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Abstract

The idea of agents in superposition is central to both encapsulated observers,
i.e. Wigner’s-friend-type experiments, and correlations without definite causal
order. An agent might be regarded as a thinking or computing entity that is able
to perform operations on (other) quantum systems. In case of Wigner’s-friend
setups, an agent’s ability to make predictions about other agents potentially leads
to testable contradictions, if said agent is in superposition. Indefinite (quantum)
causal order can be understood as superposition of the order of operations dif-
ferent agents perform. In this case, agents with access to non-casual processes
can outperform agents with only causal processes as a resource in certain com-
putational tasks.

We started working on the topic of indefinite causal order contributing to the
notion of effectively definite causal order in the bipartite case. The main part
of the work presented in this thesis was done on scenarios containing observa-
tions of observers, i.e. encapsulated observers or Wigner’s-friend-type experi-
ments. We made a clear distinction between the formalism and the interpreta-
tions of quantum theory and showed that there are actually two inequivalent
quantum formalisms. If different agents in a Wigner’s-friend setup use differ-
ent formal descriptions for a quantum measurement, they arrive at contradicting
statements. This, however, becomes manifest only if there are classical records
of these statements that can be compared at some point. In order to arrive at
consistent probability assignments for setups comprising encapsulated observers,
we analyzed such a setup within the Page-Wootters formalism, arriving at three
possible probability rules, all of which exclude any observable contradictions for
Wigner’s-friend experiments. Finally, we adapted the Page-Wootters formalism
to enable it to capture certain, well understood, processes with indefinite causal
order: Those where the order of event is coherently controlled by a quantum
system.
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Zusammenfassung

Die Idee von Beobachtern in Superposition ist sowohl für verschachtelte Beobach-
ter, i.e. Wigners-Freund Experimente, als auch für unbestimmte kausale Struk-
turen von zentraler Bedeutung. Ein Beobachter ist in diesem Fall eine denk-
ende oder rechnende Einheit, die Operationen an (anderen) Quantensystemen
durchführen kann. Im Fall von Wigners-Freund Experimenten kann die Fähigkeit
eines Beobachters Vorhersagen über andere Beobachter zu machen zu testbaren
Widersprüchen führen, wenn sich ersterer in Superposition befindet. Unbes-
timmte Quanten-Kausalstrukturen können als Superpositionen der Abfolge von
Operationen verschiedener Beobachter verstanden werden. In diesem Fall kön-
nen Beobachter, die Zugang zu nicht-kausalen Prozessen haben, bestimmte Auf-
gabenstellungen besser erfüllen als solche Beobachter, die lediglich über kausale
Ressourcen verfügen.

Zuerst haben wir an unbestimmten kausalen Strukturen gearbeitet und zum
Verständnis des Konzepts einer effektiven Kausalität für zwei Beobachter beige-
tragen. Der Hauptteil dieser Arbeit befasst sich mit Beobachtungen von Beobach-
tern, i.e. verschachtelte Beobachter oder Wigners-Freund Experimente. Hier-
bei haben wir klar zwischen dem Formalismus und den Interpretationen der
Quantentheorie unterschieden und gezeigt, dass es zwei nicht äquivalente Quan-
tenformalismen gibt. Wenn verschiedene Beobachter in einem Wigners-Freund
Szenario verschiedene formale Beschreibungen eines Messvorgangs verwenden,
führt dies zu widersprüchlichen Aussagen, was allerdings nur dann offenkundig
wird, wenn diese Aussagen als klassische Aufzeichnungen vorliegen, die miteinan-
der verglichen werden können. Um den Messergebnissen verschiedener Beobach-
ter in Wigners-Freund Szenarien konsistent Wahrscheinlichkeiten zuzuordnen,
haben wir solch ein Gedankenexperiment mit Hilfe des Page-Wootters Formal-
ismus analysiert. Dabei fanden wir drei mögliche Wahrscheinlichkeitsformeln,
die allesamt Widersprüche ausschließen. Zuletzt haben wir den Page-Wootters
Formalismus angewendet um bestimmte nicht-kausale Prozesse zu beschreiben,
nämlich solche bei denen die Abfolge von Operationen durch den Quantenzus-
tand eines Kontrollsystems bestimmt wird.
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Chapter 1

Introduction

1.1 Cotutelle de Thèse

The cotutelle de thèse enables PhD students to conduct research and study at
two universities in different countries – in my case these are the Università della
Svizzera italiana in Lugano and the University of Vienna. For a cotutelle de thèse,
the doctoral candidate has to be enrolled in and fulfill the necessary requirements
of both universities involved as well as work at both universities for at least one
year. The supervision of the PhD thesis is shared between Prof.Stefan Wolf at the
Università della Svizzera italiana, where I spent the first half of my PhD studies,
and Prof. Časlav Brukner at the University of Vienna, where I spent the second
half of my degree and will defend this thesis. The thesis reviewer committee was
also chosen such that the respective requirements of both the Università della
Svizzera italiana and the University of Vienna are satisfied.

1.2 Wigner’s-friend experiments

The quantum measurement problem, despite lacking an unambiguous, unique
definition, is roughly the question of how, when and under what circumstances
definite values of physical variables are obtained in quantum theory, see Busch
et al. [1996]. In the literature it has often been subdivided into conceptually dif-
ferent sub-problems that can be addressed separately Brukner [2017]; Bub and
Pitowsky [2010]; Maudlin [1995]. The importance of the measurement prob-
lem is due to the fact that (standard) quantum theory comprises two different
dynamics, namely the collapse of the wave function, which without any onto-
logical commitment means the application of the state-update rule, and unitary

1



2 1.2 Wigner’s-friend experiments

evolution. Collapse dynamics describe the evolution of a quantum system upon
measurement, while in the absence of measurements these systems evolve uni-
tarily. Answering the above questions, that together constitute the measurement
problem, would give an unambiguous prescription for when to use which dy-
namics. Note, however, that quantum theory in its current form lacks such a
prescription altogether.

The Wigner’s-friend thought experiment was first proposed by Eugene Wigner
Wigner [1963] and considered the observation of an observer in order to illus-
trate the measurement problem. It comprises an observer – historically called
Wigner’s friend–, who measures a quantum system, as well as a so-called su-
perobserver – Wigner– who performs a joint measurement on the quantum sys-
tem, the friend and potentially other relevant degrees of freedom. The latter are
sometimes called the friend’s laboratory. Wigner’s friend uses the state-update
rule after obtaining a definite outcome for her measurement. However, provided
that the friend’s laboratory is sufficiently isolated, Wigner assigns an entangled
state to the composite laboratory system and describes the friend’s measurement
via unitary dynamics. Hence, the two observers disagree on the dynamics dur-
ing the friend’s measurement. Such setups allowing for quantum measurements
on observers are also referred to as encapsulated observers and can, in princi-
ple, contain more than just two levels of observation, i.e. beyond observers and
superobservers, see Figure 1.1.

S MO MSO MSSO

|φS〉 |ΦSO〉 |Φtot〉

Figure 1.1. Encapsulated observers: The source S emits a system in quantum
state |φS〉, which is measured by an observer (the friend), who performs mea-
surement MO and applies the state-update rule. To the superobserver (Wigner)
the joint system of S and F evolves unitarily to the overall state |ΦSO〉, on
which he then performs measurement MSO. This can in principle be continued
indefinitely and gives rise to an ever higher order of observation: observers,
superobservers, super-superobservers etc. To each order of observer, all lower-
oder observations constitute one big joint quantum system described by unitary
evolution and state |Φtot〉.
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Despite the measurement problem being one of the oldest problems of quan-
tum theory, there have in recent years been new proposals combining Wigner’s-
friend-type scenarios with other known setups, where quantum theory was known
to give puzzling predictions, for example Brukner [2018]; Frauchiger and Ren-
ner [2018]. These setups, which will be introduced in detail in Section 1.2.2,
have been used to devise arguments against the consistency of quantum theory
and the existence of objective, observer-independent facts, which sparked re-
newed debate in the quantum-foundations community Baumann et al. [2016];
Bub [2018]; Cavalcanti [2021]; Sudbery [2017]; Losada et al. [2019].

1.2.1 The simplest Wigner’s-friend experiment

The simplest version of the Wigner’s-friend experiment, as depicted in Figure
1.2, features a source S which emits a qubit state |φ〉S ∈ HS. Wigner’s friend
F measures this qubit in the σz-basis observing outcome “up” or “down” cor-
responding to states | ↑〉S or | ↓〉S. Assuming collapse dynamics for F ’s mea-
surement gives states | ↑〉S|u〉F or | ↓〉S|d〉F for the joint system S + F associated
with Hilbert space HS ⊗HF , where |u〉F and |d〉F are the states describing the
friend having seen outcome “up” and “down” respectively. In general, HF can
be regarded as the space of those degrees of freedom that store the measure-
ment result the friend observed. Wigner W measures the joint system S + F in
some basis {|1〉, |2〉, |3〉, |4〉}, where the first two basis elements are spanned by
| ↑〉S|u〉F and | ↓〉S|d〉F while the two basis vectors |3〉 and |4〉 are linear combina-
tions of | ↑〉S|d〉F and | ↓〉S|u〉F . Assuming that the friend’s measurement satisfies
the rules of standard quantum mechanics, the result she sees is perfectly corre-
lated with the corresponding eigenstate of the system. Hence, the terms | ↑〉S|d〉F
and | ↓〉S|u〉F will not appear in the overall state of S + F regardless of whether
one describes F ’s measurement via collapse or unitary dynamics. However, if
the friend’s laboratory is sufficiently isolated, Wigner describes F ’s measurement
as an entangling unitary resulting in a joint state |Φ〉SF , which in general is nei-
ther | ↑〉S|d〉F nor | ↓〉S|u〉F . Assuming collapse dynamics for W ’s measurement,
then, means that the post-measurement state of S + F +W is either |1〉SF |w1〉W
or |2〉SF |w2〉W where states |w j〉W ∈ HW correspond to Wigner having seen out-
come j.

The fact that Wigner and his friend use different dynamical descriptions for
the same process, i.e. F ’s measurement, leads to them assigning different proba-
bilities to W ’s measurement outcomes. In general, the state emitted by the source
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a.

b.

S MF

| ↑〉S|u〉F

| ↓〉S|d〉F

MW

|1〉SF |w1〉W

|2〉SF |w2〉W

|φ〉S

Figure 1.2. The simplest Wigner’s-friend experiment: a. The setup consist of
a qubit source and an observer – Wigner’s friend –inside an isolated laboratory
as well as superobserver –Wigner– who is situated outside said laboratory. b.
The source S emits a qubit |φ〉S, which is measured by the friend F in the basis
{| ↑〉, | ↓〉}. Wigner’s friend obtains one of the results “up” or “down”, which
corresponds to states |u〉F and |d〉F respectively. Wigner W then measures the
joint system in a basis {|1〉, |2〉, |3〉, |4〉}, where |1〉SF = α | ↑〉S|u〉F + βeiφSF | ↓
〉S|d〉F and |2〉SF = βe−iφSF | ↑〉S|u〉F −α| ↓〉S|d〉F with α,β ,φSF ∈R. If F applies
the state-update rule after her measurement, she will predict probabilities for
W ’s measurement on her laboratory, which differ from those predicted by W ,
if he describes F ’s measurement unitarily.

is

|φ〉S = a| ↑〉S + beiφS | ↓〉S , (1.1)

and the states |1〉 and |2〉 of W ’s measurement basis are given by

|1〉SF = α| ↑〉S|u〉F + βeiφSF | ↓〉S|d〉F (1.2)

|2〉SF = βe−iφSF | ↑〉S|u〉F −α| ↓〉S|d〉F , (1.3)
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with a, b,φS,α,β ,φSF ∈R. For now, assume for simplicity that the source emits
the state |φ〉S = 1/

p
2(| ↑〉S + | ↓〉S) and that Wigner’s measurement results 1

and 2 correspond to states (1.2) and (1.3) with φSF = 0. The friend employing
collapse dynamics uses the product states |z〉S| fz〉F , where z ∈ {↑,↓}, f↑ = u and
f↓ = d, for calculating the the probabilities for any subsequent measurement and
hence assigns probabilities

PF(w) = |〈z|〈 fz|w〉SF |2 (1.4)

to W ’s measurement results with w ∈ {1,2, 3,4}. Wigner, however, assigns the
post-measurement state |Φ〉SF = 1/

p
2(| ↑〉S|u〉F + eiν| ↓〉S|d〉F) to the friend’s

laboratory, where ν ∈R depends on the specifics of the interaction Hamiltonian
between F and the system S. Therefore, W predicts probabilities

PW (w) = |〈Φ|w〉SF |2 (1.5)

for the outcomes of his measurement. Plugging in the corresponding states gives
the following, clearly different, probability distributions according to F and W :

PF(w) : 1 2 PW (w) : 1 2

f = u α2 β2 f = u 1
2(α+ β)

2 1
2(β −α)

2

f = d β2 α2 f = d 1
2(α+ β)

2 1
2(β −α)

2.

(1.6)

These differing probability assignments constitute the core of the Wigner’s friend
paradox and can, in principle, be resolved in three different ways. The two
straight forward solutions to the paradox are that one agent instead of using the
dynamical description above adopts the description of the other agent. In these
cases, Wigner and his friend will both agree either on probabilities PF or on prob-
abilities PW . Another approach to the Wigner’s friend paradox is accepting the
disagreement in the probability assignments and abandoning the requirement
that two agents, even when describing the same experiment, must agree under
all circumstances. These different approaches are discussed in more detail in
Chapter 2.

1.2.2 Extended Wigner’s-friend setups

Different proposals combining two or more simple Wigner’s-friend setups drew
renewed attention to the thought experiment and provided new kinds of para-
doxes for encapsulated observers. The most famous of these proposals is the one
by Daniela Frauchiger and Renato Renner Frauchiger and Renner [2018] and is
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a.

b.

C MF1 MA

|φC〉

S MF2 MW

|φS〉

Figure 1.3. The Frauchiger-Renner setup: There are two friends – F1 and F2

– who perform measurement on two qubits observing results “heads” or “tails”
in case of F1, and “up” or “down” in case of F2. The two superobservers –
Wigner W and his assistant A – perform measurements on the laboratories of
F2 and F1 respectively. b. The source in the first laboratory emits a coin state
|φC〉 which is measured by F1. Depending on the result, F1 sends state |φS〉,
which is measured by F2. Assistant A and Wigner W perform measurements in
analogous superposition bases on the first and second laboratory respectively.

depicted in Figure 1.3. The four agents in this setup are two observers – F1 and
F2 – and two superobservers – Wigner W and his assistant A – who perform the
following protocol:

0 The source in F1’s laboratory emits a quantum coin state |φC〉=
q

1
3 |h〉S1

+
q

2
3 |t〉S1

which is an unequal superposition of “head” and “tail”.
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1 Friend F1 measures the quantum coin in the basis {|h〉, |t〉} and prepares a
spin state |φS〉= | ↓〉S2

, if the result of the measurement was “head”, and a

spin state |φS〉 =
q

1
2(| ↓〉S2

+ | ↑〉S2
), if the result was “tail”. The spin state

|φS〉 is sent to F2’s laboratory.

2 Friend F2 measures the spin state in the basis {| ↑〉, | ↓〉} obtaining result
“up” or ‘down”.

3 The assistant Ameasures the joint system of the quantum coin C and friend F1

in a basis containing states

|o〉S1F1
=
Æ

1/2(|h〉S1
|H〉F1

− |t〉S1
|T 〉F1

),

| f 〉S1F1
=
Æ

1/2(|h〉S1
|H〉F1

+ |t〉S1
|T 〉F1

),

obtaining results “ok” or “fail” respectively. The states |H〉F1
and |T 〉F1

corre-
spond to F1 having seen outcome “head” or“tail” during her measurement.

4 Wigner W performs a joint measurement on the spin state S and friend F2

in a basis containing

|O〉S2F2
=
Æ

1/2(| ↓〉S2
|d〉F2

− | ↑〉S2
|u〉F2

),

|F〉S2F2
=
Æ

1/2(| ↓〉S2
|d〉F2

+ | ↑〉S2
|u〉F2

),

where |u〉F2
and |d〉F2

are the states of F2 having seen “up” or “down”. Also
Wigner’s results are labeled “ok” and “fail”.

5 Wigner and his assistant compare their results. If they both obtain the
result “ok” corresponding to |O〉 and |o〉 respectively, they stop the protocol,
otherwise they repeat steps 0 - 5.

Similar to the famous Hardy paradox Hardy [1993], they derive a contradiction
for the measurement results of all agents in the round of the protocol, where
both superobservers measure “ok”, see Figure 1.4. This contradiction is partic-
ularly striking since it is phrased in terms of deterministic predictions of results
in one particular run of the experiment. As in the simple Wigner’s-friend setup,
the contradiction can be understood as caused by one of the observers, namely
F1, describing her own measurement via collapse dynamics, while to the super-
observers the state of both laboratories evolves unitarily.

Another kind of extended Wigner’s-friend setups Brukner [2018]; Healey
[2018]; Leegwater [2018] combines encapsulated observers with Bell- and GHZ-
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PA( f2 = u|a = o) = 1

F2 saw “up”.

Asisstant W saw “ok”.

PW (w= O) = 0
�

Wigner

F1 saw “tails”.

PF2
( f1 = T | f2 = u) = 1

Friend 2
PF1
(w= F | f1 = T ) = 1

W sees “fail”.
clps

Friend 1

comm.

Figure 1.4. The contradiction for the setup in Figure 1.3: Starting with the
assistant A, each agent deduces, based on their own result, the measurement
outcome of another with certainty (black arrows). Requiring that such predic-
tions match the actual observation of the other agent (dotted arrows) gives a
circle of reasoning that leads to a contradiction for Wigner W . The protocol
ensures that during the final round both superobservers measure “ok”. Wigner
can confirm this by communicating with his assistant (gray double arrow). Due
to A having seen “ok”, F2 should have seen “up”. If F2 saw up, F1 should have
seen “tails”. However, if F1 saw “tails”, W should have seen “fail” which is in
contradiction with his actual observation. Note, that F1’s prediction of W ’s
result is due to her using the state-update rule after her measurement.

type setups Bell [1964]; Greenberger et al. [1989] in order to construct argu-
ments against the existence of objective, observer-independent facts. According
to Bell’s theorem, the violation of Bell-like inequalities precludes the possibil-
ity of combining all the outcomes under consideration in one joint probability
distribution such the observed statistics are the respective marginal distribu-
tions. The setup in Brukner [2018] is depicted in Figure 1.5 and combines two
Wigner’s-friend experiments and a CHSH-type Bell setup Clauser et al. [1969].
Each Winger’s friend setup receives one part of an entangled two-qubit state

|Ψ〉= cosθ |Φ+〉S1S2
− sinθ |Ψ−〉S1S2

(1.7)

=
cosθ
p

2
(| ↑〉S1

| ↑〉S2
+ | ↓〉S1

| ↓〉S2
)−

sinθ
p

2
(| ↑〉S1

| ↓〉S2
− | ↓〉S1

| ↑〉S2
),

which is measured by the observers – Charlie C and Debbie D– in the σz-basis.
Then the two superobservers – Alice A and Bob B – can each choose between
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either performing the measurement that reveals the respective observer’s re-
sult or the complementary measurement that confirms the superposition state
of the respective laboratory. More concretely, Charlie measures qubit 1 and his
laboratory is measured by Alice, while Debbie measures qubit 2 and her lab-
oratory is measured by Bob. This means MF := | ↑〉〈↑ |S f

− | ↓〉〈↓ |S f
with

(S f , F) ∈ {(S1, C), (S2, D)}, while the measurements MW are either Wz := |u〉| ↑〉
〈↑ |〈u|S f F − |d〉| ↓〉〈↓ |〈d|S f F or Wx := |u〉| ↑〉〈↓ |〈d|S f F − |d〉| ↓〉〈↑ |〈u|S f F where
(F, W ) ∈ {(C , A), (D, B)}, compare Figure 1.5.

a.

b.

|Ψ〉 MD MBMCMA

Figure 1.5. A Wigner-Bell setup: a. Two spacelike separated observers – Deb-
bie and Charlie– become entangled due to their measurements on the two halves
of an entangled pair. The two superobservers – Alice and Bob – can choose be-
tween two different measurements on the observers’ laboratories. b. The state
|Ψ〉 = cosθ |Φ+〉S1S2

− sinθ |Ψ−〉S1S2
, where |Φ+〉 and |Ψ−〉 are the maximally

entangled Bell states, is distributed to the two Wigner’s-friend setups. The
observers Charlie and Debbie each measure the subsystem they receive in the
σz-basis. The superobservers Alice and Bob choose between two measurements
MA ∈ {Ax , Az} and MB ∈ {Bx , Bz} on the joint system of qubit and respective
observer. The z-measurements of the superobservers reveal the measurement
results of the observers, while the x-measurements confirm a superposition
state of the whole laboratory after the respective observer’s measurement.

Like for any Bell setup, one assumes ‘locality’ and ‘freedom of choice’ and
in addition to that ‘universal validity of quantum theory’ and the ‘existence of
observer-independent facts’. The first of these two additional assumptions en-
sures that the unitary descriptions of the two superobservers of the observers’
laboratories is correct, i.e. their probability assignments match the frequencies
of their observed results. Hence, starting from the state in Equation (1.7), the
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overall state of the two laboratories after the measurements of C and D is given
by

|Ψtot〉=
cosθ
p

2

�

| ↑, u〉S1C | ↑, u〉S2D + | ↓, d〉S1C | ↓, d〉S2D

�

−
sinθ
p

2

�

| ↑, u〉S1C | ↓, d〉S2D − | ↓, d〉S1C | ↑, u〉S2D

�

, (1.8)

where |z, fz〉S f F stands for |z〉S f
| fz〉F and, again, |u〉F and |d〉F are the states of the

respective observer F ∈ {C , D} having seen outcomes “up” and “down”. The as-
sumption of ‘existence of observer-independent facts’ means that one can jointly
assign values to the observed outcomes of all four agents, which would have
to be determined by a joint probability distribution. Moreover, in those runs of
the experiment where both superobservers measure in the superposition basis,
the observers’ outcomes correspond to those of the other two observables of Alice
and Bob, namely those that would reveal Charlie’s and Debbie’s observed results.
Hence, these four assumptions together imply that the correlation functions for
the superobservers’ measurements satisfy the CHSH-type Wigner-Bell inequality

S = |E(Ax , Bx) + E(Ax , Bz) + E(Az, Bx)− E(Az, Bz)| ≤ 2. (1.9)

For E(Ai, B j) = 〈Ψtot |Ai⊗B j|Ψtot〉, with i, j ∈ {x , z} and |Ψtot〉 according to Equa-
tion (1.8), however, one obtains S = 2

p
2 ≥ 2, which constitutes a violation of

the Wigner-Bell inequality in Equation (1.9). This, in turn, implies that no joint
probability distribution P(Ax , Az, Bx , Bz) exists, such that its marginals give the
respective correlation functions. Brukner argues that this precludes an assign-
ment of definite values to the observers’ measurement outcomes and, therefore,
excludes the existence of observer-independent facts, if one maintains the other
three assumptions. Note that the empirical content of the above argument, i.e.
experimental violation of the Wigner-Bell inequality in Equation (1.9), has been
confirmed Bong et al. [2020]; Proietti et al. [2019], although with a very minimal
observer model that allowed for considering photons as observers.

1.3 Indefinite causal order

The notion of a global causal order is deeply rooted in all areas of physics, where
physical processes are happening in the causal structure of spacetime. However,
in any theory unifying quantum physics and general relativity the casual structure
is expected to be both dynamical, as in general relativity, as well as indefinite,
due to quantum theory Butterfield and Isham [2001]; Hardy [2005, 2007, 2009];
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Kiefer [2012]; Rovelli [2004]; Zych et al. [2019]. The process-matrix frame-
work Oreshkov et al. [2012] allows for scenarios with no well-defined global
order of the operations by different agents, for whom locally the order of events
is well-defined. These non-causal processes are a consequence of the formalism
and in many cases still lack a clear physical interpretation.

In Baumann and Brukner [2016] we showed that for two agents a certain
class of operations makes any process appear effectively causal. Moreover, we
investigated non-causal processes in the context of the Page-Wootters formalism,
which is introduced in Section 1.4, see Baumann et al. [2021], to provide fur-
ther arguments which types of processes might be physically meaningful. These
results are summarized in Chapter 3.

1.3.1 The process-matrix framework

Figure 1.6. The idea behind the process-matrix framework for the bipartite
example: Two agents, A and B, are situated inside their laboratories and each
obtains some input system from the environment, acts on it with a quantum
operation, and then send it out again. While inside the laboratories the order
of events is well-defined, signified by the two clocks, there need not be a well-
defined global ordering of the agents’ operations. The outcome statistics of the
operations performed by A and B is described by a process matrix G , which
can be such that it is not possible to define a global order parameter (i.e. time)
for these operations.

The process-matrix framework was introduced to capture the most general
correlations between agents, labeled X k ∈ {A . . . N}, without assuming a well-
defined causal order between them. The agents are associated with their labo-
ratories inside of which the order of events is well-defined, i.e. there is a well-
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defined local time for each agents. Each laboratory is assumed to receive some
input quantum system with Hilbert space H X k

1 and send away an output quan-
tum system described by Hilbert spaceH X k

2 . Between these two events, agent X k

is thought to perform a quantum operation or quantum instrument, i.e. a prob-
abilistic map from quantum states to quantum states, which potentially allows
him or her to obtain some classical outcome ik, see Figure 1.6. Hence, agent X k

is described by a set of quantum operations {M Xk
ik
}. The proposal of Oreshkov

et al. [2012] is that the joint probability of maps of different agents is given by a
generalized Born rule

P(M X 1

i1
. . .M X n

in
) = Tr

�

W

� n
⊗

k=1

M
X k

1 X k
2

ik

��

, (1.10)

where M
X k

1 X k
2

ik
∈ L (H X k

1 ⊗H X k
2 ) are the Choi-Jamiołkowski (CJ) matrices Choi

[1975]; Jamiołkowski [1972] of the agents’ operations, which are completely
positive and trace non-increasing. Moreover, summing over the outcomes ik of
an agent should give a completely positive, trace preserving map, which means
the CJ matrices satisfy

∀k : TrX k
2

 

∑

ik

M
X k

1 X k
2

ik

!

