, accessed 19.01.2021
2https://prometheus.io/docs/introduction/overview/, accessed 19.01.2021
3https://www.docker.com/, accessed 19.01.2021
4https://kubernetes.io/, accessed 19.01.2021

5

https://www.jenkins.io/
https://prometheus.io/docs/introduction/overview/
https://www.docker.com/
https://kubernetes.io/


2. The development and reliability cycle is shortened due to (1).

3. The development teams are not constrained by a single tech-
nology stack (e.g., using only relational database or a unique
programming language).

4. The resilience and fault tolerance of the entire systems in-
creases. The failure of a service will not lead to cascading
errors.

5. Because the services are independent and self-contained units
they can be scaled up or down based on the existing needs thus
eliminating the need for over-provisioning hence reducing the
operations costs.

While microservices come with multiple advantages there are also
some challenges that need to be considered before committing to
this type of architecture. Several of these drawbacks are:

1. The operations complexity increases considerably because there
is not just one big service to deploy but dozens or even hundreds
of small ones that have to be managed.

2. It requires the team to change and adapt their way of thinking
especially due to the change from a monolith to a distributed
system. The novelty factors are: the communication between
the services ( e.g., synchronous vs. asynchronous), testing and
debugging the system, and moving away from a data model
driven by ACID towards BASE [5].

3. Extracting new services from an existing monolithic codebase
and determining the size and the boundaries of the new mi-
croservices is not as straightforward as one would hope. The
acquisition of new know-how is required. Some of the new
paradigms that could help are: Domain Driven Design [7] which
provides a means of identifying the existing Bounded Con-
texts5 within the existing application; Responsibility Driven

5Entails splitting a business domain into smaller independent subdomains (e.g. shipping,
payment)

6



Design [8] that strives to identify the occurring interactions
and responsibilities thus resulting in more cohesive and loosely
coupled services; Event Driven Design [38] is mainly focused
on the events triggered within an application and their con-
sequences. It usually entails asynchronous communication between
the services which facilitates local and temporal decoupling.

Just as previously the Gang of Four compiled a series of Design
Patterns [11] which covered recurring problems and their proposed
solutions Richardson has compiled a series of Design Patterns [32],
[35] geared towards solving the challenges which emerge by adopting
a microservice architecture. For example, the Command Query Re-
sponsibility Segregation (CQRS) has been devised to accommodate
database queries in environments where there is not just one cent-
ral database but rather multiple standalone databases. The SAGA
pattern has been conceived to facilitate transactions that span over
multiple services offering the possibility to roll back the previously
executed actions if the transaction should fail at any given step.
Multiple approaches are available to enable service discovery so that
the services can communicate with each other. Microservice archi-
tecture has been in use for some years now and more likely than not
most of the challenges have been identified and one can find a pat-
tern, best practice, or even software that can aid a team in solving
their problem.

2.2 Microservice vs Monolith

The monolithic architecture is usually the go to model when starting
with a new application. It is a single indivisible unit that contains
the user interface, the business logic as well as the data interface.
Usually, a monolith is comprised of only one big codebase that lacks
any modularity [12]. It can be considered the opposite of the mi-
croservice architecture. This does not mean that this style of archi-
tecture does not have its merits. The important thing is to be aware
of its limitations and recognize when continuing with a monolith be-
comes detrimental and a hazard to the system it implements. Thus

7



a microservice architecture can be seen a the result of a matured
monolith.

The advantages of a monolith are prevalent in the beginning
stages of a new project. These are:

• Reduced overhead when starting out. There is no need for
detailed planning.

• The developer team does not need special know-how. Every
developer probably worked at some time on a monolithic code-
base.

• New iterations containing new features can be implemented
and delivered relatively fast.

• Deployment is easy because there is only one unit that has to
be deployed.

• Having all the code base together makes testing easier.

All the above advantages hold as long as the code base is small and
transparent. After a certain point, all the benefits become draw-
backs. At this point, the microservice architecture starts to shine.

• The bigger the monolith the harder it gets to reason about it
and no one person is able to grasp the bigger picture. This
usually goes hand in hand with missing or stale documenta-
tion thus making it harder for new developers to understand
what the system does and how it operates. In contrast, a
microservice is much smaller, has a predefined structure and
function thus making it easier to comprehend and to make it
comprehensive to new team members.

• While shipping new features fast a considerable amount of tech-
nical debt [27] is being amassed. The higher the debt the
harder it becomes to modify the existing code base due to the
higher existing complexity, coupling and dependencies that are
scattered true ought the system. At this point, the needed
overhead to define the structure of a microservice starts to pay
off and makes changing the system much easier and faster.

8



• While the deployment of a monolith is easier it is also much
slower than the deployment of microservices which due to their
size can boot up much faster. Furthermore scaling up a mono-
lith implies redeploying the entire system multiple times even
if just a subset of the functionality is needed whereas in com-
parison only the microservices implementing the functionality
need to be redeployed. The longer deployment times can also
impact development negatively especially in the situation where
an entire workflow needs to be tested.

• Withing a monolith there is a big commitment to a specific
stack which usually also implies a vendor lock-in. This can be-
come a problem if part of the support for the software becomes
discontinued, the software does not evolve fast enough, or the
licensing model changes. The flexibility of choosing the right
tool for the right job is one of the microservices selling point
allowing the development team to change course much faster
without having to waste too much time and resources.

The microservice architecture has a steeper learning curve, it re-
quires much more upfront investment than the monolithic architec-
ture but if done properly it yields a much higher reward further
along the way and in some cases, it remains the only viable option
if scaling and new features are ubiquitous to the application.

3 Related Work

Taibi et al. [39] provide a microservice pattern catalog based on
the review of more than 2700 scientific papers. The catalog is split
into three main pattern subsections: orchestration and coordina-
tion, physical deployment strategies, and lastly data management
specifically data storage options. For every pattern, the authors of-
fer a description, advantages, and disadvantages. The authors also
discuss the guiding principles which drive the development of mi-
croservices as a whole with their advantages and drawbacks.

In their paper, Hassan et al. [15] define an architecture-centric

9



modeling concept for microservices. The purpose of the modeling
approach is to determine the granularity and boundaries of a mi-
croservice. They show that their proposed solution for modeling
and decomposing microservices can facilitate analysis, evaluation,
and mobility/location awareness of the underlying architecture, thus
allowing the user to be aware of the QoS trade-offs.

The work of Osses et al. [30] describes a systematic review of
microservices patterns and tactics (design decisions) that can be
encountered in academia as well as industry. They were able to
identify five main quality attributes: scalability, flexibility, testabil-
ity, performance, and elasticity. Finally, the previously acquired
knowledge has been cast in a microservice architecture patterns tax-
onomy which is meant to aid developers in the pursuit of finding the
appropriate solution to their problems based on a given context.

Baresi et al. [3] developed a process that can automatically
decompose an existing application into microservices based on an
OpenAPI (formerly known as Swagger ) description of the service
interfaces and a vocabulary based on Schema.org . In their exper-
iments, they were able to achieve an 80% accuracy whit regard to
microservice decomposition using rather simple applications (con-
taining 10 respectively 13 microservices).

The work conducted by Zdun et al. [40] strived to define a set of
constraints and metric which facilitate the automated conformance
evaluation of a model to the existing microservice patterns. The
constraints and scoring mechanism which became an integral part
of the metric were developed in accordance with the existing best
practices associated with microservices and with the intention of re-
ducing possible bias towards a specific solution. The proposed solu-
tion was implemented with the help of the Frag Modeling Framework
(FMF). The approach was evaluated based on 13 different applic-
ation implementations and cross-checked against the evaluation of
domain experts. Although the result didn’t fully overlap they were
still promising.

In their work Levcovitz et al. [24] propose an approach for ex-
tracting microservices from a monolithic architecture by construct-

10



ing a dependency graph between the component (e.g., database
tables, domain logic, clients) manually thus identifying possible mi-
croservices and their coupling.

Richardson’s book [32] provides a comprehensive overview re-
garding the microservice architecture style. The author presents the
benefits and drawbacks of microservices, decomposition strategies,
describes many of the used patterns as well as covering testing and
deployment. The work presented in this chapter will be part of
the foundation for developing the proposed solution. The previ-
ous work is focused on microservice patterns categorization and on
the manual or semiautomatic determination of service boundaries.
While providing valuable insights it focuses only on a specific issue
of the development process and not on a holistic view of the develop-
ment cycle. Thus going beyond the academic definition of patterns
and compliance of the code could aid the technical lead to confirm
that the choices made are the right ones.

4 Background

To be able to determine if there are any satisfactory answers for our
research questions an application had to be found that is big enough
and that can be split into microservices. These requirements were
met by The Common Component Modelling Example (CoCoME)
[16]. The CoCoME describes a Trading System that resembles a
supermarket in which different goods are sold. Every store has mul-
tiple Cash Desks that are grouped together into Cash Desk Lines.
Every Cash Desk Line is connected to the Store Server that can
be accessed via the Store Client. The Store Clint enables the store
manager to view reports, order products, or change the price of the
product available within the store inventory. Multiple Stores can
be grouped together into an Enterprise. Every Enterprise has an
Enterprise Server to which all its Stores are connected thus allowing
the Enterprise Manager to generate different kinds of reports via the
Enterprise Client.

Figure 1 shows the use case diagram of the existing use cases

11



that are defined within the CoCoME. The use cases are described
as follows:

• UC 1:Process Sale - At the Cash Desk the Cashier scans the
products a Customer wants to buy and after the scanning is
finished the Customer has the possibility to pay either by card
or cash.

• UC 2:Manage Express Checkout - If certain conditions are ful-
filled a Cash Desk automatically switches into express mode.
As a result, only a maximum of 8 items are allowed per Cus-
tomer and only cash payment is possible. The Cashier is able
to switch back to normal mode at any time.

• UC 3:Order Products - The Store Manager is able to view the
current status of his inventory. By choosing a product and
the amount to be ordered the Manager can place an Order for
which an identifier is generated and shown to the Manager.

• UC 4:Receive Ordered Products - The ordered products arrive
at the Store at which point the Stock Manager checks the deliv-
ery for completeness and correctness. If the delivery is accepted
the Manager introduces the previously generated identifier in
the system upon which the inventory of the store is updated.

• UC 5:Show Stock Reports - The Store Manager is able to create
and view a report that includes all the available stock items in
his Store.

• UC 6:Show Delivery Reports - The Enterprise Manager can
generate and view a report that contains the mean delivery
times for all the suppliers that supply a specific Enterprise.

• UC 7: Change Price - The Store Manager can view every
product in his inventory and change its selling price as he
wishes.

• UC 8: Product Exchange - If an item’s stock goes below a
certain threshold the store’s server can inform the enterprise

12



Figure 1: Use Cases CoCoME [16], Fig.4. An overview of all con-
sidered use cases of the Trading System.

server about the shortage. Upon receiving the request the en-
terprise server can query the stock of the item in other shops
and if deemed appropriate it initiates a transfer of items from
one store to another store.

Another very important and useful information is provided in
Figure 2 that contains the data model for the entire Trading System.
Thus the structure of the database can be sketched based on the
data model. Furthermore, we can get a better understanding of the
relationships, interactions, and information exchange between the
different use cases.

13



Figure 2: Data Model CoCoME [16], Fig.8. The data model of the
TradingSystem.

5 Implementation

Based on the use cases described in the CoCoME multiple use cases
have been implemented as a monolith [22]. Knowing that the in-
tention is to transition to microservices the application has been
implemented having level 2 of modularity in mind. Thus every use
case is considered a new feature that is layered vertically having an
API, an application- and a persistence-layer where all the use cases
share one common database. This approach allowed us to have a
first running proof of concept as well as enabled us to get a bet-
ter understanding of the interactions between the services. Thus it
was possible to start with the first consideration with regards to a
possible decomposition of the monolith into multiple microservices.
Another advantage of starting with a monolith is that the new im-
plementation can be compared against the old consolidated version
thus possible errors regarding the behavior of the application can be
caught and handled accordingly.

Five of the existing eight use cases described in the CoCoME

14



have been implemented. These are:

• UC 3 - Order Products

• UC 4 - Receive Ordered Products

• UC 5 - Show Stock Reports

• UC 6 - Show Delivery Reports

• UC 7 - Change Price

The use cases 1 and 2 have been omitted because they foresee
multiple smaller interactions with devices like printers, light dis-
play, and so on without having a real impact on the existing data
model. Use case 8 while interesting it was not implemented because
it necessitates multiple stores that are online at the same time and
furthermore it was not clear how to implement the heuristic de-
scribed in the use case.

