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abstract

This thesis is dedicated to model equations for atmospheric flows in the tropics, em-
ploying the β−plane approximation. Besides the general equations for compressible
flows and those for shallow water in the equatorial region, we focus on the weak tem-
perature gradient approximation and further discuss the Matsuno-Gill model and the
equatorial long-wave equations.
We then investigate the relationship between those models with formal asymptotic
expansions utilizing multiple scales, based on the seminal paper by Rupert Klein and
Andrew Majda [12]. We give a detailed explanation of the method of multiple scales
with a particular emphasis placed on the interplay between modelling assumptions
and the choice of the formal ansatz.
The topic of rigorous analysis of multiple scales asymptotics is also included: we
present a recent convergence proof from the paper [3] concerning the formal relation-
ship between the shallow water equations and the equatorial long-wave equations.
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Introductory remarks

This thesis deals with time dependent PDEs (partial differential equations) as they
appear to describe “flows” that model the (earths) atmosphere, i.e. in climate and/or
weather research. The earliest such PDE models date back to Euler, then Navier and
Stokes, to name just the most famous ones, modeling (in)compressible (in)viscid fluid
dynamics. The analysis e.g. of existence of global (in time) solutions of such PDEs
as well as their rigorous justification in model hierarchies is largely open, with contri-
butions of many excellent mathematicians. Of course, the numerical solution of such
PDEs is a considerable and very important task, too in this thesis we put emphasis
on analysis and modeling, dealing with the very complex situation of realistic models
for atmospheric flows near the equator.
The method of multiple scales, which belongs to the broader mathematical field of
“asymptotic analysis” (“perturbation theory” in physics), has its origins in the treat-
ment of physical problems that depend on two or more different (time) scales. These
two scales are linked through a physical parameter that can be viewed as “asymp-
totically small” (the famous ε that can be sent to zero: ε → 0 to obtain a “reduced
problem”.) We consider a multiple scales expansion of functions that are allowed to
explicitly depend on two scales with respect to small parameters.
The basic idea is historically well known as “formal asymptotics”, more rigorous
mathematical results start from 1960 on dealing with its application to nonlinear
ordinary differential equations, specifically the nonlinear oscillator. More recent is
the use of multiple scales in the rigorous analysis of partial differential equations;
in particular multiple scale techniques have proven to be a powerful tool in estab-
lishing and analysing model hierarchies for geophysical flows. The reason for this
is that atmospheric motions as well as oceanic currents are characterized by the si-
multaneous occurrence of phenomena acting on vastly different scales in time and
space; in a sense, the method of multiple scales is therefore naturally adapted to the
challenge of finding reduced model equations that are more accessible to rigorous
mathematical and numerical analysis. This challenge is a very timely one, given that
current general circulation models that we use to predict the evolution of the earth’s
climate are ultimately based on the PDEs of geophysical fluid dynamics. Deriving
new approximations to those equations and assessing their accuracy is therefore an
important task.
In the present thesis, we review developments in this field pertaining to the equatorial
region. The main focus is on understanding the method, specifically the subtleties
and pitfalls involved in the choice of the correct modelling ansatz, but we also devote
one chapter to a convergence theorem that illustrates how the formal derivation of a
reduced model can be translated to a rigorous proof.
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Chapter 1

Near-equatorial flows

We start by introducing the governing equations for atmospheric flows in the tropics.
In order to provide sufficient context, we also sketch the derivation of the equatorial
long-wave equations, the Matsuno-Gill model and the weak temperature gradient
approximation, employing traditional scaling techniques. These approximations will
later be rederived in a unified, systematic fashion from a multiscale ansatz.
The purpose of this first derivation is twofold:

1. We familiarise ourselves with the original physical motivation for the various
models.

2. We observe how common it is for equivalent systems to be formulated and scaled
in drastically different ways, which can make it difficult to establish connections
between the various flow regimes. This highlights the main strength of the
multiscale ansatz: therein, all model equations are derived from the same basic
scaling and questions regarding self-consistency or interaction between different
regimes can be readily explored.

1.1 Equations for compressible flow

1.1.1 The β-plane approximation

Since the earth rotates around its own axis, it is customary in meteorology to in-
troduce a corresponding rotating frame of reference for the equations of motion;
any given point on the earth’s surface is then stationary in that frame of reference,
while the equations of motion are altered: in particular, as described for example in
[18], the equations for conservation of momentum have to incorporate the Coriolis
acceleration

2Ω× v

in order to correctly describe the motion of fluids in the atmosphere. (v denotes the
fluid velocity; Ω is the earth rotation vector)
Throughout this thesis, we will follow the convention that

• x denotes zonal variation, that is the eastwards distance from the prime merid-
ian,
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• y denotes meridional variation, that is the northwards distance from the equa-
tor and

• z denotes the vertical distance from the surface of the earth.

Since the globe can be viewed as an approximate sphere, (x, y, z) constitute a spher-
ical coordinate system; however, whenever we are only interested in a region around
a given latitude, it is common to employ a so-called tangent plane approximation:
the curvilinear coordinates x and y are then replaced by cartesian coordinates in
the tangent plane at reference latitude θ0; colloquially, one could speak of a “locally
flattened” earth.
In such a tangent plane approximation, sphericity is not completely neglected, how-
ever: the Coriolis force accounts for its effects in an indirect manner, and it is therefore

important to assess its strength. Generally, with Ω := |Ω|, we have Ω = Ω(
0

cos θ
sin θ

) and

2Ω× v = 2Ω

 0
cos θ
sin θ

×
uv
w

 = 2Ω

w · cos θ − v · sin θ
u · sin θ
−u · cos θ

 .

In the equatorial region, our reference latitude is θ0 = 0. The sin-terms in the above
are then small and we seek an approximation via linearization around the reference
latitude; with a denoting the earth radius, we get

sin θ = sin
(y
a

)
= sin(0) +

y

a
cos(0) +O(

(y
a

)2

) =
y

a
+O(

(y
a

)2

);

replacing sin θ by y
a

in the Coriolis acceleration constitutes the core of the equatorial
β-plane approximation that we will use throughout this thesis - the Coriolis parameter
f = 2Ω sin θ can then be estimated by f ≈ βy, with β = 2Ω

a
. In its classical form, it

also postulates that the term w · cos θ can be dropped; we will later obtain this as a
natural consequence of our scaling assumptions.

1.1.2 The governing equations

The most general mathematical setting for our subject matter is provided by the
equations for three-dimensional compressible flow in the equatorial β-plane:

ut − u · ∇u + u · uz + 2(Ω× v)‖ +
1

ρ
∇p = Su, (1.1)

wt + u · ∇w + wwz + 2(Ω× v)⊥ +
1

ρ
pz = Sw − g, (1.2)

pt + u · ∇p+ wpz + γp(∇ · u + wz) = ρSp, (1.3)

θt + u · ∇θ + wθz = Sθ. (1.4)

Here, v = (u, v, w) is the full flow velocity, where u = (u, v) and w denote its hor-
izontal and vertical components, respectively. ∇ = ( ∂

∂x
, ∂
∂y

) denotes the horizontal

gradient and the subscripts ‖ and ⊥ indicate the horizontal and vertical projections
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of a vector, respectively.
Ω is the earth rotation vector, p denotes the pressure and θ the potential temper-
ature. ρ is the density of the fluid and g the acceleration of gravity. Finally, γ is

the isentropic exponent and it holds the relation ρ = Ap
1
γ

θ
, where A is a physical

constant. This is the isentropic equation. Any term of the form Sx denotes a source
term for the quantity x that accounts for the effects of turbulent transport, radiation,
moisture etc.

For the purposes of scale analysis, we need to write those equations in nondimen-
sional form: Choosing a reference length lref , a reference time tref , and repeating this

process for all the other physical quantities involved (vref is given by vref =
lref
tref

), we

obtain the system

ut + u · ∇u + u · uz +
2

RoB
(f × v)‖ +

1

M2

1

ρ
∇p = Su, (1.5)

wt + u · ∇w + wwz +
2

RoB
(f × v)⊥ +

1

M2

1

ρ
pz = Sw −

1

F̄ r
2 , (1.6)

pt + u · ∇p+ wpz + γp(∇ · u + wz) = ρSp, (1.7)

θt + u · ∇θ + wθz = Sθ, (1.8)

as presented in Klein and Majda’s paper [12]. We keep the same notation for the
nondimensional variables for simplicity. Here, f is an earth rotation unit vector; the

isentropic relation in its nondimensional form now reads ρ = p
1
γ

θ
. The characteristic

dimensionless numbers, defined as in [12], are:

• The bulk microscale Rossby number RoB =
vref
Ωlref

.

• The Mach number M =
vref√
pref/ρref

.

• The barotropic Froude number F̄ r =
vref√
g·lref

.

We note that the Rossby number depends on the chosen basic length scale; this
distinction is very important, since Rossby numbers for different scales will exhibit
qualitatively different behaviour when deriving reduced model equations. Equations
(1.5)-(1.8) will serve as the starting point for the multiple-scale analysis in chapter 3;
before that, however, let us consider a simpler set of equations that lends itself more
readily to mathematical analysis:

1.2 The equatorial shallow water equations

For the study of certain large-scale atmospheric motions, the effects of density strat-
ification can be ignored. This fundamental assumption leads to a strongly simplified
mathematical model called the shallow water equations - [18] gives a detailed deriva-
tion from the compressible flow equations.
In the equatorial β-plane, where the Coriolis parameter f is given by f = βy, those
equations have the form
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Dv

Dt
+ βyv⊥ + g∇H = Sv (1.9)

DH

Dt
+Hdivv = Sh. (1.10)

Here, v = (u, v) is the horizontal velocity, whereas H is the geopotential height;
v⊥ = (−v, u) and the right-hand side comprises the source terms, as above. The
operator D

Dt
= ∂

∂t
+ v · ∇ denotes the material derivative, which constitutes the time

derivative of a moving parcel of fluid.
The derivation of those equations from the compressible flow equations is not our
focus here, but it is instructive to sketch their relationship: Ignoring the source
terms for now and identifying H with ρ, equation (1.10) is the shallow water variant
of the continuity equation

Dρ

Dt
+ ρdivv = 0,

while equation (1.9) is the momentum equation corresponding to (1.1). If we now
recall that for an isentropic ideal gas, the formula p = Aργ holds, the corresponding
equations can actually be shown to be equivalent in this case for suitable values of
A and γ.
Again, we want to analyse the equations in nondimensional form; Choosing a refer-
ence length, time and velocity as before and writing the geopotential height in the
form H = H0(1 + Fh), where the parameter F gives the nondimensional strength of
geopotential height perturbations, we obtain

Dv

Dt
+ β̃yv⊥ + F (Fr)−2∇h = Sv (1.11)

and

Dh

Dt
+ h divv + F−1divv = Sh. (1.12)

Here, β̃ = βlref tref , while Fr =
vref√
gH0

is the Froude number. Note that H0 here takes
the place of lref in the previous definition; since the convention H0 = lref will be
used in our analysis of compressible flow, the two definitions are equivalent.
This is the formulation of the shallow water equations we will use in chapter 2.
If we specify

• lref = ( c
β
)
1
2

• tref = (cβ)−
1
2

• vref = c

• H0 = c2

g
,
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with some reference velocity c, and choose F = 1 in the definition of H, the nondi-
mensional equations read

Dv

Dt
+ yv⊥ +∇h = Sv (1.13)

and

Dh

Dt
+ h divv + divv = Sh. (1.14)

This is the nondimensionalisation employed in the section to follow.

Remark: Under the thermodynamic assumptions of shallow water theory, the above
equations can be restated essentially equivalently in terms of v and one the following
variables:

• The already introduced geopotential height.

• The (ordinary) height, measured from the surface of the earth to the fluid top
layer.

• The fluid depth, given by the top-to-bottom thickness of the fluid.

• The pressure.

• The potential temperature.

