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Abstract

The aim of this thesis is to provide an introduction to the theory of Riemannian sym-
metric spaces with a particular view towards non-compact spaces. Starting from their
classical theory in the setting of Riemannian geometry and Lie theory, we develop a
correspondence between symmetric spaces and a certain type of real Lie algebras. This
method leads to a complete classi�cation of symmetric spaces and gives rise to the dis-
tinguished class of symmetric spaces of the non-compact type consisting of complete,
simply connected Riemannian manifolds of non-positive sectional curvature. The ques-
tion how such spaces can be compacti�ed arises naturally in this context. In general,
there are many approaches to this problem, which raises the issue of relating compacti-
�cations obtained by di�erent methods. The core of this thesis is devoted to describing
various methods of compacti�cation of symmetric spaces of the non-compact type and
to compare them in the concrete examples of hyperbolic space and open orbits in Grass-
mannian manifolds. These spaces provide an important class of symmetric spaces and
can be studied with a wide range of tools from Riemannian geometry, Lie theory and
linear algebra.
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Zusammenfassung

Die vorliegende Arbeit hat zum Ziel, eine Einführung in die Theorie Riemannscher sym-
metrischer Räume mit besonderem Augenmerk auf nicht-kompakte Räume zu geben.
Ausgehend von ihrer klassischen Theorie im Rahmen von Riemannscher Geometrie und
Lie-Theorie wird eine Korrespondenz zwischen symmetrischen Räumen und einer bes-
timmten Art reeller Lie-Algebren entwickelt. Diese Methode ermöglicht eine vollständige
Klassi�zierung symmetrischer Räume und zeigt die Existenz der ausgezeichneten Klasse
der symmetrischen Räume vom nicht-kompakten Typ, die aus vollständigen, einfach
zusammenhängenden Riemannschen Mannigfaltigkeiten mit nicht-positiver Schnittkrüm-
mung besteht. In diesem Kontext ergibt sich die Frage, wie solche Räume kompakti�ziert
werden können. Im Allgemeinen gibt es viele Ansätze zu diesem Problem, was die Frage
aufwirft, wie unterschiedliche Kompakti�zierungen miteinander verglichen werden kön-
nen. Der Hauptteil der Arbeit ist der Beschreibung verschiedener Methoden der Kom-
pakti�zierung symmetrischer Räume vom nicht-kompakten Typ gewidmet und vergleicht
diese in den konkreten Beispielen des hyperbolischen Raumes sowie o�enen Bahnen in
Graÿmann-Mannigfaltigkeiten. Diese Räume stellen eine wichtige Familie symmetrischer
Räume dar und können mit einer Vielzahl an Werkzeugen der Riemannschen Geometrie,
Lie-Theorie und linearen Algebra untersucht werden.

ii



Contents

Introduction 1

1 Riemannian symmetric spaces 3
1.1 Riemannian manifolds and homogeneous spaces . . . . . . . . . . . . . . . 3
1.2 Symmetric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 The group of displacements . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 The Lie-theoretic viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 Hermitian symmetric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Symmetric spaces and Lie algebras 29
2.1 Orthogonal symmetric Lie algebras . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Cartan decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Applications to symmetric spaces . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1 An overview of the classi�cation . . . . . . . . . . . . . . . . . . . 40
2.3.2 The non-compact type . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.3 Totally geodesic submanifolds . . . . . . . . . . . . . . . . . . . . . 51

3 Compactifications of symmetric spaces 57
3.1 The geodesic compacti�cation . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 Compacti�cations of hyperbolic space . . . . . . . . . . . . . . . . . . . . 65
3.3 Embeddings in Grassmannian manifolds . . . . . . . . . . . . . . . . . . . 74
3.4 The Baily-Borel compacti�cation . . . . . . . . . . . . . . . . . . . . . . . 85
3.5 The Borel embedding as a homogeneous compacti�cation . . . . . . . . . 88

Bibliography 95

iii





Introduction

Symmetric spaces lie at the crossroads between two viewpoints towards geometry. On the
one hand, they can be approached in the framework of classical Riemannian geometry.
In this setting, they are characterized by a rather simple behaviour of their geodesics.
More precisely, symmetric spaces can be de�ned as Riemannian manifolds with the prop-
erty that the re�ection of geodesics at any given point extends to a globally well-de�ned
isometry. This condition already heavily constrains the geometry of the manifold and it
turns out that this property is locally equivalent to the Riemann curvature tensor being
parallel.
On the other hand, a modern approach to geometry is Felix Klein's Erlangen program

that characterizes geometries by their symmetries. In this framework, one studies the
geometry of a space through an associated group of symmetries which typically turns out
to be a Lie group acting smoothly on the space in question. Geometric objects on the
space are then characterized by being invariant under the group action. The de�nition of
symmetric spaces in the language of Riemannian geometry directly implies that they are
endowed with a particularly large and yet very simple set of isometries. In particular, for
every pair of points in a symmetric space there exists an isometry mapping one point to
the other. From the viewpoint of the Erlangen program, this opens up the possibility of
describing a symmetric space equivalently as a homogeneous space of its isometry group.
The symmetric structure then in turn imposes strong restrictions on the resulting space,
which is particularly visible in the Lie algebra structure that is naturally associated with
a symmetric homogeneous space and encodes many of its geometric properties. On the
one hand, this allows for a geometric study of symmetric spaces through the theory of
Lie algebras. On the other hand, it is visible in this setting that in contrast to general
homogeneous spaces, symmetric spaces can be completely classi�ed.

The thesis is organized in the following way. In Chapter 1 we begin by reviewing basic
concepts from general Riemannian geometry that provides the framework in which the
notion of a symmetric space is introduced. In this picture, we are directly able to discuss
several of their geometric properties, such as curvature and geodesics. However, it then
becomes apparent that symmetric spaces are in general best described algebraically as
homogeneous spaces G/H, where G is a Lie group and H ⊂ G a closed subgroup satis-
fying certain additional properties, and we motivate this shift in perspective throughout
the �rst chapter.
Starting from this Lie-theoretic point of view, Chapter 2 is devoted to studying the Lie
algebra structure that is associated to a symmetric space G/H. The Lie algebra g of
G is naturally equipped with an involutive Lie algebra automorphism whose eigenspace
for the eigenvalue +1 coincides with the Lie algebra h of H and whose −1-eigenspace is
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Introduction

canonically identi�ed with the tangent space at a point of the symmetric space. First,
we study this algebraic structure in its own right, afterwards we apply the results to
obtain more re�ned information about the geometry and structure of symmetric spaces.
In particular, we indicate how the classi�cation of involutive automorphisms of compact,
simple Lie algebras gives rise to a classi�cation of symmetric spaces.
As these results show, there is a distinguished class of symmetric spaces, called the
non-compact type, consisting of simply connected Riemannian manifolds of non-positive
sectional curvature that are di�eomorphic to a vector space. It is then a natural question
how these spaces can be compacti�ed. In Chapter 3 we turn to a study of compacti�ca-
tions of symmetric spaces of the non-compact type where we present several approaches
to this problem. We describe two general methods, but our focus lies on two concrete
examples - hyperbolic space and open orbits in Grassmannian manifolds - where we dis-
cuss similarities and di�erences between various compacti�cations.

The text is intended to be self-contained for a reader with a working background in
Riemannian geometry and basic knowledge of Lie groups and Lie algebras. Nevertheless,
we review the most important notions of these subjects and provide references for further
reading. In general, the books [Lee97] and [Kna96] provide thorough introductions to
these �elds and contain most of the relevant concepts. The material in Chapter 1 and
2 covers many aspects of the �classical� theory of symmetric spaces and the results ob-
tained there can be found in various sources. In particular, the book [Hel01] is a standard
reference. The content in Sections 1.2 and 1.3 can also be found in [Bau14] in a more
general setting. Since Chapter 3 mainly focuses on speci�c examples, we do not intend
to give a detailed account of the general theory of compacti�cations of symmetric spaces,
which can be found in [BJ06] or [AO05], but mostly goes beyond the goals of this thesis.
For an introduction to symmetric spaces of the non-compact type and a gentle approach
to their more elaborate theory, we recommend the book [Ebe96].
Finally, it should be noted that there are various generalizations of symmetric spaces,
such as locally or a�ne symmetric spaces, that we do not consider in this thesis. Also,
there is an obvious adaptation of symmetric spaces to the pseudo-Riemannian setting,
which is much more involved than the Riemannian case.
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1 Riemannian symmetric spaces

In this chapter we introduce the notion of symmetric spaces, which are Riemannian
manifolds that are equipped with a distinguished family of isometries. This structure
gives rise to a purely Lie-theoretic description of these spaces, which makes it possible
to study their geometry with a wide range of algebraic tools.

1.1 Riemannian manifolds and homogeneous spaces

As an introduction, we review some basic notions from Riemannian geometry that will
be important for our study and motivate the shift to the Lie-theoretic perspective that
we have in mind. The material covered in this section merely serves as an overview,
which is why we will not go too far into details. For further reading, we recommend
[Lee97] as well as [O'N83, Chapter 3 and 5] for an introduction to Riemannian geometry.
Basic material about Lie groups and homogeneous spaces that will be relevant for our
purposes is covered in [Bau14, Kapitel 1].
Riemannian geometry deals with the problem of transferring familiar notions from Eu-
clidean geometry to the setting of general manifolds. Euclidean geometry is modelled
on a �nite-dimensional vector space Rn, where the crucial structure that gives rise to
familiar geometric notions, such as distance, is the Euclidean inner product

〈x, y〉 =
n∑
i=1

xiyi, x, y ∈ Rn.

In order to de�ne similar notions on a smooth manifold1 M , it is therefore natural to
require the existence of a non-degenerate symmetric bilinear form Qp : TpM ×TpM → R
on each tangent space TpM and - as usual in the category of smooth manifolds - it is
assumed that this family depends smoothly on the base point p ∈M in the sense that if
X,Y ∈ X(M) are smooth vector �elds onM , then p 7→ Qp(X(p), Y (p)) de�nes a smooth
function M → R. Equivalently, the smoothness condition can be expressed by requiring
that p 7→ Qp de�nes a smooth

(
0
2

)
-tensor �eld Q on M . If Qp is positive de�nite for

every p ∈M and thus de�nes an inner product on every tangent space, then Q is called
a Riemannian metric on M and the pair (M,Q) is said to be a Riemannian manifold.2

The metric Q is the fundamental structure that gives rise to geometric notions onM , but
1We assume here that M is a second-countable Hausdor� space with a �nite number of connected
components and that its dimension is at least 2.

2In general, if Qp is non-degenerate but not necessarily positive de�nite, then Q is called a pseudo-

Riemannian metric. However, we will only consider the Riemannian case and much of the following
discussion does not generalize to the pseudo-Riemannian setting.
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1 Riemannian symmetric spaces

it is important to keep in mind that their precise meaning depends heavily on the chosen
metric, which is an additional structure on M and not intrinsic to the manifold. In fact,
every manifold can be endowed with a Riemannian metric, which can be constructed in
local coordinates using a partition of unity, but this procedure already illustrates that
there is in general an enormous freedom of choice. Having chosen a Riemannian metric
on M , every tangent space inherits the structure of a Euclidean vector space, so we
obtain a natural notion of length or angles between vectors of the same tangent space.
Since the metric depends smoothly on the base point, these notions can immediately be
generalized to families of tangent vectors that also depend smoothly on the base point.
A particularly important special case is the following.
Let γ : I → M be a smooth curve de�ned on some interval3 I = [a, b] ⊂ R, then at
each t ∈ I we can measure the length ||γ̇(t)|| := Qγ(t)(γ̇(t), γ̇(t))

1
2 of the vector tangent

to γ(t), which automatically de�nes a continuous function t 7→ ||γ̇(t)|| that is smooth if
γ̇(t) 6= 0. As in the Euclidean case, this gives rise to a natural notion of arc length of γ
de�ned by

L(γ) :=

∫ b

a
||γ̇(t)|| dt, (1.1)

which is independent of the parametrization of γ. The curve is said to be parametrized

by arc length or to have unit-speed if ||γ̇(t)|| = 1 for all t ∈ I. A reasonable notion of
distance between two points p, q ∈ M is then the optimal length of curves connecting
them. Explicitly, if M is connected, then

d(p, q) := inf{L(γ) | γ : [0, 1]→M piecewise smooth curve, γ(0) = p, γ(1) = q} (1.2)

de�nes a distance function d : M ×M → R, which turns M into a metric space such
that the metric topology with respect to d coincides with the natural manifold topology
of M (cf. [Lee97, Lemma 6.2]). A curve in M is said to be distance-minimizing if its arc
length coincides with the metric distance between its endpoints.
Another fundamental feature of Riemannian manifolds is that there is a natural way of
di�erentiating vector �elds. More precisely, a Riemannian metric Q on M gives rise to
a unique covariant derivative ∇ : X(M) × X(M) → X(M) on the tangent bundle TM ,
called the Levi-Civita connection of M , that satis�es

∇XY −∇YX = [X,Y ]

X(Q(Y, Z)) = Q(∇XY, Z) +Q(Y,∇XZ)
(1.3)

for all vector �elds X,Y, Z ∈ X(M). These conditions are typically phrased as torsion-
freeness and compatibility with the metric. The Levi-Civita connection is uniquely deter-
mined by the Koszul formula (cf. [Lee97, Theorem 5.4]):

2Q(∇XY, Z) = X(Q(Y, Z)) + Y (Q(X,Z))− Z(Q(X,Y ))

+Q([X,Y ], Z)−Q([X,Z], Y )−Q([Y,Z], X)
(1.4)

3Smoothness on I is supposed to mean that γ can be smoothly extended to an open interval J ⊃ I.
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1.1 Riemannian manifolds and homogeneous spaces

Geometrically, the value of the vector �eld ∇XY at a point p ∈ M expresses the direc-
tional derivative of the vector �eld Y in direction of X(p). For a �xed vector �eld Y , the
map X 7→ ∇XY is (by de�nition of a covariant derivative) C∞(M)-linear, which implies
that its value at p depends only on X(p). This makes it possible to di�erentiate vector
�elds in the directions of individual tangent vectors and in particular, to measure the
rate of change of a vector �eld along a curve. We refer to [Lee97, p. 55-62] for more
details on the following construction.
Let γ : I → M again be a smooth curve, then a vector �eld along γ is a smooth map
X : I → TM that satis�es X(t) ∈ Tγ(t)M for all t ∈ I. The Levi-Civita connection
gives rise to a well-de�ned map X 7→ ∇γ̇X on the space Xγ(M) of vector �elds along γ,
called the induced Levi-Civita connection along γ. A vector �eld X ∈ Xγ(M) is said to
be parallel along γ if ∇γ̇X vanishes identically. In particular, the derivative γ̇ is a vector
�eld along γ, the velocity of γ, so the expression ∇γ̇ γ̇ is a well-de�ned vector �eld along
γ. It measures the rate of change of the velocity along the curve, i.e. the acceleration of
γ. The curve is called a geodesic if its velocity �eld is parallel, i.e. if ∇γ̇ γ̇ = 0. There-
fore, geodesics are precisely those curves in M having no acceleration in direction of the
curve. In particular, they are a natural generalization of the notion of straight lines from
Euclidean geometry to general Riemannian manifolds.
In local coordinates, the condition ∇γ̇X = 0 can be re-written as a �rst-order system
of linear ordinary di�erential equations for the components of X. This implies that for
every t0 ∈ I and every v ∈ Tγ(t0)M there exists a unique parallel vector �eld Xv ∈ Xγ(M)
with X(t0) = v. Hence, for all t0, t1 ∈ I there is a well-de�ned linear map

Pγt0,t1 : Tγ(t0)M → Tγ(t1)M

v 7→ Xv(t1),

which is called parallel transport along γ from t0 to t1. Similarly, the geodesic equa-
tion ∇γ̇ γ̇ = 0 can locally be re-written as a second-order system of nonlinear ordinary
di�erential equations for the components of γ. In this case, it follows that for every
point p ∈ M and every tangent vector v ∈ TpM , there is a unique maximally extended
geodesic γv, which is de�ned on some maximal open interval I ⊂ R with 0 ∈ I, that
satis�es γv(0) = p and γ̇v(0) = v. If we denote by D(p) the set of all v ∈ TpM such that
γv is de�ned on an interval containing [0, 1], then D(p) is an open neighbourhood of the
origin in TpM and there is a well-de�ned smooth map

Expp : D(p)→M

v 7→ γv(1),

called the Riemannian exponential map at p. Its di�erential at 0 ∈ D(p) is the identity
map, so it restricts to a di�eomorphism from an open neighbourhood V of 0 ∈ TpM to
an open neighbourhood U of p ∈M (cf. [Lee97, Proposition 5.7 and Lemma 5.10]). If V
is star-shaped with respect to the origin, then U is called a normal neighbourhood of p.
From this it follows easily that every point p ∈M possesses a normal neighbourhood U
and every q ∈ U can be connected to p by a geodesic contained in U which is unique up

5



1 Riemannian symmetric spaces

to re-parametrization. The Riemannian manifold is said to be complete if D(p) = TpM
holds for all p ∈M , which means that every maximally extended geodesic ofM is de�ned
on all of R.
So far we have met two natural concepts of distinguished curves on a Riemannian man-
ifold, namely distance-minimizing curves and geodesics. These two notions coincide in
Euclidean geometry, but on a general Riemannian manifold the situation is more compli-
cated. On the one hand, a distance-minimizing curve can always be re-parametrized to
become a geodesic. On the other hand, geodesics are always locally distance-minimizing,
i.e. when restricted to small enough intervals (cf. [Lee97, Theorem 6.6 and 6.12]).
However, it can easily be seen that this need not hold globally by considering the unit
sphere Sn ⊂ Rn+1, which inherits a Riemannian metric by restricting the standard inner
product of the surrounding vector space to its tangent spaces. In this example, geodesics
parametrize great circles, which are clearly not distance-minimizing after passing through
an antipodal point. Moreover, it is in general not clear whether two given points on a
Riemannian manifold can be joined by a geodesic. A fundamental result in this direction
is related to the Hopf-Rinow theorem, which implies that if M is a complete, connected
Riemannian manifold, then every pair of points in M can be connected by a distance-
minimizing geodesic (cf. [O'N83, p. 138-140]). Considering again the sphere shows that
this geodesic is not necessarily unique.
Intuitively, these phenomena are consequences of the existence of some notion of curva-
ture on the Riemannian manifold, but it should be noted that the di�erent behaviour of
geodesics can already be seen on a local level. For example, consider a �triangle-shaped�
closed curve γ : [0, 1]→ Sn on the sphere consisting of three segments of great circles. If
γ(0) = γ(1) = p, then parallel transport Pγ0,1 maps TpSn to itself, but it is in general not
the identity map, meaning that vectors do not end up in the same position under par-
allel transport along the curve. Note that this phenomenon occurs for arbitrarily small
triangles. In Euclidean geometry, however, a similar motion along a closed curve in Rn
never changes the direction of a vector. On a general Riemannian manifold, curvature
is formally introduced via the Levi-Civita connection which gives rise to the Riemann

curvature tensor de�ned as4

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, X, Y, Z ∈ X(M). (1.5)

It measures the extent to which the second derivatives of the Levi-Civita connection fail
to commute, which turns out to be the fundamental local invariant for a Riemannian
manifold. In addition, it also gives rise to a more intuitive quantity. The Riemann
curvature tensor is C∞(M)-linear in all variables and therefore induces a trilinear map
Rp : (TpM)3 → TpM for every p ∈ M . If S is a two-dimensional plane in TpM that is
spanned by v, w ∈ TpM , then the expression

K(S) :=
Qp(Rp(v, w)w, v)

Qp(v, v)Qp(w,w)−Qp(v, w)2
≡ Rp(v, w,w, v)

||v||2||w||2 −Qp(v, w)2
(1.6)

4There are di�erent conventions on the sign of the curvature tensor used in the literature. We follow
the de�nition in [Hel01].
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1.1 Riemannian manifolds and homogeneous spaces

is independent of the basis {v, w} ⊂ S and called the sectional curvature of M along S.
This concept is indeed a generalization of the classical notion of Gaussian curvature for
surfaces in R3 (cf. [Lee97, p. 142-146]). As suggested by the de�nition, it is customary
to write R(X,Y, Z,W ) := Q(R(X,Y )Z,W ) and we will employ both conventions simul-
taneously.
All the constructions mentioned so far are induced by the Riemannian metric, so the
appropriate class of isomorphisms in the category of Riemannian manifolds are those
maps that preserve the Riemannian structure. If (M ′, Q′) is another Riemannian mani-
fold, then a smooth map f : M →M ′ is called an isometry if it is a di�eomorphism and
satis�es f∗Q′ = Q, where f∗Q′ denotes the pullback of the metric Q′ under f . Explicitly,
this condition is equivalent to the following requirement.

Q′f(p)(Tpf(v), Tpf(w)) = Qp(v, w) ∀p ∈M, ∀v, w ∈ TpM (1.7)

This ensures that isometries are compatible with all geometric objects induced by the
metric. For example, the pullback f∗∇′ of the Levi-Civita connection on M ′ de�nes a
torsion-free connection on M that is compatible with the metric Q = f∗Q′ and thus
coincides with the Levi-Civita connection of M , which also directly implies that the
Riemann curvature tensors satisfy f∗R′ = R. In particular, this shows that the Riemann
curvature tensor is really an invariant of a Riemannian manifold. Moreover, isometries
preserve geodesics in the following sense: If γ is the unique geodesic of M with γ(0) = p
and γ̇(0) = v, then σ := f ◦ γ is the unique geodesic of M ′ with σ(0) = f(p) and
σ̇(0) = Tpf(v) (cf. [Lee97, Proposition 5.6]). This can be expressed by the following
commutative diagram.

D(p) ⊂ TpM M

D(f(p)) ⊂ Tf(p)M
′ M ′

Tpf

Expp

f

Expf(p)

Let f and g be two isometries that satisfy f(p0) = g(p0) and Tp0f = Tp0g for some point
p0 ∈ M , then the set A := {p ∈ M : f(p) = g(p) and Tpf = Tpg} is closed and non-
empty. In a normal neighbourhood U of a point p ∈ M , every q ∈ U can be connected
to p by a unique unit-speed geodesic γ contained in U . If p ∈ A, then the geodesics
f ◦ γ and g ◦ γ coincide, which implies f(q) = g(q) and Tqf = Tqg by the diagram above.
Therefore, the set A is also open, so if M is connected, then A = M shows that an
isometry is uniquely determined by its value and tangent map at a single point.
The set of all isometries f : M →M forms a group under composition of maps which is
called the isometry group of M and denoted by I(M). Moreover, the map

I(M)×M →M

(f, p) 7→ f · p := f(p)
(1.8)

de�nes a canonical group action of I(M) on M and it is natural to ask whether this
action is compatible with the manifold structure of M . In concrete examples, it is often

7



1 Riemannian symmetric spaces

possible to �nd subgroups of I(M) which are indeed Lie groups acting smoothly on the
manifold. For example, it is easy to see that the orthogonal group O(n + 1) is a Lie
group that acts smoothly on the sphere by isometries, but it is more di�cult to show
that I(Sn) = O(n + 1). However, there is a powerful theorem by Myers and Steenrod
which answers the above question positively for all Riemannian manifolds. The concept
of isometric actions of Lie groups will be very important for our discussion and we do
not want to restrict our attention to speci�c examples. Therefore, we will make use of
the following result whose proof can be found in [KN63, Chapter VI, Theorem 3.4].

Theorem 1.1.1 (Myers, Steenrod). Let M be a Riemannian manifold and I(M) its

group of isometries.

(i) I(M) possesses a smooth structure such that it becomes a Lie group and acts

smoothly on M via the action in (1.8).

(ii) The stabilizer I(M)p := {f ∈ I(M) : f(p) = p} is compact for every p ∈M .

Trivially, the only isometry of M that �xes every point is the identity, which means
that the action of I(M) is e�ective. If we write G = I(M) and G · p := {g(p) : g ∈ G}
for the orbit of a point p ∈M under the action of G, then we obtain a bijection between
the coset space G/Gp and the orbit G ·p. Since the stabilizer Gp is closed in G, there is a
natural manifold structure on G/Gp, which can be used to de�ne a manifold structure on
G ·p ⊂M and turns the orbit into an immersed submanifold of M . If we have G ·p = M
for some p ∈M , then this condition in fact holds for all p ∈M . In this case, the action
of G on M is transitive and the manifold M is said to be homogeneous. In particular,
setting H = Gp yields a bijection

Φ : G/H →M

gH 7→ g(p)

which can be shown to be a di�eomorphism (cf. [Bau14, Satz 1.25]). Under this iden-
ti�cation, the point p ∈ M corresponds to the coset eH = H, where e ∈ G denotes the
neutral element, and the action of G on M is identi�ed with the action

l : G×G/H → G/H

(g, g′H) 7→ lg(g
′H) ≡ g · (g′H) := gg′H

of left-multiplication on G/H. Moreover, we can equip G/H with the pullback QG/H :=
Φ∗Q of the Riemannian metric of M . This turns G/H into a Riemannian manifold that
is isometric to M such that the metric is G-invariant in the sense that lg is an isometry
for every g ∈ G. The canonical quotient map

π : G→ G/H

g 7→ gH = lg(eH)

8



1.1 Riemannian manifolds and homogeneous spaces

is a surjective submersion, so its di�erential Teπ : g → TeH(G/H) is surjective and its
kernel is precisely the Lie algebra h of H. Under the di�eomorphism Φ, it corresponds
to the map

τ : G→M

g 7→ g(p).

Therefore, τ is a submersion as well and its di�erential Teτ : g→ TpM is surjective with
kernel h. If p is any linear subspace of g that is complementary to h, then Teτ induces a
linear isomorphism p ∼= TpM . However, in general there is no canonical choice of such a
complementary space.
Every isometry h ∈ H �xes the point p, so its tangent map Tph is a linear automorphism
of TpM . This induces a well-de�ned map

λ : H → GL(TpM)

h 7→ Tph,

which is a Lie group homomorphism, called the isotropy representation ofH on TpM . The
fact that H consists of isometries implies that λ actually takes values in the orthogonal
group O(TpM). If M is connected, which we will from now on always assume, then
every isometry in H is uniquely determined by its tangent map at p, in which case
the isotropy representation is injective. Moreover, as for every Lie group, there is a
natural representation Ad : G → GL(g) of G on its Lie algebra g, called the adjoint

representation of G, where Ad(g) is de�ned to be the di�erential at e of the conjugation
map conjg : G → G, h 7→ ghg−1. In particular, we can restrict Ad to H ⊂ G in
the situation above to obtain a representation of H on g. The relation between these
representations is clari�ed by the following lemma.

Lemma 1.1.2. There exists a complementary subspace p to h in g that is Ad(H)-
invariant, i.e. Ad(h)p ⊂ p for every h ∈ H. Under the isomorphism p ∼= TpM , the

isotropy representation of H on TpM corresponds to the restriction of the adjoint repre-

sentation of H ⊂ G to p ⊂ g.

Proof. We have already observed that H is a compact Lie group that acts on the Lie
algebra g via the restriction of Ad to H ⊂ G. Therefore, g can be equipped with an
Ad(H)-invariant inner product, i.e. an inner product 〈·, ·〉 such that 〈Ad(h)X,Ad(h)Y 〉 =
〈X,Y 〉 holds for all h ∈ H and X,Y ∈ g.5 The orthogonal complement of the Lie
subalgebra h ⊂ g with respect to this inner product is then the required space p.

5This is a consequence of the fact that on every Lie group G there exists a right-invariant Haar measure

dg which makes it possible to integrate compactly supported smooth functions on G. It is unique up
to a scalar multiple, so if G is compact, it is uniquely determined by requiring

∫
G

1 dg = 1. In this
case, if ρ : G→ GL(V ) is a representation of G on a vector space V and (·, ·) is any inner product on
V , then 〈v, w〉 :=

∫
G

(ρ(g)v, ρ(g)w) dg de�nes an inner product on V satisfying 〈ρ(g)v, ρ(g)w〉 = 〈v, w〉
for all g ∈ G and v, w ∈ V . More details about this construction can be found in [Kna96, Chapter
VIII, Section 2] and [Kun19, Theorem 23.7].
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1 Riemannian symmetric spaces

For g ∈ G we denote by Lg : h 7→ gh and Rg : h 7→ hg the left and right multiplication by
g, respectively. Since the isometries of H �x p, we have τ ◦Rh = τ for every h ∈ H, while
the left multiplication merely satis�es τ ◦ Lh = h ◦ τ . This implies that the following
holds for every X ∈ p.

Teτ(Ad(h)X) = Teτ(Te(Lh ◦Rh−1)(X)) = Th−1(τ ◦ Lh)(TeRh−1(X))

= Th−1(h ◦ τ)(TeRh−1(X)) = Tph(Te(τ ◦Rh−1)(X))

= Tph(Teτ(X)) = λ(h)(Teτ(X))

Using that the restriction of Teτ to p is an isomorphism, the claim follows.

Owing to the previous result, we will always assume that p is Ad(H)-invariant. The
inner product Qp on TpM gives rise to an inner product on p which we denote by 〈·, ·〉p.
The property that the isotropy representation of H on TpM takes values in O(TpM) then
translates into the fact that 〈·, ·〉p is Ad(H)-invariant. By choosing an arbitrary inner
product 〈·, ·〉h on h, we may de�ne an inner product 〈·, ·〉 on g = h⊕ p by setting

〈X1 + Y1, X2 + Y2〉 := 〈X1, X2〉h + 〈Y1, Y2〉p, X1, X2 ∈ h, Y1, Y2 ∈ p, (1.9)

which turns h and p into orthogonal subspaces. Finally, by point-wise de�ning

QGg (X,Y ) := 〈TgLg−1(X), TgLg−1(Y )〉, X, Y ∈ TgG, (1.10)

we obtain a Riemannian metric QG on the Lie group G that is left-invariant in the sense
that the left multiplication Lg is an isometry for every g ∈ G. With this metric, we
can view the submersions π : G → G/H and τ : G → M as maps between Riemannian
manifolds. By de�nition, the restrictions of their tangent maps at e to p are not only
isomorphisms but in fact linear isometries from p to TeH(G/H) and TpM , respectively.
These are examples of Riemannian submersions. Since we will make use of one result in
this direction, let us introduce the relevant terminology here.
Let M and M be Riemannian manifolds and let π : M →M be a submersion. Then the
�ber π−1(q) is a Riemannian submanifold of M for every q ∈M . For a point p ∈ π−1(q)
the tangent map Tpπ : TpM → TqM is surjective with kernel Vp := Tp(π

−1(q)) which
is called the vertical tangent space at p. Its orthogonal complement Hp := V ⊥p is then
isomorphic to TqM under Tpπ and is called the horizontal tangent space at p. The
submersion is said to be Riemannian if Tpπ|Hp is a linear isometry for every p ∈ M . In
particular, since Tpπ|Hp is bijective, it follows that for each vector �eld X ∈ X(M) there
exists a unique vector �eld X ∈ X(M) such that Tπ ◦X = X ◦ π and X(p) ∈ Hp for all
p ∈ M , which is called the horizontal lift of X. For an arbitrary vector �eld Y ∈ X(M)
we denote by YH and YV its horizontal and vertical projections. Let ∇ and R denote
the Levi-Civita connection and curvature tensor of M , then it can be shown that the
following formulas holds for all vector �elds X,Y, Z,W ∈ X(M) (cf. [O'N66, Lemma 1
and Theorem 2] where the opposite sign convention for the curvature tensor is employed).

∇XY = (∇XY )H (1.11)

R(X,Y , Z,W ) = (R(X,Y, Z,W ) ◦ π) + 2Q((∇XY )V , (∇ZW )V )

−Q((∇ZX)V , (∇YW )V )−Q((∇Y Z)V , (∇XW )V )
(1.12)

10



1.2 Symmetric spaces

Specializing to the previous case where G is the isometry group of a homogeneous Rie-
mannian manifold M that is equipped with the left-invariant Riemannian metric de�ned
in (1.10), we can immediately read o� that the horizontal and vertical tangent spaces at
a point g ∈ G are given by Hg = TeLg(p) and Vg = TeLg(h). In this situation, there
is even more structure available which makes it possible to lift curves in M to G in a
speci�c way. In fact, the canonical projection π : G → G/H is an H-principal bundle
on which g 7→ TeLg(p) de�nes a connection. In this setting, it can be shown that if
γ : [0, 1] → G/H is a smooth curve and g ∈ π−1(γ(0)) is arbitrary, then there exists a
unique smooth curve γ : [0, 1] → G, called the horizontal lift of γ, such that π ◦ γ = γ,
γ(0) = g and γ′(t) ∈ Hγ(t) for all t ∈ [0, 1] (cf. [Bau14, Satz 3.7, Beispiel 2.6 and 3.2]).
Since we may identify π with τ under the di�eomorphism Φ : G/H →M , every smooth
curve in M can be lifted over τ to a horizontal curve on G which is unique upon speci-
fying its initial value.
In general, it is di�cult to explicitly describe the isometry group of a Riemannian man-
ifold. Therefore, it is a priori unclear how rich the class of homogeneous Riemannian
manifolds actually is. As we shall see shortly, there is an intuitive source of such spaces.
The crucial assumption for these constructions to work is that the given Riemannian
manifold is equipped with a particularly simple family of isometries.

1.2 Symmetric spaces

We have seen that if U is a normal neighbourhood of a point p ∈ M , then every q ∈ U
can be uniquely written as q = Expp(v) for some v ∈ V = Exp−1

p (U) ⊂ TpM . If we take
U small enough such that V is symmetric with respect to the origin, we may de�ne a
map q 7→ q∗ := Expp(−v), which can be interpreted as the re�ection of geodesics at the
point p. This map can a priori only be de�ned on U and is usually not an isometry on
this set. However, it turns out that there is an interesting class of Riemannian manifolds
for which every geodesic re�ection extends to a global isometry of M . For convenience,
we restrict our attention to connected manifolds.

De�nition 1.2.1. A connected Riemannian manifold M is called a (Riemannian) sym-

metric space if for every p ∈M there exists an isometry sp : M →M such that sp(p) = p
and Tpsp = −idTpM .

Since an isometry of a connected manifold is uniquely determined by its value and
tangent map in a single point, the map sp in the above de�nition is unique. It is called the
symmetry ofM at p and is involutive, i.e. it satis�es s2

p = idM but is not the identity itself.
If U is a normal neighbourhood of p, then every point in U can be uniquely expressed as
Expp(v) for some v ∈ Exp−1

p (U) and we have sp(Expp(v)) = Expp(Tpsp(v)) = Expp(−v).
Therefore, sp coincides on U with the geodesic re�ection at p and its only �xed point in
U is p. This observation also shows that the symmetries depend smoothly on the base
point, i.e. that the map p 7→ sp(q) is smooth for every q ∈ M . Moreover, if γ : I → M
is a geodesic and t0 ∈ I, then uniqueness of geodesics shows that

sγ(t0)(γ(t)) = γ(2t0 − t) (1.13)

11



1 Riemannian symmetric spaces

whenever both sides are de�ned. In particular, if the left-hand side is de�ned, so is the
right-hand side, which implies that γ can be extended to all of R by repeatedly applying
suitable symmetries. Thus, M is complete and since it is assumed to be connected, any
two points in M can be joined by a distance-minimizing geodesic.
Every symmetry sp is by de�nition contained in the isometry group I(M). If f ∈ I(M)
is any other isometry, then

sf(p) = f ◦ sp ◦ f−1, (1.14)

since both sides are isometries that have the same value and tangent map at f(p). If p
and q are points in M and γ is a geodesic with γ(0) = p and γ(1) = q, the symmetry
sγ( 1

2
) maps p to q. Hence, we have proved the following result.

