miversit'ait
Jwien

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis
,Behaviour Pattern Recognition Based Context-Aware Access
Control in Smart Home Environments*

verfasst von / submitted by
lvo Vidovi¢ BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2021 / Vienna, 2021

Studienkennzahl It. Studienblatt / UA 066935
degree programme code as it appears on
the student record sheet:

Studienrichtung It. Studienblatt / Masterstudium Medieninformatik UG2002
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dipl.-Math. Dr. Peter Reichl, Privatdoz.

Acknowledgements

This thesis would not have been possible without the aid of Professor Peter Reichl and
my supervisor Nemanja Ignjatov. Their help and encouragement at every step of the
work were instrumental in getting this work through the finish line. I would also like to
thank my family for always supporting me whenever I needed them, allowing me to focus
on my work. Furthermore, my friends and colleagues, who have shown understanding for
my lower availability and many absences, deserve an acknowledgement for their patience
with me. I thank all of the named people from the bottom of my heart.

Abstract

The everyday schedule and habits of each person result in a sequence of actions that
can be observed, which can also be referred to as their behaviour. An in-depth context
analysis is performed on a smart home environment to create a context-aware solution
for recognizing patterns in the behaviour of the users and the system. These patterns
are made available for access control, which makes it possible for the access control
mechanism (ACM) to include the knowledge of the usual behaviour found in the system
during the access control decision. The central questions of this thesis are how behaviour
can be modeled as behaviour patterns in a smart home environment, how the modeled
behaviour can be used in access control, and how long the learning time of these behaviour
patterns is. The behaviour engine is introduced as a smart home component responsible
for determining behaviour and an extensive evaluation is performed against it to confirm
the results of this thesis. The evaluations are partly based on CosyHome [25], which is a
big dataset created in a case study as part of this work.

Kurzfassung

Jede Person hat alltdgliche Angewohnheiten und Terminpldne, die in einer Sequenz
von erkennbaren Aktionen resultieren, was auch als deren Verhalten betrachtet werden
kann. In einer heimautomatisierten Umgebung wird eine ausfiihrliche Kontextanalyse
durchgefiihrt um Muster in dem Verhalten der Benutzer und des Systems zu erkennen.
Diese Muster werden dem Zugriffskontrollmechanismus der Umgebung zur Verfiigung
gestellt, wodurch dieser in der Lage ist auf das Wissen iiber das iibliche Verhalten
im System zuzugreifen. Die zentralen Fragen dieser wissenschaftlichen Arbeit sind
wie Verhalten als Verhaltensmuster in einer heimautomatisierten Umgebung modelliert
werden kann, wie das modellierte Verhalten in der Zugriffskontrolle eingebunden werden
kann und wie lang die Anlernzeit der Verhaltensmuster ist. Die behaviour engine wird
als heimautomatisierte Komponente zum Erkennen von Verhaltensmustern eingefiihrt
und eine ausfiithrliche Evaluation wird durchgefiihrt um die Ergebnisse dieser Arbeit
zu verifizieren. Die Evaluationen basieren teilweise auf dem CosyHome Datensatz [25],
welcher im Rahmen dieser Arbeit in einer Fallstudie erzeugt worden ist.

Contents

(1._Introduction

[1.2. Security Concerns| . .

[1.3. Research Questions and Key Contributions|

[1.4. Structure of this Master Thesisl

|2. Smart Home Fundamentals - An Internet of Things Environment|

(3. Context Fundamentals|
|3.1. Background|

[3.1.2. Life Cycleof Context|

[3.2. Design Methods|. . . .

13.2.1. In-Depth Support Design Methods|

13.2.2. Generic Support Design Methods|

|4, Access Control Fundamentals|

[4.1. Identity-Based Access Control|. L.

4.2, Lattice-Based Access Controll

[9. Solution Design|

p.1. Context Information Management|

p.1.1. Acquisition Phase] 0.

b.1.2. Modelling Phase|] 0.

p.1.3. Reasoning Phase] 0oL

b.1.4. Dissemination Phasel

13
13
14
15
17

19
19
20
22
23
23

27
28
30
32
34
35
36

37
38
39
40
41
42

Contents

10

(3. Bebhaviour Patternl 59
5.3.1. Control Event Patternl 61
b.3.2. Periodic Bvent Patternl. oL 61

[5.4. Semantic Groupings| 62
b.4.1. User Groups| 64
[5.4.2. Device Groups| 65

[b.5. Behaviour Evaluation Decision| 0. 67
.1, Classificationl oo 68
b.5.2. FExternal Validationl 69
b.5.3. Processing an Event| 0000 69

[5.6. Smart Home Integration| o 000 71
0.6.1. Access Control Attributes 72
H.6.2. Additional Behaviour Evaluationl 73
[0.6.3. Behaviour Pattern Correlations/ 73
5.6.4. Configuration Options for Residents| 75
[5.6.5. Output Dissemination| 75

[D.7. Summary| e 75

[6. Tmplementation| 79

[6.1. Underlying Smart Home Infrastructurel. 81
[6.1.1. Smart Home Devices 81
[6.1.2. Open-Source Components| 81

|6.2. Related Smart Home Components| 82
6.2.1. Fog Access Control Agent| 82
[6.2.2. Fog Controller], 82

B3 Databasel 83

6.4. Messaging| 84
BATChentl o e 85
6.4.2. Publisherl o 85
6.43. Handlerl 85

16.5. Access Control Integration|. 87
[6.5.1. Behaviour Access Control Attributes 87
16.5.2. Access Control Request Processing| 88

[6.6. Behaviour Analysis|. oo 90
[6.6.1. Pattern Generationl. 91
[6.6.2. Group duggestions| Lo 92
[6.6.3. Pattern Correlations 92

[6.7. Decision-Making| 93
6.7.1. Access Control Decisionl 94
[6.7.2. Smart Home Event Fvaluationl 94
[6.7.3. Decision Constants and Calculationl 96

6.8. Configuration| 97
[6.8.1. Pattern Management|. 97

Contents

6.8.2. Group Management| L. 98

6.8.3. Access Attribute Management| 99

6.9 = 100
6.9.1. Unit Testsl. e 100

16.9.2. Integration Tests| o oo 101

6.9.3. System Tests| 102

[6.10. Visualizationl 102
[6.10.1. Periodic Event Patternl. 102

6.10.2. Control Event Patternl 104
[7._Evaluation| 105
[7.1. CosyHome - Big Data Evaluation|. 105
[7.1.1. Test Subjects| 106

[7.1.2. Data Gathering|. 106

[7.1.3. 'Translating Raw Data into Dataset|. 106

(1.4, Test Executionl 107

CI5 Resultd o 108

[7.1.6. Interchanging Context Test| 112

[7.2. Synthetic Data Evaluation|. 0. 114
[7.2.1. Policy Evaluation Performance] 114

[(2.2. Correlation Testlo . 117

(8. Conclusion| 123
[8.1. Key Contributions| 123
[8.2. Research Questions Revisited| 124
8.3. Future Workl 126
|A. CosyHome Dataset Details| 129
[A.1. Related Datasets| 129
A.2. Subjects| e 130
[A.3. Objects] e 131

[B. Acronyms and Abbreviations| 133
BIb graphy| 135

11

1. Introduction

Every person has habits or a daily schedule that their everyday activities are built around
and a huge part of their actions throughout the day take place in their homes. The
repeated actions of residents inside their home environment give insight into their daily
behaviour and enable specific estimations of what and when an inhabitant will perform
an action [10]. Many examples of easily estimable behaviour in a home environment are
quickly determined such as the time a resident leaves the home or when the residents
prepare their meals.

Having access to the expected behaviour offers new possibilities for smart home
applications such as a smart coffee machine preparing a coffee for residents to drink
before they go to work. Furthermore, application domains in smart home systems can
improve their service based on the behaviour found in the system. A smart heating
system automatically keeps the usually measured temperature at the home, i.e. does
not heat while all residents are absent and only heats up shortly before the first resident
returns from school or work. Almost every form of home automation can benefit from
the knowledge of how the user will act or what will happen in the system by adjusting
their operational strategy to the events that will happen before they happen.

The contextual information this work mainly focuses on is the behaviour of the user
and the behaviour commonly seen in the smart home and the application domain this
work mainly focuses on is the security of a smart home environment. Security and safety
are important factors in home environments since the homeowner needs to be secure
and safe in his own place [63] and has to be ensured that the property and privacy are
protected. When the security system of a smart house can approximately estimate what
the user does at a certain time, it is possible to provide an additional layer of security
based on that knowledge.

1.1. Smart Environments

Intelligent systems make very sophisticated and optimized decisions based on the hetero-
geneous information gathered by various internal sources such as smart sensors in a smart
home [85], and external sources such as a server providing traffic information to smart
cars [67]. Figure displays the differences between a regular device, a smart device,
and a smart environment using an energy management system (EMS) as an example due
to its significance for home environments [35].

In an Internet of Things (IoT) environment like a smart home, there are various
interconnected devices present, which are able to exchange information with each other
[101]. These so-called smart devices can get access to a lot of heterogeneous information

13

1. Introduction

Regular Device

1. Non-automated device. 1. Automatically adjusting 1. Multiple smart devices
2. Strategy of operation is only strategy of operation. communicating with each
adjustable by human input. 2. Capable of gathering crucial other.
3. EMS: a regular radiator. information for their task. 2. Decisions can be based on all
3. EMS: a Thermostat managing information available in the

one or more radiators based environment.
on the room temperature 3. EMS: a heating system in a
measured by thermometers. smart home accessing all

states in the home.

Figure 1.1.: Smart Environment comparison with EMS as an example

gathered by the other devices in the system and then use that information as context for
their own service, which is typical for an IoT environment . Many examples of useful
and interesting smart home applications and smart devices either rely on communication
with other devices or excel once they get access to more information than they can obtain
only by themselves such as an EMS [5] or a smart kitchen [59].

Smart environments provide the optimal ground for context-aware applications by
offering a huge amount and variety of information. The context model of a context-aware
application set in a smart home environment can be very extensive and offer all the
data produced by smart sensors and devices for the application in a meaningful and
effective way. Context-aware applications excel the more information is accessible while
choosing a strategy for carrying out a task or for offering a service, which allows them to
improve the quality of the service [1] or the quality of the result for the task significantly

[32].

1.2. Security Concerns

Connecting the devices of a home to a network adds the security concern of enabling
external and unwanted access to control the devices of the system . In the attack
pattern known as “malicious outsider” [62], a system is remotely accessed without the
knowledge of the usual behaviour while the attacker pretends to be a user of the system,
which is called impersonation of the user .

If a user can successfully be impersonated, a system usually becomes very vulnerable,
which is especially a problem when sensitive data is at risk, which is the case in en-
vironments such as a smart home . An application capable of detecting suspicious
behaviour successfully can preserve the integrity of the system against the malicious
outsider attack pattern and notify the user to take proper action to keep the environment
secure . This work integrates behaviour pattern recognition into an access control
system of a smart home to enhance its security by providing knowledge of the usually

14

1.3. Research Questions and Key Contributions

observed behaviour to the system.

The aspect in the security of a smart home this work focuses on is authorization,
which is the process of deciding whether an access request can be granted based on
the configured access rights in the system [11]. This mechanism is necessary to ensure
that the incoming control inputs in the system are valid requests, meaning that these
requests try to access a resource the user is allowed to access. Authorization is sometimes
referred to as access control and in the scope of this work, the terms access control and
authorization are treated as synonyms.

1.3. Research Questions and Key Contributions

This master thesis aims to analyze the events in a smart home to determine patterns
in the behaviour and enhance access control in a smart home environment based on
these context-aware behaviour patterns. Three research questions are formulated to set
the scope of the work and to provide well-formulated goals. This section is listing these
research questions and is giving a brief overview of the contribution of this work to find
answers to these questions.

1. How can the daily routine and the habits of an inhabitant of a smart home be
translated into a context-aware behaviour pattern?

Behaviour patterns serving as prediction models for behaviour are the central component
of this work and the essential part of the first research question. The goal of this
research question is to automatically analyze the actions of a user or any other means
of determining behaviour in the underlying smart home environment and to determine
regularities. Furthermore, these behaviour patterns need to be usable as estimation
models representing the expected behaviour to evaluate new actions of the users and
events in the environment.

Behaviour patterns need to be adapted every time new actions or events are observed
to properly represent the behaviour after the newly gained information. This is necessary
due to the nature of behaviour, which causes it to be only estimable over a period of
time [10].

In this work, behaviour patterns are created based on a context model, which has been
created as the result of a comprehensive context analysis of a smart home environment.
Furthermore, the relationships between the behaviour patterns are introduced as groups,
a supporting feature for estimating behaviour more precisely.

2. How can context-aware behaviour pattern recognition be used in a smart home
environment for access control?

In the first research question, the behaviour patterns have already been defined as
estimation models for behaviour in the smart home environment. The goal of the second
research question is to integrate the behaviour estimations into the access control model
of the smart home.

15

1. Introduction

Including the behaviour of the users and the system in the process of access control
is challenging due to their seemingly incompatible temporal characteristics. Behaviour
can only be approximately predicted over time due to its repetitive nature [10] while an
access control request has to be processed and enforced in a timely manner at the point
of the request [45]. In this thesis, this problem has been overcome by separating the
process of creating behaviour patterns and evaluating access control requests completely.

A crucial task for the developers of context-aware applications is to make them
understandable and comprehensible for the target user group due to their complex and
non-transparent nature [1]. This needs to be especially considered in this thesis due to
the additional transparency challenges of IoT environments [69]. The requirement of
providing transparency to the users adds a non-technical perspective to the research
question.

3. How long is the learning time for a behaviour pattern?

The last research question is formulated to set a goal for the evaluation of the introduced
solution design, complementing the other two research questions, which set goals and
requirements for the design and implementation. The answer to this research question
gives insight into how much data is needed for the behaviour patterns to stabilize and
how the learning time is influenced by the introduced features.

The evaluations of this work are split into two groups by which type of data the
evaluation is based on. One group is based on artificially generated data in parameterized
test scenarios, exploiting the advantages of quickly generated test data to evaluate how
the solution of this thesis performs under certain circumstances [38]. The key evaluations
of answering this research question are part of the other group, which is based on the
real-world dataset CosyHome [25] that has been created in a case study as part of this
work.

The requirements for a dataset to be useful in the scope of this thesis are to feature
multiple users and devices in at least one smart home, clear relationships indicating
which smart homes the devices and users belong to and events over the course of at least
eight weeks with timestamps. Different types of households are not equal in regard to
how interesting they are for the evaluation. Therefore, the dataset should contain at
least one smart home with a dual-income family, which is the most interesting type of
household in smart home environments due to their daily structure around work, school,
and leisure activities [27]. Optional features that can be used to gain interesting insight
are the relationships between the users and the devices in their respective homes and
information about the daily routines of the users.

16

1.4. Structure of this Master Thesis

1.4. Structure of this Master Thesis

There are three big topics related to this thesis, namely:

e Smart home
o Context-awareness

e Access control

The master thesis leads with one chapter of theoretical introduction into the fundamentals
of each of the three central topics related to this work. Chapter [2] is about the smart
home and its characteristics as an IoT environment, introducing the setting of the thesis
to discuss the requirements, restrictions, and possibilities in such an environment. The
second theoretical chapter, Chapter[3| introduces the terms context and context-awareness
and describes the crucial details that need to be considered when designing a context-
aware application. Chapter [4]is the third and last theoretical chapter and provides an
understanding of the important aspects of access control and describes various forms that
have been implemented over the years. FEach of these chapters gives a basic introduction
into its respective topic and provides a deep enough knowledge to understand the solution
design presented in this thesis and some insight into the design choices made in later
chapters.

After the background knowledge has been established, the solution design of this work
is presented and explained in detail in Chapter [5] Every feature introduced in this
thesis is presented in combination with the design choices that lead to its creation, the
dependencies and relations to the other features, and how they fit into the big picture.
This chapter aims to create a thorough understanding of the concept presented in this
thesis and of the decisions that lead to the design. Furthermore, Chapter [5] provides
the design details required to answer the first two research questions, which makes the
chapter crucial for two of the three research questions.

Chapter [6] describes the behaviour engine, a software component set in a smart home
environment based on the solution design introduced in the previous chapter. Every
feature introduced in the previous chapter is integrated into a smart home environment
and the implementation details are presented and discussed. This chapter has the same
relations to the research questions as the previous chapter by being important for the
first two research questions.

The already mentioned big dataset is described as part of Chapter [7] This chapter
has the main purpose of showing several experiments performed against the behaviour
engine to validate the functionality and applicability of the concept in the real world.
For making suggestions of how applicable a concept or an application is in a real-world
scenario, it is necessary to come as close as possible to a realistic setting during the
evaluation, which can be done based on data gathered in the real world. All research
questions are related to the evaluation chapter with the last research question even being
entirely processed in this chapter.

17

1. Introduction

Chapter [§ presents a conclusion to the thesis by summing up the results of the thesis
and how the requirements set by the research questions are fulfilled. Furthermore, this
chapter discusses the possible future work resulting from the previously presented findings.

18

2. Smart Home Fundamentals - An
Internet of Things Environment

In 1960 [41], the first types of smart homes were introduced under the name of “wired
homes” [41] and have since been referenced to with many different terms, like “adaptive
houses” [66], “intelligent buildings” [80], “automated homes” [44], “integrated home
systems” [57], or “domotics” [93]. A smart home is usually defined by the inclusion
of additionally deployed sensors and actuators as part of an internal network with a
middleware [59]. The goal of improving the home’s services to be “smart” by automating
them [85] is the significant difference between a smart home and a non-smart home.

The interconnected devices with an additional connection to the Internet put the smart
home into the category of IoT applications [101]. The IoT is a paradigm in which the
so-called “Things” of a system, which can be any electrical component, are connected to
each other, enabling inter-device communication, and connected to the Internet, enabling
user-device communication [101].

This chapter serves as an introduction to the topic of smart homes and therefore
starts with an introduction to the IoT, which is the enabling technology. After the
IoT paradigm is introduced and explained, the supporting technologies are presented,
including a short excerpt of their development. Insight into the development of the
underlying technologies gives a better understanding of the characteristics and challenges
of a smart home environment, which is what is presented in the last part of this chapter.

2.1. Internet Of Things

The IoT, also referred to as the IoT paradigm [73], is the third big development in the
field of Internet technologies, with the first two being the World Wide Web (WWW) in
1990, followed by the Mobile Internet in 2000 [101]. Around the year 2000 [101], the term
“Internet of Things” has been coined for the first time, describing a network of electrical
devices such as sensors connected to computers and the Internet [101]. There have been
many definitions for IoT since its beginning years, but due to its broadness, there has
never been a unifying definition [73|. Three example definitions of the IoT are:

e “The Internet of Things links the objects of the real world with the virtual world,
thus enabling anytime, anyplace connectivity for anything and not only for anyone.
It refers to a world where physical objects and beings, as well as virtual data and
environments, all interact with each other in the same space and time.” [101]

19

2. Smart Home Fundamentals - An Internet of Things Environment

e “In the context of “Internet of Things” a “thing” could be defined as a real/physical
or digital/virtual entity that exists and move in space and time and is capable of
being identified. Things are commonly identified either by assigned identification
numbers, names and/or location addresses.” [107]

e “Things have identities and virtual personalities operating in smart spaces using
intelligent interfaces to connect and communicate within social, environment, and
user contexts.” [102]

The multiple definitions of the IoT share common characteristics 73], indicating a general
direction of the vision provided by the IoT paradigm. The central quality is the difference
to the traditional Internet [73], in which devices are connected to humans and other
devices, unlike the Internet, which only interconnects people [6]. Since every object is
connected at any time in any place in the IoT like humans are on the Internet, the IoT
enables all environments, objects, virtual data, and humans to communicate with each
other simultaneously [101]. It is important to note that the goal of the IoT is not to
create a separate, global network beside the Internet, but rather to integrate and build
components upon the existing Internet [101].

Devices got smaller in size while keeping a meaningful capability of sensing and com-
puting and got interconnected [4]. This advancement enables many different applications
and features in many different domains [101], which would not have been possible oth-
erwise, such as networks of vehicles for assisted driving [109], a waste management
system depending on the loads in a smart city |74], or a location-based learning platform
utilizing the GPS of mobile phones [69]. Furthermore, there are applications, which profit
from the IoT like an intelligent kitchen system analyzing the contents of the fridge for
healthier meal preparation [59], a healthcare supporting network application [100], or
an energy management system using smart sensors to regulate the system for optimal
energy consumption [5].

In 2008 |74], the number of people on the earth was overtaken by the number of Things
connected to the Internet, and the number of devices connected to the Internet in the
year 2020 is around 30 billion [3]. Current estimations for the further development of the
number of Things forecasts growth to 75 billion devices connected to the Internet until
2025 [3].

2.2. Underlying Technologies

The technologies required to create the IoT and therefore required to create IoT applica-
tions have already been established in the 1990s [101]. The most important technologies,
which are needed by the IoT to actually be realizable, are the networking technologies
enabling communication between devices, which started in the late 1960s when the
first communication between two computers over a network was performed [73]. The
development of TCP and IP happened in the early 1980s and the Internet became adopted
in the commercial sector in the late 1980s 73], which would later become important
building blocks for the IoT [101].

20

2.2. Underlying Technologies

1. 1960 1. 1990 1. 2000 1. Since 2000

2. Two computers 2. Large network cluster 2. Mobile devices 2. Devices connected to
exchanging of many computers become part of the the Intermet and to
messages 3. All computers in the Internet each other

3. Foundation of network can 3. Removes requirement 3. Communication
network exchange messages of machines having to between humans and
communication be at a fixed location devices and between

devices and devices
Figure 2.1.: An overview of the development of the IoT and its related technologies

In the 1990s, computers could be built to be small enough, that a tiny sensor or a tiny
actuator could be attached to them, which was huge progress for the IoT since these
devices could be used to effectively monitor the real world . Furthermore, in 1991
the WWW was introduced, which has its own IoT part, called the Web of Things
(WoT) . In WoT, objects are using the WWW as a platform to communicate by
being integrated into it, making devices able to communicate with any computer and
addressable with any computer browser [37]. After mobile devices got connected to the
Internet in the 2000s , the IoT was opened up to new application domains, since
the sensors and actuators could move freely and were not bound to a location anymore.
Furthermore, social networking leads the users to be connected to the Internet constantly
via their phones in the Mobile Internet , and automation was enabled for many fields
with smart devices becoming interconnected and able to exchange information with each
other . An overview of the steps leading up to the IoT is displayed in Figure

The IoT paradigm is gaining popularity and significance after the year 2000 [73].
A wider interconnection supporting exchange of more detailed information is made
possible due to the enabling technologies getting established and more embedded into the
world . Another factor increasing the popularity of the IoT is that the supporting
technologies are being constantly improved and are becoming more available , ie.
sensors becoming cheaper to deploy . Research shows rapid growth in the number
of deployed sensors with a trend pointing towards an exponential growth of Things
overall connected to the Internet . Today, applications benefit from an environment
with many sensors, even if these sensors belong to different stakeholders, like in a smart
city where the data produced by the sensors is supplied to other services via a provider
[74]. The sensors can also all be part of an enclosed environment like in a smart home,
where the devices exchange information with each other [59].

21

2. Smart Home Fundamentals - An Internet of Things Environment

2.3. Smart Home

A smart home is considered to be “smart” due to its interactive nature. This is achieved
by replacing regular devices with smart devices, with the key difference being that the
latter are connected to the Internet and connected to each other. Furthermore, connecting
devices enables remote control by the user and exchange of information with each other,
improving the offered service. The number of interconnected devices varies between
smart homes and there is a big selection of smart devices, such as a smart TV [50], a
smart heating system [5], or smart kitchen devices in general [59]. In fact, most electrical
devices are nowadays having a smart counterpart [80] since all electrical devices can be
put on the network [81].

In smart environments in general, the user benefits from the offered services being
automated [2], which also applies to a smart home environment due to it falling into
that category [98]. Waking up with the coffee already being ready, warm water already
waiting in the bath after a long day of work, or every device being controllable via a
smartphone are common scenarios in smart homes.

A smart home can be considered an upgrade to a regular home without any specific
requisites besides having a network or at least having the capability of supporting a
network [41] since the technologies required for the upgrade are independent of other
external factors. The benefit of not having many prerequisites makes virtually all homes
in developed countries capable of being upgraded to smart homes. Communities also
benefit from upgrading as many homes as possible due to the advantages of smart homes,
i.e. lower emissions [85].

The appeal of upgrading a home to a smart home is the promised automation of
the daily activities and tasks, which leads to an easier and more effective day for the
inhabitants, who are crucial stakeholders for a smart home system [5]. Dual-income
families are a subgroup of homeowners, that are especially interesting in the smart home
context [27], because of their additional challenges in organizing their lives [68]. A
dual-career marriage introduces a dynamic structure into the household [68], requiring a
careful balance between family, work, school, and self-enriching activities [27]. A home
capable of adjusting itself to the daily routines of its residents is a promising solution for
facilitating the issues of families with these challenges [66].

Early smart devices automated tasks in a home environment by using internal sensors
and reacting to certain states in the system, which limited their features to the information
they could acquire directly [85]. Before wireless communication was available, the only
way of interconnecting the devices inside a home would have been to hardwire the devices
into a network [85]. This would be a very expensive and cumbersome solution when
the network itself is installed and every time a smart device is added or removed [41].
Therefore, wireless network technologies were an important advancement for smart homes,
since they solved the issues stemming from the requirement of connecting devices into a
network [85].

22

2.3. Smart Home

2.3.1. Use Cases

The preconditions offered by a smart home environment enable many possible features
in different fields [56]. This opens up a big field of improvements to the quality of life
for many people and many economic opportunities by providing a big market for new
technologies and smart devices. In this section, three example use cases are presented.

Energy Management System

An interesting application domain in regard to smart homes is EMS [5]. Studies show
that 41% of residential energy consumption is wasted in US homes [85]. Multiple factors
are determined to be the reason for the huge amount of energy being wasted such
as older and less efficient devices not being replaced or simply users not using their
devices optimally [85]. The latter factor requires an automated solution to fully limit the
energy consumption to the users’ needs. An example of how an EMS profits from smart
technologies and smart environments can be seen in Figure|L.1

Elderly Care

One field highly benefiting from the remote control possibilities and home automation are
applications designed for elderly assistance. Living in a smart home environment enables
monitoring multiple aspects of life, which can be used to improve the maintenance of the
health of elderly people. [22]

Smart Kitchen

Home automation improves kitchen technologies by i.e. making an oven smart in the
sense that it has access to the knowledge of the optimal cooking time and heat for the
cooking ingredients. Furthermore, a smart oven can be improved by being interconnected
with other electrical kitchen devices, which i.e. enables it to use the content of a smart
fridge for recipe suggestions. [59]

2.3.2. Common Challenges

Besides the benefits the IoT paradigm brings to several application domains, there are
also clear challenges the IoT and applications relying on the IoT are facing |[101]. Many
of these common challenges are also relevant for smart home environments.

Security

One problem stemming from the necessity for storing and managing data is the security
that needs to be upheld for different kinds of sensitive data, especially if it is related to
a person [6]. In a scenario where the medical records of patients need to be handled, a
model for regulating access properly for different users in the system is required [100].
ToT applications generally have the same problem any network systems have, which is

23

2. Smart Home Fundamentals - An Internet of Things Environment

that the necessary tools and resources to breach the security of any network application
are publicly available and widely spread [81].

Smart homes deal with an additional hazard compared to a non-smart home due to the
sensitive data being accessible via the Internet, but by being connected to the Internet,
it also has possibilities for enhanced security a regular home could not achieve [81]. In a
smart home, all states in the home are obtainable regardless of the physical location of
the homeowner. Therefore, a smart home removes all fears such as not knowing whether
the stove has been turned off or whether the door is locked after leaving the home since
the residents can at any time and from any place look up the states of the system. This
approach can even be improved by the smart home itself recognizing bad states in the
system and raising an alarm to the smart home residents, i.e. if a thermometer captures
an unreasonably high temperature, the user might be warned of a fire.

Computational Power

To process data, it is required to spend certain resources such as computational power,
and the more data needs to be processed the more resources are required to process the
data. Executing a task based on the data generated by a big number of devices in an
IoT system can become unfeasible due to the cost increasing with the computation times
[108], which can lead to the task becoming too expensive to execute leading to a lower
Quality of Experience (QoE) |18]. Other tasks in IoT environments are time-critical and
need to be executed based on immediately available information [16] such as a smart car
having to adjust its maneuver to a hazard |[106]. In a smart home environment, the focus
lies on the QoE of the user, which includes dealing with big amounts of data rather than
time-critical operations. There are no hazards that have to be dealt with in a period
of microseconds to prevent injuries or damage in smart home applications. In a sensor
network, a lot of data is constantly produced [6], which introduces the necessity for a
filter to extract the knowledge from the raw data [108].

A way of optimizing the usage of the computational power of weak computational
nodes is possible in an IoT network by using a task scheduler [31]. Distributing tasks over
an IoT network should enhance the QoE for the user of an application [18] since most
tasks can be finished faster and more reliably due to multiple nodes being able to offer a
service to the user [31]. A task scheduler in a non-distributed environment only needs
to operate with an optimal strategy for its own resources to execute tasks effectively.
In a distributed environment, it is additionally necessary to take meta information into
account about which nodes are accessible, which are prone to outages, and which nodes
have a reliable connection [31]. A smart home usually has only a limited number of
rather weak computational nodes [72], which is why it is necessary to distribute the tasks
and components efficiently.

24

2.3. Smart Home

Data Management

A common example of issues shared in many IoT applications stems from the high number
of approximately 30 billion devices that are part of the IoT [3], which produce data
that has to be stored and processed |73|. The storage and management of the amount
of heterogeneous and unstructured data the IoT deals with require more sophisticated
approaches than traditional relational databases can handle [43]. The usual strategy to
mitigate this problem is to distribute the data between many nodes with a crucial fault
tolerance strategy to ensure the preservation of the data despite its distribution [43].

Another problem stemming from the processed data being heterogeneous in nature is
that the different applications in an IoT environment need to communicate with each
other. Since many applications are interested in different data due to their application
domain [2] and due to the components sharing information they gather themselves, it
becomes complicated to norm the data so that all applications and components can
access the data they need |37]. Furthermore, there are no standards or protocols after
which these applications are operating, leading to challenges in the development of an IoT
application [37], which can mostly be addressed by synchronizing the different components
of a resulting environment and by providing clear interfaces.

Obscure Technology

The lack of public awareness regarding the underlying technology, its potential, and
issues, is a more general and less technical problem for IoT applications [69]. Most of
what brings the benefits in an IoT environment is perceived by the user to be running
in the background, which makes it difficult to understand [69]. This leads to the public
opinion being formed by superficial information about the concepts of the IoT paradigm
presented by commonly consumed mainstream media, which displays ideas of a world
with connected devices ranging from a dangerous dystopia to a euphoric utopia [69].
Another related issue is the lack of commonly known IoT-related reference business
models since this is what would attract more investors for IoT applications and systems
[56].

The important consideration for smart home technologies related to this issue is that
the applications and systems need to be understandable by the users, who cannot be
assumed to have knowledge about IoT or any technological knowledge at all [27]. For
this reason, it is necessary for designers and developers to create applications that are
accessible for the inhabitants of the smart home while dealing with this environment.
For example, an EMS for a smart home is simpler to understand for a common user if
it measures the consumed energy in how much money the user has to pay instead of
displaying a value on a scale like kilowatt per hour [85].

25

3. Context Fundamentals

The phrase “to put something into context” is commonly understood as providing
additional information, while the phrase “taking something out of context” is commonly
understood as the removal of information. The first phrase is usually seen as desirable,
as more information tends to deliver a clearer picture, which enhances decision-making,
while the second phrase is usually seen as undesirable because removing information leads
to worse decisions. Therefore, being context-aware means being able to access additional
information and in the scope of a software application, this characteristic implies the
possibility of the application to adapt to the accessed information during their operations
[8]. The goal of making a computer application or system context-aware is to improve the
human-computer interaction without adding the requirement for additional and complex
user inputs [4].