1.3 The equatorial long-wave equations

Near-equatorial flows are characterized by the smallness of the Coriolis parameter,
which vanishes at the equator. This leads to the emergence of equatorial trapped
waves that exhibit qualitatively different behaviour in the (zonal) x-direction and
the (meridional) y-direction, as described in chapter 9 of Andrew Majda’s book [15];
in particular, geostrophic balance is enforced only in the meridional direction. It is
therefore important to find reduced model equations that capture those phenomena,
and in a manner already resembling the more advanced multiscale ansatz, we will now
rescale the shallow water equations in order to arrive at a reduced set of equations
as a formal limit:
Our scaling is based on the observation that for a standard value of c = 50m/s, the
length scale defined above is lref ≈ 1500 km. However, the circumference of the earth
is ≈ 40000 km, implying that the zonal length scale is greater than the meridional
length scale by an order of magnitude. Additionally, meridional velocities are low,
leading to the following rescaling:

• x′ = εx

• t′ = εt

• εv′ = v,
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while all remaining variables remain unchanged; ε is a small parameter that stands
for the ratio of our two different length scales.
We introduce accordingly rescaled source terms S ′v = ε · Svand S ′h = ε · Sh. - It
should be noted that the validity of this scaling procedure generally depends on the
physical effects subsumed in those terms; we content ourselves with the remark that
it is indeed valid when only dissipation and thermal forcing are considered.
Plugging the new variables into (1.13)-(1.14) and dropping the primes fr notational
simplicity results in the system of long-wave scaled equatorial shallow water equations
from [15], chapter 9:

Du

Dt
− yv + hx = Su (1.15)

ε
Dv

Dt
+ yu+ hy = εSv (1.16)

Dh

Dt
+ h divv + divv = Sh. (1.17)

Further ignoring terms of order ε and ε2 in equation (1.16) - which amounts to
enforcing meridional geostrophic balance -, we get the nonlinear equatorial long-wave
equations (NLELWE)

Dh

Dt
+ h divv + divv = Sh (1.18)

Du

Dt
− yv + hx = Su (1.19)

yu+ hy = 0. (1.20)

Setting the source terms to zero and linearising this system around (u, h) = (0, 0),
which in this case simply means dropping the advective term in D

Dt
, we finally obtain

the linear equatorial long-wave equations (LELWE)

ht + h divv + divv = 0 (1.21)

ut − yv + hx = 0 (1.22)

yu+ hy = 0. (1.23)

A discussion of basic properties of those equations can be found in [15], chapter 9.
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1.4 The Matsuno-Gill model

In 1980, A.E. Gill published an article with the aim of studying the response of the
tropical atmosphere to a heating source, using the simplest mathematical model that
could still be considered viable; this motivated the choice of the following variant of
the linearised shallow water equations:

vt +
1

2
yv⊥ +∇p = 0 (1.24)

pt + divv = −S. (1.25)

The equations are taken from [6] in nondimensional form; instead of the height, the
equations are given in terms of the nondimensional pressure perturbation p and S is
the heating rate. The reference length lref = ( c

2β
)
1
2 and time tref = (wβc)−

1
2 produce

the factor 1
2

in the momentum equation (1.24).
The inclusion of dissipative processes in the form of Rayleigh friction and Newto-
nian cooling can be expressed by simply replacing the time derivative ∂

∂t
by ∂

∂t
+ ε

with a small parameter ε, provided the effects of friction and cooling have the same
magnitude. Further assuming a stationary flow, the time derivatives vanish and
(1.24)-(1.25) then look like the following:

εu− 1

2
yv + px = 0 (1.26)

εv +
1

2
yu+ py = 0 (1.27)

εp+ divv = −S (1.28)

These model equations were first investigated by Matsuno in 1966.
Gill in his 1980 article derived, for certain given S, explicit solutions for equations
(26)-(28) under the additional assumption of geostrophic balance in the y-momentum
equation, i.e. ε = 0 in (27). Here, we are not concerned with the structure of those
solutions that describe geophysical phenomena like the Walker circulation over the
Pacific ocean, but again point to the fact that the model equations just derived will
reappear, together with LELWE, as a leading order limit to the shallow water system
in chapter 2.

1.5 The weak temperature gradient approxima-

tion

It is another characteristic feature of the tropical atmosphere that horizontal temper-
ature gradients are small. As in the case of the long-wave equations, this observation
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translates to a scaling ansatz in the model equations that involves a small dimension-
less parameter; the derivation below follows the presentation in [21] by Adam Sobel
et al.
Sobel and his co-authors take the shallow water equations on an f -plane, where
the Coriolis parameter is taken to be constant, as their starting point; source terms
incorporate (Rayleigh) friction and mass:

DH

Dt
+H divv = S (1.29)

Dζ

Dt
+ ζ divv + f divv = −αζ (1.30)

δt +
1

2
∆|v|2 + g∆H − k · ∇ × (v(ζ + f)) = −αδ. (1.31)

The drastically different appearance of the latter two equations stems from a refor-
mulation of the momentum equations in terms of the vertical vorticity ζ = −uy + vx
and the divergence δ = divv (it follows from Helmholtz’s theorem that the two for-
mulations are actually equivalent). H is the fluid depth, k is a vertical unit vector,
S a mass source (corresponding to heating) and α the dissipation rate.
The nondimensionalization employed by Sobel et al. is the following: Given refer-
ence values lref , tref , and S0 for length, time and the mass source, respectively, and
separating the depth H = H0 +h(x, t) into a mean and a perturbation around it, we
choose

• vref =
S0lref
H0

and

• ζref = δref = S0

H0
,

i.e. vorticity and divergence are supposed to be of the same order of magnitude; for
the height perturbation, we choose

href =
S0fl

2
ref

gH0

.

The nondimensional form of (1.29)-(1.31) is then given by

Bu(
1

ftref
ht +Ro div(vh)) + δ = S, (1.32)

1

ftref
ζt + div(v(Roζ + 1)) = −α

f
ζ, (1.33)

1

ftref
δt +Ro

1

2
∆(|v|2) + ∆h− k · ∇ × (v(Roζ + 1)) = −α

f
δ, (1.34)

where Bu = (
lref
lR

)2 is the Burger number, with the Rossby radius lR =
√
gH
f

; the

Rossby number is given by Ro =
vref
flref

(recall that the Coriolis parameter here is
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taken to be constant!)

Remark: In the standard references, the Burger number is defined as the inverse

ratio
(

lR
lref

)2

.

We now want to motivate the characteristic form of the weak temperature gradient
(WTG) approximation in the shallow water context: recalling that H can be seen
as a stand-in for the potential temperature, it is natural to assume small height
perturbations h, corresponding to weak temperature gradients. The leading-order
approximation to (1.29) is then given by H0δ ≈ S; in the nondimensional equation
(1.32), this translates to δ ≈ S.
This approximation now arises if we let Bu → 0 formally, under the assump-
tion that 1

ftref
and Ro are both at most O(1). In order to ensure balance in the

vorticity and divergence equations, we further rescale ζ ′(x, ftref t) = ζ(x, t) and
h′(x, ftref t) = h(x, t). Changing variables, dropping the primes and taking the formal
limit yields equations (10)-(12) in [21]:

δ = S (1.35)

ζt + S(Roζ + 1) + v · ∇(Roζ + 1) = −α
f
ζ (1.36)

∆h = −St −Ro
1

2
∆(|v|2) + k · ∇ × (v(Roζ + 1))− α

f
S. (1.37)

it should be pointed out that, in the present regime, the first two equations already
fully determine the flow and (1.37) is only given for completeness; (1.35)-(1.36) are
what we will call the WTG approximation from here on out.
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Chapter 2

Modeling with multiple scales

2.1 Outline of the general approach

Motions in the earth’s atmosphere - and the ocean - occur on a large variety of
different length - and timescales, from small-scale phenomena such as dust devils
and tornadoes to the flows that make up the global atmospheric circulation, which
include the westerlies in the midlatitudes, the easterlies in the tropical region and
many others.
For scales that exceed a few kilometers or minutes, the fundamental assumption
that permits the application of the method of multiple scales is scale separation
induced by the thermal stratification of the atmosphere - as described in [11]; in
mathematical terms, the ratio between two scales can then be expressed in terms
of a nondimensional parameter ε, which motivates a formal asymptotic expansion
ansatz for the dependent variables in the governing equations:

U =
∑
i

εiU(i).

If multiple time and/or length scales are involved, the functions U (i) generally depend
on all of them; taking two length scales X1,X2 and two time scales T1, T2 each as an
example, we would have U (i) = U (i)(X1,X2, T1, T2), where Xj = εαjx and Tj = εβj t
for some - not necessarily integer-valued - αj, βj, respectively. We should also remark
that the asymptotic expansion itself is not always restricted to integer powers of ε,
as we will see later on in this chapter.
The physical assumption of scale separation can now be translated to the mathemat-
ical assumption that the expansion just described is unique; in the case of multiple
scales, this has farther-reaching consequences that will be discussed in the next sec-
tion.
The application of the method of multiple scales to a physical problem can now be
sketched as follows:

1. Having chosen a system of equations, such as the compressible flow equations
or the shallow water equations described in the introduction, the equations
are nondimensionalized by an appropriate choice of scales for time, length and
the involved dependent variables such as flow velocity, pressure or potential
temperature.
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2. In most cases, several nondimensional numbers will occur in the resulting sys-
tem; those are then expressed as powers of one single small parameter ε. The
limit as ε→ 0 formally is then called a distinguished limit. The ”correct” choice
of a distinguished limit generally is nontrivial and requires a solid empirical un-
derstanding of the problem at hand; in the realm of meteorology, Rupert Klein
in [9] and [10] proposed a universally applicable distinguished limit that we will
employ in the derivations to come.

3. Additional length and time scales are chosen and an expansion ansatz as de-
scribed above is inserted into the equations that now only depend on one pa-
rameter.

4. The leading-order and higer-order equations, as needed, are derived in the usual
fashion of collecting terms of equal order in ε. Further reduced dynamics are
obtained by considering solutions that depend on only one set of variables in
space and time.

The remainder of this chapter will be devoted to the models obtained in the already
mentioned seminal paper [12] by Rupert Klein and Andrew Majda by the method of
multiple scales; its first showcase will be the systematic re-derivation of the classical
approximations to the shallow water equations discussed in chapter 1. The scope
of this thesis does not permit going beyond Klein and Majda’s results, but we will
expound the mathematical aspects of their work in more detail than the original
article provides.

2.2 The shallow water case

Remark: Since our derivations in this chapter are formal, no discussion of appropri-
ate function spaces, convergence, smoothness or interchange of limits will take place;
a rigorous treatment of those derivations is generally possible, but very demanding,
as demonstrated to some degree in chapter 3.

Let us recall the equatorial shallow water equations in nondimensional form, as given
in [12]:

Dv

Dt
+ β̃yv⊥ + F (Fr)−2∇h = Sv

and

Dh

Dt
+ h divv + F−1 divv = Sh,

where F denotes the nondimensional strength of geopotential height perturbations
and β̃ = βlref tref , F r =

vref√
gH0

.

The standard choice for the reference velocities here is vref = 5ms−1 and Cref :=√
gH0 = 50ms−1, which represents the wave speed of the first baroclinic mode for

dry gravity waves; with an estimate of perturbations of geopotential height being in
the range ±10% and the assumption that vref is small compared to Cref , we can set
ε := Fr = F = 0.1 to investigate in the following the reduced dynamics that result
from the formal limit ε→ 0 :

13



2.2.1 The IPESD models

The standard length and time units in the equatorial region on the synoptic scale are
ls, the synoptic length scale:

ls = (
Cref
β

)
1
2 = 1500 km

and TES, the equatorial synoptic timescale:

TES = (Crefβ)−
1
2 = 8h.

Our first regime of interest, the intraseasonal planetary equatorial synoptic-scale dy-
namics (IPESD), occur on the equatorial synoptic length scale, but not on the stan-
dard timescale; instead, we consider the corresponding advective timescale TI :

TI =
ls
vref

= ε−1TES = 80h,

10 units of which make up more than a month; for that reason, TI is called an
intraseasonal timescale.
Owing to the shape of the equatorial region, it is natural to expect zonal variations
on a larger scale; therefore, we introduce lp = ε−1ls = 15000 km as a planetary length
scale and the corresponding variable Xp = εx; with those considerations and the
above definition of ε, we are therefore looking for solutions to the system

Dv

Dt
+ ε−1(yv⊥ +∇h) = ε−1Ŝv, (2.1)

Dh

Dt
+ h divv + ε−1 divv = ε−1Ŝh, (2.2)

where ε−1Ŝv = Sv, ε
−1Ŝh = Sh, i.e. we assume source terms of order up to O(ε−1).

The nondimensional velocity and height perturbations are v = v(Xp, x, y, t) and
h = h(Xp, x, y, t), with zonal variations on both the synoptic and the planetary
scale.
In order to isolate the dynamics on the planetary scale, we will make use of the zonal
average f of any function f = f(Xp, x, y, t), which is defined as follows:

f(Xp, y, t) = lim
L→∞

1

2L

∫ L

−L
f(Xp, x, y, t)dx.

Evidently, we can decompose any such f in the manner f = f + f ′, where f ′ = 0.
With this definition, we are now ready to state the expansion ansatz for the IPESD
models:

v = V(0)(Xp, y, t) + v(0)(Xp, x, y, t) + εv(1)(Xp, x, y, t) +O(ε2), (2.3)

h = H(0)(Xp, y, t) + h(0)(Xp, x, y, t) + εh(1)(Xp, x, y, t) +O(ε2), (2.4)
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where the leading-order terms are split into the zonal averages V(0), H(0) and the
remainders v(0), h(0), which satisfy v(0) = 0, h(0) = 0. This a-priori decomposition is
done purely for the purpose of more compact notation.
Before we start with the derivation of our model equations, we need to point to
a crucial requirement for the formal validity of our multiscale ansatz: in order to
guarantee that the terms of leading order in (2.3)-(2.4) actually describe the leading-
order behaviour in our formal setting, v(1), h(1) need to fulfil the sublinear growth
conditions

lim
x→∞

(
v(1)(Xp, x, y, t)

|x|+ 1

)
= lim

x→∞

(
h(1)(Xp, x, y, t)

|x|+ 1

)
= 0. (2.5)

See [7], chapter 4, for a thorough discussion of the mathematical implications of this
condition.
If those conditions were not fulfilled, εv(1), εh(1) would attain the same magnitude as
the leading-order terms for |x| = O(ε−1).
Further, we clarify that Xp at every step of the procedure is regarded as an indepen-
dent variable initially, which is then restricted to Xp = εx; the chain rule then yields
for any f(Xp, x, y, t) that df

dx
= ε ∂f

∂Xp
+ ∂f

∂x
. Finally, we assume an expansion for the

source terms:
Ŝv = Ŝ(0)

v + εŜ(1)
v +O(ε2),

Ŝh = Ŝ
(0)
h + εŜ

(1)
h +O(ε2).