Proposition 1.2.2. Every symmetric space is homogeneous and complete.

Conversely, to show that a homogeneous Riemannian manifold is a symmetric space,
it su�ces by (1.14) to �nd the symmetry sp for a single point p ∈M .

Example 1.2.3. Let us construct �rst examples of symmetric spaces.

(i) (Space forms): Let 〈·, ·〉 be an inner product on Rn+1. This turns Rn+1 into a
Riemannian manifold such that the map q 7→ −q is an involutive isometry, which
constitutes the symmetry s0 at the origin. To �nd the symmetry at an arbitrary
point p ∈ Rn+1, it su�ces to conjugate s0 with the isometry q 7→ p+ q mapping 0
to p, which yields sp(q) = 2p− q.
Similarly, the sphere Sn ⊂ Rn+1 inherits a Riemannian structure by restricting
〈·, ·〉 to its tangent spaces. For every p ∈ Sn the re�ection at the line spanned by p,
given by sp(q) = 2〈p, q〉p− q, is an isometry of Sn and these maps turn the sphere
into a symmetric space.
Alternatively, we can equip Rn+1 with the non-degenerate symmetric bilinear form
η(x, y) :=

∑n
i=1 xiyi − xn+1yn+1 and consider the one-sheet hyperboloid Hn :=

{x ∈ Rn+1 : η(x, x) = −1, xn+1 > 0}. The restriction of η to its tangent spaces
is positive de�nite and thus de�nes a Riemannian metric on Hn whose isometry
group is the subgroup of the Lorentz group O(n, 1) that preserves Hn. This metric
turns Hn into a symmetric space with the symmetries sp(q) = −2η(p, q)p− q.

(ii) (Lie groups): Let G be a connected Lie group with inversion map ν : G→ G. If G
can be endowed with a bi-invariant (i.e. both left and right-invariant) Riemannian
metric Q, then (G,Q) becomes a symmetric space under the symmetries sg :=
Lg◦ν◦Lg−1 . In fact, the di�erential of the inversion map at e is given by Teν = −idg
such that we also have Tgsg = −idTgG for every g ∈ G. Since Lg is an isometry by
left-invariance, it su�ces to show that ν is an isometry, which follows at once from
bi-invariance. Let X,Y ∈ TgG, then we have

Qν(g)(Tgν(X), Tgν(Y )) = Qg−1(Te(ν ◦Rg)(TgRg−1(X)), Te(ν ◦Rg)(TgRg−1(Y )))

= Qg−1(Te(Lg−1 ◦ ν)(TgRg−1(X)), Te(Lg−1 ◦ ν)(TgRg−1(Y )))

= Qe(−TgRg−1(X),−TgRg−1(Y )) = Qg(X,Y ).

12



1.2 Symmetric spaces

Every bi-invariant metric Q on G gives rise to an Ad(G)-invariant inner product Qe
on its Lie algebra g and vice versa. Hence, if G admits such a metric, then Ad(G)
is a subgroup of the orthogonal group O(g) with respect to this inner product, so
Ad(G) ⊂ GL(g) is relatively compact. Conversely, if Ad(G) is relatively compact,
then there exists an Ad(G)-invariant inner product on g which gives rise to a bi-
invariant metric on G. In particular, every compact Lie group admits a bi-invariant
metric and every such metric turns it into a symmetric space.

We will see a much more e�cient way of constructing and detecting symmetric spaces
in Section 1.4. For the moment, we prove another characteristic feature of their geometry.

Proposition 1.2.4. If M is a symmetric space, then its Riemann curvature tensor is

parallel, i.e. ∇R = 0.6

Proof. Let p ∈M and v1, . . . , v4, w ∈ TpM be arbitrary. The Levi-Civita connection and
the Riemann curvature tensor are invariant under isometries of M , which implies that
s∗p(∇R) = ∇R and hence

∇wR(v1, v2, v3, v4) = (∇R)p(w, v1, v2, v3, v4) = (s∗p(∇R))p(w, v1, v2, v3, v4)

= (∇R)p(Tpsp(w), Tpsp(v1), Tpsp(v2), Tpsp(v3), Tpsp(v4))

= (−1)5∇wR(v1, v2, v3, v4).

This shows that (∇R)p = 0 for every p ∈M , so we conclude that ∇R = 0.

This condition almost characterizes symmetric spaces. In fact, it can be shown that
if M is a complete, simply connected Riemannian manifold with ∇R = 0, then M is a
symmetric space (cf. [Bau14, Satz 5.12]). In general, a Riemannian manifold with parallel
curvature tensor is called a locally symmetric space. These spaces are an interesting topic
in their own right which we will not consider in our discussion. More details about the
relation between locally and �globally� symmetric spaces (in the sense of De�nition 1.2.1)
can be found in [Hel01, Chapter IV, Section 5].
Since we assume that every symmetric space M is connected, it follows that I0(M),
the connected component of the identity in I(M), acts transitively on M as well. In
particular, this allows us to identifyM with the coset space G/H, where G = I0(M) and
H = Gp is the stabilizer of an arbitrary point p ∈ M under the action of G. However,
there may already be smaller subgroups of I0(M) that have this property since we only
made use of distinguished isometries to prove homogeneity. We will be particularly
interested in those subgroups that are compatible with the family of symmetries of M .
Therefore, we �x an arbitrary base point o ∈M and introduce the map

σ : I(M)→ I(M)

g 7→ so ◦ g ◦ so ≡ sogso.
6The Levi-Civita connection uniquely extends to a map T 7→ ∇T , where T is an arbitrary tensor �eld
onM , such that it commutes with contractions and satis�es a product rule with respect to the tensor
product. In this setting, ∇R is a well-de�ned

(
0
5

)
-tensor �eld. Details about this construction can be

found in [O'N83, p. 43-46 and p. 59-65].
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1 Riemannian symmetric spaces

Since I(M) is a Lie group, left and right multiplication with so de�ne smooth maps on
I(M), so it follows that σ is smooth as well. Moreover, s2

o = idM implies that σ is in fact
an involutive automorphism of I(M) and maps I0(M) to itself.

De�nition 1.2.5. Let M be a symmetric space with base point o ∈ M . A pair (G,H)
of Lie groups is called an associated pair of M if:

(i) G is a σ-invariant, connected Lie subgroup7 of I(M) that acts transitively on M .

(ii) H = Go is the stabilizer of o under the action of G.

If (G,H) is an associated pair ofM , then the inclusion of G into I(M) is smooth, which
implies that G acts smoothly onM as well and the stabilizer H is a closed subgroup of G
(but not necessarily of I(M)). Hence, it follows exactly as in Section 1.1 that we obtain a
di�eomorphism Φ : G/H →M , which becomes an isometry when G/H is endowed with
the pullback metric of M . From the remark preceding this de�nition, it is immediate
that the pair (G,H), where G = I0(M) and H = Go is the stabilizer of o under the
action of G, is an associated pair of M , but in general it is not the only one. In fact,
we will explicitly construct the smallest associated pair of a symmetric space in the next
section. Before, we will derive some of their common features.

Proposition 1.2.6. Let M be a symmetric space and (G,H) an associated pair. The

stabilizer H = Go contains no non-trivial normal subgroup of G and satis�es

Gσ0 ⊂ H ⊂ Gσ, (1.15)

where Gσ := {g ∈ G : σ(g) = g} denotes the set of �xed points of σ and Gσ0 the connected

component of the identity in Gσ. The induced Lie algebra isomorphism σ∗ := Teσ : g→ g
has eigenvalues ±1 and its eigenspaces have the following properties.

(i) The +1-eigenspace of σ∗ coincides with the Lie algebra h of H.

(ii) The −1-eigenspace p of σ∗ is Ad(H)-invariant.

(iii) The eigenspace decomposition g = h⊕ p of g satis�es

[h, h] ⊂ h, [h, p] ⊂ p, [p, p] ⊂ h. (1.16)

Proof. Assume that H ′ was a normal subgroup of G contained in H. For every point
p ∈ M there exists some g ∈ G with g(o) = p. Since g−1H ′g ⊂ H ′ ⊂ H, we have for
every h ∈ H ′:

p = g(o) = g(g−1hg(o)) = h(g(o)) = h(p)

Since p was arbitrary, it follows that h = idM , which proves the �rst claim. If h ∈ H,
then both h and σ(h) = sohso are isometries ofM that map o to itself and whose tangent

7Following the convention in [Bau14] and [Hel01], this terminology is supposed to mean that G is a
Lie group such that the inclusion G ↪→ I(M) is an immersion. We do not require G to be closed in
I(M), so it may carry a �ner topology than I(M).
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1.2 Symmetric spaces

map at o is −idToM . It follows that h = σ(h), so H is contained in the �xed point-set
Gσ. Clearly, Gσ is a closed subgroup of G and thus a Lie subgroup. Let gσ be its Lie
algebra, then for X ∈ gσ and t ∈ R we have

so(exp(tX)(o)) = σ(exp(tX))(o) = exp(tX)(o),

which implies that exp(tX)(o) is contained in the �xed point-set of so for every t ∈ R.
However, o is an isolated �xed point of so, so we must have exp(tX)(o) = o and hence
exp(tX) ∈ H for all t ∈ R. Elements of the form exp(X), X ∈ gσ, generate the connected
component of the identity Gσ0 of Gσ, so it follows that Gσ0 ⊂ H.
Furthermore, we have σ2 = idG and hence also σ2

∗ = idg. The eigenvalues of σ∗ can
therefore only be±1 and g decomposes into a direct sum of the corresponding eigenspaces.
The +1-eigenspace is the Lie algebra of the �xed point-set Gσ, which coincides with h
by (1.15), so (i) is established. If h ∈ H ⊂ Gσ, then we have hso = soh and hence
σ(hgh−1) = hσ(g)h−1 for all g ∈ G. By di�erentiation, it follows that σ∗ commutes
with Ad(h) = Teconjh, so Ad(H) preserves the eigenspaces of σ∗, which proves (ii).
Finally, since σ∗ is a Lie algebra isomorphism, we have σ∗([X,Y ]) = [σ∗(X), σ∗(Y )] for
all X,Y ∈ g and (iii) follows immediately.

Remark 1.2.7. A decomposition g = h ⊕ p of a Lie algebra g into linear subspaces with
the properties (1.16) is called a symmetric decomposition of g. Hence, if (G,H) is an
associated pair of M , then the Lie algebra g can be symmetrically decomposed into
the eigenspaces of the involution σ∗. Let g′ = h′ ⊕ p′ be the symmetric decomposition
corresponding to the associated pair (G′, H ′), where G′ = I0(M) and H ′ = G′o. Then
G ⊂ G′ by connectedness, which implies h ⊂ h′ and p ⊂ p′. It will follow from the
arguments given in the next paragraph that the dimensions of p and p′ agree. Thus, we
always have p = p′ and the symmetric decompositions of two associated pairs only di�er
in the h-component.
We have made an arbitrary choice of base point o in the de�nition of σ. If p ∈M is any
other point, then there exists some g ∈ G with g(o) = p. Let σ̃ : G → G denote the
involution g′ 7→ spg

′sp, then we deduce from (1.14) that

σ̃(gg′g−1) = sp(gg
′g−1)sp = (gsog

−1)(gg′g−1)(gsog
−1) = gσ(g′)g−1, (1.17)

i.e. σ̃ ◦ conjg = conjg ◦σ. If H̃ = Gp denotes the stabilizer of p under the action of G, we
have H̃ = gHg−1 and (1.17) implies that the symmetric decompositions g = h ⊕ p and
g = h̃⊕ p̃ induced by σ∗ and σ̃∗, respectively, are related by h̃ = Ad(g)h and p̃ = Ad(g)p.
Since h and p are Ad(H)-invariant, these relations are independent of the choice of g. To
be precise about which point is used in the de�nition of σ, we will occasionally call the
eigenspace decomposition g = h⊕ p the symmetric decomposition of g with respect to o.

If (G,H) is an associated pair of a symmetric space M , the identi�cation of M with
the quotient space G/H was only based on the property that G acts transitively on M .
However, also the symmetric structure ofM is mirrored in the algebraic structure ofG/H.
On the one hand, we can pull the symmetries of M over to the quotient space under the
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1 Riemannian symmetric spaces

isometry Φ : G/H →M , which turns G/H into a symmetric space, where the symmetry
at a point gH ∈ G/H is given by sgH = Φ−1◦sg(o)◦Φ. Since sg(o) = gsog

−1 = gσ(g−1)so,
we obtain the following explicit formula.

sgH(g′H) = Φ−1(gσ(g−1)so(g
′(o))) = Φ−1(gσ(g−1)σ(g′)so(o)) = gσ(g−1g′)H (1.18)

In particular, we have seH(g′H) = σ(g′)H. On the other hand, it follows exactly as in
the previous section that the map τ : G→ M , g 7→ g(o), is a surjective submersion and
that the kernel of its di�erential at e is h. In the case whereM is symmetric, the previous
result implies that there is a natural choice of complementary subspace p, namely the
−1-eigenspace of σ∗, which is in addition Ad(H)-invariant. Hence, the more re�ned
constructions from the �rst section also apply. First, we have a canonical isomorphism
jo := Teτ |p : p→ ToM such that the following diagram commutes for every h ∈ H.

p p

ToM ToM

Ad(h)|p

jo jo

λ(h)

As discussed in the previous remark, this observation implies that p is independent of
the chosen pair. Second, the inner product Qo on ToM induces an Ad(H)-invariant inner
product on p, which can be used to equip G with a left-invariant Riemannian metric as in
(1.10). With this metric, the projection π : G→ G/H and thus also the map τ : G→M
become Riemannian submersions. The horizontal and vertical tangent spaces at a point
g ∈ G are given by Hg = TeLg(p) and Vg = TeLg(h).
Finally, the space p in the symmetric decomposition g = h ⊕ p satis�es [[p, p], p] ⊂ p,
which allows us to de�ne

[[X,Y ], Z] := jo([[j
−1
o (X), j−1

o (Y )], j−1
o (Z)]) (1.19)

for X,Y, Z ∈ ToM . This purely algebraic operation is tightly related to the geometry of
the symmetric space as the next proposition shows.

Proposition 1.2.8. Let M be a symmetric space, then the curvature tensor of M at the

base point o is given by

Ro(X,Y )Z = −[[X,Y ], Z], ∀X,Y, Z ∈ ToM. (1.20)

Proof. Let (G,H) be any associated pair8 of M , then there exists a left-invariant Rie-
mannian metric QG on G such that τ : G→M is a Riemannian submersion. We denote
by 〈·, ·〉 := QGe the corresponding inner product on the Lie algebra g and we write ∇G
and RG for the Levi-Civita connection and curvature tensor of (G,QG). In order to de-
termine the curvature tensor of M at o, it su�ces to compute RGe and insert into (1.12).

8The −1-eigenspace p is independent of the chosen pair, so one may from now on just as well consider
the case G = I0(M).
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Every X ∈ g is naturally associated to the left-invariant vector �eld LX : g 7→ TeLg(X)
on G. We denote LX also by X and thus identify each X ∈ g with its correspond-
ing left-invariant vector �eld. Consequently, we also write ∇GXY ≡ (∇GLX

LY )(e). Since
the metric QG is left-invariant, the inner product of two left-invariant vector �elds is
constant, so for X,Y, Z ∈ g, the Koszul formula (1.4) in G evaluated at e simpli�es to

2〈∇GXY,Z〉 = 〈[Z,X], Y 〉+ 〈X, [Z, Y ]〉+ 〈[X,Y ], Z〉. (1.21)

We recall that the di�erential of the adjoint representation ad := TeAd : g → L(g, g) is
given by ad(X)Y = [X,Y ] for X,Y ∈ g. The Ad(H)-invariance of the restriction of 〈·, ·〉
to p× p implies by di�erentiation ad(h)-invariance in the following sense.

〈ad(Z)X,Y 〉+ 〈X, ad(Z)Y 〉 = 0, X, Y ∈ p, Z ∈ h (1.22)

Let X,Y ∈ p be horizontal. If Z ∈ p is also horizontal, then all of the Lie brackets
in (1.21) are vertical and every term vanishes. In particular, it follows that ∇GXY ∈ h.
If Z ∈ h is vertical, then the �rst two terms cancel by (1.22) and we are left with
2〈∇GXY, Z〉 = 〈[X,Y ], Z〉, which implies ∇GXY = 1

2 [X,Y ]. Using this, we can compute
the curvature tensor of G for X,Y, Z,W ∈ p.

RGe (X,Y, Z,W ) = 〈∇GX∇GY Z −∇GY∇GXZ −∇G[X,Y ]Z,W 〉

= −〈∇GY Z,∇GXW 〉+ 〈∇GXZ,∇GYW 〉 − 〈∇G[X,Y ]Z,W 〉

= −1

4
〈[Y,Z], [X,W ]〉+

1

4
〈[X,Z], [Y,W ]〉

− 1

2

(
〈[W, [X,Y ]], Z〉+ 〈[X,Y ], [W,Z]〉+ 〈[[X,Y ], Z],W 〉

)
= −1

4
〈[Y,Z], [X,W ]〉+

1

4
〈[X,Z], [Y,W ]〉

− 1

2
〈[X,Y ], [W,Z]〉 − 〈[[X,Y ], Z],W 〉

In the second line we have used that the Levi-Civita connection ∇G is compatible with
the metric QG as well as the fact that the inner product between left-invariant vector
�elds is constant. The remaining derivation uses (1.21) and (1.22) for the Lie bracket
[X,Y ] ∈ [p, p] ⊂ h. Having established this, we deduce from (1.12) that (upon suppressing
the isomorphism jo : p→ ToM) the curvature tensor of M at o is given by

Qo(Ro(X,Y )Z,W ) = Ro(X,Y, Z,W ) = RGe (X,Y, Z,W )− 1

2
〈[X,Y ], [Z,W ]〉

+
1

4
〈[Z,X], [Y,W ]〉+

1

4
〈[Y, Z], [X,W ]〉

= −〈[[X,Y ], Z],W 〉 = Qo(−[[X,Y ], Z],W ),

which proves the claim by non-degeneracy of Qo.

17



1 Riemannian symmetric spaces

Theorem 1.2.9. Let X ∈ p, then the unique geodesic γ of M with γ(0) = o and

γ̇(0) = jo(X) is given by γ(t) = exp(tX)(o).

Proof. Throughout this proof we write st for the symmetry sγ(t) and thus also s0 instead
of so. Since the symmetries depend smoothly on the base point, the map t 7→ rt := st/2s0

de�nes a smooth curve in I0(M). We claim that rt1+t2 = rt1 ◦ rt2 for all t1, t2 ∈ R. Both
of these isometries map γ(0) = o to γ(t1 + t2), so it su�ces to show that their tangent
maps at o coincide.
Let X be a parallel vector �eld along γ and let c ∈ R be arbitrary. Using that isometries
preserve geodesics and parallel vector �elds, it follows that Tsc ◦ X is parallel along
sc ◦ γ. Since sc(γ(c + t)) = γ(c − t) by (1.13) and Tγ(c)sc(X(c)) = −X(c), we obtain
(Tsc ◦X)(c+ t) = −X(c− t) from uniqueness of parallel vector �elds. Let a, b ∈ R, then
this implies

Tγ(a)rb(X(a)) = Tγ(−a)s b
2
(Tγ(a)s0(X(a))) = −Tγ(−a)s b

2
(X(−a)) = X(a+ b), (1.23)

i.e. that Tγ(a)rb = Pγa,a+b is parallel transport along γ. The claim now follows since

To(rt1 ◦ rt2) = Tγ(t2)rt1 ◦ Tort2 = Pγt2,t1+t2
◦ Pγ0,t2 = Pγ0,t1+t2

= Tort1+t2 .

We conclude that t 7→ rt is a one-parameter subgroup of I0(M) and can therefore be
written as rt = exp(tZ) for some Z in the Lie algebra g = h ⊕ p of I0(M). Moreover,
we obtain σ(rt) = s0st = s−ts0 = r−t from (1.14) and thus σ∗(Z) = −Z, i.e. Z ∈ p.
Altogether, we have γ(t) = rt(o) = exp(tZ)(o) = τ(exp(tZ)) and hence jo(X) = γ̇(0) =
Teτ(Z) = jo(Z), implying X = Z.

This result allows us to relate the Riemannian exponential map Expo : ToM → M
with the Lie exponential map exp : g → G. For v ∈ ToM the unique geodesic γ of M
with γ(0) = o and γ̇(0) = v is given by γ(t) = exp(tX)(o) = τ(exp(tX)), where X ∈ p is
the unique element with jo(X) = v. By de�nition, Expo(v) = γ(1) and therefore

Expo = τ ◦ exp ◦j−1
o . (1.24)

Depending on the context, we will sometimes suppress the isomorphism jo : p → ToM
and write (1.24) simply as Expo = τ ◦ exp, i.e. we identify X ∈ p with jo(X) ∈ ToM
and write Expo(X) ≡ exp(X)(o). This identi�cation will be in force in the following
statement.

Corollary 1.2.10. The derivative of the Riemannian exponential map at o is given by

TXExpo = To(exp(X)) ◦ Teτ ◦
∞∑
n=0

ad(X)2n

(2n+ 1)!
, X ∈ p. (1.25)

Proof. It is well-known from the theory of Lie groups that the derivative of the Lie
exponential map is given by (cf. [Hel01, Chapter II, Theorem 1.7])

TX exp = TeLexp(X) ◦
1− e−ad(X)

ad(X)
= TeLexp(X) ◦

∞∑
n=0

(−1)nad(X)n

(n+ 1)!
. (1.26)
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1.3 The group of displacements

The chain rule then implies

TXExpo = Texp(X)τ ◦ TeLexp(X) ◦
∞∑
n=0

(−1)nad(X)n

(n+ 1)!

= Te(τ ◦ Lexp(X)) ◦
∞∑
n=0

(−1)nad(X)n

(n+ 1)!
= Te(exp(X) ◦ τ) ◦

∞∑
n=0

(−1)nad(X)n

(n+ 1)!

= To(exp(X)) ◦ Teτ ◦
∞∑
n=0

(−1)nad(X)n

(n+ 1)!
.

If X,Y ∈ ToM ∼= p, then repeatedly applying (1.16) shows that ad(X)2n−1(Y ) ∈ h and
thus Teτ(ad(X)2n−1(Y )) = 0 for all n ≥ 1, which proves the desired formula.

The previous results show that a lot of geometric information of a symmetric space can
be encoded algebraically in properties of a subspace of a certain Lie algebra. It will be a
prominent theme throughout this exposition to use the structure theory of Lie algebras
for geometric constructions in symmetric spaces.

1.3 The group of displacements

Our next aim will be to construct the smallest associated pair of a symmetric space. The
proof of Theorem 1.2.9 shows that if (G,H) is an associated pair of M , then G contains
all isometries of the form sp ◦ so, p ∈M . A natural candidate for the smallest associated
pair is therefore the following.

De�nition 1.3.1. LetM be a symmetric space. The subgroup G(M) of I(M) generated
by all isometries of the form sp ◦ sq, p, q ∈M , is called the group of displacements of M .

It follows from (1.13) that if p and q lie on a geodesic γ, then sp ◦ sq maps γ to itself
and performs an a�ne shift in the parametrization, which explains the terminology.

Lemma 1.3.2. The group of displacements is a connected Lie subgroup of I(M).

Proof. By [Bau14, Satz 1.23] it su�ces to prove that every g ∈ G(M) can be connected
to the neutral element by a smooth curve in I(M) with values in G(M). Moreover, it
is enough to show this for the generators sp ◦ sq of G(M). Since M is complete and
connected, there is a (smooth) geodesic γ : [0, 1]→M with γ(0) = p and γ(1) = q. If we
de�ne rt := sγ(t) ◦ sq, then t 7→ rt is a curve in I(M) with values in G(M) and connects
sp ◦ sq to the identity. We have already seen that the symmetries depend smoothly on
the base point, so it follows that this curve is smooth.

In particular, the result implies that every product of an even number of symmetries
is contained in I0(M). However, in general I0(M) need not contain any individual
symmetry. For example, the symmetries of the sphere Sn ⊂ Rn+1 are induced by linear
maps with determinant (−1)n. Hence, they are not contained in I0(Sn) = SO(n+ 1) if
n is odd.
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1 Riemannian symmetric spaces

Proposition 1.3.3. The group of displacements is a σ-invariant subgroup of I(M) that

acts transitively on M and it is the smallest subgroup with these properties.

Proof. Let p, q ∈M , then (1.14) implies that

σ(sp ◦ sq) = so(spsq)so = (sospso)(sosqso) = sso(p) ◦ sso(q) ∈ G(M).

Since G(M) is generated by elements of this form, it follows that G(M) is σ-invariant.
Moreover, since M is connected and complete, there is a geodesic γ : R→ M such that
γ(0) = p and γ(1) = q. Then the isometry sγ( 1

2
) ◦ sp ∈ G(M) maps p to q, so the action

of G(M) is transitive.
Let G be any σ-invariant subgroup of I(M) that acts transitively on M . Then for every
p ∈M there exists some g ∈ G with g(o) = p and thus

spso = sg(o)so = gsog
−1so = gσ(g−1) ∈ G

as another consequence of (1.14). This implies

spsq = spsososq = (spso)(sqso)
−1 ∈ G

for all p, q ∈M and shows that G(M) ⊂ G.

If H(M) denotes the stabilizer of the base point o ∈M under the action of G(M), then
the above results imply that (G(M), H(M)) is an associated pair of M . The minimality
of G(M) in this situation is also re�ected on the Lie algebra level.

Lemma 1.3.4. Let g(M) = h(M)⊕ p be the symmetric decomposition corresponding to

the associated pair (G(M), H(M)) of M . Then G(M) is generated by exp(p) and we

have [p, p] = h(M).

Proof. Since we have spsq = (spso)(sqso)
−1, it su�ces to prove that every isometry of

the form spso is contained in the subgroup of G(M) generated by exp(p). As above, we
may choose a geodesic γ : R → M with γ(0) = o and γ(1) = p. Since every geodesic
through o is of the form t 7→ exp(tX)(o), we have p = exp(X)(o) for a suitable X ∈ p.
This implies

exp(2X) = exp(X) exp(σ∗(−X)) = exp(X)σ(exp(−X))

= exp(X)so exp(−X)so = sexp(X)(o)so = spso,
(1.27)

which proves the �rst claim. It remains to show that [p, p] = h(M). The commutator
relations (1.16) of a symmetric decomposition and the Jacobi identity directly imply that
p⊕ [p, p] is a Lie subalgebra of g(M). Since G(M) is generated by exp(p) as a Lie group,
it follows that g(M) is generated by p as a Lie algebra. This implies that p⊕[p, p] = g(M)
and since [p, p] ⊂ h(M), we must have equality.

The group of displacements is not only signi�cant from an algebraic point of view, but
is also closely tied to the geometry of the symmetric space M as the next result shows.
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1.3 The group of displacements

Proposition 1.3.5. Let M be a symmetric space and G(M) its group of displacements.

(i) For every smooth curve γ : [0, 1] → M with γ(0) = o and γ(1) = p there exists an

element g ∈ G(M) with g(o) = p such that Tog : ToM → TpM is parallel transport

along γ.

(ii) Conversely, for every g ∈ G(M) there is a piecewise smooth curve γ : [0, 1] → M
with γ(0) = o and γ(1) = g(o) such that Tog is parallel transport along γ.

Proof. Throughout this proof we write G for G(M) and we equip G with a left-invariant
Riemannian metric such that τ : G → M becomes a Riemannian submersion. Then
every vector �eld on M can be uniquely lifted over τ to a horizontal vector �eld on G.
In the proof of Proposition 1.2.8 we have shown that the Levi-Civita connection ∇G of
G satis�es ∇GXY = 1

2 [X,Y ] for X,Y ∈ p.

(i) It follows exactly as in the discussion at the end of Section 1.1 that there exists
a unique horizontal lift γ : [0, 1] → G of γ over τ with γ(0) = e, so we have
γ(t)(o) = τ(γ(t)) = γ(t). IfX ∈ p and v := jo(X) ∈ ToM , then Y (t) := To(γ(t))(v)
de�nes a smooth vector �eld Y along γ and we claim that it is parallel. Having
shown this, it follows that To(γ(1)) coincides with parallel transport along γ from
o to p and that γ(1) ∈ G is the required element.
To prove the claim, we �rst observe that the unique horizontal lift of Y is given by
Y (t) = TeLγ(t)(X). In fact, it is horizontal because the horizontal tangent space at
a point g ∈ G is given by Hg = TeLg(p) and it is a lift since τ ◦ Lg = g ◦ τ . Next,
we de�ne the curve

c(t) := Tγ(t)Lγ(t)−1(γ′(t)) ∈ p.

We can now compute the horizontal lift of the derivative of Y along γ using (1.11).

∇γ̇Y (t) = (∇Gγ′Y )H(t) =
1

2
[γ′(t), Y (t)]H =

1

2
[c(t), X]p = 0

Therefore, Y has to be parallel along γ, which proves assertion (i).

(ii) Assume �rst that g can be written as g = exp(X) for some X ∈ p and consider
the smooth curve γ(t) := exp(tX)(o). Then γ(0) = o, γ(1) = g(o) and we have
g = sexp(X/2)(o)so = sγ(1/2)so by (1.27). Hence, it follows directly from (1.23) that
Tog = Pγ0,1 is parallel transport along γ. Suppose that we have already constructed
curves γ1, γ2 satisfying (ii) for two elements g1, g2 ∈ G. Then the curve

γ(t) :=

{
γ1(2t) 0 ≤ t ≤ 1

2

g1(γ2(2t− 1)) 1
2 < t ≤ 1

is piecewise smooth and satis�es γ(0) = o and γ(1) = (g1 ◦ g2)(o). Moreover,
parallel transport along γ is given by

Pγ0,1 = Pg1◦γ20,1 ◦ Pγ10,1 = Tg1(o)(g1 ◦ g2 ◦ g−1
1 ) ◦ Tog1 = To(g1 ◦ g2),

so γ satis�es (ii) for g1 ◦ g2. Since G(M) is generated by exp(p), the claim follows
by induction.
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1.4 The Lie-theoretic viewpoint

Every symmetric spaceM can be realized as a homogeneous spaceG/H for any associated
pair (G,H) and this representation is minimal if G = G(M) is the group of displacements
of M . We will now examine the converse question of whether a given quotient of Lie
groups can be equipped with a Riemannian metric in which it becomes a symmetric
space. In order to do this, we are going to mimic the symmetric structure from (1.18).

Remark 1.4.1. Let G be a Lie group with Lie algebra g and H a Lie subgroup of G. Since
g is a �nite-dimensional vector space, the group GL(g) of all invertible linear maps on g
is a Lie group. The set Ad(H) = {Ad(h) : h ∈ H} is a Lie subgroup of GL(g) and its Lie
algebra is ad(h) = {ad(X) : X ∈ h} ⊂ gl(g). If G is connected, then the center Z of G
coincides with the kernel of Ad : G → GL(g), which implies that Ad(H) ∼= H/(H ∩ Z).
If H is compact, so is Ad(H) and the converse holds if H ∩ Z is �nite.

If (G,H) is an associated pair of a symmetric space M and G is closed in I(M), then
H is already compact and contains no non-trivial normal subgroup of G, so in particular
we have H ∩ Z = {e}. In general, however, the following properties will su�ce.

De�nition 1.4.2. A pair (G,H) of Lie groups is called a symmetric pair if:

(i) G is a connected Lie group and H a closed subgroup of G such that there exists
an involutive automorphism σ : G→ G that satis�es Gσ0 ⊂ H ⊂ Gσ.

(ii) The subgroup Ad(H) ⊂ GL(g) is compact.

The �rst part of the above de�nition implies that the proof of properties (i)-(iii) in
Proposition 1.2.6 applies to any symmetric pair (G,H). In particular, we obtain a sym-
metric decomposition g = h ⊕ p of the Lie algebra of G, where p is invariant under
the adjoint representation of H on g. Since H is assumed to be closed in G, the coset
space G/H can be equipped with a smooth structure such that the natural projection
π : G→ G/H becomes a submersion. The next proposition shows that the second prop-
erty allows us to endow G/H with the structure of a symmetric space. As before, for
g ∈ G we denote by lg the di�eomorphism g′H 7→ gg′H of G/H.

Theorem 1.4.3. Let (G,H) be a symmetric pair, σ : G→ G an involutive automorphism

such that Gσ0 ⊂ H ⊂ Gσ and set o := π(e) = eH. The quotient space G/H can be

equipped with a G-invariant Riemannian metric and in every such metric, G/H becomes

a symmetric space with base point o, where the symmetry so satis�es:

so ◦ π = π ◦ σ (1.28)

lσ(g) ◦ so = so ◦ lg (1.29)

Proof. Let g = h⊕p be the symmetric decomposition induced by σ∗. The di�erential at e
of the submersion π : G→ G/H is surjective with kernel h, so it induces an isomorphism
p ∼= To(G/H) and the eigenspace p is Ad(H)-invariant. As discussed in the proof of
Lemma 1.1.2, compactness of Ad(H) implies that there exists an Ad(H)-invariant inner
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1.4 The Lie-theoretic viewpoint

product on p, which induces an inner product Qo on To(G/H). Let p = gH, then we
de�ne an inner product Qp on Tp(G/H) by setting

Qp(X,Y ) := Qo(Tplg−1(X), Tplg−1(Y )), X, Y ∈ Tp(G/H).

The fundamental feature of Ad(H)-invariance of Qo is that this de�nition is independent
of the representative of p = gH. Smoothness of the map (p,X) 7→ Tplg−1(X) implies
that p 7→ Qp does indeed de�ne a Riemannian metric on G/H which is G-invariant by
construction, i.e. each lg is an isometry.
We de�ne the map so by the desired property so(g′H) := σ(g′)H, which is motivated
by (1.18). Clearly, this de�nes a di�eomorphism of G/H that satis�es Toso ◦ Teπ =
Teπ ◦ σ∗ = −Teπ since the +1-eigenspace h of σ∗ is the kernel of Teπ. It follows that
Toso = −id and by de�nition we also have so ◦ lg = lσ(g) ◦ so. Finally, so is an isometry
because for p = gH and X,Y ∈ Tp(G/H) we have

Qso(p)(Tpso(X), Tpso(Y )) = Qo(Tp(lσ(g)−1 ◦ so)(X), Tp(lσ(g)−1 ◦ so)(Y ))

= Qo(Tp(so ◦ lg−1)(X), Tp(so ◦ lg−1)(Y ))

= Qo(−Tplg−1(X),−Tplg−1(Y )) = Qp(X,Y ).

Therefore, so is the required symmetry at o. Since each lg is an isometry, the symmetry
sp at an arbitrary point p = gH is given by sp = lg ◦ so ◦ lg−1 , where H ⊂ Gσ shows that
this is independent of the representative of p. Explicitly, it reads sp(g′H) = gσ(g−1g′)H,
which coincides with (1.18) and turns G/H into a symmetric space.

