
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

„Toward a Blockchain based Business Decision Support
System using a Cloud Blockchain Eco-System“

verfasst von / submitted by

Gerald Honegger, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2021 / Vienna, 2021

Studienkennzahl lt. Studienblatt / UA 066 926
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Wirtschaftsinformatik
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dipl.-Ing. Dr.Wolfgang Klas

Contents
1 Topic of the Master Thesis 8

1.1 Comparison of Blockchain Platforms 8

2 Terms and definitions 9
2.1 Smart Contracts . 9
2.2 Blockchain Technology Platforms 10

2.2.1 Ethereum . 10
2.2.2 Quorum . 10

2.3 Type of Blockchain . 10
2.3.1 Private Blockchain . 10
2.3.2 Permissioned or Consortium Blockchain 10

2.4 Blockchain in the Cloud / Blockchain as a Service (BaaS) 11
2.4.1 Azure Cloud . 11
2.4.2 Azure Blockchain Workbench 11

2.5 Consensus Algorithms . 12
2.5.1 Proof of Work (PoW) . 12
2.5.2 Proof of Stake (PoS) . 13
2.5.3 Proof of Authority (PoA) 14

2.6 Byzantine Fault Tolerance (BFT) 14

3 Related Literature 15
3.1 Defining and Delimitating Distributed Ledger Technology 15
3.2 Mitigating Data Tampering Security Risks 16
3.3 An Identity-Protecting License Trading Platform 16
3.4 Blockchain-based Multi-party Business Process Monitoring . . . 17
3.5 Balancing Privity and Enforceability 18
3.6 Executing Collaborative Decisions Confidentially 18
3.7 Performance and Scalability . 19
3.8 Extracting Process Mining Data from Blockchain Applications . 19
3.9 Security, Performance, and Applications of Smart Contracts . . . 20
3.10 Performance Analysis of Ethereum Transactions 20
3.11 Ethereum Transaction Fees . 21
3.12 Optimized Execution of Business Processes on Blockchain 21
3.13 A Cloud Data Movement Policy Architecture 21
3.14 Using Smart Contracts for Cloud Tenant Management 22
3.15 Decentralized Voting Platform Based on Ethereum Blockchain . 22
3.16 Towards Secure Ethereum-Based E-Voting 22
3.17 A Decentralized Ethereum-Based Marketplace Application 23
3.18 Attack and Defence of Ethereum Remote APIs 23
3.19 Blockchain for Trustworthy Coordination 24
3.20 Caterpillar: A Blockchain-Based BPMS 24
3.21 An Ethereum-Based Smart Transportation System 24
3.22 An Ethereum-Based Cloud User Identity Management Protocol . 24
3.23 A Blockchain-Based Access Control System for Cloud Storage . . 24

1

3.24 A Secure Cloud Storage Framework With Access Control 25
3.25 Toward High-Performance Permissioned Blockchain 25
3.26 Decision Support Systems - Definition and Implementations . . . 25

4 Focus and Problem addressed by this Thesis 26
4.1 Scope and Requirements of the Implementation 26
4.2 Problem Description . 27

4.2.1 Practical eVoting Implementations 27
4.2.2 Smart Contract Based Systems 30

5 Design and Implementation 31
5.1 Simple Blockchain Voting System 32
5.2 Blockchain Voting System . 33

5.2.1 Roles . 33
5.2.2 States . 34
5.2.3 Parameters . 36
5.2.4 Voting . 38
5.2.5 Transferring a vote to another user 42
5.2.6 Concluding the process 43

5.3 Event Signup System . 44
5.3.1 States . 44
5.3.2 Parameters . 45

5.4 Simultaneous Voting Script . 46

6 Demo Application and Scenario 48
6.1 Simple Blockchain Voting System 49
6.2 Blockchain Voting System . 54

6.2.1 Transfer vote, threshold, conclude and veto 54
6.2.2 Preferential voting and successful conclusion after a deadline 59
6.2.3 Vote weight, early conclusion attempt and failed process

due to deadline . 63
6.2.4 Hiding results before the process is finished 67
6.2.5 Organisation decision and overview over processes 70

6.3 Event Sign Up . 72
6.3.1 Cancelled state example 72
6.3.2 Successful process example 75

6.4 Simultaneous voting experiment 80

7 Overall Conclusions 85

8 Limitations and Future Work 85

9 Appendix 87
9.1 Azure Components and Information 87
9.2 Source Code URL . 88

2

List of Tables
1 Blockchain Platform Comparison 9
2 Overview of users and their roles in the Smart Contract imple-

mentation . 49
3 Voting with the same user at the same time 83
4 Voting with four different users at the same time 84

List of Figures
1 The architecture of the ABW as described in the official docu-

mentation . 12
2 Characteristics of DLT and Blockchain based on the quantitative

analysis . 15
3 Ethereum-based countermeasure architecture 16
4 Hyperledger Fabric based model of the License Chain Concept. . 17
5 Architecture of the DFS-blockchain hybrid platform 18
6 Collaborative decision making by storing and executing decisions

on a blockchain . 19
7 High-level overview of the components 20
8 Total time in minutes for processing different amounts of trans-

actions by different clients . 21
9 A voting mechanism aided by an Ethereum Virtual Machine . . . 23
10 Knowledge Society . 28
11 An organizer can type parameters of a new Smart Contract into

these input fields . 32
12 A Simple Blockchain Voting System diagram 33
13 The ABW in a browser on a mobile device 34
14 Available parameters of the Blockchain Voting System 37
15 A Blockchain Voting System diagram 39
16 Creating an Event Signup Smart Contract. 45
17 An Event Signup System diagram 46
18 Overview over Smart Contract applications while being logged in

as a user . 48
19 A member takes the action to vote in an active Smart Contract. 49
20 The user decides to vote for choice 1 50
21 One member has voted and is logging out of his/her account . . 51
22 All three users have voted . 52
23 An organizer concludes the vote. 52
24 The final state of the Smart Contract is reached 53
25 A user chooses another user he/she wants to transfer his/her vote

to . 55
26 Test user 4 was selected. After clicking on "Take action", this

choice is confirmed. 56
27 A user could not vote or transfer a second time and is logging out 56

3

28 User 4 received a vote and can now vote twice. 57
29 User 1 concludes the vote . 57
30 Once the voting is finished, it can be vetoed 58
31 In this case, the last state of the Smart Contract is it being "Vetoed" 58
32 A GUI showing a Smart Contract where preferential voting is

enabled. 59
33 User 1 takes the action of casting a vote. The first candidate is

his/her favorite choice. 60
34 The second user votes. On the left side, the decision of user 1 is

visible. 60
35 Two users have voted, and the preferential vote arrays are combined. 61
36 Concluding the process before the deadline has passed is not pos-

sible. 61
37 The preferential vote is finished. The result between candidate 1

and 2 is a tie. 62
38 A GUI showing the creation of a Smart Contract with a vote

weight, deadline and a minimum number of voters. 63
39 The organizer does have a vote weight of two. 64
40 The member does have a vote weight of one. 64
41 Can not conclude the process before the deadline ends. Users can

still vote. 65
42 Attempting to conclude the voting process once the deadline is

reached. 65
43 A minimum of four users need to vote to successfully conclude

this process. 66
44 A Smart Contract where combined results of the voting are hidden. 67
45 User 1 casts a vote, which is not visible in the choice variable

("Vote Choices") . 68
46 Individual choices can bee viewed. 68
47 Four persons did vote, results are not yet visible. 69
48 Results become visible once the process was concluded by an

organizer. 69
49 An UI that aids in the creation of a Smart Contract. This SC is

a decision by an organizer. 70
50 This Smart Contract’s state is "Finished" at start. 71
51 Overview over recent and past Smart Contracts in the ABW . . 71
52 A user signs up to an event. 72
53 Once three users have signed up, the organizer tries to conclude

the sign up process. 73
54 The deadline was not reached, so the process could not be ter-

minated. 73
55 A second attempt of concluding the vote after the deadline has

passed. 74
56 The number of signed up users is smaller than the minimum

number of attendees, so the Smart Contract ends up in the "Can-
celled" state. 74

4

57 This GUI shows the creation of an event Smart Contract without
a minimum number of attendees. 75

58 User 1 signed up to the event. 76
59 Signing up twice to the same event is not possible. 76
60 User 2 has decided to not attend the event. 77
61 In total, two users attend the event. 77
62 Four users have signed up, and one user decided to not attend

the event. 78
63 Organizers can create events, sign up to them, unsubscribe from

them and cancel events. 78
64 An organizer concludes the sign up process successfully. 79
65 The ABW UI of the same user in four different browsers 80
66 The ABW UI of four users in four different browser windows . . 81
67 The ABW UI of the same user in four different browser windows 82
68 Costs accumulated while running the ABW. Screenshot of the

Azure Portal website. 86

Code Listings
1 JSON data snippet showing allowed transactions based on the

’vote’ state of the process . 35
2 Voting functionality in the Solidity code 40
3 Vote transfer functionality in the Solidity code 42
4 Vote concluding functionality in the Solidity code 43
5 Starting multiple threads opening browser windows to vote sim-

ultaneously . 47
6 Threads will wait and vote concurrently (in the range of 20ms) . 48

5

Zusammenfassung

Für Systeme zur Unterstützung von Geschäftsentscheidungen ist es von Vorteil,
die Implementierung eines manipulationssicheren, transparenten, konsistenten,
deterministischen und datenschutzorientierten Online-Abstimmungs-Systems zu
ermöglichen. In der Vergangenheit zögerten Regierungen, Institutionen und ihre
Mitglieder selbst, Benutzern die Wahl über wichtige Entscheidungen in elektron-
ischen Online-Abstimmungen zu ermöglichen.
In meiner Arbeit werde ich eine Organisationssoftware vorschlagen, die den Be-
nutzern die Stimmenabgabe bei Entscheidungen sowie das Anmelden zu Veran-
staltungen ermöglicht. Die verteilte Applikation verwaltet verschiedene Rollen
für ihre Benutzer: Die Mitglieder des Systems können an Veranstaltungen teil-
nehmen und bei Abstimmungen für eine Entscheidung wählen. Organisatoren
haben darüber hinaus zusätzlich die Fähigkeit, Abstimmungen und Veranstal-
tungen zu erstellen.
In der privaten Blockchain wird ein Mechanismus zum Zählen einer Stimme
pro Ethereum-Brieftaschenadresse verwendet, wobei nur zuvor registrierte Be-
nutzer Zugriff auf das Netzwerk erhalten. Auf diese Weise wird die Richtigkeit
der Ergebnisse garantiert.
Cloud-Dienste werden unter anderem eingesetzt, um die Privatsphäre der Nutzer
und deren Abstimmungsentscheidungen gegenüber Dritten zu gewährleisten.
Die Kosten der Cloud-Service-Preise, die beim Ausführen der Blockchain in der
Cloud anfallen, werden erfasst und analysiert. Mithilfe einer DApp-Implemen-
tierung in der Cloud kann ein sicheres und benutzerfreundliches Entscheidungs-
system implementiert werden.

6

Abstract

Implementing a tamper-proof, transparent, consistent, deterministic
and privacy-focused eVoting system is vital for Business Decision Support
Systems. Historically, governments, institutions as well as their members
themselves have been reluctant to allow users to take part in electronic,
online decisions to vote for important decisions. In my thesis, we will
propose an organisation software which will not only allow its users to
cast their vote, but to also sign up for events. There are different roles
of users handled by the distributed application. Organizers are able to
create votings and events, as well as having the same functionalities of the
members to vote and sign up to events. A mechanism of counting one vote
per Ethereum wallet address will be used in the private blockchain, with
only previously registered users receiving access to the network. This way,
the correctness of the results will be guaranteed. Among other technical
measures, cloud services are used to ensure the privacy of users and their
voting decisions from third parties. Costs of the cloud service prices,
which arise while running the blockchain in the cloud, are recorded and
analyzed. Using a DApp implementation in the cloud, a secure and user-
friendly decision-making system can be implemented.

7

1 Topic of the Master Thesis
Implementing and releasing a tamper-resistant electronic decision making sys-
tem has always been difficult, and its results are often questioned. Organisa-
tions and governments have so far been reluctant on implementing eVoting sys-
tems and trusting them to handle important decisions. A promising technology
that could ensure tamper-proofness and traceability of results is the distributed
ledger technology of the blockchain. With a decentralized Ethereum application
running in a cloud computing environment, users in an organisation can vote
in elections and make other decisions. In order to correctly authenticate users,
only credentialed participants do get access to an Ethereum wallet in the block-
chain, which will enable them to cast one vote per election. Once approved,
users can vote for administrators (and other positions which need to be filled in
the organisation) or sign up for events. This way, the legitimacy of the results
can be guaranteed by the consensus mechanism of the blockchain.
In my proposed Ethereum application, there are roles for organizers and mem-
bers in a private Ethereum blockchain. Organizers can create elections or events.
Members can take part in elections for candidates to take key positions in their
organization, or sign up for an event. The organizers do have the full functional-
ity of the members. This system must ensure a transparent environment where
electronic votes are counted accurately, while at the same time guaranteeing the
privacy of the user data, such as voting decisions or personal information, from
third parties.
The proposed system will be a private blockchain running on the Azure cloud
using the Azure Blockchain Workbench (ABW). The ABW runs on a private
blockchain provided by Parity’s Ethereum PoA template. The two most popu-
lar Ethereum clients are GetH and Parity. GetH is the more widely used client.
However, according to [Rouhani and Deters (2017), p. 1], the Parity client does
process transactions on average 89.8 percent faster than the GetH client. The
ABW is used for the implementation of the organisation software described in
this thesis. The functionality of the distributed application (DApp) runs on
Ethereum Smart Contracts written in Solidity.

1.1 Comparison of Blockchain Platforms
A number of attributes can be compared for the different blockchain technology
platforms (cf. table 1, [Rouhani and Deters (2019), p. 3]), such as consensus,
whether the blockchain is public or not, if it offers Smart Contract (SC) sup-
port, if there is good documentation on the cloud technology support (brackets
indicate that there are code examples, but no official documentation), the Smart
Contract language(s) used, and the type of built-in cryptocurrency, if available.
All of the platforms listed here do offer Smart Contract support, with Bitcoin
only supporting it by attaching a sidechain to the main blockchain.

Ethereum uses the mechanisms Proof of Work as well as Proof of Stake, as
can be seen in this table. It allows the development of both public and permis-

8

Table 1: Blockchain Platform Comparison

sioned blockchain applications. One thing that is not evident from this table,
is that Ethereum is likely the most widely used1 Smart Contract blockchain
technology. The cloud service providers Azure, Amazon Web Services (AWS)
and Google Cloud do support Ethereum and offer documentation on it.
Bitcoin was not made to run decentralized applications on it, and the other
platforms listed are not as well known and not as widely adopted as Ethereum,
the de-facto standard Smart Contract platform. Because of these reasons, Eth-
ereum is the blockchain technology used for the implementation of this thesis.

2 Terms and definitions
In this chapter, we are explaining important terms and we are giving definitions
which are necessary to understand the approach taken to create this Business
Decision Support System (BDSS) implementation. The focus is on concepts
used in this thesis, as well as concepts related to them.

2.1 Smart Contracts
The first blockchain concepts, most famously Bitcoin, made a distributed crypto-
currency possible which is not controlled by a central authority and which can
not be copied or replicated. In 20152, Vitalik Buterin has advanced this concept
by introducing a blockchain network protocol which does not only provide a
cryptocurrency, but which can run applications in a distributed way. With the
open-source, distributed platform Ethereum and its Smart Contract language

1This is partly subjective, and can change in only a few years
2He first described the concept in 2013 and it was presented in the North American Bitcoin

Conference in January 2014

9

Solidity, multiple ledgers can validate whether a process has terminated cor-
rectly.
This technology can be used to automate processes which would otherwise be
done by a human actor, thus reducing the operating costs of companies. For ex-
ample, an airline could automatically refund ticket prices to customers after an
oracle (an independent entity which provides information to Smart Contracts)
detects that a plane flight was cancelled.

