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Abstract

This thesis applies methods and concepts from quantum information theory (QIT)
to investigate the foundations of quantum physics and spacetime.

The process matrix formalism allows to describe indefinite causal structures. This
thesis develops a systematic combination of process matrices and quantum clocks.
Furthermore, it is proved that there cannot exist a universal formalism to describe
the parallel application of indefinite causal structures.

Furthermore, this thesis investigates a scenario in which a quantum system is
probed by a lab with an incomplete external reference frame. For the example of a
missing origin, the observables and symmetries are characterized.

The setting of device-independence considers abstract devices described only via
their input-output-correlations. This thesis investigates a modification in which the
abstract inputs are exchanged with spacetime parameters. Non-classical bipartite
correlations for the cases of angles or directions as inputs are characterized.

The framework called General Probabilistic Theories allows to develop theories
of physics that are not classical or quantum. This thesis investigates objectivity
of measurement outcomes in such theories by generalizing the phenomenology of
quantum Darwinism. Furthermore, it is proved that theories with Bloch balls with
dimension different from three cannot have interactions.
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Zusammenfassung

Diese Doktorarbeit wendet Methoden und Konzepte der Quanteninformationstheorie
(QIT) an um die Grundlagen der Quantenphysik und Raumzeit zu untersuchen.

Der Prozess-Matrix-Formalismus ermöglicht die Beschreibung von indefiniten
kausalen Strukturen. Diese Doktorarbeit entwickelt eine systematische Kombination
von Prozess-Matrizen und Quantenuhren. Weiterhin wird gezeigt, dass es keinen
allgemeingültigen Formalismus geben kann, um die parallele Nutzung von indefiniten
kausalen Strukturen zu beschreiben.

Außerdem betrachtet diese Doktorarbeit ein Szenario, in dem ein Quantensystem
von einem Labor mit einem unvollständigen Bezugssystem untersucht wird. Für
das Beispiel eines fehlenden Ursprungs werden die Observablen und Symmetrien
charakterisiert.

Im Feld der Gerät-Unabhängigkeit werden abstrakte Geräte betrachtet, die nur
über ihre Eingabe-Ausgabe-Korrelationen beschrieben werden. Diese Doktorar-
beit untersucht eine Modifikation, in der die abstrakten Eingaben mit Raumzeit-
Parametern ersetzt werden. Für Beispiele von Winkeln oder Richtungen als Eingabe-
Parameter werden die nicht-klassischen bipartiten Korrelationen charakterisiert.

Das Feld der Allgemeinen Probabilistischen Theorien ermöglicht es, physikalische
Theorien zu entwickeln, die weder klassisch noch quantenmechanisch sind. Diese
Doktorarbeit untersucht die Objektivität von Messergebnissen in solchen Theorien,
indem das Phänomen namens Quanten-Darwinismus angepasst wird. Außerdem
wird gezeigt, dass Theorien mit Bloch-Bällen, die eine andere Dimensionalität als
drei haben, keine Interaktionen haben können.
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Chapter 1
Introduction

1.1 Motivation and goal
Quantum theory [1] is the foundation of large parts of modern physics. It allows
to accurately describe atomic and molecular physics as well as quantum optics and
condensed matter systems and ultra-cold gases. Combining quantum theory with
special relativity theory [2] led to quantum field theory [3], which provides the
framework for both high energy particle physics and nuclear physics.

Notwithstanding these scientific achievements, the exploration of the quantum
aspects of our universe is far from over. Indeed, while quantum theory enjoys
excellent experimental confirmation in the aforementioned fields, there exist extreme
scales and exotic scenarios far beyond the reach of current experimental technology.
Perhaps the most important experimentally unexplored regime is that of quantum
gravity[4–6], which combines quantum physics with another crucial part of modern
physics, namely general relativity [7].

When formulating theories and frameworks for new regimes and scenarios, it is
not always clear how to extract observable predictions from the basic building blocks
of the theory. To avoid this problem it can be fruitful to adapt the operational
perspective of quantum information theory. This perspective imagines agents who use
probes or other physical systems to implement protocols. For example, in the context
of investigating new regimes of physics, probes can be used to extract information
about an environment or new phenomena can be used as a resource for information
processing and transmission tasks [8–18].

Quantum information theory [19, 20] does not assume any particular physical
implementation (like electron spins, photon polarization, . . . ) and therefore is very
general. Nonetheless, it provides a powerful formalism that allows to describe quan-
tum phenomena using density matrices, Positive Operator Valued Measurements
(POVMs) and channels. The quantum information point of view leads to information-
theoretic protocols that allow to extract useful observable quantities such as the
probability to confuse two similar physical scenarios with each other, or the amount
of entanglement that can be extracted. Entropic information measures such as von
Neumann entropy can help to find connections to statistical physics and thermody-
namics. Super-strong quantum correlations, such as in Bell scenarios [21, 22], offer a
way to test whether the physical phenomenon is indeed governed by quantum physics.
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CHAPTER 1. INTRODUCTION

The goal of this thesis is to apply the quantum information approach to new or
exotic physical scenarios in the foundations of quantum physics and spacetime. Many
of the scenarios encountered in this thesis confront quantum physics and spacetime
with each other in unconventional ways beyond the standard textbook settings of
quantum field theory or non-relativistic phase space quantum mechanics. Therefore,
this approach challenges our understanding of quantum spacetime in new or unusual
settings and formalisms, and mastering these challenges may give us important hints
about quantum gravity.

This is achieved by the use of several frameworks that originated in or are closely
related to quantum information theory. All of these frameworks relax or modify
different aspects of the typical settings in quantum information theory or physics in
general:

The framework ofGeneral Probabilistic Theories (GPTs)/Operational Probabilistic
Theories (OPTs) [23–29], allows to construct theories of physics that are neither
classical not quantum. Mathematically, it generalizes quantum information theory
by replacing density matrices with general vectors in a convex set, the state space,
and adapts operational quantum information concepts like channels and entropies to
these new state spaces.

The setting of device-independent information processing [30–33] reduces physical
devices to black boxes that receive an abstract input value and randomly produce
an output value. These devices are only modeled via their input-output statistics.
Nonetheless, there exist spacetime scenarios like Bell tests [21] in which the statistics
of such devices can prove that the devices have quantum correlations that may be
useful for quantum information processing.

The concept called indefinite causal structure [9–11] generalizes our usual notion
of cause-and-effect relations. The application of quantum physics to causality may
give rise to exotic causal structures, such as superpositions of causal orders [34–36].
The framework of process matrices [9] models causal interventions via quantum
instruments from quantum information theory and the process matrix encapsulates
the causal structure by mapping these quantum instruments to the actual outcome
probabilities.

In the following sections, we will give a more detailed introduction to these
frameworks. Afterwards, we will explain the structure of this thesis and how these
frameworks get applied.

1.2 Physics beyond the quantum model:
General/operational probabilistic theories

General probabilistic theories (GPTs)/operational probabilistic theories (OPTs) is the
name of a framework that allows to formulate probabilistic theories of physics that
are neither classical nor quantum [23–29]. For this introduction to the framework we
follow [24, 25, 27]. To approach physics beyond quantum theory from a meaningful
perspective, one imagines lab experiments in the following way, see Figure 1.1: One
considers a preparation device that upon activation outputs a single physical system.
The system may experience some evolution and at the end it gets measured. The
measurement is assumed to yield a definite outcome, so also GPTs/OPTs have a
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1.2. GENERAL/OPERATIONAL PROBABILISTIC THEORIES

collapse of the state. The state ω of a physical system can be defined operationally as
a vector listing all the outcome probabilities for all possible choices of measurements:

ω =



p(o1|m1)
p(o2|m1)

...
p(o1|mj)
p(o2|mj)

...


(1.1)

Here, ok is the k-th outcome and mj the j-th measurement setting. However,
already in 2-dimensional quantum theory there would be infinitely many choices
of measurements. Instead one assumes that there exists a (minimal) finite set
of measurements whose outcome probabilities completely determine the outcome
probabilities of all other measurements. Such a set is called fiducial. Then the state
can be defined as the finite-dimensional vector listing the outcome probabilities for
a set of fiducial measurements. The set of all states ω is called the state space ΩA

and it generalizes the set of density matrices of a given dimension. The state space
is assumed to be compact: It is bounded because probabilities are. It is closed
because we do not make a difference between probability distributions that can be
approximated arbitrarily well and those that can be implemented perfectly.

Setting
Measurement

1

2

3

Outcome

1 2

Push button
to prepare

ωsystem

system

evolution
channel

Figure 1.1: The typical operational scenario in general/operational probabilistic
theories. A system preparation device emits a single physical system when a button
is pushed. The state ω of the system that the device prepares is characterized
as the list of outcome probabilities for all the relevant choices of measurements.
The framework also allows to describe time evolution and transformations using
generalizations of quantum channels and instruments.

Now that we have a concept of state, we can adapt other elementary notions
of quantum information theory. The first such concept is that of a POVM. A mea-
surement is described by a collection of maps {ej}j=1...m and these maps are called
effects. These effects map states ω ∈ ΩA to valid probabilities, i.e. ej(ω) ∈ [0, 1]. Fur-
thermore, as probabilities should sum up to one, we have ∑m

j=1 ej(ω) = 1. Channels,
often called transformations, are described by maps from a state space to a state
space, i.e. T : ΩA → ΩB. Reversible transformations R are those that are invertible
and for which the inverse R−1 is also considered to be a physical transformation. If
one introduces a notion of parallel composition of systems, then one can also demand
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CHAPTER 1. INTRODUCTION

a generalization of complete positivity.

The central mathematical foundation of this framework is the field called convex
geometry [37], because convex-linear combinations of states play an important role,
compare Figure 1.2: Operationally, one assumes that one has access to randomness,
i.e. a random number generator (RNG). Let us say this RNG has n possible outcomes,
and outcome j occurs with probability qj. One can imagine a preparation device
that contains n smaller system preparation devices, each of which can prepare a
state ωj. If one activates the outer device, it triggers the random number generator,
whose outcome selects which smaller device gets used. The resulting output ωfull of
the outer device can once again be described as list of probabilities as in Eq. (1.1)
via the law of total probability, resulting in a convex-linear mixture of the states
that the smaller devices prepare:

ωfull =
n∑
j=1

qjωj (1.2)

Therefore, the state space is a convex set. The pure states are the states for which no
non-trivial convex decomposition is possible, i.e. ω = ∑

j pjνj with pj ≥ 0, ∑j pj = 1
and states νj implies pj = 0 or νj = ω. States that are not pure are called mixed.

activate RNG

outcome j
with probability qj

ω1

ω2

ω3

∑
j qjωj

ωfull =

push button

Figure 1.2: This figure shows how mixed states can be prepared in the GPT/OPT
framework. One imagines a large system preparation device that contains a random
number generator and several smaller state preparation devices. Activating the large
device triggers the RNG and the RNG decides which of the smaller devices gets
activated. The prepared state gets sent to the outside. The outside never learns the
result of the RNG.

The previous thought experiment confronts us with two different descriptions of
the same operational scenario. The first perspective says that our big preparation
device prepares the state ωfull and this is the state that we use to calculate measure-
ment probabilities ej(ωfull). The second perspective first conditions on the outcome
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1.2. GENERAL/OPERATIONAL PROBABILISTIC THEORIES

of the internal RNG. Let us say we got outcome k, i.e. the state ωk was prepared.
Now we use this state to calculate measurement probabilities, i.e. ej(ωk). Finally,
we apply the law of total probability to average over the outcome k of the RNG,
giving us outcome probabilities ∑k qkej(ωk). As the final outcome probabilities have
to agree no matter which description we adapt, we find:

ej

(∑
k

qkωk

)
= ej(ωfull) =

∑
k

qkej(ωk) (1.3)

Therefore, measurements have to be convex-linear in the state. Similarly, trans-
formations are convex-linear in the state. This convex-linearity can be extended
to full linearity by adding one more dimension, leading to a real vector space A
in which ΩA is embedded. The extra dimension represents the normalization uA,
which is defined as 1 on the state space ΩA. In quantum theory, it is the trace
of a density matrix. So far we always assumed that if one activates the system
preparation device, a system is successfully prepared. To describe the situation in
which such a device may fail to output a system, one can use the normalization to
model the success probability. For example, a sub-normalized state pω with ω ∈ ΩA

and p ∈ [0, 1] would then mean that with probability p a system is prepared in the
state ω. The normalization is then defined as uA(pω) = p and can therefore be
linearly extended to A. This interpretation of sub-normalized states is consistent
with our interpretation of statistical mixtures as in ωfull = ∑

j qjωj. The individual
terms qjωj can be interpreted as the fact that the device associated with outcome j
only outputs a state with probability qj , but if it does the state is ωj . The procedure
that always fails outputs the zero-vector as an unnormalized state.

Mathematically, it is convenient to also include super-normalized states λω with
λ > 1 and ω ∈ ΩA: Together, the normalized, sub-normalized and super-normalized
states form a state cone A+ := R≥0 · ΩA which is pointed (the zero-state is its tip),
see Figure 1.3. As cones are commonly-studied objects in convex geometry, this
allows to adapt methods and results from convex geometry, see e.g. [23].

So far, we chose to represent states as lists of outcome probabilities for fiducial
measurements. However, there are many other ways to represent a state space
without spoiling the (convex-) linear structure of the framework. These changes of
representation can be achieved by using a linear function L that can be inverted
when restricted to the state cone. One example is the density matrix formalism
in quantum theory. It is standard to assume that the representation is of mini-
mal dimension, i.e. that the linear span of the state cone A+ is the full vector space A.

The measurement effects live in the dual cone

A∗+ = {e ∈ A∗ | e(ω) ≥ 0 ∀ω ∈ ΩA} (1.4)

where A∗ ' A is the dual space of A (i.e. the set of linear functions from A to the
real numbers). A common assumption is that all such linear functions that give valid
probabilities on all states are physically allowed. This is called the no-restriction
hypothesis. One motivation is that restrictions such as super-selection rules, conser-
vation laws and practical infeasibility are properties of the physical implementation,
not of the fundamental theory that seeks to replace classical or quantum theory.
Similarly, one often assumes that measurements constructed from physically allowed
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A

ΩA

sub-normalized states

normalized states ΩA

super-normalized states

A+

Figure 1.3: The set of normalized, sub-normalized and super-normalized states
forms a state cone A+. In the figure, the normalization uA can be visualized as the
coordinate axis along the cone. The normalized state space ΩA is given as the subset
of the state cone that satisfies uA(ω) = 1. The tip of the cone is the origin and
represents definite failure to prepare a system. The vector space is called A. The
standard is to assume that A is chosen to be of minimal dimension.

effects are physically allowed. If no such assumptions are made, then the set of
physically allowed measurements or effects and the set of allowed transformations
must be explicitly defined in addition to the state space. However, even in those
cases one assumes that the set of effects is generating, i.e. of full dimension, such
that all states can be distinguished via tomography, and that it is convex and closed
for the same reasons as above [38].

In principle, every finite-dimensional compact and convex set represents a state
space that can be investigated in this framework. Frequently studied examples of
exotic state spaces include polytopes and polygons, see e.g. [39–41]. A polygonal
state space of particular importance is the square bit, because it appears in the gen-
eralized no-signaling theory/box world for the case of 2 incomes and 2 outcomes [24].

Because of the generality of the framework, there is no universal notion of parallel
composition of state spaces. Nonetheless, one popular and well-motivated approach
is based on the framework of tomographic locality: First of all, one assumes that
it should be possible to do protocols such as state preparations and measurements
independently in parallel. For example, two separated agents Alice and Bob can
prepare states ωA ∈ ΩA and νB ∈ ΩB independendly. Similarly, the agents should
be capable of implementing independent measurements e(A)

j ∈ A∗+ and f (B)
k ∈ B∗+

independently in parallel. The principle of tomographic locality says that all such
parallel combinations of local measurements and their correlations already completely
specify a physical state.

Let us sketch a quick way for determining the vector space AB that contains the
combined state space ΩAB, similar to [23]. At this point it is convenient to interpret
states as functions that map measurement effects to probabilities. The principle of
tomographic locality now says that we only have to consider local measurements,
i.e. states can be represented as bilinear maps ωAB(e(A)

j , f
(B)
k ) ∈ R. The universal
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1.2. GENERAL/OPERATIONAL PROBABILISTIC THEORIES

property of the tensor product implies that we can represent the same state as a
linear map ωAB(e(A)

j ⊗ f
(B)
k ). Therefore, composite states ωAB live on the dual space

of the tensor product A∗ ⊗ B∗, and thus by dimension counting we can see that
all composite states ωAB can be represented as elements of A ⊗ B. Now parallel
procedures can be represented by the tensor product, e.g. ωA ⊗ νB for states. More
detailed arguments can be found e.g. in [24, 27, 42, 43].

Hence, tomographic locality recovers the tensor product structure of quantum
theory. Both standard quantum theory and classical probability theory satisfy this
postulate. It expresses the intuition that a composite system is completely specified
by its parts and their relations. In particular, parallel procedures should not lead to
the emergence of “magical” extra degrees of freedom. A theory that violates this
principle is real quantum theory, i.e. quantum theory restricted to the real numbers.
Here σy is not a valid local observable because of its imaginary entries. However,
σy⊗σy is a valid observable because the imaginary units cancel. Therefore, σy⊗σy is
a new holistic degree of freedom. While tomographic locality identifies the combined
vector space as the tensor product of the local spaces and allows to represent parallel
procedures via the tensor product, it does not identify the combined state space
itself. Indeed there are many different compatible choices, such as the minimal tensor
product that only contains separable states or the maximal tensor product that
contains all vectors in AB that give valid probabilities for all local, independent
measurements of the form e

(A)
j ⊗ f

(B)
k .

A main application of the GPT/OPT framework is to derive quantum theory
from physical and information-theoretical postulates instead of the usual formal
postulates about Hilbert spaces and projection operators. This resulted in a wave
of reconstructions of quantum theory, e.g. [25, 27–29, 42]. However, the generality
and operational foundation also make the framework suitable to search for theories
that may one day replace quantum theory (“post-quantum physics”), see e.g. [44].
While quantum theory is experimentally well-confirmed, one should prepare for
the possibility that quantum theory will be replaced eventually. For once, current
experiments cannot access all scales. It is possible that for extreme scales quantum
theory becomes inadequate. This scenario is comparable to the historical discovery
of quantum mechanics: Also classical physics was well confirmed for a long time, but
once the world of atoms and photons became experimentally accessible, it became
clear that classical physics had to be replaced with quantum physics [1]. It is
conceivable that the regime of quantum gravity will similarly show that quantum
theory needs to be replaced: While most approaches to quantum gravity search for
the right way to replace and quantize gravity [4–6], it is by no means clear that
quantum theory will still be the adequate formalism for the right theory of quantum
gravity. The framework of general/operational probabilistic theories can provide an
operational starting point to develop replacements [10, 11]. Furthermore, it allows
to investigate the relationship between different physical principles and phenomena
by offering a description that does not rely on the abstract quantum framework, see
e.g. [41, 45, 46].

An example of a quantum phenomenon is quantum Darwinism [47, 48] which
Roberto D. Baldijão, Andrew J. P. Garner, Markus P. Müller, and I generalized to
GPTs/OPTs [49]. Furthermore, my supervisor Markus P. Müller and I investigated
theories constructed from higher dimensional Bloch balls but showed that these
theories do not allow for interactions [50].

7



CHAPTER 1. INTRODUCTION

1.3 Device-independent information processing
Quantum physics allows for correlations between separated systems that are much
stronger than those admitted by classical statistics. The most famous example
for this crucial observation is given by Bell scenarios [21], in which non-classical
correlations are called Bell non-local correlations. In this scenario one considers two
isolated devices, typically assumed to be spacelike separated.

The devices are reduced to black boxes. The agents using those devices randomly
choose an input from an abstract finite list of possible inputs. Likewise, the devices
randomly return an abstract output from a finite list of possible outputs. For the
first agent, Alice, the device is characterized by the probability distribution p(a|x),
where x is the input and a is the output, while the device of the second agent, Bob,
is likewise described as p(b|y). The combined statistics of the two devices is given
by the probability distribution p(a, b|x, y). The isolation or spacelike separation is
implemented by the no-signalling assumption: The marginal statistics one agent sees
should be independent of the input choice of the other agent, i.e.

p(a|x, y) =
∑
b

p(a, b|x, y) = p(a|x) (1.5)

p(b|x, y) =
∑
a

p(a, b|x, y) = p(b|y) (1.6)

Select Input

Outcome

1 2

1 2 3

Select Input

Outcome

1 2

1 2 3

isolation
e.g.

spacelike
separation

Figure 1.4: A Bell scenario modeled in the device-independent approach. The two
devices are black boxes that receive an abstract input value (here the number 1,
2 or 3) and randomly produce an output value (here the number 1 or 2). In the
figure, both agents chose input 2 and both got output 1. The wall represents that
the devices are isolated from each other. Often times one assumes that the isolation
is due to spacelike separation such that relativity does not allow the devices to signal
to each other. If the devices share some particular entangled quantum states, they
may have correlations that cannot be reproduced by local hidden variable models.

The notion of local hidden variable models (LHV) formalizes what one means by
classical correlations in Bell scenarios. It is based on the idea that once one takes
the entire preparation history of the two classical devices into account, they behave
independently of each other while isolated. This classical preparation history may
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depend on classical parameters λ ∈ Λ that are called the hidden variables. The
hidden variables are distributed according to a probability distribution or density
ρ(λ). If one knows the values of the hidden variables, then Alice’s isolated device
behaves according to pA(a|x, λ) while Bob’s isolated device behaves according to
pB(b|y, λ). The combined statistics of this local hidden variable model is then:

p(a, b|x, y) =
∫

dλρ(λ)pA(a|x, λ)pB(b|y, λ) (1.7)

In the simplest Bell scenario, both agents can only choose two input values x, y ∈
{1, 2} and only two output values a, b ∈ {−1,+1} are possible. For this case of two
output values, one can define a meaningful correlation function as

C(x, y) :=
∑

a,b=±1
a · b · p(a, b|x, y) (1.8)

=p(+1,+1|x, y) + p(−1,−1|x, y)− p(+1,−1|x, y)− p(−1,+1|x, y)

which can be interpreted as the probability for correlation minus the probability for
anti-correlation. In this scenario, all local hidden variable models satisfy the CHSH
inequality [22]

−2 ≤ C(1, 1) + C(1, 2) + C(2, 1)− C(2, 2) ≤ 2 (1.9)

However, quantum physics allows for boxes built from entangled quantum systems
that violate the CHSH inequality. Such boxes are said to have Bell non-local
correlations. Corresponding experiments can be implemented, for example, by the
use of entangled photons [51]. However, as the certification of Bell non-locality
only relies on the abstract inputs and outputs and their statistics, it disregards the
particular choice of physical systems.

Select Input

Outcome

1 2

0◦

90◦

180◦

270◦

Figure 1.5: In the part of the thesis that considers device-independence, i.e. Chapter
5, we consider the following modification: Instead of the abstract inputs, the inputs
are spacetime parameters. The figure shows an example in which the input is an
angle. As one can imagine that the input angle can be chosen with a knob or display
on the outside of the box, this modification can be argued to be compatible with the
concept of device-independence.

The generality of such approaches based on non-classical correlations allowed
the field of device-independent information processing to emerge. In its strongest
form, the framework characterizes physical devices exclusively via their abstract
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input-output statistics without any assumptions about the inside of the boxes, not
even whether the inside is governed by quantum theory or another GPT/OPT.
Despite these weak assumptions, the presence of non-classical correlations enables
the use of device-independent cryptography protocols [30–32]. However, it is common
to make weak extra assumptions [33, 52–55], in particular to assume that quantum
theory applies. The basic intuition is that the device-independent certification of non-
classical correlations allows to detect quantum properties (in particular entanglement)
that allow to adapt quantum cryptography protocols.

Together with my collaborators Andrew J. P. Garner and Markus P. Müller, I
developed a modification of the device-independent scenario in which the abstract
inputs get replaced by space-time parameters [56], compare Figure 1.5.

1.4 Indefinite causal structure and process
matrices

The process matrix framework [9] was invented to describe exotic causal structures.
An essential notion in this field is that of causal order which refers to the ability of
events to influence other events. This relation between events is usually summarized
by using the words cause and effect. In physics, causality is often discussed using the
light cone structure of special [2] and general relativity [7]: An event can influence
events in its future lightcone, and can be influenced by events in the past light
cone. However, the notion of causal structure can be investigated without the full
formalism of relativity theory and it can be physically meaningful to do so: For
example, spacelike separation is not the only conceivable reason why two events
might not be able to influence each other: Any isolation or prevention of signals
works. In statistics, the framework of causal models [57] is used to discuss causal
structure when only probabilistic information is available.

If one combines the notion of causal structure with the principles of quantum
physics, one finds exotic causal structures called indefinite causal structure. For
example, one could imagine a superposition of an action A influencing an action B,
and action B influencing action A, i.e. superpositions of cause- and effect-status.
A standard example is the so-called quantum switch [34]: Here, a two-dimensional
quantum system (qubit) controls the order of two (often unitary) transformations
A and B. It is conceivable that indefinite causal structure becomes an essential
phenomenon of quantum gravity, because the dynamical nature of causal structure
in general relativity gets combined with quantum uncertainty [10, 11]. For example,
quantum fluctuations might blur the light cone structure, or spatial superpositions
of big astronomical objects might give rise to superpositions of metrics and space-
times [35, 36, 58].

In the process matrix framework, causal interventions are modeled as quantum
instruments. Quantum instruments generalize channels and POVMs in the sense
that they have outcomes and update rules. Let L(H) be the set of linear operators
on a finite-dimensional Hilbert space H. Then a quantum instrument {Tj}nj=1 is
a collection of probabilistic quantum transformations Tj : L(Hin) → L(Hout). A
probabilistic quantum transformation is linear for the same reason as the linearity of
effects and transformations in GPTs/OPTs. A probabilistic quantum transformation
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outcome
2

outcome
3

|ψ〉T

A

B

|0〉C

|1〉C

A BW

Figure 1.6: The left part of the figure shows a visualization of the basic operational
scenario of process matrices that one often encounters in the literature. The process
matrix W describes the environment and in particular the causal structure that
connects the labs of agents A and B. The agents can freely choose their quantum
instruments, visualized as blocks that get inserted into open slots of W . The
right figure shows a more specific example, the quantum switch [34, 59]. Here, the
environment contains a control system and a target system |ψ〉T . If the control
value is |0〉C , the target system gets first sent to A’s lab and then to B’s lab, if the
control value is |1〉C then lab B gets visited before lab A. If the control system
is in a superposition state like 1√

2(|0〉C + β|1〉C), then both paths get coherently
superimposed.

should map quantum states (described by density matrices) to quantum states, i.e.
positive semi-definite operators should be mapped to positive semi-definite operators.
One says that Tj should be positive or positivity-preserving maps. Also Tj ⊗ IdE
should be positive maps for the identity channel of all finite-dimensional ancillary
systems E . One says that Tj should be completely positive. Just as in the GPT/OPT
framework, we consider sub-normalized density matrices too: If ρ ∈ L(Hin) is a
normalized density operator, i.e. ρ ≥ 0 and Trρ = 1, then Tr[Tj(ρ)] ∈ [0, 1] is the
probability for outcome j and Tj(ρ)

Tr[Tj(ρ)] is the normalized updated state if outcome
j is obtained. Thus the sub-normalized operator Tj(ρ) describes both the updated
state and the outcome probability. Therefore, Tj must be trace-non-increasing.
Furthermore, if we average over all outcomes, the resulting map ∑n

j=1 Tj should be
trace-preserving, i.e. a deterministic quantum transformation.

One replaces the abstract notion of events with the following operational concept,
see Figure 1.6: One imagines several agents, each of them within a small lab. One
assumes that inside the small lab standard quantum theory is still valid and that usual
experiments are possible. However, the environment connecting the labs can be very
exotic, e.g. aforementioned quantum spacetimes. During the protocol, each agent
receives one physical system, acts on it with a quantum instrument (generalizing
projective measurements), and then sends the system out again. The probabilities
for instrument outcomes a, b, . . . given instrument choices {T (A)

j }j, {T (B)
k }k, . . . are

then:

p(a, b, . . . |{T (A)
j }j, {T (B)

k }k, . . . ) =W(T (A)
a , T (B)

b , . . . ) (1.10)
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Here, W is a map that is multi-linear for the same reason most maps in GPTs/OPTs
are linear: To preserve the fact that statistical mixtures are represented as convex-
linear mixtures. See also Chapter 3 for how a GPT/OPT-like argument leads to multi-
linearity. It is mathematically convenient to use the Choi operators associated with
the (probabilistic) quantum transformations instead. For a quantum transformation
C : L(Hin)→ L(Hout), the associated Choi operator C is defined as [60, 61]

C := (Idin ⊗ C)(|ent〉〈ent|) (1.11)

where |ent〉 := ∑din
j=1 |j〉 ⊗ |j〉 is an unnormalized maximally entangled state. C is

positive semi-definite if and only if C is completely positive. The condition that C
is trace-preserving gets replaced with TroutC = 1in, where the subscripts in and out

refer to the input and to the output space of C, respectively. The Choi isomorphism
is linear and invertible, the inverse is

C(ρ) = Trin[(ρT ⊗ 1out)C] (1.12)

where T denotes transposition in the computational basis. Using the Choi operators
Tj of Tj and the universal property of the tensor product, we find that the outcome
probabilities can be expressed via a linear map W ′ as

p(a, b, . . . |{T (A)
j }j, {T

(B)
k }k, . . . ) =W ′(T (A)

a ⊗ T (B)
b ⊗ . . . ) (1.13)

Using the linearity of W ′, we can write this via the Hilbert-Schmidt inner product as

p(a, b, . . . |{T (A)
j }j, {T

(B)
k }k, . . . ) = Tr

[
W T · (T (A)

a ⊗ T (B)
b ⊗ . . . )

]
(1.14)

Here, W is the process matrix that gives the framework its name. It describes
everything outside of the small local labs, i.e. the causal structure that connects the
labs. We applied an extra transposition T in the computational basis to W . There
exist different conventions concerning transpositions of process matrices and Choi
operators in the literature.

The process matrix framework tries to be as general as possible. Essentially,
the only condition is that the outcome probabilities are indeed probabilities, i.e.
positive and sum up to 1. One also demands valid outcome probabilities for the
modified scenario in which the agents share an additional entangled state. Since these
conditions lead to rather technical restrictions of the valid process matrices [9, 59],
we will not write them here but cite them when needed. It is important to point out
that – in contrast to complete positivity of quantum transformations– the tensor
product of two process matrices can fail to be a process matrix [62]. In Chapter 3 I
report a result that I found with my collaborators Philippe Allard Guérin, Costantino
Budroni and Časlav Brukner that there is no reasonable universal replacement to
describe the parallel application of process matrices [63].

One standard example for a process matrix that is exotic but physically meaningful
is the quantum switch [34], see Figure 1.6. Here, one considers two labs A and B
that are part of the indefinite causal structure. The environment contains a control
system and a target system in state |ψ〉T . If the control system is in state |0〉C ,
then the target system is first sent to lab A and afterwards to lab B. If the control
system is in state |1〉C , then the target system is first sent to lab B and afterwards
to lab A. For a quantum system as a control system, it is possible to consider the
superposition state 1√

2(|0〉C + |1〉C) that combines both paths in a coherent way.
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Afterwards, both the control system and the target system get sent to a third lab.
The process matrix is [59]

Wswitch =|wswitch〉〈wswitch| (1.15)

|wswitch〉 = 1√
2
|0〉C |ψ〉AI

|1〉〉AOBI
|1〉〉BOC′ + 1√

2
|1〉C |ψ〉BI

|1〉〉BOAI
|1〉〉AOC′ (1.16)

Here, AI is the input space of A, AO the output space of A, BI is the input space of
B, BO the output space of B. C is the space of the control system that the third
lab obtains, while C ′ is the space of the target system that the third lab obtains.
|1〉〉 = ∑

j |j〉|j〉 is an unnormalized maximally entangled state and represents the
identity channel between the labs. If A applies the unitary UA and B applies the
unitary UB, then the third lab receives the state

1√
2
|0〉C ⊗ (UBUA|ψ〉)C′ + 1√

2
|1〉C ⊗ (UAUB|ψ〉)C′ (1.17)

Several purification and dilation theorems show that quantum information pro-
cessing can be described on the level of pure states and unitaries [29]. This is achieved
by explicitly assigning ancillary Hilbert spaces to the environment, memories record-
ing the outcomes, or pointer needles. To get back to the usual description, one traces
out the ancillary systems or measures them. See e.g. [19, 20] for a list of such results
in the finite-dimensional context of quantum information theory. Physically, these
results can be interpreted as the expression of two principles: That mixed states are
only due to lack of classical knowledge found in the environment. And that closed
systems should have reversible evolution. Therefore, if we explicitly describe the
involved environment, there should be no mixed states and time evolution should
be reversible. As an example, the purification of a mixed state ρ = ∑

k pk|k〉〈k| is
|ψ〉 := ∑

k
√
pk|k〉 ⊗ |k〉. The ancillary space can be interpreted as memory of which

pure state |k〉 was actually prepared. ρ is obtained by tracing out the ancillary
system. As another example, the projective measurement {Pk}nk=1 performed on
some state |φ〉, using an outcome memory initialized in a state |0〉, can be described
via the controlled unitary ∑n

k=1 Pk ⊗ U0→k, where U0→k is a unitary on the memory
that maps the initialization |0〉 to the outcome |k〉.

As the process matrix framework is very general, most processes do not have a
physical interpretation. Therefore, it would be helpful to have additional physical
postulates for physically reasonable process matrices. One such postulate is the
purification principle [64]. Here, one introduces a global past and a global future,
and describes the agents’ operations as unitaries by introducing ancillary systems.
These ancillary systems are used as dilation environments and quantum memories
to record measurement outcomes. Since we are explicitly describing the relevant
environments, we have a closed system and closed systems should have a unitary
evolution. Therefore the postulate demands that it should be possible to describe
the process as a unitary from the full relevant global past to the full relevant global
future, even if there is indefinite causal structure in between. As we explicitly explain
the formalization in Chapter 2, we do not provide details here. However, we do point
out that the process matrix formalism presented above can be recovered from this
purified formulation by measuring the ancillary systems (this replaces the agents’
purified unitary operations with quantum instruments), choosing an input for the
global past, and a measurement for the global future.
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It is known that generalizing the Page-Wootters [65, 66] framework for quantum
clocks to several quantum clocks, each of them associated with an agent, can lead
to indefinite causal structures [67] if relativistic time dilation is taken into account.
Together with Veronika Baumann, Philippe Allard Guérin, and Časlav Brukner
I developed a framework and operational protocol that systematically combines
process matrices and quantum clocks [68], see Chapter 2.

1.5 Structure of the thesis
This thesis is conceptually separated into two parts. The first part is given by
Chapters 2, 3, and 4. In these chapters, we assume the validity of quantum theory.
However, here, we consider the formalisms that relax/generalize other aspects of
physics, namely the process matrix framework for indefinite causal structure, and
quantum reference frames. The second part is given by Chapters 5, 6, and 7. In these
chapters, we consider the frameworks that allow us to discuss physics and information
processing without assuming the validity of quantum theory, i.e. general/operational
probabilistic theories and the device-independence formalism. In detail, this thesis is
structured as follows:

Because of the generality of the process matrix [9] framework, many process
matrices lack a physical interpretation. One important strategy to develop settings
described by exotic process matrices is to combine process matrices with other
approaches towards quantum gravity. In [67], Castro-Ruiz et al. consider several
Page-Wootters quantum clocks [65, 66], each of them associated with an observer.
They consider gravitational scenarios and model the evolution and gravitational
interactions of such clocks using constraint operators. Castro-Ruiz et al. observe that
the quantum nature of several clocks combined with relativistic time dilation can
lead to indefinite causal structure. In particular, they find a setting implementing
a gravitational quantum switch. However, as their approach is based on modeling
and solving Hamiltonian constraint operators, it is not clear what process matrices
can be achieved in such a setting. This motivates us to systematically investigate
the probing of indefinite causal structure and extraction of process matrices in
settings involving several quantum clocks with time dilation as in Castro-Ruiz et al.
[67]. Therefore, in Chapter 2, we develop a systematic approach combining process
matrices and discrete quantum clocks associated with observers. We formulate a
standardized scenario for probing quantum causal structures: The agents start in a
definite causal structure with well-synchronized quantum clocks. Then the agents
and their quantum clocks enter a region of quantum or indefinite causality in which
they apply their (purified) unitary operations. At last, the agents and their clocks
leave this region of indefinite causality and become synchronized again. Instead of
using constraint operators, we directly consider the history states and formulate
physical postulates that the history states of such probing scenarios should obey.
Demanding unitary time evolution and that each agent only uses their local (dilated)
unitary operation once at a pre-specified local time, we show that the resulting
causal structures are always described by pure process matrices. We investigate
extra conditions that our setting implies for the causal reference frames [69] of the
agents. We find that the unitary time evolution that the agents see is affine-linear in
the operations of the other parties. This allows us to rule out a particular causal
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reference frame description proposed in [69] of an exotic process known as (reversed)
Lugano process [69–72]. We construct a detailed protocol that implements arbitrary
coherently controlled causal order within our operational setting. Furthermore, we
explain why such protocols cannot be directly adapted to implement the (reversed)
Lugano process. I worked on this project together with Veronika Baumann, Philippe
Allard Guérin and Časlav Brukner [68].

The process matrix formalism [9] for indefinite causal structure is a generalization
of the usual quantum information framework of density matrices and quantum
channels. An important setting in quantum information theory is given by parallel
schemes in which an agent can simultaneously use several channels or states [20].
For example, two channels might get applied to one half of an entangled quantum
system each. Mathematically, the simultaneous/parallel use of channels and density
matrices is described by the tensor product. However, it is known that in general
the tensor product of two process matrices does not result in a valid process ma-
trix [62]. In Chapter 3, we investigate whether there exists a universal replacement
for the tensor product of process matrices. To find such a replacement, we formulate
postulates that a reasonable replacement should satisfy: It should be bilinear to
be compatible with the interpretation of convex mixtures as statistical mixtures.
Process matrices should combine to process matrices. And if the process matrices
describe the same definite causal order, the replacement should reduce to the usual
tensor product. We prove a no-go theorem that such a universal replacement cannot
exist. Our result implies that in the context of indefinite causal structure, parallel
schemes simultaneously combining several resources are not available anymore. In
particular, this heavily restricts the applicability of the asymptotic regime that is
usually considered in quantum information theory. This suggests that information
processing in indefinite causal structures might have to focus on the single shot
regime. This project is a collaboration of Philippe Allard Guérin, me, Costantino
Budroni and Časlav Brukner [63].

A central long term goal of the relational approach to quantum reference
frames [73–76] is to develop a completely relational replacement for quantum theory
that does not rely on an outside observer. In this approach, also the observers and
reference frames are described as quantum systems. Because of this, it is not always
clear what this relational approach implies for near-future experiments that are al-
ways performed from the perspective of an outside experimenter. What does it mean
to jump into the perspective of a particle? Is it experimentally necessary to achieve
quantum coherence of actual observers? In Chapter 4, we investigate an operational
scenario that clarifies the relation between relational quantum reference frames and
experiments with outside observers. We consider an experimenter who performs
experiments on a complex composite quantum system. However, this experimenter
does not have access to a full external reference frame. Instead, the observer has
to use internal relations and properties of the quantum system to make up for the
insufficient external reference. We assume that the physical transformations that do
not change the internal relations of the composite quantum system form a unitary
group. The full Hilbert space that can only be accessed with a full external reference
frame is mathematically analogous to the kinematical Hilbert space of constraint
quantization [74, 77–79] and the Page-Wootters framework[65, 66], while the unitary
symmetry group is analogous to gauge transformations. As a concrete example, we
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consider distinguishable point particles on a ring of finitely many positions, as well
as a mathematical generalization similar to [80] in which the positions get replaced
by elements of a finite Abelian group. The insufficient external reference frame
does not provide an absolute, global origin. The symmetry group is assumed to
be given by global translations conditioned on the particle relations. That means
that the choice of global translation depends on the distances the particles have to
each other. We also provide an axiomatic derivation of this symmetry group based
on preserving coherence, relative distances between particles and relative distances
between quantum states. We perform a very elaborate mathematical characterization
of this setting, relying on operator algebras of observables invariant under symmetry
transformations. In particular, we show that our scenario contains (discrete analogues
of) the quantum reference frames of earlier works [76, 80] as equivalence classes and
the corresponding QRF transformations as symmetry transformations. We develop
a systematic formalism for how to change particle number in this relational setting,
based on preserving the essential properties of operator algebras. This approach
shows that the appropriate relational generalization of tensor product and partial
trace will in general depend on the choice of algebra of observables. We analyze
the so-called paradox of the third particle [75], and find that there is a distinguished
generalized partial trace that preserves coherence upon removing the third particle,
independently of the considered reference frame. My coauthors of this project are
Philipp A. Höhn and Markus P. Müller [81].

In Chapter 5, we consider the device-independence formalism [30–33, 52–55].
Usually in the device-independence formalism, the inputs are treated as abstract
numbers from a finite set. However, many experiments involve input degrees of
freedom related to a continuous spacetime degree of freedom. Examples include
angles of polarizers, directions of magnetic fields and time durations of laser pulses.
Therefore, we introduce a modification of the usual device independent framework
in which the inputs are such continuous spacetime degrees of freedom. As one can
imagine that a black box has an external display or knob that allows to choose the
value of this spacetime parameter, this setting is compatible with the basic ideas of
device independence. An important difference to the scenario with abstract inputs is
that the statistics of black boxes with spacetime parameters can respond to spacetime
transformations. As a weak semi-device independent assumption, we restrict our
attention to finite-dimensional representations of spacetime transformations. This
has the consequence that the probabilities are very well-behaved functions of the
continuous parameters. In this context, we prove that the statistical response of the
black boxes to spacetime transformations is described by linear representations of
the transformations. To provide evidence for the conjecture that the structure of
quantum theory and spacetime are intimately related to each other, we derive an
exact characterization of the quantum (2,2,2)-correlations exclusively in terms of
statistical responses of black boxes to rotations. As an important practical example,
we consider Bell scenarios with devices that each take an angle as input. In the usual
device independent formalism, local hidden variable models only have to work for
finitely many input values. However, in our setting, local hidden variable models
have to reproduce the statistics of continuously infinitely many possible input values.
Therefore it is natural to expect that there exist shapes of correlation functions that
do not allow for LHVs, even if the correlations are numerically weak. We show that
this intuitive expectation is wrong. Specifically, for arbitrary weakly fluctuating
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correlation functions of two angles, we explicitly construct local hidden variable
models that reproduce these correlations for all choices of angles. At the other
extreme, we investigate Bell non-locality for angles as local parameters. We derive a
criterion that shows that strongly fluctuating relational correlation functions violate
a Braunstein-Caves inequality [82]. Based on this criterion, we develop a semi-device
independent Bell witness protocol in which one of the parties does not have to freely
generate an input. I collaborated with Andrew J. P. Garner and Markus P. Müller
on this project [56].

In Chapter 6, we analyze a particular class of post-quantum theories. Many
derivations of quantum theory from physical principles prove as a first step that
two-level systems must be described by a ball-shaped state space, see e.g. [42, 43, 83].
As a consequence, there exist reasonable axiomatizations of Bloch balls of unspecified
dimension. This observation motivates to consider theories built from ball-shaped
state spaces of arbitrary dimension. For quantum systems, the Bloch ball is three-
dimensional because rotations of Bloch vectors couple to rotations in physical space.
In that sense, higher dimensional Bloch balls can be seen as a particular approach
to adapt quantum theory to a spacetime in which space has more than 3 dimen-
sions [83, 84]. However, it is known that two Bloch balls of dimension other than
three do not allow for bipartite interactions that are given by reversible time evo-
lutions [43, 84]. Therefore, any reversible time evolution describing interactions of
higher dimensional Bloch balls would have to be a genuine multipartite interaction
that cannot be reduced to two-body interactions. Indeed, Dakić and Brukner [84]
conjectured that such genuine multipartite interactions of more than two higher-
dimensional Bloch balls exist. Markus P. Müller and I investigated this possibility
in the context of a popular postulate called tomographic locality [24]. The principle
says that composite systems are completely characterized by their local measurement
statistics and correlations between local measurements. In [85] it was shown that
theories locally described by 3-dimensional Bloch balls (in particular theories that
are locally quantum) can only have reversible time evolution describing non-trivial
interactions between an arbitrary amount of exchangeable 3-dimensional Bloch balls
if the theory is already full quantum theory. In Chapter 6, we generalize the corre-
sponding mathematical framework and proof strategy of de la Torre et al. [85] to
arbitrary dimension. We use it to prove that for all Bloch ball dimensions different
from three, no time-parametrized reversible interactions are possible, no matter
how many higher dimensional Bloch balls are involved. Together with the result of
[85], our result means that only quantum theory can have interactions (bipartite or
multipartite) between identical ball shaped state spaces of arbitrary dimension given
by reversible time evolution. My supervisor Markus P. Müller and I developed this
project [50].

As explained before, GPTs/OPTs [23–29] constitute a framework that allows
to develop operational theories of physics that are neither classical nor quantum.
Nonetheless, every theory needs to satisfy certain requirements to be an acceptable
scientific theory. One such requirement is objectivity (or, rather, inter-subjectivity)
of measurement results. This means that agents who observe the same experiment
should see the same outcome data. One mechanism that explains why this is the
case in quantum physics is called quantum Darwinism [47, 48]. In the ideal case, a
CNOT-like interaction between a measured system and its environment systems leads
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to perfect outcome correlation of the system and its environment. In Chapter 7, we
investigate generalizations of this ideal quantum Darwinism case in GPTs/OPTs. We
provide both necessary and sufficient conditions for this mechanism to be applicable.
As necessary conditions, we show that theories satisfying certain non-classicality
conditions need to have both entangled states and entangled measurements. For
the sufficiency part, we show how the ideal Darwinism mechanism relates to other
important postulates and mechanisms in GPTs/OPTs. Specifically, we show that
the Darwinism mechanism is enabled if the theory satisfies certain decoherence pos-
tulates [45] or symmetry postulates motivated by embedding classical computation.
To provide a specific non-quantum example, we argue that Spekkens’ toy theory [86]
allows for a generalized CNOT gate enabling the ideal Darwinism process. I worked
on this project together with Roberto D. Baldijão, Andrew J. P. Garner and Markus
P. Müller [49].
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Abstract: One of the most fundamental open problems in physics is the unification of
general relativity and quantum theory to a theory of quantum gravity. An aspect that
might become relevant in such a theory is that the dynamical nature of causal structure

present in general relativity displays quantum uncertainty. This may lead to a
phenomenon known as indefinite or quantum causal structure, as captured by the process
matrix framework. Due to the generality of that framework, however, for many process
matrices there is no clear physical interpretation. A popular approach towards a quantum
theory of gravity is the Page-Wootters formalism, which associates to time a Hilbert space
structure similar to spatial position. By explicitly introducing a quantum clock, it allows
to describe time-evolution of systems via correlations between this clock and said systems
encoded in history states. In this paper we combine the process matrix framework with a
generalization of the Page-Wootters formalism in which one considers several observers,
each with their own discrete quantum clock. We describe how to extract process matrices
from scenarios involving such observers with quantum clocks, and analyze their properties.

The description via a history state with multiple clocks imposes constraints on the
physical implementation of process matrices and on the perspectives of the observers as
described via causal reference frames. While it allows for describing scenarios where
different definite causal orders are coherently controlled, we explain why certain

non-causal processes might not be implementable within this setting.

Note on changes: Compared to the preprint-version arXiv:2105.02304v1 of this paper, I
applied several larger changes to the version of the paper presented in this thesis. These
changes do not change the physical results, but they add clarifications and more detailed
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explanations.

• Replaced a motivational paragraph in the introduction (Section I).

• Towards the end of the introduction in Section I (both in the preprint and the thesis),
a summary of the approach of our paper is given. This summary explains that we
do not start by solving constraint operators, but directly use history states. And
that we consider finite-dimensional instead of continuous clocks. In this summary,
added an explicit reference to the paper of Castro-Ruiz et al. (2020) to make clear
that these are some of the crucial points that make our approach different from their
approach.

• In Section III, for the relation between unitary time evolution and the projection
operator for circuits, added an explicit assumption that t2 > t1.

• Made the discussion of the motivation for normalization operators in the main text
more detailed. (Section IV A).

• Explicitly pointed out the assumption that our normalization operators and time
evolution operators continue to be valid if the ancillary systems are initialized to
other states (Section IV A).

• Added an explicit calculation that shows that the process is indeed a multi-linear
unitary, as claimed in the preprint version (Section IV B).

• For the result that the perspectival time evolutions must be affine-linear in the
unitaries of the other agents, added explicit calculations, detailed arguments, and
clarifications (Section IV C).

• In Section IV D, changed a formulation to make clear that we do not know whether
history states are orthogonal if their input states are.

• In the context of coherent control of causal order (Section V C and Appendix C),
gave more detailed explanations of quantum combs and their purification. In the
main text (Section V C), added an explicit example for how comb dimensions can
be compatible, although the protocol works independently of how the combs are
made compatible. In the appendix, added a detailed discussion about how to treat
controlled superpositions of combs whose dimensions are not directly compatible.
Rearranged Figure 7 such that the individuals parts can be larger, while fitting the
page width. Added more explanations for the formal details of the protocol. Added
more steps with just synchronized clock steps in between the protocol phases to
make it more obvious that the clock freezes do not overlap with the application of
the combs.

• Expanded the discussion in the conclusions (Section VI).

• Clarified Appendix B, i.e. the discussion about the physical projector and the
perspectival unitaries: Pointed out that the normalization operators do not play an
important role for the discussion, and emphasized that the specific choice of counter
example depends on the continuation of the operators T ′i .

• Added a reference to a paper by Bavaresco et al. (arXiv:2105.13369) which also
considers quantum controlled combs.

• Fixed several typos, grammatical mistakes and clarified a few smaller formulations.
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I. INTRODUCTION

Indefinite causal structure is an extension of the usual notion of causal structure that is expected to become
relevant in quantum gravity: In general relativity, causal structure is dynamical instead of fixed and attributing
quantum properties [1–8] would imply the existence of exotic causal structures, like superpositions of space-times and
superpositions of the order of events. The process matrix framework [9, 10] was invented to systematically describe
such indefinite or quantum causal structures. However, many processes that arise in this framework have no clear
physical interpretation and it is not known which of them are realizable in nature. It has, therefore, been suggested
that only processes, which reversibly map a well defined casual past to a well defined casual future with possibly
indefinite causal order in between, are physical [10]. For such processes, it has been shown that one can always find a
causal reference frame that represents the perspective of an agent or observer within the causal structure [11]. While
the observer’s event is local in their causal frame of reference, the events of other observers may be ”smeared” over
the causal past and future of the event. Still the question which processes are realizable in nature remains open.

A crucial obstacle in finding a complete theory of quantum gravity is caused by the different role of time in general
relativity and quantum theory. As an approach to bridge this conceptual gap, one can use a timeless formalism [12–
22], which we refer to as the Page-Wootters formalism in this paper. In this formalism, one also associates a Hilbert
space with time, which can be interpreted as a quantum clock. One describes the physics of the extended system
including the clock by using history states which are obtained via a Wheeler-DeWitt-like equation using a constraint
operator. These history states encode dynamics as correlations between the main system and the quantum clock.

In Ref. [22], the authors considered a generalized Page-Wootters approach using several clocks. The authors found
that history states arising from solving a Hamiltonian constraint for gravitationally interacting clocks can give rise to
indefinite causal order and studied the time evolution according to the perspectives of different clocks. In particular,
they showed how the Page-Wootters formalism can recover the so-called gravitational quantum switch [5]. Their
approach works for important examples, but it is not clear in general which process (if any) is implemented by a
given history state, or what is the set of non-causal processes that can be implemented within such a framework.

Some non-causal processes can violate device-independent causal inequalities [23–25], although no physical inter-
pretation for such processes are known. Other processes, for example the so-called quantum switch [26–28], where
the order of operations is controlled by a quantum system, cannot violate causal inequalities but exhibit indefinite
causal order that can be identified by causal witnesses [29]. Moreover, it is possible to experimentally implement such
coherent quantum control of causal order [27, 28, 30–35].

The Page-Wootters formalism can be regarded as an independent formulation of quantum theory, similar to the
path-integral formulation. It is known that any quantum circuit (i.e. a definite causal order) can be implemented
within the Page-Wootters formalism as a Feynman’s quantum computer and a single (i.e. global) quantum clock [36–
39]. As the Page-Wootters formalism is used as an approach to solve the problem of time in quantum gravity, and
the process matrix formalism was invented to describe indefinite causal structures that may arise in quantum gravity,
it is natural to combine these two approaches towards quantum gravity. What process matrices are compatible with
a local perception of time modeled via Page-Wootters quantum clocks?

To approach this question, in the present work, we present a general definition of what it means for a history state
to implement a pure process matrix [10], for the case of finite dimensional systems and several clocks. We describe
how to extract the agents’ perspectives from the history states, which corresponds to a refinement of the concept of
causal reference frames [11] that explicitly includes the quantum clocks. We show that arbitrary coherently controlled
causal order can be extracted from our framework when different clocks tick at different rates (for example, due to
time dilation effects). Moreover, we analyze the additional restrictions that the history states impose on the extracted
process matrices and propose that these restrictions might be regarded as reasons why some processes cannot be
implemented in nature. Thus, while the Page-Wootters formalism with several clocks can enable the extraction of
processes with definite causal order and quantum controlled causal order, it additionally provides insights into why
some processes might not be realizable within the framework. Contrary to Castro-Ruiz et al. [22], our approach does
not start by defining a constraint operator and solving it; instead we work directly at the level of history states. We
consider discrete instead of continuous clocks because this allows us to express the perspectives of the agents using
circuits. We develop a systematic framework that combines process matrices and Page-Wootters history states with
several discrete clocks. We describe how to model scenarios where these clocks are associated with agents or observers
that are initially all part of a definite space-time causal structure. Then the agents might enter a ”region” of quantum
causal structure, where the global order of events is no longer well defined. At the end, however, all agents return to
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a definite causal structure.

The paper is structured as follows: We first recapitulate important aspects of the process matrix formalism (in-
cluding causal reference frames) and the Page-Wootters formalism in Sections II and III before we motivate and
introduce our framework, which combines these two approaches, in detail in Section IV. In that context, we derive
several mathematical properties of our setting, in particular restrictions on process matrices. In Section V, we first
construct examples involving varying clock speeds and indefinite causal structure before we explain how to implement
arbitrary quantum-controlled causal order in our setting. At the end of Section V we discuss why another well-known,
non-causal process might not be implementable in our framework. Finally, we discuss our findings in Section VI.

II. PROCESS MATRICES AND CAUSAL REFERENCE FRAMES

In this section we give a short introduction to the operational setting of the process matrix formalism and explain
the parts of the framework that are important for the rest of the paper.

The basic operational setting of the process matrix formalism concerns several agents (here N of them), labeled
A1 . . . AN , each of them inside their own (small) lab where the usual rules of quantum theory are valid. The outside
“environment”, which relates the various agents, is not assumed to be causally definite, for example it could be a
superposition of space-time structures. During the protocol, each agent receives a quantum system from the “envi-
ronment”, applies a quantum instrument i.e. a probabilistic quantum channel (for example a measurement or a pure
quantum channel) to that system and then sends it out again. This well defined local time ordering inside the lab can
be thought of as being tracked by a clock associated with each agent, the bipartite case is depicted in Figure 1a. The
process matrix G is the mathematical object that encodes the observed outcome probabilities for any choice of local
quantum instruments. Process matrices describing definite causal order, i.e. the global order of operations performed
by different agents is well defined, are equivalent to higher order quantum maps or quantum combs [40–44]. In
general, however, they allow scenarios with indefinite causal order, where no such global order exists, and are in that
sense generalizations of quantum combs.

(a) Basic setting (b) A pure process

FIG. 1: Example of bipartite processes: The two agents (here called A and B) are each situated in their own lab.
Each agent obtains a system from the environment, acts on it with a quantum instrument and then sends it out
again. While inside the labs the order of events is well defined, there need not be a well defined global ordering
imposed by the environment. The outcome statistics of the operations performed by A and B is described by a
process matrix G, see (1a). These quantum instruments of A and B can be represented as unitaries UA, UB by
introducing ancillary systems A′, B′. A pure process G is a (multilinear) supermap that gives an induced unitary
transformation on S ⊗A′ ⊗B′ when the agents are applying unitary operations UA, UB , see (1b).
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In [10], processes (called quantum superchannels in [44]) are formalized as maps from a global past to a global
future, that depend on the agents’ operations. In addition to the agent’s systems, whose Hilbert spaces are labelled
A1 . . . , AN , we introduce ancillary systems A′1, . . . , A

′
N . The ancillary system can be used, for example, as a quantum

memory recording a measurement outcome. Each agent is allowed to act with a quantum channel on their system and
their ancilla, i.e. a completely positive trace-preserving map (CPTP) CAj : L(AjA

′
j) → L(AjA

′
j). One assumes that

the ancillas have trivial evolution except when the respective operations of the agents are applied. Then, a process (or
quantum superchannel) is a multilinear map G that maps the agents’ quantum channels to a quantum channel, while
acting as the identity on all the ancillary systems (just as in Figure 1b, but with the unitaries replaced by quantum
channels). This map encodes the causal structure given by the environment.

In this work, we only consider pure processes. Using Stinespring’s dilation theorem [45, 46] one can represent the
quantum operations of the agents as unitaries UA1 . . . UAN acting on the respective system and ancilla that the agents
obtain from the environment. The ancillas serve as both purifying systems and as memories recording the outcomes.
We say that a process G is a pure process if it is a unitary preserving map, i.e. G(UA1 . . . UAN ) is unitary for any
unitaries UA1 . . . UAN , while acting as the identity on the ancillary systems. The basic mathematical structure of
bipartite pure process is depicted in Figure 1b.

Since many non-causal process matrices lack a clear interpretation and it is not clear whether they are compat-
ible with the known physical laws, it has been suggested that only purifiable processes, which means they can be
obtained from pure processes, are physical [10]. Such processes can be regarded as reversible transformations from
a well defined casual past to a well defined casual future, with indefinite causal order in between. We note that the
quantum-switch is an example of a pure process, as shown explicitly in [10], and it is physically realizable either in
gravitational [5, 22] or optical setups [27, 28, 30–35].

The notion of causal reference frames [11] was introduced as an equivalent description of the pure process matrix
formalism. The causal reference frame represents the perspective of an agent inside a (possibly indefinite) causal
structure. More concretely, one imagines the perspective of an agent, say A1, as follows: The crucial moment for
agent A1 is when he or she applies unitary UA1

. The evolution starting from the beginning of the protocol up to
that moment is described by a unitary ΠA1

(UA2
. . . UAN ), which is called the causal past of A1 and can depend on

the instruments of all other agents. Then A1 enforces time evolution via UA1
on the input to his or her lab and the

ancilla A′1, while all other degrees of freedom evolve in an uncorrelated way. The evolution of these other degrees of
freedom can be absorbed into ΠA1

(UA2
. . . UAN ) such that without loss of generality we can assume that during A1’s

time of action, evolution is given by UA1
⊗ 1. Afterwards the evolution up to the end of the protocol is described by

a unitary ΦA1
(UA2

. . . UAN ), which is called the causal future of A1. It can again depend on the instruments of all
other agents. As shown in Ref. [11] all pure processes admit a decomposition in causal reference frames, i.e. if G is a
pure process, then G can be written as

G(UA1 . . . UAN ) = ΦA1(UA2 . . . UAN ) (UA1 ⊗ 1) ΠA1(UA2 . . . UAN ), (1)

where ΦA1
(UA2

. . . UAN ),ΠA1
(UA2

. . . UAN ) are unitaries that depend on all unitaries other than UA1
and that describe

the time-evolution according to A1’s point of view. A similar decomposition exists from the point of view of all other
agents. In the present work we take a similar approach, but we make the addition of a localized quantum clock
associated to each observer, and explain how the perspectives of various agents can arise from a perspective neutral
history state as given by the Page-Wootters formalism.

III. THE PAGE-WOOTTERS FORMALISM

In this section we give a brief general overview of the Page-Wootters formalism for continuous as well as discrete
quantum clocks. A possible justification for considering quantum clocks with discrete Hilbert spaces comes from
arguments involving the Bekenstein bound [47] that Hilbert space is fundamentally finite-dimensional [48, 49]. Also,
it can be argued that all information that can ever be acquired via measurements is finite and that therefore on the
fundamental level physics should be discrete as well and indeed, finite [50]. Furthermore, we get significant technical
simplifications due to the fact that for finite-dimensional Hilbert spaces, the physical Hilbert space is a subspace of
the kinematical Hilbert space, while this is not the case in the infinite-dimensional case [20, 51]. Most importantly
for our purpose, the assumption of finite dimensional clocks allows us to get a physical picture of indefinite causal
structure in form of generalizations of quantum circuits.
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In addition to the usual system Hilbert space HS the Page-Wootters formalism introduces an additional Hilbert
space Hc associated with time that can be interpreted as an ideal quantum clock. In analogy to position in non-
relativistic quantum mechanics Hc can be chosen to be spanned by square integrable functions on the real line;
informally it is common in physics to imagine this Hilbert space as Hc = span{|t〉 | t ∈ R}. In analogy to the usual
momentum operator, one can define an operator p̂t as the generator of translations on Hc. In the time representation,
i.e. 〈t|ψ〉, it is given by p̂t = −i ∂∂t . Let ĤS be the Hamiltonian of the system and consider the constraint operator

Ĉ := p̂t + ĤS . Let |Ψ〉〉 be a state on Hc⊗HS that satisfies the Wheeler-DeWitt-like constraint equation Ĉ|Ψ〉〉 = 0.
Such states |Ψ〉〉 are often called physical states. Without worrying about normalizability, one can formally expand
|Ψ〉〉 by using the time basis as

|Ψ〉〉 =

∫
dt |t〉 ⊗ |ψ(t)〉. (2)

With this expansion it becomes clear why states |Ψ〉〉 are also called history states: For each time t, they encode
a system state |ψ(t)〉 and an ordered time sequence t0 < t1 < t2 corresponds to the history of the state given by
|ψ(t0)〉, |ψ(t1)〉 and |ψ(t2)〉. Plugging the expansion Eq. (2) into the constraint equation, one can show that the
system state satisfies

i
∂

∂t
|ψ(t)〉 = HS |ψ(t)〉, (3)

which is the standard Schrödinger equation. Therefore, this approach recovers the usual quantum formalism. In
general, solutions to the constraint equation can be obtained via an operator

P̂ :=

∫

R
ds e−isĈ , (4)

which gives a valid physical (or history) state, i.e. solution to the constraint equation Ĉ(P̂ |φ〉) = 0, when applied

to arbitrary states |φ〉 ∈ Hc ⊗ HS . For this reason the operator P̂ is sometimes called the physical projector [52],

although it is not a projector in the strict mathematical sense. Moreover, 〈t2|P̂ |t1〉 = U(t2, t1) is a unitary operator

on HS and in case of there being no interaction term between clock and system, i.e. Ĉ = ĤS + p̂t, it can be shown
that it gives the time evolution according to the Schrödinger equation, i.e. 〈t2|P̂ |t1〉 = e−i(t2−t1)HS .

The Page-Wootters formalism has been adapted to regular (i.e. causal) quantum circuits, see for example [36–39].
It uses one finite dimensional quantum clock and is described by the constraint equation

Ĉ|Ψ〉〉 =
∑

t

Ĥt|Ψ〉〉 = 0, (5)

where the Hamiltonians

Ĥt = −1

2

(
|t〉〈t− 1| ⊗ Ut + |t− 1〉〈t| ⊗ U†t − |t− 1〉〈t− 1| − |t〉〈t|

)
, (6)

can be understood as making the clock tick once and applying some unitary Ut to the system. In other words, at
time t the circuit applies gate Ut. Solutions to Eq. (5) are history states of this quantum circuit in the form

|Ψ〉〉 =
1√
T + 1

T∑

t=0

|t〉C ⊗Ut . . . U1|φ〉S =
T∑

t=0

|t〉C ⊗ |ψ(t)〉S , (7)

with |φ〉 ∈ HS being the circuit’s input, see Fig. 2. When projecting the clock onto the final time the system is
in the state |ψ〉 = UT . . . U1|φ〉, which corresponds to the output of the circuit under consideration. While it is not
straightforward to write a physical projector analogous to the continuous case in Eq. (4), we can define a projection
operator onto the space of solutions to the constraint equation by

P̂ :=
∑

i

|Ψi〉〉〈〈Ψi|, (8)

where the |Ψi 〉〉 are given according to Eq. (7) with initial states |φi〉 taken from an orthonormal basis for HS . P̂ is
the projector onto the space of physical states, which contrarily to the continuous case is now a proper subspace of
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FIG. 2: The main idea of a Page-Wootters formulation of a quantum circuit. One considers a quantum clock that
keeps track of the number of computational steps that have happened so far. At computational step t, the circuit
applies the gate Ut. The input to the quantum circuit is |φ〉 and the output of the circuit is |ψ〉 = UT · · ·U0|φ〉.

Hc⊗HS . Note that similarly to the continuous case we can relate the physical projector to the unitary evolution of
the circuit between the respective times by (t2 > t1)

〈t2|P̂ |t1〉 =
1

T + 1
Ut2 · · ·Ut1+1. (9)

In what follows we will associate a discrete clock cX with each agent X ∈ {A1 . . . AN} which gives rise to history
states of the form

|Ψ〉〉 =

TA1
...TAN∑

tA1
=0,...tAN=0

|tA1
, . . . tAN 〉 ⊗ |ψ(tA1

. . . tAN )〉S =

TA1
...TAN∑

tA1
=0,...tAN=0

|tA1
〉 . . . |tAN 〉⊗MtA1

...tAN
|φ〉, (10)

where |φ〉 is the initial state of the system. Intuitively, the matrices MtA1
,...tAN

encode what happens to the system
between the initial time and the time when the collection of clocks shows the respective values. By projecting onto
a certain clock state 〈tX |Ψ〉〉 we will obtain conditional or perspectival states that correspond to the state agent
X assigns to everything other than their own clock at time tX . In the next section we present what we consider
reasonable physical assumptions the conditional states and hence the history state have to fulfill. We will almost
exclusively consider the history states |Ψ〉〉 as they explicitly represent the perspectives of the agents and the systems

and we can directly impose physical requirements on them. The constraint operator Ĉ can then be implicitly defined
afterwards as an operator that annihilates this family of history states. Whether this constraint operator has a simple
form, or has desirable properties such as locality, is an interesting question that is nevertheless not pursued in this work.

IV. PROCESS MATRICES WITHIN A TIMELESS FORMALISM

A. The operational setting and postulates

In this section, we develop our framework that allows to model experiments described by pure process matrices
within a generalized Page-Wootters approach.

As in the pure process matrix formalism we will describe scenarios with multiple agents being parts of a well-defined
standard global causal past and future. In addition to the usual process matrix approach, the progress of time within
the agents’ labs is described by quantum clocks with Hilbert spaces HcA1

. . .HcAN . We refer to the set of all clock
variables collectively as Hc. The idea of a well defined global causal past and future common to all agents is formalized
by the assumption that at the beginning as well as at the end of the protocol all the clocks experience at least one
well-synchronized time step, see Figure 3a. During the protocol, each observer or agent applies his or her quantum
instrument on a part of a system which is common to all agents. As done in [10] we will assume that each agent
has access to an ancillary degree of freedom, denoted by Hilbert spaces HA′

1
. . .HA′

N
of unspecified dimension, to

implement their quantum instrument. This ancillary system allows to represent the quantum instrument as a unitary
within our pure history state approach. The ancilla acts as the environment for a dilation and as memory recording
measurement outcomes. We assume that the ancilla systems are initialized to |0〉, and that they have trivial time
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evolution, except at the moment when the corresponding quantum instrument is applied. We collectively label the
ancillas as HS′ := HA′

1
⊗ · · · ⊗ HA′

N
.

In addition to the agents, their ancillas and quantum clocks, we also consider another quantum system that partic-
ipates in the protocol, described by a Hilbert space HS . This quantum system represents the degrees of freedom that
play an active role in the protocol, but are not directly associated with the agents or their labs. As in the formalism
for pure processes, we assume that this quantum system is an input to the causal structure from the global past. We
will often call it the main system and we denote its initial state by |ψ〉S .

Hence our history states live on Hc⊗HS ⊗HS′ . We assume that the clocks are initialized to time 0 at the start of
the protocol and show times TA1 , TA2 , . . . TAN at the end. Then our history states can be expanded in the form:

|Ψ〉〉 =

TA1
...TAN∑

tA1
=0,...tAN=0

|tA1
, . . . tAN 〉c ⊗ |ψ(tA1

. . . tAN )〉SS′ . (11)

(a) Global perspective (b) X’s perspective

FIG. 3: The protocol of an experiment involving quantum causal structure from a global (3a) and a local (3b) point
of view. At the beginning and end of the experiment, the agents are assumed to be in a standard definite causal
structure. This is expressed by having their clocks tick in synchronization. However, in between the agents and the
main system enter a possibly indefinite causal structure in which the clocks, the main system and the labs might get
entangled with each other. The ancillary systems for the laboratories are not shown. Inside the labs standard
quantum theory is valid and therefore each agent X only sees the other agents and the main system as part of a
quantum causal structure. At some time t∗X − 1, X receives the part of the main system described by HX from the
environment. X applies unitary operation UX to this part of the main system and potential ancillas. Afterwards, X
sends that part of the main system back into the environment at time t∗X . The actions of all agents together lead to
the process G being applied to the main system at the end of the protocol.