After multiple deliberations, three microservices have emerged
that are able to fulfill the functionally of the five implemented use
cases [21]. These three services implement the use cases as follows:

• Microservice SR - implements UC5 and UC7

• Microservice OP&ROP - implements UC3 and UC4

• Microservice DR - implements UC6

These three services represent only the bare bone implementation
of the use cases. To facilitate the information exchange between the
services themselves and the outer world represented by the clients
multiple microservice patterns have been implemented which will be
described in the next Section.

5.1 Microservice patterns

This section contains a description of all the patterns that have
been implemented. They can be divided into three main groups:
data management (see 5.1.1 and 5.1.2), service communication (see
5.1.4 and 5.1.5), and workflow management (see 5.1.3 and 5.1.6).

15



5.1.1 Database per service

In the database per service approach, every microservice has its own
database [34]. This does not mean that every service has to have
its own instance of a database but rather that every service owns its
own table schema. This approach allows the developer team to make
changes to the schema as they see fit without having to coordinate
with other teams thus allowing them to work independently in a
non-blocking manner. Another advantage is the fact that the entire
stack can be deployed on its own and can be scaled up or down as
needed. Every service can use the database that is best suited for the
use case it implements from various relational or NoSql databases.
Some of the disadvantages are: having to duplicate data to ensure
the unambiguousness of the data (e.g. duplicating the primary key),
joining data over multiple databases for querying becomes harder,
defining transactions that span multiple services become much more
complex (e.g. Saga pattern) and lastly, the data becomes eventual
consistent having to be synchronized over multiple databases.

5.1.2 Shared Database

Just as the name implies this pattern enforces a common database
for all services [36]. Thus different services operate on the same
tables. In a microservice architecture, this could be considered an
antipattern. While counter-intuitive it comes with some advantages
like: the service can directly access the database thus bypassing a
potential need to use the API of a foreign service; the developer
can use SQL at its full potential (e.g. complex joins over multiple
tables); making use of ACID transactions which leads to better data
consistency. Of course, there are also some drawbacks that have to
be taken into consideration when choosing this approach like: a loss
of flexibility within the development cycle due to common database
schema which has the be agreed upon by all development teams;
the type of the database is fixed ( e.g. relational or NoSql); long-
running transactions could block the other services; the database
could get overwhelmed by the concurrent connections when scaling

16



up the number of services.

5.1.3 API Gateway

Consists of a component that is placed between the client and the
provided services [33]. It acts as a single point of entry for the en-
tire system. This means that every incoming request has to traverse
the gateway. Using an API Gateway has multiple benefits like: it
reduces the potential attack surface because the components that
have to be hardened is reduced to only a couple instead of dozens
or hundreds of services; can reduce the complexity within the mi-
croservice with regards to authentication and authorization logic;
decouples the client from the provided services thus the client has
to be aware only of the gateway and not all services; gateways can
be specialized meaning that they can provide an API for desktops or
mobile devices, consequently streamlining the development process
for all involved stakeholders. The shortcomings of this pattern are
as follows: any failure of the gateway renders the system unusable
for any client thus making it a single point of failure; increases com-
plexity by adding a new component that has to be developed and
maintained; can lead to increased latency which depending on the
use case could have a negative impact on the end-user experience.

5.1.4 Publish subscribe

Publish subscribe is a messaging pattern that facilitates asynchron-
ous communication between multiple services within a private net-
work or over the internet [17], [29].The main components of the
pattern are the publishers, subscribers, and a message broker. The
publisher is responsible for the creation of messages that are associ-
ated with one or more topics (e.g. incoming orders, delivery). The
subscribers are the consumers of the messages which they can re-
ceive by registering, subscribing to the topics they are interested in.
Lastly, the message broker is the middle man that enables the com-
munication between the different actors that create and consume
messages. The broker is the one managing all the topics, the sub-

17



scribers and the publishers, and lastly the message boxes (queues)
associated with the different topics and subscribers. Some of the
benefits that come with the usage of the pattern are: enables the
asynchronous exchange of information meaning that the involved
parties must not be available/online at the same time; it decouples
the actors and facilitates dynamic scaling. The publisher for ex-
ample does not have to know the address of 100 services but only
the address of the broker, the same also holds for the consumers.
The disadvantages of the pattern are: the broker is another com-
ponent that has to be managed and can become a single point of
failure; reasoning about a synchronous workflow is much easier than
reasoning about an asynchronous one; debugging such a system be-
comes challenging.

5.1.5 Message bus

Message bus is another pattern geared towards enabling information
exchange between individual services as described in [17]. The pat-
tern is similar to the publish-subscribe pattern by having a message
broker as well as creators and consumers of messages. The main dif-
ference is that there are not multiple topics but only one common
topic. Thus every actor that wishes to participate has to register for
one topic/channel. Furthermore, every participant has to comply
with a predefined data model and a command set. Every message
can be a command or a response (e.g. query result). Whenever a
message is published it gets sent to all the subscribers of the chan-
nel. The services themselves have to decide if they should process
the message or ignore it. This pattern facilitates asynchronous com-
munication and decoupling of services. Another benefit is the ease
with which services can join the bus. For example, one could at-
tach a service that is responsible wit logging thus recording all the
communication available in the system.

18



5.1.6 Service Orchestration

Service orchestration is a pattern that has to do with how mi-
croservices work together to fulfill a specific use case[31] . The
central role is played by the orchestrator who is responsible for the
execution of a series of predefined tasks in a specific order to ful-
fill a specific goal. Every task can correspond to a service offered
by different microservices. For example, as noted [9] with the help
of the Business Process Model and Notation (BPMN) a workflow
can be defined that contains a series of tasks that can be executed
in parallel or sequential until an end state has been reached. The
orchestrator is the one responsible for executing the workflow until
the final state is reached. The workflow could also be seen as a
pipeline where the orchestrator is the one calling a service with a
specific input processing the output and then calling the next service
in the pipeline. Thus the orchestrator becomes a smart pipe. The
benefits of orchestration are: it enables an easy understanding of
the workflow it implements; it is easy to maintain and modify. The
disadvantages are: the orchestrator becomes a single point of fail-
ure; due to the sequential nature of the workflow if one process fails
the entire workflow fails; the orchestrator must know how to access
all the microservices involved in the workflow; increased run times
because all traffic has to run from and back to the orchestrator.

5.2 Architectural decisions

The application described in the CoCoME revolves around the man-
agement of the supermarket inventory. It is important to be able
to manage the state of the inventory at any given time. Thus the
data describing the state of the inventory can be considered one of
the most valuable assets of the supermarket. Every one of the use
cases retrieves and/or modifies the state of the inventory. Given
the nature of the application, the decomposition was data-driven,
meaning that the first step consists of breaking the database up.
The division is not arbitrary but rather geared towards achieving
high cohesion between the distinct services as well as low coupling.

19



Figure 3 shows one of the basic implementations in which every
service has its own database and the communication between the
service is made via REST calls. In this example, the original data-
base has already been portioned in such a way that the needed in-
formation exchange between the services is reduced to a minimum.

Figure 4 shows a variation in which all the services share the
same database and the same tables. The structures of the tables is
the same as the one used in the monolith implementation. Thus the
communication between the services is facilitated via the database.
Therefore the REST calls have been removed. To avoid duplication
of the database access code, it has been extracted in the common
jar which is used by all services as a dependency.

Figure 5 represents an expansion of implementation seen in fig-
ure 3 by a new microservice that acts as an api-gateway (AG). The
AG acts as a proxy between the client and the other services by
forwarding the incoming client request to the appropriate services.
This extension of the architecture is an organic one. The advant-
ages provided by this pattern, as already described in Section 5.1.3,
exceed the drawbacks.

The implementation shown in Figure 6 is similar to the one in
Figure 5, the difference being the replacement of the one database
per service with one shared database.

The direction taken in Figure 7 is geared towards asynchronous
communication. Whenever the client performs a request he also
has to provide a callback address to which the result of the request
will be POST-ed upon completion by the AG. After receiving the re-
quest from the client the AG responds with a 201 Accepted and saves
the callback address together with a correlation id in its database
(agDB). The communication between the AG and the other ser-
vices is point-to-point and is being facilitated by a message broker
via queues. The communication between the remaining services is
enabled via REST calls and every service possesses its own database.

The setup in Figure 8 is analogous to the one in Figure 7 the
difference being that the services share a common database. The
solution presented in Figure 9 corresponds to the one in 7 with

20



the exception of the communication among the back-end services,
which is made via topics (command and response) over the existing
message broker, thus replacing the previous REST calls.

The solution presented in Figure 10 increases the responsibility of
the AG. The AG becomes an orchestrator thus making it responsible
for the composition of the data needed to be returned as a response
to the client’s requests. As a consequence, the service does not need
to communicate whit each other. The only existent communication
channels are between the AG and the services via REST calls.

The last implementation presented in Figure 11 is related to the
one in Figure 10. The difference consists in the means of commu-
nication between the AG and the other services which are done via
queues over a message broker instead of the previously used REST
calls.

«microservice» 
SR

«microservice» 
OP&ROP

«microservice» 
DR

UC5, UC7

REST

REST

UC3, UC4

REST

UC6

REST

REST

«database» 
opRopDB 

«database» 
drDB

«database» 
srDB 

Figure 3: Master with one DB per service

21



«microservice» 
SR

«microservice» 
OP&ROP

«microservice» 
DR

UC5, UC7

REST

REST

UC3, UC4

REST

UC6

«database» 
theOne 

«jar» 
common

uses

Figure 4: Master with one common DB

«microservice» 
SR

«microservice» 
OP&ROP

«microservice» 
DR

UC5, UC7

REST

REST

UC3, UC4

REST

UC6

REST

REST

«database» 
opRopDB 

«database» 
drDB

«microservice» 
AG

REST

UC3 
UC4 
UC5 
UC6 
UC7

«database» 
srDB 

Figure 5: Api-Gateway with one DB per service

22



«microservice» 
SR

«microservice» 
OP&ROP

«microservice» 
DR

UC5, UC7

REST

REST

UC3, UC4

REST

UC6

«database» 
theOne 

«jar» 
common

uses

«microservice» 
AG

REST

UC3 
UC4 
UC5 
UC6 
UC7

Figure 6: Api-Gateway with one common DB

«microservice» 
SR

«microservice» 
OP&ROP

«microservice» 
DR

REST

REST

«database» 
srDB

«database» 
opRopDB 

«database» 
drDB

UC5 
UC7

UC3 
UC4

UC6

«microservice» 
AG

REST

UC3 
UC4 
UC5 
UC6 
UC7

«broker» 
ArtemisMQ

queue

queue

«database» 
agDB 

Figure 7: Pub-Sub with one DB per service

23



«microservice» 
SR

«microservice» 
OP&ROP

«microservice» 
DR

UC5 
UC7

UC3 
UC4

UC6

«database» 
theOne 

«jar» 
common

uses

«microservice» 
AG

REST

UC3 
UC4 
UC5 
UC6 
UC7

«broker» 
ArtemisMQ

queue

queue

«database» 
agDB 

Figure 8: Pub-Sub with one common DB

«microservice» 
SR

«microservice» 
OP&ROP

«microservice» 
DR

Ctopic

«database» 
srDB

«database» 
opRopDB 

«database» 
drDB

Ctopic
Rtopic

Rtopic

Ctopic
Rtopic

«microservice» 
AG

REST

UC3 
UC4 
UC5 
UC6 
UC7

«broker» 
ArtemisMQ

queue

queue

«database» 
agDB 

Figure 9: Message bus with one DB per service

24



«microservice» 
SR

«microservice» 
OP&ROP

«microservice» 
DR

UC5, UC7

REST

REST

UC3, UC4

REST

UC6

«database» 
srDB

«database» 
opRopDB 

«database» 
drDB

«microservice» 
AG

REST

UC3 
UC4 
UC5 
UC6 
UC7

Figure 10: Api-Gateway orchestration with one DB per service

«microservice» 
SR

«microservice» 
OP&ROP

«microservice» 
DR

«database» 
srDB

«database» 
opRopDB 

«database» 
drDB

UC5 
UC7

UC3 
UC4

UC6

«microservice» 
AG

REST

UC3 
UC4 
UC5 
UC6 
UC7

«broker» 
ArtemisMQ

queue

queue

«database» 
agDB 

Figure 11: Pub-Sub orchestration with one DB per service

25



5.3 System services

5.3.1 Show Stock Reports (SR)

The SR microservice is responsible for the realization of UC 5 and
UC 7. The service is self-contained meaning that it does not need
other services to fulfill any incoming requests associated with the
two use cases. The service contains all the needed business logic
and also has direct access to the database that accommodates the
data.

