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angestrebter akademischer Grad / in partial fulfillment of the requirements for the degree of

Doktor der Naturwissenschaften (Dr. rer. nat.)

Wien, 2021 / Vienna, 2021

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on the studen record sheet: UA 796 605 405

Dissertationsgebiet lt. Studienblatt /
field of study as it appears on the student record sheet: Mathematik

Betreut von / Supervisor: Univ.-Prof. Dr. Philipp Grohs





Abstract

This thesis contains a series of papers which explore the approximation capabilities
of deep ReLU networks. Abstractly speaking they constitute parametrized model
classes for nonlinear approximation, where the parameters define a sequence of
affine transformations from which the corresponding function is obtained as the
composition of these affine transformations with a simple parameter-independent
nonlinear function interjected between every two of them. This structure ensures
that any composition of functions which individually can be efficiently approxi-
mated by deep ReLU networks can itself be efficiently approximated by them. As
shown in the thesis, this turns out to be a very versatile and powerful tool. Among
other things it is used to establish that deep ReLU networks are capable of ap-
proximating the solutions to certain high dimensional partial differential equations
with a number of parameters which depends only polynomially on the dimension.
Furthermore it is shown that, in a rate-distortion sense, they are at least as good
at approximating a given function class as any classical affine or Weyl-Heisenberg
dictionary (e.g. wavelet or Gabor frame) under rather mild conditions on their
generator functions. Lastly, a novel approach is developed which makes use of
approximation capabilities of neural networks to determine scenarios in which the
optimization landscape in neural network training does not have bad local minima.

Zusammenfassung

Diese Thesis besteht aus einer Reihe von Publikationen die das Approximations-
vermögen von tiefen ReLU Netzwerken untersuchen. Abstrakt gesehen, konsti-
tuieren sie parametrisierte Modelklassen für nichtlineare Approximation bei der
die Parameter eine Folge von affinen Transformationen definieren aus welchen die
korrespondierende Funktion erzeugt wird als Komposition dieser affinen Transfor-
mationen, wobei eine simple parameter-unabhängige Funktion zwichen jeweils zwei
davon zwichengeschaltet wird. Diese Struktur stellt sicher, dass jede Komposition
von Funktionen, die individuell effizient durch tiefe ReLU Netzwerke approximiert
werden können, im Ganzen effizient durch tiefe ReLU Netzwerke approximiert wer-
den kann. Wie in dieser Thesis gezeigt wird stellt sich dies als ein vielseitiges und
mächtiges Werkzeug heraus. Unter anderem wird es verwendet um zu etablieren
dass tiefe ReLU Netzwerke fähig sind Lösungen hochdimensionaler partieller Dif-
ferentialgleichungen zu approximieren mit einer Anzahl von Parametern die nur
polynomiell von der Dimension abhängt. Desweiteren wird gezeigt, dass sie, in
einem Raten-Verzerrungs Sinn, mindestens so gut darin sind eine gegebene Funk-
tionenklasse zu approximieren wie jedes klassische affine oder Weyl-Heisenberg
Wörterbuch (z.B. Wavelet oder Gabor Frame), unter milden Anforderungen an ihre
Generatorfunktionen. Letztlich wird ein Ansatz beschrieben welcher das Approxi-
mationsvermögen von neuralen Netzwerken verwendet um Szenarien zu bestimmen
in welchen die Optimierungslandschaft beim Trainieren neuraler Netzwerke keine
schlechten lokalen Minima hat.
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1. Introduction

In recent years the study of neural networks has attracted a great number of
mathematicians from a variety of different backgrounds trying to answer a very
simple question:

Why do they actually work?

More specifically why do they work this time given that the concept of neural
networks has been around for many decades and already went through periods of
great theoretical interest which, however, did not yield matching practical success.
Nowadays on the other hand it seems almost impossible to go a week without
hearing about another task where neural networks have produced state-of-the-art
results. In particular, they have surpassed the mundane triumphs of excelling in
standard machine learning tasks like game playing, image classification, or natural
language processing, and proceeded to making a lot of traditional practitioners
very nervous by posting impressive results in the context of, e.g., PDEs or inverse
problems.

One thing which certainly has changed is the amount of available computing
power and as demonstrated by the great Egyptian pyramids it may appear outright
miraculous what one can achieve simply by throwing an almost unlimited amount
of labour at a problem1. Unfortunately, this is not a particularly satisfying answer
from a mathematical point of view and as such the most prominently postulated
reason for the success of modern neural networks is their depth. While the jury is
still out on whether this is actually the case, it is most certainly very intriguing
from the perspective of nonlinear approximation as it constitutes a paradigm shift
to the study of compositions of simple things instead of linear combinations of
simple things.

As such, the primary endeavour of my doctoral studies was to explore this
newfound power of composition in order to establish novel quantitative results on
the approximation capabilities of deep neural networks. The results of this journey
are recorded in this thesis in the form of four papers I authored, accompanied by
some (hopefully) illuminating comments.

1Although using GPUs to do the work is certainly an improvement from a moral standpoint.
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2. Preliminaries

Before we get into the motivating questions behind my publications, I will briefly
concretize the central mathematical object I was interested in. When I talk about
a neural network I mean a finite sequence of matrix-vector tuples Φ := (A`, b`)

L
`=1

with A` ∈ RN`×N`−1 , b` ∈ RN` . It induces a function, called the realization of Φ,
via

R(Φ) := WL ◦ ρ ◦WL−1 ◦ · · · ◦ ρ ◦W1,

where W`(x) := A`x + b` and ρ : R → R is the activation function which, with
the common abuse of notation, is applied componentwise. The entries of the
matrices and vectors are, as usual, referred to as the weights of the network. I
will call L the depth of the network, N` the dimension of the `-th layer, and
N := (N0, N1, . . . , NL) the architecture of the network.

While in many places in the literature the term neural network is used rather
ambiguously to refer to both the collection of weights as well as the associated
function, I believe it is worth it to put some emphasis on distinguishing between
the two, as the realization map R : Φ 7→ R(Φ) is very much not injective. A simple
consequence of this is that any notion of size of a neural network (e.g. depth or
number resp. magnitude of its weights) is only well-defined for Φ but not for its
realization R(Φ). As a primary concern of the first three papers is establishing the
required size of neural networks which are capable of approximation some function
(class) of interest with a prescribed accuracy, this distinction mostly serves to
phrase things in a rigorous manner. It is even more important in the fourth paper,
which studies how badly the realization map fails to be injective.

In the following we will mostly be concerned with ReLU networks, i.e. neural
networks where ρ(x) = max{0, x} is the so-called ReLU activation function. The
first two papers exclusively consider ReLU networks, whereas the third paper con-
tains some remarks on general continuous piecewise linear activation functions and
the fourth paper has a number of abstract observations which are independent of
the activation function used. The choice to focus on the ReLU activation function
is, of course, partially motivated by its ubiquity in practise, but I also very much
like it from a perspective of mathematical beauty as it arguably constitutes one
of the simplest (continuous) nonlinear functions. It is quite remarkable to observe
how adding just a pinch of non-linearity to a composition of affine linear trans-
formations allows the efficient approximation of a plethora of functions which are
not at all affine linear.

As mentioned in the introduction I was particularly interested in making use
of the compositional nature of neural networks. One benefit of this is that the
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approximation of any function of the form f = g ◦ h may be broken down into the
approximation of g and h individually, which enables a very convenient modular
approach1 of constructing neural network approximations. Another prospect of-
fered is the efficient representation of self-similar functions including a very simple
case which nonetheless has been at the center of a number of interesting works.
Namely the observation by Telgarsky [2] that composing the hat function2 n many
times with itself yields a function hn which on each interval [k2−n, (k + 1)2−n],
k ∈ {0, . . . , 2n − 1} behaves like the hat function dilated by 2n. Yarotsky [3]
subsequently combined this observation with the rapidly converging series repre-
sentation x−x2 =

∑∞
n=0 4−nhn(x) as well as a polarization and a scaling argument

to establish that ReLU networks can approximate multiplication and consequently
polynomials on bounded domains with depth and number of weights scaling only
logarithmically w.r.t. accuracy and domain size. This finding has been used by
Yarotsky as well as several others to establish that ReLU networks are capable of
efficiently approximating various types of regular functions even though the ReLU
itself is only once (weakly) differentiable. It is interesting to remark that, by virtue
of the construction mentioned above, this capability to exploit smoothness comes
as a consequence of the ability to efficiently create self-similar structures.

Roughly speaking each of the four papers may be seen as an attempt to answer
the corresponding one of the following four questions:

1. What kind of interesting high-dimensional functions can be approximated
by deep ReLU networks whose size does not depend exponentially on the
dimension?

2. With respect to approximation capability how do deep ReLU networks com-
pare to dictionaries like wavelet or Gabor frames?

3. Can deep ReLU networks approximate functions in (first-order) Sobolev
norm?

4. Can the approximation capabilities of neural networks be used to explain
the well-behavedness of the optimization landscape in training?

1A very nice formal framework for this was introduced by Philipp Petersen and Felix Voigt-
laender in [1], which served as the main inspiration for the notation I have used in my works.

2I.e. the function on [0, 1] that is 1 at the center of the interval, 0 at both ends, and linear in
between, which can, of course, very easily be represented by a ReLU network.
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3. Synopses of the Publications

3.1 DNN Expression Rate Analysis of High-

dimensional PDEs: Application to Option

Pricing

This paper is concerned with the efficient approximation of solutions of high dimen-
sional partial differential equations (PDEs). Specifically we consider the solution
of the Black-Scholes equation for European option pricing. We start by briefly re-
viewing how to derive a semi-explicit form using the Feynman-Kac formula. This
solution consists of a d-dimensional tensor product of univariate functions which is
then integrated w.r.t. an auxiliary variable. We proceed by analyzing the regular-
ity of the univariate functions and the approximation of the integral by composite
Gaussian quadrature. Subsequently we construct ReLU networks for the approx-
imation of univariate k-smooth functions and tensor products as well as for the
implementation of the Gaussian quadrature. These results are then combined to
establish that the solution of the d dimensional Black-Scholes equation for Euro-
pean option pricing may be approximated to within ε-error by ReLU networks,
whose depth depends logarithmically on d and ε and whose number of weights has
polynomial scaling in d and spectral scaling in ε.

3.2 Deep neural network approximation theory

In this paper we study the approximation capabilities of deep ReLU networks
from an information theoretic perspective which enables us to draw a comparison
to classical dictionary based approximation methods. In the latter case approx-
imation capabilities are usually quantified by considering how many terms are
required to approximate every element of a given function class to within some
error by a linear combination of dictionary elements. As neural networks exhibit
a different structure one needs to take some care how to quantify their rate of
approximation in a comparable manner. Our approach to deal with this is to bor-
row from rate distortion theory and in particular employ the notion of nonlinear
approximation rate under polynomial depth search constraint. Roughly speaking
the constraint imposes that one only considers M -term approximations for which
the size of the coefficients and the indices of participating dictionary element are
bounded by some polynomial in M . Heuristically, this provides some practical
relevance to these approximations as it ensure that the indices and coefficients
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may be encoded as a bit string without incurring too much of an quantization
error. On a more abstract level it ascertains that these approximation rates are
(sharply) bounded by the optimal exponent of the functions class, which quantifies
its complexity via the behaviour of its metric entropy. We introduce an analogous
M -weight approximation rate for ReLU networks where networks with M many
weights are only allowed to have a depth which is bounded by a polynomial of
log(M) and weights whose magnitude is bounded by a polynomial of M . We
show that these conditions ensure that M -weight approximations can similarly be
encoded without introducing a significant quantization error, i.e. this M -weight
approximation rate is also bounded by the optimal exponent of the function class
in question. Moreover we establish a transference result which states that the
M -weight approximation rate with ReLU networks is at least as good as the M -
term approximation rate in any dictionary consisting of translations, dilations,
and modulations of a generator function (e.g. wavelets, shearlets, Gabor systems)
which can be approximated well by neural networks. We verify in detail that this
condition is fulfilled for spline wavelets and note that it holds for most commonly
studied affine and Weyl-Heisenberg dictionaries.

3.3 Towards a regularity theory for ReLU net-

works – chain rule and global error estimates

This paper primarily deals with an issue we encountered when attempting to es-
tablish approximation results for deep ReLU networks in Sobolev W 1,∞-norm. Ap-
proximation results for deep ReLU networks usually take advantage of the composi-
tional nature of neural networks by first constructing networks which approximate
some simple functions and subsequently combining them in order to get results
for more complicated functions. As such, one often wants to deduce a bound on
‖R(Φ) ◦ R(Ψ)− f ◦ g‖ from bounds on ‖R(Φ)− f‖ and ‖R(Ψ)− g‖. While this
is very straightforward if ‖ · ‖ is the L∞-norm, the case of ‖ · ‖ = ‖ · ‖W 1,∞ requires
application of the chain rule to ReLU network realizations which are only almost
everywhere differentiable. In particular it may happen that R(Ψ) maps a non-
nullset into the set of points for which the derivative of R(Φ) is not well-defined,
i.e. (DR(Φ))(R(Ψ)(x)) is in general not even well-defined almost everywhere. We
formally introduce a notion of a derivative of a ReLU network which coincides al-
most everywhere with the standard derivative of its realization and obeys a chain
rule. Subsequently we briefly discuss how our notion of neural network derivative
helps in establishing approximation results and how to extend this idea to general
continuous piecewise linear activation functions. We conclude by illustrating how
to get, for ReLU networks, a certain type of global approximation result, which is
relevant in the context of approximating solutions of PDEs.
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3.4 How degenerate is the parametrization of

neural networks with the ReLU activation

function?

In this paper we investigate the notion of inverse stability of the realization map
R, i.e. the function which maps a neural network parametrization1 to its realiza-
tion. We say inverse stability holds for some subset Ω of parametrizations w.r.t.
some norm ‖ · ‖, if for any Γ ∈ Ω and g ∈ R(Ω) there exists Φ ∈ R−1(g) such
that we can bound the distance2 between Γ and Φ relative to ‖R(Γ) − R(Φ)‖.
The purpose of establishing inverse stability is to connect the abstract optimiza-
tion problem ming∈R(Ω) L(g) over the set of realizations to the practically tangible
problem minΦ∈Ω L(R(Φ)) over the set of parametrizations, where L is some loss
function that only depends on the realization of a network3. This is motivated by
the following observation. Let us take some convex set S such that every function
in S may be approximated by realizations in R(Ω) up to ε-error and assume the
loss function is convex and Lipschitz on bounded domains4. Then the loss at any
local minimum of the regularized optimization problem ming∈R(Ω)∩S L(g) is upper
bounded by the loss at a global minimum plus a term which is proportional to ε/r,
where r is the radius5 of the local minimum. In cases where the approximation er-
ror ε can be guaranteed to be arbitrarily small by choosing a correspondingly large
architecture this means that by sufficiently increasing the size of the architecture
used one can guarantee that any local minimum is either extremely narrow orä
already almost optimal. However, in order to transfer this result to the tangible
parametrized problem minΦ∈Ω∩R−1(S) L(R(Φ)) we would need to know that Γ being
a local minimum of the parametrized problem implies that R(Γ) is a local mini-
mum (with a comparably large radius) of the problem over the set of realizations,
which is exactly what our inverse stability is designed to ensure. Having estab-
lished this high level idea, we proceed by solving the question of inverse stability
w.r.t. to the Sobolev W 1,∞-norm6 for shallow ReLU networks. We first establish
a number of pathologies which prevent inverse stability and subsequently proof
that by restricting the set of all parametrizations of a given architecture such that
these pathologies are avoided inverse stability w.r.t. to the Sobolev W 1,∞-norm
does hold. In addition we note that these restrictions, up to some technicalities,
only get rid of redundancies. Specifically, for any set Π containing all parametriza-

1Note that in this paper we refer to the sequence of matrix-vector tuples as a (neural network)
parametrization in order to emphasize the difference to the corresponding realization.

2As the space of parametrizations is finite dimensional, the norm in which we consider this
distance is not particularly relevant.

3Note that this is naturally the case for any loss function which only contains a data fidelity
term and no regularization terms, which of course usually do depend on the parametrization.

4This is fullfilled for, e.g., the means squared loss L(g) =
∑n
i=1(g(xi)−yi)2 with some labeled

data ((xi, yi))
n
i=1.

5The radius of a local minimum Γ is the largest r > 0 such that Γ is minimal over a ball of
radius r around Γ.

6Failure of inverse stability w.r.t. the L∞-norm had previously been shown by Petersen,
Raslan, and Voigtlaender.
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tions of a given architecture there is a restricted set of parametrizations Ω of a
slightly larger architecture such that R(Π) ⊆ R(Ω) and inverse stability holds on
Ω.
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4. Discussion

At face value the first paper only establishes approximation rates for the solution of
one specific PDE for which a semi-explicit form is known. While we chose to have
a presentation focused around a concrete example, I believe that the relevance of
the paper very much is not limited to this specific case as the way we constructed
the approximating networks is not at all based on something unique to this PDE.
Roughly speaking the paper establishes three things that ReLU networks a capable
of doing:

(i) Approximating k-smooth univariate functions

(ii) Approximately implementing multiplication

(iii) Implementing composite Gaussian quadrature

While each of these is by itself not particularly exciting, the crux of the matter
which makes neural networks such remarkably powerful tools for approximation
is that, without any adaptations to their basic framework, they can do all of
these things in composition. In our example in the paper we use (i) to construct
networks to approximate univariate functions fc which we combine with (ii) to get
networks approximating their tensor product Fc(x) := Πd

i=1fc(xi). Subsequently
we incorporate (iii) to obtain networks approximating x 7→

∫∞
0

1− Fc(x)dc.
Due to the flexibility of this modular method of construction afforded by the

compositional nature of deep ReLU networks, one can establish analogous re-
sults for any PDE solution which can be represented via tensor products of low-
dimensional functions followed by any operations which can be (approximately)
implemented by ReLU networks. Note that even if with exact multiplication of
d functions fi with ‖fi‖L∞ ≤ B and approximations Φi with ‖fi − Φi‖L∞ ≤ ε
the error of the tensor product approximation ‖Πd

i=1fi − Πd
i=1Φi‖L∞ may still be

of order dBd−1ε as can, e.g., be seen in the proof of Proposition 6.4 in the first
paper. Thus in order to approximate a tensor product by networks with size
scaling at most polynomially in the dimension one either requires B ≤ 1 or the
existence of networks approximating the fi to within error ε with size depending
only polylogarithmically1 on ε. As such, a certain regularity of the partaking uni-
variate functions is still required - or more precisely a ’well-approximability’ by
ReLU networks, for which regularity is only a sufficient condition. Proposition
X.3 in the second paper shows ReLU networks are capable of approximating the
nowhere differentiable Weierstrass with polylogarithmic rates, which means that

1That is like π(log(ε)), where π is some polynomial.
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regularity is certainly not a necessary condition. A satisfying general description
of the approximation spaces of neural networks is still very much an open problem.
Nonetheless, I believe that the results in the first paper are a good indication that
deep ReLU networks provide powerful and flexible model classes for the approxi-
mation of solutions to high dimensional PDEs.

The focus of my second paper was to put the approximation rates of deep ReLU
networks into context. Neural network approximation results usually describe how
the number of required parameters (i.e. weights) of a neural network increases
relative to the desired accuracy of approximation. This parameter-accuracy trade-
off is, of course, an important consideration for any parametrized model class one
might want to use in order to approximate some class of functions. However, unless
one takes into account how impactful these parameters are, looking at this trade-
off may be misleading as can be seen in the following examples. Any separable
function class contains a countable dense set which would constitute a dictionary
which can achieve an arbitrarily accurate approximation simply by picking the
right index, i.e. a single parameter. Moreover, if the function class is compact one
can, for any given ε > 0, take the centers of an ε-covering, which would constitute
a finite dictionary which can approximate any element of the function class to
within ε-error with only a single parameter. Of course, finding this one parameter
in practice would generally be an entirely hopeless endeavour. Nonetheless it
illustrates that care needs to be taken when assessing the parameter-accuracy
trade-off of parametrized model classes, in particular if one wants to compare
them to each other.

In our paper we deal with this issue by using approximation rates which en-
force that M -term respectively M -weight approximations both canonically induce
bit string encoder-decoder pairs with the same order of accuracy and (up to poly-
logarithmic factors) same length M . The main purpose of this is to allow for
a reasonable comparison between notions of approximation rates for dictionaries
and neural networks even though they have a fundamentally different structure.
It also imbues these notions of approximation rate with some practical relevance
as it ensures that reasonably accurate quantizations of these abstract approxima-
tions could, in principle, be produced by a practical algorithm. This remains, of
course, an analysis for which function classes parsimonious neural networks ap-
proximations exist, whereas it is still an open question of whether and how these
approximations can actually be found in practise. Nonetheless, I believe establish-
ing that ReLU neural networks are capable of simultaneous rate-distortion optimal
approximation of a wide variety of classically studied function classes serves as a
compelling substantiation of the versatility of ReLU networks as approximators.
While to me it does not seem to indicate that neural networks are necessarily
better2 suited than more targeted frameworks in cases where one has sufficient
structural knowledge, it appears to be in parallel with the practical observation
that neural network based methods are particularly advantageous in cases when
not much is known about the desired solution.

2In fact, they might very well be worse for any problem of practical size, as our results are
asymptotic in nature.
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The third paper arose from our endeavour of taking the Yarotsky-type con-
structions and extending the approximation results from L∞-norm to Sobolev
W 1,∞-norm. As described in the paper the otherwise very convenient modular
approach of constructing these approximations and obtaining the corresponding
error estimates turned out to be a bit more tricky in this case, since we could
not employ the standard chain rule as ReLU network realizations are only almost
everywhere differentiable. While I am quite satisfied with our solution, we did not
pursue this line of research much further as we realized that Gühring, Kutinyok,
and Petersen had already been working on the same issue and covered the approx-
imation of Sobolev regular functions in W s,p-norm with s ∈ [0, 1], p ∈ [1,∞] very
nicely in [4]. They circumvented the failure of the standard chain rule by relating
the Sobolev semi-norm |f |W 1,∞(Ω) := ‖Df‖L∞(Ω) to the Lipschitz constant of f and
obtaining the necessary estimates along this path. This does, however, introduce
some overhead in the estimates which may be avoided by our solution. Namely
for f : Rd → Rm, g : Rm → R, Ω1 ⊆ Rd, and f(Ω1) ⊆ Ω2 ⊆ Rm they obtain the
estimate |g ◦ f |W 1,∞(Ω1) ≤ m

√
d|g|W 1,∞(Ω2)|f |W 1,∞(Ω1), whereas our approach would

avoid the m
√
d factor. As such, I believe the results of the third paper do have

value from a technical point of view.
The fourth paper diverges from the theme of the first three as it is not con-

cerned with establishing what kind of function classes can be approximated by
neural networks, but instead proposes a way to connect approximation capabili-
ties to neural network training. A key observation is that, in a quantifiable way,
the optimization problem is well-behaved when considered over the set of realiza-
tions of a fixed architecture intersected with a convex function class which can
be approximated well by realizations of the chosen architecture. Essentially this
mitigates the detriment of nonconvexity of the set of realizations by ensuring that
any convex combination of elements in the feasible set is still close to some el-
ement in the feasible set. It would certainly be a compelling argument for why
stochastic gradient descent is so surprisingly successful, if we could establish the
same behaviour for the parametrized problem, i.e. that for any choice of ε, r > 0 a
sufficiently large architecture will guarantee that any local minimum with radius
greater than r has a loss which is no more than ε worse than the loss at a global
optimum. However, as shown in the paper transferring these results from the real-
izations problem to the parametrized problem proved to be quite challenging even
in the simple case of shallow ReLU networks.

The central reason for this is the severe redundancy in the parametrization of
neural networks. By identifying and eliminating these detrimental redundancies
we were able to establish inverse stability w.r.t. the W 1,∞-norm for shallow ReLU
networks. While I believe that this result serves as a nice proof of concept and
contains a number of technical observations of independent interest, the norm w.r.t.
which we established inverse stability here is regrettably a bit to weak to translate
to a truly satisfying result. Specifically we would require a function class as a
regularizer that can be approximated uniformly well in W 1,∞ by neural networks
of some fixed architecture, which would suggest something like a Wm,∞-norm ball
with m > 1. Alas, the intersection of such a norm ball with the set of ReLU
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realizations would only contain linear functions and as such not be particularly
interesting.

Luckily, there are multiple paths beyond this. Naturally, one might attempt to
establish inverse stability for a stronger norm by imposing additional restrictions
to the set of realizations or consider networks with a different activation function.
Another approach would be based on the fact that the inverse stability considered
in the paper is somewhat of an overkill. In particular, (s, α)-inverse stability
guarantees that for any given parametrization Γ which is a local minimum of
radius r we know that R(Γ) is a local minimum of radius (r/s)1/α which can then
be used to bound the loss at Γ according to Theorem A.2. We do, however, not
actually require that R(Γ) is a proper local minimum. Roughly speaking it would
suffice to establish that R(Γ) is minimal over a sufficiently dense subset of some
ball around it. Concretely, the argument in the proof of Theorem A.2 would still
work as long as there exist R, δ > 0 (depending suitably on r and possibly the size
of the used architecture) such that for any realization g in the R-ball around R(Γ)
there is a Φ in the r-ball around Γ such that ‖g − R(Φ)‖ ≤ δ. In other words,
it would suffice if we could show, in a quantifiable manner, that Γ being a local
minimum implies that R(Γ) is minimal over a sufficiently dense subset of some
ball around R(Γ).

While establishing a meaningful almost optimality result for local minima of
the parametrized problem is certainly very challenging, I believe that obtaining a
better understanding of the relationship between neural network parametrizations
and their realizations has great potential. Of particular interest is that the theo-
retical conditions of balanced weights and lack of redundant directions correspond
to regularization methods which have already been observed to improve training
in practise. This makes me optimistic that pursuing this line of research cannot
only shed light on the underlying mathematical structures, but also inspire novel
methods of training based on an understanding of these structures.
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Abstract

We analyze approximation rates by deep ReLU networks of a class of multi-variate solutions of
Kolmogorov equations which arise in option pricing. Key technical devices are deep ReLU architectures
capable of efficiently approximating tensor products. Combining this with results concerning the approx-
imation of well behaved (i.e. fulfilling some smoothness properties) univariate functions, this provides
insights into rates of deep ReLU approximation of multi-variate functions with tensor structures. We
apply this in particular to the model problem given by the price of a European maximum option on
a basket of d assets within the Black-Scholes model for European maximum option pricing. We prove
that the solution to the d-variate option pricing problem can be approximated up to an ε-error by a

deep ReLU network with depth O
(

ln(d) ln(ε−1) + ln(d)2
)

and O
(
d2+

1
n ε−

1
n
)

non-zero weights, where
n ∈ N is arbitrary (with the constant implied in O(·) depending on n). The techniques developed in
the constructive proof are of independent interest in the analysis of the expressive power of deep neural
networks for solution manifolds of PDEs in high dimension.

Keywords: neural network approximation, low-rank approximation, option pricing, high dimensional
PDEs.
MSC2010 Classification: 41Axx, 35Kxx, 65-XX, 65D30

1 Introduction

1.1 Motivation

The development of new classification and regression algorithms based on deep neural networks – coined
“Deep Learning” – revolutionized the area of artificial intelligence, machine learning, and data analysis [17].
More recently, these methods have been applied to the numerical solution of partial differential equations
(PDEs for short) [41, 14, 11, 29, 24, 3, 10, 23, 34]. In these works it has been empirically observed that deep
learning-based methods work exceptionally well when used for the numerical solution of high-dimensional
problems arising in option pricing. The numerical experiments carried out in [3, 10, 23, 2] in particular
suggest that deep learning-based methods may not suffer from the curse of dimensionality for these problems,
but only few theoretical results exist which support this claim: In [40], a first theoretical result on rates
of expression of infinite-variate generalized polynomial chaos expansions for solution manifolds of certain
classes of parametric PDEs has been obtained. Furthermore, recent work [20, 4] shows that the algorithms
introduced in [2] for the numerical solution of Kolmogorov PDEs are free of the curse of dimensionality in
terms of network size and training sample complexity.

Neural networks constitute a parametrized class of functions constructed by successive applications of
affine mappings and coordinatewise nonlinearities, see [37] for a mathematical introduction. As in [36], we
introduce a neural network via a tuple of matrix vector pairs

Φ = (((A1
i,j)

N1,N0

i,j=1 , (b
1
i )
N1
i=1), . . . , ((ALi,j)

NL,NL−1

i,j=1 , (bLi )NLi=1)) ∈ ×Ll=1

(
RNl×Nl−1 × RNl

)

∗This work was performed during visits of PG at the Seminar for Applied Mathematics and the FIM of ETH Zürich, and
completed during the thematic term “Numerical Analysis of Complex PDE Models in the Sciences” at the Erwin Schrödinger
Institute, Vienna, from June-August, 2018. AJ acknowledges support by the Swiss National Science Foundation under grant
No. 175699 DE and PhG are supported in part by the Austrian Science Fund (FWF) under project number P 30148.

1



for given hyperparameters L ∈ N, N0, N1, . . . , NL ∈ N. Given an “activation function” % ∈ C(R,R), a neural
network Φ then describes a function R%(Φ) ∈ C(RN0 ,RNL) that can be evaluated by the recursion

xl = %(Alxl−1 + b1), l = 1, . . . , L− 1, [R%(Φ)] (x0) = ALxL−1 + bL. (1.1)

The number of nonzero values in the matrix vector tuples defining Φ describe the size of Φ which will be
denoted byM(Φ) and the depth of the network Φ, i.e. its number of affine transformations, will be denoted
by L(Φ). We refer to Setting 5.1 for a more detailed description. A popular activation function % is the
so-called “Rectified Linear Unit” ReLU(x) = max{x, 0} [17].

An increasing body of research addresses the approximation properties (or “expressive power”) of deep
neural networks, where by “approximation properties” we mean the study of the optimal tradeoff between
the size M(Φ) and the approximation error ‖u − R%(Φ)‖ of neural networks approximating functions u
from a given function class. Classical references include [25, 8, 1, 7] as well as the summary [37] and the
references therein. In these works it is shown that deep neural networks provide optimal approximation rates
for classical smoothness spaces such as Sobolev spaces or Besov spaces. More recently these results have
been extended to Shearlet and Ridgelet spaces [5], Modulation spaces [35], piecewise smooth functions [36]
and polynomial chaos expansions [40]. All these results indicate that all classical approximation methods
based on sparse expansions can be emulated by neural networks.

1.2 Contributions and Main Result

As a first main contribution of this work we show in Proposition 6.4 that low-rank functions of the form

(x1, . . . , xd) ∈ Rd 7→
R∑

s=1

cs

d∏

j=1

hsj(xj), (1.2)

with hsj ∈ C(R,R) sufficiently regular and (cs)
R
s=1 ⊆ R can be approximated to a given relative precision by

deep ReLU neural networks of size scaling like Rd2. In particular, we obtain a dependence on the dimension
d that is only polynomial and not exponential, i.e. we avoid the curse of dimensionality. In other words,
we show that in addition all classical approximation methods based on sparse expansions and on more
general low-rank structures, can be emulated by neural networks. Since the solutions of several classes of
high-dimensional PDEs are precisely of this form (see, e.g., [40]), our approximation results can be directly
applied to these problems to establish approximation rates for neural network approximations that do not
suffer from the curse of dimensionality. Note that approximation results for functions of the form (1.2) have
previously been considered in [39] in the context of statistical bounds for nonparametric regression.

Moreover, we remark that the networks realizing the product in (1.2) itself, have a connectivity scaling
which is logarithmic in the accuracy ε−1. While we will, for our concrete example, only obtain a spectral
connectivity scaling, i.e. like ε−

1
n for any n ∈ N with the implicit constant depending on n, this tensor

construction may be used to obtain logarithmic scaling (w.r.t. the accuracy) for d-variate functions in cases
where the univariate hsj can be approximated with a logarithmic scaling.

As a particular application of the tools developed in the present paper, we provide a mathematical
analysis of the rates of expressive power of neural networks for a particular, high-dimensional PDE which
arises in mathematical finance, namely the pricing of a so-called European maximum Option (see, e.g., [43]).

We consider the particular (and not quite realistic) situation that the log-returns of these d assets are
uncorrelated, i.e. their log-returns evolve according to d uncorrelated drifted scalar diffusion processes.

The price of the European maximum Option on this basket of d assets can then be obtained as solution
of the multivariate Black-Scholes equation which reads, for the presently considered case of uncorrelated
assets, as

( ∂∂tu)(t, x) + µ
2

d∑
i=1

xi
(
∂
∂xi

u
)
(t, x) + σ2

2

d∑
i=1

|xi|2
(
∂2

∂x2
i
u
)
(t, x) = 0 . (1.3)

For the European maximum option, (1.3) is completed with the terminal condition

u(T, x) = ϕ(x) = max{x1 −K1, x2 −K2, . . . , xd −Kd, 0} (1.4)
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for x = (x1, . . . , xd) ∈ (0,∞)d. It is well known (see, e.g., [13, 22] and the references there) that there exists
a unique solution of (1.3)-(1.4). This solution can be expressed as conditional expectation of the function
ϕ(x) in (1.4) over suitable sample paths of a d-dimensional diffusion.

One main result of this paper is the following result (stated with completely detailed assumptions below
as Theorem 7.3), on expression rates of deep neural networks for the basket option price u(0, x) for x ∈ [a, b]d

for some 0 < a < b < ∞. To render their dependence on the number d of assets in the basket explicit, we
write ud in the statement of the theorem.

Theorem 1.1. Let n ∈ N, µ ∈ R, T, σ, a ∈ (0,∞), b ∈ (a,∞), (Ki)i∈N ⊆ [0,Kmax), and let ud : (0,∞) ×
[a, b]d → R, d ∈ N, be the functions which satisfy for every d ∈ N, and for every (t, x) ∈ [0, T ]× (0,∞)d the
equation (1.3) with terminal condition (1.4).
Then there exist neural networks (Γd,ε)ε∈(0,1],d∈N which satisfy

(i) sup
ε∈(0,1],d∈N

[ L(Γd,ε)

max{1, ln(d)} (| ln(ε)|+ ln(d) + 1)

]
<∞,

(ii) sup
ε∈(0,1],d∈N

[M(Γd,ε)

d2+ 1
n ε−

1
n

]
<∞, and

(iii) for every ε ∈ (0, 1], d ∈ N,

sup
x∈[a,b]d

|ud(0, x)− [RReLU(Γd,ε)](x)| ≤ ε. (1.5)

Informally speaking, the previous result states that the price of a d dimensional European maximum
option can, for every n ∈ N, be expressed on cubes [a, b]d by deep neural networks to pointwise accuracy
ε > 0 with network size bounded as O(d2+1/nε−1/n) for arbitrary, fixed n ∈ N and with the constant implied
in O(·) independent of d and of ε (but depending on n). In other words, the price of a European maximum
option on a basket of d assets can be approximated (or “expressed”) by deep ReLU networks with spectral
accuracy and without curse of dimensionality.

The proof of this result is based on a near explicit expression for the function ud(0, x) (see Section 2). It
uses this expression in conjunction with regularity estimates in Section 3 and a neural network quadrature
calculus and corresponding error estimates (which is of independent interest) in Section 4 to show that
the function ud(0, x) possesses an approximate low-rank representation consisting of tensor products of
cumulative normal distribution functions (Lemma 4.3) to which the low-rank approximation result mentioned
above can be applied.

Related results have been shown in the recent work [20] which proves (by completely different methods)
that solutions to general Kolmogorov equations with affine drift and diffusion terms can be approximated
by neural networks of a size that scales polynomially in the dimension and the reciprocal of the desired
accuracy as measured by the Lp norm with respect to a given probability measure. The approximation
estimates developed in the present paper only apply to the European maximum option pricing problem for
uncorrelated assets but hold with respect to the much stronger L∞ norm and provide spectral accuracy
in ε (as opposed to a low-order polynomial rate obtained in [20]), which is a considerable improvement.
In summary, compared to [20], the present paper treats a more restricted problem but achieves stronger
approximation results.

In order to give some context to our approximation results, we remark that solutions to Kolmogorov
PDEs may, under reasonable assumptions, be approximated by empirical risk minimization over a neural
network hypothesis class. The key here is the Feynman-Kac formula which allows to write the solution
to the PDE as the expectation of an associated stochastic process. This expectation can be approximated
by Monte-Carlo integration, i.e. one can view it as a neural network training problem where the data is
generated by Monte-Carlo sampling methods which, under suitable conditions, are capable of avoiding the
curse of dimensionality. For more information on this we refer to [4].

While we admit that the European maximum option pricing problem for uncorrelated assets constitutes
a rather special problem, the proofs in this paper develop several novel deep neural network approximation
results of independent interest that can be applied to more general settings where a low-rank structure is
implicit in high-dimensional problems. For mostly numerical results on machine learning for pricing American
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options we refer to [18]. Lastly we note that after a first preprint of the present paper was submitted, a
number of research articles related to this work have appeared [15, 16, 19, 21, 26, 27, 28, 30, 38].

1.3 Outline

The structure of this article is as follows. The following Section 2 provides a derivation of the semi-explicit
formula for the price of European maximum options in a standard Black-Scholes setting. This formula
consists of an integral of a tensor product function. In Section 3 we develop some auxiliary regularity results
for the cumulative normal distribution that are of independent interest which will be used later on. In
Section 4 we show that the integral appearing in the formula of Section 2 can be efficiently approximated by
numerical quadrature. Section 5 introduces some basic facts related to deep ReLU networks and Section 6
develops basic approximation results for the approximation of functions which possess a tensor product
structure. Finally, in Section 7 we show our main result, namely a spectral approximation rate for the
approximation of European maximum options by deep ReLU networks without curse of dimensionality. In
Appendix A we collect some auxiliary proofs.

2 High-dimensional derivative pricing

In this section, we briefly review the Black-Scholes differential equation (1.3) which arises, among others, as
Kolmogorov equation for multivariate geometric Brownian Motion. This linear, parabolic equation is, for
one particular type of financial contracts (so-called “European maximum option” on a basket of d stocks
whose log-returns are assumed for simplicity as mutually uncorrelated) endowed with the terminal condition
(1.4) and solved for (t, x) ∈ [0, T ]× (0,∞)d.

Proposition 2.1. Let d ∈ N, µ ∈ R, σ, T,K1, . . . ,Kd, ξ1, . . . , ξd ∈ (0,∞), let (Ω,F ,P) be a probability space,
and let W = (W (1), . . . ,W (d)) : [0, T ]×Ω→ Rd be a standard Brownian motion and let u ∈ C([0, T ]×(0,∞)d)
satisfy (1.3) and (1.4). Then for x = (ξ1, . . . , ξd) ∈ (0,∞)d it holds that

u(0, x) = E
[

max
i∈{1,2,...,d}

(
max

{
exp
([
µ− σ2

2

]
T + σW

(i)
T

)
ξi −Ki, 0

})]

=

∫ ∞

0

1−
[
d∏
i=1

(
∫ 1
σ
√
T

[
ln
(
y+Ki
ξi

)
−(µ−[σ2/2])T

]

−∞
1√
2π

exp
(
− r22

)
dr

)]
dy.

(2.1)

For the proof of this Proposition, we require the following well-known result.

Lemma 2.2 (Complementary distribution function formula). Let µ : B([0,∞)) → [0,∞] be a sigma-finite
measure. Then ∫ ∞

0

xµ(dx) =

∫ ∞

0

µ([x,∞)) dx. (2.2)

We are now in position to provide a proof of Proposition 2.1.

Proof of Proposition 2.1. The first equality follows directly from the Feynman-Kac formula [22, Corollary
4.17]. We proceed with a proof of the second equality. Throughout this proof let Xi : Ω→ R, i ∈ {1, 2, . . . , d},
be random variables which satisfy for every i ∈ {1, 2, . . . , d}

Xi = exp
([
µ− σ2

2

]
T + σW

(i)
T

)
ξi (2.3)

and let Y : Ω→ R be the random variable given by

Y = max{X1 −K1, . . . , Xd −Kd, 0}. (2.4)
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Observe that for every y ∈ (0,∞) it holds

P(Y ≥ y) = 1− P(Y < y) = 1− P
(

max
i∈{1,2,...,d}

(Xi −Ki) < y

)

= 1− P
(
∩i∈{1,2,...,d} {Xi −Ki < y}

)
= 1−

d∏
i=1

P(Xi −Ki < y)

= 1−
d∏
i=1

P(Xi < y +Ki)

= 1−
d∏
i=1

P
(

exp
([
µ− σ2

2

]
T + σW

(i)
T

)
ξi < y +Ki

)
.

(2.5)

Hence, we obtain that for every y ∈ (0,∞) it holds

P(Y ≥ y) = 1−
d∏
i=1

P
(

exp
([
µ− σ2

2

]
T + σW

(i)
T

)
< y+Ki

ξi

)

= 1−
d∏
i=1

P
(
σW

(i)
T < ln

(
y+Ki
ξi

)
−
[
µ− σ2

2

]
T
)

= 1−
d∏
i=1

P
(

1√
T
W

(i)
T < 1

σ
√
T

[
ln
(
y+Ki
ξi

)
−
[
µ− σ2

2

]
T
])
.

(2.6)

This shows that for every y ∈ (0,∞) it holds

P(Y ≥ y) = 1−
[
d∏
i=1

(
∫ 1
σ
√
T

[
ln
(
y+Ki
ξi

)
−(µ−[σ2/2])T

]

−∞
1√
2π

exp
(
− r22

)
dr

)]
. (2.7)

Combining this with Lemma 2.2 completes the proof of Proposition 2.1.

With Lemma 2.2 and Proposition 2.1, we may write

u(0, x) = E
[
ϕ
(

exp
([
µ− σ2

/2
]
T + σW

(1)
T

)
x1, . . . , exp

([
µ− σ2

/2
]
T + σW

(d)
T

)
xd

)]
(2.8)

(“semi-explicit” formula). Let us consider the case µ = σ2/2, T = σ = 1, and K1 = . . . = Kd = K ∈ (0,∞).
Then for every x = (x1, . . . , xd) ∈ (0,∞)d

u(0, x) = E
[
ϕ
(
eW

(1)
T x1, . . . , e

W
(d)
T xd

)]
= E

[
ϕ
(
eW

(1)
1 x1, . . . , e

W
(d)
1 xd

)]

= E
[
max

{
eW

(1)
1 x1 −K, . . . , eW

(d)
1 xd −K, 0

}]

=

∫ ∞

0

1−
[
d∏

i=1

∫ ln(K+c
xi

)

−∞
1√
2π

exp
(
− r22

)
dr

]
dc.

(2.9)

3 Regularity of the Cumulative Normal Distribution

Now that we have derived an semi-explicit formula for the solution, we establish regularity properties of
the integrand function in (2.9). This will be required in order to approximate the multivariate integrals
by quadratures (which are subsequently realized by neural networks) in Section 4 and to apply the neural
network results from Section 6 to our problem. To this end, we analyze the derivatives of the factors in the
tensor product, which essentially are compositions of the cumulative normal distribution with the natural
logarithm. As this function appears in numerous closed-form option pricing formulae (see, e.g., [31]), the
(Gevrey) type regularity estimates obtained in this section are of independent interest (they may, for example,
also be used in the analysis of deep network expression rates and of spectral methods for option pricing).
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Lemma 3.1. Let f : (0,∞)→ R be the function which satisfies for every t ∈ (0,∞) that

f(t) = 1√
2π

∫ ln(t)

−∞
e−

1
2 r

2

dr, (3.1)

let gn,k : (0,∞)→ R, n, k ∈ N0, be the functions which satisfy for every n, k ∈ N0, t ∈ (0,∞) that

gn,k(t) = t−ne−
1
2 [ln(t)]2 [ln(t)]k, (3.2)

and let (γn,k)n,k∈Z ⊆ Z be the integers which satisfy for every n, k ∈ Z that

γn,k =





1 : n = 1, k = 0

−γn−1,k−1 − (n− 1)γn−1,k + (k + 1)γn−1,k+1 : n > 1, 0 ≤ k < n

0 : else

. (3.3)

Then it holds for every n ∈ N that

(i) we have that f is n-times continuously differentiable and

(ii) we have for every t ∈ (0,∞) that

f (n)(t) = 1√
2π

[
n−1∑

k=0

γn,k gn,k(t)

]
. (3.4)

Proof of Lemma 3.1. We prove (i) and (ii) by induction on n ∈ N. For the base case n = 1 note that (3.1),

(3.2), (3.3), the fact that the function R 3 r 7→ e−
1
2 r

2 ∈ (0,∞) is continuous, the fundamental theorem of
calculus, and the chain rule yield

(A) that f is differentiable and

(B) that for every t ∈ (0,∞) it holds

f ′(t) = 1√
2π
e−

1
2 [ln(t)]2t−1 = 1√

2π
g1,0(t) = 1√

2π
γ1,0 g1,0(t). (3.5)

This establishes (i) and (ii) in the base case n = 1. For the induction step N 3 n→ n+ 1 ∈ {2, 3, 4, . . . }
note that for every t ∈ (0,∞) we have

d
dt

[
e−

1
2 [ln(t)]2

]
= −t−1e−

1
2 [ln(t)]2 ln(t). (3.6)

Combining this and (3.2) with the product rule establishes for every n ∈ N, k ∈ {0, 1, . . . , n− 1}, t ∈ (0,∞)
that

(gn,k)′(t) = d
dt

[
t−ne−

1
2 [ln(t)]2 [ln(t)]k

]

= −nt−(n+1)e−
1
2 [ln(t)]2 [ln(t)]k − t−(n+1)e−

1
2 [ln(t)]2 [ln(t)]k+1

+ t−(n+1)e−
1
2 [ln(t)]2k[ln(t)]max{k−1,0}

= −gn+1,k+1(t)− ngn+1,k(t) + kgn+1,max{k−1,0}(t).

(3.7)

Hence, we obtain that for every n ∈ N, t ∈ (0,∞) it holds

n−1∑

k=0

γn,k(gn,k)′(t)

=

n−1∑

k=0

[
γn,k

(
−gn+1,k+1(t)− ngn+1,k(t) + kgn+1,max{k−1,0}(t)

)]

=
n−1∑

k=0

−γn,k gn+1,k+1(t) +
n−1∑

k=0

−nγn,k gn+1,k(t) +
n−1∑

k=1

kγn,k gn+1,max{k−1,0}(t)

=
n∑

k=1

−γn,k−1 gn+1,k(t) +
n−1∑

k=0

−nγn,k gn+1,k(t) +
n−2∑

k=0

(k + 1)γn,k+1 gn+1,k(t).

(3.8)
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The fact that for every n ∈ N it holds that γn,−1 = γn,n = γn,n+1 = 0 and (3.3) therefore ensure that for
every n ∈ N, t ∈ (0,∞) we have

n−1∑

k=0

γn,k(gn,k)′(t) =
n∑

k=0

[(−γn,k−1 − nγn,k + (k + 1)γn,k+1) gn+1,k(t)]

=

n∑

k=0

γn+1,k gn+1,k(t).

(3.9)

Induction thus establishes (i) and (ii). The proof of Lemma 3.1 is thus completed.

Using the recursive formula from above we can now bound the derivatives of f . Note that the supremum
of f (n) is actually attained on the interval [e−4n, 1] and scales with n like e(cn2) for some c ∈ (0,∞). This
can directly be seen by calulating the maximum of the gn,k from (3.2). For our purposes, however, it is
sufficient to establish that all derivatives of f are bounded on (0,∞).

Lemma 3.2. Let f : (0,∞)→ R be the function which satisfies for every t ∈ (0,∞) that

f(t) = 1√
2π

∫ ln(t)

−∞
e−

1
2 r

2

dr. (3.10)

Then it holds for every n ∈ N that

sup
t∈(0,∞)

∣∣∣f (n)(t)
∣∣∣ ≤ max

{
(n− 1)! 2n−2 , sup

t∈[e−4n,1]

∣∣∣f (n)(t)
∣∣∣
}
<∞. (3.11)

Proof of Lemma 3.2. Throughout this proof let gn,k : (0,∞)→ R, n, k ∈ N0, be the functions introduced in
(3.2) and let (γn,k)n,k∈Z ⊆ Z be the integers introduced in (3.3). Then Lemma 3.1 shows for every n ∈ N
that

(a) we have that f is n-times continuously differentiable and

(b) we have for every t ∈ (0,∞) that

f (n)(t) = 1√
2π

[
n−1∑

k=0

γn,k gn,k(t)

]
. (3.12)

In addition, observe that for every m ∈ N, t ∈ (0, e−2m] holds 1
2 ln(t) ≤ −m. This ensures that for every

m ∈ N, t ∈ (0, e−2m] ⊆ (0, 1] we have

e−
1
2 [ln(t)]2 = e[ln(t)(− 1

2 ln(t))] =
[
eln(t)

]− 1
2 ln(t)

= t−
1
2 ln(t) =

(
1
t

) 1
2 ln(t) ≤

(
1
t

)−m
= tm. (3.13)

Moreover, note that the fundamental theorem of calculus implies for every t ∈ (0, 1] that

|ln(t)| = |ln(t)− ln(1)| = |ln(1)− ln(t)| =
∣∣∣∣
∫ 1

t

1

s
ds

∣∣∣∣ ≤
∣∣∣∣
1

t
(1− t)

∣∣∣∣ ≤ t−1. (3.14)

Combining (3.2), (3.12), and (3.13) therefore establishes that for every n ∈ N, t ∈ (0, e−4n)⊆ (0, 1] it holds

∣∣∣f (n)(t)
∣∣∣ = 1√

2π

∣∣∣∣∣
n−1∑

k=0

γn,k gn,k(t)

∣∣∣∣∣ = 1√
2π

∣∣∣∣∣
n−1∑

k=0

γn,kt
−ne−

1
2 [ln(t)]2 [ln(t)]k

∣∣∣∣∣

≤ 1√
2π

[
n−1∑

k=0

|γn,k| tn−k
]
≤ 1√

2π

[
n−1∑

k=0

|γn,k|
]
.

(3.15)
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In addition, observe that the fundamental theorem of calculus ensures that for every t ∈ [1,∞) we have

|ln(t)| = |ln(t)− ln(1)| =
∣∣∣∣
∫ t

1

1

s
ds

∣∣∣∣ ≤ |t− 1| ≤ t. (3.16)

This, (3.2), (3.12), and the fact that for every t ∈ (0,∞) it holds |e− 1
2 [ln(t)]2 | ≤ 1 imply that for every n ∈ N,

t ∈ (1,∞) we have

∣∣∣f (n)(t)
∣∣∣ = 1√

2π

∣∣∣∣∣
n−1∑

k=0

γn,k gn,k(t)

∣∣∣∣∣ = 1√
2π

∣∣∣∣∣
n−1∑

k=0

γn,kt
−ne−

1
2 [ln(t)]2 [ln(t)]k

∣∣∣∣∣

≤ 1√
2π

[
n−1∑

k=0

|γn,k| t−n |ln(t)|k
]
≤ 1√

2π

[
n−1∑

k=0

|γn,k| t−ntk
]

= 1√
2π

[
n−1∑

k=0

|γn,k| t−n+k

]
≤ 1√

2π

[
n−1∑

k=0

|γn,k|
]
.

(3.17)

Moreover, observe that (a) assures that for every n ∈ N it holds that the function f (n) is continuous. This
and the boundedness of the set [e−4n, 1] ensure that for every n ∈ N we have

sup
t∈[e−4n,1]

∣∣∣f (n)(t)
∣∣∣ <∞. (3.18)

Combining this with (3.15) and (3.17) establishes that for every n ∈ N we have

sup
t∈(0,∞)

∣∣∣f (n)(t)
∣∣∣ ≤ max

{
1√
2π

[
n−1∑

k=0

|γn,k|
]
, sup
t∈[e−4n,1]

∣∣∣f (n)(t)
∣∣∣
}
<∞. (3.19)

Furthermore, note that (3.3) implies that for every n ∈ {2, 3, 4, . . . } it holds

n−1∑

k=0

|γn,k| =
n−1∑

k=0

|−γn−1,k−1 − (n− 1)γn−1,k + (k + 1)γn−1,k+1|

≤
[
n−1∑

k=0

|γn−1,k−1|
]

+

[
n−1∑

k=0

(n− 1) |γn−1,k|
]

+

[
n−1∑

k=0

(k + 1) |γn−1,k+1|
]

=

[
n−2∑

k=−1

|γn−1,k|
]

+

[
n−1∑

k=0

(n− 1) |γn−1,k|
]

+

[
n∑

k=1

k |γn−1,k|
]
.

(3.20)

Combining this with the fact that for every n ∈ {2, 3, 4, . . . }, k ∈ Z\{0, 1, . . . , n − 2} we have γn−1,k = 0
implies that for every n ∈ {2, 3, 4, . . . } it holds

n−1∑

k=0

|γn,k| =
n−2∑

k=0

[(1 + (n− 1) + k) |γn−1,k|] ≤ (2n− 2)

[
n−2∑

k=0

|γn−1,k|
]

= 2(n− 1)

[
n−2∑

k=0

|γn−1,k|
]
. (3.21)

The fact that γ1,0 = 1 hence implies that for every n ∈ N we have

n−1∑

k=0

|γn,k| ≤ (n− 1)! 2n−1

[
0∑

k=0

|γ1,k|
]

= (n− 1)! 2n−1. (3.22)

Combining this and (3.19) ensures that for every n ∈ N it holds

sup
t∈(0,∞)

∣∣∣f (n)(t)
∣∣∣ ≤ max

{
1√
2π

(n− 1)! 2n−1 , sup
t∈[e−4n,1]

∣∣∣f (n)(t)
∣∣∣
}
<∞. (3.23)

The proof of Lemma 3.2 is thus completed.
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In the following corollary we estimate the derivatives of the function x→ f(K+c
x ) required to approximate

this function by neural networks.

Corollary 3.3. Let n ∈ N, K ∈ [0,∞), c, a ∈ (0,∞), b ∈ (a,∞), let f : (0,∞) → R be the function which
satisfies for every t ∈ (0,∞) that

f(t) = 1√
2π

∫ ln(t)

−∞
e−

1
2 r

2

dr, (3.24)

and let h : [a, b]→ R be the function which satisfies for every x ∈ [a, b] that

h(x) = f(K+c
x ). (3.25)

Then it holds

(i) that f and h are infinitely often differentiable and

(ii) that

max
k∈{0,1,...,n}

sup
x∈[a,b]

∣∣∣h(k)(x)
∣∣∣ ≤ n2n−1n!


 max

k∈{0,1,...,n}
sup

t∈[K+c
b

,K+c
a

]

∣∣∣f (k)(t)
∣∣∣


max{a−2n, 1}max{(K + c)n, 1}.

(3.26)

Proof of Corollary 3.3. Throughout this proof let αm,j ∈ Z, m, j ∈ Z, be the integers which satisfy that for
every m, j ∈ Z it holds

αm,j =





−1 : m = j = 1

−(m− 1 + j)αm−1,j − αm−1,j−1 : m > 1, 1 ≤ j ≤ m
0 : else

. (3.27)

Note that Lemma 3.1 and the chain rule ensure that the functions f and h are infinitely often differentiable.
Next we claim that for every m ∈ N, x ∈ [a, b] it holds

h(m)(x) = dm

dxm

(
f(K+c

x )
)

=

m∑

j=1

αm,j(K + c)jx−(m+j)(f (j)
(
K+c
x )
)
. (3.28)

We prove (3.28) by induction on m ∈ N. To prove the base case m = 1 we note that the chain rule ensures
that for every x ∈ [a, b] we have

d
dx

(
f(K+c

x )
)

= −(K + c)x−2
(
f ′(K+c

x )
)

= α1,1(K + c)x−2
(
f ′(K+c

x )
)
. (3.29)

This establishes (3.28) in the base case m = 1. For the induction step N 3 m→ m+ 1 ∈ N observe that the
chain rule implies for every m ∈ N, x ∈ [a, b] that

d
dx

[
m∑

j=1

αm,j(K + c)jx−(m+j)
(
f (j)(K+c

x
)
)]

= −
[

m∑

j=1

αm,j(K + c)j+1x−(m+j+2)
(
f (j+1)(K+c

x
)
)]
−
[

m∑

j=1

αm,j(K + c)j(m+ j)x−(m+j+1)
(
f (j)(K+c

x
)
)]

= −
[
m+1∑

j=2

αm,j−1(K + c)jx−(m+j+1)
(
f (j)(K+c

x
)
)]
−
[

m∑

j=1

αm,j(K + c)j(m+ j)x−(m+j+1)
(
f (j)(K+c

x
)
)]

=

m+1∑

j=1

(−(m+ j)αm,j − αm,j−1)(K + c)jx−(m+1+j)
(
f (j)(K+c

x
)
)
.

(3.30)
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Induction thus establishes (3.28). Next note that (3.27) ensures that for every m ∈ {2, 3, . . . } it holds

max
j∈{1,2,...,m}

|αm,j | = max
j∈{1,2,...,m}

|−(m− 1 + j)αm−1,j − αm−1,j−1|

≤
[

max
j∈{1,2,...,m−1}

|(m− 1 + j)αm−1,j |
]

+

[
max

j∈{1,2,...,m−1}
|αm−1,j |

]

≤ (2m− 1)

[
max

j∈{1,2,...,m−1}
|αm−1,j |

]
≤ 2m

[
max

j∈{1,2,...,m−1}
|αm−1,j |

]
.

(3.31)

Induction hence proves that for every m ∈ N we have maxj∈{1,2,...,m} |αm,j | ≤ 2m−1m!. Combining this with
(3.28) implies that for every m ∈ {1, 2, . . . , n}, x ∈ [a, b] we have

∣∣∣h(m)(x)
∣∣∣ =

∣∣∣∣∣∣

m∑

j=1

αm,j(K + c)jx−(m+j)
(
f (j)(K+c

x )
)
∣∣∣∣∣∣

≤ 2m−1m!

[
max

j∈{1,2,...,m}
sup

t∈[K+c
b ,K+c

a ]

∣∣∣f (j)(t)
∣∣∣
]

max{x−2m, 1}



m∑

j=1

(K + c)j




≤ m2m−1m!

[
max

j∈{1,2,...,m}
sup

t∈[K+c
b ,K+c

a ]

∣∣∣f (j)(t)
∣∣∣
]

max{x−2m, 1}max{(K + c)m, 1}.

(3.32)

Combining this with the fact that supx∈[a,b] |h(x)| = supt∈[K+c
b ,K+c

a ] |f(t)| establishes that it holds

max
k∈{0,1,...,n}

sup
x∈[a,b]

∣∣∣h(k)(x)
∣∣∣ ≤ n2n−1n!


 max

k∈{0,1,...,n}
sup

t∈[K+c
b

,K+c
a

]

∣∣∣f (k)(t)
∣∣∣


max{a−2n, 1}max{(K + c)n, 1}. (3.33)

This completes the proof of Corollary 3.3.

Next we consider the derivatives of the functions c 7→ f(K+c
xi

), i ∈ {1, 2, . . . , d}, and their tensor product,
which will be needed in order to approximate approximate the outer integral in (2.9) by composite Gaussian
quadrature.

Corollary 3.4. Let n ∈ N, K ∈ [0,∞), x ∈ (0,∞), let f : (0,∞) → R be the function which satisfies for
every t ∈ (0,∞) that

f(t) = 1√
2π

∫ ln(t)

−∞
e−

1
2 r

2

dr, (3.34)

and let g : (0,∞)→ R be the function which satisfies for every t ∈ (0,∞) that

g(t) = f
(
K+t
x

)
. (3.35)

Then it holds

(i) that f and g are infinitely often differentiable and

(ii) that

sup
t∈(0,∞)

∣∣∣g(n)(t)
∣∣∣ ≤

[
sup

t∈(0,∞)

∣∣∣f (n)(t)
∣∣∣
]
|x|−n <∞. (3.36)

Proof of Corollary 3.4. Combining Lemma 3.2 with the chain rule implies that for every t ∈ (0,∞) it holds

∣∣∣g(n)(t)
∣∣∣ =

∣∣ dn

dtn

(
f(K+t

x )
)∣∣ =

∣∣∣f (n)
(
K+t
x

)
1
xn

∣∣∣ ≤
[

sup
t∈(0,∞)

∣∣∣f (n)(t)
∣∣∣
]
|x|−n <∞. (3.37)

This completes the proof of Corollary 3.4.
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Lemma 3.5. Let d, n ∈ N, a ∈ (0,∞), b ∈ (a,∞), K = (K1, . . . ,Kd) ∈ [0,∞)d, x = (x1, . . . , xd) ∈ [a, b]d,
let f : (0,∞)→ R be the function which satisfies for every t ∈ (0,∞) that

f(t) = 1√
2π

∫ ln(t)

−∞
e−

1
2 r

2

dr, (3.38)

and let F : (0,∞)→ R be the function which satisfies for every c ∈ (0,∞) that

F (c) = 1−
[
d∏
i=1

f
(
Ki+c
xi

)]
. (3.39)

Then it holds

(i) that f and F are infinitely often differentiable and

(ii) that

sup
c∈(0,∞)

∣∣∣F (n)(c)
∣∣∣ ≤

[
max

k∈{0,1,...,n}
sup

t∈(0,∞)

∣∣∣f (k)(t)
∣∣∣
]n
dna−n <∞. (3.40)

Proof of Lemma 3.5. Note that Lemma 3.1 ensures that f and F are infinitely often differentiable. Moreover,
observe that (3.39) and the general Leibniz rule imply for every c ∈ (0,∞) that

F (n)(c) = − dn

dcn

[
d∏
i=1

f
(
Ki+c
xi

)]

= −
∑

l1,l2,...,ld∈N0,∑d
i=1 li=n

[(
n

l1, l2, . . . , ld

)
d∏
i=1

(
dli

dcli

[
f
(
Ki+c
xi

)])]
.

