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Abstract

A large number of applications in real-world can be formulated and designed as optimization
problems. These models are usually large-scale, complexly structured, and exhibit features
like nonsmoothness and nonconvexity, which require specific solution methods when addressing
them. Such numerical algorithms are preferable first-order methods, due to their simplicity
and low iteration and memory storage costs, but also to be formulated in a full splitting spirit,
meaning that every element involved in the formulation of the underlying optimization problem
is evaluated separately and in an efficient way.

The main purpose of this thesis is to formulate and investigate the convergence properties
of full splitting algorithms for different nonsmooth optimization problems, ranging from bilevel
convex to structured nonconvex. We focus in particular on the study of the convergence behavior
of the developed algorithms and, in some situations, on their rate of convergence.

In the preliminaries, we introduce basic notions and results of convex analysis, maximal
monotone operators, variational and nonsmooth analysis, which are of relevance for the thesis.
Further, we propose a forward-backward splitting algorithm of penalty type with inertial ef-
fects for a complexly structured monotone inclusion problem, which provides a general setting
for solving convex bilevel minimization problems. The last three chapters of the thesis are
dedicated to the design and analysis of algorithms for nonsmooth and nonconvex optimization
problems. They share the feature that, along with the subsequence convergence analysis, the
global convergence and converge rates are discussed in the setting of the Kurdyka-Lojasiewicz
property. In this context, we first propose a projected gradient algorithm for the factorization
of a completely positive matrix with parameters that take into account the effects of relaxation
and inertia. Then we consider the proximal and the proximal linearized alternating direction
method of multipliers for a nonsmooth and nonconvex optimization problem involving compo-
sitions with linear operators. Finally, we develop a proximal approach for nonsmooth problems
with block structure coupled by a smooth function.






Zusammenfassung

Viele Anwendungen kénnen als Optimierungsprobleme formuliert werden. Diese Modelle sind
in der Regel hochdimensional, komplex strukturiert und weisen Merkmale wie Nichtglattheit
und Nichtkonvexitat auf, fiir deren Behandlung spezielle Losungsmethoden erforderlich sind.
Solche numerische Algorithmen sind, aufgrund ihrer Einfachheit und geringen Iterations- und
Speicherkosten, vorzugsweise Verfahren erster Ordnung. Des weitern liegt unser Hauptaugen-
merk auf sogenannten full splitting Verfahren, was bedeutet, dass jedes Element, das an der
Formulierung des zugrunde liegenden Optimierungsproblems beteiligt ist, separat und auf ef-
fiziente Weise ausgewertet wird.

Der Hauptzweck dieser Arbeit ist die Formulierung und Untersuchung der Konvergenzeigen-
schaften solcher Algorithmen fiir verschiedene nicht glatte Optimierungsprobleme, die von kon-
vexen bilevel bis hin zu strukturierten nicht-konvexen Problemen reichen. Wir konzentrieren
uns insbesondere auf die Untersuchung des Konvergenzverhaltens der entwickelten Algorithmen
und in einigen Situationen auf ihre Konvergenzrate.

Nach einer Einleitung stellen wir Grundbegriffe und Ergebnisse der konvexen Analysis, der
maximalmonotonen Operatoren, der Variations- und der nicht-glatten Analysis vor, die fur die
Arbeit relevant sind. Ferner schlagen wir ein Forward-Backward-Splitting Verfahren der penalty
Art mit Inertialeffekten fiir ein komplex strukturiertes monotones Inklusionsproblem vor. Dies
bietet einen allgemeine Rahmen zur Losung konvexer bilevel Minimierungsprobleme. Die letzten
drei Kapitel der Arbeit befassen sich mit dem Entwurf und der Analyse von Algorithmen fiir
nicht-glatte und nicht-konvexe Optimierungsprobleme. Sie teilen das Merkmal, dass zusammen
mit der Konvergenzanalyse der Teilfolgen die globalen Konvergenz- und Konvergenzraten unter
der Kurdyka-Lojasiewicz-Eigenschaft diskutiert werden. In diesem Zusammenhang schlagen wir
zunéchst einen projizierten Gradientenalgorithmus zur Faktorisierung einer vollstédndig positiven
Matrix mit Parametern vor, die die Auswirkungen von Relaxation und Inertia beriicksichtigen.
Dann betrachten wir die proximale und die proximale linearisierte Version der alternating di-
rection method of multipliers fiir ein nicht-glattes und nicht-konvexes Optimierungsproblem,
das Hintereinanderausfithrungen mit linearen Operatoren beinhaltet. Schliefflich entwickeln wir
einen proximalen Ansatz fiir nicht glatte Probleme mit Blockstruktur, die durch eine glatte
Funktion gekoppelt sind.
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Chapter 1

Introduction

A large number of real-world applications, from engineering, economics to image and signal
processing and machine learning, can be formulated and designed as optimization problems. In
order to capture the desired phenomena, these models are usually large-scaled and complexly
structured and share features like nonsmoothness and nonconvexity. As a result, the obtained
optimization problems are challenging, and specific solution methods are required when ad-
dressing them. Such numerical algorithms are preferable first-order methods and should be
formulated in a fully splitting spirit. First-order methods exploit only the information provided
by function values and gradients/subgradients but not second-order information like the Hes-
sians. They are attractive in modern optimization due to their simplicity and low iteration and
memory storage costs. A fully splitting scheme means every element involved in the formula-
tion of the underlying optimization problem is evaluated separately and efficiently. In addition,
there is no expensive performance regarding the operator’s inversion, and evaluating the sum
or composition of the operators/functions is not needed.

The notion of the proximal operator of a convex function, introduced about half a century
ago by Moreau [108], is a vital object for full splitting schemes. This fundamental regularization
process gave rise to the so-called proximal minimization algorithm by Martinet [105], followed
by its extension in Rockafellar [I1§] for solving monotone inclusions. The proximal operator of
a convex function is also the resolvent of the subdifferential associated with the convex function,
which is a maximally monotone operator. This is the most direct connection between monotone
operator theory and convex optimization. The operator splitting methods were motivated by
applications in mechanics and partial differential equations. In 1956, Douglas and Rachford
proposed a numerical method to study heat conduction problems [76]. Later on, when consid-
ering the monotone inclusions consisting sum of two maximally monotone operators in [100],
Lions and Mercier extended this method and proved weak convergence of the algorithm to a
solution. For a recent extension of this result, see [122]. In case one of the two maximally
monotone operators in the inclusion is single-valued and cocoercive, the forward-backward al-
gorithm [61), B6] can be applied. The principle of this algorithm is to use at every iteration a
forward (explicit) step on the single-valued mapping, followed by a backward (implicit) step on
the other. For the optimization context, this algorithm is also known as the proximal-gradient
algorithm, and the convergence rate for functional value can be derived. If the cocoercivity of
the single-valued operator is further relaxed to monotone and Lipschitz continuous, we can use
Tseng’s forward-backward-forward algorithm [123]. A class of complex optimization problems
in which the functions being composed with a bounded linear operator is a good example for the
benefit of splitting scheme. They have been successfully used to reduce complex problems into
a series of simpler subproblems. In this context, we mention the Proximal Alternating Direction
Method of Multipliers, or Proximal ADMM, see [23| 120]. The classical Alternating Direction
Method of Multipliers [84] [85] or the primal-dual splitting algorithms [49] [65] [70), 124] are the
particular instances of this iterative scheme. Besides the weak convergence of the iterates, one
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can also obtain the rate for primal-dual gaps in the ergodic sense. In the seminal paper [110],
Nesterov proposed an accelerated gradient method. Later on, it has been further extended
to the composite minimization problem by Beck and Teboulle in [28], known as FISTA. Since
the introduction of Nesterov’s scheme, the first-order accelerating methods have become a sub-
ject of active research. Accelerated primal-dual schemes can also be obtained, provided some
additional conditions on the function are fulfilled, see for example [44] [65].

In the absence of convexity, one of the first papers to study the global convergence of the
iterates of the proximal point algorithm was [5] by Attouch and Bolte. This work is a starting
point for many papers that study the convergence of various algorithms in the nonconvex setting
such as the proximal-gradient, and the Gauss-Seidel method [7], [§] as well as some inertial
variants [43], [51), ITT]. All the above work rely on the Kurdyka-Lojasiewicz property. The
origins of this notion go back to the pioneering work of Kurdyka, who introduced in [93] a
general form of the Lojasiewicz inequality [103]. Further extensions to the nonsmooth setting
can be found in the works of Attouch, Bolte, and their co-authors [7, B3], 34, 35]. Li and Pong
studied some calculus rules in [98]. One of the remarkable properties of the Kurdyka-Lojasiewicz
functions is their ubiquity in applications, including semi-algebraic, real sub-analytic, uniformly
convex and convex functions satisfying a growth condition. For nonconvex block-structured
optimization problem, we mention the Proximal Alternating Linearized Minimization (PALM)
of Bolte, Sabach and Teboulle [36]. Li and Pong study in [96] the ADMM for minimizing the
sum of a smooth function with a bounded Hessian and a nonsmooth one, the latter being the
composition of a proper lower semicontinuous function and a linear operator. The Douglas-
Rachford algorithm in the nonconvex setting was also obtained by the same authors [97].

The main purpose of this thesis is to formulate and investigate the convergence properties
of full splitting algorithms for different nonsmooth optimization problems, ranging from bilevel
convex to structured nonconvex. We focus in particular on the study of the convergence behavior
of the sequences of iterates and function values generated by the developed algorithms and, in
some situations, on their rate of convergence.

The organization of this thesis is as follows.

We first introduce in the preliminaries basic notions and results of convex analysis, monotone
operators theory, variational and nonsmooth analysis, which are of relevance for the thesis.
We then present the definition of the Kurdyka-Lojasiewicz property and finally some results
regarding the convergence of real sequences.

In Chapter 3] we focus on a complexly structured monotone inclusion problem, consisting of
the sum of a maximally monotone operator and a cocoercive one and the convex normal cone to
the set of zeroes of another cocoercive operator. This problem also provides a general setting for
solving convex bilevel minimization problems containing smooth function in the lower level. To
solve this problem, we propose an algorithm that combines the forward-backward splitting with
a penalization technique; inertial effects are also considered. We show weak ergodic convergence
of the generated sequence of iterates to a solution of the monotone inclusion problem. In the
context of bilevel optimization, weak nonergodic and strong convergence can be achieved under
further assumptions for the involved functions.

The last three chapters of the thesis are dedicated to the design and analysis of algorithms
for nonsmooth and nonconvex optimization problems. Asides from the subsequence conver-
gence, which is the best one can expect in a general nonconvex setting, we can prove global
convergence and derive convergence rates by using the Kurdyka-Lojasiewicz property. We also
provide sufficient conditions for the boundedness of the generated sequence. In the nonconvex
setting, the boundedness of the sequence of generated iterates plays a central role in the conver-
gence analysis, as it would guarantee the existence of cluster points. Cluster points are usually
expected to be critical points of the underlying problem.

In Chapter 4] we aim to factorize a completely positive matrix by using an optimization
approach. Our model leads to a projected gradient type algorithm with parameters that take
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into account the effects of relaxation and inertia. Both projection and gradient steps are simple
because they have explicit formulas and do not require inner loops. Related approaches in the
literature are the ones proposed by Groetzner and Diir [87] or by Chen, Pong, Tan and Zeng [66].
These schemes require in each iteration the performance of a singular value decomposition in the
calculation of the projection, which is expensive when the dimension of the matrix to decompose
increase. Furthermore, a straightforward step can be performed to find an appropriate starting
point for our algorithm, which is another advantage over the methods mentioned above.

Chapter [5]is devoted to the minimization of the sum of a smooth function and the compo-
sition of a nonsmooth function with a linear operator in the fully nonconvex setting, similar to
the setting in [96]. We propose two numerical algorithms and carry out a parallel convergence
analysis for both algorithms. By appropriate choices of the matrix sequences, these two schemes
can be formulated in the spirit of the proximal and, respectively, proximal linearized alternating
direction method of multipliers.

In the final chapter, we develop a proximal type algorithm for minimizing objective functions
consisting of three summands: the composition of a nonsmooth function with a linear operator,
another nonsmooth function, each of the nonsmooth summands depending on an independent
block variable, and a smooth function which couples the two block variables. We carry out for
this scheme a convergence analysis. If the linear operator is merely the identity, our problem
becomes the model in [36].
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Chapter 2

Preliminaries

2.1 Basic notions of monotone operators and of convex analysis

Let H be a real Hilbert space with inner product {-,-) and associated norm ||-|| = 4/, ).
For an arbitrary set-value operator A: H =3 H we denote by

gphA := {(z,v) e H x H: ve Ax},
domA := {z e H: Az # &},

ranA := {v e H: Jx € H with v e Az},
zerA:={xeH:0e Az},

its graph, domain, range and set of zeros, respectively. The inverse operator of A is denoted
by A7': H = H and defined by (v,z) € gphA~! if and only if (z,v) € gphA. Obviously,
zerA = A71(0).

Definition 2.1.1. Let A: H 3 H be a set-valued operator.

(i) The operator A is said to be monotone, if

{(x —y,v—w) =0 for every (x,v),(y,w) € gphA.

(ii) The monotone operator A is said to be mazimally monotone, if there exists no other
monotone operator A’: H =3 H such that gphA’ 2 gphA.

(iii) The operator A is said to be y—strongly monotone for v > 0, if

<'r - YU = w> = H.T - yH2 for every (l’,’l}) ) (y,’lﬂ) € gphA

Let us mention that if A is maximally monotone, then zerA is a convex and closed set, [24,
Proposition 23.39]. We refer to |24, Section 23.4] for conditions ensuring that zerA is nonempty.
If A is maximally monotone, then one has the following characterization for the set of its zeros

z € zerA if and only if (u — z,y) > 0 for every (u,y) € gphA. (2.1.1)

If A is maximally monotone and strongly monotone, then zerA is a singleton, thus nonempty,
[24, Corollary 23.37].

Definition 2.1.2. Let A: H — H be a single-valued operator. The operator A is said to be
cocoercive with constant p > 0 if its inverse is p-strongly monotone, that is,

(x —y, Bx — By) > pu||Bx — Byl||* for every z,y € H.
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A typical example of a cocoercive operator is the gradient of a Fréchet differentiable convex
function such that its gradient is Lipschitz continuous. In particular, according to the Baillon-
Haddad theorem (see e.g. [24, Corollary 18.17]), if ¥: H — R is a Fréchet differentiable convex
function, then V'V is Lipschitz continuous with modulus L > 0 if and only if it is L™ !-cocoercive.

Another beneficial single-valued Lipschitz continuous operator is the resolvent associated
with a maximally monotone operator.

Definition 2.1.3. Let A: H 3 H be a set-valued operator. The resolvent of A, J4: H 3 H,
is defined by
Ja:=(Id+ A7,

where Id: H — H denotes the identity operator on H.

This operator enjoys many important properties that make it a central tool in monotone
operator theory and its applications. The Theorem of Minty states that it is defined everywhere
in H, i.e. ran (Id + A) = H, if and only if A is maximally monotone ([24, Corollary 23.10]). In
particular, it is 1-cocoercive, therefore 1-Lipschitz continuous, and single-valued.

For an arbitrary v > 0, we have the following identity ([24, Proposition 23.18])

Jya + 7 J14-1 0y 'd = 1d.
Now we consider functions with values in the extended real line R u {t0o0}.
Definition 2.1.4. Let ¥: H — R u {+0} be an extended-real valued function.
(i) The effective domain of ¥ is defined as

domV :={z e H: ¥ (x) < +0}.

(ii) The function ¥ is called proper, if domW¥ # & for all x € H.

(iii) The function ¥ is called conwvez, if for every z,y € H and 0 < 6 < 1

T((1—0)z+0y) < (1—0)T () + 00 (1).

(iv) The function W is called lower semi-continuous at x € H if

liminf ¥ (y) > ¥ (z).

Yy—z

The function ¥ is called lower semi-continuous if it is lower semi-continuous at every
reH.

Definition 2.1.5. Let ¥: H — R U {+o0} be a given function. The convex subdifferential of
U at the point z € H is the set

oV (z) :={veH: ¥ (y) =¥ (x)+ v,y —z)VyeH},
whenever U (z) € R. We take by convention 0¥ (z) = &, if ¥ (z) = +c0.

The proximal operator of a proper, convex and lower semicontinuous function is the most
direct connection between monotone operator theory and convex optimization. Let ¥: H —
R u {+00} be a proper, lower semicontinuous and convex function, prox,y: H — H is a single-
valued operator defined as

prox,y = Jyow = (Id + vow) .

14



Definition 2.1.6. Let ¥: H — R u {+o0} be a function. The conjugate function of ¥ is
U*: H — R U {400} defined by

U (u) = sup {Cw, up — W ()}

and it is a proper, convex and lower semicontinuous.

Notice that if ¥ is proper, convex and lower semicontinuous, then 0¥ is a maximally mono-
tone operator and it holds (6\11)_1 = 0U*. We have the so-called Moreau’s decomposition
formula:

ProX.y + YProX,—igs O 771d = 1d.

The function ¥: H — R U {400} is said to be y—strongly convex with v > 0, if ¥ — % -2

is a convex function. This property implies that 0¥ is a y—strongly monotone operator.
Definition 2.1.7. Let M be a nonempty subset of H.
(i) The indicator function of the set M is defined by

0,re M
O (@) 1= {Jroo x¢ M

(ii) The normal cone of M is the convex subdifferential of its indicator function. In particular

{fveH: y—z,v)<0VyeH},zeM

Ny (z) = {@ v é M

Notice that for x € M we have
ve Ny (z) < oy (x) = (x,v),

where o)r = 03, is the support function of M.

Definition 2.1.8. Let M be a nonempty closed subset of 7. We say that an element z € M is
a projection of an element x onto a nonempty closed subset M of H, if

o =] = nf flz = y].
If the set M is also convex, then the projection of an element x onto M is uniquely defined and
we will denote it by Prjs (z). The projection is also characterized by
Pry (x) e M and (x —Pry(z),y — Pry (2)) <0 Vy e M.
If M < H is a nonempty convex closed set and = € H, then
z=Pry (v) sz —2eNy(2). (2.1.2)

Moreover, notice that for every x € #H it holds Pry; (z) = proxg,, ().

Introduced by Fitzpatrick in [80], the notion below opened the gate towards the employment
of convex analysis specific tools when investigating the maximality of monotone operators (see
[24] [41] and the references therein).

Definition 2.1.9. The Fitzpatrick function associated to a monotone operator A is defined as

oA HxH—->RuU{+w0}, pa(z,u):= sup {z,v)+{y,u)—{y,v)}
(y,v)€gphA

and it is a convex and lower semicontinuous function.
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For insights in the outstanding role played by the Fitzpatrick function in the convex analysis
with the theory of monotone operators we refer to [24], 26} [41] 59, [62] and the references therein.
If A is maximally monotone, then ¢4 is proper and it fulfills

va (z,u) = {x,u)y for every (z,u) e H x H,

with equality if and only if (z,u) € gphA. The following inequality is true when A := 0¥ (see
126)):
vou (z,u) < U (z) + ¥* (u) for every (x,v) € H x H. (2.1.3)

2.2 Variational analysis tools

In the following we will introduce some tools from variational analysis which will play an im-
portant role in this thesis.

Definition 2.2.1. Let ¥: H — R u {40} be a proper and lower semicontinuous function and
x € domV¥ := {y e H: ¥ (y) < 4+oo}. The Fréchet (viscosity) subdifferential of ¥ at x is

30 () = w1 timing LW~ ¥ (@) = oy —a)
2 () : { € H: lim inf T >o}

and the limiting (Mordukhovich) subdifferential of U at z is

OV (x) := {v € H: exist sequences z; — = and vy — d as k — +

such that ¥ (z),) — ¥ (z) as k — +0o0 and vy, € 0V (x3,) for any k > 0}.

For z ¢ dom%, we set O () =0V (x) := .

The inclusion 0W (z) < W (x) holds for each z € H. If ¥ is convex, then the two subdiffer-
entials coincide with the convex subdifferential of ¥. If x € H is a local minimum of ¥, then
0 € 0¥ (z). We denote by

crit (V) :={x e H:0€ 0¥ ()}

the set of critical points of .
The limiting subdifferential fulfils the following closedness criterion: if {zt};~q and {vi};~
are sequence in A such that

v € 0V (x) for any k > 0, (xg,vr) — (z,v) and ¥ (x;) — ¥ () as k — +o0,

then v € 0V (x).

We also have the following subdifferential sum formula (see [107, Proposition 1.107], [I19}
Exercise 8.8]): if ®: H — R is a continuously differentiable function, then 0 (¥ + @) (x) =
oV (z) + V@ (z) for any = € H; and also a formula for the subdifferential of the composition of
U with a linear operator A: G — H (see [107, Proposition 1.112], [119, Exercise 10.7]): if A is
injective, then 0 (¥ o A) (z) = A*0V (Ax) for any = € G.

Definition 2.2.2. The proximal point operator with parameter v > 0 of a proper and lower
semicontinuous function ¥: H — R U {400} is the set-valued operator defined as (JL08])

1
prox,y : H 3 H, prox,y (z) = argryréiﬁ {\If (y) + % |z — y||2} .

If ¥ is bounded from below, then the prox operator is nonempty for every x € H. Exact
formulas for the proximal operator are available not only for large classes of convex functions
(24, 27, 169] ), but also for various nonconvex functions ([7, 89, 95]).

The following proposition collects some important properties of a (not necessarily convex)
Fréchet differentiable function with Lipschitz continuous gradient.
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Proposition 2.2.1. Let ¥: H — R be Fréchet differentiable such that its gradient is Lipschitz
continuous with constant L > 0. Then the following statements are true:

(i) For every x,y € H and every z € [z,y] = {(1 —t)z + ty : t € [0, 1]} it holds
L
U (y) < V(@) + <V (2)y— 2+ 5 lly—alls (2.2.1)

(ii) If U is bounded from below, then for every v > 0 it holds

inf {\y(x) _ (i _ L) Vo (x)||2} > —c0.

zeH 2’72

Proof. (i) Let be x,y € H and z := (1 — t)x + ty for t € [0,1]. By the fundamental theorem
of differentiation and integration we have

1
U(y)—V(x) = L (VY ((1 = 8)x+ sy),y —x)ds
1
= L (VU (1 =98)x+sy) — VU (2),y—x)ds +{V¥ (2),y —z). (2.2.2)
Since

1
fo (VU ((1 =8)x+sy) — V¥ (z),y—x)ds

1 1
<fo||w<<1—s>:c+sy>—w<z>u~|ry—:cuds<LHx—yH?f0s—t\ds

= Lz —y| (J(Jt(—3+t)ds+£1(s—t)ds> =L<;—t(1—t)> e —yl*, (2.2.3)

the inequality in (2.2.1) follows by combining (2.2.2)) and (2.2.3) and by using that 0 <
t <1

(ii) The inequality in (2.2.1) gives for every z € H

—oo < inf ¥ (y) <V (z - lV\I' (1:)>

yeH vy
1 L 1 2
<V (z)+( |z—=-VVU(x)|—2, VI (z) +5 x—-VU(x)) -z
Y Y
1 L 9
@) - (2= 55 IV @I
which leads to the desired conclusion. O

Remark 2.2.1. (i) The Descent Lemma, which says that for a Fréchet differentiable function
U: H — R having a Lipschitz continuous gradient with constant L > 0 it holds

U(y) <V (x)+<{(VVU(x),y—z)+ g ly —z|* Vo,yeH, (2.2.4)

follows from (2.2.1)) for z := x.

(ii) In addition, by taking in (2.2.1]) z := y we obtain

L
V(@) 2 () + VW) o —y - lle -yl VeyeH.

L
This is equivalent to the fact that ¥ + 5 || is a convex function. Such a function is

called L-weakly convex. In other words, a consequence of Proposition [2.2.1] is, that a
Fréchet differentiable function with L-Lipschitz continuous gradient is L-weakly convex.
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2.3 Kurdyka-Lojasiewicz property

In this section let H be a finite-dimentional real Hilbert space.

The origins of this notion go back to the pioneering work of Kurdyka who introduced in [93]
a general form of the Lojasiewicz inequality [I03]. An extension to the nonsmooth setting has
been proposed and studied in the works of Attouch, Bolte, and their co-authors [7), 33 [34] 35].

Definition 2.3.1. Let n € (0,4+00]. We denote by ®, the set of all concave and continuous
functions ¢: [0,7) — [0, 4+00) which satisfy the following conditions:

(ii) ¢ is C* on (0,7) and continuous at 0;
(iii) for any s € (0,n) : ¢’ (s) > 0.
Definition 2.3.2. Let ¥: H — R u {+00} be proper and lower semicontinuous.

(i) The function ¥ is said to have the Kurdyka-Lojasiewicz (KL) property at a point v €
domoV := {v e H: oV (v) # I}, if there exists n € (0, +00], a neighborhood V of ¥ and a
function ¢ € ®,, such that for any

veV [P ®) <¥(v) <V (0)+n]
the following inequality holds

¢ (¥ (v) — W () - dist (0,09 (v)) > 1.

(ii) If U satisfies the KL property at each point of domdW¥, then W is called KL function.

The functions ¢ belonging to the set ®,, for n € (0, +00] are called desingularization functions.
The KL property reveals the possibility to reparametrize the values of ¥ in order to avoid flatness
around the critical points. To the class of KL functions belong semialgebraic, real subanalytic,
uniformly convex functions and convex functions satisfying a growth condition. Recall that a
function is called semialgebraic if its graph can be expressed as a semialgebraic set

p g
U ﬂ {1367'[1 Pi,j :OaQ’i,j <O},
i=1j=1

where P; ;,Q;;: H — R are polynomials for all 1 < 7 < p,1 < j < ¢. The real polynomial
functions, indicator functions of semi-algebraic sets; finite sum and product/composition of
semi-algebraic sets are all semialgebraic functions. It worth to also mention the counting norm:

||z||, = number of nonzero coordinates of .

and ¢, norm for rational p.
We recall the following definition of Lojasiewicz property from [5] (see, also, [103]).

Definition 2.3.3. Let U: H — Ru{+w} be proper and lower semicontinuous. Then W satisfies
the Lojasiewicz property if for any critical point u of W, there exists C, > 0, 6 € [0,1) and ¢ > 0
such that

|0 (u) — ¥ (2)]° < Cf - dist(0, 00 (u)) Yu e B (4,¢),

where B (i, £) denotes the open ball with centre  and radius e.

18



Obviously, ¥ is a KL function with desingularization function

1
@ : [0, +00) — [0,400), ¢ (s):= mCle_e.

We refer to the works of Attouch, Bolte, and their co-authors [5] [7, [8, B3], 34] 35l [36] for
more properties of KL functions and illustrating examples.

Bolte, Sabach and Teboulle proved the following result in [36, Lemma 6]. We will use this
result in the convergence analysis for many algorithms in this thesis.

Lemma 2.3.1. (Uniformized KL property) Let 2 be a compact set and V: H — R U {+00}
be a proper and lower semicontinuous function. Assume that V is constant on ) and satisfies
the KL property at each point of 2. Then there exist ¢ > 0,1 > 0 and ¢ € @, such that for
every u € Q and every element u in the intersection

{ueH: dist (u,Q) <e}n [V (u) < ¥ (u) <V (u)+n]

it holds
¢ (W (u) — W (4)) - dist (0,00 (u)) > 1.

2.4 Convergence results for real sequences

We close this chapter by presenting some convergence results for real sequences that will be
used in what follows in the convergence analysis.
The following result can be found in the paper of Alvarez and Attouch [3], see also [46].

Lemma 2.4.1. Let {0}~ {&k}ps1 and {di};=, be nonnegative real sequences with Z d <

k=1
+00. If there exists kg = 1 such that

Ors1 — Ok < ap (O —Op—1) =& +di, Yk = ko

and o such that
O<op<ar <1l Vkx=1,

then the following statements are true:

(i) Z [0k — 0k—1], < 40, where [s], := max {s,0};
k=1

(ii) the limit lim 0y exists.
k—o0

(iii) it holds ) &, < +oo.
k=1

As a consequence, we get the following statement, which follows from Lemma [2.4.1] applied
in case aj, := 0 and 0, := p, — p for all k > 1, where p is a lower bound of a sequence {py}; -

Lemma 2.4.2. Let {py},>, be a real sequence, which is bounded from below, and {&};~,,

{dk};>1 be nonnegative sequences with Z di < +00. If there exists kg = 1 such that
k=1

Pr+1 < pr — & +di Yk = ko,
then the following statements are true:

(i) the sequence {py},~, is convergent.
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(ii) it holds " & < +o0.
k=1

The following result, which will be useful in this work, shows that statement (ii) in Lemma
can be obtained also when {p},-, is not bounded by below, but has a particular form
(see also [57, Lemma 1.4)).

Lemma 2.4.3. Let {py},>, be a real sequence and {&},~,, {dr}ys, be nonnegative real se-

quences with Z di, < +00 and
k=1

P =0 —aplip_1 + 90 Vk =1,
where {Ok}1.~0, {0k}y>1 are nonnegative sequences and there exists a such that
O<ap<ar <1l VkEx=1.
If there exists kg = 1 such that
Pkl < pp — & +di, Vk = ko, (2.4.1)

then it holds Z &L < +00.
k>1

Proof. We fix an integer K > ko, sum up the inequalities in (2.4.1)) for k = ko, ko + 1, , K
and obtain

K K
PRaL = Pho < — O, &t D dp < ) dp < Fo0. (2.4.2)
k=k k=ko k=1

=k0

Hence the sequence {py},-, is bounded from above. Let p > 0 be an upper bound of this
sequence. For all k > 1 it holds

O — s b1 < O —apbp_1 + 0 = pr < p,
from which we deduce that
—pk < =0k + a0 < apb 1. (2.4.3)

By induction we obtain for all & > kg + 1

k—ko _
O <oylp1+p<-- < ™0 +p ) o <aliTMo, + ﬁ. (2.4.4)
k=1

Then inequality (2.4.2) combined with (2.4.3)) and (2.4.4]) leads to

K K
DG < pro— PR+ Y i < pro ol + D dy
k=k

=ko k=ko k=1 (2.4.5)
__ a >y
< Py + o TR, L Z d, < +0.
l1-«a
k=1
We let K converge to 400 and obtain that Z &k < +00. O

k=1

The following lemma is a simplified version of [56, Lemma 3].

20



Lemma 2.4.4. Let {ap};-, be a nonnegative sequence and {dy},~, a real sequence such that
ap41 < X0 Gk + X1 Q-1 + X2 - ag—2 + dp Vk = 2, (2.4.6)

where xo € R, x1, X2 € Ry fulfill xo + x1 + x2 < 1. Assume further that there exists d = 0 such
that for every K > K > 2

Then, it holds

In particular, for everyi=1,...,N and every K > K > 2, it holds

< (1—x0—x1)ak + (1 —x0) arx+1 + ag+2 +d
kX .
I—x0o—x1—Xx2

‘TMN\

(2.4.7)

Proof. Fix | K>K>2 If K=Kor K=K +1, then (2.4.7) holds automatically. Assume
now that K > K + 2. Summing up the inequality in (2.4.6) for k = K 4+ 2,--- , K, we obtain

K K K K K
Z akp+1 < X0 Z a + X1 - Z ag—1+ X2 - Z ag—2 + Z d. (2.4.8)
k=K+2 k=K+2 k=K+2 k=K+2 k=K+2
Since
K K+1 K
Z A1 = Z ag = Z ag + 0 1 —AK — GK+1 — GK+2
k=K+2 k=K+3 k=K
K K
2 ag = 2 ag — (a£+a5+1)
k=K+2 k=K
K K—1 K
2 Ap—1 = ap = Z ap — (a5+ a?)
k=K+2 k=K+1 k=K
K K—2 K
Z Ap_9 = ap = 2 ap — (affl + af) R
k=K+2 k=K k=K

the inequality in (2.4.8) can be rewritten as

K K
Z ag + a1 — 0K — GK+1 — GK+2 < X0 Z ar, — xo (ax + ax+1)
k=K k=K
K K K
+ X1 Z ar — x1 (ax + ag) + x2- Z a, — x2 (ag_; +ag) + Z dis
k=K k=K k=K+2
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which further implies

(1—x0—x1—Xx2)

TMM
FMM

ar = (1—=X0o—x1—x2) ), ax
Y
<(L—xo—x1)ax + (1 —xo0) ax+1 +axro+ Y, dy
k=K +2
K
= (L—x0o—x1)ak + (1 - xo) ax1 +axya+ Y, di.
k=K +2

Hence, it holds

(I—xo—x1—x2) Y, ax<(1—x0—x1)ax + (1 —Xo0) axs1 +axa+d

‘TMM

and the conclusion follows by taking into consideration that xg + x1 + x2 < 1. O

The following lemma will provide convergence rates for a particular class of monotonically
decreasing sequences converging to 0 (see also [50, Lemma 15]).

Lemma 2.4.5. Let {ex};~, be a monotonically decreasing sequence in R, converging to 0.
Assume further that there exists natural numbers ko = lg = 1 such that for every k = kg

Ek—ly — Ek = Cgeig, (2.4.9)
where C¢ > 0 is some constant and 0 € [0,1). Then following statements are true:
(i) if 0 = 0, then {ex},~, converges in finite time;
(11) if 6 € (0,1/2], then there exists Ccp > 0 and Q € [0,1) such that for every k = ko

k
Ogﬁk gC&oQ ;

(111) if 0 € (1/2,1), then there exists C.1 > 0 such that for every k = ko + lo

0<€k<C571(k—lo+1)_T1*1.

Proof. Fix an integer k > kg. Since kg = [y = 0, the recurrence inequality (2.4.9)) is well defined
for every k = k.

(i) The case when 6 = 0. We assume that ¢, > 0 for every k£ > 0. From (2.4.9)) we get
Ek—lg — €k = C:>0

for every k > ko, which actually contradicts the fact that {ex},, converges to 0 as k — +00.
Consequently, there exists &/ > 0 such that e = 0 for every k > k' and thus the conclusion
follows.

For the proof of (ii) and (iii) we can assume that €, > 0 for every k > 0. Otherwise, as
{er}i>0 is monotonically decreasing and convergent to 0, the sequence is constant beginning
with a given index, which means that both statements are true.
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(ii) The case when 6 € (0,1/2]. We have ¢}, < g9, which leads to
Ehty — ek = Ceell > Ce2¥7 ey,
for every k = kg. Therefore,

1 lo Io L] 1
gk < (29_1) €0 = €0 (05636_1 + 1) fo —
Ceey’ ~ +1 C. 529 111

(iii) The case when 6 € (1/2,1). From (2.4.9)) we get
C: < (ehty — 1) g5 2. (2.4.10)

Define ¢: (0, +00) — R,((s) = s72. We have that

da L 199\ _ 20 _ Ira _op.—20—1
ds<1—298 >"5 = C(s) and ¢7(s) = —265 <0Vse (0,+0).

Consequently, ¢ (ex—1,) < ¢ (s) for all s € [eg, ep—i,]-

o Assume that C (er) < 2¢ (€g—1,). Then (2.4.10]) gives

Eh—1 k1 )
CE<2C(5;€ZO)J Olds<2f OC(s)d(s:i(&?/,lC 29—5,1 ?f)

€k €k
or, equivalently,

(20— 1) C.
2

126 1-20

Ep Ty, = > (1, where C] := > 0. (2.4.11)

o Assume that ¢ (ex) > 2¢ (€g—1,). For v := 2= € (0,1) this is equivalent to
(12 1) et e
thus,
e e > (V1) ek > O, where Gy i= (V1T - 1) 7 > 0. (2412)
In both situations we get for every 7 > kg

ef ™ — el 2 > ¢ := min {C],C}} > 0, (2.4.13)

7 zlo

where C] and CY are defined as in ([2.4.11)) and (2.4.12)), respectively. For every k > ko + 2lo,
by summing up the inequalities (2.4.13)) for i = kg + lg,--- , k, we get

lo—1

Z (51i ?9_5}:0-%)) > (k—ko—1Ilo+1)C" >0.
7=0
Since
O
lo(s}C 29_511%29) Z( —5i0f§>>cl(/€—ko—lo+1),
we have

k—ko—lo+1
120 5 120 K= ko —lot1

el - . (2.4.14)

lo
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We obtain from ([2.4.13)) that

N L) POy (L U D o @C’, (2.4.15)
k() lO l(] lO

where |p| denotes the greatest integer that is less than or equal to the real number p. By

plugging ([2.4.15]) into (2.4.14]) we obtain

51729>k‘—lo+1

= ',
k lO
which implies
AN __1
ek < <l> (k—1lp+1) 201, (2.4.16)
0
This concludes the proof. ]

Remark 2.4.1. The inequality in Lemma (iii) can be writen for k large enough in terms
1
of k instead of k — lp + 1. If, for instance, k = 2(lp + 1), then k —lp + 1 > §k and thus from

(2.4.16]) we get
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Chapter 3

A forward-backward penalty scheme
with inertial effects for montone
inclusions

This chapter follows our work [57].