The data is comprised of a table that contains the store id, the
product id, the product’s price, the available amount in the store as
well as the minimum- and the maximum stock for a given product.
Thus the main table is the StockItem table from Figure 2 with
additional references to the ids contained in the Store and Product
table.

Client

generate report

SR

GET stock item reports

return report

Figure 12: UC 5 sequence diagram for version v01 and v02

The sequence diagram shown in Figure 12 describes the workflow
for acquiring the stock item report in v01 (master-1-to-1-db) and v02
(master-one-db). The workflow for v01 and v02 are identical because
the SR service is not dependent on the data managed by another

26



Client

generate report

SR

GET stock item reports

return report

AG

GET stock item reports

return report

Figure 13: UC 5 sequence diagram for version v03, v04 and v09

service. Thus when a report is requested the service just pulls the
data from the database and generates the report. For acquiring the
report the Client sends a GET request to the SR service. Upon
receiving the request the SR service queries the needed data from
the database, generates the report, and returns the report to the
Client. All the provided interfaces are RESTful.

The sequence diagram shown in Figure 13 describes the workflow
for acquiring the stock item report in v03 (api-gateway-1-to-1-db),
v04 (api-gateway-one-db), and v09 (orchestrate-api-gateway-1-to-1-
db). The workflow execution of the three versions is the same. The
AG (Api-Gateway) is the new component that has been introduced
between the Client and the SR service. Thus the operation execution
looks like the following: the Client sends a GET request to the AG
to retrieve the report. After receiving the solicitation the AG sends
a GET request to the SR service for the report. As soon as the
SR service registers the incoming request it retrieves the data from
the database, generates the report, and sends it back to the AG.
Lastly, the AG hands over the report to the Client. All the provided
interfaces are RESTful.

The sequence diagram shown in Figure 14 describes the work-

27



Client BrokerAG

generate report

SR

address: show_stock_reports 
event: returnStockItemReports

GET stock item reports

202 Accepted
push message

address: api_gateway 
messageType: reponse

push message

generate response

POST response

Figure 14: UC 5 sequence diagram for version v05, v06, v07, v10

flow for acquiring the stock item report in v05 (pub-sub-1-to-1-
db), v06 (pub-sub-one-db), v07 (message-bus-1-to-1-db) and v10
(orchestrate-pub-sub-1-to-1-db). The order of the tasks to be ex-
ecuted to retrieve the report are the same in all four versions. Unlike
the previous five versions that were synchronous, the version depic-
ted in Figure 14 is asynchronous. A new component has been added
namely the Broker that handles the point-to-point communication
between the AG and the SR service. This is facilitated with the
help of queues which can be identified with the help of an address.
Every message that is disseminated with the help of the Broker also
contains a label that enables the services to determine the type of
the message and for what it is intended. The execution of the work-
flow starts with the Client sending a GET request to the AG which
also includes a callback address to which the AG should send the
report wants its finishes. As soon as the AG receives the request
it publishes the request onto the Broker’s queue with the address
show_stock_reports and with the event named returnStockItemRe-
ports. If the message has been successfully published the AG sends
a request accepted response to the Client. Once the Broker is aware
of the incoming message from the AG it forwards it to the SR ser-

28



Client

update price

SR

PUT change stock item price

return 

Figure 15: UC 7 sequence diagram for version v01 and v02

vice. The SR service then retrieves the data from the database,
generates the report, and publishes it on the Broker’s queue with
the address api_gateway. Upon receiving the message from the SR
the Broker tries to deliver the report to the AG. Finally, after the
AG receives the report it sends it to the Client with a POST request
to the previously provided callback address.

The sequence diagram shown in Figure 15 describes the workflow
for changing the stock item price in v01 (master-1-to-1-db) and v02
(master-one-db). As already mentioned the SR service is the one
responsible for managing the products of a Store thus it is also the
service responsible for setting the price of the products. The versions
V01 and v02 have the same workflow for changing the price. The
client sends a PUT request to the SR service requesting the update
of the price for a given product in a specific Store. Upon receiving
the request the SR service updates the price in accordance with the
incoming data and returns to the Client the updated stock item. All
the provided interfaces are RESTful.

The sequence diagram shown in Figure 16 describes the workflow

29



Client

update price

SR

PUT change stock item price

return 

AG

PUT change stock item price

return 

Figure 16: UC 7 sequence diagram for version v03, v04 and v09

for changing the stock item price in v03 (api-gateway-1-to-1-db), v04
(api-gateway-one-db), and v09 (orchestrate-api-gateway-1-to-1-db).
The three versions follow the same task execution. The main differ-
ence to the versions in Figure 15 is the AG (Api-Gateway) service
which sits between the Client and the SR service. The execution
starts with the Client sending a PUT request to the AG demanding
a price update. After receiving the solicitation from the Client the
AG also sends a PUT request downstream to the SR service. Upon
receiving the request the SR service updates the stock item price
and returns the new item to the AG which in turn forwards the
item to the Client. All the provided interfaces are RESTful.

The sequence diagram shown in Figure ?? describes the workflow
for changing the stock item price in v05 (pub-sub-1-to-1-db), v06
(pub-sub-one-db), v07 (message-bus-1-to-1-db) and v10 (orchestrate-
pub-sub-1-to-1-db). The in the workflow involved services are the
same as in the versions seen in Figure 14. The main difference con-
sists in the performed operations. The price change starts with the
Client sending a PUT request to the AG which in turn forwards a

30



Client BrokerAG

change price

SR

address: show_stock_reports 
event: changeStockItemPrice

PUT change stock item price

202 Accepted
push message

address: api_gateway 
messageType: reponse

push message

generate response

POST response

Figure 17: UC 7 sequence diagram for version v05, v06, v07, v10

message onto the Broker’s queue with the address show_stock_reports
and the event name changeStockItemPrice. After successfully send-
ing the message to the Broker the AG sends a request accepted
message to the Client. The Broker delivers the message from the
AG to the SR service which updates the item’s price and publishes
the newly update item onto the Broker’s queue with the address
corresponding to the AG. The Broker then forwards the message to
the AG which in turn delivers the item to the Client via a POST
request to the callback address provided by the Client in the initial
request.

5.3.2 Order Products and Receive Ordered Products (OP&ROP)

The OP&ROP microservice implements UC 3 and UC 4. This ser-
vice is not fully self-sufficient needing to interact with the SR service
to complete the receiving incoming order use case (i.e UC 4). The
data which the service manages directly consists of two tables. One
that persists the data regarding the carried out order that contains
the product id, the ordered amount, and the order id. Thus UC
3 can be performed without needing another service. The second
table contains the data needed to track the order status. This is

31



Client OP&ROP

POST create order

return OrderEntry

save order

Figure 18: UC 3 sequence diagram for version v01 and v02

accomplished by storing the order id, the ordering- and the delivery
date as well as the store id. Thus the tables that are reproduced
from the CoCoME data model 2 are ProductOrder which also con-
tains a reference of the Sore id as well as OrderEntry which holds a
reference to the Product id.

The sequence diagram shown in Figure 18 describes the workflow
for ordering products in v01 (master-1-to-1-db) and v02 (master-
one-db). The ordering process is for both versions the same. The
workflow starts with the Client sending a POST request to the
OP&ROP service containing the order information (i.e. product
id and order amount). Upon receiving the request the OP&ROP
service creates a new entry in the database inserting a new product
and order entry in the database. After successfully persisting the
order in the database the OP&ROP service returns the order entry
to the Client. All provided interfaces are RESTful.

The sequence diagram shown in Figure 19 describes the work-
flow for ordering products in v03 (api-gateway-1-to-1-db), v04 (api-
gateway-one-db) and v09 (orchestrate-api-gateway-1-to-1-db). These

32



Client

save order

OP&ROP

POST create order

return OrderEntry

AG

POST create order

return OrderEntry

Figure 19: UC 3 sequence diagram for version v03, v04 and v09

three versions are an evolution of the versions provided by Figure
18 by adding the AG (Api-Gateway) service between the Client and
the OP&ROP service. The ordering process starts with the Client
sending a POST request to the AG soliciting the creating of a new
product order based on the provided data. Upon receiving the data
the AG forwards the request to the OP&ROP service which saves
the order related data and returns the information prevalent to the
new order to the AG. The AG service then sends the incoming order
data back to the Client. All provided interfaces are RESTful.

The sequence diagram shown in Figure 20 describes the workflow
for ordering products in v05 (pub-sub-1-to-1-db), v06 (pub-sub-one-
db), v07 (message-bus-1-to-1-db) and v10 (orchestrate-pub-sub-1-
to-1-db). These four versions are a progression of the versions shown
in Figure 19 by adding the Broker which has to role to decouple
the AG service from the OP&ROP service. The previous versions
had a blocking workflow being synchronous in nature while the cur-
rent one is rather asynchronous. The product order starts with
the Client sending a POST request to the AG which immediately
tries to push the incoming data onto the Broker’s queue with the
address order_receive_products having orderProduct as the event

33



Client BrokerAG

save order

OP&ROP

address: order_receive_products 
event: orderProduct

POST create order

202 Accepted
push message

address: api_gateway 
messageType: reponse

push message

generate response

POST response

Figure 20: UC 3 sequence diagram for version v05, v06, v07, v10

name. Right after the messages have successfully been sent to the
Broker the AG sends a request accepted message to the Client. The
Broker pushes the message it received from the AG to the OP&ROP
service. The OP&ROP service creates the new order saves it to the
database and sends it onto the Broker’s queue that is addressed to
the AG. The Broker then forwards the order data to the AG which
in turn delivers it to the Client by sending a POST request to the
callback address provided by the Client in the initial request.

The sequence diagram shown in Figure 21 describes the work-
flow for receiving the ordered products in v01 (master-1-to-1-db).
The process starts with the Client sending a PUT request to the
OP&ROP service containing the delivery date of the order. After
receiving the request the OP&ROP service sends a GET request to
the SR service to inquire about the current stock of the previously
ordered product. The SR service returns the current stock amount
to the OP&ROP service. After receiving the current stock status
the OP&ROP service calculates the new amount and sends a PUT
request to the SR service to update the amount of the product.
After receiving the solicitation the SR service updates the inventory
and returns the updated stock item to the OP&ROP service which

34



Client OP&ROP

PUT received order

return

SR

GET stock item

return stock item

PUT stock item amount

return

update amount

Figure 21: UC 4 sequence diagram for version v01

in turn returns the stock item to the Client and updates the order
delivery time. All the interfaces provided by the involved services
are RESTful.

The sequence diagram shown in Figure 22 describes the workflow
for receiving the ordered products in v02 (master-one-db). This is
the simplest version of this use case because the OP&ROP and the
SR service share the same database thus the OP&ROP can directly
access the stock item table. The process starts with the Client
sending a PUT request to the OP&ROP service with the delivery
date. Upon receiving the request the OP&ROP service calculates
the new stock and updates the product amount and the product
order delivery time. Lastly, the OP&ROP service returns the new
stock item to the Client. All the interfaces are RESTful.

The sequence diagram shown in Figure 23 describes the workflow
for receiving the ordered products in v03 (api-gateway-1-to-1-db).
This is an extension of version v01 which is realized by introducing
the AG (Api-Gateway) between the Client and all the other ser-

35



Client OP&ROP

PUT received order

return

update amount

Figure 22: UC 4 sequence diagram for version v02

Client OP&ROP

PUT received order

return

SR

GET stock item

return stock item

PUT stock item amount

return

AG

PUT received order

return

update amount

Figure 23: UC 4 sequence diagram for version v03

36



Client OP&ROP

PUT received order

return

update amount

AG

PUT received order

return

Figure 24: UC 4 sequence diagram for version v04

vices. The process starts with the Client sending a PUT request to
the AG with the delivery date of the product order. The AG then
forwards the request from the Client to the OP&ROP service. The
OP&ROP determines the incoming item and requests from the SR
service via a GET request the amount available in the inventory.
After receiving the request the SR service queries the database for
the item and returns the data to the OP&ROP service. Upon re-
ceiving the information the OP&ROP service recalculates the stock
item amount and sends a PUT request to the SR service to update
the stock item amount. The SR service then performs the update
and returns the stock item to the OP&ROP service which in turn
updates the order delivery time and forwards the item to the AG.
Lastly, the AG return the response to the Client. All the interfaces
are RESTful.