(3.41)

Next note that the fact that for every r ∈ R it holds that e−
1
2 r

2 ≥ 0 ensures that

sup
t∈(0,∞)

|f(t)| = sup
t∈(0,∞)

∣∣∣∣∣
1√
2π

∫ ln(t)

−∞
e−

1
2 r

2

dr

∣∣∣∣∣ =

∣∣∣∣ 1√
2π

∫ ∞

−∞
e−

1
2 r

2

dr

∣∣∣∣ = 1. (3.42)

Corollary 3.4 hence establishes that for every c ∈ [0,∞), l1, . . . , ld ∈ N0 with
∑d
i=1 li = n it holds

∣∣∣∣
d∏
i=1

(
dli

dcli

[
f
(
Ki+c
xi

)])∣∣∣∣ ≤
d∏
i=1

([
sup

t∈(0,∞)

∣∣∣f (li)(t)
∣∣∣
]
|xi|−li

)

=

[
d∏
i=1

|xi|−li
][

d∏
i=1

(
sup

t∈(0,∞)

∣∣∣f (li)(t)
∣∣∣
)]

≤
[
d∏
i=1

|xi|−li
]



∏
i∈{1,2,...,d},

li>0

(
max

k∈{1,2,...,n}
sup

t∈(0,∞)

∣∣∣f (k)(t)
∣∣∣
)


≤
[
d∏
i=1

|xi|−li
]



∏
i∈{1,2,...,d},

li>0

max

{
1, max
k∈{1,2,...,n}

sup
t∈(0,∞)

∣∣∣f (k)(t)
∣∣∣
}


≤
[
d∏
i=1

|xi|−li
][

max

{
1, max
k∈{1,2,...,n}

sup
t∈(0,∞)

∣∣∣f (k)(t)
∣∣∣
}](l1+...+ld)

=

[
d∏
i=1

|xi|−li
][

max
k∈{0,1,...,n}

sup
t∈(0,∞)

∣∣∣f (k)(t)
∣∣∣
]n
.

(3.43)
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Moreover, note that the multinomial theorem ensures that

dn =

[
d∑

i=1

1

]n
=

∑

l1,l2,...,ld∈N0,∑d
i=1 li=n

[(
n

l1, l2, . . . , ld

)
d∏
i=1

1li
]

=
∑

l1,l2,...,ld∈N0,∑d
i=1 li=n

[(
n

l1, l2, . . . , ld

)]
.

(3.44)

Combining this with (3.41), (3.43), and the assumption that x ∈ [a, b]d implies that for every c ∈ (0,∞) we
have

∣∣∣F (n)(c)
∣∣∣ ≤

∣∣∣∣∣∣∣∣∣

∑

l1,l2,...,ld∈N0,∑d
i=1 li=n

[(
n

l1, l2, . . . , ld

)[
d∏
i=1

|xi|−li
][

max
k∈{0,1,...,n}

sup
t∈(0,∞)

∣∣∣f (k)(t)
∣∣∣
]n]

∣∣∣∣∣∣∣∣∣

≤ a−n
[

max
k∈{0,1,...,n}

sup
t∈(0,∞)

∣∣∣f (k)(t)
∣∣∣
]n
∣∣∣∣∣∣∣∣∣

∑

l1,l2,...,ld∈N0,∑d
i=1 li=n

(
n

l1, l2, . . . , ld

)
∣∣∣∣∣∣∣∣∣

= a−n
[

max
k∈{0,1,...,n}

sup
t∈(0,∞)

∣∣∣f (k)(t)
∣∣∣
]n
dn.

(3.45)

This completes the proof of Lemma 3.5.

4 Quadrature

To approximate the function x 7→ u(0, x) from (2.9) by a neural network we need to evaluate, for arbitrary,
given x, an expression of the form

∫∞
0
Fx(c)dc with Fx as defined in Lemma 4.2. We achieve this by proving

in Lemma 4.2 that the functions Fx decay sufficiently fast for c→∞, and then employ numerical integration

to show that the definite integral
∫ N

0
Fx(c)dc can be sufficiently well approximated by a weighted sum of

Fx(cj) for suitable quadrature points cj ∈ (0, N). The representation of such a sum can be realized by
neural networks. We show in Section 6 and 7 how the functions x 7→ Fx(cj) for (cj) ∈ (0, N) can be realized
efficiently due to their tensor product structure. We start by recalling an error bound for composite Gaussian
quadrature which is explicit in the stepsize and quadrature order.

Lemma 4.1. Let n,M ∈ N, N ∈ (0,∞). Then there exist real numbers (cj)
nM
j=1 ⊆ (0, N) and (wj)

nM
j=1 ⊆ (0,∞)

such that for every h ∈ C2n([0, N ],R) it holds

∣∣∣∣∣∣

∫ N

0

h(t) dt−
nM∑

j=1

wjh(cj)

∣∣∣∣∣∣
≤ 1

(2n)!N
2n+1M−2n

[
sup

ξ∈[0,N ]

∣∣∣h(2n)(ξ)
∣∣∣
]
. (4.1)

Proof of Lemma 4.1. Throughout this proof let h ∈ C2n([0, N ],R) and αk ∈ [0, N ], k ∈ {0, 1, . . . ,M}, such
that for every k ∈ {0, 1, . . . ,M} it holds αk = kN

M . Observe that [32, Theorems 4.17, 6.11, and 6.12] ensure
that for every k ∈ {0, 1, . . . ,M − 1} there exist (γki )ni=1 ⊆ (αk, αk+1), (ωki )ni=1 ⊆ (0,∞), and ξk ∈ [αk, αk+1]
such that

∫ αk+1

αk

h(t) dt−
n∑

i=1

ωki h(γki ) =
h(2n)(ξk)

(2n)!

∫ αk+1

αk

[
n∏
i=1

(t− γki )2

]
dt. (4.2)

Next note that for every k ∈ {0, 1, . . . ,M − 1} it holds

∫ αk+1

αk

[
n∏
i=1

(t− γki )2

]
dt ≤

∫ αk+1

αk

[
n∏
i=1

(αk − αk+1)2

]
dt =

[
N
M

]2n+1
. (4.3)
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Combining this with (4.2) yields that for every k ∈ {0, 1, . . . ,M} we have
∣∣∣∣∣

∫ αk+1

αk

h(t) dt−
n∑

i=1

ωki h(γki )

∣∣∣∣∣ ≤
∣∣h(2n)(ξk)

∣∣
(2n)!

[
N
M

]2n+1 ≤ 1
(2n)!

[
N
M

]2n+1

[
sup

ξ∈[0,N ]

∣∣∣h(2n)(ξ)
∣∣∣
]
. (4.4)

Hence, we obtain
∣∣∣∣∣

∫ N

0

h(t) dt−
M−1∑

k=0

n∑

i=1

ωki h(γki )

∣∣∣∣∣ =

∣∣∣∣∣
M−1∑

k=0

[∫ αk+1

αk

h(t) dt−
n∑

i=1

ωki h(γki )

]∣∣∣∣∣

≤
M−1∑

k=0

(
1

(2n)!

(
N
M

)2n+1

[
sup

ξ∈[0,N ]

∣∣∣h(2n)(ξ)
∣∣∣
])

= 1
(2n)!N

2n+1M−2n

[
sup

ξ∈[0,N ]

∣∣∣h(2n)(ξ)
∣∣∣
]
.

(4.5)

Let (cj)
nM
j=1 ⊆ (0, N), (wj)

nM
j=1 ⊆ (0,∞) such that for every i ∈ {1, 2, . . . , n}, k ∈ {0, 1, . . . ,M − 1} it holds

ckn+i = γki and wkn+i = ωki . (4.6)

Next observe that
∣∣∣∣∣∣

∫ N

0

h(t) dt−
nM∑

j=1

wjh(cj)

∣∣∣∣∣∣
=

∣∣∣∣∣

∫ N

0

h(t) dt−
M−1∑

k=0

n∑

i=1

ωki h(γki )

∣∣∣∣∣ . (4.7)

This completes the proof of Lemma 4.1.

In the following we bound the error due to truncating the domain of integration.

Lemma 4.2. Let d, n ∈ N, a ∈ (0,∞), b ∈ (a,∞), K = (K1,K2, . . . ,Kd) ∈ [0,∞)d, let Fx : (0,∞) → R,
x ∈ [a, b]d, be the functions which satisfy for every x = (x1, x2, . . . , xd) ∈ [a, b]d, c ∈ (0,∞) that

Fx(c) = 1−
d∏

i=1

[
1√
2π

∫ ln(
Ki+c

xi
)

−∞
e−

1
2 r

2

dr

]
, (4.8)

and for every ε ∈ (0, 1] let Nε ∈ R be given by Nε = 2e2(n+1)(b + 1)1+ 1
n d

1
n ε−

1
n . Then it holds for every

ε ∈ (0, 1] that

sup
x∈[a,b]d

∣∣∣∣
∫ ∞

Nε

Fx(c) dc

∣∣∣∣ ≤ ε. (4.9)

Proof of Lemma 4.2. Throughout this proof let g : (0,∞)→ (0, 1) be the function given by

g(t) = 1− 1√
2π

∫ ln(t)

−∞
e−

1
2 r

2

dr. (4.10)

Note that [6, Eq.(5)] ensures that for every y ∈ [0,∞) we have 2√
π

∫∞
y
e−r

2

dr ≤ e−y2 . This implies for every

t ∈ [1,∞) that

0 < g(t) = 1− 1√
2π

∫ ln(t)

−∞
e−

1
2 r

2

dr = 1√
2π

∫ ∞

ln(t)

e−
1
2 r

2

dr = 1√
π

∫ ∞
ln(t)√

2

e−r
2

dr ≤ 1
2e
− 1

2 [ln(t)]2 . (4.11)

Furthermore, observe that for every t ∈ [e2(n+1),∞) it holds

e−
1
2 [ln(t)]2 = e[ln(t)(− 1

2 ln(t))] =
[
eln(t)

]− 1
2 ln(t)

= t−
1
2 ln(t) ≤ t−(n+1). (4.12)
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This, (4.11), and the fact that for every ε ∈ (0, 1], c ∈ [Nε,∞), x ∈ [a, b]d, i ∈ {1, 2, . . . , d} we have
Ki+c
xi
≥ c

b ≥ e2(n+1) ≥ 1 imply that for every ε ∈ (0, 1], c ∈ [Nε,∞), x ∈ [a, b]d it holds

|Fx(c)| =
∣∣∣∣∣1−

d∏

i=1

[
1√
2π

∫ ln(
Ki+c

xi
)

−∞
e−

1
2 r

2

dr

]∣∣∣∣∣ =

∣∣∣∣∣1−
d∏

i=1

[
1− g(Ki+cxi

)
]∣∣∣∣∣

≤
∣∣∣∣∣1−

d∏

i=1

[
1− 1

2

[
Ki+c
xi

]−(n+1)
]∣∣∣∣∣ ≤

∣∣∣∣∣1−
d∏

i=1

[
1− 1

2

[
c
b

]−(n+1)
]∣∣∣∣∣ .

(4.13)

Combining this with the binomial theorem and the fact that for every i ∈ {1, 2, . . . , d} we have
(
d
i

)
≤ di

i! ≤
di

exp(i ln(i)−i+1) ≤
(de)i

ii establishes that for every ε ∈ (0, 1], c ∈ [Nε,∞), x ∈ [a, b]d it holds

|Fx(c)| ≤
∣∣∣∣1−

(
1− 1

2

[
c
b

]−(n+1)
)d∣∣∣∣ =

∣∣∣∣∣1−
d∑

i=0

[(
d

i

)[
− 1

2

[
c
b

]−(n+1)
]i]
∣∣∣∣∣

≤
d∑

i=1

[(
d

i

)[
1
2

]i [ b
c

](n+1)i
]
≤

d∑

i=1

[
de
2i

]i [ b
c

](n+1)i

=

d∑

i=1

[
e
2i

]i [
d
[
b
c

]n+1
]i
≤ 2d

[
b
c

]n+1

[
d∑

i=1

[
d
[
b
c

]n+1
]i−1

]

= 2d
[
b
c

]n+1

[
d−1∑

i=0

[
d
[
b
c

]n+1
]i
]
≤ 2d

[
b
c

]n+1

[ ∞∑

i=0

[
d
[
b
c

]n+1
]i
]
.

(4.14)

This, the geometric sum formula, and the fact that for every ε ∈ (0, 1] it holds that Nε ≥ 2bd
1
n imply that

for every ε ∈ (0, 1], c ∈ [Nε,∞), x ∈ [a, b]d we have

|Fx(c)| ≤ 2d
[
b
c

]n+1

[
1

1− d
[
b
c

]n+1

]
≤ 4d

[
b
c

]n+1
. (4.15)

Hence, we obtain for every ε ∈ (0, 1], x ∈ [a, b]d that
∣∣∣∣
∫ ∞

Nε

Fx(c) dc

∣∣∣∣ ≤ 4dbn+1

∣∣∣∣
∫ ∞

Nε

c−(n+1)dc

∣∣∣∣ = 4dbn+1 1
n (Nε)

−n

= 4
ndb

n+1
[
2e2(n+1)(b+ 1)1+ 1

n d
1
n ε−

1
n

]−n

= 4
ndb

n+12−ne−(2n2+2n)(b+ 1)−(n+1)d−1ε

= 4
n2−ne−(2n2+n)

[
b
b+1

]n+1

ε ≤ ε.

(4.16)

This completes the proof of Lemma 4.2.

Next we combine the result above with Lemma 4.1 in order to derive the number of terms needed in
order to approximate the integral by a sum to within a prescribed error bound ε.

Lemma 4.3. Let n ∈ N, a ∈ (0,∞), b ∈ (a,∞), (Ki)i∈N ⊆ [0,∞), let F dx : (0,∞) → R, x ∈ [a, b]d, d ∈ N,
be the functions which satisfy for every d ∈ N, x = (x1, x2, . . . , xd) ∈ [a, b]d, c ∈ (0,∞) that

F dx (c) = 1−
d∏

i=1

[
1√
2π

∫ ln(
Ki+c

xi
)

−∞
e−

1
2 r

2

dr

]
, (4.17)

and for every d ∈ N, ε ∈ (0, 1] let Nd,ε ∈ R be given by

Nd,ε = 2e2(n+1)(b+ 1)1+ 1
n d

1
n

[
ε
2

]− 1
n . (4.18)

Then there exist Qd,ε ∈ N, cdε,j ∈ (0, Nd,ε), wdε,j ∈ [0,∞), j ∈ {1, 2, . . . , Qd,ε}, d ∈ N, ε ∈ (0, 1], such
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(i) that

sup
ε∈(0,1],d∈N

[
Qd,ε

d1+ 2
n ε−

2
n

]
<∞ (4.19)

and

(ii) that for every d ∈ N, ε ∈ (0, 1] it holds
∑Qd,ε
j=1 w

d
ε,j = Nd,ε and

sup
x∈[a,b]d

∣∣∣∣∣∣

∫ ∞

0

F dx (c) dc−
Qd,ε∑

j=1

wdε,jF
d
x (cdε,j)

∣∣∣∣∣∣
≤ ε. (4.20)

Proof of Lemma 4.3. Note that Lemma 3.5 ensures the existence of Sm ∈ R, m ∈ N, such that for every
d,m ∈ N, x ∈ [a, b]d it holds

sup
c∈(0,∞)

∣∣∣(F dx )(m)(c)
∣∣∣ ≤ Smdm. (4.21)

Let Qd,ε ∈ R, d ∈ N, ε ∈ (0, 1], be given by

Qd,ε = n

⌈[
1

(2n)! (Nd,ε)
2n+1S2nd

2n 2
ε

] 1
2n

⌉
. (4.22)

Next observe that Lemma 4.1 (with N ↔ Nd,ε in the notation of Lemma 4.1) establishes the existence of
cdε,j ∈ (0, Nd,ε), w

d
ε,j ∈ [0,∞), j ∈ {1, 2, . . . , Qd,ε}, d ∈ N, ε ∈ (0, 1], such that for every d ∈ N, ε ∈ (0,∞),

x ∈ [a, b]d we have
∑Qd,ε
j=1 w

d
ε,j = Nd,ε and

∣∣∣∣∣∣

∫ Nd,ε

0

F dx (c)dc−
Qd,ε∑

j=1

wdε,jF
d
x (cdε,j)

∣∣∣∣∣∣
≤ 1

(2n)! (Nd,ε)
2n+1

[
Qd,ε
n

]−2n

S2nd
2n

≤ 1
(2n)! (Nd,ε)

2n+1
[

1
(2n)! (Nd,ε)

2n+1S2nd
2n 2

ε

]−1

S2nd
2n = ε

2 .

(4.23)

Moreover, note that Lemma 4.2 (with Nd, ε2 ↔ Nd,ε in the notation of Lemma 4.2) and (4.23) imply for every

d ∈ N, ε ∈ (0, 1], x ∈ [a, b]d that
∣∣∣∣∣∣

∫ ∞

0

F dx (c) dc−
Qd,ε∑

j=1

wdε,jF
d
x (cdε,j)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∫ Nd,ε

0

F dx (c) dc−
Qd,ε∑

j=1

wdε,jF
d
x (cdε,j)

∣∣∣∣∣∣
+

∣∣∣∣∣

∫ ∞

Nd,ε

F dx (c) dc

∣∣∣∣∣

≤ ε
2 + ε

2 = ε.

(4.24)

Furthermore, we have for every d ∈ N, ε ∈ (0, 1] that

Qd,ε ≤ n
(

1 +
[

1
(2n)! (Nd,ε)

2n+1S2nd
2n 2

ε

] 1
2n

)

= n+ n
[

2S2n

(2n)!

] 1
2n

dε−
1
2n (Nd,ε)

1+ 1
2n

≤ n+ n
[

2S2n

(2n)!

] 1
2n

dε−
1
2n

[
4e2(n+1)(b+ 1)1+ 1

n d
1
n ε−

1
n

]1+ 1
2n

= n+ 4n
[

8S2n

(2n)!

] 1
2n

e2n+3+ 1
n [b+ 1]

1+ 3
2n+ 1

2n2 d1+ 1
n+ 1

2n2 ε−
3
2n− 1

2n2

≤ nd1+ 2
n ε−

2
n + 4n

[
8S2n

(2n)!

] 1
2n

e2n+3+ 1
n [b+ 1]

1+ 3
2n+ 1

2n2 d1+ 2
n ε−

2
n .

(4.25)
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This implies

sup
ε∈(0,1],d∈N

[
Qd,ε

d1+ 2
n ε−

2
n

]
≤ n+ 4n

[
8S2n

(2n)!

] 1
2n

e2n+3+ 1
n [b+ 1]

1+ 3
2n+ 1

2n2 <∞. (4.26)

The proof of Lemma 4.3 is thus completed.

5 Basic ReLU DNN Calculus

In order to talk about neural networks we will, up to some minor changes and additions, adopt the notation
of P. Petersen and F. Voigtlaender from [36]. This allows us to differentiate between a neural network,
defined as a structured set of weights, and its realization, which is a function on Rd. Note that this is
almost necessary in order to talk about the complexity of neural networks, since notions like depth, size
or architecture do not make sense for general functions on Rd. Even if we know that a given function ’is’
a neural network, i.e. can be written a series of affine transformations and componentwise non-linearities,
there are, in general, multiple non-trivially different ways to do so.

Each of these structured sets we consider does however define a unique function. This enables us to
explicitly and unambiguously construct complex neural networks from simple ones, and subsequently relate
the approximation capability of a given network to its complexity. Further note that since the realization
of neural network is unique we can still speak of a neural network approximating a given function when its
realization does so.

Specifically, a neural network will be given by its architecture, i.e. number of layers L and layer dimen-
sions1N0, N1, . . . , NL, as well as the weights determining the affine transformations used to compute each
layer from the previous one. Note that our notion of neural networks does not attach the architecture and
weights to a fixed activation function, but instead considers the realization of such a neural network with
respect to a given activation function. This choice is a purely technical one here, as we always consider
networks with ReLU activation function.

Setting 5.1 (Neural networks). For every L ∈ N, N0, N1, . . . , NL ∈ N let NN0,N1,...,NL
L be the set given by

NN0,N1,...,NL
L = ×Ll=1

(
RNl×Nl−1 × RNl

)
, (5.1)

let N be the set given by

N =
⋃

L∈N,
N0,N1,...,NL∈N

NN0,N1,...,NL
L , (5.2)

let L,M,Ml,dimin,dimout : N → N, l ∈ {1, 2, . . . , L}, be the functions which satisfy for every L ∈ N
and every N0, N1, . . . , NL ∈ N, Φ = (((A1

i,j)
N1,N0

i,j=1 , (b
1
i )
N1
i=1), . . . , ((ALi,j)

NL,NL−1

i,j=1 , (bLi )NLi=1)) ∈ NN0,N1,...,NL
L ,

l ∈ {1, 2, . . . , L} L(Φ) = L, dimin(Φ) = N0, dimout(Φ) = NL,

Ml(Φ) =

Nl∑

i=1


1R\{0}(b

l
i) +

Nl−1∑

j=1

1R\{0}(A
l
i,j)


 , (5.3)

and

M(Φ) =

L∑

l=1

Ml(Φ). (5.4)

For every % ∈ C(R,R) let %∗ : ∪d∈N Rd → ∪d∈NRd be the function which satisfies for every d ∈ N,
x = (x1, x2, . . . , xd) ∈ Rd that %∗(x) = (%(x1), %(x2), . . . , %(xd)), and for every % ∈ C(R,R) denote by

1Often phrased as input dimension N0 and output dimension NL with Nl, l ∈ {1, 2, . . . , L− 1} many neurons in the l’th
layer.
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R% : N→ ∪a,b∈N C(Ra,Rb) the function which satisfies for every L ∈ N, N0, N1, . . . , NL ∈ N, x0 ∈ RN0 , and

Φ = ((A1, b1), (A2, b2), . . . , (AL, bL)) ∈ NN0,N1,...,NL
L , with x1 ∈ RN1 , . . . , xL−1 ∈ RNL−1 given by

xl = %∗(Alxl−1 + bl) , l = 1, ..., L− 1 , (5.5)

that

[R%(Φ)] (x0) = ALxL−1 + bL . (5.6)

The quantityM(Φ) simply denotes the number of non-zero entries of the network Φ, which together with
its depth L(Φ) will be how we measure the ’size’ of a given neural network Φ. One could instead consider
the number of all weights, i.e. including zeroes, of a neural network. Note, however, that for any non-
degenerate neural network Φ the total number of weights is bounded from above by M(Φ)2 +M(Φ). Here,
the terminology “degenerate” refers to a neural network which has neurons that can be removed without
changing the realization of the NN. This implies for any neural network there also exists a non-degenerate
one of smaller or equal size, which has the exact same realization. Since our primary goal is to approximate
d-variate functions by networks the size of which only depends polynomially on the dimension, the above
means that the qualitatively same results hold regardless of which notion of ’size’ is used.

We start by introducing two basic tools for constructing new neural networks from known ones and, in
Lemma 5.3 and Lemma 5.4, consider how the properties of a derived network depend on its parts. Note that
techniques like these have already been used in [36] and [39].

The first tool will be the ’composition’ of neural networks in (5.7), which takes two networks and provides
a new network whose realization is the composition of the realizations of the two constituent functions.

The second tool will be the ’parallelization’ of neural networks in (5.12), which will be useful when
considering linear combinations or tensor products of functions which we can already approximate. While
parallelization of same-depth networks (5.10) works with arbitrary activation functions, we use for the
general case that any ReLU network can easily be extended (5.11) to an arbitrary depth without changing
its realization.

Setting 5.2. Assume Setting 5.1, for every L1, L2 ∈ N, Φi =
(
(Ai1, b

i
1), (Ai2, b

i
2), . . . , (AiLi , b

i
Li

)
)
∈ N,

i ∈ {1, 2}, with dimin(Φ1) = dimout(Φ
2) let Φ1 � Φ2 ∈ N be the neural network given by

Φ1 � Φ2 =

(
(A2

1, b
2
1), . . . , (A2

L2−1, b
2
L2−1),

((
A2

L2

−A2
L2

)
,

(
b2L2

−b2L2

))
,
((
A1

1 −A1
1

)
, b11
)
, (A1

2, b
1
2), . . . , (A1

L1
, b1L1

)

)
, (5.7)

for every d ∈ N, L ∈ N ∩ [2,∞) let ΦId
d,L ∈ N be the neural network given by

ΦId
d,L =



((

IdRd
−IdRd

)
, 0

)
, (IdR2d , 0), . . . , (IdR2d , 0)︸ ︷︷ ︸

L-2 times

,
((

IdRd −IdRd
)
, 0
)

 , (5.8)

for every d ∈ N let ΦId
d,1 ∈ N be the neural network given by

ΦId
d,1 = ((IdRd , 0)), (5.9)

for every n,L ∈ N, Φj = ((Aj1, b
j
1), (Aj2, b

j
2), . . . , (AjL, b

j
L)) ∈ N, j ∈ {1, 2, . . . , n}, let Ps(Φ1,Φ2, . . . ,Φn) ∈ N

be the neural network which satisfies

Ps(Φ1,Φ2, . . . ,Φn) =










A1
1

A2
1

. . .

An
1


 ,




b11
b21
...
bn1





 , . . . ,







A1
L

A2
L

. . .

An
L


 ,




b1L
b2L
...
bnL








 , (5.10)

for every L, d ∈ N, Φ ∈ N with L(Φ) ≤ L, dimout(Φ) = d, let EL(Φ) ∈ N be the neural network given by

EL(Φ) =

{
ΦId
d,L−L(Φ) � Φ : L(Φ) < L

Φ : L(Φ) = L
, (5.11)
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and for every n,L ∈ N, Φj ∈ N, j ∈ {1, 2, . . . , n} with maxj∈{1,2,...,n} L(Φj) = L, let P(Φ1,Φ2, . . . ,Φn) ∈ N
denote the neural network given by

P(Φ1,Φ2, . . . ,Φn) = Ps(EL(Φ1), EL(Φ2), . . . , EL(Φn)). (5.12)

Lemma 5.3. Assume Setting 5.2, let Φ1,Φ2 ∈ N, and let % : R→ R be the function which satisfies for every
t ∈ R that %(t) = max{0, t}. Then

(i) for every x ∈ Rdimin(Φ2) it holds

[R%(Φ
1 � Φ2)](x) = ([R%(Φ

1)] ◦ [R%(Φ
2)])(x) = [R%(Φ

1)]([R%(Φ
2)](x)), (5.13)

(ii) L(Φ1 � Φ2) = L(Φ1) + L(Φ2),

(iii) M(Φ1 � Φ2) ≤M(Φ1) +M(Φ2) +M1(Φ1) +ML(Φ2)(Φ
2) ≤ 2(M(Φ1) +M(Φ2)),

(iv) M1(Φ1 � Φ2) =M1(Φ2),

(v) ML(Φ1�Φ2)(Φ
1 � Φ2) =ML(Φ1)(Φ

1),

(vi) dimin(Φ1 � Φ2) = dimin(Φ2),

(vii) dimout(Φ
1 � Φ2) = dimout(Φ

1),

(viii) for every d, L ∈ N, x ∈ Rd it holds that [R%(Φ
Id
d,L)](x) = x, and

(ix) for every L ∈ N, Φ ∈ N with L(Φ) ≤ L, x ∈ Rdimin(Φ) it holds that [R%(EL(Φ))](x) = [R%(Φ)](x).

Proof of Lemma 5.3. For every i ∈ {1, 2} let Li ∈ N, N i
1, N

i
2, . . . , N

i
Li

, (Ail, b
i
l) ∈ RN

i
l×Nil−1 × RNil , l ∈

{1, 2, . . . , Li} such that Φi = ((Ai1, b
i
1), . . . , (AiLi , b

i
Li

)). Furthermore, let (Al, bl) ∈ RNl×Nl−1 × RNl , l ∈
{1, 2, . . . , L1 + L2}, be the matrix-vector tuples which satisfy Φ1 � Φ2 = ((A1, b1), . . . , (AL1+L2 , bL1+L2))
and let rl : RN0 → RNl , l ∈ {1, 2, . . . , L1 + L2}, be the functions which satisfy for every x ∈ RN0 that

rl(x) =





%∗(A1x+ b1) : l = 1

%∗(Alrl−1(x) + bl) : 1 < l < L1 + L2

Alrl−1(x) + bl : l = L1 + L2

. (5.14)

Observe that for every l ∈ {1, 2, . . . , L2 − 1} holds (Al, bl) = (A2
l , b

2
l ). This implies that for every x ∈ RN0

holds

A2
L2
rL2−1(x) + b2L2

= [R%(Φ2)](x). (5.15)

Combining this with (5.7) implies for every x ∈ RN0 that

rL2
(x) = %∗(AL2

rL2−1(x) + bL2
) = %∗

((
A2
L2

−A2
L2

)
rL2−1(x) +

(
b2L2

−b2L2

))

= %∗
((

A2
L2
rl−1(x) + b2L2

−A2
L2
rl−1(x)− b2L2

))
=

(
%∗([R%(Φ2)](x))
%∗(−[R%(Φ

2)](x))

) (5.16)

In addition, for every d ∈ N, y = (y1, y2, . . . , yd) ∈ Rd holds

%∗(y)− %∗(−y) = (%(y1)− %(−y1), %(y2)− %(−y2), . . . , %(yd)− %(−yd)) = y. (5.17)

This, (5.7), and (5.16) ensure that for every x ∈ RN0 holds

rL2+1(x) = AL2+1

(
%∗([R%(Φ2)](x))
%∗(−[R%(Φ

2)](x))

)
+ bL2+1

= A1
1%
∗([R%(Φ

2)](x))−A1
1%
∗(−[R%(Φ

2)](x)) + bL2+1

= A1
1[R%(Φ

2)](x) + b11.

(5.18)

Combining this with (5.14) establishes (i). Moreover, (ii)-(vii) follow directly from (5.7). Furthermore,
(5.8), (5.9), and (5.17) imply (viii). Finally, (ix) follows from (5.11) and (viii). This completes the proof of
Lemma 5.3.
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Lemma 5.4. Assume Setting 5.2, let % : R → R be the function which satisfies for every t ∈ R that %(t) =
max{0, t}, let n ∈ N, let ϕj ∈ N, j ∈ {1, 2, . . . , n}, let dj ∈ N, j ∈ {1, 2, . . . , n}, be given by dj = dimin(ϕj),
let D ∈ N be given by D =

∑n
j=1 dj, and let Φ ∈ N be given by Φ = P(ϕ1, ϕ2, . . . , ϕn). Then

(i) for every x ∈ RD it holds

[R%(Φ)](x) =
(
[R%(ϕ1)](x1, . . . , xd1), [R%(ϕ2)](xd1+1, . . . , xd1+d2), . . . , [R%(ϕn)](xD−dn+1, . . . , xD)

)
, (5.19)

(ii) L(Φ) = maxj∈{1,2,...,n} L(ϕj),

(iii) M(Φ) ≤ 2
(∑n

j=1M(ϕj)
)

+ 4
(∑n

j=1 dimout(ϕ
j)
)

maxj∈{1,2,...,n} L(ϕj),

(iv) M(Φ) =
∑n
j=1M(ϕj) provided for every j, j′ ∈ {1, 2, . . . , n} holds L(ϕj) = L(ϕj

′
),

(v) ML(Φ)(Φ) ≤∑n
j=1 max{2 dimout(ϕ

j),ML(ϕj)(ϕ
j)},

(vi) M1(Φ) =
∑n
j=1M1(ϕj),

(vii) dimin(Φ) =
∑n
j=1 dimin(ϕj), and

(viii) dimout(Φ) =
∑n
j=1 dimout(ϕ

j).

Proof of Lemma 5.4. Observe that Lemma 5.3 implies that for every j ∈ {1, 2, . . . , n} holds

R%(EL(Φ)(ϕ
j)) = R%(ϕ

j). (5.20)

Combining this with (5.10) and (5.12) establishes (i). Furthermore, note that that (ii), (vi), (vii), and
(viii) follow directly from (5.10) and (5.12). Moreover, (5.10) demonstrates that for every m ∈ N, ψi ∈ N,
i ∈ {1, 2, . . . ,m}, with ∀i, i′ ∈ {1, 2, . . . ,m} : L(ψi) = L(ψi

′
) holds

M(Ps(ψ1, ψ2, . . . , ψm)) =
m∑

i=1

M(ψi). (5.21)

This establishes (iv). Next, observe that Lemma 5.3, (5.11), and the fact that for every d ∈, L ∈ N holds
M(ΦId

d,L) ≤ 2dL imply that for every j ∈ {1, 2, . . . , n} we have

M(EL(Φ)(ϕ
j)) ≤ 2M(ΦId

dimout(ϕj),L(Φ)−L(ϕj)) + 2M(ϕj)

≤ 4 dimout(ϕ
j)L(Φ) + 2M(ϕj).

(5.22)

Combining this with (5.21) establishes (iii). In addition, note that (5.8), (5.9), and (5.11) ensure for every
j ∈ {1, 2, . . . , n} that

ML(Φ)(EL(Φ)(ϕ
j)) ≤ max{2 dimout(ϕ

j),ML(ϕj)(ϕ
j)}. (5.23)

Combining this with (5.10) establishes (v). The proof of Lemma 5.4 is thus completed.

6 Basic Expression Rate Results

Here we begin by establishing an expression rate result for a very simple function, namely x 7→ x2 on [0, 1].
Our approach is based on the observation by M. Telgarsky [42], that neural networks with ReLU activation
function can efficiently compute high-frequent sawtooth functions, and the idea of D. Yarotsky in [44] to
use this in order to approximate the function x 7→ x2 by networks computing its linear interpolations. This
can then be used to derive networks capable of efficiently approximating (x, y) 7→ xy, which leads to tensor
products as well as polynomials and subsequently smooth function. Note that [44] uses a slightly different
notion of neural networks, where connections between non-adjacent layers are permitted. This does, however,
only require a technical modification of the proof, which does not significantly change the result. Nonetheless,
the respective proofs are provided in the appendix for completeness.
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Lemma 6.1. Assume Setting 5.1 and let % : R → R be the ReLU activation function given by %(t) =
max{0, t}. Then there exist neural networks (σε)ε∈(0,∞) ⊆ N such that for every ε ∈ (0,∞)

(i) L(σε) ≤
{

1
2 |log2(ε)|+ 1 : ε < 1

1 : ε ≥ 1
,

(ii) M(σε) ≤
{

15( 1
2 |log2(ε)|+ 1) : ε < 1

0 : ε ≥ 1
,

(iii) supt∈[0,1]

∣∣t2 − [R%(σε)](t)
∣∣ ≤ ε,

(iv) [R%(σε)](0) = 0.

We can now derive the following result on approximate multiplication by neural networks, by observing
that xy = 2B2(|(x+ y)/2B|2 − |x/2B|2 − |y/2B|2) for every B ∈ (0,∞), x, y ∈ R.

Lemma 6.2. Assume Setting 5.1, let B ∈ (0,∞), and let % : R→ R be the ReLU activation function given
by %(t) = max{0, t}. Then there exist neural networks (µε)ε∈(0,∞) ⊆ N which satisfy for every ε ∈ (0,∞)
that

(i) L(µε) ≤
{

1
2 log2( 1

ε ) + log2(B) + 6 : ε < B2

1 : ε ≥ B2
,

(ii) M(µε) ≤
{

45 log2( 1
ε ) + 90 log2(B) + 259 : ε < B2

0 : ε ≥ B2
,

(iii) sup(x,y)∈[−B,B]2 |xy − [R%(µε)](x, y)| ≤ ε,

(iv) M1(µε) = 8, ML(µε)(µε) = 3, and

(v) for every x ∈ R it holds that R%[µε](0, x) = R%[µε](x, 0) = 0.

Next we extend this result to products of any number of factors by hierarchical, pairwise multiplication.

Theorem 6.3. Assume Setting 5.1, let % : R→ R be the ReLU activation function given by %(t) = max{0, t},
let m ∈ N ∩ [2,∞), and let B ∈ [1,∞). Then there exists a constant C ∈ R (which is independent of m, B)
and neural networks (Πε)ε∈(0,∞) ⊆ N which satisfy

(i) L(Πε) ≤ C ln(m) (|ln(ε)|+m ln(B) + ln(m)),

(ii) M(Πε) ≤ Cm (|ln(ε)|+m ln(B) + ln(m)),

(iii) sup
x∈[−B,B]m

∣∣∣∣∣∣



m∏

j=1

xj


− [R%(Πε)](x)

∣∣∣∣∣∣
≤ ε, and

(iv) R% [Πε] (x1, x2, . . . , xm) = 0, if there exists i ∈ {1, 2, . . . ,m} with xi = 0.

Proof of Theorem 6.3. Throughout this proof assume Setting 5.2, let l = dlog2me, and let θ ∈ N 1,1
1 be the

neural network given by θ = (0, 0), let (A, b) ∈ Rl×m × Rl be the matrix-vector tuple given by

Ai,j =

{
1 : i = j, j ≤ m
0 : else

and bi =

{
0 : i ≤ m
1 : i > m

. (6.1)

Let further ω ∈ Nm,2l

2 be the neural network given by ω = ((A, b)). Note that Lemma 6.2 (with Bm as B
in the notation of Lemma 6.2) ensures that there exist neural networks (µη)η∈(0,∞) ⊆ N such that for every

η ∈ (0, [Bm]
2
) it holds
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(A) L(µη) ≤ 1
2 log2( 1

η ) + log2(Bm) + 6,

(B) M(µη) ≤ 45 log2( 1
η ) + 90 log2(Bm) + 259,

(C) sup
x,y∈[−Bm,Bm]

|xy − [R%(µη)](x, y)| ≤ η,

(D) M1(µη) = 8, ML(µη)(µη) = 3, and

(E) for every x ∈ R it holds that R%[µη](0, x) = R%[µη](x, 0) = 0.

Let (νε)ε∈(0,∞) ⊆ N be the neural networks which satisfy for every ε ∈ (0,∞)

νε = µm−2B−2mε. (6.2)

Observe that (A) implies that for every ε ∈ (0, Bm) ⊆ (0,m2B4m) it holds

L(νε) ≤ 1
2 log2( 1

m−2B−2mε ) + log2(Bm) + 6

= 1
2 (log2( 1

ε ) + 2 log2(m) + 2m log2(B)) +m log2(B) + 6

= 1
2 log2( 1

ε ) + 2m log2(B) + log2(m) + 6.

(6.3)

In addition, note that (B) implies that for every ε ∈ (0, Bm) ⊆ (0,m2B4m)

M(νε) ≤ 45 log2( 1
m−2B−2mε ) + 90 log2(Bm) + 259

= 45 log2( 1
ε ) + 180m log2(B) + 90 log2(m) + 259.

(6.4)

Furthermore, (C) implies that for every ε ∈ (0, Bm) ⊆ (0,m2B4m) holds

sup
x,y∈[−Bm,Bm]

|xy − [R%(νη)](x, y)| ≤ m−2B−2mε. (6.5)

Let πk,ε ∈ N, ε ∈ (0,∞), k ∈ N, be the neural networks which satisfy for every ε ∈ (0,∞), k ∈ N

πk,ε =

{
νε : k = 1

νε � P(πk−1,ε, πk−1,ε) : k > 1
(6.6)

and let (Πε)ε∈(0,∞) ⊆ N be neural networks given by

Πε =

{
πl,ε � ω : ε < Bm

θ : ε ≥ Bm . (6.7)

Note that for every ε ∈ (Bm,∞) it holds

sup
x∈[−B,B]m

∣∣∣∣∣

[
m∏
j=1

xj

]
− [R%(Πε)](x)

∣∣∣∣∣ = sup
x∈[−B,B]m

∣∣∣∣∣

[
m∏
j=1

xj

]
− [R%(θ)](x)

∣∣∣∣∣

= sup
x∈[−B,B]m

∣∣∣∣∣

[
m∏
j=1

xj

]
− 0

∣∣∣∣∣ = Bm ≤ ε.
(6.8)

We claim that for every k ∈ {1, 2, . . . , l}, ε ∈ (0, Bm) it holds

(a) that

sup
x∈[−B,B](2k)

∣∣∣∣∣

[
2k∏
j=1

xj

]
− [R%(πk,ε)](x)

∣∣∣∣∣ ≤ 4k−1m−2B(2k−2m)ε, (6.9)

(b) that L(πk,ε) ≤ kL(νε), and
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(c) that M(πk,ε) ≤ (2k − 1)M(νε) + (2k−1 − 1)20.

We prove (a), (b), and (c) by induction on k ∈ {1, 2, . . . , l}. Observe that (6.5) and the fact that B ∈ [1,∞)
establishes (a) for k = 1. Moreover, note that (6.6) establishes (b) and (c) in the base case k = 1.

For the induction step {1, 2, . . . , l − 1} 3 k → k + 1 ∈ {2, 3, . . . , l} note that Lemma 5.3, Lemma 5.4,
(6.5) and (6.6) imply that for every k ∈ {1, 2, . . . , l − 1}, ε ∈ (0, Bm)

sup
x∈[−B,B](2k+1)

∣∣∣∣∣∣




2k+1∏

j=1

xj


− [R%(πk+1,ε)](x)

∣∣∣∣∣∣

= sup
x,x′∈[−B,B](2k)

∣∣∣∣∣∣




2k∏

j=1

xj






2k∏

j=1

x′j


− [R%(πk+1,ε)] ((x, x′))

∣∣∣∣∣∣

= sup
x,x′∈[−B,B](2k)

∣∣∣∣∣∣




2k∏

j=1

xj






2k∏

j=1

x′j


− [R%(νε)] ([R%(πk,ε)](x), [R%(πk,ε)](x

′))

∣∣∣∣∣∣

≤ sup
x,x′∈[−B,B](2k)

∣∣∣∣∣∣




2k∏

j=1

xj






2k∏

j=1

x′j


− ([R%(πk,ε)](x)) ([R%(πk,ε)](x

′))

∣∣∣∣∣∣
+ sup
x,x′∈[−B,B](2k)

|([R%(πk,ε)](x)) ([R%(πk,ε)](x
′))− [R%(νε)] ([R%(πk,ε)](x), [R%(πk,ε)](x

′))|

≤ sup
x,x′∈[−B,B](2k)

∣∣∣∣∣∣




2k∏

j=1

xj






2k∏

j=1

x′j


− ([R%(πk,ε)](x)) ([R%(πk,ε)](x

′))

∣∣∣∣∣∣
+m−2B−2mε.

(6.10)

Next, for every c, δ ∈ (0,∞), y, z ∈ [−c, c], ỹ, z̃ ∈ R with |y − ỹ| , |z − z̃| ≤ δ it holds

|yz − ỹz̃| ≤ 2(|y|+ |z|)δ + δ2 ≤ 2cδ + δ2. (6.11)

Moreover, for every k ∈ {1, 2, . . . , l}

4k−1 ≤ 4l−1 = 4dlog2me−1 ≤ 4log2m = m2. (6.12)

The fact that B ∈ [1,∞) therefore ensures that for every k ∈ {1, 2, . . . , l − 1}, ε ∈ (0, Bm)

[
4k−1m−2B(2k−2m)ε

]2
=
[
4k−1m−2B(2k+1−2m)ε

] [
4k−1m−2B−2mε

]
≤
[
4k−1m−2B(2k+1−2m)ε

]
. (6.13)

This and (6.11) imply that for every k ∈ {1, 2, . . . , l − 1}, ε ∈ (0, Bm), x, x′ ∈ [−B,B](2
k)

∣∣∣∣∣

[
2k∏
j=1

xj

][
2k∏
j=1

x′j

]
− ([R%(πk,ε)](x)) ([R%(πk,ε)](x

′))

∣∣∣∣∣

≤ 2B(2k)4k−1m−2B(2k−2m)ε+
[
4k−1m−2B(2k−2m)ε

]2

≤ 3
[
4k−1m−2B(2k+1−2m)ε

]
.

(6.14)

Combining this, (6.10), and the fact that B ∈ [1,∞) demonstrates that for every k ∈ {1, 2, . . . , l − 1},
ε ∈ (0, Bm)

sup
x∈[−B,B](2k+1)

∣∣∣∣∣

[
2k+1∏
j=1

xj

]
− [R%(πk+1,ε)](x)

∣∣∣∣∣

≤ 3
[
4k−1m−2B(2k+1−2m)ε

]
+m−2B−2mε

≤ 4km−2B(2k+1−2m)ε.

(6.15)
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This establishes the claim (a). Moreover, Lemma 5.3 and Lemma 5.4 imply for every k ∈ {1, 2, . . . , l − 1},
ε ∈ (0, Bm) with L(πk,ε) ≤ kL(νε) holds

L(πk+1,ε) = L(νε) + max{L(πk,ε),L(πk,ε)}
≤ L(νε) + kL(νε) = (k + 1)L(νε).

(6.16)

This establishes the claim (b). Furthermore, Lemma 5.3, Lemma 5.4, (B), and (D) imply for every k ∈
{1, 2, . . . , l − 1}, ε ∈ (0, Bm) with M(πk,ε) ≤ (2k − 1)M(νε) + (2k−1 − 1)20 holds

M(πk+1,ε) ≤M(νε) + (M(πk,ε) +M(πk,ε)) +M1(νε) +ML(P(πk,ε,πk,ε))(P(πk,ε, πk,ε))

≤M(νε) + 2M(πk,ε) + 14 + 2ML(νε)(νε) ≤M(νε) + 2M(πk,ε) + 20

≤M(νε) + 2((2k − 1)M(νε) + (2k−1 − 1)20) + 20

= (2k+1 − 1)M(νε) + (2k − 1)20.

(6.17)

This establishes the claim (c).
Combining (a) with Lemma 5.3 and (6.7) implies for every ε ∈ (0, Bm) the bound

sup
x∈[−B,B]m

∣∣∣∣∣

[
m∏

j=1

xj

]
− [R%(Πε)](x)

∣∣∣∣∣ ≤ sup
x∈[−B,B](2

l)

∣∣∣∣∣∣




2l∏

j=1

xj


− [R%(πl,ε)](x)

∣∣∣∣∣∣

≤ 4l−1m−2B(2l−2m)ε

≤ 4dlog2(m)e−1m−2B(2dlog2(m)e−2m)ε

≤ 4log2(m)m−2B(2log2(m)+1−2m)ε

≤
[
2log2(m)

]2
m−2B(2m−2m)ε ≤ ε.

(6.18)

This and (6.8) establish that the neural networks (Πε)ε∈(0,∞) satisfy (iii). Combining (b) with Lemma 5.3,
(6.3), and (6.7) ensures that for every ε ∈ (0, Bm)

L(Πε) = L(πl,ε) + L(ω) ≤ lL(νε) + 1 ≤ (log2(m) + 1)L(νε) + 1

≤ log2(m) log2( 1
ε
) + 4 log2(m)m log2(B) + 2[log2(m)]2 + 12 log2(m) + 1.

(6.19)

and that for every ε ∈ (Bm,∞) it holds L(Πε) = L(θ) = 1. This establishes that the neural networks
(Πε)ε∈(0,∞) satisfy (i). Furthermore, note that (c), Lemma 5.3, (6.3), and (6.7) demonstrate that for every
ε ∈ (0, Bm)

M(Πε) ≤ 2(M(πl,ε) +M(ω)) ≤ 2
[
(2l − 1)M(νε) + (2l−1 − 1)20

]
+ 4m

≤ 2l+1M(νε) + (2l)20 + 4m ≤ 4mM(νε) + 44m

≤ 180m log2( 1
ε ) + 720m2 log2(B) + 360m log2(m) + 1080m.

(6.20)

and that for every ε ∈ (Bm,∞) holds M(Πε) = M(θ) = 0. This establishes that the neural networks
(Πε)ε∈(0,∞) satisfy (ii). Note that (iv) follows from (E) by construction. The proof of Theorem 6.3 is thus
completed.

With the above established, it is quite straightforward to get the following result for the approximation
of tensor products. Note that the exponential term Bm−1 in (iii) is unavoidable as result from multiplying
m many inaccurate values of magnitude B. For our purposes this will not be an issue since the functions we
consider are bounded in absolute value by B = 1. This is further not an issue in cases, where the hj can be
approximated by networks whose size scales logarithmically with ε.

Proposition 6.4. Assume Setting 5.2, let % : R → R be the ReLU activation function given by %(t) =
max{0, t}, let B ∈ [1,∞), m ∈ N, for every j ∈ {1, 2, . . . ,m} let dj ∈ N, Ωj ⊆ Rdj , and hj : Ωj → [−B,B],
let (Φjε)ε∈(0,∞) ∈ N, j ∈ {1, 2, . . . ,m}, be neural networks which satisfy for every ε ∈ (0,∞), j ∈ {1, 2, . . . ,m}

sup
t∈Ωj

∣∣hj(x)−
[
R%(Φ

j
ε)
]

(x)
∣∣ ≤ ε, (6.21)
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let ΦPε ∈ N, ε ∈ (0,∞) be given by ΦPε = P(Φ1
ε,Φ

2
ε, . . . ,Φ

m
ε ), and let Lε ∈ N, ε ∈ (0,∞) be given by

Lε = maxj∈{1,2,...,m} L(Φjε).
Then there exists a constant C ∈ R ( which is independent of m,B, ε) and neural networks (Ψε)ε∈(0,∞) ⊆ N
which satisfy

(i) L(Ψε) ≤ C ln(m) (|ln(ε)|+m ln(B) + ln(m)) + Lε,

(ii) M(Ψε) ≤ Cm (|ln(ε)|+m ln(B) + ln(m)) +M(ΦPε ) +MLε(Φ
P
ε ), and

(iii) sup
t=(t1,t2,...,tm)∈×mj=1Ωj

∣∣∣∣∣

[
m∏
j=1

hj(tj)

]
− [R%(Ψε)](t)

∣∣∣∣∣ ≤ 3mBm−1ε.

Proof of Proposition 6.4. In the case of m = 1 the neural networks (Φ1
ε)ε∈(0,∞) ∈ N satisfy (i), (ii), and (iii)

by assumption. Throughout the remainder of this proof assume m ≥ 2, and let θ ∈ N 1,1
1 denote the trivial

neural network θ = (0, 0). Observe that Theorem 6.3 (with ε ↔ η, C ′ ↔ C in the notation Theorem 6.3)
ensures that there exist C ′ ∈ R and neural networks (Πη)η∈(0,∞) ⊆ N which satisfy for every η ∈ (0,∞) that

(a) L(Πη) ≤ C ′ ln(m) (|ln(η)|+m ln(B) + ln(m)),

(b) M(Πη) ≤ C ′m (|ln(η)|+m ln(B) + ln(m)), and

(c) sup
x∈[−B,B]m

∣∣∣∣∣∣



m∏

j=1

xj


− [R%(Πη)](x)

∣∣∣∣∣∣
≤ η.

Let (Ψε)ε∈(0,∞) ⊆ N be the neural networks which satisfy for every ε ∈ (0,∞) that

Ψε =

{
Πε � P(Φ1

ε,Φ
2
ε, . . . ,Φ

m
ε ) : ε < B

2m

θ : ε ≥ B
2m

. (6.22)

Note that for every ε ∈ (0, B2m )

max
x∈[−B,B]m,x′∈Rm
‖x′−x‖∞≤ε

∣∣∣∣∣∣

m∏

j=1

x′j −
m∏

j=1

xj

∣∣∣∣∣∣
= (B + ε)m −Bm =

m∑

k=1

(
m

k

)
Bm−kεk ≤ ε

m∑

k=1

mk

k!
Bm−kεk−1

≤ ε
m∑

k=1

mk

k!
Bm−k

(
B

2m

)k−1

= mBm−1ε
m∑

k=1

1

2k−1k!

≤ 2mBm−1ε.

(6.23)

Combining this with Lemma 5.3, Lemma 5.4, (6.21), and (c) implies that for every ε ∈ (0, B2m ), t =
(t1, t2, . . . , tm) ∈ Ω it holds

∣∣∣∣∣

[
m∏

j=1
hj(tj)

]
− [R%(Ψε)](t)

∣∣∣∣∣ =

∣∣∣∣∣

[
m∏

j=1
hj(tj)

]
−
[
R%(Πε � P(Φ1

ε,Φ
2
ε, . . . ,Φ

m
ε ))

]
(t)

∣∣∣∣∣

≤
∣∣∣∣∣

[
m∏

j=1
hj(tj)

]
−
[

m∏
j=1

[
R%(Φj

ε)
]

(tj)

]∣∣∣∣∣

+

∣∣∣∣∣

[
m∏

j=1

[
R%(Φj

ε)
]

(tj)

]
− [R%(Πε)]

(
[R%(Φ1

ε)](t1), . . . , [R%(Φm
ε )](tj)

)
∣∣∣∣∣

≤ 2mBm−1ε+ ε ≤ 3mBm−1ε.

(6.24)

Moreover, for every ε ∈ [ B2m ,∞), t = (t1, t2, . . . , tm) ∈ Ω it holds that
∣∣∣∣∣

[
m∏
j=1

hj(tj)

]
− [R%(Ψε)](t)

∣∣∣∣∣ =

∣∣∣∣∣

[
m∏
j=1

hj(tj)

]
− [R%(θ)](t)

∣∣∣∣∣

=

∣∣∣∣∣

[
m∏
j=1

hj(tj)

]∣∣∣∣∣ ≤ B
m ≤ 2mBm−1ε.

(6.25)
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This and (6.24) establish that the neural networks (Ψε)ε,c∈(0,∞) satisfy (iii). Next observe that Lemma 5.3,

Lemma 5.4, and (a) demonstrate that for every ε ∈ (0, B2m )

L(Ψε) = L(Πε � P(Φ1
ε,Φ

2
ε, . . . ,Φ

m
ε )) = L(Πε) + max

j∈{1,2,...,m}
L(Φjε)

≤ C ′ ln(m) (|ln(ε)|+m ln(B) + ln(m)) + Lε.
(6.26)

This and the fact that for every ε ∈ [ B2m ,∞) it holds that L(Ψε) = L(θ) = 1 establish that the neural
networks (Ψε)ε,c∈(0,∞) satisfy (i). Furthermore note that Lemma 5.3, Lemma 5.4, and (b) ensure that for

every ε ∈ (0, B2m )

M(Ψε) =M(Πε � P(Φ1
ε,Φ

2
ε, . . . ,Φ

m
ε ))

≤ 2M(Πε) +M(P(Φ1
ε,Φ

2
ε, . . . ,Φ

m
ε )) +ML(P(Φ1

ε,Φ
2
ε,...,Φ

m
ε ))(P(Φ1

ε,Φ
2
ε, . . . ,Φ

m
ε ))

≤ 2C ′m (|ln(ε)|+m ln(B) + ln(m)) +M(ΦPε ) +MLε(Φ
P
ε ).

(6.27)

This and the fact that for every ε ∈ [ B2m ,∞) it holds that M(Ψε) = M(θ) = 0 imply the neural networks
(Ψε)ε,c∈(0,∞) satisfy (ii). The proof of Proposition 6.4 is completed.

Another way to use the multiplication results is to consider the approximation of smooth functions by
polynomials. This can be done for functions of arbitrary dimension using the multivariate Taylor expan-
sion (see [44] and [33, Thm. 2.3]). Such a direct approach, however, yields networks whose size depends
exponentially on the dimension of the function. As our goal is to show that high-dimensional functions
with a tensor product structure can be approximated by networks with only polynomial dependence on the
dimension, we only consider univariate smooth functions here. In the appendix we present a detailed and
explicit construction of this Taylor approximation by neural networks. In the following results we employ
an auxiliary parameter r, so that the bounds on the depth and connectivity of the networks may be stated
for all ε ∈ (0,∞). Note that this parameter does not influence the construction of the networks themselves.

Theorem 6.5. Assume Setting 5.1, let n ∈ N, r ∈ (0,∞), let % : R → R be the ReLU activation function
given by %(t) = max{0, t}, and let Bn1 ⊆ Cn([0, 1],R) be the set given by

Bn1 =

{
f ∈ Cn([0, 1],R) : max

k∈{0,1,...,n}

[
sup
t∈[0,1]

∣∣∣f (k)(t)
∣∣∣
]
≤ 1

}
. (6.28)

Then there exist neural networks (Φf,ε)f∈Bn1 ,ε∈(0,∞) ⊆ N which satisfy

(i) sup
f∈Bn1 ,ε∈(0,∞)

[ L(Φf,ε)

max{r, |ln(ε)|}

]
<∞,

(ii) sup
f∈Bn1 ,ε∈(0,∞)

[ M(Φf,ε)

ε−
1
n max{r, | ln(ε)|}

]
<∞, and

(iii) for every f ∈ Bn1 , ε ∈ (0,∞) that

sup
t∈[0,1]

|f(t)− [R%(Φf,ε)](t)| ≤ ε. (6.29)

For convenience of use we also provide the following more general corollary.

Corollary 6.6. Assume Setting 5.1, let r ∈ (0,∞) and let % : R→ R be the ReLU activation function given by
%(t) = max{0, t}. Let further the set Cn be given by Cn = ∪[a,b]⊆R+

Cn([a, b],R), and let ‖·‖n,∞ : Cn → [0,∞)
satisfy for every [a, b] ⊆ R+, f ∈ Cn([a, b],R)

‖f‖n,∞ = max
k∈{0,1,...,n}

[
sup
t∈[a,b]

∣∣∣f (k)(t)
∣∣∣
]
. (6.30)

Then there exist neural networks (Φf,ε)f∈Cn,ε∈(0,∞) ⊆ N which satisfy
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(i) sup
f∈Cn,ε∈(0,∞)

[
L(Φf,ε)

max{r, | ln( ε
max{1,b−a}‖f‖n,∞

)|}

]
<∞,

(ii) sup
f∈Cn,ε∈(0,∞)


 M(Φf,ε)

max{1, b− a} ‖f‖ 1
n
n,∞ ε−

1
n max{r, | ln( ε

max{1,b−a}‖f‖n,∞
)|}


 <∞, and

(iii) for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞) that

sup
t∈[a,b]

|f(t)− [R%(Φf,ε)](t)| ≤ ε. (6.31)

7 DNN Expression Rates for High-Dimensional Basket prices

Now that we have established a number of general expression rate results, we can apply them to our specific
problem. Using the regularity result (3.3) we obtain the following.

Corollary 7.1. Assume Setting 5.1, let n ∈ N, r ∈ (0,∞), a ∈ (0,∞), b ∈ (a,∞), let % : R → R be
the ReLU activation function given by %(t) = max{0, t}, let f : (0,∞) → R be as defined in (3.1), and let
hc,K : [a, b]→ R, c ∈ (0,∞), K ∈ [0,∞), denote the functions which satisfy for every c ∈ (0,∞), K ∈ [0,∞),
x ∈ [a, b] that

hc,K(x) = f(K+c
x ). (7.1)

Then there exist neural networks (Φε,c,K)ε,c∈(0,∞),K∈[0,∞) ⊆ N which satisfy

(i) sup
ε,c∈(0,∞),K∈[0,∞)

[ L(Φε,c,K)

max{r, | ln(ε)|}+ max{0, ln(K + c)}

]
<∞,

(ii) sup
ε,c∈(0,∞),K∈[0,∞)

[
M(Φε,c,K)

(K + c+ 1)
1
n ε−

1
n2

]
<∞, and

(iii) for every ε, c ∈ (0,∞), K ∈ [0,∞) that

sup
x∈[a,b]

|hc,K(x)− [R%(Φε,c,K)](x)| ≤ ε. (7.2)

Proof of Corollary 7.1. We observe Corollary 3.3 ensures the existence of a constant C ∈ R with

max
k≤n

sup
x∈[a,b]

∣∣∣h(k)
c,K(x)

∣∣∣ ≤ C max{(K + c)n, 1}. (7.3)

Moreover, observe for every ε, c ∈ (0,∞), K ∈ [0,∞) it holds

max{r, | ln( ε
max{1,b−a}Cmax{(K+c)n,1} )|}

≤ max{r, |ln(ε)|}+ | ln(max{1, b− a})|+ |ln(C max{(K + c)n, 1})|
≤ max{r, |ln(ε)|}+ ln(max{1, b− a}) + |ln(C)|+ |ln(max{(K + c)n, 1})|
≤ max{r, |ln(ε)|}+ ln(max{1, b− a}) + |ln(C)|+ nmax{ln(K + c), 0}
≤ n(1 + max{1, 1

r}(| ln(C)|+ ln(max{1, b− a})))(max{r, |ln(ε)|}+ max{ln(K + c), 0}).

(7.4)

Furthermore, note for every ε, c ∈ (0,∞), K ∈ [0,∞) it holds

[
ε

max{1, b− a}C max{(K + c)n, 1}

]− 1
2n2

= [max{1, b− a}]− 1
2n2 ε−

1
2n2 C

1
2n2 max{(K + c)

1
2n , 1}

≤ [max{1, b− a}]− 1
2n2 C

1
2n2 (K + c+ 1)

1
2n ε−

1
2n2 .

(7.5)

Combining this, (7.3), (7.4) with Lemma A.1 and Corollary 6.6 (with n ↔ 2n2 in the notation of Corol-
lary 6.6) completes the proof of Corollary 7.1.
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We can then employ Proposition 6.4 in order to approximate the required tensor product.

Corollary 7.2. Assume Setting 5.1, let % : R→ R be the ReLU activation function given by %(t) = max{0, t},
let n ∈ N, a ∈ (0,∞), b ∈ (a,∞), (Ki)i∈N ⊆ [0,Kmax), and consider, for hc,K : [a, b] → R, c ∈ (0,∞),
K ∈ [0,Kmax), the functions which are, for every c ∈ (0,∞), K ∈ [0,Kmax), x ∈ [a, b], given by

hc,K(x) = 1√
2π

∫ ln(K+c
x )

−∞
e−

1
2 r

2

dr. (7.6)

For any c ∈ (0,∞), d ∈ N let the function F dc (x) : [a, b]d → R be given by

F dc (x) = 1−
[
d∏
i=1

hc,Ki(xi)

]
. (7.7)

Then there exist neural networks (Ψd
ε,c)ε,c∈(0,∞),d∈N ⊆ N which satisfy

(i) sup
ε,c∈(0,∞),d∈N

[
L(Ψd

ε,c)

max{1, ln(d)}(|ln(ε)|+ ln(d) + 1) + ln(c+ 1)

]
<∞,

(ii) sup
ε,c∈(0,∞),d∈N

[
M(Ψd

ε,c)

(c+ 1)
1
n d1+ 1

n ε−
1
n

]
<∞, and

(iii) for every ε, c ∈ (0,∞), d ∈ N that

sup
x∈[a,b]d

∣∣F dc (x)−
[
R%(Ψ

d
ε,c)
]
(x)
∣∣ ≤ ε. (7.8)

Proof of Corollary 7.2. Throughout this proof assume Setting 5.2. Property Corollary 7.1 ensures there exist
constants bL, bM ∈ (0,∞) and neural networks

(
Φiη,c

)
η,c∈(0,∞)

⊆ N, i ∈ N such that for every i ∈ N it holds

(a) sup
η,c∈(0,∞)

[
L(Φiη,c)

max{1, | ln(η)|}+ max{0, ln(Kmax + c)}

]
< bL,

(b) sup
η,c∈(0,∞)

[
M(Φiη,c)

(Kmax + c+ 1)
1
n η−

1
n2

]
< bM , and

(c) for every η, c ∈ (0,∞) that

sup
x∈[a,b]

∣∣hc,Ki(x)−
[
R%(Φ

i
η,c)
]
(x)
∣∣ ≤ η. (7.9)

Furthermore, for every c ∈ (0,∞), i ∈ N, x ∈ [a, b] holds

|hc,Ki(x)| =
∣∣∣∣∣

1√
2π

∫ ln(
Ki+c

x )

−∞
e−

1
2 r

2

dr

∣∣∣∣∣ ≤
1√
2π

∣∣∣∣
∫ ∞

−∞
e−

1
2 r

2

dr

∣∣∣∣ = 1. (7.10)

Combining this with (a) and Proposition 6.4 and Lemma 5.4 implies there exist C ∈ R and neural networks
(ψdη,c)η∈(0,∞) ⊆ N, c ∈ (0,∞), d ∈ N, such that for every c ∈ (0,∞), d ∈ N it holds

(A) L(ψdη,c) ≤ C ln(d) (|ln(η)|+ ln(d)) + max
i∈{1,2,...,d}

L(Φiη,c),

(B) M(ψdη,c) ≤ Cd (|ln(η)|+ ln(d)) + 4

d∑

i=1

M(Φiη,c) + 8d max
i∈{1,2,...,d}

L(Φiη,c), and
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(C) for every η ∈ (0,∞) that

sup
x∈[a,b]d

∣∣∣∣
[
d∏
i=1

hc,Ki(xi)

]
−
[
R%(ψ

d
η,c)
]
(x)

∣∣∣∣ ≤ 3dη. (7.11)

Let λ ∈ N 1,1
1 be the neural network given by λ = ((−1, 1)), let θ ∈ N 1,1

1 be the neural network given by
θ = (0, 0), and let (Ψd

ε,c)ε,c∈(0,∞),d∈N ⊆ N be the neural networks given by

Ψd
ε,c =

{
λ� ψdε/(3d),c : ε ≤ 2

θ : ε > 2
. (7.12)

Observe that this and (B) imply for every ε ∈ (0, 2], c ∈ (0,∞), d ∈ N, x ∈ [a, b]d it holds

∣∣F dc (x)−
[
R%(Ψ

d
ε,c)
]
(x)
∣∣ =

∣∣∣∣
(

1−
[
d∏
i=1

hc,Ki(xi)

])
−
(

1−
[
R%(ψ

d
ε/(3d),c)

]
(x)
)∣∣∣∣

≤ 3d ε
3d = ε.

