
DISSERTATION / DOCTORAL THESIS

Titel der Dissertation / Title of the Doctoral Thesis

Unconstrained and bound-constrained optimization in high
dimensions

verfasst von / submitted by

Morteza Kimiaei

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Doktor der Naturwissenschaften (Dr.rer.nat.)

Wien, 2021 / Vienna, 2021

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on the student
record sheet:

A 796 605 405

Dissertationsgebiet lt. Studienblatt /
field of study as it appears on the student record sheet:

Mathematik

Betreut von / Supervisor: Univ.-Prof. Dr. Arnold Neumaier

ii

To my loves,

Somayeh, Fatemeh, and Narges

ii

1 Abstract
There exist many optimization problems with applications in science, engineering, eco-
nomics, industry, etc. According to whether the exact derivative is available or not,
these problems can be classified into two classes: black box optimization (BBO)
problems and gradient-based optimization (GBO) problems. It is very impor-
tant to have algorithms that can be implemented with very little storage for both BBO
and GBO problems in high dimensions. Accordingly, this thesis focuses on the design
and test of a number of solvers using subspace techniques to handle BBO and GBO
problems in high dimensions.

To compare the efficiency and robustness of our solvers with other state of the art (GBO)
and (BBO) solvers, a new test environment, called TestEnvironment, is constructed
with an automatic algorithm evaluation, significantly saving user time, performing statis-
tics, and resulting in a summarized result as both pdf-file and tex-file including tables
and figures. TestEnvironment uses two collections of unconstrained and bound con-
strained test problems by Gould et al. [80] and unconstrained least squares problems
by Lukšan et al. [127].

The new solvers are called LMBOPT, VSBBO, STBBO, VSBBON, and LMLS
and are available at the following URLs:

http://www.mat.univie.ac.at/~neum/software/LMBOPT,
http://www.mat.univie.ac.at/~neum/software/VSBBO,
https://www.mat.univie.ac.at/~neum/software/STBBO,
https://www.mat.univie.ac.at/~kimiaei/software/VSBBON,
https://www.mat.univie.ac.at/~neum/software/LMLS.

LMBOPT solves bound constrained GBO problems. It is an improved version of the
active set method combined with the curved line search method by Neumaier & Azmi
[136]. It is enriched by a new limited memory method and many practical enhancements
that make LMBOPT very competitive in comparison with other state of the art local
GBO solvers.

An active set trust region method for bound constrained optimization problems with
the exact function value and gradient is discussed. It replaces the traditional trust re-
gion ratio with a variant of the sufficient descent condition – useful in finite precision

iii

iv Abstract

arithmetic and in strongly nonconvex regions. The reduced gradient is used as a crit-
ical measure to get a point which is never a spurious apparent local minimizer arisen
because of cancellation in the calculation of a critical measure in double-precision arith-
metic. The trust region radius is updated according to the reduced gradient. Under the
positive semi-definiteness of approximated Hessian matrices restricted to the subspace of
free variables, unlimited zigzagging could not occur. Hence all strongly active variables
are found and fixed at finitely many iterations.

VSBBO solves unconstrained BBO problems. It is a randomized line search method
with random directions. Complexity results with a given probability arbitrarily close
to one are proven for all cases (nonconvex, convex, and strongly convex). The orders
of our bounds are in all cases the same as those found by Bergou et al. [16], only
valid in expectation while our bound is only, in the nonconvex case, the same as the
one found by Gratton et al. [84]. The implemented version of VSBBO is enriched
by many heuristic enhancements that do not affect the order of complexity results and
turn VSBBO into a competitive solver in comparison with other state of the art local
and global BBO solvers.

STBBO is a deterministic subspace method for unconstrained BBO problems. In the
presence of inaccurate function values and gradients, the complexity bound for STBBO
is found – independent of the choice of search directions enhancing the angle test –
matching the order of bound found by Berahas et al. [15]. A significant decrease
in the function value may be found when a successful prediction on a decrease in the
model function and the model gradient norm along an efficient limited memory direction
is achieved. Numerical results show that STBBO is competitive in comparison with
known model-based solvers, FMINUNC using the traditional limited memory BFGS
technique and standard BFGS technique.

VSBBON solves noisy unconstrained BBO problems. It is a randomized model-based
line search method. In the presence of small noise level complexity results with a given
probability arbitrarily close to one are proven in the nonconvex, convex, and strongly
convex cases. Two effective techniques that make VSBBON competitive are to con-
struct quadratic models in adaptively determined subspaces to handle problems in low
and high dimensions and to find, update, and restart step sizes in a randomized line
search algorithm. Numerical results show that the implemented version of VSBBON
works well with any kind of noise which is not too large but in theory uniform random
noise is matched on the assumption that the uncertainty of the function values is globally
bounded by a small threshold.

LMLS solves nonlinear BBO least squares problems. It is a trust region method, but
the complexity result is not investigated. LMLS is enriched by many enhancements: a
non-monotone technique and adaptive radius strategy (useful in presence of narrow val-
ley), a Broyden-like algorithm (useful when trust region is unsuccessful), a randomized
finite difference approximation in an adaptive subspace for the Jacobian matrix estima-
tion, either a Gauss-Newton or an improved dogleg method to solve the trust region

iv

v

subproblem. Because of using these enhancements, LMLS is competitive for problems
in low up to high dimensions in comparison with the traditional limited memory BFGS
method and even standard BFGS method.

v

2 Zusammenfassung
Viele Anwendungen in Wissenschaft, Technik, Wirtschaft, Industrie usw. führen auf
Optimierungsprobleme. Je nachdem, ob die genaue Ableitung verfügbar ist oder nicht,
spricht man von gradientenbasierter Optimierung (GBO) oder Black-Box-Optimierung
(BBO). Die vorliegende Arbeit behandelt das Design und den Test von Software, um
BBO- und GBO-Probleme für Optimierungsprobleme, in denen höchstens die Varablen
beschränkt sind, in hohen Dimensionen zu lösen. Unterraumtechniken ermöglichen Al-
gorithmen, die trotz vieler Variablen mit sehr wenig Speicherplatz auskommen.

Um die Effizienz und Robustheit der Löser zu erhöhen, wird eine Benutzerzeit sparen-
de Testumgebung namens TestEnvironment vorgestellt, die automatisch Algorithmen
bewertet, dazu Tabellen, Abbildungen und Statistiken erstellt und diese zu einer Latex-
Datei verarbeitet, die zu einer übersichtlichen Dokumentation in pdf führt. TestEnvi-
ronment verwendet eine Sammlung von Optimierungsproblemen von Gould et al. [80]
und eine von kleinste-Quadrate-Problemen von Lukšan et al. [127].

Die neuen Löser heißen LMBOPT, VSBBO, STBBO, VSBBON und LMLS und
sind unter den folgenden URLs verfügbar:

http://www.mat.univie.ac.at/~neum/software/LMBOPT,
http://www.mat.univie.ac.at/~neum/software/VSBBO,
https://www.mat.univie.ac.at/~neum/software/STBBO,
https://www.mat.univie.ac.at/~kimiaei/software/VSBBON,
https://www.mat.univie.ac.at/~neum/software/LMLS.

LMBOPT löst GBO-Probleme, bei denen die Variablen beschränkt sein können und
beruht eine aktive-Mengen-Methode mit der Liniensuche von Neumaier & Azmi [136].
Eine neue Unterraummethode und viele praktische Verbesserungen machen LMBOPT
im Vergleich zu den bekannten lokalen GBO-Lösern sehr wettbewerbsfähig.

VSBBO löst BBO-Probleme ohne Bedingungen an die Variablen. Es sucht entlang
zufälligen Richtungen mit einer zufälligen Liniensuchmethode. Für nicht konvexe, kon-
vexe und stark konvexe Zielfunktionen werden Komplexitätsergebnisse mit einer Wahr-
scheinlichkeit, die beliebig nahe bei eins liegt, im Einklang mit Ergebnissen von Grat-
ton et al. [84] (nur für den nicht konvexen Fall) und denen von Bergou et al. [16] (die
nur im Mittel gültige Ergebnisse erhalten). Viele heuristische Verbesserungen machen
VSBBO im Vergleich zu den bekannten lokalen und globalen BBO-Lösern zu einem
wettbewerbsfähigen Löser, ohne die Komplexitätsergebnisse zu beeinflussen.

vi

vii

STBBO ist ein deterministischer Löser für BBO-Probleme ohne Bedingungen an die
Variablen, bei denen die Gradienten durch finite Differenzen geschätzt werden, mit der-
selben Komplexität wie bei Berahas et al. [15]. Es beruht auf einer neuen, determi-
nistischen Unterraummethode. Die numerische Ergebnisse zeigen, dass STBBO mit
bekannten modellbasierten Lösern, die die traditionelle BFGS-Technik oder LBFGS-
Technik verwenden, sehr wettbewerbsfähig ist.

VSBBON löst ebenfalls BBO-Probleme ohne Bedingungen an die Variablen, bei denen
die Funktionswerte verrauscht sind. Es ist eine randomisierte modellbasierte Liniensuch-
methode, für die im Fall von uniform beschränktem Rauschen Komplexitätsergebnisse
mit einer Wahrscheinlichkeit, die beliebig nahe bei eins liegt, bewiesen werden. Um
VSBBON in niedrigen und hohen Dimensionen wettbewerbsfähig zu machen, werden
quadratische Modelle in adaptiv bestimmten Teilräumen erstellt und einer randomisier-
ten Liniensuche verwendet. Numerische Ergebnisse zeigen, dass VSBBON mit jeder
Art von Rauschen gut funktioniert, das nicht zu großist.

LMLS ist ein gradientenfreies Vertrauensbereichs-Verfahren für nichtlineare kleinste-
Quadrate-Probleme. Eine nichtmonotone Technik und eine adaptive Radiusstrategie
(nützlich bei Vorhandensein eines engen Tals), ein Broyden-ähnlicher Algorithmus (nütz-
lich, wenn die Vertrauensregion zu gross war), sowie eine randomisierte Finite-Differenzen-
Näherung für die Jacobimatrix in einem adaptiven Unterraum machen LMLS für Pro-
bleme mit niedrigen bis hohen Dimensionen sehr wettbewerbsfähig mit herkömmlichen
LBFGS-Methode und sogar zur Standard-BFGS-Methode. Die Komplexität wurde hier
nicht untersucht.

vii

3 Acknowledgement
There are many people at the University of Vienna whose supporting me made me deeply
indebted.

Of all my wishes, the best goes to my supervisor – Prof. Arnold Neumaier – for his
invaluable insight, encouragement, and continuous guidance to complete this research.
Indeed, it was his mentoring this dissertation which would make it possible to pave the
way. I feel very fortunate to have worked with him all these years long as a knowledgeable
teacher and an outstanding mathematician.

I would like to appreciate the Doctoral Program Vienna Graduate School on Computa-
tional Optimization (VGSCO) for the financial support funded by the Austrian Science
Foundation under Project No W1260-N3 in these four years and to thank the guest
professors of our group Prof. Christian Blum, Prof. Claudia Sagastizabal, Prof. Luis
Vicente, Prof. Alexander Shapiro, Prof. Arkadi Nemirovski, Prof. Daniel Kuhn, Prof.
Heinz Bauschke, Prof. Petra Mutzel for their enthusiasm, energy, and great teaching
during their intensive courses in the University of Vienna. In particular, I am grateful of
Prof. Radu Ioan Bot and Prof. Georg Pflug for their support. It is also my pleasure to
thank Prof. Stefano Lucidi for his support for six months of my research in the university
of La Sapienza.

I feel very grateful to my friends Masoud Ahookhosh, Marefat Mansouri, Arash Ghaani
Farashahi, Behzad Azmi, Mani Mesbah, Dang Khoa Nguyen, Marko Djukanovic, and
Axel Böhem who have supported me throughout these four years in Vienna, having made
my time very enjoyable.

I would like to appreciate my friend Mehdi Damaliamiri for proofreading the thesis.

The way I have paved so far has been hardy, and it was my lovely parents Ali and
Chamar, my wife Somayeh, my daughters Fatemeh and Narges, my sisters Mahnaz,
Maryam, Masoumeh, Mojdeh, and Mahtab, and my brothers Ruhollah, Mojtaba, and
Masoud who made a great contribution to my success, and it is up to me to appreciate
their pure and unconditional love, support, and inspiration during my life.

viii

Contents

1 Abstract iii

2 Zusammenfassung vi

3 Acknowledgement viii

I Bound-constrained gradient-based optimization 1

4 Introduction 2
4.1 Bound constrained optimization . 2
4.2 Thesis overview . 5
4.3 Basic notation . 7

4.3.1 Optimality condition for bound constrained optimization 7
4.3.2 Convex set and functions . 8

4.4 The state of the art . 9
4.5 Gradient-based optimization methods . 9

4.5.1 BOPT – an active set method for bound constrained optimization 12
4.5.2 CLS – the curved line search of BOPT 14
4.5.3 Trust region methods . 16

4.6 Unconstrained black box optimization (BBO) methods 16
4.7 Unconstrained noisy BBO methods . 19
4.8 Unconstrained black box least squares methods 20

5 Testing optimization methods 22
5.1 Test problems . 22
5.2 Initial points . 22
5.3 Automatic algorithm evaluation . 23
5.4 Tools for refined statistics . 24
5.5 Performance profiles and plots . 25
5.6 Stopping test . 26

II New gradient-based optimization methods 28

6 A new limited memory method 29
6.1 LMBOPT – an efficient version of BOPT 29

ix

x Contents

6.2 Search directions . 31
6.2.1 Subspace information . 31
6.2.2 A new quasi-Newton direction . 33
6.2.3 A regularized Krylov direction . 35
6.2.4 Some implementation details . 38

6.3 Improvements in the line search . 41
6.3.1 Issues with finite precision arithmetic 42
6.3.2 CLS-new – an improved version of CLS 43

6.4 Starting point and master algorithm . 45
6.4.1 projStartPoint – the starting point 45
6.4.2 getSuccess – a sufficient decrease in the function value 46
6.4.3 The master algorithm . 46

6.5 Numerical results . 48
6.5.1 Test problems used . 49
6.5.2 The results for stringent resources 49
6.5.3 Results for hard problems . 53
6.5.4 Recommendations . 54

6.6 Additional material for LMBOPT . 56
6.6.1 Default tuning parameters for LMBOPT 56
6.6.2 Codes compared . 56
6.6.3 Problems unsolved by all solvers 58
6.6.4 Test problem selection . 59
6.6.5 Performance profiles . 60
6.6.6 Box plots . 63
6.6.7 The hard problems unsolved by all solvers 65
6.6.8 Performance profile for the hard problems 66

7 An active set trust region method 67
7.1 Overview of the new method . 67
7.2 Complexity . 68

7.2.1 Known complexity . 68
7.2.2 Our complexity . 68

7.3 Enforcing a good agreement . 73
7.4 The improved trust region algorithm . 74
7.5 Complexity analysis and limit accuracy 76

III New black box optimization methods 80

8 A new randomized method 81
8.1 Overview of the new method . 81
8.2 Finite iteration goal . 82
8.3 Complexity . 83

x

Contents xi

8.4 Line search techniques for BBO . 86
8.4.1 Probing a direction . 86
8.4.2 Random search directions . 88

8.5 A randomized line search . 89
8.5.1 An extrapolation step . 89
8.5.2 RLS, a randomized line search method 91

8.6 A randomized descent algorithm for BBO 93
8.6.1 Probing for fixed decrease . 93
8.6.2 The basic VSBBO algorithm . 95

8.7 Complexity analysis of VSBBO . 96
8.7.1 The general (nonconvex) case . 96
8.7.2 The convex case . 98
8.7.3 The strongly convex case . 98

8.8 Some new heuristic techniques . 100
8.8.1 Cumulative directions . 100
8.8.2 Random subspace directions . 101
8.8.3 Choosing the initial ∆ . 101
8.8.4 Choosing the initial λ . 102
8.8.5 Choosing the scaling vector . 102
8.8.6 Estimating the gradient . 102

8.9 The implemented version of VSBBO . 103
8.10 Numerical results . 105

8.10.1 Results for small dimensions (n ≤ 20) 106
8.10.2 Results for medium dimensions (21 ≤ n ≤ 100) 108
8.10.3 Results for large dimensions (101 ≤ n ≤ 1000) 110
8.10.4 Results for very large dimensions (1001 ≤ n ≤ 5000) 111

8.11 Additional material for VSBBO . 112
8.11.1 Default parameters for VSBBO . 112
8.11.2 Codes compared . 113
8.11.3 Estimation of c . 115
8.11.4 A list of test problems with fopt 117
8.11.5 Performance profiles and plots . 118
8.11.6 A list of large unsolved problem 122
8.11.7 A list of very large unsolved problem 122

9 A new subspace method 123
9.1 Overview of the new method . 123
9.2 A basic version of STBBO . 124
9.3 Complexity . 125

9.3.1 Complexity of a line search . 126
9.3.2 Complexity of STBBO-basic . 129

9.4 New enhancements . 130
9.4.1 Subspace information . 131
9.4.2 Decreasing model function value and gradient norm 132

xi

xii Contents

9.4.3 An improved version of subspaceDir-basic 133
9.4.4 An improved Wolfe line search . 134
9.4.5 The new subspace algorithm . 135

9.5 Numerical results . 135
9.6 Additional material for STBBO . 137

9.6.1 Default tuning parameters for STBBO 137
9.6.2 Tables and plots . 137

10 A new noisy black box optimization methods 160
10.1 Overview of the new method . 160
10.2 A randomized algorithm for the noisy case 161

10.2.1 A basic randomized line search algorithm 161
10.2.2 A randomized descent algorithm 163
10.2.3 The basic version of VSBBON . 164

10.3 Limit accuracy and complexity bounds . 164
10.3.1 Known results . 164
10.3.2 Bounds for VSBBON . 166

10.4 Heuristic enhancements . 171
10.4.1 Random approximate coordinate directions 172
10.4.2 Subspace information . 172
10.4.3 Random subspace directions . 172
10.4.4 Reduced quadratic models . 173
10.4.5 Perturbed random directions . 175
10.4.6 An improved trust region direction 175
10.4.7 An improved version of ILS-basic 176
10.4.8 An improved version of DS-basic 178
10.4.9 The implemented version of VSBBON 179

10.5 Numerical results . 180
10.5.1 Small scale: 1 ≤ n ≤ 30 . 181
10.5.2 Medium scale: 31 ≤ n ≤ 300 . 183
10.5.3 Large scale: 301 ≤ n ≤ 3000 . 185

10.6 Additional material for VSBBON . 186
10.6.1 Default tuning parameters for VSBBON 186

11 A new method for least squares problems 187
11.1 Overview of the new method . 187
11.2 The trust region method . 188

11.2.1 A new subspace Gauss-Newton method 189
11.2.2 New non-monotone and adaptive strategies 189
11.2.3 A subspace dogleg algorithm . 191
11.2.4 A Broyden-like technique . 192
11.2.5 A limited memory trust region algorithm 193

11.3 Numerical results . 194
11.3.1 Small scale: 1 ≤ n ≤ 100 . 195

xii

Contents xiii

11.3.2 Medium scale: 101 ≤ n ≤ 1000 . 198
11.3.3 Large scale: 1001 ≤ n ≤ 10000 . 199

11.4 Additional material for LMLS . 199
11.4.1 Default tuning parameters for LMLS 199
11.4.2 Test problem selection . 200
11.4.3 Codes compared . 200
11.4.4 Tables and plots . 202

IV Conclusion 217

Bibliography 221

List of Figures 233

List of Tables 241

xiii

Part I

Bound-constrained gradient-based
optimization

1

4 Introduction

4.1 Bound constrained optimization

Optimization is the study of mathematical problems with the goal of minimizing or
maximizing a function, possibly subject to some constraints. Optimization problems
include variables and their domains (only real values), an objective function depending
on the variables and constraints as equations or/and inequalities to be minimized or
maximized. There are applications in science, engineering, economics, industry, etc.

Feasible points are points satisfying all constraints. A local solution is a point with
the lowest function value among nearby feasible points and a global solution is a point
with the lowest function value among all feasible points in the domains. Local methods
find the local solutions and global methods find the global solutions. Optimality
conditions allow one to recognize whether a point is a solution or not.

Optimization problems are conventionally classified into different classes, depending on
the form of the objective function and of the constraints. In terms of the kind of the
constraints, they are classified as follows:
• Unconstrained: There is no constraint.
• Bound constrained: Variables are bounded.
• Linearly constrained: All constraints are linear equations or inequalities.
• Nonlinearly constrained: Some constraint is a nonlinear equation or inequality.

In this thesis, we only consider the problem where the objective function is smooth
(continuously differentiable) and the only type of constraints are bound constraint.
Thus we focus on solving bound constrained optimization problems (BCOPT) of the
form

min f(x)
s.t. x ∈ x.

(4.1)

Here, s.t. is short for “subject to” and the bounds on the variables are described by the
bounded or unbounded box

x := [x, x] := {x ∈ Rn | x ≤ x ≤ x},
where −∞ ≤ xi ≤ xi ≤ ∞ for i = 1, · · · , n. The objective function f : x ⊆ Rn → R is
continuously differentiable with the gradient

g(x) := f ′(x)T ∈ Rn

2

4.1 Bound constrained optimization 3

and the Hessian
B(x) := f ′′(x) ∈ Rn×n,

which may be either exact or inexact. A special case is the unconstrained problem

min f(x)
s.t. x ∈ Rn,

(4.2)

where the box is all of Rn. A popular case of this problem is the unconstrained nonlinear
least squares problem

min f(x) := 1
2‖E(x)‖22

s.t. x ∈ Rn
(4.3)

with continuously differentiable E : Rn → Rr (r ≥ n).

Optimization methods to be used for solving (4.1) can be classified according to whether
the derivative information is available or not:
• First-derivative methods use exact function values and gradients.
• Second-derivative methods use exact function values, gradients and Hessians.
• Derivative-free or black box optimization methods, only use the exact function
values, though they usually assume differentiability. Neither known gradients, known
Lipschitz constants, nor known structural information about the objective function is
assumed to be available. This problem (see, e.g., [42, 151]) is usually called black box
optimization (BBO) or derivative-free optimization (DFO).
• Noisy BBO only uses inaccurate function values f̃(x) ≈ f(x). The difference to
the exact function value is called noise. Noise may be caused by either modelling,
truncation, discretization errors, inaccurate measurements, or rounding errors. In some
cases one knows the statistical properties of the noise; in other cases this is unknown.

Two efficient globalization methods are line search methods and trust region meth-
ods:
• Line search methods seek in each iteration for a point with better function value along
a descent direction by generating a sequence of step sizes. Two inexact line search meth-
ods are the Wolfe conditions (Wolfe [162]) or Goldstein conditions (Goldstein [78]);
• Trust region methods construct a linear/quadratic model restricted to a region cen-
tered at the current point – called the trust region – to approximate the objective
function, resulting in the trust region step which enforces a sufficient model function
decrease. The achieved reduction in the function value over the predicate reduction in
the model function is measured by a trust region ratio. If this ratio is sufficiently
positive, a trial point with better function value is accepted as a new point and the trust
region either remains fixed or is expanded. Otherwise the trust region is reduced until
such a point is found; cf. Conn et al. [41].

Active set methods can be combined with either line search methods or trust region
methods to be effective. They find the set of active bound constraints in each iteration
and solve approximately an unconstrained subproblem, resulting in a local minimizer.

3

4 Introduction

In exact precision arithmetic when an iterative bound constrained optimization algo-
rithm finds a point whose reduced gradient vanishes it stops at a local minimizer. But
in finite precision arithmetic such an algorithm may get stuck in nearly flat regions.
Hence a theoretical criterion needs to be used to distinguish approximated local min-
imizers from spurious apparent local minimizers. For an iterative bound constrained
optimization method a complexity bound is an upper bound on the number of itera-
tions such that a point is found whose reduced gradient norm is below a given threshold
and whose function value is as possible as smaller than the initial function value. In the
unconstrained case, the reduced gradient is the same as the gradient. For an iterative
BBO method, such a complexity bound is an upper bound on the number of function
evaluations. The complexity bound of randomized BBO methods are valid either in
expectation or a given probability arbitrarily close to 1. To get a complexity bound in
the noisy BBO one can assume that the noise is bounded by

|f̃(x)− f(x)| ≤ ω, (4.4)

where ω is a fixed threshold unknown to the algorithm but it appears in the complexity
bound. In practice, in the noisy unconstrained BBO, one can find an upper bound on
the number of function evaluations and a point whose exact gradient norm is below ω.

4.2 Thesis overview

The first achievement of this thesis is a new test environment, called TestEnviroment,
to compare selected solvers on a collection of test problems, save the necessary informa-
tion for statistic, and perform statistic resulting in a summarized result as both pdf-file
and tex-file including tables and figures. This is a joint work with Arnold Neumaier (cf.
Kimiaei & Neumaier [116]), discussed in Section 5.

The reminding achievements of this thesis are the design and test of a number of solvers.
These solvers use subspace techniques to handle problems in high dimensions and
new heuristic enhancements turning them into the competitive solvers in compari-
son with other state of the art solvers.

• A gradient-based solver for the bound constrained problem (4.1) with the exact func-
tion value and gradient, called LMBOPT. LMBOPT is an improved version of active
set method combined with a curved line search method by Neumaier & Azmi [136].
Its global convergence has been discussed in [136]. LMBOPT uses a new limited mem-
ory method and several practical enhancements which turns it into a competitive solver
in comparison with other state of the art solvers. Using TestEnviroment, we show
that LMBOPT is competitive for problems in low and large dimensions. This is a
joint work with Arnold Neumaier and Behzad Azmi (cf. Kimiaei, Neumaier, & Azmi
[118]), discussed in Section 6. LMBOPT is available at

http://www.mat.univie.ac.at/~neum/software/LMBOPT.

4

4.2 Thesis overview 5

• An active set trust region method is introduced for solving the bound constrained
problem (4.1) with the exact gradient. This method replaces the traditional trust region
ratio by a variant of the sufficient descent condition – useful in finite precision arithmetic
and in strongly nonconvex regions. It uses the reduced gradient as a critical measure to
get a point which is never a spurious apparent local minimizer arisen because of cancel-
lation in the calculation of a critical measure in double-precision arithmetic. The trust
region radius is updated according to the reduced gradient. Under the positive semi-
definiteness of approximated Hessian matrix restricted to the subspace of free variables,
unlimited zigzagging could not occur. Hence all strongly active variables are found and
fixed at finitely many iterations. This is my own work (cf. Kimiaei [111]), discussed in
Section 7.

• A randomized gradient-free solver for the unconstrained optimization problem (4.2)
with the exact function value and inexact gradient, called VSBBO. Our complexity re-
sults with a given probability arbitrarily close to 1 are proven in the nonconvex, convex,
and strongly convex cases whose orders match the one found by Bergou et al. [16],
only valid in expectation, and whose factors and orders match, only for the nonconvex
case, the one found by Gratton et al. [84]. The implemented version of VSBBO
is a randomized line search-based method enriched by heuristic enhancements that do
not affect the order of the complexity results and turn VSBBO into an efficient global
solver, although our theory guarantees only local minimizers. It even finds in most cases
either a global minimizer or, where this could not be checked, at least a point of similar
quality with the best competitive global solvers. Using TestEnviroment, we show that
VSBBO is efficient and robust for medium and large scale problems in comparison with
other state of the art local and global solvers. This is a joint work with Arnold Neumaier
(cf. Kimiaei & Neumaier [117]), discussed in Section 8. VSBBO is obtainable from

http://www.mat.univie.ac.at/~neum/software/VSBBO.

• A deterministic gradient-free solver for the unconstrained optimization problem (4.2)
with the exact function value and inexact gradient, called STBBO. In the presence of
the inaccurate function value and gradient complexity result is proven in the general case
– independent of the choice of search directions enhancing the angle test – whose order is
the same as the one found by Berahas et al. [15]. An improved version of STBBO uses
an efficient limited memory direction along which a successful prediction on a decrease
in the model function and the model gradient norm might be achieved, resulting in
a significant decrease in the function value. Using TestEnviroment, we show that
STBBO is competitive for problems in low and high dimensions in comparison with
other state of the art solvers. This is a joint work with Arnold Neumaier and Parvaneh
Faramarzi (cf. Kimiaei, Neumaier, & Faramarzi [119]), discussed in Section 9.
STBBO is available at

https://www.mat.univie.ac.at/~neum/software/STBBO.

• A noisy randomized model-based gradient-free solver for the unconstrained problem
(4.2) with the inexact function value and gradient, called VSBBON. Complexity results

5

6 Introduction

with a given probability arbitrarily close to 1 are proven in the presence of noise in the
nonconvex, convex, and strongly convex cases. An improved version of VSBBON
constructs quadratic models in adaptively determined subspaces for small and large
scale problems and finds, updates, and restarts step sizes in a randomized line search
algorithm so that its efficiency is increased. Using TestEnviroment, we show that
VSBBON works well with any kind of noise which is not too large but in theory it
works on uniform random noise satisfying (4.4). This is my own work (cf. Kimiaei
[114]), discussed in Section 10. VSBBON is available at

https://www.mat.univie.ac.at/~kimiaei/software/VSBBON.

• A randomized gradient-free solver for the least squares problem (4.3) with the ex-
act function value and inexact gradient, called LMLS. It does not include the global
convergence or the complexity result. LMLS is the trust region algorithm with a non-
monotone technique and adaptive radius strategy (useful in presence of narrow valley),
a Broyden-like algorithm (useful in the cases where trust region radius is small and
iteration is unsuccessful), a randomized finite difference approximation in an adaptive
subspace for the Jacobian matrix estimation, and either a Gauss-Newton or an improved
dogleg method to solve the trust region subproblem. Using TestEnviroment, we show
that LMLS is competitive for problems in low up to high dimensions in comparison
with traditional limited memory BFGS method and even standard BFGS method. This
is a joint work with Arnold Neumaier (cf. Kimiaei & Neumaier [115]), discussed in
Section 11. LMLS is available at

https://www.mat.univie.ac.at/~neum/software/LMLS.

4.3 Basic notation

This section gives generalities for the problems (4.1)–(4.3).

4.3.1 Optimality condition for bound constrained optimization

We recall some notation from Neumaier & Azmi [136].

Let x ∈ x be the feasible point and i be the index. Then
(i) a bound xi or xi is called active if xi = xi or xi = xi, respectively. In both cases,
the index i and the component xi are called active as well.
(ii) if xi ∈]xi, xi[, the index i, the component xi, and the bounds xi and xi are called
nonactive or free.
(iii) a point all of whose components are active is called corner of the box x.

If the condition
g(x̂)T (x− x̂) ≥ 0, for x ∈ x (4.5)

6

4.3 Basic notation 7

holds, x̂ ∈ x is a local solution of (4.1).

The first order necessary optimality conditions for the bound constrained problem
(4.1) is 

gi(x̂) ≥ 0, if x̂i = xi,
gi(x̂) ≤ 0, if x̂i = xi,
gi(x̂) = 0, if xi < x̂i < xi.

(4.6)

Here x̂ is called a stationary point for (4.1). Equivalently, at any local minimizer x of
(4.1), the reduced gradient gred(x) at x, with components

gred
i (x) :=


0 if xi = xi = xi,
min(0, gi) if xi = xi < xi,
max(0, gi) if xi = xi > xi,
gi otherwise,

(4.7)

vanishes, where gi := gi(x) is the ith component of gradient vector at x. The first
order sufficient optimality conditions for the bound constrained problem (4.1) is
that every corner x of x such that gi(x) > 0 at all active lower bounds and gi(x) < 0
at all active upper bounds is a local minimizer of (4.1). If the inequalities in (4.6) hold
strictly, the strict complementarity is said to hold at x̂. If at least one component
of x̂ violates this strict complementarity, the stationary point x̂ is called degenerate;
otherwise, it is called nondegenerate. Let f be twice continuously differentiable in a
neighborhood of x̂. Then x̂ is called a strong local minimizer of f if the gradient of
f at x̂ vanishes and the Hessian matrix of f at x̂ is positive definite.

4.3.2 Convex set and functions

The continuous optimization problems can also be classified into two different cases:
convex or nonconvex. This classification includes both the objective function and
constraint set. A local solution of the bound constrained optimization (4.1) is
• the global solution of (4.1) if f is convex;
• a unique solution of (4.1) if f is strictly convex.
We need the following statements:
• A set C ⊆ Rn is convex if the line segment xy := {(1− t)x+ ty | 0 ≤ t ≤ 1} contained
in C for all x, y ∈ C.
• A convex combination of x1, · · · , xm is a linear combination

x :=
m∑
i=1

wixi with wi ≥ 0 and
m∑
i=1

wi = 1.

• An affine combination of x1, · · · , xm is a linear combination

x :=
m∑
i=1

wixi with
m∑
i=1

wi = 1.

7

8 Introduction

• Let f : C → Rn be a function on C. Then the function f convex if

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y), for x, y ∈ C, t ∈ [0, 1] (4.8)

and is σ-strongly convex with σ ≥ 0 if

f((1− t)x+ ty) + t(1− t)σ2 ‖x− y‖
2 ≤ (1− t)f(x) + tf(y), for x, y ∈ C, t ∈ [0, 1]. (4.9)

The condition (4.8) is the special case of the condition (4.9) when σ = 0.

4.4 The state of the art

This section discusses the state of the art solvers for solving the problems (4.1)–(4.3).

4.5 Gradient-based optimization methods

In the last few years, many algorithms have been developed for solving the BCOPT
problem (4.1).

Active set methods are among the most effective methods. They consist of two main
stages that alternate until a solution is found. In the first stage one identifies a good
approximation for the set of optimal active bound constraints, defining a face likely to
contain a stationary point of the problem. A second stage then explores this face of the
feasible region by approximately solving an unconstrained subproblem.

A major reason of inefficiency of optimization methods is said zigzagging, arisen pos-
sibly through
• inefficient search directions, like steepest descent direction in the unconstrained opti-
mization problems;
• changing active set strategies in the bound constrained optimization problems.
When a sequence of iteratively generated points of an optimization method moves along
a valley (maybe either long, steep, or curved) to become close to a local minimizer,
the effects of zigzagging are increased extremely and the desired accuracy may not be
reached. Hence, to eliminate the effects of zigzagging one needs to take measures which
theoretically and numerically show that all strongly active variables are found and fixed
finitely, resulting in the fact that zigzagging cannot occur infinitely. Although the choice
of efficient directions can remove zigzagging in the unconstrained case, their adapta-
tion restricted to the subspace of non-active variables may not remove zigzagging in the
bound-constrained case if a poor active set strategy is used (see e.g., the second and
third examples in [136, Section 6]).

A classical reference on active set methods for bound constrained problems with a convex
quadratic objective function (QBOPT) is the projected conjugate gradient method of

8

4.5 Gradient-based optimization methods 9

Polyak [145], which drops and adds only one constraint in each iteration. That is, at
each step of this active set method, the dimension of the subspace of active variables
is changed only by one. This fact implies that if there are n1 constraints active at the
starting point x0 and n2 constraints active on the solution of QBOPT, we need at least
|n2 − n1| iterations to reach the solution of QBOPT. This may be a serious drawback
in the case of large scale problems. Dembo & Tulowitzki [54] introduced in 1983
methods for QBOPT that are able to add and drop many constrains at each iteration.
Their basic idea was further developed by Yang & Tolle [164] into an algorithm
guaranteed to identify in finitely many iterations the face containing a local solution of
the QBOPT, even when the solution of the problem is degenerate. For further research
on the QBOPT we refer the reader to [62, 63, 129, 130].

For BCOPT with a general nonlinear objective function, Bertsekas [17] proposed
an active set algorithm that uses a gradient projection method to find the optimal
active variables. He showed that this method is able to find very quickly the face
containing a local solution. Further research on convergence and properties of projected
gradient methods can be found in [17, 31, 64]. The idea of using gradient projections
for identifying optimal active constraints was followed up by many researchers. Many of
them [29, 40, 39] combined Newton type methods with the gradient projection method
in order to accelerate the convergence. For example, LBFGSB, developed by Byrd,
Lu, Zhu & Nocedal [29], performs the gradient projection method by computing
the Cauchy point to determine the active variables. After the set of active variables is
determined, the algorithm performs line searches along the search directions obtained by
a limited memory BFGS method [30] to explore the subspace of nonactive variables.
In fact, the use of limited memory BFGS matrices and the line search strategy are the
main properties that distinguish this method from others, especially from the trust region
type method proposed by Conn et al. [40, 39].

A non-monotone line search was first introduced for Newton methods by Grippo,
Lampariello & Lucidi (GLL) in [86], in order to improve the ability to follow a
curved valley with steep walls. Later several papers [49, 52, 75, 87, 157, 167] on non-
monotone line search methods pointed out that in many cases these methods are more
efficient than monotone line search methods. Other papers [18, 23, 50, 51, 77, 125, 154]
indicate that gradient projection approaches based on a Barzilai–Borwein step size
[10] have impressive performance in a wide range of applications. Recent work [20, 21,
23, 24, 25, 150] on Barzilai–Borwein gradient projection methods (BBGP) modified
these by incorporating them with the GLL non-monotone line search: For instance,
Raydan [150] developed the BBGP method for solving unconstrained optimization
problems, and Dai & Fletcher [50, 51] proposed BBGP methods for large-scale
bound constrained quadratic programming. The idea of Raydan [150] was developed
to generate a convex constrained solver (SPG) by Birgin et al. [23, 24] and a bound
constrained solver (GENCAN) by Birgin et al. [20, 21], enriched by an active set
strategy.

The GALAHAD [79] package uses as bound-constrained solver LANCELOT-B, a

9

10 Introduction

trust-region algorithm using truncated Newton directions. Recently, Burdakov et al.
[28] constructed a family of limited memory quasi Newton methods for unconstrained
optimization combined with either line search method or trust region one, called the
LMBFG package.

To deal with negative curvature regions, Birgin & Mart́ınez [20] used the second-order
trust region algorithm of Zhang & Xu [168], and Birgin & Mart́ınez [21] designed
a new algorithm whose line search iteration is performed by means of backtracking and
extrapolation. Hager & Zhang [92] developed an active set algorithm called ASACG
for large scale bound constrained problems. ASACG consists of two main steps within
a framework for branching between these two steps: a non-monotone gradient projec-
tion step, called NGPA, which is based on their research on cyclic Barzilai–Borwein
method [52], and an unconstrained step that utilizes their developed conjugate gradient
algorithms [89, 90, 91, 93]. ASACG version 3.0 has been updated by calling CGde-
scent version 6.0 which uses the variable HardConstraint to evaluate the function or
gradient at a point that violates the bound constraints, so that it could improve perfor-
mance by giving the code additional flexibility in the starting step size routine. In 2017,
Cristofari et al. [43] proposed a two-stage active set algorithm for bound-constrained
optimization, called ASABCP. ASABCP first finds an active set estimation with a
guarantee that the function value is reduced. Then it uses a truncated-Newton technique
in the subspace of the non-active variables.

A considerable amount of literature has been published on line search algorithms, most
of which satisfy the Wolfe conditions (Wolfe [162]) or Goldstein conditions (Gold-
stein [78]). A problem of line search algorithms satisfying the Wolfe conditions is the
need to calculate a gradient at every trial point. On the other hand, line search al-
gorithms based on the Goldstein conditions are gradient-free, but they have very poor
behaviour in strongly nonconvex regions. Neumaier & Azmi [136] introduced a
new active set method BOPT (Algorithm 9.1 in [136] = Algorithm 4.5.1) using an effi-
cient gradient-free curved line search CLS (Algorithm 3.3 in [136] = Algorithm 4.5.3).
The active set strategy used in BOPT always enforces that the gradient reduction in
the components restricted by non-active variables over the reduced gradient reduction is
at least asymptotically bounded. This property of the active set can remove zigzagging,
a possible source of inefficiency. On the other hand, CLS has good properties in theory,
achieving a sensible decrease in the objective function.

Section 6 introduces an efficient version of BOPT, called LMBOPT, for bound con-
strained optimization problems with a continuously differentiable objective function.
LMBOPT preserves the main structure of BOPT – the active set strategy and CLS.
To get rid of getting stuck in nearly flat regions, LMBOPT uses safeguards in finite
precision arithmetic, resulting in an improved version of CLS and a regularized
Krylov direction. In addition, many other practical enhancements are used, one of
which is a new limited memory method. A solver choice based on our finding
from an extensive numerical results is made. It depends on the problems dimension,
the presence and absence of constraints, the desired robustness, and the relative cost of

10

4.5 Gradient-based optimization methods 11

function and gradient evaluations.

Section 7 combines the trust region method with the active set method by Neumaier
& Azmi [136]. Because of cancellation in the calculation of known critical measures in
double-precision arithmetic, spurious apparent local minimizers may be considered to be
a local minimizer. Hence the reduced gradient is a reasonable critical measure to
decide whether the agreement of the objective function and the model function is good or
not, useful in finite precision arithmetic. To prove our complexity bound, the trust
region radius is updated based on the reduced gradient. All strongly active variables
are found and fixed at finitely many iterations under the positive semi-definiteness of
approximated Hessian matrix restricted to the subspace of non-active variables so that
unlimited zigzagging cannot occur.

4.5.1 BOPT – an active set method for bound constrained optimization

Recently, Neumaier & Azmi [136] gave a comprehensive convergence theory for a
generic algorithm for the bound constrained optimization problem (4.1) with a con-
tinuously differentiable objective function, called BOPT. At any point x during the
iteration, a search direction is determined in a subspace obtained by varying the part
indexed by a working set I, chosen either as the minimal set

I−(x) := {i | xi < xi < xi} (4.10)

of free indices or as the maximal set

I+(x) := I−(x) ∪ {i | gred
i 6= 0}

= I−(x) ∪ {i | xi = xi < xi, gi < 0 or xi < xi = xi, gi > 0}
(4.11)

of free or freeable indices. To ensure the absence of severe zigzagging, freeing
iterations in which

I = I+(x) 6= I−(x), (4.12)
are restricted to cases where the choice I = I−(x) violates the inequality

‖gI‖2∗ ≥ ρ‖gred‖2∗, for some ρ ∈]0, 1]. (4.13)

Here ‖ · ‖∗ is the dual norm of a monotone norm ‖ · ‖, defined by ‖g‖∗ := sup
p 6=0

gT p/‖p‖,

and gI stands for the restriction of g to the index set I. More generally, we denote by
xI the subvector of a vector x with indices taken from the set I, by A:k the kth column
of a matrix A, and by AII the submatrix of A with row and column indices taken from
I.

BOPT takes a starting point x0 ∈ Rn and the feasible set x as input and returns an
optimal point xbest and its function value fbest = f(xbest) as output. It uses the tuning
parameters of a line search CLS (discussed in Section 4.5.2) and two tuning parameters:
0 < ∆a < 1 (parameter for the angle condition),
0 < ρ ≤ 1 (parameter for freeing iterations).

11

12 Introduction

4.5.1 Algorithm. (BOPT, bound constrained optimization algorithm)
(BOP0) Computes the initial gradient g0 := g(x0) and reduced gradient gred(x0)
and finds the initial working set I0 := I+(x0).
for ` = 0, 1, 2, · · · do

(BOP1) Stop if gred(x`) = 0, resulting in xbest = x` and fbest = f(x`).
(BOP2) Compute a search direction p` satisfying

p`i = 0 for i 6∈ I`, (4.14)

(g`I)T p`I
‖g`I‖∗‖p`I‖

≤ −∆a < 0, (4.15)

if (4.12) holds, g`ip`i ≤ 0 for all i. (4.16)

Perform a line search CLS (discussed in Section 4.5.2) along the bent search path

x(α) := π[x` + α`p`], (4.17)

where π[x` +α`p`] is the projection of the ray x` +α`p` into the feasible set x with
components

π[x`+α`p`]i := sup(xi, inf(xi+α`p`i , xi)) =


xi if x`i + α`p`i ≤ xi,
xi if x`i + α`p`i ≥ xi,
x`i + α`p`i otherwise.

(4.18)

Set x`+1 := x(α`) and compute the gradient g`+1 := g(x`+1) and the reduced
gradient gred(x`+1).
(BOP3) Find I`+1 := I−(x`+1) by (4.10). If (4.13) is violated, update the new
working set I`+1 := I+(x`+1) by (4.11).

end for

The bent line search and conditions (4.13)–(4.16) on the search direction are essential
for the convergence analysis in [136, Sections 8 and 11], where the following is proved:

4.5.2 Theorem. Let f be continuously differentiable, with Lipschitz continuous gradi-
ent g. Let x` denote the value of x in Algorithm 4.5.1 after its `th update. Then one of
the following three cases holds:
(i) The iteration stops after finitely many steps at a stationary point.
(ii) We have

lim
`→∞

f(x`) = f̂ ∈ R, inf
`≥0
‖gred(x`)‖∗ = 0.

Some limit point x̂ of the x` satisfies f(x̂) = f̂ ≤ f(x0) and gred(x̂) = 0.
(iii) sup

`≥0
‖x`‖ =∞.

Moreover, if BOPT converges to a nondegenerate stationary point, all strongly active
variables are ultimately fixed, so that zigzagging through changes of the active set cannot
occur infinitely often.

12

4.5 Gradient-based optimization methods 13

4.5.2 CLS – the curved line search of BOPT

CLS (Algorithm 3.3 in [136] = Algorithm 4.5.3 below), the line search used in BOPT,
is an efficient gradient-free curved line search algorithm along a piecewise linear search
path defined by directions guarded against zigzagging. It takes the `th point x` and its
function value f ` = f(x`), the gradient vector g` = g(x`), the search direction p`, the
feasible set x, and the initial step size αinit as input and returns the (` + 1)th point
x`+1 = x(α`), its step size α`, and its function value f `+1 = f(x`+1) as output. It uses
several tuning parameters:
β ∈]0, 1

4 [(parameter for efficiency),
q > 1 (extrapolation factor),
the positive integer lmax (limit on the number of iterations),
αmax (maximal value for the step size α).

4.5.3 Algorithm. (CLS, a curved line search algorithm)
(CLS0) The lower and upper bound of the admissible step size interval are initialized
to α := 0 and α :=∞, respectively. The initial step size is chosen as α0 := αinit.
for k = 0, · · · , lmax do

(CLS1) Compute the point x(αk) on the bent search path (4.17), its function value
f(x(αk)), and the Goldstein quotient (Goldstein [78])

µ(αk) := f(x(αk))− f(x`)
α(g`)T p` for αk > 0 (4.19)

(CLS2) If the sufficient descent condition

µ(αk)|µ(αk)− 1| ≥ β with fixed β > 0 (4.20)

holds, set α` = αk, x`+1 = x(α`), and f `+1 = f(x`+1), CLS is efficient and stops.
(CLS3) If µ(αk) ≥ 1

2 , the lower bound of the interval is updated by α := αk;
otherwise, if αk = αmax, CLS stops; otherwise, the upper bound of the interval is
updated by α := αk.
(CLS4) If α > 0 and α <∞, go to (CLS5); otherwise, go to (CLS6).
(CLS5) If µ(αk) < 1, take as step size αk+1 := 0.5αk/(1−µ(αk)) (a step of the secant
method for solving µ(αk) = 0.5). Otherwise, expand the step size to αk+1 := qαk.
Then go to (CLS1).
(CLS6) If α =∞, expand the step size to αk+1 := qαk; otherwise, if α = 0, reduce
the step size to αk+1 := αk/q; otherwise, take as step size the geometric mean
αk+1 :=

√
αα.

end for

• Condition (4.20) is an improved form of the Goldstein condition

0 < µ′′ ≤ µ(α) ≤ µ′ < 1.

13

14 Introduction

It forbids step sizes which are too long or too small by enforcing that µ(α) is sufficiently
positive and not too close to one.
• According to Theorem 3.2 of [136], a step size satisfying (4.20) can be found by
performing CLS if the objective function f is bounded below.
• If the objective function is quadratic and an exact line search results in that the secant
step size is a minimizer of a convex quadratic function along the search ray and so the
quadratic case is started optimally. Otherwise the function is far from quadratic and
bounded.

4.5.3 Trust region methods

In the classical trust-region method, a trust region restricted to the subspace of free
variables is defined by

T r :=
{
p` ∈ Rn | ‖p`I‖∞ ≤ ∆`, x` + p` ∈ x, p`i = 0 ∀ i 6∈ I

}
.

Here ∆` > 0 is called the trust region radius. A trust region method computes
approximately a direction vector p` as a minimizer of the quadratic model function Q
in T r, i.e.,

min Q(x` + p)
s.t. p ∈ T r.

(4.21)

A measure of disagreement between the model function Q and the objective function f
is

R` := f(x` + p`)− f(x`)
Q(x` + p`)−Q(x`) . (4.22)

Here, the numerator and the denominator of (4.22) are called the actual and predicted
reduction, respectively. If a good agreement between the objective function and the
estimated model is found, ∆` is expanded and the `th iteration is called successful;
otherwise, it is reduced and the `th iteration is called unsuccessful; for more details
see [41].

4.6 Unconstrained black box optimization (BBO) methods

An unconstrained BBO method solves the unconstrained problem (4.2), assuming only
the availability of an oracle that returns for a given x ∈ Rn the function value f(x).
Neither gradients, Lipschitz constants, nor structural information about f are assumed
to be available, though for convergence and/or complexity analysis one needs to make
further assumptions. We denote by g̃ := g̃(x) the estimated gradient at x and by
f̃ := f̃(x) the inaccurate function value at x. A huge deal of literature exists about
the problem, and we only mention a few pointers to the literature. A thorough survey

14

4.6 Unconstrained black box optimization (BBO) methods 15

for derivative-free optimization methods was given by Larson et al. [122]. Another
useful paper suggested by Rios & Sahinidis [151] discusses the practical behaviour of
derivative-free optimization softwares. The techniques for solving BBO problems fall
into two classes, deterministic and randomized methods. We mainly discuss the
randomized case; for deterministic methods see, e.g., the book by Conn et al. [42] and
its many references. Randomized methods for BBO going back by Polyak [146] and
van Laarhoven & Aarts [158] were later discussed especially in the framework of
evolutionary optimization [8, 96, 156]. There are also randomized BBO optimization
algorithms for deterministic problems, e.g., Holland [100] and Bandeira et al. [9].

Previous BBO software of the optimization group at the university of Vienna includes the
deterministic algorithms GRID [65, 66] and MCS [102] and the randomized algorithms
SnobFit [103] and VXQR [137]. Software by many others is mentioned in Section
8.11.2, where an extensive numerical comparison is discussed in Subsections 8.10.1–
8.10.4.

Section 8 discusses a randomized line search method, called VSBBO, for unconstrained
black box optimization. The local complexity results for nonconvex, convex, strongly
convex are proven with probability arbitrarily close to one. Many new enhancements
are introduced and added to VSBBO which makes it competitive for problems in high
dimension in comparison with the state of the art local and global solvers.

Recently, researchers have shown an increased interest in applying quasi Newton methods
using the finite difference for the estimation of the gradient to solve unconstrained black
box optimization problems, e.g., [14, 117]. The FMINUNC solver has an option to use
the standard quasi Newton method to estimate the inverse of the Hessian matrix and
the finite difference technique to approximate the gradient. Although it is very useful for
small scale problems, considerable savings are made due to full inverse matrices. Instead
of such a standard method, a usual suggestion is to use a limited memory quasi Newton
method, requiring a low memory, cf. Liu & Nocedal [124].

To estimate the gradient, Berahas et al. [15] discuss three bounds on the number of
function evaluations, step sizes, the exact gradient norm for all existed randomized and
deterministic methods so that the reduction in the error of gradient norm is asymptoti-
cally bounded by the reduction in the exact gradient norm.

Line search methods proceed iteratively by producing a sequence of estimated or exact
step sizes in the hope of finding a good decrease in the function value. Their global
convergence has been proven by Al-Baali & Fletcher [4], Fletcher [74], and No-
cedal & Wright [140]. Berahas et al. [15] discuss complexity bounds for nonconvex,
convex, and strongly convex cases on the accuracy of two various gradient estimations.
Other useful references on the first and second order complexity bounds are Curtis et
al. [45, 46] and Gratton et al. [83] for gradient-based trust region algorithms and
Grapiglia et al. [81] for gradient-based nonlinear step size control algorithms. Cartis
et al. [35] introduced a non-monotone gradient-related algorithm for nonconvex smooth

15

16 Introduction

unconstrained optimization problems which finds at most O(ε−2) function and gradient
evaluations a point x with the 2-norm gradient is below ε in the worst case.

Berahas et al. [14] estimated noise in the same way as Hamming [95] did. This
estimation was added to the Armijo line search method and used to estimate the gradient
by the finite difference technique. But the effect of noise in BFGS updating was not
investigated. Recently, Xie et al. [163] showed that the Wolfe conditions with the
exact function value and gradient can be satisfied if these conditions with the inaccurate
function and gradient are satisfied and the exact gradient is not small. They modified
the BFGS method with the Wolfe line search without estimating noise and showed that
this method converges to a neighborhood of the solution while the effects of noise are
take into account in BFGS updating.

Section 9 discusses a new deterministic subspace method for unconstrained black box
optimization. Kimiaei et al. [118] suggested a limited memory for bound constrained
optimization using the exact gradient. It included a limited memory quasi Newton
method, which has minimal storage requirements. Our goal is to improve this method
for unconstrained black box optimization by a subspace technique such that it tries to
decrease both the model gradient norm and function value in the current iteration. In this
case, the gradient is estimated by the finite difference technique. To get the complexity
bound, it is important that we can assess the amount of reduction in the function value
achievable by the Wolfe line search method [4] as discussed later. We improve this line
search by a heuristic way when it fails in the presence of noise. Although our algorithm
stops when the estimated gradient norm is below a given threshold, it finds a point whose
exact gradient norm is below a given threshold. In this case, the Wolfe conditions with
both the inaccurate function and gradient are satisfied numerically. Under assumptions
that the discretization and function evaluation errors appear in estimation of the gradient
and that the exact gradient norm is not small, we show in the same way as Xie et al. [163]
did that the Wolfe conditions with the exact function value and gradient are satisfied
but with the difference that these conditions are independent of the choice of search
directions. In this section, the effects of noise are taken into account in an estimated
Hessian update. But in contrast to Xie et al. [163] we enforce that our nontraditional
limited memory quasi Newton direction enforces the angle condition. Hence we don’t
need to care about whether the Wolfe conditions with both the inaccurate function and
gradient can generate a quasi Newton direction whose angle with the gradient is bounded
away from 90◦. Ignoring some parts of Hessian information reduces the efficiency of
the traditional limited memory technique. We try to numerically show that the new
subspace method is more efficient than the standard BFGS quasi Newton method even
for problems in low and medium dimensions and than the traditional limited memory
BFGS quasi Newton method for low and high dimensions.

16

4.7 Unconstrained noisy BBO methods 17

4.7 Unconstrained noisy BBO methods

An unconstrained noisy BBO method solves the unconstrained problem (4.2), assuming
the availability of a noisy oracle that returns for a given x ∈ Rn an approximation f̃(x)
to the exact function value f(x), contaminated by noise. The algorithm uses neither
knowledge of the gradient, Lipschitz constants of f , information about the structure of
f , nor knowledge of the statistical properties of the noise. The noise may be determin-
istic (caused by either modelling, truncation, and/or discretization errors) or stochastic
(caused by either inaccurate measurements or rounding errors).

Some competitive solvers for noisy unconstrained and bound constrained black box
optimization problem are SDBOX by Lucidi & Sciandrone [126], NMSMAX by
Higham [99], DSPFD by Gratton et al. [84], BFO by Porcelli & Toint [147],
MCS by Huyer & Neumaier [102], BCDFO by Gratton et al. [85], UOBYQA by
Powell [149], FMINUNC by the Matlab Optimization Toolbox for small, medium,
and large scale problems.

Section 10 discusses a randomized model-based line search method, called VSBBON,
for noisy unconstrained optimization. Complexity results are proven with probability
arbitrarily close to one for nonconvex, convex, and strongly convex in the presence of
noise. Two main ingredients of VSBBON are
• to construct quadratic models in adaptively determined subspaces which can handle
low up to large scale problems,
• to find, update, and restart step sizes in a randomized line search algorithm.

4.8 Unconstrained black box least squares methods

An unconstrained black box least squares method solves the unconstrained nonlinear
least squares problem (4.3) with high-dimensional x ∈ Rn. We assume that no derivative
information is available.

In recent years, there has been a huge amount of literature on least squares and its
applications. Here we just list a useful book and paper:
• Ortega & Rheinboldt [142] introduced an excellent book, both covering algorithms
and their analysis.
• An excellent paper, both covering Levenberg-Marquardt algorithms, quasi-Newton
algorithms, and trust region algorithms and their local analysis without non-singularity
assumption, has been introduced by Yuan [166].

Derivative free unconstrained nonlinear black box least squares solvers can be classi-
fied in two ways according to how the Jacobian matrix is estimated, and according to
whether they are based on line search or on trust region:
• Quasi Newton approximation. FMINUNC using the standard quasi Newton approx-

17

18 Introduction

imation is an efficient solver for medium scale problems. It will be useful for small and
medium and large scale problems. Sorber et al. [155] introduced MINLBFGS (a
limited memory BFGS algorithm) and MINLBFGSDL (a trust region algorithm using
a dogleg algorithm and limited memory BFGS approximation).
• Finite difference approximation. There are many trust region methods using the finite
difference method for the Jacobian matrix estimation such as CoDoSol and STRSCNE
by Bellavia et al. [12, 13], NMPNTR by Kimiaei [112], NATRN and NATRLS by
Amini et al. [5, 6], LSQNONLIN from the Matlab Toolbox, NLSQERR (an adaptive
trust region strategy) by Deuflhard [57], and DOGLEG by Nielsen [138]. They are
suitable for small and medium scale problems. Line search methods using the finite
difference approximation are NLEQ (a damped affine invariant Newton method) by
Nowak & Weimann [141] and MINFNCG (a family of nonlinear conjugate gradient
methods) by Sorber et al. [155].

To solve the least squares problem (4.3), trust region methods use linear approximations
of the residual vectors to make surrogate quadratic models whose accuracy are increased
by restricting their feasible points. These methods use a computational meseaure to
identify whether an agreement between an actual reduction of the objective function
and a predicate reduction of surrogate guadratic model function is good or not. If
this agreement is good, the iteration is called successful and the trust region radius is
expanded; otherwise, the iteration is called unsuccessful and the trust region radius is
reduced, for more details see [41, 140].

The efficiency of trust region methods depends on how the trust region radius is updated
(see, e.g., [3, 5, 6, 68, 67, 69, 71, 72, 73, 113, 165]) and whether non-monotone techniques
are applied (see, e.g., [1, 2, 3, 5, 6, 55, 86, 88, 112, 113, 165]). Rounding errors may leads
two problems:
(i) The model function may not decrease numerically for some iterations. In this case,
if there is no decrease in the function value for such iterations, trust region radii are
expanded possibly several times which is an unnecessary expansion for them,
(ii) The model function may decrease numerically but the objective function may not
decrease in the cases where iterations are near a valley, deep with a small creek at the
bottom and steep sides. In this case, trust region radii are reduced possibly many times,
leading to the product of quite a small radius, or even a failure.

Non-monotone techniques can be used in the hope of overcoming the second problem.

Section 11 discusses a new limited memory method, called LMLS, for unconstrained
black box least squares problem. LMLS is an improved trust region algorithm enriched
by
• a new non-monotone technique and a new adaptive radius one, useful in the presence
of narrow valley,
• a Broyden-like algorithm, useful in the cases where the function value cannot be
improved,
• a randomized finite differences method to estimate the Jacobian matrix,

18

4.8 Unconstrained black box least squares methods 19

• either a Gauss-Newton method or an improved dogleg method in an adaptive subspace
to solve the trust region subproblem.

19

5 Testing optimization methods

This section discusses a new test environment with automatic algorithm evaluation,
saving significantly user time.

5.1 Test problems

• To compare gradient based solvers, we use all 1088 unconstrained and bound con-
strained problems with up to 100001 variables from the CUTEst collection of optimization
problems by Gould et al. [80], in case of variable dimension problems for all allowed
dimensions in this range.
• To compare black box solvers, all 568 unconstrained problems 1 up to 9000 variables
from the CUTEst are used.
• To compare unconstrained black box least squares solvers, test problems from the
collection by Lukšan et al. [127] are used.

5.2 Initial points

The initial point is x0 := 0, but we shift the arguments by

ξi := (−1)i−1 2
2 + i

, for all i = 1, . . . , n (5.1)

to avoid that a solver guesses the solution of toy problems with a simple solution (such
as all zero or all one) – quite a number of these are in the CUTEst library. It means that
the initial point is chosen by x0 := ξ and the initial function value is f0 := f(x0) while
the other function values are computed by f ` := f(x` + ξ) for all ` ≥ 0.

5.3 Automatic algorithm evaluation

There has been an increasing interest in automatic algorithm evaluation (AAE), e.g.,
Bischl et al. [26], Calheiros et al. [32], Cauwet et al. [36], He et al. [97], Hutter
et al. [101], Kerschke et al. [110], Lindauer et al. [123], Malitsky [128], and
Vermetten et al. [160].

20

5.3 Automatic algorithm evaluation 21

Our automatic algorithm evaluation
• describes the results of a comprehensive experimental evaluation of all algorithms and
identifies the best in a fully automatic principled and convenient way;
• calls all unconstrained and bound constrained CUTEst test problems by Gould et al.
[80] for all allowed dimensions and least squares problems by Lukšan et al. [127];
• runs any optimization software on two mentioned test collections;
• provides automatic solution statistics for all problems solved by at least one of the
solvers;
• saves significant user time.

We consider the structure of AAE in Figure 5.1. Let us describe how to work it:

Figure 5.1: Automatic Algorithm Evaluation

TEpath →

CUTESTall

TEinit
TEselect
CUTESTrun

→

STATanalsis

TEanalsis
TEselect
STATcollect
STATtable
STATplot
STATlatex

→
results

results.pdf
results.tex

• TEpath contains all necessary paths.
• CUTESTall uses
(1) TEinit to call all test problems for all allowed dimensions,
(2) TEselect to create problem info sorted by selected attributes,
(3) CUTESTruns to run multiple test problems from CUTEst on multiple solvers.
• STATanalysis uses
(1) TEselect to create problem info sorted by selected attributes,
(2) TEanalsis to analyze results from CUTESTruns,
(3) STATcollect to collect result analyzed by TEanalsis,
(4) STATtable to generate tables, STATplot to plot figures,
(5) STATlatex to give statistics as both results.pdf and results.tex.

