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Abstract

Topological quantum field theories (TQFTs) are quantum field theories where only
the global structure of spacetime plays a role. In this thesis we study TQFTs in
the presence of (topological) defects, and tangential structures, such as orientations
or spin structures. After a review of the relevant mathematical notions, and some
simpler variants of TQFTs, we propose a definition for the appropriate bordism
category underlying such field theories. As an important example we then focus
on two dimensional defect TQFTs with spin structures. For these we construct a
2-category. For this 2-category we find a pivotal structure like in the oriented case.
In addition we further find a 2-endofunctor coming from deck transformations of the
underlying spin bundles.



Zusammenfassung

Topologische Quantenfeldtheorien (TQFTs) sind Quantenfeldtheorien in denen nur
die globale Struktur der zugrunde liegenden Raumzeit eine Rolle spielt. In dieser Ar-
beit untersuchen wir TQFTs mit (topologischen) Defekten und tangentialen Struk-
turen, wie Orientierungen oder Spinstrukturen. Nachdem wir die relevanten math-
ematischen Begriffe einführen und einen Überblick über simplere Varienten von
TQFTs geben, schlagen wir eine mögliche Definition der Bordismen Kategorien, die
solchen Theorien zugrunde liegen, vor. Anschließend konzentrieren wir uns auf zwei
dimensionale defekt TQFTs mit Spinstrukturen, welche ein wichtiges Beispiel der
allgemeinen Theorien bilden. Für diese TQFTs konstruieren wir eine 2-Kategorie
mit zusätzlicher Struktur. Insbesondere finden wir eine pivotale Struktur wie im
orientierten Fall. Zusätzlich finden wir einen 2-Endofunktor welcher durch Deck-
transformationen auf den zugrunde liegenden Spinbündeln induziert wird.
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Introduction

Quantum field theories (QFTs) are an indispensable tool in modern theoretical
physics with applications ranging from particle physics over cosmology to condensed
matter systems and quantum optics. However even though QFTs are such a widely
accepted tool in physics a precise mathematical understanding of them remains elu-
sive. Finding a rigorous definition and constructing non-trivial examples of QFTs is
thus one of the most prominent questions in modern mathematical physics. There
are various ways to work towards such a definition and a complete list of these would
be beyond the scope of this thesis. We will follow the categorical approach called
functorial field theory, this approach to QFTs goes back to Segal’s axiomatic defi-
nition of 2-dimensional conformal field theories [Seg04], and Atiyah’s and Witten’s
work on topological quantum field theories [Ati88; Wit88] in the 1980s. To motivate
the functorial definition one usually makes a heuristic argument using path integrals.
In the following we will sketch such an argument along the lines of [CR18, Section
2.1] and [Bar05, Chapter 1]:

Path integral motivation

First we need to choose a spacetime, this means a (compact) Lorentzian manifold
M with metric g.1 Next we need to choose a set of fields Φ, for example a single
scalar field would be modeled by a ϕ ∈ C∞(M,R).2 Furthermore we need a action
functional S[Φ], usually given as

S[Φ] =

ˆ
M

L(Φ,∇Φ)dvolg (0.0.1)

1For simplicity let us assume that M has empty boundary, otherwise we would need to specify
boundary conditions for the fields.

2For more complicated theories like gauge theories, such as the standard model of particle
physics, we would need further choices such as a compact Lie group G and a principal G-bundle P
over M .
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with dvolg the volume form on M and L(Φ,∇Φ) the Lagrangian density which de-
pends on Φ and its first derivative∇Φ. For a free massless scalar field the Lagrangian
density would be

L(ϕ,∇ϕ) = 1

2
g(∇ϕ,∇ϕ). (0.0.2)

Up to now everything is classical and can be formulated completely rigorously. The
path integral or partition function is given as

Z =

ˆ
DΦeiS[Φ] (0.0.3)

where
´
DΦ should mean “the integral over all fields Φ”. We can use the path

integral to compute the amplitude that a state |Φ1⟩ at time t1 evolves into another
state ⟨Φ2| at time t2 as

⟨Φ2|U |Φ1⟩ =
ˆ Φ|Σ2

=Φ2

Φ|Σ1
=Φ1

DΦeiS[Φ] (0.0.4)

where Σ1 and Σ2 are the spatial hypersurfaces of M at time t1 and t2, respectively.
This prescription reads as follows: “Sum over all field configurations Φ which restrict
to Φ1 and Φ2 on Σ1 and Σ2, respectively, and weight each contribution by eiS[Φ].”
From this formula we can see two things:

1. A spatial hypersurface Σ corresponds to an Hilbert space of states HΣ.

2. A submanifold N of M “between” two spatial hypersurfaces Σ1 and Σ2 as
above corresponds to a time evolution operator

U(t2, t1) : HΣ1 → HΣ2 . (0.0.5)

The submanifold N is called a bordism from Σ1 to Σ2, a precise definition will be
given in Section 1.4. The picture behind this heuristic description should be the
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following:

Σ1

Σ2

N

Φ1

Φ2

U (0.0.6)

where the dashed arrows signify that the Φi are fields localised on the Σi. From this
heuristic argument we expect a QFT to be something like a map:

Spacetimes −→ Algebra

spatial hypersurface Σ 7−→ space of states HΣ

bordism N 7−→ time evolution operator U,

(0.0.7)

which preserves certain structures. Let us call this map Z, in reminiscence to the
path integral from above. To understand the nature of Z let us consider some
properties it should satisfy:

Firstly we want that evolving from Φ1 to Φ2 along N and then further evolving to
Φ3 along N

′ should be the same as evolving straight from Φ1 to Φ3 along the “glued
bordism” N ′ ◦N . For Z this means that

Z(N2 ◦N1) = Z(N2) ◦ Z(N1) (0.0.8)

should hold. This equation is precisely functoriality of Z.
For the second property suppose that the spatial hypersurface Σ decomposes into

a disjoint union Σ = Σ1 ⊔ Σ2 then the fields Φ should also decompose into fields Φ1

and Φ2 on Σ1 and Σ2, respectively. This means the space of states should satisfy

Z(Σ) = Z(Σ1)⊗C Z(Σ2). (0.0.9)

Furthermore if we assume N = N1 ⊔ N2, then we expect the time evolution to
decompose, from this we find that

Z(N1 ⊔N2) = U1 ⊗C U2, (0.0.10)
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here U1 and U2 are the time evolution operators of Φ1 and Φ2 along N1 and N2,
respectively. Equations (0.0.9) and (0.0.10) mean that Z should be monoidal. This
captures the quantum nature of the theory, as in quantum theories the state space
of a composite system is the tensor product of the state spaces of the components.
Moreover Σ1 ⊔ Σ2

∼= Σ2 ⊔ Σ1 and Z should respect this symmetry property, i.e. we
expect an isomorphism

Z(Σ1)⊗C Z(Σ2) ∼= Z(Σ2)⊗C Z(Σ1). (0.0.11)

The precise choice of this isomorphism depends on whether the fields are bosonic or
fermionic. This property states that Z is symmetric.

Finally we expect an inner product on the state spaces and the corresponding
notion of adjoint operators. These algebraic structures are related to orientation
reversal on the geometric side and are more carefully motivated in [CR18, Section
2.1].

From this motivation we expect that Z should be a symmetric monoidal functor
from a geometric bordism category to a category of vector spaces with extra structure,
e.g. Hilbert spaces. Such a Z is called a functorial field theory.

Topological quantum field theories

Topological quantum field theories (TQFTs) are QFTs where only the topological,
or global, structure of the spacetime plays a role. In physics this is often expressed
as the requirement that all correlation functions are independent of the metric, such
theories are said to be of Schwarz type. A related notion is that of cohomological
or Witten type TQFTs where the action and the stress energy tensor are zero in
some certain cohomology, see [Bar05, Chapter 1.3] for more details. For example
Chern-Simons theory and BF theory are TQFTs of Schwarz type. In the functorial
approach to QFTs a TQFT is a symmetric monoidal functor

Z : Bord→ VectC (0.0.12)

where the manifolds in the bordism category Bord only contain topological structure
such as an orientation or spin structure, and no geometric structure such as a metric
or a connection. This “simplicity” on the geometric side is a main reason TQFTs
can be defined and studied rigorously. Despite this they are still non-trivial and arise
naturally in many areas of both physics and pure mathematics:

• In theoretical high energy physics as twists of certain supersymmetric conformal
field theories, these TQFTs are of Witten-type [Hor+03, Chapter 16];
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• in condensed matter physics in the classification of topological phases of matter
[FH19; FH21];

• in topological quantum computing, where the worldlines of anyonic quasipar-
ticles appear as quantum gates. The topological nature of their effective inter-
action are modelled by specific TQFTs [DFN06];

• in algebraic topology as topological invariants of manifolds per definition.
Moreover some classes of TQFTs, such as Chern-Simons theory, are related
to knot invariants [Wit89];

• as relations between the traditionally separate fields of algebra, geometry,
topology and number theory, more specifically those connected to “homological
mirror symmetry” or the “geometric Langlands program” [Hor+03].

In general one can differentiate between types of TQFTs depending on the precise
details of the bordism category for which they are defined, more specifically there are
different (topological) bordism categories depending on the following “variables”:

• the dimension of bordisms;

• allowed tangential structures on bordisms;

• allowed types of boundaries or stratifications ;

• categorical degree;

We will only very briefly describe how these variables enter the bordism category
and which effect varying them has for the algebraic description of the TQFTs, full
definitions will be given throughout the main text.

How the dimension n ∈ Z+ enters is straightforward to see. In the algebraic
description the dimension is in parts responsible for the “categorical degree” of the
algebraic structure. Very roughly the connection is as follows: The higher the di-
mension of the bordism category, the richer the algebraic structure of the TQFTs.
We will come back to this in the third point.

Tangential structures are a type of extra topological structure on the manifold
and can be thought of as a generalisation of orientations and spin structures. Fur-
ther down we will give a very brief motivation to study spin structures. Tangential
structures determine some of the algebraic properties of the TQFTs. In Chapter 2
we will make this more precise and see how spin TQFTs differ from oriented TQFTs.

The third point refers to the type of manifolds underlying the bordism category.
In principle these are either manifolds with boundaries, corners, or stratifications.
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In the heuristic description above we tacitly assumed that the spatial hypersur-
faces Σi are closed, i.e. compact and without boundaries, this lead to the bordism N
being a compact manifold with boundaries. The corresponding bordism categories
are called closed. The TQFT defined on closed bordism categories are the simplest
in the algebraic description, for example in two dimensions they are described by
certain algebras, see for example [Koc03] for oriented TQFTs.

If we allow the Σi to also have boundaries, we would get that N needs to be a
manifold with corners. In this case we should also specify boundary conditions for the
boundaries of the Σi. The corresponding bordism categories are called open or open-
closed depending on whether all objects have boundaries or not. Open 2-dimensional
TQFTs are described by certain categories, see [MS09; LP08].

Finally stratified manifolds are needed if we want to describe defects in field
theories. We will give more motivation for this in the next section and make a small
excursion to defects in general QFTs. The algebraic description of defect TQFTs
is the richest, it is expected that n-dimensional defect TQFTs are described by n-
categories [CRS19]. A n-category is a “higher dimensional” version of a category in
the sense that there will not only be objects and morphisms, which can be seen as 0-
and 1-dimensional things, but objects, 1-morphisms between objects, 2-morphisms
between 1-morphisms, and so on until n-morphisms between (n− 1)-morphisms.