(7.13)

Moreover, (7.12) and (7.10) ensure for every ε ∈ (2,∞), c ∈ (0,∞), d ∈ N, x ∈ [a, b]d it holds

∣∣F dc (x)−
[
R%(Ψ

d
ε,c)
]
(x)
∣∣ =

∣∣∣∣
(

1−
[
d∏
i=1

hc,Ki(xi)

])∣∣∣∣ (7.14)

This and (7.13) establish the neural networks (Ψd
ε,c)ε,c∈(0,∞),d∈N satisfy (iii). Next observe that for every

c ∈ (0,∞) it holds

max{0, ln(Kmax + c)} ≤ max{0, ln(max{1,Kmax}+ max{1,Kmax}c)}
= ln(max{1,Kmax}(1 + c)) = ln(max{1,Kmax}) + ln(1 + c)

≤ ln(c+ 1) + | ln(Kmax)|.
(7.15)

Hence, we obtain that for every ε, c ∈ (0,∞), d ∈ N it holds

max{1, | ln( ε3d )|}+ max{0, ln(Kmax + c)}
≤ | ln(ε)|+ ln(d) + ln(3) + ln(c+ 1) + | ln(Kmax)|
≤ (ln(3) + | ln(Kmax)|) [max{1, ln(d)}(| ln(ε)|+ ln(d) + 1) + ln(c+ 1)] .

(7.16)

In addition, for every ε, c ∈ (0,∞), d ∈ N it holds

C ln(d)
(∣∣ln( ε3d )

∣∣+ ln(d)
)
≤ 4C [max{1, ln(d)}(| ln(ε)|+ ln(d) + 1) + ln(c+ 1)] . (7.17)

Combining this with Lemma 5.3, (a), (A), and (7.16) yields

sup
ε∈(0,2],c∈(0,∞),

d∈N

[
L(Ψd

ε,c)

max{1, ln(d)}(|ln(ε)|+ ln(d) + 1) + ln(c+ 1)

]

≤ sup
ε∈(0,2],c∈(0,∞),

d∈N

[
1 + C ln(d)

(∣∣ln( ε3d )
∣∣+ ln(d)

)
+ maxi∈{1,2,...,d} L(Φiε/(3d),c)

max{1, ln(d)}(|ln(ε)|+ ln(d) + 1) + ln(c+ 1)

]

≤ 2 + 4C + (ln(3) + | ln(Kmax)|)bL <∞.

(7.18)

Moreover, (7.12) shows

sup
ε∈(2,∞),c∈(0,∞),

d∈N

[
L(Ψd

ε,c)

max{1, ln(d)}(|ln(ε)|+ ln(d) + 1) + ln(c+ 1)

]

= sup
ε∈(2,∞),c∈(0,∞),

d∈N

[
1

max{1, ln(d)}(|ln(ε)|+ ln(d) + 1) + ln(c+ 1)

]
<∞.

(7.19)

This and (7.18) establish that (Ψd
ε,c)ε,c∈(0,∞),d∈N satisfy (i). Next observe Lemma A.1 implies that
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• for every ε ∈ (0, 2] it holds

| ln(ε)| ≤
[

sup
δ∈[exp(−2n2),2]

ln(δ)

]
ε−

1
n = 2n2ε−

1
n , (7.20)

• for every d ∈ N it holds

ln(d) ≤
[

max
k∈{1,2,...,exp(2n2)}

ln(k)

]
d

1
n = 2n2d

1
n , (7.21)

• and for every c ∈ (0,∞) it holds

ln(c+ 1) ≤
[

sup
t∈(0,exp(2n2−1)]

ln(t+ 1)

]
(c+ 1)

1
n = 2n2(c+ 1)

1
n . (7.22)

For every m ∈ N, xi ∈ [1,∞), i ∈ {1, 2, . . . ,m}, it holds

m∑

i=1

xi ≤
m∏
i=1

(xi + 1) ≤ 2m
m∏
i=1

xi. (7.23)

Combining this with (7.20), (7.21), and (7.22) shows for every ε ∈ (0, 2], d ∈ N, c ∈ (0,∞) it holds

2Cd(| ln( ε3d )|+ ln(d)) ≤ 2Cd(| ln(ε)|+ 2 ln(d) + ln(3) + ln(c+ 1))

≤ 4n2Cd(2ε−
1
n + 2d

1
n + ln(3) + (c+ 1)

1
n )

≤ 1024n2C(c+ 1)
1
n d1+ 1

n ε−
1
n .

(7.24)

Furthermore, note (7.15), (7.20), (7.21), (7.22), and (7.23) ensure for every ε ∈ (0, 2], d ∈ N, c ∈ (0,∞) it
holds

16d(max{1, | ln( ε3d )|}+ max{0, ln(Kmax + c)})
≤ 16d(| ln(ε)|+ ln(d) + ln(3) + ln(c+ 1) + | ln(Kmax)|)
≤ 32n2d(2ε−

1
n + d

1
n + (c+ 1)

1
n + ln(3) + | ln(Kmax)|)

≤ 2048n2(ln(3) + | ln(Kmax)|)(c+ 1)
1
n d1+ 1

n ε−
1
n .

(7.25)

In addition, observe that for every ε ∈ (0, 2], d ∈ N, c ∈ (0,∞) it holds

4d(Kmax + c+ 1)
1
n ( ε3d )−

1
n2 ≤ 96 max{1,Kmax}(c+ 1)

1
n d1+ 1

n ε−
1
n . (7.26)

Combining this with Lemma 5.3, (a), (b), (B), (7.24), and (7.25) yield

sup
ε∈(0,2],c∈(0,∞),

d∈N

[
M(Ψd

ε,c)

(c+ 1)
1
n d1+ 1

n ε−
1
n

]

≤ sup
ε∈(0,2],c∈(0,∞),

d∈N




4 + 2Cd(| ln( ε3d )|+ ln(d)) + 8
d∑

i=1

M(Φiε/(3d),c) + 16d max
i∈{1,2,...,d}

L(Φiε/(3d),c)

(c+ 1)
1
n d1+ 1

n ε−
1
n




≤ 8 + 1024n2C + 96 max{1,Kmax}bM + 2048n2(ln(3) + | ln(Kmax)|)bL <∞.

(7.27)

Furthermore, note that (7.12) ensures

sup
ε∈(2,∞),c∈(0,∞),

d∈N

[
M(Ψd

ε,c)

(c+ 1)
1
n d1+ 1

n ε−
1
n

]
= sup
ε∈(2,∞),c∈(0,∞),

d∈N

[ M(θ)

(c+ 1)
1
n d1+ 1

n ε−
1
n

]
= 0. (7.28)

This and (7.27) establish that the neural networks (Ψd
ε,c)ε,c∈(0,∞),d∈N satisfy (ii). Thus the proof of Corol-

lary 7.2 is completed.
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Finally, we add the quadrature estimates from Section 4 to achieve approximation with networks whose
size only depends polynomially on the dimension of the problem.

Theorem 7.3. Assume Setting 5.1, let % : R→ R be the ReLU activation function given by %(t) = max{0, t},
let n ∈ N, a ∈ (0,∞), b ∈ (a,∞), (Ki)i∈N ⊆ [0,Kmax), and let Fd : (0,∞) × [a, b]d → R, d ∈ N, be the
functions which satisfy for every d ∈ N, c ∈ (0,∞), x ∈ [a, b]d

Fd(c, x) = 1−
d∏

i=1

[
1√
2π

∫ ln(
Ki+c

xi
)

−∞
e−

1
2 r

2

dr

]
. (7.29)

Then there exists neural networks (Γd,ε)ε∈(0,1],d∈N ∈ N which satisfy

(i) sup
ε∈(0,1],d∈N

[ L(Γd,ε)

max{1, ln(d)} (| ln(ε)|+ ln(d) + 1)

]
<∞,

(ii) sup
ε∈(0,1],d∈N

[M(Γd,ε)

d2+ 1
n ε−

1
n

]
<∞, and

(iii) for every ε ∈ (0, 1], d ∈ N that

sup
x∈[a,b]d

∣∣∣∣
∫ ∞

0

Fd(c, x)dc− [R%(Γd,ε)](x)

∣∣∣∣ ≤ ε. (7.30)

Proof of Theorem 7.3. Throughout this proof assume Setting 5.2, let Sb,n ∈ R be given by

Sb,n = 2e2(4n+1)(b+ 1)1+ 1
4n (7.31)

and let Nd,ε ∈ R, d ∈ N, ε ∈ (0, 1], be given by

Nd,ε = Sb,nd
1
4n

[
ε
4

]− 1
4n . (7.32)

Note Lemma 4.3 (with 4n↔ n, F dx (c)↔ Fd(x, c), Nd, ε2 ↔ Nd,ε, Qd, ε2 ↔ Qd,ε in the notation of Lemma 4.3)

ensures that there exist Qd,ε ∈ R, cdε,j ∈ (0, Nd,ε), w
d
ε,j ∈ [0,∞), j ∈ {1, 2, . . . , Qd,ε}, d ∈ N, ε ∈ (0, 1] with

sup
ε∈(0,1],d∈N

[
Qd,ε

d1+ 1
2n ε−

1
2n

]
<∞ (7.33)

and for every d ∈ N, ε ∈ (0, 1] it holds

sup
x∈[a,b]d

∣∣∣∣∣∣

∫ ∞

0

Fd(c, x)dc−
Qd,ε∑

j=0

wdε,jFd(c
d
ε,j , x)

∣∣∣∣∣∣
≤ ε

2 (7.34)

and

Qd,ε∑

j=1

wdε,j = Nd,ε. (7.35)

Furthermore, Corollary 7.2 (with 4n ↔ n, F d
cdε,j

(x) ↔ Fd(x, c
d
ε,j)) ensures there exist neural networks

(Ψd
ε,j)ε∈(0,∞),d∈N,j∈{1,2,...,Qd,ε} ⊆ N which satisfy

(a) sup
ε∈(0,∞),d∈N


 maxj∈{1,2,...,Qd,ε} L(Ψd

ε,j)

max{1, ln(d)}
(
| ln( ε

2Nd,ε
)|+ ln(d) + 1

)
+ ln(Nd,ε + 1)


 <∞,
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(b) sup
ε∈(0,∞),d∈N




maxj∈{1,2,...,Qd,ε}M(Ψd
ε,j)

(Nd,ε + 1)
1
4n d1+ 1

4n

[
ε

2Nd,ε

]− 1
4n


 <∞, and

(c) for every ε ∈ (0,∞), d ∈ N that

sup
x∈[a,b]d

∣∣Fd(cdε,j , x)−
[
R%(Ψ

d
ε,j)
]
(x)
∣∣ ≤ ε

2Nd,ε
. (7.36)

Let IdRd ∈ Rd×d, d ∈ N, be the matrices given by IdRd = diag(1, 1, . . . , 1), let ∇d,q ∈ N d,dq
1 , d, q ∈ N, be the

neural networks given by

∇d,q =


(




Idd
...

Idd


 , 0)


 , (7.37)

let Σd,ε ∈ N d,1
1 , d ∈ N, ε ∈ (0, 1], be the neural networks given by

Σd,ε =
(
(
(
wdε,1 wdε,2 . . . wdε,Qd,ε

)
, 0)
)
, (7.38)

and let (Γd,ε)ε∈(0,1],d∈N ∈ N be the neural networks given by

Γd,ε = Σd,ε � P(Ψd
ε,1,Ψ

d
ε,2, . . . ,Ψ

d
ε,Qd,ε

)�∇d,Qd,ε . (7.39)

Combining Lemma 5.3, Lemma 5.4, (7.34), (7.35), and (c) implies for every ε ∈ (0,∞) and d ∈ N, x ∈ [a, b]d

it holds
∣∣∣∣
∫ ∞

0

Fd(c, x)dc− [R%(Γd,ε)](x)

∣∣∣∣

≤

∣∣∣∣∣∣

∫ ∞

0

Fd(c, x)dc−
Qd,ε∑

j=0

wdε,jFd(c
d
ε,j , x)

∣∣∣∣∣∣
+

∣∣∣∣∣∣

Qd,ε∑

j=0

wdε,jFd(c
d
ε,j , x)− [R%(Γd,ε)](x)

∣∣∣∣∣∣

≤ ε
2 +

∣∣∣∣∣∣

Qd,ε∑

j=0

wdε,jFd(c
d
ε,j , x)−

Qd,ε∑

j=0

wdε,j
[
R%(Ψ

d
ε,j)
]
(x)

∣∣∣∣∣∣

≤ ε
2 +

Qd,ε∑

j=0

wdε,j
∣∣Fd(cdε,j , x)−

[
R%(Ψ

d
ε,j)
]
(x)
∣∣ ≤ ε

2 +Nd,ε
ε

2Nd,ε
= ε.

(7.40)

This establishes that the neural networks (Γd,ε)ε∈(0,1],d∈N satisfy (iii). Next, observe for every ε ∈ (0,∞),
d ∈ N

max{1, ln(d)}
(
| ln(

ε

2Nd,ε
)|+ ln(d) + 1

)
+ ln(Nd,ε + 1)

≤ max{1, ln(d)} (| ln(ε)|+ ln(d) + 3 ln(Nd,ε) + ln(2) + 1)

≤ max{1, ln(d)}
(
| ln(ε)|+ ln(d) + 3

(
ln(Sb,n) +

1

4n
ln(d) +

1

4n
| ln(ε)|+ 1

4n
ln(4)

)
+ 2

)

≤ max{1, ln(d)} (4| ln(ε)|+ 4 ln(d) + 3 ln(Sb,n) + 8)

≤ (3 ln(Sb,n) + 8) max{1, ln(d)} (| ln(ε)|+ ln(d) + 1) .

(7.41)
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Combining this with Lemma 5.3, Lemma 5.4, and (a) implies

sup
ε∈(0,1],d∈N

[ L(Γd,ε)

max{1, ln(d)} (| ln(ε)|+ ln(d) + 1)

]

≤ sup
ε∈(0,1],d∈N

[
L(Σd,ε) + maxj∈{1,2,...,Qd,ε} L(Ψd

ε,j) + L(∇d,Qd,ε)
max{1, ln(d)} (| ln(ε)|+ ln(d) + 1)

]

≤ 2 + sup
ε∈(0,1],d∈N

[
maxj∈{1,2,...,Qd,ε} L(Ψd

ε,j)

max{1, ln(d)} (| ln(ε)|+ ln(d) + 1)

]

≤ 2 + (3 ln(Sb,n) + 8) sup
ε∈(0,∞),d∈N


 maxj∈{1,2,...,Qd,ε} L(Ψd

ε,j)

max{1, ln(d)}
(
| ln( ε

2Nd,ε
)|+ ln(d) + 1

)
+ ln(Nd,ε + 1)




<∞.

(7.42)

This establishes (Γd,ε)ε∈(0,1],d∈N satisfy (i). In addition, for every ε ∈ (0,∞), d ∈ N it holds

(Nd,ε + 1)
1
4n d1+ 1

4n

[
ε

2Nd,ε

]− 1
4n

≤ 4N
1
2n

d,εd
1+ 1

4n ε−
1
4n

≤ 4
[
Sb,nd

1
4n

[
ε
4

]− 1
4n

] 1
2n

d1+ 1
4n ε−

1
4n

≤ 16Sb,nd
1+ 1

4n+ 1
4n2 ε−( 1

4n+ 1
8n2 )

≤ 16Sb,nd
1+ 1

2n ε−
1
2n .

(7.43)

Combining this with Lemma 5.3, Lemma 5.4, (7.33), (b), and the fact that for every ψ ∈ N which satisfies
minl∈{1,2,...,L(ψ)}Ml(ψ) > 0 it holds L(ψ) ≤M(ψ) ensures

sup
ε∈(0,1],d∈N

[ M(Γd,ε)

d(2+ 1
n )ε−

1
n

]

≤ sup
ε∈(0,1],d∈N




2M(Σd,ε) + 4


2

Qd,ε∑

j=1

M(Ψd
ε,j) + 4Qd,ε max

j∈{1,2,...,Qd,ε}
L(Ψd

ε,j)


+ 4M(∇d,Qd,ε)

d(2+ 1
n )ε−

1
n




≤ sup
ε∈(0,1],d∈N

[
24Qd,ε maxj∈{1,2,...,Qd,ε}M(Ψd

ε,j)

d(2+ 1
n )ε−

1
n

]
+ sup
ε∈(0,1],d∈N

[
2Qd,ε + 4dQd,ε

d(2+ 1
n )ε−

1
n

]

≤ 24

(
sup

ε∈(0,1],d∈N

[
Qd,ε

d(1+ 1
2n )ε−

1
2n

])(
sup

ε∈(0,1],d∈N

[
maxj∈{1,2,...,Qd,ε}M(Ψd

ε,j)

d(1+ 1
2n )ε−

1
2n

])

+ 4 sup
ε∈(0,1],d∈N

[
Qd,ε

d(1+ 1
n )ε−

1
n

]

≤ 24

(
sup

ε∈(0,1],d∈N

[
Qd,ε

d(1+ 1
2n )ε−

1
2n

])

1 + 16Sb,n sup

ε∈(0,1],d∈N




maxj∈{1,2,...,Qd,ε}M(Ψd
ε,j)

(Nd,ε + 1)
1
4n d1+ 1

4n

[
ε

2Nd,ε

]− 1
4n







<∞.

(7.44)

This establishes the neural networks (Γd,ε)ε∈(0,1],d∈N satisfy (ii). The proof of Theorem 7.3 is thus completed.
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8 Discussion

While Theorem 7.3 only establishes formally that the solution of one specific high-dimensional PDE may be
approximated by neural networks without curse of dimensionality, the constructive approach also serves to
illustrate that neural networks are capable of accomplishing the same for any PDE solution which exhibits a
similar low-rank structure. Note here, that the tensor product construction in Proposition 6.4 only introduces
a logarithmic dependency on the approximation accuracy. That we end up with a spectral rate in this specific
case is due to Proposition 6.4 and Lemma 4.3, i.e. the insufficient regularity of the univariate functions inside
the tensor product, as well as the number of terms required by the Gaussian quadrature used to approximate
the outer integral. In particular, this means that the approach in Section 6 might also be used to produce
approximation results with connectivity growing only logarithmically in the inverse of the approximation
error, given that one has a suitably well behaved low-rank structure.

The present result is a promising step towards higher order, numerical solution of high-dimensional PDEs,
which are notoriously troublesome to handle with any of the classical approaches based on discretization of
the domain, or with randomized (a.k.a. Monte-Carlo based) arguments. Of course answering the question
of approximability can only ensure that there exist networks with a reasonable size-to-accuracy trade-off,
whereas for any practical purpose it is also necessary to establish whether and how one can find these
networks.

An analysis of the generalization error for linear Kolmogorov equations can be found in [4], which con-
cludes that, under reasonable assumptions, the number of required Monte Carlo samples is free of the curse
of dimensionality. Moreover, there are a number of empirical results [2, 3, 10, 23, 41], which suggest that
the solutions of various high dimensional PDEs may be learned efficiently using standard stochastic gradient
descent based methods. However, a satisfying formal analysis of this training procesdoes not seem to be
available at the present.

Lastly we would like to point out that, even though we had a semi-explicit formula available, the ReLU
networks we used for approximation were in no way adapted to use this knowledge and have been shown
to exhibit excellent approximation properties for, e.g., piecewise smooth functions [36], affine and Gabor
systems [12], and even fractal structures [9]. So, while a spline dictionary based approach specifically
designed for the approximation of this one PDE solution may have similar rates, it would most certainly
lack the remarkable universality of neural networks.
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A Additional Proofs

A.1 Technical Lemma

Lemma A.1. It holds for every r ∈ (0,∞), t ∈ (0, exp(−2r2)] that

|ln(t)| ≤ t−1/r (A.1)

and for every r ∈ (0,∞), t ∈ [exp(2r2),∞) that

ln(t) ≤ t1/r. (A.2)

Proof of Lemma A.1. First, observe that for every r ∈ (0,∞), y ∈ [2r2,∞) it holds that

exp
(y
r

)
=
∞∑

k=0

[
yk

k!rk

]
≥ y2

2!r2
= y

[ y

2r2

]
≥ y. (A.3)

This implies that for every r ∈ (0,∞), x ∈ [exp(2r2),∞) it holds that

x
1/r = exp

(
ln
(
x

1/r
))

= exp
(

ln(x)
r

)
≥ ln(x). (A.4)

Hence, we obtain that for every r ∈ (0,∞), t ∈ (0, exp(−2r2)] ⊆ (0, 1] it holds that

t−
1/r =

[
1
t

]1/r ≥ ln( 1
t ) = |ln(t)| . (A.5)

This completes the proof of Lemma A.1.

A.2 Proof of Lemma 6.1

Proof of Lemma 6.1. The proof follows [44]. We provide it in order to provide values of constants in the
bounds on depth and width, and to reveal the dependence on the scaling parameter B. Throughout this
proof let θ ∈ N 1,1

1 be the neural network given by θ = (0, 0), let gs : [0, 1] → [0, 1], s ∈ N, be the functions
which satisfy for every s ∈ N, t ∈ [0, 1] that

gs(t) =





2t : s = 1, t < 1
2

2− 2t : s = 1, t ≥ 1
2

g1(gs−1(t)) : s ≥ 1

, (A.6)

and let fm : [0, 1] → [0, 1], m ∈ N, be the functions which satisfy for every m ∈ N, k ∈ {0, 1, . . . , 2m},
x ∈

[
k

2m ,
k+1
2m

]
that

fm(x) =

[
2k + 1

2m

]
x− k2 + k

22m
. (A.7)

We claim for every s ∈ N, k ∈ {0, 1, . . . , 2s−1 − 1} it holds

gs(x) =

{
2s(x− 2k

2s ) : x ∈
[

2k
2s ,

2k+1
2s

]

2s( 2k+2
2s − x) : x ∈

[
2k+1

2s , 2k+2
2s

] . (A.8)

We now prove (A.8) by induction on s ∈ N. Equation (A.6) establishes (A.8) in the base case s = 1. For the
induction step N 3 s→ s+ 1 ∈ {2, 3, . . . } observe that (A.6) implies for every s ∈ N, l ∈ {0, 1, . . . , 2s−1 − 1}
that

(a) it holds for every x ∈
[

2l
2s ,

2l+(1/2)
2s

]

gs+1(x) = g(gs(x)) = g(2s(x− 2l
2s )) = 2

[
2s(x− 2l

2s )
]

= 2s+1(x− 2l
2s ) = 2s+1(x− 2(2l)

2s+1 ).
(A.9)
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(b) it holds for every x ∈
[

2l+(1/2)
2s , 2l+1

2s

]

gs+1(x) = g(gs(x)) = g(2s(x− 2l
2s )) = 2− 2

[
2s(x− 2l

2s )
]

= 2− 2s+1x+ 4l = 2s+1( 4l+2
2s+1 − x)

= 2s+1( 2(2l+1)
2s+1 − x).

(A.10)

(c) it holds for every x ∈
[

2l+1
2s , 2l+(3/2)

2s

]

gs+1(x) = g(gs(x)) = g(2s( 2l+2
2s − x)) = 2− 2

[
2s( 2l+2

2s − x)
]

= 2− 2(2l + 2) + 2s+1x = 2s+1x− 2(2l + 1)

= 2s+1(x− 2(2l+1)
2s+1 ).

(A.11)

(d) it holds for every x ∈
[

2l+(3/2)
2s , 2l+2

2s

]

gs+1(x) = g(gs(x)) = g(2s( 2l+2
2s − x)) = 2

[
2s( 2l+2

2s − x)
]

= 2s+1( 2l+2
2s − x) = 2s+1( 2(2l+2)

2s+1 − x).
(A.12)

Next observe that for every s ∈ N, k ∈ {0, 1, . . . , 2s − 1} there exists l ∈ {0, 1, . . . , 2s−1 − 1} such that

[
2k

2s+1 ,
2k+1
2s+1

]
=
[

2l
2s ,

2l+(1/2)
2s

]
or

[
2k

2s+1 ,
2k+1
2s+1

]
=
[

2l+1
2s , 2l+(3/2)

2s

]
. (A.13)

Furthermore, for every s ∈ N, k ∈ {0, 1, . . . , 2s − 1} there exists l ∈ {0, 1, . . . , 2s−1 − 1} such that

[
2k+1
2s+1 ,

2k+2
2s+1

]
=
[

2l+(1/2)
2s , 2l+1

2s

]
or

[
2k+1
2s+1 ,

2k+2
2s+1

]
=
[

2l+(3/2)
2s , 2l+2

2s

]
. (A.14)

Combining this with (A.9), (A.10), (A.11), (A.12), and (A.13) completes the induction step N 3 s→ s+ 1 ∈
{2, 3, . . . } and thus establishes the claim (A.8).

Next, for every m ∈ N, k ∈ {0, 1, . . . , 2m−1} it holds

fm−1( 2k
2m )− fm( 2k

2m ) = fm−1( k
2m−1 )− fm( 2k

2m ) =
[

k
2m−1

]2 −
[

2k
2m

]2
= 0. (A.15)

In addition, note that (A.7) implies that for every m ∈ N, k ∈ {0, 1, . . . , 2m − 1} it holds

fm−1( 2k+1
2m ) = fm−1

(
k+ 1

2

2m−1

)
=

[
2k + 1

2m−1

]
k + 1

2

2m−1
− k2 + k

22(m−1)

=
(2k + 1)(k + 1

2 )− (k2 + k)

22m−2
=
k2 + k + 1

2

22m−2
=

4k2 + 4k + 2

22m

(A.16)

and

fm( 2k+1
2m ) =

[
2(2k + 1) + 1

2m

]
2k + 1

2m
− (2k + 1)2 + (2k + 1)

22m
=

4k2 + 4k + 1

22m
. (A.17)

For every m ∈ N, k ∈ {0, 1, . . . , 2m − 1} it holds

fm−1( 2k+1
2m )− fm( 2k+1

2m ) =
4k2 + 4k + 2

22m
− 4k2 + 4k + 1

22m
=

1

22m
. (A.18)

Combining this with (A.8), (A.7), and (A.15) demonstrates that for every m ∈ N, x ∈ [0, 1] it holds

fm−1(x)− fm(x) = 2−2mgm(x). (A.19)
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The fact that for every x ∈ [0, 1] it holds that f0(x) = x therefore implies that for every m ∈ N0, x ∈ [0, 1]
it holds

fm(x) = x−
m∑

s=1

2−2sgs(x). (A.20)

We observe fm is the affine, linear interpolant of the twice continuously differentiable function [0, 1] 3 x 7→
x2 ∈ [0, 1] at the points k

2m , k ∈ {0, 1, . . . , 2m}. This establishes that for every m ∈ N

sup
x∈[0,1]

∣∣x2 − fm(x)
∣∣ = max

k∈{0,1,...,2m}


 sup
x∈[ k

2m , k+1
2m ]

∣∣x2 − fm(x)
∣∣



≤ max
k∈{0,1,...,2m}

([
k+1
2m − k

2m

]2

8
max

x∈[ k
2m , k+1

2m ]

∣∣∣ d2

dt2

[
x2
]∣∣∣
)

≤ max
k∈{0,1,...,2m}

(
1
8

[
1

2m

]2
max

x∈[ k
2m , k+1

2m ]
|2|
)

= 2−2m−2.

(A.21)

Let (Ak, bk) ∈ R4×4 × R4, k ∈ N, be the matrix-vector tuples which satisfy for every k ∈ N

Ak =




2 −4 2 0
2 −4 2 0
2 −4 2 0

−2−2k+3 2−2k+4 −2−2k+3 1


 and bk =




0
− 1

2
−1
0


 , (A.22)

let ϕm ∈ N, m ∈ N, be the neural networks which satisfy ϕ1 = (1, 0) and, for every m ∈ N,

ϕm =










1
1
1
1


 ,




0
− 1

2
−1
0





 , (A2, b2), . . . , (Am−1, bm−1),







−2−2m+3

2−2m+4

−2−2m+3

1




T

, 0





 . (A.23)

Let further rk : R→ R, k ∈ N denote the function which satisfies for every x ∈ R

(r1
1(x), r1

2(x), r1
3(x), r1

4(x)) = r1(x) = %∗(x, x− 1
2 , x− 1, x) (A.24)

and for every x ∈ R, k ∈ N

(rk1 (x), rk2 (x), rk3 (x), rk4 (x)) = rk(x) = %∗(Akrk−1(x) + bk). (A.25)

We claim that for every k ∈ {1, 2, . . . ,m− 1}, x ∈ [0, 1] it holds

(a)

2rk1 (x)− 4rk2 (x) + 2rk3 (x) = gk(x) (A.26)

and

(b)

rk4 (x) = x−
k−1∑

j=1

2−2jgj(x). (A.27)
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We prove (a) and (b) by induction over k ∈ {1, 2, . . . ,m− 1}. For the base case k = 1 we note that for every
x ∈ [0, 1] it holds

g1(x) = 2%(x)− 4%(x− 1
2 ) + 2%(x− 1). (A.28)

Hence, we obtain that for every x ∈ [0, 1] it holds

2r1
1(x)− 4r1

2(x) + 2r1
3(x) = 2%(x)− 4%(x− 1

2 ) + 2%(x− 1) = g1(x). (A.29)

Furthermore, note that for every x ∈ [0, 1] it holds that r1
4(x) = x. This and (A.29) establish the base case

k = 1. For the induction step {1, 2, . . . ,m− 2} 3 k − 1→ k ∈ {2, 3, . . . ,m− 1} observe that (A.28) ensures
for every x ∈ [0, 1], k ∈ {2, 3, . . . ,m− 1}, with gk−1(x) = 2rk−1

1 (x)− 4rk−1
2 (x) + 2rk−1

3 (x), it holds

2rk1 (x)− 4rk2 (x) + 2rk3 (x) = 2%(2rk−1
1 (x)− 4rk−1

2 (x) + 2rk−1
3 (x))

−4%(2rk−1
1 (x)− 4rk−1

2 (x) + 2rk−1
3 (x)− 1

2 )

+2%(2rk−1
1 (x)− 4rk−1

2 (x) + 2rk−1
3 (x)− 1)

= g1(2rk−1
1 (x)− 4rk−1

2 (x) + 2rk−1
3 (x))

= g1(gk−1(k)) = gk(x).

(A.30)

Induction thus establishes (a). Moreover note that (A.7) and (A.20) for every k ∈ N, x ∈ [0, 1] it holds

x−
k−1∑

j=1

2−2jgj(x) = fk−1(x) ≥ 0. (A.31)

Combining this with (A.28) implies that for every x ∈ [0, 1], k ∈ {2, 3, . . . ,m−1} with gk−1(x) = 2rk−1
1 (x)−

4rk−1
2 (x) + 2rk−1

3 (x) and rk−1
4 (x) = x−∑k−2

j=1 2−2jgj(x) it holds

rk4 (x) = %(−2−2k+3rk−1
1 (x) + 2−2k+4rk−1

2 (x)− 2−2k+3rk−1
3 (x) + rk−1

4 (x))

= %(x−
k−2∑

j=1

2−2jgj(x)− gk−1(x)) = %(x−
k−1∑

j=1

2−2jgj(x))

= x−
k−1∑

j=1

2−2jgj(x).

(A.32)

Induction thus establishes (b). Next observe that (a) and (b) that for every m ∈ N, x ∈ [0, 1] it holds

[R%(ϕm)](x) = −2−2m+3rm−1
1 (x) + 2−2m+4rm−1

2 (x)− 2−2m+3rm−1
3 (x) + rm−1

4 (x)

= −2−2(m−1)
(
2rm−1

1 (x)− 4rm−1
2 (x) + 2rm−1

3 (x)
)

+ x−
m−2∑

j=1

2−2jgj(x)

= x−



m−2∑

j=1

2−2jgj(x)


− 2−2(m−1)gm−1(x) = x−

m−1∑

j=1

2−2jgj(x).

(A.33)

Combining this with (A.20) establishes that for every m ∈ N, x ∈ [0, 1] it holds

[R%(ϕm)](x) = fm−1(x). (A.34)

This and (A.21) imply that for every m ∈ N it holds

sup
x∈[0,1]

∣∣x2 − [R%(ϕm)](x)
∣∣ ≤ 2−2m. (A.35)
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Furthermore, observe that by construction it holds for every m ∈ N

L(ϕm) = m and M(ϕm) = max{1, 10 + 15(m− 2)} ≤ 15m. (A.36)

Let (σε)ε∈(0,∞) ⊆ N be the neural networks which satisfy for ε ∈ (0, 1)

σε = ϕd 1
2 |log2(ε)|e (A.37)

and for every ε ∈ [1,∞) that σε = θ. Observe that for every ε ∈ [1,∞) it holds

sup
x∈[0,1]

∣∣x2 − [R%(σε)](x)
∣∣ = sup

x∈[0,1]

∣∣x2 − [R%(θ)](x)
∣∣ ≤ 1 ≤ ε. (A.38)

In addition note for every ε ∈ (0, 1) it holds

sup
x∈[0,1]

∣∣x2 − [R%(σε)](x)
∣∣ = sup

x∈[0,1]

∣∣∣x2 − [R%(ϕd 1
2 |log2(ε)|e)](x)

∣∣∣

≤ 2−2d 1
2 |log2(ε)|e ≤ 2−2( 1

2 |log2(ε)|) = 2log2(ε) = ε.

(A.39)

Moreover, observe that (A.36) implies for every ε ∈ (0, 1) it holds

L(σε) = L(ϕd 1
2 |log2(ε)|e) =

⌈
1
2 |log2(ε)|

⌉
(A.40)

and

M(σε) =M(ϕd 1
2 |log2(ε)|e) ≤ 15

⌈
1
2 |log2(ε)|

⌉
. (A.41)

Furthermore, for every ε ∈ [1,∞) it holds L(σε) = L(θ) = 1 and M(σε) = M(θ) = 0. This completes the
proof of Lemma 6.1.

A.3 Proof of Lemma 6.2

Proof of Lemma 6.2. Throughout this proof assume Setting 5.2, let θ ∈ N 1,1
1 be the neural network given

by θ = (0, 0), let α ∈ N 2,6,3
2 be the neural network given by

α1 =




(




1 1
−1 −1
1 0
−1 0
0 1
0 −1



,




0
0
0
0
0
0




), ( 1
2B




1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1


 ,




0
0
0


)



, (A.42)

and let Σ ∈ N 3,1
1 be the neural network given by Σ =

(
(
(
2B2 −2B2 −2B2

)
, 0)
)
. Observe that Lemma 6.1

ensures the existence of neural networks (σε)ε∈(0,∞) ⊆ N which satisfy Lemma 6.1, (i) – (iv). Let (µε)ε∈(0,∞) ⊆
N be the neural networks which satisfy for every ε ∈ (0,∞)

µε =

{
Σ� P

(
σε/6B2 , σε/6B2 , σε/6B2

)
� α : ε < B2

θ : ε ≥ B2
. (A.43)

Note first that for every ε ∈ [B2,∞) it holds

sup
x,y∈[−B,B]

|xy − [R%(µε)](x, y)| = sup
x,y∈[−B,B]

|xy − [R%(θ)](x, y)| = sup
x,y∈[−B,B]

|xy − 0| = B2 ≤ ε. (A.44)

Next observe that for every (x, y) ∈ R2 it holds

[R%(α)](x, y) = 1
2B



%(x+ y) + %(−(x+ y))

%(x) + %(−x)
%(y) + %(−y)


 = 1

2B



|x+ y|
|x|
|y|


 . (A.45)
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Furthermore, for every (x, y, z) ∈ R3 holds [R%(Σ)](x, y, z) = 2B2x − 2B2y − 2B2z. Combining this with
Lemma 5.3, Lemma 5.4, (A.43), and (A.45) establishes that for every ε ∈ (0, B2), (x, y) ∈ [−B,B]2 it holds

[R%(µε)](x, y) = 2B2
(

[R%(σε/6B2)]
(
|x+y|

2B

)
− [R%(σε/6B2)]

(
|x|
2B

)
− [R%(σε/6B2)]

(
|y|
2B

))
. (A.46)

With Lemma 6.1, Item iv, (A.46) establishes (v). In addition note that Lemma 6.1 demonstrates for every
ε ∈ (0,∞) it holds

sup
z∈[−2B,2B]

∣∣∣ 12z2 − 2B2
[
[R%(σε/6B2)]

(
|z|
2B

)]∣∣∣

= sup
z∈[−2B,2B]

∣∣∣∣2B2
[
|z|
2B

]2
− 2B2

[
[R%(σε/6B2)]

(
|z|
2B

)]∣∣∣∣

= 2B2

[
sup
t∈[0,1]

∣∣t2 −
[
[R%(σε/6B2)] (t)

]∣∣
]
≤ 2B2

[ ε

6B2

]
=
ε

3
.

(A.47)

This and (A.46) establish that for every ε ∈ (0, B2) it holds

sup
x,y∈[−B,B]

|xy − [R%(µε)](x, y)|

= sup
x,y∈[−B,B]

∣∣∣∣
1

2

[
(x+ y)2 − x2 − y2

]
− [R%(µε)](x, y)

∣∣∣∣

≤ ε
3 + ε

3 + ε
3 = ε.

(A.48)

Next observe that L(α) = 2 and L(Σ) = 1. Combining this with Lemma 5.3, Lemma 5.4, and Lemma 6.1(i)
ensures for every ε ∈ (0, B2)

L(µε) = L(Σ) + L(σε/6B2) + L(α)

≤ 1
2

∣∣log2( ε
6B2 )

∣∣+ 4 = 1
2 log2( 6B2

ε ) + 4

≤ 1
2 (log2( 1

ε ) + 2 log2(B) + 3) + 4

= 1
2 log2( 1

ε ) + log2(B) + 6.

(A.49)

CombiningM(α) = 14 andM(Σ) = 3 with Lemma 5.3, Lemma 5.4, Lemma 6.1(ii), and (A.42) demonstrate
that for every ε ∈ (0, B2) it holds

M(µε) ≤ 2
(
M(Σ) + 3M(σε/6B2) +M(α)

)

≤ 34 + 90( 1
2 | log2( 6B2

ε )|+ 1)

≤ 45 log2( 1
ε ) + 90 log2(B) + 259.

(A.50)

Moreover, for every ε ∈ (B2,∞) it holds L(µε) = 1 andM(µε) = 0. Next, observe Lemma 5.3 and Lemma 5.4
demonstrate that for every ε ∈ (0,∞) it holds that M1(µε) = M1(α) = 8 and ML(µε)(µε) = M(Σ) = 3.
This completes the proof of Lemma 6.2.

A.4 Proof of Theorem 6.5

Proof of Theorem 6.5. Throughout this proof assume Setting 5.2, let hN,j : R→ R, N ∈ N, j ∈ {0, 1, . . . , N},
be the functions which satisfy for every N ∈ N, j ∈ {0, 1, . . . , N}, x ∈ R

hN,j(x) =





Nx+ 1− j : j−1
N ≤ x ≤ j

N

−Nx+ 1 + j : j
N ≤ x ≤

j+1
N

0 : else

, (A.51)
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let Tf,N,j : R → R, f ∈ Bn1 , N ∈ N, j ∈ {0, 1, . . . , N}, be the functions which satisfy for every f ∈ Bn1 ,
N ∈ N, j ∈ {0, 1, . . . , N}, x ∈ [0, 1]

Tf,N,j(x) =

n−1∑

k=0

f (k)( jN )

k!
(x− j

N )k. (A.52)

For every f ∈ Bn1 , let fN : R→ R, N ∈ N denote functions which satisfy for every N ∈ N, x ∈ [0, 1]

fN (x) =
N∑

j=0

hN,j(x)Tf,N,j(x). (A.53)

Observe that Taylor’s theorem (with Lagrange remainder term) ensures that for every f ∈ Bn1 , N ∈ N,
j ∈ {0, 1, . . . , N}, x ∈ [max{0, j−1

N },min{1, j+1
N }]

|f(x)− Tf,N,j(x)| ≤ 1
n!

∣∣x− j
N

∣∣n sup

ξ∈[max{0, j−1
N },min{1, j+1

N }]

∣∣∣f (n)(ξ)
∣∣∣

≤ 1
n!N

−n max
k∈{0,1,...,n}

[
sup
t∈[0,1]

∣∣∣f (k)(t)
∣∣∣
]
≤ 1

n!N
−n.

(A.54)

Moreover, for every N ∈ N, x ∈ [0, 1], j /∈ {dNxe − 1, dNxe} it holds that hN,j(x) = 0. We obtain for every
N ∈ N and x ∈ [0, 1]

N∑

j=0

hN,j(x)Tf,N,j(x) = hN,dNxe−1(x)Tf,N,dNxe−1(x) + hN,dNxe(x)Tf,N,dNxe(x). (A.55)

Furthermore, (A.51) implies for every N ∈ N, j ∈ {1, . . . , N − 1}, x ∈ [ j−1
N , jN ] holds

hN,j−1(x) + hN,j(x) = −Nx+ 1 + (j − 1) +Nx+ 1− j = 1. (A.56)

Combining this with (A.53), (A.54), and (A.55) establishes that for every f ∈ Bn1 , N ∈ N, x ∈ [0, 1]

|f(x)− fN (x)|

=

∣∣∣∣∣∣
f(x)−

N∑

j=0

hN,j(x)Tf,N,j(x)

∣∣∣∣∣∣
=
∣∣f(x)−

(
hN,dNxe−1(x)Tf,N,dNxe−1(x) + hN,dNxe(x)Tf,N,dNxe(x)

)∣∣
≤
∣∣hN,dNxe−1(x)f(x)− hN,dNxe−1(x)Tf,N,dNxe−1(x)

∣∣
+
∣∣hN,dNxe(x)f(x)− hN,dNxe(x)Tf,N,dNxe(x)

∣∣
= hN,dNxe−1(x)

∣∣f(x)− Tf,N,dNxe−1(x)
∣∣+ hN,dNxe(x)

∣∣f(x)− Tf,N,dNxe(x)
∣∣

≤ hN,dNxe−1(x)
[

1
n!N

−n]+ hN,dNxe(x)
[

1
n!N

−n] = 1
n!N

−n.

(A.57)

We now realize this local Taylor approximation using neural networks. To this end, note that Theorem 6.3
ensures that there exist C ∈ R and neural networks (Πk

η)η∈(0,∞), k ∈ N ∩ [2,∞) which satisfy

(A) L(Πk
η) ≤ C ln(k) (|ln(η)|+ k ln(3) + ln(k)),

(B) M(Πk
η) ≤ Ck (|ln(η)|+ k ln(3) + ln(k)),

(C) sup
x∈[−3,3]k

∣∣∣∣∣

[
k∏

i=1

xi

]
−
[
R%(Π

k
η)
]
(x)

∣∣∣∣∣ ≤ η and

(D) R%
[
Πk
η

]
(x1, x2, . . . , xk) = 0, if there exists i ∈ {1, 2, . . . , k} with xi = 0.
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To complete the proof, we introduce the following neural networks:

• ∇N,j,k ∈ N k,1
1 , N ∈ N, j ∈ {0, 1, . . . , N}, k ∈ {2, 3, . . . , n− 1} given by

∇N,j,k =


(




1
...
1


 ,



− j
N
...

− j
N


)


 , (A.58)

• ξkε,N,j ∈ N, ε ∈ (0,∞), N ∈ N, j ∈ {0, 1, . . . , N}, k ∈ {1, 2, . . . , n− 1}, given by

ξkε,N,j =

{
(1, 0) : k = 1

Πk
ε/8e �∇N,j,k : k > 1

, (A.59)

• Σf,N,j ∈ N 1,n−1
1 , f ∈ Bn1 , N ∈ N, j ∈ {0, 1, . . . , N} given by

Σf,N,j =

(
(

(
f(n−1)(

j
N )

(n−1)!

f(n−2)(
j
N )

(n−2)! . . .
f(1)(

j
N )

(1)!

)
, f( jN ))

)
, (A.60)

• τf,ε,N,j ∈ N, f ∈ Bn1 , ε ∈ (0,∞), N ∈ N, j ∈ {0, 1, . . . , N} given by

τf,ε,N,j = Σf,N,j � P(ξn−1
ε,N,j , ξ

n−2
ε,N,j , . . . , ξ

1
ε,N,j)�∇1,0,n−1, (A.61)

• χN,j ∈ N 1,3,1
2 , N ∈ N, j ∈ {0, 1, . . . , N} given by

χN,j =


(




1
1
1


 ,



−(j−1)/N
−j/N
−(j+1)/N


), (

(
1 −2 1

)
, 0)


 (A.62)

• λN ∈ N 1,N+1
1 , N ∈ N given by

λN =
(
(
(
1 . . . 1

)
, 0)
)
, (A.63)

• ψf,ε,N,j ∈ N, f ∈ Bn1 , ε ∈ (0,∞), N ∈ N, j ∈ {0, 1, . . . , N} given by

ψf,ε,N,j = Π2
ε/8 � P(χN,j , τf,ε,N,j), (A.64)

• ϕf,ε,N ∈ N, f ∈ Bn1 , N ∈ N, ε ∈ (0,∞) given by

ϕf,ε,N = λN � P (ψf,ε,N,1, ψf,ε,N,2, . . . , ψf,ε,N,N )�∇1,0,2N+2. (A.65)

With these networks, we note Lemma 5.3, Lemma 5.4, (C), (A.58) and (A.59) ensure that for every N ∈ N,
ε ∈ (0,∞), j ∈ {0, 1, . . . , N}, k ∈ {2, 3, . . . , n− 1}

sup
x∈[0,1]

∣∣∣(x− j
N

)k −
[
R%(ξkε,N,j)

]
(x)
∣∣∣

≤ sup
x∈[0,1]

∣∣∣(x− j
N

)k −
[
R%(Πk

ε/8e)
]

([R%(∇N,j,k)] (x))
∣∣∣

≤ sup
x∈[0,1]

∣∣∣∣∣

[
k∏

i=1

(x− j
N

)k
]
−
[
R%(Πk

ε/8e)
]

(x− j
N
, x− j

N
, . . . , x− j

N
)

∣∣∣∣∣

≤ sup
x∈[−1,1]k

∣∣∣∣∣

[
k∏

i=1

xi

]
−
[
R%(Πk

ε/8e)
]
(x)

∣∣∣∣∣ ≤
ε
8e

(A.66)
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and

sup
x∈[0,1]

∣∣(x− j
N )−

[
R%(ξ

1
ε,N,j)

]
(x)
∣∣ = 0. (A.67)

Moreover, Lemma 5.3, Lemma 5.4, (A.58), (A.59), (A.60), and (A.61) demonstrate that for every f ∈ Bn1 ,
N ∈ N, ε ∈ (0,∞), j ∈ {0, 1, . . . , N}, x ∈ [0, 1] it holds

[R%(τf,ε,N,j)] (x) =
n−1∑

k=1

[
f (k)( jN )

k!

[
R%(ξ

k
ε,N,j)

]
(x)

]
+ f( jN ). (A.68)

Combining this with (A.52), (A.61), (A.66) and (A.66) establishes that for every f ∈ Bn1 , N ∈ N, ε ∈ (0,∞),
j ∈ {0, 1, . . . , N}, x ∈ [0, 1] it holds

|Tf,N,j(x)− [R%(τf,ε,N,j)] (x)|

=

∣∣∣∣∣

(
n−1∑

k=0

f (k)( j
N

)

k!
(x− j

N
)k
)
−
(

n−1∑

k=1

[
f (k)( j

N
)

k!

[
R%(ξkε,N,j)

]
(x)

]
+ f( j

N
)

)∣∣∣∣∣

≤
n−1∑

k=1

(
f (k)( j

N
)

k!

∣∣∣(x− j
N

)k −
[
R%(ξkε,N,j)

]
(x)
∣∣∣
)

≤ ε

8e

n−1∑

k=1

f (k)( j
N

)

k!
≤ ε

8e

( ∞∑

k=1

1

k!

)
≤ ε

8
.

(A.69)

Next, (A.62) ensures for every N ∈ N, j ∈ {0, 1, . . . , N}, x ∈ [0, 1]

[R%(χN,j)](x) = %(x− j−1
N )− 2%(x− j

N ) + %(x− j+1
N ) = hN,j(x). (A.70)

Now (A.69) and Taylor’s Theorem imply for every f ∈ Bn1 , N ∈ N, ε ∈ (0, 1), j ∈ {0, 1, . . . , N}, x ∈ [0, 1]
that

|[R%(τf,ε,N,j)](x)| ≤ |[R%(τf,ε,N,j)](x)− Tf,N,j(x)|+ |Tf,N,j(x)− f(x)|+ |f(x)|
≤ ε

4(N + 1)
+ 1

n!x
n sup
t∈[0,1]

|f (n)(t)|+ sup
t∈[0,1]

|f(t)| ≤ 3.
(A.71)

Combining this with Lemma 5.3, Lemma 5.4, (A.51), (C), (A.69), and (A.70) establishes for every f ∈ Bn1 ,
N ∈ N, ε ∈ (0, 1), j ∈ {0, 1, . . . , N}, x ∈ [0, 1] the bound

|hN,j(x)Tf,N,j(x)− [R%(ψf,ε,N,j)](x, x)|
≤ |hN,j(x)Tf,N,j(x)− [R%(χN,j)](x)[R%(τN,j)](x)|

+
∣∣∣[R%(χN,j)](x)[R%(τN,j)](x)− [R%(Π

2
ε/8 ◦ P(χN,j , τf,ε,N,j))](x, x)

∣∣∣
≤ |hN,j(x)Tf,N,j(x)− [R%(τN,j)](x)|

+
∣∣∣[R%(χN,j)](x)[R%(τN,j)](x)− [R%(Π

2
ε/8)]([R%(χN,j ](x), [R%(τf,ε,N,j)](x))

∣∣∣
≤ ε

8 + ε
8 = ε

4 .

(A.72)

Furthermore, note that for every N ∈ N, j ∈ {0, 1, . . . , N}, x /∈ [ j−1
N , j+1

N ] it holds that hN,j(x) = χN,j(x) =
0. Thus (D) ensures that for every f ∈ Bn1 , N ∈ N, ε ∈ (0, 1), j ∈ {0, 1, . . . , N}, x ∈ [0, 1] it holds

|hN,j(x)Tf,N,j(x)− [R%(ψf,ε,N,j)](x, x)| = 0. (A.73)

This, Lemma 5.3, Lemma 5.4, (A.53), (A.65), and (A.72) imply that for every f ∈ Bn1 , N ∈ N, ε ∈ (0, 1),
x ∈ [0, 1] it holds

|fN (x)− [R%(ϕf,ε,N )](x)| =

∣∣∣∣∣∣

N∑

j=0

hN,j(x)Tf,N,j(x)−
N∑

j=0

[R%(ψf,ε,N,j)](x, x)

∣∣∣∣∣∣
≤ 2 max

j∈{0,1,...,N}
|hN,j(x)Tf,N,j(x)− [R%(ψf,ε,N,j)](x, x)|

≤ ε
2 .

(A.74)
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Combining this with (A.57) establishes that for every f ∈ Bn1 , N ∈ N, ε ∈ (0, 1), x ∈ [0, 1] it holds

|f(x)− [R%(ϕf,ε,N )](x)| ≤ |f(x)− fN (x)|+ |fN (x)− [R%(ϕf,ε,N )]| ≤ 1
n!N

−n + ε
2 . (A.75)

Let Nε ∈ N satisfy for every ε ∈ (0,∞)

Nε =
⌈[

2
n!ε

]1/n⌉
, (A.76)

let θ ∈ N 1,1
1 be given by θ = (0, 0), and let (Φf,ε)f∈Bn1 ,ε∈(0,∞) ⊆ N be the neural networks given by

Φf,ε =

{
ϕf,ε,Nε : ε < 1

θ : ε ≥ 1
. (A.77)

Oberve that (A.75) implies that for every f ∈ Bn1 , ε ∈ (0, 1), x ∈ [0, 1]

|f(x)− [R%(Φf,ε)](x)| = |f(x)− [R%(ϕf,ε,Nε)](x)| ≤ 1
n!N

−n
ε + ε

2 ≤ 1
n!

[
n!ε
2

]
+ ε

2 = ε. (A.78)

Moreover that for every f ∈ Bn1 , ε ∈ [1,∞), x ∈ [0, 1] it holds

|f(x)− [R%(Φf,ε)](x)| = |f(x)− [R%(θ)](x)| = |f(x)| ≤ 1 ≤ ε. (A.79)

This and (A.78) establish that the neural networks (Φf,ε)f∈Bn1 ,ε∈(0,∞) satisfy (iii).
Next, Lemma 5.3, Lemma 5.4, (A), (A.58), and (A.59) imply for every N ∈ N, ε ∈ (0,∞), j ∈

{0, 1, . . . , N}, k ∈ {1, 2, . . . , n− 1}

L(ξkε,N,j) ≤ max{1,L(Πk
ε/8e) + L(∇N,j,k)} ≤ C ln(k)

(
| ln( ε8e )|+ k ln(3) + ln(k)

)
+ 1. (A.80)

Combining this with Lemma 5.3, Lemma 5.4, (A.58), (A.60), (A.61) shows for every f ∈ Bn1 , N ∈ N,
ε ∈ (0,∞), j ∈ {0, 1, . . . , N} the bound

L(τf,ε,N,j) ≤ L(Σf,N,j) +

[
max

k∈{1,2,...,n−1}
L(ξkε,N,j)

]
+ L(∇1,0,n−1)

≤ 3 + C ln(n)
(
| ln( ε8e )|+ n ln(3) + ln(n)

)
.

(A.81)

This, Lemma 5.3, Lemma 5.4, (A), (A.62), (A.63), (A.65), and (A.58) ensure for every f ∈ Bn1 , N ∈ N,
ε ∈ (0,∞) it holds

L(ϕf,ε,N ) ≤ L(λN ) +

[
max

j∈{0,1,...,N}
L(ψf,ε,N,j)

]
+ L(∇1,0,2N+2)

≤ 2 +

[
max

j∈{0,1,...,N}
L(Π2

ε/8 � P(χN,j , τf,ε,N,j))

]

≤ 2 +
[
C ln(2)

(
| ln( ε8 )|+ 2 ln(3) + ln(2)

)
+ max{3,L(τf,ε,N,j)}

]

≤ 5 + C ln(2)
(
| ln( ε8 )|+ ln(18)

)
+ C ln(n)

(
| ln( ε8e )|+ n ln(3) + ln(n)

)

≤ 5 + C ln(2) (| ln(ε)|+ | ln(8)|+ ln(18))

+ C ln(n) (| ln(ε)|+ | ln(8e)|+ n ln(3) + ln(n))

= C ln(2n) |ln(ε)|+ C(ln(2) ln(144) + ln(n)(ln(3)n+ ln(n) + | ln(8e)|)) + 5.

(A.82)

With the constant C from (A.82), define the term T1 by

T1 = C(ln(2) ln(144) + ln(n)(ln(3)n+ ln(n) + | ln(8e)|)) + 5. (A.83)

Observe that (A.82) implies for every f ∈ Bn1 , ε ∈ (0, 1)

L(Φf,ε) = L(ϕf,ε,Nε) = C ln(2n) |ln(ε)|+ T1. (A.84)
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Hence we obtain

sup
f∈Bn1 ,ε∈(0,e−r]

[
L(Φf,ε)

max{r,|ln(ε)|}

]
≤ sup
f∈Bn1 ,ε∈(0,e−r]

[
C ln(2n)|ln(ε)|+T1

|ln(ε)|

]
≤ C ln(2n) + T1

r <∞. (A.85)

In addition, note that (A.84) ensures that

sup
f∈Bn1 ,ε∈(e−r,1)

[
L(Φf,ε)

max{r,|ln(ε)|}

]
≤ sup
f∈Bn1 ,ε∈(e−r,1)

[
C ln(2n)|ln(ε)|+T1

r

]
≤ C ln(2n) + T1

r <∞. (A.86)

Furthermore

sup
f∈Bn1 ,ε∈[1,∞)

[
L(Φf,ε)

max{r,|ln(ε)|}

]
= sup
f∈Bn1 ,ε∈[1,∞)

[
1

max{r,|ln(ε)|}

]
<∞. (A.87)

This, (A.85), and (A.86) establish that the neural networks (Φf,ε)ε∈(0,∞) satisfy (i). Next, Lemma 5.3, (B),
(A.58), and (A.59) imply for every N ∈ N, ε ∈ (0,∞), j ∈ {0, 1, . . . , N}, k ∈ {1, 2, . . . , n− 1}

M(ξkε,N,j) ≤ max{1, 2(M(Πk
ε/8e) +M(∇N,j,k))} ≤ 2(Ck

(∣∣ln( ε8e )
∣∣+ k ln(3) + ln(k)

)
+ 1) (A.88)

Combining this with Lemma 5.3, Lemma 5.4, (A.58), (A.60), and (A.61) shows for every f ∈ Bn1 , N ∈ N,
ε ∈ (0,∞), j ∈ {0, 1, . . . , N} it holds

M(τf,ε,N,j) ≤ 2
(
M(Σf,N,j) + 2

(
M(P(ξn−1

ε,N,j , . . . , ξ
1
ε,N,j)) + L(∇1,0,n−1)

))

≤ 2n+ 4

(
2

[
n−1∑

k=1

M(ξkε,N,j)

]
+ 4(n− 1) max

k∈{1,2,...,n−1}
L(ξkε,N,j)

)
+ 8(n− 1)

≤ 10n+ 8(n− 1)(2Cn
(

ln( ε
(8e) )|+ n ln(3) + ln(n)

)
+ 2)

+ 16(n− 1)(C ln(n)
(
| ln( ε8e )|+ n ln(3) + ln(n)

)
+ 1)

≤ 32n2C
(
| ln( ε8e )|+ n ln(3) + ln(n)

)
+ 42n.

(A.89)

Let the term T2 be given by

T2 = 128
(
C + 32n2C + C ln(n)

)
, (A.90)

and let the term T3 be given by

T3 = 1556 + 128(C ln(144) + 64n2C(n ln(3) + ln(n)) + 42n. (A.91)

This, Lemma 5.3, Lemma 5.4, (B), (A.58), (A.62), (A.63), (A.65), and the fact that for every ψ ∈ N with
minl∈{1,2,...,L(ψ)}Ml(ψ) > 0 it holds that L(ψ) ≤M(ψ) ensure that for every f ∈ Bn1 , N ∈ N, ε ∈ (0,∞) it
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holds

M(ϕf,ε,N )

≤ 2 (M(λN ) + 2 [M(P(ψf,ε,N,1, ψf,ε,N,2, . . . , ψf,ε,N,N )) +M(∇1,0,2N+2)])

≤ 2(N + 1) + 8



N∑

j=0

M(ψf,ε,N,j)


+ 16(N + 1)

[
max

j∈{0,1,...,N}
L(ψf,ε,N,j)

]
+ 8(N + 1)

≤ 20N + 32(N + 1) max
j∈{1,2,...,N}

M(ψf,ε,N,j)

≤ 20N + 64N
(
M(Π2

ε/8) +M(P(χN,N , τf,ε,N,N ))
)

≤ 20N + 128NC
(∣∣ln( ε8 )

∣∣+ 2 ln(3) + ln(2)
)

+ 64N (2M(χN,N ) + 2M(τf,ε,N,N ) + 4 max{L(χN,N ),L(τf,ε,N,N )})
≤ 20N + 128NC

(∣∣ln( ε8 )
∣∣+ ln(18)

)
+ 1152N

+ 128N
(
32n2C

(
| ln( ε8e )|+ n ln(3) + ln(n)

)
+ 42n

)

+ 128N
(
3 + C ln(n)

(
| ln( ε8e )|+ n ln(3) + ln(n)

))

= 128
(
C + 32n2C + C ln(n)

)
N | ln(ε)|

+
(
1556 + 128(C ln(144) + 64n2C(n ln(3) + ln(n)) + 42n

)
N

= T2N | ln(ε)|+ T3N.

(A.92)

Combining this with Lemma A.1 demonstrates that for every f ∈ Bn1 , ε ∈ (0, exp(−2n2)] it holds

M(Φf,ε) =M(ϕf,ε,Nε) ≤ T2Nε| ln(ε)|+ T3Nε

= T2

⌈[
2
n!ε

]1/n⌉ | ln(ε)|+ T3

⌈[
2
n!ε

]1/n⌉

≤ 3T2ε
− 1
n | ln(ε)|+ 3T3ε

− 1
n

≤ 3T2ε
− 1
n max{r, | ln(ε)|}+ 3T3ε

− 1
n .