While the concepts of context and context-awareness seem clear to most people at
least from a linguistic perspective, it is a challenging task for most people to properly
define these terms [1]. The intuitive grasping of these concepts comes from the human
characteristic of being very capable of conveying and understanding ideas due to their
implicit knowledge of the real world, which is not inherently available in communication
including computers [1]. The inclusion of this implicit knowledge has already made many
computer applications and systems context-aware in many different fields, including
intelligent environments, pervasive computing, and ubiquitous computing, which includes
smart homes and other IoT environments [4].

Before designing a context model for a context-aware application, it is necessary to
analyze the underlying context domain to understand what context is available and create
a context model exploiting as much of the context as possible. Many context-aware systems
and applications have already been designed in several different application domains [73],
providing insight into the challenges and demands coming with the development process
of a system or application with an emphasis on context-awareness in a given environment
[4]. Besides the challenges and demands also lots of design methods are presented in the
literature, which is why it is advisable to look into already existing ways to approach the
creation of a context-aware application.

To create a context-aware application, it is necessary to have a fundamental under-
standing of what context-awareness is, which implies a necessity for a clear and concise
definition of what context is. Therefore, the first half of this chapter is about the terms
context and context-awareness and starts with providing definitions for these terms.
Working based on clear definitions provides a solid foundation for the scientific aspect of
this work and reveals possible restrictions from a technical perspective. After introducing
the two central terms, some examples are presented in various context domains and a
very important meta-model for context models is introduced, which is called the life

27

3. Context Fundamentals

cycle of context. The second half of this chapter discusses various methods for creating a
context-aware design.

3.1. Background

The term context is commonly used in the English language and finding an example for
contextual information for a topic or an application is fairly easy. Humans are generally
very capable of recognizing related information or drawing links between information to
recognize a pattern due to their implicit knowledge of various topics in the world, which
is also why the communication between humans does not require the explicit expression
of all contextual information |1]. This inherent ability of humans is only possible because
both communicating parties are able to access the mentioned implicit knowledge. In
communication between two computers or between a computer and a human, it is not
possible to implicitly access information outside of what is explicitly exchanged [1].

Definition Challenge

Early definitions of context limited the possible contextual information to specific context
types, like the identifiers of objects and users and their locations, the time, the environment
and there were even some more specific context types like the emotional state of a user
or the focus of attention |1]. These early iterations of definitions for context seem more
like a resulting context model and not like a definition since they are predefined lists
of all possible contexts, which made them very little useful in practice when used as a
definition [1]. Some of the iterations introduced huge differences, which occurred due
to the dual origin of the definitions [30]. One view on the term comes from a technical
perspective and the other from a social perspective, which leads to the researchers not
being able to find common ground for a satisfying definition of context [4].

On top of the dual origin, the iterations of the definitions also show big differences
because even the various fields within the technical and social views are using context
in their own way, which leads to the definitions being drawn by multiple fundamentally
incompatible theories [4]. For example, some theories center around activities, assigning
every context to a certain activity, others are more centered on how humans perceive
the world, which makes context the common knowledge about the entity it is associated
with [4]. In these two examples, the difference is introduced by the chosen focus of each
context definition. The first example puts a technical center into its model, where all
context refers to an activity, while the other theory has a social view of life and puts the
human understanding of the world into the center of the theory.

Context

In the end, all of the previously created definitions failed to satisfy due to being too
specific to fully describe every possible situation relevant to a user or to an application
[1]. The most agreed-upon definition of context is “context is any information that can
be used to characterize the situation of an entity. An entity is a person, place, or object

28

3.1. Background

that is considered relevant to the interaction between a user and an application, including
the user and applications themselves” , which is also the definition for context used in
the scope of this work. Figure [3.1] illustrates this definition by displaying that context
refers to the information relevant to describing or characterizing an entity.

Tempera-
ture

Figure 3.1.: Example of the context of an entity

The presented definition has the main advantage of being capable of including any
context in any environment, allowing any available information to be considered as
context. This broadness and comprehensiveness are also its biggest disadvantage because
using this definition for context carries the necessity to design a specific context model
to set boundaries for what is ultimately used as context. This is necessary due to the
definition itself not providing any restrictions and no limitations for what can be included
as context. Therefore, a context model can be considered the subset of a context domain
containing only the most relevant context.

29

3. Context Fundamentals

Context-Awareness

Context-awareness faces the same definition challenges that context faces, but unlike with
context, there is no commonly agreed-upon definition for context-awareness [4]. The same
author giving the definition of context also gave a definition for context-awareness: “a
system is context-aware if it uses context to provide relevant information and/or services
to the user, where relevancy depends on the user’s task” [1], and the other views and
definitions of context-awareness share the same core concepts of this definition. All
projects designing a context-aware application recognize the crucial capability of adapting
to the context found in their environment [8].

Context always depends on the underlying environment, since the tasks, the goals, the
problems, and many other factors differ even between similar environments [2]. Therefore,
it is necessary for a context model designer to tailor a context model to the domain while
considering all of the given possibilities and constraints coming with the environment
to optimize the context-aware nature of the design. The process of modelling is crucial
when creating context-aware applications and systems. If the exact environment and
requirements are not properly investigated, it is possible that meaningless information
gets included, which leads to an ineffective process, or meaningful information is not
determined, which lowers the usability of the context model for the context-aware
application.

Due to the presented definition for context, the designer of a context model can work
without any restrictions, but the challenge for the designers is not to find all possible
context for the context domain, but instead to find all meaningful context for the context
domain. An international corporation tracking the location of their devices might include
which country the device is in for the location-based information of a device as context,
but a corporation working in only one country does not need to consider the country due
to the information being redundant. This simple example shows that small differences
can change the relevance of context significantly.

Finding all meaningful context for a context model designed for a computer application
or system is a challenging task. Besides basic design models, it is also helpful to create a
classification for types of context, especially due to the broad nature of the definition. A
way of categorizing context from an operational perspective is based on the way the data
value was acquired |73]. A context type is classified as primary context if the data values
are acquired directly by sensors and no further computations, and as secondary context,
if primary context is used to compute the data values to provide additional context [73].

3.1.1. Context Domain

In this subsection, a few mostly IoT-related context domains are presented and serve
as general examples of showing how the environment places specific requirements on
a context-aware design [105], dictating what the context model needs to achieve and
what context needs to be included in the model. The smart home is not included in this
section, because it is discussed in more detail in Chapter [5.1.2] with an in-depth context
analysis.

30

3.1. Background

IoT Middleware

A middleware for an IoT environment deals with the dynamic, heterogeneous, and big-
scale nature of the infrastructure [71] and would consider quality of service for search
times in form of precision and recall [21] as a relevant contextual factor. A sensor network
produces big amounts of data [74], which leads to challenges [108] such as the storage of
the data needing to be distributed over several machines, making the current capacity
of all nodes responsible for data storage useful context when determining data storage
management strategies.

A middleware put in place of a sensor network is required to provide accessibility to
the data stored in the distributed nodes and to support the processing and dissemination
of the context [47]. Therefore, reliability or any other common networking attribute can
be considered context in a context-aware middleware in an IoT environment.

Smart City

There are many possible applications in a smart city that use location-based context.
Some examples include an interactive tourist guide or a monetary incitement for people
to distribute them more evenly across the city based on their locations in the city [69].
Some projects include the location-based context together with the consumer behaviour
such as smart fridges keeping track of their content to notify the local grocery store of
which products will more likely sell [74]. Smart garbage cans are capable of informing the
city about the state of their capacity to improve the waste management infrastructure
[64]. Context-awareness is very interesting while designing applications for smart cities
because of the heterogeneous nature of the available information that can be used in the
services and the huge range of information the various services can offer to each other
[114].

Vehicular Networks

Related to the smart city and in some cases, part of a smart city is the topic of a
vehicular network [67], where cars exchange information with each other and with the
system to provide a safer and more efficient traffic network [109]. In this scenario, the
real-time locations of the cars on the road are used to choose the optimal route for
the car to get to the goal [67]. Furthermore, the computational tasks can efficiently be
divided between more powerful computational nodes in a centralized network and the less
powerful computational nodes in smart cars [110]. Including context reduces congestion
without the existing physical infrastructure having to be extended [67].

Task Scheduler

A task scheduler’s goal is to optimize the execution of tasks by scheduling them effectively
[77] and one crucial contextual information is the length of a task. A task scheduler in
a distributed environment has multiple computational nodes and needs to choose the
processing unit that executes the task [31], which is why the current load and capacity of

31

3. Context Fundamentals

each processing unit is essential context when deciding which unit gets assigned a task.
If the distributed environment of the task scheduler furthermore operates with mobile
processing units, the task scheduler also has to consider the reliability of each unit while
deciding which unit is assigned a task . This scenario shows how the context model
needs to be adapted to a specific environment, even if the task is the same. Therefore,
using an existent model without investigating the underlying environment thoroughly
leads to suboptimal solutions.

3.1.2. Life Cycle of Context

Acquisition

« Gather pnmary (low-
level) context

« Diverse sources produce
heterogeneous data

Life Cycle
of Context

A meta model
describing the way
context takes from its
generation to its
usage

Reasoning

« Create secondary
{high-level) context
= Filter bad data

Modelling

= Structure context
= Manage context

<=

Figure 3.2.: The four phases in the life cycle of context

32

3.1. Background

Having an understanding of context is a crucial prerequisite for fully utilizing contextual
information in a context-aware application. Next, it is also important to consider the
different steps included in the process of making contextual information available. A
good model for understanding the phases the information goes through, which almost all
context-aware applications follow, is the life cycle of context |73]. Due to the simplicity
and the intuitive nature of the life cycle of context, context-aware applications having a
context management system following this model often do not cite it [73].

Acquisition Phase

The goal of the first phase is to gather unprocessed data with the important questions
of this phase dealing with how, what, and where the data can be acquired [73]. In a
distributed environment such as smart homes [105], the information used in an application
is gathered by all devices and applications in the environment |73|. There are mainly five
topics related to the method of acquiring data, which need to be considered in this phase
[73].

The first topic is about whether the information in the environment gets pulled or
pushed and results in the first design decision for the context management system
[73]. The second and third topics represent whether the context to get is measuring a
continuous state or requested with distinguishable timestamps and what the underlying
structure of communication looks like [73]. The last two design decisions are based on
the types of context sources such as digital or physical, and the type of gathered context,
i.e. whether the context is sensed or manually put in or derived [73|. The context created
in the acquisition phase is classified as primary context since it is gathered directly and
there is no further computation performed on the context in this phase.

Modelling Phase

At the end of the acquisition phase, the raw sensor data is collected and has now to be
translated into a context model to represent the low-level context in the system [73],
which happens in the context modelling phase. Depending on the way the context model
is organized, this phase might also be responsible for organizing and including further
context generated after the first phase.

This phase in the life cycle of context is very dependent on the underlying environment
since the resulting low-level context needs to be meaningful to the application in the
environment. Several methods can be used to design a context model for a context-aware
application [73] and many times these methods do not exclude each other [4]. In Chapter
-2 some example design methods are presented.

Reasoning Phase
The reasoning phase has the responsibility to analyze the low-level context present at

the end of the second phase and generate high-level context or conclusions about the
contextual information |73|. The context created in this phase needs to provide precise

33

3. Context Fundamentals

knowledge to the application efficiently and due to the fact that it is generated by
computational operations instead of being sensed directly, it is classified as secondary
context |73]. Furthermore, the reasoning phase has the responsibility to filter out bad
primary context [73], which can be present in any environment due to any form of
malfunction [108]. After filtering bad context, the remaining context needs to be grouped
and processed [73].

There are many suitable mathematical models, such as k-means clustering [99], or
logical models, such as decision trees [76], for processing various types of low-level context.
Choosing a fitting method for the reasoning phase needs to be based on an examination
of the possibilities in the low-level context and based on the goals of the reasoning. A
good example for the distinction of the possibilities enabled by the low-level context is
whether reference inputs can be provided for a supervised method [42]. Alternatively, the
reasoning phase needs to discover patterns without any external aid, which would classify
the reasoning method as unsupervised [9]. It is also possible that multiple methods are
included in the reasoning phase if multiple, different kinds of high-level contexts need to
be created.

Dissemination Phase

In the final phase, the high-level context that was analyzed in the reasoning phase and
if necessary also the low-level context present in the modelling phase need to be made
available for the context-aware system [73]. The main question for this phase is how the
contextual information is transmitted to the consuming application and is mainly dealing
with the infrastructure of the system [73]. Depending on the environment, context gets
queried from the context managing component or the application needs to subscribe to
receive published updates about the context [33].

After the dissemination phase, the context is deployed in the system and further
context can be gathered with or without the aid of the already established context, which
means that the cycle restarts from the data acquisition phase. Whether new context
needs to be integrated into already existing context or all context exists separately in the
system is a question answered by the design of the context model [73]. Depending on the
second and third phases, new context can lead to existing context requiring reevaluation
[73].

3.2. Design Methods

The used definition for context allows any information, that can be related to the
currently examined entity, to be considered as context. Since no restrictions are imposed
on a context-aware design through this definition due to nothing being excluded from
qualifying as context, every possible information can potentially be considered context.
The all-inclusiveness of the definition potentially leads to ineffective designs of context
models due to the designers not being able to properly determine all meaningful context
or not being able to disqualify unimportant context [32].

34

3.2. Design Methods

The importance of how dependent the context is on the underlying environment
or task has to be considered thoroughly at this point. Related literature provides a
wide range of lessons learned for context-awareness in many different fields such as IoT
[73], industry [83], government [32], and pervasive computing [4]. Simply orienting the
own context-aware model by an existing model can easily lead to sub-optimal usage of
context-awareness or even problems in the design itself.

A promising approach to creating a context-aware design is to use specific design
methods created to aid designers in determining all meaningful contexts and in structuring
the context-aware application. These methods are distinguishable by the environment
they are created for and by included modelling techniques |73]. The six most popular
techniques for designing context models are based on key-value maps, tags, relationships,
objects, logic, and ontologies |73].

There is a big discrepancy in how detailed the guidance is given by a design method due
to the context being highly dependant on the underlying environment [2]. Generally, the
more guidance a design method offers for creating a context model, the more requirements
and restrictions it imposes on the created model or the environment. On the other hand,
design methods that are kept as generic as possible are environment-neutral and put no
to minimal restrictions on the design, but the more generic a method is the less in-depth
guidance it offers in the design process.

3.2.1. In-Depth Support Design Methods

The more detailed context-aware design methods are appealing for their vast support
in the design process and are making sure that the design makes the most out of the
context found in a specific environment. These methods are usually influenced by the
experience gained during the creation of other context-aware designs in the respective
field, which turns lessons learned from other projects into a useful tool while working on
a context model in a related setting.

Businesses commonly work closely with the government in many different fields, which
opens the field of business to government applications, typically set in a large-scale
environment with multiple actors and stakeholders [32]. Many different fields with widely
varying requirements fall into this group, but these requirements have some intersections
due to their similar environment. Based on many reference context models, a systematic
approach is provided [32], featuring a step-by-step guide to easily discover the meaningful
context in an environment navigating many different actors and legislation considerations.

When a field does not have many reference solutions, it might be necessary to com-
promise on the similarity between the projects to be able to use one of the more specific
context model design methods. A lesser related project might still provide a design
method that is useful, but a developer needs to be careful to not overlook the differences
between the respective requirements and environments. The industrial field does not
have many reference projects with context-aware designs, but picking a specific method
in this field might help to discover context types not being suggested in other models. A
context model for industrial applications could utilize the temperature of the operating
machines as context, as suggested in a design method created for this field [83].

35

3. Context Fundamentals

3.2.2. Generic Support Design Methods

The more generic context-aware design methods are based on the goal of being applicable
to all environments, which is why these methods usually provide basic guidelines that
can help every project regardless of the environment it is set in. In the scope of context-
awareness, which is heavily dependent on the underlying environment, looking into design
methods created to be environment-neutral gives insight into the most common design
decisions. Furthermore, generic methods can provide systematic approaches to easily
determine meaningful context, even though no specific context is suggested.

One generic method of designing a context-aware application has already been discussed
in Chapter as the life cycle of context, which can be found in all projects including
context-awareness, even in those not citing it, showing its intuitiveness and its general
applicability |73]. Another generic example, which is very similar to the life cycle of
context in being detectable in most context-aware projects, is a layered architecture
introducing the most common components of context-aware systems and applications
divided into multiple layers [8]. The first three layers introduced in the architecture are
comparable to the first three stages of the life cycle of context, with the sensor layer being
the equivalent to the context acquisition phase, the raw data retrieval layer being the
equivalent to the context modelling phase and the preprocessing layer being the equivalent
to the context reasoning phase. The top two layers are the storage/management layer
and application layer, which are together similar to the last phase of the life cycle of
context, the context dissemination phase.

An easy and systematic approach to designing a context-aware application without
being built for any specific environment is CAMeOnto [2]. This ontology is based on
the principles of 5Ws, which are the interrogatives who, where, when, why, and what
[2]. The who refers to the information about the user, i.e. the identity of the user or the
preferences of the user, and encourages thinking about who exactly is supposed to use
the application. The when refers to temporal contexts such as the time of day an action
is being performed or intervals between actions and is used to determine how time plays
a role in the task of the application. The country, the city, the exact GPS location or
the distance to something are all examples for location-based context, expressed by the
where. Activities and devices fall both into the category of why in this ontology, which
encourages asking why the user is able to get a service with the answer indicating that
an activity or device is involved. The service provided to the user is the what, which is
used to determine what the user trying to get from the application.

36

4. Access Control Fundamentals

Security is one of the most important concerns in an information system and security
breaches due to unauthorized access need to be prevented in particular in the growing
field of distributed environments [14]. The goal of access control is to prevent these
security breaches and this is achieved by restricting inappropriate actions in the system,
which can happen due to operations by programs on behalf of users or due to requests by
users [88]. The mechanisms of an access control system limit the activities and operations
a user and in extension, a program on behalf of a user is allowed to perform in the system
[88].

An access control mechanism (ACM) can be defined as: “the logical component that
serves to receive the access request from the subject, to decide, and to enforce the access
decision.” [45] Using this definition puts the component responsible for access control
in charge of evaluating access requests and in charge of enforcing the decision made in
the evaluation process. Enforcing access control means to decide whether a subject, the
requesting entity, is allowed to access an object, the requested entity [89]. An example of
a traditional form of access control can be imagined as traveling to a country with the
border officials enforcing whether a person is allowed to enter the country or not.

The process of enforcing access control is called authorization, which ensures that
illegal access to information is prevented [11]. Authorization is related to the similar term
authentication, which is the process of verifying the identity of a subject in a system
[20], and therefore, authorization is enabled by authentication [88]. It is important to
consider that the terms access control and authentication are not referring to the same
process and that authorization usually assumes that the subject is already authenticated
[88]. The access rights of the users in a computing system are stored in an authorization
database and are maintained by a security administrator [88]. Furthermore, access rights
are organized following an access control model, which has a long history full of many
different types of models with each generation introducing a more sophisticated approach
than the previous one.

The hierarchy of an access control model is formed by policies and rules [55]. Policies
consist of rules and can therefore be seen as the set of rules in place to decide whether
access should be given or not. Each object is assigned exactly one policy and each policy
can have any number of rules. During the decision process of the enforcement of a policy,
each rule is examined and the decision is made based on whether at least one or all of
the rules are fulfilled, depending on the access control model.

The purpose of this chapter is to give a general overview of the different forms of access
control models, commonly seen in enterprise environments, government, or information
technology. The goal of this overview is to create an understanding of how access control
was developed, giving an overall insight and understanding of how access control based

37

4. Access Control Fundamentals

on attributes is working. This chapter does not compare the different access control
models and is not meant to be seen as an evaluation of which approach of designing an
access control model performs the best.

4.1. ldentity-Based Access Control

In access control approaches based on identities, the access control is only utilizing the
identities of subjects and objects and are therefore called Identity-Based Access Control
(IBAC) models. These models have assigned identities to every object and every subject
in the system and keep access control lists (ACLs) of these identifiers for which subject
may access which object [113]. ACLs hold the associations between identities and are
used during the enforcement of the access control decisions [45], where access is permitted
if the association between subject and object is given [113].

Translated into the example of border officials enforcing whether a person is allowed
to enter the country, the officials would either have a list of all people that are allowed to
enter the country and look whether this person is on that list, or there would be lists
for each person that specify which country this person is allowed to enter. Both options
display the biggest weakness of IBAC approaches, which is the very low scalability due
to the lack of natural support for large-scale systems [45]. Besides the issue of potentially
billions of entries on an ACL having to be processed during an access request, another
issue is the high maintenance overhead introduced in updates whenever changes to the
access rights need to be applied [45]. A necessity for maintenance arises in the example of
border enforcement in situations such as when a country would ban the entry of citizens
of another country because of a conflict, which would lead to countless entries in many
lists requiring an update.

In computing systems or networks, the number of access rules would possibly require
more computing power to resolve big ACLs. This is less of a problem nowadays since
most computers would likely be powerful enough that no issues become noticeable.
IBAC approaches are attractive because they are easily and quickly implemented and
are suitable for systems with a low or at least a constant number of users or if the
access rights are rather static [113]. Issues in IBAC models arise in systems with large
and dynamic subject and object numbers, since the high maintenance efforts become a
burden and error-prone, especially when a human updates the access lists, leading to
possible security breaches [113]. One unattractive aspect of IBAC is the low support for
the creation of policies since this approach uses exclusively identifiers, which does not
accurately represent how i.e. a company handles the access rights in its informational
system [113].

IBAC finds application in secure communication over a network [55] since the mutually
exchanged information at the beginning of the communication gives each party an
identity on which the access control is performed. Another application domain for IBAC
is operating systems |[113], where the file access rights are commonly set as user lists as a
matrix containing the information of which user has what access rights for an object.

38

4.2. Lattice-Based Access Control

4.2. Lattice-Based Access Control

The early counterpart to access control models based on identity is called Lattice-Based
Access Control (LBAC) [87]. The name-giving lattice in these approaches comes from
the featured security labels used in the access control process, which are combined into a
grid [113], in which they are divided into a totally ordered set of security levels and a set
of categories [87].

In LBAC, each category can be combined with any security level, forming distinct
security classes, which are assigned to each object, called their security label [87], and to
each subject, called their security clearance [86]. To gain access to an object, the security
clearance of a subject must be of the correct category and must dominate the security
label of the object [90]. A security level dominates another security level if it is equal or
higher to it in the predefined, totally ordered set of security levels.

When there are four security classes in the order “top-secret”, “secret”, “confidential”
and “unclassified”, a subject with the security level of “secret” in a certain category is
allowed to access objects of all levels but “top-secret” [90]. Even when a subject has the
security level of “top-secret” in one category, the access to objects of other categories is
not necessarily granted and depends on the security level the subject is assigned in the
category of the object.

Information being translated after successful access control is called the flow of informa-
tion [87] and a secure information flow guarantees that unauthorized flow of information is
prevented [29]. The goal of LBAC is to ensure that information flows only one way, which
is into the dominant direction, and never the other, which is the dominated direction [90].
This characteristic makes LBAC not policy-neutral since the fundamental structure of
LBAC models enforces the flow of information to only go in the dominant direction [86].

While objects can be destroyed and created dynamically in the system, the security
classes remain static and must be predefined [87]. All security levels are assigned by the
security administrator or security officer instead of the resource owner like in other access
control models and usually cannot be changed dynamically, which is a characteristic that
is called tranquility [86]. Not being able to modify the security classes in the lattice and
not being able to update the security labels and security clearances makes LBAC very
static in nature.

In the example of border control enforcement, no information flow is present so that a
lattice can be formed properly. Furthermore, the only possibility for creating categories is
to create a separate category for each country. This makes the environment undesirable
for LBAC because a lot of categories cause management overhead [113]. Furthermore,
changing the lattice, which is necessary each time a new country is founded or becomes
part of another country, and changing the security labels and clearances, which becomes
necessary each time the travel rights for someone change, is a cumbersome activity in
the static LBAC.

The access control systems developed with a lattice-based approach are mostly set in
government environments and the military sector [113]. LBAC is popular and widespread
in both of these environment types [87]. The popularity in these specific sectors comes from

39

4. Access Control Fundamentals

the concern about the flow of information being present in the environment. Therefore,
most LBAC models are driven by the requirements of governmental or defense sectors [87].
The scenarios commonly found in these environments tend to create a structure of security
classes that can be described as a lattice with a one-directional flow of information. LBAC
is a fitting model in these cases because it is specifically designed to have policies, which
enable this flow [86].

4.3. Role-Based Access Control

The first attempts of creating an access control model unveiled the challenges of enforcing
access control and maintaining access rules, which are mainly performance issues in case
many rules need to be processed and maintenance issues due to low support from the
access control model. A promising approach, called Role-Based Access Control (RBAC),
was introduced as an alternative [86] and the first access control models using RBAC
emerged in the 1990s [90], which is 25 years after the early LBAC and IBAC approaches
[48].

In RBAC, the name-giving roles serve as a semantic relationship between subjects and
objects |113], representing the access rights of subjects and the permissions on objects
[70], and are maintained and assigned by security administrators according to the access
rights in the system [90]. The assigned roles of a subject are examined by the ACM and
compared against the list of roles in the access policy of an object and access is granted
if a match is found. This means that in RBAC the decision for an access control request
is predetermined implicitly by the security officials of a system [45].

RBAC models for border officials would work like passports, effectively giving each
country a respective list of countries their citizens are allowed to enter and border officials
only need to look at the passport to check whether the passport is of a country whose
citizens are allowed to enter. The enforcement of the access control is more effective than
in IBAC since the time to check each role is significantly smaller than the necessary time
to iterate through all ids in the system.

IBAC and LBAC are both special cases of RBAC, which means that their ACMs can
be expressed using the ACMs offered by RBAC [90], which allows a combination of easier
to maintain ACLs and lattice-based structures with secure information flow at the same
time [86]. In comparison to IBAC, roles can be considered predefined sets of access
control rules, enabling central management of ACLs, lowering the necessary maintenance
significantly [113]. Compared to LBAC, roles can be considered as unrelated security
classes [86], which are assigned to each subject and object, just as the security clearances
and security labels are. The difference between RBAC and LBAC is that RBAC is a
policy-neutral access control approach [70] since there is no dependency between the
roles. To mimic this defining characteristic of LBAC in RBAC, it is necessary to provide
an extra mechanism to preserve the flow of information [86].

The main benefits of RBAC are its good scalability [113] and easy maintainability
[86], while it is still simple to implement [89]. Additionally, the significant factors for
the spread of RBAC were its compatibility with existing access control models [45] and

40

4.4. Attribute-Based Access Control

its adaptability to the typical enterprise environment [113]. The biggest weakness in an
RBAC model is that its nature lacks support for exceptions [45] since every exception
requires a new role, which in the worst-case scenario provides one role for each subject in
the system. In that case, the efforts of creating an RBAC model are ultimately reverted,
turning the approach into an IBAC model.

RBAC is especially popular in enterprise access control management since it mirrors
the access control rights commonly seen in the corporate environment [113]. The possible
central management for RBAC systems makes it easy, effective, and less error-prone
when the changing needs of an organization require the access policies to be updated [86].

4.4, Attribute-Based Access Control

In earlier approaches, access control has been restricted to specific identifiers, security
labels, and roles and each of these approaches still see success in different fields. Each
of the earlier approaches of access control also imposed limitations on resulting access
control models, like RBAC requiring a new role for every exception [113], IBAC scaling
poorly [45] or LBAC being very restrictive due to its static nature [87]. The two problems
these limitations share are that they are fundamentally integrated into the approach
itself and that they impose restrictions on the writing of the rules and policies [45]. The
design of an access control model should limit the possible access control policies as
little as possible [45]. A newer approach tries to mitigate these issues by allowing any
security-relevant characteristic of objects, subjects, and the environment in access rules
[113]. These security-relevant characteristics are called attributes and therefore this
approach is called Attribute-Based Access Control (ABAC) [45].

ABAC is defined as “an access control method where subject requests to perform
operations on objects are granted or denied based on assigned attributes of the subject,
assigned attributes of the object, environment conditions, and a set of policies that
are specified in terms of those attributes and conditions.” [45] This definition displays
the difference between ABAC and other access control approaches due to the fact that
it does not prescribe a certain core for the access control [48]. Instead, it allows any
attribute featured in the system to be the base in access rules, making the writing of rules
and policies more complex compared to the earlier approaches [48]. Another difference
introduced by this definition of ABAC is the interesting possibility to allow for ACMs to
build rules upon attributes of objects and the environment, unlike previous approaches
that exclusively enabled rule types related to the subject, like identities, roles, or security
classes [45].

Possible subject attributes are any information that can be related to the user in the
system such as the identity, the role, or the job title |[113]. The object’s attribute usually
depends on the type of object, i.e. files in a file storage system could use the title, date,
and author of the files as object attributes, while machines in a factory might use their
states or their temperature as meaningful attributes |[113]. Environment attributes are
used to describe operational or situational states of the system unrelated to subject
and object, like the current date, network security, or room temperature, depending

41

4. Access Control Fundamentals

on which makes sense for the environment the access control model is created for [45].
Environmental attributes are especially interesting since environmental information is
widely unused in previous approaches to designing access control models [113].

A benefit of ABAC is furthermore, that it does not exclude the possibility to integrate
policies and rules mimicking the rules and policies of RBAC [45] and in extension also of
IBAC and LBAC. More generally formulated, RBAC is a special case of ABAC [45], and
IBAC and LBAC are special cases of RBAC [86]. The identities used in the ACLs of
IBAC can be linked to the attribute “identity” and the roles can be assigned to subjects
like in RBAC with rules written for the attribute “role”, which compares the role of the
subject with the requested role of the access rule [45]. The flow of information can also
be mimicked using attributes by making the ACM recognize that the access rights of one
security class include the access rights of all security classes it dominates, preserving the
hierarchy of security classes found in LBAC [90].

Designing an access control model based on attributes for border officials would make
it possible to introduce additional attributes, while still keeping the benefits of the other
approaches. RBAC already gave a good solution that would allow the border officials
to use predefined ACLs of countries as roles and assign those roles to their respective
citizens. The issues arise from the exceptions such as a criminal not being allowed to
leave a country or at least not allowed to enter a specific country. In this case, a new
subject attribute could be defined called “criminal status”, which marks the subjects and
is used in a policy that allows each citizen to enter all countries according to the access
rights given by their citizenship with the additional restriction that the subject is not
allowed to have a criminal status. “Crisis status” can be used as an object attribute,
which rejects access rights when the country has to refuse further travel due to a civil
war or a disease. Environmental attributes could be derived from neighbouring countries
as “threat level” since travel might need to be restricted when there is a conflict close to
the country since the concern arises that the conflict could cross the border.

ABAC can become cumbersome when the access control is shared between organizations
since several other attributes need to be shared between these organizations as well
[45]. An ABAC model furthermore takes longer to implement and it requires more
understanding on the user side to properly use its features [45].

4.5. XACML Architecture

The Extensible Access Control Markup Language (XACML) [45] provides a framework
compatible with ABAC. It introduces an architecture to structure the access control
components by dividing the responsibilities of an access control model [36].

The four crucial components used in the architecture of the introduced structure in
XACML are the Policy Administration Point (PAP), the Policy Decision Point (PDP),
the Policy Enforcement Point (PEP), and the Policy Information Point (PIP) [36]. Figure
shows the four components of the XACML architecture and the relationship between
them is displayed by linking the components that interact with each other.

42

4.5. XACML Architecture

Access ﬁequest
Handling

Decision Making

Access Policy User Data
Management Management

Figure 4.1.: XACML components and which components they interact with

Policy Administration Point

The PAP is defined as “the system entity that creates a policy or policy set” . As the
definition suggests, this component is responsible for managing the access control policies.
During an access control request, this component supplies the policies that are evaluated.