The formula so ◦ π = π ◦ σ shows that the symmetries do not depend on the initial
choice of the Ad(H)-invariant inner product on p, but only on the automorphism σ of
the symmetric pair (G,H) which need not be unique in general. This result suggests
to de�ne symmetric spaces more generally as homogeneous spaces G/H of symmetric
pairs, which is a common approach in the literature (e.g. in [KN69]). As we have seen,
every symmetric space in the sense of De�nition 1.2.1 gives rise to such a space, where
in addition H is compact.

Remark 1.4.4. If (G,H) is a symmetric pair and G/H is endowed with a G-invariant
Riemannian metric, then G acts on G/H by isometries. More precisely, the subgroup
G̃ := {lg : g ∈ G} ⊂ I(G/H) acts transitively on G/H and is invariant under the
involution g 7→ so ◦g ◦so of I(G/H) by (1.29). The stabilizer of o = eH under the action
of G is then H̃ := {lh : h ∈ H} ⊂ G̃, so (G̃, H̃) is an associated pair of the symmetric
space G/H. If we set N := {g ∈ G : lg = idG/H}, then N is a closed subgroup of G
such that G̃ ∼= G/N and H̃ ∼= H/N . If Z denotes the center of G, then H ∩ Z ⊂ N ,
so H̃ is contained in the compact group H/(H ∩ Z) ∼= Ad(H). Now H di�ers from H̃
by a possibly non-discrete quotient, which is precisely the reason for the more general
requirement that Ad(H) is compact in the de�nition of a symmetric pair. If (G,H) is
an associated pair of a symmetric space M , then G ⊂ I(M) and the only isometry of
M ∼= G/H that �xes every point is the identity. Thus, G acts e�ectively on G/H, so the
map g 7→ lg is injective and N = {e}.

23
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Example 1.4.5. The purely Lie-theoretic characterization in Theorem 1.4.3 enables us to
construct many more examples of symmetric spaces where it is otherwise di�cult to guess
a natural Riemannian metric directly. A particularly nice application of this strategy is
the case for Grassmannian manifolds.
Let Gr(k,Rn) denote the set of all k-dimensional linear subspaces of Rn. The special
orthogonal group SO(n) acts smoothly on Gr(k,Rn), where the action of A ∈ SO(n) on
a k-dimensional subspace V ⊂ Rn is given by A · V := A(V ). Since every subspace of
Rn possesses an orthonormal basis, the action is transitive. If A maps V to itself, then
it also preserves the orthogonal complement V ⊥. Thus, the stabilizer of V under the
action can be identi�ed with S(O(k)× O(n− k)), so we obtain the homogeneous space
Gr(k,Rn) ∼= SO(n)/S(O(k)×O(n− k)).
Let Ik,n−k be the diagonal matrix whose �rst k diagonal entries are equal to 1 and whose
last n − k entries are equal to −1. The map σ : SO(n) → SO(n), A 7→ Ik,n−kAIk,n−k
de�nes an involutive automorphism of SO(n) whose �xed point-set SO(n)σ coincides
with S(O(k)×O(n− k)) which is already compact. Hence, we can equip Gr(k,Rn) with
an SO(n)-invariant Riemannian metric which turns it into a symmetric space. If n is
odd, the action of SO(n) is e�ective. If n is even, this is not the case since −In ∈ SO(n)
acts trivially, but this is the only non-identity element with this property.
In the case k = 1 we obtain a realization of real projective space RPn as a symmetric
space. Moreover, the construction can evidently be carried out over the complex numbers
as well by replacing orthogonal by unitary groups, in which case Gr(k,Cn) is identi�ed
with the symmetric space SU(n)/S(U(k)× U(n− k)).

1.5 Hermitian symmetric spaces

In the �nal section of this chapter we look at a complex analogue of Riemannian sym-
metric spaces. As a preparation, let us outline some basics about smooth manifolds in
the complex setting. A detailed account of these notions is given in [Hel01, Chapter VIII]
and [KN69, Chapter IX].
To begin with, we recall that a complex structure on a �nite-dimensional real vector
space V is a linear map J : V → V such that J2 = −idV . If such a structure exists,
then V is necessarily even-dimensional and can be turned into a complex vector space
by de�ning multiplication with complex scalars by (a + bi)v := av + bJ(v) for a, b ∈ R,
v ∈ V . Conversely, for every complex vector space, multiplication by i ∈ C de�nes a
complex structure on the underlying real vector space.
In order to generalize this to the manifold setting, it is natural to consider a smooth
2n-dimensional real manifold M , where every tangent space is equipped with a complex
structure Jp : TpM → TpM such that p 7→ Jp de�nes a smooth

(
1
1

)
-tensor �eld J on

M . This can equivalently be viewed as an automorphism J : TM → TM of the tangent
bundle satisfying J2 = −idTM . In this case, J is called an almost complex structure on
M and the pair (M,J) is called an almost complex manifold. A smooth map f : M →M ′

between almost complex manifolds (M,J) and (M ′, J ′) is said to be almost complex if
Tf ◦ J = J ′ ◦ Tf .
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1.5 Hermitian symmetric spaces

A smooth manifold is called complex if it possesses a holomorphic atlas, i.e. a family
{(ϕi, Ui) : i ∈ I}, where ϕi is a homeomorphism from an open set Ui ⊂ M onto an
open subset of Cn such that the transition functions ϕi ◦ ϕ−1

j are holomorphic whenever
Ui ∩ Uj 6= ∅. A map between complex manifolds is said to be holomorphic if its chart
expressions with respect to a holomorphic atlas are holomorphic.
Every complex manifold can also be viewed as a real manifold of double dimension, in
which case it carries a canonical almost complex structure arising in the following way.
Let (z1, . . . , zn) be complex local coordinates in a chart domain U ⊂ M and split them
into real and imaginary part zj = xj + iyj . Then (x1, y1, . . . , xn, yn) are local coordinates
for the underlying real manifold and the tangent vectors { ∂

∂xi

∣∣
p
, ∂
∂yj

∣∣
p

: i.j = 1, . . . , n}
form a basis of the tangent space TpM for every p ∈ U . The linear map Jp : TpM → TpM
de�ned by

Jp

(
∂

∂xi

∣∣∣∣
p

)
=

∂

∂yi

∣∣∣∣
p

, Jp

(
∂

∂yj

∣∣∣∣
p

)
= − ∂

∂xj

∣∣∣∣
p

, i, j = 1, . . . , n

is a complex structure on TpM and p 7→ Jp is smooth in U . It is a straightforward
consequence of the Cauchy-Riemann equations that this de�nition of Jp is independent
of the chosen chart and hence, these maps patch together to de�ne an almost complex
structure on all of M . In general, an almost complex structure J on an almost complex
manifold need not be inherited from a complex manifold in this way and if it is, then
J is said to be integrable. Moreover, if (M,J) and (M ′, J ′) are complex manifolds with
their canonical almost complex structures, then a map f : M →M ′ is almost complex if
and only if it is holomorphic.
A Riemannian metric on an almost complex manifold (M,J) is said to be Hermitian if
Q(JX, JY ) = Q(X,Y ) holds for all vector �elds X,Y ∈ X(M). In this case, we can
de�ne a Hermitian inner product Q̃p on each tangent space by setting

Q̃p(v, w) := Qp(v, w)− iQp(Jp(v), w), v, w ∈ TpM (1.30)

and p 7→ Q̃p is again smooth. Conversely, given a smooth
(

0
2

)
-tensor �eld Q̃ on M such

that each Q̃p is a Hermitian inner product on TpM , then we obtain a Hermitian metric
Q onM by setting Qp(v, w) := Re Q̃p(v, w). After these preparations, we can now de�ne
the complex analogue of a Riemannian symmetric space.

De�nition 1.5.1. A connected complex manifold M that is equipped with a Hermi-
tian metric Q is called a Hermitian symmetric space if for every p ∈ M there exists a
holomorphic isometry sp : M →M such that sp(p) = p and Tpsp = −idTpM .

The de�nition is a verbatim adaptation of De�nition 1.2.1 to the complex setting, so
by viewing M as a real manifold, it is evident that every Hermitian symmetric space
is also a Riemannian symmetric space. Hence, all the results obtained in the previous
sections are also applicable in this situation. In particular, a Hermitian symmetric space
M can be realized as a homogeneous space of the identity component of its isometry
group. Moreover, every symmetry of M is even holomorphic and thus contained in the
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1 Riemannian symmetric spaces

subgroup A(M) ⊂ I(M) consisting of all holomorphic isometries of M . This is a closed
subgroup of I(M) and thus a Lie group which also acts smoothly onM . The holomorphy
property implies that the canonical almost complex structure on M satis�es

Jf(p) = Tpf ◦ Jp ◦ (Tpf)−1 (1.31)

for all f ∈ A(M) and p ∈ M . We denote by A0(M) the connected component of the
identity in A(M). By connectedness of M , the action of A0(M) is transitive and we can
realize M as a homogeneous space of A0(M).
Let us choose a base point o ∈M , set G = A0(M) and let H = Go be the stabilizer of o
under the action of G. Then (G,H) is an associated pair of M and we have a symmetric
decomposition g = h ⊕ p on the Lie algebra level, which is induced by the involutive
automorphism σ : g 7→ sogso of G exactly as in the real case. The space p is canonically
identi�ed with ToM , which implies that the complex structure Jo of ToM gives rise to
a linear map J̃ : p → p that satis�es J̃2 = −idp. The di�eomorphism M ∼= G/H turns
G/H into a Hermitian symmetric space with base point o = eH such that the left-action
lg is a holomorphic isometry for every g ∈ G. Therefore, the almost complex structure
on G/H is G-invariant in the sense that

JgH ◦ Tolg = Tolg ◦ Jo, ∀g ∈ G. (1.32)

Moreover, we can identify the restriction to p of the adjoint representation of H on g
with the isotropy representation of H on ToM ∼= To(G/H) and the holomorphy condition
(1.32) then implies that

J̃ ◦Ad(h)|p = Ad(h)|p ◦ J̃ , ∀h ∈ H. (1.33)

Conversely, given a symmetric pair (G,H), these properties already su�ce to endow
G/H with the structure of a Hermitian symmetric space.9

Theorem 1.5.2. Let (G,H) be a symmetric pair, o := eH and let Q be any G-invariant
Riemannian metric on M := G/H. If A : ToM → ToM is a linear map satisfying

(i) A2 = −idToM

(ii) Qo(A(X), A(Y )) = Qo(X,Y ) for all X,Y ∈ ToM

(iii) A ◦ Tolh = Tolh ◦A for all h ∈ H,

then there exists a unique G-invariant almost complex structure J on M such that Q is

Hermitian, Jo = A and every symmetry sp, p ∈M , is almost complex.

9The following result does not quite imply that G/H has the structure of a Hermitian symmetric space
since it is merely an almost complex manifold at this point. However, the almost complex structure
J can be shown to be integrable (cf. [Hel01, Chapter VIII, Proposition 4.2]).
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1.5 Hermitian symmetric spaces

Proof. Since G/H is a symmetric space in every G-invariant Riemannian metric, it re-
mains to construct the almost complex structure J . Requiring G-invariance forces us to
de�ne it by JgH := Tolg ◦A ◦ (Tolg)

−1, which is independent of the representative of gH
by (iii). Moreover, it is evidently smooth and satis�es J2 = −idTM , so it indeed de�nes
an almost complex structure on G/H. Since both Q and J are G-invariant, it follows
directly from (ii) that Q is Hermitian with respect to J . To show that each symmetry
is almost complex, it su�ces to consider so by G-invariance. To this end, let σ : G→ G
be an involutive automorphism such that Gσ0 ⊂ H ⊂ Gσ and let π : G → G/H be the
natural projection. Then we have so ◦π = π ◦σ and so ◦ lg = lσ(g) ◦ so by Theorem 1.4.3.
Let p = gH ∈M and X ∈ TpM be arbitrary, then these relations imply

Tpso(Jp(X)) = Tpso(Tolg ◦A ◦ (Tolg)
−1(X)) = To(so ◦ lg)(A ◦ (Tolg)

−1(X))

= To(lσ(g) ◦ so)(A ◦ (Tolg)
−1(X)) = (Tolσ(g) ◦ Toso ◦A ◦ (Tolg)

−1)(X)

= (Tolσ(g) ◦A ◦ Toso ◦ (Tolg)
−1)(X) = (Tolσ(g) ◦A ◦ Tp(so ◦ lg−1))(X)

= (Tolσ(g) ◦A ◦ Tso(p)lσ(g)−1 ◦ Tpso)(X) = Jso(p)(Tpso(X)),

where we have used that Toso = −idToM commutes with A in the third line and the
de�nition of the almost complex structure in the last step. This shows that so is almost
complex and concludes the proof.

As before, we may identify A with a map Ã : p → p, in which case condition (iii) of
the preceding theorem is equivalent to requiring that Ã◦Ad(h)|p = Ad(h)|p ◦ Ã holds for
all h ∈ H. The fact that the almost complex structure induced by A is always integrable
is a remarkable property and again emphasizes the claim that symmetric spaces form
a very special class of Riemannian manifolds, even in the complex setting. For the
moment, we restrict our discussion of Hermitian symmetric spaces to this observation.
We will illustrate some more aspects of their theory in the following chapters, but for
our purposes it will mostly su�ce to view them as a distinguished class of Riemannian
symmetric spaces. In fact, there is a simple criterion for detecting whether or not a given
symmetric space is Hermitian, which we will prove in Section 2.3.1.
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Having established the most important results about the global structure of a symmetric
space, we now investigate more closely a sort of �in�nitesimal data� associated to it. As
we will see, many elements from the structure theory of Lie algebras have a corresponding
geometric realization in the theory of symmetric spaces. In order not to confuse these
algebraic notions with their geometric counterparts, we �rst derive some purely algebraic
results about certain types of Lie algebras in Section 2.1 and 2.2. Afterwards, these
concepts shall be applied in Section 2.3 to prove results about symmetric spaces. In
particular, we explain how the structure theory of real semisimple Lie algebras gives rise
to a complete classi�cation of symmetric spaces.

2.1 Orthogonal symmetric Lie algebras

In the previous chapter we have seen that one of the most basic properties of a symmetric
space M is that it can be expressed as a homogeneous space M ∼= G/H, where (G,H)
is an associated pair of M which is not necessarily unique. According to Proposition
1.2.6, the Lie algebra of G can be symmetrically decomposed as g = h ⊕ p into the
±1-eigenspaces of an involutive automorphism of g. The Riemannian structure on M
induces a G-invariant Riemannian metric on G/H and an Ad(H)-invariant inner product
on p. Conversely, given a symmetric pair (G,H), the homogeneous space G/H admits a
G-invariant Riemannian metric and every such metric turns it into a symmetric space.
Moreover, G-invariant metrics on G/H are in bijective correspondence with Ad(H)-
invariant inner products on p. Di�erentiating the invariance condition as in (1.22) shows
that the restrictions to p ⊂ g of the linear maps ad(h) = {ad(X) : X ∈ h} are skew-
symmetric with respect to such an inner product. Looking only at the Lie algebra-level,
it is therefore natural to study Lie algebras with a symmetric decomposition g = h⊕ p,
where p can be equipped with an inner product such that ad(h) acts on p by skew-
symmetric linear maps.
In order to guarantee the existence of such an inner product, we need one auxiliary
notion. Let g be a real Lie algebra, then an element X ∈ g is contained in the center z
of g if and only if ad(X) ≡ 0. If h ⊂ g is a Lie subalgebra, then ad(h) is a Lie subalgebra
of the set gl(g) of linear maps on g and ad(h) ∼= h/(h ∩ z). We say that h is compactly

embedded in g if the unique connected Lie subgroup of GL(g) with Lie algebra ad(h) is
compact. Furthermore, the Lie algebra g is called compact if it is compactly embedded
in itself. Having this notion at hand, the preceding discussion suggests to consider the
following objects.

29



2 Symmetric spaces and Lie algebras

De�nition 2.1.1. Let g be a real Lie algebra, ρ : g→ g an involutive automorphism of
g and g = h⊕ p the decomposition of g into the ±1-eigenspaces of ρ.

(i) The pair (g, ρ) is called an orthogonal symmetric Lie algebra if h is compactly
embedded in g. It is called e�ective if h∩ z = {0}, where z denotes the center of g,
and reduced if h contains no non-zero ideal of g.

(ii) A pair (G,H) of Lie groups is said to be associated to (g, ρ) if G is a connected Lie
group with Lie algebra g and H a Lie subgroup of G with Lie algebra h.

(iii) Two orthogonal symmetric Lie algebras (g1, ρ1) and (g2, ρ2) are said to be isomor-

phic if there exists a Lie algebra isomorphism ψ : g1 → g2 such that ψ ◦ρ1 = ρ2 ◦ψ.

Remark 2.1.2. The property of being reduced is slightly stronger than e�ectiveness. In
fact, (g, ρ) is reduced if and only if the restriction of the adjoint representation of h
to p ⊂ g is injective, whereas it is e�ective if and only if the adjoint representation
of h on all of g is injective. The above de�nition can be viewed as an �in�nitesimal
version� of De�nition 1.4.2. If (G,H) is a symmetric pair and σ : G → G an involutive
automorphism with Gσ0 ⊂ H ⊂ G, then (g, σ∗) is an orthogonal symmetric Lie algebra
since Ad(H) ⊂ GL(g) is compact. It is reduced if and only if H contains no non-discrete
normal subgroup of G. In particular, this is the case if (G,H) is associated to a symmetric
space M .

On the one hand, if (g, ρ) is an orthogonal symmetric Lie algebra, then the connected
Lie subgroup H∗ of GL(g) whose Lie algebra is ad(h) is compact by assumption, so
there exists an H∗-invariant inner product on g. The linear maps in ad(h) are then
skew-symmetric with respect to this inner product and we sloppily say that the inner
product is ad(h)-invariant in this sense. On the other hand, every Lie algebra g can also
be equipped with the symmetric bilinear form

B : g× g→ C
(X,Y ) 7→ tr(ad(X) ◦ ad(Y )),

which is called the Killing form of g and is a natural object on g for several reasons. First,
if ϕ : g→ g is a Lie algebra automorphism, then ad(ϕ(X)) = ϕ◦ad(X)◦ϕ−1 implies that
B(ϕ(X), ϕ(Y )) = B(X,Y ) for all X,Y ∈ g. Hence, the Killing form is invariant under
every automorphism of g. If G is a Lie group with Lie algebra g, then we may apply this
observation to ϕ := Ad(g) for every g ∈ G, in which case di�erentiating the invariance
condition yields B(ad(Z)X,Y ) = −B(X, ad(Z)Y ) for allX,Y, Z ∈ g. Second, the Killing
form contains crucial information about the structure of the underlying Lie algebra. A
particularly important result is Cartan's criterion, which states that a Lie algebra is
semisimple if and only if its Killing form is non-degenerate (cf. [Kna96, Theorem 1.42]).
Among all Lie algebras, the semisimple ones form a very special class and have many
additional properties that simplify their structure theory. This is also re�ected in the
fact that semisimple Lie algebras can be completely classi�ed, which is far from being
possible for general Lie algebras.
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2.1 Orthogonal symmetric Lie algebras

If (g, ρ) is an orthogonal symmetric Lie algebra with symmetric decomposition g = h⊕p,
then for all X ∈ h and Y ∈ p we have that

B(X,Y ) = B(ρ(X), ρ(Y )) = B(X,−Y ) = −B(X,Y ), (2.1)

which implies that h and p are orthogonal with respect to the Killing form and explains
the terminology. In general, the restriction of B to p may well be degenerate, but its
restriction to h is often well-behaved.

Lemma 2.1.3. Let g be a real Lie algebra with center z and let h be a compactly embedded

Lie subalgebra of g. If h ∩ z = {0}, then the restriction to h of the Killing form of g is

negative de�nite.

Proof. Let B denote the Killing form of g and let H∗ be the connected Lie subgroup
of GL(g) whose Lie algebra is ad(h). As mentioned above, there exists an H∗-invariant
inner product on g. With respect to an orthonormal basis of g, every linear map ad(X),
X ∈ h, is then represented by a skew-symmetric matrix (aij(X)). Hence, we have

B(X,X) = tr(ad(X)2) = −
∑
i,j

aij(X)2 ≤ 0, ∀X ∈ h

and equality holds if and only if ad(X) ≡ 0, i.e. X ∈ h ∩ z = {0}.

In particular, this result applies to every e�ective orthogonal symmetric Lie algebra.
For these objects it therefore su�ces to control the Killing form on p, which suggests the
following distinction.

De�nition 2.1.4. Let (g, ρ) be an e�ective orthogonal symmetric Lie algebra with sym-
metric decomposition g = h⊕ p and Killing form B. Then (g, ρ) is said to be

(i) of the compact type if B|p×p is negative de�nite.

(ii) of the non-compact type if B|p×p is positive de�nite.

(iii) of the Euclidean type if p is an abelian ideal in g.

A pair (G,H) of Lie groups that is associated to (g, ρ) is said to be of the compact,
non-compact or Euclidean type according to the type of (g, ρ).

Since h and p are orthogonal with respect to the Killing form, it follows that if (g, ρ)
is of the compact or the non-compact type, then the Killing form is non-degenerate on
all of g, which implies that g is semisimple. In the compact case, the Killing form is
negative de�nite on all of g while in the non-compact case, the Lie subalgebra h is a
maximal subspace of g on which the Killing form is negative de�nite.1 The symmetric
1These observations justify the terminology since it can be shown that a Lie algebra is compact and
semisimple if and only if its Killing form is negative de�nite (cf. [Kna96, Corollary 4.26 and Proposi-
tion 4.27]). Hence, if (g, ρ) is of the compact type, then g is compact and if it is of the non-compact
type, then h is a maximal compactly embedded subalgebra of g.
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2 Symmetric spaces and Lie algebras

decomposition g = h ⊕ p is then a Cartan decomposition of g, a notion which we will
study in more detail in the next section. The following theorem shows that these classes
indeed form the building blocks of e�ective orthogonal symmetric Lie algebras. We refer
to [Hel01, Chapter V, Theorem 1.1] for a proof.

Theorem 2.1.5. Let (g, ρ) be an e�ective orthogonal symmetric Lie algebra. There exist

ideals g0, g− and g+ in g such that:

(i) g = g0 ⊕ g− ⊕ g+

(ii) The ideals g0, g− and g+ are invariant under ρ and orthogonal with respect to the

Killing form of g.

(iii) Let ρ0, ρ− and ρ+ denote the restrictions of ρ to g0, g− and g+, respectively. Then

(g0, ρ0), (g−, ρ−) and (g+, ρ+) are e�ective orthogonal symmetric Lie algebras of

the Euclidean, compact and non-compact type, respectively.

Combining the compact and non-compact summand in particular shows that g can be
written as a direct sum g = g0 ⊕ g′ where g′ is semisimple. Thus, for many purposes
it su�ces to consider semisimple Lie algebras, which is a tremendous simpli�cation. In
order to properly exploit this, we will add the requirement that (g, ρ) is reduced, which
is ful�lled in many situations. In this case, the symmetric decomposition g = h⊕ p has
additional properties.

Proposition 2.1.6. Let (g, ρ) be a reduced orthogonal symmetric Lie algebra such that

g is semisimple. Then the symmetric decomposition g = h ⊕ p satis�es [p, p] = h and

g = [p, p]⊕ p.

Proof. Set g′ := [p, p] ⊕ p, then it follows from (1.16) and the Jacobi identity that g′ is
an ideal in g. Hence, g′ is also semisimple and the restriction of the Killing form B of g
to g′ is non-degenerate. If m denotes the orthogonal complement of g′ with respect to B,
then B is also non-degenerate on m and there is a direct sum decomposition g = g′ ⊕m.
Moreover, we must have m ⊂ h since it is orthogonal to p and we claim that m is an
ideal in g. To see this, let X ∈ g and Z ∈ m be arbitrary, then for every Y ∈ g′

we have [X,Y ] ∈ g′ and thus B([X,Z], Y ) = −B(Z, [X,Y ]) = 0. This implies that
[X,Z] ∈ m and proves the claim. However, since m ⊂ h and (g, ρ) is reduced, it follows
that m = {0} and hence g = [p, p]⊕ p. Finally, the general property [p, p] ⊂ h then also
forces [p, p] = h.

Another useful property of semisimple Lie algebras that will be important for our
discussion is the following.

Lemma 2.1.7. Let g be a semisimple Lie algebra and D a derivation of g, i.e. a linear

map D : g→ g satisfying

D[X,Y ] = [D(X), Y ] + [X,D(Y )], ∀X,Y ∈ g. (2.2)

Then there exists an element Z ∈ g such that D = ad(Z).
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Proof. First, we note that every linear map of the form ad(Z), Z ∈ g, is indeed a
derivation of g as a consequence of the Jacobi identity. The map X 7→ tr(D ◦ ad(X))
de�nes a linear functional g→ R, so since the Killing form is non-degenerate, there exists
an element Z ∈ g such that tr(D ◦ ad(X)) = B(Z,X) for all X ∈ g. The derivation
property (2.2) is equivalent to ad(D(X)) = D ◦ ad(X)− ad(X) ◦D = [D, ad(X)], which
implies that

B(D(X), Y ) = tr(ad(D(X)) ◦ ad(Y )) = tr([D, ad(X)] ◦ ad(Y ))

= tr(D ◦ ad(X) ◦ ad(Y ))− tr(ad(X) ◦D ◦ ad(Y ))

= tr(D ◦ ad(X) ◦ ad(Y ))− tr(D ◦ ad(Y ) ◦ ad(X))

= tr(D ◦ [ad(X), ad(Y )]) = tr(D ◦ ad[X,Y ])

= B(Z, [X,Y ]) = B([Z,X], Y )

holds for all X,Y ∈ g. Hence, it follows that D = ad(Z) by non-degeneracy of B.

As mentioned, the study of orthogonal symmetric Lie algebras can be reduced to the
semisimple case, but there is even a much more powerful simpli�cation available. In
fact, there is a remarkable duality between orthogonal symmetric Lie algebras of the
compact and non-compact type, which in many cases can be used to study both types
simultaneously. Let (g, ρ) be an orthogonal symmetric Lie algebra and g = h ⊕ p its
symmetric decomposition. Then g is a real Lie algebra and we denote by gC := g ⊗R C
its complexi�cation. The complex bilinear extension of the Lie bracket of g turns gC into
a complex Lie algebra and the subspace g∗ := h⊕ ip ⊂ gC becomes a real Lie subalgebra
under this operation. This decomposition induces a conjugation map

ρ∗ : g∗ = h⊕ ip→ g∗

X + iY 7→ X − iY,
(2.3)

which de�nes an involutive automorphism of g∗. Clearly, we have g∗∗ = g and ρ∗∗ = ρ.

Lemma 2.1.8. Let (g, ρ) be an orthogonal symmetric Lie algebra and de�ne (g∗, ρ∗) as

above, then (g∗, ρ∗) is an orthogonal symmetric Lie algebra as well. If (g, ρ) is of the

compact type, then (g∗, ρ∗) is of the non-compact type and vice versa. Two orthogonal

symmetric Lie algebras (g1, ρ1) and (g2, ρ2) are isomorphic if and only if (g∗1, ρ
∗
1) and

(g∗2, ρ
∗
2) are isomorphic.

Proof. The Killing form BC of the complexi�cation gC is the complex bilinear extension
of the Killing form B of g. Since (g∗)C = gC, the same is true for g∗ and the Killing
forms of g and g∗ are simply the restrictions of BC to the respective subspace. Evidently,
BC is negative de�nite on p × p if and only if it is positive de�nite on ip × ip and vice
versa, so it remains to show that h is compactly embedded in g∗. Let (gC)R denote the
complexi�cation of g viewed as a Lie algebra over R, then multiplication by i ∈ C de�nes
a complex structure J on (gC)R. Every R-linear map on g or g∗ uniquely extends to a
C-linear map on gC, which can be viewed as an R-linear map on (gC)R that commutes
with J . In this way, GL(g) and GL(g∗) become closed subgroups of GL((gC)R). Let H∗
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denote the connected Lie subgroup of GL(g) with Lie algebra ad(h). Then H∗ becomes
a compact Lie subgroup of GL((gC)R) that is contained in GL(g∗) since ad(h) ⊂ gl(g∗).
Finally, if ψ : g1 → g2 is an isomorphism of orthogonal symmetric Lie algebras, then
the condition ψ ◦ ρ1 = ρ2 ◦ ψ shows that ψ(h1) = h2 and ψ(p1) = p2. Hence, the map
ψ∗ : g∗1 → g∗2 de�ned by ψ∗(X + iY ) := ψ(X) + iψ(Y ), where X ∈ h1 and Y ∈ p1, is
well-de�ned and an isomorphism. The converse follows in the same way.

De�nition 2.1.9. The orthogonal symmetric Lie algebra (g∗, ρ∗) de�ned in (2.3) is called
the dual of (g, ρ).

The previous lemma shows that the duality induces an equivalence of categories be-
tween orthogonal symmetric Lie algebras of the compact and the non-compact type.
Therefore, a classi�cation of one of these types would immediately lead to a complete
classi�cation of the other as well. We will now describe that such a classi�cation is in-
deed possible. To this end, it will be convenient to decompose orthogonal symmetric Lie
algebras a little bit further.

De�nition 2.1.10. An orthogonal symmetric Lie algebra (g, ρ) with eigenspace decom-
position g = h⊕ p is called irreducible if:

(i) g is semisimple and (g, ρ) is reduced.

(ii) The restriction to p ⊂ g of the adjoint representation of h is irreducible.

Before turning to the main result, we observe that the irreducibility condition has a
particular feature that will be very useful later. We have seen that every orthogonal sym-
metric Lie algebra (g, ρ) admits an ad(h)-invariant inner product. If (g, ρ) is irreducible,
then - at least on the subspace p ⊂ g - this inner product is essentially unique.

Proposition 2.1.11. If (g, ρ) is irreducible, then every ad(h)-invariant inner product on
p is a scalar multiple of the restriction to p of the Killing form of g.

Proof. Let 〈·, ·〉 be an ad(h)-invariant inner product on p, then there is a unique linear
map f : p → p such that 〈f(X), Y 〉 = B(X,Y ) for all X,Y ∈ p. Then f is self-adjoint
with respect to 〈·, ·〉 and thus diagonalizable over R. Moreover, non-degeneracy of the
inner product shows that f commutes with ad(Z) for every Z ∈ h. Every eigenspace of
f is then an invariant subspace for the adjoint representation of h on p, so it follows from
irreducibility that f can only have one eigenvalue, i.e. f = c · idp for some c ∈ R and
c〈X,Y 〉 = B(X,Y ) for all X,Y ∈ p. Finally, we note that B|p×p is non-degenerate since
g is semisimple and g = h⊕ p is an orthogonal decomposition. Hence, we have c 6= 0 and
〈X,Y 〉 = 1

cB(X,Y ).

In particular, we deduce from this result that an irreducible orthogonal symmetric Lie
algebra is necessarily of the compact or non-compact type. As described in Theorem 2.1.5,
every e�ective orthogonal symmetric Lie algebra can be decomposed into a Euclidean, a
compact and a non-compact summand. The next proposition shows that in the reduced
case, the latter can be further decomposed into irreducible factors. Again, we refer to
[Hel01, Chapter VIII, Proposition 5.2] for a proof.
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Theorem 2.1.12. Let (g, ρ) be a reduced orthogonal symmetric Lie algebra where g is

semisimple. There exist ideals g1, . . . , gn in g such that:

(i) g = ⊕ni=1gi

(ii) The ideals g1, . . . , gn are invariant under ρ and mutually orthogonal with respect to

the Killing form of g.

(iii) Let ρi denote the restriction of ρ to gi. Then (gi, ρi) is an irreducible orthogonal

symmetric Lie algebra for every i = 1, . . . , n.

In order to classify reduced orthogonal symmetric Lie algebras, it therefore su�ces to
determine the irreducible ones. Moreover, by duality it is even enough to restrict to the
compact or the non-compact type. We conclude this section by presenting the general
classi�cation result from [Hel01, Chapter VIII, Theorem 5.3 and 5.4].

Theorem 2.1.13 (Classi�cation of orthogonal symmetric Lie algebras). Let (g, ρ) be an
irreducible orthogonal symmetric Lie algebra, then it is of one of the following four types:

(i) g is a compact, simple Lie algebra and ρ is any involutive automorphism of g.

(ii) g = g1 ⊕ g2 is compact and a direct sum of isomorphic simple ideals that are

interchanged by ρ.

(iii) g is a non-compact, simple Lie algebra over R whose complexi�cation is simple

and ρ is an involutive automorphism of g whose +1-eigenspace h is a compactly

embedded subalgebra of g.

(iv) g = g̃R is the underlying real Lie algebra of a complex simple Lie algebra g̃ and ρ
is conjugation with respect to a maximal compactly embedded subalgebra of g.

If (g, ρ) is of the compact type, then it is of type (i) or (ii) and if (g, ρ) is of the non-

compact type, then it is of type (iii) or (iv). Under the duality (g, ρ) ↔ (g∗, ρ∗), the
compact Lie algebras of type (i) correspond to the non-compact Lie algebras of type (iii)

and type (ii) corresponds to type (iv).

The classi�cation of irreducible orthogonal symmetric Lie algebras of the compact type
is therefore essentially equivalent to the classi�cation of involutive automorphisms of real
compact, simple Lie algebras. This is indeed possible and was achieved by Élie Cartan
in the 1920's. Let us brie�y describe some of the underlying principles, more details can
be found in [Hel01, Chapter IX]. Starting from a real Lie algebra, its complexi�cation is
naturally a complex Lie algebra, but it may well happen that non-isomorphic real Lie
algebras have isomorphic complexi�cations. For example, the complexi�cation of both
su(n) and sl(n,R) is sl(n,C). Given a complex Lie algebra g, every real Lie algebra g0

whose complexi�cation is isomorphic to g is called a real form of g. In this case, g0 is
semisimple if and only if g is semisimple and if g0 is simple, then g is either simple or a
direct sum of two isomorphic simple ideals. It turns out that every complex semisimple
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Lie algebra possesses a compact real form, which is unique up to an automorphism of
g. If ρ is an involutive automorphism of a compact real form g0 of g, then g0 = h ⊕ p
decomposes into the ±1-eigenspaces of ρ and we can form the dual g∗0 = h⊕ip ⊂ g, which
is a non-compact real form of g. If ρ varies through all involutions of g0, then g∗0 varies
through all non-compact real forms of g. To classify real compact, simple Lie algebras
and their involutive automorphisms, it therefore su�ces to classify complex semisimple
Lie algebras and their real forms. This is a classical topic in the structure theory of
Lie algebras, which is usually established using the theory of root systems and their
corresponding Dynkin and Satake diagrams.
We will see in Section 2.3.1 how these results can be applied to decompose and classify
symmetric spaces. Before, however, we make one more algebraic detour that will be very
useful for studying the geometry of symmetric spaces.

