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Abstract

A large number of applications in real-world can be formulated and designed as optimization
problems. These models are usually large-scale, complexly structured, and exhibit features
like nonsmoothness and nonconvexity, which require specific solution methods when addressing
them. Such numerical algorithms are preferable first-order methods, due to their simplicity
and low iteration and memory storage costs, but also to be formulated in a full splitting spirit,
meaning that every element involved in the formulation of the underlying optimization problem
is evaluated separately and in an efficient way.

The main purpose of this thesis is to formulate and investigate the convergence properties
of full splitting algorithms for different nonsmooth optimization problems, ranging from bilevel
convex to structured nonconvex. We focus in particular on the study of the convergence behavior
of the developed algorithms and, in some situations, on their rate of convergence.

In the preliminaries, we introduce basic notions and results of convex analysis, maximal
monotone operators, variational and nonsmooth analysis, which are of relevance for the thesis.
Further, we propose a forward-backward splitting algorithm of penalty type with inertial ef-
fects for a complexly structured monotone inclusion problem, which provides a general setting
for solving convex bilevel minimization problems. The last three chapters of the thesis are
dedicated to the design and analysis of algorithms for nonsmooth and nonconvex optimization
problems. They share the feature that, along with the subsequence convergence analysis, the
global convergence and converge rates are discussed in the setting of the Kurdyka- Lojasiewicz
property. In this context, we first propose a projected gradient algorithm for the factorization
of a completely positive matrix with parameters that take into account the effects of relaxation
and inertia. Then we consider the proximal and the proximal linearized alternating direction
method of multipliers for a nonsmooth and nonconvex optimization problem involving compo-
sitions with linear operators. Finally, we develop a proximal approach for nonsmooth problems
with block structure coupled by a smooth function.
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Zusammenfassung

Viele Anwendungen können als Optimierungsprobleme formuliert werden. Diese Modelle sind
in der Regel hochdimensional, komplex strukturiert und weisen Merkmale wie Nichtglattheit
und Nichtkonvexität auf, für deren Behandlung spezielle Lösungsmethoden erforderlich sind.
Solche numerische Algorithmen sind, aufgrund ihrer Einfachheit und geringen Iterations- und
Speicherkosten, vorzugsweise Verfahren erster Ordnung. Des weitern liegt unser Hauptaugen-
merk auf sogenannten full splitting Verfahren, was bedeutet, dass jedes Element, das an der
Formulierung des zugrunde liegenden Optimierungsproblems beteiligt ist, separat und auf ef-
fiziente Weise ausgewertet wird.

Der Hauptzweck dieser Arbeit ist die Formulierung und Untersuchung der Konvergenzeigen-
schaften solcher Algorithmen für verschiedene nicht glatte Optimierungsprobleme, die von kon-
vexen bilevel bis hin zu strukturierten nicht-konvexen Problemen reichen. Wir konzentrieren
uns insbesondere auf die Untersuchung des Konvergenzverhaltens der entwickelten Algorithmen
und in einigen Situationen auf ihre Konvergenzrate.

Nach einer Einleitung stellen wir Grundbegriffe und Ergebnisse der konvexen Analysis, der
maximalmonotonen Operatoren, der Variations- und der nicht-glatten Analysis vor, die für die
Arbeit relevant sind. Ferner schlagen wir ein Forward-Backward-Splitting Verfahren der penalty
Art mit Inertialeffekten für ein komplex strukturiertes monotones Inklusionsproblem vor. Dies
bietet einen allgemeine Rahmen zur Lösung konvexer bilevel Minimierungsprobleme. Die letzten
drei Kapitel der Arbeit befassen sich mit dem Entwurf und der Analyse von Algorithmen für
nicht-glatte und nicht-konvexe Optimierungsprobleme. Sie teilen das Merkmal, dass zusammen
mit der Konvergenzanalyse der Teilfolgen die globalen Konvergenz- und Konvergenzraten unter
der Kurdyka- Lojasiewicz-Eigenschaft diskutiert werden. In diesem Zusammenhang schlagen wir
zunächst einen projizierten Gradientenalgorithmus zur Faktorisierung einer vollständig positiven
Matrix mit Parametern vor, die die Auswirkungen von Relaxation und Inertia berücksichtigen.
Dann betrachten wir die proximale und die proximale linearisierte Version der alternating di-
rection method of multipliers für ein nicht-glattes und nicht-konvexes Optimierungsproblem,
das Hintereinanderausführungen mit linearen Operatoren beinhaltet. Schließlich entwickeln wir
einen proximalen Ansatz für nicht glatte Probleme mit Blockstruktur, die durch eine glatte
Funktion gekoppelt sind.
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Chapter 1

Introduction

A large number of real-world applications, from engineering, economics to image and signal
processing and machine learning, can be formulated and designed as optimization problems. In
order to capture the desired phenomena, these models are usually large-scaled and complexly
structured and share features like nonsmoothness and nonconvexity. As a result, the obtained
optimization problems are challenging, and specific solution methods are required when ad-
dressing them. Such numerical algorithms are preferable first-order methods and should be
formulated in a fully splitting spirit. First-order methods exploit only the information provided
by function values and gradients/subgradients but not second-order information like the Hes-
sians. They are attractive in modern optimization due to their simplicity and low iteration and
memory storage costs. A fully splitting scheme means every element involved in the formula-
tion of the underlying optimization problem is evaluated separately and efficiently. In addition,
there is no expensive performance regarding the operator’s inversion, and evaluating the sum
or composition of the operators/functions is not needed.

The notion of the proximal operator of a convex function, introduced about half a century
ago by Moreau [108], is a vital object for full splitting schemes. This fundamental regularization
process gave rise to the so-called proximal minimization algorithm by Martinet [105], followed
by its extension in Rockafellar [118] for solving monotone inclusions. The proximal operator of
a convex function is also the resolvent of the subdifferential associated with the convex function,
which is a maximally monotone operator. This is the most direct connection between monotone
operator theory and convex optimization. The operator splitting methods were motivated by
applications in mechanics and partial differential equations. In 1956, Douglas and Rachford
proposed a numerical method to study heat conduction problems [76]. Later on, when consid-
ering the monotone inclusions consisting sum of two maximally monotone operators in [100],
Lions and Mercier extended this method and proved weak convergence of the algorithm to a
solution. For a recent extension of this result, see [122]. In case one of the two maximally
monotone operators in the inclusion is single-valued and cocoercive, the forward-backward al-
gorithm [61, 86] can be applied. The principle of this algorithm is to use at every iteration a
forward (explicit) step on the single-valued mapping, followed by a backward (implicit) step on
the other. For the optimization context, this algorithm is also known as the proximal-gradient
algorithm, and the convergence rate for functional value can be derived. If the cocoercivity of
the single-valued operator is further relaxed to monotone and Lipschitz continuous, we can use
Tseng’s forward-backward-forward algorithm [123]. A class of complex optimization problems
in which the functions being composed with a bounded linear operator is a good example for the
benefit of splitting scheme. They have been successfully used to reduce complex problems into
a series of simpler subproblems. In this context, we mention the Proximal Alternating Direction
Method of Multipliers, or Proximal ADMM, see [23, 120]. The classical Alternating Direction
Method of Multipliers [84, 85] or the primal-dual splitting algorithms [49, 65, 70, 124] are the
particular instances of this iterative scheme. Besides the weak convergence of the iterates, one
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can also obtain the rate for primal-dual gaps in the ergodic sense. In the seminal paper [110],
Nesterov proposed an accelerated gradient method. Later on, it has been further extended
to the composite minimization problem by Beck and Teboulle in [28], known as FISTA. Since
the introduction of Nesterov’s scheme, the first-order accelerating methods have become a sub-
ject of active research. Accelerated primal-dual schemes can also be obtained, provided some
additional conditions on the function are fulfilled, see for example [44, 65].

In the absence of convexity, one of the first papers to study the global convergence of the
iterates of the proximal point algorithm was [5] by Attouch and Bolte. This work is a starting
point for many papers that study the convergence of various algorithms in the nonconvex setting
such as the proximal-gradient, and the Gauss-Seidel method [7, 8] as well as some inertial
variants [43, 51, 111]. All the above work rely on the Kurdyka- Lojasiewicz property. The
origins of this notion go back to the pioneering work of Kurdyka, who introduced in [93] a
general form of the  Lojasiewicz inequality [103]. Further extensions to the nonsmooth setting
can be found in the works of Attouch, Bolte, and their co-authors [7, 33, 34, 35]. Li and Pong
studied some calculus rules in [98]. One of the remarkable properties of the Kurdyka- Lojasiewicz
functions is their ubiquity in applications, including semi-algebraic, real sub-analytic, uniformly
convex and convex functions satisfying a growth condition. For nonconvex block-structured
optimization problem, we mention the Proximal Alternating Linearized Minimization (PALM)
of Bolte, Sabach and Teboulle [36]. Li and Pong study in [96] the ADMM for minimizing the
sum of a smooth function with a bounded Hessian and a nonsmooth one, the latter being the
composition of a proper lower semicontinuous function and a linear operator. The Douglas-
Rachford algorithm in the nonconvex setting was also obtained by the same authors [97].

The main purpose of this thesis is to formulate and investigate the convergence properties
of full splitting algorithms for different nonsmooth optimization problems, ranging from bilevel
convex to structured nonconvex. We focus in particular on the study of the convergence behavior
of the sequences of iterates and function values generated by the developed algorithms and, in
some situations, on their rate of convergence.

The organization of this thesis is as follows.
We first introduce in the preliminaries basic notions and results of convex analysis, monotone

operators theory, variational and nonsmooth analysis, which are of relevance for the thesis.
We then present the definition of the Kurdyka- Lojasiewicz property and finally some results
regarding the convergence of real sequences.

In Chapter 3, we focus on a complexly structured monotone inclusion problem, consisting of
the sum of a maximally monotone operator and a cocoercive one and the convex normal cone to
the set of zeroes of another cocoercive operator. This problem also provides a general setting for
solving convex bilevel minimization problems containing smooth function in the lower level. To
solve this problem, we propose an algorithm that combines the forward-backward splitting with
a penalization technique; inertial effects are also considered. We show weak ergodic convergence
of the generated sequence of iterates to a solution of the monotone inclusion problem. In the
context of bilevel optimization, weak nonergodic and strong convergence can be achieved under
further assumptions for the involved functions.

The last three chapters of the thesis are dedicated to the design and analysis of algorithms
for nonsmooth and nonconvex optimization problems. Asides from the subsequence conver-
gence, which is the best one can expect in a general nonconvex setting, we can prove global
convergence and derive convergence rates by using the Kurdyka- Lojasiewicz property. We also
provide sufficient conditions for the boundedness of the generated sequence. In the nonconvex
setting, the boundedness of the sequence of generated iterates plays a central role in the conver-
gence analysis, as it would guarantee the existence of cluster points. Cluster points are usually
expected to be critical points of the underlying problem.

In Chapter 4, we aim to factorize a completely positive matrix by using an optimization
approach. Our model leads to a projected gradient type algorithm with parameters that take
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into account the effects of relaxation and inertia. Both projection and gradient steps are simple
because they have explicit formulas and do not require inner loops. Related approaches in the
literature are the ones proposed by Groetzner and Dür [87] or by Chen, Pong, Tan and Zeng [66].
These schemes require in each iteration the performance of a singular value decomposition in the
calculation of the projection, which is expensive when the dimension of the matrix to decompose
increase. Furthermore, a straightforward step can be performed to find an appropriate starting
point for our algorithm, which is another advantage over the methods mentioned above.

Chapter 5 is devoted to the minimization of the sum of a smooth function and the compo-
sition of a nonsmooth function with a linear operator in the fully nonconvex setting, similar to
the setting in [96]. We propose two numerical algorithms and carry out a parallel convergence
analysis for both algorithms. By appropriate choices of the matrix sequences, these two schemes
can be formulated in the spirit of the proximal and, respectively, proximal linearized alternating
direction method of multipliers.

In the final chapter, we develop a proximal type algorithm for minimizing objective functions
consisting of three summands: the composition of a nonsmooth function with a linear operator,
another nonsmooth function, each of the nonsmooth summands depending on an independent
block variable, and a smooth function which couples the two block variables. We carry out for
this scheme a convergence analysis. If the linear operator is merely the identity, our problem
becomes the model in [36].
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Boţ for his guidance, kindness, patience, and encouragement during my doctoral period and
for providing a comfortable working environment. I would like to thank Robert and Vuong
for their fruitful discussions, as well as Sorin and Matus for their friendliness and helpfulness.
I am grateful also to my fellow Ph.D. students Axel, Dennis, Morteza, and Michael, because
they all contributed to the fact that I really enjoyed my studies. Besides, I want to give my
gratefulness to Professor Guoyin Li and Professor Russell Luke, and to their research groups
for their hospitality during my research stays abroad at the University of New South Wales and
University Göttingen, respectively.

My deepest gratitude is expressed to my family. Especially to my grandma and my parents,
who have sacrificed and supported their children; to my sister, my wife and my son, for their
love, patience, and understanding regardless of the distance between us and the different time
zones.

Xin được gửi đến gia đình tôi lòng biết ơn chân thành nhất. Cho bà ngoại và bố mẹ, những
người vẫn luôn hy sinh vô điều kiện cho con cháu. Cho em gái, cho vợ và con trai, vì lòng nhẫn
nại và sự thấu hiểu bất kể khoảng cách không thời gian.

My research was financially supported by the Doctoral Program Vienna Graduate School on
Computational Optimization (VGSCO) of the FWF (Austrian Science Fund), project W1260-
N35.

11



12



Chapter 2

Preliminaries

2.1 Basic notions of monotone operators and of convex analysis

Let H be a real Hilbert space with inner product x¨, ¨y and associated norm ‖¨‖ “
a

x¨, ¨y.
For an arbitrary set-value operator A : HÑ H we denote by

gphA :“ tpx, vq P HˆH : v P Axu ,

domA :“ tx P H : Ax ‰ Hu ,

ranA :“ tv P H : Dx P H with v P Axu ,
zerA :“ tx P H : 0 P Axu ,

its graph, domain, range and set of zeros, respectively. The inverse operator of A is denoted
by A´1 : H Ñ H and defined by pv, xq P gphA´1 if and only if px, vq P gphA. Obviously,
zerA “ A´1 p0q.

Definition 2.1.1. Let A : HÑ H be a set-valued operator.

(i) The operator A is said to be monotone, if

xx´ y, v ´ wy ě 0 for every px, vq , py, wq P gphA.

(ii) The monotone operator A is said to be maximally monotone, if there exists no other
monotone operator A1 : HÑ H such that gphA1 Ľ gphA.

(iii) The operator A is said to be γ´strongly monotone for γ ą 0, if

xx´ y, v ´ wy ě ‖x´ y‖2 for every px, vq , py, wq P gphA.

Let us mention that if A is maximally monotone, then zerA is a convex and closed set, [24,
Proposition 23.39]. We refer to [24, Section 23.4] for conditions ensuring that zerA is nonempty.
If A is maximally monotone, then one has the following characterization for the set of its zeros

z P zerA if and only if xu´ z, yy ě 0 for every pu, yq P gphA. (2.1.1)

If A is maximally monotone and strongly monotone, then zerA is a singleton, thus nonempty,
[24, Corollary 23.37].

Definition 2.1.2. Let A : H Ñ H be a single-valued operator. The operator A is said to be
cocoercive with constant µ ą 0 if its inverse is µ-strongly monotone, that is,

xx´ y,Bx´Byy ě µ ‖Bx´By‖2 for every x, y P H.

13



A typical example of a cocoercive operator is the gradient of a Fréchet differentiable convex
function such that its gradient is Lipschitz continuous. In particular, according to the Baillon-
Haddad theorem (see e.g. [24, Corollary 18.17]), if Ψ: HÑ R is a Fréchet differentiable convex
function, then∇Ψ is Lipschitz continuous with modulus L ą 0 if and only if it is L´1-cocoercive.

Another beneficial single-valued Lipschitz continuous operator is the resolvent associated
with a maximally monotone operator.

Definition 2.1.3. Let A : H Ñ H be a set-valued operator. The resolvent of A, JA : H Ñ H,
is defined by

JA :“ pId`Aq´1 ,

where Id : HÑ H denotes the identity operator on H.

This operator enjoys many important properties that make it a central tool in monotone
operator theory and its applications. The Theorem of Minty states that it is defined everywhere
in H, i.e. ran pId`Aq “ H, if and only if A is maximally monotone ([24, Corollary 23.10]). In
particular, it is 1-cocoercive, therefore 1-Lipschitz continuous, and single-valued.

For an arbitrary γ ą 0, we have the following identity ([24, Proposition 23.18])

JγA ` γJγ´1A´1 ˝ γ´1Id “ Id.

Now we consider functions with values in the extended real line RY t˘8u.

Definition 2.1.4. Let Ψ: HÑ RY t`8u be an extended-real valued function.

(i) The effective domain of Ψ is defined as

domΨ :“ tx P H : Ψ pxq ă `8u .

(ii) The function Ψ is called proper, if domΨ ‰ H for all x P H.

(iii) The function Ψ is called convex, if for every x, y P H and 0 ď θ ď 1

Ψ pp1´ θqx` θyq ď p1´ θqΨ pxq ` θΨ pyq .

(iv) The function Ψ is called lower semi-continuous at x P H if

lim inf
yÑx

Ψ pyq ě Ψ pxq .

The function Ψ is called lower semi-continuous if it is lower semi-continuous at every
x P H.

Definition 2.1.5. Let Ψ: H Ñ R Y t`8u be a given function. The convex subdifferential of
Ψ at the point x P H is the set

BΨ pxq :“ tv P H : Ψ pyq ě Ψ pxq ` xv, y ´ xy @y P Hu ,

whenever Ψ pxq P R. We take by convention BΨ pxq “ H, if Ψ pxq “ `8.

The proximal operator of a proper, convex and lower semicontinuous function is the most
direct connection between monotone operator theory and convex optimization. Let Ψ: H Ñ

RY t`8u be a proper, lower semicontinuous and convex function, proxγΨ : HÑ H is a single-
valued operator defined as

proxγΨ “ JγBΨ “ pId` γBΨq
´1 .

14



Definition 2.1.6. Let Ψ: H Ñ R Y t`8u be a function. The conjugate function of Ψ is
Ψ˚ : HÑ RY t`8u defined by

Ψ˚ puq “ sup
xPH

txx, uy ´Ψ pxqu

and it is a proper, convex and lower semicontinuous.

Notice that if Ψ is proper, convex and lower semicontinuous, then BΨ is a maximally mono-
tone operator and it holds pBΨq´1

“ BΨ˚. We have the so-called Moreau’s decomposition
formula:

proxγΨ ` γproxγ´1Ψ˚ ˝ γ
´1Id “ Id.

The function Ψ: H Ñ RY t`8u is said to be γ´strongly convex with γ ą 0, if Ψ´
γ

2
‖¨‖2

is a convex function. This property implies that BΨ is a γ´strongly monotone operator.

Definition 2.1.7. Let M be a nonempty subset of H.

(i) The indicator function of the set M is defined by

δM pxq :“

#

0, x PM

`8, x RM
.

(ii) The normal cone ofM is the convex subdifferential of its indicator function. In particular

NM pxq :“

#

tv P H : xy ´ x, vy ď 0 @y P Hu , x PM
H, x RM

.

Notice that for x PM we have

v P NM pxq ô σM pxq “ xx, vy ,

where σM “ δ˚M is the support function of M .

Definition 2.1.8. Let M be a nonempty closed subset of H. We say that an element z PM is
a projection of an element x onto a nonempty closed subset M of H, if

‖x´ z‖ “ inf
yPM
‖x´ y‖ .

If the set M is also convex, then the projection of an element x onto M is uniquely defined and
we will denote it by PrM pxq. The projection is also characterized by

PrM pxq PM and xx´PrM pxq , y ´PrM pxqy ď 0 @y PM.

If M Ď H is a nonempty convex closed set and x P H, then

z “ PrM pxq ô x´ z P NM pzq . (2.1.2)

Moreover, notice that for every x P H it holds PrM pxq “ proxδM pxq.
Introduced by Fitzpatrick in [80], the notion below opened the gate towards the employment

of convex analysis specific tools when investigating the maximality of monotone operators (see
[24, 41] and the references therein).

Definition 2.1.9. The Fitzpatrick function associated to a monotone operator A is defined as

ϕA : HˆHÑ RY t`8u , ϕA px, uq :“ sup
py,vqPgphA

txx, vy ` xy, uy ´ xy, vyu

and it is a convex and lower semicontinuous function.
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For insights in the outstanding role played by the Fitzpatrick function in the convex analysis
with the theory of monotone operators we refer to [24, 26, 41, 59, 62] and the references therein.
If A is maximally monotone, then ϕA is proper and it fulfills

ϕA px, uq ě xx, uy for every px, uq P HˆH,

with equality if and only if px, uq P gphA. The following inequality is true when A :“ BΨ (see
[26]):

ϕBΨ px, uq ď Ψ pxq `Ψ˚ puq for every px, vq P HˆH. (2.1.3)

2.2 Variational analysis tools

In the following we will introduce some tools from variational analysis which will play an im-
portant role in this thesis.

Definition 2.2.1. Let Ψ: HÑ RY t`8u be a proper and lower semicontinuous function and
x P domΨ :“ ty P H : Ψ pyq ă `8u . The Fréchet (viscosity) subdifferential of Ψ at x is

pBΨ pxq :“

"

v P H : lim inf
yÑx

Ψ pyq ´Ψ pxq ´ xv, y ´ xy

‖y ´ x‖
ě 0

*

and the limiting (Mordukhovich) subdifferential of Ψ at x is

BΨ pxq :“ tv P H : exist sequences xk Ñ x and vk Ñ d as k Ñ `8

such that Ψ pxkq Ñ Ψ pxq as k Ñ `8 and vk P pBΨ pxkq for any k ě 0u.

For x R domΨ, we set pBΨ pxq “ BΨ pxq :“ H.

The inclusion pBΨ pxq Ď Ψ pxq holds for each x P H. If Ψ is convex, then the two subdiffer-
entials coincide with the convex subdifferential of Ψ. If x P H is a local minimum of Ψ, then
0 P BΨ pxq. We denote by

crit pΨq :“ tx P H : 0 P BΨ pxqu

the set of critical points of Ψ.
The limiting subdifferential fulfils the following closedness criterion: if txkukě0 and tvkukě0

are sequence in H such that

vk P BΨ pxkq for any k ě 0, pxk, vkq Ñ px, vq and Ψ pxkq Ñ Ψ pxq as k Ñ `8,

then v P BΨ pxq.
We also have the following subdifferential sum formula (see [107, Proposition 1.107], [119,

Exercise 8.8]): if Φ: H Ñ R is a continuously differentiable function, then B pΨ` Φq pxq “
BΨ pxq `∇Φ pxq for any x P H; and also a formula for the subdifferential of the composition of
Ψ with a linear operator A : G Ñ H (see [107, Proposition 1.112], [119, Exercise 10.7]): if A is
injective, then B pΨ ˝Aq pxq “ A˚BΨ pAxq for any x P G.

Definition 2.2.2. The proximal point operator with parameter γ ą 0 of a proper and lower
semicontinuous function Ψ: HÑ RY t`8u is the set-valued operator defined as ([108])

proxγΨ : HÑ H, proxγΨ pxq “ arg min
yPH

"

Ψ pyq `
1

2γ
‖x´ y‖2

*

.

If Ψ is bounded from below, then the prox operator is nonempty for every x P H. Exact
formulas for the proximal operator are available not only for large classes of convex functions
([24, 27, 69]), but also for various nonconvex functions ([7, 89, 95]).

The following proposition collects some important properties of a (not necessarily convex)
Fréchet differentiable function with Lipschitz continuous gradient.
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Proposition 2.2.1. Let Ψ: HÑ R be Fréchet differentiable such that its gradient is Lipschitz
continuous with constant L ą 0. Then the following statements are true:

(i) For every x, y P H and every z P rx, ys “ tp1´ tqx` ty : t P r0, 1su it holds

Ψ pyq ď Ψ pxq ` x∇Ψ pzq , y ´ xy `
L

2
‖y ´ x‖2 ; (2.2.1)

(ii) If Ψ is bounded from below, then for every γ ą 0 it holds

inf
xPH

"

Ψ pxq ´

ˆ

1

γ
´

L

2γ2

˙

‖∇Ψ pxq‖2
*

ą ´8.

Proof. (i) Let be x, y P H and z :“ p1´ tqx` ty for t P r0, 1s. By the fundamental theorem
of differentiation and integration we have

Ψ pyq ´Ψ pxq “

ż 1

0
x∇Ψ pp1´ sqx` syq , y ´ xy ds

“

ż 1

0
x∇Ψ pp1´ sqx` syq ´∇Ψ pzq , y ´ xy ds` x∇Ψ pzq , y ´ xy . (2.2.2)

Since∣∣∣∣ż 1

0
x∇Ψ pp1´ sqx` syq ´∇Ψ pzq , y ´ xy ds

∣∣∣∣
ď

ż 1

0
‖∇Ψ pp1´ sqx` syq ´∇Ψ pzq‖ ¨ ‖y ´ x‖ ds ď L ‖x´ y‖2

ż 1

0
|s´ t| ds

“ L ‖x´ y‖2
ˆ
ż t

0
p´s` tq ds`

ż 1

t
ps´ tq ds

˙

“ L

ˆ

1

2
´ t p1´ tq

˙

‖x´ y‖2 , (2.2.3)

the inequality in (2.2.1) follows by combining (2.2.2) and (2.2.3) and by using that 0 ď
t ď 1.

(ii) The inequality in (2.2.1) gives for every x P H

´8 ă inf
yPH

Ψ pyq ď Ψ

ˆ

x´
1

γ
∇Ψ pxq

˙

ď Ψ pxq `

Bˆ

x´
1

γ
∇Ψ pxq

˙

´ x,∇Ψ pxq

F

`
L

2

∥∥∥∥ˆx´ 1

γ
∇Ψ pxq

˙

´ x

∥∥∥∥2

“ Ψ pxq ´

ˆ

1

γ
´

L

2γ2

˙

‖∇Ψ pxq‖2 ,

which leads to the desired conclusion.

Remark 2.2.1. (i) The Descent Lemma, which says that for a Fréchet differentiable function
Ψ: HÑ R having a Lipschitz continuous gradient with constant L ą 0 it holds

Ψ pyq ď Ψ pxq ` x∇Ψ pxq , y ´ xy `
L

2
‖y ´ x‖2 @x, y P H, (2.2.4)

follows from (2.2.1) for z :“ x.

(ii) In addition, by taking in (2.2.1) z :“ y we obtain

Ψ pxq ě Ψ pyq ` x∇Ψ pyq , x´ yy ´
L

2
‖x´ y‖2 @x, y P H.

This is equivalent to the fact that Ψ `
L

2
‖¨‖2 is a convex function. Such a function is

called L-weakly convex. In other words, a consequence of Proposition 2.2.1 is, that a
Fréchet differentiable function with L-Lipschitz continuous gradient is L-weakly convex.
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2.3 Kurdyka- Lojasiewicz property

In this section let H be a finite-dimentional real Hilbert space.
The origins of this notion go back to the pioneering work of Kurdyka who introduced in [93]

a general form of the  Lojasiewicz inequality [103]. An extension to the nonsmooth setting has
been proposed and studied in the works of Attouch, Bolte, and their co-authors [7, 33, 34, 35].

Definition 2.3.1. Let η P p0,`8s. We denote by Φη the set of all concave and continuous
functions ϕ : r0, ηq Ñ r0,`8q which satisfy the following conditions:

(i) ϕ p0q “ 0;

(ii) ϕ is C1 on p0, ηq and continuous at 0;

(iii) for any s P p0, ηq : ϕ1 psq ą 0.

Definition 2.3.2. Let Ψ: HÑ RY t`8u be proper and lower semicontinuous.

(i) The function Ψ is said to have the Kurdyka- Lojasiewicz (K L) property at a point pv P
domBΨ :“ tv P H : BΨ pvq ‰ Hu, if there exists η P p0,`8s, a neighborhood V of pv and a
function ϕ P Φη such that for any

v P V X rΨ ppvq ă Ψ pvq ă Ψ ppvq ` ηs

the following inequality holds

ϕ1 pΨ pvq ´Ψ ppvqq ¨ dist p0, BΨ pvqq ě 1.

(ii) If Ψ satisfies the K L property at each point of domBΨ, then Ψ is called K L function.

The functions ϕ belonging to the set Φη for η P p0,`8s are called desingularization functions.
The K L property reveals the possibility to reparametrize the values of Ψ in order to avoid flatness
around the critical points. To the class of K L functions belong semialgebraic, real subanalytic,
uniformly convex functions and convex functions satisfying a growth condition. Recall that a
function is called semialgebraic if its graph can be expressed as a semialgebraic set

p
ď

i“1

q
č

j“1

tx P H : Pi,j “ 0, Qi,j ă 0u ,

where Pi,j , Qi,j : H Ñ R are polynomials for all 1 ď i ď p, 1 ď j ď q. The real polynomial
functions, indicator functions of semi-algebraic sets; finite sum and product/composition of
semi-algebraic sets are all semialgebraic functions. It worth to also mention the counting norm:

‖x‖0 “ number of nonzero coordinates of x.

and `p norm for rational p.
We recall the following definition of  Lojasiewicz property from [5] (see, also, [103]).

Definition 2.3.3. Let Ψ: HÑ RYt`8u be proper and lower semicontinuous. Then Ψ satisfies
the  Lojasiewicz property if for any critical point pu of Ψ, there exists CL ą 0, θ P r0, 1q and ε ą 0
such that

|Ψ puq ´Ψ ppuq|θ ď CL ¨ distp0, BΨpuqq @u P B ppu, εq ,

where B ppu, εq denotes the open ball with centre pu and radius ε.
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Obviously, Ψ is a K L function with desingularization function

ϕ : r0,`8q Ñ r0,`8q, ϕ psq :“
1

1´ θ
CLs

1´θ.

We refer to the works of Attouch, Bolte, and their co-authors [5, 7, 8, 33, 34, 35, 36] for
more properties of K L functions and illustrating examples.

Bolte, Sabach and Teboulle proved the following result in [36, Lemma 6]. We will use this
result in the convergence analysis for many algorithms in this thesis.

Lemma 2.3.1. (Uniformized K L property) Let Ω be a compact set and Ψ: HÑ RYt`8u
be a proper and lower semicontinuous function. Assume that Ψ is constant on Ω and satisfies
the K L property at each point of Ω. Then there exist ε ą 0, η ą 0 and ϕ P Φη such that for
every pu P Ω and every element u in the intersection

tu P H : dist pu,Ωq ă εu X rΨ ppuq ă Ψ puq ă Ψ ppuq ` ηs

it holds
ϕ1 pΨ puq ´Ψ ppuqq ¨ dist p0, BΨ puqq ě 1.

2.4 Convergence results for real sequences

We close this chapter by presenting some convergence results for real sequences that will be
used in what follows in the convergence analysis.

The following result can be found in the paper of Alvarez and Attouch [3], see also [46].

Lemma 2.4.1. Let tθkukě0 , tξkukě1 and tdkukě1 be nonnegative real sequences with
ÿ

kě1

dk ă

`8. If there exists k0 ě 1 such that

θk`1 ´ θk ď αk pθk ´ θk´1q ´ ξk ` dk @k ě k0

and α such that
0 ď αk ď α` ă 1 @k ě 1,

then the following statements are true:

(i)
ÿ

kě1

rθk ´ θk´1s` ă `8, where rss` :“ max ts, 0u;

(ii) the limit lim
kÑ8

θk exists.

(iii) it holds
ÿ

kě1

ξk ă `8.

As a consequence, we get the following statement, which follows from Lemma 2.4.1, applied
in case αk :“ 0 and θk :“ ρk ´ ρ for all k ě 1, where ρ is a lower bound of a sequence tρkukě1.

Lemma 2.4.2. Let tρkukě1 be a real sequence, which is bounded from below, and tξkukě1,
tdkukě1 be nonnegative sequences with

ÿ

kě1

dk ă `8. If there exists k0 ě 1 such that

ρk`1 ď ρk ´ ξk ` dk @k ě k0,

then the following statements are true:

(i) the sequence tρkukě1 is convergent.
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(ii) it holds
ÿ

kě1

ξk ă `8.

The following result, which will be useful in this work, shows that statement (ii) in Lemma
2.4.2 can be obtained also when tρkukě1 is not bounded by below, but has a particular form
(see also [57, Lemma 1.4]).

Lemma 2.4.3. Let tρkukě1 be a real sequence and tξkukě1, tdkukě1 be nonnegative real se-
quences with

ÿ

kě1

dk ă `8 and

ρk :“ θk ´ αkθk´1 ` δk @k ě 1,

where tθkukě0 , tδkukě1 are nonnegative sequences and there exists α such that

0 ď αk ď α` ă 1 @k ě 1.

If there exists k0 ě 1 such that

ρk`1 ď ρk ´ ξk ` dk @k ě k0, (2.4.1)

then it holds
ÿ

kě1

ξk ă `8.

Proof. We fix an integer sK ě k0, sum up the inequalities in (2.4.1) for k “ k0, k0 ` 1, ¨ ¨ ¨ , sK
and obtain

ρ
sK`1 ´ ρk0 ď ´

sK
ÿ

k“k0

ξk `

sK
ÿ

k“k0

dk ď
ÿ

kě1

dk ă `8. (2.4.2)

Hence the sequence tρkukě1 is bounded from above. Let sρ ą 0 be an upper bound of this
sequence. For all k ě 1 it holds

θk ´ α`θk´1 ď θk ´ αkθk´1 ` δk “ ρk ď sρ,

from which we deduce that

´ ρk ď ´θk ` α`θk´1 ď α`θk´1. (2.4.3)

By induction we obtain for all k ě k0 ` 1

θk ď α`θk´1 ` sρ ď ¨ ¨ ¨ ď αk´k0` θk0 ` sρ
k´k0
ÿ

k“1

αk´1 ď αk´k0` θk0 `
sρ

1´ α
. (2.4.4)

Then inequality (2.4.2) combined with (2.4.3) and (2.4.4) leads to

sK
ÿ

k“k0

ξk ď ρk0 ´ ρ sK`1 `

sK
ÿ

k“k0

dk ď ρk0 ` α`θ sK `
ÿ

kě1

dk

ď ρk0 ` α
sK´k0`1
` θk0 `

α`sρ

1´ α
`

ÿ

kě1

dk ă `8.

(2.4.5)

We let sK converge to `8 and obtain that
ÿ

kě1

ξk ă `8.

The following lemma is a simplified version of [56, Lemma 3].
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Lemma 2.4.4. Let takukě0 be a nonnegative sequence and tdkukě0 a real sequence such that

ak`1 ď χ0 ¨ ak ` χ1 ¨ ak´1 ` χ2 ¨ ak´2 ` dk @k ě 2, (2.4.6)

where χ0 P R, χ1, χ2 P R` fulfill χ0 ` χ1 ` χ2 ă 1. Assume further that there exists sd ě 0 such
that for every K ě K ě 2

K
ÿ

k“K

dk ď sd.

Then, it holds
ÿ

kě0

ak ă `8.

In particular, for every i “ 1, . . . , N and every K ě K ě 2, it holds

K
ÿ

k“K

ak ď
p1´ χ0 ´ χ1q aK ` p1´ χ0q aK`1 ` aK`2 `

sd

1´ χ0 ´ χ1 ´ χ2
. (2.4.7)

Proof. Fix K ě K ě 2. If K “ K or K “ K ` 1, then (2.4.7) holds automatically. Assume
now that K ě K ` 2. Summing up the inequality in (2.4.6) for k “ K ` 2, ¨ ¨ ¨ ,K, we obtain

K
ÿ

k“K`2

ak`1 ď χ0

K
ÿ

k“K`2

ak ` χ1 ¨

K
ÿ

k“K`2

ak´1 ` χ2 ¨

K
ÿ

k“K`2

ak´2 `

K
ÿ

k“K`2

dk. (2.4.8)

Since

K
ÿ

k“K`2

ak`1 “

K`1
ÿ

k“K`3

ak “
K
ÿ

k“K

ak ` aK`1 ´ aK ´ aK`1 ´ aK`2

K
ÿ

k“K`2

ak “
K
ÿ

k“K

ak ´
`

aK ` aK`1

˘

K
ÿ

k“K`2

ak´1 “

K´1
ÿ

k“K`1

ak “
K
ÿ

k“K

ak ´
`

aK ` aK
˘

K
ÿ

k“K`2

ak´2 “

K´2
ÿ

k“K

ak “
K
ÿ

k“K

ak ´
`

aK´1 ` aK
˘

,

the inequality in (2.4.8) can be rewritten as

K
ÿ

k“K

ak ` aK`1 ´ aK ´ aK`1 ´ aK`2 ď χ0

K
ÿ

k“K

ak ´ χ0

`

aK ` aK`1

˘

` χ1

K
ÿ

k“K

ak ´ χ1

`

aK ` aK
˘

` χ2 ¨

K
ÿ

k“K

ak ´ χ2

`

aK´1 ` aK
˘

`

K
ÿ

k“K`2

dk,
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which further implies

p1´ χ0 ´ χ1 ´ χ2q

K
ÿ

k“K

ak “ p1´ χ0 ´ χ1 ´ χ2q

K
ÿ

k“K

ak

ď p1´ χ0 ´ χ1q aK ` p1´ χ0q aK`1 ` aK`2 `

K
ÿ

k“K`2

dk

“ p1´ χ0 ´ χ1q aK ` p1´ χ0q aK`1 ` aK`2 `

K
ÿ

k“K`2

dk.

Hence, it holds

p1´ χ0 ´ χ1 ´ χ2q

K
ÿ

k“K

ak ď p1´ χ0 ´ χ1q aK ` p1´ χ0q aK`1 ` aK`2 `
sd

and the conclusion follows by taking into consideration that χ0 ` χ1 ` χ2 ă 1.

The following lemma will provide convergence rates for a particular class of monotonically
decreasing sequences converging to 0 (see also [56, Lemma 15]).

Lemma 2.4.5. Let tεkukě0 be a monotonically decreasing sequence in R` converging to 0.
Assume further that there exists natural numbers k0 ě l0 ě 1 such that for every k ě k0

εk´l0 ´ εk ě Cεε
2θ
k , (2.4.9)

where Cε ą 0 is some constant and θ P r0, 1q. Then following statements are true:

(i) if θ “ 0, then tεkukě0 converges in finite time;

(ii) if θ P p0, 1{2s, then there exists Cε,0 ą 0 and Q P r0, 1q such that for every k ě k0

0 ď εk ď Cε,0Q
k;

(iii) if θ P p1{2, 1q, then there exists Cε,1 ą 0 such that for every k ě k0 ` l0

0 ď εk ď Cε,1 pk ´ l0 ` 1q´
1

2θ´1 .

Proof. Fix an integer k ě k0. Since k0 ě l0 ě 0, the recurrence inequality (2.4.9) is well defined
for every k ě k0.

(i) The case when θ “ 0. We assume that εk ą 0 for every k ě 0. From (2.4.9) we get

εk´l0 ´ εk ě Cε ą 0

for every k ě k0, which actually contradicts the fact that tεkukě0 converges to 0 as k Ñ `8.
Consequently, there exists k1 ě 0 such that εk1 “ 0 for every k ě k1 and thus the conclusion
follows.

For the proof of (ii) and (iii) we can assume that εk ą 0 for every k ě 0. Otherwise, as
tεkukě0 is monotonically decreasing and convergent to 0, the sequence is constant beginning
with a given index, which means that both statements are true.
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(ii) The case when θ P p0, 1{2s. We have εk ď ε0, which leads to

εk´l0 ´ εk ě Cεε
2θ
k ě Cεε

2θ´1
0 εk

for every k ě k0. Therefore,

εk ď

˜

1

Cεε
2θ´1
0 ` 1

¸
k
l0
´
k0
l0
´1

ε0 “ ε0

´

Cεε
2θ´1
0 ` 1

¯

k0
l0
`1

¨

˝

1

l0

b

Cεε
2θ´1
0 ` 1

˛

‚

k

.

(iii) The case when θ P p1{2, 1q. From (2.4.9) we get

Cε ď pεk´l0 ´ εkq ε
´2θ
k . (2.4.10)

Define ζ : p0,`8q Ñ R, ζpsq “ s´2θ. We have that

d

ds

ˆ

1

1´ 2θ
s1´2θ

˙

“ s´2θ “ ζ psq and ζ 1 psq “ ´2θs´2θ´1 ă 0 @s P p0,`8q.

Consequently, ζ pεk´l0q ď ζ psq for all s P rεk, εk´l0s.

• Assume that ζ pεkq ď 2ζ pεk´l0q. Then (2.4.10) gives

Cε ď 2ζ pεk´l0q

ż εk´l0

εk

1ds ď 2

ż εk´l0

εk

ζ psq ds “
2

2θ ´ 1

´

ε1´2θ
k ´ ε1´2θ

k´l0

¯

or, equivalently,

ε1´2θ
k ´ ε1´2θ

k´l0
ě C 11, where C 11 :“

p2θ ´ 1qCε
2

ą 0. (2.4.11)

• Assume that ζ pεkq ą 2ζ pεk´l0q. For ν :“ 2´
1
2θ P p0, 1q this is equivalent to

´

ν1´2θ ´ 1
¯

ε1´2θ
k´l0

ď ε1´2θ
k ´ ε1´2θ

k´l0
,

thus,

ε1´2θ
k ´ ε1´2θ

k´l0
ě

´

ν1´2θ ´ 1
¯

ε1´2θ
k´l0

ě C 12, where C 12 :“
´

ν1´2θ ´ 1
¯

ε2θ´1
0 ą 0. (2.4.12)

In both situations we get for every i ě k0

ε1´2θ
i ´ ε1´2θ

i´l0
ě C 1 :“ min

 

C 11, C
1
2

(

ą 0, (2.4.13)

where C 11 and C 12 are defined as in (2.4.11) and (2.4.12), respectively. For every k ě k0 ` 2l0,
by summing up the inequalities (2.4.13) for i “ k0 ` l0, ¨ ¨ ¨ , k, we get

l0´1
ÿ

j“0

´

ε1´2θ
k´j ´ ε

1´2θ
k0`j

¯

ě pk ´ k0 ´ l0 ` 1qC 1 ą 0.

Since

l0

´

ε1´2θ
k ´ ε1´2θ

k0

¯

ě

l0´1
ÿ

j“0

´

ε1´2θ
k´j ´ ε

1´2θ
k0`j

¯

ě C 1 pk ´ k0 ´ l0 ` 1q ,

we have
ε1´2θ
k ě ε1´2θ

k0
`
k ´ k0 ´ l0 ` 1

l0
C 1. (2.4.14)
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We obtain from (2.4.13) that

ε1´2θ
k0

ě

Z

k0 ` l0
l0

^

C 1 ě

ˆ

k0 ` l0
l0

´ 1

˙

C 1 “
k0

l0
C 1, (2.4.15)

where tpu denotes the greatest integer that is less than or equal to the real number p. By
plugging (2.4.15) into (2.4.14) we obtain

ε1´2θ
k ě

k ´ l0 ` 1

l0
C 1,

which implies

εk ď

ˆ

C 1

l0

˙´ 1
2θ´1

pk ´ l0 ` 1q´
1

2θ´1 . (2.4.16)

This concludes the proof.

Remark 2.4.1. The inequality in Lemma 2.4.5 (iii) can be writen for k large enough in terms

of k instead of k ´ l0 ` 1. If, for instance, k ě 2 pl0 ` 1q, then k ´ l0 ` 1 ě
1

2
k and thus from

(2.4.16) we get

εk ď

ˆ

C 1

l0

˙´ 1
2θ´1

pk ´ l0 ` 1q´
1

2θ´1 ď

ˆ

C 1

2l0

˙´ 1
2θ´1

k´
1

2θ´1 .
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Chapter 3

A forward-backward penalty scheme
with inertial effects for montone
inclusions

This chapter follows our work [57].
We investigate forward-backward splitting algorithm of penalty type with inertial effects

for finding a zero of the sum of a maximally monotone operator, a cocoercive operator and
the convex normal cone to the set of zeroes of an another cocoercive operator. Weak ergodic
convergence is obtained for the generated iterates, provided that a condition express via the
Fitzpatrick function of the operator describing the underlying set of the normal cone is veri-
fied. Under strong monotonicity assumptions, strong convergence for the sequence of generated
iterates is proved. As a particular instance we consider a convex bilevel minimization problem
including the sum of a nonsmooth and a smooth function in the upper level and another smooth
function in the lower level. We show that in this context weak nonergodic and strong conver-
gence of the iterates can be also achieved under inf-compactness assumptions for the involved
functions.