2.2 Blockchain Technology Platforms
2.2.1 Ethereum

Ethereum is a global, open sourced and decentralized platform that uses Ether
as cryptocurrency and gas to make transactions. An advantage the Ethereum
protocol has over other blockchain cryptocurrencies is that it can be used to run
decentralized applications (DApps) on its blockchain. Apart from using a public
blockchain, using the global Ethereum network, it is also possible to implement
DApps on a private blockchain in the cloud, which we have done for the BDSS
application described in this thesis.

2.2.2 Quorum

The Quorum blockchain is a soft fork of Ethereum which is being developed by
JP Morgan and is designed for use in companies. The basic structure of Quorum
was developed in cooperation with the Ethereum Enterprise Alliance and Mi-
crosoft on the basis of Go Ethereum, the basic code of the Ethereum platform.
The aim of the blockchain infrastructure is to process payment transactions in
a company in a transparent and tamper-proof manner. Quorum is the protocol
used in the ABW.

2.3 Type of Blockchain
2.3.1 Private Blockchain

In contrast to public blockchains, which are decentralized and don’t have a single
authority over the network, a private blockchain is controlled by an organization
which has the sole authority over read and write permissions. The disadvantage
of this approach is that such a blockchain is not or less decentralized, while its
advantages are that it is easier scalable and can offer data protection.

2.3.2 Permissioned or Consortium Blockchain

A permissioned (also called consortium blockchain) is a private blockchain which
is or can be owned by multiple organisations. Users with a permission, which
was granted by the consortium, can read information of and write blocks in the
blockchain.

10

2.4 Blockchain in the Cloud / Blockchain as a Service
(BaaS)

Multiple large tech companies have begun offering blockchain in the cloud ser-
vices - also known as Blockchain as a Service (BaaS), including, but not limited
to Microsoft, Amazon, Google, SAP, Oracle and IBM. Demand for such services
comes mainly from businesses which want to experiment with blockchain tech-
nologies. Use cases for this technology are for example Supply-Chain-Tracing-
Systems, where suppliers want to make supply chains more transparent and
guarantee the authenticity of products with simple means.

2.4.1 Azure Cloud

Microsoft Azure is a highly scalable cloud computing platform from Microsoft
which offers cloud services and is primarily aimed at companies and software
developers. The cloud computing environment’s performance and range of ser-
vices have continuously expanded since its official release in 2010.
Cloud service competitors of and alternatives to Microsoft Azure are Amazon
AWS, Google Cloud, Oracle Cloud, CloudVPS, DigitalOcean, SAP Cloud Plat-
form, Open Telekom Cloud and more.

2.4.2 Azure Blockchain Workbench

The Azure Blockchain Workbench (ABW) is a cloud environment offered by
Microsoft which can run DApps and uses the Quorum protocol. It allows de-
velopers to host Solidity contracts in the blockchain on the Azure cloud and
makes versioning of Smart Contracts as well as handling user authorization of
the DApps more practical. Being a permissioned blockchain, the ABW increases
the level of privacy of user data since it can not be accessed by third parties
outside of the system. Authentication of the system is managed by Adminis-
trators of the Azure Service, who are able to add or remove users to different
Smart Contracts, as well as giving them roles in the system.

The ABW can be integrated with several other Azure components as can be
seen on the description of the ABW architecture (see Fig. 1). Users are identified
by their Azure Active Directory identity, and a new identity is automatically
generated for on-chain usage when adding a new user to the ABW contracts.
Data is stored and can be queried in the off-chain Azure SQL Database and
visualized using Power BI. Smart Contracts and their associated metadata is
stored in the Azure Storage. Documents or media can be stored there, while
their hash gets stored on-chain. Monitoring of the application messages, such
as warnings, errors and success messages for debugging purposes can be done
with Application Insights and Azure Monitor. Besides the web app, there is
also Xamarin code available to set up an Android or iOS app which can access

4https://docs.microsoft.com/en-us/azure/blockchain/workbench/architecture, retrieved
on August 20th 2020

11

Figure 1: The architecture of the ABW as described in the official documenta-
tion 4

the ABW website of the application 5.
Advantages of running a blockchain network in the Azure cloud include Azure
Monitor logging and alerts of the node health, data encryption in transit and
at rest, automatical node storage increase if the ledger size increases, ledger
backup and node recovery, automatical updates and patch releases of Quorum,
and high availability of the service with a 99.9% SLA with the standard tier of
the Azure Blockchain Service, which is used for the ABW.
It should also be noted that it is planned that users can run their own nodes
of an ABW network outside of the cloud. This way, not all nodes have to run
in the cloud, and with more than 50% of all nodes running independently and
managed by different parties outside of the cloud, the level of centralization
could be reduced drastically.

2.5 Consensus Algorithms
2.5.1 Proof of Work (PoW)

Invented in 1993 as an algorithm to prevent DOS attacks or SPAM in networks
and getting its name in 1997, the Proof of Work algorithm only got well known
once it was implemented in the Bitcoin blockchain technology in 2009 to handle
the mining of new blocks and validation of transactions. This is vital for keeping
the Bitcoin network up, since new transactions constantly need to be validated,

5see https://github.com/Azure-Samples/blockchain-devkit/tree/master/connect/mobile/blockchain-
workbench/workbench-client, retrieved on August 20th 2020

12

and miners are getting a reward (in the form of a new block, which is mined at
random intervals) for doing so.
It allows for a decentralized blockchain network to exist without a central au-
thority, but its disadvantages are that it is quite costly in that it needs a lot of
electricity (to run miners) and processing power to keep the network running.
To be more specific on the electricity usage of the Bitcoin network, it is "now
on pace to use just over 42TWh of electricity in a year, placing it ahead of
New Zealand and Hungary and just behind Peru, according to estimates from
Digiconomist."6. Also, faster validation times may be required for business use
cases, since a bitcoin transaction can take about ten minutes to be confirmed.
Because of those reasons, developers and companies were looking for more effi-
cient alternatives to this algorithm.

2.5.2 Proof of Stake (PoS)

The Proof of Stake algorithm does favor rich users who own a larger share of
the cryptocurrency than other users. They do get a higher chance to be chosen
to forge the next block in the network. In theory, this makes PoS more unequal
than PoW; however with this algorithm, participants need no expensive mining
equipment to take part in the blockchain, which makes it less expensive to set
up new nodes. If users validate fraudulent transactions, then they are punished
by losing a part of their stake.
A weak spot of blockchain technologies is that an attacker can take over the
network by owning the majority of its computing power (the networks mining
hash rate). This is called a 51% attack, and it allows a malicious user to prevent
other user’s transactions, stop miners from completing new blocks or revert
transactions, allowing him to double-spend coins. Proof of Stake makes such a
51% attack less likely since a large amount of money is required for it to succeed
- for example, if Bitcoin used Proof of Stake, then owning more than $111 billion
USD in Bitcoin (half of the entire Market Cap as the time of writing) would
be necessary to run a successful attack. 7. In the actual Bitcoin network, it
is sufficient to have the majority of the mining power to run such an attack
successfully. That being said, concerning the Bitcoin network, this is only a
hypothetical scenario since such an attack has not taken place.
The current version of Ethereum uses Casper, which is an implementation that
has the objective of making Ethereum, which was started as a PoW blockchain in
2015, a PoS-protocol cryptocurrency. This will have the advantage of reducing
the energy necessary for running the network by making mining unnecessary
and increase its security by removing malicious validator nodes faster.
Other examples of Proof of Stake cryptocurrencies are peercoins, LSK and NXT,
and Ouroboros by Cardano, which calls itself the "first provably secure proof-

6https://www.theguardian.com/technology/2018/jan/17/bitcoin-electricity-usage-huge-
climate-cryptocurrency, published on January 17th 2018, last modified on July 3rd 2019,
retrieved on August 18th, 2020

7https://www.coindesk.com/price/bitcoin: Market Cap $221.60B. Retrieved on August
18th 2020

13

of-stake protocol"8.

2.5.3 Proof of Authority (PoA)

PoS does still leave a risk that richer users will control the network, which may
not be avoidable using the algorithm for a blockchain network. Because of that,
the reputation-based Proof of Authority consensus algorithm was proposed in
2017 by Ethereum co-founder Gavin Wood.
It does continue the basic idea of the PoS algorithm and runs without miners
which are required in PoW. It is especially efficient and practical for private
blockchain networks.
A group of validator nodes do maintain the network in this reputation based
consensus algorithm. Here, the base of the stake a user gets in the network is not
the amount of (crypto-)coins he/she has, but his/her own reputation. Block-
chains using PoA are secured by arbitrarily selected validation nodes, which are
the trusted entities of the network. It is a highly scalable mechanism since only
a small number of block validators is required to keep the network up. Previ-
ously approved participants can verify transactions and blocks.
This algorithm is especially demanded by corporate customers, such as compan-
ies dealing with logistic applications. A typical example where a PoA blockchain
solutions can efficiently be used are supply chain processes. It allows for com-
panies to guarantee their privacy while using blockchain applications, which is
important to prevent industry espionage, and is often times required by law
when dealing with sensitive user data. In the ABW, PoA is used as the con-
sensus mechanism to set up a private network. This way, mining is unnecessary
and a cryptocurrency like the ether gas and its associated costs are avoided.

2.6 Byzantine Fault Tolerance (BFT)
The Byzantine Fault Tolerance is a universal solution to a specific problem of
decentralized systems: A node in a network can give false information while
claiming to be a trusted actor. BFT deals with the problem that some nodes
can be malfunctioning or malicious and ensures that the blockchain network
will continue to work with a certain level of byzantine fault tolerance. This
algorithm makes faulty transactions impossible and avoids the double spend-
ing problem of cryptocurrencies. BFT works by deciding when a hash is being
confirmed as finalized (finality rules) and ensuring that nodes which misbehave
multiple times e.g. by approving malicious transactions will be removed from
the network (slashing rules).
Bitcoins PoW was the first blockchain-based probabilistic solution to the Byz-
antine Fault problem. Apart from blockchain implementation, the BFA is being
used in every system which deals with a lot of information from a lot of different
sensors and acts based on that information, such as aircraft electronics, nuclear
power plant systems, and more.

8https://cardano.org/ouroboros/ Retrieved on August 18th 2020

14

3 Related Literature
In this chapter, papers relevant to the research for the topic of my thesis are
discussed. It covers challenges and issues related to privacy, security, user au-
thentication, distributed ledger technology running on cloud computing services,
cost analysis of Ethereum transactions and more.

3.1 Defining and Delimitating Distributed Ledger Tech-
nology

Lange et al. offers definitions and core characteristics of distributed ledger
technology (DLT) and the blockchain technology. While both are seen as syn-
onymous, the terms are analyzed and a differentiation and characterization of
both technologies is derived. One key difference is the state of the synchroniz-
ation - in some DLTs, not all nodes need the entire information of the network,
and there are DLTs where "only nodes that are associated with a transaction
see, verify and store the data of the transaction". [Lange et al. (2019), p. 46]
Also, some Blockchain core characteristics, like blocked chains, are only optional
features for DLTs. [Lange et al. (2019), p. 48]

Figure 2: Characteristics of DLT and Blockchain based on the quantitative
analysis

The core characteristics of both technologies are visualized in Fig. 2 [Lange
et al. (2019), p. 48], which is based on a quantitative analysis. Terms which
are more strongly associated with the technology and are more often mentioned

15

alongside of it are shown in the graphic. Nearly all DLT core characteristics are
also blockchain core characteristics. [Lange et al. (2019), p. 48]

3.2 Mitigating Data Tampering Security Risks
Among the advantages of the blockchain technology are its traceability, integ-
rity and tamper-proofness. The management and mitigation of tamper-risk in
a proper way is the focus of this paper. A countermeasure architecture based
on Ethereum is introduced (cf. Fig. 3, [Iqbal and Matulevičius (2019), p. 21]),
which ensures that transaction data is validated and encrypted data is stored
on an immutable ledger. Also, the information is obfuscated by splitting the
data and storing it in random locations.[Iqbal and Matulevičius (2019)]

Figure 3: Ethereum-based countermeasure architecture

Iqbal et al. concludes that apart "from the tampering risk, blockchain-
based applications could help mitigating other security risks, like DoS/DDoS at-
tack, MitM attack, side-channel attack and etc."[Iqbal and Matulevičius (2019),
p.26]. On the other hand, more blockchain-specific security risks such as a sybil
attack, double spending attack or a 51% attack need to be considered when plan-
ning to build a blockchain-based application. [Iqbal and Matulevičius (2019),
p.26]

3.3 An Identity-Protecting License Trading Platform
The organization software proposed in this thesis is a privacy-critical block-
chain application. Privacy and Security issues will be a main concern of it. In
[Kakarott et al. (2019)], an Intellectual Property License Trading Platform is
presented, which handles sensitive user data. Identities and License information
needs to be secured to ensure that an observer can not attain the information

16

without permission. Once a trade is completed, the information about the li-
cense must be shared with the trading partner. The proposed platform-concept
also reduces transaction costs.

Figure 4: Hyperledger Fabric based model of the License Chain Concept. P:
Peer, C: Chaincode, L: Ledger, O: Ordering Node

Fig. 4 [Kakarott et al. (2019), p.33] shows how a user in this Hyperledger-
based system can order a licensing contract from an Intellectual Property owner.
Due to the platform, a certain level of loss of privacy exists, but it is limited
by introducing trusted partners, which will match potential buyers with owners
of Intellectual Property. There remains a single point of attack for this system:
Trusted partners need to behave correctly and need to be vetted before being
accepted into this position.
A 51% attack can be avoided in this system by only allowing known partners to
participate in the consensus process as network peers. This way, the users of this
system know each other and have less of an incentive to manipulate it.[Kakarott
et al. (2019)]

3.4 Blockchain-based Multi-party Business Process Mon-
itoring

Trusted data exchange as well as minimizing the risk of a fraudulent organiza-
tion altering monitoring data are an important security concern for Meroni et al.
This can be achieved by combining blockchain technology with artifact-driven
monitoring, as is explained in [Meroni et al. (2019)]. This monitoring system
enables the organization to know how its processes are being performed. The
monitoring information is stored in and forwarded by a blockchain.

Based on an artifact-driven monitoring platform architecture (cf. Fig. 5)

17

Figure 5: Architecture of the Distributed File System (DFS)-blockchain hybrid
platform

[Meroni et al. (2019), p.60], in this system, on-board sensors collect informa-
tion about smart objects, which is then handled in the Events Processor. The
Monitoring Engine detects violations in the system and when activities are ex-
ecuted. The most interesting part of the system is the Events Router, which is
integrated with a blockchain client. The client initiates a new transaction when
it is called and sends notifications to the monitoring system whenever a block
of information is added to the blockchain.

3.5 Balancing Privity and Enforceability
The amount of information shared in an organisational system should be limited
to a minimum - this is the privity objective of the implementation. Only the
parties of a contract should have access to the information. Both factors conflict
with each other, and trade-offs between privity and online enforcability need
to be considered in the development of a blockchain application that handles
sensitive data. One possible security measure explained in Köpke et al. is to
encrypt part of the data used in Business Process Management (BPM)-Based
Smart Contracts. Encrypting the data does have the disadvantage of limiting
enforcability. The same key exchanges mechanisms that enable the encryption
and decryption of blockchain data does also work for off-chain data, with the
keys being shared on-chain. [Köpke et al. (2019)]

3.6 Executing Collaborative Decisions Confidentially
Through the use of blockchain technology, data can be stored and decision logic
can be executed in a transparent and tamper-proof manner. This way, collabor-
ative decision making can be improved. In Haarmann et al., an approach to hide
sensitive data on the blockchain is proposed. In this system, a blockchain-based
conflict can be solved by revealing the decision without requiring a third party.
Malicious behaviour needs to be discouraged in the blockchain through the use
of an incentive model for this mechanism to work. One drawback of this system

18

is that it slows down the automated decision making time.