The relation between higher categories and defect TQFTs was made precise in
[DKR11] and [CMS20] where for any 2- and 3-dimensional oriented defect TQFT
it was shown how to extract a 2- or 3-category, respectively. In Chapter 5 we will
construct a 2-category from any 2-dimensional defect spin TQFT. Here we already
see how higher categories naturally appear while studying TQFTs.

Higher categories can enter further on a more direct level if we allow the bordism
category itself to be a higher category, consequently also the target category of vector
spaces needs to be replaced by a suitable higher category and the symmetric monoidal
functor by a higher functor. Such TQFTs are called extended. Although we will not
be concerned with such theories in this thesis, a brief description of these fascinating
and rich theories should not be left out.

Defects in QFTs

A physical defect is a lower-dimensional region of spacetime which behaves differ-
ently then its surroundings. The resulting theory is “defective” in the sense that two
regions of spacetime disjoint by a defect could have vastly different physical proper-
ties. We call a defect topological if geometric details are not necessary to characterise
them. Such a loose description of topological defects already captures basic prop-
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erties of more complicated physical defects such as domain walls in ferromagnets or
cosmic strings in cosmology.

Furthermore for topological defects it is possible to formulate them completely
rigorous. In such a rigorous framework they can be used on a more conceptual
level, to relate and compare different QFTs. For example dualities (such as mirror
symmetry) between different theories are special cases of topological defects [Car18].

To incorporate defects in the functorial approach to TQFTs the bordism category
needs to have more “local” structure. More precisely the manifolds should come with
embedded submanifolds called strata. In analogy to open and open-closed bordisms
one further needs to assign labels to these strata. The physical interpretation of
these labels depends on the dimension of the strata:

• domains or phases of the field theory for n-dimensional strata;

• domain walls for (n− 1)-dimensional strata;

• junctions for (n− 2)-dimensional to 1-dimensional strata;

• local operators or junction points for 0-strata;

with n being the dimension of the whole manifold. For example a stratified manifold
without labels could look something like this:

(0.0.13)

Defect TQFTs are the most general of the TQFTs we described here in the sense
that closed, open, and open-closed TQFTs are special cases of them:

closedTQFTs

open-closed TQFTs defect TQFTs

openTQFTs

⊊

⊊

⊊
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To see that closed TQFTs are special cases of defect TQFTs observe that we can
simply “forget” the stratification. For open and open-closed TQFTs we need to
assume that there is a “trivial phase”, the boundary conditions are then the domain
walls between a fixed phase and the trivial phase, see [Car18, Section 3.3] for a
detailed explanation.

Spin structures

In this thesis we are mainly interested in TQFTs with spin structures. These struc-
tures are needed in physics to describe fermionic fields on manifolds through spinors.
Very roughly one needs a spin structure in order to define the Dirac operator on a
manifold, see [Wal84, Chapter 13] or [Ham17, Chapter 6] for a thorough motivation.

Spinors are mathematical objects which transform under a full rotation by a
change of sign, in terms of the rotation group SO(n) this means that not a 2π
rotation but a 4π rotation acts as the identity on spinors. More precisely a spinorial
representation of SO(n) is a representation of its double covering group Spin(n) the
spin group, and spinors are vectors in the representation space.

Spin structures also play an important role in mathematics, for example the
Atiyah-Singer index theorem is a statement that relates analytic properties of the
Dirac operator to a topological invariant of the manifold, see for example [LM89,
Chapter III] or [Nak03, Chapter 12].

Outline of this thesis

In Chapter 1 we will introduce and review some of the algebraic and topological
background in great detail. To this end we briefly introduce the relevant algebraic
notions such as monoidal categories, string diagrams, and bicategories. We will then
focus on the geometric side where we review the standard construction of (un)oriented
closed bordism categories in more detail. To illustrate the general theme of how a
classification result for TQFTs works, we will discuss the classification result of 2-
dimensional oriented TQFTs in terms of commutative Frobenius algebras.

Chapter 2 is mostly focused on the notion of spin structures on manifolds. We
begin with a quick review of the double covering of the special orthogonal groups
SO(n), the so-called spin groups Spin(n), and discuss their physical origin. After
this we will define the notion of a spin structure on a fixed manifold as a class of
Spin(n)-bundles where the action of Spin(n) is compatible with the oriented frame
bundle of the manifold. To answer questions about existence and uniqueness of such
structures, we will introduce some tools from algebraic topology. These tools will first
be used to answer the same questions for orientations, where the computations are

8



more straightforward. After this general discussion of spin structures we will focus
on 1- and 2-dimensional manifolds. There we show that any oriented 2-dimensional
manifold posses at least one spin structure. As an important example we will then
explicitly construct the two possible spin structures on a circle and relate them to
physical terminology. Finally we will define general tangential structures using the
language of classifying spaces. This notion encompasses both orientations and spin
structures as special cases, more generally any reduction of the frame bundle along a
Lie group homomorphism gives rise to a type of tangential structure. In this setting
we will then define a bordism category where all manifolds are equipped with a fixed
type of structure, and the gluing of such manifolds along boundaries is compatible
with this structure.

In Chapter 3 we discuss a 2-dimensional bordism category appropriate to study
spin TQFTs with boundary conditions. More precisely we will define the open-closed
spin bordism category. After this we will introduce the corresponding algebraic no-
tions and review the classification results of open-closed spin TQFTs by [SS20]. We
will then slightly extend this result to incorporate different boundary conditions and
operators between them. Finally we will reformulate these results categorically in
analogy to the oriented case.

In Chapter 4 we will propose a possible definition of stratified spin manifolds and
the corresponding bordism categories for any dimension. For this we will modify
the definitions of stratified oriented manifold given in [CMS20, Section 2] to account
for non-trivial spin structures on the strata. We will then discuss a special case of
stratified spin manifolds where the spin structures on all strata are induced by the
global spin structure of the whole manifold, see Section 4.1 for the precise statement.
After this we will discuss the relations between the stratified spin bordism category
and the closed spin bordism category. After this we will focus solely on the 2-
dimensional case and describe how to consistently label a stratified spin bordism.
These labels will be interpreted as either 1-dimensional topological defects, so-called
line defects, which can be seen as generalisations of boundary conditions as discussed
in Chapter 3, or phases of the TQFT.

In Chapter 5 we will finally define 2-dimensional defect spin TQFTs. Following
the ideas of [DKR11] for oriented defect TQFTs we will construct a 2-category for
a fixed defect spin TQFT. In this 2-category the objects will correspond to the
phases of the TQFT while the 1- and 2-morphisms will be interpreted as line defects
and local operators, respectively. We will then study the extra structure of this 2-
category, where we will first show that it is pivotal, in analogy to the oriented case.
After this we will describe a completion procedure which makes the physical intuition
of fusing defect lines precise, however this will only work for the before mentioned
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special case of the bordism category where all spin structures on the strata are
induced. Both the pivotal structure and the completion procedure are present for
oriented defect TQFTs, in the final section we will discuss genuine new structures
coming from the non-trivial spin bundles. More precisely we will use the non-trivial
deck transformation to find a 2-endofunctor and discuss how certain cylinders in
the bordism category can be used to define a map between different sectors of the
TQFT.
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Chapter 1

Preliminaries

In this chapter we will introduce, and review some of the necessary mathematical
foundations we will use throughout this thesis. In Section 1.1 we will give a very
broad overview of the assumed background in algebra, geometry, and topology. We
will then state the conventions and notations for these topics which we will use
throughout the rest of this thesis.

In Section 1.2 we will give a brief review ofmonoidal categories and their graphical
calculus through string diagrams. Using the graphical calculus we will then generalise
familiar notions from vector spaces such as duals or algebras.

In Section 1.3 we will very briefly review the basic definitions of 2-categories and
discuss how monoidal categories can be interpreted in this setting. In particular we
will see how the before introduced calculus with string diagrams descends from the
graphical calculus of 2-categories.

After this we will review the relevant topological foundations in Section 1.4.
More precisely we will define bordisms and describe the closed n-dimensional bordism
category in detail.

In the final Section 1.5 of this chapter we will define closed TQFTs. After studying
some of their basic properties we will focus on the simplest non-trivial case namely
2-dimensional closed oriented TQFTs and discuss their algebraic classification in
terms of commutative Frobenius algebras.
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1.1 Prerequisites, notations and conventions

1.1.1 Prerequisites

We suppose the reader is comfortable with basic notions of category theory such as
categories, functors, and natural transformations. Familiarity with universal con-
structions, such as colimits, will also be helpful to understand the more abstract
concepts. A gentle introduction to category theory and its relation to physics, com-
puter science, and logic is given in [BS10]. For a complete introduction see [Lei14].

Furthermore the reader is assumed to have a working knowledge of topology and
differential geometry, including smooth manifolds, tangent bundles, orientations, Lie
groups, and basics about Riemannian metrics. The required definitions and facts
about (principal) fiber bundles are collected in Appendix A. For a gentle introduc-
tion to these topics see [Nak03], a book on general relativity such as [Wal84] will
also suffice, for a mathematical minded reader we recommend [Wal16], [Bau14], and
[Ham17]. Further references are given in the relevant sections of the main text.

1.1.2 Notation and conventions

Algebra

Throughout this thesis let k be a fixed field, for example k = C. In the following
table we give a list of our notation for standard categories the reader should be
familiar with:

Set category of sets
Vectk category of vector spaces over k
vectk category of finite-dimensional vector spaces over k
Top category of topological spaces and continuous maps

Recall the notion of a super vector space as a Z2-graded vector space, i.e. a V ∈ Vectk
together with a decomposition V = V0 ⊕ V1. The elements of V0 are said to have
degree 0 and will be called even or bosonic; elements of V1 are said to have degree 1
and will be called odd or fermionic. For V = V0⊕V1 and W = W0⊕W1 super vector
spaces we say a linear map f : V → W is of degree j if f(Vi) ⊆ Wi+j for i, j ∈ Z2.
The category of super vector spaces SVectk has super vector spaces as objects and
linear maps of degree 0, also called even, as morphisms. The full subcategory of
finite-dimensional super vector spaces is denoted Svectk.
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Geometry

Throughout this thesis we will work with manifolds, where we always mean smooth
manifolds, which are second countable, and Hausdorff as topological space. Further-
more we will assume all manifolds to be compact.

1.2 Symmetric monoidal categories

We begin with an introduction to (symmetric) monoidal categories and their graph-
ical calculus. Monoidal categories are categories with extra structure which allow to
also “compose” objects with each other. It turns out that these categories allow for a
graphical calculus quite analogously to Feynman diagrams in particle physics. These
string diagrams1 will be indispensable for the rest of this thesis. As an illustration
of this, we will use the graphical calculus to generalise the notion of k-algebras and
modules, to algebras and modules internal to a given monoidal category. This allows
us to define so-called Frobenius algebras and study their basic properties. Frobenius
algebras turn out to be indispensable for the algebraic description of 2-dimensional
TQFTs.