Now we can formalize our requirements for the timeless state describing the protocol depicted in Figure 3. As
mentioned before all clocks and ancillas are initialized to the states |0〉 and, therefore, we can write:

S.1 |ψ(0, 0, . . . )〉 = |ψ〉S |0〉S′ , where |0〉S′ = |0〉A′
1
⊗ |0〉A′

2
⊗ · · · ⊗ |0〉A′

N
is a fixed ancillary state and |ψ〉S is an

arbitrary state of the system.
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At the beginning and end of the experiment, physics should be given by a standard space-time causal structure.
Hence, at the beginning and in the end, we assume the clocks of the agents are well-synchronized. In particular
the clocks perform at least one synchronized step before and after they are part of any exotic causal structure. We
further assume that during these initial and final well-synchronized time-steps nothing happens to the main system
and formulate this in terms of agent A for the sake of readability. Note that this does not conceptually single out
agent A but can equally be written analogously for any of the agents.

S.2 |ψ(0, . . . , tX , . . . )〉 6= 0 only for tX = 0 ∀X 6= A1 and |ψ(TA1 , . . . , tX , . . . )〉 6= 0 only for tX = TX ∀X 6= A1 and
furthermore |ψ(1, 1 . . . 1)〉 = |ψ(0, 0, . . . , 0)〉 and
|ψ(TA1 − 1, TA2 − 1, . . . , TAN − 1)〉 = |ψ(TA1 , TA2 , . . . , TAN )〉.

Analogous to the pure process matrices formalism described in Section II, we model the input from the environment
as parts of the main system, i.e. we assume that the input to agent X lives on a subspace HX ⊆ HS , and X’s quantum
instrument is described by a unitary UX which acts on the received part of the main system and X’s ancilla, i.e. UX
acts on HX ⊗HX′ . Note that different HX do not need to be different or orthogonal, in fact all of them might even
be the full main system Hilbert space HS .

Next, we consider the perspective of the agents. As in Ref. [22] we condition the history state |Ψ〉〉 on X’s clock
showing time tX , i.e. cX 〈tX |Ψ〉〉, to describe what agent X sees at time tX . In principle, the inner product in
the kinematical Hilbert space is not necessarily the same as the inner product for the Hilbert space associated to
the perspective of agent X [20]. Indeed in the usual Page-Wooters formalism with infinite dimensional systems, the
physical Hilbert space is not a proper subspace of the kinematical Hilbert space; this necessitates to define a new
inner product for the perspectival states. Moreover, even in the finite-dimensional setting that we study here, in
scenarios involving clocks with varying relative ticking speeds, one runs into normalization issues if one simply uses
the kinematical inner product for the perspectival states. To see this, consider the example of the history state
|Ψ〉〉 =

∫
dtA|tA〉cA ⊗ |2tA〉cB in which one clock runs twice as fast as the other [53]. For A’s perspective we find

cA〈tA|Ψ〉〉 = |2tA〉. However, for B’s perspective we find

cB 〈tB |Ψ〉〉 =

∫
dtA|tA〉〈tB |2tA〉 =

1

2

∫
dt′B |

1

2
t′B〉〈tB |t′B〉 =

1

2
|1/2 tB〉,

where the prefactor 1
2 comes from the measure via the change of the integration variable. Here, the clock ticking rates

are constant. However, in general the rates might change dynamically and the corresponding prefactor will depend
on time. In this example, if one demands that the states of the agents are normalized such that the agents each see a
state |τ〉 for some time τ , the different agents will need different renormalizations, which can be accounted for in the
definition of the inner products for the perspectival states. For the finite dimensional case with discrete clocks this

motivates the introduction of normalization operators N
(X)
tX in order to relate the normalization of the multipartite

history state with the normalization of the time-dependent perspectival states.
Another motivation for the introduction of normalization operators for discrete clocks is given by the process of

discretization itself. A typical discretization procedure (“time-binning”) would map similar continuous times t, t′,
i.e. t ≈ t′ but t 6= t′, to the same discrete time tdiscrete. However, while |t〉 and |t′〉 are orthogonal states, they get
approximated by the same discrete state |tdiscrete〉. This procedure may lead to discrete-time states that are not
properly normalized, in particular for the perspectives of the agents. But this can be fixed via the introduction of
normalization operators. Details of the issues related to the process of discretization are discussed in Appendix A.

We assume that the state X sees at time tX is

|ψX(tX)〉 = N
(X)
tX 〈tX |Ψ〉〉 = 〈tX |cX ⊗N (X)

tX |Ψ 〉〉, (12)

where N
(X)
tX ∈ L(Hc\X ⊗HS ⊗HS′) is the normalization operator that relates the perspective-neutral description to

the perspective of agent X at time tX . Here, Hc\X is the Hilbert space formed by all clocks except the clock of agent X.

A priori, the normalization operators make this approach extremely general. In principle, they could give us any
state |ψX(tX)〉 that we want. Therefore it is important that we impose some extra conditions. First of all, as the
normalization operators generalize normalization constants, they should be linear, positive and invertible. Moreover,
we wish that all the relevant physics concerning the initial system state |ψ〉S and the agents’ operations is encoded in
the history state, not the normalization operators. The normalization operator should just correct the normalization

depending on the clocks. Therefore, we demand that the operators N
(X)
tX are independent of the initial system state

|ψ〉 and the choice of quantum instruments by the agents.
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N.1 N
(X)
tX is an invertible, linear, positive operator. It is independent of the input state |ψ〉S and the local operations

UA1
. . . UAN .

Without the latter restriction, one could use N
(X)
tX to introduce copies of the initial state |ψ〉S or apply copies of

the agents’ instruments to violate the no-cloning principle. We further assume that the normalization operator does
not perturb how one agent sees the clocks of the other agents:

N.2 The normalization operator has the form

N
(X)
tX =

∑

tA1
,...,t̂X ,...tAN

|tA1
, . . . t̂X , . . . tAN 〉〈tA1

, . . . t̂X , . . . tAN | ⊗ n(X)

tA1
,...t̂X ,...tAN

⊗ 1S′ (13)

where the sum is taken over all clocks except the clock of agent X, which is omitted, as indicated by t̂X . The

operator n
(X)

tA1
,...t̂X ,...tAN

is a linear, invertible and positive operator acting on HS (but not on the ancillas HS′).

This assumption is motivated by the requirement that the history state should represent the relevant physics and
relations of the clocks. As their name implies, the normalization operators should adjust the normalization, but not
introduce new clock physics.

Our previous requirement of well-synchronized clocks at the beginning and end of the experiment additionally
implies that the respective normalization operators should just be identity operators.

N.3 N
(X)
1 = N

(X)
0 = 1 as well as N

(X)
TX−1 = N

(X)
TX

= 1 ∀X.

Finally, we have to explain how the perspectival states N
(X)
tX 〈tX |Ψ〉〉 are related to each other. We will assume that

each agent X sees a unitary time evolution as dictated by quantum theory in a pure state framework. This means we
assume that for all tX , t

′
X there exists a unitary operator UX(tX , t

′
X) such that

|ψX(tX)〉 = UX(tX , t
′
X)|ψX(t′X)〉. (14)

Furthermore, just like in usual quantum theory, UX(t, t′) should not depend on the initial system state |ψ〉S .

U.1 UX(t, t′) is a unitary operator, independent of the initial state |ψ〉S .

Moreover, time-evolution from t′′ to t′ to t is the same as time-evolution from t′′ to t.

U.2 UX(t, t′)UX(t′, t′′) = UX(t, t′′), ∀t, t′, t′′.
Next we discuss the crucial assumption that connects our framework to the formalism of pure processes. In the process
matrix framework, one assumes that during the protocol each agent eventually receives a quantum system from the
environment. We will assume that each agent is promised that they will receive this quantum system at a specific time
t∗X − 1. As explained before, we model that quantum system to be a part of the main system, described by subspaces
HA1

. . .HAN of the main system space HS . Each agent X acts with their local operation UX on that system and
their ancilla (i.e. UX ∈ L(HX ⊗HX′)) and then sends out the system at t∗X . In particular, this is the only time the
agents use their quantum instrument. While the agents enforce evolution via their instrument, the remaining degrees
of freedom should evolve in an uncorrelated way.

U.3 X’s quantum instrument is used at the so called time of action t∗X , i.e.

UX(t∗X , t
∗
X − 1) = UX ⊗ Rest(X). (15)

Furthermore at other times t 6= t∗X the evolution operator UX(t, t − 1) is independent of UX and only acts as
the identity on the ancilla of X, i.e. on HX′ .

Our assumptions introduce a transformation that maps the initial state |ψ(0, . . . , 0)〉 to the final state |ψ(TA1
, . . . , TAN )〉.

This transformation depends on the agents’ actions UX and is visualized in Fig. 3. Our next assumption is that
this transformation can be extended to a full process [10]/quantum superchannel [44]. This means that it must be
possible to interpret the quantum causal structure as a process, even if we describe the agents’ operations as channels
instead of (purified) unitaries.

We make the implicit assumption that our Postulates S.2, N.1, N.2, N.3, U.1, U.2 and U.3 continue to be
satisfied if the ancillary systems are initialized to states other than |0〉A′

j
, and that we can continue to use the same
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normalization operators N
(X)
tX and perspectival time evolutions UX(tX + 1, tX) as for the initialization |0, . . . , 0〉S′ .

This is no substantial conceptual restriction, because none of these postulates explicitly refers to any particular initial
ancillary system state. Postulate S.1 just defines the particular choice of initialization for the protocol.

This concludes the description of the operational setting and of our assumptions. We will subsequently investigate
the mathematical and physical implications of our setting and postulates.

B. History states lead to pure processes

First, we show that the evolution of the main system and the ancillas must be given by a pure process. For that
purpose we have to analyze the relation between the initial and the final state, in particular with respect to the
operations of the agents. This can be done by taking the perspective of an agent, for example A1. We apply our
unitary time evolution postulates U.1, U.2 and U.3 to decompose:

UA1(TA1 , 0) = UA1(TA1 , t
∗
A1

)(UA1 ⊗ Rest(A1))UA1(t∗A1
− 1, 0) (16)

Postulate N.3 tells us that at times 0 and TA1 the normalization operators are just identity operators. Furthermore,
our Postulate S.2 assumes that at the beginning all clocks show time 0, at the end all clocks show time TAj , and that
in the beginning and at the end there is at least one synchronized time step. Furthermore, we assume that all clock
states |t〉cX are normalized, i.e. cX 〈t|t〉cX = 1. This shows us that:

|ψA1
(0)〉 = cA1

〈0|
TA1

...TAN∑

tA1
=0,...tAN=0

|tA1 , . . . tAN 〉c ⊗ |ψ(tA1 . . . tAN )〉SS′ =|0, . . . 0〉c\A1
⊗ |ψ(0, 0, . . . 0)〉 (17)

|ψA1(TA1)〉 = cA1
〈TA1 |

TA1
...TAN∑

tA1
=0,...tAN=0

|tA1 , . . . tAN 〉c ⊗ |ψ(tA1 . . . tAN )〉SS′ =|TA2 , . . . , TAN 〉c\A1
⊗ |ψ(TA1 , TA2 , . . . , TAN )〉

Together with the information that UA1
(TA1

, 0) maps |ψA1
(0)〉 to |ψA1

(TA1
)〉, we find

|TA2
. . . TAN 〉c\A1

⊗ |ψ(TA1
, TA2

, . . . TAN )〉 = UA1
(TA1

, 0)
(
|0, . . . 0〉c\A1

⊗ |ψ(0, 0, . . . 0)〉
)

(18)

= : |TA2 , . . . TAN 〉 ⊗ G(UA1 , UA2 . . . )|ψ(0, 0, . . . 0)〉. (19)

Here, we defined a map G that describes how the final main system and ancilla state is related to the initial state:

|ψ(TA1
. . . TAN )〉 =

(
〈TA2 . . . TAN |c\A1

UA1(TA1 , 0)|0, . . . , 0〉cA1

)
|ψ(0, 0, . . . , 0)〉

=: G(UA1
. . . UAN )|ψ(0, 0, . . . 0)〉. (20)

At the end of Section IV A, we assumed that all our assumptions continue to be satisfied if the ancillary systems
are initialized to another state than |0, . . . , 0〉S′ . In particular, we assumed that we can continue to use the same

perspectival unitaries UX(tX , tX−1) and normalization operators N
(X)
tX , even if the ancillary systems are initialized in

a state different from |0, . . . , 0〉S′ . Therefore, the states |ψ(0, 0, . . . 0)〉 span the entire input space of G(UA1 . . . UAN ).
In particular, while we took the perspective of agent A1 to derive G(UA1 . . . UAN ), Equation (20) also holds for all
other agents, because |ψ(0, . . . , 0)〉 and |ψ(TA1 , . . . , TAN )〉 are pieces of the perspective-independent history state.

Equation (18) shows that G(UA1 . . . UAN ) is a unitary that maps the initial main system and ancilla state to the
final state and that it is multilinear in the local operations (at least, as long as the linear combinations result in
another unitary). To see linearity, one can infer from Eqs. (16) and (18) that:

|ψ(TA1 , TA2 , . . . TAN )〉 = (21)
(
〈TA2

. . . TAN |c\A1
UA1

(TA1
, t∗A1

)(UA1
⊗ Rest(A1))UA1

(t∗A1
− 1, 0)|0, . . . 0〉c\A1

)
|ψ(0, 0, . . . 0)〉

and use that the agent’s unitary UA1
is only applied at their time of action. Unitarity can be seen, for example, in

the following way:

〈ψj(TA1
, TA2

, . . . TAN )|ψk(TA1
, TA2

, . . . TAN )〉
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=〈TA2
. . . TAN |TA2

. . . TAN 〉〈ψj(TA1
, TA2

, . . . TAN )|ψk(TA1
, TA2

, . . . TAN )〉
=
(
〈0, . . . , 0|c\A1

⊗ 〈ψj(0, 0, . . . , 0)|
)
UA1(TA1 , 0)† UA1(TA1 , 0)

(
|0, . . . , 0〉c\A1

⊗ |ψk(0, 0, . . . , 0)〉
)

=〈ψj(0, 0, . . . , 0)|ψk(0, 0, . . . , 0)〉

Therefore, inner products (and in particular orthonormality) are preserved. Alternatively, one can use that the
unitaries in Eq. (18) imply that |ψ(TA1

, TA2
, . . . TAN )〉 and |ψ(0, 0, . . . , 0)〉 always have the same norm.

Furthermore, at the end of Postulate U.3 we assumed that UX(tX , tX − 1) acts as the identity on the ancillary
system of agent X, except for the time of action of that agent, where that agent’s operation UX is applied. Now,
Equation (21) shows that the only change in the state of the ancilla of Aj is caused by Aj ’s local operation. We
assumed that the map G(UA1

, . . . , UAN ) from |ψ(0, . . . , 0)〉 to |ψ(TA1
, . . . , TAN )〉 can be extended to a full process.

We conclude that G is a pure process as defined in [10, 44] with the difference that Equation (21) represents a refined
causal reference frame decomposition that explicitly includes the quantum clocks, compare to Equation (1).

The fact that we obtain pure processes has important consequences: According to [44, 54], in the bipartite case
our setting implies that no violation of device-independent causal inequalities can occur: The bipartite pure process
can only be causally ordered or quantum-controlled causal order.

C. Additional restrictions for the local perspectives of the agents

Let us further investigate the relation between our framework and the original causal reference frame framework
of [11], in particular the relation between Equations (1) and (21), in further detail. Both frameworks work with
purifications, in particular the actions of the agents are described by purified unitaries UA1

. . . UAN and the relevant
process matrices turn out to be the pure processes. The crucial objects of the causal reference frame framework
are the unitaries that describe the past before and the future after an agent’s action. More specifically, from the
point of view of agent X, the evolution from the beginning of the protocol up to the time of X’s action is de-
scribed by the unitary ΠX . In our framework, this unitary corresponds to UX(t∗X − 1, 0). The evolution directly
after X’s action up to the end of the protocol is described by ΦX , which in our framework corresponds to UX(TX , t

∗
X).

The crucial difference between our framework and that of causal reference frames is that we explicitly model the
quantum clocks and explain how the agents’ perspectives arise from a perspective neutral history state. This gives
us a refined description of the agents’ perspectives because we explicitly model individual time steps tX → tX + 1
in between the beginning of the experiment, the time of action and the end of the protocol. In Ref. [11] the causal
future and past unitaries ΦX and ΠX are allowed to be arbitrary as long as they combine to the pure process G via
Equation (1). However, in our setting the history state induces further compatibility constraints on the perspectives
of the agents.

We will now present one such constraint that is particularly restrictive: Affine-linearity in the operations of the
other agents. Consider a history state as in Eq. (11). We can write

|ψ(tA1
. . . tAN )〉 = MtA1

...tAN
|ψ(0, 0, . . . 0)〉, (22)

with

MtA1
...tAN

= c\A1
〈tA2 , . . . tAN |(N (A1)

tA1
)−1 UA1(tA1 , 0)|0, . . . 0〉c\A1

. (23)

To see this, use Eq. (17), i.e. |ψA1(0)〉 = |0, . . . , 0〉c\A1
⊗|ψ(0, . . . , 0)〉. Remember, we got this equation from assuming

that in the beginning, the normalization operator is the identity, i.e. Postulate N.3, and that in the beginning all the
clocks are initialized to 0 and tick synchronized, i.e. Postulate S.2. Then we find:

MtA1
,...,tAN

|ψ(0, 0, . . . , 0)〉 =c\A1
〈tA2

, . . . tAN |(N (A1)
tA1

)−1 UA1
(tA1

, 0)|0, . . . 0〉c\A1
⊗ |ψ(0, 0, . . . , 0)〉SS′

=c\A1
〈tA2

, . . . tAN |(N (A1)
tA1

)−1 UA1
(tA1

, 0)|ψA1
(0)〉

=c\A1
〈tA2 , . . . tAN |(N (A1)

tA1
)−1|ψA1(tA1)〉 = c\A1

〈tA2 , . . . tAN | ⊗ 〈tA1 |cA1
|Ψ〉〉

=|ψ(tA1 , . . . tAN )〉 (24)
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We already mentioned that all assumptions, perspectival unitaries UX(tX , tX − 1), and normalization operators

N
(X)
tX continue to work if the ancillary systems are initialized to states other than |0, . . . , 0〉S′ . Therefore, the states
|ψ(0, . . . , 0)〉 span the entire input space of MtA1

,...,tAN
. Furthermore, the states |ψ(tA1 , . . . , tAN )〉 are pieces of the

perspective-neutral history state. Therefore Eq. (23) is also true for the agents exchanged.

Consider Equation (23). Postulate U.2 allows us to decompose UA1
(tA1

, 0) into individual time steps. By Postulate
U.3, the unitary action UA1

of the agent A1 only appears at the time of action, and there it appears linearly.
By Postulate N.1, the normalization operators are independent of the agents’ actions. Therefore, we can see that
MtA1

...tAN
is constant in UA1

for tA1
< t∗A1

and linear in UA1
for tA1

≥ t∗A1
(if the linear combination results in

another unitary), because the same is true for UA1
(tA1

, 0).

We pointed out that Eq. (23) is also true with exchanged agents. We can relate the time evolutions of two different
agents (here A1 and A2) via

UA2(tA2 , 0)|0, 0, . . . 0〉c\A2
=

∑

tA1
,tA3

,...tAN

N
(A2)
tA2
|tA1 , tA3 , . . . tAN 〉c\A2

MtA1
,...tAN

(25)

To see this, exchange the agents in Eq. (23) to find

∑

tA1
,tA3

,...tAN

N
(A2)
tA2
|tA1

, tA3
, . . . tAN 〉c\A2

MtA1
,...tAN

(26)

=
∑

tA1
,tA3

,...tAN

N
(A2)
tA2
|tA1 , tA3 , . . . tAN 〉c\A2

〈tA1 , tA3 , . . . , tAN |(N (A2)
tA2

)−1UA2(tA2 , 0)|0, . . . , 0〉c\A2
(27)

and use that the time states |t〉cAj form an orthonormal basis of the clock spaces.

As the normalization operators are independent of the agents’ actions, the dependence of MtA1
,...tAN

on UA1
shows

that UA2
(tA2

, 0)|0, 0, . . .〉 is a sum of functions linear in UA1
or constant in UA1

, i.e. UA2
(tA2

, 0)|0, 0, . . .〉 is affine-linear
in UA1

(if the linear combination gives another unitary). The same argument can be made for all other agents. Hence
we get that any time evolution UX(tX , 0)|0, . . . 0〉c\AX as seen by agent X with all clocks initialized to time 0 has to

be an affine-linear function of the operations of all other agents (at least, if the linear combinations give unitaries).
This affine-linearity is a severe restriction and a potential obstacle for implementing some non-causal processes in this
framework. In Section V D we will apply this insight to an example involving an exotic tripartite process [10, 55] to
see that a causal reference frame decomposition for this process in Ref. [11] is incompatible with our framework.

D. Discrete constraint operators and physical projectors

Finally, we will briefly discuss constraint operators and physical projectors in our framework since they are among
the main objects of interest in the Page-Wootters formalism presented in Section III. By construction, our history
states form a subspace HH ⊂ Hc⊗HS ⊗HS′ and by linearity, α|Ψ〉〉+ β|Ψ′〉〉 is the history state associated with the

input state α|ψ〉S + β|ψ′〉S , as one can see e.g. from Equation (22). Therefore, we can define a constraint operator Ĉ

as Ĉ = 1− P̂H where P̂H is the orthogonal projector onto HH . Then the kernel of Ĉ is given by HH .

We note that in general, it is unclear whether P̂H in our framework can be written analogous to the case of a
standard quantum circuit with one clock, see Equation (8). More specifically, for an orthonormal basis |ψj〉S , the
corresponding history states

|Ψj〉〉 =
∑

tA1
...tAN

|tA1
. . . tAN 〉⊗ |ψj(tA1

. . . tAN )〉S =

TA1∑

tA1
=0

|tA1
〉(N (A1)

tA1
)−1|ψA1,j(tA1

)〉

=

TA1∑

tA1
=0

|tA1
〉(N (A1)

tA1
)−1 UA1

(tA1
, 0)|0, 0, . . .〉⊗ |ψj〉S
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may fail to be orthogonal due to the normalization operators:

〈〈Ψk|Ψj〉〉 =

TA1∑

tA1
=0

〈ψk|S ⊗〈0, 0, . . . 0| UA1(tA1 , 0)†[(N (A1)
tA1

)−1]†(N (A1)
tA1

)−1 UA1
(tA1

, 0)|0, 0, . . . 0〉⊗ |ψj〉S . (28)

In that sense, the map from initial states to history states is not necessarily unitary, in contrast to the unitary
evolution of the main system and ancilla state, see Eq. (20).

We can, however, write P̂H in a form more reminiscent of the original Page-Wootters framework, compare Eq. (4),
as

P̂H =
1

T

T−1∑

k=0

exp

(
−2πiĈ

k

T

)
, (29)

where T is an integer (we could take T = TA1
). This can be seen by noting that Ĉ is a hermitian matrix with only

eigenvalues 0 or 1. If |φ0〉 is an eigenvector of Ĉ with Ĉ|φ0〉 = 0, we have P̂H |φ0〉 = |φ0〉, while if Ĉ|φ1〉 = |φ1〉 we

have P̂H |φ1〉 = 1
T

∑T−1
k=0 e

−2πi kT |φ1〉 = 0, showing P̂H = 1 − Ĉ. As discussed in Appendix B it is not clear whether

P̂H in Equation (29) can be linked to the perspectival unitaries UX(t′X , tX) similar to Equation (9).

V. CAUSAL AND NON-CAUSAL PAGE-WOOTTERS CIRCUITS

In this section we now apply our framework to give several examples of physical scenarios that go beyond the
standard setting of circuits with well-synchronized clocks. First, in Sec. V A, we consider a setup inspired by the
famous twin paradox in which the clocks of two agents are still in a well-defined relation to each other, but tick at
different rates. Afterwards, in Section V B, we consider a scenario for the bipartite quantum switch as a prototypical
example of a known class of non-causal processes. There, a control quantum system determines the tick rates of the
agents’ clocks and more importantly the order of the agents’ operations. In Section V C, we go beyond the example
of the bipartite switch and show that arbitrary coherently controlled causal orders can be realized in our framework.
Finally, in Section V D, we consider an interesting pure, non-causal process that is further known to violate causal
inequalities [10, 24, 55]. We will argue that this process cannot be implemented as a superposition of classical histories
and that the causal reference frame decomposition from Ref. [11] cannot be adapted to our setting.

A. A history state for a scenario with varying clock ticking rates

Our first example of an interesting process that fits into our setting but is not a standard circuit is inspired by
the famous twin paradox. Specifically we consider a scenario that features varying clock speeds of two agents A
and B where during the protocol the clock of one ticks slower than the clock of the other, reminiscent of the one
twin that leaves earth traveling at relativistic speed and returns to find his or her sibling older than they are themselves.

Here the two agents act on subsystems SA and SB of the input quantum state |φ〉 ∈ HS with unitary operations UA
and UB respectively. The casual order in this example is well defined and we consider the case where A acts before B.
Moreover, between A’s and B’s time of action some global evolution V of the system happens, which is independent
of the two agents. In the beginning and at the end the agents’ clocks tick at the same speed, but in between the clock
of A ticks more slowly than that of B. The scenario is depicted in Figure 4.

It is captured by the following history state |Ψ〉〉 ∈ HcA ⊗HcB ⊗HSA ⊗HSB :

|Ψ〉〉 =|0A, 0B〉c⊗ |φ〉+ |1A, 1B〉c⊗ |φ〉+ |2A, 2B〉c⊗(UA ⊗ 1)|φ〉+ |2A, 3B〉c⊗(UA ⊗ 1)|φ〉+ |3A, 4B〉c⊗V (UA ⊗ 1)|φ〉
+ |3A, 5B〉c⊗V (UA ⊗ 1)|φ〉+ |4A, 6B〉c⊗(1⊗ UB)V (UA ⊗ 1)|φ〉+ |4A, 7B〉c⊗G(UA, UB)|φ〉
+ |5A, 8B〉c⊗G(UA, UB)|φ〉+ |6A, 9B〉c⊗G(UA, UB)|φ〉 (30)

where G(UA, UB) = (1⊗UB)V (UA⊗1). The perspectival states for the two agents including the non-trivial normal-
ization operators are

|ψA(0)〉 = |0B〉cB ⊗ |φ〉, |ψA(1)〉 = |1B〉cB ⊗ |φ〉, |ψB(0)〉 = |0A〉cA ⊗ |φ〉, |ψB(1)〉 = |1A〉cA ⊗ |φ〉,

CHAPTER 2. PAGE-WOOTTERS FORMULATION OF INDEFINITE
CAUSAL ORDER

38



|ψA(2)〉 =
1√
2

(|2B〉+ |3B〉)cB ⊗(UA⊗1)|φ〉, |ψB(2)〉 = |2A〉cA ⊗(UA⊗1)|φ〉

with N
(A)
2 =

1√
2
1S , = |ψB(3)〉,

|ψA(3)〉 =
1√
2

(|4B〉+ |5B〉)cB ⊗V (UA⊗1)|φ〉 |ψB(4)〉 = |3A〉cA ⊗V (UA⊗1)|φ〉 (31)

with N
(A)
3 =

1√
2
1S , = |ψB(5)〉,

|ψA(4)〉 =
1√
2

(|6B〉+ |7B〉)cB ⊗(1⊗UB)V (UA⊗1)|φ〉 |ψB(6)〉 = |4A〉cA ⊗(1⊗UB)V (UA⊗1)|φ〉

with N
(A)
4 =

1√
2
1S , = |ψB(7)〉,

|ψA(5)〉 = |8B〉cB ⊗G(UA, UB)|φ〉, |ψB(8)〉 = |5A〉cA ⊗G(UA, UB)|φ〉,
|ψA(6)〉 = |9B〉cB ⊗G(UA, UB)|φ〉, |ψB(9)〉 = |6A〉cA ⊗G(UA, UB)|φ〉.

FIG. 4: Example of a setting involving a clock with changing ticking rate. The two agents A and B each receive a
part of the input system and experience one synchronized time step. After that the clock of A starts ticking slower
and A applies their unitary UA to their subsystem of state |φ〉. This is followed by some unitary evolution V of the
full system, which is independent of the two agents. Then B applies their unitary UB to his or her subsystem and
finally, at the end of the protocol, the two clocks tick in synchronization once more.

Note that the normalization operators are non trivial for precisely those times where the clock of A ticks slower
than the clock of B. The states in Equations (31) can be reproduced by the following unitary evolutions with respect
to the two agents

UB(1, 0) = TcA ⊗1S ,
UA(1, 0) = TcB ⊗1S, UB(2, 1) = TcA ⊗(UA⊗1)S ,

UA(2, 1) = (T ′2)cB ⊗(UA⊗1)S , UB(3, 2) = 1,

UA(3, 2) = (T 2)cB ⊗VS , UB(4, 3) = TcA ⊗VS ,
UA(4, 3) = (T 2)cB ⊗(1⊗UB)S , UB(5, 4) = 1, (32)

UA(5, 4) = (T ′6)cB ⊗1S , UB(6, 5) = TcA ⊗(1⊗UB)S ,
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UA(6, 5) = TcB ⊗1S , UB(7, 6) = 1

UB(8, 7) = TcA ⊗1S = UB(9, 8),

where T is the unitary that makes the clock of the other agent tick, i.e. T : |t〉 7→ |t+ 1〉. Similarly, T ′i is any unitary

that acts as |i− 1〉 7→ 1/
√

2(|i〉+ |i+ 1〉), 1/
√

2(|i〉+ |i+ 1〉) 7→ |i+ 2〉. We see that our axioms are fulfilled and the
times of action are t?A = 2 and t?B = 6 respectively. As one can see in Equations (32), from A’s perspective B’s clock
seems to tick at double the rate in the middle of the process, while from the point of view of B, A’s clock seems
partially frozen in time.

B. The quantum switch

FIG. 5: The bipartite quantum switch: Depending on the value of a control qubit the two unitaries UA, UB are
applied to the target system in different order (top). According to the perspectives of the two agents, A or B apply
their own unitary to the target system at time t∗A or t∗B respectively, while the other agent’s unitary is applied either
before or after that depending on the value of the control system (bottom). The perspectival circuits equal the
causal reference frames for the quantum switch given in Ref. [11].

Our second example describes the probably best known non-causal process, namely the bipartite quantum
switch [26]. A schematic picture as well as the two perspectival circuits analogous to the causal reference frame
decomposition given in Ref. [11] are shown in Figure 5. The bipartite quantum switch can be modeled by a history
state complying with our axioms starting with an initial state |φ〉S ∈ HSc ⊗HSt consisting of a control system and a
target system. Both agents are acting on the target system Hilbert space; HA = HB = HSt .

A history state of the quantum switch is given by

|Ψ 〉〉 = |0A, 0B〉c⊗ |φ〉+ |1A, 1B〉c⊗ |φ〉+ |2A, 2B〉c⊗ |φ〉+ |3A, 2B〉c⊗(|0〉〈0| ⊗ 1)|φ〉+ |2A, 3B〉c⊗(|1〉〈1| ⊗ 1)|φ〉
+ |4A, 3B〉c⊗(|0〉〈0| ⊗UA)|φ〉+ |3A, 4B〉c(|1〉〈1| ⊗UB)|φ〉+ |5A, 4B〉c⊗(|0〉〈0| ⊗UBUA)|φ〉 (33)

+ |4A, 5B〉c⊗(|1〉〈1| ⊗UAUB)|φ〉+ |5A, 5B〉c⊗(|0〉〈0| ⊗UBUA + |1〉〈1| ⊗UAUB)|φ〉
+ |6A, 6B〉c⊗G(UA, UB)|φ〉+ |7A, 7B〉c⊗G(UA, UB)|φ〉,

where G(UA, UB) = |0〉〈0| ⊗UBUA + |1〉〈1| ⊗UAUB is the (pure) process matrix. Intuitively the history state in
Equation (33) describes the scenario where, depending on the value of the control, different time orderings (A’s clock
ticks at a faster rate than B’s or vice versa) are initiated by de-synchronizing initially synchronized clocks. For the
two time orderings different orders of the agents’ operations (either UA or UB first) are applied. Finally the clocks
are re-synchronized, again making use of the control degree of freedom, such that they can tick together at the end
of the protocol. We obtain the following perspectival states
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|ψA(0)〉 = |0B〉cB ⊗ |φ〉 |ψB(0)〉 = |0A〉cA ⊗ |φ〉
|ψA(1)〉 = |1B〉cB ⊗ |φ〉 |ψB(1)〉 = |1A〉cA ⊗ |φ〉
|ψA(2)〉 = |2B〉cB ⊗(|0〉〈0| ⊗ 1)|φ〉 |ψB(2)〉 = |2A〉cA ⊗(|1〉〈1| ⊗ 1)|φ〉

+
1√
2

(|2B〉+ |3B〉)cB ⊗(|1〉〈1| ⊗ 1)|φ〉 +
1√
2

(|2A〉+ |3A〉)cA ⊗(|0〉〈0| ⊗ 1)|φ〉

with N
(A)
2 = |0〉〈0|Sc +

1√
2
|1〉〈1|Sc with N

(B)
2 =

1√
2
|0〉〈0|Sc + |1〉〈1|Sc

|ψA(3)〉 = |2B〉cB ⊗(|0〉〈0| ⊗ 1)|φ〉 |ψB(3)〉 = |2A〉cA ⊗(|1〉〈1| ⊗ 1)|φ〉 (34)

+ |4B〉cB ⊗(|1〉〈1| ⊗ UB)|φ〉 + |4A〉cA ⊗(|0〉〈0| ⊗ UA)|φ〉

|ψA(4)〉 = |3B〉cB ⊗(|0〉〈0| ⊗ UA)|φ〉 |ψB(4)〉 = |3A〉cA ⊗(|1〉〈1| ⊗ UB)|φ〉
+ |5B〉cB ⊗(|1〉〈1| ⊗ UAUB)|φ〉 + |5A〉cA ⊗(|0〉〈0| ⊗ UBUA)|φ〉

|ψA(5)〉 =
1√
2

(|4B〉+ |5B〉)cB ⊗(|0〉〈0| ⊗ UBUA)|φ〉 |ψB(5)〉 =
1√
2

(|4A〉+ |5A〉)cA ⊗(|1〉〈1| ⊗ UAUB)|φ〉

+ |5B〉cB ⊗(|1〉〈1| ⊗ UAUB)|φ〉 + |5A〉cA ⊗(|0〉〈0| ⊗ UBUA)|φ〉

with N
(A)
5 =

1√
2
|0〉〈0|Sc + |1〉〈1|Sc with N

(B)
5 = |0〉〈0|Sc +

1√
2
|1〉〈1|Sc

|ψA(6)〉 = |6B〉cB ⊗G(UA, UB)|φ〉 |ψB(6)〉 = |6A〉cA ⊗G(UA, UB)|φ〉
|ψA(7)〉 = |7B〉cB ⊗G(UA, UB)|φ〉 |ψB(7)〉 = |7A〉cA ⊗G(UA, UB)|φ〉

which can be related to each other by unitaries

UA(1, 0) = TcB ⊗1S UB(1, 0) = TcA ⊗1S
UA(2, 1) = TcB ⊗(|0〉〈0| ⊗1)S + (T ′2)cB ⊗(|1〉〈1| ⊗1)S UB(2, 1) = TcA ⊗(|1〉〈1| ⊗1)S + (T ′2)cA ⊗(|0〉〈0| ⊗1)S

UA(3, 2) = 1cB ⊗(|0〉〈0| ⊗1)S + (T ′2)cB ⊗(|1〉〈1| ⊗UB)S UB(3, 2) = 1cA ⊗(|1〉〈1| ⊗1) + (T ′2)cA ⊗(|0〉〈0| ⊗UA)

UA(4, 3) = TcB ⊗(1⊗UA)S UB(4, 3) = TcA ⊗(1⊗UB)S (35)

UA(5, 4) = (T ′4)cB ⊗(|0〉〈0| ⊗UB)S + 1cB ⊗(|1〉〈1| ⊗1)S UB(5, 4) = (T ′4)cA ⊗(|1〉〈1| ⊗UA)S + 1cA ⊗(|0〉〈0| ⊗1)S

UA(6, 5) = (T ′4)cB ⊗(|0〉〈0| ⊗1)S + TcB ⊗(|1〉〈1| ⊗1)S UB(6, 5) = (T ′4)cA ⊗(|1〉〈1| ⊗1)S + TcA ⊗(|0〉〈0| ⊗1)S

UA(7, 6) = TcB ⊗1S UB(7, 6) = TcA ⊗1S .

where T and T ′i are the same as in the previous example. It is straightforward to see that all our axioms are fulfilled.
Note that the unitaries in Equations (35) are not unique but were chosen such that the perspectives of the agents
resemble the causal reference frames of the two agents presented in Ref. [11]. For both A and B the time of action is
t?A = 4 = t?B and depending on the value of the control the other agent applies their unitary either before or after t?A
or t?B respectively, compare to Figure 5.

C. General coherent control of causal order

The quantum switch from the previous section is a famous example for an important class of processes with
indefinite causal structure, namely processes with coherently controlled causal order [56–58]. There, for each value

of the control system |k〉 ∈ HSC one associates a process with definite causal order or quantum comb G̃k [42, 43]
and the definite causal order is different for at least two different k [59]. We will now present the general idea for
implementing such processes in our framework, while details are given in Appendix C.

Quantum combs describe processes in which agents A1, . . . , AN have a definite causal order. They get their name
from the figures that are used to visualize them, see Figure 6. Combs have a global past to receive an input state,
and a global future to which they output a state. In between, there are N open slots into which agents A1, . . . , AN
can insert quantum operations. Each slot belongs to one agent, fixing a definite causal order.

For our purpose, quantum combs are sequences of channels with memory [42–44], see Figure 6 for a tripartite
example. Each of these channels comes with open ends such that the agents can insert their operations. More
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precisely, in between two consecutive comb channels one agent operation can be inserted. Meanwhile, the memory
directly connects the channels. The ancillary systems of the agents run parallel to the combs, i.e. the comb channels
do not act on the ancillas the agents use. Similarly, the agents do not act on the memory of the comb.

The channels of the combs can be purified to unitaries [45] Vj by extending the memories, having an extra pure
fixed input to the comb, and discarding part of the output of the comb. As we work in a purified formulation of
quantum theory and quantum processes in particular, and as our goal is to describe a coherently controlled process,
we will only consider pure combs that are given as a sequence of unitaries with memory.

A1 A2 A3P F

V0 V1 V2 V3
|ν〉

P A1 A2 A3 F

FIG. 6: A tripartite quantum comb: A general process with fixed causal order is a map on the actions of three
agents A1, A2 and A3 (left). Time passes from left to right, where P stands for past and F for future, and, hence,
A1 acts before A2 and agent A3 acts last. The agents’ actions are quantum instruments which must be inserted into
the slots of the comb. Combs can be implemented as sequence of unitary channels with memory when adding an
additional environment system with input |ν〉 and discarding part of the output (right) [42–45].

Let us formalize our considerations from above. We consider N agents A1, . . . , AN and consider M pure combs G̃k,
1 ≤ k ≤M , given by

G̃k(U1, . . . , UN ) = V
(k)
N Uπk(N)V

(k)
N−1Uπk(N−1) . . . V

(k)
1 Uπk(1)V

(k)
0 . (36)

Here, V
(k)
j are the unitary comb channels with memory. Identity operators on the comb memories and ancillary

systems are left implicit. U1, . . . , UN are the unitary operations of the agents A1, . . . AN . The order of the agents

in comb G̃k is determined by a permutation πk, with the meaning that agent Aπk(j) will be the j-th agent to act in

comb G̃k.

The combs G̃k have to satisfy some compatibility conditions such that we can combine them into a coherently
controlled superposition. To demonstrate our protocol, it will be enough to assume that all the open ends of all the
slots of all the combs have the same dimension, and that all the memories of all the combs have the same dimension.
The first assumption means that there is a dimension dagents that determines the dimension of the input that the
agents receive from the comb, and that this dimension is independent of agent Aj and the comb index k. It is also
the dimension of the output that the agents provide to the combs. This assumption implies that the dimensions of
the ancillary systems do not change after the agents have applied their operations. The second assumption means
that there is a memory dimension dmemory that is independent of the comb index k and the index of the slot. This
assumption will allow us to let all combs use the same memory system. As we will see, our protocol does not
crucially depend on these assumptions. The only purpose of these assumptions is to make the natural definition of
coherently controlled causal order in Equation (38) well-defined. However, the protocol will not care about the precise
meaning of Eq. (38). In Appendix C we will discuss relaxations, generalizations and alternatives to these assumptions.

Now, we introduce a M -dimensional control system HSC . Control value |k〉SC means that comb G̃k is implemented.
Thus, we can define processes with coherently controlled causal order as

G(U1, . . . , UN ) =
M∑

k=1

|k〉〈k|SC ⊗ G̃k(U1, . . . , UN ) (37)

=
M∑

k=1

|k〉〈k|SC ⊗V (k)
N Uπk(N)V

(k)
N−1Uπk(N−1) . . . V

(k)
1 Uπk(1)V

(k)
0 , (38)

Again, identity operators on the agents’ ancillary systems and comb memories are left implicit. As one can see, G is
unitary and multilinear in the operations of the agents. Such processes were also considered in [56–58].
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Now we describe the history state implementing G(U1, . . . , UN ) given by Equation (38). The input state |ψ〉S ∈
HSC ⊗HSP comprises a control system (∈ HSC ) and another system (∈ HSP ) which represent the input to the combs
from the global past. We decompose the protocol and, hence, the history state into three parts as

|Ψ〉〉 = |Ψdesync〉〉+ |Ψcombs〉〉+ |Ψresync〉〉, (39)

where |Ψdesync〉〉 describes the beginning of the protocol, where we use the control degree of freedom to desynchronize
the clocks such that the agents are put into the right order. Afterwards the different combs are applied depending on
the value of the control in |Ψcombs〉〉. At last, the resynchronization of the agents’ clocks is described by |Ψresync〉〉.
The strategy is depicted in Figure 7.

FIG. 7: The strategy for implementing coherently controlled causal order: The protocol consists of three steps which
are all conditioned on the control value, namely desynchronization, application of the combs and resynchronization.
The time of action t∗ is chosen the same for all agents. To be able to implement the comb of a given k, the clocks of
the agents get desynchronized such that the agents will act in the right order. This is achieved by first freezing the
clocks of all but the agent Aπk(1) one after the other. First the clock of the agent acting second gets frozen followed
by that of the agent acting third etc. The clock freezes are indicated in purple. The duration of the freeze depends
on when the agent will act. After the desired orderings have been implemented, the combs get applied while all
clocks tick in synchronization. First one applies the first unitary with memory of the comb, then the first agent acts
(their clock shows t∗). Then the second comb unitary is applied followed by the second agent’s action etc. At last
the clocks get resynchronized again by using the desynchronization protocol, but with the role of the agents reversed.
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During the desynchronization of the clocks nothing happens to the input to the combs and we can write

|Ψdesync〉〉 =|0, . . . , 0〉c⊗ |ψ〉S + |1, . . . , 1〉c⊗ |ψ〉S + |2, . . . , 2〉c⊗ |ψ〉S (40)

+
M∑

k=1

T0∑

j=3

|t(k)1 (j), . . . , t
(k)
N (j)〉c⊗(|k〉〈k|SC ⊗ 1SP )|ψ〉S ,

where, as we will see, T0 := t∗ − 2, with t∗ being the time of action for all agents. The t
(k)
i (j) give different time

orderings by freezing different clocks for different amounts of time steps during which the other clocks keep ticking.
More precisely, if an agent will act as the m-th agent in the comb with the control value |k〉SC , then the clock
of that agent gets frozen for 2(m − 1) time steps. This ensures that two consecutive agents are two time steps
apart from each other when they enter |Ψcombs〉〉. While one agent’s clock is frozen, the clocks of the other agents
march on. See Appendix C for the detailed clock freezing and desynchronization protocol. Afterwards, we include
additional synchronized ticks at the end of the desynchronization step to ensure that for all k the clock freezes are
far away from the application of the combs. This together with the fact that the agents’ operations Uj have not
been used, yet, gives perspectival controlled unitaries that act non-trivially only on the clocks of the other agents, i.e.

UAj (t, t− 1) =
∑M
k=1 u

Aj
c,k(t, t− 1)⊗ |k〉〈k|Sc ⊗ 1Sp. Here, u

Aj
c,k(t, t− 1) are the unitaries that only act on the clocks of

the other agents.

In |Ψcombs〉〉 the clocks will continue to tick in synchronization by means of the unitary T introduced in Section V A

while, given a control value k, the unitaries of the comb G̃k are applied one after the other. All the agents, for a given
k, see the following sequence of unitaries at the respective time steps:

V
(k)
0 ⊗ T⊗(N−1), Uπk(1) ⊗ T⊗(N−1), V

(k)
1 ⊗ T⊗(N−1), Uπk(2) ⊗ T⊗(N−1), . . . , Uπk(N) ⊗ T⊗(N−1), V (k)

N ⊗ T⊗(N−1)
(41)

Further details are again in Appendix C. The time differences caused by freezing the clocks ensure that the time
of action t∗ satisfies t∗ = T0 + 2 for all agents.

For the resynchronization in |Ψresync〉〉 we repeat the procedure from |Ψdesync〉〉, but with the role of the agents

inverted, i.e. t
(k)
πk(m) 7→ t

(k)
πk(N+1−m). In the end, all the clocks tick in synchronization and show the same time. Like

the desynchronization this last part of the protocol is independent of the agents’ operations Uj and our axioms are ful-
filled. Hence, any coherent control of causal order as described by Equation (38) can be implemented in our framework.

In Appendix C we will discuss how to relax or modify the consistency conditions for the combs G̃k that allows them
to appear in a controlled superposition. We will also provide details about the protocol itself. Furthermore, we will
discuss how to take the purification process of the combs into account.

D. About an exotic process

A notorious example of a tripartite pure process with indefinite causal order from [10, 55] is known to violate causal
inequalities. Said process is not an example of coherent control of causal order. It is often referred to as the Lugano
process. The time reversed version of the Lugano process was discussed in Ref. [11] and can be written as

G(UA, UB , UC)|jjj〉 = UA⊗UB ⊗UC |jjj〉 (42)

G(UA, UB , UC)|j01〉 = XUA⊗UB ⊗UC |j01〉 (43)

G(UA, UB , UC)|1j0〉 = UA⊗XUB ⊗UC |1j0〉 (44)

G(UA, UB , UC)|01j〉 = UA⊗UB ⊗XUC |01j〉 (45)

where j ∈ {0, 1} and X = σX is the Pauli-X matrix. Defining projectors PA =
∑
j |j01〉〈j01|, PB =

∑
j |1j0〉〈1j0|,

PC =
∑
j |01j〉〈01j| and P⊥ =

∑
j |jjj〉〈jjj| one gets

G(UA, UB , UC)|φ〉 = (UA⊗UB ⊗UCP⊥ +XUA⊗UB ⊗UCPA + UA⊗XUB ⊗UCPB + UA⊗UB ⊗XUCPC)|φ〉. (46)
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One crucial difference between the reversed Lugano process and the non-casual processes discussed in Section V C is
the lack of a control degree of freedom. Therefore, it is not possible to directly adapt the history state procedure that
we used for coherently controlled causal order to the reversed Lugano process. Instead, the main system itself has to
control the desynchronization process. One can try to, similarly to the quantum switch, use the projectors PA,PB ,PC
and P⊥ to define a controlled operation that de-synchronizes the clocks. Afterwards, one can use the clocks as a
control system to define another controlled operation that applies the unitary operations (42)- (45) for the different
control values. However, the re-synchronization cannot be done independently of the unitaries UA, UB and UC . More
specifically, the described procedure will lead to a term in the history state of the form

|Ψ〉〉 = · · ·+ |γ⊥〉c⊗(UA⊗UB ⊗UCP⊥)|φ〉S + |γA〉c⊗(XUA⊗UB ⊗UCPA)|φ〉S
+|γB〉c⊗(UA⊗XUB ⊗UCPB)|φ〉S + |γC〉c⊗(UA⊗UB ⊗XUCPC)|φ〉S + . . . (47)

with some clock states |γ⊥〉c, |γA〉c, |γB〉c and |γC〉c, which represent the different time orderings. The ques-
tion is how to complete the history state, i.e. how to resynchronize the clocks. We are only allowed to use the
agents’ operations once and this has already happened. The states UA⊗UB ⊗UCP⊥|φ〉S , XUA⊗UB ⊗UCPA|φ〉S ,
UA⊗XUB ⊗UCPB |φ〉S and UA⊗UB ⊗XUCPC |φ〉S all depend on UA, UB , UC in different, non-trivial ways. This
means any overall map using them to “resynchronize” the clocks will non-trivially depend on UA, UB and UC as
well. This in turn leads to a non-trivial dependence of UX(tX , tX − 1) on UX for all X ∈ {A,B,C} during the
resynchronization part towards the end of the protocol, i.e. for tX > t∗X , which is a violation of Assumption U.3.

FIG. 8: The causal reference frame of agent A inside the time reversed Lugano process as given in [11] (B’s and C’s
perspectival circuits look analogous). There is no control degree of freedom. All three agents act on different
subsystems of the input system |φ〉, but in a way that depends on the subsystems the other agents act on. Because
of the gates that are not affine-linear in UB and UC this causal reference frame decomposition is incompatible with
our setting.

Ref. [11] presented a causal reference frame decomposition of the reverse Lugano process, which for agent A is
shown in Figure 8. It uses perspectival circuits with gates that are not affine-linear in the respective unitaries of

the other agents, U†BXUB and U†CXUC for A’s perspective. However, the corresponding perspectival states are for-
bidden in our framework due to the requirement of affine-linearity for MtA,tB ,tC (UA, UB , UC) discussed in Section IV C.

Note, however, that the two impossible implementations of the process G(UA, UB , UC) discussed above, namely
the causal reference frame decomposition of [11] according to Figure 8 and the desynchronization-resynchronization-
protocol, are not necessarily the only strategies for how to describe the reverse Lugano process within our non-causal
Page-Wootters framework. Determining whether this process can be realized in this framework remains an open
problem left for future work.
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VI. CONCLUSION

In this work we showed how the Page-Wootters approach and the process matrix formalism may be combined to
give a history state description of non-causal processes. We considered an operational setting that allows for probing
indefinite causal structure. In this setting we explicitly modeled the passage of time as perceived by different agents
using discrete quantum clocks. This allowed us to use a history state approach to which we added a set of well-
motivated axioms about the protocol and the perspectives of the agents. As a consequence of these axioms, the causal
structures arising in our setting are described by pure process matrices. A well-known result from previous literature
about pure process matrices implies that in the bipartite case, no violation of device-independent causal inequalities
can occur in our setting. Nonetheless, we could show that important physical scenarios beyond causal circuits and
beyond non-relativistic clocks fit into our framework. More specifically, we showed how to describe a scenario inspired
by the twin paradox involving varying clock ticking speeds with our approach. But most importantly, we proved that
all processes representing coherent control of causal order (e.g. the quantum switch) can be implemented using our
description.

We showed how to extract the time-evolution corresponding to the perspective of any given agent. This lead us to a
refinement of the causal reference frame picture of Ref. [11] in which also the quantum clocks are explicitly modeled.
The presence of these clocks and a perspective-neutral history state impose extra conditions on the causal reference
frames. As an example, we showed that the evolution described by the causal past needs to be affine-linear in the
operations of the other agents. We applied this extra condition to rule out a specific causal reference decomposition
of the so-called time-reversed Lugano process provided in [11].

We conclude by pointing out a few directions for future research. While we focused on discrete clocks, this framework
can be adapted to continuous clocks, extending the approach of Ref. [22] to a systematic operational protocol that
allows for the extraction of process matrices.

In order to model the protocol for probing causal structure, we worked directly with history states instead of starting
with a constraint operator or physical projector. As a consequence, the relation between the physical projector and
the perspectival unitaries UX(t′, t) is an open question. Resolving this question might reveal further constraints on
the history states, possibly restricting the set of process matrices that can be considered physical.

Also, one could consider more restrictions on the normalization operators. In our investigations, Postulate N.2 did
not play an important role. So it might be fruitful to investigate its consequences, or be even more restrictive about
the specific form of the normalization operators.

An important class of non-causal processes that lack a physical interpretation are those that violate causal inequal-
ities (e.g. the aforementioned Lugano process). If one could show that these processes do not fit into our setting, this
would be important evidence that such processes should not be considered physical.

Furthermore, for notational convenience, we described our operational scenario only for the case that the unitaries
of the agents do not change the dimensions of the ancillary systems and of the parts of the main system that the agents
receive. Therefore, it is important to develop an extension of our formalism in which the dimensions are allowed to
change.

At last, we pointed out that our assumption about the initialization of the clocks means that our protocol does
not probe the full input space of the perspectival unitaries. Thus, it might be fruitful to investigate extensions and
modifications of the operational scenario in which the agents enter the causal structure at other times than expected
by the protocol. Doing this in a way that is mathematically and operationally self-consistent might reveal further
mathematical restrictions. For example, if the initialization time of an agent is wrong, should the time of action be
shifted too? If so, if one of the agents starts the protocol in a superposition of clock states, is the agent allowed to
have a superposition of times of actions too?
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Fund (FWF) through the Doctoral Programme CoQuS. Č.B. acknowledges financial support from the Austrian Science
Fund (FWF) through BeyondC (F7103-N48) and the project no. I-2906, from the European Commission via Testing
the Large-Scale Limit of Quantum Mechanics (TEQ) (No. 766900) project, and from Foundational Questions Institute
(FQXi). This research was supported by FQXi FFF Grant number FQXi-RFP-1815 from the Foundational Questions
Institute and Fetzer Franklin Fund, a donor advised fund of Silicon Valley Community Foundation. We acknowledge
a grant from the John Templeton Foundation (ID# 61466) as part of the The Quantum Information Structure of

CHAPTER 2. PAGE-WOOTTERS FORMULATION OF INDEFINITE
CAUSAL ORDER

46



Spacetime (QISS) Project (qiss.fr). Research at Perimeter Institute is supported in part by the Government of Canada
through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario
through the Ministry of Colleges and Universities.

[1] L. Hardy, Probability theories with dynamic causal structure: A new framework for quantum gravity (2005), arXiv:gr-
qc/0509120 [gr-qc].

[2] L. Hardy, Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure, Journal of
Physics A: Mathematical and Theoretical 40, 3081 (2007).

[3] L. Hardy, Quantum gravity computers: On the theory of computation with indefinite causal structure, in Quantum Reality,
Relativistic Causality, and Closing the Epistemic Circle: The Western Ontario Series in Philosophy of Science (Springer
Netherlands, Dordrecht, 2009) pp. 379–401, arXiv:quant-ph/0701019 [quant-ph].

[4] R. P. Feynman, The necessity of gravitational quantization, in The Role of Gravitation in Physics: Report from the 1957
Chapel Hill Conference, edited by D. Rickles and C. M. DeWitt (Edition Open Sources, 2011).
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[25] Č. Brukner, Bounding quantum correlations with indefinite causal order, New Journal of Physics 17, 083034 (2015).
[26] G. Chiribella, G. M. D’Ariano, P. Perinotti, and B. Valiron, Quantum computations without definite causal structure,

Physical Review A 88, 022318 (2013).
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Appendix A: Discretization and normalization operators

An important difference between continuous and discrete clocks is the fact that integrals
∫

dt pick up prefactors
when changing the integration variable while sums do not pick up such a prefactor under change of summation
index. Consider again the example from the main text of the history state |Ψ〉〉 =

∫
dtA|tA〉cA ⊗ |2tA〉cB with

perspectival states cA〈tA|Ψ〉〉 = |2tA〉 and cB 〈tB |Ψ〉〉 =
∫

dtA|tA〉〈tB |2tA〉 = 1
2 |1/2 tB〉. If we consider a naive

discretization of the above example of the form |Ψ〉〉 =
∑
k |k〉cA ⊗ |2k〉cB we find cA〈tA|Ψ〉〉 = |2tA〉 and for even

values of tB we find cB 〈tB |Ψ〉〉 = |1/2 tB〉. Hence, the continuous and discrete version of cB 〈tB |Ψ〉〉 differ by a factor 1
2 .

The second important issue arises from the use of approximations like time-binning, i.e. to assign every continuous
time state |t〉 to the closest discrete time state, for discretization. Such procedures are not injective: Continuous
times |t+ δt〉 and |t〉 with very small δt will in general get mapped to the same discrete time state. This means that
the discretization procedure itself can change the normalization and inner product of states. Such artifacts of the
discretization procedure can be countered by the introduction of normalization operators.

For well-synchronized clocks with constant and same ticking speed, the aforementioned discretization artifacts can
usually be avoided. However, we will show now issues one encounters in the context of different or varying clock
ticking speeds. As a warm-up, let us consider again a history state of a clock that ticks twice as fast as another clock:∫

dt|t〉cA ⊗ |2t〉cB . A first guess for a discretization might be something of the form |Ψ 〉〉 =
∑
k |k〉cA ⊗ |2k〉cB with k

taking integer values. This would not be an acceptable discretization in our approach: Our postulates demand that
agent B sees a state for each time value of their clock, and that this state evolves via unitary time evolution. However,

cB 〈t|Ψ 〉〉 = 0 for t odd makes this impossible.
One possible approach to fix this issue might be to instead use |Ψ 〉〉 =

∑
k |k〉cA ⊗ |k〉cB and keep a note that

says that the times on B’s clock must be multiplied by another factor of 2 to obtain the “real” time of Bob. Such a
fix is very unappealing and goes against the idea that the clock states directly reflect the time of the agents, up to
rounding error. Also, in the context of varying ticking rates the implementation of such a fixing strategy can become
very complicated. The situation becomes even worse in the context of superpositions of histories: Here, the mapping
of |k〉cB to the actual value of Bob’s clock might depend on the branch of the superposition and the same |k〉cB might
correspond to vastly different times on B’s clock. An example might be a history state that is a superposition of A’s
clock being twice as fast and B’s clock being twice as fast, i.e.

∫
dt(α|2t〉 ⊗ |t〉+ β|t〉 ⊗ |2t〉). Obviously, now a “fix”

like
∑
k(α|k〉 ⊗ |k〉+ β|k〉 ⊗ |k〉) cannot work.

Let us look for a good history state that can describe discrete clocks of different ticking rates. We would like the
clock states to directly tell us the time of the clock. Also, as we argued before, our discretization of clocks is not
allowed to leave out any times. Then, to describe clocks of different speeds, one is left with the option to instead
repeat times: A discretization of

∫
dt|2t〉cA ⊗ |t〉cB might be |Ψ 〉〉 =

∑
k |k〉cA ⊗ |bk2 c〉cB , with b•c meaning “rounded

down”. As a specific example, let us consider

|Ψ〉〉 = |0〉 ⊗ |0〉+ |1〉 ⊗ |0〉+ |2〉 ⊗ |1〉+ |3〉 ⊗ |1〉+ |4〉 ⊗ |2〉+ |5〉 ⊗ |2〉 . . . (A1)

This procedure of repeating times does have a nice interpretation: One can interpret the clock states |k〉 as the number
of ticks the agent has heard so far. As A’s clock is twice as fast, B hears the first tick when A already hears the second.

Let us see what the states for the different perspectives look like. We have

cA〈0|Ψ 〉〉 = |0〉cB , cA〈1|Ψ 〉〉 = |0〉cB , cA〈2|Ψ 〉〉 = |1〉cB , cA〈3|Ψ 〉〉 = |1〉cB , cA〈4|Ψ 〉〉 = |2〉cB , . . .

This fits to the interpretation that whenever B hears one tick, A already hears the second tick. Note that the states
are properly normalized. For B’s perspective we find

cB 〈0|Ψ 〉〉 = |0〉cA + |1〉cA , cB 〈1|Ψ 〉〉 = |2〉cA + |3〉cA , cB 〈2|Ψ 〉〉 = |4〉cA + |5〉cA , . . .

First we note that these states are not properly normalized. But this can be easily fixed with a normalization operator

N
(B)
tB = 1√

2
1. Indeed, this normalization factor arises because we map continuous times |k + ∆t〉cB ,with k an integer,

0 ≤ ∆t < 1, to the same discrete state |k〉cB , as mentioned previously. Furthermore we note that B “coherently
interpolates” between the two times of A that are consistent with B’s time. Also this is reasonable: As B cannot
have “which-time”-information about A’s clock without a measurement (in analogy to which-path-information), B
puts the two possible times in superposition.
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Appendix B: About the physical projector and its relation to unitary time evolution

It is unclear whether the unitaries UX(t′X , tX) can always be chosen such that they satisfy a nice relationship,

similar to Equation (9), with P̂H . The examples considered in Ref. [22] would seem to suggest an equation of a form
like

〈t′X |P̂H |tX〉
?
= (N

(X)
t′X

)−1 UX(t′X , tX)N
(X)
tX . (B1)

However, we will show now that there exist choices of history states |Ψ〉〉 and time evolutions UX(t′X , tX) that are
compatible with our framework as presented in Section IV A, but do not satisfy Equation (B1).

If Equation (B1) was true we could alternatively write

P̂H =
∑

t,t′

|t′〉〈t|cA ⊗ (N
(A)
t′ )−1 UA(t′, t)N (A)

t , (B2)

and a similar decomposition held for all other agents. Looking at two different ways to write out 〈t′A|〈t′B |PH |tA〉|tB〉,
we have (using the notation NX(t) := N

(X)
t )

〈t′B |N−1A (t′A)UA(t′A, tA)NA(tA)|tB〉 = 〈t′A|N−1B (t′B)UB(t′B , tB)NB(tB)|tA〉. (B3)

By explicitly plugging in normalization operators NX and unitaries UX from the example in Section V B we can see
that Equation (B3) does not hold for this representation of the quantum switch. More specifically, taking t′B = 3,
tB = 2, t′A = 5, tA = 4, we obtain

〈tB = 3|N−1A (5)UA(5, 4)NA(4)|tB = 2〉 =
√

2(〈3|T ′4|2〉)|0〉〈0| ⊗ UB =
√

2|0〉〈0| ⊗ UB , (B4)

which is not equal to

〈tA = 5|N−1B (3)UB(3, 2)NB(2)|tA = 4〉 =
1√
2

(〈5|T ′2|4〉)|0〉〈0| ⊗ UA =
1√
2
|0〉〈0| ⊗ UA. (B5)

Here, we extended T ′i from the main text to act like the clock ticking operator T , when applied to |j〉 with
j 6= i− 1, i, i+ 1.

Therefore, Equation (B1) does not hold. If one exchanged the normalization operators in Equation (B1) with their

inverses or adjoints, the
√

2 factors would change, but we would still have the UA vs UB-mismatch. This mismatch is
caused by having both agents consider a time step that does not correspond to their own time of action t∗ − 1 7→ t∗,
with t∗ = 4, but compatible with a time step at which one agent sees the other agent act. However, our extension
of T ′2 and T ′4 to the full clock space was quite arbitrary, and one can make other choices for which Equations (B5)
and (B4) simple evaluate to zero. Therefore, for this particular choice of extension and agent times, the contradiction
disappears.

In general, it is unclear whether it is impossible to satisfy Equation (B1) or a similar equation. In our operational
setting, we assumed that the clocks are initialized to the states |0〉. Therefore, the states that emerge during the
protocol do not probe the full input space of the UX(t′X , tX). In other words, there are several choices for UX(t′X , tX)
that are compatible with our assumptions in Section IV A. We leave for future work the question of whether there
exists a choice of UX(t′X , tX) that simultaneously satisfies our postulates and a relation similar to Equation (B1). It
is conceivable that further postulates that determine how the UX(t′X , tX) act if not all clocks were initialized to time
0 at the beginning of the protocol further restrict the set of allowed process matrices and causal reference frames.

Appendix C: Coherently controlled causal order for an arbitrary number of agents

1. Consistency requirements

In this appendix we show explicitly how to implement coherently controlled causal order for an arbitrary number
of agents. We start with some general considerations concerning the coherent superposition of quantum combs.
Afterwards we present each of the three conceptual steps of the implementation, i.e. desynchronization, application
of the combs and resynchronization, in detail.
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As mentioned in the main text, we work in a purified description of quantum theory and quantum processes in
particular. Furthermore, our goal is to describe a coherently controlled superposition of different causal orders.
Therefore, we will focus on definite causal orders that are described as sequences of unitary channels with memory.

That means we will consider combs G̃k, 1 ≤ k ≤ M , that are given by sequences of unitaries V
(k)
j with memory.

Each of the combs G̃k has a definite order of the agents that we describe via a permutation πk. More specifically,

the j-th agent in comb k is given by Aπk(j). The V
(k)
j act trivially on the agents’ ancillas, while the agents’ unitaries

Uj do not act on the memory of the comb, see Figure 6 for a tripartite example. Leaving identity operations on the
ancillary systems of the agents and the comb memories implicit, our combs are thus

G̃k(U1, U2, . . . UN ) = V
(k)
N Uπk(N)V

(k)
N−1 . . . V

(k)
1 Uπk(1)V

(k)
0 , (C1)

as explained in the main text.

Introducing an M -dimensional control system HSC , we would like to consider a controlled superposition of these
M combs in the form [56–58]

G(U1, . . . UN ) =

M∑

k=1

|k〉〈k|SC ⊗ G̃k(U1, U2, . . . UN ) =

M∑

k=1

|k〉〈k|SC ⊗ V (k)
N Uπk(N)V

(k)
N−1 . . . V

(k)
1 Uπk(1)V

(k)
0 . (C2)

While this definition looks intuitive, it leaves many details about the memories and ancillary systems implicit.
Operationally, it is not directly clear what it means to put different combs into a controlled superposition. What
if the dimensions do not match? How do we treat the different memory systems of the different combs? In the
main text, we made the assumption that all the relevant dimensions agree and that the combs can use the same
memory. While this is true for many examples of interest, e.g. optical experiments in which all agents act on the
polarization of a photon and no memory is involved at all, here we will discuss relaxations of these assumptions.
After all, as we pointed out in the main text, these assumptions are just necessary to make the definition of a con-
trolled superposition of combs well-defined, but the protocol does not care about the implicit details in Equation (C2).

Therefore, we will now consider the compatibility conditions of the combs and the dimensions in further detail.
First of all, all combs need the same dimension for the input from the causal past, otherwise they cannot receive
the same input from the causal past. Similarly, they need the same dimension for the output to the causal future.
Furthermore, the dimension of the input that an agent receives from the combs has to be the same for all combs.
Similarly, the dimension of the output that the agent provides to the combs has to be independent of the comb.
Otherwise, the agent could use the input or output dimension to find out that some of the combs are not used.

For notational convenience, in Section IV we assumed that the dimension of the input to the causal structure (i.e.
P in the left half of Figure 6) and the dimension of its output to the causal future (i.e. F in the left half of Figure 6)
are the same, and we called the corresponding physical system the main system HS . In a general sequence of unitaries
with memory, however, the initial and the final dimension do not necessarily agree, since the dimensions of the agents’
ancillary systems might change after they apply their unitary actions. As we model the agents’ actions as unitaries,
a change in the ancillary dimension of the agents is equivalent to a change of the dimension of the comb system that
the agents interact with. We will also refer to sequences of unitary channels with memory that have such changes
in dimension as combs. One way to avoid this problem might be to impose well-motivated physical restrictions. For
example, one might demand that the physical information carrier that the comb provides to the agents is not replaced
by the agents, only its state. And that the agents give that physical information carrier with the changed state back
to the comb. Or that the agents can use some reversible operations that do not require access to an ancillary system.
While such assumptions may be appealing operationally, mathematically they are restrictions. Can we weaken these
restrictions?

In the following, we will consider two different strategies to weaken the restrictions. The first strategy requires
extending our formalism to the case that the dimensions of subsystems can change if the agents apply their unitaries.
Such an extension is important in its own right. However, our considerations here will be rather speculative. They
suggest that it must be operationally possible to make sense of superpositions involving different physical systems
in each branch of the superposition. Mathematically, they guide us to an enlarged Hilbert space that combines the
situations involving different physical systems in a direct sum.

The second strategy is mathematically more rigorous and operationally less exotic, but it requires the introduction
of extra environment systems that run parallel to the combs. These changes fix the dimension mismatch at the cost
of letting the agents act on these new environment systems too, i.e. giving the agents more power.
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2. Strategy 1 to deal with changing dimensions: Extending our formalism

To treat causal structures in which some of the dimensions can change in between, one needs a generalization of
the formalization of the scenario considered in Section IV. In this generalization, one allows the dimensions of the
main system and the agents’ ancillary systems to change.

The generalization affects the input spaces and output spaces of the normalization operators and the agents’
perspectival time-evolution operators, as well as the history state. The Hilbert spaces of the inputs and outputs
of the operators and the history state depend on whether some agents’ operations have already been applied or
not, and in an indefinite causal structure several of these options might be combined coherently. The fact that we
consider a purified description of quantum theory with unitary evolution implies that the overall dimension does not
change. Therefore, the global Hilbert spaces will remain isomorphic. However, their factorization into constituent
parts depends on whether the agents’ operations have been applied or not. Therefore, one needs a way to deal with
the situation that several factorizations of the global Hilbert space might matter simultaneously.

To provide a specific example, let us say that at time |t〉c agent A has not applied their operation yet. At this time,
the input from the causal structure lives on a space HA and has state |ω〉A, while the agent’s ancillary system is HA′

and has state |0〉A′ . At the next time, i.e. |t+ 1〉c, the agent has applied their unitary operation, and the output to
the causal structure lives on Hilbert space HÃ and has state |ω̃〉Ã, while the ancillary system is now HÃ′ and has
state |1〉Ã′ . Furthermore, we assume that the indefinite causal structure allows both times to appear simultaneously.
This means we would like to make sense of a state of the form

|t〉c ⊗ |ω〉A ⊗ |0〉A′ + |t+ 1〉c ⊗ |ω̃〉Ã ⊗ |1〉Ã′ (C3)

One approach to this issue would be to introduce a canonical way to identify the different factorizations with each
other, i.e. to use an isomorphism. Another approach might be to consider a direct sum of the different Hilbert space
factorizations, i.e. (HA ⊗HA′)⊕ (HÃ ⊗HÃ′). The latter allows us to directly make mathematical sense of Eq. (C3),
but it comes at the cost of making the Hilbert space larger.