2.2 Cartan decompositions

In the previous section we have introduced the Killing form and used it to decompose
orthogonal symmetric Lie algebras into Euclidean, compact and non-compact factors.
We now take a closer look at the non-compact type, but for transparency we work in a
less restricted setting. Recall that if (g, ρ) is an orthogonal symmetric Lie algebra of the
non-compact type, then the eigenspace decomposition g = h ⊕ p induced by ρ has the
property that the Killing form of g is negative de�nite on h and positive de�nite on p.
This decomposition gives rise to several interesting features.
Let g be a semisimple Lie algebra over R with Killing form B, then an involutive au-
tomorphism θ : g → g is called a Cartan involution of g if the symmetric bilinear form
Bθ(X,Y ) := −B(X, θY ) is positive de�nite and thus de�nes an inner product on g. The
decomposition g = h⊕ p into the ±1-eigenspaces of θ then has the properties [h, h] ⊂ h,
[h, p] ⊂ p and [p, p] ⊂ h and that B|h×h is negative de�nite and B|p×p is positive de�nite.
We call any decomposition of g into linear subspaces with these properties a Cartan de-

composition of g. Note that the restriction of Bθ to p coincides with the corresponding
restriction of the Killing form. Conversely, given a Cartan decomposition g = h⊕ p, the
map T +X 7→ T −X, where T ∈ h and X ∈ p, de�nes a Cartan involution of g.
If G is a Lie group with Lie algebra g, then every Cartan involution of g can be lifted
to an involutive automorphism of G that automatically has simple structural properties.
We mention here the general result whose proof can be found in [Kna96, Theorem 6.31].
However, we will encounter a special case of this result in the context of symmetric spaces
in Section 2.3.2 and give a geometric proof there.

Theorem 2.2.1 (Global Cartan decomposition). Let g = h⊕p be a Cartan decomposition

of a real semisimple Lie algebra g with Cartan involution θ : g→ g. If G is a Lie group

with Lie algebra g, then there exists an involutive automorphism Θ : G → G such that

Θ∗ = θ. The �xed point-set H of Θ is a connected and closed subgroup of G with Lie

algebra h and contains the center Z of G. The group H is compact if and only if Z
is �nite and in that case it is a maximal compact subgroup of G. Moreover, the map

(X,h) 7→ exp(X)h de�nes a di�eomorphism p×H → G.
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This theorem shows that all the information about the topology of a semisimple Lie
group G with �nite center is encoded in a maximal compact subgroup H. In particular,
the quotient G/H is di�eomorphic to a vector space and hence contractible. Moreover,
since H is connected, it is the unique connected Lie subgroup of G with Lie algebra h.
However, the Cartan decomposition is not well-adapted to the group structure of G, so
it is natural to look for a re�nement.
If g = h⊕p is a Cartan decomposition and θ : g→ g the corresponding Cartan involution,
then we have

Bθ(ad(θX)Y, Z) = −B([θX, Y ], θZ) = B(Y, [θX, θZ]) = −Bθ(Y, ad(X)Z)

for all X,Y, Z ∈ g. Hence, the adjoint of ad(θX) with respect to the inner product Bθ
is −ad(X). This implies that ad(X) is always diagonalizable over R for X ∈ p, but
never diagonalizable for X ∈ h. If we choose a maximal abelian subspace a ⊂ p, which
exists since p is �nite-dimensional, then the Jacobi identity shows that {ad(A) : A ∈ a}
forms a family of pairwise commuting symmetric linear maps on g, which are therefore
simultaneously orthogonally diagonalizable. If X ∈ g is a joint eigenvector of all these
maps, the corresponding eigenvalue α(A) of ad(A) (i.e. ad(A)X = α(A)X) depends
linearly on A. For every linear map α : a→ R, this suggests to de�ne

gα := {X ∈ g : ad(A)X = α(A)X ∀A ∈ a}.

The map α is called a (restricted) root of g with respect to a if α 6= 0 and gα 6= {0},
in which case gα is called the (restricted) root space of α.2 In other words, the root
spaces (together with g0) are precisely the joint eigenspaces of the family of linear maps
{ad(A) : A ∈ a}. We denote by ∆ the set of roots, then we obtain the decomposition

g = g0 ⊕
⊕
α∈∆

gα, (2.4)

which is orthogonal with respect to Bθ. The Jacobi identity implies that [gα, gβ] ⊂ gα+β ,
which is {0} if α + β /∈ ∆. If α ∈ ∆ is a root, then ad(A) acts on gα by multiplication
with α(A). In addition, if X ∈ gα, then

ad(A)(θX) = [A, θX] = θ[θA,X] = θ[−A,X] = −α(A)θX

for all A ∈ a. This shows that −α is a root as well and θ restricts to an isomorphism
between gα and g−α. In particular, θ(g0) ⊂ g0 implies that g0 can be decomposed as

g0 = (g0 ∩ h)⊕ (g0 ∩ p).

Since a is a maximal abelian subspace of p, we have g0 ∩ p = a. Moreover, g0 ∩ h is
by de�nition the space of all X ∈ h such that [X,A] = 0 holds for all A ∈ a, which is
precisely the centralizer m := Zh(a) of a in h.
2Usually, the notions of roots and root spaces are �rst de�ned in the context of complex semisimple
Lie algebras. The restricted roots of a real semisimple Lie algebra can then be viewed as restrictions
of the roots of its complexi�cation, which explains the name. Since we only consider the real case in
our discussion, we will often omit the term �restricted�.
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De�nition 2.2.2. An element X ∈ p is called regular if Zp(X) = {Y ∈ p : [X,Y ] = 0},
the centralizer of X in p, is an abelian subspace of p.

Since every abelian subspace of p containing X is contained in Zp(X), it follows that
Zp(X) is a maximal abelian subspace of p for every regular element X ∈ p. In this case,
it is the unique maximal abelian subspace of p containing X. Conversely, every maximal
abelian subspace of p arises in this way.

Lemma 2.2.3. Let a ⊂ p be a maximal abelian subspace and let ∆ be the set of roots of

g with respect to a. If A ∈ a satis�es α(A) 6= 0 for all α ∈ ∆, then the centralizer of A
in g is given by Zg(A) = m⊕ a. In particular, its centralizer in p is Zp(A) = a, so A is

regular.

Proof. It follows from the root space decomposition (2.4) and g0 = m ⊕ a that every
X ∈ g can be uniquely written as

X = X0 +A0 +
∑
α∈∆

Xα (2.5)

for some elements X0 ∈ m, A0 ∈ a and Xα ∈ gα, α ∈ ∆. If X ∈ Zg(A), then

0 = [A,X] =
∑
α∈∆

α(A)Xα,

which implies Xα = 0 for all α ∈ ∆. Hence, X ∈ m⊕ a and the converse is obvious.

Proposition 2.2.4. Let a and a′ be two maximal abelian subspaces of p and let H
denote the Lie group from Theorem 2.2.1. There exists an element h0 ∈ H such that

Ad(h0)a = a′. Consequently, the space p satis�es

p =
⋃
h∈H

Ad(h)a. (2.6)

Proof. Since there are only �nitely many restricted roots, there exists an element A ∈ a
such that α(A) 6= 0 for all α ∈ ∆ and thus Zp(A) = a. By carrying out the same
procedure for the root space decomposition with respect to a′, we �nd some A′ ∈ a′ such
that Zp(A

′) = a′. Let B denote the Killing form of g and consider the smooth map

h 7→ B(Ad(h)A′, A), h ∈ H.

By Theorem 2.2.1, the adjoint group Ad(H) ∼= H/Z, where Z denotes the center of G,
is compact, so there exists some h0 ∈ H such that B(Ad(h0)A′, A) is a local extremum.
If X ∈ h, then the smooth function

t 7→ B(Ad(exp(tX))Ad(h0)A′, A), t ∈ R

has a critical point at t = 0, so we obtain by di�erentiation

0 = B(ad(X)Ad(h0)A′, A) = B(X, [Ad(h0)A′, A]).
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Now X ∈ h is arbitrary and [Ad(h0)A′, A] ∈ h, so we conclude that [Ad(h0)A′, A] = 0
and Ad(h0)A′ ∈ Zp(A) = a. Therefore, we have

a ⊂ Zp(Ad(h0)A′) = Ad(h0)Zp(A
′) = Ad(h0)a′

and since both sides are maximal abelian subspaces, equality must hold.
Finally, if Y ∈ p is arbitrary, then the one-dimensional abelian subspace span(Y ) ⊂ p
can be extended to a maximal abelian subspace a′ of p and then Y ∈ a′ = Ad(h0)a for
some h0 ∈ H, which proves (2.6).

Since roots are by de�nition non-zero, every root α ∈ ∆ determines a hyperplane

aα := ker(α) = {A ∈ a : α(A) = 0} ⊂ a

and an element in a ⊂ p is regular if and only if it is not contained in any such plane.
Let R(a) denote the set of regular elements of a, then we de�ne the following equivalence
relation on R(a).

A1 ∼ A2 :⇐⇒ ∀α ∈ ∆ : α(A1)α(A2) > 0 (2.7)

The corresponding equivalence classes are called the Weyl chambers of a and they are
precisely the connected components of R(a). Moreover, if A1 ∼ A2, then we clearly have
A1 ∼ λA2 for every λ > 0, so Weyl chambers are cones. If W ⊂ a is any Weyl chamber,
then by de�nition of the equivalence relation, the restriction of any root α ∈ ∆ to W is
either strictly positive or strictly negative.
Since the negative of every root α ∈ ∆ is a root as well and dim(gα) = dim(g−α), it
is natural to distinguish them by introducing a notion of positivity on the set of roots,
which can be done in the following way. Let W ⊂ a be an arbitrary Weyl chamber, then
a root α ∈ ∆ is called positive if α(A) > 0 for all A ∈ W . We then de�ne ∆+ ⊂ ∆ to
be the set of all positive roots and deduce that ∆ can be written as the disjoint union
of ∆+ and ∆− := {−α : α ∈ ∆+}. With these notions at hand, we can formulate the
following theorem.

Proposition 2.2.5 (Iwasawa decomposition). Let g = h⊕ p be a Cartan decomposition

of a real semisimple Lie algebra g. Let a ⊂ p be a maximal abelian subspace, ∆ the set

of roots of g with respect to a and ∆+ ⊂ ∆ a set of positive roots. Then

n :=
⊕
α∈∆+

gα (2.8)

is a nilpotent subalgebra and a ⊕ n is a solvable subalgebra of g. Moreover, we have the

direct sum decomposition g = h⊕ a⊕ n.

Proof. It follows directly from [gα, gβ] ⊂ gα+β that n is a nilpotent and a⊕n is a solvable
subalgebra of g. We further deduce from a ⊂ g0 that a ∩ n = {0}. It remains to show
that h and a ⊕ n are complementary subspaces. On the one hand, if X ∈ h ∩ (a ⊕ n),
then X = θX ∈ a⊕ θ(n) since a ⊂ p is stable under θ. However, since θ maps positive to
negative roots, we have X = θX = (a⊕ n) ∩ (a⊕ θ(n)) = a and hence X ∈ h ∩ a = {0}.
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On the other hand, every root is either positive or negative and θ is an isomorphism
mapping the root spaces of positive roots to those of the corresponding negative roots,
so we can write the root space decomposition (2.4) equivalently as g = g0 ⊕ n ⊕ θ(n).
Using the notation in (2.5), we can express every X ∈ g as

X = X0 +A0 +
∑
α∈∆

Xα.

By the previous observation, this sum can be re-written as

X =

(
X0 +

∑
α∈∆+

(X−α + θ(X−α))

)
+A0 +

( ∑
α∈∆+

(Xα − θ(X−α))

)
,

which is an element of h ⊕ a ⊕ n because the �rst summand is an eigenvector for the
eigenvalue +1 of θ and θ(X−α) ∈ gα for all α ∈ ∆.

The decomposition g = h ⊕ a ⊕ n is called an Iwasawa decomposition of g. Although
this will not be relevant for our purposes, we mention here for completeness that - as
in the case of a Cartan decomposition - the Iwasawa decomposition can be lifted to the
group level. The corresponding proof can be found in [Kna96, Theorem 6.46].

Theorem 2.2.6 (Global Iwasawa decomposition). Let G be a semisimple Lie group and

g = h⊕ a⊕ n an Iwasawa decomposition of its Lie algebra. Let H be the subgroup from

Theorem 2.2.1 and let A and N be the connected Lie subgroups of G with Lie algebras a
and n, respectively. Then the multiplication map

H ×A×N → G

(h, a, n) 7→ han

is a di�eomorphism. Moreover, the subgroups A and N are simply connected.

2.3 Applications to symmetric spaces

Having collected all these purely algebraic results, we now return to our discussion of
symmetric spaces. In the present section we demonstrate that this machinery can be
applied in many ways to obtain detailed information about the algebraic and geometric
structure of symmetric spaces.

2.3.1 An overview of the classification

As a �rst application, we illustrate how the classi�cation of orthogonal symmetric Lie
algebras gives rise to a classi�cation of symmetric spaces. Our �rst step in this direction
will be to clarify the relation between symmetric spaces and associated pairs. A priori, a
symmetric space M can have several di�erent associated pairs (G,H) and such a pair is
minimal if G = G(M) is the group of displacements of M , which need not coincide with
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the identity component I0(M) of its isometry group. However, we will show that these
groups do in fact coincide if I0(M) is semisimple. To do this, we start with a preparatory
lemma that also clari�es some of the ambiguity in constructing symmetric spaces from
symmetric pairs.

Lemma 2.3.1. Let (G,H) be a symmetric pair and let z denote the center of the Lie

algebra g of G. If h ∩ z = {0}, then there exists exactly one involutive automorphism

σ : G→ G such that Gσ0 ⊂ H ⊂ Gσ.

Proof. The existence of such an automorphism is built into the de�nition of a symmetric
pair, so it remains to show uniqueness. Suppose that σ1 and σ2 are two such automor-
phisms, then they induce two symmetric decompositions g = h⊕ pi, i = 1, 2, where pi is
the −1-eigenspace of the di�erential (σi)∗. As shown in (2.1), both decompositions are
orthogonal with respect to the Killing form B of g. Every X1 ∈ p1 can then be uniquely
written as X1 = Y + X2 for some Y ∈ h and X2 ∈ p2. Since h ∩ z = {0}, Lemma 2.1.3
shows that B|h×h is negative de�nite. However, Y = X1−X2 ∈ h is orthogonal to h and
thus satis�es B(Y, Y ′) = 0 for all Y ′ ∈ h, which implies Y = 0 and X1 = X2. It now
follows that p1 = p2 and (σ1)∗ = (σ2)∗, which yields σ1 = σ2 since G is connected.

The condition that h ∩ z = {0} is satis�ed in particular if G acts e�ectively on G/H.
In this case, it follows from Theorem 1.4.3 that all G-invariant Riemannian metrics on
G/H possess the same family of symmetries. If G is semisimple, this is already su�cient
to identify it with I0(G/H).

Theorem 2.3.2. Let (G,H) be a symmetric pair and let Q be any G-invariant Rieman-

nian metric on the quotient space G/H. If G is semisimple and acts e�ectively on G/H,

then G = I0(G/H).

Proof. Since G acts e�ectively on G/H, there exists a unique involutive automorphism
σ : G→ G such that Gσ0 ⊂ H ⊂ Gσ. In every G-invariant metric on G/H, the left-action
lg is by de�nition an isometry of G/H for every g ∈ G. The map g 7→ lg is injective
by e�ectiveness, so we may view G as a subgroup of I(G/H), which is contained in
G′ := I0(G/H) since G is connected. It can be shown that G is closed in G′ and thus a
Lie subgroup (cf. [Hel01, p. 176, Remark 2]). Its Lie algebra g can therefore be viewed
as a subalgebra of g′. Moreover, G/H becomes a symmetric space in every G-invariant
metric such that the symmetry at the base point o := eH is given by so(gH) = σ(g)H.
By identifying g ∈ G with lg ∈ G′ we may write (1.29) as σ(g) = sogso.
Let σ̃ denote the automorphism g 7→ sogso of G′, then we have σ̃|G = σ and both σ and
σ̃ induce symmetric decompositions

g = h⊕ p and g′ = h′ ⊕ p′,

where h′ is the Lie algebra of H ′ := G′o. Moreover, we have h ⊂ h′ and p = p′ since
H ⊂ H ′ and both p and p′ can be identi�ed with the tangent space To(G/H). Since H ′

contains no non-trivial normal subgroup of G′, the pair (g′, σ̃∗) is a reduced orthogonal
symmetric Lie algebra and can therefore be decomposed as g′ = g′0 ⊕ g′− ⊕ g′+ as in
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Theorem 2.1.5. The Euclidean factor g′0 = h′0 ⊕ p′0 has the property that p′0 is even an
abelian ideal in g′ (cf. [Hel01, Chapter V, Lemma 1.3]) and p′0 ⊂ p′ = p ⊂ g implies that
it is an abelian ideal in g, so we have p′0 = {0} because g is semisimple. Therefore, h′0 is
an ideal of g′ contained in h′, which must be trivial since (g′, σ̃∗) is reduced. Hence, g′ is
the sum of two semisimple ideals and Proposition 2.1.6 implies that [p′, p′] = h′. Finally,
[p′, p′] = [p, p] ⊂ h ⊂ h′ now shows that h = h′ and thus g = g′. Since G and G′ are
connected, they must coincide.

Corollary 2.3.3. If M is a symmetric space such that I0(M) is semisimple, then

G(M) = I0(M). In particular, I0(M) is generated by the family of displacements

{sp ◦ sq : p, q ∈M}.
Proof. Let g = h⊕ p be the usual symmetric decomposition of the Lie algebra of I0(M).
We have seen in Lemma 1.3.4 that the Lie algebra of the group of displacements satis�es
g(M) = [p, p] ⊕ p. This shows that g(M) is an ideal in g and therefore semisimple as
well. If H(M) denotes the stabilizer of o under the action of G(M), then we have an
e�ective isometric action of the semisimple Lie group G(M) on M ∼= G(M)/H(M), so
Theorem 2.3.2 implies that G(M) = I0(G(M)/H(M)) = I0(M).

Every symmetric space with a semisimple group of isometries therefore has a unique
associated pair and a unique orthogonal symmetric Lie algebra associated to it. This
motivates the following more general de�nition.

De�nition 2.3.4. Let M be a symmetric space, G = I0(M), H = Go and σ : G → G
be the involution g 7→ sogso. Then (G,H) is a symmetric pair and (g, σ∗) is a reduced
orthogonal symmetric Lie algebra. We say that M is of the Euclidean, compact or
non-compact type according to the type of (g, σ∗) and that M is irreducible if (g, σ∗) is
irreducible.

We will now establish a converse result which shows that it is possible to construct
a symmetric space from a given orthogonal symmetric Lie algebra. In order to do this,
we recall some aspects from the classi�cation theory of Lie groups, which can be found
in [Kun19, Chapter 22]. A fundamental result in this setting is Lie's third theorem,
which states that every (abstract) Lie algebra g can be realized as the Lie algebra of a
connected Lie group G. Moreover, its universal cover G̃ possesses a unique Lie group
structure such that its Lie algebra is g as well and the covering p : G̃ → G is a Lie
group homomorphism. If H is another Lie group with Lie algebra h, then every Lie
algebra homomorphism ρ : g → h can be uniquely lifted to a Lie group homomorphism
σ : G̃→ H such that Teσ = ρ. In particular, these observations imply that there exists a
simply connected Lie group with Lie algebra g which is unique up to isomorphism. Using
this, we obtain the following partial converse to the constructions we have met so far.

Theorem 2.3.5. Let (g, ρ) be an orthogonal symmetric Lie algebra and let (G,H) be

a pair of Lie groups that associated to (g, ρ). Suppose that G is simply connected and

that H is connected. Then H is closed in G and the quotient space G/H is simply

connected. Moreover, G/H can be equipped with a G-invariant Riemannian metric in

which it becomes a symmetric space.
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Proof. It follows from the preceding discussion that a Lie group G with the stated prop-
erties does indeed exist. Since h ⊂ g is a subalgebra, there also exists a connected Lie
subgroup H ⊂ G whose Lie algebra is h. Now G is simply connected and ρ is an auto-
morphism of the Lie algebra g of G, so there exists a unique Lie group automorphism
σ : G→ G such that σ∗ = ρ. Then the Lie algebra h of H coincides with the Lie algebra
of the �xed point-group Gσ, which implies H = Gσ0 since H is connected. In particular,
H is closed in G and G/H can be naturally equipped with a smooth structure as a
homogeneous space of G. Moreover, Ad(H) ⊂ GL(g) is compact since it is connected
and h is compactly embedded in g. Hence, (G,H) is a symmetric pair and G/H can be
turned into a symmetric space as in Theorem 1.4.3.
To prove that G/H is simply connected, let γ : [0, 1] → G/H be a continuous closed
curve. We may without loss of generality assume that γ(0) = γ(1) = eH. Since the
quotient map π : G → G/H is a submersion, it possesses local sections, which can be
used to lift γ to a continuous curve γ : [0, 1] → G such that π ◦ γ = γ. Then γ(0)
and γ(1) are elements of H which can be connected by a continuous curve in H.3 The
concatenation of these curves is then closed in G and therefore homotopic to a constant
path. Projecting the homotopy to G/H shows that γ is nullhomotopic as well.

Therefore, every orthogonal symmetric Lie algebra (g, ρ) gives rise to a simply con-
nected symmetric space. In general, there is a lot of freedom in choosing the Riemannian
metric on this space, but if (g, ρ) is irreducible, then Proposition 2.1.11 implies that all
G-invariant Riemannian metrics on G/H are scalar multiples of each other. This obser-
vation is a crucial step towards a classi�cation of symmetric spaces. In fact, we claim
that the construction from Theorem 2.3.5 induces an equivalence of categories between
irreducible, simply connected symmetric spaces and irreducible orthogonal symmetric
Lie algebras.
Let M be an irreducible, simply connected symmetric space, G = I0(M), H = Go and
σ : G → G be the involution g 7→ sogso. By de�nition, this means that the unique or-
thogonal symmetric Lie algebra (g, σ∗) associated to M is irreducible and we can apply
Theorem 2.3.5 to it. Let G̃ be a simply connected Lie group with Lie algebra g and H̃ its
connected Lie subgroup with Lie algebra h. The identity map on g then lifts to a covering
p : G̃ → G, which is the universal cover of G, such that H̃ is the identity component of
p−1(H). Hence, p induces a covering4

p̃ : G̃/H̃ → G/H, gH̃ 7→ p(g)H,

which is a di�eomorphism since G/H ∼= M is simply connected. The Riemannian struc-
tures on G̃/H̃ and G/H induce ad(h)-invariant inner products on p, which are scalar
multiples of each other since (g, σ∗) is irreducible. If we normalize the Riemannian met-
ric on G̃/H̃ in such a way that these inner products coincide, then p̃ is an isometry.

3Since H is in particular a smooth manifold, connectedness of H is equivalent to path-connectedness.
4This follows from the fact that the discrete group p−1(H)/H̃ acts discontinuously on the simply
connected space G̃/H̃ and the corresponding orbit space can be identi�ed with G̃/p−1(H) ∼= G/H
(cf. [Kun19, Proposition 21.4]).
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Conversely, let (g, ρ) be an irreducible orthogonal symmetric Lie algebra and G/H its
corresponding simply connected symmetric space. Then N := {g ∈ G : lg = idG/H} is
a normal subgroup of G contained in H, which must be discrete since (g, ρ) is reduced
by de�nition. Consequently, G/N and H/N are Lie groups with Lie algebras g and h,
respectively, and Theorem 2.3.2 implies that G/N = I0(G/H) since g is semisimple. It
follows from the proof of Theorem 2.3.5 that the di�erential of the involution g 7→ sogso
of G/N coincides with ρ, so the orthogonal symmetric Lie algebra corresponding to the
unique associated pair (G/N,H/N) of G/H is (g, ρ) as well.
Hence, these operations are indeed inverse to each other and we now show that they
are even compatible with the respective notions of isomorphism. On the one hand, if
f : M1 →M2 is an isometry between irreducible symmetric spaces, then g 7→ f ◦ g ◦ f−1

de�nes a Lie group isomorphism Ψ : I0(M1) → I0(M2). Let σ1 and σ2 denote the invo-
lutions g 7→ spgsp of I0(M1) and g 7→ sf(p)gsf(p) of I0(M2), respectively, where p ∈ M
is arbitrary. Then we have Ψ ◦ σ1 = σ2 ◦ Ψ and the irreducible orthogonal symmetric
Lie algebras (g1, (σ1)∗) and (g2, (σ2)∗) are isomorphic under the di�erential TeΨ. On
the other hand, let ψ : g1 → g2 be an isomorphism of irreducible orthogonal symmetric
Lie algebras and let (G1, H1) and (G2, H2) be the corresponding associated pairs, where
G1, G2 are simply connected and H1, H2 connected. Then ψ can be lifted to a Lie group
isomorphism Ψ : G1 → G2 which factors to a di�eomorphism Ψ̄ : G1/H1 → G2/H2 be-
tween the corresponding simply connected symmetric spaces. Furthermore, for i = 1, 2,
the Gi-invariant Riemannian metric on Gi/Hi arises from an ad(hi)-invariant inner prod-
uct on pi, which must be a scalar multiple of the restriction to pi of the Killing form Bi
of gi. Since we have B2(ψ(X), ψ(Y )) = B1(X,Y ) for all X,Y ∈ g1, it follows that Ψ̄ is
an isometry if the Riemannian structures are normalized in the same way. This �nishes
the proof of our claim.
In particular, we conclude that if M is irreducible and (g, σ∗) its orthogonal symmetric
Lie algebra, then there exists a unique irreducible, simply connected symmetric spaceM∗

whose orthogonal symmetric Lie algebra is the dual of (g, σ∗), which is called the dual of
M . Consequently, irreducible, simply connected symmetric spaces of the compact and
the non-compact type are in bijective correspondence. We will see an example of this
geometric duality in Section 3.5.
Summarizing our discussion shows that the classi�cation of irreducible, simply connected
symmetric spaces is equivalent to the classi�cation of irreducible orthogonal symmetric
Lie algebras, which we described in Theorem 2.1.13. Moreover, a general symmetric space
M gives rise to a reduced orthogonal symmetric Lie algebra, which can be decomposed
into a Euclidean, compact and non-compact factor as in Theorem 2.1.5. If M is simply
connected, this decomposition can again be lifted to a geometric level.

Theorem 2.3.6. Let M be a simply connected symmetric space. Then M is isometric

to a product

M ∼= M0 ×M− ×M+,

where M0, M− and M+ are simply connected symmetric spaces of the Euclidean, compact

and non-compact type, respectively.
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Proof. Let p : G̃ → G denote the universal covering of the identity component of the
isometry group G = I0(M), set H = Go and let H̃ be the identity component of p−1(H).
As in the discussion above, p factors to a covering p̃ : G̃/H̃ → G/H which is a di�eo-
morphism since G/H ∼= M is simply connected. Let σ : G → G denote the involution
g 7→ sogso. The reduced orthogonal symmetric Lie algebra (g, σ∗) can be decomposed as
g ∼= g0⊕g−⊕g+ as in Theorem 2.1.5. Since g0, g−, g+ are ideals in g, this decomposition
is not only a direct sum of vector spaces but in fact a Lie algebra isomorphism. The
Lie algebra of G̃ is also g, so there exist connected Lie subgroups G0, G−, G+ of G̃ cor-
responding to these ideals. We claim that there is even a global Lie group isomorphism
G̃ ∼= G0 ×G− ×G+.
First, we show that elements from two of these subgroups always commute with each
other. For example, let a ∈ G− and b ∈ G+ and choose a continuous curve c : [0, 1]→ G−
such that c(0) = e and c(1) = a. Then we have d(t) := c(t)bc(t)−1b−1 ∈ G− ∩G+ for all
t ∈ [0, 1] as both subgroups correspond to ideals in g and are hence normal in G̃, but we
also have g− ∩ g+ = {0}, so G− ∩G+ must be discrete. It follows that d(1) = d(0) = e,
which implies aba−1b−1 = e and ab = ba. The same argument works for a di�erent
combination of these subgroups. This commutativity shows that (g0, g−, g+) 7→ g0g−g+

de�nes a Lie group homomorphism F : G0×G−×G+ → G̃. By construction, the di�er-
ential of F at the neutral element is the Lie algebra isomorphism of g0 ⊕ g− ⊕ g+ with
g, which implies that F is a covering map. However, since G0 × G− × G+ is connected
and G̃ is simply connected, it follows that F must be a di�eomorphism, which proves
the claim. In particular, these three subgroups are all simply connected.
The Lie group isomorphism G̃ ∼= G0 ×G− ×G+ induces a corresponding decomposition
H̃ ∼= H0 × H− × H+ where H0, H−, H+ are all connected. Moreover, we can lift the
di�erential σ∗ to an involutive automorphism σ̃ : G̃ → G̃. The ideals g0, g−, g+ are
invariant under σ∗, which implies that G0, G−, G+ are invariant under σ̃. The proof of
Theorem 2.3.5 shows that (G0, H0), (G−, H−) and (G+, H+) are symmetric pairs and
the quotient spaces M0 := G0/H0, M− := G−/H− and M+ := G+/H+ can be turned
into simply connected symmetric spaces with the required properties.

As a complement to the above result, the compact and non-compact factors can be
further decomposed into irreducible ones. This can be achieved by an almost identi-
cal proof based on the Lie algebra splitting in Theorem 2.1.12 and using the fact that
the isometry group of a symmetric space of the compact or the non-compact type is
semisimple by de�nition (cf. [Hel01, Chapter VIII, Proposition 5.5]). Altogether, every
simply connected symmetric space can be decomposed into a Euclidean part and a �nite
number of irreducible factors, each of which is either of the compact or the non-compact
type. As the next result shows, the Euclidean factor is a simply connected Riemannian
manifold whose sectional curvature is identically zero and hence isometric to Rn for some
n ≥ 0. The classi�cation of simply connected symmetric spaces therefore reduces to the
irreducible case, which is equivalent to the classi�cation of irreducible orthogonal sym-
metric Lie algebras. As discussed in Section 2.1, this problem was solved by Élie Cartan
and gives rise to a complete list of irreducible symmetric spaces. Both the result and a
detailed discussion of Cartan's classi�cation can be found in [Hel01, Chapter IX].
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There is also a geometric aspect to the notions of Euclidean, compact and non-compact
type. We have shown in Proposition 1.2.8 that the Riemann curvature tensor of a sym-
metric space can be described algebraically via the Lie bracket of its associated orthogonal
symmetric Lie algebra. The type of a symmetric space is then re�ected in its sectional
curvature.

Theorem 2.3.7. Let M be a symmetric space.

(i) If M is of the compact type, then its sectional curvature is non-negative.

(ii) If M is of the non-compact type, then its sectional curvature is non-positive.

(iii) If M is of the Euclidean type, then its sectional curvature is identically zero.

Proof. Let S be a two-dimensional plane in ToM and let X,Y ∈ ToM be an orthonormal
basis of S. We directly consider X and Y as elements of p ∼= ToM and we also view the
inner product Qo induced by the Riemannian metric as an ad(h)-invariant inner product
on p. By (1.6) and Proposition 1.2.8, the sectional curvature at o along S is given by

K(S) = Qo(Ro(X,Y )Y,X) = −Qo([[X,Y ], Y ], X) = Qo([[X,Y ], X], Y ). (2.9)

If p is abelian, we immediately see that K(S) = 0, so (iii) follows. Hence, we may assume
that the Lie algebra g of I0(M) is semisimple. There is a unique linear map f : p → p
that satis�es Qo(f(X), Y ) = B(X,Y ) for all X,Y ∈ p, where B denotes the Killing form
of g. Symmetry of B shows that Qo(f(X), Y ) = Qo(X, f(Y )), which means that f is self-
adjoint with respect to Qo and thus diagonalizable with real eigenvalues λ1, . . . , λn ∈ R.
Moreover, all eigenvalues are non-zero and have the same sign since B|p×p is positive or
negative de�nite. Let E1, . . . , En ⊂ p denote the corresponding eigenspaces which are
orthogonal with respect to Qo and B.
We claim that [Ei, Ej ] = {0} whenever i 6= j. First, if T ∈ h and Xi ∈ Ei, then we have

Qo(f([T,Xi]), Y ) = B([T,Xi], Y ) = −B(Xi, [T, Y ]) = −Qo(f(Xi), [T, Y ])

= −Qo(λiXi, [T, Y ]) = Qo(λi[T,Xi], Y )

for all Y ∈ p and therefore [h, Ei] ⊂ Ei. Second, if Xj ∈ Ej for some i 6= j, then
[Xi, Xj ] ∈ [p, p] ⊂ h and

B(T, [Xi, Xj ]) = B([T,Xi], Xj) = 0

since the eigenspaces are mutually orthogonal. However, T ∈ h is arbitrary and B|h×h is
non-degenerate, so it follows that [Ei, Ej ] = {0}.
We expand X and Y into eigenspaces of f in order to compute the sectional curvature.
For i = 1, . . . , n let Xi and Yi denote the projections of X and Y onto the eigenspace Ei.
The previous claim now implies [X,Y ] =

∑n
i=1[Xi, Yi] and [[Xi, Yi], X] = [[Xi, Yi], Xi].

Substituting into (2.9) then yields

K(S) =
n∑
i=1

Qo([[Xi, Yi], Xi], Yi) =
n∑
i=1

1

λi
B([[Xi, Yi], Xi], Yi),
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which is equivalent to

K(S) =

n∑
i=1

1

λi
B([Xi, Yi], [Xi, Yi]). (2.10)

By the respective de�niteness of the Killing form on p we have λi < 0 in case (i) and
λi > 0 in case (ii) for all i = 1, . . . , n. Furthermore, the Killing form B|h×h is negative
de�nite. Hence, the sectional curvature at o is non-negative or non-positive, respectively,
and since the choice of o was arbitrary, the assertions follow.

To conclude this section, we indicate how the classi�cation of irreducible Hermitian
symmetric spaces can be deduced from the general Riemannian case. To this end, we
derive a simple criterion to detect whether a given symmetric space has a Hermitian
structure. As a preparation, let us clarify the relation between holomorphic and non-
holomorphic isometries.

Proposition 2.3.8. If M is a Hermitian symmetric space, then I0(M) is semisimple if

and only if A0(M) is semisimple and in this case we have I0(M) = A0(M).

Proof. The group A(M) of holomorphic isometries is a Lie subgroup of I(M) and contains
all the symmetries of M . In particular, A0(M) contains the group of displacements
G(M) which coincides with I0(M) if the latter is semisimple. Conversely, if A0(M) is
semisimple, then A0(M) = I0(M) follows from Theorem 2.3.2.

This result allows us to treat Hermitian symmetric spaces with a semisimple isometry
group in the same framework as general symmetric spaces. In particular, there is no
ambiguity between I0(M) and A0(M) when de�ning the notions of compact type, non-
compact type and irreducibility for these spaces. The next result shows that in order to
decide whether an irreducible symmetric space is Hermitian, it su�ces to determine the
center of the stabilizer of a point under the action of I0(M).

Theorem 2.3.9. Let M be an irreducible symmetric space, G = I0(M), H = Go and

g = h⊕ p the symmetric decomposition of the Lie algebra of G induced by the involution

σ : g 7→ sogso of G.

(i) If M is a Hermitian symmetric space and J its canonical almost complex structure,

then there exists an element Z0 ∈ g, which is contained in the center of h, such
that the complex structure J̃ : p → p induced by J is given by J̃ = ad(Z0)|p. In

particular, the center of H is not discrete.

(ii) Conversely, if the center of H is not discrete, then M can be endowed with an

almost complex structure which turns it into a Hermitian symmetric space.