Policy Information Point

The PAP is specifically responsible for the management of the access control policies,
but besides the policies, there are still other data that need to be managed in an access
control system. For each other type of information that has to be stored, the PIP is
responsible, which is defined as “the system entity that acts as a source of attribute
values” . During an access control request, the PIP is responsible for the retrieval of
data.

43

4. Access Control Fundamentals

Policy Decision Point

The PIP and PAP components cover the data management and access policy management,
but they are not responsible for evaluating access requests or using the data in other ways
in the process of access request evaluations. The component responsible for making use
of the data and policies is the PDP, which is defined as “the system entity that evaluates
applicable policy and renders an authorization decision” [36].

An evaluation of an incoming request is based on the access control policy associated
with the object, which is accessed through the PAP, and the related information stored in
a database, which is accessed through the PIP |45]. The PDP is the central component
in the XACML scheme and is the only component linked with each other component,
while all other components are only linked with the PDP [36].

Policy Enforcement Point

The PEP is the final component in the XACML architecture and it is the component
responsible for handling access requests. PEP is defined as “the system entity that
performs access control, by enforcing authorization decisions” [36].

Whenever a request comes in, the PEP forwards the request to the PDP, which responds
to the PEP with an authorization decision result. Based on the result the PEP then has
to either block or grant access to the requested object, enforcing the decision made by
the PDP.

44

5. Solution Design

Chapter presents three research questions, which serve as the goal of this thesis and
are used to define the design goals of this chapter. Note that only the first two research
questions set goals for the design of this work, while the third question sets goals for
the evaluation. Therefore, this chapter discusses the first two questions and the third
research question is processed in Chapter

Determining Behaviour

The aim of this work is to determine patterns in the behaviour found in a smart home
environment. These patterns are utilized as indicators for what actions and states in the
system are to be anticipated and are therefore utilized to determine whether observed
behaviour matches the expected behaviour. The smart home environment this work
is set in is called COSYLab and its most important parts in relation to this thesis are
presented in Chapter

The first research question is formulated to set the goal of creating context-aware
behaviour patterns within the observable behaviour of smart home residents. This question
asks for a translation of the inhabitants’ interactions with the home into prediction models,
what behaviour in the system can be observed influencing the residents’ actions, and
other observable factors in the smart home. The requirements to satisfy this research
question are:

e Thorough context analysis of the underlying smart home environment
e Behaviour patterns capable of evaluating whether actions or events are expected

e Investigation and inclusion of further factors influencing the behaviour

First, the context in the smart home needs to be examined to create a context model
exploiting the context present in the environment. Based on the available context,
patterns in the behaviour need to be determined and created so that they can be used to
evaluate whether further events match the behaviour. Lastly, the context model needs to
be examined for further possibilities for predicting behaviour more accurately.

Access Control

With the additional knowledge about the expected behaviour, an access control system
can improve the safety and security by detecting deviating behaviour in the system and
react to it, i.e. alarm the user and the fire department in case of a dangerously high

45

5. Solution Design

room temperature. The malicious outsider attack pattern, which is based on an outsider
without the knowledge about the usual behaviour [62], can be minimized if the ACM is
capable of detecting deviating behaviour, even if the user is successfully impersonated by
the adversary [53].

The goal of the second research question is to integrate the knowledge of expected
behaviour into the existing ABAC model of COSYLab. This research question is satisfied
when these requirements are fulfilled:

e Defining attributes for including behaviour estimations into the ABAC model of
COSYLab

e Behaviour is processible at runtime during access request evaluation

e Aid the smart home residents in using the behaviour related features

The goals of this research question make the patterns’ capability of determining whether
the observed behaviour is matching the expected behaviour a crucial requirement in
answering the first research question. Furthermore, the evaluation of access requests
and the evaluation of events in the smart home is the bridge between the two research
questions.

Analyzing behaviour at runtime is unfeasible because potentially too much data has
to be processed [19]. Therefore, it is necessary for the knowledge to be prepared by
extracting the information out of the data before an access request is processed [108].
This is one crucial requirement set implicitly by the evaluation process being included in
access control by the research question.

Additional Considerations

One crucial design consideration originates in the residents in a smart home, who cannot
be expected to have much technical knowledge to understand how the system works
[27], making transparency an important design goal. In an access control model, only
designated people, typically one or more security administrators, have permission to
manage access policies [86].

A company can hire a person with sufficient knowledge about IoT and security to
manage the access rules and other configurations effectively, but in a smart home
environment, the residents of the smart home themselves have to carry out these tasks.
Therefore, the management of the access rules and the management of the configurations
in the system have to be made as understandable as possible by supporting the user in
crucial decisions.

Chapter Preview

The context-aware approach to recognize patterns in the behaviour found in a smart
home environment and including these patterns in an ACM requires an enormous design
with many considerations and design choices. This chapter serves as an overview of the

46

5.1. Context Information Management

solution design presented in this thesis and is split up into sections, starting with the
lowest-level feature and finishing with the highest-level features.

Section [5.1] is responsible for every context-related design decision and information fea-
turing an in-depth context analysis performed on the underlying smart home environment
and the design decisions made for each phase of the life cycle of context. Smart home
events are introduced and described in Section which are provided by COSYLab and
serve as the transmission medium for the low-level context.

In Section[5.3] behaviour patterns are introduced, the high-level context type that serves
as the core of the concept and as the central component for answering the first research
question. Groups represent semantic relationships in the system and are presented as
another high-level context type in Section

Section deals with the evaluation of smart home events and is the important
connection between the first and the second research question. All design decisions
related to the integration of the solution design into COSYLab are discussed in Section
[5.6], which furthermore provides a central part of the answer to the second research
question.

The last section of this chapter is not intended to add any information but to serve
as an overview of the crucial design decisions that have been presented throughout this
chapter. It introduces several tables to present as much information as possible in a
comprehensive way.

5.1. Context Information Management

In Chapter [3] a definition for context is presented and discussed in detail for the scope of
this work. The crucial characteristic of the used definition is that any information can
qualify as context, as illustrated in Figure This puts the designer of a context-aware
application into the position, that a context model needs to determine the subset of
relevant information in the set of possible information.

This work aims to provide a behaviour analysis for access control and is set in the smart
home application COSYLab, which is why it has to adapt to the present environment
and the context it offers. Identifying the useful context of an application or a system is a
complex task with many possible starting points, which is why a systematic approach
is recommended to determine context effectively [32]. Many different design methods
have already been established with different granularity and restrictions regarding the
environment they are set in [4].

COSYLab

This work is part of COSYLab, an application in a smart home environment that focuses
on making the smart devices inside the home remotely accessible to its inhabitants. The
central goal of applications like COSYLab is to provide the offered service to a legitimate
user requesting the service at the time the service is requested and at the correct location
with the correct device [47]. A crucial part of this goal is to ensure the legitimacy of the

47

5. Solution Design

requests, which introduces a necessity for access control .

The COSYLab environment features an authentication process with a username and a
password for logging in a user and the session token resulting from the authentication
[54] is used to determine the subject in access requests. Since authentication is provided
by the environment, it is not examined closer in this work, which allows this thesis to be
focusing on authorization.

The access control in COSYLab is based on attributes, which makes it an ABAC
model. The environment features a messaging middleware based on message queues
for the communication between components, which is used by components to publish
new information to make it available to other components. The smart devices in the
smart home regularly send updates about their states or about measured states in the
system and can be remotely accessed, which means that smart sensors are part of the
environment as well as devices that residents commonly interact with.

Disseminate Behaviour

Patterns and Decision Results Smart Home Events Behaviour
< e et Context

Context
Dissemination

Validation

Create
—— A J
Smart Device =------- N Messaging .
martbevice =3 vice Middleware | Publish Decision Results valuation
Event < Decision
* f Result
Publish
Behaviour
Patterns Store
Store
Y
High-Level Low-Level

Context Storage| Context Storage

Behaviour
Database

Smart Home
Events

Supply

Figure 5.1.: Top-level overview of the life cycle of context.

48

5.1. Context Information Management

Design Methods

In this section, two intuitive and environment-neutral approaches are used to present
the context-related part of this work. The life cycle of context model [73] presented in
Chapter is used to describe the design decisions made in regards to context in a
well-structured way. The design method for the context model is CAMeOnto [2], which
is a design method used to facilitate the search for the necessary contextual information
and is described in Chapter With these two models, the underlying smart home
environment is examined and an in-depth context analysis is performed.

Figure displays a top-level view of what is presented in this section in a flow chart.
The parts involved in the context acquisition phase are coloured yellow, the context
modelling is coloured green, the context reasoning is displayed as red, and the context
dissemination is purple. Context starts its journey when it is created by smart devices
and once the event is evaluated, the low-level context is stored in the behaviour database.
Note that the previously established context is used to evaluate new context, which is
why “Behaviour Context Validation” is coloured purple. The context reasoning is based
on existing low-level and high-level context and its results are stored in the behaviour
database as well. The evaluation results of new events and newly created behaviour
patterns are disseminated to the smart home.

5.1.1. Acquisition Phase

The first phase in the life cycle of context deals with raw data directly gathered from its
sources in the environment |73|. The crucial information this phase discovers is about
how context can be extracted from the environment and about technical details such as
the characteristics of the underlying messaging infrastructure.

The data produced in this phase is classified as primary context and the resulting
design decisions of this phase need to provide extractable context [73]. A short summary
of the most important points in this section can be found in Table

Responsibility

The context is extracted from smart home events, which are pushed by smart devices
in the COSYLab environment. This means that the components acquiring the context
are designed to listen to new events for gathering contextual information [33]. The
alternative to listening to events would be repeatedly requesting new context, which
would be necessary if the environment was set up to support pulling information |73].

Frequency

An important distinction in the phase of gathering context is whether the context is
obtained instantaneously or periodically with the main difference between periodic and
instantaneous events being whether a certain point of time can be assigned to the event or
not [73]. In a smart home, an instantaneous event represents an input such as a request
to open a door, while a periodic event represents a measurement of a continuous state in

49

5. Solution Design

Where does
the respons-
ibility for

acquisition lie?

The context is gathered from smart home events,
which are pushed by the devices and sensors in the
environment.

Is the context
generated peri-
odically or in-

The events of sensors are pushed regularly while
the events representing user interactions are instant.
Therefore, both types of context generation exist.

stantly?

How does the | COSYLab features a messaging middleware, which
underlying is responsible for the distribution of events.
communic-

ation infra-

structure look
like?

What kind of
sensor types
are present in

Sensor types are distinguished by the way of data
acquisition and the three types are measuring directly,
querying other services, and publishing the result or

the environ- | a combination of the two. All three are present in
ment? the environment.

Is the con-| Smart sensors provide sensed data and the interac-
text manually | tions between the residents and the smart home are
provided, manual input. Derived context is not interesting in
sensed, or | the scope of this work.

derived?

Table 5.1.: Context Acquisition: Crucial Insights

the system such as a sensor repeatedly sending updates about the room temperature.
Therefore, both types of frequency need to be considered by the design while obtaining
context.

Source

The third design decision is based on the present communication infrastructure, which
is used to obtain the context [73]. In COSYLab, a messaging middleware is used for
the communication between the various components in the system and the events with
context are exchanged over messages in the middleware.

One important responsibility of a middleware in a smart home is to provide an interface
between context-gathering devices and other components in the environment, which do
not necessarily work with the same data types [105]. Effectively, this means that the
middleware is hiding the more fine-grained sensor details and making the context more
accessible for other components [47]. This allows for a resulting design decision of simply
adapting to the present messaging infrastructure to get the smart home events for the

50

5.1. Context Information Management

context acquisition.
Sensor Types

Data sources for contextual information can be distinguished by whether the resulting
data is measured directly, like a thermometer does, or polled from other sources and
published as data, like a calendar, or a combination of the two, like a device for gathering
information about the weather [73]. All of the mentioned types of data sources are
present in the underlying environment, which is why the design needs to be able to deal
with all types of smart devices and sensors.

Data Types

The last design question in the acquisition phase is what kind of data is extractable in
the environment and distinguishes between the types sensed, derived, and manually put
in [73]. Sensed data is a common scenario with smart sensors and smart devices and
manually put in data is present due to user interactions and configurations in the smart
home.

The last form of data type is less interesting in the scope of this work since deriving
data refers to external services being included or data being derived in the form of i.e.
calculating the distance between two received locations by performing a mathematical
operation. This means, that only two of the three data types are considered in the design.

In conclusion, the design decisions of the acquisition phase result in a smart home com-
ponent listening to periodic and instantaneous events over a middleware communication
infrastructure. Furthermore, the data sources can gather the data directly themselves or
through polling external information or be a combination of the two and the types of
data are raw sensor data or user inputs.

5.1.2. Modelling Phase

At the end of the first phase the raw sensor data is obtained and the next step is to
represent the context as meaningful low-level attributes in the system. In this work, the
design method to determine which contextual information is read out of the raw sensor
data is based on CAMeOnto [2]. The benefit of using CAMeOnto is its environment
neutrality, imposing very few restrictions on resulting context models.

CAMeOnto neither suggests nor imposes an order in which its interrogatives need to
be used [2]. Therefore, they will be ordered to make this section easier to read and more
understandable by starting with boundary context, then discussing the internal context,
and at the end introducing external context. At the end of this section, there is a short
summary in Table presenting the crucial information gained by each interrogative of
CAMeOnto [2].

o1

5. Solution Design

What

The first question, what, asks for what exactly needs to be provided to the user and steers
the designers to define design goals for the context model and to determine the boundary
context [2]. This work is set in a smart home environment and for the first research
question, the behaviour found in the environment needs to be represented by estimation
models in the form of behaviour patterns. The second research question requires the
context model to provide access control based on these behaviour patterns, which means
that the service supported by the context model is an access control service.

Access control usually assumes that the virtual user sending a request is also the valid
person behind the virtual user [20], which makes the system vulnerable to a malicious
outsider attack [62]. Using behaviour as the basis for access control can help to minimize
the threat of that attack pattern by comparing the current behaviour of a user against
the usual behaviour of the user and if they mismatch, the system can take further actions
to prevent harm.

The security of the smart home system can be further improved by comparing states
found in the system against the usual states present in the system. To achieve this, the
sensed states are monitored and compared to their respective expected reference value.
If a significant difference is found between an expected state and a current state, the
smart home can use its advanced options for security and warn the inhabitants or notify
the respective public authorities [81], i.e. the fire department in case of extremely high
temperatures.

Who

The second question in the CAMeOnto ontology encourages questions about the target
users in the system, giving insight into internal context related to the users [2], i.e.
how much technical knowledge can be expected of a user. In the case of a smart home
application, the target user group cannot be narrowed down to a specific subset of people,
because home appliances are in an environment used by everybody. Another insight
gained by this interrogative is what information is necessary to distinguish the users. In
the case of COSYLab, a simple identifier is sufficient.

Besides the direct information about a user, it is also useful to consider possible
relationships between the users. This enables further meaningful context in smart homes
since people living together also have a relationship with each other, which can influence
their behaviour. The relationships between users are further discussed in Chapter [5.4]

Why

In CAMeOnto, the third question refers to the devices and the activities in the system by
asking about the ways of the service being provided to the user. The question has to be
asked like “Why is this service provided to the user” and the answer can be “The service
is provided to the user because an activity is performed” or “The service is provided due
to a device”.

52

5.1. Context Information Management

The devices in the environment refer to the smart devices in the smart home, while the
activities refer to the measurements taken by sensors and the interactions the users have
with the devices. A more detailed look into the activities provides related external context
such as descriptions of activities, context related to the activities, if and how the activities
are related, or what information provided by other activities is influencing an activity
[2]. In COSYLab, activities are called events and are divided by what triggered their
creation. Passively created activities are called periodic events due to the represented
sensor measurements being taken periodically while the activities created in response to
user inputs are called control events due to the user making an input to control a device.

Periodic events represent measurements created without any user input by smart sensors
and are defined by which sensor took the measurement, the value of the measurement,
and the time the measurement was taken. Control events are created in response to user
input, which represents the users interacting with the devices in the smart home and can
be described by the user triggering the activity, the device involved in the activity, and
the time the activity is processed. Events are described in more detail in Chapter

Besides the activities, CAMeOnto furthermore encourages to identify additional external
context related to the devices in the context model [2]. Similar to the information needed
to identify a user, the information needed to identify a device is a simple identifier.
Furthermore, there can also be semantic relationships between devices, which can be
used to more accurately predict behaviour in the system. Relationships between devices
are discussed in more detail in Chapter

When

The behaviour of the residents in the smart home can be influenced by various temporal
factors and in the scope of this work the temporal context is the central and most
important context for determining the behaviour in the smart home. Periodic and
instantaneous events in the system are expected to vary heavily at different times, even
in shorter time intervals.

Periodic events represent regularly captured states in the system by a smart sensor and
different states are expected to be found depending on the time of day, i.e. a temperature
sensor will measure lower temperatures at night than during the day. Instantaneous
events, which are also called control events, represent the interactions a smart home
resident has with the devices in his home, which also depends heavily on the time of day
since i.e. meals will usually be prepared before breakfast, lunch, and dinner. A working
user is usually absent from home during working hours and will not have any interactions
with the smart devices during working hours.

Considering bigger time intervals, behaviour also changes between the days in a
week. A sensor will possibly find different states in the home on weekends compared to
weekdays and even between the weekends and between the weekdays a lot of differences
can be encountered due to various factors such as a flexible duty roster of a smart
home inhabitant. An example for changing behaviour in the states of the system is the
thermometer, which recognizes the heating of the rooms when a resident is present and
since the presence of the inhabitants can differ between the respective daily schedules,

93

5. Solution Design

the thermometer will measure different behaviour in different days. For control events,
the same situations can be used to describe an expected change in behaviour. A smart
home resident working or going to school is not at home interacting with devices during
working or school hours, but during the same times of the day on weekends or free days,
interactions are to be expected.

Another insight that can be derived from investigating the temporal requirements of
the context model offers a possibility to group the behaviour. Control events are grouped
into clusters, which are used in the reasoning phase to create the control event patterns,
and the periodic events are divided into time slots, which are used in the periodic event
pattern as reference points.

Where

Locations are commonly used in many context-aware applications and in the scope of
a smart home, it can be very beneficial to include where the actions are taking place.
In the scope of this work, the location of the smart home resident is assumed to always
be in the appropriate location because COSYLab does not provide sensors to track the
locations of the device and resident.

It is furthermore possible to include other location-based context types influencing the
behaviour in the smart home. One example is the number of present users in one location,
which changes for example how often a user is interacting with a coffee machine or which
devices for entertainment are interacted with. This feature based on location-based
context is only discussed as future work in the scope of this thesis due to the lack of
support in the underlying environment.

5.1.3. Reasoning Phase

Similar to how other applications dealing with big amounts of data are facing performance
challenges [108], using low-level context becomes unfeasible quickly due to the big amount
of data produced in an environment with many sensors |73]. Due to runtime requirements
set implicitly by the second research question of this thesis, the low-level context described
in Chapter [5.1.2]is not sufficient to use behaviour properly.

In the scope of this work, it would be necessary to iterate through all previous events
for each access request without a loss of QoE, since the user is waiting for the request
to be processed. Therefore, computational time needs to be saved during an access
request by introducing high-level context, also referred to as secondary context [73].
Multiple types of high-level context are introduced in the scope of this work and a short
description of each secondary context type including a reasoning method is provided in
this section. A more detailed description of every high-level context type can be found in
their respective sections. This section serves as an overview of these context types and
furthermore, short summaries of what is provided in this section can be found in Table

54

5.1. Context Information Management

What?

The service that shall be provided by the context model
is behaviour pattern recognition in the smart home en-
vironment COSYLab, which sets the boundary context
[2]. The ultimate goal of these patterns is to be used
during access control, which would work especially well
against malicious outsider attacks [62].

Who?

The users of home appliances are expected to have every
possible background, which includes the possibility of
them not having any technical knowledge [27]. Simple
identifiers are enough to identify users in the system.
Relationships between users are supported in the con-
text model due to the smart home residents having a
relationship with other inhabitants.

Why?

Activities in the smart home are divided into periodic
events, representing sensors publishing measurements
without user input, and control events, representing
user interactions with the environment. Devices in the
smart home are distinguished by simple identifiers and
semantic relationships between devices are supported
by the context model.

When?

The temporal aspect of the context model is the crucial
context used to distinguish behaviour. In smaller time
spans, the day is divided into time slots for periodic
events, while control events get grouped into clusters to
determine the interaction times. In larger time spans,
the days in the week are expected to have different
behaviour, which is why context is divided by the days
of the week.

Where?

Context-based on location is often used in context-aware
applications, but in this work, there is no location-
based context due to a lack of support in the underlying
environment.

Table 5.2.: Context Modelling: Summary of low-level Context

95

5. Solution Design

Behaviour Pattern

The analysis performed on the low-level context needs to estimate the behaviour in the
smart home environment and store the results as prediction models capable of being
evaluated against quickly. Therefore, behaviour patterns are introduced as a high-level
context type in the form of persistent data models, which allows for the evaluation of
newly incoming events to be performed against a behaviour pattern directly retrieved
from the database. The behaviour patterns are described in more detail in Chapter

The method of calculating the behaviour patterns needs to be decided, which includes
the decision of how many methods need to be included [73]. There are different types of
methods that can be included and the method used needs to be chosen based on what
low-level context is available and on what the resulting high-level context should be. The
smart home events are the present low-level context and the behaviour patterns are the
target high-level context, which makes supervised learning [42] and unsupervised learning
[9] seem like promising approaches.

For a supervised method of examining behaviour of users, supervision needs to be
provided [42], which would have to be in the form of either the users themselves having
to provide estimations of their usual behaviour or in the form of predefined examples by
the developers, but both alternatives are rather poor options. Users are not trained for
such a complex task and the reasoning would put an unreasonable effort on the users to
work properly, while predefined examples provided by the developers before deployment
are too error-prone since the daily habits vary heavily between users, which is why no
global example fitting all patterns can be provided.

While including supervision leads to suboptimal choices, unsupervised learning is a
more promising approach to analyzing the behaviour of the user. Without supervision,
the application has to determine the patterns in the behaviour solely based on the events
raised in the system, making the reasoning fully automated and independent from any
further input [9]. More details about patterns can be found in Chapter and a visual
representation for a better understanding can be found in Chapter [6.10

Pattern Correlation

The second research question requires behaviour patterns to be included in access control.
Therefore, the policy administrator needs to choose specific patterns for the evaluation
process, which is a role usually filled by the homeowner in a smart home environment.
For this reason, the user needs to be provided with information on which the decision
which pattern to choose can be based.

Besides a visual representation of behaviour patterns displaying an understandable way
of what a pattern allows and disallows, an additional indication of when a pattern should
be replaced needs to be provided. This is necessary due to the nature of behaviour being
approximated over time [10] and the possibility of the behaviour adjusting to external
factors. Therefore, an additional high-level context type is created from behaviour
patterns by comparing them with each other to express their degree of similarity.

o6

5.1. Context Information Management

The design decisions for pattern correlations need to be based on how to convey the
information as easily as possible to the user. A proper indicator of how similar two
patterns are displays the similarity in percent because this is a universally understood
metric. This indicator is called the correlation between two patterns and fuzzy logic
[112] promises to provide proper reasoning methods for determining a degree of similarity.
The previously used unsupervised learning methods are suited for creating user profiles
or to find patterns in unlabeled data |73] but are less recommended in this use case.
Correlation is discussed in Chapter where more details about the integration of the
features are provided.

Group Suggestion

The context model supports relationships between users and devices, which are introduced
as device groups and user groups respectively. Furthermore, these relationships are
integrated into the access control process as well. Details about the feature introducing
groups are discussed in Chapter with more details about what can be grouped and
how groups are evaluated in the access control model is discussed in Chapter [5.5] and
Chapter

One important thing about the groups is that they are completely managed by the users,
which can be challenging for some users. To facilitate group management, suggestions
for groupings are created as a high-level context type and are provided as two separate
values indicating to what degree a relationship is determined by the system. The two
values represent how many common interaction counterparts a considered subject or
object has and how many counterparts would be possible. This means, that the two
values indicate how many devices two users commonly use or how many common users
two devices have. This metric, which is created with fuzzy logic [112], is used because it
is more intuitive than a percentage value.

5.1.4. Dissemination Phase

In the fourth phase of the life cycle of context, the resulting high-level context of the third
phase and the resulting low-level context of the second phase needs to be made available to
the system [73]. COSYLab uses a messaging middleware for the communication between
the components, which is also used to bring the context, that needs to be distributed, to
the components consuming it.

In the scope of this concept, it is mainly important to disseminate the behaviour
patterns, since they are the main feature introduced and since the behaviour patterns are
also created to make the gained insight easily accessible. The other high-level context
types also provide useful information for the user and for the other components, but
disseminating the low-level information does not give as many benefits, since the raw
context is a huge amount of data that cannot be processed in real-time [108].

The higher-level context types presented in this work are distributed by being published
and other components can subscribe to message queues for the information [33]. The
evaluation results used in access control are furthermore made available in queries to

57

5. Solution Design

Behaviour Pat- | Behaviour is evaluated in runtime for access con-
tern trol requests, which is why behaviour patterns
are required to be evaluated quickly to preserve
the QoE for the users. Therefore, the behaviour
patterns are created with unsupervised learning
methods [9] and stored persistently so that they
only need to be retrieved and evaluated against
for access control.

Pattern Correla- | Correlation serves as an indicator of how similar
tion two patterns are, so that policy administrators are
aided in their decision on which behaviour pattern
to set. The correlation is displayed in percent and
uses fuzzy logic [112] in the analysis process.

Group Suggestion | Groups are a feature introduced to support the
access control and are completely managed by
users. To aid the users in the management process,
group suggestions are created with a fuzzy logic
method indicating a degree of relation [112].

Table 5.3.: Summary of the high-level context types with reasoning method

make the provided features properly usable to fulfill the requirements of behaviour being
estimable at runtime given by the second research question.

5.2. Events

Smart home events are used for the communication between components in the envir-
onment and a middleware architecture is used for the exchange of messages. In the
scope of this work, smart home events hold the raw data gathered in the first phase of
the life cycle of context 73], and a messaging middleware is responsible for the context
acquisition [47].

Two types of events generated in the environment are interesting since these are the
events needed to create estimations about the behaviour of the users and the system. The
two types of events are called “control events” and “periodic events” and are semantically
divided by whether a device or a user has triggered them. The first research question
of this work requires the behaviour in the smart home to be translated into behaviour
patterns. In the smart home environment, user behaviour is represented by control events,
and system behaviour is represented by periodic events. Each event encompasses a set of
low-level contexts, which is also referred to as the metadata of the event. Which context

types an event has depends on the type of the event and a general overview is given in
Table 5.4

o8

5.3. Behaviour Pattern

Event Type Context Type
User Device Temporal
Control Event yes yes yes
Periodic Event no yes yes

Table 5.4.: Events and their metadata, a set of low-level context

5.2.1. Control Events

The smartphone became ubiquitous in the daily life of most people |13] and being able
to control the smart devices in the home remotely with it is a common benefit of smart
homes, facilitating the daily activities of users [80]. Control events are classified by their
characteristic of being created in response to user interactions. Whenever a smart home
resident uses his smartphone to remotely interact with a device in the home, i.e. signaling
the coffee machine to make a cup of coffee, a control event is raised.

The crucial context types in a control event are the initiating user, the device on which
the event is performed upon and the time of the execution itself. These three low-level
context types serve as the metadata of control events.

5.2.2. Periodic Events

In an IoT environment, the devices, also called Things, communicate with each other
[101] and since smart homes are IoT environments, devices found in a smart home send
various information such as their status, in the form of an event to the system [80]. All
events created by devices in the environment are referred to as “periodic events” in the
scope of this work. Periodic events are regularly created by smart devices and are either
updates on their status or measurements of smart sensors.

Periodic events have the same context as control events, except that periodic events
do not include user information. This leaves periodic events with the identifier of the
device it was created by and the weekday as metadata. Besides their metadata, periodic
events also include a timestamp and a numerical value, if the event is a measurement by
a smart sensor.

5.3. Behaviour Pattern

Behaviour patterns represent the translated behaviour as a high-level context type in
the smart home environment and they are used to represent this behaviour in the access
control process. This makes the behaviour pattern a central component in the answers
to both design-related research questions. The first research question is provided with
the requested way of translating behaviour into context-aware behaviour patterns while
the second research question is provided an estimation model usable during the access
control request.

99

5. Solution Design

The two important processes behaviour patterns are involved in are the analysis, the
process creating them, and access control, the process using them. Details about the
analysis process are provided in this section, while the details about the decision-making
process are discussed in Chapter [5.5l Furthermore, Chapter includes information
about the integration of the behaviour patterns into ABAC.

Analysis Schedule

Since behaviour is defined by repeatability [10], big changes affecting the behaviour
are observable due to the repeated diversion from existing patterns and need to be
analyzed and integrated as soon as possible into behaviour patterns. Therefore, behaviour
patterns are updated regularly, resulting in a new version of every pattern being released
periodically after a set time interval. The only restriction the nature of the behaviour
patterns puts on the analysis schedule is that behaviour patterns need to be ready before
the time span in which new events for a pattern can appear.

Event Grouping

A separate pattern type is introduced for both event types since different types of
behaviour are represented by each event type. Due to their differences, the analysis and
the evaluation process need to be different for the pattern types. Dividing events into
control events and periodic events is not sufficient to distinguish behaviour meaningfully,
which is why events need to be grouped in the analysis process.

During the analysis process, the events’ metadata is used for grouping, and for each
of the resulting sets of metadata, a distinct behaviour pattern is created. All related
events belong to exactly one pattern and have exactly matching metadata, which is also
referred to as their metadata being considered as equal. Furthermore, low-level context
is not shared between behaviour patterns.

The metadata used to group events is designed to include the crucial contextual factors,
which cause significant and observable differences in the behaviour if one of these factors
is exchanged. The reason for this design decision is that each set of metadata is treated
separately in the pattern creation process. Therefore, newly created events are assigned
to a specific pattern based on all of the factors given by its metadata and evaluated
against that pattern. The pattern creation process is based on all previously created
events available at the time of the analysis.

Access Control Considerations

Waiting times for responses of systems need to be minimized and operations performed
on every request in a network application should especially be as efficient as possible
[21]. Since behaviour patterns are used during access control as requested by the second
research question, they need to be quickly accessible and processible at runtime, which is
why they are stored persistently as prediction models rather than the unfeasible approach
of always reanalyzing all available low-level context |108]. Due to this design decision,

60

5.3. Behaviour Pattern

the reasoning and dissemination phase are completely independent of each other [73].

5.3.1. Control Event Pattern

The daily routine of a person is a very complex schedule involving a lot of different
locations, devices, and activities. Control event patterns are responsible for capturing
the behaviour determined by interactions a smart home resident has with the home
environment. Tracking the behaviour of the users is based on control events since each
control event represents one interaction the users initiated with the system. Putting all
control event patterns of a specific user together can be considered the user profile of
that user. Table presents the crucial details of control event patterns.

Smart home environments have various available devices with distinct semantic usage
[80]. Therefore, a unifying analysis approach is needed that is applicable independently of
device type and results in a control event behaviour pattern equally serving as prediction
models for all device types.

The unifying approach of analyzing user interactions is based on the interaction times,
resulting in a device type independent user profile for each resident in the smart home. A
fitting mathematical model needs to be selected to achieve the goal of the analysis process
as part of the reasoning phase [73]. Providing references is suboptimal as described
in Chapter and therefore, the behaviour patterns are created with unlabeled and
unstructured data, which provides a ground for unsupervised learning [73].

K-means clustering [99], an unsupervised learning method [9], is used to create clusters
within all control event groups based on the timestamps of the control events. The
algorithm is set up to create as few clusters as possible and if predefined acceptance
criteria aren’t met, the algorithm is repeated trying to create a proper clustering with
one additional cluster.