= 1X k
1

. (1.11)

The mathematical object relating the agents’ operation is the so-called process
matrix W ∈ L

�

⊗

k=1H X k
1 ⊗H X k

2

�

. Requiring that Equation (1.10) gives proper
probabilities, numbers in [0, 1] which sum to 1, excludes so-called causal loops,
which would allow some agent to signal to his or her own past creating logical
problems like the famous grandfather paradox. In general, however, process ma-
trices allow for scenarios with indefinite causal order, where no global order, i.e.
a well-defined global time, exists. Such non-causal process could, for example,
be superpositions of causally ordered space-time structures.

Alternatively, process matrices can be identified with generalized higher or-
der quantum maps GW (M A . . .M N ), which, if the global order of the operations
performed is well-defined, are equivalent to quantum combs Chiribella et al.
[2008]; Perinotti [2017]; Bisio et al. [2011]; Chiribella et al. [2009]; Yokojima
et al. [2021].

Causal inequalities are bounds on the success probabilities of guessing games
between agents, see Baumeler et al. [2014]; Branciard et al. [2016]; Brukner
[2015], which hold if there is a definite global causal order but can be violated
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with non-causal processes and certain local strategies. Processes, which violate
causal inequalities, can be understood in terms of post selected closed timeline
curves Baumeler et al. [2019]; Lloyd et al. [2011]. Analogous to separable quan-
tum states one can define causally separable processes Oreshkov and Giarmatzi
[2016]. They correspond to definite global causal orders or convex mixtures of
them and can never violate a causal inequality. However, not all processes en-
coding indefinite causal order can violate causal inequalities. Such processes can
still be shown to exhibit indefinite causal order by causal witnesses Araújo et al.
[2015]. An example for this kind of processes, which has also been implemented
experimentally, is the quantum-switch, where the order of operations is deter-
mined by a control quantum system in superposition Chiribella et al. [2013];
Goswami et al. [2018]; Guo et al. [2020]; Procopio et al. [2015]; Rubino et al.
[2017]; Taddei et al. [2021]; Wei et al. [2019].

1.3.2 Pure processes and causal reference frames

The fact that many non-causal processes lack a clear interpretation motivated
looking for additional principles which might be relevant for identifying physi-
cally meaningful processes. In Araújo et al. [2017], the authors suggest that only
processes that can be obtained form pure processes are physical. A pure process
G is a a multi-linear unitary-preserving map, i.e. G (UA, UB . . . UN ) is unitary for
any unitary operations UA, UB . . . UN . Note that, by introducing suitable ancillary
systems A′, B′ . . . N ′, one can always represent the agents’ quantum operations
as unitary operations acting on the respective ancilla and the system parts that
the agents obtain as inputs, see Figure 1.7. Pure processes can be understood
as reversible transformations from a well-defined casual past to a well-defined
casual future, with potentially indefinite causal order in between.

Note that the quantum switch mentioned in the previous section is an exam-
ple of a pure process. In fact it has been shown in Barrett et al. [2021] that for
two agents any pure process is either causally ordered or some variant of coher-
ent control of causal order, of which the switch is the best known example. This
in turn means that pure bipartite processes cannot violate causal inequalities. For
more than two agents, however, restricting oneself to purifiable processes does
not exclude violations of causal inequalities. An example of a pure tripartite pro-
cess with indefinite causal order, often called the Lugano process, is known to
violate causal inequalities, see Araújo et al. [2017]; Baumeler and Wolf [2016].

In Allard Guérin and Brukner [2018] the authors introduced the notion of
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Figure 1.7. Pure processes for the bipartite scenario: The quantum operations
of agents A and B can be represented as unitaries UA, UB by introducing ancillary
systems A′, B′. These ancillas are not acted upon by anything other than the
quantum operations of the respective agents. A pure process G is a multilinear
supermap that gives an induced unitary transformation on S⊗A′⊗B′ when the
agents are applying unitary operations UA, UB.

causal reference frames and showed it to be equivalent to the process-matrix
framework for pure processes. More concretely, every pure process has a causal
reference frame decomposition and any such decomposition corresponds to some
pure process. The casual reference of an agent describes that agent’s perspective
inside such a process. Consider, for example, agent A who from his or her per-
spective applies quantum operation UA at a certain time as measured inside his
or her laboratory. The evolution from the well-defined global past, which is com-
mon to all agents, up to that point is called the causal past of A and given by a
unitary ΠA(UB, . . . UN ), which can depend on the operations of all other agents.
While A applies unitary UA to the input to his or her laboratory and ancilla A′, all
other degrees of freedom evolve in an uncorrelated way. The evolution following
this application up to the well-defined common global future is given by another
unitary ΦA(UB, . . . UN ), which is called the causal future of A and can again de-
pend on the other agents’ operations. Any pure process G can then be written
as

G (UA, UB, . . . UN ) = ΦA(UB, . . . UN ) (UA⊗1)ΠA(UB, . . . UN), (1.12)
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which corresponds to A’s point of view. Similar decompositions exit for all agents
whose operations are related by process G . The casual reference frame decom-
position for both the bipartite quantum switch and the time-reversed Lugano
process are depicted in Figure 1.8.

1.4 The Page-Wootters formalism

The Page-Wooters formalism (PWF) was introduced by Don Page and William
Wootters Page and Wootters [1983]; Wootters [1984] to address the problem of
time in quantum theory Achuthan and Venkatesan [1958]; Isham [1993]; Kuchař
[2011]. It associates a Hilbert-space structure with time similar to how standard
quantum theory does with spatial position. By introducing a quantum clock sys-
tem, the PWF allows for describing time-evolution of quantum systems via cor-
relations between the clock and said systems. Consider the clock and systems
being associated with Hilbert spacesHc ' L2(R) andHS respectively. Choosing
Hc to be spanned by square integrable functions on the real line allows to, in
analogy to the spatial momentum operator, define “temporal momentum” oper-
ator p̂t := −i ∂∂ t . The so-called physical state or history state |Ψ〉〉 of the clock
and the systems under consideration is a solution to the Wheeler-DeWitt-like
equation DeWitt [1967]

Ĉ |Ψ〉〉=
�

p̂t + ĤS

�

|Ψ〉〉= 0, (1.13)

which can in some cases be interpreted as arising from the canonical quantization
of a gauge theory with a Hamiltonian constraint. One defines the time observable
T̂c as the one that is covariant with respect to the clock Hamiltonian p̂t Holevo
[1982]; Busch et al. [1995], which means that

T̂c =

∫

R

d t t|t〉〈t|, (1.14)

where |t〉 are improper eigenvectors of T̂c associated with the eigenvalue t ∈
R, which are connected to one another by the unitary generated by the clock
Hamiltonian, i.e. |t2〉 = e−i p̂c(t2−t1)|t1〉. Enforcing the covariance condition then
implies that T̂c is canonically conjugate to the clock Hamiltonian, [T̂c, p̂c] = i. If
one now defines the conditional state of the systems given that the clock reads
the time t as

|ψ(t)〉S :=
�

〈t| ⊗1S

�

|Ψ〉〉 , (1.15)
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a.

b.

Figure 1.8. The causal reference frame of agent A for the quantum switch (a)
and for the time reversed Lugano process (b) both according to Allard Guérin
and Brukner [2018]. a.: In case of the quantum switch, both agents apply their
operations to the target system |φt〉. According to agent A’s perspective his or
her unitary UA is applied in the middle of the process, while agent B applies
their unitary either before or after that, depending on the value of the control
|φc〉. b.: In case of the Lugano process, both the casual past and casual future
of A depend on the operations of B and C in a non-trivial manner. Note that,
other than for the switch, there is no separate control system in case of the
time reversed Lugano process. All agents act on different subsystems of input
|φ〉. Moreover, the agent’s action is partially controlled by the subsystems the
other agents act on.

one can formally expand the physical states |Ψ〉〉 as

|Ψ〉〉=
∫

dt |t〉 ⊗ |ψ(t)〉S. (1.16)
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In this expansion it is clear that an ordered time sequence t0 < t1 < t2 corre-
sponds to a history of the system given by states |ψ(t0)〉, |ψ(t1)〉 and |ψ(t2)〉.
Hence, the physical states |Ψ〉〉 are also called history states. The conditional
system state |ψ(t)〉S can be shown to satisfy the standard Schrödinger equation,

i
∂

∂ t
|ψ(t)〉S = HS|ψ(t)〉S, (1.17)

see for example Wootters [1984]. The probability that a system observable M̂ =
∑

m m|m〉〈m|S takes the value m when the clock reads time t is given by

P
�

M̂ = m when T̂C = t
�

=
〈〈Ψ |

�

|t〉〈t| ⊗Πm

�

|Ψ〉〉

〈〈Ψ |
�

|t〉〈t| ⊗1S

�

|Ψ〉〉
, (1.18)

which using Equation (1.15) gives the Born rule of standard quantum theory

P (m when t) = 〈ψS(t)|m〉〈m|ψS(t)〉. (1.19)

From here on we will use the abbreviated expression for the probabilities, in
which we omit the operators, i.e., P(M̂ = m when T̂C = t) = P(m when t).
Together Equations (1.17) and (1.19) mean that the Page-Wootters formalism
recovers the two main features of standard quantum theory, i.e., the Schrödinger
equation and the standard Born rule.

In general, solutions to Equation (1.13) can be obtained from arbitrary states
|φ〉〉 in the kinematical Hilbert space K 'Hc ⊗HS with the operator

P̂ :=

∫

R

ds e−isĈ . (1.20)

That is, supposing |φ〉 ∈ K is some arbitrary state in the kinematical space,
then |Ψ〉〉 = P̂|φ〉 is a solution to the constraint equation, i.e. Ĉ(P̂|φ〉) = 0. For
this reason the operator P̂ is sometimes called the physical projector, see Dolby
[2004], although it is not a projector in the strict mathematical sense. Note that,
for the choice of clock Hamiltonian above, which we refer to as an ideal quantum
clock, the solutions to Equation (1.13) are often referred to as the physical space
Hph , but do not form a proper subspace of the kinematical Hilbert spaceK . Since
the the spectrum of Ĉ is continuous around zero, the physical states |Ψ〉〉 are
not normalizable in the kinematical inner product Kiefer [2012]; Rovelli [2004].
One can define a new inner product to normalize the physical states, which then
defines the physical Hilbert spaceHph ,

〈〈Ψ|Φ〉〉ph := 〈〈Ψ | P̂ |Φ〉〉 , (1.21)



18 1.4 The Page-Wootters formalism

where the right hand-side signifies the inner product on the kinematical Hilbert
space K . Requiring that the physical states are normalized with respect to the
physical inner product in Equation (1.21) then implies that the conditional states
|ψ(t)〉S are normalized inHS. Moreover, 〈t2|P̂|t1〉=U (t2, t1) is a unitary oper-
ator onHS and in case of Ĉ = p̂c + ĤS is given by

〈t2|P̂|t1〉= e−i(t2−t1)HS , (1.22)

which is the time evolution according to the Schrödinger equation.

As pointed out by Karel Kuchař Kuchař [2011] the PWF does not allow to cal-
culate conditional probabilities for two consecutive measurements in accordance
with standard quantum theory, i.e.

P (b|a) = |〈b|e−i(t2−t1)HS |a〉|2. (1.23)

Moreover, Kuchař claimed that the Page-Wootters formalism is unable to repro-
duce the correct propagator of the system between two measurements at times
t1 and t2 respectively. The problem with attempting to determine the proba-
bility of the first observable Â giving outcome a at time t1 and another observ-
able B̂ giving outcome b at t2, is that after applying the operator for the first
measurement one ends up with a state that is in general no longer part of the
physical space, i.e. Ĉ (|t1〉〈t1| ⊗ |a〉〈a| |Ψ〉〉) 6= 0. Hence, applying the second
operator, i.e. |t2〉〈t2| ⊗ |b〉〈b|, does not give the probabilities in Equation (1.23).
Carl Dolby solved this problem by exclusively considering objects on the physical
Hilbert space, see Dolby [2004]. More concretely, he applies the physical pro-
jector form Equation (1.20) to the measurement operators, threfore considering
P̂|t1〉〈t1|⊗|a〉〈a|P̂ and P̂|t2〉〈t2|⊗|b〉〈b|P̂. This means that the sate after the first
measurement is P̂ (|t1〉〈t1| ⊗ |a〉〈a|) |Ψ〉〉, which is a solution of the constraint
equation by construction and indeed Dolby was able to recover the standard
quantum probabilities in Equation (1.23)

P (b when t2|a when t1) (1.24)

:=
〈〈Ψ | P̂|t1〉〈t1| ⊗ |a〉〈a|P̂|t2〉〈t2| ⊗ |b〉〈b|P̂|t1〉〈t1| ⊗ |a〉〈a|P̂ |Ψ〉〉

〈〈Ψ | P̂|t1〉〈t1| ⊗ |a〉〈a|P̂ |Ψ〉〉
= |〈b|e−i(t2−t1)HS |a〉|2.

Following arguments in Hellmann et al. [2007] concerning the lack of an op-
erational meaning for certain constructions in Dolby’s proposal, Giovannetti et
al. Giovannetti et al. [2015], proposed another solution to the problem pointed
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out by Kuchař. They used purified (i.e. von Neumann-) measurement model,
incorporating the measurement devices into the Page-Wooters formalism. The
measurements are then entangling unitaries between the measured system and
apparata. The corresponding interaction Hamiltonian is an additive term in the
constraint operator, which allows the authors to equate the two measurements
on the system at different times t1 and t2 with one joint measurement of the two
apparata at some final time t > t2 > t1

P (b when t2|a when t1) (1.25)

:=
〈〈Ψ | |t〉〈t| ⊗ |Aa〉〈Aa| ⊗ |Bb〉〈Bb| |Ψ〉〉

〈〈Ψ | |t1〉〈t1| ⊗ |a〉〈a| |Ψ〉〉
= |〈b|e−i(t2−t1)HS |a〉|2,

where |Aa〉 and |Bb〉 are the states of the first measurement apparatus having
registered outcome a and the second measurement apparatus having registered
outcome b respectively. Just like Carl Dolby’s approach, Equation (1.25) recovers
standard quantum probabilities for two consecutive measurements, but avoids
those constructions possible by the approach in Dolby [2004], which were criti-
cized in Hellmann et al. [2007].

1.4.1 Wigner’s friend in terms of the Page-Wootters formalism

In order to model the Wigner’s-friend experiment described in Section 1.2.1 in
terms of the PWF introduced in the previous section, we employ a circuit-like
description as shown in Figure 1.9. The clock C associated with Hilbert space
HC ' L2(R) keeps track of time and in particular indicates the times of the
friend’s and Wigner’s measurements tF and respectively tW . The qubit system S
is initially in state

|ψ〉S = a| ↑〉S + beiφS | ↓〉S, (1.26)

where a, b,φS ∈ R, and together with the friend and Wigner, both in “ready”
states |r〉F ∈HF and |r〉W ∈HW , constitutes the input to the circuit. The friend’s
measurement in the σz-basis yielding outcomes “up” or “down” is described by
the set of projectors {Π↑ = | ↑〉〈↑ |S,Π↓ = | ↓〉〈↓ |S}, where Π↑+Π↓ = 1S. Wigner’s
measurement is also binary giving outcomes “yes” and “no” where the first out-
come corresponds to the friend’s laboratory being in state

|yes〉SF = α| ↑〉S|u〉F + βeiφSF | ↓〉S|d〉F , (1.27)

where α,β ,φSF ∈ R. Again we can associate the measurement with projectors
Πyes = |yes〉〈yes|SF and Πno = 1SF − |yes〉〈yes|SF. The measurements of F and W
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Figure 1.9. The circuit representation of the Wigner’s friend experiment as
encoded in the physical state |Ψ〉〉 in Equation (1.29). At time tF indicated by
the clock C the Friend performs a measurement entangling her with the system
S. At another time tW > tF Wigner performs a measurement on both S and F
which entangles him with the joint system S+F . (picture taken from Baumann,
Del Santo, Smith, Giacomini, Castro-Ruiz and Brukner [2019])

are described by interaction Hamiltonians K̂SF and K̂SFW , that couple respectively
S and F during F ’s measurement, and S, F , and W during W ’s measurement as
follows

e−iK̂SF |ψ〉S|r〉F =
∑

f ∈{u,d}

Π f |ψ〉S| f 〉F ,

e−iK̂SFW |φ〉SF |r〉W =
∑

w∈{yes, no}

Πw|φ〉SF |w〉W ,

where |ψ〉S is the state of the system for clock readings t < tF and |φ〉SF the joint
state of S + F at times tF < t < tW . We assume for simplicity that there are no
free dynamics of S, F , and W , which means that the constraint equation is given
by

�

Ĥc +δ(T̂ − tF)K̂SF +δ(T̂ − tW )K̂SFW

�

|Ψ〉〉= 0, (1.28)
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where the clock Hamiltonian is Ĥc = p̂t and the delta couplings mean that the
measurements are instantaneous. The solutions to Equation (1.28) take the form

|Ψ〉〉=
∫ tF

−∞
d t |t〉|ψ〉S|r〉F |r〉W

+

∫ tW

tF

d t |t〉
∑

f ∈{u,d}

Π f |ψ〉S| f 〉F |r〉W

+

∫ ∞

tW

d t |t〉
∑

f ∈{u,d}
w∈{yes,no}

ΠwΠ f |ψ〉S| f 〉F |w〉W , (1.29)

where state |ψ〉S is given by Equation (1.26).
In Baumann, Del Santo, Smith, Giacomini, Castro-Ruiz and Brukner [2019]

we used the Page-Wootters formulation of the Winger’s friend experiment to re-
move the ambiguity of the different dynamical descriptions. Using the Page-
Wooters description above, both Wigner and his friend, provided that they have
the same prior information about the experiment, would agree on the global
state, i.e. the history state in Equation (1.29). Different probability assignments
can then only arise if they use different types of Born-rules. The details are pre-
sented in Section 2.3.

1.4.2 A Page Wootters formulation of quantum circuits

The Page-Wootters formalism can be adapted to quantum circuits with a discrete
quantum clock, see for example Breuckmann and Terhal [2014]; Caha et al.
[2018]; Feynman [1985]; Kitaev et al. [2002]. Form a fundamental point of
view, one could argue that, since the information acquired via measurements is
finite, also physics should be discrete and indeed finite on a fundamental level,
see for example Gisin [2019]. Regardless of that, a discrete, finite dimensional
clock Hilbert spaceHc in naturally suited for describing quantum circuits within
the Page-Wootters formalism, see Figure 1.10. The constraint equation looks as
follows

Ĉ |Ψ〉〉=
∑

t

Ĥt |Ψ〉〉= 0, (1.30)

where the Hamiltonians

Ĥt = −
1
2

�

|t〉〈t − 1| ⊗ Ut + |t − 1〉〈t| ⊗ U†
t − |t − 1〉〈t − 1| − |t〉〈t|

�

, (1.31)
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Figure 1.10. The Page-Wootters formulation of quantum circuits: One con-
siders a quantum clock that keeps track of the number of computational steps
that have happened so far. At computational step t, the circuit applies the
gate Ut . The input to the quantum circuit is |φ〉 and the output of the circuit
is |ψ〉= UT · · ·U0|φ〉.

can be understood as making the clock tick once and applying the unitary Ut .
Solutions to Equation (1.13) are history states of a quantum circuit where at
time t unitary Ut is applied to the target systems described by Hilbers spaceHS:

|Ψ〉〉=
1

p
T + 1

T
∑

t=0

|t〉c ⊗ Ut . . . U0|φ〉S =
T
∑

t=0

|t〉c ⊗ |ψ(t)〉S, (1.32)

with |φ〉 ∈ HS being the circuit’s input. The conditional system state at the final
time T corresponds to the output of the circuit, |ψ(T )〉S = |ψ〉= UT . . . U1|φ〉.

Note that, for finite-dimensional clock Hilbert spaces, the physical Hilbert
space is a proper subspace of the kinematical Hilbert space. As discussed in
Section 1.4.1, this is not the case in the infinite dimensional case Marolf [2000];
Hoehn et al. [2019] and constitutes a technical simplification. We can again
define a physical projector

P̂ :=
∑

i

|Ψi〉〉〈〈Ψi|, (1.33)

which is now a proper projector onto the space of physical states. The states |Ψi〉〉
are given according to Equation (1.32) with initial states |φi〉, which form an
orthonormal basis of HS. Similar to the continuous case, the physical projector
can be related to the unitary evolution of the circuit between two times t2 and
t1 by

〈t2|P̂|t1〉=
1

T + 1
Ut2
· · ·Ut1+1. (1.34)
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In Baumann et al. [2021]we generalize the Page-Wooters description of quantum
circuits to multiple discrete clocks, which allows us to implement processes with
indefinite casual order, compare Section 1.3, and impose some constraints on the
physicality of such processes. This is presented in detail in Sections 3.2 and 3.3.
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Chapter 2

Wigner’s friend

This Chapter contains the results on the topic of encapsulated observers obtained
during my PhD, which are published in Allard Guérin et al. [2020]; Baumann
et al. [2016]; Baumann and Wolf [2018]; Baumann, Del Santo and Brukner
[2019]; Baumann, Del Santo, Smith, Giacomini, Castro-Ruiz and Brukner [2019]
and Baumann and Brukner [2020]. In order the address the Wigner’s friend para-
dox and Wigner’s-friend-type setups in general, we first make a clear distinction
between the formalism and the interpretations of scientific theories and quantum
theory in particular. Encapsulated observers allow for deciding between two
inequivalent quantum formalisms usually employed when describing measure-
ments – the relative-state formalism and the standard formalism with the Born-
and state-update rules, see Section 2.1. We then consider different paradoxical
situations in Wigner’s-friend setups in terms of their observable consequences an-
alyzing which setups can give rise to actual contradictions, i.e. two contradicting
pieces of information that can be compared by some agent, in Section 2.2. We
further address the problem of different probability assignments for encapsulated
observers within a Page-Wootters formulation of the Wigner’s-friend experiment
in Section 2.3. Finally we formulate a no-go theorem for the persistence of the
friend’s perception in Wigner’s-friend experiments, see Section 2.4.

2.1 Formalism and interpretation

A physical theory consists of a mathematical formalism, which allows for pre-
dicting the outcomes of experiments, together with an ontological interpretation,
which establishes a correspondence between the mathematical objects of the the-
ory and elements of some notion of physical reality. In most physical theories the
identification of the entities in the formalism with an ontological description is

25
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unambiguous and generally agreed upon. In quantum theory, however, there
exist multiple interpretations that differ vastly in the ontological meaning they
associate with, in particular, the quantum wave function Cabello [2017]; Leifer
[2014]. That an empirically adequate scientific theory should be able to make
predictions, in order to have testable empirical content, means that one can as-
sociate a measure of likelihood to an event y to happen, given that another event
x has already occurred. In the words of Eugene Wigner:

"One realizes that all the information which the laws of physics pro-
vide consists of probability connections between subsequent impres-
sions that a system makes on one if one interacts with it repeatedly,
i.e., if one makes repeated measurements on it." Wigner [1995]

Mathematically speaking, this corresponds to conditional probability distribu-
tions P(y|x), which are, in general, conditioned on the specifics of the experi-
ment. If a user of the theory lacks the information about these specifics, he or she
can subjectively assign their best guess for a probability distribution over these
unknown variables, which then allows for computing an estimate of P(y|x). The
theory should then provide a list of the variables that would have to be known in
order to determine P(y|x). Moreover, if a theory prescribes how to assign prob-
abilities to single events1, standard probability theory allows for the definition of
a joint probability distribution through the identity P(x , y) = P(x |y)P(y).

Since physical theories are in general not “complete” in the sense that their
formalisms give a unique and exhaustive description of some part of an objec-
tive ontological reality, different mathematical formalisms can describe the same
physical phenomena. We, therefore define empirical equivalence of two mathe-
matical formalisms as follows.

Definition 1. Two mathematical formalisms are empirically equivalent if they yield
the same predictions for the outcomes of all possible experiments.

A well known example of two empirically equivalent formalism are the La-
grange and Hamilton formulation of classical mechanics. Moreover, a mathemat-
ical formalism might have different ontological interpretations. A well known
example thereof are the Bayesian and frequentist interpretation of probability
theory. We will extend this idea not only to the very same mathematical formal-
ism but also those formalisms that are empirically equivalent to it and, hence,
define the following.

1It is worth noting that also single event probabilities are fundamentally conditional proba-
bilities, namely a priori conditioned on all past events that can possibly influence the probability
of that one event the probability is assigned to.
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Definition 2. If two physical theories are empirically equivalent, they are called
different interpretations of the same formalism.

In line with Karl PopperPopper [1935] a physical theory needs to be falsi-
fyable, meaning that the predictions of the theory are such that experiments can
in principle contradict them. If such a contradiction appears with statistical sig-
nificance the theory is said to be falsified and should be dismissed. According
to our Definitions 1 and 2 there then must exist at least one decisive experiment
where the two theories make different predictions about the outcome. This ex-
periment is then able to falsify only one of the two competing theories. If no
such experiment exists the two are not competing theories but competing inter-
pretations of the same theory, which cannot be differentiated based on empirical
evidence but rather based on metaphysical arguments.

