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2 Abstract

Abstract

The use of small ensemble sizes, due to computational restrictions in operational data assimilation,

causes several inaccuracies, mainly because of spurious correlations. To mitigate sampling errors, dif-

ferent localisation methods have been developed over the last twenty years. This thesis seeks to find

optimal localisation methods for vertical correlations of convective-scale forecast errors. This is done

by using a convective-scale 1000-member ensemble as an assumed true depiction of the forecast

error correlations and comparing it with localisations applied to 40-member ensembles randomly

drawn from the 1000-member ensemble. The method of using the Gaspari Cohn function (Gaspari

and Cohn, 1999) is optimised by using a variable dependent approach and also combining it with the

statistical sampling error correction by Anderson (2012). Furthermore, a way to calculate the opti-

mal weighting function is developed, to learn where the flaws of the currently used functions are and

to use it directly for localisation. Lastly, the possibility of using machine learning for localisation is

tested by using a random forest.

All developed methods bring improved results compared to the localisation of the Deutscher Wetter-

dienst (DWD). The best improvement is achieved by the optimal weighting function. It also shows

that the shape of an optimal localisation function differs between self- and crosscorrelations. The

random forest achieves clear improvement but shows many aspects which have to be considered

building a stable and well-working machine learning tool. Using a variable dependent Gaspari Cohn

function brings half as much improvement as the other two methods, but it shows the difference in

the localisation of different parameters.
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Zusammenfassung

Die Verwendung kleiner Ensemblegrößen, aufgrund begrenzter Rechenkapazitäten, in der operatio-

nellen Datenassimilation führt zu einer Reihe von Ungenauigkeiten, die hauptsächlich auf zufälli-

ge Korrelationen zurückzuführen sind. Um dieses Problem zu lösen, wurden in den letzten zwanzig

Jahren verschiedene Lokalisierungsmethoden entwickelt. In dieser Arbeit wird versucht, optimierte

Lokalisierungsmethoden für vertikale Korrelationen zu finden. Dazu wird ein convective-scale 1000-

Member Ensemble als näherungsweise wahre Darstellung der Vorhersagefehlerkorrelationen ange-

nommen. Dieses wird mit Lokalisierungen verglichen die auf 40-Member Ensembles, gezogen aus

dem 1000er-Ensemble angewendet werden. Die Gaspari-Cohn-Funktion (Gaspari and Cohn, 1999)

wird durch die Verwendung eines variablenabhängigen Ansatzes und durch die Kombination mit der

Sampling Error Correction von Anderson (2012) optimiert. Darüber hinaus wird eine Methode zur

Berechnung der optimalen Gewichtungsfunktion entwickelt, um zu erkennnen, wo die Schwachstel-

len der derzeit verwendeten Funktionen liegen, und um diese direkt zur Lokalisierung zu nutzen.

Schließlich wird die Möglichkeit des Einsatzes von Machine Learning für Lokalisierung mit Hilfe ei-

nes Random Forest getestet.

Alle entwickelten Methoden bringen verbesserte Ergebnisse im Vergleich zur Lokalisierung des Deut-

schen Wetterdienstes (DWD). Die größte Verbesserung wird durch die optimale Gewichtungsfunktion

erreicht. Es zeigt sich auch, dass sich die Lokalisierungsfunktion für Eigen- und Kreuzkorrelationen

unterschiedliche Formen annimmt. Der Random Forest erziehlt ebenfalls eine deutliche Verbesse-

rung, zeigt aber auch die vielen verschiedenen Aspekte, die berücksichtigt werden müssen, um ein

stabiles und gut funktionierendes Machine Learning Tool zu entwickeln. Die Verwendung einer va-

riablenabhängigen Gaspari-Cohn-Funktion bringt eine halb so große Verbesserung wie die beiden

anderen Methoden, zeigt aber den Unterschied bei der Lokalisierung verschiedener Parameter.
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1. Introduction

Data assimilation takes a crucial part in numerical weather predictions as it delivers the initial state

of the atmosphere. All weather predictions rely on such an estimation of the state as a starting point

for computation. This means the better the initial state is described, the better the weather forecast

gets. The challenge in data assimilation is to get the best information out of many different types

of observations and transform the unevenly distributed measurements into a homogeneous model

grid. In order to deal with these challenges, the observations are combined with previous forecasts.

To get the best combination, different data assimilation methods have been developed, with the most

popular ones being the 3D-Var (Lorenc, 1986) and 4D-Var (Le Dimet and Talagrand, 1986) respectively

and the Kalman Filter (Kalman and Bucy, 1961). This thesis focuses on the ensemble Kalman filter,

which chooses the combination of observations and forecasts by weighting both of them relying on

their estimated error correlations and covariances. In the beginning, the weights were calculated

based on climatology.

A breakthrough in data assimilation was achieved by the use of ensembles instead of a climatology

and the development of the Ensemble Kalman Filter (Evensen, 1994). This increased the quality of the

estimated initial state and in the following weather forecasts. The Ensemble Kalman Filter calculates

the error correlations out of the ensemble samples. These error covariances are calculated in the

background error covariance matrix, short B-Matrix. In a further development, a hybrid version was

established using both climatology and ensembles.

However, by using ensembles to calculate the error covariances, new problems arise. The reason is

the use of low ensemble size because of limited computational power, as the common operational

ensembles have sizes between 20 to 250 members, with 250 being the exception. Small ensemble

sizes, as being not representative samples in statistical terms, cause spurious correlations which have

no real physical relevance.

To tackle this problem, localisation methods are applied for data assimilation (Houtekamer and Mitchell,

1998),(Houtekamer and Mitchell, 2001). These methods mostly work by cutting off and damping

spatial correlations after a specific distance. They rely mostly on predefined functions like the one

developed by Gaspari and Cohn (1999). An example of a vertical localisation of a false correlation

from a 40-member ensemble can be seen in Figure 1. It shows the comparison of a correlation of

temperature (T) with specific humidity (QV) in 500 hPA at the same grid point between a 40- and

1000-member ensemble (Fig.1a), the applied localisation function, in this example a Gaspari Cohn

function, (fig.1b) and the correlation localised with this function (Fig.1c).

Figure 1 shows that the correlation of the small ensemble (corr40) differs from the big ensemble

(corr1000), which can be assumed to be a good depiction of the truth. The goal of localisation is

to get the 40-member correlation into the same shape. This is done well by the localisation functions

as especially the false correlations above 400 hPa and beneath 700 hPa are strongly damped or cut off.

However, these distance-based methods do not work perfectly. Problems are cutting of real physical

correlations on long distances or that not all observations are on a fixed location but are integrated

measurements from satellites and that the optimal damping differs from grid point to grid point.

Besides distance-based methods using different functions, other approaches to localisation have

been developed, mainly using statistical methods like the sampling error correction (SEC) by An-

derson (2012) or the global group filter (GGF) by Lei and Anderson (2014).
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(a) Correlation of 40- &
1000-member ensemble

(b) Localisation function (c) Localised 40 member
correlation

Figure 1: Example of the localisation of a correlation of a 40-member ensemble compared to the correla-
tion of a 1000-member ensemble; shown is the correlation of temperature (T) to specific humidity(QV)
in 500 hPa

This thesis focuses on the optimisation of distance-based methods currently developed and on ex-

ploring how a perfect weighting function would have to look like. It is also tested if machine learning

could be a possible approach to localisation in the future.

1.1 Approach

In order to be able to optimise and develop new localisation methods, an accurate depiction of the

forecast error correlations is needed for evaluation. For this purpose, a convective-scale 1000-member

ensemble is used in this thesis. Although 1000 members are a large number, it does not deliver a per-

fect depiction of the error correlations and therefore is only a very good approximation, which for the

case of this thesis is assumed as the truth. As operational numerical weather predictions use ensem-

bles with a much smaller number of members, 40-member ensembles drawn from the 1000-member

ensemble are used to apply and test the different methods. This number of members is also run by

the Deutscher Wetterdienst (DWD) in its ICON prediction model (Reinert et al., 2021).

The results of the localisation are then compared to the 1000-member ensemble, and the quality is

compared to the uncorrected data and the localisation of the DWD. This thesis focuses only on the

correction of vertical correlations. The main differences between vertical and horizontal correlations

are the higher number of horizontal grid points and, therefore, the greater distance they span. A

differentiation between vertical and horizontal localisation is also done by the DWD (Potthast, 2019).

Its vertical localisation method serves as a benchmark for the methods developed in this work.
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1.2 Research Questions

The overarching goal of evaluating different localisation methods is to improve the forecast error cor-

relations. This leads to a better initial state of a forecast model and therefore increases the quality of

the weather predictions. With this goal in mind, the research questions of this work are split into two

parts and read as follows:

1. Localisation with currently used methods

a) What is the optimal localisation scale for the Gaspari Cohn function?

b) How does the optimal function, for correcting the error correlations, look like?

2. Could machine learning be a good alternative to conventional methods?

a) How well works a random forest compared to currently used and optimised distance-

based methods?

b) Which configurations are needed to optimise a random forest?
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2. Theoretical background

2.1 Ensemble data assimilation

In the whole process of weather forecasting, data assimilation takes the crucial part of defining the

initial state of the atmosphere. The more precise the current state of the atmosphere is depicted,

the more reliable the numerical weather prediction (NWP) gets. A great number of observations of

different types (e.g. radiosondes, satellites, surface instruments, ...) are exploited to get the needed

information. Most types of observations are not placed in a dense grid all over the world, rather there

are some places where the observation density is high and others where nearly no information from

instruments is available. To get information on the sparse regions of the world and transform them

to the model grid, the observations are combined with the latest forecasts. Furthermore, do forecasts

contain information about older observations and therefore increase the amount of exploited infor-

mation. It is also important to know how the information from one observation location distributes to

the next location. Therefore, it is important to know about the forecast error correlation between two

different variables, different types of measurements, and different physical locations. With ensem-

ble data assimilation it is possible to evaluate the forecast error correlation dynamically with every

analysis step. Two types of data assimilation methods are common. There are variational methods

like 3D-Var (Lorenc, 1986) and 4D-Var (Le Dimet and Talagrand, 1986) which are based on iteratively

reducing a cost function. On the other hand, there are ensemble approaches as the Ensemble Kalman

Filter (EnKF) (Evensen, 1994) and ensemble square-root filters (EnSRF) (Whitaker and Hamill, 2002)

like the Local Ensemble Transform Kalman Filter (LETKF)(Hunt et al., 2007). They solve explicit equa-

tions to get the analysis state of the atmospheric system. (Petrie and Dance, 2010)(Ensemble-Data-

Assimilation, n.d.)