3.1 Problem formulation and motivation

In the last years one could observe an increasing interest in numerical schemes for solving
variational inequalities expressed as monotone inclusion problems of the form

0 P Ax`NM pxq , (3.1.1)

whereH is a real Hilbert space, A : HÑ H is a maximally monotone operator,M :“ arg minh is
the set of global minima of a proper, convex and lower semicontinuous function h : RÑ RYt`8u
and NM : H Ñ H is the normal cone of the set M . The article [14] of Attouch and Czarnecki
was the starting point for a series of papers [13, 16, 17, 21, 45, 46, 82, 109, 114] addressing this
topic or related ones. All these papers share the common feature that the proposed iterative
schemes use penalization strategies, namely, the evaluate a penalization of h by its gradient, in
case the function is smooth (see, for instance, [16]), and by its proximal operator, in case it is
nonsmooth (see, for instance,[17]).

Weak ergodic convergence has been obtained in [16, 17] under the hypothesis:

For all p P ranNM ,
ÿ

kě1

λkβk

„

h˚
ˆ

p

βk

˙

´ σM

ˆ

p

βk

˙

ă `8, (3.1.2)

with tλkukě1, the sequence of step sizes, tβkukě1, the sequence of penalty parameters, h˚ : HÑ
R Y t`8u, the Fenchel conjugate function of h, and ranNM the range of the normal cone
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operator NM : HÑ H. Let us mention that (3.1.2) is the discretized counterpart of a condition
introduced in [14] for continuous-time nonautonomous differential inclusions.

One motivation for studying numerical algorithms for monotone inclusions of type (3.1.1)
comes from the fact that, when A ” Bf is the convex subdifferential of a proper, convex and
lower semicontinuous function f : H Ñ R Y t`8u, they furnish iterative methods for solving
bilevel optimization problems of the form

min
xPH

tf pxq : x P arg minhu . (3.1.3)

Among the applications where bilevel programming problems play an important role we mention
the modelling of Stackelberg games, the determination of Wardrop equilibria for network flows,
convex feasibility problems [9], domain decomposition methods for PDEs [6], image processing
problems [45], and optimal control problems [17].

Later on, in [46], the following monotone inclusion problem, which turned out to be more
suitable for applications, has been addressed in the same spirit of penalty algorithms

0 P Ax`Dx`NM pxq , (3.1.4)

where A : HÑ H is a maximally monotone operator, D : HÑ H is cocoercive operator and the
constraint set M is the set of zeros of another cocoercive operator B : H Ñ H. The provided
algorithm of forward-backward type evaluates the operator A by a backward step and the two
single-valued operators by forward steps. For the convergence analysis, (3.1.2) has been replaced
by a condition formulated in terms of the Fitzpatrick function associated with the operator B,
which we will also use in this chapter. In [21], several particular situations for which this
condition is fulfilled have been provided.

In this chapter, we will endow the forward-backward penalty scheme for solving (3.1.4) from
[46] with inertial effects, which means that every new iterate will be defined in terms of the pre-
vious two iterates. Inertial algorithms have their roots in the time discretization of second order
differential systems [3]. They can accelerate the convergence of iterates when minimizing a dif-
ferentiable function [116] and the convergence of the objective function values when minimizing
the sum of a convex nonsmooth and a convex smooth function [28, 64]. Moreover, as emphasized
in [29], see also [51], algorithms with inertial effects may detect optimal solutions of minimization
problems which cannot be found by their noninertial variants. In the last years, a huge interest
in inertial algorithms can be noticed (see, for instance, [1, 2, 3, 15, 20, 47, 48, 50, 53, 54]).

In particular, we will prove weak ergodic convergence of the sequence generated by the
inertial forward-backward penalty algorithm to a solution of the monotone inclusion problem
(3.1.4), under reasonable assumptions for the sequences of step sizes, penalty and inertial pa-
rameters. When the operator A is assumed to be strongly monotone, we will also prove strong
convergence of the generated iterates to the unique solution of (3.1.4).

In Section 3.3, we will address the minimization of the sum of a convex nonsmooth and
a convex smooth function with respect to the set of minimizes of another convex and smooth
function. Besides the convergence results obtained from the general case, we achieve weak non-
ergodic and strong convergence statements under inf-compactness assumptions for the involved
functions. The weak nonergodic theorem is an useful alternative to the one in [54], where a
similar statement has been obtained for the inertial forward-backward penalty algorithm with
constant inertial parameters under assumptions which are quite complicated and hard to verify
(see also [109, 114]).

3.2 The general monotone inclusion problem

The monotone inclusion problem we will consider in this chapter is the following.
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Let H be a real Hilbert space, A : H Ñ H a maximally monotone operator, D : H Ñ H
an η´cocoercive with η ą 0 , B : H Ñ H a µ´cocoercive with µ ą 0 and assume that M :“
zer B ‰ H. The monotone inclusion problem to solve reads

0 P Ax`Dx`NM pxq . (3.2.1)

The following forward-backward penalty algorithm with inertial effects for solving (3.2.1)
will be in the focus of our investigations in this chapter.

Algorithm 3.2.1. Let tαkukě1 , tλkukě1 and tβkukě1 be sequences of positive real numbers such
that

pC1q tλkukě1 P `
2 z `1, that is

ÿ

kě1

λ2
k ă `8 and

ÿ

kě1

λk “ `8;

pC2q tαkukě1 is nondecreasing;

pC3q there exists α with 0 ď αk ď α` ă 1{3 for all k ě 1.

Let x0, x1 P H. For all k ě 1 we set

xk`1 :“ JλkA pxk ´ λkDxk ´ λkβkBxk ` αk pxk ´ xk´1qq .

When D “ 0 and B “ ∇h, where h : H Ñ R is a convex and differentiable function with
µ´1´Lipschitz continuous gradient with µ ą 0 fulfilling minh “ 0, then (3.2.1) recovers the
monotone inclusion problem addressed in [16, Section 3] and Algorithm 3.2.1 can be seen as
an inertial version of the iterative scheme considered. When B “ 0, we have that NM “ t0u
and Algorithm 3.2.1 is nothing else than the inertial version of the classical forward-backward
algorithm (see for instance [24, 67]).

Hypothesis 3.2.1. The convergence analysis will be carried out in the following hypotheses
(see also [46]):

pHfitz
1 q A`NM is maximally monotone and zer pA`D `NM q ‰ H;

pHfitz
2 q for every p P ranNM ,

ÿ

kě1

λkβk

„

sup
uPM

ϕB

ˆ

u,
p

βk

˙

´ σM

ˆ

p

βk

˙

ă `8, where ϕB denotes

the Fitzpatrick function of B.

Since A and NM are maximally monotone operators, the sum A`NM is maximally mono-
tone, provided some conditions are fulfilled (see [24, 41, 59, 130]). Furthermore, since D is also
maximally monotone and domD ” H, if A`NM is maximally monotone, then A`D`NM is
also maximally monotone.

Let us also notice that for p P ranNM there exists pu P M such that p P NM ppuq, hence, for
every β ą 0 it holds

sup
uPM

ϕB

ˆ

u,
p

β

˙

´ σM

ˆ

p

β

˙

ě

B

pu,
p

β

F

´ σM

ˆ

p

β

˙

“ 0.

Example 3.2.1. Here we discuss a particular instance for which pHfitz
2 q is verified. Given a

convex and closed set H ‰M Ď H, consider

h pxq :“
1

2
inf
yPM
‖x´ y‖2 “ 1

2
‖x´PrMx‖2 @x P H.
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Then h is differentiable, ∇h pxq “ x´PrMx for all x P H and B :“ ∇h is Lipschitz continuous,

thus cocoercive. In addition, the definition of h˚ and σM yields h˚ “ σM `
1

2
‖¨‖2. Since

h pxq “ 0 for every x PM , we get from (2.1.3)

ÿ

kě1

λkβk

„

sup
uPM

ϕ∇h

ˆ

u,
p

βk

˙

´ σM

ˆ

p

βk

˙

ď
ÿ

kě1

λkβk

„

h˚
ˆ

p

βk

˙

´ σM

ˆ

p

βk

˙

“
ÿ

kě1

λkβk

∥∥∥∥ pβk
∥∥∥∥2

“ ‖p‖2
ÿ

kě1

λk
βk
.

For every positive sequence tλkukě1 P `
2 z `1, if we take

βk :“
1

λk
,

then
ÿ

kě1

λk
βk
“

ÿ

kě1

λ2
k ă `8

For further particular situations where pHfitz
2 q is satisfied we refer the reader [21, 53, 54, 109].

Before formulating the main theorem of this section, we will prove some useful technical
results.

Lemma 3.2.2. Let txkukě0 be the sequence generated by Algorithm 3.2.1 and pu, yq be an
element in gph pA`D `NM q such that

y “ v `Du` p with v P Au and p P NM puq .

Furthermore, let ε1, ε2, ε3 ą 0 be such that 1 ´ ε3 ą 0. Then the following inequality holds for
every k ě 1

‖xk`1 ´ u‖2 ´ ‖xk ´ u‖2

ď αk ‖xk ´ u‖2 ´ αk ‖xk´1 ´ u‖2 ´ p1´ 4ε1 ´ ε2q ‖xk`1 ´ xk‖2

`

ˆ

αk `
α2
k

4ε1

˙

‖xk ´ xk´1‖2 `
ˆ

2

ε2
λ2
kβ

2
k ´ 2µ p1´ ε3qλkβk

˙

‖Bxk‖2

`

ˆ

4

ε2
λ2
k ´ 2ηλk

˙

‖Dxk ´Du‖2 `
4

ε2
λ2
k ‖Du` v‖

2

` 2ε3λkβk

„

sup
uPM

ϕB

ˆ

u,
p

ε3βk

˙

´ σM

ˆ

p

ε3βk

˙

` 2λk xu´ xk, yy . (3.2.2)

Proof. Let k ě 1 be fixed. According to definition of the resolvent of the operator A we have

xk ´ xk`1 ´ λk pDxk ` βkBxkq ` αk pxk ´ xk´1q P λkAxk`1 (3.2.3)

and, since λkv P λkAu, the monotonicity of A guarantees

xxk`1 ´ u, xk ´ xk`1 ´ λk pDxk ` βkBxk ` vq ` αk pxk ´ xk´1qy ě 0 (3.2.4)

or, equivalently,

2 xu´ xk`1, xk ´ xk`1y ď 2λk xu´ xk`1, βkBxk `Dxk ` vy ´ 2αk xu´ xk`1, xk ´ xk´1y .
(3.2.5)

For the term in the left-hand side of (3.2.5) we have

2 xu´ xk`1, xk ´ xk`1y “ ‖xk`1 ´ u‖2 ` ‖xk`1 ´ xk‖2 ´ ‖xk ´ u‖2 . (3.2.6)
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Since

´2αk xu´ xk, xk ´ xk´1y “ ´αk ‖u´ xk´1‖2 ` αk ‖u´ xk‖2 ` αk ‖xk ´ xk´1‖2

and

2 xxk`1 ´ xk, αk pxk ´ xk´1qy ď 4ε1 ‖xk`1 ´ xk‖2 `
α2
k

4ε1
‖xk ´ xk´1‖2 ,

by adding the two inequalities, we obtain the following estimation for the second term in the
right-hand side of (3.2.5)

´ 2αk xu´ xk`1, xk ´ xk´1y

ď αk ‖xk ´ u‖2 ´ αk ‖xk´1 ´ u‖2 ` 4ε1 ‖xk`1 ´ xk‖2 `
ˆ

αk `
α2
k

4ε1

˙

‖xk ´ xk´1‖2 .
(3.2.7)

We turn now our attention to the first term in the right-hand side of (3.2.5), which can be
written as

2λk xu´ xk`1, βkBxk `Dxk ` vy

“ 2λk xu´ xk, βkBxk `Dxk ` vy ` 2λkβk xxk ´ xk`1, Bxky ` 2λk xxk ´ xk`1, Dxk ` vy .
(3.2.8)

We have

2λkβk xxk ´ xk`1, Bxky ď
ε2

2
‖xk`1 ´ xk‖2 `

2

ε2
λ2
kβ

2
k ‖Bxk‖

2 (3.2.9)

and

2λk xxk ´ xk`1, Dxk ` vy ď
ε2

2
‖xk`1 ´ xk‖2 `

2

ε2
λ2
k ‖Dxk ` v‖

2

ď
ε2

2
‖xk`1 ´ xk‖2 `

4

ε2
λ2
k ‖Dxk ´Du‖

2
`

4

ε2
λ2
k ‖Du` v‖

2 .

(3.2.10)

On the other hand, we have

2λk xu´ xk, βkBxk `Dxk ` vy

“ 2λkβk xu´ xk, Bxky ` 2λk xu´ xk, Dxk ´Duy ` 2λk xu´ xk, Du` vy . (3.2.11)

Since 0 ă ε3 ă 1 and Bu “ 0, the cocoercivity of B gives us

2λkβk xu´ xk, Bxky ď ´2µ p1´ ε3qλkβk ‖Bxk‖2 ` 2ε3λkβk xu´ xk, Bxky . (3.2.12)

Similarly, the cocoercivity of D gives us

2λk xu´ xk, Dxk ´Duy ď ´2ηλk ‖Dxk ´Du‖2 . (3.2.13)

Combining (3.2.12) - (3.2.13) with (3.2.11) and by using the definition Fitzpatrick function and
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the fact that σM

ˆ

p

ε3βk

˙

“

B

u,
p

ε3βk

F

, we obtain

2λk xu´ xk, βkBxk `Dxk ` vy

ď ´ 2µ p1´ ε3qλkβk ‖Bxk‖2 ` 2ε3λkβk xu´ xk, Bxky ´ 2ηλk ‖Dxk ´Du‖2

` 2λk xu´ xk, Du` vy

“ ´ 2µ p1´ ε3qλkβk ‖Bxk‖2 ` 2ε3λkβk xu´ xk, Bxky ´ 2ηλk ‖Dxk ´Du‖2

` 2λk xu´ xk, y ´ py

“ ´ 2µ p1´ ε3qλkβk ‖Bxk‖2 ´ 2ηλk ‖Dxk ´Du‖2 ` 2λk xu´ xk, yy

` 2ε3λkβk

ˆ

xu,Bxky `

B

xk,
p

ε3βk

F

´ xxk, Bxky ´

B

u,
p

ε3βk

F˙

ď´ 2µ p1´ ε3qλkβk ‖Bxk‖2 ´ 2ηλk ‖Dxk ´Du‖2 ` 2λk xu´ xk, yy

` 2ε3λkβk

„

sup
uPM

ϕB

ˆ

u,
p

ε3βk

˙

´ σM

ˆ

p

ε3βk

˙

. (3.2.14)

The inequalities (3.2.9), (3.2.10) and (3.2.14) lead to

2λk xu´ xk`1, βkBxk `Dxk ` vy

ď

ˆ

2

ε2
λ2
kβ

2
k ´ 2µ p1´ ε3qλkβk

˙

‖Bxk‖2 `
ˆ

4

ε2
λ2
k ´ 2ηλk

˙

‖Dxk ´Du‖2 ` ε2 ‖xk`1 ´ xk‖2

`
4

ε2
λ2
k ‖Du` v‖

2
` 2ε3λkβk

„

sup
uPM

ϕB

ˆ

u,
p

ε3βk

˙

´ σM

ˆ

p

ε3βk

˙

` 2λk xu´ xk, yy .

(3.2.15)

Finally, by combining (3.2.6), (3.2.7) and (3.2.15), we obtain (3.2.2).

From now on we will assume that for 0 ă α` ă
1

3
the constants ε1, ε2, ε3 ą 0 and the

sequences tλkukě1 and tβkukě1 are chosen such that

pC4q 1´ ε3 ą 0, ε2 ă 1´ 4ε1 ´ α` ´
α2

4ε1
and sup

kě1
λkβk ă µε2 p1´ ε3q .

As a consequence, there exists

0 ă s ď 1´
ε1

1´ 3ε1 ´ ε2

ˆ

1`
α

2ε1

˙2

,

which means that for all k ě 1 it holds

αk`1 `
α2
k`1

4ε1
´ p1´ 4ε1 ´ ε3q ď α` `

α2

4ε1
´ p1´ 4ε1 ´ ε3q ă ´s. (3.2.16)

On the other hand, there exists

0 ă t ď µ p1´ ε2q ´
1

ε3
sup
kě0

λkβk,

which means that for all k ě 1 it holds

1

ε3
λkβk ´ µ p1´ ε2q ď ´t. (3.2.17)
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Remark 3.2.1. (i) Since 0 ă α` ă
1

3
, one can always find ε1, ε2 ą 0 such that

ε2 ă 1´ 4ε1 ´ α` ´
α2

4ε1
.

One possible choice is
ε1 “

α

4
and 0 ă ε2 ă 1´ 3α.

From the second inequality in pC4q it follows that

1´ 3ε1 ´ ε2 ą ε1 ` α` `
α2

4ε1
ą 0.

(ii) As

1´
ε1

1´ 3ε1 ´ ε2

ˆ

1`
α

2ε1

˙2

“
1

1´ 3ε1 ´ ε2

ˆ

1´ 4ε1 ´ ε2 ´ α` ´
α2

4ε1

˙

ą 0,

it is always possible to choose s such that

0 ă s ď 1´
ε1

1´ 3ε1 ´ ε

ˆ

1`
α

2ε1

˙2

.

Since in this case

s ă 1´ 4ε1 ´ ε2 ´ α` ´
α2

4ε1
,

one has (3.2.16).

The following proposition brings us closer to the convergence result.

Proposition 3.2.3. Let 0 ă α` ă
1
3 , ε1, ε2, ε3 ą 0 and the sequences tλkukě1 and tβkukě1

satisfy condition pC4q. Let txkukě0 be the sequence generated by Algorithm 3.2.1 and assume
that the Hypotheses 3.2.1 are verified. Then the following statements are true:

(i) the sequence t‖xk`1 ´ xk‖ukě0 belongs to `2 and the sequence
!

λkβk ‖Bxk‖2
)

kě1
belongs

to `1;

(ii) if, moreover, lim inf
kÑ`8

λkβk ą 0, then lim
kÑ`8

‖Bxk‖ “ 0 and thus every cluster point of the

sequence txkukě0 lies in M .

(iii) for every u P zer pA`D `NM q, the limit lim
kÑ`8

‖xk ´ u‖ exists.

Proof. Since lim
kÑ`8

λk “ 0, there exists a integer k1 ě 1 such that λk ď
2

ε2
η for any integer k ě

k0. According to Lemma 3.2.2, for every pu, yq P gph pA`D `NM q such that y “ v `Du` p,
with v P Au and p P NM puq, and all k ě k0 the following inequality holds

‖xk`1 ´ u‖2 ´ ‖xk ´ u‖2

ď αk ‖xk ´ u‖2 ´ αk ‖xk´1 ´ u‖2 ´ p1´ 4ε1 ´ ε2q ‖xk`1 ´ xk‖2

`

ˆ

αk `
α2
k

4ε1

˙

‖xk ´ xk´1‖2 `
ˆ

2

ε2
λkβk ´ 2µ p1´ ε3q

˙

λkβk ‖Bxk‖2

`
4

ε2
λ2
k ‖Du` v‖

2
` 2ε3λkβk

„

sup
uPM

ϕB

ˆ

u,
p

ε3βk

˙

´ σM

ˆ

p

ε3βk

˙

` 2λk xu´ xk, yy .

(3.2.18)
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We consider u P zer pA`D `NM q, which means that we can take y “ 0 in (3.2.18). For all
k ě 1 we denote

θk :“ ‖xk ´ u‖2 , ρk :“ θk ´ αkθk´1 `

ˆ

αk `
α2
k

4ε1

˙

‖xk ´ xk´1‖2 (3.2.19)

and

δk :“
4

ε2
λ2
k ‖Du` v‖

2
` 2ε3λkβk

„

sup
uPM

ϕB

ˆ

u,
p

ε3βk

˙

´ σM

ˆ

p

ε3βk

˙

. (3.2.20)

Using that pαkqkě1 is nondecreasing, for all k ě k0 it yields

ρk`1 ´ ρk ď

˜

αk`1 `
α2
k`1

4ε1
´ p1´ 4ε1 ´ ε2q

¸

‖xk`1 ´ xk‖2

`

ˆ

2

ε3
λkβk ´ 2µ p1´ ε2q

˙

λkβk ‖Bxk‖2 ` δk

ď ´s ‖xk`1 ´ xk‖2 ´ 2tλkβk ‖Bxk‖2 ` δk, (3.2.21)

where s, t ą 0 are chosen according to (3.2.16) and (3.2.17), respectively.
Thanks to pHfitz

2 q and pC1q it holds

ÿ

kě1

δk “
4

ε2
‖Du` v‖2

ÿ

kě1

λ2
k ` 2

ÿ

kě1

ε3λkβk

„

sup
uPM

ϕB

ˆ

u,
p

ε3βk

˙

´ σM

ˆ

p

ε3βk

˙

ă `8.

(3.2.22)
Hence, according to Lemma 2.4.3, we obtain

ÿ

kě0

‖xk`1 ´ xk‖2 ă `8 and
ÿ

kě1

λkβk ‖Bxk‖2 ă `8, (3.2.23)

which proves (i). If, in addtion lim inf
kÑ8

λkβk ą 0, then lim
kÑ`8

‖Bxk‖ “ 0, which means every

cluster point of the sequence txkukě0 lies in zer B “M .
In order to prove (iii), we consider again the inequality (3.2.18) for an arbitrary element

u P zer pA`D `NM q and y “ 0. With the notations in (3.2.19) and (3.2.20), we get for all
k ě k0

θk`1 ´ θk ď αk pθk ´ θk´1q `

ˆ

αk `
α2
k

4ε1

˙

‖xk ´ xk´1‖2 ` δk. (3.2.24)

According to (3.2.22) and (3.2.23) we have

ÿ

kě1

ˆ

αk `
α2
k

4ε1

˙

‖xk ´ xk´1‖2 `
ÿ

kě1

δk ď

ˆ

α` `
α2

4ε1

˙

ÿ

kě1

‖xk ´ xk´1‖2 `
ÿ

kě1

δk ă `8,

(3.2.25)
therefore, by Lemma 2.4.1, the limit lim

kÑ`8
θk “ lim

kÑ`8
‖xk ´ u‖2 exists, which means that the

limit lim
kÑ`8

‖xk ´ u‖ exists, too.

Remark 3.2.2. The condition pC3q that we imposed on the sequence of inertial parameters
tαkukě1 is similar with the one proposed in [3, Proposition 2.1] when addressing the convergence
of the inertial proximal point algorithm. However, the statements in the proposition above and
in the following convergence theorem remain valid if one alternatively assumes that there exists
α1` such that 0 ď αk ď α1` ă 1 for all k ě 1 and

ÿ

kě1

ˆ

αk `
α2
k

4ε1

˙

‖xk ´ xk´1‖2 ă `8.
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This can be realized if one chooses for a fixed q ą 1

αk ď min

"

α1`, 2ε1

ˆ

´1`

b

1` k´q ‖xk ´ xk´1‖´2

˙*

@k ě 1.

Indeed, in this situation we have that
α2
k

4ε1
`αk´

1

kq ‖xk ´ xk´1‖2
ď 0 for all k ě 1, which gives

ÿ

kě1

ˆ

αk `
α2
k

4ε1

˙

‖xk ´ xk´1‖2 ď
ÿ

kě1

1

kq
ă `8.

The sequence of weighted averages tzkukě1 is defined for every k ě 1 as

zk :“
1

τk

k
ÿ

n“1

λnxn, where τk :“
k
ÿ

n“1

λn. (3.2.26)

Lemma 3.2.4 (Opial-Passty). Let Z be a nonempty subset of H and assume that the limit
lim

kÑ`8
‖xk ´ u‖ exists for every element u P Z. If every sequential weak cluster point of txkukě0,

respectively tzkukě1, lies in Z, then the sequence txkukě0, respectively tzkukě1, converges weakly
to an element in Z as k Ñ `8.

Now we are ready to prove the main theorem of this section, which addresses the convergence
of the sequence generated by Algorithm 3.2.1.

Theorem 3.2.5. Let 0 ă α` ă 1
3 , ε1, ε2, ε3 ą 0 and the sequences tλkukě1 and tβkukě1

satisfy condition pC4q. Let txkukě0 be the sequence generated by Algorithm 3.2.1, tzkukě1 be
the sequence defined in (3.2.26) and assume that the Hypotheses 3.2.1 are verified. Then the
following statements are true:

(i) the sequence tzkukě1 converges weakly to an element in zer pA`D `NM q as k Ñ `8.

(ii) if A is γ´strongly monotone with γ ą 0, then txkukě0 converges strongly to the unique
element in zer pA`D `NM q as k Ñ `8.

Proof. (i) According to Proposition 3.2.3 (iii), the limit lim
kÑ`8

}xk ´ u} exisits for every u P

zer pA`D `NM q. Let z be a sequential weak cluster point of pzkqkě1. We will show that
z P zer pA`D `NM q, by using the characterization (2.1.1) of the maximal monotonicity,
and the conclusion will follow by Lemma 3.2.4.

To this end we consider an arbitrary pu, yq P gph pA`D `NM q such that y “ v`Du`p,
where v P Au and p P NM puq. From (3.2.18), with the notations (3.2.19) and (3.2.20), we
have for all k ě k0

ρk`1 ´ ρk

ď´ s ‖xk`1 ´ xk‖2 ´ 2tλkβk ‖Bxk‖2 ` δk ` 2λk xu´ xk, yy ď δk ` 2λk xu´ xk, yy .
(3.2.27)

Recall that from (3.2.22) that
ÿ

kě1

δk ă `8. Since pxkqkě0 is bounded, the sequence

pρkqkě1 is also bounded.

We fix an arbitrary integer sK ě k0 and sum up the inequalities in (3.2.27) for n “
k0 ` 1, k0 ` 2, ¨ ¨ ¨ , sK. This yields

ρ
sK`1 ´ ρk0`1 ď

ÿ

kě1

δk ` 2

C

´

k0
ÿ

k“1

λku`
k0
ÿ

k“1

λkxk, y

G

` 2

C

τ
sKu´

sK
ÿ

k“1

λkxk, y

G

.
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After dividing this last inequality by 2τ
sK “ 2

sK
ÿ

k“1

λk, we obtain

1

2τ
sK

`

ρ
sK`1 ´ ρk0`1

˘

ď
1

2τ
sK

T ` 2 xu´ z
sK , yy , (3.2.28)

where T :“
ÿ

kě1

δk ` 2

C

´

k0
ÿ

k“1

λku`
k0
ÿ

k“1

λkxk, y

G

P R. By passing in (3.2.28) to the limit

and by using that lim
kÑ8

τ
sK “ lim

sKÑ8

sK
ÿ

k“1

λk “ `8, we get

lim inf
sKÑ8

xu´ z
sK , yy ě 0.

As z is a sequential weak cluster point of pzkqkě1, the above inequality gives us xu´ z, yy ě
0, which finally means that z P zer pA`D `NM q.

(ii) Let u P H be the unique element in zer pA`D `NM q. Since A is γ´strongly monotone
with γ ą 0, the formula in (3.2.4) reads for all k ě 1

xxk`1 ´ u, xk ´ xk`1 ´ λk pDxk ` βkBxk ` vq ` αk pxk ´ xk´1qy ě γλk ‖xk`1 ´ u‖2

or, equivalently,

2γλk ‖xk`1 ´ u‖2 ` 2 xu´ xk`1, xk ´ xk`1y

ď 2λk xu´ xk`1, βkBxk `Dxk ` vy ´ 2αk xu´ xk`1, xk ´ xk´1y .

By using again (3.2.6), (3.2.7) and (3.2.15) we obtain for all k ě 1

2γλk ‖xk`1 ´ u‖2 ` ‖xk`1 ´ u‖2 ´ ‖xk ´ u‖2

ď αk ‖xk ´ u‖2 ´ αk ‖xk´1 ´ u‖2 ´ p1´ 4ε1 ´ ε2q ‖xk`1 ´ xk‖2

`

ˆ

αk `
α2
k

4ε1

˙

‖xk ´ xk´1‖2 `
ˆ

2

ε2
λ2
kβ

2
k ´ 2µ p1´ ε3qλkβk

˙

‖Bxk‖2

`

ˆ

4

ε2
λ2
k ´ 2ηλk

˙

‖Dxk ´Du‖2 `
4

ε2
λ2
k ‖Du` v‖

2

` 2ε3λkβk

„

sup
uPM

ϕB

ˆ

u,
p

ε3βk

˙

´ σM

ˆ

p

ε3βk

˙

` 2λk xu´ xk, yy .

By using the notations in (3.2.19) and (3.2.20), this yields for all k ě 1

2γλk ‖xk`1 ´ u‖2 ` θk`1 ´ θk ď αk pθk ´ θk´1q `

ˆ

αk `
α2
k

4ε1

˙

‖xk ´ xk´1‖2 ` δk

By taking into account (3.2.25), from Lemma 2.4.1 we get

2γ
ÿ

kě1

λk ‖xk ´ u‖2 ă `8.

According to pC1q we have
ÿ

kě1

λk “ `8, which implies that the limit lim
kÑ8

‖xk ´ u‖ must

be equal to zero. This provides the desired conclusion.
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3.3 Applications to convex bilevel programming

We will employ the results obtained in the previous section in the context of monotone inclusions
to the solving of convex bilevel programming problems.

Let H be a real Hilbert space, f : HÑ RYt`8u a proper, convex and lower semicontinuous
function and g, h : H Ñ R differentiable functions with Lg´Lipschitz continuous and, respec-
tively, Lh´Lipschitz continuous gradients. Suppose that arg minh ‰ H and minh “ 0. The
bilevel programming problem to solve reads

min
xParg minh

f pxq ` g pxq . (3.3.1)

The assumption minh “ 0 is not restrictive as, otherwise, one can replace h with h´minh.

Hypothesis 3.3.1. The convergence analysis will be carry out in the following hypotheses:

pHprog
1 q Bf `Narg minh is maximally monotone and S :“ arg min

xParg minh
tf pxq ` g pxqu ‰ H;

pHprog
2 q for every p P ranNarg minh,

ÿ

kě1

λkβk

„

h˚
ˆ

p

βk

˙

´ σarg minh

ˆ

p

βk

˙

ă `8.

In the above hypotheses, we have that Bf`∇g`Narg minh “ B pf ` g ` δarg minhq and hence
S “ zer pBf `∇g `Narg minhq ‰ H. Since ∇g and ∇h are L´1

g -cocoercive and, respectively,
L´1
h - cocoercive, and arg minh “ zer∇h solving the bilevel programming problem in (3.3.1)

reduces to solving the monotone inclusion

0 P Bfpxq `∇gpxq `Narg minhpxq.

By using to this end Algorithm 3.2.1, we recieve the following iterative scheme.

Algorithm 3.3.1. Let tαkukě1 , tλkukě1 and tβkukě1 be sequences of positive real numbers such
that

pC1q tλkukě1 P `
2 z `1;

pC2q tαkukě1 is nondecreasing;

pC3q there exists α with 0 ď αk ď α` ă 1{3 for all k ě 1.

Let x0, x1 P H. For all k ě 1 we set

xk`1 :“ proxλkf pxk ´ λk∇g pxkq ´ λkβk∇h pxkq ` αk pxk ´ xk´1qq .

By using the inequality (2.1.3), one can easily notice, that pHprog
2 q implies pHfitz

2 q, which
means that the convergence statements for Algorithm 3.3.1 can be derived as particular instances
of the ones derived in the previous section.

Alternatively, one can use to this end the following lemma and employ the same ideas and
techniques as in Section 3.2. Lemma 3.3.1 is similar to Lemma 3.2.2, however, it will allow us
to provide convergence statements also for the sequence of function values phpxkqqkě0.

Lemma 3.3.1. Let txkukě0 be the sequence generated by Algorithm 3.3.1 and pu, yq be an
element in gph pBf `∇g `Narg minhq such that

y “ v `∇gpuq ` p with v P Bfpuq and p P Narg minh puq .
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Further, let ε1, ε2, ε3 ą 0 be such that 1 ´ ε3 ą 0. Then the following inequality holds for all
k ě 1

‖xk`1 ´ u‖2 ´ ‖xk ´ u‖2

ď αk ‖xk ´ u‖2 ´ αk ‖xk´1 ´ u‖2 ´ p1´ 4ε1 ´ ε2q ‖xk`1 ´ xk‖2 `
ˆ

αk `
α2
k

4ε1

˙

‖xk ´ xk´1‖2

ˆ

2

ε2
λ2
kβ

2
k ´ 2µ p1´ ε3qλkβk

˙

‖∇h pxkq‖2 `
ˆ

4

ε2
λ2
k ´ 2ηλk

˙

‖∇g pxkq ´∇g puq‖2

` λkβk rh puq ´ h pxkqs `
4

ε2
λ2
k ‖v `∇g puq‖

2

` ε3λkβk

„

h˚
ˆ

2p

ε3βk

˙

´ σarg minh

ˆ

2p

ε3βk

˙

` 2λk xu´ xk, yy .

Proof. Let be k ě 1 fixed. The proof follows by combining the estimates used in the proof of
Lemma 3.2.2 with some inequalities which better exploits the convexity of h. From (3.2.12) we
have

2λkβk xu´ xk,∇h pxkqy ď ´2µ p1´ ε3qλkβk ‖∇h pxkq‖2 ` 2ε3λkβk xu´ xk,∇h pxkqy .

Since h is convex, the following relation also hold

2λkβk xu´ xk,∇h pxkqy ď 2λkβk rh puq ´ h pxkqs .

Summing up the two inequalities above give us

2λkβk xu´ xk,∇h pxkqy ď ´µ p1´ ε3qλkβk ‖∇h pxkq‖2 ` ε3λkβk xu´ xk,∇h pxkqy
` λkβk rh puq ´ h pxkqs .

Using the same techniques as in the derivation of (3.2.14), we get

2λk xu´ xk, v `∇g pxkq ` βk∇h pxkqy
ď ´ µ p1´ ε3qλkβk ‖∇h pxkq‖2 ´ 2ηλk ‖∇g pxkq ´∇g puq‖2 ` λkβk rh puq ´ h pxkqs

` 2λk xu´ xk, yy ` ε3λkβk

„

h˚
ˆ

u,
2p

ε3βk

˙

´ σarg minh

ˆ

2p

ε3βk

˙

.

With this improved estimates, the conclusion follows as in the proof of Lemma 3.2.2.

By using now Lemma 3.3.1, one obains, after slightly adapting the proof of Proposition
3.2.3, the following result.

Proposition 3.3.2. Let 0 ă α` ă
1
3 , ε1, ε2, ε3 ą 0 and the sequences tλkukě1 and tβkukě1

satisfy condition pC4q. Let txkukě0 be the sequence generated by Algorithm 3.3.1 and assume
that the Hypotheses 3.3.1 are verified. Then the following statements are true:

(i) the sequence t‖xk`1 ´ xk‖ukě0 belongs to `2 and the sequences
!

λkβk ‖∇hpxkq‖2
)

kě1
and

tλkβkhpxkqukě1 belong to `1;

(ii) if, moreover, lim inf
kÑ`8

λkβk ą 0, then lim
kÑ`8

‖∇hpxkq‖ “ lim
kÑ`8

h pxkq “ 0 and thus every

cluster point of the sequence txkukě0 lies in arg minh.

(iii) for every u P S, the limit lim
kÑ`8

‖xk ´ u‖ exists.

Finally, the above proposition leads to the following convergence result.
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Theorem 3.3.3. Let 0 ă α` ă 1
3 , ε1, ε2, ε3 ą 0 and the sequences tλkukě1 and tβkukě1

satisfy condition pC4q. Let txkukě0 be the sequence generated by Algorithm 3.3.1, tzkukě1 be
the sequence defined in (3.2.26) and assume that the Hypotheses 3.3.1 are verified. Then the
following statements are true:

(i) the sequence tzkukě1 converges weakly to an element in S as k Ñ `8.

(ii) if f is γ´strongly convex with γ ą 0, then txkukě0 converges strongly to the unique element
in S as k Ñ `8.

As follows we will show that under inf-compactness assumptions one can achieve weak non-
ergodic convergence for the sequence txkukě0. Weak nonergodic convergence has been obtained
for Algorithm 3.3.1 in [54] when αk “ α for all k ě 1 and for restrictive choices for both the
sequence of step sizes and penalty parameters.

We denote by pf ` gq˚ “ minxParg minh pfpxq ` gpxqq. For every element x in H, we denote
by dist px,Sq “ inf

uPS
‖x´ u‖ the distance from x to S. In particular, dist px,Sq “ ‖x´PrSx‖,

where PrSx denotes the projection of x onto S. The projection operator PrS is firmly nonex-
pansive ([24, Proposition 4.8]), this means

‖PrS pxq ´PrS pyq‖2 ` ‖rId´PrSs pxq ´ rId´PrSs pyq‖2 ď ‖x´ y‖2 @x, y P H. (3.3.2)

Denoting d pxq “
1

2
dist px,Sq2 “ 1

2
‖x´PrSx‖2 for all x P H, one has that x ÞÑ dpxq is

differentiable and it holds ∇d pxq “ x´PrSx for all x P H.

Lemma 3.3.4. Let txkukě0 be the sequence generated by Algorithm 3.3.1 and assume that the
Hypotheses 3.3.1 are verified. Then the following inequality holds for all k ě 1

d pxk`1q ´ d pxkq ´ αk pd pxkq ´ d pxk´1qq ` λk rpf ` gq pxk`1q ´ pf ` gq˚s

ď

ˆ

Lg
2
λk `

Lh
4
λkβk `

αk
2

˙

‖xk`1 ´ xk‖2 ` αk ‖xk ´ xk´1‖2 . (3.3.3)

Proof. Let k ě 1 be fixed. Since d is convex, we have

d pxk`1q ´ d pxkq ď xxk`1 ´PrS pxk`1q , xk`1 ´ xky . (3.3.4)

Then there exists vk`1 P Bfpxk`1q such that (see (3.2.3))

xk ´ xk`1 ´ λkp∇gpxkq ` βk∇hpxkqq ` αkpxk ´ xk´1q “ λkvk`1

and, so,

xxk`1 ´PrS pxk`1q , xk`1 ´ xky

“ xxk`1 ´PrS pxk`1q ,´λkvk`1 ´ λk∇g pxkq ´ λkβk∇h pxkq ` αk pxk ´ xk´1qy

´ λkβk xxk`1 ´PrS pxk`1q ,∇h pxkqy ` αk xxk`1 ´PrS pxk`1q , xk ´ xk´1y . (3.3.5)

Since vk`1 P Bf pxk`1q, we get

´ λk xxk`1 ´PrS pxk`1q , vk`1y ď λk rf pPrS pxk`1qq ´ f pxk`1qs . (3.3.6)

Using the convexity of g it follows

g pxkq ´ g pPrS pxk`1qq ď x∇g pxkq , xk ´PrS pxk`1qy . (3.3.7)

On the other hand, the Descent Lemma (2.2.4) gives

g pxk`1q ď g pxkq ` x∇g pxkq , xk`1 ´ xky `
Lg
2
‖xk`1 ´ xk‖2 . (3.3.8)
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By adding (3.3.7) and (3.3.8), it yields

´ λk xxk`1 ´PrS pxk`1q ,∇g pxkqy ď λk rg pPrS pxk`1qq ´ g pxk`1qs `
Lgλk

2
‖xk`1 ´ xk‖2 .

(3.3.9)

Using the
1

Lh
´cocoercivity of ∇h combined with the fact that ∇h pPrS pxk`1qq “ 0 (as

PrS pxk`1q belongs to S), it yields

´xxk ´PrS pxk`1q ,∇h pxkqy ď ´
1

Lh
‖∇h pxkq‖2 .

Therefore

´λkβk xxk`1 ´PrS pxk`1q ,∇h pxkqy ď λkβk

ˆ

xxk ´ xk`1,∇h pxkqy ´
1

Lh
‖∇h pxkq‖2

˙

ď λkβk
Lh
4
‖xk`1 ´ xk‖2 . (3.3.10)

Further, we have

αk xxk`1 ´PrS pxk`1q ´ pxk ´PrS pxkqq , xk ´ xk´1y

ď
αk
2
‖rId´PrSs pxk`1q ´ rId´PrSs pxkq‖2 `

αk
2
‖xk ´ xk´1‖2

ď
αk
2
‖xk`1 ´ xk‖2 `

αk
2
‖xk ´ xk´1‖2 ,

and

αk xxk ´PrS pxkq , xk ´ xk´1y

“ αkd pxkq `
αk
2
‖xk ´ xk´1‖2 ´

αk
2
‖xk´1 ´PrS pxkq‖2

ď αkd pxkq `
αk
2
‖xk ´ xk´1‖2 ´ αkd pxk´1q .

By adding two relations above, we obtain

αk xxk`1 ´PrS pxk`1q , xk ´ xk´1y

“ αk xxk`1 ´PrS pxk`1q ´ pxk ´PrS pxkqq , xk ´ xk´1y ` αk xxk ´PrS pxkq , xk ´ xk´1y

ď
αk
2
‖xk`1 ´ xk‖2 ` αk ‖xk ´ xk´1‖2 ` αk pd pxkq ´ d pxk´1qq . (3.3.11)

By combining (3.3.6) , (3.3.9) , (3.3.10) and (3.3.11) with (3.3.5) we obtain the desired conclu-
sion.

Definition 3.3.1. A function Ψ: H Ñ R Y t`8u is said to be inf-compact if for every r ą 0
and every κ P R the set

levrκ pΨq :“ tx P H : ‖x‖ ď r,Ψ pxq ď κu

is relatively compact in H.

Note that this condition is automatically fulfilled in the finite-dimensional Hilbert space.
An useful property of inf-compact functions follow.

Lemma 3.3.5. Let Ψ: H Ñ R Y t`8u be inf-compact and txkukě0 be a bounded sequence in
H such that tΨ pxkqukě0 is bounded as well. If the sequence txkukě0 converges weakly to an
element in px as k Ñ `8, then it converges strongly to this element.
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Proof. Let sr ą 0 and sκ P R be such that for all k ě 1

‖xk‖ ď sr and Ψ pxkq ď sκ.

Hence, txkukě0 belongs to the set levsr
sκ pΨq, which is relatively compact. Then txkukě0 has

at least one strongly convergente subsequence. Since every strongly convergent subsequence
txklulě0 of txkukě0 has as limit px, the conclusion follows.

Now we can formulate the weak nonergodic convergence result.

Theorem 3.3.6. Let the sequences tλkukě1 and tβkukě1 satisfy the condition 0 ă lim inf
kÑ8

λkβk ď

sup
kě0

λkβk ď µ, txkukě0 be the sequence generated by Algorithm 3.3.1, assume that the Hypotheses

3.3.1 are verified and that either f ` g or h is inf-compact. Then the following statements are
true:

(i) lim
kÑ`8

d pxkq “ 0;

(ii) the sequence txkukě0 converges weakly to an element in S as k Ñ `8;

(iii) if h is inf-compact, then the sequence txkukě0 converges strongly to an element in S as
k Ñ `8.

Proof. (i) Thanks to Lemma 3.3.4 , for all k ě 1 we have

d pxk`1q ´ d pxkq ` λk rpf ` gq pxk`1q ´ pf ` gq˚s ď αk pd pxkq ´ d pxk´1qq ` ζk, (3.3.12)

where

ζk :“

ˆ

Lg
2
λk `

Lh
4
λkβk `

αk
2

˙

‖xk`1 ´ xk‖2 ` αk ‖xk ´ xk´1‖2 .

From Proposition 3.3.2 (i), combined with the fact that both sequences tλkukě1 and
tβkukě1 are bounded, it follows that

ÿ

kě1

ζk ă `8.

In general, since txkukě0 is not necessarily included in arg minh, we have to treat two
different cases.

Case 1: There exists an integer k1 ě 1 such that pf ` gq pxkq ě pf ` gq˚ for all k ě k1.
In this case, we obtain from Lemma 2.4.1 that:

• the limit lim
kÑ`8

d pxkq exists.

•
ÿ

kěk1

λk rpf ` gq pxk`1q ´ pf ` gq˚s ă `8. Moreover, since tλkukě1 R `
1, we must

have
lim inf
kÑ`8

pf ` gq pxkq ď pf ` gq˚ . (3.3.13)

Consider a subsequence txknuně1 of txkukě0 such that

lim
nÑ`8

pf ` gq pxknq “ lim inf
kÑ`8

pf ` gq pxkq

and note that, thanks to (3.3.13), the sequence tpf ` gq pxknquně1 is bounded. From
Proposition 3.3.2 (ii)-(iii) we get that also txknuně1 and th pxknquně0 are bounded. Thus,
since either f ` g or h is inf-compact, there exists a subsequence txklulě0 of txknuně1,
which converges strongly to an element px as l Ñ `8. According to Proposition 3.3.2
(ii)-(iii), px belongs to arg minh. On the other hand,

lim
lÑ`8

pf ` gq pxklq “ lim inf
kÑ`8

pf ` gq pxkq ě pf ` gq ppxq ě pf ` gq˚ . (3.3.14)
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We deduce from (3.3.13) - (3.3.14) that pf ` gq ppxq “ pf ` gq˚, or in other words, that
px P S. In conclusion, thanks to the continuity of d,

lim
kÑ`8

d pxkq “ lim
lÑ8

d pxklq “ d ppxq “ 0.