Definition 1.2.1. A monoidal category consists of:

• a category C;

• a functor ⊗ : C×C → C called the tensor product (or monoidal product), where
we write ⊗(A,B) = A ⊗ B and ⊗(f, g) = f ⊗ g for objects A,B ∈ C and
morphisms f and g in C;

• an object called the identity object 1 ∈ C;

• natural isomorphisms called the associator :

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C) ,

the left unit law :
λA : 1⊗ A→ A,

and the right unit law :
ρA : A⊗ 1→ A;

1The name does not come from string theory, but is motivated by using ‘strings’ to represent
the objects of the category [BS10].
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such that the following diagrams commute for all A,B,C,D ∈ C:

• the pentagon equation:

(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

A⊗ (B ⊗ (C ⊗D))

αA⊗B,C,D

αA,B,C⊗1D

αA,B⊗C,D

1A⊗αB,C,D

αA,B,C⊗D

governing the associator;

• the triangle equations :

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B

αA,1,B

ρA⊗1B 1A⊗λB

governing the left and right unit laws.

A monoidal category in which the associator and the left and right unitors are given
by the identity morphisms is called strict.

Examples 1.2.2. Here we will list a few standard examples of monoidal cate-
gories, some of which are particularly important for TQFTs. Verifying the axioms
is straightforward and will not be discussed in detail.

1. Let C be any category, then the category of endofunctors End(C) together with
composition of functors is a strict monoidal category.

2. The category Set is a monoidal category together with the Cartesian product
× of sets and any one element set as unit.2 The structure morphisms α, λ, ρ
are the obvious ones.

2Note here that the monoidal structure of Set is not unique because the unit is not unique as
any one element set would work.
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3. The category Vectk of vector spaces and its full subcategory vectk of finite-
dimensional vector spaces are monoidal categories together with ⊗k, the tensor
product over k.

4. The category SVectk of super vector spaces and its full subcategory of finite-
dimensional super vector spaces Svectk are monoidal categories together with
⊗k the tensor product over k.

We will often abbreviate the data of a monoidal category (C,⊗, α, ρ, λ) to (C,⊗)
or only C. One way to justify these abbrevations is given by the Mac Lane strictness
theorem, see Theorem 1.2.11.

Definition 1.2.3. A braided monoidal category consists of:

• a monoidal category C;

• a natural isomorphism called the braiding :

βA,B : A⊗B → B ⊗ A,

such that the following two diagrams, called hexagon equations, commute:

A⊗ (B ⊗ C) (A⊗B)⊗ C (B ⊗ A)⊗ C

(B ⊗ C)⊗ A B ⊗ (C ⊗ A) B ⊗ (A⊗ C)

α−1
A,B,C

βA,B⊗C

βA,B⊗1C

αB,A,C

α−1
B,C,A

1B⊗βA,C

(A⊗B)⊗ C A⊗ (B ⊗ C) A⊗ (C ⊗B)

C ⊗ (A⊗B) (C ⊗ A)⊗B (A⊗ C)⊗B

αA,B,C

βA⊗B,C

1A⊗βB,C

α−1
A,C,B

αC,A,B βA,C⊗1B

Definition 1.2.4. A symmetric monoidal category is a braided monoidal category
C for which the braiding satisfies βB,A = β−1

A,B for all A,B ∈ C.

A braided monoidal category can be thought of as a generalization of commu-
tativity where X ⊗ Y only needs to be isomorphic to Y ⊗ X and not equal. For a
symmetric monoidal category this condition is strengthened in the sense that com-
muting twice is equal to the identity.
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Example 1.2.5. The category of vector spaces Vectk is symmetric with braiding

βV,W : V ⊗kW → W ⊗k V (1.2.1)

v ⊗k w 7→ w ⊗k v. (1.2.2)

Example 1.2.6. The category of super vector spaces SVectk has two different sym-
metric structures: The first one is the one induce by Vectk from the previous example.
The second one is given by

βV,W : V ⊗kW → W ⊗k V (1.2.3)

v ⊗k w 7→ (−1)|v|·|w|w ⊗k v, (1.2.4)

where v and w are of degree |v| and |w|, respectively, and extend linearly otherwise.

If we want functors between monoidal categories to respect the monoidal struc-
tures on their source and target categories, we will need some extra data to guarantee
compatibility.

Definition 1.2.7. A functor F : C → D between monoidal categories is called
monoidal if it is equipped with:

• a natural isomorphism ΦA,B : F (A)⊗ F (B)→ F (A⊗B);

• an isomorphism ϕ : 1D → F (1C),

such that

• the diagram

(F (A)⊗ F (B))⊗ F (C) F (A⊗B)⊗ F (C) F ((A⊗B)⊗ C)

F (A)⊗ (F (B)⊗ F (C)) F (A)⊗ F (B ⊗ C) F (A⊗ (B ⊗ C))

ΦA,B⊗1F (C)

αF (A),F (B),F (C)

ΦA⊗B,C

F (αA,B,C)

1F (A)⊗ΦB,C ΦA,B⊗C

commutes for all A,B,C ∈ C;

• the diagrams

1D ⊗ F (A) F (A)

F (1C)⊗ F (A) F (1C ⊗ A)

λF (A)

ϕ⊗1F (A)

Φ1,A

F (λA)
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F (A)⊗ 1D F (A)

F (A)⊗ F (1C) F (A⊗ 1C)

ρF (A)

1F (A)⊗ϕ

ΦA,1

F (ρA)

commute for any A ∈ C.

A monoidal functor correspondes is a triple (F,Φ, ϕ) which we will often abbre-
viate to F . A monoidal functor (F,Φ, ϕ) is called strict if Φ and ϕ are identity
morphisms.

Definition 1.2.8. A monoidal functor F : C → B is called braided monoidal if for
for all A,B ∈ C the following diagram commutes:

F (A)⊗ F (B) F (B)⊗ F (A)

F (A⊗B) F (B ⊗ A)

βF (A),F (B)

ΦA,B ΦB,A

F(βA,B)

In case of symmetric monoidal categories, a braided monoidal functor automati-
cally respects the symmetric monoidal structure and is therefore called symmetric
monoidal.

Definition 1.2.9. Let (F,Φ, ϕ) and (G,Γ, γ) be monoidal functors. A monoidal
natural transformation is a natural transformation η : F ⇒ G, such that the diagrams

F (A)⊗ F (B) G(A)⊗G(B)

F (A⊗B) G(A⊗B)

ηA⊗ηB

ΦA,B ΓA,B

ηA⊗B

and
1

F (1) G(1)

ϕ γ

η1

commute for all A,B ∈ C.
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Remark 1.2.10. For braided and symmetric monoidal categories and functors,
monoidal natural transformations automatically respect the braided (resp. symmet-
ric) monoidal structure.

1.2.1 Graphical calculus

It turns out to be hugely beneficial to introduce a graphical calculus for monoidal
categories. We will now describe how this works in detail: Let (C,⊗) be a monoidal
category. An object X ∈ C is drawn as a string labeled with X:

X ; (1.2.5)

a morphism ϕ ∈ HomC(X, Y ) is drawn as a vertex that connects an X and Y labeled
strand:

X

Y

ϕ ≡ ϕ ∈ HomC(X, Y ). (1.2.6)

The unit morphism of an objects will be “drawn” as an invisible vertex, i.e. just a
string as for the object. Note that we read such an diagram from bottom to top.
This is compatible with the rule that for composable morphisms ϕ ∈ HomC(X, Y )
and ψ ∈ HomC(Y, Z). the composition will be drawn by gluing the strands vertically,
i.e.

X

Z

ϕ

ψ
≡

X

Z

ψ ◦ ϕ . (1.2.7)

This composition rule is compatible with the rule for drawing the identity morphisms
as just a string labeled by an object. We also have a monoidal structure on C and can
therefore “compose” objects and morphisms differently using the monoidal product
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⊗, this will be denoted by horizontal composing the strings, i.e.

X ⊗ Y

X ⊗ Y

≡

X

X

Y

Y

. (1.2.8)

The monoidal product of morphisms ϕ ∈ HomC(X, Y ) and ϕ′ ∈ HomC(X
′, Y ′) will

be drawn as

X ⊗X ′

Y ⊗ Y ′

ϕ⊗ ϕ′ ≡

X

Y ′

X ′

Y

ϕ⊗ ϕ′ ≡

X

Y

ϕ

X ′

Y ′

ϕ′ . (1.2.9)

For example, the diagram

X Y Z

X ′ Y ′

ψ (1.2.10)

corresponds to the morphism ψ ∈ HomC((X⊗Y )⊗Z,X ′⊗Y ′). To make the analogy
with Feynman diagrams more explicit we can interpret vertical composition with
time evolution. In this interpretation diagram (1.2.10) corresponds to the evolution
of three “particles” X, Y, Z into two “particles” X ′, Y ′ through the interaction ψ.

Note that in the graphical calculus we did not distinguish between the isomorphic
objects (X⊗Y )⊗Z and X⊗Y (⊗Z), which means we treat the associator of C as an
identity. Similarly, the unit object is usually “drawn” as an invisible string, which
amounts to the unitors also not being displayed in the graphical calculus. These
observations suggest the graphical calculus we introduced only makes sense for strict
monoidal categories. The reason it works for any monoidal category is the before-
mentioned Mac Lane strictification theorem.
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Theorem 1.2.11 (Mac Lane). Every monoidal category C is monoidally equivalent
to a strict monoidal category Cstr. Moreover, for every monoidal functor F : C → D,
there is a strict monoidal functor F str : Cstr → Dstr such that the diagram

C D

Cstr Dstr

F

F str

∼= ∼=

commutes up to a monoidal natural transformation.

A detailed proof is given in [Eti+16, Section 2.8]. There are similar statements
for braided and symmetric monoidal categories.

An important consequence of the strictification theorem are the so-called coher-
ence theorems, see [Eti+16, Section 2.9] for more details. We will not delve further
into the specifics of these important results and only note that they allow us to turn
the heuristic description of the graphical calculus into a concrete definition.

Remark 1.2.12. It should be noted here that monoidal categories can equivalently
be thought of as a special case of 2-categories. The concrete definition of a 2-category
will be given in Section 1.3. Roughly, they can be thought of as a 2-dimensional
version of categories with not only objects and morphisms, but objects, 1-morphisms,
and 2-morphisms between 1-morphisms. A standard example is the 2-category of
(small) categories, functors and natural transformations.

For a braided monoidal category C we will draw the braiding and its inverse as

βX,Y =

X

X

Y

Y

, β−1
X,Y =

Y

Y

X

X

. (1.2.11)

If the braiding is symmetric we will draw it simply as

βX,Y =

X

X

Y

Y

. (1.2.12)

The notion of duality is incredibly important in both mathematics as well as
physics. It turns out that monoidal categories provide a framework for a general
notion of dual, for which the dual of finite-dimensional vector spaces is an example.
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Definition 1.2.13. Let C be a monoidal category. A left dual of X ∈ C is an object
∨X ∈ C together with morphisms

∨X X

≺
= evX : ∨X ⊗X → 1, (1.2.13)

∨XX

≺

= coevX : 1→ X ⊗ ∨X, (1.2.14)

called the left evaluation and coevaluation morphisms fulfilling the so-called Zorro
identities (or Zorro moves):

≺

≺

X

X

=

X

X
≻ ,

∨X

∨X

≺

≺
=

∨X

∨X

≺ . (1.2.15)

Analogously, one defines a right dual X ∈ C as an object X∨ ∈ C together with
morphisms

X X∨

≻
= ẽvX : X ⊗X∨ → 1, (1.2.16)

XX∨

≻

= c̃oevX : 1→ X∨ ⊗X, (1.2.17)

called the right evaluation and coevaluation morphisms, again fulfilling the Zorro
identities:

X

X

≻

≻
=

X

X

≻ ,
≻

≻

X∨

X∨

=

X∨

X∨

≺ . (1.2.18)

A monoidal category in which every object has left or right duality data is called
left resp. right rigid, if it is both left and right rigid it is called rigid. For a braided
monoidal category (C,⊗,1, β), left or right rigidity imply rigidity. To see this note

21



that for (∨X, evX , coevx) left duality data of X ∈ C, we have the canonical right
duality data (∨X, evX ◦ βX,∨X , β−1

∨X,X ◦ coevX), in string diagrams:

X ∨X

≻
:=

≺

X ∨X

, XX∨

≻

:=

XX∨

≺

. (1.2.19)

The Zorro moves follow from a straightforward computation using naturality of the
braiding and the Zorro moves for evX and coevX . For left dualisable objects in
braided and symmetric monoidal categories we will always choose the above right
duality data.