The following sections describe the ensemble Kalman filter, the used localisation methods and the

functionality of the random forest.

2.1.1 Ensemble Kalman Filter

To get the best estimate of the initial state of a numerical weather prediction sequential methods

combine observations y with a model forecast xb (background state). Both are weighted on the in-

formation of their errors. The initial state xa (analysis) is computed from the background state with

an added correction. This correction is obtained from the difference between observation and back-

ground state multiplied by the optimal weight matrix K which is given through a Kalman gain matrix:

(Necker, 2019)

xa = xb +K (y −H xb) (1)

K = B H T (HB H T +R)−1 (2)

H is a linearised operator that transforms from model space to observation space, B is the background

error covariance matrix and R is the observation error covariance matrix.

A further development to the EnKF is the LETKF by Hunt et al. (2007). This Kalman Filter uses only

local observations inside a certain radius around each gridpoint in its analysis. Furthermore, the
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B- Matrix is not calculated explicitly. This leads to the reduction of computational resources, which

makes it usable in operational NWP.

In the ensemble Kalman Filter (Evensen, 1994) the background error covariance matrix is calculated

using an ensemble forecast. It consists of the sample covariance calculated from the difference be-

tween each ensemble member and the ensemble mean.

B = P b = 1

N −1

N∑
n=1

(
xb

n −xb
)(

xb
n −xb

)T
(3)

where N is the ensemble size, xb
n is the state of the n-th ensemble member and xb is the ensemble

mean.

B - Matrix

The ensemble background error covariance matrix then takes the form of an n x n matrix:

B =


cov(x1) cov(x2, x1) · · · cov(xn , x1)

cov(x1, x2) cov(x2)
...

. . .

cov(x1, xn) · · · cov(xn)

 (4)

The general definition of the covariance between two vectors x and y is:

cov(x, y) = 1

n −1

n∑
i=n

(xi −x)(yi − y) (5)

where xi ,yi are the i-th value of the vectors and x, y are the vector means.

The Pearson correlation coefficient ρx,y between two vectors x and y is defined as:

ρx,y =
∑n

i=1(xi −x)(yi − y)√∑n
i=1(xi −x)2

√∑n
i=1(yi − y)2

(6)

Concluding that the terms under the fraction line depict the standard deviations σx , σy of the vec-

tors and the term above the derivation line is equal to the covariance in Equation 5, the correlation

coefficient can be written as

ρx,y = cov(x, y)

σx ·σy
(7)

Therefore the background error covariance matrix consists of the information about the correlation

and the standard deviation

B =


σ2

1 ρσ2σ1 · · · ρσnσ1

ρσ1σ2 σ2
2

...
. . .

ρσ1σn · · · σ2
n

 (8)
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The B- Matrix is essential as it ensures a physically consistent and balanced forecast model. The

correlation inside the matrix also brings information about how observation information spreads ge-

ographically and between different variables. Under the assumption of the same errors, this can be

understood as that the updated initial state at one point is the same update at the next point multi-

plied by the correlation coefficient.

Due to the use of small ensembles in operational NWP systems, problems regarding the correlations

can occur. The main problem is that small ensemble sizes are not statistically representative which

leads to undersampling. This causes problems such as sampling errors, spurious correlations at long

range, inbreeding, and filter divergence.(Petrie and Dance, 2010)

To tackle this problem, a variety of methods have been developed. These methods are mostly called

localisation, though this only depicts a certain type of method. They try to correct the correlations or

covariances in the Kalman Gain to get a true picture of the forecast error correlations.

2.2 Localisation

In the last twenty years, a variety of different methods has been developed to correct the covariances

or correlations in the B- matrix of ensemble data assimilation and tackle the problems caused by

small ensemble sizes (spurious correlations, inbreeding, filter divergence, etc.). These methods can

be split roughly into two groups: distance-based and statistical methods. A third approach explored

in recent years is using machine learning (e.g. Moosavi et al. (2019)). It also has to be differentiated

how the methods are applied to the data assimilation process. They can be applied to model space

or observation space. The model space localisations are applied directly to the background error

covariance (B-Matrix) and typically apply distance-based methods. On the other hand, observation

space localisation tapers the correlations between the model space and observation space. This can

be done with distance-based methods, R-matrix inflation, or the use of statistical methods. In this

thesis, the focus is on model space localisation. Both types of methods are shortly described in the

following.

2.2.1 Model space localisation

Model space localisation mostly uses distance-based localisation. These methods, also known as

covariance localisation, apply a tapering function that weights correlation points near the outgoing

correlation point higher than points further away. They rely on a "cutoff length" which defines a

distance at which all correlations further away are set to zero. This method mainly tackles spurious

correlations as they are mostly eliminated due to the cutoff length.

A localisation matrix using a weighting function is applied to the background error covariance matrix

via a Schur Product (Schur, 1911)

(A ◦B)i j = Ai j Bi j (9)

which is an element-wise multiplication between two matrices of the same form. Applied to the

Kalman Gain (Eq. 2) with the localisation matrix denoted as C it takes the form of

K = (C ◦B)H T [H(C ◦B)H T +R]−1 (10)



10 Theoretical background

Examples of functions utilised in distance-based methods are the Gaspari Cohn function (Gaspari

and Cohn, 1999) used by e.g. Anderson et al. (2005), Houtekamer et al. (2005), Campbell et al. (2010)

or satellite weighting functions (Miyoshi and Sato, 2007). Other approaches are a multivariate (Roh

et al., 2015) or a scale dependent localisation (Buehner and Shlyaeva, 2015).

In this thesis, the distance-based localisation method used to optimise localisation applies the weight-

ing function postulated by Gaspari and Cohn (1999). It also serves as a benchmark for other methods.

For more information see section 2.2.3.

2.2.2 Observation space localisation

In observation space localisation the distance-based localisation matrices C1,C2 are applied after the

multiplication of B-matrix and forward operator H. Which denotes as:

K =C1 ◦ (B H T )[C2 ◦ (HB H T )+R]−1 (11)

(Lei and Whitaker, 2015)

Alternatively to distance-based methods, statistical methods can be applied in observation and model

space localisation. They try to correct the correlations by using different types of filters like the hier-

archical filter developed by Anderson (2007) or the Global Group Ensemble Filter (Lei and Anderson,

2014). The method used in this work to find an optimised localisation method is the Sampling Error

Correction by Anderson (2012). It is combined with the distance-based method using the Gaspari

Cohn function (see sec. 3.3.1).

2.2.3 Gaspari Cohn function

The most common function for distance-based localisation was defined by Gaspari and Cohn (1999).

C0(z,c) =


−1

4 (|z|/c)5 + 1
2 (z/c)4 + 5

8 (|z|/c)3 − 5
3 (z/c)2 +1, 0 ≤ |z| ≤ c,

1
12 (|z|/c)5 − 1

2 (z/c)4 + 5
8 (|z|/c)3 + 5

3 (z/c)2 −5(|z|/c)+4− 2
3 c/|z|, c ≤ |z| ≤ 2c,

0, 2c ≤ |z|
(12)

The function is applied differently in horizontal and vertical localisation. In the following, only the

vertical approach is described. The Gaspari Cohn function has a symmetric shape when the height

is given as the logarithm of pressure (ln(p)). It has a Gaussian-like form. The distance between the

correlation level and the other levels is given as z. At the correlation level, the Gaspari Cohn function

is set to one.

The function decreases from one to zero so that spurious and physically not relevant correlations

further away are not considered. A length scale c is defined so that at two times c the correlations are

set to zero. The length scale is defined as

c =
√

10

3
l (13)

where l is a free to choose localisation scale (LS), normally between 0 - 1. This is done to get an

optimised version of the original Gaspari Cohn function (Lorenc, 2003). This thesis seeks the optimal
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localisation scale, that corrects the sample correlations in the best way. In Figure 2 the Gaspari Cohn

function (GC) is shown at a correlation level of 500 hPa for four different localisation scales. If the

localisation scale is bigger more correlations are considered in the localised data.

Figure 2: Example of a Gaspari Cohn function at the 500 hPa correlation level, for 4 different localisa-
tion scales

Gaspari Cohn DWD

The Gaspari Cohn function as applied by the DWD serves as a benchmark to evaluate the results of

the optimised Gaspari Cohn function, the optimal weighting function, and the random forest exper-

iments. Therefore, the localisation scale settings of the DWD (Potthast, 2019) are applied to the data

of this work (see cha. 3).

A fixed localisation scale for every correlation level is used, increasing linearly from 0.1 at the lowest

level to 0.5 at the top level of the model domain. Originally the DWD starts with a localisation scale of

0.075 (Potthast, 2019), but because of the fewer levels in this thesis, the start is set to 0.1. An example of

the broadening with the height of the Gaspari Cohn function as utilised by DWD is shown in Figure 3a.