Case 2 : for all k ě 1 there exists some k1 ą k such that pf ` gq pxk1q ă pf ` gq˚. We
define the set

V “
 

k1 ě 1: pf ` gq pxk1q ă pf ` gq˚
(

.

There exist an integer k2 ě 2 such that for all k ě k2 the set tn ď k : n P V u is nonempty.
Hence, for all k ě k2 the number

tk :“ max tn ď k : n P V u

is well-defined. By definition tk ď k for all k ě k3 and moreover the sequence ttkukěk2 is
nondecreasing and lim

kÑ`8
tk “ `8. Indeed, if lim

kÑ8
tk “ t P R, then for all k1 ą t it holds

pf ` gq pxk1q ě pf ` gq˚, contradiction. Choose an integer N ě k2.

• If tk ă N , then, for all k “ tk, ¨ ¨ ¨ , N´1, since pf`gq pxkq ě pf ` gq˚, the inequality
(3.3.12) gives

d pxk`1q ´ d pxkq ď d pxk`1q ´ d pxkq ` λk rF pxk`1q ´ F˚s

ď αk pd pxkq ´ d pxk´1qq ` ζk. (3.3.15)

Summing (3.3.15) for k “ tk, ¨ ¨ ¨ , N ´ 1 and using that tαkukě1 is nondecreasing, it
yields

d pxN q ´ d pxtN q ď
N´1
ÿ

k“tN

pαkd pxkq ´ αk´1d pxk´1qq `

N´1
ÿ

k“tN

ζk

ď α`d pxk´1q `
ÿ

kětN

ζk. (3.3.16)

• If tk “ N , then d pxN q “ d pxtN q and we have

d pxN q ´ α`d pxN´1q ď d pxtN q `
ÿ

kětN

ζk. (3.3.17)

for all k ě 1 we define ak :“ d pxkq ´ α`d pxk´1q. In both cases it yields

aN ď d pxtN q `
N
ÿ

k“tN

ζk ď d pxtN q `
ÿ

kětN

ζk. (3.3.18)

Passing in (3.3.18) to limit as N Ñ `8 we obtain that

lim sup
kÑ`8

ak ď lim sup
kÑ`8

d pxtkq . (3.3.19)

Let be u P S. for all k ě 1 we have

d pxkq “
1

2
dist pxk,Sq2 ď

1

2
‖xk ´ u‖2 ,

which shows that td pxkqukě0 is bounded, as lim
kÑ`8

‖xk ´ u‖ exists. We obtain

lim sup
kÑ8

ak “ lim sup
kÑ8

rd pxkq ´ α`d pxk´1qs ě p1´ α`q lim sup
kÑ8

d pxkq ě 0. (3.3.20)
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Further, for all k ě 1 we have pf ` gq pxtkq ă pf ` gq˚, which gives

lim sup
kÑ`8

pf ` gq pxtkq ď pf ` gq˚ . (3.3.21)

This means that the sequence tpf ` gq pxtkqukě0 is bounded from above. Consider a
subsequence

 

xtq
(

qě0
of txtkukě0 such that

lim
qÑ`8

d
`

xtq
˘

“ lim sup
kÑ`8

d pxtkq .

From Proposition 3.3.2 (ii)-(iii) we get that also
 

xtq
(

qě0
and

`

hpxtqq
˘

qě0
are bounded.

Thus, since either f`g or h is inf-compact, there exists a subsequence pxtlqlě0 of
 

xtq
(

qě0
,

which converges strongly to an element px as lÑ `8. According to Proposition 3.3.2 (ii)-
(iii), px belongs to arg minh. Furthermore, it holds

lim inf
lÑ`8

pf ` gq pxtlq ě pf ` gq ppxq ě pf ` gq˚ . (3.3.22)

We deduce from (3.3.21) and (3.3.22) that

pf ` gq˚ ď pf ` gq ppxq ď lim sup
lÑ`8

pf ` gq pxtlq ď lim sup
kÑ`8

pf ` gq pxtkq ď pf ` gq˚ ,

which gives px P S. Thanks to the continuity of d we get

lim sup
kÑ`8

d pxtkq “ lim
lÑ`8

d pxtlq “ d ppxq “ 0. (3.3.23)

By combining (3.3.19), (3.3.20) and (3.3.23), it yields

0 ď p1´ α`q lim sup
kÑ`8

d pxkq ď lim sup
kÑ`8

ak ď lim sup
kÑ`8

d pxtkq “ 0,

which implies lim sup
kÑ`8

d pxkq “ 0 and thus

lim
kÑ`8

d pxkq “ lim inf
kÑ`8

d pxkq “ lim sup
kÑ`8

d pxkq “ 0.

(ii) According to (i) we have lim
kÑ8

d pxkq “ 0, thus every weak cluster point of the sequence

txkukě0 belongs to S. From Lemma 3.2.4 it follows that txkukě0 converges weakly to a
point in S as k Ñ `8.

(iii) Since lim inf
kÑ8

λkβk ą 0, from Proposition 3.3.2(ii) we have that

lim
kÑ`8

‖∇h pxkq‖ “ lim
kÑ`8

h pxkq “ 0.

Since txkukě0 is bounded, there exist sr ą 0 and sκ P R such that for all k ě 1

‖xk‖ ď sr and h pxkq ď sκ.

Thanks to (ii) the sequence txkukě0 converges weakly to an element in S. Therefore,
according to Lemma 3.3.5, it converges strongly to this element in S.
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3.4 Further perspectives

It would be interesting to extend the interval value of tαkukě1 from r0, 1{3q to r0, 1s. One
possible strategy is to insert a relaxation factor into the scheme, similar to the paper [10] of
Attouch and Cabot, inspired by a technique recently introduced by Attouch and Peypouquet
in [19] and to study the interplay of the relaxation and inertial parameters. The continuous
counterpart of the presented algorithm expressed as a second-order dynamical system would
also be interesting to consider.

For unconstrained optimization problems, which correspond to the situation when h “ 0 in
(3.3.1), one can obtain convergence rates of o

`

1{k2
˘

for the sequence of function values, see for
instance [12, 28, 110]. This is a setting which is not covered by our analysis, however, it is a
topic which might be of interest.

Another interesting direction for the bilevel optimization problem is to study the convergence
behavior of the generated sequence in the absence of convexity. Using the Kurdyka- Lojasiewicz
property, several results for unconstrained nonconvex optimization have been obtained, while
the constrained setting has not been so much considered.
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Chapter 4

Factorization of completely positive
matrices using iterative projected
gradient steps

This chapter follows our work [58].
We aim to factorize a completely positive matrix by using an optimization approach which

consists of the minimization of a nonconvex smooth function over a convex and compact set.
To solve this problem we propose a projected gradient algorithm with parameters that take
into account the effects of relaxation and inertia. Both projection and gradient steps are simple
in the sense that they have explicit formulas and do not require inner loops. Furthermore, no
expensive procedure to find an appropriate starting point is needed. The convergence analysis
shows that the whole sequence of generated iterates converges to a critical point of the objective
function, and it makes use of the  Lojasiewicz inequality. Its rate of convergence expressed in
terms of the  Lojasiewicz exponent of a regularization of the objective function is also provided.
Numerical experiments demonstrate the efficiency of the proposed method, in particular in
comparison to other factorization algorithms, and emphasize the role of the relaxation and
inertial parameters.

4.1 Problem formulation and motivation

A symmetric matrix A P Rnˆn is called completely positive if there exists an entrywise nonegative
matrix X P Rnˆr` such that

A “ XXT .

Let
CPn :“

 

A P Rnˆn : A “ XXT with X P Rnˆr` , r ě 1
(

denote the set of nˆ n completely positive matrices. This set is a proper cone whose extreme
rays are the rank-one matrices xxT with x P Rn` (see [31]), thus

CPn “ conv
 

xxT : x P Rn`
(

,

where conv stands for the convex hull operator.
Closely related to the completely positive matrices is the class of copositive matrices

COPn :“
 

A P Snˆn : xTAx ě 0 @x P Rn`
(

,

where Snˆn denotes the set of nˆn symmetric matrices. In fact, CPn is the dual cone of COPn
(see, for instance, [31]), namely,

CPn “ pCOPnq˚ :“
 

A P Snˆn : xA,By ě 0 @B P COPn
(

.
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Here, x¨, ¨y denotes the Frobenius inner product (see Section 4.2 for the precise definition).
Many relaxations of combinatorial optimization problems and of nonconvex quadratic opti-

mization problems can be formulated as linear problems over CPn or COPn. Since the objective
function and the constraint functions are linear, the challenge when addressing these is entirely
transferred in the proper handling of the cone constraints. Consequently, copositive and com-
pletely positive matrices have received considerable attention in recent years (see, for instance,
[38, 63, 78]). The application fields, where copositive and completely positive matrices appear,
include block design, complementarity problems, projections in energy demand, the Markovian
modelling of DNA evolutions, and maximin efficiency robust tests, see [31] and the references
therein.

We illustrate this approach for a nonconvex quadratic programming problem

min
xPRn

xTMx

s.t. jTnx “ 1

x P Rn`

(4.1.1)

where M P Snˆn and jn denotes the all-ones vector in Rn. If M is not a positive semidefinite
matrix, then (4.1.1) is a nonconvex optimization problem which is usually NP-hard and exhibits
numerous local minima. Observe that the objective function of (4.1.1) can be rewritten in terms
of the Frobenius inner product as xTMx “

@

M,xxT
D

. In the same fashion, the constraint
jTnx “ 1 implies

@

jnj
T
n , X

D

“ 1, for X “ xxT . Therefore, the optimization problem

min
XPRnˆn

xM,Xy

s.t.
@

jnj
T
n , X

D

“ 1

X P CPn

(4.1.2)

is a convex relaxation of the nonconvex quadratic problem (4.1.1). In [40] it has been shown
how optimal solutions of (4.1.2) can be related to optimal solutions of (4.1.1). Let X˚ be an
optimal solution of (4.1.2). If X˚ is of rank one, then it can be expressed as X˚ “ x˚x

T
˚ and

therefore x˚ is an optimal solution of (4.1.1). If rank pX˚q ą 1, then X˚ can be factorized
as X˚ “

řr
i“1 xix

T
i and it can be shown that an appropriately scaled version of each xi is an

optimal solution of (4.1.1).
One of the main challenge when dealing with completely positive matrices is their efficient

factorization ([31, 74, 87]). This is a question of high relevance in many applications, as, for
example, in the statistics of multivariate extremes. Cooley and Thibaud have shown in [71]
that the tail dependence of a multi-variate regularly-varying random vector can be summarized
in a so-called tail pairwise dependence matrix Σ of pairwise dependence metrics. This matrix
Σ can be shown to be completely positive, and a nonnegative factorization of it can be used to
estimate probabilities of extreme events or to simulate realizations with pairwise dependence
summarized by Σ. This approach has been used in [71] to study data describing daily precipita-
tion measurements. Further applications of the nonnegative factorization of completely positive
matrices can be found in data mining and clustering ([75]), and in automatic control ([32, 106]).

Recently, Groetzner and Dür proposed in [87] a novel approach to the nonnegative factor-
ization problem which consists of formulating it as a nonconvex split feasibility problem and,
consequently, of solving it via the method of alternating projections. It is known that when the
initial point is sufficiently close to the feasible set, then the sequence generated by the noncon-
vex method of alternating projections convergences to an feasible element. The drawback of
this algorithm is that it requires in every iteration two projections, which both have in general
to be approximately calculated via inner loops, since they amount to solve a second order cone
problem (SOCP) and to find a singular value decomposition of a matrix, respectively. In the
same article, a modification of this method has been suggested, which replaces the solving of
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the SOCP by a simple projection on the nonnegative orthant, but keeps the singular value
decomposition, however, without a theoretical evidence of its convergence. Also very recently,
Chen, Pong, Tan and Zeng proposed in [66] another approach which consists of reformulating
the split feasibility problem as a difference-of-convex optimization problem and, consequently,
in solving it via a specific algorithm, which also requires the singular valued decomposition of
a matrix in every iteration. We will present these approaches in more detail later.

In this chapter we develop a different approach for the nonnegative factorization of a com-
pletely positive matrix, which amounts to the minimization of a nonconvex smooth function
over a convex and compact set. To solve this problem we propose a projected gradient algorithm
with parameters that take into account the effects of relaxation and inertia. The gradient and
the projection steps are expressed by simple explicit formulas and thus do not require any inner
loops. We prove the global convergence of the generated sequence for any starting point, which
is another advantage over the methods discussed above, that make use of expensive comput-
ing procedures to find the points where the algorithms start. We provide rates of convergence
for both the sequences of objective function values and of iterates in terms of the  Lojasiewicz
exponent of a regularization of the objective function. Numerical experiments show that our
algorithm outperforms the other iterative factorization methods and emphasizes the influence
of the relaxation and inertial parameters on its performances.

Relaxation techniques have been introduced to provide more flexibility to iterative schemes
([24]), while inertial effects in order to accelerate the convergence of numerical methods ([110,
28, 18]) and to allow the detection of various critical points ([116]). Inertial proximal gradient
algorithms for nonconvex optimization problems have been proposed and studied in [43, 51, 111,
115]; their global convergence has been shown in the framework of the Kurdyka- Lojasiewicz
property ([5, 8, 33, 36, 93, 103]). For convex optimization problems, relaxed inertial algorithms
have been proved to combine the advantages of both relaxation techniques and inertial effects
(see [10, 11, 92]). One of the aims of this chapter is to investigate, also in the nonconvex setting,
to which extent the interplay between relaxation and inertial parameters influence the numerical
performances of projected/proximal gradient algorithms.

4.2 Preliminaries

4.2.1 Notations

We will write for a n ˆ r matrix X :“ pxi,jq1ďiďn,1ďjďr if we want to specify its elements,
and neglect the subscripts if there is no risk of confusion. The Frobenius inner product of

X,Y P Rnˆr is defined by xX,Y y :“ trace
`

XTY
˘

“

n
ÿ

i“1

r
ÿ

j“1

xi,jyi,j . Due to the definition of

trace operator it holds

trace
`

XTY
˘

“ trace
`

XY T
˘

“ trace
`

Y TX
˘

“ trace
`

Y XT
˘

. (4.2.1)

For X P Rnˆr we will denote its Frobenius norm by

‖X‖F :“
a

xX,Xy “
b

trace pXTXq “

g

f

f

e

n
ÿ

i“1

r
ÿ

j“1

|xi,j |2, (4.2.2)

and its 2-norm by

‖X‖2 :“ sup
‖ξ‖‰0

‖Xξ‖
‖ξ‖

,
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where ‖¨‖ denotes the usual Euclidean norm of a vector. If X :“
“

X1

ˇ

ˇ ¨ ¨ ¨
ˇ

ˇXr

‰

is the column
representation of the matrix X, then we have

‖X‖F “

g

f

f

e

r
ÿ

j“1

‖Xj‖2.

For every X,Y P Rnˆr we have

‖X ` Y ‖2F “ ‖X‖
2
F ` ‖Y ‖

2
F ` 2 xX,Y y , (4.2.3a)

‖X‖2 ď ‖X‖F , (4.2.3b)∥∥XTY
∥∥

2
ď ‖X‖2 ¨ ‖Y ‖2 , (4.2.3c)∥∥XTY

∥∥
F ď ‖X‖F ¨ ‖Y ‖F . (4.2.3d)

In addition, for every η P R, it holds

‖ηX ` p1´ ηqY ‖2F “ η ‖X‖2F ` p1´ ηq ‖Y ‖
2
F ´ η p1´ ηq ‖X ´ Y ‖

2
F . (4.2.4)

For a symmetric positive semidefinite matrix A P Rnˆn we denote by

λmax pAq :“ λ1 pAq ě λ2 pAq ě ¨ ¨ ¨ ě λn pAq :“ λmin pAq ě 0

its eigenvalues. Therefore,

trace pAq “
n
ÿ

i“1

λi pAq ě λmax pAq “ ‖A‖2 ě λmin pAq . (4.2.5)

The following two estimates, which we also prove for the sake of completeness, will be useful
later on.

Lemma 4.2.1. Let X,Y P Rnˆr.

(i) It holds ∥∥XTY
∥∥
F ď ‖X‖2 ¨ ‖Y ‖F . (4.2.6)

(ii) If A P Rnˆn is a symmetric positive semidefinite matrix, then

λmin pAq ‖X‖2F ď
@

A,XXT
D

ď ‖A‖2 ¨ ‖X‖
2
F . (4.2.7)

Proof. (i) Using the column representation of Y :“
“

Y1

ˇ

ˇ ¨ ¨ ¨
ˇ

ˇYr
‰

, we have

XTY “
“

XTY1

ˇ

ˇ ¨ ¨ ¨
ˇ

ˇXTYr
‰

.

Thus ∥∥XTY
∥∥2

F “
r
ÿ

j“1

∥∥XTYj
∥∥2
ď ‖X‖22

r
ÿ

j“1

‖Yj‖2 “ ‖X‖22 ‖Y ‖
2
F .

Notice that, in view of (4.2.3b), inequality (4.2.6) is sharper than (4.2.3d).

(ii) For two positive semidefinite matrices A,B P Rnˆn we have the following consequence of
the Von Neumann’s trace inequality (see [104, pp. 340–341])

n
ÿ

i“1

λi pAqλn`1´i pBq ď trace pABq ď
n
ÿ

i“1

λi pAqλi pBq . (4.2.8)

The inequality (4.2.7) follows by applying (4.2.8) for the positive semidefinite matrices A
and XXT , and by noticing further that

řn
i“1 λi

`

XXT
˘

“ trace
`

XXT
˘

“ ‖X‖2F .
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We denote by
B̊F pX; εq :“

 

Y P Rnˆr: ‖X ´ Y ‖F ă ε
(

the open ball around X P Rnˆr with radius ε ą 0 is and the closed ball by BF pX; εq :“

cl
´

B̊F pX; εq
¯

, where the closure is taken with respect to the topology induced by the Frobenius
norm. In this chapter, PrD pXq is the projection of an elementX onto a nonempty closed convex
subset D with respect to the Frobenius norm. Recall that it is characterized by

PrD pXq P D and xX ´PrD pXq , Y ´PrD pXqy ď 0 @Y P D. (4.2.9)

Example 4.2.2. For every X P Rnˆr,

(i) if D :“ Rnˆr` , then it holds

PrD pXq “ rXs` :“ max tX, 0u ,

where the max operator is understood entrywise;

(ii) if D :“ BF p0; εq for ε ą 0, we have

PrD pXq “
ε

max t‖X‖F , εu
X.

In general, it is challenging to compute the projection onto the intersection of two sets,
even if these are both convex and explicit forms for the projections onto each of the sets are
available. In the following example we provide one particular pair of two convex sets for which
the projection onto their intersection can expressed by a closed formula.

Example 4.2.3. Let ε ą 0 and K be a nonempty closed convex cone in Rnˆr. Then the
projection onto the intersection K X BF p0, εq is given by (see [25, Theorem 7.1])

PrKXBF p0,εq pXq “ PrBF p0,εq ˝PrK pXq “
ε

max t‖PrK pXq‖F , εu
PrK pXq @X P Rnˆr.

(4.2.10)
Notice that in general PrBF p0,εq ˝PrK pXq ‰ PrK pXq ˝PrBF p0,εq (see [25, Example 7.5]).

For later comparison we discuss two more examples of projections on some particular sets
which were used in the nonnegative factorization of completely positive matrices.

Example 4.2.4. Let B P Rnˆr and consider the following set associated to B

P pBq :“
 

X P Rrˆr : BX P Rnˆr`

(

. (4.2.11)

The set P pBq is a polyhedral cone and thus a closed convex subset of Rrˆr. The projection of
X P Rrˆr onto the set P pBq is the unique solution of the optimization problem

min
Y PRrˆr

‖Y ´X‖F .

s.t. BY P Rnˆr` .
(4.2.12)

It was shown in [87] that (4.2.12) is equivalent to the second order cone problem (SOCP)

min
tPR,ZPRrˆr

t.

s.t. B pX ` Zq P Rnˆr` ,

‖Z‖F ď t.

(SOCP)

Second order cone problems have been intensively studied in the literature from both theoretical
and numerical perspectives.
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Example 4.2.5. Let Or be the set of orthogonal matrices in Rrˆr

Or :“
 

X P Rrˆr : XXT “ XTX “ Idr
(

, (4.2.13)

where Idr denotes r ˆ r identity matrix. The set Or is compact but nonconvex, so projections
on this set always exist, but may not be unique. A projection of an element X P Rrˆr on Or can
be found by polar decomposition of X (see, for instance, [87, Lemma 4.1]). In particular, for
every X P Rrˆr, there exist a positive semidefinite matrix T P Rrˆr and an orthogonal matrix
Y P Rrˆr such that

X “ TY and ‖X ´ Y ‖F ď ‖X ´ Z‖F @Z P Or.

Therefore, the matrix Y is a projection of X onto Or and it can be computed by means of the
singular value decomposition of X “ UΣV T . Indeed, for T :“ UΣUT and Y :“ UV T it holds
X “ UΣV T “ UΣUTUV T “ TY .

4.2.2 Properties of factorizations

We first recall some fundamental properties of the factorizations. The factorization of a com-
pletely positive matrix A ‰ 0 is never unique. We illustrate this with an example by Dickinson
[73].

Example 4.2.6. Consider the matrix

A :“

¨

˝

18 9 9
9 18 9
9 9 18

˛

‚.

Then A “ BiB
T
i for each of the following matrices:

B1 :“

¨

˝

4 1 1
1 4 1
1 1 4

˛

‚, B2 :“

¨

˝

3 3 0 0
3 0 3 0
3 0 0 3

˛

‚,

B3 :“

¨

˝

3 3 0
3 0 3
0 3 3

˛

‚, B4 :“

¨

˝

´1.2030 2.1337 3.4641
2.4494 0.0250 3.4641
´1.2463 ´2.1087 3.4641

˛

‚.

The number of columns of the factors Bi varies, which gives rise to the following definitions.

Definition 4.2.1. Let A P Rnˆn. The cp-rank of A is defined as

cpr pAq :“ inf
 

r ě 0: DX P Rnˆr` , A “ XXT
(

.

The cp`-rank of A is defined as

cpr` pAq :“ inf
 

r ě 0: DX P Rnˆr`` , A “ XXT
(

,

here Rnˆr`` denoting the set of matrices in Rnˆr` which have at least one column with positive
entries.

The notion of cp`-rank is useful for the matrix belongs to the interior of CPn. Recall that,
Dickinson showed in [73, Theorem 3.8] that the interior of CPn can be characterized as follows

int pCPnq “
 

A P Rnˆn : rank pAq “ n,A “ XXT , X P Rnˆr``

(

.

Until now, we can only derive an upper bound for this value rank, which we will recall in the
following lemma. The problem of computing the cp-rank of a matrix in general remains open
(see [30]).
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Lemma 4.2.7. [39, Theorem 4.1] For all A P CPn we have

cpr pAq ď cpn :“

$

&

%

n for n P t2, 3, 4u ,
1

2
n pn` 1q ´ 4 for n ě 5.

If A P int pCPnq, then

cpr` pAq ď cp`n :“

$

&

%

n` 1 for n P t2, 3, 4u ,
1

2
n pn` 1q ´ 3 for n ě 5.

Notice that there exists matrices A P int pCPnq such that cpr pAq ‰ cpr` pAq.

In the numerical experiments, we will often choose r as n up to a multiplicative constant,
which is smaller than cpr pAq and cpr` pAq when n is large and still obtains reasonable results.

4.2.3 Nonnegative factorization of completely positive matrices via projec-
tion onto the orthogonal set Or

In the following we will revisit some recent iterative approaches from the literature for finding
a nonnegative factorization of completely positive matrices.

In [87] this problem was reformulated as a feasibility problem. For a given matrix A P Rnˆn,
in a first step, a not necessarily entrywise nonnegative matrix B P Rnˆr such that A “ BBT

was considered. The aim was

to find a r ˆ r square matrix Q such that Q P P pBq XOr, (4.2.14)

where P pBq and Or are the polyhedral cone associated to B and the set of r ˆ r orthogonal
matrices given in (4.2.11) and in (4.2.13), respectively. This approach was motivated by the
observation that, for every B1, B2 P Rnˆr, it holds B1B

T
1 “ B2B

T
2 if and only if there exists

Q P Or such that B1Q “ B2 (see [87, Lemma 2.6]).
To solve (4.2.14), naturally, the method of alternating projections was used, which, given

B P Rnˆr such that A “ BBT and an initial point Q0 P Or, generates a sequence tQkukě0 as
follows:

p@k ě 0q

#

Pk :“ PrPpBq pQkq ,

Qk`1 P PrOr pPkq .
(4.2.15)

The nonconvex method of alternating projections is known to converge locally, which means
that convergence can be guaranteed if the initial point is sufficiently close to P pBq XOr.

As noticed in Example 4.2.4, the first step in (4.2.15) amounts to solve a second-order cone
problem, which usually can be done only in an approximate way and requires an inner loop.
To avoid this drawback, another algorithm was proposed in [87], which, in every iteration,
calculates an approximation of PrPpBq pQkq. This is done by using the projection on Rnˆr` , for
which an exact formula exists, and an update step which uses the Moore-Penrose-Inverse of B,
that is B` :“ BT

`

BBT
˘´1. Given B P Rnˆr such that A “ BBT and an initial point Q0 P Or,

this second algorithm generates a sequence tQkukě0 as follows:

p@k ě 0q

$

’

’

&

’

’

%

Rk :“ PrRnˆr`
pBQkq ,

pPk :“ B`Rk ` pIdr ´B
`BqQk,

Qk`1 P PrOr

´

pPk

¯

.

(4.2.16)

In [66], an alternative approach to (4.2.14) was considered, by reformulating the nonnegative
factorization problem as a difference-of-convex optimization problem and by solving the latter
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via a nonmonotone linesearch algorithm. This can be found in [66, Section 6.1], here we present
for easy reference the iterative scheme with a fixed stepsize. Let B P Rnˆr such that A “ BBT ,
LB ą λmax

`

BTB
˘

, and an initial point Q0 P Or. The algorithm generates the sequence tQkukě0

as follows

p@k ě 0q

$

’

&

’

%

Wk :“ PrRnˆr`
pBQkq ,

Qk`1 P PrOr

ˆ

Qk ´
1

LB
BT pBQk ´Wkq

˙

.
(4.2.17)

One can notice that all three iterative schemes require in every iteration the calculation
of a projection onto the orthogonal set Or. To do this one basically needs to carry out a
singular value decomposition of a matrix, as discussed in Example 4.2.5, which can be done in a
subroutine that needs O

`

r3
˘

steps. Furthermore, all three algorithms ask for finding a matrix
B P Rnˆr such that A “ BBT . This can be done, for instance, by the Cholesky decomposition
of A, in which case B is a lower triangular matrix, or by the spectral decomposition A “ V ΣV T

and then by setting B :“ V Σ
1
2 . In either case, one needs an additional procedure to find an

appropriate initial matrix B.

4.3 An optimization model with convergence guarantees

In this section we will propose a new approach for the nonnegative factorization of completely
positive matrices, which consists of solving a nonconvex optimization problem by means of a
projected gradient algorithm. We will also carry out for the iterative method a comprehensive
convergence analysis, and even derive convergence rates.

4.3.1 The optimization model

For a given nonzero completely positive matrix A P Rnˆn, finding a factorization A “ XXT ,
where X P Rnˆr` , can be cast as an optimization problem

min
XPRnˆr

E pXq :“
1

2

∥∥A´XXT
∥∥2

F .

s.t. X P D :“ Rnˆr` X BF

´

0,
a

trace pAq
¯

(4.3.1)

Denoting by E˚ :“ infXPD E pXq the optimal objective value of (4.3.1), it holds

A “ X˚X
T
˚ with X˚ P Rnˆr` ô rX˚ solves (4.3.1) and E˚ “ 0s .

Notice that E is a nonconvex objective function with continuous gradient

∇E pXq “ ´2
`

A´XXT
˘

X,

which is however not Lipschitz continuous, but locally Lipschitz continuous. In order to be able
to handle this situation in a proper way in the convergence analysis, we minimize the objective
function E pXq over a meaningfully chosen bounded set, which, however, does not pose any
restriction on the model. Indeed, if X satisfies A “ XXT , then

‖X‖F ď
a

trace pAq.

By the definition of the Frobenius norm and (4.2.1) - (4.2.2), we have

‖X‖F “
b

trace pXTXq “
b

trace pXXT q “
a

trace pAq.

This explains the choice of D as the intersection of Rnˆr` and BF

´

0,
a

trace pAq
¯

. Furthermore,
thanks to its specific structure, we have an exact formula for the projection on D.
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Proposition 4.3.1. Let A P CPn.

(i) The set D is nonempty convex and closed, and for any X P Rnˆr it holds

PrD pXq :“

a

trace pAq

max
!∥∥rXs`∥∥F ,atrace pAq

) rXs` , (4.3.2)

where rXs` :“ max tX, 0u and the max operator is understood entrywise.

(ii) For X,Y P Rnˆr, the following inequalities are true

´ ‖A‖2 ¨ ‖X ´ Y ‖
2
F ď E pXq ´ E pY q ´ x∇E pY q , X ´ Y y ď

L pX,Y q

2
‖X ´ Y ‖2F ,

(4.3.3)

where
L pX,Y q :“ 2

´

‖Y ‖22 ´ λmin pAq
¯

` p‖X‖2 ` ‖Y ‖2q
2 . (4.3.4)

Proof. (i) Since D is the intersection of the coneK :“ Rnˆr` with the ball BF

´

0,
a

trace pAq
¯

,
it follows from (4.2.10) that

PrD pXq “

a

trace pAq

max
!

‖PrK pXq‖F ,
a

trace pAq
)PrK pXq .

For K “ Rnˆr` it holds PrK pXq “ PrRnˆr`
pXq “ rXs` “ max tX, 0u.

(ii) We introduce the auxiliary function Q : Rnˆn Ñ R defined as

Q pZq :“
1

2
‖A´ Z‖2F @Z P Rnˆn.

By the definition, E pXq “ Q
`

XXT
˘

for every X P Rnˆn. Since ∇Q pZq “ ´ pA´ Zq,
the following relation is true for every Z,W P Rnˆn

Q pW q “ Q pZq ` x∇Q pZq ,W ´ Zy `
1

2
‖W ´ Z‖2F . (4.3.5)

Moreover, if Z is symmetric, then so is ∇Q pZq.
Let X,Y P Rnˆr be fixed. One can easily verify that

XXT ´ Y Y T “ pX ´ Y qY T ` Y pX ´ Y qT ` pX ´ Y q pX ´ Y qT . (4.3.6)

Applying (4.3.5) withW :“ XXT and Z :“ Y Y T and by taking into consideration (4.3.6),
we get

Q
`

XXT
˘

´Q
`

Y Y T
˘

“
@

∇Q
`

Y Y T
˘

, XXT ´ Y Y T
D

`
1

2

∥∥XXT ´ Y Y T
∥∥2

F

“
@

∇Q
`

Y Y T
˘

, pX ´ Y qY T
D

`

A

∇Q
`

Y Y T
˘

, Y pX ´ Y qT
E

`

A

∇Q
`

Y Y T
˘

, pX ´ Y q pX ´ Y qT
E

`
1

2

∥∥XXT ´ Y Y T
∥∥2

F

“ 2
@

∇Q
`

Y Y T
˘

Y, pX ´ Y q
D

`

A

∇Q
`

Y Y T
˘

, pX ´ Y q pX ´ Y qT
E

`
1

2

∥∥XXT ´ Y Y T
∥∥2

F . (4.3.7)
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Since 2∇Q
`

Y Y T
˘

Y “ ´2
`

A´ Y Y T
˘

Y “ ∇E pY q, it remains to estimate the two last
terms in (4.3.7). Observe that

A

∇Q
`

Y Y T
˘

, pX ´ Y q pX ´ Y qT
E

`
1

2

∥∥XXT ´ Y Y T
∥∥2

F

“ ´

A

A´ Y Y T , pX ´ Y q pX ´ Y qT
E

`
1

2

∥∥XXT ´ Y Y T
∥∥2

F

“ ´

A

A, pX ´ Y q pX ´ Y qT
E

`
∥∥Y T pX ´ Y q

∥∥2

F `
1

2

∥∥XXT ´ Y Y T
∥∥2

F , (4.3.8)

where the last equation comes from the fact that trace operator is invariant under cyclic
permutations, as we see below

A

Y Y T , pX ´ Y q pX ´ Y qT
E

“ trace
”

`

Y Y T
˘T
pX ´ Y q pX ´ Y qT

ı

“ trace
”

Y Y T pX ´ Y q pX ´ Y qT
ı

“ trace
”

pX ´ Y qT Y Y T pX ´ Y q
ı

“ trace
”

`

Y T pX ´ Y q
˘T
Y T pX ´ Y q

ı

“
∥∥Y T pX ´ Y q

∥∥2

F .

Notice that, thanks to (4.2.7),
A

A, pX ´ Y q pX ´ Y qT
E

ď ‖A‖2 ‖X ´ Y ‖
2
F . Plugging

this estimate into (4.3.8), also neglecting the last two nonnegative terms, we obtain the
left-hand side inequality in (4.3.3).

By applying (4.2.6) we can derive an upper bound for the last term in (4.3.8)∥∥XXT ´ Y Y T
∥∥
F ď

∥∥pX ´ Y qXT
∥∥
F `

∥∥∥Y pX ´ Y qT∥∥∥
F

ď ‖X‖2 ‖X ´ Y ‖F ` ‖Y ‖2 ‖X ´ Y ‖F “ p‖X‖2 ` ‖Y ‖2q ‖X ´ Y ‖F .
(4.3.9)

By plugging (4.3.9) into (4.3.8) and recalling the inequalities (4.2.7) and (4.2.6), we get
the right-hand side inequality in (4.3.3) with L pX,Y q defined as in (4.3.4).

4.3.2 A projected gradient algorithm with relaxation and inertial parameters

We are now in the position to formulate the projected gradient algorithm we propose in this
chapter to solve (4.3.1).

Algorithm 4.3.1. Let tαkukě1 Ď r0, 1s and, for α` :“ sup
kě0

αk, set

LF pα`q :“ 2
“`

3` 8α` ` 6α2
`

˘

trace pAq ´ λmin pAq
‰

ą 0.

Choose ρ P p0, 1s such that

0 ă

a

LF pα`q ` 2 ‖A‖2
a

LF pα`q ` 2 ‖A‖2 `
a

LF pα`q
ă ρ ă

a

LF pα`q ` 2 ‖A‖2
p1` α`q

a

LF pα`q ` 2 ‖A‖2 ´
a

LF pα`q
.

(4.3.10)
For a given starting point X1 :“ X0 P D generate the sequence tXkukě0 as follows

Yk :“ Xk ` αk pXk ´Xk´1q , (4.3.11a)

Zk`1 :“ PrD

ˆ

Yk ´
1

LF
∇E pYkq

˙

, (4.3.11b)

Xk`1 :“ p1´ ρqXk ` ρZk`1. (4.3.11c)
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Recall that the formula of PrD is given in (4.3.2) explicitly. For any k ě 1, the following
equivalent formulation of (4.3.11c) will be useful in the analysis

Xk`1 “ p1´ ρqXk ` ρZk`1 ô Zk`1 ´Xk “
1

ρ
pXk`1 ´Xkq (4.3.12a)

ô Zk`1 ´Xk`1 “

ˆ

1

ρ
´ 1

˙

pXk`1 ´Xkq . (4.3.12b)

To help the readers to understand the choice of the parameters, we give the following results
first and postpone the discussion on the feasibility of ρ in (4.3.10) to Remark 4.3.2. In the
following we will use, to ease the reading, LF instead of LF pα`q, however, we will return to
this notation in the last section, where we will consider some particular choices of the sequence
of inertial parameter.

Lemma 4.3.2. Let tXkukě0 be the sequence generated by Algorithm 4.3.1. The following state-
ments are true for any k ě 1

(i) Xk`1 P D and ‖Yk‖F ď p1` 2α`q
a

trace pAq;

(ii)
L pZk`1, Ykq ď LF “ 2

“`

3` 8α` ` 6α2
`

˘

trace pAq ´ λmin pAq
‰

, (4.3.13)

where pX,Y q ÞÑ L pX,Y q is defined in (4.3.4).

Proof. (i) Notice that tZkukě2 Ď D due to (4.3.11b). If we assume that X1 P D, then,
by induction arguments, Xk`1 P D, since it is a convex combination of Xk and Zk`1.
Consequently, ‖Xk‖F ď

a

trace pAq for any k ě 0. By the definition of Yk in (4.3.11a),
we have

‖Yk‖F ď p1` αkq ‖Xk‖F ` αk ‖Xk´1‖F ď p1` 2α`q
a

trace pAq @k ě 1.

(ii) Since tZkukě2 Ď D Ď BF

´

0;
a

trace pAq
¯

and tYkukě1 Ď BF

´

0; p1` 2α`q
a

trace pAq
¯

it follows from the definition of pX,Y q ÞÑ L pX,Y q in (4.3.4) that

L pZk`1, Ykq “ 2
´

‖Yk‖22 ´ λmin pAq
¯

` p‖Zk`1‖2 ` ‖Yk‖2q
2

“ 3 ‖Yk‖22 ` ‖Zk`1‖22 ` 2 ‖Zk`1‖2 ¨ ‖Yk‖2 ´ 2λmin pAq

ď

”

3 p1` 2α`q
2
` 1` 2 p1` 2α`q

ı

trace pAq ´ 2λmin pAq .

Remark 4.3.1. In the nonconvex setting, the boundedness of the sequence of iterates plays an
important role in the convergence analysis. As seen in Lemma 4.3.2 (i), the nature of Algorithm
4.3.1 ensures that Xk P D for every k ě 0, and thus the sequence tXkukě0 is bounded.

For readers’ convenience we denote the objective function of (4.3.1) by Ψ :“ E ` δD.

Lemma 4.3.3. Let tXkukě0 be the sequence generated by Algorithm 4.3.1. For every k ě 2 it
holds

Ψ pZk`1q`

ˆ

LF ´ pLF ` 2 ‖A‖2q γ
2

`
τ

2

˙

‖Xk`1 ´Xk‖2 ď Ψ pZkq`
τ

2
‖Xk ´Xk´1‖2 , (4.3.14)

where

γ :“ max

#

ˆ

1

ρ
´ 1

˙2

,

ˆ

1` α` ´
1

ρ

˙2
+

, (4.3.15a)

τ :“
LF p1´ ρq

ρ
` pLF ` 2 ‖A‖2q γ. (4.3.15b)
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Proof. Let k ě 2 be fixed. We first show that

Ψ pZk`1q `
LF
2
‖Zk`1 ´ Zk‖2F ď Ψ pZkq `

LF ` 2 ‖A‖2
2

‖Zk ´ Yk‖2F . (4.3.16)

The characterization of the projection (4.2.9) ensures that
B

Yk ´
1

LF
∇E pYkq ´ Zk`1, X ´ Zk`1

F

ď 0 @X P D. (4.3.17)

In view of (4.3.11b), it is clear that Zk P D, thus, setting X :“ Zk in (4.3.17) yields

0 ď x∇E pYkq , Zk ´ Zk`1y ` LF xZk`1 ´ Yk, Zk ´ Zk`1y

“ x∇E pYkq , Zk ´ Zk`1y ´
LF
2
‖Zk`1 ´ Yk‖2F ´

LF
2
‖Zk`1 ´ Zk‖2F `

LF
2
‖Zk ´ Yk‖2F .

(4.3.18)

The left-hand side inequality in (4.3.3) implies that

E pZkq ě E pYkq ` x∇E pYkq , Zk ´ Yky ´ ‖A‖2 ¨ ‖Yk ´ Zk‖
2
F , (4.3.19)

while the right-hand side inequality in (4.3.3) and (4.3.13) imply

E pZk`1q ď E pYkq ` x∇E pYkq , Zk`1 ´ Yky `
LF
2
‖Zk`1 ´ Yk‖2F . (4.3.20)

Summing up (4.3.18), (4.3.20) and (4.3.19), and noticing that δD pZk`1q “ δD pZkq “ 0, yield
(4.3.16).

Next we will study the term ‖Zk`1 ´ Zk‖2F in detail. From (4.3.12a) we have that

Zk`1 “
1

ρ
pXk`1 ´Xkq `Xk,

and
Zk “

1

ρ
pXk ´Xk´1q `Xk´1,

thus

Zk`1 ´ Zk “
1

ρ
pXk`1 ´Xkq `

ˆ

1´
1

ρ

˙

pXk ´Xk´1q . (4.3.21)

Then, by using identity (4.2.4), it holds

‖Zk`1 ´ Zk‖2F “
∥∥∥∥1

ρ
pXk`1 ´Xkq `

ˆ

1´
1

ρ

˙

pXk ´Xk´1q

∥∥∥∥2

F

“
1

ρ
‖Xk`1 ´Xk‖2F `

ˆ

1´
1

ρ

˙

‖Xk ´Xk´1‖2F

´
1

ρ

ˆ

1´
1

ρ

˙

‖pXk`1 ´Xkq ´ pXk ´Xk´1q‖2F

ě
1

ρ
‖Xk`1 ´Xk‖2F ´

ˆ

1

ρ
´ 1

˙

‖Xk ´Xk´1‖2F . (4.3.22)

Combining (4.3.11a) and (4.3.12b) gives us further

Zk ´ Yk “ Zk ´Xk ´ αk pXk ´Xk´1q “

ˆ

1

ρ
´ 1´ αk

˙

pXk ´Xk´1q . (4.3.23)
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By plugging (4.3.22) and (4.3.23) into (4.3.16), we get

Ψ pZk`1q `
LF
2ρ
‖Xk`1 ´Xk‖2F

“ Ψ pZk`1q `

ˆ

LF p1´ ρq

2ρ
`
LF
2

˙

‖Xk`1 ´Xk‖2F

ď Ψ pZkq `

˜

LF p1´ ρq

2ρ
`
LF ` 2 ‖A‖2

2

ˆ

1

ρ
´ 1´ αk

˙2
¸

‖Xk ´Xk´1‖2F

ď Ψ pZkq `

ˆ

LF p1´ ρq

2ρ
`
pLF ` 2 ‖A‖2q γ

2

˙

‖Xk ´Xk´1‖2F , (4.3.24)

which is nothing else than (4.3.14) with the constants τ and γ as defined in (4.3.15). Notice

that (4.3.24) is true since γ is an upper bound for
ˆ

1

ρ
´ 1´ αk

˙2

. Indeed, if
1

ρ
´ 1 ě αk, then

0 ď
1

ρ
´ 1´ αk ď

1

ρ
´ 1 ñ

ˆ

1

ρ
´ 1´ αk

˙2

ď

ˆ

1

ρ
´ 1

˙2

ď γ.

Otherwise, we have

0 ă 1` αk ´
1

ρ
ď 1` α` ´

1

ρ
ñ

ˆ

1

ρ
´ 1´ αk

˙2

ď

ˆ

1` α` ´
1

ρ

˙2

ď γ,

which leads to the desired statement.

The estimate above remains true if we replace Ψ by E . In fact, the indicator function was
artificially inserted in the decreasing property (4.3.14), as it will help us to prove the convergence
of the iterates later on. Now, with τ ě 0 introduced in (4.3.15b), we define the following function

Ψτ : Rnˆr ˆ Rnˆr Ñ RY t`8u , Ψτ pZ,Xq :“ Ψ pZq `
ρ2τ

2
‖Z ´X‖2F . (4.3.25)

The objective function Ψ of (4.3.1) is closely related to Ψτ in terms of their critical point.
Indeed, if τ “ 0, which is the case when ρ “ 1 and α` “ 0, then Ψτ pZ,Xq “ ΨpZq for any
pZ,Xq P Rnˆr ˆ Rnˆr, thus X˚ P critΨ if and only if pZ˚, X˚q P critΨτ for Z˚ P Rnˆr. On the
other hand, one can easily verify that for every τ ą 0 we have

X˚ P critΨ ô pX˚, X˚q P critΨτ . (4.3.26)

Remark 4.3.2. In the view of (4.3.11c), it holds Xk`1´Xk “ ρ pZk`1 ´Xkq for every k ě 1 .
Therefore, using the definition (4.3.25), the inequality (4.3.14) can be rewritten for any k ě 2
as

Ψτ pZk`1, Xkq ` C0 ‖Xk`1 ´Xk‖2F ď Ψτ pZk, Xk´1q , where C0 :“
LF ´ pLF ` 2 ‖A‖2q γ

2
.