21

22 Testing optimization methods

5.4 Tools for refined statistics

The efficiency of the solver so with respect to a cost measure cso for solver so is defined
by

eso :=


min
s∈S

cs

cso
, if so solved the problem,

0, otherwise,
(5.2)

where S is the list of solvers compared. The efficiency measures the ability of a solver
so ∈ S relative to an ideal solver. Efficiency for all compared solvers with respect to
various cost measures are summarized in the tables, called efficiency tables.

Cost measures are
• the number of function evaluations nf,
• the number of gradient evaluations ng,
• nf2g := nf + 2ng,
• time in milliseconds msec.

If the exact gradient is available, ng and nf2g are used. When we use the CUTEst
test problems, the cost for computing the gradient is typically about twice that of the
function value; hence nf2g is used as another cost measure. We now describe this.
In [116], getfg have been introduced to compute the function value and gradient of
function handle fun at x, collect statistics and enforce stopping tests. In CUTEst, both
function value and gradient are computed by cutest obj without returning any infor-
mation about statistics. Subfigures (a) and (b) of Figure 5.2 show that the time for
computing the gradient by cutest obj and getfg are more than that of the function
value, respectively. Hence, nf2g is a reasonable cost measure for the performance pro-
file. In addition, Subfigure (c) of Figure 5.2 shows that getfg is more expansive than
cutest obj due to collect statistics and enforce stopping tests.

1 2 5 10 20 50 100 5001000 5000 20000 100001

 n

10
0

10
1

 q
c
u

te
s
t

1 2 5 10 20 50 100 5001000 5000 20000 100001

 n

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

 q
g

e
tf

g

1 2 5 10 20 50 100 5001000 5000 20000 100001

 n

2

4

6

8

10

12

 q
o

v
e

r

a) b) c)

Figure 5.2: Comparison of qcutest := tg(cutest)
tf (cutest) , qgetfg := tg(getfg)

tf (getfg) and qover := tf2g(getfg)
tf2g(cutest)

versus dimensions, respectively, where tf and tg are considered the time to
compute f and g by cutest or getfg and tf2g := tf + 2tg.

22

5.5 Performance profiles and plots 23

In efficiency tables,
• efficiencies are given in percent; larger efficiencies in tables imply a better average
behaviour while a zero efficiency indicates failure,
• all values are rounded (towards zero) to integers. Mean efficiencies are taken over all
problems tried by all solvers and solved by at least one of them,
• if the exact gradient is available, #100 denotes the total number of test problems in
which the solver needs the least number nf2g, and !100 the total number of test problems
where the solver is the only one needing this many nf2g,
• otherwise, #100 denotes the total number of test problems in which the solver needs
the least number nf, and !100 the total number of test problems where the solver is the
only one needing this many nf,
• Tmean for a solver so is the average time needed to solve all test problems used,
regardless of the time for unsolved problems. The columns titled “# of anomalies”
report statistic on failure reasons:
(1) n indicates that either nf2g reaches its limit (nf2gmax) if gradient-based solvers are
compared or nf reaches its limit (nfmax), otherwise.
(2) t indicates that msec reaches its limit (secmax).
(3) f indicates that the algorithm fails for other reasons.

5.5 Performance profiles and plots

To compare black box optimization solvers, we are interested in using performance profile
and plot:
• The performance profile (Dolan & Moré [61]) displays the percentage of problems
solved within a factor τ of the best solvers.
• The performance plot (Moré & Wild [131]) displays the percentage of problems
solved within the number of function evaluations and time in milliseconds.
Both performance profile and plot are for nf/(best nf) and msec/(best msec) if the
exact gradient is not available. Otherwise, the performance profile is used for nf/(best
nf), ng/(best ng), nf2g/(best nf2g), and msec/(best msec).

5.6 Stopping test

To compare black box solvers, the quotients

qso := (f so − fopt)/(f0 − fopt) for so ∈ S (5.3)

are measures for identifying the convergence speed of solver so to reach a minimum of
the smooth true function f (such quotients are not available in real applications). Note
that this amounts to testing for finding the global minimizer to some reasonable ac-
curacy. We did not check which of the test problems were multimodal, so that descent

23

24 Testing optimization methods

algorithms might end up in a local minimum only. Here
• fso is the best function value found by the solver so,
• f0 is the function value at the starting point (common to all solvers),
• fopt is the function value at the best point known to us (in most cases a global minimizer
or at least a better local minimizer) found by performing a sequence of gradient-based
and local/global gradient-free solvers; see Subsection 8.11.4,
• In the noisy optimization, ε depends on the dimension and the noise level because
by increasing the noise level and the dimension the difficulty of problems is increased
extremely. Hence ε is chosen slightly large for problems in medium and high dimensions
in comparison with problems in low dimensions.

We consider a problem solved by the solver so if qso is below a given threshold ε.
Otherwise, the problem is called unsolved since either nfmax or secmax is exceeded.
In this case, we run all black box solvers by monitoring in the function evaluation of a
routine the number of function values and the time used until the bound of this number
is met or an error occurs. We save time and number of function values at each improved
function value and evaluated afterwards when qso reaches ε. In order to get the above
choices for nfmax and secmax, we run preliminarily to ensure that the best solver can
solve most test problems. Both nfmax and secmax are input parameters for all black
box solvers.

To compare gradient-based solvers, a solver so is stopped if the infinity norm of the
reduced gradient at point xso is below 10−6 and the problem is called solved. Otherwise,
the problem is called unsolved since either nf2gmax or secmax is exceeded. In this case,
we run all gradient-based solvers by monitoring in the function and gradient evaluation
a routine the number of function and gradient evaluations and the time used until the
bound of this number is met or an error occurs. We save time and number of function
and gradient evaluations at each improved function value and evaluated afterwards when
the infinity-norm of the reduced gradient at a point xso is below 10−6. In order to get
the above choices for nf2gmax and secmax, we run preliminarily to ensure that the best
solver can solve the most test problems. Both nf2gmax and secmax are input parameters
for all gradient-based solvers.

24

Part II

New gradient-based optimization
methods

25

6 A new limited memory method

This section discusses a new limited memory method for bound constrained optimization
problems, called LMBOPT. This is a joint work with Arnold Neumaier and Behzad
Azmi (cf. Kimiaei, Neumaier, & Azmi [118]). Recently, Neumaier & Azmi [136]
gave a comprehensive convergence theory for a generic algorithm for bound constrained
optimization problems with a continuously differentiable objective function. It combines
an active set strategy with a gradient-free line search CLS along a piecewise linear
search path defined by directions guarded against zigzagging. LMBOPT is an efficient
implementation of this scheme. It employs a new limited memory techniques for com-
puting the search directions, improves CLS by various safeguards relevant when finite
precision arithmetic is used, and adds many practical enhancements in other details.
The section compares LMBOPT and many other solvers on the unconstrained and
bound constrained problems from the CUTEst collection and makes recommendations
as to which solver should be used when. Depending on the problem class, the problem
dimension, and the precise goal, the best solvers are found to be LMBOPT, ASACG,
and LMBFG-EIG-MS.

6.1 LMBOPT – an efficient version of BOPT

We introduce a new limited memory method for bound-constrained optimiza-
tion called LMBOPT. It conforms to the assumptions of BOPT, hence in exact pre-
cision arithmetic it converges and fixes all strongly active variables after finitely many
iterations, but also takes care of various efficiency issues that are difficult to account for
theory but need to be addressed in a robust and efficient implementation.

Important novelties compared to the literature include
• the useful trick of slightly moving starting point into the relative interior of the feasible
domain x,
• a useful starting direction based on the gradient signs,
• a new quadratic limited-memory model for progressing in a subspace,
• a numerically stable version of the descent direction proposed by Neumaier & Azmi
[136] for removing zigzagging,
• a new regularized Krylov direction,
• safeguards for the curved line search accounting for effects due to finite precision

26

6.2 Search directions 27

arithmetic,
• new heuristic methods for an initial step size, for a robust minimal step size, and for
handling null steps without progress in the line search,
Taken together, these enhancements make LMBOPT very efficient and robust.

We describe how to compute search directions in Section 6.2:
• Subspace information is defined in Subsection 6.2.1.
• A new quasi Newton direction and a regularized Krylov step are introduced in Sub-
sections 6.2.2 and 6.2.3, respectively.
• Some implementation details of these directions are given in Subsection 6.2.4.

Improvements in the line search are discussed in Section 6.3:
• Issues with finite arithmetic are described in Subsection 6.3.1.
• Ingredients of an improved version of CLS are introduced in Section 6.3.

We introduce the master algorithm and its implementation details in Section 6.4:
• A useful starting point is suggested in Subsection 6.4.1.
•What constitutes conditions on the acceptance of a new point is explained in Subsection
6.4.2.
• The master algorithm is introduced in Subsection 6.4.3.

Numerical results for unconstrained and bound constrained CUTEst problems [80] are
summarized in Section 8.10:
• Details of test problems and a shifted starting point are discussed in Subsection 6.5.1.
This subsection contains a list of all compared solvers and explains how unconstrained
solvers turn into bound constrained solvers.
• The first numerical results are given in Subsection 6.5.2, resulting in the three best
solvers (LMBOPT, ASACG, and LMBFG-EIG-MS). Then the second numerical
results classified by constraints and dimensions are given, resulting in a solver choice in
Subsection 6.5.4.
• The third numerical results for hard problems are given in Subsection 6.5.3.
• As a consequence, a solver choice based on our finding is made depending on the
problem dimension, the presence and absence of constraints, the desired robustness, and
the relative cost of function and gradient evaluations in Subsection 6.5.4.

The web site http://www.mat.univie.ac.at/~neum/software/LMBOPT con-
tains public Matlab source code for LMBOPT together with more detailed documenta-
tion and an extensive list of tables and figures with numerical results and comparisons.

6.2 Search directions

In this section, we give a description of the search direction used at each iteration. In
Subsection 6.2.1, subspace information is described. Accordingly, a new limited memory
quasi Newton direction is discussed in Subsection 6.2.2. Then Subsection 6.2.3 describes

27

28 A new limited memory method

how Krylov directions are constructed and regularized. Finally, Subsection 6.2.4 contains
the implementation details of our regularized Krylov direction.

6.2.1 Subspace information

After each iteration we form the differences

s = x− xold, y = g − gold,

where x, g are the current point and gradient, and xold, gold are the previous point and
gradient.

For some subspace dimension m, the matrix S ∈ Rn×m has as columns (in the actual
implementation a permutation of) m previous point differences s. A second matrix
Y ∈ Rn×m has as columns the corresponding gradient differences y.

If the objective function is quadratic with (symmetric) Hessian B and no rounding errors
are made, the matrices S, Y ∈ Rn×m satisfy the quasi-Newton condition

BS = Y. (6.1)

Since B is symmetric,
H := STY = STBS (6.2)

must be symmetric. If we calculate y = Bs at the direction s 6= 0, we have the consis-
tency relations

h := STBs = Y T s = ST y, (6.3)

0 < γ := sTBs = yT s, (6.4)

for all α ∈ R in exact precision arithmetic. If the columns of S (and hence those of Y)
are linearly independent then m ≤ n, and H is positive definite. Then the minimum of
f(x+ Sz) with respect to z ∈ Rm is attained at

znew := −H−1c with c := ST g, (6.5)

where the associated point and gradient are

xnew := x+ Sznew, gnew := g(xnew) = g + Y znew,

and we have
ST g(xnew) = 0. (6.6)

If m reaches its limits, we use γ := yT s and form the augmented matrices

Snew := (S s) , Y new := BSnew := (Y y) ,

Hnew := (Snew)TBSnew :=
(
H h
hT γ

)
, (6.7)

28

6.2 Search directions 29

the augmented vector cnew := (Snew)T gnew =
(0
sT gnew

)
, and put

znew := −(Hnew)−1cnew. (6.8)

But if the allowed memory for S and Y is used we delete the oldest column of S and Y
and the corresponding row and column of H to make room for the new pair of vectors,
and then augment as above.

The implementation contains a Boolean variable updateH as a tuning parameter to
compute

h :=
{
ST y if updateH,
Y T s otherwise.

(6.9)

If the objective is not quadratic, (6.1) does not hold exactly and H := STY does not
need to be symmetric. However, the update (6.7) always produces a symmetric H, even
in finite precision arithmetic.

6.2.2 A new quasi-Newton direction

We use S and Y to construct a Hessian approximation of the form

B = D +WXW T , (6.10)

for some symmetric matrix W ∈ Rn×m and some matrix X ∈ Rn×m. Thus, temporarily,
the additional assumption is made that B deviates from a diagonal matrix D by a matrix
of rank at most m. Under these assumptions, we reconstruct the Hessian uniquely from
the data S and Y = BS, in a manifestly symmetric form that can be used as a surrogate
Hessian even when this structural assumption is not satisfied.

This provides an efficient alternative to the traditional L-BFGS-B formula [29], which
needs twice as much storage and computation time.

6.2.1 Theorem. Let D ∈ Rn×n be diagonal, Σ ∈ Rm×m and U ∈ Rn×m. If XW TS is
invertible then (6.1) and (6.10) imply

B = D + UΣ−1UT , (6.11)

where
U := Y −DS (6.12)

and
Σ := UTS (6.13)

is symmetric. The solution of Bp = −g is given in terms of the symmetric matrix

M := UTD−1Y = Σ−1, (6.14)

by the solution p = D−1(Uz − g) of Mz = UTD−1g.

29

30 A new limited memory method

Proof. The matrices U := Y −DS and Σ := UTS are computable from S and Y , and
we have

U = Y −DS = BS −DS = (B −D)S = WXW TS,

and since B is symmetric, Σ = ST (B−D)S is symmetric, too. By assumption, the m×m
matrix Z := XW TS is invertible, hence W = UZ−1 and Z = XZ−TUTS = XZ−TΣ.
This product relation and the invertibility of Z imply that Σ is invertible, too, and we
conclude that X = ZΣ−1ZT , hence

B = D + UZ−1XZ−TUT = D + UΣ−1UT .

ut

To apply it to the bound constrained case, we note that the first order optimality con-
dition predicts the point x+ p, where the nonactive part pI of p solves the equation

BIIpI = −gI .

Noting that
BII = DII + UI:Σ−1UTI: ,

we find DIIpI + UI:Σ−1UTI:pI = −gI , hence

pI = D−1
II (UI:z − gI),

where z := −Σ−1UTI:pI . Now −Σz = UTI:pI = UTI:D
−1
II (UI:z − gI), hence z solves the

linear system
Mz = UTI:D

−1
II gI .

Here M := Σ + UTI:D
−1
II UI: is equivalent to (9.28) by setting Y = U +DS in (9.28) and

using (6.13). With the symmetric matrix H defined by (6.2), we compute the symmetric
m×m matrix M

M = UTI:D
−1
II YI: = (YI: −DIISI:)TD−1

II YI: = Y T
I: D

−1
II YI: − STI:YI:

= Y T
I: D

−1
II YI: −H (6.15)

and find
z = M−1UTI:D

−1
II gI ; (6.16)

hence
pI = D−1

II (UI:z − gI). (6.17)

Here, for i = 1, · · · , n,
Dii :=

√∑
j∈J

YYij
/∑
j∈J

SSij (6.18)

with
YY = YIJ ◦ YIJ , SS = SIJ ◦ SIJ ,

30

6.2 Search directions 31

where J contains the indices of newest and oldest pair (s, y) and ◦ denotes componentwise
multiplication.

Enforcing the angle condition. Due to rounding errors, a computed descent direction
p need not satisfy the angle condition (4.15). We may add a multiple of the gradient to
enforce the angle condition (4.15) for the modified direction

pnew := p− tg (6.19)

with a suitable factor t ≥ 0; the case t = 0 corresponds to the case where p already
satisfies the bounded angle condition (4.15). The choice of t depends on the three
numbers

σ1 := gT g > 0, σ2 := pT p > 0, σ := gT p;

these are related by the Cauchy–Schwarz inequality

σnew := σ
√
σ1σ2

∈ [−1, 1].

We want to choose t such that the angle condition (4.15) holds with pnew in the place
of p. If σnew ≤ −∆a, this holds for t = 0, and we make this choice. Otherwise we may
enforce the equality (4.15) by choosing

t := σ + ∆a√w
σ1

with w := σ1σ2(1− (σnew)2)
1− (∆a)2 . (6.20)

The following proposition is a special case of Proposition 5.2 in [136].

6.2.2 Proposition. Suppose that g 6= 0 and 0 < ∆a < 1. Then if t is chosen by (6.20),
the search direction (6.21) satisfies the angle condition (4.15).

Given z by (6.16), we could compute the nonactive part of p from (6.17); however, this
need not lead to a descent direction since B need not be positive definite. We therefore
compute

u := UI:z,

and choose
pI = D−1

II (u− tgI), (6.21)

where t is chosen analogous to (6.20) if this results in t < 1, and t = 1 otherwise. By
Proposition 6.2.2, the direction (6.21) satisfies the angle condition (4.15).

6.2.3 A regularized Krylov direction

Neumaier & Azmi [136, Section 7] introduced a new nonlinear conjugate gradient
method against zigzagging for unconstrained optimization which, applied to the working

31

32 A new limited memory method

subspace, may be used by BOPT to generate search directions as long as the active set
does not change.

Any search direction p must satisfy gT p < 0. In order to avoid zigzagging, [136] generated
the search direction p as the vector with a fixed value gT p = −c < 0 closest (with respect
to the 2-norm) to the previous search direction pold. By Theorem 7.1 in [136] (applied
for B = I),

p = βpold − λ̂g, (6.22)

with

β > 0, λ̂ = c+ βgT pold

gT g
. (6.23)

The resulting method has finite termination on quadratic objective functions, where it
reduces to linear conjugate gradients.

[136, Theorem 7.3] shows that the bounded angle condition holds for sufficiently large `
if an efficient line search such as CLS is used and there are positive constants κ1 and
κ2 such that either p` is parallel to the steepest descent direction −g` or the conditions

(g`)T g` ≤ κ1(y`−1)T y`−1, (6.24)

(y`−1)T p`−1 ≤ κ2(g`−1)T p`−1 (6.25)

hold (where y`−1 := g` − g`−1). Convergence is locally linear when the sequence x`

converges to a strong local minimizer.

As in [136, Theorem 7.5] the sequence generated by (6.22) and (6.23) can be rewritten
as the nonlinear conjugate gradient method by Fletcher & Reeves [76] which is
equivalent to the linear conjugate gradient method by Hestenes & Stiefel [98] when
f is quadratic with the positive definite Hessian matrix and bounded. Hence it needs at
most n steps to get a minimizer of f .

As a consequence of [136, Theorem 7.3], [136, Theorem 7.6] showed that the sequence
x` of the conjugate gradient method generated by (6.22) and (6.23) satisfies

inf
`
‖g`‖∗ = 0 or lim

`→∞
f ` = −∞

and convergence is locally linear if the sequence x` converges to a strong local minimizer.

This section discusses a new Krylov method which is equivalent to the linear conjugate
gradient method by Hestenes & Stiefel [98] in the cases where f is quadratic with
the positive definite Hessian matrix and bounded. Theorems 7.3, 7.5, 7.6 in [136] are
valid for our Krylov method.

In the subspace spanned by the columns of S, x + Sz minimizes the quadratic model
function. In the bigger subspace consisting of all spanned by the columns of S and

32

6.2 Search directions 33

arbitrarily descent direction p̃ ∈ Rn, s̃ := −ζp̃+ Sz̃ with ζ ∈ R and z̃ ∈ Rm, we find the
optimal point xnew = x+ s̃ by minimizing the quadratic model function

f(x+ s̃)− f(x) ≈ gT s̃+ 1
2 s̃

TBs̃ = Q(ζ, z̃)

with

Q(ζ, z̃) = −ζg(x)T p̃+ cT z̃ + 1
2(ζ2p̃TBp̃− 2ζz̃TY T p̃+ z̃TSTBSz̃).

= −ζg(x)T p̃+ cT z̃ + 1
2(ζ2γ̃ − 2ζqT z̃ + z̃THz̃)

using γ̃ := p̃TBp̃, q := Y T p̃, and (6.2). In fact Q is minimized when its gradient vanishes,
i.e.,

−g(x)T p̃+ ζγ̃ − qT z̃ = 0, (6.26)
c− ζq +Hz̃ = 0. (6.27)

By multiplying the inverse matrix H in (6.27), setting H−1c = −z and H−1q = r in it,
we get

z̃ := z + ζr. (6.28)

Then multiplying the vector q in (6.28) results in

−qT z − ζqT r + qT z̃ = 0 (6.29)

Inserting (6.29) into (6.26) gives

ζ := qT z + gT p̃

γ̃ − qT r
. (6.30)

We use the approximation

γ̃ = p̃TBp̃ ≈ f(x+ αp̃)− f − αgT p̃
α2/2 .

In finite precision arithmetic, a tiny denominator in (6.30) produces a vary inaccurate
ζ. This drawback is overcome by regularization. The error made in γ̃ is a tiny multiple
of

γ̃e := |f(x+ αp̃)− f |+ α|g|T |p̃|
α2/2 . (6.31)

We therefore shift the denominator in (6.30) away from zero to

ν :=
{
γ̃ − qT r + ∆ν(γ̃e/2 + |q|T |r|) if γ̃ ≥ qT r,
γ̃ − qT r −∆ν(γ̃e/2 + |q|T |r|) otherwise, (6.32)

where ∆ν ∈ (0, 1) is a tiny factor and replace ζ by the regularized version

ζreg := qT z + gT p̃

ν
. (6.33)

33

34 A new limited memory method

Hence the optimal point can be rewritten as the new point

xnew = x+ s̃ = x+ pnew,

where
pnew := −ζregp̃+ S(z + ζregr) (6.34)

is called the regularized Krylov direction. If the condition

gT pnew = −ζreggT p̃+ cT (z + ζregr) (6.35)

is negative, (6.34) is a descent direction of f(x).

The above also holds if the subspace dimension m is not zero. Otherwise the formulas
(6.30), (6.34)–(6.35) reduce to

p = p̃, ζ = ζreg = gT p̃/γ̃, pnew = −ζregp̃, gT pnew = −ζreggT p̃.

We apply this in the bound-constraiend case to subvectors indexed by I, and limit the
subspace dimension by picking only columns from S , Y , and H with index in a list hist
determined by the iteration history.

6.2.4 Some implementation details

This section discusses how the working set I is implemented and p̃ is computed which
affect our regularized Krylov direction. Then it describes how to implement our regu-
larized Krylov direction.

When the activity does not change, the step is called local step. Our regularized Krylov
direction to be updated, restricted, and restarted needs what the subspace dimension is.
We denote by nlocal the number of local steps and by nwait the number of local steps
before the regularized Krylov direction is started, which will be a tuning parameter. We
use nlocal and nwait to determine the subspace dimension.

In order to determine the working set I, the following are checked:
(1) The function value does not decreased.
(2) The size of new free index set is smaller than that of the old free index set (i.e., the
activity is not fixed).
(3) The maximal number of local steps before the freeing iteration (which is a tuning
parameter) is found is exceeded.
(4) Condition (4.13) is violated.

We use the algorithms findFreePos and findFreeNeg to get the working set. At the
first iteration, BOPT calls findFreePos to find I+(x) by (4.11) and initializes the
working set by I(x) := I+(x). Then if the statements (1)-(3) hold, findFreeNeg finds

34

6.2 Search directions 35

I−(x) by (4.10) and findFreePos checks whether the statement (4) holds or not. If this
statement does not hold, the working set is I(x) := I−(x); otherwise, findFreePos finds
I+(x) by (4.11) and chooses it as a new working set; I(x) := I+(x).

Before our regularized Krylov direction is computed, p̃ needs to be computed. Then the
bigger subspace can be constructed. searchDir computes p̃ by calling either scaleDir,
quasiNewtonDir, or AvoidZigzagDir:
• In the first iteration the starting search direction makes use of the gradient signs only,
and has nonzero entries in some components that can vary. Each starting search
direction is computed by scaleDir. In this case, scaleDir, for i = 1, · · · , n, computes

sc := min(1, xi − xi) and p̃i :=
{

sc if gi < 0,
−sc otherwise

if xi = 0; otherwise, it sets sc = |xi| and computes

p̃i :=


sc if xi = xi,
−sc elseif xi = xi,
sc elseif gi < 0,
−sc otherwise.

• If nlocal 6= nwait, a modified direction is used to avoid zigzagging. p̃ is computed
by (6.22) using (6.23). Since gTI p̃I = −c, the direction will be a descent direction. This
direction is implemented by AvoidZigzagDir and enriched by a new heuristic choice
of

β := θmax
i=1:n

{∣∣∣gi
p̃i

∣∣∣}, (6.36)

with tuning parameters 0 < θ < 1 and c > 0.
• Otherwise, quasiNewtonDir is used in subspace. If Dii ∈ [(∆D)−1,∆D] is violated,
Dii = 1, where ∆D > 1 is a tuning parameter.

Afterwards, enforceAngle is used if the angle condition (4.15) does not hold:
• If gTI p̃I > 0, p̃I is chosen to be its opposite to move away from maximizer or saddle
point.
• By changing the sign of g, it may enforce gTI p̃I ≤ 0. Even though g 6= 0, cancellation
may lead to a tiny gTI p̃I (and even of the wrong sign). Given a tiny parameter ∆pg, to
overcome this weakness, subtract ∆pg|gI |T |p̃I | can be a bound on the rounding error to
have the theoretically correct sign. A regularized directional derivative is done if
the condition

|gTI p̃I | ≤ ∆pg|gI |T |p̃I | (6.37)

holds, enforcing gTI p̃I < 0. In this case, if (6.37) holds, p̃I is either −gI or −λbgI . Here
λb := max

i∈I
{Dii}.

• If at least one of the conditions w > 0 and 0 ≤ |t| <∞ does not hold, p̃I is chosen to
be −λbgI .

35

36 A new limited memory method

If the statements (1)-(4) hold and the activity is fixed, a scaled Cauchy point is tried.
It is computed in the same way as [104] but with the difference that the scaling matrix
is computed by

Dii :=

√√√√ m∑
j=1

YYij
/ m∑
j=1

SSij , for i = 1, · · · , n,

with
YY = Y ◦ Y, SS = S ◦ S,

where ◦ denotes componentwise multiplication, if at least once S and Y are updated.
Otherwise, it is computed by

D :=
∣∣∣g/p̃∣∣∣,

where p̃ is computed as discussed above.

findFreeNeg evaluates nlocal and typeSubspace determines the list hist of sub-
space basis indices and the subspace dimension. If the statement (2) holds (activity is
fixed) nlocal is restarted with nlocal = 0. Otherwise we have one of two cases:
Case 1. The function value at the current point is less than that of the best point
previously found. Then:
(i) If the function f is close to quadratic, the current iteration is near a local min-
imizer. In this case p̃ is computed by AvoidZigzagDir against zigzagging and the
regularized Krylov direction (6.34) is constructed effectively in the next iteration. If the
subspace dimension does not reached its limit, before the regularized Krylov direction
(6.34) is computed a restricting procedure is done by increasing nlocal by one and
using only the newest columns of S, Y , hist, and rows and columns of H. Otherwise
the regularized Krylov direction (6.34) is computed in the maximal subspace.
(ii) Otherwise, if the function f is not quadratic, the current iteration is far from a
local minimizer. If nlocal does not reach nwait, nlocal is increased by one and
p̃ is computed by AvoidZigzagDir. Otherwise nlocal reaches nwait. A restarting
procedure is done by permuting hist such that the newest columns of S, Y , hist, and
rows and columns of H are used to compute p̃ by quasiNewtonDir. Then the subspace
dimension becomes zero and hist becomes empty for the next iteration. In both cases
the regularized Krylov direction (6.34) is reduced to pnew = −ζregp̃.
Case 2. The function value at the current point is not less than that of the best point
previously found. In this case the current iteration may be either close to or far from a
local minimizer. If the subspace dimension can be increased, a restricting procedure is
done while p̃ is computed by AvoidZigzagDir in the next iteration and the regularized
Krylov direction (6.34) is computed accordingly. Otherwise nlocal reaches nwait. In
this case a restarting procedure is done and the regularized Krylov direction (6.34) is
reduced to pnew = −ζregp̃.

Regardless of whether the activity changes or not, the subspace cannot be updated
whenever very little progress is made, y ≈ 0, while the gradient is still large., i.e., a new

36

6.3 Improvements in the line search 37

pair (s, y) violates the condition

|gT y| ≥ ∆pogT g, (6.38)

where ∆po ∈ (0, 1) is a tiny tuning parameter. Initially m = 0 and whenever a new
pair (s, y) satisfies (6.38), m is increased by one by appending these vectors to S and Y ,
respectively. But once m reaches its limits, it is kept to be fixed and the oldest column
of S and Y is replaced by s and y, respectively.

In summary, the implementation of our regularized Krylov direction, called KrylovDir,
for computing p in (6.34) is given as follows: (i) γ̃e is computed according to (6.31)
by getGam, (ii) if the subspace dimension is not zero, our Krylov direction is used;
otherwise, it reduces to pnew = −ζregp̃, (iii) a regularization for the denominator of
(6.33) is made according to (6.32) by regDenom, (iv) the condition (6.35) is computed
to know whether the regularized Krylov direction is descent or not, (v) the new trial
point, x+ pnew, into x, is projected, resulting in xnew and recomputing the direction by
pnew := xnew − x.

6.3 Improvements in the line search

In this section, an improved version of CLS, called CLS-new, is introduced with en-
hancements for numerical stability (finding a starting good step size, a target
step size and a minimum step size with safeguards in a finite precision arithmetic).
The variable eff indicates what is the status of step in CLS-new – taking values 1
(efficient step), 2 (non-monotone step), 3 (inefficient decrease), and 4 (inefficient step).

6.3.1 Issues with finite precision arithmetic

Rounding errors prevent descent for step sizes that are too small.

6.3.1 Example. We consider the function

f(x) = x5 − 15x4 + 85x3 − 225x2 + 274x− 120.

For x = 5 + 3× 10−10 and p = −1, the plot f(x+αp) versus α in Figure 6.1 shows that
one needs to find a sensible minimal step size.

In practice if the step size is too small, rounding errors will often prevent that the
function value is strictly decreasing. Due to cancellation of leading digits, the Goldstein
quotient can become very inaccurate, which may lead to a wrong bracket and then to
a failure of the line search. The danger is particularly likely when the search direction
is almost orthogonal to the gradient. Hence, before doing each line search method, we

37

38 A new limited memory method

0 1 2 3 4 5

10 -13

7.184

7.186

7.188

7.19

7.192

7.194

7.196

7.198

7.2

7.202

f(
x
+

 p
)

10 -9

Figure 6.1: In the Example 6.3.1 points with step sizes α < 0.5 × 10−13 have a high
probability for having f(x+ αp) ≥ f(x).

38

6.3 Improvements in the line search 39

need to produce a starting step size by a method we call goodStep to find the starting
good step size αgood, the target step size αtarget, and the minimum step size
αmin with safeguards in a finite precision arithmetic. goodStep computes the first and
second breakpoint, respectively, by

αbreak := min{(xi − xi)/pi | i ∈ ind}, αbreak := min{(xi − xi)/pi | i ∈ ind}.

Here ind := {i | pi < 0 & xi > xi} is the indices of the first breakpoint and ind =
{i | pi > 0 & xi < xi} is the indices of the second breakpoint. Then it computes the
breakpoint by αbreak := min(αbreak, αbreak) in finite precision arithmetic and adjusts it
by αbreak := αbreak(1 + ∆b), where ∆b ∈ (0, 1) is a tiny factor for adjusting a target step
size. In the cases where ind and ind are empty, we set αbreak := +∞ and αbreak := +∞.
Given a tiny factor ∆α ∈ (0, 1) and an index set indp := {i | pi 6= 0}, the minimal step
size is computed by a heuristic formula

αmin :=


min

(
1,∆α

∣∣∣ f
gT p

∣∣∣) if x = 0 and indp 6= ∅,

min
(
1,∆α min

(∣∣∣ f
gT p

∣∣∣, min
i∈ind

{∣∣∣xi
pi

∣∣∣})) elseif indp 6= ∅,
1 otherwise,

and the target step size is chosen by αtarget := max(αmin, df/|gT p|). We discuss how
df is computed in the next subsection. If an exact line search on quadratic is requested,
αtarget is restricted by

αtarget := min(αtarget, αbreak).

In the special case, if αmin = 1, αgood := 1 and goodStep ends due to being the zeros
direction; otherwise, it computes the good step size by

αgood :=
{
αtarget if qαtarget ≤ αbreak,
max(αmin, αbreak) otherwise;

when it equals αmin, adverse finite precision effects are avoided. Here q > 1 is an input
parameter for goodStep which is used to expand (reduce) step sizes by CLS-new.

The number of stuck iterations is the number of times for which the best point cannot
be updated, denoted by nstuck. Its limits are nstuckmax (maximum number of all stuck
iterations) and nsmin (how many stucks are allowed before a trial point is accepted), both
of which will be tuning parameters. In the final step of goodStep, if nstuck ≥ nsmin,
αgood is increased by the factor 2 ∗ nstuck to avoid remaining stuck.

6.3.2 CLS-new – an improved version of CLS

Before CLS-new tries to enforce the sufficient descent condition (4.20), the following
steps need to be done:
• LMBOPT calls enforceAngle to enforce the angle condition (4.15).

39

40 A new limited memory method

• Once LMBOPT calls initInfo to initialize the best function value by fbest := f0 and
to compute the factor for adjusting increases in f (discussed below) by

δf :=
{

facf ∗ |f0| if f0 ∈ (0,∞),
1 otherwise,

(6.39)

where facf > 0 is a relative accuracy of f0. We denote the list of acceptable increases
in f by Df and its size by mf and the number of gradient evaluations by ng. Moreover,
initInfo chooses, for i = 1, · · · , mf− 1, Dfi := −∞ and Dfmf := δf . After the first call to
CLS-new, LMBOPT always calls updateInfo to update
(1) the number of times that the best point is not updated by

nstuck :=
{

0 if fnew < fbest,
nstuck + 1 otherwise;

(2) the best point information by fbest := fnew and xbest := xnew if nstuck = 0;
(3) δf and Df. In this case, if fnew < f , then δf := f − fnew and nm := mod(ng, mf)
are computed. Otherwise since the function value is not decreased, δf is expanded by
δf := max(∆fδf ,∆m(|f |+ |fnew|)) and nm := mod(ng, mf) is updated. Here ∆m ∈ (0, 1)
is a tiny factor for adjusting δf and ∆f > 1 is a tuning parameter for expanding δf . If
nm is zero, the last component of Df is replaced by δf ; otherwise, the nmth component of
Df is replaced by δf ;
(4) f by fnew if fnew < f holds.
• If αgood ≥ 1, q is updated by q = max

(
qmin, q/∆q

)
, where 1 < qmin < q and 0 < ∆q < 1

are the tuning parameters. Whenever the term qαgood is moderately large, this choice
may helps CLS-new to prevent a failure. To get target step sizes which should not
become too tiny, an acceptable increase in f (denoted by df) needs to be estimated
in a heuristic way such that it becomes slowly small. Accordingly, at first, df is δf com-
puted by (6.39). Next, it is either a multiple of the old δf value if the tuning parameter
mdf divides ng or the maximum of mf old δf values, otherwise. In this case, target step
sizes do not become too small.
• goodStep is used to find an initial step size. CLS-new tries to find a step size α > 0
satisfying the sufficient descent condition (4.20).
• CLS-new ends once the sufficient descent condition holds, resulting in the line search
being efficient and eff = 1.
• In the first iteration if the Goldstein quotient µ(α) < 1 an exact line search method
results in the secant step 1

2α/(1 − µ(α)) for the quadratic objective function. In fact
this ensures the finite termination of our Krylov method on the quadratic functions.
Otherwise an extrapolation is done by the factor q > 1. In the next iteration, if the
sufficient descent condition (4.20) does not hold, then the function is far from quadratic
and bounded. In such a case, either an interpolate is performed if the lower bound for
step size is zero or an extrapolation is done by the factor q > 1 until a bracket [α, α]
is found. Then, a geometric mean of α and α is used.
• A limit on the number of iterations is used.

40

6.4 Starting point and master algorithm 41

• At the end, if CLS-new fails to give an improvement on the function values, LM-
BOPT calls robustStep to find a step size with corresponding lowest function value.
Such a step size is called robust. Using a list of differences of the current best func-
tion value with the function values at trial points as gains, robustStep tries to find a
point with smallest robust change if the minimum of gains is smaller than or equal
to the acceptable increase in f (df). Otherwise, if the function is almost flat or flat;
then a step with largest gain is chosen. Otherwise, a point with nonrobust change
might be chosen provided that the minimum of gains ≤ ∆rdf, where ∆r > 0 is a tuning
parameter.

After LMBOPT accepts a new point generated xnew and its step size α by CLS-new,
the new step is defined by s := xnew−x = α‖p‖. Due to inefficiency of CLS-new, α may
be too small, so that ‖s‖ goes to zeros. s with zero size is called a null step. If there
have been too many null steps, LMBOPT cannot update the subspace information
too many iterations, resulting a failure. To get rid of this weakness, nullStep is used,
depending on the CLS-new is inefficient or not. If CLS-new is inefficient (eff = 4),
the new point xnew is a multiple of the current best point. Otherwise, it is a multiple
of the current point generated by CLS-new. Given a tiny tuning parameter del, xnew

is adjusted by the factor of 1 − del and all of its zero components (if they exist) are
replaced with del in both cases. Then it is projected into the feasible set x.

6.4 Starting point and master algorithm

6.4.1 projStartPoint – the starting point

Choosing the starting point too special may lead to inefficiencies. For example, consider

minimizing the quadratic function f(x) := (x1−1)2+
n∑
i=2

(xi−xi−1)2 started from x0 = 0.

If a diagonal preconditioner is used, it is easy to see by induction that, for any method
that chooses its search directions as linear combinations of the previously computed
preconditioned gradients, the ith iteration point has zero in all coordinates k > i and its
gradient has zero in all coordinates k > i+1. Since the solution is the all-one vector, this
implies that at least n iterations are needed to reduce the maximal error in components
of x to below one.

Situations like this are likely to occur when both the Hessian and the starting point are
sparse. To avoid this, projStartPoint moves a user-given starting point x slightly into
the relative interior of the feasible domain.

41

42 A new limited memory method

6.4.2 getSuccess – a sufficient decrease in the function value

The goal of getSuccess is to test whether the sufficient descent condition (4.20) holds
or not; only with the difference that the tuning parameter β is replaced by the other
tuning parameter βCG. The Goldstein quotient (4.19) is computed provided that all of
the following hold:
• The regularized Krylov direction is descent, i.e., (6.35) is negative, but it is not zero.
• nlocal ≥ nwait or nstuck ≥ nsmin.

After the Goldstein quotient (4.19) is computed, the iteration will be successful if either
line search is efficient, meaning the sufficient descent condition (4.20) with β = βCG holds,
or there exists an improvement on the function value by at least δf and nstuck ≥ nsmin.
In this case, the Boolean variable success is evaluated to be true; otherwise, it is
evaluated to be false.

6.4.3 The master algorithm

We now recall the main ingredients for LMBOPT, the new limited memory bound
constrained optimization method. The mathematical structure of LMBOPT is de-
scribed in Section 1 of suppMat.pdf. LMBOPT first calls projStartPoint described
in Subsection 6.4.1 to improve the starting point. Then the function value and gradient
vector for such a point are computed and adjusted by adjustGrad; the same is done
later in every such calculation. In practice, if the gradient is contaminated by NaN or
±∞, adjustGrad replaces these values by a tuning parameter. In the main loop,
• LMBOPT first computes the reduced gradient by redGrad in per iteration and then
the working set is determined and updated by findFreePos.
• As long as the reduced gradient is not below a minimum threshold, it generates the
direction p̃ by searchDir to construct the subspace, and then constructs the regular-
ized Krylov direction p by KrylovDir in the hope of achieving a successful iteration,
provided that the activity is changed; otherwise the scaled Cauchy point is computed by
scaleCauchy if the statements (1)-(4) hold, discussed earlier in Subsection 6.2.4. Such
a successful iteration is determined by getSuccess and then the best point is updated.
• Otherwise it performs a gradient-free line search CLS-new along a regularized direc-
tion (enforceAngle) since the function is not near the quadratic case.
• Then if null steps are repeated at least nnullmax in a sequence, the point leading to
such steps is replaced by nullStep with a point around the previous best point if CLS-
new is not efficient; otherwise with the current point generated by CLS-new. This is
repeated until no null step is found.
• Afterwards, the gradient at the new point is computed and adjusted by adjustGrad.
In addition, the new free index set is found by findFreeNeg. At the end of every it-
eration, the subspace is updated provided that (i) there is no null step, (ii) either the
condition (6.38) holds or the number of local steps exceeds its limit.

42

6.4 Starting point and master algorithm 43

LMBOPT minimizes the bound constrained optimization problem (4.1). It takes the
initial point x0, the feasible set x and tuning parameters – detailed in Table 4 in
suppMat.pdf – as input and returns an optimum point xbest and its function value
fbest as output. For the convergence analysis of Algorithm 6.4.1 we refer to Theorem
4.5.2.

6.4.1 Algorithm. (LMBOPT, limited memory bound-constrained optimiza-
tion)

(LMB0) Initialization.
(1) Initialize the subspace information and other necessary information.
(2) Improve the starting point x0 by projStartPoint and compute initial function
value f0 := f(x0) and its gradient g0 := g(x0).
(3) Adjust the gradient by adjustGrad, and then initialize the necessary information
by initInfo.
for ` = 0, 1, 2, · · · do

(LMB1) Computing gred(x`) and finding I+(x`). Compute the reduced gradient
by redGrad and find the free indices by findFreePos.
(LMB2) Checking stopping tests. If either the infinity norm of reduced gradient
is below a given threshold or number of stuck iterations exceeds its limit, set xbest =
x` and fbest = f(x`) and stop.
(LMB3) Computing the subspace direction.
(1) Determine kind of the subspace by typeSubspace.
(2) Compute p̃` by searchDir.
(3) Compute the regularized Krylov direction p` by KrylovDir.
(4) If the statements (1)-(4) hold (discussed earlier in Subsection 6.2.4) and the
activity is fixed, a scaled Cauchy point by scaleCauchy is tried.
(5) Determine whether the iteration is successful (success is true) or not (success
is false) by getSuccess.
(LMB4) A new trial point may be accepted. If success is true, the (`+ 1)th
iteration is successful and so set x`+1 = x` + p`; otherwise,
(1) regularize direction by enforceAngle and perform a line search along the reg-
ularized direction by CLS-new resulting in αnew;
(2) project the trial point x` + αnewp` into x, resulting in the accepted point x`+1,
and compute the step s`+1 := x`+1 − x`;
(3) perform nullStep to check whether there exists a null step or not;
(4) if there is found a null step, increase the number of null steps and LMBOPT
ends provided that maximum number of null steps is reached.
(LMB5) Computing the gradient at the new point. If there is no null step,
compute the gradient g`+1 := g(x`+1), adjust it by adjustGrad, and set y`+1 :=
g`+1 − g`.
(LMB6) Updating information, free indices, and subspace. Update the
information by updateInfo, find the new free indices set I`+1 := I−(x`+1) by
findFreeNeg, update the subspace by updateSubspace.

end for

43

44 A new limited memory method

LMBOPT was implemented in Matlab; the source code is obtainable from

http://www.mat.univie.ac.at/~neum/software/LMBOPT.

6.5 Numerical results

In this section we compare our new solver LMBOPT with many other state-of-the-art
solvers from the literature (see Subsection 6.6.2) on a large public benchmark. Only
summary results are given; for supplementary information with much more detailed test
results see suppMat.pdf from the LMBOPT web site. These solvers are

ASACG [89, 90, 91, 93], CGdescent [89, 90, 93], ASABCP [43],
SPG [23, 24], LBFGSB [29], LMBFG-DDOGL [28],
LMBFG-EIG-MS-2-2 [28], LMBFG-BWX-MS [28], LMBFG-EIG-inf-2 [28],
LMBFGS-TR [28], LMBFG-MTBT [28], LMBFG-MT [28],
LMBFG-EIG-MS [28], LMBFG-EIG-curve-inf [28].

Details about the solvers and the options used can be found in Subsection 6.6.2. For some of the
solvers we chose options different from the default to make them more competitive.

We only compare public software with an available Matlab interface. LANCELOT-B combines
a trust region approach and projected gradient directions. But since there was no mex-file to run
LANCELOT-B in Matlab, we could not call it to be run in our Matlab environment. Similarly,
we could not find a version of GENCAN, the bound constrained version of ALGENCAN [22],
which could be handled in Matlab. GENCAN is a combination of spectral projected gradient
and an active set strategy. It is unlikely to introduce a significant bias into the comparison.
Hence, we compare LMBOPT with many known solvers using various active set strategies and
either projected conjugate gradient methods, projected truncated Newton methods, or projected
quasi Newton methods, not including LANCELOT-B and GENCAN.

Unconstrained solvers were turned into bound-constrained solvers by pretending that the reduced
gradient at the point π[x] is the requested gradient at x. Therefore no theoretical analysis is
available, the results show that this is a simple and surprisingly effective strategy.

6.5.1 Test problems used

We used all 1088 unconstrained and bound constrained problems with up to 100001 variables
from CUTEst; see Subsection 6.6.4.

We limited the budget available for each solver by requiring

nf2g ≤
{ 20n+ 10000 in the first and second runs,

50n+ 200000 in the third run

function evaluations plus two times gradient evaluations for a problem with n variables and

44

6.5 Numerical results 45

allowing at most { 300 in the first run,
1800 in the second run,
7200 in the third run

seconds of run time. A problem is considered solved by the solver so if infinity-norm of the
gradient ≤ 10−6.

To identify the best solver under appropriate conditions on test problems and budgets, we made
three different runs:
• In the first and second runs, the initial point is computed by (5.1). Compared to the standard
starting point, this shift usually preserves the difficulty of the problem. In the second run, the
three best solvers from the first run try to solve all test problems with an increased time limit
of 1800 seconds.
• In the third run, the initial point x0 is the standard starting point. The three best solvers from
the first run try to solve the 98 test problems unsolved in the first run without the shift (5.1).
Maximal time in seconds increased from 300 seconds to 7200 seconds and maximum number of
nf2g increased from 20n+ 10000 to 50n+ 200000. In this case, the three best solvers from the
first run succeeded to solve many of these unsolved problems. Test problems unsolved in third
run could not be solved by any solver, even with a huge budget.

6.5.2 The results for stringent resources

Unconstrained and bound constrained optimization problems. We tested all 15 solvers
for problems in dimension 1 up to 100001. A list of problems unsolved by all solvers can be
found in Subsection 6.6.3.

As can be seen from Table 6.1 and Figure 6.4 (shown in Subsection 6.6.5), LMBOPT stands out
as the most robust solver for unconstrained and bound constrained optimization problems; it is
the best in terms of number of solved problems and the ng efficiency. Other best solvers in terms
of the number of solved problems and the nf2g efficiency are ASACG and LMBFG-EIG-MS,
respectively. LBFGSB is the best in terms of number of function evaluations #100 and !100,
but it is not comparable in terms of the number of solved problems with other algorithms.

Classified by constraints and dimensions. Results for the three best solvers for all prob-
lems classified by dimension and constraint are given in Table 6.2 and Figures 6.5–6.6, Box plots
6.7–6.8 (shown in Subsection 6.6.5 and 6.6.6). These results show that,
• for low-dimensional problems (1 ≤ n ≤ 30), (1) LMBOPT is the best solver in terms of
the ng and nf2g efficiencies and the number of solved problems, (2) LMBFG-EIG-MS is the
best solver in terms of the nf efficiency (for both unconstrained and bound constrained prob-
lems), and (3) ASACG is the second best solver in terms of the number of solved problems (for
both unconstrained and bound constrained problems);
• for medium-dimensional problems (31 ≤ n ≤ 500), (1) LMBOPT is the best in terms
of the ng efficiency and the number of solved problems in the both unconstrained and bound
constrained problems. It is the best is the best in terms of the nf2g efficiency in the uncon-
strained problems, (2) LMBFG-EIG-MS is the best in terms of nf in the both unconstrained
and bound constrained problems and nf2g only in the bound constrained problems, (3) ASACG
is the best solver in terms of the nf2g efficiency in the bound constrained problems;
• for large-dimensional problems (501 ≤ n ≤ 100001), (1) LMBOPT is the best solver in

45

46 A new limited memory method

Table 6.1: The summary results for all problems

stopping test: ‖g‖∞ ≤ 1e-06, sec ≤ 300, nf2g ≤ 20 ∗ n + 10000

990 of 1088 problems solved mean efficiency in %
dim∈[1,100001] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec

LMBOPT lmb 952 179 153 4310 87 49 0 59 70 43 13
ASACG asa 935 164 28 1416 98 21 34 58 60 51 62
LMBFG-EIG-MS lt6 924 103 45 2970 119 26 19 60 57 60 34
LMBFG-EIG-curve-inf lt4 918 94 35 3330 118 25 27 60 56 59 34
ASABCP asb 900 75 52 2404 142 25 21 41 36 44 46
LMBFG-DDOGL lt2 896 112 49 2937 61 21 110 60 56 59 33
CGdescent cgd 895 144 16 2559 77 17 99 54 56 47 55
LMBFG-EIG-MS-2-2 lt7 895 38 0 3390 112 21 60 50 45 57 34
LMBFG-BWX-MS lt1 888 39 1 2694 56 21 123 51 45 58 32
SPG spg 840 94 60 5901 182 58 8 34 34 31 9
LBFGSB lbf 803 233 186 713 0 0 285 57 51 61 32
LMBFG-EIG-inf-2 lt5 753 81 23 3275 76 26 233 50 47 49 28
LMBFGS-TR ll3 733 100 41 2904 242 92 21 48 44 48 36
LMBFG-MTBT ll2 669 76 23 2257 55 14 350 45 41 46 26
LMBFG-MT ll1 657 104 50 2677 57 14 360 45 39 48 32

terms of the ng efficiency for both unconstrained and bound constrained problems, (2) LMBFG-
EIG-MS is the best solver in terms of the nf and nf2g efficiencies and the number of solved
problems (for all problems) and is the best solver in terms of the number of solved problems (for
bound constrained problems), (3) ASACG is the best solver in terms of the number of solved
problems only in the unconstrained problems.
• for all problems (1 ≤ n ≤ 100001), (1) LMBOPT is the best in terms of the number of
solved probelms and the ng efficiency in both unconstrained and bound constrained problems,
(2) LMBFG-EIG-MS is the best solver in terms of the nf and nf2g efficiencies in both uncon-
strained and bound constrained problems.

46

6.5 Numerical results 47

Table 6.2: The summary results classified by dimension and constraint for all problems

stopping test: ‖g‖∞ ≤ 1e-06, sec ≤ 1800, nf2g ≤ 20 ∗ n + 10000

304 of 319 problems solved mean efficiency in %
dim∈[1,30] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec

LMBOPT lmb 303 104 85 198 16 0 0 74 82 60 21
ASACG asa 285 116 90 28 20 0 14 72 70 66 81
LMBFG-EIG-MS lt6 274 120 102 185 43 0 2 66 58 70 55
182 of 192 problems without bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec

LMBOPT lmb 181 51 50 214 11 0 0 75 83 59 16
ASACG asa 175 57 50 31 9 0 8 74 73 67 84
LMBFG-EIG-MS lt6 166 81 75 259 26 0 0 72 62 77 57
122 of 127 problems with bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec

LMBOPT lmb 122 53 35 173 5 0 0 73 79 62 28
ASACG asa 110 59 40 23 11 0 6 68 64 66 78
LMBFG-EIG-MS lt6 108 39 27 71 17 0 2 57 53 59 53
304 of 331 problems solved mean efficiency in %
dim∈[31,500] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec

LMBOPT lmb 299 93 88 482 32 0 0 70 79 55 18
ASACG asa 293 89 80 154 28 0 10 69 68 64 83
LMBFG-EIG-MS lt6 293 136 127 227 31 0 7 71 64 75 52
189 of 203 problems without bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec

LMBOPT lmb 187 62 62 581 16 0 0 74 82 57 20
ASACG asa 183 45 42 177 16 0 4 69 69 63 86
LMBFG-EIG-MS lt6 183 85 82 266 18 0 2 73 63 78 56
115 of 128 problems with bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec

LMBOPT lmb 112 31 26 317 16 0 0 65 75 51 16
ASACG asa 110 44 38 114 12 0 6 68 67 67 79
LMBFG-EIG-MS lt6 110 51 45 163 13 0 5 68 66 70 47
375 of 438 problems solved mean efficiency in %
dim∈[501,100001] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec

LMBFG-EIG-MS lt6 365 240 227 15202 60 2 11 73 65 76 38
ASACG asa 358 76 63 5434 68 1 11 60 59 57 80
LMBOPT lmb 354 81 71 17386 69 15 0 61 71 46 19
181 of 220 problems without bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec

ASACG asa 175 40 37 4021 42 1 2 62 62 57 78
LMBFG-EIG-MS lt6 173 100 96 10696 43 2 2 65 57 69 32
LMBOPT lmb 169 45 44 15044 40 11 0 58 65 44 15
194 of 218 problems with bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec

LMBFG-EIG-MS lt6 192 140 131 19261 17 0 9 80 73 82 45
LMBOPT lmb 185 36 27 19525 29 4 0 65 76 48 23
ASACG asa 183 36 26 6786 26 0 9 58 55 57 82
983 of 1088 problems solved mean efficiency in %
dim∈[1,100001] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec

LMBOPT lmb 956 278 244 6651 117 15 0 68 76 53 19
ASACG asa 936 281 233 2135 116 1 35 66 65 62 81
LMBFG-EIG-MS lt6 932 496 456 6079 134 2 20 70 63 74 48
552 of 615 problems without bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec

LMBOPT lmb 537 158 156 5009 67 11 0 68 75 53 17
ASACG asa 533 142 129 1391 67 1 14 68 67 62 82
LMBFG-EIG-MS lt6 522 266 253 3721 87 2 4 70 60 74 47
431 of 473 problems with bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec

LMBOPT lmb 419 120 88 8756 50 4 0 67 76 52 23
LMBFG-EIG-MS lt6 410 230 203 9082 47 0 16 71 64 73 48
ASACG asa 403 139 104 3119 49 0 21 64 60 62 80

47

48 A new limited memory method

6.5.3 Results for hard problems

All solvers have been run again on the hard problems defined as the 98 test problems unsolved
in the first run. In this case, the standard starting point has been used instead of (5.1) and
both nfmax and secmax have been increased. 41 test problems were not solved by all solvers for
dimensions 1 up to 100001, given in Table 6.5 in Subsection 6.6.8

From Table 6.3 and Figure 6.9 (shown in Subsection 6.6.5), we conclude
• LMBOPT is the best in terms of the number of solved problems and the ng and nf2g effi-
ciencies in the hard bound constrained problems.
• ASACG is the best in terms of the number of solved problems and the ng and nf2g efficiencies
in the hard unconstrained problems.
• LMBFG-EIG-MS is the best in terms of the ng and nf2g efficiencies in the hard uncon-
strained problems.

Table 6.3: The summary results for hard problems

stopping test: ‖g‖∞ ≤ 1e-06, sec ≤ 7200, nf2g ≤ 50 ∗ n + 200000

57 of 98 problems solved mean efficiency in %
dim∈[1,100001] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec

LMBOPT lmb 50 13 13 224127 44 4 0 36 41 28 15
ASACG asa 50 20 20 104569 31 0 17 42 42 39 50
LMBFG-EIG-MS lt6 46 24 24 157855 41 1 10 39 35 41 25
28 of 57 problems without bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec

ASACG asa 26 7 7 170316 22 0 9 38 35 35 44
LMBFG-EIG-MS lt6 24 15 15 247233 26 1 6 38 35 39 21
LMBOPT lmb 21 6 6 247561 33 3 0 27 31 20 11
stopping test: ‖g‖∞ ≤ 1e-06, sec ≤ 7200, nf2g ≤ 50 ∗ n + 200000

29 of 41 problems with bounds solved mean efficiency in %
dim∈[1,100001] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec

LMBOPT lmb 29 7 7 207158 11 1 0 48 54 38 21
ASACG asa 24 13 13 33344 9 0 8 47 46 45 58
LMBFG-EIG-MS lt6 22 9 9 60353 15 0 4 40 36 45 31

48

6.5 Numerical results 49

6.5.4 Recommendations

In this section, we recommend a solver choice based on our finding. The choice depends on
the problem dimension, the presence and absence of constrains, the desired robustness, and the
relative cost of function and gradient evaluations shown in Subfigures (a)-(c) of Figure 6.2.

Figure 6.2: (a) Flow chart for unconstrained problems classified by problems, (b) Flow
chart for bound constrained problems classified by the problem dimension,
(c) Flow chart for hard problems classified by constraint. Here L-E-M stands
for LMBFG-EIG-MS.

Dimension

goal goal

L-E-M LMBOPT LMBOPT L-E-M LMBOPT ASACG

goal

L-E-M LMBOPT LMBOPT

≤ 30 ≥ 501

otherwiserobustsmall ngsmall nf robustsmall ngsmall nf

small nf small ng robust

(a)

Dimension

goal goal

ASACG LMBOPT LMBOPT L-E-M LMBOPT L-E-M

goal

L-E-M LMBOPT LMBOPT

≤ 30 ≥ 501

otherwiserobustsmall ngsmall nf robustsmall ngsmall nf

small nf small ng robust

(b)

Constraints

— goal goal

ASACG
L-E-M
ASACG

L-E-M
ASACG

L-E-M
ASACG LMBOPT LMBOPT

unconstrained bound constrained

robustsmall ngsmall nf robustsmall ngsmall nf

(c)

49

50 A new limited memory method

6.6 Additional material for LMBOPT

This section discusses additional material for LMBOPT.

6.6.1 Default tuning parameters for LMBOPT

For our tests we used for LMBOPT the following tuning parameters

nsmin = 1; nwait = 1; rfac = 2.5; nlf = 2; ∆m = 10−13; ∆pg = εm;
∆ν = εm; ∆α = 5εm; lmax = 4; β = 0.02; βCG = 0.001; ∆a = 10−12;
∆reg = 10−12; ∆w = εm; facf = 10−8; ∆x = 10−20; m = 12; mf = 2;
typeH = 0; nnulmax = 3; del = 10−10; ∆r = 20; ∆g = 100; ∆b = 10εm;
∆u = 1000; θ = 10−8; exact = 0; ∆po = εm nstuckmax = +∞; ζmin = −1050;
ζmax = −10−50; ∆D = 1010; qmin = 2.5; ∆q = 10; ∆f = 2; q = 25;
mdf = 20.

They are based on limited tuning by hand. How to find optimal tuning parameters [116] would
be interesting and very important since the quality of LMBOPT depends on it.

6.6.2 Codes compared

We compare LMBOPT with the following solvers for unconstrained and bound constrained
optimization. For some of the solvers we chose options different from the default to make them
more competitive.

Bound constrained solvers:
• ASACG (asa), obtained from

http://users.clas.ufl.edu/hager/papers/CG/Archive/ASA_CG-3.0.tar.gz,

is an active set algorithm for solving a bound constrained optimization problem by Hager &
Zhang [92]. The default parameters have been used. Only memory = 12 and other parameters
have been chosen as default.
• LBFGSB (lbf), obtained from

http://users.iems.northwestern.edu/~nocedal/Software/Lbfgsb.3.0.tar.gz,

is a limited-memory quasi-Newton code for bound-constrained optimization by Byrd et al. [29].
Only m = 12 and other parameters have been chosen as default.
• ASABCP (asb), obtained from

https://sites.google.com/a/dis.uniroma1.it/asa-bcp/download,

is a two-stage active-set algorithm for bound-constrained optimization by Cristofari et al. [43].
The default parameters have been used.
• SPG (spg), obtained from

https://www.ime.usp.br/~egbirgin/tango/codes.php,

50

6.6 Additional material for LMBOPT 51

is a spectral projected gradient algorithm for solving a bound constrained optimization problem
by Birgin et al. [23, 24]. The default parameters have been used.

Unconstrained solvers:
• CGdescent (cdg), obtained from

http://users.clas.ufl.edu/hager/papers/CG/Archive/CG_DESCENT-C-6.8.tar.
gz,

is a conjugate gradient algorithm for solving an unconstrained minimization problem by Hager
& Zhang [90, 91, 93, 94]. Only memory = 12 and other parameters have been chosen as default.
• LMBFG, obtained from

http://gratton.perso.enseeiht.fr/LBFGS/index.html,

is a limited memory quasi Newton package by Burdakov et al. [28]:
(a) LMBFG-MT (ll1) is a limited memory line-search algorithm L-BFGS based on the More-
Thuente line search. Only m = 12 and other parameters have been chosen as default.
(b) LMBFG-MTBT (ll2) is a limited memory line-search algorithm L-BFGS based on the
More-Thuente line search and the starting step is obtained using backtrack by Burdakov et
al. [28]. Only m = 12 and other parameters have been chosen as default.
(c) LMBFGS-TR (ll3), is a limited memory line-search algorithm L-BFGS that takes a trial
step along the quasi-Newton direction inside the trust region. Only m = 12 and the other pa-
rameters have been chosen as default.
(d) LMBFG-BWX-MS (lt1) is a limited memory trust-region algorithm BWX-MS. It applies
the Moré & Sorensen approach for solving the TR subproblem defined in the Euclidean norm.
Only m = 12 and the other parameters have been chosen as default.
(e) LMBFG-DDOGL (lt2) is a limited memory trust-region algorithm D-DOGL. Only m =
12 and the other parameters have been chosen as default.
(f) LMBFG-EIG-curve-inf (lt4) is a limited memory trust-region algorithm EIG(∞, 2). Only
m = 12 and the other parameters have been chosen as default.
(g) LMBFG-EIG-inf-2 (lt5) is a limited memory trust-region algorithm EIG(∞, 2) based on
the eigenvalue-based norm, with the exact solution to the TR subproblem in closed form. Only
m = 12 and other parameters have been chosen as default.
(h) LMBFG-EIG-MS (lt6) is a limited memory trust-region algorithm EIG-MS. Only m = 12
and other parameters have been chosen as default.
(i) LMBFG-EIG-MS-2-2 (ll7) is a limited memory trust-region algorithm EIG− MS(2, 2) based
on the eigenvalue-based norm, with the Moré & Sorensen approach for solving a low-dimensional
TR subproblem. Only m = 12 and other parameters have been chosen as default.