The sequence diagram shown in Figure 24 describes the workflow
for receiving the ordered products in v04 (api-gateway-one-db). This
version is an evolution of version v02 which was achieved by adding
the AG service between the Client and the OP&ROP service. The
Client starts the workflow by sending a PUT request with the de-

37



Client BrokerAG

generate response

OP&ROP

address: order_receive_products 
event: receiveOrder

PUT received order

202 Accepted
push message

address: api_gateway 
messageType: reponse

push message

generate response

POST response

SR

GET stock item

return stock item

PUT stock item amount

return

update amount

Figure 25: UC 4 sequence diagram for version v05

livery date to the AG service. The AG service then forwards the
request to the OP&ROP service via a PUT request. Upon receiv-
ing the request the OP&ROP updates the inventory of the newly
received item and the order delivery time and returns the item to
the AG. Lastly, the AG forwards the stock item to the Client. All
the interfaces are RESTful.

The sequence diagram shown in Figure 25 describes the work-
flow for receiving the ordered products in v05 (pub-sub-1-to-1-db).
This is the first version of UC 4 where the information exchange
between the service is not solely via REST and synchronous but
also contains asynchronous communication which is facilitated by
the Broker. The process starts with the Client sending a PUT re-
quest to the AG with the delivery date. Upon receiving the request
the AG publishes the data to the Broker’s queue with the address
order_receive_products and the event name receiveOrder. After
successfully pushing the message onto the queue the AG sends a re-
quest accepted message to the Client. In the meantime, the Broker

38



Client BrokerAG OP&ROP

address: order_receive_products 
event: receiveOrder

PUT received order

202 Accepted
push message

address: api_gateway 
messageType: reponse

push message

generate response

POST response

update amount

Figure 26: UC 4 sequence diagram for version v06

delivers the message to the OP&ROP service. Upon receiving the
message the OP&ROP service determines the item that has been
delivered and requests the current inventory item from the SR ser-
vice via a GET request. The SR service then returns the stock item
to the OP&ROP which calculates the new stock value and sends a
update request to the SR service via PUT to update the inventory.
Upon receiving the request the SR service updates the inventory
and returns the item to the OP&ROP service. After receiving the
response from the SR the OP&ROP service updates the delivery
date and pushes the item to the Broker’s queue with the address
api_gateway. The Broker then delivers the response to the AG
which in turn delivers the item to the Client via a POST request
to the callback address that was provided together with the initial
request.

The sequence diagram shown in Figure 26 describes the work-
flow for receiving the ordered products in v06 (pub-sub-one-db).
The process starts with the Client sending a PUT request with the
delivery date to the AG service. The AG then tries to deliver the
incoming message to the Broker by pushing it onto the queue to
which the OP&ROP service is subscribed. Upon successful delivery,

39



Client BrokerAG

generate response

OP&ROP

address: order_receive_products 
event: receiveOrder

PUT received order

202 Accepted
push message

address: api_gateway 
messageType: reponse

push message

generate response

POST response

SRBroker

command:get Stock Item
push message

reponse: stockItem

push message

compute new stock

command: 
update Stock Item

push message

reponse: updated 
stockItem

push message

update amount

Figure 27: UC 4 sequence diagram for version v07

the AG provides a request accepted response to the Client. Mean-
while, the Broker sends the message from the AG to the OP&ROP
service. After receiving the message the OP&ROP service updates
the inventory as well as the order delivery date and returns the item
to the Broker’s queue to which the AG is subscribed. After receiv-
ing the data the Broker delivers the message to the AG. The AG
then forwards the updated item to the Client by performing a POST
request to the callback address previously provided by the Client.

The sequence diagram shown in Figure 27 describes the work-
flow for receiving the ordered products in v07 (message-bus-1-to-1-
db). This version is a variation of the version provided in Figure
25 which has been adjusted by making the communication between
the OP&ROP and the SR service asynchronous by introducing a
Broker. The Broker makes use of a topic instead of a queue thus
making the commutation one-to-many instead of one-to-one. This
means that all services that are subscribed to the topic receive all
messages that are pushed onto the topic. To facilitate differentiation

40



between the information the massages have been divided into com-
mands and responses which have been labeled to facilitate an even
finer-grained distinction. The Client sends the PUT request with
the delivery date to the AG which pushes the data on the Broker’s
queue to which the OP&ROP service is subscribed. As soon as
the AG manages to successfully publish the data it returns a re-
quest accepted message to the Client. Next, the Broker pushes the
message to the OP&ROP service. Upon receiving the message the
OP&ROP identifies the incoming item and pushes the command get
Stock Item onto the topic managed by the Broker. The Broker then
pushes the message to all the subscribed services. Upon receiving
the message the SR service realizes that the message is meet for it
and acts upon the request. It responds with the stock item, it labels
the response with stockItem and pushes it onto the common topic.
The Broker then pushes the response to the OP&ROP service which
calculates the new stock and transmits a new command (i.e. update
Stock Item) onto the topic which contains the item to be updated.
The Broker then again disseminates the command to all the ser-
vices. The command is picked up by the SR service which updates
the inventory. After finishing the update the SR service pushes onto
the topic a response labeled updated StockItem that contains the up-
dated item. The Broker then pushes the response to all the services.
Upon receiving the message the OP&ROP service updates the de-
livery date and pushes the stock item onto the queue to which the
AG is subscribed. The Broker then delivers the message to the AG
which in turn returns the item to the Client by executing a POST
request to the Client’s callback address. The entire workflow can be
considered asynchronous.

The sequence diagram shown in Figure 28 describes the workflow
for receiving the ordered products in v09 (orchestrate-api-gateway-
1-to-1-db). In this version, the AG has the role of an orchestrator
meaning that all the communication has to go through the AG.
The Client starts the process by sending a PUT request to the AG
containing the delivery date. Upon receiving the request the AG
forwards the PUT request to the OP&ROP service. After receiving

41



Client OP&ROP

PUT received order

return

SR

return stock item

PUT stock item amount

return

AG

PUT received order

return order details

update product order

GET stock item

update amount

Figure 28: UC 4 sequence diagram for version v09

the request the OP&ROP service updates the delivery date and
returns the order details to the AG. The AG then requests the stock
item from the SR service via a GET request. The SR service then
returns the stock item to the AG which calculates the new item
amount and requests the SR service to update the inventory by
sending a PUT request with the new stock item. After receiving the
request the SR service updates the stock item and responds to the
AG with the newly updated stock item. Lastly, the AG returns the
stock item to the Client. The entire workflow is synchronous and
makes use of RESTful interfaces.

The sequence diagram shown in Figure 29 describes the work-
flow for receiving the ordered products in v10 (orchestrate-pub-sub-
1-to-1-db). This version is similar to the one in version v09, the
main difference being that the communication between the AG and
the other two microservices is not synchronous but asynchronous.
The workflow starts with the Client sending a PUT request to the
AG service with the delivery date. Upon receiving the informa-
tion the AG pushes a message onto the Broker’s queue with the
address order_receive_products and the event name updateProduct-

42



Client BrokerAG OP&ROP

address: order_receive_products
event: updateProductOrderDeliveryDate

PUT received order

202 Accepted push message

push message

POST response

SR

address: api_gateway
OrderDetails

address: show_stock_reports
event: request_item_stock

push message

address: api_gateway
StockItem

push message

address: show_stock_reports
event: updated_stock

push message

address: api_gateway
StockItem

push message

update amount

Figure 29: UC 4 sequence diagram for version v10

OrderDeliveryDate. After successfully delivering the message to the
Broker the AG sends a request accepted response to the Client. The
Broker delivers the message to the OP&ROP service that updates
the delivery date and pushes the order details onto the queue to
which the AG is subscribed. The Broker then delivers the queued
message to the AG. Based on the received order details the AG
requests the stock item from the SR by sending a message to the
queue with the address show_stock_reports and the event name re-
quest_item_stock. The Broker then pushes the message to the SR
service which in turn responds to the AG by adding the stock item
details to the api_gateway queue. Once the AG receives the stock
item information from the Broker it updates the stock item and
sends again via the Broker a message to the SR service this time
with the event description updated_stock. After receiving the stock
item information from the Broker the SR service updates the invent-
ory and returns the newly updated item to the AG via the Broker.
Finally, after the AG receives the stock item from the Broker it de-
livers it to the Client by performing a POST request to the callback
address belonging to the Client.

43



5.3.3 Show Delivery Reports (DR)

The DR microservice realizes UC 6. Its database holds four different
tables which contain information about the enterprise, the suppliers,
and the products they supply to which enterprise. Hence the data-
base contains the following tables from the CoCoME data model
(see Figure 2): TradingEnterprise, ProductSupplier, and Product.
To be able to properly link the suppliers to the trading enterprise a
fourth table has been created that contains the ids from the Tradin-
gEnterprise and the ProductSupplier table.

To be able to generate the delivery reports the service needs the
data which is being maintained by the OP&ROP service namely the
time needed for delivery. Thus depending on the implementation
version, the SR service retrieves the data in different ways, which
will be discussed next.

The sequence diagram shown in Figure 30 describes the workflow
for acquiring the delivery report in v01 (master-1-to-1-db). In this
version, the DR, as well as the OP&ROP service, provide a RESTful
interface for the other services that wish to access their data and/or
functionality. Thus the Client requests the delivery report for a
given enterprise by sending a GET request to the DR service which
in turn solicits the delivery times for all the products that are being
delivered within a specific enterprise. Upon receiving the response
from the OP&ROP service the DR service generates the delivery
report and sends it back to the Client.

The sequence diagram shown in Figure 31 describes the workflow
for acquiring the delivery report in v02 (master-one-db). Similar
to the v01 in this version the DR service implements a RESTful
interface. Because the DR and OP&ROP share the same database
the DR service does not need to request the data from the OP&ROP
service but it can retrieve the needed information directly from the
database. Then upon receiving the request from the Client the DR
service queries the needed data from the database, generates the
report, and sends it back to the Client.

The sequence diagram shown in Figure 32 describes the workflow
for acquiring the delivery report in v03 (api-gateway-1-to-1-db). The

44



operations are almost identical to the ones from version v01. The
single difference being that between the Client and the DR service
the AG (Api-Gateway) has been interposed. In this case, the AG
acts as a proxy that accepts requests from the Clients and forwards
them to the corresponding services, and upon receiving a response
from the services the AG returns the response to the appropriate
Client. The AG implements a RESTful interface.

The sequence diagram shown in Figure 33 describes the workflow
for acquiring the delivery report in v04 (api-gateway-one-db). This
version represents a variation of v02 where the AG (Api-Gateway)
has been introduced between the Client and the DR service. Thus
after receiving the request from the Client the AG delivers the re-
quest to the DR service. Based on the data in the request, the DR
service queries the database, produces the report and sends the an-
swer back to the AG that transfers the incoming data to the Client.

The sequence diagram shown in Figure 34 describes the workflow
for acquiring the delivery report in v05 (pub-sub-1-to-1-db). Until
now within all versions the services communicated with each other
in a synchronous way. This is the first version where part of the
information exchange within the workflow is done asynchronously.
When the Client sends the GET requests for the delivery reports it
also provides a callback address to the AG. This callback address
is nothing more than a REST endpoint provided by the Client to
which the AG can POST the delivery report once the AG gets it
from the DR service. Thus as soon as the AG receives the request
from the Client it forwards the request to the next hop within the
workflow and lets the Client know that its request has been accepted
and is being processed. The AG sends the incoming request to the
Broker which manages a queue that can be addressed by sending
a message to the show_delivery_reports address. Furthermore, the
message contains an event description namely returnDeliveryReports
which enables the receiver to differentiate between the tasks it has to
perform. After the Broker queues the massage from the AG it tries
to deliver the message to the DR service. As soon as the message
has been successfully delivered it gets removed from the queue and

45



Loop [for all productIds]

Client

generate report

DR

GET delivery reports

return DeliverReport

OP&ROP

GET delivery time

return delivery time

Figure 30: UC 6 sequence diagram for version v01

the DR starts requesting the data needed for the report from the
OP&ROP via multiple GET requests. After the DR service has
generated the report it is forwarded to the Brokers queue with the
address api_gateway. After queuing the message the Broker tries
to deliver the message to the AG. Upon receiving the message the
AG sends the report to the Client by POSTing the payload to the
callback address.