(A.93)

Hence we obtain

sup
f∈Bn1 ,ε∈(0,exp(−2n2))

[ M(Φf,ε)

ε−
1
n max{r, | ln(ε)|}

]
≤ 3T2 + 3T3

1

max{r, 2n2} <∞. (A.94)

Combining (A.93) with the fact that continuous function are bounded on compact sets ensures

sup
f∈Bn1 ,ε∈[exp(−2n2),1]

[ M(Φf,ε)

ε−
1
n max{r, | ln(ε)|}

]

≤ sup
f∈Bn1 ,ε∈[exp(−2n2),1]

[
T2N(| ln(ε)|+ | ln(N)|) + T3N

ε−
1
n max{r, | ln(ε)|}

]
<∞.

(A.95)

In addition note

sup
f∈Bn1 ,ε∈(1,∞)

[ M(Φf,ε)

ε−
1
n max{r, | ln(ε)|}

]
= sup
f∈Bn1 ,ε∈(1,∞)

[ M(θ)

ε−
1
n max{r, | ln(ε)|}

]
(A.96)

= sup
f∈Bn1 ,ε∈(1,∞)

[
0

ε−
1
n max{r, | ln(ε)|}

]
= 0 <∞. (A.97)

This, (A.94), and (A.95) establish that the neural networks (Φf,ε)f∈Bn1 ,ε∈(0,∞) satisfy (ii). The proof of
Theorem 6.5 is completed.
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A.5 Proof of Corollary 6.6

Proof of Corollary 6.6. Throughout this proof assume Setting 5.2, let ca,b ∈ R, [a, b] ⊆ R+, be the real

numbers given by ca,b = min{1, (b − a)−n}, let λa,b ∈ N 1,1
1 , [a, b] ⊆ R+, be the neural networks given

by λa,b = ( 1
b−a ,− a

b−a ), let αf ∈ N 1,1
1 , f ∈ Cn be the neural networks given by αf = ( 1

c ‖f‖n,∞ , 0), let
La,b : [0, 1]→ [a, b], [a, b] ⊆ R+ be the functions which satisfy for every [a, b] ⊆ R+, t ∈ [0, 1]

La,b(t) = (b− a)t+ a, (A.98)

and for every f ∈ Cn let f∗ ∈ Cn([0, 1],R) be the function which satisfies for every t ∈ [0, 1]

f∗(t) = ‖f‖−1
n,∞ ca,b(f(La,b(t))). (A.99)

We claim that for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), m ∈ {1, 2, . . . , n}, t ∈ [0, 1] it holds

f
(m)
∗ (t) = ‖f‖−1

n,∞ ca,b(b− a)m[f (m)(La,b(t))]. (A.100)

We now prove (A.100) by induction on m ∈ {1, 2, . . . , n}. For the base case m = 1, the chain rule implies
for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), t ∈ [0, 1]

f ′∗(t) = d
dt

[
‖f‖−1

n,∞ ca,bf(La,b(t))
]

= ‖f‖−1
n,∞ ca,b

[
f ′(La,b(t))L

′
a,b(t)

]

= ‖f‖−1
n,∞ ca,b [f ′(La,b(t))(b− a)] = ‖f‖−1

n,∞ ca,b(b− a)[f ′(La,b(t))].
(A.101)

This establishes (A.100) in the base case m = 1.
For the induction step {1, 2, . . . , n− 1} 3 m→ m+ 1 ∈ {2, 3, . . . , n} observe that the chain rule ensures

for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), m ∈ N, t ∈ [0, 1]

d
dt

[
‖f‖−1

n,∞ ca,b(b− a)m[f (m)(La,b(t))]
]

= ‖f‖−1
n,∞ ca,b(b− a)m[f (m+1)(La,b(t))L

′
a,b(t)]

= ‖f‖−1
n,∞ ca,b(b− a)m+1[f (m+1)(La,b(t))].

(A.102)

Induction thus establishes (A.100).
In addition, for every [a, b] ⊆ R+, k ∈ {0, 1, . . . , n}

ca,b(b− a)k = min{1, (b− a)−n}(b− a)k = min{(b− a)k, (b− a)−n+k} ≤ 1. (A.103)

Combining this with (6.30), (A.98), and (A.100) ensures for every [a, b] ⊆ R+, f ∈ Cn([a, b],R)

max
k∈{0,1,...,n}

[
sup
t∈[0,1]

∣∣∣f (k)
∗ (t)

∣∣∣
]

= max
k∈{0,1,...,n}

[
sup
t∈[a,b]

∣∣∣‖f‖−1
n,∞ ca,b(b− a)k[f (k)(t)]

∣∣∣
]

≤ ‖f‖−1
n,∞ max

k∈{0,1,...,n}

[
sup
t∈[a,b]

∣∣∣f (k)(t)
∣∣∣
]

= 1.

(A.104)

Theorem 6.5 therefore establishes that there exist neural networks (Φg,η)g∈Bn1 ,η∈(0,∞) ⊆ N which satisfy

(a) sup
g∈Bn1 ,η∈(0,∞)

[ L(Φg,η)

max{r, |ln(η)|}

]
<∞,

(b) sup
g∈Bn1 ,η∈(0,∞)

[ M(Φg,η)

η−
1
n max{r, | ln(η)|}

]
<∞, and

(c) for every g ∈ Bn1 , η ∈ (0,∞) that

sup
t∈[0,1]

|g(t)− [R%(Φg,η)](t)| ≤ η. (A.105)
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Let (Φf,ε)f∈Cn,ε∈(0,∞) ⊆ N denote neural networks which satisfy for every [a, b] ⊆ R+, f ∈ Cn([a, b],R),

ε ∈ (0,∞)

Φf,ε = αf � ϕf∗, ca,bε

‖f‖n,∞
� λa,b. (A.106)

Observe that for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), t ∈ [0, 1] it holds

[R%(λa,b)](t) =
[

1
(b−a)

]
t− a

(b−a) = L−1
a,b(t) and [R%(αf )](t) =

‖f‖n,∞
ca,b

t. (A.107)

Lemma 5.3 therefore demonstrates for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞), t ∈ [0, 1] it holds

[R%(Φf,ε)](t) = [R%(αf � ϕf∗, ca,bε

‖f‖n,∞
� λa,b)](t)

= [R%(αf ) ◦R%(ϕf∗, ca,bε

‖f‖n,∞
) ◦R%(λa,b)](t)

=
‖f‖n,∞
ca,b

[R%(ϕf∗,
ca,bε

‖f‖n,∞
)](L−1

a,b(t)).

(A.108)

Moreover, note (A.99) ensures that for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), t ∈ [a, b] it holds

f(t) =
‖f‖n,∞
ca,b

f∗(L
−1
a,b(t)). (A.109)

Combining (c), (A.106), and (A.108) implies for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞)

sup
t∈[a,b]

|f(t)− [R%(Φf,ε)](t)| = sup
t∈[a,b]

∣∣∣∣
‖f‖n,∞
ca,b

f∗(L
−1
a,b(t))−

‖f‖n,∞
ca,b

[R%(ϕf∗,
ca,bε

‖f‖n,∞
)](L−1

a,b(t))

∣∣∣∣

=
‖f‖n,∞
ca,b

[
sup
t∈[0,1]

∣∣∣∣f∗(t)− [R%(ϕf∗,
ca,bε

‖f‖n,∞
)](t)

∣∣∣∣

]
≤ ‖f‖n,∞ca,b

ca,bε
‖f‖n,∞

= ε.

(A.110)

This establishes that the neural networks (Φf,ε)f∈Cn,ε∈(0,∞) satisfy (iii). Furthermore, Lemma 5.3 ensures

for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞) holds

L(Φf,ε) = L(αf � ϕf∗, ca,bε

‖f‖n,∞
� λa,b) = L(αf ) + L(ϕ

f∗,
ca,bε

‖f‖n,∞
) + L(λa,b) = L(ϕ

f∗,
ca,bε

‖f‖n,∞
) + 2. (A.111)

In addition, for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞) holds

max{r, | ln(
ca,bε
‖f‖n,∞

)|} = max{r, | ln(min{1,(b−a)−n}ε
‖f‖n,∞

)|} = max{r, | ln( ε
(max{1,(b−a)})n‖f‖n,∞

)|}
≤ nmax{r, | ln( ε

(max{1,(b−a)})‖f‖n,∞
)|}.

(A.112)

Combining this with (a) and (A.111) implies that

sup
f∈Cn,ε∈(0,∞)

[
L(Φf,ε)

max{r, | ln( ε
max{1,b−a}‖f‖n,∞

)|}

]
≤ n sup

f∈Cn,ε∈(0,∞)



L(ϕ

f∗,
ca,bε

‖f‖n,∞
) + 2

max{r, | ln(
ca,bε
‖f‖n,∞

)|}




= n sup
g∈Bn1 ,η∈(0,∞)

[ L(Φg,η) + 2

max{r, |ln(η)|}

]
<∞.

(A.113)

This establishes that the neural networks (Φf,ε)f∈Cn,ε∈(0,∞) satisfy (i). Next, Lemma 5.3 implies that for

every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞)

M(Φf,ε) =M(αf � ϕf∗, ca,bε

‖f‖n,∞
� λa,b) =M(αf ) +M(ϕ

f∗,
ca,bε

‖f‖n,∞
) +M(λa,b) =M(ϕ

f∗,
ca,bε

‖f‖n,∞
) + 3.

(A.114)

49



In addition, note that (A.112) shows for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞)

[
ca,bε
‖f‖n,∞

]− 1
n

max{r, | ln(
ca,bε
‖f‖n,∞

)|}n ≤ max{1, b− a} ‖f‖ 1
n
n,∞ ε−

1
n max{r, | ln( ε

max{1,b−a}‖f‖n,∞
)|}. (A.115)

Combining this with (b) and (A.106) therefore ensures

sup
f∈Cn,ε∈(0,∞)


 M(Φf,ε)

max{1, b− a} ‖f‖ 1
n
n,∞ ε−

1
n max{r, | ln( ε

max{1,b−a}‖f‖n,∞
)|}




≤ n sup
f∈Cn,ε∈(0,∞)




M(ϕ
f∗,

ca,bε

‖f‖n,∞
) + 3

[
ca,bε
‖f‖n,∞

]− 1
n

max{r, | ln(
ca,bε
‖f‖n,∞

)|}




≤ n sup
g∈Bn1 ,η∈(0,∞)

[ M(Φg,η) + 3

η−
1
n max{r, | ln(η)|}

]
<∞.

(A.116)

This establishes that the neural networks (Φf,ε)f∈Cn,ε∈(0,∞) satisfy (ii) and completes the proof.

50



II. Deep Neural Network
Approximation Theory
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Deep Neural Network Approximation Theory
Dennis Elbrächter, Dmytro Perekrestenko, Philipp Grohs, and Helmut Bölcskei

Abstract

This paper develops fundamental limits of deep neural network learning by characterizing what is possible if

no constraints are imposed on the learning algorithm and on the amount of training data. Concretely, we consider

Kolmogorov-optimal approximation through deep neural networks with the guiding theme being a relation between

the complexity of the function (class) to be approximated and the complexity of the approximating network in terms

of connectivity and memory requirements for storing the network topology and the associated quantized weights.

The theory we develop establishes that deep networks are Kolmogorov-optimal approximants for markedly different

function classes, such as unit balls in Besov spaces and modulation spaces. In addition, deep networks provide

exponential approximation accuracy—i.e., the approximation error decays exponentially in the number of nonzero

weights in the network—of the multiplication operation, polynomials, sinusoidal functions, and certain smooth

functions. Moreover, this holds true even for one-dimensional oscillatory textures and the Weierstrass function—

a fractal function, neither of which has previously known methods achieving exponential approximation accuracy.

We also show that in the approximation of sufficiently smooth functions finite-width deep networks require strictly

smaller connectivity than finite-depth wide networks.

I. INTRODUCTION

Triggered by the availability of vast amounts of training data and drastic improvements in computing power,

deep neural networks have become state-of-the-art technology for a wide range of practical machine learning tasks

such as image classification [1], handwritten digit recognition [2], speech recognition [3], or game intelligence [4].

For an in-depth overview, we refer to the survey paper [5] and the recent book [6].

A neural network effectively implements a mapping approximating a function that is learned based on a given

set of input-output value pairs, typically through the backpropagation algorithm [7]. Characterizing the fundamental

limits of approximation through neural networks shows what is possible if no constraints are imposed on the learning

algorithm and on the amount of training data [8].
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The theory of function approximation through neural networks has a long history dating back to the work by

McCulloch and Pitts [9] and the seminal paper by Kolmogorov [10], who showed, when interpreted in neural

network parlance, that any continuous function of n variables can be represented exactly through a 2-layer neural

network of width 2n + 1. However, the nonlinearities in Kolmogorov’s neural network are highly nonsmooth

and the outer nonlinearities, i.e., those in the output layer, depend on the function to be represented. In modern

neural network theory, one is usually interested in networks with nonlinearities that are independent of the function

to be realized and exhibit, in addition, certain smoothness properties. Significant progress in understanding the

approximation capabilities of such networks has been made in [11], [12], where it was shown that single-hidden-

layer neural networks can approximate continuous functions on bounded domains arbitrarily well, provided that the

activation function satisfies certain (mild) conditions and the number of nodes is allowed to grow arbitrarily large.

In practice one is, however, often interested in approximating functions from a given function class C determined by

the application at hand. It is therefore natural to ask how the complexity of a neural network approximating every

function in C to within a prescribed accuracy depends on the complexity of C (and on the desired approximation

accuracy). The recently developed Kolmogorov-Donoho rate-distortion theory for neural networks [13] formalizes

this question by relating the complexity of C—in terms of the number of bits needed to describe any element in C to

within prescribed accuracy—to network complexity in terms of connectivity and memory requirements for storing

the network topology and the associated quantized weights. The theory is based on a framework for quantifying

the fundamental limits of nonlinear approximation through dictionaries as introduced by Donoho [14], [15].

The purpose of this paper is to provide a comprehensive, principled, and self-contained introduction to Kolmogorov-

Donoho rate-distortion optimal approximation through deep neural networks. The idea is to equip the reader with

a working knowledge of the mathematical tools underlying the theory at a level that is sufficiently deep to enable

further research in the field. Part of this paper is based on [13], but extends the theory therein to the rectified linear

unit (ReLU) activation function and to networks with depth scaling in the approximation error.

The theory we develop educes remarkable universality properties of finite-width deep networks. Specifically, deep

networks are Kolmogorov-Donoho optimal approximants for vastly different function classes such as unit balls in

Besov spaces [16] and modulation spaces [17]. This universality is afforded by a concurrent invariance property

of deep networks to time-shifts, scalings, and frequency-shifts. In addition, deep networks provide exponential

approximation accuracy—i.e., the approximation error decays exponentially in the number of parameters employed

in the approximant, namely the number of nonzero weights in the network—for vastly different functions such

as the squaring operation, multiplication, polynomials, sinusoidal functions, general smooth functions, and even

one-dimensional oscillatory textures [18] and the Weierstrass function—a fractal function, neither of which has

known methods achieving exponential approximation accuracy.
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While we consider networks based on the ReLU1 activation function throughout, certain parts of our theory carry

over to strongly sigmoidal activation functions of order k ≥ 2 as defined in [13]. For the sake of conciseness, we

refrain from providing these extensions.

Outline of the paper. In Section II, we introduce notation, formally define neural networks, and record basic

elements needed in the neural network constructions throughout the paper. Section III presents an algebra of

function approximation by neural networks. In Section IV, we develop the Kolmogorov-Donoho rate-distortion

framework that will allow us to characterize the fundamental limits of deep neural network learning of function

classes. This theory is based on the concept of metric entropy, which is introduced and reviewed starting from first

principles. Section V then puts the Kolmogorov-Donoho framework to work in the context of nonlinear function

approximation with dictionaries. This discussion serves as a basis for the development of the concept of best M -

weight approximation in neural networks presented in Section VI. We proceed, in Section VII, with the development

of a method—termed the transference principle—for transferring results on function approximation through dictio-

naries to results on approximation by neural networks. The purpose of Section VIII is to demonstrate that function

classes that are optimally approximated by affine dictionaries (e.g., wavelets), are optimally approximated by neural

networks as well. In Section IX, we show that this optimality transfer extends to function classes that are optimally

approximated by Weyl-Heisenberg dictionaries. Section X demonstrates that neural networks can improve the best-

known approximation rates for two example functions, namely oscillatory textures and the Weierstrass function, from

polynomial to exponential. The final Section XI makes a formal case for depth in neural network approximation by

establishing a provable benefit of deep networks over shallow networks in the approximation of sufficiently smooth

functions. The Appendices collect ancillary technical results.

Notation. For a function f(x) : Rd → R and a set Ω ⊆ Rd, we define ‖f‖L∞(Ω) := sup{|f(x)| : x ∈ Ω}.
Lp(Rd) and Lp(Rd,C) denote the space of real-valued, respectively complex-valued, Lp-functions. When dealing

with the approximation error for simple functions such as, e.g., (x, y) 7→ xy, we will for brevity of exposition

and with slight abuse of notation, make the arguments inside the norm explicit according to ‖f(x, y)− xy‖Lp(Ω).

For a vector b ∈ Rd, we let ‖b‖∞ := maxi=1,...,d |bi|, similarly we write ‖A‖∞ := maxi,j |Ai,j | for the matrix

A ∈ Rm×n. We denote the identity matrix of size n × n by In. log stands for the logarithm to base 2. For a set

X ∈ Rd, we write |X| for its Lebesgue measure. Constants like C are understood to be allowed to take on different

values in different uses.

1ReLU stands for the Rectified Linear Unit nonlinearity defined as x 7→ max{0, x}.
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II. SETUP AND BASIC RELU CALCULUS

This section defines neural networks, introduces the basic setup as well as further notation, and lists basic elements

needed in the neural network constructions considered throughout, namely compositions and linear combinations of

neural networks. There is a plethora of neural network architectures and activation functions in the literature. Here,

we restrict ourselves to the ReLU activation function and consider the following general network architecture.

Definition II.1. Let L ∈ N and N0, N1, . . . , NL ∈ N. A ReLU neural network Φ is a map Φ : RN0 → RNL

given by

Φ =





W1, L = 1

W2 ◦ ρ ◦W1, L = 2

WL ◦ ρ ◦WL−1 ◦ ρ ◦ · · · ◦ ρ ◦W1, L ≥ 3

, (1)

where, for ` ∈ {1, 2, . . . , L}, W` : RN`−1 → RN` ,W`(x) := A`x + b` are the associated affine transformations

with matrices A` ∈ RN`×N`−1 and (bias) vectors b` ∈ RN` , and the ReLU activation function ρ : R→ R, ρ(x) :=

max(0, x) acts component-wise, i.e., ρ(x1, . . . , xN ) := (ρ(x1), . . . , ρ(xN )). We denote by Nd,d′ the set of all ReLU

networks with input dimension N0 = d and output dimension NL = d′. Moreover, we define the following quantities

related to the notion of size of the ReLU network Φ:

• the connectivity M(Φ) is the total number of nonzero entries in the matrices A`, ` ∈ {1, 2, . . . , L}, and the

vectors b`, ` ∈ {1, 2, . . . , L},
• depth L(Φ) := L,

• width W(Φ) := max`=0,...,LN`,

• weight magnitude B(Φ) := max`=1,...,L max{‖A`‖∞, ‖b`‖∞}.

Remark II.2. Note that for a given function f : RN0 → RNL , which can be expressed according to (1), the

underlying affine transformations W` are highly nonunique in general [19], [20]. The question of uniqueness in

this context is of independent interest and was addressed recently in [21], [22]. Whenever we talk about a given

ReLU network Φ, we will either explicitly or implicitly associate Φ with a given set of affine transformations W`.

N0 is the dimension of the input layer indexed as the 0-th layer, N1, . . . , NL−1 are the dimensions of the L− 1

hidden layers, and NL is the dimension of the output layer. Our definition of depth L(Φ) counts the number of

affine transformations involved in the representation (1). Single-hidden-layer neural networks hence have depth 2

in this terminology. Finally, we consider standard affine transformations as neural networks of depth 1 for technical

purposes.

The matrix entry (A`)i,j represents the weight associated with the edge between the j-th node in the (`− 1)-th

layer and the i-th node in the `-th layer, (b`)i is the weight associated with the i-th node in the `-th layer. These
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assignments are schematized in Figure 1. The real numbers (A`)i,j and (b`)i are referred to as the network’s edge

weights and node weights, respectively.

Throughout the paper, we assume that every node in the input layer and in layers 1, . . . , L − 1 has at least

one outgoing edge and every node in the output layer L has at least one incoming edge. These nondegeneracy

assumptions are basic as nodes that do not satisfy them can be removed without changing the functional relationship

realized by the network.

Finally, we note that the connectivity satisfies

M(Φ) ≤ L(Φ)W(Φ)(W(Φ) + 1).

The term “network” stems from the interpretation of the mapping Φ as a weighted acyclic directed graph with

nodes arranged in hierarchical layers and edges only between adjacent layers.

(b2)1 (b2)2

(b1)1 (b1)2 (b1)3

(A2)1,1 (A2)1,2 (A2)2,3

(A1)1,1

(A1)3,3(A1)2,3(A1)1,2

(A1)1,1

A2 =


 (A2)1,1 (A2)1,2 0

0 0 (A2)2,3




A1 =




(A1)1,1 (A1)1,2 0

0 0 (A1)2,3

0 0 (A1)3,3




Output layer

Hidden layer ρ

Input layer

Fig. 1: Assignment of the weights (A`)i,j and (b`)i of a two-layer network to the edges and nodes, respectively.

We mostly consider the case Φ : Rd → R, i.e., NL = 1, but emphasize that our results readily generalize to

NL > 1.

The neural network constructions provided in the paper frequently make use of basic elements introduced next,

namely compositions and linear combinations of networks [23].

Lemma II.3. Let d1, d2, d3 ∈ N, Φ1 ∈ Nd1,d2 , and Φ2 ∈ Nd2,d3 . Then, there exists a network Ψ ∈ Nd1,d3
with L(Ψ) = L(Φ1) + L(Φ2), M(Ψ) ≤ 2M(Φ1) + 2M(Φ2), W(Ψ) ≤ max{2d2,W(Φ1),W(Φ2)}, B(Ψ) =

max{B(Φ1),B(Φ2)}, and satisfying

Ψ(x) = (Φ2 ◦ Φ1)(x) = Φ2(Φ1(x)), for all x ∈ Rd1 .

5



Proof. The proof is based on the identity x = ρ(x)− ρ(−x). First, note that by Definition II.1, we can write

Φ1 = W 1
L1
◦ ρ ◦W 1

L1−1 ◦ · · · ◦ ρ ◦W 1
1 and Φ2 = W 2

L2
◦ ρ ◦ · · · ◦W 2

2 ◦ ρ ◦W 2
1 .

Next, let N1
L1−1 denote the width of layer L1 − 1 in Φ1 and let N2

1 denote the width of layer 1 in Φ2. We define

the affine transformations W̃ 1
L1

: RN
1
L1−1 7→ R2d2 and W̃ 2

1 : R2d2 7→ RN2
1 according to

W̃ 1
L1

(x) :=


 Id2
−Id2


W 1

L1
(x) and W̃ 2

1 (y) := W 2
1

((
Id2 −Id2

)
y
)
.

The proof is finalized by noting that the network

Ψ := W 2
L2
◦ ρ ◦ · · · ◦W 2

2 ◦ ρ ◦ W̃ 2
1 ◦ ρ ◦ W̃ 1

L1
◦ ρ ◦W 1

L1−1 ◦ · · · ◦ ρ ◦W 1
1

satisfies the claimed properties.

Unless explicitly stated otherwise, the composition of two neural networks will be understood in the sense of

Lemma II.3.

In order to formalize the concept of a linear combination of networks with possibly different depths, we need

the following two technical lemmas which show how to augment network depth while retaining the network’s

input-output relation and how to parallelize networks.

Lemma II.4. Let d1, d2,K ∈ N, and Φ ∈ Nd1,d2 with L(Φ) < K. Then, there exists a network Ψ ∈ Nd1,d2 with

L(Ψ) = K, M(Ψ) ≤M(Φ) + d2W(Φ) + 2d2(K − L(Φ)), W(Ψ) = max{2d2,W(Φ)}, B(Ψ) = max{1,B(Φ)},
and satisfying Ψ(x) = Φ(x) for all x ∈ Rd1 .

Proof. Let W̃j(x) := diag
(
Id2 , Id2

)
x, for j ∈ {L(Φ) + 1, . . . ,K − 1}, W̃K(x) :=

(
Id2 −Id2

)
x, and note that

with

Φ = WL(Φ) ◦ ρ ◦WL(Φ)−1 ◦ ρ ◦ · · · ◦ ρ ◦W1,

the network

Ψ := W̃K ◦ ρ ◦ W̃K−1 ◦ ρ ◦ · · · ◦ ρ ◦ W̃L(Φ)+1 ◦ ρ ◦


 WL(Φ)

−WL(Φ)


 ◦ ρ ◦WL(Φ)−1 ◦ ρ ◦ · · · ◦ ρ ◦W1

satisfies the claimed properties.

For the sake of simplicity of exposition, we state the following two lemmas only for networks of the same depth,

the extension to the general case follows by straightforward application of Lemma II.4. The first of these two lemmas

formalizes the notion of neural network parallelization, concretely of combining neural networks implementing the

functions f and g into a neural network realizing the mapping x 7→ (f(x), g(x)).
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Lemma II.5. Let n,L ∈ N and, for i ∈ {1, 2, . . . , n}, let di, d′i ∈ N and Φi ∈ Ndi,d′i with L(Φi) = L. Then,

there exists a network Ψ ∈ N∑n
i=1 di,

∑n
i=1 d

′
i

with L(Ψ) = L, M(Ψ) =
∑n
i=1M(Φi), W(Ψ) =

∑n
i=1W(Φi),

B(Ψ) = maxi B(Φi), and satisfying

Ψ(x) = (Φ1(x1),Φ2(x2), . . . ,Φn(xn)) ∈ R
∑n
i=1 d

′
i ,

for x = (x1, x2, . . . , xn) ∈ R
∑n
i=1 di with xi ∈ Rdi , i ∈ N.

Proof. We write the networks Φi as

Φi = W i
L ◦ ρ ◦W i

L−1 ◦ ρ ◦ · · · ◦ ρ ◦W i
1,

with W i
` (x) = Ai`x+bi`. Furthermore, we denote the layer dimensions of Φi by N i

0, . . . , N
i
L and set N` :=

∑n
i=1N

i
` ,

for ` ∈ {0, 1, . . . , L}. Next, define, for ` ∈ {1, 2, . . . , L}, the block-diagonal matrices A` := diag(A1
` , A

2
` , . . . , A

n
` ),

the vectors b` = (b1` , b
2
` , . . . , b

n
` ), and the affine transformations W`(x) := A`x + b`. The proof is concluded by

noting that

Ψ := WL ◦ ρ ◦WL−1 ◦ ρ ◦ · · · ◦ ρ ◦W1

satisfies the claimed properties.

We are now ready to formalize the concept of a linear combination of neural networks.

Lemma II.6. Let n,L, d′ ∈ N and, for i ∈ {1, 2, . . . , n}, let di ∈ N, ai ∈ R, and Φi ∈ Ndi,d′ with L(Φi) = L.

Then, there exists a network Ψ ∈ N∑n
i=1 di,d

′ with L(Ψ) = L, M(Ψ) ≤ ∑n
i=1M(Φi), W(Ψ) ≤ ∑n

i=1W(Φi),

B(Ψ) = maxi{|ai|B(Φi)}, and satisfying

Ψ(x) =

n∑

i=1

aiΦi(xi) ∈ Rd
′
,

for x = (x1, x2, . . . , xn) ∈ R
∑n
i=1 di with xi ∈ Rdi , i ∈ {1, 2, . . . , n}.

Proof. The proof follows by taking the construction in Lemma II.5, replacing AL by (a1A
1
L, a2A

2
L, . . . , anA

n
L), bL

by
∑n
i=1 aib

i
L, and noting that the resulting network satisfies the claimed properties.

III. APPROXIMATION OF MULTIPLICATION, POLYNOMIALS, SMOOTH FUNCTIONS, AND SINUSOIDALS

This section constitutes the first part of the paper dealing with the approximation of basic function “templates”

through neural networks. Specifically, we shall develop an algebra of neural network approximation by starting with

the squaring function, building thereon to approximate the multiplication function, proceeding to polynomials and

general smooth functions, and ending with sinusoidal functions.

The basic element of the neural network algebra we develop is based on an approach by Yarotsky [24] and by

Schmidt-Hieber [25], both of whom, in turn, employed the “sawtooth” construction from [26].
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We start by reviewing the sawtooth construction underlying our program. Consider the hat function g : R→ [0, 1],

g(x) = 2ρ(x)− 4ρ(x− 1
2 ) + 2ρ(x− 1) =





2x, if 0 ≤ x < 1
2

2(1− x), if 1
2 ≤ x ≤ 1

0, else

,

let g0(x) = x, g1(x) = g(x), and define the s-th order sawtooth function gs as the s-fold composition of g with

itself, i.e.,

gs := g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
s

, s ≥ 2. (2)

We note that g can be realized by a 2-layer network Φg ∈ N1,1 according to Φg := W2 ◦ ρ ◦W1 = g with

W1(x) =




1

1

1


x −




0

1/2

1


, W2(x) =

(
2 −4 2

)



x1

x2

x3


.

The s-th order sawtooth function gs can hence be realized by a network Φsg ∈ N1,1 according to

Φsg := W2 ◦ ρ ◦Wg ◦ ρ ◦ · · · ◦Wg ◦ ρ︸ ︷︷ ︸
s−1

◦W1 = gs (3)

with

Wg(x) =




2 −4 2

2 −4 2

2 −4 2







x1

x2

x3


−




0

1/2

1


 .

The following restatement of [26, Lemma 2.4] summarizes the self-similarity and symmetry properties of gs(x) we

will frequently make use of.

Lemma III.1. For s ∈ N, k ∈ {0, 1, . . . , 2s−1 − 1}, it holds that g(2s−1 · −k) is supported in
[

k
2s−1 ,

k+1
2s−1

]
,

gs(x) =
2s−1−1∑

k=0

g(2s−1x− k), for x ∈ [0, 1],

and

gs
(

k
2s−1 + x

)
= gs

(
k+1
2s−1 − x

)
, for x ∈

[
0, 1

2s−1

]
.

We are now ready to proceed with the statement of the basic building block of our neural network algebra,

namely the approximation of the squaring function through deep ReLU networks.

Proposition III.2. There exists a constant C > 0 such that for all ε ∈ (0, 1/2), there is a network Φε ∈ N1,1 with

L(Φε) ≤ C log(ε−1), W(Φε) = 3, B(Φε) ≤ 1, Φε(0) = 0, satisfying

‖Φε(x)− x2‖L∞([0,1]) ≤ ε.
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Fig. 2: First three steps of approximating F (x) = x−x2 by an equispaced linear interpolation Im at 2m+1 points.

Proof. The proof builds on two rather elementary observations. The first one concerns the linear interpolation

Im : [0, 1]→ R, m ∈ N, of the function F (x) := x− x2 at the points j
2m , j ∈ {0, 1, . . . , 2m}, and in particular the

self-similarity of the refinement step Im → Im+1. For every m ∈ N, the residual F−Im is identical on each interval

between two points of interpolation. Concretely, let fm : [0, 2−m]→ [0, 2−2m−2] be defined as fm(x) = 2−mx−x2

and consider its linear interpolation hm : [0, 2−m]→ [0, 2−2m−2] at the midpoint and the endpoints of the interval

[0, 2−m] given by

hm(x) :=





2−m−1x, x ∈ [0, 2−m−1]

−2−m−1x+ 2−2m−1, x ∈ [2−m−1, 2−m]

.

Direct calculation shows that

fm(x)− hm(x) =




fm+1(x), x ∈ [0, 2−m−1]

fm+1(x− 2−m−1), x ∈ [2−m−1, 2−m]

.

As F = f0 and I1 = h0 this implies that, for all m ∈ N,

F (x)− Im(x) = fm(x− j
2m ), for x ∈ [ j

2m ,
j+1
2m ], j ∈ {0, 1, . . . , 2m − 1}

and Im =
∑m−1
k=0 Hk, where Hk : [0, 1]→ R is given by

Hk(x) = hk(x− j
2k

), for x ∈ [ j
2k
, j+1

2k
], j ∈ {0, 1, . . . , 2k − 1}.
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Thus, we have

sup
x∈[0,1]

|x2 − (x− Im(x))| = sup
x∈[0,1]

|F (x)− Im(x)| = sup
x∈[0,2−m]

|fm(x)| = 2−2m−2. (4)

The second observation we build on is a manifestation of the sawtooth construction described above and leads to

economic realizations of the Hk through k-layer networks with two neurons in each layer; a third neuron is used

to realize the approximation x− Im(x) to x2. Concretely, let sk(x) := 2−1ρ(x)−ρ(x−2−2k−1), and note that, for

x ∈ [0, 1], H0 = s0, we get Hk = sk ◦Hk−1. We can thus construct a network realizing x− Im(x), for x ∈ [0, 1],

as follows. Let A1 := (1, 1, 1)T ∈ R3×1, b1 := (0,−2−1, 0)T ∈ R3,

A` :=




2−1 −1 0

2−1 −1 0

−2−1 1 1


 ∈ R3×3, b` :=




0

−2−2`+1

0


 ∈ R3, for ` ∈ {2, . . . ,m},

and Am+1 := (−2−1, 1, 1) ∈ R1×3, bm+1 = 0. Setting W`(x) := A`x+ b`, ` ∈ {1, 2, . . . ,m+ 1}, and

Φ̃m := Wm+1 ◦ ρ ◦Wm ◦ ρ ◦ · · · ◦ ρ ◦W1,

a direct calculation yields Φ̃m(x) = x−∑m−1
k=0 Hk(x), for x ∈ [0, 1]. The proof is completed upon noting that the

networks Φε := Φ̃dlog(ε−1)/2e satisfy the claimed properties.

The symmetry properties of gs(x) according to Lemma III.1 lead to the interpolation error in the proof of

Proposition III.2 being identical in each interval, with the maximum error taken on at the centers of the respective

intervals. More importantly, however, the approximating neural networks realize linear interpolation at a number

of points that grows exponentially in network depth. This is a manifestation of the fact that the number of linear

regions in the sawtooth construction (3) grows exponentially with depth, which, owing to Lemma XI.1, is optimal.

We emphasize that the theory developed in this paper hinges critically on this optimality property, which, however,

is brittle in the sense that networks with weights obtained through training will, as observed in [27], in general, not

exhibit exponential growth of the number of linear regions with network depth. An interesting approach to neural

network training which manages to partially circumvent this problem was proposed recently in [28]. Understanding

how the number of linear regions grows in general trained networks and quantifying the impact of this—possibly

subexponential—growth behavior on the approximation-theoretic fundamental limits of neural networks constitutes

a major open problem.

We proceed to the construction of networks that approximate the multiplication function over the interval [−D,D].

This will be effected by using the result on the approximation of x2 just established combined with the polarization

identity xy = 1
4 ((x+ y)2− (x− y)2), the fact that ρ(x) + ρ(−x) = |x|, and a scaling argument exploiting that the

ReLU function is positive homogeneous, i.e., ρ(λx) = λρ(x), for all λ ≥ 0, x ∈ R.
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Proposition III.3. There exists a constant C > 0 such that, for all D ∈ R+ and ε ∈ (0, 1/2), there is a network

ΦD,ε ∈ N2,1 with L(ΦD,ε) ≤ C(log(dDe) + log(ε−1)), W(ΦD,ε) ≤ 5, B(ΦD,ε) ≤ 1, satisfying ΦD,ε(0, x) =

ΦD,ε(x, 0) = 0, for all x ∈ R, and

‖ΦD,ε(x, y)− xy‖L∞([−D,D]2) ≤ ε. (5)

Proof. We first note that, w.l.o.g., we can assume D ≥ 1 in the following, as for D < 1, we can simply employ the

network constructed for D = 1 to guarantee the claimed properties. The proof builds on the polarization identity

and essentially constructs two squaring networks according to Proposition III.2 which share the neuron responsible

for summing up the Hk, preceded by a layer mapping (x, y) to (|x+ y|/2D, |x− y|/2D|) and followed by layers

realizing the multiplication by D2 through weights bounded by 1. Specifically, consider the network Ψ̃m with

associated matrices A` and vectors b` given by

A1 :=
1

2D




1 1

−1 −1

1 −1

−1 1



∈ R4×2, b1 := 0 ∈ R4, A2 :=




1 1 0 0

1 1 0 0

1 1 −1 −1

0 0 1 1

0 0 1 1




∈ R5×4, b2 :=




0

−2−1

0

0

−2−1




A` :=




2−1 −1 0 0 0

2−1 −1 0 0 0

−2−1 1 1 2−1 −1

0 0 0 2−1 −1

0 0 0 2−1 −1




∈ R5×5, b` :=




0

−2−2`+3

0

0

−2−2`+3




, for ` ∈ {3, . . . ,m+ 1},

and Am+2 := (−2−1, 1, 1, 2−1,−1) ∈ R1×5, bm+2 := 0. A direct calculation yields

Ψ̃m(x, y) =

(
|x+y|
2D −

m−1∑

k=0

Hk

( |x+y|
2D

)
)
−
(
|x−y|

2D −
m−1∑

k=0

Hk

( |x−y|
2D

)
)

= Φ̃m

(
|x+y|
2D

)
− Φ̃m

(
|x−y|

2D

)
,

(6)

with Hk and Φ̃m as defined in the proof of Proposition III.2. With (4) this implies

sup
(x,y)∈[−D,D]2

∣∣∣Ψ̃m(x, y)− xy
D2

∣∣∣ = sup
(x,y)∈[−D,D]2

∣∣∣∣
(

Φ̃m

(
|x+y|
2D

)
− Φ̃m

(
|x−y|

2D

))
−
((
|x+y|
2D

)2

−
(
|x−y|

2D

)2
)∣∣∣∣

≤ 2 sup
z∈[0,1]

|Φ̃m(z)− z2| ≤ 2−2m−1.

(7)

Next, let ΨD(x) = D2x be the scalar multiplication network according to Lemma A.1 and take ΦD,ε := ΨD ◦
Ψ̃m(D,ε), where m(D, ε) := d2−1(1 + log(D2ε−1))e. Then, the error estimate (5) follows directly from (7)

and Lemma II.3 establishes the desired bounds on depth, width, and weight magnitude. Finally, ΦD,ε(0, x) =

ΦD,ε(x, 0) = 0, for all x ∈ R, follows directly from (6).
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Remark III.4. Note that the multiplication network just constructed has weights bounded by 1 irrespectively of the

size D of the domain. This is accomplished by trading network depth for weight magnitude according to Lemma A.1.

We proceed to the approximation of polynomials, effected by networks that realize linear combinations of

monomials, which, in turn, are built by composing multiplication networks. Before presenting the specifics of

this construction, we hasten to add that a similar approach was considered previously in [24] and [25]. While there

are slight differences in formulation, the main distinction between our construction and those in [24] and [25] resides

in their purpose. Specifically, the goal in [24] and [25] is to establish, by way of local Taylor-series approximation,

that d-variate, k-times (weakly) differentiable functions can be approximated in L∞-norm to within error ε with

networks of connectivity scaling according to ε−d/k log(ε−1). Here, on the other hand, we will be interested in

functions that allow approximation with networks of connectivity scaling polylogarithmically in ε−1 (i.e., as a

polynomial in log(ε−1)). Moreover, for ease of exposition, we will employ finite-width networks. Polylogarithmic

connectivity scaling will turn out to be crucial (see Sections VI-IX) in establishing Kolmogorov-Donoho rate-

distortion optimality of neural networks in the approximation of a variety of prominent function classes. Finally, we

would like to mention related recent work [29], [30], [31] on the approximation of Sobolev-class functions in certain

Sobolev norms enabled by neural network approximations of the multiplication operation and of polynomials.

Proposition III.5. There exists a constant C > 0 such that for all m ∈ N, a = (ai)
m
i=0 ∈ Rm+1, D ∈ R+, and ε ∈

(0, 1/2), there is a network Φa,D,ε ∈ N1,1 with L(Φa,D,ε) ≤ Cm(log(ε−1)+m log(dDe)+log(m)+log(d‖a‖∞e)),

W(Φa,D,ε) ≤ 9, B(Φa,D,ε) ≤ 1, and satisfying

‖Φa,D,ε(x)−
m∑

i=0

aix
i‖L∞([−D,D]) ≤ ε.

Proof. As in the proof of Proposition III.3 and for the same reason, it suffices to consider the case D ≥ 1. For

m = 1, we simply have an affine transformation and the statement follows directly from Corollary A.2. The proof

for m ≥ 2 will be effected by realizing the monomials xk, k ≥ 2, through iterative composition of multiplication

networks and combining this with a construction that uses the network realizing xk not only as a building block

in the network implementing xk+1 but also to approximate the partial sum
∑k
i=0 aix

i in parallel.

We start by setting Bk = Bk(D, η) := dDek + η
∑k−2
s=0dDes, k ∈ N, η ∈ R+ and take ΦBk,η to be the

multiplication network from Proposition III.3. Next, we recursively define the functions

fk,D,η(x) = ΦBk−1,η(x, fk−1,D,η(x)), k ≥ 2,

with f0,D,η(x) = 1 and f1,D,η(x) = x. For notational simplicity, we use the abbreviation fk = fk,D,η in the

following. First, we verify that the fk,D,η approximate monomials sufficiently well. Specifically, we prove by

induction that

‖fk(x)− xk‖L∞([−D,D]) ≤ η
k−2∑

s=0

dDes, (8)
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for all k ≥ 2. The base case k = 2, i.e.,

‖f2(x)− x2‖L∞([−D,D]) = ‖ΦB1,η(x, x)− x2‖L∞([−D,D]) ≤ η,

follows directly from Proposition III.3 upon noting that D ≤ B1 = dDe (we take the sum in the definition of

Bk to equal zero when the upper limit of summation is negative). We proceed to establishing the induction step

(k − 1)→ k with the induction assumption given by

‖fk−1(x)− xk−1‖L∞([−D,D]) ≤ η
k−3∑

s=0

dDes.

As

‖fk−1‖L∞([−D,D]) ≤ ‖xk−1‖L∞([−D,D]) + ‖fk−1(x)− xk−1‖L∞([−D,D]) ≤ Bk−1,

application of Proposition III.3 yields

‖fk(x)− xk‖L∞([−D,D]) ≤ ‖fk(x)− xfk−1(x)‖L∞([−D,D]) + ‖xfk−1(x)− xk‖L∞([−D,D])

≤ ‖ΦBk−1,η(x, fk−1(x))− xfk−1(x)‖L∞([−D,D]) +D‖fk−1(x)− xk−1‖L∞([−D,D])

≤ η + dDeη
k−3∑

s=0

dDes = η
k−2∑

s=0

dDes,

which completes the induction.

We now construct the network Φa,D,ε approximating the polynomial
∑m
i=0 aix

i. To this end, note that there

exists a constant C ′ such that for all m ≥ 2, a = (ai)
m
i=0 ∈ Rm+1, and i ∈ {1, . . . ,m − 1}, there is a network

Ψi
a,D,η ∈ N3,3 with L(Ψi

a,D,η) ≤ C ′(log(η−1) + log(dBie) + log(‖a‖∞)), W(Ψi
a,D,η) ≤ 9, B(Ψi

a,D,η) ≤ 1, and

satisfying

Ψi
a,D,η(x, s, y) = (x, s+ aiy,ΦBi,η(x, y)).

To see that this is, indeed, the case, consider the following chain of mappings

(x, s, y)
(I)−−→ (x, s, y, y)

(II)−−→ (x, s+ aiy, y)
(III)−−−→ (x, s+ aiy, x, y)

(IV )−−−→ (x, s+ aiy,ΦBi,η(x, y)).

Observe that the mapping (I) is an affine transformation with coefficients in {0, 1}, which we can simply consider

to be a depth-1 network. The mapping (II) is obtained by using Corollary A.2 in order to implement the affine

transformation (s, y) 7→ s+ aiy with weights bounded by 1, followed by application of Lemmas II.4 and II.5 to put

this network in parallel with two networks realizing the identity mapping according to x = ρ(x)−ρ(−x). Mapping

(III) is obtained along the same lines by putting the result of mapping (II) in parallel with another network realizing

the identity mapping. Finally, mapping (IV) is realized by putting the network ΦBi,η in parallel with two identity

networks. Composing these four networks according to Lemma II.3 yields, for i ∈ {1, . . . ,m−1}, a network Ψi
a,D,η

with the claimed properties. Next, we employ Corollary A.2 to get networks Ψ0
a,D,η which implement x 7→ (x, a0, x)
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as well as networks Ψm
a,D,η realizing (x, s, y) 7→ s+amy. Let now η = η(a,D, ε) := (‖a‖∞(m−1)2dDem−2)−1ε

and define

Φa,D,ε := Ψm
a,D,η ◦Ψm−1

a,D,η ◦ · · · ◦Ψ1
a,D,η ◦Ψ0

a,D,η.

A direct calculation yields

Φa,D,ε =

m∑

i=0

aifi,D,η.

Hence (8) implies

∥∥∥Φa,D,ε(x)−
m∑

i=0

aix
i
∥∥∥
L∞([−D,D])

≤
m∑

i=0

|ai|‖fi,D,η(x)− xi‖L∞([−D,D]) ≤
m∑

i=2

|ai|
(
η

i−2∑

s=0

dDes
)

≤ ‖a‖∞η
m−2∑

k=0

(m− 1− k)dDek ≤ ‖a‖∞(m− 1)2dDem−2η = ε.

Lemma II.3 now establishes that W(Φa,D,ε) ≤ 9, B(Φa,D,ε) ≤ 1, and

L(Φa,D,ε) ≤
m∑

i=0

L(Ψi
a,D,η)

≤ 2(log(d‖a‖∞e) + 5) +

m−1∑

i=1

C ′(log(η−1) + log(dBi−1e) + log(d‖a‖∞e))

≤ Cm(log(ε−1) +m log(dDe) + log(m) + log(d‖a‖∞e))

for a suitably chosen absolute constant C. This completes the proof.

Next, we recall that the Weierstrass approximation theorem states that every continuous function on a closed

interval can be approximated to within arbitrary accuracy by a polynomial.

Theorem III.6 ([32]). Let [a, b] ⊆ R and f ∈ C([a, b]). Then, for every ε > 0, there exists a polynomial π such

that

‖f − π‖L∞([a,b]) ≤ ε.

Proposition III.5 hence allows us to conclude that every continuous function on a closed interval can be approxi-

mated to within arbitrary accuracy by a deep ReLU network of width no more than 9. This amounts to a variant of

the universal approximation theorem [11], [12] for finite-width deep ReLU networks. A quantitative statement in

terms of making the approximating network’s width, depth, and weight bounds explicit can be obtained for (very)

smooth functions by applying Proposition III.5 to Lagrangian interpolation with Chebyshev points.
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Lemma III.7. Consider the set

S[−1,1] :=
{
f ∈ C∞([−1, 1],R) : ‖f (n)(x)‖L∞([−1,1]) ≤ n!, for all n ∈ N0

}
.

There exists a constant C > 0 such that for all f ∈ S[−1,1] and ε ∈ (0, 1/2), there is a network Ψf,ε ∈ N1,1 with

L(Ψf,ε) ≤ C(log(ε−1))2, W(Ψf,ε) ≤ 9, B(Ψf,ε) ≤ 1, and satisfying

‖Ψf,ε − f‖L∞([−1,1]) ≤ ε.

Proof. A fundamental result on Lagrangian interpolation with Chebyshev points (see e.g. [33, Lemma 3]) guarantees,

for all f ∈ S[−1,1], m ∈ N, the existence of a polynomial Pf,m of degree m such that

‖f − Pf,m‖L∞([−1,1]) ≤ 1
2m(m+1)!‖f (m+1)‖L∞([−1,1]) ≤ 1

2m .

Note that Pf,m can be expressed in the Chebyshev basis (see e.g. [34, Section 3.4.1]) according to Pf,m =
∑m
j=0 cf,m,jTj(x) with |cf,m,j | ≤ 2 and the Chebyshev polynomials defined through the two-term recursion

Tk(x) = 2xTk−1(x) − Tk−2(x), k ≥ 2, with T0(x) = 1 and T1(x) = x. We can moreover use this recursion

to conclude that the coefficients of the Tk in the monomial basis are upper-bounded by 3k. Consequently, we can

express Pf,m according to Pf,m =
∑m
j=0 af,m,jx

j with

Af,m := max
j=0,...,m

|af,m,j | ≤ 2(m+ 1)3m.

Application of Proposition III.5 to Pf,m in the monomial basis, with m = dlog(2/ε)e and approximation error ε/2,

completes the proof upon noting that

C ′m(log(2/ε) + log(m) + log(|Af,m|)) ≤ C(log(ε−1))2

for some absolute constant C.

An extension of Lemma III.7 to approximation over general intervals is provided in Lemma A.6.

While Lemma III.7 shows that a specific class of C∞-functions, namely those whose derivatives are suitably

bounded, can be approximated by neural networks with connectivity growing polylogarithmically in ε−1, it turns

out that this is not possible for general (Sobolev-class) k-times differentiable functions [24, Thm.4].

We are now ready to proceed to the approximation of sinusoidal functions. Before stating the corresponding result,

we comment on the basic idea enabling the approximation of oscillatory functions through deep neural networks. In

essence, we exploit the optimality of the sawtooth construction (3) in terms of achieving exponential—in network

depth—growth in the number of linear regions. As indicated in Figure 3, the composition of the cosine function

(realized according to Lemma III.7) with the sawtooth function, combined with the symmetry properties of the

cosine function and the sawtooth function, yields oscillatory behavior that increases exponentially with network

depth.
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Theorem III.8. There exists a constant C > 0 such that for every a,D ∈ R+, ε ∈ (0, 1/2), there is a network

Ψa,D,ε ∈ N1,1 with L(Ψa,D,ε) ≤ C((log(ε−1))2 + log(daDe)), W(Ψa,D,ε) ≤ 9, B(Ψa,D,ε) ≤ 1, and satisfying

‖Ψa,D,ε(x)− cos(ax)‖L∞([−D,D]) ≤ ε.

Proof. Note that f(x) := (6/π3) cos(πx) is in S[−1,1]. Thus, by Lemma III.7, there exists a constant C > 0 such

that for every ε ∈ (0, 1/2), there is a network Φε ∈ N1,1 with L(Φε) ≤ C(log(ε−1))2, W(Φε) ≤ 9, B(Φε) ≤ 1,

and satisfying

‖Φε − f‖L∞([−1,1]) ≤ 6
π3 ε. (9)

We now extend this result to the approximation of x 7→ cos(ax) on the interval [−1, 1] for arbitrary a ∈ R+.

This will be accomplished by exploiting that x 7→ cos(πx) is 2-periodic and even. Let gs : [0, 1] → [0, 1], s ∈ N,

be the s-th order sawtooth functions as defined in (2) and note that, due to the periodicity and the symmetry of the

cosine function (see Figure 3 for illustration), we have for all s ∈ N0, x ∈ [−1, 1],

cos(π2sx) = cos(πgs(|x|)).

For a > π, we define s = s(a) := dlog(a)− log(π)e and α = α(a) := (π2s)−1a ∈ (1/2, 1], and note that

cos(ax) = cos(π2sαx) = cos(πgs(α|x|)), x ∈ [−1, 1].

As gs(α|x|) ∈ [0, 1], it follows from (9) that

‖π3

6 Φε(gs(α|x|))− cos(ax)‖L∞([−1,1]) = π3

6 ‖Φε(gs(α|x|))− f(gs(α|x|))‖L∞([−1,1]) ≤ ε. (10)

In order to realize Φε(gs(α|x|)) as a neural network, we start from the networks Φsg defined in (3) and apply

Proposition A.3 to convert them into networks Ψs
g(x) = gs(x), for x ∈ [0, 1], with B(Ψs

g) ≤ 1, L(Ψs
g) = 7(s+ 1),

and W(Ψs
g) = 3. Furthermore, let Ψ(x) := αρ(x)−αρ(−x) = α|x| and take Φmult

π3/6 to be the scalar multiplication

network from Lemma A.1. Noting that Ψa,ε := Φmult
π3/6◦Φε◦Ψs

g◦Ψ = Φε(gs(α|x|)) and concluding from Lemma II.3

that L(Ψa,ε) ≤ C((log(ε−1))2 + log(dae)), W(Ψa,ε) ≤ 9, and B(Ψa,ε) ≤ 1, together with (10), establishes the

desired result for a > π and for approximation over the interval [−1, 1]. For a ∈ (0, π), we can simply take

Ψa,ε := Φmult
π3/6 ◦ Φε as x 7→ (6/π3) cos(ax) is in S[−1,1] in this case.

Finally, we consider the approximation of x 7→ cos(ax) on intervals [−D,D], for arbitrary D ≥ 1. To this end,

we define the networks Ψa,D,ε(x) := ΨaD,ε(
x
D ) and observe that

sup
x∈[−D,D]

|Ψa,D,ε(x)− cos(ax)| = sup
y∈[−1,1]

|Ψa,D,ε(Dy)− cos(aDy)|

= sup
y∈[−1,1]

|ΨaD,ε(y)− cos(aDy)| ≤ ε.
(11)

This concludes the proof.
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Fig. 3: Approximation of the function cos(2πax) according to Theorem III.8 using “sawtooth” functions gs(x) as

per (2), left a = 2, right a = 4.
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The result just obtained extends to the approximation of x 7→ sin(ax), formalized next, simply by noting that

sin(x) = cos(x− π/2).

Corollary III.9. There exists a constant C > 0 such that for every a,D ∈ R+, b ∈ R, ε ∈ (0, 1/2), there is a

network Ψa,b,D,ε ∈ N1,1 with L(Ψa,b,D,ε) ≤ C((log(ε−1))2+log(daD+|b|e)),W(Ψa,b,D,ε) ≤ 9, B(Ψa,b,D,ε) ≤ 1,

and satisfying

‖Ψa,b,D,ε(x)− cos(ax− b)‖L∞([−D,D]) ≤ ε.

Proof. For given a,D ∈ R+, b ∈ R, ε ∈ (0, 1/2), consider the network Ψa,b,D,ε(x) := Ψ
a,D+

|b|
a ,ε

(
x− b

a

)
with

Ψa,D,ε as defined in the proof of Theorem III.8, and observe that, owing to (11),

sup
x∈[−D,D]

|Ψa,b,D,ε(x)− cos(ax− b)| ≤ sup
y∈[−(D+

|b|
a ),D+

|b|
a ]
|Ψ
a,D+

|b|
a ,ε

(y)− cos(ay)| ≤ ε.

Remark III.10. The results in this section all have approximating networks of finite width and depth scaling

polylogarithmically in ε−1. Owing to

M(Φ) ≤ L(Φ)W(Φ)(W(Φ) + 1)

this implies that the connectivity scales no faster than polylogarithmic in ε−1. It therefore follows that the approx-

imation error ε decays (at least) exponentially fast in the connectivity or equivalently in the number of parameters

the approximant (i.e., the neural network) employs. We say that the network provides exponential approximation

accuracy.

IV. APPROXIMATION OF FUNCTION CLASSES AND METRIC ENTROPY

So far we considered the explicit construction of deep neural networks for the approximation of a wide range of

functions, namely polynomials, smooth functions, and sinusoidal functions, in all cases with exponential accuracy,

i.e., with an approximation error that decays exponentially in network connectivity. We now proceed to lay the

foundation for the development of a framework that allows us to characterize the fundamental limits of deep neural

network approximation of entire function classes. But first, we provide a review of relevant literature.

The best-known results on approximation by neural networks are the universal approximation theorems of Hornik

[12] and Cybenko [11], stating that continuous functions on bounded domains can be approximated arbitrarily well

by a single-hidden-layer (L = 2 in our terminology) neural network with sigmoidal activation function. The

literature on approximation-theoretic properties of networks with a single hidden layer continuing this line of work

is abundant. Without any claim to completeness, we mention work on approximation error bounds in terms of the

number of neurons for functions with Fourier transforms of bounded first moments [35], [36], the nonexistence of
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localized approximations [37], a fundamental lower bound on approximation rates [38], [39], and the approximation

of smooth or analytic functions [40], [41].

Approximation-theoretic results for networks with multiple hidden layers were obtained in [42], [43] for general

functions, in [44] for continuous functions, and for functions together with their derivatives in [45]. In [37] it was

shown that for certain approximation tasks deep networks can perform fundamentally better than single-hidden-

layer networks. We also highlight two recent papers, which investigate the benefit—from an approximation-theoretic

perspective—of multiple hidden layers. Specifically, in [46] it was shown that there exists a function which, although

expressible through a small three-layer network, can only be represented through a very large two-layer network;

here size is measured in terms of the total number of neurons in the network.

In the setting of deep convolutional neural networks first results of a nature similar to those in [46] were reported

in [47]. Linking the expressivity properties of neural networks to tensor decompositions, [48], [49] established the

existence of functions that can be realized by relatively small deep convolutional networks but require exponentially

larger shallow convolutional networks.

We conclude by mentioning recent results bearing witness to the approximation power of deep ReLU networks in

the context of PDEs. Specifically, it was shown in [29] that deep ReLU networks can approximate very effectively

certain solution families of parametric PDEs depending on a large (possibly infinite) number of parameters. The

series of papers [50], [51], [52], [53] constructs and analyzes a deep-learning-based numerical solver for Black-

Scholes PDEs.

For survey articles on approximation-theoretic aspects of neural networks, we refer the interested reader to [54]

and [55] as well as the very recent [56]. Most closely related to the framework we develop here is the paper by

Shaham, Cloninger, and Coifman [57], which shows that for functions that are sparse in specific wavelet frames,

the best M -weight approximation rate (see Definition VI.1 below) of three-layer neural networks is at least as large

as the best M -term approximation rate in piecewise linear wavelet frames.

We begin the development of our framework with a review of a widely used theoretical foundation for deterministic

lossy data compression [58], [59]. Our presentation essentially follows [14], [60].

A. Kolmogorov-Donoho Rate Distortion Theory

Let d ∈ N, Ω ⊆ Rd, and consider a set of functions C ⊆ L2(Ω), which we will frequently refer to as function

class. Then, for each ` ∈ N, we denote by

E` :=
{
E : C → {0, 1}`

}

the set of binary encoders of C of length `, and we let

D` :=
{
D : {0, 1}` → L2(Ω)

}
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be the set of binary decoders of length `. An encoder-decoder pair (E,D) ∈ E` ×D` is said to achieve uniform

error ε over the function class C, if

sup
f∈C
‖D(E(f))− f‖L2(Ω) ≤ ε.

Note that here we quantified the approximation error in L2(Ω)-norm, whereas in the previous section we used

the L∞(Ω)-norm. While results in terms of L∞(Ω)-norm are stronger, we shall employ the L2(Ω)-norm in order

to parallel the Kolmogorov-Donoho framework for nonlinear approximation through dictionaries [14], [15]. We

furthermore note that for sets Ω of finite Lebesgue measure |Ω|, the two norms are related through ‖f‖L2(Ω) ≤
|Ω|1/2‖f‖L∞(Ω). Finally, whenever we talk about compactness and related topological notions, we shall always

mean w.r.t. the topology induced by the L2(Ω)-norm.

A quantity of central interest is the minimal length ` ∈ N for which there exists an encoder-decoder pair

(E,D) ∈ E` ×D` that achieves uniform error ε over the function class C, along with its asymptotic behavior as

made precise in the following definition.

Definition IV.1. Let d ∈ N, Ω ⊆ Rd, and let C ⊆ L2(Ω) be compact. Then, for ε > 0, the minimax code length

L(ε, C) is

L(ε, C) := min

{
` ∈ N : ∃(E,D) ∈ E` ×D` : sup

f∈C
‖D(E(f))− f‖L2(Ω) ≤ ε

}
. (12)

Moreover, the optimal exponent γ∗(C) is defined as

γ∗(C) := sup
{
γ ∈ R : L(ε, C) ∈ O

(
ε−1/γ

)
, ε→ 0

}
.

The optimal exponent γ∗(C) determines the minimum growth rate of L(ε, C) as the error ε tends to zero and

can hence be seen as quantifying the “description complexity” of the function class C. Larger γ∗(C) results in

smaller growth rate and hence smaller memory requirements for storing functions f ∈ C such that reconstruction

with uniformly bounded error is possible.

Remark IV.2. The optimal exponent γ∗(C) can equivalently be thought of as quantifying the asymptotic behavior

of the minimal achievable error for the function class C with a given code length. Specifically, we have

γ∗(C) = sup
{
γ ∈ R : L(ε, C) ∈ O

(
ε−1/γ

)
, ε→ 0

}
= sup

{
γ ∈ R : ε(L) ∈ O

(
L−γ

)
, L→∞

}
, (13)

where

ε(L) := inf
(E,D)∈EL×DL

sup
f∈C
‖D(E(f))− f‖L2(Ω).

The quantity γ∗(C) is closely related to the concept of Kolmogorov-Tikhomirov epsilon entropy a.k.a. metric

entropy [61]. We next make this connection explicit.

20



B. Metric entropy

Most of the discussion in this subsection, which is almost exclusively of review nature, follows very closely [62,

Chapter 5]. Consider the metric space (X , ρ) with X a nonempty set and ρ : X × X → R a distance function.

A natural measure for the size of a compact subset C of X is given by the number of balls of a fixed radius ε

required to cover C, a quantity known as the covering number (for covering radius ε).

Definition IV.3. [62] Let (X , ρ) be a metric space. An ε-covering of a compact set C ⊆ X with respect to the

metric ρ is a set {x1, . . . , xN} ⊆ C such that for each x ∈ C, there exists an i ∈ {1, . . . , N} so that ρ(x, xi) ≤ ε.
The ε-covering number N(ε; C, ρ) is the cardinality of the smallest ε-covering.