6.6.3 Problems unsolved by all solvers

A list of problems unsolved by all solvers is given in Table 6.4.

51

52 A new limited memory method

Table 6.4: Problems unsolved by all solvers

BROWNBS PALMER5E PALMER5B OSCIGRAD:10
OSCIPATH:10 STRATEC SBRYBND:10 SCOSINE:10
SCURLY10:10 SCOND1LS OSCIGRAD:15 OSCIGRAD:25
ANTWERP NONMSQRT:49 HS110:50 SBRYBND:50
RAYBENDS RAYBENDL:66 RAYBENDS:66 HYDC20LS
FLETCHBV:100 HS110:100 NONMSQRT:100 OSCIGRAD:100
SBRYBND:100 SCOSINE:100 SCURLY10:100 SSCOSINE:100
SCOND1LS:102 RAYBENDL:130 RAYBENDS:130 QR3DLS
GRIDGENA:170 DRCAV1LQ HS110:200 SPMSRTLS:499
PENALTY2:500 SBRYBND:500 SCOND1LS:502 MSQRTALS:529
MSQRTBLS:529 NONMSQRT:529 GRIDGENA QR3DLS:610
LINVERSE:999 CURLY20 CHENHARK FLETCHBV:1000
PENALTY2:1000 SBRYBND SCOSINE SCURLY10
SSCOSINE SPMSRTLS:1000 SCOND1LS:1002 MSQRTALS:1024
MSQRTBLS:1024 NONMSQRT:1024 RAYBENDL:1026 RAYBENDS:1026
DRCAV1LQ:1225 DRCAV2LQ:1225 DRCAV3LQ:1225 GRIDGENA:1226
LINVERSE:1999 RAYBENDL:2050 RAYBENDS:2050 GRIDGENA:2114
EIGENALS:2550 GRIDGENA:3242 DRCAV3LQ:4489 GRIDGENA:4610
MSQRTALS:4900 MSQRTBLS:4900 SPMSRTLS:4999 FLETCBV3:5000
FLETCHBV:5000 SBRYBND:5000 SCOSINE:5000 SPARSINE:5000
SSCOSINE:5000 SCOND1LS:5002 BRATU1D:5003 GRIDGENA:6218
CURLY10:10000 CURLY20:10000 CURLY30:10000 FLETCBV3:10000
FLETCHBV:10000 SCOSINE:10000 SCURLY10:10000 SPARSINE:10000
SPMSRTLS:10000 SSCOSINE:10000 DRCAV3LQ:10816 ODNAMUR
GRIDGENA:12482 SSCOSINE:100000

6.6.4 Test problem selection

It is seen from Figure 6.3 that the number of unconstrained, bound constrained, and uncon-
strained and bound constrained optimization problems – solved at least by one of solvers – are
517, 375, and 990 respectively.

52

6.6 Additional material for LMBOPT 53

1 2 5 10 20 50 100 300 1000 10000 100001

d

0

200

400

600

800

1000

1200

#
 p

ro
b

le
m

s
 o

f
d

im

 d

990

375

517

all

bound constrained

unconstrained

Figure 6.3: The number of problems with variables in a given range solved by at least
one solver: 990 problems with dimensions 1 up to 100001

53

54 A new limited memory method

6.6.5 Performance profiles

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for ng

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf2g

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for sec

lmb

asa

lt6

lt4

Ua) Ub) Uc) Ud)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for ng

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf2g

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for sec

lmb

asa

lt6

lt4

Ba) Bb) Bc) Bd)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for ng

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf2g

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for sec

lmb

asa

lt6

lt4

a) b) c) d)

Figure 6.4: (Ua)-(Ud): Performance profiles for unconstrained problems (1 ≤ n ≤
100001) in terms of the ng/(best ng), nf/(best nf), nf2g/(best nf2g),
and msec/(best msec) efficiencies, respectively. (Ba)-(Bd): Performance
profiles for bound constrained problems (1 ≤ n ≤ 100001) in terms of the
ng/(best ng), nf/(best nf), nf2g/(best nf2g), and msec/(best msec) ef-
ficiencies, respectively. (a)-(d): Performance profiles for both unconstrained
and bound constrained problems (1 ≤ n ≤ 100001) in terms of the ng/(best
ng), nf/(best nf), nf2g/(best nf2g), and msec/(best msec) efficiencies,
respectively. ρ designates the percentage of problems solved within a factor
τ of the best solver. Problem solved by no solver are ignored.

54

6.6 Additional material for LMBOPT 55

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for ng

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf2g

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for sec

lmb

asa

lt6

1Ua) 1Ub) 1Uc) 1Ud)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for ng

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf2g

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for sec

lmb

asa

lt6

1Ba) 1Bb) 1Bc) 1Bd)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for ng

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf2g

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for sec

lmb

asa

lt6

2Ua) 2Ub) 2Uc) 2Ud)

Figure 6.5: (1Ua)-(1Ud)/(1Ba)-(1Bd): Performance profiles for low-dimensional uncon-
strained/bound constrained problems (1 ≤ n ≤ 30) in terms of the ng/(best
ng), nf/(best nf), nf2g/(best nf2g), and msec/(best msec) efficiencies,
respectively. (2Ua)-(2Ud): Performance profiles for medium-dimensional un-
constrained problems (31 ≤ n ≤ 500) in terms of the ng/(best ng), nf/(best
nf), nf2g/(best nf2g), and msec/(best msec) efficiencies, respectively. ρ
designates the percentage of problems solved within a factor τ of the best
solver. Problem solved by no solver are ignored.

55

56 A new limited memory method

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for ng

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf2g

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for sec

lmb

asa

lt6

2Ba) 2Bb) 2Bc) 2Bd)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for ng

lt6

asa

lmb

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

lt6

asa

lmb

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf2g

lt6

asa

lmb

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for sec

lt6

asa

lmb

3Ua) 3Ub) 3Uc) 3Ud)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for ng

lt6

asa

lmb

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

lt6

asa

lmb

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf2g

lt6

asa

lmb

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for sec

lt6

asa

lmb

3Ba) 3Bb) 3Bc) 3Bd)

Figure 6.6: (2Ba)-(2Bd): Performance profiles for medium-dimensional bound con-
strained problems (31 ≤ n ≤ 500) in terms of the ng/(best ng), nf/(best
nf), nf2g/(best nf2g), and msec/(best msec) efficiencies, respectively.
(3Ua)-(3Ud)/(3Ba)-(3Bd): Performance profiles for high-dimensional uncon-
strained and bound constrained problems (501 ≤ n ≤ 100001) in terms of the
ng/(best ng), nf/(best nf), nf2g/(best nf2g), and msec/(best msec) ef-
ficiencies, respectively. ρ designates the percentage of problems solved within
a factor τ of the best solver. Problem solved by no solver are ignored.

56

6.6 Additional material for LMBOPT 57

6.6.6 Box plots

LMBOPT ASACG LMBFG-EIG-MS

s

-0.05

0

0.05

0.1

0.15

0.2
(s,) for ng

LMBOPT ASACG LMBFG-EIG-MS

s

-0.05

0

0.05

0.1

0.15

0.2
(s,) for nf

LMBOPT ASACG LMBFG-EIG-MS

s

-0.05

0

0.05

0.1

0.15

0.2
(s,) for nf2g

LMBOPT ASACG LMBFG-EIG-MS

s

-1

0

1

2

3

4
10

-4 (s,) for sec

1Ua) 1Ub) 1Uc) 1Ud)

LMBOPT ASACG LMBFG-EIG-MS

s

-0.05

0

0.05

0.1

0.15

0.2
(s,) for ng

LMBOPT ASACG LMBFG-EIG-MS

s

-0.05

0

0.05

0.1

0.15

0.2
(s,) for nf

LMBOPT ASACG LMBFG-EIG-MS

s

-0.05

0

0.05

0.1

0.15

0.2
(s,) for nf2g

LMBOPT ASACG LMBFG-EIG-MS

s

-1

0

1

2

3

4
10

-4 (s,) for sec

1Ba) 1Bb) 1Bc) 1Bd)

LMBOPT ASACG LMBFG-EIG-MS

s

0

0.1

0.2

0.3

0.4

0.5
(s,) for ng

LMBOPT ASACG LMBFG-EIG-MS

s

0

0.1

0.2

0.3

0.4

0.5
(s,) for nf

LMBOPT ASACG LMBFG-EIG-MS

s

0

0.1

0.2

0.3

0.4

0.5
(s,) for nf2g

LMBOPT ASACG LMBFG-EIG-MS

s

0

2

4

6

8

10
10

-4 (s,) for sec

2Ua) 2Ub) 2Uc) 2Ud)

Figure 6.7: We show box plots for the data summarized in Table 6.2. Here ρ stands
for ng/ngmax, nf/nfmax, nf2g/nf2gmax, sec/secmax and s stands for the
name of solvers. (1Ua)-(1Ud)/(1Ba)-(1Bd): Box plots for low-dimensional
unconstrained and bound constrained problems (1 ≤ n ≤ 30) in terms of
ng/ngmax, nf/nfmax, nf2g/nf2gmax, and sec/secmax, respectively. (2Ua)-
(2Ud): Box plots for medium-dimensional unconstrained problems (31 ≤
n ≤ 500) in terms of ng/ngmax, nf/nfmax, nf2g/nf2gmax, and sec/secmax,
respectively. Here nfmax, ngmax, nf2gmax, and secmax stand for maximal
number of function evaluations, maximal number of gradient evaluations,
maximal number of function evaluations plus two times gradient evaluations,
and maximal time in seconds, respectively.

57

58 A new limited memory method

LMBOPT ASACG LMBFG-EIG-MS

s

0

0.1

0.2

0.3

0.4

0.5
(s,) for ng

LMBOPT ASACG LMBFG-EIG-MS

s

0

0.1

0.2

0.3

0.4

0.5
(s,) for nf

LMBOPT ASACG LMBFG-EIG-MS

s

0

0.1

0.2

0.3

0.4

0.5
(s,) for nf2g

LMBOPT ASACG LMBFG-EIG-MS

s

0

2

4

6

8

10
10

-4 (s,) for sec

2Ba) 2Bb) 2Bc) 2Bd)

LMBFG-EIG-MS ASACG LMBOPT

s

0

0.2

0.4

0.6

0.8

1

(s,) for ng

LMBFG-EIG-MS ASACG LMBOPT

s

0

0.2

0.4

0.6

0.8

1

(s,) for nf

LMBFG-EIG-MS ASACG LMBOPT

s

0

0.2

0.4

0.6

0.8

1

(s,) for nf2g

LMBFG-EIG-MS ASACG LMBOPT

s

0

0.05

0.1

0.15

0.2
(s,) for sec

3Ua) 3Ub) 3Uc) 3Ud)

LMBFG-EIG-MS ASACG LMBOPT

s

-0.05

0

0.05

0.1

0.15

0.2
(s,) for ng

LMBFG-EIG-MS ASACG LMBOPT

s

-0.05

0

0.05

0.1

0.15

0.2
(s,) for nf

LMBFG-EIG-MS ASACG LMBOPT

s

-0.05

0

0.05

0.1

0.15

0.2
(s,) for nf2g

LMBFG-EIG-MS ASACG LMBOPT

s

0

5

10

15

20
10

-3 (s,) for sec

3Ba) 3Bb) 3Bc) 3Bd)

Figure 6.8: We show box plots for the data summarized in Table 6.2. Here ρ stands
for ng/ngmax, nf/nfmax, nf2g/nf2gmax, sec/secmax and s stands for the
name of solvers. (2Ba)-(2Bd): Box plots for medium-dimensional bound
constrained problems (31 ≤ n ≤ 500) in terms of ng/ngmax, nf/nfmax,
nf2g/nf2gmax, and sec/secmax, respectively. (3Ua)-(3Ud)/(3Ba)-(3Bd):
Box plots for high-dimensional unconstrained and bound constrained prob-
lems (501 ≤ n ≤ 100001) in terms of ng/ngmax, nf/nfmax, nf2g/nf2gmax,
and sec/secmax, respectively. Here nfmax, ngmax, nf2gmax, and secmax
stand for maximal number of function evaluations, maximal number of gra-
dient evaluations, maximal number of function evaluations plus two times
gradient evaluations, and maximal time in seconds, respectively.

58

6.6 Additional material for LMBOPT 59

6.6.7 The hard problems unsolved by all solvers

Table 6.5: The hard problems unsolved by all solvers

OSCIPATH:10 SCOSINE:10 SCOND1LS ANTWERP
NONMSQRT:49 SBRYBND:50 HYDC20LS FLETCHBV:100
NONMSQRT:100 SBRYBND:100 SCOSINE:100 SCURLY10:100
SCOND1LS:102 PENALTY2:500 SBRYBND:500 SCOND1LS:502
NONMSQRT:529 FLETCHBV:1000 PENALTY2:1000 SBRYBND
SCOSINE SCURLY10 SSCOSINE SCOND1LS:1002
NONMSQRT:1024 DRCAV1LQ:1225 DRCAV2LQ:1225 DRCAV3LQ:1225
DRCAV3LQ:4489 FLETCBV3:5000 FLETCHBV:5000 SBRYBND:5000
SCOSINE:5000 SCOND1LS:5002 BRATU1D:5003 FLETCBV3:10000
FLETCHBV:10000 SCOSINE:10000 SCURLY10:10000 DRCAV3LQ:10816
SSCOSINE:100000

59

60 A new limited memory method

6.6.8 Performance profile for the hard problems

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for ng

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf2g

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for sec

lmb

asa

lt6

Ua) Ub) Uc) Ud)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for ng

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf2g

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for sec

lmb

asa

lt6

Ba) Bb) Bc) Bd)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for ng

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf2g

lmb

asa

lt6

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for sec

lmb

asa

lt6

a) b) c) d)

Figure 6.9: (Ua)-(Ud): Performance profiles for unconstrained hard problems (1 ≤ n ≤
100001) in terms of the ng/(best ng), nf/(best nf), nf2g/(best nf2g),
and msec/(best msec) efficiencies, respectively. (Ba)-(Bd): Performance
profiles for bound constrained hard problems (1 ≤ n ≤ 100001) in terms
of the ng/(best ng), nf/(best nf), nf2g/(best nf2g), and msec/(best
msec) efficiencies, respectively. (a)-(d): Performance profiles for both uncon-
strained and bound constrained hard problems (1 ≤ n ≤ 100001) in terms
of the ng/(best ng), nf/(best nf), nf2g/(best nf2g), and msec/(best
msec) efficiencies, respectively. ρ designates the percentage of problems
solved within a factor τ of the best solver. Problem solved by no solver
are ignored.

60

7 An active set trust region method

This section discusses an active set trust region method for bound constrained optimization
problems. This is my own work (cf. Kimiaei [111]). A sufficient descent condition is used as a
computational measure to identify whether the function value is reduced or not. A complexity
result is proven for a critical measure which is computationally better than the other known crit-
ical measures. Under the positive semi-definiteness of approximated Hessian matrices restricted
to the subspace of non-active variables, it will be shown that unlimited zigzagging cannot occur.

7.1 Overview of the new method

We construct an active set trust region algorithm for bound constrained optimization problems:
• The trust region ratio (4.22) is replaced by a variant of the sufficient descent condition (4.20).
It is very useful in finite precision arithmetic whenever the function is very nonlinear.
• To get a complexity bound for our algorithm, the trust region radius is updated based on the
reduced gradient.
• The reduced gradient is used as a critical measure to identify a good local minimizer from a
spurious apparent local minimizer.
• Under the positive semi-definiteness of approximated Hessian matrices restricted to the sub-
space of free variables, it will be shown that unlimited zigzagging cannot occur. Hence all strongly
active variables are found and fixed at finitely many iterations.

Section 7.2 describes the required assumptions on the problem and algorithm to prove an im-
proved complexity result for bound constrained optimization. In Section 7.3, a sufficient descent
condition is used instead of the trust region ratio. In Section 7.4, the new algorithm is described.
The complexity result is proven in Section 7.5.

7.2 Complexity

In this section, we discuss the state of the art complexity results in Subsection 7.2.1 and our
complexity results with a reasonable critical measure in Subsection 7.2.2.

7.2.1 Known complexity

This subsection discusses why the two known critical measures may accept numerically points
as local minimizers while they are far from the local minimizers.

61

62 An active set trust region method

Two common critical measures for the problem (4.1) are

g(1)(x) := π(x− g(x))− x and χ(x) := min
x+p∈x, ‖p‖≤1

g(x)T p.

Here the definition of π comes from (4.18). They were used to prove the global convergence by
Hager & Zhang [90, 94] and Byrd et al. [29] and the complexity bound by Cartis et al.
[34, 33].

Cartis et al. [34] showed that their algorithm, starting from a point x0 ∈ x, finds a point x ∈ x
such that ‖g(1)(x)‖ ≤ ε using at most N(ε) iterations. For the one-dimensional problem [136]

min
0≤x≤∞

x, (7.1)

whose gradient of the objective function is g(x) = 1, the cancellation in the calculation of g(1)(x)
in double precision arithmetic leads to the acceptance of the point x = 1017 as the minimizer
while such a point is far from the minimizer.

Cartis et al. [33] used another critical measure |χ(x)| ≤ ε. For the problem (7.1), this measure
is χ(x) := −1 and this critical measure fails since ε is assumed to be small.

7.2.2 Our complexity

This subsection introduces our reasonable critical measure and assumptions on the problem and
algorithm which are needed to achieve our complexity bound in the nonconvex case.

To overcome the shortcoming of known critical measures, we are interested in finding an algorithm
which needs at most N(ε) iterations to get a point xbest satisfying

f(xbest) ≤ sup
x∈x
{f(x) | f(x) ≤ f(x0) and ‖gred(x)‖∞ ≤ ε}.

It is clear that this measure overcomes the drawbacks of two previous critical measures since if it
is used for the problem (7.1) it results in gred(0) = 0 and gred(x) = 1 for x > 0. But the reduced
gradient does not preserve continuity. Hence, Neumaier & Azmi [136, Theorem 8.2] showed
that if the sequence x` (` ≥ 0) generated by BOPT converges to a point x̂ and gred(x`) goes to
zero then gred(x̂) = 0 and all strongly active variables are found ultimately at the nondegenerate
stationary point x̂. As a result, if gred(x`) goes to zero for a bounded sequence x` ∈ x, there
are some subsequences converging to x̂ ∈ x such that gred(x̂) = 0 (see [136, Corrolary 8.3]).
Accordingly, we prove the main convergence result in Section 7.5 (see Theorem 7.5.7).

We prove that the complexity bound O(ε−2) holds in both unconstrained and bound constrained
cases. In the unconstrained case, this complexity bound is the same as the known complexity
bounds by Curtis [45, 46], Grapiglia et al. [81], and Gratton et al. [83]. In the bound
constrained case, our complexity bound is the same as the known complexity results obtained
by Cartis et al. [34, 33] provided that the trust region algorithms use the quadratic model but
with the difference that it is numerically better than them.

The complexity results for the other optimization methods have been obtained, e.g., Nesterov
[133], Cartis et al. [35], Birgin et al. [19] and Nesterov & Polyak [134].

62

7.2 Complexity 63

As in [41], we need to make some assumptions on the problem and the algorithm in order to
determine the complexity results. We abbreviate
• the upper bound on the norm of the model’s Hessian to “umh”,
• the upper bound on the norm of function’s element Hessians to “ufh”,
• the uniform norm equivalence to “une”,
• the upper bound on the Hessians to “ubh”.

Assumptions on the problem:
(GBO1) The objective function f(x) is twice continuously differentiable and has a lower bound
on the level set L(x0) := {x ∈ x | f(x) ≤ f(x0), x0 ∈ x} of x0.
(GBO2) The Hessian G of the objective function is uniformly bounded, i.e., there exists a Γufh > 0
such that ‖G(x)‖ ≤ Γufh for x ∈ x.
Assumptions on the algorithm:
(GBO3) The model function Q is twice differentiable on T r, Q(x) = f(x), g(x) = ∇f(x) =
∇Q(x), and B(x) := ∇2Q(x) for all x ∈ x.
(GBO4) The Hessian of the model function B(x) is bounded within the trust region T r, i.e.,
there exists a constant Γumh ≥ 1 such that ‖B(x)‖ ≤ Γumh − 1 for x ∈ T r.

By (GBO4) and the definition Γ := 1+maxx∈T r{‖B(x)‖} ≥ 1 an upper bound on B is Γ ≤ Γumh.

The following result is Proposition 10.1 in [136].

7.2.1 Proposition. For nonzero q and α > 0, pq(α) := π[x+ αq]− x
α

satisfies (in any monotone
norm)

|pq(α)| ≤ |q|, ‖pq(α)‖ ≤ ‖q‖,

and with p ∈ Rn defined by

pi :=


0 if xi = xi = xi,
max(0, qi) if xi = xi < xi,
min(qi, 0) if xi < xi = xi,
qi if xi < xi < xi,

(7.2)

we have
pq(α) = p for sufficiently small α > 0. (7.3)

7.2.2 Proposition. The three following statements hold:
(i) For α ∈ (0, 1)

‖g(α)(x`)‖ ≤ α‖g(1)(x`)‖. (7.4)

(ii) For sufficiently small α ∈ (0, 1)

g(α)(x`) = αp−g(x`)(α) = −αgred(x`). (7.5)

(iii) ‖gred(x`)‖ ≤ ‖g(1)(x`)‖ ≤ ‖g(x`)‖.

Proof. (i) By Proposition 2.1 (P4) in [94], ‖g(α)(x`)‖ for all x` ∈ x is a nondecreasing function
of α ∈ (0, 1); hence (7.4) holds. (ii) By the definition of reduced gradient and Proposition

63

64 An active set trust region method

7.2.1, (7.5) is obtained. (iii) The statements (i)–(ii) and the nonexpansiveness of the projection
operator result in (iii). ut

The following result plays a key role in proving our complexity analysis. The same results have
been obtained for bound constrained nonlinear systems, see [56, 107, 108, 112].

7.2.3 Proposition. Given the `th iterate x` and the `th solution p` of the trust-region sub-
problem (4.21), we have for any index set I` and for all ` ≥ 0

Q(x`)−Q(x` + p`) ≥ 1
2 ‖g

(1)
I (x`)‖∞ min

{
‖g(1)
I (x`)‖∞

Γ
,∆`

}
. (7.6)

Proof. Because the convexity of x, defined by p`I := ζ`g
(1)
I (x`) 6= 0 with

ζ` := min
{

1, ∆`

‖g(1)
I (x`)‖∞

}
∈ [0, 1],

is in T r; hence, p` is feasible for (4.21). Moreover, let p̃` be the convex combination of vectors
p` and zero both of which are feasible for (4.21). Then it is feasible for (4.21). A minimizer of
the one-dimensional model function

χ(t) := Q(x` + p̃`)−Q(x`) = Q(x` + tp`)−Q(x`) = t(g`I)T p`I + 1
2 t

2(p`I)TB`IIp`I

over [0, 1] can be found in the two following cases:

Case 1: (p`I)TB`IIp`I > 0. Due to the strict convexity of quadratic function χ,

t∗ := argmin
t∈[0,1]

χ(t) = min
{
− (g`I)T p`I

(p`I)TB`IIp`I
, 1
}

is the unique minimizer over [0, 1]. This fact that p` is the minimum of the subproblem (4.21)
results in

Q(x` + p`)−Q(x`) ≤ χ(t∗) =


−1

2
((g`I)T p`I)2

(p`I)TB`IIp`I
, if − (g`I)T p`I ≤ (p`I)TB`IIp`I ,

1
2(g`I)T p`I , otherwise.

In the second case, (p`I)TB`IIp`I < −(g`I)T p`I results in

(g`I)T p`I + 1
2(p`I)TB`IIp`I <

1
2(g`I)T p`I .

From the projection theorem and the property of the Euclidean norm, we get

−(g`I)T p`I = −ζ`(g`I)T g
(1)
I (x`) = ζ`(−g`I)T

(
π[x` − g`I]− x`

)
= ζ`

(
(x` − g`I)− π[x` − g`I]

)T
g

(1)
I (x`) + ζ`‖g(1)

I (x`)‖2

≥ ζ`‖g(1)
I (x`)‖2 ≥ ζ`‖g(1)

I (x`)‖2
∞,

64

7.2 Complexity 65

so that

Q(x`)−Q(x` + p`) ≥ −χ(t∗) ≥ min
{

1
2

((g`I)T p`I)2

(p`I)TB`IIp`I
,−1

2(g`I)T p`I
}

≥ 1
2 min

{
(ζ`)2‖g(1)

I (x`)‖4

(p`I)TB`IIp`I
, ζ`‖g(1)

I (x`)‖2

}

≥ 1
2 min

{
(ζ`)2‖g(1)

I (x`)‖4

Γ‖p`I‖2
, ζ`‖g(1)

I (x`)‖2

}

= 1
2 min

{
(ζ`)2‖g(1)

I (x)‖4

(ζ`)2Γ ‖g(1)
I (x`)‖2

, ζ`‖g(1)
I (x`)‖2

}

= 1
2‖g

(1)
I (x`)‖min

{
‖g(1)
I (x`)‖

Γ
, ζ`‖g(1)

I (x`)‖
}

≥ 1
2‖g

(1)
I (x`)‖∞min

{
‖g(1)
I (x`)‖∞

Γ
, ζ`‖g(1)

I (x`)‖∞

}

= 1
2‖g

(1)
I (x`)‖∞min

{
‖g(1)
I (x`)‖∞

Γ
, ‖g(1)

I (x`)‖∞,∆`

}

= 1
2‖g

(1)
I (x`)‖∞min

{
‖g(1)
I (x`)‖∞

Γ
,∆`

}

by the definition of ζ` and since Γ ≥ 1.

Case 2: (p`I)TB`IIp`I = 0. Then the function χ(t) = t(g`I)T p`I is linear. Using the definition of
ζ`, the feasibility of x`, and the monotonicity of the projection operator, we have

(g`I)T p`I = ζ`(g`I)T g
(1)
I (x`)

= −ζ`(−g`I)T
(
π[x` − g`I]− x`

)
= −ζ`(−g`I)T

(
π[x` − g`I]− π[x`]

)
< 0

since π[x` − g`I] 6= π[x`]; otherwise, Algorithm 7.4.1 discussed in Section 7.4 is stopped due to
Proposition 7.2.2(iii). Hence, p` is a descent direction, and t∗ := argmin

t∈[0,1]
χ(t) = 1 is the unique

minimizer of χ(t) on [0, 1]; since −(g`I)T p`I > 0 = (p`I)TB`IIp`I , the minimum is attained at t∗ = 1,
so that

Q(x`)−Q(x` + p`) ≥ 1
2‖g

(1)
I (x`)‖∞min

{
‖g(1)
I (x`)‖∞,∆`

}
.

ut

A Cauchy point is a minimizer of the model function Q along the projected steepest descent
direction p̃` := ζ`g(1)(x`) with ζ` ∈ [0, 1], i.e.,

p` := t̃`p̃` with t̃` := argmin{Q(tp̃`) | t ≥ 0, tp̃` ∈ x}.

Since the Cauchy point is not unique in the constrained case, the following assumption is valid
for any global minimizer of (4.21).

65

66 An active set trust region method

(GBO5) The reduction of the model function Q is at least as much as the Cauchy point

Q(x`)−Q(x` + p`) ≥ 1
2‖g

(1)
I (x`)‖∞ min

{
‖g(1)
I (x`)‖∞

Γ
,∆`

}
, (7.7)

where p` is a solution of the trust-region subproblem (4.21).
(GBO6) There exists a constant Γune ≥ 1 such that

1
Γune ‖x‖k ≤ ‖x‖ ≤ Γune‖x‖k for x ∈ x,

where ‖x‖k are uniformly equivalent to the Euclidean `2 norm.

Inspired by Algorithm 2 in [112], the following result is valid.

7.2.4 Corollary. The `th inexact solution of (4.21) satisfies the inequality (7.7).

Proof. By choosing

ζ` := min
{

1, ∆`

‖g(1)
I (x`)‖∞

}
and computing p̃` := ζ`g

(1)
I (x`), the `th inexact solution of (4.21) is computed by

p` := tp̃` with t := min
{

1,− (g`I)T p̃`I
(p̃`I)TB`II p̃`I

}
and satisfies (7.7). ut

7.3 Enforcing a good agreement

Our achievement is to use the sufficient descent condition (4.19) in the trust region framework
instead of (4.22) to enforce a sensible decrease in the function value provided that

(g`I)T p`I < 0 (7.8)

holds. Define
(µ1)` := µ`(1) := f(x` + p`)− f(x`)

(g`I)T p`I
(7.9)

and then rewrite (4.20) as
(µ1)`|(µ1)` − 1| ≥ β, (7.10)

with fixed β ∈]0, 1
4 [, equivalent to either

µ′ ≤ (µ1)` ≤ µ′′ (7.11)

or
(µ1)` ≥ µ′′′ (7.12)

66

7.3 Enforcing a good agreement 67

where
0 < µ′ := 2β

1 +
√

1− 4β
< µ′′ := 1 +

√
1− 4β
2 < 1 (7.13)

and
µ′′′ := 1 +

√
1 + 4β
2 . (7.14)

Conversely, if (7.11) and (7.12) hold, then (7.10) holds with β := µ′(1− µ′′) > 0.

As earlier defined, if the agreement between f and Q is good, i.e.,

R` ≥ r, with r ∈ (0, 1), (7.15)

the `th iteration is called successful; otherwise, it is called unsuccessful. Instead, if the condition
(7.10) holds, the `th iteration is called successful; otherwise, it is called unsuccessful. In the next
proposition, we show that if the condition (7.10) holds, then (7.15) is satisfied.

We use the following result to construct an improved trust region algorithm.

7.3.1 Proposition. Given the `th iterate x`, the positive semidefinite B`II := BII(x`), and the
`th solution p` of the trust-region subproblem (4.21) satisfying (7.8), if the condition (7.10) holds,
there exists an r ∈ (0, 1) such that (7.15) holds.

Proof. Let

θ̂` := Q(x` + p`)−Q(x`)
(g`I)T p`I

. (7.16)

We want to find the lower and upper bound for θ̂`. To do so, let us define

Φ(t) := Q(x` + tp`)−Q(x`) = t(g`I)T p`I + 1
2 t

2(p`I)TB`IIp`I

as the one-dimensional model function over all t ∈ [0, 1]. We consider two cases:

Case 1. (p`I)TB`IIp`I > 0. In this case, the quadratic function Φ is strictly convex with a unique

minimizer over [0, 1] defined by t∗ := min
{
− (g`I)T p`I

(p`I)TB`IIp`I
, 1
}

. Since

Φ(1) = Q(x` + p`)−Q(x`) ≥ Φ(t∗) =


−1

2
((g`I)T p`I)2

(p`I)TB`IIp`I
, if − (g`I)T p`I ≤ (p`I)TB`IIp`I ,

1
2(g`I)T p`I , otherwise,

we get 0 < θ̂` ≤ 1
2 ; here the second case holds since (p`I)TB`IIp`I < −(g`I)T p`I results in

(g`I)T p`I + 1
2(p`I)TB`IIp`I <

1
2(g`I)T p`I .

Case 2. (p`I)TB`IIp`I = 0. In this case, the function Φ(t) = t(g`I)T p`I is linear. Since p`I is the
descent direction, t∗ := 1 is the unique minimizer of Φ over [0, 1]; hence

Φ(1) = Q(x` + p`)−Q(x`) ≥ Φ(t∗) = (g`I)T p`I ,

67

68 An active set trust region method

so that 0 < θ̂` ≤ 1.

As a result, we conclude that 0 < θ̂` ≤ 1. By (4.19), (7.8), and (7.11), we now get either

R` = f(x` + p`)− f(x`)
Q(x` + p`)−Q(x`) = (µ1)`

θ̂`
≥ µ′,

or
R` = f(x` + p`)− f(x`)

Q(x` + p`)−Q(x`) = (µ1)`

θ̂`
≥ µ′′′,

where µ′ and µ′′′ satisfying (7.13) and (7.14), respectively. By setting r = max(µ′, µ′′) ∈ (0, 1),
the proof is obtained. ut

7.4 The improved trust region algorithm

This section describes how to work out our improved trust region algorithm whose radius is
updated according to the reduced gradient norm.

To update the trust region radius ∆` for all ` ≥ 0, the parameter λ` is restricted into the interval
λ := [λ, λ], where 0 < λ < λ <∞. It is done by projecting λ` into the interval λ

Pλ(λ`) := min(λ,max(λ`, λ)). (7.17)

Before we introduce the trust region radius, the associated factor is defined according to

λ` :=
{

Pλ(σ2λ
`−1), if (7.10) holds,

σ1λ
`−1, otherwise,

(7.18)

where 0 < σ1 < 1 < σ2 are suitable constants and Pλ(.) is computed by (7.17). The trust region
radius

∆` := λ`‖gred(x`)‖∞ (7.19)

is updated according to the reduced gradient.

In fact, whenever the condition (7.10) holds, the trust region method is efficient. In this case, the
`th iteration is successful and ∆` is updated according to the reduced gradient norm. Otherwise,
since the condition (7.10) does not hold, the trust region method is not efficient and the `th
iteration is unsuccessful; ∆` is reduced.

We describe how to perform our algorithm, bound constrained active set trust region algorithm,
called BCASTR. It tries to figure out which constraints are probably active at the solution.
It is done by enforcing the sufficient descent condition (7.10). In this case, the iteration is
successful and the trust region radius is updated according to the reduced gradient norm while
the corresponding factor is increased. If the mentioned condition does not hold, the iteration is
unsuccessful and the trust region radius is reduced. Moreover, the trust region subproblem in
the subspace of non-active variables is solved in the hope of getting the minimizer. Once the
reduced gradient is below a given threshold, BCASTR ends.

68

7.5 Complexity analysis and limit accuracy 69

BCASTR takes the initial point x0 ∈ x the feasible set x as input and returns the minimum
point xbest ∈ x and its function value fbest = f(xbest) as output. It uses the following tuning
parameters:
0 < λ < λ <∞ (minimum and maximum values for λ),
q > 1 (parameter for expanding/reducing the step size),
0 < σ1 < 1 < σ2 (parameters for updating λ),
0 < β < 0.25 (parameter for efficiency),
0 < ρ ≤ 1 (parameter for freeing).

7.4.1 Algorithm. (BCASTR, bound constrained active set trust region method)
(ASTR0) Choose λ0 ∈ (λ, λ) and x0 ∈ x. Then, compute the initial function value f0 := f(x0)
and its gradient g0 := g(x0). Next, choose the positive definite matrix B0.
for ` = 1, 2, 3, · · · do

(ASTR1) Compute gred(x`) by (4.7). Then if ‖gred(x`)‖∞ ≤ ε, set xbest := x` and fbest :=
f `. Then BCASTR ends.
(ASTR2) If ` = 0, initialize the working set I` := I+(x`); otherwise if the condition (4.13)
is violated, the working set I` := I+(x`) is changed.
(ASTR3) Find an inexact solution of the trust region subproblem (4.21) restricted to free
variables.
(ASTR4) Compute x`+1 := x` + p`, f `+1 := f(x`+1), and (µ1)` by (7.10). Then if the
condition (7.10) holds, go to (ASTR6); otherwise, go to (ASTR5).
(ASTR5) Reduce λ`+1 to (7.18) and ∆`+1 to (7.19). Then go to (ASTR2).
(ASTR6) Expand λ`+1 to (7.18) and ∆`+1 to (7.19) and compute the gradient g`+1 :=
g(x`+1).
(ASTR7) Compute I`+1 := I−(x`+1) and update the positive definite matrix B`+1.

end for

7.5 Complexity analysis and limit accuracy

In this section, under the assumptions (GBO1)–(GBO6), we prove the complexity bound for our
algorithm and show that all strongly active variables are found ultimately at the nondegenerate
stationary point.

The following is the result of Theorem 6.3.1 in [41].

7.5.1 Proposition. Suppose that (GBO1)–(GBO6) hold and p` is the `th inexact solution of
(4.21). Then

|f(x` + p`)−Q(x` + p`)| ≤ Γubh‖p`I‖2, for all ` ≥ 0,

where x` + p` ∈ T r and Γubh := (Γune)2 max{Γufh,Γumh} > 0.

7.5.2 Proposition. Let p` be the `th inexact solution of (4.21) and suppose that (A1)-(A6)
hold. If λ` ≤ 1

Γ
, then

Q(x`)−Q(x` + p`) ≥ λ`

2 ‖g
red(x`)‖2

∞, for all ` ≥ 0. (7.20)

69

70 An active set trust region method

Proof. From (7.4)–(7.6) and the role of updating ∆, we get

Q(x`)−Q(x` + p`) ≥ 1
2‖g

(1)
I (x`)‖∞min

{
‖g(1)
I (x`)‖∞

Γ
,∆`

}

≥ 1
2α‖g

(α)
I (x`)‖∞min

{
‖g(α)
I (x`)‖∞
αΓ

, λ`‖gred(x`)‖∞

}

≥ 1
2‖g

red(x`)‖∞min
{
‖gred(x`)‖∞

Γ
, λ`‖gred(x`)‖∞

}

= λ`

2 ‖g
red(x`)‖2

∞.

ut

7.5.3 Proposition. Suppose that (GBO1)–(GBO6) hold and let p` be the `th inexact solution
of (4.21). Then

λ`+1 ≥ λmin := min
{
λ,
σ1

Γ
,
σ1(1− β)

2Γubh

}
, for all ` ≥ 0.

Proof. The proof is done by induction. With the choice of λ0 in (ASTR0) of Algorithm 7.4.1,
the proof holds for ` = 0; λ0 ≥ λ ≥ λmin. Let us assume that the induction hypothesis holds,
i.e., λ` ≥ λmin. Then, we show that it is valid for λ`+1. To do so, we consider two cases:

Case 1. If λ` > min
{σ1

Γ
,
σ1(1− β)

2Γubh

}
, then, by (7.19), we get

λ`+1 ≥ min{λ, σ1λ
`} ≥ λmin.

Case 2. As earlier defined by (7.16), if λ` ≤ min
{σ1

Γ
,
σ1(1− β)

2Γubh

}
, then we get

| (µ
1)`

θ̂`
− 1| = |R` − 1| = |f(x` + p`)−Q(x` + p`)|

Q(x`)−Q(x` + p`) ≤ 2(λ`)2Γubh‖gred(x`)‖2
∞

λ`‖gred(x`)‖2
∞

= 2Γubhλ`,

so that
θ̂`(1− 2Γubhλ`) ≤ (µ1)` ≤ θ̂`(1 + 2Γubhλ`).

Without loss of generality we choose from (7.13)

µ′ = 2β
1 +
√

1− 4β
= θ̂`(1− 2Γubhλ`)

and
µ′′ = 1 +

√
1− 4β
2 = θ̂`(1 + 2Γubhλ`).

The product of µ′ and µ′′ results in θ̂` := β

1− 4(Γubh)2(λ`)2 > 0; hence

µ′ = θ̂`(1− 2Γubhλ`) = β

1 + 2Γubhλ`
≥ β

2− β > 0

70

7.5 Complexity analysis and limit accuracy 71

and
µ′′ = θ̂`(1 + 2Γubhλ`) = β

1− 2Γubhλ`
< 1,

by the assumption λ` ≤ σ1(1− β)
2Γubh <

1− β
2Γubh . As a result, 0 < µ′ < µ′′ < 1 holds. Finally, the

choice β := µ′(1 − µ′′) > 0 comes to the fact that (7.10) holds; hence the iteration is successful
and so λ`+1 ≥ λ ≥ λmin. ut

Propositions 7.5.2 and 7.5.3 result in the following result.

7.5.4 Corollary. Let p` be the `th inexact solution of (4.21) and suppose that (GBO3)–(GBO6) hold.
Then

Q(x`)−Q(x` + p`) ≥ λmin

2 ‖gred(x`)‖2
∞, for all ` ≥ 0, (7.21)

where λmin comes from Proposition 7.5.3.

To prove the complexity analysis, let us define

K := {` ∈ N0 | ‖gred(x`)‖∞ > ε},
S(ε) := {` ∈ N0 | ‖gred(x`)‖∞ > ε and (7.10) holds}.

Here S(ε) contains all successful iterations generated by (7.10) and U(ε) contains the unsuccessful
iterations.

The following result gives an upper bound on the unsuccessful iterations.

7.5.5 Proposition. Given σ1 ∈ (0, 1) and λ > λ > 0, the number of unsuccessful iterations is
bounded by

|U(ε)| ≤
⌈

logσ1

λmin

λ

⌉
, (7.22)

where λmin comes from Proposition 7.5.3.

Proof. By the role of updating λ and Proposition 7.5.3, we get

λmin ≤ σ|U(ε)|
1 λ,

so that (7.22) is obtained. ut

The following result is our main complexity result for nonconvex case.

7.5.6 Theorem. Suppose that (GBO1)–(GBO6) hold and let p` be the `th inexact solution
of (4.21). Moreover, let f0 be the initial function value and µmin := min(µ′, µ′′′). Given any
ε ∈ (0, 1), BCASTR uses at most

(i) f0 − f̂
µminλminε2 successful iterations (gradient evaluations) due to (7.10), i.e.,

|S(ε)| ≤ O(ε−2),

71

72 An active set trust region method

where f̂ := inf
`
f ` is finite due to (GBO1) and λmin comes from Proposition 7.5.3.

(ii)
⌈

logσ1

λmin

λ

⌉(f0 − f̂
µminλminε2

)
iterations, i.e.,

|K(ε)| ≤ O(ε−2).

Proof. (i) Let gI := gI(x`) and gred := gred(x`). Then we conclude from Corollary 7.5.4 that

f0 − f̂ ≥ µmin
∑
`∈S(ε)

(Q(x`)−Q(x` + p`)) ≥ µminλminε2|S(ε)|, (7.23)

so that

|S(ε)| ≤ f0 − f̂
µminλminε2 := O(ε−2). (7.24)

ut

According to [136, Theorem 8.2] we show that when inf` ‖gred(x`)‖ = 0 and the sequence gener-
ated by our method converges to a point x̂ ∈ x then gred(x̂) = 0 and all strongly active variables
are found ultimately at the nondegenerate stationary point x̂ and unlimited zigzagging cannot
occur.

7.5.7 Theorem. Assume that the approximated Hessian matrix BII restricted to the subspace
of free variables is positive semidefinite matrix. Under assumptions Theorem 7.5.6, for sufficiently
large `, we have

inf
`
f ` = f̂ <∞ and inf

`
‖gred(x`)‖∞ = 0. (7.25)

Moreover, unlimited zigzagging cannot occur at the nondegenerate stationary point x̂.

Proof. For sufficiently large `, inf
`
f ` = f̂ and f̂ is finite due to (GBO1). For sufficiently large `,

we have
f ` − f `+1 ≥ µmin(Q(x`)−Q(x` + p`)) ≥ µminλmin‖gred(x`)‖2

∞

by Corollary 7.5.4, so that (7.25) is obtained. We define freeing iterations with respect to any
index set I by

FI := {` | I = I` = I+(x`) 6= I−(x`)}.

Whether there is a limited zigzagging or not makes the proof followed in two cases:

Case 1. Unlimited zigzagging. In such a case, FI is infinite. Since I is often changed infinitely,
#I is not finite, (4.21) is solved infinitely often for different I. By Proposition 7.5.5, the number
of unsuccessful iterations is finite; hence, the number of successful iterations is infinite. For
I ⊂ I+(x`), we have ‖gI(x`)‖∞ < ‖gI+(x`)‖∞ = ‖gred(x`)‖∞ = 0 for sufficiently large ` ∈ FI .
Hence, gI = gI(x`) = 0 and gTI p

`
I = 0 for sufficiently large `. By the positive semidefiniteness of

BII and Corollary 7.5.4, we get a contradiction

0 < Q(x`)−Q(x` + p`) = −1
2(p`I)TBIIp`I ≤ 0.

Hence, unlimited zigzagging cannot occur at the nondegenerate stationary point x̂.

72

7.5 Complexity analysis and limit accuracy 73

Case 2. Limited zigzagging. In this case, FI is finite, meaning that the number of freeing
iterations is finite, i.e., there exists a number ` such that I := I` := I−(x`) for ` > `. It means that
the working set is fixed and all bounds are not fixed. In other words, the trust region algorithm,
like the unconstrained case, solves the subproblem (4.21) in the subspace I = I` = I−(x`) for
` > `, so that there are some successful iterations; once the optimal activities are identified.
Hence, for ` > `, (7.25) holds. According to [136, Theorem 8.2] when inf` ‖gred(x`)‖ = 0 and the
sequence generated by our method converges to a point x̂ ∈ x then gred(x̂) = 0 and all strongly
active variables are found ultimately at the nondegenerate stationary point x̂. ut

73

Part III

New black box optimization
methods

74

8 A new randomized method

This section discusses a randomized line search method for unconstrained black box optimization,
called VSBBO. This is a joint work with Arnold Neumaier (cf. Kimiaei & Neumaier [117]).
In practice, VSBBO matches the quality of other state of the art algorithms for finding, in small
and large dimensions, a local minimizer with reasonable accuracy. Although our theory guaran-
tees only local minimizers our heuristic techniques turn VSBBO into an efficient global solver.
In very thorough numerical experiments, we found in most cases either a global minimizer, or
where this could not be checked, at least a point of similar quality with the best competitive
global solvers. For smooth, everywhere defined functions, it is proved that, with probability ar-
bitrarily close to 1, the basic version of our algorithm finds with O(nRε−2) function evaluations
a point with gradient 2-norm is blow ε, where n is the dimension and R ≥ O(log log(n/ε2)) is
the number of random directions used in each iteration. In the smooth convex case, this number
improves to O(nRε−1) and in the smooth (strongly) convex case to O(R lognε−1). This matches
known recent complexity results for reaching a slightly different goal, namely the expected gra-
dient 2-norm is below ε.

8.1 Overview of the new method

Our achievement is to describe a new, practically very efficient randomized method, called Vi-
enna randomized black box optimization algorithm (VSBBO), for which good local com-
plexity results can be proved, and which is competitive with the state of the art solvers for global
black box optimization.

An algorithm loosely related to VSBBO (but without complexity guarantees) is the Hit-and-
Run algorithm by Bélisle [11].

VSBBO contains many new useful techniques, in particular:
• Several kinds of search directions ensure the good practical performance.
• Adaptive heuristic estimations for the Lipschitz constant are used.
• A sensible scaling vector is estimated.
• The gradient vector is estimated by a randomized finite difference approach.

In summary,
• Section 8.2 introduces a theoretical criterion in finite precision arithmetic to terminate VSBBO
in an approximated local minimizer.
• Section 8.3 gives an overview of state of the art complexity bounds of BBO methods.
• In Section 8.4, a randomized line search, called RLS, is constructed.
• Section 8.6 first introduces a basic version of our fixed decrease search algorithm, called FDS-
basic to hopefully get a decrease in the function value. It has repeated calls to RLS until the

75

76 A new randomized method

function value is decreased. Then the basic version of our algorithm is introduced while having
repeated calls to FDS-basic until the function value is decreased.
• In Section 8.7, the complexity of the basic version of VSBBO for reaching a given accuracy
with probability arbitrarily close to 1 matches the known recent complexity results for reaching
a slightly different goal, namely the expected gradient 2-norm is below ε.
• In Section 8.8, we introduce heuristic techniques to improve the performance in practice, leading
to the VSBBO implemented documentation in Section 8.9.
• The improved version of our algorithm including all heuristic techniques and directions is
introduced in Section 8.9.
• The numerical results of Section 8.10 show that the the improved version of VSBBO matches
the quality of other state of the art algorithms for finding, with reasonable accuracy, a global
minimizer in small and large dimensions, or at least in the majority of cases a point of a quality
comparable with the best competing algorithms, even the basic version of our algorithm is more
efficient than algorithms suggested by Bergou et al. [16] and Gratton et al. [84].

8.2 Finite iteration goal

We use a scaled 2-norm ‖p‖ and its dual norm ‖g‖∗ of p, g ∈ Rn, defined by

‖p‖ :=
√∑

i

p2
i /s

2
i , ‖g‖∗ :=

√∑
i

s2
i g

2
i (all si > 0) (8.1)

in terms of a positive scaling vector s ∈ Rn. This scaling vector will be estimated later in
Subsection 8.8.5.

In exact precision arithmetic, the exact gradient vanishes at a good local minimizer whose func-
tion value is less than the initial function value. But in finite precision arithmetic optimization
methods may get stuck in nearly flat regions. Hence they need a theoretical criterion to distin-
guish good local minimizers from spurious apparent local minimizers.

Our theoretical criterion

f(xbest) ≤ sup
x∈Rn
{f(x) | ‖g(x)‖∗ ≤ ε and f(x) ≤ f(x0)}. (8.2)

satisfies with a given probability arbitrarily close to one at the point xbest and VSBBO starting
from a point x0 terminates at xbest which is an approximated local minimizer. Here g(x) denotes
the exact gradient of f at x, only when the gradient exists.

Clearly, any local minimizer whose function value is not greater than the initial function value
satisfies the condition (8.2) for every ε > 0. However, for fixed ε > 0, this may also be satisfied
far away from a local minimizer at paths a very flat part of the graph of f . To see the meaning
of the condition (8.2), we consider the following result.

8.2.1 Proposition. If x̂ denotes the minimizer of a σ-strongly convex quadratic function f(x)

f(x̂) ≥ f(x) + g(x)T (x̂− x) + σ

2 ‖x̂− x‖
2 for all x ∈ Rn. (8.3)

then (8.2) implies f(x)− f(x̂) ≤ ε2/(2σ) for x ∈ Rn.

76

8.3 Complexity 77

Proof. For fixed x, the right-hand side of (8.3) is a convex quadratic function of x̂, minimal when
its gradient vanishes. By (8.1), this is the case iff x̂i takes the value xi−

si
σ
gi(x) for i = 1, · · · , n,

so that
f(x̂) ≥ f(x)− 1

2σ ‖g(x)‖2
∗ for x ∈ Rn.

Therefore from (8.2) we conclude that

f(x)− f(x̂) ≤ 1
2σ ‖g(x)‖2

∗ ≤
ε2

2σ for x ∈ Rn.

ut

In fact when σ is tiny the function f is very flat. In this case, the speed of convergence of the
optimization methods may be extremely slowed down and a spurious apparent local minimizer
is found.

8.3 Complexity

We assume the standard assumptions for the complexity analysis of BBO algorithms:
(BBO1) The function f is continuously differentiable on Rn, and its gradient is Lipschitz con-
tinuous with Lipschitz constant L.
(BBO2) The level set L(x0) := {x ∈ Rn | f(x) ≤ f(x0)} of f at x0 is compact. In practice
f̂ := min

x∈Rn
f(x) is finite.

Under these assumptions complexity bounds limit the size of the number N(ε) of function
evaluations needed to reach the goal (8.2) with a given probability (or a related goal). The
appropriate asymptotic form for the expression N(ε), found by Vicente [161], Dodangeh &
Vicente [59], Dodangeh, Vicente & Zhang [60], Gratton et al. [84], Bergou, Gor-
bunov & Richtárik [16], and Nesterov & Spokoiny [133, 135], depends on the properties
(smooth, smooth convex, or smooth strongly convex) of f ; cf. Subsection 8.4.1 below.

case goal complexity
nonconvex E(‖g‖∗) ≤ ε O(nε−2)
convex E(‖g‖∗) ≤ ε O(nε−1)
convex E(f − f̂) ≤ ε O(nε−1)
strongly convex E(‖g‖∗) ≤ ε O(n log ε−1)
strongly convex E(f − f̂) ≤ ε O(n log ε−1)

Table 8.1: Complexity results for randomized BBO in expectation (Bergou et al. [16]
for all cases)

Bergou et al. [16] and Nesterov & Spokoiny [135] generalized this result to give algorithms
with complexity results for the nonconvex, convex and strongly convex cases shown in Table 8.1.

77

78 A new randomized method

In each case, the bounds are better by a factor of n than the best known complexity results
for deterministic algorithms (by Dodangeh & Vicente [59], Vicente [161] and Konečný &
Richtárik [38]) given in Table 8.2. Of course, being a randomized algorithm, the performance
guarantee obtained by Bergou et al. is slightly weaker, only valid in expectation. Moreover,
they generated step sizes without testing whether the function value is improved or not. This is
the reason why the algorithms proposed by Bergou et al. [16] are numerically poor, see Section
8.10.

case goal complexity
nonconvex ‖g‖∗ ≤ ε O(n2ε−2)
convex ‖g‖∗ ≤ ε O(n2ε−1)
convex f − f̂ ≤ ε O(n2ε−1)
σ-strongly convex ‖g‖∗ ≤ ε O(n2 log ε−1)
σ-strongly convex f − f̂ ≤ ε O(n2 log ε−1)

Table 8.2: Complexity results for deterministic BBO (Vicente [161] for the nonconvex
case, Dodangeh & Vicente [59] for the convex and the strongly convex
cases, Konečný & Richtárik [38] for all cases)

The best complexity bound for a direct search with probabilistic (rather than expectation) guar-
antees has been found by Gratton et al. [84], only for nonconvex case. They used the Chernoff
bounds to prove that a complexity bound O(nRε−2) holds, R is the number of random directions,
uniformly independently distributed on the unit sphere, used in each iteration.

case goal complexity
nonconvex Pr(‖g‖∗ ≤ ε) ≥ 1− η O(nRε−2)
convex Pr(‖g‖∗ ≤ ε) ≥ 1− η O(nRε−1)
convex Pr(f − f̂ ≤ ε) ≥ 1− η O(nRε−1)
σ-strongly convex Pr(‖g‖∗ ≤ ε) ≥ 1− η O(R lognε−1)
σ-strongly convex Pr(f − f̂ ≤ ε) ≥ 1− η O(R lognε−1)

Table 8.3: Complexity results for randomized BBO with probability 1 − η, for fixed
0 < η < 1 (Gratton et al. [84] for the nonconvex case, present paper for
all cases). Here R ≥ Ω

(
log log(n/ε2) + log η−1

)
is the number of random

directions used in each iteration for a given 0 < η < 1.

78

8.4 Line search techniques for BBO 79

Our complexity bound for nonconvex is the same as the one found by Gratton et al. [84] using
the Chernoff bounds – in terms of both order and factor – but with the difference that its constant
factor is proven by Pinelis [143] and its optimal value is obtained by a numerical simulation by
us (see Subsection 8.11.3). Both complexity results are better by the factor of R/n than those
given in Table 8.1 and are more reasonable than those given in Table 8.2.

Our complexity bounds for the convex and strongly convex cases are proven with probability
arbitrarily close to 1, which are new results and are more reasonable than those given in Table
8.2, only valid in expectation. Table 8.3 summarizes our complexity results for all cases, matching
Gratton et al. [84] for the nonconvex case. Gratton et al.’s results for the nonconvex case
allow R = 2, while VSBBO requires

R ≥ Ω
(

log log n

ε2 + log η−1
)

for a given 0 < η < 1.

But log log n

ε2 and log η−1 cannot be large for reasonable values of n, ε, and η.

8.4 Line search techniques for BBO

In this section, we describe methods that try to achieve a decrease in the function value using
line searches along specially chosen random directions. Random directions are used to exploit
the fact that randomized black box optimization methods have a worst case complexity by a
factor of n superior to those of deterministic algorithms (see cf. [9]).

A line search then polls one or more points along the lines in each chosen direction starting at
the current best point. Several such line searches are packaged together into a randomized line
search (multi-line search later), for which strong probabilistic results can be proved.

The details are chosen in such a way that failure to achieve the desired descent implies that, with
probability arbitrarily close to one, a bound on the gradient is obtained.

8.4.1 Probing a direction

For every x, p ∈ Rn, f(x)− f(x± p) is called the gain along ±p and ∆ ≥ 0 is called a threshold
for the gain. First we give a theoretical test that either results in a gain of ∆ or more in function
value, or gives a small upper bound for the norm of at least one of the exact gradients encountered
though our algorithm never calculates ones.

Assumption (BBO1) implies that for every x, p ∈ Rn, we have

f(x+ p)− f(x) = g(x)T p+ 1
2γ‖p‖

2, (8.4)

where γ depends on x and p and satisfies one of

|γ| ≤ L, (general case) (8.5)

0 ≤ γ ≤ L, (convex case) (8.6)

79

80 A new randomized method

0 < σ ≤ γ ≤ L. (strongly convex case) (8.7)

Here σ comes from Proposition (8.3). In all three cases,

g(x)T p− 1
2L‖p‖

2 ≤ f(x+ p)− f(x) ≤ g(x)T p+ 1
2L‖p‖

2. (8.8)

Continuity and condition (BBO2) imply that a minimizer x̂ exists and

r0 := sup
x∈Rn

{
‖x− x̂‖ | f(x) ≤ f(x0)

}
<∞. (8.9)

(It is enough that this holds with x0 replaced by some point found during the iteration, which
is then taken as x0).

8.4.1 Proposition. Let x, p ∈ Rn and ∆ ≥ 0. Then (BBO1) implies that

L ≥ |f(x+ p) + f(x− p)− 2f(x)|
‖p‖2 , (8.10)

and at least one of the following holds:
(i) f(x+ p) < f(x)−∆,
(ii) f(x+ p) > f(x) + ∆ and f(x− p) < f(x)−∆,
(iii) |gT p| ≤ ∆ + 1

2L‖p‖
2.

Proof. Taking the sum of (8.8) and the formula obtained from it by replacing p with −p gives
(8.10).

Assume that (iii) is violated, so that ∆ + 1
2L‖p‖

2. Then by (8.4) with ∓p in place of p, we have
for an appropriate choice of the sign

f(x∓ p)− f(x) ≤ ∓g(x)T p+ 1
2L‖p‖

2 = −|gT p|+ 1
2L‖p‖

2 < −∆.

If the lower sign applies we conclude that (i) holds. If the upper sign applies we get the second
half of (ii), and the first half follows from f(x+ p)− f(x) ≥ g(x)T p− 1

2L‖p‖
2 > ∆. ut

Proposition 8.4.1 will play a key role in the construction of our randomized line search RLS
detailed in Subsection 8.5:
• It exploits the well-known (Evtushenko [70], Pintér [144], Kvasov & Sergeyev [120])
lower bound (8.10) for the Lipschitz constant L which can be used to find reasonable estimates
for L.
• If (i) holds, then the step p gives a gain of at least ∆, called the sufficient gain.
• If (ii) holds, then the step −p gives a sufficient gain of at least ∆.
• If neither (i) nor (ii) holds (no sufficient gain is found along ±p) then (iii) holds, giving a useful
upper bound for the directional derivative.

In particular, this allows us to prove statements about the exact gradient even though our
algorithm never calculates one.

80

8.4 Line search techniques for BBO 81

8.4.2 Random search directions

Random directions are uniformly independent and identically distributed (i.i.d) in [− 1
2 ,

1
2]n,

computed by
p = rand(n, 1)− 0.5, (8.11)

where rand generates a uniformly distributed random vector. We are interested in scaling the
random directions by

p := p(δ/‖p‖), (8.12)

where
δ = max

(
δmin,min

(√
αeγδ∆/λ, δmax

))
. (8.13)

Here the tuning parameter γδ > 0 is to adjust δ, the sensible positive lower and upper bounds
0 < δmin < δmax < +∞ are the tuning parameters to safeguard δ, and αe is a step size, and λ
is an approximation for the Lipschitz constant L. As discussed earlier in Section 8.3, VSBBO
tries to find a point satisfying (8.2). In practice the goal of the scaling of the search direction
(8.12) is to approximately minimize the bound

√
cnΓ(δ) with

Γ(δ) := Lδ + 2∆
δ

; (8.14)

to find a point satisfying (8.2). For fixed ∆, the scale-dependent factor (8.14) is smallest for the
choice

δ̂ :=
√

2∆/L. (8.15)

However, in practice, L is unknown and we replace later it by λ. Proposition 8.4.1 implies that

λ0 ≤ λ ≤ max(λ0, L) ≤ λ0 + L, (8.16)

where λ0 is the initial value of λ.

As a guarantee for our complexity results, we need that sufficiently many search directions p
satisfy an angle condition of the form

sup gT p

‖g‖∗‖p‖
≤ −∆a < 0. (8.17)

Here p and g come from (8.1) and ∆a > 0 is a tuning parameter for the angle condition. The
following variant of the angle condition (8.17) plays a key role to get our complexity bounds.

8.4.2 Proposition. For random search directions generated by (8.11) and scaled by (8.12)
satisfies ‖p‖ = δ and, with probability ≥ 1

2 ,

‖g(x)‖∗‖p‖ ≤ 2
√
cn|g(x)T p| (8.18)

with a positive constant c ≈ 4/7.

Proof. As defined earlier in Section 8.3, s ∈ Rn is a scaling vector. Define pi := pi/si and
gi := sigi. Then by (8.1), gT p = gT p and ‖g‖∗ = ‖g‖2 and ‖p‖ = ‖p‖2; so the results of
Subsection 8.11.3 apply after scaling and give c = c0/4 ≈ 4/7. ut

81

82 A new randomized method

8.5 A randomized line search

In this section, we construct a randomized line search algorithm, called RLS. It polls in random
directions (satisfying (8.18), with probability ≥ 1

2 , generated by (8.11), and scaled by (8.12)) in
a line search fashion a few objective function values each in the hope of finding sufficient gains
by more than a multiple of ∆.

8.5.1 An extrapolation step

Extrapolation speeds up reaching a minimizer by expanding step sizes and computing the
corresponding trial points and their function values as long as sufficient gains are found. We
discuss how to construct extrapolation steps, called extrapolationStep, trying to hopefully
find sufficient gains. extrapolationStep may perform extrapolation along with either the search
direction p or its opposite direction.