Proof. (i) The Riemannian metric Q of M induces an ad(h)-invariant inner product
on p, which is a scalar multiple of the Killing form B|p×p by irreducibility. Since
Q is Hermitian, we have B(J̃(X), J̃(Y )) = B(X,Y ) for all X,Y ∈ p. We extend J̃
linearly to all of g by setting J̃ |h ≡ 0 and claim that this turns J̃ into a derivation
of g.
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We have seen in (1.33) that J̃ commutes with the adjoint representation of H on
p, so di�erentiating this identity shows that J̃ ◦ ad(X)|p = ad(X) ◦ J̃ |p holds for all
X ∈ h, which is equivalent to

J̃ [X,Y ] = [X, J̃(Y )] ∀X ∈ h, Y ∈ p. (2.11)

Moreover, let X,Y ∈ p and Z ∈ h, then ad(g)-invariance of the Killing form implies

B([X,Y ]− [J̃(X), J̃(Y )], Z) = B(Y, [Z,X])−B(J̃(Y ), [Z, J̃(X)])

= B(J̃(Y ), J̃ [Z,X]− [Z, J̃(X)]) = 0.

Since [p, p] ⊂ h and the restriction of B to h is non-degenerate, it follows that

[J̃(X), J̃(Y )] = [X,Y ] ∀X,Y ∈ p. (2.12)

The derivation property now follows immediately from the relations (2.11) and
(2.12) and noting that J̃ |h ≡ 0. The Lie algebra g is semisimple by de�nition of
irreducibility, so Lemma 2.1.7 shows that we can �nd Z0 ∈ g such that J̃ = ad(Z0).
Since J̃ commutes with the involution σ∗, we must have Z0 ∈ h. Finally, J̃ vanishes
on h, which implies that Z0 is in fact contained in the center of h.

(ii) Let H0 denote the identity component of H. Since the inner product on p induced
by the Riemannian metric is Ad(H)-invariant, we can view Ad(H0) as a connected
Lie subgroup of the orthogonal group O(p) acting irreducibly on p. In this case,
the proof of [KN63, Appendix 5, Theorem 2] shows that the center of Ad(H0) -
and thus the center of Ad(H) - can at most be one-dimensional. However, since
h 7→ Ad(h)|p is injective on H which has non-discrete center, it follows that the
center of H is one-dimensional. Therefore, the identity component of the center of
H is a compact, connected, one-dimensional abelian Lie group and thus isomorphic
to the circle group U(1) = {z ∈ C : |z| = 1} (cf. [Bau14, Satz 1.10]). Hence, there
exists h0 ∈ H such that Ad(h0)|2p = −idp. Altogether, J̃ := Ad(H0)|p de�nes an
Ad(H)-invariant complex structure on p which turns M ∼= G/H into a Hermitian
symmetric space as in Theorem 1.5.2.

The proof shows in particular that the center of H is either discrete or one-dimensional
and it is one-dimensional if and only if M is a Hermitian symmetric space. The classi�-
cation of irreducible symmetric spaces therefore immediately provides a classi�cation of
the Hermitian case as well, which can be found in [Hel01, p. 354].

2.3.2 The non-compact type

Having established the classi�cation result for general symmetric spaces, we take a closer
look at the non-compact type in this section. We recall that if M is a symmetric space
of the non-compact type, then G = I0(M) is semisimple by de�nition and the symmetric
decomposition g = h ⊕ p induced by the involution σ : g 7→ sogso of G is a Cartan
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decomposition of its Lie algebra. This has remarkable consequences for the topology and
the algebraic structure of the symmetric space.

Theorem 2.3.10. Let M be a symmetric space of the non-compact type, G = I0(M),
H = Go and let g = h ⊕ p be the symmetric decomposition induced by the involution

σ : g 7→ sogso of G. The map

F : p×H → G

(X,h) 7→ exp(X)h

is a di�eomorphism.

Proof. To be consistent with our notation from Section 2.2, we denote the Cartan invo-
lution σ∗ corresponding to the Cartan decomposition g = h⊕p by θ. As usual, we denote
by B the Killing form of g.
First, we prove that every g ∈ G can be uniquely expressed as g = exp(X)h for some
X ∈ p and h ∈ H. Since M is complete, there is a geodesic γ in M such that γ(0) = o
and γ(1) = g(o) and it is of the form γ(t) = Expo(tv) for some v ∈ ToM . Let X ∈ p be
the unique element with jo(X) = v and set g′ := exp(X). Then g′(o) = exp(X)(o) =
Expo(v) = γ(1) = g(o), so h := (g′)−1g ∈ H and g = g′h = exp(X)h. To show
uniqueness, assume that g = exp(X1)h1 = exp(X2)h2, then

Ad(g) = exp(ad(X1))Ad(h1) = exp(ad(X2))Ad(h2).

As explained in Section 2.2, Bθ(X,Y ) := −B(X, θY ) de�nes an inner product on g
and the matrices of the linear maps ad(X1) and ad(X2) are symmetric with respect to
a Bθ-orthonormal basis of g. Hence, their exponential images are symmetric and pos-
itive de�nite. Moreover, the matrices of Ad(h1) and Ad(h2) are orthogonal since the
elements of Ad(H) commute with θ and the Killing form is invariant under automor-
phisms of g. The decomposition of an invertible matrix into a positive de�nite and an
orthogonal matrix is unique (cf. [Lan02, Chapter XV, Theorem 6.9]), so we deduce that
exp(ad(X1)) = exp(ad(X2)). Every symmetric matrix can be orthogonally diagonalized
over R, which easily implies that the matrix exponential map is injective on the set of
symmetric matrices. It follows that ad(X1) = ad(X2) and that X1 −X2 is contained in
the center of g which is trivial since g is semisimple. Hence, we obtain X1 = X2 and
then h1 = h2 follows as well.
It remains to show that F is a di�eomorphism. It is clearly smooth and since it is bijec-
tive, it su�ces to prove that its tangent map is invertible at every point (X,h) ∈ p×H.
Every element in ThH is of the form TeLh(Z) for some Z ∈ TeH = h and the tangent
space TXp can be canonically identi�ed with p. Now we have for Y ∈ p and t ∈ R:

F (X + tY, h) = exp(X + tY )h = h exp(Ad(h−1)(X + tY ))

= (Lh ◦ exp)(Ad(h−1)(X + tY ))

F (X,h exp(tZ)) = exp(X)h exp(tZ) = Lexp(X)h(exp(tZ))
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We set X ′ := Ad(h−1)X and Y ′ := Ad(h−1)Y , then di�erentiating these identities at
t = 0 using the chain rule and (1.26) implies

T(X,h)F (Y, TeLh(Z)) = T(X,h)F (Y, 0) + T(X,h)F (0, TeLh(Z))

= TeLexp(X)h ◦
(

1− e−ad(X′)

ad(X ′)
(Y ′) + Z

)
.

(2.13)

Since Lexp(X)h is a di�eomorphism of G, this expression vanishes if and only if the term
in brackets is zero, which is an element of g = h⊕ p. We have Z ∈ h and from the proof
of Corollary 1.2.10 we know that the p-component of the �rst summand is given by

∞∑
n=0

ad(X ′)2n

(2n+ 1)!
(Y ′). (2.14)

However, the linear map ad(X ′)2|p is symmetric and positive semi-de�nite with respect
to the inner product B|p×p because

B(ad(X)2Y,Z) = B([X, [X,Y ]], Z) = B(Y, [X, [X,Z]]) = B(Y, ad(X)2Z)

B(ad(X)2Y, Y ) = −B([X,Y ], [X,Y ]) ≥ 0

holds for all X,Y, Z ∈ p. Hence, the expression (2.14) can only be zero if Y ′ = 0, which
is equivalent to Y = 0. But then (2.13) only vanishes if Y = Z = 0. This shows that
T(X,h)F is injective and that F is a local di�eomorphism at every point (X,h) ∈ p×H.

It is clear from the proof that the map F de�ned above is smooth and surjective for
every symmetric space, but injectivity is only true in the non-compact case. In this
situation, connectedness of G implies that H is connected as well. Moreover, p is a
vector space and hence contractible, so the entire topological information about G =
I0(M) is contained in the stabilizer H = Go. In particular, F induces a di�eomorphism
p → G/H ∼= M , X 7→ exp(X)(o). Together with the isomorphism p ∼= ToM this proves
the following fundamental result.

Corollary 2.3.11. If M is a symmetric space of the non-compact type, then the Rie-

mannian exponential map Expp : TpM → M is a di�eomorphism for every p ∈ M . In

particular, M is contractible and hence simply connected.

Combining this result with Theorem 2.3.7 shows that a symmetric space of the non-
compact type is a Hadamard manifold, i.e. a complete, simply connected Riemannian
manifold of non-positive sectional curvature. These spaces are classical objects of study
in Riemannian geometry and are in a sense characterized by the fact that their geodesics
behave in a particularly simple way. We will make this more precise in Section 3.1 where
we use the characteristic geometric properties of Hadamard manifolds to construct a
method of compacti�cation which can then be applied to compactify symmetric spaces
of the non-compact type. To conclude this section, we derive some interesting algebraic
properties that arise naturally from the previous observations. Just like Theorem 2.3.10,
the following result is a special case of the global Cartan decomposition in Theorem 2.2.1.
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Proposition 2.3.12. Let M be a symmetric space of the non-compact type, G = I0(M)
and H = Go, then H is a connected, maximal compact subgroup of G that coincides with

the �xed point set Gσ of the involution σ : g 7→ sogso of G. Conversely, every maximal

compact subgroup H ′ of G is of the form H ′ = Gp for some p ∈M . In particular, every

pair of maximal compact subgroups is conjugate by an element of G.

Proof. Using the di�eomorphism F : p × H → G we have already observed that H is
connected. Next, we show thatH = Gσ. Assume that there exists an element g ∈ Gσ\H,
then g can be uniquely expressed as g = exp(X)h for some h ∈ H and 0 6= X ∈ p.
However, we know that H ⊂ Gσ, which implies

g = σ(g) = σ(exp(X))σ(h) = exp(σ∗(X))h = exp(−X)h.

This is a contradiction since the representation of g is unique and X 6= 0.
Furthermore, G is closed in I(M) and the stabilizer I(M)o is compact, which implies
that H is compact as well. Assume that K was another compact subgroup of G such
that H ⊂ K. By Cartan's �xed point theorem (cf. [Ebe96, Theorem 1.4.6]), the action
of K on M has a common �xed point p ∈ M , i.e. k(p) = p for all k ∈ K. Since
G acts transitively on M , we can �nd some g ∈ G with g(p) = o. Then we have
gHg−1 ⊂ gKg−1 ⊂ gGpg−1 = Go = H, so g normalizes H. Since conjugation by g is an
automorphism of G, it follows that gHg−1 = H and thus also H = K.
Conversely, if H ′ is a maximal compact subgroup of G, then its action on M �xes some
point p ∈ M , which means H ′ ⊂ Gp. Compactness of Gp and maximality of H ′ then
imply H ′ = Gp. Finally, for every pair of points p, q ∈ M we can �nd g ∈ G with
g(q) = p, which implies Gp = gGqg

−1, so Gp and Gq are conjugate in G.

The results of this section show that symmetric spaces of the non-compact type are
rather simple objects, both from a topological and from an algebraic point of view. The
situation is very di�erent in the compact case where none of the analogous statements
remain true in general (cf. [Hel01, Chapter VII, Proposition 1.2] for examples). Never-
theless, compact spaces are often more convenient in applications, e.g. in analysis where
integration plays an important role. It is therefore natural to ask how one might be able
to compactify a symmetric space of the non-compact type. We will return to this question
in Chapter 3 where we illustrate di�erent approaches and examples to this problem.

2.3.3 Totally geodesic submanifolds

Before passing to this question, however, we need to study the intrinsic geometry of sym-
metric spaces in more detail. Our goal is to show that symmetric spaces contain a dis-
tinguished class of submanifolds which are rather rare in general Riemannian manifolds.
Although this appears to be entirely a question of geometry, the algebraic machinery
that we developed will prove to be very powerful.

De�nition 2.3.13. Let M be a Riemannian manifold and S ⊂ M a submanifold, then
S is called totally geodesic if every geodesic of M that is tangent to S at some point is
already entirely contained in S.
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If M is a symmetric space, we are going to show that this geometric notion has the
following algebraic counterpart.

De�nition 2.3.14. Let g be a Lie algebra. A linear subspace s ⊂ g is called a Lie triple

system if [[s, s], s] ⊂ s.

If g is a Lie algebra and ρ an involutive automorphism of g, then the −1-eigenspace of
ρ is obviously a Lie triple system. In particular, this shows that if (G,H) is an associated
pair of a symmetric space M and g = h⊕ p is the symmetric decomposition induced by
the involution σ : g 7→ sogso of G, then p is a Lie triple system which is isomorphic
to the tangent space ToM . Since the triple bracket in p corresponds to the Riemann
curvature tensor at o, a linear subspace V ⊂ ToM is a Lie triple system5 if and only if it
is curvature invariant in the sense that Ro(V, V )V ⊂ V . This already suggests that Lie
triple systems have a geometric signi�cance.

Theorem 2.3.15. Let M be a symmetric space with base point o ∈M .

(i) If V is a Lie triple system in ToM , then S := Expo(V ) has a natural smooth

structure such that it becomes a totally geodesic submanifold of M containing o
with tangent space ToS = V .

(ii) Conversely, if S is a totally geodesic submanifold ofM containing o, then its tangent

space ToS ⊂ ToM is a Lie triple system.

Proof. (i) As usual, we set G = I0(M), H = Go and let g = h ⊕ p be the symmetric
decomposition induced by the involution g 7→ sogso of G. By de�nition, the space
s := j−1

o (V ) ⊂ p is a Lie triple system in g and the Jacobi identity shows that
g′ := [s, s] ⊕ s is a Lie subalgebra of g. Let G′ be the connected Lie subgroup of
G with Lie algebra g′, set S′ := G′ · o and denote by H ′ the stabilizer of o under
the action of G′. Then H ′ is a closed subgroup of G′, so there is a natural smooth
structure on the quotient space G′/H ′ and we de�ne a smooth structure on S′ by
declaring the bijection G′/H ′ → S′, gH ′ 7→ g(o), to be a di�eomorphism. This
turns S′ into an immersed submanifold of M such that ToS′ = jo(s) = V . By
Theorem 1.2.9, the geodesics of M through o are all of the form t 7→ exp(tX)(o),
X ∈ p. Such a geodesic is tangent to S′ at o if and only if X ∈ s and these geodesics
are contained in S′ by de�nition. Since G′ is a group of isometries of M that maps
S′ to itself and acts transitively on it, every geodesic of M that is tangent to S′

at an arbitrary point p ∈ S′ can be mapped to a geodesic of M that is tangent
to S′ at o by an element of G′. Since these geodesics are entirely contained in S′

and G′ maps S′ to itself, it follows that S′ is totally geodesic. Finally, we have
S′ = G′ · o = exp(s)(o) = Expo(V ) = S.

(ii) If v, w ∈ ToS, then t 7→ Expo(tv) and t 7→ Expo(tw) are geodesics of M that are
tangent to S at o and thus contained in S. The exponential map at o therefore

5We will also call a subspace V ⊂ ToM a Lie triple system if the corresponding isomorphic image
s := j−1

o (V ) ⊂ p is a Lie triple system in g.
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restricts to a map ToS → S, which implies that TtwExpo(v) ∈ TExpo(tw)S. If we set
X := j−1

o (v) and Y := j−1
o (w), then it follows from Corollary 1.2.10 that6

TtwExpo(v) = To(exp(tY )) ◦ Teτ ◦
∞∑
n=0

ad(tY )2n(X)

(2n+ 1)!
.

The proof of part (ii) of Proposition 1.3.5 shows that To(exp(tY )) is parallel trans-
port along the geodesic s 7→ exp(stY )(o), so it maps ToS to TExpo(tw)S. Setting
s := j−1

o (ToS) ⊂ p, the fact that TtwExpo(v) ∈ TExpo(tw)S now implies

∞∑
n=0

ad(Y )2n(X)

(2n+ 1)!
t2n ∈ s ∀t ∈ R.

Taking the second derivative at t = 0 shows that ad(Y )2(X) = [Y, [Y,X]] ∈ s. In
particular, we have ad(Y + Z)2(X) ∈ s for all X,Y, Z ∈ s, which explicitly reads

ad(Y + Z)2 = ad(Y )2 + ad(Y )ad(Z) + ad(Z)ad(Y ) + ad(Z)2

and the Jacobi identity implies that

2[Y, [Z,X]] + [X, [Y,Z]] = [Y, [Z,X]] + [Z, [Y,X]] ∈ s.

Interchanging X and Y shows that 4[X, [Z, Y ]] + 2[Y, [X,Z]] ∈ s and adding this
to the left-hand side of the expression above now �nally yields −3[X, [Y,Z]] ∈ s.
Consequently, s and therefore also ToS = jo(s) are Lie triple systems.

Hence, the maximal connected, totally geodesic submanifolds of M containing o are
precisely the sets of the form exp(s)(o), where s ⊂ p is a Lie triple system, and the proof
of (i) shows that every such submanifold is homogeneous and complete. Moreover, the
connected Lie subgroup G′ of G = I0(M) with Lie algebra g′ = [s, s]⊕s is invariant under
the involution σ : g 7→ sogso of G since g′ is invariant under the di�erential σ∗ : g → g.
This shows that (G′, H ′) is a symmetric pair and S ∼= G′/H ′ is a symmetric space in its
own right. Alternatively, one may note that for every p ∈ S the geodesic re�ection of M
at p maps S to itself and thus restricts to an involutive isometry of S which constitutes
the symmetry of S at p. Conversely, if G′ is a σ-invariant, connected Lie subgroup of G,
then its Lie algebra is invariant under σ∗ and therefore decomposes as

g′ = (g′ ∩ h)⊕ (g′ ∩ p),

where it is easily veri�ed that s := g′ ∩ p is a Lie triple system. Hence, it gives rise to a
totally geodesic submanifold of M that can be expressed as exp(s)(o) = G′′ · o for some
σ-invariant, connected Lie subgroup G′′ of G. The Lie algebra of G′′ satis�es

g′′ = [s, s]⊕ s = [g′ ∩ p, g′ ∩ p]⊕ (g′ ∩ p) ⊂ (g′ ∩ h)⊕ (g′ ∩ p) = g′,

6Note that there we have suppressed the isomorphism jo : p→ ToM .
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which shows that G′′ · o ⊂ G′ · o. However, both orbits are connected and have the same
dimension, so completeness of G′′ · o implies that they coincide. Collecting these obser-
vations and suppressing the isomorphism jo : p → ToM , we have proved the following
characterization.

Corollary 2.3.16. Let M be a symmetric space, G = I0(M) and let g = h ⊕ p be the

symmetric decomposition induced by the involution σ : G→ G, g 7→ sogso.

(i) If V ⊂ ToM is a Lie triple system, then g′ := [V, V ] ⊕ V is a Lie subalgebra of

g and the connected Lie subgroup G′ of G with Lie algebra g′ is σ-invariant. The

orbit S := G′ ·o = Expo(V ) is the connected, complete, totally geodesic submanifold

of M with ToS = V and is intrinsically a symmetric space.

(ii) Conversely, if G′ is a connected, σ-invariant Lie subgroup of G, then S := G′ · o is
a connected, complete, totally geodesic submanifold of M and ToS ⊂ ToM is a Lie

triple system.

Hence, we have arrived at a completely Lie-theoretic description of totally geodesic sub-
manifolds of symmetric spaces in terms of Lie triple systems or, equivalently, σ-invariant,
connected Lie subgroups of the isometry group. We will be particularly interested in sub-
manifolds with vanishing curvature.

De�nition 2.3.17. (i) A Riemannian manifold M is called �at if its Riemann curva-
ture tensor vanishes identically. If M is arbitrary, a submanifold S ⊂M is said to
be �at if S has this property when viewed as a Riemannian manifold on its own.7

(ii) Let M be a symmetric space. A �at, totally geodesic submanifold of dimension r
will be called an r-�at in M . The rank of M is the maximal dimension of a �at,
totally geodesic submanifold of M and will be denoted by rk(M).

Corollary 2.3.18. Let M be a symmetric space of the compact or the non-compact type.

Let s ⊂ p be a Lie triple system and S := exp(s)(o) the corresponding totally geodesic

submanifold. Then S is �at if and only if s is abelian.

Proof. The totally geodesic submanifold S is itself a symmetric space with tangent space
ToS ∼= s, so its curvature tensor is given by Ro(X,Y )Z = −[[X,Y ], Z] for X,Y, Z ∈ s.
If s is abelian, this directly implies that Ro vanishes. Since the choice of base point is
arbitrary, it follows that S is �at. Conversely, if S is �at, then the sectional curvature
of S along any two-dimensional plane vanishes. Since S is totally geodesic, the sectional
curvature of M along any plane in ToS ⊂ ToM is zero as well. Now M is of the compact
or the non-compact type, so we may apply (2.10) to deduce that [s, s] = 0 because the
Killing form of g is negative de�nite on h.
7Every submanifold S ⊂M inherits a Riemannian structure by restricting the metric of M to the tan-
gent spaces of S. However, the Riemann curvature tensor of S is in general not just the restriction of
the curvature tensor of M to S, but depends on an additional quantity called the second fundamen-

tal form. The precise relation between the curvature tensors is expressed by the Gauss equation (cf.
[Lee97, Theorem 8.4]). If S is totally geodesic, then the second fundamental form vanishes identically.
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In particular, the rank of a symmetric space of the compact or the non-compact type
can equivalently be de�ned as the dimension of a maximal abelian subspace, which is
automatically a Lie triple system, in the −1-eigenspace p of its associated orthogonal
symmetric Lie algebra. Moreover, the �rst part of the previous proof clearly applies
to every symmetric space. A one-dimensional subspace of p is trivially abelian and the
corresponding totally geodesic submanifold is a geodesic through o, which is trivially �at.
Hence, the rank of a symmetric space M is at least 1 and if rk(M) = 1, then we have
[s, s] 6= {0} for every subspace s ⊂ p that is at least two-dimensional. In this case, ifM is
of the compact or the non-compact type, then (2.10) implies that the sectional curvature
along any two-dimensional plane in ToM is non-zero. Therefore, a symmetric space M
of the compact or the non-compact type satis�es rk(M) = 1 if and only if its sectional
curvature is strictly positive or negative, respectively.
If S ⊂ M is a totally geodesic submanifold and f : M → M an isometry, then f(M)
is totally geodesic as well. We will now prove that if M is of the compact or the non-
compact type and rk(M) = k, then I0(M) acts transitively on the set of k-�ats inM . To
do this, we recall from Proposition 2.2.4 that if g = h⊕ p is a Cartan decomposition of a
real semisimple Lie algebra, then any two maximal abelian subspaces of p are related by
the adjoint action of an element of a suitable Lie group with Lie algebra h. The geometric
analogue of that result is the following.

Proposition 2.3.19. Let M be a symmetric space of the compact or the non-compact

type, rk(M) = k and let S and S′ be two k-�ats in M .

(i) For all p ∈ S and p′ ∈ S′ there exists an element g ∈ I0(M) such that g(S) = S′

and g(p) = p′.

(ii) For all p ∈ S and v ∈ TpM there exists an element h ∈ I0(M) such that h(p) = p
and Tph(v) ∈ TpS.

Proof. Let us �rst assume that p = p′, that M is of the non-compact type and set
G = I0(M) and H = Gp. Then TpS and TpS′ correspond to maximal abelian subspaces
a, a′ ⊂ p in the Cartan decomposition g = h⊕ p induced by the involution σ : g 7→ spgsp
of G. We have shown in Proposition 2.3.12 that H = Gσ, so we may apply Proposition
2.2.4 to deduce that there exists an element h ∈ H with Ad(h)a = a′. Under the
isomorphism jp : p → TpM the adjoint representation of H on p corresponds to the
isotropy representation of H on TpM , so this relation is equivalent to Tph(TpS) = TpS

′.
The isometry h then maps S = exp(a)(p) = Expp(TpS) to S′ = exp(a′)(p) = Expp(TpS

′).
If p 6= p′, we can �rst �nd g ∈ G such that g(p) = p′ and then the problem is reduced
to the previous situation, which proves (i) in the non-compact case. The claim in (ii)
follows similarly from (2.6).
If M is of the compact type, then g∗ = h ⊕ ip is a Cartan decomposition of its dual
orthogonal symmetric Lie algebra. A subspace a ⊂ p is abelian if and only if ia ⊂ ip is
abelian. Therefore, the results from Proposition 2.2.4 can also be applied in this context
and the claim is proved in the same way as for the non-compact type.
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Corollary 2.3.20. If M is a symmetric space of the compact or the non-compact type

and rk(M) = k, then every geodesic γ of M is contained in a k-�at of M .

Proof. Let p = γ(0) and g = h ⊕ p be the symmetric decomposition induced by the
involution g 7→ spgsp of I0(M), then there is a unique X ∈ p such that γ(t) = exp(tX)(p)
for all t ∈ R. There exists a maximal abelian subspace a ⊂ p containing X and γ
is contained in the �at, totally geodesic submanifold exp(a)(p), which has dimension
dim(a) = rk(M) = k.

These results conclude our discussion of the classical theory of symmetric spaces. As
we will see in several instances in Chapter 3, the rank of a symmetric space is a funda-
mental invariant which in a sense measures the �complexity� of the space in question.
In particular, symmetric spaces of rank 1 are in many situations much simpler objects
than those of higher rank. This is especially true in the context of compacti�cations of
symmetric spaces of the non-compact type.
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In the previous chapter we have seen that there are two distinguished classes of symmetric
spaces, the compact and the non-compact type. One of the major results was that every
symmetric space of the non-compact type is a Hadamard manifold, i.e. a complete, simply
connected Riemannian manifold of non-positive sectional curvature. In particular, it is
di�eomorphic to a vector space and hence not compact as the name suggests. It is
therefore a natural question how one might compactify such a space. Initially, there
are two evident approaches to this problem, which clearly apply to every non-compact
manifold M .

• The intrinsic method: De�ne a set M(∞) of �boundary points� and a topology on
M := M ∪M(∞) that turns M into a compact topological space containing M
as a dense, open subset. The explicit construction then often makes it possible to
understand the relation between M and its boundary M(∞) well. However, the
downside of this approach is that it is a priori not clear if M can still be viewed as
a manifold (possibly with boundary) and whether extra structures available on M
(e.g. a Riemannian metric) extend to the boundary.

• The extrinsic method: Find a compact manifold N such that there exists an open
embedding M ↪→ N . The closure M ⊂ N is then automatically compact and
contains M as a dense, open subset. On the one hand, additional structures on N
can then often be restricted both to M and to M , so such an embedding may even
give rise to new information about M itself. On the other hand, it is more di�cult
to investigate the structure of the boundary M \M in this setting since it results
from taking the topological closure which may be very complicated.

Another level of complication stems from the fact that both methods can usually be car-
ried out in several di�erent ways, which poses the problem of relating compacti�cations
obtained by di�erent constructions. In this chapter we give some examples of compacti�-
cation methods of symmetric spaces and discuss their similarities and di�erences. We do
not intend to develop a general theory, but instead focus on concrete cases that illustrate
various phenomena that occur in this setting. For a systematic treatment of this subject,
the reader may consult [AO05] or the extensive book [BJ06]. It should be pointed out
that much of the general framework is not restricted to the class of symmetric spaces and
the symmetric structure will not play a major role in most constructions. Nevertheless,
symmetric spaces often arise naturally in this context and provide interesting examples
that can be treated with a wide range of tools from di�erent areas of mathematics.
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3.1 The geodesic compactification

In the �rst section of this chapter we describe a simple example of the �intrinsic� compact-
i�cation method. This construction can be applied to any Hadamard manifold, which
is why we leave aside symmetric spaces for the moment and formulate the procedure
in this more general setting. We return to symmetric spaces at the end of this section
and describe a concrete example thereafter. Intuitively, a natural notion of �boundary�
of a non-compact Riemannian manifold may be considered to be the �set of points that
geodesics converge to�. Our goal is to make this intuitive idea into a rigorous construction
that actually leads to a compacti�cation. We follow the discussion in [EO73].

Remark 3.1.1. The construction we have in mind is based on the property that geodesics
in a Hadamard manifold behave in a particularly simple way, which is expressed in
several classical theorems of Riemannian geometry. More precisely, we will make use of
the following general results. Let M be a complete, connected Riemannian manifold of
non-positive sectional curvature. A geodesic triangle in M is a set ∆ ⊂ M formed by
three distinct points, called its vertices, and three geodesic segments connecting them,
called the sides of ∆.

(i) (Cartan-Hadamard Theorem, [Lee97, Theorem 11.5]): The Riemannian exponen-
tial map Expp : TpM → M is a covering map for every p ∈ M . If M is simply
connected, it is a di�eomorphism and every q ∈ M can be connected to p by a
unique distance-minimizing geodesic.

(ii) (Law of cosines, [Hel01, Chapter I, Corollary 13.2]): Let a, b, c be the side lengths of
a geodesic triangle inM and let α, β, γ be the angles opposite to a, b, c, respectively.
Then we have a2 + b2 − 2ab cos(γ) ≤ c2 and α+ β + γ ≤ π.

(iii) (CAT(0)-property, [BH99, Chapter I, Lemma 2.14 and Chapter II, Theorem 1A.6]):
Let ∆ ⊂ M be a geodesic triangle with vertices p, q, r ∈ M . There exist points
p′, q′, r′ ∈ R2 such that |p′ − q′| = d(p, q), |p′ − r′| = d(p, r) and |q′ − r′| = d(q, r).
The triangle ∆′ ⊂ R2 formed by p′, q′, r′ is unique up to isometry and we have
d(x, y) ≤ |x′ − y′| for all x, y ∈ ∆, where x′, y′ ∈ ∆′ are the points corresponding
to x and y.1

Since M is complete, every triple of points indeed determines a geodesic triangle. In the
simply connected case, the uniqueness result in (i) implies that this triangle is unique
and its side lengths are precisely the Riemannian distances between its vertices.

Throughout this section we assume that M is a Hadamard manifold with Riemannian
metric Q, distance function d : M×M → R and that all geodesics ofM are parametrized
by arc length. For all p, q ∈M we denote by γp,q : R→M the unique unit-speed geodesic
that satis�es γp,q(0) = p and γp,q(l) = q where l = d(p, q). The fundamental result for
the following construction is the property that geodesics in a Hadamard manifold either
approach each other or spread apart with increasing speed.
1A point in ∆ is uniquely determined by its distance to the vertices. Therefore, every point in ∆ can
be uniquely identi�ed with a point in ∆′.
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Lemma 3.1.2. For every pair of geodesics γ1, γ2 of M , the function

t 7→ d(γ1(t), γ2(t))

is continuous and convex.

Proof. The continuity of the Riemannian distance function follows from the triangle
inequality, so it remains to show convexity. Let us �rst assume that γ1(0) = γ2(0).
Consider the triangle ∆ ⊂ M with vertices p := γ1(0), q := γ1(1) and r := γ2(1). In a
comparison triangle ∆′ ⊂ R2 with the same side lengths as ∆ we have2 |γ1(t)− γ2(t)| =
t|γ1(1)− γ2(1)| for every t ∈ [0, 1], so the CAT(0)-property implies

d(γ1(t), γ2(t)) ≤ |γ1(t)− γ2(t)| = t|γ1(1)− γ2(1)| = td(γ1(1), γ2(1)).

Assume now that γ1(0) 6= γ2(0), then we de�ne p, q, r as above and set σ(t) := γp,r(lt)
where l = d(p, r). The argument above is valid even if the geodesics are only parametrized
proportional to arc length. Hence, we may apply this result �rst to γ1 and σ and then
to γ−2 and σ−, where we set γ−2 (t) := γ2(1− t) and σ−(t) := σ(1− t). This yields

d(γ1(t), γ2(t)) ≤ d(γ1(t), σ(t)) + d(σ(t), γ2(t))

= d(γ1(t), σ(t)) + d(σ−(1− t), γ−2 (1− t))
≤ td(γ1(1), σ(1)) + (1− t)d(σ(0), γ2(0))

= (1− t)d(γ1(0), γ2(0)) + td(γ1(1), γ2(1))

for every t ∈ [0, 1]. The general case

d(γ1((1− t)a+ tb), γ2((1− t)a+ tb)) ≤ (1− t)d(γ1(a), γ2(a)) + td(γ1(b), γ2(b)),

where t ∈ [0, 1] and a, b ∈ R, follows from this by an a�ne shift t 7→ a + t(b − a) in the
parametrization of the geodesics.

De�nition 3.1.3. Let M be a Hadamard manifold. Two geodesics γ1, γ2 : R → M are
said to be asymptotic if

sup
t≥0

d(γ1(t), γ2(t)) <∞. (3.1)

This de�nes an equivalence relation on the set of all maximally extended, unit-speed
geodesics of M and the equivalence class of a geodesic γ will be denoted by γ(∞). If γ−

is the �opposite� geodesic de�ned by γ−(t) := γ(−t), then we set γ(−∞) := γ−(∞). We
have d(γ(t), γ−(t)) = 2t for all t ≥ 0, which implies that γ and γ− are never asymptotic
and hence γ(∞) 6= γ(−∞). We de�ne M(∞) to be the set of all such equivalence classes
and M := M ∪M(∞). It follows from Lemma 3.1.2 that if γ1 and γ2 are asymptotic,
then t 7→ d(γ1(t), γ2(t)) is non-increasing. In particular, if two asymptotic geodesics have
a point in common, then they are already the same up to a unit-speed re-parametrization
by the law of cosines. Given a geodesic γ and a point p ∈M , there is therefore at most
one geodesic through p that is asymptotic to γ. The following statement shows that such
a geodesic does indeed exist.
2Here, we denote points in ∆ and ∆′ by the same letter. The context is determined by whether the
Riemannian distance d or the Euclidean norm | · | is employed.
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Proposition 3.1.4. Let p ∈M be any point, then M(∞) can be identi�ed with the unit

sphere in TpM .

Proof. If γ is any geodesic that contains p, then we may assume that p = γ(0), which
implies that γ can be written as γ(t) = Expp(tv) =: γv(t) for some v ∈ TpM with
||v|| = 1. If v 6= w, then γv and γw are not asymptotic since they both contain p but
do not coincide. Hence, the equivalence classes of geodesics through p are in one-to-one
correspondence with the unit sphere in TpM and it remains to show that every geodesic
of M is asymptotic to one that passes through p.
Let γ be any geodesic and consider the sequence of points (xn)∞n=1 where xn := γ(n).
If we set tn = d(p, xn), then for every n ∈ N there exists a unique geodesic γn with
γn(0) = p and γn(tn) = xn. The triangle inequality yields

d(γ(n), γ(tn)) = |n− tn| = |d(γ(0), xn)− d(p, xn)| ≤ d(p, γ(0)),

which implies that tn → ∞. Fix t ∈ R and choose N ∈ N so large that t ≤ tn for all
n ≥ N . Then convexity shows that

d(γn(t), γ(t)) ≤ max{d(γn(0), γ(0)), d(γn(tn), γ(tn))}
= max{d(p, γ(0)), d(γ(n), γ(tn))} ≤ d(p, γ(0)).