We are now ready to begin:
Inserting (2.3)-(2.4) into (2.1), we collect terms of equal order in ε as usual to identify
the resulting regimes. In this, we need to treat the zonal and meridional momentum
equations separately, due to the split terms in our expansion ansatz. At leading order
O(ε−1), we obtain

−yV (0) − yv(0) +
∂h(0)

∂x
= Ŝ(0)

u , (2.6)

yU (0) + yu(0) +
∂H(0)

∂y
+
∂h(0)

∂y
= Ŝ(0)

v . (2.7)

The same ansatz in (2.2) yields

∂V (0)

∂y
+ divv(0) = Ŝ

(0)
h . (2.8)

Next, we apply the zonal averaging operator (·) : By the fundamental theorem of

analysis,
(
∂f
∂x

)
= 0 for any bounded f ; since the leading-order terms have to be

bounded for obvious physical reasons, we can make use of this relation in equation
(2.5). Keeping in mind that V (0) is independent of x, v(0) = 0 and partial derivatives
other than ∂x commute with (·), the zonally averaged versions of (2.6) and (2.8) then
are:
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−yV (0) = Ŝ
(0)
u , (2.9)

∂V (0)

∂y
= Ŝ

(0)
h . (2.10)

We note that these equations impose a constraint on the source terms: Ŝ
(0)
u =

−y
∫
Ŝ

(0)
h − Cy for some constant C.

Equation (2.7) becomes

yU (0) +
∂H(0)

∂y
= Ŝ

(0)
v . (2.11)

Substracting (2.9)-(2.11) from the respective original equations gives

−yv(0) +
∂h(0)

∂x
= Ŝ(0)

u − Ŝ
(0)
u , (2.12)

yu(0) +
∂h(0)

∂y
= Ŝ(0)

v − Ŝ
(0)
v , (2.13)

divv(0) = Ŝ
(0)
h − Ŝ

(0)
h . (2.14)

In this system, we recognize the structure of the Matsuno-Gill model (1.26)-(1.28)
from chapter 1, where the ε−terms on the left-hand side can be equated with the
source terms in the present regime.

So far, we have derived equations that determine V (0) as well as u(0), v(0) and h(0).
To obtain a closed system for U (0) and H(0), we will need to consider the first-order
perturbations O(ε0) of (2.1) and (2.2):
The u-component of (1) at O(ε0) reads

U
(0)
t + u

(0)
t + (U (0) + u(0)) · u(0)

x + (V (0) + v(0)) · (U (0)
y + u(0)

y )

−yv(1) +H
(0)
Xp

+ h
(0)
Xp

+ h(1)
x = Ŝ(1)

u , (2.15)

where we have abbreviated partial derivatives by a subscript for brevity; we shall
keep this notation as long as it does not create room for confusion.
Once more, we are interested in the zonal average, and it is here that the aforemen-
tioned sublinear growth condition comes into play: another straightforward appli-

cation of the fundamental theorem of analysis yields that u
(1)
x = v

(1)
x = h

(1)
x = 0,

provided that the sublinear growth condition is fulfilled! With this remark and the

observation that u(0)u
(0)
x = [u

(0)2

2
]x, meaning that the zonal average of this term van-

ishes, the result is quickly seen to be

U
(0)
t + V (0)U (0)

y + v(0)u
(0)
y − yV (1) +H

(0)
Xp

= Ŝ
(1)
u , (2.16)
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where V (1) := v(1).
Collecting all O(ε0)−terms in (2.3) yields

H
(0)
t + h

(0)
t + (U (0) + u(0))h(0)

x + (V (0) + v(0))(H(0)
y + h(0)

y )

+(H(0) + h(0)) · (u(0)
x + V (0)

y + v(0)
y ) + U

(0)
Xp

+ u
(0)
Xp

+ u(1)
x + v(1)

y = Ŝ
(1)
h . (2.17)

Here, we remark that u(0)h
(0)
x + h(0)u

(0)
x = [u(0)h(0)]x; together with all previous indi-

cations, the zonal average of (2.18) then is

H
(0)
t + V (0)H(0)

y + v(0)h
(0)
y +H(0)V (0)

y + h(0)v
(0)
y + U

(0)
Xp

+ V (1)
y = Ŝ

(1)
h . (2.18)

Combined with (2.11), we get the system

U
(0)
t + V (0)U (0)

y + v(0)u
(0)
y − yV (1) +H

(0)
Xp

= Ŝ
(1)
u , (2.19)

H
(0)
t + V (0)H(0)

y + v(0)h
(0)
y +H(0)V (0)

y + h(0)v
(0)
y + U

(0)
Xp

+ V (1)
y = Ŝ

(1)
h , (2.20)

yU (0) +
∂H(0)

∂y
= Ŝ

(0)
v . (2.21)

These equations are called the quasi-linear equatorial long-wave equations (QLELWE),
according to [12]. A side-by-side comparison with equations (1.18)-(1.23) from before
reveals that they are indeed reduced versions of the nonlinear variant, but consider-
ably more complex than LELWE.

Remark: The term H(0)V
(0)
y in QLELWE is omitted in the original article; with-

out specific assumptions on the source terms, it needs to be included.

(2.9)-(2.10), the Matsuno-Gill-type equations (2.12)-(2.14) and QLELWE all com-
bined constitute the IPESD regime as defined by Klein and Majda. When we ignore
variation on the planetary scale, that is, we look for solutions independent of Xp, the
resulting equations are called the synoptic-scale equatorial weak temperature gradient
(SEWTG) equations. Our derivation is now complete.

Remark: We can work with the exact same setup, but consider two timescales in-
stead of two length scales: looking for solutions that vary only on the synoptic scale
ls spatially, but on the synoptic timescale TES = εTI as well as the intraseasonal scale
TI , the corresponding new time variable is TES = t/ε and we have v = v(x, y, t, TES)
and h = h(x, y, t, TES). Assuming a regular expansion of the form

v = v(0)(x, y, t, TES) + εv(1)(x, y, t, TES) +O(ε2),

h = h(0)(x, y, t, TES) + εh(1)(x, y, t, TES) +O(ε2),

the resulting equations at O(ε−1) then are
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v
(0)
TES

+ yv(0)⊥ +∇h(0) = Ŝ(0)
v , (2.22)

h
(0)
TES

+ divv(0) = Ŝ
(0)
h , (2.23)

which make up the standard linear equatorial wave equations (LEWE). The deriva-
tion itself is straighforward enough to be skipped in this instance; we only mention
the result for comparison purposes in the next section.

2.2.2 The MEWTG models

We now derive the classical mesoscale equatorial weak temperature gradient (MEWTG)
dynamics. In order to obtain meaningful results, we first need to go back to the draw-
ing board and determine new scales for our physical quantities:
With vref and Cref as well as ε defined as before, we choose as a standard mesoscale

length lm =
(
vref
β

) 1
2
, the so-called Charney inertial scale. The corresponding ad-

vective timescale Tm is defined by Tm = lm
vref

. It is instructive to observe that, in

the present context, lm = (Fr)
1
2 ls = ε

1
2 ls, i.e. the ratio between the previously used

length scale and this one is a fractional power of ε. The concrete values for our units
are lm = 500 km, whereas Tm is a little more than a day; these are mesoscales in the
context of geophysical fluid dynamics.
Inserting lm = lref and Tm = tref in the nondimensional shallow water equations
yields

Dv

Dt
+ yv⊥ + ε−1∇h = ε−1Ŝv, (2.24)

Dh

Dt
+ h divv + ε−1 divv = ε−1Ŝh (2.25)

as our scaled system; we note that the Coriolis term yv⊥ now is O(ε0) as the crucial
deviation compared to (2.1)-(2.2).
The expansion ansatz itself here is considerably simpler; no multiple scales are in-
volved and we only consider the approximation at leading order, so we can write

v = v(0)(x, y, t) +O(ε), (2.26)

h = h(0)(x, y, t) +O(ε). (2.27)

Here, we start with the O(ε−1)−equation for h:

divv(0) = Ŝ
(0)
h . (2.28)

This is the characteristic weak temperature gradient approximation, as discussed in
chapter 1.
The treatment of the momentum equation here is somewhat different - we start by
writing down the equations for u(0), v(0) individually:
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u
(0)
t + u(0)u(0)

x + v(0)u(0)
y − yv(0) + ε−1h(0)

x = ε−1Ŝ(0)
u ,

v
(0)
t + u(0)v(0)

x + v(0)v(0)
y + yu(0) + ε−1h(0)

y = ε−1Ŝ(0)
v .

We can eliminate the h-terms from those equations by applying the (vertical) curl:
curl(a, b) := −∂ya + ∂xb; after some algebraic manipulation, the resulting equation
can be written as

[−u(0)
y + v(0)

x ]t + ∂x[u
(0)(−u(0)

y + v(0)
x )] + ∂y[v

(0)(−u(0)
y + v(0)

x )]

+∂x[y · u(0)] + ∂y[yv
(0)] = ε−1curlŜ(0)

v . (2.29)

Setting ω := −u(0)
y + v

(0)
x , we can introduce the (scaled) potential vorticity

Q(0) := ω + y. (2.30)

The potential vorticity is a very important quantity in theoretical meteorology; for a
comprehensive discussion, we refer to chapter II of [18]. Equation (2.29) now reads

Q
(0)
t + div(v(0)Q(0)) = ε−1curlŜ(0)

v (2.31)

(2.28) and (2.30)-(2.31) can now through a side-by-side comparison be seen to be the
classical WTG equations from chapter 1, as introduced by [21].

2.2.3 The SPEWTG models

The seasonal subplanetary equatorial weak temperature gradient (SPEWTG) regime
takes the MEWTG scaling as a starting point, but assumes zonal fluctuations on the
larger subplanetary scale: we choose lsp = ε−1lm = 5000 km as a unit length and
the corresponding zonal advection timescale, defined by TS =

vref
lsp
≈ 11 days. This

is a seasonal timescale, since 10 units span (more than) a season. Furthermore, we
assume stronger variation in the zonal direction than in meridional flow or height;
this motivates the expansion ansatz

v =

(
u(0)(Xsp, y, TS)

0

)
+

(
εu(1)(Xsp, y, TS)
εv(1)(Xsp, y, TS)

)
+O(ε2), (2.32)

h = εh(1)(Xsp, y, TS) +O(ε2), (2.33)

where Xsp = εx and TS = εt. Since the variables x, y, t are scaled as in MEWTG,
equations (2.24)-(2.25) remain unchanged.
Plugging (2.32)-(2.33) into (2.24)-(2.25) now yields only one nontrivial equation at
order O(ε1) :

D̃u(0)

DTS
− yv(1) + h

(1)
Xsp

= Ŝ(2)
u , (2.34)

19



where D̃
DTS

:= ∂TS +u(0)∂Xsp + v(1)∂y could be dubbed the “seasonal-planetary advec-
tive derivative”.
Collecting the O(ε0)−terms in the remaining equations gives us

yu(0) + h(1)
y = Ŝ(1)

v (2.35)

and

u
(0)
Xsp

+ v(1)
y = Ŝ

(1)
h . (2.36)

The system (2.34)-(2.36) comprises the SPEWTG equations - which were actually
introduced in our reference paper [12] for the very first time. (2.35) can be interpreted
as geostrophic balance in the meridional direction, while (2.36) is the by now familiar
WTG approximation. This completes our discussion of WTG regimes derived from
the equatorial shallow water equations.

2.3 3D compressible flows

We now move on to the treatment of the full compressible flow equations. Our main
goal in this section is to show that there are apparent 3D-analogues to the regimes
derived in the shallow water context; furthermore, those regimes all arise from one
and the same distinguished limit and the same basic scaling, only differentiating by
the respective length and timescales used in the expansion ansatz. As pointed out
in [12], this crucially underlines the mutual compatibility of those diverse dynamics
and also shows how they interact with one another.
We recall the nondimensionalized equations for compressible flow in the near-equatorial
region:

ut + u · ∇u + u · uz +
2

RoB
(f × v)‖ +

1

M2

1

ρ
∇p = Su, (2.37)

wt + u · ∇w + wwz +
2

RoB
(f × v)⊥ +

1

M2

1

ρ
pz = Sw −

1

F̄ r
2 , (2.38)

pt + u · ∇p+ wpz + γp(∇ · u + wz) = ρSp, (2.39)

θt + u · ∇θ + wθz = Sθ, (2.40)

with the isentropic relation

ρ =
p

1
γ

θ
. (2.41)

We now specify the reference quantities for those equations; they are the fundamental
units for the so-called bulk microscale:

• hscale ∼ lref = 10 km

• vref = 5 m s−1
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• tref = lref/vref = 30 min

• ρref = 1 kg m−1

• pref = 105 kg m−1 s−2

In order to conduct an asymptotic analysis, we need to fix the aforementioned dis-
tinguished limit, expressing the Mach number, Froude number and (bulk microscale)
Rossby number all in terms of one small parameter ε. One way of motivating our
choice is provided by the evaluation of those numbers in terms of the above: plug-
ging in the concrete values for lref , vref and so forth, we get Fr = M ∼ 1

64
and

RoB ∼ 5. With a representative physical value ∼ 1
8

for ε, the following ansatz is
plausible:

ε = K1

√
F̄r = K2

√
M = K3

1

RoB
, (2.42)

where Ki = O(1) as ε→ 0 for all i.
Remark: We would be remiss not to concede that other choices are not excluded by
the strength of this argument; in fact, slight variations on this particular approach
have also been used with success. The chief reason to use (2.42) is its universal
applicability: it has been used to derive the quasi-geostrophic approximation and
WTG regimes in the midlatitudes, for the present WTG approximations in the near-
equatorial region and many more; Klein’s review article [11] provides an overview.
For the sake of notational simplicity, we set Ki = 1 for all i - which is of course not an
accurate assumption for any and all real-life geophysical flows! In a more narrowly
defined setting, one would have to incorporate suitable values for those parameters,
since they impact the actual solutions to our limit equations.
Before we get started, we need to determine the correct scaling for the potential
temperature; in order to do that, consider the Brunt-Väisälä frequency N, which
provides a measure of an atmosphere’s stability and is defined by

N2 =
g

θ

∂θ

∂z
.