The sequence diagram shown in Figure 35 describes the workflow
for acquiring the delivery report in v06 (pub-sub-one-db). This is a
variation of version v05 where the services share the same database
thus the DR service can directly retrieve the needed data from the
database and does not need to request it from the OP&ROP service.
Thus the use case is executed as follows: The Client requests the
report from the AG via a GET request. The AG tries to publish

46



Client DR

GET delivery reports

return DeliverReport

generate report

Figure 31: UC 6 sequence diagram for version v02

Loop [for all productIds]

Client

generate report

DR

GET delivery reports

return DeliverReport

OP&ROP

GET delivery time

return delivery time

AG

GET delivery reports

return DeliverReport

Figure 32: UC 6 sequence diagram for version v03

47



Client DR

GET delivery reports

return DeliverReport

generate report

AG

GET delivery reports

return DeliverReport

Figure 33: UC 6 sequence diagram for version v04

Loop [for all productIds]

Client BrokerAG

generate report

DR

address: show_delivery_reports  
event: returnDeliveryReports

GET delivery reports

202 Accepted
push message

address: api_gateway 
messageType: reponse

push message

generate response

POST response

OP&ROP

GET delivery time

return delivery time

Figure 34: UC 6 sequence diagram for version v05

48



Client BrokerAG

generate report

DR

address: show_delivery_reports  
event: returnDeliveryReports

GET delivery reports

202 Accepted
push message

address: api_gateway 
messageType: reponse

push message

generate response

POST response

Figure 35: UC 6 sequence diagram for version v06

the request onto the queue and if successful send a request accepted
message back to the Client. Once the Broker receives a new message
it tries to deliver it to the DR service. After receiving the request
the DR service gets the needed data from the database, generates
the report, and lastly pushes the report onto the queue managed by
the Broker. The Broker forwards the message to the AG which in
turn transmits the report to the Client via a POST request to the
previously provided callback address.

The sequence diagram shown in Figure 36 describes the work-
flow for acquiring the delivery report in v07 (message-bus-1-to-1-db).
This is a version of UC 6 where all the communication between the
involved services is done asynchronously. The execution starts with
the Client sending a GET request to the AG which immediately
after pushing the message successfully onto the Broker’s queue re-
plays to the Client with an acceptance message. The Broker pushes
the message further onto the DR service. The DR service sends a
command (i.e. getDuration for ProductSupplierAndProducts) onto
the topic managed by the Broker. A topic in this case behaves like
a message bus, meaning that all the services that are subscribed to
the topic receive every message published onto the respective topic.

49



Client BrokerAG

generate report

DR

address: show_delivery_reports  
event: returnDeliveryReports

GET delivery reports

202 Accepted
push message

address: api_gateway 
messageType: reponse

push message

generate response

POST response

OP&ROPBroker

command:getDuration for  
ProductSupplierAndProducts

push message

reponse:Duration for  
ProductSupplierAndProducts 

 
push message

Figure 36: UC 6 sequence diagram for version v07

This implies that the services themselves have to determine if a
given message is relevant for them and how to act if it is meant for
them. Thus the command description aids the services in taking
the right actions. The message queued in the topic is then pushed
to all our three services. The OP&ROP service recognizes that the
command is meant for it and retrieves the data and pushes it on
the topic as a response and marks it with a label that can be re-
cognized by the DR service. Again the Broker pushes the response
to all the subscribed services. Next, the DR service retrieves the
data from the response message, generates the report, and pushes
the report onto the queue which manages the responses meant for
the AG. The Broker forwards the incoming report to the AG which
in turn POSTs the report to the Client’s callback address.

The sequence diagram shown in Figure 37 describes the workflow
for acquiring the delivery report in v09 (orchestrate-api-gateway-1-
to-1-db). In this version the AG does not act just like a proxy but
also functions as an orchestrator, meaning that all the communica-
tion between the services is done via the AG. Furthermore, all the
communication between the involved parties is synchronous and is
realized via RESTful interfaces. The Client sends a GET request

50



Client

generate report

DR

GET delivery reports

return DeliverReport

OP&ROPAG

GET supplier & products

return DeliverReport

return supplier & products 

POST getDeliveryTime supplier & products

return getDeliveryTime supplier & products

POST generate DeliveryReport

Figure 37: UC 6 sequence diagram for version v09

to the AG soliciting the delivery reports. The AG sends a GET
request to the DR service requesting the appropriate suppliers and
the products they deliver. The DR responds to the AG demand
with the corresponding suppliers and their products. Next the AG
sends a POST request to the OP&ROP service with the previously
acquired suppliers and products with the intention of receiving the
delivery times for the corresponding orders. Upon receiving the re-
quest from the AG the OP&ROP services queries the database and
returns the answer to the AG. Having the suppliers, the products
and the delivery times the AG sends all the data to the DR service
via a POST request and asks for the generation of the delivery re-
port. The DR service generates the delivery report based on the
received data and sends it back to the AG. The AG responds to the
initial GET request with the generated delivery report.

The sequence diagram shown in Figure 38 describes the work-
flow for acquiring the delivery report in v10 (orchestrate-pub-sub-
1-to-1-db). This version is similar to version V09 in that the AG
again functions as an orchestrator but this time the entire service

51



Client BrokerAG DR

address: show_delivery_reports 
event: generateProductSupplierAndProducts

GET delivery reports

202 Accepted push message

POST response

OP&ROP

address: api_gateway
ProductSupplierAndProducts

address: order_receive_products 
event: getDeliveryDuration

push message

address: api_gateway
DeliveriDuration

push message

push message

address: show_delivery_reports 
event: generateDeliveryReport

push message

address: api_gateway
DeliverReport

push message

Figure 38: UC 6 sequence diagram for version v10

exchange is asynchronous and makes use of a Broker and queues.
The workflow starts with the Client sending a GET request to the
AG asking for the delivery reports. Upon receiving the request
the AG sends a message to the Broker corresponding to the queue
with the address show_delivery_reports and the event name gener-
ateProductSupplierAndProducts which is meant for the DR service.
After successfully sending the message to the Broker the AG sends a
request accepted message to the Client. Upon receiving the message
the Broker forwards it to the DR service. After receiving the mes-
sage the DR service acquires the corresponding suppliers and their
products and pushes the payload onto the Broker’s queue on which
the AG is listening. After receiving the payload the Broker delivers
it to the AG. The AG sends a message to the OP&ROP via the
Broker’s queue having the address order_receive_products and the
event named getDeliveryDuration. The Broker then forwards the
message to the OP&ROP service. Based on the information within
the received message the OP&ROP gets the delivery duration and
pushes it onto the queue with the AG’s address. The Broker then
forwards the message to the AG which again sends a message to the

52



DR requesting the report generation via the Broker. The Broker
sends the message to the DR service which generates a delivery re-
port and pushes it back on the Broker which itself forwards it to
the AG. Lastly, the AG sends the report to the Client by sending a
POST request to the callback address of the Client.

5.4 Deployment

The microservices are being deployed with the help of Jenkins more
exactly every implementation has its own pipeline which has to be
triggered manually. Every pipeline consists of multiple stages:

• Build - where all the jars are built with maven

• Build Image - for every service a docker image is built

• Push Image - every image is pushed to the Docker hub

• Download and run Images - every docker image is downloaded
on a different VM and ran

While all the microservices run within docker the database (Post-
greSQL6), the broker (Apache ActiveMQ Artemis7) and Jenkins do
not make use of docker but run directly within the VM. To bet-
ter emphasize the differences between the chosen architectures the
following deployment has been deemed as fair:

• Every microservices runs on his own VM alongside his dedic-
ated database

• In the scenarios with the shared database pattern the OP&ROP
VM has been chosen as host because this service makes use of
the DB the most

• The broker runs on the same VM as the Api-Gateway

• Apache JMeter8 and the Client (WebHook) run on their ded-
icated VM

6https://www.postgresql.org/
7https://activemq.apache.org/components/artemis/
8https://jmeter.apache.org/

53

https://www.postgresql.org/
https://activemq.apache.org/components/artemis/
https://jmeter.apache.org/


The Figures from 39 to 47 offer a detailed view of deployment per
scenario.

:Client Server

«application»
Apache JMeter

«microservice»
Client WebHook

:SR Server

«microservice»
SR

«database»
srDB

:OP&ROP Server

«microservice»
OP&ROP

«database»
opRopDB

:DR Server

«microservice»
DR

«database»
drDB

AG -  api-gateway

Legend
SR -  showStockReports 

OP&ROP -  orderProductsAndReceiveOrderedProducts

DR -  showDeliveryReports

Figure 39: Master with one DB per service

:Client Server

«application»
Apache JMeter

«microservice»
Client WebHook

:SR Server

«microservice»
SR

«database»
srDB

:OP&ROP Server

«microservice»
OP&ROP

«database»
theOneDB

:DR Server

«microservice»
DR

«database»
drDB

AG -  api-gateway

Legend
SR -  showStockReports 

OP&ROP -  orderProductsAndReceiveOrderedProducts

DR -  showDeliveryReports

Figure 40: Master with one common DB

54



:Client Server

«application»
Apache JMeter

«microservice»
Client WebHook

:API-Gateway Server

«microservice»
AG

«broker»
ArtemisMQ

:SR Server

«microservice»
SR

«database»
srDB

:OP&ROP Server

«microservice»
OP&ROP

«database»
opRopDB

:DR Server

«microservice»
DR

«database»
drDB

«database»
agDB

AG -  api-gateway

Legend
SR -  showStockReports 

OP&ROP -  orderProductsAndReceiveOrderedProducts

DR -  showDeliveryReports

Figure 41: Api-Gateway with one DB per service

:Client Server

«application»
Apache JMeter

«microservice»
Client WebHook

:API-Gateway Server

«microservice»
AG

«broker»
ArtemisMQ

:SR Server

«microservice»
SR

«database»
srDB

:OP&ROP Server

«microservice»
OP&ROP

«database»
theOneDB

:DR Server

«microservice»
DR

«database»
drDB

«database»
agDB

AG -  api-gateway

Legend
SR -  showStockReports 

OP&ROP -  orderProductsAndReceiveOrderedProducts

DR -  showDeliveryReports

Figure 42: Api-Gateway with one common DB

55



:Client Server

«application»
Apache JMeter

«microservice»
Client WebHook

:API-Gateway Server

«microservice»
AG

«broker»
ArtemisMQ

:SR Server

«microservice»
SR

«database»
srDB

:OP&ROP Server

«microservice»
OP&ROP

«database»
opRopDB

:DR Server

«microservice»
DR

«database»
drDB

«database»
agDB

AG -  api-gateway

Legend
SR -  showStockReports 

OP&ROP -  orderProductsAndReceiveOrderedProducts

DR -  showDeliveryReports

Figure 43: Pub-Sub with one DB per service

:Client Server

«application»
Apache JMeter

«microservice»
Client WebHook

:API-Gateway Server

«microservice»
AG

«broker»
ArtemisMQ

:SR Server

«microservice»
SR

«database»
srDB

:OP&ROP Server

«microservice»
OP&ROP

«database»
theOneDB

:DR Server

«microservice»
DR

«database»
drDB

«database»
agDB

AG -  api-gateway

Legend
SR -  showStockReports 

OP&ROP -  orderProductsAndReceiveOrderedProducts

DR -  showDeliveryReports

Figure 44: Pub-Sub with one common DB

56



:Client Server

«application»
Apache JMeter

«microservice»
Client WebHook

:API-Gateway Server

«microservice»
AG

«broker»
ArtemisMQ

:SR Server

«microservice»
SR

«database»
srDB

:OP&ROP Server

«microservice»
OP&ROP

«database»
opRopDB

:DR Server

«microservice»
DR

«database»
drDB

«database»
agDB

AG -  api-gateway

Legend
SR -  showStockReports 

OP&ROP -  orderProductsAndReceiveOrderedProducts

DR -  showDeliveryReports

Figure 45: Message bus with one DB per service

:Client Server

«application»
Apache JMeter

«microservice»
Client WebHook

:API-Gateway Server

«microservice»
AG

«broker»
ArtemisMQ

:SR Server

«microservice»
SR

«database»
srDB

:OP&ROP Server

«microservice»
OP&ROP

«database»
opRopDB

:DR Server

«microservice»
DR

«database»
drDB

«database»
agDB

AG -  api-gateway

Legend
SR -  showStockReports 

OP&ROP -  orderProductsAndReceiveOrderedProducts

DR -  showDeliveryReports

Figure 46: Api-Gateway orchestration with one DB per service

57



:Client Server

«application»
Apache JMeter

«microservice»
Client WebHook

:API-Gateway Server

«microservice»
AG

«broker»
ArtemisMQ

:SR Server

«microservice»
SR

«database»
srDB

:OP&ROP Server

«microservice»
OP&ROP

«database»
opRopDB

:DR Server

«microservice»
DR

«database»
drDB

«database»
agDB

AG -  api-gateway

Legend
SR -  showStockReports 

OP&ROP -  orderProductsAndReceiveOrderedProducts

DR -  showDeliveryReports

Figure 47: Pub-Sub orchestration with one DB per service

6 Measurement Generation

As already mentioned in Section 5.4, JMeter is one of the tools that
has been deployed. Its role is to assess the performance of each of
the nine presented implementations. For every version, a test plan
has been generated that facilitates the measurement of their per-
formance. Every plan consists of thread groups that correspond to
the existing five use cases. Within every thread group, three para-
meters can be adjusted to simulate different load scenarios. These
are:

• Number of threads (NoT) - represents the number of users who
will access the UC functionality

• Ramp-up period (RuP) - the time (seconds) until all users
(threads) have been started. A NoT of 10 and a RuP of 10
would mean that every second a new user is being generated

• Loop Count - determines how often a user will trigger a UC

58



Figure 48 exhibits the structure of one of the used test plans. On
the test plan level, it can be decided if the threads should all start
running at the same time or in a sequential manner.