(3.2)

We can write γn as γn(t) = Expp(tvn) = γvn(t) for some sequence (vn)∞n=1 in the unit
sphere of TpM . By compactness, there exists a sub-sequence of (vn)∞n=1 that converges
to some v ∈ TpM with ||v|| = 1. We set γ∞ := γv, then γ∞ passes through p and it
follows from continuity of the exponential map and (3.2) that γ∞ is asymptotic to γ. By
the �rst part of the proof, this asymptote is unique, so every convergent sub-sequence of
(vn)∞n=1 has the same limit.

The previous result shows that for every p ∈ M and ξ ∈ M(∞) there is a unique
unit-speed geodesic γp,ξ with γp,ξ(0) = p and γp,ξ(∞) = ξ. Our next goal is to construct
an appropriate topology on M . A useful notion of distance between points in M(∞) is
given by the following.

De�nition 3.1.5. Let p ∈M and x, y ∈M \{p}, then the angle subtended by x and y at

p, written as ∠p(x, y), is de�ned to be the angle between the vectors γ̇p,x(0) and γ̇p,y(0) in
TpM measured with respect to the inner product Qp induced by the Riemannian metric.

If γ is a geodesic with γ(0) = p, then γ = γp,γ(t) implies that ∠p(γ(t), y) = ∠p(γ(∞), y)

for all t > 0 and y ∈M . For an arbitrary point p ∈M we now de�ne for each v ∈ TpM
with ||v|| = 1 and every ε ∈ (0, π) a set

C(v, ε) := {y ∈M \ {p} : ∠p(γv(∞), y) < ε}, (3.3)

where γv(t) := Expp(tv), which is called a cone with vertex p, axis v and angle ε. Note
that the vertex is not explicitly included in the notation since it is determined by the
axis v ∈ TpM . We are going to show that these cones can be used to de�ne a sensible
topology on M . The following properties will be useful.
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Lemma 3.1.6. (i) Let γ be a geodesic in M . If s ≤ t and δ ≤ ε, then we have

C(γ̇(t), δ) ⊂ C(γ̇(s), ε).

(ii) Let V be a cone with vertex p. For every ξ ∈ V ∩M(∞) and every q ∈ M there

exist T > 0 and δ > 0 such that C(γ̇q,ξ(t), δ) ⊂ V for all t ≥ T .

Proof. (i) The claim is obvious if s = t, so we may assume that s < t such that
the vertices γ(s) and γ(t) of the cones are distinct. If y ∈ C(γ̇(t), δ), then we
have ∠γ(t)(γ(∞), y) < δ, so the complementary angle satis�es ∠γ(t)(γ(s), y) =
∠γ(t)(γ(−∞), y) > π − δ. Applying the angle sum property from Remark 3.1.1
yields ∠γ(s)(γ(∞), y) = ∠γ(s)(γ(t), y) < δ ≤ ε, so y ∈ C(γ̇(s), ε).

(ii) Let us set α := γp,ξ and β := γq,ξ. Since ξ ∈ V and the vertex of V is p, we can
�nd ε > 0 such that C(α̇(0), ε) ⊂ V . By de�nition, α and β are asymptotic, which
implies ∠p(α(t), β(t))→ 0 as t→∞ by the law of cosines. Similarly, we also have
∠β(t)(p, q)→ 0 as t→∞. Hence, for δ := ε

3 there exists T > 0 such that

∠p(α(t), β(t)) < δ and ∠β(t)(p, q) < δ ∀t ≥ T. (3.4)

The second property also implies ∠β(t)(p, ξ) > π − δ. We claim that this choice
of T and δ satis�es the assertion. Let t ≥ T and y ∈ C(β̇(t), δ), then we have
∠β(t)(ξ, y) < δ. Combining the last two inequalities gives ∠β(t)(p, y) > π − 2δ and
the angle sum property yields ∠p(β(t), y) < 2δ. From this, we �nally obtain that
∠p(ξ, y) ≤ ∠p(ξ, β(t)) +∠p(β(t), y) < 3δ = ε. This shows that y ∈ C(α̇(0), ε) ⊂ V ,
which proves the claim.

Geometrically, the �rst assertion states that if one slides a cone along a geodesic and
reduces its angle, then the translated cone is always contained in the initial one. The
second property shows that if ξ ∈M(∞) is contained in a cone V , then V contains cones
�along� every geodesic γ with γ(∞) = ξ. This information is already su�cient to de�ne
a topology on M .

Proposition 3.1.7. Let ξ ∈ M(∞) and denote by Bξ the family of cones containing ξ.
There is a unique topology T on M such that:

(i) M is a dense, open subset of M and the trace topology of T on M coincides with

the natural manifold topology of M .

(ii) Bξ is a neighbourhood basis at ξ.

Proof. Let us denote by Uξ the family of subsets of M that contain a set from Bξ. If
U ∈ Uξ, then we obviously have ξ ∈ U and U ′ ∈ Uξ for every U ′ ⊂ M with U ⊂ U ′.
Next, we claim that for all V,W ∈ Bξ there exists a cone U ∈ Bξ such that U ⊂ V ∩W .
Let p and q be the vertices of V and W , respectively. On the one hand, ξ ∈ V ∩W
implies that we can �nd ε1, ε2 > 0 such that C(γ̇p,ξ(0), ε1) ⊂ V and C(γ̇q,ξ(0), ε2) ⊂W .
On the other hand, part (ii) of Lemma 3.1.6 shows that there exist T > 0 and δ > 0 such
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that C(γ̇q,ξ(t), δ) ⊂ C(γ̇p,ξ(0), ε1) ⊂ V holds for all t ≥ T . We set λ := min{δ, ε2} and
U := C(γ̇q,ξ(T ), λ). Part (i) of that lemma yields C(γ̇q,ξ(t), λ) ⊂ C(γ̇q,ξ(0), ε2) ⊂ W for
t ≥ 0, which shows that U ⊂ V ∩W . It is clear that ξ ∈ U , so the claim is proved. Thus,
we have U1∩U2 ∈ Uξ for all U1, U2 ∈ Uξ. By induction, an analogous result holds for the
intersection of any �nite number of sets from Uξ. Finally, let U ∈ Uξ and choose a cone
V ∈ Bξ with V ⊂ U . If η ∈ V ∩M(∞), then we have V ∈ Uη by de�nition. Continuity
of the exponential map at the vertex of V implies that M ∩V is an open neighbourhood
of all of its points in the natural manifold topology of M .
For every p ∈M we now de�ne Up to be family of subsets of M that contain a set which
is an open neighbourhood of p in the natural manifold topology of M . By the properties
of Uξ shown above, there is a unique topology T on M such that the families Up and
Uξ constitute the system of neighbourhoods of �nite points p ∈M and boundary points
ξ ∈ M(∞). By de�nition, the trace topology of T on M coincides with the natural
manifold topology of M and the family Bξ is a neighbourhood basis at ξ. Since the
intersection of every cone with M ⊂ M is non-empty and open in the natural manifold
topology of M , it follows that M is a dense, open subset of M .

We will from now on assume that M is equipped with the topology T constructed
above, which is called the cone topology. It should be noted that it has the slightly
uncomfortable property that di�erent cones will usually have di�erent vertices, which
makes it di�cult to compare them. However, it is possible to re�ne the construction
in order to remedy this issue. Fix a point p ∈ M , then every cone (with an arbitrary
vertex) contains a truncated cone with vertex p, i.e. a set of the form

T (v, ε, r) := C(v, ε) \ {q ∈M : d(p, q) ≤ r},

where v ∈ TpM , ||v|| = 1, ε ∈ (0, π) and r > 0. The proof of this assertion is similar to
Lemma 3.1.6 and can be found in [EO73, Proposition 2.6]. Clearly, every truncated cone
is open in the cone topology. Given a point ξ ∈ M(∞), the set of truncated cones with
�xed vertex p containing ξ therefore also forms a neighbourhood basis at ξ in the cone
topology. Since p is arbitrary, we see in this picture that a sequence (pn)∞n=1 in M ⊂M
converges to ξ ∈ M(∞) if and only if d(p, pn) → ∞ and γ̇p,pn(0) → γ̇p,ξ(0) holds for all
p ∈M . In particular, every geodesic γ : R→M extends continuously to [−∞,∞] in the
obvious way. In Proposition 3.1.4 we have identi�edM(∞) with the unit sphere in TpM .
This observation can now be extended to see that M is in fact a compact topological
space. To formulate the result, we consider the interval [0,∞] to be equipped with its
standard topology, which turns it into a compact topological space that is homeomorphic
to [0, 1], e.g. via the map x 7→ 1− 1

1+x for x ≥ 0 and mapping ∞ to 1.

Corollary 3.1.8. Let D(p) denote the closed unit ball and S(p) the unit sphere in TpM
and let f : [0, 1]→ [0,∞] be a homeomorphism with f(0) = 0 and f(1) =∞. The map

ϕ : D(p)→M

v 7→ γv(f(||v||)),

where γv(t) := Expp(tv), is a homeomorphism that maps S(p) to M(∞).
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Proof. We have already seen in the proof of Proposition 3.1.4 that the map ϕ restricts to
a bijection S(p)→M(∞). Moreover, it is injective on D(p) \ S(p) since f is necessarily
strictly increasing and di�erent geodesics do not intersect. To show that ϕ is surjective,
we note that every �nite point q ∈ M can be uniquely written as q = γv(l) = Expp(lv)
for some v ∈ S(p) where l = d(p, q). For every λ ∈ (0, 1) we then have q = γλv(l/λ)
and we can choose λ in such a way that f(λ) = l/λ, which implies that ϕ(λv) = q.
Therefore, ϕ is bijective as a map D(p) → M and by de�nition it can be written as
ϕ(v) = Expp(f(||v||) · v) on D(p) \ S(p), which is continuous. Let v ∈ S(p) and T be a
truncated cone with vertex p containing ϕ(v) ∈ M(∞). Since the exponential map at p
maps straight lines through 0 and balls centered at the origin to geodesics through p and
metric balls centered at p, it follows that ϕ−1(T ) is a truncated cone in the Euclidean
sense in D(p) containing v, so ϕ is continuous at v and hence continuous on all of D(p).
Finally, D(p) is compact and M is Hausdor� since distinct points in M(∞) can be
separated by cones with the same vertex by choosing the angles small enough, which
implies that ϕ is a homeomorphism.

De�nition 3.1.9. The compact topological space M equipped with the cone topology
is called the geodesic compacti�cation of M .

Lemma 3.1.10. Every isometry ofM extends to a homeomorphism ofM and the smooth

action of I(M) on M extends continuously to M .

Proof. If f ∈ I(M) is an isometry and γ a unit-speed geodesic of M , then f ◦ γ is a
unit-speed geodesic as well and we de�ne f · γ(∞) := (f ◦ γ)(∞). That f is an isometry
directly implies that this de�nition only depends on the equivalence class of γ, meaning
that the action is well-de�ned. Let ξ ∈M(∞) and C(v, ε) be a cone with vertex p ∈M
containing ξ. Then we have f(C(v, ε)) = C(Tpf(v), ε), which shows that f extends to a
homeomorphism of M . In particular, I(M) becomes a subset of the space C(M,M) of
continuous maps on M . When this set is endowed with the compact-open topology, the
evaluation map (f, x) 7→ f(x) is continuous since M ∼= D(p) is locally compact. Since
the topology on I(M) is the compact-open topology as well (cf. [Hel01, Chapter IV,
Section 2]), it follows that I(M) acts continuously on M .

By construction, the extended action of I(M) preserves the subsetsM andM(∞) and
conjugation with ϕ gives rise to an action of I(M) on D(p) which maps S(p) to itself.
If H = I(M)p denotes the stabilizer of p, then the action of H on M(∞) is conjugate
to the action of H on S(p) ⊂ TpM under the isotropy representation. Therefore, H
acts transitively on M(∞) if and only if it acts transitively on S(p) under the isotropy
representation on TpM .

Remark 3.1.11. The geodesic compacti�cation can in particular be applied to every sym-
metric space M of the non-compact type. In this situation, the symmetry sp at any
point p ∈ M extends to a homeomorphism of M that satis�es sp(γ(∞)) = γ(−∞) for
all geodesics γ. Whereas in this case G := I0(M) always acts transitively on M , it is
not clear whether the extended action on M is still transitive. However, we can obtain
a weaker result about the action of the stabilizer H := Gp ⊂ G.
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As usual, let g = h⊕ p denote the Cartan decomposition of the Lie algebra of G induced
by the involution σ : g 7→ spgsp of G. The isotropy representation of H on TpM can
then be identi�ed with the adjoint representation of H ⊂ G on p ⊂ g. If rk(M) = 1,
then it follows from Proposition 2.2.4 that H = Gσ acts transitively on the unit sphere
in p ∼= TpM and therefore also on M(∞). Trivially, the action of G on this set is then
also transitive. If rk(M) ≥ 2, however, then H cannot act transitively on M(∞). In
fact, an element X ∈ p is regular if and only if Ad(h)X is regular for every h ∈ H, so
Ad(H) cannot map a regular to a non-regular element. If a ⊂ p is a maximal abelian
subspace with dim(a) ≥ 2, then the roots of g with respect to a are not injective, so
there exists an element 0 6= X ∈ a that satis�es α(X) = 0 for some root α ∈ ∆. Then X
is not regular and hence cannot be mapped to a regular element of p. By rescaling we
may assume that X is contained in the unit sphere of p, which shows that H does not
act transitively on this set.
If the rank ofM is at least 2, then the action of the entire group G is much more di�cult
to describe and we only brie�y indicate some constructions in this direction. If a ⊂ p
is a maximal abelian subspace with dim(a) ≥ 2, then the Weyl chambers of g with re-
spect to a are non-trivial. Hence, one can intersect these Weyl chambers with the unit
sphere in p ∼= TpM to de�ne Weyl chambers in M(∞) and this process is repeated for
all maximal abelian subspaces a ⊂ p. Moreover, since the choice of p in the de�nition
of σ and in Corollary 3.1.8 is arbitrary, this procedure can be carried out for all Cartan
decompositions g = h̃ ⊕ p̃ with respect to all possible points p ∈ M . Taking the union
of all these Weyl chambers de�nes an elaborate structure on M(∞), which is called the
spherical Tits building associated toM . The identi�cation of maximal abelian subspaces
with maximal �at, totally geodesic submanifolds of M then associates a geometric in-
terpretation to this structure, which gives rise to the Tits geometry of the symmetric
space and whose �complexity� is directly proportional to the rank of M . Furthermore,
the extended action of G on M allows one to consider the stabilizers Gξ ⊂ G of bound-
ary points ξ ∈ M(∞). These turn out to be precisely the parabolic subgroups of G and
have very di�erent properties compared to the stabilizers of �nite points. The analysis
of the action of G on M(∞) is characterized by the interplay between the theory of
parabolic subgroups and the Tits geometry of the symmetric space. We will not explore
this subject in more detail, a nice introduction can be found in [Ebe96, Chapter 2 and 3].
Nevertheless, this emphasizes that the rank of a symmetric space is in fact an important
invariant and that symmetric spaces of rank 1 often have a much simpler behaviour than
those of higher rank.

Altogether, we have turned an arbitrary Hadamard manifold M into a compact topo-
logical space by adding a certain �boundary at in�nity�. The construction was entirely
based on the intrinsic geometry of the manifold and from a topological perspective it is
compatible with the action of the isometry group. Moreover, declaring the map ϕ from
Corollary 3.1.8 to be a di�eomorphism turns M into a smooth manifold with boundary,
so it is natural to ask whether the continuous action of I(M) on M is even smooth.
This turns out to be a delicate question, especially when M is a symmetric space of the
non-compact type.
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3.2 Compactifications of hyperbolic space

After the general discussion of the previous section, we now turn to a concrete problem
of compactifying a symmetric space of the non-compact type. The simplest example in
this setting is hyperbolic space which we already brie�y introduced in Example 1.2.3.
Here, it is possible to construct compacti�cations directly from a geometric realization
of the space. We �rst follow this approach and afterwards compare the resulting space
to the abstract geodesic compacti�cation.
Assume that n ≥ 2 and consider Rn+1 with the standard Lorentzian bilinear form
η(x, y) =

∑n
i=1 xiyi − xn+1yn+1. As mentioned, the one-sheet hyperboloid

Hn = {x ∈ Rn+1 : η(x, x) = −1, xn+1 > 0}

is a symmetric space whose isometry group is a subgroup of the Lorentz group O(n, 1),
which acts on Hn by restrictions of linear maps of Rn+1. Its identity component is
the special orthochronous Lorentz group G := SO0(n, 1). If we choose the base point
o = (0, . . . , 0, 1) ∈ Hn, the stabilizer of o under the action of SO0(n, 1) can be identi�ed
with SO(n), so we can realize Hn as the homogeneous space

Hn ∼= SO0(n, 1)/SO(n).

The symmetry at o has the form so(p) = 2pn+1o− p, which is represented by the matrix
−In,1 in the standard basis of Rn+1. The involution σ of SO0(n, 1) induced by the sym-
metric structure is therefore given by σ(A) = In,1AIn,1 and its symmetric decomposition
on the Lie algebra level reads

so(n, 1) = so(n)⊕ p, p =

{(
0 v
vT 0

)
: v ∈ Rn

}
. (3.5)

The Lie algebra so(n, 1) is simple with Killing form B(X,Y ) = (n − 1)tr(XY ),3 which
is positive de�nite on p× p. Moreover, the Lie bracket on p× p is given by[(

0 v
vT 0

)
,

(
0 w
wT 0

)]
=

(
vwT − wvT 0

0 vTw − wT v

)
.

Now we always have vTw−wT v = 0, but the requirement vwT −wvT = 0 easily implies
that every abelian subspace of p is one-dimensional. Hence, Hn is a symmetric space of
the non-compact type and rk(Hn) = 1. The geodesics through the point o are given by
the matrix exponentials of elements of p

γv(t) = exp

(
t

(
0 v
vT 0

))
o = cosh(|v|t)o+ sinh(|v|t) v

|v|
, (3.6)

3This is a consequence of the fact that the complexi�cation of so(n, 1) is so(n + 1,C) which is one of
the classical complex simple Lie algebras (cf. [FH91, Chapter 21 and 26]). The explicit computation
of the Killing form can be found in [Bau14, Lösung zu Aufgabe 1.8].
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where |v| denotes the Euclidean norm of v ∈ Rn which we identify with (v, 0) ∈ Rn+1

in the second term on the right-hand side. Geometrically, we can read o� from this
expression that such a curve is given by the intersection of Hn with a two-dimensional
plane containing o and the origin. The geodesics through arbitrary points are then
obtained from the geodesics through o using the G-action, which is induced by linear
maps of Rn+1. Thus, every geodesic of the hyperboloid is given by the intersection of
Hn with a two-dimensional plane containing the origin. It is well-known that Hn with
this set of geodesics constitutes a model for hyperbolic geometry which will be called
the hyperboloid model. There are two more famous models of hyperbolic space arising
from suitable projections of the hyperboloid that will be more useful for the purpose of
compacti�cation.

The Klein model

A central projection from the origin onto the hyperplane Rn × {1} ⊂ Rn+1 yields a
di�eomorphism between Hn and the open unit ball in that plane, which we may identify
with the open unit ball Bn ⊂ Rn by leaving out the last coordinate. Since this map only
rescales the last coordinate of a point in Hn, it is explicitly given by

ϕK : Hn → Bn

(x1, . . . , xn+1) 7→ 1

xn+1
(x1, . . . , xn)

1√
1− r2

(y1, . . . , yn, 1)←[ (y1, . . . , yn),

(3.7)

where we set r :=
√
y2

1 + . . .+ y2
n and we always take the positive square root. By

endowing Bn with the pullback of the Riemannian metric of Hn under ϕ−1
K , we obtain a

Riemannian manifold (Bn, QK) which is called the Klein model of hyperbolic geometry.
It is isometric to Hn by de�nition, so its geodesics correspond precisely to the images
of geodesics in Hn under ϕK . Since the central projection preserves planes through the
origin, the geodesics of the Klein model are also given by the intersections of Bn×{1} with
two-dimensional planes containing the origin. Under the identi�cation with Bn ⊂ Rn
they are represented by line segments contained in Bn. From the explicit expression in
(3.6) we even obtain the parametrized form of geodesics passing through the origin

ϕK(γv(t)) =
sinh(|v|t)
cosh(|v|t)

v

|v|
, (3.8)

which corresponds to a diameter of the unit ball. In other words, the geodesics of the
Klein model are represented by straight lines.

De�nition 3.2.1. Two Riemannian metrics on a Riemannian manifoldM are said to be
projectively equivalent if the geodesics of their respective Levi-Civita connections coincide
up to re-parametrization.
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The previous observation now simply states that the Riemannian metric QK in the
Klein model is projectively equivalent to the Euclidean metric on Bn. However, clearly
these metrics cannot coincide altogether since Bn is complete with respect to the hyper-
bolic metric, which is not the case for the Euclidean metric. Moreover, the parametriza-
tion in (3.8) is obviously di�erent from that of a Euclidean geodesic.
By conjugation with ϕK the action of G = SO0(n, 1) on the hyperboloid gives rise to an
isometric action on the Klein model which turns ϕK into a G-equivariant di�eomorphism.
The construction directly implies that this action on Bn maps line segments to line seg-
ments, which also follows from the fact that isometries preserve geodesics. In particular,
we can translate the symmetric structure of Hn into the Klein model. The symmetry of
Bn at the origin is simply the antipodal map y 7→ −y. In general, the symmetry at an
arbitrary point p ∈ Bn has to re�ect line segments through p while scaling them in such
a way at either side of p that they remain contained in Bn.
By passing from the hyperboloid to the Klein model we have realized hyperbolic space
as an open, bounded set in Rn, so a natural approach to compactify it is to consider its
closure, which is the closed unit ball Dn := Bn = Bn ∪Sn−1 carrying the trace topology
of Rn. Alternatively, we can also apply the geodesic compacti�cation to Bn and endow
the resulting space Bn∪Bn(∞) with the cone topology. In fact, the two resulting spaces
coincide.

Proposition 3.2.2. The identity map on Bn extends to a homeomorphism between Dn

and Bn ∪Bn(∞).

Proof. Two unit-speed geodesics γ1 and γ2 in the Klein model are asymptotic if and
only if γ1(t) and γ2(t) converge to the same boundary point ξ ∈ Sn−1 as t → ∞ (see
the explicit expression of the distance function in [Lou20, Proposition 6.30 and 6.31]).
Clearly, every such point is realized in this way, so Sn−1 is in bijective correspondence
with Bn(∞). Moreover, every equivalence class in Bn(∞) can be represented by a
geodesic passing through the origin. Choosing such representatives, the identi�cation
of Sn−1 with Bn(∞) associates to each ξ ∈ Sn−1 the equivalence class γξ(∞), where
γξ(t) = sinh(t)

cosh(t)ξ is the unit-speed geodesic through the origin with initial velocity ξ. A
sequence (yk)

∞
k=1 in Bn converges to a point ξ ∈ Sn−1 if and only if d(0, yk) → ∞ and

the sequence of unit-speed geodesics (γk)
∞
k=1 connecting the origin to yk (i.e. the line

segment from the origin in the direction of yk) converges to γξ, which means that (yk)
∞
k=1

converges to γξ(∞) in the cone topology. A similar argument applies to sequences that
are entirely contained in Sn−1. Thus, convergence in the Euclidean topology of Dn is
equivalent to convergence in the cone topology in Bn ∪Bn(∞).

As a result of our general theory, the isometric action of SO0(n, 1) on Bn extends to a
continuous action on Bn ∪Bn(∞) ∼= Dn. The question now arises whether this action is
even smooth on Dn, which is a smooth manifold with boundary. To answer this, it will
be useful to view the compacti�cation from a di�erent perspective.
The construction of the Klein model was based on a central projection from the hy-
perboloid onto the plane Rn × {1}. This projection can equivalently be regarded as
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identifying a point in Hn with the unique line connecting it to the origin. In this picture,
it is more natural to view the resulting space Bn as an open subset of real projective
space RPn by identifying each y ∈ Bn with its homogeneous coordinates [y1 : . . . : yn : 1].
A line ` ⊂ Rn+1 containing the origin is said to be timelike if η|`×` is negative de�nite,
spacelike if η|`×` is positive de�nite and lightlike if η|`×` ≡ 0. If a point x ∈ Rn+1 is
contained in Hn, then the unique line connecting it to the origin is timelike by de�ni-
tion and conversely, every timelike line intersects Hn in a unique point. Hence, we can
view the open unit ball as the set of all timelike lines in Rn+1. Now RPn is naturally a
smooth, n-dimensional, compact manifold which is endowed with a global smooth action
of SO0(n, 1) induced by matrix multiplication.

SO0(n, 1)× RPn → RPn

(A, [y]) 7→ [Ay]

The sets of timelike, lightlike and spacelike lines in Rn+1 are clearly invariant subsets
for this action. In fact, it will follow from the more general results in Proposition 3.3.4
and Remark 3.3.5 that these sets are precisely the orbits for the action of SO0(n, 1) on
RPn. In particular, it restricts to a transitive action on the set of timelike lines, which by
construction coincides with the G-action in the Klein model when the latter is expressed
in homogeneous coordinates. The boundary sphere Sn−1 corresponds to the G-invariant
set of lightlike lines, so from this viewpoint we immediately see that the G-action on Bn

can be smoothly extended to the boundary. Thus, we obtain a smooth compacti�cation
of hyperbolic space inside RPn which will be called the projective compacti�cation.

The Poincaré ball model

A similar construction yields another useful model of hyperbolic space. Instead of a
central projection, we now consider a stereographic projection of Hn from the point
(0, . . . , 0,−1) onto the plane Rn × {0}. As in the previous case, this de�nes a di�eomor-
phism between Hn and the open unit ball in that plane, which we identify with the unit
ball Bn ⊂ Rn as before. A straightforward computation shows that this map is explicitly
given by

ϕP : Hn → Bn

(x1, . . . , xn+1) 7→ 1

1 + xn+1
(x1, . . . , xn)

1

1− r2
(2y1, . . . , 2yn, 1 + r2)←[ (y1, . . . , yn),

(3.9)

where r is de�ned as above. By pulling back the metric from Hn, we obtain another
Riemannian metric QP on Bn such that (Bn, QP ) is isometric to the hyperboloid, which
is called the Poincaré ball model of hyperbolic geometry. The stereographic projection
does not preserve planes through the origin, so the geodesics of the Poincaré model
look rather di�erent compared to the Klein ball. Nevertheless, they still admit a simple
geometric description.
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Lemma 3.2.3. The geodesics of the Poincaré ball model are represented by diameters of

Bn and circular arcs in Bn that intersect Sn−1 orthogonally.

Proof. The Poincaré model is by de�nition isometric to the Klein ball where we already
know that geodesics are given by the intersections of Bn × {1} with two-dimensional
planes containing the origin. To pass from one model to the other, we can on the one
hand consider the map ϕP ◦ ϕ−1

K that relates them both to the hyperboloid. We deduce
from (3.7) and (3.9) that this is given by

(ϕP ◦ ϕ−1
K )(y) =

1

1 +
√

1− r2
y =

1−
√

1− r2

r2
y, y ∈ Bn. (3.10)

On the other hand, we can also directly project Bn × {1} vertically onto Sn and then
project Sn stereographically from the point (0, . . . , 0,−1) onto the plane Rn × {0}. It is
straightforward to verify that these maps are given by

Bn × {1} 3 (y1, . . . , yn, 1) 7→ (y1, . . . , yn,
√

1− r2) ∈ Sn

Sn \ {(0, . . . , 0,−1)} 3 (z1, . . . , zn+1) 7→ 1

1 + zn+1
(z1, . . . , zn, 0) ∈ Rn × {0},

which shows that their composition coincides with ϕP ◦ ϕ−1
K when the last coordinate is

omitted. Therefore, we obtain the geodesics of the Poincaré ball from those of the Klein
model via these two projections. Under the vertical projection, a geodesic of the Klein
ball (i.e. a line segment in Bn) is mapped onto a circular arc on the upper hemisphere
that intersects the equator Sn−1×{0} ⊂ Sn orthogonally. Since stereographic projection
is a conformal map (cf. [Lou20, Corollary 7.23]), this arc is then projected to a circular
arc in Bn × {0} that intersects the boundary sphere orthogonally. If the original line
segment contains the base point o = (0, . . . , 0, 1) which corresponds to the origin in the
Klein model, then its vertical projection is the upper half of a great circle on Sn through
the north pole, which is mapped to a diameter of Bn under stereographic projection.

Although the description of geodesics in the Poincaré model is more complicated than
in the Klein model, we will soon see that it has another distinctive feature.

De�nition 3.2.4. Two Riemannian metrics Q1 and Q2 on a Riemannian manifold M
are said to be conformally equivalent if there exists a smooth function f : M → (0,∞)
such that Q1 = fQ2.

Conformal equivalence of metrics has a nice geometric interpretation. If v, w ∈ TpM
are tangent vectors at p ∈ M , then their inner products with respect to (Q1)p and
(Q2)p di�er by a factor of f(p)2, which is cancelled after dividing by the product of their
respective norms. Hence, the angle between v and w is the same in both metrics.

Proposition 3.2.5. The Riemannian metric QP in the Poincaré ball model is confor-

mally equivalent to the Euclidean metric on Bn.
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Proof. To prove the assertion, we will explicitly compute the Riemannian metric of the
Poincaré model. Let (x1, . . . , xn+1) denote the components of ϕ−1

P , then di�erentiating
the second expression in (3.9) shows that:

dxk =
n∑
i=1

2(1− r2)δik + 4yiyk
(1− r2)2

dyi, k = 1, . . . , n

dxn+1 =

n∑
i=1

2yi(1− r2) + 2yi(1 + r2)

(1− r2)2
dyi =

n∑
i=1

4yi
(1− r2)2

dyi

We now substitute these expressions into the Lorentzian metric dx2
1 + . . .+ dx2

n − dx2
n+1

of Rn+1 which induces the Riemannian structure of Hn. In order not to overload the no-
tation with summation signs, we employ Einstein summation convention in the following
calculation. In particular, we may write r2 = ylyl in this case.

(1− r2)4QP = (1− r2)4(dx2
1 + . . .+ dx2

n − dx2
n+1)

= [4(1− ylyl)2δikδjk + 16ykyky
iyj + 16(1− ylyl)δikykyj ]dyidyj − 16yiyjdyidyj

= 4(1− ylyl)2dykdyk − 16(1− ykyk)yiyjdyidyj + 16(1− ylyl)yiyjdyidyj

The last two terms cancel after re-labelling the indices. Thus, we �nally obtain that the
Poincaré metric is given by

QP =
4

(1− r2)2
(dy2

1 + . . .+ dy2
n), (3.11)

which also proves conformal equivalence to the Euclidean metric.

In complete analogy with the Klein model, conjugation with ϕP induces an isometric
action of SO0(n, 1) on the Poincaré ball. The previous result now shows that this action
has to preserve the Euclidean angles between intersecting curves. An isometry of the
Poincaré model can thus be regarded as a conformal di�eomorphism of Bn, viewed as
a subset of Euclidean space. In order to characterize these maps, let us �rst pass to a
larger space whose conformal di�eomorphisms are easier to describe. We have already
mentioned in the proof of Lemma 3.2.3 that stereographic projection from the south
pole de�nes a conformal map Rn → Sn which maps Bn to the open upper hemisphere.
Hence, every isometry of the Poincaré ball can be viewed as a conformal di�eomorphism
of the open upper hemisphere of Sn. From this viewpoint, it is natural to �rst investigate
conformal maps of the sphere, which we brie�y discuss in the following. A thorough and
very explicit treatment of these notions, including proofs of most of the rather elaborate
results, can be found in [HJ03, Chapter I, Section 3 and 5]. The connection to hyperbolic
geometry and complex analysis is made explicit in [Lou20, Chapter 7].
As a �rst step, it will be convenient to view the sphere from a di�erent perspective.
Exactly as in the situation discussed so far, we now consider Rn+2 and endow it with the
standard Lorentzian bilinear form η. Then O(n+1, 1) acts on Rn+2 via linear maps, so it
induces a smooth action on real projective space RPn+1. Let [x] = [x1 : . . . : xn+2] denote
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3.2 Compacti�cations of hyperbolic space

homogeneous coordinates for a point in RPn+1 and set U := {[x] ∈ RPn+1 : xn+2 6= 0}.
Then U is di�eomorphic to Rn+1 under the chart

ψ : U → Rn+1 [x1 : . . . : xn+2] 7→ 1

xn+2
(x1, . . . , xn+1).

Let C := {x ∈ Rn+2 : η(x, x) = 0} denote the set of all null vectors, then the projective
equivalence classes of non-zero points in C de�ne a quadric PC := {[x] ∈ RPn+1 :∑n+1

i=1 x
2
i − x2

n+2 = 0}, called the projectivized light cone. Note that no point in PC
satis�es xn+2 = 0, so that PC ⊂ U and ψ restricts to a di�eomorphism PC → Sn.
Since the action of O(n + 1, 1) on RPn+1 preserves PC, it induces a smooth action on
Sn as well. In this setting, it can be shown that O(n + 1, 1) acts on Sn by conformal
maps and conversely, every conformal di�eomorphism of Sn arises in this way from an
element of O(n+ 1, 1) which is unique up to sign. It follows that the group Conf(Sn) of
conformal di�eomorphisms of Sn is isomorphic to PO(n+ 1, 1) = O(n+ 1, 1)/{±In+2}.
Moreover, if n ≥ 3, then even locally de�ned conformal maps can be characterized in
this way. In this case, every conformal di�eomorphism f : V1 → V2 between connected,
open subsets V1, V2 ⊂ Sn uniquely extends to a conformal di�eomorphism of the entire
sphere. This is a strong result which is sometimes known as Liouville's theorem and
has some remarkable consequences. First, conjugation with the stereographic projection
shows that every conformal di�eomorphism of Rn arises from a conformal di�eomorphism
of Sn that �xes the south pole, so Conf(Rn) can be identi�ed with a closed subgroup
of PO(n+ 1, 1). Second, every conformal di�eomorphism Bn → Bn can be viewed as a
conformal di�eomorphism of the open upper hemisphere of Sn. Since such a map extends
to all of Sn, it has to preserve the equator Sn−1 × {0} ⊂ Sn and induces a conformal
di�eomorphism of Sn−1. Conversely, every f ∈ Conf(Sn−1) uniquely extends to a map
f̃ ∈ Conf(Sn) preserving the upper hemisphere, which gives an alternative proof that the
isometry group of hyperbolic space is isomorphic to PO(n, 1). The case n = 2 is slightly
di�erent and will be discussed below.
It is even possible to obtain a more explicit description of Conf(Sn) in this setting. In fact,
if g ∈ O(n+ 1, 1) is a re�ection at a hyperplane of the form span{x}⊥ with η(x, x) > 0,
then it can be shown that the conformal di�eomorphism of Sn induced by g is an inversion
at a hypersphere in Sn. Since O(n + 1, 1) is generated by such re�ections and −In+2,
it follows that every conformal di�eomorphism of Sn is a Möbius transformation, i.e. a
�nite composition of inversions at hyperspheres. Such an inversion preserves the open
upper hemisphere if and only if the sphere in question intersects the equator Sn−1 ⊂ Sn
orthogonally, so also the conformal di�eomorphisms of Bn can be nicely characterized in
this framework.
Returning to our initial considerations, let g ∈ SO0(n, 1) be an isometry of the Poincaré
ball, then g naturally extends to a conformal di�eomorphism of Sn which preserves Sn−1.
In this picture, it is now obvious that the isometric action of SO0(n, 1) on Bn extends
smoothly to the boundary. To compactify the Poincaré ball, it is therefore natural to
consider the closed unit ball Dn and view it as the closed upper hemisphere of Sn. We
obtain a global smooth action of SO0(n, 1) on the closed ball and thus another smooth
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compacti�cation of hyperbolic space which will be called the conformal compacti�cation.
Moreover, the exact analogue of Proposition 3.2.2 is also true for the Poincaré model
with an identical proof. Hence, the conformal compacti�cation is also homeomorphic to
the geodesic compacti�cation of Hn. Finally, this construction is also possible if n = 2
as a consequence of the following remark.