2.1.1 Two quantum formalisms and some of their interpretations

In relation to the quantum measurement problem discussed in Section 1.2 we
now examine two possible descriptions of a quantum measurement, namely via
non-unitary collapse dynamics or via unitary dynamics entangling the system
and its observer. As we will discuss these two descriptions amount to two differ-
ent quantum formalisms, that are empirically equivalent as long as one considers
the same level of observation. For encapsulated observers, however, these two
formalisms predict different probabilities for the measurement results. We will
describe only pure states and projective measurements in the main text for the
sake of readability. The statements derived, however, equally hold for mixed
states and POVMs as shown in Appendix A.1.

First there are the standard Born and state-update rule Born [1954], which
give the following evolution of quantum state |φ〉 ∈ HS upon measurement of
observable A=

∑

a a|a〉〈a| ∈ L (HS)

|φ〉S
A

7−−−−→
result: a

|a〉S, (2.1)

and the probability for observing outcome a in said measurement as

P clps
φ
(a) = Tr(|a〉〈a||φ〉〈φ|) = |〈a|φ〉S|2. (2.2)

Equations (2.1) and (2.2) are assumed to be correct in most interpretations of
quantum theory albeit with different interpretations accompanying their mean-
ing. While some regard Equation (2.1) as a physical process of the system,
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for example Bassi et al. [2013]; Bohm [1952a,b]; DeWitt and Graham [2015];
Lombardi and Dieks [2017]; Wallace [2012], others consider it to describe a
change of knowledge of the observer, who performed the measurement, for ex-
ample Brukner and Zeilinger [2003]; Bub and Pitowsky [2010]; Fuchs [2010];
Healey [2012]; Rovelli [1996]. Another sort of approach, compatible with Equa-
tions (2.1) and (2.2) are objective collapse models like Diósi [2014]; Ghirardi
et al. [1986]; Penrose [2000]. While they modify the standard quantum formal-
ism with non-linear terms, which account for a “real” collapse, they do this in a
way that ensures empirical equivalence to standard quantum theory for all ex-
periments conducted so far. As an alternative to Equations (2.1) and (2.2) Hugh
Everett proposed the relative-state formalism Everett III [1957], which incorpo-
rates the measurement apparatus or the observer into a unitary description of
the measurement

UO : HS ⊗HO→HS ⊗HO (2.3)

|a〉S|r〉O 7→ |a〉S|Aa〉O ∀a,

where |r〉O and |Aa〉O correspond to the state of the observer (or apparatus) being
ready to measure and having measured outcome a respectively. Hence, initial
states |φ〉S of the system and |r〉O ∈HO of the observer evolve as follows:

|φ〉S|r〉O =
∑

a

〈a|φ〉|a〉S|r〉O 7→
∑

a

〈a|φ〉|a〉S|Aa〉O = |Φtot〉. (2.4)

Note that, a priori the relative-state formalism, meaning the description of a mea-
surement according to Equation (2.4), constitutes a different quantum formal-
ism compared to Equation (2.2). It is not necessarily a different interpretation
of quantum theory, unless the two formalisms can be shown to be empirically
equivalent. However, Equation (2.4) alone does not allow for predicting the
outcomes of experiments. In order to do that, the use of standard Born rule
in Equation (2.1) has been motivated by a many-worlds interpretation Wheeler
[1957] and decision-theoretical arguments Deutsch [1999]; Saunders [2004].
In this case the two formalism are trivially empirically equivalent, since they
use exactly the same probability rule. According to Definition 2 we can regard
generalized Bohmian mechanics Sudbery [1986] as a different interpretation of
the relative-state formalism, since it also features unitary evolution of the global
wave function regardless of a measurement happening or not.

According to the ideas of Grete Hermann Hermann [1935] the state of the
observing system is the one that represents the result of the measurement and
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that the systems sate is only defined relative to the state of the observer. Based on
that we propose a different use of the Born-rule for the relative state formalism,
namely

P rels
φ
(a) = Tr(1S ⊗ |Aa〉〈Aa|O · UO|φ〉〈φ|S ⊗ |r〉〈r|OU†

O) , (2.5)

which means that the probability of outcome a is given by the projection onto
the state |Aa〉 of the observer having seen a acting on the overall state according
to Equation (2.4).

For one observer measuring a quantum system it is obvious that the two for-
malisms – namely Equations (2.1) and (2.2) on the one hand and Equations (2.4)
and (2.5) on the other hand – give the same probabilities

P rels
φ
(a) = |〈a|φ〉S|2 = P clps

φ
(a) . (2.6)

In Shrapnel et al. [2018] the authors motivate the Born and state-update rules
from the process-matrix formalism by considering separate and consecutive mea-
surements. More concretely, they obtain the state-update rule from the Born rule
by considering consecutive measurements on one quantum system and by requir-
ing that the Born rule provides the correct probabilities for the results.

|φ〉S MO2

b

MO1

a

Figure 2.1. The same level of observation: Two observers O1 and O2 are per-
forming consecutive measurements on a quantum system, initially in state
|φ〉 ∈ HS, obtaining results a and b respectively. For such setups the state-
update rule and the relative-state formalism give the same conditional proba-
bilities for the results of the two agents.

Similarly we now consider two observers O1 and O2 successively measuring
the same quantum system at times t1 and t2 respectively, see Figure 2.1. Their
measurements are given by MO1

=
∑

a a|a〉〈a| and MO2
=
∑

b b|b〉〈b|, where
{|a〉} and {|b〉} are two arbitrary bases ofHS. The system is in state |φ〉S before
the first measurement and its free evolution between times t1 and t2 is given
by US(t2, t1) = e−i(t2−t1)HS , where HS is the system Hamiltonian. According to
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Equations (2.1) and (2.2), the conditional probability of result b given a is

P clps
φ
(b|a) =

P clps
φ
(a, b)

∑

b P clps
φ
(a, b)

=
Tr (|b〉〈b|US(t2, t1)|a〉〈a|φ〉〈φ|a〉〈a|US(t1, t2)|b〉〈b|)

Tr (|a〉〈a|φ〉〈φ|a〉〈a|)
= |〈b|US(t2, t1)|a〉|2, (2.7)

where P clps
φ
(a, b) is the joint probability of O1 measuring result a and O2 obtaining

result b. In analogy to Equation (2.5) we define this joint probability for the
relative-state formalism as

P rels
φ
(a, b) := Tr (1S ⊗ |Aa〉〈Aa| ⊗ |Bb〉〈Bb| · |Φtot〉〈Φtot |) , (2.8)

where |Φtot〉= UO2
US(t2, t1)UO1

|φ〉S|r〉O1
|r〉O2

. Hence, the conditional probability
of result b given a is

P rels
φ
(b|a) =

P rels
φ
(a, b)

∑

b P rels
φ
(a, b)

=
Tr (1S ⊗ |Aa〉〈Aa| ⊗ |Bb〉〈Bb| · |Φtot〉〈Φtot |)

∑

b Tr (1S ⊗ |Aa〉〈Aa| ⊗ |Bb〉〈Bb| · |Φtot〉〈Φtot |)

=
〈b|US(t2, t1)|a〉〈a|φ〉〈φ|a〉〈a|US(t1, t2)|b〉

〈a|φ〉〈φ|a〉
= |〈b|US(t2, t1)|a〉|2 = P clps

φ
(b|a), (2.9)

and once more the two formalisms give the same probabilities. This means that
for the same level of observation the two formalisms are empirically equivalent
and one can regard Equation (2.9) as justifying the use the standard Born and
state-update rules within the relative-state formalism. This agrees with former
motivations thereof but is independent of the interpretation of the relative-state
formalism.

2.1.2 Inequivalence for encapsulated observers

We will now consider a Wigner’s-friend-type setup and see that in this case the
two quantum formalisms, introduced in Section 2.1.1, are no longer empirically
equivalent, meaning they give different predictions for the outcomes of some
measurements. We can, therefore, regard the Wigner’s-friend experiment as the
decisive experiment between the standard Born and state-update rules one the
one hand and the relative state formalism with the use of the Born rule given by
Equations (2.5) and (2.8) on the other hand.
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|φ〉S MO MSO

a
b

Figure 2.2. Different levels of observation: Observer O performs a measure-
ment on a quantum system S in state |φ〉. A superobserver SO then performs
a measurement on the joint system including the observer O. For this type of
consecutive measurements, the standard Born and state-update rule yield con-
ditional probabilities for the measurement results that are different from those
predicted by the the relative-state formalism. Hence, the two formalisms are
empirically inequivalent and can be tested against one another in a Wigner’s-
friend setup.

Consider again a quantum system in state |φ〉S that is measured by observer
O, who performs measurement MO =

∑

a a|a〉〈a|S. Afterwards superobserver
SO performs the measurement MSO =

∑

b b|b〉〈b|S,O on the joint system, where
{|b〉S,O} is some orthonormal basis of HS ⊗HO. The standard Born and state-
update rule, i.e. Equations (2.1) and (2.2), correspond to the evolution

|φ〉S|r〉O
MO7−−−−→

result: a
|a〉S|Aa〉O = |a, Aa〉S,O , (2.10)

of the joint system S+O during the observer’s measurement. Equally, the super-
observer’s measurement is described by

|Φ〉S,O|r〉SO
MSO−−−−→

result: b
|b〉S,O|Bb〉SO , (2.11)

where the state |Φ〉S,O is the state of the joint system S + O right before the su-
perobserver’s measurement. We assume that nothing happens to the observer
between her measurement and that of the superobserver, while the system may
undergo some free evolution, which means that |Φ〉S,O = 1O⊗US(t2, t1)|a, Aa〉S,O.
Hence, analogous to Equation (2.7), we find the conditional probabilities for the
results b measured by the superobserver given the result a of the observer to be

P clps
φ
(b|a) = |S,O〈b|1O ⊗ US(t2, t1)|a, Aa〉S,O|2. (2.12)

The relative state formalism treats both measurements unitarily leading to the
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following overall state

|φ〉S|r〉O|r〉SO
UO−→

∑

a

〈a|φ〉|a〉S|Aa〉O|r〉SO

−→
∑

a

〈a|φ〉1O ⊗ US(t2, t1)|a, Aa〉S,O|r〉SO

USO−→
∑

ab

〈a|φ〉〈b|1O ⊗ US(t2, t1)|a, Aa〉|b〉S,O|Bb〉SO = |Φtot〉 (2.13)

for the case of encapsulated observers. Now, using Equation (2.9), the condi-
tional probabilities for the results b measured by the superobserver given the
result a of the observer are

P rels
φ
(b|a) =

P rels
φ
(a, b)

∑

b

P rels
φ
(a, b)

(2.14)

=

〈b| (|Aa〉〈Aa| ⊗1S) |b〉
∑

a′a′′
〈φ|a′′〉〈a′|φ〉〈b|

�

|Aa′〉〈Aa′′ | ⊗ US|a′〉〈a′′|U
†
S

�

|b〉

∑

b

P rels
φ
(a, b)

which are equal to those in Equation (2.12) if and only if ∀b : ∃x , x ′ : |b〉S,O =
|x〉S|Ax ′〉O. In that case both formalisms once more give the same conditional
probabilities

P clps
φ
(b|a) = δa,x ′ |〈x |US(t2, t1)|a〉|2 = P rels

φ
(b|a). (2.15)

In genreal, however, the probabilities predicted by the standard Born and measurement-
update rule are different from those predicted by the relative state formalism
when one considers encapsulated observers, which renders the two formalisms
empirically inequivalent.

In light of the considerations above one can rephrase and potentially resolve
the Wigner’s friend paradox in the following way, compare also Table 2.1. If
all agents in a Wigner’s-friend-type experiment apply the state-update rule for
every measurement and, hence, calculate the conditional probabilities for their
results according to Equation (2.12) they will all agree in their probability assign-
ments, which are those traditionally attributed the the friend, compare PF(w) in
Equation (1.4). This case corresponds to an objective collapse during a measure-
ment. Alternatively, all agents can use the relative-state formalism and calculate



33 2.2 Observability and contradictions

the conditional probabilities using Equation (2.14). They will again all agree in
their probability assignments, which are however those traditionally attributed
to Wigner, compare PW (w) in Equation (1.5). We call this the no-collapse de-
scription. The description were F uses the state-update rule after her measure-
ment and, therefore, Equation (2.12) but W , to whom the joint quantum system
evolves unitarily, uses the relative-state formalism and Equation (2.14) instead,
is paradoxical. We will call this the subjective-collapse model and it is most likely
to be endorsed by relational Bub and Pitowsky [2010]; Pitowsky [2006]; Rovelli
[1996] and subjectivistic interpretations of quantum theory Fuchs [2010, 2017];
Mermin [2013]. As we will show in the next section, however, this subjective
application of inequivalent formalisms is highly problematic since it allow for an
observable contradiction for encapsulated observers.

model Friend Wigner agreement

subjective collapse PF(w)= P clps(w) PW (w)= P rels(w) no

no collapse PF(w)= P rels(w) PW (w)= P rels(w) yes

objective collapse PF(w)= P clps(w) PW (w)= P clps(w) yes

Table 2.1. Probability assignments for Wigner’s friend setups: The classical
Wigner’s-friend paradox arises for the subjective-collapse model, where the
friend and Wigner use different dynamical descriptions for the friend’s mea-
surement, and hence, disagree in their probability assignments for Wigner’s
measurement. This is equivalent to them using different formalism to calcu-
late these probabilities. Both the no-collapse model and the objective-collapse
model don’t lead to a disagreement between observer and superobserver, since
Wigner and his friend use the same formalism. Note, however, that the proba-
bilities for Wigner’s result are different for these two models. This means that
the outcome statistics observed by Wigner will confirm either one model or the
other.

2.2 Observability and contradictions

Different probability assignments of different agents in Wigner’s-friend type se-
tups are potentially contradictory, if they can be compared to either one another
or experimental data. Only then can the agents’ predictions result in a contra-
diction that is potentially able to falsify the particular version of quantum theory
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used to make those predictions. We want to emphasize that both results of sci-
entific experiments and statements regarding these experiments correspond to
pieces of classical information, i.e., bit strings, and that only such pieces of clas-
sical information can falsify a theory. In Baumann and Wolf [2018] we formalize
this as follows:

Definition 3. Pieces of information are classical if and only if they satisfy the re-
quirements of interoperability — i.e., they can be copied — and distinguishability
— i.e., different information can be told apart perfectly.

This definition of classicality focuses on qualitative notions regarding infor-
mation and not on the concrete physical realization. Moreover, we define the
following:

Definition 4. A scientific contradiction is given by two pieces of contradictory clas-
sical information in one point in space and time.

If a scientific theory gives rise to a scientific contradiction, it should be dis-
missed. More concretely, a scientific contradiction arises, if the theory’s pre-
dictions are unambiguous but contradict the actual outcomes of experiments as
well as in the case when a theory makes contradictory predictions about such
outcomes, at least one of which is then necessarily falsified.

Descriptions of Wigner’s-friend-type setups based on the relative-state formal-
ism do not give rise to potentially contradicory predictions, neither do objective-
collapse descriptions, or any other version in which there is consensus about the
application of the state-update rule.

David Deutsch was the first one to consider a Wigner’s-friend experiment
where the friend and Wigner communicate Deutsch [1985] by exchanging clas-
sical information. There, the friend signals to Wigner that she has performed
her measurement and observed a definite outcome without revealing which out-
come. Note that, the friend’s measurement outcome in a Wigner’s-friend exper-
iment does not represent classical information according to Definition 3 , since
it does not satisfy interoperability. To see this consider a classical record of the
observer’s result, which is not affected by Wigner’s measurement. The notion of
classicality in Definition 3 allows for modeling a classical record by an orthonor-
mal basis {|i〉}, if and only if all accessible observables are diagonal in that basis.
We introduce a register system {|si〉 ∈ HR} which can encode classical state-
ments of an agent. Since {|si〉} forms a basis, the statements they encode should
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be informationally complete, by which we mean that if one of the basis states
encodes a certain statement, the negation of that statement should also have a
corresponding state in that basis, i.e. ∀s : |sj〉 ∼= s ∃|sj′〉 ∈ {|si〉} : |sj′〉 ∼= ¬s. In the
relative-state formalism, the formation of such a classical record corresponds to
yet another unitary

UR : HS ⊗HO ⊗HR→HS ⊗HO ⊗HR (2.16)

|a〉S|Aa〉O|s0〉R 7→ |a〉S|Aa〉O|sa〉R ∀a,

where the record system undergoes no further evolution after the measurement.
If the states |sa〉 ∈ HR are classical records of the friend’s result, different a cor-
respond to different basis states of the register space. We now define the joint
probability of measurement results a and b in the presence of classical records
as

P rels
class(a, b) := Tr (1S ⊗ |Aa〉〈Aa| ⊗ |sa〉〈sa| ⊗ |Bb〉〈Bb| · |Φrec〉〈Φrec|) ,

where |Φrec〉 is the overall state according to the relative-state formalism which
now includes the classical records as described above. For the simple Wigner’s-
friend experiment presented in Section 1.2.1 we have that

|Φrec〉=
1
p

2
(α|1〉SF |su〉R|1〉W + β |1〉SF |sd〉R|1〉W

+ β |2〉SF |su〉R|2〉W −α|2〉SF |sd〉R|2〉W ),

which gives conditional probabilities

P rels
class(1 | f ) P rels

class(2 | f )

f = u α2 β2

f = d β2 α2 .

Compare this to the conditional probabilities without the classical records of the
friend’s result

P clps(1 | f ) P clps(2 | f ) P rels(1 | f ) P rels(2 | f )

f = u α2 β2 1
Nu
α2(1+ 2αβ) 1

Nu
β2(1− 2αβ)

f = d β2 α2 1
Nd
β2(1+ 2αβ) 1

Nd
α2(1− 2αβ) ,

where Nu = 1+ 2αβ(α2 − β2) and Nd = 1+ 2αβ(β2 −α2). If there is a classical
copy of the friend’s observed outcome, the conditional probabilities for Wigner’s
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result given his friend’s result are the same for collapse dynamics and a unitary
description of F ’s measurement. This means a Wigner’s-friend setup with said
classical records is no longer the paradoxical gedankenexperiment with differing
probability assignments for W and F .

In Deutsch’s version of the gedankenexperiment the classical record exchanged
between Wigner and his friend is the same regardless of the result F observes.
That means that in UR in Equation (2.16) the state |sa〉 is the same for all a and
orthogonal to |s0〉. In this case the message is not correlated to the specific post-
measurement state of the observer and does not affect the probabilities obtained
in the relative-state formalism, i.e. P rels

class(w | f ) = P rels(w | f ).

2.2.1 Scientific contradictions for Wigner’s-friend experiments

The classical records introduced above can, in principle, model any type of mes-
sage exchanged between observers and superobservers in Wigner’s-friend-type
setups. In the context of the Wigner’s friend paradox the main question is whether
the conflicting probabilistic predictions, which arise in the subjective collapse
model, can be stored in such classical records. If that is the case, these records
can be compared to one another. Collected data at the end of (multiple runs)
of the experiment would then falsify one of the two predictions and hence con-
stitute a scientific contradiction, which would exclude the subjective collapse
model, compare Section 2.1.

Consider again the simplest Wigner’s-friend experiment, see Section 1.2.1
where the initial state of the qubit is |φ〉S = 1/

p
2(| ↑〉S + | ↓〉S). If the friend

applies the state-update rule after her measurement her prediction for Wigner’s
measurement, if she sees “up”, will differ from her prediction, if she sees “down”,
compare PF(w) in (1.6). The only exception is the case where W measures in a
basis containing states |Φ±〉= 1/

p
2(| ↑, u〉SF±| ↓, d〉SF), meaning α= β = 1/

p
2.

For this particular setting we label the two outcomes of W ’s measurement as
“+” corresponding to |Φ+〉 and “−” corresponding to |Φ−〉 and the probabilities
Wigner and his friend predict for Wigner’s measurement are

PF(w) : + − PW (w) : + −
f = u 1

2
1
2 f = u 1 0

f = d 1
2

1
2 f = d 1 0.

(2.17)

Since the prediction “sF: PF(+) = PF(−) =
1
2” is the same for both | ↑〉S|u〉F and

| ↓〉S |d〉F , the state of F ’s laboratory before Wigner’s measurement is |Φ+〉SF |sF〉R.
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In this case, the classical record of the friend’s prediction does not affect the
conditional probabilities predicted by W , who uses the relative state formalism

Simple Wigner’s-friend experiment

P rels
class(+ | f ) = PW (w) P rels

class(− | f ) = PW (w)

f = u 1 0

f = d 1 0,

(2.18)

and, hence, his prediction differs from the one made by his friend. This fact
allows for a scientific contradiction in the simple Wigner’s-friend experiment,
see Figure 2.3. Consider the following protocol:

0 The source emits the quantum state |φ〉= 1p
2
(| ↑〉S + | ↓〉S).

1 The friend F measures the system in the σz-basis and then applies the
state-update rule according to the outcome she observed. Based on that
she predicts PF(+) = PF(−) =

1
2 for Wigner’s measurement result, which

she encodes in a classical record system.

2 F sends that classical record out of her laboratory in a way that keeps all
other degrees of freedom fully isolated and hence preserves the coherence
of the state |Φ〉SF assigned by Wigner.

3 Wigner W encodes his prediction PW (+) = 1, PW (−) = 0 in another classi-
cal register.

4 W performs his Bell-basis measurement on the system S+ F , recording the
observed result in yet another classical register.

5 Wigner and his friend repeat steps 0-4 for a previously agreed upon number
N times.

At the very end of the protocol F leaves the laboratory, which is equivalent to W
performing a final measurement in the product basis of S+ F . Irrespective of the
specific state to which F ’s laboratory is reduced, she and W can now compare the
three kinds of messages, i.e. F ’s predictions, W ’s predictions and W ’s observed
results, and convince themselves that there is a contradiction, since the actually
observed statistics of Wigner’ measurement can only agree with one of the two
predictions if N is chosen large enough. Alternatively to the friend leaving the
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laboratory, she can also keep her own prediction while Wigner sends his predic-
tion and observed statistics into the laboratory. In that that case, however, only
F can observe the contradiction.

This contradiction can be made effectively deterministic in the following limit.
To see this, now consider the source emitting a higher dimensional quantum sys-
tem in state

|φd〉S =
1
p

d

d
∑

j=1

| j〉S (2.19)

and the friend measures in the respective basis, MF : {| j〉〈 j|S} with j = 1 . . . d.
Wigner, again, models F ’s measurement as a unitary process that results in state

|φd〉S|0〉F 7→
1
p

d

d
∑

j=1

| j〉S|J j〉F =: |Φ+d 〉SF , (2.20)

where |J j〉F is, once more, the state corresponding to the friend having observed
outcome j.

For Wigner’s measurement MW we now choose {|Φ+d 〉〈Φ
+
d |SF ,1− |Φ+d 〉〈Φ

+
d |SF},

which, like before, just confirms the entangled state of the laboratory, if Wigner’s
description is correct. In that case W records the “+” result with unit probability,
i.e. PW (+) = 1 and PW (−) = 0. Using the state-update rule the friend, however,
now predicts

PF(+| j) = |〈 j|〈J j|Φ+d 〉SF |2 =
1
d

−→
d→∞

0

PF(−| j) = 1−
1
d
−→
d→∞

1 ,
(2.21)

independently of the actual outcome she registers in her measurement. For
large enough dimension d the friend’s prediction becomes the exact opposite
of Wigner’s. They can again repeat the protocol described above and will arrive
at an observable contradiction at the end.

It is traditionally assumed that Wigner’s prediction is correct and he will mea-
sure the corresponding statistics. In that case the friend can convince herself
that she made the wrong predictions using what she would consider standard
quantum theory. If the actual statistics confirmed the friend’s prediction, Wigner
would reach the same conclusion regarding his prediction.

Another type of contradiction can be obtained if the friend purposefully ig-
nores her obtained outcome and makes predictions about her own perception
after Wigner’s measurement. Consider again the simplest Wigner’s-friend ex-
periment as presented in Section 1.2.1, namely the initial state given by Equa-
tion (1.1) and Wigner’s measurement by (1.2) and (1.3). The friend ignoring
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a.

S MF

| ↑〉S|u〉F

| ↓〉S|d〉F

MW

|Φ+〉SF |+〉W

|Φ−〉SF |−〉W

|φ〉S

P(+) = P(−) = 1
2

P(+) = 1, P(−) = 0

result + : N , result − : 0

b.

S MF

|0〉S|0〉F
|1〉S|1〉F
...

|d〉S|D〉F

MW

|Φ+〉SF |+〉W

(1− |Φ+〉〈Φ+|)SF ⊗ |−〉〈−|W

|φd〉

P(+)≈ 0, P(−)≈ 1

P(+) = 1, P(−) = 0

result + : N , result − : 0

Figure 2.3. Observable contradictions in the simple Wigner’s-friend experi-
ment: The source emits a state, which is an equal superposition of the eigen-
states of the friend’s measurement MF . If Wigner performs a measurement
MW that confirms the overall entangled state of the friend’s laboratory their
probability assignments will disagree. According to F ’s collapse description the
conditional probabilities of W ’s outcomes “+” and “−” is the same independent
of the outcome she observed, i.e. |〈 j|〈J j|Φ+d 〉SF |2 =

1
d where d is the dimension of

the system the source emitted. Wigner, however, expects to see result “+” with
certainty. a. : If the source emits a qubit the friends predicts a 50:50 distribu-
tion for Wigner’s two results and they will have to repeat their measurement a
considerable amount of times. b.: In the “all versus nothing” scenario of large d
the friend’s prediction is almost deterministic and fewer repetitions, compared
to the qubit case, will suffice to falsify one of the two predictions.

her outcome but still using collapse dynamics to describe her own measurement
mans that she associates a mixed state

ρSF = a2| ↑, u〉〈↑, u|SF + b2| ↓, d〉〈↓, d|SF (2.22)
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to her laboratory before Wigner’s measurement, instead of one of the collapsed
states |z〉S| fz〉F . Wigner, who describes her measurement unitarily, obtains the
following state after the friend’s measurement

|Φ〉SF = a| ↑, u〉SF + beiφS | ↓, d〉SF . (2.23)

The probability of the friend seeing result fz at time t1, after her but before
Wigner’s measurement, is the same for both descriptions:

PW ( f at t1) PF( f at t1)

f1 = u : a2 a2

f1 = d : b2 b2,

After W ’s measurement, however, which we call t2 the probability of F ’s per-
ceived result will differ depending on whether one used collapse, i.e. Equa-
tion (2.22), or unitary dynamics, i.e. Equation (2.23), to describe F ’s measure-
ment.