We investigate forward-backward splitting algorithm of penalty type with inertial effects
for finding a zero of the sum of a maximally monotone operator, a cocoercive operator and
the convex normal cone to the set of zeroes of an another cocoercive operator. Weak ergodic
convergence is obtained for the generated iterates, provided that a condition express via the
Fitzpatrick function of the operator describing the underlying set of the normal cone is veri-
fied. Under strong monotonicity assumptions, strong convergence for the sequence of generated
iterates is proved. As a particular instance we consider a convex bilevel minimization problem
including the sum of a nonsmooth and a smooth function in the upper level and another smooth
function in the lower level. We show that in this context weak nonergodic and strong conver-
gence of the iterates can be also achieved under inf-compactness assumptions for the involved
functions.

3.1 Problem formulation and motivation

In the last years one could observe an increasing interest in numerical schemes for solving
variational inequalities expressed as monotone inclusion problems of the form

0€ Az + Ny (), (3.1.1)

where H is a real Hilbert space, A: H =3 H is a maximally monotone operator, M := arg min h is
the set of global minima of a proper, convex and lower semicontinuous function h: R — Ru{+w0}
and Nys: H =3 H is the normal cone of the set M. The article [14] of Attouch and Czarnecki
was the starting point for a series of papers [13, [16] (17, 21, [45] 46, [82], 109, [1T4] addressing this
topic or related ones. All these papers share the common feature that the proposed iterative
schemes use penalization strategies, namely, the evaluate a penalization of A by its gradient, in
case the function is smooth (see, for instance, [16]), and by its proximal operator, in case it is
nonsmooth (see, for instance, [17]).
Weak ergodic convergence has been obtained in [16] [I7] under the hypothesis:

For all p € ranNaz, Y. Ay {h* <p> — oy (é’;)] < 4o, (3.1.2)

k>1 Br

with {A},>1, the sequence of step sizes, {5 },~;, the sequence of penalty parameters, h*: H —
R u {+0o0}, the Fenchel conjugate function of h, and ranN}; the range of the normal cone
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operator Npy: H =2 H. Let us mention that is the discretized counterpart of a condition
introduced in [14] for continuous-time nonautonomous differential inclusions.

One motivation for studying numerical algorithms for monotone inclusions of type
comes from the fact that, when A = 0f is the convex subdifferential of a proper, convex and
lower semicontinuous function f: H — R U {400}, they furnish iterative methods for solving
bilevel optimization problems of the form

min {f (z) : © € argminh}. (3.1.3)
zeH
Among the applications where bilevel programming problems play an important role we mention
the modelling of Stackelberg games, the determination of Wardrop equilibria for network flows,
convex feasibility problems [9], domain decomposition methods for PDEs [6], image processing
problems [45], and optimal control problems [17].
Later on, in [46], the following monotone inclusion problem, which turned out to be more
suitable for applications, has been addressed in the same spirit of penalty algorithms

0€ Az + Dx + Ny (2), (3.1.4)

where A: H =2 H is a maximally monotone operator, D: H — H is cocoercive operator and the
constraint set M is the set of zeros of another cocoercive operator B: H — H. The provided
algorithm of forward-backward type evaluates the operator A by a backward step and the two
single-valued operators by forward steps. For the convergence analysis, has been replaced
by a condition formulated in terms of the Fitzpatrick function associated with the operator B,
which we will also use in this chapter. In [2I], several particular situations for which this
condition is fulfilled have been provided.

In this chapter, we will endow the forward-backward penalty scheme for solving from
[46] with inertial effects, which means that every new iterate will be defined in terms of the pre-
vious two iterates. Inertial algorithms have their roots in the time discretization of second order
differential systems [3]. They can accelerate the convergence of iterates when minimizing a dif-
ferentiable function [I16] and the convergence of the objective function values when minimizing
the sum of a convex nonsmooth and a convex smooth function [28,[64]. Moreover, as emphasized
in [29], see also [51], algorithms with inertial effects may detect optimal solutions of minimization
problems which cannot be found by their noninertial variants. In the last years, a huge interest
in inertial algorithms can be noticed (see, for instance, [I], 2, Bl (15, 20}, 47, 48], [50L 53, 54]).

In particular, we will prove weak ergodic convergence of the sequence generated by the
inertial forward-backward penalty algorithm to a solution of the monotone inclusion problem
, under reasonable assumptions for the sequences of step sizes, penalty and inertial pa-
rameters. When the operator A is assumed to be strongly monotone, we will also prove strong
convergence of the generated iterates to the unique solution of .

In Section [3.3], we will address the minimization of the sum of a convex nonsmooth and
a convex smooth function with respect to the set of minimizes of another convex and smooth
function. Besides the convergence results obtained from the general case, we achieve weak non-
ergodic and strong convergence statements under inf-compactness assumptions for the involved
functions. The weak nonergodic theorem is an useful alternative to the one in [54], where a
similar statement has been obtained for the inertial forward-backward penalty algorithm with
constant inertial parameters under assumptions which are quite complicated and hard to verify
(see also [109, [114]).

3.2 The general monotone inclusion problem

The monotone inclusion problem we will consider in this chapter is the following.
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Let H be a real Hilbert space, A: H 3 H a maximally monotone operator, D: H — H
an n—cocoercive with n > 0, B: H — H a pu—cocoercive with p > 0 and assume that M :=
zer B # . The monotone inclusion problem to solve reads

0€ Ax + Dz + Ny (2) . (3.2.1)

The following forward-backward penalty algorithm with inertial effects for solving (3.2.1])
will be in the focus of our investigations in this chapter.

Algorithm 3.2.1. Let {ar};~1, {Ae}p=1 and {Br}ys, be sequences of positive real numbers such
that

(C1) {Mebgsr € L2\ LY, that is D AF < 400 and )| Ay = +0;
k=1 k=1

(Ca) {ar}s, is nondecreasing;
(C3) there exists ov with 0 < ap < oy < 1/3 for all k > 1.

Let xg,x1 € H. For all k = 1 we set
Tht1 := J)\kA (xk — M\ Dzxp — A\ B Bxy, + ap (.CUk — xk_l)) .

When D = 0 and B = Vh, where h : H — R is a convex and differentiable function with
p~ ! —Lipschitz continuous gradient with p > 0 fulfilling minh = 0, then recovers the
monotone inclusion problem addressed in [I6], Section 3] and Algorithm can be seen as
an inertial version of the iterative scheme considered. When B = 0, we have that N, = {0}
and Algorithm [3.2.1] is nothing else than the inertial version of the classical forward-backward
algorithm (see for instance [24] [67]).

Hypothesis 3.2.1. The convergence analysis will be carried out in the following hypotheses
(see also [46]):

(HEY) A + Ny is maximally monotone and zer (A + D + Nyy) # &;

(Hgtz) for every p € ranNyy, Z Ak Bk {sup vB (u, p) — oM (p)] < 400, where pp denotes
= ueM B B

the Fitzpatrick function of B.

Since A and N} are maximally monotone operators, the sum A + A}, is maximally mono-
tone, provided some conditions are fulfilled (see [24] 41}, (59, [130]). Furthermore, since D is also
maximally monotone and domD = H, if A + A}, is maximally monotone, then A + D + Ny is
also maximally monotone.

Let us also notice that for p € ranNy; there exists 4 € M such that p € Ny (@), hence, for
every 8 > 0 it holds

spen (1)~ (5) > (25~ (5) =0

Example 3.2.1. Here we discuss a particular instance for which is verified. Given a
convex and closed set J # M < H, consider

1. 1
h(x):= §ylélj\f/[ |z —y|* = §|]m—PrMa;H2 Vr e H.
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Then h is differentiable, Vh (z) = © —Pryz for all x € H and B := Vh is Lipschitz continuous,

1
thus cocoercive. In addition, the definition of A* and oy yields h* = oy + 5 |-[[%. Since

h(z) = 0 for every z € M, we get from (2.1.3)

Tou [ een (15, ) o (5) | = S o ()—UM(@)]

=3 My H - ol 3 3

k=1 k>1

For every positive sequence {Ap},s; € €2\ £}, if we take

thenZ——Z)\2<+oo

k>1 k=1

For further particular situations where is satisfied we refer the reader [211 53| 54] [109].
Before formulating the main theorem of this section, we will prove some useful technical
results.

Lemma 3.2.2. Let {w1},-, be the sequence generated by Algorithm and (u,y) be an
element in gph (A + D + Nyy) such that

y=v+ Du+p withve Au and p € Ny (u) .

Furthermore, let £1,e9,e3 > 0 be such that 1 — e > 0. Then the following inequality holds for
every k =1

lzkrr —ull = Il —ul®

< o llog — ull® — g l|lze—1 — ul® = (1 — de1 — e2) ||wps1 — 2l
O‘Q 2 90 2
+ | ok + 74 Nz, — 1 ||? + ( =A2B7 — 20 (1 — £3) M\ ) || By |
€1 €9
4 5 2 45 2
+ 6—)% =20 | |Dzy, — Dul|” + ;/\’f | Du + v||
2 2

+ 2e3 A0k [sup YB (u, Eg,pﬂk) — oM <€3}78k>} + 20 {u — xk, y) - (3.2.2)

ueM

Proof. Let k = 1 be fixed. According to definition of the resolvent of the operator A we have
T — Tpr1 — M (Dag + BeBag) + ag (T — 2p-1) € ApAzp (3.2.3)
and, since \pv € A\ Au, the monotonicity of A guarantees
(Tpy1 — U, T — Ty1 — A (Dxg + BBk +v) + o (xp — 2-1)) =0 (3.2.4)
or, equivalently,

2QU — Ty 1, T — Tpy1) < 2A6 U — Tpy1, BpBap + Dy + v) — 200 (U — Tpy 1, T — Tp—1) -

(3.2.5)
For the term in the left-hand side of (3.2.5) we have
2(u = @pi1, o — 1) = s — ull® + [[orgr — zel” = ok — ull® (3.2.6)
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Since
—20p U — Ty g — 1) = —ag |lu— zp_1]]* + ap Ju — 2| + o |2k — 1|

and

a2

2<1’k+1 — X, ap (zg, — mkfl» < 4dey ka+1 - kaZ + kl H»”Uk - xkleQa

4e

by adding the two inequalities, we obtain the following estimation for the second term in the

right-hand side of ((3.2.5)

— 20 (U = Tpy1, Th — Th—1)

2 (3.2.7)
(&%
< anllon = ull - au oy = ulP + dey o — ol + (o + 15 ) o~ o

We turn now our attention to the first term in the right-hand side of (3.2.5)), which can be
written as

2\p (U — Tpy1, e By, + Dy, + v)
= 2\, (u — @k, BBy + Dag + v) + 20 B {Tk — Tper1, Brg) + 20 (0 — Ty 1, Dog + v).
(3.2.8)

We have

€ 2
2>\k5k <$k — Tk+1, B$k> < 52 ka+1 — wkHQ + 5/\%,@% HB(L‘k||2 (329)
and

€9 2
2Ak ok = Tpr, Dy +0) < o @1 — ikl + 5)\% | Dy, + ]|

£9 4 4
< 5 leker = axl® + AR Dag = Dull® + —XF || Du+of*.
£9 €2

(3.2.10)
On the other hand, we have
20 {u — xk, BB + Dz + v)
= 2Pk (u — x, Bry) + 2\, (u — zg, Dz — Duy + 20 {u — x, Du + v). (3.2.11)
Since 0 < €3 < 1 and Bu = 0, the cocoercivity of B gives us
2\ B (u — g, By < =21 (1 — e3) MiBe || Bz |)® + 263\ Bk (u — 1, Bay,) . (3.2.12)
Similarly, the cocoercivity of D gives us
2\, {u — zg, Dxy, — Duy < —2n\i || Dxy, — DuH2 ) (3.2.13)

Combining (3.2.12)) - (3.2.13)) with (3.2.11)) and by using the definition Fitzpatrick function and
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the fact that oy ( P ) = <u, p>’ we obtain
€30k €30k

2\, {u — z, P Bxy, + Dz + v)

< — 24 (1 — e3) MeBe || Boge||* + 22385 (u — wk, Bawy — 20\ | Day — Dul|?
+ 2M {u — xg, Du + v)

— — 20 (1 — &3) Mk || Bz ||® + 26306 Bk (u — 23, By — 20\ || Dy — Du)?
+ 2\, (u — Tk, Yy — D)

= —2u(1 —e3) Mo | Bz ||® — 20Xk || Dy, — Dul|® + 20, (u — 23, y)

RN SR

< —2p (1 —e3) \ifBr HBwkH2 — 29k | Dxy — DuH2 + 20, {u — Tk, y)

p p
+ 2e3A\f [su (u, ) -0 ()] . 3.2.14
IR Lent TP\ ey M\ 3B ( )
The inequalities (3.2.9)), (3.2.10)) and (3.2.14]) lead to

2\, (U — Tpy1, e By + Dy, + v)

2 4
< (@A%Bi — 2 (1 —e3) )\kﬂk> | Bz + (@Az - 2%) | D2y, — Dull* + &2 ||zpi1 — 22

4
+ =M | Du + || + 2e3) 85 [Sup vB <U, p) —oM (p)} + 2\, (u — 71, Y) -
€2 €30k €30k

ueM
(3.2.15)
Finally, by combining (3.2.6)), (3.2.7) and (3.2.15)), we obtain ([3.2.2]). O

1
From now on we will assume that for 0 < ay < — the constants €1,e3,63 > 0 and the

sequences {\}.~; and {Bx},, are chosen such that

a2

(Cq) 1—e3>0, ea<l—4de;—ay—— and sup\fi < pez (1 —e3).
deq k>1

As a consequence, there exists

2
€1 [0
0<s<l——-———(14+— ,
y 1—361—52 < 2€1>

which means that for all £k > 1 it holds

2 2

(6
L (1 ey —e3) < ay + j—gl (1 —de —e3) < —s. (3.2.16)

Ok+1 +
On the other hand, there exists
1
0<t<p(l—e2)— —supfB,
€3 k=0
which means that for all £ > 1 it holds

1
;Akﬁk —u (1 - 52) < —t. (3.2.17)
3
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1
Remark 3.2.1. (i) Since 0 < a4 < 3, one can always find 1,e9 > 0 such that

a2

2<1—4€1—a+—g
1

One possible choice is
€1=%and0<€2<1—30¢.
From the second inequality in (Cy) it follows that
2

«
1—381—€2>€1+a++4—>0.
€1

(ii) As

2 2
€1 lo’ 1 o
l—-———— 1+ — ) =—————— [1—4ey—eg—ay —— | >0,
1 —381 — &9 ( 261) 1 —381 — &9 ( “1 2 O+ 481)

it is always possible to choose s such that

2
€1 [0
0<s<l——F7F———|(1+ .
§ 1—351—5< 2€1>

012

s<1—451—52—a+—4—
€1

Since in this case

one has ([3.2.16]).
The following proposition brings us closer to the convergence result.

Proposition 3.2.3. Let 0 < ay < %, €1,€2,€3 > 0 and the sequences {A\}~; and {Bi}=,
satisfy condition (Cy). Let {xp},>, be the sequence generated by Algorithm and assume
that the Hypotheses are verified. Then the following statements are true:

(i) the sequence {||xk11 — x|} o belongs to €2 and the sequence {)\kﬁk HB:UkHQ}k ) belongs

> >
to 0';
(i) if, moreover, lgminf AeBk > 0, then klim |Bzk|| = 0 and thus every cluster point of the
— 400 —+00

sequence {Ty}y~q lies in M.

(i11) for every u € zer (A + D + Nay), the limit klim |xp — ul| exists.
—+00

2
Proof. Since khm Ar = 0, there exists a integer k1 > 1 such that )\ < —77 for any integer k >
—+0

ko. According to Lemma u for every (u,y) € gph (A + D + Ny) such that y = v + Du + p,
with v € Au and p € Ny (u), and all k > kg the following inequality holds

[ e ET el

< ap |z — ull* — ag lzg—1 — ull* — (1 —dey — e2) [|zprr — 2|

a2 2
+ (ak o ) g — xp_1||* + (Akﬁk —2u (1 — 83)) AeBr | Bz |)?
€1 &2

7)% ||Du + U”2 + 263)\kﬁk |:Sup ©wB <u, v > —OM <p
ueM €30k

535k>] +2)\k<u—xk,y>.

(3.2.18)
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We consider u € zer (A + D + Nyy), which means that we can take y = 0 in (3.2.18). For all
k > 1 we denote

o?
Or = |log —ull”,  pr = Ok — g1 + <Oék + 4€1> [ (3.2.19)
and A
0 1= —/\i [ Du + v||2 + 2e3\, 8k [sup ©B (u, v ) — oM < P >} ) (3.2.20)
€2 ueM €308k €38k

Using that (o), is nondecreasing, for all k > kq it yields

2
(6
P+l = Pk < (ak+1 + 4’;1 —(1—4e1 - 62)) [l

2
+ (63)\;66;{; —2u (1 — 62)> Ao || By || + o

< —s||@pe1 — zil® — 2tMe Bk || Bxi|® + Ok, (3.2.21)

where s,t > 0 are chosen according to (3.2.16]) and (3.2.17)), respectively.
Thanks to |(H5%)| and |(Cy)| it holds

Z Op = — HDU +? 2 A +2 Z €3k Bk {Sup ©YB ( &fﬁ’) —om (531,)Bk>] < +00.

k>1 k>1 k>1 ueM
(3.2.22)
Hence, according to Lemma [2.4.3] we obtain
D llzrer — zel® < 400 and > ApBy || Bal® < +o0, (3.2.23)
k=0 k>1
which proves (i). If, in addtion li;n inf A8 > 0, then klim ||Bzk|| = 0, which means every
—00 —+00

cluster point of the sequence {x};, lies in zer B = M.
In order to prove (iii), we consider again the inequality (3.2.18|) for an arbitrary element

u € zer (A+ D + Ny) and y = 0. With the notations in (3.2.19) and (3.2.20)), we get for all
k> ]{30

2
Or+1 — Ok < ag (O — Ok—1) + (Ozk + > |lxp — zp— 1” + I. (3.2.24)

4eq
According to (3.2.22)) and (3.2.23]) we have
2
> (ak+> k= xpa | + ) 6k < (a++> Dl — w4+ ) 0k < +o0,
k=1 k=1 k=1 k=1

(3.2.25)
therefore, by Lemma [2.4.1] the limit klim O = klim |z — u||® exists, which means that the
—+00 —+00
limit lim ||z — ul|| exists, too. O

k—400

Remark 3.2.2. The condition that we imposed on the sequence of inertial parameters
{ak} > is similar with the one proposed in [3| Proposition 2.1] when addressing the convergence
of the inertial proximal point algorithm. However, the statements in the proposition above and
in the following convergence theorem remain valid if one alternatively assumes that there exists
o/ such that 0 < oy, < o/, <1 forall k> 1 and

2
Z (ak—i- 4) |lxp — zp— 1H < +00.
€1

k=1
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This can be realized if one chooses for a fixed g > 1

o < min {O/Jr,Qsl (—1 + \/1 + k=9 ||xg — xk_1||_2>} Vk > 1.

2
«Q 1
Indeed, in this situation we have that —& + oy, — 5 < 0 for all £ > 1, which gives
deq k4 ||«73k — xk,1||
2
[0 2 1
Z <ak + 4gk> loe — xp—1]]” < Z 7 <t
k=1 1 k=1

The sequence of weighted averages {21}, is defined for every k > 1 as

k k
1
2L = T—k Z AnZn, where 73, := Z An. (3.2.26)
n=1

n=1

Lemma 3.2.4 (Opial-Passty). Let Z be a nonempty subset of H and assume that the limit
klim |z, — u|| exists for every element uw € Z. If every sequential weak cluster point of {xy} =
—+00 =

respectively {21}, lies in Z, then the sequence {T},, respectively {zp},,, converges weakly
to an element in Z as k — +00.

Now we are ready to prove the main theorem of this section, which addresses the convergence
of the sequence generated by Algorithm

Theorem 3.2.5. Let 0 < ay < %, €1,2,63 > 0 and the sequences {Ai}p>q and {Br}ys,
satisfy condition (Cy). Let {xp},> be the sequence generated by Algorithm (3.2.1, {21}, be
the sequence defined in (3.2.26) and assume that the Hypotheses|3.2.1| are verified. Then the

following statements are true:

(i) the sequence {z},~, converges weakly to an element in zer (A + D + Nuy) as k — +oo.

(ii) if A is y—strongly monotone with vy > 0, then {x1},-, converges strongly to the unique
element in zer (A + D + Nyr) as k — +0o0.

Proof. (i) According to Proposition [3.2.3| (iii), the limit klim |z — u| exisits for every u €
—+a0

zer (A + D + Nyy). Let z be a sequential weak cluster point of (2;),~,. We will show that
z € zer (A + D + Nyy), by using the characterization (2.1.1]) of the maximal monotonicity,
and the conclusion will follow by Lemma [3.2.4]

To this end we consider an arbitrary (u,y) € gph (A + D + N)yy) such that y = v+ Du+p,
where v € Au and p € Ny (u). From (3.2.18)), with the notations (3.2.19) and (3.2.20)), we
have for all k > kg

Pk+1 — Pk

< = 5 ||zper — 2ll? = 2M B || Bawl|® + 0k + 2X (u — 2, y) < g + 220 (u — 2, 9) -
(3.2.27)

Recall that from (3.2.22)) that 2 0k < +00. Since (zx)g=0 is bounded, the sequence
k=1
(pr)k>1 is also bounded.

We fix an arbitrary integer K > ko and sum up the inequalities in (3.2.27) for n =
ko+1,kg+2,---, K. This yields

ko ko K
Pia1 — Phkotl S Z Op +2( — Z ARt + 2 )\kxk,y> + 2<7Ku— Z )\kxk,y>.
k=1 k=1 k=1

k=1
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(i)

K
After dividing this last inequality by 275 = 2 Z Ak, we obtain

k=1
L )< 7o ) (3.2.28)
i — X U— 2, ) e
2 PE+1 — Pko+1 27 K'Y

k=1

ko ko
where T := Z Oop+2( — Z A+ Z )\kxk,y> € R. By passing in (|3.2.28)) to the limit
k=1 k=1
K

and by using that lim 7z = lim Z A = 400, we get
k—o0 K—oo el

liminf (u — 2, y) = 0.
K-

As z is a sequential weak cluster point of (zx),~,, the above inequality gives us (u—z,yy=
0, which finally means that z € zer (A + D + Nyy).

Let u € H be the unique element in zer (A + D 4+ Njy). Since A is y—strongly monotone
with v > 0, the formula in (3.2.4]) reads for all £k > 1

(Ti1 — U, Tp — Tpr1 — N (Dag, + BpBry +0) + o (2 — 25-1)) = YNk J2ps1 — ul?
or, equivalently,

29k |11 — U||2 +2{U = Ty 1, T — Thy1)
< 20 (U — Tpq1, Be B + Drg + v) — 200, (U — Tpey1, Tp — Tpe—1) -

By using again (3.2.6)), (3.2.7) and (3.2.15)) we obtain for all k£ > 1

29k ka1 — ull* + [lopsr — ull® = ax — ull?

< ol —ull? = ag lzp—r — ul)® = (1 — dey — €2) [|wpr1 — 2|

2
o 2
(ot g2 ) o=l (20858 - 2000 = e0) M) [ B

4 4
+ <5Az — zmk> |Day — Dul* + ;Ai | Du + v]?
2 2

+ 23\ B [SUP B <U, p> — oM ( P
ueM €308k €308k

By using the notations in (3.2.19)) and ([3.2.20)), this yields for all £ > 1

2
«
2 owss = ulF + 1 = Oc < a0 00~ ) + (a4 15 ) o = a6

)|+ 2o,

By taking into account (3.2.25)), from Lemma we get

29 > A ok — ul)? < +oo.
k=1

According to|(C})| we have Z A = +o0, which implies that the limit klim |xr — u|| must
—00
k>1
be equal to zero. This provides the desired conclusion. O

34



3.3 Applications to convex bilevel programming

We will employ the results obtained in the previous section in the context of monotone inclusions
to the solving of convex bilevel programming problems.

Let H be a real Hilbert space, f: H — Ru {40} a proper, convex and lower semicontinuous
function and g,h: H — R differentiable functions with Lg—Lipschitz continuous and, respec-
tively, Lp—Lipschitz continuous gradients. Suppose that argminh # ¢ and minh = 0. The
bilevel programming problem to solve reads

min  f(z)+g(z). (3.3.1)

rearg min h
The assumption min A = 0 is not restrictive as, otherwise, one can replace h with h — min h.
Hypothesis 3.3.1. The convergence analysis will be carry out in the following hypotheses:

(HY™®) Of + Nargminh s mazimally monotone and S := arg  min  {f (z) + g ()} # &;

rearg min h

(ngog) fO?" every p € ranj\/’argminha Z Aklgk [h* (p) — Oargminh (;;)] < +00.

k>1 Br

In the above hypotheses, we have that f + Vg +Nagminh = 0 (f + g + dargmin ) and hence
S = zer (0f + Vg + Nargminn) # . Since Vg and Vh are L;l—cocoercive and, respectively,
Lﬁl— cocoercive, and argminh = zerVh solving the bilevel programming problem in (3.3.1))
reduces to solving the monotone inclusion

Oe af(.f) + Vg(x) + Nargminh(x>'
By using to this end Algorithm we recieve the following iterative scheme.

Algorithm 3.3.1. Let {ag};~1, { )1 and {Br}ys, be sequences of positive real numbers such
that

(C1) {Mk}psr € 2\ 04
(C2) {an}ysy is nondecreasing;
(C3) there exists o with 0 < ap, < ay < 1/3 for all k > 1.

Let xg,x1 € H. For all k = 1 we set
Tgy1 = Proxy, s (v — M Vg (2r) — MBeVh (z1) + o (T) — T1-1)) -

By using the inequality (2.1.3), one can easily notice, that (HY™®) implies (H5%), which
means that the convergence statements for Algorithm [3.3.1]can be derived as particular instances
of the ones derived in the previous section.

Alternatively, one can use to this end the following lemma and employ the same ideas and
techniques as in Section Lemma [3:3.7] is similar to Lemma however, it will allow us
to provide convergence statements also for the sequence of function values (h(zk))xr=0-

Lemma 3.3.1. Let {x1},-, be the sequence generated by Algorithm and (u,y) be an
element in gph (0f + Vg + Nargminn) such that

y=v+ Vg(u)+p withve df(u) and p € Nargminh (v) -
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Further, let €1,e2,e3 > 0 be such that 1 —e3 > 0. Then the following inequality holds for all
k>1

lzksr —ull* = ax —ull®
2

[0
< anllon = ulP = o lowos =l = (1= 421 = 20) s = + (a0 + £ ) o = P

(sziﬂz (1 —=y) wk) IV ()] + <4Ak - m) Vg (a2) = Vg (u)

B[ (0) — b)) + S o+ Vg ()]

2 2
+ €3Ok [h* (p) — Cargminh (p)] + 2 (u — T, ) -
€30k

€308k

Proof. Let be k > 1 fixed. The proof follows by combining the estimates used in the proof of

Lemma with some inequalities which better exploits the convexity of h. From (3.2.12) we
have

2010k (u — a2k, VR (1)) < =211 (1 — £3) MoBr | VA (2p)||” + 26378k (u — a1, VR ()

Since h is convex, the following relation also hold

2k Ok <u — 2k, Vh (ack)> < 200k [h (u) —h (:L'k)] .

Summing up the two inequalities above give us

20k B (u — g, VR (21)) < —p (1 — £3) MeBr || VR (21) I + €30 Br (u — g, VR (1))
+ A8k [h (u) = h (zg)] -

Using the same techniques as in the derivation of (3.2.14}), we get
2X (u = wp, v + Vg (1) + B Vh (x1))
< — (1 —e3) M VA (2)lI” = 207k [|Vg (z1) = Vg (W) |* + M [ (u) = b (21)]
2 2
+ 2 (u — T, Y) + €36 Bk [h* <U p) — Cargminh <p>] .

’ €30k €30k

With this improved estimates, the conclusion follows as in the proof of Lemma [3.2.2 O

By using now Lemma [3.3.1] one obains, after slightly adapting the proof of Proposition
the following result.
B-2.3, g

Proposition 3.3.2. Let 0 < ay < %, €1,62,€3 > 0 and the sequences {A\};~; and {Bi}=,
satisfy condition (Cy). Let {zr},~q be the sequence generated by Algorithm and assume
that the Hypotheses are verified. Then the following statements are true:

(i) the sequence {||xx+1 — k|| }pso belongs to €% and the sequences {)\kﬁk ||Vh(:v;€)|]2}k ) and
- =
{\eBrh(wr)} sy belong to 0F;

(i) if, moreover, liminf A\yfr > 0, then lim |[|Vh(zg)|| = lim h(zg) = 0 and thus every
k—4o00 k—+00 k—+00

cluster point of the sequence {xy},~ lies in argmin h.

(iii) for every u e S, the limit klim |lxp — ul| exists.
— -+
Finally, the above proposition leads to the following convergence result.
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Theorem 3.3.3. Let 0 < ay < %, €1,€2,63 > 0 and the sequences {A\},>q and {Bi}p=
satisfy condition (Cy). Let {xy},~, be the sequence generated by Algorithm [3.3.1, {2z}~ be
the sequence defined in and assume that the Hypotheses |3.3.1| are verified. Then the
following statements are true:

(i) the sequence {zx},~, converges weakly to an element in S as k — +o0.

(i) if f is y—strongly convex with~y > 0, then {x},~, converges strongly to the unique element
mn S as k — +o0.

As follows we will show that under inf-compactness assumptions one can achieve weak non-
ergodic convergence for the sequence {x},-,. Weak nonergodic convergence has been obtained
for Algorithm in [54] when oy = « for all k¥ > 1 and for restrictive choices for both the
sequence of step sizes and penalty parameters.

We denote by (f + g)s« = mingeargminn (f(2) + g(2)). For every element z in H, we denote
by dist (z,S) = irelg ||z — u| the distance from z to S. In particular, dist (z,S) = ||z — Prsz||,

where Prsx denotes the projection of  onto §. The projection operator Prg is firmly nonex-
pansive ([24, Proposition 4.8]), this means

|Prs (z) — Prs ()| + ||[Id — Prs] (z) — [Id — Prs] )|> < ||z — y||*> Vz,ye H.  (3.3.2)

1 1
Denoting d (z) = §dist (z,8)% = B |z — Prsz||? for all z € #, one has that z — d(z) is
differentiable and it holds Vd (z) = © — Prgz for all z € H.

Lemma 3.3.4. Let {1}, be the sequence generated by Algorithm and assume that the
Hypotheses are verified. Then the following inequality holds for all k > 1

d(zp41) —d (l‘k) —ag (d(zr) — d(zp-1)) + e [(f + 9) (@hs1) = (f +9)+]
< ZIN + —)\kﬁk + ) |lzks1 — ka + ag ||zk — - 1H (3.3.3)
Proof. Let k > 1 be fixed. Since d is convex, we have
d(zke1) — d(zg) < (Tpy1 — Prs(Tp41) , Tpe1 — ) - (3.3.4)
Then there exists vg11 € 0f (xg41) such that (see (3.2.3))
Tp — Tpp1 — M(Vg(wr) + B Vh(zr)) + an(or — Tp-1) = ApVrs1
and, so,

(@py1 — Prs(xpq1), Thp1 — )
= (g1 — Prs (Trs1) , —Mevks1 — MV (2r) — MBS VR (25) + g (z, — 1))
= MeBr (xrs1 — Prs (zr41) , VA (2r)) + ap {(Trr1 — Prs (vp11) , o6 — 5-1) - (3.3.5)

Since vg11 € Of (xg41), we get

— M (@h41 — Prs (@p+1) s vi1) < A [f (Prs (zi41)) — f (2n41)] - (3.3.6)
Using the convexity of g it follows
g (xr) — g (Prs (zp41)) < (Vg (zr) , 2x — Prs (zi41)) - (3.3.7)

On the other hand, the Descent Lemma (2.2.4) gives
L
9 (xkv1) < g (zk) + (Vg (Tk) , Ths1 — Tp) + 79 [N e (3.3.8)
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By adding (3.3.7) and (3.3.8)), it yields

L\
= M (@1 = Prs (@r) , Vg (21)) < Mg (Prs (zr41)) — g (@rp0)] + =5 E arar — k.
(3.3.9)
1
Using the — —cocoercivity of VA combined with the fact that Vi (Prs (zrs+1)) = 0 (as

Ly,
Prs (zi+1) belongs to S), it yields

~ o = Prs (@) Vh (@) <~ VA (@)l
Therefore
— APk (k1 — Prs (Te41) , VA (28)) < AiB <<Jfk — Tpt1, Vi (28)) — Llh IVh (xk)||2>
< M rpar — il (3.3.10)
Further, we have

o (The1 — Prs (wp41) — (zp — Prs (zx)) , 2 — 2p-1)
(e a
< & I1d = Prs] (z41) = [1d = Prs] (w0) |* + 5 g — 24

(0773 ap
< = ke — al” + 55 ok — ap-1 ],
2 2
and

ap{rr — Prs (xg) ,xp — Th—1)
Qg Qg
= agd (%) + o [lzx — wra|” - - l[@r—1 = Prs (zn)?
Qg
< apd (wx) + = [lok — Tp_1||* — apd (zp_1) .
By adding two relations above, we obtain

g (Tr+1 — Prs (Tp41) , 06 — Tp—1)
= ap{rp+1 — Prs (wpq1) — (vp — Prs (z)), 2 — 1) + o (o — Prs (wp) , 2 — 23-1)

«
< 5 e —anl® + ok — a1 | + o (d (@) — d (21-1)) (3.3.11)

By combining (3.3.6]) , (3.3.9) , (3.3.10) and (3.3.11)) with (3.3.5)) we obtain the desired conclu-
sion. Ul

Definition 3.3.1. A function ¥: H — R U {400} is said to be inf-compact if for every r > 0
and every x € R the set

levi, (V) :={xeH: ||z|| <rV(z) <k}
is relatively compact in H.

Note that this condition is automatically fulfilled in the finite-dimensional Hilbert space.
An useful property of inf-compact functions follow.

Lemma 3.3.5. Let ¥: H — R u {+00} be inf-compact and {wy};~q be a bounded sequence in
H such that {V (zr)},>o is bounded as well. If the sequence {xp},>, converges weakly to an
element in T as k — 400, then it converges strongly to this element.
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Proof. Let 7 > 0 and % € R be such that for all £ > 1
leg|| <7 and VU (zg) <E.

Hence, {z1},5, belongs to the set levy (¥), which is relatively compact. Then {z},, has
at least one strongly convergente subsequence. Since every strongly convergent subsequence
{Zk }1=0 of {Zk})>0 has as limit Z, the conclusion follows. O

Now we can formulate the weak nonergodic convergence result.

Theorem 3.3.6. Let the sequences {\;} >, and {Br}, satisfy the condition 0 < lilgn inf \g O <
> > nn

sup AxSBr < p, {Zr )= be the sequence generated by Algorithm|3.3.1, assume that the Hypotheses
k=0
are verified and that either f + g or h is inf-compact. Then the following statements are

true:

(i) lim d(zy)=0;

k—+00

(ii) the sequence {wy},~, converges weakly to an element in S as k — +00;

(i) if h is inf-compact, then the sequence {Ty},~, converges strongly to an element in S as
k — +4o0.