Figure 6: Collaborative decision making by storing and executing decisions
(logic and instance data) on a blockchain

Fig. 6 [Haarmann et al. (2019), p. 123] shows how Retailer, Blockchain
and Logistic Contractor interact with each other and how a participant can be
penalized for revealing sensitive data. [Haarmann et al. (2019)]

3.7 Performance and Scalability
Smart Contract technologies such as Ethereum can combine the versatility of
software with cryptographically secure blockchains. Parameters of private Eth-
ereum blockchains can be altered to optimize the transaction speed of the sys-
tem. Examples for such blockchain-specific parameters are the "time passing
between two consecutive blocks, the size of blocks, the hardware of the nodes
running the blockchain software, or simply the size of the network." [Schäffer
et al. (2019), page 103]
According of an analysis of an amount of transactions (on a private blockchain)
that equals the amount of eight days of transactions on the Ethereum main
chain, changing one of these parameters does majorly impact the configuration
of the other parameters since they are intertwined with each other. Block fre-
quency and transaction signing were identified as the two biggest bottlenecks in
the analysis. [Schäffer et al. (2019), page 113]

3.8 Extracting Process Mining Data from Blockchain Ap-
plications

Users of my proposed organisation software will need to have an overview over
its data and processes, which will require functionality to achieve this goal.

19

Since extracting and analyzing blockchain data is difficult, it is rarely used for
process mining.
A framework is presented in [Klinkmüller et al. (2019)], which consists of "a

Figure 7: High-level overview of the components

manifest specifying how data is logged, an extractor for retrieving data (struc-
tured according to the XES standard), and a generator that produces logging
code"[Klinkmüller et al. (2019), p. 71] The high-level overview of the framework
in Fig. 7 [Klinkmüller et al. (2019), p. 75] shows how event-data from the log is
extracted. The on-chain Ethereum transaction logging used in this paper could
be useful in developing user-defined DApps. Cloud services supporting block-
chain technologies and DApps provide a practical overview of its processed data,
which is further explained in chapter 6.2.5.

3.9 Security, Performance, and Applications of Smart Con-
tracts

Rouhani et al. covers a wide and general variety of key concepts of the Eth-
ereum technology, such as security tools, performance improvement approaches
and decentralized applications based on Smart Contracts. It presents a "system-
atic review on the Smart Contract history, supporting platforms, programming
languages, security, performance, and decentralized applications." [Rouhani and
Deters (2019), p. 18]. The primary focus of decentralized applications (in the
field of healthcare and IoT) have been identified to be record keeping, access
control management and sharing resources. Performance improvement mech-
anisms presented are the use of a lighter consensus mechanism and running
transactions concurrently.

3.10 Performance Analysis of Ethereum Transactions
Ethereums clients run on different speeds and with a different performance.
Choosing the better performing client will have an impact on the overall dis-
tributed ledger system. The transaction speed of the two most popular Eth-
ereum clients, GetH and Parity, is compared in [Rouhani and Deters (2017)] in

20

a private blockchain.

Figure 8: Total time in minutes for processing different amounts of transactions
by different clients

In Fig. 8 [Rouhani and Deters (2017), p.73], we can see that the GetH client
is slower than Parity when running 1000 to 5000 transactions. Judging from
these results, it can generally be said that Parity is a faster client in processing
Ethereum transactions.

3.11 Ethereum Transaction Fees
The paper by Pierro et al. discusses the various factors which determine the
price of Gas that an Ethereum transaction costs. A transaction will only get
approved by miners once the price is paid to them. This paper concludes that
only a few factors do have a major impact on the Gas price, which are mainly
the number of miners and pending transactions. [Pierro and Rocha (2019)]

3.12 Optimized Execution of Business Processes on Block-
chain

García-Bañuelos et al. covers collaborative business processes running on Smart
Contracts on the blockchain. More specifically, it proposes to optimize the cost
per transaction. The areas targeted by this optimization strategy are the initial-
ization cost, the task execution cost as well as improved runtime components.
This way, gas consumption is minimized in a Solidity Smart Contract which is
created by compiling a Business Process Model and Notation (BPMN) process
model. [García-Bañuelos et al. (2017)]

3.13 A Cloud Data Movement Policy Architecture
Using Smart Contract technologies to improve the level of trust users have using
cloud services is a benefit my proposed implementation aims to offer. This paper

21

explains how trust in the cloud is negatively affected by an "outdated Service
Level Agreement (SLA) model, untrusted third parties with access to our data,
unknown data location, and unwanted data movement" [Kirkman and Newman
(2018), p. 1]. Similar to my implementation, it proposes to use the Ethereum
blockchain to store data and concludes that decentralization can solve the trust
issue users have with the application.

3.14 Using Smart Contracts for Cloud Tenant Manage-
ment

An application to manage tenant and service accounts is presented by Nayak et
al. The authors explain how private and public key pairs are generated by clients
to handle authentication and identity management in an application based on
the blockchain system Quorum. The paper argues that trust and transparency
can be increased by offering "security, non-repudiation, tamper-resistance, and
easy transaction history access" [Nayak et al. (2018), p. 1] to users through the
use of blockchain technology, and mentions increased scalability and resilience
as additional benefits of the technology.

3.15 Decentralized Voting Platform Based on Ethereum
Blockchain

Khoury et al. propose a voting mechanism without the need of a trusted au-
thority running a third party server. Using a decentralized, trustless voting
platform, users can cast their vote using their mobile phone numbers as a way
of authentication, while their privacy is guaranteed by the application running
on the Ethereum Virtual Machine.

In Fig. 9 [Khoury et al. (2018), p.4], we can see how the voting contract
checks if a user is eligible to vote and if he/she has already taken part in the
election. Multiple votes per phone number are restricted in this blockchain-
based system, making the presented platform a practical way of ensuring the
authenticity of voting participants in the system. [Khoury et al. (2018)]

3.16 Towards Secure Ethereum-Based E-Voting
Yavuz et al. cover the safety, transparency and ease of use of eVoting-Systems.
The presented application uses the Ethereum wallets (or an Android device for
users without an Ethereum wallet) and the Solidity Smart Contract language to
ensure one vote per user in a transparent system which allows for user privacy.
The records of ballots and votes is held in the Ethereum blockchain after an
election takes place. [Yavuz et al. (2018)]

22

Figure 9: A voting mechanism aided by an Ethereum Virtual Machine

3.17 A Decentralized Ethereum-Based Marketplace Ap-
plication

Blockchain applications can increase the level of users privacy, reduce cost in
the fees users would have to pay in centralized systems, and remove the ability
to arbitrarily block users from a service. In Ranganthan et al., the Truffle
development framework is used to create an Ethereum blockchain platform to
form a decentralized marketplace application, whose functions are contained in
a Smart Contract. The paper concludes that the average transaction runtime in
the application is 3.8 seconds, and the cost of transactions is cheaper than both
online (e.g. EBay) as well as offline (e.g. Sotheby’s) marketplaces, according to
the cost analysis presented. [Ranganthan et al. (2018)]

3.18 Attack and Defence of Ethereum Remote APIs
Faulty configuration and usage of blockchain technology can introduce vulner-
abilities and reduce the security of applications using the technology. Coun-
termeasures to possible attacks on the Go-version of the Ethereum client are
presented in Wang et al. Encrypting traffic, adding access control, separating
transaction signing and forwarding, using multi-signature technology and tradi-
tional security solutions (such as firewalls and intrusion detection systems) can
be used to increase the security of Ethereum applications. [Wang et al. (2018)]

23

3.19 Blockchain for Trustworthy Coordination
Ciatto et al. describes how fully-decentralised, trustworthy coordination can
potentially be realised using Smart Contracts to create a multi-agent system
(MAS). The Ethereum technology is mapped onto the LINDA tuple-based
coordination model, and two proof-of-concept implementations are being dis-
cussed. The cost of execution and the handling of multiple control flows are
issues which are discussed in the paper. [Ciatto et al. (2018)]

3.20 Caterpillar: A Blockchain-Based BPMS
Running on top of an Ethereum blockchain, the Business Process Management
System (BPMS) presented by Pintado et al. is a prototype that makes the
creation of process model instances possible. Also, the state of process instances
can be tracked and process tasks can be executed in this application. The
Smart Contracts of the Caterpillar BPMS are generated by a BPMS-to-Solidity
compiler and the blockchain stores its process instance states.[Pintado et al.
(2017)]

3.21 An Ethereum-Based Smart Transportation System
A smart transportation system using DLT is proposed by Zichichi et al. In
this infrastructure system, sensor-generated data is shared by users. To ensure
the privacy of the participating users, Zero Knowledge Proof is used. In this
application, data access and authorization are guaranteed by Ethereum Smart
Contracts. [Zichichi et al. (2019)]

3.22 An Ethereum-Based Cloud User Identity Manage-
ment Protocol

Guaranteeing user identity authorization without relying on third party services
is important to ensure a user’s trust in DApps. In Wang et al., an Ethereum-
based cloud user identity protocol is presented, in which a JSON Web Token is
used in OAuth 2.0. Using this system enables an identity management without
requiring a third party to authenticate users. The paper concludes that the
Ethereum-based Identity Management (EIDM) described in the paper offers
more diversified security guarantees than the already established Consolidated
Identity Management (CIDM). It also improves practicability and flexibility
according to the performance evaluation results. [Wang et al. (2019a)]

3.23 A Blockchain-Based Access Control System for Cloud
Storage

Sukhodolskiy et al. discusses how information can be securely shared in an
untrusted cloud environment. Using an Ethereum-based application prototype,
the implementation of security measures such as logging of all important events

24

and ensuring privacy by only transferring the ciphertext of hash codes through
the blockchain ledger is demonstrated. Advantages of the application are the
integrity of the information about transactions, the impossibility to edit data
and the ability to easily customize the access policy for the encrypted data.
[Sukhodolskiy and Zapechnikov (2018)]

3.24 A Secure Cloud Storage Framework With Access Con-
trol

Handling sensible information in decentralized cloud services is also discussed
in Wang et al. Here, a framework of Ethereum blockchain and ciphertext-
policy attribute-based encryption is proposed in order to securely manage cloud
storage and access control. The owner of data in this system can set access
periods in which ciphertext of his/her data can be encrypted and shared with
other participants in the system. [Wang et al. (2019b)]

3.25 Toward High-Performance Permissioned Blockchain
Excessive CPU scheduling, inefficient block broadcast and high latency of ini-
tial blocks synchronization lead to issues with the transaction throughput and
scalability of permissioned blockchains. Because of this, Huang et al. pro-
pose an RDMA-based (Remote Direct Memory Access) permissioned blockchain
framework called BoR (Blockchain over RDMA) to reduce the severity of these
problems. It redesigns the block synchronization protocol and leads to a higher
throughput, less CPU usage and lower latency. [Huang et al. (2019)]

3.26 Decision Support Systems - Definition and Imple-
mentations

Decision Support Systems (DSS) are software systems which can identify, pro-
cess, compile, and support the evaluation of information relevant for human
decision makers. This information can then be used for operational and stra-
tegic tasks. These include functions for sorting and filtering data, their flexible
display and evaluation options, e.g. totals and average calculations, comparis-
ons, and more. Also, DSS can be used to make forecasts or create scenarios
based on the given information.

In the following paragraphs, we will give examples of DSS which were pro-
posed or successfully implemented in different sectors of different industries.

The paper "Decision Support System for the Agri-food Sector – The Sousacamp
Group Case" by Branco et al. describes a business group that had their decision
making accuracy as well as their performance levels increased after implement-
ing a Decision Support system which was implemented and tested in a real

25

environment. This was done by integrating IT/IS into the agri-food organiza-
tions business and operational processes. [Branco et al. (2015), p. 1]

In a review of DSS and applications in Ophthalmology9, it is stated that
Decision Support Systems in mobile apps can help doctors diagnose patients
quicker and more accurately as well as make it easier to find the accurate way
of handling the illness. This is necessary because the amount of information can
be too large to be handled by a single human in a limited amount of time. This
technology could be especially useful in developing countries as well as remote
areas. The paper concludes that at the time of writing, very few such apps
existed in the different mobile app stores. [de la Torre-Díez et al. (2014), p. 1]

The paper "Application Research of an Intelligent Decision Support System
Based on Data Warehousing Technology" describes the integration of a Data
Warehouse with DSS technology in the area of teaching management. Here, a
DSS is used to solve decision-making problems. The system analyses a large
amount of data and provides information to project managers to help them
make decisions to improve the process performance. [Wang (2010), p. 4]

4 Focus and Problem addressed by this Thesis
A major problem with electronic decision-making systems (e.g. eVoting) is that
users do not trust its results and organizations/governments are only reluct-
antly implementing these kinds of systems. The main topic and context of the
task is the conception and implementation of a decentralized Business Decision
Support System (BDSS) which allows authorized users to make decisions in a
trusted environment. The aim of this blockchain-based system is to create an
application which can be used to make tamper-proof decisions in organizations.
Such a BDSS must be fast, reasonably cheap and robust against malicious at-
tacks. Especially the last point is an advantage which distributed technologies
have over a more traditional, central approach, such as a server-client architec-
ture.
The implementation will be done in the form of a DApp and its functionality is
executed in Smart Contracts. The focus of this thesis is on creating a properly
working BDSS focusing on dedicated functionality which helps users to make
trusted decisions in an organization by providing distributed software in the
form of a DApp that can not be tampered with.

4.1 Scope and Requirements of the Implementation
Problems, challenges, and goals discussed in the following paragraphs and its
implementation include allowing users to take part in different kinds of vot-
ings in the course of decision making (different possible configurations are ex-

9The field of medicine concerned with the treatment of eye disorders

26

plained in chapter 6 of this thesis). There will be comprehensive, sustainable
and tamper-proof documentation of the decision making process. The user’s
privacy is preserved by decision-related personal information being only visible
in a closed-off private blockchain in a cloud environment.
Users need to be correctly authenticated by the system in order to guarantee
one vote per authenticated person. Organizer’s rights must be managed, which
will be done using roles in the ABW.

A private, permissioned blockchain system on the Azure cloud will be used
to implement the BDSS system. This leads to an increased level of data security.
On the other hand, this does have the disadvantage of making the system more
centralized (compared to a public, off-cloud blockchain) since users need to be
authenticated in order to take part in the organization and its decision making
processes.

4.2 Problem Description
Online participation in decision making processes is a central part both of
BDSS’s as well as of eGovernance applications. Web-based applications and
processes which let citizens participate remotely in political events have been
tried and tested for a long time, but they did - despite many prototypes and
test runs - not become mainstream and accepted by most of society. Over
the last twenty years, eVoting technology has rarely been used in a real world
environment, despite the long developmental history of eVoting processes.