(4.3.27)
We will show that C0 ą 0. It holds

LF ´ pLF ` 2 ‖A‖2q γ ą 0 ô

$

’

’

&

’

’

%

ˆ

1

ρ
´ 1

˙2

ă
LF

LF ` 2 ‖A‖2
,

ˆ

1` α` ´
1

ρ

˙2

ă
LF

LF ` 2 ‖A‖2
.

(4.3.28)

On the one hand, since 0 ă ρ ď 1, we have

0 ď
1

ρ
´ 1 ă

d

LF
LF ` 2 ‖A‖2

ô 1 ď
1

ρ
ă

a

LF ` 2 ‖A‖2 `
?
LF

a

LF ` 2 ‖A‖2
.
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This is further equivalent to
a

LF ` 2 ‖A‖2
a

LF ` 2 ‖A‖2 `
?
LF

ă ρ ď 1. (4.3.29)

On the other hand, by setting ξ :“
1

ρ
ą 0, the second inequality in (4.3.28) can be equivalently

expressed as

ξ2 ´ 2 p1` α`q ξ ` p1` α`q
2
´

LF
LF ` 2 ‖A‖2

ă 0. (4.3.30)

Its reduced discriminant reads

∆1 :“ p1` α`q
2
´

ˆ

p1` α`q
2
´

LF
LF ` 2 ‖A‖2

˙

“
LF

LF ` 2 ‖A‖2
ą 0.

Thus, the inequality (4.3.30) is equivalent to

1` α` ´

d

LF
LF ` 2 ‖A‖2

“
p1` α`q

a

LF ` 2 ‖A‖2 ´
?
LF

a

LF ` 2 ‖A‖2

ă ξ “
1

ρ
ă 1` α` `

d

LF
LF ` 2 ‖A‖2

“
p1` α`q

a

LF ` 2 ‖A‖2 `
?
LF

a

LF ` 2 ‖A‖2
,

which means
a

LF ` 2 ‖A‖2
p1` α`q

a

LF ` 2 ‖A‖2 `
?
LF

ă ρ ă

a

LF ` 2 ‖A‖2
p1` α`q

a

LF ` 2 ‖A‖2 ´
?
LF

. (4.3.31)

Combining (4.3.29) and (4.3.31), we observe further that
a

LF ` 2 ‖A‖2
p1` α`q

a

LF ` 2 ‖A‖2 `
?
LF

ď

a

LF ` 2 ‖A‖2
a

LF ` 2 ‖A‖2 `
?
LF

.

Thus, in view of (4.3.10), C0 ą 0.

A direct consequence of Lemma 4.3.3 follows.

Proposition 4.3.4. Let tXkukě0 be the sequence generated by Algorithm 4.3.1. The following
statements are true:

(i) the sequence tΨτ pZk, Xk´1qukě2 is monotonically decreasing and convergent;

(ii) Xk`1 ´Xk Ñ 0 as k Ñ `8, and so Xk`1 ´ Yk Ñ 0 and Zk`1 ´ Yk Ñ 0 as k Ñ `8.

Proof. Let k ě 2 be fixed. In view of (4.3.27) we have

Ψτ pZk`1, Xkq ` C0 ‖Xk`1 ´Xk‖2 ď Ψτ pZk, Xk´1q .

It is clear that the sequence tΨ pZk, Xk´1qukě2 is monotonically decreasing and, since it is
nonnegative, is convergent. The fact that C0 ą 0 and telescoping arguments (see, for instance,
[24, Lemma 5.31]) give

ř

kě1 ‖Xk`1 ´Xk‖2 ă `8, thus Xk`1´Xk Ñ 0 as k Ñ `8. By taking
into consideration (4.3.21), we deduce that Zk`1´Zk Ñ 0 as k Ñ `8. Using further (4.3.12a)
and (4.3.11a), we have Zk`1 ´ Yk Ñ 0 as k Ñ `8, and the proof is completed.

Now we show that every cluster point of tXkukě0 is a critical point of Ψ.

56



Theorem 4.3.5. Let tXkukě0 be the sequence generated by Algorithm 4.3.1. Then every cluster
point of tXkukě0 is a critical point of Ψ.

Proof. Let sX be a cluster point of tXkukě0, which means that there exists a subsequence
tXkiuiě1 such that Xki Ñ

sX as iÑ `8. We deduce further that Zki Ñ sX as iÑ `8, due to
(4.3.12b). By the characterization of the projection (2.1.2) and (4.3.11b), we get that for every
i ě 1

Wki :“ Yki´1 ´ Zki ´
1

LF
∇E pYki´1q P ND pZkiq .

From here,

LFWki “ LF pYki´1 ´ Zkiq `∇E pZkiq ´∇E pYki´1q ´∇E pZkiq P ND pZkiq @i ě 1.

By passing to limit as iÑ `8, and by taking into consideration the continuity of ∇E and the
fact that Zk`1 ´ Yk Ñ 0 as k Ñ `8 (see Proposition 4.3.4 (ii)), we get

LFWki Ñ ´∇E
`

sX
˘

.

The closedness of the graph of the normal cone gives ´∇E
`

sX
˘

P ND
`

sX
˘

. In other words,
sX P critΨ.

4.3.3 Global convergence thanks to the  Lojasiewicz property

In this subsection we will prove that actually the whole sequence of iterates tXkukě0 generated
by Algorithm 4.3.1 converges to a critical point of the objective function Ψ and even establish
its rate of convergence. To this end we will use that the regularized objective function Ψτ

fulfills the  Lojasiewicz property (see [103]), since it is a semialgebraic function (see [5, Example
1], [33]).

If Ω is a connected and compact subset of critΨτ , then, according to Lemma 2.3.1, Ψτ fulfills
the uniform  Lojasiewicz property, which means that there exist (global constants) C, ε ą 0 and
θ P r0, 1q such that for all p sZ, sXq P Ω∣∣Ψτ pZ,Xq ´Ψτ

`

sZ, sX
˘∣∣θ ď C ¨ dist p0, BΨτ pZ,Xqq

@pZ,Xq P Rnˆr ˆ Rnˆr with dist ppZ,Xq,Ωq ă ε.

Next we will see that, for Ω :“ Ω
`

tpZk, Xk´1qukě2

˘

the set of cluster points of the sequence
tpZk, Xk´1qukě2, we actually are in the setting of the uniform  Lojasiewicz property. Notice that
Ω ‰ H thanks to the boundedness of the sequences tXkukě0 and tZkukě2.

Lemma 4.3.6. Let tXkukě0 be the sequence generated by Algorithm 4.3.1. The following state-
ments are true:

(i) Ω Ď critΨτ “ tpX˚, X˚q P Rnˆr ˆ Rnˆr : X˚ P critΨu;

(ii) it holds lim
kÑ`8

dist rpZk, Xk´1q ,Ωs “ 0;

(iii) the set Ω is nonempty, connected and compact;

(iv) the function Ψτ takes on Ω the value Ψ˚ :“ lim
kÑ`8

Ψτ pZk, Xk´1q.

Proof. The item (i) follows from Theorem 4.3.5 and (4.3.26). The proof of (ii) - (iii) follows
in the lines of [36, Theorem 5 (ii)-(iii)], by taking into consideration [36, Remark 5], according
to which the properties in (ii) - (iii) are generic for sequences satisfying Zk ´ Zk´1 Ñ 0 and
Xk ´Xk´1 Ñ 0 as k Ñ `8, which is indeed our case due to Proposition 4.3.4 (ii).
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Finally, to prove (iv), we consider an arbitrary element
`

sX, sX
˘

in Ω, that is, there exists a
subsequence pZki , Xki´1q Ñ

`

sX, sX
˘

as iÑ `8. It holds sX P D and

lim
iÑ`8

Ψτ pZki , Xki´1q “ Ψτ

`

sX, sX
˘

.

As a consequence, since tΨ pZk, Xk´1qukě2 converges due to Proposition 4.3.4 (i), it follows
that Ψτ is a constant on Ω, namely, Ψτ

`

sX, sX
˘

“ Ψ˚ “ lim
kÑ`8

Ψτ pZk, Xk´1q for every
`

sX, sX
˘

P

Ω.

As a last preparatory step we derive an upper bound for a subgradient of Ψτ .

Lemma 4.3.7. Let tXkukě0 be a sequence generated by Algorithm 4.3.1. For any k ě 2 we
have

Vk :“
`

V 1k, V
2
k

˘

P BΨτ pZk, Xk´1q , (4.3.32)

where

V 1k :“ LF pYk´1 ´ Zkq `∇E pZkq ´∇E
`

Yk´1

˘

` ρ2τ pZk ´Xk´1q

V 2k :“ ´ρ2τ pZk ´Xk´1q .

In addition,

‖Vk‖F ď C1 ‖Xk ´Xk´1‖F ` C2 ‖Xk´1 ´Xk´2‖F @k ě 2, (4.3.33)

where

LE :“ 2
`

‖A‖2 `
`

3` 6α` ` 4α2
`

˘

trace pAq
˘

,

C1 :“
LF ` LE ` 2ρ2τ

ρ
ą 0,

C2 :“ pLF ` LEqα` ě 0.

Proof. Let k ě 2 be fixed. The calculus rules of the limiting subdifferential give for every
pZ,Xq P Rnˆr ˆ Rnˆr

BZΨτ pZ,Xq “ BΨ pZq ` ρ
2τ pZ ´Xq “ ∇E pZq `ND pZq ` ρ

2τ pZ ´Xq

∇XΨτ pZ,Xq “ ´ρ
2τ pZ ´Xq .

By the characterization of the projection (2.1.2) and (4.3.11b), we have

Wk :“ Yk´1 ´ Zk ´
1

LF
∇E pYk´1q P ND pZkq .

From this we deduce

LFWk “ LF pYk´1 ´ Zkq `∇E pZkq ´∇E pYk´1q P ∇E pZkq `ND pZkq ,

which proves (4.3.32).
Further, we observe that

‖∇E pZkq ´∇E pYk´1q‖F “ 2
∥∥`A´ ZkZTk ˘Zk ´ `

A´ Yk´1Y
T
k´1

˘

Yk´1

∥∥
F

ď 2 ‖A‖2 ‖Zk ´ Yk´1‖F ` 2
∥∥ZkZTk Zk ´ Yk´1Y

T
k´1Yk´1

∥∥
F

ď 2 ‖A‖2 ‖Zk ´ Yk´1‖F ` 2
∥∥ZkZTk ∥∥2

‖Zk ´ Yk´1‖F
` 2 ‖Zk‖2 ‖Yk´1‖2 ‖Zk ´ Yk´1‖F ` 2

∥∥Yk´1Y
T
k´1

∥∥
2
‖Zk ´ Yk´1‖F

ď 2
`

‖A‖2 `
`

3` 6α` ` 4α2
`

˘

trace pAq
˘

‖Zk ´ Yk´1‖F
“ LE ‖Zk ´ Yk´1‖F ,
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where the last inequality follows from (4.2.3b) - (4.2.3c) and the fact that tZkukě1 Ď D Ď

B
´

0;
a

trace pAq
¯

and tYkukě0 Ď B
´

0; p1` α`q
a

trace pAq
¯

(see Lemma 4.3.2). From here we
derive the following estimate which holds for all k ě 2

‖Vk‖F “
b∥∥V 1k∥∥2

F `
∥∥V 2k ∥∥2

F ď
∥∥V 1k∥∥F ` ∥∥V 2k ∥∥F

“
∥∥LF pYk´1 ´ Zkq `∇E pZkq ´∇E pYk´1q ` ρ

2τ pZk ´Xk´1q
∥∥
F ` ρ

2τ ‖Zk ´Xk´1‖F
ď LF ‖Zk ´ Yk´1‖F ` ‖∇E pZkq ´∇E pYk´1q‖F ` 2ρ2τ ‖Zk ´Xk´1‖F
“ pLF ` LEq ‖Zk ´ Yk´1‖F ` 2ρ2τ ‖Zk ´Xk´1‖F
ď

`

LF ` LE ` 2ρ2τ
˘

‖Zk ´Xk´1‖F ` pLF ` LEqαk ‖Xk´1 ´Xk´2‖F

ď
LF ` LE ` 2ρ2τ

ρ
‖Xk ´Xk´1‖F ` pLF ` LEqα` ‖Xk´1 ´Xk´2‖F ,

which yields the inequality (4.3.33).

We are now in the position to prove the convergence of the whole sequence generated by
Algorithm 4.3.1. To simplify the notation, let us define for every k ě 2

ζk :“ Ψτ pZk, Xk´1q ´Ψ˚, (4.3.34)

where Ψ˚ “ lim
kÑ`8

Ψτ pZk, Xk´1q. According to Proposition 4.3.4 (i), the sequence tζkukě0

converges monotonically decreasing to 0.

Theorem 4.3.8. Let tXkukě0 be the sequence generated by Algorithm 4.3.1. The sequence
tXkukě0 converges to a critical point of Ψ.

Proof. Let
`

sX, sX
˘

P Ω. Then, according to Lemma 4.3.6 (iv), Ψτ

`

sX, sX
˘

“ Ψ˚ and, for every
k ě 2, we have Ψτ pZk, Xk´1q ´Ψτ

`

sX, sX
˘

“ ζk. We will show that tXkukě0 has finite length,
namely,

ÿ

kě0

‖Xk`1 ´Xk‖F ă `8. (4.3.35)

Form here it will follow that tXkukě0 is a Cauchy sequence, thus it converges to some X˚,
which, according to Theorem 4.3.5, will be a critical point of (4.3.1).

In order to prove (4.3.35) we will consider two cases:

Case 1. There exists an integer k1 ě 2 such that ζk “ 0 ô Ψτ pZk1 , Xk1´1q “ Ψ˚. The mono-
tonicity of tζkukě0 implies that ζk “ 0 for all k ě k1 and, further, in view of (4.3.27) and
(4.3.10), that Xk`1 ´Xk “ 0 for all k ě k1. Hence

ÿ

kě0

‖Xk`1 ´Xk‖F “
k1´1
ÿ

k“0

‖Xk`1 ´Xk‖F ă `8.

Case 2. It holds ζk ą 0 for every k ě 2. As Ψτ fulfills the uniform  Lojasiewicz property, there
exist C, ε ą 0 and θ P r0, 1q such that∣∣Ψτ pZ,Xq ´Ψτ

`

sX, sX
˘∣∣θ ď C ¨ dist p0, BΨτ pZ,Xqq (4.3.36)

for all pZ,Xq P RnˆrˆRnˆr with dist rpZ,Xq ,Ωs ă ε. Since lim
kÑ`8

dist rpZk, Xk´1q ,Ωs “ 0

(see Lemma 4.3.6 (ii)), there exists an interger k2 ě 2 such that

dist rpZk, Xk´1q ,Ωs ă ε @k ě k2. (4.3.37)
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Combining (4.3.36) and (4.3.37), we deduce that for every k ě k2 it holds∣∣Ψτ pZk, Xk´1q ´Ψτ

`

sX, sX
˘∣∣θ “ |ζk|θ ď C ¨ dist p0, BΨτ pZk, Xk´1qq

ď C ‖Vk‖F
ď C ¨ C1 ‖Xk ´Xk´1‖F ` C ¨ C2 ‖Xk´1 ´Xk´2‖F ,

(4.3.38)

where the last two inequalities follow from Lemma 4.3.7. For the given exponent θ P r0, 1q,
we define

ϕ : R` Ñ R, s ÞÑ s1´θ, (4.3.39)

which is a nondecreasing function as ϕ1 psq “
s´θ

1´ θ
ą 0. The concavity of ϕ gives, by

taking into consideration (4.3.27), for all k ě 2

ϕ pζkq ´ ϕ pζk`1q ě ϕ1 pζkq ¨ pζk ´ ζk`1q

“
pζkq

´θ

1´ θ
pΨτ pZk, Xk´1q ´Ψτ pZk`1, Xkqq

ě
pζkq

´θ

1´ θ
¨ C0 ‖Xk`1 ´Xk‖2F .

From here we get that for every k ě k2

‖Xk`1 ´Xk‖F ď
c

1´ θ

C0
pζkq

θ
pϕ pζkq ´ ϕ pζk`1qq

ď
1

2C ¨ pC1 ` C2q
pζkq

θ
`
p1´ θqC ¨ pC1 ` C2q

2C0
pϕ pζkq ´ ϕ pζk`1qq

ď
C1

2 pC1 ` C2q
‖Xk ´Xk´1‖F `

C2

2 pC1 ` C2q
‖Xk´1 ´Xk´2‖F

`
p1´ θqC ¨ pC1 ` C2q

2C0
pϕ pζkq ´ ϕ pζk`1qq . (4.3.40)

By setting for every k ě k2

ak :“ ‖Xk ´Xk´1‖F ,
dk :“ C3 pϕ pζkq ´ ϕ pζk`1qq ,

C3 :“
p1´ θqC ¨ pC1 ` C2q

2C0
,

the inequality (4.3.40) becomes

ak`1 ď χ0ak ` χ1ak´1 ` dk,

with
χ0 :“

C1

2 pC1 ` C2q
P p0, 1q and χ1 :“

C2

2 pC1 ` C2q
P r0, 1q .

Since χ0 ` χ1 “
1

2
ă 1, by Lemma 2.4.4 we obtain that

ř

kěk2
‖Xk ´Xk´1‖F ă `8.

This leads to (4.3.35) and the proof is completed.

We will close this section by discussing the rates of convergence of the projected gradient
algorithm with relaxation and inertial parameters. The nature of the rates is determined by
the  Lojasiewicz exponent θ, which we cannot calculate exactly. This is why we will cover in our
statements all possible situations. Some discussions about the values the  Lojasiewicz exponent
take will be made in the last section of the chapter in the context of some numerical experiments.

We will show that the sequence tζkukě0 defined in (4.3.34) satisfies the recursion inequality
(2.4.9) in Lemma 2.4.5.
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Lemma 4.3.9. Let tXkukě0 be the sequence generated by Algorithm 4.3.1 and tζkukě2 the
sequence defined in (4.3.34). Then there exists k3 ě 2 such that for any k ě k3

ζk´2 ´ ζk ě C4 ¨ ζ
2θ
k , where C4 :“

C0

2 pC ¨ C1q
2 ą 0.

Proof. From (4.3.27) we get for any k ě 4

ζk´2 ´ ζk “ Ψτ pZk´2, Xk´3q ´Ψτ pZk´1, Xk´2q `Ψτ pZk´1, Xk´2q ´Ψτ pZk, Xk´1q

ě C0 ‖Xk´1 ´Xk´2‖2F ` C0 ‖Xk ´Xk´1‖2F

ě
C0

2
p‖Xk ´Xk´1‖F ` ‖Xk´1 ´Xk´2‖F q

2

ě
C0

2C2
1

pC1 ‖Xk ´Xk´1‖F ` C2 ‖Xk´1 ´Xk´2‖F q
2 (4.3.41)

ě
C0

2C2
1

‖Vk‖2F , (4.3.42)

where Vk P BΨτ pZk, Xk´1q is the element defined in Lemma 4.3.7 and(4.3.41) holds true by
taking into account further that 0 ď ρα` ď 1, hence

C1 “
LF ` LE ` 2ρ2τ

ρ
ě
LF ` LE

ρ
ě pLF ` LEqα` “ C2.

By the same argument as in the proof of Theorem 4.3.8, if we take k3 :“ k2 ě 2 for which
(4.3.37) holds, then according to (4.3.36) the following inequality holds for every k ě k3

|Ψτ pZk, Xk´1q ´Ψ˚|θ “ ζθk ď C ¨ dist p0, BΨτ pZk, Xk´1qq ď C ‖Vk‖F .

The desired statement is a combination of this estimate and (4.3.42).

In order to transfer the convergence rates from tζkukě0 to the sequence tXkukě0, we will
need the following lemma.

Lemma 4.3.10. Let tXkukě0 be the sequence generated by Algorithm 4.3.1 and tζkukě2 the
sequence defined in (4.3.34). Let X˚ be the critical point of (4.3.1) to which the sequence
tXkukě0 converges as k Ñ `8 and ϕ : R` Ñ R, ϕpsq “ s1´θ. Then there exists k3 ě 2 such
that for any k ě k3

‖Xk ´X˚‖F ď C5 max
!

a

ζk, ϕ pζkq
)

, where C5 :“
4
?
C0
` 2C3 ą 0. (4.3.43)

Proof. By using the same arguments as in the proof of Theorem 4.3.8, there exists k3 ě 2 such
that for any k ě k3 the following inequality is true

‖Xk`1 ´Xk‖F ď
C1

2 pC1 ` C2q
‖Xk ´Xk´1‖F `

C2

2 pC1 ` C2q
‖Xk´1 ´Xk´2‖F

` C3 pϕ pζkq ´ ϕ pζk`1qq . (4.3.44)

Let k ě k3 be fixed. By an induction argument one can prove that

‖Xk ´X˚‖F ď ‖Xk`1 ´X˚‖F ` ‖Xk`1 ´Xk‖F ď ¨ ¨ ¨ ď
ÿ

iěk

‖Xi`1 ´Xi‖F . (4.3.45)

For any K ě k ` 2 ě k3, by summing up (4.3.44) for i “ k ` 2, ¨ ¨ ¨ ,K, we get

K
ÿ

i“k`2

‖Xi`1 ´Xi‖F ď
C1

2 pC1 ` C2q

K
ÿ

i“k`2

‖Xi ´Xi´1‖F `
C2

2 pC1 ` C2q

K
ÿ

i“k`2

‖Xi´1 ´Xi´2‖F

` C3

K
ÿ

i“k`2

pϕ pζiq ´ ϕ pζi`1qq . (4.3.46)
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Notice that

K
ÿ

i“k`2

‖Xi`1 ´Xi‖F “
K
ÿ

i“k

‖Xi`1 ´Xi‖F ´ ‖Xk`2 ´Xk`1‖F ´ ‖Xk`1 ´Xk‖F , (4.3.47a)

K
ÿ

i“k`2

‖Xi ´Xi´1‖F “
K´1
ÿ

i“k`1

‖Xi`1 ´Xi‖F

“

K
ÿ

i“k

‖Xi`1 ´Xi‖F ´ ‖Xk`1 ´Xk‖F ´ ‖XK`1 ´XK‖F , (4.3.47b)

K
ÿ

i“k`2

‖Xi´1 ´Xi´2‖F “
K´2
ÿ

i“k

‖Xi`1 ´Xi‖F ,

“

K
ÿ

i“k

‖Xi`1 ´Xi‖F ´ ‖XK ´XK´1‖F ´ ‖XK`1 ´XK‖F . (4.3.47c)

Plugging these relations into (4.3.46), neglecting the last two negative terms in (4.3.47b) and
(4.3.47c), we get

K
ÿ

i“k

‖Xi`1 ´Xi‖F ď
C1

2 pC1 ` C2q

K
ÿ

i“k`1

‖Xi ´Xi´1‖F `
C2

2 pC1 ` C2q

K
ÿ

i“k`1

‖Xi´1 ´Xi´2‖F

` ‖Xk`2 ´Xk`1‖F ` ‖Xk`1 ´Xk‖F ` C3

K
ÿ

i“k`1

pϕ pζiq ´ ϕ pζi`1qq

ď
1

2

K
ÿ

i“k

‖Xi`1 ´Xi‖F `‖Xk`2 ´Xk`1‖F `‖Xk`1 ´Xk‖F

` C3 pϕ pζk`1q ´ ϕ pζK`1qq .

Thanks to (4.3.27) we can deduce that

K
ÿ

i“k

‖Xi`1 ´Xi‖F ď 2 ‖Xk`2 ´Xk`1‖F ` 2 ‖Xk`1 ´Xk‖F ` 2C3 pϕ pζk`1q ´ ϕ pζK`1qq

ď
2
?
C0

a

ζk`1 ´ ζk`2 `
2
?
C0

a

ζk ´ ζk`1 ` 2C3 pϕ pζk`1q ´ ϕ pζK`1qq

ď
2
?
C0

a

ζk`1 `
2
?
C0

a

ζk ` 2C3ϕ pζk`1q . (4.3.48)

The fact that tζkukě0 is monotonically decreasing implies
a

ζk`1 ď
?
ζk and ϕ pζk`1q ď ϕ pζkq.

By passing K Ñ `8 in (4.3.48) and by using (4.3.45), we get the desired statement.

We can now formulate the rates of convergence for the sequences of objective function values
and iterates.

Theorem 4.3.11. Let tXkukě0 be the sequence generated by Algorithm 4.3.1 and tζkukě2 the
sequence defined in (4.3.34). Let X˚ be the critical point of (4.3.1) to which the sequence
tXkukě0 converges as k Ñ `8. Then there exists k4 ě 2 such that the following statements are
true:

(i) if θ “ 0, then tζkukě2 and tXkukě0 converge in finite time;

(ii) if θ P p0, 1{2s, then there exist C 11, C
1
2 ą 0 and Q1, Q2 P r0, 1q such that for any k ě k4

0 ď E pZkq ´Ψ˚ ď C 11Q
k
1 and ‖Xk ´X˚‖F ď C 12Q

k
2;
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(iii) if θ P p1{2, 1q, then there exist C 13, C
1
4 ą 0 such that for any k ě k4 ` 2

0 ď E pZkq ´Ψ˚ ď C 13 pk ´ 1q´
1

2θ´1 and ‖Xk ´X˚‖F ď C 14 pk ´ 1q´
1´θ
2θ´1 .

Proof. Let k3 ě 2 be the index provided by previous lemma with the property that (4.3.43)
holds for any k ě k3. Since tζkukě0 converges to 0, there exists k4 ě k3 such that for any k ě k4

‖Xk ´X˚‖F ď C5 max
!

a

ζk, ϕ pζkq
)

, (4.3.49)

ζk ď 1. (4.3.50)

(i) If θ “ 0, then tζkukě1 converges in finite time. By similar arguments as in the proof of
Theorem 4.3.8, we get that the sequence tXkukě0 becomes identical to X˚ starting from
a given index. In other words, the sequence tXkukě0 converges in finite time, too.

(ii) If θ P p0, 1{2s, then, according to Lemma 2.4.5 (ii), there exist C 11 ą 0 and Q1 P r0, 1q such
that for any k ě k4

0 ď E pZkq ´Ψ˚ ď ζk ď C 11Q
k
1.

Moreover, as 1´ 2θ ě 0, due to (4.3.50) it holds

ζ
1´2θ

2
k “ ζ

1
2
´θ

k ď 1 ô ζ1´θ
k ď

a

ζk.

Consequently, Lemma 4.3.10 implies that

‖Xk ´X˚‖F ď C5

a

ζk ď C5

b

C 11

´

a

Q1

¯k
@k ě k4,

which is nothing else than the second inequality of (ii) with C 12 :“ C5

a

C 11 ą 0 and
Q2 :“

?
Q1 P p0, 1q.

(iii) If θ P p1{2, 1q, then we can use Lemma 2.4.5 (iii) to ensure that there exist C 13 ą 0 such
that for any k ě k4

0 ď E pZkq ´Ψ˚ ď ζk ď C 13 pk ´ 1q´
1

2θ´1 .

Since 2θ ´ 1 ą 0 and ζk ď 1 due to (4.3.50), we have

ζ
2θ´1

2
k “ ζ

θ´ 1
2

k ď 1 ô
a

ζk ď ζ1´θ
k .

Then the second statement follows from (4.3.49) with C 14 :“ C5C
1´θ
3 ą 0.

4.4 Particular instances and numerical experiments

4.4.1 Some particular instances of Algorithm 4.3.1

In the following we will discuss some particular instances of Algorithm 4.3.1. To this aim we
will use again the notation LF pα`q, which will allow us to better underline the dependence of
the step size from the inertial parameters.

Example 4.4.1. Choosing αk “ 0 for all k ě 1, Algorithm 4.3.1 reduces to the relaxed projected
gradient algorithm

Zk`1 :“ PrD

ˆ

Xk ´
1

LF p0q
∇E pXkq

˙

,

Xk`1 :“ p1´ ρqXk ` ρZk`1.
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In this case, α` “ 0 and condition (4.3.10) becomes
a

LF p0q ` 2 ‖A‖2
a

LF p0q ` 2 ‖A‖2 `
a

LF p0q
“

a

3trace pAq ` ‖A‖2 ´ λmin pAq
a

3trace pAq ` ‖A‖2 ´ λmin pAq `
a

3trace pAq ´ λmin pAq

ă ρ ď 1 ă

a

LF p0q ` 2 ‖A‖2
a

LF p0q ` 2 ‖A‖2 ´
a

LF p0q
. (4.4.1)

Notice that, according to (4.4.1), the the choice ρ “ 1 is allowed, which leads to the classical
projected gradient algorithm.

Example 4.4.2. For ρ “ 1, Algorithm 4.3.1 reduces to the inertial projected gradient algorithm

Yk :“ Xk ` αk pXk ´Xk´1q ,

Xk`1 :“ PrD

ˆ

Yk ´
1

LF pα`q
∇E pYkq

˙

.

In the nonconvex setting, algorithms with inertial effects proved to be helpful to detect critical
points of minimization problems which cannot be found by their non-inertial variants (see, for
instance, [51, 94]). For constant inertial parameters αk “ α` P r0, 1s for any k ě 1, condition
(4.3.10) is equivalent to

1 ă

a

LF pα`q ` 2 ‖A‖2
p1` α`q

a

LF pα`q ` 2 ‖A‖2 ´
a

LF pα`q

and further to

0 ď α` ă

d

LF pα`q

LF pα`q ` 2 ‖A‖2
. (4.4.2)

Condition (4.4.2) is in implicit form, however, one can show that it is satisfied for every 0 ă α` ď
0.967. In order to find a larger α`, which fulfills (4.4.2), one can use a bisection routine starting
from 0.967, as we did in our numerical experiments and will explain in the next subsection.

In order to see that for every 0 ă α` ď 0.967 the inequality (4.4.2) always holds true, one
can rewrite (4.4.2) equivalently as

α2
`

`

‖A‖2 `
`

3` 8α` ` 6α2
`

˘

trace pAq ´ λmin pAq
˘

ď
`

3` 8α` ` 6α2
`

˘

trace pAq ´ λmin pAq .
(4.4.3)

Relation (4.4.3) is definitively fulfilled if

w pα`q ď 0,

where

w pξq :“ 6trace pAq ξ4 ` 8trace pAq ξ3 ´ pλmin pAq ` 2trace pAqq ξ2

´ 8ξtrace pAq ´ 3trace pAq ´ λmin pAq .

We have

w pα`q ď trace pAqφ pα`q ´ λmin pAqα
2
` ´ λmin pAq ď trace pAqφ pα`q ,

where

φ pξq :“ 6ξ4 ` 8ξ3 ´ 2ξ2 ´ 8ξ ´ 3,

and this is why we will solve a more restricted yet easier inequality φ pξq ď 0 instead of (4.4.3).
The derivative of φ reads

φ1 pξq “ 24ξ3 ` 24ξ2 ´ 4ξ ´ 8
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and has exactly one root

ν “
1

18

3

b

594´ 54
?

67`
1

6
3

c

2
´

11`
?

67
¯

´
1

3
« 0.5253.

Since φ1 p0q “ ´8 ă 0 and φ1 p1q “ 36 ą 0, we have that φ is decreasing on p0, νq and increasing
on pν, 1q. Moreover, as φ p0.967q “ ´0.00458574 ă 0, φ p0q “ ´3 ă 0 and φ p1q “ 1 ą 0, we
can conclude that φ pξq ă 0 for every ξ P r0, 0.967s, which implies that (4.4.3) is fulfilled as a
strict inequality for every α` P r0, 0.967s as well. Since in the above approach we weakened
(4.4.3) in order to simplify the computations, one cannot expect 0.967 to be the largest value
for which this inequality is fulfilled. However, we will use in our numerical experiments 0.0967
as the starting point for a bisection procedure aimed to find larger values of α` which fulfill
(4.4.3).

Example 4.4.3. An interesting choice of the variable inertial parameters tαkukě1 in the context
of the inertial projected gradient algorithm discussed in Example 4.4.2 is

αk :“ κ ¨
tk ´ 1

tk`1
, where

$

’

&

’

%

t1 :“ 1

tk`1 :“
1`

b

1` 4t2k

2

@k ě 1. (4.4.4)

Notice that, for κ :“ 1, this is exactly the update rule of the celebrated Nesterov/FISTA algo-
rithm [110, 28]. This iterative scheme have attracted the interest of the optimization community
and of many practitioners due to the fact that, in the convex setting, it improves for the se-
quence of objective function values the convergence rate over the one of the standard non-inertial
method. In the nonconvex setting, no theoretical results, which emphasize an improvement in
the convergence behaviour through this update rule, have been obtained so far, however, some
empirical studies suggest that this might be the case (see, for instance, [115]).

Since α` “ sup
kě0

αk “ κ, one can find κ such that (4.3.10) holds by solving (see (4.4.2))

0 ď κ ă

d

LF pκq

LF pκq ` 2 ‖A‖2
. (4.4.5)

If one wants to choose larger values for κ, for instance to take κ close to 1, a restart mechanism
can be adapted into the scheme (4.4.4), like, for example, in [112].

Example 4.4.4. If we set, again in the context of the inertial projected gradient algorithm,

αk :“
κk

k ` 3
@k ě 1, where κ P p0, 1q ,

then it holds α` “ κ. This is a setting considered by László in [94] for the inertial gradient
algorithm, which is the scheme in Example 4.4.2 without the projection step. Our algorithm can
be considered as an extension of the one in [94]. To guarantee convergence, in [94] is required
that the step size fulfills

0 ă µ ă
2 p1´ κq

LF
,

where LF denotes the Lipschitz constant of the gradient of the objective function. This condition
excludes the case κ “ 1 and allows µ “ 1{LF as stepsize when κ “ 1{2. In our setting, we can
have larger values of κ in combination with the stepsize 1{LF , namely, those for which (4.4.5)
is fulfilled (see also the discussion at the end of Example 4.4.2).
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Example 4.4.5. Other than for the classical inertial algorithms for convex optimization prob-
lems and monotone inclusions, for which the inertial parameters were not allowed to take values
greater than 1{3, the interplay between relaxation and inertia gives us much more freedom when
it comes to the choice of the latter. We have seen that as far as α` satisfies (4.4.2) we can
choose ρ “ 1. For α` close to 1 such that (4.4.2) is not satisfied, in other words

d

LF pα`q

LF pα`q ` 2 ‖A‖2
ď α`,

we can take

0 ă

a

LF pα`q ` 2 ‖A‖2
a

LF pα`q ` 2 ‖A‖2 `
a

LF pα`q
ă ρ ă

a

LF pα`q ` 2 ‖A‖2
p1` α`q

a

LF pα`q ` 2 ‖A‖2 ´
a

LF pα`q
ă 1.

(4.4.6)
This applies also for the case when αk “ 1 for any k ě 1, and thus α` “ 1, for which Algorithm
4.3.1 becomes

Zk`1 :“ PrD

ˆ

2Xk ´Xk´1 ´
1

LF p1q
∇E p2Xk ´Xk´1q

˙

,

Xk`1 :“ p1´ ρqXk ` ρZk`1.

As we will see in the numerical results, the strategy of choosing α` close to 1 and ρ according
to (4.4.6) yields to the best performances of the algorithm.

4.4.2 Numerical experiments

The aim of the numerical experiments we will present in this subsection is twofold: to compare
the performances of our algorithm with those of other numerical methods for the nonnegative
factorization of completely positive matrices, as are (4.2.16) and (4.2.17) from [87] and [66],
respectively, and to show in which way and to which extent the algorithm parameters influence
these performances.

A particular attention will be paid to the nonnegative factorization of matrices not belonging
to the interior of CPn, for which the algorithms in [87, 66] perform rather poor.

Number of runs and starting points. In every numerical experiment, for A P Rnˆn
with n ă 100, we run Algorithm 4.3.1 100 times for 100 randomly chosen initial matrices in D
(for instance, by chosing a random matrix in Rnˆr and then by using the projection formula
(4.3.2)), and run the algorithms (4.2.16) and (4.2.17) also 100 times for 100 randomly chosen
initial matrices in Or (for instance, by chosing a random matrix in Rrˆr and by computing a
SVD decomposition); if n ě 100, then we do this for each of the algorithms 10 times.

As noticed in Section 4.2.3, the algorithm (4.2.16) and (4.2.17) require, in addition, a matrix
B, which we compute by the Cholesky decomposition. If the Cholesky decomposition fails, then
we use the eigenvalue decomposition. Here we follow the approach described in [87, Section 3],
see also [66, Section 6].

Parameter choice. We will choose the constant α`, which will then determine the sequence
of inertial parameters tαkukě1, with two different aims:

‚ by running a simple bisection routine which starts at 0.967 in order to find greater values
for α` that satisfy (4.4.2), namely,

0 ď α` ă

d

LF pα`q

LF pα`q ` 2 ‖A‖2
.

Instead of using the midpoint rule, we will use as update rule for the bisection routine
α` :“ p3α` ` 1q {4, which seemingly gives better results. We will then choose α` :“ pα`,
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which is the last value at which (4.4.2) holds. As seen in the previous subsection, as long
as (4.4.2) is fulfilled, we can and do choose ρ “ 1.

‚ by taking pα1 :“ p3pα` ` 1q {4, pα2 :“ ppα` ` 1q {2, and pα3 :“ ppα` ` 3q {4, which, when
pα` is obtained as above, all violate (4.4.2). The corresponding relaxation parameters
will be denoted by ρ ppα1q, ρ ppα2q and ρ ppα3q, respectively, and chosen to satisfy (4.4.6).
Another value of α` which violates (4.4.2) is 1, which we will also use in the experiments
in combination with a relaxation parameter ρp1q fulfilling (4.4.6) as well.

Stopping criteria. For A P Rnˆn, we will run each of the algorithms at most 10000
iterations if n ă 100 and 50000 otherwise. We count the algorithms (4.2.16) and (4.2.17) as
“success” if the stopping criterion

mintpBQkqi,ju ě ´Tolfea

is reached before the maximal number of iterations is attained. This is nothing else than the
stopping criterion used in [87, 66]. For (4.2.17), we will set Tolval :“ 10´16 if the matrix A
belongs to int pCPnq, and Tolval :“ 10´7 otherwise. For (4.2.16) we will take as threshold
10 ˆ Tolfea. On the other hand, for all instances of Algorithm 4.3.1 we will use as stopping
criterion the relative error condition∥∥A´XkX

T
k

∥∥2

F
‖A‖2F

ă Tolval.

Also here, we will set Tolval :“ 10´16 if A belongs to int pCPnq, and Tolval :“ 10´7 otherwise.
Tables. In the tables with numerical results, we report the (rounded) successful rate over

the total number of trials (Rate), the average CPU time in seconds for both successful (Time
(s)) and failed (Time (f)) trials, and the average number of iterations (Iter.) needed to reach
the stopping criteria for the successful trials. We also use boldfaces to highlight the best results
among all methods that have successful rate 1.

Plots. We plot for some particular instances the sequences of function values tE pZkq ´
Eminukě2 and of distances t1

2 ‖Xk ´Xsol‖2Fukě0 in logarithmic scale, where Emin denotes the
smallest objective function value over all methods and Xsol is the last iterate Xk for each
method. With the plots we want to emphasize that the sequences of both function values and
iterates have linear rates of convergence.

Algorithms. We summarize here the different variants of Algorithm 4.3.1 with correspond-
ing parameter choices we will use in the numerical experiments:

(i) PG: the classical projected gradient algorithm formulated in Example 4.4.1 in case ρ “ 1;

(ii) FISTA: the FISTA/Nesterov algorithm from [110, 28];

(iii) IPG-const: the inertial projected gradient algorithm formulated in Example 4.4.2 (for
ρ “ 1) with constant inertial parameters αk “ α` for any k ě 1 and pα` chosen to satisfy
(4.4.2);

(iv) IPG-sFISTA: the inertial projected gradient algorithm formulated in Example 4.4.3 (for
ρ “ 1) with inertial parameters fulfilling (4.4.4) for κ :“ pα`;

(v) IPG-mod: the modification of Nesterov’s scheme from [94] discussed in Example 4.4.4 with
κ :“ pα` and step size µ :“ 1{LF . The setting goes beyond the one in which convergence
was proved in [94], but it is within the one for which our convergence result holds.

(vi) RIPG-const, RIPG-sFISTA and RIPG-mod: the relaxed versions of IPG-const, IPG-sFISTA
and IPG-mod, respectively, for different values of α` that violate (4.4.2), as in Example
4.4.5, and with corresponding relaxation parameters ρ satisfying (4.4.6).
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Numerical experiment 4.4.1. In our first experiment, we use randomly generated completely
positive matrices as in [87, Section 7.8]. Precisely, in each test we generate a random n ˆ 2n
matrix B0 and then we set A :“ |B0| |B0|T ; here the absolute value operator |¨| is understood
entrywise. We test the algorithms on 50 randomly generated 40 ˆ 40 matrices, 10 randomly
generated 100ˆ100 matrices, and 10 randomly generated 500ˆ500 matrices, all via the approach
described above. For the nonnegative factorization we use in each case r :“ 1.5n ` 1 and
r :“ 3n ` 1. The performances of the different numerical methods on the for the different
instances are captured in the Tables 4.4.1 - 4.4.6.

One can notice that (4.2.17) outperforms the other methods with respect to the number
of iterations, which is due the fact that (4.2.17) uses a linesearch routine to improve the step
size, while the other methods have quite conservative step size rules. However, some of the
instances of Algorithm 4.3.1 can compete with (4.2.17) in terms of computational time. This is
due to the fact that the latter runs in every iteration a SVD routine, which is much more time
expensive than the simple projection step made by Algorithm 4.3.1. In particular with growing
dimensions our algorithm becomes faster than (4.2.17).

Method Rate Time (s) Time (f) Iter.

Algorithm (4.2.16) 0.80 2.5137ˆ 100 7.0416ˆ 100 3467.08
Algorithm (4.2.17) 1.00 4.1259ˆ 10´2 ´{{´ 38.51
PG 0.00 ´{{´ 4.5239ˆ 10´1 ´{{´

IPG-const: α “ pα` 1.00 1.3017ˆ 10´1 ´{{´ 2554.45
IPG-sFISTA: α “ pα` 1.00 1.2994ˆ 10´1 ´{{´ 2561.51
IPG-mod: α “ pα` 1.00 1.3122ˆ 10´1 ´{{´ 2562.88

RIPG-const: pα, ρq “ ppα2, ρ ppα2qq 1.00 2.8331ˆ 10´1 ´{{´ 5490.14
RIPG-const: pα, ρq “ ppα3, ρ ppα3qq 1.00 2.8589ˆ 10´1 ´{{´ 5532.32

RIPG-sFISTA: pα, ρq “ ppα2, ρ ppα2qq 1.00 8.8411ˆ 10´2 ´{{´ 1752.14
RIPG-sFISTA: pα, ρq “ ppα3, ρ ppα3qq 1.00 1.4610ˆ 10´1 ´{{´ 2906.58

RIPG-mod: pα, ρq “ ppα2, ρ ppα2qq 1.00 8.9617ˆ 10´2 ´{{´ 1751.66
RIPG-mod: pα, ρq “ ppα3, ρ ppα3qq 1.00 1.4798ˆ 10´1 ´{{´ 2904.48

Table 4.4.1: The nonnegative factorization of random completely positive matrices for n “ 40 and
r “ 61.

Method Rate Time (s) Time (f) Iter.

Algorithm (4.2.16) 0.90 8.3492ˆ 100 2.1794ˆ 101 3883.03
Algorithm (4.2.17) 1.00 6.3118ˆ 10´2 ´{{´ 19.22
PG 0.00 ´{{´ 8.4875ˆ 10´1 ´{{´

IPG-const: α “ pα` 1.00 1.9973ˆ 10´1 ´{{´ 2020.26
IPG-sFISTA: α “ pα` 1.00 2.5665ˆ 10´1 ´{{´ 2589.74
IPG-mod: α “ pα` 1.00 2.6477ˆ 10´1 ´{{´ 2591.06

RIPG-const: pα, ρq “ ppα2, ρ ppα2qq 1.00 5.0055ˆ 10´1 ´{{´ 4964.26
RIPG-const: pα, ρq “ ppα3, ρ ppα3qq 1.00 5.0620ˆ 10´1 ´{{´ 5014.23

RIPG-sFISTA: pα, ρq “ ppα2, ρ ppα2qq 1.00 1.6188ˆ 10´1 ´{{´ 1634.78
RIPG-sFISTA: pα, ρq “ ppα3, ρ ppα3qq 1.00 2.7420ˆ 10´1 ´{{´ 2760.50

RIPG-mod: pα, ρq “ ppα2, ρ ppα2qq 1.00 1.6681ˆ 10´1 ´{{´ 1633.88
RIPG-mod: pα, ρq “ ppα3, ρ ppα3qq 1.00 2.8115ˆ 10´1 ´{{´ 2756.80

Table 4.4.2: The nonnegative factorization of random completely positive matrices for n “ 40 and
r “ 121.
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Method Rate Time (s) Time (f) Iter.