Proposition 1.2.14. Let C be a monoidal category. If X ∈ C has a left/right dual
then it is unique up to unique isomorphism.

See [Eti+16, Proposition 2.10.5] for the proof.

Definition 1.2.15. Let C be a rigid monoidal category. The left dual of the mor-
phism ϕ ∈ HomC(X, Y ) is the morphism

∨ϕ :=

∨X

∨X

≺

≺
ϕ (1.2.20)

Definition 1.2.16. Let C be a left rigid monoidal category. A pivotal structure on
C is a monoidal natural isomorphism δ : 1C → ∨∨(−); a left rigid monoidal category
with pivotal structure is called pivotal.

Proposition 1.2.17. A pivotal category (C, δ) is rigid.

Proof. A pivotal category is left rigid by definition, thus we need to show that C is
also right rigid. For this let X ∈ C with left duality data (∨X, evX , coevX). We define
right duality data by settingX∨ := ∨X, ẽvX := evX◦(δX⊗1X∨), and c̃oevX := (1X∨⊗
δ−1
X ) ◦ coevX . The Zorro moves can be directly verified through the corresponding
string diagrams.

An important example of a pivotal category is the category vectk.
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1.2.2 Algebras in monoidal categories

Before we define what an algebra in a monoidal category should be first recall the
notion of an k-algebra over a field k. A k-algebra is a vector space A ∈ Vectk together
with a linear map µ : A ⊗k A → A, called the multiplication and a distinguished
element e ∈ A, called the unit, such that µ is associative, and unital with unit e, i.e.

µ ◦ (µ⊗ 1A) = µ ◦ (1A ⊗ µ) (associativity),

µ(e⊗ a) = a = µ(a⊗ e) (unitality)

for any a ∈ A. The associativity equation is already suitable to be interpreted in
any monoidal categories. To properly interpret unitality in a categorical setting we
will use the notion of generalised elements of an object in a monoidal category. Let
(C,⊗,1) be a monoidal category and X ∈ C, the set of generlised elements of X is
given by HomC(1, X). Why this definition? Let us look at the special case of C =
Vectk, in this setting we can explicitly construct an isomorphism V ∼= Homk(k, V )
by sending an element v ∈ V to the unique(!) linear map f : k→ V with f(1) = v.3

With this we can equivalently consider the morphism η ∈ Homk(k, A), corresponding
to e, as the unit of our algebra A. In this formulation unitality is given by

µ ◦ (η ⊗ 1A) = 1A = µ ◦ (1a ⊗ η).

With this preparation we can now finally define the notion of algebra internal to
a monoidal category using the graphical calculus.

Definition 1.2.18. Let C be a monoidal category.

1. An algebra4 in C is a triple (A, µ, η) where

A ∈ C, = µ : A⊗ A→ A, = η : 1→ A (1.2.21)

with µ and η calledmultiplication and unit, respectively, such that the following
identities hold

= (associativity), (1.2.22)

= = (unitality). (1.2.23)

3This prescription fully determines f due to linearity.
4Sometimes also called a monoid.
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An algebra map or algebra morphism (A, µ, η) → (A′, µ′, η′) is a morphism
ϕ ∈ HomC(A,A

′) which preserves the multiplication and unit in the sense that

ϕϕ =
ϕ
, ϕ = . (1.2.24)

The category of algebras Alg(C) has algebras in C as objects, algebra maps as
morphisms, and composition and units induced from C.
If C also has a braiding β, we call an algebra (A, µ, η) commutative if

= . (1.2.25)

The full subcategory of commutative algebras will be denoted by ComAlg(C).

2. A coalgebra5 in C is a triple (A,∆, ϵ) where

A ∈ C, = ∆: A→ A⊗ A, = ϵ : A→ 1 (1.2.26)

with ∆ and ϵ called comultiplication and counit, respectively, such that the
following identities hold

= (coassociativity), (1.2.27)

= = (counitality). (1.2.28)

A coalgebra map or coalgebra morphism (A,∆, ϵ) → (A′,∆′, ϵ′) is a morphism
ϕ ∈ HomC(A,A

′) which preserves the comultiplication and counit in the sense
that

ϕ =
ϕϕ
, ϕ = . (1.2.29)

5Sometimes also called a comonoid.
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The category of coalgebras coAlg(C) has coalgebras in C as objects, coalgebra
maps as morphisms, and composition and units induced from C. Note that
CoAlg(C) = Alg(Cop).
If C also has a braiding β, we call a coalgebra (A,∆, ϵ) cocommutative if

= . (1.2.30)

The full subcategory of cocommutative coalgebras will be denoted by CoComAlg(C).

3. A Frobenius algebra in C is an object A together with an algebra and coalgebra
structure such that

= = (Frobenius relations). (1.2.31)

A map of Frobenius algebras is simultaneously a map of algebras and coalge-
bras. The category of Frobenius algebras will be denoted by Frob(C), it can
be shown that this is a groupoid, i.e. every morphism is invertible [ REF ]. A
Frobenius algebra is called commutative if its underlying algebra is commuta-
tive, the full subcategory of commutative Frobenius algebras will be denoted
by ComFrob(C).

There are several equivalent descriptions of Frobenius algebras, we will mostly
only be interested in the one given above and the following.

Proposition 1.2.19. Let C be a monoidal category. The following are equivalent:

1. (A, µ, η,∆, ϵ) ∈ Frob(C).

2. (A, µ, η) ∈ Alg(C) together with a non-degnerate pairing6

= κ : A⊗ A→ 1 (1.2.32)

which is compatible with µ in the sense that

= . (1.2.33)

6The notion of non-degenerate pairings in a monoidal category is a generalization of the non-
degenerate pairings in Vectk, see [FS08, Definition 3]. Precise knowledge of this general will not be
relevant as we will only use this characterisation for C = Vectk or C = SVectk.
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See [FS08, Section 3] for a proof. One useful fact from this proof is that instead
of specifying a Frobenius pairing κ, one could also use a Frobenius trace ϵ : A → 1

which is related to the pairing by κ = ϵ ◦ µ.

Lemma 1.2.20. Let C be a monoidal category and (A, µ, η,∆, ϵ) ∈ Frob(C). Then
A is dualisable with ∨A ∼= A.

Proof. We set

evA := ϵ ◦ µ =

AA

, coevA := ∆ ◦ η =
AA

(1.2.34)

the Zorro identities then directly follow from the Frobenius relation together with
unitality and counitality. For example

= = (1.2.35)

where the first equation is the Frobenius relation and the second on unitality and
counitality.

Lemma 1.2.21. Let C be a monoidal category. The category of Frobenius algebras
in C is a groupoid.

Proof. Let (A, µ, η,∆, ϵ), (A′, µ′, η′,∆′, ϵ′) ∈ Frob(C) and ϕ : A → A′ be a map of
Frobenius algebras. We set ϕ−1 := ∨ϕ for the duality data of A and A′ from the
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previous proof. Then

ϕ−1 ◦ ϕ =

A

A

ϕϕ (1.2.36)

=

A

A

(1.2.37)

=

A

A

= 1A (1.2.38)

where in the first equation we used the definition of ϕ−1 and the duality data, in the
second step we used that ϕ is an Algebra morphism and in the final step the Zorro
move. Analogously one shows that ϕ ◦ ϕ′ = 1A′ .

A Frobenius algebra A in a symmetric monoidal category with Frobenius pairing
κ is called symmetric if

= . (1.2.39)

More generally one defines the Nakayama automorphism NA of A by

= NA
. (1.2.40)

Then A is symmetric if and only if NA = 1A. It can be shown that in our conventions
for Frobenius algebras the Nakayma automorphism is given by

NA = . (1.2.41)
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Definition 1.2.22. Let C be a monoidal category and let A,A′ ∈ Alg(C). An A′-A-
bimodule is an object X ∈ C together with morphisms

X

X

A′

= ρlX ∈ HomC(X ⊗ A,X),

X

X

A

= ρrX ∈ HomC(A
′ ⊗X,X)

(1.2.42)

such that

= , = , = = (1.2.43)

and

= . (1.2.44)

A left A-module is a A-1-bimodule X with ρrX = ρX , analogously a right A-module
is a 1-A-bimodule X with ρlX = λX .

A bimodule map between twoA′-A-bimodulesX, Y is a morphism ϕ ∈ HomC(X, Y )
such that

X

Y

A′

ϕ =

X

Y

A′

ϕ
,

X

Y

A

ϕ =

X

Y

A

ϕ
. (1.2.45)

There is a category of A′-A-bimodules A′ModA which has A′-A-bimodules as objects
and bimodule maps as morphisms. Analogously there is a category of left A-modules
denoted by AMod or Mod(A′) as well as a category ModA of right A-modules.

Analogously one can define bicomodules over a coalgebra by considering the above
string diagrams read from top to bottom instead. We will not give the precise
definition.
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1.3 Short introduction to 2-categories

From the previous section we know how to interpret the one dimensional lines and
zero dimensional points of string diagrams as objects and morphisms in a monoidal
category, respectively. What about the two dimensional regions? Do these also cor-
respond to some algebraic objects? The answer is yes! However to understand this
we need to leave the world of ordinary categories and go one dimension higher to
so-called 2-categories, sometimes also called bicategories. Very roughly, a 2-category
consists of objects, morphisms between these objects, and “higher” morphisms be-
tween the morphisms, such that certain coherence axioms hold. This is only the
first step into the realm of higher category theory, where even higher morphisms be-
tween morphisms exist. We will however not delve further into the theory of higher
categories and focus our attention on 2-categories.

Giving a full introduction to 2-categories would go beyond the scope of this
thesis, therefore we will only consider the very basics of 2-categories, and focus on
their graphical calculus without worrying about details. We will follow [JY20] for
the basic definitions, and [Car18; Lau11] for the graphical calculus.