4.2.1 Practical eVoting Implementations

An eVoting prototype, which was tested in New Zealand in 2001, was shown
strong support by its users. The paper suggests that this technology can lead
to more people taking part in political processes. Some advantages of the new
technology were also identified, such as a shorter time of processing the votes,
reducing the need for voting booths and staff, lowering the number of incorrect
votes (e.g. by the system not allowing the user to check two candidates at the
same time), a lower cost of the election and the system eliminating human ad-
ministrative errors.[Carter and Fielden (2001a), p. 306]
Despite this, as the paper stated at the time that "the ballot box is one of
the last bastions of the pre-digital information era"[Carter and Fielden (2001b),
p. 286], which does still hold true to this day.
In 2002, eVoting was thought to have the potential of being a "new ’killer ap-
plication’ for the Internet and a suitable authentication tool for voting secur-
ity"[Watson and Cordonnier (2002), p. 1]. Back then, smart cards, crypto-
graphy and Internet technologies were used to confirm the identity of voters.
Those applications had a classical Client-Server architecture, which does have
its own flaws - the main problem being that it requires the user to trust one
single authority, which controls the voting server(s) - which may be overcome

27

by blockchain technologies supporting multiple ledgers.
The main security vulnerabilities of an electronic decision making tool were
stated to be data leaking, data manipulation, and program manipulation in
[Beckert and Beuster (2006), p. 68] in 2006. The confidentiality, integrity and
availability of an application of this type must be guaranteed - the service and
resulting data must be available and understandable to its users, and unauthor-
ized third parties must not access it. Using distributed ledger technologies in a
permissioned blockchain, a BDSS which can not be viewed or manipulated by
an attacker can be created.
The lack of users trusting systems which enable online decision making was the
main focus of [Antoniou et al. (2007)] in 2007. This was realized by creating a
more transparently designed and built system, and more specifically, by imple-
menting its three components, which are "the decomposition of eVoting systems
into “layers of trust” for reducing the complexity of managing trust issues in
smaller manageable layers, the application of a risk analysis methodology able
to identify and document security critical aspects of the eVoting system, and a
cryptographically secure eVoting protocol"[Antoniou et al. (2007), p. 378]. This
framework, which verifies its security at each layer, can lead to an increased level
of perceived security by its users. It does however not resolve non- technological
issues, such as the voters right to verify that their vote was actually counted
by the system[Antoniou et al. (2007), p. 387]. This problem can be resolved
in a private blockchain which is closed-off to the public, but keeps results and
decisions transparent to the users of an organisation.
In Fig. 10 [Mei (2009), p. 169] [Meier (2012), p. 149], we can see eDemocracy

Figure 10: Knowledge Society

being, alongside with eCollaboration and eCommunity, a part of eParticipation.
Looking at this summary of the knowledge society, the viewer of the figure may

28

notice that most of its parts and levels - including information, communication
and production, have been successfully implemented over the last two to three
decades. There is also a large amount of eCollaboration tools available today,
as well as eCommunities (e.g. social media), but eDemocracy remains an ap-
plication which is rarely used in formal decision making processes. Without
the use of computer-based expert systems and knowledge, an information and
knowledge based society cannot thrive.
Meier et al. notes in 2009 that most European countries have already made ex-
periences with electronic decision making in eGovernment applications. Possible
improvements which eVoting can provide were seen in a better documentation
of the entire decision making process - before, while, and after the voting takes
place. On an eGovernmental portal (or in the case of my implementation, the
portal of an organisation), the information about candidates or decisions which
users can decide upon can be arbitrarily detailed, including links to information
pages.
An increased level of mobility is another advantage which electronic decision
making can provide, and which benefits disabled persons in particular. Also,
this ensures that citizens who live abroad can exercise their rights in a simpler
way. Furthermore, electronic voting and elections can be used to ask additional
questions to users. This can increase the level of eParticipation and make the
decision making process more precise. [Meier (2009), p. 52-53] About eGov-
ernemental portals (and the same statement is true for an organisations or a
companies portal), Meier et al. concludes that "not only does it provide gov-
ernment services to citizens and businesses, it can also include procedures and
knowledge bases for eDemocracy. The road to Public Memory is a long and
rocky one, since important issues such as protecting the privacy of citizens,
copyright issues for digital objects, archiving concepts and times for digital
storage media etc. must be clarified on an ongoing basis and implemented
using suitable methods and techniques. Last but not least, public memory,
implemented in a publicly accessible eGovernment portal, enables democratic
political controlling and thus paves the way for an information and knowledge
society." [Meier (2009), p. 60, translated] What does the empirical evidence from
real world eVoting applications suggest? In 2011, the Swiss voting system was
described as being ’decentralized’[Gasser and Gerlach (2011), p. 102]. However,
this was not due to the use of blockchain technologies, but because the 26 can-
tons of Switzerland and its different votings systems. The cantons of Geneva,
Zurich, and Neuchatel started a series of eVoting pilot projects already in 2001
and 2002. Remote, electronic voting was tested until 2006, when the projects
were concluded and the report about them stated that "the Federal Government
deemed the tests a success and opined that there was neither reason to stop fur-
ther tests nor to hastily extend them"10. Also, more than 10% of Swiss citizens
living abroad11 makes the ability to cast a vote remotely especially appealing.

10Federal Council (2006a) Bericht über die Pilotprojekte zum Vote électronique vom 31.
Mai 2006 [Report on the e-voting pilot-projects]. Federal Gazette 5459

11see https://www.bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung/migration-
integration/auslandschweizer.html, retrieved on August 19th 2020

29

By 2011, three cantons had an e-voting infrastructure in a decentralized (mean-
ing that most cantons have developed their own system independently) and
distributed way. Potential problems the federal government has seen in this ap-
proach were mostly of a human nature and already mentioned before, namely "a
potential participation gap as a result of the digital divide, the de-ritualization
of political rights, shorter processes of opinion formation, information overload,
and security risks." [Gasser and Gerlach (2011), p. 108] A lot of countries offer
parliamentary websites which support petition systems. This allows authorized
users to create new petitions on which others can vote. Such applications need
to correctly authenticate users in order to attain credibility by a wider public.
In 2012, it was possible to use made up names or non-existing / newly-created
freemail addresses on the official German and Austrian petition websites. Pro-
tection from SPAM was handled via a Captcha mechanism. At the time12, four
German and two Austrian petitions had more or close to 1000 support declar-
ations. The biggest and first transnational petition website is the ECI, which
"due to its potential size is arguably the current flagship eParticipation project
in the entire EU"[Prosser (2012), p. 15]. It allows EU citizens to vote on peti-
tions which will be discussed by the European Commission if at least one million
users have signed a petition. Authentification is a potential problem here, since
different member states use different means of authenticating users, and not all
of them require a passport or ID for this purpose. [Prosser (2012), p. 13-15]

4.2.2 Smart Contract Based Systems

Decision making systems using Smart Contracts have already been tested, for
example BroncoVote, which is a university voting system based on Smart Con-
tracts on a private blockchain using Ethereum. Users who belong to a university
can take part in its surveys or votes. They are authenticated by their student-
or university-ID. [Meier (2020), p. 342-344] Advantages of this system were men-
tioned to be a lack of a central authority which could manipulate the results,
the ability of users to verify if their vote was counted correctly and the ability
to see the correct results of the voting. A disadvantage could be that users
still may not trust algorithms and data structures when making decisions, even
when using secure blockchain technologies. [Meier (2020), p. 350-351]

A blockchain-based voting system using Smart Contracts was also imple-
mented in Yu et al. It is based on Hyperledger Fabric and has the objective of
ensuring the security of its voting results while preventing attacks on the sys-
tem. The blockchain platform does guarantee verifiability in this system, while
cryptographic techniques, proof-of-knowledge, and linkable ring signatures are
used to increase the user’s level of privacy and security. [Yu et al. (2018)]

12June 17, 2012

30

5 Design and Implementation
The distributed computing platform used in the implementation of the BDSS
is a soft fork of Ethereum called Quorum and the blockchain environment are
cloud system technologies provided by Microsoft Azure.
Technologies used in the implementation include the Azure Virtual Machine,
the Solidity Smart Contract language, the Azure Blockchain Service (to set up
a private blockchain), Quorum (a soft fork of Ethereum which was developed
by JPMorgan) and the ABW as an environment to host and run DApps.

There are alternative approaches of implementing Smart Contracts, e.g. with
Hyperledger Fabric, BitML (for Bitcoin Smart Contracts), Tendermint, and
other Smart Contract technologies. For this implementation, the well-known
and widely used Ethereum distributed computing platform will be used.
There are a variety of cloud services offering Blockchain as a Service support,
which could be used in this implementation as well. Some well-known examples
include Microsoft Azure, Google Cloud, and Amazon AWS.
The implemented prototype enables users of the system to vote in decision mak-
ing processes and to sign up for events. Organizers in the system are able to
create votings and events. Users are authenticated by an administrator before
they can take part in any of the processes supported by the private blockchain.
Administrators handle the Smart Contract code in the cloud, can add new ver-
sions of it and authenticate users by inviting them to the Smart Contract(s) on
the website of the ABW implementation.

Different kinds of election configurations were implemented to support dif-
ferent requirements of an organization:

• In a common election or voting, each person gets one vote. This kind of
vote can be used for important decisions, e.g., in order to elect executives
of the organization and can be conducted using this implementation.

• There can be votings where organizers have veto rights, e.g., the financial
executive can decide if money should be spent on expenditures.

• There can be votings where the executives do have a higher weight of their
vote. Their decisions are more important in this kind of election.

• In some votings, it may be possible for a user to abstain from it and to
give his/her vote to another member. This can be done, e.g., due to an
illness of the user which prevents him/her from taking part in the election,
or because the decision is not that important to him/her. It is an optional
choice to enable abstaining from voting in elections and it may only be an
option in less important decisions.

• There are also decisions without an election if an expert, who was appoin-
ted to an authoritative position, makes a decision in his/her field. In this

31

case, the process is finalized immediately and no voting takes place. This
kind of decision is simply an entry of data into the blockchain.

5.1 Simple Blockchain Voting System
This implementation is a simplified version of the Voting System presented in
the next chapter. The point of it is to explain how the voting functionality
works before showing the complex version of the system and all of its possible
parameters.
The Simple Blockchain Voting System (SBVS) does have organizers and mem-

Figure 11: An organizer can type parameters of a new Smart Contract into
these input fields

bers as roles. Organizers do create votes and members are voting in it. There
are three states in the process: First, the organizer does ask a question, then
members vote on it, and once the deadline is reached, an organizer can conclude
the vote.
The parameters an organizer must enter to set up such a Smart Contract are the
vote question, number of choices and an optional deadline. The user interface
of the Smart Contract creation can be seen in Fig. 11.

The sequence diagram in Fig. 12 shows a typical process of the Simple
Blockchain Voting Process, which is described in greater detail in chapter 6.
In this system, a user has access to a user interface provided by the ABW, which
looks up a function defined in a JSON file (which contains allowed roles, states,
transitions and functions) and triggers the function in the Solidity code.

32

Figure 12: A Simple Blockchain Voting System diagram

In this diagram, an organizer is creating a Smart Contract, entering the para-
meters which will trigger the constructor of the Solidity file. Then, members of
the system vote for their choices. Finally, an organizer concludes the decision
making process.

5.2 Blockchain Voting System
This part of the implementation represents a decision making system which
can be deployed in the ABW. The implementation consists of the Solidity file
“BlockchainVote.sol”, which contains all voting functionality, and the JSON file
“BlockchainVote.json”, which aids in enabling the interaction between the Azure
service, including its user interface, and the Solidity code.

The UI of the ABW can be seen in Fig. 13. Here, a cancelled (failed) voting
contract, its details and the previous activity of the Smart Contract, such as
users voting or transferring votes, are visible to authenticated users.

5.2.1 Roles

Users of the network can be organizers or members.
Which functions a user is authorized to access depends on the parameters defined
during the creation of the Smart Contract. Usually, an organizer starts a vote
by creating the Smart Contract (see screenshot), and concludes it, while mem-
bers can vote for it. However, by changing a few parameters, members can be

33

Figure 13: The ABW in a browser on a mobile device

excluded from a vote, or organizers can take part in it, or it can be simply a
decision by one organizer.

5.2.2 States

The possible states of the decision making process are the following:

Question The first state after creating the Smart Contract where the (voting)
question is being asked and nobody did yet vote.

Vote While voting is active, users can participate in the decision making pro-
cess.

Finished The last state of this process if all conditions were met, e.g. number
of voters which participated or the deadline reached. This state is reached once
an organizer takes the action to conclude it.

Vetoed The last state of a vote if an organizer decides to veto a decision which
was already concluded.

Cancelled The voting could not be concluded, e.g. because the deadline was
reached, but not enough voters have taken part in the decision making process.

Roles, states and the transitions between them are defined in a JSON file
which a developer needs to create. This JSON file is also connected to the

34

1 {
2 "Name": "Vote",
3 "DisplayName": "Vote",
4 "PercentComplete": 60,
5 "Value": 1,
6 "Style": "Success",
7 "Transitions": [
8 {
9 "AllowedRoles": ["Member"],

10 "Function": "SendVoteAsMember",
11 "NextStates": ["Vote"],
12 "DisplayName": "Send Vote"
13 },
14 {
15 "AllowedRoles": ["Organizer"],
16 "Function": "SendVoteAsOrg",
17 "NextStates": ["Vote"],
18 "DisplayName": "Send Vote as organizer"
19 },
20 {
21 "AllowedRoles": ["Organizer"],
22 "Function": "ConcludeVote",
23 "NextStates": ["Finished","Cancelled"],
24 "DisplayName": "Conclude Vote"
25 },
26 {
27 "AllowedRoles": ["Member"],
28 "Function": "TransferVoteAsMember",
29 "NextStates": ["Vote"],
30 "DisplayName": "Abstain and transfer vote"
31 },
32 {
33 "AllowedRoles": ["Organizer"],
34 "Function": "TransferVoteAsOrg",
35 "NextStates": ["Vote"],
36 "DisplayName": "Abstain and transfer vote as organizer"
37 }
38]
39 },

Code Listing 1: JSON data snippet showing allowed transactions based on the
’vote’ state of the process

Solidity constructor and functions used to run the Smart Contract. In the code
snippet (listing 5.2.2), we see a part of the JSON code which defines how the
Solidity code will work in the ABW. Specifically, it presents the "Vote" state
and defines which possible actions can be taken once this state has been reached.
Possible transitions in this state, which are allowed to users based on their role,
are the functions:

• "SendVote" - Allows a member to vote in the system.

• "SendVoteAsOrg" - Allows an organizer to vote. It is important to have
this as a separate function since it is possible to have votings where mem-
bers, organizers or both can participate. In the corresponding Solidity
function, it is checked if the user (based on his/her role) is allowed to
vote.

• "ConcludeVote" - An Organizer can conclude a vote once the require-
ments have been met, e.g. a deadline reached and/or enough users having
participated.

• "AbstainAndTransferVote" - Using this function, organizers and members
can give their vote to another user.

Once a different state is reached, different transitions will be possible, which are
defined in the JSON file.

5.2.3 Parameters

There are a number of parameters an organizer can use to set up an individual
Smart Contract. Those parameters are used in the constructor of the Solidity
contract, which is similar to object-oriented classes in other programming lan-
guages. The parameters an organizer can enter in the ABW UI can be seen in
Fig. 14. Variables not visible in the screenshot are the vote question and the
number of choices.

String Question The question/statement users are presented with when vot-
ing for a decision. The number and position of choices should be made clear
in the question, e.g.: “Do you choose (1) Arnold, (2) Bertha, (3) Clara or (4)
Daniel as head of our organisation?”. These numbers correlate with the array
explained in the next point.

Integer Number of choices The amount of choices for the decision, e.g. the
number of candidates members can vote for. In the (Solidity) Smart Contract
implementation, this is represented in an integer array where a user vote incre-
ments one entry of the array by one. If e.g. users can vote for the candidates A,
B, C and D, then they are represented by an array [0, 0, 0, 0] and a user voting
for B changes this array to [0, 1, 0, 0].

36

Figure 14: Available parameters of the Blockchain Voting System (BVS)

Integer Threshold Called the "Min. number of voters" in the UI, this para-
meter defines how many voters have to participate in the vote in order to suc-
cessfully conclude it. If, for example, the threshold is set at "12", then twelve
users have to vote to make the decision valid. If the threshold is not reached, but
the deadline is, then the final state of the Smart Contract will be “cancelled”.

Integer Deadline Before the deadline ends, members can vote on the de-
cision. Once it is over, organizers can conclude the vote to make the decision
official. A value of 0 is allowed to create a vote without a deadline. If the
deadline is accidentally set at a point before the current date, then it will auto-
matically be set to zero. This value is an integer, and more specifically a Unix
epoch timestamp (seconds since January 1st 1970).

Boolean OrgDecision If true, then it is not a vote, but a single decision by
an organizer which will be stored in the blockchain. No voting takes place for
this type of decision.