Care must be taken to ensure that the book-keeping needed for the evaluation of the lower bound
for the Lipschitz constant comes out correctly. To ensure this during an extrapolation step, we
always use xm for the best point found, and rescale p by (8.12) such that the next evaluation is
always at xm+p and a former third evaluation point is at xm−p. The function values immediately
after the next evaluation are then

fl := f(xm− p), fm := f(xm), fr := f(xm + p). (8.19)

At this stage, we can compute the lower bound

λ := max(λold, |fl + fr− 2fm|/δ2) (8.20)

for the Lipschitz constant L, valid by (8.10). Note that the initial λold is the tuning parame-
ter λmax, however, it is updated by extrapolationStep and may be estimated by a heuristic
formula.

Afterwards, whenever fr < fm, the best point is updated by overwriting xm +p over xm, with the
consequence that in this case

fl := f(xm− 2p), fm := f(xm− p), fr := f(xm). (8.21)

As defined earlier in Subsection 8.4.1, df := fm− fr is the gain and if the condition

df > min(αe, 1)∆ (8.22)

holds, we say that the sufficient gain is found.

R denotes the number of the random search directions used in RLS and a denotes the list of R
extrapolation step sizes. All components of the initial a are one; each of its components is
expanded or reduced according to whether a sufficient gain is found or not. Let ne be the number
of iterations generated by extrapolationStep to exceed sufficient gains. If the counter ne stays
zero, extrapolationStep cannot find a sufficient gain; in this case it is called unsuccessful.
Otherwise, a sufficient gain is found and extrapolationStep is called successful. The Boolean
variable good takes 0 if no sufficient gain is found and 1 otherwise. In other words, if good is
zero, extrapolationStep is unsuccessful; otherwise, extrapolationStep is successful.

82

8.5 A randomized line search 83

t is a counter for R taking 0, · · · , R. It does not change inside extrapolationStep, but it is
updated later outside extrapolationStep (inside RLS).

We must be careful to make sure that the estimation of the Lipschitz constant is correct, especially
when an extrapolation step – improving the function value – is tried. This estimation is obtained
when either the extrapolation step is performed (the first iteration was tried and the second
iteration may be tried) or the opposite direction is tried. Let fe be the function value improved
by an extrapolation step in each iteration. Instead of the previous best function value fm, fe
must be used to estimate the Lipschitz constant λ by (8.20). In this case, the previous best
function value fm is restored in ft. Then, after we estimate λ by (8.20), fm is replaced by ft.
Finally, whenever the extrapolation step ends, fm is replaced by fe and hence the best point and
its function value are updated.

Denote by αe the step sizes used in extrapolationStep. extrapolationStep first takes the
initial step size αe = 1, which is necessary to find an approximated lower bound for the Lipschitz
constant L, gets an upper bound for the gradient norm, and then takes the second step size
from at while expanding it until the function value is decreased. One of the following cases is
happened:
(i) A sufficient gain is found along the direction p.
(ii) A sufficient gain is found along the direction −p.
(iii) No sufficient gain is found along ±p.
If either (i) or (ii) holds, extrapolationStep is successful. But if (iii) holds extrapolationStep
is unsuccessful.

Throughout the paper, A:k denotes the kth column of a matrix A.

extrapolationStep takes the old best point xm and its function value fm, the search direction
p, the threshold for good improvement ∆ > 0, the old approximation λ ≥ 0 for the Lipschitz
constant L, the tth extrapolation step size at, and maximum number of function evaluations
nfmax as input and uses the following tuning parameters:
γe > 1 (the factor for extrapolation test),
E ≥ 1 (maximum number of extrapolations).
It returns a newest best point xm and its function value fm, a new approximation λ for the
Lipschitz constant L, the Boolean variable good, and the tth extrapolation step size at as output.

8.5.1 Algorithm. (extrapolationStep, an extrapolation step)
(ES0) Initialization. Initialize the step size αe := 1, which is necessary to estimate λ below.
(ES1) Trying either an extrapolation step along p or −p.

for ne = 0, · · · , E do
(1) Compute the trial point xr := xm + αep, its function value fr := f(xr), and its gain
df := fm− fr.
(2) If nfmax is reached, set xm := xr and fm := fr provided that df > 0 and end extrapo-
lationStep.
(3) If ne = 1 temporarily save the old best function value fm in ft and replace fm by the
new best function value fe (found so far) – only for the estimation λ. Then estimate λ by
(8.20) and the old best function value fm is replaced by ft.
(4) If the condition (8.22) holds a sufficient gain is found. Then if ne = 1 save the old best
function value fm in fl and choose at as αe; otherwise, expand the step size to αe := γeαe

and save the current function value fr in fe. Otherwise if the condition (8.22) does not
hold no gain is found and the for loop ends.

83

84 A new randomized method

end for
(ES2) Updating the best point, its function value, its step size if a gain is found.
If ne > 0 a sufficient gain along p is found. Since the last point generated by the extrapolation
could not improve the function value,
(1) reduce the step size to αe := αe/γe,
(2) update the best point by xm := xm + αep,
(3) evaluate the Boolean variable good to be true,
(4) save the step size αe of the current best point xm in at and fe in fm.
Otherwise, once try another extrapolation by
(1) replacing the search direction p by its opposite direction −p,
(2) saving the current function value fr in the third former function value fl,
(3) going to (ES1).
Otherwise,
(1) evaluate the Boolean variable good to be false,
(2) terminate extrapolationStep since no sufficient gain is found along ±p.

8.5.2 RLS, a randomized line search method

For each random direction generated, a randomized line search, called RLS, using extrapola-
tionStep is performed where the following happens:
• A step in the current direction is tried.
• If a sufficient gain is found, a sequence of extrapolations is tried.
• If sufficient negative gain is found, a step in the opposite direction is tried.
• If a sufficient gain is found in the opposite direction, a sequence of extrapolations is tried.
• If no sufficient gain along ±p is found, the step size is reduced.

RLS takes the old best point xm and its function value fm, the threshold for good improvement
∆ > 0, the old approximation λ ≥ 0 for the Lipschitz constant L, maximal number of function
evaluations nfmax, and the list a of extrapolation step sizes as input and uses the following
tuning parameters:
γe > 1 (the factor for extrapolation test),
E ≥ 1 (maximum number of extrapolations),
δmin/δmax (minimum/maximum norm of trial steps),
γλ (factor for adjusting δ),
αmin ∈ (0, 1) (minimum threshold for step sizes),
R > 0 (the number of random search directions).
It returns a newest best point xm and its function value fm, a new approximation λ ≥ 0 for the
Lipschitz constant L, and an updated list a of extrapolation step sizes as output.

8.5.2 Algorithm. (RLS, a randomized line search)
for t = 1, · · · , R do

(RLS1) Compute the random direction pt by (8.11) and δt by (8.13). Then scale it by (8.12).
(RLS2) Perform extrapolationStep to hopefully get sufficient gains, resulting in λ and
possibly the newest best point xm and its function value fm. Once nfmax is reached, RLS
ends.
(RLS3) If there is no sufficient gain, ne = 0, reduce the tth step size to

at := max(at/γe, αmin). (8.23)

84

8.5 A randomized line search 85

end for

In (8.23), the extrapolation step sizes need to be reduced whenever there is no sufficient gain.
Hence, they need to be controlled by the tuning parameter αmin.

We now prove that one obtains either a sufficient gain of multiple of ∆ or, with probability
arbitrarily close to 1, an upper bound of ‖g‖∗ for at least one of the exact gradients encountered
though our algorithm never calculates ones.

8.5.3 Theorem. Assume that (BBO1) holds and let nf be the counter for the number of func-
tion evaluations, R be the number of random search directions, and ∆f be the improvement on
the function value in RLS. Moreover, let α := min(αe, 1) and ∆ := α∆, where αe is the step
size generated by extrapolationStep. Here nfmax is assumed to be sufficiently large.

(i) f decreases by at least
∆f := ∆ max(nf− 2R− 1, 0) (8.24)

(Note that ∆f may be zero, catering for the case of no strict decrease).

(ii) Suppose that 0 < η < 1 and R := dlog2 η
−1e. If f does not decrease by more than a multiple

of ∆ then, with probability ≥ 1− η, the original point or one of the points evaluated with better
function values has a gradient g with

‖g‖∗ ≤
√
cnΓ(δ), (8.25)

where c is the constant in Proposition 8.4.2 and Γ(δ) is computed by (8.14).

Proof. (i) Clearly, the function value of the best point does not increase. Thus (i) holds if
nf − 2R − 1 ≤ 0. If this is not the case, then nf ≥ 2R + 2. But in the for loop of RLS, R
directions p are generated and at most two function values are computed, unless an extrapolation
step is performed. In the latter case, at least nf−2R−1 additional function values are computed
during the extrapolation stage, each time with a sufficient gain of at least ∆. Thus the total
sufficient gain is at least (8.24).

(ii) Assume that f does not decrease by more than ∆. For t = 1, . . . , R, let pt be the tth random
direction generated by (8.12), and let xt be the best point obtained before searching in direction
pt. Then, from Proposition 8.4.1, we get

|g(xt)T pt| ≤ ∆ + L

2 ‖p
t‖2 ≤ ∆ + L

2 ‖p
t‖2 = δ

2Γ(δ), for all t = 1, . . . , R.

Since the random direction is generated by (8.11), Proposition 8.4.2 implies that

‖g(xt)‖∗ = ‖g(xt)‖∗‖pt‖/δ ≤
(

2
√
cn|g(xt)T pt|

)
/δ ≤

√
cnΓ(δ), for all t = 1, . . . , R,

holds with probability 1
2 or more. Therefore ‖g(xt)‖∗ ≤

√
cnΓ(δ) fails with a probability Pr

t
<

1
2

for all t = 1, . . . , R. Therefore, the probability Pr that (8.25) holds for at least one of the

gradients g = g(xt) (t ∈ {1, . . . , R}) is Pr = 1−
R−1∏
t=1

Pr
t
≥ 1− 2−R. ut

85

86 A new randomized method

8.6 A randomized descent algorithm for BBO

In this section, we first consider a fixed decrease search for which an upper bound of the exact
gradient norm for at least one of the points generated by the extrapolationStep or of the total
number of function evaluations is found. Then the primary version of our algorithm is given.

8.6.1 Probing for fixed decrease

Based on the preceding results, we introduce the basic version of a fixed decrease search algorithm,
called FDS-basic, whose goal is to use repeated calls to the randomized line search RLS to find
a sufficient gain each time by a multiple of ∆.

FDS-basic takes xm and fm the old best point xm and its function value fm, the threshold for
good improvement ∆ > 0, the old approximation λ ≥ 0 for the Lipschitz constant L, maximum
number of function evaluations nfmax, and the list of extrapolation step sizes a as input and
uses the following tuning parameters:
γe > 1 (the factor for extrapolation test),
E ≥ 1 (maximum number of extrapolations),
δmin/δmax (minimum/maximum norm of trial steps),
γλ (factor for adjusting δ),
αmin ∈ (0, 1) (minimum threshold for step sizes),
R > 0 (the number of random search directions).
It returns a new best point xm and its function value fm, a new approximation λ ≥ 0 for the
Lipschitz constant L, and an updated list a of extrapolation step sizes as output.

8.6.1 Algorithm. (FDS-basic, a basic fixed decrease search)
while good is true do

(FDS0) Perform RLS to hopefully get sufficient gains resulting in good.
(FDS1) If nfmax is reached, FDS-basic ends.

end while

8.6.2 Theorem. Assume that (BBO1) and (BBO2) hold and denote by f0 the initial value of
f . Then:
(i) The number of function evaluations of FDS-basic is bounded by

2R+ (2R+ 1)f
0 − f̂
αmin∆ ,

where f̂ := infk fk is finite due to (BBO1) and (BBO2) and αmin ∈ (0, 1).
(ii) Denote by Kf the number of calls to RLS by FDS-basic and assume that

0 < η < 1, R := dlog2 η
−1(Kf + 1)e, 0 < δmin < δmax <∞.

Then FDS-basic finds a point x, with probability ≥ 1− η, satisfying

‖g(x)‖∗ ≤
√
cn min

t=0:Kf
Γ(δt) ≤

√
cn
(
Lδmin +

√
L′∆ + 2∆

δmax

)
. (8.26)

86

8.6 A randomized descent algorithm for BBO 87

Here c is the constant from Proposition 8.4.2 and, if λ0 denotes the value of λ before the first
execution of FDS-basic,

L′ := L2γδ

λ0 + 4L+ 4λ
0 + L

γδ
with γδ > 0. (8.27)

Proof. By (BBO2), f̂ is finite. Denote by fk+1 the result of the (k + 1)th execution of FDS-
basic. In the worst case in each iteration ` ∈ {1, · · · , k} of FDS-basic a sufficient gain is found,
i.e., the condition

f ` ≤ f `−1 −min(1, (αe)`)∆ for ` ∈ {1, · · · , k}

holds. But in the (k + 1)th iteration FDS-basic cannot find any sufficient gain and ends. We
then conclude that

f̂ ≤ fk ≤ f0 −
k∑
i=1

min(αei , 1)∆ ≤ f0 − kmin(αmin, 1)∆ = f0 − kαmin∆

by (8.23), so that k ≤ (f0 − f̂)/(αmin∆).

Since a sufficient gain is found in each iteration ` = 1, · · · , k, 2R + 1 function evaluations are
used. But in the (k+ 1)th iteration, 2R function evaluations are used since there is no sufficient
gain. Hence (i) follows.

(ii) Kf is finite due to (i) and we have 2−R ≤ η/(Kf + 1). Hence by Theorem 8.5.3 with
probability ≥ 1− (Kf + 1)2−R ≥ 1− η

‖g‖∗ ≤
√
cn min

t=0:Kf
Γ(δt)

holds. Thus it is sufficient to show that

Γ(δ) ≤ Lδmin +
√
L′∆ + 2∆

δmax . (8.28)

By the definition of δ in (8.13), we have one of the following three cases:

Case 1: δ =
√
γδ∆
λ

. In this case,

Γ(δ) = Lδ + 2∆
δ

= L

√
γδ∆
λ

+ 2

√
λ∆
γδ

= Λ
√

∆,

where

Λ := L

√
γδ

λ
+ 2

√
λ

γδ
. (8.29)

Case 2: δ = δmin ≥
√
γδ∆
λ

. In this case,

Γ(δ) = Lδmin + 2∆
δmin ≤ Lδ

min + 2

√
λ∆
γδ
≤ Lδmin + Λ

√
∆.

87

88 A new randomized method

Case 3: δ = δmax ≤
√
γδ∆
λ

. In this case,

Γ(δ) = Lδmax + 2∆
δmax ≤ L

√
γδ∆
λ

+ 2∆
δmax ≤ Λ

√
∆ + 2∆

δmax .

Thus in each case,
Γ(δ) ≤ Lδmin + Λ

√
∆ + 2∆

δmax .

Now (8.28) follows since by (8.16) and (8.29), Λ2 = L2γδ

λ
+ 4L+ 4λ

γδ
≤ L′. ut

8.6.2 The basic VSBBO algorithm

We now have all ingredients to formulate the basic version of Vienna randomized black box
optimization algorithm VSBBO-basic. It uses in each iteration the fixed decrease search
algorithm to update the best point. If no sufficient gain is found in the corresponding FDS-basic
call, ∆ is reduced by a factor of Q. Once either ∆ is below a minimum threshold, VSBBO-basic
stops.

VSBBO-basic takes the initial point x0, and maximum number of function evaluations nfmax
as input and uses the following tuning parameters:
γe > 1 (the factor for extrapolation test),
E ≥ 1 (maximum number of extrapolations),
δmin/δmax (minimum/maximum norm of trial steps),
γλ (factor for adjusting δ),
Q > 1 (factor for adjusting ∆),
∆min (minimal threshold for ∆),
∆max (maximum threshold for ∆),
αmin ∈ (0, 1) (minimum threshold for step sizes),
λmax (the initial Lipschitz constant),
R > 0 (the number of random search directions).
It returns an optimum point xm and its function value fm as output.

8.6.3 Algorithm. (VSBBO-basic, Vienna basic randomized BBO)
(VSb0) Set λ0 := λmax, δ0 := δmax, ∆0 := ∆max, and xm := x0. Then compute fm := f(xm).
for k = 1, 2, 3, · · · do

(VSb1) Perform FDS-basic to hopefully find sufficient gains. If nfmax is reached, VSBBO-
basic ends.
(VSb2) If ∆k ≤ ∆min, VSBBO-basic ends.
(VSb3) Reduce ∆k+1 := ∆k/Q.

end for

8.7 Complexity analysis of VSBBO

We now prove the complexity results for the nonconvex, convex and strongly convex objective
functions.

88

8.7 Complexity analysis of VSBBO 89

8.7.1 The general (nonconvex) case

8.7.1 Proposition. Assume that (BBO1) and (BBO2) hold and let f0 be the initial function
value. If ∆max > 0, the number of function evaluations needed up to iteration k by VSBBO-
basic, started at x0, is

Nk ≤ 1 + 2R+ (2R+ 1) f0 − f̂
αmin∆max

Qk − 1
Q− 1 ,

where f̂ := inf
k≥0

fk is finite due to (BBO1) and (BBO2).

Proof. By construction, the kth call to FDS-basic uses ∆k = Q1−k∆max, hence needs by
Theorem 8.6.2(i) at most

2R+ (2R+ 1) f0 − f̂
αminQ1−k∆max

function evaluations. Then, the total number of function evaluations up to iteration k is

Nk ≤ 1 +
k∑
j=1

(
2R+ (2R+ 1) f0 − f̂

αminQ1−j∆max

)
= 1 + 2Rk + (2R+ 1) f0 − f̂

αmin∆max
Qk − 1
Q− 1 .

ut

8.7.2 Theorem. Assume that (BBO1) and (BBO2) hold and the parameters

0 < η < 1, ∆max > 0, δmax > 0, ε > 0

are given. If the parameters are chosen such that

∆min := Θ(ε2/n), (8.30)

K :=
⌈ log(∆max/∆min)

logQ

⌉
, (8.31)

R :=
⌈

log2
K + 1
η

⌉
, (8.32)

δmin := O(ε/
√
n), (8.33)

then VSBBO-basic finds after at most O(nRε−2) function evaluations with probability ≥ 1−η
a point x with

‖g(x)‖∗ = O(ε). (8.34)
Here c comes from Proposition 8.4.2.

Proof. By the rule of updating ∆ in VSBBO-basic, ∆k = Q1−k∆max ≤ ∆min for k ≥ K. Hence
at most K steps of FDS-basic are performed. By (8.32), we have η1 = 2−R ≤ η/(K + 1). Thus
by Theorem 8.6.2(ii), we have, with probability ≥ 1− (K + 1)η1 ≥ 1− η, for at least one of the
function values encountered,

‖g‖∗ ≤ min
j=0:K

Γ(δj) ≤
√
cn
(
Lδmin +

√
L′∆min + 2∆min

δmax

)
= O(ε) (8.35)

89

90 A new randomized method

by (8.30). Moreover, from Proposition 8.7.1 and by setting (8.30) in (8.31), we conclude that

NK ≤ 1 + 2RK + (2R+ 1) f0 − f̂
αmin∆max

QK − 1
Q− 1 = O

(
nRε−2

)
.

ut

Choosing ∆min = O(ε2/n) with (8.30) is possible, and k, R, δmin can clearly be chosen to satisfy
(8.31)–(8.33) and displays

K = O(log n

ε2), R = O(log n

ε2 + log η−1).

8.7.2 The convex case

8.7.3 Theorem. Let f be convex on L(x0) and assume that (BBO1) and (BBO2) hold. Given
0 < η < 1, for any ε > 0, if (8.32)–(8.33) hold then VSBBO-basic finds after at mostO

(
nRε−1

)
function evaluations with probability ≥ 1− η a point x satisfying (8.34) and

f(x)− f̂ = O(εr0), (8.36)

where r0 is given by (8.9) and f̂ comes from Proposition 10.3.3.

Proof. By (BBO2), f has a global minimizer x̂ and r0 < ∞. By Theorem 8.7.2, at most K
steps of FDS-basic are performed. Let xk be the result of the kth execution of VSBBO-basic
satisfying (8.34); hence k ≤ K. The convex case is characterized by (8.6), so that

f̂ ≥ fk + (gk)T (x̂− xk).

We know from Theorem 8.7.2 that, with probability ≥ 1− η, (8.34) holds and hence

fk − fk+1 ≤ fk − f̂ ≤ (gk)T (xk − x̂) ≤ ‖gk‖∗‖xk − x̂‖ = O(r0ε) (8.37)

by (8.9), resulting in (8.36).

Before FDS-basic is terminated, each iteration of FDS-basic has a sufficient gain, resulting
in a finite sequence f j (j = 1, . . . ,K) of good function values. Then we conclude from (8.30),
(8.31), and (8.37) that

K∑
`=0

f ` − f `+1

αmin∆`
= O(r0ε)

αmin

K∑
`=0

(∆`)−1 ≤ O(r0ε)
αmin∆max

K∑
`=0

Q`−1

= O(ε)Q
K − 1
Q− 1 = O(ε)O(nε−2) = O(nε−1)

so that the bound for the number of function evaluations is

NK ≤ 1 + 2RK + (2R+ 1)
K∑
`=0

f ` − f `+1

αmin∆`
= O(nRε−1)

by Theorem 8.6.2. ut

90

8.7 Complexity analysis of VSBBO 91

8.7.3 The strongly convex case

8.7.4 Theorem. Let f be convex on L(x0) and assume that (BBO1) and (BBO2) hold. Under
the assumptions of Theorem 8.7.2, VSBBO-basic finds after at most

O
(
R lognε−1

)
function evaluations with probability ≥ 1− η a point x satisfying (8.34) and

f(x)− f̂ = O
(ε2

2σ

)
, ‖x− x̂‖ = O

(ε
σ2

)
, (8.38)

where f̂ comes from Proposition 8.7.1.

Proof. By Theorem 8.7.2, at most K steps of FDS-basic are performed. Let xk be the results
of the kth execution of VSBBO satisfying (8.34); hence k ≤ K. The strongly convex case is
characterized by (8.7), so that f has a global minimizer x̂ and

f(y) ≥ f(x) + g(x)T (y − x) + 1
2σ‖y − x‖

2

for any x and y in L(x0). For fixed x, the right-hand side of this inequality is a convex quadratic
function of y, minimal when its gradient vanishes. By (8.1), this is the case iff yi takes the value
xi −

si
σ
gi(x) for i = 1, · · · , n, and we conclude that f(y) ≥ f(x) − 1

2σ ‖g(x)‖2
∗ for y ∈ L(x0).

Therefore
f̂ ≥ f(x)− 1

2σ ‖g(x)‖2
∗. (8.39)

The replacement of x by xk in (8.39) and (8.34) gives, with probability ≥ 1− η,

fk − fk+1 ≤ fk − f̂ ≤ ‖g
k‖2
∗

2σ = O
(ε2

2σ

)
. (8.40)

Since the gradient vanishes at the optimal point, we get from Theorem 8.7.2 and (8.40)

‖x̂− xk‖2 ≤ 2
σ

(fk − f̂) = O
(ε
σ2

)
(8.41)

with probability ≥ 1− η.

Before FDS-basic is terminated, each iteration of FDS-basic has a sufficient gain, resulting
in a finite sequence f j (j = 1, . . . ,K) of good function values. Then we conclude from (8.30),
(8.31), and (8.40) that

K∑
`=0

f ` − f `+1

αmin∆`
≤
O
(ε2

2σ

)
αmin

K∑
`=0

(∆`)−1 ≤ O(ε2)
αmin∆max

K∑
`=0

Q`−1

= O(ε2)Q
K − 1
Q− 1 = O(ε2)O(nε−2) = O(n)

Now Theorem 8.6.2 implies

NK ≤ 1 + 2RK + (2R+ 1)
K∑
`=0

f ` − f `+1

αmin∆`
= O(R lognε−1).

ut

91

92 A new randomized method

8.8 Some new heuristic techniques

In this section, we describe several heuristic techniques that improve the basic Algorithm 8.6.3.
While only convergence to a local minimizer is guaranteed, the addition of these heuristic tech-
niques results in an efficient global solver. Indeed, in our comprehensive numerical experiment,
reported in Section 8.10, the resulting VSBBO algorithm found in most cases either a global
minimizer or, where this could not be checked, at least a point of similar quality with the best
competitive global solvers.

More specifically, we discuss the occasional use of alternative search directions (two cumulative
directions and a random subspace direction) and heuristics for estimating key parameters un-
specified by the general theory – the initial desired gain, the Lipschitz constant, and the scaling
vector. Moreover, we discuss the use of approximate gradients estimated by finite differences
with steps extracted from the extrapolation steps. In Section 6, we combine Algorithm 3.3 with
these heuristic techniques, resulting in the global solver VSBBO.

8.8.1 Cumulative directions

We consider two possibilities to accumulate past directional information into a cumulative search
direction:
(i) With xm and fm defined in Section 8.5.1 the first cumulative direction is model independent,
computed by

p = xm− xinit, (8.42)

where xinit the initial point of the current improved version of RLS. Here the idea is that many
small improvement steps accumulate to a direction pointing from the starting point into a valley,
so that more progress can be expected by going further into this cumulative direction.
(ii) The second cumulative direction assumes a separable quadratic model of the form

f
(

xm +
∑
i∈I

αipi

)
≈ fm−

∑
i∈I

ei(αi) (8.43)

with quadratic univariate functions ei(α) vanishing at α = 0. Here I is the set of directions
polled at least twice, and pi is the corresponding direction as rescaled by an improved version of
RLS.

By construction, we have for any i ∈ I three function values at equispaced arguments. We write
the quadratic interpolant as

f(xm + αp) = fm− α

2 d+ α2

2 h = fm− e(α),

where e(α) := α

2 (d−αh). Let us recall the function values fl, fm, and fr satisfying either (8.19)
or (8.21). If fr < fm, the last evaluated point was the best one, so fr ≤ min(fl, fm). In this
case, (8.21) holds and we have

d := 4fm− 3fr− fl, (8.44)

and
h := fr + fl− 2fm. (8.45)

92

8.8 Some new heuristic techniques 93

Otherwise, the last evaluated point was not the best one, so fm ≤ min(fl, fr). In this case,
(8.19) holds and we compute d by

d := fl− fr (8.46)
and h by (8.45).

Given the tuning parameter a > 0, the minimizer of the quadratic interpolant restricted to the
interval [−a, a] is

α :=
{
a if d ≥ 0,
−a if d < 0 (8.47)

in case h ≤ 0. Otherwise, we have

α :=
{

min(a, d/2h) if d ≥ 0,
max(−a, d/2h) if d < 0. (8.48)

Assuming the validity of the quadratic model (8.43), we find the model optimizer by additively
accumulating the estimated steps αp and gains e into a cumulative step q with anticipated gain
r.

8.8.2 Random subspace directions

When sufficient gains are found, the trial points are accepted as the new best points and saved
in X and their function values are saved in F . Denote by ms the maximum number of points
saved in X and by b the index of newest best point.

Random subspace directions point into the low-dimensional affine subspace spanned by a number
of good points kept from previous iterations. They are computed by

αrand := rand(ms − 1, 1)− 0.5, αrand := αrand/‖αrand‖, p :=
ms∑

i=1,i6=b
αrand
i (X:i −X:b). (8.49)

8.8.3 Choosing the initial ∆

First of all, we compute
dF = median

i=1:ms
|Fi − Fb|. (8.50)

Then if dF is not zero we estimate the initial desired gain

∆ := γmax min(dF, 1) (8.51)

where γmax > 0 is a tuning parameter. Otherwise ∆ := ∆max, where ∆max > 0 is the initial
gain.

8.8.4 Choosing the initial λ

The initial value for λ is λmax which is the tuning parameter, however, it is updated by (8.20)
provided that the best point is updated by extrapolationStep. Our achievement is to estimate
it by a heuristic formula based on the previous best function values restored in F .

93

94 A new randomized method

Let λold be the old estimation for the Lipschitz constant and γλ > 0 be a factor for adjusting λ.
We compute λ by

λ :=


γλ√
n

if dF = 0 and λold = 0,

λold if dF = 0 and λold 6= 0,

γλ
√

dF
n

otherwise,

(8.52)

where dF is computed by (8.50).

8.8.5 Choosing the scaling vector

The idea is to estimate a sensible scaling vector s with the goal of adjusting the search direction
scaled by (8.12). We compute

dX:i = X:i −X:b for all i = 1, · · · ,ms.

and estimate the scaling vector

s := sup
i=1:ms

(dX:i), J = {i | si = 0}, sJ = 1. (8.53)

Finally, the formula (8.12) is rewritten as

p = s ◦ p and p = p(δ/‖p‖) (8.54)

where ◦ denotes componentwise multiplication and δ is computed by (8.13).

8.8.6 Estimating the gradient

Denote by g̃ the estimated gradient. With xm and fm defined in Section 8.5.1, finite difference
quasi-Newton methods estimate the gradient with components

g̃i := f(xm + αiei)− fm
αi

,

where ei is the ith coordinate vector. The most popular choice for α is the constant choice

αi := max{1, ‖xm‖∞}
√
εm, (8.55)

where εm is the machine precision; another choice for α is made now. After generating each
coordinate search direction, we estimate each component of the gradient in a way that is a little
different from the forward finite difference approach. The step size generated by extrapola-
tionStep is used instead of the general choice (8.55). The reason of this change is that we don’t
need to estimate the gradient by another algorithm due to the additional cost. Let describe how
to compute the gradient. If extrapolationStep cannot find a sufficient gain in the tth iteration
(ne = 0), fr is computed and at is unchanged. Given the old best point fmold, the tth component
of the gradient is computed by

g̃t = (fr− fmold)/at; (8.56)
otherwise, it is computed by

g̃t = (fm− fmold)/at, (8.57)
where both fmold and at are updated by extrapolationStep. We will add later this computation
to an improved version of RLS.

94

8.9 The implemented version of VSBBO 95

8.9 The implemented version of VSBBO

In this section, we discuss the implementation of VSBBO with the improvements which are of
a heuristic nature, very important for efficiency, and do not change the order of our complexity
results. Thus VSBBO gives the same order of complexity as the one by Bergou et al. but
with a guarantee that holds with probability arbitrarily close to 1; see Table 8.3. Numerical
results in Section 8.10 show that, in practice, VSBBO matches the quality of all state of the
art algorithms for unconstrained black box optimization problems. VSBBO is implemented in
Matlab; the source code is obtainable from

http://www.mat.univie.ac.at/~neum/software/VSBBO.

It includes many subalgorithms described earlier in Sections 8.5.2–8.6.3. The others have a sim-
pler structure; hence we skip their details (which can be found at the above website) and only
state their goals and those tuning parameters which have not been defined yet. These subal-
gorithms are identifyDir, lbfgsDir, updateSY, updateXF, updateCum, enforceAngle,
direction, MLS, FDS, and setScales, which are described below.

Before we compute the direction, the type of direction needs to be identified by identifyDir.
VSBBO calls direction to generate 5 kinds of direction vectors: coordinate directions, limited
memory quasi-Newton directions, random subspace directions, random directions, and cumula-
tive directions, as pointed out earlier in more detail in Subsection 8.8:
• Coordinate directions are the coordinate axes ei, i = 1, · · · , n, in a cyclic fashion. The co-
ordinate direction values enhance the global search properties, decreasing on average with the
number of function evaluations used. Moreover, they are used to estimate the gradient by the
finite difference approach.
• Limited memory quasi-Newton directions are computed by lbfgsDir (standard limited mem-
ory BFGS direction [140]). Due to rounding errors, the computed direction may not satisfy the
angle condition (8.17); hence it needs to be modified by enforceAngle discussed in [118].
• updateSY, updateXF, and updateCum are auxiliary routines for updating the data needed
for calculating, limited memory quasi-Newton steps, random subspace steps and cumulative
steps, respectively.
These subalgorithms have the following tuning parameters:
cum (the cumulative step type),
msmax (the maximum number of best points kept),
mqmax (the memory for L-BFGS approximation),
0 < γw < 1 and 0 < γa < 1 (tiny parameters for the angle condition),
scSub (random subspace direction scale?),
scCum (cumulative direction scale?).

We denote by C the number of coordinate directions, by R the number of random directions, and
by S the number of subspace directions in each repeated call to a multi-line search algorithm –
an improved version of RLS, called MLS; once the cumulative direction and L-BFGS direction
are computed. Here T is the number of 5 kinds of directions satisfying 1 ≤ T ≤ C + S +R+ 2.
C, R, and S are the tuning parameters.

Denote by FDS the improved version of FDS-basic and by MLS. Both setScales and FDS
work by making repeated calls to MLS. MLS polls in a number of suitable chosen directions
(implemented by direction) in a line search fashion a few objective function values each in the
hope of reducing the objective by more than a multiple of ∆. Schematically, it works as follows:

95

96 A new randomized method

• At first, at most C iterations with coordinate directions are used. They are used to estimate
the gradient.
• Then, the L-BFGS direction is used only once since the gradient has been estimated by the
finite difference technique using the coordinate directions.
• Next, except in the final iteration, at most S iterations with subspace directions are used. These
directions are very useful, especially after performing the coordinate directions and L-BFGS, due
to our numerical experiments.
• After generating T − 1 directions without finding a sufficient gain, a cumulative direction is
used as final, T th direction in the hope of finding a model-based gain.

MLS calls an improved version of extrapolationStep, which is the same as extrapolation-
Step, except that it updates the cumulative step q and the cumulative gain r by updateCum
whenever the second cumulative direction is used.

VSBBO initially calls the algorithm setScales to estimate a good scaling of norms, step lengths,
and related control parameters. Then it uses in each iteration FDS, aimed at repeatedly reducing
the function value by an amount of at least a multiple of ∆ to update the best point. If no
sufficient gain is found in a call to FDS, ∆ is reduced by a factor of Q. Once ∆ is below a
minimum threshold or nfmax is reached, VSBBO stops.

An important question is the ordering of the search directions. In Section 8.10, it will be shown
that after coordinate directions using the random subspace direction is very preferable. Changing
the ordering other direction is not very effective on the efficiency of our algorithm. However, using
all directions is useful, especially using coordinate directions increase the efficiency of VSBBO
provided that some random and random subspace directions are tried after it.

The statement (i) of Theorem 8.5.3 remains valid when R is replaced by T , and the statement
(ii) of it remains valid with probability ≥ 1− 2C+S+2−T = 1− 2−R.

Let T 0 be the maximal number of multi-line searches in setScales as the tuning parame-
ter. Then, setScales uses (2T + 1)T 0 function evaluations which does not affect on the or-
der of the complexity bounds. Theorems 8.7.2, 8.7.3, and 8.7.4 are valid with probability
≥ 1 − 22+C+S−T = 1 − 2−R, where 5 kinds of directions are used. Given the tuning param-
eter alg ∈ {0, 1, 3, 4, 5} (algorithm type), we now discuss the factor of bounds depending on the
number of search directions used in MLS. We would have the following cases:
• In the first case (alg = 0), T = R < n random directions are used. Then complexity results
considered as Table 8.3 are valid. This variant of VSBBO is denoted by VSBBO-basic1.
• In the second case (alg = 1), T = R ≥ n random directions are used. Then complexity results
considered as Table 8.3 are valid but with the factor of n2. This variant of VSBBO is denoted
by VSBBO-basic2.
• In the third case (alg = 2), random, random subspace, and cumulative directions are used
whose total number is T = S + R + 1 < n. The complexity results considered as Table 8.3
are valid. This variant of VSBBO is denoted by VSBBO-C-Q, ignoring the coordinate and
limited memory quasi Newton directions.
• In the fourth case (alg = 3), coordinate, random, random subspace, and cumulative directions
are used whose total number is T = C + S + R + 1 > n. The complexity results considered as
Table 8.3 are valid but with the factor of n2. This variant of VSBBO is denoted by VSBBO-Q,
ignoring the limited memory quasi Newton directions.
• In the fifth case (alg = 4), only subspace directions are ignored. The total number of directions
used is T = C +R + 2 > n; hence the complexity results are valid but with the factor n2. This
variant of VSBBO is denoted by VSBBO-S.

96

8.10 Numerical results 97

• In the sixth case (alg = 5), coordinate, L-BFGS, random, random subspace, and cumulative
directions are used successively whose total number is T = C + S +R+ 2 > n. The complexity
results considered as Table 8.3 are valid but with the factor of n2. This variant of VSBBO is
the default version.

This defines six versions of VSBBO, the full algorithm and 5 simplified variants. In Section
8.10, we compare them and show that each simplification degrades the algorithm. This means
that all heuristic components of VSBBO are necessary for the best performance.

8.10 Numerical results

In this section, we compare 28 competitive solvers from the literature on all 549 unconstrained
problems from the CUTEst test problems for optimization with up to 5000 variables, in case of
variable dimension problems for all allowed dimensions in this range. Default parameters for
VSBBO can be found in Subsections 8.11.1 and for other solvers in Subsection 8.11.2. For
problems in dimension n > 100, only the most robust and fast solvers were compared. To avoid
guessing the solution of toy problems with a simple solution (such as all zero or all one), we
shifted the arguments by (5.1) for all i = 1, . . . , n.

We limited the budget available for each solver by allowing at most

secmax :=
{ 180 if 1 ≤ n ≤ 100,

700 if 101 ≤ n ≤ 1000
1500 if 1001 ≤ n ≤ 5000

seconds of run time and at most

nfmax :=
{

2n2 + 1000n+ 5000 if 1 ≤ n ≤ 100,
100n if 101 ≤ n ≤ 5000

function evaluations for a problem with n variables.

As discussed earlier in Subsection 5.4, a problem with dimension n is considered solved by the
solver so if the target accuracy satisfies

qso ≤
{

10−4 if 1 ≤ n ≤ 100,
10−3 if 101 ≤ n ≤ 5000.

The nf efficiency and msec efficiency have been defined in Subsection 5.4. They are used as the
two cost measures for performance profile and plot discussed in Subsection 5.5. Performance
profiles and plots are shown in Figures 8.2–8.9 and the other results are give all results in Tables
8.4–8.7.

8.10.1 Results for small dimensions (n ≤ 20)

The low dimensional test problems (n ≤ 20) unsolved by all 28 solvers are HATFLDFL, FLETCBV3,
and FLETCHBV. In summary, the results for the remaining problems are summarized in Table
8.4.

97

98 A new randomized method

Table 8.4: The summary results for small dimensions n ≤ 20

stopping test: qf ≤ 0.0001, sec ≤ 180, nf ≤ 2n2 + 1000n + 5000
174 of 177 problems solved mean efficiency in %
dim∈[1,20] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf msec
MCS mcs 162 22 21 428 3 0 12 41 13
GCES gecs 159 5 3 1684 1 0 17 29 9
VSBBO vsbb 159 3 2 325 18 0 0 25 18
BCDFO bcd 159 41 37 3796 0 1 17 53 21
NMSMAX nmsm 157 10 9 193 12 0 8 35 41
NELDER neld 157 14 11 190 0 0 20 36 42
PSM psm 156 7 6 1222 10 2 9 37 14
SDBOX sdb 144 5 4 205 33 0 0 25 43
FMINUNC func 142 54 51 84 0 0 35 52 53
CMAES cma 142 3 2 457 35 0 0 10 10
BFO bfo 140 1 1 269 0 0 37 19 19
SDS sds 132 3 1 285 0 0 45 16 22
AHDS ahds 130 2 0 283 12 0 35 11 14
ADSMAX adsm 126 1 1 662 37 0 14 14 10
DSDS dsds 125 2 0 345 12 0 40 8 11
MDSMAX mdsm 123 3 2 318 53 0 1 12 18
PSWARM psw 122 8 5 491 33 0 22 9 6
HOOKE hook 120 0 0 196 13 0 44 18 24
DSPFD dspf 113 4 4 995 0 0 64 15 11
FMINSEARCH fmin 97 0 0 575 20 0 60 7 6
GLOBAL glo 93 3 2 166 21 0 63 7 12
DE de 84 0 0 769 68 0 25 0 2
DESTRESS dest 80 0 0 284 33 0 64 6 8
STP-vs svs 57 2 0 258 120 0 0 4 8
PSTP pst 55 2 1 913 122 0 0 2 3
STP-fs sfs 52 0 0 308 125 0 0 3 5
ACRS acr 50 1 0 330 83 0 44 3 4
MDS mds 13 3 1 133 96 0 68 2 3
166 of 177 problems solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf msec
VSBBO vsbb 159 36 31 325 18 0 0 66 60
VSBBO-Q vsbbq 158 56 50 336 19 0 0 68 66
VSBBO-S vsbbs 148 34 28 414 29 0 0 54 55
VSBBO-basic1 vsbb1 129 26 24 632 46 0 2 39 39
VSBBO-C-Q vsbcq 128 18 14 831 46 0 3 32 28
VSBBO-basic2 vsbb2 127 13 10 636 47 0 3 36 39
137 of 177 problems solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf msec
VSBBO-basic1 vsbb1 129 59 58 632 46 0 2 55 56
DSPFD dspf 113 64 63 995 0 0 64 49 43
STP-vs svs 57 4 4 258 120 0 0 10 20
PSTP pst 55 6 6 913 122 0 0 6 7
STP-fs sfs 52 5 5 308 125 0 0 8 15

98

8.10 Numerical results 99

From Table 8.4 and Figures 8.2–8.3 (shown in Subsection 8.11.5), we see that on problems with
few variables,
• VSBBO and VSBBO-Q have above average performance and can compete in robustness
with the best solvers MCS, GCES, NELDER, and BCDFO.
• VSBBO and VSBBO-Q are the best solvers in terms of the number of solved problems
and the nf efficiency, respectively in comparison with VSBBO-basic1, VSBBO-basic2, and
VSBBO-C-Q. A question that may be asked here is why VSBBO and VSBBO-Q are the
best. The answer is that using the coordinate directions is very effective provided that, after
these directions, random subspace directions are tried. Note that VSBBO-C-Q uses the random
subspace directions after performing random directions but it is weaker than VSBBO and
VSBBO-Q.
• VSBBO-basic1, the basic version of VSBBO, for which complexity results considered as
Table 8.3 are valid is more robust than solvers proposed by Gratton et al. [84] (DSPFD)
and Bergou et al. [16] (STP-vs, PSTP, and STP-fs), discussed earlier in Section 8.3. As
pointed out earlier, there is no plan to test whether the function value is decreased or not; this
is a reason why three solvers proposed by Bergou et al. are numerically poor.

8.10.2 Results for medium dimensions (21 ≤ n ≤ 100)

We tested all 28 solvers on medium dimensional test problems (21 ≤ n ≤ 100). The prob-
lems unsolved by all solvers are NONMSQRT:49, CURLY10:100, NONMSQRT:100 and OSCI-
GRAD:100.

99

100 A new randomized method

Table 8.5: The summary results for medium dimensions 21–100

stopping test: qf ≤ 0.0001, sec ≤ 180, nf ≤ 2n2 + 1000n + 5000
151 of 156 problems solved mean efficiency in %
dim∈[21,100] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf msec
VSBBO vsbb 133 11 11 2473 23 0 0 39 25
MCS mcs 133 5 5 3852 3 0 20 22 14
FMINUNC func 128 76 74 911 0 0 28 62 68
SDBOX sdb 126 19 15 1615 30 0 0 37 45
ADSMAX adsm 115 9 6 5021 36 0 5 25 14
CMAES cma 101 1 0 14852 52 3 0 7 2
PSWARM psw 100 3 2 11142 51 0 5 5 3
SDS sds 97 2 0 3304 0 3 56 6 11
NMSMAX nmsm 94 3 3 5214 60 2 0 13 10
MDSMAX mdsm 90 1 0 4172 66 0 0 4 9
NELDER neld 90 1 1 25525 5 29 32 13 4
DSPFD dspf 89 8 8 21346 0 31 36 18 3
BFO bfo 83 0 0 4781 0 4 69 5 5
HOOKE hook 76 1 1 4616 11 0 69 11 7
DE de 73 0 0 3670 48 0 35 1 4
GLOBAL glo 36 1 1 1925 31 0 89 4 5
DESTRESS dest 34 0 0 1757 75 0 47 1 2
PSM psm 31 4 4 28431 0 125 0 8 1
DSDS dsds 31 2 0 2190 89 4 32 3 4
AHDS ahds 30 2 0 2503 113 4 9 1 2
GCES gecs 27 0 0 42836 0 124 5 4 0
BCDFO bcd 20 11 10 29203 0 135 1 7 1
STP-vs svs 18 0 0 6906 137 1 0 0 0
PSTP pst 17 2 1 4408 138 1 0 2 2
STP-fs sfs 15 0 0 7302 140 1 0 0 1
FMINSEARCH fmin 14 0 0 6433 136 2 4 0 0
MDS mds 7 0 0 4691 146 2 1 0 0
ACRS acr 6 0 0 27262 84 66 0 0 0
138 of 156 problems solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf msec
VSBBO-Q vsbbq 135 45 41 2188 21 0 0 73 70
VSBBO vsbb 133 40 35 2473 23 0 0 70 66
VSBBO-S vsbbs 124 37 36 3478 32 0 0 59 62
VSBBO-basic1 vsbb1 94 6 5 5096 61 1 0 23 21
VSBBO-basic2 vsbb2 93 7 7 5156 63 0 0 23 23
VSBBO-C-Q vsbcq 42 9 8 9087 113 1 0 10 10
100 of 156 problems solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf msec
VSBBO-basic1 vsbb1 94 20 18 5096 61 1 0 41 58
DSPFD dspf 89 76 74 21346 0 31 36 53 18
STP-vs svs 18 0 0 6906 137 1 0 1 4
PSTP pst 17 5 5 4408 138 1 0 4 5
STP-fs sfs 15 1 1 7302 140 1 0 1 3

100

8.10 Numerical results 101

Table 8.6: The summary results for for large dimensions 101–1000
stopping test: qf ≤ 0.001, sec ≤ 700, nf ≤ 100*n

104 of 126 problems solved mean efficiency in %
dim∈[101,1000] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf msec
VSBBO vsbb 97 21 20 9471 28 1 0 44 30
SDBOX sdb 95 9 8 5240 30 1 0 39 51
FMINUNC func 75 45 42 2688 28 0 23 46 50
ADSMAX adsm 72 25 24 11076 49 1 4 32 19
DSPFD dspf 18 4 3 140555 0 71 37 6 1
MCS mcs 17 7 4 24057 7 1 101 6 3
101 of 126 problems solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf msec
VSBBO vsbb 97 39 23 9471 28 1 0 67 60
VSBBO-S vsbbs 94 40 28 8166 31 1 0 63 65
VSBBO-Q vsbbq 94 38 24 9598 31 1 0 63 57
VSBBO-basic2 vsbb2 43 3 2 13033 82 1 0 13 12
VSBBO-basic1 vsbb1 42 6 5 13712 83 1 0 15 14
VSBBO-C-Q vsbcq 22 3 2 12359 103 1 0 7 7
104 of 126 problems solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf msec
VSBBO vsbb 97 46 45 9471 28 1 0 55 42
FMINUNC func 75 59 58 2688 28 0 23 54 56
43 of 126 problems solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf msec
VSBBO-basic1 vsbb1 42 29 28 13712 83 1 0 28 33
DSPFD dspf 18 15 14 140555 0 71 37 13 2

From Table 8.5 and Figures 8.4–8.5 (shown in Subsection 8.11.5), we see that on problems with
a medium number of variables,
• VSBBO-Q and VSBBO are outstanding in robustness, but FMINUNC is the best in terms
of nf and sec efficiency.
• VSBBO-Q and VSBBO are the best version of VSBBO in terms of the number of solved
problems, #100, !100, the nf and msec efficiencies, respectively.
•VSBBO-basic1 is more robust than than solvers proposed by Gratton et al. [84] (DSPFD)
and Bergou et al. [16] (STP-vs, PSTP, and STP-fs).

8.10.3 Results for large dimensions (101 ≤ n ≤ 1000)

We tested the 6 most robust solvers from Table 8.5 on large dimensional test problems (101 ≤
n ≤ 1000). A list of the problems unsolved by the 6 solvers are reported in Subsection 8.11.6.

101

102 A new randomized method

Table 8.7: The summary results for very large dimensions 1001–5000
stopping test: qf ≤ 0.001, sec ≤ 1500, nf ≤ 100*n

77 of 90 problems solved mean efficiency in %
dim∈[1001,5000] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf msec
VSBBO vsbb 74 18 18 74585 14 2 0 60 42
SDBOX sdb 72 29 28 61545 13 5 0 54 57
FMINUNC func 49 31 30 36280 30 0 11 47 44
75 of 90 problems solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf msec
VSBBO vsbb 74 37 24 74585 14 2 0 75 74
VSBBO-Q vsbbq 74 36 22 86023 14 2 0 75 74
VSBBO-S vsbbs 73 23 11 96244 15 2 0 72 61
VSBBO-basic1 vsbb1 19 1 0 197927 67 4 0 6 5
VSBBO-basic2 vsbb2 17 1 0 163034 70 3 0 6 5
VSBBO-C-Q vsbbq 11 2 1 299000 77 2 0 4 3

A comparison of 6 solvers in Table 8.6 and Figures 8.5–8.6 (shown in Subsection 8.11.5) shows
that VSBBO is the most robust solver. This solver is better than SDBOX in terms of the nf
efficiency and than FMINUNC in terms of the number of solved problems. VSBBO-basic1,
the basic version of VSBBO, is more robust than MCS and DSPFD. Due to the use of L-
BFGS direction, VSBBO is better than VSBBO-Q but the converse was true for small scale
and medium problems. Moreover, VSBBO-S and VSBBO-Q have the same quality and are
more efficient than VSBBO-basic1, VSBBO-basic2, and VSBBO-C-Q.

8.10.4 Results for very large dimensions (1001 ≤ n ≤ 5000)

We tested the 3 most robust solvers from Table 8.6 on very large dimensional test problems
(101 ≤ n ≤ 1000). A list of problems unsolved by the three best solvers can be found in
Subsection 8.11.7.

102

8.11 Additional material for VSBBO 103

In Table 8.7 and Figures 8.8–8.9 (shown in Subsection 8.11.5), we give a comparison of best
solvers SDBOX, VSBBO, and FMINUNC for very large dimensions 1001 up to 5000. The
high quality of VSBBO is clearly visible. VSBBO is the best in terms of the nf efficiency,
#100 and !100. VSBBO and VSBBO-Q have the same behaviour, are a little better than
VSBBO-S, and are more efficient than VSBBO-basic1, VSBBO-basic2, and VSBBO-C-
Q.

8.11 Additional material for VSBBO

This section discusses additional material for VSBBO.

8.11.1 Default parameters for VSBBO

For our tests we used the following parameter choices:

Common tuning parameters: E = 10; δmin = 10−4√n; δmax = 0.1
√
n;

∆min = 0; ∆max = 10−3; γδ = 106; γe = 2; Q = 2; λmax = 1;
VSBBO-basic1: R = fix(n/2) + 1
VSBBO-basic2: R = n

VSBBO-C-Q: msmax = 5; R = fix(n/2) + 1; S = fix(n/5); T 0 = 2 ∗ msmax;
scCum = 0; scSub = 0; γmax = 10−3; cum = 1;
VSBBO-S: C = n; R = min(fix(n/10) + 1, 20); scCor = 0; cum = 1; γw = εm;
γa = 10−20; mqmax = 5
VSBBO-Q: msmax = 5; C = n; R = min(fix(n/10) + 1, 20);
S = min(fix(n/10), 5); scCor = 0; scSub = 0; cum = 1; msmax = 5;
T 0 = 2 ∗ msmax; γmax = 10−3;
VSBBO: msmax = 5; mqmax = 5; T 0 = 2 ∗ msmax; C = n;
S = min(fix(n/10) + 1, 5); R = min(fix(n/10) + 1, 20); scCum = 0;
scCor = 0; scSub = 0; cum = 1; γmax = 10−3; γw = εm; γa = 10−20;

Table 8.8: The values of the tuning parameters

Although the best theoretical complexity is obtained for Ω(log log n), the best numerical result
are obtained for much larger R ∼ n.

∆min = 0 implies that the algorithm stops due to nfmax or secmax.

In recent years, there has been an increasing interest in finding the best tuning parameters
configuration for derivative-free solvers with respect to a benchmark problem set; see, e.g., [7,
148, 147]. In Table 8.8, there are 7 integral, 2 binary, 2 ternary, and 12 continuous tuning
parameters, giving a total of 23 parameters for tuning our algorithm. A small amount of tuning

103

104 A new randomized method

was done by hand. Automatic tuning of VSBBO will be considered elsewhere.

8.11.2 Codes compared

• UOBYQA, available at

http://mat.uc.pt/~zhang/software.html,

is an algorithm that forms quadratic models by interpolation by Powell [149]. Tuning param-
eters are default.
• STP-fs, STP-vs, and PSTP, obtained from the authors of Bergou et al. [16], are three
versions of a randomized direct search method with complexity guarantees.
• BFO, obtained from

https://github.com/m01marpor/BFO,

is a trainable stochastic derivative-free solver for mixed integer bound-constrained optimization
by Porcelli & Toint [147].
• CMAES, obtained from

http://cma.gforge.inria.fr/count-cmaes-m.php?Down=cmaes.m,

is the stochastic covariance matrix adaptation evolution strategy by Auger & Hansen [8]. We
used CMAES with the tuning parameters

oCMAES.MaxFunEvals = nfmax, oCMAES.DispFinal = 0, oCMAES.DispModulo = 0,
oCMAES.LogModulo = 0, oCMAES.SaveVariables = 0, oCMAES.MaxIter = nfmax,
oCMAES.Restarts = 7.

• GLOBAL, obtained from

http://www.mat.univie.ac.at/~neum/glopt/contrib/global.f90,

is a stochastic multistart clustering global optimization method by Csendes et al. [44]. We used
GLOBAL with the tuning parameters oGLOBAL.MAXFNALL = nfmax, oGLOBAL.MAXFN = nfmax/5,
oGLOBAL.DISPLAY =‘off’, oGLOBAL.N100 = 300,
oGLOBAL.METHOD =‘unirandi’, and oGLOBAL.NG0 = 2.
• DE, obtained from

http://www.icsi.berkeley.edu/~storn/code.html,

is the stochastic differential evolution algorithm by Storn & Price [156].
• MCS, obtained from

https://www.mat.univie.ac.at/~neum/software/mcs/,

is the deterministic global optimization by multilevel coordinate search by Huyer & Neumaier
[102]. We used MCS with the tuning parameters iinit = 1, nfMCS = nfmax, smax = 5n + 10,
stop = 3n, local = 50, gamma = eps;
hess = ones(n, n), and prt = 0.

104

8.11 Additional material for VSBBO 105

• BCDFO, obtained from Anke Troeltzsch (personal communication), is a deterministic model-
based trust-region algorithm for derivative-free bound-constrained minimization by Gratton et
al. [85].
• PSM, obtained from

http://ferrari.dmat.fct.unl.pt/personal/alcustodio,

is a deterministic pattern search method guided by simplex derivatives for use in derivative-free
optimization proposed by Custódio & Vicente [48, 47].
• FMINUNC, obtained from the Matlab Optimization Toolbox at

https://ch.mathworks.com/help/optim/ug/fminunc.html,

is a deterministic quasi-Newton or trust-region algorithm. We use FMINUNC with the options
set by optimoptions as follows:

opts = optimoptions(@fminunc),‘Algorithm’,‘quasi-newton’, ‘Display’,
‘Iter’,‘MaxIter’, Inf, ‘MaxFunEvals’, limits.nfmax, ‘TolX’, 0,‘TolFun’,
0,‘ObjectiveLimit’,-1e-50);

It is the standard quasi Newton method while finding step sizes by Wolfe condition.
• FMINSEARCH, obtained from the Matlab Optimization Toolbox at

https://ch.mathworks.com/help/matlab/ref/fminsearch.html,

is the deterministic Nelder-Mead simplex algorithm by Lagarias et al. [121]. We use fminseach
with the options set by

opts = optimset(‘Display’,‘Iter’, ‘MaxIter’, Inf,‘MaxFunEvals’,
limits.nfmax,‘TolX’, 0, ‘TolFun’,0,‘ObjectiveLimit’,-1e-50);

• GCES is a globally convergence evolution strategy presented by Diouane et al. [59, 60]. The
default parameters are used.
• PSWARM, obtained from

http://www.norg.uminho.pt/aivaz

is Particle swarm pattern search algorithm for global optimization presented by Vaz & Vicente
[159].
• MDS, NELDER and HOOKE, obtained from

https://ctk.math.ncsu.edu/matlab_darts.html

are Multidirectional search, Nelder-Mead and Hooke-Jeeves algorithms, respectively, presented
by Kelley [109]. The default parameters are used.
• MDSMAX, NMSMAX, and ADSMAX, obtained from

http://www.ma.man.ac.uk/~higham/mctoolbox/

are Multidirectional search, Nelder-Mead simplex and alternating directions method for direct
search optimization algorithms, respectively, presented by Higham [99].
• ACRS, obtained from

105

106 A new randomized method

http://www.iasi.cnr.it/~liuzzi/DFL/index.php/list3

is a global optimization algorithm presented by Brachetti et al. [27].
• SDBOX, obtained from

http://www.iasi.cnr.it/~liuzzi/DFL/index.php/list3

is a derivative-Free algorithm for bound constrained optimization problems presented by Lucidi
& Sciandrone [126].
• DSPFD, available at

pages.discovery.wisc.edu/%7Ecroyer/codes/dspfd_sources.zip,

is a direct-search MATLAB code for derivative-free optimization by Gratton et al. [84]. The
default parameters are used.
• DESTRESS, downloaded from

pages.discovery.wisc.edu/%7Ecroyer/codes/destress_sources.zip,

is a trust-region method in MATLAB for smooth, unconstrained optimization problems, with
second-order convergence guarantees, by Gratton et al. [83]. The default parameters are used.
• SDS, AHDS and DSDS, downloaded from

pages.discovery.wisc.edu/%7Ecroyer/codes/sounds_sources.zip,

are symmetrized direct search, approximate Hessian direct search and decoupled step direct
search, respectively. SDS and AHDS suggested by Gratton et al. [82] and DSDS proposed
by Royer [152]. The default parameters are used for all.

8.11.3 Estimation of c

The following theorem was recently proved by Pinelis [143].

8.11.1 Theorem. There is a universal constant c0 such that for any fixed nonzero real vector
q of any dimension n and any random vector p of the same dimension n with independent
components uniformly distributed in [−1, 1], we have

(pT p)(qT q) ≤ c0n(pT q)2 (8.58)

with probability ≥ 1/2.

More specifically, Pinelis proved the bounds 0.73 < c0 < 50 for the optimal value of the constant
c0. The true optimal value seems to be approximately 16/7. This is suggested by numerical
simulation. To estimate c0, we executed three times the Matlab commands

% run PinConst
N=10000;
nlist=[2:10,20,50,100,200,500,1000,2000,5000,10000,20000,50000,100000];
c0=PinConst(N,nlist);

106

8.11 Additional material for VSBBO 107

10
0

10
1

10
2

10
3

10
4

10
5

1

1.5

2

16/7

2.5

n

 c
n

Figure 8.1: The plot of cn versus the dimension n suggests that c0 ≈ 16/7.

using the algorithm PinConst below. All three outputs,

c0 = 2.2582, c0 = 2.2444, c0 = 2.2714

are slightly smaller than 16/7 = 2.2857....

8.11.2 Algorithm. (PinConst, estimating the Pinelis constant)
Purpose: Estimate c0 satisfying (8.58) with probability ≥ 1/2
Input: N (the total number of gradient evaluations), D (vector of dimensions used)
Output: c0
(PC0) Set M = |D| and i = 1.
(PC1) Replace i by i+ 1 and set k = 1.
(PC2) Replace k by k + 1.
(PC3) Generate random gk and pk with length Di and compute

gain(k) = ‖g
k‖2‖pk‖2

|(gk)T pk| .

(PC4) If k exceeds N , go to (PC2); otherwise, compute

medgain(i) = median(gain) and c(i) = (medgain(i))2

Di
.

107

108 A new randomized method

(PC5) If i exceeds M , PinConst ends; otherwise go to (PC1).

8.11.4 A list of test problems with f opt

Here we list the CUTEst test problems for which our best point did not satisfy the condition

‖gk‖∞ ≤ 10−5.

problem dim fopt ‖g‖∞ ‖g‖2

BROWNBS 2 −2.80e+ 00 2.08e− 05 2.08e− 05
DJTL 2 −8.95e+ 03 1.44e− 04 1.44e− 04
STRATEC 10 2.22e+ 03 8.10e− 05 1.42e− 04
SCURLY10:10 10 −1.00e+ 03 5.34e− 04 5.50e− 04
OSBORNEB 11 2.40e− 01 3.47e− 02 3.47e− 02
ERRINRSM:50 50 3.77e+ 01 1.89e− 05 1.89e− 05
ARGLINC:50 50 1.01e+ 02 1.29e− 05 5.28e− 05
HYDC20LS 99 1.12e+ 01 5.54e− 01 8.79e− 01
PENALTY3:100 100 9.87e+ 03 2.01e− 03 4.68e− 03
SCOSINE:100 100 −9.30e+ 01 1.95e− 02 3.58e− 02
SCURLY10:100 100 −1.00e+ 04 5.74e− 02 1.56e− 01
NONMSQRT:100 100 1.81e+ 01 3.42e− 05 6.51e− 05
PENALTY2:200 200 4.71e+ 13 3.85e− 04 1.07e− 03
ARGLINB:200 200 9.96e+ 01 3.27e− 04 2.68e− 03
SPMSRTLS:499 499 1.69e+ 01 1.08e− 05 3.59e− 05
PENALTY2:500 500 1.14e+ 39 1.97e+ 26 4.08e+ 26
MSQRTBLS:529 529 1.13e− 02 1.44e− 05 1.03e− 04
NONMSQRT:529 529 6.13e+ 01 2.17e− 05 1.76e− 04
SCOSINE 1000 −9.21e+ 02 3.38e− 03 9.32e− 03
SCURLY10 1000 −1.00e+ 05 5.49e+ 01 3.37e+ 02
COSINE 1000 −9.99e+ 02 5.00e− 05 6.34e− 05
PENALTY2:1000 1000 1.13e+ 83 2.53e+ 77 3.41e+ 77
SINQUAD:1000 1000 −2.94e+ 05 1.21e− 05 1.52e− 05
SPMSRTLS:1000 1000 3.19e+ 01 9.75e− 05 2.26e− 04
NONMSQRT:1024 1024 9.01e+ 01 1.73e− 04 1.28e− 03
MSQRTALS:4900 4900 7.60e− 01 1.88e− 03 3.56e− 02
SPMSRTLS:4999 4999 2.05e+ 02 2.36e− 03 9.27e− 03

Continued on next page

108

8.11 Additional material for VSBBO 109

INDEFM:5000 5000 −5.02e+ 05 1.43e− 05 2.00e− 05
SBRYBND:5000 5000 2.58e− 10 3.73e− 04 3.50e− 03
SCOSINE:5000 5000 −4.60e+ 03 6.32e− 03 2.72e− 02
NONCVXUN:5000 5000 1.16e+ 04 3.94e− 05 7.19e− 04

8.11.5 Performance profiles and plots

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for nf

MCS

GCES

VSBBO

BCDFO

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for msec

MCS

GCES

VSBBO

BCDFO

a) b)

Figure 8.2: Small dimensions 2–20: Performance profiles for (a) nf/(best nf) and (b)
msec/(best msec). ρ notes the fraction of problems solved within a factor
τ of the best solver.