PW ( f at t2) PF( f at t2)

f2 = u : a2(α4 + β4) + 2b2α2β2 +χ(α2 − β2) a2(α4 + β4) + 2b2α2β2

f2 = d : b2(α4 + β4) + 2a2α2β2 −χ(α2 − β2) b2(α4 + β4) + 2a2α2β2,

where χ = 2abαβ cos(φS − φSF). Since, in this case, the friend’s prediction
again does not depend on which result she observes at time t1 a classical record
“sF : PF( f at t2)” would again not change Wigner’s prediction and at time t2

only one of them would be supported by collected statistics, P rels
classW ( f at t2) =

PW ( f at t2). Assuming that Wigner’s description is correct the friend could keep
the classical record “sF : PF( f at t2)” inside the laboratory and then register her
perceived outcome at time t2 in a classical record different from the one contain-
ing the prediction. Repeating this multiple times will allow her to collect statistics
on her memory records after Wigner’s measurement and establish PW ( f at t2) as
well as notice the fact that they differ from her own prediction all by herself.

In the extended Wigner’s-friend setup by Frauchiger and Renner described in
Section 1.2.2 the predictions leading to the contradiction depicted in Figure 1.4
cannot be exchanged between observers and superobservers. The crucial proba-
bility assignment is that made by friend F1 upon observing outcome “tails” when
she uses the state-update rule. Similar to the simple Wigner’s-friend setup this
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friend’s probability assignment is different from the probability assignment of W ,
who describes the friends’ measurements unitarily:

PF1
(w| f1) : O F PW (w| f1) : O F

f1 = H 1
2

1
2 f1 = H 1

6
5
6

f1 = T 0 1 f1 = T 1
6

5
6 .

(2.24)

Note that Wigner’s prediction is not directly used for the contradiction in Fig-
ure 1.4, but it ensures that the halting round of the protocol, where both super-
observers measure “ok” and in which the contradiction occurs, is also compatible
with F1 seeing “tail”.

As one can see in the probability tables (2.24) F1’s deterministic prediction
“sF1

: w= F” arises only for the state |t〉C ⊗|T 〉F1
of her laboratory, while the state

|h〉C ⊗ |H〉F1
would be correlated with a different prediction “s′F1

: P(w = F) =
P(w= O) = 1

2” with 〈sF1
|s′F1
〉= 0. Hence, encoding this prediction into a classical

register is analogous to the example of a classical record of the friend’s result
discussed in Section 2.2 and one finds that

Extended Wigner’s-Friend Experiment

P rels
class(O | f1) = PF1

(O| f1) P rels
class(F | f1) = PF1

(F | f1)
f1 = H 1

2
1
2

f1 = T 0 1.
(2.25)

This means that in the presence of classical records of F1’s prediction the unitary
description of the superobservers predicts the same conditional probabilities as
those predicted by F1 who employs collapse dynamics. Therefore, other than the
simple Wigner’s-friend experiment in Figure 1.2, the extended Wigner’s-friend
experiment in Figure 1.3 does not give rise to a scientific contradiction.

2.2.2 Observable quantities for Wigner-Bell setups

The so called Wigner-Bell inequalities discussed in Section 1.2.2 do not involve
predictions made by the observers – Charlie and Debbie – about the results mea-
sured by the superobservers – Alice and Bob. It is the statistics of the superob-
servers’ results themselves that preclude assigning a classical (i.e. locally causal)
joint probability distribution to all the results observed by the four agents. While
classical records stating that the friends observed definite results, i.e. “sJ: Re-
sult observed ” where J can be either C for Charlie or D for Debbie, can be
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regarded as a motivation for assuming that such a joint probability distribution
P(Ax , C = Az, Bx , D = Bz) exists, the respective results are by construction not
jointly observable. Hence, Wigner-Bell tests do not necessarily require the ob-
servers to communicate with the superobservers to arrive at a contradiction. This
allows for performing experiments within the current technological possibilities
that confirm the violation of such Wigner-Bell and similar so-called local friend-
liness inequalities Bong et al. [2020]; Proietti et al. [2019]. The “friend” in these
experiments is, however, the same type of quantum system as the one emitted by
source. The observed statistics violate the respective inequality, which means the
experimental results contradict the union of assumptions made to derive these
inequalites.

The violation of a Wigner-Bell inequality, see Bong et al. [2020], only negates
the existence of a joint probability distribution P(Ax , C = Az, Bx , D = Bz) whose
marginals are the probabilities observed by the superobserver P(Ax , Bx), P(Ax , Bz),
P(Az, Bx) and P(Az, Bz). As Richard Healey pointed out in Healey [2018], this
does, however, not prevent someone from assigning definite values to the results
of all four agents in single rounds of the experiment. Healey then proposed a
similar setup, which is shown in Figure 2.4 and allegedly allows to predict, in ev-
ery run, the correlation functions between the outcomes of different observers,
that violate a Wigner-Bell inequality analogous to that in Equation (1.9). Like
the setup in Section 1.2.2 Healey’s setup features two Wigner’s friend experi-
ments (Charlie + Alice and Debbie + Bob) each receiving a part of an entan-
gled state and the two observers Charlie and Debbie measure their part in bases
{| ↑c〉, | ↓c〉} and {| ↑d〉, | ↓d〉} respectively. Other than in Section 1.2.2 the two su-
perobservers Alice and Bob both undo their friends’ measurement disentangling
them from the respective subsystems. Afterwards the superobservers themselves
measure the systems in different bases {| ↑a〉, | ↓a〉} and {| ↑b〉, | ↓b〉} respectively.
Healey’s setup makes use of effects of special relativity in order to combine the
relevant quantities from different reference frames. As we argue in Baumann,
Del Santo and Brukner [2019] these expressions do not correspond to any ob-
servable quantities and, as we will show below, can give rise to different values
for the expression in Equation (1.9), when the relative-state formalism is used.
First consider the protocol from the reference frame of Alice’s lab:

0 State preparation: |Ψ(0)〉 = 1p
2

�

| ↑〉S1
| ↓〉S2

− | ↓〉S1
| ↑〉S2

�

|r〉C |r〉D. Where
|r〉C and |r〉D are the initial (“ready”) states of Charlie and Debbie, respec-
tively.

1 Debbie measures: |Ψ(0)〉 → |Ψ(1)〉 = UD|Ψ(0)〉; where her measurement
is described by unitary UD acting as follows UD| ↓d〉S2

|r〉D = | ↓d〉S2
|d〉D (and
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equivalently for | ↑d〉S2
).

2 Charlie measures: |Ψ(1)〉 → |Ψ(2)〉 = UC |Ψ(1)〉; where his measurement
is UC | ↓c〉S1

|r〉C = | ↓c〉S1
|d〉C (and equivalently for | ↑c〉S1

).

3 Alice undoes Charlie’s measurement by applying U†
C :

|Ψ(2)〉 → |Ψ(3)〉= 1p
2

�

| ↑d〉S1
| ↓d〉S2

|d〉D − | ↓d〉S1
| ↑d〉S2

|u〉D
�

|r〉C = |Ψ(1)〉.

4 Alice measures, corresponding to unitary UA| ↓a〉S1
|r〉A = | ↓a〉S1

|d〉A (and
equivalently for | ↑a〉S1

)

5 Bob undoes Debbie’s measurement by applying U†
D.

6 Bob measures corresponding to a unitary UB| ↓d〉S2
|r〉B = | ↓b〉S2

|d〉B (and
equivalently for | ↑b〉S2

) resulting in the state |Ψ(6)〉= UAUB|Ψ(0)〉.

According to Healey, after step 2, Alice predicts the correlation function

E(C , D) = |〈ψS1S2
|(| ↑c〉〈↑c | − | ↓c〉〈↓c |)⊗ (| ↑d〉〈↑d | − | ↓d〉〈↓d |)|ψS1S2

〉|2

= − cos(c − d) (2.26)

for the measurements outcomes observed by Charlie and Debbie, where |ψS1S2
〉=

|ψ−〉 is the maximally entangled Bell-state of the two subsystems and c−d is the
relative angle between measurement directions ~c and ~d. Similarly, after step 4,
she predicts the correlation function for her own outcome and the one observed
by Debbie as

E(A, D) = − cos(a− d) , (2.27)

with a− d again being the relative angle between the measurement directions ~a
and ~d. With respect to Bob’s laboratory, in motion relative to Alice’s, the same
protocol looks as follows.

0* State preparation: |Ψ(0)〉= 1p
2

�

| ↑〉S1
| ↓〉S2

− | ↓〉S1
| ↑〉S2

�

|r〉C |r〉D.

1* Charlie measures: |Ψ(0)〉 → |Ψ(1∗)〉= UC |Ψ(0)〉.

2* Debbie measures: |Ψ(1∗)〉 → |Ψ(2∗)〉= UD|Ψ(1∗)〉.

3* Bob undoes Debbie’s measurement by applying U†
D: |Ψ(2∗)〉 → |Ψ(3∗)〉 =

|Ψ(1∗)〉.

4* Bob measures, which is described by unitary UB.

5* Alice undoes Charlie’s measurement by applying U†
C .
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6* Alice measures corresponding to unitary UA, resulting in the final state
|Ψ(6∗)〉= UAUB|Ψ(0)〉.

Similar to Alice, after step 4*, Bob predicts

E(C , B) = − cos(b− c) , (2.28)

where b− c is now the relative angle between Charlie’s and Bob’s measurement
directions. Finally, after step 6, Alice (or alternatively Bob, after step 6*) can
compute the correlation function

E(A, B) = − cos(a− b) (2.29)

for their observed outcomes a and b, with a− b being the relative angle between
the superobservers’ measurements. Expressions (2.26)-(2.29) are known to give
a value of

S = |E(A, B) + E(A, D) + E(C , B)− E(C , D)|= 2
p

2, (2.30)

if the angles are chosen appropriately.

The correlation functions E(A, D) and E(C , B) entering Equation (2.32) are
computed from two different reference frames as well as in principle experimen-
tally inaccessible. More concretely, no pair of observers that is involved in the
argument can test (not even in principle) the violation of the proposed Bell’s
inequality. Without specifying how the computed expressions are related to ob-
servable quantities, one could equally assign different values to the correlation
functions. For example, one can use the relative-state formalism and exploit the
fact that the observers “ready” states are orthogonal to both the states of them
having seen one of the two outcomes, i.e.; 〈u|r〉F = 〈d|r〉F = 0 for both F = C
and F = D. Hence, the reference frame dependent correlation functions are

E(A, D) = |〈Ψ(t)|(|u〉〈u|A− |d〉〈d|A)⊗ (|u〉〈u|D − |d〉〈d|D)|Ψ(t)〉|2

= − cos(a− d)

E∗(A, D) = |〈Ψ(t∗)|(|u〉〈u|A− |d〉〈d|A)⊗ (|u〉〈u|D − |d〉〈d|D)|Ψ(t∗)〉|2 = 0

E(C , B) = |〈Ψ(t)|(|u〉〈u|C − |d〉〈d|C)⊗ (|u〉〈u|B − |d〉〈d|B)|Ψ(t)〉|2 = 0

E∗(C , B) = |〈Ψ(t∗)|(|u〉〈u|C − |d〉〈d|C)⊗ (|u〉〈u|B − |d〉〈d|B)|Ψ(t∗)〉|2

= − cos(b− c) , (2.31)

where the E(·, ·) are computed in Alice’s and the E∗(·, ·) in Bob’s reference frame.
Note that t, t∗ can take any value between 0 and 6 here, since due to the inclu-
sion of the observers’ states the correlation functions are well-defined throughout
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Figure 2.4. The protocol in Healey [2018]: Two laboratories (containing Alice-
Charlie-system 1 and Bob-Debbie-system 2, respectively) are moving apart
with constant velocity. The four agents perform a series of measurements.
In every run of the protocol there supposedly exist four space-time regions
wherein correlations between the results could in principle be established. The
yellow areas are those where correlations can be agreed upon in the reference
frames of both laboratories, whereas the blue (green) areas are those where
correlations are relative to Alice’s (Bob’s) reference frame only. (picture taken
from Baumann, Del Santo and Brukner [2019])

the whole protocol. Healey’s argument requires to insert E(A, D) and E∗(C , B) in
Equation (2.32). However, since these expressions are unobservable in princi-
ple, one could equally use E∗(A, D) and E(C , B) for evaluating the Wigner-Bell
inequality, obtaining no violation

S = |E(A, B) + 0+ 0− E(C , D)| ≤ 2 . (2.32)

If Alice and Bob were to verify their predictions and actually violate a Bell’s in-
equality with collected data, one would have to adapt the protocol in a way that
renders the setup the same as that proposed in Brukner [2018].

Something that can be excluded by Wigner-Bell setups is the observers being
aware of changes of their perception induced by the superobservers’ measure-
ments. Consider the two entangled perceptions of the two friends in a Wigner-
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Bell setup, see Figure 2.5. If one superobserver induces a change of the perceived
result of the respective observer in one of the two entangled laboratories, the per-
ception of the observer in the other laboratory must change as well. Therefore,
if the observers were directly aware of these changes, an entangled observer
would be instantaneously aware of the measurement choice made for a space-
like separated laboratory. Moreover, awareness of a change of perception enables
the observer to communicate to the superobserver whether a change of the per-
ceived result occurred. This could then also be accessed by the superobservers
and enable superluminal signaling between them.

Figure 2.5. In a Wigner-Bell setup the perceptions of the two observers – Deb-
bie and Charlie– are entangled due to their measurements on the two halves of
an entangled pair. For example, given a suitable entangled state the percep-
tions of Debbie and Charlie will be perfectly anti-correlated – whenever one
sees “up” the other sees “down”. The two superobservers – Alice and Bob – can
choose between two different measurements on the observers’ laboratories, only
one of which will alter the perception of Debbie or Charlie respectively. If the
perception of one of the observers is changed by Alice’s or Bob’s measurement,
however, so is the perception of the other observer due to the entanglement. If
the observers were aware of such changes, this setup could be used for faster
than light signaling, since an observer would be instantaneously aware of a
spacelike separated superobserver’s actions.

2.3 Probability rules for Wigner’s-friend experiments

This sections summarizes the results published in Baumann, Del Santo, Smith,
Giacomini, Castro-Ruiz and Brukner [2019]. Formulating the Wigner’s-friend
experiment in term of the Page-Wootters formalism, see Section 1.4.1, has the
advantage of removing the ambiguity in the dynamical descriptions of Wigner
and his friend. Due to the constraint equation satisfied by the physical states
there is only one specific history state for a given setup. All observers knowing
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the relevant specifics of this setup will compute probabilities of one event condi-
tioned on another using this particular state and hence circumvent the problem of
different state assignments by Wigner and his friend after the friend’s measure-
ment, i.e. subjective collapse. As we will see in Section 2.3.1, however, there
remains some ambiguity due to different possible rules for calculating two-time
conditional probabilities. The two former proposals for such a probability rule,
compare Equations (1.24) and (1.25) in Section 1.4, turn out to give different
probability assignments when adapted to encapsulated observers, which means
that it can (in principle) be decided experimentally which is the correct rule.
While the first approach, similar to Equation (1.24), leads to the probabilities
one obtains when applying the state-update rule after the friend’s measurement,
i.e. objective collapse, the second proposal, similar to Equation (1.25), gives
probabilities in agreement with full unitary dynamics, i.e. no-collapse. Once the
agents have singled out one of the rules, they will all always agree on the prob-
abilities they assign.

Further, note that, since in the Page-Wootters formalism (PWF) time evolution
emerges from the correlations between the clock and the systems under consider-
ation, two-time conditional probabilities can be evaluated regardless of the tem-
poral ordering. Hence, the PWF allows for conditioning not only on past but also
on future events, something otherwise only possible in the time-symmetric for-
mulation of the theory of quantum measurements introduced by Yakir Aharonov,
see Aharonov et al. [1964]; Aharonov and Vaidman [2002].

In the context of Winger’s friend experiments we can, therefore, answer the
following two questions:

1. What is the probability that W measures outcome w at clock time t2, given
that F has measured outcome f at a previous clock time t1?

2. What is the probability that F measures outcome f at clock time t1, con-
ditioned on the fact that W will measure outcome w at a later clock time
t2?

We are interested in the case of tF < t1 < tW < t2 but the Page Wootters formu-
lation of the Wigner’s-friend experiment together with the fact that we condition
on both the past and the future means that one can, in principle consider any
ordering.
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2.3.1 Different definitions of conditional probabilities for the Page-
Wootters description of Wigner’s friend

We propose three different definitions for conditional probabilities of the results
observed by Wigner and his friend and apply them to the simple Wigner’s-friend
experiment, introduced in Sections 1.2.1 and 1.4.1. The operational meaning of
these probabilities is by no means straight forward, since the state of the friend
is in general modified by Wigner’s measurement. Moreover, the friend’s memory
is, by construction, the only record of her observed result and, hence, the two
results f and w are in general not jointly observable. The two exceptions are
the cases where W either reads out F ’s observed result in his own measurement
(i.e. projectors on the states |z f 〉S| f 〉F) or performs the measurement which con-
firms the entangled state he assigns to F ’s laboratory, compare Sections 2.1.2
and 2.2. We will refer to the latter as a non-disturbance measurement and in this
case Wigner and his friend can exchange their data at the end of the protocol
and construct a joint, as well as conditional, probability distribution, which is
equivalent to the one of the outcomes f that F observed at t1 and and w that
W observed at t2. Note that, also in case of a non-disturbance measurement F
cannot send her observed results to W before his measurement at tW without
changing the probabilities for Wigner’s measurements, compare Section 2.2.

First, we adapt Carl Dolby’s proposal Dolby [2004] for calculating two-time
conditional probabilities within the Page-Wootters formalism, see Equation (1.24).
In order to deal with the Page Wootters formulation of the Wigner’s-friend setup
in Section 1.4.1 we consider a van Neumann measurement model in general.

Definition 1 The conditional probability of result n at time t2 given result m at
time t1 is

P1 (n when t2 |m when t1) =

〈〈Ψ | |t1〉〈t1|⊗Πm P̂|t2〉〈t2| ⊗Πn P̂|t1〉〈t1|⊗Πm|Ψ〉〉
〈〈Ψ||t1〉〈t1|⊗Πm|Ψ〉〉

, (2.33)

where Πm and Πn are the projectors on the respective observer’s states (or
in general the states of the measurement apparatus) in HM and HN , and
the physical projector P̂ is given by Equation (1.20).

When applied to the setup in Section 1.4.1, in particular to the history state
in Equation (1.29), Definition 1 gives the conditional probabilities listed in Ta-
ble 2.2. These probabilities are always well-defined, genuinely two-time and
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P1 (w when t2 | f when t1)

f

w
yes no

u α2 β2

d β2 α2

P1 ( f when t1 |w when t2)

f

w
yes no

u α2 β2

d β2 α2

Table 2.2. The conditional probabilities of Wigner seeing result w at time t2

given that the friend saw result f at time t1 and of the friend seeing f at t1

given that Wigner will see w at t2 according to Definition 1. Since the two
conditional probabilities are equal, applying Bayes’ rule will in general not give
rise to one joint probability expression.

correspond to collapse dynamics for measurements, compare the probability ta-
bles (1.6). Note that, Definition 1 does, in general, not give rise to a well-defined
joint probability, since P1 (n when t2 |m when t1)·P(m when t1) 6= P(n when t2)·
P1 (m when t1 |n when t2). This is due to the fact that the numerator of Equa-
tion (2.33) implies an ordering of |t1〉〈t1|⊗Πm and |t2〉〈t2|⊗Πn. Only if said or-
dering is irrelevant, corresponding to [P̂|t1〉〈t1|⊗Πm P̂, P̂|t2〉〈t2|⊗Πn P̂] |Ψ〉〉= 0,
the joint probability is unique and given by 〈〈Ψ | |t1〉〈t1|⊗Πm P̂|t2〉〈t2| ⊗Πn |Ψ〉〉.

The probability rule proposed by Giovanetti et al. Giovannetti et al. [2015]
can directly be used for Wigner’s-friend experiments, since it already considers
purified (i.e. van Neumann) measurements. Directly using Equation (1.25) gives
the following definition.

Definition 2a The conditional probability (in the cases where it is well-defined)
of result n at time t2 given result m at time t1 is

P2a (n when t2 |m when t1) =
〈〈Ψ|t2〉〈t2| ⊗Πn ⊗Πm |Ψ〉〉
〈〈Ψ|t1〉〈t1| ⊗Πm |Ψ〉〉

. (2.34)
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where Πm and Πn are again the projectors on the respective observer’s
states inHM andHN .

The numerator of Equation (2.34) corresponds to a single joint measurement
of F ’s and W ’s states after both their measurements have been performed. The
denominator is given by the one-time probability of F finding outcome m at time
t1. When evaluated for arbitrary a, b,α,β and ∆φ = φS − φSF , Definition 2a
gives expressions that are in general not normalized, see Table 2.3.

〈〈Ψ|t2〉〈t2|⊗Πw⊗Π f |Ψ〉〉
〈〈Ψ|t1〉〈t1|⊗Π f |Ψ〉〉

f

w
yes no

u a2α4+2abα3β cos(∆φ)+b2α2β2

a2
a2β4−2abαβ3 cos(∆φ)+b2α2β2

a2

d b2β4+2abαβ3 cos(∆φ)+a2α2β2

b2
b2α4−2abα3β cos(∆φ)+a2α2β2

b2

Table 2.3. Definition 2a evaluated for arbitrary a, b,α,β and ∆φ = φS −
φSF . These expressions constitute possible conditional probabilities of W seeing
result w ∈ {yes, no} at time t2 given that F saw result f ∈ {u, d} at time t1

only if conditions (2.35) and (2.36) are both satisfied.

Requiring normalization means that
∑

w
〈〈Ψ|t2〉〈t2|⊗Πw⊗Π f |Ψ〉〉〉
〈〈Ψ|t1〉〈t1|⊗Π f |Ψ〉〉 = 1 for all f . In

that case the following two equations have to be fulfilled

α4 + β4 + 2cos(∆φ)(α3β −αβ3)
b
a
+ 2α2β2

�

b
a

�2

= 1 (2.35)

α4 + β4 − 2cos(∆φ)(α3β −αβ3)
a
b
+ 2α2β2

�a
b

�2
= 1, (2.36)

which is trivially the case for α= 0,β = 1 and α= 1,β = 0, corresponding to the
case where Wigner’s measurement reveals which outcome his friend observed.
Otherwise, Equations (2.35) and (2.36) can be rewritten as quadratic equations
in b

a and a
b . They have the solutions

�

b
a

�

±
=
− cos∆φ(α2 − β2)±

Æ

1− sin2∆φ(α2 − β2)2

2αβ
(2.37)

and

�a
b

�

±
=

cos∆φ(α2 − β2)±
Æ

1− sin2∆φ(α2 − β2)2

2αβ
, (2.38)
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which exist for any α,β 6= 0 and ∆φ. However, requiring that
�

b
a

�

± = 1/
�

a
b

�

±
singles out those combinations of solutions that have equal signs, which are then
the common solutions to both Equations (2.35) and (2.36). For these setting
does Definition 2a give normalized probabilities which are listed in Table 2.4.

P2a (w when t2 | f when t1)

f

w
yes no

u 1+2α2+(β4−α4) cos(2∆φ)±χ
4

1+2β2+(α4−β4) cos(2∆φ)∓χ
4

d 1+2β2+(α4−β4) cos(2∆φ)±χ
4

1+2α2+(β4−α4) cos(2∆φ)∓χ
4

with χ := 2 cos(∆φ)
Æ

1− (α2 − β2)2 sin2(∆φ)

Table 2.4. The conditional probabilities of Wigner seeing result w at time t2

given that the Friend saw result f at time t1 according to Definition 2a. The
different signs correspond to the different solutions of the quadratic equations
in Equations (2.37) and (2.38).

Although Equation (2.34) depends on both times t1 and t2 and thus can be
considered a two-time probability, it does not allow for conditioning on the fu-
ture like Definition 1 did. Since the numerator in Equation (2.34) does not de-
pend on t1 and 〈〈Ψ|t1〉〈t1|Πw ⊗ Π f |Ψ〉〉 = 0, there is no sensible definition of
P2a ( f when t1 |w when t2).

Following the original idea in Hellmann et al. [2007] of equating multiple
measurements at different times by one measurement at a final time, however,
suggests a different definition for conditional probabilities in Wigner’s-friend se-
tups.

Definition 2b The conditional probability of result n given m is

P2b (n when t2 |m when t2) =
〈〈Ψ|t2〉〈t2| ⊗Πn ⊗Πm |Ψ〉〉
〈〈Ψ|t2〉〈t2| ⊗Πm |Ψ〉〉

, (2.39)

where t2 is some time after the second measurement has been performed.