Boolean AllowVeto If true, then users with the role of an organizer can veto
a decision after the vote was concluded. This leads to the vote being cancelled
(not accepted). An organizer can veto a decision up to 24 hours after the vote
was concluded.

Boolean MembersCanVote In a common voting process, this parameter is
true by default. It lets members of the organisation vote for a decision.

37

Integer OrganizerVoteWeight If this variable is larger than zero, then or-
ganizers can take part in a vote. Also, usually every voter does have one (1)
vote. If this integer parameter is larger than 1, then organizers do have a larger
vote weight in the decision making process.

Boolean IsPrefVote Enables a preferential vote, also known as ranked vot-
ing. If there are the choices A, B, C and D in a common (non-preferential)
voting, then voters can e.g. choose "3" to vote for C.
If it is a preferential vote, then users can express their choice in a more soph-
isticated way: If they like C the most, D is their second choice and A is their
least favorite candidate/choice, then they can input “4, 3, 1, 2” as their voting
choice. The favourite candidate will then get the largest amount of vote points,
which are stored in an array. In this case, candidate C would get three points,
D would get two and B receives one point.

Boolean AllowAbstain Allows a user to abstain from a vote and to give
his/her vote to another user. Taken from a user-friendly drop-down menu, the
wallet address of the user that receives the additional vote is used as input.

Boolean HideResults This variable is used to hide the combined results
from the user. If true, then a user is still capable of seeing individual decision
by other users, but the cumulative number displayed in the user interface will
show e.g. "0,0,0,0" even if multiple users have already voted. Once the process
is finished, the actual numbers will be revealed. This can be used to reduce the
influence which other user’s decisions have on the voter.

5.2.4 Voting

The sequence diagram in Fig. 15 describes a possible scenario of a process of the
Blockchain Voting System. Here, the larger number of possible actions (com-
pared to the simplified version in chapter 5.1) is evident: The organizer does
have the option to transfer his vote (and he is also able to cast a vote). The
function "TransferVoteAsOrg()" is necessary to determine whether the user has
a role which is allowed to transfer votes in the current Smart Contract. Now,
the member can vote twice since he has gotten a vote from the organizer. Then,
the organizer concludes the vote. If the parameter for it is enabled, then he
does have the option of vetoing the decision, which leads to the Smart Contract
terminating in a cancelled state.

In the code snippet below (Code Listing 2), the vote functionality of the
Blockchain Voting System can be seen. Its input is the voteNum, which is the
choice a user has taken, and the vote_weight, which can be more than one (1)
for organizers in special cases. The voteNum is an integer array in preferential
votes, which expresses a users more and less preferred choices. Otherwise, it is
still an array variable, but the user does only input a single value, which is then

38

Figure 15: A Blockchain Voting System diagram

processed by the "vote" function.
The boolean value "voteInProgress" is used to check if another user is currently
using the function. In order to prevent issues in the system, such as one user
manipulating the system by voting with multiple devices at the same time and
his/her votes erroneously getting counted multiple times, this global lock vari-
able is used. It can be argued that such a measure could lead to multiple users
getting blocked in the function if they are voting at the same time, however this
potential problem is tested in chapter 6.4 to evaluate whether this could be an
issue in a real world scenario or not.
The wallet address of a user, voter_wallet (msg.sender), is taken to uniquely
identify him/her. This is crucial to the decision making process, as this vari-
able will be stored in a mapping (with the function setWallet(voter_wallet)) to
signify that a user has already voted. If "contains(voter_wallet)" is true, then
he/she did already vote and can not repeat this process.
Also, the "Deadline" variable must be larger than the current time. If the dead-
line was set at zero by the organizer, then this variable is simply ignored and not

39

used in the process. Something which should be noted about this parameter is
that the "currentTime" is determined by the "block.timestamp" function, which
is the only way of getting the current time in Solidity. This function gets the
timestamp as a uint256 value in seconds since the epoch 13, provided by a nodes
in the network. A potential issue here could be that nodes can influence this
value, and it can be manipulated to be up to 900 seconds off14. This was not an
issue when experimenting with my implementation, since the value was exact to
the second while using the Smart Contract in the ABW, however this limitation
should be paid attention to by developers using the "block.timestamp" function
in Solidity implementations.

1 // vote functionalitiy for members and organizers
2 function vote(uint[] memory voteNum , uint vote_weight) public
3 {
4 if(voteInProgress == false)
5 {
6 voteInProgress = true;
7
8 address voter_wallet = msg.sender;
9

10 uint currentTime = block.timestamp;
11 if(contains(voter_wallet) == false && (Deadline >=

currentTime || Deadline == 0))
12 {
13 State = StateType.Vote;
14
15 // check if a vote was transferred to current user
16 if(containsTransferred(voter_wallet)){
17 removeTransferredWallet(voter_wallet);
18 }
19 // if not , use own vote
20 else {
21 setWallet(voter_wallet);
22 }
23 NumOfVoters = NumOfVoters + 1;
24
25 if(IsPrefVote == false){
26 if(! HideResults)
27 Choices[uint(voteNum [0]-1)] = Choices[uint(

voteNum [0]-1)] + vote_weight;
28 else
29 ChoicesHidden[uint(voteNum [0]-1)] =

ChoicesHidden[uint(voteNum [0]-1)] +
vote_weight;

30 }
31 else {
32 uint checkNum = 0;

13see the documentation at https://solidity.readthedocs.io/en/latest/units-and-global-
variables.html?highlight=block#block-and-transaction-properties, retrieved on August 20th
2020

14see https://github.com/ethereum/wiki/blob/c02254611f218f43cbb07517ca8e5d00fd6d6d75/Block-
Protocol-2.0.md, retrieved on August 20th 2020

40

33 uint voteNumAccumulated = 0;
34 for (uint i = 0; i < NumOfChoices; i++) {
35 if(voteNum[i] > NumOfChoices || voteNum[i] < 1)

{
36 voteInProgress = false;
37 revert("Error - Incorrect number for

preferential vote detected.");
38 }
39 voteNumAccumulated = voteNumAccumulated +

voteNum[i];
40 checkNum = checkNum + i+1;
41 }
42 //Check if the user did input too many choices (

array too long. Too short array will be caught
before .)

43 if(getCount(voteNum) != NumOfChoices){
44 voteInProgress = false;
45 revert("Error - Inconsistent number of choices

for preferential vote detected.");
46 }
47 if(voteNumAccumulated == checkNum){
48 for (uint i = 0; i < NumOfChoices; i++) {
49 if(! HideResults)
50 Choices[uint(i)] = Choices[uint(i)] + (

NumOfChoices*vote_weight - voteNum[
i]* vote_weight);

51 else
52 ChoicesHidden[uint(i)] = ChoicesHidden[

uint(i)] + (NumOfChoices*
vote_weight - voteNum[i]*
vote_weight);

53 }
54 }
55 else{
56 voteInProgress = false;
57 revert("Error - Incorrect numbers for

preferential vote.");
58 }
59 }
60 }
61 else{
62 voteInProgress = false;
63 revert("Error - you can only vote once");
64 }
65 voteInProgress = false;
66 }
67 else{
68 revert("Error - voting currently in progress");
69 }
70 }

Code Listing 2: Voting functionality in the Solidity code

Next, it is confirmed if a user has gotten a vote from another user. If a vote
was transferred, then it appears in an integer mapping and "containsTrans-
ferred(voter_wallet)" will return true. In this case, the integer in the mapping
is reduced by one, and the user can vote with it. Otherwise, the function "set-

41

Wallet(voter_wallet)" is used, utilizing his/her own vote.
Then the "NumOfVoters" variable is increased by one. This variable is visible
to users of the system in the UI, and it is used to verify if the threshold (min.
number of voters required to successfully finish the process) has been reached.
If results are not hidden, then they are added to the "Choices" array. Otherwise
they are added to the "ChoicesHidden" array, which is not visible to users, and
then transferred to the "Choices" array only once the process has concluded.
If it is a preferential vote, then a number of conditions have to be met to check
if the user input is valid:
The highest number a user inputs can not be a higher value than the "Nu-
mOfChoices" array is long. The array can not be longer or shorter than the
number of choices. Also, an integer variable is used to confirm if the user has
distributed the correct amount of vote weight (voteNumAccumulated == check-
Num), e.g. if there are four choices, then it would be 10 (1+2+3+4) points which
he/she can give to the different choices. This way, the user does still have some
flexibility in his/her choices, e.g. he/she can choose "0,2,2,4" or "1,2,3,4", but
he/she can not give one user an unusually low or high amount of vote weight,
which secures the integrity of preferential votes in this implementation.

5.2.5 Transferring a vote to another user

The "WalletsTransferred" mapping maps wallet addresses to uint’s in order to
confirm whether or not a user has gotten vote(s) from other users. In the func-
tion "AbstainAndTransferVote" (see Code Listing 3), a user can input the target
wallet address, which he/she chooses from a drop-down menu. This will only
work if the organizer who has created the Smart Contract allows transferring
votes. Also, a user can not transfer a vote to himself.

1 //do not vote and give vote to someone else
2 function AbstainAndTransferVote(address target_address) public
3 {
4 address voter_wallet = msg.sender;
5 uint currentTime = block.timestamp;
6
7 // transfering vote allowed and target is not own address
8 if(AllowAbstain && voter_wallet != target_address)
9 {

10 // if user did not vote yet and the vote is still active
11 if(contains(voter_wallet) == false && (Deadline >=

currentTime || Deadline == 0))
12 {
13 // if user got transferred votes , then remove them

first
14 if(containsTransferred(voter_wallet)){
15 removeTransferredWallet(voter_wallet);
16 }
17 //else , remove all votes of user
18 else{

42

19 setWallet(voter_wallet);
20 }
21 addTransferredWallet(target_address);
22 }
23 else
24 {
25 revert("Error - could not abstain from vote.");
26 }
27 }
28 else
29 {
30 revert("Error - could not abstain from vote.");
31 }
32 }

Code Listing 3: Vote transfer functionality in the Solidity code

Next, the function examines if the user has already voted and if the deadline
has not passed yet. If the voting is still active, then it will be checked if the user
has gotten votes from other users (which he/she can theoretically give to yet
other users), and if that is not the case, then his/her own vote will be transferred
to the target user and the user will not be able to give his/her vote in the decision
making process. The target’s address is then added to the "WalletTransferred"
mapping via the "addTransferredWallet" function.

5.2.6 Concluding the process

There are a few requirements which have to be met for an organizer to conclude
a voting successfully. In the "ConcludeVote" function (see Code Listing 4) it
is first validated if the number of users is at least as large as the predefined
threshold - the number of users who need to take part in the voting. It should
also be noted that if a user has transferred his/her vote to another user, that
this action will not increase the number of users who have taken part in the
process. Also, the deadline needs to be either disabled (if it has a value of zero),
or it needs to have passed. If both conditions are met, then results of the voting
will be shown (if the organizer did set the HideResults parameter to be true,
otherwise they were already visible), and the process is finished successfully.
The current time is then recorded in the finishTime variable, which is necessary
to allow organizers to veto the decision up to 24 hours after the process has
concluded.

1 // conclude the voting if all conditions are met. This leads to the
last successful (finish) state of the contract.

2 function ConcludeVote () public
3 {
4 uint currentTime = block.timestamp;
5
6 // if threshold and deadline reached
7 if(NumOfVoters >= Threshold && (Deadline < currentTime ||

Deadline == 0))

43

8 {
9 //if choices were hidden , then reveal them now

10 if(HideResults)
11 for (uint i = 0; i < NumOfChoices; i++)
12 Choices[uint(i)] = ChoicesHidden[uint(i)];
13
14 State = StateType.Finished;
15 finishTime = block.timestamp;
16 }
17 // deadline (exists and) reached BUT not threshold (not enough

votes) => Cancelled state
18 else if(NumOfVoters < Threshold && Deadline < currentTime &&

Deadline != 0)
19 {
20 State = StateType.Cancelled;
21 }
22 // conditions not (yet) met => do not finish or cancel
23 else
24 {
25 revert("Error - not all conditions met to conclude voting."

);
26 }
27 }

Code Listing 4: Vote concluding functionality in the Solidity code

It is also possible that the deadline has passed, but not enough users have
taken part in the process (NumOfVoters < Threshold). In this case, the final
state of the process will be "cancelled".
If an organizer tries to conclude the voting but the conditions to conclude it have
not yet been met (e.g. deadline has not yet passed), then he/she will simply
receive a warning and the voting process will continue.

5.3 Event Signup System
Another feature of the BDSS is the "Event Signup" Smart Contract, which
allows organizers to create events to which both members and organizers can
sign up. The time of the sign up process is defined by a deadline until which
users can sign up, and after which the process can be concluded. The UI showing
the parameters an organizer can enter into the fields is shown in Fig. 16.

5.3.1 States

CreatedEvent An event was just created by an organizer.

SignupEvent Users are signing up to the event, which is possible until the
deadline passes.

Finished The sign up process was finished successfully.

44

Figure 16: Creating an Event Signup Smart Contract.

Cancelled The sign up process could not be finished successfully, e.g. because
not enough users signed up or the organizer has cancelled the event. Only the
organizer who created the event can cancel it. This is ensured by confirming if
the wallet address does belong to the same organizer.

5.3.2 Parameters

String Title The name of the event.

String Description A short description of it.

String Location The location where it takes place.

Integer TimeOfEvent The time when the event takes place (as a UNIX
timestamp). The date must be in the future.

Integer TimeSignup The time (deadline) until which the users can sign up
to the event. Needs to happen before the event starts.

Integer Price The expected costs / ticket price / entry fee / etc. for each
individual user.

Integer Min. Attendees The minimum amount of users required to finish
the sign up process successfully. If the deadline is reached, but not enough users
did sign up, then the process will conclude in a “Cancelled” State.

45

Figure 17: An Event Signup System diagram

A diagram explaining a possible process in the Event Signup System can be
seen in Fig. 17. Here, an organizer creates an event Smart Contract, and a
member signs up. Later, the member decides to unsubscribe from the event.
Finally, the organizer chooses to cancel the event, ending the process in a "Can-
celled" state. It is also possible for him to conlude the event successfully, which
leads to the "Finished" state of the process.

5.4 Simultaneous Voting Script
To verify whether or not users are able to vote at the same time, a multi-
threaded Python script is used to simulate users pressing the vote buttons at
one moment. This script will be used in an experiment in chapter 6.4.

The following code snippet describes how four different threads start up and
log into Microsoft Azure accounts. Usernames, passwords and the information
whether they are organizers or members is stored in arrays, and this information
is used as input to start the threads. There is a pause of a few seconds between
starting the threads in order to decrease the chance of a browser crashing on
start.

46

1 #start all voting threads
2 i=0
3 for user in users:
4
5 #start thread
6 if(use_same_accounts):
7 x = threading.Thread(target=voter_thread , args=(users[0],

passwords[0],
is_organizer[0]))

8 else:
9 x = threading.Thread(target=voter_thread , args=(user ,

passwords[i],
is_organizer[i]))

10 x.start()
11 i+=1
12 # pause so that the threads will not crash on start
13 sleep(6)

Code Listing 5: Starting multiple threads opening browser windows to vote
simultaneously

Python Selenium is a library which provides a WebDriver API to remotely
control or automate actions in a common browser like Firefox, Edge, Chrome,
and more. This way, automated online beta tests (and other web tasks) can be
conducted easily.
Inside the threads of this implementation, Selenium is used to make the browser
automatically log in and navigate to the vote button of the Smart Contract UI.
In the code snippet below, we can see how the main thread votes simultaneously
using the other threads. The browser will look for the field where the vote num-
ber is typed in (the variable "vote_num_field" in the Python script) 15 using
XPATH, then press TAB so the "Take action" button will be in focus again
(and thus clickable), and then the thread will wait.