109

110 A new randomized method

10
0

10
1

10
2

10
3

10
4

10
5

nf

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

MCS

GCES

VSBBO

BCDFO

10
0

10
2

10
4

10
6

msec

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

MCS

GCES

VSBBO

BCDFO

a) b)

Figure 8.3: Small dimensions 2–20: Performance plots for (a) nf/(best nf) and (b)
msec/(best msec). ρ notes the fraction of problems solved within the num-
ber of function evaluations and time in milliseconds used by the best solver.
Problems solved by no solver are ignored.

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for nf

VSBBO

MCS

FMINUNC

SDBOX

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for msec

VSBBO

MCS

FMINUNC

SDBOX

a) b)

Figure 8.4: Medium dimensions 21–100: Performance profiles for (a) nf/(best nf) and
(b) msec/(best msec). ρ notes the fraction of problems solved within a
factor τ of the best solver. Problems solved by no solver are ignored.

110

8.11 Additional material for VSBBO 111

10
1

10
2

10
3

10
4

10
5

10
6

nf

0.85

0.9

0.95

1

1.05

ρ

VSBBO

MCS

FMINUNC

SDBOX

10
1

10
2

10
3

10
4

10
5

10
6

msec

0.75

0.8

0.85

0.9

0.95

1

1.05

ρ

VSBBO

MCS

FMINUNC

SDBOX

a) b)

Figure 8.5: Medium dimensions 21–100: Performance plots for (a) nf/(best nf) and
(b) msec/(best msec). ρ notes the fraction of problems solved within the
number of function evaluations and time in milliseconds used by the best
solver. Problems solved by no solver are ignored.

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for nf

VSBBO

SDBOX

FMINUNC

ADSMAX

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for msec

VSBBO

SDBOX

FMINUNC

ADSMAX

a) b)

Figure 8.6: Large dimensions 101–1000: Performance profiles for (a) nf/(best nf) and
(b) msec/(best msec). ρ notes the fraction of problems solved within a
factor τ of the best solver. Problems solved by no solver are ignored.

111

112 A new randomized method

10
0

10
1

10
2

10
3

10
4

10
5

nf

10
-1

10
0

ρ

VSBBO

SDBOX

FMINUNC

ADSMAX

10
0

10
2

10
4

10
6

msec

10
-1

10
0

ρ

VSBBO

SDBOX

FMINUNC

ADSMAX

a) b)

Figure 8.7: Large dimensions 101–1000: Performance plots for (a) nf/(best nf) and
(b) msec/(best msec). ρ notes the fraction of problems solved within the
number of function evaluations and time in milliseconds used by the best
solver. Problems solved by no solver are ignored.

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for nf

VSBBO

SDBOX

FMINUNC

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for msec

VSBBO

SDBOX

FMINUNC

a) b)

Figure 8.8: Very large dimensions 1001–5000: Performance profiles for (a) nf/(best nf)
and (b) msec/(best msec). ρ notes the fraction of problems solved within a
factor τ of the best solver. Problems solved by no solver are ignored.

112

8.11 Additional material for VSBBO 113

10
1

10
2

10
3

10
4

10
5

10
6

nf

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

ρ

VSBBO

SDBOX

FMINUNC

10
0

10
2

10
4

10
6

10
8

msec

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

ρ

VSBBO

SDBOX

FMINUNC

a) b)

Figure 8.9: Very large dimensions 1001–5000: Performance plots for (a) nf/(best nf)
and (b) msec/(best msec). ρ notes the fraction of problems solved within
the number of function evaluations and time in milliseconds used by the best
solver. Problems solved by no solver are ignored.

8.11.6 A list of large unsolved problem

EIGENALS EIGENBLS EIGENCLS SPMSRTLS:499
GENROSE:500 PENALTY2:500 SINQUAD:500 MSQRTALS:529
MSQRTBLS:529 NONMSQRT:529 CURLY10 CURLY20
CURLY30 DIXON3DQ:1000 FLETCBV2:1000 FLETCBV3:1000
FLETCHCR:1000 NONCVXU2 SENSORS:1000 SINQUAD:1000
SPMSRTLS:1000

8.11.7 A list of very large unsolved problem

MSQRTALS:1024 MSQRTBLS:1024 NONMSQRT:1024 EIGENALS:2550
EIGENBLS:2550 EIGENCLS:2652 MSQRTALS:4900 MSQRTBLS:4900
SPMSRTLS:4999 FLETCBV2:5000 NONCVXU2:5000 NONCVXUN:5000
SINQUAD:5000

113

9 A new subspace method

This section discusses a deterministic subspace method for unconstrained black box optimization,
called STBBO. This is a joint work with Arnold Neumaier and Parvaneh Faramarzi (Kimiaei,
Neumaier, & Faramarzi [119]). STBBO improves subspace technique for enhancing a de-
crease in the model function value and the model gradient norm. If the exact objective function
has Lipschitz continuous gradient, a complexity bound is found for a particular algorithm based
on this technique in the presence of the inexact function value. Although the inexact function
values affect the estimation of the gradient and subspace updating as well, the subspace di-
rections will not be inefficient because the angle condition is enforced. Numerical results show
that STBBO is competitive compared to solvers using the standard and limited memory BFGS
methods.

9.1 Overview of the new method

This paper constructs a new deterministic solver, called STBBO, for unconstrained black box
optimization problems. The basic version of STBBO is a quasi Newton algorithm using the
limited memory direction by Kimiaei et al. [118], the finite difference technique for the approxi-
mation of the gradient, and the Wolfe line search method by Al-Baali & Fletcher [4] finding
step sizes.

Under the assumptions discussed in the introduction, we prove that the Wolfe line search method
[4] with both the exact gradient and function value can be satisfied while this line search is
satisfied numerically with both the inaccurate function and gradient. In this case, we prove the
complexity result for both the Wolfe line search algorithm [4] and the basic version of STBBO
for the general case independent of the choice of search directions. The order of our complexity
bound matches the one found by Berahas et al. [15].

The enhancements which make STBBO robust and competitive are:
• The new subspace direction is computed by finding the solution of a linear problem in the
subspace and then by solving a simple program in the hope of finding a decrease in the
model function value and the model gradient norm.
• In the presence of rounding errors, the search direction may not satisfy the angle condition;
hence it needs to be modified. However after this modification the search direction may be
contaminated by NaN or ±∞. In this case, a diagonally preconditioned descent direction
is used.
• The Wolfe line search algorithm [4] may fail in finite precision arithmetic. In this case, the
step size is generated by a heuristic formula.

STBBO is available at https://www.mat.univie.ac.at/~neum/software/STBBO

In Section 9.2, a basic version of our algorithm, called STBBO-basic, is introduced using the

114

9.2 A basic version of STBBO 115

Wolfe line search algorithm [4], called WLS-basic. In Section 9.3, complexity results for WLS-
basic are discussed in Subsection 9.3.1 and for STBBO-basic in Subsection 9.3.2. Section 9.4
discusses
• in Subsection 9.4.1 the subspace information and how a basic version of subspace direction is
computed and the subspace information is updated,
• in Subsection 9.4.2 how a decrease in the model function value and the gradient norm can be
achieved,
• in Subsection 9.4.3 how an improved version of subspace direction can be computed and the
angle condition can be enforced,
• in Subsection 9.4.4 an improved version of the Wolfe line search algorithm [4],
• in Subsection 9.4.5 an improved version of STBBO-basic.
Numerical results are given in Section 9.5.

The extensive numerical results show that STBBO by the present authors is effective and
favorable in low up to high dimensions (1 ≤ n ≤ 9000) on all 568 unconstrained problems
from the CUTEst test problems collection by Gould et al. [80] in comparison with UOBYQA
by Powell [149], BCDFO by Gratton et al. [85], BFO by Porcelli & Toint [147],
NMSMAX by Higham [99], NELDER by Kelley [109], VSBBO by Kimiaei & Neumaier
[117], and VSBBON by Kimiaei [114].

9.2 A basic version of STBBO

Our basic algorithm is called STBBO-basic, a quasi-Newton algorithm for unconstrained black
box optimization problems. As long as STBBO-basic does not converge, the direction is com-
puted by a quasi-Newton method along which a line search is tried. If the search direction does
not satisfy the angle condition, it needs to be improved. In STBBO-basic, the gradient vector
is estimated by the forward finite difference technique.

STBBO-basic takes the initial point x0 as input and returns an optimum point xbest and its
inexact function value f̃best as output. It uses the following tuning parameters:
∆a ∈ (0, 1) (tiny parameter for the angle condition),
0 < σ̃ < ρ̃ < 1 (parameters for line search),
0 < εh < 1 (parameter for adjusting the finite difference step size h).
0 < εg < 1 (minimum threshold for the stopping test).

9.2.1 Algorithm. (STBBO-basic, a quasi-Newton method for unconstrained BBO)

(Sb0) Compute the initial function value f̃0 := f̃(x0).
for ` = 1, 2, 3, · · · do

(Sb1) Compute
h`i :=

√
εh sign(x`) max{|x`i |, 1}, for i = 1, · · · , n (9.1)

and

g̃`i := g̃(x`)i := f̃(x` + h`iei)− f̃(x`)
h`i

. (9.2)

Here ei is the ith coordinate direction and f̃ is an inexact function value. If ‖g̃(x`)‖ ≤ εg,
set xbest := x` and f̃best := f̃ `. Then STBBO-basic ends.

115

116 A new subspace method

(Sb2) Update the symmetric matrix B`+1 by a quasi-Newton formula.
(Sb3) Compute p` by solving the linear system B`p` = −g̃`.
(Sb4) If the sufficient descent condition (g̃`)T p` < 0 does not hold, modify p` such that the
angle condition

(g̃`)T p`

‖g̃`‖‖p`‖
≤ −∆a < 0, (9.3)

holds.
(Sb5) Find a step size α` satisfying

f̃(x` + α`p`) ≤ f̃ ` + ρ̃α`(g̃`)T p`, (9.4)
|g̃(x` + α`p`)T p`| ≤ −σ̃(g̃`)T p`, (9.5)

resulting in the new point x`+1 := x` + α`p` and its function value f̃ `+1 := f̃(x`+1). The
sufficient descent (9.4) guarantees f̃(x` + α`p`) < f̃ ` while the curvature condition
(9.5) guarantees that α` is not too far from a minimizer of the function f .

end for

9.3 Complexity

We prove the complexity bounds for WLS-basic in Subsection 9.3.1 and STBBO-basic in
Subsection 9.3.2 under the assumptions (BBO1) and (BBO2) discussed in Subsection 8.3 and
the following assumption:
(BBO3) The uncertainty of the function value f̃(x) obtained by a noisy oracle is globally bounded
by a small threshold ω > 0, i.e., the condition (4.4) holds.

9.3.1 Theorem. Assume that (BBO1)–(BBO3) hold. If εh := Θ(ω), then the gradient approx-
imation defined by (9.1)–(9.2) satisfies

‖g̃(x)− g(x)‖ = O(
√
ω). (9.6)

Proof. By applying f − ω ≤ f̃ ≤ f + ω into (9.2), we get

g̃(x) = h−1(f̃(x+ hp)− f̃(x)) ≤ h−1(f(x+ hp)− f(x)) + 2h−1ω,

resulting in
g(x) = g̃(x) +O(h) = h−1(f(x+ hp)− f(x)) +O(ω/h+ h)

by Taylor expansion. Here the first and second term of O(ω/h+ h) are the function evaluation
error and the discretization error. The optimal value

√
ω of ∆(h) := ω/h + h is achieved at

ĥ :=
√
ω. If h = Θ(

√
ω), the best magnitude of the error is obtained and (9.6) holds. ut

Berahas et al. [15] gave a nice summary to guarantee the condition (9.6) for various determin-
istic/stochastic techniques and to find bounds on the number of function evaluations to estimate
the gradient, the step size h, and the exact gradient norm; for more details see Tables 2 and 3.

Under the assumptions (BBO1)–(BBO3), we find a complexity bound of STBBO-basic in the
general case. We denote by N(ω) the number of function evaluations that STBBO-basic needs
to find a point xbest satisfying

f(xbest) ≤ sup
x∈Rn
{f(x) | f(x) ≤ f(x0) and ‖g(x)‖ ≤ ω}.

116

9.3 Complexity 117

9.3.1 Complexity of a line search

In this section, we discuss how to get the complexity result for the Wolfe line search by Al-
Baali & Fletcher [4], called WLS-basic. It has a key role in proving the complexity bound
for STBBO-basic. In the presence of rounding errors, when it fails, we enrich it by a heuristic
formula, discussed later in Subsection 9.4.4.

As defined earlier, g̃(x) denotes the finite difference approximation of g(x) at x. An efficient line
search algorithm based on Wolfe conditions has been constructed by Al-Baali & Fletcher
[4] and Fletcher [74]. It includes an inner loop (a bracketing phase, called bracketingPhase)
and an outer loop (an interpolation phase, sectioningPhase). bracketingPhase finds an
interval with suitable step sizes, and sectioningPhase finds a good step size within the interval.
sectioningPhase has repeated calls to bracketingPhase until the sufficient descent (9.4) is
not satisfied. Afterwards, it tries to satisfy the curvature condition (9.5).

The following result follows from Theorem 2.2 in [4] which is valid with the exact gradient.

9.3.2 Proposition. Given the finite threshold value f , we define

α` := f − f `

ρ(g`)T p` , for all ` ≥ 0. (9.7)

If σ > ρ, then one of the following statements is valid:
(i) WLS-basic ends with f(x` + α`jp

`) < f for some α`j ∈ (0, α`];
(ii) WLS-basic ends with α`j satisfying

f(x` + α`p`) ≤ f ` + ρα`(g`)T p`, (9.8)
|g(x` + α`p`)T p`| ≤ −σ(g`)T p`. (9.9)

In particular, if σ = ρ, WLS-basic ends, each interval I`j := (a`j , b`j), j = 1, 2, · · · ,∞, contains
an interval of acceptable points and there exists a limit point α̂ ∈ I`j , for all j, such that, for
sufficiently large j, the a`j are monotonically (not strictly) increasing, lim

j→∞
a`j = α̂ and the b`j are

monotonically (not strictly) decreasing, lim
j→∞

b`j = α̂, and α̂ is an acceptable point as in (ii).

The following result describes how the complexity bound for WLS-basic can be obtained.

9.3.3 Proposition. Assume that (BBO1)–(BBO3) hold, the gradient of f is estimated by the
forward finite differences (9.2) with the step sizes generated by (9.1), the direction p` satisfies
the angle condition (9.3), and the step size α` satisfies the strong Wolfe conditions (9.4) and
(9.5). Denote by θ̃ the angle between g̃` and p` and by θ the angle between g` and p`. Then if
εh := Θ(ω):
(i) For all x`, x`′ ∈ Rn we have

‖g̃(x`)− g̃(x`
′
)‖ = O(

√
ω) + L‖x` − x`

′
‖.

(ii) p` satisfies the angle condition for the exact gradient

(g`)T p`

‖g`‖‖p`‖
< −∆a

2 . (9.10)

117

118 A new subspace method

(iii) Under the assumptions

‖g̃`‖ > 2
√
ω

∆a(1− σ) , (9.11)

‖g`‖ ≥ max
{4ρ̃
√
ω

ρ∆a ,
(1 + σ̃)

√
ω

σ∆a

}
, (9.12)

and
‖g̃`‖‖g`‖ ≥ 16Lω

ρ(1− σ̃)(∆a)2 , (9.13)

α` satisfies the strong Wolfe conditions

f(x` + α`p`) ≤ f ` + ρ1α
`(g`)T p`, (9.14)

|g(x` + α`p`)T p`| ≤ −σ1(g`)T p`, (9.15)

where 0 < ρ1 := ρ̃− ρ < ρ̃ < σ̃ < σ1 := σ̃ + σ < 1.
(iv) Given 0 < ρ1 < σ1 < 1, the minimal threshold αmin ∈ (0, 1) for the step size, we define

α`1 := f − f `

ρ1(g`)T p` for all ` ≥ 0. (9.16)

and choose the step size α` ∈ (0, α`1], for ` ≥ 1, and τ ∈ (0, 1). Then WLS-basic needs at most

K` :=
⌈

logτ
αmin

α`1

⌉
(9.17)

iterations and at most
N `
f := n(K`)2 (9.18)

function evaluations to satisfy (9.14) and (9.15) (The factor n comes from the approximated
gradient evaluations needed in the Wolfe line search).

Proof. (i) From (BBO2) and (9.6), we have

‖g̃(x`)− g̃(x`
′
)‖ = ‖g̃(x`)− g(x`

′
) + g(x`)− g(x`

′
) + g(x`

′
)− g̃(x`

′
)‖ = O(

√
ω) + L‖x` − x`

′
‖.

(ii) By [163, Lemma 3.11], since cos θ̃ ≥ ∆a > 0 by (9.3) and (9.6) holds, cos θ ≥ ∆a/2 and so
(9.10) is obtained.
(iii) By (i), Cauchy–Schwarz inequality, and (9.5), we obtain

(O(
√
ω) + α`L‖p`‖)‖p`‖ = ‖g̃(x` + α`p`)− g̃`‖‖p`‖

≥ (g̃(x` + α`p`)− g̃`)T p` ≥ (σ̃ − 1)(g̃`)T p`,

resulting in

α` ≥ 1− σ̃
L

(−(g̃`)T p`

‖p`‖2

)
− O(

√
ω)

L‖p`‖
≥ (1− σ̃)∆a‖g̃`‖ −

√
ω

L‖p`‖
≥ (1− σ̃)∆a‖g̃`‖

2L‖p`‖ .

(iii) Under the condition (9.12), the statements (ii) and (iii) result in

−ρα`g`p` ≥ ρ(1− σ̃)∆a‖g̃`‖
2L‖p`‖ g`p` ≥ ρ(1− σ̃)∆a‖g̃`‖

2L‖p`‖ ‖g`‖‖p`‖ cos θ

≥ ρ(1− σ̃)(∆a)2

4L ‖g̃`‖‖g`‖ ≥ 4ω.

118

9.3 Complexity 119

On the other hand, (9.12) gives

−ρα`g`p` ≥ ρ∆a

2 α`‖p`‖‖g`‖ ≥ ρ∆a

2 α`‖p`‖
(4ρ̃
√
ω

ρ∆a

)
= 2ρ̃α`‖p`‖

√
ω. (9.19)

By summing both sides of (9.19) with (9.19), it results in

−ρα`g`p` ≥ 2ω + ρ̃α`‖p`‖
√
ω.

From (9.4) and (BBO3), we get

f(x` + α`p`) ≤ f ` + 2ω + ρ̃α`(g̃`)T p` ≤ f ` + 2ω + ρ̃α`
(

(g`)T p` + ‖p`‖
√
ω
)

= f ` + 2ω + ρ̃α`‖p`‖
√
ω + ρ̃α`(g`)T p`

≤ f ` + (ρ̃− ρ)α`(g`)T p` = f ` + ρ1α
`(g`)T p`;

hence (9.14) holds. From (9.5) we conclude that

g(x` + α`p`)T p` + ‖p`‖
√
ω ≥ g̃(x` + α`p`)T p` ≥ σ̃(g̃`)T p` ≥ σ̃

(
(g`)T p` − ‖p`‖

√
ω
)
,

so that

g(x` + α`p`)T p` ≥ σ̃(g`)T p` − (1 + σ̃)‖p`‖
√
ω ≥ (σ̃ + σ)(g`)T p` = σ1(g`)T p`

by (9.12); hence (9.15) is obtained.
(iv) sectioningPhase chooses initially ` := 1 and calls bracketingPhase. In the worst case,
the sufficient descent condition (9.4) may be satisfied by bracketingPhase in the last iteration.
bracketingPhase uses an interpolating which generates a decreasing sequence of the intervals
I`,j := [a`,j , b`,j] ⊂ I`,j−1 := [aj−1, bj−1] for j ≥ 1 and ` ≥ 1, resulting in

|b`,j − a`,j | ≤ (1− τ1)|b`,j−1 − a`,j−1|

with τ1 ∈ (0, 1); this condition is [4, (16)]. For sufficiently large j, b`,j − a`,j goes to zero and α`
satisfies (9.4). Hence, there exists a positive integer ĵ` such that

α`,j ≤ α` := α`,̂j
`

for j ≥ ĵ` :=
⌈

log1−τ1

α`

α`1

⌉
and for ` ≥ 1.

sectioningPhase chooses initially I1 := [a1, b
1] := I1,̂j . Then, for all ` ≥ 1, it uses an interpo-

lating which gives
|b` − a`| ≤ (1− τ1)|b`−1 − a`−1|

with τ1 ∈ (0, 1) and an extrapolating which results in

|b` − a`| ≤ (1− τ2)|b`−1 − a`−1|,

with τ2 ∈ (0, 1). It generates the decreasing sequence I` of the intervals so that, for sufficiently
large `, b` − a` goes to zero while αmin satisfies (9.5); this condition is [4, (17)]. Hence

|b` − a`| ≤ τ |b`−1 − a`−1|

119

120 A new subspace method

with τ := min{1− τ1, 1− τ2} ∈ (0, 1). Then there exists a positive integer ̂̀ such that

α` ≤ αmin for ` ≥ ̂̀ :=
⌈

logτ
αmin

α`1

⌉
.

As a result, the number of iterations is bounded by (9.17) and so the number of function evalu-
ations is bounded by (9.18) since n function evaluations are needed to estimate the gradient in
each iteration, α`,̂j` ≥ αmin for ` = 1, · · · , ̂̀, and τ ∈ (0, 1). ut

9.3.2 Complexity of STBBO-basic

9.3.4 Theorem. Suppose that assumptions (BBO1)–(BBO3) hold and let f0 be the initial
function value of f . Define αmax := max{α`1 | ` ≥ 0}. Then STBBO-basic needs at most
O(ω−1) iterations and O(nK2ω−1) function evaluations to find a point x with ‖g(x)‖ = O(ω).
Here K := dlogτ (αmin/αmax)e, αmin and τ come from Proposition 9.3.3, and the factor n comes
from the approximated gradient evaluations needed in the Wolfe line search method.

Proof. f̂ := inf
`
f ` is finite by (BBO2) and (BBO2). Let S be the set of iterations generated by

WLS-basic such that

‖g`‖ > max
{4ρ̃
√
ω

ρ∆a ,
(1 + σ̃)

√
ω

σ∆a

}
for all ` ∈ S;

S is not empty by Proposition 9.3.2. In other words, all iterations of STBBO-basic decrease
the function value; hence, they are successful. Based on Proposition 9.3.2, we consider two cases:
Case 1. Suppose that the statement (i) in Proposition 9.3.2 holds. As defined earlier α`1 by
(9.16), we get

f `+1 := f(x` + α`p`) ≤ f, for some α` ∈ (0, α`1];
hence

f ` − f `+1 ≥ f ` − f ≥ 0. (9.20)
Case 2. Suppose that the statement (ii) in Proposition 9.3.2 holds. Then, by the angle condition
(9.3), we get from Proposition (9.3.3)

f ` − f `+1 ≥ −ρ1α
`(g`)T p` ≥ 4ρ1ω

ρ
. (9.21)

Then (9.20) and (9.21) result in f ` − f `+1 ≥ 4ρ1ω

ρ
. By taking a sum from both sides of the

above inequality, we get
f0 − f̂ ≥

∑
k∈S

(f ` − f `+1) ≥ |S|4ρ1ω

ρ
,

leading to |S| ≤ ρ(f0 − f̂)
4ρ1ω

. Denote by N `
f the number of function evaluations in each call to

WLS-basic for ` ≥ 1. By Proposition 9.3.3(iii), the total number of function evaluations by
STBBO-basic is bounded by∑

`∈S

N `
f = n

∑
`∈S

(K`)2 ≤ n|S|K2 = O
(
nK2ω−1

)
.

120

9.4 New enhancements 121

ut

The order of our bound is the same as the one found by Berahas et al. [15].

9.4 New enhancements

This section discusses how new enhancements make STBBO-basic very competitive:
• In Subsection 9.4.1 subspace information, limited memory quasi Newton direction, and sub-
space updating are given, resulting in a basic algorithm for computing subspace directions.
• In Subsection 9.4.2 under what conditions a decrease in the model function and gradient norm
can be found is discussed.
• In Subsection 9.4.3 an improved algorithm for computing subspace directions is described.
• In Subsection 9.4.4 an improved Wolfe line search algorithm enriched by a heuristic formula is
discussed.
• In Subsection 9.4.5 a new subspace algorithm is explained.

9.4.1 Subspace information

In this subsection, we give some details about subspace information, the limited memory quasi
Newton direction, and how to update the subspace information.

Let S` be the n×m matrix whose columns are (in the actual implementation a permutation of)
the previous m search directions,

S` := {s`−m+1, · · · , s`} = {x`−m+1 − x`−m, · · · , x` − x`−1}, (9.22)

and Y ` ∈ Rn×m be the corresponding gradient differences,

Y ` := {y`−m+1, · · · , y`} = {g̃`−m+1 − g̃`−m, · · · , g̃` − g̃`−1}. (9.23)

subspaceDir-basic solves B`p` = −g̃`, where

B` := D` + U `(Σ`)−1(U `)T

is an approximate Hessian B` discussed in [118]. Here the diagonal matrix D` and U ` are defined
below and Σ` := (U `)TS` is symmetric. This approximation is determined by unique S` and Y `
and the quasi-Newton condition

B`S` = Y `. (9.24)

Another approximation is defined by

H` := (S`)TB`S` = (S`)TY `. (9.25)

At the `th iteration, subspaceDir-basic takes the matrices S`, Y `, H` and the estimated
gradient g̃` as input and returns the subspace direction p` as output. It only uses the tuning
parameter m as the subspace size.

121

122 A new subspace method

9.4.1 Algorithm. (subspaceDir-basic, a basic version of the subspace direction)
(SDb1) Compute the diagonal matrix

D` := diag(d`), with d` :=

√√√√(
m∑
i=1

YY:i)//(
m∑
i=1

SS:i), (9.26)

where YY and SS are the componentwise squares of S` and Y `, respectively, and // is the com-
ponentwise division.
(SDb2) Compute the matrix

U ` := Y ` −D`S`. (9.27)

(SDb3) Compute the matrix
M ` := (Y `)T (D`)−1Y ` −H`, (9.28)

which is equivalent to
M ` = (U `)T (D`)−1Y ` = (Σ`)−1; (9.29)

[118, (25)]. (9.28) is numerically better than (9.29).
(SDb4) Solve the linear system M `z` = (U `)T (D`)−1g̃`.
(SDb5) Compute the direction by

p` := (D`)−1(U `z` − g̃`). (9.30)

By Theorem 1 in [118], p` is the solution of B`p` = −g̃`.

In the same way as [118], we update the matrices

S` := (S`−1 s`) , Y ` := (Y `−1 y`) , H` :=
(

H`−1 (S`−1)T y`
(y`)TS`−1 (y`)T s`

)
(9.31)

until m does not exceed its bound mmax. It is done by updateSYH.

9.4.2 Decreasing model function value and gradient norm

In this subsection, we try to find a decrease in the model function value and gradient norm by a
subspace technique. This can be done by solving a linear problem and a one-dimensional bound
constrained problem in a cheap way.

We show how to minimize the maximum norm of the model gradient in the subspace spanned
by the columns of the matrix S` ∈ Rn×m, where typically m� n. We define by f̃ ` := f̃(x`) the
inexact function value at the current point x`, by g̃` := g̃(x`) the estimated gradient function at
x`, and by

c` := (S`)T g̃` (9.32)

the estimated gradient function restricted to S` at x`. Then the quadratic model

f̃(x` − S`z)− f̃ ` ≈ q(z) := −(c`)T z + 1
2z

TH`z

is constructed whose gradient is

q′(z) := ∂q(z)/∂z := −c` +H`z.

122

9.4 New enhancements 123

Here c` by (9.32) and H` by (9.25) were defined earlier. The stationary point is at

ẑ := (H`)−1c`. (9.33)

To find a point that reduces not only the model function value q but if possible also the model
gradient norm ‖q‖, we do on the model function an exact line search along ẑ by solving the
simpler univariate problem

min
β

‖q′(βẑ)‖2 = |1− β|‖c`‖2

s.t. q(β) = γ1β + γ2β
2 ≤ 0,

(9.34)

where
γ1 := −(c`)T ẑ, γ2 := 1

2 ẑ
TH`ẑ. (9.35)

In three situations we do not want to improve the model gradient norm:
• If γ1 or γ2 is contaminated by NaN or ±∞, the constraint is not satisfied.
• If γ2 ≤ 0, q(β) is flat or unbounded below.
• If γ2 > 0 but γ1 ≥ 0, the minimal q is attained at β = 0.
In these cases, the problem (9.34) can not be solved and p` is computed by subspaceDir-basic.
In the remaining case, γ1 < 0 < γ2 and β∗ := −γ1/(2γ2) > 0. Since q(β) ≤ 0 iff 0 ≤ β ≤ 2β∗.
The constraint in (9.34) is equivalent to 0 ≤ β ≤ 2β∗. This case is only acceptable when β∗ is a
real value (otherwise p` is computed by subspaceDir-basic). Hence, (9.34) reduces to

min |1− β|
s.t. 0 ≤ β ≤ 2β∗

(9.36)

with the solution
β̂ := min(1, 2β∗). (9.37)

We denote by q̂ := q(β̂) the optimal model function value and by q̂′ := |1− β̂|‖c`‖2 the optimal
model gradient norm. In fact, β̂ does not necessarily decrease both the model function value
q and the model gradient norm q′ in finite precision arithmetic. To check this, we define two
computational measures df` and dg`, which are initialized as

df0 := ε1|f̃0|, dg0 := ε2‖g̃0‖ with ε1, ε2 > 0 (9.38)

(if f̃0 = 0 set df0 := 1) and updated based on the information of function value and estimated
gradient, respectively,

df` :=
{
γ1
f (f̃ ` − f̃ `−1) if f̃ ` < f̃ `−1 + df`−1,

max{γ2
fdf`−1, γ3

f (|f̃ `|+ |f̃ `−1|)} otherwise
(9.39)

and

dg` :=
{
γ1
g‖g̃` − g̃`−1‖∞ if ‖g̃`‖∞ < ‖g̃`−1‖∞ + dg`−1,

max{γ2
gdg`−1, γ3

g(‖g̃`‖∞ + ‖g̃`−1‖∞)} otherwise. (9.40)

Here the parameters γ1
f , γ

1
g ∈ (0, 1), γ2

f , γ
2
g > 1, and γ3

f , γ
3
g ∈ (0, 1) are tuning parameters. At

the `th iteration, if
q̂ ≤ −df` and q̂′ ≤ ‖g̃`−1‖∞ − γ4

gdg`, (9.41)
we have a good decrease in both the model function value and gradient norm in the current
subspace, where γ4

g > 1. Then we can compute the search direction by

p` := −β̂S`ẑ. (9.42)

123

124 A new subspace method

9.4.3 An improved version of subspaceDir-basic

This subsection discusses subspaceDir, an improved version of subspaceDir-basic. It takes
the matrices S`, Y `, H`, the estimated gradient g̃`, two computational measures df` and dg` as
input and returns the subspace direction p` as output. It uses the following tuning parameter:
m > 0 (memory for the subspace).
9.4.2 Algorithm. (subspaceDir, an improved subspace direction)
(SD1) Solve the linear problem (9.33).
(SD2) To get the optimal model function and gradient:
(1) compute h`, γ1, and γ2 by (9.35).
(2) compute β̂ by (9.37)
Then q̂ = q(β̂) and q̂′ = q′(β̂) are the model function and gradient, respectively.
(SD3) If the condition (9.41) holds,
(1) find ẑ by (9.33),
(2) compute p` by (9.42).
Otherwise, p` is computed in the same way as subspaceDir-basic.

Let ∆a ∈ (0, 1) be the tiny tuning parameter. When the search direction p` computed by
subspaceDir does not satisfy the angle condition (9.3), it needs to be modified by setting

η1 := (g̃`)T g̃`, η2 := (p`−1)T p`−1, and η := (g̃`)T p`−1,

finding t enforcing
η − tη1√

η1(η2 − 2tη + t2η1)
≤ −∆a,

and computing p` = p`−1 − tg̃`. But it is not possible sometimes due to rounding errors.
In this case, our idea is to replace p` = −g̃` by the diagonally preconditioned steepest
descent direction p` = −(D`)−1g̃`. This is done by enforceAngle. This is different from the
enforceAngle of [118].

9.4.4 An improved Wolfe line search

The statements of (i) and (ii) in Proposition 9.3.2 may be not satisfied numerically due to
rounding errors. In this case, WLS-basic needs to be improved.

An improved version of WLS-basic by Al-Baali & Fletcher [4] is called WLS. It uses the
following tuning parameters:
0 < σ̃ < ρ̃ < 1 (parameters for line search),
0 < ∆α < 1 (tiny parameter for adjusting the heuristic step size),
0 < εh < 1 (parameter for adjusting the finite difference step size h).
9.4.3 Algorithm. (WLS, an improved Wolfe line search)
(WLS1) Call WLS-basic to find a step size satisfying (9.4) and (9.5).
(WLS2) If WLS-basic does not enforce the Wolfe conditions in finite precision arithmetic, find
the step size by a heuristic way:
(1) Find ind := {i | p`i 6= 0}. If both x` and p` are not zero, compute α` := ∆α|f̃ `/(g̃`)T p`|.
(2) Otherwise if only p` is not zero, compute

α` := ∆α max
(
|f̃ `/(g̃`)T p`|,min

{
|x`i/p`i | | i ∈ ind

})
.

124

9.4 New enhancements 125

(3) Otherwise choose α` := 1.
Then compute the new point x`+1 := x` + α`p`, its inexact function value f̃ `+1 := f̃(x`+1), and
its estimated gradient g̃`+1 := g̃(x`+1).

9.4.5 The new subspace algorithm

Our new algorithm is called STBBO, subspace technique for unconstrained black box
optimization. It takes advantage of the new subspace technique which tries to significantly
decrease not only the model function value but also the model gradient norm. As long as
STBBO does not converge, the direction is computed by subspaceDir along which WLS is
tried. Then, some necessary information about the subspace is updated. Note that if the `th
search direction does not satisfy the descent condition (g̃`)T p` < 0, then it needs to be improved
by calling enforceAngle.

STBBO takes the initial point x0 and maximal function evaluations (nfmax) as input and returns
the best point xbest and its inexact function value f̃best as output. It uses the following tuning
parameters:
ε1, ε2 > 0 (parameters for adjusting the initial df and dg),
γ2
f , γ

2
g > 1 (parameters for expanding df and dg),

γ1
f , γ

1
g , γ

3
f , γ

3
g ∈ (0, 1), γ4

g > 1 (parameters for reducing df and dg),
m > 0 (memory for the subspace),
∆a ∈ (0, 1) (tiny parameter for the angle condition),
0 < ∆α < 1 (tiny parameter for adjusting the heuristic step size),
0 < σ̃ < ρ̃ < 1 (parameters for line search),
0 < εh < 1 (parameter for adjusting the finite difference step size h).

9.4.4 Algorithm. (STBBO, subspace method for black box optimization)
(ST0) Initialization:
(1) Compute the initial inexact function value f̃0.
(2) Estimate the gradient g̃0 by (9.1) and (9.2).
(3) Initialize df0 and dg0 by (9.38).
(4) Set xbest := x0 and f̃best := f̃0.
for ` = 1, 2, 3, · · · do

(ST1) Compute the subspace direction by subspaceDir. If (g̃`)T p` ≥ 0, perform en-
forceAngle.
(ST2) Find step size α`:
(1) Perform WLS to find α` resulting in x`+1, f̃ `+1, and g̃`+1 by (9.1) and (9.2).
(2) If nfmax is reached, set xbest := x`+1 and f̃best := f̃ `+1. Then stop.
(3) Update df`+1 by (9.39) and dg`+1 by (9.40).
(ST3) Update the subspace information by setting s` := x`+1 − x` and y` := g̃`+1 − g̃` and
calling updateSYH.

end for

125

126 A new subspace method

9.5 Numerical results

In this section, we give a comprehensive comparison of STBBO with several robust and fast
solvers on all 568 unconstrained problems from the CUTEst [80] collection of test problems for
optimization with up to 9000 variables. The arguments are shifted by (5.1) to prevent guessing
the solution of toy problems with a simple solution (such as all zero or all one).

We choose

nfmax ∈

 {100n, 500n, 1000n} if 1 ≤ n ≤ 30
{100n, 500n, 1000n} if 31 ≤ n ≤ 1000
{100n, 500n, 1000n} if 1001 ≤ n ≤ 9000

We are interested in using the test environment suggested by Kimiaei & Neumaier [116]. In
order to compare STBBO with known solvers, two cost measures nf and msec are used. The
efficiency of the solver so with respect to a cost measure cso for solver so has been defined
earlier by (5.2).

We consider a problem solved by the solver so if qso ≤ 10−4 holds. Otherwise, the problem is
unsolved since either nfmax or secmax is exceeded. Here qso has been defined by (5.3).

Default parameters for STBBO are discussed in Subsection 9.6.1.

We compare STBBO with UOBYQA by Powell [149], BCDFO by Gratton et al. [85],
BFO by Porcelli & Toint [147], NMSMAX by Higham [99], NELDER by Kelley [109],
VSBBO by Kimiaei & Neumaier [117], and VSBBON by Kimiaei [114]. Details of code
compared can be found in Subsection 8.11.2.

We summarize the numerical results, described in details in Subsection 9.6.2. In a comparison
among solvers using the standard BFGS and limited memory BFGS methods (FMINUNC,
FMINUNC1, FMINUNC2) and STBBO, it is shown that STBBO is very robust and effi-
cient for problems in low up to high dimensions.
• The main results is that STBBO is more efficient than FMINUNC which uses the standard
BFGS method while FMINUNC is more efficient than FMINUNC1 and FMINUNC2 which
use the standard limited memory BFGS method proposed by Liu & Nocedal [124]. The new
subspace technique remains efficient and robust though it collects the Hessian information only
in a subspace.
• STBBO has the best performance in comparison with BCDFO using surrogate quadratic
models and the two efficient versions of Nelder–Mead (NELEDER and NMSMAX) for di-
mensions n ≤ 30. Moreover, STBBO and UOBYQA have somewhat behaviour for dimensions
n ≤ 30 but STBBO is more efficient than UOBYQA for dimensions 11 ≤ n ≤ 30. STBBO is
more efficient than two recent randomized solvers VSBBO and VSBBON and the new version
of BFO for dimensions n ≤ 30.
• In contrast to this, VSBBO and VSBBON are better than STBBO only in terms of the
number of solved problems for dimensions 31 ≤ n ≤ 1000.
• For very large problems, STBBO is better than VSBBO and VSBBON in terms of the
number of solved problems and nf efficiency.
• Finally, in a generic comparison for dimensions n ≤ 9000, STBBO is more efficient than
VSBBO and FMINUNC.

126

9.6 Additional material for STBBO 127

9.6 Additional material for STBBO

This section discusses additional material for STBBO.

9.6.1 Default tuning parameters for STBBO

STBBO with the memory m := min(10, n) and m := min(20, n) is denoted by STBBO1 and
STBBO2, respectively. The tuning parameters for STBBO are:

εh = εm, ∆a = 10−8, σ̃ = 10−4, ρ̃ = 0.9, ∆α = εm, γ4
g = 10,

γ1
f = γ1

g = 0.5, γ2
f = γ2

g = 2, γ3
f = γ3

g = 10−12, ε1 = ε2 = 10−8

9.6.2 Tables and plots

Table 9.1 and Figure 9.1 compare the summary statistics for 1 ≤ n ≤ 30 with the small budget
nfmax = 100n:
• For 1 ≤ n ≤ 30 UOBYQA is the best in terms of the number of solved problems and the nf
efficiency. STBBO1 and STBBO2 have the same behaviour and are the best solvers in terms
of the nf efficiency.
• For 1 ≤ n ≤ 2 UOBYQA, STBBO1, STBBO2. and BCDFO are the best in terms of the
number of solved problems and UOBYQA is the best the nf efficiency.
• For 3 ≤ n ≤ 5 and 6 ≤ n ≤ 10 UOBYQA is the best in terms of the number of solved
problems and the nf efficiency.
• For 11 ≤ n ≤ 30 FMINUNC and VSBBO are the best in terms of the number of solved
problems and STBBO1 is the best in terms of the nf efficiency.

127

128 A new subspace method

Table 9.1: Results for 1 ≤ n ≤ 30 with nfmax = 100n

stopping test: qf ≤ 0.0001, sec ≤ 180, nf ≤ 100*n

176 of 192 problems without bounds solved mean efficiency in %
dim∈[1,30] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

UOBYQA uob 161 33 29 226 30 0 1 52 49
STBBO2 stbbo2 157 38 2 53 35 0 0 52 54
STBBO1 stbbo1 157 38 1 58 35 0 0 52 52
FMINUNC func 144 42 20 96 15 0 33 46 33
BCDFO bcd 141 36 31 3441 0 11 40 41 13
NELDER neld 137 9 7 138 47 0 8 29 30
VSBBO vsbb 134 5 4 118 58 0 0 21 23
NMSMAX nmsm 133 6 6 73 59 0 0 27 35
VSBBON vsbbn 131 19 16 366 61 0 0 27 10
FMINUNC2 func2 128 29 2 78 58 0 6 38 30
FMINUNC1 func1 127 27 0 69 59 0 6 38 27
BFO bfo 99 0 0 199 0 0 93 14 6

34 of 34 problems without bounds solved mean efficiency in %
dim∈[1,2] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

UOBYQA uob 33 13 10 17 1 0 0 73 79
STBBO2 stbbo2 33 5 0 22 1 0 0 59 55
STBBO1 stbbo1 33 5 0 47 1 0 0 59 42
BCDFO bcd 33 9 5 54 0 0 1 65 27
NMSMAX nmsm 32 1 1 20 2 0 0 43 54
NELDER neld 32 5 3 20 0 0 2 56 56
FMINUNC func 31 5 0 57 0 0 3 54 24
VSBBON vsbbn 30 5 2 82 4 0 0 38 15
FMINUNC1 func1 29 6 0 39 4 0 1 51 20
FMINUNC2 func2 29 6 0 48 4 0 1 51 29
VSBBO vsbb 29 2 1 31 5 0 0 26 29
BFO bfo 28 0 0 129 0 0 6 31 7

36 of 39 problems without bounds solved mean efficiency in %
dim∈[3,5] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

UOBYQA uob 34 12 11 35 5 0 0 67 65
NELDER neld 33 0 0 46 4 0 2 38 50
FMINUNC func 32 9 5 73 0 0 7 50 37
STBBO2 stbbo2 31 6 0 43 8 0 0 47 45
STBBO1 stbbo1 31 6 0 41 8 0 0 47 46
BCDFO bcd 31 7 7 144 0 0 8 51 19
NMSMAX nmsm 29 1 1 34 10 0 0 34 47
VSBBO vsbb 25 0 0 54 14 0 0 18 22
VSBBON vsbbn 25 3 3 183 14 0 0 20 10
FMINUNC1 func1 24 4 0 54 14 0 1 31 21
FMINUNC2 func2 24 4 0 50 14 0 1 31 24
BFO bfo 23 0 0 129 0 0 16 18 8

68 of 76 problems without bounds solved mean efficiency in %
dim∈[6,10] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

UOBYQA uob 60 8 8 183 15 0 1 49 44
STBBO2 stbbo2 58 12 0 67 18 0 0 44 48
STBBO1 stbbo1 58 12 0 64 18 0 0 44 51
BCDFO bcd 50 16 15 2351 0 0 26 37 11
FMINUNC func 45 16 11 91 9 0 22 40 34
VSBBO vsbb 44 1 1 130 32 0 0 20 21
VSBBON vsbbn 43 8 8 435 33 0 0 27 10
NMSMAX nmsm 43 3 3 81 33 0 0 22 28
FMINUNC1 func1 41 10 0 81 31 0 4 32 28
FMINUNC2 func2 41 10 0 81 31 0 4 32 29
NELDER neld 41 4 4 114 31 0 4 21 18
BFO bfo 30 0 0 195 0 0 46 10 7

38 of 43 problems without bounds solved mean efficiency in %
dim∈[11,30] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

FMINUNC func 36 12 4 154 6 0 1 47 34
VSBBO vsbb 36 2 2 218 7 0 0 24 22
STBBO2 stbbo2 35 15 2 67 8 0 0 63 71
STBBO1 stbbo1 35 15 1 74 8 0 0 64 66
UOBYQA uob 34 0 0 693 9 0 0 26 21
FMINUNC2 func2 34 9 2 119 9 0 0 45 38
FMINUNC1 func1 33 7 0 91 10 0 0 44 37
VSBBON vsbbn 33 3 3 674 10 0 0 25 6
NELDER neld 31 0 0 387 12 0 0 14 11
NMSMAX nmsm 29 1 1 157 14 0 0 19 20
BCDFO bcd 27 4 4 13385 0 11 5 22 2
BFO bfo 18 0 0 404 0 0 25 4 4

128

9.6 Additional material for STBBO 129

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for nf

UOBYQA

STBBO2

STBBO1

FMINUNC

10
0

10
1

10
2

10
3

τ

0

0.2

0.4

0.6

0.8

1

ρ

(τ,ρ) for msec

UOBYQA

STBBO2

STBBO1

FMINUNC

a) b)

10
0

10
1

10
2

10
3

10
4

nf

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

ρ

UOBYQA

STBBO2

STBBO1

FMINUNC

10
0

10
2

10
4

10
6

msec

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

UOBYQA

STBBO2

STBBO1

FMINUNC

c) d)

Figure 9.1: (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec),
respectively. ρ notes the fraction of problems solved within a factor τ of the
best solver. Problems solved by no solver are ignored. (c) and (d): Perfor-
mance plots for nf/(best nf) and msec/(best msec), respectively. ρ notes
the fraction of problems solved within the number of function evaluations
and time in milliseconds used by the best solver. Problems solved by no
solver are ignored.

129

130 A new subspace method

The results obtained for 1 ≤ n ≤ 30 with the medium budget nfmax = 500n are summarized in
Table 9.2 and shown in Figure 9.2:
• For 1 ≤ n ≤ 30 STBBO1, STBBO2, and UOBYQA are the best in terms of the nf efficiency
and the number of solved problems.
• For 1 ≤ n ≤ 2 UOBYQA and BCDFO are the two best solvers.
• For 3 ≤ n ≤ 5 and 6 ≤ n ≤ 10 UOBYQA and STBBO1 (STBBO2) are the two best
solvers.
• For 11 ≤ n ≤ 30 VSBBO is the best in terms of the number of solved problems and STBBO1
is the best solvers in terms of nf efficiency.

130

9.6 Additional material for STBBO 131

Table 9.2: Results for 1 ≤ n ≤ 30 with nfmax = 500n

stopping test: qf ≤ 0.0001, sec ≤ 180, nf ≤ 500*n

188 of 192 problems without bounds solved mean efficiency in %
dim∈[1,30] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

UOBYQA uob 176 36 31 840 13 0 3 56 51
STBBO2 stbbo2 176 37 2 100 15 0 1 56 61
STBBO1 stbbo1 176 39 3 105 15 0 1 56 58
VSBBO vsbb 167 8 6 246 25 0 0 27 28
NELDER neld 164 11 9 336 11 0 17 32 32
VSBBON vsbbn 163 19 16 853 29 0 0 30 12
NMSMAX nmsm 159 6 6 162 29 0 4 30 38
BCDFO bcd 157 36 31 5754 0 12 23 44 11
FMINUNC func 154 45 24 156 1 0 37 50 36
FMINUNC1 func1 149 26 0 139 32 0 11 41 30
FMINUNC2 func2 149 28 2 141 32 0 11 41 30
BFO bfo 137 0 0 321 0 0 55 16 11

34 of 34 problems without bounds solved mean efficiency in %
dim∈[1,2] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

UOBYQA uob 34 13 10 33 0 0 0 74 84
BCDFO bcd 34 9 5 82 0 0 0 66 20
STBBO2 stbbo2 33 5 0 22 0 0 1 60 53
STBBO1 stbbo1 33 5 0 25 0 0 1 60 46
VSBBON vsbbn 33 5 2 117 1 0 0 37 18
NMSMAX nmsm 33 1 1 26 0 0 1 43 58
BFO bfo 32 0 0 72 0 0 2 32 20
FMINUNC1 func1 32 6 0 41 0 0 2 53 27
FMINUNC2 func2 32 6 0 47 0 0 2 53 25
NELDER neld 32 6 4 17 0 0 2 57 60
FMINUNC func 31 5 0 35 0 0 3 54 30
VSBBO vsbb 30 1 0 38 4 0 0 27 31

38 of 39 problems without bounds solved mean efficiency in %
dim∈[3,5] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

UOBYQA uob 37 13 11 62 2 0 0 73 61
STBBO2 stbbo2 37 6 0 65 2 0 0 53 57
STBBO1 stbbo1 37 6 0 68 2 0 0 53 52
VSBBON vsbbn 35 3 3 372 4 0 0 25 11
NMSMAX nmsm 35 1 1 75 4 0 0 41 55
NELDER neld 35 0 0 59 1 0 3 43 48
BCDFO bcd 34 7 7 249 0 0 5 56 17
FMINUNC func 33 10 6 100 0 0 6 54 35
VSBBO vsbb 33 1 0 94 6 0 0 23 29
BFO bfo 32 0 0 201 0 0 7 20 15
FMINUNC1 func1 30 4 0 101 7 0 2 35 23
FMINUNC2 func2 30 4 0 103 7 0 2 35 21

73 of 76 problems without bounds solved mean efficiency in %
dim∈[6,10] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

UOBYQA uob 66 10 10 414 7 0 3 54 47
STBBO2 stbbo2 66 11 0 99 10 0 0 48 57
STBBO1 stbbo1 66 11 0 97 10 0 0 48 55
NELDER neld 62 5 5 408 2 0 12 26 22
VSBBO vsbb 61 3 3 273 15 0 0 26 26
BCDFO bcd 59 16 15 3640 0 0 17 42 9
NMSMAX nmsm 58 3 3 237 15 0 3 25 30
VSBBON vsbbn 57 7 7 1019 19 0 0 29 11
FMINUNC func 50 17 13 172 1 0 25 44 38
FMINUNC1 func1 49 9 0 168 21 0 6 34 28
FMINUNC2 func2 49 9 0 168 21 0 6 34 30
BFO bfo 41 0 0 280 0 0 35 12 9

43 of 43 problems without bounds solved mean efficiency in %
dim∈[11,30] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

VSBBO vsbb 43 3 3 471 0 0 0 33 28
STBBO2 stbbo2 40 15 2 199 3 0 0 69 77
STBBO1 stbbo1 40 17 3 217 3 0 0 71 76
FMINUNC func 40 13 5 275 0 0 3 53 41
UOBYQA uob 39 0 0 3000 4 0 0 30 20
FMINUNC1 func1 38 7 0 212 4 0 1 49 44
FMINUNC2 func2 38 9 2 215 4 0 1 49 44
VSBBON vsbbn 38 4 4 1685 5 0 0 29 9
NELDER neld 35 0 0 776 8 0 0 15 11
NMSMAX nmsm 33 1 1 261 10 0 0 19 20
BFO bfo 32 0 0 742 0 0 11 6 5
BCDFO bcd 30 4 4 22578 0 12 1 21 1

131

132 A new subspace method

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for nf

UOBYQA

STBBO2

STBBO1

VSBBO

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for msec

UOBYQA

STBBO2

STBBO1

VSBBO

a) b)

10
0

10
1

10
2

10
3

10
4

10
5

nf

0.5

0.6

0.7

0.8

0.9

1

ρ

UOBYQA

STBBO2

STBBO1

VSBBO

10
0

10
2

10
4

10
6

msec

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

UOBYQA

STBBO2

STBBO1

VSBBO

c) d)

Figure 9.2: (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec),
respectively. ρ notes the fraction of problems solved within a factor τ of the
best solver. Problems solved by no solver are ignored. (c) and (d): Perfor-
mance plots for nf/(best nf) and msec/(best msec), respectively. ρ notes
the fraction of problems solved within the number of function evaluations
and time in milliseconds used by the best solver. Problems solved by no
solver are ignored.

132

9.6 Additional material for STBBO 133

Table 9.3 and Figure 9.3 provide the results for 1 ≤ n ≤ 30 with the large budget nfmax = 1000n:
• For 1 ≤ n ≤ 30 STBBO1, STBBO2, and UOBYQA are the best in terms of the nf efficiency
and the number of solved problems.
• For 1 ≤ n ≤ 2 UOBYQA and BCDFO are the two best solvers.
• For 3 ≤ n ≤ 5 UOBYQA and STBBO1 (STBBO2) are the two best solvers in terms of the
number of solved problems and the nf efficiency.
• For 6 ≤ n ≤ 10 STBBO1 (STBBO2) are the two best solvers in terms of the number of
solved problems and UOBYQA is the best in terms of the nf efficiency.
• For 11 ≤ n ≤ 30 VSBBO is the best in terms of the number of solved problems and STBBO1
is the best solvers in terms of nf efficiency.

What is interesting in Tables 9.1-9.3 and Figures 9.1-9.3 is that STBBO1 and STBBO2 are
more efficient than FMINUNC using the standard BFGS method and FMINUNC1 and
FMINUNC2 using the limited memory BFGS in terms of the number of solved problem and
the nf efficiency.

133

134 A new subspace method

Table 9.3: Results for 1 ≤ n ≤ 30 with nfmax = 1000n

stopping test: qf ≤ 0.0001, sec ≤ 180, nf ≤ 1000*n

188 of 192 problems without bounds solved mean efficiency in %
dim∈[1,30] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

UOBYQA uob 179 35 31 1339 9 1 3 56 50
STBBO2 stbbo2 177 38 2 147 14 0 1 56 59
STBBO1 stbbo1 177 40 3 148 14 0 1 56 60
VSBBON vsbbn 174 16 13 1295 18 0 0 29 10
VSBBO vsbb 169 12 11 248 23 0 0 28 28
NELDER neld 166 11 9 447 3 0 23 32 31
NMSMAX nmsm 163 6 6 254 22 0 7 31 38
BCDFO bcd 160 35 30 6603 0 14 18 45 12
FMINUNC1 func1 157 27 0 237 13 0 22 41 30
FMINUNC2 func2 156 29 2 211 14 0 22 41 30
FMINUNC func 154 45 23 161 0 0 38 50 36
BFO bfo 142 0 0 420 0 0 50 16 12

34 of 34 problems without bounds solved mean efficiency in %
dim∈[1,2] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

UOBYQA uob 34 13 10 24 0 0 0 74 69
BCDFO bcd 34 9 5 66 0 0 0 66 23
STBBO2 stbbo2 33 5 0 23 0 0 1 60 51
STBBO1 stbbo1 33 5 0 23 0 0 1 60 50
VSBBON vsbbn 33 5 2 122 1 0 0 37 14
NMSMAX nmsm 33 1 1 26 0 0 1 43 60
BFO bfo 32 0 0 75 0 0 2 32 20
FMINUNC1 func1 32 6 0 44 0 0 2 53 20
FMINUNC2 func2 32 6 0 44 0 0 2 53 22
VSBBO vsbb 32 1 0 52 2 0 0 28 24
NELDER neld 32 6 4 18 0 0 2 57 52
FMINUNC func 31 5 0 35 0 0 3 54 31

38 of 39 problems without bounds solved mean efficiency in %
dim∈[3,5] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

UOBYQA uob 38 12 11 95 1 0 0 73 69
STBBO2 stbbo2 36 6 0 70 3 0 0 50 47
STBBO1 stbbo1 36 6 0 67 3 0 0 50 52
VSBBON vsbbn 36 2 2 428 3 0 0 25 10
NMSMAX nmsm 36 1 1 92 3 0 0 42 55
BCDFO bcd 35 6 6 353 0 0 4 55 18
NELDER neld 35 0 0 59 1 0 3 41 49
FMINUNC func 33 9 5 101 0 0 6 52 37
VSBBO vsbb 33 4 4 132 6 0 0 28 31
BFO bfo 32 0 0 203 0 0 7 20 14
FMINUNC1 func1 31 4 0 133 0 0 8 34 25
FMINUNC2 func2 31 4 0 140 0 0 8 34 20

73 of 76 problems without bounds solved mean efficiency in %
dim∈[6,10] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

STBBO2 stbbo2 68 12 0 215 8 0 0 49 58
STBBO1 stbbo1 68 12 0 214 8 0 0 49 59
UOBYQA uob 67 10 10 576 6 0 3 54 48
VSBBON vsbbn 65 6 6 1581 11 0 0 28 10
VSBBO vsbb 62 3 3 334 14 0 0 24 27
NELDER neld 62 5 5 416 0 0 14 26 25
BCDFO bcd 61 16 15 6269 0 1 14 42 11
NMSMAX nmsm 61 3 3 467 9 0 6 26 29
FMINUNC1 func1 55 10 0 349 10 0 11 35 31
FMINUNC2 func2 55 10 0 342 10 0 11 35 31
FMINUNC func 50 18 13 178 0 0 26 45 37
BFO bfo 45 0 0 520 0 0 31 12 10

43 of 43 problems without bounds solved mean efficiency in %
dim∈[11,30] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

VSBBO vsbb 42 4 4 361 1 0 0 34 32
UOBYQA uob 40 0 0 4918 2 1 0 31 19
STBBO2 stbbo2 40 15 2 202 3 0 0 69 76
STBBO1 stbbo1 40 17 3 211 3 0 0 71 77
FMINUNC func 40 13 5 285 0 0 3 53 39
VSBBON vsbbn 40 3 3 2579 3 0 0 28 6
FMINUNC1 func1 39 7 0 321 3 0 1 49 40
FMINUNC2 func2 38 9 2 221 4 0 1 49 43
NELDER neld 37 0 0 1236 2 0 4 15 9
BFO bfo 33 0 0 829 0 0 10 6 6
NMSMAX nmsm 33 1 1 264 10 0 0 19 21
BCDFO bcd 30 4 4 21985 0 13 0 23 1

134

9.6 Additional material for STBBO 135

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for nf

UOBYQA

STBBO2

STBBO1

VSBBON

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for msec

UOBYQA

STBBO2

STBBO1

VSBBON

a) b)

10
0

10
1

10
2

10
3

10
4

10
5

nf

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

UOBYQA

STBBO2

STBBO1

VSBBON

10
0

10
2

10
4

10
6

msec

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

UOBYQA

STBBO2

STBBO1

VSBBON

c) d)

Figure 9.3: (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec),
respectively. ρ notes the fraction of problems solved within a factor τ of the
best solver. Problems solved by no solver are ignored. (c) and (d): Perfor-
mance plots for nf/(best nf) and msec/(best msec), respectively. ρ notes
the fraction of problems solved within the number of function evaluations
and time in milliseconds used by the best solver. Problems solved by no
solver are ignored.

135

136 A new subspace method

Table 9.4 and Figure 9.4 report the results for 31 ≤ n ≤ 1000 with the small budget nfmax =
100n:
• STBBO1 and STBBO2 are the two best solvers in terms of the nf efficiency.
• VSBBO and VSBBON are the two best solvers in terms of the number of solved problems.
• Further analysis shows that STBBO1 and STBBO2 are comparable with FMINUNC using
the standard BFGS method and more efficient than FMINUNC1 and FMINUNC2 using the
limited memory BFGS in terms of the number of solved problems and the nf efficiency.

Table 9.4: Results for 31 ≤ n ≤ 1000 with nfmax = 100n

stopping test: qf ≤ 0.0001, sec ≤ 180, nf ≤ 100*n

215 of 267 problems without bounds solved mean efficiency in %
dim∈[31,1000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

VSBBO vsbb 184 20 18 4700 81 2 0 32 27
VSBBON vsbbn 176 58 57 6290 89 2 0 40 14
STBBO2 stbbo2 170 66 9 1189 96 1 0 45 49
STBBO1 stbbo1 166 59 2 1106 100 1 0 43 48
FMINUNC func 161 68 46 1709 59 0 47 43 36
FMINUNC1 func1 155 37 0 1255 98 1 13 34 37
FMINUNC2 func2 153 38 1 1338 101 1 12 33 38

Our results, for 31 ≤ n ≤ 1000 with the medium budget nfmax = 500n, are set out in Table 9.5
and Figure 9.5:
• STBBO1 is the best solver in terms of the nf efficiency
• VSBBO is the best solver in terms of the number.
• STBBO1 and STBBO2 are slightly better than FMININC using the standard BFGS
method in terms of the number of solved problems and the nf efficiency.
• They are more efficient than FMINUNC1 and FMINUNC2 using the traditional limited
memory BFGS method.