Figure 48: JMeter test plan

A thorough search did not yield any best practices regarding the
setup of a measurement for the evaluation of a service. In all found
documented cases the number of users and the number of requests
are known. Hence based on this predefined data it is possible to
determine if a given service can provide the desired runtime or not.
Furthermore, in most cases, the tested system is a production-ready
system and not a proof of concept.

The intention was to test the services themselves and not the
hardware they are running on. For this reason, htop 9 was used to
determine the load that every service undergoes when the measure-
ments are executed. Figure 49 shows the setup used when running
the measurements with the help of JMeter against the existing ser-
vices.

The window in the foreground represents the VM on which JMeter
is running. The windows in the background represent the VM on

9https://htop.dev/

59

https://htop.dev/


Figure 49: JMeter measurement execution

which the four existing microservices are running. Starting from the
left upper corner and going clockwise these are AG, SR, OP&ROP,
and DR.

Multiple iterations have been tested until a relatively similar dis-
tribution, along with all implementations, could be observed. The
final chosen measurement setup consisted of one user (thread) ex-
ecuting 300 requests which are 300 milliseconds apart from each
other. This setup was applied for each use case (thread group). All
the thread groups started executing their requests at the same time.
Thus per every individual run, 1500 data points are being generated.
For every implementation, the individual run has been executed 14
times yielding a number of 21.000 data points per implementation.
The resulting graphical representations of the measurements can be
seen in Section 7 while the JMeter source code and the resulting
data can be found within this project [23] hosted publicly.

7 Data Evaluation

This Section aims to determine if and what insights can be gained
from the previously gathered data. The main goal is to work out a

60



model which enables a software architect to determine how a spe-
cific combination of microservice patterns impact the runtime of the
entire system. But at the same time, the already gathered data can
also be analyzed thus allowing the evaluation of the system from a
different perspective. As already mentioned in Section 6 the avail-
able data is reduced to the existing patterns (categorical data) and
the runtime (continuous data) in milliseconds.

Version Nr Name
v01 master-1-to-1-db
v02 master-one-db
v03 api-gateway-1-to-1-db
v04 api-gateway-one-db
v05 pub-sub-1-to-1-db
v06 pub-sub-one-db
v07 message-bus-1-to-1-db
v09 orchestrate-api-gateway-1-to-1-db
v10 orchestrate-pub-sub-1-to-1-db

Table 1: Implementations versions

Version Nr Min Q1 Median Q3 Max
v01 2 4 6 14 27
v02 2 5 6 8 12
v03 4 8 11 19 34
v04 4 8 10 12 18
v05 12 21 26 35 56
v06 15 22 26 32 47
v07 13 23 29 40 65
v09 4 8 11 17 30
v10 14 23 35 51 93

Table 2: Boxplot Values

Before building the statistical model we take a look at how every
implementation performs based on the previously executed measure-

61



Figure 50: Box Plot

ments. Table 1 contains the version number for every implementa-
tion and their respective names. Table 2 contains the specific values
contained within the boxplot defined in Figure 50. As expected ver-
sions v01 and v02 manage to provide the fastest response to the
client. The numbers are comparable until the third quartile (Q3)
after that the shared database pattern starts to outperform the syn-
chronous RESTful communication between the services. Versions
v03 and v04 expanded the previous two versions by introducing the
API-Gateway pattern. The runtime until Q3 is almost doubled in
comparison to v01 and v02 while starting with Q3 the discrepancy
becomes smaller and tappers of towards the upper limits. Version
v05 and v06 are a variation of v03 and v04 where the communication
between the API-Gateway and the other services is being done asyn-
chronously via the publish-subscribe pattern instead of synchronous
via REST. The minimum value of v05 is slightly lower (circa 20%)
than the value of v06 while the values from Q1 to Q3 are almost

62



identical. At the maximum value, the situation gets reversed and
v06 outperforms v05 by about 16%. The communication within
v07 is fully asynchronous. The values are very similar to the ones
from v06. Starting with the median the values in v07 start increas-
ing slowly until they reach an increase of approximately 28% at
the maximum in comparison to v06. Version v09 produces similar
results as v03 and v04. Starting from the minimum value until in-
cluding the median the vales are identical to v03 and starting with
Q3 v09 slightly outperforms v03. At Q3 v09 has an approximately
30% increase of runtime in comparison to v04 reaching circa 40%
towards the maximum value. Version v10 which is a variation of
versions v05 and v06 produces similar results to the two. The min-
imum and Q1 are comparable to v06 but starting with the median
an approximately 25% increase can be observed in v09 that contin-
ues increasing until at the maximum the discrepancy reaches circa
50%. It can also be observed that versions v06, v07, and v10 dis-
play a higher number of outliers while v02, v04, v05, and v09 show
a lower number of outliers, and lastly v01 and v03 pose no outliers
at all thus indicating the most consistent behavior.

The following distribution plots ranging from Figure 51 to 59
provide an insight into the effectuated measurements for the distinct
implementations.

The distribution showed in Figure 51 represent the total time in
milliseconds (ms) needed for all requests to finish, that have been
send against the v01 implementation. The plot is right-skewed and
appears to have one peek (unimodal) which spreads from roughly 3
ms to about 6 ms. There are multiple gaps between the bins which
show us that some of the numbers with regards to runtime have
never been hit.

The distribution showed in Figure 52 represent the total time in
milliseconds needed for all requests to finish, that have been sent
against the v02 implementation. The distribution is right-skewed
and has a peak (unimodal) at about 5 ms. After the peak, the
number of requests whit a longer runtime tends to steadily decline.
The bins themselves are very narrow indicating that not the entire

63



values between the min and the maximum value have been hit.
The distribution showed in Figure 53 represent the total time in

milliseconds needed for all requests to finish, that have been sent
against the v03 implementation. This distribution is also right-
skewed having a peak (unimodal) at about 8 ms. Again multiple
gaps between the gaps can be observed. The plot is very similar to
the one of version v01. The main difference is that all the values
have been shifted to the left thus as expected the introduction of
the Api-Gateway increases the overall runtimes.

The distribution showed in Figure 54 represent the total time in
milliseconds needed for all requests to finish that have been sent
against the v04 implementation. This distribution is right-skewed
having a peak (unimodal) at about 7.5 ms. After the peak, the
number of requests with a longer runtime is steadily going down.
The bins have a comb-like appearance. A similarity to version v02
can be observed.

The distribution showed in Figure 55 represent the total time in
milliseconds needed for all requests to finish that have been sent
against the v05 implementation. This distribution is right-skewed
having what it seems like two peaks (bimodal) one at around 20
ms and another one at around 27 ms. After the second peak, the
number of requests with higher runtimes starts to tapper of not
before having something of a plateau between 32 and 38.

The distribution showed in Figure 56 represent the total time in
milliseconds needed for all requests to finish that have been sent
against the v06 implementation. This distribution is right-skewed
having a peak (unimodal) that resembles a plateau that spans from
about the 22 until the 27 mark. After the end of the peak, the
height of the bins starts to monotonously get smaller. Multiple
gaps between the bins can be observed.

The distribution showed in Figure 57 represent the total time in
milliseconds needed for all requests to finish that have been sent
against the v07 implementation. This distribution is right-skewed
having multiple peaks (multimodal). The first peak is at about 18
ms followed by the highest peak at about 24 ms, the second highest

64



is at around 28 ms. The next three peaks are very similar in size
and can be observed at roughly 35 ms, 39 ms, and 44 ms. Beginning
with the peak near 50 ms they start to get smaller in relationship
with the bins surrounding them. While the requests with longer
runtimes get fewer the tapering is not as smooth having multiple
ups and downs until the maximum value is reached.

The distribution showed in Figure 58 represent the total time in
milliseconds needed for all requests to finish that have been sent
against the v09 implementation. This distribution is right-skewed
having what seems like two peaks (bimodal) one at around 7 ms and
another one at around 17 ms. The distribution around the peaks
seems to be fairly symmetric. This plot also contains multiple gaps
between its bins.

The distribution showed in Figure 59 represent the total time in
milliseconds needed for all requests to finish that have been sent
against the v10 implementation. The distribution has two peaks
(bimodal) one at about 20 ms and the second at about 45 ms. The
fall after the first peak is very steep while the one after the second
peak is much smoother.

65



Figure 51: Master 1-to-1 db (v01)

Figure 52: Master one db (v02)

66



Figure 53: ApiGateway 1-to-1 db (v03)

Figure 54: ApiGateway one db (v04)

67



Figure 55: PubSub 1-to-1 db (v05)

Figure 56: PubSub one db (v06)

68



Figure 57: MessageBus 1-to-1 db (v07)

Figure 58: Orchestrate ApiGateway 1-to-1 db (v09)

69



Figure 59: Orchestrate PubSub 1-to-1 db (v10)

Given the obtained data and the desired outcome the most prom-
ising approach that is able to deliver information about the indi-
vidual performance/impact of the microservice patterns seems to
be building a linear model by means of linear regression. In this
case, the dependent variable is the runtime while the patterns de-
scribing every implementation are the independent variables. The
variables have been divided into four major groups as follows:

• Communication between services (CBS) : RESTful, Database,
Messaging

• API-Gateway (APG) : True , False

• Communication between the client and the application (CBCA)
: Syncronus, Asyncronus

• Communication between the API-Gateway and the other ser-
vices (CBAPGS) : RESTful, Messaging

Table 3 contains the encoding of the implementations by means
of one hot encoding which denotes the existence of a feature (vari-

70



able) with the number one and the lack of the feature with the
number zero. Hence the rows of the table capture the existence (i.e.
where the number 1 is present) of a given pattern as well as impli-
citly the absence (i.e where the number 0 is present) of the pattern
overall existing versions. By viewing the columns we can determ-
ine which patterns are included in every individual implementation.
Thus the encoding for v01 (master-1-to-1-db) is 10001000 having
as set variables CBS-REST (i.e. communication between services
via REST) and CBCA-SYNC (i.e the communication between the
client and the application is synchronous). At the same time, we
can see that the CBS-REST pattern has been used in four different
implementations (i.e. v01, v03, v05, v09).

For the calculation of the Ordinary Least Square (OLS) model, a
data frame has been used that contained 187225 rows and 9 columns.
The rows represent the number of data points acquired during the
measurement faze which have been further processed by removing
all the values that are three standard deviations away from the mean
within every version. The same data has been used for the calcu-
lation of the boxplots seen in Figure 50. The columns in the data
frame represent the eight used patterns plus the runtime which cor-
responds to the ELAPSED-TIME row from Table 3. The entire
code is hosted within a public Github project [23].