1 #enter number
2 vote_num_field = driver.find_element(By.XPATH , '//input[contains(

text() ,"")]')
3 vote_num_field.send_keys(vote_choice)
4 vote_num_field.send_keys(Keys.TAB)
5
6 #wait for exact millisecond , then
7 while(vote_time > time.time()):
8 sleep(0.0001)
9

10 #click vote button ("Take action ")
11 try:
12 driver.find_element_by_id('id__38 ').click()
13 except:
14 try:
15 driver.find_element_by_id('id__32 ').click()
16 except:

15The user interface showing a user voting can be seen in Fig. 20

47

17 try:
18 driver.find_element_by_id('id__34 ').click()
19 except:
20 driver.find_element_by_id('id__40 ').click()
21
22 print("current time: " + str(time.time()))
23 print("voting with " + user + ";" + datetime.now().strftime("%d.%m.

%Y %H:%M:%S") + "\n")

Code Listing 6: Threads will wait and vote concurrently (in the range of 20ms)

All threads will then vote, but only at the time when the predetermined
"vote_time", which is a UNIX timestamp, is reached. Then the "Take action"
button is clicked by all browsers at the same time, and the time of this event is
recorded.

6 Demo Application and Scenario
In this chapter, we are explaining the experimental evaluation of the Business
Decision Support System (BDSS). This is done in a test run with example users.

In the ABW, an administrator (and every user who was added to a Smart
Contract) can see all of their available applications (see Fig. 18). An adminis-
trator can upload new DApps or add a new version of an existing DApp.

Figure 18: Overview over Smart Contract applications (DApps) while being
logged in as a user (organizer)

48

By clicking on one of these DApps, the user can see more details about it,
such as the parameters associated with it or information about previously ter-
minated Smart Contracts. The user can either create a new Smart Contract if
he/she is an organizer or take part in them as a member.
In the following chapters, we are demonstrating the use of my implementation
using four test accounts. The first of these accounts (HoneggerTest1) does have
the role of an organizer while the other three users (HoneggerTest2, Honeg-
gerTest3, HoneggerTest4) do have the role of a member in the implementation.
The different test users and their roles in the implementation are listed in table
2.

Users and roles in the BDSS
User number Account name (Azure Cloud) Role (in the implementation)

1 HoneggerTest1 organizer
2 HoneggerTest2 member
3 HoneggerTest3 member
4 HoneggerTest4 member

Table 2: Overview of users and their roles in the Smart Contract implementation

6.1 Simple Blockchain Voting System

Figure 19: A member takes the action to vote in an active Smart Contract. On
the right side, the previous action by an organizer (user 1, see table 2) can be
seen.

49

Figure 20: The user decides to vote for choice 1 (in this example: more events
planned by the organisation)

First, we demonstrate the decision making functionality of the simplified ver-
sion of the Blockchain Voting System. Here, we create a Smart Contract with
the parameters ’Question’, ’Number of choices’ and ’Deadline’. Those paramet-
ers correspond to the variables VoteQuestion (String), Choices (uint array) and
Deadline (uint, Unix timestamp) in the constructor of the Smart Contract file,
which is written in Solidity.

In this example, we ask users of an organisation a simple question with two
possible answers: Do they want to have more events (e.g. networking meetings,
meetups, etc.), or do they want to lower their annual fees? By clicking on ’cre-
ate’ (see Fig. 11), we create the new Smart Contract with these parameters in
a previously programmed Solidity file.

Logged in as a member of the DApp, it is possible to vote for a decision
(Fig. 19) using an integer as an input, which is typed into a text field on the
user interface and can be seen on Fig. 20.

We are using the HoneggerTest2 account to cast the vote, and once it is
recorded, we are logging out (Fig. 21) and log into HoneggerTest3.

We are repeating this process for all three test members, and once every-
one did cast their vote (Fig. 22), we are logging into the organizer account again.

50

Figure 21: One member has voted and is logging out of his/her account

We are testing if it is possible to vote as an organizer, which fails as expected.
This gives me a ’The action failed. (...)’ warning message on the user interface,
which can be seen in Fig. 24. In the simplified version of the Blockchain Voting
System, it is not possible to vote as an organizer. We then take the action of
concluding the vote (Fig. 23). The result of this test run is that the first choice
was preferred by the members of this system.

This will lead the Smart Contract to go into the state of being ’finished’
(Fig. 24), and now no more action can be taken - the result of the decision
making process is final.

In a real-world example, the end of a decision making process will be mainly
defined by a deadline at one exact point in time instead of being terminated
by an organizer at any point in time. But in this example, we chose a deadline
of ’0’, which leads to the deadline parameter being ignored. This was done
for simplicity’s sake. In the following examples, the more complex makeup
of parameters of the Blockchain Voting System (not the simplified version of
this chapter) will be presented, and examples using a deadline can be found
in the subsections 6.2.2 and 6.2.3, as well as in the event sign up examples of
subsections 6.3.1 and 6.3.2.

51

52

Figure 22: All three users have voted

Figure 23: An organizer concludes the vote. On the right side, the previous
action by user 4 (a member, see table 2) can be seen.

53

Figure 24: The final state of the Smart Contract is reached

6.2 Blockchain Voting System
The Blockchain Voting System (BVS) is a more complex implementation (com-
pared to the SBVS) which gives an organizer a number of parameters which
he/she can use to create the decision making process desired by the organisa-
tion or business.
Besides the questions, number of choices and deadline, he/she can also choose
to allow veto rights, define how many users need to take part in the voting,
give organizers a vote weight, create a preferential vote, allow abstaining from
the vote (and allowing users to transfer the vote to someone else), and hide the
result (Vote Choices variable, seen in Fig. 47) from the user while the vote is
in progress. Those values are optional, and the organisations which handle the
Smart Contracts must decide which parameters they choose to enable in their
decision making processes.
An organizer can also decide if members, organizers or both can vote, or if it is
a decision by the organisation itself, which can then not be voted on, but which
is immediately terminated and directly stored in the blockchain.
All of the parameters mentioned here will be described in detail in the following
subsections.

6.2.1 Transfer vote, threshold, conclude and veto

In this test run, we will see how a vote can be transferred to another user, how
a voting process is concluded, and how this same process can then be vetoed by
an organizer.

In this Smart Contract, there is a threshold (’Min. amount of voters’) of
two (Fig. 14). This means that at least two users need to take part in the vote
for it to be terminated successfully. If this goal is not reached, then the Smart
Contract would terminate in a failed state (’cancelled’). It is not an organizer
decision, only members 16 can take part in it, and Veto rights are enabled for
organizers. It is not a preferential vote - users can only express their wish by
voting for one decision. Abstaining from the vote is possible in this example,
and it will be used. Also, results are not hidden from the users. This would
commonly be done in a real world example in order to not influence the decision
of a user17, but for testing and demonstration purposes, we will be able to see
results in the following test runs.
This example’s question is a vote for a candidate: "Do you want to vote for (1)
Arnold, (2) Bertha, (3) Clara or (4) Dennis?". Users choose one of those four
available candidates.

A user can choose to abstain from a vote and transfer it to another user
who has access to the Smart Contract. He/She picks the correct user from a
drop-down menu (Fig. 25). After pressing the "Take action" button (Fig. 26),

16If the organizer vote weight is 0, then voting is disabled for them
17Which would be influenced e.g. by the halo effect, giving already popular decisions even

more votes

54

Figure 25: A user chooses another user he/she wants to transfer his/her vote to

this input will be processed as a wallet address (of the user to whom the vote
is transferred) in the back-end (the Solidity code). In this example, test user 3
gives his/her vote to test user 4.
Then, test user 3 tries to vote or transfer his/her vote a second time. Both of
these attempts fail as they should. We then log out of test user 3 (Fig. 27)
and log into user 4. Next, test user 4 votes, and at first, his/her transferred
vote (from user 3) will be taken in order to do that. Then he/she votes again
(Fig. 28), and this time his/her own vote is counted. In practice, this means
that he/she can vote twice, since he/she has received one vote. Finally, user 1
concludes the vote (Fig. 29) and the Smart Contract reaches the state of being
"Finished" (Fig. 30).
But this is not the last state of the process in all BVS Smart Contracts. Here,
an organizer can decide to veto this decision if this parameter is enabled. This
leads to the Smart Contract reaching the final state of being "Vetoed" (Fig.
31).

55

56

Figure 26: Test user 4 was selected. After clicking on "Take action", this choice
is confirmed.

Figure 27: A user could not vote or transfer a second time and is logging out

57

Figure 28: User 4 received a vote and can now vote twice.

Figure 29: User 1 concludes the vote

58

Figure 30: Once the voting is finished, it can be vetoed

Figure 31: In this case, the last state of the Smart Contract is it being "Vetoed"

6.2.2 Preferential voting and successful conclusion after a deadline

Figure 32: A GUI showing a Smart Contract where preferential voting is en-
abled.

The next Smart Contract handles the voting input as a preferential vote
(Fig. 32). This means that he/she needs to rank the candidates from most to
least favorite. In Fig. 33, we can see how the user picks the first candidate
as his/her most and the last one as his/her least favorite candidate. Also, we
are testing if we can transfer a vote after voting, which should not, and is not
possible in this system.
The next user’s favorite candidate is the second one, and his/her least favorite
one is the last candidate. On the left part on the screen, in the "Details" section
in Fig. 34, it can be seen how the first user’s vote was processed - the most
favorite candidate got 3 points, number two got 2 points, and number three got
one point. Once the second vote is added to the resulting array, we get the
result of 5,5,2,0 points (Fig. 35) for the four candidates (3+2, 2+2, 1+1, 0+0).
In this simulation, we also tried to conclude the voting process before the dead-
line has passed, and this action failed as it should (Fig. 36). Finally, the vote
can be concluded (Fig. 37) at a date later than the predefined deadline.

59

60

Figure 33: User 1 takes the action of casting a vote. The first candidate is
his/her favorite choice.

Figure 34: The second user votes. On the left side, the decision of user 1 is
visible. These numbers ("3,2,1,0", compared to the numbers "1,2,3,4" in Fig.
33) are inverted because the favorite choice (1) gets the most points (3) in the
election implementation.

61

Figure 35: Two users have voted, and the preferential vote arrays are combined.

Figure 36: Concluding the process before the deadline has passed is not possible.

62

Figure 37: The preferential vote is finished. The result between candidate 1 and
2 is a tie.

6.2.3 Vote weight, early conclusion attempt and failed process due
to deadline

In this Smart Contract, organizers do have a vote weight of two, which gives
them double the vote weight of a regular member (Fig. 38). Also, there is a
deadline to the decision making process, meaning that users can only take part
before the deadline ends.

Figure 38: A GUI showing the creation of a Smart Contract with a vote weight,
deadline and a minimum number of voters.

At first test user 1, the organizer in this system, does cast a vote for the
first choice, which will be counted as two votes (Fig. 39). Next, user 4 votes
for the second choice, and since he/she is a member (see table 2), his/her vote
is counted as one vote, which we can see in Fig. 40. Now, the organizer tries
to conclude the voting process, which fails as expected - the deadline was not
reached yet, and users are still allowed to cast a vote (Fig. 41).
Next, the deadline is reached and the organizer attempts to conclude the vote
(Fig. 42), but this action fails and the Smart Contract reaches its final state of
being cancelled (Fig. 43). This happens because not enough users did take part
in the decision making process - at least four users need to cast their vote, but
only two did.

63

64

Figure 39: The organizer does have a vote weight of two.

Figure 40: The member does have a vote weight of one.

65

Figure 41: Can not conclude the process before the deadline ends. Users can
still vote.

Figure 42: Attempting to conclude the voting process once the deadline is
reached.

66

Figure 43: A minimum of four users need to vote to successfully conclude this
process.

6.2.4 Hiding results before the process is finished

In the next test run, the results of the voting will be hidden in order to not
influence the decision making process (Fig. 44). In Fig. 45, we can see that the
results ("Vote Choices") are hidden - users only see "0,0,0,0", as if nobody has
voted yet. This way, the voting will not be influenced e.g. by users voting for
already popular choices. However, it is still possible for users to view and check
if theirs or others’ choices were correctly recognized by the BDSS (Fig. 46).

Figure 44: A Smart Contract where combined results of the voting are hidden.

Only once the voting process has concluded (Fig. 47), the cumulative results
will become visible (Fig. 48). Now we can see that the voters chose the forth
candidate with two votes.

67

68

Figure 45: User 1 casts a vote, which is not visible in the choice variable ("Vote
Choices")

Figure 46: Individual choices can bee viewed.

69

Figure 47: Four persons did vote, results are not yet visible.

Figure 48: Results become visible once the process was concluded by an organ-
izer.

6.2.5 Organisation decision and overview over processes

Figure 49: An UI that aids in the creation of a Smart Contract. This SC is a
decision by an organizer.

The last demonstration of the BVS functionality is the most simple kind of
decision possible to conduct with it. An organizer does have the ability to make
an "Organizer Decision" (Fig. 49). By doing this, an organizer can directly
store a decision in the blockchain. The Smart Contract will then immediately
terminate in a "Finished" state (Fig. 50).

Another aspect of note about the ABW is that users get a handy overview
of contracts (Fig. 51) which have already terminated as well as currently active
Smart Contracts in which they can still participate. By clicking on the individual
Smart Contracts, their specific values of the parameters and variables can be
viewed in a practical way.

70

71

Figure 50: This Smart Contract’s state is "Finished" at start.

Figure 51: Overview over recent and past Smart Contracts in the ABW

6.3 Event Sign Up
6.3.1 Cancelled state example

Figure 52: A user signs up to an event.

This BDSS allows its organizers to create events to which users can sign up.
In this test run, an organizer creates a golfing event to which at least four people
need to sign up in order for it to take place (Fig. 16). There is a time of the
event and time for the users to sign up (which needs to end before the event
takes place). It also displays the price of the event to the users.
Once the Smart Contract is created, users can sign up to it. In (Fig. 52), we see
user 2 signing up after user 1 has done so already. After three users have signed
up for the event, the organizer is concluding the sign up process (Fig. 53), which
fails since the deadline was not yet reached (Fig. 54). Users can still sign up.
Once the deadline passed, the organizer attempts to conclude the process again
(Fig. 55), and the Smart Contract’s state ends up being "Cancelled" (Fig. 56)
since not enough users chose to attend this event.

72

73

Figure 53: Once three users have signed up, the organizer tries to conclude the
sign up process.

Figure 54: The deadline was not reached, so the process could not be terminated.

74

Figure 55: A second attempt of concluding the vote after the deadline has
passed.

Figure 56: The number of signed up users is smaller than the minimum number
of attendees, so the Smart Contract ends up in the "Cancelled" state.

6.3.2 Successful process example

Figure 57: This GUI shows the creation of an event Smart Contract without a
minimum number of attendees.

The next event sign up demonstration features a Smart Contract which does
not have a minimum number of attendees - it will take place either way (Fig.
57).
Again, users start to sign up for the event (Fig. 58) and trying to sign up twice
(with the same user account) fails as planned (Fig. 59). It is also possible to
unsubscribe from an event (Fig. 60) if a user decides not to attend it. This is
only possible before the deadline is reached, and it will result in decrementing
the "Num of signed up users" variable by one. Next, a third user decides to
sign up (Fig. 61). Since one user has unsubscribed, we now have two signed
up users in total. Then, the fourth user signs up, increasing the number of
users attending the meeting to three(Fig. 62). Finally, the organizer decides to
conclude the sign up process(Fig. 63) once the deadline was reached (trying to
conclude it early failed as expected, as can be seen in Fig. 64), and the process
terminates successfully in a "Finished" state.

75

76

Figure 58: User 1 (HoneggerTest1, see table 2) signed up to the event.

Figure 59: Signing up twice to the same event is not possible.

77

Figure 60: User 2 has decided to not attend the event.

Figure 61: In total, two users attend the event.

78

Figure 62: Four users have signed up, and one user decided to not attend the
event.

Figure 63: Organizers can create events, sign up to them, unsubscribe from
them and cancel events.

79

Figure 64: An organizer concludes the sign up process successfully.