Proof. (i) Thanks to Lemma , for all £ > 1 we have

d(z+1) — d (@) + A [(f + 9) (@41) — (f + 9),] < i (d(2r) — d (zp-1)) + G, (3.3.12)

where

L, Ly, oy,
= (Z2a + 2B, + S5
Ck < 5 Mt kB + 5

From Proposition combined with the fact that both sequences {\;},-, and

{Bk} >, are bounded, it follows that Z Ck < +00.
k=1

) |zt — 2l + o lloe — 21 ]|

In general, since {7}, is not necessarily included in argminh, we have to treat two
different cases.

Case 1: There exists an integer k1 > 1 such that (f + g) (zx) = (f + g), for all k > k.
In this case, we obtain from Lemma that:

e the limit lim d(zy) exists.
k—400

o Z A [(f + 9) (@r+1) — (f +9),] < +0. Moreover, since {Ar},o; ¢ ', we must
k>kq
have

liminf(f + g) (zx) < (f +9), - (3.3.13)
k—+c0
Consider a subsequence {zy,, },~; of {74}~ such that

m (f +g)(vx,) = 1,11_{1}}015(,}” +9) (k)

li
n—+o

and note that, thanks to (3.3.13)), the sequence {(f + g) (zx,)},>; is bounded. From
Propositionm (ii)-(iii) we get that also {wy, },>, and {h (zt,)},~o are bounded. Thus,
since either f + g or h is inf-compact, there exists a subsequence {zy,},-, of {7k,},~1,
which converges strongly to an element  as [ — +00. According to Proposition
(ii)-(iii), Z belongs to argmin h. On the other hand,

i (f +g) (ai,) = Tminf(F + 9) (2x) = (f + 9) (3) > ( + ), (3.3.14)
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We deduce from (3.3.13) - (3.3.14) that (f + g) () = (f + g),, or in other words, that
7 € S. In conclusion, thanks to the continuity of d,

kEIJIrlOOd(xk) = hm d(mkl) =d(z) =0.

Case 2: for all k > 1 there exists some k' > k such that (f + g) (zx/) < (f +9),. We
define the set

V={K>1:(f+9)(xw) < (f+9),}
There exist an integer ko > 2 such that for all & > ks the set {n < k: n € V} is nonempty.
Hence, for all £ > ko the number

tp :=max{n < k:neV}

is well-defined. By definition t; < k for all k > k3 and moreover the sequence {ty},-;, is

nondecreasing and lim ¢ = +00. Indeed, if hrn ty =t € R, then for all ¥’ > t it holds
k—+00

(f +9)(xzw) = (f +9g),, contradiction. Choose an mteger > ko.

o Ift;, < N, then, for all k = t,--- ,N—1, since (f+g) (zx) = (f + 9),, the inequality

(13.3.12) gives

d(xie1) — d(@p) < d(@pe1) — d (@) + A [F (241) — Fi
<«

k (d(2r) — d(zr-1)) + G- (3.3.15)
Summing (3.3.15) for k = t,--- , N — 1 and using that {ay};-, is nondecreasing, it
yields
N-1 N-1
d(zn) —d(zy) < ) (ord (@) — akad (@e-1)) + ) G
k=tn k=tn
Oé+d Tl — 1 Z Ck (3.3.16)
k>tn

o If t, = N, then d(xn) = d(z+y) and we have

d(zy) —ard(xn_1) < d(zty) Z Ck- (3.3.17)

k=t N
for all k > 1 we define ay := d (xx) — a+d (zi—1). In both cases it yields

ay < d(zey) Z G <d(zey) + ), G (3.3.18)

k=txn k=>tNn
Passing in (3.3.18)) to limit as N — 400 we obtain that

limsup ay, < limsupd (zy,) . (3.3.19)

k—+o0 k—+00

Let be ue S. for all k > 1 we have
1. 2 1 2
d(zy) = idISt (rg,S)” < 5 lee —ul|”,
which shows that {d (z1)}, is bounded, as klim ||z — ul| exists. We obtain
- — 400

limsup ag, = limsup [d (x) — ayd (zr—1)] = (1 — ay)limsupd (z) = 0. (3.3.20)
k—0

k—o0 k—0o0
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(iii)

Further, for all £ > 1 we have (f + g) (z¢,) < (f + g),, which gives

limsup(f + g) (w1,) < (f + ), - (3.3.21)

k—+00

This means that the sequence {(f + g) (%,)};5o is bounded from above. Consider a
subsequence {a:tq}q>0 of {7, };,>( such that

lim d(z,) = limsupd ().

q—>+® k—+00

From Proposition W (ii)-(iii) we get that also {xtq}q>0 and (h(ath))q>0 are bounded.

Thus, since either f+g or h is inf-compact, there exists a subsequence (z,) 10 Of {iL't . }q>0,

which converges strongly to an element 7 as [ — +00. According to Proposition m (ii)-
(iii), Z belongs to arg min h. Furthermore, it holds

minf(f + g) (z1) > (F +9) (@) > (/ + g),.. (3.2

We deduce from ((3.3.21]) and (3.3.22) that

(f +9). < (f +9) () <limsup(f + g) (z,) < limsup(f + g) (z1,) < (f + 9),

l—+00 k—+00

which gives & € §. Thanks to the continuity of d we get

limsupd (zy,) = llim d(zy) =d(z)=0. (3.3.23)

k—+0o0 +0

By combining ((3.3.19), (3.3.20) and (3.3.23)), it yields

0<(1—a4)limsupd (z) < limsupay < limsupd (x,) =0,
k—+00 k—+00 k— 400

which implies limsupd (zx) = 0 and thus
k—+00

lim d(x) = liminfd (zx) = limsupd (z) = 0.
k—+00 k—+o0 k—>—400

According to |(i)| we have klim d(xr) = 0, thus every weak cluster point of the sequence
—00

{r},> belongs to S. From Lemma it follows that {zx},-, converges weakly to a
point in § as k — +o0.

Since likm inf A\g B > 0, from Proposition [3.3.2(ii) we have that
—00

lim ([ Vh(e)| = lim h(z) = 0.

k—+00

Since {74}, is bounded, there exist ¥ > 0 and & € R such that for all k > 1
lzgl| <7 and  h(zg) <E.

Thanks to the sequence {zy},-, converges weakly to an element in S. Therefore,
according to Lemma [3.3.5] it converges strongly to this element in S. O
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3.4 Further perspectives

It would be interesting to extend the interval value of {ay},, from [0,1/3) to [0,1]. One
possible strategy is to insert a relaxation factor into the scheme, similar to the paper [10] of
Attouch and Cabot, inspired by a technique recently introduced by Attouch and Peypouquet
in [I9] and to study the interplay of the relaxation and inertial parameters. The continuous
counterpart of the presented algorithm expressed as a second-order dynamical system would
also be interesting to consider.

For unconstrained optimization problems, which correspond to the situation when A = 0 in
, one can obtain convergence rates of o (1 / k2) for the sequence of function values, see for
instance [12], 28, [IT0]. This is a setting which is not covered by our analysis, however, it is a
topic which might be of interest.

Another interesting direction for the bilevel optimization problem is to study the convergence
behavior of the generated sequence in the absence of convexity. Using the Kurdyka-Lojasiewicz
property, several results for unconstrained nonconvex optimization have been obtained, while
the constrained setting has not been so much considered.
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Chapter 4

Factorization of completely positive
matrices using iterative projected
gradient steps

This chapter follows our work [58].

We aim to factorize a completely positive matrix by using an optimization approach which
consists of the minimization of a nonconvex smooth function over a convex and compact set.
To solve this problem we propose a projected gradient algorithm with parameters that take
into account the effects of relaxation and inertia. Both projection and gradient steps are simple
in the sense that they have explicit formulas and do not require inner loops. Furthermore, no
expensive procedure to find an appropriate starting point is needed. The convergence analysis
shows that the whole sequence of generated iterates converges to a critical point of the objective
function, and it makes use of the Lojasiewicz inequality. Its rate of convergence expressed in
terms of the Lojasiewicz exponent of a regularization of the objective function is also provided.
Numerical experiments demonstrate the efficiency of the proposed method, in particular in
comparison to other factorization algorithms, and emphasize the role of the relaxation and
inertial parameters.

4.1 Problem formulation and motivation

A symmetric matrix A € R™*" is called completely positive if there exists an entrywise nonegative
matrix X € R*" such that
A=xxT.

Let
CPni={AeR"™": A= XX" with X e RT",r > 1}

denote the set of n x n completely positive matrices. This set is a proper cone whose extreme
rays are the rank-one matrices ra? with x € R? (see [31]), thus

CP,, = conv {:EITE zeRL},

where conv stands for the convex hull operator.
Closely related to the completely positive matrices is the class of copositive matrices

COP,, = {AeS™™: 2TAz >0 Vze R% Y,

where S™*™ denotes the set of n x n symmetric matrices. In fact, CP,, is the dual cone of COP,,
(see, for instance, [31]), namely,

CPp = (COP,)" :={AeS"": (A,By>0 VBeCOP,}.
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Here, (-, -y denotes the Frobenius inner product (see Section for the precise definition).

Many relaxations of combinatorial optimization problems and of nonconvex quadratic opti-
mization problems can be formulated as linear problems over CP,, or COP,,. Since the objective
function and the constraint functions are linear, the challenge when addressing these is entirely
transferred in the proper handling of the cone constraints. Consequently, copositive and com-
pletely positive matrices have received considerable attention in recent years (see, for instance,
[38, 163, [78]). The application fields, where copositive and completely positive matrices appear,
include block design, complementarity problems, projections in energy demand, the Markovian
modelling of DNA evolutions, and maximin efficiency robust tests, see [3I] and the references
therein.

We illustrate this approach for a nonconvex quadratic programming problem

min 2! Mz
xeR™

st jlz=1 (4.1.1)

n
x e RY

where M € S™*™ and j, denotes the all-ones vector in R™. If M is not a positive semidefinite
matrix, then is a nonconvex optimization problem which is usually NP-hard and exhibits
numerous local minima. Observe that the objective function of can be rewritten in terms
of the Frobenius inner product as 7 Mz = <M , :U:UT>. In the same fashion, the constraint
jlz =1 implies <jnjz:, X > =1, for X = zz”. Therefore, the optimization problem

in (M, X

X&gn<, )
st Guil, X) =1 (4.1.2)

XeCP,

is a convex relaxation of the nonconvex quadratic problem . In [40] it has been shown
how optimal solutions of can be related to optimal solutions of . Let X, be an
optimal solution of . If X, is of rank one, then it can be expressed as X, = x*x:{ and
therefore x, is an optimal solution of . If rank (X,) > 1, then X, can be factorized
as Xy = D0, xeZT and it can be shown that an appropriately scaled version of each x; is an
optimal solution of .

One of the main challenge when dealing with completely positive matrices is their efficient
factorization ([31L [74, 87]). This is a question of high relevance in many applications, as, for
example, in the statistics of multivariate extremes. Cooley and Thibaud have shown in [71]
that the tail dependence of a multi-variate regularly-varying random vector can be summarized
in a so-called tail pairwise dependence matrix ¥ of pairwise dependence metrics. This matrix
3 can be shown to be completely positive, and a nonnegative factorization of it can be used to
estimate probabilities of extreme events or to simulate realizations with pairwise dependence
summarized by . This approach has been used in [71] to study data describing daily precipita-
tion measurements. Further applications of the nonnegative factorization of completely positive
matrices can be found in data mining and clustering ([75]), and in automatic control ([32] [106]).

Recently, Groetzner and Diir proposed in [87] a novel approach to the nonnegative factor-
ization problem which consists of formulating it as a nonconvex split feasibility problem and,
consequently, of solving it via the method of alternating projections. 1t is known that when the
initial point is sufficiently close to the feasible set, then the sequence generated by the noncon-
vex method of alternating projections convergences to an feasible element. The drawback of
this algorithm is that it requires in every iteration two projections, which both have in general
to be approximately calculated via inner loops, since they amount to solve a second order cone
problem (SOCP) and to find a singular value decomposition of a matrix, respectively. In the
same article, a modification of this method has been suggested, which replaces the solving of
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the SOCP by a simple projection on the nonnegative orthant, but keeps the singular value
decomposition, however, without a theoretical evidence of its convergence. Also very recently,
Chen, Pong, Tan and Zeng proposed in [66] another approach which consists of reformulating
the split feasibility problem as a difference-of-convex optimization problem and, consequently,
in solving it via a specific algorithm, which also requires the singular valued decomposition of
a matrix in every iteration. We will present these approaches in more detail later.

In this chapter we develop a different approach for the nonnegative factorization of a com-
pletely positive matrix, which amounts to the minimization of a nonconvex smooth function
over a convex and compact set. To solve this problem we propose a projected gradient algorithm
with parameters that take into account the effects of relazation and inertia. The gradient and
the projection steps are expressed by simple explicit formulas and thus do not require any inner
loops. We prove the global convergence of the generated sequence for any starting point, which
is another advantage over the methods discussed above, that make use of expensive comput-
ing procedures to find the points where the algorithms start. We provide rates of convergence
for both the sequences of objective function values and of iterates in terms of the Lojasiewicz
exponent of a regularization of the objective function. Numerical experiments show that our
algorithm outperforms the other iterative factorization methods and emphasizes the influence
of the relaxation and inertial parameters on its performances.

Relaxation techniques have been introduced to provide more flexibility to iterative schemes
([24]), while inertial effects in order to accelerate the convergence of numerical methods ([110,
28, [18]) and to allow the detection of various critical points ([116]). Inertial proximal gradient
algorithms for nonconvex optimization problems have been proposed and studied in [43], 51 [11T],
115]; their global convergence has been shown in the framework of the Kurdyka-Lojasiewicz
property ([0 8 33, 136} 93] [103]). For convex optimization problems, relazed inertial algorithms
have been proved to combine the advantages of both relaxation techniques and inertial effects
(see [10}, 1T, 192]). One of the aims of this chapter is to investigate, also in the nonconvex setting,
to which extent the interplay between relaxation and inertial parameters influence the numerical
performances of projected/proximal gradient algorithms.

4.2 Preliminaries

4.2.1 Notations

We will write for a n x r matrix X := (xivj)léisn,lgjsr if we want to specify its elements,

and neglect the subscripts if there is no risk of confusion. The Frobenius inner product of
n T

X,Y € R™" is defined by (X,Y) := trace (XTY) = » Y i ;yi;. Due to the definition of
i=1j=1
trace operator it holds

trace (XTY) = trace (XYT) = trace (YTX) = trace (YXT) : (4.2.1)

For X € R™™" we will denote its Frobenius norm by

5 := /CX, X = ytrace (X7 X) =

(4.2.2)

and its 2-norm by

| X¢]|
[Xly := sup ——,
lef=o €l
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where ||-|| denotes the usual Euclidean norm of a vector. If X := [Xy|---|X,] is the column
representation of the matrix X, then we have

X117 =

T
2
DG
j=1

For every X,Y € R™" we have

IX + Y% = I1X]% + Y]F +2(X,Y), (4.2.3a)
X1y < X (4.2.3b)
XY ||, < IXly - 1Y 1l (4.2.3c)
IX7Y ]2 < I1X 115 - 1Y |- (4.2.3d)
In addition, for every n € R, it holds
X + Q@ =n)Y|F=nlX|F+ Q=) Y]z —n-n) XY (4.2.4)
For a symmetric positive semidefinite matrix A € R™*" we denote by
Amax (A) = )\1 (A> = )\2 (A> =2 An (A) = >\min (A) =0
its eigenvalues. Therefore,
n
trace (A) = Y Ai (4) = Amax (4) = [|Ally = Ain (A). (4.2.5)
i=1

The following two estimates, which we also prove for the sake of completeness, will be useful
later on.

Lemma 4.2.1. Let X, Y € R™*".

(i) It holds
XY |2 < I1X1lp - 1Y ]l - (4.2.6)

(ii) If A e R™ ™ is a symmetric positive semidefinite matriz, then
Amin (A) | X7 < (A, XXT) < [|All, - 1 X7 (4.2.7)
Proof. (i) Using the column representation of ¥ := [Y1|---|¥;], we have
Xy = [X™y|- - |XTY,].

Thus . .
X7V )% = S X7V < 1X12 Y1502 = 1X 12 (V1%
Jj=1 j=1

Notice that, in view of (4.2.3b)), inequality (4.2.6) is sharper than (4.2.3d)).

(ii) For two positive semidefinite matrices A, B € R™*™ we have the following consequence of
the Von Neumann’s trace inequality (see [I04, pp. 340-341])

n

zn] i (A) Ans1-i (B) < trace (AB) < Y\ (A) \i (B). (4.2.8)
i=1 =1

The inequality (4.2.7)) follows by applying (4.2.8)) for the positive semidefinite matrices A
and X X7, and by noticing further that > | A; (X X7T) = trace (XX7) = 1X||%. O
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We denote by
Br (X;e):={Y e R"": | X - Y|z < ¢}
the open ball around X € R™*" with radius ¢ > 0 is and the closed ball by Br (X;e) :=
cl (IB F (X; 5)), where the closure is taken with respect to the topology induced by the Frobenius

norm. In this chapter, Prp (X) is the projection of an element X onto a nonempty closed convex
subset D with respect to the Frobenius norm. Recall that it is characterized by

Prp(X)eD and (X =Prp(X),Y —Prp (X)) <0 VY e D. (4.2.9)
Example 4.2.2. For every X € R™*",
(i) if D :=R}*", then it holds

Prp (X) = [X], := max {X, 0},

where the max operator is understood entrywise;

(i) if D :=Br (0;¢) for € > 0, we have

&
P X)= ——_X.
2 (X) = o (IXT5.8)

In general, it is challenging to compute the projection onto the intersection of two sets,
even if these are both convex and explicit forms for the projections onto each of the sets are
available. In the following example we provide one particular pair of two convex sets for which
the projection onto their intersection can expressed by a closed formula.

Example 4.2.3. Let ¢ > 0 and K be a nonempty closed convex cone in R™*". Then the
projection onto the intersection K nBxr (0,¢) is given by (see [25, Theorem 7.1])

9
max {||Prx (X)||z, ¢}

Prg (X) VX eR™.

(4.2.10)
Notice that in general Prg, .y o Pri (X) # Pri (X) o Prg, (o) (see [25, Example 7.5]).

Pryag,(0,e) (X) = Prg, (. o Prx (X) =

For later comparison we discuss two more examples of projections on some particular sets
which were used in the nonnegative factorization of completely positive matrices.

Example 4.2.4. Let B € R™" and consider the following set associated to B
P(B):={XeR™: BX e R} . (4.2.11)

The set P (B) is a polyhedral cone and thus a closed convex subset of R"*". The projection of
X € R™" onto the set P (B) is the unique solution of the optimization problem

min [|Y — X|| ~.
YeRT<r (4.2.12)
st. BY € R™".

It was shown in [87] that (4.2.12]) is equivalent to the second order cone problem (SOCP)

min t.
teR,ZeR7 <"

st. B(X + Z) e R™*", (SOCP)
1Z]l 7 < t.

Second order cone problems have been intensively studied in the literature from both theoretical
and numerical perspectives.
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Example 4.2.5. Let O, be the set of orthogonal matrices in R™*"
Op ={XeR™: XX =XTX =1d,}, (4.2.13)

where Id, denotes r x r identity matriz. The set O, is compact but nonconvex, so projections
on this set always exist, but may not be unique. A projection of an element X € R™*" on O, can
be found by polar decomposition of X (see, for instance, [87, Lemma 4.1]). In particular, for
every X € R™*" there exist a positive semidefinite matrix 7' € R™*" and an orthogonal matrix
Y € R™" such that

X=TY and |[X-Y|,<|X-Z|, VZeO,

Therefore, the matrix Y is a projection of X onto O, and it can be computed by means of the
singular value decomposition of X = USV7'. Indeed, for T := USUT and Y := UV it holds
X =Uxv? =UusUuTuvTt =TY.

4.2.2 Properties of factorizations

We first recall some fundamental properties of the factorizations. The factorization of a com-
pletely positive matrix A # 0 is never unique. We illustrate this with an example by Dickinson
[73].

Example 4.2.6. Consider the matrix

18 9 9
A=[9 18 9
9 9 18

Then A = BiBiT for each of the following matrices:

4 1 1 33 00
Bp=11 4 1], By:=13 0 3 0],
11 4 3 00 3
330 —1.2030 2.1337 3.4641
B3:=13 0 3], By = 24494  0.0250 3.4641
0 3 3 —1.2463 —2.1087 3.4641

The number of columns of the factors B; varies, which gives rise to the following definitions.

Definition 4.2.1. Let A € R"*™. The cp-rank of A is defined as
cpr(A) :==inf{r>0: 3IX e RY", A= XX"}.
The cp™-rank of A is defined as
cprt (A) i=inf {r >0: IX e RV, A = XX},

here R™’{" denoting the set of matrices in R’}*" which have at least one column with positive
entries.

The notion of cpt-rank is useful for the matrix belongs to the interior of CP,,. Recall that,
Dickinson showed in [73, Theorem 3.8] that the interior of CP,, can be characterized as follows

int (CP,) = {A e R ™: rank (4) =n, A= XXT, X e RV}

Until now, we can only derive an upper bound for this value rank, which we will recall in the
following lemma. The problem of computing the cp-rank of a matrix in general remains open
(see [30]).
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Lemma 4.2.7. [39, Theorem 4.1] For all A € CP,, we have

n forn € {2,3,4},

A) < =
pr (4) < cpn %n(n+1)—4 forn = 5.

If Aeint (CP,,), then

n+1 forn e {2,3,4},

+ A < +::
epr (4) < cpn %n(n—l—l)—?) forn = 5.

Notice that there exists matrices A € int (CPy,) such that cpr (A) # cprt (A).

In the numerical experiments, we will often choose r as n up to a multiplicative constant,
which is smaller than cpr (A) and cpr (A) when n is large and still obtains reasonable results.

4.2.3 Nonnegative factorization of completely positive matrices via projec-
tion onto the orthogonal set O,

In the following we will revisit some recent iterative approaches from the literature for finding
a nonnegative factorization of completely positive matrices.

In [87] this problem was reformulated as a feasibility problem. For a given matrix A € R™*",
in a first step, a not necessarily entrywise nonnegative matrix B € R™*" such that A = BBT
was considered. The aim was

to find a r x r square matrix @ such that @ € P (B) n O,, (4.2.14)

where P (B) and O, are the polyhedral cone associated to B and the set of r x r orthogonal
matrices given in and in , respectively. This approach was motivated by the
observation that, for every By, By € R™ " it holds B1B! = ByBl if and only if there exists
Q € O, such that B1Q = By (see [87, Lemma 2.6]).

To solve , naturally, the method of alternating projections was used, which, given
B e R™" such that A = BBT and an initial point Qg € O,, generates a sequence {Qr}iso as
follows:

Py = Prpp) (Qk)
Qk+1 € PI'OT (Pk) .

The nonconvex method of alternating projections is known to converge locally, which means
that convergence can be guaranteed if the initial point is sufficiently close to P (B) n O,..

As noticed in Example the first step in amounts to solve a second-order cone
problem, which usually can be done only in an approximate way and requires an inner loop.
To avoid this drawback, another algorithm was proposed in [87], which, in every iteration,
calculates an approximation of Prp(py (Qr). This is done by using the projection on R}™", for
which an exact formula exists, and an update step which uses the Moore-Penrose-Inverse of B,
that is B* := BT (BBT)™". Given B € R"*" such that A = BBT and an initial point Qg € O,
this second algorithm generates a sequence {Q};~ as follows:

(Vk = 0) { (4.2.15)

Rk = Prszr (BQk;) s
(Vk = 0) P, = B'Ry+ (1d, — B"B) Q, (4.2.16)

Qr+1 € Pro, (f’k> :

In [66], an alternative approach to (4.2.14)) was considered, by reformulating the nonnegative
factorization problem as a difference-of-convex optimization problem and by solving the latter
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via a nonmonotone linesearch algorithm. This can be found in [66, Section 6.1], here we present
for easy reference the iterative scheme with a fixed stepsize. Let B € R™*" such that A = BBT |
Lp > Apax (BTB), and an initial point Qy € O,. The algorithm generates the sequence {Qy} k>0
as follows

W, = PrRixT- (BQy),
VE >0 4.2.17
( ) Qri1 € Pro, <Qk - LlBBT (BQy — Wk)> ) ( )

One can notice that all three iterative schemes require in every iteration the calculation
of a projection onto the orthogonal set .. To do this one basically needs to carry out a
singular value decomposition of a matrix, as discussed in Example which can be done in a
subroutine that needs O (r3) steps. Furthermore, all three algorithms ask for finding a matrix
B e R™ " such that A = BB”. This can be done, for instance, by the Cholesky decomposition
of A, in which case B is a lowerltriangular matrix, or by the spectral decomposition A = VEVT
and then by setting B := VX2. In either case, one needs an additional procedure to find an
appropriate initial matrix B.

4.3 An optimization model with convergence guarantees

In this section we will propose a new approach for the nonnegative factorization of completely
positive matrices, which consists of solving a nonconvex optimization problem by means of a
projected gradient algorithm. We will also carry out for the iterative method a comprehensive
convergence analysis, and even derive convergence rates.

4.3.1 The optimization model

For a given nonzero completely positive matrix A € R”*", finding a factorization A = X X7,
where X € R}, can be cast as an optimization problem

_ 1 2
Jin | E(X):= 3 HA—XXTH]__.

(4.3.1)
st. XeD:=RY"nBr (0, trace (A))

Denoting by &, := infxep £ (X) the optimal objective value of (4.3.1]), it holds
A= X, X! with X,eR?" < [X,solves @3.1) and &, =0].
Notice that £ is a nonconvex objective function with continuous gradient

VE(X)=-2(A-XX")X,

which is however not Lipschitz continuous, but locally Lipschitz continuous. In order to be able
to handle this situation in a proper way in the convergence analysis, we minimize the objective
function &£ (X) over a meaningfully chosen bounded set, which, however, does not pose any
restriction on the model. Indeed, if X satisfies A = X X7, then

| X £ < 4/trace (A).

By the definition of the Frobenius norm and (4.2.1)) - (4.2.2)), we have

1 Xz = \/trace (XTX) = \/trace (XXT) = y/trace (A).

This explains the choice of D as the intersection of R}*" and B (0, A/ trace (A)) Furthermore,
thanks to its specific structure, we have an exact formula for the projection on D.
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Proposition 4.3.1. Let Ae CP,.

(i) The set D is nonempty conver and closed, and for any X € R™ " it holds

trace (A
Prp (X) := (4) (X1, , (4.3.2)
maX{H[X]Jer, trace (A)}
where [X], := max {X,0} and the max operator is understood entrywise.
(i) For X,Y € R" " the following inequalities are true
L(X,Y)
— Al 1X = Y[IF < E(X) = E(Y) —(VE(Y), X —Y) < =T — X — Y%,
(4.3.3)
where
LY =2 (VI = Amin (4)) + (IX |y + [V ],)° (4.3.4)

Proof. (i) Since D is the intersection of the cone K := R’I™" with the ball Bx (O, /trace (A)) ,

it follows from (4.2.10]) that

trace (A
Prp (X) = race (4) Pry (X).
max{”PrK(X)H}-, trace(A)}
For K = R} it holds Prg (X) = PrRixr (X) = [X], = max {X, 0}.

We introduce the auxiliary function Q: R™*"™ — R defined as
1 2 nxn
Q(2) :=§||A—ZHF VZ e R"*™,

By the definition, £ (X) = Q (XXT) for every X € R™*". Since VQ (Z) = — (A - 2),
the following relation is true for every Z, W e R™*"

QW) = Q(Z)+<VQ(Z),W—Z>+%HW—ZH?E. (4.3.5)

Moreover, if Z is symmetric, then so is VQ (Z).

Let X,Y € R™" be fixed. One can easily verify that
XXT - yvvyT=(x-V)YT+y X -+ X -v)(x -Y)". (4.3.6)

Applying ([#.3.5) with W := X X7 and Z := YY7T and by taking into consideration (4.3.6)),
we get

Q(XXT) - (YY) =(vo(vY"), xx" —vYT) + % |XxT vy
— (VO (YT, (X =¥)YT)+ (VQ (Y)Y (X -)")
+{(VQ(YT), (X - V) (X -Y)" )+ % IXxT - vy
= 2(VQ (YY) Y, (X = ¥))+{(VQ(VYT) (X -¥) (X - )"

1 2
+§HXXT—YYTHF. (4.3.7)
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Since 2VQ (YYT)Y = —2(A-YYT)Y = VE(Y), it remains to estimate the two last
terms in (4.3.7). Observe that

(VQ(YT), (X =) (X -¥)" )+ % XX —vyT|>

—{A-yYT (X V) (X - Y)T> + % IXXT—yy"|%
- —{(AX-VE - )+ YT (X -V + % IXXT -YYT|[%,  (4.38)

where the last equation comes from the fact that trace operator is invariant under cyclic
permutations, as we see below

<YYT, (X —Y) (X — Y)T> — trace

(vy")" (X =) (X - )]
— trace |[YYT (X-Y)(X - Y)T]
= trace _(X -VyyT(x - Y)]

= trace

(vT(x-v) vT(x - Y)]
) 2
= [V (x =17
Notice that, thanks to ([4.2.7), <A, (X-Y)(X - Y)T> < Al IX —Y|%. Plugging
this estimate into (4.3.8)), also neglecting the last two nonnegative terms, we obtain the
left-hand side inequality in (4.3.3)).

By applying (4.2.6)) we can derive an upper bound for the last term in (4.3.8])
XXT =YY < (X =) XT| o+ [y (x =)
H I < 108 =) X7+ [y (x =]
< X[ X =Yz + [V I1X =Yz = X, + [Y) 1 X =Y £.

(4.3.9)
By plugging (4.3.9) into (4.3.8]) and recalling the inequalities (4.2.7)) and (4.2.6), we get
the right-hand side inequality in (4.3.3)) with L (X,Y") defined as in (4.3.4). O

4.3.2 A projected gradient algorithm with relaxation and inertial parameters

We are now in the position to formulate the projected gradient algorithm we propose in this
chapter to solve (4.3.1)).

Algorithm 4.3.1. Let {ax};~, € [0,1] and, for a :=sup oy, set
k=0

Lr(og):=2[(3+8as + 602 ) trace (A) — Amin (A)] > 0.
Choose p € (0,1] such that

oo \Ir(an) +2]Al - VIz(ay) 214l |
VIF(ar) +2[[A]l, +v/Lr(as) (1 + ) v/Lr(as) + 2] All, - \/Lf(az)g 10)

For a given starting point X1 := Xo € D generate the sequence { Xy}, as follows e
Yi o= X + o (X — Xp—1), (4.3.11a)
Zk4+1 = Prp <Yk — LlfVS (Yk)> ) (4.3.11b)
Xit1:= (1 —p) X + pZis1. (4.3.11c)
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Recall that the formula of Prp is given in (4.3.2]) explicitly. For any k& > 1, the following
equivalent formulation of (4.3.11c|) will be useful in the analysis

1
Xpy1 = (1 — ,0) Xk + pZiy1 < Zipy1 — X = ; (Xk+1 — Xk) (4.3.12&)

1

To help the readers to understand the choice of the parameters, we give the following results
first and postpone the discussion on the feasibility of p in to Remark In the
following we will use, to ease the reading, Lz instead of Lxr(ay), however, we will return to
this notation in the last section, where we will consider some particular choices of the sequence
of inertial parameter.

Lemma 4.3.2. Let { Xy}, be the sequence generated by Algorithm/|4.3.1. The following state-
ments are true for any k =1

(i) Xp41 € D and ||Yi| z < (1 4+ 2a4) y/trace (A);
(i)
L (Zy11,Yx) < Ly =2 (3 + 8ay + 602 ) trace (A) — Amin (4)], (4.3.13)
where (X,Y) — L(X,Y) is defined in (4.3.4).

Proof. (i) Notice that {Z;},., S D due to (4.3.11b). If we assume that X; € D, then,
by induction arguments, Xp,1 € D, since it is a convex combination of X; and Zi,1.

Consequently, | Xi| » < y/trace (A) for any k£ > 0. By the definition of Y}, in (4.3.11a)),

we have

1Yill - < (1+ an) [ Xell + a1 Xia |7 < (1 +2a4) y/irace (A) vk > 1.

(ii) Since {Zi},>y € D < Br (O;q/trace (A)) and {Yi},>; € Br (0; (1 + 2a4) 4/trace (A))
it follows from the definition of (X,Y) — L (X,Y) in (4.3.4) that
L (Zier, Ye) = 2 (16013 = Min (4)) + (1 Zesally + 1l1,)?
= 31Vl + 1 Zk+1ll3 + 20 Zksally - [Yillo = 2Amin (A)
< [3 (1+2a)° +1+2(1+ 2a+)] trace (A) — 2A\min (A4) .
O

Remark 4.3.1. In the nonconvex setting, the boundedness of the sequence of iterates plays an
important role in the convergence analysis. As seen in Lemma m (i), the nature of Algorithm
ensures that X € D for every k > 0, and thus the sequence {X}},- is bounded.

For readers’ convenience we denote the objective function of (4.3.1)) by ¥ := &£ + dp.