This definition gives always well-defined one-time probabilities, which corre-
spond to jointly observable statistics after full unitary evolution, i.e., no-collapse
model, compare Equation (1.6). They are shown in Table 2.5 for arbitrary pa-
rameters a, b,α,β and ∆φ. Note that for non-Wigner’s-friend scenarios Def-
initions 2a and 2b are equivalent, since in this case 〈〈Ψ|t2〉〈t2| ⊗ Πm |Ψ〉〉 =
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P2b (w when t2 | f when t2)

f

w
yes no

u
α2

β2 +2 bα
aβ cos(∆φ)+ b2

a2

Nu

β2

α2 −2 bβ
aα cos(∆φ)+ b2

a2

Nu

d
β2

α2 +2 aβ
bα cos(∆φ)+ a2

b2

Nd

α2

β2 +2 aα
bβ cos(∆φ)+ a2

b2

Nd

with Nu := α2

β2 +
β2

α2 + 2 b
a cos(∆φ)

�

α
β −

β

α

�

+ 2 b2

a2

and Nd := α2

β2 +
β2

α2 + 2 a
b cos(∆φ)

�

β

α −
α
β

�

+ 2 a2

b2

P2b ( f when t2 |w when t2)

f

w
yes no

u α2 β2

d β2 α2

Table 2.5. The conditional probabilities for results w of Wigner and f of the
friend, both evaluated at time t2, according to Definition 2b. The joint prob-
ability is well-defined and corresponds to the numerator in Equation (2.39).

〈〈Ψ|t1〉〈t1|⊗Πm |Ψ〉〉 (see Appendix B.2). This is due to the fact that the friend’s
state, which encodes the result m at some time t1, undergoes no further evolu-
tion until time t2. In contrast to this, in a Wigner’s-friend experiment F ’s state
will be altered by W ’s measurement and reading it out at the end does in general
not correspond to what was encoded there before W ’s measurement.

The fact that either Winger measuring which result his friend observed or the
non-disturbance measurement are special cases where it is operationally mean-
ingful to assign a joint probability to the results f and w lead us propose a third
definition for two-time conditional probabilities within the Page-Wootters for-
malism, which gives well-defined probabilities for Wigner’s-friend setups only in
these special cases.

Definition 3 The conditional probability (in the cases where it is well-defined)
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of result n at time t2 given result m at time t1 is

P3 (n when t2 |m when t1) =
〈〈Ψ|(|t2〉〈t2| ⊗Πn)Pph(|t1〉〈t1| ⊗Πm) |Ψ〉〉

〈〈Ψ|t1〉〈t1| ⊗Πm |Ψ〉〉
.

(2.40)

This probability rule gives well-defined probabilities only under the very restric-
tive condition that the measurement operators commute on the physical state
when compared at the same instant of time, i.e.

�

U (t1, t2)Π
mU †(t1, t2),Π

n
�

|Ψ〉〉= 0, (2.41)

where U (t2, t1) = 〈t2|Pph|t1〉. More concretely, evaluating Definition 3 for arbi-
trary parameters in the simple Winger’s friend experiment gives the expressions
listed in Table 2.6, which are in general neither real nor positive although they
always sum up to one. As Richard Feynman already argued, however, one can
consider those cases where some theory predicts non-positive probabilities as
not physically realizable, rather than dismissing said theory merely because it
predicts these probabilities.

“If a physical theory for calculating probabilities yields a negative
probability for a given situation under certain assumed conditions,
we need not conclude the theory is incorrect. Two other possibili-
ties of interpretation exist. One is that the conditions (for example,
initial conditions) may not be capable of being realized in the phys-
ical world. The other possibility is that the situation for which the
probability appears to be negative is not one that can be verified
directly. A combination of these two, limitation of verifiability and
freedom in initial conditions, may also be a solution to the apparent
difficulty.” Feynman [1987]

For Winger’s friend scenarios this means understanding Definition 3 as identi-
fying those cases where the two results under consideration are indeed jointly
observable.

For the expressions in Table 2.6 to be real numbers we have to require

∆φ = nπ, (2.42)

with n being an integer. Furthermore, the terms calculated using Definition 3 are
all positive for α = 0,β = 1 or α = 1,β = 0, which is the measurement by W ,
where he reads out which result F observed and where all definitions agree on
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〈〈Ψ(|t2〉〈t2|⊗Πw )Pph(|t1〉〈t1|⊗Π f )|Ψ〉〉
〈〈Ψ|t1〉〈t1|⊗Π f |Ψ〉〉〉

f

w
yes no

u α2 + b
aαβe−i(∆φ) β2 − b

aαβe−i(∆φ)

d β2 + a
bαβe−i(∆φ) α2 − a

bαβe−i(∆φ)

〈〈Ψ(|t2〉〈t2|⊗Πw )Pph(|t1〉〈t1|⊗Π f )|Ψ〉〉
〈〈Ψ|t2〉〈t2|⊗Πw |Ψ〉〉

f

w
yes no

u aα
aα+bβe−i(∆φ)

bβ
bβ+aαei(∆φ)

d a2β2−abαβei(∆φ)

a2β2+b2α2−2abαβ cos(∆φ)
b2α2−abαβe−i(∆φ)

a2β2+b2α2−2abαβ cos(∆φ)

Table 2.6. Definition 3 evaluated for arbitrary a, b,α,β and ∆φ possibly con-
stituting the conditional probabilities of W seeing result w ∈ {yes,no} at time
t2 given that F saw result f ∈ {u, d} at time t1 as well as that of F seeing f
at t1 given that W will see w at t2. These expressions are real and positive
and, hence, probabilities only if conditions (2.44) and either (2.47) or (2.48)
are satisfied.

the probabilities. Moreover, for α,β 6= 0, one obtains well-defined conditional
probabilities for the result w at t2 given the result f at t1, if either

α2 −
a
b
αβ ≥ 0 and β2 −

b
a
αβ ≥ 0 (2.43)

or

α2 −
b
a
αβ ≥ 0 and β2 −

a
b
αβ ≥ 0, (2.44)

and conditional probabilities for f at t1 given w at t2, if either

1−
bα
aβ
≥ 0 and 1−

aβ
bα
≥ 0 (2.45)

or

1−
bβ
aα
≥ 0 and 1−

aα
bβ
≥ 0, (2.46)

The solution to both cases are the settings where Wigner’s measurement is aligned
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P3 (w when t2 | f when t1)

f

w
yes no

u 1 (or 0) 0 (or 1)

d 1 (or 0) 0 (or 1)

P3 ( f when t1 |w when t2)

f

w
yes no

u α2 (or 0) 0 (or β2)

d β2 (or 0) 0 (or α2)

Table 2.7. The conditional probabilities of Wigner seeing result w at t2 and
the Friend seeing result f at time t1 (above) and of the Friend seeing f at t1

given that Wigner will see w at t2 (below), according to Definition 3 for the
non-disturbance case, i.e. a = α and b = β (or a = β and b = −α). The
probabilities are also well-defined in the case where Wigner’s measurement
reveals which result the friend observed.

with the initial state

a = α, b = β (2.47)

or

a = β , b = −α. (2.48)

In this case the state of the friend’s laboratory is in an eigenstate of W ’s non-
disturbance measurement and the conditional probabilities are either 0 or 1,
when conditioning on the past, see Table 2.7.

Note that, where it is well-defined P3(w when t2 | f when t1) coincides with
P2b(w when t2 | f when t2) which is in accordance with unitary dynamics for the
friend’s measurement. Furthermore, the respective one-time probability accord-
ing to Definition 3 satisfies

P3 ( f when t2 & w when t2) = 〈〈Ψ ′|t2〉Π f 〈t2|Pph|t2〉Πw〈t2|Ψ ′〉〉
= 〈〈Ψ ′|t2〉Π f ⊗Πw〈t2|Ψ ′〉〉= P2b(w when t2 & f when t2). (2.49)
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Hence, Definition 3 singles out those settings where the joint probability distribu-
tion of F ’s and W ’s outcomes is the same before and after Wigner’s measurement

P3 ( f when t2 & w when t2) = P3 ( f when t1 & w when t2) , (2.50)

which means that the collected statistics at the end of the experiment can be
identified with a two-time probability distribution.

As shown in Appendix B.2 all the above definitions of probability rules for the
Page-Wootters formalism give the standard quantum probabilities when applied
to non-Winger’s friend scenarios. Moreover, a comprehensive comparison of all
the definitions presented in this section can be found in Appendix B.3.

2.3.2 Different solutions of the Wigner’s friend paradox within the
Page-Wootters formalism

The three probability rules proposed in the previous Section 2.3.1 resolve the
Wigner’s friend paradox in different ways provided that Winger and his friend
agree on a rule to calculate conditional probabilities for their consecutive mea-
surement. Based on that, they can be naturally linked to different interpretations
of quantum theory.

Definition 1 resolves the problem of differing probability assignments for
Wigner’s-friend scenarios insofar as it corresponds to describing F ’s measure-
ment with collapse dynamics, i.e. objective collapse. Examples of interpretations
and approaches most compatible with this probability rule are, for example Bub
and Pitowsky [2010]; Diósi [2014]; Ghirardi et al. [1986]; Penrose [2000]. Note
that models that purport a “real”, physical collapse, such as those in Diósi [2014];
Ghirardi et al. [1986] and Penrose [2000], are not merely interpretations, but
non-linear modifications of quantum theory that bring about a physical collapse
of quantum system at a certain scale. Definition 1, on the contrary, is linear in
the system state by construction. Just like the Schrödinger’s equation with the
standard Born rule, which is considered an effective approximation of the real dy-
namics in physical collapse theories, the Page-Wootters formalism together with
Equation (2.33) can be regarded as an effective description of collapse dynamics,
which gives the same probabilities, but does not provide a physical model for the
collapse.

Natural candidates for interpretations that would endorse one of the Defini-
tions 2, are those which endorse unitary dynamics also for measurements and
therefore propose the no-collapse model for describing Wigner’s-friend scenarios.
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As already mentioned, the best known example for such interpretations are the
many worlds interpretation of Everettian quantum theory DeWitt and Graham
[2015] and Bohmian mechanics Dürr et al. [1996]. While Definition 2b is always
well-defined and has a clear interpretation, namely the collectible statists of F ’s
and W ’s perception at the end of the experiment, it fails in representing genuine
two-time probabilities, since only t2 appears in Equation (2.39). Definition 2a,
on the other hand, while depending on both t1 and t2, gives well-defined, i.e.,
normalized, probabilities only under certain conditions, see Equations (2.35)
and (2.36). Although both the measurement where W reads out F ’s observed
result as well as the non-disturbance measurement satisfy these conditions and
the probabilities agree with both Definition 2b and Definition 3, see Figure 2.6,
for most cases there is no clear interpretation for the probabilities provided by
Definition 2a. Formally for any given initial state of the quantum system and
fixed measurement of the friend, there exists a measurement choice of Wigner
(besides the non-disturbance one), for which Definition 2a gives well-defined
probabilities. However, these probabilities in general neither correspond to col-
lapse nor full unitary evolution up to the final time. David Wallace claims in
Wallace [2012], that within the many worlds interpretation one can consistently
adapt either a Lewisian view, where one can speak about multiple times within
one decohered branch of the multiverse, or what he calls a Stage view, where
one can only talk about single times. Neither of the two views is compatible with
Definition 2a, since the friend is by construction not part of decohered history in
a Wigner’s-friend experiment, which rules out the Lewisian view, and yet it gives
two-time probabilities, which are incompatible with the Stage view. Hence, only
Definition 2b is compatible with the many worlds interpretation and aligns with
the Stage view therein.

Definition 3 gives well-defined probabilities, i.e. real and non-negative, only
under the condition in Equation (2.41) which singles out the cases when Wigner
either measures what the friend observed or confirms the state of the friend’s lab-
oratory via a non-disturbance measurement. Remarkably, this purely formal con-
dition singles out those settings for the simple Wigner’s-friend setup, where one
can attribute an operational meaning to the joint probability of the outcomes of
F and W . This definition is, therefore in line with the considerations on Winger-
Bell setups, see Section 1.2.2, stating that it is in general not possible to con-
struct a joint probability distribution associated with measurement outcomes of
encapsulated observers. As shown in Appendix B.1, condition (2.41) ensures
that the outcomes of Wigner and his friend are part of a family of consistent
quantum histories Griffiths [2003]. In the consistent histories framework proba-
bilities of properties at different times, can only be assigned within such families
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Figure 2.6. Suggestive representation of the probabilities according to Defi-
nitions 1-3 in a Wigner’s-friend scenario (when they are well-defined). The
two planes distinguish between joint probabilities that are in accordance with
applying collapse or unitary dynamics for the friend’s measurement. In the
non-disturbance case (i.e., ∆φ = nπ and a/α = ±b/β) Definitions 2a, 2b and
3 all give the same conditional probabilities, that are in line with a unitary
description of the friends measurement and different from the collapse ones
given by Definition 1. There is, however, at least one instance where Defi-
nitions 1, 2a, and 2b coincide (i.e., ∆φ = (n + 1/2)π, a = b = 1/

p
2 and

arbitrary α) but Definition 3 is not defined. Note that, for non Wigner’s-friend
scenarios all the definitions give the standard quantum probabilities. (picture
taken from Baumann, Del Santo, Smith, Giacomini, Castro-Ruiz and Brukner
[2019]).

of consistent histories. The reasoning about the extended Wigner’s-friend setup
in Frauchiger and Renner [2018], which is discussed in Detail in Section 1.2.2, is
not allowed within this framework, because the results of the four agents are not
all part of a family of consistent quantum histories, see Losada et al. [2019]. The
consistent history interpretation is, therefore, a natural interpretation of quan-
tum theory for the probability rule of Definition 3, although other interpretations,
such as modern variants of the Copenhagen interpretation, might also be com-
patible with it. Since Definition 3 gives genuine two-time probabilities, in the few
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cases where they are defined, which agree with a unitary evolution during mea-
surements it is incompatible with the many worlds interpretation for the same
reasons that Definition 2a is.

Note that interpretations of quantum theory, which are likely to endorse the
problematic subjective collapse model for Wigner’s-friend setups, do not fit with
the Page-Wootters formalism and, thus, with neither of the probability rules pro-
posed in the previous section. Examples for such interpretations are relational
quantum mechanics Rovelli [1996] and QBism Fuchs [2010], which then need
to provide independent possible resolutions of the Wigner’s friend paradox and
especially consider those cases where the subjective collapse model may lead to
an observable contradiction, as discussed in Section 2.2.1.

2.4 A no-go theorem for Wigner’s friend’s perception

In Allard Guérin et al. [2020] we extend our considerations about joint prob-
abilities for the observed results of Wigner and his friend, to only the friend’s
observation at different times. More concretely, we formulated a no-go theorem
for the joint probability distribution of the friend’s perceived measurement out-
comes before and after Wigner’s measurement, at times t1 and t2 respectively, in
the simple Winger’s friend scenario, compare Sections 1.2.1 and 1.4.1. Such a
joint probability distribution would, via division by the respective one-time prob-
ability, provide an answer to the friend’s question: "Given that I saw outcome f1

at time t1, what is the probability (attributed by using quantum theory) that I
will see outcome f2 at time t2?". Note that, recent work about the emergence
of physical laws is based on the idea that the primary purpose of these laws is
to give the conditional probability distributions relating events perceived by an
observer at two subsequent times Müller [2020]. Such considerations place the
friend’s question above at the core of scientific theories. As shown bellow, how-
ever, a joint probability distribution P( f1, f2) cannot simultaneously fulfill three
assumptions, which seem natural within quantum theory. One conclusion of our
no-go theorem is that treating a piece of information from the past as if it was
still presently existing (even when one takes into account a possible subjective
uncertainty) cannot in general be upheld within unitary quantum theory in the
context of Wigner’s-friend experiments.

Note that, since P( f1, f2) does not correspond to anything directly observable
– one cannot have direct perceptions about two different times– which of the
assumptions of the no-go theorem is dropped is a matter of metaphysical prefer-
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ences and will, as we discuss in Section 2.4.2, differ in different interpretations
of quantum theory.

2.4.1 The no-go theorem and its assumptions

We will consider fully unitary quantum theory, which means that the overall state
of the simple Wigner’s-friend experiment evolves according to the relative state
formalism. The initial state (at time t0) of the whole setup is given by

|Ψ(t0)〉= |ψ〉S|r〉F |r〉W =
�

a| ↑〉S + beiφS | ↓〉S
�

|r〉F |r〉W . (2.51)

At time tF , the friend measures in the σz-basis, and for some time t1 > tF the
state is

|Ψ(t1)〉=
�

a| ↑〉S|u〉F + beiφS | ↓〉S|d〉F
�

|r〉W . (2.52)

At time tW > t1, Wigner measures the friend and system in some entangled basis
containing the states given by Equations (1.2) and (1.3), with the other two
states corresponding to superpositions of | ↑, d〉SF and | ↓, u〉SF assumed to never
be actualized in the experiment. Hence at time t2 > tW , the final state is

|Ψ(t2)〉=(aα+ bβe−i∆φ)|1〉SF |1〉W + (aβeiφSF − bαeiφS)|2〉SF |2〉W
=α(aα+ bβe−i∆φ)| ↑〉S|u〉F |1〉W
+ β(aαeiφSF + bβeiφS)| ↓〉S|d〉F |1〉W (2.53)

+ β(aβ − bαe−i∆φ)| ↑〉S|u〉F |2〉W
−α(aβeiφSF − bαeiφS)| ↓〉S|d〉F |2〉W .

The state evolution given by Equations (2.51)-(2.53) also corresponds to the con-
ditional Page Wootters states, i.e. 〈t|Ψ〉〉 with t ∈ {t0, t1, t2}, for the Page Woot-
ters formulation of the Winger’s friend experiment presented in Sections 1.4.1
and 2.3. Note that the state |Ψ(t2)〉 depends on the specific unitary realization of
Wigner’s measurement and that different purifications will lead to different final
states.

One-time probabilities are calculated by using the projector Πx onto the state
of the respective observer seeing outcome x and the full state at the time t of
interest, i.e.

P rels(x) = Tr (Πx |Ψ(t)〉〈Ψ(t)|) , (2.54)

compare Equation (2.5).
Our no-go theorem states that Wigner’s friend cannot treat her perceived

measurement outcome as having reality across multiple times without contra-
dicting at least one of the following assumptions:
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A1 The events f1 and f2, corresponding to the perceived measurement out-
comes of F at times t1 and t2, respectively, can be combined into a joint
event to which one assigns a probability distribution P( f1, f2). The rules
of the probability calculus further imply that P( f1) =

∑

f2
P( f1, f2) and

P( f2) =
∑

f1
P( f1, f2).

A2 One-time probabilities are assigned according to the relative-state formal-
ism

P( f ) = Tr(| f 〉〈 f |F |Ψ(t i)〉〈Ψ(t i)|), (2.55)

with |Ψ(t i)〉 being the unitarily evolved global state according to Equa-
tions (2.51) - (2.53).

A3 The joint probability of F ’s perceived outcomes P( f1, f2) has convex linear
dependence on the initial state ρS of the system qubit.

Note that assumptions A1–A3 are not logically independent, for example, one
cannot hold A3 without at the same time assuming A1.

In general we want to be able to consider cases where the system is initially in
a mixed state ρS. Since such a state can always be decomposed as ρ = λ|ψ〉〈ψ|+
(1− λ)|φ〉〈φ|, where |ψ〉, |φ〉 are orthonormal states and 0 ≤ λ ≤ 1, we obtain
the following expression for the whole setup at different times

Σ(t) = λ|Ψ(t)〉〈Ψ(t)|+ (1−λ)|Φ(t)〉〈Φ(t)|. (2.56)

The states |Ψ(t)〉 and |Φ(t)〉 are analogous to Equations (2.51)-(2.53) with initial
system states |ψ〉S and |φ〉S respectively. For mixed initial states ρS probabilities
are then given by P(x) = Tr (ΠxΣ(t)).

Assumption A1 is a consequence of requiring that quantum theory –like any
other predictive theory– should provide a conditional probability distributions for
the friend’s perceptions before and after Wigner’s measurement, i.e. P( f2| f1),
and the fact that it allows for calculating single event probabilities. Together
they allow the construction of the joint probability distribution for the friend’s
perceived outcomes at two different times, P( f1, f2). A1 can also be understood
as a special case of what is termed absoluteness of observed events (AOE) in Bong
et al. [2020]; Cavalcanti [2021], i.e. the assumption that "an observed event is a
real single event, and not relative to anything or anyone". Since this idea is here
applied to the same observer, it is conceptually different from original formula-
tion of AOE, where it is about joint probability assignments for the measurement
outcomes of multiple observers.
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Assumption A2 provides the single-time probabilities for the friend’s percep-
tion according to the relative state formalism P( f1) = Tr (| f 〉〈 f |F |Ψ(t1)〉〈Ψ(t1)|)
and P( f2) = Tr (| f 〉〈 f |F |Ψ(t2)〉〈Ψ(t2)|). It can, in principle, be tested against
objective collapse quantum theory in a Winger’s friend experiment, where the
two give different probabilistic predictions even for single event probabilities,
see Bassi et al. [2013] and compare Sections 1.2.1 and 2.1.2.

Assumption A3 asks that the joint probabilities for events at multiple times
depend linearly on the initial quantum state like single time probabilities do.
It can be motivated by the fact that it holds in all typical laboratory situations.
Alternatively A3 can be motivated operationally, in a way that is common in
generalized probabilistic theories Hardy [2001]; Barrett [2007], by imagining a
third agent is preparing the initial state of the system qubit, independently from
the friend and Wigner. Said third party prepares one of two system states σ or τ
with probabilitiesλ and 1−λ respectively, resulting in system stateρS = λσ+(1−
λ)τ. Assuming A3 then implies that Pρ( f1, f2) = λPσ( f1, f2) + (1− λ)Pτ( f1, f2),
while denying it, and upholding assumption A1, means that a full specification of
the initial state ρS alone is not sufficient for computing P( f1, f2). Any convincing
case against A3 should involve the prescription and justification of a specific non-
linear two-time probability rule.

Theorem 1. The conjunction of the assumptions A1-A3 cannot be satisfied for the
simple Wigner’s-friend experiment for a general choice of Wigner’s measurement
basis.

The proof of Theorem 1 employs arguments about joint measurability due to
the formal equivalence of the two problems. The physical interpretation, how-
ever, is different since we are concerned here with different perceptions of an
agents at different times.

Proof. First, we define the isometries Vi :HS →HS⊗HF⊗HW , i = 1,2 mapping
the initial state of the system |ψ〉S to the corresponding state of the whole setup
at time t i as Vi|ψ〉S = |Ψ(t i)〉SFW . Using Equations. (2.52) and (2.53), these
isometries are

V1 = | ↑, U , 0〉SFW 〈↑ |S + | ↓, D, 0〉SFW 〈↓ |S (2.57)

V2 = |1〉SF |1〉W 〈φ1|S + |2〉SF |2〉W 〈φ2|S (2.58)

where |φ1〉 := α| ↑〉+ βeiφSF | ↓〉 and |φ2〉 := βe−iφSF | ↑〉 −α| ↓〉.
Extending assumption A3 to mixed states and using assumption A2, we have

P( f1) = Tr
�

(| f1〉〈 f1|F ⊗1SW )V1ρV †
1

�

(2.59)

= Tr
�

V †
1 (| f1〉〈 f1|F ⊗1SW )V1ρ

�

= Tr(E1
f1
ρ), (2.60)
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where E1
f1

:= V †
1 (| f1〉〈 f1|F ⊗1SW )V1 can be thought of as the "Heisenberg picture"

operator corresponding to measuring | f1〉〈 f1| at time t1. Note that, it is not ex-
actly the Heisenberg operator since V1 is not a unitary, but an isometry. It is easy
to see that {E1

f1
} is a POVM. For time t2 we analogously obtain

P( f2) = Tr(V †
2 (| f2〉〈 f2|F ⊗1SW )V2ρ) := Tr(E2

f2
ρ), (2.61)

where E2
f2

:= V †
2 (| f2〉〈 f2|F ⊗1SW )V2 is also a POVM. Explicit calculations yield

E1
u = | ↑〉〈↑ | , E1

d = | ↓〉〈↓ | (2.62)

and

E2
u = α

2|φ1〉〈φ1|+ β2|φ2〉〈φ2| , E2
d = β

2|φ1〉〈φ1|+α2|φ2〉〈φ2|. (2.63)

Assumptions A1 and A3 together imply that there exists a joint POVM {G f1 f2}
such that

P( f1, f2) = Tr(G f1 f2ρ). (2.64)

Requiring that the marginals of P( f1, f2) obey assumption A2 for all states means
that

∑

f1
G f1 f2 = E1

f1
and

∑

f2
G f1 f2 = E2

f2
, which means that {E1

f1
} and {E2

f2
} are

jointly measurable.
If (at least) one of two jointly measurable POVM’s is sharp, then joint measur-

ability is equivalent to commutativity. Moreover, the joint POVM G f1 f2 = E1
f1

E2
f2

is
unique and gives the correct marginals, see Heinosaari et al. [2008]. Since we
are considering two-outcome POVMs, and since E1 is sharp, joint measurability
means that in particular [E1

u , E2
u] = 0. Direct calculation, however, yields

[E1
u , E2

u] = (α
2 − β2)αβe−iφSF | ↑〉〈↓ |+ (β2 −α2)αβeiφSF | ↓〉〈↑ |. (2.65)

which means that E1
f1

and E2
f2

are not jointly measurable for general choices of
α,β ,φSF . This concludes the proof.