6.4 Simultaneous voting experiment
For this implementation, it is important to test whether the voting process is
consistent or not. Users should e.g. not be able to vote twice or more times by
voting on multiple devices at the same time. Also, it should be possible for mul-
tiple different users to vote at the same time, despite the global lock provided
by the "voteInProgress" boolean variable.

Figure 65: The ABW UI of the same user in four different browsers

We have tested this by logging into four different browsers at the same time
- Firefox, Chrome, Edge and Opera (see Fig. 65). As a side note, the ABW
website did not load in the Safari and Internet Explorer browsers. Then, we
voted for the four different test users (see table 2) at the same time. This resul-
ted in all four votes getting processed and confirmed by the blockchain. Their
vote was counted, and the voting could be concluded.
Next, we logged into the first test user account in all four browsers and voted
four times at the same time. As expected, only the first vote was counted, and
three attempts failed because user has already voted.

Since there are limitations as to how simultaneously a human user can vote
with four accounts (it took about two seconds to click the four buttons), we
decided to test the implementation with a Python script using Selenium. The
code of this script as well as its detailed description can be found in chapter 5.4.

In Fig. 66, we can see four different (simulated) users who are prepared to
vote. Once the exact time at which they should vote is reached, then they will

80

Figure 66: The ABW UI of four users in four different browser windows

simultaneously press the "take action" button and their vote will be registered
by the blockchain. In my example, this did work and all four votes were cast in
a span of 0.018 seconds. All votes were correctly recognized by the BDSS.

Next, we are testing if one user can be logged in their account in four dif-
ferent browsers and cast a vote in all four browsers at the same time. It should
not be possible to abuse the system by voting at the same time with the same
account - only one of these votes should be counted. In Fig. 67, we can see that
the same user (Test user 1) was able to vote once and the three other attempts
were rejected. The votes were cast in a span of 0.023 seconds. It was correctly
counted as only one vote and three failed voting attempts.

Next, we are repeating this experiment multiple times using the Python
script to see if the voting still concludes successfully. First, we are simultan-
eously voting ten times with the same user. The results can be found in table
3. In this table, the times at which the vote button was pressed can be seen in
the "Time 1" to "Time 4" variables, which are Unix timestamps.
The focus of the table is the absolute difference - it is the time it has taken
between the first and the last press of the vote buttons in the different browser
windows. The average absolute difference among all ten test runs is 0.01705244
seconds - less than two hundredths of a second. All of the test runs were suc-
cessful, meaning that only one of the votes was counted, whereas the other three
votes resulted in failed attempts.

Now, we are testing if the same simultaneous voting experiment will work

81

Figure 67: The ABW UI of the same user in four different browser windows

ten times for four different users. In order to get a successful test run here, all
votes need to be successfully registered by the blockchain. The times at which
the users voted (Unix timestamps) as well as their time differences can be seen
in table 4. This time, the average absolute difference among all test runs clocks
in at 0.02244579 seconds. All of the test runs were successful for the test users
- their decisions validated correctly.
In both experiments, four users could successfully take part in the decision
making process in a range of approximately 20 milliseconds. The results of
these experiments suggest that a large number of users can take part in the
system without the system failing or blocking the vote functionality. This is
especially true considering that in a typical voting, the deadline will occur not
on the same day, but a couple days or weeks later. Thus, this DApp solution
may be a suitable prototype for even larger organisations and companies.

82

83

Sa
m

e
U

se
r

Si
m

ul
ta

ne
ou

s
V

ot
in

g

T
es

t
R

un
T

im
e

1
T

im
e

2
T

im
e

3
T

im
e

4
A

bs
ol

ut
e

D
iff

er
en

ce
Su

cc
es

sf
ul

1
15

97
34

22
50

.1
80

55
58

15
97

34
22

50
.1

82
54

9
15

97
34

22
50

.1
91

55
88

15
97

34
22

50
.1

94
52

17
0.

01
39

65
9

Y
es

2
15

97
34

25
25

.1
57

16
55

15
97

34
25

25
.1

69
13

5
15

97
34

25
25

.1
71

12
97

15
97

34
25

25
.1

79
11

39
0.

02
19

48
4

Y
es

3
15

97
34

26
75

.5
14

27
96

15
97

34
26

75
.5

17
23

43
15

97
34

26
75

.5
24

24
67

15
97

34
26

75
.5

27
20

76
0.

01
29

28
Y

es

4
15

97
34

28
24

.8
92

13
82

15
97

34
28

24
.8

96
13

15
15

97
34

28
24

.9
04

14
45

15
97

34
28

24
.9

08
09

44
0.

01
59

56
2

Y
es

5
15

97
34

31
07

.9
64

93
86

15
97

34
31

07
.9

69
92

59
15

97
34

31
07

.9
74

91
34

15
97

34
31

07
.9

80
89

81
0.

01
59

59
5

Y
es

6
15

97
34

32
50

.5
89

28
35

15
97

34
32

50
.5

96
22

96
15

97
34

32
50

.6
03

20
5

15
97

34
32

50
.6

09
18

7
0.

01
99

03
5

Y
es

7
15

97
34

35
33

.7
26

61
11

15
97

34
35

33
.7

32
59

97
15

97
34

35
33

.7
34

59
03

15
97

34
35

33
.7

36
63

8
0.

01
00

26
9

Y
es

8
15

97
34

37
33

.4
09

83
68

15
97

34
37

33
.4

32
77

29
15

97
34

37
33

.4
41

75
08

15
97

34
37

33
.4

44
74

3
0.

03
49

06
2

Y
es

9
15

97
34

38
80

.8
27

03
02

15
97

34
38

80
.8

35
00

8
15

97
34

38
80

.8
38

99
57

15
97

34
38

80
.8

42
98

52
0.

01
59

55
Y

es

10
15

97
34

40
32

.5
14

43
34

15
97

34
40

32
.5

17
42

43
15

97
34

40
32

.5
19

41
66

15
97

34
40

32
.5

23
40

82
0.

00
89

74
8

Y
es

Table 3: Voting with the same user at the same time

84

D
iff

er
en

t
U

se
rs

Si
m

ul
ta

ne
ou

s
V

ot
in

g

T
es

t
R

un
U

se
r

1
U

se
r

2
U

se
r

3
U

se
r

4
A

bs
ol

ut
e

D
iff

er
en

ce
Su

cc
es

sf
ul

1
15

97
34

49
65

.1
92

55
3

15
97

34
49

65
.1

90
55

87
15

97
34

49
65

.2
06

51
63

15
97

34
49

65
.2

01
52

97
0.

01
59

57
6

Y
es

2
15

97
34

52
44

.1
91

99
32

15
97

34
52

44
.1

89
99

67
15

97
34

52
44

.2
13

93
42

15
97

34
52

44
.2

03
00

77
0.

02
39

37
5

Y
es

3
15

97
34

53
92

.7
19

22
61

15
97

34
53

92
.7

15
23

3
15

97
34

53
92

.6
98

24
4

15
97

34
53

92
.7

00
23

87
0.

02
09

82
1

Y
es

4
15

97
34

55
42

.1
69

46
4

15
97

34
55

42
.1

55
50

07
15

97
34

55
42

.1
64

48
1

15
97

34
55

42
.1

83
42

28
0.

02
79

22
1

Y
es

5
15

97
34

56
94

.6
15

83
26

15
97

34
56

94
.6

17
82

65
15

97
34

56
94

.6
23

81
12

15
97

34
56

94
.6

26
80

3
0.

01
09

70
4

Y
es

6
15

97
34

58
58

.5
80

92
62

15
97

34
58

58
.5

91
91

66
15

97
34

58
58

.5
83

91
43

15
97

34
58

58
.5

86
90

67
0.

01
09

90
4

Y
es

7
15

97
34

60
09

.1
75

13
15

97
34

60
09

.1
77

12
45

15
97

34
60

09
.1

83
10

86
15

97
34

60
09

.1
97

07
18

0.
02

19
41

8
Y

es

8
15

97
34

61
55

.2
33

60
63

15
97

34
61

55
.2

39
59

1
15

97
34

61
55

.2
35

60
12

15
97

34
61

55
.2

46
57

42
0.

01
29

67
9

Y
es

9
15

97
34

63
51

.1
90

13
24

15
97

34
63

51
.1

58
21

72
15

97
34

63
51

.1
71

18
3

15
97

34
63

51
.1

66
19

73
0.

03
19

15
2

Y
es

10
15

97
34

65
07

.7
20

72
9

15
97

34
65

07
.7

15
74

8
15

97
34

65
07

.7
55

63
6

15
97

34
65

07
.7

08
76

31
0.

04
68

72
9

Y
es

Table 4: Voting with four different users at the same time

7 Overall Conclusions
Advantages offered by the Ethereum technology for the implementation of a dis-
tributed organization software are its widespread use, consistency, traceability
and provision of smart logic. More decentralization, provided by independent
nodes outside of the cloud service solution, could potentially increase the trust
users and organisations have in the results of electronic decision making sys-
tems.
The Smart Contract based application implemented in this thesis runs on a
permissioned distributed ledger where each user does have an Ethereum wal-
let and can participate once in every election. It also enables users to sign up
to events which were created by organizers. The implementation runs on the
Microsoft Azure cloud and uses the ABW, which also provides a user-friendly
user interface. Security and privacy of the application are provided by the im-
plemented functionality as well as by the fact that the blockchain is closed off
for third parties and unauthorized users. The simultaneous voting experiment
shows that the implementation can handle its intended workload.

8 Limitations and Future Work
The capabilities and limitations of the implementation are defined by its core
aspects: The level of privacy and decentralization offered by the DApp, as well as
the level of trust which users can have in the decision making process. Further,
service costs of running the distributed system in a cloud environment and the
number of users which the service can handle concurrently must be considered.

Large-scale usage The prototype described in this example is designed for
organisations or companies, where the number of users is limited to a few hun-
dreds or thousands of users. While the experiment in chapter 6.4 suggests that
this system may be able to handle such a workload, it is not made e.g. for
national elections with millions of voters.

Privacy The amount of privacy provided to users could be increased using
functionality which is provided or may be developed for the Quorum platform
in the future. Zero-knowledge-proof procedures or blind signatures could im-
prove the level of privacy a user has in a blockchain-based system.

Decentralization The level of decentralization provided by a cloud solution
approach is limited, and to be more exact, it is not a decentralized solution at
all, but one managed by an entity, e.g. an organisation, company or institution.
This is the point of blockchain cloud solutions, but in future implementations, it
may be possible to run additional nodes independently from the cloud solution,

85

increasing the level of decentralization.

Service costs It should be considered that blockchain solutions tend to have
relatively high costs compared to more traditional approaches. This can include
processing power, electricity costs, or in the case of Blockchain-as-a-Service solu-
tions in a cloud environment, the service costs required to the customer. For
example, running an ABW instance for a month leads to an estimated cost
per month of $143.1618. In this example, we used the "Basic" price tier of
the workbench, which is intended for development and testing of applications,
comes with one vCore, five GB of storage space, one validator node and one
transaction node. The "Standard" price tier, which is made to run production
workloads and comes with two vCores as well as two validator nodes, is even
more expensive at an estimated $897.58 per month. Also, the increased com-
plexity of using a blockchain implementation must be considered. A blockchain
solution should therefore only be used if the requirements of the implementation
make it absolutely necessary.
When counting only days in which the service ran for 24 hours a day (excluding

Figure 68: Costs accumulated while running the ABW. Screenshot of the Azure
Portal website.

the day of creation and termination of the ABW service), we have accumulated
costs of e139.01 in 16 days; between June 8th and June 23rd (see Fig. 68). On
average, it did cost e8.69 per day to run the service.

User adoption Finally, the prototype implemented for this thesis has not
been tested in real-world scenarios with a large number of participants. To
reach a wide acceptance of such a system, it needs to be tested by a large
number of people in an organisation. This way, it could be possible to prove
its usability, practicality and security in an authentic setting. This could be

18Region West Europe. Prices may differ in other regions or at a later date.

86

achieved by testing the BDSS in small, closed groups and gradually widening
its deployment to a larger scale, namely the entire company or organisation.

9 Appendix
Below, you can find useful links with information about the ABW as well as a
link to the (private) Gitlab which hosts the source code of the Smart Contract
implementation as well as the Python script of the simultaneous voting experi-
ment.

9.1 Azure Components and Information
Azure Blockchain Workbench (official page on microsoft.com):
https://azure.microsoft.com/en-us/features/blockchain-workbench/

ABW documentation:
https://docs.microsoft.com/de-de/azure/blockchain/workbench/

ABW example implementations:
https://github.com/Azure-Samples/blockchain

ABW deployment instructions:
https://docs.microsoft.com/en-us/azure/blockchain/workbench/deploy

87

https://azure.microsoft.com/en-us/features/blockchain-workbench/
https://docs.microsoft.com/de-de/azure/blockchain/workbench/
https://github.com/Azure-Samples/blockchain
https://docs.microsoft.com/en-us/azure/blockchain/workbench/deploy

9.2 Source Code URL

This QR code is the link to the Smart Contract source code on Gitlab.
Source code URL: https://git01lab.cs.univie.ac.at/a1127222/blockchain-based-
business-decision-support-system.

88

https://git01lab.cs.univie.ac.at/a1127222/blockchain-based-business-decision-support-system
https://git01lab.cs.univie.ac.at/a1127222/blockchain-based-business-decision-support-system

References
[Rouhani and Deters (2017)] S. Rouhani and R. Deters. Performance analysis

of ethereum transactions in private blockchain. In 2017 8th IEEE Interna-
tional Conference on Software Engineering and Service Science (ICSESS),
pages 70–74, Nov 2017. doi: 10.1109/ICSESS.2017.8342866.

[Rouhani and Deters (2019)] S. Rouhani and R. Deters. Security, performance,
and applications of smart contracts: A systematic survey. IEEE Access, 7,
2019.

[Lange et al. (2019)] Maik Lange, Steven Chris Leiter, and Rainer Alt. Defin-
ing and delimitating distributed ledger technology: Results of a structured
literature analysis. In Claudio Di Ciccio, Renata Gabryelczyk, Luciano
García-Bañuelos, Tomislav Hernaus, Rick Hull, Mojca Indihar Štember-
ger, Andrea Kő, and Mark Staples, editors, Business Process Management:
Blockchain and Central and Eastern Europe Forum, pages 43–54, Cham,
2019. Springer International Publishing. ISBN 978-3-030-30429-4.

[Iqbal and Matulevičius (2019)] Mubashar Iqbal and Raimundas Matulevičius.
Comparison of blockchain-based solutions to mitigate data tampering se-
curity risk. In Claudio Di Ciccio, Renata Gabryelczyk, Luciano García-
Bañuelos, Tomislav Hernaus, Rick Hull, Mojca Indihar Štemberger, Andrea
Kő, and Mark Staples, editors, Business Process Management: Blockchain
and Central and Eastern Europe Forum, pages 13–28, Cham, 2019. Springer
International Publishing. ISBN 978-3-030-30429-4.

[Kakarott et al. (2019)] Julian Kakarott, Katharina Zeuch, and Volker
Skwarek. License chain - an identity-protecting intellectual property li-
cense trading platform. In Claudio Di Ciccio, Renata Gabryelczyk, Luciano
García-Bañuelos, Tomislav Hernaus, Rick Hull, Mojca Indihar Štember-
ger, Andrea Kő, and Mark Staples, editors, Business Process Management:
Blockchain and Central and Eastern Europe Forum, pages 29–42, Cham,
2019. Springer International Publishing. ISBN 978-3-030-30429-4.

[Meroni et al. (2019)] Giovanni Meroni, Pierluigi Plebani, and Francesco Vona.
Trusted artifact-driven process monitoring of multi-party business pro-
cesses with blockchain. In Claudio Di Ciccio, Renata Gabryelczyk, Luciano
García-Bañuelos, Tomislav Hernaus, Rick Hull, Mojca Indihar Štember-
ger, Andrea Kő, and Mark Staples, editors, Business Process Management:
Blockchain and Central and Eastern Europe Forum, pages 55–70, Cham,
2019. Springer International Publishing. ISBN 978-3-030-30429-4.