Lemma 4.3.3. Let { X}, be the sequence generated by Algorithm |4.3.1. For every k = 2 it

holds

Ly —(Lr +2[|Aly) >
2

T T
# 5 ) WX = Xl € 0 (2045 1%~ Xual?, (4319

= max{(/l)—1>2,<1+a+—/1)>2}, (4.3.15a)

Lr(1-
S ‘7:(pp)_|_(L]_-_|_2’AH2)fy. (4.3.15b)

¥ (Ze)+

where
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Proof. Let k = 2 be fixed. We first show that

L Lr+2||A
U (Zin) + Nz - 2l < vz + 2 gy (43.16)
The characterization of the projection (4.2.9)) ensures that
1
<Yk — —VE (Vi) = Zen, X — Zk+1> <0 VYXeD. (4.3.17)
F

In view of (4.3.11Db)), it is clear that Zj € D, thus, setting X := Zj in (4.3.17)) yields
0<(VEWL), Zk — Zyyr1) + Lr{Zys1 — Yi, Zi, — Zis1)

Lr Lr Lr
=(VE Vi), Zk — Zpy1) — o 1 Z1s1 — Yal 5 — 5 | Zki1 — Zil| % + o5 1Z) — Vil 5 -

(4.3.18)
The left-hand side inequality in (4.3.3)) implies that
E(Zi) 2 € (Vi) +(VE (Vi) Zi = Yi) — [ Ally - |Ye = Zil %, (4.3.19)
while the right-hand side inequality in (4.3.3]) and (4.3.13]) imply
L
E(Zys1) <E(Yi) +<(VE(Yk), Zrt1 — Yi) + Tf | Zk+1 — YkH%_- (4.3.20)

Summing up (4.3.18), (4.3.20) and (4.3.19), and noticing that dp (Zx+1) = dp (Zk) = 0, yield
(*3.10).
Next we will study the term || Zy1 — ZkH.%r in detail. From (4.3.12a) we have that

1
Zgp1 = P (Xps1 — Xi) + Xy,
and )
Z = p (Xk — Xp—1) + Xp1,
thus
1 1
Zsr = 2= (Xir = Xi) + (1 _ p) (Xp — Xp1). (4.3.21)

Then, by using identity (4.2.4)), it holds

1 1 2
1 Zk1 — Zill5 = HP (Xg41 — Xi) + <1 - p> (X — Xg—1)

F

1 1
= X - Xl + (1 - p) 1 = X |12

1 1
-2 (1= ) M = X0 - (= X3
p p
1 2 1 2
> p | X1 — Xl — i L) [ X, = X1z (4.3.22)
Combining (4.3.11a)) and (4.3.12b)) gives us further
1
Zk — Yk = Zk — Xk — O (Xk - kal) = (p —1- Oék) (Xk - kal) . (4.3.23)
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By plugging (4.3.22)) and (4.3.23) into (4.3.16|), we get

Ly
U (Zgs1) + 2% | Xpt1 — Xl >

Lr(1—-p) L
— vz + (FUE B i - Xl
p 2
Lr(1—p)  Lr+2[A], (1 ’ 2
<VU(Z L Xp, — Xp_
( k)+< T 5 p ag ) ) 1 Xk = Xe—1llF
Lr(l— Lr+2]A
<\IJ<Zk>+( f(2p o), Lr 2” ”2”> 15 — Xall% (4.3.24)

which is nothing else than (4.3.14)) with the constants 7 and ~ as defined in (4.3.15)). Notice
1 2 1

that (4.3.24) is true since ~ is an upper bound for < —1- ak) . Indeed, if — — 1 > ay, then
p p

1 1 1 2 1 2
-——l-agy<-—-1=(-—-1—-a;) <(--1) <~.
p p p p

1 1 1 2 1\2
O<l4aop——-<l4a;r——=-—-1—ar) <|1l+ayr——] <7,
p p p p

which leads to the desired statement. O

0

IN

Otherwise, we have

The estimate above remains true if we replace W by £. In fact, the indicator function was
artificially inserted in the decreasing property (4.3.14]), as it will help us to prove the convergence
of the iterates later on. Now, with 7 > 0 introduced in (4.3.15b]), we define the following function

2
U RV x R™T S RO {4}, U, (Z,X):=0(Z)+ ”QJ 1Z - X|%. (4.3.25)

The objective function ¥ of is closely related to W, in terms of their critical point.
Indeed, if 7 = 0, which is the case when p = 1 and a; = 0, then ¥V, (Z,X) = ¥U(Z) for any
(Z,X) e R™" x R™" thus X, € critV¥ if and only if (Zx, Xi) € crit¥, for Z, € R"*". On the
other hand, one can easily verify that for every 7 > 0 we have

X, € crit¥ < (Xy, X,) € crit ¥, (4.3.26)

Remark 4.3.2. In the view of (4.3.11¢)), it holds Xy11 — Xp = p(Zk+1 — Xi) forevery k > 1.
Therefore, using the definition (4.3.25]), the inequality (4.3.14)) can be rewritten for any k& > 2

as

Ly — (Lr +2]|Ally) v

U, (Ziy1, Xi) + Co || Xpr1 — Xill% < Uy (Zi, Xi_1),  where Cp := .
(4.3.27)
We will show that Cy > 0. It holds

1 2 L
<_1> < rrelAL
Lr — (Lr+2||Al)y>0e { \P gt I &2 (4.3.28)
‘F
1+ay —— <
( " P) Ly + 2| Al

On the one hand, since 0 < p < 1, we have

1 L 1 ~/Lr+2|Al, + L
0<-—1l<,|—2F 1< >< 7 141l z.
p Ly +2]|Al, p VLF+2|A|,
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This is further equivalent to

VIr+2[A
z + 2]\ Al, <p<l. (4.3.29)
VLr+2lAll, +vVLr

1
On the other hand, by setting £ := — > 0, the second inequality in (4.3.28|) can be equivalently
p

expressed as

L
2 2 F
- 21+« +(1+« - < 0. 4.3.30
Its reduced discriminant reads
Lr Lr
A =1+« 2—<1+a 2_ ): > 0.
o) = (o= Tooan, ) ~ e+ 214,

Thus, the inequality (4.3.30)) is equivalent to

Lr  _ (tay)yLr+2[All, - VIF
L+ 2[[A], VLr+2]A],

Ly _ (U +ay)/Lr+2[Aly + VLF
Lr+2]A], Ly + 24|, ’

1+a+—

1
<é=-<l+a;+
P

which means

VL + 2]|All VLr+2[[All,
<p< . (4.3.31)
(1+as)v/Ir + 2] Al + VLr (1+as)v/Ir +2|[Al, - VIr

Combining (4.3.29)) and (4.3.31]), we observe further that

VIF+2[Al,y __ NLF+2|Al,
(L+as)/Lr+2|Ally +VLr A/ Lr+2| Al +VLF

Thus, in view of (4.3.10), Cy > 0.
A direct consequence of Lemma follows.

Proposition 4.3.4. Let {X},- be the sequence generated by Algorithm(4.3.1. The following
statements are true:

(i) the sequence {V; (Z, Xg—1)}yso is monotonically decreasing and convergent;
(i) Xpi1— Xg — 0 as k — +0, and so Xp11 — Yr — 0 and Zyy1 — Yy, — 0 as k — +o0.
Proof. Let k = 2 be fixed. In view of we have
Ur (Zir1, Xi) + Co | X1 — Xl® < Uy (Zi, Xp1) -

It is clear that the sequence {V(Zy, Xj_1)},>, is monotonically decreasing and, since it is
nonnegative, is convergent. The fact that Cp > 0 and telescoping arguments (see, for instance,
[24, Lemma 5.31]) give >~ [|[Xg41 — X3||* < +o0, thus Xj 1 — X — 0 as k — +00. By taking

into consideration (4.3.21f), we deduce that Zy,1 — Zp — 0 as k — +00. Using further (4.3.12a))
and (4.3.11a}), we have Zi,1 — Yy — 0 as k — +00, and the proof is completed. ]

Now we show that every cluster point of { Xy}, is a critical point of .
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Theorem 4.3.5. Let { Xy}, be the sequence generated by Algorithm|4.5.1, Then every cluster
point of { X}~ s a critical point of V.

Proof. Let X be a cluster point of {Xy},-o, which means that there exists a subsequence
{X},},>, such that X}, — X as i — 4+00. We deduce further that Z;, — X as i — +00, due to
(4.3.12b: . By the characterization of the projection (2.1.2)) and (4.3.11b|), we get that for every
1=1

1
Wki = Yki—l — Zki — EV&’ (Ykzi—l) S ND (Zkl) .
From here,
LWy, = Lr (Yki,1 — Zki) + V€& (Zkl) - V& (Ykifl) - V& (Zk,) e Np (Zkl) Vi > 1.

By passing to limit as ¢ — 400, and by taking into consideration the continuity of V& and the
fact that Zy11 — Yy — 0 as k — 400 (see Proposition [1.3.4][(ii)]), we get

The closedness of the graph of the normal cone gives —VE& ()_( ) e Np ()_( ) In other words,
X € critV. O

4.3.3 Global convergence thanks to the Lojasiewicz property

In this subsection we will prove that actually the whole sequence of iterates {X}},-, generated
by Algorithm converges to a critical point of the objective function ¥ and even establish
its rate of convergence. To this end we will use that the regularized objective function W,
fulfills the Lojasiewicz property (see [103]), since it is a semialgebraic function (see [5, Example
1], [33)).

If  is a connected and compact subset of critW,, then, according to Lemma[2.3.1] ¥, fulfills
the uniform Lojasiewicz property, which means that there exist (global constants) C,e > 0 and
6 € [0,1) such that for all (7, X) e Q

W, (Z,X) -, (Z,X)|" < C-dist (0,09, (2, X))
¥(Z, X) e R™" x R™ with dist ((Z, X),Q) < .

Next we will see that, for  := Q ({(Zk, Xk_l)}k22) the set of cluster points of the sequence
{(Zk, Xk—1)} 59, We actually are in the setting of the uniform Lojasiewicz property. Notice that
Q0 # J thanks to the boundedness of the sequences {Xp},- and {Zr};~-

Lemma 4.3.6. Let { Xy}, be the sequence generated by Algorithm|4.3.1. The following state-
ments are true:

(i) Q C erit®, = {(Xy, X,) € R x RP*T: X, € crit¥};

(i) it holds lim dist[(Zk, Xk—1),82] = 0;
k—+00

(iii) the set Q is nonempty, connected and compact;

(iv) the function W, takes on Q the value ¥, := lim V. (Zy, Xg_1).

k—+400

Proof. The item |(i)| follows from Theorem [4.3.5 and (4.3.26)). The proof of - follows
in the lines of [36, Theorem 5 (ii)-(iii)], by taking into consideration [36, Remark 5], according
to which the properties in - are generic for sequences satisfying Z — Zx_1 — 0 and
X — Xp_1 — 0 as k — +00, which is indeed our case due to Proposition

57



Finally, to prove we C(_)ns_ider an arbitrary element_ (X X ) in Q, that is, there exists a
subsequence (Zy,, Xj,—1) — (X,X) as ¢ — +00. It holds X € D and

lim \IJT (Zki,infl) = \I/T (X,X) .

i—~+00

As a consequence, since {V(Zy, Xx_1)};-, converges due to Proposition it follows
that ¥ is a constant on 2, namely, ¥, (X,X) =V, = klim V., (Zk, Xi—1) for every (X,X) €
—+a0

Q. O

As a last preparatory step we derive an upper bound for a subgradient of V...

Lemma 4.3.7. Let {X},~, be a sequence generated by Algorithm |{.5.1, For any k = 2 we
have

Vi := (Vi, W) € 0V (Zi, Xie—1) (4.3.32)
where
Vk/ = Lr (Yk—l — Zk) + V& (Zk) - V& (Yk,l) + p27' (Zk — Xk—l)
Vk:/ = —p27' (Zk — kal) .
In addition,
Villz < Cul1 Xk — Xl g + Co [ Xpm1 — Xyl VE =2, (4.3.33)
where
Le =2 (||A]ly + (3 + 60y + 402 ) trace (4)) ,
_ Ly+ Le +2p°7

P
CQ = (L]: + Lg) oy = 0.

01: >07

Proof. Let k > 2 be fixed. The calculus rules of the limiting subdifferential give for every
(Z7 X) c R’HXT X RTLXT

07V, (Z,X) =0V (Z) + p*r(Z — X) =VE(Z) + Np (Z) + p*7(Z — X)
VxV,(Z,X)=—p’1(Z-X).

By the characterization of the projection (2.1.2]) and (4.3.11b)), we have

1
Wi i=Yp1 — Zy, — EVS (Ye-1) € Np (Zy) -

From this we deduce
LWy = Ly (Yi—1 — Zi) + VE (Zy) — VE (Yi—1) € VE (Zx) + Np (Zk) ,
which proves (4.3.32]).

Further, we observe that

IVE (Zk) — VE Yi1)llr = 2 ||(A— ZuZ) Z — (A = Yer Vi) Ve | 2
< 2| Al 12k = Yl 5 + 2| Z0Zi Zk = Y1 Vi 1 Yi1 | -
< 2| Al 12k = Yieill 7 + 2| 2021 ||, 1 2 — Yia | 5
+ 2 Zklly IVa1ll2 126 = Yaoill 7 + 2 ||V Vil ||y 12 — Yaall
<2 (|Ally + (3 + 6oy + 40&) trace (A)) [| Zx — Vi1 || £
= Le || Zy — Vi1l 7»
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where the last inequality follows from (4.2.3b]) - (4.2.3c) and the fact that {Zx},., € D <

B (0; \/M) and {Yi},~0 S B (0; (1 + a4 )+/trace (A)) (see Lemma4.3.2)). From here we
derive the following estimate which holds for all £ > 2

Vil = A IV + IV < IVl + I
= || LF (Yee1 — Zk) + VE (Zi) — VE (Yie1) + p°7 (Z — Xp—1)|| 5 + 2°7 120 — Xi—1|l
< Ly |2 = Yiallz + IVE (Zk) = VE Vi)l + 20°7 (| 2k — Xi—al
= (Lr + Le) |1 Zk = Yaall 7 + 20°7 |1 2k — Xpa |
< (Lr + Le +20°7) | Zk — Xi—1llx + (Lr + Le) o | Xpo1 — Xp—al| £
< Ly + Lg +2p*7
p

| Xk — Xpallz + (Lr + Le) ay [ Xp—1 — Xi—2ll 7,

which yields the inequality (4.3.33)). ]

We are now in the position to prove the convergence of the whole sequence generated by
Algorithm To simplify the notation, let us define for every k > 2

G = U7 (Zg, Xp—1) — Vs, (4.3.34)

where U, = klim U, (Zg, Xk—1). According to Proposition 4.3.4 the sequence {Cx}i=q
—+00 =

converges monotonically decreasing to 0.

Theorem 4.3.8. Let { Xy}, be the sequence generated by Algorithm |4.3.1. The sequence
{ Xk} =0 converges to a critical point of .

Proof. Let (X',X) € Q. Then, according to Lemma v, (X',X) = VU, and, for every
k = 2, we have V., (Zy, X—1) — ¥, (X,X) = (k. We will show that { Xy}, has finite length,
namely,

DX k1 — XillF < +o0. (4.3.35)
k=0

Form here it will follow that {Xy},., is a Cauchy sequence, thus it converges to some X,

which, according to Theorem will be a critical point of (4.3.1)).
In order to prove (4.3.35]) we will consider two cases:

Case 1. There exists an integer k1 > 2 such that (; = 0 & U, (Zy,, Xi,—1) = ¥«. The mono-
tonicity of {(x},~, implies that ¢x = 0 for all k > k1 and, further, in view of (4.3.27) and
(4.3.10)), that X3, 1 — X = 0 for all k£ > k;. Hence

ki—1
DXk = Xl = D X1 — Xl < +o0.
k=0 k=0

Case 2. It holds (; > 0 for every k > 2. As U, fulfills the uniform Lojasiewicz property, there
exist C,e > 0 and 6 € [0,1) such that

W, (Z,X) - ¥, (X,X)]" < C-dist (0,00, (2, X)) (4.3.36)

for all (Z, X) € R™*" x R with dist [(Z, X), Q] < e. Since lim dist [(Zg, Xp_1),Q] =0

k—+00

(see Lemma [4.3.6][(ii)]), there exists an interger ks > 2 such that

dist [(Z, X5_1),Q] <& Vk > k. (4.3.37)
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Combining (4.3.36]) and (4.3.37)), we deduce that for every k > ko it holds
S = (0 .
U (Zk, Xppm1) — Ur (X, X)|” = |Gl° < C - dist (0,00, (Zy, Xp—1))
<C|Vkl#
<C-C1 | X — Xpall g+ C- Co || X1 — Xi—2 £
(4.3.38)

where the last two inequalities follow from Lemmam For the given exponent 6 € [0, 1),
we define
0: R, - R, s> 570 (4.3.39)
-0

1-0

which is a nondecreasing function as ¢’ (s) = > 0. The concavity of ¢ gives, by

taking into consideration (4.3.27)), for all k > 2

@ () = @ (Gre1) = @' (G) - (G — Gor)
-0
= ) (2, X)W (i, X))
DN
1—-46
From here we get that for every k = ko

i~ Xelr < 2 @) (6 (60 e (G

0

—

=

- Co | Xp1 — XillF-

< sooray @+ LA D) () o (G
< 2(016102) 1 Xk — Xiall 5 + 2(010102) 1Xk—1 — Xp—al 5
+i1=9 (;éocl ) (6 () ¢ (Gan) (4.3.40)
By setting for every k > ko
ar, = | X — Xp—1ll 7

dy = C3 (¢ (Ck) — @ (Cht1)) 5

Oy e (1—9)0-(01—#02)7

2Cy
the inequality (4.3.40) becomes

ap4+1 < Xo0k + X10k—1 + di,

with
Cl 02

= 1 :
X0 2(01 T 02) € (07 ) and X1

.=me[0,l).

1
Since xo + x1 = 5 < 1, by Lemma [2.4.4 we obtain that >}, || Xy — Xp—1]r < +c0.
This leads to (4.3.35]) and the proof is completed. O

We will close this section by discussing the rates of convergence of the projected gradient

algorithm with relaxation and inertial parameters. The nature of the rates is determined by
the Lojasiewicz exponent 6, which we cannot calculate exactly. This is why we will cover in our
statements all possible situations. Some discussions about the values the Lojasiewicz exponent
take will be made in the last section of the chapter in the context of some numerical experiments.

We will show that the sequence {(x} k>0 defined in (4.3.34) satisfies the recursion inequality

in Lemma
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Lemma 4.3.9. Let {X}},, be the sequence generated by Algorithm and {Cr}j=o the
sequence defined in (4.3.34). Then there exists k3 = 2 such that for any k = ks
Co
Ck 2 — Ck C4 Ck s where C4 = m > 0.
Proof. From (4.3.27)) we get for any k > 4
Ch2 = Ck = V7 (Zi—2, Xp—3) = V7 (Zp—1, Xp—2) + Vi (Zg—1, Xp—2) — V7 (Zk, Xi—1)

> Co || Xp—1 — Xi—al5 + Co | Xk — Xi—1|>

C
5 (X = Xl 7 + 1 Xem1 — Xl )?

C
> 2(/32 (Cy 1 Xk = Xi—ll 7 + Co | Kot — Xp—all ) (4.3.41)
2
=z —s ) 4.3.42

where Vi, € 0¥, (Z, Xi_1) is the element defined in Lemma {4.3.7 and(4.3.41) holds true by
taking into account further that 0 < pay < 1, hence

Lr + Lg + 2p°1 _ Lr+Le
p o

By the same argument as in the proof of Theorem [4 if we take k3 := kg > 2 for which

m 4.3.37)) holds, then according to ) the followmg 1nequahty holds for every k > ks

W, (Zg, Xpo1) — \I/*\" = g;‘j < C - dist (0,00, (Zk, Xp_1)) < C Vil 5 -
The desired statement is a combination of this estimate and (4.3.42)). O

C =

> (Lr+ Le)ay = Ch.

In order to transfer the convergence rates from {Cx};~, to the sequence {Xy},-, we will
need the following lemma.

Lemma 4.3.10. Let {Xy},> be the sequence generated by Algorithm and {Cr}=o the
sequence defined in . Let X, be the critical point of to which the sequence
{Xi}yso converges as k — +o0 and ¢ : Ry — R, ¢(s) = s'0. Then there exists ks > 2 such
that for any k = ks

4
X5 — Xul| 7 < Cs max{ (k,gp((’k)} , where C := N +2C3 > 0. (4.3.43)

Proof. By using the same arguments as in the proof of Theorem [£.3.8] there exists k3 > 2 such
that for any k > ks the following inequality is true

Cq Cy
Xpi1— X < ———— || Xk — Xi— — || Xp1 — Xp
+ 03 (¢ (Ck) — ¢ (Crt1)) - (4.3.44)
Let k = k3 be fixed. By an induction argument one can prove that
16— Xullp < 1 Xes1 = Xallr + 1Xe1 = Xellyr <o < Y [ Xiwr = Xill . (43.45)
=k

For any K > k + 2 > k3, by summing up (4.3.44) for: =k +2,--- , K, we get

i Cl i CQ i
1Xit1 = Xillr € 57———5~ 1X — Xicallp + s 1Xi1 — Xi ol
i=k+2 2(Ci+C) i=k+2 2(C1+Cy) i=k+2
K
+C5 Y (0(6) = (Gir))- (4.3.46)
i=k+2
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Notice that
K

K
Z [ Xiv1 — Xi”}‘ = Z [ Xiv1 — Xi”]—‘ — [ Xk42 — Xk+1||]-‘ — [ X1 = X’fH}" (4.3.47a)
i=k+2 i=k
K K-1
DX = Xially = [ Xit1 — Xill 7
i=k+2 i=k+1
K
= Z ||Xz+1 Xi”f - HXk+1 - Xk”f - HXKH B XKHF’ (4‘3‘47b)
i=k
K K—2
2 [ Xi—1 — Xia|lz = | Xiv1 — Xl 7
i=k+2 i=k

I
=

[ Xit1 — Xill 7 = [[ Xk — Xk—1llz = [ Xx11 — Xkll7 (4.3.47¢)

.
Il
>

Plugging these relations into (4.3.46]), neglecting the last two negative terms in (4.3.47b)) and
(4.3.47¢|), we get

i Cl i 02 i
[ Xiv1 = Xillr < 57—~ | Xs — Xicall r + 5755~ 1 Xic1 — Xi—al| £
= 2(Cy+Co) 4, 2(C1+Cy) 44,
K
1 X2 = Xl 7 + ([ X1 — Xill 7 + Cs Z (¢ (G) — @ (Gir1))
i=k+1
K
1
< 5 Z [ Xit1 — Xill 7 + | Xpr2 — Xpgall 7 + 1 Xer1 — Xl 2

k

+ C3 (¢ (Ch+1) — ¢ (Cr+1)) -
Thanks to (4.3.27)) we can deduce that

7

K
Z [ Xiv1 — Xill 7 < 2| Xpy2 — Xirall 7 + 2 ([ Xir1r — Xill 7 + 203 (¢ (Cry1) — 0 (Cx11))
i=k
2
< ——=VCk+1 — Cera + N Gk — Cev1 + 2C3 (¢ (Cht1) — » (Cx+1))
vCo
2 2
< — + — + 2C . 4.3.48
\/CT) Ch+1 m\/a 3¥ (Ck-i—l) ( )
The fact that {(x},~, is monotonically decreasing implies y/Crt1 < v/Cx and ¢ (Crr1) < @ (Gr)-
By passing K — 400 in (4.3.48) and by using (4.3.45)), we get the desired statement. ]

We can now formulate the rates of convergence for the sequences of objective function values
and iterates.

Theorem 4.3.11. Let { X}, be the sequence generated by Algorithm and {Cr}pso the
sequence defined in (4.3.34). Let X, be the critical point of (4.3.1) to which the sequence
{ Xk} >0 converges as k — +o0. Then there exists ky > 2 such that the following statements are
true:

(i) if 0 = 0, then {Ck}j=y and {Xr},=o converge in finite time;
(ii) if 6 € (0,1/2], then there exist C},Ch > 0 and Q1,Q2 € [0,1) such that for any k = ky
0<E(Z) -V <CIQT  and | Xp — Xull7 < Q5
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i) if 0 € (1/2,1), then there exist Ch, C > 0 such that for any k = k4 + 2
3 ¥4

Proof. Let k3 > 2 be the index provided by previous lemma with the property that (4.3.43))
holds for any k > k3. Since {Cr};, converges to 0, there exists k4 > k3 such that for any k > k4

1X, — Xell 7 < C5 max{ Cor 0 (gk)} : (4.3.49)
G < 1. (4.3.50)
(i) If & = 0, then {Cx};~, converges in finite time. By similar arguments as in the proof of

Theorem we get that the sequence { Xy}, becomes identical to X, starting from
a given index. In other words, the sequence { Xy}, converges in finite time, too.

(ii) If 6 € (0,1/2], then, according to Lemma there exist C] > 0 and @; € [0,1) such
that for any k > ky
0<E(Z)) — T < G < C1QF.

Moreover, as 1 — 260 = 0, due to (4.3.50) it holds

1-20

1o _
G2 =¢ <l <G

Consequently, Lemma [4.3.10] implies that

k
Xk — Xl » < C50/Cr < Oy /€ («/Ql) VE > ks,
which is nothing else than the second inequality of with C% := C54/C] > 0 and
Q2 :=+/Q1€(0,1).

(iii) If @ € (1/2,1), then we can use Lemma to ensure that there exist C% > 0 such
that for any k& > k4

0<E(Zy) — Uy < Co < O (k—1) 1,
Since 260 — 1 > 0 and (3 < 1 due to (4.3.50|), we have

20—1 9—1 1—0
Ck2 :Ck2<1® Ckggk .
Then the second statement follows from (4.3.49) with C} := C5C§_€ > 0. O

4.4 Particular instances and numerical experiments

4.4.1 Some particular instances of Algorithm [4.3.7]

In the following we will discuss some particular instances of Algorithm [£.3:1] To this aim we
will use again the notation Lr (a4 ), which will allow us to better underline the dependence of
the step size from the inertial parameters.

Example 4.4.1. Choosing aj = 0 for all £ > 1, Algorithm reduces to the relaxed projected
gradient algorithm

1
Zk+1 = PI’D (Xk — mvg (Xk)> )

X1 := (1= p) Xi + pZi41.
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In this case, ay = 0 and condition (4.3.10)) becomes

V Lz (0) + 2] Al _ \/3trace (A) + [[All; = Amin (4)
VLr(0) +2[[All, + /Lr (0)  4/3trace (4) + [|Ally — Amin (A) + 4/3trace (A) — Amin (A)
VO AL

VL7 (0) +2[|Al, = /L7 (0)

Notice that, according to (4.4.1]), the the choice p = 1 is allowed, which leads to the classical
projected gradient algorithm.

<p< (4.4.1)

Example 4.4.2. For p = 1, Algorithm reduces to the inertial projected gradient algorithm
Y, = X+ oy (Xk — Xk—l) ,

1
Xk 1= PI‘D (Yk - —FF——VE (Yk)> .
i Lr(ay)
In the nonconvex setting, algorithms with inertial effects proved to be helpful to detect critical
points of minimization problems which cannot be found by their non-inertial variants (see, for
instance, [51),[94]). For constant inertial parameters ay = a € [0, 1] for any & > 1, condition

(4.3.10)) is equivalent to

VI (5) + 24T,

LS e Vir(an) + 214, - Vir(a0)

and further to

Lr (o4)
O0<ay < . 4.4.2
+ \/ Lr (o) + 2] 4], (442

Condition is in implicit form, however, one can show that it is satisfied for every 0 < a; <
0.967. In order to find a larger a.,, which fulfills , one can use a bisection routine starting
from 0.967, as we did in our numerical experiments and will explain in the next subsection.

In order to see that for every 0 < a4 < 0.967 the inequality always holds true, one
can rewrite (4.4.2) equivalently as

a2 ([ Ally + (3 + 8ay + 602 ) trace (A) — Amin (4)) < (3 + 8ay + 60&) trace (A) — Amin (4) .

Relation is definitively fulfilled if (4
w (o) <0,
where
w (&) := 6trace (A) &* + 8trace (A) €% — (Amin (A) + 2trace (4)) £2
— 8¢trace (A) — 3trace (A) — Amin (4) .
We have
w (ay) < trace (A) ¢ (@4) — Amin (A) @2 — Amin (A) < trace (4) ¢ (ay),

where

¢ (€)== 66" +8¢% — 262 —8¢ -3,

and this is why we will solve a more restricted yet easier inequality ¢ (£) < 0 instead of (4.4.3)).
The derivative of ¢ reads
¢ (&) = 24€% +24¢% — 46 -8
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and has exactly one root

1 1 1
”:Eg 594 — 54V/67 + - { 2(11+\/67) — 5~ 0.5253.

Since ¢’ (0) = —8 < 0 and ¢’ (1) = 36 > 0, we have that ¢ is decreasing on (0, r) and increasing
on (v,1). Moreover, as ¢ (0.967) = —0.00458574 < 0, $(0) = =3 <O and ¢ (1) =1 > 0, we
can conclude that ¢ (£) < 0 for every £ € [0,0.967], which implies that is fulfilled as a
strict inequality for every a4 € [0,0.967] as well. Since in the above approach we weakened
(4.4.3)) in order to simplify the computations, one cannot expect 0.967 to be the largest value
for which this inequality is fulfilled. However, we will use in our numerical experiments 0.0967
as the starting point for a bisection procedure aimed to find larger values of oy which fulfill
@E43).

Example 4.4.3. An interesting choice of the variable inertial parameters {cy }r>1 in the context
of the inertial projected gradient algorithm discussed in Example is

t =1
e —1 !

, where 1+4/1+42 Vk=1 (4.4.4)
tk+1 k

t =
k+1 9

A ‘= K

Notice that, for x := 1, this is exactly the update rule of the celebrated Nesterov/FISTA algo-
rithm [I10} 28]. This iterative scheme have attracted the interest of the optimization community
and of many practitioners due to the fact that, in the convex setting, it improves for the se-
quence of objective function values the convergence rate over the one of the standard non-inertial
method. In the nonconvex setting, no theoretical results, which emphasize an improvement in
the convergence behaviour through this update rule, have been obtained so far, however, some
empirical studies suggest that this might be the case (see, for instance, [115]).

Since a4 = sup ay = k, one can find & such that (4.3.10) holds by solving (see (4.4.2))
k=0

Lz (k)
0<k< \/L; CESIET (4.4.5)

If one wants to choose larger values for k, for instance to take x close to 1, a restart mechanism
can be adapted into the scheme (4.4.4), like, for example, in [112].

Example 4.4.4. If we set, again in the context of the inertial projected gradient algorithm,

k
Qp = "ok >1, where ke (0,1),

then it holds ay = k. This is a setting considered by Laszlé in [94] for the inertial gradient
algorithm, which is the scheme in Example [£.4.2) without the projection step. Our algorithm can
be considered as an extension of the one in [94]. To guarantee convergence, in [94] is required
that the step size fulfills

0<p< M’

Ly

where Lz denotes the Lipschitz constant of the gradient of the objective function. This condition
excludes the case k = 1 and allows u = 1/Lx as stepsize when k = 1/2. In our setting, we can
have larger values of x in combination with the stepsize 1/Lx, namely, those for which
is fulfilled (see also the discussion at the end of Example .
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Example 4.4.5. Other than for the classical inertial algorithms for convex optimization prob-
lems and monotone inclusions, for which the inertial parameters were not allowed to take values
greater than 1/3, the interplay between relaxation and inertia gives us much more freedom when
it comes to the choice of the latter. We have seen that as far as a, satisfies we can
choose p = 1. For a, close to 1 such that is not satisfied, in other words

Lr(ay)
< ay,
\/Lf (ar) +2]Af, ~

we can take

_ VLF (as) + 2] Al “p< VLF (as) + 2| Al
VILF (o) + 2[[Ally ++/LF (a4) (1 + ax) v/Lr (as) + 2] All, = v/Lr (ay)

0 < 1.

(4.4.6)
This applies also for the case when ap = 1 for any £ > 1, and thus oy = 1, for which Algorithm

431 becomes

Zk+1 = PI‘D <2Xk - Xk—l - V€& (2Xk - Xk—l)) y

Ly(1)
Xp+1 = (1= p) Xk + pZk+1.

As we will see in the numerical results, the strategy of choosing ot close to 1 and p according
to (4.4.6) yields to the best performances of the algorithm.

4.4.2 Numerical experiments

The aim of the numerical experiments we will present in this subsection is twofold: to compare
the performances of our algorithm with those of other numerical methods for the nonnegative
factorization of completely positive matrices, as are and from [87] and [66],
respectively, and to show in which way and to which extent the algorithm parameters influence
these performances.

A particular attention will be paid to the nonnegative factorization of matrices not belonging
to the interior of CP,, for which the algorithms in [87, [66] perform rather poor.

Number of runs and starting points. In every numerical experiment, for A € R™"*"
with n < 100, we run Algorithm [£:3.1] 100 times for 100 randomly chosen initial matrices in D
(for instance, by chosing a random matrix in R”*" and then by using the projection formula
(4.3.2), and run the algorithms and also 100 times for 100 randomly chosen
initial matrices in O, (for instance, by chosing a random matrix in R"*" and by computing a
SVD decomposition); if n > 100, then we do this for each of the algorithms 10 times.

As noticed in Section [4.2.3] the algorithm (4.2.16]) and (4.2.17)) require, in addition, a matrix
B, which we compute by the Cholesky decomposition. If the Cholesky decomposition fails, then
we use the eigenvalue decomposition. Here we follow the approach described in [87, Section 3],
see also [66], Section 6].

Parameter choice. We will choose the constant oy, which will then determine the sequence
of inertial parameters {ay}r>1, with two different aims:

e by running a simple bisection routine which starts at 0.967 in order to find greater values
for ay that satisfy (4.4.2), namely,

Lr (o)
O0<ar < .
i \/L}' (ay) +2A],

Instead of using the midpoint rule, we will use as update rule for the bisection routine
ay = (Bay + 1) /4, which seemingly gives better results. We will then choose a4 1= ay,
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which is the last value at which (4.4.2)) holds. As seen in the previous subsection, as long
as (4.4.2)) is fulfilled, we can and do choose p = 1.

e by taking &y := (3ay4 +1)/4, dg := (a4 +1)/2, and a3 := (a4 + 3) /4, which, when
Q. 1s obtained as above, all violate . The corresponding relaxation parameters
will be denoted by p(a1), p(@2) and p(as), respectively, and chosen to satisfy (4.4.6).
Another value of o, which violates is 1, which we will also use in the experiments
in combination with a relaxation parameter p(1) fulfilling as well.

Stopping criteria. For A € R™"*", we will run each of the algorithms at most 10000
iterations if n < 100 and 50000 otherwise. We count the algorithms (4.2.16) and (4.2.17)) as
“success” if the stopping criterion

min{ (BQk)z,]} > —Tolsfea

is reached before the maximal number of iterations is attained. This is nothing else than the
stopping criterion used in [87, [66]. For (#.2.17)), we will set Tolya := 10710 if the matrix A
belongs to int (CP,), and Tolya := 1077 otherwise. For we will take as threshold
10 X Tolgea. On the other hand, for all instances of Algorithm we will use as stopping
criterion the relative error condition

|A - XX}

2
LA,
| All%

Also here, we will set Tolya := 10710 if A belongs to int (CP,,), and Tolyay := 1077 otherwise.

Tables. In the tables with numerical results, we report the (rounded) successful rate over
the total number of trials (Rate), the average CPU time in seconds for both successful (Time
(s)) and failed (Time (f)) trials, and the average number of iterations (Iter.) needed to reach
the stopping criteria for the successful trials. We also use boldfaces to highlight the best results
among all methods that have successful rate 1.

Plots. We plot for some particular instances the sequences of function values {€ (Z;) —
Emin}k>2 and of distances {% | X5 — XsolH%-‘}kZO in logarithmic scale, where &y, denotes the
smallest objective function value over all methods and X, is the last iterate X for each
method. With the plots we want to emphasize that the sequences of both function values and
iterates have linear rates of convergence.

Algorithms. We summarize here the different variants of Algorithm with correspond-
ing parameter choices we will use in the numerical experiments:

(i) PG: the classical projected gradient algorithm formulated in Example in case p = 1;
(ii) FISTA: the FISTA /Nesterov algorithm from [I10} 28];

(iii) IPG-const: the inertial projected gradient algorithm formulated in Example (for
p = 1) with constant inertial parameters oy, = a4 for any k > 1 and @, chosen to satisfy

[ET):

(iv) IPG-sFISTA: the inertial projected gradient algorithm formulated in Example (for
p = 1) with inertial parameters fulfilling (4.4.4) for x := a,;

(v) IPG-mod: the modification of Nesterov’s scheme from [94] discussed in Example with
K := a4 and step size p := 1/Lr. The setting goes beyond the one in which convergence
was proved in [94], but it is within the one for which our convergence result holds.

(vi) RIPG-const, RIPG-sFISTA and RIPG-mod: the relaxed versions of IPG-const, IPG-sFISTA
and IPG-mod, respectively, for different values of o, that violate (4.4.2), as in Example
4.4.5, and with corresponding relaxation parameters p satisfying (4.4.6]).
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Numerical experiment 4.4.1. In our first experiment, we use randomly generated completely
positive matrices as in [87, Section 7.8]. Precisely, in each test we generate a random n x 2n
matrix By and then we set A := |Bo||By|”; here the absolute value operator || is understood
entrywise. We test the algorithms on 50 randomly generated 40 x 40 matrices, 10 randomly
generated 100 x 100 matrices, and 10 randomly generated 500 x 500 matrices, all via the approach
described above. For the nonnegative factorization we use in each case r := 1.5n + 1 and
r := 3n + 1. The performances of the different numerical methods on the for the different
instances are captured in the Tables -

One can notice that outperforms the other methods with respect to the number
of iterations, which is due the fact that uses a linesearch routine to improve the step
size, while the other methods have quite conservative step size rules. However, some of the
instances of Algorithm can compete with in terms of computational time. This is
due to the fact that the latter runs in every iteration a SVD routine, which is much more time
expensive than the simple projection step made by Algorithm In particular with growing
dimensions our algorithm becomes faster than .

Method ‘ Rate ‘ Time (s) ‘ Time (f) ‘ Iter.

Algorithm (4.2.16 0.80 | 2.5137 x 10° | 7.0416 x 10° | 3467.08
Algorithm (4.2.17] 1.00 | 4.1259 x 102 —//— 38.51
PG 0.00 —//— 4.5239 x 1071 —//—
IPG-const: a = a 1.00 | 1.3017 x 101 —//— 2554.45
IPG-SFISTA: a = Q4 1.00 | 1.2994 x 1071 —//- 2561.51
IPG-mod: o = Q4 1.00 | 1.3122 x 107! —//— 2562.88
RIPG-const: («,p) = (a2, p(Q2)) 1.00 | 2.8331 x 101 —//— 5490.14
RIPG-const: (a,p) = (a3, p(as)) | 1.00 | 2.8589 x 10~} /)= 5532.32
RIPG-sFISTA: (a, p) = (Qz2,p(A2)) | 1.00 | 8.8411 x 102 —//— 1752.14
RIPG-sFISTA: (,p) = (As,p(a3)) | 1.00 | 1.4610 x 101 ~//= 2906.58
RIPG-mod: (a, p) = (A2, p (Q2)) 1.00 | 8.9617 x 102 —//— 1751.66
RIPG-mod: (a,p) = (a3, p(a3)) 1.00 | 1.4798 x 1071 /- 2904.48

Table 4.4.1: The nonnegative factorization of random completely positive matrices for n = 40 and

r=61.