Furthermore, a damping term is introduced for upper tropospheric levels above 300 hPa. It decreases

linearly in ln(p) to zero at the top level (see Fig. 3b). The final Gaspari Cohn function as used by the

DWD can be seen in Figure 3c.(Potthast, 2019)

2.2.4 Sampling error correction (SEC)

The sampling error correction by Anderson (2012) exploits a look-up table to find the correction γm,p

for a given sample correlation ρ. It only depends on the size m of the ensemble and a prior distribu-

tion p. The corrected correlation ρsec is then calculated as

ρsec = γm,p ρ (14)
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(a) DWD GC without damping (b) DWD damping (c) DWD GC with damping

Figure 3: (a) Example of the DWD Gaspari Cohn function of three different levels, (b) in ln(p) linear
damping for levels above 300 hPa, (c) GC plus damping, in this form used by the DWD

It is assumed that the sampling error only comes from the correlation coefficient and that all corre-

lation coefficients are drawn from the prior distribution U[-1, 1], with this information γm,p is calcu-

lated with an offline Monte Carlo technique. The look-up table won from this calculation is used to

correct the overestimation of correlations caused by spurious correlations. It is a simple and prac-

ticable method, because the only input needed is the ensemble size and the calculated ensemble

correlation. (Anderson, 2012)(Necker, 2019)

2.3 Random forest

In order to test an alternative approach that does not rely on fixed functions, machine learning is

explored in this thesis. This wide range field gained more and more popularity in the new millen-

nium, mainly due to faster computers. In line with this work, it is not possible to cover all possible

approaches so a relatively simple method, but a very popular one, the random forest (Breiman, 2001),

is chosen to test localisation with machine learning. This supervised learning technique is selected

because it is easy to implement. Furthermore, it allows one to look at its structure, which helps in

finding the optimal configuration for successful localisation.

How does it work?

A random forest (Breiman, 2001) consists of multiple decision trees. Each of these decision trees is

trained with a different randomly chosen subsample of the training data. The subsamples are drawn

with replacement, this is called bagging (Breiman, 1996). Randomisation of the data, by using multi-

ple different trees, is done to reduce the variance of the estimator, because single decisions trees tend

to have high variance which leads to overfitting. The result of training the random forest are multi-

ple different structured decision trees, which produce different predictions. The final prediction is
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then calculated by taking the mean of the predictions from the decision trees. (Breiman, 2001)(Ho,

1995)(Pedregosa et al., 2011)

A simple sketch of this procedure can be seen in Figure 4. Here x depicts the test data and y the

predicted outcome. Shown in orange are the different prediction paths which lead to the different

guesses. They are then averaged to get to the final prediction y.

Source: https://ai-andi.com/random-forest/

Figure 4: Concept of a random forest

Decision tree

A decision tree uses training data to build a flowchart-like construct, which can be utilised to pre-

dict an outcome (target) based on values from different parameters (predictors). The target and the

predictors are connected, for every target value, there is a value of every predictor. For example, the

target of this thesis is the correlation of the 1000-member ensemble, so at every gridpoint in the do-

main, there is one target value connected to one value of each predictor like temperature, humidity

and pressure.

A decision tree uses the predictors to split the training data into groups with the lowest possible vari-

ance in the target values. At every splitting point, called leaf (circles in Figure 4), the data is split into

two groups, based on if the values of a specific predictor are above or below a deciding value. Then

these groups are split again until there is only one target value left in a group or there is no variance

between the target values in a group. As the goal of the splitting is to find invariant groups of the

target, the deciding value is chosen so that the resulting groups have the lowest possible variance.

The criteria to get this is the mean squared error (MSE) of the target values. Therefore, at every leaf, a

decision tree searches for the predictor and deciding value where the lowest MSE in the split groups

is achieved. A simple decision tree with the 1000-member correlation as the target is shown in Figure

5. This tree is cut after the third splitting. At every leaf are shown in order: the deciding predictor and

value, the MSE of group, the number of target values in the group and the mean of the target values

in the group.

After finding all branches and leaves, the prediction with a decision tree starts with the first leaf. The

connected predictors of the test data follow through the leaves at each deciding whether they are

https://ai-andi.com/random-forest/
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Figure 5: Example of a decision tree trained to predict the 1000-member ensemble correlation; at every
leaf are shown in order: deciding predictor and value, MSE of the group, number of target values in the
group, mean of the target values in the group

above or below the deciding value. When the end of the path (orange dots in Figure 4) is reached the

last leaf gives the prediction which is the remaining target value at this leaf.
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3. Data and methods

3.1 1000-member ensemble

The data used to calculate the correlations are five convective-scale 1000-member ensemble fore-

casts, which were simulated for the time period of 29.5.2016 to 2.6.2016. Every forecast has a lead

time of 14 hours, but only the three-hour forecast is utilised in this thesis. It consists of 30 vertical

levels, 20 of which are used in this study. Calculations for this data were done at the K-Computer of

the RIKEN Center for Computational Science.

The data assimilation is done on a domain with 15 km grid spacing, for which the boundary con-

ditions of the Global Ensemble Forecast System (GEFS) of the National Centers for Environmental

Prediction (NCEP) are taken. The different ensemble members are calculated by combining the per-

turbations of a global 20-member GFS forecast combined with 1000 random perturbations that are

scaled with a climatology from the Climate Forecast System Reanalysis (CFSR) data set (Saha et al.,

2010). (Necker et al., 2020)

3.1.1 Correlations

Vertical correlations were calculated for 25 subsamples, containing 40 members, of the 1000-member

ensemble and for the whole ensemble. They were computed for the three-hour forecast on five days

at all available model levels by Tobias Necker. This means at every gridpoint in every level exists a

correlation to all other grid points above and beneath it. An example of a correlation in 850 hPa to 6

other levels is shown in Figure 6. In this example, there are seven correlation values to the point in

850 hPa. In the data of this thesis, 20 values correlated to all other levels in the vertical column exist

at every gridpoint.

Figure 6: Example of a vertical Correlation in 850hPa
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3.1.2 Domain

The domain of the data is located over central Europe, primarily Germany and the Alps in the south-

ern parts of the domain. It has a size of 252x350 gridpoints, with a spacing of 3km (see Fig. 7)(Necker

et al., 2020). To avoid problems in calculation at the domain borders, it is cut to a size of 200x200

gridpoints (see Fig. 7).

Figure 7: Domain of used 1000-member ensemble, black: full domain, red: used Domain

3.1.3 Parameters

There are two groups of available parameters. The first are all parameters, which are calculated for

all levels (see tab. 1). These are used to calculate the vertical correlations and in further consequence

to test the localisation methods. They consist of the temperature (t), three wind parameters (u, v, w),

four parameters that deliver information about the water in the atmosphere (qv, rh, qhydro, dbz) and

the height of the level (z).

Table 1: Table of available parameters calculated in all levels

Full name Unit
t temperature K
u u-wind m/s
v v-wind m/s
w w-wind m/s
qv water vapor mixing ratio kg/kg
rh Relative humidity %
qhydro Mixing ratio of all hydrometeors kg/kg
dbz Radar reflectivity dBZ
z Height of Level m

The second group consists of ground parameters (see tab. 2). They are only applied in the localisation

with a random forest. Particularly, the precipitation transformed from a precipitation rate in mm/s to

an hourly precipitation in mm/hr. Likewise used is the sea level pressure (slp).
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Table 2: Table of available ground parameters

Full name Unit
slp Seal level pressure Pa
max_dbz Maximum radar reflectivity dBZ
t2 2m temperature K
u10 10m u-wind m/s
v10 10m v-wind m/s
q2 2m water vapor mixing ratio kg/kg
prec Surface precipitation rate mm/s

3.2 Perfect weighting

In distance-based localisation, a fixed predefined function is used which is fitted to get the best out-

come. These functions are mostly in a Gaussian shape with a peak of one at the correlation level,

like the one from Gaspari and Cohn (1999). They have the advantage of being easy to compute and

are normally of a smoothed shape. Furthermore, the Gaspari Cohn function guarantees a positive

definite localisation matrix. That is important because the correlation matrix (B-matrix) has to be

positive definite, as a negative definite matrix would lead to negative variances, which are not de-

fined mathematically.

As this thesis is about optimising localisation it is important to learn about the flaws of the currently

used functions and how an ideal localisation function would look like. For this reason, the actual

weighting that would be necessary to get from a correlation to the localised correlation is calculated

as shown in Equation 15. Hereρ is the correlation which gets localised, ρl oc is the localised correlation

and w depicts the applied weighting.

ρ ·w = ρl oc ⇒ w = ρl oc

ρ
(15)

With this method, it is possible to calculate the perfect weight and in further consequence, when

done for a complete vertical profile, the perfect weight/localisation function. The only requirement

is to know the physically true correlation at each point.

The true correlation surely can never be known, so an approximation that gets as close as possible

to the truth has to be considered. For this purpose, correlations of a 1000-member ensemble (see

section 3.1) are assumed as the true depiction of forecast error correlations and the perfect weight

(w) is calculated with

w = ρ1000

ρ40
(16)

where ρ1000 is the correlation of the 1000-member ensemble and ρ40 a correlation of a 40-member

ensemble.

This calculation is done for all available subsamples and correlations. The mean of all vertical profiles

then gives a mean perfect vertical weighting function, further on called optimal weighting function.
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Filtering outliers

A problem that occurs, when calculating the optimal weighting function is very high or low weights

with magnitudes above 102. These weights only work for the grid point they are calculated at, but

when the mean of all profiles is computed, this high weight distorts the mean weight to a not useful

one. This occurs due to a high difference between the correlation of the 40-member ensemble and the

1000-member ensemble, mainly when the 40-member correlation is near zero. For example, at one

point ρ40 = 10−6 so virtually zero and ρ1000 = 10−3 so also near to zero. The resulting perfect weight

(Eq. 16) would be w = 1000. If this weight would be taken into account at other points it would cause

a miserable localisation. For that reason, the calculated perfect weights have to be filtered so that the

result is not distorted in any direction and a good localisation can be achieved.