A typical reference value for N is N = 2 · 10−2 s−2, which yields(
lrefN

vref

)2

= 100 ∼ ε−2

for the nondimensionalized frequency; the definition of N then yields

(
lrefN

vref

)2

=
lref
vref

g

θ

∂θ

∂z
∼
l2ref
v2
ref

g

θref

δθ

hscale

=
lrefg

v2
ref

δθ

θref
∼ ε−2.

Recalling
lrefg

v2ref
= F̄r

−2 ∼ ε−4, this implies
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δθ

θref
∼ ε2.

Therefore the nondimensional potential temperature satisfies θ = 1 + O(θ2). This
explains the particular ansatz for the thermodynamic variables in the following cal-
culations. - First, however, let us restate (2.37)-(2.41) in terms of ε as defined by
(2.42):

ut + u · ∇u + u · uz + (ε4βyk× u− εkk× f)‖ + ε−4 1

ρ
∇p = Su, (2.43)

wt + u · ∇w + wwz + ε(f × u)⊥ + ε−4 1

ρ
pz = Sw − ε−4, (2.44)

pt + u · ∇p+ wpz + γp(∇ · u + wz) = ρSp, (2.45)

θt + u · ∇θ + wθz = Sθ, (2.46)

with ρ given by (41). In this, the structure of the Coriolis term in (2.43) may not be
obvious: in the β-plane approximation for f , we split 2(f ×v)‖ = β′yk×u− 2wk× f

with β′ := 2hscale
a

and set β′ = ε3β. The latter replacement is due to the estimate
hscale
a

= 1
600
∼ ε3. In the term k× u, u is identified with the vector (u, v, 0)T .

2.3.1 MEWTG and SPEWTG in 3D

In this subsection, we investigate regimes on the meso - and seasonal/subplanetary
scales, respectively, as well as their interaction. Thereby, we will obtain analogous
results to subsections 2.2.2 and 2.2.3 - this time, however, with an expansion utilizing
multiple scales:
Bearing in mind that ε ∼ 1

8
,

XM = ε2x

and

TM = ε2t

define appropriate mesoscale variables for horizontal length and time, while

Xsp = ε3x

and

Tsea = ε3t

determine the corresponding subplanetary length and seasonal timescales, which are
“longer” by one order of ε.
The multiscale ansatz therefore reads

(u, w, p, θ) =: U = U(x, z, t; ε) =
∑

εiU(i)(XM , Xsp, z, TM , Tsea). (2.47)

More specifically, the horizontal and vertical velocities are expanded as
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u = u(0) + εu(1) + ε2u(2) + ε3u(3) +O(ε4) (2.48)

and

w = w(0) + εw(1) + ε2w(2) + ε3w(3) +O(ε4), (2.49)

while the pressure reads

p = P0(z) + ρ0(z)[εP1(z) + ε2P2(z) + ε3π(3) + . . . ]; (2.50)

the potential temperature has the expansion

θ = 1 + ε2Θ2(z) + ε3θ(3) + . . . (2.51)

All expansion terms with a purely vertical profile are indicated by the use of sub-
scripts instead of superscripts.
This ansatz is consistent with our introductory remarks; additionally, it implies
time-independent potential temperature distribution that varies only vertically up
to O(ε2). In (2.50), the choice p(i) = ρ(i)π(i) for i ≥ 1 has purely technical reasons: it
helps with some of the thornier details in the calculations that come next.
The source terms have regular expansions with varying strength; specifically, we
assume

Su = O(ε2), (2.52)

Sw = O(ε), (2.53)

Sp = O(ε4), (2.54)

Sθ = O(ε4). (2.55)

Remark: Generally speaking, such assumptions are due to the cancellation of bal-
ancing terms in the various equations; to give an example, it would not make much
sense for a pressure term to solely constitute a momentum source. In other instances,
the purely mathematical structure already enforces vanishing source terms at leading
order.

Finally, the partial derivatives in the new variables, transformed by the chain rule,
read:

∂t = ε2∂TM + ε3∂Tsea

and

∇ = ε2∇M + ε3∇sp.
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Vertical momentum and expansion of the isentropic relation At various
points, we shall require higher-order terms in the expansion of ρ =

∑
εiρ(i); these

are determined by the expansions of p and θ, respectively: inserting those in (2.42),

utilizing Taylor expansions for p
1
γ and 1

θ
around the respective leading-order terms

P0 and 1 and then collecting terms of equal order yields ρ(i) as a function of p(i) and
θ(i). To leading order, we immediately obtain for ρ(0) =: ρ0

ρ0 = P
1
γ

0 ; (2.56)

in particular, ρ0 = ρ0(z), as already stated in the expansion ansatz (2.50). We
now turn to the leading-order equation derived from the vertical momentum balance
(2.44): At order O(ε−4), it reads

1

ρ0

P ′0(z) = −1. (2.57)

Inserting (2.56) yields an ordinary differential equation that can be solved by sepa-
ration of variables. With P0(0) = 1, the solution is

P0(z) = (1− γ

γ − 1
z)

γ
γ−1 (2.58)

and accordingly,

ρ0(z) = (1− γ

γ − 1
z)

1
γ−1 . (2.59)

Remark: Purely mathematically, those solutions only make sense for z ≤ γ
γ−1

; with
a realistic value of γ ≈ 1.4, this means that our derivations are valid up to a height
of about 35 km, which accounts for most of the troposphere.

Going back to the expansion of ρ, the first-order perturbation ρ(1) =: ρ1 is given

by the corresponding Taylor expansion of p
1
γ to order O(ε) :

p
1
γ = P

1
γ

0 +
1

γ
P

1−γ
γ

0 (p− P0) + · · · = P
1
γ

0 +
1

γ
P

1−γ
γ

0 ερ0P1 +O(ε2). (2.60)

This implies

ρ1 =
1

γ
P

1−γ
γ

0 ρ0P1. (2.61)

For theO(ε−3)−equation for vertical momentum, we expand 1
ρ

= 1
ρ0
− 1
ρ20

(ρ−ρ0)+· · · =
1
ρ0
− ερ1

ρ20
+O(ε2) to obtain

1

ρ0

[ρ0 · P1]z −
ρ1

ρ2
0

P ′0 = 0. (2.62)
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This simplifies to

ρ′0P1 + ρ0P
′
1 + ρ1 = 0 (2.63)

and, using ρ′0 = − 1
γ
P

1−γ
γ

0 ρ0, we see that ρ′0P1 = −ρ1. (63) now reduces to

ρ0P
′
1 = 0, (2.64)

implying

P1(z) ≡ 0, (2.65)

which in turn means

ρ1 ≡ 0. (2.66)

(2.66) immediately simplifies the calculation of higher-order terms in the pressure
expansion: for ρ(2) =: ρ2, we now get

ρ2 = −P
1
γ

0 ·Θ2 +
1

γ
P

1−γ
γ

0 ρ0P2. (2.67)

The O(ε−2)−equation is derived in the same manner as the preceding one:

1

ρ0

[ρ0 · P2]z −
ρ2

ρ2
0

P ′0 = 0. (2.68)

Inserting (2.67), a tedious but straighforward calculation yields

P ′2(z) = Θ2(z); (2.69)

in addition, we note that ρ2 = ρ2(z).
For the next term in the expansion - the last one required for our purposes - we point
to the fact that P1 ≡ 0 and ρ1 ≡ 0 enforce the same structure as in (2.67):

ρ(3) = −P
1
γ

0 θ
(3) +

1

γ
P

1−γ
γ

0 ρ0π
(3). (2.70)

By the same token, vertical momentum at order O(ε−1) has the exact same structure
as (2.68); we therefore allow ourselves to skip to the final result:

π(3)
z = θ(3). (2.71)

Summarily, we can state: to the orders considered, the pressure is in hydrostatic
balance.
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Pressure equation Plugging the leading-order terms in (2.49) and (2.50) into the
pressure equation (2.45), we arrive at the relation

w(0)[P0]z + γP0w
(0)
z = 0. (2.72)

With the known expressions (2.58) and (2.59) plus some algebraic manipulation, this
can be shown to be equivalent to

w(0)[ρ0]z + ρ0w
(0)
z = 0

⇐⇒ [ρ0w
(0)]z = 0. (2.73)

Taking into account that w(0) must be bounded and ρ0 → 0 as z → γ
γ−1

, the only
solution is

w(0) ≡ 0. (2.74)

By the same token, keeping in mind that P1 ≡ 0, (2.45) at order O(ε1) reads

w(1)[P0]z + γP0w
(1)
z = 0, (2.75)

which leads to the same conclusion for w(1) :

w(1) ≡ 0. (2.76)

At the next order O(ε2), horizontal divergence starts to have an effect and we obtain
the equation

w(2)[P0]z + γP0(∇m · u(0) + w(2)
z ) = 0. (2.77)

Writing this in terms of ρ0, we get

w(2)(−ρ0) + γργ0(∇M · u(0) + w(2)
z ) = 0

=⇒ ∇M · u(0) + w(2) 1

γ
(−ρ1−γ

0 ) + w(2)
z = 0

=⇒ ∇M · u(0) +
1

ρ0

[w(2) 1

γ
(−ρ2−γ

0 ) + w(2)
z ρ0] = 0

=⇒ ∇M · u(0) +
1

ρ0

[ρ0w
(2)]z = 0. (2.78)

Due to P2 = P2(z), the O(ε3)−equation still possesses the same structure: an analo-
gous derivation yields

∇sp · u(0) +∇M · u(1) +
1

ρ0

[ρ0w
(3)]z = 0. (2.79)

This completes our discussion of the pressure equation.
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Horizontal momentum balance Introductory remark: Up to and includingO(ε0),
(2.43) is trivial; however, it is useful to know that the independence of π(i) from the
horizontal variables for i ≤ 2 could also be obtained without any prior assumptions
by applying sublinear growth conditions - in the manner explained in section 2.1 - to
the equations at order O(ε−2), O(ε−1) and so on: to give an illustrative example, we
immediately obtain at O(ε−2) :

∇MP0 = 0; (2.80)

the next equation is

1

ρ0

[∇spP0 +∇M(ρ0P1)] = 0. (2.81)

Application of an averaging operator for the mesoscale variables combined with (2.80)
and sublinear growth then yields

∇spP0 = 0, (2.82)

and this procedure can be iterated to give the same result for P1, P2.

Now, let us turn to the derivation proper: with (2.52), the O(ε1)−equation for u
is

1

ρ0

∇M [ρ0π
(3)] = ∇Mπ

(3) = 0, (2.83)

so π(3) does not depend on the mesoscale variables either.
The next order then yields (remember that YM = ε2y!)

u
(0)
TM

+ u(0) · ∇Mu(0) + w(2)u(0)
z + βYMk× u(0)

+∇Mπ
(4) +∇spπ

(3) = S(2)
u . (2.84)

At third order, the horizontal momentum equation is

u
(1)
TM

+ u
(0)
Tsea

+ u(1) · ∇Mu(0)

+u(0) · ∇spu
(0) + u(0) · ∇Mu(1) + w(2)u(1)

z + w(3)u(0)
z

+βYMk× u(1) + 2w(2)k× f +∇Mπ
(5) +∇spπ

(4) = S(3)
u . (2.85)

Potential temperature transport Up to and including O(ε3), the potential tem-
perature transport equation is trivial. The first nontrivial relation at next order is

w(2)[Θ2]z = S
(4)
θ ; (2.86)

this expresses the fundamental WTG balance. To quote directly from [12]:
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“It states that mass elements move quasiinstantaneously toward their new
vertical level of neutral buoyancy under local heat addition.”

For θ(3), we have at order O(ε5) :

θ
(3)
TM

+ u(0) · ∇Mθ
(3) + w(2)θ(3)

z + w(3)[Θ2]z = S
(5)
θ . (2.87)

(2.86) and (2.87) are the final equations that we will need in order to formulate the
MEWTG and SPEWTG regimes in three dimensions.

The 3D-MEWTG regime The three-dimensional MEWTG regime arises from
the leading-order equations just derived, specializing to solutions that only act on
the mesoscales; with the replacements

[u(0), w(2), π(4)]→ [u, w, π],

[S(2)
u , S

(4)
θ ]→ [Su, Sθ],

[TM ,XM ]→ [t,x],

∇M → ∇,

chosen as in [12], we readily obtain from (2.84), (2.78) and (2.86), respectively:

ut + u · ∇u + wuz + βyk× u +∇π = Su, (2.88)

∇ · (ρ0u) + [ρ0w]z = 0, (2.89)

wΘ′2(z) = Sθ. (2.90)

These equations form a three-dimensional analogue to the “classical” WTG equations
described in chapter 1 and section 2.2 before.

The 3D-SPEWTG regime Here, the same reasoning as in section 1.3 applies:
to avoid the inclusion of midlatitude effects, we choose a smaller length scale for
the meridional direction. Furthermore, the meridional and vertical velocities are
assumed to be one order of magnitude weaker than the zonal one. Hence, we require
v(0) = w(2) = 0, and consider solutions that depend only on Xsp, YM , Tsea and z.
With the replacements

[u(0), v(1), w(3), π(4)]→ [u, v, w, π],

[S(3)
u , S(2)

v , S
(5)
θ ]→ [Su, Sv, Sθ] and

[Tsea, Xsp, YM ]→ [t, x, y],

again chosen as in [12], the zonal component of equation (2.85), the meridional com-
ponent of (2.84), (2.79) and (2.87) translate to
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ut + uux + vuy + wuz − βyv + πx = Su, (2.91)

βyu+ πy = Sv, (2.92)

ux + vy +
1

ρ0

[ρ0w]z = 0, (2.93)

wΘ′2(z) = Sθ, (2.94)

where the heat source here is weaker, i.e. higher-order in ε, than in (2.90).
This is the 3D-version of the SPEWTG regime from section 2.3.