Table 9.5: Results for 31 ≤ n ≤ 1000 with nfmax = 500n

stopping test: qf ≤ 0.0001, sec ≤ 180, nf ≤ 500*n

237 of 267 problems without bounds solved mean efficiency in %
dim∈[31,1000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

VSBBO vsbb 214 32 30 7564 29 24 0 38 30
FMINUNC func 201 80 59 4845 13 1 52 49 41
STBBO2 stbbo2 200 67 10 3042 66 1 0 49 56
VSBBON vsbbn 197 54 53 11371 26 44 0 42 15
STBBO1 stbbo1 194 59 3 2469 72 1 0 47 54
FMINUNC1 func1 181 37 0 2719 64 1 21 36 41
FMINUNC2 func2 178 39 2 2554 67 1 21 36 41

136

9.6 Additional material for STBBO 137

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for nf

VSBBO

VSBBON

STBBO2

STBBO1

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for msec

VSBBO

VSBBON

STBBO2

STBBO1

a) b)

10
0

10
1

10
2

10
3

10
4

10
5

nf

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

VSBBO

VSBBON

STBBO2

STBBO1

10
0

10
2

10
4

10
6

msec

10
-1

10
0

ρ

VSBBO

VSBBON

STBBO2

STBBO1

c) d)

Figure 9.4: (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec),
respectively. ρ notes the fraction of problems solved within a factor τ of the
best solver. Problems solved by no solver are ignored. (c) and (d): Perfor-
mance plots for nf/(best nf) and msec/(best msec), respectively. ρ notes
the fraction of problems solved within the number of function evaluations
and time in milliseconds used by the best solver. Problems solved by no
solver are ignored.

137

138 A new subspace method

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for nf

VSBBO

FMINUNC

STBBO2

VSBBON

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for msec

VSBBO

FMINUNC

STBBO2

VSBBON

a) b)

10
0

10
2

10
4

10
6

nf

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

VSBBO

FMINUNC

STBBO2

VSBBON

10
0

10
2

10
4

10
6

msec

10
-1

10
0

ρ

VSBBO

FMINUNC

STBBO2

VSBBON

c) d)

Figure 9.5: (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec),
respectively. ρ notes the fraction of problems solved within a factor τ of the
best solver. Problems solved by no solver are ignored. (c) and (d): Perfor-
mance plots for nf/(best nf) and msec/(best msec), respectively. ρ notes
the fraction of problems solved within the number of function evaluations
and time in milliseconds used by the best solver. Problems solved by no
solver are ignored.

138

9.6 Additional material for STBBO 139

The results, as Table 9.6 and Figure 9.6 for 31 ≤ n ≤ 1000 with the large budget nfmax = 1000n,
indicate that
• STBBO1 is the best solver in terms of the nf efficiency while VSBBO is the best solver in
terms of the number of solved problems,
• STBBO1 and STBBO2 have approximately the same behaviour as FMINUNC using the
standard BFGS method in terms of the number of solved problems and the nf efficiency,
• STBBO2 are more efficient than FMINUNC1 and FMINUNC2 using the standard limited
memory BFGS method.

stopping test: qf ≤ 0.0001, sec ≤ 180, nf ≤ 1000*n

239 of 267 problems without bounds solved mean efficiency in %
dim∈[31,1000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

VSBBO vsbb 214 30 29 6226 23 30 0 37 32
STBBO2 stbbo2 211 68 13 4099 54 1 1 50 57
STBBO1 stbbo1 203 58 3 3609 62 2 0 47 56
FMINUNC func 203 80 59 5729 4 6 54 50 42
VSBBON vsbbn 199 57 56 10542 21 47 0 42 14
FMINUNC1 func1 189 37 1 4171 34 1 43 37 41
FMINUNC2 func2 188 37 1 4588 45 2 32 36 41

Table 9.6: Results for 31 ≤ n ≤ 1000 with nfmax = 1000n

The results, for 1001 ≤ n ≤ 9000 with the small budget nfmax = 100n, are summarized in Table
9.7 and Figure 9.7 with the goal of identifying the best solver:
• STBBO1 and STBBO2 are the two best solvers in terms of the nf efficiency and the number
of solved problems,
• They are more efficient than FMINUNC using the standard BFGS method in terms of the
number of solved problems and the nf efficiency.

Table 9.7: Results for 1001 ≤ n ≤ 9000 with nfmax = 100n

stopping test: qf ≤ 0.0001, sec ≤ 180, nf ≤ 100*n

83 of 109 problems without bounds solved mean efficiency in %
dim∈[1001,9000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

STBBO1 stbbo1 76 49 10 31910 5 28 0 59 62
STBBO2 stbbo2 75 43 4 30378 5 29 0 58 63
VSBBO vsbb 59 12 12 68356 12 38 0 25 18
FMINUNC func 43 22 18 36889 19 35 12 29 25

Table 9.8 and Figure 9.8 report the results for 1001 ≤ n ≤ 9000 with the medium budget
nfmax = 500n:
• STBBO1 and STBBO2 are the two best solvers in terms of the nf efficiency and the number
of solved problems.
• They are more efficient than solver using the standard BFGS method in terms of the number
of solved problems and the nf efficiency.

139

140 A new subspace method

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for nf

VSBBO

STBBO2

STBBO1

FMINUNC

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for msec

VSBBO

STBBO2

STBBO1

FMINUNC

a) b)

10
0

10
2

10
4

10
6

nf

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

VSBBO

STBBO2

STBBO1

FMINUNC

10
0

10
2

10
4

10
6

msec

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

VSBBO

STBBO2

STBBO1

FMINUNC

c) d)

Figure 9.6: (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec),
respectively. ρ notes the fraction of problems solved within a factor τ of the
best solver. Problems solved by no solver are ignored. (c) and (d): Perfor-
mance plots for nf/(best nf) and msec/(best msec), respectively. ρ notes
the fraction of problems solved within the number of function evaluations
and time in milliseconds used by the best solver. Problems solved by no
solver are ignored.

140

9.6 Additional material for STBBO 141

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for nf

STBBO1

STBBO2

VSBBO

FMINUNC

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for msec

STBBO1

STBBO2

VSBBO

FMINUNC

a) b)

10
1

10
2

10
3

10
4

10
5

10
6

nf

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

STBBO1

STBBO2

VSBBO

FMINUNC

10
1

10
2

10
3

10
4

10
5

10
6

msec

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

STBBO1

STBBO2

VSBBO

FMINUNC

c) d)

Figure 9.7: (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec),
respectively. ρ notes the fraction of problems solved within a factor τ of the
best solver. Problems solved by no solver are ignored. (c) and (d): Perfor-
mance plots for nf/(best nf) and msec/(best msec), respectively. ρ notes
the fraction of problems solved within the number of function evaluations
and time in milliseconds used by the best solver. Problems solved by no
solver are ignored.

141

142 A new subspace method

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for nf

STBBO1

STBBO2

VSBBO

FMINUNC

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for msec

STBBO1

STBBO2

VSBBO

FMINUNC

a) b)

10
0

10
2

10
4

10
6

10
8

nf

0.5

0.6

0.7

0.8

0.9

1

ρ

STBBO1

STBBO2

VSBBO

FMINUNC

10
1

10
2

10
3

10
4

10
5

10
6

msec

0.5

0.6

0.7

0.8

0.9

1
ρ

STBBO1

STBBO2

VSBBO

FMINUNC

c) d)

Figure 9.8: (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec),
respectively. ρ notes the fraction of problems solved within a factor τ of the
best solver. Problems solved by no solver are ignored. (c) and (d): Perfor-
mance plots for nf/(best nf) and msec/(best msec), respectively. ρ notes
the fraction of problems solved within the number of function evaluations
and time in milliseconds used by the best solver. Problems solved by no
solver are ignored.

142

9.6 Additional material for STBBO 143

Table 9.8: Results for 1001 ≤ n ≤ 9000 with nfmax = 500n

stopping test: qf ≤ 0.0001, sec ≤ 180, nf ≤ 500*n

83 of 109 problems without bounds solved mean efficiency in %
dim∈[1001,9000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

STBBO1 stbbo1 77 49 10 32248 3 29 0 59 62
STBBO2 stbbo2 76 43 4 31221 3 30 0 58 62
VSBBO vsbb 55 12 12 55052 2 52 0 25 18
FMINUNC func 49 22 18 42801 4 42 14 29 25

Summarized in Table 9.9 and shown in Figure 9.9 are the results for 1001 ≤ n ≤ 9000 with the
large budget nfmax = 1000n:
• STBBO2 and STBBO1 are the two best solvers in terms of the nf efficiency and the number
of solved problems.
• They are more efficient than FMINUNC using the standard BFGS method in terms of the
number of solved problems.

Table 9.9: Results for 1001 ≤ n ≤ 9000 with nfmax = 1000n

stopping test: qf ≤ 0.0001, sec ≤ 180, nf ≤ 1000*n

83 of 109 problems without bounds solved mean efficiency in %
dim∈[1001,9000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

STBBO1 stbbo1 77 48 9 31925 0 32 0 59 63
STBBO2 stbbo2 76 43 4 30615 0 33 0 58 63
VSBBO vsbb 61 13 13 65181 0 48 0 27 19
FMINUNC func 49 22 18 43160 0 46 14 29 25

Table 9.10 and Figure 9.10 show the results for 1 ≤ n ≤ 9000 with the small budget nfmax = 100n:
• STBBO1 and STBBO2 are the two best solvers in terms of the nf efficiency and the number
of solved problems.
• Interestingly, they are more efficient than FMINUNC using the standard BFGS method.

Table 9.11 and Figure 9.11 provide the results for 1 ≤ n ≤ 9000 with the medium budget
nfmax = 500n:
• STBBO2 and STBBO1 are the two best solvers in terms of the nf efficiency and the number
of solved problems.
• As a consequence, they are more efficient than FMINUNC using the standard BFGS method.

Table 9.12 and Figure 9.12 show the results for 1 ≤ n ≤ 9000 with the large budget nfmax =
1000n. STBBO1 and STBBO2 are the two best solvers in terms of the nf efficiency and the
number of solved problems.

From this result, STBBO1 and STBBO2 are more robust than FMINUNC using the standard
BFGS method in terms of the number of solved problems and the nf efficiency.

143

144 A new subspace method

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for nf

STBBO1

STBBO2

VSBBO

FMINUNC

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for msec

STBBO1

STBBO2

VSBBO

FMINUNC

a) b)

10
0

10
2

10
4

10
6

10
8

nf

0.5

0.6

0.7

0.8

0.9

1

ρ

STBBO1

STBBO2

VSBBO

FMINUNC

10
1

10
2

10
3

10
4

10
5

10
6

msec

0.5

0.6

0.7

0.8

0.9

1
ρ

STBBO1

STBBO2

VSBBO

FMINUNC

c) d)

Figure 9.9: (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec),
respectively. ρ notes the fraction of problems solved within a factor τ of the
best solver. Problems solved by no solver are ignored. (c) and (d): Perfor-
mance plots for nf/(best nf) and msec/(best msec), respectively. ρ notes
the fraction of problems solved within the number of function evaluations
and time in milliseconds used by the best solver. Problems solved by no
solver are ignored.

144

9.6 Additional material for STBBO 145

Table 9.10: Results for 1 ≤ n ≤ 9000 with nfmax = 100n

stopping test: qf ≤ 0.0001, sec ≤ 180, nf ≤ 100*n

472 of 568 problems without bounds solved mean efficiency in %
dim∈[1,9000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

STBBO2 stbbo2 402 222 19 6191 136 30 0 58 61
STBBO1 stbbo1 399 222 18 6561 140 29 0 57 59
VSBBO vsbb 377 84 82 13033 151 40 0 34 28
FMINUNC func 348 186 147 5388 93 35 92 48 38

Table 9.11: Results for 1 ≤ n ≤ 9000 with nfmax = 500n

stopping test: qf ≤ 0.0001, sec ≤ 180, nf ≤ 500*n

505 of 568 problems without bounds solved mean efficiency in %
dim∈[1,9000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

STBBO2 stbbo2 452 222 21 6635 84 31 1 62 67
STBBO1 stbbo1 447 222 21 6668 90 30 1 61 65
VSBBO vsbb 436 98 96 10752 56 76 0 39 31
FMINUNC func 404 200 165 7661 18 43 103 52 41

Table 9.12: Results for 1 ≤ n ≤ 9000 with nfmax = 1000n

stopping test: qf ≤ 0.0001, sec ≤ 180, nf ≤ 1000*n

508 of 568 problems without bounds solved mean efficiency in %
dim∈[1,9000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

STBBO2 stbbo2 464 226 23 6934 68 34 2 62 67
STBBO1 stbbo1 457 223 19 7039 76 34 1 61 67
VSBBO vsbb 444 101 100 12050 46 78 0 39 33
FMINUNC func 406 200 162 8134 4 52 106 52 42

145

146 A new subspace method

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for nf

STBBO2

STBBO1

VSBBO

FMINUNC

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for msec

STBBO2

STBBO1

VSBBO

FMINUNC

a) b)

10
0

10
2

10
4

10
6

nf

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

STBBO2

STBBO1

VSBBO

FMINUNC

10
0

10
2

10
4

10
6

msec

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

STBBO2

STBBO1

VSBBO

FMINUNC

c) d)

Figure 9.10: (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec),
respectively. ρ notes the fraction of problems solved within a factor τ of the
best solver. Problems solved by no solver are ignored. (c) and (d): Perfor-
mance plots for nf/(best nf) and msec/(best msec), respectively. ρ notes
the fraction of problems solved within the number of function evaluations
and time in milliseconds used by the best solver. Problems solved by no
solver are ignored.

146

9.6 Additional material for STBBO 147

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for nf

STBBO2

STBBO1

VSBBO

FMINUNC

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for msec

STBBO2

STBBO1

VSBBO

FMINUNC

a) b)

10
0

10
2

10
4

10
6

10
8

nf

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

STBBO2

STBBO1

VSBBO

FMINUNC

10
0

10
2

10
4

10
6

msec

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

STBBO2

STBBO1

VSBBO

FMINUNC

c) d)

Figure 9.11: (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec),
respectively. ρ notes the fraction of problems solved within a factor τ of the
best solver. Problems solved by no solver are ignored. (c) and (d): Perfor-
mance plots for nf/(best nf) and msec/(best msec), respectively. ρ notes
the fraction of problems solved within the number of function evaluations
and time in milliseconds used by the best solver. Problems solved by no
solver are ignored.

147

148 A new subspace method

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for nf

STBBO2

STBBO1

VSBBO

FMINUNC

10
0

10
1

10
2

10
3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(τ,ρ) for msec

STBBO2

STBBO1

VSBBO

FMINUNC

a) b)

10
0

10
2

10
4

10
6

10
8

nf

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

STBBO2

STBBO1

VSBBO

FMINUNC

10
0

10
2

10
4

10
6

msec

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

STBBO2

STBBO1

VSBBO

FMINUNC

c) d)

Figure 9.12: (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec),
respectively. ρ notes the fraction of problems solved within a factor τ of the
best solver. Problems solved by no solver are ignored. (c) and (d): Perfor-
mance plots for nf/(best nf) and msec/(best msec), respectively. ρ notes
the fraction of problems solved within the number of function evaluations
and time in milliseconds used by the best solver. Problems solved by no
solver are ignored.

148

10 A new noisy black box optimization
methods

This section discusses a noisy randomized line search method for unconstrained black box op-
timization, called VSBBON. This is my own work (cf. Kimiaei [114]). Complexity bounds
are investigated in the presence of noise for nonconvex, convex, and strongly convex functions.
Two effective ingredients of VSBBON are an improved derivative-free line search algorithm
with many heuristic enhancements and quadratic models in adaptively determined subspaces.
Numerical results are given showing that VSBBON is robust and efficient.

10.1 Overview of the new method

We propose a new solver for noisy unconstrained black box optimization – called Vienna noisy
randomized black box optimization (VSBBON). In terms of classifications done by Lar-
son et al. [122] and Rios & Sahinidis [151], our new solver VSBBON is a local, model-based,
and randomized solver. It is an adaptation of our recent solver VSBBO (Kimiaei & Neumaier
[117]) to the noisy case preserving the main structure of VSBBO, namely, a multi-line search al-
gorithm and standard random subspace directions. But unlike VSBBO, VSBBON constructs
surrogate quadratic models in adaptively determined subspaces and finds step sizes by variants
that are more robust in the presence of substantial amounts of noise.

VSBBON constructs surrogate quadratic models in adaptively determined subspaces that can
handle medium and large scale problems. Although these models have lower accuracy in higher
dimensions, their usefulness in the presence of a high level of noise is confirmed in extensive
numerical experiments. Moreover, VSBBON makes repeated calls to an improved line search
algorithm which is likely to decrease the function value, using heuristics to find, update, and
restart step sizes. Improved line searches are done along either random approximate coordinate,
perturbed random or improved trust region directions. For randomized black box optimization
methods, the worst case complexity is known [9] to be better by a factor of n than that of deter-
ministic methods; hence using random directions seems preferable to using deterministic ones.
Even better directions are random approximate coordinate directions. Improved trust region di-
rections are found by minimizing surrogate quadratic models in adaptively determined subspaces
inside a trust region. Perturbed random directions are perturbations of random directions by
scaled descent directions in adaptively determined subspaces. These directions are useful in the
presence of a high level of noise.

Our numerical results show that VSBBON is more robust and efficient than competitive global
solvers, although it cannot guarantee to find a global optimum.

In Section 2, we describe a basic version of our new algorithm. Complexity bounds for nonconvex,
convex, and strongly convex functions are proved in Section 3. Section 4 defines the final version

149

150 A new noisy black box optimization methods

of our new algorithm, enriched by some new heuristic techniques. Summarized in Section 5 is
a comparison among VSBBON with VSBBO by Kimiaei & Neumaier [117], SDBOX by
Lucidi & Sciandrone [126], NMSMAX by Higham [99], DSPFD by Gratton et al. [84],
BFO by Porcelli & Toint [147], MCS by Huyer & Neumaier [102], BCDFO by Gratton
et al. [85], UOBYQA by Powell [149], and FMINUNC by the Matlab Optimization Toolbox
for small, medium and large scale problems. The VSBBON package is publicly available at

https://www.mat.univie.ac.at/~kimiaei/software/VSBBON.
This package includes supplemental material, called supplMat.pdf, and data structure, called
dataStruct.pdf.

10.2 A randomized algorithm for the noisy case

This section introduces in Subsection 10.2.1 a basic randomized line search algorithm, called
ILS-basic, in Subsection 10.2.2 a basic randomized descent algorithm, called DS-basic, and in
Subsection 10.2.3 a basic version of VSBBON, called VSBBON-basic. VSBBON-basic has
repeated calls to DS-basic which alternates calls to ILS-basic using scaled random directions.

10.2.1 A basic randomized line search algorithm

In this subsection, we introduce a basic version of our improved line search algorithm – called
ILS-basic – using scaled random directions. The standard random direction is the random
direction p uniformly i.i.d. in [− 1

2 ,
1
2]n. Here i.i.d. stands for the independent and identically

distributed. The scaled random direction is a standard random direction p scaled by γrd/‖p‖,
where 0 < γrd < 1 is a tiny tuning parameter, resulting in ‖p‖ = γrd. Here given a positive
scaling vector s ∈ Rn (fixed in throughout the paper), we define the scaled 2-norm ‖p‖ of p ∈ Rn
and the dual norm ‖g‖∗ of g ∈ Rn by

‖p‖ :=
√∑

i

p2
i /s

2
i and ‖g‖∗ :=

√∑
i

s2
i g

2
i .

Essential for our complexity bounds is the following result (Proposition 6.2.2) for the unknown
exact gradient g(x) of f(x) at x ∈ Rn.
10.2.1 Proposition. Scaled random directions p satisfy with probability ≥ 1

2 the inequality
(8.18); that is

‖g(x)‖∗‖p‖ ≤ 2
√
cn|g(x)T p|,

with a positive constant c ≈ 4/7.

Other kinds of directions, improved trust region, perturbed random, and random subspace di-
rections, are also used in VSBBON. They are described in Section 10.4 since they play no role
in the complexity analysis.

At the rth iteration of ILS-basic, we denote by f̃best := f̃(xbest) the inexact best function value
at the current best point xbest, by

xtrial := xbest + αrpr (10.1)

150

10.2 A randomized algorithm for the noisy case 151

the current trial point, and by f̃ trial := f̃(xtrial) its current inexact function value. Then f̃best−
f̃ trial is called the gain along the rth search direction pr. In fact, the current trial point can be
chosen as the new best point if the condition

f̃best − f̃ trial > ∆r
f := γ(αr)2 (10.2)

holds, where 0 < γ < 1 is a tuning parameter. Then we say that the sufficient gain is found at
the rth iteration.

Before describing the structure of our randomized line search algorithm, we explain the extrap-
olation whose goal is to expand step sizes along a fixed direction, compute the corresponding
trial points and inexact function values as long as sufficient gains are found. Once no sufficient
gain is found, the extrapolation ends. These step sizes are called extrapolation step sizes.
In fact, extrapolations increase the convergence speed to reach a minimizer. In each ILS-basic,
they are initialized by another step size δ; discussed later in Section 10.2.3.

We now describe how ILS-basic works in each iteration. During an iteration of ILS-basic, one
of the following is done:
• There is no sufficient gain along directions ±p; hence the corresponding step size is reduced.
• There exists a sufficient gain along the direction p or its opposite direction; extrapolation is
tried while expanding its step sizes.

ILS-basic tries to find sufficient gains along scaled random directions. It takes the oldest best
point xbest and its inexact function value f̃best, step size δ, and maximal number of function
evaluations (nfmax) as input and returns a newest best point xbest and its inexact function value
f̃best as output. It uses the following tuning parameters:
R ≥ 1 (number of scaled random directions),
0 < γrd < 1 (parameter for adjusting scaled random directions),
γe > 1 (factor for adjusting step sizes),
0 < γ < 1 (factor for extrapolation test),
0 < αmin < 1 (threshold for extrapolation step sizes).

10.2.2 Algorithm. (ILS-basic, a basic randomized line search algorithm)
(ILSb0) Initialize the step size by α1 := δ.
for r = 1, · · · , R do

(ILSb1) Compute the scaled random direction pr.
while true do

(ILSb2) Compute the new trial point xtrial by (10.1) and its inexact function value f̃ trial.
If nfmax is exceeded, ILS-basic ends.
(ILSb3) If the condition (10.2) holds, a sufficient gain is found and try extrapolation by
saving f̃ trial in f̃e, expanding the step size to αr := γeαr; otherwise, break the while loop.

end while
(ILSb4) If a sufficient gain is found in (ILSb3), replace xbest by xtrial and f̃best by f̃e;
otherwise, if extrapolation along −pr has not been tried already, set pr := −pr and go to
(ILSb2),
otherwise, reduce the step size to αr := max(αr/γe, αmin) since no sufficient gain is found
along ±pr.

end for

151

152 A new noisy black box optimization methods

10.2.2 A randomized descent algorithm

We introduce a basic version of randomized decrease search algorithm, called DS-basic, to
significantly improve the function value. DS-basic performs repeated calls (T 0 times) to ILS-
basic. Regardless of whether sufficient gains are found or not, ILS-basic using R scaled random
search directions is performed in the hope of finding sufficient gains.

DS-basic tries repeatedly to find sufficient gains. It takes the oldest best point xbest and its
inexact function value f̃best obtained by ILS-basic and the step size δ as input and returns
a newest best point xbest and its inexact function value f̃best as output. It uses the tuning
parameters introduced in ILS-basic and maximum number of iterations (T 0 ≥ 1).

10.2.3 Algorithm. (DS-basic, a randomize basic decrease search algorithm)
for t = 1, · · · , T 0 do

(DSb1) Perform ILS-basic using R scaled random directions.
end for

The decrease search is called successful if DS-basic finds at least a sufficient gain. Otherwise,
it is called unsuccessful. We cannot guarantee that a sufficient gain is found in each iteration;
however, we find an upper bound for the number of such successful iterations in Section 10.3.

10.2.3 The basic version of VSBBON

Using the ingredients discussed, we now formulate a basic version of Vienna noisy randomized
black box optimization algorithm, called VSBBON-basic. As long as a sufficient gain is
found in each ILS-basic, the best point is updated by DS-basic; otherwise, DS-basic stops
and δ is reduced. Once δ is below a minimum threshold δmin, VSBBON-basic ends.

VSBBON-basic solves noisy black box optimization problem (NBBOP) . It takes the initial
point x0 and maximal number of function evaluations (nfmax) as input and returns the overall
best point xbest and its inexact function value f̃best as output. It uses the tuning parameters
introduced in DS-basic and the following tuning parameters:
Q > 1 (factor for reducing δ),
δmax > 0 (initial value for δ),
0 ≤ δmin < αmin (minimum threshold for δ).

10.2.4 Algorithm. (VSBBON-basic, a basic randomized method for NBBOP)
(Vb1) Compute f̃0 := f̃(x0). Then set δ := δmax, xbest = x0, and f̃best = f̃0.
for k = 1, 2, 3, · · · do

(Vb2) Call DS-basic in the hope of finding sufficient gains.
(Vb3) If δk ≤ δmin or nfmax is reached, VSBBON-basic ends.
(Vb4) If DS-basic cannot find a sufficient gain, reduce δk by the factor of Q. Otherwise,
δk = δk−1.

end for

152

10.3 Limit accuracy and complexity bounds 153

10.3 Limit accuracy and complexity bounds

In order to investigate the achievable limit accuracy and complexity bounds, we assume that
the assumptions (BBO1) and (BBO2) discussed in Subsection 8.3, and (BBO3) discussed in
Subsection 9.3 hold. Note that in the noiseless case ω = 0, (BBO3) implies f̃ = f .

10.3.1 Known results

In the noiseless case, a summary of known worst case complexity results and corresponding
references can be found in Larson et al. [122, Table 8.1]. To get ‖g(x)‖∗ ≤ ε (under the
assumptions (BBO1) and (BBO2)), one needs
• O(ε−2) function evaluations for general case,
• O(ε−1) function evaluations for convex case,
• O(log ε−1) function evaluations for strongly convex case. In all cases, the factors are ignored.
As already mentioned in the introduction, all randomized algorithms have complexity bounds
better by a factor of n than those of deterministic algorithms.

In the presence of noise, the limit accuracy of some algorithms has been investigated:
• For the unconstrained case, Berahas et al. [14] proved convergence results for the problem
(4.2) when f is strongly convex. Assuming the strong convexity of f and the boundedness of
noise in the approximate gradient, they proved that a quasi-Newton method with a fixed step
size has the linear convergence to a neighborhood of the solution; the gradient is estimated by the
forward or central finite differences. Under the additional assumption (BBO3), they showed that
a quasi-Newton method with step sizes found by a relaxed Armijo line search, called FDLM,
has the asymptotic accuracy

f − f̂ = O(Lω). (10.3)
Chen [37] suggested a randomized algorithm with Gaussian directions and estimated step sizes,
called STRRS for different kinds of noise, one of which is discussed here. Under the assumptions
(i) f̃(x) − f(x) = ω(x; ζ) is a stochastic noise component, where ζ is a random vector with
probability distribution P(ζ),
(ii) For all x ∈ Rn, ω is i.i.d with bounded variance var(ω) > 0,
(iii) For all x ∈ Rn, the noise is unbiased, i.e., Eζ(ω) = 0,
(iv) f is convex and (BBO1) holds,
(v) var(ω) ≤ O(ε/n),
STRRS needs at most O(nLε−1) to ensure that

xN := argmin
x
{f(x) | x ∈ {x0, · · · , xN}}

satisfies E[f(xN)]− f̂ ≤ ε.
• For the bound constrained case, Elster & Neumaier [65] introduced a grid algorithm,
called Grid. Here we restrict their results to the unconstrained case. Under the assumptions
(BBO1)–(BBO3), [65, Theorem 2] ensures that there exists a constant Cn such that

‖g(xk)‖∗ ≤ Cn(2ω/hk + Lhk) for xk ∈ Rn

at the end of the kth refinement step, where hk denotes the kth grid size. If hk := Θ(
√
ω), then

the best order of magnitude can be obtained for at least a point xbest with

‖g(xbest)‖∗ = O(Cn
√
ω). (10.4)

153

154 A new noisy black box optimization methods

The dependence of Cn on n is not specified. Under the same assumptions, Lucidi & Sciandrone
[126] discuss a derivative-free line search algorithm, called SDBOX, only using the coordinate
directions. They proved that, for any k,

‖g(xk)‖∗ = O
(
n3/2Lakmax + nω

akmin

)
, for xk ∈ Rn.

Here akmin and akmax are minimum and maximum values for the n step sizes used along coordinate
directions in the iteration k, respectively. If akmax := Θ(

√
ω), the best order of magnitude can be

obtained for at least a point xbest with

‖g(xbest)‖∗ = O(n3/2√ω). (10.5)

The order in this bound is the same as that in (10.4).

10.3.2 Bounds for VSBBON

Under the assumptions (BBO1)–(BBO3), VSBBON-basic finds after at most
• O(Rω−1) function evaluations for general case
• O(

√
nRω−1/2) function evaluations for convex case

• O(R logω−1) function evaluations for strongly convex case
a point xbest, with a given probability arbitrarily close to 1, satisfying

f(xbest) ≤ sup
x∈Rn
{f(x) | f(x) ≤ f(x0) and ‖g(x)‖∗ = O(

√
nω)}.

The following results are generalizations of Proposition 8.4.1. It is shown that if none of the
search directions ±p finds a sufficient gain of at least ∆f (threshold for the progress on f) then
a useful bound for the directional derivative can be found.

10.3.1 Proposition. Suppose that (BBO1)–(BBO3) hold. Then, for all x, p ∈ Rn and all
∆f ≥ 0, at least one of the following holds:
(i) f̃(x+ p) < f̃(x)−∆f ,
(ii) f̃(x+ p) > f̃(x) + ∆f and f̃(x− p) < f̃(x)−∆f ,
(iii) |g(x)T p| ≤ ∆f + 2ω + 1

2L‖p‖
2.

Proof. (BBO1) results in

g(x)T p− 1
2L‖p‖

2 ≤ f(x+ p)− f(x) ≤ g(x)T p+ 1
2L‖p‖

2. (10.6)

We assume that (iii) is violated, so that

|g(x)T p| > ∆f + 2ω + 1
2L‖p‖

2. (10.7)

By replacing p by ∓p in (10.6) and using (4.4) and (10.7), we get for an appropriate choice of
the sign

f̃(x∓ p)− f̃(x) ≤ f(x∓ p)− f(x) + 2ω

≤ ∓g(x)T p+ 1
2L‖p‖

2 + 2ω

= −|g(x)T p|+ 1
2L‖p‖

2 + 2ω < −∆f .

154

10.3 Limit accuracy and complexity bounds 155

Hence, by applying the lower sign, (i) is satisfied while by applying the upper sign the second
half of (ii) is satisfied, and by (4.4), (10.6), and (10.7) the first half

f̃(x+ p)− f̃(x) ≥ f(x+ p)− f(x)− 2ω ≥ g(x)T p− 1
2L‖p‖

2 − 2ω > ∆f

is obtained. ut

The following result is a generalization of Theorem 8.5.3 for ILS-basic to the noisy case. It is
proven that either a gain of at least ∆f is found or an upper bound for the exact gradient norm
of at least one of points generated by ILS-basic is found with a given probability arbitrarily
close to one though our algorithm never calculates the exact gradient.

10.3.2 Theorem. Assume that (BBO1)–(BBO3) hold, nfmax is sufficiently large, and ∆f is the
sufficient gain (if one exists).
(i) f̃ decreases by at least

∆f max(nf− 2R− 1, 0), (10.8)

where nf is the number of function evaluations in ILS-basic.
(ii) Assume that 0 < η < 1 and R := dlog2 η

−1e. If f̃ does not decrease by more than ρ, then,
with probability ≥ 1 − η, either the original point or one of the points evaluated with better
function value has a gradient g with

‖g‖∗ ≤
√
cnΓ(δ), (10.9)

where c comes from Proposition 10.2.1 and Γ(δ) := (2γ + L)δ + 4(γe)R−1ω/δ.

Proof. Let R := {1, . . . , R}. Since the function value of the best point does not increase, (i) holds
if nf− 2R − 1 ≤ 0. If this is not the case, then nf ≥ 2R + 2. But in the for loop of ILS-basic,
directions pr (r ∈ R) are generated and at most two function values are computed along each
direction pr, unless an extrapolation step is performed along the last opposite search direction.
In the latter case, the extrapolation step needs at least nf − 2R − 1 additional function values,
each time with a sufficient gain of at least ∆f . Thus the total sufficient gain is at least (10.8).

To prove (ii) we assume that f̃ does not decrease by more than ∆f . We denote the rth scaled
random search direction by pr, the best point obtained before searching in direction pr by xr,
the rth step step size by αr = (γe)1−rδ and define Γ0(αr) := (2γ + L)αr + 4ω/αr. Since Γ0(αr)
for αr > 0 is a convex function, we get for r ∈ R

Γ0(αr) ≤ max{Γ0(α1),Γ0(αr)} ≤ Γ(δ) := (2γ + L)δ + 4(γe)R−1ω/δ,

where α1 := max
r∈R
{αr} = δ and αR := min

r∈R
{αr} = (γe)1−Rδ. Then we get from Proposition

10.3.1, for all r ∈ R,

|g(xr)T pr| ≤ γ(αr)2 + 2ω + L

2 ‖p
r‖2 < γ(αr)2 + L

2 (αr)2 + 2ω,

so that, for all r ∈ R, the inequality

‖g(xr)‖∗ = ‖g(xr)‖∗‖pr‖/αr ≤ 2
√
cn|g(xr)T pr|/αr

≤
√
cn
(

(2γ + L)αr + 4ω
αr

)
≤
√
cnΓ(δ)

155

156 A new noisy black box optimization methods

holds with probability 1
2 or more by Proposition 10.2.1. In other words, ‖g(xr)‖∗ ≤

√
cnΓ(δ)

fails with a probability Prr < 1
2 for any fixed r ∈ R. Therefore, we find at least one of the

gradients g = g(xr) (r ∈ R), so that (10.9) holds, i.e., Pr = 1−
∏R−1
r=1 Prr ≥ 1− 2−R. ut

By Sk and Uk we denote the index sets of successful and unsuccessful iterations generated by
VSBBON-basic up to iteration k and their sizes by |Sk| and |Uk|, respectively. Sk is finite
by (BBO1) and Uk is finite by the updating rule for δ, discussed in (Vb4) of VSBBON-basic.
Hence

δk+1 = δk/Q, for some Q > 1 and for k ∈ Uk, (10.10)

but δk+1 = δk for k ∈ Sk; hence ∑
k∈Sk

(δk)−2 =
∑
k∈Uk

(δk)−2, (10.11)

which will be used in Subsection 10.3.2.

10.3.3 Proposition. Assume that (BBO1)–(BBO3) hold, δmax > 0, 0 < δmin < 1, Q > 1, the
integer T 0 ≥ 1 and let f0 be the initial value of f . Nk, Sk, and Uk denote the number of function
values, successful iterations, and unsuccessful iterations in VSBBON-basic up to iteration k.
If the condition (10.10) holds, then:
(i) The number of unsuccessful iterations up to iteration k by VSBBON-basic is at most

|Uk| ≤ 1 +
⌊ log(δmax/δk)

logQ

⌋
≤ K := 1 +

⌊ log(δmax/δmin)
logQ

⌋
. (10.12)

(ii) The number of successful iterations up to iteration k by VSBBON-basic is at most

|Sk| ≤ γ−1(δmax)−2(f0 − f̂)Q
2|Uk| − 1
Q2 − 1 ,

where f̂ is finite by (BBO1) and (BBO2) discussed in Section 10.3.
(iii) Each iteration of VSBBON-basic needs at most (2R+ 1)T 0 function evaluations.
(iv) The number Nk of function evaluations needed up to iterate k by VSBBON-basic, started
at x0, satisfies

Nk ≤ 1 + (2R+ 1)T 0(|Uk|+ |Sk|). (10.13)

(v) If 0 < η < 1 and R := dlog2 η
−1(k+1)e then VSBBON-basic finds with probability ≥ 1−η

a point x with
‖g(x)‖∗ ≤

√
cn min

`=0:k
Γ(δ`), (10.14)

where c and Γ(δ) come from Proposition 10.2.1 and Theorem 10.3.2.

Proof. (i) By (10.10), we get

|Uk| ≤ 1 +
⌊ log(δmax/δk)

logQ

⌋
.

(ii) By (10.11), we get

|Sk| =
∑
`∈Sk

f `+1 − f `

γ(δ`)2 ≤ γ−1(f0 − f̂)
∑
`∈Sk

(δ`)−2

156

10.3 Limit accuracy and complexity bounds 157

= γ−1(f0 − f̂)
∑
`∈Uk

(δ`)−2 = γ−1(δmax)−2(f0 − f̂)
∑
`∈Uk

Q2`−2

= γ−1(δmax)−2(f0 − f̂)Q
2|Uk| − 1
Q2 − 1 .

(iii) In the worst case, the for loops of DS-basic and ILS-basic are repeated T 0 and R times,
respectively. Using RT 0 scaled random directions and RT 0 corresponding opposite ones, ILS-
basic cannot find a sufficient gain; however, if a sufficient gain along the last opposite direction
is found, an extrapolation step is tried at most two function evaluations, only with a sufficient
gain. As a result, in each call to DS-basic, at most (2R+ 1)T 0 function evaluations are used.
(iv) We have N0 := 1. Then (i)–(iii) result in (10.13).
(v) In this case, VSBBON-basic cannot find a sufficient gain after k repeated calls to DS-basic,
resulting in

‖g(x`)‖∗ ≤
√
cnΓ(δ`), for all ` = 1, · · · , k

for a point satisfying (10.14) with probability ≥ 1− (k + 1)2−R ≥ 1− η. ut

The following result is the complexity bound for the nonconvex case.

10.3.4 Theorem. Assume that 0 < η < 1, R := dlog2 η
−1(K + 1)e, δmax > 0, 0 < δmin < 1,

and
δmin := Θ(

√
ω). (10.15)

If (10.10) holds, VSBBON-basic finds after at most O
(
Rω−1

)
function evaluations with prob-

ability ≥ 1− η a point x with
‖g(x)‖∗ = O(

√
nω). (10.16)

The order in the bound (10.16) is the same as the orders in (10.4) and (10.5). But the factor of
(10.16) is better than that in (10.5).

Proof. By (10.12), we have δK = Q1−Kδmax ≤ δmin and Proposition 10.3.3(i) and (10.15) result
in

Γ(δK) = (2γ + L)δK + 4(γe)R−1ω/δK

≤ (2γ + L)Q1−Kδmax + 4(γe)R−1QK−1ω/δmax = O(
√
ω);

hence (10.16) is obtained with probability ≥ 1− (K + 1)2−R ≥ 1− η from Proposition 10.3.3(v).
From (BBO1) and (BBO2), f̂ := inf

k
fk is finite. We conclude from Propositions 10.3.3(iii) and

(10.10) that
NK ≤ O(R log(δmin)−1) +O(R(δmin)−2) = O

(
Rω−1

)
.

ut

The following result gives the complexity bounds for the convex and strongly convex cases.

10.3.5 Theorem. In addition to the assumptions of Theorem 10.3.4, assume that f satisfies

f(y) ≥ f(x) + g(x)T (y − x) + 1
2σ‖y − x‖ for x, y ∈ L(x0) (10.17)

157

158 A new noisy black box optimization methods

and let 0 < η < 1.

(i) If σ = 0 (i.e., if f is convex), VSBBON-basic finds after at most O
(√

nRω−1/2
)

function
evaluations with probability ≥ 1− η a point x satisfying (10.16) and

f(x)− f̂ = O(r0√nω), (10.18)

where r0 is given by
r0 := sup

x∈Rn

{
‖x− x̂‖ | f(x) ≤ f(x0)

}
<∞. (10.19)

Here x̂ and f̂ = f(x̂) are the global minimizer and its function value discussed in Section 10.3.
(ii) If σ > 0 (i.e., if f is strongly convex), VSBBON-basic finds after at most O

(
R logω−1

)
function evaluations with probability ≥ 1− η a point x satisfying (10.16) and

f(x)− f̂ = O(nω)
2σ , ‖x− x̂‖ = O(

√
nω)

σ2 . (10.20)

The condition is the same as (10.3) found by Berahas et al. [14].

Proof. Denote fk = f(xk), f̃k = f̃(xk), and gk = g(xk). We terminate VSBBON after at most
K steps to satisfy (10.16). After this termination we denote by UK and SK the index sets of
unsuccessful and successful iterations. Assume that xk is the overall best point at the end of the
kth execution of VSBBON satisfying (10.16). From (BBO1) and (BBO2), r0 is finite. We now
prove the statements (i) and (ii).

(i) The convexity of f results in f̂ ≥ fk + (gk)T (x̂ − xk). By Theorem 10.3.4, with probability
≥ 1− η, we get from (10.18)

fk − f̂ ≤ (gk)T (xk − x̂) ≤ ‖gk‖∗‖xk − x̂‖ = O(
√
nω), (10.21)

so that fk − fk+1 ≤ fk − f̂ = O(
√
nω). Then

∑
`∈SK

f̃ ` − f̃ `+1

γ(δ`)2 ≤
∑
`∈SK

f ` − f `+1 + 2ω
γ(δ`)2 ≤ O(

√
nω) + 2ω
γ

∑
`∈SK

(δ`)−2

= O(
√
nω)

∑
`∈UK

(δ`)−2 = O(
√
nω)

∑
`∈UK

Q2`−2

= O(
√
nω)Q

2K − 1
Q2 − 1 = O(

√
nωQ2K) = O(

√
nω−1/2)

by (10.11) and since O(
√
nω) + ω = O(

√
nω) as ω goes to zero. Hence, we conclude from

Proposition 10.3.3 that

NK ≤ 1 + (2R+ 1)T 0
(
O(logω−1) +O(

√
nω−1/2)

)
= O(

√
nRω−1/2).

(ii) When x is assumed to be fixed, the right hand side of (10.17) is a convex quadratic function
in terms of y whose gradient in the components vanishes at yi = xi− siσ−1gi(x) for i = 1, · · · , n,
resulting in

f(y) ≥ f(x)− 1
2σ ‖g(x)‖2

∗.

158

10.4 Heuristic enhancements 159

Here as mentioned earlier s ∈ Rn is a scaling vector. By applying (10.16) in this inequality, we
get

fk − f̂ ≤ 1
2σ ‖g(xk)‖2

∗ = O(nω). (10.22)

By replacing x by x̂ and y by xk in (10.17), we get

f(xk) ≥ f(x̂) + σ

2 ‖x
k − x̂‖2,

so that
‖xk − x̂‖2 ≤ 2

σ
(fk − f̂) = O(nω)

by (10.22). From (10.22), we conclude that fk − fk+1 = O(nω), resulting in∑
`∈SK

f̃ ` − f̃ `+1

γ(δ`)2 ≤
∑
`∈SK

f ` − f `+1 + 2ω
γ(δ`)2 ≤ O(nω) + 2ω

γ

∑
`∈SK

(δ`)−2

= O(nω)
∑
`∈UK

(δ`)−2 = O(nω)
∑
`∈UK

Q2`−2

= O(nω)Q
2K − 1
Q2 − 1 = O(nω)O(ω−1) = O(n),

by (10.11). Finally, we conclude from Proposition 10.3.3 that

NK ≤ 1 + (2R+ 1)T 0
(
O(logω−1) +O(n)

)
= O(R logω−1).

ut

10.4 Heuristic enhancements

In this section, we first describe how to construct surrogate quadratic models in adaptively
determined subspaces reducing the influence of noise. Next, we describe how step sizes are
updated in an improved version of ILS-basic. Next, an improved version of DS-basic performs
an improved version of ILS-basic with four different directions to save some best points and its
inexact function values. Then if a sufficient gain cannot be found in several repeated calls to an
improved version of ILS-basic, step sizes are restricted and recomputed in a heuristic way.
Finally, we introduce an improved version of VSBBON-basic for unconstrained noisy black
box optimization problems making repeated calls to an improved version of DS-basic.

10.4.1 Random approximate coordinate directions

As discussed earlier in the introduction, using random directions is preferable to using determin-
istic ones (see [9]). On the other hand, it is well known that coordinate directions are useful to
estimate the gradient since at least one of these directions has a good angle with the gradient
(see [53]). Inspired by these, we construct an effective version of scaled random directions, called
random approximate coordinate direction, inheriting advantages of both scaled random
and coordinate directions. The random coordinate direction p multiplies a standard random
direction by a scaling vector, one of whose components is 1/‖p‖ and whose randomly chosen
remaining components are γrd/‖p‖, where 0 < γrd < 1 is a tiny tuning parameter.

159

160 A new noisy black box optimization methods

10.4.2 Subspace information

Points Xi with best inexact function values are saved as columns of a matrix X, their inexact
function values f̃(Xi) in the vector F , and their step sizes αi in the vector Y , by an improved
line search algorithm discussed later in Subsection 10.4.7. adjustX adjusts the matrix X with
value NaN or ±∞ by replacing a huge positive tuning parameter γX > 0.

We refer to points saved in X as sample points whose maximum number is defined by mmax :=
min

{
m, 1

2n(n+3)
}

, where m is a tuning parameter. The number of sample points is denoted
by m ∈ [2,mmax] and the subspace size mo is defined as the largest integer number satisfying
1
2m

o(mo + 3) ≤ m.

If m exceeds mmax, updateXFY updates X, F , Y by replacing the worst point, its inexact
function value, and its step size by the current best point, its inexact function value, and its step
size, respectively. Otherwise, it appends the current best point to X, its inexact function value
to F , and its step size to Y .

10.4.3 Random subspace directions

In [117], it has been shown by extensive numerical results that after a derivative-free line search
algorithm with coordinate directions is used, the use of random subspace directions by such an
algorithm is very useful. Inspired by this, after random coordinate directions are used by an
improved version of ILS-basic, random subspace directions are used by such an algorithm in
the hope of reducing the influence of noise.

We write AII := (Aij)i∈I,j∈I for the submatrix of A with row and column indices from I by AII ,
A:k for the kth column of a matrix A, and b for the index of the best point.

Random subspace directions are constructed based on the information of sample points with
good function values. As in [117], we generate a (m − 1) × 1 standard random vector αrs and
then scale it by αrs := αrs/‖αrs‖. Then we compute the random subspace direction by

p :=
m∑

i=1,i6=b
αrs
i (X:i −X:b).

10.4.4 Reduced quadratic models

It is well-known [103] that model-based algorithms need at least

N := n+ 1
2n(n+ 1) = 1

2n(n+ 3)

sample points and O(N3) operations for the estimation of the gradient vector and Hessian matrix
of an objective quadratic model. For medium or large scale problems, this is prohibitively
expensive. To overcome this problem, we construct quadratic models in adaptively determined
subspaces called reduced quadratic models, one of which is a fully quadratic model when
m = N .

160

10.4 Heuristic enhancements 161

For all i = 1, · · · ,m, let xi and f̃i := f̃(xi) be the sample points and their inexact function
values, stored in X and F , respectively, and let si := xi −X:b. Before defining model errors, we
need to know whether the number of sample points m is allowable to construct a full or reduced
quadratic model or not. Hence, all subspace sizes allowed to construct quadratic models are
computed by sizeSample. The subspace size defined in Subsection 10.4.2 is computed by

mo :=
⌊1

2(−3 +
√

9 + 8m)
⌋
. (10.23)

It is clear that if m < N a fully quadratic model cannot be constructed; instead, reduced
quadratic models are constructed. If the dimension is greater than mmax, the n×mmax matrix
X and the n× 1 vector xm are reduced to the mmax ×mo matrix Xo and the mo × 1 vector xo,
respectively. In other words, the restriction on entries of X and xm is done by picking a random
subset with the size mo.

Some components of each best point stored in X may be ignored. To remedy this shortcoming,
reduced quadratic models are constructed several times before m exceeds mmax, each of which
chooses Xo (xo) by taking a random subset of entries of X (xbest).

We write g̃o and B̃o for the estimated gradient vector and symmetric Hessian matrix in a sub-
space, respectively. Let M := 1

2m
o(mo + 3) and K := min(2M,m− 1). To assess the inexact g̃o

and B̃o, we define the model errors by

εi :=
f̃i − Fb − (g̃o)T si −

1
2s

T
i B̃

osi

sci
for all i = 1, · · · ,K, (10.24)

where sc is a suitable scaling vector. As in [58], if numerical methods preserve the affine invariant,
they generally can perform much better. The following choice ensures the affine invariance of
the fitting procedure.

The nominator of (10.24) is O(‖si‖3) if m = N ; otherwise it is O(‖si‖2). To get εi of a uniform
magnitude, we choose sc as follows:
(1) We form the matrix S := (s1, · · · , sK)T , where si := xo

i −Xo
:b for all i = 1, · · · ,K.

(2) We compute the matrix

Ho :=
(∑

l

sls
T
l

)−1
(10.25)

by constructing a reduced QR factorization S = QR, where Q ∈ RK×m
o is an orthogonal matrix

and R ∈ Rm
o×mo is a square upper triangular matrix.

(3) We compute the scaling vector sc

sci := (sTi Hosi)e/2 for i = 1, · · · ,K, (10.26)

using sTi H
osi = ‖R−T si‖2 for i = 1, · · · ,K. In (10.26), e = 3 if m = N holds (full quadratic

model) and e = 2 otherwise (reduced quadratic model).

Both Ho and sc are computed by scaleModel in the same way as SNOBFIT [103] by making
a reduced QR factorization but the difference that they are made in adaptively determined
subspaces.

161

162 A new noisy black box optimization methods

We have ε = Ay − a, where, for i = 1, · · · ,K,

ai := Fb − f̃i
sci

and Aij :=



sji
sci

if j ∈ {1, · · · ,mo},

(sj−m
o

i)2

2sci
if j ∈ {mo + 1, · · · , 2mo},

sj
′

i s
j′′

i

sci
if j ∈ {2mo + 1, · · · ,M}.

(10.27)

Here j′ and j′′ are the remainders of the division of j−2mo and j−2mo + 1 by mo, respectively,
and sji is the jth component of the vector si. To find the entries of inexact g̃o and B̃o we solve
the linear least squares problem

min
y∈RM

‖Ay − a‖2
2. (10.28)

In the finite precision IEEE arithmetic, any of a, sc, y, and hence g̃o, B̃o may have entries with
value NaN or ±∞. adjustVec replaces components of vectors a, sc, and y with value NaN or
±∞ by a huge positive tuning parameter γv > 0.

getMultiplier constructs the vector a and the matrix A by (10.27), adjusts a by calling ad-
justVec, and finds all multipliers by solving (10.28). getGg adjusts y by calling adjustVec
and defines g̃o through the first mo components of y, the diagonal entries of B̃o through the next
mo components of y, and off-diagonal entries of B̃o symmetrically through the remaining entries
of y.

In summary, reduced quadratic models are constructed by fit. Two advantages of such models
are to use limited sample points and to be constructed several times by increasing the subspace
size from 2 up to mmax. To get a robust model, fit uses adjustX to adjust X and adjustVec to
adjust the vector y whenever they are contaminated by NaN or ±∞. Second, it computes sc by
scaleModel and adjusts it by adjustVec. Third, it computes y by getMultiplier and adjusts
it by adjustVec. Finally, it estimates g̃o and B̃o by getGg.

10.4.5 Perturbed random directions

After an improved version of ILS-basic is used with random subspace directions, possibly some-
times without any sufficient gain in the presence of noise, the use of other good directions is
needed to hopefully find sufficient gains. In this case, perturbed random directions are used
if B̃o is not computable, meaning that at least one entry of B̃o is contaminated by NaN or ±∞.
Otherwise, reduced quadratic models are constructed and improved trust region directions are
computed, as discussed later in Subsections 10.4.4 and 10.4.6, respectively.

A perturbed random direction p is a perturbation of a standard random direction po by the
approximated direction −g̃o. Both g̃o and po are in a subspace which is a random subset J of
{1, · · · , n} with the size mo. For all i 6∈ J , pi = 0. To be numerically appropriate, both of them
are scaled by the heuristic step size αo := (1 + κ(g̃o)T po)/‖g̃o‖2 and the decreasing sequence
κ := 1/(1 + nf)γκ with the tuning parameter 0 < γκ < 1 and the number of function evaluations
nf, respectively. It can be easily shown that

pT g̃ = (po)T g̃o = (κpo − αog̃o)T g̃o = −1 < 0;

162

10.4 Heuristic enhancements 163

hence perturbed random directions are descent ones.

10.4.6 An improved trust region direction

The goal of trust region methods is to restrict steps inside a trust region to increase the accuracy
of surrogate models. Hence, trust region directions can be very useful, even in the presence of
noise.

We now solve the trust region subproblem in a subspace

min ζT g̃o + 1
2ζ

T B̃oζ

s.t. ‖ζ − xo‖∞ ≤ d,

whose solution is denoted by ζbest. Here d is called the trust region radius which will be
discussed later in Algorithm 10.4.2. The trust region direction is po

tr := ζbest − xo in a subspace
which is a random subset of {1, · · · , n} with the size mo. The idea is to construct the improved
trust region direction by scaling po

tr with the positive tuning parameter γp and perturbing it
by pmean := xmean −Xb, where xmean is the mean of X. This perturbation converts po

tr to a full
subspace direction, enriched by pmean.

10.4.7 An improved version of ILS-basic

The efficiency of line search methods depends on how their step sizes are updated. The line
search algorithms discussed in [126] and [117] find their step sizes in a way that it seems not
to be effective, especially for large scale problems, since step size updates are independent; only
depending on the corresponding step size generated by the previous executions. To overcome
this shortcoming, we construct an improved version of ILS-basic whose step sizes are generated
and updated in a new way.

• At first, initStepSize finds an initial step size. It initially chooses a positive tuning parameter
δmax as an initial value for an extrapolation step size α and the step size δ.
• direction is called to generate 4 kinds of search directions: random coordinate direction, ran-
dom subspace direction, improved trust region direction, perturbed random direction.
• In each iteration, after a new trial point and its function value were computed, initInterval
saves sufficient gain – defined earlier in Subsection 10.2.1 – in dF and its step size in a.
• After a sufficient gain is found, an extrapolation step is tried:
(1) If in an extrapolation step, some points with best inexact function values are found robust-
Point stores the inexact function values and their step sizes in F and a, respectively. Once an
extrapolation step ends, an index of the best point, its function value, and its step size are found
by

ind := argmax
i=1,···,m

(F i), ind := (ind)1, fbest := F ind, and αbest := aind;

(2) Afterwards, updateXFY stores the information found by robustPoint;
(3) Next, initInterval finds an index set of the saved points with the decreasing inexact function
values by ind := {i | dFi < 0}. If ind is not empty, the lower bound of the interval [α, α] is
found by α := max(aind); if α = αinit is given as a positive tuning parameter, then α is updated

163

164 A new noisy black box optimization methods

by α := min(α,max(aind)). Next, it finds an index set of positive gains or of the corresponding
step sizes which are strictly greater than α by

ind := {i | dFi ≥ 0 or ai > α}.

If ind is not empty, an upper bound of the initial interval is found by α := min(aind); if α = αinit

is given as a positive tuning parameter, the upper bound of the initial interval is updated by
α := max(α,min(aind)).
(4) One of the lower or upper bound of the interval [α, α] is updated by updateInterval. In
practice, if αbest > α holds, α = αbest; otherwise, α = αbest.
• If the interval [α, α] is found, initStepSize finds a new step size by choosing the maximum of
δ and αbis :=

√
αα (geometric mean of α and α).

• If no sufficient gain is found, reducedStepSize is used to reduce the step size. If the initial
interval has been updated, reducedStepSize calls bisection to generate αbis. Then a new step
size αnew is the projection of αbis into [αmin, α/γe]. Otherwise, αnew is the maximum of αmin

and α/γe. Then updateInterval updates the interval whenever α = α. In this case, if αnew < α
holds, α = αnew; otherwise, α = αnew.
• If no sufficient gain is found, the best point, its inexact function value, and its step size are
updated if the inexact function value at the current trial point is smaller than that of at the
current best point. In particular, this may happen in very flat regions of the feasible domain
which contain no nearby stationary point.

Let T be the number of trial steps. Then an improved version of ILS-basic tries to hopefully
get sufficient gains while using T suitable directions so that all step sizes are chosen inside such
an interval.

ILS tries to hopefully find sufficient gains along multiple directions. It takes m, X, F , Y , b,
T , δ, α, α, and nfmax as input and returns m, X, F , Y , b, α, α as output. It uses all tuning
parameters discussed in ILS-basic and the following tuning parameters:
γp > 0 (parameter for adjusting trust region directions),
γv > 0 (parameter for polishing the vectors a, sc, y),
γX > 0 (parameter polishing X),
m ≥ 2 (limit for m).
Here xbest = X:b and f̃best = Fb.

10.4.1 Algorithm. (ILS, an improved version of ILS-basic)
(ILSb0) Call initStepSize to get an initial step size, resulting in α1.
for t = 1, · · · , T do

(ILSb1) Call direction to generate the new direction pt.
while true do

(ILSb2) A new trial point and its inexact function value:
(1) Compute xtrial := xbest + αtpt and f̃ trial := f̃(xtrial).
(2) If nfmax is exceeded, ILS ends.
(3) If the initial interval has not been found or updated by initInterval, save
the step size αt and f̃ trial − f̃best in a and dF, respectively.
(ILSb3) If f̃ trial < f̃best−γ(αt)2 holds, a sufficient gain is found and so call robustPoint
to update the best point, its inexact function value, its step size, expand the step size to
αt := γeαt.

end while
(ILSb4) If a sufficient gain is found in (ILSb3), call

164

10.4 Heuristic enhancements 165

(1) robustPoint and set f̃best := f
best, αt := αbest and xbest := xbest + αtpt;

(2) updateXFY to store xbest, f̃best, and α in X, F , and Y , respectively;
(3) initInterval to find or update it if the initial interval is not found;
(4) updateInterval to update the interval if the initial interval is found.
otherwise, if extrapolation along −pt has not been tried already, set pt := −pt and go to
(ILSb2),
otherwise, no sufficient gain is found along ±pt:
(1) If f̃ trial < f̃best, set xbest := xtrial and f̃best := f̃ trial, store xbest, f̃best, and αt

by updateXFY.
(2) Regardless of whether f̃ trial < f̃best or not, call reducedStepSize to reduce
the step size and updateInterval to update the interval [α, α].

end for

10.4.8 An improved version of DS-basic

As was described earlier in Subsection 10.2.1, DS-basic alternated T 0 calls to ILS-basic with
R scaled random directions regardless of whether or not a sufficient gain is found. In this
subsection, an improved version of DS-basic, called DS, preserves this procedure with the goal
of restoring and updating the m sample points and their inexact function values. Then DS
constructs quadratic or linear model to generate improved trust region direction or perturbed
random direction and alternates T 0 calls to ILS along these directions as long as sufficient gains
are found. If there is no sufficient gain, the current interval [α, α] is not possibly effective; hence
it needs to be restarted and reconstructed in a heuristic way, using the information of the m
sample points. It is done by resInterval described below inside DS.

DS tries to hopefully find sufficient gains by performing ILS along multiple directions. It has
the same input and output as ILS. It uses the tuning parameters used in ILS and the following
tuning parameters:
γa > 0 (parameter for adjusting heuristic step size),
γd1 > 1 and γd2 ∈ (0, 1) (parameters for updating trust region radius),
0 < dmin < dmax <∞ (control parameters for the trust region radius).

10.4.2 Algorithm. (DS, an improved version of DS-basic)
for t = 1, · · · , T 0 do

(DS1) Perform ILS using R scaled random directions.
(DS2) If m ≥ 3, perform ILS using random subspace directions until sufficient gains
are found.
(DS3) If m ≥ 2, either reduced quadratic or linear model is constructed:
if both estimations are computable (not contaminated by either NaN or ±∞) then

(1) call fit to construct and minimize a reduced quadratic model, resulting in an improved
trust region direction;
(2) call genRadius to generate the trust region radius by dt := ‖xmean −X:b‖ (xmean is
the mean of X) and restrict it by dt := max(dmin,min(dmax, γd1dt));
(3) call ILS using improved trust region directions until sufficient gains are found while
using dt := (γd2 + rand)dt, where rand ∈ (0, 1] is a random value.

else
perform ILS using perturbed random directions until sufficient gains are found.

end if

165

166 A new noisy black box optimization methods

(DS4) If a sufficient gain is not found in the current iteration, call resInterval to do the
following:
For i = 1, · · · , n
(1) compute dxi := X:i −X:b,
(2) find Ii := {j | dxj 6= 0 and (X:b)j 6= 0},
(3) compute βti := min

j∈Ii
|(X:b)j/dxj |.

Then generate two random values µ1 and µ2 satisfying 0 < µ1 < µ2 < 1 and reconstruct
the new interval [α, α] as

[γaµ1βtmin, γ
aµ2βtmin] with βtmin := min

i=1,···,n
βti .

Otherwise, the interval is not restarted.
end for

10.4.9 The implemented version of VSBBON

An improved version of VSBBON-basic, called VSBBON, using all prepared ingredients is
introduced. As long as DS cannot find a sufficient gain, δ is updated by updateStepSize. Once
δ is below a minimum threshold δmin, VSBBON ends.

VSBBON solves randomized noisy black box optimization. It takes the initial point x0 and
nfmax as input and returns the overall best point xbest and its inexact function value f̃best as
output. It uses the tuning parameters used in DS and the following tuning parameters:
0 ≤ αinit < αinit ≤ ∞ (the lower and upper of an initial interval),
0 < δmin < 1 (minimum threshold for δ),
δmax > 0 (initial step size),
Q > 1 (factor for reducing the step size).