Figure 8: Histogram of weights of all grid points for the Correlation of QV with T in 500 hPa; the dashed
lines show the 2% and 98% percentile which are used as the threshold for the outlier filtering, the solid
line depicts the median, the dotted line the mean

In this thesis, the threshold values are set to be the 2% and 98% percentile. This means the lowest

and highest 2% of the weights are filtered out and ignored in the calculation of the optimal weighting

function. This threshold was chosen because it brought the best result without cutting too much of

the data. Averaged over all types of correlations, the lower threshold is −6.11± 0.84 and the upper

threshold is 6.8±0.87. An example for the distribution of the calculated weights is shown in Figure

8. Used is the correlation of specific humidity with temperature in 500 hPa. It shows a symmetrical

distribution with 96% of the weights lying in the area between the dashed lines which depict the 2%

and 98% percentile.
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3.3 Optimal Gaspari Cohn

As one goal of this work is to optimise current localisation methods, an empirical approach is used

to get an optimised Gaspari Cohn function. Therefore a perfect localisation scale that achieves the

best localisation for the specific forecasts time, subsample, correlation level, and pair of correlated

parameters (see tab.1) is sought. Then, by taking the mean of all perfect localisation scales at each

correlation level and for each pair of parameters, an optimal variable dependent Gaspari Cohn func-

tion can be calculated. A non-parameter dependent function is achieved by taking the mean of all

variable dependent optimal localisation scales.

The perfect localisation scale is found by calculating a Gaspari Cohn function for each localisation

scale between 0,05 and 2 with ∆= 0,05. These functions are then used to localise correlations of 40-

member subsamples drawn from the 1000-member ensemble (see Section 3.1). After the localisation,

the root mean squared error (RMSE) between the localised correlation and the 1000-member corre-

lation is calculated for every vertical profile in the domain (see Section 3.1.2) and averaged over the

whole domain. The perfect localisation scale is then the one achieving the lowest RMSE.

3.3.1 Gaspari Cohn + SEC

In this work, the SEC (see sec. 2.2.4) is applied as one possibility to find an optimised localisation

method. To achieve this the SEC is applied to the correlation of a 40-member ensemble drawn from

the 1000-member ensemble (see Sec. 3.1) and then an optimal Gaspari Cohn function (see sec.2.2.3)

is found for the corrected correlations. This function can be utilised to localise a sampling error cor-

rected ensemble and so is a combination of a statistical and a distance-based method.

3.4 Random forest

3.4.1 Implementation

For the implementation in python for this thesis, a random forest regressor of the scikit learn tool

(Pedregosa et al., 2011) is used. A single random forest for the whole domain is trained. This is done

for a specific correlation of one parameter in a profile with another at a specific vertical level (see Fig.

6).

The training data consists of the values of the chosen predictors at every gridpoint if available. The

minimum selection of predictors, further on called basis random forest, are the correlation of the

40-member ensemble, as this is to be optimised, and the parameter, which is correlated, from every

level in the vertical profile, to a parameter at a specific level. As an example, if the correlation of the

specific humidity (QV) and the temperature (T) at 500 hPa has to be localised, the predictors of the

basis random forest would be the 40-member correlation and QV.

If the predictor is a surface parameter only the gridpoints at the lowest level have these values in

the training data. Also, no values are given at gridpoints where the model levels are beneath the

orography.

The target value is always the correlation of the 1000-member ensemble. Therefore, when training

a random forest it will try to get as close to these correlation values using the given predictors. The

random forest then delivers a corrected correlation value at every grid point in the domain in its

prediction.
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3.4.2 Optimisation

There are many different options to optimise a random forest. For example, the number of trees can

be chosen freely, but it has to be considered that with each tree added the computation time increases.

Knowing that at some point, adding more trees will not improve the random forest anymore, because

the number of vastly different drawn subsamples is limited due to the size of data. A number of trees

has to be chosen for which the random forest improves significantly and the computation time does

not exceed the available resources. In this work, the number of trees is set to 10.

One major point in the attempt to optimise a random forest is how the data is handled. A bigger

data size does not guarantee better results. It is more important to single out the data that brings

improvement, the redundant data, and in the worst-case data that trains the random forest in a false

direction and makes it useless for different test data. Therefore, neglected in the random forest is

all kind of meta-information, because it would train the random forest to predict correlations on the

information of geographical position and time. For example, the random forest would learn that at a

specific longitude, latitude, and time, the same correlation is always the correct one. This is a prob-

lem as the weather situation is never strictly the same at one point and so the random forest would be

ineffective when executed on any data other than the training data. So in order to train the random

forest only on physical relations, no metadata and only physical parameters (see tab.1&2) are used as

predictors. However, the random forest can be improved by choosing the right or best parameters.

It is not as straightforward as with the metadata to choose the right predictors, because the physical

connections between different parameters and especially their influence in training a random forest

on correlations are not always very clear. It is possible that some information, when used in train-

ing, will lead to worse results, because there may be a random statistical connection between them

and the calculated correlations, but no physical relevance. As it is difficult to theoretically find the

right predictors, a so-called parameter test was developed that allows optimising the random forest

in relation to the basis random forest.

Parameter test

The goal of the parameter test is to determine which parameters improve and which worsen the ran-

dom forest. The basis random forest serves as the reference value. This means the basis random forest

is trained with four of the five available days of the data (see cha.3) and then tested on the remaining

day. The RMSE between the correlations of the 1000-member ensemble and the received corrected

correlations of the random forest is calculated for every vertical profile in the domain and averaged

over the whole domain. In addition, the relative difference between the RMSE of the basis random

forest and the RMSE between the 1000- and 40-member correlation is calculated.

Now the same calculation is done with a new random forest using a third predictor from the avail-

able physical parameters in addition to the predictors of the basis random forest. Then the difference

between the RMSE and the relative improvement of the basis random forest respectively the new ran-

dom forest is calculated.

This computation is done for all parameters in Table 1 as well as the precipitation (prec) and the sea

level pressure (slp) (tab.2). The results are then compared to each other and all predictors which

achieve better relative improvement than the basis random forest are added to the basis predictors

and applied in an optimised random forest.
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Filtering data

Besides changing the size of data, the number of trees or adding different predictors another method

to improve the random forest is to filter the training data. The target is to eliminate values that have

a high divergence from the values assumed as the truth to which the random forest is trained. In this

case, it is about the correlations of the 40-member ensemble, which are way higher or lower than the

ones of the 1000-member ensemble.

Therefore before the computation of the random forest takes place the perfect weights as calculated

in Equation 16 are calculated for every grid point in the training data. Then all grid points where

the calculated weight is not between the 2% and 98% percentile are eliminated from the training data

similar to the calculation of the optimal weighting function (see sec.3.2). The now filtered data is used

to train the random forest.
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4. Results

This chapter presents the results obtained by evaluating different localisation methods. The results

can be split into three parts: the optimisation of the localisation with Gaspari Cohn (see sec.3.3), the

searching for an ideal weighting function (sec.3.2) and localisation using a random forest (sec.3.4). To

test these methods, they are applied to the correlations of 40-member subsamples drawn from the

1000-member ensemble. The results are compared with the RMSE between the correlations of the

1000-member ensemble and the 40-member ensemble or the currently used method of the DWD.

The goal of every localisation is to reduce this RMSE and therefore get correlations similar to the 1000-

member ensemble as this is assumed to depict the true correlations of the atmospheric state in the

best approximation. In the shortcuts of the correlations, the parameter named first is the parameter

correlated from every level in the vertical profile with the one at the correlation level. For example,

if the specific humidity (QV) of every level in the profile is correlated with the temperature (T) at the

correlation level, the shortcut would be QVT.

4.1 Optimal Gaspari Cohn

As the Gaspari Cohn function is the most common in distance-based localisation, the attempt is to

find the best configuration of the function. To do this, the optimal localisation scale (LS) is sought as

described in section 3.3. This is done for two cases. First, for the case of a non-variable dependent

function, where the localisation scale differs between different correlation heights but not between

different correlations of variables.

In Figure 9 the relative improvement of the RMSE of the localised correlation in comparison to the

RMSE of the 40-member correlations is shown for different localisation scales of a non-variable de-

pendent Gaspari Cohn function. It is calculated as the mean of localisations with different localisation

scales of five days á 25 subsamples and all available parameters. The curves for three different corre-

lation levels can be seen. Averaged are the self- and crosscorrelations of the following parameters:

1. Temperature (T)

2. Specific Humidity (QV)

3. Mixing ration of hydrometeors (QHYDRO)

4. u - wind (U)

5. v - wind (V)

6. vertical wind (W)

The optimal localisation scales are given by the positions of the peaks of the curves, marked by dotted

lines. As can be seen, the optimal localisation scales are in an area between 0.35-0.7. This is slightly

higher than the ones applied by the DWD especially in the lowest atmospheric levels where the DWD

uses localisation scales around 0.1. In fact, Figure 9 shows that if the localisation scale is chosen too

low, the localisation can result in a worse result than the unlocalised ensemble. This is because with

very low localisation scales nearly all correlations at neighbouring levels are set to zero, therefore no

real correlation is concluded. This is not the reality in most cases. On the other hand, if the local-

isation scale is chosen high, the quality of the localisation also declines, but not as drastically as it

does with low localisation scales. With higher localisation scales the relative improvement asymp-

totes zero, because the higher the localisation scale gets, the fewer levels are cut off or damped as the

Gaspari Cohn function gets wider, resulting in zero when every level is equally considered, meaning

no localisation is applied.
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Figure 9: Comparison between localisation scale (x-axis) and relative improvement to 40-member en-
semble (y-axis), in three correlation levels: 900 hPa, 500 hPa, 300 hPa; mean of all Correlations on 5
days and 25 subsamples; averaged are correlations of T, QV, QHYDRO, U, V, W ; dashed lines mark the
maximum improvement

Variable dependent

In opposition to a single function for all correlations, a variable dependent function is a more precise

attempt in localisation. It takes the different ranges of correlations between certain variables into

consideration, as some correlations impact levels farther away and others have very small impact

range and therefore need smaller localisation scales. In order to find the optimal variable dependent

localisation scales, the same procedure as for the non-variable dependent localisation scale is applied

(see section 3.3), with the only difference being that it is done for all different types of correlations

separately.