However, this direct sum does have an operational meaning as the Hilbert space describing situations in which
the systems before the agents’ operation and the systems after the agents’ operations might appear in superposition.
Therefore, after repeating the same direct sum procedure for the other agents, one might postulate that this is the
right global Hilbert space to consider. To extend the normalization operators to this enlarged Hilbert space, one might
demand in addition that the normalization operators are block-diagonal, i.e. that they cannot mix up the systems
before the agent’s operation and the systems after. Postulates S.1 and S.2 only consider the beginning and the end
at which only one factorization matters (i.e. none of the agents has used their operation yet, or all of them have,
respectively). Therefore these postulates can be directly adapted without changing their meaning. Furthermore, one
can directly carry over Postulates N.1, N.2 and N.3 by demanding them for each block separately, without changing
their motivation. Similarly, Postulates U.2 and U.3 can be directly carried over: U.2 just expresses an essential
property of time evolution operators, while U.3 just says that at the time of action, the agent uses their operation
and ancilla, while the rest evolves in an uncorrelated way, not caring what that entails. The only real question
seems to be whether time evolution should still be unitary on the enlarged global Hilbert space. Since our starting
configuration only lives on one block (the one in which none of the agents have used their operation), the effective
Hilbert space probed by time evolution might be much smaller than the enlarged global Hilbert space, at least for fixed
choices of agent unitaries. Therefore, for fixed agent unitaries, one might restrict the input space and output space
of the time evolution operators to just the effective subspace, and in particular demand unitarity just on this subspace.

However, the above considerations are speculative and should only be understood as hints or guidelines for a real
formalization. We will leave the precise formalization and detailed investigation of these ideas for future work. We just
keep the basic lessons from the previous paragraphs: Superpositions of different physical systems can be operationally
meaningful (for example, they appear after scattering processes in relativistic quantum field theory, where it is unclear
which particles will be detected before actually using the detector) and they can be mathematically described using
a direct sum.

Furthermore, as we will see, for a fixed value of the control system the different factorizations will not appear
simultaneously. The normalization operators will only be constant positive multiples of the identity depending only
on the control value, while the perspectival time-evolutions can still be interpreted as controlled operations that act
unitarily on/between the relevant factorizations, and respect the time of action requirements. Therefore, while we
lack a rigorous formalization of our postulates for the case that the dimensions can change, our protocol will still
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satisfy the purpose/intention of the postulates.

3. Strategy 2 to deal with changing dimensions: Add environment systems

As the above considerations are rather speculative, both mathematically and considering their operational mean-
ing, we provide another approach to solve the issue of the mismatching dimensions. We indicated in the beginning
that there is some ambiguity about the operational meaning of putting different chains of unitaries with memory
in superposition: How are the memories and ancillary systems implemented physically? Can the physical systems
implementing the memories be shared between the combs, or do they have to be separate, only existing for the right
value of the control system and even then only at the right time? Such ambiguities about the operational meaning of
superpositions of chains of unitaries with inconsistent dimensions give us some freedom, and we can use this freedom
to choose the operational scenario that is the most natural.

Specifically, we are interested in extensions of the dimensions of the physical systems, with the requirement that
these extensions are operationally rather trivial. Some issues related to mismatching dimensions might be fixed this
way. For example, one can enlarge the Hilbert space on which a unitary acts by adding extra basis states, and
letting the unitary act trivially on these extra basis states, while not changing its action on the other basis states.
Alternatively, one can introduce additional environment systems. One can use this strategy to modify the combs and
the agents to enforce that the dimensions match.

For example, let us say that the open end of V
(k)
1 towards agent Aπk(2) has a smaller dimension than the open end

of V
(k)
2 towards the same agent. We can fix this mismatch by making the dimension of V

(k)
1 larger, letting V

(k)
1 act

trivially on the extra dimensions as described above. However, we change the power of agent Aπk(2) by allowing this
agent to act on these extra dimensions.

Alternatively one can add extra environment systems that run parallel to the combs, but are considered a part
of an enlarged comb. Arguably, this changes the comb itself only in a trivial way: After all, we just add parallel
running environment systems, only performing identity transformations. However, if we choose the dimensions right
(“smallest common multiple”), and allow the agents to act on these environment systems too, then we can achieve
that the open ends within each slot of the enhanced comb have the same dimension. One can use similar tricks to
achieve that there is a unique memory dimension that is shared by all combs at all times.

Since the enlargement of the combs by adding environment systems that implement identity channels has a clear
operational meaning, this is the variant we commit to from now on.

So far, we only focused on pure combs in the form of unitary sequences with memory. However, the ideas of this
section also allow us to discuss mixed combs given as sequences of channels with memory. Here, the operational
ambiguities are even larger: Our goal is to describe a coherent process involving superpositions of combs that are not
fully coherent by themselves. First of all, we need to purify the combs by purifying the channels, compare Figure 9.
This procedure is not fully unique. Our choice of purification procedures will be part of our definition for what it
means to put these combs into a coherently controlled superposition.

We can use our trick to enlarge the combs by parallel environment systems to enforce that the dilation systems
used to purify the combs have the same dimension for all combs. Therefore, in Figure 9, we can assume that the
discarding operation is the same for all combs. This discarding operation will not be considered part of the protocol,
but will be applied after the protocol. Furthermore, we can assume that the Hilbert space of the dilation state (|ν〉 in

Figure 9) is the same for all combs. Then, by modifying V
(k)
0 by adding an extra unitary on the wire of the dilation

input, we can assume that the dilation input is the same for all combs. In Figure 9, this dilation input is exactly the
state called |ν〉, which is independent of the comb index k. This state will not be considered part of the protocol
itself. Instead, we consider it to be a part of the input state to the causal structure (i.e. a part of |ψ(0, . . . , 0)〉 in the
notation of Section IV A).

Our trick of enlarging the combs with non-evolving parallel environments allowed us to enforce that the relevant
dimensions agree. We will now provide a mathematical formalization of this situation.
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FIG. 9: The relation between the pure and mixed combs considered here: The dilation environment input |ν〉 is
treated as part of an extended main system that is the input to the causal structure. The partial trace over the
environment output is only applied after the main protocol has finished. The unitaries with memory are a pure
comb that we handle just as in the previous sections. One can assume that the dilation inputs for all combs are all
the same, or that each comb has its own one and that the dilation inputs of the other combs get discarded.

The comb memory wire parallel to the action of agent Aj is called Ej . As argued before, it is independent of the
the comb index k. Furthermore, we also argued that the ancillary system dimension of the agents do not change. We
will call the ancillary systems HA′

j
and their collection HS′ := HA′

1
⊗ · · · ⊗HA′

N
. Hence, the combs can be written as

G̃k(U1, U2, . . . UN ) = (C4)

(V
(k)
N ⊗ 1S′)(Uπk(N)⊗ 1Eπk(N)

⊗ 1S′\πk(N))(V
(k)
N−1⊗ 1S′) . . . (V

(k)
1 ⊗ 1S′)(Uπk(1)⊗1Eπk(1)

⊗ 1S′\πk(1))(V
(k)
0 ⊗1S′),

compare to [56–58]. Here, 1S′\πk(j) is the identity on all ancillary systems except on the ancillary system of agent
πk(j). Leaving identity operations on the ancillas implicit for notational convenience we thus arrive at Equation (38)
from the main text.

In what follows we describe a general procedure for writing down a history state complying with our axioms from
Section IV A. While there are potentially many ways to write down such history states, our goal was to pick one with
with a notation that is as simple as possible for an arbitrary number of agents. This means the procedure will not be
as efficient or short as possible, but will use indices and notation that make it easier to discuss the local perspectives
later on.

As explained in the main text, the history state decomposes into three parts as

|Ψ〉〉 = |Ψdesync〉〉+ |Ψcombs〉〉+ |Ψresync〉〉, (C5)

and we will now consider each part separately.

4. Desynchronizing the clocks

In the first step of the protocol we use the control degree of freedom to desynchronize the clocks such that the agents
are put into the right order. It will be helpful to manipulate the clocks such that consecutive agents are two ticks

apart because between the actions of two consecutive agents there is a unitary V
(k)
j of the comb. To desynchronize

the clocks, we will partially freeze them in time. More specifically, we start from |0, 0, . . . , 0〉⊗ |ψ〉S . At first all the
clocks make two synchronized step to |2, 2, . . . , 2〉 ⊗ |ψ〉S . For the desynchronization procedure we consider a history
state of the following form:

|Ψdesync〉〉 = |0, 0, . . . , 0〉c⊗ |ψ〉S + |1, 1, . . . , 1〉c⊗ |ψ〉S +
M∑

k=1

T0∑

j=2

|t(j)(k)1 , t(j)
(k)
2 , . . . , t(j)

(k)
N 〉c⊗(|k〉〈k| ⊗ 1)|ψ〉S (C6)

There are many desynchronization procedures one can choose from. Our goal is to pick one with a notation that
is as simple as possible for an arbitrary amount of agents. This means the procedure will not be as efficient or short
as possible, but will use indices and notation that make it easier to discuss the local perspectives later on. One such
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FIG. 10: This figure shows the general scenario for coherently controlled causal order in the tripartite case (see also

[56–58]). The process G consists of a control degree of freedom, whose value k controls which comb G̃k is

implemented. The order of the agents Aj in comb G̃k is described by a permutation πk, i.e. the m-th agent in comb

G̃k is agent Aπk(m). The combs G̃k are assumed to be pure, implemented via unitaries V
(k)
j with memories and have

have been extended (e.g. via ancillas) such that all the relevant dimensions are independent of k. This means the
global past P and the global future F are independent of k. Furthermore, the dimension of the comb memory
Eπk(m) running parallel to agent Aπk(m) is independent of k. The agents’ operations Uj are shown in purple. They
can act on the ancilla A′j of the respective agent, but not on the ancillas of the other agents or the comb memory.

procedure works as follows:

The clock of the fastest agent, i.e. πk(1), continues to tick at the same rate as before. This we describe via

t(j)
(k)
πk(1)

= j (C7)

For notational simplicity, we will desynchronize the clocks one after the other. Consider integers 2 ≤ m ≤ N . We
use the time range described by 2(m − 2) · N + 2 ≤ j ≤ 2(m − 1) · N + 1 to slow down the clock of agent πk(m).
More specifically, at times 2(m− 2) ·N + 2 ≤ j ≤ 2(m− 2) ·N + 2(m− 1) + 2, the clock of agent πk(m) completely
freezes, while the clocks of the other agents march on. Except for that freezing period, the clock ticks at a normal
rate. Overall, this can be described as follows (m ≥ 2):

t(j)
(k)
πk(m) =





j for j ≤ 2(m− 2)N + 2

2(m− 2) ·N + 2 for 2(m− 2)N + 2 ≤ j ≤ 2(m− 2)N + 2(m− 1) + 2

j − 2(m− 1) for j ≥ 2(m− 2)N + 2(m− 1) + 3

(C8)

We choose the largest j to be

T0 := 2(N − 2)N + 2(N − 1) + 4 + 4(N + 1) = 2N2 + 2(N + 1) + 4, (C9)

which includes 4(N + 1) more well-synchronized ticks to make sure that for all k the clocks freezes are far way from
the application of the combs. The desynchronization procedure is shown for N = 4 in Figure 11.

First, we note that two consecutive agents πk(m) and πk(m+ 1) are indeed two time steps apart at the end:

[j − 2([m+ 1]− 1)]− [j − 2(m− 1)] = −2
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FIG. 11: This figure shows the clock times during the desynchronization procedure for the special case N = 4. Time
passes from left to right. Time freezing is marked in color. After the shown times only well-synchronized ticks
happen.

Moreover, we made sure to construct the history state such that only one clock freezes simultaneously, i.e. time
freezes of different clocks are well-separated from each other, and that no times are skipped.

Next, let us consider the local perspectives, i.e. ca〈t|Ψdesync〉〉. Let us expand |ψ〉S =
∑
k |k〉SC |ψk〉SP . Then we

have

|Ψdesync〉〉 = |0, 0, . . . , 0〉c⊗ |ψ〉S + |1, 1, . . . , 1〉c⊗ |ψ〉S +
M∑

k=1

T0∑

j=2

|t(j)(k)1 , t(j)
(k)
2 , . . . , t(j)

(k)
N 〉c⊗ |k〉SC |ψk〉SP (C10)

We now need to define the normalisation operators N
(Aj)
t and the unitaries UAj (t, t′) relating the perspectival states

at different times. Without loss of generality, we will show how to construct those for the point of view of A1. Define

αk(t) = ‖〈t|c1
T0∑

j=2

|t(j)(k)1 , t(j)
(k)
2 , . . . , t(j)

(k)
N 〉c‖. (C11)

For the local perspectives, let us consider the non-trivial case given by t ≥ 2. Furthermore, let us neglect for now the
overlap with the comb-phase, as we will treat this later. Then we have that αk(t) 6= 0 because no time is skipped
during desynchronization. We can therefore define

N
(A1)
t =

∑

k

1

αk(t)
|k〉〈k|SC , (C12)

as the normalization operator, which then gives the perspectival state

|ψA1(t)〉 =
∑

k

|ξk(t)〉c\1 |k〉SC |ψk〉SP , (C13)

where |ξk(t)〉c\1 is a normalized state proportional to 〈t|c1
∑T0

j=2 |t(j)
(k)
1 , t(j)

(k)
2 , . . . , t(j)

(k)
N 〉c. There exists a unitary re-

lating |ψA1(t)〉 with |ψA1(t+ 1)〉. This unitary can be chosen to have the form UA1
(t+1, t) =

∑
k u

A1

c,k ⊗ |k〉〈k|Sc⊗1SP
because our protocol only changes the clock times conditioned on comb index k, but nothing else. Indeed, we can
choose uA1

c,k to be any unitary mapping |ξk(t)〉c 7→ |ξk(t+ 1)〉, and acting arbitrarily on other states. Furthermore,

given comb index k, the protocol is independent of the initial state of the system, therefore the unitaries UA1
(t+ 1, t)

are independent of the initial system state since they are defined as controlled unitaries with the comb index k as
control. At last, the actions of the agents have not been used yet.

The generality of our last arguments shows that there are many possible desynchronization protocols. We have
merely chosen one that is easier to write down for an arbitrary number of agents. The price is that our protocol
requires a lot of time steps. It is very likely that there exist more efficient protocols, e.g. protocols that freeze several
clocks at once or insert less steps that only have synchronized clock ticks.

5. Application of the combs

Now we consider the application of the combs. The starting point is

M∑

k=1

(|k〉〈k| ⊗ 1)|ψ〉S ⊗ |T0, T0 − 2, . . . , T0 − 2(N − 1)〉cπk(1),...,cπk(N)
, (C14)
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with

|t1, t2, . . . , tN 〉cπk(1),...,cπk(N)
:= Ũπk |t1, t2, . . . , tN 〉c, (C15)

where Ũπk is the unitary implementing the permutation on the Hilbert spaces of the local clocks.
For this part of the protocol, the clocks will always tick in synchronization. Then all agents see the following

sequence of time evolutions:

V
(k)
0 ⊗ T⊗(N−1), Uπk(1) ⊗ T⊗(N−1), V

(k)
1 ⊗ T⊗(N−1), Uπk(2) ⊗ T⊗(N−1), . . . , Uπk(N) ⊗ T⊗(N−1), V (k)

N ⊗ T⊗(N−1)
(C16)

So the time of action for each agent is t∗ = T0 +2. For completeness, let us describe the time-evolutions the agents see
in more detail. For that purpose, we start at τ := T0 − 2(N − 1). This is the time that the slowest clock shows right
before entering |Ψcombs〉〉. Then the unitary time evolution that agent j sees is given by (p a non-negative integer)

UAj (τ + p+ 1, τ + p) =
M∑

k=1

|k〉〈k|Sc ⊗ T⊗(N−1) ⊗W (k)
Aj

(p+ 1, p) (C17)

Here, the W
(k)
Aj

(p+ 1, p) are either V
(k)
x for some x, or Uπk(y) for some y, or 1. The case 1 appears if for this specific

time and comb index the agent is still in the desynchronization phase or already in the resynchronization phase, while
for other comb indices the agent is the |ψcombs〉〉 phase. This potential overlap is the reason why we pad |ψdesync〉〉
and |ψresync〉〉 with many steps at which nothing happens, except for well-synchronized clock ticks. This overlap can
happen because for different comb indices k, the agent may enter |ψcombs〉〉 at very different times.

Let us analyze p in more detail. First, for a given comb index k, we determine the time of agent Aj , right before
agent Aj enters |ψcombs〉〉. For that purpose, let us mention the place of agent Aj in the causal order of comb k. This

is π−1k (j). Since τ is the time of the slowest clock right before entering the comb phase, and consecutive agents are

two clock ticks apart from each other, the clock of agent Aj shows τ + 2 · (N −π−1k (j)) right before entering the comb

phase. In particular, m
(k)
j := (N −π−1k (j)) is the number of places in comb k that agent Aj is ahead of the last agent

who acts. This can be rewritten as j = πk(N −m(k)
j ).

Now we can determine the unitaries W
(k)
Aj

(p + 1, p) in detail. Since we already pad |ψdesync〉〉 and |ψresync〉〉 with

many steps that have just synchronized clock ticks, we can directly begin with applying the unitaries of the combs
and the agents. Since p is the value that the agent is ahead of the smallest comb entering time τ , p is of the form:

p = 2m
(k)
j + “ number of the comb/agent unitary that gets applied ”

Here, 2m
(k)
j is again the offset to the comb entering time provided by having a faster clock. Then the unitary

W
(k)
Aj

(p+ 1, p) is given by (N ≥ x ≥ 0 a non-negative integer, N ≥ y ≥ 1 a positive integer)

W
(k)
Aj

(2m
(k)
j + 2x+ 1, 2m

(k)
j + 2x) = V (k)

x ,

W
(k)
Aj

(2m
(k)
j + 2y, 2m

(k)
j + 2y − 1) = Uπk(y), (C18)

W
(k)
Aj

(p+ 1, p) = 1 for other values of p.

The corresponding part of the history state looks as follows

|Ψcombs〉〉 =
M∑

k=1

|T0 + 1, T0 − 1, . . . , T0 − 2(N − 1) + 1〉cπk(1),...cπk(N)
⊗
[
|k〉〈k| ⊗ V (k)

0

]
|ψ〉S+

+
M∑

k=1

N∑

y=1

|T0 + 2y, T0 − 2 + 2y, . . . , T0 − 2(N − 1) + 2y〉cπk(1),...cπk(N)

⊗
[
|k〉〈k| ⊗

(
Uπk(y)V

(k)
y−1 . . . Uπk(1)V

(k)
0

)]
|ψ〉S+
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+

M∑

k=1

N∑

x=1

|T0 + 1 + 2x, T0 − 1 + 2x, . . . , T0 − 2(N − 1) + 1 + 2x〉cπk(1),...cπk(N)

⊗
[
|k〉〈k| ⊗

(
V (k)
x Uπk(x) . . . Uπk(1)V

(k)
0

)]
|ψ〉S (C19)

Hence, all the combs get applied, see Equation (C19), each agent has a well defined time of action and the other
agent’s unitaries appear at most linearly in each parties perspective, see Equation (C16).

6. Resynchronization

Now we consider the final part of the protocol, the resynchronization step. We define

T1 := T0 + 2N + 1 (C20)

such that the starting point is given by

M∑

k=1

|T1, T1 − 2, . . . , T1 − 2(N − 1)〉cπk(1),...cπk(N)
⊗
[
|k〉〈k| ⊗

(
V

(k)
N Uπk(N) . . . Uπk(1)V

(k)
0

)]
|ψ〉S

To make sure that for all k the clock freezes are far apart from the application of the combs, we first insert 4(N + 1)
well-synchronized ticks. Afterwards, we choose the resynchronization to proceed exactly as the desynchronization,

but with the order of agents reversed. By using the function t(j)
(k)
πk(m) from Equation (C8), this can be described by

the history state

|Ψresync〉〉 =

M∑

k=1

4(N+1)∑

j=0

|T1 + 1 + j, T1 − 1 + j, . . . , T1 + 1− 2(N − 1) + j〉cπk(1), ...cπk(N)

⊗
[
|k〉〈k| ⊗

(
V

(k)
N Uπk(N) . . . Uπk(1)V

(k)
0

)]
|ψ〉S+ (C21)

+
M∑

k=1

T0∑

j=0

|T1 + 4N + 6 + t(j)
(k)
πk(N), T1 + 4N + 4 + t(j)

(k)
πk(N−1), . . . , T1 + 2N + 8 + t(j)

(k)
πk(1)
〉cπk(1), ...cπk(N)

⊗
[
|k〉〈k| ⊗

(
V

(k)
N Uπk(N) . . . Uπk(1)V

(k)
0

)]
|ψ〉S

Just as during the desynchronization process, nothing happens on the system and we can write the perspectival states

and unitaries as |ψAj (t)〉 =
∑
k |ξk(t)〉c|k〉SC G̃k(U1, U2, . . . UN )|ψk〉SP and UAj (t+ 1, t) =

∑
k Ṽ

k
c ⊗ |k〉〈k|SC ⊗1SP . At

the end, all clocks show the same time T1 + T0 + 2N + 8., i.e. we end with the state

M∑

k=1

|T1 + T0 + 2N + 8, . . . T1 + T0 + 2N + 8〉 ⊗
[
|k〉〈k| ⊗

(
V

(k)
N Uπk(N) . . . Uπk(1)V

(k)
0

)]
|ψ〉S (C22)

Since directly before the end we have several time steps at which nothing but clock ticks happen, we see that we
obtain the coherent control of causal order we wanted in a way that is compatible with our postulates.

With this generic protocol we can implement any process describing coherent control of causal order within our
Page-Wootters framework.
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Abstract: A quantum process encodes the causal structure that relates quantum
operations performed in local laboratories. The process matrix formalism includes as
special cases quantum mechanics on a fixed background space-time, but also allows for
more general causal structures. Motivated by the interpretation of processes as a resource
for quantum information processing shared by two (or more) parties, with advantages

recently demonstrated both for computation and communication tasks, we investigate the
notion of composition of processes. We show that under very basic assumptions such a
composition rule does not exist. While the availability of multiple independent copies of a

resource, e.g. quantum states or channels, is the starting point for defining
information-theoretic notions such as entropy (both in classical and quantum Shannon
theory), our no-go result means that a Shannon theory of general quantum processes will

not possess a natural rule for the composition of resources.
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I. INTRODUCTION

Experimental tests with elementary quantum systems, most notably Bell tests, radically challenge the very no-
tions of physical reality and cause-effect relations [1, 2]. Notwithstanding such fundamental novel effects, quantum
mechanics still assumes a definite causal order of events. Namely, given two events, i.e. two operations performed
locally in two quantum laboratories, say A and B, we always assume that they are either time-like separated, hence,
A cannot signal to B or vice versa, or they are space-like separated, hence, they cannot signal in either direction.

Motivated by the problem of quantum gravity, operational formalisms have been proposed for computing
the joint probabilities for the outcome of local experiments, without the assumption of a fixed space-time back-
ground [3–8]. Process matrices [6] are introduced as the most general class of multilinear mappings of local quan-
tum operations into probability distributions. The process matrix formalism provides a unified description of
causally ordered quantum mechanics (quantum states and quantum channels), but also includes experimentally
relevant non-causal processes such as the quantum switch [7, 9–14]. Furthermore, the formalism predicts novel and
potentially observable phenomena, such as the violation of so-called causal inequalities [6, 14–17].

Moreover, it has been proven that such processes are able to provide advantages for quantum information pro-
cessing tasks, both for computation and communication [7, 18–24]. One would, then, expect that a theory of
information can be developed also for processes. Such a theory would deal with, e.g., rates of information com-
pression and communication, i.e., a process-analog of the classical and quantum Shannon theory. A fundamental
assumption in classical and quantum Shannon theory [25, 26] is the availability of multiple independent copies of
a resource (for example a classical source of random variables, a quantum state, or a channel), which is at the basis
of the definition of information-theoretic entropy, i.e., Shannon or von Neumann entropy. To be more concrete, in
the example of Schumacher’s compression [25, 27], the optimal data compression of n samples of an independent
and identically distributed quantum source ρ into nS(ρ) + δ qubits (with δ → 0 for n → ∞), and the subsequent
transmission, can be achieved only if the sender can act globally on multiple copies of the quantum state in which
the information is encoded.

A natural question then arises, namely, whether a process matrix can be understood as a resource available in
multiple (possibly identical) copies to experimenters, similarly to the example of Schumacher’s compression above.
Answering this question will provide us with deeper insight into the nature of process matrices. For instance, if we
consider an experimental realization of a process, e.g., consisting of a sequence of optical elements as in photonic
experiments [10, 11], one can easily imagine that it is possible to create two identical copies of the setup, and
share them among the two parties. Alternatively, if one imagines that a process matrix does not only represent
an experimental setup, but also the space-time structure [28–30], then it is harder to imagine how two “copies of
spacetime” may be shared between the two parties. More generally, such a composition rule should not be only
about identical copies, but it should also allows us to combine different processes.

It is important, at this point, to distinguish two different scenarios and their corresponding composition rules.
On the one hand, one may simply ask what is the rule for composing different processes independently, with the
requirement that experimenters act locally on each copy of the process; this rule is given by the tensor product. On
the other hand, going back to the example of Schumacher’s compression protocol, one may require that a single
experimenter (or many experimenters for multipartite systems) has access to multiple copies of a process, in order
to perform a protocol that involves global operations. We will see that the latter notion is incompatible with the
definition of a process.

For quantum states, quantum channels, or for any collection of processes with the same definite causal or-
der [31, 32], the parallel composition can be described by the tensor product. However, it is known that a parallel
composition of process matrices via the tensor product can fail [33], as the resulting process matrix contains causal
“double-loops” [6], which give rise to the “grandfather paradox”, or equivalently, to unormalised probabilites.

In this work, we show that under weak assumptions (bilinearity, every output is a valid process matrix, reduction
to the usual tensor product for definite causal structure) there exists no composition that allows the experimenters
to have access to multiple shared processes. This result means that many information theoretic protocols relying
on many copies of a resource have no straightforward generalization to process matrices.

II. PRELIMINARY NOTIONS

The most general operation that can be performed on a quantum system is represented by a quantum instrument,
namely, a collection {Ma}a of completely positive trace-nonincreasing maps that sum up to a trace-preserving
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FIG. 1. Graphical representation of the probability rule Eq. (2).

map M = ∑aMa. An operation represented by the instrument {Ma}a will give an output a with probability
P(a) = tr[Ma(ρ)] and transformation of the state ρ 7→ Ma(ρ)/P(a). We admit the possibility of an input x,
and label the corresponding operations as {Ma|x}a,x. Such maps can be represented as matrices via the Choi-
Jamiołkowski isomorphism [34, 35]

Ma|x 7→ Ma|x = ∑
ij
|i〉〈j|AI ⊗Ma|x(|i〉〈j|)AO . (1)

We will call Ma|x the Choi matrix ofMa|x [36]. Consider a set of local operations, i.e., Choi matrices, {MA
a|x}a,x and

{MB
b|y}b,y, associated with Alice’s and Bob’s laboratories, where A denotes Alice’s input-output space HAI ⊗HAO ,

and similarly for B. A process W is understood as the most general linear mapping of such operations into
probabilities, which can be represented using the trace inner product as

p(ab|xy) = tr
[(

MA
a|x ⊗MB

b|y
)

WT
]

, (2)

where T denotes the transposition in the computational basis. A visual representation of this probability rule is
given in Figure 1. In order to obtain valid probabilities, i.e., non-negative numbers summing up to one, for arbitrary
operations {MA

a|x}a,x, {MB
b|y}b,y (including operations that involve shared entangled ancillary systems), it can be

proven [9] that the following constraints must be satisfied

W ≥ 0 , (3)
tr W = dO = dAO dBO , (4)

BIBOW = AOBIBOW, (5)

AIAOW = AIAOBOW, (6)
W = BOW + AOW − AOBOW, (7)

where XW := 11X

dX
⊗ trX W. The linear constraints in Eqs. (4)-(7) can be written in a more compact form as

LV(W) = W, (8)

where LV is the projector onto the subspace of operators in L(HAB) that satisfy Eqs. (5)-(7). We will denote
such a linear subspace as LV(L(HAB)). This projector enforces the normalisation of probabilites, and can be
interpreted as preventing the paradoxes that would occur in processes with “causal loops” [6]. It is also convenient
to define W ⊂ L(HAB) as the set of matrices that satisfy conditions in Eqs. (3)-(7), and similarly W ′ for the
spaces A′B′ := HAI

′ ⊗ HAO
′ ⊗ HBI

′ ⊗ HBO
′ . If BOW = W, one can show that Bob cannot signal to Alice, i.e.,

p(a|x, y) = p(a|x, y′) for all a, x, y, y′, we denote it as A � B and we say that the process is causally ordered [9].
Similarly, the case AOW = W correspond to the opposite causal order and it is denoted as B � A. If AOBOW = W
we have at the same time A � B and B � A, then W represents a bipartite quantum state and we have no-signaling
in both directions.

Similarly, in the case of N parties A1, . . . , AN, linear constraints can be written in the compact form [9]

LVN (W) := [1−∏N
i=1(1−AO

i+AI
iAO

i)+∏N
i=1 AI

iAO
i]W = W, (9)
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B
′

BA

A
′

FIG. 2. The tensor product compostion rule µ(W, W ′) = W ⊗W ′. Here AA′ is a composite party that can perform general
quantum operations L(HAI A′I

) → L(HAO A′O
), and similarly for BB′; the corresponding probabilities are given by Eq. (2). We

shall show that this composition rule does not satisfy all requirements that we demand on such a rule.

where the index i runs through the different parties. Notice that if W = W1 ⊗W2, then the set {1, . . . , N} can be
split as χ1 ∪ χ2, with χ1 ∩ χ2 = ∅, where χk indexes the parties appearing in Wk. Then

LVN (W1 ⊗W2) =W1 ⊗W2 ⇔
[
1−∏i∈χ1

(1−AO
i+AI

iAO
i)+∏i∈χ1

AI
iAO

i
]W1 = W1 and [1−∏i∈χ2

(1−AO
i+AI

iAO
i)+∏i∈χ2

AI
iAO

i]W2 = W2. (10)

A. Examples

The process matrix formalism allows one to treat quantum states, quantum channels, and even situations where
the causal order is indefinite, in a unified way. For example, the process matrix associated to a quantum state
ρ can be described as a single party process matrix, as W = ρAI ⊗ 11AO . The process matrix associated to N
spatially separated copies of the state is a N-partite process W = ∏N

i=1 ρAi
I ⊗ 11Ai

O , where each of the Ai
I and Ai

O
are isomorphic. However, one could also consider the same W as a global single party process, with input Hilbert
space AI = ∏i Ai

I , and output Hilbert space AO = ∏i Ai
O.

A quantum channel C : L(HAO) → L(HBI ), connecting the output Hilbert space of Alice to Bob’s input Hilbert
space, can be described in process matrix language as W = CAOBI , where C is the Choi matrix of the channel C,
as defined by Eq. (1). The process matrix describing N parallel uses of the channel C is simply W = ∏N

i=1 CAi
OBi

I .
Again, this process can be considered as a 2N-partite process, or as a bipartite process with AO := ∏i Ai

O and
BI = ∏i Bi

I .

III. COMPOSITION RULES

From the above considerations, it seems that one could simply take the tensor product as a composition rule to
obtain multipartite processes representing multiple independent copies of a resource. In fact, Eq. (10) implies that
whenever the linear constraints are satisfied for both W1 and W2, then the corresponding multipartite constraints
will be satisfied for W1 ⊗W2.

The situation is different, however, if we require W1 and W2 to be shared by the same parties. To keep the
discussion simple, consider only two parties, Alice and Bob, who share two possible processes, W1 ∈ W and
W2 ∈ W ’. We want now to create the composite process µ(W1, W2) such that it is still a bipartite one, i.e., Alice
can access both the systems AIAO and AI

′AO
′, and Bob both BIBO and BI

′BO
′. If both processes have the same

definite order, i.e., AOW1 = W1 and AO
′W2 = W2, or the analogous condition with BO, BO

′, then, we know from
standard quantum theory that the right operation for composing such processes is W1 ⊗W2. This composition
rule is represented in Fig. 2. One can easily prove that whenever the two processes do not have the same definite
causal order, then LV(W1 ⊗W2) 6= W1 ⊗W2, where LV is taken with respect to the bipartition (AA′, BB′) [33]. For

CHAPTER 3. COMPOSITION RULES FOR QUANTUM PROCESSES: A
NO-GO THEOREM
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FIG. 3. The tensor product compostion rule µ(W, W ′) = W ⊗W ′ does not produce valid processes for all choices of W and W ′.
Here the process W corresponds to Alice recieving a state ρ, with an identity channel connecting her output system to Bob’s
input; W ′ is the same thing with the order of the parties reversed. The specific choice of local maps (X being the Pauli-X unitary
gate) have zero probability under the “generalised Born rule” Eq. (2), instead of one, as it should be for deterministic operations.

instance, consider the process

W ⊗W, with W =
1
2
(WA�B + WB�A) (11)

then, it is sufficient to check directly the violation of Eq. (7) with respect to the bipartition (AA′, BB′), namely,
W ⊗W 6= BOBO

′(W ⊗W) + AOAO
′(W ⊗W) − AOAO

′BOBO
′(W ⊗W). This problem is illustrated in Figure 3, where

two processes W, W ′ corresponding to channels in different directions can be seen to lead to a “loop”, and to
unnormalised probabilites. It is then natural to ask whether the tensor product can be replaced with another
composition rule.

One may, however, argue that it is in principle possible to define more general composition rules that take this
problem into account. For instance, one could take the tensor product and then “project” back the corresponding
operator onto the space of valid process, or one could first decompose the process into a linear combination of
processes in a definite order, then take the tensor product of each term and then recombine them. There are
infinitely many possible recipes to define a composition rule; an abstract prescription for general composition rules
is provided in Refs. [37, 38]. In the following, we will ask three reasonable and physically motivated requirements
and show that there is no way of satisfying all three.

To define our composition rule µ, we may ask the following minimal requirements:

R.1 µ(W1, W2) is a valid process w.r.t. the bipartition (AA′, BB′), for W1 ∈ W , W2 ∈ W ′ (Validity).

R.2 µ(W1, W2) = W1 ⊗W2 if W1 ∈ W , W2 ∈ W ′, and W1, W2 are in the same order, i.e., (AOW1 = W1 and
AO
′W2 = W2), or (BOW1 = W1 and BO

′W2 = W2) (Consistency).

R.3 µ(W1, W2) is convex linear in both arguments (Convex Linearity);

Requirement R.1 is needed for the composition of two processes to still belong to a bipartite scenario, i.e., where
Alice has access to both systems AA′, and Bob to BB′. R.2 is a consistency condition, i.e., the case of definite
order should coincide with standard quantum theory. R.3 can be derived by requiring that our composition is
well-behaved with respect to statistical mixtures, i.e., classical randomness, as explained in Appendix A.

It will be interesting to first consider a weaker assumption than R.1, because it will help us to single out the usual
mathematical tensor product as a composition rule:
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R’.1 µ(W1, W2) ≥ 0 for W1 ∈ W , W2 ∈ W ′ (Positivity);

Assume that µ is a composition rule satisfying R’.1 (or R.1), R.2, R.3. Then there is a unique real-linear extension
µL that satisfies µL(W1, W2) = µ(W1, W2), for all W1 ∈ W , W2 ∈ W ′. By construction this extension satisfies:

R’.3 µ(W1, W2) is real linear in both arguments (Linearity);

For the linear extension, we only demand R.1’ (or R.1) for process matrices as inputs, so it will trivially continue to
be satisfied. As R.2 itself is a (bi)linear condition, the linear extension will satisfy it even when it is extended to the
linear span of process matrices:

R’.2 µ(W1, W2) = W1 ⊗W2 if W1 ∈ LV(L(HAB)), W2 ∈ LV(L(HA′B′)), and W1, W2 satisfy (AOW1 = W1 and
AO
′W2 = W2), or (BOW1 = W1 and BO

′W2 = W2) (Consistency)

Details can be found in Appendix A.
With our axioms, we will be able to prove

Theorem 1. The only function satisfying R’.1, R’.2, R’.3 is µ(W1, W2) := W1 ⊗W2.

Theorem 1 can be applied to the linear extension µL, implying that µ(W1, W2) = W1 ⊗W2, and from that it will
follow

Theorem 2. There exists no function satisfying R.1-R.3.

In particular, Th. 1 will imply that for the multipartite case the choice of the composition rule is unique. We will
prove Th. 1 for the simple case of local systems consisting of n-qubits, i.e., with local dimension 2n for each one of
AI, AI

′, . . . , BO, BO
′, the general proof can be found in Appendix B. Given Th. 1, for the proof of Th. 2 it is sufficient

to use the result of Ref. [33], or the example in Eq. (11).
First, we need the following

Lemma 1. Given A1, A2 Hermitian operators such that A1 ∈ LV(L(HAB)) and A2 ∈ LV(L(HA′B′)), and let µ be a
composition rule satisfying R’.1-3. Then µ(A1, A2) = µ(A1, A2)

† and ‖µ(A1, A2)‖ ≤ ‖A1 ⊗ A2‖.

Proof.–For A Hermitian, its norm can be written as: ‖A‖ = min{λ | − λ11 ≤ A ≤ λ11}. Consider A1 ∈
LV(L(HAB)) and A2 ∈ LV(L(HA′B′)) Hermitian and with λi = ‖Ai‖ for i = 1, 2. We define

W±1 = λ111± A1, W±2 = λ211± A2, (12)

which are valid processes, up to a normalization factor, on the spaces AB and A′B′. We then have,

0 ≤ µ(W+
1 , W+

2 ) + µ(W−1 , W−2 )

2
= λ1λ211 + µ(A1, A2),

0 ≤ µ(W+
1 , W−2 ) + µ(W−1 , W+

2 )

2
= λ1λ211− µ(A1, A2),

(13)

which implies µ(A1, A2) = µ(A1, A2)
† and ‖µ(A1, A2)‖ ≤ λ1λ2. In the above, we used R’.1 for positivity, then R’.3

to split the different terms, and finally, R.2’ to take the identity out of µ.
For the following, we need to specialize the form of the operator A1 and A2. We define the set of tensor products

of either traceless operators or the identity as

PTIAB := {M = X1
AI
⊗ X2

AO
⊗ X3

BI
⊗ X4

BO
|M ∈ LV(L(HAB)), Xi identity or traceless }, (14)

and analogously for A′B′. For M ∈ PTIAB, an operator of the form 11 + M is, up to normalization, a causally
ordered process. With the above definition, we prove the following

Lemma 2. Let µ be a composition rule satisfying R’.1-3, and let M ∈ PTIAB and N ∈ PTIA′B′ be Hermitian operators with
eigenvalues in the interval [−1, 1]. Given an eigenvector |k〉 of M with eigenvalue (−1)k and an eigenvector |j〉 of N with
eigenvalue (−1)j, we have

µ(M, N)|k, j〉 = (−1)k+j|k, j〉 (15)

CHAPTER 3. COMPOSITION RULES FOR QUANTUM PROCESSES: A
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Proof.—To prove the lemma, it is sufficient to consider the (unnormalized) processes Wk
1 := 11 + (−1)k+1M and

W j
2 := 11 + (−1)j+1N. By R’.2, µ(11, 11) = 11⊗ 11 and µ(M, 11) = M⊗ 11, since for M ∈ PTIAB, either AO M = M or

BO M = M. Then,

µ(Wk
1 , W j

2) = 11 + (−1)k+1M⊗ 11 + (−1)j+111⊗ N + (−1)k+jµ(M, N). (16)

by R’.2 and R.3’, and finally, by R’.1,

0 ≤ 〈k, j|µ(Wk
1 , W j

2)|k, j〉 = 1− 1− 1 + (−1)j+k〈k, j|µ(M, N)|k, j〉, (17)

which implies µ(M, N)|k, j〉 = (−1)j+k|k, j〉, since ‖µ(M, N)‖ ≤ 1, by Lemma 1.
A straightforward corollary of Lemma 2 is that µ(M, N) = M ⊗ N whenever M, N have eigenvalues only in
{−1, 1}. By linearity, this is enough to prove Th. 1 for all processes defined on n-qubit systems (i.e., local dimension
2n) since we have a basis of operators, given by tensor products of Pauli matrices and the identity, that satisfy the
assumptions. The same reasoning can be extended to arbitrary dimensions, see the details in Appendix B.

IV. DISCUSSION AND CONCLUSIONS

In this letter, we considered the parallel composition of process matrices. As the tensor product is known to
lead to invalid process matrices, we investigated whether there is another map that can describe this parallel
composition. We only asked for three weak desiderata: First of all, in contrast to the usual tensor product, it should
always result in a valid process matrix. Furthermore, it should reduce to the familiar tensor product in the case of
definite causal order. At last, we demanded bilinearity for compatibility with the interpretation of convex mixtures
as statistical mixtures. However we have seen that even those reasonable desiderata are incompatible with each
other.

Our results imply that an information theory of general quantum processes cannot rely on the assumption that
multiple independent processes can be shared between two (or more) parties. In information theory, it is typical
to assume that many independent samples of a random source, many independent uses of a channel, etc. are
available, and that agents can perform global operations on many independent copies of the resource; this will
not be possible in an information theory of general quantum processes. Rather, these results suggest that the
proper setting for defining information-theoretic quantities such as entropies, capacities, etc., for process matrices
is single-shot information theory [39–41].

One can infer from the main proof that even the case of two channels with opposing signalling direction will lead
to a contradiction, which is perhaps unsurprising in the usual case of quantum mechanics on a fixed background
spacetime. Indeed, suppose that an event A is in the causal past of an event B, and that A′ is in the causal future
of B′. Our desiderata that A and A′ correspond to the same party can be interpreted as requiring that the events
A, A′ occur at the same space-time point p. This could be the case, but then B must be in the future light-cone of p,
while B′ must be in it’s past light-cone. It is thus impossible to satisfy the requirement that B and B′ also occur at
the same spacetime point.

Therefore any composition rule for process matrices must take care of removing the two-way signalling terms,
whose impossibility has a clear interpretation as discussed above. We have shown that there is no linear way of
doing so, if we ask for that our composition rule reduces to the usual tensor product in the case of two processes
with the same definite causal order.

However, there might exist reasonable non-linear composition rules, in the cases where processes have a concrete
physical interpretation. A meaningful way to define an event for the composite party AA′ is by the “simultaneous”
entering of both systems HA and HA′ in a localised laboratory, and similarly for BB′. There can be a probability
that the systems do not enter the laboratories simultaneously, in which case it is necessary to post-select on the
runs of the experiment where this was indeed the case. Since the post-selection probability depends on the two
processes that we wish to compose, the map will be non-linear. An important issue with such a post-selected
composition map for information-theoretic applications is that the parallel composition of resources is usually a
“free operation”, while in the post-selected case it would have a probability of failure.
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Appendix A: Linearity and convex linearity

In this appendix, we discuss convex-linearity and the linear extension of convex maps. First, let us argue why
convex-linearity is a reasonable physical assumption. In operational approaches to physical theories [42, 43], one
studies the probabilities that can be obtained from an abstract set of preparations and measurements. Given two
preparations α, and β, there exists an another preparation γ that consists of preparing α with classical probability
p, and preparing β with probability (1− p). The probability for any measurement on γ is the weighted sum of the
probabilities associated with preparations α and β. If we associate “states” with preparations, this means that the
state space is convex linear. For example, the density matrix formalism can be seen to arise by adding classical
uncertainty to the pure state formalism (i.e. kets in a Hilbert space). If one knows that with probability pj, one
prepares |j〉, then the density matrix is given by ρ = ∑j pj|j〉〈j|. Another motivation for allowing arbitrary
probabilistic mixtures appears in Refs. [44, 45], where it is shown that it implies that optimal compression is
equivalent to linear compression.
The same interpretation can be used for process matrices: if the process matrices Wj are prepared with
probabilities pj, then all expectations values (and by that all statistics) can be calculated with the effective process

matrix W = ∑j pjWj. This can be seen by noting that p(a, b) = Tr[WM(A)
a ⊗M(B)

b ] is a linear function in W and
applying the law of total probability.
Consistency demands that the composition rule µ remains compatible with this interpretation of convex mixtures:
If the first process is Wj with probability pj and the second process is W ′k with probability p′k, then the effective
process matrices determining the statistics are W = ∑j pjWj and W ′ = ∑k p′kW ′k. The resulting combined process

would be µ
(

∑j pjWj, ∑k p′kW ′k
)

. However, a different point of view would be to say: With probabilities pj and p′k
we combined the processes Wj and W ′k to µ(Wj, W ′k). So we prepared µ(Wj, W ′k) with probability pj p′k. Now, the
effective process matrix is described by ∑jk pj p′kµ(Wj, W ′k). As both points of view describe the same operational
scenario, they have to be consistent:

µ
(

∑
j

pjWj, ∑
k

p′kW ′k
)
= ∑

jk
pj p′kµ(Wj, W ′k). (A1)

Next, we explain in further detail how to extend a function satisfying R.1 (or R’.1), R.2 and R.3 to a function
satisfying R.1 (or R’.1), R’.2 and R’.3 on the linear span of all the process matrices.
Constructing the (bi)linear extension itself is a standard procedure in quantum information theory and is
explained e.g. in Refs. [42, 43] for general abstract state spaces. Let S1, S2 be two convex sets, and let f : S1 → S2
be a convex linear map. Let V1, V2 be the real vector spaces obtained respectively from S1, S2 by taking their linear
span. Then f can be extended in the obvious way to a linear function f L : V1 → V2, defined by
f L(λa + b) = λ f (a) + f (b), for all a, b ∈ S1, λ ∈ R.
However, we still need to check that the bilinear extension still satisfies our postulates: We do not change R.1 (or
R’.1), i.e. we only demand the output to be a process matrix (or positive) if the inputs are process matrices.
Therefore R.1 (or R’.1) trivially continues to hold as the extension does not change the function on inputs that are
process matrices.
Less trivial is how to generalize R.2. We will explicitly show that it still holds for the cases we need. Let us assume
we have operators M1 ∈ LV(L(HAB)) and M2 ∈ LV(L(HA′B′)) with AO M1 = M1 and A′O

M2 = M2 (or
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alternatively BO M1 = M1 and B′O
M2 = M2). We now show that

µL(M1, M2) = M1 ⊗M2. (A2)

By definition, M1 and M2 are allowed terms satisfying the projective condition (8). Therefore there exist λ1, λ2
such that 1

dI
+ λ1M1 and 1

dI′
+ λ2M2 are valid process matrices. Similarly 1

dI dI′
itself is a valid process matrix, with

no signaling at all. Using R.2 for the original µ on valid process matrices, we find for the linear extension:

µL
(

1

dI
+ λ1M1,

1

dI′

)
=µ

(
1

dI
+ λ1M1

1

dI′

)
=

(
1

dI
+ λ1M1

)
⊗ 1

dI′
=

1
dIdI′

1⊗ 1 +
λ1

dI′
M1 ⊗ 1

=µ

(
1

dI
,

1

dI′

)
+

λ1

dI′
M1 ⊗ 1 = µL

(
1

dI
,

1

dI′

)
+

λ1

dI′
M1 ⊗ 1.

Therefore by bilinearity we find µL(M1, 1) = M1 ⊗ 1 and similarly µL(1, M2) = 1⊗M2. Similarly, applying R.2 to
the process matrices 1

dI
+ λ1M1 and 1

dI′
+ λ2M2, which have the same signaling direction, we obtain

µL
(

1

dI
+ λ1M1,

1

dI′
+ λ2M2

)
= µ

(
1

dI
+ λ1M1,

1

dI′
+ λ2M2

)
=

(
1

dI
+ λ1M1

)
⊗
(

1

dI′
+ λ2M2

)
. (A3)

Collecting our results and using bilinearity on the left hand side of Eq. (A3) above, we finally see that R’.2 is
satisfied:

µL(M1, M2) = M1 ⊗M2. (A4)

Appendix B: Proof of Th.1 in arbitrary dimension

In this appendix, we will extend the proof of Th. 1 to the case of arbitrary dimension. We start with the following
Lemma 3. Let M ∈ PTIAB and N ∈ PTIA′B′ be Hermitian operators such that |k〉 = |k1〉AI ⊗ |k2〉AO ⊗ |k3〉BI ⊗ |k4〉BO is

an eigenvector for M, with eigenvalues given, according to the above factorization, by the products λk = λ
(1)
k λ

(2)
k λ

(3)
k λ

(4)
k ,

with λ
(i)
k ∈ {−1, 0, 1} i = 1, 2, 3, 4, and, similarly, |j〉 = |j1〉AI

′ ⊗ |j2〉AO
′ ⊗ |j3〉BI

′ ⊗ |j4〉BO
′ is an eigenvector of N, with

eigenvalue ηj = η
(1)
j η

(2)
j η

(3)
j η

(4)
j , with η

(i)
j ∈ {−1, 0, 1} i = 1, 2, 3, 4. We then have

µ(M, N)|k, j〉 = λkηj|k, j〉. (B1)

Proof.— The case λk, ηj = ±1 are included in Lemma 2. Let us consider the case M|k〉 = 0 and N|j〉 6= 0, the case
M|k〉 = N|j〉 = 0 can be obtained in a similar way, by applying the same argument first to M, then to N. Since M
is in PTIAB, we can write it as M = X1

AI
⊗ X2

AO
⊗ X3

BI
⊗ X4

BO
. Let us now further assume X1|k1〉AI = 0, and

Xi|ki〉Y 6= 0 for i = 2, 3, 4, Y = AO, BI, BO, in particular, this implies that |ki〉 are eigenvectors for eigenvalues ±1
for i = 2, 3, 4. We can then write:

X1 =
(

X1 + |k1〉〈k1| − |(k + 1)1〉〈(k + 1)1|
)
+
(
|(k + 1)1〉〈(k + 1)1| − |k1〉〈k1|

)
=: X′1 + X′′1, (B2)

where |(k + 1)1〉 is a vector orthogonal to |k1〉. Then X′1, X′′1 are both traceless and X′1|k1〉 = |k1〉,
X′′1|k1〉 = −|k1〉. We then have that M′ := X′1AI

⊗ X2
AO
⊗ X3

BI
⊗ X4

BO
and M′′ := X′′1AI

⊗ X2
AO
⊗ X3

BI
⊗ X4

BO
are again

in PTIAB. Thus, by Lemma 2,

µ(M, N)|k, j〉 = µ(M′ + M′′, N)|k, j〉 = µ(M′, N)|k, j〉+ µ(M′′, N)|k, j〉 = M′ ⊗ N|k, j〉+ M′′ ⊗ N|k, j〉 = 0. (B3)

If another operator, say X2, is zero on the corresponding eigenvector, say |k2〉AO , we can again repeat the
construction in Eq. (B2) to construct X′2, X′′2 with +1,−1 eigenvalues and use again linearity and Lemma 2.
Similarly, the same argument can be extended to all Xi and to N.
To conclude the proof of Th. 1, it is sufficient to construct a basis of operators containing the identity and where
each elements, except the identity, is traceless and with eigenvalues in {−1, 0, 1}. Let H be a Hilbert space with
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dimension d, and let {|k〉}d
k=1 be a basis for H. The space of Hermitian operators on H is a real vector space of

dimension d2. We define the following operators

Zi = |i〉〈i| − |i + 1〉〈i + 1|, 1 ≤ i ≤ d− 1 (B4)
Xjk = |j〉〈k|+ |k〉〈j|, 1 ≤ j < k ≤ d (B5)

Yjk = i(|j〉〈k| − |k〉〈j|), 1 ≤ j < k ≤ d, (B6)

which are traceless, hermitian and with eigenvalues in {−1, 0, 1}. The Xjk and Yjk are also known as part of an
operator basis called Generalized Gell-Mann matrices [46]. For completeness we now show that, together with 11, the
above set of matrices form a basis for the space of Hermitian operators on H. It is clear that the {Xjk} and {Yjk}
span the space of Hermitian operators whose diagonal is zero in the |k〉 basis. All that remains to be shown is that
{11, Zi} forms a basis for the space of diagonal real matrices, which we prove by expressing the basis {|k〉〈k|} in
terms of the new basis {11, Zi}.
Notice that for 1 ≤ i ≤ d− 1,

j=d−1

∑
j=i

Zj = |i〉〈i| − |d〉〈d|, (B7)

and also that

d−1

∑
j=1

jZj =
d−1

∑
j=1
|j〉〈j| − (d− 1)|d〉〈d| = 11− d|d〉〈d|. (B8)

Combining the above two expressions gives

|d〉〈d| = 1
d

11− 1
d

d−1

∑
j=1

jZj, (B9)

|i〉〈i| = 1
d

11 +
d−1

∑
j=i

Zj −
1
d

d−1

∑
j=1

jZj, 1 ≤ i < d, (B10)

which concludes that {11, Zi, Xjk, Yjk} is a basis for the space of Hermitian operators of H.
We can use the above construction to build a basis for L(HAI ⊗HAO ⊗HBI ⊗HBO) consisting of tensor products
of local Hermitian operators whose eigenvalues are in {−1, 0, 1}. We then remove from this basis all the terms
that do not satisfy the linear constraints LV . This gives us a basis for the linear space of valid Ws, which is
contained in PTIAB. We will call this basis simply {Mi}i∈I , and by Lemma 3, we have

µ(Mi, Mj) = Mi ⊗Mj. (B11)

We can then decompose any pair W, W ′ as

W = 11 + ∑
i

ci Mi, W ′ = 11 + ∑
i

di Mi, (B12)

and apply µ, namely

µ(W, W ′) = 11 + ∑
i

ci Mi ⊗ 11 + 11⊗∑
i

di Mi + ∑
ij

cidjµ(Mi, Mj)

= 11 + ∑
i

ci Mi ⊗ 11 + 11⊗∑
i

di Mi + ∑
ij

cidj Mi ⊗Mj = W ⊗W ′,
(B13)

which concludes the proof of Th. 1.
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[18] M. Araújo, F. Costa, and Č. Brukner, “Computational Advantage from Quantum-Controlled Ordering of Gates,” Phys. Rev.
Lett. 113, 250402 (2014).

[19] A. Feix, M. Araújo, and Č. Brukner, “Quantum superposition of the order of parties as a communication resource,” Phys.
Rev. A 92, 052326 (2015), arXiv:1508.07840.

[20] P. A. Guérin, A. Feix, M. Araújo, and Č. Brukner, “Exponential Communication Complexity Advantage from Quantum
Superposition of the Direction of Communication,” Phys. Rev. Lett. 117, 100502 (2016), arxiv:1605.07372 [quant-ph].

[21] Ä. Baumeler and S. Wolf, “Non-Causal Computation,” Entropy 19, (2017), arXiv:1601.06522.
[22] M. Araújo, P. A. Guérin, and A. Baumeler, “Quantum computation with indefinite causal structures,” Phys. Rev. A 96,

052315 (2017), arXiv:1706.09854.
[23] Ä. Baumeler and S. Wolf, “Computational tameness of classical non-causal models,” Proc. R. Soc. A 474, (2018),

arXiv:1611.05641.
[24] D. Ebler, S. Salek, and G. Chiribella, “Enhanced Communication with the Assistance of Indefinite Causal Order,” Phys.

Rev. Lett. 120, 120502 (2018), arxiv:1711.10165 [quant-ph].
[25] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge

University Press, New York, NY, USA, 10th ed., 2011.
[26] M. M. Wilde, Quantum Information Theory. Cambridge University Press, 2 ed., 2017.
[27] B. Schumacher, “Quantum coding,” Phys. Rev. A 51, 2738–2747 (1995).
[28] M. Zych, Quantum Systems under Gravitational Time Dilation. Springer Theses. Springer International Publishing, 2017.
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Abstract: In a quantum world, reference frames are ultimately quantum systems too —
but what does it mean to “jump into the perspective of a quantum particle”? In this work,

we show that quantum reference frame (QRF) transformations appear naturally as
symmetries of simple physical systems. This allows us to rederive and generalize known
QRF transformations within an alternative, operationally transparent framework, and to
shed new light on their structure and interpretation. We give an explicit description of the
observables that are measurable by agents constrained by such quantum symmetries, and
apply our results to a puzzle known as the ‘paradox of the third particle’. We argue that it
can be reduced to the question of how to relationally embed fewer into more particles, and

give a thorough physical and algebraic analysis of this question. This leads us to a
generalization of the partial trace (‘relational trace’) which arguably resolves the paradox,
and it uncovers important structures of constraint quantization within a simple quantum
information setting, such as relational observables which are key in this resolution. While
we restrict our attention to finite Abelian groups for transparency and mathematical rigor,
the intuitive physical appeal of our results makes us expect that they remain valid in more

general situations.
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I. INTRODUCTION

All physical quantities are described relative to some
frame of reference. But since all physical systems are
fundamentally quantum, reference frames must ulti-
mately be quantum systems, too. This simple insight
is of fundamental importance in a variety of physi-
cal fields, including quantum information theory [1–8],
quantum thermodynamics [9–17], quantum gravity [18–
26], and in the foundations of quantum physics [27–37]
more generally.

Recently, there has been a wave of interest in a spe-
cific approach to quantum reference frames (QRFs) that
we can broadly classify as structural in nature, including
e.g. Refs. [38–48]. This approach extends the usual con-
cept of reference frames by associating them with quan-
tum systems, and by describing the physical situation of
interest from the “internal perspective” of that quantum
system. For example, if an interferometer has a parti-
cle travelling in a superposition of paths, how “does the
particle see the interferometer” [49]?

A central topic in this approach is the QRF depen-
dence of observable properties like superposition, en-
tanglement [38–40], classicality [39, 71, 72], or of quan-
tum resources [73]. The corresponding QRF transfor-
mations admit an unambiguous definition of spin in
relativistic settings by transforming to a particle’s rest
frame [46, 47], they describe the comparison of quan-
tum clock readings [42, 45], and they yield an alternative
approach to indefinite causal structure [48, 76]. Among
other conceived applications, they are furthermore con-
jectured to play a crucial rule in the implementation of
a “quantum equivalence principle” [75] as well as in
spacetime singularity resolution [57] and the descrip-
tion of early universe power spectra [58, 59] in quantum
gravity and cosmology.
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Zn

FIG. 1. The simplest example of this article’s setup: a dis-
cretization of wave functions in one spatial dimension under
translation symmetry. The configuration space is the cyclic
group Zn, and the one-particle Hilbert space is H = `2(Zn) '
Cn. We have N distinguishable particles in a joint quantum
state |ψ〉 ∈ H⊗N , and we study QRF transformations that
switch between the “perspectives of the particles”.

Despite the broad appeal, several fundamental and
conceptual questions remain open. For example, how
should we make concrete sense of the idea of “jump-
ing into the reference frame of a particle”? How are
QRF transformations different from any other unitary
change of basis in Hilbert space? What kind of phys-
ical symmetry claim is associated with the intuition
that QRF changes “leave the physics invariant”? Fur-
thermore, there are reported difficulties to extend basic
quantum information concepts into this context. For ex-
ample, Ref. [49] describes a ‘paradox of the third parti-
cle’, an apparent inconsistency arising from determining
reduced quantum states in different QRFs.

In this article, we shed considerable light on all of
these questions. We introduce a class of physical sys-
tems subject to simple principles, and derive the QRF
transformations as the physical symmetries of these sys-
tems. On the one hand, this gives us a transparent op-
erational framework for QRFs that makes sense of the
‘jumping’ metaphor. On the other hand, it allows us to
identify QRF transformations as elements of a natural
symmetry group, and to describe the structure of the ob-
servables that are invariant under such transformations.
This algebraic structure turns out to be key to elucidate
the paradox of the third particle, which we do by intro-
ducing a relational notion of the partial trace.

To keep the mathematical structures as transparent
and accessible as possible, we restrict our attention in
this article to finite Abelian groups. But this already
includes interesting physical settings like the discretiza-
tion of translation-invariant quantum particles on the
real line (see Figure 1), admitting the formulation of
intriguing thought experiments. Within this familiar
quantum information regime of finite-dimensional
Hilbert spaces, we uncover a variety of structures that
not only shed light on the questions raised above, but
that also reflect important aspects of constraint quanti-
zation [60, 61], which for example underlies canonical
approaches to quantum gravity and cosmology. This
includes the notions of a “physical Hilbert space”
encoding the relational states of the theory [19, 66, 67],
of relational and Dirac observables [18–26, 42–45], and a
simple demonstration of how constraints can in general
arise from symmetries. In particular, these notions will
assume key roles in our proposed resolution of the
paradox of the third particle.

Overview and summary of results. Our article is
organized as follows. In Section II, we begin with a
thorough operational comparison of this structural ap-
proach to QRFs with the more common quantum infor-
mation approach. This sets the stage by embedding the
notion of QRF transformations into a broader concep-
tual framework.

In Section III, we specialize to a concrete class of phys-
ical systems (“G-systems”) which hold a finite Abelian
group as their classical configuration space. We prove
the existence and elucidate the group structure of QRF
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FIG. 2. Some of the structures we uncover in Section III. We ax-
iomatically derive and analyze the quantum symmetry group
Usym, and characterize a class of “alignable states” that can be
transformed into a form that is “relative to one of the parti-
cles”. As described in Refs. [38–40], “jumping from the first to
the third particle”, for example (sketched on top), can trans-
form separable into entangled states, owing to the fact that, as
we will show, Usym is larger than the classical group of trans-
lations. We identify two subalgebras of operators that are in-
variant under all quantum symmetries,Aphys ⊂ Ainv, and cor-
responding projections that extract the “invariant part” of a
state.

transformations for such systems, and introduce a no-
tion of “alignable states” which are those that can be de-
scribed “relative to one of the particles”. We determine
the invariant observables measurable by observers con-
strained by such symmetries. As sketched in Figure 2,
we find that there are two important, but distinct no-
tions of invariant observables, depending on whether
symmetry transformations may induce superselection
sector dependent phases or not. While the role of in-
variant observables in the structural approach has been
stressed before [39, 41–45], attention was thus far re-
stricted to their description on the space of invariant
pure states (“physical Hilbert space”). Furthermore, we
uncover important aspects of constraint quantization,
and obtain representation-theoretic notions of physical
concepts like the “total momentum” and its role as a
constraint.

In Section IV, we apply our insights to the paradox
of the third particle. We argue that the problem re-
duces to the physical question of when two groups of
particles hold “the same relation” to each other within
two distinct configurations, such that the correspond-
ing branches should interfere (see Figure 6 on page 19).
Mathematically, this corresponds to the question of how
to embed the algebra of invariantN -particle observables
into that of N + M particles. We show that no unique

answer to this question exists for the full set of invariant
observables in Ainv: the answer always depends on the
physical choice of how to determine the particle group
interrelations operationally.

However, we show that a unique and natural embed-
ding does exist for the subset of relational observables in
Aphys. The trick is to use a coherent superposition of all op-
erationally conceivable particle group relations, and it
turns out this construction preserves the algebraic struc-
ture of the N -particle observables. We use this to define
a relational notion of the partial trace which arguably
resolves the paradox, and we compare this resolution to
the one proposed by Angelo et al. [49] before concluding
in Section V.

II. QUANTUM INFORMATION VS. STRUCTURAL
APPROACH TO REFERENCE FRAMES

Let us begin with the main element that both the
quantum information as well as the structural approach
to QRFs have arguably in common: a physical system
with a symmetry such that all observable quantities are
invariant, or even fully relational. This is also the start-
ing point of Refs. [2, 8, 33–36].

A. Describing physics with or without external relatum

Consider a physical system S of interest. We assume
that there is a set S of states in which the system S can
be prepared. Furthermore, there is a group of symme-
try transformations Gsym that acts on S. Specifying S and
Gsym amounts to making a specific physical claim:

Assumption 1. If the system S is considered in iso-
lation, then it is impossible to distinguish (even proba-
bilistically) whether it has been prepared in some state
ρ or in another state Gρ. This is true for all states ρ ∈ S
and all symmetry transformations G ∈ Gsym.

’In isolation’ here means that any other physical struc-
ture to which S could be related is disregarded, either
because it does not exist in the first place, one does not
have access to it, or it is deliberately ignored. This set-
ting is schematically depicted in Figure 3. Examples in-
clude:

(i) Minkowski spacetime of special relativity, with S
the set of all possible states of matter (say, of clas-
sical point particles), and the Poincaré group Gsym
as the group of symmetry transformations.

(ii) Electromagnetism in some bounded region of
spacetime. This is a gauge theory with Gsym the
group of local U(1)-transformations as its symme-
try group.
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(iii) A spin in quantum mechanics with Hilbert space
H and projective representation g 7→ Ug of the ro-
tation group G = SO(3). Here, Gsym consists of all
maps of the form ρ 7→ UgρU

†
g .

These three examples illustrate an important subtlety:
to claim that ρ and Gρ are physically indistinguishable,
one needs to speak about ρ and Gρ as different objects
in the first place. In other words, one has to somehow
define ρ and Gρ as distinct states. But in order to do so,
one would need something external to the system S to
refer to.
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S

external relatum

FIG. 3. What both approaches have in common: a system S
with a symmetry group Gsym acting on its states ρ ∈ S. States
are implicitly defined via some (physical or fictional) external
relatum, but internally (that is, for observers without access to
the relatum) ρ and Gρ are indistinguishable, for all G ∈ Gsym.

In example (i), there simply is no material external re-
latum, while in example (ii), it is given by electromag-
netism outside of the bounded region. As emphasized
in Ref. [50], while gauge symmetries do not change the
physics of a given system, they alter the way that the
system interacts with other systems. This observation is
at the heart of the recent pivot to edge modes in gauge
theory and gravity [51–56] and our resolution of the
paradox of the third particle in Section IV can also be
viewed in this light. In case (iii), the external relatum
would be best described as an external classical refer-
ence frame, for example the laboratory of an agent ex-
perimenting with S. This illustrates that to consider a
system “in isolation” in the sense of Assumption 1 does
not imply that the system S is literally a physically iso-
lated system. It simply means that we have chosen to
describe the system without the external relatum rela-
tive to which the action of the symmetry group is de-
fined. Moreover, the setting does not imply that the
agent who treats ρ andGρ as indistinguishable is herself
part of the system S, but only that the agent considers S
without the external relatum.

Here we argue that the essential difference between
the two approaches to quantum references frames can
succinctly be stated as follows:

The quantum information (QI) approach as in e.g.
Refs. [1–6] emphasizes the fact that quantum states are
often only defined relative to an external relatum (as
in Figure 3), and that this relatum may ultimately be a

quantum system, too. This leads to questions like: how
can quantum information-theoretic protocols be per-
formed in the absence of a shared reference frame [1]?
How well can quantum states stand in as resources of
asymmetry if there is no shared frame [3, 4]? What
are fundamental quantum limits for communicating or
aligning reference frames [1]? Addressing questions as
these often involves encoding information in quantum
states in an external relatum independent manner and,
as such, requires external relatum independent descrip-
tions of states.

The structural approach as in e.g. Refs. [38–40] is not
primarily concerned with operational protocols. While
it shares the aim of external relatum independent de-
scriptions of states with the QI approach, it goes fur-
ther: it disregards the external relatum altogether, and
instead asks whether and how physical subsystems of S
can be promoted to an internal reference frame. This em-
phasizes the fact that the distinction between quantum
systems and their reference frames is not fundamental,
but merely conventional. It leads to questions like: what
is the description of the quantum state relative to one
of its particles? Can we find a Hilbert space basis in
which the description of the physics is simplified, e.g., in
which superpositions of subsystems of interest may be
removed? More generally, what are the “QRF transfor-
mations” that relate the descriptions relative to different
choices of internal reference frame?

In the QI approach, it is usually not necessary to take
the extra step to internal frame choices and to ask how
a system is described relative to one of its subsystems,
as we will explain shortly. It suffices to focus on invari-
ant properties of S which have a meaning relative to an
arbitrary choice of external frame in order to success-
fully carry out communication tasks in the absence of a
shared frame. It is also worth emphasizing that there
does not exist a sharp distinction between the two ap-
proaches in the body of literature on QRFs. Since the
structural approach shares external relatum indepen-
dent state descriptions with the QI approach, there exist
“hybrid” works which arguably incorporate elements
from both. For example, Refs. [2, 7, 8, 33–36, 49] use
standard quantum information techniques to define ex-
ternal relatum independent states, but also use the latter
to explore to some degree the question of how a quan-
tum state is described relative to a subsystem. However,
these works do not study the relations between the dif-
ferent such descriptions and thus, in particular, do not
study the QRF transformations.

The structural approach to QRFs is sometimes illus-
trated in ways that seem at first sight to be in conflict
to the characterization above. For example, Figure 1
in Ref. [38] suggests to think of QRFs as physically at-
tached to an observer and its laboratory (defined by
its own quantum state), similarly as reference frames
in Special Relativity are often thought of as being at-
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tached to an observer (defined by its state of motion).
QRF transformations would then relate the descriptions
of “quantum” observers who are relative to each other
in superposition in a Wigner’s-friend-type fashion.

However, we will show below that the structural
framework of QRFs can be derived and analyzed ex-
actly under an alternative and simpler interpretation.
As we will elaborate and generalize below, choosing a
QRF amounts to aligning one’s description of the physics
with respect to some choice of internal quantum subsystem,
such as the position of one of the particles. Two differ-
ent observers can choose two different subsystems (say,
particles) that are relative to each other in superposition,
even if the observers themselves are fully classical. Their
descriptions will then be related by QRF transforma-
tions. The observer who assigns the quantum state may
thus retain the status of a classical entity external to the
quantum system (at least in laboratory situations), as il-
lustrated in Figure 3. While more conservative, this new
interpretation is operationally more immediate, and it is
sufficient to reconstruct and extend the full machinery
of QRF transformations, as we will see.