The acceptance criteria for a cluster require it to stay under a threshold regarding the
number of events that are too far away from the center. The resulting usage clusters are
also referred to as control event peaks, control event pattern peaks, or usage peaks. A
visualization of a control event pattern can be found in Chapter in Figure

5.3.2. Periodic Event Pattern

Periodic event patterns represent usually found states in the environment that can be
measured by a numerical value, i.e. measured by thermometers, humidity sensors, light
sensors, etc. Note that there are more types of periodically sent events in the smart home
environment such as updates about the current state of the device, but only periodic
events containing numerical values are analyzed due to their comparability. Table [5.6
presents the crucial details of periodic event patterns.

A smart home can have any number of smart sensors deployed, which do not necessarily
measure the same state or in the same unit. Therefore, it is necessary to apply a unifying
analysis approach independent of measuring unit or device type, which produces an
equally valid prediction model for any kind of underlying measurement type.

61

5. Solution Design

Reasoning The reasoning method used to create control event

Method patterns is K-means clustering [99).

Semantic Rep- | One control event pattern represents the interaction

resentation one user has with one device on a specific day of the
week.

Insight Control event patterns provide the expected interac-

tion time spans in the environment.

Components One control event pattern consists of usage clusters,
which feature two values: their usage center, a
timestamp within a day, and a standard deviation.

Accuracy The usage times of the different devices are not going
to be predictable to the minute. This is why the
standard deviation is important for a usage cluster.

Table 5.5.: Control Event Pattern: Crucial Details

Measurements by smart sensors are continuously taken throughout the day, which
is why clustering algorithms do not give any meaningful insight into periodic events.
Instead, periodic events are divided into fixed time slots throughout the day, effectively
creating an interpolation. Each time slot has the same size and together the time slots
cover exactly a whole day, which introduces a linear distribution model for the time slots.

Besides the timestamp used to determine the time slot an event belongs to, periodic
events furthermore encompass a numeric value from the measurement. The numerical
value is used to calculate an average value and a standard deviation for every time slot.
Using standard deviation and average value assures that periodic event patterns work
equally for each smart sensor regardless of the amplitude and variance of the data. The
reference values in the time slot and the time slot itself in a periodic event pattern is
also referred to as periodic event pattern value. A visualization of an example periodic
event pattern can be found in Chapter in Figure [6.5

5.4. Semantic Groupings

Humans have certain relationships with each other, which potentially impact their
behaviour, i.e. being family or work colleagues. For a context-aware application aiming
to analyze behaviour of users in the system, the ability to include relationships between
users is highly beneficial. Furthermore, devices can also be grouped based on their
similarities and relationships, i.e. their physical location or their function.

62

5.4. Semantic Groupings

Reasoning The reasoning method used to create periodic event
Method patterns is a calculation of the average value and its
standard deviation for each time slot.

Semantic Rep- | Periodic event patterns represent what one sensor
resentation usually measures during a specific weekday.

Insight Periodic event patterns give insight into what states
are usually observable throughout the day in the
smart home environment.

Components Periodic event patterns encompass a set of reference
values for measurements with standard deviations,
which are divided into several time slots.

Accuracy By providing several values, the periodic event pat-
tern allows newly created periodic events to be com-
pared against a localized value instead of a global
value, allowing for higher accuracy.

Table 5.6.: Periodic Event Pattern: Crucial Details

So far the context model has covered low-level information, encompassing only data
directly accessible in the events, and one form of high-level context, behaviour patterns
for user interactions and smart sensors. Control event patterns represent the relationship
between devices and users, which is not the only relationship found in the underlying
environment. In this section, groups are introduced as relationships between users and
between devices respectively as another form of high-level context.

Purpose of Grouping

Until now, behaviour is modeled by assigning one behaviour pattern to a specific situation.
This means that new events are assigned to a behaviour pattern based on their metadata.
User groups furthermore enable the consideration of every behaviour pattern matching
the metadata after the requesting subject is replaced with a different subject from the
group. Device groups work the same way but replace the device context in the metadata.
Note that including multiple patterns is only intended for control events. This feature
does not work for periodic events, because they include measurements with numerical
values, and due to the heterogeneous nature of the data of smart sensors in the smart
home [85], the resulting pattern cannot be used interchangeably in a meaningful way.

Management Considerations

It is possible to determine relationships between entities by analyzing common behaviour,
but the knowledge of similar interactions within the system does not imply what kind of
relationship two users or two devices have with each other. This could cause errors such
as children getting grouped with their parents, a scenario in which children might get
access to devices they are not intended to have. Therefore, it is a necessary design choice

63

5. Solution Design

to put the users in charge of the groups. The users are aware of what relationships exist
in the environment and can create meaningful groups based on that information, which
makes the system less error-prone.

Both group types are totally controlled by the users in the system, including creation,
maintenance, etc. Therefore, the feature must be made understandable and usable for
the average smart home resident, since the users in a smart home environment can have
any possible background [27].

Group Suggestions

To help users, who do not necessarily have a deep understanding of smart homes or IoT,
it is necessary to present aid in a commonly understandable form. One high-level context
created in the reasoning phase [73] to provide this help is group suggestions, indicating
how many devices are commonly used between two users or how many common users two
devices have. Even though behaviour has so far only been defined by behaviour patterns,
which are created using unsupervised learning [9], groups are adding a supervised element
to the observed behaviour and the ACM. How groups are involved in the ACM is described
in more detail in Chapter [5.6]

As mentioned in Chapter [5.1.3] a proper way of displaying context needs to be chosen,
which means a readable and understandable way for users needs to be chosen. While
a percentage is understood by users, it would be confusing to display how much the
behaviour of two users or two devices have in common as a percentage value, which is
why the method of common users or common device usages is chosen.

5.4.1. User Groups

Humans have many different relationships with each other and forming groups is a natural
characteristic of people in society [7]. Some people are related, others are friends or are
living together. These associations between users are represented by user groups and are
integrated into the behaviour of one user by including the behaviour of associated users.

The shared goals, interests, activities, and routines of groups of people like families
lead to similarities in behaviour such as the routines and tasks built around the family
commonly having dinner together. There are several different scenarios in which behaviour
of other people in a home can be used in estimations for the behaviour of a person.

Absent Resident

Many example scenarios in which user groups are useful include the absence of a resident
or at least the temporary inability of a person to carry out a task. When a person is on
vacation, housework usually done by this person needs to be done by another person,
which means in many cases that already tracked routines can be used as behaviour
patterns for the substituting person. Furthermore, behaviour patterns of infrequently
substituting residents take much longer to form due to the data being collected much
slower.

64

5.4. Semantic Groupings

A dishwasher that is always used after dinner by the same person will, even if that
person is absent, likely be used after dinner. In this case, the tracked behaviour of the
substituting person likely does not recognize the transferred task as expected behaviour
without including the already established behaviour pattern of the absent person.

Fixed Time Activities

Tasks that are highly inflexible in regards to when they can or have to be performed
benefit from the inclusion of user groups. The preparation of breakfast in the morning of
a family has to be done in time for the children to eat before going to school. One adult
person potentially prepares the breakfast more often than the others, even though all
adult residents in the smart home can carry out the task.

In this case, the behaviour pattern of the person performing the task more frequently
becomes accurate faster than the behaviour patterns of the other users. By using the
behaviour pattern that becomes reliable first also for other users in the group nullifies
the additional learning time of all other patterns once the first pattern captures the
behaviour.

Shifting Chore Schedule

Chores are often divided by weekdays with a planned schedule, in which every weekday a
different user can be assigned to carry out the task. In a situation, where another resident
takes over a task, a new pattern needs to form for the resident the task is transferred
to. Then, the process of a pattern forming needs to be gone through again, because the
behaviour is determined as unusual for some time after the handover. This additional
learning time is completely avoidable and unnecessary, since the behaviour itself did not
change, but was transferred to a different resident.

5.4.2. Device Groups

Devices can be related to each other in meaningful ways such as using their physical
locations or semantic similarities to draw connections between them. Using device groups
gives generally the same benefits as using user groups by making behaviour patterns more
flexible in many real-life scenarios, shortening the learning times of behaviour patterns.

65

5. Solution Design

Reasoning There is no reasoning method necessary for the cre-
Method ation of groups since they are not created in an
analysis process. Group suggestions are created by
using fuzzy logic [112].

Semantic Rep- | Groups represent the relationships between users and

resentation the relationships between devices.

Insight Groups enable the insight gained by other behaviour
patterns to be shared between them.

Components A group consists of all behaviour patterns associated

with the entities in the group.

Management The users of the system are responsible for the man-
Responsibility | agement of the groups, which includes their creation.

Table 5.7.: Groups: Crucial Details

Location

Building groups of devices based on locations needs consideration of granularity and
abstraction level [49]. In a smart home, high-level abstractions such as the room where the
device is located serve better as the basis for a device group than low-level abstractions
such as the physical distance between two devices.

When a resident is in a location or zone a device group is located in and interacts with
a device, then interactions with other devices of the same group are likely, i.e. a resident
using multiple kitchen devices while cooking. The assumption for the pattern sharing to
be meaningful is that if a behaviour pattern indicates interactions between a device and
a user, then it furthermore indicates user and device to be close during these usage times
as well. Therefore, it is likely that further interactions with other devices of the group
take place.

Use Case Similarities

Devices with similar use cases enable multiple scenarios in which the information about
their similarities improves the reliability of behaviour recognition. Creating groups based
on semantic similarities might be less intuitive since related scenarios lean towards a
device being used as an alternative for another device in the group instead of devices
being used together like in scenarios where groups are based on physical location.

One example scenario featuring semantically similar devices is a resident using multiple
devices in a daily leisure time span. Some devices can have a fixed time schedule such as
the resident watching a TV series every day from 7 pm to 8 pm, while the other devices
are used more flexibly during the remaining leisure time. In this scenario, a resident
having a fixed leisure time span observable between 7 pm and midnight might decide to
watch a movie after his favourite series finished.

66

5.5. Behaviour Evaluation Decision

Deviating from usual behaviour, i.e. watching a movie after the favourite series at 8
pm, is considered as deviating behaviour, even though the inhabitant always performs
recreational activities during that time span. Furthermore, behaviour patterns usually
form over several weeks after enough data is available and this process is delayed for
devices that are not always used. Treating the behaviour patterns as completely isolated
causes the information of the residents’ free time on that day to be approximately between
7 pm and midnight to be lost. Putting the devices into a group is implicitly providing
this knowledge.

5.5. Behaviour Evaluation Decision

Behaviour has so far been discussed with a focus on the first research question about
translating behaviour into context-aware behaviour patterns and different features sup-
porting this translation have been introduced. The second research question deals with
including the translated behaviour into an ACM and this section deals with a central
part of the supported ACM, namely the evaluation of smart home events. Note that the
details of how exactly the evaluation of events is integrated into the ACM are described
in Chapter

Whenever an event is raised in the smart home environment, it is necessary to assure
that the event is valid by being raised by a legitimate source and acceptable by displaying
a desired state in the system. An ACM needs to enforce an interaction in response to it
being requested by a resident, while a malicious outsider [62], impersonating a resident
[53] and requesting an interaction with a device in the home needs to be blocked. For
this reason, the ACM includes an evaluation process to determine whether an event in
the system is valid or not [88].

Decision Result

The output of the decision-making process is called the decision result and consists
of a classification, which is introduced in this section, and a probability, which is a
numerical value in percent, indicating to what degree the event is matching the usual
behaviour. The main purpose of the decision result is to indicate whether the system
needs to react to an event, which can be a suspicious request from a seemingly valid user
account or a suspicious state captured by a smart sensor. In the scope of this work, the
decision-making process is also referred to as the evaluation process.

False Negatives

It is important to consider that patterns are statistical approximations of the real
behaviour of users and must be used as prediction models and not as forced schedules.
Humans are always able to make unpredictable choices based on the available context,
which cannot always be predicted by a context-aware system [12]. A human who is sick
might show differences in his interactions with smart devices such as using the water
boiler in unusual frequency. The user needs to be able to perform any or no actions at all

67

5. Solution Design

at any time in the smart home even if the resulting behaviour mismatches the predicted
behaviour . This introduces a requirement for additional mechanics providing control
over the system for the user .

Assuming a person usually cooks between four and five in the afternoon, but after
being rescheduled at work, the person starts coming home two hours later that day from
work, which also shifts the cooking schedule. Ideally, behaviour patterns adapt after a
few analysis cycles, reflecting the new usage times for kitchen devices, but if all usages of
these kitchen devices get rejected and excluded from the analysis by the system, the new
usage cluster can never develop.

It is desirable for events to be classified falsely as rarely as possible, since residents of
the smart home would start to feel less safe and even controlled by the system instead
of in control of their home . While behaviour patterns need to detect deviating
behaviour, an oversensitive evaluation creating many false negatives would downgrade
the QoE, since users would wrongly be blocked by the system too often. Identifying and
blocking every malicious event is obviously the goal, but a bad precision, which is a low
rate of true positives compared to all positives , would lead to constant false alarms
by the system.

Groups are one feature introduced to minimize the false negatives by using behaviour
patterns interchangeably when appropriate, as described in Chapter Another feature
needed for the user to not be controlled or locked out of the smart home system is
external validations, which allow the user to override the decisions when a false negative
is found and are introduced in this section.

5.5.1. Classification

The goal of the decision result is to represent the information of whether an event matches
a pattern or not and the classification reflects this by providing different categories for
events. An overview of the possible classification categories can be seen in Figure [5.2]

__Ewected] uncertan] odd

1. Event matches the behaviour 1. No certain decision can be 1. Event does not match the
pattern made about whether the behaviour pattern.

2. Event is included in analysis. event matches the behaviour 2. Event is excluded from

3. For AC, the event is pattern. analysis.
suggested to be accepted. 2. Eventis included in analysis. 3 For AC, the event is

4 For smart measurements, no 3. For AC, the event does not suggested to be blocked.
further action is needed. need to be blocked. 4. For smart measurements, an

4. For smart measurements, no alarm should be raised.

further action is needed.

Figure 5.2.: The three possible classifications for a decision.

68

5.5. Behaviour Evaluation Decision

The classification is a property of the decision designed a scale ranging from rhythmic,
in this scope referred to as expected, to random, in this scope referred to as odd [49].
The purpose of the renaming of the values in the scale is to adjust for better intuitiveness
for an access control system.

It is important to exclude odd events from the process of analyzing the existing events
to create behaviour patterns because if they were included a malicious outsider would
only have to repeatedly trigger the same events until these events change the behaviour
pattern enough so that the attacker can interact with the system like a legitimate user.

5.5.2. External Validation

It is always possible that a valid event gets falsely classified as odd, which happens in
the expected scenario of a user deciding or having to deviate from the usual behaviour
[27]. Therefore, the user is given the possibility to override evaluation decisions. It is
important for applications to not lock out the user [27], which is especially true in smart
home environments, since it deals with home technology and sensitive data [6], and in
context-aware applications, which are complicated to understand for a user [12]. Users
might have trouble understanding what exactly leads to a control request being blocked
and therefore, users are given the right to override evaluation results, putting them in
charge of the evaluation process.

Another important aspect of external validations is that they change the classification
of an event into “expected”, including the event in the analysis process. Without external
validation, behaviour patterns would be rigid and would disallow big changes due to
them discarding all deviating events, which are necessary for patterns to adapt. This
would make the behaviour patterns useless after the first time the life of the users goes
through a big change.

5.5.3. Processing an Event

The process of evaluating an event is visualized in Figure [5.3] and the three steps are
further described in this section. Before the first step, the evaluation starts with a
decision based on whether a corresponding behaviour pattern for the processed event
exists.

The corresponding pattern is chosen based on the metadata of the event. If no corres-
ponding pattern exists, all other steps are immediately skipped resulting in a classification
of “uncertain”, which includes the event in the analysis, enabling a corresponding pattern
to be created.

External Validation

The first step in the evaluation process is to check whether an event recently evaluated
against the resolved pattern was externally validated, indicating that the evaluation
resulted in a false negative. Further prevention of false negatives can be achieved by
simply marking a behaviour pattern as externally validated for a reasonable period of

69

5. Solution Design

Pattern

Exists External Is Validated
Validation >@
Blicek Expected
Not Odd
Not Validated
Odd >@)<
Pattern - Group _
Evaluation v Evaluation Uncertain

»—>©

Odd

No Pattern Exists Yet

Figure 5.3.: General Evaluation Process of a smart home event

time. During the time a pattern is marked, all events are automatically treated as
externally validated, which results in a classification of “expected”.

A user can likely interact multiple times with a device in a short time span, which
would cause all resulting control events to be classified as “odd”. In this case, all of
these events would need to be externally validated, which is unnecessary if the user
validated the event related to the first performed interaction. For periodic events, it is
undesirable to send multiple suspicious state warnings, once the resident confirmed that
the unexpected state is valid.

Pattern Evaluation

The second step in the evaluation process is the pattern evaluation, where the processed
event is compared against the behaviour pattern to check to what degree the event matches
the resolved behaviour pattern. Both event types are evaluated against different behaviour
pattern types, which leads to them furthermore having to be evaluated differently. The
evaluation of a control event is based on usage clusters in the corresponding control event
behaviour pattern and the evaluation of a periodic event is based on reference values in
the time slots of the periodic event pattern.

Control events include a timestamp in their low-level context, which allows reading the
time of day the interaction is taking place. This time of day value is used to determine
the closest usage cluster of the control event pattern and the event is compared against
the resulting cluster. The evaluation against a usage cluster is quickly processed due to
clusters being defined by only two numbers, their center, and their standard deviation.

A timestamp is also included in periodic events, which is used to extract the time of
day the measurement is taken. Periodic event patterns are divided into fixed time slots
and the time of day of a periodic event determines to which time slot it gets compared

70

5.6. Smart Home Integration

against. Each of the time slots has a reference value, representing the expected state,
and a standard deviation, representing a confidence interval. The evaluation against a
periodic event behaviour pattern only requires a comparison between the reference value
in the respective time slot to the value of the measurement.

For both types of events, a distance is compared to a standard deviation. If the distance
is smaller than the standard deviation times one, the event is classified as “expected”,
if the distance is bigger than that but smaller than the standard deviation times two,
the event is classified as “uncertain” and if the distance is bigger than that, the event is
classified as “odd”.

Group Evaluation

Groups are only used in the evaluation of control events as described in Chapter [5.4
Therefore, this step is skipped for the evaluation of periodic events. If a control event is
classified as odd at the end of the pattern evaluation phase, the event might still have
been falsely declined. Especially during the initial learning time of a behaviour pattern,
it might produce many false negatives. Introducing the feature of putting users and
devices into their own respective groups aims to reduce the learning times for behaviour
patterns.

Groups help reduce the number of false negatives detected in the evaluation of events
by including more than one behaviour pattern in the evaluation process. This might
change the decision result into accepting the event, improving the feeling of safety due to
the system not second-guessing the user [27], which improves the QoE [18].

Group evaluations work by using all behaviour patterns of a group interchangeably.
This means, that an event gets evaluated once against each pattern in the group. Then,
the best result is chosen as the result for this step, which is simultaneously the final
result of the evaluation process.

5.6. Smart Home Integration

So far, this chapter has mostly dealt with the first research question, discussing in detail
how behaviour is translated into a context-aware behaviour pattern. The second research
question requires the behaviour pattern and other introduced features such as groups
to be integrated into the ABAC model [45] of COSYLab. This section deals with the
design details related to the second research question and the integration of the design
into the environment on a conceptual level. The realization details of the environment
integration are not part of this section and are discussed in Chapter [6}

The monitored behaviour in the smart home environment is represented by the beha-
viour patterns, which are described in Chapter [5.3] and subsequent events in the smart
home are evaluated against these patterns as described in Chapter The integration
of behaviour patterns in the underlying environment’s access control is realized through
attributes |45]. An access policy in the ABAC model requires an attribute to be com-
parable to a reference value. Therefore, an access rule needs to include a proper way of

71

5. Solution Design

comparing behaviour indicated by a smart home event to a specific behaviour pattern.
Simple examples for an attribute set in an access rule work with subject attributes, i.e.
requiring the age of the requesting user to be equal to or greater than eighteen.

In this section, two attributes for the direct inclusion of behaviour patterns into ABAC
are introduced. Furthermore, one additional attribute is presented, which is related to
behaviour patterns but cannot be the sole base of a policy, because of a lack of user
involvement. Then, one aid to users for choosing which behaviour patterns to set in
their policies is presented in the form of pattern correlations. Furthermore, this section
describes the messaging interfaces of the design.

5.6.1. Access Control Attributes

In ABAC, attributes are used in an access request by comparing the value determined
while processing the request with a target value set in the access rule [113]. For the
second research question, user behaviour needs to be evaluated against its respective
behaviour pattern and the evaluation result needs to be made available to ABAC. User
behaviour is estimated by requests made by humans to interact with a device in the
home, also referred to as control events as described in Chapter [5.2.1] When a control
event does not match the usual behaviour of the subject, the system needs to be informed
about the discrepancy to take further action.

The nature of the decision results enables two different rule types, namely rules based
on numerical comparisons and rules based on string comparisons. For the scope of
this work, one of the two options needs to be chosen. String comparisons utilize the
classification of the decision result, while the numerical comparison utilizes the probability
estimation of the decision result. The numerical option is chosen due to it being more
flexible from the user’s perspective compared to the alternative, which would restrict the
user to a set of predefined values.

For creating a rule including a behaviour attribute, the residents need to choose a
specific pattern, which is then used to evaluate all subsequent smart home events with
matching metadata. This design decision is a necessary measure to prevent access policies
from changing due to the regular releases of patterns as described in Chapter [5.3]

The attributes share the prefix “Context.Behaviour.Pattern.Device” due to the classi-
fication given by the ABAC model of the smart home and are distinguishable by their
suffix. Two attributes that can be used without any further prerequisites, namely:

e Singular Pattern Evaluation with suffix “Single.Control-Based”

e Group Pattern Evaluation with suffix “Group.Control-Based”

The first attribute covers the integration of a single control event pattern into ABAC. A
rule with this attribute requires a specific pattern to be chosen, which is used to evaluate
an access request. As a comparable value for the rule, a target confidence value needs to
be set for ABAC to compare the result of the evaluation process as described in Chapter
5.5| against. Semantically, a rule of this type represents use cases such as “Behaviour of
John Doe with TV on WEDNESDAY equals <target pattern> greater than 30%”.

72

5.6. Smart Home Integration

The second attribute is responsible for the integration of groups of control event patterns.
This attribute utilizes the groups discussed in Chapter for the evaluation process,
allowing multiple patterns to be included in one access control request evaluation. An
access rule written using this feature includes the same information as the first attribute
with one addition, which is an identifier for the group. This attribute semantically
translates several concepts to access rules such as “Grouped Behaviour in Adults of
John Doe with TV on WEDNESDAY equals <target pattern> greater than 50%” or
“Grouped Behaviour in Kitchen Devices for John Doe with Stove THURSDAY equals
<target pattern> greater than 30%".

5.6.2. Additional Behaviour Evaluation

System Behaviour alone is not interesting for access control due to it not including a
subject but it is still possible to improve the security of smart homes based on periodic
events. User behaviour can be influenced by various states in the system, which is
why periodic event patterns are still potentially beneficial as building blocks for more
complex access policies [81]. An example of an event raising an alarm in the system is an
unnaturally high temperature in a room in the home since this could indicate a fire.

The third attribute introduced in the scope of this work serves to evaluate system
behaviour by exposing the evaluation of measurements of smart sensors against periodic
event patterns introduced in Chapter An access policy cannot consist of only one
rule of this type, because no subject is attempting to access an object in the context of a
smart sensor taking a measurement. Instead, rules of this type are meant to be used as
building blocks for complex access policies, allowing the inclusion of information about
states in the system during the evaluation of other access rules. The third attribute has
the name:

e Singular Pattern Evaluation with suffix “Single.Monitoring-Based”

Periodic event patterns allow the access control model to evaluate whether states
measured by sensors in the smart home are within an expected range of values, which is
determined by a confidence interval around an expected average value. In access rules,
this attribute is used by writing rules like “Device Behaviour Pattern for WEDNESDAY
equals <target pattern> greater than 50%” and as target pattern, the access rule writer
chooses one of the applicable patterns. Note that the device does not have to be specified
for the access rules in the underlying access control model, since they are implicitly
associated.

5.6.3. Behaviour Pattern Correlations

Smart home residents are responsible for defining and maintaining the access policies in
their homes. Once a behaviour pattern is set to be used in an access control policy, every
new event raised in the smart home environment with matching metadata is evaluated
against that pattern, even after new versions of the pattern including more data are
released.

73

5. Solution Design

Behaviour patterns are released regularly to adapt them to changes of the estimated
behaviour [10], as discussed in Chapter Therefore, policies setting a specific behaviour
pattern need to consider an indication of when a rule needs to be updated in its design.

Replacement Recommendation

After the initial creation of access control policies, the residents decide when an access
policy containing an outdated behaviour pattern is replaced. It is necessary to support
users in making this decision due to the unintuitiveness of this task [12]. The time span
after which patterns are recommended to be replaced cannot be estimated generally,
because it differs between patterns due to several factors such as the frequency of usage
of the related device. A better strategy to suggest an update of the policies to the user is
to calculate statistical differences between newly created patterns and the currently used
patterns, creating an indicator for a replacement becoming necessary.

A new pattern is published regularly for every set of metadata including all events that
have been raised in the smart home so far, which means that the new pattern has more
data than the previous behaviour pattern with the same metadata. After a few analysis
cycles, the newer pattern might not resemble the old patterns anymore, but how much
two behaviour patterns are similar needs to be evaluated. Since this is a metric that
will be shown to the user, the design emphasis is put on choosing a metric commonly
understood, which is why the similarity is presented in percent. In the scope of this
work, correlations are used only as an aid for policy administration, which is why pattern
correlations is a feature considering only patterns with matching metadata.

Calculation

Correlation is calculated between patterns with matching metadata as part of the context
reasoning phase [73|. There are two types of behaviour patterns and both are treated
differently when the correlation is calculated between two of their patterns. The most
important factor of how similar patterns are is how much they cover each other, which
means to what degree they will accept the same events.

Periodic event patterns are divided into time slots with each time slot having expected
values and confidence intervals for the numerical values in measurements for smart sensors.
The correlation calculates an average over the distance between the expected values
in relation to the confidence interval for each time slot of a pattern compared to the
respective time slot in the correlating pattern.

Control event patterns consist of usage clusters, which have a time of day center and a
standard deviation, and whether an event is matching is determined by the distance to
the closest cluster. Similar to periodic event patterns, control event patterns are similar
if their usage clusters are covered in the other pattern. Each cluster in both pattern
types is compared to the closest previous and the closest subsequent cluster in the other
pattern, calculating an average in percent of how much each cluster is covered in the
other pattern gives the similarity between the two control event pattern.

74

5.7. Summary

5.6.4. Configuration Options for Residents

Configuration interfaces are responsible for adapting the operations to external needs and
for providing information, that is not obtainable otherwise. The interfaces are provided
separately because grouping them by their responsibility facilitates the development and
enhances the comprehensiveness of the design. There are a total of four configuration
interfaces for the design, which are built upon the existing messaging infrastructure:

e Pattern Management
e Group Management
e Policy Management

e External Validation

It is necessary to allow for external pattern management since a new pattern is released
regularly. This interface is used to delete obsolete patterns and enables tagging patterns
with additional information. The group management interface allows all CRUD [104]
operations to be performed against groups. All available information about patterns
and groups can furthermore be queried. Policy Management is required for configuring
complex policies and external validations require an interface as its name suggests.

5.6.5. Output Dissemination

The output of the design needs to be made available to the components that require or
are interested in the produced information. There two types of outputs generated by the
design are:

e Regularly Published Pattern

e Evaluation Decision

The information of patterns being created is designed to be published asynchronously
following the publish-subscribe pattern [33] to make the information available to all
components in the system. Decision results are also published for the same reason, but
they are also made available in a synchronous exchange for being obtainable during access
control.

5.7. Summary

In this chapter, the solution design and the decisions behind the design have been
discussed in great detail with each part being presented with a preceding requirement
stemming from one or more research questions of this work. The amount of information
makes crucial parts difficult to find, which is why this summary features a list of questions

75

5. Solution Design

and answers, which are written to serve as a comprehensive overview of the central design
information of the solution design.

The questions and answers are presented in Table giving an overview of the most
fundamental parts of the solution design, Table which discusses details about the
architecture in the underlying environment, Table presenting a technical overview
over the context introduced in this work and in Table which uses the life cycle of

What type of software
architecture is used for
the acquisition and man-
agement of context?

The solution design introduces an explicit
context model and interacts via a messaging
middleware software with other components
in the smart home environment.

Do the interaction
options feature active
or passive context-
awareness?

The users of the smart home have to specific-
ally set the patterns that are being evaluated
against, therefore the interaction options are
classified as active.

How can the context-
aware system feature be
described?

The system feature offered by the design can
be described as a passively executed service
since behaviour is measured passively and
once a pattern is set for evaluation, access
requests are evaluated against that pattern
without further input.

Table 5.8.: Context-aware design: fundamental information

How does the context
get acquired?

The context is acquired via a middleware
infrastructure provided by the COSYLab
environment.

Table 5.9.: Context-aware design: architecture

context [73] as a reference model to present details about the context.

76

5.7. Summary

MOTAIOAO JXJU0D USTISOP oIBMB-)X9)U0)) *(0T°G 9[qe],

"[g] 1xequ00 eUIoIUT SB POYISSe[D A[[RIoUaS ST INOIARYDg

J[ruID)
-Ur JO [euId)X0 papraoxd
odA) xoju0d Oy} ST

"SOI}IU9 9[(BAISSO S sdnoisd @>EU®QW®.H 19} pue hmwow.\/@@ ‘srosn SO.I11}89] [9POW }X93U00 9Y T,

JJepowt
IX0JU0D OU)} Ul POAIOS
-0 9 UBD SAIIIUS JEeYAM

‘TeATOIUT oW} 90S © Io3Je A[reorporrod pojepdn
Sure(JO 9Injeu ILY) 0) oNp IxX0juod pa[goid se pozirosaies ore surdljed Inoraeysq oy T,

jyurodpues)s [eUOI}RId
-do ue woy pezr103o1ed
9(1X0JU0D J) URd MOH

*JX9JU00 palmboe oY) FUISn PajeIouss ST YOIYM ‘JXoJU0d AIRPUO0ISS JO 23S o1}
9PNIOXd J0U SAOP ST} ey} 210N ‘suorjerodo Teuoryeinduiod [RUO)IPPE AUk SUIPN[OUT JNOTIIM
TUOUWIUOIIAUD 9} WOIJ U3 R} A[}00IIP IR sjuaAd o} dours Arewrrd st odA) uorysmboe poasn oy T,

;Arepuooss 10 Arewrid
se poyisse sodAy
uoryismboe oy} oIy

" UIR)ISOUN,, S® PAYISSR]D ST JU8AS 9} ‘USAIS 9] URD J[NSSI IRI[D OU 958D U]

"JUOAS PJRN[RAS ATJUSIIND 9Y) PUR INOIARYS([RNSN YY) UsSMIS([DJRWSIW © FUrjesIpul ,ppo,,
JO UOTYROYISSR[D © pue Wigj)ed INOIARYA(9} SOUDIRUI JUSAS PIJRN[RAS 91} JeT) Suryesrpul
«Pa10adxa,; JO UOIIROYISSRD © [IIM ‘SN[RA [RILISTINU S} UO PIsk(UOI}RZLIOSS)RD [RUOI}IPPE
UR PUR SN[RA [RILIOWINU ® 90nPpold $9INqLIjje 991y} [[B ‘UOIIRN[RAD SILI SS800R J[) SULIN(]
“Iosn ' SUIPN[OUL

jou InquIyye paseq-ursjjed juess orporrad IR[NSUIS o) 0 NP SO[NI $$800r Xo[duwod o10W Ul
pepniour aq AJUO URD 8UO JSB[S, 9INJLIJe Paseq-wIs)jed JusAs [01)U0d padnois sy pur
9InquIyje peseq-urojjed JUsAS [OIJU0D IR[NIUIS o) A[PWRU ‘HYHVY Ul A[}00IIp Posn oq ued
S9INQLIY)R ST JO OMT, “SI0M ST JO 8d0DS 81} UT PIONPOIJUT SSINLIYIR 93IYY) SIR SIS} ‘[[RISA()

Jpopraoad axe soryredoad
9INLIY)R JXSJUOD JRYAA

77

5. Solution Design

What are the central
design decisions of the
acquisition phase [73]7

The responsibility of the acquisition is based on the acquiring component, which pushes
the information to the other components. There are two types of events being consumed in
this stage of the life cycle with one of them being gathered periodically and the other one
being gathered instantly. The events are gathered via a messaging middleware infrastructure
and the sources include physical, logical, and virtual sensor types. The acquisition process
includes sensing and manual provision by users.