Variables
Version

v01 v02 v03 v04 v05 v06 v07 v09 v10

CBS-REST 1 0 1 0 1 0 0 1 0
CBS-DB 0 1 0 1 0 1 0 0 0

CBS-MESSAGING 0 0 0 0 0 0 1 0 1
APG 0 0 1 1 1 1 1 1 1

CBCA-SYNC 1 1 1 1 0 0 0 1 0
CBCA-ASYNC 0 0 0 0 1 1 1 0 1
CBAPGS-REST 0 0 1 1 0 0 0 1 0

CBAPGS-MESSAGING 0 0 0 0 1 1 1 0 1
ELAPSED-TIME - - - - - - - - -

Table 3: One hot encoded model description

71



Dep. Variable: elapsed R-squared: 0.585
Model: OLS Adj. R-squared: 0.585
Method: Least Squares F-statistic: 3.764e+04
Date: Mon, 11 Jan 2021 Prob (F-statistic): 0.00
Time: 20:33:05 Log-Likelihood: -6.8676e+05
No. Observations: 187225 AIC: 1.374e+06
Df Residuals: 187217 BIC: 1.374e+06
Df Model: 7

coef std err t P> |t| [0.025 0.975]

const -6.606e+09 2.2e+11 -0.030 0.976 -4.38e+11 4.25e+11
cbs_rest -1.01e+10 2.15e+11 -0.047 0.963 -4.32e+11 4.12e+11
cbs_db -1.01e+10 2.15e+11 -0.047 0.963 -4.32e+11 4.12e+11
cbs_messaging -1.01e+10 2.15e+11 -0.047 0.963 -4.32e+11 4.12e+11
apg 8.335e+11 5.82e+11 1.432 0.152 -3.07e+11 1.97e+12
cbca_sync 1.67e+10 4.57e+10 0.365 0.715 -7.29e+10 1.06e+11
cbca_async -3.912e+11 2.8e+11 -1.397 0.162 -9.4e+11 1.57e+11
cbapgs_rest -8.335e+11 5.82e+11 -1.432 0.152 -1.97e+12 3.07e+11
cbapgs_messaging -4.255e+11 3.05e+11 -1.395 0.163 -1.02e+12 1.72e+11

Omnibus: 72005.671 Durbin-Watson: 1.651
Prob(Omnibus): 0.000 Jarque-Bera (JB): 482917.044
Skew: 1.704 Prob(JB): 0.00
Kurtosis: 10.091 Cond. No. 1.13e+15

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly
specified.
[2] The smallest eigenvalue is 4.19e-25. This might indicate that there are
strong multicollinearity problems or that the design matrix is singular.

Figure 60: OLS Output

Figure 60 contains the summary of the OLS computation. Based
on the value of R-squared it can be concluded that approximately
58.5% of the variance of the data can be explained by the model.
Because the value of Prob (F-statistic) is zero it can be concluded
that the independent variables are able to predict the dependent
variable (i.e. the runtime). The coefficients with the highest signi-
ficance (lowest P>|t| value) are: the apg and the cbapgs_rest fol-
lowed by cbapgs_messaging and cbca_async; next is the cbca_sync

72



and lastly the cbs_* coefficients have the lowest significance.
The communication between services (cbs_* ) has the least over-

all impact on systems architecture. All three options reduce the
runtime by the same amount. Choosing one over another will not
improve or worsen the runtime behavior. Thus focusing on the
communication between services for improving the overall runtime
should be considered only after all options have been exhausted.
As expected the introduction of the Api-Gateway does increase the
overall runtime of the system. Because the apg is a standalone pat-
tern and it does not have a counterpart it is harder to determine
how it would impact the system if it would be left out. But it can be
observed that it is comparable to the cbapgs_rest which would de-
crease the runtime by the same amount as the apg would increase it.
The communication between the client and the application (cbca_* )
from a runtime perspective does favor the asynchronous which out-
performs the synchronous one. Lastly the communication between
the API-Gateway and the backend (cbapgs_* ) provides a higher be-
nefit when using synchronous information exchange in comparison
to asynchronous communication.

The here constructed OLS model has not been build with the
purpose of predicting the system’s runtime but rather to determ-
ine how the individual patterns impact the runtime of the existing
implementations. The model is complementary to the boxplot that
provides a comparison of the versions as a whole while the model
tries to provide a finer-grained view of the patterns and go beyond
just measuring different aggregates of patterns.

8 Conclusion

8.1 Summary

The thesis presents a roadmap that addresses RQ1 and can be
used to make the transition from a monolithic architecture to a
microservice architecture in a streamlined manner. The journey be-
gins with identifying the underlying use cases of the application, how
they interact which each other, and their boundaries. The next step

73



consists of determining how good is the existing code base managing
to mirror the previously identified use cases and their boundaries.
At this point, the objective is to determine what actions can be
taken towards achieving the previously mentioned modular mono-
lith. The steps should be small and incremental thus ever slightly
improving the system without rendering it non-functional.

After managing to achieve a microservice ready module compos-
ition it is time to determine which microservice patterns are better
suited to fulfill the existing and future requirements of the applic-
ation. The next step is to implement parts or the entire system
based on the microservice architecture and the previously selected
patterns. The implementation should not be production-ready but
rather a proof of concept thus reducing the needed resources to ac-
complish these tasks and making it more feasible. The next iteration
consists of putting all the available implementations to the test and
determining how they perform. The metric chosen in the theses was
the time needed for a use case to complete a request received from
a client. By making use of visual representations of the data like
distribution- and boxplot-diagrams it is already possible to determ-
ine which implementations have the biggest potential and which
ones are underperforming. The information provided by the data
is of every implementation as a whole thus it is not really possible
to determine the impact of the individual patterns within the im-
plementation. To overcome this shortcoming the next stage foresees
building a model by means of multilinear regression which should be
able to provide a more fine-grained understanding of the individual
patterns. With such a model it should be possible to determine
how a pattern performs in comparison to another and evaluate its
impact on the system. Thus the architecture can be tailored for the
specific needs of the application. The above-mentioned procedure
offers an answer for RQ2 that goes beyond an academic solution
and offers a more practical resolution based on empirical data. Ad-
ditional benefits of applying this approach are: the team can get
first-hand experience with the microservice architecture and the ad-
ditional tools; the team can evaluate itself and determine if they are

74



up to the task, what are their shortcomings, and the challenges they
will have to face going further.

Integrating the measurements within a deployment pipeline along-
side other test suits (e.g., integration tests) could further strengthen
the confidence of the team within their development cycle.

The runtime measurements and the resulting boxplot and OLS
model are tailored to fit the existing implementations. They are
not meant as a generic solution for every possible microservice im-
plementation in the wild. The objective is to help newcomers to
the microservice architecture to make the transition and provide a
means of quality assurance along the way. In a real-world scenario,
the measurement setup, as well as the OLS model, may wary based
on the architecture, the requirements, and the key performance in-
dicators which are deemed relevant for the development team. Non-
etheless, the provided guide can act as a starting point towards the
evaluation of an existing microservice implementation.

8.2 Threads of Validity

The implementations and the data generated in this thesis are based
on a constructed example of an application that has been deployed in
a test environment. It does not correspond to a real-life application
thus a series of caveats apply. These caveats are:

• There were no explicit requirements for the system as a whole
or for the individual use cases.

• The hardware on which all the services have been deployed con-
sisted of five VMs that were not configured to provide production-
ready support. The used VMs had an identical configuration
running Ubuntu 18.04.5 LTS as the operating system, with two
CPUs at 2.20GHz and 11GB of memory each.

• The Client as well as all the other services ran in the same
network thus although the application itself was distributed it
did not simulate the latency encountered when using the public
internet.

75



Given these caveats, it was decided to use the runtime as a
means of comparing the different implementations and the patterns
of which they are comprised. Usually, a system has a specified load it
has to handle as well as a response time for every incoming request.
Having these parameters it is possible to configure the performance
measurements accordingly and determine if the requirements are
being met. Due to the lack of such clear requirements regarding
load and runtime and the absence of any best practices or stand-
ardized reference values an exploratory approach has been taken.
Thus a range of measurements has been performed whit arbitrary
JMeter configurations testing different loads. Having the possibil-
ity to monitor the VM resource consumption (CPU and RAM us-
age) it became evident that some of the configurations were pushing
the VMs at their limit. This overload was prominent in the VM
hosting the Api-Gateway which became a bottleneck. The worst
runtimes could be observed in the implementation versions with an
Api-Gateway and where a callback address was used. In these ver-
sions, the Api-Gateway had to handle incoming requests from the
Client, send requests to the backend, process the responses from the
backend, and pushing the final response to the Client. As a result,
the distribution plots were not normally distributed but rather ex-
hibited three distinct columns having two at the edges and one in
the middle. Thus if the load became too high we were testing the
limitations of the hardware and not so much of the patterns. To
eliminate the hardware limitations out of the equation the load has
been reduced by continuously adapting measurement configuration
until the VM’s resource consumption stopped reaching 100% load.
As a consequence, the runtime distributions among the different
versions started having a similar shape thus allowing us to better
compare the implementations and their patterns via OLS modeling.

8.3 Future Work

The runtime measurements and the statistical model have been de-
vised based on an exemplary application with limited requirements.
It would be interesting to test the proposed solution on a real-world

76



example. This would certainly offer more insight into how to set up
the runtime measurements as well as identifying additional potential
parameters that could be included in the statistical model thus in-
creasing its significance. Figuring out how to automate the process
as much as possible and integrating it in a deployment pipeline.

77



List of Figures

1 Use Cases CoCoME [16], Fig.4. An overview of all
considered use cases of the Trading System. . . . . . 13

2 Data Model CoCoME [16], Fig.8. The data model of
the TradingSystem. . . . . . . . . . . . . . . . . . . . 14

3 Master with one DB per service . . . . . . . . . . . . 21
4 Master with one common DB . . . . . . . . . . . . . 22
5 Api-Gateway with one DB per service . . . . . . . . . 22
6 Api-Gateway with one common DB . . . . . . . . . . 23
7 Pub-Sub with one DB per service . . . . . . . . . . . 23
8 Pub-Sub with one common DB . . . . . . . . . . . . 24
9 Message bus with one DB per service . . . . . . . . . 24
10 Api-Gateway orchestration with one DB per service 25
11 Pub-Sub orchestration with one DB per service . . . 25
12 UC 5 sequence diagram for version v01 and v02 . . . 26
13 UC 5 sequence diagram for version v03, v04 and v09 27
14 UC 5 sequence diagram for version v05, v06, v07, v10 28
15 UC 7 sequence diagram for version v01 and v02 . . . 29
16 UC 7 sequence diagram for version v03, v04 and v09 30
17 UC 7 sequence diagram for version v05, v06, v07, v10 31
18 UC 3 sequence diagram for version v01 and v02 . . . 32
19 UC 3 sequence diagram for version v03, v04 and v09 33
20 UC 3 sequence diagram for version v05, v06, v07, v10 34
21 UC 4 sequence diagram for version v01 . . . . . . . . 35
22 UC 4 sequence diagram for version v02 . . . . . . . . 36
23 UC 4 sequence diagram for version v03 . . . . . . . . 36
24 UC 4 sequence diagram for version v04 . . . . . . . . 37
25 UC 4 sequence diagram for version v05 . . . . . . . . 38
26 UC 4 sequence diagram for version v06 . . . . . . . . 39
27 UC 4 sequence diagram for version v07 . . . . . . . . 40
28 UC 4 sequence diagram for version v09 . . . . . . . . 42
29 UC 4 sequence diagram for version v10 . . . . . . . . 43
30 UC 6 sequence diagram for version v01 . . . . . . . . 46
31 UC 6 sequence diagram for version v02 . . . . . . . . 47

78



32 UC 6 sequence diagram for version v03 . . . . . . . . 47
33 UC 6 sequence diagram for version v04 . . . . . . . . 48
34 UC 6 sequence diagram for version v05 . . . . . . . . 48
35 UC 6 sequence diagram for version v06 . . . . . . . . 49
36 UC 6 sequence diagram for version v07 . . . . . . . . 50
37 UC 6 sequence diagram for version v09 . . . . . . . . 51
38 UC 6 sequence diagram for version v10 . . . . . . . . 52
39 Master with one DB per service . . . . . . . . . . . . 54
40 Master with one common DB . . . . . . . . . . . . . 54
41 Api-Gateway with one DB per service . . . . . . . . . 55
42 Api-Gateway with one common DB . . . . . . . . . . 55
43 Pub-Sub with one DB per service . . . . . . . . . . . 56
44 Pub-Sub with one common DB . . . . . . . . . . . . 56
45 Message bus with one DB per service . . . . . . . . . 57
46 Api-Gateway orchestration with one DB per service 57
47 Pub-Sub orchestration with one DB per service . . . 58
48 JMeter test plan . . . . . . . . . . . . . . . . . . . . 59
49 JMeter measurement execution . . . . . . . . . . . . 60
50 Box Plot . . . . . . . . . . . . . . . . . . . . . . . . 62
51 Master 1-to-1 db (v01) . . . . . . . . . . . . . . . . . 66
52 Master one db (v02) . . . . . . . . . . . . . . . . . . 66
53 ApiGateway 1-to-1 db (v03) . . . . . . . . . . . . . . 67
54 ApiGateway one db (v04) . . . . . . . . . . . . . . . 67
55 PubSub 1-to-1 db (v05) . . . . . . . . . . . . . . . . 68
56 PubSub one db (v06) . . . . . . . . . . . . . . . . . 68
57 MessageBus 1-to-1 db (v07) . . . . . . . . . . . . . . 69
58 Orchestrate ApiGateway 1-to-1 db (v09) . . . . . . . 69
59 Orchestrate PubSub 1-to-1 db (v10) . . . . . . . . . 70
60 OLS Output . . . . . . . . . . . . . . . . . . . . . . . 72

List of Tables

1 Implementations versions . . . . . . . . . . . . . . . . 61
2 Boxplot Values . . . . . . . . . . . . . . . . . . . . . 61
3 One hot encoded model description . . . . . . . . . . 71

79



References

[1] Alliance, A. Manifesto for agile software develop-
ment. https://www.agilealliance.org/agile101/the-
agile-manifesto/, 2020. [Online; accessed 24-March-2021].