The characterization above is also in line with an-
other version of the structural approach: the so-called
perspective-neutral approach [39, 41–45] which, moti-
vated by quantum gravity, is formulated in the language
of constrained Hamiltonian systems [60, 61]. The start-
ing point of this approach is a deep physical and op-
erational motivation: take the idea seriously that there are
no reference frames, such as rods or clocks, that are external
to the universe. To implement this idea, one starts with a
“kinematical Hilbert space” that defines all the involved
quantum degrees of freedom and some gauge symme-
try, but is interpreted as purely auxiliary. The absence of
external references is then implemented by restricting to
the gauge-invariant subset of states where the descrip-
tion becomes purely relational.

The actual mathematical machinery applied in this
approach still fits the description above: the kinemati-
cal Hilbert space can be viewed as being described rela-
tive to a fictional external relatum. The insight that there
is nothing external to the universe motivates to ask —
purely formally at first — whether some of the internal
degrees of freedom of the theory can be promoted to a
frame of reference, such as a rod or clock. One may fi-
nally ask whether observers who are part of the theory
may in fact have good operational access to that chosen
frame of reference, but this is an additional (though im-
portant) question that we here regard as secondary.

B. Communication scenarios illustrating the two
approaches

Before we turn to the structural approach in detail,
and relate the verbal description above to the mathemat-
ical formalization, let us elaborate on the distinction by
means of two communication scenarios. To do so, let

us informally introduce some piece of notation that we
will later on define more formally. If ρ ∈ S is some state,
denote by [ρ] the set of all states that are symmetrically
equivalent to ρ, i.e. [ρ] := {Gρ | G ∈ Gsym}. The [ρ] can
be viewed as equivalence classes of states, or as orbits of
the symmetry group.

Adapting the quantum information terminology from
Ref. [1], we refer to physical properties of S that only
depend on the equivalence class [ρ] as speakable informa-
tion. Being invariant under the action of Gsym and thus
not requiring an external relatum in order to be defined,
two agents can agree on the description of these prop-
erties by classical communication even in the absence of
a shared frame. By contrast, we refer to physical prop-
erties of S that depend on the concrete representative
ρ from an equivalence class [ρ] of states as unspeakable
information. These properties thus require the external
relatum to be meaningful and cannot be communicated
purely classically between two agents who do not share
a frame.

1. The quantum information approach: communicating quantum
systems

Consider the scenario in Figure 4. Alice holds a quan-
tum system S that she has prepared in some state ρ ∈
S(H), and S(H) denotes the density matrices on the cor-
responding Hilbert space H. We assume that there is a
(for now, for simplicity) compact group G of symmetries
and a projective representation G 3 g 7→ Ug such that G
acts on S via Ug(ρ) = UgρU

†
g . In this case, the symmetry

group is Gsym = {Ug | g ∈ G}. If we assume that Alice’s
quantum system S has the properties of Assumption 1,
then the very definition of ρ is relative to her local frame
of reference.

A B
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FIG. 4. A communication scenario within the quantum infor-
mation approach as in Ref. [1]. The focus is on sending and re-
covering actual physical (quantum) states that are defined (as
in Assumption 1) with respect to some external relatum, i.e.
that may contain unspeakable information. This task becomes
interesting if Alice’s and Bob’s reference frames are initially
unaligned.

Suppose that Alice sends the quantum system physi-
cally to Bob. Since Bob’s reference frame is not aligned
with Alice’s, he will describe the situation as receiv-
ing a randomly sampled representative of the equiva-
lence class [ρ]. Thus, he will assign the state E(ρ) :=∫
G UgρU

†
g dg to the incoming quantum system.
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The QI approach is concerned with the possibility to
devise protocols that can be performed even in the ab-
sence of a shared reference frame. For example, the task
to send quantum information from Alice to Bob can be
accomplished by encoding it into a decoherence-free sub-
space, i.e. a subsystem within the set of ρ ∈ S(H) for
which E(ρ) = ρ (see e.g. Ref. [1, Sec. A.2] for a concrete
example). Another possibility to do so is by sending
several quantum systems (e.g. spin-coherent states) that
break the symmetry, and that allow Bob to partially cor-
relate his reference frame with Alice’s via suitable mea-
surements on those states. The key to carrying out com-
munication protocols without a shared frame is thus to
focus on invariant physical properties that are meaning-
ful in any external laboratory frame. This does not re-
quire describing S relative to one of its subsystems.

Nevertheless, in the QI approach, the quantum nature
of reference frames is sometimes taken into account, for
example, by “quantizing” them to overcome superselec-
tion rules that arise in the absence of a shared classical
frame [1]. This “quantization” of a frame means adding
a reference quantum system R to the system of interest
S in order to define relative quantities between R and
S, such as relative phases [1] or relative distances [2, 8],
that are invariant under Gsym and thereby meaningful
relative to any external laboratory frame. In a communi-
cation scenario between two parties Alice and Bob who
do not share a classical frame, the reference system R
will typically be communicated together with S. While
this also constitutes an internalization of a frame in the
sense thats the reference system R is now a quantum
system too, it is still external to S. Furthermore, since
the relative quantities between R and S are meaningful
relative to any external laboratory frame with respect to
which a measurement will be carried out, it is not nec-
essary to take an extra step and ask how S is described
“from the perspective” of R in order for Alice and Bob
to succeed in their communication task.

In summary, in the QI approach, the quantum system
S of interest (say, a set of spins) is treated as a distinct
entity from the reference frame (say, a gyroscope). Thus,
“QRF transformations” relating descriptions relative to
different subsystems (which may be in relative super-
position) are typically not studied in this approach.1
The focus is on correlating (aligning) Alice’s and Bob’s
frames, and it is the absence of alignment that is mod-
elled by the G-twirl, ρ 7→ E(ρ). The external relatum in-
dependent (or relational) state descriptions of the QI ap-

1 This includes Ref. [7], where transformations between different
“quantized” reference systems R1 and R2 are studied. However,
in the spirit of the QI approach, the derived transformations pro-
ceed between different invariant states (i.e. essentially G-twirls of
ρS ⊗ ρRi , i = 1, 2) and are thus not transformations between de-
scriptions of the quantum state of S relative to different choices of
subsystem, as we will see them later. In particular, the descriptions
of the quantum state of S relative to different subsystems will be
different descriptions of one and the same invariant state.

proach are thus the incoherently group-averaged states.

2. The structural approach: agreeing on a redundancy-free
internal description of quantum states

The structural approach does not stop at an external
relatum independent state description. It also asks for
a description of a quantum state relative to an internal
frame that is part of the system of interest.

A transparent way to understand the structural ap-
proach operationally is as follows. Alice and Bob in
their respective labs would like to agree on a concrete
description of the quantum state of a system without ex-
ternal relatum, i.e. in particular without shared refer-
ence frame. They have the option of describing S in
terms of the equivalence classes [ρ] of quantum states.
However, there is an evident redundancy in the descrip-
tion of each equivalence class in terms of concrete quan-
tum states: each member of the equivalence class is a
legitimate (and non-unique) description of it. In order
to break this redundancy and succeed in this task, they
can take advantage of the fact that any equivalence class
[ρ] of states admits certain “canonical choices” for its
description which are associated with different internal
reference frame choices. The transformations relating
these different canonical choices amount to “QRF trans-
formations” and they will be elements of the symmetry
group Gsym defining the equivalence classes.
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FIG. 5. A simple communication scenario which we choose
for illustrating the operational essence of the structural ap-
proach as in Refs. [38–40]. The focus is on agents agreeing on a
(redundancy-free) description of quantum states in the absence
of an external relatum.

For example, one could imagine the following com-
munication scenario depicted in Figure 5 to illustrate the
role of “canonical choices”:

• Referee Refaella informs Alice and Bob in their
separate laboratories that she will prepare quan-
tum states of a particular system S (subject to As-
sumption 1) relative to her (freely aligned) frame,
but that she will only communicate the description
of the respective equivalence classes [ρ] to Alice
and Bob separately.

• Alice’s and Bob’s task is to separately return a con-
crete (redundancy-free) description of each quan-
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tum state to Refaella and they will win the game
provided their descriptions always agree (either
for all states of S, or for a particular class C of
states).

• Alice and Bob are only permitted to communicate
prior to the beginning of the game to agree on a
strategy.

Let us consider two examples for how this can be accom-
plished. These examples illustrate that there will gener-
ally exist multiple “canonical choices” for describing [ρ]
in terms of concrete quantum states, however, that Alice
and Bob can always agree in their communication be-
forehand which such choice to pick. This will also give
a hint on the relation to quantum reference frames as
described in Refs. [38–40], and we will elaborate on this
further in the following sections.

Example 1. Consider a single quantum spin-1/2 particle,
with state space S(C2). Let us assume that the symmetry
group is the full projective unitary group, i.e. Gsym = {ρ 7→
UρU† | U†U = 1}, which is isomorphic to the rotation group
SO(3).

Let ρ be an arbitrary state that Refaella is for some reason
interested in preparing. The equivalence class [ρ] consists of
all states with the same eigenvalues λ1, λ2 as ρ. Describing
[ρ] is equivalent to listing the eigenvalues λ1, λ2 and this is
what Refaella may communicate to Alice and Bob. Clearly,
there are many ways to represent this information in terms of
a concrete quantum state ρ.

The strategy that Alice and Bob can agree on in order to
win the game, but prior to it starting, is trivial: they can
agree to always choose a basis (i.e. a specific reference frame
alignment) such that ρ described relative to it is a diagonal
matrix. This leaves two “canonical choices” of representation:
ordering the eigenvalues such that λ1 ≥ λ2 they could decide
to always return either ρ = diag(λ1, λ2) or ρ = diag(λ2, λ1)
to Refaella. The transformation relating the two descriptions

is the unitary “QRF transformation” U =

(
0 1
1 0

)
.

This trivial example relies on the simple fact that ev-
ery quantum state has a canonical description: the matrix
representation in its own eigenbasis (up to a choice of
order of eigenvalues). In some sense, every quantum
state defines a finite set of natural representations of it-
self. It is in this sense that the structural approach inter-
prets quantum systems as quantum reference frames: the
system’s state breaks the fundamental symmetry, and
admits, at least on the level of classical descriptions, a
canonical choice of representation.

Example 1 illustrates a general consequence of the
symmetry structure: for any particular choice of QRF,
the set of state descriptions relative to that QRF corre-
sponds in general only to a subset or subspace of states.
In this example, any such choice only allows to describe
a subset of states that corresponds to a classical bit: namely,
the convex hull of the density matrices diag(1, 0) and

diag(1/2, 1/2). The following example demonstrates
how a full subspace of states can be encoded.

Example 2. Consider two spin -1/2 particles with rotational
symmetry. That is, the symmetry group is Gsym = {ρ 7→ U⊗
UρU† ⊗ U† | U ∈ SU(2)}, acting on states in S(C2 ⊗ C2).
Let us make a somewhat arbitrary, but nonetheless illustrative
choice of a class C of states for which the above communication
game can be played. These will be the pure states

C =

{
cos

θ

2
|φ−〉+ eiϕ sin

θ

2
|φ〉 ⊗ |φ〉

}
,

where 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, |φ−〉 is the singlet state, and
|φ〉 ∈ C2 an arbitrary normalized state. The set of states C
is the disjoint union of the sets Cθ,ϕ for which the two angles
are fixed and |φ〉 is still an arbitrary qubit state. Since U ⊗
U |φ−〉 = |φ−〉, the Cθ,ϕ are orbits of the symmetry group, i.e.
equivalence classes of states.

If Refaella gives Alice and Bob a description of such an
equivalence class [|ψ〉] = Cθ,ϕ, they can agree on returning
the standard description |ψ′〉 = cos θ2 |φ−〉 + eiϕ sin θ

2 |0〉 ⊗
|0〉, for example. This prescription has the added benefit
of preserving superposition across different equivalence
classes. Namely, if for i = 1, 2, we have |ψi〉 = αi|φ−〉 +
βi|φ〉 ⊗ |φ〉 such that |α1| 6= |α2|, then |ψ1〉 and |ψ2〉 are in
different equivalence classes, and so are (in general) their su-
perpositions. But the states that Alice and Bob return respect
superpositions: if |ψ〉 = κ|ψ1〉 + λ|ψ2〉, then the returned
states satisfy |ψ′〉 = κ|ψ′1〉 + λ|ψ′2〉. That is, this choice of
QRF admits the description of a subspace, a qubit, inside the
joint state space. Other choices of QRF do so as well. These
would correspond to canonical descriptions where |0〉 ⊗ |0〉 is
replaced by some arbitrary |φ0〉 ⊗ |φ0〉, and they are related
by “QRF transformations” U ⊗ U .

There are also seemingly natural choices of QRF that,
however, are deficient in that the set of admissible de-
scriptions relative to them cannot encompass a state
space, as the following example illustrates.

Example 3. Consider again two spin-1/2 particles, but now
under slightly different circumstances. There is a canonical
choice of factorization of the Hilbert space: by looking at the
system in isolation, observers can determine the decomposi-
tion into two distinguishable particles. If we assume that
this is the only structure that can be determined by such ob-
servers, then we have the symmetry group Gsym = {ρ 7→
U ⊗ V ρU† ⊗ V † | U†U = V †V = 1}. Under these cir-
cumstances, a canonical choice of frame is such that any pure
state |ψ〉 becomes identical to its own Schmidt representation,

|ψ〉 =
1∑

i=0

√
αi|ii〉, where α0 ≥ α1.

While Alice and Bob could easily agree on such a conven-
tion, the ensuing canonical description would not preserve
complex superpositions and, in particular, not lead to a sub-
space of states as its image, owing to the real nature and or-
dering of the Schmidt-coefficients.
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A priori, a choice of QRF in the structural approach can
therefore be quite arbitrary. However, as the examples
above motivate, a “good” choice of QRF will correspond
to one that admits the description of a set of states rela-
tive to it which carries sufficient convex or linear struc-
ture to encode classical or quantum information. Prefer-
ably, that set of states should correspond to a subspace
of maximal size within C.

In the remainder of this article, we will focus on a
more interesting realization of such a scenario which re-
produces the notion of QRFs in the structural picture.
We will define particular systems S that we call “G-
systems”, and we will see that these carry an interest-
ing group of symmetries Gsym. If we ask what kind
of canonical choices of (redundancy-free) description G-
systems admit, such that Alice and Bob can succeed in
the communication scenario of Figure 5, we will find
that these correspond to choosing one of the subsystems
of S as a reference system and to describing the remain-
ing degrees of freedom relative to it. In this manner, we
will recover and generalize the “quantum states relative
to a particle” of Refs. [38–40]. In particular, the transfor-
mations among the canonical choices of description of S
are elements of the symmetry group Gsym and exactly
the QRF transformations of Ref. [40], which are also
equivalent to the ones in [38, 39] (restricted to a discrete
setting). In Ref. [62] we will further explicitly demon-
strate the equivalence with the perspective-neutral ap-
proach to QRFs [39] and elucidate that any equivalence
class [ρ] of quantum states above corresponds precisely
to a perspective-neutral quantum state. As we will see,
this means that the relational states of the structural ap-
proach are coherently (not incoherently as in the QI ap-
proach) group-averaged states.

III. FROM SYMMETRIES TO QRF
TRANSFORMATIONS AND INVARIANT OBSERVABLES

Quantum reference frames as described in Refs. [38–
40] have first been considered for the case of wave func-
tions on the real line. We have a Hilbert space of square-
integrable functions, H = L2(R), and a physical claim
that there is no absolute notion of origin. In other words,
the “physics” does not change under translations (we
will soon formulate what this means in detail). If we
have N particles on the real line, the total Hilbert space
is L2(R)⊗N .

As noted in Ref. [40], the real numbers R play a double
role in this case: on the one hand, they label the configu-
ration space on which the wave functions are supported;
on the other hand, they also label the possible transla-
tions, i.e. the fundamental symmetry group (R,+).

In this section, we will analyze this particular situa-
tion in a simplified setting: one in which the group is fi-
nite and Abelian. In the simplest case, we discretize the
real line and make it periodic, as in Figure 1. Formally,

for some n ∈ N, we consider the cyclic group

Zn := {0, 1, 2, . . . , n− 1}

with addition modulo n as its group operation. To this,
we associate a single-particle Hilbert space

H = `2(Zn) = span{|0〉, |1〉, . . . , |n− 1〉}

and a total Hilbert space H⊗N for N distinguish-
able particles. We will denote the particles with la-
bels A,B,C, . . ., and later in this paper with integers
1, 2, 3, . . .. Within this formalism, we can realize the
main ideas of quantum references frames as in Refs. [38–
40]. For the case N = 2, consider the quantum state

|ψ〉AB = |0〉A ⊗
1√
2

(|1〉+ |2〉)B .

We are interested in a situation where “only the relation
between the particles” matters, but not their total posi-
tion. That is, in some sense, “applying elements of Zn
to a quantum state doesn’t change the physics”. Intu-
itively, this means, for example, that the quantum state

|ψ′〉AB = |1〉A ⊗
1√
2

(|2〉+ |3〉)B

should be an equivalent description of the system’s
properties, since it is related to |ψ〉 by a translation. Mo-
tivated by Ref. [38], we can do something more interest-
ing. First, in the terminology of Refs. [38–40], the form
of |ψ〉 can be interpreted as saying that “particle B, as
seen by A, is in the state 1√

2
(|1〉 + |2〉)”. Second, we can

then use the prescription of Refs. [38–40] to “jump into
B’s reference frame”, and consider the state

|ψ′′〉 =
1√
2

(|n− 2〉+ |n− 1〉)A ⊗ |0〉B

and conclude that “particle A, as seen by B, is in the
state 1√

2
(|n− 1〉+ |n− 2〉)”. After all, this still expresses

the fact that with amplitudes 1√
2

, B is either one or two
positions to the right of A.

We will now show that we can understand these
transformations as natural symmetry transformations in
a simple class of physical systems which we call “G-
systems”. Choosing one of the particles as a reference
frame (as sketched above) will correspond to a choice
of canonical representation of a state as in the struc-
tural approach outlined above. This will give the idea of
“jumping into a particle’s perspective” a thorough oper-
ational interpretation.

A. G-systems and their symmetries

We begin by considering a specific physical system
which is motivated by translation-invariant quantum
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physics on the real line with Hilbert space L2(R). Here
we consider a finite, discrete group-theoretic analogue,
again using the group as both the configuration space
and set of transformations. Some aspects of QRF trans-
formations in this case were also considered in Ref. [40].
In contrast to Ref. [40], we restrict our attention to fi-
nite Abelian groups G for simplicity. Due to the struc-
ture theorem [63], every such G can be interpreted as the
group of translations of a discrete torus of some dimen-
sion. In the simplest case where G = Zn, this torus is the
circle2, and we are in the setting of Figure 1.

Definition 4 (G-system). Fix some finite Abelian group G,
interpreted as a classical configuration space. That is, we re-
gard the g ∈ G as perfectly distinguishable orthonormal ba-
sis vectors |g〉, spanning a Hilbert space H. Formally, this
Hilbert space isH = `2(G), and it carries a distinguished ba-
sis {|g〉}g∈G , similarly as quantum mechanics on the real line
carries a distinguished position basis.

Consider N distinguishable particles on such a classical
configuration space, where N ∈ N. That is, the total Hilbert
space isH⊗N , and it carries a natural orthonormal basis

H⊗N = span{|g1, . . . , gN 〉 | gi ∈ G}.

The physical system S described by this Hilbert space will
carry a group of symmetries Gsym as introduced in Assump-
tion 1 and Figure 3. Clearly, the basic Hilbert space structure
of S, i.e. the notion of linearity and the inner product, must
not depend on the orientation of the external reference frame.
Hence, the symmetry group will be of the form

Gsym = {U • U† | U ∈ Usym},

for Usym some group of unitaries. Furthermore, we assume
that the classical configuration space, i.e. the set of basis vec-
tors, {|g1, . . . , gN 〉 | gi ∈ G}, is an internal structure of S
that is defined without the external reference frame. We now
postulate that the classical configurations carry G-symmetry.
In particular, any given configuration

|g〉 := |g1, g2, . . . , gN 〉

and its “translated” version

U⊗Ng |g〉 = |gg〉 := |gg1, gg2, . . . , ggn〉

are internally indistinguishable. On the other hand, we pos-
tulate that the relation between the particles is accessi-
ble to observers without the external frame. To formalize
this, consider some tuple h ∈ GN−1 of group elements, i.e.
h = (h1, . . . , hN−1). Any state of the form

|g, h1g, h2g, . . . , hN−1g〉 =: |g,hg〉 (1)

2 This representation is not unique. For example, we can interpret Z6

as the translation group of six points on a circle, but the structure
theorem tells us that Z6 ' Z2 × Z3. Thus, we can also interpret this
group as the translations of a two-dimensional (2× 3)-torus.

has the same pairwise relations between its particles, no mat-
ter what the state |g〉 of the first particle is. We now define
Gsym as the largest possible symmetry group that is compati-
ble with these postulates. To this end, Usym must be the group
of unitary transformations with the following properties:

1. U maps classical configurations to classical configura-
tions, i.e. U |g1, ..., gn〉 = |g′1, ..., g′n〉.

2. On classical configurations, U preserves relative posi-
tions, i.e. U |g,hg〉 = |g′,hg′〉.

3. If two classical configurations are g-translations of each
other, then U preserves this fact3, i.e.

|g〉 = U⊗Ng |j〉 ⇒ U |g〉 = U⊗Ng
(
U |j〉

)
.

A few words of justification are in place. While two
choices of external reference frame may yield a differ-
ent description of any configuration, they must agree on
the set of all possible configurations that S can be in,
for otherwise their descriptions of S cannot be placed
in full relation with one another.4 The set of basis vec-
tors {|g〉}g∈GN must thus be independent of the external
frame and hence should remain invariant under Gsym.
It is also clear that the symmetry group must preserve
the linear and probabilistic structure of quantum theory
and thereby leave the inner product onH⊗N invariant.5
After all, by Assumption 1, symmetry related quantum
states should be indistinguishable even probabilistically.
Furthermore, the h label the ’relative positions’ among
the N particles. These are internal properties of S and
so independent of any external relatum. Finally, con-
figurations that are g-translations of each other are by
assumption internally indistinguishable. The symmetry
group must preserve this indistinguishability.

The symmetry group of a G-system can now easily be
written down. To this end, define the subspaces

Hh := span{|g,hg〉 | g ∈ G}
and the corresponding orthogonal projectors Πh. Note
thatH⊗N =

⊕
h∈GN−1 Hh, and the {Πh}h∈GN−1 define a

projective measurement.

3 It is possible to drop this condition, and to assume only 1. and 2.
In this case, one obtains similar results to those presented here,
but with modified structures: the algebra of invariant operators
then becomes what we call Aalg in Lemma 26, and the symme-
try group becomes the group of conditional permutations (not only
conditional translations). Physically, this does not seem particularly
well-motivated, and it leads to the loss of certain uniqueness results,
including the uniqueness of U ∈ Usym in Theorem 18.

4 This assumes that the external frame choices in the ambient labora-
tory that an agent may have access to are complete in the sense that
all quantum properties of S can be described relative to them.

5 In constraint quantization, H⊗N corresponds to the kinematical
Hilbert space and so the preservation refers here to the kinematical
inner product. While one is usually only interested in the physi-
cal inner product (i.e. the inner product on the space of solutions to
the constraints), it nevertheless holds that also the kinematical inner
product is left invariant by the group generated by the (self-adjoint)
constraints.
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Lemma 5. The symmetry group of a G-system is

Usym =



U =

⊕

h∈GN−1

U⊗Ngh

∣∣∣∣∣∣
gh ∈ G



 , (2)

where U⊗Ngh denotes the global translation by gh, but re-
stricted to the subspaceHh.

That is, the symmetries in Usym act as relation-
conditional global translations: every classical configu-
ration is globally translated via some U⊗Ngh , but the
amount of translation gh may depend on the relation h
between the particles. We will soon identify the QRF
transformations of Refs. [38–40] with elements of this
group. Thus, the above highlights that these transfor-
mations make sense in a purely classical context; indeed,
the corresponding classical frame transformations were
also studied in [39, 40] and shown to be conditional on
the interparticle relations.6 For example, they can also
be applied if one deals with statistical mixtures of par-
ticle positions instead of superpositions. Nonetheless,
their unitary extension to all of H⊗N leads to interest-
ing quantum effects like the frame-dependence of en-
tanglement [38–40]. This is similar to the behavior of the
CNOT gate in quantum information theory, which is de-
fined by its classical action on two bits, but nonetheless
can create entanglement.

Proof. Due to conditions 1. and 2. of Definition 4, the
U ∈ Usym leave every Hh invariant. Thus, U decom-
poses into a direct sum U =

⊕
h∈GN−1 Uh. Fix some

h ∈ GN−1. Since Hh is invariant, there exists some
gh ∈ G such that U |e,h〉 = |gh,hgh〉. Now, for every
g ∈ G, we have |g,hg〉 = U⊗Ng |e,h〉. Thus, condition 3.
of Definition 4 implies that

U |g,hg〉 = U⊗Ng
(
U |e,h〉

)
= U⊗Ng |gh,hgh〉

= U⊗Nggh |e,h〉 = U⊗Ngh |g,hg〉.
This shows that Uh acts like U⊗Ngh onHh.

When working with pure state vectors, we sometimes
want to allow global phases. Thus, we use the notation

U∗sym := Usym ×U(1) = {eiθU | U ∈ Usym, θ ∈ R}.

Above, we have decided to denote the state of the par-
ticles relative to the first particle, but this also defines the
relations between all other pairs of particles: the equa-
tion |g〉 = |g,hg〉 ∈ Hh means that gi = hi−1g1 for i ≥ 2,
but this implies that gi = (hi−1h

−1
j−1)gj for all i, j if we

set h0 := e, the unit element of the group. Thus, the Hh

6 More precisely, in the perspective-neutral approach these classi-
cal reference frame transformations correspond to conditional gauge
transformations, i.e. the gauge flow distance depends on the sub-
system relations, see Appendix B of Ref. [39] and also Refs. [41–43].

decompose the global Hilbert space into sectors of equal
pairwise relations.

It is clear that global G-translations are elements of the
symmetry group, but they do not exhaust it:

Example 6. Given any G-system, the global translations
U⊗Ng are symmetry transformations. Since they represent the
global action of G on the N -particle Hilbert space, this can be
written as

G ⊂ Gsym.

However, there are other symmetries that are not global trans-
lations. For example, for N = 2 particles, the unitary U
which acts on all basis vectors |g1, g2〉 as

U |g1, g2〉 := |g2, g−11 g22〉

is a symmetry transformation, i.e. U ∈ Usym. Namely,
|g1, g2〉 ∈ Hh for h = g−11 g2, and U implements the global
translation U⊗2g(h) onHh, where g(h) = h.

On the other hand, the transformation

V |g1, g2〉 := |g−12 , g−11 〉

is not a symmetry transformation: it satisfies conditions 1.
and 2. of Definition 4, but violates condition 3.

We will later see that QRF transformations correspond
to elements in Gsym \ G.

B. Invariant observables and Hilbert space decomposition

Which observables can we internally measure in a G-
system, i.e. without access to the external relatum that
was used to define the state space and the symmetry
group? These must be the observables that are invari-
ant under all symmetry transformations and which thus
correspond to speakable information:

Definition 7 (Invariant observable). We define the invari-
ant subalgebra Ainv as

Ainv = {A ∈ L(H⊗N ) | [U,A] = 0 for all U ∈ Usym},

where L(H) denotes the set of linear operators on Hilbert
space H. These are the operators A that are invariant under
all symmetry transformations A 7→ UAU†. A self-adjoint
element A = A† ∈ Ainv is called an invariant observable.

Since all observable properties of our system are as-
sumed to be invariant under Gsym, it follows that the
observables in Definition 7 comprise the set of all ob-
servables that can be physically measured by an ob-
server who does not have access to the external refer-
ence frame.

Clearly, all the Πh are invariant observables, i.e. Πh ∈
Ainv. However, due to the fact that we have declared a
classical basis to be a distinguished structure of the G-
system, there are many more invariant observables. To
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determine the algebra Ainv, recall the decomposition of
U ∈ Usym from Lemma 5. We can regard Usym as a repre-
sentation of several copies of the group G, and thus fur-
ther refine this decomposition via basic representation
theory of finite Abelian groups [63].

A major role is played by the characters of G. These are
the homomorphisms χ : G → S1, i.e. the maps from G to
the complex unit vectors S1 := {z ∈ C, | |z| = 1} with
χ(gh) = χ(g)χ(h). In other words, the characters are the
one-dimensional irreducible representations (irreps) of
G, and these turn out to exhaust all irreps. The set of all
characters of G is denoted Ĝ.

Denote the order of the group by n := |G|, then gn = e
for all g ∈ G [63]. Thus, every χ(g) must be among the n-
th roots of unity: χ(g)n = 1. Moreover, there are exactly
n characters, i.e. |Ĝ| = n.

Furthermore, note that dimHh = n. We claim that
these subspaces can be decomposed as follows:

Hh =
⊕

χ∈Ĝ

Hh;χ

withHh;χ the one-dimensional subspace spanned by the
vector

|h;χ〉 :=
1√
|G|
∑

g∈G
χ(g−1)|g,hg〉. (3)

Indeed, due to Ref. [63, Proof of Corollary III.2.3],
we have the well-known orthogonality relations∑
g∈G χ(g)χ′(g) = nδχ,χ′ . Using this, direct calculation

shows that the |h;χ〉 are orthonormalized states, and

U⊗Ng |h;χ〉 = χ(g)|h;χ〉 for all g ∈ G. (4)

Example 8. As a simple example, consider the cyclic group
G = Zn = {0, 1, . . . . , n − 1} with addition modulo n, see
Figure 4. This group can be interpreted as a finite analogue
of a part of the real line with periodic boundary conditions, by
distributing finitely many possible positions along a ring. Its
irreducible representations and the respective characters are
given by χk(g) := ei

2π
n kg with k ∈ {0, 1, . . . , n−1} [70]. In-

deed, one can directly verify that the χk form one-dimensional
representations of Zn, and they are inequivalent. We explic-
itly obtain

|h;χk〉 =
1√
n

n−1∑

g=0

e−i
2π
n kg |g, g + h〉 ,

where g + h means that g is added to each component of h,
modulo n. Similarly, one can directly verify that

U⊗Ng |h;χk〉 = ei
2π
n kg |h;χk〉 .

One can see that the |h;χk〉 are obtained via a kind of discrete
Fourier transform [69] from the classical configurations, and
therefore they are reminiscent of momentum eigenstates.

Since elements of Usym translate all particles by the same
amount, and momentum is the generator of translations, one
may identify |h;χk〉 with the eigenstates of total momentum.
However, since we are not explicitly interested in dynamics in
this paper, we will postpone any elaboration on this analogy
to our upcoming work, Ref. [62].

From Eqs. (2)–(4) it is clear that the subspace spanned
by the eigenstates with trivial character χ = 1 is the
subspace of Usym-invariant states, |ψ〉 = U |ψ〉 for all
U ∈ Usym. We denote it by

Hphys :=
⊕

h∈GN−1

Hh;1 = span
{
|h;1〉 | h ∈ GN−1

}
. (5)

We have equipped the total invariant subspace with the
label “phys” because it is the finite group version of
the so-called physical Hilbert space of constraint quan-
tization. When the symmetry group is generated by
(self-adjoint) constraints, the physical Hilbert space cor-
responds to the set of solutions to the quantum con-
straints and is thereby precisely the Hilbert space on
which the group acts trivially. It is usually called ‘phys-
ical’ because quantum states of a gauge system are re-
quired to satisfy the constraints imposed by gauge sym-
metry. Nevertheless, we will see that we can give quan-
tum states that are not invariant under the symmetry
group a useful physical interpretation, and we will clar-
ify their relation with the ‘physical’ states in Hphys in
Ref. [62]. Being spanned by the states |h;1〉 which en-
code the particle relations in an invariant manner, we
shall henceforth also refer to Hphys as the subspace of
relational states. Its dimension is |G|N−1, and thus:

Lemma 9. The subspace of relational statesHphys is isomor-
phic toH⊗(N−1).

To determine the invariant subalgebra, consider any
A ∈ L(H⊗N ) and develop it into the |h;χ〉-eigenbasis:
A =

∑
h,h′,χ,χ′ ah,h′,χ,χ′ |h;χ〉〈h′;χ′|. Using Eqs. (2)

and (4), conjugation with some U ∈ Usym yields

UAU† =
∑

h,h′,χ,χ′

χ(gh)χ′(gh′)
−1ah,h′,χ,χ′ |h;χ〉〈h′;χ′|.

This is equal toA for allU if and only if for all h,h′, χ, χ′,
one of the following is true: either ah,h′,χ,χ′ = 0 or
χ(gh) = χ′(gh′) for all possible choices of gh, gh′ . The
latter condition is automatically satisfied if χ = χ′ = 1.
Thus, all operators A that are fully supported on the re-
lational subspace Hphys will be elements of Ainv. Let us
denote the set of such operators by Aphys, then we have
just shown that Aphys ⊂ Ainv. For reasons that will be-
come clear later, we will call the observables in Aphys

relational observables.
Now consider the other cases in which at least one of

χ or χ′ differs from 1. Clearly, if h = h′ and χ = χ′ then
the character condition χ(gh) = χ′(gh′) is trivially satis-
fied, and ah,h,χ,χ does not need to be zero. Consider the
case h = h′ and χ 6= χ′. Choosing any gh with χ(gh) 6=
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χ′(gh) shows that we must have ah,h,χ,χ′ = 0. Finally,
if h 6= h′ and at least one of χ or χ′ (say, χ) differs from
1, choose gh′ = e and gh such that χ(gh) 6= 1. This vio-
lates the character condition and implies ah,h′,χ,χ′ = 0.
In summary, we have proven the following:

Lemma 10. The invariant algebra consists exactly of the
block matrices of the form

Ainv =



Aphys ⊕

⊕

h∈GN−1

⊕

χ 6=1

ah;χ|h;χ〉〈h;χ|



 ,

where Aphys ∈ Aphys is supported on the relational subspace
Hphys defined in Eq. (5), and the ah;χ are complex numbers.

A few words are in place regarding the physical inter-
pretation of these observables. Due to Eq. (3), χ labels
the irreps of the global translations on state space. As
already mentioned in Example 8, they can thus be inter-
preted as a discrete analog of (an exponentiated version
of) total momentum. We can hence interpret the opera-
tor |h;χ〉〈h;χ| as describing a projective measurement
that asks whether the relation between the particles is h, and
whether the total momentum corresponds to χ. Since this
operator is contained in Ainv, this measurement can be
performed by an observer without access to the exter-
nal reference frame. In the special case if χ = 1, i.e.
on the relational subspace Hphys which corresponds to
“total momentum zero”, such an observer can also per-
form measurements that correspond to superpositions
of different particle relations h. However, for “non-zero
total momentum” (χ 6= 1), we obtain an emergent su-
perselection rule that forbids such superpositions and
the corresponding measurements.

The reader familiar with constraint quantization will
notice that the invariant observables Aphys on the sub-
spaceHphys are the finite group analog of so-called Dirac
observables [18, 19, 60]. Given some continuous group
that is generated by an algebra of constraints, Dirac
observables are operators that commute with the con-
straint operators (up to terms proportional to the con-
straints themselves). As such, they are invariant under
the group generated by the constraints and observables
on solutions to the constraints, i.e. on the so-called phys-
ical Hilbert space.

There is, however, a subtlety in this analogy: usu-
ally the (continuous) group generated by the constraints
would be the analog of the ‘classical’ group G given here
which is a strict subgroup of Gsym. Thus, it is natural
to ask whether the Gsym-invariant subspace Hphys is a
strict subset of the subspace of G-invariant states. Ac-
cordingly, one may wonder whether the entire invariant
algebra Ainv defined in terms of invariance under the
larger group Gsym in Definition 7 is a strict subset of the
algebra that is invariant under the smaller group G. It
is this latter algebra which thus gives rise to the actual
analog of Dirac observables for the finite groups consid-
ered here. We will address these questions in the next
subsection.

C. Group averaging states

Although we work with a representation of the larger
group Gsym, Eqs. (2)–(5) indicate that the total Hilbert
space decomposes naturally in terms of the representa-
tion of the smaller group G; e.g., the physical Hilbert
space is also precisely the subspace invariant under G.
We will now clarify this observation by considering the
corresponding (coherent) group averaging operations,

Πphys :=
1

|Usym|
∑

U∈Usym
U, Π′phys :=

1

|G|
∑

g∈G
U⊗Ng , (6)

which are standard in constraint quantization [19, 66,
67], and for which the following holds.

Lemma 11. The two coherent group averaging operations co-
incide, Πphys = Π′phys, and Πphys is the orthogonal projector
onto the relational subspaceHphys.

Proof. Direct calculation shows that Π†phys = Πphys and
Π′†phys = Π′phys, and that Π′phys = Π′2phys and Πphys =

Π2
phys. Thus, Πphys and Π′phys are orthogonal projec-

tors. Since H⊗N is spanned by the |g,hg〉 for g ∈ G and
h ∈ GN−1, the image im(Π′phys) of Π′phys is spanned by

Π′phys |g,hg〉 =
1

|G|
∑

g′∈G
U⊗Ng′ |g,hg〉 =

1√
|G|
|h;1〉.(7)

Since these states span Hphys, this proves that Π′phys is
the orthogonal projector onto the physical subspace. By
construction, every |ψ〉 ∈ im(Πphys) is invariant under
every U ∈ Usym, and thus in particular under every
U⊗Ng ∈ Usym. Thus, im(Πphys) ⊆ Hphys. On the other
hand, decomposing U ∈ Usym as in (2), we get

Πphys|h;1〉 =
1

|Usym|
∑

U∈Usym
U⊗Ngh |h;1〉 = |h;1〉

since |h;1〉 is invariant under global translations. Thus,
im(Πphys) ⊇ Hphys, and so Πphys = Π′phys.

In conclusion, any basis state in Hh projects to the
same invariant subnormalized state Πphys |g,hg〉 =
Πphys |g′,hg′〉 = 1√

|G|
|h;1〉 under coherent group aver-

aging, and it does not matter whether one averages with
respect to the larger group Gsym or the smaller G.

However, we will now see that the set of invariant ob-
servables, i.e. the observables resulting from incoherent
group averaging (G-twirling), differs for the two choices,
but only outside of the relational subspaceHphys. These
operations are defined by

Πinv(ρ) :=
1

|Usym|
∑

U∈Usym
UρU†,

Π′inv(ρ) :=
1

|G|
∑

g∈G
U⊗Ng ρ(U⊗Ng )†.
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It is well-known, and easy to check by direct calcula-
tion, that these maps are projectors, i.e. Π2

inv = Πinv and
Π′2inv = Π′inv, and that they are orthogonal with respect
to the Hilbert-Schmidt inner product, i.e.

tr
(
A†Πinv(B)

)
= tr

(
Πinv(A)†B

)
for all A,B ∈ L(H⊗N ).

If A ∈ L(H⊗N ) satisfies [U,A] = 0 for all U ∈ Usym,
then Πinv(A) = A. Conversely, if B ∈ im(Πinv), then
UBU† = B, i.e. [U,B] = 0, for all U ∈ Usym. Thus, Πinv

projects into the invariant algebra Ainv. Similarly, Π′inv
projects into

A′inv = {A ∈ L(H⊗N ) | [U⊗Ng , A] = 0 for all g ∈ G}.

Clearly, Ainv ⊆ A′inv, but are these algebras equal? The
following lemma collects the above insights, and an-
swers this question in the negative.

Theorem 12. Πinv is the orthogonal projector onto the in-
variant subalgebra Ainv. It can also be written in the form

Πinv(ρ) = ΠphysρΠphys +
∑

h,χ6=1

〈h;χ|ρ|h;χ〉|h;χ〉〈h;χ|.

Similarly, Π′inv is the orthogonal projector onto the strictly
larger subalgebra

A′inv =




⊕

χ∈Ĝ

Aχ



 =



Aphys ⊕

⊕

χ 6=1

Aχ



 ,

where everyAχ is an arbitrary operator supported on the sub-
space Hχ := span{|h;χ〉 | h ∈ GN−1} (note that H1 =
Hphys, so Aphys = A1).

Proof. To see the claimed form of Πinv, note that the com-
bination of projections is a Hilbert-Schmidt-orthogonal
projection with image Ainv. It remains to be shown that
A′inv has the claimed form. Note that g 7→ U⊗Ng is a rep-
resentation of the finite Abelian group G. It thus decom-
poses into one-dimensional irreps, and the equivalence
classes of irreps are labelled by the characters χ. Thus,
the form of A′inv follows again from Schur’s lemma.

This theorem has interesting implications for the
physical properties of G-systems S. Recall our initial
scenario as depicted in Figure 3. Suppose that we only
demand symmetry of S with respect to ordinary, uncon-
ditional global translations U⊗Ng , and ask which observ-
ables can be measured by an observer without access to
the external relatum. The answer is: all observables in
A′inv. On the other hand, if we demand symmetry with
respect to all conditional global translations in Usym —
and we will soon see that the QRF transformations of
Refs. [38–40] are among those — then this turns out to
be a more stringent requirement. In this case, fewer ob-
servables are measurable, namely only those in Ainv.

In this sense, QRF transformations have fewer frame-
independent observables than classical transformations:

if all QRF transformations are symmetries, then super-
positions of different particle relations h are forbidden
by an emergent superselection rule whenever the “total
momentum is non-zero”, i.e. χ 6= 1. On the other hand,
if we only demand that global classical translations are
symmetries, then these superpositions remain allowed.

Let us return to the analogy with contraint quantiza-
tion discussed in the previous subsection. Lemma 11
and Theorem 12 show that an observable Aphys, i.e. the
analog of a Dirac observable in our context, does not de-
pend on whether it is constructed relative to Gsym or its
subgroup G. Later, we will also see that Aphys is the fi-
nite group analog of the algebra generated by so-called
relational Dirac observables. These are invariant observ-
ables that encode relations between the subsystems, and
they are common use in canonical quantum gravity [18–
26, 42–45]. This explains why we have called the ob-
servables in Aphys “relational observables”. They will
become crucial in the resolution of the paradox of the
third particle in Section IV, and they will turn out to be
tomographically complete for the QRF states which we
introduce in the next subsection.

Recall the notion of equivalence classes [ρ] from Sec-
tion II. We are now ready to introduce this notion for-
mally for G-systems:

Definition 13. We call two quantum states ρ, σ ∈ S(H⊗N )
symmetry-equivalent, and write ρ ' σ, if there exists some
symmetry U ∈ Usym such that σ = UρU†. We call them
observationally equivalent, and write ρ ∼ σ, if tr(Aρ) =
tr(Aσ) for all invariant observables (and thus all operators)
A ∈ Ainv.

Clearly, if ρ ' σ then ρ ∼ σ, but the converse is not
in general true. The equivalence class [ρ] from Section II
can now be defined as [ρ] = {σ | σ ' ρ}. In the case of
pure state vectors |ψ〉, |ψ′〉, we must allow global phases
and write ψ ' ψ′ if and only if there is some U ∈ U∗sym
such that |ψ′〉 = U |ψ〉.

Observational equivalence can be characterized in
terms of the projection into the invariant subalgebra:

Lemma 14. Two states ρ and σ are observationally equiva-
lent, i.e. ρ ∼ σ, if and only if

Πinv(ρ) = Πinv(σ).

Proof. This follows from the chain of equivalences

ρ ∼ σ ⇔ 〈A, ρ〉HS = 〈A, σ〉HS ∀A ∈ Ainv

⇔ 〈Πinv(B), ρ〉HS = 〈Πinv(B), σ〉HS ∀B ∈ L(H⊗N )

⇔ 〈B,Πinv(ρ)〉HS = 〈B,Πinv(σ)〉HS ∀B ∈ L(H⊗N )

⇔ Πinv(ρ) = Πinv(σ).

D. Alignable states as states with a canonical
representation

With these technical insights at hand, we are ready to
return to the discussion of Section II. In the structural
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approach to QRFs, we ask whether a given state has a
natural representation, depending only on internal data,
such that the communication task of Figure 5 can be suc-
cessfully accomplished. In the following, let us focus on
pure states |ψ〉 ∈ H⊗N for simplicity. Our task is to find
another state |ψ′〉 ∈ H⊗N that is symmetry-equivalent
to |ψ〉 and that is in some sense distinguished, i.e. yields
a “canonical choice” for describing the set of symmetry-
equivalent states, cf. Section II B 2.

In general, there may be many different possible ways
to define such a “canonical choice”. Let us pick one pos-
sible choice. Suppose that we fix one of the particles, say,
particle i, where 1 ≤ i ≤ N . Can we set the external ref-
erence frame such that this particle ends up at the “ori-
gin” — the unit element of the group? In other words,
can we align our state “relative to particle i”? This
is certainly possible in classical mechanics of N point
particles in one dimension, given translation-invariance.
Classically, it would indeed define us a unique represen-
tation. We will now see that a similar construction can
be done for G-systems, and that it leads to the notion of
QRF of Refs. [38, 40].

Definition 15. Let i ∈ {1, 2, . . . , N}. A pure state |ψ〉 ∈
H⊗N is called i-alignable if there exists some state |ψ′〉 ∈
H⊗N with ψ ' ψ′ such that

|ψ′〉 ≡ |ψ′〉1,...,N = |e〉i ⊗ |ϕ〉1,...,i−1,i+1,...,N .

In the following, we will also use the notation |ϕ〉i for the
vector |ϕ〉1,...,i−1,i+1,...,N .

The state |ϕ〉i in Definition 15 is exactly what is in-
terpreted in Refs. [38–40] as “the state of the remaining
N − 1 particles as seen by particle i”. Similarly, we will
thus interpret |e〉i ⊗ |ϕ〉i as the description of the N par-
ticle system relative to the QRF ‘perspective’ defined by
particle i (which defines the origin).

Not all pure states are i-alignable. For example, the re-
lational state |h;1〉 is an element of the subspace Hphys,
hence every U ∈ U∗sym satisfies U |h;1〉 = eiθ|h;1〉 for
some θ ∈ R. Thus this state cannot be i-alignable for
any i. While devoid of alignable states, we will see later
that Hphys contains the complete relational information
about all alignable states.

To analyze this notion further, the following lemma
will be useful. Its proof is very simple and thus omitted.

Lemma 16. For every i ∈ {1, . . . , N} and h ∈ GN−1, there
is a unique basis vector |g〉 ∈ Hh with gi = g, namely
|h−1i−1g,hh−1i−1g〉, with h0 := e the unit element of G.

This allows us to show that the state |ψ′〉 in Defini-
tion 15 is unique, and thus defines indeed a natural rep-
resentation of the symmetry-equivalence class of |ψ〉:
Lemma 17. If |ψ〉 ∈ H⊗N is i-alignable, then the state |ϕ〉i
in Definition 15 is unique up to a global phase.

Proof. Suppose that both ψ′ and ψ̃′ are states that sat-
isfy the conditions of Definition 15. In particular, this

means that ψ ' ψ′ and ψ ' ψ̃′, and so there exists some
U ∈ U∗sym such that |ψ̃′〉 = U |ψ′〉, and U = eiθV for
V ∈ Usym. In |ψ′〉 = |e〉i ⊗ |ϕ〉i and |ψ̃′〉 = |e〉i ⊗ |ϕ̃〉i, we
decompose ϕ and ϕ̃ into product basis vectors: |ϕ〉 =∑

g∈GN−1 αg|g1, . . . , gN−1〉, and similarly for |ϕ̃〉 with
amplitudes α̃g. This implies that

U
∑

g∈GN−1

αg|g1, . . . , gi−1, e, gi, . . . , gN−1〉

=
∑

g∈GN−1

α̃g|g1, . . . , gi−1, e, gi, . . . , gN−1〉.

Now, according to Lemma 16, both of the decomposi-
tions

∑
g∈GN−1 . . . contain at most one basis vector from

every subspace Hh with non-zero amplitude, namely
|h−1i−1,hh−1i−1〉. But since U (and thus V ) leaves the
subspaces Hh invariant, the last equation implies that
V |h−1i−1,hh−1i−1〉 = |h−1i−1,hh−1i−1〉 for every such vector
that appears with non-zero amplitude αg 6= 0 (and thus
α̃g 6= 0). Hence α̃g = e−iθαg, and so ϕ̃ = e−iθϕ.

E. QRF transformations as symmetry group elements

In the structural approach in Refs. [38–40], we can
“jump” from one particle’s reference frame into any
other’s. How is this idea expressed in our formalism?
To see this, let us first show the following.

Theorem 18 (QRF state transformations). If there is some
i ∈ {1, 2, . . . , N} such that |ψ〉 is i-alignable, then |ψ〉 is j-
alignable for every j ∈ {1, 2, . . . , N}. We will then simply
call |ψ〉 alignable. Moreover, for every i, j ∈ {1, . . . , N},
there is a unique symmetry transformation U ∈ Usym such
that U (|e〉i ⊗ |ϕ〉i) = |e〉j ⊗ |ϕ〉j for all |ϕ〉i. Furthermore,
if i 6= j then U is a proper conditional global translation, i.e.
U • U† ∈ Gsym \ G. Every such U induces a unique unitary
(“QRF transformation”) Vi→j such that Vi→j |ϕ〉i = |ϕ〉j .
This transformation can be written

Vi→j = Fi,j
∑

g∈G
|g−1〉〈g|j ⊗ U⊗(N−2)g−1 ,

where Fi,j flips (swaps) particles i and j. This is the discrete
version of the form given in Refs. [38, 40].

Proof. Fix i, j ∈ {1, . . . , N}. For every h ∈ GN−1, let
gh := h−1j−1hi−1 (setting, as before, h0 := e). Then the
global translation by gh satisfies

U⊗Ngh |h
−1
i−1,hh

−1
i−1〉 = |h−1j−1,hh−1j−1〉.

Set U :=
⊕

h∈GN−1 U⊗Ngh , then U ∈ Usym. According to
Lemma 16, for every h, U maps the unique basis vector
|g〉 ∈ Hh with gi = e to the unique basis vector |g′〉 ∈ Hh

with g′j = e, and it is clear that U is the only symmetry
transformation that does this. Thus, U maps all states
of the form |e〉i ⊗ |ϕ〉i to states of the form |e〉j ⊗ |ϕ̃〉j .

CHAPTER 4. QUANTUM REFERENCE FRAME TRANSFORMATIONS AS
SYMMETRIES AND THE PARADOX OF THE THIRD PARTICLE

84



Furthermore, if i 6= j then there exist h, j such that gh 6=
gj. Thus, any such U is an h-dependent transformation
and thus cannot be a global translation.

Fix an arbitrary orthonormal basis {|ϕ〉i}ϕ of
H⊗(N−1), then U (|e〉i ⊗ |ϕ〉i) = |e〉j⊗|ϕ〉j yields another
orthonormal basis. Thus, we can view this as a unitary
Vi→j fromH⊗(N−1) into another copy ofH⊗(N−1). Since
its action on basis vectors is fixed, there can be no more
than one such map. To determine that it has the form
as claimed, simply look at its action on the basis vectors
|g1, . . . , gN−1〉.

So indeed, for every alignable state, and any particle
j ∈ {1, . . . , N}, there is a unique representation of that
state “relative to the jth particle”. Furthermore, the QRF
transformation from i’s to j’s ‘perspective’ at the level
of the full Hilbert space H⊗N corresponds to a symme-
try transformation which lies in Gsym, but not in G (if
i 6= j). This observation highlights the physical sig-
nificance of the symmetry group Gsym. While we have
seen that the set of invariant statesHphys is independent
of whether one constructs it through coherently averag-
ing over Gsym or its ‘classical translation subgroup’ G,
the symmetry group Gsym is key for understanding the
meaning of the QRF transformations (which transform
non-invariant descriptions): they are conditional symme-
try transformations that depend on the interparticle re-
lation h.

To clarify the notation used in the definition of the
QRF transformation Vi→j , we give a simple example.

Example 19. Suppose we have N = 4 particles, and an
alignable state |ψ〉 such that

|ψ〉 ' |e〉2 ⊗ |g1, g3, g4〉.
Thus, the state relative to the second particle is |g1, g3, g4〉. To
determine the state relative to the third particle, compute

V2→3|g1, g3, g4〉 = F2,3

∑

g∈G
|g−1〉〈g|3 ⊗ U⊗2g−1 |g1, g3, g4〉

= F2,3|g−13 〉〈g3| ⊗ U⊗2g−1
3

|g1, g3, g4〉

= F2,3| g−13 g1︸ ︷︷ ︸
1

, g−13︸︷︷︸
3

, g−13 g4︸ ︷︷ ︸
4

〉

= | g−13 g1︸ ︷︷ ︸
1

, g−13︸︷︷︸
2

, g−13 g4︸ ︷︷ ︸
4

〉,

where the integers at the bottom denote the particle labels.

In Ref. [62], we will demonstrate equivalence of the
above QRF transformations with the “quantum coor-
dinate changes” of the perspective-neutral approach
[39, 41–45].

As Theorem 18 has shown, the symmetry group Usym
contains the QRF transformations which switch from
state descriptions relative to particle i to descriptions
relative to particle j. But these do not exhaust the sym-
metry group. The following lemma gives another phys-
ically motivated example.

Example 20 (Center of mass). Consider again the cyclic
group Zn with addition modulo n, as shown in Figure 1. Let
m1, . . . ,mN be non-negative real numbers and m := m1 +
. . .+mN . For h ∈ GN−1, define the group elements

g(h) := −
⌊

1

m
(m2h1 + . . .+mNhN−1)

⌋
,

and set U :=
⊕

h∈GN−1 U
⊗N
g(h). If we interpret the mi as

the masses of the particles, with the origin as the position
of particle 1 (i.e. h0 = 0), then this symmetry transformation
U describes a change of quantum coordinates such that the
(integer part of) the “center of mass” becomes the origin.

F. Characterization of alignable states

We have already seen that not all global states are
alignable. The following lemma characterizes those that
are.

Lemma 21. A state |ψ〉 ∈ H⊗N is alignable if and only if it
can be written in the form

|ψ〉 =
∑

h∈GN−1

αh|gh,h gh〉 (8)

for some gh ∈ G and αh ∈ C. Moreover, the αh characterize
the alignable state up to symmetry-equivalence. That is, for
two alignable states |ψ〉 and |ψ′〉, we have ψ ' ψ′ if and only
if their coefficients satisfy αh = eiθα′h for some θ ∈ R.

Proof. If |ψ〉 is alignable, then it is in particular 1-
alignable. That is, there exists U ∈ U∗sym such that

|ψ〉 = U
(
|e〉1 ⊗ |ϕ〉1

)
= eiθ

∑

h∈GN−1

αhU
⊗N
gh
|e,h〉,

where the αh are the coefficients of |ϕ〉1 in terms of the
product group basis, and the U⊗Ngh translate the basis
vectors of the subspaces Hh. Hence we get the claimed
form for |ψ〉. The converse direction of the proof of the
first part of this lemma is analogous. We also see that
the αh only depend on the symmetry-equivalence class
of the state |ψ〉 (up to a global phase); and, in the case
of equality of those coefficients, two states must have
the same |ϕ〉1 (up to a global phase), hence they must be
symmetry-equivalent.

The above form shows that any maximal subspace of
H⊗N which is contained in the set of alignable states
has dimension |G|N−1, i.e. is isomorphic to H⊗(N−1).
This shows that the QRFs as defined above are indeed
“good” QRFs as explained in Subsection II B 2. Due
to Lemma 9, it also shows that the relational subspace
Hphys has the right dimension for its states to contain
“all the particles’ internal QRF perspectives at once”.
This observation is corroborated by the following use-
ful Lemma and will be further discussed in Ref. [62].

85



Lemma 22. Given any alignable state |ψ〉 (which is hence of
the form (8)), its projection onto the invariant subalgebra is

Πinv(|ψ〉〈ψ|) =
∑

h,j∈GN−1

αhαj

|G| |h;1〉〈j;1|+
∑

h∈GN−1

|αh|2
|G| Πh;χ 6=1,

where Πh;χ 6=1 :=
∑
χ 6=1 |h;χ〉〈h;χ|. Thus, for any two

alignable states |ψ〉, |ψ′〉, we have ψ ∼ ψ′ if and only if
ψ ' ψ′: such states are symmetry-equivalent if and only
if they are observationally equivalent. Furthermore, they
are equivalent if and only if 〈ψ|A|ψ〉 = 〈ψ′|A|ψ′〉 for all
A ∈ Aphys; that is, all invariant information of alignable
states is fully contained in their projection Πphys|ψ〉.

Proof. Using (7), we obtain

Πphys|ψ〉 =
1√
|G|

∑

h∈GN−1

αh|h;1〉.

Direct calculation shows that |〈ψ|h;χ〉|2 = |αh|2/|G|.
The result then follows by using the form of Πinv as
given in Theorem 12. Both notions of equivalence boil
down to the fact that the states have the same am-
plitudes αh up to a global phase. Finally, for ρ any
alignable state, the above form of Πinv(ρ) implies

tr(ρA) = tr(ρphysA)+
∑

h∈GN−1

〈h;1|ρphys|h;1〉tr(Πh;χ 6=1A)

(9)
for allA ∈ Ainv, where ρphys := ΠphysρΠphys. That is, the
expectation values of all invariant observables, and thus
the notion of observational equivalence, depends only
on the state’s projection into Aphys.

In other words, the algebra Aphys is tomographi-
cally complete for the invariant information in alignable
states. In this sense, it can be said that the external
relatum independent states of the structural approach
are what we called the relational states, namely the
ones in Hphys. That is, the external relatum indepen-
dent states of the structural approach are the coherently
group-averaged states, while their counterparts in the
QI approach are the incoherently group-averaged states
(cf. Subsection II B 1).7

G. Alignable and relational observables

Given the notion of alignable states and the duality
between states and observables, it is natural to also de-
fine alignable observables in the obvious way.

7 We thank A. R. H. Smith for suggesting us to emphasize this techni-
cal distinction.

Definition 23 (Alignable observables). An operator A ∈
L(H⊗N ) is called i-alignable for i ∈ {1, . . . , N} if there ex-
ists U ∈ Usym such that

UAU† = |e〉〈e|i ⊗Ai
for some Ai ∈ L(H⊗(N−1)). If A is an observable, it is called
an i-alignable observable.

This leads to the following extension of Theorem 18
from QRF state to observable transformations. The
proof is analogous and thus omitted.

Theorem 24 (QRF observable transformations). If A ∈
L(H⊗N ) is i-alignable, then it is also j-alignable for every
j ∈ {1, . . . , N}, and so we will call A simply alignable. In
particular, there is a unique U ∈ Usym such that

U (|e〉〈e|i ⊗Ai)U† = |e〉〈e|j ⊗Aj ,

where Aj = Vi→j Ai Vj→i. Here, U is the unique symmetry
transformation from Theorem 18 such that U (|e〉i ⊗ |ϕ〉i) =
|e〉j ⊗ |ϕ〉j for all |ϕ〉i and Vi→j is the unitary “QRF trans-
formation” induced by it.

These are the discrete versions of the observable trans-
formations in Refs. [38, 39].

Finally, note that if A1 =
∑

h,j∈GN−1 ah,j|h〉〈j|, then

Π̂phys

(
|e〉〈e|1 ⊗A1

)
=

∑

h,j∈GN−1

ah,j
|G| |h;1〉〈j;1|,

where Π̂phys henceforth denotes the superoperator that
acts as Π̂phys(A) = ΠphysAΠphys, as obvious from
Lemma 22. Up to a factor of |G|, this is identical to
the original representation of A1, but in another basis.
This proves the following theorem, extending a result
from [44, 45]:

Theorem 25. Consider the map

Ai 7→ FAi,i := |G| · Π̂phys

(
|e〉〈e|i ⊗Ai

)
, (10)

where Ai ∈ L(H⊗(N−1)) is any operator. This defines an
isomorphism between the operators Ai and Aphys, preserving
products, linear combinations, and adjoints.

This gives us two independent motivations to focus
on Aphys: for alignable states, the projection into this
subalgebra contains all invariant information; and it
does so in a way that preserves the natural structure of
the alignable observables.

Furthermore, returning to the comparison with con-
straint quantization, it follows from Refs. [44, 45] that
FAi,i is (the finite group analog of) the relational Dirac ob-
servable which encodes in an invariant manner the ques-
tion “what is the value of Ai given that particle i sits at
the origin?” Such relational observables are a standard
tool in canonical quantum gravity, e.g. see Refs. [18–
26, 42, 43]. Theorem 25 is the reason why we refer to
Aphys as the algebra generated by relational observables.
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Due to Aphys ⊂ Ainv, we have

Π̂phys (Πinv(|e〉〈e|i ⊗Ai)) = Π̂phys (|e〉〈e|i ⊗Ai) .

Since Πinv is the incoherent G-twirl over Usym, it is clear
that the image Πinv(|e〉〈e|i⊗Ai) ∈ Ainv only depends on
the symmetry equivalence class of the alignable observ-
able A. Hence, in particular we have

FAi,i = FAj ,j for all i, j ∈ {1, . . . , N},

and so the relational observable in Eq. (10) does not de-
pend on the choice of particle i.

This systematic equivalence of relational observables
is once more made possible by studying the larger sym-
metry group Gsym rather than its subgroup G as usual
in the literature. Indeed, Theorems 18 and 24 demon-
strate that any two particle alignments of an observable
are related by a unique symmetry group element which
generically lies in Gsym \ G.

Lemma 22 (and its obvious generalization to alignable
observables) yields an interesting insight that will be-
come relevant in Section IV: if we look at the image of
all alignable states and observables under Πinv, then we
do not obtain the full invariant algebraAinv. Instead, we
always obtain an operator in the smaller subalgebra

Aalg :=



Aphys +

∑

h∈GN−1

ahΠh;χ 6=1



 ,

where Aphys ∈ Aphys, and ah ∈ C are arbitrary com-
plex numbers. According to the definitions in Subsec-
tion III C, this gives us the subalgebra inclusions

Aphys ⊂ Aalg ⊂ Ainv ⊂ A′inv ⊂ L(H⊗N ).

Hence, if we denote the orthogonal projection into Aalg

by Πalg, we have Πalg ◦ Πinv = Πinv ◦ Πalg = Πalg. More
specifically, the following holds.

Lemma 26. Aalg is the smallest subalgebra of L(H⊗N ) that
contains Πinv(|ψ〉〈ψ|) for all alignable states |ψ〉.
Proof. It is clear that the rank-one projectors |ψ〉〈ψ| for
|ψ〉 = |e〉1⊗|ϕ〉1 linearly span all of |e〉〈e|1⊗L(H⊗(N−1)),
thus we are looking for the subalgebra A that is gen-
erated by the image of these operators under Πinv.
Lemma 22 shows that Πinv(|ψ〉〈ψ|) is contained in Aalg

for every alignable state |ψ〉, hence A ⊆ Aalg. Con-
versely, if A =

∑
h,j∈GN−1 ah,j|h〉〈j|, then

Πinv(|e〉〈e|⊗A) =
∑

h,j∈GN−1

ah,j
|G| |h;1〉〈j;1|+

∑

h∈GN−1

ah,h
|G| Πh;χ 6=1.

Setting A := |h〉〈j| for h 6= j shows that
|h;1〉〈j;1| ∈ A. But then, we also have |h;1〉〈h;1| =
|h;1〉〈j;1|)(|j;1〉〈h;1|) ∈ A, and so all operators Aphys

fully supported on Hphys are in A. Finally, considering
the image of A = |h;1〉〈h;1| shows that Πh;χ 6=1 ∈ A,
and so A ⊇ Aalg.

H. Communication scenario of the structural approach
revisited

We are now in a position to revisit the communication
scenario elucidating the operational essence of the struc-
tural approach to QRFs in section II B 2 (see also Figure
5). It is clear how Alice and Bob can win the game pro-
posed by Refaella in the case of N particles on the con-
figuration space G in the absence of a shared external
relatum, given that the class of states C that they are in-
terested in is the set of alignable states. For example, be-
fore the game begins, they can agree to always use par-
ticle 1 as the internal reference system relative to which
the remaining particles are described. This yields the
“canonical choice” to represent any equivalence class of
(pure) states in the form |e〉1⊗|ϕ〉1 and Alice’s and Bob’s
return to Refaella will always agree.

Alice and Bob have, of course, the option to choose
any of the N particles as a reference system, each like-
wise defining a “canonical choice”. It is clear that all
these different possible conventions by Alice and Bob
are precisely related by the QRF transformations of
Lemma 18 and that each such transformation is an el-
ement of the symmetry group Usym.

IV. THE ‘PARADOX OF THE THIRD PARTICLE’ AND
THE RELATIONAL TRACE

Ref. [49] presents a “paradox of the third particle” in
the context of QRFs. We will now formulate this appar-
ent paradox in our formalism, and see that the structure
of observables, as elaborated in Section III, helps to clar-
ify its physical background and to resolve it in terms of
relational observables. As we will see, the core of the
problem is how to embed the two-particle observables
into the set of three-particle observables, and the key
will be to do so in a relational manner. This bears some
resemblance to the issue of boundaries and edge modes
in gauge theory and gravity [51–56], which is related to
the question of how to embed the gauge-invariant ob-
servables of neighbouring subregions in spacetime into
the set of gauge-invariant observables associated with
the union (‘gluing’) of these subregions.

The setup of Ref. [49] consists of three particles in one
dimension, i.e. on the real line R. But since only a finite
number of positions is relevant for the paradox, we can
discretize space and its translations. Thus, we consider
a G-system with G = Zn, the cyclic group of order n,
as in Fig. 1. The group operation is addition modulo n;
in the following, whenever we write a + b, we actually
mean a+b mod n. As described earlier, this is a discrete
model of the translation group acting on the real line.
We start with two particles that have been prepared (by
an external observer with access to the reference frame)
in the state

|ψ〉 =
1√
2

(
| − a〉1|b〉2 + eiθ|a〉1| − b〉2

)
, (11)
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where a, b ∈ {0, 1, 2, . . . , n − 1}, and θ ∈ R. This state is
symmetry-equivalent to8

|ψ〉 ' |0〉1 ⊗
1√
2

(
|a+ b〉2 + eiθ| − a− b〉2

)
. (12)

In our terminology, this means that the state is alignable.
In Ref. [49], this form is used as a motivation to declare:
“Therefore, we conclude that particle 1 sees particle 2 in a pure
state. Importantly this implies that particle 1 can get access to
the phase θ by interacting with particle 2 alone, i.e. without
access to the external reference frame.” In our conceptual
framework, we would rather describe the situation as
follows: consider an external observer who has access
to particles 1 and 2, but has no access to the external
reference frame. There are some observables that this
observer can measure for which the phase θ is relevant.

This is because the state that is effectively seen by this
observer is the projection of ψ into the invariant subal-
gebra, which we can determine via Lemma 22. The co-
efficients of this state are αh = 1/

√
2 for h = a + b and

αj = eiθ/
√

2 for j = −a− b, thus

Πinv(|ψ〉〈ψ|) =
1

2n
|h;1〉〈h;1|+ e−iθ

2n
|h;1〉〈 j;1|

+
eiθ

2n
|j;1〉〈h;1|+ 1

2n
|j;1〉〈j;1|

+
1

2n
Πh;χ 6=1 +

1

2n
Πj;χ 6=1 (13)

and this state depends on θ in a nontrivial way.
Now a third particle is introduced. From the external

perspective, it is prepared in a pure state |c〉 indepen-
dently of the other two particles, where c ∈ {0, 1, . . . , n−
1}. From that perspective, the global state thus reads

|Ψ〉 =
1√
2

(
| − a〉1|b〉2 + eiθ|a〉1| − b〉2

)
|c〉3. (14)

This state is still alignable. Relative to particle 1, it be-
comes

|Ψ′〉 = |0〉1
1√
2

(
|a+ b〉2|a+ c〉3 + eiθ| − a− b〉2| − a+ c〉3

)

(15)
with Ψ′ ' Ψ. This is a state for which particles 2 and
3 are formally entangled. Now suppose that particle 3
is very far away, such that our external observer (or, as
the authors of Ref. [49] would say, such that particle 1)
has no access to particle 3. If one now formally takes
the partial trace over particle 3, one obtains a reduced
state of particles 1 and 2 that is independent of the phase θ.
This seems to contradict our earlier claim — now it looks
as if an external observer without access to the external

8 In fact, in the sequel we will assume that a 6= 0, for otherwise the
states in Eqs. (11) and (12) coincide.

reference frame or to particle 3 cannot see any observable
consequences of the phase θ.

We arrive at an apparent paradox: computing the par-
tial trace via Ψ or via Ψ′ gives different predictions, even
though both states are symmetry-equivalent. Moreover,
the result from tracing out the third particle via Ψ′ seems
absurd, given the seemingly innocuous role that the
third particle plays in state Ψ. Can the phase θ be ac-
cessed by an observer without access to the external
relatum and with restricted access to only particles 1
and 2? It seems like there should be an objective answer
to this question which does not depend on whether it is
asked in the context of state Ψ or Ψ′.

Clearly, since the usual partial trace yields differing
results for Ψ and Ψ′, it cannot represent the correct rule
to compute reduced states in the setting of QRFs. To
shed light on the reason for why this is the case, let us
reconsider how the standard partial trace can be moti-
vated. Consider three distinguishable particles as one
usually does in quantum information theory — in our
setting, this implies that the state of the particles is de-
fined relative to an accessible reference frame. Denote
by A12 some observable that is measurable if one has
access to particles 1 and 2 only (and to the reference
frame). Then one can equivalently describe this as an
observable on the three particles, such that the third par-
ticle is ignored. Formally, this can be done via a map

A12 7→ Φ(A12) = A12 ⊗ 13. (16)

That is, the 2-particle observables are naturally embed-
ded into the 3-particle observables via some map Φ,
which takes the tensor product with the identity observ-
able. This map preserves all relevant structure (as it
must): it takes linear combinations to linear combina-
tions, products to products, the adjoint to the adjoint,
and the identity to the identity. Formally, this is sum-
marized by saying that Φ is a unital ∗-homomorphism. It
defines what we mean when we talk about “observables
pertaining only to particles 1 and 2” within the set of all
3-particle observables. In the following, we will refer to
∗-homomorphisms simply as embeddings (which may or
may not be unital).