On what is the context
model based?

The context model is ontology-based and is modeled based on CAMeOnto [2].

What reasoning meth-
ods are used?

There are three types of high-level context created in the reasoning phase. The first one
is the behaviour patterns, which are created using unsupervised learning [9/. The other
high-level context types are group suggestions and pattern correlations and both are created
using fuzzy logic algorithms [112].

Is the distribution based
on queries or on sub-
scriptions?

The decision results, pattern updates, and other higher-level context types are pushed into
the messaging queues, enabling communication through subscriptions [33|. Furthermore,
there is also the possibility of specifically querying pattern evaluations for the access control.

Table 5.11.: Context-aware design: life cycle of context

78

6. Implementation

The concept introduced in this work aims to provide the knowledge of behaviour to a
smart home environment and focuses on supporting the ACM of the smart home with
this information. As part of this work, a software component is created to implement
the described solution design and is integrated into COSYLab, an existing smart home
application. The resulting smart home component is called behaviour engine, runs parallel
to the usual smart home installation in the local network, and is responsible for analyzing
the behaviour in the home and disseminating the knowledge that is produced.

An overview of the components interacting with the behaviour engine within the
smart home it is set in can be seen in Figure In the image, the architecture of the
smart home application is shown with the smart home devices being coloured yellow,
open-source components being displayed as green, and the software components related
to the behaviour engine being blue.

Smart Home Network
Smart Sensor —, p
Smart Light - <<component>> &l 7 <<component>> E]
=mart Light FACA @ Behaviour Engine
Event Evaluation
Smart OQutlet —] J
)\
Device @ f
Event <<component>> Smart
Interface RabbitMQ Home
Event
Interface
<<component>> & <<component>> ' |
Fog Controller MongoDB

() HTTP
\[/

<<component>> &I
Web Interface

Figure 6.1.: The underlying smart home environment

79

6. Implementation

The internal architecture of the behaviour engine needs to follow the described solution
design presented in Chapter [b| and be implemented to support all the described features.
Figure[6.2)displays a component view of the behaviour engine, showing its four components.
Three of the components are internal, which means that they cannot be interacted
with directly, but instead interacted with indirectly through the messaging component.
Therefore, the messaging component exposes the functionality of the analysis component,
the decision component, and the data management component to the environment. The
three internal components do not interact directly with each other but have access to a
common database.

OAmgp Messaging

Behaviour Engine

<<component>> 1l
Pattern Publishing Messaging Component Event Evaluation
i Handler Publisher Client |
<<component>> & <<component>> gl
Analysis Component /J\ Decision Component
<<compon_e_nt>> A Data Management T]
AnalysislInitiator <<component>> gl ControlEventDecision-
i i Evaluator
I a Configuration Component
PatternAnalyzer <<component>> & <<component>> &l
Pattern Manager PeriodicEventDecision-
<<component>> & Evaluator

GroupAnalyzer <<component>> g]

a Group Manager

<<component>>
CorrelationAnalyzer

<<component>> &l
Access Policy Manager

l<<yse>>
1

A 4
~<susex> _ _ ____ - > <<component>> Emmm e m - ===
Behaviour Database

Figure 6.2.: Component View of Behaviour Engine

This chapter aims to provide an overview of the most important details of the imple-
mentation to understand how the behaviour engine works and where it fits into the bigger
picture in the smart home environment. First, the related smart home components are
introduced to provide insight into the underlying environment and the related smart
home components. Then, the semantic integration of the behaviour engine into the ACM
is presented, which includes the attributes for the ABAC model and a description of
the exchanged messages. The behaviour engine features four components and in this
chapter, a section is dedicated to each of these components. The last two sections describe
the high test coverage present in this project and the graphical visualizations of the
behaviour patterns. Note that the web interface is not part of this thesis and therefore

80

6.1. Underlying Smart Home Infrastructure

no frontend pictures are included in this thesis with the pattern visualizations being the
only exception to this rule.

6.1. Underlying Smart Home Infrastructure

The smart home environment features several software components to provide the
promised home automation of a smart home. To support the software application, the
smart home offers an infrastructure that is responsible for providing services that are
shared between all smart home application components. The offered services include a
messaging middleware responsible for the entire communication within the smart home
and a database responsible for the data storage and retrieval. This section serves to
provide technical details about the infrastructure of the smart home environment, which
includes the shared services. Furthermore, the smart devices and sensors in the home are
presented in this section.

6.1.1. Smart Home Devices

All types of smart devices are supported by the environment, including smart sensors,
and these devices generate the data for smart home events. Whenever a user interacts
with a smart device, a control event is created, and whenever a smart sensor publishes
a measurement, a periodic event is created. After an event is raised by a device, it is
wrapped into a smart home event in the Fog Controller, which is a smart home component
related to the behaviour engine and is described later in Chapter

A smart device is any type of electrical device in a smart home, that is connected to the
Internet. These smart devices are remotely accessed by the smart home resident, usually
via their smartphone but any device with a web browser can initiate the interaction. A
smart sensor is deployed in the smart home and takes regular measurements of a specific
type and sends updates about the state it measures to the environment. Events based on
smart measurements are generated without any user input and are therefore processed
automatically in the environment. Whenever an event is received by the behaviour engine,
it evaluates whether the event matches the usual behaviour in the system. Details about
how the behaviour engine evaluates smart home events are presented in Chapter and
details about how the evaluation of events is integrated into the ACM are presented in

Chapter

6.1.2. Open-Source Components

All communication from and to the behaviour engine is going through an AMQP messaging
middleware [34], which is represented by an open-source RabbitMQ service in the smart
home environment. The behaviour engine accesses the functionality of the messaging
infrastructure with the java Spring packages for RabbitMQ [96] and AMQP [94].

81

6. Implementation

The smart home environment uses a NoSQL MongoDB database service [15] for the
storage of data and the behaviour engine performs its database operations with the
MongoDB package of java Spring [95]. The database scheme of the behaviour engine is
described in Chapter [6.3]

6.2. Related Smart Home Components

The two smart home components having a relationship with the behaviour engine are
the smart home event coordinating component, called Fog Controller, and the access
control component, called Fog Access Control Agent (FACA). These are the only other
smart home components that are interacting directly with the behaviour engine. Both of
these software components share their maven parent project with the behaviour engine,
which enables all versions of related third-party software to be kept equal across the
environment.

In this section, an overview of the responsibilities of the two related smart home
components is given. A general description of these applications provides sufficient
knowledge to understand what other components besides the behaviour engine are
important in the scope of this thesis, how they interact with the behaviour engine, and
what the behaviour engine needs to provide for them.

6.2.1. Fog Access Control Agent

The FACA is responsible for handling access control requests and is structured internally
following the XACML framework [36]. The access control model of FACA is based on
attributes, making it an ABAC model. When an access request is received by its PEP,
the request is forwarded to the PDP, which retrieves the access policy from the PAP and
processes each attribute on the list of rules in that policy individually. The attributes in
the policy provide a reference value and an operator for the PDP to compare the actual
information against. If the information supplied by the PIP matches the constraint given
by the access rule, the rule is fulfilled and the next rule is processed and an access policy
is only met if all access rules are met.

In the FACA, context attributes are not fetched by the PIP but are instead retrieved
by messaging the respective component responsible for the context type. This means,
that the behaviour engine is responsible for providing the behaviour attribute values that
are compared in the PDP, which is why the FACA is using the evaluation interface of the
behaviour engine whenever an access policy including a behaviour related access rule has
to be evaluated. Details about the communication between the FACA and the beahviour
engine are described in Chapter

6.2.2. Fog Controller

The Fog Controller is a smart home component with the responsibility of being the
distributor of requests and events within the smart home. This means, that whenever an
event is raised in the smart home or whenever a message is sent to the smart home, it is

82

6.3. Database

initially processed by the Fog Controller, which handles the request by forwarding the
message to other smart home components or by raising or wrapping the messages into a
new event.

The Fog Controller has the role of creating access control requests and send them to
the FACA whenever a device event requires access control. Once access is granted, the
Fog Controller wraps the device in a smart home event and publishes it, which is then
consumed by the behaviour engine. Furthermore, the Fog Controller is responsible for
forwarding configuration messages from the user to the behaviour engine.

The communication involving configuration requests for the behaviour engine is never
received directly from the user’s web application. Instead, all inputs a user sends to the
behaviour engine go through a RESTful HTTP interface |79], which is received by the
Fog Controller and translated into a request for the behaviour engine. Details about
what can be configured in the behaviour engine are presented in Chapter

6.3. Database

Every context type used and created in the analysis process is stored persistently, which
means that every feature described in Chapter [5| has its own database entries. The
behaviour engine stores all of its data types separately from other components in the
smart home so that it can work independently by not having to rely upon or interact
with the storage strategies of the environment. This section serves to give an overview of
the database scheme of the behaviour engine.

Control_Event Periodic_Event
¥ Device_Group_Suggestion User_Group_Suggestion ¥
. v 1
1 X X !
1 I I 1
1 + + 1
: Device Group User Group 1
1
Y ____ X X 1
: | e o o e e e e e e e e e m o ' !
[1
: ! 1
W !
Control_Event_Pattern +--0< Control_Event_Peak 1
1
i A
1 1 Periodic_Event_Pattern_Numeric_Value»o - - - - + Periodic_Event_Pattern
1 1
o ¥
L \ [
o) [
+ R : [
Control_Event Pattern External Validation Control_Event_Pattern_Correlation 1
1 1
1 1
Periodic_Event_Pattern_External_Validation Periodic Event Pattern Correlation : :
- - - [
[

Figure 6.3.: Database Scheme

83

6. Implementation

The behaviour patterns are the central component of the design as can be seen in
Figure the database scheme of the behaviour engine. The behaviour patterns are
coloured red and are connected to each other group of data types. Both pattern types
have their respective data type for evaluating further events, namely the control event
peak and the periodic event pattern numeric value.

The smart home events are coloured purple and are modeled after the events that
are created in the environment. These events encompass a set of low-level contexts as
described in Chapter which is used to determine the respective pattern they belong
to during the evaluation and during the analysis cycle. The reason for the patterns and
the events to have a relationship of one or more on each side is that no pattern exists
without smart home events and all smart home events are assigned to one pattern of
which a new version is released every analysis cycle.

The yellow-coloured entities are related to groups, which are introduced and described
in Chapter [5.4] Both types of groups are strictly separated and get their respective group
suggestions. Groups and patterns have zero or more relationships with each other due
to neither of them having to be associated with the other, but there is no limit to how
many patterns are part of a group and there is no limit to how many groups a pattern
can belong to. Groups are a feature that is exclusive for control event patterns, which is
why they do not have a relationship with periodic event patterns.

Pattern correlations are displayed as green and external validations are coloured in
blue. There can always be only one external validation for a pattern because either one
exists already and therefore no new one is created or one is expired and gets removed.
Pattern correlations exist between each pattern with equal metadata, which is why one
pattern can have any number of pattern correlations, but a pattern correlation is always
related to exactly two patterns.

6.4. Messaging

All communication involving the behaviour engine is performed via the AMQP messaging
middleware with JSON messages. The messaging component is divided into handlers,
which are responsible for receiving and processing messages from other smart home com-
ponents, and publishers, which are responsible for publishing messages to the middleware.
Furthermore, there is one Message Client, which allows the behaviour engine to send
synchronous messages to other components in the smart home.

There are three types of messages that are received or consumed by the behaviour
engine. The first type is the AttributeValueFEvaluationRequest as described in Chapter
the second type is the smart home events as described in Chapter and the
third type is configuration requests as described in Chapter [6.8] In this section, all of
the message clients, publishers, and handlers are presented. Note that not all messages
available on the messaging interface are included as JSON examples due to the high
number of messages that would have to be included and some messages are presented in
other sections of this chapter.

84

6.4. Messaging

6.4.1. Client

The behaviour engine features one messaging client, which has the purpose of sending
messages to other components in the smart home environment. The behaviour engine
only sends one message as part of its initial startup, which is a message containing the
three behaviour attributes to register them in the FACA. Furthermore, this is the only
time when the behaviour engine initiates communication with the environment if the
asynchronous publishing of messages is not counted.

6.4.2. Publisher

The messages published by the behaviour engine are made available to any component
that needs or is interested in the published information and are not targeted to a specific
component. Therefore, the publish-subscribe pattern is used for the message publishers
[33] and the messages are sent asynchronously [23]. There are two message publishers,
which are divided by what information is being published, namely:

e Decision Message Publisher

e Pattern Message Publisher

The Decision Message Publisher is one part of the “Pattern Publishing” interface and
makes the decision results of the evaluation of smart home events available to other
components in the environment besides the FACA. This allows components that are not
involved in the access control process to be informed about whether the smart home events
match the behaviour. The message published is an AttributeValue ChangeNotification,
which can be seen as part of the JSON message in Listing [6.4] but in the published
message there is only one notification instead of the list presented in the example of
Chapter [6.5.2}

Pattern generation is described in Chapter Whenever a new pattern is generated,
the behaviour engine publishes a ControlEventPatternUpdateMessage or a PeriodicEvent-
PatternUpdateMessage, depending on the pattern type. The messages of this component
serve to inform the environment of the release of a new pattern and an example of the
content in one of the messages can be seen in Listing In the messages of the Pattern
Message Publisher, which is the second half of the “Pattern Publishing” interface, only
the pattern part of the example is present, and the differences between pattern types are
the same as described in Chapter [6.8.1

6.4.3. Handler

The behaviour engine features seven message handlers and a total of 22 messaging queues
it binds on the AMQP interface. The message handlers are:

85

6. Implementation

e Device Group

e Event Evaluation

o Event

e External Validation
e Pattern

e Policies

e User Group

All handlers are exchanging their messages synchronously [103], except for the Event
Message Handler, which only consumes the smart home events sent by the environment.
Examples of the events this handler consumes can be seen in Listing [6.10| and Listing
This handler triggers an evaluation of the event as described in Chapter and
hands the result over to the Decision Message Publisher, which publishes the result as
described in the previous section. This component is not to be confused with the Event
Evaluation Message Handler, which is responsible for access control and interacts with
the FACA as described in Chapter

| {

2 "messageType": "cosy.behaviour.engine.pattern.delete
3 .response",

4 "success": true,

5 "errorMessage": "No Error Occurred"

6 |}

Listing 6.1: JSON message: Standard Behaviour Response Message

The message handlers that communicate synchronously respond with a Behaviour-
ResponseMessage on most operations since signaling that the request is successfully
performed is sufficient information in most cases. An example of this standard response
message can be seen in Listing [6.1] Every response message includes the three fields of
the standard response, which is a message type matching the requested operation, an
indicator of whether the operation was successful, and an error message if the operation
was not successful.

The Device Group and the User Group Messaging handler offer exactly the same
messaging interface for their respective group type. They cover interfaces for all of the
CRUD operations [104] as described in Chapter and all create, update, and delete
queues only give the standard response. The two read messages include either a list
of groups for which groups a user can manage or a specific group requested in a read
operation and its corresponding group suggestions. Listing displays the resulting
message of a read request for a device group.

The Pattern Message Handler features a messaging interface that covers all operations
described in Chapter [6.8.1 and the three possible read operations give the result messages
as described in that chapter. Which read operation is triggered is determined by which
queue received the request and the input is either a publishing key or the list of metadata

86

6.5. Access Control Integration

depending on the pattern types of the requested related patterns. The update message
allows the user only to update a text field of the behaviour patterns as described in
Chapter and the delete pattern operation allows the deletion of one pattern and
both of these operations only respond with a standard response.

The Policies Message Handler and the External Validation Message Handler both only
return the standard response for all of their operations. The EzternalValidation Wrapper
only has one field for identifying the event to validate. The two queues in the Policies
Message Handler work as described in Chapter [6.8.3] and allow the user to associate a
list of either device or user groups with a control event behaviour pattern.

6.5. Access Control Integration

Access control integration is one of the central parts of this work due to the second
research question. An access control request is sent by the Fog Controller to the FACA
whenever a resident in the smart home requests control over an object. The access control
requests interesting for this thesis are triggering the evaluation of an access control policy
including a rule with a behaviour attribute.

This section mainly deals with the details of the communication between the Fog
Controller, the FACA, and the behaviour engine during the processing of an access
control request. Furthermore, this section presents which of the behaviour attributes
require an additional configuration and how they are configured.

6.5.1. Behaviour Access Control Attributes

As described in Chapter the full names of the three behaviour access control
attributes provided by the behaviour engine are:

e Context.Behaviour.Pattern.Device.Single.Control-Based
e Context.Behaviour.Pattern.Device.Single.Monitoring-Based

e Context.Behaviour.Pattern.Device.Group.Control-Based

The two attributes containing the infix “Single” are evaluating a single control event
pattern, with the suffix “Control-Based”, and a single periodic event pattern, with the
suffix “Monitoring-Based”. Both of these attributes can be used in access policies without
further configuration since the FACA can determine that it needs to relay the retrieval of
information to the behaviour engine and the behaviour engine can evaluate this attribute
without any further input. For the evaluation process, the attributes are required to add
one additional parameter in their attribute name for a specific pattern to be resolvable.
The parameter is added similarly to how it would be added to an URL and the parameter
value is the unique publishing key of the pattern to evaluate.

87

6. Implementation

The remaining attribute represents behaviour pattern evaluation while including a
group, and therefore, this attribute requires one parameter for the publishing key of the
pattern like the other attributes do, and furthermore it requires a group identifier in
the attribute name. This identifier is used to determine the group the behaviour engine
should use during the access control evaluation, which furthermore allows the behaviour
engine to evaluate all patterns a user wants to be included in the decision-making process.
This is the only behaviour attribute that requires two parameters in its attribute name
and it is the only attribute that requires an additional configuration on the behaviour

engine.

| {

2 "publishingKey": "4a87eb571-adc4-4f5e-9c7f-alcb1d4241£f2",

3 "groups": [

4 "gabT6cR2tsphwb6SMPMyFOGHt jOfF386JycewdI8vuUm9jHIEqqq7a
5 P10YqSHTkx",

6 "DFJc5E0ioDwJIdHkqp7j1zTw9DtgtXxnvkjiRnd4eWLwPfeX48JiUHq
7 cxn6E6pdfy"

8]

9 |}

Listing 6.2: JSON message: configure group evaluation for pattern request

The general event evaluation and the access control attribute evaluation are separate
processes due to a limitation in the underlying environment. At the point of the general
evaluation, the group that should be part of the evaluation can not be determined just
by examining the control event, which is why this information needs to be made available
to the behaviour engine. Listing shows one example request to make the behaviour
engine aware of the relationship between a group and a behaviour pattern. Note that
groups are strictly divided into device and user groups, which is why the request can
contain only groups of one type and the type of group being configured is determined by
which messaging queue is used.

6.5.2. Access Control Request Processing

When the FACA evaluates a behaviour related access rule, it sends an AttributeValueF-
valuationRequest to the behaviour engine, which evaluates the request and responds with
a ContextAttributeValueList. The behaviour engine responds with a list of values because
the request of the FACA can contain multiple attribute values for a bulk request, in
which case the behaviour engine would evaluate all of the requested attributes and send
all resulting values in a single response. Once the FACA receives the response from the
behaviour engine, it evaluates all access rules in the policy and responds to the access
control request of the Fog Controller with the decision.

If the access is granted, a control event is published and the request of the user is
processed. If the request is denied, the requested action of the user is blocked and no
smart home event is created. The smart home event is used by the behaviour engine in its
regular evaluation process as described in Chapter [6.7.2]and a decision result is published
to an AMQP messaging queue, where it is made available for all components that are
interested in the result. The processing of a control event in response to a request of a
smart home resident is displayed in Figure

88

6.5. Access Control Integration

Fog FACA Behaviour
Controller Engine

Resident T | T
Control Request | | |
g Access Control Request | :
|-
r'-l AftributeValueEvaluationRequest
>
ContextAttributeValuesList ﬂ
Access Control Response |
€ - = mm - - - - I
| |
Publish [Control | :
- [
Ew‘ent | Consume | Control
Grant/Deny Access 14 --------- S ettt -l:l_ Publish Event
__________ L ; | ~ 7 7 ™| Decision
| | | | Result
| | | I | T

Figure 6.4.: Processing of a control event

An example for an AttributeValueFEvaluationRequest sent by the FACA to the behaviour
engine can be seen in Listing [6.3] This request contains the identifier for the included
device and user, a function name, and most importantly, the attribute name. At the end
of the attribute name, the unique publishing key is attached as a parameter, which is
used by the behaviour engine to identify the pattern it needs to evaluate.

"requests": [
{

"attributeName": "Context.Behaviour.Pattern.Device.
Single.Control-Based?publishingKey=8a82f7e4-0541
-11ec-9a03-0242ac130003",

"deviceId": "600378187c0435305a19f836",

"functionName": "turn on",

"userId": "GBnXifuYc5zVoeGrw7MoelwGiHw8ieF6W1lRimZzct
9Kfx6GLLumL9Zy7WWG4nb5cp",

"timestamp": 2021-09-10T11:22:56.875276

0~ O Utk WN

= e e e
B W= O o
-
—
“

Listing 6.3: JSON message: single pattern evaluation request

Every access control evaluation request is answered with a corresponding ContextAt-
tributeValueList and an example for a message in JSON format is displayed in Listing
[6.4l The type of context in these responses is always “Behaviour” and the certainty is
always indicating a 100% certainty of the result since the behaviour engine’s evaluation
is deterministic.

89

6. Implementation

1 {

2 "attributeValues": [

3

4 "attributeName": "Context.Behaviour.Pattern.Device.
5 Group.Control-Based?publishingKey=8a82f7e4-0541
6 -11ec-9a03-0242ac130003&groupIld=CXfjkx1m3WAelFC
7 KwUyFv3u6t54plzulHyxxtqyfeyJOp741i5vZHyPnTJJzQkp
8 db",

9 "attributeValue": "0.67",

10 "certainty": 100.0,

11 "timeStamp": 2021-09-24T11:25:56.475976,

12 "contextType": "Behaviour"

13 }

14]

15 |}

Listing 6.4: JSON message: group pattern evaluation response

One attribute value in the list contains an attribute name, which includes the publishing
key and a group identifier in this example and is used by the FACA to determine to
which attribute the result is provided. The most important field for the FACA is the
attribute value, which contains the numerical value of the decision result and is used to
compare whether the received value matches the constraints set in the access rule.

6.6. Behaviour Analysis

The data analysis component is responsible for the creation of every high-level context
featured in the reasoning phase, as described in Chapter The three context
types created by this component are behaviour patterns, group suggestions, and pattern
correlations and each of these high-level context types needs to be updated once every
analysis cycle. The order in which the context types are created are:

e Pattern Generation
e Group Suggestions
e Pattern Correlations

The order in which the context types get analyzed is important because the pattern
correlations should be calculated after the new patterns are present, which is why the
pattern generation is scheduled first and the pattern correlations are scheduled last.
Group suggestions are calculated based only on low-level context, which is why they can
be put anywhere in the schedule and therefore they are put in the middle.

At the end of every day, the analysis initiator starts the process of creating the higher-
level context. The reasoning phase is not triggered for the current day, but for the
previous day instead since no new data can appear for that day anymore. Since the
solution design does not specify an analysis cycle time span, the choice of analyzing
behaviour every day is an implementation choice in line with the solution design. There
is no difference between analyzing all patterns after every day and scheduling the analysis
to be done once a week, so the analysis is done every day to divide the computational
effort evenly throughout the week. This section presents the implementation details of
the analysis of each context type.

90

-

6.6. Behaviour Analysis

6.6.1. Pattern Generation

The process of creating new patterns includes all relevant events matching the patterns
metadata and can be considered the newest approximation of the behaviour that the
pattern represents. This means, by using the newest set of behaviour patterns, the most
information can be included in access control and other analysis components.

One of the reasons for splitting the analysis component and the decision component
is the timely task of creating behaviour patterns, which cannot be included at runtime.
Some of the reasoning algorithms are especially time-consuming, i.e. K-means, which is
an NP-hard algorithm [61]. For K-means specifically, an upper bound of twenty clusters is
set for each control event pattern to make sure that the control event pattern generation
process does not take up too much computational time.

Besides the upper bound for the K-means algorithm, there are other important boundar-
ies that need to be set to prevent the behaviour engine from malfunctioning. A minimum
of two data values is required in every usage cluster in every control event pattern and in
every time slot of periodic event patterns for the algorithms to work without errors. A
proper minimum of data for both pattern types is investigated as a part of answering the
third research question and is presented in Chapter

Control Event Pattern Generation
for each distinct device in all control events
for each distinct user of the device
filter events for previous day, user, and device
for 1...20
create K-Means clustering
if cluster is accepted
result cluster found
if result cluster could be formed
store new control event behaviour pattern

O © WU R WN =

Listing 6.5: Pseudo-Code: Control Event Pattern Generation

The control event pattern generation process is displayed in Listing and the main
calculation performed for the pattern generation, the K-Means clustering, is performed
with the library commons-math3 of Apache [24]. The algorithm is set up to attempt to
create the lowest number of clusters possible and retries until either too many clusters
have to be created or the acceptance criteria for a cluster is met. A cluster is accepted if
less than 10% of its events have a distance higher than two times the standard deviation
of the cluster to the center of their respective cluster. Furthermore, a minimum standard
deviation of fifteen minutes is assigned to each peak to prevent small clusters.

Periodic Event Pattern Generation
for each distinct device in all control events
filter events for day before analysis cycle and device
for each time slot
filter remaining events by timestamp
calculate mean and std
store new periodic event pattern

N O U W N =

Listing 6.6: Pseudo-Code: Periodic Event Pattern Generation

91

=

6. Implementation

The time slots in the periodic event pattern enable a simple generation of a behaviour
pattern. All available events are filtered for each time slot and the numeric values in
the periodic events are used to calculate a mean and a standard deviation. Listing [6.0]
displays the pseudo-code for generating a periodic event pattern.

The analysis component uses the interface of the messaging component to publish
notifications about newly created patterns and a message containing all information that
is published is displayed in Listing [6.16] The difference between the published message
and the example is that no groups or correlations are present since the pattern is newly
created.

6.6.2. Group Suggestions

After the patterns are generated, the group suggestion analysis is triggered. There are
two types of group suggestions created in the behaviour engine, namely suggestions for
individual devices and users, and suggestions for existing groups. Suggestions for devices
and users are used to calculate the suggestions for groups, which is why they are not
intended to be shared with the environment and serve as an internal calculation aid of
the behaviour engine. The creation of suggestions for device groups and user groups is
equal, which is why only one example is examined in this section.

User Group Suggestion Creation
devicesTotal = number of all devices target user interacted with
for each device target user interacted with
find all other users of the device
count number of commonly used devices for each user
create suggestion object with
target user
suggested user
commonly used devices
devicesTotal

O © XU WN -

Listing 6.7: Pseudo-Code: Pseudo-Code: Group Suggestions for a user

Listing displays the creation of a group suggestion for one user and the group
suggestion for a user group adds all suggestions together for every user outside of the
group to create the suggestions. Therefore, the suggestions for a group are based on the
suggestions for each individual member of the group.

6.6.3. Pattern Correlations

The pattern correlations are created last so that they can include the newly created
patterns of the current analysis cycle. Pattern correlations are calculated as described in
Chapter by determining to what degree two patterns accept the same events. Note
that correlations are only calculated between patterns with matching metadata because
they are only intended to be used as replacement recommendations and a pattern can
only be replaced by a pattern with equal metadata.

92

6.7. Decision-Making

=
SRS

1 |# Control Event Pattern Correlation Calculation
2 | for each control event peak in pattern A
3 for each control event peak in pattern B
4 peakBefore = find closest peak in B before peak in A
5 peakAfter = find closest peak in B after peak in A
6 resultPeakA = calculate coverage of peak in peakBefore
7 + calculate coverage of peak in peakafter
8 - calculate coverage of peakBefore in peakafter
9 | for each control event peak in pattern B
resultPeakB = repeat previous loop
resultA = average over all resultPeakA
resultB = average over all resultPeakB

result = (resultA+resultB)/2

=
w

Listing 6.8: Pseudo-Code: Control Event Pattern Correlation

Listing displays the pseudo-code for the calculation of the correlation between two
control event patterns. For each peak, the coverage in the closest two peaks in the other
pattern is calculated and then the coverage between the closest two peaks is subtracted
in case they overlap. The calculation of the coverage follows the general event evaluation
as described in Chapter with the centers of the usage peaks being used in place of
the timestamp of the control event.

The correlation is calculated in both directions and the average of the two results is
used to create a proper analysis model between two patterns with a different number
of usage peaks. If one pattern has only one peak and the subsequent pattern adds two
new peaks, then the correlation in one direction would indicate a 100% correlation, but
by adding in the 33% of the other direction, the resulting correlation between those two
patterns is 66%, which expresses a better picture in both directions.

Periodic Event Pattern Correlation Calculation
for each periodic event pattern value
resultThisValue = calculate coverage of value A in value B
+ calculate coverage of value B in value A
/ 2

result = average over all resultThisValue

QTR W N

Listing 6.9: Pseudo-Code: Periodic Event Pattern Correlation

In Listing the pseudo-code for the creation of a pattern correlation between two
periodic event patterns is displayed. Periodic event patterns are easily comparable due to
their fixed time slots since every time slot can be compared to each other. To calculate
the coverage of one periodic event pattern value in another, the calculation method of
to what degree a periodic event matches a periodic event pattern value described in
Chapter is used. The calculation is made in both directions and an average of the
two results is the coverage of the value, and an average over all coverages is the resulting
correlation between the two periodic event patterns.

6.7. Decision-Making

The decision-making component of the behaviour engine utilizes the behaviour patterns
created and stored by the data analysis component after retrieving them from the
database. The decision-making component acts on two different message types, namely
smart home events and access control requests. These two types of messages need to be

93

6. Implementation

processed differently due to a limitation of the underlying environment, which requires a
device event to be validated by the access control component before the Fog Controller
wraps it into a smart home event and therefore before it becomes consumable for all
components.

This section discusses the processes behind evaluating an event for access control
and for evaluating a smart home event and the distinction between these processes and
why they have to be separated. Furthermore, this section presents details about the
implementation of the result calculation with code snippets from the behaviour engine.

6.7.1. Access Control Decision

The FACA requires an evaluation decision of the behaviour engine while evaluating the
access control request whenever an access policy has a rule with a behaviour access
control attribute as described in Chapter This decision result is provided by the
analysis component and the behaviour engine offers a specific interface for evaluating,
but not storing an event. It is important for the event not to be stored at the end of the
access control evaluation because the event might still be blocked by a different rule in
the FACA, causing the event to never happen. The behaviour engine would include bad
events in its analysis process if the event was stored even though it was blocked by the
ACM.

Chapter discusses the messages exchanged between the behaviour engine and the
FACA during an access control request. Once the AttributeValueEvaluationRequest is
received, the behaviour engine reads out which groups and patterns are to include in
the evaluation. The patterns that need to be part of the decision are retrieved and are
evaluated against as described in Chapter the ContextAttributeValueList is created
according to the results, and the response message is sent.

6.7.2. Smart Home Event Evaluation

The behaviour patterns are statistical estimation models used to determine whether
smart home events in the environment are expected. Whenever a new event is created in
the smart home, a decision is made whether the event matches the behaviour pattern
and the decision result is published. This process is separated from the analysis due to a
performance requirement of the second research question.