[2] Amazon. What is devops? https://aws.amazon.com/
devops/what-is-devops/, 2021. [Online; accessed 24-March-
2021].

[3] Baresi, L., Garriga, M., and Renzis, A. D. Microservices
identification through interface analysis. In Service-Oriented
and Cloud Computing. Springer International Publishing, 2017,
pp. 19–33.

[4] Beck, K. https://twitter.com/KentBeck/status/
250733358307500032?ref_src=twsrc%5Etfw, September
2012. [Twitter Post].

[5] deRoss, D. Acid versus base data stores. https:
//www.dummies.com/programming/big-data/hadoop/acid-
versus-base-data-stores/, 2021. [Online; accessed 24-
March-2021].

[6] Education, I. C. Soa (service-oriented architecture). https:
//www.ibm.com/cloud/learn/soa, 2019. [Online; accessed 24-
March-2021].

[7] Evans, E. Domain-Driven Design: Tackling Complexity in the
Heart of Software. Addison-Wesley, 2004.

[8] Evers, M., and Westgeest, R. Responsibility driven
design with mock objects. http://www.methodsandtools.
com/archive/archive.php?id=90, 2009. [Online; accessed 24-
March-2021].

[9] Faura, M. V. Orchestration of microservices, services -
humans and robots. https://www.bonitasoft.com/news/
orchestration-microservices-services-humans-robots,
Feb 2020. [Online; accessed 24-March-2021].

80

https://www.agilealliance.org/agile101/the-agile-manifesto/
https://www.agilealliance.org/agile101/the-agile-manifesto/
https://aws.amazon.com/devops/what-is-devops/
https://aws.amazon.com/devops/what-is-devops/
https://twitter.com/KentBeck/status/250733358307500032?ref_src=twsrc%5Etfw
https://twitter.com/KentBeck/status/250733358307500032?ref_src=twsrc%5Etfw
https://www.dummies.com/programming/big-data/hadoop/acid-versus-base-data-stores/
https://www.dummies.com/programming/big-data/hadoop/acid-versus-base-data-stores/
https://www.dummies.com/programming/big-data/hadoop/acid-versus-base-data-stores/
https://www.ibm.com/cloud/learn/soa
https://www.ibm.com/cloud/learn/soa
http://www.methodsandtools.com/archive/archive.php?id=90
http://www.methodsandtools.com/archive/archive.php?id=90
https://www.bonitasoft.com/news/orchestration-microservices-services-humans-robots
https://www.bonitasoft.com/news/orchestration-microservices-services-humans-robots


[10] Fowler, M. Monolithfirst. https://martinfowler.com/
bliki/MonolithFirst.html, June 2015. [Online; accessed 24-
March-2021].

[11] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Professional Computing Series. Pearson
Education, 1994.

[12] Gnatyk, R. Microservices vs monolith: which
architecture is the best choice for your business?
https://www.n-ix.com/microservices-vs-monolith-
which-architecture-best-choice-your-business/, 2018.
[Online; accessed 24-March-2021].

[13] Group, T. O. Service oriented architecture : What is soa?
https://web.archive.org/web/20160819141303/http:
//opengroup.org/soa/source-book/soa/soa.htm, 2016.
[Online; accessed 24-March-2021].

[14] Haddad, E. Service-oriented architecture: Scaling the uber
engineering codebase as we grow. https://eng.uber.com/
service-oriented-architecture/, 2015. [Online; accessed
24-March-2021].

[15] Hassan, S., Ali, N., and Bahsoon, R. Microservice
ambients: An architectural meta-modelling approach for mi-
croservice granularity. In 2017 IEEE International Conference
on Software Architecture (ICSA) (2017), pp. 1–10.

[16] Herold, S., Klus, H., Welsch, Y., Deiters, C., Rausch,
A., Reussner, R., Krogmann, K., Koziolek, H., Mir-
andola, R., Hummel, B., Meisinger, M., and Pfaller,
C. CoCoME - The Common Component Modeling Example.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 16–
53.

81

https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/bliki/MonolithFirst.html
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://web.archive.org/web/20160819141303/http://opengroup.org/soa/source-book/soa/soa.htm
https://web.archive.org/web/20160819141303/http://opengroup.org/soa/source-book/soa/soa.htm
https://eng.uber.com/service-oriented-architecture/
https://eng.uber.com/service-oriented-architecture/


[17] Hohpe, G., and Woolf, B. Enterprise Integration Pat-
terns: Designing, Building, and Deploying Messaging Solutions.
Addison-Wesley Professional, 2004.

[18] Ismail, K. 7 tech giants embracing microservices.
https://www.cmswire.com/information-management/7-
tech-giants-embracing-microservices/, 2018. [Online;
accessed 24-March-2021].

[19] Knorr, E. What ebay looks like under the hood.
https://www.infoworld.com/article/3041064/what-
ebay-looks-like-under-the-hood.html, 2016. [Online;
accessed 24-March-2021].

[20] Kofler, P., and Riegler, G. Levels of modular-
ity. https://gregorriegler.com/2020/08/08/levels-of-
modularity.html, Aug 2020. [Online; accessed 24-March-
2021].

[21] Kovacs, G. micro-cocome. https://github.com/pufarin/
micro-cocome, 2019. [Online; accessed 24-March-2021].

[22] Kovacs, G. mono-cocome. https://github.com/pufarin/
mono-cocome, 2019. [Online; accessed 24-March-2021].

[23] Kovacs, G. micro-cocome-statistics. https://github.com/
pufarin/micro-cocome-statistics, 2020. [Online; accessed
24-March-2021].

[24] Levcovitz, A., Terra, R., and Valente, M. T. Towards
a technique for extracting microservices from monolithic enter-
prise systems, 2016.

[25] Lewis, J., and Fowler, M. Microservices. https:
//martinfowler.com/articles/microservices.html, 2014.
[Online; accessed 24-March-2021].

[26] Martin, Robert, C. The principles of ood. http://www.
butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod,
2005. [Online; accessed 24-March-2021].

82

https://www.cmswire.com/information-management/7-tech-giants-embracing-microservices/
https://www.cmswire.com/information-management/7-tech-giants-embracing-microservices/
https://www.infoworld.com/article/3041064/what-ebay-looks-like-under-the-hood.html
https://www.infoworld.com/article/3041064/what-ebay-looks-like-under-the-hood.html
https://gregorriegler.com/2020/08/08/levels-of-modularity.html
https://gregorriegler.com/2020/08/08/levels-of-modularity.html
https://github.com/pufarin/micro-cocome
https://github.com/pufarin/micro-cocome
https://github.com/pufarin/mono-cocome
https://github.com/pufarin/mono-cocome
https://github.com/pufarin/micro-cocome-statistics
https://github.com/pufarin/micro-cocome-statistics
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod


[27] Michaels, G. How to deal with technical debt: Tips and
strategies. https://unito.io/blog/technical-debt/, 2020.
[Online; accessed 24-March-2021].

[28] Mueller, E. What is devops? https://theagileadmin.
com/what-is-devops/, 2019. [Online; accessed 24-March-
2021].

[29] O’Riordan, M. Publish-subscribe: Introduction to scalable
messaging. https://thenewstack.io/publish-subscribe-
introduction-to-scalable-messaging/, 2020. [Online; ac-
cessed 24-March-2021].

[30] Osses, F., Márquez, G., and Astudillo, H. Exploration
of academic and industrial evidence about architectural tactics
and patterns in microservices. In Proceedings of the 40th In-
ternational Conference on Software Engineering: Companion
Proceeedings (May 2018), ACM.

[31] Panyam, S. Orchestration – a symphony of microservices.
https://www.comakeit.com/blog/microservices-
orchestration-symphony/, 2020. [Online; accessed 24-
March-2021].

[32] Richardson, C. Microservice Patterns: with examples in
Java. Manning, 2019.

[33] Richardson, C. Pattern: Api gateway / backends for fron-
tends. https://microservices.io/patterns/apigateway.
html, 2020. [Online; accessed 24-March-2021].

[34] Richardson, C. Pattern: Database per service.
https://microservices.io/patterns/data/database-
per-service.html, 2020. [Online; accessed 24-March-2021].

[35] Richardson, C. A pattern language for microservices. https:
//microservices.io/patterns/, 2020. [Online; accessed 24-
March-2021].

83

https://unito.io/blog/technical-debt/
https://theagileadmin.com/what-is-devops/
https://theagileadmin.com/what-is-devops/
https://thenewstack.io/publish-subscribe-introduction-to-scalable-messaging/
https://thenewstack.io/publish-subscribe-introduction-to-scalable-messaging/
https://www.comakeit.com/blog/microservices-orchestration-symphony/
https://www.comakeit.com/blog/microservices-orchestration-symphony/
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/data/database-per-service.html
https://microservices.io/patterns/data/database-per-service.html
https://microservices.io/patterns/
https://microservices.io/patterns/


[36] Richardson, C. Pattern: Shared database. https://
microservices.io/patterns/data/shared-database.html,
2020. [Online; accessed 24-March-2021].

[37] Richardson, C. What are microservices? https://
microservices.io/, 2020. [Online; accessed 24-March-2021].

[38] Riggins, J. Effective microservices architecture with event-
driven design. https://thenewstack.io/event-driven-
design-will-drive-microservices-clarity/, 2017. [On-
line; accessed 24-March-2021].

[39] Taibi, D., Lenarduzzi, V., and Pahl, C. Architectural
patterns for microservices: A systematic mapping study. In
Proceedings of the 8th International Conference on Cloud Com-
puting and Services Science (2018), SCITEPRESS - Science and
Technology Publications.

[40] Zdun, U., Navarro, E., and Leymann, F. Ensuring and
assessing architecture conformance to microservice decomposi-
tion patterns. In Service-Oriented Computing. Springer Inter-
national Publishing, 2017, pp. 411–429.

84

https://microservices.io/patterns/data/shared-database.html
https://microservices.io/patterns/data/shared-database.html
https://microservices.io/
https://microservices.io/
https://thenewstack.io/event-driven-design-will-drive-microservices-clarity/
https://thenewstack.io/event-driven-design-will-drive-microservices-clarity/


A Zusammenfasung

Im letzten Jahrzehnt hat die Microservice-Architektur eine zun-
ehmende Akzeptanz bei großen Tech-Giganten (z.B. amazon, Net-
flix) gestoßen als auch bei kleineren Unternehmen, die von den
versprochenen Vorteilen profitieren wollen. Während viel Arbeit
geleistet wurde, um die Architektur und ihre Muster zu beschreiben,
gibt es noch wenig bis gar keine Arbeit darüber, wie man den Über-
gang von einer monolithischen zu einer Microservices-Architektur
leisten soll. Dies ist besonders für kleine und mittlere Unterneh-
men eine Herausforderung, die nicht über die scheinbar endlosen
Ressourcen großer Unternehmen verfügen. Diese Arbeit beschreibt
eine Roadmap, die es einem Team ermöglicht, neues Know-how zu
erwerben und zu erweitern, das Team dabei unterstützt, die beste ar-
chitektonische Entscheidung in Übereinstimmung mit ihren Bedür-
fnissen zu treffen und das implementierte System kontinuierlich zu
evaluieren. Die vorgeschlagene Lösung ist kostengünstig, liefert nach
jedem Schritt Ergebnisse und schafft schließlich eine Arbeitsumge-
bung, die Veränderung und architektonische Evolution fördert.

85


	Introduction
	Motivation
	Problem Statement
	Solution
	Structure of the Thesis

	Fundamentals
	Microservice Architecture
	Microservice vs Monolith

	Related Work
	Background
	Implementation
	Microservice patterns
	Database per service
	Shared Database
	API Gateway
	Publish subscribe
	Message bus
	Service Orchestration

	Architectural decisions
	System services
	Show Stock Reports (SR)
	Order Products and Receive Ordered Products (OP&ROP)
	Show Delivery Reports (DR)

	Deployment

	Measurement Generation
	Data Evaluation
	Conclusion
	Summary
	Threads of Validity
	Future Work

	Zusammenfasung