10.4.3 Algorithm. (VSBBON, an implemented version of VSBBON-basic)
(V1) Compute the initial inexact function value f̃0 and set F := f̃0, X := x0, Y := 1, b := 1,
and m := 1. Next, initialize α := αinit and α := αinit.
for k = 1, 2, 3, · · · do

(V2) Call DS to hopefully find sufficient gains.
(V3) If δk ≤ δmin or nfmax is reached, set xbest := X:b and f̃best := Fb. Then VSBBON
ends.
(V4) If DS cannot find a sufficient gain, updateStepSize reduces the step size δk by
the factor of Q; otherwise, it finds αbis by calling bisection and updates δk by δk :=
max(δk, αbis) provided that [α, α] ⊆ (0,∞).

end for

Theorem 10.3.2, Proposition 10.3.3, Theorem 10.3.4, and Theorem 10.3.5 remain valid with the
following changes
• In Theorem 10.3.2(i), R (number of scaled random steps) must be replaced by T (number of
trial steps), and the statement (ii) of it remains valid with probability ≥ 1− 2−R.
• In Proposition 10.3.3(i), the number of function evaluations of VSBBON up to iteration k is
bounded by

1 + (2R+ 5)T 0(|Uk|+ |Sk|);

166

10.5 Numerical results 167

because in the worst case ILS with RT 0 scaled random directions and RT 0 corresponding oppo-
site ones, T 0 random subspace directions and T 0 corresponding opposite ones, and T 0 improved
trust region directions (or T 0 perturbed random directions) and T 0 corresponding opposite ones
cannot find a sufficient gain; however, if there exists a sufficient gain along the opposite direction
of the last improved trust region direction (or the last random perturbed direction), an extrapo-
lation step is tried with at most two function evaluations. Then the best point is updated. The
statement (ii) of it remains valid.
• In Proposition 10.3.3, Theorem 10.3.4, and Theorem 10.3.5, 2RT 0 must be replaced by
(2R+ 5)T 0.

Note that random approximate coordinate directions are numerically better than random scaled
directions but Proposition 10.2.1 is valid for random scaled directions. Hence, if VSBBON
uses random approximate coordinate directions instead of random scaled directions, it has no
complexity result.

10.5 Numerical results

In this section, we report numerical experiments with the test environment constructed by Kimi-
aei & Neumaier [116] on the 503 unconstrained CUTEst test problems from the collection by
Gould et al. [80], described in in the supplemental material supplMat.pdf with detailed tables
and performance plots.

In the numerical results reported here, uniform random noise matching the assumption (BBO3)is
used. The function values are computed by f̃ = f + ω̃, where f is the true function value and
ω̃ = (2 ∗ rand−1)ω. Here rand stands for the uniformly distributed random number. How-
ever, further results for relative uniform noise and relative/absolute Gaussian noise reported in
supplMat.pdf show that VSBBON works well with any kind of noise that is not too large,
though our complexity results are only valid under the assumption (A3).

VSBBON1 is the model-based version of VSBBON and VSBBON2 is the model-free version
of VSBBON. VSBBON1 and VSBBON2 are compared with VSBBO by Kimiaei & Neu-
maier [117], SDBOX by Lucidi & Sciandrone [126], NMSMAX by Higham [99], DSPFD
by Gratton et al. [84], BFO by Porcelli & Toint [147], MCS by Huyer & Neumaier
[102], BCDFO by Gratton et al. [85], UOBYQA by Powell [149], and FMINUNC by the
Matlab Optimization Toolbox for small, medium, and large scale problems. Unfortunately, soft-
ware for FDLM by Berahas et al. [14], STRRS by Chen, and Grid by Elster & Neumaier
[65] was not available to us.

As discussed in Subsection 5.6, we consider a problem solved by the solver so if qso ≤ ε. Other-
wise, the problem is unsolved since either nfmax or secmax is exceeded. Here ε depends on the
dimension and the noise level

ε :=


10−3 if ω ∈ {10−4, 10−3} and n ∈ [1, 30],
10−2 if ω ∈ {0.1, 0.9} and n ∈ [1, 30],
10−3 if ω = 10−4 and n ∈ [31, 300],
0.05 if ω ∈ {0.1, 0.01, 0.001} and n ∈ [31, 300],
0.05 if ω ∈ {10−5, 10−4, 10−3} and n ∈ [301, 3000];

because by increasing the noise level and the dimension the difficulty of problems is increased

167

168 A new noisy black box optimization methods

extremely. Hence ε is chosen to slightly be large for problems in medium and high dimensions
in comparison with problems in low dimensions.

The efficiency of the solver so with respect to a cost measure cso for solver so was discussed in
Subsection 5.4.

10.5.1 Small scale: 1 ≤ n ≤ 30

Subfigures (a), (c) and (e) of Figure 10.1 plot the number of solved problems versus the noise
level ω, while Subfigures (b), (d) and (f) of this figure plot the nf efficiency versus the noise level
ω, respectively.

In Figure 10.1,
• Subfigures (a) and (b) are the two different comparisons among solvers using the line search
methods (VSBBON1, VSBBON2, VSBBO, FMINUNC, and SDBOX).
• Subfigures (c) and (d) are the two different comparisons among VSBBON1 and VSBBON2
with four famous direct search methods (NMSMAX, DSPFD, BFO, and MCS).
• Subfigures (e) and (f) are the two different comparisons among VSBBON1 and VSBBON2
with two competitive solvers using the full quadratic model (BCDFO and UOBYQA)

In summary, we conclude from Figure 10.1 that, in the absolute uniform noise case,
• VSBBON1 and VSBBON2 are more robust than VSBBO, FMINUNC, and SDBOX in
terms of the number of solved problems and the nf efficiency, shown in Subfigures (a) and (b),
respectively.
• VSBBON1 and VSBBON2 are more robust than NMSMAX, DSPFD, BFO, and MCS
in terms of the number of solved problems shown in Subfigure (c). NMSMAX is the first best
solver in terms of the nf efficiency while VSBBON1 and VSBBON2 are the second and third
best solvers, shown in Subfigure (d). Moreover, VSBBON1 is the best solver in the high level
of noise ω = 0.9.
• VSBBON1 and VSBBON2 are more robust than BCDFO and UOBYQA in terms of the
number of solved problems shown in Subfigure (e), while UOBYQA and BCDFO are the first
and second best solvers in terms of the nf efficiency, respectively, except in the presence of the
high noise level ω = 0.9; in this case, VSBBON1 outperforms others.

From the result, we conclude that VSBBON1 is more robust than others, in the absolute
uniform noise case, for small scale problems n ∈ [1, 30]. Moreover, the model-based VSBBON1
is preferable to the model-free VSBBON2.

168

10.5 Numerical results 169

10
-4

10
-3

10
-2

10
-1

10
0

 noise level

20

40

60

80

100

120

140

160

180

 n
u

m
b

e
r

o
f

s
o

lv
e
d

 p
ro

b
le

m
s

VSBBON1

VSBBON2

VSBBO

FMINUNC

SDBOX

10
-4

10
-3

10
-2

10
-1

10
0

 noise level

0

0.1

0.2

0.3

0.4

0.5

0.6

 n
f

e
ff

ic
ie

n
c
y

VSBBON1

VSBBON2

VSBBO

FMINUNC

SDBOX

a) b)

10
-4

10
-3

10
-2

10
-1

10
0

 noise level

40

60

80

100

120

140

160

180

 n
u

m
b

e
r

o
f

s
o

lv
e
d

 p
ro

b
le

m
s

VSBBON1

VSBBON2

NMSMAX

DSPFD

BFO

MCS

10
-4

10
-3

10
-2

10
-1

10
0

 noise level

0.1

0.2

0.3

0.4

0.5

0.6

 n
f

e
ff

ic
ie

n
c
y

VSBBON1

VSBBON2

NMSMAX

DSPFD

BFO

MCS

c) d)

10
-4

10
-3

10
-2

10
-1

10
0

 noise level

80

90

100

110

120

130

140

150

160

170

180

 n
u

m
b

e
r

o
f

s
o

lv
e
d

 p
ro

b
le

m
s

VSBBON1

VSBBON2

BCDFO

UOBYQA

10
-4

10
-3

10
-2

10
-1

10
0

 noise level

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 n
f

e
ff

ic
ie

n
c
y

VSBBON1

VSBBON2

BCDFO

UOBYQA

e) f)

Figure 10.1: For the noise levels ω ∈ {10−4, 10−3, 10−2, 10−1, 0.9}. Subfigures (a), (c)
and (e) plot the number of solved problems versus the noise level ω, while
Subfigures (b), (d) and (f) plot the nf efficiency versus the noise level ω,
respectively.

169

170 A new noisy black box optimization methods

10.5.2 Medium scale: 31 ≤ n ≤ 300

Subfigures (a) and (c) of Figure 10.2 plot the number of solved problems versus the noise level
ω, while Subfigures (b) and (d) of this figure plot the nf efficiency versus the noise level ω,
respectively.

In Figure 10.2,
• Subfigures (a) and (b) are the two different comparisons among solvers using the line search
methods (VSBBON1, VSBBON2, VSBBO, and SDBOX).
• Subfigures (c) and (d) are the two different comparisons among VSBBON1 and VSBBON2
with some famous direct search methods (NMSMAX and BFO).

In summary, we conclude from Figure 10.2 that
• VSBBON1 and VSBBON2 are more robust than VSBBO and SDBOX in terms of the
number of solved problems and the nf efficiency, shown in Subfigures (a) and (b), respectively.
• VSBBON1 and VSBBON2 are more robust than NMSMAX and BFO in terms of the
number of solved problems and the nf efficiency, shown in Subfigures (c) and (d).

From the result, we conclude that VSBBON1 and VSBBON2 are more robust than others
for medium scale problems n ∈ [31, 300].

170

10.5 Numerical results 171

10
-4

10
-3

10
-2

10
-1

 noise level

90

100

110

120

130

140

150

 n
u

m
b

e
r

o
f

s
o

lv
e

d
 p

ro
b

le
m

s

VSBBON1

VSBBON2

VSBBO

SDBOX

10
-4

10
-3

10
-2

10
-1

 noise level

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

 n
f

e
ff

ic
ie

n
c

y

VSBBON1

VSBBON2

VSBBO

SDBOX

a) b)

10
-4

10
-3

10
-2

10
-1

 noise level

90

100

110

120

130

140

150

 n
u

m
b

e
r

o
f

s
o

lv
e

d
 p

ro
b

le
m

s

VSBBON1

VSBBON2

BFO

NMSMAX

10
-4

10
-3

10
-2

10
-1

 noise level

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 n
f

e
ff

ic
ie

n
c

y

VSBBON1

VSBBON2

BFO

NMSMAX

c) d)

Figure 10.2: For the noise levels ω ∈ {10−4, 10−3, 10−2, 10−1}. Subfigures (a) and (c) plot
the number of solved problems versus the noise level ω, while Subfigures (b)
and (d) plot the nf efficiency versus the noise level ω, respectively.

171

172 A new noisy black box optimization methods

10.5.3 Large scale: 301 ≤ n ≤ 3000

Subfigure (a) of Figure 10.3 plots the number of solved problems versus the noise level ω in the
absolute uniform noise case, while Subfigure (b) of this figure plots the nf efficiency versus the
noise level ω.

In Figure 10.3, Subfigures (a) and (b) are comparisons among solvers using the line search
methods (VSBBON1, VSBBON2, and VSBBO).

From the result, we conclude from Figure 10.3 that VSBBON1 and VSBBON2 are more robust
than VSBBO in terms of the number of solved problems and the nf efficiency, except for ω =
10−4; in this case VSBBO has the best performance in terms of the number of solved problems
(Subfigures (a) and (b)), respectively. Moreover, the model-based version of VSBBON1 is
preferable to the model-free version of VSBBON2.

10
-5

10
-4

10
-3

 noise level

95

100

105

110

115

120

 n
u

m
b

e
r

o
f

s
o

lv
e
d

 p
ro

b
le

m
s

VSBBON1

VSBBON2

VSBBO

10
-5

10
-4

10
-3

 noise level

0.4

0.45

0.5

0.55

0.6

0.65

0.7

 n
f

e
ff

ic
ie

n
c

y

VSBBON1

VSBBON2

VSBBO

a) b)

Figure 10.3: For the noise levels ω ∈ {10−5, 10−4, 10−3}. Subfigure (a) plots the number
of solved problems versus the noise level ω, while Subfigure (b) plots the nf
efficiency versus the noise level ω.

172

10.6 Additional material for VSBBON 173

10.6 Additional material for VSBBON

This section discusses additional material for VSBBON.

10.6.1 Default tuning parameters for VSBBON

VSBBON was written in Matlab; the source code is available at

http://www.mat.univie.ac.at/~kimiaei/software/VSBBON.

The values of tuning parameters for both cases, noiseless and noisy, are chosen as

m = 230; mmax = min(0.5n(n+ 3),m); T 0 = n; R = n; δmin = 0;
δmax = 1; γX = 100; γr = 10−30; γd1 = 2; Q = 1.5; dmin = 10−4;
γv = 100; γ = 10−6; γe = 3; dmax = 103; αinit = 0.01; αinit = 0.99;
γk = 0.85; model = 1; γd2 = 0.5; γp = 0.25;

The values of other tuning parameters are

γa :=
{

10−5 if ω = 0,
2.5 otherwise

and
αmin :=

{
10−30 if ω = 0,
10−3 otherwise.

There has almost been no effort to find the optimal tuning parameters. Probably, the efficiency
of VSBBON will be increased by properly optimizing them. This is still a work in progress
[116]. However, we identify what the best value is for the tuning parameter model. To do so,
VSBBON with model = 1 and model = 0 are denoted by VSBBON1 (the model-based) and
VSBBON2 (the model-free), respectively.

The trust region subproblem is solved by minq8 [104] whose tuning parameters are chosen

minqmax = 10000, minqeps = 10−8;

available at

https://www.mat.univie.ac.at/~neum/software/minq/

173

11 A new method for least squares
problems

This section discusses a new method for least squares problems, called LMLS. This is a joint
work with Arnold Neumaier (Kimiaei & Neumaier [115]). Main features of LMLS are a new
non-monotone technique, a new adaptive radius strategy, a new Broyden-like algorithm based
on the previous good points, and a heuristic estimation for the Jacobian matrix in an adaptive
subspace. Our numerical results show that LMLS is robust and efficient, especially in comparison
with solvers using traditional limited memory and standard quasi Newton approximations.

11.1 Overview of the new method

We suggest in Section 11.2 a new trust region-based limited memory algorithm for unconstrained
black box least squares, called LMLS. This algorithm uses
• a non-monotone ratio and an adaptive radius formula to quickly reach the minimizer when the
valley is narrow;
• a Broyden-like algorithm to get a decrease in the function value when the trust region radius
is so small and iteration is unsuccessful;
• a finite difference approximation in an adaptive subspace to estimate the Jacobian matrix;
• either a Gauss-Newton in an adaptive subspace or a dogleg algorithm in an adaptive subspace
to solve the trust region subproblems.

Numerical results for small, medium, and large scale problems are given in Section 11.3 showing
the fact that the new method is suitable for large scale problems and is more robust and efficient
than solvers using limited memory and standard quasi Newton approximations.

11.2 The trust region method

In this section, we construct an improved trust region algorithm handling for problems in high
dimensions:
• In Subsection 11.2.1 a new subspace Gauss-Newton direction is introduced.
• In Subsection 8.7.1 a non-monotone term and an adaptive technique are constructed to quickly
reach the minimizer in the presence of a narrow valley.
• In Subsection 11.2.3 a subspace dogleg algorithm is discussed.
• In Subsection 11.2.4 a Broyden-like technique is suggested based on the old best points.
• In Subsection 11.2.5 our algorithm using new enhancements is introduced.

174

11.2 The trust region method 175

We write J(x) for the Jacobian matrix of the residual vector E at x. Then the gradient vector
is g(x) := ∇f(x) := J(x)TE(x) and the Hessian matrix is

G(x) := J(x)TJ(x) +∇2E(x)TE(x)

If the residual vector E(x) is small, the second term inG(x) is small. Hence, we approximateG(x)
by the Gauss-Newton Hessian matrix J(x)TJ(x). We define the quadratic surrogate objective
function

Q(p) := 1
2‖E + Jp‖2 := f + pT g + 1

2(Jp)TJp, (11.1)

where f := f(x), E := E(x), J := J(x), g := g(x) := JTE. We denote by A:k the kth column of
a matrix A.

A trust region method finds a minimizer of the constrained problem

min Q(p)
s.t p ∈ Rn and ‖p‖ ≤ ∆,

(11.2)

whose constraint restricts feasible points by the trust region radius ∆ > 0. This problem
is called the trust region subproblem. Given a solution p of (11.2), we define the actual
reduction in the objective function by

df := f − f(x+ p) (11.3)

and the predicted reduction in the model function by

dq := Q(0)−Q(p). (11.4)

What constitutes an agreement between the actual and predicted reduction around the current
iterate x must be measured by the monotone trust region ratio

ρ := df

dq
. (11.5)

If such an agreement is good according to a heuristic formula discussed in Subsection 8.7.1, the
iteration is called successful, x + p is accepted as a new point, and the radius is expanded;
otherwise, the iteration is called unsuccessful and so the radius is reduced.

11.2.1 A new subspace Gauss-Newton method

In this subsection, we have two goals: estimating the Jacobian matrix in an adaptive subspace
and constructing a new subspace Gauss-Newton direction.

Let msn be the subspace size. The Jacobian matrix in an adaptive subspace is estimated by a
new subspace random finite difference called SRFD using the following steps:
(1) At first, an initial subspace is a random subset of {1, · · · , n} consisting of msn members and
its complementary is Sc := {1, · · · , n} \ S.
(2) Next, if the complementary of old subspace Scold is not empty, a new index set I needs to be
identified before a new subspace is determined. In this case, if I consists of at least msn members,
I is a random subset of {1, · · · ,msn} with the |Scold| members; otherwise, it is a permutation

175

176 A new method for least squares problems

of {1, · · · , |Scold|}. Then, a new subspace is determined by S := Scold(I) and its complementary
is found by Sc := Scold \ P . But if Scold is empty, a new subspace and its complementary are
restarted and chosen in the same way as the initial subspace and its complementary, respectively.
(3) For any i ∈ S,
• the step size is computed by

hi :=


γs if xi = 0,

γs(sign xi) max
{
|xi|,

‖x‖1

n

}
otherwise,

where 0 < γs < 1 is a tiny factor and sign xi identifies the sign of xi, taking one of values −1 (if
xi < 0), 0 (if xi = 0), and 1 (if xi > 0).
• the random approximation coordinate direction p discussed in [114] is used with the difference
that its ith component is updated by pi = pi + hi.
• the new trial residual E(x + αp) and the new column (E(x + αp) − E)/hi of the Jacobian
matrix are computed.

It is well known that standard quasi Newton methods are more robust than limited memory
quasi Newton ones, but they cannot handle for problems in high dimensions; for standard quasi
Newton methods, see [105, 106, 139, 153], and for limited memory quasi Newton methods, see
[124, 132, 139]. On the other hand, finite difference methods are more efficient than standard
quasi Newton ones. Hence, if used in an adaptive subspace, they can be more efficient than
limited memory quasi Newton methods for small up to large scale problems.

Using S and Sc generated and updated by SRFD, we construct a new subspace Gauss-
Newton direction by

(psn)i := 0 for i ∈ Sc and (psn)S := −(JT:SJ:S)−1JT:SE. (11.6)

11.2.2 New non-monotone and adaptive strategies

In this subsection, a new non-monotone term – stronger than the objective function f – is
constructed and a new adaptive radius formula to update ∆ is derived from it. They help
LMLS in finite precision arithmetic to quickly reach the minimizer in the cases where the valley
is deep with a small creek at the bottom and steep sides.

Our non-monotone term is updated not only for successful iterations but also for unsuccessful
iterations that may happen before a successful iteration is found. This choice is based on an
estimated increase in f defined below which is updated according to whether a decrease in f is
found or not. It helps us to generate a somewhat strong non-monotone term when a decrease
in f is not found and a somewhat weak non-monotone term otherwise. Somewhat strong non-
monotone terms increase the chance of finding a point with better function value or at least a
point with a little progress in the function value instead of solving trust region subproblems with
high computational costs.

We denote by X a list of best points and by F a list of corresponding function values. Let
mrs be the maximum number of good points saved in X. In order to update X and F , we use
updateXF. Here we describe how to work it. If mrs is not exceeded, points with good function
values are saved in X and their function values in F . Otherwise, the worst point and its function
value are found and replaced by the best point and its function value, respectively.

176

11.2 The trust region method 177

Let γt ∈ (0, 1), γ ∈ (0, 1), γinit > 0, and γ > 1 be the tuning parameters and let

fkmax := max
i=1:mrs

{F ki } for all k. (11.7)

Before a new non-monotone term is constructed, an estimated increase in f needs to be estimated
by

δkf :=


γinit|f0| if k = 0, f0 ∈ (0,∞),
1 if k = 0, f0 ∈ {−∞, 0,∞},
1
γ

(fk−1 − f(xk−1 + pk−1)) if k ≥ 1, f(xk−1 + pk−1) < fk−1,

max(γδk−1
f , γ(|f(xk−1 + pk−1)|+ |fkmax|)) if k ≥ 1, f(xk−1 + pk−1) ≥ fk−1.

(11.8)

Accordingly, the new non-monotone formula is defined by

fknm :=
{
f0 if k = 0,
fk + δkf if k ≥ 1 (11.9)

and the new adaptive radius is constructed by

∆k
nm := λk

√
fknm, (11.10)

where ∆0
nm > 0 is a tuning parameter and λk is updated according to

λk :=

 σ1λ
k−1, if ρk−1

nm < γt,

min(λ,max(σ2λ
k−1, λ)), otherwise.

(11.11)

Here λ0 > 0, 0 < σ1 < 1 < σ2, and λ > λ > 0 are the tuning parameters and the new
non-monotone trust region ratio is defined by

ρk−1
nm := fk−1

nm − f(xk−1 + pk−1)
Q̃k−1(0)− Q̃k−1(pk−1)

, (11.12)

where pk−1 is a solution of the following trust region subproblem in the subspace S by SRFD

min Q̃k−1(p) := 1
2‖E

k−1 + Jk−1
:S p‖2 := fk−1 + pT gk−1

S + 1
2(Jk−1

:S p)TJk−1
:S p

s.t p ∈ Rmsn and ‖p‖ ≤ ∆k−1
nm

(11.13)

with fk−1 := f(xk−1), Ek−1 := E(xk−1), Jk−1
:S := J:S(xk−1), and gk−1

S := (Jk−1
:S)TEk−1.

11.2.3 A subspace dogleg algorithm

We define the Cauchy step by

pc := −t∗gS , t∗ := argmin{Q̃(−tgS) | t ≥ 0, ‖tgS‖ ≤ ∆nm}. (11.14)

The goal is to solve the trust region subproblem (11.13) such that

‖p‖ ≤ ∆nm and Q̃(p) ≤ Q̃(pc) (11.15)

177

178 A new method for least squares problems

hold. After the subspace Gauss-Newton direction is computed by (11.6), if it is outside a trust
region, a subspace dogleg algorithm, called subDogleg, is used resulting in an estimated
step enforcing (11.15).

The model function Q̃ is reduced by (11.14) if dqsn := Q̃(0) − Q̃(psn) > 0. subDogleg first
identifies whether dqsn > 0 or not. Then we have one of the following cases:

Case 1. If dqsn > 0, the scaled steepest descent step

psd := − gTS gS
(JSgS)T (JSgS)gS (11.16)

is computed. If it is outside the trust region, an estimated solution of (11.2) is either the Cauchy
step computed by (11.14) or the dogleg step

pdg := psd + t(psn − psd); (11.17)

both of (11.16) and (11.17) are on the trust region boundary. Here t is found by solving the
equation ‖psd +t(psn−psd)‖ = ∆nm. If the condition dp := (psd)T (psn−psd) ≤ 0 holds, a positive
root is computed by

t :=
−dp+

√
dp2 + ‖psn − psd‖(∆2

nm − ‖psd‖2)
‖psn − psd‖2 ∈ (0, 1). (11.18)

Otherwise, t is computed by

t := ∆2
nm − ‖psd‖2

dp+
√
dp2 + ‖psn − psd‖(∆2

nm − ‖psd‖2)
∈ (0, 1); (11.19)

e.g., see [138].

Case 2. If dqsn ≤ 0, the model function Q̃ is convex since the matrix (JSgS)T (JSgS) is symmetric
and positive semidefinite. An estimated solution of (11.2) is either psd computed by (11.16) if it
is inside the trust region or the Cauchy step p := ∆nm(psd/‖psd‖) according to psd, otherwise.

11.2.4 A Broyden-like technique

Before a successful iteration is found by a trust region algorithm, the trust region subproblems
may be solved many times with high computational cost. Instead, our idea is to use a new
algorithm based on the previous best points in the hope of finding a point with good function
value.

Whenever LMLS cannot decrease the function value, a new Broyden-like technique, called Broy-
denLike, is used in the hope of getting a decrease in the function value. Let x1, · · · , xmrs be
the mrs best point stored in X. Then a point in the affine space spanned by such points has the
following form

xz := Xz, z ∈ Rm
rs
, eT z = 1, (11.20)

where e ∈ Rmrs is a vector all of whose components are one. Given B :=
(
X
e

)
, the linear

approximation E(xz) ≈ Bz is used to replace (4.3) by the surrogate problem

min 1
2‖Bz‖

2
2

s.t. eT z = 1.
(11.21)

178

11.2 The trust region method 179

This is a quality constrained convex quadratic problem in mrs variables; hence can be solved in
closed form. Then a QR factorization is made in the form B = QR, where Q is an orthogonal
matrix and R is a square upper triangular matrix. By setting Z := R−1, we make the substitution
z := Zy, define aT := eTZ, and obtain the mrs-dimensional minimal norm linear feasibility
problem

min 1
2‖y‖

2
2

s.t. aT y = 1
(11.22)

whose solution is y := a/‖a‖2. Hence, a new trial point for the next algorithm is

xtrial := xz := XR−1a/‖a‖2. (11.23)

BroydenLike tries to find a point with better function value when no decrease in f is found
along p. It takes X, F , x, E, B, f , δf , and fnm as input and uses the following tuning parameter:
γ ∈ (0, 1) (tiny factor for adjusting δf),
γ > 1 (parameter for expanding δf),
γs (tiny parameter for the finite difference step size),
mrs (memory for affine space),
0 < γr < 1 (tiny parameter for adjusting the scaled random directions).
It returns a new δf and fnm (and f , X, F , E, S, and JS if a decrease in f is found) as output.

11.2.1 Algorithm. (BroydenLike, a Broyden-like method)
(BL0) Make a QR factorization for the matrix B and get the square upper triangular matrix R.
(BL1) A new trial point. Compute the new trial point xtrial by (11.23) and Etrial := E(xtrial).
Then set f trial := 0.5‖Etrial‖2. If f trial ≤ fnm, then
(1) set x := xtrial, E := Etrial, and f := f trial;
(2) save x in X and f in F by updateXF;
(3) compute S and JS := J:S(x) by SRFD;
Then update δf by (11.8) and compute fnm by (11.9).

Since the Jacobian matrix may be singular or indefinite, a new point may move toward a max-
imizer. To remedy this disadvantage, BroydenLike does not lead to accept such a point with
largest function value; like a maximizer.

11.2.5 A limited memory trust region algorithm

We describe all steps of a new limited memory algorithm, called LMLS using the new
subspace direction (11.6), the new non-monotone technique (11.9), the new adaptive radius
strategy (11.10), and BroydenLike.

In each iteration, an estimated solution of the trust region subproblem (11.13) is found. Whenever
the condition ρnm ≥ γt holds, the iteration is called successful while updating both the non-
monotone term (11.9) and adaptive radius formula (11.10), and estimating the Jacobian matrix
in an adaptive subspace by SRFD. Otherwise, the iteration is called unsuccessful. In this case,
BroydenLike is performed in the hope of finding a decrease in the function value. If a decrease
in the function value is found, the iteration becomes successful; otherwise, it remains unsuccessful

179

180 A new method for least squares problems

while reducing the radius and updating the non-monotone term (11.9) until a decrease in the
function value is found and the iteration becomes successful.

LMLS solves a unconstrained nonlinear black box least squares problems. This algorithm takes
the initial point x0, and maximal number of function evaluations (nfmax). It uses the following
tuning parameters:
msn (subspace size),
γt ∈ (0, 1) (parameter for trust region),
0 < σ1 < 1 < σ2 (parameters for updating λ),
γinit (parameter for updating the initial δf),
γ ∈ (0, 1) (tiny factor for adjusting δf),
γ > 1 (parameter for expanding δf),
λ (lower bound for λ),
λ (upper bound for λ),
γs (tiny parameter for adjusting finite difference step sizes),
0 < γr < 1 (tiny parameter for adjusting random approximation coordinate directions).
It returns a solution xbest of a nonlinear least squares problem as output.

11.2.2 Algorithm. (LMLS, limited memory method for least squares problems)
(LM0) Initialization:
(1) Choose λ0 ∈ (λ, λ).
(2) Compute E0 := E(x0) and set f0 := 0.5‖E0‖2. Then set X := x0 and F := f0.
(3) Compute the initial subspace S and J:S(x0) by SRFD.
(4) Compute g0

S := JT:S(x0)E0 and δ0
f by (11.8).

for ` = 0, 1, 2, · · · do
(LM1) Compute the subspace Gauss-Newton direction p` := p`sn by (11.6).
(LM2) If ‖p`sn‖ > ∆`

nm, obtain an approximated solution p` of (11.13) by calling
subDogleg, which is a variant of dogleg.m, available at
http://www.math.ubc.ca/~loew/m604/mfiles.htm
but with the difference that
(1) t is recomputed by (11.19) when t computed by (11.18) is not positive,
(2) it can be handled for problems in high dimensions,
(3) the concavity of Q̃ is ignored,
(4) an adaptive subspace is used.
(LM3) If (g`)T p` ≥ 0, which may happen, e.g., due to rounding errors, we modify the
search direction according to ind := {i | g`ip`i > 0} and p`ind := −p`ind so that the descent
condition (g`)T p` < 0 holds.
(LM4) A new trial point:
(1) Compute xtrial := x` + p`, Etrial := E(xtrial), and f trial := 0.5‖Etrial‖2.
(2) If nfmax is exceeded, LMLS ends, resulting xbest = x`.
(3) Otherwise, compute ρ`nm by (11.12); if ρ`nm < γt, go to (LM5); otherwise, go to (LM6).
(LM5) Unsuccessful iteration:
(1) Call BroydenLike. If a decrease in f is found go to (LM6).
(2) Update δ`+1

f by (11.8) and f `+1
nm by (11.9).

(3) Reduce λ`+1 to (11.11) and the radius ∆`+1
nm to (11.10). Then go to (LM2).

(LM6) Successful iteration:
(1) Set x`+1 := xtrial, f `+1 := f trial, and E`+1 := Etrial.
(2) Compute the new subspace S and J:S(x`+1) by SRFD and compute g`+1

S := J:S(x`+1)TE`+1.
(3) Update δ`+1

f by (11.8) and f `+1
nm by (11.9).

180

11.3 Numerical results 181

(4) Expand λ`+1 to (11.11) and ∆`+1
nm to (11.10).

(5) Store x`+1 in X and f `+1 in F by updateXF.
end for

LMLS was implemented in Matlab; the source code is available at

http://www.mat.univie.ac.at/~neum/software/LMLS.

11.3 Numerical results

We updated the test environment discussed in Section 5 to use test problems by Lukšan et
al. [127], classified in Table 11.2 according to whether they are overdetermined (r > n) or
not (r = n). A shifted point for these problems is done by (5.1). LMLS is compared with
unconstrained least squares and unconstrained optimization solvers (discussed in Subsection
11.4.3), for some of which we had to choose options different from the default to make them
competitive.

nfmax and secmax are chosen as

nfmax ∈

 {10n, 50n, 100n, 500n} if 1 ≤ n ≤ 100,
{10n, 50n, 100n} if 101 ≤ n ≤ 1000
{10n, 100n} if 1001 ≤ n ≤ 10000

and
secmax :=

{
300 if 1 ≤ n ≤ 100,
800 if 101 ≤ n ≤ 10000.

If the condition
qso ≤

{
10−8 if 1 ≤ n ≤ 100,
10−3 if 101 ≤ n ≤ 10000,

holds then the problem is solved. Otherwise, the problem is unsolved; either nfmax or secmax
is exceeded, or the solver fails. Here qso comes from (5.3) and the nf efficiency comes from
Subsection 5.4.

11.3.1 Small scale: 1 ≤ n ≤ 100

A comparison among LMLS1, LMLS2, LMLS3, LMLS4, and solvers using quasi Newton is
shown in Subfigures (a) and (b) of Figure 11.1, so that
• LMLS4 using the full estimated Jacobian matrix is the best in terms of the number of solved
problems and the nf efficiency;
• LMLS3, LMLS2, and LMLS1 are more efficient than solvers using quasi Newton approxi-
mation (FMINUNC, FMINUNC1, MINFLBFGS1, and MINFLBFGSDL1) in terms of
the nf efficiency;
• FMINUNC and MINFLBFGSDL1 are comparable with LMLS3 – only for very large
budget – in terms of the number of solved problems but LMLS3, LMLS2, and LMLS1 are
more efficient than FMINUNC and MINFLBFGSDL1 in terms of the nf efficiency not only
for very large budget but also for small up to large budgets.

181

182 A new method for least squares problems

To determine whether our new non-monotone and adaptive radius strategies are effective or
not, we compare LMLS4 with solvers using other non-monotone and adaptive radius strategies,
shown in Subfigures (c) and (d) of Figure 11.1. All solvers use the full Jacobian matrix and
the trust region subproblems are solved by the same algorithm. As can be seen, LMLS4 is
much more efficient and robust than NATRLS1, NMPGTR2, and NATRN1 in terms of the
number of solved problems and the nf efficiency.

We compare LMLS4 with four famous solvers LSQNONLIN1, CoDoSol1, NLEQ1, and
DOGLEG1 shown in Subfigures (e) and (f) of Figure 11.1. It is seen that LMLS4 and Co-
DoSol1 are the two best solvers in terms of the nf efficiency while LMLS4 and DOGLEG1
are the two best solvers in terms of the number of solved problems.

Another comparison is among LMLS3, LMLS2, and LMLS1 using the Jacobian matrix in
adaptive subspace and LSQNONLIN1 and NLEQ1 using the full Jacobian matrix. We con-
clude from Subfigures (g) and (h) of Figure 11.1 that
• LMLS3 is the best in terms of the number of solved problems and the nf efficiency;
• LMLS2 is the second best solver in terms of the number of solved problems and the nf effi-
ciency for medium, large, and very large budgets;
• LMLS1 with lowest subspace size is more efficient than LSQNONLIN1 in terms of the
number of solved problems and the nf efficiency; even it is more efficient than NLEQ1 for very
large budget in terms of the nf efficiency.

As a result, LMLS is competitive for small scale problems in comparison with the state-of-the-art
solvers.

All efficiency tables and performance plots are given in Subsection 11.4.4.

182

11.3 Numerical results 183

10n 50n 100n 500n

 nfmax

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 n
f

e
ff

ic
ie

n
c
y

LMLS4

LMLS3

LMLS2

LMLS1

FMINUNC1

FMINUNC

MINFLBFGS1

MINFLBFGSDL1

10n 50n 100n 500n

 nfmax

0

50

100

150

200

250

300

350

400

 n
u

m
b

e
r

o
f

s
o

lv
e
d

 p
ro

b
le

m
s

LMLS4

LMLS3

LMLS2

LMLS1

FMINUNC1

FMINUNC

MINFLBFGS1

MINFLBFGSDL1

a) b)

10n 50n 100n 500n

 nfmax

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 n
f

e
ff

ic
ie

n
c
y

LMLS4

NATRLS1

NMPGTR2

NATRN1

10n 50n 100n 500n

 nfmax

0

50

100

150

200

250

300

350

400

 n
u

m
b

e
r

o
f

s
o

lv
e

d
 p

ro
b

le
m

s

LMLS4

NATRLS1

NMPGTR2

NATRN1

c) d)

10n 50n 100n 500n

 nfmax

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 n
f

e
ff

ic
ie

n
c
y

LMLS4

DOGLEG1

CoDoSol1

NLEQ1

LSQNONLIN1

10n 50n 100n 500n

 nfmax

0

50

100

150

200

250

300

350

400

450

 n
u

m
b

e
r

o
f

s
o

lv
e
d

 p
ro

b
le

m
s

LMLS4

DOGLEG1

CoDoSol1

NLEQ1

LSQNONLIN1

e) f)

10n 50n 100n 500n

 nfmax

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 n
f

e
ff

ic
ie

n
c
y

LMLS3

LMLS2

LMLS1

NLEQ1

LSQNONLIN1

10n 50n 100n 500n

 nfmax

0

50

100

150

200

250

300

350

400

 n
u

m
b

e
r

o
f

s
o

lv
e
d

 p
ro

b
le

m
s

LMLS3

LMLS2

LMLS1

NLEQ1

LSQNONLIN1

g) h)

Figure 11.1: Performance plots for small scale problems. (a) – (b): A comparison of
limited memory solvers, (c) – (d): A comparison among LMLS in a full
subspace and solvers using other non-monotone and adaptive radius tech-
niques, (e) – (f): A comparison among LMLS in a full subspace and other
famous solvers, (g) – (h): A comparison among low-dimensional LMLS1,
LMLS2, LMLS3 and NLEQ1 and LSQNONLIN1 using full estimated
Jacobian.

183

184 A new method for least squares problems

11.3.2 Medium scale: 101 ≤ n ≤ 1000

In this subsection, we compare LMLS1, LMLS2, LMLS3, LMLS4 using the estimated Jaco-
bian matrices in an adaptive subspace with FMINUNC using standard BFGS approximations
and FMINUNC1 using limited memory BFGS ones.

From Subfigures (a) and (b) of Figure 11.2, we conclude that
• LMLS4, LMLS3, and LMLS2 are the three best solvers in terms of the nf efficiency, respec-
tively;
• LMLS4 is the best solver in terms of the number of solved problems; only FMINUNC is the
best for large budget.

All efficiency tables and performance plots are given in Subsection 11.4.4.

10n 50n 100n

 nfmax

0

0.1

0.2

0.3

0.4

0.5

0.6

 n
f

e
ff

ic
ie

n
c
y

LMLS4

LMLS3

LMLS2

LMLS1

FMINUNC1

FMINUNC

10n 50n 100n

 nfmax

0

20

40

60

80

100

120

140

160

180

 n
u

m
b

e
r

o
f

s
o

lv
e

d
 p

ro
b

le
m

s

LMLS4

LMLS3

LMLS2

LMLS1

FMINUNC1

FMINUNC

a) b)

Figure 11.2: (a) – (b): Performance plots for medium scale problems

184

11.4 Additional material for LMLS 185

11.3.3 Large scale: 1001 ≤ n ≤ 10000

In this subsection, we compare LMLS1, LMLS2, LMLS3, LMLS4 using the estimated Jaco-
bian matrices in an adaptive subspace with FMINUNC1 using limited memory BFGS approx-
imations.

In terms of the nf efficiency and the number of solved problems, Subfigures (a) and (b) of Figure
11.3 result in the fact that
• LMLS4, LMLS3, and LMLS2 are the three best solvers, respectively;
• LMLS1 with lowest subspace size is more efficient than FMINUNC1 for small budget while
FMINUNC1 is more efficient than LMLS1 for large budget.

All efficiency tables and performance plots are given in Subsection 11.4.4.

10n 100n

 nfmax

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 n
f

e
ff

ic
ie

n
c

y

LMLS4

LMLS3

LMLS2

LMLS1

FMINUNC1

10n 100n

 nfmax

0

20

40

60

80

100

120

 n
u

m
b

e
r

o
f

s
o

lv
e
d

 p
ro

b
le

m
s

LMLS4

LMLS3

LMLS2

LMLS1

FMINUNC1

a) b)

Figure 11.3: (a) – (b): Performance plots for large scale problems

11.4 Additional material for LMLS

This section discusses additional material for LMLS.

11.4.1 Default tuning parameters for LMLS

The tuning parameters for LMLS are chosen as

mnm = 10; γr = 10−30; γp = 5εm; γs = √εm; γt = 0.1; σ1 = 0.5;
σ2 = 1; γinit = 10−8; γm = 10−30; λ = 10−4; ∆0 = 10; ∆min = 10−6;
λ0 = 1; λ = 105;

185

186 A new method for least squares problems

11.4.2 Test problem selection

Table 11.2: A classification of test problems

Dimensions (n) 3 5 10 16 30 50 100 300 500 1000 5000 10000

Total number of least squares problems (r ≥ n) 49 69 76 83 83 83 83 83 83 83 83 83

Number of square problems (r = n) 43 53 55 62 62 62 62 62 62 62 62 62

Number of least squares problems with r > n 6 16 21 21 21 21 21 21 21 21 21 21

11.4.3 Codes compared

• CoDoSol is a solver for constrained nonlinear systems of equations, obtained from

http://codosol.de.unifi.it.

It combines Newton method and a trust-region method, see [13]. The following option used

parms = [maxit, maxnf, tr, delta, scaling, outflag] = [inf, nfmax, 1,−1, 0, 2].

Note that delta = −1 means that ∆0 = 1. According to our numerical results, CoDoSol was
not sensitive for the initial radius; hence, the default used.
• STRSCNE is a solver for constrained nonlinear systems of equations, obtained from

http://codosol.de.unifi.it.

It combines Newton method and a trust-region procedure, see [12]. The option

parms = [maxit, maxnf, delta, outflag] = [inf, nfmax,−1, 0]

used. Note that delta = −1 means that ∆0 = 1. According to our numerical results,
STRSCNE was not sensitive for the initial radius; hence, the default used for ∆0.
• NLEQ1 is a damped affine invariant Newton method for nonlinear systems, obtained from

http://elib.zib.de/pub/elib/codelib/nleq1_m/nleq1.m

and suggested by Deuflhard [57] and written by Nowak & Weimann [141]. The default tuning
parameters used; only we selected iopt.jacgen = 2, iopt.qrank1 = 1 and wk.fmin = 1e− 50.
• NLEQ2 is the same as NLEQ1; only we selected iopt.qrank1 = 0.
• MINLBFGS is a L-BFGS with line search algorithm, obtained from

https://www.tensorlab.net/

and written by Sorber et al. [155]. The default parameters used, except for m. MINLBFGS1
and MINLBFGS2 denote MINLBFGS with m = min(n, 30) and m = min(n, 100), respec-
tively.
• MINLBFGSDL is a L-BFGS with dogleg trust region algorithm with the option set

MaxIter = nfmax, TolFun = 1e− 50, TolX = 1e− 50.

186

11.4 Additional material for LMLS 187

The default parameters used for PlaneSearch and M . MINLBFGSDL1, MINL-
BFGSDL2, MINLBFGSDL3, and MINLBFGSDL4 denoted MINLBFGSDL with
(1) PlaneSearch = false and M = min(30, n),
(2) PlaneSearch = false and M = min(100, n),
(3) PlaneSearch = true and M = min(30, n),
(4) PlaneSearch = true and M = min(100, n).
According to our results, MINLBFGSDL1 was the best.
• MINFNCG is a nonlinear conjugate gradient solver, obtained from

https://www.tensorlab.net/

and written by Sorber et al. [155]. It used the following option set

MaxIter = nfmax; TolFun = 1e− 50; TolX = 1e− 50.

The other tuning parameter was Beta ∈ {HS, HSm, PR, FR, PRm, SD}. MINFNCG1, MINFNCG2,
MINFNCG3, MINFNCG4, MINFNCG5, and MINFNCG6 denoted MINFNCG with
Beta = HS, Beta = HSm, Beta = PR, Beta = FR, Beta = PRm, and Beta = SD, respectively.
• NLSQERR is a global unconstrained Gauss-Newton method with error oriented convergence
criterion and adaptive trust region strategy [57], obtained from

http://elib.zib.de/pub/elib/codelib/NewtonLib/index.html

The following options used

iniscalx = 0; rescalx = 0; xthrsh = ones(n, 1);
xtol = 1.e− 50; ftol = 1.e− 50; kmax = nfmax;
printmon = 2; printsol = 1; fid = 1; numdif = 1;
lambda0 = eps; lambdamin = 1e− 50; ftol = 1.e− 50.

• NMPNTR, nonmonotone projected Newton trust region method, is a bound constrained
solver [112]. NMPNTR1, NMPNTR2, NMPNTR3, and NMPNTR4 denoted NMP-
NTR with ∆0 = 1, ∆0 = 10, ∆0 = 100, and ∆0 = 500, respectively. According to our results,
NMPNTR2 was the best.
• NATRN is a nonmonotone trust region algorithm [5] using the full finite difference approxi-
mation. The subproblem solved in the same way as LMLS. NATRN1, NATRN2, NATRN3,
and NATRN4 denoted NATRN with ∆0 = 1, ∆0 = 10, ∆0 = 100, and ∆0 = 500, respectively.
According to our results, NATRN1 had the best performance.
• NATRLS is a nonmonotne line search and trust region algorithm [6] using the full finite
difference approximation. The subproblem solved in the same way as LMLS. NATRLS1, NA-
TRLS2, NATRLS3, and NATRLS4 denoted NATRLS with ∆0 = 1, ∆0 = 10, ∆0 = 100,
and ∆0 = 500, respectively. According to our results, NATRLS1 had the best performance.
• LSQNONLIN1, obtained from the Matlab Optimization Toolbox at,

https://de.mathworks.com/help/optim/ug/lsqnonlin.html

is nonlinear least-squares solver with the following options:

options = optimoptions(@lsqnonlin,‘Algorithm’, ‘levenberg-marquardt’,
‘FiniteDifferenceType’,‘forward’, ‘MaxIter’, Inf,‘MaxFunEvals’, nfmax,

187

188 A new method for least squares problems

‘TolX’, 0,‘SpecifyObjectiveGradient’,‘false’).
• LSQNONLIN2, obtained from the Matlab Optimization Toolbox at,

https://de.mathworks.com/help/optim/ug/lsqnonlin.html

is nonlinear least-squares solver with the following options:

options = optimoptions(@lsqnonlin,‘Algorithm’, ‘trust-region reflective’,
‘FiniteDifferenceType’,‘forward’,‘MaxIter’, Inf,‘MaxFunEvals’, nfmax, ‘TolX’,
0,‘SpecifyObjectiveGradient’,‘false’).
• DOGLEG is Powell’s dogleg method for least squares problems, which is the best algorithm
from the toolbox of immoptibox.zip [138], available at

http://www2.imm.dtu.dk/projects/immoptibox/

The following option used

opts = [∆0, tolg, tolx, tolr, maxeval] = [∆0, 1e− 50, 1e− 50, 1e− 50, nfmax].

DOGLEG1, DOGLEG2, DOGLEG3, and DOGLEG4 denoted DOGLEG with ∆0 = 1,
∆0 = 10, ∆0 = 100, and ∆0 = 500, respectively. The best version was DOGLEG1.

Unconstrained solvers:
• FMINUNC, obtained from the Matlab Optimization Toolbox at

https://ch.mathworks.com/help/optim/ug/fminunc.html,

is a standard quasi-Newton algorithm. We used FMINUNC with the options set

opts = optimoptions(@fminunc),‘Algorithm’,‘quasi-newton’, ‘Display’, ‘Iter’,
‘MaxIter’,Inf,‘MaxFunEvals’, nfmax, ‘TolX’, 0,‘TolFun’,0,‘ObjectiveLimit’,-1e-50).
• FMINUNC1 is FMINUNC with the limited memory quasi Newton approximation by Liu
& Nocedal [124]. It has been added to FMINUNC by the present authors. The option set
for it is the same as FMINUNC; only the memory m = 10 added to the option set.

11.4.4 Tables and plots

188

11.4 Additional material for LMLS 189

Table 11.3: Results for small scale and small budget

stopping test: qf ≤ 1e-08, sec ≤ 300, nf ≤ 10*n

367 of 526 problems without bounds solved mean efficiency in %
dim∈[1,100] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

LMLS4 lmtr4 304 204 15 52 222 0 0 53 46
CoDoSol1 codo1 300 197 30 56 219 0 7 52 40
NATRLS1 natrs1 284 63 8 67 242 0 0 40 30
DOGLEG1 dogleg1 280 70 11 98 246 0 0 38 22
NMPGTR2 nmpg2 254 172 8 55 272 0 0 43 31
LMLS3 lmtr3 252 156 4 53 274 0 0 42 35
NLEQ1 nleq1 201 42 30 77 145 0 180 33 16
LMLS2 lmtr2 184 91 7 75 342 0 0 29 22
NATRN1 natrn1 179 54 11 89 347 0 0 26 18
LMLS1 lmtr1 110 47 20 112 416 0 0 16 10
STRSCNE1 strs1 70 69 0 28 107 0 349 13 7
FMINUNC1 func1 69 2 0 123 455 0 2 6 4
FMINUNC func 58 2 0 139 468 0 0 5 4
MINFLBFGS1 lbfgs1 23 0 0 227 449 0 54 1 0
LSQNONLIN1 lsqn1 1 1 1 50 525 0 0 0 0
MINFLBFGSDL1 minlbfgs1 1 0 0 30 525 0 0 0 0
MINFNCG1 MINFNCG1 0 0 0 − 514 0 12 0 0

Table 11.4: Results for small scale and medium budget

stopping test: qf ≤ 1e-08, sec ≤ 300, nf ≤ 50*n

474 of 526 problems without bounds solved mean efficiency in %
dim∈[1,100] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

DOGLEG1 dogleg1 419 80 17 148 107 0 0 55 30
LMLS4 lmtr4 416 228 17 108 110 0 0 66 59
CoDoSol1 codo1 398 226 52 90 107 0 21 65 54
NATRLS1 natrs1 364 79 21 81 162 0 0 51 39
LMLS3 lmtr3 359 177 8 124 167 0 0 55 46
NMPGTR2 nmpg2 343 191 22 79 183 0 0 53 40
LMLS2 lmtr2 282 111 16 197 244 0 0 40 29
NATRN1 natrn1 222 63 17 117 304 0 0 31 22
NLEQ1 nleq1 222 42 30 77 122 0 182 35 18
FMINUNC func 219 4 3 167 292 0 15 13 11
LMLS1 lmtr1 206 49 21 253 320 0 0 24 15
FMINUNC1 func1 179 8 7 177 345 0 2 13 10
MINFLBFGSDL1 minlbfgs1 168 0 0 286 358 0 0 5 5
MINFLBFGS1 lbfgs1 133 0 0 200 339 0 54 5 4
LSQNONLIN1 lsqn1 131 1 1 314 395 0 0 5 4
STRSCNE1 strs1 72 69 0 28 1 0 453 13 8
MINFNCG1 MINFNCG1 47 0 0 698 458 0 21 1 1

189

190 A new method for least squares problems

10
0

10
1

10
2

10
3

nf

0.2

0.4

0.6

0.8

1

10
0

10
2

10
4

10
6

msec

10
-1

10
0

a) b)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for msec

c) d)

Figure 11.4: (a) and (b): Performance plots for nf/(best nf) and msec/(best msec),
respectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver.
Problems solved by no solver are ignored. (c) – (d): Performance plots
for nf/(best nf) and msec/(best msec), respectively. ρ designates the
fraction of problems solved within the number of function evaluations and
time in milliseconds used by the best solver. Problems solved by no solver
are ignored.

190

11.4 Additional material for LMLS 191

10
0

10
1

10
2

10
3

10
4

nf

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
0

10
2

10
4

10
6

msec

10
-1

10
0

a) b)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for msec

c) d)

Figure 11.5: (a) – (b): Performance plots for nf/(best nf) and msec/(best msec), re-
spectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver.
Problems solved by no solver are ignored. (c) – (d): Performance plots for
nf/(best nf) and msec/(best msec), respectively. ρ designates the frac-
tion of problems solved within the number of function evaluations and time
in milliseconds used by the best solver. Problems solved by no solver are
ignored.

191

192 A new method for least squares problems

Table 11.5: Results for small scale and large budget

stopping test: qf ≤ 1e-08, sec ≤ 300, nf ≤ 100*n

493 of 526 problems without bounds solved mean efficiency in %
dim∈[1,100] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

DOGLEG1 dogleg1 434 82 19 167 92 0 0 56 31
LMLS4 lmtr4 424 229 17 113 102 0 0 67 59
CoDoSol1 codo1 408 227 53 103 88 0 30 66 54
NATRLS1 natrs1 375 87 27 104 151 0 0 53 39
LMLS3 lmtr3 374 177 9 150 152 0 0 56 48
NMPGTR2 nmpg2 365 196 25 103 160 0 1 54 40
FMINUNC func 313 6 4 351 170 0 43 16 14
LMLS2 lmtr2 306 106 12 257 220 0 0 41 31
MINFLBFGSDL1 minlbfgs1 272 2 2 453 244 0 10 9 8
LMLS1 lmtr1 231 53 24 437 295 0 0 25 17
MINFLBFGS1 lbfgs1 230 0 0 349 232 0 64 8 6
NATRN1 natrn1 225 65 19 121 301 0 0 32 22
NLEQ1 nleq1 223 43 30 79 121 0 182 35 17
FMINUNC1 func1 209 8 6 327 297 0 20 14 12
LSQNONLIN1 lsqn1 155 1 1 374 371 0 0 6 4
MINFNCG1 MINFNCG1 136 0 0 524 365 0 25 2 2
STRSCNE1 strs1 72 69 0 28 1 0 453 13 7

Table 11.6: Results for small scale and very large budget

stopping test: qf ≤ 1e-08, sec ≤ 300, nf ≤ 500*n

509 of 526 problems without bounds solved mean efficiency in %
dim∈[1,100] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

DOGLEG1 dogleg1 444 79 18 220 82 0 0 57 31
LMLS4 lmtr4 437 229 18 159 89 0 0 68 58
CoDoSol1 codo1 422 226 54 172 61 0 43 67 55
FMINUNC func 411 8 7 761 20 0 95 19 17
NMPGTR2 nmpg2 407 194 25 378 110 1 8 56 42
LMLS3 lmtr3 393 178 9 343 133 0 0 56 47
MINFLBFGSDL1 minlbfgs1 385 6 6 723 69 0 72 11 12
NATRLS1 natrs1 384 89 31 143 142 0 0 54 41
LMLS2 lmtr2 353 107 14 998 173 0 0 42 31
MINFLBFGS1 lbfgs1 342 4 4 973 56 0 128 10 9
LMLS1 lmtr1 300 53 25 1302 226 0 0 27 17
MINFNCG1 MINFNCG1 283 0 0 990 194 0 49 3 4
FMINUNC1 func1 283 8 7 534 205 0 38 15 13
NATRN1 natrn1 230 63 17 178 296 0 0 32 22
NLEQ1 nleq1 224 42 30 82 120 0 182 35 18
LSQNONLIN1 lsqn1 209 1 1 690 316 1 0 6 5
STRSCNE1 strs1 72 69 0 29 1 0 453 13 6

192

11.4 Additional material for LMLS 193

10
0

10
1

10
2

10
3

10
4

nf

0.4

0.5

0.6

0.7

0.8

0.9

1

10
0

10
2

10
4

10
6

msec

0.2

0.4

0.6

0.8

1

a) b)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for msec

c) d)

Figure 11.6: (a) – (b): Performance plots for nf/(best nf) and msec/(best msec), re-
spectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver.
Problems solved by no solver are ignored. (c) – (d): Performance plots for
nf/(best nf) and msec/(best msec), respectively. ρ designates the frac-
tion of problems solved within the number of function evaluations and time
in milliseconds used by the best solver. Problems solved by no solver are
ignored.

193

194 A new method for least squares problems

10
0

10
5

nf

0.4

0.5

0.6

0.7

0.8

0.9

1

10
0

10
2

10
4

10
6

msec

0.2

0.4

0.6

0.8

1

a) b)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for msec

c) d)

Figure 11.7: (a) – (b): Performance plots for nf/(best nf) and msec/(best msec), re-
spectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver.
Problems solved by no solver are ignored. (c) – (d): Performance plots for
nf/(best nf) and msec/(best msec), respectively. ρ designates the frac-
tion of problems solved within the number of function evaluations and time
in milliseconds used by the best solver. Problems solved by no solver are
ignored.

194

11.4 Additional material for LMLS 195

Table 11.7: Results for medium scale and small budget

stopping test: qf ≤ 0.001, sec ≤ 800, nf ≤ 10*n

154 of 249 problems without bounds solved mean efficiency in %
dim∈[101,1000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

LMLS4 lmls4 119 49 48 13738 129 1 0 37 37
FMINUNC1 func1 114 40 14 11271 133 2 0 29 35
LMLS3 lmtr3 110 30 28 15401 138 1 0 34 28
LMLS2 lmtr2 105 22 21 15006 143 1 0 31 20
LMLS1 lmtr1 97 15 15 18207 151 1 0 27 21
FMINUNC func 93 26 0 13702 154 2 0 22 24

Table 11.8: Results for medium scale and budget

stopping test: qf ≤ 0.001, sec ≤ 800, nf ≤ 50*n

188 of 249 problems without bounds solved mean efficiency in %
dim∈[101,1000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

LMLS4 lmtr4 169 58 56 11582 78 2 0 50 46
LMLS3 lmtr3 168 48 47 12980 79 2 0 47 37
FMINUNC func 168 32 5 11064 78 3 0 36 42
FMINUNC1 func1 165 43 16 10503 81 3 0 39 50
LMLS2 lmtr2 164 16 15 15614 84 1 0 43 25
LMLS1 lmtr1 159 20 20 15399 88 2 0 38 28

195

196 A new method for least squares problems

10
2

10
3

10
4

nf

0.4

0.5

0.6

0.7

0.8

0.9

1

10
0

10
2

10
4

10
6

msec

0.4

0.5

0.6

0.7

0.8

0.9

1

a) b)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for msec

c) d)

Figure 11.8: (a) – (b): Performance plots for nf/(best nf) and msec/(best msec), re-
spectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver.
Problems solved by no solver are ignored. (c) – (d): Performance plots for
nf/(best nf) and msec/(best msec), respectively. ρ designates the frac-
tion of problems solved within the number of function evaluations and time
in milliseconds used by the best solver. Problems solved by no solver are
ignored.

196

11.4 Additional material for LMLS 197

10
2

10
3

10
4

10
5

nf

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

10
0

10
2

10
4

10
6

msec

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

a) b)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for msec

c) d)

Figure 11.9: (a) – (b): Performance plots for nf/(best nf) and msec/(best msec), re-
spectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver.
Problems solved by no solver are ignored. (c) – (d): Performance plots for
nf/(best nf) and msec/(best msec), respectively. ρ designates the frac-
tion of problems solved within the number of function evaluations and time
in milliseconds used by the best solver. Problems solved by no solver are
ignored.

197

198 A new method for least squares problems

10
2

10
3

10
4

10
5

nf

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

10
0

10
2

10
4

10
6

msec

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

a) b)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for msec

c) d)

Figure 11.10: (a) – (b): Performance plots for nf/(best nf) and msec/(best msec), re-
spectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver.
Problems solved by no solver are ignored. (c) – (d): Performance plots
for nf/(best nf) and msec/(best msec), respectively. ρ designates the
fraction of problems solved within the number of function evaluations and
time in milliseconds used by the best solver. Problems solved by no solver
are ignored.

198

11.4 Additional material for LMLS 199

Table 11.9: Results for medium scale and large budget

stopping test: qf ≤ 0.001, sec ≤ 800, nf ≤ 100*n

198 of 249 problems without bounds solved mean efficiency in %
dim∈[101,1000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

FMINUNC func 189 44 18 14603 55 3 2 41 48
FMINUNC1 func1 178 46 20 12133 66 3 2 41 52
LMLS3 lmtr3 176 39 37 16832 71 2 0 48 36
LMLS4 lmtr4 174 53 51 18938 73 2 0 50 47
LMLS2 lmtr2 167 24 24 18182 81 1 0 42 24
LMLS1 lmtr1 165 20 20 28711 84 0 0 38 26

Table 11.10: Results for large scale and small budget

stopping test: qf ≤ 0.001, sec ≤ 800, nf ≤ 10*n

132 of 166 problems without bounds solved mean efficiency in %
dim∈[1001,10000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

LMLS4 lmtr4 101 47 44 265873 47 17 1 48 45
LMLS3 lmtr3 97 22 19 242590 57 10 2 43 42
LMLS2 lmtr2 94 11 10 262404 60 8 4 43 41
LMLS1 lmtr1 86 22 21 302069 60 14 6 37 32
FMINUNC1 func1 81 36 35 197750 60 24 1 34 37

199

200 A new method for least squares problems

10
0

10
5

nf

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
2

10
3

10
4

10
5

10
6

msec

0.5

0.6

0.7

0.8

0.9

1

a) b)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for msec

c) d)

Figure 11.11: (a) – (b): Performance plots for nf/(best nf) and msec/(best msec), re-
spectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver.
Problems solved by no solver are ignored. (c) – (d): Performance plots
for nf/(best nf) and msec/(best msec), respectively. ρ designates the
fraction of problems solved within the number of function evaluations and
time in milliseconds used by the best solver. Problems solved by no solver
are ignored.

200

11.4 Additional material for LMLS 201

Table 11.11: Results for large scale and budget

stopping test: qf ≤ 0.001, sec ≤ 800, nf ≤ 100*n

147 of 166 problems without bounds solved mean efficiency in %
dim∈[1001,10000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

LMLS3 lmtr3 128 32 29 313348 0 38 0 57 55
LMLS4 lmtr4 128 49 47 325880 0 38 0 60 55
LMLS2 lmtr2 120 17 15 306190 0 46 0 53 49
FMINUNC1 func1 104 37 36 236336 0 61 1 42 47
LMLS1 lmtr1 95 18 17 332592 0 71 0 39 33

201

202 A new method for least squares problems

10
0

10
2

10
4

10
6

nf

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
2

10
4

10
6

msec

0.7

0.8

0.9

1

a) b)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for msec

c) d)

Figure 11.12: (a) – (b): Performance plots for nf/(best nf) and msec/(best msec), re-
spectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver.
Problems solved by no solver are ignored. (c) – (d): Performance plots
for nf/(best nf) and msec/(best msec), respectively. ρ designates the
fraction of problems solved within the number of function evaluations and
time in milliseconds used by the best solver. Problems solved by no solver
are ignored.

202

Part IV

Conclusion

203

204

This thesis designed and tested a number of solvers using subspace methods to handle uncon-
strained and bound constrained optimization problems in high dimensions. These solvers used
many practical enhancements that do not affect the order of our complexity results.

Section 5 constructed a new test environment with an automatic algorithm evaluation, signif-
icantly saving user time, performing statistics, and resulting in a summarized result as both
pdf-file and tex-file with efficiency tables and performances plots.