While Theorem 1 holds in general, i.e. for arbitrary settings of W ’s measure-
ment, there are special cases, which do allow for assumptions A1-A3 to be satis-
fied simultaneously. For two types of settings the commutator in Equation (2.65)
vanishes and one can explicitly calculate probabilities P( f1, f2) as well as P( f1| f2).
The conditional probability indicates whether the the friend’s perception is al-
tered during Winger’s measurement. The two special cases are the one where
Wigner reads out his friend’s observed result, i.e. φSF = nπ and α = 1,β = 0 or
vice versa, as well as the case where φSF = nπ and α= β = 1p

2
. In the first case,

one obtains E1
f = E2

f and the probability distribution that satisfies all assumptions
A1-A3 is
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P( f1, f2) = Tr(E1
f1

E2
f2
ρ)

f1

f2 u d

u a2 0

d 0 b2,

(2.66)

which gives conditional probabilities P( f2| f1) = δ f1 f2 . This means that the per-
ception of friend is perfectly preserved.

In the second case, Wigner measures in a Bell-like basis, for which one obtains
E2

f =
1
21 leading to probabilities

P( f1, f2) = Tr(E1
f1

E2
f2
ρ)

f1

f2 u d

u a2

2
a2

2

d b2

2
b2

2

(2.67)

The corresponding conditional probability distribution is P( f2| f1) =
1
2 ∀ f1, f2,

which means that F ’s perception is flipped during W ’s measurement with proba-
bility 1

2 , regardless of which result the friend initially observed and independently
of initial state ρ. This case is surprising since it includes the scenario where
the system is initially in state |ψ〉 = 1p

2
(| ↑〉 + | ↓〉). In this case W performs a

non-disturbance measurement when choosing the Bell-like basis, which does not
change the state of the friend’s laboratory.

2.4.2 Implications of the no-go theorem for different interpreta-
tions

While previous no-go theorems Brukner [2018]; Bong et al. [2020] were con-
cerned with Wigner’s view of the friend’s state, the no-go theorem above shows
that even from the friend’s perspective, treating her own perception of an out-
come as persistent throughout a Wigner’s-friend experiment is problematic. More
concretely, she cannot assign a joint probability to her observed outcomes before
and after Wigner’s measurement fulfilling all three of our assumptions in previ-
ous section. Different interpretations of quantum theory advocate for dropping
different assumptions out of A1-A3 in reaction to Theorem 1.
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For example, the many-worlds interpretation would probably reject A1 for the
reasons mentioned in Section 2.3.2. Since there is by construction not enough
decoherence present in a Wigner’s-friend experiment for associating the friend
with a distinct decohered branch of the multiverse, there is no way to meaning-
fully talk about the friend’s perception at two different times, see Wallace [2012].
Another class of interpretations that are likely to reject A1 are those based on
operational approaches like Brukner [2017]; Oeckl [2019]. These approaches
would allow for the assignment of probabilities only where one can in princi-
ple perform a corresponding measurement, which is not the case for the joint
event ( f1, f2). In a Wigner’s-friend experiment there cannot be a reliable record
of f1 that remains available after time t2 without changing the probabilities of
measurements performed at times t > t1, see Section 2.2.

Assumption A2, on the other hand will be denied by any interpretation that
purports collapse dynamics, either objectively or subjectively. In the first case the
overall state after F ’s measurement would no longer be given by Equation (2.52)
and probabilities calculated using Equation 2.54 for t > tF would be verifiably
wrong. Alternatively, subjective collapse interpretations like QBism would claim
that the friend, but not Wigner, is justified to use the state-update rule after her
measurement and therefore calculate P( f2) different from Equation (2.55). This
will, however, conflict with Wigner’s probability assignment and in special cases
lead to observable contradictions, compare Section 2.2.

In Bohmian mechanics assumption A1 holds and, as already shown in Bohm
[1952a,b], single-time probabilities are the same as those given by unitary quan-
tum theory, which means that A2 is also satisfied. Hence, our no-go theorem
implies that A3 cannot hold in Bohmian mechanics, which agrees with the fact
that the Bohmian guidance equation is in general non-linear in the density oper-
ator Bell [2004]; Luis and Sanz [2015].
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Chapter 3

Superpositions of the order of
operations

This Chapter contains our results on the topic of indefinite causal order, which
are published in Baumann and Brukner [2016] and Baumann et al. [2021]. The
process-matrix framework Oreshkov et al. [2012]was invented to describe exotic
causal structures, like superpositions of space-times and superpositions of the or-
der of events. However, many processes arising in this framework have no clear
physical meaning. We investigated which classes of operations, for two agents,
will always result in correlations which are compatible with definite causal or-
der, see Section 3.1 as well as what kind of process, causal and non-causal, are
compatible with a Page-Wootters history state, see Sections 3.2 and 3.3.

3.1 Effective bipartite causality

In Baumann and Brukner [2016]we showed that, in the case of two agents, quan-
tum operations that contain a measurement of the input in some fixed basis give
rise to effective process matrices which correspond to a definite causal order.
Consider agents A and B performing operations corresponding to CJ-matrices
{MA1A2

i } and { M B1B2
j } respectively. As discussed in Section 1.3, the joint proba-

bilities for these operations are given by Equation (1.10). However, for any given
sets {M X1X2

ik
} of operations, we can define the effective process matrix We f f , which

returns the same joint probabilities as the original process matrix W , by

∀ik : Tr

�

W

� n
⊗

k=1

M
X k

1 X k
2

ik

��

!
= Tr

�

We f f

� n
⊗

k=1

M
X k

1 X k
2

ik

��

. (3.1)
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This definition of effective process matrices is useful if the agents’ operations are
restricted to certain classes.

In Oreshkov et al. [2012] the authors showed that if two agents’ operations
are classical, meaning they perform so-called measure-and-prepare operations
where the inputs are measured in a fixed basis and the outputs are re-prepared
in a fixed basis, the causal relations between these operations are always com-
patible with a global causal order. This means that the effective process matrix
defined by Equation (3.1) is a convex mixture of causally ordered processes

We f f = pW B�A+ (1− p)W A�B, (3.2)

with p ∈ [0, 1] and W A�B containing only terms where B’s operation cannot
influence A’s and vice versa for W B�A. Processes of the form (3.2) are called
causally separable Oreshkov and Giarmatzi [2016] and do not lead to violations
of causal inequalities, compare Section 1.3.

We show, if two agents are restricted to measuring their input in fixed bases,
there always exists a causally separable effective process matrix. This means that
two such agents cannot violate any casual inequality. The CJ matrices of such
operations are of the form

MA1A2
i =

∑

n

p(i|n)|n〉〈n|A1 ⊗ρA2
i

and (3.3)

M B1B2
j =

∑

m

p( j|n)|m〉〈m|B1 ⊗ρB2
j ,

where p(k|l) is the probability to prepare state ρX2
k given the input is measured

to be in state |l〉. All process matrices for two agents can be written as

W =
∑

wnn′r r ′mm′ss′ |n〉〈n′|A1 ⊗ |r〉〈r ′|A2 ⊗ |m〉〈m′|B1 ⊗ |s′〉〈s′|B2 , (3.4)

where the sum is taken over all the indices. The effective process matrix for
operations of the form (3.3) is partially diagonal in the two agents’ input Hilbert
spaces:

We f f =
∑

we f f
nii′mj j′ |n〉〈n|

A1 ⊗ |i〉〈i′|A2 ⊗ |m〉〈m|B1 ⊗ | j〉〈 j′|B2 , (3.5)

where {|i〉} and {| j〉} are arbitrary orthonormal bases of H A2 and H B2 and
we f f

nii′mj j′ is shorthand notation for wnnii′mmj j′ . It is straight forward to check that
Equations (3.5) and (3.4) give the same probabilities when applied to operations
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in Equation (3.3) only. Note that this effective process matrix can be related to
the original one by the update rule

W →We f f =
∑

n,m

P(n,m)W P(n,m), (3.6)

where P(n,m) = |n〉〈n|A1
⊗ |m〉〈m|B1

, which is analogous to the von Neumann-
Lüder rule Lüders [1950] for the state update under a non-selective measure-
ment. While W might exhibit indefinite casual order, once the agents perform
measurements on their inputs in fixed bases, the process matrix is causally sep-
arable and given by Equation (3.6). This is similar to the projection of a general
bipartite state measured in a product basis, i.e.

∑

n,m Pn ⊗ PmρPn ⊗ Pm being a
separable state even if the original state ρ was entangled. However, there is no
such analogy for single selective measurements, since although Pn⊗ PmρPn⊗ Pm

is a valid quantum state, P(n,m)W P(n,m) is in general not a process matrix. The
latter may contain forbidden causal loops.

Further, note that any bipartite process matrix can also be written as

W =
1
d

�

1A1A2B1B2 +
∑

i

ciW
A1A2B1B2
i

�

=
1
d
((1+λ0)1+ κ1 +κ2), (3.7)

where d = dim(H A1) · dim(H B1) and λ0 ∈ [−1,0] is the minimal eigenvalue of
∑

i ciW
A1A2B1B2
i . We have that κ1 + κ2 ≥ 0 and κ1 acting trivially on H B2 and κ2

acting trivially onH A2 . Note, however, that κ1 and κ2 themselves are in general
not positive semi-definite themselves.

For the effective process matrix in Equation (3.5) we can use terms P(n,m) =
|n〉〈n|A1 ⊗ 1A2 ⊗ |m〉〈m|B1 ⊗ 1B2 to add and subtracted from κ1 and κ2 for every
pair (n, m) such that the sum κ1+κ2, and hence We f f , remains unchanged. This
allows us to arrive at matrices κA1A2B1 ≥ 0 and κA1B1B2 ≥ 0 where each is positive
semi-definite on its own. Since we only acted on the subspace of H A1 ⊗H B1

we still find that κA1A2B1 acts trivially onH B2 while κA1B1B2 acts trivially onH A2 .
Hence we can rewrite

We f f =
1
d
(κA1A2B1 +κA1B1B2) = pW A�B + (1− p)W B�A, (3.8)

where p = Tr(κA1A2B1)/d ′ and 1 − p = Tr(κA1B1B2)/d ′ with d ′ = d · dim(H A2) ·
dim(H B2).

The systematic modification of the eigenvalues of κ1 and κ2 requires that

[κ1,κ2] = [κ1, P(n,m)] = [P(n,m),κ2] = 0 (3.9)
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and the joint eigenvectors of κ1,κ2 and P(n,m) to be product vectors

|ψ(n,m)〉= |n〉A1 ⊗ |a(n,m)〉A2 ⊗ |m〉B1 ⊗ |b(n,m)〉B2 (3.10)

with {|n〉} and {|m〉} being orthonormal bases of the input spaces H A1 and
H B1 and {|a(n,m)〉} and {|b(n,m)〉} bases of H A2 and H B2 respectively. The lat-
ter two might, however, be different for every pair (n, m). If Equations (3.9)
and (3.10) are fulfilled the eigenvalues of κ1 + κ2 are given by m(n, a, m, b) =
m1(n, a, m) + m2(n, m, b) and adding and subtracting P(n,m) for every (n, m) al-
lows for creating positive eigenvalues m′1(n, a, m) and m′2(n, m, b) while keeping
the sum invariant. This procedure eventually leads to the expression in Equa-
tion (3.8). This argument is a generalization of the proof provided in the supple-
mentary information of Oreshkov et al. [2012], where the authors considered
classical operations, the CJ matrices of which are fully diagonal in the so called
pointer basis. Hence also the effective process matrix for classical operations is
diagonal in that basis.

Note that while conditions (3.9) and (3.10) are sufficient for causal separabil-
ity in the bipartite case, they are by no means necessary. Consider, for example,
the causally separable process matrix

W0 =
p
d
(1−σA1

z ⊗σ
A2
z ⊗σ

B1
x )+

1− p
d
(1+

1
2
σA1

z ⊗σ
B2
x +

1
2
σA1

x ⊗σ
B1
z ⊗σ

B2
z ), (3.11)

with non-commuting terms for κ1 and κ2. Moreover, there is no P(n,m) that com-
mutes with both terms, since it would have to commute with both σx and σz

on the subspacesH A1
andH B1

. Hence neither condition (3.9) nor (3.10) is ful-
filled, although W0 is causally separable per definition.

The effective arise of a definite causal order is, however, not a consequence
of classicality in general. For three or more parties there exist (effective) pro-
cess matrices, that violate causal inequalities, even if all operations involved are
classical, see Baumeler et al. [2014]; Baumeler and Wolf [2016].

3.2 Page-Wooters formulation of indefinite causal order

In Castro-Ruiz et al. [2020], the authors considered a generalized Page-Wootters
formalism using several clocks, compare Section 1.4, and found that history
states arising from solving a Hamiltonian constraint can give rise to indefinite
causal order. The authors studied the time evolution according to the perspec-
tives of different clocks and showed how to recover the so-called gravitational
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quantum switch Zych et al. [2019]. However, it is in general not clear which non-
causal processes can be implemented within such a framework or which concrete
process (if any) is implemented by a given history state.

In Baumann et al. [2021]we, therefore, systematically combined the process-
matrix framework with a generalization of the Page-Wootters formalism by in-
troducing multiple discrete quantum clocks, each of which is associated with
an agent. This allowed us to describe scenarios where different definite causal
orders are coherently controlled, it also hints at the possibility that certain non-
causal processes might not be implementable within this setting, which can be re-
garded as an argument against these processes being compatible with the known
physical laws. We presented a general definition of what it means for a history
state to implement a process matrix. The various discrete clocks and the corre-
sponding agents can be thought of as initially being part of definite causal struc-
ture before they experience some quantum casual structure, where the global
order of events is no longer well-defined. Finally they all return to a definite
causal structure. This setting is reminiscent of pure process matrices and we,
indeed, arrive at a refined version of the perspectival circuits from the causal ref-
erence frame picture Allard Guérin and Brukner [2018], compare Section 1.3.2.

The main idea of our paper Baumann et al. [2021] is to associate each agent
X ∈ {A, B, . . . N} a discrete quantum clock with Hilbert spaces HcA

, HcB
, . . .HcN

.
We denote all clock variables collectively as Hc. Analogous to the picture asso-
ciated with pure processes, we are interested in scenarios with a well-defined
global causal past and future with potentially indefinite casual order in between.
We formalize this by requiring that all the clocks experience at least one well-
synchronized time step at the beginning and in the end, see Figure 3.1. Again,
analogous to the pure process formalism, each agent has access to an ancillary
degree of freedom, denoted by Hilbert spacesHA′ ,HB′ , ...HN ′ , to implement their
quantum operation as unitaries UX ∈ L (HX ⊗HX ′). These ancilla systems are
assumed to undergo trivial time evolution, except at the moment when they are
part of the corresponding quantum operation, and are collectively denoted as
HS′ :=HA′ ⊗HB′ ⊗ . . .HN ′ . The main quantum system, part of which the agents
act upon, is in the initial state |ψ〉S of Hilbert spaceHS. In addition to the agents’
ancillas it constitutes the input from the global past.

The Page-Wootters history states, objects in the Hilbert spaceHc ⊗HS ⊗HS′ ,
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(a) global perspective (b) agent’s perspective

Figure 3.1. Scenarios with potentially indefinite causal order described by
a Page-Wooters history state: In the beginning and at the end, all agents
are part of a definite causal structure, which is represented by their clocks
ticking in synchronization. In between, however, they experience a quantum
causal structure, in which the clocks and the system might get entangled with
each other, see (a). Each agent, inside his or her laboratory, experiences the
progression of time according to his or her clock. At time t∗X − 1, (part of) the
system enters the laboratory and agent X applies unitary operation UX to this
(part of the) system and the respective ancilla X ′ (not shown here). At time
t∗X the agent sends away his or her output, compare (b).

can be written as

|Ψ〉〉=
TA1

...TAN
∑

tA1
=0,...tAN=0

|tA1
, . . . tAN

〉 ⊗ |ψ(tA1
. . . tAN

)〉S

=
TA1

...TAN
∑

tA1
=0,...tAN=0

|tA1
〉 . . . |tAN

〉 ⊗MtA1
...tAN
|φ〉, (3.12)

where we initially set all clocks to 0 for notational convenience and TA, TB, . . . TN

are the times the agents’ clocks show at the end of the scenario depicted in Fig-
ure 3.1. Note that these final times can be different for different agents due to
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effects of “time dilation”. Matrices MtA1
...tAN

describe what happens to the sys-
tem |φ〉 ∈ HS for every collection of clock states |tA1

〉 . . . |tAN
〉. The perspective

of agent X is associated with projecting the history state onto that agents clock.
More precisely 〈tX |Ψ〉〉 gives the state agent X assigns to everything other than
his or her own clock at time tX .

Putting the above in more formal language leads to the following axioms,
which set up the general framework for so-called non-causal Page-Wootters cir-
cuits discussed in Section 3.3. First, the reference state the agents’ ancilla systems
are initialized to is denoted as |0〉 for all agents and independent of the system
state |ψ〉S.

S.1 |ψ(0,0, . . . )〉= |ψ〉S|0〉S′ , where |0〉S′ = |0〉A′ ⊗ |0〉B′ ⊗ . . . |0〉N ′ is the collec-
tion of all the agents’ ancillas and |ψ〉S is a free parameter.

The synchronized time step that all agents experience in the beginning and at
the end is captured by the second axiom, where we further assume that during
these well-synchronized time-steps the system undergoes trivial evolution.

S.2 For agent A, and analogous for all other agents: |ψ(0, . . . , tX , . . . )〉 6= 0 only
for tX = 0 ∀X 6= A and |ψ(TA, . . . , tX , . . . )〉 6= 0 only for tX = TX ∀X 6= A and
|ψ(1,1 . . . 1)〉= |ψ(0,0, . . . , 0)〉 and
|ψ(TA− 1, TB − 1, TC − 1, . . . )〉= |ψ(TA, TB, TC , . . . )〉.

As mentioned in Section 1.4.2, in the usual Page-Wooters formalism with in-
finite dimensional systems, the physical Hilbert space is not a proper subspace
of the kinematical Hilbert space which necessitates the definition of a new in-
ner product when considering perspectival states, see Hoehn and Vanrietvelde
[2018]; Hoehn et al. [2019]. This allows to absorb renormalization factors for
the perspectival states in an inner product definition. Consider the example of
the history state of two clocks, where one ticks at twice the rate of the other clock

|Ψ〉〉=
∫

dtA|tA〉cA
⊗ |2tA〉cB

. (3.13)

To obtain agent A’s perspective, we consider

cB
〈tB|Ψ〉〉=

∫

dtA|tA〉〈tB|2tA〉=
1
2

∫

dt ′B|1/2 t ′B〉〈tB|t ′B〉=
1
2
|1/2 tB〉,
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where the prefactor 1
2 , which is a consequence of the change of the integration

variable, leads to a not normalized state after projecting onto A’s clock. The ac-
cording definition of the inner product for A’s perspectival states will ensure that
these states are normalized with respect to this new inner product. For the case
of finite dimensional discrete clocks, where the physical Hilbert space is a proper
subspace of the kinematical Hilbert space, the renormalization of perspectival
states needs to be taken care of in a different manner. A different kind of renor-
malization issue for discrete clocks arises from the process of discretization itself,
when continuous times |t+δt〉 and |t〉 for small δt will in general get mapped to
the same discrete time state. The example in Equation (3.13) cannot be naively
discretized to

|ψ〉〉=
∑

t

|t〉cA
⊗ |2t〉cB

, (3.14)

if we require that agent B can assign a state for each time value of their clock,
since CB

〈t|ψ〉〉 = 0 for odd integers t. Instead an acceptable discretization of
Equation (3.13) is

|ψ〉〉=
∑

t

|t〉cA
⊗|bt/2c〉cB

= |0〉⊗|0〉+ |1〉⊗|0〉+ |2〉⊗|1〉+ |3〉⊗|1〉+ . . . (3.15)

where b·c means the rounded down integer of the argument. This discretization
allows for interpreting the clock states |t〉 as the number of ticks the agents see.
Since A’s clock runs twice as fast, B’s first tick appear only after A’s clock ticked
twice already. Projecting onto the two different clocks gives the states

cA
〈0|Ψ〉〉= |0〉cB

, cA
〈1|Ψ〉〉= |0〉cB

, cA
〈2|Ψ〉〉= |1〉cB

, cA
〈3|Ψ〉〉= |1〉cB

, . . .

and

cB
〈0|Ψ〉〉= |0〉cA

+ |1〉cA
, cB

〈1|Ψ〉〉= |2〉cA
+ |3〉cA

, . . .

The perspectival states of B are not normalized, but can easily be renormalized
by the introduction of a normalization operator N (B)tB

= 1p
2
1. We, therefore, define

the perspectival states |ψX (tX )〉 an agent X sees when their clock reads time tX

as
|ψX (tX )〉 := N (X )tX

〈tX |Ψ〉〉= 〈tX |cX
⊗ N (X )tX

|Ψ〉〉, (3.16)

where N (X )tX
∈ L (Hc\X ⊗HS ⊗HS′) is the normalization operator that relates the

perspective-neutral history state to the perspectival state of agent X at time tX .
We denote byHc\X is the Hilbert space of all clocks except that of agent X .

Our next three axioms concern said normalization operators.
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N.1 N (X )tX
is an invertible, linear, positive operator. It is independent of the input

state |ψ〉S and the local operations UA, UB, . . . UN .

This captures the idea that the normalization operators should be a gener-
alization of normalization constants and that the physics of the scenario should
already be encoded in the history state and agents’ operations and not in the
normalization operator. Without this restriction, we could use N (X )tX

to, for exam-
ple, introduce copies of the initial state |ψ〉S and thereby violate the no-cloning
principle Wootters and Zurek [1982].

N.2 The normalization operator has the form

N (X )tX
=

∑

tA,...,ctX ,...tN

|tA, . . .btX , . . . tN 〉〈tA, . . .btX , . . . tN | ⊗ n(X )
tA,...btX ,...tN

⊗1S′ (3.17)

where ÒtX indicates that the clock of agent X is not summed over while all
other clocks are. The operator n(X )

tA,...btX ,...tN
is a linear, invertible and positive

operator acting onHS but not on the ancillasHS′ .

This means that the normalization operator of agent X does not perturb the clocks
of the other agents. Further, the previous requirement of well-synchronized time-
steps in the beginning and at the end implies that the respective normalization
operators should just be the identity.

N.3 N (X )1 = N (X )0 = 1 as well as N (X )TX−1 = N (X )T = 1 ∀X .

The perspectival states of an agent at different times should be unitarily re-
lated to each other. This means that we assume that for all relevant tX , t ′X there
exists a unitary operator U X (tX , t ′X ) such that

|ψX (tX )〉=U X (tX , t ′X )|ψX (t
′
X )〉. (3.18)

Just like in standard quantum theory we require the following:

U.1 U X (t, t ′) is a unitary operator, independent of the initial state |ψ〉S.

U.2 U X (t, t ′)U X (t ′, t ′′) =U X (t, t ′′), ∀t, t ′, t ′′.

Finally, we call the time agent X receives his or her part of the system t∗X − 1
and assume that he or she applies quantum operation UX ∈ L (HX ⊗HX ′) at t∗X .
While the agents enforce evolution of their input and respective ancilla via their
unitary operation, all other degrees of freedom should evolve in an uncorrelated
way.
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U.3 X ’s quantum instrument is used at the so called time of action t∗X , i.e.

U X (t
∗
X , t∗X − 1) = UX ⊗Rest(X ). (3.19)

Furthermore at other times t 6= t∗X the evolution operator U X (t, t − 1) is
independent of UX and only acts as the identity onHX ′ .

With the above axioms we can write down the perspective of an agent, for
example A, and define what it means for a process to be implemented in our
framework:

|TB, . . . TN 〉c\A ⊗ |ψ(TA, TB, . . . TN )〉 (3.20)

=
�

U A(T, t∗A)(UA⊗Rest(A))U A(t
∗
A− 1, 0)

� �

|0, . . . 0〉c\A ⊗ |ψ(0,0, . . . 0)〉
�

=: |TB, . . . TN 〉 ⊗G (UA, UB . . . )|ψ(0, 0, . . . )〉.

The map G (UA, UB, . . . UN ) is a unitary that is multilinear in the local operations
and the above decomposition shows that the only change in the state of the an-
cilla A′ is caused by UA.

Note that Equation (3.20) represents a refined picture of causal reference
frames, which explicitly includes the quantum clocks of the agents, compare to
Equation (1.12). The causal past and future ΠX and ΦX of the original frame-
work, see Section 1.3.1, correspond toU X (t∗X−1,0) andU X (TX , t∗X ) respectively.
However, while the causal past and future unitaries in Allard Guérin and Brukner
[2018] are allowed to be arbitrary as long as they combine to give the process G
via Equation (1.12), in our setting the history state induces further compatibility
constraints on the perspectives of the agents. For example, consider the form of
a history state in Equation (3.12) and in particular agent A’s perspective

|ψ(tA, tB, . . . tN )〉= MtA,tB ,...tN
|ψ(0, 0, . . . 0)〉, (3.21)

where

MtA,tB ,...tN
= c\A〈tB, . . . tN |(N (A)tA

)−1U A(tA, 0)|0, . . . 0〉c\A. (3.22)

It follows from our axioms that MtA,...tN
is constant in UA for tA < t∗A and lin-

ear in UA for tA ≥ t∗A, because the same is true for the respective U A. We can
alternatively relate the time evolutions the agents see via

U B(tB, 0)|0,0, . . . 0〉c\B =
∑

tA,tC ,...tN

N (B)tB
|tA, tC , . . . tN 〉c\B MtA,...tN

, (3.23)



77 3.3 Causal and non-causal Page-Wootters circuits

where due to the dependence of MtA,...tN
on UA, U B(tB, 0)|0, 0, . . . 〉 is a sum of

functions linear or constant in UA. Analogous equations and arguments can be
made for all agents and, hence, all U X must be affine linear functions of the
other agents’ operations.