An ε-covering is a collection of balls of radius ε that cover the set C, i.e.,

C ⊆
N⋃

i=1

B(xi, ε),

where B(xi, ε) is a ball—in the metric ρ—of radius ε centered at xi. The covering number is nonincreasing in ε,

i.e., N(ε) ≥ N(ε′), for all ε ≤ ε′. When the set C is not finite, the covering number goes to infinity as ε goes to

zero. We shall be interested in the corresponding rate of growth, more specifically in the quantity logN(ε; C, ρ)

known as the metric entropy of C with respect to ρ. Recall that log is to the base 2, hence the unit of metric

entropy is “bits”. The operational significance of metric entropy follows from the question: What is the minimum

number of bits needed to represent any element x ∈ C with error—quantified in terms of the distance measure

ρ—of at most ε? By what was just developed, the answer to this question is dlogN(ε; C, ρ)e. Specifically, for a

given x ∈ X , the corresponding encoder E(x) simply identifies the closest ball center xi and encodes the index

i using dlogN(ε; C, ρ)e bits. The corresponding decoder D delivers the ball center xi, which guarantees that the

resulting error satisfies ‖D(E(x))− x‖ ≤ ε.
We proceed with a simple example ([62, Example 5.2]) computing an upper bound on the metric entropy of the

interval C = [−1, 1] in R with respect to the metric ρ(x, x′) = |x− x′|. To this end, we divide C into intervals of

length 2ε by setting xi = −1 + 2(i− 1)ε, for i ∈ [1, L], where L = b 1
εc+ 1. This guarantees that, for every point

x ∈ [−1, 1], there is an i ∈ [1, L] such that |x− xi| ≤ ε, which, in turn, establishes

N(ε; C, ρ) ≤
⌊1

ε

⌋
+ 1 ≤ 1

ε
+ 1

and hence yields an upper bound on metric entropy according to2

logN(ε; C, ρ) ≤ log

(
1

ε
+ 1

)
� log(ε−1), as ε→ 0. (14)

2The notation f(ε) � g(ε), as ε → 0, means that there are constants c, C, ε0 > 0 such that cf(ε) ≤ g(ε) ≤ Cf(ε), for all ε ≤ ε0. For

ease of exposition, we shall usually omit the qualifier ε→ 0.
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This result can be generalized to the d-dimensional unit cube to yield log(N(ε; C, ρ)) ≤ d log(1/ε+1) � d log(ε−1).

In order to show that the upper bound (14) correctly reflects metric entropy scaling for C = [−1, 1] with respect to

ρ(x, x′) = |x− x′|, we would need a lower bound on N(ε; C, ρ) that exhibits the same scaling (in ε) behavior. A

systematic approach to establishing lower bounds on metric entropy is through the concept of packing, which will

be introduced next.

We start with the definition of the packing number of a compact set C in a metric space (X , ρ).

Definition IV.4. [62, Definition 5.4] Let (X , ρ) be a metric space. An ε-packing of a compact set C ⊆ X with

respect to the metric ρ is a set {x1, . . . , xN} ⊆ C such that ρ(xi, xj) > ε, for all distinct i, j. The ε-packing number

M(ε;X , ρ) is the cardinality of the largest ε-packing.

An ε-packing is a collection of nonintersecting balls of radius ε/2 and centered at elements in X . Although

different, the covering number and the packing number provide essentially the same measure of size of a set as

formalized next.

Lemma IV.5. [62, Lemma 5.5] Let (X , ρ) be a metric space and C a compact set in X . For all ε > 0, the packing

and the covering number are related according to

M(2ε; C, ρ) ≤ N(ε; C, ρ) ≤M(ε; C, ρ).

Proof. [62], [63] First, choose a minimal ε-covering and a maximal 2ε-packing of C. Since no two centers of

the 2ε-packing can lie in the same ball of the ε-covering, it follows that M(2ε; C, ρ) ≤ N(ε; C, ρ). To establish

N(ε; C, ρ) ≤M(ε; C, ρ), we note that, given a maximal packing M(ε; C, ρ), for any x ∈ C, we have the center of

at least one of the balls in the packing within distance less than ε. If this were not the case, we could add another

ball to the packing thereby violating its maximality. This maximal packing hence also provides an ε-covering and

since N(ε; C, ρ) is a minimal covering, we must have N(ε; C, ρ) ≤M(ε; C, ρ).

We now return to the example in which we computed an upper bound on the metric entropy of C = [−1, 1] with

respect to ρ(x, x′) = |x − x′| and show how Lemma IV.5 can be employed to establish the scaling behavior of

metric entropy. To this end, we simply note that the points xi = −1 + 2(i− 1)ε, i ∈ [1, L], are separated according

to |xi − xj | = 2ε > ε, for all i 6= j, which implies that M(ε; C, | · |) ≥ L = b1/εc+ 1 ≥ 1
ε . Combining this with

the upper bound (14) and Lemma IV.5, we obtain logN(ε; C, | · |) � log(ε−1). Likewise, it can be established that

logN(ε; C, ‖ · ‖) � d log(ε−1) for the d-dimensional unit cube. This illustrates how an explicit construction of a

packing set can be used to determine the scaling behavior of metric entropy.

We next formalize the notion that metric entropy is determined by the volume of the corresponding covering

balls. Specifically, the following result establishes a relationship between a certain volume ratio and metric entropy.
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Lemma IV.6. [62, Lemma 5.7] Consider a pair of norms ‖ · ‖ and ‖ · ‖′ on Rd, and let B and B′ be their

corresponding unit balls, i.e., B = {x ∈ Rd|‖x‖ ≤ 1} and B′ = {x ∈ Rd|‖x‖′ ≤ 1}. Then, the ε-covering number

of B in the ‖ · ‖′-norm satisfies
(

1

ε

)d
vol(B)

vol(B′) ≤ N(ε;B, ‖ · ‖′) ≤ vol( 2
εB + B′)
vol(B′) . (15)

Proof. [62] Let {x1, . . . , xN(ε;B,‖·‖′)} be an ε-covering of B in ‖ · ‖′-norm. Then, we have

B ⊆
N(ε;B,‖·‖′)⋃

j=1

{xj + εB′},

which implies vol(B) ≤ N(ε;B, ‖ · ‖′) εd vol(B′), thus establishing the lower bound in (15). The upper bound is

obtained by starting with a maximal ε-packing {x1, . . . , xM(ε;B,‖·‖′)} of B in the ‖·‖′-norm. The balls {xj+ ε
2B′, j =

1, . . . ,M(ε;B, ‖ · ‖′)} are all disjoint and contained within B + ε
2B′. We can therefore conclude that

M(ε;B,‖·‖′)∑

j=1

vol
(
xj +

ε

2
B′
)
≤ vol

(
B +

ε

2
B′
)
,

and hence

M(ε;B, ‖ · ‖′) vol
(ε

2
B′
)
≤ vol

(
B +

ε

2
B′
)
.

Finally, we have vol( ε2B′) = ( ε2 )dvol(B′) and vol(B+ ε
2B′) = ( ε2 )dvol( 2

εB+B′), which, together with M(ε;B, ‖ · ‖′)
≥ N(ε;B, ‖ · ‖′) due to Lemma IV.5, yields the upper bound in (15).

This result now allows us to establish the scaling of the metric entropy of unit balls in terms of their own norm,

thus yielding a measure of the massiveness of unit balls in d-dimensional spaces. Specifically, we set B′ = B in

Lemma IV.6 and get

vol

(
2

ε
B + B′

)
= vol

((
2

ε
+ 1

)
B
)

=

(
2

ε
+ 1

)d
vol(B),

which when used in (15) yields N(ε;B, ‖ · ‖) � ε−d and hence results in metric entropy scaling according to

log(N(ε;B, ‖ · ‖)) � d log(ε−1). Particularizing this result to the unit ball Bd∞ = [−1, 1]d and the metric ‖ · ‖∞,

we recover the result of our direct analysis in the example above.

So far we have been concerned with the metric entropy of subsets of Rd. We now proceed to analyzing the

metric entropy of function classes, which will eventually allow us to establish the desired connection between the

optimal exponent γ∗(C) and metric entropy. We begin with the simple one-parameter function class considered

in [62, Example 5.9] and follow closely the exposition in [62]. For a fixed θ, define the real-valued function

fθ(x) = 1− e−θx, and consider the class

P = {fθ : [0, 1]→ R | θ ∈ [0, 1]}.
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The set P constitutes a metric space under the sup-norm given by ‖f − g‖L∞([0,1]) = supx∈[0,1] |f(x)− g(x)|. We

show that the covering number of P satisfies

1 +

⌊
1− 1/e

2ε

⌋
≤ N(ε;P, ‖ · ‖L∞([0,1])) ≤

1

2ε
+ 2,

which leads to the scaling behavior N(ε;P, ‖ · ‖L∞([0,1])) � ε−1 and hence to metric entropy scaling according

to log(N(ε;P, ‖ · ‖L∞([0,1]))) = log(ε−1). We start by establishing the upper bound. For given ε ∈ [0, 1], set

T = b 1
2εc, and define the points θi = 2εi, for i = 0, 1, . . . , T . By also adding the point θT+1 = 1, we obtain a

collection of T + 2 points {θ0, θ1, . . . , θT+1} in [0, 1]. We show that the associated functions {fθ0 , fθ1 , . . . , fθT+1
}

form an ε-covering for P . Indeed, for any fθ ∈ P , we can find some θi in the covering such that |θ− θi| ≤ ε. We

then have

‖fθ − fθi‖L∞([0,1]) = max
x∈[0,1]

|e−θx − e−θix| ≤ |θ − θi|,

where we used, for θ < θi,

max
x∈[0,1]

|e−θx − e−θix| = max
x∈[0,1]

(e−θx − e−θix) = max
x∈[0,1]

e−θx(1− e−(θi−θ)x) ≤ max
x∈[0,1]

(1− e−(θi−θ)x)

≤ max
x∈[0,1]

(θi − θ)x ≤ θi − θ = |θ − θi|,

as a consequence of 1−e−x ≤ x, for x ∈ [0, 1], which is easily verified by noting that the function g(x) = 1−e−x−x
satisfies g(0) = 0 and g′(x) ≤ 0, for x ∈ [0, 1]. The case θ > θi follows similarly. In summary, we have shown

that N(ε;P, ‖ · ‖L∞([0,1])) ≤ T + 2 ≤ 1
2ε + 2.

In order to derive the lower bound, we first bound the packing number from below and then use Lemma IV.5.

We start by constructing an explicit packing as follows. Set θ0 = 0 and define θi = − log(1 − εi), for all i such

that θi ≤ 1. The largest index T such that this holds is given by T = b 1−1/e
ε c. Moreover, note that for all i, j

with i 6= j, we have ‖fθi − fθj‖L∞([0,1]) ≥ |fθi(1) − fθj (1)| = |ε(i − j)| ≥ ε. We can therefore conclude that

M(ε;P, ‖ · ‖L∞([0,1])) ≥ b 1−1/e
ε c+ 1, and hence, due to the lower bound in Lemma IV.5,

N(ε;P, ‖ · ‖L∞([0,1])) ≥M(2ε;P, ‖ · ‖L∞([0,1])) ≥
⌊

1− 1/e

2ε

⌋
+ 1,

as claimed. We have thus established that the function class P has metric entropy scaling according to

log(N(ε;P, ‖ · ‖L∞([0,1]))) � log(1/ε), as ε→ 0.

This rate is typical for one-parameter function classes.

We now turn our attention to richer function classes and start by considering Lipschitz functions on the d-

dimensional unit cube, meaning real-valued functions on [0, 1]d such that

|f(x)− f(y)| ≤ L‖x− y‖∞, for all x, y ∈ [0, 1]d.

This class, denoted as FL([0, 1]d), has metric entropy scaling [64], [62]

logN(ε;FL, ‖ · ‖L∞([0,1]d)) � (L/ε)d. (16)
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Contrasting the exponential dependence of metric entropy in (16) on the ambient dimension d to the linear

dependence we identified earlier for simpler sets such as unit balls in Rd, where we had

logN(ε;B, ‖ · ‖∞) � d log(ε−1),

shows that FL([0, 1]d) is significantly more massive.

We are now ready to relate the optimal exponent γ∗(C) in Definition IV.1 to metric entropy scaling. All the

examples of metric entropy scaling we have seen exhibit a behavior that fits the law log(N(ε; C, ‖ · ‖)) � ε−1/γ

or log(N(ε; C, ‖ · ‖)) � ε−1/γ log(ε−1)β . The optimal exponent is hence a crude measure of growth insensitive to

log-factors or similar factors that are dominated by the growth of ε−1/γ .

While we restrict ourselves to the approximation of functions on Euclidean domains, the framework described

in this section can be extended to functions on manifolds (see e.g. [65]). As such, an interesting direction for

future research would be the extension of the deep neural network approximation theory developed in this paper

to functions on manifolds. First results on the neural network approximation of functions on manifolds have been

reported in [57], [13], [66]. For further reading on the general subject of function approximation on manifolds, we

recommend [67] and references therein.

V. APPROXIMATION WITH DICTIONARIES

We now show how Kolmogorov-Donoho rate-distortion theory can be put to work in the context of optimal

approximation with dictionaries. Again, this subsection is of review nature. We start with a brief discussion of

basics on optimal approximation in Hilbert spaces. Specifically, we shall consider two types of approximation,

namely linear and nonlinear.

Let H be a Hilbert space equipped with inner product 〈·, ·〉 and induced norm ‖ · ‖H and let ek, k = 1, 2, . . . be

an orthonormal basis for H. For linear approximation, we use the linear space HM := span{ek : 1 ≤ k ≤ M} to

approximate a given element f ∈ H. We measure the approximation error by

EM (f) := inf
g∈HM

‖f − g‖H.

In nonlinear approximation, we consider best M -term approximation, which replaces HM by the set ΣM consisting

of all elements g ∈ H that can be expressed as

g =
∑

k∈Λ

ckek,

where Λ ⊆ N is a set of indices with |Λ| ≤ M . Note that, in contrast to HM , the set ΣM is not a linear space

as a linear combination of two elements in ΣM will, in general, need 2M terms in its representation by the ek.

Analogous to EM , we define the error of best M -term approximation

ΓM (f) := inf
g∈ΣM

‖f − g‖H.
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The key difference between linear and nonlinear approximation resides in the fact that in nonlinear approximation,

we can choose the M elements ek participating in the approximation of f freely from the entire orthonormal

basis whereas in linear approximation we are constrained to the first M elements. A classical example for linear

approximation is the approximation of periodic functions by the Fourier series elements corresponding to the M

lowest frequencies (assuming natural ordering of the dictionary). This approach clearly leads to poor approximation

if the function under consideration consists of high-frequency components. In contrast, in nonlinear approximation

we would seek the M frequencies that yield the smallest approximation error. In summary, it is clear that (nonlinear)

best M -term approximation can achieve smaller approximation error than linear M -term approximation.

We shall consider nonlinear approximation in arbitrary, possibly redundant, dictionaries, i.e., in frames [68], and

will exclusively be interested in the case H = L2(Ω), in particular the approximation error will be measured in

terms of L2(Ω)-norm. Specifically, let C be a set of functions in L2(Ω) and consider a countable family of functions

D := (ϕi)i∈N ⊆ L2(Ω), termed dictionary.

We consider the best M -term approximation error of f ∈ C in D defined as follows.

Definition V.1. [58] Given d ∈ N, Ω ⊆ Rd, a function class C ⊆ L2(Ω), and a dictionary D = (ϕi)i∈N ⊆ L2(Ω),

we define, for f ∈ C and M ∈ N,

ΓDM (f) := inf
If,M ⊆N,

|If,M |=M,(ci)i∈If,M

∥∥∥∥∥∥
f −

∑

i∈If,M
ciϕi

∥∥∥∥∥∥
L2(Ω)

. (17)

We call ΓDM (f) the best M -term approximation error of f in D. Every fM =
∑
i∈If,M ciϕi attaining the infimum

in (17) is referred to as a best M -term approximation of f in D. The supremal γ > 0 such that

sup
f∈C

ΓDM (f) ∈ O(M−γ), M →∞,

will be denoted by γ∗(C,D). We say that the best M -term approximation rate of C in the dictionary D is γ∗(C,D).

Function classes C widely studied in the approximation theory literature include unit balls in Lebesgue, Sobolev,

or Besov spaces [59], as well as α-cartoon-like functions [69]. A wealth of structured dictionaries D is provided

by the area of applied harmonic analysis, starting with wavelets [70], followed by ridgelets [39], curvelets [71],

shearlets [72], parabolic molecules [73], and most generally α-molecules [69], which include all previously named

dictionaries as special cases. Further examples are Gabor frames [17], Wilson bases [74], and wave atoms [18].

The best M -term approximation rate γ∗(C,D) according to Definition V.1 quantifies how difficult it is to

approximate a given function class C in a fixed dictionary D. It is sensible to ask whether for given C, there

is a fundamental limit on γ∗(C,D) when one is allowed to vary over D. To answer this question, we first note that

for every dense (and countable) D, for any given f ∈ C, by density of D, there exists a single dictionary element

that approximates f to within arbitrary accuracy thereby effectively realizing a 1-term approximation for arbitrary

approximation error ε. Formally, this can be expressed through γ∗(C,D) = ∞. Identifying this single dictionary
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element or, more generally, the M elements participating in the best M -term approximation is in general, however,

practically infeasible as it entails searching through the infinite set D and requires an infinite number of bits to

describe the indices of the participating elements. This insight leads to the concept of “best M -term approximation

subject to polynomial-depth search” as introduced by Donoho in [15]. Here, the basic idea is to restrict the search

for the elements in D participating in the best M -term approximation to the first π(M) elements of D, with π a

polynomial. We formalize this under the name of effective best M -term approximation as follows.

Definition V.2. Let d ∈ N, Ω ⊆ Rd, C ⊆ L2(Ω) be compact, and D = (ϕi)i∈N ⊆ L2(Ω). We define for M ∈ N

and π a polynomial

επC,D(M) := sup
f∈C

inf
If,M⊆{1,2,...,π(M)},
|If,M |=M, |ci|≤π(M)

∥∥∥∥∥∥
f −

∑

i∈If,M
ciϕi

∥∥∥∥∥∥
L2(Ω)

(18)

and

γ∗,eff(C,D) := sup{γ ≥ 0: ∃ polynomial π s.t. επC,D(M) ∈ O(M−γ), M →∞}. (19)

We refer to γ∗,eff(C,D) as the effective best M -term approximation rate of C in the dictionary D.

Note that we required the coefficients ci in the approximant in Definition V.2 to be polynomially bounded in

M . This condition, not present in [14], [60] and easily met for generic C and D, is imposed for technical reasons

underlying the transference results in Section VII. Strictly speaking—relative to [14], [60]—we hence get a subtly

different notion of approximation rate. Exploring the implications of this difference is certainly worthwhile, but

deemed beyond the scope of this paper.

We next present a central result in best M -term approximation theory stating that for compact C ⊆ L2(Ω), the

effective best M -term approximation rate in any dictionary D is upper-bounded by γ∗(C) and hence limited by the

“description complexity” of C. This endows γ∗(C) with operational meaning.

Theorem V.3. [14], [60] Let d ∈ N, Ω ⊆ Rd, and let C ⊆ L2(Ω) be compact. The effective best M -term

approximation rate of the function class C ⊆ L2(Ω) in the dictionary D = (ϕi)i∈N ⊆ L2(Ω) satisfies

γ∗,eff(C,D) ≤ γ∗(C).

In light of this result the following definition is natural (see also [60]).

Definition V.4. (Kolmogorov-Donoho optimality) Let d ∈ N, Ω ⊆ Rd, and let C ⊆ L2(Ω) be compact. If the

effective best M -term approximation rate of the function class C ⊆ L2(Ω) in the dictionary D = (ϕi)i∈N ⊆ L2(Ω)

satisfies

γ∗,eff(C,D) = γ∗(C),

we say that the function class C is optimally representable by D.
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As the ideas underlying the proof of Theorem V.3 are essential ingredients in the development of a kindred

theory of best M -weight approximation rates for neural networks, we present a detailed proof, which is similar to

that in [60]. We perform, however, some minor technical modifications with an eye towards rendering the proof a

suitable genesis for the new theory of best M -weight approximation with neural networks, developed in the next

section. The spirit of the proof is to construct, for every given M ∈ N an encoder that, for each f ∈ C, maps

the indices of the dictionary elements participating in the effective best M -term approximation3 of f , along with

the corresponding coefficients ci, to a bitstring. This bitstring needs to be of sufficient length for the decoder to

be able to reconstruct an approximation to f with an error which is of the same order as that of the best M -term

approximation we started from. As elucidated in the proof, this can be accomplished while ensuring that the length

of the bitstring is proportional to M log(M), which upon noting that ε = M−γ implies M = ε−1/γ , establishes

optimality.

Proof of Theorem V.3. The proof will be based on showing that for every γ ∈ R+ the following Implication (I)

holds: Assume that there exist a constant C > 0 and a polynomial π such that for every M ∈ N, the following

holds: For every f ∈ C, there are an index set If,M ⊆ {1, 2, . . . , π(M)} and coefficients (ci)i∈If,M ⊆ R with

|ci| ≤ π(M) so that

∥∥f −
∑

i∈If,M
ciϕi

∥∥
L2(Ω)

≤ CM−γ . (20)

This implies the existence of a constant C ′ > 0 such that for every M ∈ N, there is an encoder-decoder pair

(EM , DM ) ∈ E`(M) ×D`(M) with `(M) ≤ C ′M log(M) and

‖f −DM (EM (f))‖L2(Ω) ≤ C ′M−γ . (21)

The implication will be proven by explicit construction. For a given f ∈ C, we pick an M -term approximation

according to (20) and encode the associated index set If,M and weights ci as follows. First, note that owing

to |If,M | ≤ π(M), each index in If,M can be represented by at most Cπ log(M) bits; this results in a total of

CπM log(M) bits needed to encode the indices of all dictionary elements participating in the M -term approximation.

The encoder and the decoder are assumed to know Cπ , which allows stacking of the binary representations of the

indices such that the decoder can read them off uniquely from the sequence of their binary representations.

We proceed to the encoding of the coefficients ci. First, note that even though the ci are bounded (namely,

polynomially in M ) by assumption, we did not impose bounds on the norms of the dictionary elements {ϕi}i∈If,M
participating in the M -term approximation under consideration. Hence, we can not, in general, expect to be able to

control the approximation error incurred by reconstructing f from quantized ci. We can get around this by performing

a Gram-Schmidt orthogonalization on the dictionary elements {ϕi}i∈If,M and, as will be seen later, using the fact

3Note that as we have an infimum in (18) an effective best M -term approximation need not exist, but we can pick an M -term approximation

that yields an error arbitrarily close to the infimum.

28



that the function class C was assumed to be compact. Specifically, this Gram-Schmidt orthogonalization yields a

set of functions {ϕ̃i}i∈Ĩ
f,M̃

, with M̃ ≤M , that has the same span as {ϕi}i∈If,M . Next, we define (implicitly) the

coefficients c̃i according to
∑

i∈Ĩ
f,M̃

c̃iϕ̃i =
∑

i∈If,M
ciϕi. (22)

Now, note that
∥∥∥∥∥∥∥

∑

i∈Ĩ
f,M̃

c̃iϕ̃i

∥∥∥∥∥∥∥

2

L2(Ω)

=

∥∥∥∥∥∥∥
f − (f −

∑

i∈Ĩ
f,M̃

c̃iϕ̃i)

∥∥∥∥∥∥∥

2

L2(Ω)

≤ ‖f‖2L2(Ω) +

∥∥∥∥∥∥
f −

∑

i∈If,M
ciϕi

∥∥∥∥∥∥

2

L2(Ω)

.

Making use of the orthonormality of the ϕ̃i, we can conclude that
∑

i∈Ĩ
f,M̃

|c̃i|2 ≤ sup
f∈C
‖f‖2L2(Ω) + C2M−2γ .

As C is compact by assumption, we have supf∈C ‖f‖2L2(Ω) < ∞, which establishes that the coefficients c̃i are

uniformly bounded. This, in turn, allows us to quantize them, specifically, we shall round the c̃i to integer multiples

of M−(γ+1/2), and denote the resulting rounded coefficients by ĉi. As the c̃i are uniformly bounded, this results

in a number of quantization levels that is proportional to M (γ+1/2). The number of bits needed to store the binary

representations of the quantized coefficients is therefore proportional to M log(M). Again, the proportionality

constant is assumed known to encoder and decoder, which allows us to stack the binary representations of the

quantized coefficients in a uniquely decodable manner. The resulting bitstring is then appended to the bitstring

encoding the indices of the participating dictionary elements. We finally note that the specific choice of the exponent

γ + 1/2 is informed by the upper bound on the reconstruction error we are allowed, this will be made explicit

below in the description of the decoder.

In summary, we have mapped the function f to a bitstring of length O(M log(M)). The decoder is presented

with this bitstring and reconstructs an approximation to f as follows. It first reads out the indices of the set If,M

and the quantized coefficients ĉi. Recall that this is uniquely possible. Next, the decoder performs a Gram-Schmidt

orthonormalization on the set of dictionary elements indexed by If,M . The error resulting from reconstructing the

function f from the quantized coefficients ĉi rather than the exact coefficients c̃i can be bounded according to∥∥∥∥∥∥∥
f −

∑

i∈Ĩ
f,M̃

ĉiϕ̃i

∥∥∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥∥∥
f −

∑

i∈Ĩ
f,M̃

c̃iϕ̃i +
∑

i∈Ĩ
f,M̃

c̃iϕ̃i −
∑

i∈Ĩ
f,M̃

ĉiϕ̃i

∥∥∥∥∥∥∥
L2(Ω)

≤

∥∥∥∥∥∥∥
f −

∑

i∈Ĩ
f,M̃

c̃iϕ̃i

∥∥∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥∥∥

∑

i∈Ĩ
f,M̃

(c̃i − ĉi)ϕ̃i

∥∥∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥∥∥
f −

∑

i∈Ĩ
f,M̃

c̃iϕ̃i

∥∥∥∥∥∥∥
L2(Ω)

+



∑

i∈Ĩ
f,M̃

|c̃i − ĉi|2



1/2

,

(23)
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where in the last step we again exploited the orthonormality of the ϕ̃i. Next, note that due to the choice of the

quantizer resolution, we have |c̃i − ĉi|2 ≤ C ′′M−2γ−1 for some constant C ′′. With M̃ ≤M this yields

∑

i∈Ĩ
f,M̃

|c̃i − ĉi|2 ≤ C ′′M−2γ .

Combining (20), (22), and (23), we obtain
∥∥∥∥∥∥∥
f −

∑

i∈Ĩ
f,M̃

ĉiϕ̃i

∥∥∥∥∥∥∥
L2(Ω)

≤ C ′M−γ ,

for some constant C ′. As the length of the bitstring used in this construction is proportional to M log(M), the

claim (21) is established.

Now, we note that the antecedent of Implication (I) holds for all γ < γ∗,eff(C,D). Assume next, towards a

contradiction, that the antecedent holds for a γ > γ∗(C). This would imply that for any γ′ < γ,

inf
(E,D)∈EL×DL

sup
f∈C
‖D(E(f))− f‖L2(Ω) ∈ O

(
L−γ

′)
, L→∞. (24)

In particular, (24) would hold for some γ′ > γ∗(C) which, owing to (13) stands in contradiction to the definition

of γ∗(C). This completes the proof.

Space C Optimal dictionary γ∗(C)
L2-Sobolev Wm

2 ([0, 1]) U(Wm
2 ([0, 1])) Fourier/Wavelet basis m [75, Sec. 14.2]

Hölder Cα([0, 1]) U(Cα([0, 1])) Wavelet basis α [75, Sec. 14.2]

Bump Algebra B1
1,1([0, 1]) U(B1

1,1([0, 1])) Wavelet basis 1 [75, Sec. 14.2]

Bounded Variation BV ([0, 1]) U(BV ([0, 1])) Haar basis 1 [75, Sec. 14.2]

Lp-Sobolev4 Wm
p (Ω) U(Wm

p (Ω)) Wavelet frame m
d [76, Thm. 1.3]

Besov5 Bmp,q(Ω) U(Bmp,q(Ω)) Wavelet frame m
d [76, Thm. 1.3]

Modulation6 Ms
p,p(Rd) U(Ms

p,p(Rd)) Wilson basis ( 1
p− 1

2 + 2s
d )−1 [77, Thm. 4.4]

Cartoon functions7 Eβ([− 1
2 ,

1
2 ]d) α-Curvelet frame8 β(d−1)

2 [23]

Table 1: Optimal exponents and corresponding optimal dictionaries. U(X) = {f ∈ X : ‖f‖X ≤ 1} denotes the

unit ball in the space X and Ω ⊆ Rd is a Lipschitz domain. Recall that compactness of these unit balls is w.r.t.

L2-norm.

4p ∈ [1,∞], m > d(1/p− 1/2)+

5p, q ∈ (0,∞], m > d(1/p− 1/2)+

61 < p < 2, s ∈ R+

7This is actually a set of functions and not a (unit) ball in a Banach space.
8For d = 2, see [78].
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The optimal exponent γ∗(C) is known for various function classes such as unit balls in Besov spaces Bmp,q(Rd)

with p, q ∈ (0,∞] and m > d(1/p − 1/2)+, where γ∗(C) = m/d (see [76]), and unit balls in (polynomially)

weighted modulation spaces Ms
p,p(Rd) with p ∈ (1, 2) and s ∈ R+, where γ∗(C) = ( 1

p − 1
2 + 2s

d )−1 (see [77]). A

further example is the set of β-cartoon-like functions, which are β-smooth on some bounded d-dimensional domain

with sufficiently smooth boundary and zero otherwise. Here, we have γ∗(C) = β(d− 1)/2 (see [79], [78], [23]).

These examples along with additional ones are summarized in Table 1. For an extensive summary of metric entropy

results and techniques for their derivation, we also refer to [64].

We conclude this section with general remarks on certain formal aspects of the Kolmogorov-Donoho rate-distortion

framework. First, we note that for the set C ⊆ L2(Ω) to have a well-defined optimal exponent it must be relatively

compact9. This follows from the fact that the set over which the minimum in the definition (12) of L(ε, C) is taken

must be nonempty for every ε ∈ (0,∞). To see this, note that every length-L(ε, C) encoder-decoder pair induces an

ε-covering of C with at most 2L(ε,C) balls (and ball centers {D(E(f))}f∈C). It hence follows that C must be totally

bounded and thus relatively compact as a consequence of L2(Ω) being a complete metric space [80, Thm. 45.1].

As shown in the proof of Theorem V.3, effective best M -term approximations construct encoder-decoder pairs

and thereby induce ε-coverings. By the arguments just made, this implies that also γ∗,eff(C,D) is well-defined only

for compact function classes C.

A consequence of the compactness requirement on C is that the spaces in Table 1 either consist of functions on

bounded domains or, in the case of modulation spaces, are equipped with a weighted norm. In order to provide

intuition on why this must be so, let us consider a function space (X, ‖·‖X) with X ⊆ L2(Rd) and ‖·‖X translation

invariant. Take ε > 0 and f ∈ X with ‖f‖X = 1 and choose C > 0 such that ‖f‖L2([−C,C]d) >
4
5‖f‖L2(Rd).

Now, consider the family of translates of f given by fi(x) := f(x− 2Ci), i ∈ Zd, and note that ‖fi‖X = 1 for all

i ∈ Zd by translation invariance of ‖ · ‖X . Furthermore, we have

‖fi‖L2([−C,C]d) =
(
‖fi‖2L2(Rd) − ‖fi‖2L2(Rd\[−C,C]d)

) 1
2 ≤

(
‖f‖2L2(Rd) − ‖f‖2L2([−C,C]d)

) 1
2

< 3
5‖f‖L2(Rd)

for all i ∈ Zd\{0} by construction. This, in turn, implies

‖fi − fj‖L2(Rd) = ‖fi−j − f‖L2(Rd) ≥ ‖fi−j − f‖L2([−C,C]d) >
1
5‖f‖L2(Rd) (25)

for all i, j ∈ Zd, with i 6= j, by the reverse triangle inequality. As such no ε-ball (w.r.t. L2(Rd)-norm) with

ε ≤ 1
10‖f‖L2(Rd) can contain more than one of the infinitely many (fi)i∈Zd which are, however, all contained in

the unit ball U(X) of the space (X, ‖ · ‖X). This implies that U(X) cannot be totally bounded and thereby not

relatively compact (w.r.t. L2(Rd)-norm). Somewhat nonchalantly speaking, for spaces equipped with translation-

invariant norms this issue can be avoided by considering functions that live on a bounded domain, which ensures that

9For the sake of simplicity, we assume, however, compactness throughout even though relative compactness (i.e. having a compact closure)

would be sufficient.

31



(25) pertains only to a finite number of translates. Alternatively, for spaces of functions living on unbounded domains

once can consider weighted norms that are not translation invariant. Here, the weighting effectively constrains the

functions to a bounded domain.

The less restrictive concept of best M -term approximation rate γ∗(C,D) (see Definition V.1) is, in apparent

contrast, often studied for noncompact function classes C.

In [75, Sec. 15.2] a condition for γ∗,eff(C,D) and γ∗(C,D) to coincide is presented. Specifically, this condition,

referred to as tail compactness, is expressed as follows. Let C ⊆ L2(Ω) be bounded and let D = {ϕi}i∈N be an

ordered orthonormal basis for C. We say that tail compactness holds if there exist C, β > 0 such that for all N ∈ N,

sup
f∈C

∥∥∥∥∥f −
N∑

i=1

〈f, ϕi〉ϕi
∥∥∥∥∥
L2(Ω)

≤ CN−β . (26)

In order to see that (26) implies γ∗,eff(C,D) = γ∗(C,D), we consider, for fixed f ∈ C, the (unconstrained) best

M -term approximation fM =
∑
i∈I〈f, ϕi〉ϕi with I ⊆ N, |I| = M . We now modify this M -term approximation by

letting α := dγ∗(C,D)/βe ∈ N and removing, in the expansion fM =
∑
i∈I〈f, ϕi〉ϕi, all terms corresponding to

indices that are larger than Mα. Recalling that in Definition V.2 the same polynomial π bounds the search depth and

the size of the coefficients, it follows that the modified approximation we just constructed obeys a polynomial depth

search constraint with constraining polynomial πα(x) = xα + S, where S := supf∈C ‖f‖L2(Ω). Here, owing to

orthonormality of D, S accounts for the size of the expansion coefficients 〈f, ϕi〉. In order to complete the argument,

we need to show that the additional approximation error incurred by removing terms in fM =
∑
i∈I〈f, ϕi〉ϕi is in

O(M−γ
∗(C,D)), i.e., it is of the same order as the error corresponding to the original (unconstrained) best M -term

approximation. Due to orthonormality of D this additional error is given by the norm of
∑
i∈I,i>πα(M)〈f, ϕi〉ϕi

and can, by virtue of (26), be bounded as
∥∥∥∥∥∥

∑

i∈I,i>πα(M)

〈f, ϕi〉ϕi

∥∥∥∥∥∥
L2(Ω)

≤

∥∥∥∥∥∥

∞∑

i=πα(M)+1

〈f, ϕi〉ϕi

∥∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥∥
f −

πα(M)∑

i=1

〈f, ϕi〉ϕi

∥∥∥∥∥∥
L2(Ω)

≤ C(πα(M))−β ∈ O(M−γ
∗(C,D)),

which establishes the claim. We have hence shown that under tail compactness of arbitrary rate β > 0, γ∗(C,D) =

γ∗,eff(C,D), and hence there is no cost incurred by imposing a polynomial depth search constraint combined with

a polynomial bound on the size of the expansion coefficients. For the more general case of D a frame, we refer

to [60, Sec. 5.4.3] for an analogous argument. Finally, we remark that the tail compactness inequality (26) can be

interpreted as quantifying the rate of linear approximation for C in D. Two examples of pairs (C,D) satisfying tail

compactness, namely Besov spaces with wavelet bases and modulation spaces with Wilson bases, are provided in

Appendices B and C, respectively.

As already mentioned, a larger optimal exponent γ∗(C) leads to faster error decay (specifically according to

L−γ
∗(C)) and hence corresponds to a function class of smaller complexity. As such, techniques for deriving lower
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bounds on the optimal exponent are often based on variations of the approach employed in the proof of Theorem V.3,

namely on the explicit construction of encoder-decoder pairs (in the case of the proof of Theorem V.3 by encoding

the dictionary elements participating in the M -term approximation). A powerful method for deriving upper bounds

on the optimal exponent is the hypercube embedding approach proposed by Donoho in [79]; the basic idea here is

to show that the function class C under consideration contains a sufficiently complex embedded set of orthogonal

hypercubes and to then find the exponent corresponding to this set. An interesting alternative technique for deriving

optimal exponents was proposed in the context of modulation spaces in [77]. The essence of this approach is to

exploit the isomorphism between weighted modulation spaces and weighted mixed-norm sequence spaces [17] and

to then utilize results about entropy numbers of operators between sequence spaces.

VI. APPROXIMATION WITH DEEP NEURAL NETWORKS

Inspired by the theory of best M -term approximation with dictionaries, we now develop the new concept of best

M -weight approximation through neural networks. At the heart of this theory lies the interpretation of the network

weights as the counterpart of the coefficients ci in best M -term approximation. In other words, parsimony in terms

of the number of participating elements in a dictionary is replaced by parsimony in terms of network connectivity.

Our development will parallel that for best M -term approximation in the previous section.

Before proceeding to the specifics, we would like to issue a general remark. While the neural network ap-

proximation results in Section III were formulated in terms of L∞-norm, we shall be concerned with L2-norm

approximation here, on the one hand paralleling the use of L2-norm in the context of best M -term approximation,

and on the other hand allowing for the approximation of discontinuous functions by ReLU neural networks, which,

owing to the continuity of the ReLU nonlinearity, necessarily realize continuous functions.

We start by introducing the concept of best M -weight approximation rate.

Definition VI.1. Given d ∈ N, Ω ⊆ Rd, and a function class C ⊆ L2(Ω), we define, for f ∈ C and M ∈ N,

ΓNM (f) := inf
Φ∈Nd,1
M(Φ)≤M

‖f − Φ‖L2(Ω). (27)

We call ΓNM (f) the best M -weight approximation error of f . The supremal γ > 0 such that

sup
f∈C

ΓNM (f) ∈ O(M−γ), M →∞,

will be denoted by γ∗N (C). We say that the best M -weight approximation rate of C by neural networks is γ∗N (C).

We emphasize that the infimum in (27) is taken over all networks with fixed input dimension d, no more than M

nonzero (edge and node) weights, and arbitrary depth L. In particular, this means that the infimum is with respect

to all possible network topologies and weight choices. The best M -weight approximation rate is fundamental as it

benchmarks all algorithms that map a function f and an ε > 0 to a neural network approximating f with error no

more than ε.
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The two restrictions underlying the concept of effective best M -term approximation through dictionaries, namely

polynomial depth search and polynomially bounded coefficients, are next addressed in the context of approximation

through deep neural networks. We start by noting that the need for the former is obviated by the tree-like-structure

of neural networks. To see this, first note that W(Φ) ≤M(Φ) and L(Φ) ≤M(Φ). As the total number of nonzero

weights in the network can not exceed L(Φ)W(Φ)(W(Φ) + 1), this yields at most O(M(Φ)3) possibilities for the

“locations” (in terms of entries in the A` and the b`) of the M(Φ) nonzero weights. Encoding the locations of the

M(Φ) nonzero weights hence requires log(
(
CM(Φ)3

M(Φ)

)
) = O(M(Φ) log(M(Φ))) bits. This assumes, however, that

the architecture of the network, i.e., the number of layers L(Φ) and the Nk are known. Proposition VI.7 below

shows that the architecture can, indeed, also be encoded with O(M(Φ) log(M(Φ))) bits. In summary, we can

therefore conclude that the tree-like-structure of neural networks automatically guarantees what we had to enforce

through the polynomial depth search constraint in the case of best M -term approximation.

Inspection of the approximation results in Section III reveals that a sublinear growth restriction on L(Φ) as a

function of M(Φ) is natural. Specifically, the approximation results in Section III all have L(Φ) proportional to a

polynomial in log(ε−1). As we are interested in approximation error decay according to M(Φ)−γ , see Definition

VI.1, this suggests to restrict L(Φ) to growth that is polynomial in log(M(Φ)).

The second restriction imposed in the definition of effective best M -term approximation, namely polynomially

bounded coefficients, will be imposed in monomorphic manner on the magnitude of the weights. This growth

condition will turn out natural in the context of the approximation results we are interested in and will, together

with polylogarithmic depth growth, be seen below to allow rate-distortion-optimal quantization of the network

weights. We remark, however, that networks with weights growing polynomially in M(Φ) can be converted into

networks with uniformly bounded weights at the expense of increased—albeit still of polylogarithmic scaling in

M(Φ)—depth (see Proposition A.3). In summary, we will develop the concept of “best M -weight approximation

subject to polylogarithmic depth and polynomial weight growth”.

We start by introducing the following notation for neural networks with depth and weight magnitude bounded

polylogarithmically respectively polynomially w.r.t. their connectivity.

Definition VI.2. For M,d, d′ ∈ N, and π a polynomial, we define

N π
M,d,d′ := {Φ ∈ Nd,d′ : M(Φ) ≤M,L(Φ) ≤ π(log(M)),B(Φ) ≤ π(M)} .

Next, we formalize the notion of effective best M -weight approximation rate subject to polylogarithmic depth

and polynomial weight growth.
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Definition VI.3. Let d ∈ N, Ω ⊆ Rd, and let C ⊆ L2(Ω) be compact. We define for M ∈ N and π a polynomial

επN (M) := sup
f∈C

inf
Φ∈NπM,d,1

‖f − Φ‖L2(Ω)

and

γ∗,eff
N (C) := sup{γ ≥ 0: ∃ polynomial π s.t. επN (M) ∈ O(M−γ), M →∞}.

We refer to γ∗,eff
N (C) as the effective best M -weight approximation rate of C.

We now state the equivalent of Theorem V.3 for approximation by deep neural networks. Specifically, we establish

that the optimal exponent γ∗(C) constitutes a fundamental bound on the effective best M -weight approximation

rate of C as well.

Theorem VI.4. Let d ∈ N, Ω ⊆ Rd, and let C ⊆ L2(Ω) be compact. Then, we have

γ∗,eff
N (C) ≤ γ∗(C).

The key ingredients of the proof of Theorem VI.4 are developed throughout this section and the formal proof

appears at the end of the section. Before getting started, we note that, in analogy to Definition V.4, what we just

found suggests the following.

Definition VI.5. Let d ∈ N, Ω ⊆ Rd, and let C ⊆ L2(Ω) be compact. We say that the function class C ⊆ L2(Ω)

is optimally representable by neural networks if

γ∗,eff
N (C) = γ∗(C).

It is interesting to observe that the fundamental limits of effective best M -term approximation (through dictionar-

ies) and effective best M -weight approximation in neural networks are determined by the same quantity, although

the approximants in the two cases are vastly different. We have linear combinations of elements of a dictionary

under polynomial weight growth of the coefficients and with the participating functions identified subject to a

polynomial-depth search constraint in the former, and concatenations of affine functions followed by nonlinearities

under polynomial growth constraints on the coefficients of the affine functions and with a polylogarithmic growth

constraint on the number of concatenations in the latter case.

We now commence the program developing the proof of Theorem VI.4. As in the arguments in the proof sketch

of Theorem V.3, the main idea is to compare the length of the bitstring needed to encode the approximating network

to the minimax code length of the function class C to be approximated. To this end, we will need to represent the

approximating network’s nonzero weights, its architecture, i.e., L and the Nk, and the nonzero weights’ locations

as a bitstring. As the weights are real numbers and hence require, in principle, an infinite number of bits for their

binary representations, we will have to suitably quantize them. In particular, the resolution of the corresponding

35



quantizer will have to increase appropriately with decreasing ε. To formalize this idea, we start by defining the

quantization employed.

Definition VI.6. Let m ∈ N and ε ∈ (0, 1/2). The network Φ is said to have (m, ε)-quantized weights if all its

weights are elements of 2−mdlog(ε−1)eZ ∩ [−ε−m, ε−m].

A key ingredient of the proof of Theorem VI.4 is the following result, which establishes a fundamental lower

bound on the connectivity of networks with quantized weights achieving uniform error ε over a given function class

C.

Proposition VI.7. Let d, d′ ∈ N, Ω ⊆ Rd, C ⊆ L2(Ω), and let π be a polynomial. Further, let

Ψ :
(
0, 1

2

)
× C → Nd,d′

be a map such that for every ε ∈ (0, 1/2), f ∈ C, the network Ψ(ε, f) has (dπ(log(ε−1))e, ε)-quantized weights

and satisfies

sup
f∈C
‖f −Ψ(ε, f)‖L2(Ω) ≤ ε.

Then,

sup
f∈C
M(Ψ(ε, f)) /∈ O

(
ε−1/γ

)
, ε→ 0, for all γ > γ∗(C).

Proof. The proof is by contradiction. Let γ > γ∗(C) and assume that supf∈CM(Ψ(ε, f)) ∈ O(ε−1/γ), ε→ 0. The

contradiction will be effected by constructing encoder-decoder pairs (Eε, Dε) ∈ E`(ε) ×D`(ε) achieving uniform

error ε over C with

`(ε) ≤ C0 · sup
f∈C

(M(Ψ(ε, f)) log(M(Ψ(ε, f))) + 1) (log(ε−1))q (28)

≤ C0

(
ε−1/γ log(ε−1/γ) + 1

)
(log(ε−1))q

≤ C1

(
ε−1/γ(log(ε−1))q+1 + (log(ε−1))q

)
∈ O

(
ε−1/ν

)
, for ε→ 0,

where C0, C1, q > 0 are constants not depending on f, ε and γ > ν > γ∗(C). The specific form of the upper bound

(28) will become apparent in the construction of the bitstring representing Ψ detailed below.

We proceed to the construction of the encoder-decoder pairs (Eε, Dε) ∈ E`(ε)×D`(ε), which will be accomplished

by encoding the network architecture, its topology, and the quantized weights in bitstrings of length `(ε) satisfying

(28) while guaranteeing unique reconstruction (of the network). For the sake of notational simplicity, we fix ε ∈
(0, 1/2) and f ∈ C and set Ψ := Ψ(ε, f), M :=M(Ψ), and L := L(Ψ). Recall that the number of nodes in layers

0, . . . , L is denoted by N0, . . . , NL and that N0 = d,NL = d′ (see Definition II.1). Moreover, note that due to our

nondegeneracy assumption (see Remark II.2) we have
∑L
`=0N` ≤ 2M and L ≤ M . The bitstring representing Ψ

is constructed according to the following steps.
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Step 1: If M = 0, we encode the network by a single 0. Using the convention 0 log(0) = 0, we then note that

(28) holds trivially and we terminate the encoding procedure. Else, we encode the network connectivity, M , by

starting the overall bitstring with M many 1’s followed by a single 0. The length of this bitstring is therefore given

by M + 1.

Step 2: We continue by encoding the number of layers which, due to L ≤M , requires no more than dlog(M)e
bits. We thus reserve the next dlog(M)e bits for the binary representation of L.

Step 3: Next, we store the layer dimensions N0, . . . , NL. As L ≤M and N` ≤M , for all ` ∈ {0, . . . , L}, owing

to nondegeneracy, we can encode the layer dimensions using (M + 1)dlog(M)e bits. In combination with Steps 1

and 2 this yields an overall bitstring of length at most

Mdlog(M)e+M + 2dlog(M)e+ 1. (29)

Step 4: We encode the topology of the graph associated with the network Ψ. To this end, we enumerate all nodes

by assigning a unique index i to each one of them, starting from the 0-th layer and increasing from left to right

within a given layer. The indices range from 1 to N :=
∑L
`=0N` ≤ 2M . Each of these indices can be encoded by

a bitstring of length dlog(N)e. We denote the bitstring corresponding to index i by b(i) ∈ {0, 1}dlog(N)e and let

for all nodes, except for those in the last layer, n(i) be the number of children of the node with index i, i.e., the

number of nodes in the next layer connected to the node with index i via an edge. For each of these nodes i, we

form a bitstring of length n(i)dlog(N)e by concatenating the bitstrings indexing its children. We follow this string

with an all-zeros bitstring of length dlog(N)e to signal that all children of the current node have been encoded.

Overall, this yields a bitstring of length
N−d′∑

i=1

(n(i) + 1)dlog(N)e ≤ 3Mdlog(2M)e, (30)

where we used
∑N−d′
i=1 n(i) ≤M .

Step 5: We encode the weights of Ψ. By assumption, Ψ has (dπ(log(ε−1))e, ε)-quantized weights, which means

that each weight of Ψ can be represented by no more than Bε := 2(dπ(log(ε−1))edlog(ε−1)e+ 1) bits. For each

node i = 1, . . . , N , we reserve the first Bε bits to encode its associated node weight and, for each of its children

a bitstring of length Bε to encode the weight corresponding to the edge between the current node and that child.

Concatenating the results in ascending order of child node indices, we get a bitstring of length (n(i) + 1)Bε for

node i, and an overall bitstring of length
N−d′∑

i=1

(n(i) + 1)Bε + d′Bε ≤ 3MBε

representing the weights. Combining this with (29) and (30), we find that the overall number of bits needed to

encode the network architecture, topology, and weights is no more than

3MBε + 3Mdlog(2M)e+ (M + 2)dlog(M)e+M + 1. (31)
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The network can be recovered by sequentially reading out M,L, the N`, the topology, and the quantized weights

from the overall bitstring. It is not difficult to verify that the individual steps in the encoding procedure were crafted

such that this yields unique recovery. As (31) can be upper-bounded by

C0(M log(M) + 1)(log
(
ε−1
)
)q

for constants C0, q > 0 depending on π only, we have constructed an encoder-decoder pair (Eε, Dε) ∈ E`(ε)×D`(ε)

with `(ε) satisfying (28). This concludes the proof.

Proposition VI.7 states that the connectivity growth rate of networks with quantized weights achieving uniform

approximation error ε over a function class C must exceed O
(
ε−1/γ∗(C)) , ε → 0. As Proposition VI.7 applies to

networks that have each weight represented by a finite number of bits scaling polynomially in log(ε−1), while

guaranteeing that the underlying encoder-decoder pair achieves uniform error ε over C, it remains to establish that

such a compatibility is, indeed, possible. Specifically, this requires a careful interplay between the network’s depth

and connectivity scaling, and its weight growth, all as a function of ε. Establishing that this delicate balancing is

implied by our technical assumptions is the subject of the remainder of this section. We start with a perturbation

result quantifying how the error induced by weight quantization in the network translates to the output function

realized by the network.

Lemma VI.8. Let d, d′, k ∈ N, D ∈ R+, Ω ⊆ [−D,D]d, ε ∈ (0, 1/2), let Φ ∈ Nd,d′ with M(Φ) ≤ ε−k,

B(Φ) ≤ ε−k, and let m ∈ N satisfy

m ≥ 3kL(Φ) + log(dDe). (32)

Then, there exists a network Φ̃ ∈ Nd,d′ with (m, ε)-quantized weights satisfying

sup
x∈Ω
‖Φ(x)− Φ̃(x)‖∞ ≤ ε.

More specifically, the network Φ̃ can be obtained simply by replacing every weight in Φ by a closest element in

2−mdlog(ε−1)eZ ∩ [−ε−m, ε−m].

Proof of Theorem VI.8. We first consider the case L(Φ) = 1. Here, it follows from Definition II.1 that the network

simply realizes an affine transformation and hence

sup
x∈Ω
‖Φ(x)− Φ̃(x)‖∞ ≤M(Φ)dDe2−mdlog(ε−1)e−1 ≤ ε.

In the remainder of the proof, we can therefore assume that L(Φ) ≥ 2. For simplicity of notation, we set L :=

L(Φ),M :=M(Φ), and, as usual, write

Φ = WL ◦ ρ ◦WL−1 ◦ ρ ◦ · · · ◦ ρ ◦W1
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with W`(x) = A`x + b`, A` ∈ RN`×N`−1 , and b` ∈ RN` . We now consider the partial networks Φ` : Ω → RN` ,

` ∈ {1, 2, . . . , L− 1}, given by

Φ` :=





ρ ◦W1, ` = 1

ρ ◦W2 ◦ ρ ◦W1, ` = 2

ρ ◦W` ◦ ρ ◦W`−1 ◦ · · · ◦ ρ ◦W1, ` = 3, . . . , L− 1,

and set ΦL := Φ. We hasten to add that we decided—for ease of exposition—to deviate from the convention used in

Definition II.1 and to have the partial networks include the application of ρ at the end. Now, for ` ∈ {1, 2, . . . , L},
let Φ̃` be the (partial) network obtained by replacing all the entries of the A` and b` by a closest element in

2−mdlog(ε−1)e Z ∩ [−ε−m, ε−m]. We denote these replacements by Ã` and b̃`, respectively, and note that

max
i,j
|A`,i,j − Ã`,i,j | ≤ 1

2 2−mdlog(ε−1)e ≤ 1
2 ε

m,

max
i,j
|b`,i,j − b̃`,i,j | ≤ 1

2 2−mdlog(ε−1)e ≤ 1
2 ε

m.
(33)

The proof will be effected by upper-bounding the error building up across layers as a result of this quantization.

To this end, we define, for ` ∈ {1, 2, . . . , L}, the error in the `-th layer as

e` := sup
x∈Ω
‖Φ`(x)− Φ̃`(x)‖∞.

We further set C0 := dDe and C` := max{1, supx∈Ω ‖Φ`(x)‖∞}. As each entry of the vector Φ`(x) ∈ RN` is

obtained by applying10 the 1-Lipschitz function ρ to the sum of a weighted sum of at most N`−1 components

of the vector Φ`−1(x) ∈ RN`−1 and an affine component b`,i, and B(Φ) ≤ ε−k by assumption, we have for all

` ∈ {1, 2, . . . , L},

C` ≤ N`−1ε
−kC`−1 + ε−k ≤ (N`−1 + 1) ε−kC`−1,

which implies, for all ` ∈ {1, 2, . . . , L}, that

C` ≤ C0 ε
−k`

`−1∏

i=0

(Ni + 1). (34)

Next, note that the components (Φ̃1(x))i, i ∈ {1, 2, . . . , N1}, of the vector Φ̃1(x) ∈ RN1 can be written as

(Φ̃1(x))i = ρ






N0∑

j=1

Ã1,i,jxj


+ b̃1,i


 ,

which, combined with (33) and the fact that ρ is 1-Lipschitz implies

e1 ≤ C0N0
εm

2 + εm

2 ≤ C0(N0 + 1) ε
m

2 . (35)

10Note that going from ΦL−1 to ΦL the activation function is not applied anymore, which nevertheless leads to the same estimate as the

identity mapping is 1-Lipschitz.
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Due to ρ and the identity mapping being 1-Lipschitz, we have, for ` = 1, . . . , L,

e` = sup
x∈Ω
‖Φ`(x)− Φ̃`(x)‖∞ = sup

x∈Ω,i∈{1,...,Nl}
|(Φ`(x))i − (Φ̃`(x))i|

≤ sup
x∈Ω,i∈{1,...,N`}

∣∣∣∣∣∣





N`−1∑

j=1

A`,i,j(Φ
`−1(x))j


+ b`,i


−





N`−1∑

j=1

Ã`,i,j(Φ̃
`−1(x))j


+ b̃`,i



∣∣∣∣∣∣

≤ sup
x∈Ω,i∈{1,...,N`}





N`−1∑

j=1

∣∣∣A`,i,j(Φ`−1(x))j − Ã`,i,j(Φ̃`−1(x))j

∣∣∣


+

∣∣∣b`,i − b̃`,i
∣∣∣


 .

(36)

As |(Φ`−1(x))j − (Φ̃`−1(x))j | ≤ e`−1 and |(Φ`−1(x))j | ≤ C`−1 for all x ∈ Ω, j ∈ {1, . . . , N`−1} by definition,

and |A`,i,j | ≤ ε−k by assumption, upon invoking (33), we get

|A`,i,j(Φ`−1(x))j − Ã`,i,j(Φ̃`−1(x))j | ≤ e`−1ε
−k + C`−1

εm

2 + e`−1
εm

2 .

Since ε ∈ (0, 1/2), it therefore follows from (36), that for all ` ∈ {2, . . . , L},

e` ≤ N`−1(e`−1ε
−k + C`−1

εm

2 + e`−1
εm

2 ) + εm

2 ≤ (N`−1 + 1)(2e`−1ε
−k + C`−1

εm

2 ). (37)

We now claim that, for all ` ∈ {2, . . . , L},

e` ≤ 1
2 (2` − 1)C0ε

m−(`−1)k
`−1∏

i=0

(Ni + 1), (38)

which we prove by induction. The base case ` = 1 was already established in (35). For the induction step we

assume that (38) holds for a given ` which, in combination with (34) and (37), implies

e`+1 ≤
(
N` + 1)(2e`ε

−k + C`
εm

2

)

≤ (N` + 1)

(
(2` − 1)C0ε

m−(`−1)kε−k
`−1∏

i=0

(Ni + 1) + C0ε
−k` εm

2

`−1∏

i=0

(Ni + 1)

)

=
1

2
(2`+1 − 1)C0ε

m−`k ∏̀

i=0

(Ni + 1).

This completes the induction argument and establishes (38). Using 2L−1 ≤ ε−(L−1),
∏L−1
i=0 (Ni+1) ≤ML ≤ ε−kL,

and m ≥ 3kL+ log(dDe) by assumption, we get

sup
x∈Ω
‖Φ(x)− Φ̃(x)‖∞ = eL ≤ 1

2 (2L − 1)C0ε
m−(L−1)k

L−1∏

i=0

(Ni + 1)

≤ εm−(L−1+kL−k+log(dDe)+kL)

≤ εm−(3kL+log(dDe)−1) ≤ ε.

This completes the proof.

We are now ready to finalize the proof of Theorem VI.4.
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Proof of Theorem VI.4. Suppose towards a contradiction that γ∗,eff
N (C) > γ∗(C) and let γ ∈

(
γ∗(C), γ∗,eff

N (C)
)
.

Then, by Definition VI.3, there exist a polynomial π and a constant C > 0 such that

sup
f∈C

inf
Φ∈NπM,d,1

‖f − Φ‖L2(Ω) ≤ CM−γ , for all M ∈ N.

Setting Mε :=
⌈
(ε/(4C))−1/γ

⌉
, it follows that, for every f ∈ C and every ε ∈ (0, 1/2), there exists a neural

network Φε,f ∈ N π
Mε,d,1

such that

‖f − Φε,f‖L2(Ω) ≤ 2 sup
f∈C

inf
Φ∈NπMε,d,1

‖f − Φ‖L2(Ω) ≤ 2CM−γε ≤ ε

2
. (39)

By Lemma VI.8 there exists a polynomial π∗ such that for every f ∈ C, ε ∈ (0, 1/2), there is a network Φ̃ε,f with

(dπ∗(log(ε−1))e, ε)-quantized weights satisfying
∥∥∥Φε,f − Φ̃ε,f

∥∥∥
L2(Ω)

≤ ε

2
. (40)

The conditions of Lemma VI.8 are satisfied as Mε can be upper-bounded by ε−k with a suitably chosen k, the

weights in Φε,f are polynomially bounded in Mε, and (32) follows from the depth of networks in Φ ∈ N π
Mε,d,1

being polylogarithmically bounded in Mε due to Definition VI.2. Now, defining

Ψ:
(
0, 1

2

)
× C → Nd,1, (ε, f) 7→ Φ̃ε,f ,

it follows from (39) and (40), by application of the triangle inequality, that

sup
f∈C
‖f −Ψ(ε, f)‖L2(Ω) ≤ ε with sup

f∈C
M(Ψ(ε, f)) ≤Mε ∈ O

(
ε−1/γ

)
, ε→ 0.

The proof is concluded by noting that Ψ(ε, f) violates Proposition VI.7.

We conclude this section with a discussion of the conceptual implications of the results established above.

Proposition VI.7 combined with Lemma VI.8 establishes that neural networks achieving uniform approximation

error ε while having weights that are polynomially bounded in ε−1 and depth growing polylogarithmically in ε−1

cannot exhibit connectivity growth rate smaller than O(ε−1/γ∗(C)), ε→ 0; in other words, a decay of the uniform

approximation error, as a function of M , faster than O(M−γ
∗(C)),M →∞, is not possible.

VII. THE TRANSFERENCE PRINCIPLE

We have seen that a wide array of function classes can be approximated in Kolmogorov-Donoho optimal fashion

through dictionaries, provided that the dictionary D is chosen to consort with the function class C according to

γ∗,eff(C,D) = γ∗(C). Examples of such pairs are unit balls in Besov spaces with wavelet bases and unit balls in

weighted modulation spaces with Wilson bases. A more extensive list of optimal pairs is provided in Table 1. On

the other hand, as shown in [14], Fourier bases are strictly suboptimal—in terms of approximation rate—for balls

C of finite radius in the spaces BV (R) and Wm
p (R).
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In light of what was just said, it is hence natural to let neural networks play the role of the dictionary D and to ask

which function classes C are approximated in Kolmogorov-Donoho-optimal fashion by neural networks. Towards

answering this question, we next develop a general framework for transferring results on function approximation

through dictionaries to results on approximation by neural networks. This will eventually lead us to a characterization

of function classes C that are optimally representable by neural networks in the sense of Definition VI.5.

We start by introducing the notion of effective representability of dictionaries through neural networks.

Definition VII.1. Let d ∈ N, Ω ⊆ Rd, and D = (ϕi)i∈N ⊆ L2(Ω) be a dictionary. We call D effectively

representable by neural networks, if there exists a bivariate polynomial π such that for all i ∈ N, ε ∈ (0, 1/2),

there is a neural network Φi,ε ∈ Nd,1 satisfying M(Φi,ε) ≤ π(log(ε−1), log(i)), B(Φi,ε) ≤ π(ε−1, i), and

‖ϕi − Φi,ε‖L2(Ω) ≤ ε.

The next result will allow us to conclude that optimality—in the sense of Definition V.4—of a dictionary D for a

function class C combined with effective representability of D by neural networks implies optimal representability of

C by neural networks. The proof is, in essence, effected by noting that every element of the effectively representable

D participating in a best M -term-rate achieving approximation fM of f ∈ C can itself be approximated by

neural networks well enough for an overall network to approximate fM with connectivity Mπ(log(M)). As

this connectivity is only polylogarithmically larger than the number of terms M participating in the best M -

term approximation fM , we will be able to conclude that the optimal approximation rate, indeed, transfers from

approximation in D to approximation in neural networks. The conditions on M(Φi,ε) and B(Φi,ε) in Definition

VII.1 guarantee precisely that the connectivity increase is at most by a polylogarithmic factor. To see this, we first

recall that effective best M -term approximation has a polynomial depth search constraint, which implies that the

indices i under consideration are upper-bounded by a polynomial in M . In addition, the approximation error behavior

we are interested in is ε = M−γ . Combining these two insights, it follows that M(Φi,ε) ≤ π(log(ε−1), log(i))

implies polylogarithmic (in M ) connectivity for each network Φi,ε and hence connectivity Mπ(log(M)) for the

overall network realizing fM , as desired. By the same token, B(Φi,ε) ≤ π(ε−1, i) guarantees that the weights of

Φi,ε are polynomial in M .