Definition 1.3.1. A 2-category B consists of:

• a collection of objects Ob(B), where we will often times write a, b ∈ B instead
of a, b ∈ Ob(B);

• for every pair of objects a, b ∈ B, a category B(a, b), called the Hom category ;
we call the objects X : a → b of B(a, b) 1-morphisms of B; a morphism ϕ ∈
HomB(a,b)(X, Y ) is called 2-morphism of B and will be denoted as

b a

X

Y

φ

or simply ϕ : X =⇒ Y ; composition and identity morphisms in B(a, b) are
called vertical composition and identity 2-morphisms, respectively; we will de-
note vertical composition with · and display it as

b a

X

Z

Y

ϕ

ψ

for ϕ ∈ HomB(a,b)(X, Y ) and ψ ∈ HomB(a,b)(Y, Z);
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• for every triple of objects a, b, c ∈ B a functor

⊗c,b,a : B(b, c)× B(a, b)→ B(a, c)
(Y,X) 7→ Y ⊗X
(ψ, ϕ) 7→ ψ ⊗ ϕ

called the horizontal composition;7

• for each object a ∈ B a functor

1a : 1→ B(a, a) (1.3.1)

where 1 denotes the category with one object and exactly one morphism; note
that this just gives a 1-morphism, which we will also denote by 1a, and its
identity 2-morphism 11a ; the functor 1a will be called the identity 1-morphism
of a;

• for objects a, b, c, d ∈ B, a natural isomorphism

αd,c,b,a : ⊗d,b,a ◦(⊗d,c,b × idB(a,b))→ ⊗d,c,a ◦ (idB(c,d) ×⊗c,b,a)

called the associator ;

• for each pair of objects a, b ∈ B, natural isomorphisms

⊗b,b,a ◦
(
1b × idB(a,b)

)
idB(a,b) ⊗b,a,a ◦

(
idB(a,b) × 1a

)λa,b ρa,b

called the left unitor and the right unitor, respectively;

We will often times omit the labeling subscripts of ⊗, α, λ, and ρ. Instead we will use
subscripts to denote the components of the natural isomorphisms, e.g. for a, b, c, d ∈
B, X ∈ B(a, b), Y ∈ B(b, c), and Z ∈ B(c, d) we write αZ,Y,X instead of (αd,c,b,a)Z,Y,X .
All of this data needs to satisfy coherence axioms in the sense that the following
diagrams commute for all W ∈ B(a, b), X ∈ B(b, c), Y ∈ B(c, d), and Z ∈ B(d, e):

7The notation is on purpose reminiscent to the one of monoidal products, as we will become
clear soon.
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• The pentagon axiom:

(Z ⊗ Y )⊗ (X ⊗W )

((Z ⊗ Y )⊗X)⊗W

(Z ⊗ (Y ⊗X))⊗W Z ⊗ ((Y ⊗X)⊗W )

Z ⊗ (Y ⊗ (X ⊗W ))

αZ⊗Y,X,W

αZ,Y,X⊗1W

αZ,Y ⊗X,W

1Z⊗αY,X,W

αZ,Y,X⊗W

• The unit axiom:

(X ⊗ 1b)⊗W X ⊗ (1b ⊗W )

X ⊗W

αW,1b,X

ρW⊗1X 1X⊗λW

We will often abbreviate the data of a 2-catgory (B,⊗, 1, α, λ, ρ) to B.

Example 1.3.2. Let C be a monoidal category, the delooping BC of C, is defined
as the 2-category with a single object ∗, and Hom category BC(∗, ∗) := C. It is
straightforward to check that the pentagon and unit axioms correspond directly to
the pentagon and triangle equations of C, respectively. Conversely, in any 2-category
B and object a ∈ B, the Hom category B(a, a) is canonically a monoidal category.
This explains the choice of notation for horizontal composition.

This example allows us to interpret 2-catgories as “many monoidal categories
together”. This interpretation suggests to ask if there is also a strict version of
2-categories, the answer is yes.

Definition 1.3.3. A 2-category (B,⊗, 1, α, λ, ρ) is called strict if the associatior α,
and the unitors λ and ρ are identities. Note that some people call a strict 2-category
a 2-category.

Example 1.3.4. A standard example of a strict 2-category is given by Cat, where
objects, 1-morphisms, and 2-morphisms are (small) categories, functors, and natural
transformations, respectively.
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We introduced strict 2-categories as 2-categories with special properties, however
there are also different ways to look at them either directly in terms of their data,
or through enriched category theory. Each of these views is equivalent to the others
and useful in different circumstances. Our choice is purely to embed our previous
discussion of monoidal categories into the larger world of 2-categories. For more on
the other views see [JY20, Section 2.3].

In analogy to Theorem 1.2.11 there is also a strictification result for 2-categories
to strict 2-categories, which states that every 2-category is 2-equivalent8 to a strict
2-category [JY20, Theorem 8.4.1]. This theorem allows us to develop a graphical
calculus without worrying too much about diagrams being only defined up to iso-
morphism, e.g. associativity of horizontal composition.

Before getting to string diagrams, we will now shortly discuss pasting diagrams.
Classically these diagrams are often used in ordinary category theory to illustrate
natural transformations. However from Example 1.3.4 we know that categories,
functors, and natural transformations form a (strict) 2-category. This suggests to
develop a calculus of pasting diagrams for any 2-category. Note that we already began
to do this in the definition of a 2-category we denoted 2-morphisms and their vertical
composition through pasting diagrams. For the general case let B be a 2-category,
which we can always assume by the coherence theorem of 2-categories. For a, b, c, d ∈
B, X, Y ∈ B(a, b), X ′, Y ′ ∈ B(b, c), X ′′, Y ′′ ∈ B(c, d), ϕ ∈ HomB(a,b)(X, Y ), ϕ′ ∈
HomB(b,c)(X

′, Y ′), and ϕ′ ∈ HomB(b,c)(X
′, Y ′). We denote the horizontal composition

of ϕ and ϕ′ by

c b a

X

Y

X′

Y ′

ϕϕ′ = c a

X′⊗X

Y ′⊗Y

ϕ′⊗ϕ

Note that we really need strict associativity of horizontal composition for this pre-
scription to make sense because

d c b a

X

Y

X′

Y ′

X′′

Y ′′

ϕϕ′ϕ′′

could mean either (ϕ′′ ⊗ ϕ′) ⊗ ϕ or ϕ′′ ⊗ (ϕ′ ⊗ ϕ) otherwise. The prescription of
diagrams for horizontal and vertical composition is already enough to start working

8See [JY20, Definition 6.2.8] for the definition of 2-equivalences, called biequivalence there.
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with these diagrams, the rest of the rules can be inferred directly from the definition
of a 2-category, for example the unitality axioms amount to the following equality of
diagrams:

b b a

X

Y

1b

1b

ϕ11b = b a

X

Y

ϕ = b a a

X

Y 1a

1a

ϕ 11a

However these pasting diagrams are not the graphical calculus in which we are
ultimately interested, instead we will work with their Poincaré duals. In Chapter 5
we will construct a 2-category from a 2-dimensional defect spin TQFT, for this 2-
category the graphical calculus discussed below can be interpreted directly through
the defects of the TQFT. For a full introduction to pasting diagrams and the rules
by which they are governed see [JY20, Chapter 3] and [Lau11, Section 2.1]. To
turn a pasting diagram into their Poincaré dual, a string diagram, we work with the
following rules:

• A zero dimensional arrow, corresponding to an object, gets replaced by a two
dimensional region.

• A one dimensional arrow, labeled with a 1-morphism, gets replaced with a one
dimensional string which goes into the orthogonal direction.

• A two dimensional arrow, labeled with a 2-morphism, gets replaced with a zero
dimensional point.

The so obtained string diagrams are exactly the generalisation of string diagrams of
monoidal categories we are looking for. To illustrate the rules of turning a pasting
diagram into a string diagram, consider this simple example;

b a

X

Y

ϕ −→

X

Y

ϕ ab .

It is evident that this is exactly the type of diagram we sought out to find! Further-
more it allows us to understand how the string diagrams of monoidal categories are
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really just a special case of string diagrams for 2-categories. More precisely: view a
monoidal category C as its corresponding 2-category BC, the string diagrams for C
are obtained by the ones of BC by omitting the label of the single object of BC.

It is now straightforward to generalise the structures we discussed for monoidal
categories, such as rigidity, to 2-categories however we will not delve further into
this for now and refer the interested reader to either [Lau11, Section 2.3] or [Car18,
Section 2.2] for more details.

1.4 Closed bordism category

With the necessary algebraic preliminaries understood, we can now turn to the geo-
metric side. The goal of this section is to introduce the notion of bordisms and their
(ordinary) categories for both the oriented and unoriented case. Very roughly, a bor-
dism between two closed (n − 1)-dimensional manifolds Σ1,Σ2, is an n-dimensional
manifold M that “connects” Σ1 to Σ2. As explained in the Introduction such a
bordism corresponds to the “global evolution” from Σ1 to Σ2.

Definition 1.4.1. Let Σ1, Σ2 be closed (n− 1)-dimensional manifolds.

1. A bordism9 Σ1 → Σ2 consists of

• a n-dimensional manifold with boundary M ,

• a decomposition ∂M = (∂M)1⊔(∂M)2 into the in-going boundary (∂M)1
and out-going boundary (∂M)2,

• germs10 (in ϵ > 0) of embeddings (called collars)

θ1 : [0, ϵ)× Σ1 →M (1.4.1)

θ2 : (−ϵ, 0]× Σ2 →M (1.4.2)

such that θi({0} × Σi) = (∂M)i for i ∈ {1, 2}, and Im(θ1) ∩ Im(θ2) = ∅.

2. Let (M, θ1, θ2) and (M ′, θ′1, θ
′
2) be bordisms Σ1 → Σ2. A diffeomorphism

(M, θ1, θ2)→ (M ′, θ′1, θ
′
2) is a diffeomorphism f : M →M ′ such that f((∂M)i) =

(∂M ′)i, and f ◦ θi = θ′i hold for i ∈ {1, 2}.
9Some people prefer the term cobordism.

10Germs are useful for technical reasons concerning the “composition” of two bordisms. More on
this before Definition 1.4.4.
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We will often times abbreviate a bordism (M, θ1, θ2) : Σ1 → Σ2 to M : Σ1 → Σ2

or just M . It is not hard to see that being diffeomorphic is an equivalence relation
for bordisms, we will denote the diffeomorphism class of a bordism by [M ] or M .
The definition of a bordism is illustrated with the following picture:

Σ1

Σ2

M (1.4.3)

Here the two green circles on the bottom illustrate the source Σ1 of the bordism
M , while the red circle at the top illustrates the target Σ1. The shaded regions
indicate the collar neighbourhood of Σ1 and Σ2 in M , given through the collars θ1,
respectively θ2.

Examples 1.4.2. Two simple, yet important examples of bordisms are given by
cylinders over an (n− 1)-dimensional closed manifold.

1. The cylinder I ×Σ, with I = [0, 1] the closed unit interval, becomes a bordism
Σ→ Σ by setting

(
∂ (I × Σ)

)
1
:= Σ =:

(
∂ (I × Σ)

)
2
and

θ1 : [0, ϵ)× Σ→ I × Σ

(t, p) 7→
(
t

2
, p

)
,

θ2 : (−ϵ, 0]× Σ→ I × Σ

(t, p) 7→
(
t

2
+ 1, p

)
.

2. For any diffeomorphism f : Σ → Σ, the cylinder I × Σ becomes a bordism

Σ→ Σ, called the mapping cylinder and denoted as Cf , by setting
(
∂Cf

Σ

)
1
:=
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Σ =:
(
∂Cf

Σ

)
2
and

θ1 : [0, ϵ)× Σ→ Cf
Σ (1.4.4)

(t, p) 7→
(
t

2
, p

)
, (1.4.5)

θ2 : (−ϵ, 0]× Σ→ Cf
Σ (1.4.6)

(t, p) 7→
(
t

2
+ 1, f(p)

)
. (1.4.7)

The first example is a special case of the second example with f = idΣ.