Remark 3.2.6. At �rst glance there are many more conformal maps in the case n = 2
where we may identify R2 with the complex plane C. In fact, it is a standard result of
complex analysis that a function f : U → C de�ned on an open subset U ⊂ C is confor-
mal if and only if it is holomorphic or anti-holomorphic with non-vanishing derivative.
Despite this abundance of locally de�ned functions, the holomorphic conformal maps
preserving the unit disk B2 take a much simpler form. Every such map is a fractional

linear transformation z 7→ az+b
cz+d , where a, b, c, d ∈ C satisfy ad− bc 6= 0, and it preserves

B2 if and only if c = b̄, d = ā and |a|2 − |b|2 = 1. Thus, the action of every element of
SO0(2, 1) on B2 is realized by a fractional linear transformation of an element of

SU(1, 1) =

{(
a b
b̄ ā

)
: a, b ∈ C, |a|2 − |b|2 = 1

}
.

Note that −I2 ∈ SU(1, 1) acts trivially on B2, but this is the only non-trivial element
with that property, so the identity component of the isometry group of the Poincaré disk
can also be identi�ed with PSU(1, 1) = SU(1, 1)/{±I2}. In particular, there is a double
covering SU(1, 1) → SO0(2, 1). Fractional linear transformations naturally extend to
the Riemann sphere S2 and are again Möbius transformations in the sense that they are
�nite compositions of circle inversions. Exactly as above, every such map that preserves
the upper hemisphere also preserves the equator S1 ⊂ S2, so we obtain a smooth action
of SO0(2, 1) on the closed unit ball D2 in this situation as well.
Finally, we also note that there is a subtle anomaly hidden in this example that is a
consequence of the low number of dimensions. Instead of embedding B2 into S2, it is
also possible to embed it into the complex projective line CP 1, which is homeomorphic
to S2, by mapping z ∈ B2 ⊂ C to [z : 1] ∈ CP 1. A fractional linear transformation then
maps [z : 1] to [az+bcz+d : 1] = [az + b : cz + d]. Hence, the isometric action of SU(1, 1) on
B2 corresponds again to matrix multiplication when B2 is viewed as a subset of CP 1.
This should not be confused with the action of SO0(2, 1) on RP 2 that was used in the
Klein model. The di�erence between these actions is captured in the non-trivial task of
associating a fractional linear transformation to an element of SO0(2, 1).

Comparison between the models

Both the Klein and the Poincaré model provide a natural way to compactify hyperbolic
space and on a topological level both methods coincide with the geodesic compacti�ca-
tion. Furthermore, we have also seen that in both cases it was possible to extend the
isometric action of G = SO0(n, 1) smoothly to the boundary, so one might ask whether
the two compacti�cations are distinguishable on a di�erentiable level. To answer this
question, we start with a purely formal consideration. In order to pass from one model
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to the other, we may simply compose their identi�cations with the hyperboloid, which
map y ∈ Bn to

(ϕP ◦ ϕ−1
K )(y) =

1−
√

1− r2

r2
y,

(ϕK ◦ ϕ−1
P )(y) =

2

1 + r2
y.

(3.12)

These maps are by construction isometries between the models which are equivariant
with respect to the two di�erent G-actions. However, we see from the formulas that
only one of the maps is compatible with the compacti�cations. The second map can be
smoothly extended to the closed ball Dn whereas the �rst map only admits a continuous
extension. In particular, we do not obtain a di�eomorphism between the compacti�ed
spaces in this way and in fact, there is no di�eomorphism that is compatible with the
group actions.

Corollary 3.2.7. There is no di�eomorphism of the closed unit ball that is equivariant

with respect to the actions of SO0(n, 1) in the Klein and Poincaré model.

Proof. Since G = SO0(n, 1) acts transitively in both models, any G-equivariant di�eo-
morphism F : Dn → Dn is uniquely determined by its value at a single point, e.g. the
origin. The stabilizer of the origin in both models is the subgroup SO(n) ⊂ SO0(n, 1)
which has no other �xed point since it contains arbitrary rotations. The action of SO(n)
also stabilizes F (0) by G-equivariance so that we must have F (0) = 0. The restriction
of F to the open ball has to map Bn to itself and thus induces a G-equivariant di�eo-
morphism of Bn with F (0) = 0. Now either ϕP ◦ ϕ−1

K or its inverse is another map with
these properties, so F coincides with one of these maps on Bn and hence also on Dn

by continuity. However, we have already observed that ϕP ◦ ϕ−1
K does not extend to a

di�eomorphism of Dn.

Therefore, the two compacti�cations obtained from the Klein and the Poincaré model
are topologically conjugate, but distinct on the smooth level. This di�erence can also
be seen from a geometric point of view. Every geodesic in the Poincaré model intersects
the boundary sphere orthogonally, so if two geodesics are asymptotic, then their tangent
vectors become collinear at the point of intersection. In the Klein model, however, two
distinct asymptotic geodesics never have collinear tangent vectors since geodesics are
represented by straight lines.
We have seen that both compacti�cations are homeomorphic to the geodesic compacti-
�cation of Hn. This example illustrates that the geodesic compacti�cation is in general
not well-adapted to the smooth structure of the underlying manifold since the G-action
admits two smooth extensions to Hn(∞) that are not smoothly conjugate.

Remark 3.2.8. In this section we have only considered two speci�c examples that arise
naturally in the study of hyperbolic geometry, but the observations of the preceding
paragraph can be generalized. More precisely, it is shown in [Klo06] that there are
in�nitely many compacti�cations of Hn into a closed ball endowed with an action of
G = SO0(n, 1) with the following properties.
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• There is a G-equivariant di�eomorphism from the open ball to Hn.

• The G-action on the interior of the ball can be smoothly extended to the boundary.

• There is aG-equivariant homeomorphism between the closed ball and the projective
compacti�cation obtained from the Klein model, but no such map is a di�eomor-
phism.

Hence, the di�erent extensions of the G-action in the Poincaré and Klein model are only
two examples from an in�nite family of non-equivalent smooth compacti�cations of Hn.

The compacti�cations that we discussed in this section made strong use of a visual
understanding of hyperbolic space and hinged on a concrete model from which they could
be constructed. For more general symmetric spaces, such intuitive approaches are usually
not available and it is necessary to resort to di�erent methods.

3.3 Embeddings in Grassmannian manifolds

As explained in the previous section, the projective compacti�cation in the Klein model
could equivalently be regarded as an embedding of Bn into RPn that is endowed with
a particularly simple action of SO0(n, 1). We now want to describe a method of com-
pacti�cation that applies to a wider class of symmetric spaces and in a sense generalizes
the hyperbolic case. This will be an example of the �extrinsic method� that we men-
tioned at the beginning of this chapter. To motivate the construction, we recall that a
general symmetric space M can always be expressed as a homogeneous space G/H of
an associated pair (G,H) of M . In many cases - for the so-called �classical� groups -
the group G arising in this setting can be realized as a group of matrices that can be
understood by methods of linear algebra. In order to �nd suitable embeddings of M , the
idea is to consider other manifolds that carry a smooth G-action. A particularly simple
example would be a Lie group U such that G is a closed subgroup of U . If K is a closed
subgroup of U , then U/K is a smooth manifold on which G acts as a Lie transformation
group. The orbit of a point p = uK ∈ U/K under the action of G can then naturally
be identi�ed with G/Gp. In particular, for the base point o = eK we have Go = G ∩K.
If this coincides with H, the inclusion G ↪→ U descends to an embedding G/H ↪→ U/K
and if U/K is compact, we obtain a compacti�cation of G/H by taking its closure in
U/K. We summarize this approach in the following de�nition.

De�nition 3.3.1. Let G,U be Lie groups and H ⊂ G, K ⊂ U closed subgroups such
that U/K is compact. Assume that G ⊂ U is a closed subgroup satisfying G ∩K = H.
Then the inclusion G ↪→ U descends to an embedding G/H ↪→ U/K into a compact
space and the closure G/H ⊂ U/K is called a homogeneous compacti�cation of G/H.

Given a homogeneous compacti�cation, the space G/H is realized as the orbit of a
point in U/K under the action of G, so G/H ⊂ U/K is an invariant subset for the
G-action on U/K. This implies that also the closure G/H and the boundary ∂(G/H)
are G-invariant. However, it is a priori unclear whether homogeneous compacti�cations

74



3.3 Embeddings in Grassmannian manifolds

even exist for a given homogeneous space G/H and what its properties would be. Our
�rst goal is show that an important family of symmetric spaces admits a homogeneous
compacti�cation.

Remark 3.3.2. As a preparation for the following construction, it will be useful to review
some notions about bilinear forms that are not necessarily positive de�nite. For conve-
nience, we restrict our attention to symmetric bilinear forms on real vector spaces. A
detailed and more general discussion can be found in [Lan02, Chapter XV].
Let V be an n-dimensional real vector space and b : V × V → R a symmetric bilinear
form, then two vectors v, w ∈ V are said to be orthogonal if b(v, w) = 0. Given a �xed
linear subspace W ⊂ V , its orthogonal space W⊥ := {v ∈ V : b(v, w) = 0 ∀w ∈ W} is a
linear subspace of V . We say that b is non-degenerate if V ⊥ = {0}. In this case, the map
v 7→ b(v, ·) induces an isomorphism between V and its dual space V ∗. Restricting these
maps to linear functionals on W de�nes a surjective linear map V → W ∗ with kernel
W⊥, which implies the dimension formula

dim(W ) + dim(W⊥) = dim(V ). (3.13)

Moreover, we have W = W⊥⊥ since the inclusion W ⊂ W⊥⊥ holds trivially and the
dimension formula applied to W and W⊥ shows that dim(W ) = dim(W⊥⊥). The sub-
space W is said to be non-degenerate if b|W×W is non-degenerate, which is equivalent
to W ∩W⊥ = {0}. In this case, the orthogonal space W⊥ is non-degenerate as well
and the dimension formula shows that V = W ⊕W⊥. Otherwise, there is an element
w ∈ W such that b(w,w′) = 0 holds for all w′ ∈ W , in which case W ∩W⊥ is a non-
trivial linear subspace of V and the sum W +W⊥ is not direct. Its orthogonal space is
(W +W⊥)⊥ = W⊥⊥ ∩W⊥ = W ∩W⊥, so the dimension formula implies that

dim(W +W⊥) + dim(W ∩W⊥) = dim(V ). (3.14)

A vector v ∈ V is said to be isotropic if b(v, v) = 0 and a subspace N ⊂ V is called
totally isotropic if b|N×N = 0, i.e. N ⊂ N⊥. If v ∈ V is not isotropic, then L := span{v}
is non-degenerate and we have V = L⊕ L⊥ where L⊥ is non-degenerate as well. Hence,
it follows immediately by induction that if b is non-degenerate, then V possesses a basis
{v1, . . . , vn} that is b-orthonormal in the sense that b(vi, vj) = ±δij . We may assume
that b(vi, vi) = 1 for 1 ≤ i ≤ p and b(vi, vi) = −1 for p + 1 ≤ i ≤ n, in which case
{v1, . . . , vp} span a p-dimensional subspace of V on which b is positive de�nite. Similarly,
{vp+1, . . . , vn} span a subspace of dimension q = n − p on which b is negative de�nite.
The pair (p, q) is independent of the chosen basis and is called the signature of b. In
particular, the dimension of a totally isotropic subspace is at most min(p, q).
If b is non-degenerate on V with signature (p, q) and W ⊂ V a non-degenerate subspace,
then two sets of b-orthonormal bases of W and W⊥ form a b-orthonormal basis of V .
More generally, the observation above can be used for an arbitrary subspace W ⊂ V
to obtain a simple basis of V that is compatible with the increasing chain of subspaces
W ∩W⊥ ⊂W ⊂W +W⊥ ⊂ V , which we will construct in Proposition 3.3.3. To prepare
for the proof, we need two preliminary observations. First, we note that by factoring out
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all the elements orthogonal to W , b induces a non-degenerate symmetric bilinear form

b : W/(W ∩W⊥)×W/(W ∩W⊥)→ R
b([w1], [w2]) = b(w1, w2).

The dimension k := dim(W/(W ∩W⊥)) is called the rank of W and the signature of
W is de�ned to be the signature of the induced form b. If ν := dim(W ∩ W⊥) and
W has dimension d, rank k and signature (r, s), then r + s = k = d − ν. Second,
the isomorphism V ∼= V ∗ arising from the assignment v 7→ b(v, ·) induces a duality
W ∩W⊥ ∼= (V/(W + W⊥))∗. In fact, given a vector w ∈ W ∩W⊥, the map b(w, ·)
vanishes identically on W + W⊥ and thus induces a linear map V/(W + W⊥) → R.
Conversely, pre-composing such a map with the projection V → V/(W +W⊥) de�nes an
element ϕ ∈ V ∗, which is of the form ϕ = b(v, ·) where we must have v ∈W ∩W⊥ since
ϕ vanishes on W + W⊥. Having these notions at hand, we can construct the desired
basis.

Proposition 3.3.3. Let W ⊂ V be a linear subspace of dimension d, signature (r, s)
and set ν = dim(W ∩ W⊥), r̃ = p − r − ν and s̃ = q − s − ν. There exists a basis

{w1, . . . , wn} of V that contains a basis for each linear subspace in the increasing chain

W ∩W⊥ ⊂W ⊂W +W⊥ ⊂ V and satis�es

(b(wi, wj))
n
i,j=1 =


0 0 0 Iν
0 Ir,s 0 0
0 0 Ir̃,s̃ 0
Iν 0 0 0

 . (3.15)

Proof. To begin with, we choose an arbitrary basis B1 = {w1, . . . , wν} ofW ∩W⊥. Since
this space is totally isotropic, we indeed have b(wi, wj) = 0 for 1 ≤ i, j ≤ ν as required.
Moreover, B1 gives rise to a basis of (V/(W +W⊥))∗ by the duality discussed above and
we consider the corresponding dual basis {[v1], . . . , [vν ]} of V/(W + W⊥). Every set of
representatives {v1, . . . , vν} from these equivalence classes then satis�es b(wi, vj) = δij
for 1 ≤ i, j ≤ ν. Hence, {w1, . . . , wν , v1, . . . , vν} span a subspace of V of dimension 2ν
and signature (ν, ν).
Next, b induces a non-degenerate symmetric bilinear form b on (W + W⊥)/(W ∩W⊥).
We have

(W +W⊥)/(W ∩W⊥) = W/(W ∩W⊥)⊕W⊥/(W ∩W⊥),

so W and W⊥ descend to complementary, non-degenerate subspaces in that quotient
which are orthogonal for the induced form b. The dimension of this space is n − 2ν by
(3.14) and the signature of b is (p − ν, q − ν) by the observation in the �rst paragraph.
Since the signature ofW is (r, s), it follows thatW⊥ has signature (r̃, s̃). We may choose
a b-orthonormal basis {[wν+1], . . . , [wd], [wd+1], . . . , [wn−ν ]} of (W + W⊥)/(W ∩ W⊥)
consisting of two sets of b-orthonormal bases for W/(W ∩ W⊥) and W⊥/(W ∩ W⊥).
Let {wν+1, . . . , wd, wd+1, . . . , wn−ν} be any set of representatives from these equivalence
classes, then these vectors span a subspace ofW+W⊥ that is complementary toW∩W⊥.
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Hence, they extend B1 to a basis B2 = {w1, . . . , wn−ν} of W + W⊥, where in addition
{w1, . . . , wd} is a basis of W . By construction, we also have b(wi, wj) = 0 whenever
1 ≤ i ≤ ν < j ≤ n − ν and b(wi, wj) = b([wi], [wj ]) = ±δij for ν + 1 ≤ i, j ≤ n − ν, so
the matrix (b(wi, wj))

n−ν
i,j=1 has the desired shape.

Although the representatives {v1, . . . , vν} chosen in the beginning would extend B2 to a
basis of V , it is not automatic that they have the right orthogonality properties, but this
problem can be solved by adding suitable linear combinations. Every representative of
[vi] is of the form vi +

∑n−ν
j=1 λijwj for some λij ∈ R. For k = ν + 1, . . . , n− ν we have

b

(
wk, vi +

n−ν∑
j=1

λijwj

)
= b(wk, vi) + λikb(wk, wk),

so that we are forced to set λik = − b(wk,vi)
b(wk,wk) for i = 1, . . . , ν and k = ν + 1, . . . , n− ν to

make this expression vanish. To determine the remaining coe�cients, we compute

b

(
vi +

n−ν∑
k=1

λikwk, vj +
n−ν∑
l=1

λjlwl

)
= b

(
vi +

n−ν∑
k=1

λikwk, vj +
ν∑
l=1

λjlwl

)

= b(vi, vj) +
ν∑
k=1

λikb(wk, vj) +
n−ν∑
k=ν+1

λikb(wk, vj) +
ν∑
l=1

λjlb(vi, wl)

= b(vi, vj) + λij + λji −
n−ν∑
k=ν+1

b(wk, vi)b(wk, vj)

b(wk, wk)
.

Requiring this expression to be zero for i, j = 1, . . . , ν amounts to a system of ν2 equations
for the coe�cients λij which clearly has a solution, e.g. via the ansatz λij = λji. Using
these coe�cients, we may set wn−ν+i = vi +

∑n−ν
j=1 λijwj for i = 1, . . . , ν to extend B2 to

a basis B3 = {w1, . . . , wn} of V with the required properties.

We will say that a basis of V that satis�es the assumptions of Proposition 3.3.3 is
adapted to W . Finally, we note that the above discussion also applies to complex vector
spaces that are equipped with a non-degenerate Hermitian bilinear form, which follows
directly by inspecting the arguments. In particular, we can also �nd adapted bases in
this setting. However, requiring the form to be Hermitian instead of symmetric is really
necessary, since if b is a symmetric bilinear form on a complex vector space V and v ∈ V
satis�es b(v, v) > 0, then b(iv, iv) = −b(v, v) < 0. Therefore, the concept of signature is
not well-de�ned in this situation.

We can use these results from linear algebra to construct a very important class of
symmetric spaces that generalizes hyperbolic space. Let us consider a non-degenerate
symmetric bilinear form 〈·, ·〉 of signature (p, q) on Rn, then there exists a symmetric
matrix M ∈ GL(n,R) such that 〈v, w〉 = vTMw for all v, w ∈ Rn. The group of linear
isometries of this bilinear form is

O(p, q) = {g ∈ GL(n,R) : 〈gv, gw〉 = 〈v, w〉 ∀v, w ∈ Rn}
= {g ∈ GL(n,R) : gTMg = M}.
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This group is never connected, having four connected components if p, q > 0 and two if
p = 0 or q = 0, and we denote by SO0(p, q) its identity component. For the rest of this
section we assume that n = p + q ≥ 3 and p, q > 0. The latter condition ensures that
SO0(p, q) is not compact. By choosing an orthonormal basis, we may identify 〈·, ·〉 with
the standard non-degenerate symmetric bilinear form of signature (p, q) where M = Ip,q.
Elements of O(p, q) can then be written as block-matrices and the condition gT Ip,qg = Ip,q
is equivalent to the following.

g =

(
A B
C D

)
∈ O(p, q)⇐⇒


ATA− CTC = Ip

BTB −DTD = −Iq
ATB − CTD = BTA−DTC = 0

(3.16)

Moreover, it can be shown that such a matrix belongs to SO0(p, q) if and only if it further
satis�es det(A) > 0 and det(D) > 0 (cf. [O'N83, p. 238]). Given a matrix in O(p, q), its
columns form an orthonormal basis of Rn, so by reversing the signs of one or two of its
column vectors - one of positive and one of negative length - this matrix can be mapped
to any connected component.
Conjugation with Ip,q maps SO0(p, q) to itself, so as in the case of Grassmannians (cf.
Example 1.4.5), the map g 7→ Ip,qgIp,q de�nes an involutive automorphism of SO0(p, q)
whose �xed point-set can be identi�ed with the compact subgroup SO(p)× SO(q) con-
sisting of those block-matrices where B = C = 0. Hence, these groups form a symmetric
pair and the quotient space

SO0(p, q)/SO(p)× SO(q)

can be equipped with an SO0(p, q)-invariant Riemannian metric which turns it into a
symmetric space of dimension pq. Similarly to the hyperbolic case where p = n− 1 and
q = 1, the induced symmetric decomposition on the Lie algebra level is given by

so(p, q) = (so(p)× so(q))⊕ p, p =

{(
0 Z
ZT 0

)
: Z ∈Mp,q(R)

}
. (3.17)

Again, so(p, q) is simple with Killing form B(X,Y ) = (n − 2)tr(XY ) which is positive
de�nite on p× p. The commutator of matrices in p is easily seen to be[(

0 Z1

ZT1 0

)
,

(
0 Z2

ZT2 0

)]
=

(
Z1Z

T
2 − Z2Z

T
1 0

0 ZT1 Z2 − ZT2 Z1

)
,

which is zero if and only if Z1Z
T
2 and ZT1 Z2 are symmetric matrices. Hence, it follows

that SO0(p, q)/SO(p) × SO(q) is a symmetric space of the non-compact type and rank
min(p, q). Using Theorem 2.3.2, the fact that SO0(p, q) is simple also implies that the
identity component of the isometry group of this space has the form SO0(p, q)/N , where
N is a discrete, normal subgroup.
A matrix g ∈ SO0(p, q) necessarily satis�es det(g) = 1, so we can view SO0(p, q) as a
closed subgroup of SL(n,R). Therefore, every manifold that is endowed with a smooth
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action of SL(n,R) also carries an action of SO0(p, q). An obvious example of such a
space is the Grassmannian Gr(q,Rn) of q-dimensional subspaces of Rn, where SL(n,R)
acts transitively via the standard action A · V := A(V ). Let Rq ⊂ Rn be the subspace
spanned by the last q vectors {ep+1, . . . , en} of the standard basis, then the stabilizer of
Rq under the action of SL(n,R) is the group of all block-lower-triangular matrices

P :=

{(
A 0
C D

)
∈ SL(n,R) : A ∈ GL(p,R), D ∈ GL(q,R), C ∈Mq,p(R)

}
, (3.18)

which implies that there is a di�eomorphism Gr(q,Rn) ∼= SL(n,R)/P . We could now
restrict this action to SO0(p, q), but it will be more convenient to �rst consider the
slightly larger group SO(p, q) = {g ∈ O(p, q) : det(g) = 1} ⊂ SL(n,R). To avoid one
slightly anomalous case, we also assume that p 6= q for the rest of this section.

Proposition 3.3.4. Let SO(p, q) act on Gr(q,Rn) by the standard action (g, V ) 7→ g(V )
and let V be any q-dimensional subspace of Rn. Let k be the rank and (r, s) be the

signature of the restriction of 〈·, ·〉 to V . Then the orbit of V under the action of SO(p, q)
is the set of all W ∈ Gr(q,Rn) such that the restriction of 〈·, ·〉 to W also has rank k and

signature (r, s). Such an orbit is open in Gr(q,Rn) if and only if k = q.

Proof. Every g ∈ SO(p, q) preserves the bilinear form, so the restrictions of 〈·, ·〉 to V and
to g(V ) necessarily have the same rank and signature. To show the converse, let V and
W be q-dimensional subspaces of rank k ≤ q and signature (r, s). Then we can choose
bases {v1, . . . , vq, vq+1, . . . , vn} and {w1, . . . , wq, wq+1, . . . , wn} of Rn that are adapted to
V and W as in Proposition 3.3.3. We de�ne a linear map g : Rn → Rn by g(vi) = wi
for i = 1, . . . , n which is a linear isometry by construction and satis�es g(V ) = W . This
is equivalent to g ∈ O(p, q) and we may even assume that g ∈ SO(p, q). In fact, if
(r, s) 6= (0, 0) or (r̃, s̃) 6= (0, 0), it su�ces to possibly replace a vector of non-zero length
in the basis adapted to V by its negative. The remaining case is only possible if p = q = ν
which we explicitly exclude. Hence, V and W lie in the same orbit.
To prove the �nal claim, let us �rst recall the de�nition of the topology on the Grass-
mannian. Let V(q,Rn) ⊂ (Rn)q ∼= Mn,q(R) denote the open set of linearly independent
q-tuples of vectors in Rn, then the topology on Gr(q,Rn) is the quotient topology in-
duced by the map ζ : V(q,Rn)→ Gr(q,Rn) sending (v1, . . . , vq) to their span. Given an
open set U ⊂ V(q,Rn), it is easy to see that ζ−1(ζ(U)) =

⋃
A∈GL(q,R) U · A is a union of

open sets, showing that ζ is an open map. If V ∈ Gr(q,Rn) has rank k and signature
(r, s), then we again choose a basis {v1, . . . , vn} of Rn that is adapted to V . The top left
(q×q)-block of the corresponding matrix (3.15) has an invertible (k×k)-submatrix which
is then invertible in an open neighbourhood N ⊂ V(q,Rn) of (v1, . . . , vq). In addition,
its eigenvalues depend continuously on the matrix entries, so this block has the same
number (r, s) of positive and negative eigenvalues throughout N . This implies that for
(w1, . . . , wq) ∈ N the subspace W = ζ(w1, . . . , wq) has rank k′ ≥ k and signature (r′, s′)
with r′ ≥ r and s′ ≥ s. If k = q is maximal, then rank and signature cannot increase
any further, so that ζ(N ) ⊂ Gr(q,Rn) is an open neighbourhood of V on which rank
and signature are constant, which implies that the orbit of V is open in this situation.
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If k < q, then ν = q − k > 0 and v1 ∈ V ∩ V ⊥, but for every open neighbourhood N ′
of V there exists some ε > 0 such that (v1 + εvn−ν+1, v2, . . . , vq) ∈ ζ−1(N ′). Now we
have 〈v1 + εvn−ν+1, v1 + εvn−ν+1〉 = 2ε > 0 while the rest of the matrix representing
the bilinear form on Vε = ζ(v1 + εvn−ν+1, v2, . . . , vq) remains unchanged. Therefore, the
rank of Vε ∈ N ′ is greater than k, which shows that the orbit of V is not open.

Remark 3.3.5. With slightly improved arguments it is possible to show that even the
group SO0(p, q) acts transitively on the set of subspaces of a given rank and signature.
To this end, it su�ces to prove that for every subspace W ∈ Gr(q,Rn) of rank k and
signature (r, s), every connected component of O(p, q) contains an element mapping W
to itself. This is particularly easy in the case k = q and (r, s) = (0, q). A basis of Rn
that is adapted to W is then (up to a permutation) the same as an orthonormal basis,
so it su�ces to reverse the signs of one or two basis vectors - one of positive and one of
negative length - to adjust for the right determinants in the blocks of (3.16). A similar
argument applies more generally in the situation where max(r, r̃) > 0 and max(s, s̃) > 0
after �rst extending a pair of vectors of positive and negative length (that are each either
contained in W or W⊥) to an orthonormal basis of Rn. If r = r̃ = 0 and s > 0 or s̃ > 0,
then on the one hand it is possible to reverse the sign of a basis vector of negative length
in W or W⊥. On the other hand, this case also forces ν = p > 0, so one can consider the
basis vector v1 ∈W ∩W⊥ and its corresponding �dual� vector vn−ν+1 ∈ V \ (W +W⊥).
These elements span a subspace of signature (1, 1), so changing their signs amounts to
reversing a positive and a negative vector in an orthonormal basis. The same argument
works if s = s̃ = 0 and r > 0 or r̃ > 0 and the remaining case (r, s) = (r̃, s̃) = (0, 0) is
excluded from our considerations. It is therefore possible to replace SO(p, q) by SO0(p, q)
in the discussion below, but since we only need this observation in the case r = 0 and
s = q and the notation will become easier when considering SO(p, q), we mostly restrict
our attention to this group.
For completeness, we also remark that SO(p, q) clearly acts smoothly on Gr(d,Rn) for
any d = 1, . . . , n. The proof of Proposition 3.3.4 carries over word-for-word to this more
general situation, so the orbits of SO(p, q) and SO0(p, q) on Gr(d,Rn) are always distin-
guished by rank and signature and open orbits correspond to non-degenerate subspaces.
However, only the case d = q will be relevant for our purposes.

The previous result shows that we may label the orbits of the SO(p, q)-action on
Gr(q,Rn) as O(r,s), where (r, s) is the signature and r+ s = k ≤ q the rank of the spaces
in that orbit. Note that we must have ν = q − (r + s) ≤ min(p, q), which means that
some of the orbits are empty if p < q. If V ∈ Gr(q,Rn) is a non-degenerate subspace
of signature (r, s), then the orbit O(r,s) = SO(p, q) · V is an open subset of the compact
space Gr(q,Rn), so the closure of this orbit is compact. Moreover, the orthogonal space
V ⊥ is non-degenerate of signature (r̃, s̃) = (p − r, q − s). If g ∈ SO(p, q) stabilizes V ,
then it also �xes V ⊥, which implies that g ∈ S(O(r, s) × O(p − r, q − s)). Hence, we
obtain a di�eomorphism

O(r,s)
∼= SO(p, q)/S(O(r, s)×O(p− r, q − s)). (3.19)
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In general, these spaces are not symmetric in the Riemannian sense, but they can be
viewed as pseudo-Riemannian symmetric spaces which are de�ned by an immediate gen-
eralization of De�nition 1.2.1 to that setting. However, we can consider the case r = 0
and s = q where O(0,q) consists of all maximal negative de�nite subspaces. As discussed
in the previous remark, SO0(p, q) acts transitively on that orbit, so that O(0,q) is di�eo-
morphic to the Riemannian symmetric space SO0(p, q)/SO(p) × SO(q) and we obtain
an open embedding

SO0(p, q)/SO(p)× SO(q) ↪→ SL(n,R)/P (3.20)

whose closure gives a homogeneous compacti�cation of that symmetric space. In this
situation, we can also easily characterize the boundary of this compacti�cation as the
set of all negative semi-de�nite subspaces, which follows immediately from the following
more general result.

Corollary 3.3.6. Let O(r,s) be an orbit for the action of SO(p, q) on Gr(q,Rn), then its

closure is a �nite disjoint union of orbits that is explicitly given by

O(r,s) =
⋃
r′≤r
s′≤s

O(r′,s′). (3.21)

Proof. We have already seen in the proof of Proposition 3.3.4 that for every V ∈ Gr(q,Rn)
there exists an open neighbourhood of V on which rank and signature do not decrease.
Therefore, every element in O(r,s) has to have signature (r′, s′) with r′ ≤ r and s′ ≤ s.
To show the reverse inclusion, let V ∈ O(r′,s′) with r′ ≤ r and s′ ≤ s and choose a
basis {v1, . . . , vn} of Rn that is adapted to V as in (3.15). We set ν = q − (r + s),
ν ′ = q − (r′ + s′) and de�ne for every m ≥ 1

ṽmi :=


vi + 1

2(1− 1
m)vn−ν′+i 1 ≤ i ≤ r − r′

vi − 1
2(1− 1

m)vn−ν′+i r − r′ + 1 ≤ i ≤ ν ′ − ν
vi ν ′ − ν + 1 ≤ i ≤ q

and Vm := ζ(ṽm1 , . . . , ṽ
m
q ) ∈ Gr(q,Rn). Then we have

(〈ṽmi , ṽmj 〉)
q
i,j=1 =


(1− 1

m)Ir−r′ 0 0 0
0 −(1− 1

m)Is−s′ 0 0
0 0 0ν 0
0 0 0 Ir′,s′

 ,

which shows that Vm ∈ O(r,s) for every m ≥ 1. Since (ṽm1 , . . . , ṽ
m
q ) converges to

(v1, . . . , vq) as m→∞, it follows that limm→∞ Vm = V and V ∈ O(r,s).

In particular, the previous result shows that there is at most one closed (and hence
compact) orbit, namely the set O(0,0) of totally isotropic q-dimensional subspaces and
this is contained in the closure of every other orbit. Furthermore, we have realized the
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symmetric space SO0(p, q)/SO(p) × SO(q) as the open orbit O(0,q) ⊂ Gr(q,Rn) and
its boundary as the union

⋃
q′<qO(0,q′). Every orbit is invariant under the action of

SO0(p, q), so it is obvious that the action of SO0(p, q) on O(0,q) extends smoothly to the
boundary. To conclude this section, we take a closer look at the individual boundary
components of this compacti�cation. In order to do this, we examine more generally the
non-open orbits O(r,s) where r + s < q.
Thus, we let O := O(r,s) be one such orbit and set ν = q − (r + s) as before. Hence, if
V ∈ O, then V ∩ V ⊥ is a ν-dimensional subspace of Rn that is totally isotropic for 〈·, ·〉.
If we denote by IGr(ν,Rn) the set of all ν-dimensional totally isotropic subspaces of Rn,
then we can de�ne a map

κ : O → IGr(ν,Rn)

V 7→ V ∩ V ⊥.

It follows as in Proposition 3.3.4 that G := SO(p, q) acts transitively on this space, so
the isotropic Grassmannian has a natural manifold structure as a homogeneous space
of G, which clearly admits a smooth inclusion into the full Grassmannian Gr(ν,Rn).
If {v1, . . . , vn} is a basis of Rn that is adapted to V , then κ(V ) = span{v1, . . . , vν},
which shows that κ is smooth. Note that for every g ∈ G we have g(V )⊥ = g(V ⊥) and
g(V )∩ g(V )⊥ = g(V ∩V ⊥). In terms of actions, this can be stated as κ(g ·V ) = g ·κ(V ),
which proves that κ is G-equivariant and surjective. In fact, for every V ∈ O and every
N ∈ IGr(ν,Rn) there exists some g ∈ G with g · κ(V ) = N by transitivity and therefore
κ(g ·V ) = N . Let H1 and H2 be the stabilizers of V ∈ O and V ∩V ⊥ ∈ IGr(ν,Rn) under
the respective G-actions, then we have di�eomorphisms O ∼= G/H1, IGr(ν,Rn) ∼= G/H2

and an inclusion H1 ⊂ H2 as a closed subgroup. This induces a canonical G-equivariant
projection map κ̃ : G/H1 → G/H2 via the following commutative diagram.

G G/H2

G/H1

π2

π1 κ̃

Here, π1 and π2 are the usual projections and thus surjective submersions, so the same
is true for the induced map κ̃.4 Using the above di�eomorphisms, we can identify κ
with a G-equivariant map between the quotient spaces which by construction maps eH1

to eH2. Since G acts transitively on G/H1, every G-equivariant map on this space is
uniquely determined by its value at a single point, which implies that κ - as a map
between homogeneous spaces of G - coincides with κ̃. In particular, κ is a locally trivial
�ber bundle and our next goal is to investigate its �bers.