The evaluation of a smart home event is similar to the access control decision evaluation
described in the previous section. The differences are that during the evaluation of a
smart home event no information about a specific pattern to evaluate is present and that
the event is stored with an indication of whether it is valid. It is necessary to store all
events, even if they are declined because the decision might be overridden by a user with
an external validation.

All patterns with matching metadata are included in the evaluation process and the
highest result is chosen as the decision for the smart home event to determine whether
the behaviour engine shall include the event in the analysis cycle. For providing the
knowledge of the evaluation to all components subscribed to the event decision information

94

6.7. Decision-Making

as described in Chapter each result created in the process is published individually

regardless of whether it was the highest result.

{
"deviceType": "Stove",
"deviceId": "b4792784-092a-11ec-9a03-0242ac130003",
"userProxyId": "9NOCtJpDMuqzOmxOujrRuAeyQDyKaOmZeH7
Ly4nkKcXUvQSnaDUz7MVaVYqhEJuB",
"function": "turn on",
"timestamp": 2021-09-10T06:22:51.375476

0N U WN =

Listing 6.10: JSON message: Control Event

Control Event Evaluation
retrieve all control event pattern with equal metadata
for each control event pattern with equal metadata
check extermnal validation
if external validation is present
set max correlation to expected value
else
for each control event peak in pattern
9 calculate correlation with event
10 choose max correlation value
11 if max correlation not accepted
12 for each control event pattern in groups
13 repeat calculation of correlation with event
14 choose max correlation
15 return max correlation

WO U WN =

Listing 6.11: Pseudo-Code: Control Event Evaluation

An example of a control event can be seen in Listing When a new control event
comes in, the Decision Component of the behaviour engine filters all behaviour patterns
available in the database having matching metadata with the event, and evaluates the
event against all of the resulting patterns. The evaluation process is described in detail
in Listing and details about the calculation of correlation between event and pattern
are described in the next section. Note that the control event peaks are a list where each

peak needs to be processed individually since their ordering is not guaranteed.

{
"deviceType": "Thermometer",
"deviceId": "bOb7dce4-092a-11ec-9a03-0242ac130003",
"value": "27.5",
"timestamp": 2021-09-10T10:22:36.875276

DU W N

Listing 6.12: JSON message: Periodic Event

Periodic Event Evaluation
retrieve all periodic event pattern with equal metadata
for each periodic event pattern with equal metadata
check external validation
if external validation is present
set max correlation to expected value
else
get corresponding periodic event pattern value for event
calculate correlation with event
set max correlation value
return max correlation

H O © W00k WN -

= o

Listing 6.13: Pseudo-Code: Periodic Event Evaluation

95

6. Implementation

Listing displays an example of a periodic event and the pseudo-code of the
evaluation of a periodic event is displayed in Listing The evaluation of a periodic
event is similar to the evaluation of a control event but is two steps shorter. The first
step the periodic event evaluation skips is the processing of all periodic event pattern
values, which is redundant due to the corresponding time slot being determinable quickly
and accessible in constant time. The second step that is skipped is the group evaluation
since they are not supported by periodic event patterns.

6.7.3. Decision Constants and Calculation

The result calculation is based on the standard deviations found in both behaviour pattern
types for both smart home event types and the acceptable distance to a target value is set
to twice the standard deviation. This means, a deviation of up to one standard deviation
creates a result with the classification of “Expected”, resulting in a numerical value of at
least 75% in the decision result, and a classification of “Uncertain” is assigned to events
deviating up to two standard deviations, resulting in a numerical value of at least 50%. A
Decision with the classification of “Odd” has always a difference of more than twice the
standard deviation to the reference value and has always a resulting numerical value of less
than 50%. Note that the code snippets in this section feature the numbers behind project
constants like PEAK VALUE ACCEPTABLE DISTANCE_STD MULTIPLIER for
better readability.

calculateDistance (ControlEventPeak peak, TimeOfDay timeOfDay) {
distance = TimeUtils.getDistanceSameDay (
peak.getMean(), timeOfDay);
result = (distance / (peak.getStd() * 2.0)) * 0.5;
return Math.min(1.0, result);

D TR W N =

Listing 6.14: Decision Result Calculation for a Control Event

Listing displays a code snippet for calculating to what degree a control event
matches a control event peak. This is achieved by the distance between the center of the
control event peak found in a control event pattern and the time of day value derived
from the timestamp of a control event. This distance is then put into relation to two
times the standard deviation of the control event peak to determine a result between zero
and one, where one is the lowest correlation between peak and event since the distance
indicates a 0% correlation.

calculateDistance (PeriodicEventPatternNumericValue valuelInPattern,
String valuelnEvent) {
eventValue = Double.parseDouble(valueInEvent);
result = Math.abs(eventValue - valuelInPattern.getMean())

/ (valueInPattern.getStd() * 2.0) * 0.5;
return Math.min (1.0, result);

N OO W N

Listing 6.15: Decision Result Calculation for a Periodic Event

96

6.8. Configuration

Similar to how control events are calculated, periodic events are using the mean in
the periodic event pattern numeric value as target value and its standard deviation to
determine how much the periodic event diverges from the pattern. The code snippet
responsible for the calculation can be seen in Listing [6.15

6.8. Configuration

The behaviour engine offers an interface for configuration, which enables the usage of the
more sophisticated features introduced in the solution design and is named the “Data
Management” interface in Figure[6.2] All of the configuration options on this interface are
accessible through the “AMQP Messaging” interface offered by the Messaging Component,
which is accessed through the web interface and the Fog Controller in the environment.

All configurable settings which can be updated dynamically via the messaging interface
are presented in this section and configurations that are part of general settings chosen
during deployment are not included. This section is meant to provide a semantic insight
into what can be configured at runtime and not an overview of the specific messages being
exchanged on the messaging interface. The configuration messages that are presented
are only included to make individual parts of this section more comprehensive.

6.8.1. Pattern Management

Behaviour patterns can be read, updated, and deleted by users, which makes three out of
the four CRUD operations possible in the Pattern Manager. It is not possible to create
behaviour patterns on the configuration interface because this feature is restricted to the
Analysis Component. An example for the retrieval of a behaviour pattern can be seen in
Listing [6.16] which is included to display all the information present in the operations of
this component. Note that all list fields in this message can have any number of entries.

For read operations, a single pattern can be read, which includes all information related
to that pattern as displayed in Listing [6.16] or all patterns with equal metadata can be
read, which is based on a list of metadata as input, and has a list of patterns without
their correlations in the response message. Note that the example displayed in Listing
is featuring a control event pattern and the only difference a periodic event pattern
has in its respective message are a missing user identifier, missing group associations, and
the peak list is replaced with a list of 96 periodic event values containing a mean and
a standard deviation. Furthermore, the pattern correlations being part of this message
allows them to be available at any component in the environment where patterns are
managed.

The users of the smart home can update and delete the behaviour patterns and both of
these operations determine the target pattern through a provided publishing key. While
the delete request does not require any additional input, an update request furthermore
features a string value, which allows for the text field “metaData” to be manipulated.
This is the only updatable information in this operation because all other fields are
either already handled by a different operation or are immutable. The metadata in the

97

6. Implementation

pattern shall not be confused with the set of low-level context, which is also referred
to as metadata, because of their different usages. The context metadata is used by the
behaviour engine for various processes such as event grouping in the analysis cycle while
the metadata in the pattern is a textual field for the users to add information to their

patterns.
1| {
2 "pattern": {
3 "patternId": {
4 "userId": "30a38843-27f5-4615-9768-032976bc6cOc",
5 "deviceId": "576a8608-0922-11ec-9a03-0242ac130003",
6 "day": "WEDNESDAY",
7 "localDateTime": .
8 1,
9 "metaData": "Text entered by user",
10 "publishingKey": "73dbf6be-0922-11ec-9a03-0242ac130003",
11 "userGroupList": [
12 "29770cdc-4dc7-45ac-a677-4e901aab39b5"
13 1,
14 "deviceGroupList": [],
15 "peakList": [
16 {
17 mTimeOfDay: 29527,
18 stdTimeOfDay: 860
19
20]
21 },
22 patternCorrelations: [
23
24 "patternId": "73dbf6be-0922-11ec-9a03-0242ac130003",
25 "patternIdOther": "841fe490-0922-11ec-9a03",
26 "value": 0.95
27 }
28]
29 |}

Listing 6.16: JSON message: Read Control Event Pattern Response

The behaviour engine offers the deletion of behaviour patterns to be handled externally
because the responsibility of handling access control policies lies with other components
in the environment. This leaves the information about which behaviour patterns are
included in the access control outside the behaviour engine and prevents a schedule for
automatic determination of obsolete patterns from being realizable meaningfully.

The additional meta-information text aims to make the patterns clearer in the man-
agement since usually there are several patterns available for the user, which can become
unclear quickly. Furthermore, the meta-information text can help the users to have an
overview of all available patterns during the Access Attribute Management described in

Chapter [6.8.3]

6.8.2. Group Management

In Chapter the design decision of putting the users in complete control over the
groups is presented, which allows users to create, read, update, and delete the groups
of their smart home. The configuration interface is split into two parts for the group
management, in which one handles the device groups and one handles the user groups.
All operations that can be performed on device groups can also be performed on user
groups and vice versa. Furthermore, the manageable and present information is equal

98

6.8. Configuration

for both group types, which is why displaying only one example of a retrieved group
in Listing is enough to show all information available in the Group Management
component.

14

2 "deviceGroup": {

3 "deviceGroupId": "69a72d5a-092f-11ec-9a03",

4 "deviceGroupName": "leisureTimeGroup",

5 "devicesInGroupIds": [

6 "d4010154-092e-11ec-9a03-0242ac130003",

7 "da7ef4c8-092e-11ec-9a03-0242ac130003"

8 1,

9 "administratorList": [

10 "e575d6d0-092e-11ec-9a03-0242ac130003"

11]

12 },

13 "deviceGroupSuggestions": [

15 "deviceGroupSuggestionId": "6efa9472-092f-11ec-9a03
16 -0242ac130003",

17 "behaviourId": "69a72d5a-092f-11ec-9a03",
18 "suggestedDeviceId": "79007504-092f-11ec-9a03",
19 "userTotal": 5,

20 "userCommon": 2

21 }

22]

23 |}

Listing 6.17: JSON message: Read Device Group Response Message

Listing displays a field for a list of administrators of the group. This list refers to
the users that are allowed to perform CRUD operations on a group and is set to hold
only the creator of a group at the creation of a group. Including this field is a necessary
measure since the groups are managed by users and to support group management
interfaces in other components, a read operation is provided that retrieves all groups
that are manageable by a specific user.

The identifiers of the groups are created outside of and are handed over to the behaviour
engine. Therefore, create and update operations are handled by the same process, which
simply overrides an existing group if a group id is requested that already exists. This
means that if a group is updated, all information present in the update is set as the new
information in a group. Deleting groups simply requires their identifier in a request.

The behaviour engine offers Group Suggestions as a high-level context type to support
group creation. Once a group is created, the behaviour engine creates updates its group
suggestions in every analysis cycle as described in Chapter[6.6.2]and is then made available
in every component that works with groups since they are always present when a group
is queried. An example of a group suggestion can be seen in Listing where the first
identifier, which is named “deviceGroupSuggestionld” in this case, refers to the internal
identifier this suggestion has within the behaviour engine, the “behaviourld” refers to
the entity the suggestion is made for, and the last identifier refers to the suggested entity.
The two numerical values follow the description in Chapter

6.8.3. Access Attribute Management

The last manageable setting in the behaviour engine involves both groups and behaviour
patterns and sets which groups are used when a pattern is used in the evaluation described

99

6. Implementation

in Chapter [6.7.2] The two management options in this component are setting a list of
user groups and setting a list of device groups for the evaluation of a behaviour pattern.
Both operations only require the unique publishing key of the pattern to identify and
the list of either device groups or user groups. Note that this management component
only works with control event pattern ids due to groups being compatible only with that
pattern type.

Each pattern is individually associated with groups and the behaviour engine does not
restrict how many groups are included in the decision-making process and allows device
and user groups to be used in parallel. An update performed in this component has
either a list of device groups or a list of user groups and the list in the update message is
overriding any previous list associated with the pattern. This means, that to associate
an additional user group with a pattern, all previous user groups and the new one need
to be part of the list in the update message. To delete all device group associations on a
pattern, an update message with an empty list needs to be sent.

6.9. Testing

Every software component needs to reliably meet its requirements [51], a state that can
only be confidently reached after the software has been thoroughly examined and validated
[60], which includes a process featuring many layers of testing [91]. The behaviour engine
is tested on mostly the two lowest layers, namely the unit testing layer and the integration
testing layer. This section provides the most important technical details of the tests on
each layer.

6.9.1. Unit Tests

The four internal components of the behaviour engine, as seen in Figure have been
kept at a nearly 100% test coverage in unit tests [91] during the whole duration of the
project, improving the quality of the components and development speed throughout the
implementation phase significantly. The tests of this layer are using the open-source java
libraries hamcrest [39], mockito [65], and hamcrest-optional [40]. All tests on this layer
are performed with artificially generated data for every data object that is relevant for a
test to prove that a tested method can work with any form of input.

For this testing layer, all tests have been structured to isolate one software class,
while all related classes are simulated. This means that all dependencies within a
class are simulated to provide an expected result for a provided input and the tests
measure whether the output and the interactions with other components have been done
properly. This setup is very useful when an error is encountered, because then only the
tests in the broken component indicate an error, while other tests indicate that if the
broken component worked as intended, there would be no further issues in the system.
Furthermore, due to the unit tests being quickly executed and due to their role of testing
correctness of small parts of the implementation [91], unit tests are executed on every
compile of the behaviour engine.

100

6.9. Testing

1 | @Test

2 | handleEvaluateControlEventMessage_validRequest_messageHandled () {
3 //Given

4 publishingKey = createPublishingKey ();

5 timeStamp = createTimeStamp ();

6 expected = createControlEventDecisionResult ();

7 prepareControlEventDecisionEvaluator (

8 publishingKey, timeStamp, expected);

9 attribute = createValidAttribute(

10 createRequestAttribute (publishingKey), timeStamp);

11 request = createAttributeValueEvaluationRequest(

12 Collections.singletonList (attribute));

13

14 //When

15 received = sut.handleEvaluateControlEventMessage (request);
16

17 //Then

18 assertSingleResult (received.getMessage (), expected);

19 |}

Listing 6.18: Example unit test.

An example for a unit test can be seen in Listing where the general structure
that is followed by each unit test can be seen. The naming pattern for each unit test
is <tested method name>_ <preconditions>__ <postconditions>, which enables a quick
assessment of what a test does. Furthermore, the tests are divided into a “Given”, a
“When”, and a “Then” part so that the tests are easily readable. The setup and the
assertion of the test can have any number of steps, while the when always only has one
step, namely the tested method being called on the system under test.

6.9.2. Integration Tests

After the unit tests, which are responsible for isolated testing of functionality [84] to
prove the correctness of the components independently [91], it is necessary to investigate
whether the components work together properly. This is done with integration testing
[17], which is the testing layer in which all components are running during the test.
It is still possible to use artificially generated data at this testing step, but even the
components that are not being used in a specific test case should be running and no
component should be simulated for this type of test. The evaluations found in Chapter
and in Chapter are structured as integration tests as well.

Integration Test

for each feature to test
clean Integration Test database
generate setup data
fill database with data
call method of behaviour engine
retrieve results
output results

0~ O U W

Listing 6.19: Pseudo-Code: Integration Test

A separate integration test script is provided for every feature of the behaviour engine
in a supporting project dedicated to testing the behaviour engine. Listing displays
how an individual integration test is structured and shows how the general script calls
them sequentially. All integration tests can be executed independently from each other
since the database is always in a clean state. While it is, therefore, possible to execute all

101

6. Implementation

integration tests at once with the test script, using the individual test scripts separately
might be a good choice since some tests take longer and the output becomes bloated.

Each test has the same general structure, as can be seen in Listing First, the
database is cleaned in case data from a previous test is still present. Note that the
integration test database is separated from the general behaviour engine database, which
is why data of a running smart home environment is preserved even when the integration
tests are executed. After the database is empty, new data is generated and stored so
that the test can be executed and once the scenario is processed, the output of the test
is retrieved and printed to the console.

6.9.3. System Tests

The last layer of the testing spectrum [60] this work includes are system tests [97],
which are used to validate the behaviour engine to work properly within the smart home
environment. In these test cases, every component in the environment is running and
the functionality of the behaviour engine is validated by accessing its features as a user
or another smart home component would if the system was deployed.

To test the features of the behaviour engine without having to run the environment for
several weeks, a script builds up a sufficient database for all features to be examinable.
The database is set up according to the CosyHome dataset [25], which is described in
detail in Chapter with all behaviour patterns that would have been created if the
data was gathered in real-time.

6.10. Visualization

A visual representation can generally be used to convey an idea or a concept effectively
and easily. Since context-awareness and IoT share the trait of being challenging to
grasp for users [69] and since the target user group cannot be expected to have a higher
understanding of the concept [27], it is necessary to display the information in a simple
and understandable way.

Visual representations of both behaviour pattern types are made available for the
web interface of the smart home. As stated at the beginning of the chapter, the web
interface is not a part of this thesis and other visual aids for smart home residents
are only described in their relation to the behaviour engine. The behaviour pattern
visualizations are nonetheless added in this work because they belong semantically to
the behaviour patterns and are a helpful display of the data represented by a behaviour
pattern. Therefore, the pattern visualizations are presented and explained in this section.

6.10.1. Periodic Event Pattern

The periodic event patterns are visualized in a chart with two dimensions, since the
evaluation of a periodic event, representing a measurement of a smart sensor, depends
on the measured value and on the time the measurement is taken. Therefore, the y-axis
shows the numerical value of the measurement, while the x-axis shows the time and in

102

6.10. Visualization

the graph, the expected value and the confidence interval are shown for every time slot.
An example of a visualization of a periodic event pattern can be seen in Figure [6.5

Expected Value - Confidence Interval

00:00 03‘00 06!00 DQEOO 12‘00 15‘00 18‘UEI ZI!UU OD!U_U
Thermometer Living Room, SATURDAY (2020-10-24) Time

Figure 6.5.: Example visualization of a periodic event pattern.

Note that the confidence interval within periodic event patterns is independent of the
certainty in attribute values described in Chapter The described certainty is always
set to 100% due to the event evaluation being deterministic, which means that a periodic
event will always give the same result when evaluated against a specific pattern. The
confidence intervals in periodic event patterns serve to indicate the range of values in
periodic events that are accepted by the behaviour engine.

103

6. Implementation

6.10.2. Control Event Pattern

Figure displays an example for a control event pattern generated using the CosyHome
dataset [25], which is created as part of this work and introduced in Chapter The
evaluation of a control event, representing a user-initiated interaction with a smart home
device, only depends on the time of the interaction. Therefore, the visualization only
needs to displays one axis, and the crucial information presented in the graph is the
time spans in which an event is accepted. The displayed pattern is one of the behaviour
patterns generated in a test run during the system tests with all associated events in
the CosyHome dataset, which means that this is the final pattern for its specific set of
metadata.

Expected Interaction Times| | Expected Idle Times

Pattern

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Figure 6.6.: Example visualization of a control event pattern.

The design choice of the visualization is to show only the information the user needs to
know to make sense of what the pattern is. Therefore, it is sufficient to know for which
times an interaction is expected, and more detailed information like the usage clusters
together with their centers and standard deviations are not displayed.

104

7. Evaluation

So far, the design and the implementation have been discussed in detail in the previous
chapters. It is necessary to validate that the first two research questions can be closed by
proving that the specified design of behaviour patterns represents behaviour properly and
that they can be used in access control. For the third research question, it is necessary to
measure how behaviour patterns develop over time. Furthermore, the performance of the
introduced methods in regards to accuracy and processing time needs to be evaluated.

In total, four different evaluations are performed to investigate the solution design
presented in this thesis from different angles. During the evaluations, the solution design
is represented by the behaviour engine and two types of data are used, which furthermore
serve as a basis to group the evaluations. The first form of data is synthetic, enabling
parameterized test scenarios [3§], while the other form of data is created in a case study
as a part of this thesis, enabling tests against real-world data. The results of this chapter
serve to answer the third research question and to prove that the goals of the first two
research questions have been reached.

Chapter features two evaluations based on CosyHome [25], the dataset created as
a result of the mentioned case study. Therefore, it leads with a section describing the
most important details of the dataset for the evaluation, while finer details are extracted
in Appendix [A] By basing the investigation on data collected in a real-world setting, the
results are meaningful, comparable and give a general idea of how well the design and
implementation would perform in the real world.

After the analysis based on real-world data, two evaluations based on synthetic data
in Chapter are examining different aspects of the behaviour engine by exploiting the
advantages artificially created data provides. These evaluations determine how well the
behaviour engine performs in a parameterized test setup with different configurations.

7.1. CosyHome - Big Data Evaluation

To evaluate the behaviour engine and the solution design of this work, it is necessary to
use data, which can be translated into events in a smart home environment. While it is
possible and in many ways beneficial to create this data artificially [38], a problem arises
if all evaluations are performed on synthetic data since data generated by an algorithm
introduces a bias by how the data is expected to be.

Besides the benefits and the usefulness of artificial data, it is not sufficient to base an
entire evaluation only on this type of data without including data from the real world.
Therefore, the tests presented in this section are based on a dataset, created in the scope
of this work to fit the requirements of this thesis.

105

7. Evaluation

7.1.1. Test Subjects

In total, there are eight test subjects in 4 different homes. One of the homes houses
a dual-income family with two children of school-age and therefore the requirement of
having a dual-income family for analyzing their special role in the smart home context
[27] in the dataset is fulfilled. The other homes house one elder couple and two young
people living alone respectively, which also gives some variety with the inhabitant setups.

7.1.2. Data Gathering

Optimally, the data is gathered in a real smart home with smart devices and sensors the
users interact with while the behaviour engine captures and stores all generated events
without any additional input. Since real smart homes are necessary for this approach,
there are three possibilities to gather the data. The first way is to have people living in
smart homes willing to install the behaviour engine in their homes and record themselves
for a few weeks. The second way is to upgrade the home of the subjects to be smart by
replacing sufficient devices with smart devices for creating a meaningful dataset. The
last option is to simulate a smart home in a test lab and put the subjects into this
environment like in Orange4Home [26]. None of these options were acceptable, because
no real smart home was available, upgrading real homes is very expensive and the test
lab would not allow a full simulation with multiple people being present due to capacity
issues.

Since the data could not be gathered in a real smart home, the closest possible
environment is a non-smart home, since all smart devices that would be interacted with
in a smart home have a non-smart counterpart in a non-smart home [80]. The only
necessary change to the optimal approach is that the subjects have to manually record
their behaviour instead of the smart home doing it automatically for them and instead
of the data being extracted from a database in the smart home, the data needs to be
translated by the researcher to a digital format for evaluation. This puts only a little
effort on the side of the test subjects since they just have to note on a list whenever they
use a device in their home, and only a reasonable extra effort onto the researcher.

The data was gathered over the course of nine weeks from the 17" May until the 13"
July in 2020. Monitoring the interactions whenever a device is used for nine whole weeks
would have demanded too much from the subjects and would have been unnecessary for
the evaluation. Since the concept only requires the same day consecutively and to have
one weekday and one weekend-day, only Mondays and Sundays were recorded.

7.1.3. Translating Raw Data into Dataset

The events in the smart home are generated with timestamps, but not all devices used
by the subjects enable clear identification of singular timestamps since many devices are
used over a period of time. Therefore, the devices are divided into single-use devices, like
a coffee machine, and continuous-use devices, like a stove. The characteristic of single-use
devices is that at the beginning of the usage one button is pressed, triggering the device

106

7.1. CosyHome - Big Data Evaluation

to do something for the subject. Continuous-use devices are characterized by being used
by a subject over a period of time, where the settings of the device can be changed many
times in the time period.

The subjects were asked to fill in the starting and end times for the usage of continuous-
use devices and the events in the database are translated from these time ranges. The
rules for the translation are, that the starting and end times get a timestamp, if there is
more than an hour between the timestamps, two timestamps half an hour closer to the
middle are added, if there is more than half an hour but less than an hour between the
timestamps, another timestamp is added in the middle and if there is less than half an
hour between the timestamps, no further timestamp is added.

For the single-use devices, the subjects were asked to write down the usage times
plus the number of usages, so that they do not need to write multiple timestamps when
they are using a single-use device multiple times, i.e. when they are preparing breakfast
and using the toaster multiple times, they just need to write the timestamp of the first
usage and the number of usages. The translation rules for single-use devices are simple
since the starting time is added as a timestamp and then in an interval of two minutes,
timestamps are added to match the number of usages.

7.1.4. Test Execution

The big dataset is used in multiple tests that are executed like integration tests [58]. This
means that the behaviour engine is running with all features available while the testing
script addresses only the functionality necessary for the current test. The tests are set up
this way to show how and which patterns would be created and how many events would
be categorized as expected in the real-world setting by the behaviour engine. Every test
is repeated multiple times to generate an average result with a low enough standard
deviation regarding how many events are accepted compared to how many are declined
by the behaviour engine, which is a necessary measure since K-Means clustering [99] is a
non-deterministic algorithm.

The test setups are divided by included features of the behaviour engine and all setups
include an evaluation based on the complete CosyHome dataset. The created test setups
are pattern generation only, pattern generation with user groups, pattern generation with
device groups, pattern generation with external validation, and all features combined.
The user groups, that are added into the user group test and the combining test only
affect two of the four homes, and only the adults in these homes are put into the user
group, meaning that the test overall included two user groups with two people each. The
device groups added into the device group test and the combining test, are for each home
all kitchen devices in one group, and all devices commonly used in free time in another
group. The device groups are assigned to all users in their respective homes, while the
user groups are assigned to every pattern for the users in the group.

107

7. Evaluation

The test runs provide two separate sets of results, one for the Mondays in the dataset
and one for the Sundays in the dataset, which is a necessary distinction since patterns
created for different weekdays are considered non-related. In this scenario, all events are
evaluated against the patterns that a deployed behaviour engine would have evaluated
them against based on the dataset.

7.1.5. Results

Figures and [7.2] display the decision results of all events in the CosyHome dataset
evaluated by the behaviour engine for Sundays and Mondays respectively. These figures
show the fraction of the events observed in the real-world dataset that would have been
accepted by the behaviour engine in percent. Both figures display five different test
setups, which are distinguished by the included features of the behaviour engine.

The evaluation is set up to mimic how the events would have been raised in the smart
home at their respective timestamp and with the analysis phases between the days to
create the new behaviour patterns, including all events that are gathered between the
learning phases. This allows to split the events up by the day they are raised according
to the dataset and track how the number of accepted events shifts over the weeks in the
evaluation. Each evaluation is repeated 50 times to eliminate inaccuracies introduced by
the non-deterministic nature of the involved algorithms.

The most important information, that can be read out of these graphs, is the approx-
imate learning time of the behaviour pattern by examining the fraction of false negatives
[75], which is why the results of this evaluation provide a ground to answer the third
research question. The rate of true positives in proportion to all positives, regardless
of being classified correctly or incorrectly, is referred to as recall |28]. Optimally, the
inhabitants are bothered with as few falsely categorized events as possible, since a user
constantly being second-guessed or stopped by the system does not feel safe and in control
of his smart home, but rather controlled by the smart home [27], which is why the recall
value should be as high as possible.

Sunday Pattern

Figure [7.1] displays the test results for Sundays. All events are accepted in the first
week since there is no pattern against which the events could be evaluated at this point,
which is why all events are naturally accepted by the behaviour engine. The second
week has a big drop in the recall |2§] by falling below 60% in the test setup with only
pattern generation, which shows the usages of devices differed significantly between the
first two Sundays. The next week, the patterns recognized a lot of the events correctly,
with three of the five test setups even having their overall second highest result in that
week. After that, the recall value stays approximately the same for each test setup for
some weeks with the two test setups with the lowest recall values at that point showing
a positive trend. The second last week show a smaller drop of up to 6% on most test
setups, followed by the highest individual result for four out of five test setups at the end
of the testing phase.

108

7.1. CosyHome - Big Data Evaluation

Sundays

100 —— Only PatternTest

—— With Device Group
—— With User Group

With External Validation
— With all Features

X

20 S

80

70

percent accepted evernts

60

50
17.05.2020 24.05.2020 31.05.2020 07.06.2020 14.06.2020 21.06.2020 28.06.2020 05.07.2020 12.07.2020

Date

Figure 7.1.: CosyHome: accepted events in percent for Sundays.

There is one major drop and two minor drops for the recall value, which happened
on the 24" of May, on the 7" of June, and on the 5™ of July, with all of the drops
happening for a different reason. The first drop happened as expected in the second
week of the testing phase with even the drop to slightly below 60% in the test setup
without additional features not being unexpected. Instead, it indicates early unreliability
of behaviour patterns, especially when only one week of data is available. The second
drop in the graph, which is less significant than the first drop, affects two test setups
significantly, which are the setup without additional features and the setup including
user groups. The setup with external validation, which eliminates clusters of falsely
classified events, does not drop significantly in that week, indicating that there are only
a few unexpected activities performed by the subjects. This caused a lot of unexpected
events in a short period of time, which could not be caught by some features. The third
drop correlates with the first real Sunday of summer, which probably caused the subjects
to show differences in their behaviour. The recall going up sharply in the week after
the third drop is an indicator that this drop can be interpreted as a correction of the
behaviour patterns.

109

7. Evaluation

Monday Pattern

In Figure [7.2] the graph with the recall results for Mondays is displayed. Like for the
results for Sundays, the first values are all 100% by default, so the first entry for each test
setup is by nature always that value. From that point onward, the progression differs a
lot from the progress of the previous graph. For the Monday graph, the drop observed
in the second week is much smaller than its counterpart in the Sunday graph, with the
lowest values being the only pattern test setup and user group test setup, which drop to
roughly 70%. Furthermore, all test setups have a higher recall value with a difference
of up to 15% compared to the Sunday graph and the second week has only the third
lowest value observed in the graph, unlike the Sunday graph where the lowest value could
already be seen in the second week. Until the 15" of June, only the external validation
setup shows a slight negative trend. On the 15" of June, the lowest value in the graph
can be seen in the test setup without any additional features, which drops to slightly
above 65%. It is notable that from the remaining setups only the user group setup drops
significantly this week while all other setups remain roughly the same as the week before.
In the following week, a sharp rise can be seen in all test setups, which is followed by the
last drop on the 29" of June. After that, two weeks follow with all setups rising with
only one value staying below 90% in the last two weeks.

Mondays

100 —— Only PatternTest

—— With Device Group
—— With User Group
With External Validation

90 —— With all Features

80

70

percent accepled evenfs

60

50
18.05.2020 25.05.2020 01.06.2020 08.06.2020 15.06.2020 22.06.2020 29.06.2020 06.07.2020 13.07.2020

Date

Figure 7.2.: CosyHome: accepted events in percent for Mondays.

110

7.1. CosyHome - Big Data Evaluation

While there are several observable drops, especially in the test setup without additional
features, the recall values never drop below 65%. Notably, the first weeks of the dataset
record the device usages of people who switched to home office during the first 2020
lockdown in Austria. This explains the initial drops, which still are not as severe as
the drops seen in the Sunday graph. The second notable drop is only observable in
the test setup without any additional features and with user groups, indicating that
the activities weren’t unexpected, but were likely performed on a related object. The
last drop on the 29*" of June correlates with the first day in which the schools are
closed for summer vacation, which can be interpreted as a correction of the behaviour
patterns. Notably, the results of the test setup with device groups outperforming the
other test setups in later weeks indicates that the activities performed over the course
of the data gathering generally follow behaviour that can be estimated very well by
including semantic relationships between the objects.