Method ‘ Rate ‘ Time (s) ‘ Time (f) ‘ Iter.

Algorithm (4.2.16 0.90 | 83492 x 10° | 2.1794 x 10! | 3883.03
Algorithm (4.2.17] 1.00 | 6.3118 x 102 —//— 19.22
PG 0.00 —//— 8.4875 x 107! —//—
IPG-const: o = Oy 1.00 | 1.9973 x 101 -//— 2020.26
IPG-sFISTA: o = G 1.00 | 2.5665 x 1071 /)= 2589.74
IPG-mod: o = Q4 1.00 | 2.6477 x 107! —//— 2591.06
RIPG-const: (a,p) = (Qo2,p(a2)) | 1.00 | 5.0055 x 101 —//— 4964.26
RIPG-const: (a,p) = (a3, p(as)) | 1.00 | 5.0620 x 10~} /)= 5014.23
RIPG-sFISTA: (a,p) = (Qz2,p(A2)) | 1.00 | 1.6188 x 10! —//— 1634.78
RIPG-sFISTA: (,p) = (As,p(a3)) | 1.00 | 2.7420 x 1071 —~//— 2760.50
RIPG-mod: (a, p) = (Qia, p (Q2)) 1.00 | 1.6681 x 101 —//— 1633.88
RIPG-mod: (a,p) = (a3, p(a3)) 1.00 | 2.8115 x 1071 —//— 2756.80

Table 4.4.2: The nonnegative factorization of random completely positive matrices for n = 40 and
r=121.
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Method ‘ Rate ‘ Time (s) ‘ Time (f) ‘ Iter.

Algorithm (4.2.16 0.62 | 6.4857 x 10! | 1.3183 x 102 | 24245.13
Algorithm ([4.2.17 1.00 | 5.3558 x 101 —//— 109.72
PG 0.68 | 1.0220 x 10* | 1.0925 x 10 | 47216.68
IPG-const: o = Q4 1.00 | 1.9569 x 109 —//— 7948.22
IPG-sFISTA: o = a4 1.00 | 1.6213 x 10° —//- 6606.02
IPG-mod: a = a4 1.00 | 1.6379 x 10° —//= 6607.08
RIPG-const: (a,p) = (Qo,p(a2)) | 1.00 | 3.4802 x 10" —//— 14271.40
RIPG-const: (a,p) = (as,p(as)) | 1.00 3.5571 x 10° —//— 14465.50
RIPG-SFISTA: (o, p) = (Qg,p(A2)) | 1.00 | 8.3203 x 10~} —//— 3160.96
RIPG-sFISTA: (,p) = (A3,p(a3)) | 1.00 | 8.1442 x 1071 —//— 3216.90
RIPG-mod: (a, p) = (A2, p(Q2)) 1.00 | 8.2046 x 107! —//- 3163.08
RIPG-mod: (a, p) = (@3, p(43)) 1.00 | 7.9077 x 10~1 —//— 3215.90

Table 4.4.3: The nonnegative factorization of random completely positive matrices for n = 100 and

r = 151.
Method ‘ Rate ‘ Time (s) ‘ Time (f) ‘ Iter.
Algorithm (4.2.16 0.16 | 6.1287 x 10% | 9.1004 x 10? | 34943.88
Algorithm ([4.2.17] 1.00 | 2.1906 x 10° ~//— 96.08
PG 0.80 | 2.4696 x 101 | 2.3458 x 10! | 47725.30
IPG-const: a = a4 1.00 | 1.9569 x 10° —//= 7948.22
IPG-sFISTA: a = & 1.00 | 1.6213 x 10° —//— 6606.02
IPG-mod: o = Q4 1.00 | 1.6379 x 10° —//= 6607.08
RIPG-const: (a,p) = (Qz2,p(A2)) | 1.00 | 3.8786 x 10° —//— 13377.24
RIPG-const: (a,p) = (as,p(Qs)) 1.00 | 3.7777 x 10° —//— 13551.98
RIPG-SFISTA: (o, p) = (Ag,p(d2)) | 1.00 | 2.0073 x 10° —//— 3232.04
RIPG-SFISTA: (o, p) = (A3, p(d3)) | 1.00 | 1.7938 x 10° ~//— 3021.04
RIPG-mod: (a,p) = (A2, p (G2)) 1.00 | 1.9433 x 10° —//= 3234.30
RIPG-mod: (a, p) = (a3, p(Q3)) 1.00 | 1.7880 x 10° ~//— 3018.80
Table 4.4.4: The nonnegative factorization of random completely positive matrices for n = 100 and
r = 301.
Method ‘ Rate ‘ Time (s) ‘ Time (f) ‘ Iter.
Algorithm ([4.2.17) 1.00 | 1.6557e x 102 —//— 929.38
RIPG-sFISTA: (a,p) = (a3, p(a3)) | 1.00 | 1.4526 x 102 —//— | 7919.40
RIPG-mod: (a,p) = (a3, p(a3)) 1.00 | 1.4861 x 102 —//— | 7921.64
Table 4.4.5: The nonnegative factorization of random completely positive matrices for n = 500 and
r =751
Method ‘ Rate ‘ Time (s) ‘ Time (f) ‘ Iter.
Algorithm ([4.2.17) 1.00 | 1.3813 x 103 —//— 914.15
RIPG-sFISTA: (a,p) = (a3,p(as3)) | 1.00 | 2.2975 x 102 —//— | 7776.30
RIPG-mod: (a, p) = (A3, p (Q3)) 1.00 | 2.3037 x 10? —//— | T779.60

Table 4.4.6: The nonnegative factorization of random completely positive matrices for n = 500 and

r = 1501.
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Method ‘ Rate ‘ Time (s) ‘ Time (f) ‘ Iter.

Algorithm (4.2.16] 0.00 —//— 4.7649 x 1071 | —//—
Algorithm (4.2.17] 0.02 | 7.0223 x 10~ | 7.5259 x 10~ | 9220.50
PG 0.27 | 1.8571 x 1072 | 2.7675 x 1072 | 7069.00
FISTA 1.00 | 2.1624 x 1073 —//— 728.32
IPG-const: ay = 0.9814 1.00 | 7.2203 x 1073 —//— 2385.20
IPG-sFISTA: oy = 0.9814 1.00 | 7.9190 x 1073 —//— 2474.65
IPG-mod: a4 = 0.9814 1.00 | 7.7214 x 1073 —//— 2473.84

RIPG-const: (a,p) = (0.9954,0.9705) | 0.93 | 1.3141 x 10=2 | 3.1291 x 1072 | 4383.86
RIPG-const: (a,p) = (1.0000,0.9661) | 0.94 | 1.3217 x 1072 | 3.2318 x 1072 | 4446.59

RIPG-SFISTA: (o, p) = (0.9954,0.9705) | 1.00 | 3.5561 x 103 —//- 1050.93
RIPG-sFISTA: (a, p) = (1.0000,0.9661) | 1.00 | 2.5225 x 103 —//— 742.12
RIPG-mod: (a,p) = (0.9954,0.9705) 1.00 | 3.5350 x 103 —//- 1056.10
RIPG-mod: (a, p) = (1.0000,0.9661) 1.00 | 2.4953 x 1073 —//- 744.37

Table 4.4.7: The nonnegative factortization of Ag.g9 given by (4.4.7) - (4.4.8) for r = 12.

Numerical experiment 4.4.2. In the second numerical experiment, we consider the perturbed
matrix A, defined by

Ay, =wA+(1—-w)P, forwel0,1], (4.4.7)
where
8 5 1 1 5 21 1 11
5 8 5 11 1 2111
A=11 5 8 5 1 and P:=1]1 1 2 1 1 (4.4.8)
115 8 5 111 21
5 1 1 5 8 1111 2

Both A and A, belong to CP5 for all w € [0,1]. Furthermore, A, € int(CP5) whenever
0 < w<l1, since P = [j5|Id5] [j5|Id5]T € int (CP5), while A € CP5\int (CP5). It has been
observed in [87, [66] that it is much more difficult to perform a nonnegative factorization of A
than of A, when w < 1. In particular, the rate of success for and decreases
to zero when w to 1, that is, when A, becomes nearly identical to A. For this experiment, we
set, as suggested in [39, Theorem 4.1], r := 11 for w := 1 and r := 12 otherwise. We present
in Table and in Table the numerical performances of the algorithms applied to the
nonnegative factorization of the matrices Aggg and Aj g9 = A, respectively. One can see that
both (4.2.16) and (4.2.17)) practically fail to factorize the two matrices, a fact which was noticed
in [87, 66]. In what concerns the inertial methods IPG-const, IPG-sFISTA and IPG-mod, they
also seem to face some difficulties in solving these matrices, as the rate of success is not for
every initial matrix equal to 1. On the other hand, the methods RIPG-sFISTA and RIPG-mod
combining inertial and relaxation parameters always return nonnegative factorizations for o
taken equal to @3 and equal to 1. This emphasizes the importance of the interplay between
the inertial and relaxation parameters, as mentioned in Example and provides a strong
motivation for the approach proposed in this chapter.
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Method ‘ Rate ‘ Time (s) ‘ Time (f) ‘ Iter.

Algorithm (4.2.16 0.00 —//— 5.0659 x 107! —//-
Algorithm (4.2.17 0.00 -//- 9.1030 x 107! —//-
PG 0.01 | 1.7454 x 1072 | 2.7524 x 1072 | 7531.00
FISTA 1.00 | 3.1237 x 1073 ~//— 1067.09
IPG-const: oy = 0.9814 0.99 | 1.1232 x 1072 | 2.9201 x 1072 | 3785.31
IPG-sFISTA: oy = 0.9814 0.95 | 1.2694 x 1072 | 3.3234 x 1072 | 4052.98
IPG-mod: oy = 0.9814 0.95 | 1.2337 x 1072 | 3.0064 x 1072 | 4041.04
RIPG-const: (a,p) = (0.9954,0.9705) | 0.76 | 1.7583 x 10=2 | 2.9249 x 1072 | 5882.72
RIPG-const: (a,p) = (1.0000,0.9661) | 0.76 | 1.7549 x 1072 | 2.9381 x 1072 | 5908.16
RIPG-sFISTA: (o, p) = (0.9954,0.9705) | 1.00 | 6.0671 x 103 —//— 1835.64
RIPG-sFISTA: (a, p) = (1.0000,0.9661) | 1.00 | 3.6109 x 103 —//— 1083.75
RIPG-mod: (a,p) = (0.9954,0.9705) 1.00 | 6.0041 x 1073 —//— 1850.06
RIPG-mod: (a,p) = (1.0000,0.9661) 1.00 | 3.6073 x 1073 —//- 1084.20

Table 4.4.8: The nonnegative factortization of A; = A given by (4.4.7) - (4.4.8) for r = 11.

Numerical experiment 4.4.3. Let Id,, and J,, denote the identity matrix and the all-ones-
matrix in R™*™ respectively, and define
Jn
nld,, /-

AQn — <n;(:n

This family of matrices, that lie on the boundary of CPs,, has been also considered in [87]. The
authors report that the algorithms they propose fail to factorize matrices in this family, which
is also the case with , as we have seen in our experiments. We exemplify this in Table
for n = 15 and r = 30. On the other hand, the methods RIPG-sFISTA and RIPG-mod
combining inertial and relaxation parameters provide a factorization in reasonable time, as it is
also the case for n = 50 and r = 100 on which we report in Table It is also interesting
to notice that, for this family of matrices, FISTA outperforms all the other methods, despite
of the fact that the parameter choice for this method does not fail into the setting for which
convergence was proved.

(4.4.9)

Method ‘ Rate ‘ Time (s) ‘ Time (f) ‘ Iter.

Algorithm (4.2.16 0.00 —//— 3.4746 x 102 —//-
Algorithm ([4.2.17 0.00 —//— 5.8390 x 102 —//=
PG 0.00 —//— 1.3049 x 10° —//—
FISTA 1.00 | 9.9557 x 10~1 —//— 6959.95
IPG-const: oy = 0.9861 0.00 —//— 1.5734 x 10° —//-
IPG-sFISTA: oy = 0.9861 0.00 —//— 1.5584 x 10° —//-
IPG-mod: oy = 0.9861 0.00 —//— 1.5747 x 10° —//-
RIPG-const: (a,p) = (0.9965,0.9730) | 0.00 —//— 1.6052 x 109 —//—
RIPG-const: («,p) = (1.0000,0.9697) | 0.00 —//- 1.6032 x 10° —//—
RIPG-sFISTA: (o, p) = (0.9965,0.9730) | 1.00 | 1.4735 x 100 —//— 7719.29
RIPG-SFISTA: (a, p) = (1.0000,0.9697) | 1.00 | 1.4564 x 10° ~//- 7037.52
RIPG-mod: (a,p) = (0.9965,0.9730) 1.00 | 1.4998 x 10° ~//— 7728.84
RIPG-mod: (a,p) = (1.0000,0.9697) 1.00 | 1.4641 x 100 —//— 7036.06

Table 4.4.9: The nonnegative factorization of Asg given by ([4.4.9) for r = 30.
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Method ‘ Rate ‘ Time (s) ‘ Time (f) ‘ Iter.

FISTA 1.00 | 1.9818 x 102 | —//— | 22246.50
RIPG-sFISTA: (o, p) = (0.9998,0.9796) | 1.00 | 2.3743 x 102 | —//— 23125.20
RIPG-sFISTA: (o, p) = (1.0000,0.9794) | 1.00 | 2.3330 x 102 | —//— 22467.40
RIPG-mod: (v, p) = (0.9998,0.9794) 1.00 | 23752 x 102 | —//— 23130.90
RIPG-mod: (v, p) = (1.0000,0.9794) 1.00 | 2.3290 x 102 | —//— 22463.90

Table 4.4.10: The nonnegative factorization of Ajgg given by (4.4.9)) for » = 100.
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4.5 Further perspectives

Numerical evidence in all three experiments (see Figures — suggests that the conver-
gence rates of our model are linear. This suggests that the Lojasiewicz exponent of the function
U, is at most 1/2. Even though the Lojasiewicz exponent has played an important role in
the derivation of many convergence rates results, too little is known about the calculation of
its exact values for functions with complex structure. Some calculus rules for the Lojasiewicz
exponent have been provided in [96] and in [102] for some simple models, however, it is not yet
clear how to calculate it for W,. This is an interesting topic of future research.
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The empirical evidence on the benefit of using linesearch techniques gives rise to the inter-
esting question of studying the theoretical convergence guarantees of the iterates generated by
Algorithm enhanced with such a procedure. Another topic of further research is related
to the extension of the convergence analysis beyond the current setting, in order to cover the
parameter choice of the FISTA method, which, for the numerical experiments 2 and 3, proves
to have excellent numerical performances.

Last but not least, one can replace in the formulation of the optimization problem
the closed ball with radius 4/trace (A) by the sphere of the same radius, formulate a projected
gradient algorithm with relaxation and inertial parameters (by using the formula of the projec-
tion on the intersection of a cone and a sphere from [25]), determine a parameter setting for
which convergence can be guaranteed and convergence rates can be derived (in the spirit of the
analysis for inertial proximal gradient algorithms in the fully nonconvex setting from [51]), and,
of course, investigate its numerical performances.
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Chapter 5

The proximal alternating direction
method of multipliers in the
nonconvex setting

This chapter follows our work [56].

We propose two numerical algorithms for minimizing the sum of a smooth function and
the composition of a nonsmooth function with a linear operator in the fully nonconvex setting.
The iterative schemes are formulated in the spirit of the proximal and, respectively, proxi-
mal linearized alternating direction method of multipliers. The proximal terms are introduced
through variable metrics, which facilitates the derivation of proximal splitting algorithms for
nonconvex complexly structured optimization problems as particular instances of the general
schemes. Convergence of the iterates to a KKT point of the objective function is proved under
mild conditions on the sequence of variable metrics and by assuming that a regularization of
the associated augmented Lagrangian has the Kurdyka-Lojasiewicz property. If the augmented
Lagrangian has the Lojasiewicz property, then convergence rates of both augmented Lagrangian
and iterates are derived.

5.1 Introduction

5.1.1 Problem formulation and motivation

Let H and G be real finite-dimensional Hilbert spaces. In this chapter we deal with the solving
of optimization problems of the form

2%1751 {9 (Az) + h(2)}, (5.1.1)

where g: G — R U {400} is a proper and lower semicontinuous function, h: H — R is a Fréchet
differentiable function with L-Lipschitz continuous gradient and A: H — G is a linear operator.
The spaces ‘H and G are equipped with Euclidean inner products {-,-) and associated norms
I]l = A/<{:, ), which are both denoted in the same way, as there is no risk of confusion.

We propose a proximal ADMM (P-ADMM) algorithm and a proximal linearized ADMM
(PL-ADMM) algorithm for solving the optimization problem and carry out a parallel
convergence analysis for both algorithms. We first prove, under not very restrictive assumptions
on the problem data, that the sequence of generated iterates is bounded. Given these premises
we show that the cluster points of the sequence are KK T points of the problem . Provided
that a regularization of the augmented Lagrangian satisfies the Kurdyka-Lojasiewicz property,
we show global convergence of the generated sequence of iterates. When this regularization of
the augmented Lagrangian has the Lojasiewicz property, we derive rates of convergence for the
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sequence of iterates. To the best of our knowledge, these are the first results in the literature
that deal with convergence rates for the nonconvex ADMM.

We prove under quite general assumptions that the sequence {(z, 2k, yx)} k=0 18 bounded.
In the nonconvex setting, the boundedness of the sequence of generated iterates plays a central
role in the convergence analysis. In fact, the reason, why we assume that the function g is
smooth, is exclusively given by the fact that only in this setting we can prove boundedness for
this sequence under general assumptions.

We also prove convergence for relaxed variants of the nonconvex ADMM algorithms, which
allow to chose in the update of the dual sequence o € (0,2). We notice that o = 1 is the standard
choice in the literature ([4}, 23] 44}, 96, 120],126]). Gabay and Mercier proved in [85] in the convex
setting that o may be chosen in (0,2), however, the majority of the extensions of the convex

1+4/5
2

relaxed ADMM algorithm assume that o € (0, (see [72, [79] 84, 121], 127, [128]) or ask

for a particular choice of o, which is interpreted as a step size (see [90]). In [I28§], an alternating
minimization algorithm for the minimization of the sum of a simple nonsmooth function and a
smooth function in the nonconvex setting, which allows for a parameter ¢ different from 1, has
been proposed.

By appropriate choices of the matrix sequences, we derive from the proposed iterative
schemes full splitting algorithms for solving the nonconvex complexly structured optimization
problem . More precisely, (P-ADMM) gives rise to an iterative scheme formulated only
in terms of proximal steps for the functions g and A and of forward evaluations of the matrix
A, while (PL-ADMM) gives rise to an iterative scheme in which the function h is performed
via a gradient step. The fruitful idea to linearize the step involving the smooth term has
been used in the past in the context of ADMM algorithms mostly in the convex setting (see
[99, 13| 117, 127, [129]), but also in the nonconvex setting (see [101]).

5.1.2 Notations

Let p be a positive integer. Every space H; for ¢ = 1,--- | p is assumed to be equipped with

the Euclidean inner product {-,-) and associated norm ||-|| = 4/{:,-). The Cartesian product
Hi x Ha x ... xH, of the Euclidean spaces H;,% = 1,--- ,p, will be endowed with inner product
and associated norm defined for  := (21,...,2p),y := (y1,...,Yp) € H1 X Ha x ... x H, by

f,y) =D iy and  lalll = | X llaal?,
i=1 i=1

respectively. For every x := (21,...,2p) € H1 X Ha X ... x H, we have

p R
Dol < D Ml - (5.1.2)
i—1 i=1

We denote by Sy (H) the family of symmetric and positive semidefinite matrices M € H.
Every M € S (H) induces a semi-norm defined by

1 p
— Yl < =]l =
VP

HxH?M = (Muz,z) Yo e H.
The Loewner partial ordering on S; (H) is defined for M, M' € S, (H) as
Mz M < |lz|3; = |elie Yo e H.
Thus M € S (H) is nothing else than M > 0. For p > 0 we set

P,(H) := {MeS, (H): M > pld},
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where Id denotes as usual the identity operator in H. If M € P, (H), then the semi-norm ||| ,,
becomes a norm.

The linear operator A is surjective if and only if its associated matrix has full row rank.
This assumption is further equivalent to the fact that the matrix associated to AA*, where A*
denotes the adjoint operator of A, is positively definite. Since

Amin (AA*) [lyl* < llylFias = (AA"y,y) = [A%y|* Yy € G,

this is further equivalent to Amin (AA*) > 0 (and AA* € Py . (aa%) (H)), where Ayin(-) denotes
the smallest eigenvalue of a matrix. Similarly, A is injective if and only if Apin (A*A) > 0 (and
A*A e PAmin(A*A) (g))

5.2 Related works

We start by briefly describing the Alternating Direction Method of Multipliers (ADMM) de-
signed to solve optimization problems of the form

min (f (2) + g (Az) + h (@)} (5.2.1)

where g and h are assumed to be also conver and f: H — R u {+o0} is another proper,
convex and lower semicontinuous function. By introducing an auxiliary variable, one can rewrite

problem (5.2.1)) as

o in @+ () +h@)} (5.2.2)
Azx—2z=0

The Lagrangian associated with problem is
L:HxGxG—->Ru{+w}, L(x,2,9) = f(z)+9g(2) +h(x)+{y, Ax — z),
and we say that (Z,2,7) is a saddle point of L if
L(z,2,y) < L(Z,2,7) < L(x,2,7) V(z,z,y) e H xG xG.

It is known that (Z,Z,7) is a saddle point of £ if and only if 2 = AZ and (Z,2) is an optimal
solution of ((5.2.2)), ¥ is an optimal solution of the Fenchel-Rockafellar dual problem (see [24]

411, 130]) to (5.1.1), namely
max {— (f+h)" (=A%y) — g (y)} . (5.2.3)

yeg

and the optimal objective values of (5.1.1]) and (5.2.3) coincide.
For a fixed real number 8 > 0, the augmented Lagrangian associated with problem ([5.2.2)
reads

Lg:HxGxG—>RuU{+w0}, Eg(x,z,y)=f(x)+g(z)+h(:1:)+<y,Aw—z>—|—§||A:r—zH2.

Given a starting vector (29, 20,%0) € H x G x G and {M¥}1=0 € Sy (H), {Mg}l@o < Sy (9),
two sequences of symmetric and positive semidefinite matrices, the following proximal ADMM
algorithm formulated in the presence of a smooth function and involving variable metrics has
been proposed and investigated in [23]: generate the sequence {(, 2k, yr)}jso for every k >0
as
2

1 1
Ty+1 € arg min {f () + (& — ak, Vh(zy)) + g HAfU —a U]ty |z — JUkH,%\/Uf} , (5.2.4a)

1P o1
Zk+1 1= arg I?elél {9 (2) + g HASUkH —z+ Byk + ) Iz — Zk”f\/[’?v} ) (5.2.4b)
Yk+1 = Yk + 0B (ATy1 — Ziy1) - (5.2.4c)
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It has been proved in [23] that, if 0 = 1 and the set of the saddle points of the Lagrangian
associated with (which is nothing else than £z when 8 = 0) is nonempty, and the two
matrix sequences and the operator A fulfill mild additional assumptions, then the sequence
{(%k, 2k, Yk) } x> converges to a saddle point of the Lagrangian associated with problem ({5.2.2)
and provides in this way both an optimal solution of and an optimal solution of its
Fenchel dual problem. Furthermore, an ergodic primal-dual gap convergence rate result has
been proved.

In case h = 0, the above iterative scheme encompasses as special cases different numerical
algorithms considered in the literature. If M} = M% = 0 for all k > 0, then —
becomes the classical ADMM algorithm ([60), 8T, 84} [85]), which lately gained a huge popularity
in the optimization community, despite its poor implementation properties caused by the fact
that, in general, the calculation of the sequence of primal variables {7y}, does not correspond
to a proximal step. For an inertial version of the classical ADMM algorithm we refer the reader

o [42]. On the other hand, if M} = My and M§ = My for all k > 0, then (5.2-4a)-(5.2.4d)

recovers the prozimal ADMM algorithm investigated by Shefi and Teboulle in [120] (see also
[72, [79]). It has been pointed out in [120] that, for suitable choices of the matrices M; and
Mo, the proximal ADMM algorithm becomes a primal-dual splitting algorithm in the sense of
those considered in [49, 65 [70, 124], and which, due to its full splitting character, overcomes
the drawbacks of the classical ADMM algorithm. Recently, in [44] it has been shown that, if f
is strongly convex, then suitable choices of the non-constant sequences { M4} o and {M5} k>0
lead to a rate of convergence of O (1/k) for the sequence of primal iterates.

In the following we will comment on previous works addressing the ADMM algorithm in the
nonconvex setting. None of the papers which have addressed nonconvex optimization problems
involving compositions with linear operators propose and investigate iterative schemes designed
in the spirit of full splitting algorithms. In [96], the convergence of the ADMM algorithm for
solving the problem is studied under the assumption that h is twice continuously dif-
ferentiable with bounded Hessian. In [91], the ADMM algorithm is used to minimize the sum
of finitely many smooth nonconvex functions and a nonsmooth convex function, by rewriting
it as an general consensus problem. No linear operator occurs in the formulation of the op-
timization problem under investigation. In [4], the ADMM algorithm is used to solve a DC
optimization problem over the unit ball which occurs in the penalized zero-variance linear dis-
criminant analysis. In [I25], a nonconvex ADMM algorithm involving proximal terms induced
via Bregman distances is introduced and investigated, however, without addressing the question
of the boundedness of the generated iterates. On the other hand, in [8§], in order to guarantee
boundedness of the iterates a strong assumption on g is made, which is proved to hold for the
normed-squared function. In [126], a lot of efforts are made to guarantee boundedness for the
generated iterates of the nonconvex ADMM algorithm, which is an essential component of the
convergence analysis, however, this is done by assuming that the objective function is continuous
and coercive over the feasible set, while its nonsmooth part is either restricted proz-regular or
piecewise linear. Similar ingredients are used in [I0I] in the convergence analysis of a nonconvex
linearized ADMM algorithm.

Recently, Bolte, Sabach and Teboulle have proposed in [37] a generic iterative scheme for
solving a general optimization problem of the form , but by replacing the linear operator A
with a general continuously differentiable operator. A global convergence analysis relying on the
use of the Kurdyka-Lojasiewicz property is carried out. It is also shown that the generic iterative
scheme encompasses several Lagrangian based algorithms, including the proximal alternating
direction method of multipliers and the proximal alternating linearized minimization method.
The latter is analysed into detail in the particular case when g is composed with a linear operator,
which coincides with the one in this chapter. The two algorithms we propose are formulated
in the same spirit, however, they lead for some particular choices of the variable metrics to
full splitting algorithms. In addition, we carefully address the issue of the boundedness of the
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sequence of generated iterates and complement the convergence analysis with the derivation of
convergence rates.

5.3 A proximal ADMM algorithm and a proximal linearized
ADMM algorithm in the nonconvex setting
In this section we propose two proximal ADMM algorithms for solving the optimization problem

(5.1.1) and study their convergence behaviour. A central role will be played by the augmented
Lagrangian associated with problem (/5.1.1]), which is defined for every g > 0 as

Lot HxGx G RU [hoo}, L (r,2) = 9(2) 4 h(a) + (y Az =2+ 0 [z — 2.

5.3.1 General formulations and full proximal splitting algorithms as partic-
ular instances

Algorithm 5.3.1. Let be the matrixz sequences {M’f}k>0 €S, (H), {M’g}k>0 €S, (G), B3>0
and 0 < o < 2. For a given starting vector (xg, z0,y0) € H x G X G, generate the sequence
{(zk, Zkayk)}k>0 for every k =0 as:

1
Zht1 € argriig {Eg (T, 2, Yk) + B} Iz — Zk”?\/r’;}

3 1 (5.3.1a)
— arguip {9(2) + . Any =+ 5 Ao =31 + 3 s =l |
Th1 € arg min {/3/3 (T, Zkr1, k) + % |z — 37k||3\/171v}
| 8 - 2 (5.3.1b)
— argmig { A (0) + G Az = 210) + 5 o = sl + 5 o =l
Y1 = Yk + 0B (ATps1 — 2k41) - (5.3.1c)

The above particular instance of Algorithm is an iterative scheme formulated in the
spirit of full splitting numerical methods; in other words, the functions g and h are evaluated
by their proximal operators, while the linear operator A and its adjoint operator are evaluated
by simple forward steps. Exact formulas for the proximal operator are available not only for
large classes of convex functions ([27), 69]), but also for many nonconvex functions occurring in
applications ([7, 89, [95]).

Let {tx};~o be a sequence of positive real numbers such that t; > 3 |Al]?, and M¥ :=
trId — BA*A and M5 := 0 for every k > 0. In this particular case Algorithm becomes an
iterative scheme which generates a sequence {(z, 2k, Yx)} s for every k > 0 as:

|
|

1
T —x), + 514* [yk + 7 (Azg — 2541)]
The second algorithm that we propose replaces for every k = 0 the function A in the definition
of zy41 by its linearization at xy.

1
z— Az — =Yk

g

ZL+1 € argmin {g (z) + s
zeG 2

. tx,
€ h —
Thi1 arggg{l{ (@) + 5

Yk+1 = Yk + 0B (ATpi1 — 2p41) -
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Algorithm 5.3.2. Let be the matriz sequences {M’f}k>0 €Sy (H), {Mg}lpo €S, (G), B3>0
and 0 < o < 2. For a given starting vector (xg, z0,y0) € H x G X G, generate the sequence
{(wk, Zkvyk)}k>0 for every k = 0 as:

. 1
“ivr < argmin {g (2) + o A — 2 + 2 Ay — 2l + |12 - zkH?M;} , (5.3.20)

. B 1
Tpy1 € arg min {(x — xk, Vh (k) + (Y, Ax — 2p41) + 5 | Az — zk+1H2 + B ||z — ackawf ,
(5.3.2b)
Yk+1 1= Yk + 0B (ATpi1 — 2k41) - (5.3.2¢)

Due to the presence of the variable metric inducing matrix sequences, Algorithm rep-
resents a unifying scheme for several linearized ADMM algorithms from the literature (see
[99], 10T, TT3} 117, 127, 129]). By choosing as above M¥ := t;1d — BA* A, where t;, is positive
such that t;, > 8| A||%, and M5 := 0, for every k > 0, Algorithmmmanslates for every k >0

1
z— Arp — Sy

into:
2
IB )

1
Thi1 = Th (Vh (k) + A" [yg + 7 (Azg — 2511)])

2

241 € argmin {g (z) + s
2€G

Yk+1 := Yk + 0B (Axpyr — 2p41) -

In this iterative scheme the smooth term is evaluated via a gradient step, which is an im-
provement with respect to other nonconvex ADMM algorithms, such as [126] [12§], where the
smooth function is involved in a subproblem, which may be difficult to solve, unless it can be
reformulated as a proximal step (see [90]).

We will carry out a parallel convergence analysis for Algorithm and Algorithm [5.3.2
in the following setting.

Assumption 5.3.1. We assume that
(i) g and h are bounded from below;

(ii) A is surjective and thus the constant

1
- - ; <1,
5 , ifl<o<2,
(2 —0)" Amin (AA*)
is well-defined;
(i4i) p1 := sup [[MF|| < +00 and pg := sup ||ME]| < +oo;
1 2
k=0 k=0
(iv) B> 0,0€(0,2) and p1 = 0 are such that
B> ATyL > 0 (5.3.3)
and o
oMb 1 BA*A > <L + BM> Id k>0, (5.3.4)
where

62 + 4 (L + p11)?) To, for Algorithm|5.3.1
A4p2 + 6 (L + p)*) Ty, for Algorithm [5.3.2
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Example 5.3.1. In the following we discuss possible choices of the matrix sequence {M’f} 50
which fulfil Assumption [5.3.1

(i) If sup HM'{H =l > £, then, for every
k=0 2

B > max {4T0L, 2;?—4 L} >0,

there exists p; > 0 such that

1 Cm
=p1 2= — .
H1 = p1 2<L+ 5>>0

The inequality in (5.3.4)) is ensured for M¥% chosen such that

pId = MY = pi1d VE > 0.

(ii) If A is assumed to be also injective, then Apin (A*A) > 0. By choosing

L+ /L2 + 4\ min (A*A) C
> ATy L
B maX{ oL, Do (A% A) 0,

it follows that 82y (A*A) — LB — Cpq = 0. Thus,
BA*A— (L+ B 'Opm)1d >0,

and holds for an arbitrary sequence of symmetric and positive semidefinite matrices
{le}k>0' A possible choice is ./\/l’f = 0, which, together ./\/l’lz€ = 0, for every k = 0, allows us
to recover the classical ADMM algorithm and the linearized ADMM algorithm as particular
instances of our iterative schemes.

(iii) For t > 0, we take M¥ :=tId — BA* A for every k > 0. Then
p1 = [[tId — BA*A|| = Apax (tId — BA¥A) =t — BAmin (A*A).

Condition ([5.3.4)) is equivalent to
Cm

2t—ﬁ|A||2—<L+B> >0

and is guaranteed for both algorithms when

<4/ﬁ +6(L+ u1)2> To
=0

ot — BlAIP— [ L+ ; >

or, equivalently,
10Thu3 — 2 (8 — 6Ty L) pg + 6Ty L> + 2 (HA||2 — 2Amin (A*A)) LB <.

This quadratic inequality in u; > 0 has nonnegative solutions if, for instance, § > 61L
(thus (5.3.3) holds) and the reduced discriminant

A = (8 — 6TyL)? — 60T2L* — 10T 5> <||A|y2 — 2\min (A*A)) + 10Ty LA

- [1 + 107, (2/\min (A*A) — HAH2>] 32— 9Ty LB — 24T2L?
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is nonnegative. This holds true if the condition number of the matrix A*A fulfils

Amax (A*4) |47
Aenin (A*A) ~ Ain (A*A)

Kk(A*A) = < 2.

In conclusions, if the latter is given, then we can chose an arbitrary
B8 = 61yL

and t such that

1
. * . * —
BAmin (A*A) <t < BAmin (A¥A) + 107, (5 61yL + \/A) .

Remark 5.3.1. (i) It has been noticed also by other authors (see, for instance, [37,[96]) that
the surjectivity of the linear operator is an assumption which at this moment cannot be
omitted when aiming to prove convergence for nonconvex Lagrangian based algorithms.

(ii) When proving convergence and deriving convergence rates for variable metric algorithms
designed for convex optimization problems one usually assumes monotonicity for the ma-
trix sequences inducing the variable metrics (see, for instance, [68], 23], [44]). It is worth to
mention that the convergence analysis for both Algorithm and Algorithm does
not require monotonicity assumptions on {M’f} k>0 ©F {M’g} k0"

5.3.2 Preliminaries of the convergence analysis

Within the setting of Assumption [5.3.1] we will make use of the following constants:

-

ATy (L 2
L+ M, for Algorithm [5.3.1},
C() =1
4Tou?
L+ ;Ml, for Algorithm [5.3.2],
ATop?
L'ujl, for Algorithm |5.3.1}
Cri= 4TB(L+u )
%, for Algorithm [5.3.2]
1—-0
if 0 <o <1,
7o ) Auin (A4%) 0257 e
T o1 ifl<o<2
i o ,

Amin (AA*) (2 —0)oB’
and we will denote for every k& > 0
ME = 2M¥ + BA* A — Cyld.

The following result of Fejér monotonicity type will play a fundamental role in our conver-
gence analysis.