Figure 10 shows the connection between localisation scale and relative improvement (same as in

Fig.9) for the self- and crosscorrelations of temperature (T) and specific humidity (QV). The variable

denoted with a J before it is the one on a specific level to which the other parameter from all other

levels is correlated (see Fig. 6).

In comparison to the non-variable dependent localisation scale (Fig.9) the relative improvement at

the maxima is about 10% - 20% higher for the variable dependent localisation scales. Especially well

works the variable dependent function for the selfcorrelation of QV (Fig.10d), with peaks up to 45%.

A major difference to the non-variable dependent function is the range in which the optimal local-

isation scales are. It ranges mostly from 0.15 to 0.45 as for the non-dependent the range was 0.35 -

0.6. An exception is the selfcorrelation of T (Fig. 10a) in the middle to high levels which have bigger

localisation scales, but it has to be considered that especially for a height of 500 hPa the curve is very



24 Results

(a) T & JT (b) QV & JT

(c) T & JQV (d) QV & JQV

Figure 10: Comparison between localisation scale (x-axis) and relative improvement to 40-member
ensemble (y-axis), for four correlations between temperature (T) and specific humidity (QV) (selfcorr.
top-left, bottom-right; crosscorr.: top-right, bottom-left), in three correlation levels: 900 hPa, 500 hPa,
300 hPa; mean of 5 days and 25 subsamples, shaded areas show the standard deviation of the averaged
data, dashed lines mark the maximum improvement

flat so the difference, for example, between a localisation scale of 0.4 and 0.8 is very low, which allows

to chose the localisation scale less exactly. In contrast, the curves of the other three correlations show

a much clearer peak with a greater in- and decrease before and after it. Therefore the localisation

scale used has to be chosen much more carefully. Another point where the temperature selfcorre-

lation differs from the correlations with specific humidity is in the higher standard deviation of the

relative improvement depicted by the shaded areas. This is possible due to the higher deviation of

the temperature between different locations and days or weather situations. Figure 10 shows the dif-

ference between localisation scales for different correlations and how important it is to choose the

right localisation scale as it can result in a highly improved outcome of localisation, but when chosen

wrongly it could worsen the localisation drastically.

Variability in time

As the weather and so the atmospheric state varies in time, not only a variable dependent but also a

weather situation specific localisation scale should be considered, as different conditions may impact

the correlations differently. In order to test how the optimal localisation scale changes with different

situations, the optimal localisation scale has been calculated for all five available days of the data. The
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results can be seen for the correlations of temperature and specific humidity in Figure 11. The optimal

localisation scale is shown for each of the five days for three vertical levels with the standard deviation

of all 25 subsamples depicted by the shaded areas. It has to be pointed out that a low number of

consecutive days is used, therefore a similar weather situation prevails on all days. Nevertheless, it

gives a good view of the variability in time.

(a) T & JT (b) QV & JT

(c) T & JQV (d) QV & JQV

Figure 11: Optimal localisation scale for the 15 UTC forecast on five days; shown are correlations be-
tween temperature and specific humidity (selfcorr.: top-left, bottom-right; crosscorr.: top-right, bottom-
left), in three correlation levels: 900 hPa, 500 hPa, 300 hPa; the shaded areas show the standard devia-
tion of all 25 subsamples

The variability between different days is low as it mostly differs with a deviation of about ±0,1. Great

exceptions can be seen for the selfcorrelation of temperature (Fig.11a). However as pointed out pre-

viously in Figure 10a the difference in the relative improvement between certain localisation scales

for the selfcorrelation of T is low, also the standard deviation for the outliers is much higher than

for the other days which is explained by a very flat curve in Figure 10a. Therefore, choosing a local-

isation scale only depending on the correlation and not the weather situation can be done without

worsening the result of the localisation. Another minor point that can be seen in Figure 11, is the

increase of the localisation scale with height. Therefore, for low near-surface levels the localisation

scale should be rather small and for higher tropospheric levels the Gaspari Cohn function should be

broad. This meets with the way the DWD chooses the localisation scale in its data assimilation, by

linearly increasing it with height (see sec.2.2.3).
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Because localisation is not only done for three model levels rather for all model levels, the optimal

localisation scale is calculated for all twenty levels of the 1000-member ensemble. The results are

shown in Figure 12a for the non-variable dependent function and in Figure 12b for the variable de-

pendent function of the correlations of temperature and specific humidity. The non-variable depen-

dent localisation scales are averaged over the self- and crosscorrelations of T, QV, QHYDRO, U, V, W

(see enumeration in 4.1). As a comparison, the localisation scales of the DWD like function are shown

as dotted line.

(a) non-variable dependent (b) variable dependent

Figure 12: optimal localisation scale at 20 correlation levels for a non-variable dependent function
averaged over parameters: T, QV, QHYDRO, U, V, W, and for four different correlations (T & T, QV & T,
T & QV, QV & QV), mean of 5 days and 25 subsamples, shaded areas show the standard deviation

The non-variable dependent has slightly higher localisation scales for the middle atmospheric levels

(750hPa - 350hPa) than the DWD and also takes the same linear form. Bigger differences can be seen

for high and low near-surface levels. In these areas, the optimal localisation scales are larger than

the DWD, which means a wider Gaspari Cohn function is applied. Interesting is that in contrast to

all other areas the optimal localisation scales in the bottom levels are almost constant with a value

of about 0.3. This difference to the localisation scales of the DWD in the top and bottom levels in-

dicates that in this area an improvement of the localisation is likely achievable. Another important

instance is the high standard deviation of the non-variable dependent localisation scales, shown as

grey shaded area. This indicates the high variability between different sorts of correlations depending
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on the correlated parameters and also the variability through changing weather conditions of some

parameters. It is an indication that by using variable dependent localisation scales, the quality and

especially the consistency can be improved, as the variability of the localisation scales for variable

dependent localisation is smaller, as seen in the coloured shaded areas in figure 13b.

Looking at the variable dependent localisation scale (Fig.13b) the selfcorrelation of the temperature

(TT) stands out with generally higher localisation scales than the three other correlations. The only

exception is in the area between 975hPa - 850hPa where the correlation of specific humidity to tem-

perature (QVT) has higher localisation scales and the temperature selfcorrelation is close to the other

correlations. This bulge in the curves may be related to changes in the correlations of temperature

due to the cooling effects of precipitation. This would also explain the higher standard deviation in

this area as this would be caused by the variability of situations with rainfall, either geographical or in

terms of time. In contrast to the selfcorrelation of temperature, the other three correlations are very

similar to the DWD. The crosscorrelations (TQV, QVT) have except for the highest and lowest levels,

slightly lower localisation scales than the DWD and therefore have a narrower Gaspari Cohn function.

The selfcorrelation of humidity shows nearly the same shape except for also slightly higher localisa-

tion scales in the near-surface levels. This tendency to higher localisation scales than the DWD in the

bottom levels, which is shown for both forms of optimal localisation scales, is one important solution

to optimising the currently used method of Gaspari Cohn localisation.

The paper of Destouches et al. (2021), where optimal localisation scales for different cases of weather

situations are sought, shows very similar results for the selfcorrelations of temperature and specific

humidity, with localisation scales around 0.3 for humidity and slightly higher ones for the temper-

ature (Destouches et al., 2021, Fig.11). The temperature seems to have higher variability. This can

also be seen in Figure 12b in this thesis which confirms that the localisation scales of temperature are

more dependent on the weather situation than the localisation scales of humidity.

4.1.1 Gaspari Cohn + SEC

As previously shown, the optimal Gaspri Cohn function delivers more insight into how to optimise

localisation. But as there are different possible approaches to the correction of the error covariance

matrix, a combination of a distance-based and a statistical approach seems to be a good way to im-

prove localisation even further. To explore this idea the optimal Gaspari Cohn is combined with the

statistical method of the Sampling Error Correction (SEC)(described in section 2.2.4).

The combination is done by firstly applying the SEC to the data and then finding the optimal localisa-

tion scale of the Gaspari Cohn for the sampling error corrected data. This data is then localised with

the Gaspari Cohn function defined by the new localisation scale.

The newfound optimal localisation scales for all vertical levels can be seen in Figure 13. The results

are shown for a non-variable dependent approach (Fig.13a) and a variable dependent function for

the correlations of temperature (T) and specific humidity (QV) (Fig. 13b).

The SEC shifts the optimal localisation scale to higher values compared to when it is not used. This

may be due to the effects of the sampling error correction because the spurious correlations are re-

duced before the Gaspari Cohn function is applied and therefore the risk of getting false information

further away from the correlation level is reduced. This allows using a broader function. The shapes

of the curves are very similar to the ones without the SEC because the SEC only increases the locali-

sation scale by a certain factor but does not change the information of how different correlations or

areas have to be localised. A minor negative fact is that by using the SEC not only the optimal locali-
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(a) non-variable dependent (b) variable dependent

Figure 13: optimal localisation scale for GC + SEC at 20 correlation levels a non-variable dependent
function averaged over parameters: T, QV, QHYDRO, U, V, W and for four different correlations (T &
T, QV & T, T & QV, QV & QV), mean of 5 days and 25 subsamples, shaded areas show the standard
deviation

sation scale but also the variability depicted by the shaded areas increases, which makes it difficult to

prove if the optimal localisation scale performs well for every type of weather situation. Although it is

only a minor problem, as seen in Figures 9 & 10, the higher the localisation scale gets the smaller the

difference of the improvement between neighbouring localisation scales gets.