[Köpke et al. (2019)] Julius Köpke, Marco Franceschetti, and Johann Eder.
Balancing privity and enforceability of bpm-based smart contracts on
blockchains. In Claudio Di Ciccio, Renata Gabryelczyk, Luciano García-
Bañuelos, Tomislav Hernaus, Rick Hull, Mojca Indihar Štemberger, An-
drea Kő, and Mark Staples, editors, Business Process Management: Block-

89

chain and Central and Eastern Europe Forum, pages 87–102, Cham, 2019.
Springer International Publishing. ISBN 978-3-030-30429-4.

[Haarmann et al. (2019)] Stephan Haarmann, Kimon Batoulis, Adriatik Nikaj,
and Mathias Weske. Executing collaborative decisions confidentially on
blockchains. In Claudio Di Ciccio, Renata Gabryelczyk, Luciano García-
Bañuelos, Tomislav Hernaus, Rick Hull, Mojca Indihar Štemberger, An-
drea Kő, and Mark Staples, editors, Business Process Management: Block-
chain and Central and Eastern Europe Forum, pages 119–135, Cham, 2019.
Springer International Publishing. ISBN 978-3-030-30429-4.

[Schäffer et al. (2019)] Markus Schäffer, Monika di Angelo, and Gernot Salzer.
Performance and scalability of private ethereum blockchains. In Clau-
dio Di Ciccio, Renata Gabryelczyk, Luciano García-Bañuelos, Tomislav
Hernaus, Rick Hull, Mojca Indihar Štemberger, Andrea Kő, and Mark
Staples, editors, Business Process Management: Blockchain and Central
and Eastern Europe Forum, pages 103–118, Cham, 2019. Springer Interna-
tional Publishing. ISBN 978-3-030-30429-4.

[Klinkmüller et al. (2019)] Christopher Klinkmüller, Alexander Ponomarev,
An Binh Tran, Ingo Weber, and Wil van der Aalst. Mining blockchain
processes: Extracting process mining data from blockchain applications. In
Claudio Di Ciccio, Renata Gabryelczyk, Luciano García-Bañuelos, Tomis-
lav Hernaus, Rick Hull, Mojca Indihar Štemberger, Andrea Kő, and Mark
Staples, editors, Business Process Management: Blockchain and Central
and Eastern Europe Forum, pages 71–86, Cham, 2019. Springer Interna-
tional Publishing. ISBN 978-3-030-30429-4.

[Pierro and Rocha (2019)] G. A. Pierro and H. Rocha. The influence factors on
ethereum transaction fees. In 2019 IEEE/ACM 2nd International Work-
shop on Emerging Trends in Software Engineering for Blockchain (WET-
SEB), pages 24–31, May 2019. doi: 10.1109/WETSEB.2019.00010.

[García-Bañuelos et al. (2017)] Luciano García-Bañuelos, Alexander Pono-
marev, Marlon Dumas, and Ingo Weber. Optimized execution of business
processes on blockchain. 09 2017. doi: 10.1007/978-3-319-65000-5_8.

[Kirkman and Newman (2018)] S. Kirkman and R. Newman. A cloud data
movement policy architecture based on smart contracts and the ethereum
blockchain. In 2018 IEEE International Conference on Cloud Engineering
(IC2E), pages 371–377, April 2018. doi: 10.1109/IC2E.2018.00071.

[Nayak et al. (2018)] S. Nayak, N. C. Narendra, A. Shukla, and J. Kempf.
Saranyu: Using smart contracts and blockchain for cloud tenant manage-
ment. In 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), pages 857–861, July 2018. doi: 10.1109/CLOUD.2018.00121.

[Khoury et al. (2018)] D. Khoury, E. F. Kfoury, A. Kassem, and H. Harb.
Decentralized voting platform based on ethereum blockchain. In 2018

90

IEEE International Multidisciplinary Conference on Engineering Techno-
logy (IMCET), pages 1–6, Nov 2018. doi: 10.1109/IMCET.2018.8603050.

[Yavuz et al. (2018)] E. Yavuz, A. K. Koç, U. C. Çabuk, and G. Dalkılıç. To-
wards secure e-voting using ethereum blockchain. In 2018 6th International
Symposium on Digital Forensic and Security (ISDFS), pages 1–7, March
2018. doi: 10.1109/ISDFS.2018.8355340.

[Ranganthan et al. (2018)] V. P. Ranganthan, R. Dantu, A. Paul, P. Mears,
and K. Morozov. A decentralized marketplace application on the ethereum
blockchain. In 2018 IEEE 4th International Conference on Collaboration
and Internet Computing (CIC), pages 90–97, Oct 2018. doi: 10.1109/CIC.
2018.00023.

[Wang et al. (2018)] X. Wang, X. Zha, G. Yu, W. Ni, R. P. Liu, Y. J. Guo,
X. Niu, and K. Zheng. Attack and defence of ethereum remote apis. In
2018 IEEE Globecom Workshops (GC Wkshps), pages 1–6, Dec 2018. doi:
10.1109/GLOCOMW.2018.8644498.

[Ciatto et al. (2018)] G. Ciatto, S. Mariani, and A. Omicini. Blockchain for
trustworthy coordination: A first study with linda and ethereum. In 2018
IEEE/WIC/ACM International Conference on Web Intelligence (WI),
pages 696–703, Dec 2018. doi: 10.1109/WI.2018.000-9.

[Pintado et al. (2017)] Orlenys Pintado, Luciano García-Bañuelos, Marlon Du-
mas, and Ingo Weber. Caterpillar: A blockchain-based business process
management system. In Proceedings of the BPM Demo Track and BPM
Dissertation Award co-located with 15th International Conference on Busi-
ness Process Management (BPM 2017), At Barcelona, Spain, 09 2017.

[Zichichi et al. (2019)] Mirko Zichichi, Stefano Ferretti, and Gabriele D’Angelo.
A distributed ledger based infrastructure for smart transportation system
and social good. ArXiv, abs/1910.03280, 2019.

[Wang et al. (2019a)] S. Wang, R. Pei, and Y. Zhang. Eidm: A ethereum-based
cloud user identity management protocol. IEEE Access, 7, 2019a.

[Sukhodolskiy and Zapechnikov (2018)] I. Sukhodolskiy and S. Zapechnikov.
A blockchain-based access control system for cloud storage. In 2018
IEEE Conference of Russian Young Researchers in Electrical and Elec-
tronic Engineering (EIConRus), pages 1575–1578, Jan 2018. doi: 10.1109/
EIConRus.2018.8317400.

[Wang et al. (2019b)] S. Wang, X. Wang, and Y. Zhang. A secure cloud storage
framework with access control based on blockchain. IEEE Access, 7, 2019b.

[Huang et al. (2019)] B. Huang, L. Jin, Z. Lu, X. Zhou, J. Wu, Q. Tang, and
P. C. K. Hung. Bor: Toward high-performance permissioned blockchain in
rdma-enabled network. IEEE Transactions on Services Computing, pages
1–1, 2019. ISSN 2372-0204. doi: 10.1109/TSC.2019.2948009.

91

[Branco et al. (2015)] Frederico Branco, Ramiro Gonçalves, José Martins, and
Manuel Pérez Cota. Decision support system for the agri-food sector –
the sousacamp group case. In Alvaro Rocha, Ana Maria Correia, Sandra
Costanzo, and Luis Paulo Reis, editors, New Contributions in Information
Systems and Technologies, pages 553–563, Cham, 2015. Springer Interna-
tional Publishing. ISBN 978-3-319-16486-1.

[de la Torre-Díez et al. (2014)] Isabel de la Torre-Díez, Borja Martínez-Pérez,
Miguel López-Coronado, Javier Rodríguez Díaz, and Miguel Maldon-
ado López. Decision support systems and applications in ophthal-
mology: Literature and commercial review focused on mobile apps.
Journal of Medical Systems, 39(1):174, Dec 2014. ISSN 1573-689X.
doi: 10.1007/s10916-014-0174-2. URL https://doi.org/10.1007/
s10916-014-0174-2.

[Wang (2010)] F. Wang. Application research of an intelligent decision support
system based on data warehousing technology. In 2010 International Con-
ference on E-Business and E-Government, pages 1773–1776, May 2010.
doi: 10.1109/ICEE.2010.448.

[Carter and Fielden (2001a)] Craig Carter and Kay Fielden. Towards cyber-
democracy: True representation. In Won Kim, Tok-Wang Ling, Yoon-Joon
Lee, and Seung-Soo Park, editors, The Human Society and the Internet
Internet-Related Socio-Economic Issues, pages 285–298, Berlin, Heidelberg,
2001a. Springer Berlin Heidelberg. ISBN 978-3-540-47749-5.

[Carter and Fielden (2001b)] Craig Carter and Kay Fielden. Towards cyber-
democracy: True representation. In Won Kim, Tok-Wang Ling, Yoon-Joon
Lee, and Seung-Soo Park, editors, The Human Society and the Internet
Internet-Related Socio-Economic Issues, pages 285–298, Berlin, Heidelberg,
2001b. Springer Berlin Heidelberg. ISBN 978-3-540-47749-5.

[Watson and Cordonnier (2002)] Anthony Watson and Vincent Cordonnier.
Voting in the New Millennium: eVoting Holds the Promise to Expand Cit-
izen Choice, pages 234–239. Springer Berlin Heidelberg, Berlin, Heidelberg,
2002. ISBN 978-3-540-46138-8. doi: 10.1007/3-540-46138-8_38. URL
https://doi.org/10.1007/3-540-46138-8_38.

[Beckert and Beuster (2006)] Bernhard Beckert and Gerd Beuster. A method
for formalizing, analyzing, and verifying secure user interfaces. In Zhim-
ing Liu and Jifeng He, editors, Formal Methods and Software Engineering,
pages 55–73, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN
978-3-540-47462-3.

[Antoniou et al. (2007)] A. Antoniou, C. Korakas, C. Manolopoulos,
A. Panagiotaki, D. Sofotassios, P. Spirakis, and Y. C. Stamatiou. A
trust-centered approach for building e-voting systems. In Maria A. Wim-
mer, Jochen Scholl, and Åke Grönlund, editors, Electronic Government,

92

https://doi.org/10.1007/s10916-014-0174-2
https://doi.org/10.1007/s10916-014-0174-2
https://doi.org/10.1007/3-540-46138-8_38

pages 366–377, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN
978-3-540-74444-3.

[Mei (2009)] eDemocracy, pages 163–183. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2009. ISBN 978-3-642-00130-7. doi:
10.1007/978-3-642-00130-7_8. URL https://doi.org/10.1007/
978-3-642-00130-7_8.

[Meier (2012)] Andreas Meier. eDemocracy, pages 149–168. Springer Ber-
lin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-24494-0.
doi: 10.1007/978-3-642-24494-0_8. URL https://doi.org/10.1007/
978-3-642-24494-0_8.

[Meier (2009)] Andreas Meier. Elektronische abstimmungen und wahlen. HMD
Praxis der Wirtschaftsinformatik, 46(1):51–61, Feb 2009. ISSN 2198-2775.
doi: 10.1007/BF03340325. URL https://doi.org/10.1007/BF03340325.

[Gasser and Gerlach (2011)] Urs Gasser and Jan Gerlach. Electronic Voting:
Approaches, Strategies, and Policy Issues—A Report from Switzerland,
pages 101–128. T. M. C. Asser Press, The Hague, The Netherlands,
2011. ISBN 978-90-6704-731-9. doi: 10.1007/978-90-6704-731-9_7. URL
https://doi.org/10.1007/978-90-6704-731-9_7.

[Prosser (2012)] Alexander Prosser. eparticipation – did we deliver what we
promised? In Andrea Kő, Christine Leitner, Herbert Leitold, and Alexan-
der Prosser, editors, Advancing Democracy, Government and Governance,
pages 10–18, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN
978-3-642-32701-8.

[Meier (2020)] Andreas Meier. Blockchain-Voting für MyPolitics und Our-
Politics, pages 337–353. Springer Fachmedien Wiesbaden, Wiesbaden,
2020. ISBN 978-3-658-28006-2. doi: 10.1007/978-3-658-28006-2_16. URL
https://doi.org/10.1007/978-3-658-28006-2_16.

[Yu et al. (2018)] Bin Yu, Joseph K. Liu, Amin Sakzad, Surya Nepal, Ron
Steinfeld, Paul Rimba, and Man Ho Au. Platform-independent secure
blockchain-based voting system. In Liqun Chen, Mark Manulis, and
Steve Schneider, editors, Information Security, pages 369–386, Cham, 2018.
Springer International Publishing. ISBN 978-3-319-99136-8.

93

https://doi.org/10.1007/978-3-642-00130-7_8
https://doi.org/10.1007/978-3-642-00130-7_8
https://doi.org/10.1007/978-3-642-24494-0_8
https://doi.org/10.1007/978-3-642-24494-0_8
https://doi.org/10.1007/BF03340325
https://doi.org/10.1007/978-90-6704-731-9_7
https://doi.org/10.1007/978-3-658-28006-2_16

	Topic of the Master Thesis
	Comparison of Blockchain Platforms

	Terms and definitions
	Smart Contracts
	Blockchain Technology Platforms
	Ethereum
	Quorum

	Type of Blockchain
	Private Blockchain
	Permissioned or Consortium Blockchain

	Blockchain in the Cloud / Blockchain as a Service (BaaS)
	Azure Cloud
	Azure Blockchain Workbench

	Consensus Algorithms
	Proof of Work (PoW)
	Proof of Stake (PoS)
	Proof of Authority (PoA)

	Byzantine Fault Tolerance (BFT)

	Related Literature
	Defining and Delimitating Distributed Ledger Technology
	Mitigating Data Tampering Security Risks
	An Identity-Protecting License Trading Platform
	Blockchain-based Multi-party Business Process Monitoring
	Balancing Privity and Enforceability
	Executing Collaborative Decisions Confidentially
	Performance and Scalability
	Extracting Process Mining Data from Blockchain Applications
	Security, Performance, and Applications of Smart Contracts
	Performance Analysis of Ethereum Transactions
	Ethereum Transaction Fees
	Optimized Execution of Business Processes on Blockchain
	A Cloud Data Movement Policy Architecture
	Using Smart Contracts for Cloud Tenant Management
	Decentralized Voting Platform Based on Ethereum Blockchain
	Towards Secure Ethereum-Based E-Voting
	A Decentralized Ethereum-Based Marketplace Application
	Attack and Defence of Ethereum Remote APIs
	Blockchain for Trustworthy Coordination
	Caterpillar: A Blockchain-Based BPMS
	An Ethereum-Based Smart Transportation System
	An Ethereum-Based Cloud User Identity Management Protocol
	A Blockchain-Based Access Control System for Cloud Storage
	A Secure Cloud Storage Framework With Access Control
	Toward High-Performance Permissioned Blockchain
	Decision Support Systems - Definition and Implementations

	Focus and Problem addressed by this Thesis
	Scope and Requirements of the Implementation
	Problem Description
	Practical eVoting Implementations
	Smart Contract Based Systems

	Design and Implementation
	Simple Blockchain Voting System
	Blockchain Voting System
	Roles
	States
	Parameters
	Voting
	Transferring a vote to another user
	Concluding the process

	Event Signup System
	States
	Parameters

	Simultaneous Voting Script

	Demo Application and Scenario
	Simple Blockchain Voting System
	Blockchain Voting System
	Transfer vote, threshold, conclude and veto
	Preferential voting and successful conclusion after a deadline
	Vote weight, early conclusion attempt and failed process due to deadline
	Hiding results before the process is finished
	Organisation decision and overview over processes

	Event Sign Up
	Cancelled state example
	Successful process example

	Simultaneous voting experiment

	Overall Conclusions
	Limitations and Future Work
	Appendix
	Azure Components and Information
	Source Code URL