Now consider any quantum state ρ123 on the three
particles. We would like to determine the state ρ12 that
results if one has only access to particles 1 and 2. By this,
we mean the state that gives the same expectation values
as ρ123 on all local observables A12. Thus, we demand

tr(ρ12A12) = tr(ρ123Φ(A12)) for all A12.

If we write this in terms of the Hilbert-Schmidt inner
product, then

〈ρ12, A12〉HS = 〈ρ123,Φ(A12)〉HS = 〈Φ†(ρ123), A12〉HS.

That is, we must have ρ12 = Φ†(ρ123), with Φ† the
Hilbert-Schmidt adjoint of Φ. But given Eq. (16), the
form of it is easy to see that Φ† = Tr3, and this recov-
ers the partial trace.
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In the context of QRFs and G-systems, we have a
different structure of observables: what is measurable
without access to the external reference frame corre-
sponds to the invariant observables. We therefore need an
analog of the above construction for the invariant sub-
algebra Ainv. In fact, since we are only interested in
alignable states, Lemma 26 tells us that we can focus on
the subalgebra Aalg.

A. The non-uniqueness of invariant embeddings

In light of the above considerations, let us try to con-
struct an embedding of the relevant 2-particle observ-
ables (or more generally of A(N)

alg ) into the 3-particle ob-

servables (more generally into A(N+M)
alg , where the su-

perscript denotes the number of particles). To obtain
some crucial physical intuition, we will now define one
such embedding (called Φ̃(1)) in an intuitive manner, be-
fore we turn to a more systematic treatment below.

We start our construction with the orthogonal projec-
tor Π

(N)
h :=

∑
χ∈Ĝ |h;χ〉〈h;χ|. Its embedding must be

on orthogonal projector in A(N+M)
alg ; measuring this pro-

jector amounts to asking whether the first N particles
have pairwise relations described by h. Clearly, the an-
swer must be “yes” whenever theM+N particles are in
some joint relation (h,g) for arbitrary g ∈ GM , and the
answer must be “no” for all other relations (h′,g) when-
ever h′ 6= h. This suggests to choose the embedding as

Φ̃(1)(Π
(N)
h ) =

∑

g∈GM
Π

(N+M)
h,g . (17)

The reason for the superscript ‘(1)’ will become clear
shortly. Now consider the orthogonal projector Π

(N)
phys :=∑

h∈GN−1 |h;1〉〈h;1|. A state |ψ〉 is in the image of this
projector if and only if it is translation-invariant, i.e.
U⊗Ng |ψ〉 = |ψ〉 for all g ∈ G. Suppose that a state of
N +M particles is translation-invariant; then we would
like to be able to say that the state of the first N par-
ticles is translation-invariant, too. This motivates us to
demand Φ̃(1)(Π

(N)
phys) = Π

(N+M)
phys : in other words, we em-

bed the translation-invariant observables of N particles
into the translation-invariant observables of N +M par-
ticles.

We have |h;1〉〈h;1| = Π
(N)
h Π

(N)
phys. Since Φ̃(1) is sup-

posed to be an embedding and thus multiplicative, this
implies

Φ̃(1)(|h;1〉〈h;1|) =
∑

g∈GM
|h,g;1〉〈h;g;1|. (18)

To exhaust all of A(N)
alg , we still need to embed the op-

erators |h;1〉〈j;1| for h 6= j. Given Eq. (18), it seems

formally natural to define

Φ̃(1)(|h;1〉〈j;1|) :=
∑

g∈GM
|h,g;1〉〈j,g;1|. (19)

Natural as this definition may seem, we will soon see
that it relies on quite subtle physical assumptions. For
now, let us work with this definition and explore its con-
sequences. First, linearity and Eqs. (17) and (18) imply

Φ̃(1) (Πh,χ6=1) =
∑

g∈GM
Πh,g;χ 6=1. (20)

These demands yield an embedding that can equiva-
lently be defined as follows:

Lemma 27. There is a unique unital embedding Φ̃(1) ofA(N)
alg

into A(N+M)
alg that satisfies

Φ̃(1)
(

Π
(N)
alg (ê1 ⊗A1)

)
= Π

(N+M)
alg

(
ê1 ⊗A1 ⊗ 1(M)

)

(21)
for all A1 ∈ L(H⊗(N−1)), where ê1 := |e〉〈e|1 and 1 :=
{2, 3, . . . , N}. It is given by the linear extension of Eqs. (19)
and (20).

Proof. Write A1 =
∑

h,j∈GN−1 ah,j|h〉〈j| and use
Lemma 22 to obtain

Π
(N)
alg (|e〉〈e|1 ⊗A1) =

∑

h,j∈GN−1

ah,j
|G| |h;1〉〈j;1|

+
∑

h∈GN−1

ah,h
|G| Πh;χ 6=1. (22)

A similar representation can be obtained for the right-
hand side of Eq. (21). Thus, it is clear that the linear
extension of Eqs. (19) and (20) satisfies Eq. (21). In par-
ticular, the unit is preserved.

Now let Φ̃ be any embedding of A(N)
alg into A(N+M)

alg

which satisfies Eq. (21). Choose h, j ∈ GN−1 arbitrary,
and let A1 be the operator with ah,j = |G| and all other
coefficients zero. Then Eq. (22) becomes |h;1〉〈j;1|, and
Π

(N+M)
alg

(
|e〉〈e|1 ⊗A1 ⊗ 1(M)

)
becomes the right-hand

side of Eq. (19). Now, still for h 6= j,

(|h;1〉〈j;1|)† (|h;1〉〈j;1|) = |j;1〉〈j;1|.

Since Φ̃ preserves adjoints and products, this proves
Eq. (19) also in the case h = j. Finally, choosing A1 such
that ah,h = |G| and all other coefficients zero proves
Eq. (20), which implies that Φ̃ is the linear extension of
Eqs. (19) and (20).

What this lemma demonstrates is that our construc-
tion of Φ̃(1) can be interpreted in an alternative way — at
least on “alignable” observables. What our embedding
map does to those observables is as follows: write them
in the form |e〉〈e|1⊗A1, and embed them into the total Hilbert
space according to its defining tensor product structure. Then
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demand that Φ̃(1) maps the invariant part of |e〉〈e|1 ⊗ A1

to the invariant part of its embedding |e〉〈e|1 ⊗ A1 ⊗ 1(M).
This defines a particular, natural embedding of A(N)

alg

into A(N+M)
alg .

But this suggests directly that our candidate relational
trace is defective: its definition is implicitly based on the
choice of particle 1 as our reference. Indeed, the following
lemma shows that there is a large class of invariant embed-
dings. In particular, choosing another particle as the ref-
erence particle will in general lead to inequivalent em-
beddings. The proof is given by a straightforward cal-
culation and thus omitted.

Lemma 28. Let U ∈ Usym be any symmetry transformation
(for example, a QRF transformation). Then there is a unique
unital embedding Φ̃U of A(N)

alg into A(N+M)
alg which satisfies

Φ̃U
(

Π
(N)
alg (ê1 ⊗A1)

)
= Π

(N+M)
alg

(
U(ê1 ⊗A1)U† ⊗ 1(M)

)
.

Writing U =
⊕

h∈GN−1 U
⊗N
g(h), it acts as

Φ̃U (|h;1〉〈j;1|) =
∑

g∈GM
|h, g(h)−1g;1〉〈j, g(j)−1g;1|, (23)

Φ̃U (Πh;χ 6=1) =
∑

g∈GN
Πh,g;χ 6=1.

Via ΦU := Φ̃U ◦ Π
(N)
alg , this extends to a completely positive

unital map ΦU : L(H⊗N )→ L(H⊗(N+M)).

Since Π
(N)
alg = Π

(N)
alg ◦ Π

(N)
inv , we can write the left-hand

side of the first equation above as

Φ̃U
(

Π
(N)
alg (ê1 ⊗A1)

)
= Φ̃U

(
Π

(N)
alg (U(ê1 ⊗A1)U†)

)
.

In particular, if we choose U as the QRF transforma-
tion of Theorem 18 that “changes from the perspective
of particle 1 to particle i”, we obtain a natural invariant
embedding Φ̃(i) “relative to particle i”. It satisfies

Φ̃(i)
(

Π
(N)
alg (êi ⊗Ai)

)
= Π

(N+M)
alg

(
êi ⊗Ai ⊗ 1(M)

)
,

(24)
and acts on the basis elements of Aphys as

Φ̃(i) (|h;1〉〈j;1|) =
∑

g∈GM
|h,g;1〉〈j, h−1i−1ji−1g;1|.

For a better understanding of the physical reason of this
non-uniqueness of embedding, let us reconsider our in-
tuitive construction of Φ̃(1) above. First, note that all the
Φ̃U satisfy Eq. (18), which had a clear physical motiva-
tion. However, the Φ(i) violate Eq. (19), which we had
motivated purely by formal analogy. To shed light on
Eq. (19) and its generalization, Eq. (23), suppose for con-
creteness that we are interested in embedding N = 2
particles into N + M = 3 particles, and our group G is

the cyclic group Zn with addition modulo n. Consider
the orthogonal projector |ψ〉〈ψ|, where

|ψ〉 =
1√
2

(|1;1〉+ |2;1〉) . (25)

This is an element of H(2)
phys, the 2-particle subspace of

invariant states, and it describes a superposition of two
particles either being one or two places apart, see Fig-
ure 6. Note that there is no origin that would locate the
particles absolutely; all we have is their relations.
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FIG. 6. The state |ψ〉 in (25) describes a superposition (indi-
cated in yellow) of two particles (black dots) being either one
or two places apart. If there is a third particle (white dot) such
that the resulting state is still identical to the pure state |ψ〉 on
the first two particles, then that particle should carry no infor-
mation as to “which branch” is actualized. That is, its relation
to the first two particles should be the same in both branches.
But whether this is the case depends on our convention of how
we define its relation to the first two particles. This results in
different embedding maps ΦU .

Now suppose we would like to embed the corre-
sponding observable |ψ〉〈ψ| into the three-particle ob-
servables. The essence of the problem lies in embedding
|h;1〉〈j;1|, where h = 1 and j = 2. The local state of
the two particles will remain coherent if the third par-
ticle carries no information on whether configuration h
or j is actualized — that is, if the properties of the third
particle are the same in both branches of the superposi-
tion. But the only properties of the third particle are its
relations to the other two particles. Thus, if we complete
|ψ〉 to a state on three particles

|Ψ〉 =
1√
2

(|h, g;1〉+ |j, g′;1〉) , (26)

then the local state of the first two particles will remain
coherent if and only if the third particle inside the con-
figuration (h, g) has the same relation to the first two parti-
cles as the third particle in the configuration (j, g′). But
the crucial insight is that this will depend on what we mean
by “relation to the first two particles”.

For instance, suppose that g = 4. If we choose the con-
vention to say that the relation is identical if the relation
to the first particle is the same, then this will be the case if
g′ = g = 4. But if we demand instead that the relation to
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the second particle is the same, then we need g′ = 5. Our
definition of Φ(1) is implicitly relying on the former con-
vention, while Φ(2) would rely on the latter. The reason
why Eq. (19) (for Φ = Φ(1)) looks so simple is that we
have implicitly labelled the relations h ∈ GN−1 as rela-
tive to the first particle in all of this work, recall Eq. (1).
This is no loss of generality, and it had no implications
whatsoever for Section III, but here it becomes relevant.
The factor of h−1i−1ji−1 in Eq. (23) adapts the convention.
Note that it does not alter the pairwise relations among
the first N particles, or the pairwise relations among the
last M particles, but only the relation between the two
groups of particles.

Is there a way to escape the non-uniqueness of embed-
dings via some formal construction that is manifestly re-
lational, but does not depend on a choice of reference
within theN -particle subsystem relative to which the re-
lation of the new M particles is defined? The right-hand
side of Eq. (24) shows that the maps Φ̃(i) embed the in-
variant operator Π

(N)
alg (êi ⊗ Ai) by embedding the origi-

nal, non-invariant operator êi ⊗ Ai into the total Hilbert
space, followed by the projection into the global subal-
gebra Aalg. While the resulting map Φ̃(i) is invariant, its
definition is therefore not. Can we perhaps make the def-
inition invariant by embedding not êi ⊗ Ai directly, but
its invariant part? The following lemma answers this
question in the negative:

Lemma 29. Define the map Φ̃ : A(N)
alg → A

(N+M)
alg as

Φ̃(A(N)) := Π
(N+M)
alg

(
A(N) ⊗ 1(M)

)
.

Then this map is not a valid embedding. Namely, it is not
in general multiplicative, i.e. there exist A,B ∈ A(N)

alg with
Φ̃(AB) 6= Φ̃(A)Φ̃(B).

Proof. A tedious but straightforward calculation yields

Φ̃ (|h;1〉〈j;1|) =
1

|G|
∑

g∈G

∑

g∈GM
|h,g;1〉〈j, gg;1|

+
1

|G|δh,j
∑

g∈GM
Πh,g;χ 6=1.

But then, for h 6= j, we obtain

Φ̃(|h;1〉〈j;1|)Φ̃(|j;1〉〈h;1|) 6= Φ̃(|h;1〉〈h;1|).

A similar argument applies if we try to embed A(N)
inv

intoA(N+M)
inv : the analog of the above construction, with

Π
(N+M)
alg replaced by Π

(N+M)
inv , does not yield a valid em-

bedding.

B. A class of invariant traces

For every embedding ΦU of Lemma 28, we obtain a
corresponding “invariant trace”:
Lemma 30. For every U =

⊕
h∈GN−1 U

⊗N
g(h) ∈ Usym, define

a corresponding “invariant trace” TrinvU :=
(
ΦU
)†. It is

trace-preserving, and it maps invariant operators to invariant
operators. In particular, TrinvU(M)

(
A(N+M)

alg

)
= A(N)

alg , and
can be explicitly written in the following form:

TrinvU(M) ρ =
∑

h,j∈GN−1

|h;1〉〈j;1|
∑

g∈GM
〈h, g(h)−1g;1|ρ|j, g(j)−1g;1〉+

∑

h∈GN−1

Πh;χ 6=1

∑

g∈GM

tr(Πh,g;χ 6=1ρ)

|G| − 1
.

We omit the straightforward proof.
Since the different invariant traces formalize differ-

ent ways to embed the two-particle observables into the
three-particle observables, it is clear that the answer to
the question raised at the beginning of this section will
depend on the embedding. In other words, the question
of whether the phase θ is accessible on the first two parti-
cles depends on the operational definition of how to ac-
cess the first two particles within the total three-particle
Hilbert space.

To illustrate this fact, let us apply two different invari-
ant traces to the paradox. In contrast to the usual partial
trace, every invariant trace yields identical results when
applied to the equivalent states Ψ and Ψ′ in Eqs. (14)
and (15) (hence the name “invariant”). That is,

TrinvU3 |Ψ〉〈Ψ| = TrinvU3 |Ψ′〉〈Ψ′|

for all U ∈ Usym. However, different U yield different
results. For example, consider the invariant trace Trinv1

which is the adjoint of the embedding Φ(1) that we have
constructed in Subsection IV A. A straightforward cal-
culation gives

Trinv1
3 |Ψ〉〈Ψ| =

1

2n
|h;1〉〈h;1|+ 1

2n
|j;1〉〈j;1|

+
1

2n
Πh;χ 6=1 +

1

2n
Πj;χ6=1

= Π
(2)
inv

[
|e〉〈e|1 ⊗

(
1

2
|h〉〈h|+ 1

2
|j〉〈j|

)

2

]
,

Up to observational equivalence, we hence get a mixed
state

Trinv1
3 |Ψ〉〈Ψ| ∼ |e〉〈e|1 ⊗

(
1

2
|h〉〈h|+ 1

2
|j〉〈j|

)

2

.
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In particular, the phase θ has disappeared. This is not
surprising: ultimately, Trinv1 amounts to taking the
usual partial trace in the representation of the state rela-
tive to particle 1, i.e. of the state |Ψ′〉 of Eq. (15).

On the other hand, consider the symmetry transfor-
mation U from Example 20 which transforms to the cen-

ter of mass. Like in Ref. [49], let us choose m1 and m2

such that m1a = m2b. Using Lemma 30, It is clear that

TrinvU3 (Πh;χ 6=1) = Πh1;χ 6=1

and similarly for h replaced by j. Furthermore,

TrinvU3 (|l;1〉〈p;1|) =
∑

h,j∈Zn
|h;1〉〈j;1|

∑

g∈Zn
〈h, g+

⌊m2

m
h
⌋

;1|l;1〉〈p;1|j, g+
⌊m2

m
j
⌋

;1〉 = |l1;1〉〈p1;1|δl2−bm2
m l1c,p2−bm2

m p1c

for all l,p ∈ Z2
n. Since TrinvU3 |Ψ〉〈Ψ| =

TrinvU3 (Πalg(|Ψ〉〈Ψ|)), we can expand Πalg(|Ψ〉〈Ψ|)
into basis elements and apply the above equations. As
a result, this yields exactly Eq. (13) (since a is an integer,
it turns out that we can ignore all b·c). That is,

TrinvU3
(
|Ψ〉〈Ψ|

)
= Πinv

(
|ψ〉〈ψ|

)
∼ |ψ〉〈ψ|.

That is, up to observational equivalence, we obtain the
original pure alignable state |ψ〉 of Eq. (11). Moreover,
in this observational equivalence class, |ψ〉 is unique up
to symmetry equivalence: namely, if there is another pure
alignable state |ψ′〉 with TrinvU3 (|Ψ〉〈Ψ|) ∼ |ψ′〉〈ψ′|, then
ψ ∼ ψ′. But due to Lemma 22, this implies that ψ '
ψ′. Thus, in particular, there is (up to a global phase)
a unique representation of this state relative to the i-th
particle, |ψ〉 ' |e〉〈e|i ⊗ |ϕ〉i. According to Eq. (12), it is

|ϕ〉1 =
1√
2

(
|a+ b〉2 + eiθ| − a− b〉2

)

relative to the first particle. Thus, under the “center of
mass” relational trace TrinvU , the phase θ survives, in
contrast to the result for Trinv1.

C. Definition of the relational trace

Recalling the invariant algebra inclusions Aphys ⊂
Aalg ⊂ Ainv, we have thus far focused on construct-
ing an invariant trace for Aalg, since by Lemma 26, it is
the smallest algebra containing the invariant part of all
alignable states and observables. However, in the previ-
ous subsection, we have seen that there does not exist a
unique invariant trace on it, and the same conclusion ap-
plies to Ainv. We will now show that, by contrast, there
does exists a natural embedding of the algebra A(N)

phys of

relational N -particle operators into the algebra A(N+M)
phys

of relational (N + M)-particle operators. This will also
lead to a natural definition of an invariant trace in terms
of relational states.

This trace, which we hence call the relational trace, has
a natural and simple definition that is manifestly invari-
ant under relative translations between the two parti-
cle groups. It is therefore independent of the various

physically distinct conventions discussed in the previ-
ous subsections. On the relational subspace Hphys, the
paradox is therefore unambiguously resolved. It is suf-
ficient to focus on this subspace because Lemma 22 tells
us that the relational observables are tomographically
complete for the invariant information in all alignable
states. Thus, Hphys contains all the information we are
interested in.

Lemma 31. The map Φ̃phys : A(N)
phys → A

(N+M)
phys , defined by

Φ̃phys(A
(N)
phys) := Π̂

(N+M)
phys

(
A

(N)
phys ⊗ 1(M)

)

is an embedding. It simplifies to

Φ̃phys(A
(N)
phys) = A

(N)
phys ⊗Π

(M)
phys,

but it is not unital.

Recall that this construction does not yield an embed-
ding of all invariant observables A(N)

inv , or even of A(N)
alg ,

as we have seen in Lemma 29. Thus, it is remarkable that
it works for the subalgebra of relational observables.

Proof. Noting that every A(N)
phys ∈ A

(N)
phys satisfies A(N)

phys =

Π̂
(N)
phys(A

(N)
phys), we can recast Φ̃phys in the form

Φ̃phys(A
(N)
phys) = Π

(N+M)
phys

(
Π

(N)
phys ⊗ 1(M)

)(
A

(N)
phys ⊗ 1(M)

)

×
(

Π
(N)
phys ⊗ 1(M)

)
Π

(N+M)
phys .

By considering the action on an arbitrary basis state
|g1, . . . , gN+M 〉, it is easy to verify that

(
Π

(N)
phys ⊗ 1(M)

)
Π

(N+M)
phys = Π

(N)
phys ⊗Π

(M)
phys. (27)

Hence, using idempotence of the projector,

Φ̃phys(A
(N)
phys) = A

(N)
phys ⊗Π

(M)
phys

and the image commutes with Π
(N+M)
phys . Checking

the embedding properties is now trivial. Further-
more, note that the unit element of A(N)

phys is Π
(N)
phys,
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while the unit element of A(N+M)
phys is Π

(N+M)
phys . How-

ever, Φ̃phys(Π
(N)
phys) = Π

(N)
phys ⊗ Π

(M)
phys. To see that

Φ̃phys(Π
(N)
phys) does not act as the identity on H(N+M)

phys ,

observe that tr
(

Π
(N)
phys

)
= dimH(N)

phys = |G|N−1, hence

tr
(

Π
(N)
phys ⊗Π

(M)
phys

)
= |G|N+M−2, but tr

(
Π

(N+M)
phys

)
=

|G|N+M−1.

Returning to the discussion of how to define the rela-
tions of the additionalM particles to the first group ofN
particles (cf. Fig. 6), we now have a unique answer: the
projector Π

(M)
phys in Φ̃phys takes the coherent average over all

possible such relations. This can also be seen by inspect-
ing the action of Φ̃phys on the basis elements of Aphys:

Φ̃phys (|h;1〉〈j;1|) =
1

|G|
∑

g∈G,g∈GM
|h,g;1〉〈j, gg;1|.

In contrast to Eq. (26) and the embeddings of Subsec-
tion IV A, this embedding does not assign to every M -
particle configuration g another one, g′, which has “the
same relation” to the first N particles in branches h and
j. Instead, it generates the uniform superposition of all the
possibilities.

This averaging is also the reason for the failure of the
unitality property. However, as we will see shortly, the
absence of unitality is precisely the reason why the re-
lational trace defined below maps relational (N + M)-
particle states into relational N -particle states. It will
thus be rather a feature than a failure.

While Φ̃phys is not unital, note that the embedding of
the relational N -particle unit Φ̃phys(Π

(N)
phys) = Π

(N)
phys ⊗

Π
(M)
phys certainly does act as the identity on its image,

H(N⊗M)
phys :=

{
Π

(N)
phys ⊗Π

(M)
phys |ψ〉

∣∣∣ |ψ〉 ∈ H⊗(N+M)
}
.

This subspace of the space of relational (N+M)-particle
states H(N+M)

phys will be essential below when resolving
the paradox of the third particle.

The natural embedding induces a natural trace.

Definition 32 (Relational trace). The relational trace is de-
fined to be the Hilbert-Schmidt adjoint Trel := Φ†phys of the
extended embedding map Φphys : L(H⊗N )→ L(H⊗(N+M))

defined by Φphys := Φ̃phys ◦ Π̂
(N)
phys. That is, the relational

trace is the unique map with the property

tr
(

Φphys(A
(N)) ρ

)
= tr

(
A(N) Trel(M)ρ

)

for all A(N) ∈ L(H⊗N ) and all ρ ∈ L(H⊗(N+M)) (in par-
ticular for all states).

Specifically, note that

tr
(

Φphys(A
(N)) ρ

)
= tr

(
Φphys(A

(N)) Π̂
(N+M)
phys (ρ)

)

= tr
(

Φphys(A
(N)) ρphys

)
. (28)

This is precisely the expectation value of the relational
observable Φphys(A

(N)) ∈ A(N+M)
phys in the relational state

ρphys ∈ S(H(N+M)
phys ), evaluated in the manifestly in-

variant inner product on S(H(N+M)
phys ). The relational

trace is thus unambiguously defined in terms of the
so-called physical inner product of constraint quantiza-
tion [19, 66, 67], i.e. the inner product on Hphys. We will
analyze this in more detail in our upcoming work [62].

Theorem 33. The relational trace takes the explicit form

Trel(M)ρ = Tr(M)

[
Π

(N)
phys ⊗Π

(M)
phys ρΠ

(N)
phys ⊗Π

(M)
phys

]
,

where Tr(M) is the standard partial trace over particles N +
1, . . . , N + M . It maps relational operators onto relational
operators, i.e. Trel(M)

(
A(N+M)

phys

)
= A(N)

phys, and is trace-

preserving for states in S(H(N⊗M)
phys ), but trace-decreasing

outside of it. Furthermore, it preserves observational equiv-
alence, i.e. ρ ∼ σ implies Trel(M)ρ = Trel(M)σ.

Proof. The first statement follows from

tr
(

Φphys(A
(N)) ρ

)
= tr

[(
Π

(N)
physA

(N)Π
(N)
phys ⊗Π

(M)
phys

)
ρ
]

= tr
[(
A(N) ⊗ 1(M)

)

×
(

Π
(N)
phys ⊗Π

(M)
phys ρΠ

(N)
phys ⊗Π

(M)
phys

)]
,

which holds for any A(N) ∈ L(H⊗N ) and any ρ ∈
L(H⊗(N+M)).

Given the conjugation of its input with the projector
Π

(N)
phys ⊗ Π

(M)
phys, it is clear that Trel(M) is trace-preserving

for states in S(H(N⊗M)
phys ), but not for states outside of it.

It is also clear that Trel(M) maps operators fromA(N+M)
phys

into operators inA(N)
phys, since the projectors Π

(N)
phys can be

taken outside of the trace over particles N + 1, . . . , N +
M . To see that it is surjective, it is straightforward to
check that |G|1−MTrel(M)

(
A

(N)
phys ⊗ 1(M)

)
= A

(N)
phys for all

A
(N)
phys ∈ A

(N)
phys.

Finally, note that the image of Φphys is contained in
A(N+M)

phys , thus Φphys = Π̂
(N+M)
phys ◦ Φphys. Taking the

Hilbert-Schmidt adjoint of this equation yields Trel(M) ◦
Π̂

(N+M)
phys = Trel(M). Now suppose we have ρ ∼ σ,

then Lemma 14 and Π̂
(N+M)
phys ◦ Π

(N+M)
inv = Π̂

(N+M)
phys im-

ply Π̂
(N+M)
phys (ρ) = Π̂

(N+M)
phys (σ). Altogether this implies

that Trel(M) preserves observational equivalence.

We can write

Trel(M) = Π̂
(N)
phys ◦ Tr(M) ◦ Π̂

(N+M)
phys . (29)

We can thus view the relational partial trace Trel(M)

as an invariant extension of the standard partial trace

93



Tr(M). The non-unitality of Φ̃phys is reflected in the fi-
nal application of Π̂

(N)
phys. Without this projection, the

image of Trel(M) would not in general be contained in
A(N)

phys. For example, the uniform mixture ρ(N+M) :=

Π
(N+M)
phys /|G|N+M−1 on the physical subspace of N + M

particles yields Tr(M)ρ
(N+M) = 1(N)/|G|N , whose de-

composition according to Theorem 12 contains opera-
tors outside of A(N)

phys.
9 Thus, non-unitality is the price to

pay for remaining relational.
This leads to Trel(M) being trace-decreasing, unless the

initial state is fully supported on the subspace H(N⊗M)
phys .

Should we be worried about this fact — shouldn’t
marginals of normalized quantum states be normalized?
Not in this case. In contrast to the standard partial trace,
the relational trace is not supposed to tell us what the
reduced quantum state on a subsystem is. Instead, it is
constructed to tell us precisely the following:

Theorem 34. Given some (N+M)-particle state ρ(N+M) ∈
S(H⊗(N+M)), the following conditional state of N parti-
cles is normalized or subnormalized:

ρ(N) :=
Trel(M)ρ

(N+M)

tr
(
ρ(N+M)Π

(N+M)
phys

) .

Consider any relational projector 0 ≤ E
(N)
phys ≤ Π

(N)
phys which

we interpret as a “relational event”. Then the state ρ(N) tells
us the probabilities of this N -particle event, conditioned on
the (N +M)-particle system being relational:

tr
(
E

(N)
physρ

(N)
)

= Prob
(
E

(N)
phys| Π

(N+M)
phys

)
.

That is, the renormalized result ρ(N) of the relational
trace gives us the expectation values of all N -particle
relational observables, conditioned on the global (N+
M)-particle state being fully relational.

Proof. It follows from Theorem 33 and Eq. (27) that

tr
(

Trel(M)ρ
(N+M)

)
= tr

(
Π

(N)
phys ⊗Π

(M)
physρ

(N+M)
)

≤ tr
(

Π
(N+M)
phys ρ(N+M)

)
,

hence ρ(N) is not supernormalized. Now, the probabil-
ity that an initial global measurement of the projector
Π

(N+M)
phys yields outcome “yes”, and then a subsequent

9 More generally, the image ofH(N+M)
phys \H(N⊗M)

phys under Tr(M) does

not lie in the N -particle relational subspaceH(N)
phys.

local measurement of E(N)
phys yields “yes” too, is

Prob
(
E

(N)
phys,Π

(N+M)
phys

)

= tr
(

Φphys(E
(N)
phys)Π̂

(N+M)
phys (ρ(N+M))

)

= tr
(
E

(N)
physTrel(M) ◦ Π̂

(N+M)
phys (ρ(N+M))

)

= tr
(
E

(N)
physTrel(M)ρ

(N+M)
)
,

where we have used Definition 32 and Eq. (29). The rest
of the claim follows from the definition of conditional
probability.

Recall that in Lemma 9, we have seen that the projec-
tion ρphys := Π̂

(N+M)
phys (ρ) for alignable states ρ is subnor-

malized, but is sufficient to determine the expectation
values of all invariant observables. Thus, ρphys should
not be seen as the marginal of ρ on some subsystem,
but as the “relational part” of ρ. The “relational weight”
tr ρphys is in general less than one,10 and it can decrease
when disregarding some of the particles.

10 This assumes that ρ ∈ L(H⊗(N+M)) in ρphys = Π̂
(N+M)
phys (ρ) is

normalized, as appropriate in the context of our manuscript where
there is an external observer who could measure also non-invariant
observables in the presence of an external frame. By contrast,
in the perspective-neutral approach [39, 41–45] (and more gener-
ally in constraint quantization), one disregards any external struc-
ture and works directly with normalized relational states. That is,
one would define the normalization of the (N + M)-particle rela-
tional state as trρphys = 1. Indeed, note that the full standard

trace trρphys = tr
(

Π
(N+M)
phys ρ

)
is precisely the extension of the so-

called physical inner product [19, 66, 67] to density matrices. How-
ever, note also from the previous footnote that the standard par-
tial trace Tr(M) is not in general appropriate for relational states

ρphys. The additional projection with Π̂
(N)
phys in the relational trace

fixes this issue, but reduces the norm of states with support out-
side of H(N⊗M)

phys . This has a transparent physical interpretation
which is best seen through the norm reduction of invariant basis
states: Trel(M)(|hN,hM;1〉〈jN, jM;1|), where hN , jN ∈ GN−1 and
hM , jM ∈ GM , is equal to 1

|G| |hN ;1〉〈jN ;1| if hM = gjM for
some g ∈ G, and is zero otherwise. The variables hM , jM lying in
GM rather than GM−1 reflects the fact that they encode not only the
M − 1 internal relations of the M particles, but also a definite re-
lation between the two particle groups, which is a property of both
groups together. The normalization reduction factor 1/|G| comes
from the coherent averaging over the relations between the two par-
ticle groups (which is partially a property of the N particles), and
quantifies the corresponding ignorance of the relational N -particle
state obtained via Trel(M). By construction, the latter contains all
information about the relational N -particle observables which are
independent of the relation between the particle groups. However,
the ‘ignorance factor’ 1/|G| has to be taken into account.
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D. Relational resolution of the paradox

Let us now apply these insights to the paradox of the
third particle. Suppose ρ(N) is a state of the N par-
ticles before taking the additional M particles into ac-
count, prepared by an observer with access to the exter-
nal reference frame. The corresponding relational state
is ρ(N)

phys = Π̂
(N)
phys(ρ

(N)). Next, suppose the M additional
particles are prepared in a normalized state ρ(M), and
the composite state of all particles is of the product form
ρ(N+M) = ρ(N) ⊗ ρ(M). We can then construct the rela-
tional state corresponding to this composition. Here it is
important to note that ρ(N+M)

phys = Π̂
(N+M)
phys

(
ρ(N+M)

)
=

Π̂
(N+M)
phys

(
ρ̃(N+M)

)
, for any ρ̃(N+M) ' ρ(N+M). That

is, all members of the symmetry equivalence class of
ρ(N+M) (incl. states featuring entanglement between the
two particle groups) yield the same relational (N +M)-
particle state. However, due to Theorem 33, it is only the
projection into H(N⊗M)

phys that matters for the relational
trace. But Eq. (27) implies that

Π
(N)
phys ⊗Π

(M)
phys ρ

(N+M)
phys Π

(N)
phys ⊗Π

(M)
phys

= Π
(N)
phys ⊗Π

(M)
phys

(
ρ(N) ⊗ ρ(M)

)
Π

(N)
phys ⊗Π

(M)
phys

= ρ
(N)
phys ⊗ ρ

(M)
phys,

and so we have Trel(M)ρ
(N+M)
phys = ρ

(N)
phys · tr(M)ρ

(M)
phys. Up

to a constant factor, this is precisely the initial relational
N -particle state that we had before taking the additional
M particles into account.

Let us see what this implies for the paradox of the
third particle. Thus, let us concretely compute the re-
lational trace Trel3 of the state |Ψ〉 of Eq. (14). Due to
invariance, the result will be identical if we apply it to
the state |Ψ′〉 of Eq. (15). As a first step, we find

Π
(3)
phys(|Ψ〉〈Ψ|)Π

(3)
phys =

1

2n
|h;1〉〈h;1|+ e−iθ

2n
|h;1〉〈j;1|

+
eiθ

2n
|j;1〉〈h;1|+ 1

2n
|j;1〉〈j;1|.

Using 3〈g3|h;1〉 = 1√
|G|
|g3h−12 , g3h

−1
2 h1〉 yields

Trel3(|Ψ〉〈Ψ|) = Π
(2)
physTr3

[
Π

(3)
phys(|Ψ〉〈Ψ|)Π

(3)
phys

]
Π

(2)
phys

= Π
(2)
phys|ψ〉〈ψ|Π

(2)
phys

=
1

2n2
|h;1〉〈h;1|+ e−iθ

2n2
|h;1〉〈 j;1|

+
eiθ

2n2
|j;1〉〈h;1|+ 1

2n2
|j;1〉〈j;1|.

Since |Ψ〉 is alignable, Lemma 22 tells us that
〈Ψ|Π(N+M)

phys |Ψ〉 = 1/n. Thus, computing the conditional
state of Theorem 34, we obtain the projection of the state
in Eq. (13) into the relational subalgebra. Hence, we re-
cover exactly the relational state of the first two particles

which we had before adding the third. In particular, the
phase θ is preserved: as expected, it remains accessible
on the first two particles.

The algebraAphys generated by relational observables
and the subspace Hphys of relational states is the arena
of the perspective-neutral approach to QRFs [39, 41–45].
As such, there is no paradox of the third particle in this
approach. Furthermore, it provides a compelling con-
ceptual interpretation of this resolution: the relational
states are the perspective-neutral states, i.e. they cor-
respond to a description of the composite particle sys-
tem prior to choosing an internal reference relative to
which the state is described. The perspective-neutral
states contain the entire information about all internal
QRF perspectives at once. The relational trace is per-
formed at the perspective-neutral level, and consistency
at that level implies consistency in all internal perspec-
tives. We will further elaborate on this in Ref. [62].

E. Comparison to the resolution by Angelo et al.

Angelo et al. [49] also propose a resolution to the ap-
parent paradox that they have raised in their paper. Let
us recapitulate their resolution in our terminology and
compare the two approaches. First, they introduce an
operator T := e−2i(a+b)p̂r2 which in our notation sim-
ply implements a translation of the two particles, given
by T |g1, g2〉 = |g1 − 2a, g2 + 2b〉. Computing the expec-
tation value in the two-particle state of Eq. (11) yields
〈ψ|T |ψ〉 = 1

2e
iθ. Thus, this operator (or rather its real

and imaginary parts) admit the measurement of the
phase θ.

Since we are in the framework of Example 8, we can
use the explicit form of the characters to see that

T |h;χk〉 = χk(−2a)|h+ 2a+ 2b;χk〉.

In particular, the invariant part of this translation can be
expressed in the form

T |h;1〉 = |h+ 2a+ 2b;1〉. (30)

That is, T increases the relative distance of the particles
by 2a+ 2b. Indeed, if we define

Tinv := Πinv(T ) = Πalg(T ) = Π̂phys(T ),

then Tinv ∈ Aphys satisfies Eq. (30). Note, however, that
T contains strictly more information than Tinv: not only
does it tell us that the relative distance of the particles
increases by 2a+ 2b, but it also tells us what happens to
their absolute positions.

Angelo et al. write: “The crucial (and surprising) ob-
servation is that T actually shifts the relative coordinate of
particle 3 as well as that of particle 2.” Strictly speak-
ing, this is not a claim about T , but about the embed-
ding T (3) of T into the three-particle observables. Us-
ing the obvious embedding T (3) = T ⊗ 1, we obtain
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T (3)|g1, g2, g3〉 = |g1 − 2a, g2 + 2b, g3〉, and thus

T (3)|h1, h2;1〉 = |h1 + 2a+ 2b, h2 + 2a;1〉.
That is, the relative coordinate of particle 3 is also shifted
by 2a. This reproduces Angelo et al.’s claim, but it is
important to understand where the shift of h2 7→ h2 +2a
comes from. It is certainly not possible to deduce this
shift from Tinv alone. Instead, it comes form the specific
choice of implementing Tinv (a relative shift of 2a + 2b)
via T (absolutely shifting particle 1 by −2a and particle
2 by 2b). And the latter choice comes from Angelo et
al.’s decision of preserving the center of mass, which fixes
the non-invariant action of T .

In summary: Angelo et al.’s proposed resolution of
the paradox comes from deciding to embed the two-particle
observables via the center-of-mass embedding that we have
described in Subsection IV B. As shown there, this leads
to a preservation of the phase θ. However, as also dis-
cussed in Subsection IV B, there exist other equally well-
motivated, but physically inequivalent choices of em-
bedding which may or may not preserve θ.

In contrast, our resolution amounts to the construc-
tion of a relational embedding for which no such choice
has to be made in the first place. Nonetheless, Angelo
et al’s insight is still important: embedding fewer into
more particles will in general “do something” to the ad-
ditional particles, and care has to be taken of how the
embedding is accomplished.

V. CONCLUSIONS

The aim of this article is to elucidate the operational
essence and interpretation of the recent structural ap-
proach to QRFs [38–40], and to also clarify the mean-
ing of its QRF transformations as symmetry transforma-
tions. These insights have then been exploited to illu-
minate the physics behind the apparent ’paradox of the
third particle’ of Ref. [49] and to resolve it at a formal
level through relational observables.

We began by providing a careful conceptual com-
parison of the quantum information [1–8] and struc-
tural approaches to QRFs, illustrating the difference in
their operational essence in terms of two communica-
tion scenarios. While both approaches focus on an exter-
nal relatum independent description of physical observ-
ables and quantum states, they do so in different man-
ners and with different goals. As we have seen, tech-
nically a distinction can be drawn between the two in
terms of how they describe external relatum indepen-
dent states fundamentally: they are the incoherently and
coherently group-averaged states in the QI and structural
approach, respectively.

A key ambition of the QI approach is to elucidate
how to perform communication protocols between dif-
ferent parties in the absence of a shared external labo-
ratory frame. To this end, it suffices to focus on phys-
ical properties of the communicated quantum system

that are meaningful relative to an arbitrary choice of
external frame. For example, this can be achieved by
restricting to speakable information that is encoded in
decoherence-free subspaces or by communicating an ad-
ditional reference quantum system that serves as a token
for the sender’s reference frame. Either way, the QI ap-
proach maintains the reference frame external to the sys-
tem of interest. For successfully carrying out such oper-
ational protocols it is also not necessary to take an extra
step and choose an internal reference frame within the
system of interest, and to ask how the quantum system
is described relative to one of its subsystems.

However, this additional step is precisely what the
structural approach aims for. Its primary goal is not the
implementation of protocols for communicating physi-
cal information. It has rather a more fundamental ambi-
tion: to dissolve the distinction between quantum sys-
tems and reference frames and thereby to extend the set
of available reference frame choices to include subsys-
tems of the physical system of interest. Its focal point
are thus not only external relatum independent state
descriptions, but internal state descriptions. The oper-
ational essence of the structural approach can be illus-
trated in a scenario in which different agents agree on a
(redundancy-free) description of physical quantum states
without adhering to an external relatum. They can al-
ways achieve this task by invoking certain “canonical
choices” in the representation of quantum states that
exploit the internal structure of the quantum system to
be described. In particular, these canonical choices of
representation are related by transformations that coin-
cide with the QRF transformations in the structural ap-
proach.

To show this explicitly, we have then formalized these
conceptual observations in the context of an N -particle
quantum system (“G-system”) where the configuration
space of each particle is a finite Abelian group G. We
chose this simple setting in order to avoid technicalities
and to render all appearing structures completely trans-
parent. But we emphasize that our observations are of
more general validity. They apply directly to laboratory
situations in which agents simply disregard, or do not
have access to, a relatum external to the system of in-
terest, but in principle also to the case that no external
physical relatum exists in the first place as, e.g., in quan-
tum cosmology (see Refs. [43, 68] for a related discus-
sion).

We determined the symmetry group Gsym associ-
ated with a G-system, which preserves all its external-
relatum-independent structure. We showed that states
from the corresponding symmetry equivalence class are
alignable to a choice of reference system through a Gsym
transformation: each equivalence class contains “canon-
ical choices” of state representations, and these corre-
spond to selecting any one of the N particles as a ref-
erence system to define the origin and to describing the
remaining N − 1 particles relative to it. These canon-
ical choices are the ’internal QRF perspectives’ on the

CHAPTER 4. QUANTUM REFERENCE FRAME TRANSFORMATIONS AS
SYMMETRIES AND THE PARADOX OF THE THIRD PARTICLE

96



N -particle system of Refs. [38–40].
The symmetry group Gsym contains the ’classical

translation group’ G as a strict subgroup, but it also con-
tains ‘relation-conditional translations’ which turn out
to include the QRF transformations of Ref. [40], which
are equivalent to those of Refs. [38, 39]. While it is evi-
dent from these works that the QRF transformations are
conditional translations, the present article clarifies that
they are symmetry transformations with a precise and
transparent physical interpretation.

Being translations conditional on the particle rela-
tions, the QRF transformations make sense in a classical
context when dealing with, for example, statistical mix-
tures of particle positions rather than superpositions,
and indeed have classical analogs that have been exhib-
ited in Refs. [39–43]. Nevertheless, just like the CNOT
gate has a classical meaning, but can generate entangle-
ment, the QRF transformations similarly lead to inter-
esting quantum effects such as a QRF dependence of,
e.g. entanglement and superpositions [38–40], classical-
ity [39, 71, 72], spin [46, 47], certain quantum resources
[73], temporal locality [44, 48], and of comparing quan-
tum clock readings [42, 45].11

Given the two groups Gsym and G in the setup, one has
a priori two distinct ways to construct invariant states
and observables. Interestingly, as we have shown, the
invariant (pure) states and thus the subspace Hphys of
relational states do not in fact depend on whether one
requires invariance under the action of Gsym or its sub-
group G. By contrast, the set of invariant observables
does depend on which group one works with: the oper-
ator algebra invariant under Gsym is a strict subset of the
operator algebra invariant under its subgroup G. How-
ever, the two invariant operator algebras coincide again
in their restriction to the space of relational statesHphys,
which is the algebra Aphys generated by so-called rela-
tional observables [18–26, 42–45]. The space of relational
states Hphys and the relational operator algebra Aphys

are key structures in constraint quantization [19, 66, 67]
and the platform of the perspective-neutral approach to
QRFs [39, 41–45] (part of the structural approach), which
are thus independent of the distinction between Gsym
and G. The difference between Gsym and its subgroup
G is, however, crucial when aligning the non-invariant
description of quantum states to a particle at the level of
the full N -particle Hilbert space.

These observations also permitted us to first clarify
the physics behind the ’paradox of the third particle’ dis-
cussed in Ref. [49], and subsequently to resolve it at a
formal level. First, we have illuminated why the usual
partial trace is not suitable in the context of QRFs, be-
cause it ignores the equivalence classes of states that are

11 It would be interesting to study the recent proposals [77–79] for
quantum time dilation effects in terms of the temporal QRF trans-
formations as in Refs. [42–45, 48].

operationally indistinguishable in the absence of an ex-
ternal relatum. Next, we have explained that, in order to
take the observational equivalence classes into account,
one has to construct a partial trace in terms of the in-
variant observables. However, even when attempting
to do so, we have seen that there does not exist a phys-
ically distinguished choice for such an invariant partial
trace outside the space of relational states. The reason is that
an invariant partial trace demands a suitable embedding
of the two-particle invariant observables into the three-
particle invariant observables. Yet such an embedding
(while invariant under symmetry transformations) de-
pends on how one defines the relation of the third to the
first two particles, and there are multiple physically in-
equivalent ways (e.g., distance to the first particle, cen-
ter of mass, etc.). The two-particle reduced state then
depends on one’s convention of how to define the rela-
tion between the third and the first two particles, despite
restricting attention to invariant observables.

However, when restricting attention further to the al-
gebra Aphys generated by relational observables and the
space of relational states Hphys, we showed that there
does exist a physically distinguished embedding of the
relational two-particle observables and states into the
relational three-particle observables and states. Physi-
cally, this embedding corresponds to coherently averaging
over all possible relations between the third and the first
two particles, and thereby defines an entirely invariant
embedding. This permitted us to define an unambigu-
ous relational partial trace that determines the expecta-
tion values of relational observables on subsets of parti-
cles. In particular, this trace achieves for relational states
what a consistent partial trace should do: if a third parti-
cle is independently prepared, then the two-particle re-
duced state, obtained from the relational three-particle
state, coincides with the relational two-particle state
prior to taking the third particle into account. At the
level of relational observables and relational states, the
paradox of the third particle of Ref. [49] is thus resolved;
in this sense, the perspective-neutral approach does not
feature any paradox of additional particles. However,
we have not discussed what it would mean for an agent
to operationally implement this resolution in the lab
and, specifically, how they may operationally restrict to
relational states and observables (although we believe
this to be possible). In this light, our resolution of the
paradox is formal.

The paradox of the third particle and our resolu-
tion can be viewed as a finite-dimensional analog of
the problem of boundaries and edge modes in gauge
theory and gravity [51–56]. Boundaries in space or
spacetime usually break gauge-invariance and consti-
tute challenges for gauge-invariant observables. The lat-
ter are typically non-local (such as Wilson loops) and can
thus have support in two neighbouring regions sepa-
rated by a boundary. Those gauge-invariant observables
with support in both regions determine the physical re-
lation between the two and are accounted for in terms
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of so-called edge modes when one of the regions is ig-
nored. This is analogous to the joining of two groups of
N and M particles and asking for the invariant relations
between the two groups. The relative distances between
the two groups of particles are the finite-dimensional
analog of the gauge-invariant observables in gauge the-
ories and gravity that have support in two neighbouring
regions. As we have seen, ignoring one group of parti-
cles by simply taking the standard partial trace may in-
deed lead to an invariance breaking in analogy to the
field theory case, i.e. N -particle states that are not rela-
tional. This is because the set of relational observables
for the joint (N + M)-particle system is not only the
union of the sets of relational N - and M -particle observ-
ables, again in analogy to two neighbouring subregions
in spacetime. Our relational trace defines a purely rela-
tional, i.e. invariant way of ‘ignoring’ a group of parti-
cles, and it would be interesting to extend this tool to the
study of edge modes in gauge theories and gravity.

Lastly, we emphasize that our novel interpretation of
the structural approach applies in particular also to tem-
poral quantum reference frames, i.e. quantum clocks.
For instance, the example of the cyclic group could
model a set of quantum clocks each with a finite set of
readings. The external frame would then be some lab-
oratory clock that one external observer has access to,
but another may not. Nevertheless, the two observers
can agree on the description of the flow of time by fo-
cusing on a purely internal choice of clock that leads to a
relational notion of time entirely independent of any ex-
ternal clock. It is in this sense that one can interpret
the relational quantum dynamics defined by temporal
relational observables [18–25, 42–45, 80] or the Page-
Wootters formalism [44, 45, 48, 78, 81–84] (which re-
cently have been shown to be equivalent [44, 45]) in
the context of laboratory situations.12 Indeed, this is
precisely how the experimental illustration of the Page-

Wootters dynamics reported in [85] is to be understood.
In this manuscript, we focused purely on kinematical

aspects of quantum reference frame physics. In forth-
coming work [62], we will study in detail how the in-
sights gained here are affected when we take the dy-
namics of theN -particle system into account. This ques-
tion will link also with the perspective-neutral approach
to QRFs [39, 41–45], and we will establish in detail the
equivalence of its “quantum coordinate changes” with
the QRF transformations exhibited here.
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Abstract: Nonlocality, as demonstrated by the violation of Bell inequalities, enables
device-independent cryptographic tasks that do not require users to trust their apparatus.
In this article, we consider devices whose inputs are spatiotemporal degrees of freedom,
e.g. orientations or time durations. Without assuming the validity of quantum theory, we
prove that the devices’ statistical response must respect their input’s symmetries, with
profound foundational and technological implications. We exactly characterize the
bipartite binary quantum correlations in terms of local symmetries, indicating a

fundamental relation between spacetime and quantum theory. For Bell experiments
characterized by two input angles, we show that the correlations are accounted for by a
local hidden variable model if they contain enough noise, but conversely must be nonlocal

if they are pure enough. This allows us to construct a “Bell witness” that certifies
nonlocality with fewer measurements than possible without such spatiotemporal

symmetries, suggesting a new class of semi-device-independent protocols for quantum
technologies.
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I. INTRODUCTION

Quantum theory radically challenges our classical
intuitions. A famous example is provided by the
violation of Bell inequalities [1–6], demonstrating that
local hidden variable models are inadequate to account
for all observable correlations in quantum theory. While
this so-called nonlocality was initially of foundational
concern, it transpires to have a very powerful practical
use: it enables device-independent protocols in quantum
information theory (e.g. [7–10]). In this paradigm, one
can perform certain tasks (e.g. cryptography) without
trusting one’s apparatus, or even necessarily assuming
the full formalism of quantum mechanics. These
protocols rely on the readily believable no-signalling
constraint, which forbids the instantaneous transmission
of information between sufficiently distant laboratories.
Since this constraint originates in special relativity, it
may be thought of as a property of spacetime itself.

A pillar of the device-independent formalism is its
abstract black box description: experimental devices
are fully characterized by probability tables of outputs
given a supplied input (figure 1a). In this article, we
supplement these inputs with physical structure, and
adopt a semi-device-independent approach that makes
no assumptions about the inner workings of the devices,
or the physical theories governing them (i.e. quantum or
otherwise), but assumes that their ensemble statistics
can be characterized by a finite number of parameters.
Specifically, we consider when inputs are spatiotemporal
degrees of freedom, e.g. some orientation in space or
duration of time. This includes, for example, the bias
of a magnetic field, duration of a Rabi pulse, or angle
of a polarizer (figure 1b). Spatiotemporal degrees of
freedom bring with them a symmetry structure, which
can be mathematically described using Lie group theory.

Alice Bob

α β

polarizer

detector

polarizer

a b

detector

(b)

Alice Bob

x y

a b

(a)

FIG. 1: Bell scenario: abstract vs. spatiotemporal
inputs. Spatially-separate Alice and Bob independently
choose measurement settings x, y and receive some outputs
a, b, yielding the joint conditional probability distribution
P(a, b |x, y). (a) In the usual black box formalism, the
inputs x and y are abstract labels. (b) Here, we consider
the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g. angles x = α, y = β of polarizers).

In this article, we introduce a general framework
for spatiotemporal black boxes. We prove that the
probability tables associated with spatiotemporal inputs
must encode a linear representation of the corresponding
symmetry groups (section II A). We demonstrate the
power of this approach with two examples in Bell
test scenarios: First, if each laboratory controls a
single angle (section II B), we find—independently of
the theory—that the response to rotations can in
some cases certify the existence of a local hidden-
variable model, or the violation of a Bell inequality.
Consequently, we present a novel protocol for witnessing
nonlocality, similar in spirit to [11, 12], but without
prerequiring the validity of quantum theory. Secondly,
we consider when both inputs are chosen via rotations
in d-dimensional space. We show that natural
assumptions on the local response to those rotations
recovers the set of bipartite binary quantum correlations
exactly (section II C), indicating a fundamental relation
between the structures of spacetime and of quantum
mechanics. Finally, we discuss the implications of these
results (section III), particularly for the construction
of novel experimental tests of quantum mechanics and
of new semi-device-independent protocols for quantum
technologies.

II. RESULTS

A. Representation theorem for spatiotemporal
degrees of freedom

The device-independent formalism abstracts experi-
ments into a table of output statistics conditional on
some choice of input. This is imbued with causal struc-
ture [13] by separating the inputs and outputs into local
choices and responses made and observed by different lo-
cal agents, acting in potentially different locations and
times. The simplest structure is one agent at a single
point in time. More commonly considered is the Bell
scenario [6], where two spatially separated agents each
independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this pa-
per applies to any casual structure, but looking towards
application the later examples will use the Bell scenario.

Here, we shall consider experiments where the local
inputs correspond to spatiotemporal degrees of freedom:
for example, the direction of inhomogeneity of the
magnetic field in a Stern–Gerlach experiment, or the
angle of a polarization filter (figure 1b). Crucially, we
will describe such experiments without assuming the
validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s.
For concreteness, assume for the moment that Alice’s
input is given by the direction ~x of a magnetic field. She
chooses her input by applying a rotation R ∈ SO(3) to
some initial magnetic field direction ~x0, i.e. ~x = R~x0.
Her statistics of obtaining any outcome a will now
depend on this direction, giving her a black box P(a | ~x).

In general, Alice will have a set of inputs X
and a symmetry group G that acts on X . Given
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some arbitrary x0 ∈ X , we assume that Alice can
generate every possible input x ∈ X by applying a
suitable transformation R ∈ G, such that x = Rx0.
Mathematically, X is then a homogeneous space [14],
which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In
the example above, G = SO(3) describes the full set
of rotations that Alice can apply to ~x0, while H =
SO(2) describes the subset of rotations that leave ~x0

invariant (i.e. the axial symmetry of the magnetic field
vector). Then, X = SO(3) /SO(2) = S2 is the 2-
sphere of unit vectors (i.e. directions) in 3-dimensional
space. Similarly, the polarizer (figure 1b) corresponds
to G = SO(2), H = {1}, and X = S1, which we identify
with the unit circle.

Temporal symmetries also fit into this formalism.
Suppose Alice’s input corresponds to letting her system
evolve for some time, then G = (R,+) is the group
of time translations. If we know that the system
evolves periodically over intervals τ ∈ R+, which we
model as a symmetry subgroup H = (τ · Z,+), then
the input domain X = G/H ' S1. Physically, this
could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before
recording an outcome.

Now suppose Alice has a black box P, where on
spatiotemporal input x ∈ X , the outcome a is observed
with probability P(a |x). Then, Alice can “rotate” her
apparatus by R ∈ G, and induce a new black box P′ with
outcome probabilities P′(a|x) = P(a |Rx). Physically,
R could be an active rotation within Alice’s laboratory
(e.g. spinning a polarizer), of the incident system (e.g.
adding a phase plate), or could be a passive change of
coordinates.

Thus, a given black box and a spatiotemporal
degree of freedom defines a family of black boxes, and
transformations R ∈ G map a given black box to another
one in this family. Suppose we denote the action of
R on the black boxes by TR : P 7→ P′. If rotating
the input first by R then by R′ is equivalent to a
single rotation R′′ = R′ ◦ R, it follows the black box
formed by applying TR and then TR′ is equivalent to
applying the single transformation TR′′ = TR′ ◦ TR on
P. We can say more about this action if we consider
ensembles of black boxes. For any family of black boxes
{Pi}ni=1 and probabilities {λi}ni=1,

∑
i λi = 1, λi ≥ 0,

the experiment of first drawing i with probability λi
and then applying black box Pi defines a new, effective
black box P, with statistics P(a |x) =

∑
i λiPi(a |x).

All these black boxes are in principle operationally
accessible to Alice. However, a priori, we cannot
say much about the resulting set of boxes – it could
be a complicated uncountably-infinite-dimensional set
defying simple analysis. Thus, we make a minimal
assumption that this set is not “too large”:

Assumption (i). Ensembles of black boxes can be
characterized by a finite number of parameters.

The mathematical consequence is that the space of
possible boxes for Alice is finite-dimensional. This is a
weaker abstraction of a stronger assumption typically

made in the semi-device-independent framework of
quantum information: that the systems involved in the
protocols are described by Hilbert spaces of bounded
(usually small) dimension [15, 16]. For example,
BB84 [17] quantum cryptography assumes that the
information carriers are two-dimensional, excluding
additional degrees of freedom that could serve as a side
channel for eavesdroppers [18]. Assumption (i) is much
weaker; it does not presume that we have Hilbert spaces
in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the
results presented in this article lie in the semi-device-
independent regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and
applying it to a default input x0, i.e. x = Rx0. Then:

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R 7→ TR,
such that for each outcome a, the outcome probabilities
P(a |xR) are a fixed (over R) linear combination of
matrix entries of TR.

The proof is given in appendix A, and is based
on the observation that TR becomes a linear group
representation on the space of ensembles. Motivated
by this characteristic response, we refer to black boxes
whose inputs are selected through the action of G as
G–boxes.

A few comments are in order. First, this theorem
applies to any causal structure, including the case of
two parties performing a Bell experiment. If Alice and
Bob have inputs and transformations XA, GA and XB ,
GB respectively, then the full setup can be seen as an
experiment with X = XA × XB and G = GA × GB , to
which Theorem 1 applies directly.

Secondly, there may be more than one transformation
that generates the desired input x, i.e. both x = Rx0

and x = R′x0 for R 6= R′; this is precisely the case
if R−1R′ ∈ H. For example, a magnetic field can be
rotated from the y- to z-direction in many different
ways. In this case, Theorem 1 applies to both R and
R′, which yields additional constraints.

Finally, quantum theory is contained as a special
case. Typically, one argues that due to preservation
of probability, transformations R must be represented
in quantum mechanics via unitary matrices UR acting

on density matrices via ρ 7→ URρU
†
R. This projective

action can be written as an orthogonal matrix on the
real space of Hermitian operators, in concordance with
Theorem 1.

As a specific example, consider a quantum harmonic
oscillator with frequency ω, initially in state ρ0, left
to evolve for a variable time t before it is measured
by a fixed POVM [19] {Ma}a∈A. The free dynamics
are given by the Hamiltonian H, whose discrete
set of eigenvalues {En = ~ω

(
1
2 +n

)
} correspond to

allowed “energy levels”. The evolution is periodic,
so (recalling earlier) G = (R,+), H =

(
2π
ω · Z,+

)

and X ' S1. The associated black box is thus
P(a | t) = Tr

[
Ma exp

(
− iHt~

)
ρ0 exp

(
iHt
~
)]

. For any
given ρ0 and Ma, this evaluates to an affine-linear
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combination of terms of the form cos [(n−m) ~ωt] and
sin [(n−m) ~ωt], involving all pairs of energy levels that
have non-zero occupation probability in ρ0 (and non-
zero support in Ma). This is a linear combination of
entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt) sin(αt)
− sin(αt) cos(αt)

)
, (1)

in accordance with Theorem 1. For Tt to be a finite
matrix, there must only be a finite number of occupied
energy differences Em − En.

Here, Assumption (i) is equivalent to an upper
(and lower) bound on the system’s energy. In the
general framework that does not assume the validity of
quantum mechanics (or presuppose trust in our devices,
or our assignment of Hamiltonians), we can view
Assumption (i) as a natural generalization of this to
other symmetry groups and beyond quantum theory. By
assuming a concrete upper bound on the representation
label (such as α in eq. (1)), we can establish powerful
theory- and device-independent consequences for the
resulting correlations, as we will now demonstrate by
means of several examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest non-trivial spatiotempo-
ral freedom, where Alice and Bob each have the choice
of a single continuous angle: respectively α, β ∈ [0, 2π),
and each obtain a binary output a, b ∈ {+1,−1}. Phys-
ically, this would arise, say, in experiments where a pair
of photons is distributed to the two laboratories, each
of which contains an rotatable polarizer followed by a
photodetector (figure 1b).

Due to Theorem 1, the probabilities P(a, b |α, β) are
linear combinations of matrix entries of an orthogonal
representation of SO(2)×SO(2). From the classification
of these representations (see appendix B 1), it follows
that all SO(2)×SO(2)-boxes are of the form

P(a, b |α, β) :=
2J∑

m=0

2J∑

n=−2J

cabmn cos (mα− nβ)

+ sabmn sin (mα− nβ) ,
(2)

resulting in a correlation function

C(α, β) := P(+1,+1 |α, β) + P(−1,−1 |α, β)

− P(+1,−1 |α, β)− P(−1,+1 |α, β) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos (mα−nβ) + Smn sin (mα−nβ) ,

(4)

where J ∈ {0, 1
2 , 1,

3
2 , . . .} is some finite maximum

“spin”.
If Alice and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending
signals to Bob instantaneously. This “no-signalling”
principle constrains the set of valid joint probability

distributions: namely Bob’s marginal statistics cannot
depend on Alice’s choice of measurement, and vice
versa. However, for any given correlation function of the
form eq. (4), there is always at least one set of valid no-
signalling probabilities (see appendix B 2) – for example,
those where the marginal distributions are “maximally
mixed” such that independent of α, a is +1 or −1 with
equal probability (likewise for β and b), consistent with
an observation of Popescu and Rohrlich [20].

Consider a quantum example: two photons in a
Werner state [21, 22] ρW := p|ψ− 〉〈ψ−| + 1

4 (1−p)14

where |ψ−〉 = 1√
2

(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice

and Bob’s polarizer/detector setups are described by the
observables Mθ :=

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
for orientations θ =

α, β respectively. Then, C(α, β) = Tr (ρWMα⊗Mβ) =
−p cos [2 (α− β)]. This fits the form of eq. (4) for J = 1,
with C22 = −p and all other coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden variable
(LHV) model. Namely, is there a single random
variable λ over some space Λ such that P(a, b |α, β) =∫

Λ
dλPΛ(λ) PA(a |α, λ) PB(b |β, λ), where PΛ(λ) is a

classical probability distribution, and PA(a |α, λ) and
PB(b |β, λ) are respectively Alice and Bob’s local
response functions (conditioned on their input choices
α and β and the particular realization of the hidden
variable λ)? If no LHV model exists, then the scenario is
said to be nonlocal. Famously, Bell’s theorem shows that
quantum theory admits correlations that are nonlocal
in this sense [1, 2]. This follows from the violation of
Bell inequalities that are satisfied by all distributions
with LHV models, the archetypical example being the
Clauser–Horne–Shimony–Holt (CHSH) inequality [3]:

∣∣C(α1, β2)+C(α3, β2)+C(α3, β4)−C(α1, β4)
∣∣ ≤ 2, (5)

where α1, α3 are two choices of Alice’s angle, and β2, β4

of Bob’s. Classical systems always satisfy this bound,
but quantum theory admits states and measurements
that violate it. When working with a continuous
parameter, Bell inequalities need not be limited to
a subset of angles, but can also be formulated as a
functional of the entire correlation function [23, 24].

Not all correlations of the form in eq. (4) are allowed
by quantum theory. For example, “science fiction”
polarizers with the correlation function C(α, β) =
2
7 cos[3(α−β)]−cos[α−β] would yield a CHSH value of
3.63, under choices of angles α1 = 1.5, α3 = 0, β2 = 3.9
and β4 = 2.3, violating quantum theory’s maximum
achievable value of 2

√
2 [25].

With this general form, we can make broad
statements about whether correlations are local or
nonlocal. First, if the correlations are sufficiently
“noisy”, we can systematically construct a LHV model
by generalizing a procedure by Werner [21] (see
appendix B 3). If the only constraint on the correlations
is that is has some maximum J , then the existence of a
LHV is guaranteed if the magnitude of angle-dependent
changes in C is less than γJ where

γJ :=
√

2e−1 [4J (2J + 1)]
− 3

2 . (6)
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Subject to extra restrictions that keep the form of C
simple, more permissive bounds are also derived. For
instance, if there is only one non-zero coefficient in
eq. (4), then γ =

√
2/π ≈ 0.4502. Recall the correlation

function for projective measurements on a Werner state,
−p cos [2 (α− β)], and identify γ with p. In this case,
our bound is comparable with that in Hirsch et al. [26]
of p ≤ 0.6829.

Conversely, we can give a simple sufficient criterion
for nonlocality if we separate the terms in eqs. (2)
and (4) into relational and non-relational components.
The relational components where m = n account for
behaviour that depends only on the difference between
the two angles. Purely relational correlations, i.e. ones
with C(α, β)≡C(α−β), can be motivated by symmetry
(i.e. that in the absence of external references, only
the relative angle should have operational meaning).
Here, the J = 1

2 case contains the bipartite rotational
invariant correlations discussed in Nagata et al.
[27]. Conversely, the correlations resulting from any
experiment can be actively made relational as we will
describe in more detail below.

If the relational part of a correlation function Crel

has an angle difference Θ+ which results in near perfect
(anti-)correlations, and another angle difference Θ−
that does not, then one can systematically construct
a (Braunstein–Caves [28]) Bell inequality that will be
violated (see appendix B 4). Specifically, “near perfect”
means that for a given J , Crel (Θ+) ≥ 1− εJ with

εJ := −KJ +

√
K2
J +

∆2

4
=

∆2

8KJ
+O

(
K−2
J

)
, (7)

where KJ :=
√

2π2J(2J+1)(4J+1)/3, and Crel(Θ−) ≤
1−∆ bounds the “other” value measured at Θ−. (See
appendix B 4 for proof).

We summarize these results (see also figure 2):

Theorem 2. Consider a two-angle Bell experiment with
correlations C in the form of eq. (4), with an upper
bound J on the representation labels.

A. If C is sufficiently “noisy”, in the sense that

max
α,β
|C(α, β)− C00| ≤ γJ(1− |C00|) (8)

with γJ as in eq. (6), then the correlations can always
be exactly accounted for by a LHV model.

B. If the relational part of C is sufficiently “pure” for
some angle Θ+ (above 1− εJ , as defined in eq. (7)),
but also sufficiently different (below 1−∆) for some
other angle Θ−, then the correlations violate a Bell
inequality.

This is a powerful result: with a choice between two
experimental settings for Alice, and no choice made by
Bob, we can witness nonlocality. This can be done by
the following protocol:

• Alice and Bob share some random angle λ,
uniformly distributed in the interval [0, 2π).

0

1

-1

1-Δ

1-εJ

γJ

-γJ

C(β-α)

β-α

Θ+Θ- 2π

FIG. 2: Two-angle relational correlation functions.
A “sufficiently noisy” correlation function can always be

reproduced exactly by a LHV model (Theorem 2a). This is
represented by the green curve completed contained within

the central green-shaded region (drawn for C00 = 0).
Conversely, if the function is “pure enough”, then it must
be nonlocal (Theorem 2b). This is represented by the blue

curve with values in both extremal blue-shaded regions.
Not all curves can be realized within quantum theory, but
simple sinusoidal curves certainly can (such as the dashed
black curve), following from Theorem 3 in two dimensions.

• Alice chooses locally freely between the two
possible angles α ∈ {Θ+,Θ−}.

• Alice now inputs α + λ into her half of the box,
while Bob inputs λ.

• By repeating the protocol, they determine the
correlations Crel(Θ+) and Crel(Θ−), and verify
that they violate the inequality above.

Randomization over λ effectively projects C onto its

relational part Crel(α, β) = 1
2π

∫ 2π

0
dλC(α+λ, β+λ),

which only depends on α− β. The protocol above fixes
β to zero, while α ∈ {Θ+,Θ−}. This is sufficient to
determine the two correlation values.

The protocol assumes that Alice and Bob have
some physically motivated promise on the maximum
representation label J (e.g. by assuming an upper bound
on the total energy of the system, or the number
of elementary particles transmitted), and that they
know the angles Θ+ and Θ− beforehand. The latter
assumption is analogous to standard Bell experiments,
where the relevant measurement settings are assumed
to be known.

Witnessing Bell nonlocality is not the same as
directly demonstrating nonlocality (i.e. collecting all
the statistics for a Bell test, which is only possible if
Bob has some free choice too) but rather, subject to
Assumption (i), implies the existence of an experiment
that would demonstrate nonlocality. In contrast to a
full Bell experiment, a Bell witness has the advantage
of being experimentally easier to implement: the
protocol above allows one to witness nonlocality with
only two measurement settings instead of four. Note
that only making the correlation function relational
(i.e. going from C to Crel as above) without any
additional assumption on J is not sufficient to obtain
this reduction, as we show in appendix B 5.
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Our protocol hence demonstrates that natural as-
sumptions on the response of devices to spatiotempo-
ral transformations can give additional constraints that
allow for the construction of new Bell witnesses. This
opens up the possibility of new methods of experimen-
tally certifying nonlocal behaviour, similar to [11, 12,
29], but without the need to presume the validity of
quantum theory or to trust all involved measurement
devices.

Theorem 2 shows us that smaller values of J (and
hence “simpler” responses to changes in angles) result
in more permissive bounds for finding LHV models, or
witnessing non-locality. In our next example, we shall
move from angles (SO(2)) to directions (SO(d)), but
consider arguably the simplest non-trivial response.