There is another aspect to effective representability by neural networks that we would like to illustrate by way

of example, namely that of ordering the dictionary elements. Specifically, we consider, for d = 1 and Ω = [−π, π),

the class C of real-valued even functions in C = L2(Ω), and take the dictionary as D = {cos(ix), i ∈ N0}. As the

index i enumerating the dictionary elements corresponds to frequencies, the basis functions in D are hence ordered

according to increasing frequencies. Next, note that the parameter a in Theorem III.8 corresponds to the frequency

index i in our example. As the network Ψa,D,ε in Theorem III.8 is of finite width, it hence follows, upon replacing

a in the expression for L(Ψa,D,ε) by i, that M(Ψi,D,ε) ≤ π(log(ε−1), log(i)). The condition on the weights for

effective representability is satisfied trivially, simply as B(Ψi,D,ε) ≤ 1 ≤ π(ε−1, i).
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We are now ready to state the rate optimality transfer result.

Theorem VII.2. Let d ∈ N, Ω ⊆ Rd be bounded, and consider the function class C ⊆ L2(Ω). Suppose that

the dictionary D = (ϕi)i∈N ⊆ L2(Ω) is effectively representable by neural networks. Then, for every 0 < γ <

γ∗,eff(C,D), there exist a polynomial π and a map

Ψ :
(
0, 1

2

)
× C → Nd,1,

such that for all f ∈ C, ε ∈ (0, 1/2), the network Ψ(ε, f) has (dπ(log(ε−1))e, ε)-quantized weights while satisfying

‖f −Ψ(ε, f)‖L2(Ω) ≤ ε, L(Ψ(ε, f)) ≤ π(log(ε−1)), B(Ψ(ε, f)) ≤ π(ε−1), and we have

M(Ψ(ε, f)) ∈ O(ε−1/γ), ε→ 0, (41)

with the implicit constant in (41) being independent of f . In particular, it holds that

γ∗,eff
N (C) ≥ γ∗,eff(C,D).

Remark VII.3. Theorem VII.2 allows us to draw the following conclusion. If D optimally represents the function

class C in the sense of Definition V.4, i.e., γ∗,eff(C,D) = γ∗(C), and if it is, in addition, effectively representable by

neural networks in the sense of Definition VII.1, then, due to Theorem VI.4, which states that γ∗,eff
N (C) ≤ γ∗(C), we

have γ∗,eff
N (C) = γ∗(C) and hence C is optimally representable by neural networks in the sense of Definition VI.5.

Proof of Theorem VII.2. Let γ′ ∈ (γ, γ∗,eff(C,D)). According to Definition V.2, there exist a constant C ≥ 1 and

a polynomial π1, such that for every f ∈ C, M ∈ N, there is an index set If,M ⊆ {1, . . . , π1(M)} of cardinality

M and coefficients (ci)i∈If,M with |ci| ≤ π1(M), such that
∥∥∥∥∥∥
f −

∑

i∈If,M
ciϕi

∥∥∥∥∥∥
L2(Ω)

≤ CM−γ
′

2
. (42)

Let A := max{1, |Ω|1/2}. Effective representability of D according to Definition VII.1 ensures the existence of a

bivariate polynomial π2 such that for all M ∈ N, i ∈ If,M , there is a neural network Φi,M ∈ Nd,1 satisfying

‖ϕi − Φi,M‖L2(Ω) ≤ C
4Aπ1(M)M

−(γ′+1) (43)

with

M(Φi,M ) ≤ π2

(
log

((
C

4Aπ1(M)M
−(γ′+1)

)−1
)
, log(i)

)

= π2

(
(γ′ + 1) log(M) + log

(
4Aπ1(M)

C

)
, log(i)

)
,

B(Φi,M ) ≤ π2

((
C

4Aπ1(M)M
−(γ′+1)

)−1

, i

)
= π2

(
4Aπ1(M)

C Mγ′+1, i
)
.

(44)

Consider now for f ∈ C, M ∈ N the networks given by

Ψf,M (x) :=
∑

i∈If,M
ciΦi,M (x).
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Due to max(If,M ) ≤ π1(M), (44) and Lemma A.8 imply the existence of a polynomial π3 such that L(Ψf,M ) ≤
π3(log(M)), M(Ψf,M ) ≤Mπ3(log(M)), and B(Ψf,M ) ≤ π3(M), for all f ∈ C, M ∈ N, and, owing to (43), we

get
∥∥∥∥∥∥
Ψf,M −

∑

i∈If,M
ciϕi

∥∥∥∥∥∥
L2(Ω)

≤
∑

i∈If,M
|ci| C

4Aπ1(M)M
−(γ′+1) ≤ CM−γ

′

4A

|If,M |∑

i=1

maxi∈If,M |ci|
Mπ1(M) ≤ CM−γ

′

4A . (45)

Lemma VI.8 therefore ensures the existence of a polynomial π4 such that for all f ∈ C, M ∈ N, there is a

network Ψ̃f,M ∈ Nd,1 with (dπ4(log( 4A
C M

γ′))e, CM−γ
′

4A )-quantized weights satisfying L(Ψ̃f,M ) = L(Ψf,M ),

M(Ψ̃f,M ) =M(Ψf,M ), B(Ψ̃f,M ) ≤ B(Ψf,M ) + CM−γ
′

4A , and
∥∥∥Ψf,M − Ψ̃f,M

∥∥∥
L∞(Ω)

≤ CM−γ
′

4A . (46)

As Ω is bounded by assumption, we have
∥∥∥Ψf,M − Ψ̃f,M

∥∥∥
L2(Ω)

≤ |Ω| 12
∥∥∥Ψf,M − Ψ̃f,M

∥∥∥
L∞(Ω)

≤ CM−γ
′

4 , (47)

for all f ∈ C, M ∈ N. Combining (47) with (42) and (45), we get, for all f ∈ C, M ∈ N,

∥∥∥f − Ψ̃f,M

∥∥∥
L2(Ω)

≤

∥∥∥∥∥∥
f −

∑

i∈If,M
ciϕi

∥∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥∥
∑

i∈If,M
ciϕi −Ψf,M

∥∥∥∥∥∥
L2(Ω)

+
∥∥∥Ψf,M − Ψ̃f,M

∥∥∥
L2(Ω)

≤ CM−γ′ .

(48)

For ε ∈ (0, 1/2) and f ∈ C, we now set Mε :=
⌈
(C/ε)1/γ′

⌉
and

Ψ(ε, f) := Ψ̃f,Mε .

Thus, (48) yields

‖f −Ψ(ε, f)‖L2(Ω) ≤ CM−γ
′

ε ≤ ε.

Next, we note that, for all polynomials π and 0 ≤ m < n,

O(ε−mπ(log(ε−1))) ⊆ O(ε−n), ε→ 0.

As 1/γ′ < 1/γ, this establishes

M(Ψ(ε, f)) ∈ O(Mεπ3(log(Mε))) ⊆ O(ε−1/γ), ε→ 0. (49)

Since Mε and π3 are independent of f , the implicit constant in (49) does not depend on f .

Next, note that, in general, an (n, η)-quantized network is also (m, δ)-quantized for n ≥ m and η ≤ δ, simply

as

2−mdlog(δ−1)eZ ∩ [−δ−m, δ−m] ⊆ 2−ndlog(η−1)eZ ∩ [−η−n, η−n].
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Since CM−γ
′

ε

4A ≤ ε this ensures the existence of a polynomial π such that, for every f ∈ C, ε ∈ (0, 1/2), the network

Ψ(ε, f) is (dπ(log(ε−1))e, ε)-quantized, L(Ψ(ε, f)) ≤ π(log(ε−1)), and B(Ψ(ε, f)) ≤ π(ε−1). With (49) this

establishes the first claim of the theorem. In order to verify the second claim, note that Ψ(ε, f) ∈ N π
M(Ψ(ε,f)),d,1,

for all f ∈ C, ε ∈ (0, 1/2), which implies

sup
f∈C

inf
Φ∈NπM,d,1

‖f − Φ‖L2(Ω) ∈ O(M−γ), M →∞.

Therefore, owing to Definition VI.3, we get

γ∗,eff
N (C) ≥ γ∗,eff(C,D),

which concludes the proof.

Remark VII.4. We note that Theorem VII.2 continues to hold for Ω = Rn if the elements of D = (ϕi)i∈N are

compactly supported with the size of their support sets growing no more than polynomially in i. The technical

elements required to show this can be found in the context of the approximation of Gabor dictionaries in the proof

of Theorem IX.3, but are omitted here for ease of exposition.

The last piece needed to complete our program is to establish that the conditions in Definition VII.1 guaranteeing

effective representability in neural networks are, indeed, satisfied by a wide variety of dictionaries.

Inspecting Table 1, we can see that all example function classes provided therein are optimally represented

either by affine dictionaries, i.e., wavelets, the Haar basis, and curvelets or Weyl-Heisenberg dictionaries, namely

Fourier bases and Wilson bases. The next two sections will be devoted to proving effective representability of

affine dictionaries and Weyl-Heisenberg dictionaries by neural networks, thus allowing us to draw the conclusion

that neural networks are universally Kolmogorov-Donoho optimal approximators for all function classes listed in

Table 1.

VIII. AFFINE DICTIONARIES ARE EFFECTIVELY REPRESENTABLE BY NEURAL NETWORKS

The purpose of this section is to establish that affine dictionaries, including wavelets [70], ridgelets [39], curvelets

[71], shearlets [72], α-shearlets and more generally α-molecules [69], which contain all aforementioned dictionaries

as special cases, are effectively representable by neural networks. Due to Theorem VII.2 and Theorem VI.4, this

will then allow us to conclude that any function class that is optimally representable—in the sense of Definition

V.4—by an affine dictionary with a suitable generator function is optimally representable by neural networks in the

sense of Definition VI.5. By “suitable” we mean that the generator function can be approximated well by ReLU

networks in a sense to be made precise below.
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In order to elucidate the main ideas underlying the general definition of affine dictionaries that are effectively

representable by neural networks, we start with a basic example, namely the Haar wavelet dictionary on the unit

interval, i.e., the set of functions

ψn,k : [0, 1] 7→ R, x 7→ 2
n
2 ψ(2nx− k), n ∈ N0, k = 0, . . . , 2n − 1,

with

ψ : R→ R, x 7→





1, x ∈ [0, 1/2)

−1, x ∈ [1/2, 1)

0, else.

We approximate the piecewise constant mother wavelet ψ through a continuous piecewise linear function realized

by a neural network as follows

Ψδ(x) := 1
2δρ(x+ δ)− 1

2δρ(x− δ)− 1
δρ(x− ( 1

2 − δ)) + 1
δρ(x− ( 1

2 + δ)) + 1
2δρ(x− (1− δ))− 1

2δρ(x− (1 + δ))

and, setting δ(ε) := ε2 for ε ∈ (0, 1/2), let

Φn,k,ε(x) := 2
n
2 Ψδ(ε)(2

nx− k), n ∈ N0, k = 0, . . . , 2n − 1.

The basic idea in the approximation of ψ through Ψδ is to let the transition regions around 0, 1/2, and 1 shrink,

as a function of ε, sufficiently fast for the construction to realize an approximation error of no more than ε. Now,

a direct calculation yields that, indeed, for ε ∈ (0, 1/2),

‖ψn,k − Φn,k,ε‖L2([0,1]) ≤ ε.

Moreover, we have M(Φn,k,ε) = 18 and B(Φn,k,ε) ≤ max{2n2 ε−2, 2n}. In order to establish effective repre-

sentability by neural networks, we need to order the Haar wavelet dictionary suitably. Specifically, we proceed from

coarse to fine scales, i.e., we let (ϕi)i∈N = D = {D0,D1, . . . }, with Dn := {ψn,k 7→ R : k = 0, . . . , 2n−1}, where

the ordering within the Dn may be chosen arbitrarily. Next, note that for every pair n ∈ N0, k ∈ {0, . . . , 2n − 1},
there exists a unique index i ∈ N such that ϕi = ψn,k = ψn(i),k(i) and, owing to |Dn| = 2n, we have 2n(i) ≤ i.

Finally, taking Φi,ε := Φn(i),k(i),ε and π(a, b) := a2b + b + 18, the conditions in Definition VII.1 for effective

representability by neural networks are readily verified. A more elaborate example, namely spline wavelets, is

considered at the end of this section.

We are now ready to proceed to the general definition of affine dictionaries with canonical ordering.
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A. Affine Dictionaries with Canonical Ordering

Definition VIII.1. Let d, S ∈ N, δ > 0, Ω ⊆ Rd be bounded, and let gs ∈ L∞(Rd), s ∈ {1, . . . , S}, be compactly

supported. Furthermore, for s ∈ {1, . . . , S}, let Js ⊆ N and As,j ∈ Rd×d, j ∈ Js, be full-rank and with eigenvalues

bounded below by 1 in absolute value. We define the affine dictionary D ⊆ L2(Ω) with generator functions (gs)
S
s=1

as

D :=
{
gj,es :=

(
|det(As,j)|

1
2 gs(As,j · − δe)

) ∣∣
Ω

: s ∈ {1, . . . , S}, e ∈ Zd, j ∈ Js, and gj,es 6= 0
}
.

Moreover, we define the sub-dictionaries

Ds,j := {gj,es ∈ D : e ∈ Zd and gj,es 6= 0}, for j ∈ Js, s ∈ {1, . . . , S}

Dj :=
⋃

s∈{1,...,S} : j∈Js
Ds,j , for j ∈ N.

We call an affine dictionary canonically ordered if it is arranged according to

(ϕi)i∈N = D = (D1,D2, . . . ) , (50)

where the elements within each Dj may be ordered arbitrarily, and there exist constants a, c > 0 such that

j−1∑

k=1

|det(As,k)| ≥ c‖As,j‖a∞, for all j ∈ Js\{1}, s ∈ {1, . . . , S}. (51)

We call an affine dictionary nondegenerate if for every j ∈ Js, s ∈ {1, . . . , S}, the sub-dictionary Ds,j contains at

least one element.

Note that for sake of greater generality, we associate possibly different sets Js ⊆ N with the generator functions

gs and, in particular, also allow these sets to be finite. The Haar wavelet dictionary example above is recovered

as a nondegenerate affine dictionary by taking d = 1, Ω = [0, 1], S = 1, Js = N, g1 = ψ, δ = 1, A1,j = 2j−1,

a = 1, c = 1/2, and noting that nondegeneracy is verified as for scale j, the sub-dictionary Ds,j contains 2j−1

elements. Moreover, the weights of the networks approximating the individual Haar wavelet dictionary elements

grow linearly in the index of the dictionary elements. This is a consequence of the weights being determined by

the dilation factor 2n and 2n(i) ≤ i due to the ordering we chose. As will be shown below, morally this continues

to hold for general nondegenerate affine dictionaries, thereby revealing what informed our definition of canonical

ordering. Besides, our notion of canonical ordering is also inspired by the ordering employed in the tail compactness

considerations for Besov spaces and orthonormal wavelet dictionaries as detailed in Appendix B. We remark that

(51) constitutes a very weak restriction on how fast the size of dilations may grow; in fact, we are not aware of

any affine dictionaries in the literature that would violate this condition. Finally, we note that the dilations As,j are

not required to be ordered in ascending size, as was the case in the Haar wavelet dictionary example. Canonical

ordering does, however, ensure a modicum of ordering.
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B. Invariance to Affine Transformations

Affine dictionaries consist of dilations and translations of a given generator function. It is therefore important to

understand the impact of these operations on the approximability—by neural networks—of a given function. As

neural networks realize concatenations of affine functions and nonlinearities, it is clear that translations and dilations

can be absorbed into the first layer of the network and the transformed function should inherit the approximability

properties of the generator function. However, what we will have to understand is how the weights, the connectivity,

and the domain of approximation of the resulting network are impacted. The following result makes this quantitative.

Proposition VIII.2. Let d ∈ N, p ∈ [1,∞], and f ∈ Lp(Rd). Assume that there exists a bivariate polynomial π

such that for all D ∈ R+, ε ∈ (0, 1/2), there is a network ΦD,ε ∈ Nd,1 satisfying

‖f − ΦD,ε‖Lp([−D,D]d) ≤ ε, (52)

with M(ΦD,ε) ≤ π(log(ε−1), log(dDe)). Then, for all full-rank matrices A ∈ Rd×d, and all e ∈ Rd, E ∈ R+,

and η ∈ (0, 1/2), there is a network ΨA,e,E,η ∈ Nd,1 satisfying
∥∥∥|det(A)| 1p f(A · − e)−ΨA,e,E,η

∥∥∥
Lp([−E,E]d)

≤ η,

with M(ΨA,e,E,η) ≤ π′(log(η−1), log(dF e)) and B(ΨA,e,E,η) ≤ max{B(ΦF,η), |det(A)| 1p , ‖A‖∞, ‖e‖∞}, where

F = dE‖A‖∞ + ‖e‖∞ and π′ is of the same degree as π.

Proof. By a change of variables, we have for every Φ ∈ Nd,1,

∥∥|det(A)| 1p f(A · − e)− |det(A)| 1pΦ(A · − e)
∥∥
Lp([−E,E]d)

= ‖f − Φ‖Lp(A·[−E,E]d− e). (53)

Furthermore, observe that

A · [−E,E]d − e ⊆ [−(dE‖A‖∞ + ‖e‖∞), (dE‖A‖∞ + ‖e‖∞)]
d

= [−F, F ]d. (54)

Next, we consider the affine transformations WA,e(x) := Ax− e, W ′A(x) := |det(A)| 1px as depth-1 networks and

take ΨA,e,E,η := W ′A ◦ ΦF,η ◦WA,e according to Lemma II.3. Combining (53) and (54) yields

∥∥|det(A)| 1p f(A · − e)−ΨA,e,E,η

∥∥
Lp([−E,E]d)

= ‖f − ΦF,η‖Lp(A·[−E,E]d− e) ≤ ‖f − ΦF,η‖Lp([−F,F ]d) ≤ η.

The desired bounds on M(ΨA,e,E,η) and B(ΨA,e,E,η) follow directly by construction.

C. Canonically Ordered Affine Dictionaries are Effectively Representable

The next result establishes that canonically ordered affine dictionaries with generator functions that can be

approximated well by neural networks are effectively representable by neural networks.
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Theorem VIII.3. Let d, S ∈ N, Ω ⊆ Rd be bounded with nonempty interior, (gs)
S
s=1 ∈ L∞(Rd) compactly

supported, and D = (ϕi)i∈N ⊆ L2(Ω) a nondegenerate canonically ordered affine dictionary with generator

functions (gs)
S
s=1. Assume that there exists a polynomial π such that, for all s ∈ {1, . . . , S}, ε ∈ (0, 1/2), there is

a network Φs,ε ∈ Nd,1 satisfying

‖gs − Φs,ε‖L2(Rd) ≤ ε, (55)

with M(Φs,ε) ≤ π(log(ε−1)) and B(Φs,ε) ≤ π(ε−1). Then, D is effectively representable by neural networks.

Proof. By Definition VII.1 we need to establish the existence of a bivariate polynomial π such that for each i ∈ N,

η ∈ (0, 1/2), there is a network Φi,η ∈ Nd,1 satisfying

‖ϕi − Φi,η‖L2(Ω) ≤ η, (56)

with M(Φi,η) ≤ π(log(η−1), log(i)) and B(Φi,η) ≤ π(η−1, i). Note that we have

ϕi = gji,eisi =
(
|det(Asi,ji)|

1
2 gsi(Asi,ji · − δei)

) ∣∣
Ω
,

for si ∈ {1, . . . , S}, ji ∈ Jsi , and ei ∈ Zd. In order to devise networks satisfying (56), we employ Proposition VIII.2,

upon noting that, by virtue of (55), the networks Φs,ε satisfy (52) with p = 2, f = gs, for every D ∈ R+.

Consequently Proposition VIII.2 yields a connectivity bound that is even slightly stronger than needed, as it is

independent of i. It remains to ensure that the desired bound on B(Φi,η) holds. This is the case for ‖Asi,ji‖∞ and

‖ei‖∞ both bounded polynomially in i. In order to verify this, we first bound ‖ei‖∞ relative to ‖Asi,ji‖∞. As the

generators (gs)
S
s=1 are compactly supported by assumption, there exists E ∈ R+ such that, for every s ∈ {1, . . . , S},

the support of gs is contained in [−E,E]d. We thus get, for all s ∈ {1, . . . , S}, j ∈ Js, and e ∈ Zd, that

‖δe‖∞ ≥ sup
x∈Ω
‖As,jx‖∞ + E =⇒ gj,es (x) = 0, ∀x ∈ Ω =⇒ gj,es /∈ Dj .

Since Ω is bounded by assumption, there hence exists a constant c = c(Ω, (gs)
S
s=1, δ, d) such that, for all s ∈

{1, . . . , S}, j ∈ Js, and e ∈ Zd, we have

gj,es ∈ Dj =⇒ ‖e‖∞ ≤ c‖As,j‖∞.

It remains to show that ‖Asi,ji‖∞ is polynomially bounded in i. We start by claiming that, for every s ∈ {1, . . . , S},
there is a constant cs := cs(Ω, δ, d) > 0 such that

|det(As,j)| ≤ cs|Ds,j |, for all j ∈ Js. (57)

To verify this claim, first note that |Ds,j | ≥ 1, for all s ∈ {1, . . . , S}, j ∈ Js, owing to the nondegeneracy condition.

Thus, for every s ∈ {1, . . . , S}, j ∈ Js, there exist x0 ∈ Ω and e0 ∈ Zd such that gj,e0s (x0) 6= 0, which implies

gj,es (x0 +A−1
s,jδ(e− e0)) = |det(As,j)|

1
2 gs(As,jx0 − δe0) = gj,e0s (x0) 6= 0.
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We can therefore conclude that x0 +A−1
s,jδ(e− e0) ∈ Ω implies gj,es ∈ Ds,j . Consequently, we have

|Ds,j | ≥ |{e ∈ Zd : x0 +A−1
s,jδ(e− e0) ∈ Ω}| = |{e ∈ Zd : A−1

s,jδe ∈ Ω− x0}| = |Zd ∩ 1
δAs,j(Ω− x0)|.

As Ω was assumed to have nonempty interior, there exists a constant C = C(Ω) such that

|Zd ∩ 1
δAs,j(Ω− x0)| ≥ C vol

(
1
δAs,j(Ω− x0)

)
= C δ−d|det(As,j)| vol(Ω).

We have hence established the claim (57). Combining (51) and (57), we obtain, for all si ∈ {1, . . . , S}, j ∈ Js\{1},

c‖Asi,ji‖a∞ ≤
ji−1∑

k=1

|det(Asi,k)| ≤ csi
ji−1∑

k=1

|Dk,si | ≤ csi,

where the last inequality follows from the fact that ϕi ∈ Dji,si and hence its index i must be larger than the number

of elements contained in preceding sub-dictionaries. This ensures that

‖Asi,ji‖∞ ≤
(

1

c
max

s=1,...,S
cs

) 1
a

i
1
a + max

s=1,...,S
‖As,1‖∞, for all i ∈ N,

thereby completing the proof.

Remark VIII.4. Theorem VIII.3 is restricted, for ease of exposition, to bounded Ω and compactly supported

generator functions gs. The result can be extended to Ω = Rd and to generator functions gs of unbounded support

but sufficiently fast decay. This extension requires additional technical steps and an alternative definition of canonical

ordering. For conciseness we do not provide the details here, but instead refer to the proofs of Theorems IX.3 and

IX.5, which deal with the corresponding technical aspects in the context of approximation of Gabor dictionaries by

neural networks.

We can now put the results together to conclude a remarkable universality and optimality property of neural

networks: Consider an affine dictionary generated by functions gs that can be approximated well by neural networks.

If this dictionary provides Kolmogorov-Donoho-optimal approximation for a given function class, then so do neural

networks.

Theorem VIII.5. Let d, S ∈ N, Ω ⊆ Rd be bounded with nonempty interior, (gs)
S
s=1 ∈ L∞(Rd) compactly

supported, and D = (ϕi)i∈N ⊆ L2(Ω) a nondegenerate canonically ordered affine dictionary with generator

functions (gs)
S
s=1. Assume that there exists a polynomial π such that, for all s ∈ {1, . . . , S}, ε ∈ (0, 1/2), there

is a network Φs,ε ∈ Nd,1 satisfying ‖gs − Φs,ε‖L2(Rd) ≤ ε with M(Φs,ε) ≤ π(log(ε−1)) and B(Φs,ε) ≤ π(ε−1).

Then, we have

γ∗,eff
N (C) ≥ γ∗,eff(C,D)

for all function classes C ⊆ L2(Ω). In particular, if C is optimally representable by D (in the sense of Definition

V.4), then C is optimally representable by neural networks (in the sense of Definition VI.5).

Proof. The first statement follows from Theorem VII.2 and Theorem VIII.3, the second from Theorem VI.4.
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D. Spline wavelets

We next particularize the results developed above to show that neural networks Kolmogorov-Donoho optimally

represent all function classes C that are optimally representable by spline wavelet dictionaries. As spline wavelet

dictionaries have B-splines as generator functions, we start by showing how B-splines can be realized through

neural networks. For simplicity of exposition, we restrict ourselves to the univariate case throughout.

Definition VIII.6. Let N1 := χ[0,1] and for m ∈ N, define

Nm+1 := N1 ∗Nm,

where ∗ stands for convolution. We refer to Nm as the univariate cardinal B-spline of order m.

Recognizing that B-splines are piecewise polynomial, we can build on Proposition III.5 to get the following

statement on the approximation of B-splines by deep neural networks.

Lemma VIII.7. Let m ∈ N. There exists a constant C > 0 such that for all ε ∈ (0, 1/2), there is a neural network

Φε ∈ N1,1 satisfying

‖Φε −Nm‖L∞(R) ≤ ε,

with M(Φε) ≤ C log(ε−1) and B(Φε) ≤ 1.

Proof. The proof is based on the following representation [81, Eq. 19]

Nm(x) =
1

m!

m+1∑

k=0

(−1)k
(
m+ 1

k

)
ρ((x− k)m). (58)

While Nm is supported on [0,m], the networks Φε can have support outside [0,m] as well. We only need to ensure

that Φε is “close” to Nm on [0,m] and at the same time “small” outside the interval [0,m]. To accomplish this,

we first approximate Nm on the slightly larger domain [−1,m+ 1] by a linear combination of networks realizing

shifted monomials according to (58), and then multiply the resulting network by another one that takes on the value

1 on [0,m] and 0 outside of [−1,m+1]. Specifically, we proceed as follows. Proposition III.5 ensures the existence

of a constant C1 such that for all ε ∈ (0, 1/2), there is a network Ψm+2,ε ∈ N1,1 satisfying

‖Ψm+2,ε(x)− xm‖L∞([−(m+2),m+2]) ≤ ε
4(m+2) ,

with M(Ψm+2,ε) ≤ C1 log(ε−1) and B(Ψm+2,ε) ≤ 1. Note that we did not make the dependence of M(Ψm+2,ε)

on m explicit as we consider m to be fixed. Next, let Tk(x) := x−k and observe that ρ((x−k)m) can be realized

as a neural network according to ρ ◦Ψm+2,ε ◦ Tk, where Tk is taken pursuant to Corollary A.2. Next, we define,

for ε ∈ (0, 1/2), the network

Φ̃ε :=
1

m!

m+1∑

k=0

(−1)k
(
m+ 1

k

)
ρ ◦Ψm+2,ε ◦ Tk
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and note that
1

m!

(
m+ 1

k

)
=

m+ 1

k!(m− k + 1)!
≤ 2,

for k = 0, . . . ,m+ 1. As ρ is 1-Lipschitz, we have, for all ε ∈ (0, 1/2),

‖Φ̃ε −Nm‖L∞([−1,m+1]) ≤
m+1∑

k=0

1

m!

(
m+ 1

k

)
‖ρ ◦Ψm+2,ε ◦ Tk − ρ ◦ Tmk ‖L∞([−1,m+1])

≤ 2
m+1∑

k=0

‖Ψm+2,ε(x)− xm‖L∞([−(m+2),m+2]) ≤ ε
2 .

(59)

Let now Γ(x) := ρ(x+ 1)− ρ(x)− ρ(x−m) + ρ(x− (m+ 1)), note that 0 ≤ Γ(x) ≤ 1, and take Φmult
1+ε/2,ε/2 to

be the multiplication network from Lemma III.3. We define Φε := Φmult
1+ε/2,ε/2 ◦ (Φ̃ε,Γ) according to Lemma II.3

and Lemma A.7 and note that

‖Φε −Nm‖L∞(R) ≤ ‖Φmult
1+ε/2,ε/2 ◦ (Φ̃ε,Γ)− Φ̃ε · Γ‖L∞([−1,m+1]) + ‖Φ̃ε · Γ−Nm‖L∞([−1,m+1]) (60)

as both Nm and Γ vanish outside [−1,m+1] and Φmult
1+ε/2,ε/2 delivers zero whenever at least one of its inputs is zero.

Note that the first term on the right-hand-side of (60) is upper-bounded by ε
2 as a consequence of Nm(x) ≤ 1 and

hence Φ̃ε(x) ≤ 1 + ε
2 , for x ∈ [−1,m+ 1], owing to (59). For the second term, we split up the interval [−1,m+ 1]

and first note that, for x ∈ [0,m], Γ(x) = 1, which implies ‖Φ̃ε ·Γ−Nm‖L∞([0,m]) = ‖Φ̃ε−Nm‖L∞([0,m]) ≤ ε/2,

again owing to (59). For x ∈ [−1,m+ 1] \ [0,m], we have Nm(x) = 0 and Γ(x) ≤ 1, which yields

|Φ̃ε(x) · Γ(x)−Nm(x)| ≤ |Φ̃ε(x)| ≤ |Φ̃ε(x)−Nm(x)|+ |Nm(x)| = |Φ̃ε(x)−Nm(x)| ≤ ε/2,

again by (59). In summary, (59) hence ensures that the second term in (60) is also upper-bounded by ε
2 and therefore

‖Φε − Nm‖L∞(R) ≤ ε. Combining Lemma II.3, Proposition III.3, Corollary A.2, Lemma A.4, and Lemma A.7

establishes the desired bounds on M(ΦD,ε) and B(ΦD,ε).

Remark VIII.8. As both Nm and the approximating networks Φε we constructed in the proof of Lemma VIII.7 are

supported in [−1,m+1], we have ‖Φε−Nm‖L2(R) ≤ (m+2)1/2‖Φε−Nm‖L∞(R), which shows that Lemma VIII.7

continues to hold when the approximation error is measured in L2(R)-norm, albeit with a different constant C.

We are now ready to introduce spline wavelet dictionaries. For n, j ∈ Z, set

Vn := closL2

(
span {Nm(2nx− k) : k ∈ Z}

)
,

where closL2 denotes closure with respect to L2-norm. Spline spaces Vn, n ∈ Z, constitute a multiresolution analysis

[82] of L2(R) according to

{0} ⊆ . . . V−1 ⊆ V0 ⊆ V1 ⊆ · · · ⊆ L2(R).

Moreover, with the orthogonal complements (. . . ,W−1,W0,W1, . . . ) such that Vn+1 = Vn⊕Wn, where ⊕ denotes

the orthogonal sum, we have

L2(R) = V0 ⊕
∞⊕

k=0

Wk.
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Theorem VIII.9 ([83, Theorem 1]). Let m ∈ N. The m-th order spline

ψm(x) =
1

2m−1

2m−2∑

j=0

(−1)jN2m(j + 1)
dm

dxm
N2m(2x− j), (61)

with support [0, 2m−1], is a basic wavelet that generates W0 and thereby all the spaces Wn, n ∈ Z. Consequently,

the set

Wm := {ψk,n(x) = 2n/2ψm(2nx− k) : n ∈ N0, k ∈ Z} ∪ {φk(x) = Nm(x− k) : k ∈ Z} (62)

is a countable complete orthonormal wavelet basis in L2(R).

Taking Ω ⊆ R, S = 2, J1 = N, J2 = {1}, A1,j = 2j−1 for j ∈ N, and A2,1 = 1, we get that

D :=
{
gj,es (x) :=

(
|Aj |

1
2 gs(Aj · − δe)

)∣∣∣
Ω

: s ∈ {1, 2}, e ∈ Z, j ∈ Js, and gj,es 6= 0
}

= Wm (63)

is a nondegenerate canonically ordered affine dictionary with generators g1 = ψm and g2 = Nm. The canonical

ordering condition (51) is satisfied with a = 1 and c = 1/2. Nondegeneracy follows upon noting that supp(ψk,n) =

[2−nk, 2−n(2m − 1 + k)] and supp(Nm( · − k)) = [k,m + k], which implies that all sub-dictionaries contain at

least one element as required.

We have therefore established the following.

Theorem VIII.10. Let Ω ⊆ R be bounded and of nonempty interior and D = (ϕi)i∈N ⊆ L2(Ω) a spline wavelet

dictionary according to (63) ordered per (50). Then, all function classes C ⊆ L2(Ω) that are optimally representable

by D (in the sense of Definition V.4) are optimally representable by neural networks (in the sense of Definition

VI.5).

Proof. As the canonical ordering and the nondegeneracy conditions were already verified, it remains to establish

that the generators ψm and Nm satisfy the antecedent of Theorem VIII.3. To this end, we first devise an alternative

representation of (61). Specifically, using the identity [83, Eq. 2.2]

dm

dxm
N2m(x) =

m∑

j=0

(−1)j
(
m

j

)
Nm(x− j),

we get

ψm(x) =
3m−1∑

n=1

qnNm(2x− n+ 1), (64)

with

qn =
(−1)n+1

2m−1

m∑

j=0

(
m

j

)
N2m(n− j).

As (64) shows that ψm is a linear combination of shifts and dilations of Nm, combining Lemma VIII.7 and

Remark VIII.8 with Lemma II.6 and Proposition VIII.2 ensures that (55) is satisfied. Application of Theorem VIII.5

then establishes the claim.
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IX. WEYL-HEISENBERG DICTIONARIES

In this section, we consider Weyl-Heisenberg a.k.a. Gabor dictionaries [17], which consist of time-frequency

translates of a given generator function. Gabor dictionaries play a fundamental role in time-frequency analysis [17]

and in the study of partial differential equations [84]. We start with the formal definition of Gabor dictionaries.

Definition IX.1 (Gabor dictionaries). Let d ∈ N, f ∈ L2(Rd), and x, ξ ∈ Rd. We define the translation operator

Tx : L2(Rd)→ L2(Rd) as

Txf(t) := f(t− x)

and the modulation operator Mξ : L2(Rd)→ L2(Rd,C) as

Mξf(t) := e2πi〈ξ,t〉f(t).

Let Ω ⊆ Rd, α, β > 0, and g ∈ L2(Rd). The Gabor dictionary G(g, α, β,Ω) ⊆ L2(Ω) is defined as

G(g, α, β,Ω) :=
{
MξTxg

∣∣
Ω

: (x, ξ) ∈ αZd × βZd
}
.

In order to describe representability in neural networks in the sense of Definition VII.1, we need to order the

elements in G(g, α, β,Ω). To this end, let G0(g, α, β,Ω) := {g
∣∣
Ω
} and define Gn(g, α, β,Ω), n ∈ N, recursively

according to

Gn(g, α, β,Ω) := {MξTxg
∣∣
Ω

: (x, ξ) ∈ αZd × βZd, ‖x‖∞ ≤ nα, ‖ξ‖∞ ≤ nβ}\
n−1⋃

k=0

Gk(g, α, β,Ω).

We then organize G(g, α, β,Ω) as

G(g, α, β,Ω) = (G0(g, α, β,Ω), G1(g, α, β,Ω), . . . ), (65)

where the ordering within the sets Gn(g, α, β,Ω) is arbitrary. We hasten to add that the specifics of the overall

ordering in (65) are irrelevant as long as G(g, α, β,Ω) = (ϕi)i∈N with ϕi =Mξ(i)Tx(i)g
∣∣
Ω

is such that ‖x(i)‖∞
and ‖ξ(i)‖∞ do not grow faster than polynomially in i; this will become apparent in the proof of Theorem IX.3.

We note that this ordering is also inspired by that employed in the tail compactness considerations for modulation

spaces and Wilson bases as detailed in Appendix C.

As Gabor dictionaries are built from time-shifted and modulated versions of the generator function g, and invari-

ance to time-shifts was already established in Proposition VIII.2, we proceed to showing that the approximation-

theoretic properties of the generator function are inherited by its modulated versions. This result can be interpreted

as an invariance property to frequency shifts akin to that established in Proposition VIII.2 for affine transformations

in the context of affine dictionaries. In summary, neural networks exhibit a remarkable invariance property both to

the affine group operations of scaling and translation and to the Weyl-Heisenberg group operations of modulation

and translation.
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Lemma IX.2. Let d ∈ N, f ∈ L2(Rd) ∩ L∞(Rd), and for every D ∈ R+, ε ∈ (0, 1/2), let ΦD,ε ∈ Nd,1 satisfy

‖f − ΦD,ε‖L∞([−D,D]d) ≤ ε.

Then, there exists a constant C > 0 (which does not depend on f ) such that for all D ∈ R+, ε ∈ (0, 1/2), ξ ∈ Rd,

there are networks ΦRe
D,ξ,ε,Φ

Im
D,ξ,ε ∈ Nd,1 satisfying

‖Re(Mξf)− ΦRe
D,ξ,ε‖L∞([−D,D]d) + ‖Im(Mξf)− ΦIm

D,ξ,ε‖L∞([−D,D]d) ≤ 3ε

with

L(ΦRe
D,ξ,ε),L(ΦIm

D,ξ,ε) ≤ C((log(ε−1))2 + log(ddD‖ξ‖∞e) + (log(dSfe))2) + L(ΦD,ε),

M(ΦRe
D,ξ,ε),M(ΦIm

D,ξ,ε) ≤ C((log(ε−1))2 + log(ddD‖ξ‖∞e) + (log(dSfe))2 + d) + 4M(ΦD,ε) + 4L(ΦD,ε),

and B(ΦRe
D,ξ,ε) ≤ 1, where Sf := max{1, ‖f‖L∞(Rd)}.

Proof. All statements in the proof involving ε pertain to ε ∈ (0, 1/2) without explicitly stating this every time. We

start by observing that

Re(Mξf)(t) = cos(2π〈ξ, t〉)f(t)

Im(Mξf)(t) = sin(2π〈ξ, t〉)f(t)

due to f ∈ R. Note that for given ξ ∈ Rd, the map t 7→ 〈ξ, t〉 = ξT t = t1ξ1 + · · · + tdξd is simply a linear

transformation. Hence, combining Lemma II.3, Theorem III.8, and Corollary A.2 establishes the existence of a

constant C1 such that for all D ∈ R+, ξ ∈ Rd, ε ∈ (0, 1/2), there is a network ΨD,ξ,ε ∈ Nd,1 satisfying

sup
t∈[−D,D]d

| cos(2π〈ξ, t〉)−ΨD,ξ,ε(t)| ≤ ε
6Sf

(66)

with

L(ΨD,ξ,ε) ≤ C1((log(ε−1))2 + (log(Sf ))2 + log(ddD‖ξ‖∞e)),

M(ΨD,ξ,ε) ≤ C1((log(ε−1))2 + (log(Sf ))2 + log(ddD‖ξ‖∞e) + d),
(67)

and B(ΨD,ξ,ε) ≤ 1. Moreover, Proposition III.3 guarantees the existence of a constant C2 > 0 such that for all

ε ∈ (0, 1/2), there is a network µε ∈ N2,1 satisfying

sup
x,y∈[−Sf−1/2,Sf+1/2]

|µε(x, y)− xy| ≤ ε
6 (68)

with

L(µε),M(µε) ≤ C2(log(ε−1) + log(dSfe)) (69)

and B(µε) ≤ 1. Using Lemmas II.4 and II.5, we get that the network ΓD,ξ,ε := (ΨD,ξ,ε,ΦD,ε) ∈ Nd,2 satisfies

L(ΓD,ξ,ε) ≤ max{L(ΨD,ξ,ε),L(ΦD,ε)},

M(ΓD,ξ,ε) ≤ 2M(ΨD,ξ,ε) + 2M(ΦD,ε) + 2L(ΨD,ξ,ε) + 2L(ΦD,ε),
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and B(ΓD,ξ,ε) ≤ 1. Finally, applying Lemma II.3 to concatenate the networks ΓD,ξ,ε and µε, we obtain the network

ΦRe
D,ξ,ε := µε ◦ ΓD,ξ,ε = µε ◦ (ΨD,ξ,ε,ΦD,ε) ∈ Nd,1

satisfying

L(ΦRe
D,ξ,ε) ≤ max{L(ΨD,ξ,ε),L(ΦD,ε)}+ L(µε), (70)

M(ΦRe
D,ξ,ε) ≤ 4M(ΨD,ξ,ε) + 4M(ΦD,ε) + 4L(ΨD,ξ,ε) + 4L(ΦD,ε) + 2M(µε), (71)

and B(ΦRe
D,ξ,ε) ≤ 1. Next, observe that (66) and (68) imply that

‖ΦRe
D,ξ,ε − Re(Mξf)‖L∞([−D,D]d) = ‖µε(ΨD,ξ,ε( · ),ΦD,ε( · ))− cos(2π〈ξ, · 〉)f( · )‖L∞([−D,D]d)

≤ ‖µε(ΨD,ξ,ε( · ),ΦD,ε( · ))−ΨD,ξ,ε( · )ΦD,ε( · )‖L∞([−D,D]d)

+ ‖ΨD,ξ,ε( · )ΦD,ε( · )− cos(2π〈ξ, · 〉)f( · )‖L∞([−D,D]d)

≤ ‖µε(ΨD,ξ,ε( · ),ΦD,ε( · ))−ΨD,ξ,ε( · )ΦD,ε( · )‖L∞([−D,D]d)

+ ‖ΨD,ξ,ε( · )(ΦD,ε( · )− f( · ))‖L∞([−D,D]d)

+ ‖ΨD,ξ,ε( · )f( · )− cos(2π〈ξ, · 〉)f( · )‖L∞([−D,D]d)

≤ ε
6 + (1 + ε

6Sf
)ε+ ε

6 ≤ 3
2ε.

Combining (67), (69), (71), and (70) we can further see that there exists a constant C > 0 such that

L(ΦRe
D,ξ,ε) ≤ C((log(ε−1))2 + log(ddD‖ξ‖∞e) + (log(dSfe))2) + L(ΦD,ε),

M(ΦRe
D,ξ,ε) ≤ C((log(ε−1))2 + log(ddD‖ξ‖∞e) + (log(dSfe))2 + d) + 4M(ΦD,ε) + 4L(ΦD,ε),

and B(ΦRe
D,ξ,ε)) ≤ 1. The results for ΦIm

D,ξ,ε follow analogously, simply by using sin(x) = cos(x− π/2).

Note that Gabor dictionaries necessarily contain complex-valued functions. The theory developed so far was,

however, phrased for neural networks with real-valued outputs. As is evident from the proof of Lemma IX.2, this

is not problematic when the generator function g is real-valued. For complex-valued generator functions we would

need a version of Proposition III.3 that applies to the multiplication of complex numbers. Due to (a+ib)(a′+ib′) =

(aa′−bb′)+ i(ab′+a′b) such a network can be constructed by realizing the real and imaginary parts of the product

as a sum of real-valued multiplication networks and then proceeding as in the proof above. We omit the details as

they are straightforward and would not lead to new conceptual insights. Furthermore, an extension—to the complex-

valued case—of the concept of effective representability by neural networks according to Definition VII.1 would be

needed. This can be effected by considering the set of neural networks with 1-dimensional complex-valued output

as neural networks with 2-dimensional real-valued output, i.e., by setting

NC
d,1 := Nd,2,
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with the convention that the first component represents the real part and the second the imaginary part.

We proceed to establish conditions for effective representability of Gabor dictionaries by neural networks.

Theorem IX.3. Let d ∈ N, Ω ⊆ Rd, α, β > 0, g ∈ L2(Rd) ∩ L∞(Rd), and let G(g, α, β,Ω) be the corresponding

Gabor dictionary with ordering as defined in (65). Assume that Ω is bounded or that Ω = Rd and g is compactly

supported. Further, suppose that there exists a polynomial π such that for every x ∈ Rd, ε ∈ (0, 1/2), there is a

network Φx,ε ∈ Nd,1 satisfying

‖g − Φx,ε‖L∞(x+Ω) ≤ ε, (72)

with M(Φx,ε) ≤ π(log(ε−1), log(‖x‖∞)), B(Φx,ε) ≤ π(ε−1, ‖x‖∞). Then, G(g, α, β,Ω) is effectively repre-

sentable by neural networks.

Proof. We start by noting that owing to (65), we have G(g, α, β,Ω) = (ϕi)i∈N with ϕi = Mξ(i)Tx(i)g ∈
Gn(i)(g, α, β,Ω), where

‖ξ(i)‖∞ ≤ n(i)β ≤ iβ and ‖x(i)‖∞ ≤ n(i)α ≤ iα. (73)

Next, we take the affine transformation Wx(y) := y− x to be a depth-1 network and observe that, due to (72) and

Lemma II.3, we have, for all x ∈ Rd, ε ∈ (0, 1/2),

‖Txg − Φ−x,ε ◦Wx‖L∞(Ω) = ‖g − Φ−x,ε‖L∞(−x+Ω) ≤ ε, (74)

with

M(Φ−x,ε ◦Wx) ≤ 2(π(log(ε−1), log(‖x‖∞)) + 2d)

B(M(Φ−x,ε ◦Wx)) ≤ max{B(Φ−x,ε), ‖x‖∞} ≤ π(ε−1, ‖x‖∞) + ‖x‖∞.

We first consider the case where Ω is bounded and let E ∈ R+ be such that Ω ⊆ [−E,E]d. Combining (74) with

Proposition VIII.2 and Lemma IX.2, we can infer the existence of a multivariate polynomial π1 such that for all

i ∈ N, ε ∈ (0, 1/2), there is a network Φi,ε = (ΦRe
i,ε,Φ

Im
i,ε) ∈ NC

d,1 satisfying

‖Re(Mξ(i)Tx(i)g)− ΦRe
i,ε‖L∞(Ω) + ‖Im(Mξ(i)Tx(i)g)− ΦIm

i,ε‖L∞(Ω) ≤ (2E)−
d
2 ε, (75)

with

M(ΦRe
i,ε),M(ΦIm

i,ε) ≤ π1(log(ε−1), log(‖ξ(i)‖∞), log(‖x(i)‖∞)),

B(ΦRe
i,ε),B(ΦIm

i,ε) ≤ π1(ε−1, ‖ξ(i)‖∞, ‖x(i)‖∞).
(76)

Note that here we did not make the dependence of the connectivity and the weight upper bounds on d and E

explicit as these quantities are irrelevant for the purposes of what we want to show, as long as they are finite, of
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course, which is the case by assumption. Likewise, we did not explicitly indicate the dependence of π1 on g. As

|z| ≤ |Re(z)|+ |Im(z)|, it follows from (75) that for all i ∈ N, ε ∈ (0, 1/2),

‖ϕi − Φi,ε‖L2(Ω,C) ≤ (2E)
d
2 ‖ϕi − Φi,ε‖L∞(Ω,C)

≤ (2E)
d
2

(
‖Re(ϕi)− ΦRe

i,ε‖L∞(Ω) + ‖Im(ϕi)− ΦIm
i,ε‖L∞(Ω)

)
≤ ε.

Moreover, (73) and (76) imply the existence of a polynomial π2 such that

M(ΦRe
i,ε),M(ΦIm

i,ε) ≤ π2(log(ε−1), log(i)), B(ΦRe
i,ε),B(ΦIm

i,ε) ≤ π2(ε−1, i),

for all i ∈ N, ε ∈ (0, 1/2). We can therefore conclude that G(g, α, β,Ω) is effectively representable by neural

networks.

We proceed to proving the statement for the case Ω = Rd and g compactly supported, i.e., there exists E ∈ R+

such that supp(g) ⊆ [−E,E]d. This implies

supp(MξTxg) = supp(Txg) ⊆ x+ [−E,E]d ⊆ [−(‖x‖∞ + E), ‖x‖∞ + E]d.

Again, combining (74) with Proposition VIII.2 and Lemma IX.2 establishes the existence of a polynomial π3 such

that for all x, ξ ∈ Rd, ε ∈ (0, 1/2), there are networks ΨRe
x,ξ,ε,Ψ

Im
x,ξ,ε ∈ Nd,1 satisfying

‖Re(MξTxg)−ΨRe
x,ξ,ε‖L∞(Sx) + ‖Im(MξTxg)−ΨIm

x,ξ,ε‖L∞(Sx) ≤ ε
2sx

, (77)

with

M(ΨRe
x,ξ,ε),M(ΨIm

x,ξ,ε) ≤ π3(log(ε−1), log(‖x‖∞), log(‖ξ‖∞)),

B(ΨRe
x,ξ,ε),B(ΨIm

x,ξ,ε) ≤ π3(ε−1, ‖x‖∞, ‖ξ‖∞),

where we set Sx := [−(‖x‖∞ + E + 1), ‖x‖∞ + E + 1]d and sx := |Sx|1/2 to simplify notation. As we want to

establish effective representability for Ω = Rd, the estimate in (77) is insufficient. In particular, we have no control

over the behavior of the networks ΨRe
x,ξ,ε,Ψ

Im
x,ξ,ε outside the set Sx. We can, however, construct networks which

exhibit the same scaling behavior in terms of M and B, are supported in Sx, and realize the same output for all

inputs in Sx. To this end let, for y ∈ R+, the network αy ∈ N1,1 be given by

αy(t) := ρ(t− (−y − 1))− ρ(t− (−y))− ρ(t− y) + ρ(t− (y + 1)), t ∈ R.

Note that αy(t) = 1 for t ∈ [−y, y], αy(t) = 0 for t /∈ [−y − 1, y + 1], and αy(t) ∈ (0, 1) else. Next, consider, for

x ∈ Rd, the network given by

χx(t) := ρ

([
d∑

i=1

α‖x‖∞+E(ti)

]
− (d− 1)

)
, t = (t1, t2, . . . , td) ∈ Rd,
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and note that

χx(t) = 1, ∀t ∈ [−(‖x‖∞ + E), ‖x‖∞ + E]d

χx(t) = 0, ∀t /∈ [−(‖x‖∞ + E + 1), ‖x‖∞ + E + 1]d

0 ≤ χx(t) ≤ 1, ∀t ∈ Rd.

As d and E are considered fixed here, there exists a constant C1 such that, for all x ∈ Rd, we have M(χx) ≤ C1

and B(χx) ≤ C1 max{1, ‖x‖∞}. Now, let B := max{1, ‖g‖L∞(R)}. Next, by Proposition III.3 there exists a

constant C2 such that, for all x ∈ Rd, ε ∈ (0, 1/2), there is a network µx,ε ∈ N1,1 satisfying

sup
y,z∈[−2B,2B]

|µx,ε(y, z)− yz| ≤ ε
4sx

, (78)

and, for all y ∈ R,

µx,ε(0, y) = µx,ε(y, 0) = 0, (79)

with M(µx,ε) ≤ C2(log(ε−1) + log(sx)) and B(µx,ε) ≤ 1. Note that in the upper bound on M(µx,ε), we did not

make the dependence on B explicit as we consider g fixed for the purposes of the proof. Next, as E is fixed, there

exists a constant C3 such that M(µx,ε) ≤ C3(log(ε−1) + log(‖x‖∞ + 1)), for all x ∈ Rd, ε ∈ (0, 1/2).

We now take

ΓRe
x,ξ,ε := µx,ε ◦ (ΨRe

x,ξ,ε, χx) and ΓIm
x,ξ,ε := µx,ε ◦ (ΨIm

x,ξ,ε, χx)

according to Lemmas II.5 and II.3, which ensures the existence of a polynomial π4 such that, for all x, ξ ∈ Rd,

ε ∈ (0, 1/2),

M(ΓRe
x,ξ,ε),M(ΓIm

x,ξ,ε) ≤ π4(log(ε−1), log(‖x‖∞), log(‖ξ‖∞)),

B(ΓRe
x,ξ,ε),B(ΓIm

x,ξ,ε) ≤ π4(ε−1, ‖x‖∞, ‖ξ‖∞).
(80)

Furthermore,

‖ΓRe
x,ξ,ε − Re(MξTxg)‖L∞(Sx) ≤ ‖µx,ε ◦ (ΨRe

x,ξ,ε, χx)−ΨRe
x,ξ,ε · χx‖L∞(Sx)

+ ‖ΨRe
x,ξ,ε · χx − Re(MξTxg)‖L∞(Sx),

(81)

where the first term is upper-bounded by ε
4sx

due to (78). The second term on the right-hand side of (81) is upper-

bounded as follows. First, note that for t ∈ Sx \ [−(‖x‖∞ + E), ‖x‖∞ + E]d, we have Re(MξTxg)(t) = 0 and

|χx(t)| ≤ 1, which implies

|ΨRe
x,ξ,ε(t) · χx(t)− Re(MξTxg)(t)| ≤ |ΨRe

x,ξ,ε(t)| ≤ |ΨRe
x,ξ,ε(t)− Re(MξTxg)(t)|+ |Re(MξTxg)(t)|

= |ΨRe
x,ξ,ε(t)− Re(MξTxg)(t)|.

As |χx(t)| = 1 for t ∈ [−(‖x‖∞ + E), ‖x‖∞ + E]d, together with (81), this yields

‖ΓRe
x,ξ,ε − Re(MξTxg)‖L∞(Sx) ≤ ε

4sx
+ ‖ΨRe

x,ξ,ε − Re(MξTxg)‖L∞(Sx).
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The analogous estimate for ‖ΓIm
x,ξ,ε − Im(MξTxg)‖L∞(Sx) is obtained in exactly the same manner. Together with

(77), we can finally infer that, for all x, ξ ∈ Rd, ε ∈ (0, 1/2),

‖Re(MξTxg)− ΓRe
x,ξ,ε‖L∞(Sx) + ‖Im(MξTxg)− ΓIm

x,ξ,ε‖L∞(Sx) ≤ ε
sx
.

As MξTxg, ΓRe
x,ξ,ε, and ΓIm

x,ξ,ε are supported in Sx for all x, ξ ∈ Rd, ε ∈ (0, 1/2), using (79), we get

‖Re(MξTxg)− ΓRe
x,ξ,ε‖L2(Rd) + ‖Im(MξTxg)− ΓIm

x,ξ,ε‖L2(Rd)

= ‖Re(MξTxg)− ΓRe
x,ξ,ε‖L2(Sx) + ‖Im(MξTxg)− ΓIm

x,ξ,ε‖L2(Sx)

≤ sx‖Re(MξTxg)− ΓRe
x,ξ,ε‖L∞(Sx) + sx‖Im(MξTxg)− ΓIm

x,ξ,ε‖L∞(Sx) ≤ ε.

(82)

Consider now, for i ∈ N, ε ∈ (0, 1/2), the complex-valued network Γi,ε ∈ NC
d,1 given by

Γi,ε := (ΓRe
x(i),ξ(i),ε,Γ

Im
x(i),ξ(i),ε)

and note that, for f ∈ L2(Ω,C),

‖f‖L2(Ω,C) =

(∫

Ω

|f(t)|2dt
) 1

2

=

(∫

Ω

|Re(f(t))|2 + |Im(f(t))|2dt
) 1

2

=
(
‖Re(f)‖2L2(Ω) + ‖Im(f)‖2L2(Ω)

) 1
2

≤ ‖Re(f)‖L2(Ω) + ‖Im(f)‖L2(Ω).

Hence, (82) implies that, for all i ∈ N, ε ∈ (0, 1/2),

‖ϕi − Γi,ε‖L2(Rd,C) = ‖Mξ(i)Tx(i)g − (ΓRe
x(i),ξ(i),ε,Γ

Im
x(i),ξ(i),ε)‖L2(Rd,C) ≤ ε.

Finally, using (73) in (80), it follows that there exists a polynomial π5 such that for all i ∈ N, ε ∈ (0, 1/2), we

have M(ΓRe
x(i),ξ(i),ε),M(ΓIm

x(i),ξ(i),ε) ≤ π5(log(ε−1), log(i)) and B(ΓRe
x(i),ξ(i),ε),B(ΓIm

x(i),ξ(i),ε) ≤ π5(ε−1, i), which

finalizes the proof.

Next, we establish the central result of this section. To this end, we first recall that according to Theorem

VIII.5 neural networks provide optimal approximations for all function classes that are optimally approximated

by affine dictionaries (generated by functions f that can be approximated well by neural networks). While this

universality property is significant as it applies to all affine dictionaries, it is perhaps not completely surprising

as affine dictionaries are generated by affine transformations and neural networks consist of concatenations of

affine transformations and nonlinearities. Gabor dictionaries, on the other hand, exhibit a fundamentally different

mathematical structure. The next result shows that neural networks also provide optimal approximations for all

function classes that are optimally approximated by Gabor dictionaries (again, with generator functions that can be

approximated well by neural networks).
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Theorem IX.4. Let d ∈ N, Ω ⊆ Rd, α, β > 0, g ∈ L2(Rd) ∩ L∞(Rd), and let G(g, α, β,Ω) be the corresponding

Gabor dictionary with ordering as defined in (65). Assume that Ω is bounded or that Ω = Rd and g is compactly

supported. Further, suppose that there exists a polynomial π such that for every x ∈ Rd, ε ∈ (0, 1/2), there is a

network Φx,ε ∈ Nd,1 satisfying

‖g − Φx,ε‖L∞(x+Ω) ≤ ε,

withM(Φx,ε) ≤ π(log(ε−1), log(‖x‖∞)), B(Φx,ε) ≤ π(ε−1, ‖x‖∞). Then, for all function classes C ⊆ L2(Ω), we

have

γ∗,eff
N (C) ≥ γ∗,eff(C,G(g, α, β,Ω)).

In particular, if C is optimally representable by G(g, α, β,Ω) (in the sense of Definition V.4), then C is optimally

representable by neural networks (in the sense of Definition VI.5).

Proof. The first statement follows from Theorem VII.2 and Theorem IX.3, the second is by Theorem VI.4.

We complete the program in this section by showing that the Gaussian function satisfies the conditions on the

generator g in Theorem IX.3 for bounded Ω. Gaussian functions are widely used generator functions for Gabor

dictionaries owing to their excellent time-frequency localization and their frame-theoretic optimality properties [17].

We hasten to add that the result below can be extended to any generator function g of sufficiently fast decay and

sufficient smoothness.

Lemma IX.5. For d ∈ N, let gd ∈ L2(Rd) be given by

gd(x) := e−‖x‖
2
2 .

There exists a constant C > 0 such that, for all d ∈ N and ε ∈ (0, 1/2), there is a network Φd,ε ∈ Nd,1 satisfying

‖Φd,ε − g‖L∞(Rd) ≤ ε,

with M(Φd,ε) ≤ Cd(log(ε−1))2((log(ε−1))2 + log(d)), B(Φd,ε) ≤ 1.

Proof. Observe that gd can be written as the composition h ◦ fd of the functions fd : Rd → R+ and h : R+ → R

given by

fd(x) := ‖x‖22 =
d∑

i=1

x2
i and h(y) := e−y.

By Proposition III.3 and Lemma II.6, there exists a constant C1 > 0 such that, for every d ∈ N, D ∈ [1,∞),

ε ∈ (0, 1/2), there is a network Ψd,D,ε ∈ Nd,1 satisfying

sup
x∈[−D,D]d

|Ψd,D,ε(x)− ‖x‖22| ≤ ε
2 , (83)

M(Ψd,D,ε) ≤ C1d(log(ε−1) + log(dDe)), B(Ψd,D,ε) ≤ 1. (84)
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Moreover, as | dndyn e−y| = |e−y| ≤ 1 for all n ∈ N, y ≥ 0, Lemma A.6 implies the existence of a constant C2 > 0

such that for every d ∈ N, D ∈ [1,∞), ε ∈ (0, 1/2), there is a network Γd,D,ε ∈ N1,1 satisfying

sup
y∈[0,dD2]

|Γd,D,ε(y)− e−y| ≤ ε
2 , (85)

M(Γd,D,ε) ≤ C2dD
2((log(ε−1))2 + log(d) + log(dDe)), B(ΓD,ε) ≤ 1. (86)

Now, let Dε := log(ε−1) and take Φ̃d,ε := Γd,Dε,ε ◦ Ψd,Dε,ε according to Lemma II.3. Consequently, it follows

from (84) and (86) that there exists a constant C2 > 0 such that for all d ∈ N, ε ∈ (0, 1/2), we have M(Φ̃d,ε) ≤
C2d(log(ε−1))2((log(ε−1))2 + log(d)) and B(Φ̃d,ε) ≤ 1. Moreover, as |e−y| ≤ 1 for all y ≥ 0, combining (83)

and (85) yields for all ε ∈ (0, 1/2), x ∈ [−Dε, Dε]
d,

|g(x)− Φ̃d,ε(x)| = |e−‖x‖22 − Γd,Dε,ε(Ψd,Dε,ε(x))|

≤ |e−‖x‖22 − e−Ψd,Dε,ε(x)|+ |e−Ψd,Dε,ε(x) − Γd,Dε,ε(Ψd,Dε,ε(x))|

≤ ε
2 + ε

2 = ε.

We can now use the same approach as in the proof of Theorem IX.3 to construct networks Φd,ε supported on the inter-

val [−Dε, Dε]
d over which they approximate g to within error ε, and obeyM(Φε) ≤ Cd(log(ε−1))2((log(ε−1))2 +

log(d)), B(Φd,ε) ≤ 1 for some absolute constant C. Together with |g(x)| ≤ ε, for all x ∈ Rd\[−Dε, Dε]
d, this

completes the proof.

Remark IX.6. Note that Lemma IX.5 establishes an approximation result that is even stronger than what is required

by Theorem IX.3. Specifically, we achieve ε-approximation over all of Rd with a network that does not depend on

the shift parameter x, while exhibiting the desired growth rates on M and B, which consequently do not depend

on the shift parameter as well. The idea underlying this construction can be used to strengthen Theorem IX.3 to

apply to Ω = Rd and generator functions of unbounded support, but sufficiently rapid decay.

We conclude this section with a remark on the neural network approximation of the real-valued counterpart of

Gabor dictionaries known as Wilson dictionaries [74], [17] and consisting of cosine-modulated and time-shifted

versions of a given generator function, see also Appendix C. The techniques developed in this section, mutatis

mutandis, show that neural networks provide Kolmogorov-Donoho optimal approximation for all function classes

that are optimally approximated by Wilson dictionaries (generated by functions that can be approximated well by

neural networks). Specifically, we point out that the proofs of Lemma IX.2 and Theorem IX.3 explicitly construct

neural network approximations of time-shifted and cosine- and sine-modulated versions of the generator g. As

identified in Table 1, Wilson bases provide optimal nonlinear approximation of (unit) balls in modulation spaces

[85], [74]. Finally, we note that similarly the techniques developed in the proofs of Lemma IX.2 and Theorem IX.3

can be used to establish optimal representability of Fourier bases.
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X. IMPROVING POLYNOMIAL APPROXIMATION RATES TO EXPONENTIAL RATES

Having established that for all function classes listed in Table 1, Kolmogorov-Donoho-optimal approximation

through neural networks is possible, this section proceeds to show that neural networks, in addition to their striking

Kolmogorov-Donoho universality property, can also do something that has no classical equivalent.