Algorithm (4.2.16) 0.62 6.4857ˆ 101 1.3183ˆ 102 24245.13
Algorithm (4.2.17) 1.00 5.3558ˆ 10´1 ´{{´ 109.72
PG 0.68 1.0220ˆ 101 1.0925ˆ 101 47216.68

IPG-const: α “ pα` 1.00 1.9569ˆ 100 ´{{´ 7948.22
IPG-sFISTA: α “ pα` 1.00 1.6213ˆ 100 ´{{´ 6606.02
IPG-mod: α “ pα` 1.00 1.6379ˆ 100 ´{{´ 6607.08

RIPG-const: pα, ρq “ ppα2, ρ ppα2qq 1.00 3.4802ˆ 100 ´{{´ 14271.40
RIPG-const: pα, ρq “ ppα3, ρ ppα3qq 1.00 3.5571ˆ 100 ´{{´ 14465.50

RIPG-sFISTA: pα, ρq “ ppα2, ρ ppα2qq 1.00 8.3203ˆ 10´1 ´{{´ 3160.96
RIPG-sFISTA: pα, ρq “ ppα3, ρ ppα3qq 1.00 8.1442ˆ 10´1 ´{{´ 3216.90

RIPG-mod: pα, ρq “ ppα2, ρ ppα2qq 1.00 8.2046ˆ 10´1 ´{{´ 3163.08
RIPG-mod: pα, ρq “ ppα3, ρ ppα3qq 1.00 7.9077ˆ 10´1 ´{{´ 3215.90

Table 4.4.3: The nonnegative factorization of random completely positive matrices for n “ 100 and
r “ 151.

Method Rate Time (s) Time (f) Iter.

Algorithm (4.2.16) 0.16 6.1287ˆ 102 9.1004ˆ 102 34943.88
Algorithm (4.2.17) 1.00 2.1906ˆ 100 ´{{´ 96.08
PG 0.80 2.4696ˆ 101 2.3458ˆ 101 47725.30

IPG-const: α “ pα` 1.00 1.9569ˆ 100 ´{{´ 7948.22
IPG-sFISTA: α “ pα` 1.00 1.6213ˆ 100 ´{{´ 6606.02
IPG-mod: α “ pα` 1.00 1.6379ˆ 100 ´{{´ 6607.08

RIPG-const: pα, ρq “ ppα2, ρ ppα2qq 1.00 3.8786ˆ 100 ´{{´ 13377.24
RIPG-const: pα, ρq “ ppα3, ρ ppα3qq 1.00 3.7777ˆ 100 ´{{´ 13551.98

RIPG-sFISTA: pα, ρq “ ppα2, ρ ppα2qq 1.00 2.0073ˆ 100 ´{{´ 3232.04
RIPG-sFISTA: pα, ρq “ ppα3, ρ ppα3qq 1.00 1.7938ˆ 100 ´{{´ 3021.04

RIPG-mod: pα, ρq “ ppα2, ρ ppα2qq 1.00 1.9433ˆ 100 ´{{´ 3234.30
RIPG-mod: pα, ρq “ ppα3, ρ ppα3qq 1.00 1.7880ˆ 100 ´{{´ 3018.80

Table 4.4.4: The nonnegative factorization of random completely positive matrices for n “ 100 and
r “ 301.

Method Rate Time (s) Time (f) Iter.

Algorithm (4.2.17) 1.00 1.6557eˆ 102 ´{{´ 929.38

RIPG-sFISTA: pα, ρq “ ppα3, ρ ppα3qq 1.00 1.4526ˆ 102 ´{{´ 7919.40

RIPG-mod: pα, ρq “ ppα3, ρ ppα3qq 1.00 1.4861ˆ 102 ´{{´ 7921.64

Table 4.4.5: The nonnegative factorization of random completely positive matrices for n “ 500 and
r “ 751.

Method Rate Time (s) Time (f) Iter.

Algorithm (4.2.17) 1.00 1.3813ˆ 103 ´{{´ 914.15

RIPG-sFISTA: pα, ρq “ ppα3, ρ ppα3qq 1.00 2.2975ˆ 102 ´{{´ 7776.30

RIPG-mod: pα, ρq “ ppα3, ρ ppα3qq 1.00 2.3037ˆ 102 ´{{´ 7779.60

Table 4.4.6: The nonnegative factorization of random completely positive matrices for n “ 500 and
r “ 1501.
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Method Rate Time (s) Time (f) Iter.

Algorithm (4.2.16) 0.00 ´{{´ 4.7649ˆ 10´1 ´{{´

Algorithm (4.2.17) 0.02 7.0223ˆ 10´1 7.5259ˆ 10´1 9220.50
PG 0.27 1.8571ˆ 10´2 2.7675ˆ 10´2 7069.00
FISTA 1.00 2.1624ˆ 10´3 ´{{´ 728.32

IPG-const: α` “ 0.9814 1.00 7.2203ˆ 10´3 ´{{´ 2385.20
IPG-sFISTA: α` “ 0.9814 1.00 7.9190ˆ 10´3 ´{{´ 2474.65
IPG-mod: α` “ 0.9814 1.00 7.7214ˆ 10´3 ´{{´ 2473.84

RIPG-const: pα, ρq “ p0.9954, 0.9705q 0.93 1.3141ˆ 10´2 3.1291ˆ 10´2 4383.86
RIPG-const: pα, ρq “ p1.0000, 0.9661q 0.94 1.3217ˆ 10´2 3.2318ˆ 10´2 4446.59

RIPG-sFISTA: pα, ρq “ p0.9954, 0.9705q 1.00 3.5561ˆ 10´3 ´{{´ 1050.93
RIPG-sFISTA: pα, ρq “ p1.0000, 0.9661q 1.00 2.5225ˆ 10´3 ´{{´ 742.12

RIPG-mod: pα, ρq “ p0.9954, 0.9705q 1.00 3.5350ˆ 10´3 ´{{´ 1056.10
RIPG-mod: pα, ρq “ p1.0000, 0.9661q 1.00 2.4953ˆ 10´3 ´{{´ 744.37

Table 4.4.7: The nonnegative factortization of A0.99 given by (4.4.7) - (4.4.8) for r “ 12.

Numerical experiment 4.4.2. In the second numerical experiment, we consider the perturbed
matrix Aω defined by

Aω :“ ωA` p1´ ωqP, for ω P r0, 1s , (4.4.7)

where

A :“

¨

˚

˚

˚

˚

˝

8 5 1 1 5
5 8 5 1 1
1 5 8 5 1
1 1 5 8 5
5 1 1 5 8

˛

‹

‹

‹

‹

‚

and P :“

¨

˚

˚

˚

˚

˝

2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
1 1 1 1 2

˛

‹

‹

‹

‹

‚

. (4.4.8)

Both A and Aω belong to CP5 for all ω P r0, 1s. Furthermore, Aω P int pCP5q whenever
0 ď ω ă 1, since P “

“

j5|Id5

‰“

j5|Id5

‰T
P int pCP5q, while A P CP5zint pCP5q. It has been

observed in [87, 66] that it is much more difficult to perform a nonnegative factorization of A
than of Aω when ω ă 1. In particular, the rate of success for (4.2.16) and (4.2.17) decreases
to zero when ω to 1, that is, when Aω becomes nearly identical to A. For this experiment, we
set, as suggested in [39, Theorem 4.1], r :“ 11 for ω :“ 1 and r :“ 12 otherwise. We present
in Table 4.4.7 and in Table 4.4.8 the numerical performances of the algorithms applied to the
nonnegative factorization of the matrices A0.99 and A1.00 “ A, respectively. One can see that
both (4.2.16) and (4.2.17) practically fail to factorize the two matrices, a fact which was noticed
in [87, 66]. In what concerns the inertial methods IPG-const, IPG-sFISTA and IPG-mod, they
also seem to face some difficulties in solving these matrices, as the rate of success is not for
every initial matrix equal to 1. On the other hand, the methods RIPG-sFISTA and RIPG-mod
combining inertial and relaxation parameters always return nonnegative factorizations for α`
taken equal to pα3 and equal to 1. This emphasizes the importance of the interplay between
the inertial and relaxation parameters, as mentioned in Example 4.4.5, and provides a strong
motivation for the approach proposed in this chapter.

70



Method Rate Time (s) Time (f) Iter.

Algorithm (4.2.16) 0.00 ´{{´ 5.0659ˆ 10´1 ´{{´

Algorithm (4.2.17) 0.00 ´{{´ 9.1030ˆ 10´1 ´{{´

PG 0.01 1.7454ˆ 10´2 2.7524ˆ 10´2 7531.00
FISTA 1.00 3.1237ˆ 10´3 ´{{´ 1067.09

IPG-const: α` “ 0.9814 0.99 1.1232ˆ 10´2 2.9201ˆ 10´2 3785.31
IPG-sFISTA: α` “ 0.9814 0.95 1.2694ˆ 10´2 3.3234ˆ 10´2 4052.98
IPG-mod: α` “ 0.9814 0.95 1.2337ˆ 10´2 3.0064ˆ 10´2 4041.04

RIPG-const: pα, ρq “ p0.9954, 0.9705q 0.76 1.7583ˆ 10´2 2.9249ˆ 10´2 5882.72
RIPG-const: pα, ρq “ p1.0000, 0.9661q 0.76 1.7549ˆ 10´2 2.9381ˆ 10´2 5908.16

RIPG-sFISTA: pα, ρq “ p0.9954, 0.9705q 1.00 6.0671ˆ 10´3 ´{{´ 1835.64
RIPG-sFISTA: pα, ρq “ p1.0000, 0.9661q 1.00 3.6109ˆ 10´3 ´{{´ 1083.75

RIPG-mod: pα, ρq “ p0.9954, 0.9705q 1.00 6.0041ˆ 10´3 ´{{´ 1850.06
RIPG-mod: pα, ρq “ p1.0000, 0.9661q 1.00 3.6073ˆ 10´3 ´{{´ 1084.20

Table 4.4.8: The nonnegative factortization of A1 “ A given by (4.4.7) - (4.4.8) for r “ 11.

Numerical experiment 4.4.3. Let Idn and Jn denote the identity matrix and the all-ones-
matrix in Rnˆn, respectively, and define

A2n :“

ˆ

nIdn Jn
Jn nIdn

˙

. (4.4.9)

This family of matrices, that lie on the boundary of CP2n, has been also considered in [87]. The
authors report that the algorithms they propose fail to factorize matrices in this family, which
is also the case with (4.2.17), as we have seen in our experiments. We exemplify this in Table
4.4.9 for n “ 15 and r “ 30. On the other hand, the methods RIPG-sFISTA and RIPG-mod
combining inertial and relaxation parameters provide a factorization in reasonable time, as it is
also the case for n “ 50 and r “ 100 on which we report in Table 4.4.10. It is also interesting
to notice that, for this family of matrices, FISTA outperforms all the other methods, despite
of the fact that the parameter choice for this method does not fail into the setting for which
convergence was proved.

Method Rate Time (s) Time (f) Iter.

Algorithm (4.2.16) 0.00 ´{{´ 3.4746ˆ 102 ´{{´

Algorithm (4.2.17) 0.00 ´{{´ 5.8390ˆ 102 ´{{´

PG 0.00 ´{{´ 1.3049ˆ 100 ´{{´

FISTA 1.00 9.9557ˆ 10´1 ´{{´ 6959.95

IPG-const: α` “ 0.9861 0.00 ´{{´ 1.5734ˆ 100 ´{{´

IPG-sFISTA: α` “ 0.9861 0.00 ´{{´ 1.5584ˆ 100 ´{{´

IPG-mod: α` “ 0.9861 0.00 ´{{´ 1.5747ˆ 100 ´{{´

RIPG-const: pα, ρq “ p0.9965, 0.9730q 0.00 ´{{´ 1.6052ˆ 100 ´{{´

RIPG-const: pα, ρq “ p1.0000, 0.9697q 0.00 ´{{´ 1.6032ˆ 100 ´{{´

RIPG-sFISTA: pα, ρq “ p0.9965, 0.9730q 1.00 1.4735ˆ 100 ´{{´ 7719.29
RIPG-sFISTA: pα, ρq “ p1.0000, 0.9697q 1.00 1.4564ˆ 100 ´{{´ 7037.52

RIPG-mod: pα, ρq “ p0.9965, 0.9730q 1.00 1.4998ˆ 100 ´{{´ 7728.84
RIPG-mod: pα, ρq “ p1.0000, 0.9697q 1.00 1.4641ˆ 100 ´{{´ 7036.06

Table 4.4.9: The nonnegative factorization of A30 given by (4.4.9) for r “ 30.
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Method Rate Time (s) Time (f) Iter.

FISTA 1.00 1.9818ˆ 102 ´{{´ 22246.50

RIPG-sFISTA: pα, ρq “ p0.9998, 0.9796q 1.00 2.3743ˆ 102 ´{{´ 23125.20
RIPG-sFISTA: pα, ρq “ p1.0000, 0.9794q 1.00 2.3330ˆ 102 ´{{´ 22467.40

RIPG-mod: pα, ρq “ p0.9998, 0.9794q 1.00 2.3752ˆ 102 ´{{´ 23130.90
RIPG-mod: pα, ρq “ p1.0000, 0.9794q 1.00 2.3290ˆ 102 ´{{´ 22463.90

Table 4.4.10: The nonnegative factorization of A100 given by (4.4.9) for r “ 100.

Figure 4.4.1: The sequence E pZkq ´ Emin for a
particular instance of A in case n “ 40 and r “ 61.

Figure 4.4.2: The sequence
1

2
‖Xk ´Xsol‖2F for a

particular instance of A in case n “ 40 and r “ 61.

Figure 4.4.3: The sequence E pZkq ´ Emin for the
factorization of A0.99 given by (4.4.7) - (4.4.8).

Figure 4.4.4: The sequence
1

2
‖Xk ´Xsol‖2F for

the factorization of A0.99 given by (4.4.7) - (4.4.8).

4.5 Further perspectives

Numerical evidence in all three experiments (see Figures 4.4.1 - 4.4.6) suggests that the conver-
gence rates of our model are linear. This suggests that the  Lojasiewicz exponent of the function
Ψτ is at most 1{2. Even though the  Lojasiewicz exponent has played an important role in
the derivation of many convergence rates results, too little is known about the calculation of
its exact values for functions with complex structure. Some calculus rules for the  Lojasiewicz
exponent have been provided in [96] and in [102] for some simple models, however, it is not yet
clear how to calculate it for Ψτ . This is an interesting topic of future research.
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Figure 4.4.5: The sequence E pZkq ´ Emin for the
factorization of A1 “ A given by (4.4.7) - (4.4.8).

Figure 4.4.6: The sequence
1

2
‖Xk ´Xsol‖2F for

the factorization of A1 “ A given by (4.4.7) -
(4.4.8).

The empirical evidence on the benefit of using linesearch techniques gives rise to the inter-
esting question of studying the theoretical convergence guarantees of the iterates generated by
Algorithm 4.3.1 enhanced with such a procedure. Another topic of further research is related
to the extension of the convergence analysis beyond the current setting, in order to cover the
parameter choice of the FISTA method, which, for the numerical experiments 2 and 3, proves
to have excellent numerical performances.

Last but not least, one can replace in the formulation of the optimization problem (4.3.1)
the closed ball with radius

a

trace pAq by the sphere of the same radius, formulate a projected
gradient algorithm with relaxation and inertial parameters (by using the formula of the projec-
tion on the intersection of a cone and a sphere from [25]), determine a parameter setting for
which convergence can be guaranteed and convergence rates can be derived (in the spirit of the
analysis for inertial proximal gradient algorithms in the fully nonconvex setting from [51]), and,
of course, investigate its numerical performances.
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Chapter 5

The proximal alternating direction
method of multipliers in the
nonconvex setting

This chapter follows our work [56].
We propose two numerical algorithms for minimizing the sum of a smooth function and

the composition of a nonsmooth function with a linear operator in the fully nonconvex setting.
The iterative schemes are formulated in the spirit of the proximal and, respectively, proxi-
mal linearized alternating direction method of multipliers. The proximal terms are introduced
through variable metrics, which facilitates the derivation of proximal splitting algorithms for
nonconvex complexly structured optimization problems as particular instances of the general
schemes. Convergence of the iterates to a KKT point of the objective function is proved under
mild conditions on the sequence of variable metrics and by assuming that a regularization of
the associated augmented Lagrangian has the Kurdyka- Lojasiewicz property. If the augmented
Lagrangian has the  Lojasiewicz property, then convergence rates of both augmented Lagrangian
and iterates are derived.

5.1 Introduction

5.1.1 Problem formulation and motivation

Let H and G be real finite-dimensional Hilbert spaces. In this chapter we deal with the solving
of optimization problems of the form

min
xPH

tg pAxq ` h pxqu , (5.1.1)

where g : G Ñ RYt`8u is a proper and lower semicontinuous function, h : HÑ R is a Fréchet
differentiable function with L-Lipschitz continuous gradient and A : HÑ G is a linear operator.
The spaces H and G are equipped with Euclidean inner products x¨, ¨y and associated norms
‖¨‖ “

a

x¨, ¨y, which are both denoted in the same way, as there is no risk of confusion.
We propose a proximal ADMM (P-ADMM) algorithm and a proximal linearized ADMM

(PL-ADMM) algorithm for solving the optimization problem (5.1.1) and carry out a parallel
convergence analysis for both algorithms. We first prove, under not very restrictive assumptions
on the problem data, that the sequence of generated iterates is bounded. Given these premises
we show that the cluster points of the sequence are KKT points of the problem (5.1.1). Provided
that a regularization of the augmented Lagrangian satisfies the Kurdyka- Lojasiewicz property,
we show global convergence of the generated sequence of iterates. When this regularization of
the augmented Lagrangian has the  Lojasiewicz property, we derive rates of convergence for the
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sequence of iterates. To the best of our knowledge, these are the first results in the literature
that deal with convergence rates for the nonconvex ADMM.

We prove under quite general assumptions that the sequence tpxk, zk, ykqukě0 is bounded.
In the nonconvex setting, the boundedness of the sequence of generated iterates plays a central
role in the convergence analysis. In fact, the reason, why we assume that the function g is
smooth, is exclusively given by the fact that only in this setting we can prove boundedness for
this sequence under general assumptions.

We also prove convergence for relaxed variants of the nonconvex ADMM algorithms, which
allow to chose in the update of the dual sequence σ P p0, 2q. We notice that σ “ 1 is the standard
choice in the literature ([4, 23, 44, 96, 120, 126]). Gabay and Mercier proved in [85] in the convex
setting that σ may be chosen in p0, 2q, however, the majority of the extensions of the convex

relaxed ADMM algorithm assume that σ P
ˆ

0,
1`

?
5

2

˙

(see [72, 79, 84, 121, 127, 128]) or ask

for a particular choice of σ, which is interpreted as a step size (see [90]). In [128], an alternating
minimization algorithm for the minimization of the sum of a simple nonsmooth function and a
smooth function in the nonconvex setting, which allows for a parameter σ different from 1, has
been proposed.

By appropriate choices of the matrix sequences, we derive from the proposed iterative
schemes full splitting algorithms for solving the nonconvex complexly structured optimization
problem (5.1.1). More precisely, (P-ADMM) gives rise to an iterative scheme formulated only
in terms of proximal steps for the functions g and h and of forward evaluations of the matrix
A, while (PL-ADMM) gives rise to an iterative scheme in which the function h is performed
via a gradient step. The fruitful idea to linearize the step involving the smooth term has
been used in the past in the context of ADMM algorithms mostly in the convex setting (see
[99, 113, 117, 127, 129]), but also in the nonconvex setting (see [101]).

5.1.2 Notations

Let p be a positive integer. Every space Hi for i “ 1, ¨ ¨ ¨ , p is assumed to be equipped with
the Euclidean inner product x¨, ¨y and associated norm ‖¨‖ “

a

x¨, ¨y. The Cartesian product
H1ˆH2ˆ . . .ˆHp of the Euclidean spaces Hi, i “ 1, ¨ ¨ ¨ , p, will be endowed with inner product
and associated norm defined for x :“ px1, . . . , xpq , y :“ py1, . . . , ypq P H1 ˆH2 ˆ . . .ˆHp by

⟪x, y⟫ “
p
ÿ

i“1

xxi, yiy and |||x||| “

g

f

f

e

p
ÿ

i“1

‖xi‖2,

respectively. For every x :“ px1, . . . , xpq P H1 ˆH2 ˆ . . .ˆHp we have

1
?
p

p
ÿ

i“1

‖xi‖ ď |||x||| “

g

f

f

e

p
ÿ

i“1

‖xi‖2 ď
p
ÿ

i“1

‖xi‖ . (5.1.2)

We denote by S` pHq the family of symmetric and positive semidefinite matrices M P H.
EveryM P S` pHq induces a semi-norm defined by

‖x‖2M :“ xMx, xy @x P H.

The Loewner partial ordering on S` pHq is defined forM,M1 P S` pHq as

M ěM1 ô ‖x‖2M ě ‖x‖2M1 @x P H.

ThusM P S` pHq is nothing else thanM ě 0. For ρ ą 0 we set

Pρ pHq :“ tM P S` pHq : M ě ρIdu ,
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where Id denotes as usual the identity operator in H. IfM P Pρ pHq, then the semi-norm ‖¨‖M
becomes a norm.

The linear operator A is surjective if and only if its associated matrix has full row rank.
This assumption is further equivalent to the fact that the matrix associated to AA˚, where A˚

denotes the adjoint operator of A, is positively definite. Since

λmin pAA
˚q ‖y‖2 ď ‖y‖2AA˚ “ xAA

˚y, yy “ ‖A˚y‖2 @y P G,

this is further equivalent to λmin pAA
˚q ą 0 (and AA˚ P PλminpAA˚q pHq), where λminp¨q denotes

the smallest eigenvalue of a matrix. Similarly, A is injective if and only if λmin pA
˚Aq ą 0 (and

A˚A P PλminpA˚Aq pGq).

5.2 Related works

We start by briefly describing the Alternating Direction Method of Multipliers (ADMM) de-
signed to solve optimization problems of the form

min
xPH

tf pxq ` g pAxq ` h pxqu , (5.2.1)

where g and h are assumed to be also convex and f : H Ñ R Y t`8u is another proper,
convex and lower semicontinuous function. By introducing an auxiliary variable, one can rewrite
problem (5.2.1) as

min
px,zqPHˆG
Ax´z“0

tf pxq ` g pzq ` h pxqu . (5.2.2)

The Lagrangian associated with problem (5.2.2) is

L : Hˆ G ˆ G Ñ RY t`8u , L px, z, yq “ fpxq ` g pzq ` h pxq ` xy,Ax´ zy ,

and we say that prx, rz, ryq is a saddle point of L if

L prx, rz, yq ď L prx, rz, ryq ď L px, z, ryq @ px, z, yq P Hˆ G ˆ G.

It is known that prx, rz, ryq is a saddle point of L if and only if rz “ Arx and prx, rzq is an optimal
solution of (5.2.2), ry is an optimal solution of the Fenchel-Rockafellar dual problem (see [24,
41, 130]) to (5.1.1), namely

max
yPG

 

´pf ` hq˚ p´A˚yq ´ g pyq
(

. (5.2.3)

and the optimal objective values of (5.1.1) and (5.2.3) coincide.
For a fixed real number β ą 0, the augmented Lagrangian associated with problem (5.2.2)

reads

Lβ : Hˆ G ˆ G Ñ RY t`8u , Lβ px, z, yq “ fpxq ` g pzq ` h pxq ` xy,Ax´ zy `
β

2
‖Ax´ z‖2 .

Given a starting vector px0, z0, y0q P HˆGˆG and tMk
1ukě0 Ď S` pHq ,

 

Mk
2

(

kě0
Ď S` pGq,

two sequences of symmetric and positive semidefinite matrices, the following proximal ADMM
algorithm formulated in the presence of a smooth function and involving variable metrics has
been proposed and investigated in [23]: generate the sequence tpxk, zk, ykqukě0 for every k ě 0
as

xk`1 P arg min
xPH

#

f pxq ` xx´ xk,∇hpxkqy `
β

2

∥∥∥∥Ax´ zk ` 1

β
yk

∥∥∥∥2

`
1

2
‖x´ xk‖2Mk

1

+

, (5.2.4a)

zk`1 :“ arg min
zPG

#

g pzq `
β

2

∥∥∥∥Axk`1 ´ z `
1

β
yk

∥∥∥∥2

`
1

2
‖z ´ zk‖2Mk

2

+

, (5.2.4b)

yk`1 :“ yk ` σβ pAxk`1 ´ zk`1q . (5.2.4c)
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It has been proved in [23] that, if σ “ 1 and the set of the saddle points of the Lagrangian
associated with (5.2.2) (which is nothing else than Lβ when β “ 0) is nonempty, and the two
matrix sequences and the operator A fulfill mild additional assumptions, then the sequence
tpxk, zk, ykqukě0 converges to a saddle point of the Lagrangian associated with problem (5.2.2)
and provides in this way both an optimal solution of (5.1.1) and an optimal solution of its
Fenchel dual problem. Furthermore, an ergodic primal-dual gap convergence rate result has
been proved.

In case h “ 0, the above iterative scheme encompasses as special cases different numerical
algorithms considered in the literature. If Mk

1 “Mk
2 “ 0 for all k ě 0, then (5.2.4a)-(5.2.4c)

becomes the classical ADMM algorithm ([60, 81, 84, 85]), which lately gained a huge popularity
in the optimization community, despite its poor implementation properties caused by the fact
that, in general, the calculation of the sequence of primal variables txkukě0 does not correspond
to a proximal step. For an inertial version of the classical ADMM algorithm we refer the reader
to [42]. On the other hand, if Mk

1 “M1 and Mk
2 “M2 for all k ě 0, then (5.2.4a)-(5.2.4c)

recovers the proximal ADMM algorithm investigated by Shefi and Teboulle in [120] (see also
[72, 79]). It has been pointed out in [120] that, for suitable choices of the matrices M1 and
M2, the proximal ADMM algorithm becomes a primal-dual splitting algorithm in the sense of
those considered in [49, 65, 70, 124], and which, due to its full splitting character, overcomes
the drawbacks of the classical ADMM algorithm. Recently, in [44] it has been shown that, if f
is strongly convex, then suitable choices of the non-constant sequences

 

Mk
1

(

kě0
and

 

Mk
2

(

kě0
lead to a rate of convergence of O p1{kq for the sequence of primal iterates.

In the following we will comment on previous works addressing the ADMM algorithm in the
nonconvex setting. None of the papers which have addressed nonconvex optimization problems
involving compositions with linear operators propose and investigate iterative schemes designed
in the spirit of full splitting algorithms. In [96], the convergence of the ADMM algorithm for
solving the problem (5.1.1) is studied under the assumption that h is twice continuously dif-
ferentiable with bounded Hessian. In [91], the ADMM algorithm is used to minimize the sum
of finitely many smooth nonconvex functions and a nonsmooth convex function, by rewriting
it as an general consensus problem. No linear operator occurs in the formulation of the op-
timization problem under investigation. In [4], the ADMM algorithm is used to solve a DC
optimization problem over the unit ball which occurs in the penalized zero-variance linear dis-
criminant analysis. In [125], a nonconvex ADMM algorithm involving proximal terms induced
via Bregman distances is introduced and investigated, however, without addressing the question
of the boundedness of the generated iterates. On the other hand, in [88], in order to guarantee
boundedness of the iterates a strong assumption on g is made, which is proved to hold for the
normed-squared function. In [126], a lot of efforts are made to guarantee boundedness for the
generated iterates of the nonconvex ADMM algorithm, which is an essential component of the
convergence analysis, however, this is done by assuming that the objective function is continuous
and coercive over the feasible set, while its nonsmooth part is either restricted prox-regular or
piecewise linear. Similar ingredients are used in [101] in the convergence analysis of a nonconvex
linearized ADMM algorithm.

Recently, Bolte, Sabach and Teboulle have proposed in [37] a generic iterative scheme for
solving a general optimization problem of the form (5.1.1), but by replacing the linear operator A
with a general continuously differentiable operator. A global convergence analysis relying on the
use of the Kurdyka- Lojasiewicz property is carried out. It is also shown that the generic iterative
scheme encompasses several Lagrangian based algorithms, including the proximal alternating
direction method of multipliers and the proximal alternating linearized minimization method.
The latter is analysed into detail in the particular case when g is composed with a linear operator,
which coincides with the one in this chapter. The two algorithms we propose are formulated
in the same spirit, however, they lead for some particular choices of the variable metrics to
full splitting algorithms. In addition, we carefully address the issue of the boundedness of the
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sequence of generated iterates and complement the convergence analysis with the derivation of
convergence rates.

5.3 A proximal ADMM algorithm and a proximal linearized
ADMM algorithm in the nonconvex setting

In this section we propose two proximal ADMM algorithms for solving the optimization problem
(5.1.1) and study their convergence behaviour. A central role will be played by the augmented
Lagrangian associated with problem (5.1.1), which is defined for every β ą 0 as

Lβ : Hˆ G ˆ G Ñ RY t`8u , Lβ px, z, yq “ g pzq ` h pxq ` xy,Ax´ zy `
β

2
‖Ax´ z‖2 .

5.3.1 General formulations and full proximal splitting algorithms as partic-
ular instances

Algorithm 5.3.1. Let be the matrix sequences
 

Mk
1

(

kě0
P S` pHq ,

 

Mk
2

(

kě0
P S` pGq, β ą 0

and 0 ă σ ă 2. For a given starting vector px0, z0, y0q P H ˆ G ˆ G, generate the sequence
tpxk, zk, ykqukě0 for every k ě 0 as:

zk`1 P arg min
zPG

"

Lβ pxk, z, ykq `
1

2
‖z ´ zk‖2Mk

2

*

“ arg min
zPG

"

g pzq ` xyk, Axk ´ zy `
β

2
‖Axk ´ z‖2 `

1

2
‖z ´ zk‖2Mk

2

*

,

(5.3.1a)

xk`1 P arg min
xPH

"

Lβ px, zk`1, ykq `
1

2
‖x´ xk‖2Mk

1

*

“ arg min
xPH

"

h pxq ` xyk, Ax´ zk`1y `
β

2
‖Ax´ zk`1‖2 `

1

2
‖x´ xk‖2Mk

1

*

,

(5.3.1b)

yk`1 :“ yk ` σβ pAxk`1 ´ zk`1q . (5.3.1c)

The above particular instance of Algorithm 5.3.1 is an iterative scheme formulated in the
spirit of full splitting numerical methods; in other words, the functions g and h are evaluated
by their proximal operators, while the linear operator A and its adjoint operator are evaluated
by simple forward steps. Exact formulas for the proximal operator are available not only for
large classes of convex functions ([27, 69]), but also for many nonconvex functions occurring in
applications ([7, 89, 95]).

Let ttkukě0 be a sequence of positive real numbers such that tk ě β ‖A‖2, and Mk
1 :“

tkId´ βA
˚A andMk

2 :“ 0 for every k ě 0. In this particular case Algorithm 5.3.1 becomes an
iterative scheme which generates a sequence tpxk, zk, ykqukě0 for every k ě 0 as:

zk`1 P arg min
zPG

#

g pzq `
β

2

∥∥∥∥z ´Axk ´ 1

β
yk

∥∥∥∥2
+

,

xk`1 P arg min
xPH

#

h pxq `
tk
2

∥∥∥∥x´ xk ` 1

tk
A˚ ryk ` r pAxk ´ zk`1qs

∥∥∥∥2
+

,

yk`1 :“ yk ` σβ pAxk`1 ´ zk`1q .

The second algorithm that we propose replaces for every k ě 0 the function h in the definition
of xk`1 by its linearization at xk.
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Algorithm 5.3.2. Let be the matrix sequences
 

Mk
1

(

kě0
P S` pHq ,

 

Mk
2

(

kě0
P S` pGq, β ą 0

and 0 ă σ ă 2. For a given starting vector px0, z0, y0q P H ˆ G ˆ G, generate the sequence
tpxk, zk, ykqukě0 for every k ě 0 as:

zk`1 P arg min
zPG

"

g pzq ` xyk, Axk ´ zy `
β

2
‖Axk ´ z‖2 `

1

2
‖z ´ zk‖2Mk

2

*

, (5.3.2a)

xk`1 P arg min
xPH

"

xx´ xk,∇h pxkqy ` xyk, Ax´ zk`1y `
β

2
‖Ax´ zk`1‖2 `

1

2
‖x´ xk‖2Mk

1

*

,

(5.3.2b)

yk`1 :“ yk ` σβ pAxk`1 ´ zk`1q . (5.3.2c)

Due to the presence of the variable metric inducing matrix sequences, Algorithm 5.3.2 rep-
resents a unifying scheme for several linearized ADMM algorithms from the literature (see
[99, 101, 113, 117, 127, 129]). By choosing as above Mk

1 :“ tkId ´ βA˚A, where tk is positive
such that tk ě β ‖A‖2, andMk

2 :“ 0, for every k ě 0, Algorithm 5.3.2 translates for every k ě 0
into:

zk`1 P arg min
zPG

#

g pzq `
β

2

∥∥∥∥z ´Axk ´ 1

β
yk

∥∥∥∥2
+

,

xk`1 :“ xk ´
1

tk
p∇h pxkq `A˚ ryk ` r pAxk ´ zk`1qsq ,

yk`1 :“ yk ` σβ pAxk`1 ´ zk`1q .

In this iterative scheme the smooth term is evaluated via a gradient step, which is an im-
provement with respect to other nonconvex ADMM algorithms, such as [126, 128], where the
smooth function is involved in a subproblem, which may be difficult to solve, unless it can be
reformulated as a proximal step (see [96]).

We will carry out a parallel convergence analysis for Algorithm 5.3.1 and Algorithm 5.3.2
in the following setting.

Assumption 5.3.1. We assume that

(i) g and h are bounded from below;

(ii) A is surjective and thus the constant

T0 :“

$

’

&

’

%

1

σλmin pAA˚q
, if 0 ă σ ď 1,

σ

p2´ σq2 λmin pAA˚q
, if 1 ă σ ă 2,

is well-defined;

(iii) µ1 :“ sup
kě0

∥∥Mk
1

∥∥ ă `8 and µ2 :“ sup
kě0

∥∥Mk
2

∥∥ ă `8;

(iv) β ą 0, σ P p0, 2q and µ1 ě 0 are such that

β ě 4T0L ą 0 (5.3.3)

and

2Mk
1 ` βA

˚A ě

ˆ

L`
CM
β

˙

Id @k ě 0, (5.3.4)

where

CM :“

$

&

%

´

6µ2
1 ` 4 pL` µ1q

2
¯

T0, for Algorithm 5.3.1,
´

4µ2
1 ` 6 pL` µ1q

2
¯

T0, for Algorithm 5.3.2.
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Example 5.3.1. In the following we discuss possible choices of the matrix sequence
 

Mk
1

(

kě0
which fulfil Assumption 5.3.1:

(i) If sup
kě0

∥∥Mk
1

∥∥ “ µ1 ą
L

2
, then, for every

β ě max

"

4T0L,
CM

2µ1 ´ L

*

ą 0,

there exists ρ1 ą 0 such that

µ1 ě ρ1 ě
1

2

ˆ

L`
CM
β

˙

ą 0.

The inequality in (5.3.4) is ensured forMk
1 chosen such that

µ1Id ěMk
1 ě ρ1Id @k ě 0.

(ii) If A is assumed to be also injective, then λmin pA
˚Aq ą 0. By choosing

β ě max

#

4T0L,
L`

a

L2 ` 4λmin pA˚AqCM
2λmin pA˚Aq

+

ą 0,

it follows that β2λmin pA
˚Aq ´ Lβ ´ CM ě 0. Thus,

βA˚A´
`

L` β´1CM
˘

Id ě 0,

and (5.3.4) holds for an arbitrary sequence of symmetric and positive semidefinite matrices
 

Mk
1

(

kě0
. A possible choice isMk

1 “ 0, which, togetherMk
2 “ 0, for every k ě 0, allows us

to recover the classical ADMM algorithm and the linearized ADMM algorithm as particular
instances of our iterative schemes.

(iii) For t ą 0, we takeMk
1 :“ tId´ βA˚A for every k ě 0. Then

µ1 “ ‖tId´ βA˚A‖ “ λmax ptId´ βA
˚Aq “ t´ βλmin pA

˚Aq .

Condition (5.3.4) is equivalent to

2t´ β ‖A‖2 ´
ˆ

L`
CM
β

˙

ě 0

and is guaranteed for both algorithms when

2t´ β ‖A‖2 ´

¨

˝L`

´

4µ2
1 ` 6 pL` µ1q

2
¯

T0

β

˛

‚ě 0

or, equivalently,

10T0µ
2
1 ´ 2 pβ ´ 6T0Lqµ1 ` 6T0L

2 ` β2
´

‖A‖2 ´ 2λmin pA
˚Aq

¯

´ Lβ ď 0.

This quadratic inequality in µ1 ě 0 has nonnegative solutions if, for instance, β ě 6T0L
(thus (5.3.3) holds) and the reduced discriminant

∆ :“pβ ´ 6T0Lq
2
´ 60T 2

0L
2 ´ 10T0β

2
´

‖A‖2 ´ 2λmin pA
˚Aq

¯

` 10T0Lβ

“

”

1` 10T0

´

2λmin pA
˚Aq ´ ‖A‖2

¯ı

β2 ´ 2T0Lβ ´ 24T 2
0L

2
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is nonnegative. This holds true if the condition number of the matrix A˚A fulfils

κ pA˚Aq :“
λmax pA

˚Aq

λmin pA˚Aq
“

‖A‖2

λmin pA˚Aq
ď 2.

In conclusions, if the latter is given, then we can chose an arbitrary

β ě 6T0L

and t such that

βλmin pA
˚Aq ď t ď βλmin pA

˚Aq `
1

10T0

´

β ´ 6T0L`
?

∆
¯

.

Remark 5.3.1. (i) It has been noticed also by other authors (see, for instance, [37, 96]) that
the surjectivity of the linear operator is an assumption which at this moment cannot be
omitted when aiming to prove convergence for nonconvex Lagrangian based algorithms.

(ii) When proving convergence and deriving convergence rates for variable metric algorithms
designed for convex optimization problems one usually assumes monotonicity for the ma-
trix sequences inducing the variable metrics (see, for instance, [68, 23, 44]). It is worth to
mention that the convergence analysis for both Algorithm 5.3.1 and Algorithm 5.3.2 does
not require monotonicity assumptions on

 

Mk
1

(

kě0
or

 

Mk
2

(

kě0
.

5.3.2 Preliminaries of the convergence analysis

Within the setting of Assumption 5.3.1 we will make use of the following constants:

C0 :“

$

’

’

&

’

’

%

L`
4T0 pL` µ1q

2

β
, for Algorithm 5.3.1,

L`
4T0µ

2
1

β
, for Algorithm 5.3.2,

C1 :“

$

’

’

&

’

’

%

4T0µ
2
1

β
, for Algorithm 5.3.1,

4T0 pL` µ1q
2

β
, for Algorithm 5.3.2,

T1 :“

$

’

&

’

%

1´ σ

λmin pAA˚qσ2β
, if 0 ă σ ď 1,

σ ´ 1

λmin pAA˚q p2´ σqσβ
, if 1 ă σ ă 2,

and we will denote for every k ě 0

Mk
3 :“ 2Mk

1 ` βA
˚A´ C0Id.

The following result of Fejér monotonicity type will play a fundamental role in our conver-
gence analysis.

Lemma 5.3.2. Let Assumption 5.3.1 be satisfied and tpxk, zk, ykqukě0 be a sequence generated
by Algorithm 5.3.1 or Algorithm 5.3.2. Then for every k ě 1 it holds:

Lβ pxk`1, zk`1, yk`1q ` T1 ‖A˚ pyk`1 ´ ykq‖2 `
1

2
‖xk`1 ´ xk‖2Mk

3
`

1

2
‖zk`1 ´ zk‖2Mk

2

ď Lβ pxk, zk, ykq ` T1 ‖A˚ pyk ´ yk´1q‖2 `
C1

2
‖xk ´ xk´1‖2 . (5.3.5)

82



Proof. Let k ě 1 be fixed. In both cases the proof builds on showing that the following inequality

Lβ pxk`1, zk`1, yk`1q `
1

2
‖xk`1 ´ xk‖22Mk

1`βA
˚A ´

L

2
‖xk`1 ´ xk‖2 `

1

2
‖zk`1 ´ zk‖2Mk

2

ď Lβ pxk, zk, ykq `
1

σβ
‖yk`1 ´ yk‖2 (5.3.6)

is true and on providing afterwards an upper bound for
1

σβ
‖yk`1 ´ yk‖2.

(i) For Algorithm 5.3.1: From (5.3.1a) we have

g pzk`1q ` xyk, Axk ´ zk`1y `
β

2
‖Axk ´ zk`1‖2 `

1

2
‖zk`1 ´ zk‖2Mk

2

ď g pzkq ` xyk, Axk ´ zky `
β

2
‖Axk ´ zk‖2 . (5.3.7)

The optimality criterion of (5.3.1b) is

∇h pxk`1q “ ´A
˚yk ´ rA

˚ pAxk`1 ´ zk`1q `Mk
1 pxk ´ xk`1q . (5.3.8)

From (2.2.1) (applied for z :“ xk`1) we get

h pxk`1q ď h pxkq ` xyk, Axk ´Axk`1y ` r xAxk`1 ´ zk`1, Axk ´Axk`1y

´ ‖xk`1 ´ xk‖2Mk
1
`
L

2
‖xk`1 ´ xk‖2 . (5.3.9)

By combining (5.3.7), (5.3.9) and (5.3.1c), after some rearrangements, we obtain (5.3.6).

By using the notation

uk1 :“ ´∇h pxkq `Mk´1
1 pxk´1 ´ xkq @k ě 1 (5.3.10)

and by taking into consideration (5.3.1c), we can rewrite (5.3.8) as

A˚yk`1 “ σuk`1
1 ` p1´ σqA˚yk @k ě 0. (5.3.11)

• The case 0 ă σ ď 1. We have

A˚ pyk`1 ´ ykq “ σ
´

uk`1
1 ´ uk1

¯

` p1´ σqA˚ pyk ´ yk´1q .

Since 0 ă σ ď 1, the convexity of ‖¨‖2 gives

‖A˚ pyk`1 ´ ykq‖2 ď σ
∥∥∥uk`1

1 ´ uk1

∥∥∥2
` p1´ σq ‖A˚ pyk ´ yk´1q‖2

and from here we get

λmin pAA
˚qσ ‖yk`1 ´ yk‖2 ď σ ‖A˚ pyk`1 ´ ykq‖2

ď σ
∥∥∥uk`1

1 ´ uk1

∥∥∥2
` p1´ σq ‖A˚ pyk ´ yk´1q‖2 ´ p1´ σq ‖A˚ pyk`1 ´ ykq‖2 . (5.3.12)

By using the Lipschitz continuity of ∇h we have∥∥∥uk`1
1 ´ uk1

∥∥∥ ď pL` µ1q ‖xk`1 ´ xk‖` µ1 ‖xk ´ xk´1‖ , (5.3.13)

thus ∥∥∥uk`1
1 ´ uk1

∥∥∥2
ď 2 pL` µ1q

2 ‖xk`1 ´ xk‖2 ` 2µ2
1 ‖xk ´ xk´1‖2 . (5.3.14)
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After plugging (5.3.14) into (5.3.12) we get

1

σβ
‖yk`1 ´ yk‖2 ď

2 pL` µ1q
2

λmin pAA˚qσβ
‖xk`1 ´ xk‖2 `

2µ2
1

λmin pAA˚qσβ
‖xk ´ xk´1‖2

`
p1´ σq

λmin pAA˚qσ2β

´

‖A˚ pyk ´ yk´1q‖2 ´ ‖A˚ pyk`1 ´ ykq‖2
¯

,

(5.3.15)

which, combined with (5.3.6), provides (5.3.5).