Lemma 5.3.2. Let Assumption|5.3.1| be satisfied and {(xr, 2, Yr)} 1o be a sequence generated
by Algorithm [5.3.1) or Algorithm|5.3.2 Then for every k =1 it holds:

1 1
Ls (Ths1s 2hr1s Y1) + T | A* (e — yi)|? + 3 1z = kaHi/lg + 5 2k — Zk||i4§

C
< L (zr, 20 ur) + T0 A (ur — v 1* + 71 @y — 2ot |® (5.3.5)
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Proof. Let k > 1 be fixed. In both cases the proof builds on showing that the following inequality

L

1 1
L5 (i1, 2kt 1, Y1) + 5 |l The1 — fﬂk||§le+gA*A -3 [ B | 2k41 — Zk||3w§

1 2
< Lg (zg, 2k, + — —
B( ky <k yk) 5 ||yk+1 yk”

1
is true and on providing afterwards an upper bound for e lyk+1 — kaQ
o

(i) For Algorithm From (5.3.1a)) we have

15} 1
g (z+1) + Cyps Azg — 2p01) + 5 || Ay — zep |+ 5 121 = ZkH?wg

< 9(a) + o Az — 7 + 5 [ Aw — 2.

The optimality criterion of ([5.3.1b)) is

Vh (xkﬂ) = —A*y, —rA* (A$k+1 - 2k+1) + M]f (xk - ka) .

From (2.2.1) (applied for z := z441) we get

h(zgs1) < h(xg) + (yg, Az — Axgiq) + r(Azgy1 — 2k41, Az — Azgyq)

L
— llzner — 2kl + 5 lowe — 2l

(5.3.6)

(5.3.7)

(5.3.8)

(5.3.9)

By combining ((5.3.7)), (5.3.9) and (5.3.1c|), after some rearrangements, we obtain (/5.3.6]).

By using the notation
uf i= —Vh(z) + MV (epy —ap) Ve =1
and by taking into consideration (5.3.1c]), we can rewrite as
A*ypyr = ouf T 4 (1 — o) A*yy, VE = 0.

o The case 0 < o < 1. We have

A% (ger =) = o (™! = b)) + (1= 0) A% (g — o).

Since 0 < o < 1, the convexity of ||-||* gives

k

2
2 2
1A% @rss =) IP < o b = ]| + (1= 0) 1147 (g = )

and from here we get

Amin (AA*) o [lye1 = yil® < o | A* (s —yo)”

<o

By using the Lipschitz continuity of Vh we have

k1l _ ok
&

— ]| < @+ ) Nonr = ell + g Now = ]

thus

2
et — ]| < 22+ ) s — ol + 208 i — a2
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(5.3.10)

(5.3.11)

(5.3.12)

(5.3.13)

(5.3.14)



After plugging ([5.3.14)) into (5.3.12) we get

1 2 2(L + ) 2 23 2
— — <—=_J — — Lz — g
o8 |Yk+1 — Yl N (AA%) 0 okt — xil|” + N (AA%) 0 5 2k — op—1ll
(1 — U) ( * 2 * 2
A* (g — )| = || A _ ) ,
b (AA") 023 1A* (ke — ye—DII” — A" (Yr+1 — yr) |
(5.3.15)
which, combined with (5.3.6)), provides ([5.3.5)).
o The case 1 < 0 < 2. This time we have from ([5.3.11]) that
* _ g k+1 k *
A" (Yes1 — k) = (2—0) 2o (U1 —Ul) + (=1 A" (o1 — k) -
As 1 < o < 2, the convexity of ||-||* gives
% 2 02 k+1 k 2 % 2
1A% Grss =) IP < 57— ||t = uf ||+ (0 = 1) 147 (g = yi0)]
and from here it follows
Amin (AA*) (2= 0) lypsr — vkl® < (2= ) [|A* (grsr — ) II?
o? 2
< 5T || = ||+ o= DA (e — )P = (0= 1) 1A (e — )
(5.3.16)
After plugging (5.3.14) into (5.3.16)) we get
— I I?
o8 Ye+1 — Yk
20 (L + p1)? 2017
< LI+ M o aal
Amin (AA*) (2 - Cf) r Amin (AA*) (2 — O‘) r
(c—-1) 2 2
A* (yr — yp— — || A* - 5.3.17
i @ oy os AT W w147 s — ) (5:3.17)

which, combined with , provides (5.3.5)).
(ii) For Algorithm The optimality criterion of is
Vh(xy) = =A%y, — rA* (Azppq — 2jg1) + MY (2 — 2141) - (5.3.18)
From (applied for z := xy) we get
h(zpy1) < h(zp) + Ypy Avg — Axgpyr) + 17 (AT 1 — 2341, ATp — ATgy1)

L
— llrer — @l + 3 2w = w?. (5.3.19)

Since the definition of 241 in (5.3.2a]) leads also to (5.3.7]), by combining this inequality
with (5.3.19) and (5.3.2¢)), after some rearrangments, (5.3.6|) follows. By using this time the

notation
ub = —Vh (zp_1) + MV (@ —xp) VE =1 (5.3.20)
and by taking into consideration (|5.3.2c)), we can rewrite (5.3.18]) as
A*ypy = oub ™ 4 (1 — o) A*yy, VE = 0. (5.3.21)
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e The case 0 < o < 1. Asin (5.3.12) we obtain

Amin (AA%) 0 yrr1 — wil)® < o [|A* (yrr1 — wi)|)?

<o [lub ™ — o+ 0 -0 14" e~ DI~ (1 0) 147 (s — )P (5.3.22)
By using the Lipschitz continuity of Vi we have
et = ]| < s Nows = el + (L4 ) o —wiall, (5:3.23)
thus )
HUSH - u’ﬁ” < 203 ||wpar — akl? 4+ 2 (L + m)? |2k — 21 ||® - (5.3.24)
After plugging into it follows
242 2(L+ M1)2

— Nyprr — wil® < s ke — 2ll? + i ok — zea |
of Amin (AA*) o8 Amin (AA*) o8

Lo <||A* (e = y-0)I” = 1A% (g1 — yk)||2> ’

T N (AA) 025
(5.3.25)

which, combined with (5.3.6|), provides (/5.3.5)).
e The case 1 <o < 2. Asin (5.3.16) we obtain

Amin (AA%) (2 = 0) lyrs1 — vell* < (2= o) [|A* (yrr1 — wi)|)?

o? 2
< 7 bt = ||+ 0= D 1A = eI = (0= DA (e — w0l
(5.3.26)

After plugging (5.3.24)) into (5.3.26]) it follows

L 2
05 Y+1 — Yk

20 (L + ,LL1)2
Amin (AA4%) (2 — 0)?

_ 2043

" Amin (AA%) (2 — 0)?
(0—1) (

Amin (AA*) (2 — o) of

which, combined with (5.3.6|), provides (/5.3.5)).

This completes the proof. O

ki1 — zi]® + |z — 21
T T

+ A (g, — yk—D)|I” — | A (yr1 — yk)||2) . (5.3.27)

The following three estimates will be useful in the sequel.

Lemma 5.3.3. Let Assumption|5.3.1| be satisfied and {(xk, 2k, Yr)} 1o be a sequence generated
by Algorithm or Algorithm [5.5.2. Then the following statements are true:

(i) for every k =1 it holds
1241 = zill < Al - ek — ol + [Azksr — 24|l + [[Azg — 2|

1 1
AL e — el + = s — ol + = I — e ; (5.3.28)
of of
(i1) for every k =0 it holds
1 T To Cy
35 el < 5 1A% (ke — ui)|* + 3 IVh (@es) |+ = loess —al®s - (5.3.29)
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(iii) for every k =1 it holds

lyk+1 — Uil < Cs||zp1 — 2kl + Cu ||z — 21|

+ 1o (14" (ye — k-1l = 1A™ (Y1 — ww)[I) (5.3.30)
where
( L
oLt m) , for Algorithm|5.3.1}
Cg =X
e , for Algorithm|5.3.2)
( e , for Algorithm|5.3.1}
)\min (AA*) (1 - ‘1 — 0”)
C4 =1
L
o(L+m) ,  for Algorithm [5.3.2],
\ )\min (AA*) (1—|1—0")
T2 = |1 _ 0-‘ X

Amin (AA*) (1 — |1 — o)

Proof. The statement in (5.3.28)) is straightforward.
From ([5.3.11)) and (5.3.21]) we have for every k = 0

A*ypir = ouFTh + (1 — o) Ay

or, equivalently,

oA i1 = oulT 4 (1—0) A" (Y — Yr+1),
where ©F*1 is defined as being equal to u]fH in (5.3.10)), for Algorithm and, respectively,
to ugﬂ in (5.3.20)), for Algorithm

For 0 < 0 <1 we have

®\ 2 2 2 ® 2 k+1 2 * 2
Ao (AA%) 02 [y | < 02 [ A%y I < o |||+ (1= 0) 4% (g =) (5:3.31)

while, for 1 < ¢ < 2, we have

o? 2
ST [+ = 014 e — P (5:3:32)

Amin (AA*) 0 [yl < 0 [ A%y |* < 5=

1
Notice further that for 1 <o <2 we have — <l and 1 <

In case uF*! is defined as in (5.3.10) it (ljlolds -7
[ = | < 2098 (i) 12 + 268 s — el > 0, (5.3.33)
while, in case ugﬂ is defined as in , it holds
[ = | < 2090 ) 1P + 2 (2 4 ) s — 2l ¥h =0, (5.8.3)

We divide (5.3.31)) and (5.3.32) by 2Amin (AA*) 028 > 0 and plug (5.3.33) and, respectively,

(5.3.34)) into the resulting inequalities. This gives us (|5.3.29)).
Finally, in order to prove (5.3.30)), we notice that for every k& > 1 it holds

1A% st = wi) | < o[ = + 1 = o] 4% (e = )]
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so,
Nenin (AA%) (1= |1 = o)) llyisr — well < (1= |1 = 0]) [ A* (a1 — )
< o [[uf =]+ 1= ol 4% (g — pi)ll — 11— o 1A (gesr — i) (5.3.35)

We plug into ((5.3.35)) the estimates for Huk“ — ukH derived in (5.3.13]) and, respectively, (|5.3.23))

and divide the resulting inequality by 4/Amin (AA*) (1 — |1 — o|) > 0. This furnishes the desired
statement. O

The following regularization of the augmented Lagrangian will play an important role in the
convergence analysis of the nonconvex proximal ADMM algorithms

Ug: HxGxGxHxG—RU{+w},

2

Y

C
\I’IB(.Z',Z,y,CU/,y/) = E,B (a;,z,y) + Tl HA* (y B y/)H2 + 71 Hl’ B .Z'/‘

where T and C] are defined in Assumption [5.3.1} For every k > 1 we denote

Cq
Uy, o= Ug Tk, 2, b The1s Y1) = L (@5 2, y1) + T | A* (v — ym1) > + 5> 2y — 21 ||
(5.3.36)

Since the convergence analysis will rely on the fact that the set of cluster points of the
sequence {(Tk, 2k, Yk)}1>o 1S nonempty, we will present first two situations which guarantee
that this sequence is bounded. They make use of standard coercivity assumptions for the
functions g and h, respectively. Recall that a function ¥ : H — R U {400} is called coercive, if

lim W (x)= +o0.

llzll—+o0

Theorem 5.3.4. Let Assumption be satisfied and {(zy, 21, Yr)} >0 be a sequence generated
by Algorithm or Algorithm[5.3.9 Suppose that one of the following conditions holds:

(B-1) A is invertible and g is coercive;
(B-II) h is coercive.
Then the sequence {(xk, 2k, Yr)} =0 5 bounded.

Proof. From Lemma [5.3.2] we have that for every k > 1

1 1
Wiyt + 5 oner = @rllia_cyaa + 5 201 — 2l < W (5.3.37)

which shows, according to (5.3.4), that {¥}},., is monotonically decreasing. Consequently, for
every k = 1 we have

1 1
Uy > Wy + 3 |l Tks1 — ka?\/(’s“fClId +3 l2k+1 — Zka\,(é

1 2

1 B
= h(Trs1) + 9 (2k41) — 23 Hyk+1”2 + By HAka — 241t Bykﬂ

1 1 C
2 2 2 1
+ T || A* (Yrgr — ) ||” + 5 | Trs1 — ka||M§_cold + 5 | 2k41 — ZkHMg + ?ka-'rl — o,

which, thanks to (5.3.29)]), leads to

Ty 3 1 2
13 o) 49 (o) = 2 19 Gone)P+ 5 Ao = s+ o
T , 1 1 cy
+ D) | A* (k41 — )™ + B zk+1 — xk”,%\/l’;fclld + 5 lzk+1 — ZkH?ch + IHCUICH — x)?.

(5.3.38)

Next we will prove the boundedness of {(w, 2k, Yk)} > under each of the two scenarios.
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(B-I) Since 8 = 4Ty L, there exists v > 0 such that
1 L T

v o B
From Proposition and the relation (5.3.38) we see that for every k > 1
2

Ch
5 + Z“$k+1 — zp|)?

1
g (zr41) + p HA»’%H — Zk+1 + Bykﬂ
. Ty 2
< Uy —inf {h(x) — = ||Vh(2)]|"; < +0o0.
xeH /B

Since g is coercive, it follows that the sequence {2y}, is bounded. On the other hand, since g is
bounded from below, it follows that the sequences {A:r:k -z + 571yk}k>0 and {zpi1 — xk}kzo
are bounded as well. In addition, since for every k£ = 0 it holds

IA (zrr1 — ox) — (zea1 — 26) | < NA- opr1 — 2l + [[2ral] + 2]

it follows that {A (zr41 — o) — (2k+1 — 2k)}p>o 18 bounded, thus so is {B‘l (Y+1 — yk)}k>0'
According to the third update in the iterative scheme we obtain that {Azy — 23}, is bounded
and from here that {yx},- is also bounded. This implies the boundedness of {Ax},-, and,
finally, since A is invertible, the boundedness of {x},.

(B-II) Again thanks to ((5.3.3]) there exists v > 0 such that
1 L 3Ty

v 292 28
We assume first that o # 1 or, equivalently, 71 # 0. From Proposition and ([5.3.38) we see
that for every k > 1

1 T B 2o
s @) + g VR (el + 5 + 5 147 Geer — )|

1
ATpy1 — 241 + Bka

9 2

. 1. 31y 2
< — S - — .
<0y 2259(2) 2;££{h(:c) % IVh (z)]| } < 40

Since h is coercive and bounded from below, we obtain that {z},-, {Axk — 2 + ﬁ_lyk}k>0
and {A* (yx+1 — Yx)}1>0 are bounded. For every k& > 0 we have that

Amin (A*A) 0282 | Az g1 — zks1l|* = Amin (A*A) [[yes1 — wll> < 1A (Wrsr — w12,

thus {Azy — 21.},5( is bounded. Consequently, {yx};~o and {24}, are bounded.
In case o = 1 or, equivalently, 71 = 0, we have that for every k > 1

2

1 T B 1
3 @) + T2 lIVR @e) P + 5 | Akt = 2k + Gy
1 T
< - infy () - g inf () - 50 IVR@IR} < 4o

from which we deduce that {z3},-, and {Axk — 2+ ﬂflyk} 4> are bounded. From Lemma

(iii), which now reads
lyr+1 — el < C3 |1 — ogll + Ca l|og — 2| Ve =1,

it yields that {yx4+1 — Y&} =0 is bounded, thus, { Azy, — 21},- is bounded. Consequently, {yx},~
and {24}, are bounded.
Both considered scenarios lead to the conclusion that the sequence {(zx, 2k, Yr) } =0 is bounded.
O
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Remark 5.3.2. Guarantee the boundedness of {(zx,zk,¥x)};>o 15 an essential issue in the
convergence analysis. In contrast to what we usually have in the convex setting (see e.g. [23]/44]),
it is not clear whether the sequence of multiplier {y},- is bounded in general.

Theorem 5.3.5. Let Assumption be satisfied and {(zy, 21, Yr)} >0 be a sequence generated
by Algorithm or Algorithm which is assumed to be bounded. The following statements

are true:

(i) for every k =1 it holds
C 1
Wht1 + Zl |21 — @k + 3 21 = Zk”i/lg < Wy (5.3.39)

(ii) the sequence {Wy}, - is bounded from below and convergent. In addition,

Tpy1 — Tk — 0, 2ps1 — 2k — 0 and ypy1 —yp — 0 as k — +oo; (5.3.40)

(i1i) the sequences {Wi}y—o, {Ls (T, 2k, Yk) s and {h (zk) + g (21) g0 have the same limit,
which we denote by ¥, € R.

Proof. (i) According to (5.3.4) we have that M% — C11d e P¢, and thus (5.3.37) implies
2
(53.39).

(ii) We will show that {Lg (zg, 2k, Yk)},> is bounded from below, which will imply that
{Wr}>o is bounded from below as well. Assuming the contrary, as {(zk, 2k, Yk)}1>0

is bounded, there exists a subsequence {(aqu,qu,ykq)}Po converging to an element
(Z,2,9) € H x G x G such that {[:/5 (xkq,qu,ykq)}q>0 converges to —o0 as ¢ — +00.

However, using the lower semicontinuity of g and the continuity of h, we obtain

liminf L (2k,, 2k, Uk,) = 0 (2) + g (3) + (G, AR — 2) + g |AZ — 3%,

q—+00

which leads to a contradiction. From Lemma we conclude that {¥y}, ., is convergent
and

D lzrar — zell® < +o0,
k>0

thus xx11 — 2 — 0 as k — +o0.
We proved in (5.3.15)), (5.3.17)), (5.3.25)) and (5.3.27) that for every k > 1

Co—L
2

+ 71| A* (g = ye-)II” = T1 1A (i — i)

1 Ch
— lyrrr — wrll® < [The1 — zp))* + = lJon — 21 )
op 2

Summing up the above inequality for k =1,..., K, for K > 1, we get

1 & , Cy—L & s O & 2
— > vk — well* < N [ e N
o8 o 2 o 2o

+ T4 |A* (y1 — vo) 1> — Th | A* (yie1 — yi)|°

C()—L K 2 Cl X 2
< 5 ;l\\xkﬂ—%k\\ +2];1”$k_1’k1”

+ T || A% (g1 — o)
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We let K converge to +00 and conclude
1
op Z |Azps1 — 211l = = Z lye+1 — yill® < +o0,
of
k=0 k>0

thus Azpy1 — 2511 — 0 and yr1 —yr — 0 as k — 400, Since xp1 —xp — 0 as k — 400,
it follows that zp,1 — 2 — 0 as k — +00.

(iii) By using (5.3.40) and the fact that {yx}, is bounded, it follows

Wi = lm W= T Lo (ak,2k,00) = Jim {h(2e) + g (2)}

which is the desired statement. O

The following lemmas provides upper estimates in terms of the iterates for limiting subgradi-
ents of the augmented Lagrangian and the regularized augmented Lagrangian W3, respectively.

Lemma 5.3.6. Let Assumption|5.3.1| be satisfied and {(xk, 2k, Yr)} 1o be a sequence generated
by Algorithm or Algorithm [5.5.2. For every k = 0 we have

vk+1 = (U];+1’ UI;+17 U§+1> € a[’ﬁ (‘,Ek-‘rla Zk+1, yk-i—l) ) (5341)
where
oh L= Cy (Vh (z51) — VA (1)) + A (Yhs1 — yr) + ME (2 — 2111), (5.3.42a)
’U’;—H = Yr — Ypa1 +TA (xk — $k+l) + M’; (Zk — Zk+1) R (5.3.42b)
1
v§+1 = oF (Yk+1 — Yk) - (5.3.42¢)
and

O e 0, for Algorithm|5.3.1
2 1, for Algorithm|5.3.2

Moreover, for every k = 0 it holds

llo" Ml < Cs llznrs — @xll + Cs llzrs1 — 2ill + O llyns — wxl (5.3.43)

where

1
Cs:= oL+ m +BIAl, Coi=p, Cri=1+]141+ 2.

Proof. Let k = 0 be fixed. Applying the calculus rules of the limiting subdifferential, we obtain

Valg (Ths1, k41, Yrt1) = VR (@p41) + A ypgr + 7A* (ATpp1 — 2k41) 5 (5.3.44a)
02 L3 (Tha1 2kt 1, Ykt1) = 09 (2k11) — Y1 — 7 (A1 — 2p41) 5 (5.3.44b)
VyLa (Tht1s Zht1s Ykt1) = ATpi1 — Zhg1- (5.3.44c¢)

Then (5.3.42¢) follows directly from ([5.3.44c|) and (5.3.1¢)), respectively, (5.3.2¢|), while (/5.3.42b|)

follows from

Y + r(Azy — 2p41) + M5 (26 — 2111) € 09 (2011)

which is a consequence of the optimality criterion of (5.3.1al) and ([5.3.2a)), respectively. In order

to derive (5.3.42a)), let us notice that for Algorithm [5.3.1) we have (see (5.3.8)))
— Aty 4+ MY (2 — 2p41) = VA (@p41) + A" (ATpp1 — 2k41) (5.3.45)
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while for Algorithm we have (see (5.3.18)
—Vh (z) — A¥yp + MY (@, — 201) = TA* (AZpyr — 241) - (5.3.46)

By using (5.3.44a)) we get the desired statement.
Relation (|5.3.43|) follows by combining the inequalities

o] < (oL + o) llmss — ull + HAIL- gt =l

U’Z‘“rlH < e — Y1l + BIAN - [lzk+1 — zill + g2 |21 — 2k

and (5:12). 0

Lemma 5.3.7. Let Assumption|5.3.1| be satisfied and {(xr, 2k, Yr)} 1= be a sequence generated
by Algorithm or Algorithm[5.3.2. For every k = 0 we have

D= (DEFY DEY, DI DEFL DEFY) € 0% (241, 201, Ui 1, T, ) (5.3.47)

where

DEt = of T 4 Oy (wpgr —a), DETM = ol DRt = ol 4 2TV AAT (yrin — )
DV i= Oy (w1 —mp), D= =21V AA* (yyr — i) - (5.3.48)

Moreover, for every k = 0 it holds
IID**HI| < Cs llwgsr — k]l + Co llzrs1 — 2ell + Crollye+1 — wrll (5.3.49)

where
Cs:=2C1+Cs, Cy:=Cqs, Cig:=0C7+4T1 HAH2

Proof. Let k = 0 be fixed. Applying the calculus rules of the limiting subdifferential it follows

VeV (Thit 2kt 1, Ykt 1 Ths Yk) 2= Valg (Thi1, 2hs1, Ykr1) + C1 (Ter1 — 21) (5.3.50a)

(9z‘1’6 (Tht 1) Zht1> Ykt 15 Th, Yi) 1= é’Z£5 (Tt 1) Zht1> Yht1) (5.3.50b)
VyUs (Thats Zht1s Yh+1s Ths Yk) := Vy L (Tht1, Zkt1, Yht1) + 2T1AA™ (Ypy1 — &), (5.3.50c)
VarVs (Ths 15 2kt1 Ykt 1, T Yk) = —C1 (Tpp1 — 1), (5.3.50d)
Vi Vs (Thi1, 2b41, Ykl Ths Uk) i= —2T1AA™ (Yry1 — Yi) - (5.3.50e)

Then ([5.3.47) follows directly from the above relations and ([5.3.41)). Inequality (5.3.49) follows
by combining

HDk+1’ <

oA + 1z =zl

[Pt < (et + 27 1A - s — sl

and (5-12). O

The following result is a straightforward consequence of Lemma and Lemma

Corollary 5.3.8. Let Assumption|5.3. 1| be satisfied and {(xk, 2k, Yx) } x>0 be a sequence generated
by Algorithm or Algorithm |5.5.3, Then the norm of D**1 € 0Wg (wk 41, 2k41, Ykt 1, Tk, Uk)

defined in the previous lemma verifies for every k = 2 the following estimate

DM < Cu (s — zall + llow — 2|l + [lzx—1 — zx—all)
+ Cr2 (1A (e — Yr—) | = 1A (W1 — we)l)
+ Cus (14" (k-1 — ye—2) [l = 1A* (k. — w1 1) , (5.3.51)
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where

C3C C3Cy CyC
C11 := max < Cg + Cy HAH + C3C0 + ﬂ7c4010 + ’ 9: 0 ’
of o of
C CyT:
Chg = (Clo + 9> Ts, Ci3 := 9 2.
of o

In the following, we denote by w ({ug};=o) the set of cluster points of the sequence {ug},-

Lemma 5.3.9. Let Assumption be satisfied and {(wk, 2k, Yr)} >0 be @ sequence generated
by Algorithml5.3.1) or Algorithml5.3.2, which is assumed to be bounded. The following statements

are true:

(i) if {(wkq,qu,ykq)}q>0 is a subsequence of {(Tr, 2k, Yk)}p=o which converges to (Z,2,y) as
q — +00, then

lim Eﬁ (.’L’kq,qu,ykq) = E,B (-//I}a 27 :/y\) )

q—®
(i) it holds

w ({($k7 Zk,yk)}kgo) C crit (‘Cﬁ)
C{@2.0) eMxGxG: — A =Vh(2),jedg(?),% = AT};

(11i) we have lim dist [(xk,zk,yk) W ({(mk,zk,yk)}kzo)] =0;

k—+0
(iv) the set w ({(xk, 2k, yk)}k>0) 18 monempty, connected and compact;

(v) the function Lg takes on w ({($k,zk,yk)}k>o) the value Wy = limy_, oo Lg (Tk, 2, Yk), as
the objective function go A+ h does on the projection of the set w ({(xk, 2k, Yr) }pso) 0nto
the space H corresponding to the first component.

Proof. Let (Z,2,7) € w ({(%k, 2k, Yk) }4=0), Which exists since we assumed {(x, 2k, Yr)}pso 18
bounded. Let {($kq,qu,ykq)}q>0 be a subsequence of {wx, 2k, Yr};~( converging to (Z,2,%) as
q — +00.

(i) From either (5.3.1a) or (5.3.2a) we obtain for every ¢ > 1

1
0 (51) + (kg Ayt = 21, + 5 A1 1 P+ 2, = 1o
A A ~ Iy
< 9(8) + Qo A1 = )+ 5 [[ Az — 5 4+ L ]15 — 2ot
Taking the limit superior on both sides of the above inequalities we get

lim sup g (qu) <g(2),

q—+00

which, combined with the lower semicontinuity of g, leads to

lim g (z,) =9(2).

q—+00

Since h is continuous, we further obtain

. . p 2
Jm Lo (wh, 2,0 05,) = lim [9 (2k,) + D (2r,) + Cyry A, = 20,) + 5 || Aze, = 2, | ]

g () +h(E) + G AT -5+ 5142 5P = £5(52.9).
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(ii) For the sequence {dk}kzo defined in (5.3.42a)-(5.3.42¢) we have that d* € 0Lg(w,, 2k,, Y, )
for every ¢ = 1 and df¢ — 0 as ¢ — +00, while (xkq, qu,ykq) — (Z,2,y) and Lg (mkq, qu,ykq) —
Ls(Z,2,y) as ¢ > 4+00. The closedness criterion of the limiting subdifferential guarantees that
0 € 0Ls(Z,Z,y) or, in other words, (Z,Zz,y) € crit (Lg). Choosing now an element (Z,2,7) €
crit (£g) it holds

0 =Vh(z)+ A*y+rA* (AZ —2)
0 €edg(z2)—y—r(Az —2)
0 = Az — Z,
which is further equivalent to
—A*y=Vh(Z), yedg(2), z = AZ.

(iii)-(iv) The proof follows in the lines of the proof of Theorem 5 (ii)-(iii) in [36], also by taking
into consideration [36, Remark 5], according to which the properties in (iii) and (iv) are generic
for sequences satisfying (Tg41, 2k+1, Yk+1) — (ks 2k, Yk) — 0 as k — 400, which is indeed the

case due to (5.3.40)).

(v) The conclusion follows according to the first two statements of this theorem and of the third
statement of Theorem [5.3.5 O

Remark 5.3.3. An element (Z,2,y) € H x G x G fulfilling
—A*y=Vh(Z), yedg(z), z= Az
is a so-called KKT point of the optimization problem . For such a KKT point we have
0= A%0g (AZ) + Vh(Z). (5.3.52)
When A is injective this is further equivalent to
0ed(goA)(Z)+Vh(Z)=0(goA+h)(Z), (5.3.53)

in other words, T is a critical point of the optimization problem .

If the functions g and h are convex, then (5.3.52)) and (5.3.53)) are equivalent, which means
that Z is a global optimal solution of the optimization problem . In this case, ¥ is a global
optimal solution of the Fenchel dual problem of .

By combining Lemma Theorem and Lemma [5.3.9, one obtains the following
result.

Lemma 5.3.10. Let Assumption|[5.5.1] be satisfied and {(x}, 2y, Yr)} =0 e a sequence generated
by Algorithm [5.3.1] or Algorithm [5.53.9, which is assumed to be bounded. Denote by

Q= w ({(®k, 20> Ybs Thm1 Yh—1) b1 ) -
The following statements are true:
(i) it holds

A A A A A

(ii) we have
lim dist [(k, 2k, Yk, Th—1, Yr—1) , 2] = 0;
k—+0
(iii) the set ) is nonempty, connected and compact;

(i) the regularized augmented Lagrangian Vg takes on § the value Vi = limy_, 4o Vg, as
the objective function g o A + h does on the projection of the set Q0 onto the space H
corresponding to the first component.
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5.3.3 Convergence analysis under Kurdyka-Lojasiewicz assumptions

In this subsection we will prove global convergence for the sequence {(xx, 2k, yx)} = generated
by the two nonconvex proximal ADMM algorithms in the context of KL property.
Working in the hypotheses of Lemma [5.3.10| we define for every k > 1

& =V (@k, 2k, Yo, Tho1, Yr—1) — Vo = Uy = U, = 0,

where W, is the limit of {Uy}, , as k — +00. The sequence {£}, -, is monotonically decreasing
and it converges to 0 as k — +oo0.

The next result shows that, if the regularization of the augmented Lagrangian ¥z is a KL
function, then the sequence {(w,2x,yr)},>o converges to a KKT point of the optimization

problem ([5.1.1)).

Theorem 5.3.11. Let Assumption be satisfied and {(zy, 21, Yr)} =0 be a sequence gen-
erated by Algorithm or Algorithm [5.3.9, which is assumed to be bounded. If Vg is a KL

function, then the following statements are true:

(i) the sequence {(Tk, 2k, Yr)} =0 has finite length, namely,

Dillewin =il <400, Yz =l <+ D vk — gkl < +oo;
k>0 k>0 k>0
(5.3.54)

(ii) the sequence {(Tk, 2k, Yr)} 1o converges to a KKT point of the optimization problem (5.1.1)).
Proof. As in Lemma [5.3.10, we denote by Q := w ({(2k, 2k ks Th—1, Yb—1) }g1)» Which is a

nonempty set. Let be (Z,2,9,2,y) € Q, thus ¥g(2,2,4,2,y) = V.. We have seen that
{& = U — F*} k=1 converges to 0 as k — 400 and will consider, consequently, two cases.

We assume first that there exists an integer k' > 0 such that & = 0 or, equivalently, ¥;, =
W,. Due to the monotonicity of {£},, it follows that & = 0 or, equivalently, ¥y = U, for all
k > k’. Combining the inequality in with Lemma it yields that xp1—xp = 0 for all

k = k’'+1. Using Lemma(5.3.3|(iii) and telescoping sum arguments, it yields Zk>0 lyk+1 — vkl <

+c0. Finally, by using Lemma [5.3.3 (i), we obtain that Zk>0 llzk+1 — 2k|| < +o0.

Consider now the case when & > 0 or, equivalently, \I/;; > WU, for every k > 1. According
to Lemma there exist € > 0, n > 0 and a desingularization function ¢ such that for every
element u in the intersection

{fue HxGxGxHxG:dist (u,Q) <e} n
{fue HxGXxGXxHxG: ¥, <Ug(u) <y +n} (5.3.55)

it holds
¢’ (Vg (u) — Wy) - dist (0,095 (u)) > 1.

Let be k1 > 1 such that for every k = k;

U, < Up <V, +n.

Since klim dist [(zg, 2k, Yk, Th—1, Yk—1) , ] = 0, see Lemma [5.3.10 (ii), there exists ks > 1 such
— 400

that for every k = ko

dist [(@x, 2k, Yks Th—1, Yr—1) , Q] < €.
The element (zy, 2k, Yk, Tk—1,Yk—1) thus belongs to the intersection in (5.3.55) for every k >
ko := max {k1, k2, 3}, which further implies

@' (O, — W) - dist (0, 093 (Tk, 2k, Yk> Th—1, Yk—1))
= ¢’ (&) - dist (0, 0Wg (x, 2k, Yks Th—1, Yk—1)) = 1. (5.3.56)

94



Define for two arbitrary nonnegative integers p and ¢

Apg =Wy —Ty) =0V —Vs) = 0 (&) — 0 (&)
For every K > ky = 1 it holds

K
2 Apps1 = Do k41 = 0 (Eky) — 0 (Ex11) < 0 () »
k—=ko

from which we get 2 Ap kg1 < +00.
k=1
By combining Theorem m (i) with the concavity of ¢ we obtain for every k > 1

Ak,kJrl =@ (gk) (5k+1) (5k> [5k — 5k+1] = gol (Sk) [\I/k — \I/kJrl]
C
> ¢ (&) f [ENEA (5.3.57)
The last relation combined with (5.3.56)) imply

|2ks1 — 2l < @ (Ek) - dist (0, 095 (zk, 2k, Yb» Th1, Yk—1)) [Tk 11 — 2]

4

< —

Ch

By the arithmetic mean-geometric mean inequality and Corollary we have that for
every k = ko and every v > 0

Ap 41 - dist (0, 0V g (2, 2k, Yk, Th1, Yk—1)) Yk = ko.

4 )
|l zky1 — 2k < \/CAk,kH -dist (0, 0V g (zk, 2ks Ykr Th—1, Yk—1))

7Ak:k+1‘|‘ dlSt (0,095 (zk, 2k, Yks The1, Y—1))

C
v C’
e - Dgert + — ([l — 2ol + lzno1 — zp2]l + 2r—2 — zr-sl])
1 v
C
+ 2 (147 (e = ye-2) | = 147 (g — v
C
+—i§wA*@k2—yk3m—WA (ko1 — vr—2)|]) - (5.3.58)

We denote for every k >

aj = Ha:k —z—1|| =0
v C

A= g B+ =2 (147 (s = we)ll = 147 (o — )l
013

A* (k-2 = ye-3)ll = [1A¥ (g1 — y—2)) -

C
The inequality ([5.3.58)) is nothing than (2.4.6)) with xo = x1 = x2 := ~11 Observe that for
v

every K > ko we have

v C C
30k < 0 (Ere) + 2 A (Yro-1 — Yro—2) | + —2 | A* (Yrg—2 — Yro—3)ll
ol & v v

and thus, by choosing v > 3C11, we can use Lemma [2.4.4] to conclude that
D lzpsr — 2| < +oo.
k=0

The other two statements in (5.3.54]) follow from Lemma This means that the sequence
{(k, 2, Yx) } 4> 15 Cauchy, thus it converges to an element (Z,Z,y) which is, according to

Lemmas a KKT point of the optimization problem ({5.1.1)). O
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Remark 5.3.4. The function Vg is a KL function if, for instance, the objective function of
(5.1.1)) is semi-algebraic, which is the case when the functions g and h are semi-algebraic.

5.4 Convergence rates under Lojasiewicz assumptions

In this section we derive convergence rates for the sequence {(xx, 2k, Yx)} ;> generated by Al-
gorithm or Algorithm as well as for the regularized augmented Lagrangian function
Uz along this sequence, provided that the latter satisfies the Lojasiewicz property.

If Assumption is fulfilled and {(zx, 2k, Yx)} >0 is the sequence generated by Algorithm
or Algorithm assumed to be bounded, then, as seen in Lemma the set of
cluster points Q) = w ({(mk, Zks Yky Th—1, yk_l)}k>0) is nonempty, compact and connected and Wg

AA A A A

Then there exist Cr, > 0, § € [0,1) and € > 0 such that

’\Ilg (J:, Z,, x',y') — \If*‘e < O, - dist (0, 0¥z (x, z,y,m',y/))
v (IL‘, 2,1y, y') eB((%,2,9,2,9),¢). (5.4.1)
In this case, ¥g is said to satisfy the Lojasiewicz property with Lojasiewicz constant Cr, > 0
and Lojasiewicz exponent 6 € [0, 1).