Specifically, as mentioned in the introduction, for the class of oscillatory textures as considered below and for the

Weierstrass function, there are no known methods that achieve exponential accuracy, i.e., an approximation error

that decays exponentially in the number of parameters employed in the approximant. We establish below that deep

networks fill this gap.

Let us start by defining one-dimensional “oscillatory textures” according to [18]. To this end, we recall the

following definition from Lemma A.6,

S[a,b] =
{
f ∈ C∞([a, b],R) : ‖f (n)(x)‖L∞([a,b]) ≤ n!, for all n ∈ N0

}
.

Definition X.1. Let the sets FD,a,D, a ∈ R+, be given by

FD,a =
{

cos(ag)h : g, h ∈ S[−D,D]

}
.

The efficient approximation of functions in FD,a with a large represents a notoriously difficult problem due to

the combination of the rapidly oscillating cosine term and the warping function g. The best approximation results

available in the literature [18] are based on wave-atom dictionaries11 and yield low-order polynomial approximation

rates. In what follows we show that finite-width deep networks drastically improve these results to exponential

approximation rates.

We start with our statement on the neural network approximation of oscillatory textures.

Proposition X.2. There exists a constant C > 0 such that for all D, a ∈ R+, f ∈ FD,a, and ε ∈ (0, 1/2), there is

a network Γf,ε ∈ N1,1 satisfying

‖f − Γf,ε‖L∞([−D,D]) ≤ ε,

with L(Γf,ε) ≤ CdDe((log(ε−1) + log(dae))2 + log(dDe) + log(dD−1e)), W(Γf,ε) ≤ 32, B(Γf,ε) ≤ 1.

Proof. For all D, a ∈ R+, f ∈ FD,a, let gf , hf ∈ S[−D,D] be functions such that f = cos(agf )hf . Note that

Lemma A.6 guarantees the existence of a constant C1 > 0 such that for all D, a ∈ R+, ε ∈ (0, 1/2), there are

networks Ψgf ,ε,Ψhf ,ε ∈ N1,1 satisfying

‖Ψgf ,ε − gf‖L∞([−D,D]) ≤ ε
12dae , ‖Ψhf ,ε − hf‖L∞([−D,D]) ≤ ε

12dae (87)

11To be precise, the results of [18] are concerned with the two-dimensional case, whereas here we focus on the one-dimensional case. Note,

however, that all our results are readily extended to the multi-dimensional case.
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with

L(Ψgf ,ε),L(Ψhf ,ε) ≤ C1dDe(log(( ε
12dae )

−1)2 + log(dDe) + log(dD−1e)),

W(Ψgf ,ε),W(Ψhf ,ε) ≤ 16, and B(Ψgf ,ε),B(Ψhf ,ε) ≤ 1. Furthermore, Theorem III.8 ensures the existence of a

constant C2 > 0 such that for all D, a ∈ R+, ε ∈ (0, 1/2), there is a neural network Φa,D,ε ∈ N1,1 satisfying

‖Φa,D,ε − cos(a · )‖L∞([−3/2,3/2]) ≤ ε
3 , (88)

with L(Φa,D,ε) ≤ C2((log(ε−1))2 + log(d3a/2e)), W(Φa,D,ε) ≤ 9, and B(Φa,D,ε) ≤ 1. Moreover, due to

Proposition III.3, there exists a constant C3 > 0 such that for all ε ∈ (0, 1/2), there is a network µε ∈ N2,1

satisfying

sup
x,y∈[−3/2,3/2]

|µε(x, y)− xy| ≤ ε
3 , (89)

with L(µε) ≤ C3 log(ε−1), W(µε) ≤ 5, and B(µε) ≤ 1. By Lemma II.3 there exists a network Ψ1 satisfying

Ψ1 = Φa,D,ε ◦ Ψgf ,ε with W(Ψ1) ≤ 16, L(Ψ1) = L(Φa,D,ε) + L(Ψgf ,ε), and B(Ψ1) ≤ 1. Furthermore,

combining Lemma II.4 and Lemma A.7, we can conclude the existence of a network Ψ2(x) = (Ψ1(x),Ψhf ,ε(x)) =

(Φa,D,ε(Ψgf ,ε(x)),Ψhf ,ε(x)) with W(Ψ2) ≤ 32, L(Ψ2) = max{L(Φa,D,ε) + L(Ψgf ,ε),L(Ψhf ,ε)}, and B(Ψ2) ≤
1. Next, for all D, a ∈ R+, f ∈ FD,a, ε ∈ (0, 1/2), we define the network Γf,ε := µε ◦ Ψ2. By (87), (88), and

supx∈R | ddx cos(ax)| = a, we have, for all x ∈ [−D,D],

|Φa,D,ε(Ψgf ,ε(x))− cos(agf (x))| ≤ |Φa,D,ε(Ψgf ,ε(x))− cos(aΨgf ,ε(x))|

+ | cos(aΨgf ,ε(x))− cos(agf (x))|

≤ ε
3 + a ε

12dae ≤ 5ε
12 .

Combining this with (87), (89), and ‖ cos ‖L∞([−D,D]), ‖f‖L∞([−D,D]) ≤ 1 yields for all x ∈ [−D,D],

|Γf,ε(x)− f(x)| = |µε(Φa,D,ε(Ψgf ,ε(x)),Ψhf ,ε(x))− cos(agf (x))hf (x)|

≤ |µε(Φa,D,ε(Ψgf ,ε(x)),Ψhf ,ε(x))− Φa,D,ε(Ψgf ,ε(x))Ψhf ,ε(x)|

+ |Φa,D,ε(Ψgf ,ε(x))Ψhf ,ε(x)− cos(agf (x))Ψhf ,ε(x)|

+ | cos(agf (x))Ψhf ,ε(x)− cos(agf (x))hf (x)|

≤ ε
3 + 5ε

12

(
1 + ε

12dae

)
+ ε

12dae ≤ ε.

Finally, by Lemma II.3 there exists a constant C4 such that for all D, a ∈ R+, f ∈ FD,a, ε ∈ (0, 1/2), it holds

that W(Γf,ε) ≤ 32,

L(Γf,ε) ≤ L(µε) + max{L(Φa,D,ε) + L(Ψgf ,ε),L(Ψhf ,ε)}

≤ C4dDe((log(ε−1) + log(dae))2 + log(dDe) + log(dD−1e)),

and B(Γf,ε) ≤ 1.
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Fig. 4: Left: A function in F1,100. Right: The function W 1√
2
,2.

Finally, we show how the Weierstrass function—a fractal function, which is continuous everywhere but dif-

ferentiable nowhere—can be approximated with exponential accuracy by deep ReLU networks. Specifically, we

consider

Wp,a(x) =

∞∑

k=0

pk cos(akπx), for p ∈ (0, 1/2), a ∈ R+, with ap ≥ 1,

and let α = − log(p)
log(a) , see Figure 4 right for an example. It is well known [86] that Wp,a possesses Hölder smoothness

α which may be made arbitrarily small by suitable choice of a. While classical approximation methods achieve

polynomial approximation rates only, it turns out that finite-width deep networks yield exponential approximation

rates. This is formalized as follows.

Proposition X.3. There exists a constant C > 0 such that for all ε, p ∈ (0, 1/2), D, a ∈ R+, there is a network

Ψp,a,D,ε ∈ N1,1 satisfying

‖Ψp,a,D,ε −Wp,a‖L∞([−D,D]) ≤ ε,

with L(Ψp,a,D,ε) ≤ C((log(ε−1))3+(log(ε−1))2 log(dae)+log(ε−1) log(dDe)),W(Ψp,a,D,ε) ≤ 13, B(Ψp,a,D,ε) ≤ 1.

Proof. For every N ∈ N, p ∈ (0, 1/2), a ∈ R+, x ∈ R, let SN,p,a(x) =
∑N
k=0 p

k cos(akπx) and note that

|SN,p,a(x)−Wp,a(x)| ≤
∞∑

k=N+1

|pk cos(akπx)| ≤
∞∑

k=N+1

pk = 1
1−p −

1−pN+1

1−p ≤ 2−N . (90)

Let Nε := dlog(2/ε)e for ε ∈ (0, 1/2). Next, note that Theorem III.8 ensures the existence of a constant C1 > 0

such that for all D, a ∈ R+, k ∈ N0, ε ∈ (0, 1/2), there is a network φak,D,ε ∈ N1,1 satisfying

‖φak,D,ε − cos(akπ · )‖L∞([−D,D]) ≤ ε
4 , (91)
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with L(φak,D,ε) ≤ C1((log(ε−1))2 + log(dakπDe)), W(φak,D,ε) ≤ 9, B(φak,D,ε) ≤ 1. Let A : R3 → R3 and

B : R3 → R be the affine transformations given by A(x1, x2, x3) = (x1, x1, x2 +x3)T and B(x1, x2, x3) = x2 +x3,

respectively. We now define, for all p ∈ (0, 1/2), D, a ∈ R+, k ∈ N0, ε ∈ (0, 1/2), the networks

ψp,a,0D,ε (x) =




x

p0φa0,D,ε(x)

0


 and ψp,a,kD,ε (x1, x2, x3) =




x1

pkφak,D,ε(x2)

x3


 , k > 0,

and, for all p ∈ (0, 1/2), D, a ∈ R+, ε ∈ (0, 1/2), the network

Ψp,a,D,ε := B ◦ ψp,a,NεD,ε ◦A ◦ ψp,a,Nε−1
D,ε ◦ · · · ◦A ◦ ψp,a,0D,ε .

Due to (91) we get, for all p ∈ (0, 1/2), D, a ∈ R+, ε ∈ (0, 1/2), x ∈ [−D,D], that

|Ψp,a,D,ε(x)− SNε,p,a(x)| =
∣∣∣∣∣
Nε∑

k=0

pkφak,D,ε(x)−
Nε∑

k=0

pk cos(akπx)

∣∣∣∣∣

≤
Nε∑

k=0

pk|φak,D,ε(x)− cos(akπx)| ≤ ε
4

Nε∑

k=0

2−k ≤ ε
2 .

Combining this with (90) establishes, for all p ∈ (0, 1/2), D, a ∈ R+, ε ∈ (0, 1/2), x ∈ [−D,D],

|Ψp,a,D,ε(x)−Wp,a(x)| ≤ 2−dlog( 2
ε )e + ε

2 ≤ ε
2 + ε

2 = ε.

Applying Lemmas II.3, II.4, and II.5 establishes the existence of a constant C2 such that for all p ∈ (0, 1/2),

D, a ∈ R+, ε ∈ (0, 1/2),

L(Ψp,a,D,ε) ≤
Nε∑

k=0

(L(φak,D,ε) + 1) ≤ Nε + 1 + (Nε + 1)C1((log(ε−1))2 + log(daNεπDe))

≤ C2((log(ε−1))3 + (log(ε−1))2 log(dae) + log(ε−1) log(dDe)),

W(Ψp,a,D,ε) ≤ 13, and B(Ψp,a,D,ε) ≤ 1.

We finally note that the restriction p ∈ (0, 1/2) in Proposition X.3 was made for simplicity of exposition and

can be relaxed to p ∈ (0, r), with r < 1, while only changing the constant C.

XI. IMPOSSIBILITY RESULTS FOR FINITE-DEPTH NETWORKS

The recent successes of neural networks in machine learning applications have been enabled by various technolog-

ical factors, but they all have in common the use of deep networks as opposed to shallow networks studied intensely

in the 1990s. It is hence of interest to understand whether the use of depth offers fundamental advantages. In this

spirit, the goal of this section is to make a formal case for depth in neural network approximation by establishing that,

for nonconstant periodic functions, finite-width deep networks require asymptotically—in the function’s “highest

frequency”—smaller connectivity than finite-depth wide networks. This statement is then extended to sufficiently
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smooth nonperiodic functions, thereby formalizing the benefit of deep networks over shallow networks for the

approximation of a broad class of functions.

We start with preparatory material taken from [26].

Definition XI.1 ([26]). Let k ∈ N. A function f : R → R is called k-sawtooth if it is piecewise linear with no

more than k pieces, i.e., its domain R can be partitioned into k intervals such that f is linear on each of these

intervals.

Lemma XI.2 ([26]). Every Φ ∈ N1,1 is (2W(Φ))L(Φ)-sawtooth.

Definition XI.3. For a u-periodic function f ∈ C(R), we define

ξ(f) := sup
δ∈[0,u)

inf
c,d∈R

‖f(x)− (cx+ d)‖L∞([δ,δ+u]).

The quantity ξ(f) measures the error incurred by the best linear approximation of f on any segment of length

equal to the period of f ; ξ(f) can hence be interpreted as quantifying the nonlinearity of f . The next result states that

finite-depth networks with width and hence also connectivity scaling polylogarithmically in the “highest frequency”

of the periodic function to be approximated can not achieve arbitrarily small approximation error.

Proposition XI.4. Let f ∈ C(R) be a nonconstant u-periodic function, L ∈ N, and π a polynomial. Then, there

exists an a ∈ N such that for every network Φ ∈ N1,1 with L(Φ) ≤ L and W(Φ) ≤ π(log(a)), we have

‖f(a · )− Φ‖L∞([0,u]) ≥ ξ(f) > 0.

Proof. First note that there exists an even a ∈ N such that a/2 > (2π(log(a)))L. Lemma XI.2 now implies that

every network Φ ∈ N1,1 with L(Φ) ≤ L and W(Φ) ≤ π(log(a)) is (2π(log(a)))L-sawtooth and therefore consists

of no more than a/2 different linear pieces. Hence, there exists an interval [u1, u2] ⊆ [0, u] with u2−u1 ≥ (2u/a)

on which Φ is linear. Since u2−u1 ≥ (2u/a) the interval supports two full periods of f(a · ) and we can therefore

conclude that

‖f(a · )− Φ‖L∞([0,u]) ≥ ‖f(a · )− Φ‖L∞([u1,u2]) ≥ inf
c,d∈R

‖f(x)− (cx+ d)‖L∞([0,2u])

≥ sup
δ∈[0,u)

inf
c,d∈R

‖f(x)− (cx+ d)‖L∞([δ,u+δ]) = ξ(f).

Finally, note that ξ(f) > 0 as ξ(f) = 0 for u-periodic f ∈ C(R) necessarily implies that f is constant, which,

however, is ruled out by assumption.

Application of Proposition XI.4 to f(x) = cos(x) shows that finite-depth networks, owing to ξ(cos) > 0, require

faster than polylogarithmic growth of connectivity in a to approximate x 7→ cos(ax) with arbitrarily small error,

whereas finite-width networks, due to Theorem III.8, can accomplish this with polylogarithmic connectivity growth.

The following result from [87] allows a similar observation for functions that are sufficiently smooth.
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Theorem XI.5 ([87]). Let [a, b] ⊆ R, f ∈ C3([a, b]), and for ε ∈ (0, 1/2), let s(ε) ∈ N denote the smallest number

such that there exists a piecewise linear approximation of f with s(ε) pieces and error at most ε in L∞([a, b])-norm.

Then, it holds that

s(ε) ∼ c√
ε
, ε→ 0, where c =

1

4

∫ b

a

√
|f ′′(x)|dx.

Combining this with Lemma XI.2 yields the following result on depth-width tradeoff for three-times continuously

differentiable functions.

Theorem XI.6. Let f ∈ C3([a, b]) with
∫ b
a

√
|f ′′(x)|dx > 0, L ∈ N, and π a polynomial. Then, there exists ε > 0

such that for every network Φ ∈ N1,1 with L(Φ) ≤ L and W(Φ) ≤ π(log(ε−1)), we have

‖f − Φ‖L∞([a,b]) > ε.

Proof. The proof will be effected by contradiction. Assume that for every ε > 0, there exists a network Φε ∈ N1,1

with L(Φε) ≤ L,W(Φε) ≤ π(log(ε−1)), and ‖f−Φε‖L∞([a,b]) ≤ ε. By Lemma XI.2 every (ReLU) neural network

realizes a piecewise linear function. Application of Theorem XI.5 hence allows us to conclude the existence of a

constant C such that, for all ε > 0, the network Φε must have at least Cε−
1
2 different linear pieces. This, however,

leads to a contradiction as, by Lemma XI.2, Φε is at most (2π(log(ε−1)))L-sawtooth and π̃(log(ε−1)) ∈ o(ε−1/2),

ε→ 0, for every polynomial π̃.

In summary, we have hence established that any function which is at least three times continuously differentiable

(and does not have a vanishing second derivative) cannot be approximated by finite-depth networks with connectivity

scaling polylogarithmically in the inverse of the approximation error. Our results in Section III establish that, in

contrast, this “is” possible with finite-width deep networks for various interesting types of smooth functions such

as polynomials and sinusoidal functions. Further results on the limitations of finite-depth networks akin to Theorem

XI.6 were reported in [23].
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APPENDIX A

AUXILIARY NEURAL NETWORK CONSTRUCTIONS

The following three results are concerned with the realization of affine transformations of arbitrary weights by

neural networks with weights upper-bounded by 1.

Lemma A.1. Let d ∈ N and a ∈ R. There exists a network Φa ∈ Nd,d satisfying Φa(x) = ax, with L(Φa) ≤
blog(|a|)c+ 4, W(Φa) ≤ 3d, B(Φa) ≤ 1.

Proof. First note that for |a| ≤ 1 the claim holds trivially, which can be seen by taking Φa to be the affine

transformation x 7→ ax and interpreting it according to Definition II.1 as a depth-1 neural network. Next, we

consider the case |a| > 1 for d = 1, set K := blog(a)c, α := a2−(K+1), and define A1 := (1,−1)T ∈ R2×1,

A2 :=




1 0

1 1

0 1


 ∈ R3×2, Ak :=




1 1 −1

1 1 1

−1 1 1


 ∈ R3×3, k ∈ {3, . . . ,K + 3},

and AK+4 := (α, 0,−α). Note that (ρ◦A2 ◦ρ◦A1)(x) = (ρ(x), ρ(x) +ρ(−x), ρ(−x)) and ρ(Ak(x, x+y, y)T ) =

2(x, x + y, y), for k ∈ {3, . . . ,K + 3}. The network Ψa := AK+4 ◦ ρ ◦ · · · ◦ ρ ◦ A1 hence satisfies Ψa(x) = ax,

L(Ψa) = blog(a)c+ 4, W(Ψa) = 3, and B(Φa) ≤ 1. Applying Lemma II.5 to get a parallelization of d copies of

Ψa completes the proof.

Corollary A.2. Let d, d′ ∈ N, a ∈ R+, A ∈ [−a, a]d
′×d, and b ∈ [−a, a]d

′
. There exists a network ΦA,b ∈ Nd,d′

satisfying ΦA,b(x) = Ax+ b, with L(ΦA,b) ≤ blog(|a|)c+ 5, W(ΦA,b) ≤ max{d, 3d′}, B(ΦA,b) ≤ 1.

Proof. Let Φa ∈ Nd′,d′ be the multiplication network from Lemma A.1, consider W (x) := a−1(Ax + b) as a

1-layer network, and take ΦA,b := Φa ◦W according to Lemma II.3.

Proposition A.3. Let d, d′ ∈ N and Φ ∈ Nd,d′ . There exists a network Ψ ∈ Nd,d′ satisfying Ψ(x) = Φ(x), for all

x ∈ Rd, and with L(Ψ) ≤ (dlog(B(Φ))e+ 5)L(Φ), W(Ψ) ≤ max{3d′,W(Φ)}, B(Ψ) ≤ 1.

Proof. We write Φ = WL(Φ) ◦ ρ ◦ . . . ◦ ρ ◦ W1 and set W̃` := (B(Φ))−1W`, for ` ∈ {1, . . . ,L(Φ)}, and

a := B(Φ)L(Φ). Let Φa ∈ Nd′,d′ be the multiplication network from Lemma A.1 and define

Φ̃ := W̃L(Φ) ◦ ρ ◦ · · · ◦ ρ ◦ W̃1,

and Ψ := Φa ◦ Φ̃ according to Lemma II.3. Note that Φ̃ has weights upper-bounded by 1 and is of the same depth

and width as Φ. As ρ is positively homogeneous, i.e., ρ(λx) = λρ(x), for all λ ≥ 0, x ∈ R, we have Ψ(x) = Φ(x),

for all x ∈ Rd. Application of Lemma II.3 and Lemma A.1 completes the proof.

Next we record a technical Lemma on how to realize a sum of networks with the same input by a network whose

width is independent of the number of constituent networks.
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Lemma A.4. Let d, d′ ∈ N, N ∈ N, and Φi ∈ Nd,d′ , i ∈ {1, . . . , N}. There exists a network Φ ∈ Nd,d′ satisfying

Φ(x) =
N∑

i=1

Φi(x), for allx ∈ Rd,

with L(Φ) =
∑N
i=1 L(Φi), W(Φ) ≤ 2d+ 2d′ + max{2d,maxi{W(Φi)}}, B(Φ) = max{1,maxi B(Φi)}.

Proof. We set Li = L(Φi) and write the networks Φi as

Φi = W i
Li ◦ ρ ◦W i

Li−1 ◦ ρ ◦ · · · ◦ ρ ◦W i
1,

with W i
` (x) = Ai`x + bi`, where Ai` ∈ RN

i
`×Ni`−1 and bi` ∈ RNi` . Next, using Lemma II.4, we turn the identity

matrices Id and Id′ into networks Iid and Iid′ , respectively, of depth Li and then parallelize these networks, according

to Lemma II.5, to get Ψi := (Iid, Iid′ , Φi). Let V i1 (x) = Ei1x + f i1 and V iLi(x) = EiLix + f iLi denote the first and

last, respectively, affine transformation of the network Ψi. By construction we have

Ei1 =




Id 0 0

−Id 0 0

0 Id′ 0

0 −Id′ 0

0 0 Ai1




∈ R(2d+2d′+Ni1)×(2d+d′), f i1 =




0

0

0

0

bi1




∈ R2d+2d′+Ni1

and

EiLi =




Id −Id 0 0 0

0 0 Id′ −Id′ 0

0 0 0 0 AiLi


 ∈ R(d+2d′)×(2d+2d′+NiLi−1), f iLi =




0

0

biLi


 ∈ Rd+2d′ .

Next, we define the matrices

Ain :=




Id
0

Id


 ∈ R(2d+d′)×d, A :=




Id 0 0

0 Id′ Id′

Id 0 0


 ∈ R(2d+d′)×(d+2d′),

Aout :=
(

0 Id′ Id′
)
∈ Rd

′×(d+2d′),

and note that Ainx = (x, 0, x), A(x, y, z)T = (x, y + z, x)T , and Aout(x, y, z)
T = y + z, for x ∈ Rd, y, z ∈ Rd′ .

We construct

• the network Ψ̃1 by taking Ψ1 and replacing E1
1 with E1

1Ain, E1
L1

with AE1
L1

, and f1
L1

with Af1
L1

,

• the network Ψ̃N by taking ΨN and replacing ENLN with AoutE
N
LN

and fNLN with Aoutf
N
LN

,

• the networks Ψ̃i, i ∈ {2, . . . , N − 1} by taking Ψi and replacing EiLi with AEiLi and f iLi with Af iLi .

We can now verify that

Φ = Ψ̃N ◦ Ψ̃N−1 ◦ · · · ◦ Ψ̃1,
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when the compositions are taken in the sense of Lemma II.3. Due to Lemmas II.4 and II.5, we have L(Ψi) = L(Φi),

W(Ψi) = 2d + 2d′ +W(Φi), and B(Ψi) = max{1,B(Φi)}. The proof is finalized by noting that, owing to the

structure of the involved matrices, the depth and the weight magnitude remain unchanged by turning Ψi into Ψ̃i,

whereas the width can not increase, but may decrease owing to the replacement of E1
1 by E1

1Ain.

The following lemma shows how to patch together local approximations using multiplication networks and a

partition of unity consisting of hat functions. We note that this argument can be extended to higher dimensions

using tensor products (which can be realized efficiently through multiplication networks) of the one-dimensional

hat function.

Lemma A.5. Let ε ∈ (0, 1/2), n ∈ N, a0 < a1 < · · · < an ∈ R, f ∈ L∞([a0, an]), and

A :=
⌈

max{|a0|, |an|, 2 max
i∈{2,...,n−1}

1
|ai−ai−1|}

⌉
, B := max{1, ‖f‖L∞([a0,an])}.

Assume that for every i ∈ {1, . . . , n − 1}, there exists a network Φi ∈ N1,1 with ‖f − Φi‖L∞([ai−1,ai+1]) ≤ ε/3.

Then, there is a network Φ ∈ N1,1 satisfying

‖f − Φ‖L∞([a0,an]) ≤ ε,

with L(Φ) ≤
(∑n−1

i=1 L(Φi)
)

+ Cn(log(ε−1) + log(B) + log(A)), W(Φ) ≤ 7 + max{2, max
i∈{1,...,n−1}

W(Φi)},
B(Φ) = max{1,maxi B(Φi)}, and with C > 0 an absolute constant, i.e., independent of ε, n, f, a0, . . . , an.

Proof. We first define the neural networks (Ψi)
n−1
i=1 ∈ N1,1 forming a partition of unity according to

Ψ1(x) := 1− 1
a2−a1 ρ(x− a1) + 1

a2−a1 ρ(x− a2),

Ψi(x) := 1
ai−ai−1

ρ(x− ai−1)− ( 1
ai−ai−1

+ 1
ai+1−ai ) ρ(x− ai) + 1

ai+1−ai ρ(x− ai+1), i ∈ {2, . . . , n− 2},

Ψn−1(x) := 1
an−1−an−2

ρ(x− an−2)− 1
an−1−an−2

ρ(x− an−1).

Note that supp(Ψ1) = (∞, a2), supp(Ψn−1) = [an−2,∞), and supp(Ψi) = [ai−1, ai+1]. Proposition A.3 now

ensures that, for all i ∈ {1, . . . , n−1}, Ψi can be realized as a network with L(Ψi) ≤ 2(dlog(A)e+5),W(Ψi) ≤ 3,

and B(Ψi) ≤ 1. Next, let ΦB+1/6,ε/3 ∈ N2,1 be the multiplication network according to Proposition III.3 and define

the networks

Φ̃i(x) := ΦB+1/6,ε/3(Φi(x),Ψi(x))

according to Lemma II.5 and Lemma II.3, along with their sum

Φ(x) :=
n−1∑

i=1

Φ̃i(x)
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according to Lemma A.4. Proposition III.3 ensures, for all i ∈ {1, . . . , n− 1}, x ∈ [ai−1, ai+1], that

|f(x)Ψi(x)− Φ̃i(x)| ≤ |f(x)Ψi(x)− Φi(x)Ψi(x)|+ |Φi(x)Ψi(x)− ΦB+1/6,ε/3(Φi(x),Ψi(x))|

≤ (Ψi(x) + 1) ε3

and supp(Φ̃i) = [ai−1, ai+1]. In particular, for every x ∈ [a0, an], the set

I(x) := {i ∈ {1, . . . , n− 1} : Φ̃i(x) 6= 0}

of active indices contains at most two elements. Moreover, we have
∑
i∈I(x) Ψi(x) = 1 by construction, which

implies that, for all x ∈ R,

|f(x)− Φ(x)| =

∣∣∣∣∣∣
∑

i∈I(x)

Ψi(x)f(x)−
∑

i∈I(x)

Φ̃i(x)

∣∣∣∣∣∣
≤
∑

i∈I(x)

(Ψi(x) + 1) ε3 ≤ ε.

Due to Lemma II.3, Lemma II.5, Proposition III.3, and Lemma A.4, we can conclude that Φ, indeed, satisfies the

claimed properties.

Next, we present an extension of Lemma III.7 to arbitrary (finite) intervals.

Lemma A.6. For a, b ∈ R with a < b, let

S[a,b] :=
{
f ∈ C∞([a, b],R) : ‖f (n)(x)‖L∞([a,b]) ≤ n!, for all n ∈ N0

}
.

There exists a constant C > 0 such that for all a, b ∈ R with a < b, f ∈ S[a,b], and ε ∈ (0, 1/2), there is a network

Ψf,ε ∈ N1,1 satisfying

‖Ψf,ε − f‖L∞([a,b]) ≤ ε,

with L(Ψf,ε) ≤ C max{2, (b−a)}((log(ε−1))2+log(dmax{|a|, |b|}e)+log(d 1
b−ae)),W(Ψf,ε) ≤ 16, B(Ψf,ε) ≤ 1.

Proof. We first recall that the case [a, b] = [−1, 1] has already been dealt with in Lemma III.7. Here, we will

first prove the statement for the interval [−D,D] with D ∈ (0, 1) and then use this result to establish the general

case through a patching argument according to Lemma A.5. We start by noting that for g ∈ S[−D,D], the function

fg : [−1, 1] → R, x 7→ g(Dx) is in S[−1,1] due to D < 1. Hence, by Lemma III.7, there exists a constant C > 0

such that for all g ∈ S[−D,D] and ε ∈ (0, 1/2), there is a network Ψ̃g,ε ∈ N1,1 satisfying ‖Ψ̃g,ε−fg‖L∞([−1,1]) ≤ ε,
with L(Ψ̃g,ε) ≤ C(log(ε−1))2, W(Ψ̃g,ε) ≤ 9, B(Ψ̃g,ε) ≤ 1. The claim is then established by taking the network

approximating g to be Ψg,ε := Ψ̃g,ε ◦ ΦD−1 , where ΦD−1 is the scalar multiplication network from Lemma A.1,

and noting that

‖Ψg,ε(x)− g(x)‖L∞([−D,D]) = sup
x∈[−D,D]

|Ψ̃g,ε(
x
D )− fg( xD )|

= sup
x∈[−1,1]

|Ψ̃g,ε(x)− fg(x)| ≤ ε.
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Due to Lemma II.3, we have L(Ψg,ε) ≤ C((log(ε−1))2 + log(d 1
D e)), W(Ψg,ε) ≤ 9, and B(Ψg,ε) ≤ 1. We are now

ready to proceed to the proof of the statement for general intervals [a, b]. This will be accomplished by approximating

f on intervals of length no more than 2 and stitching the resulting approximations together according to Lemma A.5.

We start with the case b−a ≤ 2 and note that here we can simply shift the function by (a+b)/2 to center its domain

around the origin and then use the result above for approximation on [−D,D] with D ∈ (0, 1) or Lemma III.7

if b − a = 2, both in combination with Corollary A.2 to realize the shift through a neural network with weights

bounded by 1. Using Lemma II.3 to implement the composition of the network realizing this shift with that realizing

g, we can conclude the existence of a constant C ′ > 0 such that, for all [a, b] ⊆ R with b − a ≤ 2, g ∈ S[a,b],

ε ∈ (0, 1/2), there is a network satisfying ‖g−Ψg,ε‖L∞([a,b]) ≤ ε with L(Ψg,ε) ≤ C ′((log(ε−1))2 + log(d 1
b−ae)),

W(Ψg,ε) ≤ 9, and B(Ψg,ε) ≤ 1. Finally, for b − a > 2, we partition the interval [a, b] and apply Lemma A.5 as

follows. We set n := db− ae and define

ai := a+ i b−an , i ∈ {0, . . . , n}.

Next, for i ∈ {1, . . . , n−1}, let gi : [ai−1, ai+1]→ R be the restriction of g to the interval [ai−1, ai+1], and note that

ai+1−ai−1 = 2(b−a)
n ∈ ( 4

3 , 2]. Furthermore, for i ∈ {1, . . . , n−1}, let Ψgi,ε/3 be the network approximating gi with

error ε/3 as constructed above. Then, for every i ∈ {1, . . . , n− 1}, it holds that ‖g −Ψgi,ε/3‖L∞([ai−1,ai+1]) ≤ ε
3

and application of Lemma A.5 yields the desired result.

We finally record, for technical purposes, slight variations of Lemmas II.5 and II.6 to account for parallelizations

and linear combinations, respectively, of neural networks with shared input.

Lemma A.7. Let n, d, L ∈ N and, for i ∈ {1, 2, . . . , n}, let d′i ∈ N and Φi ∈ Nd,d′i with L(Φi) = L. Then,

there exists a network Ψ ∈ Nd,∑n
i=1 d

′
i

with L(Ψ) = L, M(Ψ) =
∑n
i=1M(Φi), W(Ψ) ≤∑n

i=1W(Φi), B(Ψ) =

maxi B(Φi), and satisfying

Ψ(x) = (Φ1(x),Φ2(x), . . . ,Φn(x)) ∈ R
∑n
i=1 d

′
i ,

for x ∈ Rd.

Proof. The claim is established by following the construction in the proof of Lemma II.5, but with the matrix

A1 = diag(A1
1, A

2
1, . . . , A

n
1 ) replaced by

A1 =




A1
1

...

An1


 ∈ R(

∑n
i=1N

i
1)×d,

where N i
1 is the dimension of the first layer of Φi.
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Lemma A.8. Let n, d, d′, L ∈ N and, for i ∈ {1, 2, . . . , n}, let ai ∈ R and Φi ∈ Nd,d′ with L(Φi) = L.

Then, there exists a network Ψ ∈ Nd,d′ with L(Ψ) = L, M(Ψ) ≤ ∑n
i=1M(Φi), W(Ψ) ≤ ∑n

i=1W(Φi),

B(Ψ) = maxi{|ai|B(Φi)}, and satisfying

Ψ(x) =

n∑

i=1

aiΦi(x) ∈ Rd
′
,

for x ∈ Rd.

Proof. The proof follows directly from that of Lemma A.7 with the same modifications as those needed in the

proof of Lemma II.6 relative to that of Lemma II.5.

APPENDIX B

TAIL COMPACTNESS FOR BESOV SPACES

We consider the Besov space Bmp,q([0, 1]) [16] given by the set of functions f ∈ L2([0, 1]) satisfying

‖f‖m,p,q := ‖(2n(m+ 1
2− 1

p )‖(〈f, ψn,k〉)2n−1
k=0 ‖`p)n∈N0

‖`q <∞, (92)

with D = {ψn,k : n ∈ N0, k = 0, . . . , 2n − 1} an orthonormal wavelet basis12 for L2([0, 1]) and `p denoting the

usual sequence norm

‖(ai)i∈I‖`p =





(∑
i∈I |ai|p

) 1
p , 1 ≤ p <∞

supi∈I |ai|, p =∞
.

The unit ball in Bmp,q([0, 1]) is

U(Bmp,q([0, 1])) = {f ∈ L2([0, 1]) : ‖f‖m,p,q ≤ 1}. (93)

For simplicity of notation, we set an,k(f) := 〈f, ψn,k〉 and An(f) := (an,k(f))2n−1
k=0 ∈ R2n , for n ∈ N0. We

now want to verify that for q ∈ [1, 2] tail compactness holds for the pair (U(Bmp,q([0, 1])),D) under the ordering

D = (D0,D1, . . . ), where Dn := {ψn,k : k = 0, . . . , 2n−1}. To this end, we first note that owing to
∑N
n=0 |Dn| =

2N+1− 1, we have tail compactness according to (26) if there exist C, β > 0 such that for all f ∈ U(Bmp,q([0, 1])),

N ∈ N,
∥∥∥∥∥f −

N∑

n=0

2n−1∑

k=0

an,k(f)ψn,k

∥∥∥∥∥
L2([0,1])

≤ C(2N+1)−β . (94)

To see that (92) implies (94), we note that by orthonormality of D,
∥∥∥∥∥f −

N∑

n=0

2n−1∑

k=0

an,k(f)ψn,k

∥∥∥∥∥
L2([0,1])

=

∥∥∥∥∥
∞∑

n=N+1

2n−1∑

k=0

an,k(f)ψn,k

∥∥∥∥∥
L2([0,1])

=

( ∞∑

n=N+1

2n−1∑

k=0

|an,k(f)|2
) 1

2

= ‖(‖An(f)‖`2)∞n=N+1‖`2 .

12The space does not depend on the particular choice of mother wavelet ψ as long as ψ has at least r vanishing moments and is in Cr([0, 1])

for some r > m. For further details we refer to Section 9.2.3 in [16].
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As the An(f) are finite sequences of length |Dn| = 2n, it follows, by application of Hölder’s inequality, that

‖An(f)‖`2 ≤ 2n( 1
2− 1

p )‖An(f)‖`p . Together with ‖ · ‖`2 ≤ ‖ · ‖`q , for q ≤ 2, (92) then ensures, for all f ∈
U(Bmp,q([0, 1])) and q ∈ [1, 2], that

‖(‖An(f)‖`2)∞n=N+1‖`2 ≤ ‖(2n( 1
2− 1

p )‖An(f)‖`p)∞n=N+1‖`q ≤ 2−(N+1)m‖(2n(m+ 1
2− 1

p )‖An(f)‖`p)∞n=N+1‖`q

≤ 2−(N+1)m‖f‖m,p,q ≤ (2N+1)−m,

which establishes (94) with C = 1 and β = m.

APPENDIX C

TAIL COMPACTNESS FOR MODULATION SPACES

We consider tail compactness for unit balls in (polynomially) weighted modulation spaces, which, for p, q ∈
[1,∞), are defined as follows

Ms
p,q(R) := {f : ‖f‖Ms

p,q(R) <∞},

with

‖f‖Ms
p,q(R) :=

(∫

R

(∫

R
|Vwf(x, ξ)|p(1 + |x|+ |ξ|)spdx

) q
p

dξ

) 1
q

,

where

Vwf(x, ξ) :=

∫

R
f(t)w(t− x)e−2πitξdt, x, ξ ∈ R,

is the short-time Fourier transform of f with respect to the window function13 w ∈ S(R).

Next, let g ∈ L2(R) with ‖g‖L2(R) = 1 and g(x) = g(−x) such that the Gabor dictionary G(g, 1
2 , 1,R) is a tight

frame [68] for L2(R). Then, the Wilson dictionary D = {ψk,n : (k, n) ∈ Z× N0} with

ψk,0 = Tkg, k ∈ Z,

ψk,n = 1√
2
T k

2
(Mn + (−1)k+nM−n)g, (k, n) ∈ Z× N,

is an orthonormal basis for L2(R) (see [17, Thm. 8.5.1]). We have, for every f ∈ Ms
p,q(R), the expansion [17,

Thm. 12.3.4]

f =
∑

(k,n)∈Z×N0

ck,n(f)ψk,n, where ck,n(f) = 〈f, ψk,n〉, c(f) ∈ `sp,q(Z× N0),

13The resulting modulation space does not depend on the specific choice of window function w as long as w is in the Schwartz space

S(R) = {f ∈ C∞(R) : supx∈R |xαf (β)(x)| <∞, for all α, β ∈ N0}, where f (n) stands for the n-th derivative of f .
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with `sp,q(Z× N0) the space of sequences c ∈ RZ×N0 satisfying

‖c‖`sp,q(Z×N0) :=


∑

n∈N0

(∑

k∈Z
|ck,n|p(1 + |k2 |+ |n|)sp

) q
p




1
q

<∞.

Moreover, there exists [17, Thm. 12.3.1] a constant D ≥ 1 such that, for all f ∈Ms
p,q(R),

1
D‖f‖Ms

p,q(R) ≤ ‖c(f)‖`sp,q(Z×N0) ≤ D‖f‖Ms
p,q(R).

In particular, we can characterize the unit ball of Ms
p,q(R) according to

U(Ms
p,q(R)) = {f : ‖c(f)‖`sp,q(Z×N0) ≤ D}.

We now order the Wilson basis dictionary as follows. Define D0 := {ψ0,0} and

D` := {ψk,n : |k|, n ≤ `} \
`−1⋃

i=0

Di

for ` ≥ 1, and order the overall dictionary according to D = (D0,D1, . . . ). Owing to
∑N
`=0 |D`| = (2N+1)(N+1),

we have tail compactness for the pair (U(Ms
p,q(R)),D) if there exist C, β > 0 such that, for all f ∈ U(Ms

p,q(R)),

N ∈ N,
∥∥∥∥∥f −

N∑

n=0

N∑

k=−N
ck,n(f)ψk,n

∥∥∥∥∥
L2(R)

≤ CN−β . (95)

We restrict our attention to p, q ≤ 2 and use orthonormality of D and the fact that ‖ · ‖`2 ≤ ‖ · ‖`p , for p ≤ 2, to

obtain, for all f ∈ U(Ms
p,q(R)),

∥∥∥∥∥f −
N∑

n=0

N∑

k=−N
ck,n(f)ψk,n

∥∥∥∥∥
L2(R)

=

∥∥∥∥∥∥
∑

n>N

∑

|k|>N
ck,n(f)ψk,n

∥∥∥∥∥∥
L2(R)

=


∑

n>N

∑

|k|>N
|ck,n(f)|2




1
2

≤



∑

n>N


 ∑

|k|>N
|ck,n(f)|p




q
p




1
q

≤ (1 + 3
2N)−s



∑

n>N


 ∑

|k|>N
|ck,n(f)|p(1 + |k2 |+ |n|)sp




q
p




1
q

≤ (1 + 3
2N)−s‖c(f)‖`sp,q(Z×N0) ≤ (3/2)−sDN−s,

which establishes tail compactness with C = (3/2)−sD and β = s.
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Abstract—Although for neural networks with locally Lipschitz
continuous activation functions the classical derivative exists
almost everywhere, the standard chain rule is in general not
applicable. We will consider a way of introducing a derivative for
neural networks that admits a chain rule, which is both rigorous
and easy to work with. In addition we will present a method of
converting approximation results on bounded domains to global
(pointwise) estimates. This can be used to extend known neural
network approximation theory to include the study of regularity
properties. Of particular interest is the application to neural
networks with ReLU activation function, where it contributes to
the understanding of the success of deep learning methods for
high-dimensional partial differential equations.

I. INTRODUCTION

It has been observed that deep neural networks exhibit the
remarkable capability of overcoming the curse of dimension-
ality in a number of different scenarios. In particular, for
certain types of high-dimensional partial differential equations
(PDEs) there are promising empirical observations [1], [2],
[3], [4], [5], [6], [7] backed by theoretical results for both
the approximation error [8], [9], [10], [11] as well as the
generalization error [12]. In this context it becomes relevant
to not only show how well a given function of interest can
be approximated by neural networks but also to extend the
study to the derivative of this function. A number of recent
publications [13], [14], [15] have investigated the required
size of a network which is sufficient to approximate certain
interesting (classes of) functions within a given accuracy.
This is achieved, first, by considering the approximation of
basic functions by very simple networks and, subsequently,
by combining those networks in order to approximate more
difficult structures. To extend this approach to include the
regularity of the approximation, one requires some kind of
chain rule for the composition of neural networks. For neural
networks with differentiable activation function the standard
chain rule is sufficient. It, however, fails when considering
neural networks with an activation function, which is not ev-
erywhere differentiable. Although locally Lipschitz continuous
functions are w.r.t the Lebesgue measure almost everywhere
(a.e.) differentiable, the standard chain rule is not applicable,
as, in general, it does not hold even in an ’almost everywhere’
sense. We will introduce derivatives of neural networks in

a way that admits a chain rule which is both rigorous as
well as easy to work with. Chain rules for functions which
are not everywhere differentiable have been considered in a
more general setting in e.g. [16], [17]. We employ the specific
structure of neural networks to get stronger results using
simpler arguments. In particular it allows for a stability result,
i.e. Lemma III.3, the application of which will be discussed in
Section V. We would also like to mention a very recent work
[18] about approximation in Sobolev norms, where they deal
with the issue by using a general bound for the Sobolev norm
of the composition of functions from the Sobolev space W 1,∞.
Note however that this approach leads to a certain factor
depending on the dimensions of the domains of the functions,
which can be avoided with our method. For ease of exposition,
we formulate our results for neural networks with the ReLU
activation function. We, however, consider in Section IV how
such a chain rule can be obtained for any activation function
which is locally Lipschitz continuous (with at most countably
many points at which it is not differentiable). In Section V we
briefly sketch how the results from Section III can be utilized
to get approximation results for certain classes of functions.
Subsequently, in Section VI, we present a general method
of deriving global error estimates from such approximation
results, which are naturally obtained for bounded domains.
Ultimately, we discuss how our results can be used to extend
known theory, enabling the further study of the approximation
of PDE solutions by neural networks.

II. SETTING

As in [14], we consider a neural network Φ to be a finite
sequence of matrix-vector pairs, i.e.

Φ = ((Ak, bk))Lk=1, (1)

where Ak ∈ RNk×Nk−1 and bk ∈ RNk for some depth L ∈ N
and layer dimensions N0, N1, . . . , NL ∈ N. The realization of
the neural network Φ is the function RΦ: RN0 → RNL given
by

RΦ = WL ◦ ReLU ◦WL−1 ◦ . . . ◦ ReLU ◦W1, (2)

where Wk(x) = Akx+ bk for every x ∈ RNk and where

ReLU(x) := (max{0, x1}, . . . ,max{0, xN}) (3)



for every x ∈ RN . We distinguish between a neural network
and its realization, since Φ uniquely induces RΦ, while in
general there can be multiple non-trivially different neural
networks with the same realization. The representation of a
neural network as a structured set of weights as in (1) allows
the introduction of notions of network sizes. While there are
slight differences between various publications, commonly
considered quantities are the depth (i.e. number of affine
transformations), the connectivity (i.e. number of non-zero
entries of the Ak and bk), and the weight bound (i.e. maximum
of the absolute values of the entries of the Ak and bk). In [15]
it has been shown that these three quantities determine the
length of a bit string which is sufficient to encode the network
with a prescribed quantization error. In the following let

Φ=((Ak, bk))Lk=1, Ψ=((Ãk, b̃k))L̃k=1 (4)

be neural networks with matching dimensions in the sense
thatRΦ: Rd → Rm andRΨ: Rm → Rn. We then define their
composition as

Ψ� Φ :=
(
((Ak, bk))L−1

k=1 , (Ã1AL, Ã1bL + b̃1), ((Ãk, b̃k))L̃k=2

)
.

(5)

Direct computation shows

R(Ψ� Φ) = RΨ ◦ RΦ. (6)

Note that the realization RΦ of a neural network Φ is continu-
ous piecewise linear (CPL) as a composition of CPL functions.
Consequently, it is Lipschitz continuous and the realization
RΦ is almost everywhere differentiable by Rademacher’s
theorem. In particular all three functions in (6) are a.e. differ-
entiable. This, however, is not sufficient to get the derivative
of R(Ψ�Φ) from the derivatives of RΨ and RΦ by use of the
classical chain rule. Consider the very simple counterexample
of u(x) := ReLU(x) and v(x) := 0 and formally apply the
chain rule, i.e.

(D(u ◦ v))(x) = (Du)(v(x)) · (Dv)(x). (7)

Even though (Du)(y) is well-defined for every y ∈ R\{0},
the expression (Du)(v(x)) is defined for no x ∈ R. In general
this problem occurs when the inner function maps a set of
positive measure into a set where the derivative of the outer
function does not exist. Now in this case, one can directly see
that setting (Du)(0) to any arbitrary value would cause (7) to
provide the correct result since (Dv)(x) = 0.

III. RELU NETWORK DERIVATIVE

We proceed by defining the derivative of an arbitrary neural
network in a way such that it not only coincides a.e. with the
derivative of the realization, but also admits a chain rule. To
this end let H : RN → RN×N be the function given by

H(x) := diag(1(0,∞)(x1), . . . ,1(0,∞)(xN )) (8)

for every x = (x1, . . . , xN ) ∈ RN and let RKΦ :=
R((Ak, bk))Kk=1. We then define the neural network derivative
of Φ as the function DΦ: RN0 → RNL×N0 given by

DΦ := AL ·H(RL−1Φ) ·AL−1 · . . . ·H(R1Φ) ·A1. (9)

Note that this definition is motivated by formally applying the
chain rule with the convention that the derivative of max{0, · }
is zero at the origin. Now we need to verify that this is justified.

Theorem III.1. It holds for almost every x ∈ Rd that

(DΦ)(x) = (D(RΦ))(x). (10)

Proof. Let v : Rd → RN be a locally Lipschitz continuous
function, define w := ReLU ◦ v, and

Li := {x ∈ Rd : wi(x) = 0} = {x ∈ Rd : vi(x) ≤ 0}. (11)

We now use an observation about differentiability on level sets
(see e.g. [19, Thm 3.3(i)]), which states that

(Dwi)(x) = 0 for almost every x ∈ Li. (12)

As wi(x) = vi(x) for every x ∈ Rd\Li, we get a.e.

Dwi = 1Rd\Li
·Dvi = 1(0,∞)(vi) ·Dvi (13)

and consequently

D(ReLU ◦ v) = H(v) ·Dv. (14)

The claim follows by induction over the layers K = 1, . . . , L
of Φ, using (14) with v = RKΦ for the induction step.

Note that even for convex RΦ the values of DΦ on the
nullset do not necessarily lie in the respective subdifferentials
of RΦ, as can be seen in Figure 1. Although Theorem III.1
holds regardless of which value is chosen for the derivative
of max{0, · } at the origin, no choice will guarantee that all
values of DΦ lie in the respective subdifferentials of RΦ. Here
we have set the derivative at the origin to zero, following
the convention of software implementations for deep learning
applications, e.g. TensorFlow and PyTorch. Using (5) and (9)
one can verify by direct computation that D obeys the chain
rule.

Corollary III.2. It holds for every x ∈ Rd that

(D(Ψ� Φ))(x) = (DΨ)(RΦ(x)) · (DΦ)(x). (15)

Note that (15) is well-defined as DΨ exists everywhere,
although it only coincides with D(RΨ) almost everywhere.
Theorem III.1 however guarantees that we still have a.e.

D(Ψ� Φ) = D(R(Ψ� Φ)) = D(RΨ ◦ RΦ). (16)

Next we provide a technical result dealing with the stability
of our chain rule, which will prove to be useful in Section V.

Lemma III.3. It holds for almost every x ∈ Rd that

lim
y→RΦ(x)

[
(DΨ)(y)− (DΨ)(RΦ(x))

]
· (DΦ)(x) = 0. (17)

Proof. We first show for every locally Lipschitz continuous
function u : Rm → RN and for almost every x ∈ Rd that

lim
y→RΦ(x)

[H(u(y))−H(u(RΦ(x)))] · (D(u ◦ RΦ))(x) = 0. (18)

If ui(RΦ(x)) 6= 0 we have

lim
y→RΦ(x)

1(0,∞)(ui(y)) = 1(0,∞)(ui(RΦ(x))) (19)



as ui is continuous and 1(0,∞) is continuous on R\{0}.
Furthermore, [19, Thm 3.3(i)] implies that

(D(ui ◦ RΦ))(x) = 0 (20)

for almost every x ∈ Rd with ui(RΦ(x)) = 0. Since a finite
union of nullsets is again a nullset, this proves the claim (18).
The lemma follows by induction over the layers K = 1, . . . , L̃
of Ψ and applying (18) with u = RKΨ.

IV. GENERAL ACTIVATION FUNCTIONS

As mentioned in the introduction, it is possible to replace
the ReLU activation function in (2) by some locally Lipschitz
continuous, component-wise applied function % : R→ R with
an at most countably large set S of points where % is not
differentiable. Specifically, one can define the neural network
derivative (with activation function %) as in (9) with 1(0,∞)(xi)
in (8) replaced by

(D̄%)(xi) :=

{
0, xi ∈ S
(D%)(xi), else

. (21)

The chain rule can, again, be checked by direct computation
and it is straightforward to adapt Theorem III.1 to this more
general setting by considering the level sets

{x ∈ Rd : wi(x) = s}, s ∈ S. (22)

If additionally D̄% is continuous on R \ S, the proof of
Lemma III.3 translates without any modifications.

V. UTILIZATION IN APPROXIMATION THEORY

These results can now be employed to bound the L∞-norm
of D(Ψ ◦ Φ) − D(u ◦ v), given corresponding estimates for
the approximation of u and v by Ψ and Φ, respectively. Here,
one has to take some care when bounding the term

‖[DΨ ◦ RΦ−Du ◦ RΦ]DΦ‖L∞ (23)

by
‖DΨ−Du‖L∞‖DΦ‖L∞ . (24)

Again it can happen that RΦ maps a set of positive measure
into a nullset where the estimate for the approximation of Du
by DΨ in the essential supremum norm is not valid. However,
using the stability result in Lemma III.3 one can for almost
every x ∈ Rd shift to a sufficiently close point y ≈ RΦ(x)
where the estimate holds. In [13] Yarotsky explicitly constructs
networks whose realization is a linear interpolation1 of the
squaring function (see Fig. 1 for illustration), which directly
gives an estimate on the approximation rate for the derivatives.
These simple networks can then be combined to get networks
approximating multiplication, polynomials and eventually, by
means of e.g. local Taylor approximation, functions f whose
first n ≥ 1 (weak) derivatives are bounded. This leads to
estimates of the form

‖f −RΦε,B‖L∞(IB) ≤ ε, (25)

1The interpolation points are uniformly distributed over the domain of
approximation and their number grows exponentially with the size of the
networks.

Fig. 1. Approximation of the function x 7→ x2 and its derivative on the
interval [−4, 4] by a neural network Φ with depth 6, connectivity 52 and
weight bound 4. Note that not all values of DΦ at the points of non-
differentiablity of RΦ lie between the values at either side, i.e. in the
subdifferential.

with IB = [−B,B]d, including estimates for the scaling
of the size of the network Φε,B w.r.t. B and ε. As these
constructions are based on composing simpler functions with
known estimates one can now employ Theorem III.1 and
Corollary III.2 to show that the derivatives of those networks
also approximate the derivative of the function, i.e.

‖Df −DΦε,B‖L∞(IB) ≤ c εr. (26)

Such constructive approaches can further be found in [8],
in [14] for β-cartoon-like functions, in [20] for (b, ε)-
holomorphic maps, and in [15] for high-frequent sinusoidal
functions.

VI. GLOBAL ERROR ESTIMATES

The error estimates above are usually only sensible for
bounded domains, as the realization of a neural network is
always CPL with a finite number of pieces. We briefly discuss
a general way of transforming them into global pointwise error
estimates, which can be useful in the context of PDEs (see e.g.



x

= RΦε/2,Bε+1(x)

≈ 1
[−Bε,Bε]d

(x)

Φmult
ε/2,bε

≈ 1
[−Bε,Bε]d

f(x)

Φchar
Bε

Φε/2,Bε+1

Fig. 2. The neural networks Φε approximating f globally.

[9], [10]). In the following assume that we have a function f
with an at most polynomially growing derivative, i.e.

‖(Df)(x)‖2 ≤ c(1 + ‖x‖κ2 ). (27)

Denote by Φchar
B a neural network which represents the d-

dimensional approximate characteristic function of IB , i.e.
RΦchar

B (x) ∈ [0, 1] and

RΦchar
B (x) = 1, x ∈ IB ,

RΦchar
B (x) = 0, x /∈ IB+1.

(28)

See [15, Proof of Thm. VIII.3] for such a construction.
Further let Φmult

ε,b be the neural network approximating the
multiplication function on [−b, b]2 with error ε (see e.g. [20,
Prop. 3.1]).
Now we define the global approximation networks Φε as the
composition of Φmult

ε/2,bε
with the parallelization of Φchar

Bε
and

Φε/2,Bε+1 for suitable

Bε ∈ O(ε−1) and bε ∈ O(ε−κ−1). (29)

See Figure 2 for an illustration and e.g. [14, Def. 2.7] for a
formal definition of parallelization. Considering the errors on
IB , IB+1\IB and Rd\IB+1 leads to global estimates, i.e. for
every x ∈ Rd

|f(x)−RΦε(x)| ≤ ε(1 + ‖x‖κ+2
2 ) (30)

and, by use of the chain rule III.2, for almost every x ∈ Rd

‖(Df)(x)− (DΦε)(x)‖2 ≤ Cεr(1 + ‖x‖κ+2
2 ). (31)

Due to the logarithmic size scaling of the multiplication
network, the size of Φε can be bounded by the size of
Φε/2,Bε+1 plus an additional term in O(d+ κ log ε−1).

VII. APPLICATION TO PDES

Analyzing the regularity properties of neural networks was
motivated by the recent successful application of deep learning
methods to PDEs [2], [3], [4], [5], [6], [7], [11]. Initiated by
empirical experiments [1] it has been proven that neural net-
works are capable of overcoming the curse of dimensionality
for solving so-called Kolmogorov PDEs [12]. More precisely,
the solution to the empirical risk minimization problem over
a class of neural networks approximates the solution of the
PDE up to error ε with high probability and with size of the
networks and number of samples scaling only polynomially
in the dimension d and ε−1. The above requires a suitable
learning problem and a sufficiently good approximation of the
solution function by neural networks. For Kolmogorov PDEs,

this boils down to calculating global Lipschitz coefficients
and error estimates for neural networks approximating the
initial condition and coefficient functions (see e.g. [9], [10]).
Employing estimates of the form (26) one can bound the
derivative on IB , i.e.

LB := ‖DΦε,B‖L∞(IB) ≤ ‖Df‖L∞(IB) + cεr. (32)

Using mollification and the mean value theorem we can
establish local Lipschitz estimates, i.e. for all x, y ∈ (−B,B)d

that
|RΦε,B(x)−RΦε,B(y)| ≤ LB‖x− y‖2, (33)

and corresponding linear growth bounds

|RΦε,B(x)| ≤
(
|RΦε,B(0)|+ LB

)
(1 + ‖x‖2). (34)

Similarly, one can use (31) to obtain estimates of the form

|RΦε(x)−RΦε(y)| ≤ C(1+‖x‖κ+2
2 +‖y‖κ+2

2 )‖x−y‖2 (35)

for all x, y ∈ Rd (which are demanded in [10, Theorem 1.1]).
Moreover, note that the capability to produce approximation
results which include error estimates for the derivative is of
significant independent interest. Various numerical methods
(for instance Galerkin methods) rely on bounding the error
in some Sobolev norm ‖ · ‖W 1,p , which requires estimates
of the derivative differences. We believe that the possibility
to obtain regularity estimates significantly contributes to the
mathematical theory of neural networks and allows for further
advances in the numerical approximation of high dimensional
partial differential equations.

VIII. RELATION TO BACKPROPAGATION IN TRAINING

The approach discussed here could further be applied to the
training of neural networks by (stochastic) gradient descent.
Note, however, that this is a slightly different setting. From
the approximation theory perspective we were interested in
the derivative of x 7→ RΦ(x), while in training one requires
the derivative of Φ 7→ RΦ(x∗) for some fixed sample x∗.
In particular this function is no longer CPL but rather con-
tinuous piecewise polynomial. While this would necessitate
some technical modifications, we believe that it should be
possible to employ the method used here in order to show
that the gradient of Φ 7→ RΦ(x∗) coincides a.e. with what is
computed by backpropagation using the convention of setting
the derivative of max{0, ·} to zero at the origin (as well as
similar conventions for e.g. max-pooling).
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Abstract

Neural network training is usually accomplished by solving a non-convex opti-
mization problem using stochastic gradient descent. Although one optimizes over
the networks parameters, the main loss function generally only depends on the
realization of the neural network, i.e. the function it computes. Studying the opti-
mization problem over the space of realizations opens up new ways to understand
neural network training. In particular, usual loss functions like mean squared error
and categorical cross entropy are convex on spaces of neural network realizations,
which themselves are non-convex. Approximation capabilities of neural networks
can be used to deal with the latter non-convexity, which allows us to establish
that for sufficiently large networks local minima of a regularized optimization
problem on the realization space are almost optimal. Note, however, that each
realization has many different, possibly degenerate, parametrizations. In particular,
a local minimum in the parametrization space needs not correspond to a local
minimum in the realization space. To establish such a connection, inverse stability
of the realization map is required, meaning that proximity of realizations must
imply proximity of corresponding parametrizations. We present pathologies which
prevent inverse stability in general, and, for shallow networks, proceed to establish
a restricted space of parametrizations on which we have inverse stability w.r.t. to a
Sobolev norm. Furthermore, we show that by optimizing over such restricted sets,
it is still possible to learn any function which can be learned by optimization over
unrestricted sets.

1 Introduction and Motivation

In recent years much effort has been invested into explaining and understanding the overwhelming
success of deep learning based methods. On the theoretical side, impressive approximation capa-
bilities of neural networks have been established [9, 10, 16, 20, 32, 33, 37, 39]. No less important
are recent results on the generalization of neural networks, which deal with the question of how
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well networks, trained on limited samples, perform on unseen data [2, 3, 5–7, 17, 29]. Last but
not least, the optimization error, which quantifies how well a neural network can be trained by
applying stochastic gradient descent to an optimization problem, has been analyzed in different
scenarios [1, 11, 13, 22, 24, 25, 27, 38]. While there are many interesting approaches to the latter
question, they tend to require very strong assumptions (e.g. (almost) linearity, convexity, or extreme
over-parametrization). Thus a satisfying explanation for the success of stochastic gradient descent for
a non-smooth, non-convex problem remains elusive.
In the present paper we intend to pave the way for a functional perspective on the optimization
problem. This allows for new mathematical approaches towards understanding the training of neural
networks, some of which are demonstrated in Section 1.2. To this end we examine degenerate
parametrizations with undesirable properties in Section 2. These can be roughly classified as

C.1 unbalanced magnitudes of the parameters

C.2 weight vectors with the same direction

C.3 weight vectors with directly opposite directions.

Under conditions designed to avoid these degeneracies, Theorem 3.1 establishes inverse stability
for shallow networks with ReLU activation function. This is accomplished by a refined analysis
of the behavior of ReLU networks near a discontinuity of their derivative. Proposition 1.2 shows
how inverse stability connects the loss surface of the parametrized minimization problem to the loss
surface of the realization space problem. In Theorem 1.3 we showcase a novel result on almost
optimality of local minima of the parametrized problem obtained by analyzing the realization space
problem. Note that this approach of analyzing the loss surface is conceptually different from previous
approaches as in [11, 18, 23, 30, 31, 36].