2.3.2 IPESD in 3D

For our final asymptotic regime, we once again consider motions on the synoptic and
planetary scales; contrasting with section 2.1, we differentiate between two scales for
time as well as length; the length scales correspond to those previously introduced.
With ε ∼ 1

8
, we achieve the correct scaling by fractional powers of ε :

XS = ε5/2x,

XP = ε7/2x

are the spatial variables that resolve processes on the synoptic scale (up to 5000 km)
and the planetary scale (up to 40000 km), respectively.
For time, one natural choice is the synoptic advection timescale, with the time vari-
able

TS = ε5/2t,

corresponding to the intraseasonal timescale in section 2.1; additionally, we introduce
the synoptic gravity wave timescale with time variable

TS,g = ε3/2t;

it is worth mentioning that this is not the advection timescale corresponding to XP ,
which might appear to be the “logical” choice; some familiarity with equatorial waves
is needed to come up with the physically correct multiscale ansatz.
As far as the multiple scales expansion is concerned, most of our discussion in
subsection 2.3.1 carries over: all functions - unless stated otherwise - depend on
(XS, XP , z, TS,g, TS), where only the zonal component of XP is included in order to
exclude midlatitude phenomena; the individual expansions are given by

u = u(0) + εu(1) +O(ε2), (2.95)

w = ε3/2w(3/2) + ε5/2w(5/2) + ε7/2w(7/2) +O(ε9/2), (2.96)

p = P0(z) + ρ0(z)[εP1(z) + ε2P2(z) + ε3π(3) + . . . ], (2.97)

θ = 1 + ε2Θ2(z) + ε3θ(3) + . . . . (2.98)
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Here, the vertical velocity w has to be expanded in fractional powers of ε because
the terms in the asymptotic expansion of the momentum equations otherwise would
not match. Finally, the source terms have the following strengths:

Su = O(ε3/2), (2.99)

Sw = O(ε3/2), (2.100)

Sp = O(ε9/2), (2.101)

Sθ = O(ε9/2); (2.102)

partial derivatives are given by

∇ = ε5/2∇S + ε7/2∇P and

∂t = ε3/2∂TS,g + ε5/2∂TS .

We are now ready to proceed with the derivations:

Vertical momentum balance Since no derivatives with respect to rescaled vari-
ables are involved, the results for vertical momentum in section 3.1 carry over term-
by-term: in particular, P1 = ρ1 ≡ 0.

Pressure equation The leading-order equation for w(3/2) leads to the exact same
result as (2.72)-(2.73); therefore, w(3/2) ≡ 0.
At next order O(ε5/2), the equation reads

w(5/2)P ′0(z) + γP0(∇S · u(0) + w(5/2)
z ) = 0; (2.103)

expressing P0 in terms of ρ0 again yields

∇S · u(0) +
1

ρ0

[ρ0w
(5/2)]z = 0. (2.104)

The equation at next order is obtained in the same manner - we only need to remem-
ber that there is no meridional variation on the planetary scale, hence the presence
of ∂XP only:

u
(0)
XP

+∇S · u(1) +
1

ρ0

[ρ0w
(7/2)]z = 0. (2.105)

Horizontal momentum balance The first nontrivial equation here is of order
O(ε3/2) : a straightforward evaluation of the individual terms at leading order yields

u
(0)
TS,g

+ βYSk× u(0) +∇Sπ
(3) = S(3/2)

u . (2.106)
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At next order, we obtain

u
(0)
TS

+ u
(1)
TS,g

+ u(0) · ∇Su(0) + w(5/2)u(0)
z

+βYSk× u(1) +∇Sπ
(4) + iπ

(3)
XP

= S(5/2)
u , (2.107)

with i = (1, 0, 0)T being the zonal unit vector.

Potential temperature transport The first nontrivial equation occurs at order
O(ε9/2) :

θ
(3)
TS,g

+ w(5/2)Θ′2(z) = S
(9/2)
θ . (2.108)

In contrast to the earlier derivation for MEWTG and SPEWTG, the presence of
the fast gravity wave timescale TS,g here produces an equation for the evolution of
potential temperature in time. At next order, we get

θ
(4)
TS,g

+ θ
(3)
TS

+ u(0) · ∇Sθ
(3) + w(5/2)θ(3)

z + w(7/2)Θ′2(z) = S
(11/2)
θ . (2.109)

The set of equations required for our asymptotic regimes is now complete.

IPESD model equations in 3D We first introduce the three-dimensional version
of LEWE from (2.22)-(2.23); for this purpose, we will neglect dependencies on the
planetary scale. We then present the generalization of the principal IPESD equations
derived in section 2.1 to the 3D case. The replacements for brevity, adapted from
[12], are

[u(0),u(1), w(5/2), w(7/2), π(3), π(4), θ(3)]→ [u,u′, w, w′, π, π′, θ],

[S(3/2)
u , S(5/2)

u , S
(9/2)
θ , S

(11/2)
θ ]→ [Su, S

′
u, Sθ, S

′
θ],

[TS,g, TS]→ [τ, t],

[XS, XP ]→ [x, y,X] and

∇S → ∇.

The leading-order equations (2.106), (2.71), (2.103) and (2.108) now yield

uτ − βyv + πx = Su, (2.110)

vτ + βyu+ πy = Sv, (2.111)

πz = θ, (2.112)

∇ · u +
1

ρ0

(ρ0w)z = 0, (2.113)

θτ + wΘ′2(z) = Sθ, (2.114)

the 3D linear equatorial wave equations.
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In order to formulate IPESD in 3D, we first consider (2.110)-(2.114) without variation
on the fast scale τ :

−βyv + πx = Su, (2.115)

βyu+ πy = Sv, (2.116)

πz = θ, (2.117)

∇ · u +
1

ρ0

(ρ0w)z = 0, (2.118)

wΘ′2(z) = Sθ. (2.119)

(2.115)and (2.116) now express horizontal geostrophic balance, while (2.117) tells us
that the pressure is in hydrostatic balance; (2.119) is a WTG equation.
Next, we want to describe a particular solution (up, vp, wp, πp, θp) of (2.115)-(2.119);
for simplicity, we assume that the source terms are given externally, meaning that
they do not depend on u, v and so forth. The equations are then linear.
(2.119) immediately yields an explicit formula for vertical velocity:

wp =
Sθ

Θ′2(z)
. (2.120)

The vertical curl of our geostrophic balance equations, i.e. ∂x of (2.116) minus ∂y of
(2.115) gives us the same for vp :

βyupx + βvp + βyvpy = [Sv]x − [Su]y

=⇒ vp =
1

β
([Sv]x − [Su]y)− y(upx + vpy)

=⇒ vp =
1

β
([Sv]x − [Su]y) + y

1

ρ0

[ρ0w
p]z

=⇒ vp =
1

β
([Sv]x − [Su]y) + y

1

ρ0

[
ρ0Sθ
Θ′2(z)

]z, (2.121)

by (2.118) and (2.120).
For the zonal velocity, we first recall the zonal averaging operator (.), which here
denotes the average with respect to x. up is then selected by requiring

βyup = Sv; (2.122)

together with (2.118) restated as

upx = −vpy −
1

ρ0

[ρ0w
p]z, (2.123)

this specifies a unique solution - contrasting with wp and vp, we need the additional
assumption (2.122)!
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(2.115)-(2.116) now yield explicit formulas or πpx and πpy ; (2.122) further implies
[πp]y = 0. Therefore, the additional constraint

πp(t, 0, z) = 0 (2.124)

is sufficient to uniquely determine πp.
Lastly, the potential temperature is given by (2.117):

θp = [πp]z. (2.125)

We note that the zonal average of (2.115) combined with (2.121) imposes a constraint
on Su :

Su + y(−[Su]y +
βy

ρ0

[
ρ0Sθ
Θ′2(z)

]z) = 0. (2.126)

This can be viewed as analogous to the constraint on the source terms for (2.9)-(2.10)
in the shallow water case, and the system (2.115)-(2.119) in fact corresponds to the
latter, in spite of its vastly greater complexity.
It is straightforward to see that homogeneous solutions to (2.115)-(2.119) are given
by

v = w = 0, (2.127)

while (u, π, θ) = (U, P,Θ)(t, y, z) do not depend on x but are otherwise arbitrary
except for hydrostatic balance

Pz = Θ (2.128)

and meridional geostrophic balance

Py = −βyU. (2.129)

Thanks to our assumptions on the source terms, we can now write any solution to
(2.115)-(2.119) in the form u = U + up, v = vp and so forth.

The IPESD model equations are now obtained by zonally averaging the higher-order
equations that we derived earlier in this section; we give the details in only one in-
stance:
horizontal momentum (2.107) becomes

ut + uux + vuy + wuz − βyv′ + π′x + πX = S ′u

=⇒ ut + vuy + wuz − βyv′ + πX = S ′u, (2.130)
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due to boundedness and sublinear growth conditions. With u = U + up, this further
yields

Ut + upt + vpUy + vpupy

+wpUz + wpupz − βyv′ + PX = S ′u

=⇒ Ut + upt + vpUy + vpupy

+wpUz + wpupz − βyv′ + PX = S ′u. (2.131)

Introducing (averaged) material derivatives with respect to our particular solutions
given by

Dp
t = ∂t + up∂x + vp∂y + wp∂z and

Dp
t = ∂t + vp∂y + wp∂z,

(2.131) can be rewritten in a more compact form:

Dp
tU + PX − βyv′ = S ′u −D

p
t u

p. (2.132)

A similar derivation from (2.109) yields

Dp
tΘ + w′Θ′2(z) = S ′θ −D

p
t θ
p, (2.133)

and the zonal average of (2.105) becomes

UX + [v′]y +
1

ρ0

[ρ0w
′]z = 0. (2.134)

(2.132)-(2.134) plus the constraints (2.128) and (2.129) constitute the three-dimensional
IPESD model equations.
To round out our discussion, we mention that ignoring variation on the planetary
scale X yields the equivalent to the SEWTG equations from section 2.1; if, on the
other hand, we instead prescribe weak source terms Su = Sv = Sθ ≡ 0, the particular
solutions also vanish; the material derivatives then reduce to simple time derivatives
and the resulting equations are the 3D-generalization of QLELWE.
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Chapter 3

Rigorous Justification: The Linear
Equatorial Long-Wave Equations
as a Singular Limit

As we laid out in the preceding chapter, the validity of formal limits can be justified
in a variety of ways; the conscientious mathematician, however, will still try to prove
beyond any doubt what intuition and formal reasoning make plausible - namely that
the governing equations actually converge to their respective leading-order approx-
imations. Generally, this is a very difficult task, especially in the scenario where
multiple scales are involved; The books [14] and [15] by Andrew Majda provide some
classical results.
As far as our derivations in chapter 2 are concerned, there is an elegant proof for the
convergence of the equatorial shallow water equations to LELWE. More specifically,
we prove that (2.1)-(2.2) converges to (2.19)-(2.21) when the source terms vanish
(which implies that the equations become linear, since V (0) = v(0) = 0).
In the first section of this chapter, we review a few properties of modified Sobolev
spaces and symmetric hyperbolic systems of partial differential equations. Then, we
present a proof for the aforementioned theorem that was originally published in [3].
Basic facts about Sobolev spaces are summarized in Appendix A.

3.1 Preparatory Results

Looking back to the setup for subsection 2.2.1, we have equations that depend on
two scales zonally and a single meridional scale; since the equatorial region covers
the whole circumference of the earth in the zonal direction, with limited meridional
variation, we take the zonal variables X and x to be periodic and view them as
elements of T = {z ∈ C||z| = 1}. The meridional variable y varies in R.
We therefore consider solutions on the set Ω := T × T × R. We can define Sobolev
spaces on Ω in the usual manner and prove the standard embedding theorems for
them, as laid out in the appendix; however, the special mathematical structure of the
shallow water equations in long-wave scaling requires that we use spaces with more
restrictive regularity assumptions, the y-weighted Sobolev spaces H̃2n :

Definition. H̃2n(Ω) is the space of all functions w : Ω→ R in H2n(Ω) such that the
norm defined by
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‖w‖2
H̃2n =

∑
j+k+l+m≤2n

∥∥yj∂kX∂lx∂my w∥∥2

L2

is finite.

Equipped with this norm, H̃2n is a Banach space, and replacing the norms on the
right-hand side with L2-inner products yields the corresponding inner product that
makes H̃2n a Hilbert space. Since we defined those spaces for the very narrow purpose
of proving a theorem that only makes use of spaces of even order, we included only
even exponents in the definition.
We shall need the following technical lemma:

Lemma 1. Bounded sets of H̃2n are precompact in H̃2(n−1). In other words: the
embedding of H̃2n in H̃2(n−1) is compact.

Proof. It is sufficient to prove that every bounded sequence in H̃2n has a convergent
subsequence in H̃2(n−1). In order to do that, we consider so-called cutoff functions:
By convolution of a suitable characteristic function with a mollifier (see Appendix
A), we can postulate the existence of a smooth function φ1(y) with the following
properties:

• φ1 ≥ 0.

• φ1 = 1 on the interval [-1,1].

• φ1 = 0 outside of (-2,2).

We then define for arbitrary N ∈ N :

φN(y) =


φ1(y −N + 1), y ∈ (N,N + 1)

φ1(y +N − 1), y ∈ (−N − 1,−N)
1, y ∈ [−N,N ]

0 otherwise.

(3.1)

By construction, φN is a smooth function with compact support for all N, and since
all φN are just shifted versions of φ1, their derivatives up to any given order are
uniformly bounded. We further define

ψN(y) := 1− φN(y.)