Further considerations of our framework, in particular in relation to the orig-
inal Page-Wootters formalism as presented in Section 1.4, can be found in Ap-
pendix C.1.

3.3 Causal and non-causal Page-Wootters circuits

We now present concrete examples of causal and non-causal processes in our
framework. First, we give the details of the scenario with two clocks with dif-
ferent ticking speeds, briefly discussed in the previous section. Then, we show
that non-causal processes, where the causal order is coherently controlled, can
always be implemented in our framework and, finally, we argue that the time-
reversed Lugano process, introduced in Section 1.4, and in particular its causal
reference frame decomposition in Allard Guérin and Brukner [2018] cannot be
implemented in our framework.

3.3.1 Two agents with clocks ticking at different rates

As a first example we consider a more sophisticated version of the example dis-
cussed in Section 3.2, where two agents A and B with clocks which tick at differ-
ent rates perform operations UA and UB on subsystems SA and SB of an initially
shared quantum system. Between the application of the agents’ operations there
is some free evolution V of the system, see Figure 3.2. In the beginning and at the
end, the two clocks tick at the same rate, as required by our axioms introduced
in the previous section. This scenario is reminiscent of the famous twin paradox
and captured by the following history state |Ψ〉〉 ∈ HcA

⊗HcB
⊗HSA

⊗HSB
.

|Ψ〉〉=|0A, 0B〉c ⊗ |φ〉+ |1A, 1B〉c ⊗ |φ〉+ |2A, 2B〉c ⊗ (UA⊗1)|φ〉
+ |2A, 3B〉c ⊗ (UA⊗1)|φ〉+ |3A, 4B〉c ⊗ V (UA⊗1)|φ〉 (3.24)

+ |3A, 5B〉c ⊗ V (UA⊗1)|φ〉+ |4A, 6B〉c ⊗ (1⊗ UB)V (UA⊗1)|φ〉
+ |4A, 7B〉c ⊗G (UA, UB)|φ〉+ |5A, 8B〉c ⊗G (UA, UB)|φ〉
+ |6A, 9B〉c ⊗G (UA, UB)|φ〉
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where G (UA, UB) = (1⊗UB)V (UA⊗1) is a causally ordered process with A acting
in the casual past of B. The perspectival states for the two agents including the
non-trivial normalization operators are

|ψA(0)〉= |0B〉cB
⊗ |φ〉, |ψB(0)〉= |0A〉cA

⊗ |φ〉,
|ψA(1)〉= |1B〉cB

⊗ |φ〉, |ψB(1)〉= |1A〉cA
⊗ |φ〉,

|ψA(2)〉=
1
p

2
(|2B〉+ |3B〉)cB

⊗ (UA⊗1)|φ〉, |ψB(2)〉= |2A〉cA
⊗ (UA⊗1)|φ〉

with N (A)2 =
1
p

2
1S, = |ψB(3)〉,

|ψA(3)〉=
1
p

2
(|4B〉+ |5B〉)cB

⊗ V (UA⊗1)|φ〉 |ψB(4)〉= |3A〉cA
⊗ V (UA⊗1)|φ〉

with N (A)3 =
1
p

2
1S, = |ψB(5)〉,

|ψA(4)〉=
1
p

2
(|6B〉+ |7B〉)cB

⊗G (UA, UB)|φ〉 |ψB(6)〉= |4A〉cA
⊗G (UA, UB)|φ〉

with N (A)4 =
1
p

2
1S, = |ψB(7)〉,

|ψA(5)〉= |8B〉cB
⊗G (UA, UB)|φ〉, |ψB(8)〉= |5A〉cA

⊗G (UA, UB)|φ〉,
|ψA(6)〉= |9B〉cB

⊗G (UA, UB)|φ〉, |ψB(9)〉= |6A〉cA
⊗G (UA, UB)|φ〉.

(3.25)

The non-trivial normalization operators appear for those times where the
clock of agent A ticks slower than the clock of agent B. Note that the final time
read by A’s clock is less than that of B’s clock, i.e. TA < TB, which corresponds
to A being the twin that leaves earth, travels at relativistic speed and returns to
find his or her twin older than they are themselves. The perspectival states in
Equations (3.25) can be related to one another by the following unitaries

UB(1,0) = TcA
⊗1S,

UA(1, 0) = TcB
⊗1S, UB(2,1) = TcA

⊗ (UA⊗1)S,

UA(2, 1) = (T ′2)cB
⊗ (UA⊗1)S, UB(3,2) = 1,

UA(3, 2) = (T 2)cB
⊗ VS, UB(4,3) = TcA

⊗ VS,

UA(4, 3) = (T 2)cB
⊗ (1⊗ UB)S, UB(5,4) = 1, (3.26)

UA(5, 4) = (T ′6)cB
⊗1S, UB(6,5) = TcA

⊗ (1⊗ UB)S,

UA(6, 5) = TcB
⊗1S, UB(7,6) = 1

UB(8,7) = TcA
⊗1S =UB(9,8),
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where T is the unitary that makes the clock of the other agent tick, i.e. T : |t〉 7→
|t+1〉 and T ′i is any unitary that acts as |i−1〉 7→ 1/

p
2(|i〉+ |i+1〉), 1/

p
2(|i〉+

|i + 1〉) 7→ |i + 2〉. As one can see in Equations (3.26), from A’s perspective B’s
clock seems to tick at double the rate in the middle of the process, while from the
point of view of B, A’s clock seems partially frozen in time. The times of action
of the two agents are t?A = 2 and t?B = 6 respectively.

Figure 3.2. A “twin-paradox”-like process: Agents A and B each receive a part
of the input system |φ〉 and experience one synchronized time step. Then A’s
clock starts ticking slower than B’s and A applies unitary UA to her part of
the system. This is followed by some free unitary evolution V of the system,
which is independent of the two agents. Then B applies unitary UB to his
or her subsystem before, at the end of the protocol, the two clocks tick in
synchronization once more.
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3.3.2 Coherent control of causal order

An important class of non-causal processes are those where the casual order is
coherently controlled. More precisely, for each value of the control system |k〉 ∈
HSc one implements a process with definite causal order, i.e. a quantum comb,
G̃k and said definite causal order is different for at least two different values k.
Consider M such pure combs G̃k, 1 ≤ k ≤ M , and an M -dimensional control
system ∈HSc.

Figure 3.3. A bipartite quantum comb: A quantum comb is a higher-order
quantum map that takes (purified) quantum operations as an input, signified
by the two white slots. It can be modeled by a sequence of unitary operations
with memory in case of a pure comb or with an additional environment, which
is traced out at the end. We regard the dilated environment input |ν〉 as
an extension of the input system |ψk〉. The process we implement in our
framework corresponds to everything that happens after the input is received
and before the outcome is discarded, which constitutes a sequence of comb
unitaries with memories and the agents operations and, hence, a pure quantum
comb. (Picture taken from Baumann et al. [2021])

As shown in Yokojima et al. [2021] quantum combs can always be repre-
sented by a sequence of channels with memory, and a general (mixed) quantum
comb G̃k is given by unitaries V (k)0 ,. . . , V (k)N together with an environment input
state |ν(k)〉 and an environment output, which is traced out at the end. In order
to put quantum combs in controlled superposition the dimensions of input and
output of both the agents’ laboratories and the whole process in general should
all be independent of the control value k. We assume that the input and out-
put space of an agent have the same dimension and that the memories of the
combs are chosen such that their dimensions are independent of the comb index
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k. Note that, if this assumption is not satisfied, these dimensions can extended
by the use of ancillas such that afterwards the combs dimensions do satisfy these
requirements.

We further assume that the environment inputs |ν(k)〉Ek
to the different combs

are the same for all combs G̃k, i.e. |ν(k)〉Ek
= |ν〉E ∀k, and incorporate it into the

overall input to the process, i.e.|ψ̃〉S̃ = |ψ〉S⊗|ν〉E. Moreover, since the trace over
the environment is taken at the very end, it is enough to consider pure quantum
combs, for which there is no environment, see Figure 3.3 for the bipartite ex-
ample. We denote the agents by A1 ⊗ · · · ⊗ AN and their ancillas A′1 ⊗ · · · ⊗ A′N .
The definite causal order in comb G̃k corresponds to a certain permutation πk

of the agents’ operations. More precisely, the j-th agent in comb k is given by
Aπk( j) and their unitary by Uπk( j). Note that while the agents’ unitaries U j act on
the agents’ ancillas denoted by A′j they do not affect the memories of the comb,

which we denote by E j. Conversely the comb unitaries V (k)j do not affect ancillas
A′1⊗ · · ·⊗A′N while acting on the comb memories, see Figure 3.4. Hence, we can
write the pure comb G̃k as the following sequence of unitaries

G̃k(U1, U2, . . . UN ) = (3.27)

(V (k)N ⊗1S′)Uπk(N) ⊗1Eπk(N)
(V (k)N−1 ⊗1S′) . . . (V (k)1 ⊗1S′)Uπk(1) ⊗1Eπk(1)

(V (k)0 ⊗1S′),

and the processG where the application of M such combs is coherently controlled
as

G (U1, . . . , UN ) =
M
∑

k=1

|k〉〈k|C ⊗ G̃k(U1, . . . , UN ) (3.28)

=
M
∑

k=1

|k〉〈k|C ⊗ V (k)N Uπk(N)V
(k)

N−1Uπk(N−1) . . . V (k)1 Uπk(1)V
(k)

0 , (3.29)

leaving identity operations on the ancillary systems implicit for notational con-
venience. It is easy to see that G is a unitary, map multilinear in the agents’
operations, and hence, a pure process matrix.

A history state describing the process given in Equation (3.29) requires an
input state |ψ〉S ∈ HSc ⊗HSp from the global past featuring a control system
(∈ HSc) and a target system (∈ HSp). We separate this history state into three
parts

|Ψ〉〉= |Ψdesync〉〉+ |Ψcombs〉〉+ |Ψresync〉〉, (3.30)
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Figure 3.4. Coherently controlled causal order for three parties: The value k of
the control system determines which pure quantum comb G̃k gets implemented.
The order of the agents A j in comb G̃k is described by permutation πk. The
comb is given by a sequence of unitaries V (k)j with memories, where comb
memory Eπk( j) is parallel to agent Aπk( j) and independent of k. The agents
operations U j act on the agents’ ancilla A′j but not on the ancillas of other
agents or the comb memory.

namely one that describes the desynchronization of the initially synchronized
clocks of the agents |Ψdesync〉〉, one that implements the different quantum combs
depending on the value of the control |Ψcombs〉〉, and finally one where the agents’
clocks get resynchronized |Ψresync〉〉.

During the desynchronization of the clocks we use the control degree of free-
dom to make sure that the agents are put into the right order, while the target
system undergoes trivial evolution. Hence, we can write

|Ψdesync〉〉=|0, . . . , 0〉c ⊗ |ψ〉S + |1, . . . , 1〉c ⊗ |ψ〉S + |2, . . . , 2〉c ⊗ |ψ〉S (3.31)

+
M
∑

k=1

T0
∑

j=3

|t(k)1 ( j), . . . , t(k)N ( j)〉c ⊗ (|k〉〈k|Sc ⊗1Sp)|ψ〉S,
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where we choose the t(k)i ( j) such that different k give rise to different orderings
of the agents. We choose them such that consecutive agents are always two ticks
apart. This turns out to be useful during the application of the combs where be-
tween the actions of two consecutive agents the comb unitaries V (k)j get applied.
We start from |0, 0, . . . , 0〉 ⊗ |ψ〉S and first have all the clocks perform two syn-
chronized steps to |2,2, . . . , 2〉 ⊗ |ψ〉S in compliance with axiom S.2. Then the
clock of the fastest agent for each k, i.e. πk(1), continues to tick at the same rate
as before

t( j)(k)
πk(1)

= j, (3.32)

while the other agents’ clocks get frozen in time one after the other. We let all the
other clocks tick on while agent m’s clock gets frozen for times 2(m−2) ·N +2≤
j ≤ 2(m− 2) · N + 2(m− 1) + 2, see Figure 3.5 for the example of four clocks.

∀2≤ m≤ N : (3.33)

t( j)(k)
πk(m)

=











j if j ≤ 2(m− 2)N + 2

2(m− 2) · N + 2 if 2(m− 2)N + 2≤ j ≤ 2(m− 2)N + 2(m− 1) + 2

j − 2(m− 1) if j ≥ 2(m− 2)N + 2(m− 1) + 3

The largest value for j is T0 := 2(N − 2)N + 2(N − 1) + 4+ 2(N + 1) = 2N 2 + 4,
which includes 2(N + 1) additional well-synchronized ticks of all clocks. The
latter ensures that the clock freezes are far away from the application of the
combs for all k.

Figure 3.5. The systematic desynchronization of four clocks: The fastest clock
keeps ticking at the same rate while the other clocks are frozen one after the
other for longer and longer time intervals starting with the second fastest clock.
After the shown times, we include 10 additional well-synchronized ticks of all
the clocks together.

In order to obtain the agents’ perspectives we define

αk(t) = ‖〈t|c1

T0
∑

j=2

|t( j)(k)1 , t( j)(k)2 , . . . , t( j)(k)N 〉c‖, (3.34)
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and can then write the normalization operator, for example, for agent A1 as

N (A1)
t =

∑

k

1
αk(t)

|k〉〈k|Sc
. (3.35)

Note that, for any 1 < t < TA1
, where TA1

is the largest time A1 sees during the
desynchronization phase, αk(t) 6= 0 because no time is skipped during desyn-
chronization and, hence, N (A1)

t is well-defined. This normalization operator gives
the following perspectival states for A1:

|ψA1(t)〉=
∑

k

|ξk(t)〉c|k〉Sc
|ψk〉Sp

, (3.36)

where |ξ1
k(t)〉c is proportional to 〈t|c1

∑T0

j=2 |t( j)
(k)
1 , t( j)(k)2 , . . . , t( j)(k)N 〉c and nor-

malized. It is clear that there exists a unitary relating |ψA1(t)〉 and |ψA1(t + 1)〉
which is of the form

U A1
(t, t + 1) =

∑

k

V 1,k
c ⊗ |k〉〈k|Sc

⊗1Sp
, (3.37)

where we can choose V 1,k
c to be any unitary mapping |ξ1

k(t)〉c 7→ |ξ
1
k(t + 1)〉.

Analogous expressions exist for all other agents A2 . . . AN .

Next, for each control value k, the unitaries of the comb G̃k are applied one
after the other while all the agents’ clocks tick in synchronization. The corre-
sponding parts of the history state are denoted |Ψcombs〉〉 and the starting point
is

M
∑

k=1

|T0, T0 − 2, . . . , T0 − 2(N − 1)〉cπk(1)
,...,cπk(N)

⊗ (|k〉〈k| ⊗ 1)|ψ〉S, (3.38)

with
|t1, t2, . . . , tN〉cπk(1)

,...,cπk(N)
:=U πk

|t1, t2, . . . , tN 〉c, (3.39)

whereU πk
is the unitary implementing the permutation on the Hilbert spaces of

the local clocks. All agents see the following sequence of unitaries:

(T0 + 1, T0) : T⊗(N−1) ⊗ V (k)0

(T0 + 2, T0 + 1) : T⊗(N−1) ⊗ Uπk(1)

(T0 + 3, T0 + 2) : T⊗(N−1) ⊗ V (k)1

... (3.40)

(T0 + 2N + 1, T0 + 2N) : T⊗(N−1) ⊗ Uπk(N)

(T0 + 2N + 2, T0 + 2N + 1) : T⊗(N−1) ⊗ V (k)N ,
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where T is the unitary that makes a clock tick as introduced in Section 3.3.1. As
we see, the time of action is t∗ = T0+2 for all agents. In order to explicitly write
down the perspectival unitaries we define

W (k)
A j
(2m(k)j + 2x + 1, 2m(k)j + 2x) = V (k)x ,

W (k)
A j
(2m(k)j + 2y, 2m(k)j + 2y − 1) = Uπk(y), (3.41)

W (k)
A j
(p+ 1, p) = 1 for other values of p,

where p, m(k)j x , y are integers with p ≥ 0, πk(N − m(k)j ) = j, N ≥ x ≥ 0 and
N ≥ y ≥ 1. If we further denote the earliest time appearing in |Ψcombs〉〉 as
τ := T0 − 2(N − 1), the unitary time evolution that agent j sees is given by

U A j
(τ+ p+ 1,τ+ p) =

M
∑

k=1

|k〉〈k|Sc ⊗ T⊗(N−1) ⊗W (k)
A j
(p+ 1, p), (3.42)

and the corresponding part of the history state can be written as follows

|Ψcombs〉〉= (3.43)
M
∑

k=1

|T0 + 1, T0 − 1, . . . , T0 − 2(N − 1) + 1〉cπk(1)
,...cπk(N)

⊗
�

|k〉〈k| ⊗ V (k)0

�

|ψ〉S

+
M
∑

k=1

N
∑

y=1

|T0 + 2y, T0 − 2+ 2y, . . . , T0 − 2(N − 1) + 2y〉cπk(1)
,...cπk(N)

⊗
�

|k〉〈k| ⊗
�

Uπk(y)V
(k)
y−1 . . . Uπk(1)V

(k)
0

��

|ψ〉S

+
M
∑

k=1

N
∑

x=1

|T0 + 1+ 2x , T0 − 1+ 2x , . . . , T0 − 2(N − 1) + 1+ 2x〉cπk(1)
,...cπk(N)

⊗
�

|k〉〈k| ⊗
�

V (k)x Uπk(x) . . . Uπk(1)V
(k)

0

��

|ψ〉S.

This shows that all the combs get applied in accordance with their value k,
each agent has a well-defined time of action, namely T0+2, and the other agents’
unitaries appear at most linearly in each agent’s perspective.

Finally, we have to resynchronize the clocks and have them perform one well-
synchronized tick at the very end. These terms are subsumed under |Ψresync〉〉. If
we denote T1 := T0 + 2N + 1, the starting point for this last part is

M
∑

k=1

|T1, T1 − 2, . . . , T1 − 2(N − 1)〉cπk(1)
,...cπk(N)

⊗
�

|k〉〈k| ⊗
�

V (k)N Uπk(N) . . . UAπk(1)
V (k)0

��

|ψ〉S.
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We repeat the desynchronization procedure in reversed order, meaning t(k)
πk(m)

7→
t(k)
πk(N+1−m), which gives

�

�Ψres ync

��

= (3.44)
M
∑

k=1

2(N+1)
∑

j=0

|T1 + 1+ j, T1 − 1+ j, . . . , T1 + 1− 2(N − 1) + j〉cπk(1)
, ...cπk(N)

⊗
�

|k〉〈k| ⊗
�

V (k)N Uπk(N) . . . Uπk(1)V
(k)

0

��

|ψ〉S+
M
∑

k=1

T0
∑

j=0

|T1 + 2(N + 1) + 2+ t( j)(k)
πk(N)

, . . . , T1 + t( j)(k)
πk(1)
〉cπk(1)

, ...cπk(N)

⊗
�

|k〉〈k| ⊗
�

V (k)N Uπk(N) . . . Uπk(1)V
(k)

0

��

|ψ〉S.

Just as during the desynchronization process, we first insert 2(N + 1) well-
synchronized ticks to make sure that for all k the clock-freezes do not overlap
with the application of the combs, and then freeze each clock individually until
they all show the same time again. Like in |Ψdesync〉〉 nothing happens on the
system and we can write the perspectival states and unitaries as

|ψA j(t)〉=
∑

k

|ξ j
k(t)〉cG̃k(U1, U2, . . . UN)|k〉Sc

|ψk〉Sp
(3.45)

and

UA j
(t, t + 1) =

∑

k

V j,k
c ⊗ |k〉〈k|Sc

⊗1Sp
, (3.46)

where |ξ j
k(t)〉c and V j,k

c are defined analogous to those for Equations (3.36) and
(3.37).

With this protocol we can implement any process describing a coherent su-
perposition of quantum combs, and hence, any coherent control of causal order.
Note that the above protocol was chosen to be illustrative and as simple as pos-
sible for an arbitrary amount of agents and should rather be regarded as a proof-
of-principle than an actual prescription for implementing processes describing
coherent control of causal order. It will in general not be the simplest and most
efficient way to implement any given such process. In fact, Appendix C.2 con-
tains the explicit implementation of the quantum switch in our formalism and
does not strictly adhere to the protocol described here.



87 3.3 Causal and non-causal Page-Wootters circuits

3.3.3 About the Lugano process

The Lugano process introduced in Section 1.3.2 is an example of a pure, non-
causal process that is not an example of coherent control of causal order and is
known to violate causal inequalities. In Allard Guérin and Brukner [2018] the
authors considered the time-reversed version of the Lugano process, which is
defined by

G (UA, UB, UC)| j j j〉= UA⊗ UB ⊗ UC | j j j〉 (3.47)

G (UA, UB, UC)| j01〉= X UA⊗ UB ⊗ UC | j01〉 (3.48)

G (UA, UB, UC)|1 j0〉= UA⊗ X UB ⊗ UC |1 j0〉 (3.49)

G (UA, UB, UC)|01 j〉= UA⊗ UB ⊗ X UC |01 j〉 (3.50)

where j ∈ {0, 1}. Defining projectors PA =
∑

j | j01〉〈 j01|, PB =
∑

j |1 j0〉〈1 j0|,
PC =

∑

j |01 j〉〈01 j| and P⊥ =
∑

j | j j j〉〈 j j j| the time-reversed Lugano process is

G (UA, UB, UC)|φ〉=(UA⊗ UB ⊗ UC P⊥ + X UA⊗ UB ⊗ UC PA (3.51)

+ UA⊗ X UB ⊗ UC PB + UA⊗ UB ⊗ X UC PC)|φ〉.

Due to the lack of a control system it is not possible to adapt the history
state procedure described in the previous section to the reversed Lugano process.
Instead, one can similarly try to use the projectors PA,PB,PC and P⊥ to define a
controlled operation that desynchronizes the clocks. Further the clocks can act
as control systems to define another controlled operation that applies the unitary
operations in Equations (3.47)- (3.50). However, the re-synchronization cannot
be done independently of the unitaries UA, UB and UC once we obtained a term
in the history state of the form

|Ψ〉〉= · · ·+ |γ⊥〉c ⊗ (UA⊗ UB ⊗ UC P⊥)|φ〉S + |γA〉c ⊗ (X UA⊗ UB ⊗ UC PA)|φ〉S
+|γB〉c ⊗ (UA⊗ X UB ⊗ UC PB)|φ〉S + |γC〉c ⊗ (UA⊗ UB ⊗ X UC PC)|φ〉S + . . .

with some clock states |γ⊥〉c, |γA〉c, |γB〉c and |γC〉c, which represent the differ-
ent temporal orderings of the agents. The states UA ⊗ UB ⊗ UC P⊥|φ〉S, X UA ⊗
UB ⊗ UC PA|φ〉S, UA ⊗ X UB ⊗ UC PB|φ〉S and UA ⊗ UB ⊗ X UC PC |φ〉S all depend on
UA, UB, UC in different and non-trivial ways. Hence, any overall map using them
to resynchronize the clocks will non-trivially depend on UA, UB and UC as well,
which in turn leads to a non-trivial dependence of U X (tX , tX − 1) on UX for all
X ∈ {A, B, C}. The latter, however, is a violation of our axiom U.3, which ex-
cludes such a history state from our framework.
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The causal reference frame decomposition of the reverse Lugano process,
which is shown in Figure 1.8 for agent A, uses perspectival circuits with gates
that are not affine-linear in the unitaries of the other agents, namely U†

BX UB and
U†

C X UC . The same is true for the casual reference frames of agents B and C
with non-linear gates involving UA, UC and UA, UB respectively. This however,
means that hypothetical, corresponding perspectival states are forbidden in our
framework due to the requirement of affine-linearity discussed in Section 3.2.

Note, however, that the two impossible implementations discussed above,
namely the causal-reference-frame decomposition of Allard Guérin and Brukner
[2018] and the desynchronization-resynchronization protocol similar to that for
processes with coherent control of causal order, are not necessarily the only
strategies to describe the time-reverse Lugano process within our non-causal
Page-Wootters framework.



Chapter 4

Conclusion

We obtained various results on the two topics of encapsulated observers and
indefinite causal order, which conceptually share the idea of agents in superpo-
sition.

The ability of agents to make predictions about each other’s measurement
outcomes allows for situations where they verifiably disagree when referring to
the same experiment. Due to the non-persistence of the friend’s perception in
a Wigner’s-friend-type setup and the fact that communication between the ob-
server and superobserver has to be very restricted severely limit the situations
where such verifiable disagreement can arise. An interesting line for future re-
search would therefore be to identify and classify those Wigner’s-friend-type se-
tups that can give rise to actual contradictions and study them in detail when
explicitly incorporating classical record systems and communication channels
into the setups. In more elaborate Wigner’s-friend-type scenarios comprising
multiple memory registers of the friend there probably exist more complex oper-
ations on the collection of these registers that preserve the coherences relevant in
Wigner’s measurement. We would further like to model Wigner’s-friend-type ex-
periments as two different perspectives on the same process using the formalism
of quantum reference frames de la Hamette and Galley [2020]; Giacomini et al.
[2019]; Vanrietvelde et al. [2020]. Collapse dynamics should then be a conse-
quence of switching to the friend’s reference frame, while unitary dynamics (for
the friend’s measurements) are a consequence of switching to Wigner’s frame of
reference. Unambiguous probabilities would be determined by the perspective
neutral description and induce the transformations for the respective observables
in question.