1.1 Inverse Stability of Neural Networks

We will focus on neural networks with the ReLU activation function ρ(x) := x+, and adapt the
mathematically convenient notation from [33], which distinguishes between the parametrization of a
neural network and its realization. Let us define the set AL of all network architectures with depth
L ∈ N, input dimension d ∈ N, and output dimension D ∈ N by

AL := {(N0, . . . , NL) ∈ NL+1 : N0 = d,NL = D}. (1)

The architecture N ∈ AL simply specifies the number of neurons Nl in each of the L layers. We can
then define the space PN of parametrizations with architecture N ∈ AL as

PN :=
L∏

`=1

(
RN`×N`−1 × RN`

)
, (2)

the set P =
⋃
N∈AL

PN of all parametrizations with architecture in AL, and the realization map

R : P → C(Rd,RD)

Θ = ((A`, b`))
L
`=1 7→ R(Θ) := WL ◦ ρ ◦WL−1 . . . ρ ◦W1,

(3)

where W`(x) := A`x+ b` and ρ is applied component-wise. We refer to A` and b` as the weights
and biases in the `-th layer.
Note that a parametrization Θ ∈ Ω ⊆ P uniquely induces a realizationR(Θ) in the realization space
R(Ω), while in general there can be multiple non-trivially different parametrizations with the same
realization. To put it in mathematical terms, the realization map is not injective. Consider the basic
counterexample

Θ =
(
(A1, b1), . . . , (AL−1, bL−1), (0, 0)

)
and Γ =

(
(B1, c1), . . . , (BL−1, cL−1), (0, 0)

)
(4)

from [34] where regardless of A`, B`, b` and c` both realizations coincide withR(Θ) = R(Γ) = 0.
However, it it is well-known that the realization map is locally Lipschitz continuous, meaning that
close1 parametrizations in PN induce realizations which are close in the uniform norm on compact

1On the finite dimensional vector space PN all norms are equivalent and we take w.l.o.g. the maximum norm
‖Θ‖∞, i.e. the maximum of the absolute values of the entries of the A` and b`.
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sets, see e.g. [2, Lemma 14.6], [7, Theorem 4.2], and [34, Proposition 5.1].
We will shed light upon the inverse question. Given realizationsR(Γ) andR(Θ) that are close, do
the parametrizations Γ and Θ have to be close? In an abstract setting we measure the proximity of
realizations in the norm ‖ · ‖ of a Banach space B withR(P) ⊆ B, while concrete Banach spaces of
interest will be specified later. In view of the above counterexample we will, at the very least, need to
allow for the reparametrization of one of the networks, i.e. we arrive at the following question.

Given R(Γ) and R(Θ) that are close, does there exist a parametrization Φ with
R(Φ) = R(Θ) such that Γ and Φ are close?

As we will see in Section 2, this question is fundamentally connected to understanding the redundan-
cies and degeneracies of the way that neural networks are parametrized. By suitable regularization, i.e.
considering a subspace Ω ⊆ PN of parametrizations, we can avoid these pathologies and establish a
positive answer to the question above. For such a property the term inverse stability was introduced
in [34], which constitutes the only other research conducted in this area, as far as we are aware.

Definition 1.1 (Inverse stability). Let s, α > 0, N ∈ AL, and Ω ⊆ PN . We say that the realization
map is (s, α) inverse stable on Ω w.r.t. ‖ · ‖, if for all Γ ∈ Ω and g ∈ R(Ω) there exists Φ ∈ Ω with

R(Φ) = g and ‖Φ− Γ‖∞ ≤ s‖g −R(Γ)‖α. (5)

In Section 2 we will see why inverse stability fails w.r.t. the uniform norm. Therefore, we consider
a norm which takes into account not only the maximum error of the function values but also of
the gradients. In mathematical terms, we make use of the Sobolev norm ‖ · ‖W 1,∞(U) (on some
domain U ⊆ Rd) defined for every (locally) Lipschitz continuous function g : Rd → RD by
‖g‖W 1,∞(U) := max{‖g‖L∞(U), |g|W 1,∞(U)} with the Sobolev semi-norm | · |W 1,∞(U) given by

|g|W 1,∞(U) := ‖Dg‖L∞(U) = ess sup
x∈U

‖Dg(x)‖∞. (6)

See [15] for further information on Sobolev norms, and [8] for further information on the derivative
of ReLU networks.

1.2 Implications of inverse stability for neural network optimization

We proceed by demonstrating how inverse stability opens up new perspectives on the optimiza-
tion problem which arises in neural network training. Specifically, consider a loss function
L : C(Rd,RD) → [0,∞) on the space of continuous functions. For illustration, we take the com-
monly used mean squared error (MSE) which, for training data ((xi, yi))ni=1 ∈ (Rd×RD)n, is given
by

L(g) = 1
n

n∑

i=1

‖g(xi)− yi‖22, for g ∈ C(Rd,RD). (7)

Typically, the optimization problem is solved over some subspace of parametrizations Ω ⊆ PN , i.e.

min
Γ∈Ω
L(R(Γ)) = min

Γ∈Ω

1
n

n∑

i=1

‖R(Γ)(xi)− yi‖22. (8)

From an abstract point of view, by writing g = R(Γ) ∈ R(Ω), this is equivalent to the corresponding
optimization problem over the space of realizationsR(Ω), i.e.

min
g∈R(Ω)

L(g) = min
g∈R(Ω)

1
n

n∑

i=1

‖g(xi)− yi‖22. (9)

However, the loss landscape of the optimization problem (8) is only properly connected to the loss
landscape of the optimization problem (9) if the realization map is inverse stable on Ω. Otherwise
a realization g ∈ R(PN ) can be arbitrarily close to a global minimum in the realization space but
every parametrization Φ withR(Φ) = g is far away from the corresponding global minimum in the
parametrization space. Moreover, local minima of (8) in the parametrization space must correspond
to local minima of (9) in the realization space if and only if we have inverse stability.
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Proposition 1.2 (Parametrization minimum⇒ realization minimum). Let N ∈ AL, Ω ⊆ PN and
let the realization map be (s, α) inverse stable on Ω w.r.t. ‖ · ‖. Let Γ∗ ∈ Ω be a local minimum of
L ◦ R on Ω with radius r > 0, i.e. for all Φ ∈ Ω with ‖Φ− Γ∗‖∞ ≤ r it holds that

L(R(Γ∗)) ≤ L(R(Φ)). (10)

Then R(Γ∗) is a local minimum of L on R(Ω) with radius ( rs )1/α, i.e. for all g ∈ R(Ω) with
‖g −R(Γ∗)‖ ≤ ( rs )1/α it holds that

L(R(Γ∗)) ≤ L(g). (11)

See Appendix A.1.2 for a proof and Example A.1 for a counterexample in the case that inverse
stability is not given. Note that in (9) we consider a problem with convex loss function but non-convex
feasible set, see [34, Section 3.2]. This opens up new avenues of investigation using tools from
functional analysis and allows utilizing recent results [19, 34] exploring the topological properties of
neural network realization spaces.
As a concrete demonstration we provide with Theorem A.2 a strong result obtained on the realization
space, which estimates the quality of a local minimum based on its radius and the approximation
capabilities of the chosen architecture for a class of functions S. Specifically let C > 0, let
Λ: B → [0,∞) be a quasi-convex regularizer, and define

S := {f ∈ B : Λ(f) ≤ C}. (12)
We denote the sets of regularized parametrizations by

ΩN := {Φ ∈ PN : Λ(R(Φ)) ≤ C} (13)
and assume that the loss function L is convex and c-Lipschitz continuous on S. Note that virtually
all relevant loss functions are convex and locally Lipschitz continuous on C(Rd,RD). Employing
Proposition 1.2, inverse stability can then be used to derive the following result for the practically
relevant parametrized problem, showing that for sufficiently large architectures local minima of a
regularized neural network optimization problem are almost optimal.
Theorem 1.3 (Almost optimality of local parameter minima). Assume that S is compact in the
‖ · ‖-closure of R(P) and that for every N ∈ AL the realization map is (s, α) inverse stable on
ΩN w.r.t. ‖ · ‖ . Then for all ε, r > 0 there exists n(ε, r) ∈ AL such that for every N ∈ AL with
N1 ≥ n1(ε, r), . . . , NL−1 ≥ nL−1(ε, r) the following holds:
Every local minimum Γ∗ with radius at least r of minΓ∈ΩN

L(R(Γ)) satisfies
L(R(Γ∗)) ≤ min

Γ∈ΩN

L(R(Γ)) + ε. (14)

See Appendix A.1.2 for a proof and note that here it is important to have an inverse stability result,
where the parameters (s, α) do not depend on the size of the architecture, which we achieve for
L = 2 and B = W 1,∞. Suitable Λ would be Besov norms which constitute a common regularizer in
image and signal processing. Moreover, note that the required size of the architecture in Theorem 1.3
can be quantified, if one has approximation rates for S. In particular, this approach allows the use of
approximation results in order to explain the success of neural network optimization and enables a
combined study of these two aspects, which, to the best of our knowledge, has not been done before.
Unlike in recent literature, our result needs no assumptions on the sample set (incorporated in the loss
function, see (7)), in particular we do not require “overparametrization” with respect to the sample
size. Here the required size of the architecture only depends on the complexity of S, i.e. the class of
functions one wants to approximate, the radius of the local minima of interest, the Lipschitz constant
of the loss function, and the parameters of the inverse stability.
In the following we restrict ourselves to two-layer ReLU networks without biases, where we present
a proof for (4, 1/2) inverse stability w.r.t. the Sobolev semi-norm on a suitably regularized space of
parametrizations. Both the regularizations as well as the stronger norm (compared to the uniform
norm) will shown to be necessary in Section 2. We now present, in an informal way, a collection
of our main results. A short proof making the connection to the formal results can be found in
Appendix A.1.2.
Corollary 1.4 (Inverse stability and implications - colloquial). Suppose we are given data
((xi, yi))ni=1 ∈ (Rd × RD)n and want to solve a typical minimization problem for ReLU networks
with shallow architecture N = (d,N1, D), i.e.

min
Γ∈PN

1
n

n∑

i=1

‖R(Γ)(xi)− yi)‖22. (15)
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First we augment the architecture to Ñ = (d+ 2, N1 + 1, D), while omitting the biases, and augment
the samples to x̃i = (xi1, . . . , x

i
d, 1,−1). Moreover, we assume that the parametrizations

Φ =
((

[a1| . . . |aN1+1]T , 0
)
, ([c1| . . . |cN1+1], 0)

)
∈ Ω ⊆ PÑ (16)

are regularized such that

C.1 the network is balanced, i.e. ‖ai‖∞ = ‖ci‖∞,

C.2 no non-zero weight vectors in the first layer are redundant, i.e. ai 6‖ aj ,
C.3 the last two coordinates of each weight vector ai are strictly positive.

Then for the new minimization problem

min
Φ∈Ω

1
n

n∑

i=1

‖R(Φ)(x̃i)− yi‖22 (17)

the following holds:

1. If Φ∗ is a local minimum of (17) with radius r, then R(Φ∗) is a local minimum of
ming∈R(Ω)

1
n

∑n
i=1 ‖g(x̃i)− yi‖22 with radius at least r

2

16 w.r.t. | · |W 1,∞ .

2. The global minimum of (17) is at least as good as the global minimum of (15), i.e.

min
Φ∈Ω

1
n

n∑

i=1

‖R(Φ)(x̃i)− yi‖22 ≤ min
Γ∈PN

1
n

n∑

i=1

‖R(Γ)(xi)− yi‖22. (18)

3. By further regularizing (17) in the sense of Theorem 1.3, we can estimate the quality of its
local minima.

This argument is not limited to the MSE loss function but works for any loss function based on
evaluating the realization. The omission of bias weights is standard in neural network optimization
literature [11, 13, 22, 24]. While this severely limits the functions that can be realized with a given
architecture, it is sufficient to augment the problem by one dimension in order to recover the full
range of functions that can be learned [1]. Here we augment by two dimensions, so that the third
regularization condition C.3 can be fulfilled without loosing range. Moreover, note that, for simplicity
of presentation, the regularization assumptions stated above are stricter than necessary and possible
relaxations are discussed in Section 3.

2 Obstacles to inverse stability - degeneracies of ReLU parametrizations

In the remainder of this paper we focus on shallow ReLU networks without biases and define the cor-
responding space of parametrizations with architecture N = (d,m,D) as NN := Rm×d × RD×m.
The realization map2 R is, for every Θ = (A,C) =

(
[a1| . . . |am]T , [c1| . . . |cm]

)
∈ NN , given by

Rd 3 x 7→ R(Θ)(x) = Cρ(Ax) =
m∑

i=1

ciρ(〈ai, x 〉). (19)

Note that each function x 7→ ciρ(〈ai, x〉) represents a so-called ridge function which is zero on the
half-space {x ∈ Rd : 〈ai, x〉 ≤ 0} and linear with constant derivative ciaTi ∈ RD × Rd on the other
half-space. Thus, the ai are the normal vectors of the separating hyperplanes {x ∈ Rd : 〈ai, x〉 = 0}
and consequently we refer to the weight vectors ai also as the directions of Θ. Moreover, for Θ ∈ NN
it holds that R(Θ)(0) = 0 and, as long as the domain of interest U ⊆ Rd contains the origin, the
Sobolev norm ‖ · ‖W 1,∞(U) is equivalent to its semi-norm, since

‖R(Θ)‖L∞(U) ≤
√
d diam(U)|R(Θ)|W 1,∞ , (20)

2This is a slight abuse of notation, justified by the the fact that R acts the same on PN with zero biases b1, b2
and weights A1 = A and A2 = C.
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Figure 1: The figure shows gk for k = 1, 2.

see also inequalities of Poincaré-Friedrichs type [14, Subsection 5.8.1]. Therefore, in the rest of the
paper we will only consider the Sobolev semi-norm3

|R(Θ)|W 1,∞(U) = ess sup
x∈U

∥∥∥
∑

i∈[m] : 〈ai,x〉>0

cia
T
i

∥∥∥
∞
. (21)

In (21) one can see that in our setting | · |W 1,∞(U) is independent of U (as long as U contains a
neighbourhood of the origin) and will thus be abbreviated by | · |W 1,∞ .

2.1 Failure of inverse stability w.r.t. uniform norm

All proofs for this section can be found in Appendix A.2.2. We start by showing that inverse stability
fails w.r.t. the uniform norm. This example is adapted from [34, Theorem 5.2] and represents, to the
best of our knowledge, the only degeneracy which has already been observed before.
Example 2.1 (Failure due to exploding gradient). Let Γ := (0, 0) ∈ N(2,2,1) and gk ∈ R(N(2,2,1))
be given by (see Figure 1)

gk(x) := kρ(〈(k, 0), x〉)− kρ(〈(k,− 1
k2 ), x〉), k ∈ N. (22)

Then for every sequence (Φk)k∈N ⊆ N(2,2,1) withR(Φk) = gk it holds that

lim
k→∞

‖R(Φk)−R(Γ)‖L∞((−1,1)2) = 0 and lim
k→∞

‖Φk − Γ‖∞ =∞. (23)

In particular, note that inverse stability fails here even for a non-degenerate parametrization of the
zero function Γ = (0, 0). However, for this type of counterexample the magnitude of the gradient of
R(Φk) needs to go to infinity, which is our motivation for looking at inverse stability w.r.t. | · |W 1,∞ .

2.2 Failure of inverse stability w.r.t. Sobolev norm

In this section we present four degenerate cases where inverse stability fails w.r.t. | · |W 1,∞ . This
collection of counterexamples is complete in the sense that we can establish inverse stability under
assumptions which are designed to exclude these four pathologies.
Example 2.2 (Failure due to complete unbalancedness). Let r > 0, Γ :=

(
(r, 0), 0

)
∈ N(2,1,1) and

gk ∈ R(N(2,1,1)) be given by (see Figure 2)

gk(x) = 1
kρ(〈(0, 1), x〉), k ∈ N. (24)

Then for every k ∈ N and Φk ∈ N(2,1,1) withR(Φk) = gk it holds that

|R(Φk)−R(Γ)|W 1,∞ = 1
k and ‖Φk − Γ‖∞ ≥ r. (25)

This is a very simple example of a degenerate parametrization of the zero function, sinceR(Γ) = 0
regardless of choice of r. The issue here is that we can have a weight pair, i.e. ((r, 0), 0), where the
product is independent of the value of one of the parameters. Note that in Example A.4 one can see a
slightly more subtle version of this pathology by considering Γk :=

(
(k, 0), 1

k2

)
∈ N(2,1,1) instead.

In that case one could still get an inverse stability estimate for each fixed k; the parameters of inverse
3For m ∈ N we abbreviate [m] := {1, . . . ,m}.

6



Figure 2: ShowsR(Γ) (r = 0.5) and g3. Figure 3: ShowsR(Γ) and g2.

stability (s, α) would however deteriorate with increasing k. In particular this demonstrates the need
for some sort of balancedness of the parametrization, i.e. control over ‖ci‖∞ and ‖ai‖∞ individually
relative to ‖ci‖∞‖ai‖∞.
Inverse stability is also prevented by redundant directions as the following example illustrates.
Example 2.3 (Failure due to redundant directions). Let

Γ :=

([
1 0
1 0

]
, (1, 1)

)
∈ N(2,2,1) (26)

and gk ∈ R(N(2,2,1)) be given by (see Figure 3)

gk(x) := 2ρ(〈(1, 0), x〉) + 1
kρ(〈(0, 1), x〉), k ∈ N. (27)

Then for every k ∈ N and Φk ∈ N(2,2,1) withR(Φk) = gk it holds that

|R(Φk)−R(Γ)|W 1,∞ = 1
k and ‖Φk − Γ‖∞ ≥ 1. (28)

The next example shows that not only redundant weight vectors can cause issues, but also weight
vectors of opposite direction, as they would allow for a (balanced) degenerate parametrization of the
zero function.
Example 2.4 (Failure due to opposite weight vectors 1). Let ai ∈ Rd, i ∈ [m], be pairwise linearly
independent with ‖ai‖∞ = 1 and

∑m
i=1 ai = 0. We define

Γ :=
(
[a1| . . . |am| − a1| . . . | − am]T ,

(
1, . . . , 1,−1, . . . ,−1

))
∈ N(d,2m,1). (29)

Now let v ∈ Rd with ‖v‖∞ = 1 be linearly independent to each ai, i ∈ [m], and let gk ∈
R(N(d,2m,1)) be given by (see Figure 4)

gk(x) = 1
kρ(〈v, x〉), k ∈ N. (30)

Then there exists a constant C > 0 such that for every k ∈ N and every Φk ∈ N(d,2m,1) with
R(Φk) = gk it holds that

|R(Φk)−R(Γ)|W 1,∞ = 1
k and ‖Φk − Γ‖∞ ≥ C. (31)

Thus we will need an assumption which prevents each individual Γ in our restricted set from having
pairwise linearly dependent weight vectors, i.e. coinciding hyperplanes of non-differentiability. This,
however, does not suffice as is demonstrated by the next example, which shows that the relation
between the hyperplanes of the two realizations matters.
Example 2.5 (Failure due to opposite weight vectors 2). We define the weight vectors

ak1 = (k, k, 1
k ), ak2 = (−k, k, 1

k ), ak3 = (0,−
√

2k, 1√
2k

), ck = (k, k,
√

2k) (32)

and consider the parametrizations (see Figure 5)

Γk :=
([
− ak1

∣∣− ak2
∣∣− ak3

]T
, ck
)
∈ N(3,3,1), Θk :=

([
ak1
∣∣ak2
∣∣ak3
]T
, ck
)
∈ N(3,3,1). (33)

Then for every k ∈ N and every Φk ∈ N(3,3,1) withR(Φk) = R(Θk) it holds that

|R(Φk)−R(Γk)|W 1,∞ = 3 and ‖Φk − Γk‖∞ ≥ k. (34)

Note that Γ and Θ need to have multiple exactly opposite weight vectors which add to something
small (compared to the size of the individual vectors), but not zero, since otherwise reparametrization
would be possible (see Lemma A.5).
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Figure 4: ShowsR(Γ) and g3 (a1 = (1,− 1
2 ),

a2 = (−1,− 1
2 ), a3 = (0, 1), v = (1, 0)).

Figure 5: Shows the weight vectors of Θ2

(grey) and Γ2 (black).

3 Inverse stability for two-layer ReLU Networks

We now establish an inverse stability result using assumptions designed to exclude the pathologies
from the previous section. First we present a rather technical theorem for output dimension one
which considers a parametrization Γ in the unrestricted parametrization space NN and a function g
in the the corresponding function spaceR(NN ). The aim is to use assumptions which are as weak as
possible, while allowing us to find a parametrization Φ of g, whose distance to Γ can be bounded
relative to |g −R(Γ)|W 1,∞ . We then continue by defining a restricted parametrization spaceN ∗N , for
which we get uniform inverse stability (meaning that we get the same estimate for every Γ ∈ N ∗N ).
Theorem 3.1 (Inverse stability at Γ ∈ NN ). Let d,m ∈ N, N := (d,m, 1), β ∈ [0,∞), let

Γ =
([
aΓ

1

∣∣ . . .
∣∣aΓ
m

]T
, cΓ
)
∈ NN , g ∈ R(NN ), and let IΓ := {i ∈ [m] : aΓ

i 6= 0}.
Assume that the following conditions are satisfied:

C.1 It holds for all i ∈ [m] with ‖cΓi aΓ
i ‖∞ ≤ 2|g −R(Γ)|W 1,∞ that |cΓi |, ‖aΓ

i ‖∞ ≤ β.

C.2 It holds for all i, j ∈ IΓ with i 6= j that
aΓ
j

‖aΓ
j ‖∞

6= aΓ
i

‖aΓ
i ‖∞

.

C.3 There exists a parametrization Θ =
([
aΘ

1

∣∣ . . .
∣∣aΘ
m

]T
, cΘ
)
∈ NN such thatR(Θ) = g and

(a) it holds for all i, j ∈ IΓ with i 6= j that
aΓ
j

‖aΓ
j ‖∞

6= − aΓ
i

‖aΓ
i ‖∞

and for all i, j ∈ IΘ with

i 6= j that
aΘ
j

‖aΘ
j ‖∞

6= − aΘ
i

‖aΘ
i ‖∞

,

(b) it holds for all i ∈ IΓ, j ∈ IΘ that aΓ
i

‖aΓ
i ‖∞

6= − aΘ
j

‖aΘ
j ‖∞

where IΘ := {i ∈ [m] : aΘ
i 6= 0}.

Then there exists a parametrization Φ ∈ NN with

R(Φ) = g and ‖Φ− Γ‖∞ ≤ β + 2|g −R(Γ)|
1
2

W 1,∞ . (35)

The proof can be found in Appendix A.3.2. Note that each of the conditions in the theorem above
corresponds directly to one of the pathologies in Section 2.2. Condition C.1, which deals with
unbalancedness, only imposes an restriction on the weight pairs whose product is small compared
to the distance of R(Γ) and g. As can be guessed from Example 2.2 and seen in the proof of
Theorem 3.1, such a balancedness assumption is in fact only needed to deal with degenerate cases,
where R(Γ) and g have parts with mismatching directions of negligible magnitude. Otherwise a
matching reparametrization is always possible. Note that a balanced Γ (i.e. |cΓi | = ‖aΓ

i ‖∞) satisfies
Condition C.1 with β = (2|g −R(Γ)|W 1,∞)1/2.
It is also possible to relax the balancedness assumption by only requiring |cΓi | and ‖Γi‖∞ to be close
to ‖cΓi aΓ

i ‖
1/2
∞ , which would still give a similar estimate but with a worse exponent. In order to see that

requiring balancedness does not restrict the space of realizations, observe that the ReLU is positively
homogeneous (i.e. ρ(λx) = λρ(x) for all λ ≥ 0, x ∈ R). Thus balancedness can always be achieved
simply by rescaling.
Condition C.2 requires Γ to have no redundant directions, the necessity of which is demonstrated by
Example 2.3. Note that prohibiting redundant directions does not restrict the space of realizations,
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see (87) in the appendix for details. From a practical point of view, enforcing this condition could
be achieved by a regularization term using a barrier function. Alternatively on could employ a
non-standard approach of combining such redundant neurons by changing one of them according
to (87) and either setting the other one to zero or removing it entirely4.
From a theoretical perspective the first two conditions are rather mild, in the sense that they only
restrict the space of parametrizations and not the corresponding space of realizations. Specifically we
can define the restricted parametrization space

N ′(d,m,D) := {Γ ∈ N(d,m,D) : ‖cΓi ‖∞ = ‖aΓ
i ‖∞ for all i ∈ [m] and Γ satisfies C.2} (36)

for which we have R(N ′N ) = R(NN ). Note that the above definition as well as the following
definition and theorem are for networks with arbitrary output dimensions, as the balancedness
condition makes this extension rather straightforward.
In order to satisfy Conditions C.3a and C.3b we need to restrict the parametrization space in a way
which also restricts the corresponding space of realizations. One possibility to do so is the following
approach, which also incorporates the previous restrictions as well as the transition to networks
without biases.
Definition 3.2 (Restricted parametrization space). Let N = (d,m,D) ∈ N3. We define

N ∗N :=
{

Γ ∈ N ′N : (aΓ
i )d−1, (a

Γ
i )d > 0 for all i ∈ [m]

}
. (37)

While we no longer haveR(N ∗N ) = R(NN ), Lemma A.6 shows that for every Θ ∈ P(d,m,D) there
exists Γ ∈ N ∗(d+2,m+1,D) such that for all x ∈ Rd it holds that

R(Γ)(x1, . . . , xd, 1,−1) = R(Θ)(x1, . . . , xd). (38)

In particular, this means that for any optimization problem over an unrestricted parametrization
space P(d,m,D), there is a corresponding optimization problem over the parametrization space
N ∗(d+2,m+1,D) whose solution is at least as good (see Corollary 1.4). Our main result now states that
for such a restricted parametrization space we have uniform (4, 1/2) inverse stability w.r.t. | · |W 1,∞ ,
a proof of which can be found in Appendix A.3.2.
Theorem 3.3 (Inverse stability on N ∗N ). Let N ∈ N3. For all Γ ∈ N ∗N and g ∈ R(N ∗N ) there exists
a parametrization Φ ∈ N ∗N with

R(Φ) = g and ‖Φ− Γ‖∞ ≤ 4|g −R(Γ)|
1
2

W 1,∞ . (39)

4 Outlook

This contribution investigates the potential insights which may be gained from studying the optimiza-
tion problem over the space of realizations, as well as the difficulties encountered when trying to
connect it to the parametrized problem. While Theorem 1.3 and Theorem 3.3 offer some compelling
preliminary answers, there are multiple ways in which they can be extended.
To obtain our inverse stability result for shallow ReLU networks we studied sums of ridge functions.
Extending this result to deep ReLU networks requires understanding their behaviour under com-
position. In particular, we have ridge functions which vanish on some half space, i.e. colloquially
speaking each neuron may “discard half the information” it receives from the previous layer. This
introduces a new type of degeneracy, which one will have to deal with.
Another interesting direction is an extension to inverse stability w.r.t. some weaker norm like ‖·‖L∞ or
a fractional Sobolev norm under stronger restrictions on the space of parametrizations (see Lemma A.7
for a simple approach using very strong restrictions).
Lastly, note that Theorem 1.3 is not specific to the ReLU activation function and thus also incentivizes
the study of inverse stability for any other activation function.
From an applied point of view, Conditions C.1-C.3 motivate the implementation of corresponding
regularization (i.e. penalizing unbalancedness and redundancy in the sense of parallel weight vectors)
in state-of-the-art networks, in order to explore whether preventing inverse stability leads to improved
performance in practice. Note that there already are results using, e.g. cosine similarity, as regularizer
to prevent parallel weight vectors [4, 35] as well as approaches, called Sobolev Training, reporting
better generalization and data-efficiency by employing a Sobolev norm based loss [12].

4This could be of interest in the design of dynamic network architectures [26, 28, 40] and is also closely
related to the co-adaption of neurons, to counteract which, dropout was invented [21].
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A Appendix - Proofs and Additional Material

A.1 Section 1

A.1.1 Additional Material

Example A.1 (Without inverse stability: parameter minimum 6=⇒ realization minimum). Consider
the two domains

D1 := {(x1, x2) ∈ (−1, 1)2 : x2 > |x1|}, D2 := {(x1, x2) ∈ (−1, 1)2 : x1 > |x2|}. (40)

For simplicity of presentation, assume we are given two samples x1 ∈ D1, x2 ∈ D2 with labels
y1 = 0, y2 = 1. The corresponding MSE is

L(g) = 1
2

(
(g(x1))2 + (g(x2)− 1)2

)
(41)

for every g ∈ C(R2,R). Let the zero realization be parametrized by5

Γ∗ = (0, (−1, 0)) ∈ N(2,1,1) (42)

with loss L(R(Γ∗)) = 1
2 . Note that changing each weight by less than 1

2 does not decrease the loss,
as this rotates the vector (−1, 0) by at most 45◦. Thus Γ∗ is a local minimum in the parametrization
space. However, the sequence of realizations given by

gk(x) = 1
kρ(x1 − x2) = R((1,−1), 1

k ) (43)

satisfies that
‖gk −R(Γ∗)‖W 1,∞((−1,1)2) = ‖gk‖W 1,∞((−1,1)2) ≤ 1

k (44)
and

L(gk) = 1
2 (gk(x2)− 1)2 < 1

2 = L(R(Γ∗)), (45)
see Figure 6. Accordingly, R(Γ∗) is not a local minimum in the realization space even w.r.t. the
Sobolev norm. The problem occurs, since inverse stability fails due to unbalancedness of Γ∗.

(x2, y2)

(x1, y1)

(x2, y2)

(x1, y1)

Figure 6: The figure shows the samples ((xi, yi))i=1,2, the realizationR(Γ∗) of the local parameter
minimum (left) and g3 (right).

Theorem A.2 (Quality of local realization minima). Assume that

sup
f∈S

inf
Φ∈ΩN

‖R(Φ)− f‖ < η (approximability). (46)

Let g∗ be a local minimum with radius r′ ≥ 2η of the optimization problem ming∈R(ΩN ) L(g). Then
it holds for every g ∈ R(ΩN ) (in particular for every global minimizer) that

L(g∗) ≤ L(g) + 2c
r′ ‖g∗ − g‖η. (47)

Proof. Define λ := r′

2‖g−g∗‖ and f := (1− λ)g∗ + λg ∈ S. Due to (46) there is Φ ∈ ΩN such that
‖R(Φ)− f‖ ≤ η and by the assumptions on g∗ and L it holds that

L(g∗) ≤ L(R(Φ)) ≤ L(f) + cη ≤ (1− λ)L(g∗) + λL(g) + cη.

This completes the proof. See Figure 7 for illustration.
5See notation in the beginning of Section 2.
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L

S

g
r′

f

R(Φ)

g∗

η
L(g)

L(f)

L(g∗)

L(RΦ)

cη

Figure 7: The figure illustrates the proof idea of Theorem A.2. Note that decreasing η, c, ‖g∗ − g‖ or
increasing r′ leads to a better local minimum due to the convexity of the loss function (red).

A.1.2 Proofs

Proof of Proposition 1.2. By Definition 1.1 we know that for every g ∈ R(Ω) with ‖g −R(Γ∗)‖ ≤
( rs )1/α there exists Φ ∈ Ω with

R(Φ) = g and ‖Φ− Γ∗‖∞ ≤ s‖g −R(Γ∗)‖α ≤ r. (48)

Therefore by assumption it holds that

L(R(Γ∗)) ≤ L(R(Φ)) = L(g). (49)

which proves the claim.

Proof of Theorem 1.3. Let ε, r > 0, define r′ := ( rs )1/α and η := min{( 2c
r′ diam(S))−1ε, r

′

2 }.
Then compactness of S implies the existence of an architecture n(ε, r) ∈ AL such that for every
N ∈ AL with N1 ≥ n1(ε, r), . . . , NL−1 ≥ nL−1(ε, r) the approximability assumption (46) is
satisfied. Let now Γ∗ be a local minimum with radius at least r of minΓ∈ΩN

L(R(Γ)). As we
assume uniform (s, α) inverse stability, Proposition 1.2 implies that R(Γ∗) is a local minimum of
the optimization problem ming∈R(ΩN ) L(g) with radius at least r′ = ( rs )1/α ≥ 2η. Theorem A.2
establishes the claim.

Proof of Corollary 1.4. We simply combine the main observations from our paper. First, note that
the assumptions imply that the restricted parametrization space Ω, which we are optimizing over, is
the space N ∗(d+2,N1+1,D) from Definition 3.2. Secondly, Theorem 3.3 implies that the realization
map is (4, 1/2) inverse stable on Ω. Thus, Proposition 1.2 directly proves Claim 1. For the proof
of Claim 2 we make use of Lemma A.6. It implies that for every Θ ∈ P(d,N1,D) there exists Γ ∈ Ω
such that it holds that

1
n

n∑

i=1

‖R(Γ)(x̃i)− yi‖2 = 1
n

n∑

i=1

‖R(Θ)(xi)− yi‖2, (50)

which proves the claim.

A.2 Section 2

A.2.1 Additional Material

Lemma A.3 (Reparametrization in case of linearly independent weight vectors). Let

Θ = (AΘ, CΘ) =
(
[aΘ

1 | . . . |aΘ
m]T , [cΘ1 | . . . |cΘm]

)
∈ N(d,m,D) (51)
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with linearly independent weight vectors (aΘ
i )mi=1 and mini∈[m] ‖cΘi ‖∞ > 0 and let

Φ = (AΦ, BΦ) =
(
[aΦ

1 | . . . |aΦ
m]T , [cΦ1 | . . . |cΦm]

)
∈ N(d,m,D) (52)

withR(Φ) = R(Θ). Then there exists a permutation π : [m]→ [m] such that for every i ∈ [m] there
exist λi ∈ (0,∞) with

aΦ
i = λia

Θ
π(i) and cΦi = 1

λi
cΘπ(i). (53)

This means that, up to reordering and rebalancing, Θ is the unique parametrization ofR(Θ).

Proof. First we define for every s ∈ {0, 1}m the corresponding open orthant

Os := {x ∈ Rm : x1(2s1 − 1) > 0, . . . , xm(2sm − 1) > 0} ⊆ Rm. (54)

By assumption AΘ has rank m, i.e. is surjective, and therefore the preimages of the orthants

Hs := {x ∈ Rd : AΘx ∈ Os} ⊆ Rd, s ∈ {0, 1}m, (55)

are disjoint, non-empty open sets. Note that on each Hs the realizationR(Θ) is linear with

R(Θ)(x) = CΘ diag(s)AΘx and DR(Θ)(x) = CΘ diag(s)AΘ. (56)

Since AΘ has full row rank, it has a right inverse. Thus we have for s, t ∈ {0, 1}m that

CΘ diag(s)AΘ = CΘ diag(t)AΘ =⇒ CΘ diag(s) = CΘ diag(t). (57)

Note that CΘ diag(s) = CΘ diag(t) can only hold if s = t due to the assumptions that ‖cΘi ‖∞ 6= 0
for all i ∈ [m]. Thus the above establishes that for s, t ∈ {0, 1}m it holds that

CΘ diag(s)AΘ = CΘ diag(t)AΘ if and only if s = t, (58)

i.e. R(Θ) has different derivatives on its 2m linear regions. In order for R(Φ) to have matching
linear regions and matching derivatives on each one of them, there must exist a permutation matrix
P ∈ {0, 1}m×m such that for every s ∈ {0, 1}m

PAΦx ∈ Os for every x ∈ Hs. (59)

Thus, there exist (λi)
m
i=1 ∈ (0,∞)m such that

AΦ = diag(λ1, . . . , λm)PTAΘ. (60)

The assumption that DR(Θ) = DR(Ψ), together with (56) for s = (1, . . . , 1), implies that

CΦ = CΘP diag( 1
λ1
, . . . , 1

λm
), (61)

which proves the claim.

Example A.4 (Failure due to unbalancedness). Let

Γk :=
(
(k, 0), 1

k2

)
∈ N(2,1,1), k ∈ N, (62)

and gk ∈ R(N(2,1,1)) be given by

gk(x) = 1
kρ(〈(0, 1), x〉), k ∈ N. (63)

The only way to parametrize gk is gk(x) = R(Φk)(x) = cρ(〈(0, a), x〉) with a, c > 0 (see
Lemma A.3), and we have

|R(Φk)−R(Γk)|W 1,∞ ≤ 1
k and ‖Φk − Γk‖∞ ≥ k. (64)

Lemma A.5. Let d,m ∈ N and ai ∈ Rd, i ∈ [m], such that
∑
i∈[m] ai = 0. Then it holds for all

x ∈ Rd that ∑

i∈[m]

ρ(〈ai, x〉) =
∑

i∈[m]

ρ(〈−ai, x〉). (65)

Proof. By assumption we have for all x ∈ Rd that
∑
i∈[m]〈ai, x〉 = 0. This implies for all x ∈ Rd

that ∑

i∈[m] : 〈ai,x〉≥0

〈ai, x〉 −
∑

i∈[m]

〈ai, x〉 =
∑

i∈[m] : 〈ai,x〉≤0

−〈ai, x〉, (66)

which proves the claim.
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A.2.2 Proofs

Proof of Example 2.1. We have for every k ∈ N that

‖gk‖L∞((−1,1)2) ≤ 1
k and |gk|W 1,∞ = k2. (67)

Assume that there exists sequence of networks (Φk)k∈N ⊆ N(2,2,1) with R(Φk) = gk and with
uniformly bounded parameters, i.e. supk∈N ‖Φk‖∞ < ∞. Note that there exists a constant C (de-
pending only on the network architecture) such that the realizationsR(Φk) are Lipschitz continuous
with

Lip(R(Φk)) ≤ C‖Φk‖2∞
(see [34, Prop. 5.1]). It follows that |R(Φk)|W 1,∞ ≤ Lip(R(Φk)) is uniformly bounded which
contradicts (67).

Proof of Example 2.2. The only way to parametrize gk is gk(x) = R(Φk)(x) = cρ(〈(0, a), x〉) with
a, c > 0 (see also Lemma A.3), which proves the claim.

Proof of Example 2.3. Any parametrization of gk must be of the form Φk := (A, c) ∈ R2×2 ×R1×2

with

A =

[
a1 0
0 a2

]
or A =

[
0 a2

a1 0

]
(68)

(see Lemma A.3). Thus it holds that ‖Φk − Γ‖∞ ≥ ‖(1, 0) − (0, a2)‖∞ ≥ 1 and the proof is
completed by direct calculation.

Proof of Example 2.4. Let Φk be an arbitrary parametrization of gk given by

Φk =
(
[ã1|ã2| . . . |ã2m]T , c̃

)
∈ N(d,2m,1) (69)

As gk has two linear regions separated by the hyperplane with normal vector v, there exists j ∈ [2m]
and λ ∈ R \ {0} such that

ãj = λv. (70)

The distance of any weight vector ±ai of Γ to the line {λv : λ ∈ R} can be lower bounded by

‖ ± ai − λv‖2∞ ≥ 1
d‖ ± ai − λv‖22 ≥ 1

d2

[
‖ai‖22‖v‖22 − 〈ai, v〉2

]
, i ∈ [m], λ ∈ R. (71)

The Cauchy-Schwarz inequality and the linear independence of v to each ai, i ∈ [m], establishes
that C := 1

d2 mini∈[m]

[
‖ai‖22‖v‖22 − 〈ai, v〉2

]
> 0. Together with the fact that R(Γ) = 0, this

completes the proof.

Proof of Example 2.5. Since x = ρ(x)− ρ(−x) for every x ∈ R, the difference of the realizations
is linear, i.e.

R(Θk)−R(Γk) = 〈ck1ak1 + ck2a
k
2 + ck3a

k
3 , x〉 = 〈(0, 0, 3), x〉 (72)

and thus the difference of the gradients is constant, i.e.

|R(Θk)−R(Γk)|W 1,∞ = 3, k ∈ N. (73)

However, regardless of the balancing and reordering of the weight vectors aki , i ∈ [3], we have that

‖Θk − Γk‖∞ ≥ k. (74)

By Lemma A.3, up to balancing and reordering, there does not exist any other parametrization of Θk

with the same realization.
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A.3 Section 3

A.3.1 Additional Material

Lemma A.6. Let d,m,D ∈ N and Θ ∈ P(d,m,D). Then there exists Γ ∈ N ∗(d+2,m+1,D) such that
for all x ∈ Rd it holds that

R(Γ)(x1, . . . , xd, 1,−1) = R(Θ)(x). (75)

Proof. Since Θ ∈ P(d,m,D) it can be written as

Θ =
((
A, b

)
,
(
c, e
))

=
((

[a1| . . . |am]T , b
)
, ([c1| . . . |cm], e)

)
(76)

with

R(Θ)(x) =
m∑

i=1

ciρ(〈ai, x〉+ bi) + e, x ∈ Rd, (77)

where A ∈ Rm×d, b ∈ Rm, C ∈ RD×m, and e ∈ RD. We define for i ∈ [m]

b+i :=

{
bi + 1 : bi ≥ 0

1 : bi < 0
, and b−i :=

{
1 : bi ≥ 0

−bi + 1 : bi < 0
(78)

and observe that b+i > 0, b−i > 0, and b+i − b−i = bi. For i ∈ [m] let

c∗i :=

{
ci : ‖ci‖∞ 6= 0

(1, . . . , 1) : ‖ci‖∞ = 0
(79)

and

a∗i :=

{
(ai,1, . . . , ai,d, b

+
i , b
−
i ) : ‖ci‖∞ 6= 0

(0, . . . , 0, 1, 1) : ‖ci‖∞ = 0
. (80)

Note that we have

R(Θ)(x) =
m∑

i=1

c∗i ρ(〈a∗i , (x1, . . . , xd, 1,−1)〉) + e, x ∈ Rd. (81)

To include the second bias e let

c∗m+1 :=

{
e : e 6= 0

(1, . . . , 1) : e = 0
, and a∗m+1 :=

{
(0, . . . , 0, 2, 1) : e 6= 0

(0, . . . , 0, 1, 1) : e = 0
. (82)

In order to balance the network, let aΓ
i = a∗i (

‖c∗i ‖∞
‖a∗i ‖∞

)1/2 and cΓi = c∗i (
‖a∗i ‖∞
‖c∗i ‖∞

)1/2 for every i ∈ [m+1].
Then the claim follows by direct computation.

A.3.2 Proofs

Proof of Theorem 3.1. Without loss of generality6, we can assume for all i ∈ [m] that aΘ
i = 0 if and

only if cΘi = 0. We now need to show that there always exists a way to reparametrize R(Θ) such
that the architecture remains the same and (35) is satisfied. For simplicity of notation we will write
r := |g −R(Γ)|W 1,∞ throughout the proof. Let fΓ

i : Rd → R resp. fΘ
i : Rd → R be the part that is

contributed by the i-th neuron, i.e.

R(Γ) =
m∑

i=1

fΓ
i with fΓ

i (x) := cΓi ρ(〈aΓ
i , x〉), (83)

g =R(Θ) =
m∑

i=1

fΘ
i with fΘ

i (x) := cΘi ρ(〈aΘ
i , x〉). (84)

6In case one of them is zero, the other one can be set to zero without changing the realization.
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Further let
H+

Γ,i := {x ∈ Rd : 〈aΓ
i , x〉 > 0},

H0
Γ,i := {x ∈ Rd : 〈aΓ

i , x〉 = 0},
H−Γ,i := {x ∈ Rd : 〈aΓ

i , x〉 < 0}.
(85)

By conditions C.2 and C.3a we have for all i, j ∈ IΓ that

i 6= j =⇒ H0
Γ,i 6= H0

Γ,j . (86)

Further note that we can reparametrizeR(Θ) such that the same holds there. To this end observe that

cρ(〈a, x〉) + c′ρ(〈a′, x〉) = (c+ c′ ‖a
′‖∞
‖a‖∞ )ρ(〈a, x〉), (87)

given that a′ is a positive multiple of a. Specifically, let (Jk)Kk=1 be a partition of IΘ (i.e. Jk 6= ∅,
∪Kk=1Jk = IΘ and Jk ∩ Jk′ = ∅ if k 6= k′), such that for all k ∈ [K] it holds that

i, j ∈ Jk =⇒
aΘ
j

‖aΘ
j ‖∞

=
aΘ
i

‖aΘ
i ‖∞

. (88)

We denote by jk the smallest element in Jk and make the following replacements, for all i ∈ IΘ,
without changing the realization of Θ:

aΘ
i 7→ aΘ

i , c
Θ
i 7→

∑

j∈Jk
cΘj
‖aΘ

j ‖∞
‖aΘ

jk
‖∞ , if i ∈ Jk and i = jk, (89)

aΘ
i 7→ 0, cΘi 7→ 0, if i ∈ Jk and i 6= jk. (90)

Note that we also update the set IΘ := {i ∈ [m] : aΘ
i 6= 0} accordingly. Let now

H+
Θ,i := {x ∈ Rd : 〈aΘ

i , x〉 > 0},
H0

Θ,i := {x ∈ Rd : 〈aΘ
i , x〉 = 0},

H−Θ,i := {x ∈ Rd : 〈aΘ
i , x〉 > 0}.

(91)

By construction and condition C.3a, we have for all i, j ∈ IΘ that

i 6= j =⇒ H0
Θ,i 6= H0

Θ,j . (92)

Note that we now have a parametrization Θ of g, where all weight vectors aΘ
i are either zero (in

which case the corresponding cΘi are also zero) or pairwise linearly independent to each other nonzero
weight vector.
Next, for s ∈ {0, 1}m, let

Hs
Γ :=

⋂

i∈[m] : si=1

H+
Γ,i ∩

⋂

i∈[m] : si=0

H−Γ,i,

Hs
Θ :=

⋂

i∈[m] : si=1

H+
Θ,i ∩

⋂

i∈[m] : si=0

H−Θ,i,
(93)

and

SΓ := {s ∈ {0, 1}m : Hs
Γ 6= ∅}, SΘ := {s ∈ {0, 1}m : Hs

Θ 6= ∅}. (94)

The Hs
Γ, s ∈ SΓ, and Hs

Θ, s ∈ SΘ, are the interiors of the different linear regions ofR(Γ) andR(Θ)
respectively. Next observe that the derivatives of fΓ

i , f
Θ
i are (a.e.) given by

DfΓ
i (x) = 1H+

Γ,i
(x) cΓi a

Γ
i , DfΘ

i (x) = 1H+
Θ,i

(x) cΘi a
Θ
i . (95)

Note that for every x ∈ Hs
Γ, y ∈ Hs

Θ we have

DR(Γ)(x) =
∑

i∈[m]

DfΓ
i (x) =

∑

i∈[m]

sic
Γ
i a

Γ
i =: ΣΓ

s ,

DR(Θ)(y) =
∑

i∈[m]

DfΘ
i (y) =

∑

i∈[m]

sic
Θ
i a

Θ
i =: ΣΘ

s .
(96)
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Next we use that for s ∈ SΓ, t ∈ SΘ we have |ΣΓ
s − ΣΘ

t | ≤ r if HΓ
s ∩ HΘ

t 6= ∅, and compare
adjacent linear regions ofR(Γ)−R(Θ). Let now i ∈ IΓ and consider the following cases:
Case 1: We have H0

Γ,i 6= H0
Θ,j for all j ∈ IΘ. This means that the DfΘ

k , k ∈ [m], and the DfΓ
k ,

k ∈ [m]\{i}, are the same on both sides near the hyperplane H0
Γ,i, while the value of DfΓ

i is 0 on
one side and cΓi a

Γ
i on the other. Specifically, there exist s+, s− ∈ SΓ and s∗ ∈ SΘ such that s+

i = 1,
s−i = 0, s+

j = s−j for all j ∈ [m]\{i}, and Hs+

Γ ∩Hs∗
Θ 6= ∅, Hs−

Γ ∩Hs∗
Θ 6= ∅, which implies

‖cΓi aΓ
i ‖∞ = ‖(ΣΓ

s+ − ΣΘ
s∗)− (ΣΓ

s− − ΣΘ
s∗)‖∞ ≤ 2r. (97)

Case 2: There exists j ∈ IΘ such that H0
Γ,i = H0

Θ,j . Note that (86) ensures that H0
Γ,i 6= H0

Γ,k for
k ∈ [m] \ {i} and (92) ensures that H0

Θ,j 6= H0
Γ,k for k ∈ [m] \ {j}. Moreover, Condition C.3b

implies H+
Γ,i = H+

Θ,j . This means that the DfΘ
k , k ∈ [m]\{j}, and the DfΓ

k , k ∈ [m]\{i}, are the
same on both sides near the hyperplane H0

Γ,i = H0
Θ,j , while the values of DfΓ

i and DfΘ
j change.

Specifically there exist s+, s− ∈ SΓ and t+, t− ∈ SΘ such that s+
i = 1, s−i = 0, s+

k = s−k for all
k ∈ [m]\{i}, t+j = 1, t−j = 0, t+k = t−k for all k ∈ [m]\{j} and HΓ

s+ ∩HΘ
t+ 6= ∅, HΓ

s− ∩HΘ
t− 6= ∅,

which implies

‖cΓi aΓ
i − cΘj aΘ

j ‖∞ = ‖(ΣΓ
s+ − ΣΘ

t+)− (ΣΓ
s− − ΣΘ

t−)‖∞ ≤ 2r. (98)

Analogously we get for i ∈ IΘ that H0
Θ,i 6= H0

Γ,j for all j ∈ IΓ implies ‖cΘi aΘ
i ‖∞ ≤ 2r. Next let

I1 := {i ∈ [m] : H0
Γ,i 6= H0

Θ,j for all j ∈ IΘ} ∪ {i ∈ [m] : aΓ
i = 0} (99)

and

I2 := [m] \ I1 = {i ∈ [m] : ∃ j ∈ IΘ such that H+
Γ,i = H+

Θ,j}. (100)

Colloquially speaking, this shows that for every fΓ
i with i ∈ I2 there is a fΘ

j with exactly matching
half-spaces, i.e. H+

Γ,i = H+
Θ,j , and approximately matching gradients (Case 2). Moreover, all

unmatched fΓ
i and fΘ

j must have a small gradient (Case 1).
Specifically, the above establishes that there exists a permutation π : [m]→ [m] such that for every
i ∈ I1 it holds that

‖cΓi aΓ
i ‖∞, ‖cΘπ(i)a

Θ
π(i)‖∞ ≤ 2r, (101)

and for every i ∈ I2 that

‖cΓi aΓ
i − cΘπ(i)a

Θ
π(i)‖∞ ≤ 2r. (102)

We make the following replacements, for all i ∈ [m], without changing the realization of Θ:

aΘ
i → aΘ

π(i), cΘi → cΘπ(i). (103)

In order to balance the weights of Θ for I1, we further make the following replacements, for all i ∈ I1
with aΘ

i 6= 0, without changing the realization of Θ:

aΘ
i → (

|cΘi |
‖aΘ

i ‖∞
)1/2 aΘ

i , cΘi → (
‖aΘ

i ‖∞
|cΘi |

)1/2 cΘi . (104)

This implies for every i ∈ I1 that

|cΘi |, ‖aΘ
i ‖∞ ≤ (2r)1/2. (105)

Moreover, due to Condition C.1, we get for every i ∈ I1 that

|cΓi |, ‖aΓ
i ‖∞ ≤ β. (106)

Thus we get for every i ∈ I1 that

|cΘi − cΓi |, ‖aΘ
i − aΓ

i ‖∞ ≤ β + (2r)1/2. (107)
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Next we (approximately) match the balancing of (cΘi , a
Θ
i ) to the balancing of (cΓi , a

Γ
i ) for i ∈ I2,

in order to derive estimates on |cΘi − cΓi | and ‖aΘ
i − aΓ

i ‖∞ from (102). Specifically, we make the
following replacements, for all i ∈ I2, without changing the realization of Θ:

aΘ
i → (

|cΘi |
‖aΘ

i ‖∞
)1/2 aΘ

i , cΘi → (
‖aΘ

i ‖∞
|cΘi |

)1/2 cΘi , if ‖cΓi aΓ
i ‖∞ ≤ 2r, (108)

aΘ
i →

cΘi
cΓi
aΘ
i , cΘi → cΓi , if ‖cΓi aΓ

i ‖∞ > 2r, |cΓi | > ‖aΓ
i ‖∞, (109)

aΘ
i → aΓ

i , cΘi →
‖aΘ
i ‖∞
‖aΓ
i ‖∞

cΘi , if ‖cΓi aΓ
i ‖∞ > 2r, |cΓi | < ‖aΓ

i ‖∞, (110)

aΘ
i → (

|cΘi |
‖aΘ

i ‖∞
)1/2 aΘ

i , cΘi → (
‖aΘ

i ‖∞
|cΘi |

)1/2 cΘi , if ‖cΓi aΓ
i ‖∞ > 2r, |cΓi | = ‖aΓ

i ‖∞. (111)

Let now i ∈ I2 and consider the following cases:
Case A: We have ‖cΓi aΓ

i ‖∞ ≤ 2r which, together with (102), implies ‖cΘi aΘ
i ‖∞ ≤ 4r. Due to (108)

and Condition C.1 it follows that

|cΘi − cΓi |, ‖aΘ
i − aΓ

i ‖∞ ≤ β + 2r1/2. (112)

Case B.1: We have ‖cΓi aΓ
i ‖∞ > 2r and |cΓi | > ‖aΓ

i ‖∞ which ensures |cΓi | > ‖cΓi aΓ
i ‖

1/2
∞ . Due to

(109) we get cΘi = cΓi and it follows that

‖aΘ
i − aΓ

i ‖∞ =
1

|cΓi |
‖cΘi aΘ

i − cΓi aΓ
i ‖∞ ≤

2r

‖cΓi aΓ
i ‖

1/2
∞
≤ (2r)1/2. (113)

Case B.2: We have ‖cΓi aΓ
i ‖∞ > 2r and |cΓi | < ‖aΓ

i ‖∞ which ensures ‖aΓ
i ‖ > ‖cΓi aΓ

i ‖
1/2
∞ . Due to

(110) we get aΘ
i = aΓ

i and it follows that

|cΘi − cΓi | =
1

‖aΓ
i ‖∞

‖cΘi aΘ
i − cΓi aΓ

i ‖∞ ≤
2r

‖cΓi aΓ
i ‖

1/2
∞
≤ (2r)1/2. (114)

Case B.3: We have ‖cΓi aΓ
i ‖∞ > 2r and |cΓi | = ‖aΓ

i ‖∞. Note that ‖cΓi aΓ
i ‖∞ > 2r and (102) ensure

that sgn(cΘi ) = sgn(cΓi ), and that for x, y > 0 it holds that |x− y| ≤ |x2 − y2|1/2. Combining this
with the definition of I2, the reverse triangle inequality, and (111) implies that

‖aΘ
i − aΓ

i ‖∞ ≤ (2r)1/2 and |cΘi − cΓi
∣∣ ≤ (2r)1/2. (115)

Combining (107), (112), (113), (114), and (115) establishes that

‖Θ− Γ‖∞ ≤ β + 2r
1
2 , (116)

which completes the proof.

Proof of Theorem 3.3. Let Θ ∈ N ∗N be a parametrization of g, i.e.R(Θ) = g. We write

Γ =
(



aΓ
1
...

aΓ
m


 ,
[
cΓ1
∣∣ . . .

∣∣cΓm
])
, Θ =

(



aΘ
1
...

aΘ
m


 ,
[
cΘ1
∣∣ . . .

∣∣cΘm
])
∈ N ∗(d,m,D) (117)

and r := |g −R(Γ)|W 1,∞ . For convenience of notation we consider the weight vectors aΓ
i , aΘ

i here
as row vectors in order to write the derivatives of the ridge functions as cΓi a

Γ
i , c

Θ
i a

Θ
i ∈ RD×d without

transposing.
We will now adjust the approach used in the proof of Theorem 3.1 to work for multi-dimensional
outputs in the case of balanced networks. By definition of N ∗N , the (aΘ

i )mi=1 are pairwise linearly
independent and we can skip the first reparametrization step in (89) and (90).
The following “hyperplane-jumping” argument, which was used to get the estimates (97) and (98),
works analogously since Conditions C.2 and C.3 are fulfilled by definition of N ∗N . This establishes
the existence of a permutation π : [m]→ [m] and sets I1, I2 ⊆ [m], as defined as in (99) and (100),
such that for every i ∈ I1 it holds that

‖cΓi aΓ
i ‖∞, ‖cΘπ(i)a

Θ
π(i)‖∞ ≤ 2r, (118)
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and for every i ∈ I2 that

‖cΓi aΓ
i − cΘπ(i)a

Θ
π(i)‖∞ ≤ 2r. (119)

As in (103), we make the following replacements, for all i ∈ [m], without changing the realization of
Θ:

aΘ
i → aΘ

π(i), cΘi → cΘπ(i). (120)

Note that the weights of Θ are already balanced, i.e. we have for every i ∈ [m] that

‖cΘi ‖∞ = ‖aΘ
i ‖∞ = ‖cΘi ‖1/2∞ ‖aΘ

i ‖1/2∞ = ‖cΘi aΘ
i ‖1/2∞ . (121)

Thus, we can skip the reparametrization step in (104) and get directly for every i ∈ I1 that

‖cΘi − cΓi ‖∞ ≤ ‖cΘi ‖∞ + ‖cΓi ‖∞ = ‖cΘi aΘ
i ‖1/2∞ + ‖cΓi aΓ

i ‖1/2∞ ≤ 2(2r)1/2 (122)

and analogously ‖aΘ
i − aΓ

i ‖∞ ≤ 2(2r)1/2.
For i ∈ I2 we need to slightly deviate from the proof of Theorem 3.1. We can skip the reparametriza-
tion step in (108)-(111) due to balancedness and need to distinguish three cases:
Case A.1: We have ‖cΓi aΓ

i ‖∞ ≤ 2r which, together with (119), implies ‖cΘi aΘ
i ‖∞ ≤ 4r. Due to

balancedness it follows that

‖cΘi − cΓi ‖∞, ‖aΘ
i − aΓ

i ‖∞ ≤ 4r1/2. (123)

Case A.2: We have ‖cΘi aΘ
i ‖∞ ≤ 2r which, together with (119), implies ‖cΓi aΓ

i ‖∞ ≤ 4r. Again it
follows that

‖cΘi − cΓi ‖∞, ‖aΘ
i − aΓ

i ‖∞ ≤ 4r1/2. (124)

Case B: We have ‖cΘi aΘ
i ‖∞ > 2r and ‖cΓi aΓ

i ‖∞ > 2r. Due to the definition of I2 there exists
ei ∈ Rd, λΓ

i , λ
Θ
i ∈ (0,∞) with ‖ei‖∞ = 1, aΘ

i = λΘ
i ei, and aΓ

i = λΓ
i ei. As in (115) we obtain that

‖aΘ
i − aΓ

i ‖∞ = ‖ei‖∞|λΘ
i − λΓ

i | ≤ |(λΘ
i )2 − (λΓ

i )2|1/2

= |‖cΘi ‖∞‖aΘ
i ‖∞ − ‖cΓi ‖∞‖aΓ

i ‖∞|1/2

≤ ‖cΘi aΘ
i − cΓi aΓ

i ‖1/2∞ ≤ (2r)1/2.

(125)

Let now w.l.o.g. ‖aΓ
i ‖∞ ≥ ‖aΘ

i ‖∞ (otherwise we switch their roles in the following) which implies
that λΓ

i = ∆i + λΘ
i with ∆i = λΓ

i − λΘ
i ≥ 0. Then it holds that

‖cΘi − cΓi ‖∞ =
‖cΘi aΓ

i − cΓi aΓ
i ‖∞

‖aΓ
i ‖∞

≤ ‖c
Θ
i a

Γ
i − cΘi aΘ

i ‖∞ + ‖cΘi aΘ
i − cΓi aΓ

i ‖∞
‖aΓ
i ‖∞

≤ ‖c
Θ
i ‖∞|λΓ

i − λΘ
i |+ 2r

λΓ
i

=
λΘ
i ∆i + 2r

∆i + λΘ
i

=
(2r)1/2(∆i + λΘ

i )− (λΘ
i − (2r)1/2)((2r)1/2 −∆i)

∆i + λΘ
i

≤ (2r)1/2.

(126)

The last step holds due to (125) and the balancedness of Θ which ensure that

λΘ
i = ‖cΘi aΘ

i ‖1/2∞ > (2r)1/2 ≥ |λΘ
i − λΓ

i | = ∆i. (127)

This completes the proof.

A.4 Section 4

A.4.1 Additional Material

Lemma A.7 (Inverse stability for fixed weight vectors). Let N = (d,m,D) ∈ N3, let A =
[a1| . . . |am]T ∈ Rm×d with

ai
‖ai‖∞

6= aj
‖aj‖∞

and (ai)d−1, (ai)d > 0 (128)
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for all i ∈ [m], j ∈ [m] \ {i}, and define

NA
N :=

{
Γ ∈ NN : aΓ

i = λiai with λi ∈ (0,∞) and ‖cΓi ‖∞ = ‖aΓ
i ‖∞ for all i ∈ [m]

}
. (129)

Then for every B ∈ (0,∞) there is CB ∈ (0,∞) such that we have uniform (CB , 1/2) inverse sta-
bility w.r.t. ‖ · ‖L∞((−B,B)d). That is, for all Γ ∈ NA

N and g ∈ R(NA
N ) there exists a parametrization

Φ ∈ NA
N with

R(Φ) = g and ‖Φ− Γ‖∞ ≤ CB‖g −R(Γ)‖
1
2

L∞((−B,B)d)
. (130)

Proof. Note that the non-zero angle between the hyperplanes given by the weight vectors (ai)
m
i=1

establishes that the minimal perimeter inside each linear region intersected with (−B,B)d is lower
bounded. As the realization is linear on each region, this implies the existence of a constant
C ′B ∈ (0,∞), such that for every Θ ∈ NA

N it holds that

|R(Θ)|W 1,∞ ≤ C ′B‖R(Θ)‖L∞((−B,B)d). (131)

Now note that for NA
N we can get the same uniform (4, 1/2) inverse stability result w.r.t. | · |W 1,∞

as in Theorem 3.3 by choosing π to be the identity in (118). Together with (131) this implies the
claim.
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email: dennis.elbraechter@univie.ac.at

Education
Since 11/2017 University of Vienna, Phd student

Advisor: Prof. Philipp Grohs

Topic: ’Approximation capabilities of ReLU neural networks’

10/2014 – 9/2017 TU Munich, Master Mathematik
Thesis: ’Recovery of atomic measures from Short Time Fourier

Transform measurements’

10/2010 – 9/2014 TU Munich, Bachelor Mathematik
Thesis: ’An uncertainty relation for joint measurements’

Employment & Internships

11/2017 – 04/2021 University of Vienna, Research Assistant

9/2019 – 2/2020 University of Vienna, Teaching Assistant
Exercises for ’Lineare Algebra für PhysikerInnen’

10/2016 – 2/2017 TU Munich, Teaching Assistant
Exercises for ’Elements of Harmonic Analysis’

11/2013 – 1/2014 Zuse Institute Berlin, Intern
Worked on the LP solver SoPlex

Selected Publications
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