We obviously have ψN = 0 on [-N,N].
Let now (wi) be a bounded sequence in H̃2n; for every N, (φNwi) is then a bounded
sequence in H̃2n

0 (Ω̃) for some bounded Ω̃ ⊂ Ω and the variant of Rellich’s embedding
theorem discussed in the appendix shows that (φNwi) has a H̃2(n−1)-convergent sub-
sequence. Furthermore, we can estimate any term of the form

∥∥yj∂kX∂lx∂my (ψNw)
∥∥
L2

with j + k + l +m ≤ 2(n− 1) as follows:
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∥∥yj∂kX∂lx∂my (ψNw)
∥∥2

L2 =

∫ ∣∣yj∂kX∂lx∂my (ψNw)
∣∣2

= N−2

∫ ∣∣Nyj∂kX∂lx∂my (ψNw)
∣∣2 ≤ N−2

∫ ∣∣yj+1∂kX∂
l
x∂

m
y (ψNw)

∣∣2
≤ mN−2

[∫ ∣∣yj+1∂kX∂
l
x∂

m
y (w)ψN

∣∣2 +

∫ ∣∣yj+1∂kX∂
l
x∂

m−1
y (w)∂y(ψN)

∣∣2 + . . .

]
, (3.2)

where we applied the product rule and the algebraic estimate |
∑m

i=1 xi|
2 ≤ m

∑m
i=1 |xi|

2.
Every term on the right-hand side is of the form∫ ∣∣∣yj+1∂kX∂

l
x∂

m−m′
y (w)∂m

′

y (ψN)
∣∣∣2.

Since derivatives of ψN are uniformly bounded up to order 2n, say with constant C,
and the remaining terms make up a part of the H̃2n−norm of wi, we can further
estimate (3.2) by

C

N2
‖wi‖2

H̃2n ; (3.3)

summing up, this implies

‖ψNwi‖2
H̃2(n−1) ≤

C̃

N2
‖wi‖2

H̃2n ≤
˜̃C

N2
(3.4)

for some constant ˜̃C that depends only on n (remember that (wi) is bounded in H̃2n!)
With that in mind, we can proceed:
We first choose a subsequence (wi1) such that (φ1wi1) has a H̃2(n−1)-convergent sub-
sequence. Then

‖wi1 − wj1‖
2
H̃2(n−1) = ‖φ1(wi1 − wj1) + ψ1(wi1 − wj1)‖

2
H̃2(n−1)

≤ 2‖φ1wi1 − φ1wj1‖
2
H̃2(n−1) + 2‖ψ1(wi1 − wj1)‖

2
H̃2(n−1)

≤ 2‖φ1wi1 − φ1wj1‖
2
H̃2(n−1) + 2 ˜̃C. (3.5)

The sequence (φ1wi1) is Cauchy in H̃2(n−1), therefore there is an index I1 such that

‖φ1wi1 − φ1wj1‖
2
H̃2(n−1) ≤ ˜̃C ∀ i1, j1 ≥ I1. (3.6)

Inductively, we now refine our subsequence for N ≥ 1 as follows:

• (wiN+1
) ⊂ (wiN ).

• (wiN+1
) is such that (φN+1wiN+1

) converges in H̃2(n−1).
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For every such sequence, we can choose an index IN+1 such that IN+1 > IN and

∥∥φN+1wiN+1
− φN+1wjN+1

∥∥2

H̃2(n−1) ≤
˜̃C

N2
∀ iN+1, jN+1 ≥ IN+1. (3.7)

Then we can derive as in (3.5):

∥∥wiN+1
− wjN+1

∥∥2

H̃2(n−1) ≤
∥∥φN+1wiN+1

− φN+1wjN+1

∥∥2

H̃2(n−1) +
˜̃C

N2
≤ 2 ˜̃C

N2
(3.8)

for all iN+1, jN+1 as specified above.
In particular:

∥∥wIN − wIN+k

∥∥2

H̃2(n−1) ≤
2 ˜̃C

N2
∀ k ≥ 0 (3.9)

due to our construction; this means that the subsequence (wIN ) is Cauchy and there-
fore converges in H̃2(n−1).

So far, we have only treated the spatial dependence of our solutions; since smooth-
ness requirements with respect to time are typically different in the study of partial
differential equations, we introduce the following notation:

Definition. Ck([0, T ], B) denotes the space of functions w : [0, T ] → B with values
in the Banach space B that are k times continuously differentiable with respect to the
norm of B.

The compact embedding shown in Lemma 1 now permits us to state the following
version of the Aubin-Lions compactness lemma analogous to [15], p. 72:

Lemma 2. Let (wi) be a sequence of functions in C([0, T ], H̃2n(Ω))∩C1([0, T ], H̃2(n−1)(Ω))
that satisfies the following:

1. (wi) is uniformly bounded in C([0, T ], H̃2n(Ω)) : there is a constant C1 such
that max

0≤t≤T
‖wi‖H̃2n ≤ C1.

2. The sequence of time derivatives (∂twi) is uniformly bounded in C([0, T ], H̃2(n−1)(Ω)):
there is a C2 such that max

0≤t≤T
‖∂twi‖H̃2(n−1) ≤ C2.

Then (wi) has a subsequence that converges in C([0, T ], H̃2(n−1)(Ω)).

This is one of the main technical tools that we will need for our convergence theo-
rem. Finally, we rely on the following general existence and uniqueness theorem for
symmetric hyperbolic systems of conservation laws, proved in chapter 2 of [14]:

38



Theorem 1. Consider the system

vt +
N∑
i=1

∂xiFi(v) = S(v,x, t) (3.10)

in N space dimensions, with smooth functions Fi and S and initial state v(x, 0) =
v0(x). Assume that the linearized, source-free system

vt +
N∑
i=1

Ai(v0) · vxi = 0,

v(x, 0) = v0(x),

where Ai(v) = ∂uFi, can be symmetrized in the following way:
There is a symmetric, positive definite matrix A0(v), smooth as a function of v, with
the properties

• cI ≤ A0(v) ≤ c−1I (elementwise) for some constant c uniformly for all v in
the state space.

• A0(v)Ai(v) is symmetric for all i.

Assume further v0 ∈ Hk(RN), with k > N
2

+ 1. Then there is a time T > 0 such that
(3.10) has a unique solution

v ∈ C([0, T ], Hk(RN)) ∩ C1([0, T ], Hk−1(RN)).

We will shortly see that the shallow water equations in long-wave scaling satisfy those
conditions.

Remark: Theorem 1 applies to functions on RN . Its proof, however, carries over
to our space Ω without any difficulty.

3.2 The convergence theorem

Recall the shallow water equations scaled for the derivation of the IPESD models
(with vanishing source terms):

Dv

Dt
+ ε−1(yv⊥ +∇h) = 0,

Dh

Dt
+ h divv + ε−1 divv = 0.

We consider solutions that depend on two zonal length scales x and X = εx :

 u
v
h

 =

 u
v
h

 (x,X, y, t).
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Written term by term, our system reads

ut + uux + εuuX + vuy + hx + ε−1(−yv + hx) = 0, (3.11)

vt + uvx + εuvX + vvy + hy + ε−1(yu+ hy) = 0, (3.12)

ht + uhx + εuhX + vhy + (1 + εh)uX + h(ux + vy) + ε−1(ux + vy) = 0, (3.13)

and we supplement it with initial conditions

u|t=0 = u0,ε,

v|t=0 = v0,ε,

h|t=0 = h0,ε. (3.14)

Our aim is to prove that the solutions to (3.11)-(3.14) exist and converge as ε → 0
to the solutions of

ut + hX − yV = 0, (3.15)

ht + uX + Vy = 0, (3.16)

yu+ hy = 0, (3.17)

with initial conditions

u|t=0 = u0,

h|t=0 = h0, (3.18)

which constitute LELWE; the relationship of V and v will be specified later.
With the results from section 3.1, we are now ready to state and prove the main
theorem of [3],

Theorem 2. Assume that for some n ≥ 3, ε0 > 0 and all ε ≤ ε0, (u0,ε, v0,ε, h0,ε) ∈ H̃2n

and

(−yv0,ε + ∂xh0,ε, yu0,ε + ∂yh0,ε, ∂xu0,ε + ∂yv0,ε) = O(ε) (3.19)

as ε→ 0 in H̃2(n−1). Then there is a time T > 0 independent of ε such that there are
solutions

(uε, vε, hε) ∈ C([0, T ], H̃2n) ∩ C1([0, T ], H̃2(n−1))

of (3.11)-(3.14). Those solutions converge in C([0, T ], H̃2(n−1)) to (u0, 0, h0), where
u0, h0 do not depend on x and together with some function V, given in terms of u0

and h0, solve LELWE.

The proof of Theorem 2, adapted from [3], will be structured as follows:

1. We symmetrize the equations.
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2. We prove that two differential operators occurring in the symmetrized system
commute.

3. We find an equivalent norm for H̃2n.

4. We prove existence and uniqueness of solutions for all ε > 0, with a uniform
time of existence T > 0.

5. We prove that those solutions converge to solutions of LELWE as ε→ 0.

3.2.1 Symmetrization

We begin with a substitution for the height perturbation h :
Let h̃ be defined by

h =
(1 + εh̃

2
)2 − 1

ε
. (3.20)

This transforms equations (3.11)-(3.13) into

ut + uux + εuuX + vuy +

(
1 +

εh̃

2

)
h̃X + ε−1

(
−yv +

(
1 +

εh̃

2

)
h̃X

)
= 0, (3.21)

vt + uvx + εuvX + vvy + ε−1

(
yu+

(
1 +

εh̃

2

)
h̃y

)
= 0, (3.22)(

1 +
εh̃

2

)
h̃t + u

(
1 +

εh̃

2

)
h̃x + εu

(
1 +

εh̃

2

)
h̃X + v

(
1 +

εh̃

2

)
h̃y

+

(
1 +

εh̃

2

)2

uX +


(

1 + εh̃
2

)2

− 1

ε

 (ux + vy) + ε−1(ux + vy) = 0. (3.23)

Expanding and simplifying then yields

ut + uux + εuuX + vuy + h̃X + ε
1

2
h̃h̃X +

1

2
h̃h̃x

+ε−1(−yv + h̃x) = 0, (3.24)

vt + uvx + εuvX + vvy +
1

2
h̃h̃y + ε−1(yu+ h̃y) = 0, (3.25)

h̃t + uh̃x + εuh̃X + vh̃y +

(
1 +

εh̃

2

)
uX

+
1

2
h̃(ux + vy) + ε−1(ux + vy) = 0. (3.26)

We further define r and l by
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u =
r − l√

2
, (3.27)

h̃ =
r + l√

2
, (3.28)

which lets us rewrite (3.24) as

rt − lt√
2

+
r − l√

2
· rx − lx√

2
+ ε

r − l√
2
· rX − lX√

2
+ v

ry − ly√
2

+
1

2

r + l√
2
· rx + lx√

2
+

(
1 +

1

2
ε
r + l√

2

)
rX − lX√

2
+ ε−1(−yv +

rx + lx√
2

) = 0. (3.29)

Equation (3.25) becomes

vt +
r − l√

2
vx + ε

r − l√
2
vX + vvy +

1

2

r + l√
2
· ry + ly√

2

+ε−1

(
y
r − l√

2
+
ry + ly√

2

)
= 0 (3.30)

and (3.26) now reads

rt + lt√
2

+
r − l√

2
· rx + lx√

2
+ ε

r − l√
2
· rX + lX√

2
+ v

ry + ly√
2

+
1

2

r + l√
2

(
rx − lx√

2
+ vy

)
+

(
1 +

1

2
ε
r + l√

2

)
rX − lX√

2
+ ε−1

(
rx − lx√

2
+ vy

)
= 0.

(3.31)

From the sum of (3.29) and (3.31) we obtain

rt +
r − l√

2
(rx + εrX) + vry +

r + l

2
√

2
(rx + εrX) +

r + l

4
vy + rX

+ε−1

(
rx +

vy − yv√
2

)
= 0, (3.32)

whereas (3.29) subtracted from (3.31) yields

lt +
r − l√

2
(lx + εlX) + vly +

r + l

2
√

2
(−lx − εlX) +

r + l

4
vy − lX

+ε−1

(
−lx +

vy + yv√
2

)
= 0. (3.33)

Simplifying one more time finally gives us
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rt +
3r − l
2
√

2
(rx + εrX) + rX + vry +

r + l

4
vy + ε−1

(
rx +

vy − yv
2
√

2

)
= 0,

(3.34)

lt +
r − 3l

2
√

2
(lx + εlX)− lX + vly +

r + l

4
vy + ε−1

(
−lx +

vy + yv

2
√

2

)
= 0,

(3.35)

vt +
r − l√

2
(vx + εvX) + vvy +

r + l

4
(ry + ly) + ε−1

(
ry + yr√

2
+
ly − yl√

2

)
= 0. (3.36)

in our analysis, we will from now on use this transformed system as our starting
point.

3.2.2 A commutation relation

A glance at the terms of order O(ε−1) in (3.34)-(3.36) reveals that terms with an
explicit dependence on y occur only in the form

1√
2

(∂y ∓ y) =: L±. (3.37)

These are known as the raising and lowering operators of the Hamiltonian of the
harmonic oscillator,

H := L−L+ + L+L− = ∂2
y − y2. (3.38)

Setting

U =

 r
l
v

 ,

we can write (3.34)-(3.36) in the form

Ut + A1(U)Ux + A2(U)UX + A3(U)Uy + ε−1MU = 0, (3.39)

with symmetric matrices Ai smoothly varying with U and

M =

 ∂x 0 L+

0 −∂x L−
L− L+ 0

 . (3.40)

Let now [A,B] = AB − BA denote the commutator of the operators A and B; the
following properties of L± can be verified by direct calculation:

• L?± = −L∓. Therefore, M is an antisymmetric matrix operator.
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• [H,L±] = ∓2L±.