We will address convergence rates for Algorithm and Algorithm in the context of
an assumption which is slightly more restricitve than Assumption [5.3.1}

Assumption 5.4.1. We work in the hypotheses of Assumption except for (5.3.4)) which
1s replaced by

!
MY + BA*A > <L + %\4> Id Vk =0, (5.4.2)

where

1042 + 8 (L + p1)?) Ty, for Algorithm |5.3.1}
82 4+ 10 (L + p11)*) Ty, for Algorithm [5.3.2|

Clhy =

The condition is nothing else than after replacing Cxq by the bigger constant
C'y.-

The examples in Example [5.3.1] can be all adapted to the new setting and one can provide
different settings which guarantee Assumption [5.4.1] The scenarios which ensure Assumption
evidently satisfy Assumption too, therefore the results investigated in Section [5.3
remain valid in this setting. As follows we will provide improvements of the statements used in
the convergence analysis which follow thanks to Assumption [5.4.1

Lemma 5.4.1. Let Assumption|5.3.1| be satisfied and {(xr, 2, Yr)} =0 be a sequence generated
by Algorithm or Algorithm (5.3.2. Then for every k > 1 it holds

1 1
L5 (Thr1s 2k 1s Yer1) + 270 | A (yer — yi) > + 3 k1 = l‘kHiAg + 5 ke = ZkHi/;g

o §
o8 Yk+1 — Yk
< ‘CB (l’k, zk,yk) + 2T} HA* (yk — yk,1)||2 + 1 ka — :Iik,1H2 . (5.4.3)
Proof. Let k > 1 be fixed. By the same arguments as in Lemma we have that (see ([5.3.6))

1 L 1
Lg (Tht1) 2kt 1, Yhr1) + 9 |1 — $k||§M’f+gA*A D) |Zrs1 — fl‘kH2 + ) 2k41 — Zk||i4g

1
< L (Th, 28, Yk) + o 1 — vel®- (5.4.4)
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From (5.3.15), (5.3.17), (5.3.25) and (5.3.27) it follows that

1 Co— L Cy
o5 w1 = uel® < g — i) + - ek = w1 +
2 2
Ty | A* (e — g0 = Ta [|A™ (Y1 — we) ™ - (5.4.5)
By multiplying (5.4.5) by 2 and by adding the resulting inequality to ([5.4.4)) we obtain (5.4.3)).
O

We replace T with 277 in the definition of the regularized augmented Lagrangian Wz, thus,

the sequence {Wy}, -, in (5.3.36)) becomes
U = Lg (25, Yk) + 271 [|A* (g — go—1)|” + Ch [l — 21 ||* VE > 1.

In this new context the inequality (5.4.3|) reads for every k > 1

1 1 1
Wit + 7 ke — l” + 3 21 = Zk||i4§ T o5 yrr1 — yell* < Uy, (5.4.6)

and provides an inequality which is tighter than relation (5.3.39) in Theorem m Further-
more, for a subgradient D*™! of Wg at (wg41, 2k+1, Yk+1, Tk, 2k) defined as in (5.3.48) (again by
replacing 77 by 277) we obtain for every k > 2 the following estimate, which is simpler than

(5.3.51)) in Corollary
DM < Cralzkrr — all + Cas llyke1 — yxll + Cre llye — vl

where o o
014:2 Cg-i—CgHAH, 015 = 0104-79, 016 = 79
o of
This improvement provides, instead of inequality (5.3.57)) in the proof of Theorem [5.3.11
the following very useful estimate
’ . Cl 1 2 2
Bigor =@ (Ex) — @ (Ern) > ¢ @ min 75— (e =l + e — el
> Cirg’ (&) (lzesr — mll + lywrt — well)?,

017 = 1I111I1{CV:L 1} .

where
2 4 op
The last relation together with (5.3.56)) imply that for every k = kg

AV
Cir

(ks =zl + lyeer — vel)® < - dist (0, 0¥ g (T, 2k, Yk» Th—1, Yk—1))

and from here, for arbitrary v > 0,
k1 — il + |ye+1 — vkl

- VAL k+1 N max {C14, C15}

X

ok = =1l + lve — Yr—1ll + llur—1 — yr—2l|)

4Ch7
VAL k+1  max {Ci4,Cis
< ket KO C) (1 e = gt + ks = ol + s = gl

(5.4.7)

By denoting
ar = (||zg — xp—1ll + llvk — yk—1]]) =0 and dj:=
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inequality (5.4.7) can be rewritten for every k > kg as

g1 < X0 - Ak + X1 Qp—1 + di, (5.4.8)
where
C,C C, C
o = max { 1/14, 15} and  yp = max { 1/14, 15}.

Choosing v > 2max {C14, C15}, Lemma and Lemma imply that {(xk, 2k, Yk)} > has
finite length (see (/5.3.54)).

Next we prove a recurrence inequality for the sequence {E},~ -

Lemma 5.4.2. Let Assumption be satisfied and {(xy, 2k, yk)}k>0 be a sequence generated
by Algorithm or Algorithm which is assumed to be bounded. If Vg satisfies the
Lojasiewicz property with Lojasiewicz constant Cr, > 0 and Lojasiewicz exponent 6 € [0,1),
then there exists kg = 1 such that the following estimate holds for every k = kg

47 of
Epo1— Epir = CroEPY |, where Chg:= i
k—1 = Ckt1 19C+1 19 3C2 max {Chs, Cil?

(5.4.9)

Proof. For every k > 2 we obtain from (|5.4.6))

Ek1—Eky1 = Vg1 — Vg + W — Uy

O 1 2 2 2
> min § S (oo =l + o = el + o = )
1 . cip 1
> cmin{ ==, — ¢ (|zee1 — 2l + lverr — vell + llye — vr—al])?
3 4 op

> CroCE|lID* 1.

Let € > 0 be such that (5.4.1)) is fulfilled and choose kg > 1 such that (xgy1, 2k+1, Yx+1) belongs
to B ((,2,9),¢) for every k = ko. Then (5.4.1) implies ((5.4.9)) for every k > ko. O

The following convergence rates follow by combining Lemma with Lemma [5.4.2

Theorem 5.4.3. Let Assumption|5.4.1| be satisfied and {(xy, 2k, yk)}k>0 be a sequence generated
by Algorithm or Algorithm |5.5.9, which is assumed to be bounded. If Wg satisfies the
Lojasiewicz property with Lojasiewicz constant Cr, > 0 and Lojasiewicz exponent 6 € [0,1),
then the following statements are true:

(i) if 0 = 0, then {Vy}, -, converges in finite time;
(ii) if 6 € (0,1/2], then there exist kg =1, Co > 0 and Q € [0,1) such that for every k > kg
0 < Wy — W, < @

(iii) if 6 € (1/2,1), then there exist ko = 3 and Cy > 0 such that for every k > ko

1
0< U -0, <O (k—1) 20-1.

The next lemma will play an importat role when transferring the convergence rates for
{Wk}iso to the sequence of iterates {(zx, 2k, Yr)}1=o (see [83] for a similar statement).
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Lemma 5.4.4. Let Assumption |5.4.1| be satisfied and {(xk, 2k, Yr)}p=o be a sequence generated
by Algorithm or Algorithml-b'._@ which is assumed to be bounded. Suppose further that
Vg satisfies the Lojasiewicz property with Lojasiewicz constant Cr, > 0, Lojasiewicz exponent
0 € [0,1) and desingularization function

1
1-46
Let (2,2,y) be the KKT point of the optimization problem (5.1.1)) to which {(xk, 2k, Yk)} =0

converges as k — +00. Then there exists kg = 2 such that the following estimates hold for every
k= ky

2 [07 +OO) - [07 —I—OO), 2 (S) = CLSI_Q

~ 7 1
~- 7 < = —— A
lxx — Z|| < Co max{ Eky o (&) } where Oy N + Crr (5.4.10a)
7 1
-7l < , h = —— — 4.
lye — 9|l < Cx max{ Eky ¢ (Ek) } where  Cap N + T (5.4.10b)
~ 2C
2 — 2]| < Cao max{ R (gk_l)}, where  Caa := Cao || Al| + ;1. (5.4.10¢)

Proof. We assume that & > 0 for every £ > 0. Otherwise, beginning with a given index,
the sequence {(zx, 2k, Yr)},>o becomes identical to (Z,Z,y) and the conclusion follows as in the
proof of Theorem Let ¢ > 0 be such that is fulfilled and ky > 2 such that
(Tk+1, 2k+1, Yk+1) belongs to B ((Z,2,7),¢) for every k = ko. We fix k > kg. One can easily
notice that

ek — &1 < lensr — il + zxes — 3l < - < Y g — il (5.4.11a)
1=k

and, similarly,

1z — 2 < D lzie1 — 2l and Jlye — §1 < D llyeer — wll- (5.4.11Db)
>k >k

Recall that the inequality (5.4.7) can be rewritten as 5.4.8. For v := 3max{Cy4,C15} >
2max {C14, C15}, thanks to Lemma n and the estimate , we have that

Z 2141 — @il = al1+1 = Z al1
1=k 1=k I=k+1

< |l@prr — 2kl + 2 |2hae — Trgrll + 3 |Zras — Traall + 2 | Yes1 — vrll
42 s — vl + 8 s — el + 2
17
S \/%m4' \/E—U\/M+ \/% Urio— Wri3+ ‘Péf:)
< \/(2}717 E + \/(21717 Epr1 + \/% Erva + @éie)

and, similarly,

1 ¢ (Ex)
& & .
l>2k Hyl-i-l yl” \/7 m k+1 + 2\/7 k+2 + 2017

By taking into account the relations above, (5.4.11a})-(5.4.11b)) as well as

VEk+2 <A/ Ekt1 < \/5 and 0 (Ek+1) <@ (&) VE =1,

the estimates ((5.4.10al) and ([5.4.10b|) follow. Statement ([5.4.10c)) follows from Lemma and
by considering (5.4.11b)). O
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We provide now convergence rates for the sequence {(zx, 2k, Yx) } 0-

Theorem 5.4.5. Let Assumption be satisfied and {(wk, zx, Yr)}p=o be a sequence gener-
ated by Algorithm or Algorithm which is assumed to be bounded. Suppose further
that g satisfies the Lojasiewicz property with Lojasiewicz constant Cr, > 0 and Lojasiewicz

exponent 0 € [0,1). Let (Z,2,y) be the KKT point of the optimization problem (5.1.1)) to which
{(k, 2k, Yk) }p=o converges as k — +c0. Then the following statements are true:

(i) if @ = 0, then the algorithms converge in finite time;

(ii) if 0 € (0,1/2], then there exist ko = 1, 6’0,1,6'072,6’073 >0 and Q € [0,1) such that for
every k = ko

Iz — 2 < CoaQ  lyk — 3l < Co2QF, |z — 2I| < Co3Q";
i) if 0 € ,1), then there exist ko = 3 an ,\1 1, ,\1 2, Al 3 > 0 such that for every k = kg
i) if € (1/2,1), then there exist ko > 3 and C11,Cha, Crs > 0 such that k> k
SN 10 A 10
|z — 2l < Crp (b —1)"20-1 lye —yll < Cr2(k—1) 2071,

Al A 16
sz - Z” < 01’3 (k‘ — 2) 26—1 |

1
Proof. By denoting ¢ : [0,400) — [0, +0), ¢ (s) := . HCLSI_G, the desingularization func-
tion, there exist k| > 2 such that for every k > kj, the inequalities ((5.4.10al)-(5.4.10c]) in Lemma
2
1 -1
5.4.4 and & < (1 GCL) hold.
(i) If @ = 0, then {¥j},>1 converges in finite time. According to (5.4.6)), the sequences {(zx)};=
and {(yx)},>o converge also in finite time. Further, by Lemma 5.3.3|7 it follows that {(zx)};>
converges in finite time, too. In other words, starting from a given index, the sequence
{(@k, 2k, Yx) } ¢ becomes identical to (Z,Z,y) and the conclusion follows.

1
(ii) If 0 € (0,1/2], then mCLS;—9 < V&, for every k > k), which implies that

max {/E, ¢ (&) } = V/Er.

k
By Theorem |5.4.3| there exist kj > 1, Co>0and Qe [0,1) such that for Q := Q2 and every

k = ki it holds
Ver <1/ CoQ? =/ CoQ.
The conclusion follows from Lemma for ko := max{k(, k(j}, by noticing that

— A — o A/Co ~
Ve < CoQk21=«/%)Qk and  /Era < G007 = Y00k > k.

Q
1
9 1
iii) If @ € (1/2,1), then £2 < CLE?, for every k = kI, which implies that
k 1—6 k 0
1 1-6
max { /€, 0 (E) | = 9(E) = 7—5CLE .
By Theorem m there exist kf >3 and C) > 0 such that for all k > k]
1 1-6 1 A1 -
1 —HCLE’“ S{o GCLcl (k—2) 20-1.
The conclusion follows again for ko := max{k{, k{} from Lemma [5.4.4] O
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Remark 5.4.1. For ¢ = 1 the same convergence rates can be obtained under the original
Assumption Indeed, when ¢ = 1 we have that 77 = 0 and, as a consequence, the

sequence {W}, -, defined in becomes
Uy, = Lg (xk, 25, y) + C1 ||zr — l‘k_1||2 Vk > 1.
In addition, the inequality simplifies to
lyk+1 = Yl < Cs |lwps1 — zpll + Cul|wg — g1 || VR = 1,

as Th is equal to 0. Combining this inequality with (5.3.28) and, by taking into account Lemma
we obtain (instead of (5.3.51))

DM < Cut (lewrs — @l + ok — il + [l2r—1 — 22l VE = 2.
Consequently, for every k£ > 3 we have that

Eho—Epp1 =Yoo =W 1 + W —Vp + U — Uy gy

&
> =L (koo = wh-all® + lon =z + llznes — all)
Gy 2
> 75 (zw—1 = zp—all + 2k — zpall + llzhs1 — zxl])
1 k 2
> DFHL||12,
> ez 1D

Let £ > 0 be such that (5.4.1]) is fulfilled and ko = 3 such that (xg41, 2x+1, Yk+1) belongs to
the open ball B ((Z, z,7) ,¢) for every k = ko. Then (5.4.1) implies that for every k > ko

Cq
Eio — Ekr1 = Cosir, h Coz 1= ——
k—2 k+1 23Ck+1 where 23 120%0121

which is the key inequality for deriving convergence rates, as we have seen above.

5.5 Further perspectives

An interesting future research direction would be to find a setting in which convergence can
be provided by avoiding the surjectivity assumption on A. One can also consider an inertial
variant of , in order to find a setting where improvements of the convergence rates can
be achieved from both theoretical and numerical perspectives.

Another challenging question is to extend the approach in this chapter to problems of the
form

min {f (z) + g (Az) + h(2)},

where f: H — R u {+o0} is a proper and lower semicontinuous function. A major challenge
will be to guarantee the boundedness of the sequence of iterates in the presence of another
nonsmooth summand.

Another possibility is to go beyond the setting of compositions with linear operators. Bolte,
Sabach and Teboulle have proposed in [37] a generic iterative scheme for solving a general
optimization problem of the form but by replacing the linear operator A with a general
nonlinear continuously differentiable operator. A global convergence analysis relying on the use
of the Kurdyka-Lojasiewicz property is carried out under so-called uniform regularity condition
imposed on the nonlinear operator. This condition reduces to surjectivity when the operator
is linear. Another approach has been studied by Drusvyatskiy and Paquette in [77], but the
proposed scheme is not stated in the full splitting spirit.
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Chapter 6

A proximal minimization algorithm
for nonconvex and nonsmooth
problems with block structured
coupled by a smooth function

This chapter follows our work [52].

We propose a proximal algorithm for minimizing objective functions consisting of three
summands: the composition of a nonsmooth function with a linear operator, another nonsmooth
function, each of the nonsmooth summands depending on an independent block variable, and
a smooth function which couples the two block variables. This can be seen as an extension of
the model in [36]. The algorithm is a full splitting method, which means that the nonsmooth
functions are processed via their proximal operators, the smooth function via gradient steps,
and the linear operator via matrix times vector multiplication. We provide sufficient conditions
for the boundedness of the generated sequence and prove that any cluster point of the latter is a
KKT point of the minimization problem. In the setting of the Kurdyka-Lojasiewicz property we
show global convergence, and derive convergence rates for the iterates in terms of the Lojasiewicz
exponent.

6.1 Problem formulation and motivation

Let H,G and K be real finite-dimensional Hilbert spaces. In this chapter we propose a full
splitting algorithm for solving nonconvex and nonsmooth problems of the form

min  {f (Az) +g(y) + h(z,y)}, (6.1.1)
(z,y)eH XK
where f: G - Ru{+w} and g: K — Ru {+00} are proper and lower semicontinuous functions,
h: H x K — R is a Fréchet differentiable function with Lipschitz continuous gradient, and
A:H — G is a linear operator. Neither for the nonsmooth nor for the smooth functions
convexity is assumed.

In case H = G and A is the identity operator, Bolte, Sabach and Teboulle formulated in [36],
also in the nonconvex setting, a proximal alternating linearization method (PALM) for solving
. PALM is a proximally regularized variant of the Gauss-Seidel alternating minimization
scheme and basically consists of two proximal-gradient steps. It had a significant impact in the
optimization community, as it can be used to solve a large variety of nonconvex and nonsmooth
problems arising in applications such as: matrix factorization, image deblurring and denoising,
the feasibility problem, compressed sensing, etc. An inertial version of PALM has been proposed
by Pock and Sabach in [115].
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A naive approach of PALM for solving would require the calculation of the proximal
operator of the function f o A, for which, in general, even in the convex case, a closed formula
is not available. In the last decade, an impressive progress can be noticed in the field of primal-
dual /proximal ADMM algorithms, designed to solve convex optimization problems involving
compositions with linear operators in the spirit of the full splitting paradigm. One of the pillars
of this development is the conjugate duality theory which is available for convex optimization
problems.

The algorithm which we propose in this chapter for solving the nonconvex and nonsmooth
problem is a full splitting scheme, too; the nonsmooth functions are processed via their
proximal operators, the smooth function via gradient steps, and the linear operator via matrix
times vector multiplication. In case g (y) = 0 and h (z,y) = h (x) for any (z,y) € H x K, where
h: H — R is a Fréchet differentiable function with Lipschitz continuous gradient, it furnishes a
full splitting iterative scheme for solving the nonsmooth and nonconvex optimization problem

I;él%[l {f(Az) + h(z)}. (6.1.2)

Splitting algorithms for solving problems of the form have been considered in [96], under
the assumption that h is twice continuously differentiable with bounded Hessian, in [128], under
the assumption that one of the summands is convex and continuous on its effective domain, and
in [56], as a particular case of a general nonconvex proximal ADMM algorithm. We would like
to mention in this context also [37] for the case when A is nonlinear.

The convergence analysis we will carry out in this chapter relies on a descent inequality, which
we prove for a regularization of the augmented Lagrangian Lg: H x K x G x G — R u {400}

L (e,,2,u) = £ (2) + 9 ) + h9) + Az — 2>+ 5 [ Az — 22, 5>

associated with problem . This is obtained by an appropriate tuning of the parameters
involved in the description of the algorithm. In addition, we provide sufficient conditions in
terms of the input functions f, g and h for the boundedness of the generated sequence of iterates.
We also show that any cluster point of this sequence is a KKT point of the optimization problem
(6.1.1)). By assuming that the above-mentioned regularization of the augmented Lagrangian
satisfies the Kurdyka-Lojasiewicz property, we prove global convergence. If this function satisfies
the Lojasiewicz property, then we can even derive convergence rates for the sequence of iterates
formulated in terms of the Lojasiewicz exponent. For similar approaches relying on the use of the
Kurdyka-Lojasiewicz property in the proof of the global convergence of nonconvex optimization
algorithms we refer to the papers of Attouch and Bolte [5], Attouch, Bolte and Svaiter [§], and
Bolte, Sabach and Teboulle [36].

6.2 The algorithm

The numerical algorithm we propose for solving (6.1.1)) has the following formulation.

Algorithm 6.2.1. Let u,5,7 > 0 and 0 < o < 1. For a given starting point (xg, Yo, 20, Uo) €
H x K x G x G generate the sequence {(Tr, Yk, 2k, Uk) } =0 for any k = 0 as follows

. H 2
Y1 € argmin {g (¥) + <Vl (@, ye) s ) + 5 1y — gl } (6.2.1a)
Zk41 € argmigp {f (2) + (ug, Az, — 2) + g ||Azy — z|]2} (6.2.1b)
zE
L+l = Tk — 7'71 (Vxh (mk, yk+1) + A*Uk + BA* (Axk - Zk:+1)) (6.2.1C)
U1 := Uk + S (ATpt1 — 2k41) - (6.2.1d)
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In view of the proximal point, the iterative scheme (6.2.1a]) - (6.2.1d) reads for every k > 0

Yk+1 € Prox,—1y (Yx — 1~ Vyh (zk, yi))
Zk+1 € ProXg-1y (A:ck + B_luk)
That =k — 7 (Voh Tk, Ypr1) + A + BA* (Azg — 2341))

Ugy1 = ug + 0B (ATps1 — 2k41) -

One can notice the full splitting character of Algorithm and also that the first two steps
can be performed in parallel.

Remark 6.2.1. (i) In case g (y) = 0 and h (z,y) = h(z) for any (x,y) € H x K, where H :

(iii)

‘H — R is a Fréchet differentiable function with Lipschitz continuous gradient, Algorithm
6.2.1] gives rise to an iterative scheme which has been proposed in [56] for solving the
optimization problem (6.1.2)). This reads for any k£ > 0

Zk+1 € ProxXg-1y (Axk + Biluk)

Tpp1 = ap — 7 (Veh (2g) + A*uy + BA (Azg — 241))

Ug 41 = U + 0B (ATpy1 — 2k41) -

In case H = G and A = Id is the identity operator on H, Algorithm gives rise to an
iterative scheme for solving

Lmin {F(@) 49 () + (). (6.2.2)

which reads for any k& = 0

Yk+1 € Prox, -1, (Y — 1V yh (e, yr)

Zk+1 € ProXg-1y (xk + ﬂ_luk)

Tppr =2k — 7 (Vah (T, ye1) + wr + B (2 — 2641))

Ut = Ug + OB (Thy1 — Zhg1) -
This algorithm provides an alternative to PALM ([36]) for solving optimization problems
of the form . We will give more detail in the next r emark.

Incase H =G, A=1d, f(z) =0 and h(z,y) = h(y) for any (z,y) € H x K, where H :
K — R is a Fréchet differentiable function with Lipschitz continuous gradient, Algorithm
6.2.1] gives rise to an iterative scheme for solving

min {g (y) + h (y)}, (6.2.3)
yelkl

which reads for any k£ > 0

Yr+1 € Prox, 1, (ye — 1~ Vh (yr))

and is nothing else than the proximal-gradient method. An inertial version of the proximal-
gradient method for solving (/6.2.3]) in the fully nonconvex setting has been considered in
[51].

Remark 6.2.2. Recall that the Proximal Alternating Linearized Minimization algorithm (or
PALM) considered by Bolte, Sabach and Teboulle in [36], is designed to tackle the optimization
problem (6.2.2)) and it reads for every k > 0

Yk+1 € pI'OXN—l Yk — ,U/_lvyh (xkv yk))

o
-1
Zk+1 € PrOX, -1 (afk + 7 uEVih (:z:k,ykﬂ)) )
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Since the introduction of this algorithm, it hreceived a massive amount of attention due to
its effectiveness and simplicity, while it still covers many fields of applications. It is, however,
probably not a suitable scheme for since it requires the calculation of the proximal
operator of the function f o A, for which, in general, even in the convex case, a closed formula
is not available.

Assumption 6.2.1. In [36], the authors considered the convergence analysis under the following
assumption:

(i) the functions f,g and f + g + h are bounded from below;

(ii) for any fixed y € KC there exists Li(y) = 0 such that
|Vah (z,y) = Vah (2/,y) || < L1 (y) ||z — 2| Va,2' e H, (6.2.4a)
and for any fized x € H there exist Lo(x) = 0 such that

Hvyh (z,y) — Vyh (z,y) H < Lo (2) Hy — y'H Yy, € K; (6.2.4b)
(111) there exist L + > 0,1 = 1,2, such that

sup L1 (yx) < L1+, sup Lo () < Lo 4; (6.2.5)
k=0 k=0

(iv) VH is Lipschitz continuous with constant L > 0 on a convex bounded subset By x By <
H x K containing {(xr, yr)}i=o- In other words, for any (x,y),(2',y’) € By x By it holds

H|(th (x7y) - Vﬁ?h (xlvy/) ,Vyh (x,y) - Vyh (90/,3/))\” < L|”($7y) - (:v’,y’) ’H (6'2'6)

Together further with the KL property, it was shown that the sequence {(zg,yx)},>, con-
verges to a critical point of (6.2.2). In the following, one can see that we will derive our
convergence analysis under assumptionsof a similar flavors.

6.2.1 A descent inequality

We will start with the convergence analysis of Algorithm by proving a descent inequality,
which will play a fundamental role in our investigations. We will analyse Algorithm under
the following assumptions, which we will be later even weakened.

Assumption 6.2.2. (i) the functions f,g and h are bounded from below;
(ii) the linear operator A is surjective;
(iii) for any fized y € IC there exists L1(y) = 0 such that
Vah (2, y) — Vah (2/,y) || < L1 (y) ||z — 2| Va,2' e H, (6.2.7a)
and for any fized v € H there exist La(z), L3(x) = 0 such that

Hvyh (x,y) — Vyh (x,y’)
|Vah (z,y) — Vah (2,9)

Lo () [ly — /|| Vy,y' € K, (6.2.7b)
Ly () ly =o' Vy.y ek (6.2.7c)
(iv) there exist L; y > 0,1 =1,2,3, such that

sup Ly (yi) < L1+, sup Lo () < Lo 4, sup L3 (x) < L3 4. (6.2.8)
k=0 k=0 k=0
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Remark 6.2.3. Some comments on Assumption [6.2.2] are in order.

(i) Assumption |(i)| ensures that the sequence generated by Algorithm is well-defined. It
has also as consequence that

U= (a:,y,z)ixn’y’-[fxleg{f (2)+9g(y) +h(z,y)} > —o0. (6.2.9)

(ii) Comparing the assumptions in (iii) and (iv) to the ones in [36], one can notice the presence
of the additional condition , which is essential in particular when proving the
boundedness of the sequence of generated iterates. Notice that in iterative schemes of
gradient type, proximal-gradient type or forward-backward-forward type (see [36, 43}, [51])
the boundedness of the iterates follow by combining a descent inequality expressed in
terms of the objective function with coercivity assumptions on the later. In our setting
this undertaken is less simple, since the descent inequality which we obtain below is in
terms of the augmented Lagrangian associated with problem .

(iii) The linear operator A is surjective if and only if its associated matrix has full row rank,
which is the same with the fact that the matrix associated to AA* is positively definite.
Since

Amin (AA¥) ||2]]> < (AA*2,2) = || A*2|* V2 € G,

this is further equivalent to Apin (AA*) > 0, where Apin (M) denotes the minimal eigen-
value of a square matrix M. In addition, we denote by k(M) the condition number,
namely the ratio between the maximal eigenvalue A\pax (M) and the minimal eigenvalue
Amin (M) of the square matrix M where the matrix norm is defined as

Amax (M) __||M]J*

H(M) o )\min (M) B )\min (M) > 1’

where the matrix norm is defined as

M
1] o= sup 1221
WP

The convergence analysis will make use of the following regularized augmented Lagrangian
function

U:HxKxGxGxHxG—>RU{+w},
defined as
(e, 22 ) o 2) g () + (o) + G, Aw— 25+ Az — 2P

+ Cy HA* (u — u/) + 0B (x — 33') H2 +C4 Ha: — x/HQ ,

where
4(1—-o0) 8(o7+ L1 4)?
B:I—A*A ::—2 22—7 .
7Id ,3 s C(] 0'26)\111111 (AA*) 0 and Cl O’ﬂkmin (AA*) >0
Notice that
1Bl <,

whenever 27 = 3 ||A||%>. Indeed, this is a consequence of the relation
[Bal* = 72 2> — 278 | Aa|> + 52 | A" Az < =2 o) + B (8] A - 2r) | Ax|® Var & .
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For simplification, we introduce the following notations

R=HXKxGxGxHxG

X := (m,y,z,u,x',u')

Xy := (T, Yky 2k, Uk, Tp—1, U—1) VEk =1
Uy =V (Xy) Ve = 1.

By the nature of the scheme, we can derive the following statement.

Lemma 6.2.1. Let Assumption be satisfied, 27 = B | A|*> and {(h, Yr» 285 Uk) =0 be @
sequence generated by Algorithm[6.2.1. Then for any k > 1 it holds

5
[ (zeg1) + 9 Wrs1) + b (@pg1, Yeg1) + Ukg1, ATp1 — 2u41) + 5 | ATk — 241

L+ pBA 2 n— LQ7 1
+ <T - B PIAL Y oy~ + 222 s — w4 e —

2 of

2
< f(ze) + 9 (W) + h(@p, yr) + Cug, Axy — 23> + g | Az, — z1]|* + e i — ug)?®. (6.2.10)

Proof. Let k = 1 be fixed. On the one hand, from (6.2.1a)) and (6.2.1b)) we obtain

9 (Yr+1) + <Vyh (Tr, Uk) s Ykr1 — Yk + g lyksr — vell® < g (v)
and
B 2 B 2
[ (zhs1) + Cup, Az — 2141) + 5 Az — zig1||” < f (2) + Cun, Az, — 2) + 5 | Azy — 2|

respectively. Adding both sides of these relation leads to

B
Grr) + g (Yern) + Cuny Azg = z1) + 3 || Az, — i1+ (Vg (s yk) s k1 — Yk
p
+ g lyrsr = wl® < f (z1) + g (yr) + Cun, Azg — 21) + 5 1Az, — il (6.2.11)
On the other hand, according to the Descent Lemma (2.2.4) we have

Ly (xy)
2

b2k, Yra1) < b2, yk) +{Vyh (06, Y) s Yre1 — Yk) + Ykt — el

Ly + 2
< B(@p yi) + Vb (@) s g = Y + =5 91 — gl
and, further, by taking into consideration (6.2.1c)),

Ly (yk+1)
2

(Th, Y1) — (un, Axgpyy — Ay — B{Axg — 241, ATy — Axy)

L
- (r- 2= fo - l?

h(zps1, Yes1) < h(@g, Yrt1) + {Vah (Tk, Yk+1) s Thy1 — Ty + [Ea—
=h

B B
< h(xg, Yrg1) — ug, Az — Axg) + 5 | Azg — 241 ||” — 5 | Az i1 — zps1 |

Lis +BAI? 2
(7= 2 o —
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Combining these above estimates we get

B B
ho(Zpg1, Yra1) + Cup, Ay — Ay — 5 |Azy, — 241 + 5 |Azpi1 — 21

Lo+ 2 Ly +8 HAH2 2
e e I

< h(@k, Yea1) + Vyh (T, Uk)  Yea1 — Yk - (6.2.12)

2
Summing (6.2.11)) and (6.2.12)), then using the iterate (6.2.1d)). After adding e [Er—
o
on both side of the obtained result, we get the inequality (6.2.10]). O

Next we will focus on estimating ||ug41 — g/

Lemma 6.2.2. Let Assumption be satisfied, 2 = B || A|* and {(%k, Yk 28> Uk ) b= be @
sequence generated by Algorithm6.2.1. Then for any k = 1 it holds
0 Amin (AA¥)
2
=7 g — apl|* = 20 L5 4 llyeer — will®

<(1—0) [|A* (up — up_1) + 0B (2 — 23_1)||* + 20 (o7 + L1, )* |Jag — xpa||*. (6.2.13)

uksr = uell® + (1= 0) | A* (k1 — ug) + 0B (241 — )|

Proof. Let k > 1 be fixed. Let us now rewrite ([6.2.1c))
T (X1 — xk) = Vih (T, Yrr1) + A%up + A (Azpiq — 2k41) + BAYA (2 — Tgt1)

1
= Vaoh (Tg, ypr1) + A% ug + ;A* (ups1 —ug) + BA*A (xp — 241),  (6.2.14)

where the last equation is due to (6.2.1d)). Multiplying bothside by o, after rearranging the
terms we get
Aupiy + 0B (w11 — ) = (1 — 0) A%up — oVah (2g, Yk+1)

and, similarly
A*up, + oB (2 —xp—1) = (1 —0) A*ug—1 — oVoh (xg—1, yk) -
Subtracting these relations and making use of the notations

Wg = A* (’U,k — ’U,kfl) + 0B (.Iik — :ck,l)
v = 0B (2 — xp—1) + Voh (2p—1,9%) — Voh (zk, Ye+1) 5

it yields
w1 = (1 — o) wg + ov.

The convexity of ||-|* guarantees that (notice that 0 < o < 1)
lwl* < (1 — o) [lwgl|* + o [|ox]|*. (6.2.15)

In addition, from the definitions of w; and v, we obtain

[A* (urq1 — up) | < Nlwpgall + o | Bl [|2p 11 — 2xl| < [Jwpgrll + o7 |[2rg1 — 2| (6.2.16)
and
lvell < o || Bl ||lzr — zp—1] + |Vah (@k—1,yr) — Vah (2, yr+1)||
< o7 ||k — xp—1|| + [|Veh (@r—1,yk) — Vah (@, yr) || + IVah (2r, yr) — Veh (2r, Y1) ||
< (o7 + Liy) l|lze — zp—1ll + Ls v [lyes1 — vkl (6.2.17)
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respectively. Using the Cauchy-Schwarz inequality, (6.2.16|) yields

Amin (AA*)
2

and (6.2.17)) yields

lorll* < 2 (o7 + L) llon — @p-all® + 23 1 llyess —yell”-

1
ks = uel® < 5 114" (= we)[* < Jeopaa|* + 027 |z — 2

Multiplying both relations by ¢. After combining the obtained results with (6.2.15)), we get
(6.2.13]). O

The next result provides the announced descent inequality.

Lemma 6.2.3. Let Assumption be satisfied, 2 = B || A|* and {(%k> Yk 28> Uk ) b0 be @
sequence generated by Algorithm6.2.1. Then for any k = 1 it holds

Vo1 + Co llzrsr — 2il® + Cs lyrsr — vell® + Callursr — up|® < ¥, (6.2.18)
where
2 2 2
CZ o L1,+ + ,6 ||A” _ 40"7' _ 8 (0'7' + LL_A,_) : (6219&)
2 BAmin (AA*) o BAmin (AA¥)
— 8L3
Oy L2 L A (6.2.19b)
2 0 BAmin (AA*)
1
Cy:= o (6.2.19c¢)
4
Proof. Let k > 1 be fixed. We multiply the estimate (6.2.13)) by m > 0 to get
2
e 1 = url® + Co [|A* (ups1 — ur) + 0B (wrs1 — 2)|°
_40772“33 _x“2_&” — H2
Bhmin (AA%) k+1 k 7B min (AA) Yk+1 — Yk
< Cy HA* (uk — uk_l) +oB (.Tk — ﬂfk—l)H2 + ka — CCk_1H2 .
The desired statement follows after and combine the resulting inequality with (6.2.10)). O

The following result provides one possibility to choose the parameters in Algorithm [6.2.1
such that all three constants Cy, Cs and Cy that appear in (6.2.18]) are positive.