Definition 1.4.3. Let Σ1, Σ2 be closed (n−1)-dimensional manifolds and (M, θ1, θ2) : Σ1 →
Σ2 a bordism. The reversed bordism (M rev, θrev1 , θrev2 ) from Σ2 to Σ1 is given M rev =
M , (∂M rev)1 = Σ2, (∂M

rev)2 = Σ1, and

θrev1 (t, p) := θ2(−t, p) for t ∈ [0, ϵ), p ∈ Σ2, (1.4.8)

θrev2 (t, p) := θ1(−t, p) for t ∈ (−ϵ, 0], p ∈ Σ1. (1.4.9)

We can informally picture the reversed bordism as the original bordism “turned
upside down”.

Ultimately we want to construct a category with closed (n − 1)-dimensional
manifolds as objects and bordism classes as morphisms, for this we need to find
a way to “compose” or glue bordisms. More precisely, suppose we are given three
closed (n− 1)-dimensional manifolds Σ1,Σ2,Σ3 and two bordisms M : Σ1 → Σ2 and
M ′ : Σ2 → Σ3, can we glue M and M ′ along their common boundary Σ2? The fol-
lowing discussion is a combination of the arguments given in [Koc03, Section 1.3],
[Wal16, Section 2.7], and [Die08, Section 15.1]. For more details we refer to these
sources.

First we recall the notion of a pushout of topological spaces. Formally a pushout
in Top is defined as the colimit of two morphisms ϕ1 : X → Y , ϕ2 : X → Y ′. This
means it is given by a topological space Y ⊔X Y ′ together with two morphisms
Y → Y ⊔X Y ′ ← Y ′ making the square with ϕ1 and ϕ2 commute, and such that
for every other such triple (Z, f, f ′) there exists a unique morphism Y ⊔X Y ′ → Z
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making the following diagram commute

X Y

Y ′ Y ⊔X Y ′

Z

ϕ1

ϕ2

f ′

f

∃!

.

An explicit construction of the pushout is given as the quotient Y ⊔XY ′ := (Y ⊔ Y ′) / ∼,
where two elements y, y′ ∈ Y ⊔Y ′ are equivalent iff y ∈ Y , y′ ∈ Y ′ and there exists a
x ∈ X such that ϕ1(x) = y and ϕ2(x) = y′. With the quotient topology, i.e. the finest
topology such that the canonical surjection π : M ⊔M ′ →M ⊔Σ2 M

′ is surjective.
We now want to apply this construction to our bordisms M and M ′. For this we

take as maps ϕ1 := θ2|{0}×Σ2 and ϕ2 := θ′1|{0}×Σ2 , where θ2 and θ
′
1 are representatives

of the germs of collars θ2 and θ′1, respectively. To see that the construction of
M ⊔Σ2 M

′ is independent of the choice of representatives of the germs note that by
definition of a germ all representatives are equal when restricted to the boundary.

Next we need to endow the topological space M ⊔Σ2 M
′ with the structure of

a smooth manifold. To do this first note that M ⊔M ′ can naturally be endowed
with the structure of a smooth manifold, such that the canonical maps ι : M →
M ⊔M ′ ← M ′ : ι′ are smooth. We now glue the collars θ2 : (−ϵ, 0] × Σ2 → M and
θ′1 : [0, ϵ)× Σ2 →M ′, for fixed ϵ > 0, to a map

θ : (−ϵ, ϵ)× Σ2 →M ⊔Σ2 M
′ (1.4.10)

(t, p) 7→

{
(π ◦ ι ◦ θ2)(t, p), if t ⩽ 0,

(π ◦ ι′ ◦ θ′1)(t, p), if t ⩾ 0.
(1.4.11)

This is well-defined by definition ofM⊔Σ2M
′, and can be shown to be an embedding.

Using this map we can now give M ⊔Σ2 M
′ the structure of a smooth manifold: We

define a real valued function f onM⊔Σ2M
′ to be smooth if f ◦π is a smooth function

on M ⊔M ′ and f ◦ θ is a smooth function on (−ϵ, ϵ) × Σ2. This gives M ⊔Σ2 M
′

the structure of a smooth manifold because coordinate neighbourhoods in M ⊔M ′

and (−ϵ, ϵ)×Σ2 give coordinate neighbourhoods on M ⊔Σ2 M
′ which agree on their

overlaps.
The last remaining question concerns the uniqueness of this construction. The

only arbitrary element was the fixing of ϵ and corresponding choice of collars. For-
tunately, collars are unique up to diffeotopy [Wal16, Section 2.5], therefore our con-
struction is unique up to diffeomorphism.
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Definition 1.4.4. Let Σ1,Σ2,Σ3 be closed (n − 1)-dimensional manifolds, and let
M : Σ1 → Σ2 and M ′ : Σ2 → Σ3 be bordisms. Then the bordism (M ⊔Σ2 M

′, θ1, θ
′
2)

with (∂(M ⊔Σ2 M
′))1 = Σ1 and (∂(M ⊔Σ2 M

′))2 = Σ3 is called a gluing of M and M ′

along Σ2. The gluing is only unique up to diffeomorphism.

The idea behind this whole construction is illustrated in the following picture:

Σ1

Σ2

Σ3

M

M ′

(1.4.12)

where the red shaded area indicates the neighbourhood (−ϵ, ϵ) × Σ2 used in the
construction.

We have just seen, using gluing as composition of bordisms is not well-defined
because it is not unique. To circumvent this problem in the definition of our category
we will instead consider diffeomorphism classes of bordisms.

Definition 1.4.5. The unoriented closed bordism category Bordn,n−1 in dimension
n is defined as:

• objects are given by closed (n− 1)-dimensional manifolds,

• morphisms are given by diffeomorphism classes of bordisms,

• unit morphisms are given by the class of cylinders, i.e. 1Σ := [CΣ] for Σ ∈
Bordn,n−1,

• composition is induced by gluing of bordisms, i.e. [M ] ◦ [M ′] = [M ⊔Σ2 M
′] for

M : Σ1 → Σ2 and M ′ : Σ2 → Σ3;

The composition is unital with respect to 1Σ. To show associativity one uses the uni-
versal property of the pushout, together with well-definedness of the smooth structure
on the gluing up to diffeomorphism.
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Proposition 1.4.6. The category Bordn,n−1 has a symmetric monoidal structure
given by:

• the monoidal product is disjoint union ⊔,

• the unit object is the empty set ∅ viewed as an (n− 1)-dimensional manifold,

• the symmetric braiding with components βΣ,Σ′ := [CtwistΣ,Σ′ ], where

twistΣ,Σ′ : Σ ⊔ Σ′ → Σ′ ⊔ Σ (1.4.13)

(x, x′)) 7→ (x′, x) (1.4.14)

with x ∈ Σ and x′ ∈ Σ′ is the diffeomorphism which “interchanges” Σ and Σ′.11

Proof. The associator and unitors are induced by the universal property of disjoint
union. That β is a symmetric braiding follows from the definition of cylinders and
properties of the disjoint union, see [Koc03, Lemma 1.3.28].

Examples 1.4.7. In low dimensions the bordism categories can be described quite
explicitly:

1. Every object in Bord1,0 is a disjoint union of finitely many points such as

(1.4.15)

Every morphism decomposes, under disjoint union and composition, into a
disjoint union of finitely many closed intervals and circles [Mil65, Appendix],
for example

(1.4.16)

is a morphism from the disjoint union of three points to one.

2. Every object in Bord2,1 is the disjoint union of finitely many circles, such as

(1.4.17)

Every closed, connected two dimensional manifold is diffeomorphic to one of
the following [Wal16, Section 5.7]:

11We are a bit sloppy here with the disjoint union and use the ′ as “index”.
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• a sphere S2

(1.4.18)

• a torus T 2 = S1 × S1

(1.4.19)

• a connected sum12 of g tori T 2#T 2# . . .#T 2

. . .
(1.4.20)

for any g ∈ N⩾2, giving a surface of genus g

• a finite connected sum of real projective planes RP2 ∼= S2/Z2:

RP2#RP2# . . .#RP2 (1.4.21)

Note that spheres and the connected sum of tori are orientable manifolds while
connected sums of real projective planes are unorientable.

Every morphism in Bord2,1 is represented by a finite disjoint union of closed two
dimensional manifolds as above, with a finite number (possibly zero) of disks B2

removed and the boundary components S1 endowed with a choice of collars.13

This follows from the classification of compact two dimensional manifolds, see
[Wal16, Section 5.7] for a detailed discussion using handle decompositions. For
example

S1 ⊔ S1

S1

M (1.4.22)

12A connected sum of two manifolds is defined by cutting out a ball on each and gluing the
resulting spheres together.

13Different choices of collars can lead to distinct bordisms, however such choices can always be
absorbed into composition with a mapping cylinder Cf .
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is obtained from cutting three disks B2 out of the torus T 2.

Before we get to the notion of topological quantum field theories, we will now
consider a different variant of a bordism category, one for which all manifolds are ori-
ented. This can be seen as an instance of a bordism category with extra structure. In
general this “extra structure” could be of topological nature, such as orientation, or
geometric, such as a metric. We will only be interested in bordisms with extra struc-
ture of topological nature, more precisely with so-called tangential structures, more
on these and their bordism categories in Section 2.3.1. For a detailed introduction
of orientations on a manifold see for example [Fre12, Chapter 2].

Definition 1.4.8. The symmetric monoidal, oriented, closed bordism category Bordor
n,n−1

in dimension n is defined as:

• objects are given by closed, oriented (n− 1)-dimensional manifolds,

• morphisms are given by classes of bordisms (M, θ1, θ2) such thatM is oriented,
θ1 is orientation reversing, θ2 is orientation preserving, and diffeomorphisms
between bordisms are orientation preserving,

• unit morphisms, composition, and the symmetric monoidal structure are the
ones induced by Bordn,n−1.

Examples 1.4.9. 1. Every object in Bordor
1,0 is a disjoint union of finitely many

oriented points such as

+ − − + (1.4.23)

Every morphism can be obtained from disjoint union and gluing, from the
following six oriented bordisms:

+

+

−

−

+ −

− +

− +

+ −

≻

≻

≺

≺ (1.4.24)

and the symmetric braiding.
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2. Every object in Bordor
2,1 is the disjoint union of oriented circles. However since

the following diffeomorphism between the differently oriented circles is orien-
tation preserving

≺

≻

−→
≻

≺

(1.4.25)

it induces an isomorphism in Bordor
2,1. We will therefore identify both circles

and denote both of them by S1.

Every morphism of Bordor
2,1 is obtained from composition and disjoint union

through the following four generators

(1.4.26)

referred to as the pair of pants, the co pair of pants, the cup, and the cap. This
result follows almost immediately from the classification result of 2-dimensional
compact manifolds cited above. One different way to proof this decomposition
is through Morse theory, this is worked out for example in [Koc03, Chapter
1]. This result plays a crucial role in the classification of TQFTs “living” on
compact two dimensional oriented manifolds, see Theorem 1.5.4 below.

A property of bordism categories which turns out to be extremely important for
both the theory and constructions of TQFTs is their rigidity:

Proposition 1.4.10. The monoidal categories Bordor
n,n−1 and Bordn,n−1 are rigid for

any n ∈ Z+.