C. Example: Characterizing quantum correlations

For our last example, we shall apply our framework to
characterize the set of correlations that can be realized
by two parties sharing a quantum state, each locally
choosing one of two binary-outcome measurements –
the thus called quantum “(2,2,2)”-behaviours. The
set of quantum (2, 2, 2)-behaviours Q is a strict
superset of the classical (2, 2, 2)-behaviours C (i.e. those
admitting a LHV model). However, the set of all
no-signalling behaviours NS is strictly larger: C (
Q ( NS [20, 30]. This has led to the search for
simple physical or information-theoretic principles that
would explain “why” nature admits no more correlations
than in Q. Several candidates have been suggested
over the years, including information causality [31],
macroscopic locality [32], or non-trivial communication
complexity [33], but none of these have been able to
single out Q uniquely [34].

Here, we will provide such a characterization by
considering black boxes that transform in arguably
the simplest manner. Over a spherical input domain
X = Sd−1 an SO(d)–box P(a | ~x) is said to transform
fundamentally if the representation matrix TR in
Theorem 1 can be chosen as the block matrix 11 ⊕
R, where 11 := (1) and R is the fundamental
representation of SO(d) (e.g. for d = 3, {R} are
the familiar rotation matrices). Consequently, a
black box that transforms fundamentally has an affine
representation, P(a | ~x) = ca0 + ~c a · ~x where ~x ∈ Sd−1 is
the input, and ca0 ∈ R+, ~c a ∈ Rd (proof in appendix C).

Motivated by symmetry, we consider a class of
unbiased black boxes that do not prefer any particular
output when averaged over all possible inputs. This
implies that ca0 = 1/|A| for every a. For example, this
symmetry holds for measurements on quantum spin-
1
2 particles: spin +1

2 in one direction is the same as

spin − 1
2 in the opposite, and hence neither outcome is

preferred on average.
Imagine Alice and Bob residing in d-dimensional

space (d ≥ 2), sharing a non-signalling box P(a, b | ~x, ~y),
where both inputs ~x, ~y ∈ Sd−1 are spatial directions,
and a, b each can take two values. Suppose that
their conditional boxes transform fundamentally and

are unbiased. A conditional box Pb,~yA (a|~x) :=
P(a, b | ~x, ~y) /PB(b | ~y) describes the local black box Alice
would have if she was told Bob’s measurement choice ~y
and outcome b. If all conditional boxes for Alice and
Bob transform fundamentally, then the bipartite box is
said to transform fundamentally locally. Similarly, if all
conditional boxes are unbiased, P(a, b | ~x, ~y) is said to be
locally unbiased.

Surprisingly, these local symmetries severely con-
strain the global correlations: they allow for only and ex-
actly those correlations that can be realized by two par-
ties who share a quantum state and choose between two
possible two-outcome quantum measurements each—
the quantum (2, 2, 2)-behaviours:

Theorem 3. The quantum (2, 2, 2)-behaviours are
exactly those that can be realised by binary-outcome
bipartite SO(d)×SO(d)-boxes that transform fundamen-
tally locally and are locally unbiased, restricted to two
choices of input direction per party per box, and statis-
tically mixed via shared randomness.

The proof is given in appendix C.
A few remarks are in place. First, the unbiasedness

refers to the total set Sd−1 of possible inputs per party,
not to the two inputs to which the box is restricted.
Even if the unrestricted behaviour is unbiased in the
sense described above, the resulting (2, 2, 2)-behaviour
can be biased. Secondly, this unbiasedness of the
underlying SO(d)×SO(d)-box is necessary to recover
the quantum correlations – without it, one can realize
arbitrary nonsignalling correlations, including PR–
box behaviour, in a way that still transforms locally
fundamentally (we give an example in appendix C).
Finally, shared randomness is necessary to realize
explicitly non-extremal quantum correlations by such
boxes, following on the observation that the set of
(2, 2, 2)–behaviours realizable by POVMs on two qubits
is not convex [35, 36]. Namely, if both parties share
the (2, 2, 2)-behaviours P0 and P1 and a random bit
c ∈ {0, 1} that equals 0 with probability λ, they can
statistically implement the mixed behaviour λP0 + (1−
λ)P1 by feeding their inputs into box Pc.

For n=2 parties with m=2 measurements and k=2
outcomes each, our result provides a characterization
of the quantum set. Although Theorem 3 cannot be
extended to general (m,n, k)-behaviours [37] without
modification, this result shows that our framework of
G-boxes offers a very natural perspective on physical
correlations, and reinforces earlier observations that
hint at a deep fundamental link between the structures
of spacetime and quantum theory [38–41].

III. DISCUSSION AND OUTLOOK

We have introduced a general framework for semi-
device-independent information processing, without
assuming quantum mechanics, for black boxes whose
inputs are degrees of freedom that break spatiotemporal
symmetries. Such black boxes have characteristic
probabilistic responses to symmetry transformations,
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and natural assumptions about this behaviour can
certify technologically important properties like the
presence or absence of Bell correlations.

Specifically, we have shown that the quantum (2, 2, 2)-
behaviours can be exactly classified as those of bipartite
boxes that transform locally in the simplest possible
way – by the fundamental representation of SO(d)
rotations, respecting the unbiasedness of outcomes. For
Bell experiments with SO(2) × SO(2)-boxes, we have
shown that correlations that are quantifiably “noisy
enough” always admit a local hidden variable model,
whereas relational correlations for which there are
settings with differing “purity” must violate a Bell
inequality. Since the underlying technical tools (e.g.
Schur orthogonality [42]) hold in greater generality,
many of our results could be applied to other groups.

Furthermore, these results have allowed us to
construct a protocol to witness the violation of a Bell
inequality within a causal structure that is otherwise
too simple to admit the direct detection of nonlocality.
We believe that our approach can be applied to
experimental settings, such as the recent demonstration
of Bell correlations in a Bose–Einstein condensate [12],
and potentially eliminate the necessity to trust all
detectors or to assume the exact validity of quantum
mechanics. Many of these experiments do work with
spatiotemporal inputs like Rabi pulses, which makes our
approach particularly natural for analyzing them.

We have predominantly worked under the assumption
that ensembles of black boxes are characterized by a
finite number of parameters, and – more specifically –
that an upper bound on the representation label (say,
the “spin” J) of the boxes is known. On one hand, this
assumption can likely be weakened, by employing group-
theoretic results such as the Peter–Weyl theorem [42].
On the other hand, we have argued that this assumption
is natural: it is weaker than assuming a Hilbert
space with bounded dimension (standard in the semi-
device-independent framework [16]) and constitutes a
generalization of an “energy bound” beyond quantum
theory (cf. [43]). Moreover, it incorporates an
intuition conceptually closer to particle physics: to
quantify the potential eavesdropping side channels, one
might not count Hilbert space dimensions, but rather
representation labels, since these are intuitively (and
sometimes rigorously) related to the total number of
particles.

Our framework opens up several potential avenues
for future work. First, as the witness example
demonstrates, our formalism hints at novel semi-device-
independent protocols based on assumptions with

firmer physical motivation than the usual dimension
bounds. In contrast to recent proposals for using
energy bounds [44–46], our assumption on the devices’
symmetry behaviour does not presume the validity of
quantum mechanics, but rather embodies a natural
upper bound to the “fine structure” of the devices’
response. Meanwhile, one might apply the functional
approach [23, 24] to our framework by taking Haar
integrals over spatiotemporal input spaces to derive a
device–independent family of generalized Bell–Żukowski
inequalities for various limits of fine structure.

Secondly, our framework informs novel experimen-
tal searches for conceivable physics beyond quantum
theory. Previous proposals (e.g. superstrong nonlocal-
ity [20] or higher-order interference [47, 48]) have sim-
ply described the probabilistic effects without predicting
how they could actually occur within spacetime as we
know it. This has made the search for such effects seem
like the search for a needle in a haystack [49]. Our for-
malism promises a more direct spatiotemporal descrip-
tion of such effects – hopefully leading to predictions
that are more tied to experiments and in greater com-
patibility with spacetime physics.

Combining the principles of quantum theory with
special relativity has historically been an extremely
fruitful strategy. Here, we propose to extend this
strategy to device-independent quantum information
and even beyond quantum physics. In principle, suitable
extensions of our framework would allow us to address
questions such as: which probability rules are compatible
with Lorentz invariance? Any progress on these kind of
questions has the potential to give us fascinating insights
into the logical architecture of our physical world.
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M. Żukowski, “Rotational invariance as an additional
constraint on local realism,” Physical Review Letters
93 (2004), 10.1103/PhysRevLett.93.230403.

[28] S. L. Braunstein and C. M. Caves, “Wringing out better
Bell inequalities,” Annals of Physics 202, 22–56 (1990).

[29] Z. Wang, S. Singh, and M. Navascués, “Entanglement
and Nonlocality in Infinite 1D Systems,” Physical
Review Letters 118, 230401 (2017).

[30] L. A. Khalfin and B. S. Tsirelson, “Quantum and Quasi-
classical Analogs Of Bell Inequalities,” in Symposium on
the foundations of modern physics, edited by P. Lahti
and P. Mittelstaedt (World Scientific Publishing Co.,
1985) pp. 441–460.

[31] M. Paw lowski, T. Paterek, D. Kaszlikowski, V. Scarani,
A. Winter, and M. Zukowski, “Information causality as
a physical principle,” Nature 461, 1101–1104 (2009).

[32] T. H. Yang, M. Navascués, L. Sheridan, and V. Scarani,
“Quantum Bell inequalities from macroscopic locality,”
Physical Review A 83, 022105 (2011).

[33] G. Brassard, H. Buhrman, N. Linden, A. Méthot,
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Appendix A: The representation of spatiotemporal
degrees of freedom in black box statistics

Let us first furnish a mathematical description of a
black box as an input–output process. We begin with
the single party case (say, Alice). Suppose the domain
of Alice’s inputs is the set X , and of her outputs is
the finite set A. As motivated in the main text, we
are interested in the case where X is a homogeneous
space. That is, we have a group G that acts transitively
on the set of inputs X , such that X = G/H, and
H ⊆ G is the corresponding stabilizer subgroup. The
paradigmatic example is given by X = Sd−1, G = SO(d)
and H = SO(d−1) ⊂ G, such that the inputs ~x ∈ X
are unit vectors. Even though the inputs need not be
vectors in general, we will use the vector notation in
the following for convenience. We will assume that G is
a locally compact group, such that all bounded finite-
dimensional representations are unitary [50].

For such an input domain, we can assign an arbitrary
“default input” ~x0 ∈ X , such that every other input
~x ∈ X can be written as ~x = R~x~x0 for some suitable
transformation R~x ∈ G. Physically, we can imagine that
Alice chooses her input by “rotating” the default input
~x0 into her desired direction ~x, and she can do so by
applying a suitable rotation R~x. In general, R~x is not
unique, and Alice’s freedom of choice of transformation
is given by H.

A black box P is then a map P : X → R|A| such that
for ~x ∈ X , Pa : ~x 7→ P(A = a |X = ~x), where Pa is the
ath element of the vector map. Since for probabilities
0 ≤ P(A = a |X = ~x) ≤ 1, each Pa is a non-negative
real bounded function on X . For probabilities, we
also have the constraint that for all ~x,

∑
a Pa~x = 1;

so the range of the vector function P is actually that
of (|A| − 1)–dimensional simplices (a compact convex
subspace of R|A|). As such, P ∈ B(X )|A| where B(X ) is
the set of bounded functions on X .

Definition 1 (G-box). A black box (formalized above)
whose input domain X is a homogeneous space acted
transitively upon by the group G is known as a G-box.

Proof of Theorem 1. Consider a G-box whose
ensemble behaviour can be characterized by a finite
number of parameters (Assumption (i)). There is a
representation of the symmetry group G in terms of
real orthogonal matrices R 7→ TR, such that for each
outcome a, the outcome probabilities P(a |xR) are a fixed
(over R) linear combination of matrix entries of TR.

Proof. Suppose Alice has a black box P, and access to a
geometric freedom G acting on X . For each R ∈ G, Alice
can induce a new black box P′ by first applying R to her
input ~x and then supplying the input R~x to P, which
acts as P′a : ~x 7→ P(a |R~x), i.e. P′(a|~x) = P(a |R~x).

For each R, we can define a map TR : P 7→ P′, acting
on each component of P via TRPa = P′a. Obviously,
TR◦TS = TRS , so if we denote the “space of black boxes”
accessible to Alice by ΩG := {TRP |R ∈ G} ⊆ B(X )|A|,
then TR defines a group action on ΩG .

Consider the linear extension ΩR
G := span (ΩG),

a linear subspace of B(X )|A|, with elements Q =∑n
i=1 λiPi, where n ∈ N is arbitrary but finite, all

λi ∈ R, and Pi ∈ ΩG . Note Q : X → R|A|, but without
further restriction on {λi} this may map to outside of
the simplex of normalized probabilities.

Now, consider the effect of R ∈ G on some object
Q. Since Q : ~x 7→ ∑

i λiP(a | ~x), applying R first to
take R : ~x 7→ ~x′ gives us Q ◦ R : ~x 7→ ∑

i λiP(a |R~x),
and hence Q ◦ R =

∑
i λiTRPi. Since TRP = P ◦ R

for P ∈ ΩG , we can define the map T̃R : ΩR
G → ΩR

G
via T̃RQ := Q ◦ R as an extension of the map TR. By
construction, every T̃R is a linear map, and

T̃RT̃S(Q) = Q ◦R ◦ S = Q ◦ (R ◦ S) = T̃RS(Q), (A1)

hence R 7→ T̃R is a real linear representation of G.
Since T̃R is an extension of TR, we drop the tilde from
our notation. As we have assumed that ensembles of
black boxes can be characterized by a finite number of
parameters, the linear space ΩR

G is finite-dimensional.
Then TR, as linear maps acting on a finite-dimensional
real vector space, may be expressed as real matrices.

Next, we need to show that the representation R 7→
TR is bounded, i.e. that supR∈G ‖TR‖ < ∞. This
will exclude, for example, cases like G = (R,+) and
Tt := ( 1 t

0 1 ). To this end, let P1, . . . , PD ∈ ΩG be a
linearly independent set of boxes that spans ΩR

G (that

is, a basis of boxes, hence D = dim ΩR
G). Then, every

P ∈ ΩR
G has a unique representation P =

∑D
i=1 αiPi,

and ‖P‖1 :=
∑D
i=1 |αi| defines a norm on ΩR

G . We can
define another norm on this space via

‖P‖ := sup
~x∈X

∑

a∈A
|P(a | ~x)| . (A2)

This is finite since P ∈ B(X )|A|, and it is easy to check
that it satisfies the properties of a norm. Since all norms
on a finite-dimensional vector space are equivalent, there
is some c > 0 such that ‖ • ‖1 ≤ c‖ • ‖. Furthermore, all
P′ ∈ ΩG satisfy ‖P′‖ = 1. Thus, noting that TRPi ∈ ΩG
for all i = 1, . . . , D, we get

‖TRP‖ =

∥∥∥∥∥
D∑

i=1

αiTRPi

∥∥∥∥∥ ≤
D∑

i=1

|αi| · ‖TRPi‖

= ‖P‖1 ≤ c · ‖P‖. (A3)

This establishes that the operator norm of all TR with
respect to ‖ • ‖ (and hence with respect to all other
norms) is uniformly bounded. Since we have assumed
that G is locally compact, this implies that there is a
basis of ΩR

G in which the TR are orthogonal matrices.

Consider now the evaluation functional δa~x : ΩR
G → R;

namely, the map from the space of black boxes to
the particular probability of outcome a given input ~x.
It follows that the statistics P(a | ~x) = P(a |R~x0) =
TRP

a(~x0) = δa~x0
(TRP ). Since the evaluation functional

is a linear map, we then find that the probabilities are
given by a linear combination of elements from TR. For
all ~x ∈ X , we use the same P and the same δa~x0

such
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that the only element that changes is the representation
matrix TR.

Arguing via harmonic analysis on homogeneous
spaces [51], we expect that Theorem 1 can be extended:
it is not only entries of TR that appear in the probability
table P (a|xR), but, more specifically, generalized
spherical harmonics. A taste of this appears in
Lemma VIII, but since the formulation of Theorem 1
is sufficient for the purpose of this article, we defer this
extension to future work.

Appendix B: SO(2)× SO(2) Bell experiment setting

1. General form of correlations

Lemma I. Consider a bipartite SO(2)×SO(2)-box –
i.e. Alice and Bob can each choose their inputs as angles
α, β ∈ [0, 2π) – with local binary outcomes a ∈ {+1,−1}
and b ∈ {+1,−1}. Then, the most general joint
probability distribution consistent with Theorem 1 is

P(a, b |α, β) :=

2J∑

m=0

2J∑

n=−2J

cabmn cos (mα− nβ)

+ sabmn sin (mα− nβ) ,
(B1)

where J is some non-negative integer or half-integer.
(Note that this does not yet assume the no-signalling
principle.)

Proof. While the representation TR = Tα,β from
Theorem 1 acts on a real vector space V of finite
dimension D, we can also regard it as a representation
on the complexification W = V ⊕ iV . Since
SO(2) × SO(2) is an Abelian group, all its irreducible
representations are one-dimensional [42]. Thus, we

can decompose W as W =
⊕D

j=1Wj , where each
Wj is a one-dimensional invariant subspace on which
Tα,β acts as a complex phase. It follows that Tα,β =⊕D

j=1 exp(i(mjα−njβ)) with suitable integers mj , nj ∈
Z (to see this, write Tα,β as a composition of the SO(2)-
representations Tα,0 and T0,β). Then, due to Theorem 1,
P(a, b |α, β) must be a linear combination of real and
imaginary parts of Tα,β , which proves that it is of the
form (B1).

2. Generic no-signalling correlations

It is well-known (e.g. [20]) that the no-signalling
principle does not impose any constraints on the form of
the correlation function if we have a bipartite box with
two outcomes a, b ∈ {+1,−1} each. Namely, if X ,Y
denote two arbitrary sets of inputs, given an arbitrary
function C : X × Y → R with −1 ≤ C(x, y) ≤ 1 for all
x, y ∈ X ,Y, the simple prescription

P(a, b |x, y) :=
1

4
+

1

4
abC(x, y) (B2)

generates a valid no-signalling distribution that has
C(x, y) as its correlation function. It is a simple exercise
to check that C is non-negative, normalized and no-
signalling, and that C is the correlation function for P.

3. Local hidden variable models for
SO(2)× SO(2) settings

Generalizing ideas of Werner [21], we can show that
for noisy enough correlation functions of SO(2)×SO(2)
settings, we can always construct a LHV model that
achieves these correlations.

Lemma II. Consider any two-angle function

f(α, β) =

N∑

j=1

[cj cos(mjα− njβ) + sj sin(mjα− njβ)] ,

(B3)

for (mj , nj) ∈ Z × Z \ (0, 0) (i.e. disallowing constant
terms). Without loss of generality1 in f(α, β), we
disallow (mi, ni) = (mj , nj) when i 6= j, choose mj ≥ 0,
and if mj = 0 then we choose nj > 0. Suppose −1 ≤
f(α, β) ≤ 1 for all α, β. Then C(α, β) := γ f(α, β) is
a correlation function that has a LHV model whenever
0 ≤ γ ≤ γN , where

γN :=

√
2

N
max

0≤x≤π

(x
π

)N−1 sinx

π
. (B4)

Proof. In this proof, we will express all angles as
numbers in the interval [−π, π). Under the inner
product 〈f, g〉 := 1

2π2

∫ π
−π dα

∫ π
−π dβf(α, β)g(α, β), the

set of functions

cos(mjα− njβ), sin(mjα− njβ) (B5)

(with mj and nj defined as above) is an orthonormal
system (this follows from Schur orthonormality for
SO(2) × SO(2), and can be verified by direct
integration). Hence the L2-norm ‖f‖2 := 〈f, f〉 satisfies

‖f‖2 =

∫ π

−π
dα

∫ π

−π
dβ
f (α, β)

2

2π2
=

N∑

j=1

(c2j + s2
j ) ≤ 2,

(B6)
since |f(α, β)| ≤ 1 everywhere.

Our goal is to construct a LHV model of the form

P(a, b |α, β) =

∫

Λ

dµ(λ) PA(a |α, λ) PB(b |β, λ) . (B7)

We will have a hidden variable λ = (~λ1, ~λ2, . . . , ~λN ),

where each ~λj = (cosφj , sinφj)
T is independently and

uniformly distributed on the unit circle, hence dµ(λ) =
(2π)−Ndφ1 . . . dφN . This measure is invariant under

SO(2) rotations of the individual ~λj .

1 These restrictions ensure that the coefficients cj and sj are
associated with unique trigonometric functions.
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We will construct local probabilities that implement
the dependence on α, β, λ in the following form:

PA(± |α, λ) = qA

(
±
∣∣∣Rm1α

~λ1, . . . , RmNα
~λN

)
, (B8)

PB(± |β, λ) = qB

(
±
∣∣∣Rn1β

~λ1, . . . , RnNβ
~λN

)
, (B9)

where qA and qB are response functions defined

in the following way: qA(−|~λ′1, . . . , ~λ′N ) = 1 −
qA(+|~λ′1, . . . , ~λ′N ),

qA(+|~λ′1, . . . , ~λ′N ) :=

{
1 if φ′j ∈ [−ξ, ξ] for all j
0 otherwise

(B10)
where ξ ∈ (0, π) is some (small) constant and φ′j is the

angle such that ~λ′j = (cosφ′j , sinφ
′
j)

T. Furthermore,

qB

(
±|~λ′1, . . . , ~λ′N

)
:=

1

2


1± 1√

2N

N∑

j=1

~bj · ~λ′j


 ,

(B11)

where ~bj := (cj ,−sj)T. Note that
∑
j
~bj · ~λ′j = ~b · ~λ′,

where ~b := ⊕j~bj and ~λ′ := ⊕j~λ′j . But since |~b|2 =∑
j |~bj |2 =

∑
j(c

2
j + s2

j ) ≤ 2 and |λ′|2 =
∑
j |~λ′j |2 = N ,

the sum hence is upper-bounded by
√

2N due to the
Cauchy-Schwarz inequality. This shows that qB yields
valid probabilities.

We calculate the joint probability distribution
obtained in the Bell test scenario:

P(+,± |α, β) =

∫

Λ

dµ(λ) PA(+ |α, λ) PB(± |β, λ)

=

∫

Λ

dµ(λ) qA(+|Rm1α
~λ1, . . . , RmNα

~λN )

· qB(±|Rn1β
~λ1, . . . , RnNβ

~λN ). (B12)

We apply the substitution ~λ′j := Rmjα
~λj and λ′ :=

(~λ′1, . . . , ~λ
′
N ), noting that this does not change the

integral due to our choice of measure:

P(+,± |α, β) =

∫

Λ

dµ(λ′) qA(+|~λ′1, . . . , ~λ′N )

· qB(±|Rn1β−m1α
~λ′1, . . . , RnNβ−mNα

~λ′N ).
(B13)

Due to the definition of qA and qB , this equals

∫ ξ

−ξ

dφ′1
2π

. . .

∫ ξ

−ξ

dφ′N
2π

1

2


1± 1√

2N

∑

j

fj(φ
′
j)


 ,

(B14)
where

fj(φ
′
j) = cj cos(φ′j+njβ−mjα)−sj sin(φ′j+njβ−mjα).

(B15)
Noting that

∫ ξ

−ξ
fj(φ

′
j)dφ

′
j = 2 sin ξ

[
cj cos(mjα− njβ)

+sj sin(mjα− njβ)
]
, (B16)

we can evaluate the integral explicitly, obtaining

P(+± |α, β) =

1

2

(
ξ

π

)N
± 1

2
√

2N

(
ξ

π

)N−1
sin ξ

π
f(α, β). (B17)

Next, let us look at the other probabilities:

P(−,± |α, β) =

∫

Λ

dµ(λ)PA(− |α, λ) PB(± |β, λ)

=

∫

Λ

dµ(λ)(1− PA(+ |α, λ))PB(± |β, λ)

= −P(+,±|α, β) +

∫

Λ

dµ(λ)qB(±|Rn1β
~λ1, . . . , RnNβ

~λN ),

(B18)

and the final integral vanishes on all ~bj ·~λ′j-terms of qB ,
leaving only the constant term 1/2. That is,

P(−,± |α, β) =
1

2
− P(+,±|α, β). (B19)

These give the correlation function

C(α, β) =

√
2

N

(
ξ

π

)N−1
sin ξ

π
f(α, β). (B20)

Finally, we define γN as the largest admissible prefactor
among all possible choices of ξ.

Let us now introduce a constant term:

Lemma III. Consider any two-angle correlation
function

C(α, β) = c0 +

N∑

j=1

[cj cos(mjα− njβ) + sj sin(mjα− njβ)] ,

(B21)

where (mj , nj) ∈ Z × Z \ (0, 0), and (as above) without
loss of generality we choose mj ≥ 0 and nj > 0 if
mj = 0, and disallow (mi, ni) = (mj , nj) if i 6= j. If

max
α,β
|C(α, β)− c0| ≤ γN (1− |c0|) (B22)

with constant γN given by

γN =





√
2/π if N = 1,

0.184375 . . . if N = 2,
0.103893 . . . if N = 3,√
2e−1N−3/2 if N ≥ 4,

(B23)

then this correlation function has a local hidden variable
model.

Proof. First, we obtain the form of γN by solving the
optimization problem of Lemma II exactly for N =
1, 2, 3, and by substituting x = π

(
1− 1

N

)
and using

(
1− 1

N

)N−1

sin

[
π

(
1− 1

N

)]
≥ π

Ne
for N ≥ 4.

(B24)

We can add the constant function 1/
√

2 to the
orthonormal system in (eq. (B5)); similar reasoning as in
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the proof of Lemma II shows that (
√

2c0)2 ≤ 2, i.e. that
−1 ≤ c0 ≤ 1, and |c0| = 1 is only possible if C(α, β) = c0
(i.e. with no angle-dependent terms). Now consider the
case 0 ≤ c0 < 1. We can write

C(α, β) = c01 + (1− c0)f(α, β), (B25)

where 1 is the constant function that takes the value 1
on all angles, and f(α, β) = (C(α, β)− c0)/(1− c0) is of
the form of the function in Lemma II. If inequality (B22)
holds, then

max
α,β
|f(α, β)| = 1

1− c0
max
α,β
|C(α, β)−c0| ≤ γN , (B26)

and so Lemma II proves that f(α, β) is a classical
correlation function. Moreover, 1 is trivially a classical
correlation function, and thus so must be C(α, β), which
is a convex combination of the two. Then case −1 <
c0 < 0 can be treated analogously, using that −1 is a
classical correlation function too.

Proof of Theorem 2A. Consider an SO(2) × SO(2)
box, with a correlation function in the form of eq. (4)
with maximum (half-)integer J 6= 0. If

max
α,β
|C(α, β)− C00| ≤ γJ(1− |C00|), (B27)

where C00 is the angle-independent contribution to the
correlation function (as in eq. (4)), and γJ is a given

γJ =
√

2e−1 [4J (2J + 1)]
− 3

2 , (B28)

then there is a LHV model that accounts for these
correlations.

Proof. This follows as a corollary of Lemma III. We
convert between the form of correlations in eq. (4)
and eq. (B21) by counting the maximum number N
of unique terms that could appear for a given positive
(half-)integer J . The double sum contributes (2J +
1)(4J + 1) terms, from which we remove 2J cases
corresponding to negative n where m= 0, and the one
completely constant case m = n = 0. This gives a
maximum of N = 4J(2J + 1). Since the lowest value
(J = 1

2 ) already yields N = 4 unique terms, we only
need the final case of eq. (B23), and hence the constant

γJ =
√

2e−1 [4J (2J + 1)]
− 3

2 .

4. Witnessing nonlocality

Bell inequalities can be chained by direct addition.
For instance, suppose one takes a CHSH inequality
(eq. (5)) with measurements {x1, y2, x3, y4} and a
second with measurements {x1, y4, x5, y6}. Adding
these together yields

∣∣C(x1, y2)+C(x3, y2)+C(x3, y4)+

C(x5, y4) + C(x5, y6) − C(x1, y6)
∣∣ ≤ 4. This can

inductively be done for a set of N measurements (N2
each for Alice and Bob), leading to a chained Bell

inequality, known as the Braunstein–Caves inequality
(BCI) [28]:

∣∣∣C(x1, y2) + C(x3, y2) + C(x3, y4) + · · ·
+C(xN−1, yN )− C(x1, yN )

∣∣∣ ≤ N − 2.

(B29)

If such an equation is violated, then no LHV can account
for these statistics2.

Recall, eq. (4) gives the generic SO(2) × SO(2)
correlation function. If we restrict ourselves to relational
correlations, this amounts to setting Smn = Cmn = 0
when m 6= n, such that the correlation function has a
single parameter form

C(β − α) =
2J∑

m=0

Cm cos [m (β − α)] +Sm sin [m (β − α)]

(B30)
where J is some positive (half-)integer, and Cm :=
Cmm, Sm := Smm.

Lemma IV. Consider relational SO(2) × SO(2)
correlations (of the form of eq. (B30)) for finite positive
(half-)integer J . If there is some Θ+ ∈ [0, 2π) such
that C(Θ+) = +1, and Θ− ∈ [0, 2π) where C(Θ−) =
−1, then there exists a BCI that demonstrates a Bell
violation.

Proof. We show this by construction. For even N , define

δN :=
(Θ− −Θ+) mod 2π

N − 1
. (B31)

We use the notation “x mod 2π” to indicate x − 2πn
where n ∈ Z is chosen such that x − 2πn ∈ [0, 2π),
mapping the angle to the principal range.

We construct a N -measurement BCI, as defined in
eq. (B29). Since the correlation function is relational,
we write C(α, β) as the single parameter function
C(β − α), and assign the measurement settings:

ai = (i− 1)δN for odd i,

bi = Θ+ + (i− 1)δN for even i. (B32)

(Illustrated in figure 3.) This amounts to setting the
arguments of the correlation functions featured in the
BCI to

b2 − a1 = . . . = b2m − a2m−1 = Θ+ + δN ,

b2 − a3 = . . . = b2m − a2m+1 = Θ+ − δN ,
bN − a1 = Θ−, (B33)

where equality is taken modulo 2π.

2 The BCI can also be directly justified, just as the CHSH
inequality. One writes σx1 (σy2 − σyN ) + σx3 (σy2 + σy4) +
. . . + σxN−1

(
σyN−2 + σyN

)
for spins {σi ∈ {+1,−1}}, and

notes that if σy2 = σy4 = . . . = σyN , then σy2 −σyN = 0. This
bounds the expression to N − 2. Convex combinations, such as
eq. (B29), cannot exceed this value.
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a1

b2

a3

b4

bN

...

Θ-

Θ+

δ

a5

b6

...

2δ 2δ

2δ
2δ

FIG. 3: Measurement angles for generic correlation
function. The first choice of measurement angles are
chosen such that b2 − a1 = Θ+ + δ. Subsequent choices
then precess by 2δ, such that ultimately bN − a1 = Θ−.

With such assignments, the BCI is then written:

N

2
C(Θ+ + δN )+

(
N

2
− 1

)
C(Θ+ − δN )−C (Θ−) ≤ N−2.

(B34)
Recall that C (Θ−) = −1. C(Θ+) = +1 must be a
local maximum, and a finite J allows us to assume the
function C is smooth at this point. Thus, in the limit
of small δN , C(Θ+ ± δN ) = 1 − kδN 2 + O

(
δN

3
)

where
k ≥ 0 is some constant. We then rewrite eq. (B34) as

(N − 1)
(
1− kδN 2 +O

(
δN

3
))

+ 1 ≤ N − 2,

N +O
(
(N − 1)−1

)
≤ N − 2, (B35)

which for large enough N will eventually be violated.

The above construction can be shown to have some
robustness to noise (tolerating a smaller maximum value
than 1). To show this, we first prove an auxilary lemma:

Lemma V. Consider relational SO(2)×SO(2) correla-
tions (of the form of eq. (B30)) for finite (half-)integer
J . Expressed as a single parameter function C(β − α),
the second derivative is everywhere bounded:

∣∣∣∣∣
d2 C(β − α)

d(β − α)
2

∣∣∣∣∣ ≤
√

2J (2J + 1) (4J + 1)

3
. (B36)

Proof. In polar form, the correlation function is:

C(β − α) = A0+
2J∑

m=1

Am cos (m (β − α)− φm) , (B37)

where A0 = C0, Am =
√
C2
m + S2

m, and

φm =





arctan(Sm/Cm) if Cm 6= 0
π/2 if Cm = 0, Sm ≥ 0
−π/2 if Cm = 0, Sm < 0.

(B38)

The second derivative with respect to β − α is:

d2

d(β − α)
2C(β − α) =

2J∑

m=1

−m2Am cos [m (β − α)− φm] .

(B39)
Because C(β − α) is bounded everywhere to [−1, 1], its

L2 norm ‖C‖2 := 1
2π

∫ 2π

0
dθ |C(θ)|2 is bounded within

[0, 1]. Thus we may determine a maximum value over
all m for the amplitude Am. Using the orthonormality
of the functions 1,

√
2 cos(mθ + a), and

√
2 cos(nθ +

b) under the corresponding inner product 〈f, g〉 :=
1

2π

∫ 2π

0
dθf(θ)g(θ), we get ‖C‖2 = A2

0 + 1
2

∑2J
m=1A

2
m.

Since this is upper-bounded by 1, we get A2
m ≤ 2 for all

m ≥ 1, and so

∣∣∣∣∣
d2C(β − α)

d(β − α)
2

∣∣∣∣∣ ≤
2J∑

m=1

√
2m2 =

√
2J (2J + 1) (4J + 1)

3
.

(B40)

Lemma VI. Consider relational SO(2) × SO(2)
correlations (of the form of eq. (B30)) for finite positive
(half-)integer J . Let there be some angle difference Θ+,
where C(Θ+) ≥ 1 − ε, and some other angle difference
Θ− where C(Θ−) ≤ 1−∆, with ε ≥ 0 and ∆ > 0. If

ε < −KJ +

√
K2
J +

∆2

4
=

∆2

8KJ
+O(K−2

J ), (B41)

where KJ =
√

2π2J(2J + 1)(4J + 1)/3, then there will
be a BCI that is violated.

Proof. First, since the correlation function C is
continuous, it attains its global maximum at some Θ′+.
Since C(Θ′+) ≥ C(Θ+) ≥ 1 − ε, the premises of this
lemma are also satisfied if Θ+ is replaced by Θ′+ – i.e.,
we can assume without loss of generality that C attains
its global maximum at Θ+.

With these Θ+ and Θ−, we use the prescription
in Lemma IV, with the angle choices in eq. (B32) to
generate the following BCI, which must hold for all even
integers N ≥ 2 if there exists a LHV model:

N

2
C(Θ+ + δN )+

(
N

2
− 1

)
C(Θ+ − δN )−C(Θ−) ≤ N−2.

(B42)
Let us write δΘ := Θ− − Θ+ mod 2π, such that
δN = δΘ

N−1 . Let K ∈ R be any constant such that

C ′′(x) ≥ −K for all x; it follows from Lemma V that
such K exists, and we will fix K later in accordance
with that lemma. Since Θ+ is a local maximum, we
know that 0 ≥ C ′′(Θ+) ≥ −K, i.e. K ≥ 0. The global
bound on the second derivative of C gives us

C(Θ+ ± x) ≥ C(Θ+)−Kx2

2
for all x. (B43)

Thus, eq. (B42) implies

(N − 1)

(
1− ε−Kδ2

N

2

)
− (1−∆) ≤ N − 2. (B44)
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Under what conditions does there exist an even integer
N ≥ 2 such that this inequality is violated, i.e. the
existence of a LHV model is ruled out? The negation
of this inequality can be rearranged into a quadratic
equation in (N − 1):

ε(N − 1)2 −∆(N − 1) +
K

2
(δΘ)2 < 0. (B45)

If this equation has a solution for some even integer N ,
then the non-existence of a LHV model follows. If ε = 0,
then there will always be a solution for large enough N ,
recovering Lemma IV. Thus, we here only give further
consideration to the case where ε > 0.

Since this quadratic function in (N−1) is positive for
large values of ±(N−1), it is necessary for the existence
of a negative value that this function has zeroes over the
real numbers. The zeroes are

N± − 1 =
∆±

√
∆2 − 2εK(δΘ)2

2ε
, (B46)

and so the following inequality is necessary for the
existence of a solution of eq. (B45):

∆2 > 2εK(δΘ)2. (B47)

If it is satisfied, then the values of (N − 1)± are well-
defined, and we can continue to argue as follows. The
quadratic function in eq. (B45) is negative for all real
numbers N ∈ (N−, N+), where 0 < N− < N+. Now,
this interval definitely contains an even integer N if
N+ −N− > 2. Since N+ −N− =

√
∆2 − 2εK(δΘ)2/ε,

this difference is larger than two if and only if

4ε2 + 2εK(δΘ)2 −∆2 < 0. (B48)

The two solutions of the corresponding quadratic
equation are

ε± =
−K(δΘ)2 ±

√
K2(δΘ)4 + 4∆2

4
. (B49)

They are both real, and ε− < 0 < ε+. Thus, ε < ε+

implies a suitable solution of eq. (B45), i.e. rules out the
existence of a LHV model.

In fact, if ε < ε+, then we automatically get

4ε < −K(δΘ)2 +K(δΘ)2

√
1 +

4∆2

K2(δΘ)4
≤ 2∆2

K(δΘ)2
,

(B50)
i.e. eq. (B47) is automatically satisfied. Now,
considering ε+ as a function in δΘ, this function is
decreasing for δΘ > 0. Since δΘ ≤ 2π, ε < ε+(2π)
implies ε < ε+(δΘ) ≡ ε+. Thus, the inequality

ε <
−K(2π)2 +

√
K2(2π)4 + 4∆2

4
(B51)

implies a violation of a BCI. The statement of the lemma
now follows from taking the value of K from Lemma V,
and by substituting KJ := π2K.

This has consequence for generic (possibly non-
relational) SO(2)× SO(2) settings.

Proof of Theorem 2B. Consider SO(2) × SO(2)
correlations C for finite maximum (half-)integer J . Let
Crel the relational core of C (that is, the function of the
form eq. (B30) formed by only including terms of eq. (4)
where m = n). Let there be some angle difference Θ+,
where Crel(Θ+) ≥ 1−ε, and some other angle difference
Θ− where Crel(Θ−) ≤ 1−∆, with ε ≥ 0 and ∆ > 0. If

ε < −KJ +

√
K2
J +

∆2

4
=

∆2

8KJ
+O(K−2

J ), (B52)

where KJ =
√

2π2J(2J + 1)(4J + 1)/3, then there will
be a BCI for the (possibly non-relational) correlation
function C that is violated.

Proof. Subtracting the “non-relational” parts of C(α, β)
is equivalent to performing the following integration:

Crel(α, β) =
1

2π

∫ 2π

0

dφ C(α+ φ, β + φ) (B53)

This may be directly verified by noting that
terms of the form cos (mα− nβ + (m− n)φ) and
sin (mα− nβ + (m− n)φ) individually integrate to 0
over φ except when m = n. This allows us to inter-
pret taking the relational core of a correlation function
as mixing C over many settings offset by a shared uni-
form random angle.

It then follows from the convexity of Bell inequalities
that if the BCI implied by Lemma VI for the relational
core is violated “on average” for this mixture of settings,
there must be at least one single set of input settings
that also results in that BCI being violated.

5. Necessity of a bound on J

We will now show that our protocol for witnessing
nonlocality does not work if we simply drop the
assumption that J is finite.

A correlation function C(α, β) has a LHV model if
and only if there exists a variable λ ∈ Λ, distributed via
some PΛ(λ), and a family of local response functions
CA(α, λ) :=

∑
a∈{−1,+1} aPA(a|α, λ) and CB(β, λ) :=∑

b∈{−1,+1} b PB(b|β, λ) such that

C(α, β) =

∫

Λ

dλPΛ(λ)CA(α, λ)CB(β, λ). (B54)

Suppose that there are two angles θ′+, θ
′
− such that

our protocol gives correlation values Crel(θ
′
±) very

close to ±1. If this is the only experimental
syndrome, without further assumptions on the form
of the correlation function (in particular, without any
assumption on J as explained in the main text), then
this experimental behavior can always be reproduced to
arbitrary accuracy by local hidden variables. Namely,
θ′± can be arbitrarily well approximated by angles θ±
that satisfy the premises of the following lemma:
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Lemma VII. Suppose that θ+, θ− ∈ [0, 2π) are such
that θ− − θ+ = m

n π, where n ∈ N and m ≤ n is an odd
integer. Then there exists a local relational correlation
function C(α, β) ≡ C(α− β) such that

C(θ+) = +1 and C(θ−) = −1. (B55)

Proof. We set Λ = [0, 2π) and PΛ(λ) = 1
2π – the uniform

measure on this interval. Without loss of generality,
assume that Θ− > Θ+ and Θ+ = 0 (we can choose our
local coordinates α, β to make this the case). Define
CA(x, λ) = CB(x, λ) := f(x + λ), where f : R →
{−1,+1} is the 2π-periodic extension of

f(x) :=

{
+1 if x

π ∈
[
0, 1

n

)
∪
[

2
n ,

3
n

)
∪ . . . ∪

[
2n−2
n , 2n−1

n

)

−1 for all other x ∈ [0, 2π).

(B56)

That is, f is a square-wave function of period 2π
n . This

f is piecewise continuous and satisfies f
(
x+ π

n

)
=

−f(x) for all x. Thus, f
(
x+ 3

nπ
)

= −f
(
x+ 2

nπ
)

=

f
(
x+ 1

nπ
)

= −f(x) for all x, and in particular, by

induction, f
(
x+ m

n π
)

= −f(x) for all x since m is odd
by assumption. Now, defining C(α, β) as in (B54), this
correlation function is relational, since

C(α+ x, β + x) =
1

2π

∫ 2π

0

f(α+ x+ λ)f(β + x+ λ) dλ

=
1

2π

∫ 2π

0

f(α+ λ′)f(β + λ′) dλ′

= C(α, β) (B57)

by substitution and due to the (2π)-periodicity of f .
Furthermore,

C(θ+) = C (0, 0) =
1

2π

∫ 2π

0

(f(λ))
2
dλ = 1,

C(θ−) = C
(m
n
π, 0
)

=
1

2π

∫ 2π

0

f
(m
n
π + λ

)
f(λ) dλ

= − 1

2π

∫ 2π

0

(f(λ))
2
dλ = −1. (B58)

Therefore, simply following our protocol but relaxing
our assumption on J (while not imposing any other
assumptions) cannot be sufficient to certify nonlocality.

Appendix C: Characterizing quantum correlations

Let us consider black boxes that have a particularly
simple transformation behaviour under rotations:

Definition 2 (Transforming fundamentally). Consider
an SO(d)-box P(a |x), where d ≥ 2. Let x0 ∈ X . We say
that this box transforms fundamentally under rotations
if for all x ∈ X and all Rx ∈ G with Rxx0 = x one finds

P(a |x) ≡ P(a |Rxx0) = ca0 +
d∑

i,j=1

(Rx)i,jc
a
i,j , (C1)

where (Rx)i,j is the fundamental matrix representation
of Rx ∈ G, and ca0 , c

a
i,j are constants independent of x

and Rx.

Equivalently, a black box transforms fundamentally
if the corresponding representation R 7→ TR from
Theorem 1 can be chosen as a direct sum of copies
of the trivial and the fundamental representations of
G = SO(d). Since G is transitive on X , the existence of
the above representation is independent of the particular
x0: any alternative x′0 ∈ X satisfies x′0 = Sx0 for some
S ∈ G, satisfying the above with R′ = RS−1.

Lemma VIII. Suppose that X = Sd−1 (the unit
sphere), and P(a | ~x) transforms fundamentally under
rotations in G = SO(d). Then,

P(a | ~x) = ca0 + ~c a · ~x, (C2)

where constants ca0 ∈ R and ~c a ∈ Rd satisfy

∑

a∈A
ca0 = 1,

∑

a∈A
~c a = ~0 (C3)

such that for all a, ca0 ≥ 0 and |~c a| ≤ min (ca0 , 1− ca0).
Conversely, if a black box has this form, then it

transforms fundamentally under rotations.
In other words, an SO(d)-box transforms fundamen-

tally if and only if P(a | ~x) is affine-linear in ~x (and non-
negativity and normalization of probabilities holds).

Proof. Set ~x0 := ~e1 = (1, 0, . . . , 0)T. Fix some choice
of rotations ~x 7→ R~x with R~x~x0 = ~x. Consider the
stabilizer subgroup G~e1 := {R ∈ SO(d) | R~e1 = ~e1}:

G~e1 =

{(
1 ~0T

~0 T

)
| T ∈ SO(d− 1)

}
. (C4)

The fact that this group is isomorphic to SO(d− 1)
is precisely due to the fact that our set of inputs is
the homogeneous space X = SO(d) /SO(d− 1), i.e. the
(d − 1)-sphere. For d ≥ 3, we have

∫
SO(d−1)

T dT = 0,

and thus

∫

G~e1
S dS = Q :=

(
1 ~0T

~0 0

)
. (C5)

Since R~xS~e1 = ~x for every S ∈ G~e1 , every rotation
matrix R~xS can be substituted for Rx into definition 2.
Thus P(a | ~x) = ca0 +

∑d
i,j=1(R~xS)i,jc

a
i,j . By taking the

average over all S ∈ G~e1 according to the Haar measure,
we get

P (a|~x) = ca0 +
d∑

i,j=1

(
R~x

∫

G~e1
S dS

)

i,j

cai,j . (C6)

But R~xQ = (~x,~0, . . . ,~0), i.e. a matrix with first column
equal to ~x and all further columns equal to zero. This
proves that P (a|~x) is affine-linear in ~x as claimed, in the
case d ≥ 3.

Now consider the case d = 2. Here, ~x = (x1, x2)T,
and there is a unique choice of R~x, namely R~x =
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(
x1 −x2

x2 x1

)
. Then, P (a|~x) being affine-linear in R~x

is equivalent to being affine-linear in ~x.
From normalization,

∑
a P(a | ~x) = 1 ∀~x ∈ X ,

which by transitivity of G on X can be re-written∑
a P(a |R~x0) = 1 ∀R ∈ G. Suppose we take the Haar

average of G over both sides of this constraint:

∫

SO(d)

dR
∑

a

P(a |R~x0) =
∑

a

(
ca0 + ~c a ·

∫

SO(d)

dRR~x

)

=
∑

a

ca0 = 1, (C7)

where we have used
∫

SO(d)
RdR = 0. Since∑

a P(a |R~x0) = 1 for each individual R ∈ G, we
have (

∑
a ~c

a) · (R~x0) = 0. Since by transitivity

dim[ span({R~x0}R∈G)] = d, it follows that
∑
a ~c

a = ~0.
For any ~x, one may find some R ∈ SO(d) such

that R~x = −~x (since both ~x and −~x ∈ Sd−1 and
SO(d) is transitive on Sd−1). Hence, for the black box
P(a | ~x), there is always another black box P(a | −~x)
such that the average statistics of these two boxes is
given by 1

2 [P(a | ~x) + P(a | −~x)] = ca0 . Clearly, then
ca0 ≥ 0. Finally, from the definition of the dot product,
min~x∈Sd−1 (~c · ~x) = −|~c |. Thus, if |~c a| > ca0 , there will
be some ~x such that P(a | ~x) = ca0−|~c a| < 0, which is not
a valid probability. Similarly max~x∈Sd−1 (~c · ~x) = |~c |,
so if |~c a| > 1 − ca0 , there will be some ~x such that
P(a | ~x) = ca0 + |~c a| ≥ 1. Hence |~c a| ≤ min (ca0 , 1− ca0).

The converse follows from the transitivity of SO(d) on
Sd−1: any ~x can be expressed as R~x0 for some fixed ~x0

and R ∈ SO(d). Thus eq. (C2) can be written P(a | ~x) =
ca0 + ~c a ·R~x0 which has the form of eq. (C1).

We can formally define the concept of an “unbiased”
black box where if the input orientation is randomized,
no particular outcome is preferred:

Definition 3 (Unbiased). Consider a G-box P(a |x) for
some compact group G. We say that this box is unbiased
if the Haar average of P(a |Rx) over R ∈ G is the same
for all a ∈ A.

It follows from normalization that if a black
box transforms fundamentally under rotations and is
unbiased, it may be written in the form P(a | ~x) =

1
|A| + ~c a · ~x.

We extend both these definitions to the local parts of
a bipartite system by considering the conditional boxes

P b,~yA (a|~x) := P(a, b | ~x, ~y) /PB(b | ~y) (b, ~y fixed), (C8)

P a,~xB (b|~y) := P(a, b | ~x, ~y) /PA(a | ~x) (a, ~x fixed),
(C9)

defined whenever PB(b | ~y) > 0 and PA(a | ~x) > 0
respectively.

A conditional box can be thought of as the black box
Alice has if she is told Bob’s measurement and outcome.
(This is in contrast to a marginal black box, which
quantifies Alice’s statistics when she knows nothing of
Bob’s measurement or outcome.) No-signalling implies
the existence of well-defined marginal boxes PB(b | ~y)
and PA(a | ~x).

Definition 4. We say that a no-signalling bipartite
box P(a, b | ~x, ~y) transforms fundamentally locally (is
locally unbiased) if all conditional boxes transform
fundamentally (are unbiased).

The next two lemmas show that these properties are
preserved by convex combinations of boxes.

Lemma IX. Let {Pi(a, b | ~x, ~y)}i=1,...N be a set
of no-signalling bipartite black boxes that trans-
form fundamentally locally. Any convex combination
P(a, b | ~x, ~y) :=

∑
i λiPi(a, b | ~x, ~y) where all λi ≥ 0 and∑

i λi = 1 also transforms fundamentally locally.

Proof. First, we calculate the marginal distribution:
PA(a | ~x) :=

∑
b P(a, b | ~x, ~y) =

∑
b

∑
i λiPi(a, b | ~x, ~y) =∑

i λi
∑
b Pi(a, b | ~x, ~y) =

∑
i λiPA,i(a | ~x). Similarly,

PB(b | ~y) =
∑
i λiPB,i(b | ~y). First, we note that

PB(b | ~y) = 0 only if PB,i(b | ~y) = 0 for all i. In this
case, the combined conditional box is undefined, and
there is nothing to prove. Thus, we may proceed with
the case that PB(b | ~y) > 0.

With P(a, b | ~x, ~y) =
∑
i λiPi(a, b | ~x, ~y) =∑

i
′
λiPB,i(b | ~y) Pb,~yA,i(a|~x) we obtain

Pb,~yA (a|~x) =
∑

i

′λiPB,i(b | ~y)

PB(b | ~y)
Pb,~yA,i(a|~x) (C10)

Here,
∑
i
′

denotes a sum over all those i for which
PB,i(b|~y) > 0. These are exactly the i for which

Pb,~yA,i(a|~x) is well-defined. Meanwhile,
∑
i
′ λiPB,i(b | ~y)

PB(b | ~y) =

1, and hence we may define µi :=
λiPB,i(b | ~y)

PB(b | ~y) for those

i with PB,i(b|~y) > 0, and µi = 0 for all other i, such

that µi ≥ 0 and moreover
∑
i µi =

∑
i
′
µi = 1. Thus,

the new conditional box is itself a convex combination
of the constituent conditional boxes. A similar convex
combination can be found for Pa,~xB (b|~y).

Since the constituent conditional boxes trans-
form fundamentally, from Lemma VIII we write

Pb,~yA,i(a|~x) = c
(b,~y),a
i,0 + ~c

(b,~y),a
i · ~x. Then, Pb,~yA (a|~x) =

∑
i µi

(
c
(b,~y),a
i,0 + ~c

(b,~y),a
i · ~x

)
= c

(b,~y),a
0 +~c (b,~y),a ·~x where

c
(b,~y),a
0 :=

∑
µic

(b,~y),a
i,0 and ~c (b,~y),a :=

∑
µi~c

(b,~y),a
i . By

the converse part of Lemma VIII, Pb,~yA (a|~x) is thus a
valid black box that transforms fundamentally. The
same argument holds for Bob’s conditional boxes.

Lemma X. Let {Pi(a, b | ~x, ~y)}i=1,...N be a set of non-
signalling black boxes that are locally unbiased with
respect to G. Any convex combination P(a, b | ~x, ~y) :=∑
i λiPi(a, b | ~x, ~y) where all λi ≥ 0 and

∑
i λi = 1 is

also locally unbiased with respect to G.

Proof. In the proof of Lemma IX we have seen that
there exists a probability distribution {µi}i such that

Pb,~yA (a|~x) =
∑
i µiP

b,~y
A,i(a|~x). Thus we find

∫
Pb,~yA (a|R~x) dR =

∑

i

µi

∫
Pb,~yA,i(a|R~x) dR

=

∑
i µi
|A| =

1

|A| . (C11)
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Likewise holds for Bob’s conditional boxes, and hence,
P(a, b | ~x, ~y) is also locally unbiased.

Lemma XI. Consider a bipartite black box with inputs
X = Y = Sd−1 and binary outcomes A = B =
{+1,−1}. If this box transforms fundamentally locally
and is locally unbiased, then it describes quantum
correlations.

Proof. From Lemma VIII, binary-outcome conditional
boxes that transform fundamentally and are unbiased
can be written:

Pb,~yA (a|~x) :=

(
1
2

a~c (b,~y)

)
·
(

1
~x

)
=

(
1
2

~c (b,~y)

)
·
(

1
a~x

)
,

(C12)

Pa,~xB (b|~y) :=

(
1
2

b~c (a,~x)

)
·
(

1
~y

)
=

(
1
2

~c (a,~x)

)
·
(

1
b~y

)
,

(C13)

such that the joint probability distribution is given by:

P(a, b | ~x, ~y) = PB(b|~y)

(
1
2

~c (b,~y)

)
·
(

1
a~x

)
, (C14)

P(a, b | ~x, ~y) = PA(a|~x)

(
1
2

~c (a,~x)

)
·
(

1
b~y

)
. (C15)

This defines a map ω̃AB acting on ~ea,~x := (1, a~x)
T

and

~eb,~y := (1, b~y)
T

, such that ω̃AB(~ea,~x, ~eb,~y) = P(a, b | ~x, ~y).
Moreover, span(~ea,~x) = span(~eb,~y) = Rd+1, and so
this function has a unique bilinear extension ωAB :
Rd+1 × Rd+1 → R.

The set of non-negative linear combinations of ~ea,~x
define a positive Euclidean cone A+ ⊂ Rd+1 , whose

extremal rays are the non-negative multiples of (1, ~z)
T

for ~z ∈ Sd−1. We may then define an Archimedean order
unit (AOU) [52], ~u := (2, 0, . . . , 0)T ∈ Rd+1 and define
an AOU-space (Rd+1, A+, ~u). An identical AOU-space
(Rd+1, B+, ~u) can be defined using the non-negative
linear combinations of ~eb,~y.

Now, we shall employ a result from Kleinmann et al.
[52] (generalizing a result by Barnum et al. [53]) that
pertains to bilinear maps on positive Euclidean cones.
If a bilinear map ωAB on such cones is both unital and
positive, then there exists a bipartite quantum system

ρAB and a map from each point ~a ∈ A+, ~b ∈ B+

onto local quantum POVM elements Ma, Mb such that

ωAB(~a,~b) = tr (ρABMa ⊗Mb).
We show that ωAB satisfies these conditions. First,

for any given a, ~x (likewise b, ~y), it can be seen that

~e+a,~x + ~e−a,~x = ~u = ~e+b,~y + ~e−b,~y, (C16)

and hence ωAB (~u, ~u) =
∑
a,b P(a, b | ~x, ~y) = 1, which

means that ωAB is unital. Next, since every ~p ∈ A+

can be written as a non-negative linear combination
of finitely many ea,~x (likewise for ~q ∈ B+), then
ωAB(~p, ~q) ≥ 0 for all ~p, ~q ∈ A+, B+, showing that ωAB
is positive. Hence, ωAB can be realised by a quantum
system, and P(a, b | ~x, ~y) is a quantum behaviour.

The premise of local unbiasedness cannot be removed:
if we only demand that a box transforms fundamentally
locally, then it can generate correlations that are
disallowed by quantum theory. To see this, let P0 be
any non-signalling (2, 2, 2)-behaviour (for example, a
PR-box), and define

P(a, b | ~x, ~y) := λAλBP0(a, b|0, 0) + λAλ̄BP0(a, b|0, 1)

+ λ̄AλBP0(a, b|1, 0) + λ̄Aλ̄BP0(a, b|1, 1),
(C17)

where a, b ∈ {−1,+1}, ~x, ~y ∈ Sd−1, λA := 1
2 (1 + x1),

λ̄A := 1−λA, λB := 1
2 (1+y1), and λ̄B := 1−λB . If d =

3, for example, this describes a situation in which two
possible local inputs x, y ∈ {0, 1} are encoded into the
first Bloch vector component of a qubit, the qubits are
locally measured, and the measurement results x, y ∈
{0, 1} are input into the original box P0. This defines a
valid non-signalling box, and the linear dependence of
the outcome probabilities on ~x (resp. ~y) demonstrate,
via Lemma VIII, that P transforms fundamentally
locally. However, it reproduces P0 via P0(a, b|r, t) =
P(a, b | ~xr, ~yt), where ~x0 = ~y0 = (1, 0, . . . , 0) and ~x1 =
~y1 = (−1, 0, . . . , 0).

Now we show a converse statement, so that we
get an exact classification of the quantum (2, 2, 2)-
behaviours: i.e. the family of probabilities obtained in
quantum theory during a two party Bell test, where each
agent has two choices of input and obtains one of two
outcomes.

Lemma XII. Let d ≥ 2. Then all extremal quantum
(2,2,2)-behaviours can be realized by locally unbiased
SO(d)-boxes that transform fundamentally locally with
XA = XB = Sd−1; the two settings (inputs) correspond
to two choices of directions.

Proof. It has been shown [25, 34, 54, 55] that the
extremal quantum (2, 2, 2)-behaviours can be realised
by rank-1 projective measurements on two-qubit pure
states. Any extremal quantum (2, 2, 2)-behaviour
P(a, b | r, t) can then be written in the form P(a, b | r, t) =

Tr[ρAB(E
(a)
r ⊗ F

(b)
t )] where ρ is a pure state of two

qubits and E
(a)
r and F

(b)
t are qubit rank-1 projectors,

a, b ∈ {−1,+1} and r, t ∈ {1, 2}. We shall show
that there exists a non-signalling SO(d) × SO(d)-box
P(a, b | ~x, ~y) that transforms fundamentally locally, is
locally unbiased, and has choices ~xr, ~yt such that
P(a, b | ~xr, ~yt) = P(a, b | r, t).

Write E := E
(+1)
1 and Ẽ := E

(+1)
2 . As TrE = 1,

its expansion in the Pauli operator basis is of the form
E = 1

2 (12 + Exσx + Eyσy + Ezσz), and the associated

Bloch vector ~x′1 := (Ex, Ey, Ez)
T has Euclidean norm

1. Let ~x′2 be the Bloch vector similarly associated with

Ẽ. By changing the local bases unitarily, we can ensure
that ~x′1 = (1, 0, 0)T and ~x′2 = (cos θ, sin θ, 0)T, where
0 ≤ θ < 2π. Similarly, we can define the Bloch vectors

~y′t for t = 1, 2 via the rank-1 projections F
(b)
t .

Define a linear map Π : Rd → R3 in the following
way. If d = 2, set Π(v1, v2)T := (v1, v2, 0)T; if d ≥ 3, set
Π(v1, . . . , vd)

T := (v1, v2, v3)T, which is an orthogonal
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projection (and the identity if d = 3). Furthermore,
for ~v ∈ R3, define E~v := 1

2 (12 + ~v · ~σ), which is
positive-semidefinite whenever |~v| ≤ 1. Consider the
non-signalling SO(d)× SO(d)-box

P(a, b | ~x, ~y) := Tr [ρABEaΠ~x ⊗ EbΠ~y] . (C18)

Since |aΠ~x| ≤ |~x| = 1 for ~x ∈ Sd−1 (and similarly for
bΠ~y), this defines a valid (quantum) behaviour. The
conditional boxes are

P b,~yA (a|~x) =
1
2 Tr

[
ρAB(1 + a~x · (ΠT~σ))⊗ EbΠ~y

]

Tr(ρBEbΠ~y)
.

(C19)
This expression yields well-defined probabilities by
construction, and it is affine-linear in ~x. Analogous
statements hold for the other conditional boxes. Thus,
according to Lemma VIII, P(a, b | ~x, ~y) transforms
fundamentally locally. Furthermore, averaging the
above conditional box uniformly over ~x replaces ~x by
zero and annihilates all dependence on a; hence this
box is locally unbiased.

Let ~xr ∈ Rd be the vector whose first two components
are the first two components of ~x′r, and all other (d− 2)
components are zero; define ~yt analogously. Then
P(a, b | r, t) = P(a, b | ~xr, ~yt).

Proof of Theorem 3. Let d ≥ 2. The
quantum (2, 2, 2)-behaviours are exactly those that can
be realised by binary-outcome bipartite SO(d)×SO(d)-
boxes that transform fundamentally locally and are
locally unbiased, restricted to two choices of input

direction per party per box, and statistically mixed via
shared randomness.

Proof. Lemma XI tells us that “(2, Sd−1, 2)–behaviours”
that transform fundamentally locally, and are locally
unbiased, can be realised by local measurements on a
bipartite quantum system. If we restrict our choice of
inputs from the full Sd−1 freedom to just two choices
of orientation per party, then these will be (2, 2, 2)–
behaviours, and since they can be realised by a quantum
system, they are quantum (2, 2, 2)–behaviours.

The other direction follows from Lemma XII: all
extremal quantum (2, 2, 2)-behaviours can be realised
by restricting binary-outcome bipartite SO(d)×SO(d)-
boxes, transforming fundamentally locally and being
locally unbiased, to two possible input directions
per party. Additional shared randomness allows the
two parties to generate all statistical mixtures of
these behaviours, yielding all further quantum (2, 2, 2)-
behaviours.

Theorem 3 cannot hold for all d ≥ 2 without allowing
shared randomness. For example, suppose that d = 3,
then the proof of Lemma XI shows that all correlations
realizable with binary-outcome bipartite SO(3)×SO(3)-
boxes that transform fundamentally locally and are
locally unbiased can be realized via unital positive
bilinear forms on the positive semidefinite qubit cone.
Consequently, the result by Barnum et al. [53] implies
that all these correlations can also be realized via
POVMs on ordinary two-qubit quantum state space.
However, Donohue and Wolfe [36] (extending results by
Pál and Vértesi [35]) have shown that the set of (2, 2, 2)-
behaviours realizable on two qubits via POVMs is not
convex, and thus not equal to the convex set of quantum
(2, 2, 2)-behaviours.
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Remarks about the Bell witness protocol:
In our Bell witness protocol, one agent (Bob) does not need a random number
generator. In that regard, our protocol is simpler than a usual Bell experiment.
Instead, there is a random number generator in the beginning of the protocol which
generates the shared random angle λ. In the main text, our explanation of the
protocol says that Bob inputs λ. This could be interpreted as Bob having an input
after all, although he cannot freely choose it while separated from the other agent (in
particular, the other agent Alice knows this input of Bob, i.e. λ). However, one could
also consider a modified scenario in which the shared random angle is a property of
the boxes themselves, or the preparation procedure. In this modification, the device
of Bob is hard-wired to λ during preparation, i.e. his device is already set to λ in
the preparation phase and Bob does not input anything at all. Similarly, Alice’s
device is preset to λ and she just modifies this angle by adding Θ+ or Θ− to it. In
this modified setting, Bob indeed does not input anything at all, while Alice only
chooses one of two angles.

The most important simplifications arise if one knows in advance that the full
correlation function already is relational, i.e. C(α, β) = Crel(α − β). For example,
there might be physical arguments that imply that a considered preparation procedure
has no reference for an absolute angle. In such cases, the randomization with the
shared random angle λ is unnecessary. Then we can completely remove the initial
random number generator, i.e. λ, as a common cause.

Once more, we point out that the Bell witness protocol is NOT a full Bell test,
because the input of Bob’s device is known to Alice or her device in advance. Instead,
the protocol just collects statistics that implies that there exists a Bell test one could
perform instead to find Bell non-locality.
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Abstract: The computational efficiency of quantum mechanics can be defined in terms of
the qubit circuit model, which is characterized by a few simple properties: each

computational gate is a reversible transformation in a connected matrix group; single
wires carry quantum bits, i.e. states of a three-dimensional Bloch ball; states on two or
more wires are uniquely determined by local measurement statistics and their correlations.
In this paper, we ask whether other types of computation are possible if we relax one of
those characteristics (and keep all others), namely, if we allow wires to be described by
d-dimensional Bloch balls, where d is different from three. Theories of this kind have

previously been proposed as possible generalizations of quantum physics, and it has been
conjectured that some of them allow for interesting multipartite reversible transformations
that cannot be realized within quantum theory. However, here we show that all such

potential beyond-quantum models of computation are trivial: if d is not three, then the
set of reversible transformations consists entirely of single-bit gates, and not even classical

computation is possible. In this sense, qubit quantum computation is an island in
theoryspace.
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I. INTRODUCTION

Since the discovery of quantum algorithms that out-
perform all known classical ones in certain tasks [1],
improving our understanding of the possibilities and
limitations of quantum computation has become one of
the central goals of quantum information theory. While
it is notoriously difficult to prove unconditional sepa-
ration of polynomial-time classical and quantum com-
putation [2], an approach that is often regarded more
tractable is to analyze how certain modifications of
quantum computing affect its computational power. For
instance, one may consider restrictions on the set of al-
lowed quantum resources, and ask under which condi-
tion the possibility of universal quantum computation is
preserved despite the restriction. Notable results along
these lines, among many others, include the Gottesman-
Knill theorem [3–5], insights on the necessity of con-
textuality as a resource for magic state distillation [6],
or bounds on the noise threshold of quantum comput-
ers [7].

In a complementary and in some sense more radi-
cal approach, going back to Abrams and Lloyd [8], one
considers modifications of the quantum formalism it-
self and studies the impact of those modifications on the
computational efficiency, resembling strategies of clas-
sical computer science such as the introduction of ora-
cles [9]. For example, it has been shown that availability
of closed timelike curves leads to implausible computa-
tional power [10], that stronger-than-quantum nonlocal-
ity reduces the set of available transformations [11–14],
that tomographic locality forces computations to be con-
tained in a class called AWPP [15, 16], and that in some
theories (satisfying additional axioms) higher-order in-
terference does not lead to a speed-up in Grover’s algo-
rithm [17]. Further examples can be found e.g. in [18–
21].

In this paper, we consider a specific modification of
the quantum formalism that is arguably among the sim-
plest and most conservative possibilities. This modifica-
tion dates back to ideas by Jordan, von Neumann, and
Wigner [22], and it has several independent motivations
as we will explain further below. This generalization
keeps all characteristic properties of quantum compu-
tation unchanged, but modifies a single aspect: namely,
it allows the quantum bit to have any number of d ≥ 2
degrees of freedom, instead of standard quantum the-
ory’s d = 3 (or the classical bit’s d = 1). It has been
conjectured [23] that the resulting theories allow for in-
teresting “beyond quantum” reversible multipartite dy-
namics, which would make the corresponding models
of computation highly relevant objects of study within
the research program mentioned above. However, here
we show that, quite on the contrary, these models are
so constrained that they do not even allow for classi-
cal computation; hence, in Aaronson’s terminology, the
d = 3 case of the standard qubit circuit model can be
seen as an “island in theoryspace” [24].

G1

G2

FIG. 1. The circuit model that we consider in this paper. We
have an arbitrary finite number n of wires (here n = 4), and
each wire carries a “gbit” which is a state in a d-dimensional
Bloch ball state space. Initially, a product state is prepared (en-
coding, for example, the classical input to the algorithm), then
a finite number of gates Gi is applied, each acting on an ar-
bitrary number of gbits, and finally local measurements are
performed. We assume that the Gi are elements of an (arbi-
trary unspecified) closed connected matrix group, and that the
global state of n wires is uniquely determined by the statistics
and correlations of single-wire measurements (“tomographic
locality”). If d = 3, i.e. if the gbits are qubits, it has been shown
in [50] that these assumptions uniquely characterize unitary
quantum computation as the only computationally non-trivial
theory. Here we analyze the case d 6= 3, and prove that —
despite conjectures to the opposite [23] — the corresponding
models do not allow for any non-trivial computation at all. We
do not assume that wires can be swapped, or that all transfor-
mations can be composed out of two-gbit transformations. See
the main text for details.

Our paper is organized as follows. Section II gives
the mathematical framework. We define single bits that
generalize the qubit (“gbits”), and then give three postu-
lates that allow us to reason about circuits that are con-
structed out of n of these gbits. We formulate the prob-
lem that is addressed in this work and describe how it
relates to earlier results in the literature. In Section III,
we state and prove our main result: namely, while our
principles uniquely determine quantum computation in
the case that the single gbits have d = 3 degree of free-
dom, any other value of d does not even allow for clas-
sical computation. We give the full proof for the case
d ≥ 4 (the d = 2 case is deferred to the appendix), and
illustrate the main idea of some of the proof steps by a
circuit diagram, before concluding in Section IV.

II. GENERALIZED BITS AND GBIT CIRCUITS

In both classical and quantum computation, we can
restrict our attention to the circuit model (as in Figure 1)
where each of the wires (the single systems that enter
and exit logical gates) corresponds to a two-level sys-
tem. Quantum two-level systems (qubits) are different
from classical ones (bits): they allow for a more com-
plex behavior which encompasses phenomena like co-
herent superposition, interference, or uncertainty rela-
tions. Yet, both classical and quantum bits can be for-
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malized in a unified way that we now describe (for both
single and multiple bits, i.e. circuits, we follow the con-
structions and notation from [50]).

A. Single gbits

To any d ∈ N, we associate a ”generalized bit” (gbit)
that has the d-dimensional Bloch ball, Bd = {~a ∈
Rd | |~a| ≤ 1}, as its state space. Every vector ~a in the
Bloch ball Bd corresponds to a possible state of the gen-
eralized bit. Two-outcome measurements are described
by vectors ~b ∈ Rd with |~b| = 1, such that the prob-
ability of the first outcome if performed on state ~a is
(1+~a·~b)/2, and that of the second outcome is (1−~a·~b)/2.
In the following, it will be convenient to use the notation
v(~a) = (1,~a)> ∈ Rd+1, such that these two probabili-
ties become 1

2v(~a) · v(±~b). Reversible transformations of
states are given by ~a 7→ R~a, where R ∈ SO(d) is a rota-
tion matrix. These transformations map states to states
and can be inverted (by applyingR−1), hence we can in-
terpret them as closed-system time evolutions or, equiv-
alently, reversible gates on single generalized bits.