Limits to the physicality of processes with indefinite causal order are still
sought for, especially in the context of possible violations of causal inequalities.
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We showed how to consider in general non-causal processes within the Page-
Wootters formalism. While we considered discrete clocks, our framework can
be adapted to continuous clocks, extending the approach of Castro-Ruiz et al.
[2020] to a systematic operational protocol. As we focussed on the history states
in our approach, the relation between the physical projector and the perspectival
unitaries U X (t ′, t) is still an open question. Resolving it might reveal further
constraints on the history states, possibly restricting the set of process matrices
that can be considered physical. If one could show that some processes do not
fit into our framework, this would be important evidence that such processes
should not be considered physical.



Appendix A

A.1 General formulation of the relative state formalism

The relative state formalism can easily describe general (mixed) states ρ and
generalized measurements corresponding to positive operator valued measures
(POVMs). The latter can be represented by Krauss operators {K†

a Ka}, where Ka

is associated with outcome a. The probability of outcome a is given by

P clps
ρ
(a) = Tr(KaρK†

a), (A.1)

and associated with the state-update rule for the general case is

ρ −−−−→
result: a

1

P clps
ρ (a)

KaρK†
a . (A.2)

The action of a Kraus operator Ka on ρ can always be written as

ρ→ 〈a|Us,x (ρ ⊗ |a0〉〈a0|)U†
s,x |a〉, (A.3)

where {|a〉} form an orthonormal basis in an ancillary space HX , |a0〉〈a0| is the
initial state of the auxiliary system and Ux ,s is a unitary operator on HS ⊗HX .
Using representation (A.3), the measurement in the relative-state formalism is
given by a unitary correlating the ancillary system with the observer’s memory:

UO : HX →HX ⊗HO (A.4)

|a〉X ⊗ |r〉O 7→ |a〉X ⊗ |Aa〉O ∀a ,

where |r〉O is the observer’s pre-measurement state. A general state ρ then
evolves as follows:

ρ ⊗ |r〉〈r|O → ρtot =
∑

cc′aa′
ρcc′aa′ |c〉〈c′|S ⊗ UO|a〉〈a′|X ⊗ |r〉〈r|OU†

O, (A.5)

with ρcc′aa′ = 〈c| ⊗ 〈a|Us,x (ρ ⊗ |a0〉〈a0|)U†
s,x |a

′〉 ⊗ |c′〉.
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Straight-forward calculation yields

P rels
ρ
(a) = Tr(1S,X ⊗ |Aa〉〈Aa|O ·ρtot) =

∑

c

ρccaa = Tr(KaρK†
a) = P clps

ρ
(a).

Next consider two observers performing consecutive measurements on one sys-
tem, namely MO1

: {K†
a Ka} and MO2

: {K†
bKb}. We obtain conditional probabilites

P rels
ρ
(b|a) =

1
Pρ(a)

Tr(1⊗ |Aa〉〈Aa|O1
⊗ |Bb〉〈Bb|O2

·ρ′tot) =
1

Pρ(a)

∑

c

ρccaabb

=
1

Pρ(a)
Tr(KbKaρK†

a K†
b) = Tr

�

Kb

�

KaρK†
a

Pρ(a)

�

K†
b

�

= P clps
ρ
(b|a),

with

ρ′tot =
∑

cc′aa′
bb′

ρcc′aa′bb′ |c〉〈c′| ⊗ UO1
|a〉〈a′| ⊗ |r〉〈r|O1

U†
O1
⊗ UO2

|b〉〈b′| ⊗ |r〉〈r|O2
U†

O2
,

where ρcc′aa′bb′ = 〈cab|Us,y(Us,xρ ⊗ |a0〉〈a0|X U†
s,x)⊗ |b0〉〈b0|Y U†

s,y |c
′a′b′〉

and |cab〉= |c〉S ⊗ |a〉X ⊗ |b〉Y withHX andHY being the purifying auxilary sys-
tems for MO1

and MO2
respectively. Hence, on the same level of observation, the

relative-state formalism gives the same probabilistic predictions as the standard
Born and state-update rules also for mixed states and generalized measurements.

A.2 The extended Wigner’s-friend experiment in terms
Bohmian mechanics

A description of the extended Wigner’s-friend experiment, which is discussed in
Section 1.2.2, in terms of generalized Bohmian mechanics was presented in Sud-
bery [2017]. There the author obtains the following joint probabilities for A’s
and W ’s outcomes (a, w) calculated for different agents:

P(a, w) P(o, O) P(o, F) P( f , O) P( f , F)
F1

1
12

5
12

1
12

5
12

F2
1
12

1
12

5
12

5
12

A 1
4

1
4

1
20

9
20

W 1
12

1
12

1
12

3
4

(A.6)
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The last line representing W equals the joint probabilities P rels(a, w) calculated
according to the relative-state formalism.

P rels(a, w) = Tr(1⊗ |Aa〉〈Aa| ⊗ |Ww〉〈Ww| · |Φtot〉〈Φtot |) (A.7)

The probability distribution of A can be obtained by renormalizing the conditional
probabilities P rels(w|a) calculated according to Equation (2.9). The friends’ dis-
tributions arise when one takes the conditional probabilities P rels(a|z) for F2, who
measures result z, and P rels(w|c) for F1, who measures result c, and renormalizes
them to give distribution for both results.

In addition to that Bohmian mechanics is known to give the same proba-
bilistic predictions as the standard quantum formalism in non-Wigner’s-friend
scenarios, see for example Dürr et al. [1996]. This together with the above com-
parison strongly suggests that Bohmian mechanics can be regarded as another
interpretation of the relative-state formalism, which is usually associated with a
many-worlds interpretation, according to Definition 2.
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Appendix B

B.1 Consistent histories for Wigner’s-friend setups

In the consistent histories framework sequences of physical properties are as-
signed to a closed quantum system. These sequences are represented by tensor
products of orthogonal projectors (i.e. a quantum history)

Y i = ρ0 ⊗ P i1
1 · · · ⊗ P if

f , (B.1)

where ρ0 is the initial state and each P ik
k corresponds to some physical property

ik at a certain time k. A consistent family of histories is a complete set of histories
{Y i} which satisfy the consistency condition

Tr
�

K†(Y i)ρ0K(Y i′)
�

= 0 for i 6= i′ (B.2)

where i= (i1 . . . if) denotes the whole history and K is the so called chain operator
defined by

K(Y i) := P i1
0 · P

i2
0 · · · · P

if
0 , (B.3)

with P ik
0 = U(t0, tk)P

ik
k U(tk, t0). Only within a consistent family the dynamics of

quantum theory describe the respective properties over time.
For the simple Wigner’s-friend setup in Figure 1.9, the properties of interest

are the results observed by Wigner and his friend, i.e. i= (f, w). The initial state
is given byρ0 = |ψS〉〈ψS|⊗|r〉〈r|F⊗|r〉〈r|W . Condition (2.41) from the main text,
under which probability Definition 3 in Section 2.3.1 gives proper probabilities,
implies that

Tr
�

K†(Y ( f ,w))ρ0K(Y ( f
′,w′))

�

= δ f f ′δww′ Tr
�

ρ(t2)Π
wU(t2, t1)Π

f U(t1, t2)
�

, (B.4)
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where ρ(t2) = U (t2, t0)ρ0U (t0, t2). Hence, the consistency condition is satis-
fied if condition (2.41) is satisfied.

The solutions to the conditions on Definition 2a, however, in general do not
satisfy Equation (B.2). Consider the concrete counterexample of initial state
|ψS〉 =

q

1
2(| ↑〉 + | ↓〉) and |yes〉SF = α| ↑, u〉SF + iβ | ↓, d〉SF. In this case one

obtains

Tr
�

K†(Y i)ρ0K(Y i′)
�

= ±δww′
i
2
αβ for f 6= f ′. (B.5)

Note that the above example, still satisfies the so called weak consistency condi-
tion

Re
�

Tr
�

K†(Yi)ρ0K(Yi′)
��

= 0, (B.6)

where Re[·] refers to the real part of the argument. In contrast to the consis-
tency condition of (B.2), however, Equation (B.6) has been shown to be highly
problematic concerning trivial combination of independent subsystems as well
as dynamical stability, see Diosi [2004].

B.2 Standard quantum theory in the Page-Wootters for-
malism

Here we consider non-Wigner’s-friend scenarios where two measurements are
performed on the same quantum system in terms of our adapted Page-Wootters
formalism presented in Section 1.4.1. The constraint Hamiltonian takes the form

Ĥ ′ = p̂t +HS +δ(T̂ − tM)K̂SM +δ(T̂ − tN )K̂SN , (B.7)

where now M and N are apparatus or observer states, which encode the results
of the respective measurements. This gives the physical state

|Ψ ′〉〉=
∫ tM

−∞
d t |t〉US(t, t0)|ψ(t0)〉S|r〉M |r〉N (B.8)

+

∫ tN

tM

d t |t〉
∑

m

US(t, tM)Πm|ψ(tM)〉S|m〉M |r〉N

+

∫ ∞

tN

d t |t〉
∑

m,n

US(t, tN )ΠnUS(tN , tM) ·Πm|ψ(tM)〉S|m〉M |n〉N ,

with both Πm and Πn acting onHS. Moreover, we have

〈t|Pph|t0〉|φ(t0)〉=U (t, t0)|φ(t0)〉 (B.9)
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for arbitrary |φ(t0)〉 ∈ HS ⊗HM ⊗HN , where

U (t, t0) =



















US(t, t0) t0 < t

US(t, tM)UM US(tM , t0) t0 < tM < t

US(t, tN )UN US(tN , t0) t0 < tN < t

US(t, tN )UN US(tN , tM)UM US(tM , t0) t0 < tM < tN < t

(B.10)

with UM = e−iK̂SM and UN = e−iK̂SN being the measurement unitaries that entangle
the measured system with the respective apparatus or observers:

UX |ψ〉S|r〉X =
∑

x

Πx |ψ〉S|x〉X ,

and (x , X ) ∈ {(m, M), (n, N)}.

According to probability Definition 1 in Section 2.3.1 the conditional proba-
bility of result n at time t2 ≥ tN given result m at time t1 ≥ tM is

〈〈Ψ ′ | t1〉Πm〈t1|Pph|t2|Π〉n〈t2|P̂|t1|Π〉m〈t1|Ψ ′〉〉
〈〈Ψ ′ | t1〉Πm〈t1|Ψ ′〉〉

, (B.11)

with Πm and Πn acting onHM andHN respectively. From Equation (B.8) we see
that |φ(t1)〉 := 〈t1|Ψ ′〉〉=

∑

m′ US(t1, tM)Πm′ |ψ(tM)〉S|m′〉M |r〉N , and the denom-
inator in Equation (B.11) is

〈φ(t1)|Πm|φ(t1)〉=
∑

m′,m′′
〈m′′|Πm|m′〉M〈ψ(tM)|Πm′′Πm′ |ψ(tM)〉S

= |〈m|ψS(tM)〉|2. (B.12)

Moreover, since

U (t2, t1)Π
m|φ(t1)〉=

∑

n′
US(t2, tN )Πb′US(tN , tM)Πm|ψ(tM)〉S|m〉M |n′〉N ,

the numerator in Equation (B.11) gives

〈φ(t1)|ΠmU †(t2, t1)Π
nU (t2, t1)Π

m|φ(t1)〉= (B.13)
∑

n′,n′′
〈n′′|Πn|n′〉N 〈ψ(tM)|ΠmUS(tM , tN )Πn′′US(tN , tN )Πn′US(tN , tM)Πm|ψ(tM)〉S

= 〈ψ(tM)|ΠmUS(tM , tN )ΠnUS(tN , tM)Πm|ψ(tM)〉S
= |〈n|US(tN , tM)|m〉|2|〈m|ψ(tM)〉|2
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and, hence, we obtain

P1 (n when t2 |m when t1) = |〈n|US(tN , tM)|m〉|2, (B.14)

which are the standard quantum probabilities for two subsequent measurements
on a quantum system S.

Definition 2a and Definition 2b in Section 2.3.1 are equal for non-Wigner’s-
friend scenarios since





Ψ ′
�

� t2〉Πm〈t2

�

�Ψ ′
��

=
∑

m′,n
m′′,n′

�

〈n′|n〉N 〈m′′|Πm|m′〉M〈ψ(tM)|Πm′′US(tM , tN )Πn′

· US(tN , t2)US(t2, tN )ΠnUS(tN , tM)Πm′ |ψ(tM)〉S
�

= 〈ψS(tM)|ΠmUS(tM , tN )
∑

n

ΠnUS(tN , tM)Πm|ψS(tM)〉

= |〈m|ψS(tM)〉|2 =




Ψ ′
�

� t1〉Πm〈t1

�

�Ψ ′
��

.

From Equation (B.8) we obtain

|φ(t2)〉 := 〈t2|Ψ ′〉〉=
∑

m′,n′
US(t, tN )Πn′US(tN , tM)Πm′ |ψ(tM)〉S|m′〉M |n′〉N ,

and the numerator in both Definitions 2a and 2b gives





Ψ ′
�

� t2〉〈t2| ⊗Πn ⊗Πm
�

�Ψ ′
��

= 〈φ(t2)|Πn ⊗Πm|φ(t2)〉

=
∑

m′,n′

m′′,n′′

�

〈n′′|Πn|n′〉N〈m′′|Πm|m′〉M

· 〈ψ(tM)|Πm′′US(tM , tN )Πn′′Πn′US(tN , tM)Πm′ |ψ(tM)〉S
�

= |〈b|US(tN , tM)|m〉|2|〈m|ψ(tM)〉|2.

Therefore, Defintions 2 give the standard quantum probabilities

P2a (n when t2 |m when t1) = |〈n|US(tN , tM)|m〉|2 = P2b (n when t2 |m when t2) .

According to Definition 3 in Section 2.3.1 the conditional probability of result
n at time t2 ≥ tN given result m at time t1 ≥ tM is

〈〈Ψ ′ | t1〉Πm〈t1|Pph|t2〉Πn〈t2||Ψ ′〉〉
〈〈Ψ ′ | t1〉Πm〈t1 |Ψ ′〉〉

. (B.15)
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The denominator is the same as in Definition 1 and Definition 2a and given by
Equation (B.12). The numerator of Equation (B.15) gives

〈φ(t1)|ΠmU (t1, t2)Π
n|φ(t2)〉

=
�

N 〈r|M〈m|S〈ψ(tM)|ΠmUS(tM , tN )U
†
N US(tN , t2)

·
∑

m′
US(t2, tN )ΠnUS(tN , tM)Πm′ |ψ(tM)〉S|m′〉M |n〉N

�

=
∑

m′,n′

�

〈n′|n〉N 〈m|m′〉M〈ψ(tM)|ΠmUS(tM , tN )Πn′ΠnUS(tN , tM)Πm′ |ψ(tM)〉S
�

= |〈n|US(tN , tM)|m〉|2|〈m|ψ(tM)〉|2,

and, hence, also Definition 3 recovers the standard quantum probabilities for
non-Wigner’s-friend scenarios.

B.3 The probability rules for the simple Wigner’s-friend
setup
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Appendix C

C.1 Notes on the Page-Wootters formulation of indefi-
nite causal order

While we focussed on the history states when adapting the Page-Wootters formal-
ism to describe, in general, non-causal processes, see Section 3.2, we here briefly
discuss constraint operators and physical projectors in our framework since they
are central objects in the original Page-Wootters formalism presented in Section
1.4. By construction, the physical states discussed in Section 3.2 form a proper
subspaceHph ⊂Hc⊗HS⊗HS′ by construction. Any linear combination of phys-
ical states, e.g. α|Ψ〉〉+ β |Ψ ′〉〉 is again a physical state, namely that associated
with input state α|ψ〉S + β |ψ′〉S. Hence, we can define a constraint operator as

Ĉ := 1− P̂, (C.1)

where P̂ is the orthogonal projector onto Hph . Note, however, that P̂ in our
framework can in general not be written analogous to Equation (1.33), which
is used for standard quantum circuits with one clock. More specifically, for an
orthonormal basis |ψ j〉S, the corresponding history states are

|Ψ j〉〉=
∑

tA,tB ,...

|tA, tB, . . . 〉 ⊗ |ψ j(tA, tB, . . . )〉S =
TA
∑

tA=0

|tA〉(N (A)tA
)−1|ψA, j(tA)〉

=
TA
∑

tA=0

|tA〉(N (A)tA
)−1U A(tA, 0)|0,0, . . . 〉 ⊗ |ψ j〉S.
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However, these may fail to be orthogonal due to the normalization operators

〈〈Ψk|Ψ j〉〉= (C.2)
TA
∑

tA=0

〈ψk|S ⊗ 〈0, 0, . . . 0|U A(tA, 0)†[(N (A)tA
)−1]†(N (A)tA

)−1U A(tA, 0)|0, 0, . . . 0〉 ⊗ |ψ j〉S.

We can, however, write P̂ in a form more reminiscent of the original Page-Wootters
framework, compare Equation (1.20), as

P̂ =
1
T

T−1
∑

k=0

exp
�

−2πiĈ
k
T

�

, (C.3)

where T is an integer (we could take T = TA). This can be seen by noting that
Ĉ is a hermitian matrix with only eigenvalues 0 or 1. If |φ0〉 is an eigenvector
of Ĉ with Ĉ |φ0〉 = 0, we have P̂|φ0〉 = |φ0〉, while if Ĉ |φ1〉 = |φ1〉 we have
P̂|φ1〉=

1
T

∑T−1
k=0 e−2πi k

T |φ1〉= 0, showing P̂ = 1− Ĉ .

C.2 The Page-Wootters quantum switch

Here, we discuss the probably best known non-causal process, the bipartite quan-
tum switch Chiribella et al. [2013], which is shown in Figure C.1. It is an example
of coherent control of causal order and we can implement it similar to the gen-
eral procedure presented in Section 3.3.2. A history state of the quantum switch
is given by

|Ψ〉〉= |0A, 0B〉c ⊗ |φ〉+ |1A, 1B〉c ⊗ |φ〉+ |2A, 2B〉c ⊗ |φ〉
+ |3A, 2B〉c ⊗ (|0〉〈0| ⊗1)|φ〉+ |2A, 3B〉c ⊗ (|1〉〈1| ⊗1)|φ〉
+ |4A, 3B〉c ⊗ (|0〉〈0| ⊗ UA)|φ〉+ |3A, 4B〉c(|1〉〈1| ⊗ UB)|φ〉
+ |5A, 4B〉c ⊗ (|0〉〈0| ⊗ UBUA)|φ〉+ |4A, 5B〉c ⊗ (|1〉〈1| ⊗ UAUB)|φ〉 (C.4)

+ |5A, 5B〉c ⊗ (|0〉〈0| ⊗ UBUA+ |1〉〈1| ⊗ UAUB)|φ〉
+ |6A, 6B〉c ⊗G (UA, UB)|φ〉+ |7A, 7B〉c ⊗G (UA, UB)|φ〉,

where G (UA, UB) = |0〉〈0| ⊗ UBUA + |1〉〈1| ⊗ UAUB is the pure process matrix of
the quantum switch. From Equation (C.4) we obtain the following perspectival
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Figure C.1. The bipartite quantum switch: Depending on the value of a control
qubit the two unitaries UA, UB are applied to the target system in different order
(top). According to the perspectives of the two agents, A and B, each agent
applies their own unitary to the target system at time t∗A and t∗B respectively,
while the other agent’s unitary is applied either before or after that depending
on the value of the control system (bottom). The perspectival circuits are
equivalent to the causal reference frames given in Allard Guérin and Brukner
[2018].
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states

|ψA(0)〉= |0B〉cB
⊗ |φ〉 |ψB(0)〉= |0A〉cA

⊗ |φ〉
|ψA(1)〉= |1B〉cB

⊗ |φ〉 |ψB(1)〉= |1A〉cA
⊗ |φ〉

|ψA(2)〉= |2B〉cB
⊗ (|0〉〈0| ⊗1)|φ〉 |ψB(2)〉= |2A〉cA

⊗ (|1〉〈1| ⊗1)|φ〉
+ |+2,3〉cB

⊗ (|1〉〈1| ⊗1)|φ〉 + |+2,3〉cA
⊗ (|0〉〈0| ⊗1)|φ〉

with N (A)2 = |0〉〈0|Sc +
1
p

2
|1〉〈1|Sc with N (B)2 =

1
p

2
|0〉〈0|Sc + |1〉〈1|Sc

|ψA(3)〉= |2B〉cB
⊗ (|0〉〈0| ⊗1)|φ〉 |ψB(3)〉= |2A〉cA

⊗ (|1〉〈1| ⊗1)|φ〉
+ |4B〉cB

⊗ (|1〉〈1| ⊗ UB)|φ〉 + |4A〉cA
⊗ (|0〉〈0| ⊗ UA)|φ〉

|ψA(4)〉= |3B〉cB
⊗ (|0〉〈0| ⊗ UA)|φ〉 |ψB(4)〉= |3A〉cA

⊗ (|1〉〈1| ⊗ UB)|φ〉
+ |5B〉cB

⊗ (|1〉〈1| ⊗ UAUB)|φ〉 + |5A〉cA
⊗ (|0〉〈0| ⊗ UBUA)|φ〉

|ψA(5)〉= |+4,5〉cB
⊗ (|0〉〈0| ⊗ UBUA)|φ〉 |ψB(5)〉= |+4,5〉cA

⊗ (|1〉〈1| ⊗ UAUB)|φ〉
+ |5B〉cB

⊗ (|1〉〈1| ⊗ UAUB)|φ〉 + |5A〉cA
⊗ (|0〉〈0| ⊗ UBUA)|φ〉

with N (A)5 =
1
p

2
|0〉〈0|Sc + |1〉〈1|Sc with N (B)5 = |0〉〈0|Sc +

1
p

2
|1〉〈1|Sc

|ψA(6)〉= |6B〉cB
⊗G (UA, UB)|φ〉 |ψB(6)〉= |6A〉cA

⊗G (UA, UB)|φ〉
|ψA(7)〉= |7B〉cB

⊗G (UA, UB)|φ〉 |ψB(7)〉= |7A〉cA
⊗G (UA, UB)|φ〉,

(C.5)

where |+i, j〉 =
1p
2
(|i〉+ | j〉) ∈ HcX

is an equal superposition of two states, corre-
sponding to times i and j, of the same clock. These perspectival states can be
related to each other by unitaries

UA(1, 0) = TcB
⊗1S UB(1, 0) = TcA

⊗1S

UA(2, 1) = TcB
⊗ (|0〉〈0| ⊗1)S UB(2, 1) = TcA

⊗ (|1〉〈1| ⊗1)S
+ (T ′2)cB

⊗ (|1〉〈1| ⊗1)S + (T ′2)cA
⊗ (|0〉〈0| ⊗1)S

UA(3, 2) = 1cB
⊗ (|0〉〈0| ⊗1)S UB(3, 2) = 1cA

⊗ (|1〉〈1| ⊗1)
+ (T ′2)cB

⊗ (|1〉〈1| ⊗ UB)S + (T ′2)cA
⊗ (|0〉〈0| ⊗ UA)S

UA(4, 3) = TcB
⊗ (1⊗ UA)S UB(4, 3) = TcA

⊗ (1⊗ UB)S
UA(5, 4) = (T ′4)cB

⊗ (|0〉〈0| ⊗ UB)S UB(5, 4) = (T ′4)cA
⊗ (|1〉〈1| ⊗ UA)S

+1cB
⊗ (|1〉〈1| ⊗1)S +1cA

⊗ (|0〉〈0| ⊗1)S
UA(6, 5) = (T ′4)cB

⊗ (|0〉〈0| ⊗1)S UB(6, 5) = (T ′4)cA
⊗ (|1〉〈1| ⊗1)S

+ TcB
⊗ (|1〉〈1| ⊗1)S + TcA

⊗ (|0〉〈0| ⊗1)S
UA(7, 6) = TcB

⊗1S UB(7, 6) = TcA
⊗1S, (C.6)
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where T and T ′i are the same as introduced in Section 3.3.1, i.e T : |t〉 7→ |t +1〉
and T ′i is any unitary that acts as |i−1〉 7→ 1/

p
2(|i〉+|i+1〉), 1/

p
2(|i〉+|i+1〉) 7→

|i + 2〉. It is straightforward to see that all our axioms are fulfilled. For both A
and B the time of action is t?A = 4= t?B and depending on the value of the control
the other agent applies their unitary either before or after t?A or t?B respectively.
Note that the unitaries in Equations (C.6) are not unique but were chosen such
that the perspectives of the agents resemble the causal reference frames of the
two agents presented in Allard Guérin and Brukner [2018].



106 C.2 The Page-Wootters quantum switch



Bibliography

Achuthan, P. and Venkatesan, K. [1958]. General principles of quantum mechan-
ics, Handbuch der Physik 5(Part 1).

Aharonov, Y., Bergmann, P. G. and Lebowitz, J. L. [1964]. Time symmetry in the
quantum process of measurement, Physical Review 134(6B): B1410.

Aharonov, Y. and Vaidman, L. [2002]. The two-state vector formalism of quantum
mechanics, Time in quantum mechanics, Springer, pp. 369–412.

Allard Guérin, P., Baumann, V., Del Santo, F. and Brukner, Č. [2020]. A no-go theo-
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Allard Guérin, P. and Brukner, Č. [2018]. Observer-dependent locality of quan-
tum events, New J. Phys. 20(10): 103031.

Araújo, M., Branciard, C., Costa, F., Feix, A., Giarmatzi, C. and Brukner,
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Baumann, V. and Brukner, Č. [2020]. Quantum, Probability, Logic, chapter
Wigner’s Friend as a Rational Agent.

Baumann, V., Del Santo, F. and Brukner, Č. [2019]. Comment on Healey’s “Quan-
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