Conclusion

Overall, the patterns seem to be more reliable on Mondays than on Sundays, even if it
does not seem like it at first by looking at the graphs. If the results for the 7*" and 8"
week are ignored, since both graphs display a drop in only one of these two weeks, which
makes a comparison difficult, the most important weeks to look at are the 6" and 9*®
weeks. In these weeks, the Monday test setups generally outperformed the Sunday test
setups, even though it is rather close in most cases. Another interesting phenomenon that
can be observed is that the Sunday pattern reached a more stable state much quicker
than the Monday patterns since the recall value on the Sunday patterns did not change
too much after the third week, while the Monday pattern needed four to five weeks. This
could be due to the working and school activities were going through a lot of changes in
the weeks of the case study, which affected Monday events more than Sunday events.

There is one more insight that can be gained using the results of the tests, which is
an estimation of a minimal learning time for patterns to be considered useful. Looking
at the lines of the test setups including all features seems the most intuitive due to it
consistently displaying the highest result, but groups need to be configured by the users
themselves, which makes them an optional feature. Therefore, the three setups containing
at least one optional feature cannot be used as the standard for the estimation. The
line pattern with external validation can be used, because external validation is not an
optional feature, due to it being triggered always when an event gets rejected regardless
of the current configuration. In both graphs, the line with external validation hits the
90% mark in week six after having five weeks of data in the system. After that, even a
significant event like the school closing for summer holidays does not cause the graph to
drop below 80% anymore and for this reason, the estimation for a minimal learning time
until the pattern can be considered useful, should be at least five weeks long.

111

7. Evaluation

7.1.6. Interchanging Context Test

Another evaluation is performed to determine how much impact exchanging one of the
context types in the metadata of the behaviour pattern has on the recall value during
the previous evaluation. There are three options for being exchanged, namely the user,
device, and time context. Out of the three choices, it is the time context that is the least
transparent since it is the most difficult to estimate how much the interactions differ
between the weekdays compared to between users and between devices.

The setup for this evaluation is almost equal to the previous evaluation with the only
difference being that the behaviour pattern an event is evaluated against is interchanged
with its counterpart of the other weekday. This means, that i.e. the Monday events of the
third week in the dataset are evaluated against the Sunday behaviour patterns available
for the third week. For determining how significant the differences are, the results of this
evaluation are compared against the results of the previous evaluation in Chapter [7.1.5

Sunday Patterns with Monday Events

100 —— Only PatternTest

—— With Device Group
—— With User Group
With External Validation
90 —— With all Features

80

70

percent accepted events

60

50

week number

Figure 7.3.: CosyHome: Monday events evaluated against Sunday patterns

In Figure the results of the evaluations of Monday events being compared against
the respective Sunday patterns. The first insight gained in this chart is that the results
do not seem to converge and the progress seems like a triangle downwards move with all
test setups, since the later the result is, the worse it is. Interestingly, in the second week,
the normal evaluation seems to be outperformed in most test setups by interchanging
the time context, which indicates the unreliability of the behaviour pattern if they are

112

7.1. CosyHome - Big Data Evaluation

based on too little data.

Monday Patterns with Sunday Events

100 —— Only PatternTest

—— With Device Group
—— With User Group
With External Validation
& —— With all Features
80

70

percent accepled events

60

50

week number

Figure 7.4.: CosyHome: Sunday events evaluated against Monday patterns

The chart in Figure [7.4] creates the impression that comparing Sunday events against
Monday patterns produces better results than the other way around, but when compared
against its counterpart from the second evaluation, the results of this evaluation are
outperformed at almost every point.

Overall, the evaluations prove that changing the time context has a significant influence
on the reliability of the estimation models of the behaviour patterns. There are two big
phenomena, that are observable in the charts of this evaluation compared to the charts
of the evaluation in Chapter besides the difference in the recall values.

The first observable phenomenon is, that more than half of the test setups in this
evaluation, namely six out of ten, never hit the 90% mark, unlike in the previous evaluation
setup, where ten out of ten hit the 90% mark. The second insight gained in this test
is that in the previous evaluation, the inclusion of groups created a better recall value
on average than the inclusion of external validation, while in the interchanging context
setup only scattered data points can be found where the device group outperformed the
external evaluation, while the user group did not even once outperform the external
validation.

113

7. Evaluation

7.2. Synthetic Data Evaluation

Generating data for an evaluation can be very time-consuming and expensive, especially
when the data has to be gathered over the course of several weeks as is the case for the
evaluation of the presented solution design. To a certain extent, it is possible and even
useful to quickly generate data following an algorithm, since multiple test scenarios can
quickly be executed and their results can be used to improve or validate a design.

Synthetic data is useful for evaluation due to its characteristics of being created fast
and cheap [38], which is why a performance evaluation can greatly benefit from being
performed with many different test setups. In the scope of this work, a performance
evaluation of processing access control rules is necessary to fully close the second research
question, since exposing the knowledge of behaviour in the system to an ACM includes
the requirement of the processing of this knowledge to be possible at runtime. Therefore,
Chapter is dedicated to examining how well the behaviour engine performs in
evaluating the attributes it adds to the ABAC of the smart home environment.

Another characteristic of synthetic data allows the evaluation to be based on the
correct reference values, which otherwise have to be provided externally or manually [38].
The evaluation presented in Chapter provides an estimation of how effective the
behaviour engine operates with smart sensors in regards to its correlation feature under
the assumption that the measurements of the smart sensor can be described by a normal
distribution. Additionally, insight was given into how extreme values affect the outcome
of this evaluation.

7.2.1. Policy Evaluation Performance

One of the design requirements set by the second research question is the integration
of behaviour patterns into the access control model of the underlying smart home
environment. One important aspect of access control is the policy evaluation performance
since access control is performed in real-time as part of every user request, which
potentially delays the response enough for the users to become impatient [52] and
reducing the overall QoE for the user [1§].

All attributes introduced in the scope of this work need to be processible in an
acceptable time for the user and two of the three attributes are examined in this test. The
periodic event pattern evaluation is excluded from this test because an access rule cannot
be based only on a periodic event pattern. Furthermore, periodic event pattern evaluation
is independent of the two parameters influencing the performance of the evaluation of
control events, effectively making its evaluation time always equal to the simplest form of
control event pattern evaluation, which includes only one pattern with one usage cluster.

The two parameters relevant for the performance of control event pattern evaluations
are groups and the number of usage clusters. Groups allow multiple patterns to be
included in the evaluation and each usage cluster needs to be checked to find the closest
to the examined event, as described in Chapter [5.5

114

7.2. Synthetic Data Evaluation

Environment Setup

All policy evaluation performance tests are executed in a Raspberry Pi 3 Model B Rev
1.2 [78] environment with a debian version of 10.9. A Raspberry P1i is a cheap alternative
to a computer for running a smart home application, while still preserving the ability to
run multiple processes, unlike a microcontroller [72].

For this evaluation, two smart home components are running on the Raspberry Pi,
namely the FACA and the behaviour engine. These two components were chosen due to
their responsibility of performing the logic of the ACM and the goal of this evaluation is
to investigate whether the ACM can be performed in a realistic environment with little
computational power [72]. The test script is run on an external computational node and
is responsible for mimicking the remaining smart home components and measures the
time between sending the access request and receiving the response.

Test Setup

The goal of this evaluation is to prove that including behaviour in the access control of a
smart home environment does not extend the policy evaluation time enough to reduce the
QoE [18]. As a measure for the QoE, it is possible to use the relation between cancellation
rate and response time of a web service, which shows that response times ranging from
50 milliseconds to 500 milliseconds have approximately the same cancellation rates [52].
Ideally, the inclusion of behaviour patterns in the ACM does not extend its response
time to be bigger than 500 milliseconds.

This evaluation provides an indicator of whether the implicated requirements of the
second research question are fully satisfied. Therefore, it is necessary to examine the
performance times when evaluating access policies under various conditions, which have
to include test setups with the highest reasonable boundaries.

Based on the two parameters impacting the evaluation performance of control events
as stated above, twelve test setups are created and divided by the number of involved
patterns into groups of three tests. Furthermore, a reference test is performed for each
of the groups, where an access policy with an equal number of standard numeric access
rules is processed. The three behaviour-related tests in each group include one test where
all included patterns have one usage cluster, one test with ten usage clusters in each
pattern, and one test with twenty usage clusters in each pattern. The upper bound of
twenty usage clusters is chosen due to it being the upper bound in the analysis process
in the behaviour engine.

For the test setups regarding how many patterns are processed in one access policy, it is
necessary to find reasonable scenarios, with one high but realistic number as upper bound.
There are approximately 6.58 connected devices per person [92] in the year 2020 and
with this number as guidance, an upper bound of fifty patterns is chosen, which would
allow for a device group including all devices in a household of seven people rounded
up. While the device group feature is not intended to include all devices of a home and
while the average number of connected devices does not give insight into the relationship
between the number of devices and the number of people in a smart home, it is a good

115

7. Evaluation

way of estimating an upper bound in an extreme, but not impossible scenario.

The other test scenarios include one test with only one pattern, which allows the
examination of single pattern access policies and gives furthermore an estimation for
periodic event pattern evaluations. Another test setup includes ten patterns in a group
evaluation, which is a number chosen by rounding up the number of patterns included
in the biggest group found in the CosyHome dataset. Therefore, the second test setup
simulates groups of patterns based on the CosyHome dataset. The last test setup includes
25 patterns in the policy evaluation, which is chosen similarly to the test with fifty
patterns by estimating how many devices a household with four people might have and
include all of these devices in the group.

Results

The results of this evaluation are displayed in Figure[7.5] Note that all times are measured
from the point of sending the access control request up to the point of receiving the
response to the request. This means, that a messaging overhead is included in all tests
and additional messaging overhead is added in all tests including behaviour access rules
because the behaviour engine is contacted by the access control component over the
messaging infrastructure.

Pattern Evaluation compared to standard Access Rule

200 I Reference
Test
B 1 Feak

150 I 10 Peaks

Bl 20 Peaks
£ 100
50
0

1 10 25

Number of Rules or Pattern

Figure 7.5.: The results of the policy performance evaluation.

116

7.2. Synthetic Data Evaluation

The two parameters examined in this evaluation have shown that the number of usage
clusters only have a significant influence in case enough behaviour patterns are involved
in the evaluation and the number of patterns in the group seems to cause a linear growth
in evaluation time. Overall, the results are satisfying since even the response time from
the access control component in the upper bound scenario stays below 200 milliseconds,
which is far below the 500 milliseconds that were aimed for. Note that the response times
in the result are measured by repeating the test 1000 times to create an average with
minimal fluctuation from external factors such as network issues.

7.2.2. Correlation Test

The last feature, which is presented as part of the solution design and has yet to be
included in an evaluation, is the correlation between two patterns introduced in Chapter
5.6.3l To evaluate this feature, periodic event patterns are being used in a parameterized
test scenario to investigate how the correlation values behave in different scenarios.

For the test, data is produced sequentially, so that the repeated analysis process creates
patterns over a course of twenty simulated weeks. By setting the test scenario up this
way, the amount of data present in each generated pattern is proportionate to their
associated week number, meaning that i.e. pattern number five is based on five weeks
of data. Since the periodic event pattern divides its periodic events into time slots, one
week of data equals one periodic event for each time slot.

The aim of this evaluation is to compare how extreme values affect the periodic event
pattern by using the correlations between the patterns as an indicator of how much
a certain pattern deviates from other patterns. This evaluation is performed only for
periodic event patterns because periodic event patterns feature always the same number
of comparable values based on numerical measurement of smart sensors. Control event
patterns are based on a clustering algorithm, which would require many assumptions
about the characteristics of how many clusters are present, their standard deviations,
and how extreme values are defined in their case.

General Setup

The simulated scenario in this evaluation is one pattern being created every simulated
week starting with the second week, which has two data values in each time slot of the
periodic event pattern and ending with the twentieth week, which has twenty data values
for each time slot. The simulated data values follow an initially defined reference pattern,
assuming a normal distribution of the numerical values in the periodic events.

The reference pattern has a randomized average and standard deviation for each time
slot and since the results are not dependent on the actual numerical values of the average
and standard deviation in the time slots, the actual numbers are not included in the
result. The lower the resulting correlation between two patterns is, the more they deviate
from each other and the most interesting correlation values are the ones comparing a
pattern with his preceding or succeeding pattern. Each test is repeated 100 times to
create an average resulting correlation value with a low enough standard deviation to

117

7. Evaluation

provide a meaningful result.
Results

This section displays the results of the correlation evaluation and features three tables,
namely Table Table and Table These tables are read by looking for the
correlations between two patterns, with each pattern’s correlation being displayed to
every other pattern created in the evaluation. Each cell provides two percentage numbers,
with the upper number indicating the average correlation value and the lower number
indicating the standard deviation.

For example, to find the correlation of the pattern of the second week and the pattern
of the sixth week, the values can be read out in the 2" row and 6% column or in the 6"
row and 2" column. Both cells have the same numbers, which is why both ways are a
valid way of finding the result, making each week’s pattern correlation results equally
readable. Note that the fields with the correlation a pattern has with itself are always
gray due to the correlation always being 100% in that case.

The first test setup follows only the general setup and the results are displayed in
Table [7.1] The results show that the first pattern deviates consistently the most from
each other pattern and the correlations including the first generated pattern generally
have the highest standard deviations. The result table of this test can also be used to
estimate how many data values and therefore how many weeks are usually necessary to
get a meaningful periodic event pattern.

Ideally, more values are available before the periodic event patterns are used in access
control, but the feature should also be made available at a reasonable time. Looking
at the results, after five data values are present, the correlation to newer patterns does
not drop below 80%, which means that the patterns stay relatively similar after having
five data values. In Chapter [7.1.5] a minimal learning time of five weeks is suggested for
control event patterns to stabilize, resulting in an equal learning time for both pattern
types.

Table [7.I] shows the results of the first test run, in which no extreme values are included
in the data. This means, that in the first test run all the data values are falling into the
ranges of one, two, or three times the standard deviation of the reference pattern. The
second and third test setups are adding extreme values every fourth week instead of the
normal data value. In the second test, which is displayed in Table [7.2] the extreme values
are generated by using a ten times higher standard deviation than in the other weeks.

118

7.2. Synthetic Data Evaluation

"SOT[BA 9WaI}Xa OU :3S9%) QOS@HM@QQH UOIR[R.LION) T d[qel,

2€0 [ge0 [6€0 [8V°0 | S0 [820 [¥L0 |LL0 [88°0 [96°0 [ST'T [ST'T [8€T [69°T |11C |S8%¢
D1'96 p7'S6 [[L'F6 D6'S6 DI'E6 | 7’6 BS'16 [1L°06 BG'68 BZ'SS DL'98 E6'FS pS'c8 p06L pL'el gae9 || 0c
8z°0 [€€0 | ¥0 [4F0 | g0 [890 €20 [8L0 [68°0 [¥6°0 [#T'T |&T'T |8eT [99T |clc |18%C
8'06 [6°G6 ET1°G6 [[£76 DV'E6 PI'G6 pS'16 (606 BL'68 FP'S8 p698 B0'e8 B9'G8 pr6L ES'eL |9°€9 || 61
0 |[veo [¥v0 [670 €50 [290 [gz0 [¥80 [¥60 [60T [s0T [T | 2T [L0z |98
£6°06 BLL6 D9'G6 LL¥6 ES'€6 6626 PT'g6 BI'16 E006 pL'SS ET'L8 DZ'GS D8'z8 pe'6L D6'el FL'E9 || 8T
z€0 | 820 820 |8¢0 |9v'0 €90 [190 | L0 [620 [260 [90T [1TT |[6€T 89T | 1Tz |€8@
D1°96 | 896 £9°L6 £€°06 peG6 PE¥6 Eh'e6 PS'c6 pS 16 £E 06 [[0°68 Pei8 LPes [[0°€8S pr6L | T'hL BL'€9 || AT
ge’0 [€0 [62°0 |610 0 [0 [2v0 |90 [890 [£20 [68°0 [g0T [90T [LeT [99°T |60 |es@
P76 566 E9°96 ES'L6 D676 D6'€6 | 066 [16°16 B9°06 pe68 p9°L8 9S8 [1c'e8 E9'6L FT WL BS'€9 || 9T
680 | 7’0 |¥€0 |82 0 ge’0 [PF0 [8¥'0 | 90 [S90 [€80 [660 |c0T |62 |19T |%0C |¥LlT
[L76 E1°G6 D9°C6 EL96 EEL'L6 £L'G6 P96 ES'E€6 |7'g6 pI'16 pL'68 6.8 | 098 EV'ES pS'6L EVFL B6'€9 || oI
870 [L¥'0 |¥P0 [8€0 | €0 |€20 ‘0 |80 [ev0 [890 [¥9°0 [9L0 [860 [60T [62T [geT |20 |6LC
D6'€6 €76 LLT6 pES6 BO'96 ETL6 £7'c6 LI'¥6 | 626 [[S°T6 006 EE'SS [[£°98 EL'€S E008 BS¥L BOF9 || ¥T
c0 | g0 |[6v0 |90 |10 |90 |2z0 v'0 [g9¢0 [¥90 [6L0 [960 |v0T | €1 |ee'1 |<c0T |6LC
DI'€6 DV'€6 ES'€6 EE¥6 D676 EL'G6 [(S°96 10°G6 [19°€6 p1'z6 [[9°06 B.'SS 9'98 LO'PS Lz'08 ES¥. pe¥9 || €1
890 [89°0 [€g'0 [€g0 [Lv0 [v¥0 [L£0 0 [.v0 [690 [€20 | 60 |60 |veT |6FT |20 |28%
v'56 P96 B6°26 Ev'E6 DP6'E6 E9T6 EV'S6 £9'96 LCV6 ES'26 |2 16 [[£68 [IT'28 | G'PS B9'08 16l [9¥9 || oI
vL'0 |[€L0 [L90 [19°0 [2¢0 [8v0 [€v0 | ¥O 960 990 [€8°0 [88°0 |11 [9%'T |9Tc |8
6S 16 p8'16 DPT'g6 Pa'g6 | 0°€6 ES'€6 LI'W6 [10°S6 BE'96 £6°€6 £0'26 [[0°06 B9'L8 F0°S8 PT'I8 RV'SL BLP9 || TT
2.0 [8L0 |20 [20 [890 [90 [850 [gg0 [0 |€g0 ge'0 [1S°0 [8L0 | 80 |60T |[L8T |2z |e8%
[L°06 £6°06 BI'T6 pS'16 [16'16 | 726 | 626 [19°€6 LST6 L6'S6 ‘66 BI'€6 L6°06 'S8 R9'98 BO'T8 | 694 E0°S9 || OT
88°0 [68°0 |¥80 [620 |20 [990 [¥9°0 [¥90 [65°0 [99°0 [g€0 190 (€20 [96'0 |€eT |0z |89%C
BG'68 BL'68 006 EE06 906 RI'16 [IS16 pI26 EST6 E6'E6 BV'96 6126 D68 pr98 pees Le9L pego 6
960 | 760 |¥6°0 |26°0 |68°0 |€8°0 |920 |620 |€40 [99°0 |[1¢0 | ¥0 L0 280 [gzT [e6T |[v9e
Bz'SS 'S8 £L'88 [0°68 PE'6S pL'68 B006 [19°06 |Z16 026 BI'E6 [676 606 PSL8 |z'€8 [[T°LL pL'G9 S
ST'T [PT'T [60°T |90°T [<0'T [660 [860 [960 | 60 [€8°0 [8L0 |90 0 [6L0 [6TT [26T |€Le
DL'98 698 ET'L8 DE'l8 P9'LS 6.8 E£E'88 BL'SS [[£68 [[0°06 E6'06 BI'g6 EI'T6 E1'68 DEVS [[6°LL £T'99 L
ST'T [eT'T [80°T |IT'T | 90T [20'T [60T |[¥0°T [26°0 [88°0 | 80 [€L0 | 20 |L¥0 60T | 6T | L%
£6'78 B0O'G8 bzes Lp'es p9'es | 0°98 [1£°98 1998 [[T°L8 B9'L8 BV'SS Pr'68 | 606 pI'€6 £1°98 DI'6L 16°99 9
8e'T 8T |T¥'T |6€T | 26T 68T |61 | €T |%2T |12'T |60T |S6°0 |80 |6L°0 |69°0 68°0 | €8T |€SC
PS'c8 B9'z8 PS'zS [0°€8 [lg'€8 EV'€8 ELE8 LOFS | o¥8 0S8 B9G8 pH'98 DSL8 BI'68 916 168 g
69T [G9T | 2T [89°T [99T [19T [geT [eeT [6FT |9%'T [2€T |€eT [geT |61T |60T |680
£0°6L P1'6L pE6L pr6L E96L pS'6L £O08 1z'08 8908 DI'IS BI'IS FEe8 |z'€8 PEvs 198 BI'6S v
11z |gl'c |20 | 1 |60 |v0z | L0 |S0¢ |0 |9Tc |clc |20z |€6'T |e6T | 61 |€8'T
bLel B8€L DL |T'VL ETVL EVPL BSVL ESVL RBIGL BVGL |69 be9L [T'LL [16°LL DI'6L Eg'18 €
e8'c | 18°C |98°C | €8¢ |¢8c |Vl |6.C |6.C |L8C |©8T |¢ST | 89T |v9e |€L% | LT |€ST
pe'e9 |9€9 ELe9 BL'E9 BS'E9 B6'€Y BOVY pr¥9 [[CP9 BLTY E0°CY FE'SY PL'SY FZ99 16°99 E0'S9 4
[Coz [61 [st [2t [ot [st [vt [et [et | tt [or | 6] 81 21 ol s % el el #]

119

Table 7.2.: Correlation Integration test: every fourth value deviating ten times the standard deviation

7. Evaluation

120

7.2. Synthetic Data Evaluation

UOI}RIASD PIRPURIS O} SOUI} PAIPUNT U0 SUIIRIASD ON[RA [[}INO0] AIOAD 1189} UOIFRISOIUT UOIFR[ALIO)) '€) d[q®],

121

7. Evaluation

The result of the second test run aims to discover how fast a pattern recovers from
the extreme value. After the extreme value is added, the newly created pattern has a
much worse correlation to the preceding patterns, but the succeeding patterns stabilize
immediately. The drop in correlation also becomes smaller the more values are present
in the data analysis phase, which causes the twentieth pattern to only drop to 95%
correlation to its predecessor.

The last test run, which is displayed in Table uses a 100 times higher standard
deviation for the creation of the extreme values and aims to provide insight into how
much extreme differences between the data values impact the patterns in the short and
long run. For the short-term influence, the correlation between the neighbouring patterns
can be examined to get an indicator of how much the extreme value is influencing the
pattern, similar to how the second test was evaluated. The long-term influence can be
measured by comparing the results of the third test with the results of the previous two
tests.

In the short term, the pattern drop in correlation significantly once a new extreme data
value is added, but like in the previous test, the patterns adapt quickly to the new value.
The last extreme value causes a drop about the same size as the drop in the previous
test, even though the initial drop after the first extreme value is much more severe than
in the previous test. The long-term effect is visible in the result table, indicating less
significance after enough data values are added. The biggest long-term impact caused by
the extreme values seems to be that the early patterns have a bigger difference to the
more stabilized block of patterns, which is a phenomenon only observable in the last test.

122

8. Conclusion

In this work, a context-aware approach is taken to analyze the measurable behaviour in a
smart home environment, resulting in the creation of behaviour patterns. These patterns
serve as prediction models for further events in the environment and are integrated into
the access control model of the smart home, allowing its ACM to base the access control
decisions on the knowledge of expected behaviour. This chapter summarizes the key
contributions presented in this thesis and revisits the research questions from Chapter
to discuss how the goals of this work have been achieved.

8.1. Key Contributions

This thesis starts with an in-depth context analysis of the underlying smart home
environment, resulting in a comprehensive context model on which the design is built.
The creation of the context model is a crucial step to gain insight into what can be used
to extract information about behaviour in the smart home [4].

The context model features two event types received from the smart home, namely
user inputs and smart sensor measurements, and a respective behaviour pattern type
has been introduced for both event types. These patterns serve as prediction models for
the observable behaviour in the smart home and therefore patterns are designed to be
capable of evaluating smart home events to indicate whether an event matches expected
behaviour or is suspicious.

Control event patterns and periodic event patterns are introduced as prediction models
for user behaviour and system behaviour respectively. Both pattern types are created with
different algorithms and evaluating smart home events works differently for both pattern
types. The context model also defines relationships between control event patterns to
preserve the knowledge about semantic relationships between users and between devices.

Integrating the knowledge of behaviour into the ABAC model of the smart home
implicates that evaluating a smart home event needs to be performable at runtime.
Therefore, behaviour patterns are designed to quickly evaluate an event, are created
in a periodic analysis process, and persistently stored so that the knowledge is quickly
retrievable. This decouples the behaviour analysis from the ACM and allows them to be
used in access control despite their time-intensive creation, which fulfills this important
requirement.

123

8. Conclusion

The behaviour engine is introduced as a smart home component, which is responsible
for data gathering, analysis, and dissemination of behaviour patterns and all related
features. The behaviour engine is integrated into COSYLab, a smart home application
with an ABAC model, and provides the knowledge of behaviour to the ACM of COSYLab
by associating decision results with attributes during its decision-making phase.

One important contribution is CosyHome [25], a big dataset generated in a case study
as part of this work. The case study includes eight participants in four smart homes and
runs over the course of nine weeks. This dataset is necessary for the evaluation of this
thesis to provide insight into how the behaviour engine performs in a real-world setting,
allowing for better comparability.

Different methods of testing [91], which focus on different aspects and come with their
respective advantages and disadvantages, are utilized to give the most accurate picture of
the results of this thesis. A total of four evaluations are performed against the behaviour
engine for proper examination with two of the evaluations being based on CosyHome
and the other two being based on synthetic data. The results of the evaluations prove
the reliability of behaviour patterns once sufficient data is available, the meaningfulness
of the underlying context model, and that integrating the knowledge of behaviour into
the access control model is successful.

8.2. Research Questions Revisited

The three research questions presented in Chapter are processed throughout this
work. Chapter [5] sets requirements for the two design-related research questions to be
satisfied and discusses them in detail while the third research question is processed in
Chapter [7] This section gives a short overview of how each research question is dealt
with and what results prove that the respective question is answered.

1. How can the daily routine and the habits of an inhabitant of a smart home be
translated into a context-aware behaviour pattern?

The first requirement to create a context-aware application is a thorough context analysis
to examine the existing context in the environment. Therefore, this work presents a
context model for a smart home environment based on an analysis of the environment
and uses this context model as the basis to translate the behaviour in the system into
behaviour patterns.

Two types of behaviour patterns are introduced to represent the user behaviour and
the system behaviour separately. Both types of patterns are designed to be prediction
models so that they can be used to evaluate whether newly created smart home events
match the expected behaviour. The context model further includes relationships between
patterns and external validations by users, which allow the behaviour to be predicted
more precisely.

124

8.2. Research Questions Revisited

The design of behaviour patterns and all other behaviour-related features is implemented
in the behaviour engine. The correctness of the implementation is validated in the lower
levels of testing [91][60], for which quickly and cheaply generated artificial data is used
[38]. Furthermore, the big dataset CosyHome is used in several evaluations, proving that
the presented concepts work as intended.

2. How can context-aware behaviour pattern recognition be used in a smart home
environment for access control?

The access control in the underlying smart home environment is based on attributes and
therefore, three attributes are defined to expose the behaviour evaluations to the ABAC
[113] of COSYLab. The three attributes are responsible for evaluating a single control
event pattern, a group of control event patterns, and a single periodic event pattern.

One crucial requirement implicitly set by this research question is that the evaluation
process is usable during an access control request, which is why behaviour patterns are
prepared regularly so that they only need to be retrieved during access control. This is an
important step to overcome the problem of behaviour being only estimable over time |10]
and access requests needing to be handled at a certain point in time. In Chapter [7.2.1] a
performance analysis is carried out to prove that the behaviour evaluations are usable
during access control and the results indicate that behaviour is successfully integrated.

The users are in charge of configuring their access policies and the groups, which means
that they might be overwhelmed by the management and maintenance of their system.
This thesis introduces a visual representation of patterns and pattern correlations as
indicators for when a pattern needs to be exchanged to aid the users in the pattern
and access policy management. Furthermore, group suggestions are created to indicate
possible relationships in the environment during group management.

3. How long is the learning time for a behaviour pattern?

A real-world dataset is required to provide a meaningful indicator of how well the presented
concept and implementation would perform in a non-simulated setting. CosyHome is a
dataset created in this work to evaluate the behaviour engine because no suiting dataset
was available.

The learning time of control event patterns is determined based on CosyHome in an
evaluation that is configured to mimic how the observed actions would be interpreted
by the behaviour engine. Overall, the results were very satisfying and indicate that the
behaviour patterns become reliable after being based on five weeks of data.

To determine the learning time of periodic event patterns, synthetic data is used to
evaluate how periodic event patterns adapt in different scenarios. The results are based on
how much the patterns change over the course of twenty simulated weeks, using pattern
correlations as indicators, and generally show that even extreme values are adapted
towards quickly. Periodic event patterns do not change much after five weeks of data is
present, which is why the minimum learning time suggested in this thesis is five weeks
for both pattern types.

125

8. Conclusion

8.3. Future Work

The huge scope of this thesis allows for many future work projects, from extending the
context model to improving the evaluation process. Any part of this work can be isolated
and used as the basis for another thesis, which focuses on improving or extending it. In
this section, a few examples are presented as suggestions.

Reasoning Methods

The mathematical model used in the analysis process of periodic event patterns, which
represent the numerical values measured by smart sensors, uses a calculation of an
average and a standard deviation for further events to be compared. Further statistical
approximations can potentially enhance the resulting behaviour patterns.

Another way in which periodic event patterns could be improved is by replacing the
static nature of their time slots. In the final version presented in this work, the time
slots are evenly split throughout the day, which could limit their meaningfulness by not
properly representing every smart sensor. When the measurements of a smart sensor
usually remain relatively constant throughout a long time span in the day, splitting those
time spans up into smaller time slots is inefficient. Furthermore, if the split is unlucky
between the time slots, there could be an unnecessarily high standard deviation, which
could be better represented by rearranged time slots.

Control event patterns only include the time of the interaction and not the frequency.
Extending control event patterns this way would change the control event usage peaks
from simply having one dimension, the time of the usages with an average and a standard
deviation, to having a second dimension for comparison, which indicates how often the
smart home resident interacts at a certain time with a device.

An example for the use of frequency in control event patterns could be how often the
coffee machine is used by the inhabitant, which in the state of this work would be treated
as separate events. The resulting events are very close to each other on the time axis but
have no further semantic information or relationship to each other. If the frequency is
also tracked, the behaviour engine could furthermore notice additional forms of deviating
behaviour such as devices being used unexpectedly often, which could be a sign for a
malicious outsider.

Non-Numerical Values in Periodic Event Pattern

Smart sensors periodically publish events including numerical values, which are repres-
ented in the solution design by periodic events. Other smart devices also periodically
send events to the system such as updates about their states, which are events that are
not handled by the design. Extending periodic event patterns to include non-numerical
values is a possible future task to extend the behaviour engine.

126

8.3. Future Work

Extending Group Feature

Groups currently only work for the user and device context, expressed by user and device
groups respectively. Behaviour patterns also include time context, which is currently not
supported by the group feature and while time context is defined by interesting metadata,
the day of the week, there is no group allowing for the decision-making process to include
the patterns of a different weekday.

The time context can also be used as the basis for relationships between patterns
such as introducing relationships between weekdays and weekend days respectively.
Groups supporting time context are not included in this work, because the dataset in
the evaluation only features one working day and one weekend day, which show lower
similarities and the result would not be meaningful enough.

Bigger Dataset

The most difficult future work can only be achieved by generating a bigger dataset and is
about the maintenance of the solution design and its scalability. It is very important to
not fall for the misconception that the deployment of a context-aware system is the end
of its life cycle and the design and implementation need to strife towards being suitable
in the long run [4].

The measures taken to reduce the maintenance effort cannot be asserted as sufficient,
since the system is not deployed with a significant enough amount of data and is not
running long enough so that a proper estimation can be made of whether the solution
design scales well for real-world smart home environments over a long time or if the
implementation is sufficiently maintainable. The bigger dataset for a smart home
environment in itself could also be seen as an appropriate future work.