Lemma 6.2.4. Let

1
e (A A% 2.2
0= < otk (A" (6.2.20a)
v
2 _ *
B> 1 — 240k (AA%) (4 +30 +1/24 + 240 + 902 — 1920k (AA )) >0 (6.2.20b)

BIIAIP BAmin (AA*) v : BAmin (AA*) v :
max{ 5 e 1—6—\/AT <T<7240_ 1_ﬁ+ AL
(6.2.20c)
16L3

—_ 2.2
o B (AA) > 0, (6.2.20d)

p> Lo +
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where

AL s8v 8% 6
V= m >0 and AL :=1— S L % — 240k (AA¥) > 0. (6.2.20e)

Then we have
min {CQ, 03, 04} > 0.
Furthermore, there exist v1,v2 € R\ {0} such that

1 L. 1 1 Li. 2
— = =5 = and —_—— = . 6.2.21
v 292 BAmin (A4%) Y2 292 Bhum (AAY) ( )

Proof. We will prove first that Cy > 0 , or, equivalently

2407 16111 1613 ,
20 = s 2\ T e A o L A . (6.2.22
2 = B (AA7) ( BAmin(AA*)>T+Uﬁ)\min(AA*)+ L+ FBIAI7 < 0. (6.2.22)

The reduced discriminant of the quadratic function in 7 in the above relation reads

16L; 4 384L% 24L1 (o
A =1 —TT ) d — d — 24 AA*
- ( B <AA*>> B2 (AA") B (A7) 210R (A4

2 2
= (1 - 41/) _ 2 bro 240k (AA™)

—1- = -2 — = 240k (AA%) > 0, (6.2.23)

if o and [ are being chosen as in (6.2.20a)) and ([6.2.20b)), respectively. Indeed, the inequality
(6.2.23)) can be rewritten as

(1 — 240k (AA*)) % —2(4 + 30) v — 8% > 0, (6.2.24)
which has its discriminant reads
Ag = (4+30)% +8(1 — 240k (AA*)) 1% = 24 + 240 + 902 — 1920k (AA*) > 0

as 24 — 1920k (AA*) = 16 + 8 (1 — 240k (AA*)) > 0 for every o satisfies (6.2.20al). Hence,

for every o and 3 satisfy (6.2.20a)) and (|6.2.20bf), the inequality (6.2.24) holds true and thus
(6.2.23)). Therefore, for

240 B 240 I5; T
(16.2.22]) is satisfied. It remains to verify the feasibility of 7 in (6.2.20d]), in other words, to prove
that
2
BIAI _ Bhuin (A4%) (|40 |
2 240 15}
This is easy to see, as, according to ((6.2.23)), we have
BIAIP _ BAmin (A4¥) [ 4w 1y
1—— 1—— — 120k (AA* .
2 T 240 5 )<l ~12ok(447) >0

The positivity of C5 follows from the choice of u in ((6.2.20d)), while, obviously, Cy > 0.
Finally, two quadratic equations in (6.2.21]) (in 1 and, respectively, v2) has their discrimi-

nant reads as

2L1’+ 1% L1?+ 14

—1-— and @ A,i=1- "

A== g ~ L 23 B (44%) ~ 17 ap



respectively. Since

8> v su> Y
U> —
1 — 240k (AA*) 2’

it follows that each of them has a nonzero real solution. O

Remark 6.2.4. Hong and Luo proved in [90] linear convergence for the iterates generated by
a Lagrangian-based algorithm in the convex setting, without any strong convexity assumption.
To this end a certain error bound condition must hold true and the step size of the dual update,
which is also assumed to depend on the error bound constants, must be taken small. The authors
also mention that this choice of the dual step size may be too conservative and cumbersome to
compute unless the objective function is strongly convex. As shown in previous lemma, the step
size of the dual update in our algorithm can be computed without assuming strong convexity
and indeed it depends only on the linear operator A.

Theorem 6.2.5. Let Assumption be satisfied and the parameters in Algorithm be
such that 21 = B||A|?, and the constants defined in Lemmafulfil min {Cs, C5,C4} > 0. If
{(k, Yk» 2k> Uk) } >0 95 @ sequence generated by Algorithm then the following statements
are true:

(i) the sequence {Vy},~, is bounded from below and convergent;
(ii) in addition,
Tpr1—Tp — 0, Ypo1— Yk — 0, 2ky1— 2k — 0 and upi1 —up — 0 as k — +o0. (6.2.25)

Proof. First, we show that W defined in (6.2.9) is a lower bound of {¥},_,. Suppose the
contrary, namely that there exists kg > 2 such that ¥y, — ¥ < 0. According to Lemma
{Wk}r>, is a nonincreasing sequence and thus for any k > ko

N

0
(U, — U Z (U, — W) + (N — ko + 1) (U, — ),
k=1 k=1
which implies that
N
Nlir?oo I;I (\Ijk B E) -

On the other hand, for any & > 1 it holds

U — ¥ = f(zk) + g () + b (o, yr) + {ug, Ay, — 21) — ¥

1
<Uk7 Az — 2y = — <Uk,uk — Up—1)
1
20

\IUk—uk—l\\2 g1

H kH +25

Therefore, for any k > 1, we have

Z \I/k— 72 ’uk_uk 1” + H k” H OH HUOH

which leads to a contradiction. As {W},-, is bounded from below, we obtain from Lemma
2.4.2| statement |(i)| and also that

Tl — 2 — 0, Ya1 —yr — 0 and wug1 —up — 0 as k — +4oo.
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Since for any k£ > 1 it holds

lzk+1 — 2l < Al [[2kg1 — 2kl + | AZkq 1 — 2era ]| + | Azp — 2]
1 1 (6.2.26)
= |A]| |lzk41 — zrll + =5 Nuk+1 — uell + — |lug — ug—1]]

op3 of

it follows that zp4 1 — 2z — 0 as k — +o0. O

Usually, for nonconvex algorithms, the fact that the sequences of differences of consecutive
iterates converge to zero is shown by assuming that the generated sequences are bounded (see
[56l, 96, 128]). In our analysis the only ingredients for obtaining statement (ii) in Theorem [6.2.5]
are the descent property and Lemma [2.4.2

6.2.2 General conditions for the boundedness of {(zx, Yk, 2k, Ur) } =0

In the following we will formulate general conditions in terms of the input data of the optimiza-
tion problem (6.1.1) which guarantee the boundedness of the sequence {(zx, Yk, 2k, Uk)}1>0-
Working in the setting of Theorem thanks to (6.2.25), we have that the sequences
{Tha1 — Thps00 {Ykr1 = Uktps05 12h41 — 2k }pso and {Ugpy1 — Ug}y>o are bounded. Denote

sy := sup {[|wp 1 — 2kl lyerr — vkl [[2e1 — 2ell s [Jlugsr — well} < +oo.

=

Even though this observation does not imply immediately that {(xx, Yk, 2k, ur)} ;= is bounded,
this will follow under standard coercivity assumptions. Recall that a function ¢ : H — Ru{+w0}
is called coercive, if lim,| 400 ¢ (7) = +00.

Theorem 6.2.6. Let Assumption be satisfied and the parameters in Algorithm be
such that 21 > B||A|?, the constants defined in Lemma fulfil min{Cs,Cs5,C4} > 0 and

there exist y1,v2 € R\{0} such that (6.2.21)) holds. Suppose that one of the following conditions
hold:

(i) the function h is coercive;

(ii) the operator A is invertible, and f and g are coercive.
Then every sequence {(Tk, Yk, 2k, Uk) }p=o generated by Algorithm is bounded.
Proof. Let k > 1 be fixed. According to Lemma we have that

Uy >-~~>\I’k>‘ljk+1
2

1 3 1
> f(2r1) + 9 W) + (@it Uks1) — == lluesa)® + 5 HAﬂka — Zpy1 T Ukl

23 2 B
(6.2.27)

By multiplying both sides by —1 the adding A*ug41 + 7 (211 — %) on both sides, we obtain

1
A*Uk+1 = <1 — O_> A* (Uk+1 - Uk) + B (.’Ek — .’L‘k+1)
+ Vah (p41, Y1) — Veh (25, Yet1) — Vaeh (Thg1, Yks1) (6.2.28)

which implies

1
A | < (U - 1) VAN kst — gl + (7 + Lys) lenes — aall + 1ok @oss, vien)|

1
< <<U — 1) HAH + 7+ L17+> Sy + ||vxh (xk-i-l?yk-i-l)” .
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By using the Cauchy-Schwarz inequality we further obtain

Amin (AA*> Huk+1H2 < HA*Uk+1H2

1 2
’ ((0 a 1) Al + 7+ L1,+> 53+ 2[[Vah (@rer, yer) [

N

1
Multiplying the above relation by W—MM and combining it with (6.2.27]), we get

1
U1 = f(2k41) + 9 W) + R (Tps1, Yr1) — m ‘|vmh($k+17yk+1)\|2
1 1 2 3 . )
a m <(o- - 1) ||A|| + 7+ L1,+> Si + 5 “Aﬂfk+1 — Zk+1 + Buk/‘"rl

(6.2.29)

We will prove the boundedness of {(zx, Y&, 2k, Ur) };>( in each of the two scenarios.

(i) According to (6.2.29) and Proposition we have that for any k& > 1

1 2

1 B
§h (Tt 1, Yht1) + 5 HAka — Zk+1 BUkH

1 1 2, .
Q\PI'FW((—l) ‘A“+T+L1,+> 3*_;Iel£f(z)_lnfg(y)

g yeH

1 1 Li, )
~ 5t e = (5 - 55 ) IV Gl

1 1 z
< i ((5 ) ) 2

— inf — inf —  inf A
,lfégf (2) ;g,cg(y) L (z,y)

< + .

Since h is coercive and bounded from below, it follows that {(zg,yx)};>o as well as

1
{Awk — 2z + 5Uk} are bounded. As, according to (6.2.1d|), { Az — Zk}kzo is bounded,
k=0

it follows that {ug},~, and {21}, are also bounded.

(ii) According to (6.2.29)) and Proposition we have this time that for any k£ > 1

1 2

B
[ (zry1) + 9 (Yrer) + 5 ATpqp1 — 241 + BUkH

1 2
< Uy + - — 1) |A|l + 7+ L1’+> 52

i ((z

: I L4 2
- ot {h ) = (2 = 55 ) 195 G
< Uy L VAl e Lon) 2 b h(eg) < oo
x N A aaN - — T S, — mn Z, .
! B)\min (AA*) (o} L+ * (z,y)eH XK Y

Since f and g are coercive and bounded from below, it follows that {(yk,2x)};>o and
1
{Axk — 2+ ﬁuk} are bounded sequences. As, according to ([6.2.1dJ), the sequence
k=0

{Ax), — 21}),5( is bounded, it follows that {uz},-, and {Azr},~, are bounded. The fact
that A is invertible implies that {zy},- is bounded. O
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6.2.3 The cluster points of {(zy, Yk, 2, ur)},~, are KKT points

We will close this section dedicated to the convergence analysis of the sequence generated by
Algorithm in a general framework by proving that any cluster point of {(xx, Yk, 2k, uk) } x>0
is a KKT point of the optimization problem . We provided above general conditions
which guarantee both the descent inequality , with positive constants Cy,C5 and CYy,
and the boundedness of the generated iterates. Lemma [6.2.4] and Theorem [6.2.6] provide one
possible setting that ensures these two fundamental properties of the convergence analysis. We
do not want to restrict ourselves to this particular setting and, therefore, we will work, from
now on, under the following assumptions.

Assumption 6.2.3. (i) the functions f,g and h are bounded from below;
(ii) the linear operator A is surjective;
(iii) every sequence {(Tk, Yk, 2k, Uk)} o generated by the Algorithm is bounded:

(iv) VH is Lipschitz continuous with constant L > 0 on a convex bounded subset By x By <
H x K containing {(zr, yr)}=o- In other words, for any (x,y),(2',y’) € By x By it holds

1(Vah (2,y) = Vah (2, y') , Vyh (2, ) = Vyh (2, 9) )l < Lil(z,y) — (&",9)|l; (6.2.30)

(v) the parameters i, 3,7 > 0 and 0 < o < 1 are such that 21 > S| A||* and

min {CQ, Cg, C4} > 0,

where

2 2 2
Cypim 7 L2 + B Al B doT 8 (o7 + LV2) ’ (6.2.31a)

2 BAmin (AA*) 0 BAmin (AA*)

_ 2
Cy =t Lv2 6L _, (6.2.31b)
2 0B Amin (AA*)
1

Cii= . (6.2.31¢)

Remark 6.2.5. Being facilitated by the boundedness of the generated sequence, Assumption
not only guarantee the fulfilment of Assumption [6.2.2||(ii1)| and [(iv)| on a convex
bounded set, but it also arises in a more natural way (see also [36]). Assumption
holds, for instance, if h is twice continuously differentiable. In addition, as implies for
any (z,y),(2',y’) € By x By that

IV (2. y) = Vo (2 5) | + [V (2. 9) = Vb (o) | < V2 (o = 2'[] + [ly = ¢/]])

we can take
Ly =Ly =La i :=LV2. (6.2.32)

As (6.2.7a)) - (6.2.7c) are valid also on a convex bounded set, the descent inequality

Uit 4 Co ||whir — xil® + Cs [[yprr — yell> + Cu l|uksr — ugl® < Uy VE > 1 (6.2.33)

remains true, where the constants on the left-hand sided are given in (6.2.31) and follow from
(6.2.19)) under the consideration of (6.2.32]). A possible choice of the parameters of the algorithm
such that min {C5, C3,C4} > 0 can be obtained also from Lemma

The next result provide upper estimates for the limiting subgradients of the regularized
function ¥ at (xg, yk, 2k, ug) for every k > 1.
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Lemma 6.2.7. Let Assumption be satisfied and {(xy, Yk, 2k, Uk) } > be a sequence gener-
ated by Algorithm[6.2.1 Then for any k = 1 it holds

Dy = (d’“ &8, 4k, 4k dF ,df}) € 00 (X}, (6.2.34)

) Yyo Yz Y !

where

d* .=V h (g, y) + A%up + BA* (Azy — 2x) + 2C1 (2 — Tg—1)

‘ F— (6.2.35a)
+20CyB* (A" (up — ug—1) + 0B (z — zK—1)),

df == Vyh (2, k) — Vyh (@51, ye-1) + 1 (Yr—1 — Ui » (6.2.35b)
df = w1 — up + BA (zp_1 — 23) (6.2.35¢)
d¥ = Axy, — 2z, + 2C0A (A* (up — up—y) + 0B (z), — 25_1)) (6.2.35d)
db = —20CyBT (A* (up — up_1) + 0B (z), — xp_1)) — 2C1 (2 — Tp_1), (6.2.35¢)
db = —2C0A (A* (up, — up_1) + 0B (z) — Tp_1)) . (6.2.35f)

In addition, for any k = 1 it holds
1Dkl < Cs llze — ze—1ll + Co llye — yr—1ll + C7 lue — ue—1ll, (6.2.36)

where

Cs:=2V2-L+71+B|A| +4 (o1 + ||Al]) 07Co + 4C1, (6.2.37a)
Cs := LV2 + p, (6.2.37b)
Cri=1+ 015 + (i — 1> Al + 4 (o7 + ||A]]) Co |A] - (6.2.37¢)

Proof. Let k = 1 be fixed. Applying the calculus rules of the limiting subdifferential we get
V.U (Xy) = Veh (zk, yk) + A%up + BA* (Axy — 2i) + 2C1 (v — x—1)

T (g% (6.2.38a)

+20CyB* (A" (ugp — ug—1) + 0B (z — 1)),
Oy (Xg) = 09 (yx) + Vyh (k, yk) , (6.2.38Db)
0,V (Xi) = 0f (2x) —ug — B (Azg, — 2x) (6.2.38¢)
VoV (Xy) = Az — 2 + 2C0A (A* (ug, — ug—1) + 0B (2, — 2x-1)) , (6.2.38d)
VoW (X)) = —20CoBT (A* (u, — up_1) + 0B (xp — xp_1)) — 207 (x — z1),  (6.2.38¢)
V¥ (Xg) = —2C0A (A* (u, — ug—1) + 0B (), — x5-1)) - (6.2.38f)

Then (6.2.35a) and (6.2.35d]) - (6.2.351)) follow directly from (/6.2.38al) and (6.2.38d)) - (6.2.38f)),
respectively. By combining ([6.2.38b|) with the optimality criterion for (6.2.1@];

0 € dg (yk) + Vyh (zr—1,Y—1) + 1 (yr — Yr—1) »
we obtain . Similarly, by combining with the optimality criterion for (6.2.1b))
0€df (z1) —up—1 — B (Ark_1 — 2),
we get .

In the following we will derive the upper estimates for the components of the limiting

subgradient. From ([6.2.28)) it follows

‘ d’; < Hvxh (xk,yk) + A*ukH + /B HAH HA:IZk — Zk” + 2 (Cl + 0'27'200) H.Iik — xkle

+ 2070 || g — wpa]

2
< (L\@ T+ 20) + 20—27200) llzn — zp_i | + (U 1+ 207’00) [P r———y
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In addition, we have

‘d’; < IV oy — 2| + <L\/§ + u) [——l

d¥| < BIA| ek — zp—1ll + lue — w1,

1
k]| < 207Ca AN o = wicall + 5+ 2C0 JAIP) o = el

‘ db || <2 (0272C + C1) ||k — zp || + 207Co | A uk — wx ]|,

||| < 207Co Al i = 2111+ 2C0 A2 g — ]

The inequality (6.2.36)) follows by combining the above relations with (5.1.2]). O
We denote by Q := Q ({Xy},>) the set of cluster points of the sequence {X;},-; S R,
which is nonempty thanks to the boundedness of {Xj},-,;. The main result of this section

follows.

Theorem 6.2.8. Let Assumptz'on be satisfied and {(xk, Yk, 2, Uk)} > be a sequence gen-
erated by Algorithm[6.2.1. The following statements are true:

(1) if {(Thps Yhns Zhns Uk ) Y=g 15 @ subsequence of {(Tr, Y, 2k, Ur)}1=o which converges to the
POINt (T, Y, 24, Ux) aS k — 400, then

n1—1>rfoo \IJkn =y (37*7 Yy B, u*,aj*,u*) )

(i) it holds

Q C crit () € {Xy e R: —A%uy = Vih (24, ys)
0€ 09 (ys) + Vyh (Ts,ys), usx € Of (24), 26 = Axy},  (6.2.39)

where X* = (:I:*’ Yy Zoy Usey Ty U*);
(111) it holds lim dist (X, ) =0;
k—400
(iv) the set Q is nonempty, connected and compact;

(v) the function ¥ takes on Q the value

U, = kEr-iI-loo Uy = kETw{f(zk) + 9 (yk) + h (Tr, yr)} -

Proof. Let (Zx, Yu, 24, ux) € H X K x G X G be such that the subsequence

{ Xk = Tk s Ykn> 2> Uk > Thiyy— 1 Ukyy—1) P

of {Xy},~; converges to Xy := (T4, Ys, 24, Us, T, Usc)-

(i) From (6.2.1a)) and (6.2.1b|) we have for any k > 1

1
9 Ykn) + Vyh Tk, 15 Ykn—1) s Yk, — Yhkn—1) + 5 Y — Yr—1]1°

m
< 9 (Ys) + {Vyh (Thp—1, Ykn—1) » Y5 — Yhp—1) + 5 [F——
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and
B 2
f (an) + <ukn_1’ Azkn_l - Zk?n> + 5 HAmkn_l - Zk;n”
p 2
< f (%) + Qupy—1, A2, 1 — 25) + 5 |Azp,_, — 2|,

respectively. From (6.2.1d]) and Theorem follows Az* = z*. Taking the limit superior as
n — 400 on both sides of the above inequalities, we get

limsup f (2x,) < f (24) and limsup g (yk,) < g (y«)
k—+00 k—+00

which, combined with the lower semicontinuity of f and g, lead to

Jm f (2, ) = f (24) and lim g (yk,) = g (y«) -
—+00 k—+00

The desired statement follows thanks to the continuity of h.

(ii) For the sequence {Dy}, -, defined in (6.2.34) - (6.2.35), we have that Dy, € 0V (X, ) for
any k > 1 and Dy, — 0 as n — +oo, while X}, — X, and ¥, — ¥(X,) as n — +oo.
The closedness criterion of the limiting subdifferential guarantees that 0 € 0¥ (X, ) or, in other
words, X, € crit (V).

Choosing now an element X, € crit (¥), it holds

= Vah (Ts,ys) + A%uy + BA* (Azy — 24),
€ ag (y*) + Vyh (l’*,y*) )
€ 0f (24) —ux — B (Axy — 24),

= ACU* — Zx,

which is further equivalent to (6.2.39)).

(iii)-(iv) The proof follows in the lines of the proof of Theorem 5 (ii)-(iii) in [36], also by taking
into consideration [36l Remark 5], according to which the properties in (iii) and (iv) are generic
for sequences satisfying X — X1 — 0 as k — 400, which is indeed the case due to (6.2.25]).

o O O O

(v) The sequences {f (zx) + g (yx) + h (Tk, Y&)}pso and {¥i},~, have the same limit due to
(6.2.25) and the fact that {ug},- is bounded

Ve = lim Wy = lm {f(z)+9 (k) + (2 yn)} -

The conclusion follows by taking into consideration the first two statements of this theorem. [J

Remark 6.2.6. An element (x4, yx, 24, uyx) fulfilling (6.2.39)) is a so-called KKT point of the
optimization problem (6.1.1)). Such a KKT point obviously fulfils

0e A*0f (Axy) + Vih (T4, yx) , 0€ 09 (ys) + Vyh (s, ys) - (6.2.40)
If A is injective, then this system of inclusions is further equivalent to

0€d(fod)(xs)+ Veh(xs,yx) =0z (fo A+ H),
0€ dg (yx) + Vyh (z+,y+) = 0y (G + H), (6.2.41)

in other words, (z,ys) is a critical point of the optimization problem (6.1.1). On the other
hand, if the functions f, g and h are convex, then, even without asking A to be injective, (6.2.40))
and (/6.2.41)) are equivalent, which means that (z.,ys) is a global minimum of the optimization

problem ((6.1.1)).
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6.3 Global convergence and rates

In this section we will prove global convergence for the sequence {(x, Yk, 2k, Uk )} generated
by Algorithm [6.2.1]in the context of the Kurdyka-Lojasiewicz property and provide convergence
rates for it in the context of the Lojasiewicz property.

6.3.1 Global convergence under Kurdyka-Lojasiewicz assumptions

From now on we will use the following notations

1
min {Cy, C3,Cy}’

Cg = Cy := max {C5, Cs, C7} and Ep =V — U, Vk =1,

where ¥, = lim Wy.
k—+400

The next result shows that if ¥ is a KL function, then the sequence {(xg,yx, 2k, ux)} k>0
converges to a KKT point of the optimization problem (|6.1.1). This hypothesis is fulfilled if,
for instance, f, g and h are semi-algebraic functions.

Theorem 6.3.1. Let Assumptz’on be satisfied and {(xr, Yk, 2, Uk)} > be a sequence gen-
erated by Algorithm[6.2.1. If ¥ is a KL function, then the following statements are true:

(i) the sequence {(Tk, Yk, 2k, Uk)} =0 has finite length, namely,

D llzrar — zwll < +90, O [lyers — yell < +o0,

k>0 k>0
D llzksr = 2kl < +00, Y- flugrn — ugll < +oo; (6.3.1)
k>0 k>0

(ii) the sequence{(Tr, Yk, 2k, Uk)} o converges to a KKT point of the optimization problem
6.1.1).

Proof. Let be X, € Q, thus ¥ (X,) = V. Recall that {&},-, is monotonically decreasing and
converges to 0 as k — +00. We consider two cases.

Case 1. Assume that there exists an integer &’ > 1 such that &£ = 0 or, equivalently, V), = W,
Due to the monotonicity of {&x},~,, it follows that & = 0 or, equivalently, ¥}, = ¥, for any
k > k'. The inequality (6.2.33)) yields for any k > k' + 1

Tyl — Tk =0, yry1 — Y = 0 and ugy 1 —ug = 0.

The inequality (6.2.26]) gives us further 2,1 — 2z = 0 for any k > k’ + 2. This proves (6.3.1)).

Case 2. Consider now the case when & > 0 or, equivalently, U, > W, for any k£ > 1. According
to Lemma [2.3.7] there exist € > 0, n > 0 and a desingularization function ¢ such that for any
element X in the intersection

(ZeR:dist(Z,Q) <e}n{ZeR: U, <V (Z) <, +7} (6.3.2)

it holds
¢ (W (X) — 0,) - dist (0,09 (X)) > 1.

Let be k1 > 1 such that for any k > k;

U, <V, <V, +n.

Since lim dist (X, ) = 0 (see Lemma|6.2.8|[(iii)[), there exists k2 > 1 such that for any k > ko

k—+0

dist (X, Q) < e.
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Consequently, Xy = (2, Yk, 2k, Uk, Tk—1, up—1) belongs to the intersection in (|6.3.2]) for any
k = ko := max {k1, k2}, which further implies

O (U, — W) - dist (0,00 (Xg)) = ¢’ (&) - dist (0,00 (Xi)) = 1. (6.3.3)
Define for two arbitrary nonnegative integers ¢ and j
Aij =@ (Wi— V) —o(V; — W) = 0 (&) — ¢ (&)

The monotonicity of the sequence {W},-, and of the function ¢ implies that A;; > 0 for any
1 < < j. In addition, for any k > ky > 1 it holds

N
Z Apky1 = Dy Np1 = (P(gko) — (1) <o (gko)v
k=kq

from which we get Z Ag g1 < +00.
k=1
By combining Lemma [6.2.3| with the concavity of ¢ we obtain for any k£ > 1

Apgr1 = ¢ (&) = ¢ (Ekr1) = @' (Ek) (Ek = Eky1) = @' (Ek) (T — Viy1)
> min {Cy, C, Cu @' (&) (Jlane = ell® + e = il + s = uell”)
Thus, implies for any k > kg
k1 — 2ell® + ks — vell® + lugsr — ugell?
< dist (0,09 (X)) - ¢ (Ek) (Hﬂﬁkﬂ — 2l + llyrer — well® + w1 — UkH2>
< Cy - dist (0,00 (X)) - Ap s

By the Cauchy-Schwarz inequality, the arithmetic mean-geometric mean inequality and
Lemma [6.2.7], we have that for any k > ko and every a > 0

lzr+1 — 2kl + llYk+1 — el + w1 — will

< V3 A lwrsr — el + e — sl + g — el

< /305 - y/[dist (0,09 (X)) - Ag s

3C
< a-dist (0,00 (Xy)) + T;Ak,kﬂ

3Cg
< Gy ([lz = z—1ll + llye = ye—rll + lluk = w—1l)) + 7= Ap 1. (6.3.4)
If we denote for any k£ > 0
3C%
ar, = log — op_1ll + v — Y-l + llur — w1l and dy = 7 ~Dkprrs (6:3.5)

then the above inequality is nothing else than ([2.4.6|) with

X0 := aCy and x1 := 0.

Since Z d,, < +0, by choosing a < 1/Cy, we can apply Lemma [2.4.4] to conclude that
k=1

3 (lwksn = wull + lyss — ol + lwnsr —uel] ) < +o0.
k=0

The proof of (6.3.1)) is completed by taking into account once again (6.2.26)).
From (i) it follows that the sequence {(zx, Yk, 2k, Ut)};q 15 Cauchy, thus it converges to an

element (2, Ys, 24, Ux) Which is, according to Lemmas a KKT point of the optimization
problem ((6.1.1)). O
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6.3.2 Convergence rates

In this section we derive convergence rates for the sequence {(xx,yr, 2x, ur)};=o generated by
Algorithm as well as for {Wy}, -, if the regularized augmented Lagrangian W satisfies the
Lojasiewicz property.

If Assumption is fulfilled and {(@k, Yk, 2k, Uk)} o 15 the sequence generated by Algo-
rithm [6.2.1] then, according to Theorem [6.2.8] the set of cluster points €2 is nonempty, compact
and connected and ¥ takes on 2 the value W,; in addition, Q < crit (V).

Then there exist Cr, > 0, 6 € [0,1) and € > 0 such that for any X € B (X, ¢)

0 (X) — W, |” < - dist (0,00 (X)) . (6.3.6)

In this case, W is said to satisfy the Lojasiewicz property with Lojasiewicz constant Cr, > 0 and
Lojasiewicz exponent 6 € [0,1).
We prove a recurrence inequality for the sequence {&} k>0

Lemma 6.3.2. Let Assumption be satisfied and {(xk, Yk, 2k, Uk)} =0 be a sequence gen-
erated by Algorithm [6.2.1 If ¥ satisfies the Lojasiewicz property with Lojasiewicz constant
Cr, > 0 and Lojasiewicz exponent 6 € [0,1), then there exists ko = 1 such that the following
estimate holds for any k = ko

Cs

Epo1— & = C1oEY, where Cipi= ——.
k—1 — Ck 10¢ 10 3(CyL - Co)?

(6.3.7)

Proof. For every n > 2 we obtain from Lemma [6.2.3

Eho1 — &=V, 1 — Uy

\%

Cs (ka — |+ llye — k| + JJug — Uk—l”Q)
1

> ng (ke — wr—1ll + vk — yrell + luge — ug—1]])?

> C1oCH||| Dy,

where Dy, € 0U(Xy). Let € > 0 be such that (6.3.6) is fulfilled and choose ky > 1 with the

property that for any k > ko, X belongs to B(Xy,e). Relation (6.3.6)) implies (6.3.7)) for any
k = ko. O

The following result follows by combining Lemma [2.4.5| with Lemma [6.3.2

Theorem 6.3.3. Let Assumptz’on be satisfied and {(xr, Yk, 2k, Uk)}p>o be a sequence gen-
erated by Algorithm [6.2:1 If ¥ satisfies the Lojasiewicz property with Lojasiewicz constant
Cr, > 0 and Lojasiewicz exponent 0 € [0,1), then the following statements are true:

(i) if 0 =0, then {Wy},-, converges in finite time;
(ii) if 6 € (0,1/2], then there exist ko > 1, Co >0 and Q € [0,1) such that for any k = kg
0< ¥ — T, < CoQ;
(iii) if 0 € (1/2,1), then there exist ko = 1 and Cy > 0 such that for any k > ko + 1

0< Uy — U, <Oy 1,

The next lemma will play an important role when transferring the convergence rates for
{Wk} o to the sequence of iterates {(zx, Yk, 2k, Uk)}p=0-
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Lemma 6.3.4. Let Assumption be satisfied and {(zy, Yr, 2k, Uk) } =0 be a sequence gen-
erated by Algorithm . Let (T4, Y, 24, ux) be the KKT point of the optimization problem
to which {(wk, Yk, 2k, uk) }p=o converges as k — +0o0. Then there exists ko > 1 such that
the following estimates hold for any k = ko

ok — 2]l < Crimax {V/E (€} llye = all < Cramax {V/Er, 0 (6}
”Zk — 2*” < Cqg max{ Ek, (Sk)} , Huk. — U*H <Cn max{ Ek, (gk)} R (6.3.8)

where

Ch1 1= 2+/3Cs + 3Cs(CYy and Cia := <HAH + 0_25> Ci1.
Proof. We assume that & > 0 for any & > 0. Otherwise, the sequence {(zg, Y, 2k, ur)}1>0
becomes identical to (Z,Yx, zx, ux) beginning with a given index and the conclusion follows
automatically (see the proof of Theorem .
Let € > 0 be such that is fulfilled and ko > 2 be such that xj, belongs to B(X,¢) for
any k = ko.
We fix k = kg now. One can easily notice that

o = wall < llwwrn = zall + lren = 2all <o < Y s — 2l

i=k
Similarly, we derive
lye = yell < 35 lymsr —wmlls Nk —2ell < D5 lowrn = 2alls uw —wsll < 3 lunsn — ull-
i=k i=k i>k

1
On the other hand, in view of (6.3.5)) and by taking « := T the inequality (6.3.4)) can be
9

written as

1
Of+1 < 5%k + by Yk = kg.

Let us fix now an integer N > k. Summing up the above inequality for ¢ = k, ..., N, we have

N 1 N LN N
Zai+1<§ ai+Zbi:§Zai+1+ak_aN+l+Zbi
i=k i=k i=k i=k

i=k i=
<

I M=

3CsCy

N | —
1=

ait1 +ap + @ (&)

k

1

By passing N — 400, we obtain

Dlakir = Y (lzrer — 2l + ke — yall + ks — )

izk =k

S 2(wker = wll + llweer = gl + llurrs — well) + 3CsCow (Ek)

<2V3- \/Hﬂfkﬂ — ol + lyker — vll® + ursr — well* + 3CsCop ()
< 24/3Cs - \/Ek — Ert1 + 3CsCop (&),

which gives the desired statement. O
We can now formulate convergence rates for the sequence of generated iterates.
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Theorem 6.3.5. Let Assumption be satisfied and {(xy, Yk, 2k, Uk)}p=o be a sequence
generated by Algorithm [6.2.1. Suppose further that U satisfies the Lojasiewicz property with
Lojasiewicz constant Cr, > 0 and Lojasiewicz exponent 0 € [0,1). Let (x4, Y, 2«, us) be the KKT
point of the optimization problem to which {(Tk, Yk, 2k, Uk) } =0 converges as k — +00.
Then the following statements are true:

(i) if 0 = 0, then the algorithm converges in finite time;

(i1) if 6 € (0,1/2], then there exist ko > 1, 6’071,6’072,6‘0,3,6074 > 0 and @ € [0,1) such that
for any k = kg

|z — 24| < 60,1@k7 lyr — ys|| < éo,2©k, |2k — 24| < 60,3@k, lur — us|| < CA‘0,4@k;

(iii) if 0 € (1/2,1), then there exist kg = 1 and 6’171,6'172,6'1,3,6'1,4 > 0 such that for any
k=ky+1

~ 1-0 R -
g — 24| < Crak 271, |lyp — yal| < Crok™ 2071,

A o ~ 1-0
2k — 2|l < Crsk 2071, Jjug — us|| < Cpak 201,

Proof. Let
CLSI—G 7

¢ :[0,400) — [0, +0), s~ ¢

be the desingularization function.

(i) If & = 0, then {W}, -, converges in finite time. As seen in the proof of Theorem the
sequence {(Zx, Yk, 2k, Uk)};>o Decomes identical to (T4, Y, 24, us) starting from a given index.
In other words, the sequence {(z, Y&, 2k, Uk) } ;>0 converges also in finite time and the conclusion

follows.
Let be  # 1 and k{ > 1 such that for any k > k{, the inequalities (6.3.8) in Lemma m

and )
£ ! C o
<
< ()
hold.
(ii) If 0 € (0,1/2), then 20 — 1 < 0 and thus for any k > k{,

1
——CLE <V,

which implies that
maX{ 5k780(5k)} = /&

If 0 = 1/2, then
tp(gk) = 2CVL V & )
thus
max{ Ek, ¥ (Sk)} =max {1,201} - /& Vk > 1.

In both cases we have
max{ Ek, @ (Sk)} < max{1,2C1} - /& Vk = K.
By Theorem there exist k{j > 1, 6’0 > 0 and @ € [0,1) such that for @ :=4/Q and every
k = k{ it holds
VeEr < \EQW — \ﬁ@’“.
The conclusion follows from Lemma for ko := max {k{, k{j}.
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(iii) If 6 € (1/2,1), then 26 — 1 > 0 and thus for any k > kj,

1 1-0
Ve < —— ,
Ex T chgk
which implies that

1
max {v/E 0 (E0)} = ¢ (E0) = 7—5CLEL "

By Theorem m there exist k > 1 and C} > 0 such that for any k > kf

1 1 ~ 1-6
——Cp& ' < —— Ol (k—2) 7T
1—0 Lok gt (k=2)
The conclusion follows again for ko := max {k{, k{j} from Lemma [6.3.4] O

6.4 Further perspectives

The following difference of convex optimization model is of huge interest, since it captures many
applied problems
min {1 (A2) — 6 (B2) + © (&)}, (6.4.1)
e

where ¢: G - Ru{4+x0};¢: K - Ru{+w0} are proper, convex and lower semicontinuous func-
tions with A: H — G; B: ‘H — K are linear operators and ©: H — R is a Fréchet differentiable
function with L-Lipschitz continuous gradient.

Following the idea of Banert and Bot in [22], we can rewrite the problem as

min  {¢ (Az) + ¢* (y) — (Bz,y) + © (v)}. (6.4.2)
(z,y)eH K
One could use the investigation in this chapter to formulate an algorithm to solve and
provide a setting in which this converges. The numerical validation of the method can be done
by considering applications in image processing and machine learning.
On the other hand, recently, Bot and Kanzler proposed in [55] a continuous time approach
for the optimization problem . It would be interesting to also addressing from the
same perspective and to develop corresponding asymptotic analysis.
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