For d = 3, this formalism recovers the qubit of stan-
dard quantum theory [5]: as is well-known, every 2 × 2
density matrix ρ can be written in the form

ρ = (1 + ~aρ · ~σ)/2,

where ~σ = (σx, σy, σz) denotes the Pauli matrices. It is
automatic in this representation that tr ρ = 1, and pos-
itivity ρ ≥ 0 is equivalent to |~aρ| ≤ 1. Hence the set of
states of a quantum bit can be represented by the Bloch
ball B3. This representation has the important property
that statistical mixtures correspond to convex combinations:
if a state ρ is prepared with probability p and another
state ρ′ is prepared with probability 1 − p, then the to-
tal state pρ + (1 − p)ρ′ corresponds to the Bloch vector
~apρ+(1−p)ρ′ = p~aρ + (1− p)~aρ′ . This statistical interpreta-
tion of convex mixtures is also taken for balls of other di-
mensions d 6= 3, hence these Bloch balls can be regarded
as state spaces of generalized probabilistic theories [11].

In the d = 3 case, projective measurements are repre-
sented by unit vectors ~b, |~b| = 1, with outcome proba-
bilities (1 ± ~a · ~b)/2 as described above. Unitary trans-
formations U on states, acting as ρ 7→ UρU†, are de-
scribed in the Bloch ball picture by orthogonal maps
RU , R>URU = 1, such that ~aUρU† = RU~aρ. More gen-
eral measurements (positive operator-valued measures)
or transformations (completely positive maps) can also
be described in the Bloch ball representation, but they
are not needed in what follows and therefore omitted.

The simplest case of d = 1 corresponds to the classi-
cal bit: there are two possible configurations, ~a = +1
and ~a′ = −1, and further states that represent classi-
cal uncertainty about the configuration. Namely, if we
have +1 with probability p (and thus −1 with probabil-
ity 1 − p), this corresponds to the state p~a + (1 − p)~a′ in

the interior the one-dimensional “Bloch ball”.
There is one peculiarity in the d = 1 case: instead of

SO(1) = {1}, we should allow the group O(1) = {−1,1}
as Bloch ball transformations such that also the bit flip
is allowed.

What is the significance of the d-dimensional Bloch
balls if d is neither one nor three? These gbits have ap-
peared in various places in quantum information the-
ory and the foundations of quantum mechanics. His-
torically, they have first shown up as precisely those
two-level state spaces that can be described as (formally
real, irreducible) Jordan algebras [22], a natural alge-
braic generalization of standard quantum theory. In fact,
quantum theory with real amplitudes, i.e. over the field
R instead of C, has a (d = 2)-dimensional Bloch ball as
its “quantum bit”, and the bits of quaternionic and octo-
nionic quantum theory correspond to Bd for d = 5 and
d = 9 respectively. Furthermore, the fact that a two-level
system should have a Euclidean ball state space can be
derived from a variety of different sets of natural as-
sumptions. In many reconstructions of quantum theory
from physical or information-theoretic principles [25–
32, 34–36], this fact is derived as a first step. For exam-
ple, postulating that the group of reversible transforma-
tions acts transitively on the pure states implies that the
pure states must all lie on the unit hypersphere of an
invariant inner product. If some points on the sphere
were not valid states, then there would exist additional
measurements that would violate further natural pos-
tulates like Hardy’s [25] “Subspaces” axiom. This ar-
gumentation or others along similar lines [25–36] lead
to Euclidean balls as the most natural state spaces of a
generalized bit.

A more geometrical motivation can be found by con-
sidering spin- 12 particles (compare e.g. to [23]): under
rotations SO(3), they transform via SU(2). The den-
sity matrix transforms under the adjoint representation,
which means that the Bloch vectors transform via the
same rotation as in physical space. Therefore, the Bloch
vector~b can be seen as defining an oriented axis in phys-
ical space. The model considered in this paper is a direct
generalization of the Bloch ball and this interpretation
to arbitrary spatial dimensions. Indeed, the possibil-
ity that space might have more than three dimensions
has appeared in a large variety of physical theories, see
e.g. [37–42]. It has also been argued that these gener-
alized bits can be interpreted as “information quasipar-
ticles” in some sense [43]. In summary, these gbits are
among the simplest and most natural generalizations of
the classical bit and the qubit of quantum mechanics.

B. Several gbits and computation

To describe circuit computation, we need to define the
state space, measurements, and transformations of sev-
eral gbits. In standard quantum theory, where the gbits
are qubits, there is a unique definition of these notions:
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the states of n qubits are exactly the (2n) × (2n) den-
sity matrices, the reversible transformations are the uni-
taries, and the measurements are described by collec-
tions of projection operators. Similar definitions apply
to n classical bits. But if the gbits are Bloch balls of di-
mension d 6∈ {1, 3}, then it is apriori unclear what the
composite state space should be.

Since we would like to be as general as possible, we
will not make any attempt to fix the composite state
space from the outset. Instead, we will work with a
small set of principles that the composite n-gbit system
is supposed to satisfy. While these principles will con-
strain the n-gbit state space, it is by no means obvious
that they determine it uniquely. However, we will show
below that they are indeed constraining enough to allow
us to derive the full set of states and transformations.

An important principle is the no-signalling princi-
ple [11]: the outcome statistics of measurements on any
group of gbits does not depend on any other operations (e.g.
measurements) that are performed on the remaining gbits.
This is a physically well-motivated constraint that lies
at the heart of what we mean by “different wires” (i.e.
subsystems) of the circuit in the first place.

This principle is satisfied by classical as well as quan-
tum computation, and so is our second postulate of
tomographic locality [25, 44]: every state on n gbits is
uniquely characterized by the statistics and correlations of the
local gbit measurements. In other words, a global n-gbit
state is nothing but a catalog of probabilities for the out-
comes of all the single-gbit measurements and their cor-
relations.

It is not only classical and quantum theory that satis-
fies the principle of tomographic locality, but also more
general probabilistic theories like boxworld [12]. If this
principle was violated, then a collection of gbits would
in some counterintuitive sense be “more” than a com-
position of its building blocks. Even though this for-
mulation makes tomographic locality sound very nat-
ural, there are simple examples of theories that violate
it. One such example is given by quantum theory over
the real numbers R [45, 46]. This is because observables
of two single real qubits do not linearly generate all ob-
servables of two real qubits. In particular, if σy is the
Pauli matrix with purely imaginary entries, then σy is
not a real qubit observable, but σy⊗σy is a real two-qubit
observable. Intuitively, it represents a novel “holistic”
degree of freedom that cannot be constructed out of lo-
cal degrees of freedom and their correlations.

Not only is the postulate of tomographic locality very
intuitive, but it is also very powerful: it allows us to rep-
resent states of n gbits as tensors [11]. That is, even if we
do not know what the set of n-gbit states is, we know
that every such state can be written as an element of
the linear space (Rd+1)⊗n (in the quantum case, where
d = 3, this amounts to the 4n-dimensional real linear
space of Hermitian (2n) × (2n) matrices; for real bits, it
is the 2n-dimensional space that contains the probability
vectors over 2n configurations). In particular, an n-gbit

product state with local Bloch vectors ~a1, . . .~an is repre-
sented by

v(~a1, . . . ,~an) := (1,~a1)> ⊗ . . .⊗ (1,~an)>,

and all other states ω are vectors on the same space (but
not of this product form). Tomographic locality then
amounts to the fact that all these states are uniquely de-
termined by the numbers

2−nv(~b1, . . . ,~bn)>ω,

which are the outcome probabilities of local gbit mea-
surements corresponding to the Bloch vectors ~b1, . . . ,~bn
on the state ω. This mathematical property has many
intuitively appealing consequences that are not other-
wise guaranteed, e.g. the property that products of pure
states are pure. It is also the reason why the mathemat-
ical literature has focused almost entirely on this notion
of composite state space (cf. e.g. [47]): it leads to notions
of “tensor products” of ordered linear spaces that allow
one to prove general statements that are otherwise un-
available. In the context of this paper, it would seem
extremely difficult to make any meaningful statements
whatsoever if not even the linear space on which the
global states live could be fixed from the outset.

We need one further ingredient to arrive at a model
of computation, namely a set of reversible transforma-
tions. In analogy to standard quantum computation
(where these are the unitaries), we postulate that the
transformations form a closed connected matrix group,
and thus Lie group, G: they form a group since they can
be composed; they must be linear maps since if we pre-
pare a state ω with probability p and ω′ with probability
(1 − p), they must act on the components of the convex
combination pω + (1 − p)ω′ individually, to be consis-
tent with the probabilistic interpretation [11]. Moreover,
it is physically meaningful to model the group as closed
since whenever we can approximate a transformation
to arbitrary accuracy by gates, it makes sense to declare
this transformation as in principle implementable.

This postulate is almost, but not quite, satisfied by
classical computation, i.e. the d = 1 case. As Bennett
has shown [48], classical computation can be made fully
reversible, at only marginal cost of space or time re-
sources. There are finite universal gate sets (including
e.g. Toffoli gates) that generate the full group of per-
mutations of the 2n configurations of the n bits. These
permutations therefore constitute the reversible trans-
formations of the classical bits, and they form a closed
matrix group of linear maps. This group, however, is
discrete and not connected.

This discreteness is already reflected in the fact that
the one-dimensional “Bloch ball” is discrete, i.e. has
only a finite number (two) of pure states. Since the set
of classical configurations (pure states) of n bits is dis-
crete, the group of reversible transformations must also
be discrete. In the case d ≥ 2 to which we thus re-
strict our attention in the following, however, even sin-
gle bits (Bloch balls) contain a continuous manifold of
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pure states. In order to allow every pure state to evolve
into every other (which we would expect to be crucial
for the exploitation of the full computational potential),
it is therefore necessary that the reversible transforma-
tions form a continuous group G — in more detail, that
G is a matrix Lie group such that its connected compo-
nent at the identity is non-trivial. It then makes sense
to consider continuous time evolution that implements
elements of this connected component (as it is the case
in quantum theory), and to disregard the mathemati-
cal possibility of having additional disconnected com-
ponents. This motivates the assumption that G is con-
nected.

All gates in a circuit will be elements of G. This group
must in particular contain the local qubit rotations: for
R ∈ SO(d), write R̂(1,~a)> := (1, R~a)>, then the sub-
group of local transformations is

Gloc := {R̂1 ⊗ R̂2 ⊗ . . .⊗ R̂n | Ri ∈ SO(d)}.

Note that we have used tomographic locality in deriving
this prescription: since a local transformation acts like a
product of transformations on the product states, it must
act like this on all other states too since they live on the
vector space that is spanned by the product states. To-
mographic locality hence enforces that we can represent
any linear map X : (R(d+1))⊗n → (R(d+1))⊗n as a tensor
with n upper and n lower indices; that is,

Xα1α2...αn

β1β2...βn
:= (~eβ1

⊗ . . .⊗ ~eβn
)>X(~eα1

⊗ . . .⊗ ~eαn
),

where 0 ≤ αi, βi ≤ d, and ~eγ denotes the γ-th unit vec-
tor, e.g. ~e0 = (1, 0, . . . , 0)>. This is in contrast to Bloch
vectors ~b ∈ Rd, where we use the notation Rd 3 ~b =
~e1 = (1, 0, . . . , 0)>.

We demand that Gloc ⊆ G, but do not make any fur-
ther assumptions on G. In particular, we do not assume
that the n gbits play physically identical roles: our as-
sumptions allow in principle composite state spaces of
n gbits that are not symmetric with respect to permuta-
tions of the gbits. Hence we are also not assuming that
gbits can be reversibly swapped, or that other natural
choices of transformations such as extensions of classi-
cal reversible gates (like CNOT) can necessarily be im-
plemented. Therefore, our framework does not rely on
the same set of assumptions as the circuit framework of
symmetric monoidal categories [49] that is often used in the
quantum foundations context.

C. The trivial case G = Gloc

For any Bloch ball dimension d, there is a trivial com-
putational model: namely the choice that G = Gloc. This
describes a theory where the only possible reversible
transformations are independent local transformations
of the single gbits. Such a model does not even allow
for classical gates like the CNOT; it only admits gates

and computations that evolve the gbits independently
from each other without ever correlating them, i.e. prod-
ucts of single-gbit gates. A state space that is compatible
with this choice of global transformations is simply

conv
{

(1,~a1)> ⊗ . . .⊗ (1,~an)> | ~ai ∈ Bd
}
,

i.e. all convex combinations of product states. This is a
state space that does not contain entanglement.

D. d = 3 equals quantum computation, and relation to
earlier work

For the case of the standard qubit, i.e. of d = 3, it
has been proven in [50] that there is only a single pos-
sible non-trivial (Gloc ( G) theory that satisfies the as-
sumptions from above: namely, standard quantum the-
ory over n qubits, with the (2n)×(2n) density matrices as
the states, and the projective unitary group G = PU(2n)
of transformations. That is, the postulates on composi-
tion of gbits from above, together with the structure of
the single qubit, are sufficient to determine qubit quan-
tum computation uniquely.

While this result is interesting in its own right, it is
also the main motivation for the present work: if quan-
tum computation is characterized by such a simple list
of principles, then maybe one obtains other interest-
ing models of computation by slightly tweaking one of
the postulates. Since large parts of the mathematical
structure are determined by the postulates on composi-
tion (no-signalling and tomographic locality), the most
promising road towards modifying the setup and also
keeping important mathematical tools seems to be to
modify the structure of the single qubit — and techni-
cally as well as conceptually (as explained in Subsec-
tion II A), the most natural way to do this is by changing
the dimension of the Bloch ball d.

In the special case of n = 2 gbits, the consequences
of the above postulates have been explored in [51, 52].
There it has been proven that the only consistent choice of
transformations for Bloch ball dimension d 6= 3 is given by the
trivial choice G = Gloc. However, computation is typically
taking place on a large number n � 2 of gbits, and the
techniques of [51, 52] cannot readily be generalized to
n > 2.

In fact, it has been suggested in [23] that it is essential
for Bloch ball dimensions d ≥ 4 to allow for genuine m-
partite interaction of the gbits, where m ≥ d − 1 ≥ 3.
Without a conclusive proof or explicit construction of
the state space, the authors conjectured that interest-
ing multipartite reversible dynamics is possible for such
systems. In contrast to quantum theory, this m-partite
dynamics would not be decomposable into two-gbit in-
teractions. While tomographic locality has not been as-
sumed in [23], it is an important first step to check their
conjecture under this additional assumption. In fact, it
has been argued in [53] that in the context of spacetime
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physics (the Bloch balls are interpreted in [23] as car-
rying some sort of d-dimensional spin degrees of free-
dom), tomographic locality is to be expected due to ar-
guments from group representation theory.

This gives us another, independent motivation to ask
the main question of this paper: if d 6= 3 and n is any
finite number of gbits, then what are the possible theories that
satisfy the assumptions of Subsection II B?

III. MAIN RESULT

The main result of this work is an answer to the ques-
tion posed at the end of the previous section:

Theorem 1. Consider a theory of n gbits, where single gbits
are described by a (d ≥ 2)-dimensional Bloch ball state space,
subject to the single-gbit transformation group SO(d). As
described above, let us assume no-signalling, tomographic lo-
cality, and that the global transformations form a closed con-
nected matrix group G.

If d 6= 3, then necessarily G = Gloc, i.e. the only possible
gates are (independent combinations of) single-gbit gates. No
transformation can correlate gbits that are initially uncorre-
lated; hence not even classical computation is possible.

We will now prove this result for the case d ≥ 4. The
proof in the d = 2 case uses similar techniques, but dif-
fers in several details for group-theoretic reasons. It will
hence be deferred to the appendix.

As a first step, we will consider the generators of
global transformations and show that there exists at
least one that is of a certain normal form. This part of
the proof is valid for all dimensions d ≥ 2. A large part
of this first step follows the construction in Ref. [50] and
extends it to arbitrary dimensions.

A. Generator normal form for all dimensions d ≥ 2

Let G ∈ G be a transformation of the composite sys-
tem. Suppose we prepare n gbits initially in states with
Bloch vectors ~a1, . . . ,~an, evolve the resulting product
state via G, and perform a final local n-gbit measure-
ment with Bloch vectors ~b1, . . . ,~bn. The probability that
the all the n outcomes on the n gbits are “yes” is

2−nv(~b1,~b2, . . . ,~bn)>Gv(~a1,~a2, . . . ,~an) ∈ [0, 1].

Let us consider a group element G = eεX with X ∈ g
(the corresponding Lie algebra) and ε ∈ R and expand:

v(~b1, . . . ,~bn)>
(
1+εX+

ε2

2
X2+O(ε3)

)
v(~a1, . . . ,~an) ∈ [0, 2n].

From now on we restrict ourselves to unit length Bloch
vectors, i.e. |~ai| = |~bj | = 1 for all i, j. We obtain

C[~a1] := v(−~a1,~b2, ...,~bn)>Xv(~a1,~a2, . . . ,~an) = 0

since the zeroth order is zero which is a local mini-
mum as a function of ε (see Figure 2 for further expla-
nation). Thus the second order contribution has to be
non-negative:

v(−~a1,~b2, . . . ,~bn)>X2v(~a1,~a2, . . . ,~an) ≥ 0,

or more generally with the roles of qubits 1 and k ex-
changed,

v(~b1, . . . ,~bk−1,−~ak,~bk+1, . . .~bn)>X2v(~a1, . . . ,~an) ≥ 0.
(1)

~a1

~a2

~a3

~a4

eεX
−~a1

~b4

~b3

~b2

FIG. 2. We are using configurations like this one to derive con-
straints on the generators X ∈ g. In the special case ε = 0,
the transformation exp(εX) reduces to the identity. Hence, if
we prepare the first wire in the (pure) state with Bloch vector
~a1, and perform a final measurement of that wire with Bloch
vector −~a1, the corresponding outcome will have probabil-
ity zero, regardless of which local measurements we choose
for the other wires. But probability zero is a local minimum,
which implies that the derivative of this probability with re-
spect to ε must be zero (yielding C[~a1] = 0), and the second
derivative must be non-negative (yielding constraint (1) in the
case k = 1).

Other first and second order constraints are

v(~a1,~a2, . . . ,~an)>Xv(~a1,~a2, . . . ,~an) = 0, (2)
v(~a1,~a2, . . . ,~an)>X2v(~a1,~a2, . . . ,~an) ≤ 0 (3)

for analogous reasons as above (since ~bj = ~aj for all
j yields probability one for ε = 0, which is the global
and thus a local maximum). For fixed Bloch vectors
~a2, . . . ,~an,~b2, . . . ,~bn, define Wα

β as

[
~eβ ⊗

(
1
~b2

)
⊗ . . .⊗

(
1
~bn

)]>
X

[
~eα ⊗

(
1
~a2

)
⊗ . . .⊗

(
1
~an

)]
.

(4)
The equation C[~ei] = 0 impliesW 0

0 +W i
0−W 0

i −W i
i = 0,

and C[−~ei] = 0 implies W 0
0 −W i

0 +W 0
i −W i

i = 0. Thus,
W i
i = W 0

0 and W i
0 = W 0

i for all i ≥ 1. Since the vectors(
1
~a

)
linearly span all of Rd+1, we get

Xi α2 ... αn

i β2 ... βn
= X0 α2 ... αn

0 β2 ... βn
, (5)

Xi α2 ... αn

0 β2 ... βn
= X0 α2 ... αn

i β2 ... βn
(6)
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for all i ≥ 1 and all α2, . . . , αn, β2, . . . , βn ≥ 0. Similarly,
C[ 1√

2
(~ei + ~ej)] = 0 for i 6= j, i, j ≥ 1 yields

W 0
0 +

1√
2
W i

0 +
1√
2
W j

0 −
1√
2
W 0
i −

1

2
W i
i

−1

2
W j
i −

1√
2
W 0
j −

1

2
W i
j −

1

2
W j
j = 0.

Using the results on W i
i and W 0

i further above, this re-
duces to − 1

2W
j
i − 1

2W
i
j = 0, and thus

Xi α2 ... αn

j β2 ... βn
= −Xj α2 ... αn

i β2 ... βn
(7)

for all i, j ≥ 1 and α2, . . . , αn, β2, . . . , βn ≥ 0. While we
have derived (5), (6) and (7) for the first gbit, analogous
equations hold for all other gbits with labels 2, . . . , n.

Let us denote byA the antisymmetric (d+1)×(d+1)-
matrices of the form

A :=

{
AA =

(
0 ~0>

~0 A

) ∣∣∣∣∣ A
>

= −A
}
,

and by B the symmetric (d+ 1)× (d+ 1)-matrices of the
form

B :=

{
B~b =

(
0 ~b>

~b 0

) ∣∣∣∣∣
~b ∈ Rd

}
.

Furthermore, let I := R · 1, i.e. all multiples of the
(d + 1) × (d + 1) identity matrix. The sets A, B and
I are real linear matrix subspaces. Note that these
three spaces are pairwise orthogonal with respect to the
Hilbert-Schmidt inner product 〈X,Y 〉 := tr(X>Y ). The
matrix W defined in (4) must then be an element of
A ⊕ B ⊕ I due to the identities for its components that
we have derived above. More generally, since the same
identities hold for every index i ∈ {1, . . . , n} for the ten-
sor X , we obtain X ∈ (A ⊕ B ⊕ I)⊗n. Since X ∈ g was
arbitrary, this tells us that

g ⊂ (A⊕ B ⊕ I)⊗n.

The Lie algebra of the local transformations is

gloc = A⊗1⊗. . .⊗1+1⊗A⊗1⊗. . .⊗1+. . .+1⊗1⊗. . .⊗1⊗A,

writing “+” instead of “⊕” for readability. We can write
the space (A ⊕ B ⊕ I)⊗n in a somewhat different form.
To this end, consider strings of symbols x ∈ {A,B, I}n,
for example x = ABAI (if n = 4), and denote the cor-
responding tensor product matrix spaces by Sx; for this
example, Sx = A ⊗ B ⊗ A ⊗ I. Then Sx ⊥ Sy for x 6= y
(with respect to the Hilbert-Schmidt inner product), and

(A⊕ B ⊕ I)⊗n =
⊕

x∈{A,B,I}n
Sx.

Now let X ∈ g \ gloc be an arbitrary generator which is
not in the local Lie algebra (here we explicitly make the

assumption that such an X exists). Since X 6= 0, there
must exist x such that Φx(X) 6= 0 for the orthogonal
projection Φx into Sx, and since X 6∈ gloc, at least one of
those x must satisfy

x 6∈ {AI . . . I, IAI . . . I, . . . , I . . . IA}.

Reordering the gbits, we may assume that x =
AnABnBInI , where nA + nB + nI = n and one of the
following three cases applies:

(i) nA = 0,

(ii) nA = 1 and nB ≥ 1,

(iii) nA ≥ 2.

Since Sx has an orthonormal basis of matrices of the
form AA1

⊗ . . .⊗AAnA
⊗B1 ⊗ . . .⊗BnB

⊗ 1⊗nI , where
all AAi

∈ A and Bi ∈ B, there must exist some matrix
M̃x of that form (i.e. M̃x ∈ Sx) such that 〈X, M̃x〉 6= 0. By
moving constant scalar factors into theA-terms, we may
assume that there are unit vectors ~bi such that Bi = B~bi
for i = 1, . . . , nB . But since R̂B~bR̂

> = BR~b for all
R ∈ SO(d), there are orthogonal matrices R̂i such that
Ri~bi = ~e1 = (1, 0, . . . , 0)> for all i, and the local transfor-
mation T := 1⊗nA ⊗ R̂1 ⊗ . . .⊗ R̂nB

⊗ 1⊗nI satisfies

M ′x := TM̃xT
−1 = TM̃xT

>

= AA1
⊗ . . .⊗AAnA

⊗B⊗nB ⊗ 1⊗nI ,

where B := B~e1 . Set X ′ := TXT−1, then since
T ∈ Gloc ⊂ G and since the adjoint action of Gloc pre-
serves gloc, we have X ′ ∈ g \ gloc, and 〈X ′,M ′x〉 =

tr(TXT−1TM̃xT
−1) = 〈X, M̃x〉 6= 0. Similar argumen-

tation allows us to bring the AAi
into a standard form.

Since the d × d-matrices Ai are antisymmetric, one can
infer from the results in [66] that there are orthogonal
transformations Ri ∈ SO(d) such that

RiAiR
>
i =




0 λ
(i)
1

−λ(i)
1 0

0 λ
(i)
2

−λ(i)
2 0

. . .

0 λ
(i)

d/2

−λ(i)

d/2 0




(d even),




0

0 λ
(i)
1

−λ(i)
1 0

0 λ
(i)
2

−λ(i)
2 0

. . .

0 λ
(i)
d−1
2

−λ(i)
d−1
2

0




(d odd).
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To save space, we will use the following notation in the

remainder of the paper, where σ =

(
0 1

−1 0

)
:

RiAiR
>
i =

{
λ
(i)
1 σ ⊕ λ(i)2 σ ⊕ . . .⊕ λ(i)d/2σ (d even),

01×1 ⊕ λ(i)1 σ ⊕ λ(i)2 σ ⊕ . . .⊕ λ(i)d−1
2

σ (d odd).

Now consider the corresponding (d + 1) × (d + 1)-
matrices ARiAiR>i

, for which we will introduce the fol-
lowing notation. By Aj , denote the matrix for which
only the j-th block is non-zero, with λj = 1. That is,
for even d, we have the (d+ 1)× (d+ 1)-matrices

A1 = 01×1 ⊕ σ ⊕ 02×2 ⊕ . . .⊕ 02×2,

A2 = 01×1 ⊕ 02×2 ⊕ σ ⊕ 02×2 ⊕ . . .⊕ 02×2,
...

Ad/2 = 01×1 ⊕ 02×2 ⊕ . . .⊕ 02×2 ⊕ σ,

and for odd d, we have an extra initial zero, namely

A1 = 02×2 ⊕ σ ⊕ 02×2 ⊕ . . .⊕ 02×2,

A2 = 02×2 ⊕ 02×2 ⊕ σ ⊕ 02×2 ⊕ . . .⊕ 02×2,
...

A(d−1)/2 = 02×2 ⊕ 02×2 ⊕ . . .⊕ 02×2 ⊕ σ.

The local transformation T̃ := R̂1 ⊗ . . .⊗ R̂nA
⊗ 1⊗nB ⊗

1⊗nI satisfies

Mx := T̃M ′xT̃
−1 = T̃M ′xT̃

>

=

(∑

j

λ
(1)
j Aj

)
⊗ . . .⊗

(∑

j

λ
(nA)
j Aj

)
⊗B⊗nB ⊗ 1⊗nI ,(8)

where the λ(i)j are real numbers. Set X ′′ := T̃X ′T̃−1,
then since T̃ ∈ Gloc ⊂ G, we have X ′′ ∈ g \ gloc, and
〈X ′′,Mx〉 = tr(T̃X ′T̃−1T̃M ′xT̃

−1) = 〈X ′,M ′x〉 6= 0.
In summary, we have shown that if there exist any

nonlocal generators at all, then there is one (denotedX ′′)
that has non-zero overlap with a matrix Mx ∈ Sx of the
simple form (8).

Next we will show that this implies that g = gloc for
all Bloch ball dimensions d ≥ 4.

B. Proof of Theorem 1 for d ≥ 4

We now use Schur’s Lemma to construct orthogo-
nal projectors (with respect to the Hilbert-Schmidt inner
product) onto the subspaces of A⊕ B ⊕ I. First, define

ΦI [M ] :=

∫

SO(d)

R̂MR̂−1 dR (M ∈ A⊕ B ⊕ I),

then ΦI [M ] = 0 for all M ∈ A ⊕ B and ΦI [M ] = M for
all M ∈ I. Since these subspaces are orthogonal with
respect to the Hilbert-Schmidt inner product, ΦI is the
orthogonal projector onto the subspace I of A ⊕ B ⊕ I
(we are not interested in its action on matrices that are
not in the space A⊕ B ⊕ I).

For j = 1, . . . , d, consider the stabilizer subgroup

Gj := {R ∈ SO(d) | R~ej = ~ej},

where ~ej denotes the jth standard unit vector in Rd. Ev-
ery Gj is isomorphic to SO(d − 1) whose fundamental
representation is irreducible (note that this is not true
for d = 3; this causes the crucial difference to Ref. [50]).
Set

Φ~ej [M ] :=

∫

Gj
R̂MR̂−1 dR (M ∈ A⊕ B ⊕ I),

then Φ~e1 [M ] =

∫
SO(d−1)

(
12

S

)
M

(
12

S−1

)
dS,

and, similarly as above, Schur’s Lemma implies that Φ~e1
is the orthogonal projector onto span(B) ⊕ I. Hence
ΦB := Φ~e1−ΦI is the orthogonal projector onto span(B).

Finally, we will construct the orthogonal projector
onto Ablocks := span{A1, . . . , Az}, where z = d/2 if d
is even and z = (d− 1)/2 if d is odd. To this end, define

the SO(2)-matrix R(θ) :=

(
cos θ sin θ

− sin θ cos θ

)
, and set

R̂(θ1, θ2, . . . , θz) :=




1y
R(θ1)

. . .
R(θz)



,

where y = 1 if d is even and y = 2 if d is odd. Further-
more, define Φ′[M ] as
∫ 2π

0

dθ1
2π

∫ 2π

0

dθ2
2π

. . .

∫ 2π

0

dθz
2π

R̂(θ1, . . . , θz)MR̂(θ1, . . . , θz)
−1.

Using the identities

∫ 2π

0

R(θ)
dθ

2π
= 0,

∫ 2π

0

R(θ)

(
m11 m12

m21 m22

)
R(−θ) dθ

2π
=

1

2

(
m11 +m22 m12 −m21

−m12 +m21 m11 +m22

)
=: Ψ

[(
m11 m12

m21 m22

)]
,
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we can evaluate the action of Φ′ as follows. First, any
given (d + 1) × (d + 1)-matrix M can be written in the
block matrix form

M =



M0,0 . . . M0,z

...
. . .

...
Mz,0 . . . Mz,z




where M0,0 is a y × y-matrix, all Mi,j for i, j ≥ 1 are
2×2-matrices, and the other matrices are y×2 and 2×y-
matrices. Then, the action of Φ′ becomes

Φ′[M ] =




M0,0 0 . . . 0

0 Ψ[M1,1]
...

...
. . . 0

0 . . . 0 Ψ[Mz,z]



.

Hence Φ′ is an orthogonal projection that acts as the
identity on I (i.e. Φ′(1) = 1), and it projects A into its
subspace Ablocks. Furthermore, if d is even, then Φ′ an-
nihilates B, and if d is odd, then Φ′ projects B into its
subspace span(B). Thus, for d even, the orthogonal pro-
jector onto Ablocks is ΦA := Φ′ − ΦI , and for d odd, it
is ΦA := Φ′ − ΦI − ΦB . Note that all these statements
are only claimed to hold for the case that the maps are
applied to operators in A⊕ B ⊕ I.

The projectors ΦI , ΦB and ΦA map the Lie algebra g
into itself, if we apply different products of those projec-
tors to the n sites. For example, consider the special case
n = 1. Then Z ∈ g implies ΦI [Z] ∈ g since g is closed
with respect to conjugations by elements of G and inte-
grals. Similarly, Φ~e1 [Z] ∈ g, and since g is a linear space,
we also have ΦB [Z] = Φ~e1 [Z]−ΦI [Z] ∈ g, and similarly
for the projector ΦA. If n ≥ 2, then we can successively
apply the projectors to one of the sites, using the fact
that tensoring local rotations with identities gives local
transformations in Gloc. Thus, if we define

Φ := Φ⊗nA

A ⊗ Φ⊗nB

B ⊗ Φ⊗nI

I ,

then Y := Φ[X ′′] is another valid generator, Y ∈ g. Fur-
thermore, Φ[Mx] = Mx, hence

0 6= 〈X ′′,Mx〉 = 〈X ′′,Φ[Mx]〉 = 〈Φ[X ′′],Mx〉 = 〈Y,Mx〉
(9)

and thus Y 6= 0 (we have used that Φ is an orthogo-
nal projection and thus in particular self-adjoint with re-
spect to the Hilbert-Schmidt inner product). In particu-
lar, Y ∈ Im(Φ) = A⊗nA

blocks ⊗ span(B)⊗nB ⊗ I⊗nI . Conse-
quently, there are real numbers λj1,...,jnA

such that

Y =
z∑

j1,...,jnA
=1

λj1,...,jnA
Aj1 ⊗ . . .⊗AjnA

⊗B⊗nB ⊗1⊗nI .

Now we apply the identities AjAk = −δjkPj and B2 =
PB , where

PB = 12×2 ⊕ 0(d−1)×(d−1),

P1 = 0y×y ⊕ 12×2 ⊕ 02(z−1)×2(z−1),

P2 = 0y×y ⊕ 02×2 ⊕ 12×2 ⊕ 02(z−2)×2(z−2)

and so on, up to Pz . This gives us

Y 2 = (−1)nA
∑

j1,...,jnA

λ2
j1,...,jnA

Pj1⊗. . .⊗PjnA
⊗P⊗nB

B ⊗1⊗nI .

(10)
Suppose that nA is even so that (−1)nA = 1. We

will now show that constraint (3) gets violated. To this
end, fix some j01 , . . . , j0nA

such that λj01 ,...,j0nA
6= 0. For

i = 1, . . . , nA, choose some unit vector ~ai ∈ Rd such

that

(
1

~ai

)>
Pj0i

(
1

~ai

)
> 0; for all other ji, we automati-

cally get

(
1

~ai

)>
Pji

(
1

~ai

)
≥ 0. For i = nA + 1, . . . , nA +

nB , set ~ai := ~e1, then

(
1

~ai

)>
PB

(
1

~ai

)
= 2. Finally,

for i ≥ nA + nB + 1, choose ~ai arbitrarily such that(
1

~ai

)>
1

(
1

~ai

)
= 2. Altogether, we obtain

v(~a1, . . . ,~an)> Y 2 v(~a1, . . . ,~an) > 0

which violates constraint (3). Thus nA must be odd, and
(−1)nA = −1.

Recall constraint (1) in the special case k = 2:

v(~b1,−~a2,~b3, . . . ,~bn)> Y 2 v(~a1,~a2, . . . ,~an) ≥ 0 (11)

for all unit vectors ~ai,~bj ∈ Rd. For all i ∈ [nA + nB +

1, n] \ {2}, choose ~ai,~bi such that

(
1
~bi

)>
1

(
1

~ai

)
> 0

(simply avoid the choice ~ai = −~bi). Similarly, for all
i ∈ [nA + 1, nA + nB ] \ {2}, choose ~ai,~bi such that(

1
~bi

)>
PB

(
1

~ai

)
> 0. We will now distinguish two cases

for nA.
First, consider the case nA = 1. Since our original gen-

erator X was chosen nonlocal, it follows that nB ≥ 1, as
explained in Subsection III A. Thus, the second tensor
factor in (10) must be PB . We will now choose ~a2 = ~e2

which implies that

(
1

−~a2

)>
PB

(
1

~a2

)
= 1. But then we

may still choose~b1,~a1 arbitrarily, and by choosing these
two unit vectors suitably from the subspace Im(Pj1),

we may generate an arbitrary sign for

(
1
~b1

)>
Pj1

(
1

~a1

)
.

Thus, we can break constraint (11) by a suitable choice
of these two unit vectors, which yields a contradiction.

Second, suppose that nA ≥ 3 (we already know that
nA must be odd). Then we can choose ~a2 such that(

1

−~a2

)>
Pj2

(
1

~a2

)
= −1. We have even more freedom
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than in the previous case: for all i ∈ [1, nA] \ {2}, we can
choose~bi,~ai from the subspace Im(Pij ) such that we get

an arbitrary sign for every

(
1
~bi

)>
Pji

(
1

~ai

)
. This also

leads to a violation of constraint (11), and we obtain a
contradiction as well.

This means that our initial assumption must have
been wrong — namely, that there exists a generator in
g\gloc. We conclude that instead this set must be empty,
hence g = gloc. But since G is compact and connected, it
follows from [54, Theorem VII.2.2 (v)] that G cannot be
larger than Gloc. This proves our main result, Theorem 1,
for Bloch ball dimensions d ≥ 4. The proof for d = 2 is
given in Appendix A.

IV. CONCLUSIONS

Given a few simple properties that turn out to char-
acterize qubit quantum computation, we have consid-
ered a natural modification: allowing the single bits to
have more or less than the qubit’s d = 3 degrees of free-
dom. We have analyzed the set of possible reversible
transformations in the resulting theories, under the con-
jecture [23] (and in hopes) of discovering novel com-
putational models that differ in interesting ways from
quantum computation. Unfortunately, it turns out that
the resulting models do not allow for any non-trivial re-
versible gates whatsoever. This reinforces earlier intu-
ition [24] that quantum theory, or in this context quan-
tum computation, is an “island in theoryspace”.

While we have made an effort to be as careful and
parsimonious in our assumptions as possible, it is still
interesting to ask whether there are any remaining
“loopholes” that could in principle leave some wiggle
room for non-trivial beyond-quantum computation: can
any of the assumptions of Subsection II B be dropped
or weakened, while insisting that single bits are de-
scribed by Bloch balls? We discuss several options in
Appendix B; in short, the most promising (but diffi-
cult) approaches would be to drop tomographic locality,
and/or to drop reversibility or continuity of transfor-
mations. Both options present formidable mathematical
challenges and are therefore deferred to future work.

The “rigidity” of quantum theory, i.e. the difficulty of

modifying it in consistent ways, has been recognized in
different contexts for a long time, see e.g. Weinberg’s
proposal of a nonlinear modification of quantum me-
chanics [55], and Gisin’s subsequent discovery [56] that
this modification allows for superluminal signalling.
The research presented in this paper and in other work
(like [57, 58]) makes this intuition more rigorous by
specifying which combinations of principles already en-
force the familiar behavior of quantum theory. These
insights also illuminate our understanding of quantum
computation, since they tell us which physical princi-
ples enforce its properties, and/or which other theoreti-
cal models of computation are plausibly conceivable.

Finally, it is interesting to speculate that the result of
this paper is indirectly related to spacetime physics. Af-
ter all, it is the fact that a qubit is represented as a 3-
ball B3, with SO(3) as its transformation group, which
allows for spin-1/2 particles that couple to rotations in
three-dimensional space. Given the popularity of ap-
proaches in which spacetime emerges in some way from
an underlying quantum theory [59–61], this observation
can perhaps be regarded as more than a coincidence. In
fact, it has been argued more rigorously that the struc-
tures of quantum theory and spacetime mutually con-
strain each other [23, 53, 62–64]. This suggests a slogan
that also fits some other ideas from quantum informa-
tion [65]: the limits of computation are the limits of our
world.
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Appendix A: Proof of Theorem 1 for d = 2

Due to different group-theoretic properties, we now have less freedom to construct projectors by integrating over
conjugations with local transformations. A first difference to the case d ≥ 4 appears already in

ΦAI [M ] :=

∫

SO(2)

R̂MR̂−1 dR (M ∈ A⊕ B ⊕ I).

It turns out that this map leaves not only I but also A (which is now one-dimensional) invariant. Since it still
annihilates B, it is the orthogonal projector ontoA⊕I. We can still use ΦB := 1−ΦAI as the projector onto B, but we
cannot construct a projector onto span(B) in a similar way. Now set nAI := nA + nI , and reorder the gbits such that
A comes first, and then I , and then B (in contrast to the previous subsections). Next define the orthogonal projector

Φ := Φ⊗nAI

AI ⊗ Φ⊗nB

B ,

then Y := Φ[X ′′] is another valid generator, i.e. Y ∈ g, and Y ∈ (A ⊕ I)⊗nAI ⊗ B⊗nB . Since Φ[Mx] = Mx, the
calculation (9) proves that Y 6= 0. It also follows that Y ∈ g \ gloc since Y has non-zero overlap with Mx which in

turn is orthogonal onto gloc. Defining A(0) := 1 and A(1) :=




0 0 0

0 0 1

0 −1 0


 (which spans the one-dimensional space

A), B0 :=




0 1 0

1 0 0

0 0 0


 and B1 :=




0 0 1

0 0 0

1 0 0


, the generator Y can be written in the form

Y =

1∑

k1,...,kn=0

αk1,...,knA
(k1) ⊗A(k2) ⊗ . . .⊗A(knAI

) ⊗Bkm ⊗ . . .⊗Bkn , (A1)

where the αk1,...,kn are real numbers and m := nAI + 1.
Now we will apply the first-order constraint (2) for some special choice of unit vectors ~ai. First, fix j1, j2, . . . , jn ∈

{0, 1} arbitrarily. For i ≤ nAI set ~ai := ~e1, and for i ≥ m set

~ai :=

{
~e1 if ji = 0

~e2 if ji = 1.

We obtain the following two equations
(

1

~ai

)>
A(ki)

(
1

~ai

)
= 2δki,0 (i = 1, . . . , nAI),

(
1

~ai

)>
Bki

(
1

~ai

)
= 2δji,ki (i = m, . . . , n),
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and substituting them into constraint (2) yields

0 = v(~a1, . . . ,~an)>Y v(~a1, . . . ,~an) = 2nAI

1∑

km,...,kn=0

α0,...,0,km,...,kn

n∏

`=m

(
1

~a`

)>
Bk`

(
1

~a`

)
= 2nα0,...,0,jm,...,jn .

Thus α0,...,0,jm,...,jn = 0, i.e. every non-vanishing summand in (A1) contains at least one A(1)-term. Furthermore,
in the special case that nB = 0, all summands with a single A(1)-term are themselves elements of gloc, and by
subtracting those elements, we obtain another non-zero generator (which now also call Y ) for which every non-
vanishing summand has at least two A(1)-terms.

Next we slightly generalize constraint (1):

Lemma 2. The constraint

v(~b1,~b2, . . . ,~bk−1,−~ak,~bk+1, . . . ,~bn)>X2v(~a1,~a2, . . . ,~an) ≥ 0 (A2)

also holds if we replace one or more of the unit vectors~bj ,~aj , but not ±~ak, by the zero vector.

Proof. We start with constraint (1), where all vectors are assumed to be unit vectors. To replace, for example, ~bj (for
j 6= k) by ~0, consider (1) and its version with ~bj replaced by −~bj . Adding up the two inequalities (and dividing the
result by two) proves (A2) for~bj = 0. We can similarly replace any of the~aj (for j 6= k) by~0, and do so recursively.

Now we are ready to state and prove the main result of the appendix:

Lemma 3. If d = 2 then G = Gloc, i.e. the only reversible transformations are the local transformations.

Proof. Our strategy is to prove the following claim:
Claim: Let 0 ≤ ` ≤ nAI be an integer. Then Y does not contain any summand in (A1) which has exactly `

occurrences of A(0). In more formal words, if j1, . . . , jn has the property that #{i ∈ [1, nAI ] | ji = 0} = ` then
αj1,...,jn = 0.

This claim will then imply that Y = 0, which is a contradiction (we have shown further above that Y 6= 0).
We will prove this claim for two different cases separately; in both cases, our proof will be by induction. Note that

we have already shown the claim above for ` = nAI (since there must be at least one A(1)-term in every summand).
Case 1: nB = 0 (such that nAI = n).
Induction start: We know the claim is true for ` = n. Furthermore, since nB = 0, we have constructed Y such that

no summand contains exactly one A(1)-term, hence the claim is also true for ` = n− 1.
Induction hypothesis: Consider an arbitrary integer ` with 0 ≤ ` ≤ n − 2. Let us assume that for any integer `′

with 0 ≤ `′ ≤ n and `′ > ` we know that Y contains no summand with exactly `′ occurrences of A(0).
Induction step: Using the induction hypothesis, we will now show that the Claim also holds for ` itself.
We do so by contradiction. Suppose there was at least one non-vanishing summand in Y with exactly ` occurrences

of A(0). That is, there exist j01 , . . . , j0n such that αj01 ,...,j0n 6= 0 and exactly ` of the j0i are equal to zero. We will apply
constraint (A2) for some choice of vectors ~ai,~bi. To this end, for every i with j0i = 0 set ~ai := ~0. For those i, it follows

that A(ji)A(ki)

(
1

~ai

)
= δji,0δki,0




1

0

0


. Now Y 2 is of the form

Y 2 =

1∑

j1,...,jn=0

1∑

k1,...,kn=0

αj1,...,jnαk1,...,kn(A(j1)A(k1))⊗ . . .⊗ (A(jn)A(kn)).

Now consider w := Y 2v(~a1, . . . ,~an). If a summand of Y 2 has less than ` indices ki with ki = 0 then it does not
contribute to w; also, there are no summands with more than ` indices ki with ki = 0. Among those summands
with exactly ` indices ki with ki = 0, these indices must occur in exactly those places i where j0i = 0, otherwise
those summands do not contribute to w. But this enforces that only the summand with (k1, . . . , kn) = (j1, . . . , jn) =
(j01 , . . . , j

0
n) contributes to w, and we get

Y 2v(~a1, . . . ,~an) = α2
j01 ,...,j

0
n

n⊗

z=1

(
A(j0z )

)2
(

1

~az

)
.

133



There are at least two indices z with j0z = 1; let k be one of those indices, and define ~ak := ~e1. Then(
1

−~ak

)> (
A(j0k)

)2
(

1

~ak

)
= 1. Among the remaining places z with j0z = 1, we can choose ~az and ~bz such that

(
1
~bz

)> (
A(j0z )

)2
(

1

~az

)
takes any sign we like. This will allow is to violate constraint (A2), and we have a contradic-

tion.
Case 2: nB ≥ 1.
Induction start: We have already shown the claim for ` = nAI .
Induction hypothesis: Consider an arbitrary integer ` with 0 ≤ ` ≤ nAI − 1. Let us assume that for any integer `′

with 0 ≤ `′ ≤ nAI and `′ > ` we know that Y contains no summand with exactly `′ occurrences of A(0).
Induction step: We proceed similarly as in Case 1. Using the induction hypothesis, we will now show that the

Claim also holds for ` itself.
We do so by contradiction. Suppose there was at least one non-vanishing summand in Y with exactly ` occurrences

of A(0). That is, there exist j01 , . . . , j0n such that αj01 ,...,j0n 6= 0 and exactly ` of the j0i among i ∈ [1, nAI ] are equal to
zero. We will apply constraint (A2) for some choice of vectors ~ai,~bi. To this end, for every i with j0i = 0 set ~ai := ~0

and choose~bi arbitrarily. For those i, it follows that

(
1
~bi

)>
A(ji)A(ki)

(
1

~ai

)
= δji,0δki,0. (A3)

In Case 2, Y 2 is of the form

Y 2 =
1∑

j1,...,jn=0

1∑

k1,...,kn=0

αj1,...,jnαk1,...,kn(A(j1)A(k1))⊗ . . .⊗ (A(jnAI
)A(knAI

))⊗ (BjmBkm)⊗ . . .⊗ (BjnBkn).

Again, we have to choose which place corresponds to the k in constraint (A2). This time, we will choose k = m, and
set ~ak = ~e1 if j0k = 1 resp. ~ak = ~e2 if j0k = 0, which implies

(
1

−~ak

)>
BjkBkk

(
1

~ak

)
= δjk,j0k δkk,j0k .

For all other i ∈ [m,n] \ {k} we make the following choice. If j0i = 1 we set ~bi = −~e1 and ~ai = ~e1, and if j0i = 0 we
set~bi = −~e2 and ~ai = ~e2. This enforces

(
1
~bi

)>
BjiBki

(
1

~ai

)
= δji,j0i δki,j0i (i ∈ [m,n] \ {k}).

Regardless of how we choose the remaining ~ai, we obtain

v(~b1,~b2, . . . ,~bk−1,−~ak,~bk+1, . . . ,~bn)>Y 2v(~a1,~a2, . . . ,~an) =

=
1∑

j1,...,jn=0

1∑

k1,...,kn=0

αj1,...,.jnαk1,...,kn

nAI∏

z=0



(

1
~bz

)>
A(jz)A(kz)

(
1

~az

)
 ∏

z≥m,z 6=k



(

1
~bz

)>
BjzBkz

(
1

~az

)
×

×



(

1

−~ak

)>
BjkBkk

(
1

~ak

)


=
1∑

j1,...,jnA
=0

1∑

k1,...,knA
=0

αj1,...,jnA
,j0m,...,j

0
n
αk1,...,knA

,j0m,...,j
0
n

nAI∏

z=0



(

1
~bz

)>
A(jz)A(kz)

(
1

~az

)
 . (A4)

Consider the different possibilities for k1, . . . , kn for which αk1,...,knAI
,j0m,...,j

0
n
6= 0. There are less than or equal to `

many occurrences of ki (1 ≤ i ≤ nAI) with ki = 0. If there are less, then (A3) implies that the final product in (A4)
vanishes, hence the corresponding summand does not contribute to (A4). On the other hand, if there are exactly `
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many, then (A3) implies that this product vanishes unless the occurrences of ki = 0 agree with the occurrences of
j0i = 0. Similar argumentation works for the j1, . . . , jn, and if we also use (A2), we finally get

0 ≤ α2
j01 ,...,j

0
n︸ ︷︷ ︸

6=0

∏

1≤z≤nAI :j0z=1



(

1
~bz

)> (
A(1)

)2
(

1

~az

)
 .

The product runs over nAI − ` many indices, so there is at least one z such that 1 ≤ z ≤ nAI and j0z = 1. We have not
yet chosen the corresponding~bz and ~az ; it is easy to see that we can choose them so that the terms in the product in
the previous expression attain any sign we want. This produces a contradiction, like in Case 1.

Appendix B: Which assumptions could possibly be dropped or weakened?

One candidate assumption that one might consider to weaken is the assumption that the group of single-gbit
reversible transformations must be SO(d). It is natural to assume that this group must be able to map every pure
gbit state to any other (and thus be transitive on the (d − 1)-sphere). In fact, for odd d 6= 7, this demand already
singles out SO(d). However, if d is even or d = 7, then there are other transitive groups (such as SU(2) for d = 4),
and the analysis of the present paper is in principle applicable to this more general situation. The case of n = 2
gbits has been treated in this more general setting in [52]. There it was shown that these other groups do not work
either in the two-gbit case. It seems reasonable to conjecture from our results and the results in [52] that also for
more gbits groups other than SO(d) fail to yield any non-trivial solution. Furthermore, SO(d) is the natural choice
for generalizing the geometrical meaning of the Bloch ball for spin- 12 particles to higher spatial dimensions, namely
that the Bloch vector defines a direction in physical space.

Another route might be to drop tomographic locality, as in [23]. In fact, the d = 2 Bloch ball corresponds to the
quantum bit over the real numbers, and if we simply define the corresponding n-gbit state space to be the 2n-level
quantum states over the reals, then this defines a model with interesting computational power (namely, equal to
standard quantum computation), albeit one that does not satisfy tomographic locality. A similar construction can
be performed for the d = 5 case of quaternionic quantum theory [67] (but see the subtleties pointed out in [45, 46]).
The problem is, however, that these two cases are extremely special: building the composite state space uses the
postulate that the result is supposed to be a Euclidean Jordan algebra. This assumption is not consistent with any of
the other cases d 6∈ {2, 3, 5}.

Furthermore, tomographic locality is a very natural postulate: it formalizes the idea that the whole is just com-
posed of its parts and the relations between them. Other forms of state space composition would have to violate
this intuition. Furthermore, they would have to violate the fact that states of composite systems can be described by
tensors, a fundamental structural property of quantum theory with a myriad of physical consequences.

A possible way to drop tomographic locality despite these problems would be to instead assume (some version of)
purification [28, 68, 69]. While purification has been very successful as a postulate of quantum theory, in particular, by
illuminating how several characteristic properties of quantum theory can be understood directly via diagrammatic
reasoning [68], it is also very strong as a postulate. In fact, it is so strong that it is currently not clear whether there are
any theories other than standard complex quantum theory and some of its subtheories [70] that satisfy it. A potential
alternative can be found in the work by Galley and Masanes [57, 58] who have pioneered an approach to construct
composite state spaces directly in terms of group representations, without assuming tomographic locality.

We have made the implicit assumption that computations are carried out in the following way: first, the input
is encoded into the initial state; then the actual computation is performed fully reversibly; and finally, the output is
read out by a measurement. While this is arguably a natural standard scenario in the reversible context, one might ask
whether allowing measurements at any point during the computation could increase the computational capabilities
of a theory. This is not the case in standard quantum mechanics, where all measurements can be modelled as unitary
transformations on the system and an ancilla. But in principle, it might be true for other computational probabilistic
theories.

Finally, one could drop the assumption of reversibility and/or connectedness of the groups, and consider trans-
formations that are elements of some semigroup or finite group. However, dropping connectedness means giving
up continuous (time) evolution, a large step away from our current conception of physics. Similarly, dropping re-
versibility means a substantial departure from our current understanding of fundamental physics: it would mean to
give up conservation of information at the fundamental level.
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Remark:
As mentioned before, de la Torre et al. (2012) analyzed the three-dimensional case.
To prove that only quantum theory allows for interactions of three-dimensional balls
given by reversible time evolution, de la Torre et al. had to assume additionally that
Bloch balls can be exchanged, i.e. permuted.

136



Chapter 7
Quantum Darwinism and the

spreading of classical information in
non-classical theories

Authors: Roberto D. Baldijão∗, Marius Krumm∗, Andrew J. P. Garner, Markus P.
Müller

Submitted to Quantum for review (27th of Dec., 2020).
Preprint available as: arXiv:2012.06559

https://arxiv.org/abs/2012.06559

Contribution: Roberto D. Baldijão and I share first authorship of the paper. I made
essential contributions to all parts of the research. I provided the leading input for the
sufficient conditions for GPT Darwinism. I massively simplified Roberto D. Baldijão’s
argument for GPT Darwinism in Spekken’s toy model, leading to the fanout gate and

proof that it achieves GPT Darwinism in Spekken’s toy model as presented in the thesis.

Abstract: Quantum Darwinism posits that the emergence of a classical reality relies on
the spreading of classical information from a quantum system to many parts of its

environment. But what are the essential physical principles of quantum theory that make
this mechanism possible? We address this question by formulating the simplest instance of
Darwinism – CNOT-like fan-out interactions – in a class of probabilistic theories that
contain classical and quantum theory as special cases. We determine necessary and
sufficient conditions for any theory to admit such interactions. We find that every

non-classical theory that admits this spreading of classical information must have both
entangled states and entangled measurements. Furthermore, we show that Spekkens’ toy
theory admits this form of Darwinism, and so do all probabilistic theories that satisfy

principles like strong symmetry, or contain a certain type of decoherence processes. Our
result suggests the counterintuitive general principle that in the presence of local

non-classicality, a classical world can only emerge if this non-classicality can be “amplified”
to a form of entanglement.
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I. INTRODUCTION

Quantum Darwinism [1–12] addresses one of the
toughest questions raised by quantum theory: If the
universe is fundamentally described by quantum me-
chanics, how does an objective classical world arise? At
the heart of this question is a tension between the micro-
scopic quantum realm, in which systems happily exist in
states of super-imposed possibility, and the macroscopic
world of “classical” systems (such as the pointer needle
of a read-out gauge), which are only ever observed in
definite objective states. Several mechanisms and for-
malisms have been proposed which intend to provide a
bridge between the quantum and classical realms, in-
cluding the formal limit of ~→ 0 [13], saddle point ap-
proximations to the path integral [14], and the process
of environment-induced decoherence [1, 15].

Quantum Darwinism identifies key prerequisite for
such a bridge to arise: there must be a mechanism by
which some aspect of a quantum system can be spread
out to many parts of its environment. Particularly, since
the no–cloning theorem [16] forbids the copying of quan-
tum information, this means some classical information
from the system must be copied into its environment in
such a way that given long enough (and enough of the
environment), this information can be learned through
enough measurements on the environment.

Here we ask: What are the essential features of quan-
tum theory that enable this spreading of classical in-
formation in the first place? Certainly, this is possi-
ble in Quantum Theory’s rich mathematical structure
of complex Hilbert spaces, but can we identify a se-
lective subset of more physically–motivated principles
that similarly enable this Darwinistic emergence of clas-
sical reality? To approach this, we adopt the minimal–
assumptions framework of generalized probabilistic the-
ories (GPTs) [17, 18]. These encompass a wide class of
operational scenarios, in which a physical system is en-
tirely characterized by its experimental statistics result-
ing from preparation and subsequent measurement pro-
cedures. The GPT approach has thus far enjoyed partic-
ular success in identifying which operational features are
necessary or sufficient for quantum phenomena like tele-
portation [19], no-cloning [20], entanglement [18], phase
and interference [21, 22], or decoherence [23]. With this
article, we aim to extend this canon to include Quantum
Darwinism.

We begin by recalling the essential features of Quan-
tum Darwinism (section IIA), and providing a brief
overview of the GPT framework (section II B). We then
proceed to the results of the article: an operational for-
mulation of Quantum Darwinism (section IIIA), fol-
lowed by necessary (section III B) and sufficient (sec-
tion III C) conditions for such to exist. Particularly,
we show that both entangled states and entangled mea-
surements are necessary features in any non-classical
theory that exhibits Darwinism, suggesting the coun-
terintuitive general principle that in the presence of lo-
cal non-classicality, a classical world can only emerge

if this non-classicality can be “amplified” to a form of
entanglement. We then identify how other physically–
motivated features, such as the no-restriction hypothe-
sis [24, 25] and strong symmetry [26], or the existence
of decoherence [23], are sufficient to imply the pres-
ence of Darwinism. Finally (section IIID), we give a
concrete example of a non-classical theory other than
quantum theory that admits Darwinism: we show its
existence in Spekkens’ Toy Model [27] and its convex
extensions [21, 25].

II. BACKGROUND

A. Quantum Darwinism

The typical setting of Quantum Darwinism (QD) [1–
3] consists of a central system S interacting with a multi-
partite environment E1, . . . EN . This is similar to the
setting in which decoherence is studied (e.g. [15]), but
rather than focusing on the change in S’s state, QD is
concerned with the information that fragments of the
environment can learn about S.

Not everything about S can be spread to the envi-
ronment – for instance, sharing arbitrary quantum in-
formation would violate the no cloning principle [16].
Nonetheless, something can still be learned about S –
perhaps because the interaction induces certain quan-
tum states on system and environment such that mea-
surements made on S and {Ei} in the right choice of
basis yield correlated outcomes. This interaction must
also preserve some aspect of the initial state of S, so
that what the environment learns can be considered as
being about S.

In the ideal scenario, we would like to extract as
much classical information from any Ei about S as we
could from S directly. Holevo’s theorem [28] tells us
that the most information that can possibly be shared
with each environmental system is upper-bounded by
that directly obtainable from a single measurement on
S. This can be realized as follows, when S and all of
Ei (i = 1 . . . N) are d-dimensional quantum systems.
LetM := {|0〉 , . . . |d− 1〉} be some orthonormal basis.
Suppose S is initially in a pure state |ψ〉S =

∑
αk |k〉,

and each environmental system starts in a pure basis
state |ji〉i ∈ M. Consider the following fan-out gate (a
generalization of control-NOT / control-shift gates, see
fig. 1):

FAN

(
|k〉S ⊗

N⊗

i=1

|ji〉
)

:= |k〉S ⊗
N⊗

i=1

|ji ⊕ k〉 , (1)

such that

FAN

(
|ψ〉S ⊗

N⊗

i=1

|ji〉
)

=
∑

k

αkFAN

(
|k〉S ⊗

N⊗

i=1

|ji〉
)

=
∑

k

αk |k〉S ⊗
N⊗

i=1

|ji ⊕ k〉 , (2)
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where ji ⊕ k indicates addition modulo d.

ψ

0

0

0

S

E1
E2

E3

Figure 1. Ideal Quantum Darwinism: fan-out gate.
The fan-out gate (eq. (2)) is realized for the case N = 3, d =
2 by three consecutive CNOT gates. After this process, the
statistics of the computational-basis measurement Z on all
of the environmental subsystems (E1, E2 and E3) agrees with
those of the the main system (S). Meanwhile, the statistics
of this measurement on the system are the same as if it had
been directly made on |ψ〉. As such, the classical information
about Z in S has been spread to its environment.

It is clear that fan-out realizes the above ideals, per-
fectly broadcasting classical information aboutM on S
to every environment system, while preserving the out-
come probabilities of M on S. First, if |ψ〉S ∈ M (as
in eq. (1)), then it remains unchanged after the inter-
action; that is,M is the pointer basis selected by FAN.
Moreover, if |ψ〉S ∈ M, this element can be perfectly
identified by simply measuring any of Ei with M and
applying the appropriate relabelling (subtraction of ji
modulo d) – as a consequence of the so-called einselec-
tion process [1]. Furthermore, when |ψ〉S is a superpo-
sition of multiple states in M, the resulting entangled
state now has the property that whatever the outcome
ofM on S, the same outcome will be obtained by mak-
ing M on Ei (again, via subtraction of ji modulo d).
Finally, the statistics of measuringM on S before and
after the fan-out are identical. Thus, such a fan-out
implements an ideal Darwinism process.

In this idealized setting, any state inM represents a
valid initial state of an environment Ei for which FAN
can register information about S’s pointer basis. This
multiplicity of “good registers” makes the process more
robust to modifications in the initial state of the en-
vironment subsystems – generically reducing ‘misalign-
ment’, in the language of Zwolak et al. [11]. In addition,
this type of interaction aligns with physically-motivated
models of Darwinism [1, 8, 10, 12, 29–31].

QD can also encompass more complicated scenarios
[3, 8–12], where only partial information is spread (typi-
cally quantified through mutual–information quantities
– though the efficacy of this is of debate [6, 7]). For
instance, pointer states may not be perfectly robust to
interaction, the information may not be perfectly regis-
tered in the environment [8, 10, 12], or a more general
class of measurement than projection onto the pointer
basis may be used [4, 5]. However, for the purpose of
this article (and preempting the need to cast the sce-
nario in the operational language of GPTs), we restrict

our discussion here to the idealized case described above.

B. The GPT framework

Generalized probabilistic theories (GPTs) are a
minimal–assumptions framework in which a physical
theory is specified by the statistics of every experi-
ment that could be conducted within it. The funda-
mental elements of a GPT correspond to laboratory
operations, such as state preparations, and measure-
ment outcomes. In addition to the aforementioned
isolation of quantum features [18–23], this broad op-
erational approach makes the GPT framework well-
suited for attempts to reconstruct quantum theory ei-
ther from experimental data [32] or from sets of reason-
able physically–motivated axioms [17, 26, 33, 34]. The-
ories such as quantum theory (QT) and classical proba-
bility theory (CPT) are GPTs, but the framework also
admits more exotic theories such as “boxworld” [18] or
higher-dimensional Bloch ball state spaces [35].

In this section, we briefly review the aspects of the
GPT framework that are relevant for our discussion.
Readers who are familiar with the GPT framework may
wish to skip to the summary of assumptions at the end
of the section. For more detailed and pedagogical intro-
ductions to the GPT framework, see e.g. [17, 18, 36].

1. Single Systems

The primitive elements of a GPT are the states that
one can prepare, and the outcomes of measurements
(known as effects) that one can make on a given physical
system. Mathematically, states (not necessarily normal-
ized) are given by the elements of a closed subset A+

of some finite-dimensional real vector space A. With a
slight abuse of notation, the physical system will also
be denoted A. This subset A+ is assumed to be a
cone, meaning that ϕ, ω ∈ A+ and λ ≥ 0 imply that
λϕ ∈ A+ and ϕ+ω ∈ A+. Furthermore, A+ is assumed
to be generating, i.e. span(A+) = A, and pointed, i.e.
A+ ∩ (−A+) = {0}. (For the example of QT, this is the
cone of positive semidefinite matrices, see example 1 be-
low.)

Effects correspond to elements in a generating cone
EA ⊆ A∗, where A∗ is A’s dual space of linear func-
tionals. The probability of observing effect e ∈ EA
given a preparation ω ∈ A+ is given by e(ω). Since
this must be non-negative, we must have EA ⊆ A∗+,
where A∗+ := {e ∈ A∗ | e(ω) ≥ 0 for all ω ∈ A+} is the
dual cone of A+ [37]. We assume the existence of a dis-
tinguished unit effect uA ∈ EA such that for all a ∈ EA
there is some λ > 0 with a ≤ λuA (where a ≤ b if and
only if there exists some c ∈ EA such that a + c = b).
The measurements of a theory correspond to collections
of effects {ei}i=1...N that sum to uA – each constituent
effect corresponds to one mutually exclusive outcome.
Since

∑
i ei(ω) = uA(ω), we can interpret uA(ω) as the
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normalization of the state ω — that is, the total proba-
bility to obtain any outcome if the measurement is per-
formed on the corresponding physical system. We say
an effect is valid if it can be part of a measurement (i.e.
e ∈ EA and e ≤ uA).

If EA = A∗+, we say that the system is unrestricted,
or that it satisfies the no-restriction hypothesis [24, 25].
From uA and A+, one can infer its compact convex set
of normalized states ΩA := {ω ∈ A+ |uA(ω) = 1} ⊂ A+.
An example is sketched in fig. 2.

States A+ Effects EA

ΩA
uA

e0 e1

ω0 ω1

Figure 2. Geometric picture of a GPT. An example
state space A+ (LHS) and effect space EA (RHS) of a GPT
with A = R3 is drawn. On the RHS, the unit effect uA is
labeled, and all effects on or within the shaded octahedron
are valid in that e ≤ uA. Two pure effects {e0, e1} that
satisfy e0 +e1 = uA and hence form a refined measurement
are labelled. On the LHS, the convex set of normalized states
uA(ω) = 1 is shaded as ΩA. Within it, a maximal frame of
two pure states {ω0, ω1} is labelled.

The convexity of A+ and EA amounts to the assump-
tion that statistical fluctuations can always be intro-
duced into an experiment. Consider measurement out-
come e ∈ EA on one of two preparations ω1 or ω2, with
respective statistics e(ω1) and e(ω2). If ω1 is prepared
with probability p and ω2 otherwise, then this prepa-
ration procedure should be representable by the sin-
gle state ω whose statistics satisfy: e(ω) = pe(ω1) +
(1− p)e(ω2) = e(pω1 + (1− p)ω2). It then follows that
ω = pω1 + (1− p)ω2. A similar interpretation of convex
combinations applies to the effects.

An effect e ∈ EA is said to be pure [33, 38] if
e =

∑
fi, with fi ∈ EA, implies fi ∝ e for all i (see

also fig. 2). Pure effects cannot be obtained from (non-
trivial) coarse-graining of other effects. A collection of
pure effects that sum to uA with no effects proportional
to any other in the set is known as a refined measure-
ment. A pure state is defined to be a normalized state
that is extremal in ΩA, i.e. that cannot be written as
a non-trivial convex combination of other normalized
states. A frame is a collection of pure states {ωj} that
can be perfectly distinguished in a single measurement:
i.e. there is at least one measurement {ei} such that
ei(ωj) = δij . A maximal frame is a frame with the
largest number of distinguishable states for that system.

Dynamics in GPTs are described by linear maps

T : A→ A known as transformations. Transformations
T must map states to states, i.e. T (A+) ⊆ A+, and ef-
fects to effects, in the sense that if e ∈ EA is a valid
effect, then e◦T must also be a valid effect. (The latter
corresponds to an outcome where transformation T has
been applied before the measurement.) Motivated by
the intuition to consider only closed-system dynamics
in which all environments are explicitly modelled, we
will in the following restrict our attention to reversible
transformations. These are transformations T that are
invertible as a linear map and whose inverse T−1 is also
a transformation. Since transformations can be com-
posed, it follows that the reversible transformations of
any GPT system A form a group TA. Furthermore, they
map the set ΩA of normalized states onto itself.

In summary, a GPT system A is defined by a tuple
(A,A+, EA, uA, TA) of a real vector space, the state and
effect cones, the unit effect, and the group of reversible
transformations. Let us illustrate this framework with
two familiar examples:

Example 1 (Quantum theory (QT)). An n-level
quantum system corresponds to the GPT system
(A(n), A

(n)
+ , E

(n)
A , u

(n)
A , T (n)

A ) with

A(n) = Hn(C), A
(n)
+ = H+

n (C) ' E(n)
A , u

(n)
A = 1n,

T (n)
A = {ρ 7→ UρU† | U†U = 1n},

where Hn(C) is the real vector space of n×n complex
Hermitian matrices, and H+

n (C) the subset of positive
semidefinite matrices. Via the Hilbert-Schmidt inner
product, 〈X,Y 〉 := tr(XY ), we can identify A(n) with
its dual space such that the effects are also Hermitian
matrices. For example, u(n)

A (ρ) = tr(ρ) can be written
〈1n, ρ〉, hence we can identify u(n)

A = 1n.
The measurements {Ei}i=1,...,N thus correspond to

POVMs (positive operator-valued measures), i.e. Ei ≥ 0

and
∑
iEi = 1n. The normalized states Ω

(n)
A are the

(unit-trace) density matrices, and the maximal frames
correspond to the various n-element orthonormal bases
of the Hilbert space Cn. The reversible transformations
are the unitary conjugations. Pure effects correspond to
rank-1 POVM elements.

Example 2 (Classical probability theory (CPT)).
A classical random variable that can take n dif-
ferent values corresponds to the GPT system
(B(n), B

(n)
+ , E

(n)
B , u

(n)
B , T (n)

B ) with

B(n) = Rn, B
(n)
+ = {x ∈ Rn | all xi ≥ 0} ' E(n)

B ,

u
(n)
B = (1, 1, . . . , 1)T, T (n)

B ' Sn.