127

A. CosyHome Dataset Details

In the scope of this work, a dataset had to be created in a real-world setting for the
evaluation to be more meaningful since the behaviour engine and therefore the concept of
this work need to be compared to a real-world scenario. Before the decision of conducting
a case study with a resulting dataset, already existing datasets were examined for the
possibility of obtaining fitting data without having to gather them, but unfortunately, all
examined datasets were either insufficient or unobtainable.

This section provides an overview of the related datasets and a more in-depth view
of CosyHome [25], the dataset created in the case study, that ran over the course of
nine weeks in the scope of this work. It is necessary to point out that only the most
basic relevant information of the people who participated as subjects in the case study
are given due to privacy reasons, which means that no information is provided that can
identify any subject participating in the study.

The case study started on 2020-05-17 and ended on 2020-07-13, which means that the
dataset was gathered approximately at the end of the first 2020 lockdowns in Austria
and ended with the first weeks of summer. The time span of the case study introduces
mainly two points of expected higher irregularity in the interactions with the devices in
the home.

Note that some days do not have a single entry for a subject, indicating that not a
single interaction with any device in the home was performed during a whole day by a
subject. This is not an error or a missing data entry but indicates a participant being
absent from home for the whole day, i.e. because of being on holiday.

A.1. Related Datasets

Instead of creating new data, it is recommended to try finding an existing dataset, which
matches at least the required criteria since finding a fitting dataset saves the time and
resources necessary to gather the data. Furthermore, basing the evaluation on existing
data allows for more comparability, including to previously published work. Even though
no dataset fulfills the criteria of having multiple users being monitored over at least eight
weeks, there are still some datasets that stood out as being potentially useful in the
evaluation of this work.

The most interesting dataset, Orange4dHome [26], monitors one person over the course
of four consecutive weeks during the working hours in one apartment. For the purposes
of the dataset, this apartment is an environment with deployed smart sensors to simulate
a smart home and the test subject was put into the environment to work there for the
duration of the experiment. The reason the dataset cannot be considered to monitor

129

A. CosyHome Dataset Details

the user behaviour in a real-world scenario set in a smart home is due to the person
not usually interacting with this environment. The second problem comes from only the
working hours being monitored and the third problem is the relatively short time span
the experiment takes place in. The upside of this dataset is, that it provides everything
from the timestamps to the multiple devices in the home and the interaction with one
person, which suffices to generate the behaviour patterns.

Another dataset created in a sensor-rich environment is called Opportunity [82] and
features twelve subjects with 25 hours of collected data. Furthermore, the data was
gathered in only one room with body sensors worn by the testing subjects and environment
sensors deployed in the room. The data being generated over a shorter than required
period of time and the lack of timestamps disqualify this dataset for being used in the
evaluation. Otherwise, the upsides of this dataset would have been the number of test
subjects and the measured complex task in a smart environment.

The last interesting dataset was created to evaluate a method for analyzing daily
routines by equipping one test subject for sixteen days with two wearable sensors and
monitoring the daily life of the subject [46]. The resulting dataset shows which complex
activities have been performed at which time of day for the method to break these
complex activities down into simpler parts. Similar to Orange4Home, there is a lack of
multiple test users and the criteria of sufficient learning time are not met in this dataset.
One advantage this dataset has over Orange4Home is that the sensors were measuring
the behaviour in the environments the subject would usually interact with and the data
is not only set in the working hours. Furthermore, the wearable sensors only gather
information about the motion of the test subject, there is no indication of which devices
the subject is interacting with within the home.

A.2. Subjects

The first home, called H1 in the dataset, is inhabited by a dual-income family with two
children, with the parents being in their late 30s and early 40s, while the children are
13 and 17 years old. The parents are listed as P1 and P2 in the dataset, the older child
is listed as P3 and the younger child is listed as P4. Both children are going to school,
but only the younger child has a fixed schedule given by the school during the time the
data is gathered since the older child is in the final school year and does not have to
attend regular classes anymore. P1 is working full time as a technician, which requires a
part of office work and a part of on-site work, which leads to some working days in the
dataset having interactions over the day because this work was done in home office. P2 is
working at a grocery store, which requires their presence, and therefore the person does
not have any tracked interactions in the dataset during the working hours on working
days.

The second home, which is listed as H2 in the dataset, has two inhabitants in their
mid to late 50s. The person listed as P1 is working an office job sporadically working
from home on the Mondays in the dataset. The other person works as a social worker
with a fixed timetable, which changes every month and requires sometimes breaks during

130

A.3. Objects

working hours, in which the person goes home and possibly interacts with the devices in
the home. Note that in this home one exceptionally long interaction between P1 and the
TV overnight is tracked, which has to be omitted as an error because the person forgot
to turn the device off overnight, which leads to the person not having any interactions
with the device in that night.

In H3, the third home that is part of the case study, only one person lives and this
person is in their late twenties. The participant of the study is working an office job, but
due to the dataset being gathered around a time where home office was encouraged, a lot
of devices have many interactions during the weekdays.

The last home, H4, has also only one resident who is in the mid-twenties and works an
office job. During the case study, the first weeks the participant worked from home and
then switched to going to the office until the end of the data gathering.

A.3. Objects

Besides the subjects, which are representing the people living in the smart homes in
the dataset, the objects are representing the smart devices with which the inhabitants
interact. These devices are controlled with a remote, usually, the smartphone of the
inhabitants, and the information the dataset is providing is expressed by the tracked
interactions between subjects and objects. In the scope of this work, the objects of each
smart home have been categorized and put into groups, but these groups do not explicitly
appear in the dataset.

In the first home, named H1 in the dataset and housing the dual-income family, there
are thirteen objects for the subjects to interact with. The smart devices, that are part
of the kitchen devices group, are the barbecue, coffee machine, oven, refrigerator, stove,
and toaster. The other device group of the home includes the devices, categorized as
free time events, which are the respective notebooks of the children, the tablet, TV, and
radio. The washing machine and the dishwasher, are not considered part of any group.

The home with the most objects is the second home, which is named H2 in the dataset
and has a total of fourteen smart devices. The kitchen group in this home features the
coffee machine, microwave, oven, refrigerator, stove, toaster, and water boiler, while
the free time device group encompasses the radio and the two TVs. The devices not
considered as parts of any group are the washing machine, dishwasher, printer, and
notebook.

The least number of objects are featured in the third home, which is recorded as H3 in
CosyHome. In total, there are only seven smart devices in this home, with five of them
being grouped as kitchen devices, which are the microwave, oven, refrigerator, stove, and
water boiler. The dishwasher and the computer, are not part of any group, which makes
the third home the only home without a group of free time devices.

The fourth home, referred to as H4 in the dataset, has only one more object than the
third home but has enough free time devices to create a group for these devices. The
kitchen devices in this smart home are the oven, the refrigerator, the stove, the toaster,
and the water boiler, while the notebook and the TV are grouped as the free time devices.

131

A. CosyHome Dataset Details

The dishwasher is not part of any group, which makes it the only device in the home not
being related to any other object.

132

Acronyms and Abbreviations

ABAC
ACL
ACM
EMS
FACA
IBAC
IoT
LBAC
PAP
PDP
PEP
PIP
QoE
QoS
RBAC
WoT
WWW

Attribute Based Access Control
Access Control List

Access Control Mechanism
Energy Management System
Fog Access Control Agent
Identity Based Access Control
Internet of Things

Lattice Based Access Control
Policy Administration Point
Policy Decision Point

Policy Enforcement Point
Policy Information Point
Quality of Experience

Quality of Service

Role Based Access Control
Web of Things

World Wide Web

XACML Extensible Access Control Markup Language

133

Bibliography

1]

Gregory D Abowd et al. ‘Towards a better understanding of context and context-
awareness’. In: International symposium on handheld and ubiquitous computing.
Springer. 1999, pp. 304-307.

Jose Aguilar, Marxjhony Jerez and Taniana Rodriguez. ‘CAMeOnto: Context
awareness meta ontology modeling’. In: Applied computing and informatics 14.2
(2018), pp. 202-213.

Tanweer Alam. ‘A reliable communication framework and its use in internet of
things (IoT)’. In: International Journal of Scientific Research in Computer Science,
Engineering and Information Technology (IJSRCSEIT) 3.5 (2018), pp. 450-456.

Unai Alegre, Juan Carlos Augusto and Tony Clark. ‘Engineering context-aware
systems and applications: A survey’. In: Journal of Systems and Software 117
(2016), pp. 55-83.

Abdul-Rahman Al-Ali et al. ‘A smart home energy management system using IoT
and big data analytics approach’. In: IEEE Transactions on Consumer Electronics
63.4 (2017), pp. 426-434.

Luigi Atzori, Antonio lera and Giacomo Morabito. ‘The internet of things: A
survey’. In: Computer networks 54.15 (2010), pp. 2787-2805.

Lars Backstrom et al. ‘Group formation in large social networks: membership,
growth, and evolution’. In: Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining. 2006, pp. 44-54.

Matthias Baldauf, Schahram Dustdar and Florian Rosenberg. ‘A survey on context-
aware systems’. In: International Journal of Ad Hoc and Ubiquitous Computing
2.4 (2007), pp. 263-277.

Horace B Barlow. ‘Unsupervised learning’. In: Neural computation 1.3 (1989),
pp. 295-311.

Alison M Bell, Shala J Hankison and Kate L Laskowski. ‘The repeatability of
behaviour: a meta-analysis’. In: Animal behaviour 77.4 (2009), pp. 771-783.

D Elliott Bell and Leonard J LaPadula. Secure computer systems: Mathematical
foundations. Tech. rep. MITRE CORP BEDFORD MA, 1973.

Victoria Bellotti and Keith Edwards. ‘Intelligibility and accountability: human
considerations in context-aware systems’. In: Human—Computer Interaction 16.2-4
(2001), pp. 193-212.

135

Bibliography

[13]

136

Kamal Benzekki, Abdeslam El Fergougui and Abdelbaki ElBelrhiti ElAlaoui. ‘A
context-aware authentication system for mobile cloud computing’. In: Procedia
Computer Science 127 (2018), pp. 379-387.

Matt Blaze et al. ‘The role of trust management in distributed systems security’.
In: Secure Internet Programming. Springer, 1999, pp. 185-210.

Alexandru Boicea, Florin Radulescu and Laura loana Agapin. ‘MongoDB vs
Oracle-database comparison’. In: 2012 third international conference on emerging
intelligent data and web technologies. IEEE. 2012, pp. 330-335.

Mariusz Bojarski et al. ‘End to end learning for self-driving cars’. In: arXiv preprint
arXiv:1604.07316 (2016).

Lionel C Briand, Yvan Labiche and Yihong Wang. ‘An investigation of graph-
based class integration test order strategies’. In: IEEFE Transactions on Software
Engineering 29.7 (2003), pp. 594-607.

Kjell Brunnstrom et al. ‘Qualinet white paper on definitions of quality of experi-
ence’. In: (2013).

Hans Ulrich Buhl et al. Big data. 2013.

Michael Burrows, Martin Abadi and Roger Michael Needham. ‘A logic of authen-
tication’. In: Proceedings of the Royal Society of London. A. Mathematical and
Physical Sciences 426.1871 (1989), pp. 233-271.

Jorge Cardoso et al. ‘Quality of service for workflows and web service processes’.
In: Journal of web semantics 1.3 (2004), pp. 281-308.

Marie Chan et al. ‘A review of smart homes—Present state and future challenges’.
In: Computer methods and programs in biomedicine 91.1 (2008), pp. 55-81.

Mingte Chen et al. Asynchronous message push to web browser. US Patent App.
10/033,146. Nov. 2003.

commons-math3. Version 3.6.1. 17th Mar. 2016. URL: https://mvnrepository.
com/artifact/org.apache.commons/commons-math3.

CosyHome Dataset on Git. https://gitlab.cs.univie.ac.at/cosylab/
cosylab-fog/fog_behaviourengine/-/tree/develop/src/main/resources/
cosyHomeDataset. Accessed: 2021-10-30.

Julien Cumin et al. ‘A dataset of routine daily activities in an instrumented home’.
In: International Conference on Ubiquitous Computing and Ambient Intelligence.
Springer. 2017, pp. 413-425.

Scott Davidoff et al. ‘Principles of smart home control’. In: International conference
on ubiquitous computing. Springer. 2006, pp. 19-34.

Jesse Davis and Mark Goadrich. ‘The relationship between Precision-Recall and
ROC curves’. In: Proceedings of the 23rd international conference on Machine
learning. 2006, pp. 233-240.

https://mvnrepository.com/artifact/org.apache.commons/commons-math3
https://mvnrepository.com/artifact/org.apache.commons/commons-math3
https://gitlab.cs.univie.ac.at/cosylab/cosylab-fog/fog_behaviourengine/-/tree/develop/src/main/resources/cosyHomeDataset
https://gitlab.cs.univie.ac.at/cosylab/cosylab-fog/fog_behaviourengine/-/tree/develop/src/main/resources/cosyHomeDataset
https://gitlab.cs.univie.ac.at/cosylab/cosylab-fog/fog_behaviourengine/-/tree/develop/src/main/resources/cosyHomeDataset

Bibliography

Dorothy E Denning. ‘A lattice model of secure information flow’. In: Communica-
tions of the ACM 19.5 (1976), pp. 236-243.

Paul Dourish. ‘What we talk about when we talk about context’. In: Personal
and ubiquitous computing 8.1 (2004), pp. 19-30.

Janick Edinger et al. ‘Fault-avoidance strategies for context-aware schedulers
in pervasive computing systems’. In: 2017 IEEE International Conference on
Pervasive Computing and Communications (PerCom). IEEE. 2017, pp. 79-88.

Sélinde van Engelenburg, Marijn Janssen and Bram Klievink. ‘Designing context-
aware systems: A method for understanding and analysing context in practice’. In:
Journal of logical and algebraic methods in programming 103 (2019), pp. 79-104.

Patrick Th Eugster et al. ‘The many faces of publish/subscribe’. In: ACM com-
puting surveys (CSUR) 35.2 (2003), pp. 114-131.

Joel L Fernandes et al. ‘Performance evaluation of RESTful web services and
AMQP protocol’. In: 2018 fifth international conference on ubiquitous and future
networks (ICUFN). IEEE. 2013, pp. 810-815.

Fielding Hudson Garrison. ‘The history of heating, ventilation and lighting’. In:
Bulletin of the New York Academy of Medicine 3.2 (1927), p. 56.

Simon Godik and Tim Moses. ‘Oasis extensible access control markup language
(xacml)’. In: OASIS Committee Secification cs-zacml-specification-1.0 (2002).

Dominique Guinard and Vlad Trifa. ‘Towards the web of things: Web mashups for
embedded devices’. In: Workshop on Mashups, Enterprise Mashups and Lightweight
Composition on the Web (MEM 2009), in proceedings of WWW (International
World Wide Web Conferences), Madrid, Spain. Vol. 15. 2009, p. 8.

Ankush Gupta, Andrea Vedaldi and Andrew Zisserman. ‘Synthetic data for text
localisation in natural images’. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016, pp. 2315-2324.

hamcrest. Version 2.1. 20th Dec. 2018. URL: https ://mvnrepository . com/
artifact/org.hamcrest/hamcrest.

hamcrest-optional. Version 2.0.0. 9th June 2017. URL: https://mvnrepository.
com/artifact/com.github.npathai/hamcrest-optionall

Richard Harper. Inside the smart home. Springer Science & Business Media, 2006.

Trevor Hastie, Robert Tibshirani and Jerome Friedman. ‘Overview of supervised
learning’. In: The elements of statistical learning. Springer, 2009, pp. 9—41.

Abdeltawab Hendawi et al. ‘Benchmarking large-scale data management for
Internet of Things’. In: The Journal of Supercomputing 75.12 (2019), pp. 8207—
8230.

George Hsu. Modular RF communication module for automated home and vehicle
systems. US Patent 6,374,079. Apr. 2002.

137

https://mvnrepository.com/artifact/org.hamcrest/hamcrest
https://mvnrepository.com/artifact/org.hamcrest/hamcrest
https://mvnrepository.com/artifact/com.github.npathai/hamcrest-optional
https://mvnrepository.com/artifact/com.github.npathai/hamcrest-optional

Bibliography

[45]

[46]

138

Vincent C Hu et al. ‘Guide to attribute based access control (abac) definition and
considerations (draft)’. In: NIST special publication 800.162 (2013).

Tam Huynh, Mario Fritz and Bernt Schiele. ‘Discovery of activity patterns using
topic models’. In: Proceedings of the 10th international conference on Ubiquitous
computing. 2008, pp. 10-19.

Kim Hyun-Wook et al. ‘Development of middleware architecture to realize context-
aware service in smart home environment’. In: Computer Science and Information
Systems 13.2 (2016), pp. 427-452.

Xin Jin, Ram Krishnan and Ravi Sandhu. ‘A unified attribute-based access control
model covering DAC, MAC and RBAC’. In: IFIP Annual Conference on Data
and Applications Security and Privacy. Springer. 2012, pp. 41-55.

Satu Jumisko-Pyykko and Teija Vainio. ‘Framing the context of use for mobile
HCT'. In: International journal of mobile human computer interaction (IJMHCI)
2.4 (2010), pp. 1-28.

Won Min Kang, Seo Yeon Moon and Jong Hyuk Park. ‘An enhanced security
framework for home appliances in smart home’. In: Human-centric Computing
and Information Sciences 7.1 (2017), pp. 1-12.

Joachim Karlsson and Kevin Ryan. ‘A cost-value approach for prioritizing require-
ments’. In: IEEFE software 14.5 (1997), pp. 67-74.

Stas Khirman and Peter Henriksen. ‘Relationship between quality-of-service and
quality-of-experience for public internet service’. In: In Proc. of the 3rd Workshop
on Passive and Active Measurement. Vol. 1. 2002.

Wei-Chi Ku and Shen-Tien Chang. ‘Impersonation attack on a dynamic ID-based
remote user authentication scheme using smart cards’. In: IEICE Transactions on
Communications 88.5 (2005), pp. 2165-2167.

Kevin Kunzelman and Sterling Hutto. Common session token system and protocol.
US Patent 6,041,357. Mar. 2000.

Charles A Kunzinger. Integrated system for network layer security and fine-grained
identity-based access control. US Patent 6,986,061. Jan. 2006.

Andres Laya, Vlad-loan Bratu and Jan Markendahl. ‘Who is investing in machine-
to-machine communications?’ In: (2013).

Ying-Tsung Lee et al. ‘An integrated cloud-based smart home management system
with community hierarchy’. In: IEEE Transactions on Consumer Electronics 62.1
(2016), pp. 1-9.

Wu-Hon Francis Leung. Methods and apparatus for preventing software modifica-
tions from invalidating previously passed integration tests. US Patent 6.769.114.
July 2004.

Bojun Li, Piyanuch Hathaipontaluk and Suhuai Luo. ‘Intelligent oven in smart
home environment’. In: 2009 international conference on research challenges in
computer science. IEEE. 2009, pp. 247-250.

[73]

[74]

Bibliography

Lu Luo. ‘Software testing techniques’. In: Institute for software research interna-
tional Carnegie mellon university Pittsburgh, PA 15232.1-19 (2001), p. 19.

Meena Mahajan, Prajakta Nimbhorkar and Kasturi Varadarajan. ‘The planar k-
means problem is NP-hard’. In: Theoretical Computer Science 442 (2012), pp. 13—
21.

John McHugh and Carrie Gates. ‘Locality: A new paradigm for thinking about
normal behavior and outsider threat’. In: Proceedings of the 2003 workshop on
New security paradigms. 2003, pp. 3—10.

Saul McLeod. ‘Maslow’s hierarchy of needs’. In: Simply psychology 1 (2007), pp. 1-
8.

Alexey Medvedev et al. ‘Waste management as an IoT-enabled service in smart
cities’. In: Internet of Things, Smart Spaces, and Next Generation Networks and
Systems. Springer, 2015, pp. 104-115.

mockito-core. Version 2.28.2. 29th May 2019. URL: https://mvnrepository.com/
artifact/org.mockito/mockito-core.

Michael Mozer et al. ‘The adaptive house’. In: IEE Seminar Digests. Vol. 11059.
IET. 2005, pp. v1-39.

Zhaolong Ning et al. ‘Vehicular social networks: Enabling smart mobility’. In:
IEEE Communications Magazine 55.5 (2017), pp. 16-55.

Christena E Nippert-Eng. Home and work: Negotiating boundaries through every-
day life. University of Chicago Press, 2008.

Bettina Nissen et al. ‘Geocoin: Supporting ideation and collaborative design with
smart contracts’. In: Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems. 2018, pp. 1-10.

Sylvia Osborn, Ravi Sandhu and Qamar Munawer. ‘Configuring role-based access
control to enforce mandatory and discretionary access control policies’. In: ACM
Transactions on Information and System Security (TISSEC) 3.2 (2000), pp. 85—
106.

Andrei Palade et al. ‘Middleware for Internet of Things: A quantitative evaluation
in small scale’. In: 2017 IEEE 18th International Symposium on A World of
Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE. 2017, pp. 1-6.

Vamsikrishna Patchava, Hari Babu Kandala and P Ravi Babu. ‘A smart home auto-
mation technique with raspberry pi using iot’. In: 2015 International conference
on smart sensors and systems (IC-SSS). IEEE. 2015, pp. 1-4.

Charith Perera et al. ‘Context aware computing for the internet of things: A
survey’. In: IEEE communications surveys € tutorials 16.1 (2013), pp. 414-454.

Charith Perera et al. ‘Sensing as a service model for smart cities supported by
internet of things’. In: Transactions on emerging telecommunications technologies
25.1 (2014), pp. 81-93.

139

https://mvnrepository.com/artifact/org.mockito/mockito-core
https://mvnrepository.com/artifact/org.mockito/mockito-core

Bibliography

[75]

[76]

140

Stan Pounds and Stephan W Morris. ‘Estimating the occurrence of false positives
and false negatives in microarray studies by approximating and partitioning the
empirical distribution of p-values’. In: Bioinformatics 19.10 (2003), pp. 1236-1242.

J. Ross Quinlan. ‘Induction of decision trees’. In: Machine learning 1.1 (1986),
pp. 81-106.

Rasmus V Rasmussen and Michael A Trick. ‘Round robin scheduling—a survey’.
In: European Journal of Operational Research 188.3 (2008), pp. 617-636.

Raspberry Pi 8 Model B Rev 1.2. https://www.raspberrypi.org/products/
raspberry-pi-3-model-b/. Accessed: 2021-09-26.

Leonard Richardson and Sam Ruby. RESTful web services. " O’Reilly Media, Inc.",
2008.

Vincent Ricquebourg et al. ‘The smart home concept: our immediate future’. In:
2006 1st IEEFE international conference on e-learning in industrial electronics.
IEEE. 2006, pp. 23-28.

Rosslin John Robles et al. ‘A review on security in smart home development’. In:
International Journal of Advanced Science and Technology 15 (2010).

Daniel Roggen et al. ‘Collecting complex activity datasets in highly rich networked
sensor environments’. In: 2010 Seventh international conference on networked
sensing systems (INSS). IEEE. 2010, pp. 233-240.

Patrick Rosenberger and Detlef Gerhard. ‘Context-awareness in industrial ap-
plications: definition, classification and use case’. In: Procedia CIRP 72 (2018),
pp. 1172-1177.

Per Runeson. ‘A survey of unit testing practices’. In: IEEE software 23.4 (2006),
pp. 22-29.

Ameena Saad al-sumaiti, Mohammed Hassan Ahmed and Magdy MA Salama.
‘Smart home activities: A literature review’. In: Flectric Power Components and
Systems 42.3-4 (2014), pp. 294-305.

Ravi Sandhu. ‘Role hierarchies and constraints for lattice-based access controls’. In:
European Symposium on Research in Computer Security. Springer. 1996, pp. 65—
79.

Ravi S. Sandhu. ‘Lattice-based access control models’. In: Computer 26.11 (1993),
pp- 9-19.

Ravi S Sandhu and Pierangela Samarati. ‘Access control: principle and practice’.
In: IEEE communications magazine 32.9 (1994), pp. 40-48.

Ravi S Sandhu et al. ‘Role-based access control models’. In: Computer 29.2 (1996),
pp. 38-47.

RS Sandhu et al. ‘Access Control Models’. In: IEEE computer 29.2 (2013), pp. 38—
47.

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[100]

[101]

[102]

[103]

[104]

Bibliography

Abhijit A Sawant, Pranit H Bari and PM Chawan. ‘Software testing techniques
and strategies’. In: International Journal of Engineering Research and Applications
(IJERA) 2.3 (2012), pp. 980-986.

Kamlesh Sharma and T Suryakanthi. ‘Smart system: IoT for university’. In: 2015
International Conference on Green Computing and Internet of Things (ICGCIoT).
IEEE. 2015, pp. 1586—1593.

Stefan Soucek, Gerhard Russ and Clara Tamarit. The smart kitchen project-an
application of fieldbus technology to domotics. Citeseer, 2000.

spring-amgp. Version 2.2.11.RELEASE. 16th Sept. 2020. URL: https : / /
mvnrepository.com/artifact/org.springframework.amgp/spring-amgp.

spring-data-mongodb. Version 3.0.4. RELEASE. 16th Sept. 2020. URL: https :
//mvnrepository.com/artifact/org.springframework.data/spring-data-
mongodb.

spring-rabbit. Version 2.2.11.RELEASE. 16th Sept. 2020. URL: https : / /
mvnrepository.com/artifact/org.springframework.amgp/spring-rabbit.

Hema Srikanth, Laurie Williams and Jason Osborne. ‘System test case priorit-
ization of new and regression test cases’. In: 2005 International Symposium on
Empirical Software Engineering, 2005. IEEE. 2005, 10—pp.

Biljana L Risteska Stojkoska and Kire V Trivodaliev. ‘A review of Internet
of Things for smart home: Challenges and solutions’. In: Journal of Cleaner
Production 140 (2017), pp. 1454-1464.

Ting Su and Jennifer Dy. ‘A deterministic method for initializing k-means cluster-
ing’. In: 16th IEEFE International Conference on Tools with Artificial Intelligence.
IEEE. 2004, pp. 784-786.

Wencheng Sun et al. ‘Security and privacy in the medical internet of things: a
review’. In: Security and Communication Networks 2018 (2018).

Harald Sundmaeker et al. ‘Vision and challenges for realising the Internet of
Things’. In: Cluster of Furopean Research Projects on the Internet of Things,
European Commision 3.3 (2010), pp. 34-36.

Lu Tan and Neng Wang. ‘Future internet: The internet of things’. In: 2010 3rd
international conference on advanced computer theory and engineering (ICACTE).
Vol. 5. IEEE. 2010, pp. V5-376.

Francois Trans. Means and method for a synchronous network communications
system. US Patent 6,377,640. Apr. 2002.

Ciprian-Octavian Truica et al. ‘Performance evaluation for CRUD operations
in asynchronously replicated document oriented database’. In: 2015 20th Inter-
national Conference on Control Systems and Computer Science. IEEE. 2015,
pp. 191-196.

141

https://mvnrepository.com/artifact/org.springframework.amqp/spring-amqp
https://mvnrepository.com/artifact/org.springframework.amqp/spring-amqp
https://mvnrepository.com/artifact/org.springframework.data/spring-data-mongodb
https://mvnrepository.com/artifact/org.springframework.data/spring-data-mongodb
https://mvnrepository.com/artifact/org.springframework.data/spring-data-mongodb
https://mvnrepository.com/artifact/org.springframework.amqp/spring-rabbit
https://mvnrepository.com/artifact/org.springframework.amqp/spring-rabbit

Bibliography

[105]

[106]
[107]
[108]

[109]

[110]

[111]

[112]

[113]

[114]

142

Hamed Vahdat-Nejad, Kamran Zamanifar and Nasser Nematbakhsh. ‘Context-
aware middleware architecture for smart home environment’. In: International
journal of smart home 7.1 (2013), pp. 77-86.

Pravin Varaiya. ‘Smart cars on smart roads: problems of control’. In: IEEE
Transactions on automatic control 38.2 (1993), pp. 195-207.

Ovidiu Vermesan et al. ‘Internet of things strategic research roadmap’. In: Internet
of things-global technological and societal trends 1.2011 (2011), pp. 9-52.

Richard L Villars, Carl W Olofson and Matthew Eastwood. ‘Big data: What it is
and why you should care’. In: White paper, IDC 14 (2011), pp. 1-14.

Jiafu Wan et al. ‘Context-aware vehicular cyber-physical systems with cloud sup-
port: architecture, challenges, and solutions’. In: IEEE Communications Magazine
52.8 (2014), pp. 106-113.

Fei-Yue Wang, Daniel Zeng and Liuqing Yang. ‘Smart cars on smart roads: an
IEEE intelligent transportation systems society update’. In: IEFE Pervasive
Computing 5.4 (2006), pp. 68-69.

Martin Wollschlaeger, Thilo Sauter and Juergen Jasperneite. ‘The future of
industrial communication: Automation networks in the era of the internet of
things and industry 4.0’. In: IEEE industrial electronics magazine 11.1 (2017),
pp. 17-27.

John Yen and Reza Langari. Fuzzy logic: intelligence, control, and information.
Vol. 1. Prentice Hall Upper Saddle River, NJ, 1999.

Eric Yuan and Jin Tong. ‘Attributed based access control (ABAC) for web services’.
In: IEEE International Conference on Web Services (ICWS’05). IEEE. 2005.

Andrea Zanella et al. ‘Internet of things for smart cities’. In: IEEFE Internet of
Things journal 1.1 (2014), pp. 22-32.

	Introduction
	Smart Environments
	Security Concerns
	Research Questions and Key Contributions
	Structure of this Master Thesis

	Smart Home Fundamentals - An Internet of Things Environment
	Internet Of Things
	Underlying Technologies
	Smart Home
	Use Cases
	Common Challenges

	Context Fundamentals
	Background
	Context Domain
	Life Cycle of Context

	Design Methods
	In-Depth Support Design Methods
	Generic Support Design Methods

	Access Control Fundamentals
	Identity-Based Access Control
	Lattice-Based Access Control
	Role-Based Access Control
	Attribute-Based Access Control
	XACML Architecture

	Solution Design
	Context Information Management
	Acquisition Phase
	Modelling Phase
	Reasoning Phase
	Dissemination Phase

	Events
	Control Events
	Periodic Events

	Behaviour Pattern
	Control Event Pattern
	Periodic Event Pattern

	Semantic Groupings
	User Groups
	Device Groups

	Behaviour Evaluation Decision
	Classification
	External Validation
	Processing an Event

	Smart Home Integration
	Access Control Attributes
	Additional Behaviour Evaluation
	Behaviour Pattern Correlations
	Configuration Options for Residents
	Output Dissemination

	Summary

	Implementation
	Underlying Smart Home Infrastructure
	Smart Home Devices
	Open-Source Components

	Related Smart Home Components
	Fog Access Control Agent
	Fog Controller

	Database
	Messaging
	Client
	Publisher
	Handler

	Access Control Integration
	Behaviour Access Control Attributes
	Access Control Request Processing

	Behaviour Analysis
	Pattern Generation
	Group Suggestions
	Pattern Correlations

	Decision-Making
	Access Control Decision
	Smart Home Event Evaluation
	Decision Constants and Calculation

	Configuration
	Pattern Management
	Group Management
	Access Attribute Management

	Testing
	Unit Tests
	Integration Tests
	System Tests

	Visualization
	Periodic Event Pattern
	Control Event Pattern

	Evaluation
	CosyHome - Big Data Evaluation
	Test Subjects
	Data Gathering
	Translating Raw Data into Dataset
	Test Execution
	Results
	Interchanging Context Test

	Synthetic Data Evaluation
	Policy Evaluation Performance
	Correlation Test

	Conclusion
	Key Contributions
	Research Questions Revisited
	Future Work

	CosyHome Dataset Details
	Related Datasets
	Subjects
	Objects

	Acronyms and Abbreviations
	Bibliography