Section 6 discussed a new limited memory method for the bound constrained optimization prob-
lem (4.1) with the exact function value and gradient – called LMBOPT. It was a joint work
with Arnold Neumaier and Behzad Azmi (cf. Kimiaei, Neumaier, & Azmi [118]). LMBOPT
was the improved version of the active set strategy by Neumaier & Azmi [136]. The following
enhancements turned LMBOPT into a competitive solver:
• A starting direction according to the gradient signs.
• Safeguards for a curved line search method CLS by Neumaier & Azmi [136] because of finite
precision arithmetic.
• A new regularized Krylov direction.
• A new limited memory quasi Newton direction.
According to the solver choice discussed in Subsection 6.5.4,
• for low-dimensional problems 1 ≤ n ≤ 30, LMBOPT was recommended.
• for medium-dimensional problems 31 ≤ n ≤ 500, LMBOPT was recommended.
• for large-dimensional problems 501 ≤ n ≤ 100001, LMBFG-EIG-MS was recommended.

Section 7 described an active set trust region method for the bound constrained optimization
problem (4.1) with the exact function value and gradient. It was my own work (Kimiaei [114]).
This method
• replaced the traditional trust region ratio by a variant of the sufficient descent condition (4.20),
useful in finite precision arithmetic and in strongly nonconvex regions;
• used the reduced gradient as a critical measure to get a point which is never a spurious apparent
local minimizer arisen because of cancellation in the calculation of a critical measure in double-
precision arithmetic;
• updated the trust region radius according to the reduced gradient, resulting in under the
positive semi-definiteness of approximated Hessian matrices restricted to the subspace of free
variables, unlimited zigzagging could not occur; hence all strongly active variables were found
and fixed at finitely many iterations.

Section 8 discussed an efficient randomized algorithm for the unconstrained black box optimiza-
tion problem with the exact function value and inexact gradient, called VSBBO. It was a joint
work with Arnold Neumaier (cf. Kimiaei & Neumaier [117]):
• For the basic version of VSBBO with only random directions, the complexity bound for the
nonconvex case, with probability arbitrarily close to 1, matched the one found by Gratton et
al. [84] for another algorithm.
• We also proved the complexity bounds for VSBBO for the convex and strongly convex cases,
with probability arbitrarily close to 1, essentially matching the bounds found by Bergou et al.
[16], only valid in expectation.
• Numerical results showed that the basic version of VSBBO (VSBBO-basic1) was more effi-
cient than the randomized direct search solvers proposed by Gratton et al. [84] (DSPFD) and
Bergou et al. [16] (STP-vs, STP-vf, and PSTP) whose complexity results were discussed in
Section 8.3.

204

205

• An improved version of our algorithm had additional heuristic techniques that did not affect
the order of the complexity results and which turned VSBBO into an efficient global solver, al-
though our theory guarantees only local minimizers. This version even found in most cases either
a global minimizer or, where this could not be checked, at least a point of similar quality with the
best competitive global solvers. Other versions of VSBBO were VSBBO-C-Q, VSBBO-S,
and VSBBO-Q. VSBBO-C-Q used random directions, random subspace directions, cumu-
lative direction and additional heuristic techniques but was not better than VSBBO-basic1.
Although VSBBO-S did not use additional heuristic techniques and random subspace direc-
tions, it was more efficient than VSBBO-basic1 and VSBBO-C-Q due to using coordinate
directions and then random directions. VSBBO-Q used additional heuristic techniques and all
directions except the L-BFGS direction. It was slightly weaker than VSBBO and VSBBO-S
and was more efficient than VSBBO-basic1 and VSBBO-C-Q. As a consequence, VSBBO
was the best in comparison with the others versions:
• In terms of the number of solved problems VSBBO was for 1 ≤ n ≤ 20 more robust than the
based-model trust region solvers (DESTRESS and BCDFO), the direct search solvers (BFO,
GCES, SDS, AHDS, DSDS, and DSPFD), the basic deterministic line search solver with
only coordinate directions (SDBOX), the standard quasi Newton solver (FMINUNC), the
Nelder–Mead solvers (FMINSEARCH, NELDER, and NMSMAX), the multidirectional
search solvers (MDSMAX and MDS), the Hooke–Jeeves solver (HOOKE), the alternating
directions solver (ADSMAX), the global solvers (CMAES, GLOBAL, and ACRS), and the
pattern search solvers (PSM and PSWARM). The quality of VSBBO was improved by in-
creasing the dimension.
• For 21 ≤ n ≤ 100, VSBBO was the best solvers in the comparison with the best competitive
local and global solvers in terms of the number of solved problems and was the second best
solvers in terms of the nf efficiency.
• For 101 ≤ n ≤ 1000, VSBBO was the best solver in terms of the number of solved problems
and the second best solver in terms of the nf efficiency. Finally, for 1001 ≤ n ≤ 5000, VSBBO
was more efficient and robust than SDBOX and FMINUNC which were the two good solvers
for large scale problems.
As a result, when the problem size grew, the performance of VSBBO became competitive.

Section 9 introduced an efficient and robust deterministic subspace algorithm (STBBO) was
introduced for unconstrained box optimization problems (4.2) with the inaccurate function value
and gradient in low up to high dimensions. It was a joint work with Arnold Neumaier and
Parvaneh Faramarzi (cf. Kimiaei, Neumaier, & Faramarzi [119]). It was able to get a
significant decrease in the function value due to the construction of an efficient limited memory
direction along which a successful prediction on a decrease in the model function and the model
gradient norm might be achieved. In the presence of the inaccurate function value and gradient,
the complexity bound for our algorithm found – independent of the choice of search directions
enhancing the angle test – matching the order of bound found by Berahas et al. [15]. The
numerical results confirmed that
• STBBO and UOBYQA have the same quality and are the two best solvers for problem in
low dimension (1 ≤ n ≤ 30);
• VSBBO and VSBBON are the two best solvers in terms of the number of solved problems
while STBBO is the best in terms of the nf efficiency for problems with dimensions 31 ≤ n ≤
1000;
• STBBO is the best in terms of the number of solved problems and the nf efficiency in
comparison with VSBBO and VSBBON;
As a result, the new subspace method is more efficient than the standard quasi Newton and
traditional limited memory methods, even it is comparable with the model-based methods.

205

206

Section 10 focused on making a randomized model-based line search solver for noisy uncon-
strained optimization problems, called VSBBON. It was my own work (cf. Kimiaei [114]).
Two effective techniques which turned VSBBON into a competitive solver were
• to construct quadratic models not only for small scale problems but for medium and large scale
problems also;
• to find, update, and restart step sizes in a randomized line search algorithm so that its efficiency
was increased.
Numerical results confirmed that VSBBON worked well with any kind of noise which was not
too large but in theory uniform random noise was matched on the assumption (BBO3).

Section 11 generated a limited memory solver for unconstrained black box least squares problem
(4.3), called LMLS. It was a joint work with Arnold Neumaier (cf. Kimiaei & Neumaier
[115]). LMLS was the trust region-based algorithm whose main ingredients were
• using a non-monotone technique and adaptive radius strategy, useful in presence of narrow
valley,
• using a Broyden-like algorithm, useful in the cases where trust region radius is small and iter-
ation is unsuccessful,
• using a randomized finite difference approximation in an adaptive subspace for the Jacobian
matrix estimation,
• using either a Gauss-Newton or an improved dogleg method to solve the trust region subprob-
lem.
Because of using these enhancements, LMLS was competitive for problems in low up to high
dimensions in comparison with traditional limited memory BFGS method and even standard
BFGS method.

206

Bibliography

[1] M. Ahookhosh and K. Amini. An efficient nonmonotone trust-region method for uncon-
strained optimization. Numer. Algorithms, 59(4):523–540, September 2011.

[2] M. Ahookhosh, K. Amini, and M. Kimiaei. A globally convergent trust-region method for
large-scale symmetric nonlinear systems. Number. Func. Anal. Opt., 36(7):830–855, May
2015.

[3] M. Ahookhosh, H. Esmaeili, and M. Kimiaei. An effective trust-region-based approach for
symmetric nonlinear systems. Int. J. Comput. Math., 90(3):671–690, March 2013.

[4] M. Al-Baali and R. Fletcher. An efficient line search for nonlinear least squares. J. Optim.
Theory Appl., 48(3):359–377, March 1986.

[5] K. Amini, H. Esmaeili, and M. Kimiaei. A nonmonotone trust-region-approach with non-
monotone adaptive radius for solving nonlinear systems. IJNAO, 6(1), February 2016.

[6] K. Amini, M. A. K. Shiker, and M. Kimiaei. A line search trust-region algorithm with
nonmonotone adaptive radius for a system of nonlinear equations. 4OR-Q J. Oper. Res.,
14(2):133–152, January 2016.

[7] C. Audet and D. Orban. Finding optimal algorithmic parameters using derivative-free
optimization. SIAM J. Optim, 17(3):642–664, January 2006.

[8] A. Auger and N. Hansen. A restart CMA evolution strategy with increasing population
size. In 2005 IEEE Congress on Evolutionary Computation. IEEE, 2005.

[9] A. S. Bandeira, K. Scheinberg, and L. N. Vicente. Convergence of trust-region methods
based on probabilistic models. SIAM J. Optim, 24(3):1238–1264, January 2014.

[10] J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA J. Numer.
Anal., 8(1):141–148, 198.

[11] C. J. P. Bélisle, H. E. Romeijn, and R. L. Smith. Hit-and-run algorithms for generating
multivariate distributions. Math. Oper. Res., 18(2):255–266, May 1993.

[12] S. Bellavia, M. Macconi, and B. Morini. STRSCNE: A scaled trust-region solver for
constrained nonlinear equations. Comput. Optim. Appl., 28(1):31–50, April 2004.

[13] S. Bellavia, M. Macconi, and S. Pieraccini. Constrained dogleg methods for nonlinear
systems with simple bounds. Comput. Optim. Appl., 53(3):771–794, March 2012.

[14] A. S. Berahas, R. H. Byrd, and J. Nocedal. Derivative-free optimization of noisy functions
via quasi-newton methods. SIAM J. Optim., 29(2):965–993, January 2019.

207

208 Bibliography

[15] A. S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg. A theoretical and empirical
comparison of gradient approximations in derivative-free optimization, 2020.

[16] E. H. Bergou, E. Gorbunov, and P. Richtárik. Stochastic three points method for uncon-
strained smooth minimization. CoRR, abs/1902.03591, 2019.

[17] D. P. Bertsekas. Projected Newton methods for optimization problems with simple con-
straints. SIAM J. Control Opim., 20(2):221–246, 1982.

[18] E. G. Birgin, I. Chambouleyron, and J. M. Mart́ınez. Estimation of the optical constants
and thickness of thin films using unconstrained optimization. J. Comput. Phys., 151:862–
880, 1999.

[19] E. G. Birgin, J. L. Gardenghi, J. M. Mart́ınez, S. A. Santos, and Ph. L. Toint. Worst-case
evaluation complexity for unconstrained nonlinear optimization using high-order regular-
ized models. Math. Program., 163(1-2):359–368, August 2016.

[20] E. G. Birgin and J. M. Mart́ınez. A box-constrained optimization algorithm with negative
curvature directions and spectral projected gradients. In G. Alefeld and X. Chen, editors,
Topics in Numerical Analysis, volume 15 of Computing Supplementa, pages 49–60. Springer
Vienna, 2001.

[21] E. G. Birgin and J. M. Mart́ınez. Large-scale active-set box-constrained optimization
method with spectral projected gradients. Comput. Optim. Appl., 23(1):101–125, 2002.

[22] E. G. Birgin and J. M. Mart́ınez. On the application of an augmented lagrangian algorithm
to some portfolio problems. EURO J. Comput. Optim., 4(1):79–92, October 2015.

[23] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Nonmonotone spectral projected gradient
methods on convex sets. SIAM J. Optim., 10(4):1196–1211, 1999.

[24] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Algorithm 813: Spg-software for convex-
constrained optimization. ACM Trans. Math. Softw., 27(3):340–349, 2001.

[25] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Inexact spectral projected gradient methods
on convex sets. IMA J. Numer. Anal., 23:539–559, 2003.

[26] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Fréchette, H. Hoos,
F. Hutter, K. Leyton-Brown, K. Tierney, and et al. ASlib: A benchmark library for
algorithm selection. Artificial Intelligence, 273:41–58, 2016.

[27] P. Brachetti, M. De Felice Ciccoli, G. Di Pillo, and S. Lucidi. A new version of the price’s
algorithm for global optimization. J. Glob. Optim., 10(2):165–184, 1997.

[28] O. Burdakov, L. Gong, S. Zikrin, and Y. Yuan. On efficiently combining limited-memory
and trust-region techniques. Math. Program. Comput., 9:101–134, 2017.

[29] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound
constrained optimization. SIAM J. Sci. Comput., 16(5):1190, 1995.

[30] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-newton matrices
and their use in limited memory methods. Math. Program., 63(1-3):129–156, 1994.

208

Bibliography 209

[31] P. Calamai and J. Moré. Projected gradient methods for linearly constrained problems.
Math. Program., 39(1):93–116, 1987.

[32] R. N. Calheiros, R. B. César, and A. F. De Rose. Building an automated and self–
configurable emulation testbed for grid applications. software: practice and experience,
40:405–429, 2010.

[33] C. Cartis, N. I. M. Gould, and Ph. L Toint. Evaluation complexity bounds for smooth
constrained nonlinear optimisation using scaled kkt conditions, high-order models and the
criticality measure χ, 2017.

[34] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Evaluation complexity bounds for smooth
constrained nonlinear optimization using scaled KKT conditions and high-order models.
In Approximation and Optimization, pages 5–26. Springer International Publishing, 2019.

[35] C. Cartis, Ph. R. Sampaio, and Ph. L. Toint. Worst-case evaluation complexity of
non-monotone gradient-related algorithms for unconstrained optimization. Optimization,
64(5):1349–1361, January 2014.

[36] M. L. Cauwet, J. Liu, R. Baptiste, and O. Teytaud. Algorithm portfolios for noisy opti-
mization. Annals of Mathematics and Artificial Intelligence, 76:143–172, 2016.

[37] R. Chen. Stochastic Derivative-Free Optimization of Noisy Functions. PhD thesis, Lehigh
University, 2015. Theses and Dissertations. 2548.

[38] J. Konečný and P. Richtárik. Simple complexity analysis of simplified direct search. CoRR,
abs/1410.0390, 2014.

[39] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Global convergence of a class of trust region
algorithms for optimization with simple bounds. SIAM J. Numer. Anal., 25(2):433, 1988.

[40] A. R. Conn, N. I. M. Gould, and Ph. L Toint. Testing a class of methods for solving
minimization problems with simple bounds on the variables. Mathematics of Computation,
50(182):399–430, 1988.

[41] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust Region Methods. Society for Industrial
and Applied Mathematics, January 2000.

[42] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimiza-
tion. Society for Industrial and Applied Mathematics, January 2009.

[43] A. Cristofari, M. De Santis, S. Lucidi, and F. Rinaldi. A two-stage active-set algorithm for
bound-constrained optimization. J. Optim. Theory Appl., 172:369–401, 2017.

[44] T. Csendes, L. Pál, J. O. H. Send́ın, and J. R. Banga. The GLOBAL optimization method
revisited. Optim. Lett., 2(4):445–454, November 2007.

[45] F. E. Curtis, Z. Lubberts, and D. P. Robinson. Concise complexity analyses for trust region
methods. Optim. Lett., 12(8):1713–1724, June 2018.

[46] F. E. Curtis, D. P. Robinson, and M. Samadi. A trust region algorithm with a worst-case
iteration complexity of O(ε−3/2) for nonconvex optimization. Math. Program., 162(1-2):1–
32, May 2016.

209

210 Bibliography

[47] A. L. Custódio, H. Rocha, and L. N. Vicente. Incorporating minimum frobenius norm
models in direct search. Comput. Optim. Appl., 46(2):265–278, August 2009.

[48] A. L. Custódio and L. N. Vicente. Using sampling and simplex derivatives in pattern search
methods. SIAM J. Optim, 18(2):537–555, 2007.

[49] Y. H. Dai. On the nonmonotone line search. J. Optim. Theory Appl., 112(2):315–330,
2002.

[50] Y. H. Dai and R. Fletcher. Projected Barzilai-Borwein methods for large-scale box-
constrained quadratic programming. Numer. Math., 100(1):21–47, 2005.

[51] Y. H. Dai and R. Fletcher. New algorithms for singly linearly constrained quadratic pro-
grams subject to lower and upper bounds. Math. Program., 106(3):403–421, 2006.

[52] Y. H. Dai, W. W. Hager, K. Schittkowski, and H. Zhang. The cyclic Barzilai–Borwein
method for unconstrained optimization. IMA J. Numer. Anal., 26(3):604–627, 2006.

[53] C. Davis. Theory of positive linear dependence. Amer. J. Math., 76(4):733, October 1954.

[54] R. S. Dembo and U. Tulowitzki. On the minimization of quadratic functions subject to box
constraints. Technical report, School of Organization and Management, Yale University,
New Haven, CT, 1983.

[55] N. Y. Deng, Y. Xiao, and F. J. Zhou. Nonmonotonic trust region algorithm. J. Optim.
Theory Appl., 76(2):259–285, February 1993.

[56] J. E. Dennis and L. N. Vicente. Trust-region interior-point algorithms for minimization
problems with simple bounds. In Applied Mathematics and Parallel Computing, pages
97–107. Physica-Verlag HD, 1996.

[57] P. Deuflhard. Newton Methods for Nonlinear Problems. Springer Berlin Heidelberg, 2011.

[58] P. Deuflhard and G. Heindl. Affine invariant convergence theorems for newton’s method
and extensions to related methods. SIAM J. Numer. Anal., 16(1):1–10, February 1979.

[59] M. Dodangeh and L. N. Vicente. Worst case complexity of direct search under convexity.
Math. Program., 155(1-2):307–332, November 2014.

[60] M. Dodangeh, L. N. Vicente, and Z. Zhang. On the optimal order of worst case complexity
of direct search. Optim. Lett., 10(4):699–708, June 2015.

[61] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.
Math. Program., 91(2):201–213, January 2002.

[62] Z. Dostál. Box constrained quadratic programming with proportioning and projections.
SIAM J. Optim, 7(3):871–887, 1997.

[63] Z. Dostál. A proportioning based algorithm with rate of convergence for bound constrained
quadratic programming. Numer. Algorithms, 34(2-4):293–302, 2003.

[64] J. C. Dunn. On the convergence of projected gradient processes to singular critical points.
J. Optim. Theory Appl., 55:203–216, 1987.

210

Bibliography 211

[65] C. Elster and A. Neumaier. A grid algorithm for bound constrained optimization of noisy
functions. IMA J. Numer. Anal., 15(4):585–608, 1995.

[66] C. Elster and A. Neumaier. A method of trust region type for minimizing noisy functions.
Computing, 58(1):31–46, March 1997.

[67] H. Esmaeili and M. Kimiaei. An efficient adaptive trust-region method for systems of
nonlinear equations. Int. J. Comput. Math., 92(1):151–166, April 2014.

[68] H. Esmaeili and M. Kimiaei. A new adaptive trust-region method for system of nonlinear
equations. Appl. Math. Model., 38(11-12):3003–3015, June 2014.

[69] H. Esmaeili and M. Kimiaei. A trust-region method with improved adaptive radius for
systems of nonlinear equations. Math. Meth. Oper. Res., 83(1):109–125, November 2015.

[70] Yu. G. Evtushenko. Numerical methods for finding global extrema (case of a non-uniform
mesh). USSR USSR Comput. Math. & Math. Phys., 11(6):38–54, January 1971.

[71] J. Fan. Convergence rate of the trust region method for nonlinear equations under local
error bound condition. Comput. Optim. Appl., 34(2):215–227, March 2006.

[72] J. Fan and J. Pan. An improved trust region algorithm for nonlinear equations. Comput.
Optim. Appl., 48(1):59–70, February 2009.

[73] J. Fan and J. Pan. A modified trust region algorithm for nonlinear equations with new
updating rule of trust region radius. Int. J. Comput. Math., 87(14):3186–3195, October
2010.

[74] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, Ltd, May 2000.

[75] R. Fletcher. On the Barzilai-Borwein method. Optimization and Control with Applications,
pages 235–256, 2005.

[76] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. The Com-
puter J,, 7(2):149–154, February 1964.

[77] W. Glunt, T. L. Hayden, and M. Raydan. Molecular conformations from distance matrices.
J. Comput. Chem., 14(1):114–120, 1993.

[78] A. Goldstein and J. Price. An effective algorithm for minimization. Numer. Math., 10:184–
189, 1967.

[79] N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD, a library of thread-safe fortran
90 packages for large-scale nonlinear optimization. ACM Trans. Math. Softw. (TOMS),
29(4):353–372, December 2003.

[80] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a constrained and unconstrained
testing environment with safe threads for mathematical optimization. Comput. Optim.
Appl., 60:545–557, 2015.

[81] G. N. Grapiglia, J. Yuan, and Y. Yuan. Nonlinear stepsize control algorithms: Complexity
bounds for first- and second order optimality. J. Optim. Theory Appl., 171(3):980–997,
September 2016.

211

212 Bibliography

[82] S. Gratton, C. W. Royer, and L. N. Vicente. A second-order globally convergent direct-
search method and its worst-case complexity. Optimization, 65(6):1105–1128, December
2015.

[83] S. Gratton, C. W. Royer, and L. N. Vicente. A decoupled first/second-order steps technique
for nonconvex nonlinear unconstrained optimization with improved complexity bounds.
Math. Program., 179(1-2):195–222, September 2018.

[84] S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Direct search based on probabilistic
descent. SIAM J. Optim, 25(3):1515–1541, January 2015.

[85] S. Gratton, Ph. L. Toint, and A. Tröltzsch. An active-set trust-region method for derivative-
free nonlinear bound-constrained optimization. Optim. Methods Softw., 26(4-5):873–894,
October 2011.

[86] L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search technique for newton’s
method. SIAM J. Numer. Anal., 23(4):707–716, 1986.

[87] L. Grippo and M. Sciandrone. Nonmonotone globalization techniques for the Barzilai-
Borwein gradient method. Comput. Optim. Appl., 23(2):143–169, 2002.

[88] L. Grippo and M. Sciandrone. Nonmonotone derivative-free methods for nonlinear equa-
tions. Comput. Optim. Appl., 37(3):297–328, March 2007.

[89] W. W. Hager and H. Zhang. CG DESCENT user’s guide. Technical report, Department
of Mathematics, University of Florida, Gainesville, FL, 2004.

[90] W. W. Hager and H. Zhang. A new conjugate gradient method with guaranteed descent
and an efficient line search. SIAM J. Optim., 16(1):170–192, 2005.

[91] W. W. Hager and H. Zhang. Algorithm 851: CG DESCENT, a conjugate gradient method
with guaranteed descent. ACM Trans. Math. Softw., 32(1):113–137, 2006.

[92] W. W. Hager and H. Zhang. A new active set algorithm for box constrained optimization.
SIAM J. Optim., 17(2):526–557, 2006.

[93] W. W. Hager and H. Zhang. A survey of nonlinear conjugate gradient methods. Pac. J.
Optim., 2(1):35–58, 2006.

[94] W. W. Hager and H. Zhang. The limited memory conjugate gradient method. SIAM J.
Optim., 23(4):2150–2168, 2013.

[95] R. W. Hamming. Introduction to Applied Numerical Analysis. Taylor & Fran-
cis/Hemisphere, USA, 1989.

[96] N. Hansen. The CMA evolution strategy: A comparing review. In Towards a New Evolu-
tionary Computation, pages 75–102. Springer Berlin Heidelberg, 2006.

[97] Y. He, S.Y. Yuen, Y. Lou, and X. Zhang. A sequential algorithm portfolio approach for
black box optimization. Swarm and Evolutionary Computation, pages 559–570, 2018.

[98] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
J. Res. Nat. Bur. Stand., 49:409–436, 1952.

212

Bibliography 213

[99] N. J. Higham. Optimization by direct search in matrix computations. SIAM J. Matrix
Anal. Appl., 14(2):317–333, April 1993.

[100] J. H. Holland. Genetic algorithms and the optimal allocation of trials. SIAM J. Optim,
2(2):88–105, June 1973.

[101] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Automated configuration of mixed integer
programming solvers. In A. Lodi, M. Milano, and P. Toth (eds), editors, Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization Problems.
CPAIOR 2010, volume 6140 of Lecture Notes in Computer Science,, Berlin, Heidelberg,
2010. Springer.

[102] W. Huyer and A. Neumaier. Global optimization by multilevel coordinate search. J. Glob.
Optim., 14(4):331–355, 1999.

[103] W. Huyer and A. Neumaier. SNOBFIT – stable noisy optimization by branch and fit.
ACM. Trans. Math. Softw., 35(2):1–25, July 2008.

[104] W. Huyer and A. Neumaier. MINQ8: general definite and bound constrained indefinite
quadratic programming. Comput. Optim. Appl., 69(2):351–381, October 2017.

[105] Jr. J. E. Dennis and J. J. Moré. Quasi-newton methods, motivation and theory. SIAM
Rev., 19(1):46–89, January 1977.

[106] Jr. J. E. Dennis and H. F. Walker. Convergence theorems for least-change secant update
methods. SIAM J. Numer. Anal., 18(6):949–987, December 1981.

[107] C. Kanzow and A. Klug. On affine-scaling interior-point newton methods for nonlinear
minimization with bound constraints. Comput. Optim. Appl., 35(2):177–197, June 2006.

[108] C. Kanzow and A. Klug. An interior-point affine-scaling trust-region method for semis-
mooth equations with box constraints. Comput. Optim. Appl., 37(3):329–353, March 2007.

[109] C. T. Kelley. Iterative Methods for Optimization. Society for Industrial and Applied
Mathematics, January 1999.

[110] P. Kerschke, H.H. Hoos, F. Neumann, and H. Trautmann. Automated algorithm selection:
Survey and perspectives. Evolutionary Computation, 1(27):3–45, 2009.

[111] M. Kimiaei. An active set trust region method for bound constrained optimization.

[112] M. Kimiaei. A new class of nonmonotone adaptive trust-region methods for nonlinear
equations with box constraints. Calcolo, 54(3):769–812, October 2016.

[113] M. Kimiaei. Nonmonotone self-adaptive levenberg–marquardt approach for solving systems
of nonlinear equations. Number. Func. Anal. Opt., 39(1):47–66, July 2017.

[114] M. Kimiaei. Line search in noisy unconstrained black box optimization. http://www.
optimization-online.org/DB_HTML/2020/09/8007.html, Sep 2020.

[115] M. Kimiaei and A. Neumaier. A new limited memory method for unconstrained nonlinear
least squares.

213

214 Bibliography

[116] M. Kimiaei and A. Neumaier. Testing and tuning optimization algorithm. Preprint, Vienna
University, Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-
1090 Wien, Austria, 2019.

[117] M. Kimiaei and A. Neumaier. Efficient global unconstrained black box optimization. http:
//www.optimization-online.org/DB_HTML/2018/08/6783.html, Jul 2020.

[118] M. Kimiaei, A. Neumaier, and B. Azmi. LMBOPT – a limited memory method
for bound-constrained optimization. http://www.optimization-online.org/DB_
HTML/2020/11/8089.html, Nov 2020.

[119] M. Kimiaei, A. Neumaier, and P. Faramarzi. New subspace method for unconstrained
black box optimization.

[120] D. E. Kvasov and Y. D. Sergeyev. Lipschitz gradients for global optimization in a one-
point-based partitioning scheme. J. Comput. Appl. Math., 236(16):4042–4054, October
2012.

[121] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. Convergence properties of the
nelder–mead simplex method in low dimensions. SIAM J. Optim, 9(1):112–147, January
1998.

[122] J. Larson, M. Menickelly, and S. M. Wild. Derivative-free optimization methods. Acta
Numer., 28:287–404, May 2019.

[123] M. Lindauer, J. N. Rijn, and L. Kotthoff. The algorithm selection competitions 2015 and
2017. Artificial Intelligence, 272:86–100, 2019.

[124] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimiza-
tion. Math. Program., 45(1-3):503–528, August 1989.

[125] W. Liu and Y. H. Dai. Minimization algorithms based on supervisor and searcher cooper-
ation. J. Optim. Theory Appl., 111(2):359–379, 2001.

[126] S. Lucidi and M. Sciandrone. A derivative-free algorithm for bound constrained optimiza-
tion. Comput. Optim. Appl., 21(2):119–142, 2002.

[127] L. Lukšan, C. Matonoha, and J. Vlček. Problems for nonlinear least squares and nonlinear
equations. Technical Report V-1259, ICS CAS, 2018.

[128] Y. Malitsky. Instance-Specific Algorithm Configuration 2014th Edition, Kindle Edition.
Springer, Cham, 2014.

[129] J. J. Moré and G. Toraldo. Algorithms for bound constrained quadratic programming
problems. Numer. Math., 55(4):377–400, 1989.

[130] J. J. Moré and G. Toraldo. On the solution of large quadratic programming problems with
bound constraints. SIAM J. Optim., 1(1):93–113, 1991.

[131] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms. SIAM
J. Optim., 20(1):172–191, January 2009.

[132] L. Nazareth. A relationship between the BFGS and conjugate gradient algorithms and its
implications for new algorithms. SIAM J. Numer. Anal., 16(5):794–800, October 1979.

214

Bibliography 215

[133] Y. Nesterov. Introductory Lectures on Convex Optimization. Springer US, 2004.

[134] Y. Nesterov and B. T. Polyak. Cubic regularization of newton method and its global
performance. Math. Program., 108(1):177–205, April 2006.

[135] Y. Nesterov and V. Spokoiny. Random gradient-free minimization of convex functions.
Found. Comput. Math., 17(2):527–566, November 2015.

[136] A. Neumaier and B. Azmi. Line search and convergence in bound-constrained optimization.
http://www.optimization-online.org/DB_FILE/2019/03/7138.pdf, 2019.

[137] A. Neumaier, H. Fendl, H. Schilly, and Thomas Leitner. VXQR: derivative-free un-
constrained optimization based on QR factorizations. Soft Comput., 15(11):2287–2298,
September 2010.

[138] H. B. Nielsen. immoptibox – a matlab toolbox for optimization and data fitting, 2012.
version 2.2.

[139] J. Nocedal. Theory of algorithms for unconstrained optimization. Acta Numer., 1:199–242,
January 1992.

[140] J. Nocedal and S. J. Wright, editors. Numerical Optimization. Springer-Verlag, 1999.

[141] U. Nowak and L. Weimann. A family of newton codes for systems of highly nonlinear
equations. Technical Report TR 91–10, Zuse Institute Berlin (ZIB), 1990.

[142] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several
Variables. Society for Industrial and Applied Mathematics, January 2000.

[143] I. Pinelis. A probabilistic angle inequality. MathOverflow.

[144] J. Pintér. Globally convergent methods for n-dimensional multiextremal optimization.
Optimization, 17(2):187–202, January 1986.

[145] B. T. Polyak. The conjugate gradient method in extremal problems. USSR Comput. Math.
Math. Phys., 9:94–112, 1969.

[146] Boris T Polyak. Introduction to optimization. 1987. Optimization Software, Inc, New
York.

[147] M. Porcelli and P. Toint. Global and local information in structured derivative free opti-
mization with BFO. arXiv: Optimization and Control, 2020.

[148] M. Porcelli and Ph. L. Toint. A note on using performance and data profiles for training
algorithms. ACM Transactions on Mathematical Software, 45(2):1–10, June 2019.

[149] M. J. D. Powell. UOBYQA: unconstrained optimization by quadratic approximation.
Math. Program., 92(3):555–582, May 2002.

[150] M. Raydan. The Barzilai and Borwein gradient method for the large scale unconstrained
minimization problem. SIAM J. Optim., 7(1):26–33, 1997.

[151] L. M. Rios and N. V. Sahinidis. Derivative-free optimization: a review of algorithms and
comparison of software implementations. J. Global. Optim., 56(3):1247–1293, July 2012.

215

216 Bibliography

[152] C. Royer. Derivative-free optimization methods based on probabilistic and deterministic
properties : complexity analysis and numerical relevance. Theses, Université Paul Sabatier
- Toulouse III, November 2016.

[153] R. B. Schnabel. Sequential and parallel methods for unconstrained optimization. In M. Iri
and eds. K. Tanabe, editors, In Mathematical Programming, Recent Developments and
Applications, pages 227–261. Kluwer Academic Publishers, 1989.

[154] T. Serafini, G. Zanghirati, and L. Zanni. Gradient projection methods for quadratic
programs and applications in training support vector machines. Optim. Methods Softw.,
20(2):353–378, 2005.

[155] L. Sorber, M. V. Barel, and L. D. Lathauwer. Unconstrained optimization of real functions
in complex variables. SIAM J. Optim., 22(3):879–898, January 2012.

[156] R. Storn and K. Price. Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization, 11(4):341–359, 1997.

[157] Ph. L. Toint. An assessment of nonmonotone linesearch techniques for unconstrained
optimization. SIAM J. Sci. Comput., 17(3):725–739, 1996.

[158] P. J. M. van Laarhoven and E. H. L. Aarts. Simulated Annealing: Theory and Applications.
Springer Netherlands, 1987.

[159] A. I. F. Vaz and L. N. Vicente. A particle swarm pattern search method for bound
constrained global optimization. Journal of Global Optimization, 39(2):197–219, February
2007.

[160] D. Vermetten, H. Wang, C. Doerr, and T. Bäck. Towards dynamic algorithm selection for
numerical black-box optimization: Investigating bbob as a use case, Jun 2020.

[161] L. N. Vicente. Worst case complexity of direct search. EURO J. Comput. Optim., 1(1-
2):143–153, December 2012.

[162] P. Wolfe. Convergence conditions for ascent methods. SIAM Rev., 11:226–235, 1969.

[163] Y. Xie, R. H. Byrd, and J. Nocedal. Analysis of the BFGS method with errors. SIAM J.
Optim., 30(1):182–209, January 2020.

[164] E. K. Yang and J. W. Tolle. A class of methods for solving large, convex quadratic programs
subject to box constraints. Math. Program., 51:223–228, 1991.

[165] Z. Yu and D. Pu. A new nonmonotone line search technique for unconstrained optimization.
J. Comput. Appl. Math., 219(1):134–144, September 2008.

[166] Y. Yuan. Recent advances in numerical methods for nonlinear equations and nonlinear
least squares. Numer. Algebra, Control. Optim., 1(1):15–34, 2011.

[167] H. Zhang and W. W. Hager. A nonmonotone line search technique and its application to
unconstrained optimization. SIAM J. Optim., 14(4):1043–1056, 2004.

[168] J. Zhang and C. Xu. A class of indefinite dogleg path methods for unconstrained mini-
mization. SIAM J. Optim., 9(3):646–667, 1999.

216

List of Figures

5.1 Automatic Algorithm Evaluation . 23
5.2 Comparison of qcutest := tg(cutest)

tf (cutest) , qgetfg := tg(getfg)
tf (getfg) and qover := tf2g(getfg)

tf2g(cutest) ver-
sus dimensions, respectively, where tf and tg are considered the time to compute
f and g by cutest or getfg and tf2g := tf + 2tg. 25

6.1 In the Example 6.3.1 points with step sizes α < 0.5×10−13 have a high probability
for having f(x+ αp) ≥ f(x). 42

6.2 (a) Flow chart for unconstrained problems classified by problems, (b) Flow chart
for bound constrained problems classified by the problem dimension, (c) Flow
chart for hard problems classified by constraint. Here L-E-M stands for LMBFG-
EIG-MS. 54

6.3 The number of problems with variables in a given range solved by at least one
solver: 990 problems with dimensions 1 up to 100001 59

6.4 (Ua)-(Ud): Performance profiles for unconstrained problems (1 ≤ n ≤ 100001)
in terms of the ng/(best ng), nf/(best nf), nf2g/(best nf2g), and msec/(best
msec) efficiencies, respectively. (Ba)-(Bd): Performance profiles for bound con-
strained problems (1 ≤ n ≤ 100001) in terms of the ng/(best ng), nf/(best
nf), nf2g/(best nf2g), and msec/(best msec) efficiencies, respectively. (a)-
(d): Performance profiles for both unconstrained and bound constrained prob-
lems (1 ≤ n ≤ 100001) in terms of the ng/(best ng), nf/(best nf), nf2g/(best
nf2g), and msec/(best msec) efficiencies, respectively. ρ designates the percent-
age of problems solved within a factor τ of the best solver. Problem solved by no
solver are ignored. 60

6.5 (1Ua)-(1Ud)/(1Ba)-(1Bd): Performance profiles for low-dimensional unconstrained/bound
constrained problems (1 ≤ n ≤ 30) in terms of the ng/(best ng), nf/(best nf),
nf2g/(best nf2g), and msec/(best msec) efficiencies, respectively. (2Ua)-(2Ud):
Performance profiles for medium-dimensional unconstrained problems (31 ≤ n ≤
500) in terms of the ng/(best ng), nf/(best nf), nf2g/(best nf2g), and msec/(best
msec) efficiencies, respectively. ρ designates the percentage of problems solved
within a factor τ of the best solver. Problem solved by no solver are ignored. . . 61

6.6 (2Ba)-(2Bd): Performance profiles for medium-dimensional bound constrained
problems (31 ≤ n ≤ 500) in terms of the ng/(best ng), nf/(best nf), nf2g/(best
nf2g), and msec/(best msec) efficiencies, respectively. (3Ua)-(3Ud)/(3Ba)-(3Bd):
Performance profiles for high-dimensional unconstrained and bound constrained
problems (501 ≤ n ≤ 100001) in terms of the ng/(best ng), nf/(best nf),
nf2g/(best nf2g), and msec/(best msec) efficiencies, respectively. ρ designates
the percentage of problems solved within a factor τ of the best solver. Problem
solved by no solver are ignored. 62

217

218 List of Figures

6.7 We show box plots for the data summarized in Table 6.2. Here ρ stands for
ng/ngmax, nf/nfmax, nf2g/nf2gmax, sec/secmax and s stands for the name of
solvers. (1Ua)-(1Ud)/(1Ba)-(1Bd): Box plots for low-dimensional unconstrained
and bound constrained problems (1 ≤ n ≤ 30) in terms of ng/ngmax, nf/nfmax,
nf2g/nf2gmax, and sec/secmax, respectively. (2Ua)-(2Ud): Box plots for medium-
dimensional unconstrained problems (31 ≤ n ≤ 500) in terms of ng/ngmax,
nf/nfmax, nf2g/nf2gmax, and sec/secmax, respectively. Here nfmax, ngmax,
nf2gmax, and secmax stand for maximal number of function evaluations, maximal
number of gradient evaluations, maximal number of function evaluations plus two
times gradient evaluations, and maximal time in seconds, respectively. 63

6.8 We show box plots for the data summarized in Table 6.2. Here ρ stands for
ng/ngmax, nf/nfmax, nf2g/nf2gmax, sec/secmax and s stands for the name
of solvers. (2Ba)-(2Bd): Box plots for medium-dimensional bound constrained
problems (31 ≤ n ≤ 500) in terms of ng/ngmax, nf/nfmax, nf2g/nf2gmax, and
sec/secmax, respectively. (3Ua)-(3Ud)/(3Ba)-(3Bd): Box plots for high-dimensional
unconstrained and bound constrained problems (501 ≤ n ≤ 100001) in terms of
ng/ngmax, nf/nfmax, nf2g/nf2gmax, and sec/secmax, respectively. Here nfmax,
ngmax, nf2gmax, and secmax stand for maximal number of function evaluations,
maximal number of gradient evaluations, maximal number of function evaluations
plus two times gradient evaluations, and maximal time in seconds, respectively. . 64

6.9 (Ua)-(Ud): Performance profiles for unconstrained hard problems (1 ≤ n ≤
100001) in terms of the ng/(best ng), nf/(best nf), nf2g/(best nf2g), and
msec/(best msec) efficiencies, respectively. (Ba)-(Bd): Performance profiles for
bound constrained hard problems (1 ≤ n ≤ 100001) in terms of the ng/(best
ng), nf/(best nf), nf2g/(best nf2g), and msec/(best msec) efficiencies, re-
spectively. (a)-(d): Performance profiles for both unconstrained and bound con-
strained hard problems (1 ≤ n ≤ 100001) in terms of the ng/(best ng), nf/(best
nf), nf2g/(best nf2g), and msec/(best msec) efficiencies, respectively. ρ des-
ignates the percentage of problems solved within a factor τ of the best solver.
Problem solved by no solver are ignored. 66

8.1 The plot of cn versus the dimension n suggests that c0 ≈ 16/7. 116
8.2 Small dimensions 2–20: Performance profiles for (a) nf/(best nf) and (b) msec/(best

msec). ρ notes the fraction of problems solved within a factor τ of the best solver. 118
8.3 Small dimensions 2–20: Performance plots for (a) nf/(best nf) and (b) msec/(best

msec). ρ notes the fraction of problems solved within the number of function eval-
uations and time in milliseconds used by the best solver. Problems solved by no
solver are ignored. 119

8.4 Medium dimensions 21–100: Performance profiles for (a) nf/(best nf) and (b)
msec/(best msec). ρ notes the fraction of problems solved within a factor τ of
the best solver. Problems solved by no solver are ignored. 119

8.5 Medium dimensions 21–100: Performance plots for (a) nf/(best nf) and (b)
msec/(best msec). ρ notes the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver. Problems
solved by no solver are ignored. 120

8.6 Large dimensions 101–1000: Performance profiles for (a) nf/(best nf) and (b)
msec/(best msec). ρ notes the fraction of problems solved within a factor τ of
the best solver. Problems solved by no solver are ignored. 120

218

List of Figures 219

8.7 Large dimensions 101–1000: Performance plots for (a) nf/(best nf) and (b)
msec/(best msec). ρ notes the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver. Problems
solved by no solver are ignored. 121

8.8 Very large dimensions 1001–5000: Performance profiles for (a) nf/(best nf) and
(b) msec/(best msec). ρ notes the fraction of problems solved within a factor τ
of the best solver. Problems solved by no solver are ignored. 121

8.9 Very large dimensions 1001–5000: Performance plots for (a) nf/(best nf) and
(b) msec/(best msec). ρ notes the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver. Problems
solved by no solver are ignored. 122

9.1 (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec), re-
spectively. ρ notes the fraction of problems solved within a factor τ of the best
solver. Problems solved by no solver are ignored. (c) and (d): Performance plots
for nf/(best nf) and msec/(best msec), respectively. ρ notes the fraction of
problems solved within the number of function evaluations and time in millisec-
onds used by the best solver. Problems solved by no solver are ignored. 139

9.2 (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec), re-
spectively. ρ notes the fraction of problems solved within a factor τ of the best
solver. Problems solved by no solver are ignored. (c) and (d): Performance plots
for nf/(best nf) and msec/(best msec), respectively. ρ notes the fraction of
problems solved within the number of function evaluations and time in millisec-
onds used by the best solver. Problems solved by no solver are ignored. 142

9.3 (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec), re-
spectively. ρ notes the fraction of problems solved within a factor τ of the best
solver. Problems solved by no solver are ignored. (c) and (d): Performance plots
for nf/(best nf) and msec/(best msec), respectively. ρ notes the fraction of
problems solved within the number of function evaluations and time in millisec-
onds used by the best solver. Problems solved by no solver are ignored. 145

9.4 (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec), re-
spectively. ρ notes the fraction of problems solved within a factor τ of the best
solver. Problems solved by no solver are ignored. (c) and (d): Performance plots
for nf/(best nf) and msec/(best msec), respectively. ρ notes the fraction of
problems solved within the number of function evaluations and time in millisec-
onds used by the best solver. Problems solved by no solver are ignored. 147

9.5 (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec), re-
spectively. ρ notes the fraction of problems solved within a factor τ of the best
solver. Problems solved by no solver are ignored. (c) and (d): Performance plots
for nf/(best nf) and msec/(best msec), respectively. ρ notes the fraction of
problems solved within the number of function evaluations and time in millisec-
onds used by the best solver. Problems solved by no solver are ignored. 149

9.6 (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec), re-
spectively. ρ notes the fraction of problems solved within a factor τ of the best
solver. Problems solved by no solver are ignored. (c) and (d): Performance plots
for nf/(best nf) and msec/(best msec), respectively. ρ notes the fraction of
problems solved within the number of function evaluations and time in millisec-
onds used by the best solver. Problems solved by no solver are ignored. 150

219

220 List of Figures

9.7 (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec), re-
spectively. ρ notes the fraction of problems solved within a factor τ of the best
solver. Problems solved by no solver are ignored. (c) and (d): Performance plots
for nf/(best nf) and msec/(best msec), respectively. ρ notes the fraction of
problems solved within the number of function evaluations and time in millisec-
onds used by the best solver. Problems solved by no solver are ignored. 152

9.8 (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec), re-
spectively. ρ notes the fraction of problems solved within a factor τ of the best
solver. Problems solved by no solver are ignored. (c) and (d): Performance plots
for nf/(best nf) and msec/(best msec), respectively. ρ notes the fraction of
problems solved within the number of function evaluations and time in millisec-
onds used by the best solver. Problems solved by no solver are ignored. 153

9.9 (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec), re-
spectively. ρ notes the fraction of problems solved within a factor τ of the best
solver. Problems solved by no solver are ignored. (c) and (d): Performance plots
for nf/(best nf) and msec/(best msec), respectively. ρ notes the fraction of
problems solved within the number of function evaluations and time in millisec-
onds used by the best solver. Problems solved by no solver are ignored. 154

9.10 (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec), re-
spectively. ρ notes the fraction of problems solved within a factor τ of the best
solver. Problems solved by no solver are ignored. (c) and (d): Performance plots
for nf/(best nf) and msec/(best msec), respectively. ρ notes the fraction of
problems solved within the number of function evaluations and time in millisec-
onds used by the best solver. Problems solved by no solver are ignored. 155

9.11 (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec), re-
spectively. ρ notes the fraction of problems solved within a factor τ of the best
solver. Problems solved by no solver are ignored. (c) and (d): Performance plots
for nf/(best nf) and msec/(best msec), respectively. ρ notes the fraction of
problems solved within the number of function evaluations and time in millisec-
onds used by the best solver. Problems solved by no solver are ignored. 157

9.12 (a) and (b): Performance profiles for nf/(best nf) and msec/(best msec), re-
spectively. ρ notes the fraction of problems solved within a factor τ of the best
solver. Problems solved by no solver are ignored. (c) and (d): Performance plots
for nf/(best nf) and msec/(best msec), respectively. ρ notes the fraction of
problems solved within the number of function evaluations and time in millisec-
onds used by the best solver. Problems solved by no solver are ignored. 159

10.1 For the noise levels ω ∈ {10−4, 10−3, 10−2, 10−1, 0.9}. Subfigures (a), (c) and (e)
plot the number of solved problems versus the noise level ω, while Subfigures (b),
(d) and (f) plot the nf efficiency versus the noise level ω, respectively. 182

10.2 For the noise levels ω ∈ {10−4, 10−3, 10−2, 10−1}. Subfigures (a) and (c) plot the
number of solved problems versus the noise level ω, while Subfigures (b) and (d)
plot the nf efficiency versus the noise level ω, respectively. 184

10.3 For the noise levels ω ∈ {10−5, 10−4, 10−3}. Subfigure (a) plots the number of
solved problems versus the noise level ω, while Subfigure (b) plots the nf efficiency
versus the noise level ω. 185

220

List of Figures 221

11.1 Performance plots for small scale problems. (a) – (b): A comparison of limited
memory solvers, (c) – (d): A comparison among LMLS in a full subspace and
solvers using other non-monotone and adaptive radius techniques, (e) – (f): A
comparison among LMLS in a full subspace and other famous solvers, (g) – (h):
A comparison among low-dimensional LMLS1, LMLS2, LMLS3 and NLEQ1
and LSQNONLIN1 using full estimated Jacobian. 197

11.2 (a) – (b): Performance plots for medium scale problems 198

11.3 (a) – (b): Performance plots for large scale problems 199

11.4 (a) and (b): Performance plots for nf/(best nf) and msec/(best msec), respec-
tively. ρ designates the fraction of problems solved within the number of function
evaluations and time in milliseconds used by the best solver. Problems solved by no
solver are ignored. (c) – (d): Performance plots for nf/(best nf) and msec/(best
msec), respectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver. Problems
solved by no solver are ignored. 204

11.5 (a) – (b): Performance plots for nf/(best nf) and msec/(best msec), respec-
tively. ρ designates the fraction of problems solved within the number of function
evaluations and time in milliseconds used by the best solver. Problems solved by no
solver are ignored. (c) – (d): Performance plots for nf/(best nf) and msec/(best
msec), respectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver. Problems
solved by no solver are ignored. 205

11.6 (a) – (b): Performance plots for nf/(best nf) and msec/(best msec), respec-
tively. ρ designates the fraction of problems solved within the number of function
evaluations and time in milliseconds used by the best solver. Problems solved by no
solver are ignored. (c) – (d): Performance plots for nf/(best nf) and msec/(best
msec), respectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver. Problems
solved by no solver are ignored. 207

11.7 (a) – (b): Performance plots for nf/(best nf) and msec/(best msec), respec-
tively. ρ designates the fraction of problems solved within the number of function
evaluations and time in milliseconds used by the best solver. Problems solved by no
solver are ignored. (c) – (d): Performance plots for nf/(best nf) and msec/(best
msec), respectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver. Problems
solved by no solver are ignored. 208

11.8 (a) – (b): Performance plots for nf/(best nf) and msec/(best msec), respec-
tively. ρ designates the fraction of problems solved within the number of function
evaluations and time in milliseconds used by the best solver. Problems solved by no
solver are ignored. (c) – (d): Performance plots for nf/(best nf) and msec/(best
msec), respectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver. Problems
solved by no solver are ignored. 210

221

222 List of Figures

11.9 (a) – (b): Performance plots for nf/(best nf) and msec/(best msec), respec-
tively. ρ designates the fraction of problems solved within the number of function
evaluations and time in milliseconds used by the best solver. Problems solved by no
solver are ignored. (c) – (d): Performance plots for nf/(best nf) and msec/(best
msec), respectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver. Problems
solved by no solver are ignored. 211

11.10(a) – (b): Performance plots for nf/(best nf) and msec/(best msec), respec-
tively. ρ designates the fraction of problems solved within the number of function
evaluations and time in milliseconds used by the best solver. Problems solved by no
solver are ignored. (c) – (d): Performance plots for nf/(best nf) and msec/(best
msec), respectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver. Problems
solved by no solver are ignored. 212

11.11(a) – (b): Performance plots for nf/(best nf) and msec/(best msec), respec-
tively. ρ designates the fraction of problems solved within the number of function
evaluations and time in milliseconds used by the best solver. Problems solved by no
solver are ignored. (c) – (d): Performance plots for nf/(best nf) and msec/(best
msec), respectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver. Problems
solved by no solver are ignored. 214

11.12(a) – (b): Performance plots for nf/(best nf) and msec/(best msec), respec-
tively. ρ designates the fraction of problems solved within the number of function
evaluations and time in milliseconds used by the best solver. Problems solved by no
solver are ignored. (c) – (d): Performance plots for nf/(best nf) and msec/(best
msec), respectively. ρ designates the fraction of problems solved within the number
of function evaluations and time in milliseconds used by the best solver. Problems
solved by no solver are ignored. 216

222

List of Tables

6.1 The summary results for all problems . 50
6.2 The summary results classified by dimension and constraint for all problems . . . 52
6.3 The summary results for hard problems . 53
6.4 Problems unsolved by all solvers . 58
6.5 The hard problems unsolved by all solvers . 65

8.1 Complexity results for randomized BBO in expectation (Bergou et al. [16] for
all cases) . 84

8.2 Complexity results for deterministic BBO (Vicente [161] for the nonconvex case,
Dodangeh & Vicente [59] for the convex and the strongly convex cases, Konečný
& Richtárik [38] for all cases) . 84

8.3 Complexity results for randomized BBO with probability 1−η, for fixed 0 < η < 1
(Gratton et al. [84] for the nonconvex case, present paper for all cases). Here
R ≥ Ω

(
log log(n/ε2) + log η−1

)
is the number of random directions used in each

iteration for a given 0 < η < 1. 85
8.4 The summary results for small dimensions n ≤ 20 107
8.5 The summary results for medium dimensions 21–100 109
8.6 The summary results for for large dimensions 101–1000 110
8.7 The summary results for very large dimensions 1001–5000 111
8.8 The values of the tuning parameters . 112

9.1 Results for 1 ≤ n ≤ 30 with nfmax = 100n . 138
9.2 Results for 1 ≤ n ≤ 30 with nfmax = 500n . 141
9.3 Results for 1 ≤ n ≤ 30 with nfmax = 1000n . 144
9.4 Results for 31 ≤ n ≤ 1000 with nfmax = 100n . 146
9.5 Results for 31 ≤ n ≤ 1000 with nfmax = 500n . 148
9.6 Results for 31 ≤ n ≤ 1000 with nfmax = 1000n 148
9.7 Results for 1001 ≤ n ≤ 9000 with nfmax = 100n 151
9.8 Results for 1001 ≤ n ≤ 9000 with nfmax = 500n 151
9.9 Results for 1001 ≤ n ≤ 9000 with nfmax = 1000n 156
9.10 Results for 1 ≤ n ≤ 9000 with nfmax = 100n . 156
9.11 Results for 1 ≤ n ≤ 9000 with nfmax = 500n . 156
9.12 Results for 1 ≤ n ≤ 9000 with nfmax = 1000n . 158

11.2 A classification of test problems . 200
11.3 Results for small scale and small budget . 203
11.4 Results for small scale and medium budget . 203
11.5 Results for small scale and large budget . 206
11.6 Results for small scale and very large budget . 206
11.7 Results for medium scale and small budget . 209
11.8 Results for medium scale and budget . 209

223

224 List of Tables

11.9 Results for medium scale and large budget . 213
11.10Results for large scale and small budget . 213
11.11Results for large scale and budget . 215

224

CURRICULUM VITAE
Morteza Kimiaei

PERSONAL INFORMATION

Birth December 25, 1983, Tehran, Iran

Cell +918 714 16 43

Email morteza.kimiaei@gmail.com, kimiaeim83@univie.ac.at

Homepage https://www.mat.univie.ac.at/∼kimiaei

Google scholar https://scholar.google.at/citations?user=79302hwAAAAJ&hl=en

VGSCO page https://vgsco.univie.ac.at/people/phd-students/morteza-kimiaei/

EDUCATION & CERTIFICATION

2017-2021 PhD Student in Computational Optimization

Vienna Graduate School on Computational Optimization (VGSCO)

2006-2008 Master of Science in Applied Mathematics (Optimization)

Department of Mathematics, Razi University, Kermanshah, Iran

2002-2006 Bachelor of Science in pure Mathematics

Department of Mathematics, Bu-Ali Sina University, Hamedan, Iran

1998-2001 Diploma in Mathematics and Physics

Engelab High School, Asadabad, Iran

RESEARCH INTERESTS

• Nonsmooth Optimization

• Convex Optimization

• Nonlinear Optimization

• Global Optimization

1

• Computational Mathematics

• Large-Scale Structured Optimization

• Black box optimization

PUBLICATIONS

• Published:

1. M. Kimiaei, F. Rahpaymaii, A fixed point method for convex systems, Applied Mathematics,
3 (2012), 1327–1333.

2. M. Ahookhosh, H. Esmaeili, M. Kimiaei, An effective trust-region-based approach for sym-
metric nonlinear systems, International Journal of Computer Mathematics (Taylor & Francis),
90 (3) (2013), 671–690.

3. H. Esmaeili, M. Kimiaei, An improved adaptive trust-region method for unconstrained op-
timization, Mathematical Modelling and Analysis (Taylor & Francis), 19(4) (2014), 469–490.

4. H. Esmaeili, M. Kimiaei, A new adaptive trust-region method for systems of nonlinear equa-
tions, Applied Mathematical Modelling (Elsevier), 38(11–12) (2014), 3003–3015.

5. H. Esmaeili, M. Kimiaei, An efficient implementation of a trust region method for box con-
strained optimization, Journal of Applied Mathematics and Computing (Springer), 48 (2015),
495–517.

6. M. Ahookhosh, K. Amini, M. Kimiaei, A globally convergent trust-region method for large-
scale symmetric nonlinear systems, Numerical Functional Analysis and Optimization (Taylor
& Francis), 36 (2015), 830–855.

7. H. Esmaeili, M. Kimiaei, An efficient adaptive trust-region method for systems of nonlinear
equations, International Journal of Computer Mathematics (Taylor & Francis), 92(1) (2015),
151–166.

8. M. Ahookhosh, K. Amini, M. Kimiaei, M.R. Peyghami, A limited memory trust-region
method with adaptive radius for large-scale unconstrained optimization, Bulletin of the Iranian
Mathematical Society (Iranian Mathematical Society), 42(4) (2015), 819–837.

9. K. Amini, M. Kimiaei, M.A.K. Shiker, A line search trust-region algorithm with nonmono-
tone adaptive radius for solving systems of nonlinear equations, 4OR (Springer), 14(2) (2016),
133–152.

10. K. Amini, H. Esmaeili, M. Kimiaei, A nonmonotone trust-region-approach with nonmono-
tone adaptive radius for nonlinear systems, Iranian Journal of Numerical Analysis and Opti-
mization, 6(1) (2016), 101–121.

11. F. Rahpeymaii, M. Kimiaei, A. Bagheri, A limited memory quasi-Newton trust-region method
for box constrained optimization, Computational and Applied Mathematics (Elsevier), 303
(2016), 105–118.

12. H. Esmaeili, M. Kimiaei, A trust-region method with improved adaptive radius for systems
of nonlinear equations, Mathematical Methods of Operations Research (Springer), 83 (2016),
109–105.

13. M. Kimiaei, H. Esmaeili, A trust-region approach with novel filter adaptive radius for systems
of nonlinear equations, Numerical Algorithms (Springer), 73(4) (2016), 999–1016.

14. M. Kimiaei, A new class of nonmonotone adaptive trust-region method for nonlinear equa-
tions with box constrained, Calcolo (Springer), 54(3) (2017), 769–812.

15. M. Kimiaei, M. Rostami, Impulse noise removal based on new hybrid spectral conjugate
gradient approach, KYBERNETIKA (The Czech Academy of Sciences), 52(5) (2016), 791–
823.

2

16. M. Kimiaei, Nonmonotone self-adaptive levenberg-marquardt approach for solving systems
of nonlinear equations, Numerical Functional Analysis and Optimization (Taylor & Francis),
39(1) (2018), 47–66.

17. H. Esmaeili, M. Rostami, M. Kimiaei, Combining line search and trust-region methods for
`1-minimization, International Journal of Computer Mathematics (Taylor & Francis), 95(10)
(2018), 1950–1972.

18. M. Kimiaei, S. Ghaderi, A new restarting adaptive trust-region method for unconstrained
optimization, Journal of the Operations Research Society of China (Springer), 5(4) (2017),
487–507.

19. F. Rahpeymaii, M. Kimiaei, A Barzilai Borwein Adaptive Trust-Region Method for Solving
Systems of Nonlinear Equation, International Journal of Research in Industrial Engineering,
6(4) (2017), 339–349.

20. K. Amini, M. Kimiaei, H. Khotanlou, A nonmonotone pattern search approach for systems
of nonlinear equations, International Journal of Computer Mathematics (Taylor & Francis),
96(1) (2019), 33–50.

21. H. Esmaeili, S. shaebani, M. Kimiaei, A new conjugate gradient methods for compressive
sensing problems, Calcolo (Springer), 56 (1) (2019).

22. M. Kimiaei, F. Rahpeymaii, A new nonmonotone line search adaptive trust region for non-
linear systems, TOP (Springer), 27(2) (2019), 192–232.

23. M. Kimiaei, F. Rahpeymaii, Impulse noise removal by an adaptive trust-region method, Soft
Computing (Springer), 23 (2019), 11901–11923.

24. M. Kimiaei, H. Esmaeili, F. Rahpeymaii, A Trust-region Method using Extended Nonmono-
tone Technique for Unconstrained Optimization, Iranian Journal of Mathematical Sciences
and Informatics (ACECR at Tarbiat Modares University, ISI) (2020).

• Under review:

1. M. Kimiaei, A. Neumaier, B. Azmi, LMBOPT - a limited memory method for bound-
constrained optimization, revised (2020).

2. M. Kimiaei, A. Neumaier, VSBBO – Efficient unconstrained black box optimization, revised
(2020).

3. M. Kimiaei, VSBBON – Line search in noisy unconstrained black box optimization, submit-
ted (2021).

4. M. Kimiaei, An active set trust region method for bound constrained optimization, submitted
(2021).

5. M. Kimiaei, A. Neumaier, LMLS – Limited memory for unconstrained nonlinear least squares,
submitted (2020).

6. M. Kimiaei, A. Neumaier, P. Faramarzi, STBBO – A new subspace tecnique for uncon-
strained black box optimization, submitted (2021).

• Work in progress:

1. M. Kimiaei, A. Neumaier, Testing and tuning optimization algorithm, (2020).

Softwares

– LMBOPT: A limited memory for bound constrained optimization in Matlab

– VSBBO: An efficient stochastic algorithm unconstrained black box optimization in Matlab

– VSBBON: An efficient stochastic algorithm for unconstrained noisy black box optimization in
Matlab

3

– LMLS: A limited memory method for unconstrained least squares in Matlab

– STBBO: A subspace technique for unconstrained black box optimization in Matlab

– GSCG: A new generalized shrinkage conjugate gradient method for sparse recovery in Matlab

TEACHING

2008-2016 Razi University, Department of Mathematics, Teacher Math

Operation Research, Calculus and Analytic Geometry, Differential Equation

2009-2016 Azad Islamic University, Asadabad, Teacher Math

Operation Research, Calculus and Analytic Geometry, Differential Equation

2009-2016 Payame Noor University, Asadabad, Teacher Math

Operation Research, Calculus and Analytic Geometry, Differential Equation

2012-2016 Seyyed Jamaleddin Asadabadi University, Teacher Math

Operation Research, Calculus and Analytic Geometry, Differential Equation

SELECTED SKILLS

– Computer Skills:

Programming Language C, C++

Mathematical Software MATLAB

Operating System Linux, Windows

Applied Software Latex, Office

– Language Skills:

Persian Native Language

English Advanced Knowledge

EXTRACURRICULAR ACTIVITIES

– Sport: football, Hiking, Climbing, Fishing

– Reading books, Watching historical movies.

4