As the optimal localisation scales are now known, it is interesting to know if the combination of the

Gaspari Cohn function and sampling error correction achieves better results than only the optimal

Gaspari Cohn function. Figure 14 shows the difference between the RMSE of the optimal Gaspari

Cohn function and the Gaspari Cohn function plus SEC. Shown are the self- and crosscorrelations

of temperature and specific humidity. Positive results mean that the combination of Gaspari Cohn

function and SEC works better, and vice versa negative results mean that the optimal Gaspari Cohn

function without SEC achieves better results.

The combination of both methods works better for crosscorrelations (Fig.14b) of all levels except for

the area between 850hPa - 700hPa where there is no difference. In contrast to that is the result of

the selfcorrelations (Fig.14a). Here the use of the sampling error correction decreases the quality of
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(a) selfcorrelations (b) crosscorrelations

Figure 14: Difference between RMSE of perfect Gaspari Cohn function and perfect Gaspari Cohn func-
tion for sampling error corrected correlations, shown are correlations between temperature and specific
humidity: selfcorrelations (TT, QVQV); crosscorrelations (TQV, QVT) as mean of 5 days and 25 subsam-
ples, shaded areas are the standard deviation

the localisations, with an exception in the correlation of temperature with itself in the mid-levels. As

these results show clear tendencies that the combination of Gaspari Cohn function and SEC works

better only for crosscorrelations, it has to be pointed out that the differences shown in Figure 14 are

very low with values between -0,01 and 0,01. This means there is a very low improvement, but it nev-

ertheless shows the theoretical difference between the localisations of different types of correlations.

It has to be considered that the assumptions in the calculation of the SEC tables are chosen gener-

ally. The results could possibly be enhanced when the SEC tables are computed with more specific

information regarding the distribution of the correlations.

4.2 Optimal weighting function

After optimising the Gaspari Cohn localisation by using variable dependent localisation scales and

combining it with the Sampling Error Correction, a look at the localisation function itself is done.

The goal is to see if a Gaussian-shaped function, like the Gaspari Cohn, is the best approach or if the

function can be improved furthermore. To explore this the perfect weighting function to correct the

correlations of a 40-member ensemble to the correlations of a 1000-member ensemble is calculated.

This is done by dividing both of them as described in section 3.2. The averaged optimal weighting
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function is used to explore its shape in comparison to the Gaspari Cohn function, to learn about pos-

sible flaws of a Gaussian-shaped function, and directly as a function for distance-based localisation.

Figure 15 shows the optimal weighting function for the selfcorrelations of temperature (TT) and spe-

cific humidity (QV). Shown are three levels (900hPa, 500hPa, 300hPa) depicting the low, middle and

high troposphere. The weighting functions are compared to the respective localisation function of

DWD.

(a) z=900hPa (b) z=500hPa (c) z = 300hPa

Figure 15: Mean optimal weighting function of selfcorrelations of temperature (dashed) and specific
humidity (dotted), in three correlation levels: (a) 900 hPa, (b) 500 hPa, (c), 300 hPa; compared to the
GC of the DWD (grey line)

It can be seen that the weighting function in difference to the Gaspari Cohn function does not have a

single peak at the correlation level, but rather a plateau-like peak, in some cases double-peak shape,

around the 2-3 neighbouring model levels. This discovery applies to all tested selfcorrelations, not

only the two shown here (see Appendix). Therefore, to improve localisation regarding selfcorrela-

tions, a function with a plateau-like peak would increase the quality of the correlations. Despite the

different types of peaks, the overall shapes of the DWD function and the optimal weighting are simi-

lar, especially in the lower levels. As also seen in the calculation of the optimal localisation scales in

Figure 10 it seems that selfcorrelation of temperature needs a broader localisation function than cur-

rently used, whereas the breadth for the correlation of humidity to itself is similar to the one already

applied. Another minor point is that different to the Gaspari Cohn function the optimal weighting

function does not "cut off" (set to zero) the correlation at any point. It has to be considered that even

large ensemble data has some sort of statistical noise and this may be the reason why there is no cut-

ting off. Because no matter how far a point is away from the correlation level, there will always be a

signal, although this may have no physical connection. Also does the "cut-off" reduce the computa-

tional resources in data assimilation (e.g. LETKF), because not all grid points have to be considered

in the calculations.

The optimal weighting for the crosscorrelations (QVT, TQV) between temperature (T) and specific

humidity (QV) is shown in Figure 16. As done previously, they are compared to the Gaspari Cohn

function of the DWD.
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(a) z=900hPa (b) z=500hPa (c) z = 300hPa

Figure 16: Mean optimal weighting function of crosscorrelations between temperature and specific hu-
midity: QVT (dashed), TQV (dotted); in three correlation levels: (a) 900 hPa, (b) 500 hPa, (c), 300 hPa,
(QVT, TQV); compared to the GC of the DWD (grey line)

The main difference between the optimal weighting of crosscorrelations and selfcorrelations, or the

Gaspari Cohn function respectively, is the peak not being at one but rather between 0.5 and 0.75. This

applies, same as the plateau peak of the selfcorrelations, to all tested crosscorrelations. Therefore, as

the shape of the weightings is also Gaussian-like, it concludes that the Gaspari Cohn function already

depicts a close to reality function, but it could be improved by shifting the peak. In addition, a vari-

able dependent peak could be a good opportunity to optimise the Gaspari Cohn localisation. Despite

the problem regarding the peak, Figure 16 confirms that the Gaspari Cohn function of the DWD is

slightly broader than an optimal function would be, as already seen in the calculations of the opti-

mal localisation scales for crosscorrelations (see Figure 10). The reason the optimal weighting is not

cutting off any correlations is probably the noise of the used data as explained previously. Following

Houtekamer and Mitchell (1998), the expected noise for the case that the true correlation is zero can

be calculated with the ensemble size N

noi se = 1p
N

(17)

With this equation, the noise for the case of true correlation being zero, for the 40-member ensemble

is 0,158 and 0,032 for the 1000-member ensemble. Following equation 16, this leads to an error of the

optimal weighting, for the case of the perfect weight being zero, of 0,2.

This meets with the optimal weightings for correlations far away from the correlation level, where the

weightings are mostly lower than 0,25. Therefore, a "cut-off" in these areas, such as the Gaspari Cohn

has, can be justified with the noise of the data.

Summarising, the optimal weighting function brings important information on how a localisation

function should look like and how the currently applied functions could be adapted to improve the

localisation quality. These changes mainly regard the way the peak of the function is chosen. A dif-

ferentiation between cross- and selfcorrelations is appropriate as they show big differences with a
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plateau-like peak for selfcorrelations and a damped peak for crosscorrelations. These changes could

be applied to the Gaspari Cohn function. Another option would be to use the optimal weighting

function directly for localisation. Therefore, it can be chosen between a variable dependent function

or, to simplify calculations, the usage of just two functions, one for selfcorrelations and the other for

crosscorrelations. More not discussed, optimal weighting functions can be seen in the Appendix.

4.2.1 Quality of localisation

After exploring the optimised distance-based localisation methods (optimal Gaspari Cohn, optimal

weighting function). The quality of localisations using these methods is examined and compared to

not localised correlations and to localisations done with the method utilised by the DWD.

Therefore, localisations are calculated using the previously described methods. They are computed

for every available correlation at every level on all 25 possible 40 member subsamples drawn from

the 1000-member ensemble at 5 days. The mean RMSE between the 40-member ensemble and the

localised correlations of all vertical profiles in the domain is calculated and averaged. The resulting

mean RMSE are compared to the RMSE of the correlations of the 40-member ensemble to the 1000-

member ensemble.

Figure 17 shows the comparison of applying the optimal weighting function directly (opt_w_func),

using a variable dependent optimised Gaspari Cohn function (GC_opt) and the Gaspari Cohn func-

tion of the DWD (GC_DWD). The RMSE of the 40-member ensemble (ens_40) show the minimum

benchmark, so if the RMSE is higher than this, the used method would even worsen the outcome

of the localisation. The combination of the optimised GC and the Sampling Error Correction is not

shown because of the small difference to optimised GC as seen in Figure 14. Shown are the correla-

tions of temperature (T) and specific humidity (QV).

Firstly, all three displayed methods lower the RMSE significantly and therefore improve the correla-

tions. As expected, the optimal weighting function performs better than both other methods. This is

because the optimal weighting function depicts the closest to perfect localisation function. The opti-

mised Gaspari Cohn function and the DWD Gaspari Cohn function have very similar results, except

for the lower levels where in three of four shown cases the optimised Gaspari Cohn function brings

better results. This reflects the conclusion of Figure 12 that the DWD chooses its localisation scales

near the surface too small. The wider optimised Gaspari Cohn function works better, but can not

compete with the optimal weighting function. The only exception is the selfcorrelation of specific

humidity (Fig.17d) where all methods have a similar RMSE through the vertical profile, except for the

DWD in the lower and top levels. Here, the best results are generally achieved with an RMSE under

0.10 over the whole profile.

While the 40-member ensemble has nearly constant RMSE, the localisations work better in the lower

parts than in the middle atmosphere. This is depicted by a slightly convex shape of the curves. It also

seems that the DWD localisation works better for crosscorrelations than for selfcorrelations. This can

be seen especially in the correlation of temperature to itself (Fig.17a). The worse results of the DWD

in comparison to the optimised Gaspari Cohn function emerge from the use of too small localisation

scales (see Fig. 12b). The worse results of DWD for levels above 300 hPa are due to the applied damp-

ing, this lowers the peak of the Gaspari Cohn function below one which falsely depicts the weighting

of selfcorrelations, because a correlation with itself at the correlation level is always one.