The latter identity can be written as HL± ± 2L± = L±H, or equivalently

(H ± 2)L± = L±H. (3.41)

If we apply, say, (H ± 2) to this relation from the left, we obtain

(H ± 2)2L± = (H ± 2)L±H = (L±H)H = L±H
2;

in the same manner, induction shows that

P (H ± 2)L± = L±P (H) (3.42)

for any polynomial P. Since for every such polynomial, P (H∓2) also is a polynomial
of H, it further holds

P (H)L± = L±P (H ∓ 2); (3.43)

in particular,

HL± = L±(H ∓ 2). (3.44)

Together with (3.41), this shows that the matrix operator

D :=

 H + 2 0 0
0 H − 2 0
0 0 H

 (3.45)

commutes with M :

DM = MD (3.46)

This relation will be key to obtaining a uniform estimate for our solution.

3.2.3 An alternative characterization of H̃2n

We now want to express the H̃2n-norm in terms of the operator H. It seems plausible
that an equivalent norm would be given by

(‖w‖′)2
H̃2n :=

∑
j+k+l+2p≤2n

∥∥∂kx∂lXHpw
∥∥2

L2 , (3.47)

and this is indeed true:
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Lemma 3. For all n ≥ 1, there is a constant Cn such that

‖w‖2
H̃2n ≤ Cn(‖w‖′)2

H̃2n ; (3.48)

since (‖w‖′)H̃2n ≤ ‖w‖H̃2n by definition, this means that the two norms are equivalent.

Proof. First, observe that functions of the form w = w1(x,X)w2(y) are dense in H̃2n

and it therefore suffices to prove (3.48) for functions of y alone (since the L2-norms
factor in this case and the terms containing w1 are identical on both sides). The
relation that we intend to prove then reduces to

∑
j+m≤2n

∥∥yj∂my w∥∥2

L2 ≤ Cn

n∑
p=0

‖Hpw‖2
L2 . (3.49)

We prove this for n = 1 first; integration by parts and the Cauchy-Schwarz inequality
yield

‖yw‖2
L2 + ‖wy‖2

L2 = ‖yw‖2
L2 + (wy, wy)L2 = ‖yw‖2

L2 − (w,wyy)L2 = −
∫
R
wHwdy

≤ ‖w‖L2‖Hw‖L2 ≤ ‖w‖2
L2 + ‖Hw‖2

L2 .
(3.50)

Similarly, we obtain

‖wyy‖2
L2 + 2‖ywy‖2

L2 +
∥∥y2w

∥∥2

L2 = ‖Hw‖2
L2 + 2‖w‖2

L2 . (3.51)

Combining (3.50) and (3.51) verifies (3.49) for n = 1.
Applying what we just proved to higher-order terms, we can estimate for j ≥ 2 :

∥∥yj∂my w∥∥2

L2 ≤ C1(
∥∥H(yj−2∂my w)

∥∥2

L2 +
∥∥yj−2∂my w

∥∥2

L2) (3.52)

and for m ≥ 2 :

∥∥yj∂my w∥∥2

L2 ≤ C1(
∥∥H(yj∂m−2

y w)
∥∥2

L2 +
∥∥yj∂m−2

y

∥∥2

L2). (3.53)

With the additional commutation relations

[H, y] = 2∂y, [H, ∂y] = 2y and [∂y, y] = 1,

we can rearrange the H-terms on the right-hand side such that any induction step can
be completed; relation (3.49) and consequently (3.48) therefore hold for all n ≥ 1.
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3.2.4 Existence and uniqueness in H̃2n

The system (3.34)-(3.36) obviously is of the form (3.10) and its linearization yields
a symmetric hyperbolic system; Theorem 1 therefore applies and it only remains to
show that the solutions for 0 < ε ≤ ε0 are uniformly bounded in H̃2n for some T > 0.
Specifically, we aim to prove

Lemma 4. Let n ≥ 2, ε0 > 0. Assume that the initial data (r0,ε, l0,ε, v0,ε) for (3.34)-
(3.36) are uniformly bounded in (H̃2n)3 for 0 ≤ ε ≤ ε0. Then there is a T > 0 such
that (3.34)-(3.36) has a unique solution for all such ε on [0, T ], where the solution
remains uniformly bounded in (H̃2n)3.

Proof. By Theorem 1, there is a T > 0 such that the solution exists and is unique in
C(, [0, T ], H2n). It is therefore enough to prove a uniform estimate in the H̃2n-norm
for the solution. To do this, we first consider the general system

Vt + A1(U)Vx + A2(U)VX + A3(U)Vy + ε−1MV = F, (3.54)

where Ai and M are defined as in (3.39)-(3.40).
Multiplying (3.54) with

V =

 v1

v2

v3

 ,

we get

3∑
i=1

vivit +
3∑
i=1

3∑
j=1

viaij1 (U)vjx +
3∑
i=1

3∑
j=1

viaij2 (U)vjX

+
3∑
i=1

3∑
j=1

viaij3 (U)vjy + ε−1

3∑
i=1

3∑
j=1

vimijvj =
3∑
i=1

vif i. (3.55)

We have

∫
Ω

∑
i

∑
j

viaij1 (U)vjx = −
∫

Ω

∑
i

∑
j

vixa
ij
1 (U)vj −

∫
Ω

∑
i

∑
j

vi[aij1 (U)]xv
j (3.56)

by integration over the spatial variables and integration by parts. The symmetry of
A1 then yields

∫
Ω

∑
i

∑
j

viaij1 (U)vjx = −1

2

∫
Ω

∑
i

∑
j

vi[aij1 (U)]xv
j. (3.57)

Analogous identities can be derived for the terms involving A2, A3 and the other
spatial derivatives.
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In the expression
∫

Ω

∑
i

∑
j

vimijvj, all terms off the diagonal drop out due to the

antisymmetry of M ; the remainder
∫

Ω
v1v1

x − v2v2
x = 0, by another integration by

parts, meaning that the dependence on ε−1 drops out of the equation! All in all, we
get:

∫
Ω

∑
i

[
(vi)2

2
]t −

1

2

∫
Ω

∑
i

∑
j

vi[aij1 (U)x]v
j − 1

2

∫
Ω

∑
i

∑
j

vi[aij2 (U)X ]vj

−1

2

∫
Ω

∑
i

∑
j

vi[aij3 (U)y]v
j =

∫
Ω

∑
i

vif i, (3.58)

which can be rearranged in the form

∫
Ω

∑
i

[(vi)2]t =

∫
Ω

∑
i

∑
j

vi[aij1 (U)x + aij2 (U)X + aij3 (U)y]v
j + 2

∫
Ω

∑
i

vif i

⇐⇒ d

dt
‖V‖2

L2 = (V, (A1(U)x + A2(U)X + A3(U)y)V)L2 + 2(V,F)L2 . (3.59)

A bound for the right-hand side is obtained by Cauchy-Schwarz and pulling out the
matrix norms:

(V, (A1(U)x + A2(U)X + A3(U)y)V)L2 + 2(V,F)L2

≤
∑
i

‖Ai(U)‖C1‖V‖2
L2 + ‖V‖2

L2 + ‖F‖2
L2

= (1 +
∑
i

‖Ai(U)‖C1)‖V‖2
L2 + ‖F‖2

L2 . (3.60)

Since the original system (3.39) fulfils (3.54) with F = 0, we get as a consequence

d

dt
‖U‖2

L2 ≤ [
∑
i

‖Ai(U)‖C1 ]‖U‖2
L2 . (3.61)

If we now apply ∂kx∂
l
XD

p to (3.39) and recall that we proved DM = MD, it imme-
diately follows that V = ∂kx∂

l
XD

pU satisfies (3.54) with

F = Fk,l,p := [∂kx∂
l
XD

p, A1(U)]Ux + [∂kx∂
l
XD

p, A2(U)]UX

+[∂kx∂
l
XD

p, A3(U)]Uy. (3.62)

We now estimate ‖Fk,l,p‖L2 :
Letting the y-order of any term of the form yj∂kx∂

l
X∂

m
y be j +m and the total order

j + k + l +m, we observe:

The operator D can be written as
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D = (∂2
y − y2)I + D̃, (3.63)

where D̃ has lower y-order than the leading-order term, which is a scalar operator;
accordingly,

Dp = (∂2
y − y2)pI + ˜̃D, (3.64)

with ˜̃D having y-order < 2n. Recall now that the commutator of a scalar operator
and a matrix operator has lower order than the sum of their individual orders, which
shows that each term [∂kx∂

l
XD

p, Ai(U)] has total order < 2n, and every term in Fk,l,p
consequently has maximal total order 2n.
Out of the individual factors in each term in Fk,l,p, there can be only one with total
order ≥ 2n− 2 (remember n ≥ 2!) The Sobolev lemma for dimension three therefore
guarantees that all other factors are in C2n−2, which permits us to pull those factors
out of the L2-norm in the form ‖·‖2

C2n−2 , which in turn can be estimated in terms of
‖U‖2

H̃2n . The remaining factor has total order ≤ 2n and can be estimated in terms of
‖U‖2

H̃2n as well. Combining all those estimates shows that there is a smooth function
G such that

‖Fk,l,p‖2
L2 ≤ G(‖U‖2

H̃2n). (3.65)

Apply now the estimate (3.59)-(3.60) to Vk,l,p for each triple (k, l, p) with k+ l+2p ≤
2n. Combined with the fact that ‖Ai(U)‖C1 ≤ G1(‖U‖H3) ≤ G2(‖U‖H̃2n) for some
smooth G1, G2, again due to Sobolev’s theorem, summing up over all terms of the
form (3.65) finally yields

d

dt
‖U‖2

H̃2n ≤ G3(‖U‖2
H̃2n) (3.66)

for a suitable smooth function G3. This implies that there is a T > 0 such that
‖U‖H̃2n is uniformly bounded for t ∈ [0, T ].

3.2.5 Convergence

It remains to show that the solutions to the transformed shallow water equations
converge to a limit and that this limit satisfies LELWE. This is achieved by

Lemma 5. Take n ≥ 3 arbitrary and let the assumptions of Lemma 4 hold; addi-
tionally, assume

‖∂xr0,ε + L+v0,ε‖H̃2(n−1) + ‖−∂xl0,ε + L−v0,ε‖H̃2(n−1)

+‖L−r0,ε + L+l0,ε‖H̃2(n−1) ≤ Cε (3.67)

for some C > 0, as well as r0,ε → r0,0, l0,ε → l0,0 in H̃2n as ε→ 0.
Then, as ε→ 0, rε → r0, lε → l0 and vε → 0 in
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C([0, T ], H̃2(n−1)) ∩ C([0, T ], C1
loc)

and

ε−1vε ⇀ v1,

meaning vε converges to v1 weakly.
Furthermore, r0, l0 and v1 do not depend on x and uniquely solve

r0
t + r0

X + L+v
1 = 0, (3.68)

l0t − l0X + L−v
1 = 0, (3.69)

L−r
0 + L+l

0 = 0 (3.70)

with initial data (r0,0, l0,0) and the time T of uniform existence obtained in Lemma
4.

Proof. At t = 0, applying ‖·‖H̃2(n−1) to

Ut + A1(U)Ux + A2(U)UX + A3(U)Uy + ε−1MU = 0 (3.71)

yields

‖Ut(0, x,X, y)‖H̃2(n−1) ≤ G4(‖U(0, x,X, y)‖H̃2n) + ε−1‖MU(0, x,X, y)‖H̃2(n−1) ,
(3.72)

with a smooth function G4 obtained as in the proof of Lemma 4. The bound (3.67)
then implies

‖Ut(0, x,X, y)‖H̃2(n−1) <∞. (3.73)

Application of ∂kx∂
l
XD

p∂t with j + k + 2p ≤ 2(n − 1) to (3.71) and again emulating
the procedure in Lemma 4 results in the estimate

d

dt
‖Ut‖2

H̃2(n−1) ≤ G5(‖U‖2
H̃2n)‖Ut‖2

H̃2(n−1) , (3.74)

which tells us that Ut is also uniformly bounded for t ≤ T.
It is now time to employ Lemma 2: both U and Ut fulfil the stated conditions and we
can infer that (rε, lε, vε) converge at least along some sequence εi in C([0, T ], H̃2(n−1))
to a limit (r0, l0, v0).
Multiplying (3.34)-(3.36) with ε and passing to the limit gives us

r0
x + L+v

0 = 0, (3.75)

−l0x + L−v
0 = 0 and (3.76)

L−r
0 + L+l

0 = 0. (3.77)
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Computing ∂x of (3.77) plus substitution of (3.75)-(3.76) yields

L−r
0
x + L+l

0
x = L−(−L+v

0) + L+(L−v
0) = [L+, L−]v0 = v0 = 0, (3.78)

as claimed. It follows immediately that r0
x = l0x = 0, so r0 and l0 are independent of

x.
Let now, for any function f = f(x), f := 1

2π

∫
T
fdx denote its average with respect to

x. Averaging (3.34)-(3.35) then yields

rt +
3r − l
2
√

2
(rx + εrX) + rX + vry +

r + l

4
vy + ε−1L+v = 0, (3.79)

lt +
r − 3l

2
√

2
(lx + εlX)− lX + vly +

r + l

4
vy + ε−1L−v = 0. (3.80)