In this notation, we have identified Rn with its dual
space via the usual dot product x · y =

∑
i xiyi. The

unit effect is thus u(n)
B · p =

∑n
i=1 pi, and so Ω

(n)
B is

the simplex of n-dimensional probability vectors, i.e.
Ω

(n)
B = {p ∈ Rn | pi ≥ 0,

∑
i pi = 1}. The reversible

transformations are the permutations of the entries:
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pi 7→ pπ(i), with π some permutation of {1, 2, . . . , n}.
Thus, the group of reversible transformations is a rep-
resentation of the permutation group Sn.
A crucial signature of classicality is that CPT has

(up to relabelling) only a single refined measurement
{ei}. Its effects are ei(p) = pi, and it can be in-
terpreted as asking which of the n possible configura-
tions is actually the case. It distinguishes the (up to
relabelling) unique maximal frame {ωj}, where ωj :=
(0, . . . , 0, 1︸︷︷︸

j

, 0, . . . , 0)T.

Both QT and CPT are unrestricted and self-dual [39],
i.e. there is some inner product according to which A+ =
EA. Note that GPTs will in general satisfy neither of
these two properties.

2. Maximal classical information (MCI) frames

Our goal is to generalize ideal Quantum Darwinism
– in particular, the mechanism for perfect spreading of
classical information via fan-out gates – to GPTs. As a
first step, we have to identify the analogue of the pointer
states and the measurements that read out their en-
coded classical information. We will focus on Darwin-
ism generalizations that allow one to extract the max-
imal amount of classical information. In the quantum
case, such classical information is encoded onto an or-
thonormal basis {|j〉}. The natural analogue of this in
a GPT is a maximal frame {ωj}.

Let us consider the measurements that could extract
this classical information. As seen in example 1, QT
enjoys a strong form of duality that allows one to treat
the pure states ωj = |j〉 〈j| and the corresponding rank-
1 projective measurements ej(•) = Tr[|j〉 〈j| •] as the
“same” objects, and it is exactly this dual set of rank-1
projectors that form the measurement that extracts the
maximal amount of information out of the system.

In general, GPTs do not have such an automatic dual-
ity between states and effects. Moreover, measurements
that distinguish the elements of a maximal frame do not
even need to be refined. However, since we are interested
in the idealized case, where one spreads the maximal
classical information contained in some system, we will
here focus on maximal frames that can be distinguished
by a refined measurement:

Definition 1 (Maximal classical information in GPTs).
A maximal frame ω1, ..., ωn is called a maximal clas-
sical information frame (MCI-frame) if there is a
refined measurement {ei} ⊂ EA which discriminates the
states ωj, i.e. ej(ωk) = δjk.

Many GPTs contain MCI-frames: quantum theory
certainly does (in the form of orthonormal bases), and so
do quantum theory over the real numbers and over the
quaternions, and d-ball state spaces. As expected, clas-
sical theories in all dimensions also have MCI-frames.
Furthermore, so-called “dichotomic” systems as defined

in Ref. [40] contain MCI-frames, which includes unre-
stricted systems whose sets of normalized states are reg-
ular polygons with an even number of vertices, or a d-
cube or d-octoplex for d ≥ 3.

In appendix A, we give an example of a state space
that does not have an MCI-frame: the pentagon. This
example illustrates the counterintuitive properties of
such systems: the pentagon has at most two perfectly
distinguishable states, but one can in some sense encode
more than one bit of information into such a system [41].
That is, any classical bit that sits inside this state space
does not represent the maximal amount of information
that can be encoded into the system. For the remain-
der of this work, we will thus exclude such systems and
focus on state spaces that contain MCI-frames.

3. Composite systems

Darwinism is inherently linked to composition of sub-
systems; therefore, we need to understand how to treat
composition in GPTs. There are several approaches
to this [24, 42], including category-theoretic formula-
tions [43]. Here, we will motivate and state a list of
minimal assumptions on a state space AB, composed of
two state spaces A and B, that allows us to formulate a
generalization of Darwinism. For the case of more than
two subsystems, we assume that the joint state satisfies
all desiderata on all pairs of subsystems.

First, we demand that the combined state space AB
has a notion of independent parallel preparation. This
means that given some state ϕA on A and some state ωB
on B, there should be a state of AB (denoted ϕA�ωB)
that represents the state obtained by the independent
local preparation of the two states on A and on B. Since
statistical mixtures of local preparations must lead to
statistical mixtures of the corresponding global state,
the map � must be bilinear.

As pure states can be interpreted as states of max-
imal knowledge, we assume that independent parallel
preparations of pure states lead to global pure states,
i.e. we demand that if ϕA and ωB are pure then so is
ϕA � ωB [38]. Likewise, there should exist a notion
of parallel implementation of measurements on the sys-
tems. For this we require another bilinear function (also
denoted by �) that maps effects eA ∈ EA, fB ∈ EB to
effects eA � fB ∈ EAB . Furthermore, if one performs
a parallel implementation of two local measurements on
a composite state whose parts were prepared indepen-
dently in parallel, then the probabilities should factorize
in the sense that eAj �fBk (ϕA�ωB) = eAj (ϕA)fBk (ωB). In
other words, independent local procedures lead to sta-
tistical independence. The bilinearity of � ensures the
validity of the no-signalling principle: the choice of local
measurement on B does not affect the outcome proba-
bilities of local measurements in A (and vice-versa). In-
deed,

∑
j e
A
i � eBj = eAi � uB , for all effects eAi and any

measurement {eBj }.
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Similarly as for states, we assume that the composi-
tion of pure effects results in a pure effect.

Finally, we must ensure that the global structure is
consistent with the local structure. Consider a valid
composite effect eAB ∈ EAB and a normalized state
ωB ∈ ΩB . Then the effect ẽA defined by ẽA(ϕA) :=
eAB(ϕA�ωB) should be valid effect on A, i.e. ẽA ∈ EA
and ẽA ≤ uA : it can be implemented by preparing ωB
on B and then measuring eAB on AB.

Similarly, consider a global state ωAB ∈ ΩAB shared
between two parties A and B. Imagine that one of
the parties, say B, implements a local measurement
{fBk }k ⊂ EB and tells the other party the outcome k.
Then agent A holds a conditional state, which should
be a (subnormalized) element of the state space of A.
More specifically, for an effect eA ∈ EA, the proba-
bility for both fBk and eA to be obtained is given by
eA � fBk (ωAB). This implicitly defines a subnormalized
state ω̃A on A via eA(ω̃A) = eA�fBk (ωAB), which must
thus be an element of A+. In the special case of the
trivial measurement fBk = uB , the state ω̃A becomes
the reduced state on A. A similar condition should hold
if the roles of A and B are interchanged.

Together, we will call these assumptions the minimal
assumptions on composition.

Definition 2 (Minimal assumptions on composition).
A composition of GPT systems A and B is a GPT sys-
tem AB together with two bilinear maps A × B → AB
and A∗ × B∗ → (AB)∗, both denoted by �, satisfying
the following:

i. All product states are allowed and normalized: if
ωA ∈ ΩA and ωB ∈ ΩB then ωA � ωB ∈ ΩAB.

ii. All products of valid effects are valid effects: if
eA ∈ EA and eB ∈ EB then eA � eB ∈ EAB. In
particular, local measurements cannot lead to prob-
abilities larger than 1: uA � uB ≤ uAB.

iii. Local measurements on product states yield statisti-
cally independent outcomes: eA � fB(ωA � ωB) =
eA(ωA)fB(ωB).

iv. Products of pure states (effects) are pure states (ef-
fects).

v. Conditional effects: for all effects eAB ∈ EAB and
all normalized states ϕA ∈ ΩA and ωB ∈ ΩB, also
eAB(ϕA � •) ∈ EB and eAB(• � ωB) ∈ EA are
effects.

vi. Conditional states: for all states ωAB ∈ ΩAB and
all effects eA ∈ EA, fB ∈ EB, the vectors ω̃A, ω̃B
which are implicitly defined via

ẽA(ω̃A) = ẽA � fB(ωAB)

f̃B(ω̃B) = eA � f̃B(ωAB)

must be states, i.e. ω̃A ∈ A+, ω̃B ∈ B+.

While these assumptions imply the no-signalling prin-
ciple, we do not demand the popular principle of “tomo-
graphic locality” [17], i.e. that the ωA � ωB span all of
AB. Thus, the � operation cannot in general be identi-
fied mathematically with the tensor product operation.
The above minimal assumptions are also compatible, for
example, with QT over the real numbers [17].

As we know from QT, a striking feature of composite
systems in non-classical theories is entanglement. Hav-
ing a definition of composite systems at hand, we are in
place to define entangled states and effects in GPTs [19]:

Definition 3 (Entangled states). Consider a composite
system A = A1A2 . . . AN . States ωA ∈ ΩA which can be
written as

ωA =
∑

i

pi ω
A1
i � ωA2

i � . . .� ωAN
i (3)

with ωAi ∈ ΩAi
and {pi} a probability distribution, are

called separable. States which cannot be written in this
form are called entangled.

Definition 4 (Entangled effects). Effects eA ∈ EA
which can be written as

eA =
∑

i

eA1
i � eA2

i � . . .� eAN
i (4)

with eAj

i ∈ EAj
are called separable. Effects which can-

not be written in this form are called entangled.

A pure effect is separable if and only if it is a product
of pure effects (see, e.g. appendix B).

Summary of assumptions. We consider theories
that satisfy:

• For a single system (A,A+, EA, uA, TA): A is
finite-dimensional. We do not assume the no-
restriction hypothesis.

• For pairs of systems: composition satisfies all con-
ditions of definition 2. In particular, products of
pure states (or effects) are pure, but we do not
assume tomographic locality.

• For three or more systems: composition satis-
fies all conditions of definition 2 on all subsys-
tem pairs. For example, a quadripartite system
ABCD is a valid composition of AB and of CD,
with subsystem ABC being a valid composition of
B and AC, and so forth.

Unless otherwise stated, all introduced states are nor-
malized, and all introduced effects are valid (e ≤ uA).
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III. RESULTS

A. A definition of Darwinism in GPTs

With all these ingredients we can now ask: is the
ideal mechanism for Darwinism present in GPTs other
than quantum theory? To answer this, we must first
formulate the features of the ideal Darwinism process in
an operational way – that is, in terms of experimental
statistics.

To this end, recall the scenario of ideal Quantum
Darwinism (section IIA). The desire is to broadcast
some classical information encoded within S to the en-
vironment, say, relating to pointer measurementM :=
{|k〉 〈k|}k=0...d−1. Let each environment system begin in
an eigenstate ofM (for system i, labeled |ji〉), then after
the fan-out operation T (eq. (2)), the outcome proba-
bilities when measuringM on any environment Ei will
satisfy

PS(M = k) = |αk|2 = PEi(M = ji + k) for all k.
(5)

Moreover, if one makes the joint measurement
M⊗(N+1) = {|k0〉 〈k0| ⊗ · · · ⊗ |kN 〉 〈kN |} on the en-
tire composite system, the probability of outcome
(k0, ..., kN ) is

p(k0, . . . kN ) = |αk|2δk0,k1−j1 . . . δk0,kN−jN . (6)

This is the sense in which objectivity can emerge un-
der Quantum Darwinism: when this mechanism suc-
ceeds, all independent observers can learn about the
same (maximal) classical information and agree about
their findings. Moreover, PS(M=k) is the same before
and after the fan-out is performed.

To generalize Darwinism to the GPT framework, we
must capture the same operational behaviour on the
level of probabilities. First, we need an analogue of
pointer states – a set of distinguishable states corre-
sponding to the classical information to be broadcast.
As mentioned in section II B 2, this role is played by
an MCI-frame {ω(0)

j }j=0,...d−1 of S and its correspond-
ing refined measurement {e(0)

k } with the distinguishing
property e(0)

k (ω
(0)
j ) = δjk. Again, we assume the main

system is in some pure state ν, that may not be an
element of {ω(0)

j }j=0,...d−1. Lacking the mathematical
structure of a Hilbert space, we cannot so easily express
ν as a superposition of frame elements. Nonetheless, we
may readily recover the outcome probabilities when ν is
measured byM := {e(0)

k }:

PS(M = k) = e
(0)
k (ν). (7)

In the special case when ν is a member of the MCI-
frame, ν = ω

(0)
j0

, we have PS(M = k) = δj0k.
To carry the d outcomes of the MCI-frame measure-

ment spread from system S, we assume that each en-
vironment system (labeled by i ∈ {1 . . . N}) contains

an MCI-frame {ω(i)
j }j=0,...d−1, distinguished by some

refined measurement {e(i)
k }. Like qubits in quantum

theory, the Ei are not necessarily standalone systems
like single particles, but they can correspond to effec-
tive subsystems of larger environmental systems, picked
out by the specific form of the interaction with S. Let
us briefly consider the simplest case with just a single
environment, initially in the first state ω0 of the frame
{ω(1)

j }. Then, to exhibit the same operational behaviour
as eq. (6) (via eq. (7)), the joint probability of any pair
of outcomes j0 and j1 on S and E1 should satisfy

(e
(0)
j0
� e(1)

j1
) [T (ν � ω0)] = e

(0)
j0

(ν)δj0,j1 . (8)

In this way, the distribution {ej0(ν)}j0 is broadcast to
the environment, as in eq. (5). Crucially, eq. (8) implies
that the system and environment will agree on the out-
come of M on S. Moreover, the probabilities of such
an outcome when directly measuring S are not affected
by the transformation T , making T a member of the
phase group [21] of this pointer measurement. This can
be seen by summing eq. (8) over j1.

The same operational desiderata easily extend to the
more general case ofN environmental systems, each now
starting in an arbitrary frame state ω(i)

ki
. We summarize

this with the following definitions:

Definition 5. A composition of GPT system S and en-
vironments E1, . . . , EN is said to admit an ideal Dar-
winism process if

(a) S has a d–state MCI-frame {ω(0)
k }, discriminated by

a refined measurement {e(0)
j }, and

(b) each Ei has a d-state MCI-frame {ω(i)
j } discrimi-

nated by a refined measurement {e(i)
j }, such that

(c) there exists a reversible (“fan-out”) transformation
T ∈ TSE1...EN that satisfies

(e
(0)
j0
� e(1)

j1
� ...� e(N)

jN
)[T (ν � ω(1)

k1
� ...� ω(N)

kN
)]

= δj1,j0+k1 ...δjN ,j0+kN e
(0)
j0

(ν) (9)

for all k1, . . . kN , j0, j1, . . . jN and all ν ∈ ΩS , where
addition is modulo d.

Definition 6. If for a collection of MCI-frames {ω(i)
j }

that satisfy items (a) and (b) of definition 5, a reversible
transformation T ∈ TSE1...EN satisfies

T (ω
(0)
j0
� ω(1)

j1
� . . .� ω(N)

jN
)

= ω
(0)
j0
� ω(1)

j0+j1
� . . .� ω(N)

j0+jN
, (10)

then we say that T robustly spreads classical infor-
mation.

Definition 6 demands that the system and environ-
ment behave in some sense like classical information

143



registers: if, for example, j1 = . . . = jN = 0, the trans-
formation T copies the classical information in S to the
environments, directly on the level of states. In quan-
tum theory, such robust spreading of classical informa-
tion is sufficient for Darwinism: the pointer basis of S
spans the system’s Hilbert space, and so eq. (10) implies
eq. (9) due to the state vector linearity of unitary maps.
More generally, Definitions 5 and 6 are equivalent in
quantum theory, in the sense that ideal Quantum Dar-
winism processes are exactly those that robustly spread
classical information.

However, this equivalence does not hold for arbitrary
GPTs, since eq. (10) will not in general imply eq. (9).
Even if definition 5 holds, definition 6 can put additional
constraints on both the system and the environment.
With respect to the system, one needs to consider the
possibility of a T that preserves the statistics of {e(0)

j }
on S, but still changes the state of S, even if S is pre-
pared in one of the frame states ω(0)

j . This is impossible
in quantum theory, since every rank-1 quantum projec-
tor E(0)

j has a unique normalized and pure state ω(0)
j

that satisfies tr
(
E

(0)
j ω

(0)
j

)
= 1. However, many GPT

systems (such as gbits [18]) violate the analogous opera-
tional condition on MCI-frames, which can in some cases
be traced back to the fact that GPTs need not obey the
usual quantum uncertainty principles [22]. With respect
to the environment, definition 6 precludes the possibility
that T creates exotic correlations between the Ei while
preserving the statistics of the product measurements
e

(1)
j1
� . . .� e(N)

jN
.

Thus, definition 5 captures the essential features for
ideal Darwinism on the operational level, while defini-
tion 6 further requests classical features from the frame
states themselves.

B. Necessary features for Darwinism in GPTs

In QT, the fan-out gate (eq. (2)) can create entangle-
ment whenever the system is not initialized to a pointer
state. The first main results of this paper are to show
that entanglement–creation is a necessary property of
any generalized ideal Darwinism process. We begin by
showing that preventing a Darwinism process from cre-
ating entangled states puts a very strong constraint on
the theory.

Theorem 1. Suppose that we have an ideal Darwinism
process for which the fan-out transformation T maps
separable states to separable states. Then, for every pure
state ν ∈ ΩS , we have e(0)

i (ν) = 0 or e(0)
i (ν) = 1 for all

i. That is, the system S cannot have pure states that
do not lead to deterministic outcomes on measurement
{e(0)
i }i.

Remark. This conclusion is valid also for non-ideal Dar-
winism processes that, instead of definition 5, satisfy the

weaker condition
(
ei � e(1)

j1
� . . .� e(N)

jN

)
T
(
ν � ω(1) � . . .� ω(N)

)

= ei(ν)δi,j1δi,j2 . . . δi,jN (11)

for all states ν ∈ ΩS , where ω(1), . . . , ω(N) is an arbitrary
fixed set of pure states and the {ei}i and {e(j)

ji
}i are ar-

bitrary fixed measurements (as opposed to MCI–frames
and refined measurements).

Proof. Since T is a reversible transformation, it maps
pure states to pure states. Hence, if it also preserves
separability, then there are pure states ϕ(0), . . . , ϕ(N)

(which may all depend on ν) such that

T
(
ν � ω(1) � . . .� ω(N)

)
= ϕ(0) � ϕ(1) � . . .� ϕ(N).

(12)

Since T satisfies eq. (11), we obtain

ei(ν)δi,j1 . . . δi,jN = ei(ϕ
(0))e

(1)
j1

(ϕ(1)) . . . e
(N)
jN

(ϕ(N)).

(13)
Summing over all j1, . . . , jN yields ei(ν) = ei(ϕ

(0)) for
all i.

Now suppose that i∗ is an outcome label such that
ei∗(ϕ(0)) = 0, then ei∗(ν) = 0. On the other hand,
consider the case that ei∗(ϕ(0)) 6= 0. If at least one of
the jk is different from i∗, then setting i = i∗ in eq. (13)
yields

0 = ei∗(ϕ(0))︸ ︷︷ ︸
6=0

e
(1)
j1

(ϕ(1)) . . . e
(N)
jN

(ϕ(N)),

hence e
(1)
j1

(ϕ(1)) . . . e
(N)
jN

(ϕ(N)) = 0. But since
∑
j1,...,jN

e
(1)
j1

(ϕ(1)) . . . e
(N)
jN

(ϕ(N)) = 1, we must have

e
(1)
i∗ (ϕ(1)) . . . e

(N)
i∗ (ϕ(N)) = 1, and so e(j)

i∗ (ϕ(j)) = 1 for
all j. Recalling eq. (13) we therefore see that ei(ν) = 0
for all i 6= i∗, and so ei∗(ν) = 1.

In summary, we obtain ei∗(ν) ∈ {0, 1} for all i∗.

Thus, for all GPT systems S that contain pure
states on which the MCI-frame measurement gives non-
deterministic outcomes, the corresponding ideal Dar-
winism processes (if they exist) must create entangled
states. While this property will be satisfied for typical
GPT systems, we cannot immediately conclude that a
system satisfying e(ν) = 0 or 1 must be classical. For
instance, a GPT system with a cubic state space (i.e.
gbits in a theory called “boxworld” [18]) and the full
dual octahedral effect space will satisfy e(ν) = 0 or 1
for every pair of pure state ν and pure effect e – but is
evidentally nonclassical. However, as we shall see in fol-
lowing theorem, Darwinism in boxworld (among a wider
class of theories) can be ruled out by another necessary
condition: this time, on the measurements.

In particular, let us focus on GPT systems S that
are non-classical in the following sense: in addition to
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the refined measurement e(0)
0 , ..., e

(0)
d−1 that reads out the

MCI-frame {ω(0)
k }, there is at least one other refined

measurement ẽ(0)
0 , ..., ẽ

(0)
d−1 that is not just a relabelling

of the measurement {e(0)
j }, i.e. at least one of the ẽ(0)

j

is not equal to any of the e(0)
k . (In quantum theory,

this would correspond to projective measurements in
different bases, with all projectors rank-one.)

Theorem 2. Suppose that we have an ideal Darwinism
process such that the system S is non-classical in the
sense described above. Then the fan-out transformation
T must map some pure product effects to entangled ef-
fects.

Proof. It will be useful to use the notation ‖e‖ :=
maxω∈Ω e(ω) for effects e. Suppose that T maps all pure
product effects to separable effects. Then, since T is re-
versible and preserves purity, Lemma 9 (appendix B)
implies that T maps pure product effects to pure prod-
uct effects. Hence, due to eq. (9), for every j0 and for
every j = (j1, . . . , jN ) there are effects h(0)

j0,j
, . . . , h

(N)
j0,j

such that
(
e

(0)
j0
� e(1)

j1
� . . .� e(N)

jN

)
T = h

(0)
j0,j
� h(1)

j0,j
� . . .� h(N)

j0,j
.

(14)

Due to multilinearity, we can move any multiplicative
constant into the zeroth factor, and in this way choose
the effects such that ‖h(i)

j0,j
‖ = 1 for all i ∈ {1, . . . , N}.

If we had ‖h(0)
j0,j
‖ < 1, then the right-hand side could

never attain the value 1 on product states, but we know
that it does due to definition 5. Thus, ‖h(0)

j0,j
‖ = 1.

Substituting eq. (14) into eq. (9) and noting that the
result is valid for every state ν ∈ ΩS , we obtain

h
(0)
j0,j

pj0,j,k = δj1,j0+k1 . . . δjN ,j0+kN e
(0)
j0
,

where pj0,j,k := h
(1)
j0,j

(ω
(1)
k1

) · . . . · h(N)
j0,j

(ω
(N)
kN

) ≥ 0. The
special case of k = j− j0 := (j1− j0, . . . , jN − j0) yields
e

(0)
j0

= pj0,j,j−j0h
(0)
j0,j

But since ‖e(0)
j0
‖ = 1 = ‖h(0)

j0,j
‖, this

implies that h(0)
j0,j

= e
(0)
j0

for all j.
Since S is non-classical, there is another refined mea-

surement {ẽ(0)
j }j which is not just a relabelling (i.e. per-

mutation) of {e(0)
i }i. Using again our assumption that

T maps products of pure effects to product effects, we
obtain
(
ẽ

(0)
j0
� e(1)

j1
� . . .� e(N)

jN

)
T = h̃

(0)
j0,j
� h̃(1)

j0,j
� . . .� h̃(N)

j0,j

(15)

for some suitable effects h̃
(0)
j0,j

, . . . , h̃
(N)
j0,j

. Again, we

define the effects such that ‖h̃(i)
j0,j
‖ = 1 for all i ∈

{1, . . . , N} (the case i = 0 will be discussed later). Sum-
ming over j0, using that

∑
j0
ẽ

(0)
j0

= uS =
∑
j0
e

(0)
j0

,

yields
∑

j0

e
(0)
j0
� h(1)

j0,j
� . . .� h(N)

j0,j
=
∑

j0

h̃
(0)
j0,j
� h̃(1)

j0,j
� . . .� h̃(N)

j0,j
.

(16)

Applying both sides to the product state ν�ω(1)
k1
� . . .�

ω
(N)
kN

and recalling eq. (9), we obtain
∑

j0

h̃
(0)
j0,j

(ν)h̃
(1)
j0,j

(ω
(1)
k1

) . . . h̃
(N)
j0,j

(ω
(N)
kN

)

=
∑

j0

e
(0)
j0

(ν)δj1,j0+k1 . . . δjN ,j0+kN . (17)

So far, j and k are arbitrary, but now set ji := ki+ l for
all i, where l is fixed (we abbreviate this by j = k + l).
We obtain

e
(0)
l (ν) =

∑

j0

qj0,k,lh̃
(0)
j0,k+l(ν), (18)

where qj0,k,l := h̃
(1)
j0,k+l(ω

(1)
k1

) . . . h̃
(N)
j0,k+l(ω

(N)
kN

) ∈ [0, 1].
Since this is true for all states ν ∈ ΩS , we may again
drop the ν and read it as an equality between effects.
Since e(0)

l 6= 0, for every l and for every k there must
be some j0 such that qj0,k,l 6= 0. Since e(0)

l is pure,
this implies that e(0)

l ∝ h̃
(0)
j0,k+l. Now fix an arbitrary j,

and consider the special case k := j− l. It follows that
for all l, there exists at least one j0 such that e(0)

l is
a scalar multiple of h̃(0)

j0,j
. There are d different linearly

independent e(0)
l (labelled by l), and there are d different

h̃
(0)
j0,j

, labelled by j0. Thus, to every l there is a unique

j0 such that e(0)
l = qj0,j−l,lh̃

(0)
j0,j

. We have

1 = ‖e(0)
l ‖ = qj0,j−l,l︸ ︷︷ ︸

≤1

‖h̃(0)
j0,j
‖

︸ ︷︷ ︸
≤1

, (19)

hence ‖h̃(0)
j0,j
‖ = 1, and so e(0)

l = h̃
(0)
j0,j

. We can rephrase
this as follows. For every j there is a permutation π of
the indices such that h̃(0)

j0,j
= e

(0)
π(j0) for all j0.

Now fix some j. Let us return to eq. (16) and apply it
to ω(0)

π(j0)�ω, where π is the permutation corresponding
to j, and ω is an arbitrary global state of the N envi-
ronments. Using the identities that we have just derived
and e(0)

j0
(ω

(0)
i ) = δj0,i, we obtain

h̃
(1)
j0,j
� . . .� h̃(N)

j0,j
= h

(1)
π(j0),j � . . .� h

(N)
π(j0),j. (20)

Recalling eqs. (14) and (15), it follows that
(
ẽ

(0)
j0
� e(1)

j1
� . . .� e(N)

jN

)
T = h̃

(0)
j0,j
� h̃(1)

j0,j
� . . .� h̃(N)

j0,j

= e
(0)
π(j0) � h

(1)
π(j0),j � . . .� h

(N)
π(j0),j

=
(
e

(0)
π(j0) � e

(1)
j1
� . . .� e(N)

jN

)
T. (21)
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Since T is reversible, the terms in the brackets must be
identical. Consider the case j1 = j2 = . . . = jN = 0 and
environment states ϕ(1), . . . , ϕ(N) with e

(k)
0 (ϕ(k)) = 1

for all k = 1, . . . , N . Then applying the above brack-
ets to the product state ν � ϕ(1) � . . . � ϕ(N) yields
ẽ

(0)
j0

(ν) = e
(0)
π(j0)(ν). Since this is true for all ν ∈ ΩS , we

obtain ẽ
(0)
j0

= e
(0)
π(j0). This contradicts our assumption

that {ẽ(0)
j }j is not just a permutation of the {e(0)

i }i.

Thus, a reversible transformation T that implements
an ideal Darwinism process will create entangled effects.
An important consequence is that GPTs without entan-
gled effects, such as those constructed by taking the
maximal tensor product in the context of tomographic
locality, cannot admit such a process. In particular, this
rules out Darwinism in boxworld [18] (a theory contain-
ing the aforementioned gbits) or any dichotomic maxi-
mally nonlocal theory. For these specific examples, one
could also infer this from Refs. [40, 44], but here we
have shown it without having to determine the com-
plete structure of the reversible transformations.

Interestingly, entanglement for states is also needed
in general physical theories if one imposes another con-
dition of relevance for the classical limit: the existence
of a decoherence map [23]. However, theories that have
an ideal Darwinism process – and by our results need
entangled states and measurements – may not contain
such a decoherence map, as we shall show in section
IIID. Therefore, our results provide not only alterna-
tive proofs but are complementary to that of Richens
et al. [23]: together they support the idea that this
non-classical feature must be present for a locally non-
classical theory to admit a meaningful classical limit.

C. Sufficient features for Darwinism in GPTs

Let us now determine sufficient conditions that guar-
antee that Quantum Darwinism can be generalized into
a theory. In particular, we are interested in which op-
erationally well-motivated postulates that have already
appeared in the GPT literature can lead to such Dar-
winism. In this spirit, we will see how a framework that
admits decoherence also admits Darwinism.

We will first determine sufficient structure in GPTs
to allow for the robust spreading of classical informa-
tion (in the manner of definition 6), before determining
which additional postulates can be added to guaran-
tee the existence of an ideal Darwinism process (defi-
nition 5) that additionally broadcasts classical informa-
tion to the environment even when the system is not in
a MCI–frame state.

Recall that both, the spreading of classical informa-
tion and the ideal Darwinism processes, require the
system to have an MCI-frame (playing the role of
pointer states) that defines the classical information to
be spread to the environment (definition 5(a)). Likewise
the environments must admit MCI-frames on which to

receive this classical information (definition 5(b)). Even
though a theory admitting such frames may arguably be
said to contain classical information (i.e. admitting “reg-
isters” that can encode the appropriate values), it may
not generally admit all (or even any!) classical informa-
tion processing – that is, there is no guarantee that the
theory admits sufficient dynamics to satisfy definition 6.
In the following, we will consider what physical charac-
teristics do ensure that the theory has enough classical
information processing power to implement a fan-out
gate in the manner of eq. (10).

The first possible characteristic is to demand that
composite systems satisfy strong symmetry [45]:

Definition 7. A GPT system with group of reversible
transformations T satisfies strong symmetry (on
states) if for all n ∈ N and for all pairs of frames
ω1, ..., ωn and ν1, ..., νn, there exists some T ∈ T with
Tωj = νj for all j.

Strong symmetry says that all ways of encoding clas-
sical information are computationally equivalent. In
particular, it implies that classical reversible computa-
tion can be performed on the MCI-frames of system
and environment: since the set of states ωj0,...,jN :=

ω
(0)
j0
� ... � ω(N)

jN
constitutes a frame of the composite

system, strong symmetry implies that we can perform
arbitrary classical reversible gates (and thus arbitrary
permutations) of those frame elements. This immedi-
ately gives us the following result:

Lemma 3. Consider GPT systems S, E1, . . . , EN that
carry d-outcome MCI-frames. Every composition
SE1 . . . EN that satisfies strong symmetry (on states) ad-
mits the robust spreading of classical information.

While strong symmetry on states implies the robust
spreading of classical information in the sense of defini-
tion 6, we do not know whether this property implies
the existence of an ideal Darwinism process in the sense
of definition 5. Interestingly, the existence of such a
process follows if we consider a dual notion of strong
symmetry on the measurements:

Definition 8. A GPT system with group of reversible
transformations T satisfies strong symmetry (on ef-
fects) if the following holds for all n ∈ N: If (e1, . . . , en)
is a collection of pure effects that perfectly distinguishes
some frame, and so is (f1, . . . , fn), then there exists a
T ∈ T with ej = fj ◦ T for all j.

If this property holds, we can show the following:

Lemma 4. Consider again GPT systems S, E1, . . . , EN
that carry d-outcome MCI-frames. Every composition
SE1 . . . EN that satisfies strong symmetry (on effects)
admits an ideal Darwinism process.

Proof. The ej0,...,jN are pure effects which perfectly dis-
tinguish the frame ωj0,...,jN . Thus, strong symmetry on
effects implies that there is some T ∈ TSE1...EN with

ej0,j1,...,jN ◦ T = ej0,j1−j0,...,jN−j0 , (22)
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where subtraction is modulo d. One can check directly
that this map T satisfies eq. (9).

Thus, the version of Darwinism that is guaranteed to
hold (according to definition 5 or 6) depends on whether
we demand strong symmetry on the states or on the ef-
fects. Is there a way to guarantee it on both? Indeed, it
turns out that the no-restriction hypothesis is sufficient
for this:

Theorem 5. Consider GPT systems S, E1, . . . , EN that
carry d-outcome MCI-frames. Every unrestricted com-
position SE1 . . . EN that satisfies strong symmetry (on
states) has a transformation T ∈ TSE1...EN that robustly
spreads classical information and that generates an ideal
Darwinism process.

Proof. For unrestricted systems A with strong symme-
try on states, it was shown in Ref. [39] that there is a
particularly strong duality between states and effects:
there is an inner product 〈·, ·〉 on A such that frames
ω1, . . . , ωn correspond to orthonormal systems, and the
corresponding pure effects with ei(ωj) = δij must be
given by ei(ω) = 〈ωi, ω〉. Moreover, all T ∈ TA are or-
thogonal with respect to this inner product. If f1, . . . , fn
is any other collection of pure effects that distinguish a
frame (say, ν1, . . . , νn), then strong symmetry on states
says that there is some T ∈ TA with Tωj = νj , and so

ej ◦ T−1(ω) = 〈ωj , T−1ω〉 = 〈Tωj , ω〉 = 〈νj , ω〉 = fj(ω).

Consequently, A also satisfies strong symmetry on ef-
fects. Now, choose T as in eq. (22), then we already
know that it generates an ideal Darwinism process.
Moreover, we have just seen that T−1 maps the cor-
responding frame elements onto each other, i.e.

T−1ωj0,j1,...,jN = ωj0,j1−j0,...,jN−j0 .

Applying T to both sides shows that T robustly spreads
classical information in the sense of definition 6.

A second path to this spreading of classical informa-
tion arises from decoherence theory. In quantum theory,
decoherence plays an important role in Quantum Dar-
winism by explaining in some sense why we see classical
probabilities instead of superposition states. Recently,
a decoherence formalism for GPTs was developed [23],
and we shall here see that it enables Darwinism in GPTs
as well. We adapt the decoherence formalism of Richens
et al. [23] to our setting:

Definition 9 (Decoherence maps). Consider any GPT
system A. A linear map D : A → A is called a deco-
herence map if the following properties hold:

1. The image of A+ under D is isomorphic
to a classical state space, i.e. there exists a
frame ω0, ..., ωd−1 ∈ ΩA such that D(ΩA) =
conv{ω0, ..., ωd−1} (i.e. the convex hull of the
{ωi}). Consequently, D is normalization-
preserving, i.e. uA ◦D = uA.

2. D is idempotent, i.e. D ◦D = D.

3. For every classical reversible transformation TC :
D(A)→ D(A) there is a reversible transformation
T ∈ TA that implements TC , i.e. T (ω) = TC(ω)
for all ω ∈ D(A+). Not only does this map T pre-
serve the classical state space D(A+), but it also
preserves the corresponding classical effect space
EA ◦D.

Furthermore, if we have a composite GPT system A =
A1A2 . . . AN with decoherence maps D1, . . . , DN ,

4. A has a decoherence map D1...N that acts as

D1...N (ν1 � . . .� νN ) = D1(ν1)� . . .�DN (νN ).

Richens et al. [23] additionally assume that D is phys-
ically implementable, but we do not assume this here.

In the following, we will need a simple property of
decoherence maps:

Lemma 6. Consider a GPT system A with decoher-
ence map D, and T any reversible transformation that
implements some classical transformation in the sense
of definition 9 item 3. Then DT = TD.

Proof. Let e ∈ EA and ϕ ∈ A+, then f := e ◦ D is an
element of the classical effect space EA ◦ D, and so is
f ′ := f ◦ T , hence f ′ = f ′ ◦D. Thus, we have

e ◦DTϕ = f ◦ Tϕ = f ′(ϕ) = f ′ ◦Dϕ = e ◦DTDϕ.

Since A+ and EA span A and A∗, respectively, it fol-
lows that DT = DTD. But T preserves D(A) =
span(D(A+)), hence DTD = TD.

In analogy with how quantum systems decohere to
mixtures of pointer states, it is natural to consider Dar-
winism for frames that can result from decoherence pro-
cesses.

Definition 10. Consider any GPT system A. We say
that an MCI-frame {ωi} ⊂ ΩA together with a corre-
sponding refined measurement {ei} ⊂ EA arises from
decoherence if there is a decoherence map D : A → A
such that D(A+) = cone{ωi} and EA ◦D = cone{ei}.

In this definition, cone{ωi} denotes the set of non-
negative linear combinations of the ωi, i.e. the con-
vex cone of unnormalized states generated by the MCI-
frame (similarly for the {ei}).

Let {ω(0)
j }d−1

j=0 be an MCI-frame of the main system S
that arises from decoherence map D0, and similarly let
{ω(i)

j }d−1
j=0 , i = 1, . . . , N , be MCI-frames of the environ-

mental systems E1, . . . , EN that arise from decoherence
maps D1, ..., DN . Then requirement 4 of definition 9
implies that there is a decoherence map D0...N with

D0...N (ω
(0)
j0
� . . .� ω(N)

jN
) = D0(ω

(0)
j0

)� . . .�DN (ω
(N)
jN

).
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Since each Di is a projection map and since every ω(i)
j

is in its image, we have Di(ω
(i)
j ) = ω

(i)
j , and hence

D0...N (ω
(0)
j0
� . . .� ω(N)

jN
) = ω

(0)
j0
� . . .� ω(N)

jN
.

Requirement 3 for decoherence maps implies that the
classical transformation defined by eq. (10) (a particular
permutation of the classical pure states) is implemented
as a reversible transformation T ∈ TA on the compos-
ite GPT system A := SE1 . . . EN . This transformation
hence robustly spreads classical information in the sense
of definition 6.

Furthermore, consider any state ν ∈ ΩS , and let ν0 :=
D0ν. Since the MCI-frame of S arises from D0, there is
a convex decomposition ν0 =

∑d−1
i=0 λiω

(0)
i with λi ≥ 0,∑d−1

i=0 λi = 1. Using lemma 6, we thus obtain

(e
(0)
j0
� e(1)

j1
� . . .� e(N)

jN
)T (ν � ω(1)

k1
� . . .� ω(N)

kN
)

= ej0,...,jN ◦D0...NT (ν � ω(1)
k1
� . . .� ω(N)

kN
)

= ej0,...,jN ◦ TD0...N (ν � ω(1)
k1
� . . .� ω(N)

kN
)

= ej0,...,jN ◦ T (ν0 � ω(1)
k1
� . . .� ω(N)

kN
)

=
d−1∑

i=0

λiej0,...,jN ◦ T (ω
(0)
i � ω

(1)
k1
� . . .� ω(N)

kN
)

=

d−1∑

i=0

λiej0,...,jN (ωi,i+k1,...,i+kN )

= λj0δj1,j0+k1 . . . δjN ,j0+kN .

Furthermore, e(0)
j0

(ν) = e
(0)
j0
◦ D0(ν) = λ0. This proves

that T generates an ideal Darwinism process.
We summarize our findings in the following theorem:

Theorem 7. Consider a composition SE1 . . . EN of
GPT systems S, E1, . . . , EN that carry d-outcome MCI-
frames arising from decoherence. This composite sys-
tem admits a transformation T ∈ TSE1...EN that robustly
spreads classical information and that generates an ideal
Darwinism process.

Composite systems in quantum theory are unre-
stricted and satisfy strong symmetry (on states and
effects). Furthermore, they admit MCI-frames arising
from decoherence in the way specified above. Thus, the
existence of an ideal Darwinism process and the robust
spreading of classical information in quantum theory fol-
low both as special cases of theorem 5 and theorem 7.

D. Darwinism in Spekkens’ Toy Model

If one identifies too many specific restrictions on a
GPT, it raises the natural question: “is quantum theory
the only physical theory that allows for Darwinism?”
We answer this in the negative by providing an exam-
ple that admits Darwinism, but is not quantum theory:
Spekkens’ Toy Model (STM) [27].

STM satisfies many of the same restrictions as
quantum theory, such as no-signalling and no-cloning,
and emulates many quantum behaviours such as com-
plementary measurements, interference, entanglement
(and monogamy thereof), and teleportation [27]. De-
spite this, it is very different from quantum theory: both
mathematically and conceptually, since at its core it is
a classical hidden-variable model. What enables this
quantum-like behaviour is that the states of maximum
knowledge of the system are subject to the epistemic
restriction that one knows only half of the possible in-
formation about the hidden ontic variable, along with
a measurement-update rule that ensures that this re-
striction is maintained even when one makes sequential
measurements on the system.

A more detailed description of STM and its exten-
sion into the GPT framework is given in appendix C.
For now, it suffices to remark that the composition of
such systems is achieved by composing the underlying
hidden classical variable (i.e. by Cartesian product) and
applying the epistemic restriction to both the composite
system and every subsystem thereof.

As observed by Pusey [46] (and recounted in ap-
pendix C 3), the states within STM may be treated very
similarly to the stabilizer subset of quantum theory (for
a single system, the state spaces are isomorphic). In par-
ticular, a single elementary STM system admits three
“toy observables” X, Y and Z which act on the state to
produce outputs +1 or −1 – and there is one pure state
for each of these six possibilities (|x±〉 , |y±〉 , |z±〉) and
no other pure states. When the “wrong” observable acts
on a pure state (e.g. acting on |z+〉 with X), outcomes
+1 and −1 occur with equal probability. In this lan-
guage, one can define the CNOT analogue for two STM
bits “control” C and “target” T :

CNOT :XC 7→ XCXT , XT 7→ XT ,

ZC 7→ ZC , ZT 7→ ZCZT .

This can be read as, e.g. XC 7→ XCXT , “The product of
the observation of X on C and X on T after the trans-
formation CNOT yields the same outcome statistics as
the observation X on C before the transformation.”

With this shorthand, we hence specify our candidate
for an ideal Darwinism process from main system S onto
multiple environments E1, ..., EN :

FAN : XS 7→ XSXE1
...XEn

, ∀k : XEk
7→ XEk

,

ZS 7→ ZS , ∀k : ZEk
7→ ZSZEk

. (23)

The validity of this, as a transformation in STM, can
be verified in one of two ways: the first is to consider
a direct implementation of this as a series of pairwise
CNOT gates (in the manner of fig. 1), reasoning (e.g.
via category theory [47]) that such composition is per-
missible. The second way is to note that this map is ad-
missible as a transformation on an analogously defined
N -bit quantum stabilizer system, and then use the re-
sult of Pusey [46] to infer that this makes FAN a valid
STM transformation.
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Thus, it remains to verify that such a transforma-
tion indeed achieves the desired ideal Darwinistic be-
haviour. Suppose we have an initial state of the form
|ψ〉S ⊗ |+z〉

⊗n
E1...EN

where |ψ〉S is some arbitrary pure
STM bit state of the main system, and |+z〉 corresponds
to the state that always gives output +1 when measured
by toy observable Z. As for each k, FAN maps ZEk

to
ZSZEk

, the final state will always have result +1 for
joint measurements of ZSZEk

– mandating that the re-
sults of ZS and ZEk

are perfectly correlated. (In the
case Ej starts at |−z〉, anti-correlation is established.)
Therefore the fan-out results in all observers seeing the
same outcome as made on the original system.

Our other requirement for Darwinism is that the out-
come probability of ZS is not changed, and this is also
explicitly given by the rule in the map ZS 7→ ZS . In
particular |z±〉 are the only pure states that have non-
zero expectation value for the observable Z, and the
map does not take any state of main system stabilized
by another observable (i.e. X or Y ) to any state stabi-
lized by an expression containing Z. As such, since S
can only be in one of these possibilities (or convex com-
bination thereof in the GPT extension) this implies that
the statistics of ZS remain unchanged. We summarize
this with our final theorem of the article:

Theorem 8 (STM admits an ideal Darwinism process).
The FAN operation specified in eq. (23) implements an
ideal Darwinism process, as per definition 5.

We conclude this section with some remarks on the
implications of this example to the theorems of this pa-
per. First, in terms of necessary conditions: STM is
nonclassical in the sense that there are more than one
set of sufficiently different refined measurements (recall
section III B), and indeed also STM has entangled effects
as mandated by Theorem 2. Although requiring entan-
gled effects in a non-classical setting, we can further
conclude (by counterexample) that the stronger condi-
tion of violating of Bell inequalities (see e.g. [48]) is not
necessary since STM does not violate these. A similar
conclusion follows for contextuality, which is not present
in STM [27] and thus shown to be unnecessary for Dar-
winism.

Secondly, in terms of the sufficient conditions, STM
neither admits a decoherence map, nor is it strongly
symmetric (as we show in appendix C 4). This illus-
trates that the sufficient conditions are not tight – they
enable the fan-out dynamic by mandating the existence
of all classical dynamics within the theory. However,
the fan-out operation can be admitted without requiring
universal classical computation – indeed, as above for
STM, or existing as a member of the (non-universal [49])
Clifford group in the case of quantum stabilizers.

IV. CONCLUSIONS

Quantum Darwinism provides a mechanism through
which crucial aspects of classicality can be understood

to emerge in the quantum domain [1–5]. In this arti-
cle, we generalized an ideal notion of Darwinism, where
maximal classical information is perfectly broadcast to
an environment split into fractions, to the framework
of GPTs. We showed that entanglement, in both states
and measurements, is a necessary feature for such a pro-
cess to be present in generalized theories, and demon-
strates that some important physical principles – like
strong symmetry and decoherence – provide sufficient
structure to admit Darwinism. Finally, we described
a mechanism for Darwinism in Spekkens Toy Model,
showing that such broadcasting of classical information
is not unique to quantum theory.

Our results show that objectivity may arise through a
Darwinism process in non-classical theories other than
quantum – adding to the results of Scandolo et al.
[50], which analyzed objectivity through State Spectrum
Broadcast in GPTs. Complementing a previous result
on decoherence [23], our work also shows the important
role of entanglement to allow for emergence of classi-
cality, suggesting the counterintuitive principle that lo-
cally non-classical theories must also allow for shared
non-classicality to allow for the emergence of classical
objectivity. In addition, our results show that strongly
symmetric and unrestricted GPTs – that is, those en-
dowed with sufficient structure to allow for reversible
classical computation and the encoding and decoding
of classical information – have sufficient structure for
Darwinism to be present.

Finally, although this work has been presented with
a focus on the origins of classical limits, our results also
have a bearing on the general foundations of computa-
tion [51, 52]. The Darwinism–enabling fan-out transfor-
mation (eq. (1)) has its origins in classical logic circuits,
connecting the output of one logic gate to the input of
many others, and its quantum analogue plays a role in
the design of quantum neural networks [53]. The con-
clusions of this article therefore imply that such compu-
tation also necessitates the existence of entanglement, if
the theory is not strictly classical – meanwhile identify-
ing potential sufficient structure (e.g. no-restriction and
strong symmetry) to guarantee that such computation
can be performed.
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APPENDIX

Appendix A: The pentagon state space

We present an example of a state space [41] (brought
to our attention in Janotta et al. [54]) without an MCI-
frame (definition 1), and illustrate its counterintuitive
properties.

Example 3 (Pentagon state space). Consider a GPT
system with states in A = R3 such that ΩA is a regular
pentagon (with pure states being the vertices), and with
a dual space of effects EA subject to the no-restriction
hypothesis. Such a system admits a self-dual identifi-
cation between A+ and EA in the following sense: for
each vertex ωj, there is a unique related effect ej ∈ EA
with ej ≤ uA such that ej(ν) = 1 ⇒ ν = ωj; that is,
these effects are in one-to-one correspondence with the
vertices – and those are exactly the refined effects.

Let us label the vertices clockwise. The maximal
frame is of size two: any pair of vertices whose ab-
solute difference between indices is 2 (modulo 5) lie
on “opposite” sides of the pentagon, and form such a
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frame. Then, both {ω0, ω2} and {ω0, ω3} are maxi-
mal frames; their states are distinguished, for exam-
ple, by M1 = {e0, uA − e0}. However uA − e0 is
not refined: we have that uA − e0 = α(e2 + e3) with
α > (1/2), so one could also perform the refined mea-
surement M2 = {e0, αe2, αe3} to distinguish the states
in each frame. (In this case, the equation ei(ωk) = δik
is not valid, but the idea of single shot measurements
allowing for the detection of the states still holds: if out-
come αe2 or αe3 is obtained, one knows that ω0 was not
prepared.) A similar conclusion applies to every maxi-
mal frame in this theory: they all fail to be MCI-frames.
All unrestricted GPT systems built from regular poly-
gon state spaces with an odd number of vertices also
lack MCI-frames.

Suppose someone is promised to receive, with proba-
bility P(i), the state ωi from one of the frames {ω0, ω2}
or {ω0, ω3} and should guess the value of i. Then, the
probability of success when using measurement M1 =
{e0, uA − e0} is given by

pM1
success = P(0) + (1/2)[P(2) + P(3)],

since one can always guess correctly if the outcome re-
lated to e0 clicks but must make a random guess for
i = 2 or i = 3 if the other outcome clicks. However, by
using M2 = {e0, αe2, αe3} one has

pM2
success = P(0) + α[P(2) + P(3)] > pM1

success,

since α > 1/2. We see that the refined measurementM2

allows for a higher probability of distinguishing between
a set of states which is larger than the maximal frames.
In other words, the refined measurement M2 can distin-
guish slightly more than 1 bit, even though the maxi-
mal frame has size 2 and this measurement M2 coarse-
grains to the distinguishing measurement M1. If one
understands coarse-graining as erasing of classical infor-
mation, pM2

success > pM1
success suggests that there was more

classical information available than can be encoded onto
a maximal frame. Such a phenomenon occurs for every
unrestricted GPT built from a polygon state space with
an odd number of vertices (see also Massar and Patra
[41]). This difference between the amount of classical in-
formation that can be encoded into a GPT system and
the size of a maximal frame is a violation of a principle
that has been called “No Simultaneous Encoding” [55].
By explicitly only allowing MCI–frames (definition 1) to
characterize the classical information to be spread by an
ideal Darwinism process (definition 5), we ensure that
no such over–encoding occurs in the systems considered
in this article.

Appendix B: Pure separable effects

Lemma 9. A pure effect is separable if and only if it is
a product of pure effects.

Proof. Only one direction is non-trivial: suppose that
the effect e1,2,...,N is separable, then it can be written

e1,2,...,N =
∑

i

e
(1)
i � . . .� e

(N)
i (B1)

where the e(j)
i are suitable local effects. Since e1,2,...,N

is pure, we must have e(1)
i � . . .� e

(N)
i ∝ e1,2,...,N for all

i. Hence these product effects are all multiples of each
other, and e1,2,...,N = e(1) � . . .� e(N) for suitable local
effects e(j). If we could non-trivially decompose any of
the e(j), then we could decompose e1,2,...,N , which would
contradict its purity.

Appendix C: Spekkens’ Toy Model

In this appendix, we briefly review some details of
Spekkens’ Toy Model [27] (STM) and its GPT exten-
sions [21, 25, 56].

1. Overview

STM is essentially a classical hidden-variable model
on which an epistemic restriction is imposed: no more
than half the information (as measured in bits) can be
known. The simplest (and for our purposes, only) sin-
gle system in this framework then consists of a so-called
ontic hidden variable with four possibilities {1, 2, 3, 4}.
Valid questions about such system can only narrow
down the state to at best two possibilities (e.g. “is the
system in 1 ∨ 2 (read ‘1 or 2’)?”) for both affirmative
and negative answers to the question. This yields three
sets of mutually exclusive questions of the form “is the
system in [X]” which we label as follows:

〈x+| := 1 ∨ 3, 〈x−| := 2 ∨ 4,

〈y+| := 1 ∨ 4, 〈y−| := 2 ∨ 3,

〈z+| := 1 ∨ 2, 〈z−| := 3 ∨ 4. (C1)

By the rules of STM, whenever such a question is asked,
the ontic state must be randomized within the sup-
porting set of states consistent with the answer to the
question. For example, an affirmative answer to ques-
tion 〈z+| will randomize the ontic state of the system
to 1 or 2. This randomization ensures we cannot find
the exact ontic state, say, by asking two different ques-
tions in a row – while maintaining the property that
if we ask the same question twice in a row, we will
get the same answer. Thus, one may define a set of
maximum–knowledge epistemic states in one-to-one cor-
respondence with the affirmative answer to these ques-
tions, labeled, e.g., as |x+〉 = 1∨2. (STM also admits a
“unit” question u := “is the system in 1 ∨ 2 ∨ 3 ∨ 4?” to
which the answer is always affirmative; similarly, there
is also a maximally mixed state, in which the ontic state
can take any value with the same probability.)
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The ontic state of a composite system is formed by
taking the Cartesian product of each constituent sys-
tem’s ontic state (written for a and b as ab). The al-
lowed epistemic states in this context then are those
that satisfy the epistemic restriction both on the en-
tire system, and also any subsystem thereof. Thus, a
two-system epistemic state must admit at least four on-
tic possibilities. In addition to the Cartesian product
of single system states, this also allows for “entangled”
states, such as 11∨ 22∨ 33∨ 44, where even though the
local marginal states are maximally mixed, perfect cor-
relation is guaranteed if the same measurement is made
on both systems. On the other hand, a state such as
11∨12∨33∨44 is forbidden. This is because should the
〈z+| measurement on the second system be answered
in the affirmative, then the first system is definitely
in state 1, which violates the epistemic restriction. It
can thus be seen that STM is self–dual by construction:
every maximum–knowledge measurement outcome can
be uniquely identified with a maximum–knowledge epis-
temic state [46].

Transformations in the theory are performed by per-
muting the underlying hidden variable, in such a way
that no valid epistemic state is taken to an invalid state.
For single systems, every permutation is valid – but this
is not the case for multipartite systems. Since these
permutations are a finite group, when searching for a
transformation that achieves a desired outcome (e.g. ex-
hibits Darwinism), one can (with computer assistance)
exhaustively search through possible transformations to
find one that achieves the desired aims – or otherwise
rule out its existence entirely [57]. However, by formal-
izing the similarity between STM and the stabilizer sub-
set of quantum mechanics, Pusey [46] enables an elegant
sufficient condition for the existence of a transformation,
which we will subsequently describe.

2. GPT Extension

First, however, let us remark on the extension of STM
into the GPT framework. In particular, STM defines a
discrete state space with a finite number of states – so
in order to treat it as a GPT, we must make it contin-
uous. This is done in the obvious way: we treat the
questions such as “is the system in 1 ∨ 2?” as an ef-
fect, and then admit all convex combinations of such
effects. A complete (i.e. at least one question answers
in the affirmative for any state) and mutually exclusive
(i.e. no more than one question answers in the affir-
mative) set of questions maps to a set of effects that
form a normalized measurement (i.e. will sum to the
unit effect). Meanwhile, each set of epistemic states of
maximum knowledge with no overlap in their ontic vari-
able support (e.g. {1 ∨ 2, 3 ∨ 4}) form maximal frames,
in which the maximum-knowledge epistemic states are
extremal. We then allow convex combinations of such
states as “mixed” states, yielding a theory dubbed STM–
GPT. The set of allowed transformations on the theory

are then defined as exactly those allowed on the (non-
GPT) STM, and due to linearity, each of these uniquely
extends into a transformation on the STM–GPT state
space1.

yx

o1z+
o2

o3

o4

x+

z

y+

Figure 3. Normalized states of a Spekkens’ bit.
The tetrahedron is the normalized slice of R4 corresponding
to the underlying classical ontic variable, with basis states
{~o1, ~o2, ~o3, ~o4}. The pure epistemic states correspond to the
half-way points between these ontic states. The valid epis-
temic states of the theory are these states’ octahedral convex
hull.

One representation of a single system in STM–GPT in
R4 is to identify each ontic state with a Cartesian vector,
~o1 := (1, 0, 0, 0)T, ~o2 := (0, 1, 0, 0)T, ~o3 := (0, 0, 1, 0)T,
~o4 := (0, 0, 0, 1)T, and then write each epistemic state
x∨ y as the vector 1

2 (~ex + ~ey) (see fig. 3). Here A = R4

and ΩA is the convex combination of such (geometri-
cally: this is the octahedron formed by connecting the
midpoint of every line in a tetrahedron [21]). As ob-
served in Janotta and Lal [25], the unrestricted dual of
this space is cubic (i.e. a gbit) – but STM does not
follow the no-restriction hypothesis. Rather, instead
the space of effects can be represented by exactly the
same vector space (carrying forward the self-duality-
by-construction of STM), where the self-dualizing inner
product 〈e, ρ〉 := 2e · ρ is directly proportional to the
Euclidean inner product on the real vector spaces.

An analogous representation can also be formed for
n STM–GPT systems in R4n

. Take the Cartesian prod-
uct {~o1, ~o2, ~o3, ~o4}⊗n to find the set of ontic states, and
likewise define the epistemic set as valid (as per above)
mixtures thereof. For example, 11 ∨ 22 ∨ 33 ∨ 44 is rep-
resented here as 1

4 (~o11 + ~o22 + ~o33 + ~o44). Meanwhile,

1 This implies that not all symmetries of the state space of STM-
GPT belong to the group of allowed transformations, G. For
instance, the rotation in the z-axis which permutes |y+〉 7→
|x+〉 7→ |y−〉 7→ |x−〉 7→ |y+〉 is a symmetry of the octahedron
but is not an allowed transformation in the ontic state space
(see figure 3).
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product states of lower-dimensional STM–GPT systems
are simply found by the tensor product. For example,
1 ∨ 2 ⊗ 1 ∨ 3 ≡ 11 ∨ 13 ∨ 21 ∨ 23 satisfies 1

2 (~o1 + ~o2) ⊗
1
2 (~o1 + ~o2) = 1

4 (~o11 + ~o13 + ~o21 + ~o23). This also allows
for a self-dualizing inner product: 〈~e, ~ρ〉 := 2n~e · ~ρ.

3. Stabilizer Formalism

Stabilizer groups originate in group theory, but have
been adapted for use in quantum theory in the con-
text of error-correcting codes and measurement-based
quantum computation, as they provide concise ways
to describe certain high-dimensional quantum states.
Essentially, a transformation T is said to stabilize a
state |ψ〉 if T |ψ〉 = |ψ〉 [58]. Listing enough simul-
taneous stabilizing transformations may be enough to
uniquely define a state (up to global phase): for exam-
ple, the only two qubit state stabilized by both σx ⊗ σx
and σz ⊗ σz is the Bell state |Ψ〉 = 1√

2
(|00〉+ |11〉).

The stabilizer subset of quantum theory are exactly
the n qubit states that can be so described, when
the stabilizers are taken from the Pauli group Pn :=
{±1,±σx,±iσx,±σy,±iσy,±σz,±iσz}⊗n.

STM(–GPT) shares many similarities with (the con-
vex hull of) quantum stabilizer states [46]. For instance,
a qubit has six distinct pure qubit stabilizer states (sta-
bilized by the Hermitian elements ±σx, ±σy, and ±σz).
Meanwhile, for an STM bit (using the GPT representa-
tion above), we can similarly define three “observable”
matrices:

X := diag (1,−1, 1,−1) ,

Y := diag (1,−1,−1, 1) ,

Z := diag (1, 1,−1,−1) ,

such that for each measurement, there is a unique (pure)
epistemic state corresponding to the 1 and −1 eigenvec-
tor from each (e.g. X |x+〉 = |x+〉) – and this covers
all pure epistemic states. We can identify each of X, Y
and Z respectively with the ontic state permutations

X ↔ 3412, Y ↔ 4321, Z ↔ 2143,

along with an identity element I := diag(1, 1, 1, 1) ↔
1234. Then {I,X, Y, Z} together with matrix multi-
plication is the Klein four-group V and is isomorphic
to the permutation subgroup {1234, 3412, 4321, 2143}.
The Cartesian product of these matrices with Z2 =
{+1,−1} forms the toy stabilizer group G := Z2 ⊗ V =
{±I,±X,±Y,±Z}.

Unlike the Pauli group, this group is Abelian with
XZ = ZX = Y (cf. σxσz = −σzσx = −iσy). For n
bit systems, we denote the application of T ∈ V to the
kth system as Tk := I⊗(k−1) ⊗ T ⊗ I⊗(n−k). Finally, let
us define the map m : V n → Pn that makes an obvi-
ous identification between STM stabilizers and quantum
stabilizers (e.g. m : I1X2 7→ 1⊗ σx).

Now we may use the result of Pusey [46]:
if a set of independent quantum stabilizers

m(R1),m(R2), . . .m(Rk) describes a unique quantum
state, then R1, R2, . . . , Rk describes a unique epistemic
state in STM. Moreover, if a map on a set of quantum
stabilizers T : m(A1) 7→ m(B1), . . . ,m(Ak) 7→ m(Bk)
defines a unitary quantum transformation and
m(A1) . . .m(Ak) are a canonical generating set, then
A1 7→ B1, . . . , Ak 7→ Bk defines a valid STM trans-
formation. The full definition of canonical generating
set is complicated, but for our purposes, it suffices
to note that {X1, . . . Xk, Z1, . . . Zk} is one such set.
With the aid of these sets, we can construct the FAN
transformation (defining how it acts on each Xk/Zk,
that broadcasts information about the measurement
{〈z+| , 〈z−|} to the environment, (see equation (23)).

4. STM is not strongly symmetric, nor does it
have a decoherence map

In this section, we show that stabilizer quantum the-
ory and (GPT-)STM fail to admit a decoherence map
(in the sense of Richens et al. [23], as adapted in defini-
tion 9), and similarly neither theory obeys strong sym-
metry.

Lemma 10. Stabilizer quantum states do not admit a
decoherence map.

Proof. By counterexample. Consider the classical 3-bit
control-control-NOT gate that flips the third bit only if
the first two bits are in state 1, and otherwise does noth-
ing. This corresponds to a Toffoli gate in the quantum
circuit, which is not a member of the Clifford group [49],
and hence not a valid quantum stabilizer transforma-
tion. This violates condition 3 of definition 9: there
is a classical reversible transformation that cannot be
induced by a transformation in the theory.

Analogously, there is a classical transformation that
cannot be implemented in STM as well:

Lemma 11. Spekkens’ Toy Model does not admit a de-
coherence map.

Proof. By counterexample. Consider the classical 3-bit
transformation where bits 2 and 3 are swapped if bit 1
is set. This also forms a valid classical transformation
in these bits. It is shown exhaustively by Garner [57]
that STM does not have a 3-bit controlled SWAP. This
then amounts to a valid classical transformation that
cannot be induced within STM, violating condition 3 of
definition 9.

As we have argued in the main text, the ability to in-
duce any reversible classical transformation on a frame’s
states (effects) is a necessary condition for strong sym-
metry on states (on effects) in a GPT system. Thus, we
conclude:

Lemma 12. Neither stabilizer quantum theory nor
Spekkens’ toy model satisfy strong symmetry (on states
or effects).

CHAPTER 7. QUANTUM DARWINISM AND THE SPREADING OF
CLASSICAL INFORMATION IN NON-CLASSICAL THEORIES
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Chapter 8
Conclusions and outlook

In this thesis, we have addressed the foundations of quantum physics and spacetime
using methods of quantum information theory. For that purpose we have applied
several frameworks that extend the usual setting and formalism of quantum infor-
mation theory to exotic and extreme regimes. As this approach to physics relies on
operational concepts such as agents’ interventions, protocols and distinguishability
of similar scenarios [1, 2], it offers potential strategies for how to extract observable
predictions in uncharted parts of physics.

The framework of general/operational probabilistic theories [3–9] allows to formu-
late theories of physics that are neither quantum nor classical. Within this approach,
we investigated generalizations [10] of Quantum Darwinism [11, 12], a mechanism
that explains objectivity of measurement outcomes in quantum physics. Furthermore,
we analyzed a particular modification of quantum theory in which the dimension
of the Bloch balls is changed [13]. Generalizing the approach of [14] to arbitrary
dimension, we saw that such models do not allow for interactions, no matter how
many Bloch balls are considered [15].

The setting of device-independent information processing [16–19] reduces physical
devices to black boxes that are characterized solely by the statistics of their abstract
input values and output values. Nonetheless, there exist spacetime scenarios such as
Bell tests [20] for which these statistics can prove the presence of useful quantum
correlations. We investigated a modification in which the abstract input values are
replaced with spacetime parameters [21], such as angles of polarizers, orientations of
extended objects, and time durations of laser pulses. This modification offers a new
approach to understand the relation between quantum physics and spacetime.

The process matrix framework [22, 23] allows to investigate quantum information
processing in so-called indefinite causal structures [24, 25]. Such radically new causal
structures may appear in quantum gravity when light cones get blurred by quantum
fluctuations and superpositions of mass configurations may induce superpositions of
spacetimes [24–28]. Despite the crucial importance of the tensor product in quantum
information theory, we saw that there cannot exist a universal formalism that de-
scribes protocols that apply several process matrices in parallel [29, 30]. Furthermore,
based on observations of [31], we developed a systematic extension of the process
matrix framework that models the local perception of time via quantum clocks [32].
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We considered an operational scenario in which an external observer investigates
a composite quantum system. In this scenario, the observer may only have access
to an incomplete reference frame, for example it may lack an origin [33]. We saw
that the symmetry transformations that such an incomplete reference frame cannot
distinguish can be interpreted as quantum reference frame transformations [34–36].

While these frameworks differ in how they relax and generalize the usual settings
of physics, they all have in common that quantum physics and spacetime often clash
in unconventional ways. Probably the greatest problem of physics is the unification
of quantum physics and general relativity into a satisfying theory of quantum grav-
ity [37–39]. Our struggle implies that we have not understood the relation between
spacetime and quantum physics well enough to achieve such a unification. Therefore,
it might be crucial to challenge our understanding of quantum spacetime in new and
exotic scenarios beyond the typical quantum field theory setting and in settings that
carry operational meaning. In this thesis we encountered many such testing grounds.

The approach to device-independence with spacetime parameters can be extended
in many ways, in particular by considering different causal scenarios [40, 41] or dif-
ferent spacetime parameters. In particular, a long term goal would be to approach
relativity in this setting, by considering boxes whose input-output-statistics react to
Lorentz-transformations applied to the box.

So far, we have only applied our setting with an outside experimenter who lacks
a full reference frame to the simple example of a missing origin. Therefore, there
are many choices of incomplete reference frames and spacetime symmetry groups
that one can investigate and for which one can analyze the corresponding algebras
of observables. Mathematically, we focused on classifying the algebras of states and
observables and the embeddings as a whole. Important future work is to apply this
formalism to specific examples of physical or practical interest, and in particular
include dynamics. In that context, it might be important to better understand the
physical difference of the different algebras we discovered, and how to apply them.
It might also be fruitful to explore the connection of our formalism to the literature
of constraint quantization, in particular in the context of quantum gravity [42–46].

The framework that combines process matrices and quantum clocks also offers
important opportunities for further investigations. As the observation that the causal
past of an agent is affine-linear in the operations of the other agents indicates, the
explicit modeling of local time via quantum clocks induces further compatibility
conditions that restrict the physically allowed process matrices. Our calculations
during the project indicated that there might be more of such restrictions. In
particular, an important open conjecture is that all the causal structures that fit into
this physical scenario do not violate causal inequalities. One hint that supports this
conjecture is the resynchronization problem that we encountered for the (reversed)
Lugano process [47–50]. It is conceivable that the only indefinite causal structures
with quantum clocks that can develop back into a standard definite causal structure
are those whose indefiniteness relies on some kind of quantum control degree of
freedom [51] - perhaps one that can be influenced by an agent to control the order
of the other agents.
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While the frameworks and scenarios introduced in this thesis offer a lot of op-
portunities to investigate the operational relation between spacetime and quantum
physics, we also encountered no-go-theorems that severely restrict certain important
approaches to quantum spacetime.

We considered modifications of quantum theory in which the Bloch ball is as-
sumed to have a dimension that is different from three. As the Bloch vectors for
many physical systems couple to rotations in position space, such models can be
interpreted as a particular attempt to adapt quantum theory to a space in which
space is not three-dimensional [52, 53]. However, we found that interactions are
impossible, no matter how many Bloch balls are considered. Strategies to avoid
the no-go theorem require giving up some important physical properties - like the
fundamental reversibility of time evolution, tomographic locality [4], or that Bloch
vectors can couple to all higher-dimensional rotations. It seems that Bloch balls have
to be three-dimensional, even if space has more than three dimensions and Bloch
vectors couple to rotations.

Furthermore, we investigated quantum information processing in scenarios that
try to take advantage of parallel implementations of indefinite causal structures.
While it was known before that the tensor product formalism fails [29], we saw that
there cannot exist a satisfying replacement either. This severely restricts the applica-
bility of many methods of quantum information theory, since one often considers the
“asymptotic limit” of many copies that get combined in parallel [2]. During the devel-
opment of the proof by my coworkers and me, we learned that the essence of the no-go
theorem is the problem to combine incompatible causal orders. That is the same
problem one encounters with the tensor product itself, although the contradiction is
more difficult to isolate for general notions of parallel composition. Let us consider
the physical target system that travels through a parallel implementation of indefinite
causal structures, for example two quantum switches. If one imagines following the
quantum system that the combined agents act on through the combined indefinite
causal structure, it seems that one can only get a consistent picture if the local
causal orders of the agents in the different processes that get combined are compatible.

At last, let us consider our extension of quantum Darwinism beyond quantum
theory. We only generalized the ideal quantum Darwinism process and therefore there
is a lot of quantum Darwinism literature left whose applicability beyond quantum
theory is yet to be investigated. Nonetheless, let us focus on one particular aspect:
In our Darwinism considerations, spacetime only played a small role. However,
Darwinism describes the spreading of classical information from a central system to
its environment. In our approach, we focussed on the original uncorrelated situation
and the final situation in which perfect correlation with the full environment has been
established via the fanout gate. But the region in between is of great interest, because
it is here that the perfect correlation is established dynamically. This phenomenology
of post-quantum Darwinism creates a specific scenario in post-quantum theories
in which one can investigate the observable impact of a finite speed of information
propagation in GPT analogues of quantum many body systems [54, 55].

In conclusion, while the approach to use methods and concepts of quantum
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information theory to understand the foundations of physics is rather young, we have
seen that it is very promising in the context of quantum foundations and spacetime.
In particular, we identified several operational scenarios and no-go-theorems that
challenge our understanding of spacetime in quantum physics. Mastering these
challenges may not just help us in our strife for quantum gravity, but their focus
on information processing and communication may also lead to new or improved
technologies.
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