Summarising, the optimisation of the current methods brings improvement, especially the use of an
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(a) T & T (b) QV & T

(c) T & QV (d) QV & QV

Figure 17: Comparison of RMSE between localisation and 1000-member ensemble at 20 correlation
levels for three different Methods (optimised GC, GC used by DWD, optimal weighting function) and
the mean RMSE to the correlations of 40-member ensembles, show are four correlations: (a) T & T, (b)
QV & T, (c) T & QV, (d) QV & QV

optimal weighting function. But also splitting the Gaspari Cohn function into multiple variable de-

pendent functions improves the localisation generally and notably for selfcorrelations.

4.3 Random forest

After exploring and optimising distance-based methods, a new approach for localisation that does

not rely on a single weighting function is tested. Machine learning has a huge variety of methods that
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all try to learn about the connections between parameters to use them to predict wanted parameters.

The method chosen to explore localisation with machine learning in this thesis is the random forest

(see section 2.3). For all further results, a random forest with 10 trees is applied. The random forest is

always tested on a single 40 member subset from one day. The training data is built by single subsets

of the four other available days. Correlations of the 1000-member ensemble serve as target values as

the goal is to predict correlations as close as possible to the truth. In the following the different steps

taken to explore and find an optimal working random forest are shown.

4.3.1 First try

As a first test of the random forest, a simple configuration, the basis random forest, is chosen (see

sec. 3.4.1). It only exploits two predictors. The first predictor is always the 40-member correlation of

the respective correlation. The second predictor is the parameter correlated from every level in the

profile with the parameter at the correlation level. These two predictors are chosen because they are

believed to bring the most important information, as the 40-member correlation is the correlation

to be corrected, and the second predictor is the physical parameter with the highest impact on the

correlation because it is directly connected to it on every level.

The basis random forest is tested on four correlations of temperature and specific humidity in three

levels (900hPa, 500hPa, 300hPa). Figure 18 shows the relative improvement of the RMSE between

the localised and the 1000-member correlation relative to the RMSE of the 40-member correlation,

averaged over three levels and 5 test days. It is compared to the previously discussed methods.

Figure 18: Comparison of relative improvement to 40-member ensemble between basis Random forest,
optimal variable dependent GC, DWD GC and optimal weighting function improvement to 40-member
ensemble. Mean of 5 days and 3 correlation levels (900hPa, 500hPa, 300hPa); the error bars show the
standard deviation of the averaged data

Although the basis random forest is a simple approach, the results show that it is a well-working

method to correct the 40-member ensemble correlations, as for all four correlations improvements

from 20% to about 33% are achieved. On the other hand in comparison to the other techniques, the
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random forest underachieves, except for the selfcorrelation of temperature (TT), where it is nearly as

good as the optimal Gaspari Cohn function. It also works well for the correlation of specific humidity

with temperature (QVT) where it is on the same level as the localisation with the Gaspari Cohn func-

tion, only the optimal weighting function performs better. These results show that the random forest

may be a good possibility in order to improve localisation, but there is also some room for improve-

ment, as there are many possibilities in the configuration of the random forest.

4.3.2 Optimise random forest

In the following, two approaches of tuning the random forest are discussed. These methods try to find

the right predictors and optimise the training data. Both methods are described in detail in Section

3.4.2.

Parameter test

The first approach is to include more predictors in the random forest to get more physical informa-

tion of the data and therefore better predictions. The difficulty of choosing the right predictors is that

not all predictors improve the quality of a random forest. Some even lead to a decrease in quality,

because they bring information to the random forest that may be linked to the target value statisti-

cally but have no physical core. As it is not easy to theoretically filter which predictors bring useful

information a so-called parameter test was developed for this thesis to test all available parameters

on their improvement compared to the basis random forest.

The parameter test works by applying a third additional predictor to the random forest and then cal-

culating the difference between the basis random forest and the new one. This is done for multiple

different predictors (see tab.1 & 2).

The averaged results of the parameter test for the correlations of temperature and humidity in three

levels (900hPa, 500hPa, 300hPa) can be seen in Figure 19. Shown is the difference in the relative im-

provement of the RMSE between the basis random forest and the random forest with three predictors.

The parameters are sorted left to right from the most improving to the least improving. The shortcuts

of the parameters are explained in tables 1 & 2.

From eleven tested parameters, just four bring improvement. They are the hydrometeor mixing ratio

(qhydro), vertical wind (w), hourly precipitation (prec) and radar reflectivity (dbz). These parameters

bring information about convective events, furthermore about rainfall and clouds. As a high vertical

wind indicates convection in the atmosphere, a high hydrometeor mixing ratio indicates clouds and

precipitation and also the radar reflectivity brings information about rain and snow. By combining

these parameters it is possible to get a very clear overview of where in the domain rain or further-

more thunderstorms happen. Therefore, these parameters are called convective parameters in the

following. It shows that it is important for the random forest to be able to differentiate between vary-

ing weather situations like rain, thunderstorms, or just cloudiness. With this knowledge, it concludes

that there has to be a difference in the vertical correlations for convective and non-convective events.

The second major point derived from the results in Figure 19 is that many parameters used as pre-

dictors decrease the quality of the random forest, therefore it is essential to explore the available pre-

dictors in order to choose the improving ones. This big number of bad predictors, on the other hand,

could be an indicator for an unstable machine learning method, because a perfect stable technique

would ignore information that results in a decrease in prediction quality. However, the reason for the
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Figure 19: Change of relative improvement, a third predictor (detailed info in Tab.1 & Tab.2) is added
to the basis random forest, shown is the mean of self- and crosscorrelations between temperature and
specific humidity, at three correlation levels (900hPa, 500hPa, 300hPa); mean of 5 days

bad predictors could not only be an unstable random forest but a too small size of data used to train

so that the flaws in the data get much more weight than in a bigger sized data. As the exploration of

the stability of the random forest and the data would exceed the volume of this thesis, it is not further

studied.

With the results of the parameter test, the basis random forest is optimised by adding the four con-

vective parameters as predictors. The now optimised random forest consists of the following six pre-

dictors:

1. 40 member correlation

2. parameter correlated from every level with

correlation level

3. mixing ration of hydrometeors

4. vertical wind

5. hourly precipitation

6. radar reflectivity

Data filtering

As the optimal combination of predictors is now known, the next step to optimise the random forest is

to optimise the training data. The more accurate the training data is, the better the quality of the built

decision trees is. The idea is to filter the data before training the random forest to exclude values or

grid points that deliver information highly diverging from the assumed true information. To clean the

data from harmful values, the same filtering as for the optimal weighting function is applied (see sec-

tion 3.2). This filter excludes all grid points where the deviation of the 1000-member and 40-member
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correlations is below or above the 2% or 98% percentile of all weights. The filtered data is utilised to

train the random forest.

Figure 20 shows the relative improvement compared to the 40-member ensemble correlation for dif-

ferent configurations of the random forest: first the basis random forest, secondly the forest after the

parameter test with the added convective predictors and thirdly the random forest after the param-

eter test and with filtered training data. The results are shown for four correlations (TT, QVT, TQV,

QVQ) averaged over three levels and 5 days.

Figure 20: Relative improvement of three versions of random forest, mean of 5 days and 3 Levels
(900hPa, 500hPa, 300hPa), the error bars show the standard deviation of the averaged data

The results show that both methods improve the random forest clearly with an increase of about 5%

- 7%. Which method works better seems to depend on the type of correlation. While the filtering

of the data brings little improvement for the correlations of specific humidity (TQV, QVQV), it brings

the same improvement as the choice of predictors for temperature correlations (TT, QVT). Although

the optimisation methods shown here are rather simple, they still show that the random forest has

much more potential than shown in this thesis and can be improved further with more exploration of

possible optimisation methods.

4.3.3 Endresults

As an optimised random forest is explored, it can be compared to the previously discussed localisa-

tion methods of the Gaspari Cohn and the optimal weighting function. In Figure 21 the comparison

between the optimised random forest (opt. RF), the optimal Gaspari Cohn (opt. GC), the localisa-

tion of the DWD (GC DWD), and the optimal weighting function (w. func) is displayed. The relative

improvement compared to the 40-member ensemble for the correlations of temperature (T) and spe-

cific humidity (QV) is shown.

Different to the basis random forest (see Fig.18) the optimised random forest beats the method of

the DWD for all four correlations by 2-3% except for the selfcorrelation of temperature (TT) where

the random forest is about 15% better. The optimised random forest also has better results than the

optimised Gaspari Cohn function except for the correlation of humidity to itself, where they have
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Figure 21: Comparison of relative improvement to 40-member ensemble between optimised Random
forest, optimal variable dependent GC, DWD GC and optimal weighting function improvement to 40-
member ensemble. Mean of 5 days and 3 correlation levels (900hPa, 500hPa, 300hPa), the error bars
show the standard deviation of the averaged data

nearly equal results. Only the optimal weighting function performs mostly better except the temper-

ature selfcorrelation, where all three distance-based methods perform significantly worse than for

the other correlations.

These results show that the random forest as a localisation method has great potential as it can not

only compete with current methods, even when they are optimised but performs even better in most

cases. With the knowledge that the configuration of the random forest in this thesis is a rather simple

one, it is definitely possible to increase the quality of localisation with random forest even further.

This could be done by exploring more parameters as possible predictors or even creating new vari-

ables, especially for the random forest. In addition, an increase or better choice of training data can

improve the random forest or the structure of the trees and their building can be tuned in many pos-

sible ways. This all could lead to much better random forests but needs a lot of further exploration.