Proof. We will only prove the oriented case, the unoriented case can be treated
analogously by ignoring the orientations. For Σ ∈ Bordor

n,n−1, we set ∨Σ = Σ∨ :=
−Σ, where −Σ is the same manifold but with opposite orientation.14 Choosing the
standard orientation on the unit interval I, the oriented cylinder I×Σ can be viewed
as both an evaluation map Σ ⊔ Σ∨ → ∅ and a coevaluation map ∅ → Σ∨ ⊔ Σ in
Bordor

n,n−1. These maps satisfy the Zorro identities because the associated bordisms
are in the same oriented diffeomorphism class.

We will always consider our bordism categories to be rigid with duality data
chosen as in the proof above.

14See [Fre12, Definition 2.14] for the definition of the opposite orientation.
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1.5 Two dimensional closed oriented TQFTs

In this last section of the preliminaries we are now finally able to give a rigorous
definition of topological quantum field theories in the spirit of [Ati88]. After discussing
a few general properties we will focus on the two dimensional oriented case and discuss
the classification result in Theorem 1.5.4. We will only sketch a proof of this result
because a full proof would lead us to far outside the scope of this thesis. Nonetheless
we think it is important to at least illustrate the proof in some detail as it serves as
the archetypical example of a classification result for TQFTs.

Definition 1.5.1. Let C be a symmetric monoidal category. A closed n-dimensional
topological quantum field theory (TQFT ) with values in C is a symmetric monoidal
functor

Z : Bordn,n−1 → C. (1.5.1)

A morphism between closed n-dimensional TQFTs Z and Z ′ is a monoidal natural
transformation η : Z → Z ′. The category of closed n-dimensional TQFTs is the
category Fun⊗,β (Bordn,n−1, C

)
of braided monoidal functors together with monoidal

natural transformations.

We will often times abbreviate closed n-dimensional TQFT to only closed TQFT
when the context is clear. We can analogously define closed oriented TQFTs, their
morphisms, and their category by substituting the unoriented bordism category
Bordn,n−1 with the oriented bordism category Bordor

n,n−1. More generally there is
a notion of closed X -TQFT for any tangential structure X , see Section 2.3.2. We
will also be interested in variations of Bordn,n−1 where the underlying manifolds have
corners or stratifications, the rule of thumb is as long as the bordism category con-
tains only topological data, we will call a symmetric monoidal functor out of it a
TQFT, with appropriate prefixes discussed in the following chapters. If it is clear
from the context we will drop the prefixes and simply call it a TQFT.

For C = Vectk or C = SVectk and a TQFT Z : Bordn,n−1 → C, we call Z(Σ)
the state space of Σ ∈ Bordn,n−1. One immediate consequence of the definition of
TQFTs and Proposition 1.4.10 is that the state spaces are finite-dimensional:

Proposition 1.5.2. Let Z : Bordn,n−1 → C be a TQFT. Then Z(Σ) is dualisable
for any Σ ∈ Bordn,n−1.

Proof. Every object Σ ∈ Bordn,n−1 is dualisable by Proposition 1.4.10, furthermore
Z is a symmetric monoidal functor and monoidal functors preserve duality [Eti+16,
Section 2.10].
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In the case of C = Vectk (or SVectk), the dualisable objects are exactly the finite-
dimensional vector spaces (super vector spaces). One further direct consequence of
Proposition 1.4.10 is the following:

Proposition 1.5.3. Let C be a symmetric monoidal category. Then Fun⊗,β (Bordn,n−1, C
)

is a groupoid, i.e. morphisms between TQFTs are always isomorphisms.

See [CR18, Appendix A.2].
Both of the above propositions have a corresponding version for TQFTs with

tangential structure. For more on general properties of TQFTs see for example
[CR18, Section 2.4.].

A natural question to consider when studying TQFTs (or really any QFT) is
the following: What algebraic structure is common to all TQFTs in a given fixed
dimension n ∈ Z+? In our functorial formulation of TQFTs this amounts to finding a
groupoid (with algebraic interpretation/origin) which is equivalent to Fun⊗,β (Bordn,n−1, C

)
.

Finding such a classification of TQFTs in terms of algebraic data is in general a very
hard problem, however the basic idea to tackle this problem is actually quite simple.
Very roughly one works in essentially three steps:

1. Find a description of the bordism category, e.g. Bordn,n−1, in terms of genera-
tors and relations15, and observe an algebraic structure, expressed through the
relations, on the generators;

2. Construct a functor from the category of TQFTs, e.g. Fun⊗,β (Bordn,n−1, C
)
,

to the category, corresponding to the found algebraic structure;

3. Show that the functor is an equivalence;

The second and the third step are always quite similar for any type of TQFT and
usually straightforward, modulo some verifications of course. The first part usually
the most difficult because finding a presentation of Bordn,n−1 is equivalent to classify-
ing all compact n-manifolds up to diffeomorphism. For exactly this reason there are
currently no classification results of closed TQFTs in dimension n > 3. For the rest
of this chapter, and a large part of this thesis, we will focus on n = 2. To illustrate
the above procedure we will now discuss the classification of closed two dimensional
oriented TQFTs in terms of commutative Frobenius algebras.

Theorem 1.5.4. Let (C,⊗,1, β) be a symmetric monoidal category. There is an
equivalence of groupoids Fun⊗,β(Bordor

2,1, C) ∼= ComFrob(C).
15See [CR18, Section 3.2.] for a detailed introduction and a precise definition of what it means

to be generated as a symmetric monoidal category by generators and relations.
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Proof sketch. According to the general idea outlined above, we begin our proof with
finding a presentation of the bordism category Bordor

2,1 through generators and rela-
tions. Fortunately in dimension n = 2 such a presentation is known, we already used
it in the Examples 1.4.7 and 1.4.9. The closed two dimensional oriented bordism
category Bordor

2,1 is generated as a symmetric monoidal category by the following
data:

G0 =
{ }

≡
{
S1

}
G1 =

{
, , ,

}

G2 =



= , = ,

= = , = = ,

= = , =


With G0 and G1 being the generators, and the set G2 the relations. The “interchange
bordism” on the left hand side of the last relation is not in the set of generators
G1 because we get it “by definition” of Bordor

2,1 generated as a symmetric monoidal
category. To show that {G0,G1,G2} really present Bordor

2,1 one usually uses Morse
theory [Koc03, Section 1.4.]. The relations G2 are reminiscent of the string diagrams
used to define commutative Frobenius algebras. This reminiscence motivates us to
define the functor

E : Fun⊗,β
(
Bordor

2,1, C
)
→ ComFrob(C)

Z 7→
(
Z
( )

,Z
( )

,Z
( )

,Z ( ) ,Z ( )

)
,

η 7→ ηS1 .

From the relations G2 it is clear that the functor is well-defined on objects. To see
that it is well-defined on morphism let us assume Z is strict, then ηS1⊔S1 = ηS1⊗ ηS1

and naturality of η imply that ηS1 is a morphism of Frobenius algebras in C. For
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example commutativity of the diagram

Z(S1 ⊔ S1) Z(S1)

Z̃(S1 ⊔ S1) Z̃(S1)

Z
( )

Z̃
( )ηS1⊔S1=ηS1⊗ηS1 ηS1

corresponds to ηS1 being compatible with the mutliplications. The other compati-
bility conditions can be shown in a similar way. If Z is not strict one needs to be a
bit more careful and use the isomorphism ηS1⊔S1

∼= ηS1 ⊗ ηS1 and its inverse.
Finally we want to show that E is an equivalence. First note that η is fully

determined by ηS1 , thus E is fully faithful. To show that E is essentially surjective,
let (A, µ, δ,∆, ϵ) ∈ ComFrob(C). We use this data to define a TQFT ZA by setting

ZA
( )

= A

ZA
( )

= µ

ZA ( ) = δ

ZA
( )

= ∆

ZA ( ) = η

(1.5.2)

This fully determines a symmetric monoidal functor ZA : Bordor
2,1 → C because

Bordor
2,1 is freely generated as a symmetric monoidal category by {G0,G1,G2}: A

symmetric monoidal functor from a freely generated symmetric monoidal category
is fully determined by its action on the generators G0 and G1 as long as the relations
G2 are satisfied, see [CR18, Section 3.2] or [Koc03, Chapter 3]. This means we only
need to check if the relations are satisfied, for example we need to check that

ZA

  = ZA

 
holds, which it indeed does by associativity of µ. Similarly the other relations are
satisfied exactly because A is a commutative Frobenius algebra.

To appreciate this result, we will give a few examples of two dimensional closed
oriented TQFTs and their physical origin. For this we will heavily use the charac-
terisation of Frobenius algebras in Vectk given by Proposition 1.2.19. We will be
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very brief with our discussion of these, as a proper treatment of each of the examples
would need familiarity with further concepts from algebra and geometry than we
presuppose.

Examples 1.5.5. 1. Let G be a finite abelian group with unit element e. The
free vector space kG is naturally a k-algebra with multiplication induced by the
multiplication of G, furthermore it is a Frobenius algebra with non-degenerate
pairing defined on basis elements g, h ∈ G by

⟨g, h⟩ = δg,h−1 . (1.5.3)

This example is related to Dijkgraaf–Witten theory, which is a discrete model
of gauge theory, see [Bar05, Chapter 4] for more details.

2. Let X be an oriented closed n-dimensional manifold. The de Rahm cohomol-
ogy H•

dR(X) =
⊕n

k=0H
k
dR(X) ofX is anR-algebra together with multiplication

induced by the wedge product ∧ of differential forms. Note that this multipli-
cation is only graded commutative, i.e. commutative in SVectR. The pairing

⟨[α], [β]⟩ =
ˆ
X

α ∧ β (1.5.4)

is well-defined by Stokes’ theorem and non-degenerate by Poincaré duality. Due
to the graded commutativity of ∧, H•

dR(X) is a Frobenius algebra in SVectR
and not VectR. If X is a Kähler manifold, this commutative Frobenius algebra
is related to the A-twisted sigma model with target X, see [Hor+03, Section
16.4.].

3. Let n ∈ Z+, and let W ∈ C[x1, . . . , xn] be a polynomial in n variables such
that its Jacobi algebra

JW = C[x1, . . . , xn]/(∂x1W, . . . , ∂xnW ) (1.5.5)

is finite-dimensional. Here (∂x1W, . . . , ∂xnW ) denotes the ideal generated by
all partial derivatives of W , i.e.

(∂x1W, . . . , ∂xnW ) =


n∑
k=1

pk · ∂xkW
∣∣∣ p1, . . . , pn ∈ C[x1, . . . , xn]

 (1.5.6)
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as an infinite-dimensional vector space over C. The Jacobi algebra inherits its
multiplication from C[x1, . . . , xn], furthermore it can be shown that

⟨[ϕ], [ψ]⟩ = Res{0}

[
ψ(x) · ϕ(x)dx
∂x1W, . . . , ∂xnW

]
(1.5.7)

is a non-degenerate pairing on JW , see for example [GH94, Chapter 5]. Where

Res{0}

[
ψ(x)·ϕ(x)dx
∂x1W,...,∂xnW

]
is a generalization of the residue from complex analy-

sis. This type of Frobenius algebra is associated to so-called B-twisted affine
Landau–Ginzburg models, see [CM16] for details and further references.
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Chapter 2

Spin and other tangential
structures

The goal of this chapter is to give a thorough understanding of spin and more general
tangential structures. For this the reader is assumed to have knowledge of fiber
bundles, especially reductions of principal fiber bundles, associated vector bundles,
and classifying spaces. The relevant background is given in Appendix A and the
literature cited therein. Furthermore some basic knowledge about (co)homology will
be needed for the existence and uniqueness of spin structures for a fixed manifold.