• The case 1 ă σ ă 2. This time we have from (5.3.11) that

A˚ pyk`1 ´ ykq “ p2´ σq
σ

2´ σ

´

uk`1
1 ´ uk1

¯

` pσ ´ 1qA˚ pyk´1 ´ ykq .

As 1 ă σ ă 2, the convexity of ‖¨‖2 gives

‖A˚ pyk`1 ´ ykq‖2 ď
σ2

2´ σ

∥∥∥uk`1
1 ´ uk1

∥∥∥2
` pσ ´ 1q ‖A˚ pyk ´ yk´1q‖2

and from here it follows

λmin pAA
˚q p2´ σq ‖yk`1 ´ yk‖2 ď p2´ σq ‖A˚ pyk`1 ´ ykq‖2

ď
σ2

2´ σ

∥∥∥uk`1
1 ´ uk1

∥∥∥2
` pσ ´ 1q ‖A˚ pyk ´ yk´1q‖2 ´ pσ ´ 1q ‖A˚ pyk`1 ´ ykq‖2 .

(5.3.16)

After plugging (5.3.14) into (5.3.16) we get

1

σβ
‖yk`1 ´ yk‖2

ď
2σ pL` µ1q

2

λmin pAA˚q p2´ σq
2 r
‖xk`1 ´ xk‖2 `

2σµ2
1

λmin pAA˚q p2´ σq
2 r
‖xk ´ xk´1‖2

`
pσ ´ 1q

λmin pAA˚q p2´ σqσβ

´

‖A˚ pyk ´ yk´1q‖2 ´ ‖A˚ pyk`1 ´ ykq‖2
¯

, (5.3.17)

which, combined with (5.3.6), provides (5.3.5).

(ii) For Algorithm 5.3.2: The optimality criterion of (5.3.2b) is

∇h pxkq “ ´A˚yk ´ rA˚ pAxk`1 ´ zk`1q `Mk
1 pxk ´ xk`1q . (5.3.18)

From (2.2.1) (applied for z :“ xk) we get

h pxk`1q ď h pxkq ` xyk, Axk ´Axk`1y ` r xAxk`1 ´ zk`1, Axk ´Axk`1y

´ ‖xk`1 ´ xk‖2Mk
1
`
L

2
‖xk`1 ´ xk‖2 . (5.3.19)

Since the definition of zk`1 in (5.3.2a) leads also to (5.3.7), by combining this inequality
with (5.3.19) and (5.3.2c), after some rearrangments, (5.3.6) follows. By using this time the
notation

uk2 :“ ´∇h pxk´1q `Mk´1
1 pxk´1 ´ xkq @k ě 1 (5.3.20)

and by taking into consideration (5.3.2c), we can rewrite (5.3.18) as

A˚yk`1 “ σuk`1
2 ` p1´ σqA˚yk @k ě 0. (5.3.21)
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• The case 0 ă σ ď 1. As in (5.3.12) we obtain

λmin pAA
˚qσ ‖yk`1 ´ yk‖2 ď σ ‖A˚ pyk`1 ´ ykq‖2

ď σ
∥∥∥uk`1

2 ´ uk2

∥∥∥2
` p1´ σq ‖A˚ pyk ´ yk´1q‖2 ´ p1´ σq ‖A˚ pyk`1 ´ ykq‖2 . (5.3.22)

By using the Lipschitz continuity of ∇h we have∥∥∥uk`1
2 ´ uk2

∥∥∥ ď µ1 ‖xk`1 ´ xk‖` pL` µ1q ‖xk ´ xk´1‖ , (5.3.23)

thus ∥∥∥uk`1
2 ´ uk2

∥∥∥2
ď 2µ2

1 ‖xk`1 ´ xk‖2 ` 2 pL` µ1q
2 ‖xk ´ xk´1‖2 . (5.3.24)

After plugging (5.3.24) into (5.3.22) it follows

1

σβ
‖yk`1 ´ yk‖2 ď

2µ2
1

λmin pAA˚qσβ
‖xk`1 ´ xk‖2 `

2 pL` µ1q
2

λmin pAA˚qσβ
‖xk ´ xk´1‖2

`
p1´ σq

λmin pAA˚qσ2β

´

‖A˚ pyk ´ yk´1q‖2 ´ ‖A˚ pyk`1 ´ ykq‖2
¯

,

(5.3.25)

which, combined with (5.3.6), provides (5.3.5).

• The case 1 ă σ ă 2. As in (5.3.16) we obtain

λmin pAA
˚q p2´ σq ‖yk`1 ´ yk‖2 ď p2´ σq ‖A˚ pyk`1 ´ ykq‖2

ď
σ2

2´ σ

∥∥∥uk`1
2 ´ uk2

∥∥∥2
` pσ ´ 1q ‖A˚ pyk ´ yk´1q‖2 ´ pσ ´ 1q ‖A˚ pyk`1 ´ ykq‖2 .

(5.3.26)

After plugging (5.3.24) into (5.3.26) it follows

1

σβ
‖yk`1 ´ yk‖2

ď
2σµ2

1

λmin pAA˚q p2´ σq
2 r
‖xk`1 ´ xk‖2 `

2σ pL` µ1q
2

λmin pAA˚q p2´ σq
2 r
‖xk ´ xk´1‖2

`
pσ ´ 1q

λmin pAA˚q p2´ σqσβ

´

‖A˚ pyk ´ yk´1q‖2 ´ ‖A˚ pyk`1 ´ ykq‖2
¯

. (5.3.27)

which, combined with (5.3.6), provides (5.3.5).

This completes the proof.

The following three estimates will be useful in the sequel.

Lemma 5.3.3. Let Assumption 5.3.1 be satisfied and tpxk, zk, ykqukě0 be a sequence generated
by Algorithm 5.3.1 or Algorithm 5.3.2. Then the following statements are true:

(i) for every k ě 1 it holds

‖zk`1 ´ zk‖ ď ‖A‖ ¨ ‖xk`1 ´ xk‖` ‖Axk`1 ´ zk`1‖` ‖Axk ´ zk‖

“ ‖A‖ ¨ ‖xk`1 ´ xk‖`
1

σβ
‖yk`1 ´ yk‖`

1

σβ
‖yk ´ yk´1‖ ; (5.3.28)

(ii) for every k ě 0 it holds

1

2β
‖yk`1‖2 ď

T1

2
‖A˚ pyk`1 ´ ykq‖2 `

T0

β
‖∇h pxk`1q‖2 `

C1

4
‖xk`1 ´ xk‖2 ; (5.3.29)
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(iii) for every k ě 1 it holds

‖yk`1 ´ yk‖ ď C3 ‖xk`1 ´ xk‖` C4 ‖xk ´ xk´1‖
` T2 p‖A˚ pyk ´ yk´1q‖´ ‖A˚ pyk`1 ´ ykq‖q , (5.3.30)

where

C3 :“

$

’

’

’

’

&

’

’

’

’

%

σ pL` µ1q
a

λmin pAA˚q p1´ |1´ σ|q
, for Algorithm 5.3.1,

σµ1
a

λmin pAA˚q p1´ |1´ σ|q
, for Algorithm 5.3.2,

C4 :“

$

’

’

’

’

&

’

’

’

’

%

σµ1
a

λmin pAA˚q p1´ |1´ σ|q
, for Algorithm 5.3.1,

σ pL` µ1q
a

λmin pAA˚q p1´ |1´ σ|q
, for Algorithm 5.3.2,

T2 :“
|1´ σ|

a

λmin pAA˚q p1´ |1´ σ|q
.

Proof. The statement in (5.3.28) is straightforward.
From (5.3.11) and (5.3.21) we have for every k ě 0

A˚yk`1 “ σuk`1 ` p1´ σqA˚yk

or, equivalently,
σA˚yk`1 “ σuk`1 ` p1´ σqA˚ pyk ´ yk`1q ,

where uk`1 is defined as being equal to uk`1
1 in (5.3.10), for Algorithm 5.3.1, and, respectively,

to uk`1
2 in (5.3.20), for Algorithm 5.3.2.
For 0 ă σ ď 1 we have

λmin pAA
˚qσ2 ‖yk`1‖2 ď σ2 ‖A˚yk`1‖2 ď σ

∥∥∥uk`1
∥∥∥2
` p1´ σq ‖A˚ pyk`1 ´ ykq‖2 , (5.3.31)

while, for 1 ă σ ă 2, we have

λmin pAA
˚qσ2 ‖yk`1‖2 ď σ2 ‖A˚yk`1‖2 ď

σ2

2´ σ

∥∥∥uk`1
∥∥∥2
` pσ ´ 1q ‖A˚ pyk`1 ´ ykq‖2 . (5.3.32)

Notice further that for 1 ă σ ă 2 we have
1

σ
ă 1 and 1 ă

σ

2´ σ
.

In case uk`1 is defined as in (5.3.10) it holds∥∥∥uk`1
∥∥∥2
“

∥∥∥uk`1
1

∥∥∥2
ď 2 ‖∇h pxk`1q‖2 ` 2µ2

1 ‖xk`1 ´ xk‖2 @k ě 0, (5.3.33)

while, in case uk`1
2 is defined as in (5.3.20), it holds∥∥∥uk`1

∥∥∥2
“

∥∥∥uk`1
2

∥∥∥2
ď 2 ‖∇h pxk`1q‖2 ` 2 pL` µ1q

2 ‖xk`1 ´ xk‖2 @k ě 0. (5.3.34)

We divide (5.3.31) and (5.3.32) by 2λmin pAA
˚qσ2β ą 0 and plug (5.3.33) and, respectively,

(5.3.34) into the resulting inequalities. This gives us (5.3.29).
Finally, in order to prove (5.3.30), we notice that for every k ě 1 it holds

‖A˚ pyk`1 ´ ykq‖ ď σ
∥∥∥uk`1 ´ uk

∥∥∥` |1´ σ| ‖A˚ pyk ´ yk´1q‖ ,
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so,
a

λmin pAA˚q p1´ |1´ σ|q ‖yk`1 ´ yk‖ ď p1´ |1´ σ|q ‖A˚ pyk`1 ´ ykq‖

ď σ
∥∥∥uk`1 ´ uk

∥∥∥` |1´ σ| ‖A˚ pyk ´ yk´1q‖´ |1´ σ| ‖A˚ pyk`1 ´ ykq‖ . (5.3.35)

We plug into (5.3.35) the estimates for
∥∥uk`1 ´ uk

∥∥ derived in (5.3.13) and, respectively, (5.3.23)
and divide the resulting inequality by

a

λmin pAA˚q p1´ |1´ σ|q ą 0. This furnishes the desired
statement.

The following regularization of the augmented Lagrangian will play an important role in the
convergence analysis of the nonconvex proximal ADMM algorithms

Ψβ : Hˆ G ˆ G ˆHˆ G Ñ RY t`8u ,

Ψβpx, z, y, x
1, y1q “ Lβ px, z, yq ` T1

∥∥A˚ `y ´ y1˘∥∥2
`
C1

2

∥∥x´ x1∥∥2
,

where T1 and C1 are defined in Assumption 5.3.1. For every k ě 1 we denote

Ψk :“ Ψβ pxk, zk, yk, xk´1, yk´1q “ Lβ pxk, zk, ykq ` T1 ‖A˚ pyk ´ yk´1q‖2 `
C1

2
‖xk ´ xk´1‖2 .

(5.3.36)

Since the convergence analysis will rely on the fact that the set of cluster points of the
sequence tpxk, zk, ykqukě0 is nonempty, we will present first two situations which guarantee
that this sequence is bounded. They make use of standard coercivity assumptions for the
functions g and h, respectively. Recall that a function Ψ : HÑ RY t`8u is called coercive, if

lim
‖x‖Ñ`8

Ψ pxq “ `8.

Theorem 5.3.4. Let Assumption 5.3.1 be satisfied and tpxk, zk, ykqukě0 be a sequence generated
by Algorithm 5.3.1 or Algorithm 5.3.2. Suppose that one of the following conditions holds:

(B-I) A is invertible and g is coercive;

(B-II) h is coercive.

Then the sequence tpxk, zk, ykqukě0 is bounded.

Proof. From Lemma 5.3.2 we have that for every k ě 1

Ψk`1 `
1

2
‖xk`1 ´ xk‖2Mk

3´C1Id `
1

2
‖zk`1 ´ zk‖2Mk

2
ď Ψk (5.3.37)

which shows, according to (5.3.4), that tΨkukě1 is monotonically decreasing. Consequently, for
every k ě 1 we have

Ψ1 ě Ψk`1 `
1

2
‖xk`1 ´ xk‖2Mk

3´C1Id `
1

2
‖zk`1 ´ zk‖2Mk

2

“ h pxk`1q ` g pzk`1q ´
1

2β
‖yk`1‖2 `

β

2

∥∥∥∥Axk`1 ´ zk`1 `
1

β
yk`1

∥∥∥∥2

` T1 ‖A˚ pyk`1 ´ ykq‖2 `
1

2
‖xk`1 ´ xk‖2Mk

3´C0Id `
1

2
‖zk`1 ´ zk‖2Mk

2
`
C1

2
}xk`1 ´ xk},

which, thanks to (5.3.29), leads to

Ψ1 ě h pxk`1q ` g pzk`1q ´
T0

β
‖∇h pxk`1q‖2 `

β

2

∥∥∥∥Axk`1 ´ zk`1 `
1

β
yk`1

∥∥∥∥2

`
T1

2
‖A˚ pyk`1 ´ ykq‖2 `

1

2
‖xk`1 ´ xk‖2Mk

3´C1Id `
1

2
‖zk`1 ´ zk‖2Mk

2
`
C1

4
}xk`1 ´ xk}

2.

(5.3.38)

Next we will prove the boundedness of tpxk, zk, ykqukě0 under each of the two scenarios.
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(B-I) Since β ě 4T0L, there exists γ ą 0 such that

1

γ
´

L

2γ2
“
T0

β
.

From Proposition 2.2.1 and the relation (5.3.38) we see that for every k ě 1

g pzk`1q `
β

2

∥∥∥∥Axk`1 ´ zk`1 `
1

β
yk`1

∥∥∥∥2

`
C1

4
}xk`1 ´ xk}

2

ď Ψ1 ´ inf
xPH

"

h pxq ´
T0

β
‖∇h pxq‖2

*

ă `8.

Since g is coercive, it follows that the sequence tzkukě0 is bounded. On the other hand, since g is
bounded from below, it follows that the sequences

 

Axk ´ zk ` β
´1yk

(

kě0
and txk`1 ´ xkukě0

are bounded as well. In addition, since for every k ě 0 it holds

‖A pxk`1 ´ xkq ´ pzk`1 ´ zkq‖ ď ‖A‖ ¨ ‖xk`1 ´ xk‖` ‖zk`1‖` ‖zk‖

it follows that tA pxk`1 ´ xkq ´ pzk`1 ´ zkqukě0 is bounded, thus so is
 

β´1 pyk`1 ´ ykq
(

kě0
.

According to the third update in the iterative scheme we obtain that tAxk ´ zkukě0 is bounded
and from here that tykukě0 is also bounded. This implies the boundedness of tAxkukě0 and,
finally, since A is invertible, the boundedness of txkukě0.

(B-II) Again thanks to (5.3.3) there exists γ ą 0 such that

1

γ
´

L

2γ2
“

3T0

2β
.

We assume first that σ ‰ 1 or, equivalently, T1 ‰ 0. From Proposition 2.2.1 and (5.3.38) we see
that for every k ě 1

1

2
h pxk`1q `

T0

4β
‖∇h pxk`1q‖2 `

β

2

∥∥∥∥Axk`1 ´ zk`1 `
1

β
yk`1

∥∥∥∥2

`
T1

2
‖A˚ pyk`1 ´ ykq‖

ď Ψ1 ´ inf
zPG

g pzq ´
1

2
inf
xPH

"

h pxq ´
3T0

2β
‖∇h pxq‖2

*

ă `8.

Since h is coercive and bounded from below, we obtain that txkukě0,
 

Axk ´ zk ` β
´1yk

(

kě0
and tA˚ pyk`1 ´ ykqukě0 are bounded. For every k ě 0 we have that

λmin pA
˚Aqσ2β2 ‖Axk`1 ´ zk`1‖2 “ λmin pA

˚Aq ‖yk`1 ´ yk‖2 ď ‖A˚ pyk`1 ´ ykq‖2 ,

thus tAxk ´ zkukě0 is bounded. Consequently, tykukě0 and tzkukě0 are bounded.
In case σ “ 1 or, equivalently, T1 “ 0, we have that for every k ě 1

1

2
h pxk`1q `

T0

4β
‖∇h pxk`1q‖2 `

β

2

∥∥∥∥Axk`1 ´ zk`1 `
1

β
yk`1

∥∥∥∥2

ď Ψ1 ´ inf
zPG

g pzq ´
1

2
inf
xPH

"

h pxq ´
3T0

2β
‖∇h pxq‖2

*

ă `8

from which we deduce that txkukě0 and
 

Axk ´ zk ` β
´1yk

(

kě0
are bounded. From Lemma

5.3.3 (iii), which now reads

‖yk`1 ´ yk‖ ď C3 ‖xk`1 ´ xk‖` C4 ‖xk ´ xk´1‖ @k ě 1,

it yields that tyk`1 ´ ykukě0 is bounded, thus, tAxk ´ zkukě0 is bounded. Consequently, tykukě0

and tzkukě0 are bounded.
Both considered scenarios lead to the conclusion that the sequence tpxk, zk, ykqukě0 is bounded.
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Remark 5.3.2. Guarantee the boundedness of tpxk, zk, ykqukě0 is an essential issue in the
convergence analysis. In contrast to what we usually have in the convex setting (see e.g. [23, 44]),
it is not clear whether the sequence of multiplier tykukě0 is bounded in general.

Theorem 5.3.5. Let Assumption 5.3.1 be satisfied and tpxk, zk, ykqukě0 be a sequence generated
by Algorithm 5.3.1 or Algorithm 5.3.2, which is assumed to be bounded. The following statements
are true:

(i) for every k ě 1 it holds

Ψk`1 `
C1

4
‖xk`1 ´ xk‖2 `

1

2
‖zk`1 ´ zk‖2Mk

2
ď Ψk; (5.3.39)

(ii) the sequence tΨkukě0 is bounded from below and convergent. In addition,

xk`1 ´ xk Ñ 0, zk`1 ´ zk Ñ 0 and yk`1 ´ yk Ñ 0 as k Ñ `8; (5.3.40)

(iii) the sequences tΨkukě0, tLβ pxk, zk, ykqukě0 and th pxkq ` g pzkqukě0 have the same limit,
which we denote by Ψ˚ P R.

Proof. (i) According to (5.3.4) we have that Mk
3 ´ C1Id P PnC1

2

and thus (5.3.37) implies

(5.3.39).

(ii) We will show that tLβ pxk, zk, ykqukě0 is bounded from below, which will imply that
tΨkukě0 is bounded from below as well. Assuming the contrary, as tpxk, zk, ykqukě0

is bounded, there exists a subsequence
 `

xkq , zkq , ykq
˘(

qě0
converging to an element

ppx, pz, pyq P H ˆ G ˆ G such that
 

Lβ
`

xkq , zkq , ykq
˘(

qě0
converges to ´8 as q Ñ `8.

However, using the lower semicontinuity of g and the continuity of h, we obtain

lim inf
qÑ`8

Lβ
`

xkq , zkq , ykq
˘

ě h ppxq ` g ppzq ` xpy,Apx´ pzy `
β

2
‖Apx´ pz‖2 ,

which leads to a contradiction. From Lemma 2.4.2 we conclude that tΨkukě1 is convergent
and

ÿ

kě0

‖xk`1 ´ xk‖2 ă `8,

thus xk`1 ´ xk Ñ 0 as k Ñ `8.

We proved in (5.3.15), (5.3.17), (5.3.25) and (5.3.27) that for every k ě 1

1

σβ
‖yk`1 ´ yk‖2 ď

C0 ´ L

2
‖xk`1 ´ xk‖2 `

C1

2
‖xk ´ xk´1‖2

` T1 ‖A˚ pyk ´ yk´1q‖2 ´ T1 ‖A˚ pyk`1 ´ ykq‖2 .

Summing up the above inequality for k “ 1, . . . ,K, for K ą 1, we get

1

σβ

K
ÿ

k“1

‖yk`1 ´ yk‖2 ď
C0 ´ L

2

K
ÿ

k“1

‖xk`1 ´ xk‖2 `
C1

2

K
ÿ

k“1

‖xk ´ xk´1‖2

` T1 ‖A˚ py1 ´ y0q‖2 ´ T1 ‖A˚ pyK`1 ´ yKq‖2

ď
C0 ´ L

2

K
ÿ

k“1

‖xk`1 ´ xk‖2 `
C1

2

K
ÿ

k“1

‖xk ´ xk´1‖2

` T1 ‖A˚ py1 ´ y0q‖2 .
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We let K converge to `8 and conclude

σβ
ÿ

kě0

‖Axk`1 ´ zk`1‖2 “
1

σβ

ÿ

kě0

‖yk`1 ´ yk‖2 ă `8,

thus Axk`1´ zk`1 Ñ 0 and yk`1´ yk Ñ 0 as k Ñ `8. Since xk`1´ xk Ñ 0 as k Ñ `8,
it follows that zk`1 ´ zk Ñ 0 as k Ñ `8.

(iii) By using (5.3.40) and the fact that tykukě0 is bounded, it follows

Ψ˚ “ lim
kÑ`8

Ψk “ lim
kÑ`8

Lβ pxk, zk, ykq “ lim
kÑ`8

th pxkq ` g pzkqu ,

which is the desired statement.

The following lemmas provides upper estimates in terms of the iterates for limiting subgradi-
ents of the augmented Lagrangian and the regularized augmented Lagrangian Ψβ, respectively.

Lemma 5.3.6. Let Assumption 5.3.1 be satisfied and tpxk, zk, ykqukě0 be a sequence generated
by Algorithm 5.3.1 or Algorithm 5.3.2. For every k ě 0 we have

vk`1 :“
´

vk`1
x , vk`1

z , vk`1
y

¯

P BLβ pxk`1, zk`1, yk`1q , (5.3.41)

where

vk`1
x :“ C2 p∇h pxk`1q ´∇h pxkqq `A˚ pyk`1 ´ ykq `Mk

1 pxk ´ xk`1q , (5.3.42a)

vk`1
z :“ yk ´ yk`1 ` rA pxk ´ xk`1q `Mk

2 pzk ´ zk`1q , (5.3.42b)

vk`1
y :“

1

σβ
pyk`1 ´ ykq . (5.3.42c)

and

C2 :“

#

0, for Algorithm 5.3.1,

1, for Algorithm 5.3.2.

Moreover, for every k ě 0 it holds

|||vk`1||| ď C5 ‖xk`1 ´ xk‖` C6 ‖zk`1 ´ zk‖` C7 ‖yk`1 ´ yk‖ , (5.3.43)

where
C5 :“ C2L` µ1 ` β ‖A‖ , C6 :“ µ2, C7 :“ 1` ‖A‖` 1

σβ
.

Proof. Let k ě 0 be fixed. Applying the calculus rules of the limiting subdifferential, we obtain

∇xLβ pxk`1, zk`1, yk`1q “ ∇h pxk`1q `A
˚yk`1 ` rA

˚ pAxk`1 ´ zk`1q , (5.3.44a)

BzLβ pxk`1, zk`1, yk`1q “ Bg pzk`1q ´ yk`1 ´ r pAxk`1 ´ zk`1q , (5.3.44b)

∇yLβ pxk`1, zk`1, yk`1q “ Axk`1 ´ zk`1. (5.3.44c)

Then (5.3.42c) follows directly from (5.3.44c) and (5.3.1c), respectively, (5.3.2c), while (5.3.42b)
follows from

yk ` rpAxk ´ zk`1q `Mk
2 pzk ´ zk`1q P Bg pzk`1q ,

which is a consequence of the optimality criterion of (5.3.1a) and (5.3.2a), respectively. In order
to derive (5.3.42a), let us notice that for Algorithm 5.3.1 we have (see (5.3.8))

´A˚yk `Mk
1 pxk ´ xk`1q “ ∇h pxk`1q ` rA

˚ pAxk`1 ´ zk`1q , (5.3.45)
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while for Algorithm 5.3.2 we have (see (5.3.18))

´∇h pxkq ´A˚yk `Mk
1 pxk ´ xk`1q “ rA˚ pAxk`1 ´ zk`1q . (5.3.46)

By using (5.3.44a) we get the desired statement.
Relation (5.3.43) follows by combining the inequalities∥∥∥vk`1

x

∥∥∥ ď pC2L` µ1q ‖xk`1 ´ xk‖` ‖A‖ ¨ ‖yk`1 ´ yk‖ ,∥∥∥vk`1
z

∥∥∥ ď ‖yk ´ yk`1‖` β ‖A‖ ¨ ‖xk`1 ´ xk‖` µ2 ‖zk`1 ´ zk‖

and (5.1.2).

Lemma 5.3.7. Let Assumption 5.3.1 be satisfied and tpxk, zk, ykqukě0 be a sequence generated
by Algorithm 5.3.1 or Algorithm 5.3.2. For every k ě 0 we have

Dk`1 :“
´

Dk`1
x , Dk`1

z , Dk`1
y , Dk`1

x1 , Dk`1
y1

¯

P BΨβ pxk`1, zk`1, yk`1, xk, ykq (5.3.47)

where

Dk`1
x :“ vk`1

x ` C1 pxk`1 ´ xkq , Dk`1
z :“ vk`1

z , Dk`1
y :“ vk`1

y ` 2T1AA
˚ pyk`1 ´ ykq ,

Dk`1
x1 :“ ´C1 pxk`1 ´ xkq , Dk`1

y1 :“ ´2T1AA
˚ pyk`1 ´ ykq . (5.3.48)

Moreover, for every k ě 0 it holds

|||Dk`1||| ď C8 ‖xk`1 ´ xk‖` C9 ‖zk`1 ´ zk‖` C10 ‖yk`1 ´ yk‖ , (5.3.49)

where
C8 :“ 2C1 ` C5, C9 :“ C6, C10 :“ C7 ` 4T1 ‖A‖2 .

Proof. Let k ě 0 be fixed. Applying the calculus rules of the limiting subdifferential it follows

∇xΨβ pxk`1, zk`1, yk`1, xk, ykq :“ ∇xLβ pxk`1, zk`1, yk`1q ` C1 pxk`1 ´ xkq , (5.3.50a)

BzΨβ pxk`1, zk`1, yk`1, xk, ykq :“ BzLβ pxk`1, zk`1, yk`1q (5.3.50b)

∇yΨβ pxk`1, zk`1, yk`1, xk, ykq :“ ∇yLβ pxk`1, zk`1, yk`1q ` 2T1AA
˚ pyk`1 ´ ykq , (5.3.50c)

∇x1Ψβ pxk`1, zk`1, yk`1, xk, ykq :“ ´C1 pxk`1 ´ xkq , (5.3.50d)

∇y1Ψβ pxk`1, zk`1, yk`1, xk, ykq :“ ´2T1AA
˚ pyk`1 ´ ykq . (5.3.50e)

Then (5.3.47) follows directly from the above relations and (5.3.41). Inequality (5.3.49) follows
by combining ∥∥∥Dk`1

x

∥∥∥ ď ∥∥∥vk`1
x

∥∥∥` C1 ‖xk`1 ´ xk‖ ,∥∥∥Dk`1
y

∥∥∥ ď ∥∥∥vk`1
y

∥∥∥` 2T1 ‖A‖2 ¨ ‖yk`1 ´ yk‖ .

and (5.1.2).

The following result is a straightforward consequence of Lemma 5.3.3 and Lemma 5.3.7.

Corollary 5.3.8. Let Assumption 5.3.1 be satisfied and tpxk, zk, ykqukě0 be a sequence generated
by Algorithm 5.3.1 or Algorithm 5.3.2. Then the norm of Dk`1 P BΨβ pxk`1, zk`1, yk`1, xk, ykq
defined in the previous lemma verifies for every k ě 2 the following estimate

|||Dk`1||| ď C11 p‖xk`1 ´ xk‖` ‖xk ´ xk´1‖` ‖xk´1 ´ xk´2‖q
` C12 p‖A˚ pyk ´ yk´1q‖´ ‖A˚ pyk`1 ´ ykq‖q
` C13 p‖A˚ pyk´1 ´ yk´2q‖´ ‖A˚ pyk ´ yk´1q‖q , (5.3.51)

91



where

C11 :“ max

"

C8 ` C9 ‖A‖` C3C10 `
C3C9

σβ
,C4C10 `

C3C9

σβ
,
C4C9

σβ

*

,

C12 :“

ˆ

C10 `
C9

σβ

˙

T2, C13 :“
C9T2

σβ
.

In the following, we denote by ω
`

tukukě0

˘

the set of cluster points of the sequence tukukě0.

Lemma 5.3.9. Let Assumption 5.3.1 be satisfied and tpxk, zk, ykqukě0 be a sequence generated
by Algorithm 5.3.1 or Algorithm 5.3.2, which is assumed to be bounded. The following statements
are true:

(i) if
 `

xkq , zkq , ykq
˘(

qě0
is a subsequence of tpxk, zk, ykqukě0 which converges to ppx, pz, pyq as

q Ñ `8, then
lim
qÑ8
Lβ

`

xkq , zkq , ykq
˘

“ Lβ ppx, pz, pyq ;

(ii) it holds

ω
`

tpxk, zk, ykqukě0

˘

Ď crit pLβq
Ď tppx, pz, pyq P Hˆ G ˆ G : ´A˚py “ ∇h ppxq , py P Bg ppzq , pz “ Apxu ;

(iii) we have lim
kÑ`8

dist
“

pxk, zk, ykq , ω
`

tpxk, zk, ykqukě0

˘‰

“ 0;

(iv) the set ω
`

tpxk, zk, ykqukě0

˘

is nonempty, connected and compact;

(v) the function Lβ takes on ω
`

tpxk, zk, ykqukě0

˘

the value Ψ˚ “ limkÑ`8 Lβ pxk, zk, ykq, as
the objective function g ˝A` h does on the projection of the set ω

`

tpxk, zk, ykqukě0

˘

onto
the space H corresponding to the first component.

Proof. Let ppx, pz, pyq P ω
`

tpxk, zk, ykqukě0

˘

, which exists since we assumed tpxk, zk, ykqukě0 is
bounded. Let

 `

xkq , zkq , ykq
˘(

qě0
be a subsequence of txk, zk, ykukě0 converging to ppx, pz, pyq as

q Ñ `8.

(i) From either (5.3.1a) or (5.3.2a) we obtain for every q ě 1

g
`

zkq
˘

`
@

ykq´1, Axkq´1 ´ zkq
D

`
β

2

∥∥Axkq´1 ´ zkq
∥∥2
`

1

2

∥∥zkq ´ zkq´1

∥∥2

Mkq´1
2

ď g ppzq `
@

ykq´1, Axkq´1 ´ pz
D

`
β

2

∥∥Axkq´1 ´ pz
∥∥2
`

1

2

∥∥
pz ´ zkq´1

∥∥2

Mkq´1
2

.

Taking the limit superior on both sides of the above inequalities we get

lim sup
qÑ`8

g
`

zkq
˘

ď g ppzq ,

which, combined with the lower semicontinuity of g, leads to

lim
qÑ`8

g
`

zkq
˘

“ g ppzq .

Since h is continuous, we further obtain

lim
qÑ`8

Lβ
`

xkq , zkq , ykq
˘

“ lim
qÑ`8

„

g
`

zkq
˘

` h
`

xkq
˘

`
@

ykq , Axkq ´ zkq
D

`
β

2

∥∥Axkq ´ zkq∥∥2


“ g ppzq ` h ppxq ` xpy,Apx´ pzy `
β

2
‖Apx´ pz‖2 “ Lβ ppx, pz, pyq .
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(ii) For the sequence
 

dk
(

kě0
defined in (5.3.42a)-(5.3.42c) we have that dkq P BLβpxkq , zkq , ykqq

for every q ě 1 and dkq Ñ 0 as q Ñ `8, while
`

xkq , zkq , ykq
˘

Ñ ppx, pz, pyq and Lβ
`

xkq , zkq , ykq
˘

Ñ

Lβ ppx, pz, pyq as q Ñ `8. The closedness criterion of the limiting subdifferential guarantees that
0 P BLβ ppx, pz, pyq or, in other words, ppx, pz, pyq P crit pLβq. Choosing now an element ppx, pz, pyq P
crit pLβq it holds

0 “ ∇h ppxq `A˚py ` rA˚ pApx´ pzq

0 P Bg ppzq ´ py ´ r pApx´ pzq

0 “ Apx´ pz,

which is further equivalent to

´A˚py “ ∇h ppxq , py P Bg ppzq , pz “ Apx.

(iii)-(iv) The proof follows in the lines of the proof of Theorem 5 (ii)-(iii) in [36], also by taking
into consideration [36, Remark 5], according to which the properties in (iii) and (iv) are generic
for sequences satisfying pxk`1, zk`1, yk`1q ´ pxk, zk, ykq Ñ 0 as k Ñ `8, which is indeed the
case due to (5.3.40).

(v) The conclusion follows according to the first two statements of this theorem and of the third
statement of Theorem 5.3.5.

Remark 5.3.3. An element ppx, pz, pyq P Hˆ G ˆ G fulfilling

´A˚py “ ∇h ppxq , py P Bg ppzq , pz “ Apx

is a so-called KKT point of the optimization problem (5.1.1). For such a KKT point we have

0 “ A˚Bg pApxq `∇h ppxq . (5.3.52)

When A is injective this is further equivalent to

0 P Bpg ˝Aqppxq `∇h ppxq “ B pg ˝A` hq ppxq , (5.3.53)

in other words, px is a critical point of the optimization problem (5.1.1).
If the functions g and h are convex, then (5.3.52) and (5.3.53) are equivalent, which means

that px is a global optimal solution of the optimization problem (5.1.1). In this case, py is a global
optimal solution of the Fenchel dual problem of (5.1.1).

By combining Lemma 5.3.7, Theorem 5.3.5 and Lemma 5.3.9, one obtains the following
result.

Lemma 5.3.10. Let Assumption 5.3.1 be satisfied and tpxk, zk, ykqukě0 be a sequence generated
by Algorithm 5.3.1 or Algorithm 5.3.2, which is assumed to be bounded. Denote by

Ω :“ ω
`

tpxk, zk, yk, xk´1, yk´1qukě1

˘

.

The following statements are true:

(i) it holds
Ω Ď tppx, pz, py, px, pyq P Hˆ G ˆ G ˆHˆ G : ppx, pz, pyq P crit pLβqu ;

(ii) we have
lim

kÑ`8
dist rpxk, zk, yk, xk´1, yk´1q ,Ωs “ 0;

(iii) the set Ω is nonempty, connected and compact;

(iv) the regularized augmented Lagrangian Ψβ takes on Ω the value Ψ˚ “ limkÑ`8Ψk, as
the objective function g ˝ A ` h does on the projection of the set Ω onto the space H
corresponding to the first component.
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5.3.3 Convergence analysis under Kurdyka- Lojasiewicz assumptions

In this subsection we will prove global convergence for the sequence tpxk, zk, ykqukě0 generated
by the two nonconvex proximal ADMM algorithms in the context of K L property.

Working in the hypotheses of Lemma 5.3.10 we define for every k ě 1

Ek :“ Ψ pxk, zk, yk, xk´1, yk´1q ´Ψ˚ “ Ψk ´Ψ˚ ě 0,

where Ψ˚ is the limit of tΨkukě1 as k Ñ `8. The sequence tEkukě1 is monotonically decreasing
and it converges to 0 as k Ñ `8.

The next result shows that, if the regularization of the augmented Lagrangian Ψβ is a K L
function, then the sequence tpxk, zk, ykqukě0 converges to a KKT point of the optimization
problem (5.1.1).

Theorem 5.3.11. Let Assumption 5.3.1 be satisfied and tpxk, zk, ykqukě0 be a sequence gen-
erated by Algorithm 5.3.1 or Algorithm 5.3.2, which is assumed to be bounded. If Ψβ is a K L
function, then the following statements are true:

(i) the sequence tpxk, zk, ykqukě0 has finite length, namely,
ÿ

kě0

‖xk`1 ´ xk‖ ă `8,
ÿ

kě0

‖zk`1 ´ zk‖ ă `8,
ÿ

kě0

‖yk`1 ´ yk‖ ă `8;

(5.3.54)

(ii) the sequence tpxk, zk, ykqukě0 converges to a KKT point of the optimization problem (5.1.1).

Proof. As in Lemma 5.3.10, we denote by Ω :“ ω
`

tpxk, zk, yk, xk´1, yk´1qukě1

˘

, which is a
nonempty set. Let be ppx, pz, py, px, pyq P Ω, thus Ψβ ppx, pz, py, px, pyq “ Ψ˚. We have seen that
tEk “ Ψk ´ F˚ukě1 converges to 0 as k Ñ `8 and will consider, consequently, two cases.

We assume first that there exists an integer k1 ě 0 such that Ek1 “ 0 or, equivalently, Ψk1 “

Ψ˚. Due to the monotonicity of tEkukě1 it follows that Ek “ 0 or, equivalently, Ψk “ Ψ˚ for all
k ě k1. Combining the inequality in (5.3.39) with Lemma 5.3.3, it yields that xk`1´xk “ 0 for all
k ě k1`1. Using Lemma 5.3.3 (iii) and telescoping sum arguments, it yields

ÿ

kě0
‖yk`1 ´ yk‖ ă

`8. Finally, by using Lemma 5.3.3 (i), we obtain that
ÿ

kě0
‖zk`1 ´ zk‖ ă `8.

Consider now the case when Ek ą 0 or, equivalently, Ψk ą Ψ˚ for every k ě 1. According
to Lemma 2.3.1, there exist ε ą 0, η ą 0 and a desingularization function ϕ such that for every
element u in the intersection

tu P Hˆ G ˆ G ˆHˆ G : dist pu,Ωq ă εu X

tu P Hˆ G ˆ G ˆHˆ G : Ψ˚ ă Ψβ puq ă Ψ˚ ` ηu (5.3.55)

it holds
ϕ1 pΨβ puq ´Ψ˚q ¨ dist p0, BΨβ puqq ě 1.

Let be k1 ě 1 such that for every k ě k1

Ψ˚ ă Ψk ă Ψ˚ ` η.

Since lim
kÑ`8

dist rpxk, zk, yk, xk´1, yk´1q ,Ωs “ 0, see Lemma 5.3.10 (ii), there exists k2 ě 1 such

that for every k ě k2

dist rpxk, zk, yk, xk´1, yk´1q ,Ωs ă ε.

The element pxk, zk, yk, xk´1, yk´1q thus belongs to the intersection in (5.3.55) for every k ě
k0 :“ max tk1, k2, 3u, which further implies

ϕ1 pΨk ´Ψ˚q ¨ dist p0, BΨβ pxk, zk, yk, xk´1, yk´1qq

“ ϕ1 pEkq ¨ dist p0, BΨβ pxk, zk, yk, xk´1, yk´1qq ě 1. (5.3.56)
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Define for two arbitrary nonnegative integers p and q

∆p,q :“ ϕ pΨp ´Ψ˚q ´ ϕ pΨq ´Ψ˚q “ ϕ pEpq ´ ϕ pEqq .

For every K ě k0 ě 1 it holds
K
ÿ

k“k0

∆k,k`1 “ ∆k0,K`1 “ ϕ pEk0q ´ ϕ pEK`1q ď ϕ pEk0q ,

from which we get
ÿ

kě1

∆k,k`1 ă `8.

By combining Theorem 5.3.5 (i) with the concavity of ϕ we obtain for every k ě 1

∆k,k`1 “ ϕ pEkq ´ ϕ pEk`1q ě ϕ1 pEkq rEk ´ Ek`1s “ ϕ1 pEkq rΨk ´Ψk`1s

ě ϕ1 pEkq
C1

4
‖xk`1 ´ xk‖2 . (5.3.57)

The last relation combined with (5.3.56) imply

‖xk`1 ´ xk‖2 ď ϕ1 pEkq ¨ dist p0, BΨβ pxk, zk, yk, xk´1, yk´1qq ‖xk`1 ´ xk‖2

ď
4

C1
∆k,k`1 ¨ dist p0, BΨβ pxk, zk, yk, xk´1, yk´1qq @k ě k0.

By the arithmetic mean-geometric mean inequality and Corollary 5.3.8 we have that for
every k ě k0 and every ν ą 0

‖xk`1 ´ xk‖ ď
c

4

C1
∆k,k`1 ¨ dist p0, BΨβ pxk, zk, yk, xk´1, yk´1qq

ď
ν

C1
∆k,k`1 `

1

ν
dist p0, BΨβ pxk, zk, yk, xk´1, yk´1qq

ď
ν

C1
∆k,k`1 `

C11

ν
p‖xk ´ xk´1‖` ‖xk´1 ´ xk´2‖` ‖xk´2 ´ xk´3‖q

`
C12

ν
p‖A˚ pyk´1 ´ yk´2q‖´ ‖A˚ pyk ´ yk´1q‖q

`
C13

ν
p‖A˚ pyk´2 ´ yk´3q‖´ ‖A˚ pyk´1 ´ yk´2q‖q . (5.3.58)

We denote for every k ě 3

ak :“ ‖xk ´ xk´1‖ ě 0,

dk :“
ν

C1
∆k,k`1 `

C12

ν
p‖A˚ pyk´1 ´ yk´2q‖´ ‖A˚ pyk ´ yk´1q‖q

`
C13

ν
p‖A˚ pyk´2 ´ yk´3q‖´ ‖A˚ pyk´1 ´ yk´2q‖q .

The inequality (5.3.58) is nothing than (2.4.6) with χ0 “ χ1 “ χ2 :“
C11

ν
. Observe that for

every K ě k0 we have
K
ÿ

k“k0

δk ď
ν

C1
ϕ pEk0q `

C12

ν
‖A˚ pyk0´1 ´ yk0´2q‖`

C13

ν
‖A˚ pyk0´2 ´ yk0´3q‖

and thus, by choosing ν ą 3C11, we can use Lemma 2.4.4 to conclude that
ÿ

kě0

‖xk`1 ´ xk‖ ă `8.

The other two statements in (5.3.54) follow from Lemma 5.3.3. This means that the sequence
tpxk, zk, ykqukě0 is Cauchy, thus it converges to an element ppx, pz, pyq which is, according to
Lemmas 5.3.9, a KKT point of the optimization problem (5.1.1).
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Remark 5.3.4. The function Ψβ is a K L function if, for instance, the objective function of
(5.1.1) is semi-algebraic, which is the case when the functions g and h are semi-algebraic.

5.4 Convergence rates under  Lojasiewicz assumptions

In this section we derive convergence rates for the sequence tpxk, zk, ykqukě0 generated by Al-
gorithm 5.3.1 or Algorithm 5.3.2 as well as for the regularized augmented Lagrangian function
Ψβ along this sequence, provided that the latter satisfies the  Lojasiewicz property.

If Assumption 5.3.1 is fulfilled and tpxk, zk, ykqukě0 is the sequence generated by Algorithm
5.3.1 or Algorithm 5.3.2, assumed to be bounded, then, as seen in Lemma 5.3.10, the set of
cluster points Ω “ ω

`

tpxk, zk, yk, xk´1, yk´1qukě0

˘

is nonempty, compact and connected and Ψβ

takes on Ω the value Ψ˚; in addition, for every ppx, pz, py, px, pyq P Ω, ppx, pz, pyq belongs to crit pLβq.
Then there exist CL ą 0, θ P r0, 1q and ε ą 0 such that∣∣Ψβ

`

x, z, y, x1, y1
˘

´Ψ˚
∣∣θ ď CL ¨ dist

`

0, BΨβ

`

x, z, y, x1, y1
˘˘

@
`

x, z, y, x1, y1
˘

P B pppx, pz, py, px, pyq , εq . (5.4.1)

In this case, Ψβ is said to satisfy the  Lojasiewicz property with  Lojasiewicz constant CL ą 0
and  Lojasiewicz exponent θ P r0, 1q.

We will address convergence rates for Algorithm 5.3.1 and Algorithm 5.3.2 in the context of
an assumption which is slightly more restricitve than Assumption 5.3.1.

Assumption 5.4.1. We work in the hypotheses of Assumption 5.3.1 except for (5.3.4) which
is replaced by

2Mk
1 ` βA

˚A ě

ˆ

L`
C 1M
β

˙

Id @k ě 0, (5.4.2)

where

C 1M :“

$

&

%

´

10µ2
1 ` 8 pL` µ1q

2
¯

T0, for Algorithm 5.3.1,
´

8µ2
1 ` 10 pL` µ1q

2
¯

T0, for Algorithm 5.3.2.

The condition (5.4.2) is nothing else than (5.3.4) after replacing CM by the bigger constant
C 1M.