One of the main goals of this thesis is to improve vertical localisation in data assimilation compared

to currently used methods. The four methods of this thesis are compared to the method of the DWD,

to see how much the previously described optimised or new methods improve the current localisa-

tion methods. The methods are the variable dependent optimal Gaspari Cohn function (opt.GC), the

optimal Gaspari Cohn function plus the Sampling Error Correction (opt.GC+SEC), the use of a ran-

dom forest (RF) and the optimal weighting function (opt.w.func.). The relative differences between

the RMSE of the DWD localisation and the RMSE of the optimised methods are calculated. Figure

22 shows the relative improvement as the mean of the data used for the random forest calculations.

These are the correlations between temperature and humidity (TT, QVT, TQV, QVQV) in three levels

(900hPa, 500hPa, 300hPa) for one subsample at 5 days.

The method with the highest improvement is the optimal weighting function with about 9.5%. The

second best method is using a random forest for localisation, it achieves an improvement of over 8%.

The random forest applied in this thesis has a rather simple configuration and nevertheless achieves
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Figure 22: Improvement of localisation methods compared to the DWD; mean of 5 days and 3 corre-
lation levels (900hPa, 500hPa, 300hPa) for the correlations of temperature (T) and specific humidity
(QV)

much better results than the DWD and the optimised Gaspari Cohn function. This indicates the pos-

sible high potential that random forests or machine learning, in general, has in localisation. The

optimised Gaspari Cohn function with and without the SEC, despite being half as good as the newly

developed methods, also brings a clear improvement of about 3% compared to the DWD. This shows

that even the current used methods can be optimised further when made variable dependent and

combined with statistical methods, with the advantage of needing much less computational effort

than especially the random forest.
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5. Summary and conclusion

Four different approaches of vertical localisation in model space were enhanced, explored, and tested

to optimise localisation. To test the methods, a convective-scale 1000-member ensemble with a do-

main of 200 x 200 points positioned over Germany was used. This ensemble is assumed to show the

true forecast error correlations and serves as a target for all localisations. The test data is built by

40-member subsamples drawn from the 1000-member ensemble. Further, all developed optimised

localisation methods are compared to the configuration of the Gaspari Cohn function utilised by the

DWD, applied to the data of this thesis.

Firstly, the current method of the Gaspari Cohn function is optimised by finding the optimal locali-

sation scale. This is done for a non-variable and variable dependent function. It shows that there are

apparent differences in the optimal localisation scale between different correlations and that there is

minor variation in the localisation scale between different days. Compared to the DWD, it shows that,

especially at the bottom levels, the localisation scale applied by the DWD is chosen too small. This

results in the biggest improvement in this area, whereas in the middle levels the DWD and the opti-

mised Gaspari Cohn function are mostly very similar. The use of an optimised variable dependent

Gaspari Cohn function leads to an improvement compared to the DWD of about 3%.

Secondly, as a small further development, a combination of a distance-based and a statistical method

is explored. Therefore, the variable dependent optimal localisation scale is sought for data corrected

by the Sampling Error Correction. The improvement achieved by the combination of these two meth-

ods is just slightly better than when using only the optimal Gaspari Cohn function. However, detailed

exploration shows that this method only works better for crosscorrelations, therefore to work for both

types of correlations, the sampling error correction needs to be adapted. It also shows higher optimal

localisation scales, which has the advantage that when a slightly different localisation scale is applied

for sampling error corrected data, the result would not decrease as much as without Sampling Error

Correction. Furthermore, it has to be considered that the assumptions in the calculation of the SEC

tables are chosen generally. It may be possible to improve this method with more specific SEC tables

that take the real distributions of the correlations into account.

Thirdly, as the first newly developed method, an optimal weighting function is explored. The goal is

to find the function that corrects the correlations of the 40-member ensemble to be the 1000-member

correlations. After filtering out the biggest outliers, the averaged shape of this function can be utilised

for localisation or even more important for learning about the flaws of the currently used functions.

It shows that there are major differences, between self- and crosscorrelations, regarding the peaks of

the functions. As for selfcorrelations, in contrast to the single peak of the Gaspari Cohn function, a

plateau-like peak which weights levels near to the correlation point equally would be closer to the

perfect weighting function. For crosscorrelations, the single peak seems to be the right choice, but

the amplitude of it should be lowered with having the maximum between weights around 0,5 to 0,75.

Besides learning from the shape of the function and adapting the currently used functions, it can also

be applied directly for localisation. This results in an improvement of around 10% compared to the

DWD.

As the last method, a new technique of using a random forest for correcting the correlations is ex-

plored as an example for machine learning. For this, different configurations and methods to improve

the random forest were tested. The optimising techniques focus on picking the right predictors and

cleaning up the training data before using it.
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The results show that especially the choice of the right predictors is essential because some param-

eters will even decrease the quality of the random forest. In the case of this thesis, convective pa-

rameters additional to the 40-member correlation and the correlated parameter turn out to be the

right choice. This shows that for a random forest it is important to know about rainfall, clouds, and

thunderstorms. It indicates that correlations in such situations are different as in dry and clear sky

situations and therefore need to be localised differently. The testing of different predictors also shows

that the random forest may be unstable towards false information, as some parameters cause terri-

ble results. By using the best predictors and applying the same filtering as for the optimal weighting

function, the still rather simple random forest although achieves an improvement of about 8% com-

pared to the DWD. This is better than the optimised versions of the Gaspari Cohn function and slightly

worse than the optimal weighting function.

With all the results mentioned previously, it has to be considered that the data used only depicts five

consecutive days in summer. Therefore, all methods should be explored for different seasons as well

to determine if there is a difference, especially in winter, where for example, inversion in the lower

levels plays a bigger role than in summer. Furthermore, the assumption of the 1000-member ensem-

ble as the truth is only an approximation, as, besides the high number of members, the ensemble

also has some sort of noise and errors that have to be considered. Furthermore, does this thesis show

theoretical approaches to optimise localisation, assuming no restrictions in computational resources

or other forms of limitations. This means when using any of the described methods, the existing

restrictions depending on the respective data assimilation algorithm have to be considered.

In conclusion, there is potential in improving localisation as it is utilised at the moment. Some mi-

nor improvements as using a variable dependent function and combining it with statistical methods

could be applied rather easily and would lead to a clear improvement. However, the development of

new methods leads to great progress. Especially, the development of the optimal weighting function

brings important information that can be used to adapt current localisation functions. This might be

a possibility with lesser effort than to apply the function directly. Especially because this thesis only

delivers a first insight into how the optimal weighting function looks like. There is probably much

more hidden information, and it needs more exploration, particularly differentiating between dif-

ferent weather situations as there seem to be differences in the correlations. Besides this, with the

rapid increase in computer performance, machine learning brings great potential to localisation as it

does not need a fixed function and rather depends on knowing about physical connections between

parameters and correlations as exactly as possible. To use machine learning as a reliable source in

operational data assimilation, it needs a lot more exploration and computer resources. In the near

future, the best solution may be a hybrid method between different techniques, as it would need less

computational power but nevertheless would lead to a clear improvement.

All in all, to improve localisation, it is important to consider many possible methods and learn about

their strengths and flaws. Then it is possible to choose the best approach regarding the circumstances

it is applied. Besides selecting the best available localisation method, it is even more important to

know about the correlations themselves and how they are influenced by localisations. Because only

with enough knowledge, it is possible to adapt and develop localisation methods that secure the most

truthful initial states for weather predictions.
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Appendix

In the following shown are the optimal weighting functions for other correlations than in the thesis

discussed. All weighting functions are calculated like the functions shown in Section 4.2.

selfcorrelations

mean optimal weighting function of selfcorrelations of hydrometeor mixing ratio (HY), compared to
the GC of the DWD (grey line)

mean optimal weighting function of selfcorrelations of u-wind (U), compared to the GC of the DWD
(grey line)
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mean optimal weighting function of selfcorrelations of vertical wind (W), compared to the GC of the
DWD (grey line)

mean optimal weighting function of selfcorrelations of temperature (T), compared to the GC of the
DWD (grey line)
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mean optimal weighting function of selfcorrelations of specific humidity (QV), compared to the GC of
the DWD (grey line)
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crosscorrelations

In the shortcuts of the correlations, the parameter named first is the parameter correlated from every

level with the one on the correlation level.

mean optimal weighting function of crosscorrelations between hydro meteor mixing ratio and specific
humidity: QVHY (dashed), QVHY (dotted); compared to the GC of the DWD (grey line)

mean optimal weighting function of crosscorrelations between hydro meteor mixing ratio and temper-
ature: THY (dashed), HYT (dotted); compared to the GC of the DWD (grey line)
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mean optimal weighting function of crosscorrelations between hydro meteor mixing ratio and u-wind:
UHY (dashed), HYU (dotted); compared to the GC of the DWD (grey line)

mean optimal weighting function of crosscorrelations between hydro meteor mixing ratio and vertical
wind: WHY (dashed), HYW (dotted); compared to the GC of the DWD (grey line)
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mean optimal weighting function of crosscorrelations between specific humidity and temperature: TQV
(dashed), QVT (dotted); compared to the GC of the DWD (grey line)

mean optimal weighting function of crosscorrelations between specific humidity and u-wind: UQV
(dashed), QVU (dotted); compared to the GC of the DWD (grey line)
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mean optimal weighting function of crosscorrelations between specific humidity and vertical wind:
WQV (dashed), QVW (dotted); compared to the GC of the DWD (grey line)

mean optimal weighting function of crosscorrelations between temperature and u-wind: UT (dashed),
TU (dotted); compared to the GC of the DWD (grey line)
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mean optimal weighting function of crosscorrelations between temperature and vertical wind: WT
(dashed), TW (dotted); compared to the GC of the DWD (grey line)

mean optimal weighting function of crosscorrelations between u-wind and vertical wind: WU
(dashed), UW (dotted); compared to the GC of the DWD (grey line)
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