4More precisely, the projection π2 : G → G/H2 is an H2-principal bundle and there is a natural left-
action of H2 on H2/H1. Therefore, we can form the associated �ber bundle E := G ×H2 (H2/H1)
whose total space can be identi�ed with G/H1 via the map [g, hH1] 7→ ghH1 (cf. [KN63, Chapter I,
Proposition 5.5]). In this picture, the natural bundle projection E → G/H2 corresponds to the map
κ̃ : G/H1 → G/H2 which is therefore a �ber bundle as well
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To this end, let us take V ∈ O and consider the sum V + V ⊥, then 〈·, ·〉 induces a
non-degenerate symmetric bilinear form on the quotient V := (V + V ⊥)/(V ∩ V ⊥). As
discussed in the proof of Proposition 3.3.3, the dimension of V is p + q − 2ν and the
signature of the induced form is (p − ν, q − ν). The images of V and V ⊥ under the
projection V + V ⊥ → V are complementary subspaces of V on which the induced form
has signature (r, s) and (p− r− ν, q− s− ν), respectively. Similarly, if N ∈ IGr(ν,Rn) is
totally isotropic, then N ⊂ N⊥, dim(N⊥) = p+ q− ν and 〈·, ·〉 induces a non-degenerate
bilinear form on N := N⊥/N with signature (p − ν, q − ν). Thus, we can choose a
subspace of dimension r + s in N on which this form has signature (r, s). Its pre-image
under the projection N⊥ → N is then a space of dimension r + s+ ν = q and signature
(r, s), so it de�nes an element W ∈ O that satis�es W ∩W⊥ = N .
Summarizing our observations shows that the elements V ∈ O with κ(V ) = N are
in bijective correspondence with non-degenerate subspaces of signature (r, s) in N⊥/N ,
which is a vector space of dimension p + q − 2ν that is endowed with a non-degenerate
symmetric bilinear form of signature (p− ν, q− ν). Thus, there is a natural group action
of SO(p−ν, q−ν) on the �ber κ−1(N) which is transitive by an immediate adaptation of
Proposition 3.3.4 to this setting. Being the �ber of a submersion, κ−1(N) has a natural
manifold structure as a submanifold of O. To see that the action of SO(p− ν, q − ν) is
smooth with respect to this structure, let us relate it to the smooth G-action on O. Every
element from the stabilizer H2 of N under the G-action on IGr(ν,Rn) also stabilizes N⊥.
Thus, the action of H2 ⊂ G on O ∼= G/H1 restricts to an action on those subspaces that
are contained in N⊥. This in turn descends to a smooth action on the non-degenerate
subspaces of signature (r, s) contained in N⊥/N , which is precisely the �ber κ−1(N).
Under this identi�cation, H2 acts on κ−1(N) via elements of SO(p−ν, q−ν). Explicitly,
let us choose a basis {v1, . . . , vn} of Rn that is adapted to N and let h ∈ H2 be arbitrary.
Since h preserves the chain of subspaces N ⊂ N⊥ ⊂ Rn, it follows that the matrix
representation of h with respect to this basis is block-upper-triangular

h =

A11 A12 A13

0 A22 A23

0 0 A33

 ,

where the diagonal blocks are square-matrices of size ν, n− 2ν and ν, respectively. The
element of SO(p−ν, q−ν) that is associated to h in the construction above is the central
(n−2ν)×(n−2ν)-block of that matrix. Conversely, given a matrix B ∈ SO(p−ν, q−ν),
its column vectors form an orthonormal basis of N⊥/N which can be extended to a basis
of Rn that is adapted to N as in the proof of Proposition 3.3.3. Setting A22 = B,
A11 = A33 = Iν and the remaining matrices equal to zero then de�nes an element of
SO(p, q) that stabilizes N . Hence, this element is contained in H2 and induces the action
of B on κ−1(N). Altogether, this correspondence yields a surjective homomorphism
H2 → SO(p−ν, q−ν), so the action of SO(p−ν, q−ν) on κ−1(N) is actually induced by
the stabilizer H2 ⊂ G and therefore smooth. Consequently, the �bers are di�eomorphic
to the homogeneous spaces

κ−1(N) ∼= SO(p− ν, q − ν)/S(O(r, s)×O(p− r − ν, q − s− ν)). (3.22)
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This description gives rise to a nice structural hierarchy between the orbits. In the
extreme case r = s = 0, the quotient (3.22) is trivial, which is obvious from the fact that
κ is bijective in this case. For increasing r and s, the �ber bundle structure of κ implies
that the orbit O is locally di�eomorphic to the product of an open set in the isotropic
Grassmannian and a pseudo-Riemannian symmetric space. If r+ s = q is maximal, then
we have already observed in the discussion after Proposition 3.3.4 that O is globally
di�eomorphic to a symmetric space. In the case r = 0 and s = q where the orbits O(0,q′),
q′ < q, constitute the boundary of the homogeneous compacti�cation of the Riemannian
symmetric space SO0(p, q)/SO(p)× SO(q), we have ν = q − q′, so it follows that every
boundary component of this compacti�cation is locally di�eomorphic to the product of
an open set in an isotropic Grassmannian manifold and a Riemannian symmetric space
which is of the form SO0(p− q + q′, q′)/SO(p− q + q′)× SO(q′).

Remark 3.3.7. (i) The results of this section can in particular be applied to a non-
degenerate symmetric bilinear form of signature (n, 1) on Rn+1. In this case, there
is an action of SO(n, 1) on Gr(1,Rn+1) = RPn with two open orbits O(1,0),O(0,1)

corresponding to the sets of spacelike and timelike lines and one closed orbit O(0,0)

consisting of all lightlike lines in Rn+1. The set of timelike lines is di�eomorphic
to the symmetric space SO0(n, 1)/SO(n) ∼= Hn, so we see that the homogeneous
compacti�cation of that space coincides with the projective compacti�cation of
hyperbolic space arising from the Klein model.

(ii) In this simple case, the homogeneous compacti�cation of SO0(n, 1)/SO(n) is also
homeomorphic to the geodesic compacti�cation which is no longer true in general.
Although this can be seen directly by looking at the boundary components, it is
also a consequence of a deeper property. If p, q > 1, then SO0(p, q)/SO(p)×SO(q)
is a symmetric space whose rank is at least 2. It is shown in [Klo10] that if M
is a symmetric space of the non-compact type with rk(M) > 1, then the smooth
action of I0(M) cannot be smoothly extended to the boundary of the geodesic
compacti�cationM = M ∪M(∞). This is in sharp contrast to the case rk(M) = 1
where we have seen that the isometric action in the geodesic compacti�cation of
Hn admits in�nitely many di�erent smooth extensions. As we have indicated
in Remark 3.1.11, this is a consequence of the fact that the Tits building of a
symmetric space of rank 1 is rather trivial compared to spaces of higher rank.

(iii) Throughout this section we focused on symmetric bilinear forms in real vector
spaces, but a similar construction can be carried out over the complex num-
bers. In this setting, one considers a non-degenerate Hermitian form of signature
(p, q) on Cn and the corresponding inde�nite unitary group U(p, q). Its subgroup
SU(p, q) = {g ∈ U(p, q) : det(g) = 1} is a connected subgroup of the complex
special linear group SL(n,C). The complex Grassmannian Gr(q,Cn) can be ex-
pressed as a homogeneous space SL(n,C)/P , where P is the complex analogue of
the group in (3.18). The orbits of the action of SU(p, q) on Gr(q,Cn) are again
distinguished by rank and signature, which follows as in the proof of Proposition
3.3.4 using the fact that adapted bases also exist for Hermitian forms. In this case,
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it is even easier to reduce transitivity of the action of U(p, q) to SU(p, q) since it
su�ces to multiply by diagonal matrices of the form eiθIn ∈ U(p, q), θ ∈ R, which
act trivially on Gr(q,Rn) and requiring that p 6= q is not necessary. In particular,
the open subset of maximal negative de�nite subspaces of Cn can be identi�ed
with SU(p, q)/S(U(p) × U(q)) and this yields a homogeneous compacti�cation of
that space whose boundary can be described exactly as in Corollary 3.3.6. Finally,
SU(p, q)/S(U(p) × U(q)) is a symmetric space of rank min(p, q) by the same rea-
soning as in the real case. Its dimension is 2pq, so the case n = 2 and p = q = 1 is
also admissible in this setting. We will consider the complex case in more detail in
Section 3.5.

The advantage of this compacti�cation method is that one has a clear understanding of
the orbit structure and the boundary components of the compacti�ed space. Moreover, it
arises naturally from the inclusion SO0(p, q) ↪→ SL(n,R) and generalizes the projective
compacti�cation of hyperbolic space. Finally, the number and structure of the non-empty
boundary components increases with the rank of the symmetric space in question. This
is a common phenomenon in many di�erent methods of compacti�cation, which again
illustrates the importance of the rank as a characteristic invariant of a symmetric space.

3.4 The Baily-Borel compactification

Having studied concrete examples in the preceding sections, we now return to the abstract
theory and describe an �extrinsic� compacti�cation method that can be applied to the
class of Hermitian symmetric spaces of the non-compact type. In contrast to the geodesic
compacti�cation, the construction will not build upon understanding the geometric prop-
erties of the space in question but on its algebraic structure. However, our main goal is to
compare this method to the homogeneous compacti�cation of SU(p, q)/S(U(p)× U(q))
that we mentioned in the previous section. The construction for an arbitrary symmet-
ric space requires a lot of machinery from the theory of Lie groups, which is why we
only outline the general case and refer the reader to [Hel01, Chapter VIII, Section 7]
and [Sat80, Chapter II, Section 4] for details. As we shall explain, Hermitian symmetric
spaces of the non-compact type can be realized as the following objects.

De�nition 3.4.1. A bounded domain Ω ⊂ Cn in a complex vector space is called
symmetric if for every point p ∈ Ω there exists an involutive holomorphic di�eomorphism
sp : Ω→ Ω such that p is an isolated �xed point of sp.

Throughout this section we assume that M is a Hermitian symmetric space of the
non-compact type with base point o ∈M and we further suppose that M is irreducible.
As usual, we let g = h⊕ p be the symmetric decomposition of the Lie algebra g of I0(M)
induced by the involution σ : g 7→ sogso and we note that I0(M) = A0(M) by Proposition
2.3.8. Then p ∼= ToM and the Riemannian structure Q induces an ad(h)-invariant inner
product 〈·, ·〉p on p which must be a scalar multiple of the restriction to p of the Killing
form of g. Moreover, the canonical almost complex structure J of M induces a linear
map J̃ : p → p that satis�es J̃2 = −idp. In the proof of Theorem 2.3.9 we extended
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this map by zero to a derivation J̃ : g → g and deduced that there exists an element
Z0 ∈ g, which is contained in the one-dimensional center of h, such that J̃ = ad(Z0).
Let gC denote the complexi�cation of g and set hC := h⊕ ih, pC := p⊕ ip. The R-linear
map ad(Z0) on g uniquely extends to a C-linear map on gC which maps pC to itself and
satis�es (ad(Z0)|pC)2 = −idpC . Thus, we may split pC into the eigenspaces p+ and p− for
the eigenvalues i and −i of ad(Z0)|pC and obtain the decomposition gC = p+ ⊕ hC ⊕ p−,
which satis�es

[hC, p±] ⊂ p±, [p+, p−] ⊂ hC, [p+, p+] = [p−, p−] = 0 (3.23)

by (2.11) and (2.12). In particular, p+ and p− are abelian subalgebras of gC. Let (gC)R

denote the Lie algebra gC viewed as a Lie algebra over R. As discussed in Section 2.3.1,
there exists a simply connected Lie group GC whose Lie algebra is (gC)R. Since the
spaces g, h, hC, p+ and p− are real Lie subalgebras of (gC)R, there exist connected Lie
subgroups G,H,HC, P+ and P− of GC corresponding to these subalgebras. Note that
G and A0(M) have the same Lie algebra g, but they do not necessarily coincide since
A0(M) need not be contained in GC. Moreover, H has the same Lie algebra as the
stabilizer of o ∈ M under the action of A0(M). Nevertheless, it follows from the global
Cartan decomposition in Theorem 2.2.1 that H is closed in G and that the manifold
G/H is di�eomorphic to p. In fact, this result is an extension of Theorem 2.3.10 from
which we deduced that M is di�eomorphic to p as well, so we obtain a di�eomorphism
M ∼= G/H. The relations between these Lie groups form the heart of the construction,
which we summarize in the following theorem. Its proof is given in [Hel01, Chapter VIII,
Lemma 7.8, 7.9 and 7.10].5

Theorem 3.4.2. The Lie groups G,GC, H,HC, P+ and P− from above have the following

properties.

(i) The exponential map of GC restricts to a di�eomorphism p− → P− and p+ → P+.

Consequently, P+ and P− are simply connected.

(ii) The multiplication map

P+ ×HC × P− → GC, (p+, h, p−) 7→ p+hp−

is a di�eomorphism onto an open subset of GC containing G.

(iii) The product GHCP− is open in P+H
CP− and we have G∩HCP− = H. Moreover,

the group HCP− is closed in GC.

Note that part (ii) of this result in particular states that P+∩HCP− = {e}. We denote
the inverses of the exponential maps of P± by log : P± → p±. The relations from the
theorem can be collected in the following commutative diagram.
5The spaces p+ and p− are constructed in a slightly di�erent way in [Hel01, p. 312-313], but this is easily
seen to coincide with our de�nition by comparing the root spaces used there with the eigenspaces of
ad(Z0) : gC → gC.
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3.4 The Baily-Borel compacti�cation

GHCP−/H
CP− P+H

CP−/H
CP− GC/HCP−

M ∼= G/H P+ p+

ι1

ψ1

ι2

ψ2

ψ log

Here, the maps ι1 and ι2 are open embeddings, whereas ψ1 and ψ2 are di�eomorphisms.
Therefore, ψ := ψ2 ◦ ι1 ◦ ψ−1

1 is an open embedding as well and Ψ := log ◦ψ is a di�eo-
morphism from G/H onto a simply connected, open subset of p+ which we may identify
with Cn. Furthermore, Ψ is holomorphic or anti-holomorphic and by choosing a norm6

it can be shown that the domain Ψ(G/H) ⊂ Cn is bounded (cf. [Hel01, Chapter VIII,
Lemma 7.12]).
By construction, the map Ψ is given as follows: Consider a coset gH ∈ G/H that is
represented by an element g ∈ G, then there exist unique elements p± ∈ P±, h ∈ HC

such that g = p+hp− and we have ψ−1
1 (gH) = gHCP− = p+hp−HCP−. The embedding

ι1 is induced by the inclusion G ⊂ P+H
CP− and ψ2(p+hp−HCP−) = p+, so it follows

that ψ(gH) = p+ and Ψ(gH) = log(p+). Equivalently, Ψ(gH) is the unique element
X ∈ p+ such that exp(X)−1g ∈ HCP−.

De�nition 3.4.3. The domain Ω := Ψ(G/H) ⊂ p+ is called the Harish-Chandra em-

bedding of the Hermitian symmetric space M ∼= G/H. Its closure in p+ is called the
Baily-Borel compacti�cation of M .

Remark 3.4.4. The almost complex structure J on M could also be replaced by −J in
which case the element Z0 ∈ h that realizes J̃ is replaced by −Z0, which in turn amounts
to interchanging p+ and p−. Every element in the center z of h is a real scalar multiple of
Z0, so X = ±Z0 are the only elements in z that satisfy (ad(X)|p)2 = −idp. Conversely,
starting from an irreducible symmetric space in the form M = G/H where the center of
H is one-dimensional, there are precisely two elements in z with that property. Both of
them give rise to almost complex structures J1 and J2 on G/H such that J1 = −J2.

The Harish-Chandra embedding realizes a Hermitian symmetric spaceM as a bounded
domain Ω in a complex vector space which inherits all the properties of the symmetric
space. In particular, there is a smooth action of A0(M) on Ω by biholomorphisms
and the symmetries of M can be pushed forward to Ω which turns it into a bounded
symmetric domain. Conversely, it can be shown that every bounded symmetric domain
admits a Riemannian metric, called the Bergman metric, in which it becomes a Hermitian
symmetric space of the non-compact type (cf. [Hel01, Chapter VIII, Section 3]).
The ambient space in the Baily-Borel compacti�cation is a �nite-dimensional vector
space. On the one hand, this makes it possible to explicitly describe the resulting bounded
symmetric domain as a set of matrices and we will construct one such example in the
next section. On the other hand, the embedding is not satisfactory from a geometric
point of view since the symmetric structure is not at all related to the linear structure of
the surrounding vector space. Thus, it is usually not clear whether the action of A0(M)
on its bounded symmetric domain can be extended to the boundary.
6Since Cn is �nite-dimensional, all norms are equivalent.
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We can go one step further in the above construction and obtain another compacti�cation
of M that remedies this issue (cf. [Hel01, Chapter VIII, Theorem 7.13]). The starting
point is the observation that the dual g∗ = h ⊕ ip of g is a real subalgebra of the
complexi�cation gC as well, so there exists a unique connected Lie subgroup G∗ ⊂ GC

whose Lie algebra is g∗. The inclusion h ⊂ g∗ implies that H is a subgroup of G∗. It can
be shown that G∗ is simply connected, so that (G∗, H) is a symmetric pair by Theorem
2.3.5. Hence, the quotient space M∗ := G∗/H can be turned into a simply connected
Hermitian symmetric space of the compact type which is the compact dual ofM ∼= G/H.
In this setting, it turns out that there is a di�eomorphism

G∗/H → GC/HCP−, g∗H 7→ g∗HCP−, (3.24)

which can be used in the commutative diagram above to realize M as an open subset of
its compact dual M∗.

De�nition 3.4.5. The open embedding of a Hermitian symmetric space M into its
compact dual M∗ constructed above is called the Borel embedding of M .

From a purely algebraic point of view, this is surprising since there is a priori no
inclusion of G into G∗ that would suggest such an embedding. The Borel embedding has
the advantage that the ambient space is now a homogeneous space of a Lie group that
is closely related to the isometry group of M . Moreover, G∗/H admits a global smooth
G-action induced by the di�eomorphism G∗/H ∼= GC/HCP− and the inclusion G ↪→ GC.
In particular, if G coincides with A0(M), then the isometry group of M also acts on the
compact dual M∗.

3.5 The Borel embedding as a homogeneous compactification

In this �nal section we construct the Baily-Borel compacti�cation of the symmetric space
SU(p, q)/S(U(p)×U(q)) explicitly and show that its Borel embedding coincides with the
homogeneous compacti�cation that we discussed in Section 3.3. Throughout this section
we assume that n = p+q ≥ 2 and p, q > 0. We write G := SU(p, q), H := S(U(p)×U(q))
and denote the Hermitian adjoint of a complex matrix Z ∈Mp,q(C) by Z∗ := Z̄T .
To begin with, we let 〈·, ·〉 be a non-degenerate Hermitian form of signature (p, q) on Cn
and we may again assume that it is given by the standard form

〈v, w〉 =

p∑
i=1

viw̄i −
n∑

i=p+1

viw̄i, v, w ∈ Cn.

As in the real case, we can then write matrices in U(p, q) as block-matrices satisfying the
following conditions.

g =

(
A B
C D

)
∈ U(p, q)⇐⇒


A∗A− C∗C = Ip

B∗B −D∗D = −Iq
A∗B − C∗D = B∗A−D∗C = 0

(3.25)
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3.5 The Borel embedding as a homogeneous compacti�cation

By de�nition, such a matrix is contained in SU(p, q) if and only if det(g) = 1. As
indicated in Remark 3.3.7, the space SU(p, q)/S(U(p) × U(q)) can be described as a
symmetric space of the non-compact type of dimension 2pq and rank min(p, q) exactly as
in the real case. Moreover, we now see that it can be turned into a Hermitian symmetric
space since the center of S(U(p) × U(q)) is one-dimensional and consists of diagonal
matrices of the form (

eiθIp 0

0 e
−i p

q
θ
Iq

)
, θ ∈ R.

The Lie algebra h of H = S(U(p)× U(q)) is given by

h =

{(
X 0
0 Y

)
: X ∈ u(p), Y ∈ u(q), tr(X) + tr(Y ) = 0

}
,

where u(p) denotes the set of all complex skew-Hermitian (p × p)-matrices. Therefore,
we obtain the symmetric decomposition g = su(p, q) = h⊕ p, where

p =

{(
0 Z
Z∗ 0

)
: Z ∈Mp,q(C)

}
.

The element

Z0 := i

(
q
p+q Ip 0

0 − p
p+q Iq

)
is contained in the center of h and satis�es ad(Z0)|2p = −idp by a straightforward com-
putation. Hence, it induces an almost complex structure on G/H and we may use Z0 to
construct the Baily-Borel compacti�cation. To do this, we have to determine the com-
plexi�cations of the spaces involved.
Every complex matrix can be written as the sum of a Hermitian and a skew-Hermitian
matrix, which implies that the complexi�cation of g = su(p, q) is the Lie algebra sl(n,C)
of all complex trace-free matrices. The subspace pC = p⊕ ip is then given by

pC =

{(
0 Z1 + iZ2

Z∗1 + iZ∗2 0

)
: Z1, Z2 ∈Mp,q(C)

}
=

{(
0 W1

W2 0

)
: W1 ∈Mp,q(C), W2 ∈Mq,p(C)

}
and the eigenspaces p± ⊂ pC of ad(Z0) for the eigenvalues ±i are

p+ =

{(
0 W
0 0

)
: W ∈Mp,q(C)

}
, p− =

{(
0 0
W 0

)
: W ∈Mq,p(C)

}
.

Consequently, the exponential images of these spaces have the form

P+ =

{(
Ip W
0 Iq

)
: W ∈Mp,q(C)

}
, P− =

{(
Ip 0
W Iq

)
: W ∈Mq,p(C)

}
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3 Compacti�cations of symmetric spaces

and we clearly see that exp : p± → P± is a di�eomorphism. Finally, we also have

hC =

{(
X 0
0 Y

)
: X ∈Mp,p(C), Y ∈Mq,q(C), tr(X) + tr(Y ) = 0

}
,

HC =

{(
A 0
0 B

)
: A ∈ GL(p,C), B ∈ GL(q,C), det(A) det(B) = 1

}
and every matrix in SU(p, q) uniquely decomposes into a product of three matrices7

SU(p, q) 3 g =

(
A B
C D

)
=

(
Ip BD−1

0 Iq

)(
A−BD−1C 0

0 D

)(
Ip 0

D−1C Iq

)
, (3.26)

where the factors belong to P+, H
C and P−, respectively. Let o := eH be the base point of

the Hermitian symmetric space G/H. Under the Harish-Chandra embedding Ψ : G/H →
p+, a coset gH ∈ G/H represented by a block-matrix g as above is mapped to the unique
matrix Ψ(gH) ∈ p+ such that exp(Ψ(gH)) is the P+-factor in the decomposition of g.
Hence, we immediately obtain

Ψ(gH) =

(
0 BD−1

0 0

)
∈ p+,

which is easily seen to be smooth and independent of the representative of gH as it
should be. We will identify p+ with Mp,q(C) and simply express the Harish-Chandra
embedding as Ψ(gH) = BD−1. Our general theory suggests that Ψ is a di�eomorphism
onto a bounded, open set in Mp,q(C) which we can explicitly describe in this situation.

Proposition 3.5.1. The Harish-Chandra embedding of SU(p, q)/S(U(p)× U(q)) is in-

jective and its image is given by

DIp,q := {Z ∈Mp,q(C) : Iq − Z∗Z is positive de�nite} ⊂Mp,q(C). (3.27)

Proof. If Ψ(g1H) = Ψ(g2H), then using the block-matrix notation from above we have
B1D

−1
1 = B2D

−1
2 and thus B1D

−1
1 D2 = B2. Applying the second relation of (3.25) twice

shows that

−Iq = B∗2B2 −D∗2D2 = D∗2[(D−1
1 )∗B∗1B1D

−1
1 − Iq]D2

= D∗2[(D−1
1 )∗(D∗1D1 − Iq)D−1

1 − Iq]D2

= D∗2[Iq − (D−1
1 )∗D−1

1 − Iq]D2 = −(D−1
1 D2)∗(D−1

1 D2),

which is equivalent to N := D−1
1 D2 ∈ U(q). We then have D2 = D1N and B2 = B1N ,

so unitarity of N implies that the unique matrix h ∈ SU(p, q) satisfying g2 = g1h has
the block-form

h =

(
M 0
0 N

)
, M ∈ U(p), N ∈ U(q), det(M) det(N) = 1.

7Note that D∗D = Iq +B∗B by (3.25), so that D is positive de�nite and hence invertible.

90



3.5 The Borel embedding as a homogeneous compacti�cation

Therefore, it is contained in H = S(U(p) × U(q)), which shows that g1H = g2H and
that Ψ is injective. To characterize the image Ψ(G/H), we make use of the fact that a
Hermitian matrix M ∈ GL(q,C) is positive de�nite if and only if there exists a matrix
N ∈ GL(q,C) such thatM = N∗N . This matrix is unique up to unitary transformations
and there is a unique choice of N that is positive de�nite as well, in which case we have
M = N2. Both assertions are simple consequences of the spectral theorem for Hermitian
matrices (cf. [Lan02, Chapter XV, Section 6].
Using again the de�ning conditions in (3.25), we deduce that the matrix Ψ(gH) = BD−1

satis�es

Iq − (BD−1)∗(BD−1) = Iq − (D−1)∗B∗BD−1 = Iq − (D−1)∗(D∗D − Iq)D−1

= Iq − (Iq − (D−1)∗D−1) = (DD∗)−1,

which is positive de�nite since D is invertible. Conversely, let Z ∈Mp,q(C) be such that
Iq − Z∗Z is positive de�nite. Then the same is true8 for Ip − ZZ∗ and their inverses, so
there exist matrices X ∈ GL(p,C), Y ∈ GL(q,C) such that X∗ = X, X2 = (Ip−ZZ∗)−1

and Y ∗ = Y , Y 2 = (Iq − Z∗Z)−1. In this case, the block-matrix

g :=

(
X ZY
Z∗X Y

)
is an element of U(p, q), which follows directly by checking the conditions in (3.25).
Moreover, we even have g ∈ SU(p, q) since we can calculate the determinant using a
splitting of g into a product as in (3.26).

det(g) = det(X − (ZY )Y −1(Z∗X)) det(Y )

= det(X − ZZ∗X) det(Y ) = det(Ip − ZZ∗) det(X) det(Y )

=
det(Ip − ZZ∗)√

det(Ip − ZZ∗) det(Iq − Z∗Z)
= 1

Here, the last step is justi�ed as we have already noted that the matrices in the de-
nominator have the same eigenvalues, only the multiplicities for the eigenvalue 1 may be
di�erent which is irrelevant for the determinant. Thus, g de�nes an element gH ∈ G/H
that satis�es Ψ(gH) = Z, which shows that Ψ(G/H) = DIp,q .

The condition that Iq−Z∗Z is positive de�nite implies that all eigenvalues of Z∗Z are
smaller than 1. However, every such eigenvalue also has to be non-negative since Z∗Z is
positive semi-de�nite. Therefore, we have indeed realized G/H as a bounded domain in

8In fact, a Hermitian matrix is positive de�nite if and only if all its eigenvalues are positive. Now
Z∗Z and ZZ∗ have the same non-zero eigenvalues because if λ 6= 0 is an eigenvalue for Z∗Z with
eigenvector x, then Z∗Zx = λx, which implies Zx 6= 0 and ZZ∗(Zx) = λ(Zx) and conversely. Hence,
the eigenvalues of Z∗Z are smaller than 1 if and only if the eigenvalues of ZZ∗ have this property.
Moreover, this observation also shows that the geometric multiplicities of ZZ∗ and Z∗Z for non-zero
eigenvalues coincide and since these are Hermitian matrices, their algebraic multiplicities agree too.
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3 Compacti�cations of symmetric spaces

a complex vector space. Moreover, it is evident that the closure of this domain, i.e. the
Baily-Borel compacti�cation of G/H, is

DIp,q = {Z ∈Mp,q(C) : Iq − Z∗Z is positive semi-de�nite} ⊂Mp,q(C). (3.28)

The left-action of G on G/H induces an action of G on the domain DIp,q which by
de�nition of the di�eomorphism Ψ : G/H → DIp,q arises in the following way: We have
seen in the proof of Proposition 3.5.1 that every matrix Z ∈ DIp,q ⊂ Mp,q(C) can be
identi�ed with the representative(

X ZY
Z∗X Y

)
∈ SU(p, q)

from its pre-image in G/H on which a matrix g ∈ G acts by left-multiplication. In terms
of block-matrices, this takes the form(

A B
C D

)(
X ZY
Z∗X Y

)
=

(
(A+BZ∗)X (AZ +B)Y
(C +DZ∗)X (CZ +D)Y

)
.

Applying again the di�eomorphism Ψ, it follows altogether that the conjugated action
of G on DIp,q is given by generalized Möbius transformations

SU(p, q)×DIp,q → DIp,q(
A B
C D

)
· Z = (AZ +B)(CZ +D)−1,

(3.29)

which is isometric when DIp,q is endowed with the Riemannian metric induced by Ψ.

Remark 3.5.2. In the case p = q = 1 we obtain that DI1,1 = {z ∈ C : |z|2 < 1} = B2

is the open unit disk on which SU(1, 1) acts by (usual) Möbius transformations as in
the Poincaré ball model of hyperbolic geometry. Thus, the Riemannian metric on B2

induced by the di�eomorphism with SU(1, 1)/S(U(1)× U(1)) is the Poincaré metric.

Having determined the Harish-Chandra embedding of G/H, let us also construct its
Borel embedding into its compact dual. As we have seen, the complexi�cation of the Lie
algebra g = su(p, q) is gC = sl(n,C). Since the complex special linear group SL(n,C)
is simply connected (cf. [FH91, Proposition 23.1]) and indeed contains the connected
groups G,H,HC, P+ and P− that we considered so far, we may use GC := SL(n,C) in
the construction of the Borel embedding. Moreover, the closed subgroup

HCP− =

{(
A 0
C D

)
∈ SL(n,C) : A ∈ GL(p,C), D ∈ GL(q,C), C ∈Mq,p(C)

}
is the complex analogue of the group P in (3.18). Therefore, the space GC/HCP−
coincides with the complex Grassmannian Gr(q,Cn), viewed as the homogeneous space
SL(n,C)/P , where P is the stabilizer of the maximal negative de�nite subspace Cq ⊂ Cn
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3.5 The Borel embedding as a homogeneous compacti�cation

that is spanned by the last q vectors of the standard basis. A coset gP ∈ SL(n,C)/P is
then identi�ed with the subspace g(Cq) ⊂ Cn. Furthermore, the dual of g is given by

g∗ = h⊕ ip =

{(
X Z
−Z∗ Y

)
: X ∈ u(p), Y ∈ u(q), Z ∈Mp,q(C), tr(X) + tr(Y ) = 0

}
,

which obviously consists of all trace-free, skew-Hermitian (n×n)-matrices. Thus, we have
g∗ = su(n) and the corresponding connected Lie subgroup of SL(n,C) is G∗ := SU(n).
Hence, the compact dual of G/H = SU(p, q)/S(U(p) × U(q)) is the space G∗/H =
SU(n)/S(U(p)× U(q)). As discussed in Example 1.4.5, SU(n) also acts transitively on
Gr(q,Cn) and the stabilizer of the maximal negative de�nite subspace Cq ⊂ Cn coincides
with S(U(p)× U(q)). In this example, the di�eomorphism

G∗/H = SU(n)/S(U(p)× U(q)) ∼= SL(n,C)/P = GC/HCP− (3.30)

that is used in the construction of the Borel embedding simply expresses the fact that ev-
ery q-dimensional subspace of Cn possesses an orthonormal basis. Moreover, both P and
S(U(p) × U(q)) correspond to the stabilizer of the same space under the respective ac-
tions of SL(n,C) and SU(n) on Gr(q,Cn), which implies that the di�eomorphism above
reduces to the identity when viewed as a map Gr(q,Cn)→ Gr(q,Cn). On the algebraic
level, it identi�es a coset gP ∈ SL(n,C)/P with uH ∈ G∗/H, where u ∈ SU(n) satis�es
u(Cq) = g(Cq).
Comparing this construction with the results from Section 3.3 now provides us with two
embeddings of SU(p, q)/S(U(p) × U(q)) into Gr(q,Cn). On the one hand, there is a
natural inclusion SU(p, q) ↪→ SL(n,C) and a corresponding left-action of SU(p, q) on
SL(n,C)/P . In the Grassmannian picture, this corresponds to the standard action and
the coset eP is identi�ed with the negative de�nite subspace Cq ⊂ Cn. The induced
embedding gH 7→ g(Cq) realizes G/H as the open set of maximal negative de�nite
q-dimensional subspaces of Cn and the closure of this set is the homogeneous compacti�-
cation that we discussed in Section 3.3. On the other hand, we have the Borel embedding
where we view the Grassmannian as the compact dual SU(n)/S(U(p) × U(q)). To de-
termine the image and the action in this embedding, we �rst identify G/H with its
Harish-Chandra embedding Ψ(G/H) ⊂ p+. The entire space p+

∼= Mp,q(C) maps into
SL(n,C)/P ∼= Gr(q,Cn) and by construction, this embedding is given by

Mp,q(C) 3 Z 7→
(
Ip Z
0 Iq

)
P 7→

(
Ip Z
0 Iq

)
(Cq) = span

(
Z
Iq

)
∈ Gr(q,Cn).

The image of the restriction of this map to DIp,q clearly consists precisely of the q-
dimensional negative de�nite subspaces as expected. Moreover, the action of SU(p, q)
on DIp,q by generalized Möbius transformations is equivalent to the usual left-action on
Gr(q,Cn) under the embedding since the corresponding subspaces coincide.

span
(

(AZ +B)(CZ +D)−1

Iq

)
= span

(
AZ +B
CZ +D

)
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3 Compacti�cations of symmetric spaces

As mentioned before, passing from SL(n,C)/P to SU(n)/S(U(p) × U(q)) is the iden-
tity in the picture of Grassmannians, only the algebraic description of the G-action on
SU(n)/S(U(p)×U(q)) is cumbersome. Therefore, the image of SU(p, q)/S(U(p)×U(q))
in its Borel embedding also consists of all maximal negative de�nite subspaces of Cn and
the action of SU(p, q) coincides with the usual left-action when SU(n)/S(U(p)× U(q))
is identi�ed with Gr(q,Cn). Summarizing the discussion, we have proved the following.

Theorem 3.5.3. The Borel embedding of SU(p, q)/S(U(p)× U(q)) in its compact dual

SU(n)/S(U(p) × U(q)) coincides with its homogeneous compacti�cation in SL(n,C)/P
in the sense that both embeddings agree when viewed as subsets of Gr(q,Cn) and carry

the same action of SU(p, q).

This result concludes our survey about di�erent compacti�cation methods for symmet-
ric spaces of the non-compact type. There are many other constructions from various
areas of mathematics that could be discussed in this setting, but often require more pow-
erful tools - especially from Lie group theory - that go beyond the goals of this thesis.
Nevertheless, the elementary examples that we discussed in this chapter already display
many key phenomena of the more general theory. For example, it often occurs that the
number of boundary components increases with the rank of the symmetric space and
that the components itself can be described as �smaller� symmetric spaces of a simi-
lar kind. Finally, our discussion also illustrates that tools from many di�erent parts of
mathematics have interesting applications in this framework.
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