Reminding ourselves that in the limit εi → 0, v vanishes and r and l converge to
functions independent of x, we can infer from the above

rt + rX + ε−1
i L+v = o(1), (3.81)

lt − lX + ε−1
i L−v = o(1), (3.82)

as εi → 0.Applying L− and L+ to (3.81) and (3.82), respectively, and using [L+, L−] =
I, it follows

∂t(L−r − L+l) + ∂X(L−r + L+l)− ε−1
i v = o(1). (3.83)

This shows that ε−1v is bounded; remember that every bounded sequence in a Hilbert
space possesses a weakly convergent subsequence, therefore there is a subsequence
εik and a v1 ∈ C([0, T ], H̃2(n−1)) such that

ε−1
ik
⇀ v1 (3.84)

as εik → 0; since L−r
0 + L+l

0 = 0, we find

v1 = 2L−r
0
t = −2L+l

0
t . (3.85)

taking the limit εi → 0 in (3.81)-(3.82) further yields

r0
t + r0

X + L+v
1 = 0, (3.86)

l0t − l0X + L−v
1 = 0. (3.87)

Together with (3.77), this shows that (r0, l0) indeed solve (3.68)-(3.70).
In order to finish our proof, we need to prove that the solution (r0, l0) is unique; due
to linearity, it is sufficient to prove that (3.86)-(3.87) with vanishing initial conditions
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has only the trivial solution (0, 0). Noting that the L2−adjoints of Lpm are given by
L?± = −L∓, respectively, we multiply (3.86) by r0 and integrate to obtain

1

2

d

dt

∫
Ω

∣∣r0
∣∣2 +

∫
Ω

r0
Xr

0 + 2

∫
Ω

L+L−r
0
t r

0 = 0, (3.88)

which simplifies to

1

2

d

dt

∥∥r0
∥∥2

L2 = −2(L+L−r
0
t , r

0)L2

= 2(L−r
0
t , L−r

0)L2 =
d

dt

∥∥L−r0
∥∥2

L2 . (3.89)

By the same token, we deduce from (3.87)

1

2

d

dt

∥∥l0∥∥2

L2 = − d

dt

∥∥L+l
0
∥∥2

L2 . (3.90)

With L−r
0 = −L+l

0, this implies

d

dt

∥∥r0
∥∥2

L2 = − d

dt

∥∥l0∥∥2

L2 , (3.91)

but since we assumed initial data r0,0 = l0,0 = 0, this necessitates r0 = l0 ≡ 0, which
proves the assertion. Uniqueness further implies that the solutions converge as ε→ 0
without restriction to a sequence.

The proof of our theorem is now almost complete:
Reverting the substitutions by

r0 =
h0 + u0

√
2

, (3.92)

l0 =
h0 − u0

√
2

, (3.93)

(3.68)-(3.70) become

h0
t + u0

t√
2

+
h0
X + u0

X√
2

+ L+v
1 = 0, (3.94)

h0
t − u0

t√
2
− h0

X − u0
X√

2
+ L−v

1 = 0, (3.95)

L−h
0 + L+u

0

√
2

+
L+h

0 − L+u
0

√
2

= 0. (3.96)

Simplifying (3.94) and adding and subtracting (3.92) and (3.93), respectively, yields

u0
t + h0

X − yv1 = 0, (3.97)

h0
t + u0

X + v1
y = 0 and (3.98)

h0
y + yu0 = 0 : (3.99)

These are the equations for LELWE, as claimed in Theorem 2. �
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Appendix A

Sobolev spaces and mollifiers

Basic definitions In chapter 3, we deal with L2−Sobolev spaces on Ω = T×T×R.
Their definition is the same as in RN : for any function w ∈ L2(Ω) and multi-index
α, we call v ∈ L2(Ω) the weak α−derivative of w if

∫
Ω

Dαfw = (−1)|α|
∫

Ω

fv (A.1)

for all f ∈ C∞c (Ω), where C∞c (Ω) denotes the space of all smooth, real-valued func-
tions that are compactly supported in Ω. The Sobolev space Hn(Ω) is now defined as
the space of all w ∈ L2(Ω) that possess weak L2−derivatives for |α| ≤ n.
For every n ∈ N, Hn is a Banach space: it is complete with respect to the norm

‖w‖2
Hn :=

∑
j+k+l≤n

∥∥∂jX∂kx∂lyw∥∥2

L2 . (A.2)

Sobolev spaces can also be defined for functions in Lp for arbitrary p ≥ 1; the par-
ticular usefulness of the spaces Hn lies in the fact that they are - just as L2 itself -
Hilbert spaces: one only needs to replace the norms in (A.2) by L2−inner products
in order to obtain the inner product for Hn.
In Hn(Ω), C∞c −functions are dense; this implies in particular a straightforward for-
mula for integration by parts:

∫
Ω

Dαwv = (−1)|α|
∫

Ω

wDαv (A.3)

for w, v ∈ Hn(Ω).

The Sobolev lemma Sobolev spaces provide a very powerful environment for the
analysis of partial differential equations; when working with the immediate definition,
however, there is the drawback that functions in Hn are not even defined pointwise,
let alone smooth in the classical sense; the Sobolev lemma remedies that problem:

Lemma 6. If n > m + 3
2
, then Hn(Ω) ⊂ Cm(Ω) in the sense of a continuous

embedding, and there is a constant C depending only on n and m such that
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sup
|α|≤m

‖∂αw‖∞ ≤ C‖w‖Hn (A.4)

for all w ∈ Hn.

A quick proof via the L2−Fourier transform can be found in [5], p. 194.

The Rellich-Kondrachev theorem We now consider functions in Hn that are
supported in an open set Ω̃ ⊂ Ω in the following sense:
Hn

0 (Ω̃) is defined as the closure of C∞c (Ω̃) in Hn(Ω).
For the spaces Hn

0 , the following classical result is known as the Rellich-Kondrachev
theorem:

Theorem 3. If Ω̃ ⊂ Ω is open and bounded, and n′ > n, the embedding Hn′
0 (Ω̃) →

Hn
0 (Ω̃) is compact: we can extract from every bounded sequence in Hn′

0 (Ω̃) a subse-
quence that converges in Hn

0 (Ω̃).

Again, we refer to [5], pp. 200-201 for a proof. In order to extend this result to the
modified spaces H̃2n defined in section 3.1, we only need to observe the following:

• Since H̃2n(Ω̃) ⊂ H2n(Ω̃), the embedding H̃2n(Ω̃)→ H2(n−1)(Ω̃) is automatically
compact.

• We can then use the boundedness of Ω̃ to obtain convergence in H̃2(n−1)(Ω̃).

Mollifiers As laid out in [4], appendix C.4, for everyN ∈ N there are C∞(RN)−functions
ηε(x) with the following properties:

•
∫
RN ηε = 1.

• supp ηε ⊂ B(0, ε).

These functions are called the standard mollifiers. For open V ⊂ RN and f : V → R
locally L1, we can then define the mollification

f ε := f ? ηε, (A.5)

with ? denoting convolution of two functions. Letting Vε := {x ∈ V : dist(x, ∂V ) >
ε}, the following then hold:

• f ε ∈ C∞(Vε).

• f ε → f almost everywhere as ε→ 0.

• For continuous f, convergence is uniform on compact subsets of V.

• For f ∈ Lploc(V ) (1 ≤ p ≤ ∞), convergence also occurs in Lploc(V ).
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Mollifications are important workhorses in the analysis of partial differential equa-
tions - here, we only require the very basic consequence that the mollification of an
indicator function provides the existence of cutoff functions with the properties that
we claimed in Lemma 2: for example,

1B(0,1) ? η 1
2

is a smooth function equal to 1 on B(0, 1
2
), with support contained in B(0, 3

2
).
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Anhang B

Deutsche Zusammenfassung
(german abstract)

Diese Arbeit ist Modellgleichungen für Strömungen in der tropischen Atmosphäre
gewidmet, wobei wir die β−Ebenen-Näherung verwenden. Neben den allgemeinen
Gleichungen für kompressible Fluide und den Flachwassergleichungen liegt der Fokus
auf der sogenannten ”weak temperature gradient approximation”; weiters besprechen
wir das Matsuno-Gill-Modell und die äquatorialen Langwellengleichungen.
Im Folgenden untersuchen wir Beziehungen zwischen diesen Modellgleichungen mit-
tels formaler asymptotischer Mehrskalenentwicklungen, aufbauend auf dem wegwei-
senden Artikel [12] von Rupert Klein und Andrew Majda. Wir erläutern die Mehrs-
kalenmethode ausführlich, wobei besonderer Wert auf das Zusammenspiel unserer
Modellannahmen mit der Wahl des formalen Ansatzes gelegt wird.
Das Themenfeld der Exaktifizierung der Mehrskalenasymptotik wird ebenfalls be-
handelt: Wir stellen einen aktuellen Konvergenzbeweis für die formale Beziehung
zwischen den Flachwassergleichungen und den äquatorialen Langwellengleichungen
vor, dem Artikel [3] entnommen.
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Glossary

Froude number The (barotropic) Froude number Fr =
vref√
glref

expresses the ratio

of the (reference) fluid velocity to the barotropic gravity wave speed. 5, 6, 20

geostrophic balance A geophysical flow is in geostrophic balance when the hori-
zontal pressure gradient is balanced by the (horizontal) Coriolis acceleration.
In the equatorial β−plane, the corresponding system of equations reads ∇p =
−βyv⊥. 7, 8, 32, 33

hydrostatic balance Hydrostatic balance is achieved when the vertical pressure
gradient is in balance with the buoyancy forces. The exact mathematical ex-
pression depends on the context: pz = −g · ρ and pz = −θ are typical. 25, 32,
33

Mach number The Mach number M =
vref√
pref/ρref

expresses the ratio of the (refer-

ence) fluid velocity to the speed of sound waves. 5, 20

material derivative The material derivative D
Dt

= ∂
∂t

+v·∇, also known as advective
or substantial derivative, is the time derivative along the path of individual fluid
elements. 6

potential temperature The temperature that would be attained by a parcel of
fluid if it was adiabatically compressed to the sea level pressure. 5

Rossby number The Rossby number Ro =
vref
Ωlref

expresses the ratio of inertial

forces to Coriolis forces with respect to the chosen length and velocity scales.
5, 20
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Acronyms

IPESD intraseasonal planetary equatorial synoptic-scale dynamics. 14, 17, 31, 33,
34

LELWE linear equatorial long-wave equations. 8, 9, 17

LEWE linear equatorial wave equations. 17, 31

MEWTG mesoscale equatorial weak temperature gradient. 17, 19, 28

NLELWE nonlinear equatorial long-wave equations. 8

QLELWE quasi-linear equatorial long-wave equations. 17, 34

SEWTG synoptic-scale equatorial weak temperature gradient. 17, 34

SPEWTG seasonal subplanetary equatorial weak temperature gradient. 19, 20, 28,
29

WTG weak temperature gradient. 11, 19, 20, 27, 28, 32

57



Bibliography

[1] Joseph A. Biello and Andrew J. Majda: A New Multiscale Model for the Madden-
Julian Oscillation, Journal of the Atmospheric Sciences, Vol. 62 (2005), pp.
1694-1721.

[2] Paul Dellar: Variations on a beta-plane: derivation of non-traditional beta-plane
equations from Hamiltons principle on a sphere, Journal of Fluid Mechanics, Vol.
674 (2011), pp. 174-195.

[3] Alexandre Dutrifoy, Andrew J. Majda and Steven Schochet: A Simple Justifi-
cation of the Singular Limit for Equatorial Shallow-Water Dynamics, Commu-
nications on Pure and Applied Mathematics, Vol. LXII (2009), pp. 322-333.

[4] Lawrence C. Evans, Partial Differential Equations, American Mathematical So-
ciety, 1998.

[5] Gerald B. Folland, Introduction to Partial Differential Equations, Princeton Uni-
versity Press (2nd ed.), 1995.

[6] A. E. Gill, Some simple solutions for heat-induced tropical circulation, Journal
of the Royal Meteorological Society, Vol. 106 (1980), pp. 447-462.

[7] J. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods,
Springer-Verlag, 1996.

[8] Boualem Khouider, Andrew J. Majda and Samuel N. Stechmann, Climate sci-
ence in the tropics: waves, vortices and PDEs, Nonlinearity, Vol. 26 (2013), pp.
R1-R68.

[9] Rupert Klein, Asymptotic Analyses for Atmospheric Flows and the Construc-
tion of Asymptotically Adaptive Numerical Methods, Zeitschrift fr Angewandte
Mathematik und Mechanik, Vol. 80 (2000), pp. 765-777.

[10] Rupert Klein, An unified approach to meteorological modelling based on multiple-
scales asymptotics, Advances in Geosciences, Vol. 15 (2008), pp. 23-33.

[11] Rupert Klein, Scale-Dependent Models for Atmospheric Flows, Annual Review
of Fluid Mechanics, Vol. 42 (2010), pp. 249-274.

[12] Rupert Klein and Andrew J. Majda, Systematic Multiscale Models for the Trop-
ics, Journal of the Atmospheric Sciences, Vol. 60 (2003), pp. 393-408.

[13] Rupert Klein and Stefan Vater, Mathematische Modellierung in der Kli-
maforschung, unpublished, 2003.

58



[14] Andrew J. Majda, Compressible Fluid Flow and Systems of Conservation Laws
in Several Space Variables, Springer-Verlag, 1984.

[15] Andrew J. Majda, Introduction to PDEs and Waves for the Atmosphere and
Ocean, American Mathematical Society, 2003.

[16] Andrew J. Majda, New Multiscale Models and Self-Similarity in Tropical Con-
vection, Journal of the Atmospheric Sciences, Vol. 64 (2007), pp. 1393-1404.

[17] Herbert Oertel (edited by), Prandtl-Führer durch die Strömungslehre, Vieweg
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