The examples in Example 5.3.1 can be all adapted to the new setting and one can provide
different settings which guarantee Assumption 5.4.1. The scenarios which ensure Assumption
5.4.1 evidently satisfy Assumption 5.3.1, too, therefore the results investigated in Section 5.3
remain valid in this setting. As follows we will provide improvements of the statements used in
the convergence analysis which follow thanks to Assumption 5.4.1.

Lemma 5.4.1. Let Assumption 5.3.1 be satisfied and tpxk, zk, ykqukě0 be a sequence generated
by Algorithm 5.3.1 or Algorithm 5.3.2. Then for every k ě 1 it holds

Lβ pxk`1, zk`1, yk`1q ` 2T1 ‖A˚ pyk`1 ´ ykq‖2 `
1

2
‖xk`1 ´ xk‖2Mk

3
`

1

2
‖zk`1 ´ zk‖2Mk

2

`
1

σβ
‖yk`1 ´ yk‖2

ď Lβ pxk, zk, ykq ` 2T1 ‖A˚ pyk ´ yk´1q‖2 ` C1 ‖xk ´ xk´1‖2 . (5.4.3)

Proof. Let k ě 1 be fixed. By the same arguments as in Lemma 5.3.2, we have that (see (5.3.6))

Lβ pxk`1, zk`1, yk`1q `
1

2
‖xk`1 ´ xk‖22Mk

1`βA
˚A ´

L

2
‖xk`1 ´ xk‖2 `

1

2
‖zk`1 ´ zk‖2Mk

2

ď Lβ pxk, zk, ykq `
1

σβ
‖yk`1 ´ yk‖2 . (5.4.4)
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From (5.3.15), (5.3.17), (5.3.25) and (5.3.27) it follows that

1

σβ
‖yk`1 ´ yk‖2 ď

C0 ´ L

2
‖xk`1 ´ xk‖2 `

C1

2
‖xk ´ xk´1‖2`

T1 ‖A˚ pyk ´ yk´1q‖2 ´ T1 ‖A˚ pyk`1 ´ ykq‖2 . (5.4.5)

By multiplying (5.4.5) by 2 and by adding the resulting inequality to (5.4.4) we obtain (5.4.3).

We replace T1 with 2T1 in the definition of the regularized augmented Lagrangian Ψβ, thus,
the sequence tΨkukě1 in (5.3.36) becomes

Ψk :“ Lβ pxk, zk, ykq ` 2T1 ‖A˚ pyk ´ yk´1q‖2 ` C1 ‖xk ´ xk´1‖2 @k ě 1.

In this new context the inequality (5.4.3) reads for every k ě 1

Ψk`1 `
C1

4
‖xk`1 ´ xk‖2 `

1

2
‖zk`1 ´ zk‖2Mk

2
`

1

σβ
‖yk`1 ´ yk‖2 ď Ψk (5.4.6)

and provides an inequality which is tighter than relation (5.3.39) in Theorem 5.3.5. Further-
more, for a subgradient Dk`1 of Ψβ at pxk`1, zk`1, yk`1, xk, zkq defined as in (5.3.48) (again by
replacing T1 by 2T1) we obtain for every k ě 2 the following estimate, which is simpler than
(5.3.51) in Corollary 5.3.8

|||Dk`1||| ď C14 ‖xk`1 ´ xk‖` C15 ‖yk`1 ´ yk‖` C16 ‖yk ´ yk´1‖ ,

where
C14 :“ C8 ` C9 ‖A‖ , C15 :“ C10 `

C9

σβ
, C16 :“

C9

σβ
.

This improvement provides, instead of inequality (5.3.57) in the proof of Theorem 5.3.11,
the following very useful estimate

∆k,k`1 “ ϕ pEkq ´ ϕ pEk`1q ě ϕ1 pEkqmin

"

C1

4
,

1

σβ

*

´

‖xk`1 ´ xk‖2 ` ‖yk`1 ´ yk‖2
¯

ě C17ϕ
1 pEkq p‖xk`1 ´ xk‖` ‖yk`1 ´ yk‖q2 ,

where

C17 :“
1

2
min

"

C1

4
,

1

σβ

*

.

The last relation together with (5.3.56) imply that for every k ě k0

p‖xk`1 ´ xk‖` ‖yk`1 ´ yk‖q2 ď
∆k,k`1

C17
¨ dist p0, BΨβ pxk, zk, yk, xk´1, yk´1qq

and from here, for arbitrary ν ą 0,

‖xk`1 ´ xk‖` ‖yk`1 ´ yk‖

ď
ν∆k,k`1

4C17
`

max tC14, C15u

ν
p‖xk ´ xk´1‖` ‖yk ´ yk´1‖` ‖yk´1 ´ yk´2‖q

ď
ν∆k,k`1

4C17
`

max tC14, C15u

ν
p‖xk ´ xk´1‖` ‖yk ´ yk´1‖` ‖xk´1 ´ xk´2‖` ‖yk´1 ´ yk´2‖q .

(5.4.7)

By denoting

ak :“ p‖xk ´ xk´1‖` ‖yk ´ yk´1‖q ě 0 and dk :“
ν∆k,k`1

4C17
,
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inequality (5.4.7) can be rewritten for every k ě k0 as

ak`1 ď χ0 ¨ ak ` χ1 ¨ ak´1 ` dk, (5.4.8)

where

χ0 :“
max tC14, C15u

ν
and χ1 :“

max tC14, C15u

ν
.

Choosing ν ą 2 max tC14, C15u, Lemma 2.4.4 and Lemma 5.3.3 imply that tpxk, zk, ykqukě0 has
finite length (see (5.3.54)).

Next we prove a recurrence inequality for the sequence tEkukě0.

Lemma 5.4.2. Let Assumption 5.4.1 be satisfied and tpxk, zk, ykqukě0 be a sequence generated
by Algorithm 5.3.1 or Algorithm 5.3.2, which is assumed to be bounded. If Ψβ satisfies the
 Lojasiewicz property with  Lojasiewicz constant CL ą 0 and  Lojasiewicz exponent θ P r0, 1q,
then there exists k0 ě 1 such that the following estimate holds for every k ě k0

Ek´1 ´ Ek`1 ě C19E2θ
k`1, where C19 :“

min

"

C1

4
,

1

σβ

*

3C2
L max tC14, C15u

2 . (5.4.9)

Proof. For every k ě 2 we obtain from (5.4.6)

Ek´1 ´ Ek`1 “ Ψk´1 ´Ψk `Ψk ´Ψk`1

ě min

"

C1

4
,

1

σβ

*

´

‖xk`1 ´ xk‖2 ` ‖yk`1 ´ yk‖2 ` ‖yk ´ yk´1‖2
¯

ě
1

3
min

"

C1

4
,

1

σβ

*

p‖xk`1 ´ xk‖` ‖yk`1 ´ yk‖` ‖yk ´ yk´1‖q2

ě C19C
2
L|||D

k`1|||
2.

Let ε ą 0 be such that (5.4.1) is fulfilled and choose k0 ě 1 such that pxk`1, zk`1, yk`1q belongs
to B pppx, pz, pyq , εq for every k ě k0. Then (5.4.1) implies (5.4.9) for every k ě k0.

The following convergence rates follow by combining Lemma 2.4.5 with Lemma 5.4.2.

Theorem 5.4.3. Let Assumption 5.4.1 be satisfied and tpxk, zk, ykqukě0 be a sequence generated
by Algorithm 5.3.1 or Algorithm 5.3.2, which is assumed to be bounded. If Ψβ satisfies the
 Lojasiewicz property with  Lojasiewicz constant CL ą 0 and  Lojasiewicz exponent θ P r0, 1q,
then the following statements are true:

(i) if θ “ 0, then tΨkukě1 converges in finite time;

(ii) if θ P p0, 1{2s, then there exist k0 ě 1, pC0 ą 0 and Q P r0, 1q such that for every k ě k0

0 ď Ψk ´Ψ˚ ď pC0Q
k;

(iii) if θ P p1{2, 1q, then there exist k0 ě 3 and pC1 ą 0 such that for every k ě k0

0 ď Ψk ´Ψ˚ ď pC1 pk ´ 1q
´

1

2θ ´ 1 .

The next lemma will play an importat role when transferring the convergence rates for
tΨkukě0 to the sequence of iterates tpxk, zk, ykqukě0 (see [83] for a similar statement).
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Lemma 5.4.4. Let Assumption 5.4.1 be satisfied and tpxk, zk, ykqukě0 be a sequence generated
by Algorithm 5.3.1 or Algorithm 5.3.2, which is assumed to be bounded. Suppose further that
Ψβ satisfies the  Lojasiewicz property with  Lojasiewicz constant CL ą 0,  Lojasiewicz exponent
θ P r0, 1q and desingularization function

ϕ : r0,`8q Ñ r0,`8q, ϕ psq :“
1

1´ θ
CLs

1´θ.

Let ppx, pz, pyq be the KKT point of the optimization problem (5.1.1) to which tpxk, zk, ykqukě0

converges as k Ñ `8. Then there exists k0 ě 2 such that the following estimates hold for every
k ě k0

‖xk ´ px‖ ď C20 max
!

a

Ek, ϕ pEkq
)

, where C20 :“
7

?
C17

`
1

C17
, (5.4.10a)

‖yk ´ py‖ ď C21 max
!

a

Ek, ϕ pEkq
)

, where C21 :“
7

2
?
C17

`
1

2C17
, (5.4.10b)

‖zk ´ pz‖ ď C22 max
!

a

Ek´1, ϕ pEk´1q

)

, where C22 :“ C20 ‖A‖`
2C21

σβ
. (5.4.10c)

Proof. We assume that Ek ą 0 for every k ě 0. Otherwise, beginning with a given index,
the sequence tpxk, zk, ykqukě0 becomes identical to ppx, pz, pyq and the conclusion follows as in the
proof of Theorem 5.3.11. Let ε ą 0 be such that (5.4.1) is fulfilled and k0 ě 2 such that
pxk`1, zk`1, yk`1q belongs to B pppx, pz, pyq , εq for every k ě k0. We fix k ě k0. One can easily
notice that

‖xk ´ px‖ ď ‖xk`1 ´ xk‖` ‖xk`1 ´ px‖ ď ¨ ¨ ¨ ď
ÿ

lěk

‖xl`1 ´ xl‖ (5.4.11a)

and, similarly,

‖zk ´ pz‖ ď
ÿ

lěk

‖zl`1 ´ zl‖ and ‖yk ´ py‖ ď
ÿ

lěk

‖yl`1 ´ yl‖ . (5.4.11b)

Recall that the inequality (5.4.7) can be rewritten as (5.4.8). For ν :“ 3 max tC14, C15u ą

2 max tC14, C15u, thanks to Lemma 2.4.4 and the estimate (5.4.6), we have that
ÿ

lěk

‖xl`1 ´ xl‖ “
ÿ

lěk

al`1
1 “

ÿ

lěk`1

al1

ď ‖xk`1 ´ xk‖` 2 ‖xk`2 ´ xk`1‖` 3 ‖xk`3 ´ xk`2‖` 2 ‖yk`1 ´ yk‖

` 2 ‖yk`2 ´ yk`1‖` 3 ‖yk`3 ´ yk`2‖`
ϕ pEkq
C17

ď
2

?
C17

a

Ψk ´Ψk`1 `
2

?
C17

a

Ψk`1 ´Ψk`2 `
3

?
C17

a

Ψk`2 ´Ψk`3 `
ϕ pEkq
C17

ď
2

?
C17

a

Ek `
2

?
C17

a

Ek`1 `
3

?
C17

a

Ek`2 `
ϕ pEkq
C17

and, similarly,

ÿ

lěk

‖yl`1 ´ yl‖ ď
1

?
C17

a

Ek `
1

?
C17

a

Ek`1 `
3

2
?
C17

a

Ek`2 `
ϕ pEkq
2C17

.

By taking into account the relations above, (5.4.11a)-(5.4.11b) as well as
a

Ek`2 ď
a

Ek`1 ď
a

Ek and ϕ pEk`1q ď ϕ pEkq @k ě 1,

the estimates (5.4.10a) and (5.4.10b) follow. Statement (5.4.10c) follows from Lemma 5.3.3 and
by considering (5.4.11b).
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We provide now convergence rates for the sequence tpxk, zk, ykqukě0.

Theorem 5.4.5. Let Assumption 5.4.1 be satisfied and tpxk, zk, ykqukě0 be a sequence gener-
ated by Algorithm 5.3.1 or Algorithm 5.3.2, which is assumed to be bounded. Suppose further
that Ψβ satisfies the  Lojasiewicz property with  Lojasiewicz constant CL ą 0 and  Lojasiewicz
exponent θ P r0, 1q. Let ppx, pz, pyq be the KKT point of the optimization problem (5.1.1) to which
tpxk, zk, ykqukě0 converges as k Ñ `8. Then the following statements are true:

(i) if θ “ 0, then the algorithms converge in finite time;

(ii) if θ P p0, 1{2s, then there exist k0 ě 1, pC0,1, pC0,2, pC0,3 ą 0 and pQ P r0, 1q such that for
every k ě k0

‖xk ´ px‖ ď pC0,1
pQk, ‖yk ´ py‖ ď pC0,2

pQk, ‖zk ´ pz‖ ď pC0,3
pQk;

(iii) if θ P p1{2, 1q, then there exist k0 ě 3 and pC1,1, pC1,2, pC1,3 ą 0 such that for every k ě k0

‖xk ´ px‖ ď pC1,1 pk ´ 1q´
1´θ
2θ´1 , ‖yk ´ py‖ ď pC1,2 pk ´ 1q´

1´θ
2θ´1 ,

‖zk ´ pz‖ ď pC1,3 pk ´ 2q´
1´θ
2θ´1 .

Proof. By denoting ϕ : r0,`8q Ñ r0,`8q, ϕ psq :“
1

1´ θ
CLs

1´θ, the desingularization func-

tion, there exist k10 ě 2 such that for every k ě k10 the inequalities (5.4.10a)-(5.4.10c) in Lemma

5.4.4 and Ek ď
ˆ

1

1´ θ
CL

˙
2

2θ´1

hold.

(i) If θ “ 0, then tΨkukě1 converges in finite time. According to (5.4.6), the sequences tpxkqukě0

and tpykqukě0 converge also in finite time. Further, by Lemma 5.3.3, it follows that tpzkqukě0

converges in finite time, too. In other words, starting from a given index, the sequence
tpxk, zk, ykqukě0 becomes identical to ppx, pz, pyq and the conclusion follows.

(ii) If θ P p0, 1{2s, then
1

1´ θ
CLE1´θ

k ď
?
Ek, for every k ě k10, which implies that

max
!

a

Ek, ϕ pEkq
)

“
a

Ek.

By Theorem 5.4.3, there exist k20 ě 1, pC0 ą 0 and Q P r0, 1q such that for pQ :“ Q

k

2 and every
k ě k20 it holds

a

Ek ď
b

pC0Q
k
2 “

b

pC0
pQk.

The conclusion follows from Lemma 5.4.4 for k0 :“ maxtk10, k
2
0u, by noticing that

a

Ek´1 ď

b

pC0Q
k´1
2 “

d

pC0

Q
pQk and

a

Ek´2 ď

b

pC0Q
k´2
2 “

b

pC0

Q
pQk@k ě k0.

(iii) If θ P p1{2, 1q, then E
1

2
k ď

1

1´ θ
CLE1´θ

k , for every k ě k10, which implies that

max
!

a

Ek, ϕ pEkq
)

“ ϕpEkq “
1

1´ θ
CLE1´θ

k .

By Theorem 5.4.3, there exist k20 ě 3 and pC1 ą 0 such that for all k ě k20

1

1´ θ
CLE1´θ

k ď
1

1´ θ
CL pC

1´θ
1 pk ´ 2q´

1´θ
2θ´1 .

The conclusion follows again for k0 :“ maxtk10, k
2
0u from Lemma 5.4.4.
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Remark 5.4.1. For σ “ 1 the same convergence rates can be obtained under the original
Assumption 5.3.1. Indeed, when σ “ 1 we have that T1 “ 0 and, as a consequence, the
sequence tΨkukě1 defined in (5.3.36) becomes

Ψk “ Lβ pxk, zk, ykq ` C1 ‖xk ´ xk´1‖2 @k ě 1.

In addition, the inequality (5.3.30) simplifies to

‖yk`1 ´ yk‖ ď C3 ‖xk`1 ´ xk‖` C4 ‖xk ´ xk´1‖ @k ě 1,

as T2 is equal to 0. Combining this inequality with (5.3.28) and, by taking into account Lemma
5.3.7, we obtain (instead of (5.3.51))

|||Dk`1||| ď C11 p‖xk`1 ´ xk‖` ‖xk ´ xk´1‖` ‖xk´1 ´ xk´2‖q @k ě 2.

Consequently, for every k ě 3 we have that

Ek´2 ´ Ek`1 “ Ψk´2 ´Ψk´1 `Ψk´1 ´Ψk `Ψk ´Ψk`1

ě
C1

4

´

‖xk´1 ´ xk´2‖2 ` ‖xk ´ xk´1‖2 ` ‖xk`1 ´ xk‖2
¯

ě
C1

12
p‖xk´1 ´ xk´2‖` ‖xk ´ xk´1‖` ‖xk`1 ´ xk‖q2

ě
C1

12C2
11

|||Dk`1|||
2.

Let ε ą 0 be such that (5.4.1) is fulfilled and k0 ě 3 such that pxk`1, zk`1, yk`1q belongs to
the open ball B pppx, pz, pyq , εq for every k ě k0. Then (5.4.1) implies that for every k ě k0

Ek´2 ´ Ek`1 ě C23Ek`1, where C23 :“
C1

12C2
LC

2
11

,

which is the key inequality for deriving convergence rates, as we have seen above.

5.5 Further perspectives

An interesting future research direction would be to find a setting in which convergence can
be provided by avoiding the surjectivity assumption on A. One can also consider an inertial
variant of (5.1.1), in order to find a setting where improvements of the convergence rates can
be achieved from both theoretical and numerical perspectives.

Another challenging question is to extend the approach in this chapter to problems of the
form

min
xPH

tf pxq ` g pAxq ` h pxqu ,

where f : H Ñ R Y t`8u is a proper and lower semicontinuous function. A major challenge
will be to guarantee the boundedness of the sequence of iterates in the presence of another
nonsmooth summand.

Another possibility is to go beyond the setting of compositions with linear operators. Bolte,
Sabach and Teboulle have proposed in [37] a generic iterative scheme for solving a general
optimization problem of the form (5.1.1) but by replacing the linear operator A with a general
nonlinear continuously differentiable operator. A global convergence analysis relying on the use
of the Kurdyka- Lojasiewicz property is carried out under so-called uniform regularity condition
imposed on the nonlinear operator. This condition reduces to surjectivity when the operator
is linear. Another approach has been studied by Drusvyatskiy and Paquette in [77], but the
proposed scheme is not stated in the full splitting spirit.
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Chapter 6

A proximal minimization algorithm
for nonconvex and nonsmooth
problems with block structured
coupled by a smooth function

This chapter follows our work [52].
We propose a proximal algorithm for minimizing objective functions consisting of three

summands: the composition of a nonsmooth function with a linear operator, another nonsmooth
function, each of the nonsmooth summands depending on an independent block variable, and
a smooth function which couples the two block variables. This can be seen as an extension of
the model in [36]. The algorithm is a full splitting method, which means that the nonsmooth
functions are processed via their proximal operators, the smooth function via gradient steps,
and the linear operator via matrix times vector multiplication. We provide sufficient conditions
for the boundedness of the generated sequence and prove that any cluster point of the latter is a
KKT point of the minimization problem. In the setting of the Kurdyka- Lojasiewicz property we
show global convergence, and derive convergence rates for the iterates in terms of the  Lojasiewicz
exponent.

6.1 Problem formulation and motivation

Let H,G and K be real finite-dimensional Hilbert spaces. In this chapter we propose a full
splitting algorithm for solving nonconvex and nonsmooth problems of the form

min
px,yqPHˆK

tf pAxq ` g pyq ` h px, yqu , (6.1.1)

where f : G Ñ RYt`8u and g : KÑ RYt`8u are proper and lower semicontinuous functions,
h : H ˆ K Ñ R is a Fréchet differentiable function with Lipschitz continuous gradient, and
A : H Ñ G is a linear operator. Neither for the nonsmooth nor for the smooth functions
convexity is assumed.

In case H “ G and A is the identity operator, Bolte, Sabach and Teboulle formulated in [36],
also in the nonconvex setting, a proximal alternating linearization method (PALM) for solving
(6.1.1). PALM is a proximally regularized variant of the Gauss-Seidel alternating minimization
scheme and basically consists of two proximal-gradient steps. It had a significant impact in the
optimization community, as it can be used to solve a large variety of nonconvex and nonsmooth
problems arising in applications such as: matrix factorization, image deblurring and denoising,
the feasibility problem, compressed sensing, etc. An inertial version of PALM has been proposed
by Pock and Sabach in [115].
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A naive approach of PALM for solving (6.1.1) would require the calculation of the proximal
operator of the function f ˝ A, for which, in general, even in the convex case, a closed formula
is not available. In the last decade, an impressive progress can be noticed in the field of primal-
dual/proximal ADMM algorithms, designed to solve convex optimization problems involving
compositions with linear operators in the spirit of the full splitting paradigm. One of the pillars
of this development is the conjugate duality theory which is available for convex optimization
problems.

The algorithm which we propose in this chapter for solving the nonconvex and nonsmooth
problem(6.1.1) is a full splitting scheme, too; the nonsmooth functions are processed via their
proximal operators, the smooth function via gradient steps, and the linear operator via matrix
times vector multiplication. In case g pyq “ 0 and h px, yq “ h pxq for any px, yq P HˆK, where
h : HÑ R is a Fréchet differentiable function with Lipschitz continuous gradient, it furnishes a
full splitting iterative scheme for solving the nonsmooth and nonconvex optimization problem

min
xPH

tf pAxq ` h pxqu . (6.1.2)

Splitting algorithms for solving problems of the form (6.1.2) have been considered in [96], under
the assumption that h is twice continuously differentiable with bounded Hessian, in [128], under
the assumption that one of the summands is convex and continuous on its effective domain, and
in [56], as a particular case of a general nonconvex proximal ADMM algorithm. We would like
to mention in this context also [37] for the case when A is nonlinear.

The convergence analysis we will carry out in this chapter relies on a descent inequality, which
we prove for a regularization of the augmented Lagrangian Lβ : HˆK ˆ G ˆ G Ñ RY t`8u

Lβ px, y, z, uq “ f pzq ` g pyq ` h px, yq ` xu,Ax´ zy `
β

2
‖Ax´ z‖2 , β ą 0,

associated with problem (6.1.1). This is obtained by an appropriate tuning of the parameters
involved in the description of the algorithm. In addition, we provide sufficient conditions in
terms of the input functions f, g and h for the boundedness of the generated sequence of iterates.
We also show that any cluster point of this sequence is a KKT point of the optimization problem
(6.1.1). By assuming that the above-mentioned regularization of the augmented Lagrangian
satisfies the Kurdyka- Lojasiewicz property, we prove global convergence. If this function satisfies
the  Lojasiewicz property, then we can even derive convergence rates for the sequence of iterates
formulated in terms of the  Lojasiewicz exponent. For similar approaches relying on the use of the
Kurdyka- Lojasiewicz property in the proof of the global convergence of nonconvex optimization
algorithms we refer to the papers of Attouch and Bolte [5], Attouch, Bolte and Svaiter [8], and
Bolte, Sabach and Teboulle [36].

6.2 The algorithm

The numerical algorithm we propose for solving (6.1.1) has the following formulation.

Algorithm 6.2.1. Let µ, β, τ ą 0 and 0 ă σ ď 1. For a given starting point px0, y0, z0, u0q P

HˆK ˆ G ˆ G generate the sequence tpxk, yk, zk, ukqukě0 for any k ě 0 as follows

yk`1 P arg min
yPK

!

g pyq ` x∇yh pxk, ykq , yy `
µ

2
‖y ´ yk‖2

)

(6.2.1a)

zk`1 P arg min
zPG

"

f pzq ` xuk, Axk ´ zy `
β

2
‖Axk ´ z‖2

*

(6.2.1b)

xk`1 :“ xk ´ τ
´1 p∇xh pxk, yk`1q `A

˚uk ` βA
˚ pAxk ´ zk`1qq (6.2.1c)

uk`1 :“ uk ` σβ pAxk`1 ´ zk`1q . (6.2.1d)
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In view of the proximal point, the iterative scheme (6.2.1a) - (6.2.1d) reads for every k ě 0

yk`1 P proxµ´1g

`

yk ´ µ
´1∇yh pxk, ykq

˘

zk`1 P proxβ´1f

`

Axk ` β
´1uk

˘

xk`1 :“ xk ´ τ
´1 p∇xh pxk, yk`1q `A

˚uk ` βA
˚ pAxk ´ zk`1qq

uk`1 :“ uk ` σβ pAxk`1 ´ zk`1q .

One can notice the full splitting character of Algorithm 6.2.1 and also that the first two steps
can be performed in parallel.

Remark 6.2.1. (i) In case g pyq “ 0 and h px, yq “ h pxq for any px, yq P H ˆ K, where H :
HÑ R is a Fréchet differentiable function with Lipschitz continuous gradient, Algorithm
6.2.1 gives rise to an iterative scheme which has been proposed in [56] for solving the
optimization problem (6.1.2). This reads for any k ě 0

zk`1 P proxβ´1f

`

Axk ` β
´1uk

˘

xk`1 :“ xk ´ τ
´1 p∇xh pxkq `A˚uk ` βA˚ pAxk ´ zk`1qq

uk`1 :“ uk ` σβ pAxk`1 ´ zk`1q .

(ii) In case H “ G and A “ Id is the identity operator on H, Algorithm 6.2.1 gives rise to an
iterative scheme for solving

min
px,yqPHˆK

tf pxq ` g pyq ` h px, yqu , (6.2.2)

which reads for any k ě 0

yk`1 P proxµ´1g

`

yk ´ µ
´1∇yh pxk, ykq

˘

zk`1 P proxβ´1f

`

xk ` β
´1uk

˘

xk`1 :“ xk ´ τ
´1 p∇xh pxk, yk`1q ` uk ` β pxk ´ zk`1qq

uk`1 :“ uk ` σβ pxk`1 ´ zk`1q .

This algorithm provides an alternative to PALM ([36]) for solving optimization problems
of the form (6.2.2). We will give more detail in the next r emark.

(iii) In case H “ G, A “ Id, f pxq “ 0 and h px, yq “ h pyq for any px, yq P H ˆ K, where H :
KÑ R is a Fréchet differentiable function with Lipschitz continuous gradient, Algorithm
6.2.1 gives rise to an iterative scheme for solving

min
yPK

tg pyq ` h pyqu , (6.2.3)

which reads for any k ě 0

yk`1 P proxµ´1g

`

yk ´ µ
´1∇h pykq

˘

,

and is nothing else than the proximal-gradient method. An inertial version of the proximal-
gradient method for solving (6.2.3) in the fully nonconvex setting has been considered in
[51].

Remark 6.2.2. Recall that the Proximal Alternating Linearized Minimization algorithm (or
PALM) considered by Bolte, Sabach and Teboulle in [36], is designed to tackle the optimization
problem (6.2.2) and it reads for every k ě 0

yk`1 P proxµ´1g

`

yk ´ µ
´1∇yh pxk, ykq

˘

zk`1 P proxτ´1f

`

xk ` τ
´1uk∇xh pxk, yk`1q

˘

.
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Since the introduction of this algorithm, it hreceived a massive amount of attention due to
its effectiveness and simplicity, while it still covers many fields of applications. It is, however,
probably not a suitable scheme for (6.1.1) since it requires the calculation of the proximal
operator of the function f ˝ A, for which, in general, even in the convex case, a closed formula
is not available.

Assumption 6.2.1. In [36], the authors considered the convergence analysis under the following
assumption:

(i) the functions f, g and f ` g ` h are bounded from below;

(ii) for any fixed y P K there exists L1pyq ě 0 such that∥∥∇xh px, yq ´∇xh `x1, y˘∥∥ ď L1 pyq
∥∥x´ x1∥∥ @x, x1 P H, (6.2.4a)

and for any fixed x P H there exist L2pxq ě 0 such that∥∥∇yh px, yq ´∇yh `x, y1˘∥∥ ď L2 pxq
∥∥y ´ y1∥∥ @y, y1 P K; (6.2.4b)

(iii) there exist Li,` ą 0, i “ 1, 2, such that

sup
kě0

L1 pykq ď L1,`, sup
kě0

L2 pxkq ď L2,`; (6.2.5)

(iv) ∇H is Lipschitz continuous with constant L ą 0 on a convex bounded subset B1 ˆ B2 Ď

HˆK containing tpxk, ykqukě0. In other words, for any px, yq , px1, y1q P B1 ˆB2 it holds

|||
`

∇xh px, yq ´∇xh
`

x1, y1
˘

,∇yh px, yq ´∇yh
`

x1, y1
˘˘

||| ď L|||px, yq ´
`

x1, y1
˘

|||. (6.2.6)

Together further with the K L property, it was shown that the sequence tpxk, ykqukě1 con-
verges to a critical point of (6.2.2). In the following, one can see that we will derive our
convergence analysis under assumptionsof a similar flavors.

6.2.1 A descent inequality

We will start with the convergence analysis of Algorithm 6.2.1 by proving a descent inequality,
which will play a fundamental role in our investigations. We will analyse Algorithm 6.2.1 under
the following assumptions, which we will be later even weakened.

Assumption 6.2.2. (i) the functions f, g and h are bounded from below;

(ii) the linear operator A is surjective;

(iii) for any fixed y P K there exists L1pyq ě 0 such that∥∥∇xh px, yq ´∇xh `x1, y˘∥∥ ď L1 pyq
∥∥x´ x1∥∥ @x, x1 P H, (6.2.7a)

and for any fixed x P H there exist L2pxq, L3pxq ě 0 such that∥∥∇yh px, yq ´∇yh `x, y1˘∥∥ ď L2 pxq
∥∥y ´ y1∥∥ @y, y1 P K, (6.2.7b)∥∥∇xh px, yq ´∇xh `x, y1˘∥∥ ď L3 pxq
∥∥y ´ y1∥∥ @y, y1 P K; (6.2.7c)

(iv) there exist Li,` ą 0, i “ 1, 2, 3, such that

sup
kě0

L1 pykq ď L1,`, sup
kě0

L2 pxkq ď L2,`, sup
kě0

L3 pxkq ď L3,`. (6.2.8)
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Remark 6.2.3. Some comments on Assumption 6.2.2 are in order.

(i) Assumption (i) ensures that the sequence generated by Algorithm 6.2.1 is well-defined. It
has also as consequence that

Ψ :“ inf
px,y,zqˆHˆKˆG

tf pzq ` g pyq ` h px, yqu ą ´8. (6.2.9)

(ii) Comparing the assumptions in (iii) and (iv) to the ones in [36], one can notice the presence
of the additional condition (6.2.7c), which is essential in particular when proving the
boundedness of the sequence of generated iterates. Notice that in iterative schemes of
gradient type, proximal-gradient type or forward-backward-forward type (see [36, 43, 51])
the boundedness of the iterates follow by combining a descent inequality expressed in
terms of the objective function with coercivity assumptions on the later. In our setting
this undertaken is less simple, since the descent inequality which we obtain below is in
terms of the augmented Lagrangian associated with problem (6.1.1).

(iii) The linear operator A is surjective if and only if its associated matrix has full row rank,
which is the same with the fact that the matrix associated to AA˚ is positively definite.
Since

λmin pAA
˚q ‖z‖2 ď xAA˚z, zy “ ‖A˚z‖2 @z P G,

this is further equivalent to λmin pAA
˚q ą 0, where λmin pMq denotes the minimal eigen-

value of a square matrix M . In addition, we denote by κ pMq the condition number,
namely the ratio between the maximal eigenvalue λmax pMq and the minimal eigenvalue
λmin pMq of the square matrix M where the matrix norm is defined as

κ pMq :“
λmax pMq

λmin pMq
“
‖M‖2

λmin pMq
ě 1,

where the matrix norm is defined as

‖M‖ :“ sup
zPG

‖Mz‖
‖z‖

.

The convergence analysis will make use of the following regularized augmented Lagrangian
function

Ψ: HˆK ˆ G ˆ G ˆHˆ G Ñ RY t`8u ,

defined as

`

x, y, z, u, x1, u1
˘

ÞÑ f pzq ` g pyq ` h px, yq ` xu,Ax´ zy `
β

2
‖Ax´ z‖2

` C0

∥∥A˚ `u´ u1˘` σB `

x´ x1
˘∥∥2

` C1

∥∥x´ x1∥∥2
,

where

B :“ τ Id´ βA˚A, C0 :“
4 p1´ σq

σ2βλmin pAA˚q
ě 0 and C1 :“

8 pστ ` L1,`q
2

σβλmin pAA˚q
ą 0.

Notice that

‖B‖ ď τ,

whenever 2τ ě β ‖A‖2. Indeed, this is a consequence of the relation

‖Bx‖2 “ τ2 ‖x‖2 ´ 2τβ ‖Ax‖2 ` β2 ‖A˚Ax‖2 ď τ2 ‖x‖2 ` β
´

β ‖A‖2 ´ 2τ
¯

‖Ax‖2 @x P H.
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For simplification, we introduce the following notations

R :“ HˆK ˆ G ˆ G ˆHˆ G
X :“

`

x, y, z, u, x1, u1
˘

Xk :“ pxk, yk, zk, uk, xk´1, uk´1q @k ě 1

Ψk :“ Ψ pXkq @k ě 1.

By the nature of the scheme, we can derive the following statement.

Lemma 6.2.1. Let Assumption 6.2.2 be satisfied, 2τ ě β ‖A‖2 and tpxk, yk, zk, ukqukě0 be a
sequence generated by Algorithm 6.2.1. Then for any k ě 1 it holds

f pzk`1q ` g pyk`1q ` h pxk`1, yk`1q ` xuk`1, Axk`1 ´ zk`1y `
β

2
‖Axk`1 ´ zk`1‖2

`

˜

τ ´
L1,` ` β ‖A‖2

2

¸

‖xk`1 ´ xk‖2 `
µ´ L2,`

2
‖yk`1 ´ yk‖2 `

1

σβ
‖uk`1 ´ uk‖2

ď f pzkq ` g pykq ` h pxk, ykq ` xuk, Axk ´ zky `
β

2
‖Axk ´ zk‖2 `

2

σβ
‖uk`1 ´ uk‖2 . (6.2.10)

Proof. Let k ě 1 be fixed. On the one hand, from (6.2.1a) and (6.2.1b) we obtain

g pyk`1q ` x∇yh pxk, ykq , yk`1 ´ yky `
µ

2
‖yk`1 ´ yk‖2 ď g pykq

and

f pzk`1q ` xuk, Axk ´ zk`1y `
β

2
‖Axk ´ zk`1‖2 ď f pzkq ` xuk, Axk ´ zky `

β

2
‖Axk ´ zk‖2

respectively. Adding both sides of these relation leads to

f pzk`1q ` g pyk`1q ` xuk, Axk ´ zk`1y `
β

2
‖Axk ´ zk`1‖2 ` x∇yh pxk, ykq , yk`1 ´ yky

`
µ

2
‖yk`1 ´ yk‖2 ď f pzkq ` g pykq ` xuk, Axk ´ zky `

β

2
‖Axk ´ zk‖2 . (6.2.11)

On the other hand, according to the Descent Lemma (2.2.4) we have

h pxk, yk`1q ď h pxk, ykq ` x∇yh pxk, ykq , yk`1 ´ yky `
L2 pxkq

2
‖yk`1 ´ yk‖2

ď h pxk, ykq ` x∇yh pxk, ykq , yk`1 ´ yky `
L2,`

2
‖yk`1 ´ yk‖2

and, further, by taking into consideration (6.2.1c),

h pxk`1, yk`1q ď h pxk, yk`1q ` x∇xh pxk, yk`1q , xk`1 ´ xky `
L1 pyk`1q

2
‖xk`1 ´ xk‖2

“ h pxk, yk`1q ´ xuk, Axk`1 ´Axky ´ β xAxk ´ zk`1, Axk`1 ´Axky

´

ˆ

τ ´
L1 pyk`1q

2

˙

‖xk`1 ´ xk‖2

ď h pxk, yk`1q ´ xuk, Axk`1 ´Axky `
β

2
‖Axk ´ zk`1‖2 ´

β

2
‖Axk`1 ´ zk`1‖2

´

˜

τ ´
L1,` ` β ‖A‖2

2

¸

‖xk`1 ´ xk‖2 .
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Combining these above estimates we get

h pxk`1, yk`1q ` xuk, Axk`1 ´Axky ´
β

2
‖Axk ´ zk`1‖2 `

β

2
‖Axk`1 ´ zk`1‖2

´
L2,`

2
‖yk`1 ´ yk‖2

˜

τ ´
L1,` ` β ‖A‖2

2

¸

‖xk`1 ´ xk‖2

ď h pxk, yk`1q ` x∇yh pxk, ykq , yk`1 ´ yky . (6.2.12)

Summing (6.2.11) and (6.2.12), then using the iterate (6.2.1d). After adding
2

σβ
‖uk`1 ´ uk‖2

on both side of the obtained result, we get the inequality (6.2.10).

Next we will focus on estimating ‖uk`1 ´ uk‖2.

Lemma 6.2.2. Let Assumption 6.2.2 be satisfied, 2τ ě β ‖A‖2 and tpxk, yk, zk, ukqukě0 be a
sequence generated by Algorithm 6.2.1. Then for any k ě 1 it holds

σλmin pAA
˚q

2
‖uk`1 ´ uk‖2 ` p1´ σq ‖A˚ puk`1 ´ ukq ` σB pxk`1 ´ xkq‖2

´ σ3τ2 ‖xk`1 ´ xk‖2 ´ 2σL2
3,` ‖yk`1 ´ yk‖2

ďp1´ σq ‖A˚ puk ´ uk´1q ` σB pxk ´ xk´1q‖2 ` 2σ pστ ` L1,`q
2 ‖xk ´ xk´1‖2 . (6.2.13)

Proof. Let k ě 1 be fixed. Let us now rewrite (6.2.1c)

τ pxk`1 ´ xkq “ ∇xh pxk, yk`1q `A
˚uk ` βA

˚ pAxk`1 ´ zk`1q ` βA
˚A pxk ´ xk`1q

“ ∇xh pxk, yk`1q `A
˚uk `

1

σ
A˚ puk`1 ´ ukq ` βA

˚A pxk ´ xk`1q , (6.2.14)

where the last equation is due to (6.2.1d). Multiplying bothside by σ, after rearranging the
terms we get

A˚uk`1 ` σB pxk`1 ´ xkq “ p1´ σqA
˚uk ´ σ∇xh pxk, yk`1q

and, similarly

A˚uk ` σB pxk ´ xk´1q “ p1´ σqA
˚uk´1 ´ σ∇xh pxk´1, ykq .

Subtracting these relations and making use of the notations

wk :“ A˚ puk ´ uk´1q ` σB pxk ´ xk´1q

vk :“ σB pxk ´ xk´1q `∇xh pxk´1, ykq ´∇xh pxk, yk`1q ,

it yields
wk`1 “ p1´ σqwk ` σvk.

The convexity of ‖¨‖2 guarantees that (notice that 0 ă σ ď 1)

‖wk`1‖2 ď p1´ σq ‖wk‖2 ` σ ‖vk‖2 . (6.2.15)

In addition, from the definitions of wk and vk, we obtain

‖A˚ puk`1 ´ ukq‖ ď ‖wk`1‖` σ ‖B‖ ‖xk`1 ´ xk‖ ď ‖wk`1‖` στ ‖xk`1 ´ xk‖ (6.2.16)

and

‖vk‖ ď σ ‖B‖ ‖xk ´ xk´1‖` ‖∇xh pxk´1, ykq ´∇xh pxk, yk`1q‖
ď στ ‖xk ´ xk´1‖` ‖∇xh pxk´1, ykq ´∇xh pxk, ykq‖` ‖∇xh pxk, ykq ´∇xh pxk, yk`1q‖
ď pστ ` L1,`q ‖xk ´ xk´1‖` L3,` ‖yk`1 ´ yk‖ (6.2.17)
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respectively. Using the Cauchy-Schwarz inequality, (6.2.16) yields

λmin pAA
˚q

2
‖uk`1 ´ uk‖2 ď

1

2
‖A˚ puk`1 ´ ukq‖2 ď ‖wk`1‖2 ` σ2τ2 ‖xk`1 ´ xk‖2

and (6.2.17) yields

‖vk‖2 ď 2 pστ ` L1,`q
2 ‖xk ´ xk´1‖2 ` 2L2

3,` ‖yk`1 ´ yk‖2 .

Multiplying both relations by σ. After combining the obtained results with (6.2.15), we get
(6.2.13).

The next result provides the announced descent inequality.

Lemma 6.2.3. Let Assumption 6.2.2 be satisfied, 2τ ě β ‖A‖2 and tpxk, yk, zk, ukqukě0 be a
sequence generated by Algorithm 6.2.1. Then for any k ě 1 it holds

Ψn`1 ` C2 ‖xk`1 ´ xk‖2 ` C3 ‖yk`1 ´ yk‖2 ` C4 ‖uk`1 ´ uk‖2 ď Ψk, (6.2.18)

where

C2 :“ τ ´
L1,` ` β ‖A‖2

2
´

4στ2

βλmin pAA˚q
´

8 pστ ` L1,`q
2

σβλmin pAA˚q
, (6.2.19a)

C3 :“
µ´ L2,`

2
´

8L2
3,`

σβλmin pAA˚q
, (6.2.19b)

C4 :“
1

σβ
. (6.2.19c)

Proof. Let k ě 1 be fixed. We multiply the estimate (6.2.13) by
4

σ2βλmin pAA˚q
ą 0 to get

2

σβ
‖uk`1 ´ uk‖2 ` C0 ‖A˚ puk`1 ´ ukq ` σB pxk`1 ´ xkq‖2

´
4στ2

βλmin pAA˚q
‖xk`1 ´ xk‖2 ´

8L2
3,`

σβλmin pAA˚q
‖yk`1 ´ yk‖2

ď C0 ‖A˚ puk ´ uk´1q ` σB pxk ´ xk´1q‖2 ` C1 ‖xk ´ xk´1‖2 .

The desired statement follows after and combine the resulting inequality with (6.2.10).

The following result provides one possibility to choose the parameters in Algorithm 6.2.1,
such that all three constants C2, C3 and C4 that appear in (6.2.18) are positive.

Lemma 6.2.4. Let
0 ă σ ă

1

24κ pAA˚q
(6.2.20a)

β ą
ν

1´ 24σκ pAA˚q

´

4` 3σ `
a

24` 24σ ` 9σ2 ´ 192σκ pAA˚q
¯

ą 0 (6.2.20b)

max

#

β ‖A‖2

2
,
βλmin pAA

˚q

24σ

ˆ

1´
4ν

β
´
a

∆1
τ

˙

+

ă τ ă
βλmin pAA

˚q

24σ

ˆ

1´
4ν

β
`
a

∆1
τ

˙

(6.2.20c)

µ ą L2,` `
16L2

3,`

σβλmin pAA˚q
ą 0, (6.2.20d)
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where

ν :“
4L1,`

λmin pAA˚q
ą 0 and ∆1

τ :“ 1´
8ν

β
´

8ν2

β2
´

6νσ

β
´ 24σκ pAA˚q ą 0. (6.2.20e)

Then we have
min tC2, C3, C4u ą 0.

Furthermore, there exist γ1, γ2 P Rz t0u such that

1

γ1
´
L1,`

2γ2
1

“
1

βλmin pAA˚q
and

1

γ2
´
L1,`

2γ2
2

“
2

βλmin pAA˚q
. (6.2.21)

Proof. We will prove first that C2 ą 0 , or, equivalently

´2C2 “
24στ2

βλmin pAA˚q
´2

ˆ

1´
16L1,`

βλmin pAA˚q

˙

τ`
16L2

1,`

σβλmin pAA˚q
`L1,``β ‖A‖2 ă 0. (6.2.22)

The reduced discriminant of the quadratic function in τ in the above relation reads

∆1
τ :“

ˆ

1´
16L1,`

βλmin pAA˚q

˙2

´
384L2

1,`

β2λ2
min pAA

˚q
´

24L1,`σ

βλmin pAA˚q
´ 24σκ pAA˚q

“

ˆ

1´
4ν

β

˙2

´
24ν2

β2
´

6νσ

β
´ 24σκ pAA˚q

“ 1´
8ν

β
´

8ν2

β2
´

6νσ

β
´ 24σκ pAA˚q ą 0, (6.2.23)

if σ and β are being chosen as in (6.2.20a) and (6.2.20b), respectively. Indeed, the inequality
(6.2.23) can be rewritten as

p1´ 24σκ pAA˚qqβ2 ´ 2 p4` 3σq ν ´ 8ν2 ą 0, (6.2.24)

which has its discriminant reads

∆β :“ p4` 3σq2 ` 8 p1´ 24σκ pAA˚qq ν2 “ 24` 24σ ` 9σ2 ´ 192σκ pAA˚q ą 0

as 24 ´ 192σκ pAA˚q “ 16 ` 8 p1´ 24σκ pAA˚qq ą 0 for every σ satisfies (6.2.20a). Hence,
for every σ and β satisfy (6.2.20a) and (6.2.20b), the inequality (6.2.24) holds true and thus
(6.2.23). Therefore, for

βλmin pAA
˚q

24σ

ˆ

1´
4ν

β
´
a

∆1
τ

˙

ă τ ă
βλmin pAA

˚q

24σ

ˆ

1´
4ν

β
`
a

∆1
τ

˙

,

(6.2.22) is satisfied. It remains to verify the feasibility of τ in (6.2.20c), in other words, to prove
that

β ‖A‖2

2
ă
βλmin pAA

˚q

24σ

ˆ

1´
4ν

β
`
a

∆1
τ

˙

.

This is easy to see, as, according to (6.2.23), we have

β ‖A‖2

2
ă
βλmin pAA

˚q

24σ

ˆ

1´
4ν

β

˙

ô 1´
4ν

β
´ 12σκ pAA˚q ą 0.

The positivity of C3 follows from the choice of µ in (6.2.20d), while, obviously, C4 ą 0.
Finally, two quadratic equations in (6.2.21) (in γ1 and, respectively, γ2) has their discrimi-

nant reads as

∆γ1 :“ 1´
2L1,`

βλmin pAA˚q
“ 1´

ν

2β
and ∆γ2 :“ 1´

L1,`

βλmin pAA˚q
“ 1´

ν

4β
,
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respectively. Since
β ą

ν

1´ 24σκ pAA˚q
ą ν ą

ν

2
,

it follows that each of them has a nonzero real solution.

Remark 6.2.4. Hong and Luo proved in [90] linear convergence for the iterates generated by
a Lagrangian-based algorithm in the convex setting, without any strong convexity assumption.
To this end a certain error bound condition must hold true and the step size of the dual update,
which is also assumed to depend on the error bound constants, must be taken small. The authors
also mention that this choice of the dual step size may be too conservative and cumbersome to
compute unless the objective function is strongly convex. As shown in previous lemma, the step
size of the dual update in our algorithm can be computed without assuming strong convexity
and indeed it depends only on the linear operator A.

Theorem 6.2.5. Let Assumption 6.2.2 be satisfied and the parameters in Algorithm 6.2.1 be
such that 2τ ě β ‖A‖2, and the constants defined in Lemma 6.2.3 fulfil min tC2, C3, C4u ą 0. If
tpxk, yk, zk, ukqukě0 is a sequence generated by Algorithm 6.2.1, then the following statements
are true:

(i) the sequence tΨkukě1 is bounded from below and convergent;

(ii) in addition,

xk`1´xk Ñ 0, yk`1´yk Ñ 0, zk`1´ zk Ñ 0 and uk`1´uk Ñ 0 as k Ñ `8. (6.2.25)

Proof. First, we show that Ψ defined in (6.2.9) is a lower bound of tΨkuně2. Suppose the
contrary, namely that there exists k0 ě 2 such that Ψk0 ´ Ψ ă 0. According to Lemma 6.2.3,
tΨkukě1 is a nonincreasing sequence and thus for any k ě k0

N
ÿ

k“1

pΨk ´Ψq ď
k0´1
ÿ

k“1

pΨk ´Ψq ` pN ´ k0 ` 1q pΨk0 ´Ψq ,

which implies that

lim
NÑ`8

N
ÿ

k“1

pΨk ´Ψq “ ´8.

On the other hand, for any k ě 1 it holds

Ψk ´Ψ ě f pzkq ` g pykq ` h pxk, ykq ` xuk, Axk ´ zky ´Ψ

ě xuk, Axk ´ zky “
1

σβ
xuk, uk ´ uk´1y

“
1

2σβ
‖uk‖2 `

1

2σβ
‖uk ´ uk´1‖2 ´

1

2σβ
‖uk´1‖2 .

Therefore, for any k ě 1, we have

N
ÿ

k“1

pΨk ´Ψq ě
1

2σβ

N
ÿ

k“1

‖uk ´ uk´1‖2 `
1

2σβ
‖uk‖2 ´

1

2σβ
‖u0‖2 ě ´

1

2σβ
‖u0‖2 ,

which leads to a contradiction. As tΨkukě1 is bounded from below, we obtain from Lemma
2.4.2 statement (i) and also that

xk`1 ´ xk Ñ 0, yk`1 ´ yk Ñ 0 and uk`1 ´ uk Ñ 0 as k Ñ `8.
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Since for any k ě 1 it holds

‖zk`1 ´ zk‖ ď ‖A‖ ‖xk`1 ´ xk‖` ‖Axk`1 ´ zk`1‖` ‖Axk ´ zk‖

“ ‖A‖ ‖xk`1 ´ xk‖`
1

σβ
‖uk`1 ´ uk‖`

1

σβ
‖uk ´ uk´1‖ ,

(6.2.26)

it follows that zk`1 ´ zk Ñ 0 as k Ñ `8.

Usually, for nonconvex algorithms, the fact that the sequences of differences of consecutive
iterates converge to zero is shown by assuming that the generated sequences are bounded (see
[56, 96, 128]). In our analysis the only ingredients for obtaining statement (ii) in Theorem 6.2.5
are the descent property and Lemma 2.4.2.

6.2.2 General conditions for the boundedness of tpxk, yk, zk, ukqukě0

In the following we will formulate general conditions in terms of the input data of the optimiza-
tion problem (6.1.1) which guarantee the boundedness of the sequence tpxk, yk, zk, ukqukě0.
Working in the setting of Theorem 6.2.5, thanks to (6.2.25), we have that the sequences
txk`1 ´ xkukě0, tyk`1 ´ ykukě0, tzk`1 ´ zkukě0 and tuk`1 ´ ukukě0 are bounded. Denote

s˚ :“ sup
kě0

t‖xk`1 ´ xk‖ , ‖yk`1 ´ yk‖ , ‖zk`1 ´ zk‖ , ‖uk`1 ´ uk‖u ă `8.

Even though this observation does not imply immediately that tpxk, yk, zk, ukqukě0 is bounded,
this will follow under standard coercivity assumptions. Recall that a function ψ : HÑ RYt`8u
is called coercive, if lim‖x‖Ñ`8 ψ pxq “ `8.

Theorem 6.2.6. Let Assumption 6.2.2 be satisfied and the parameters in Algorithm 6.2.1 be
such that 2τ ě β ‖A‖2, the constants defined in Lemma 6.2.3 fulfil min tC2, C3, C4u ą 0 and
there exist γ1, γ2 P Rzt0u such that (6.2.21) holds. Suppose that one of the following conditions
hold:

(i) the function h is coercive;

(ii) the operator A is invertible, and f and g are coercive.

Then every sequence tpxk, yk, zk, ukqukě0 generated by Algorithm 6.2.1 is bounded.

Proof. Let k ě 1 be fixed. According to Lemma 6.2.3 we have that

Ψ1 ě . . . ě Ψk ě Ψk`1

ě f pzk`1q ` g pyk`1q ` h pxk`1, yk`1q ´
1

2β
‖uk`1‖2 `

β

2

∥∥∥∥Axk`1 ´ zk`1 `
1

β
uk`1

∥∥∥∥2

.

(6.2.27)

By multiplying both sides by ´1 the adding A˚uk`1 ` τ pxk`1 ´ xkq on both sides, we obtain

A˚uk`1 “

ˆ

1´
1

σ

˙

A˚ puk`1 ´ ukq `B pxk ´ xk`1q

`∇xh pxk`1, yk`1q ´∇xh pxk, yk`1q ´∇xh pxk`1, yk`1q , (6.2.28)

which implies

‖A˚uk`1‖ ď
ˆ

1

σ
´ 1

˙

‖A‖ ‖uk`1 ´ uk‖` pτ ` L1,`q ‖xk`1 ´ xk‖` ‖∇xh pxk`1, yk`1q‖

ď

ˆˆ

1

σ
´ 1

˙

‖A‖` τ ` L1,`

˙

s˚ ` ‖∇xh pxk`1, yk`1q‖ .
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By using the Cauchy-Schwarz inequality we further obtain

λmin pAA
˚q ‖uk`1‖2 ď ‖A˚uk`1‖2

ď 2

ˆˆ

1

σ
´ 1

˙

‖A‖` τ ` L1,`

˙2

s2
˚ ` 2 ‖∇xh pxk`1, yk`1q‖2 .

Multiplying the above relation by
1

2βλmin pAA˚q
and combining it with (6.2.27), we get

Ψ1 ě f pzk`1q ` g pyk`1q ` h pxk`1, yk`1q ´
1

βλmin pAA˚q
‖∇xh pxk`1, yk`1q‖2

´
1

βλmin pAA˚q

ˆˆ

1

σ
´ 1

˙

‖A‖` τ ` L1,`

˙2

s2
˚ `

β

2

∥∥∥∥Axk`1 ´ zk`1 `
1

β
uk`1

∥∥∥∥2

.

(6.2.29)

We will prove the boundedness of tpxk, yk, zk, ukqukě0 in each of the two scenarios.

(i) According to (6.2.29) and Proposition 2.2.1, we have that for any k ě 1

1

2
h pxk`1, yk`1q `

β

2

∥∥∥∥Axk`1 ´ zk`1 `
1

β
uk`1

∥∥∥∥2

ď Ψ1 `
1

βλmin pAA˚q

ˆˆ

1

σ
´ 1

˙

‖A‖` τ ` L1,`

˙2

s2
˚ ´ inf

zPG
f pzq ´ inf

yPH
g pyq

´
1

2
inf
kě1

"

h pxk`1, yk`1q ´

ˆ

1

γ1
´
L1,`

2γ2
1

˙

‖∇xh pxk`1, yk`1q‖2
*

ď Ψ1 `
1

βλmin pAA˚q

ˆˆ

1

σ
´ 1

˙

‖A‖` τ ` L1,`

˙2

s2
˚

´ inf
zPG

f pzq ´ inf
yPK

g pyq ´ inf
px,yqPHˆK

h px, yq

ă `8.

Since h is coercive and bounded from below, it follows that tpxk, ykqukě0 as well as
"

Axk ´ zk `
1

β
uk

*

kě0

are bounded. As, according to (6.2.1d), tAxk ´ zkukě0 is bounded,

it follows that tukukě0 and tzkukě0 are also bounded.

(ii) According to (6.2.29) and Proposition 2.2.1, we have this time that for any k ě 1

f pzk`1q ` g pyk`1q `
β

2

∥∥∥∥Axk`1 ´ zk`1 `
1

β
uk`1

∥∥∥∥2

ď Ψ1 `
1

βλmin pAA˚q

ˆˆ

1

σ
´ 1

˙

‖A‖` τ ` L1,`

˙2

s2
˚

´ inf
kě1

"

h pxk`1, yk`1q ´

ˆ

1

γ2
´
L1,`

2γ2
2

˙

‖∇xh pxk`1, yk`1q‖2
*

ď Ψ1 `
1

βλmin pAA˚q

ˆˆ

1

σ
´ 1

˙

‖A‖` τ ` L1,`

˙2

s2
˚ ´ inf

px,yqPHˆK
h px, yq ă `8.

Since f and g are coercive and bounded from below, it follows that tpyk, zkqukě0 and
"

Axk ´ zk `
1

β
uk

*

kě0

are bounded sequences. As, according to (6.2.1d), the sequence

tAxk ´ zkukě0 is bounded, it follows that tukukě0 and tAxkukě0 are bounded. The fact
that A is invertible implies that txkukě0 is bounded.
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6.2.3 The cluster points of tpxk, yk, zk, ukqukě0 are KKT points

We will close this section dedicated to the convergence analysis of the sequence generated by
Algorithm 6.2.1 in a general framework by proving that any cluster point of tpxk, yk, zk, ukqukě0

is a KKT point of the optimization problem (6.1.1). We provided above general conditions
which guarantee both the descent inequality (6.2.18), with positive constants C2, C3 and C4,
and the boundedness of the generated iterates. Lemma 6.2.4 and Theorem 6.2.6 provide one
possible setting that ensures these two fundamental properties of the convergence analysis. We
do not want to restrict ourselves to this particular setting and, therefore, we will work, from
now on, under the following assumptions.

Assumption 6.2.3. (i) the functions f, g and h are bounded from below;

(ii) the linear operator A is surjective;

(iii) every sequence tpxk, yk, zk, ukqukě0 generated by the Algorithm 6.2.1 is bounded:

(iv) ∇H is Lipschitz continuous with constant L ą 0 on a convex bounded subset B1 ˆ B2 Ď

HˆK containing tpxk, ykqukě0. In other words, for any px, yq , px1, y1q P B1 ˆB2 it holds

|||
`

∇xh px, yq ´∇xh
`

x1, y1
˘

,∇yh px, yq ´∇yh
`

x1, y1
˘˘

||| ď L|||px, yq ´
`

x1, y1
˘

|||; (6.2.30)

(v) the parameters µ, β, τ ą 0 and 0 ă σ ď 1 are such that 2τ ě β ‖A‖2 and

min tC2, C3, C4u ą 0,

where

C2 :“ τ ´
L
?

2` β ‖A‖2

2
´

4στ2

βλmin pAA˚q
´

8
`

στ ` L
?

2
˘2

σβλmin pAA˚q
, (6.2.31a)

C3 :“
µ´ L

?
2

2
´

16L2

σβλmin pAA˚q
, (6.2.31b)

C4 :“
1

σβ
. (6.2.31c)

Remark 6.2.5. Being facilitated by the boundedness of the generated sequence, Assumption
6.2.3 (iv) not only guarantee the fulfilment of Assumption 6.2.2 (iii) and (iv) on a convex
bounded set, but it also arises in a more natural way (see also [36]). Assumption 6.2.3 (iv)
holds, for instance, if h is twice continuously differentiable. In addition, as (6.2.30) implies for
any px, yq , px1, y1q P B1 ˆB2 that∥∥∇xh px, yq ´∇xh `x1, y1˘∥∥` ∥∥∇yh px, yq ´∇yh `x1, y1˘∥∥ ď L

?
2
`∥∥x´ x1∥∥` ∥∥y ´ y1∥∥˘ ,

we can take
L1,` “ L2,` “ L3,` :“ L

?
2. (6.2.32)

As (6.2.7a) - (6.2.7c) are valid also on a convex bounded set, the descent inequality

Ψn`1 ` C2 ‖xk`1 ´ xk‖2 ` C3 ‖yk`1 ´ yk‖2 ` C4 ‖uk`1 ´ uk‖2 ď Ψk @k ě 1 (6.2.33)

remains true, where the constants on the left-hand sided are given in (6.2.31) and follow from
(6.2.19) under the consideration of (6.2.32). A possible choice of the parameters of the algorithm
such that min tC2, C3, C4u ą 0 can be obtained also from Lemma 6.2.4.

The next result provide upper estimates for the limiting subgradients of the regularized
function Ψ at pxk, yk, zk, ukq for every k ě 1.
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Lemma 6.2.7. Let Assumption 6.2.3 be satisfied and tpxk, yk, zk, ukqukě0 be a sequence gener-
ated by Algorithm 6.2.1. Then for any k ě 1 it holds

Dk :“
´

dkx, d
k
y , d

k
z , d

k
u, d

k
x1 , d

k
u1

¯

P BΨ pXkq , (6.2.34)

where

dkx :“ ∇xh pxk, ykq `A˚uk ` βA˚ pAxk ´ zkq ` 2C1 pxk ´ xk´1q

` 2σC0B
T pA˚ puk ´ uk´1q ` σB pxk ´ xk´1qq ,

(6.2.35a)

dky :“ ∇yh pxk, ykq ´∇yh pxk´1, yk´1q ` µ pyk´1 ´ ykq , (6.2.35b)

dkz :“ uk´1 ´ uk ` βA pxk´1 ´ xkq , (6.2.35c)

dku :“ Axk ´ zk ` 2C0A pA
˚ puk ´ uk´1q ` σB pxk ´ xk´1qq , (6.2.35d)

dkx1 :“ ´2σC0B
T pA˚ puk ´ uk´1q ` σB pxk ´ xk´1qq ´ 2C1 pxk ´ xk´1q , (6.2.35e)

dku1 :“ ´2C0A pA
˚ puk ´ uk´1q ` σB pxk ´ xk´1qq . (6.2.35f)

In addition, for any k ě 1 it holds

|||Dk||| ď C5 ‖xk ´ xk´1‖` C6 ‖yk ´ yk´1‖` C7 ‖uk ´ uk´1‖ , (6.2.36)

where

C5 :“ 2
?

2 ¨ L` τ ` β ‖A‖` 4 pστ ` ‖A‖qστC0 ` 4C1, (6.2.37a)

C6 :“ L
?

2` µ, (6.2.37b)

C7 :“ 1`
1

σβ
`

ˆ

2

σ
´ 1

˙

‖A‖` 4 pστ ` ‖A‖qC0 ‖A‖ . (6.2.37c)

Proof. Let k ě 1 be fixed. Applying the calculus rules of the limiting subdifferential we get

∇xΨ pXkq “ ∇xh pxk, ykq `A˚uk ` βA˚ pAxk ´ zkq ` 2C1 pxk ´ xk´1q

` 2σC0B
T pA˚ puk ´ uk´1q ` σB pxk ´ xk´1qq ,

(6.2.38a)

ByΨ pXkq “ Bg pykq `∇yh pxk, ykq , (6.2.38b)

BzΨ pXkq “ Bf pzkq ´ uk ´ β pAxk ´ zkq , (6.2.38c)

∇uΨ pXkq “ Axk ´ zk ` 2C0A pA
˚ puk ´ uk´1q ` σB pxk ´ xk´1qq , (6.2.38d)

∇x1Ψ pXkq “ ´2σC0B
T pA˚ puk ´ uk´1q ` σB pxk ´ xk´1qq ´ 2C1 pxk ´ xk´1q , (6.2.38e)

∇u1Ψ pXkq “ ´2C0A pA
˚ puk ´ uk´1q ` σB pxk ´ xk´1qq . (6.2.38f)

Then (6.2.35a) and (6.2.35d) - (6.2.35f) follow directly from (6.2.38a) and (6.2.38d) - (6.2.38f),
respectively. By combining (6.2.38b) with the optimality criterion for (6.2.1a)

0 P Bg pykq `∇yh pxk´1, yk´1q ` µ pyk ´ yk´1q ,

we obtain (6.2.35b). Similarly, by combining (6.2.38c) with the optimality criterion for (6.2.1b)

0 P Bf pzkq ´ uk´1 ´ β pAxk´1 ´ zkq ,

we get (6.2.35c).
In the following we will derive the upper estimates for the components of the limiting

subgradient. From (6.2.28) it follows∥∥∥dkx∥∥∥ ď ‖∇xh pxk, ykq `A˚uk‖` β ‖A‖ ‖Axk ´ zk‖` 2
`

C1 ` σ
2τ2C0

˘

‖xk ´ xk´1‖

` 2στC0 ‖A‖ ‖uk ´ uk´1‖

ď

´

L
?

2` τ ` 2C1 ` 2σ2τ2C0

¯

‖xk ´ xk´1‖`
ˆ

2

σ
´ 1` 2στC0

˙

‖A‖ ‖uk ´ uk´1‖ .
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In addition, we have∥∥∥dky∥∥∥ ď L
?

2 ‖xk ´ xk´1‖`
´

L
?

2` µ
¯

‖yk ´ yk´1‖ ,∥∥∥dkz∥∥∥ ď β ‖A‖ ‖xk ´ xk´1‖` ‖uk ´ uk´1‖ ,∥∥∥dku∥∥∥ ď 2στC0 ‖A‖ ‖xk ´ xk´1‖`
ˆ

1

σβ
` 2C0 ‖A‖2

˙

‖uk ´ uk´1‖ ,∥∥∥dkx1∥∥∥ ď 2
`

σ2τ2C0 ` C1

˘

‖xk ´ xk´1‖` 2στC0 ‖A‖ ‖uk ´ uk´1‖ ,∥∥∥dku1∥∥∥ ď 2στC0 ‖A‖ ‖xk ´ xk´1‖` 2C0 ‖A‖2 ‖uk ´ uk´1‖ .

The inequality (6.2.36) follows by combining the above relations with (5.1.2).

We denote by Ω :“ Ω
`

tXkukě1

˘

the set of cluster points of the sequence tXkukě1 Ď R,
which is nonempty thanks to the boundedness of tXkukě1. The main result of this section
follows.

Theorem 6.2.8. Let Assumption 6.2.3 be satisfied and tpxk, yk, zk, ukqukě0 be a sequence gen-
erated by Algorithm 6.2.1. The following statements are true:

(i) if tpxkn , ykn , zkn , uknqukě0 is a subsequence of tpxk, yk, zk, ukqukě0 which converges to the
point px˚, y˚, z˚, u˚q as k Ñ `8, then

lim
nÑ`8

Ψkn “ Ψ px˚, y˚, z˚, u˚, x˚, u˚q ;

(ii) it holds

Ω Ď crit pΨq Ď tX˚ P R : ´A˚u˚ “ ∇xh px˚, y˚q ,
0 P Bg py˚q `∇yh px˚, y˚q , u˚ P Bf pz˚q , z˚ “ Ax˚u , (6.2.39)

where X˚ :“ px˚, y˚, z˚, u˚, x˚, u˚q;

(iii) it holds lim
kÑ`8

dist pXk,Ωq “ 0;

(iv) the set Ω is nonempty, connected and compact;

(v) the function Ψ takes on Ω the value

Ψ˚ “ lim
kÑ`8

Ψk “ lim
kÑ`8

tf pzkq ` g pykq ` h pxk, ykqu .

Proof. Let px˚, y˚, z˚, u˚q P HˆK ˆ G ˆ G be such that the subsequence

tXkn :“ pxkn , ykn , zkn , ukn , xkn´1, ukn´1qukě1

of tXkuně1 converges to X˚ :“ px˚, y˚, z˚, u˚, x˚, u˚q.

(i) From (6.2.1a) and (6.2.1b) we have for any k ě 1

g pyknq ` x∇yh pxkn´1, ykn´1q , ykn ´ ykn´1y `
µ

2
‖ykn ´ ykn´1‖2

ď g py˚q ` x∇yh pxkn´1, ykn´1q , y˚ ´ ykn´1y `
µ

2
‖y˚ ´ ykn´1‖2
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and

f pzknq ` xukn´1, Axkn´1 ´ zkny `
β

2
‖Axkn´1 ´ zkn‖

2

ď f pz˚q ` xukn´1, Axkn´1 ´ z˚y `
β

2

∥∥Axkk´1
´ z˚

∥∥2
,

respectively. From (6.2.1d) and Theorem 6.2.5 follows Ax˚ “ z˚. Taking the limit superior as
nÑ `8 on both sides of the above inequalities, we get

lim sup
kÑ`8

f pzknq ď f pz˚q and lim sup
kÑ`8

g pyknq ď g py˚q

which, combined with the lower semicontinuity of f and g, lead to

lim
kÑ`8

f pzknq “ f pz˚q and lim
kÑ`8

g pyknq “ g py˚q .

The desired statement follows thanks to the continuity of h.

(ii) For the sequence tDkuně0 defined in (6.2.34) - (6.2.35), we have that Dkn P BΨ pXknq for
any k ě 1 and Dkn Ñ 0 as n Ñ `8, while Xkn Ñ X˚ and Ψkn Ñ ΨpX˚q as n Ñ `8.
The closedness criterion of the limiting subdifferential guarantees that 0 P BΨpX˚q or, in other
words, X˚ P crit pΨq.

Choosing now an element X˚ P crit pΨq, it holds
$

’

’

’

’

&

’

’

’

’

%

0 “ ∇xh px˚, y˚q `A˚u˚ ` βA˚ pAx˚ ´ z˚q ,
0 P Bg py˚q `∇yh px˚, y˚q ,
0 P Bf pz˚q ´ u˚ ´ β pAx˚ ´ z˚q ,

0 “ Ax˚ ´ z˚,

which is further equivalent to (6.2.39).

(iii)-(iv) The proof follows in the lines of the proof of Theorem 5 (ii)-(iii) in [36], also by taking
into consideration [36, Remark 5], according to which the properties in (iii) and (iv) are generic
for sequences satisfying Xk ´Xk´1 Ñ 0 as k Ñ `8, which is indeed the case due to (6.2.25).

(v) The sequences tf pzkq ` g pykq ` h pxk, ykqukě0 and tΨkukě0 have the same limit due to
(6.2.25) and the fact that tukukě0 is bounded

Ψ˚ “ lim
kÑ`8

Ψk “ lim
kÑ`8

tf pzkq ` g pykq ` h pxk, ykqu .

The conclusion follows by taking into consideration the first two statements of this theorem.

Remark 6.2.6. An element px˚, y˚, z˚, u˚q fulfilling (6.2.39) is a so-called KKT point of the
optimization problem (6.1.1). Such a KKT point obviously fulfils

0 P A˚Bf pAx˚q `∇xh px˚, y˚q , 0 P Bg py˚q `∇yh px˚, y˚q . (6.2.40)

If A is injective, then this system of inclusions is further equivalent to

0 P B pf ˝Aq px˚q `∇xh px˚, y˚q “ Bx pf ˝A`Hq ,
0 P Bg py˚q `∇yh px˚, y˚q “ By pG`Hq , (6.2.41)

in other words, px˚, y˚q is a critical point of the optimization problem (6.1.1). On the other
hand, if the functions f, g and h are convex, then, even without asking A to be injective, (6.2.40)
and (6.2.41) are equivalent, which means that px˚, y˚q is a global minimum of the optimization
problem (6.1.1).
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6.3 Global convergence and rates

In this section we will prove global convergence for the sequence tpxk, yk, zk, ukqukě0 generated
by Algorithm 6.2.1 in the context of the Kurdyka- Lojasiewicz property and provide convergence
rates for it in the context of the  Lojasiewicz property.

6.3.1 Global convergence under Kurdyka- Lojasiewicz assumptions

From now on we will use the following notations

C8 :“
1

min tC2, C3, C4u
, C9 :“ max tC5, C6, C7u and Ek :“ Ψk ´Ψ˚ @k ě 1,

where Ψ˚ “ lim
kÑ`8

Ψk.

The next result shows that if Ψ is a K L function, then the sequence tpxk, yk, zk, ukqukě0

converges to a KKT point of the optimization problem (6.1.1). This hypothesis is fulfilled if,
for instance, f, g and h are semi-algebraic functions.

Theorem 6.3.1. Let Assumption 6.2.3 be satisfied and tpxk, yk, zk, ukqukě0 be a sequence gen-
erated by Algorithm 6.2.1. If Ψ is a K L function, then the following statements are true:

(i) the sequence tpxk, yk, zk, ukqukě0 has finite length, namely,
ÿ

kě0

‖xk`1 ´ xk‖ ă `8,
ÿ

kě0

‖yk`1 ´ yk‖ ă `8,

ÿ

kě0

‖zk`1 ´ zk‖ ă `8,
ÿ

kě0

‖uk`1 ´ uk‖ ă `8; (6.3.1)

(ii) the sequencetpxk, yk, zk, ukqukě0 converges to a KKT point of the optimization problem
(6.1.1).

Proof. Let be X˚ P Ω, thus Ψ pX˚q “ Ψ˚. Recall that tEkukě1 is monotonically decreasing and
converges to 0 as k Ñ `8. We consider two cases.

Case 1. Assume that there exists an integer k1 ě 1 such that Ek1 “ 0 or, equivalently, Ψk1 “ Ψ˚.
Due to the monotonicity of tEkukě1, it follows that Ek “ 0 or, equivalently, Ψk “ Ψ˚ for any
k ě k1. The inequality (6.2.33) yields for any k ě k1 ` 1

xk`1 ´ xk “ 0, yk`1 ´ yk “ 0 and uk`1 ´ uk “ 0.

The inequality (6.2.26) gives us further zk`1 ´ zk “ 0 for any k ě k1 ` 2. This proves (6.3.1).

Case 2. Consider now the case when Ek ą 0 or, equivalently, Ψk ą Ψ˚ for any k ě 1. According
to Lemma 2.3.1, there exist ε ą 0, η ą 0 and a desingularization function ϕ such that for any
element X in the intersection

tZ P R : dist pZ,Ωq ă εu X tZ P R : Ψ˚ ă Ψ pZq ă Ψ˚ ` ηu (6.3.2)

it holds
ϕ1 pΨ pXq ´Ψ˚q ¨ dist p0, BΨ pXqq ě 1.

Let be k1 ě 1 such that for any k ě k1

Ψ˚ ă Ψk ă Ψ˚ ` η.

Since lim
kÑ`8

dist pXk,Ωq “ 0 (see Lemma 6.2.8 (iii)), there exists k2 ě 1 such that for any k ě k2

dist pXk,Ωq ă ε.
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Consequently, Xk “ pxk, yk, zk, uk, xk´1, uk´1q belongs to the intersection in (6.3.2) for any
k ě k0 :“ max tk1, k2u, which further implies

ϕ1 pΨk ´Ψ˚q ¨ dist p0, BΨ pXkqq “ ϕ1 pEkq ¨ dist p0, BΨ pXkqq ě 1. (6.3.3)

Define for two arbitrary nonnegative integers i and j

∆i,j :“ ϕ pΨi ´Ψ˚q ´ ϕ pΨj ´Ψ˚q “ ϕ pEiq ´ ϕ pEjq .

The monotonicity of the sequence tΨkukě0 and of the function ϕ implies that ∆i,j ě 0 for any
1 ď i ď j. In addition, for any k ě k0 ě 1 it holds

N
ÿ

k“k0

∆k,k`1 “ ∆k0,N`1 “ ϕ pEk0q ´ ϕ pEk`1q ď ϕ pEk0q ,

from which we get
ÿ

kě1

∆k,k`1 ă `8.

By combining Lemma 6.2.3 with the concavity of ϕ we obtain for any k ě 1

∆k,k`1 “ ϕ pEkq ´ ϕ pEk`1q ě ϕ1 pEkq pEk ´ Ek`1q “ ϕ1 pEkq pΨk ´Ψn`1q

ě min tC2, C3, C4uϕ
1 pEkq

´

‖xk`1 ´ xk‖2 ` ‖yk`1 ´ yk‖2 ` ‖uk`1 ´ uk‖2
¯

.

Thus, (6.3.3) implies for any k ě k0

‖xk`1 ´ xk‖2 ` ‖yk`1 ´ yk‖2 ` ‖uk`1 ´ uk‖2

ď dist p0, BΨ pXkqq ¨ ϕ
1 pEkq

´

‖xk`1 ´ xk‖2 ` ‖yk`1 ´ yk‖2 ` ‖uk`1 ´ uk‖2
¯

ď C8 ¨ dist p0, BΨ pXkqq ¨∆k,k`1.

By the Cauchy-Schwarz inequality, the arithmetic mean-geometric mean inequality and
Lemma 6.2.7, we have that for any k ě k0 and every α ą 0

‖xk`1 ´ xk‖` ‖yk`1 ´ yk‖` ‖uk`1 ´ uk‖

ď
?

3 ¨

b

‖xk`1 ´ xk‖2 ` ‖yk`1 ´ yk‖2 ` ‖uk`1 ´ uk‖2

ď
a

3C8 ¨

b

dist p0, BΨ pXkqq ¨∆k,k`1

ď α ¨ dist p0, BΨ pXkqq `
3C8

4α
∆k,k`1

ď αC9 p‖xk ´ xk´1‖` ‖yk ´ yk´1‖` ‖uk ´ uk´1‖q `
3C8

4α
∆k,k`1. (6.3.4)

If we denote for any k ě 0

ak :“ ‖xk ´ xk´1‖` ‖yk ´ yk´1‖` ‖uk ´ uk´1‖ and dk :“
3C8

4α
∆k,k`1, (6.3.5)

then the above inequality is nothing else than (2.4.6) with

χ0 :“ αC9 and χ1 :“ 0.

Since
ÿ

kě1

dn ă `8, by choosing α ă 1{C9, we can apply Lemma 2.4.4 to conclude that

ÿ

kě0

´

‖xk`1 ´ xk‖` ‖yk`1 ´ yk‖` ‖uk`1 ´ uk‖
¯

ă `8.

The proof of (6.3.1) is completed by taking into account once again (6.2.26).
From (i) it follows that the sequence tpxk, yk, zk, ukqukě0 is Cauchy, thus it converges to an

element px˚, y˚, z˚, u˚q which is, according to Lemmas 6.2.8, a KKT point of the optimization
problem (6.1.1).
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6.3.2 Convergence rates

In this section we derive convergence rates for the sequence tpxk, yk, zk, ukqukě0 generated by
Algorithm 6.2.1 as well as for tΨkukě0, if the regularized augmented Lagrangian Ψ satisfies the
 Lojasiewicz property.

If Assumption 6.2.3 is fulfilled and tpxk, yk, zk, ukqukě0 is the sequence generated by Algo-
rithm 6.2.1, then, according to Theorem 6.2.8, the set of cluster points Ω is nonempty, compact
and connected and Ψ takes on Ω the value Ψ˚; in addition, Ω Ď crit pΨq.

Then there exist CL ą 0, θ P r0, 1q and ε ą 0 such that for any X P B pX˚, εq

|Ψ pXq ´Ψ˚|θ ď CL ¨ dist p0, BΨ pXqq . (6.3.6)

In this case, Ψ is said to satisfy the  Lojasiewicz property with  Lojasiewicz constant CL ą 0 and
 Lojasiewicz exponent θ P r0, 1q.

We prove a recurrence inequality for the sequence tEkukě0.

Lemma 6.3.2. Let Assumption 6.2.3 be satisfied and tpxk, yk, zk, ukqukě0 be a sequence gen-
erated by Algorithm 6.2.1. If Ψ satisfies the  Lojasiewicz property with  Lojasiewicz constant
CL ą 0 and  Lojasiewicz exponent θ P r0, 1q, then there exists k0 ě 1 such that the following
estimate holds for any k ě k0

Ek´1 ´ Ek ě C10E2θ
k , where C10 :“

C8

3 pCL ¨ C9q
2 . (6.3.7)

Proof. For every n ě 2 we obtain from Lemma 6.2.3

Ek´1 ´ Ek “ Ψn´1 ´Ψk

ě C8

´

‖xk ´ xk´1‖2 ` ‖yk ´ yk´1‖2 ` ‖uk ´ uk´1‖2
¯

ě
1

3
C8 p‖xk ´ xk´1‖` ‖yk ´ yk´1‖` ‖uk ´ uk´1‖q2

ě C10C
2
L|||Dk|||

2,

where Dk P BΨpXkq. Let ε ą 0 be such that (6.3.6) is fulfilled and choose k0 ě 1 with the
property that for any k ě k0, Xk belongs to BpX˚, εq. Relation (6.3.6) implies (6.3.7) for any
k ě k0.

The following result follows by combining Lemma 2.4.5 with Lemma 6.3.2.

Theorem 6.3.3. Let Assumption 6.2.3 be satisfied and tpxk, yk, zk, ukqukě0 be a sequence gen-
erated by Algorithm 6.2.1. If Ψ satisfies the  Lojasiewicz property with  Lojasiewicz constant
CL ą 0 and  Lojasiewicz exponent θ P r0, 1q, then the following statements are true:

(i) if θ “ 0, then tΨkukě1 converges in finite time;

(ii) if θ P p0, 1{2s, then there exist k0 ě 1, pC0 ą 0 and Q P r0, 1q such that for any k ě k0

0 ď Ψk ´Ψ˚ ď pC0Q
k;

(iii) if θ P p1{2, 1q, then there exist k0 ě 1 and pC1 ą 0 such that for any k ě k0 ` 1

0 ď Ψk ´Ψ˚ ď pC1k
´ 1

2θ´1 .

The next lemma will play an important role when transferring the convergence rates for
tΨkukě0 to the sequence of iterates tpxk, yk, zk, ukqukě0.

121



Lemma 6.3.4. Let Assumption 6.2.3 be satisfied and tpxk, yk, zk, ukqukě0 be a sequence gen-
erated by Algorithm 6.2.1. Let px˚, y˚, z˚, u˚q be the KKT point of the optimization problem
(6.1.1) to which tpxk, yk, zk, ukqukě0 converges as k Ñ `8. Then there exists k0 ě 1 such that
the following estimates hold for any k ě k0

‖xk ´ x˚‖ ď C11 max
!

a

Ek, ϕ pEkq
)

, ‖yk ´ y˚‖ ď C11 max
!

a

Ek, ϕ pEkq
)

,

‖zk ´ z˚‖ ď C12 max
!

a

Ek, ϕ pEkq
)

, ‖uk ´ u˚‖ ď C11 max
!

a

Ek, ϕ pEkq
)

, (6.3.8)

where

C11 :“ 2
a

3C8 ` 3C8C9 and C12 :“

ˆ

‖A‖` 2

σβ

˙

C11.

Proof. We assume that Ek ą 0 for any k ě 0. Otherwise, the sequence tpxk, yk, zk, ukqukě0

becomes identical to px˚, y˚, z˚, u˚q beginning with a given index and the conclusion follows
automatically (see the proof of Theorem 6.3.1).

Let ε ą 0 be such that (6.3.6) is fulfilled and k0 ě 2 be such that xk belongs to BpX˚, εq for
any k ě k0.

We fix k ě k0 now. One can easily notice that

‖xk ´ x˚‖ ď ‖xk`1 ´ xk‖` ‖xk`1 ´ x˚‖ ď ¨ ¨ ¨ ď
ÿ

iěk

‖xk`1 ´ xk‖ .

Similarly, we derive

‖yk ´ y˚‖ ď
ÿ

iěk

‖yk`1 ´ yk‖ , ‖zk ´ z˚‖ ď
ÿ

iěk

‖zk`1 ´ zk‖ , ‖uk ´ u˚‖ ď
ÿ

iěk

‖uk`1 ´ uk‖ .

On the other hand, in view of (6.3.5) and by taking α :“
1

2C9
the inequality (6.3.4) can be

written as

ak`1 ď
1

2
ak ` bk @k ě k0.

Let us fix now an integer N ě k. Summing up the above inequality for i “ k, ..., N , we have

N
ÿ

i“k

ai`1 ď
1

2

N
ÿ

i“k

ai `
N
ÿ

i“k

bi “
1

2

N
ÿ

i“k

ai`1 ` ak ´ aN`1 `

N
ÿ

i“k

bi

ď
1

2

N
ÿ

i“k

ai`1 ` ak `
3C8C9

2
ϕ pEkq .

By passing N Ñ `8, we obtain
ÿ

iěk

ak`1 “
ÿ

iěk

p‖xk`1 ´ xk‖` ‖yk`1 ´ yk‖` ‖uk`1 ´ uk‖q

ď 2 p‖xk`1 ´ xk‖` ‖yk`1 ´ yk‖` ‖uk`1 ´ uk‖q ` 3C8C9ϕ pEkq

ď 2
?

3 ¨

b

‖xk`1 ´ xk‖2 ` ‖yk`1 ´ yk‖2 ` ‖uk`1 ´ uk‖2 ` 3C8C9ϕ pEkq

ď 2
a

3C8 ¨
a

Ek ´ Ek`1 ` 3C8C9ϕ pEkq ,

which gives the desired statement.

We can now formulate convergence rates for the sequence of generated iterates.
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Theorem 6.3.5. Let Assumption 6.2.3 be satisfied and tpxk, yk, zk, ukqukě0 be a sequence
generated by Algorithm 6.2.1. Suppose further that Ψ satisfies the  Lojasiewicz property with
 Lojasiewicz constant CL ą 0 and  Lojasiewicz exponent θ P r0, 1q. Let px˚, y˚, z˚, u˚q be the KKT
point of the optimization problem (6.1.1) to which tpxk, yk, zk, ukqukě0 converges as k Ñ `8.
Then the following statements are true:

(i) if θ “ 0, then the algorithm converges in finite time;

(ii) if θ P p0, 1{2s, then there exist k0 ě 1, pC0,1, pC0,2, pC0,3, pC0,4 ą 0 and pQ P r0, 1q such that
for any k ě k0

‖xk ´ x˚‖ ď pC0,1
pQk, ‖yk ´ y˚‖ ď pC0,2

pQk, ‖zk ´ z˚‖ ď pC0,3
pQk, ‖uk ´ u˚‖ ď pC0,4

pQk;

(iii) if θ P p1{2, 1q, then there exist k0 ě 1 and pC1,1, pC1,2, pC1,3, pC1,4 ą 0 such that for any
k ě k0 ` 1

‖xk ´ x˚‖ ď pC1,1k
´ 1´θ

2θ´1 , ‖yk ´ y˚‖ ď pC1,2k
´ 1´θ

2θ´1 ,

‖zk ´ z˚‖ ď pC1,3k
´ 1´θ

2θ´1 , ‖uk ´ u˚‖ ď pC1,4k
´ 1´θ

2θ´1 .

Proof. Let

ϕ : r0,`8q Ñ r0,`8q, s ÞÑ
1

1´ θ
CLs

1´θ,

be the desingularization function.

(i) If θ “ 0, then tΨkukě1 converges in finite time. As seen in the proof of Theorem 6.3.1, the
sequence tpxk, yk, zk, ukqukě0 becomes identical to px˚, y˚, z˚, u˚q starting from a given index.
In other words, the sequence tpxk, yk, zk, ukqukě0 converges also in finite time and the conclusion
follows.

Let be θ ‰ 1
2 and k10 ě 1 such that for any k ě k10 the inequalities (6.3.8) in Lemma 6.3.4

and

Ek ď
ˆ

1

1´ θ
CL

˙
2

2θ´1

hold.

(ii) If θ P p0, 1{2q, then 2θ ´ 1 ă 0 and thus for any k ě k10

1

1´ θ
CLE1´θ

k ď
a

Ek,

which implies that
max

!

a

Ek, ϕ pEkq
)

“
a

Ek.

If θ “ 1{2, then
ϕ pEkq “ 2CL

a

Ek,

thus
max

!

a

Ek, ϕ pEkq
)

“ max t1, 2CLu ¨
a

Ek @k ě 1.

In both cases we have

max
!

a

Ek, ϕ pEkq
)

ď max t1, 2CLu ¨
a

Ek @k ě k10.

By Theorem 6.3.3, there exist k20 ě 1, pC0 ą 0 and Q P r0, 1q such that for pQ :“
?
Q and every

k ě k20 it holds
a

Ek ď
b

pC0Q
k{2 “

b

pC0
pQk.

The conclusion follows from Lemma 6.3.4 for k0 :“ max tk10, k
2
0u.
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(iii) If θ P p1{2, 1q, then 2θ ´ 1 ą 0 and thus for any k ě k10

a

Ek ď
1

1´ θ
CLE1´θ

k ,

which implies that

max
!

a

Ek, ϕ pEkq
)

“ ϕ pEkq “
1

1´ θ
CLE1´θ

k .

By Theorem 6.3.3, there exist k20 ě 1 and pC1 ą 0 such that for any k ě k20

1

1´ θ
CLE1´θ

k ď
1

1´ θ
CL pC

1´θ
1 pk ´ 2q´

1´θ
2θ´1 .

The conclusion follows again for k0 :“ max tk10, k
2
0u from Lemma 6.3.4.

6.4 Further perspectives

The following difference of convex optimization model is of huge interest, since it captures many
applied problems

min
xPH

tψ pAxq ´ φ pBxq `Θ pxqu , (6.4.1)

where ψ : G Ñ RYt`8u ;φ : KÑ RYt`8u are proper, convex and lower semicontinuous func-
tions with A : HÑ G;B : HÑ K are linear operators and Θ: HÑ R is a Fréchet differentiable
function with L-Lipschitz continuous gradient.

Following the idea of Banert and Boţ in [22], we can rewrite the problem (6.4.1) as

min
px,yqPHˆK

tψ pAxq ` φ˚ pyq ´ xBx, yy `Θ pxqu . (6.4.2)

One could use the investigation in this chapter to formulate an algorithm to solve (6.4.2) and
provide a setting in which this converges. The numerical validation of the method can be done
by considering applications in image processing and machine learning.

On the other hand, recently, Boţ and Kanzler proposed in [55] a continuous time approach
for the optimization problem (6.2.2). It would be interesting to also addressing (6.1.1) from the
same perspective and to develop corresponding asymptotic analysis.
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