In Section 2.1 we begin by briefly reviewing the construction of the frame bundle
associated to the tangent bundle of a chosen manifold and its relation to the special
orthogonal group SO(n). After this we will define a spin structure as a reduction
of this frame bundle to a certain principal fiber bundle. Before we can do this, we
will need to define what our structure group should be, this group will be the spin
group. We will then briefly comment on the use of the spin group in physics and
in particular its spinor representation. The question of existence and uniqueness of
spin structures on manifolds will be answered using tools from algebraic topology,
which we will first employ to answer the same question for orientations.

Afterwards we focus on one and two dimensional compact manifolds, where our
question on the existence and uniqueness can be answered directly through elemen-
tary results in algebraic topology. Furthermore we will describe the group Spin(2)
in detail, and briefly discuss an equivalent definition of spin structures on surfaces.
We then focus on describing the spin structures of an oriented circle in great detail,
this example will be crucial for closed two dimensional spin TQFTs.

Finally we will consider general tangential structures, discuss a few examples
thereof, and generalize the bordism categories from Section 1.4 to one for arbitrary
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tangential structures, including a somewhat heuristic description of the spin bordism
category.

2.1 Spin structures on manifolds

A spin structure can in general be defined on vector bundles E where a certain
characteristic class vanishes. We will solely focus on the case where E = TM for
a given Riemannian manifold M and define the spin structure directly as a special
principal fiber bundle over M .

Recall that for every n-dimensional manifold M the frame bundle GL(M) is a
principal GL(n)-bundle associated to the tangent bundle TM . Let

GL(M)x := {νx = (ν1, . . . , νn) ⊂ TxM
∣∣ νx is a basis of TxM},

then we define the set
GL(M) =

⊔
x∈M

GL(M)x.

To construct a principal GL(n)-bundle from this set we define a GL(n) right action
by multiplication of a basis with a matrix from the right. Furthermore GL(M) can
be equipped with the structure of a smooth manifold using the atlas of M [Ham17,
Theorem 4.4.1]. For the projection map π : GL(M) → M set π(νx) := x. It can be
shown that GL(M) can always be reduced to an O(n)-bundle of orthonormal frames
denoted by O(M), because O(n) is a maximally compact subgroup of GL(n). In
the language of classifying spaces this statement corresponds to the fact that the
inclusion ι : O(n) ↪→ GL(n) induces a homotopy equivalence Bι : BO(n)→ BGL(n)
[Die08, Proposition 14.4.13]. On the manifold level this reduction corresponds to
the choice of a Riemannian metric g on M , see [Bau14, Beispiel 2.12] for details.
Thus from now on we will only consider Riemannian manifolds. Recall further that
a manifold is called orientable if there is a reduction of O(M) to an SO(n)-bundle.
In Section 2.3.2 we will see a different reason why working with O(n) and SO(n)
instead of GL(n) and GL+(n) will lead to the same notion of spin structures. The
corresponding bundle of oriented, orthonormal frames is denoted by SO(M). This
statement tells us that we can choose all cocycles of the oriented frame bundle as
maps into SO(n).

To motivate the following definition recall that in physics fermionic particles are
described by so called spinors which transform under a full rotation by a change
of sign. In terms of the rotation group this means that not a 2π rotation but a 4π
rotation acts as the identity on spinors. To be more precise a spinorial representation
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of the rotation group is a representation of the double cover of the rotation group
and spinors are the elements in the representation space [SU01, Chapter 7].

Definition 2.1.1. Let n ∈ N. The n-dimensional spin group Spin(n) to be the
double cover of the special orthogonal group SO(n). This means there exists a group
homomorphism λ : Spin(n)→ SO(n) which is also a topological double cover.

Remarks 2.1.2. The following is a collection of further properties concerning spin
groups, a generalisation for pseudo-orthogonal groups, as well as a few low dimen-
sional examples and are mostly taken from either [Ham17, Chapter 6.5.1] or [LM89,
Chapter 8].

• Spin(n) exists and is unique up to isomorphism. It can be explicitly constructed
as a subgroup of the Clifford algebra Cl(n). It can furthermore be shown that
Spin(n) is a Lie group and λ a Lie group homomorphism.

• For n > 2, Spin(n) is simply connected and thus the universal covering group
of SO(n).

• Considering the pseudo-orthogonal group SO(s, t) of signature (s, t) instead
leads to further spin groups. Especially Spin+(1, 3) ∼= SL(2,C), the double
cover of the special orthochronous Lorentz group SO+(1, 3), plays an important
role in physics.

• In low dimensions the spin groups are given by:

– Spin(1) ∼= Z2

– Spin(2) ∼= U(1)

– Spin(3) ∼= SU(2)

– Spin(4) ∼= SU(2)× SU(2)

With this preparation we can now define a spin structure on a manifold. This
additional structure is needed to be able to describe fermionic fields in a consistent
way on a manifold, see [Wal84, Chapter 13] for a more thorough motivation.

Definition 2.1.3. Let (M, g) be an oriented, n-dimensional Riemannian manifold.
A spin structure on M is a Spin(n)-principal fiber bundle

πSpin : Spin(M)→M
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together with a smooth double covering

Λ: Spin(M)→ SO(M)

such that
Spin(M)× Spin(n) Spin(M)

M

SO(M)× SO(n) SO(M)

·

Λ×λ Λ

πSpin

·
πSO

(2.1.1)

commutes. Here λ : Spin(n)→ SO(n) is the double covering of Lie groups and the ·
on the horizontal arrows indicates right action of the respective structure group. We
will often abbreviate the data of a spin structure on a manifold to the tuple (M,Λ)
and call this a manifold with spin structure.

A spin structure on M is more than a Spin(n)-principal fiber bundle: it needs to
be compatible with the natural SO(n)-bundle of M in the sense that the triangle on
the right of Diagram (2.1.1) commutes. In the language of principal fiber bundles this
means a spin structure is a λ-equivariant bundle morphism Λ: Spin(M)→ SO(M),
i.e. a λ-reduction of SO(M). Furthermore Λ: Spin(M) → SO(M) is a Z2-principal
fiber bundle, i.e. a double covering of SO(M).

We can generalize the definition of spin structures to the pseudo-Riemannian
case by replacing all groups with their pseudo-Riemannian correspondences, see for
example [Ham17, Chapter 6]. Even more generally we can define a spin structure
without a (pseudo) Riemannian metric by using the group GL+(n) of orientation

preserving automorphisms of Rn and its double cover G̃L
+
(n). This approach will

not be considered for now as we first want to gain more intuition in this topic. Also
working with SO(n) and Spin(n) will allow us to simplify the discussion of existence
and uniqueness of spin structures. We also think that the relation to the physical
motivation is clearer using the chosen definition. In later chapters we will introduce
the concept of tangential structures using classifying spaces. Orientations and spin
structures are special cases of such tangential structures. As briefly mentioned in
the discussion of the frame bundle, the inclusion of compact subgroups induces a
homotopy equivalence of the corresponding classifying spaces. This means that using

using GL+(n) and G̃L
+
(n) will lead us to an equivalent notion of tangential structure.

Even though the physical motivation for spin structures lies not in the spin group,
but the associated spinors. We will only briefly recall the definition of the spinor
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representation of Spin(n), as this would lead us to far in to the theory of Clifford
algebras, see [Ham17, Chapter 6] for a thorough discussion. From the structure
theorem of complex Clifford algebras [Ham17, Theorem 6.3.21] we get an algebra
representation ρ : Cl(n) → End(CN) with N = n/2 if n is even and N = (n − 1)/2
if n is odd. We will call this the spinor representation of Cl(n) and the space
C
N the space of spinors. As noted before the spin group is a subgroup of the

real Clifford algebra Cl(n). We further know that Cl(n) ⊗ C ∼= Cl(n). Putting
this together means we get a complex representation κ : Spin(n) → GL(N,C) by
composing the inclusion Spin(n) ⊂ Cl(n) with the spinor representation. We will
call this representation the spinor representation of Spin(n).

Definitions 2.1.4. Let (M, g) be an oriented, n-dimensional Riemannian manifold
with spin structure Λ: Spin(M)→ SO(M), and κ : Spin(n)→ GL(N,C) the spinor
representation of Spin(n). The associated vector bundle

S := Spin(M)×κ CN

is called the spinor bundle of M , and its sections are called spinors or spinor fields.

Before we can talk about existence and uniqueness of spin structures, we need
a notion of morphism between spin structures. For this the notion of a principal
bundle morphism from Definition A.0.5 is a bit too weak, instead we will employ the
following.

Definition 2.1.5. Let (M,Λ) and (M̃, Λ̃) be manifolds with spin structure. A
morphism between manifolds with spin structure is given by a bundle morphism
F : Spin(M)→ Spin(M̃) such that

Spin(M) Spin(M̃)

SO(M) SO(M̃)

M M̃
f

Tf∗

F

Λ Λ̃

πSO π̃SO

commutes, where f is the induced map on base spaces, and Tf∗ the bundle morphism
induced by the derivative of f . An isomorphism of spin structures on a fixed manifold
M is a morphism of manifolds with spin structure F as above where M = M̃ ,
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F : Spin(M)→ S̃pin(M) is a bundle isomorphism, and the induced map is f = idM ,
i.e. we have the following commutative triangle

Spin(M) S̃pin(M)

SO(M)

F

Λ Λ̃

.

This means F is also a bundle isomorphism between Spin(M) and S̃pin(M) viewed
as Z2-bundles over SO(M).

Before stating a result for the existence of spin structures on a given manifold we
will review the simpler question if a given manifold can be oriented. This allows us to
introduce the relevant concepts from algebraic topology in a simpler setting. To this
end we will now outline the definition of Čech cohomology for a manifold following
[Nak03, Chapter 11.6]. We will only remark on subtleties and choices when they
arise and refer the reader to a more thorough introduction given in [Wer19, Chapter
2.3.2], also [LM89, Appendix A] for a more general discussion on the relation between
Čech cohomology and principal fiber bundles.

Let M be a manifold, {Ui}i∈I a good open cover of M1, and r ∈ N. A Čech
r-cochain is a locally constant function f : Ui0 ∩ Ui1 ∩ · · · ∩ Uir → Z2 for Ui0 ∩ Ui1 ∩
· · · ∩ Uir ̸= ∅, which is totally symmetric. We will employ the notation f(i0, . . . , ir)
for such a function, total symmetry can now be expressed as

f(iσ(0), . . . , iσ(r)) = f(i0, . . . , ir)

for an arbitrary permutation σ ∈ Sr+1. The space of these maps will be denoted
by Čr(M,Z2), this space can be endowed with the structure of an abelian group
stemming from Z2. We will use multiplicative notation for Z2, therefore the unit
will be denoted by 1. We further define the coboundary operator δr : Č

r(M,Z2) →
Čr+1(M,Z2) by

(δrf)(i0, . . . , ir+1) :=
r+1∏
j=0

f(i0, . . . , îj, . . . , ir+1)

where the variable with the hat “̂” is omitted. By a direct computation it can be
shown that δr ◦ δr−1 = 1. Therefore we can define a δ-cohomology, the rth-Čech
cohomology group Ȟr(M,Z2) := ker (δr) /im (δr−1).

1Good means that all the sets Ui are contractible, and all finite intersections are either empty
or contractible, this always exists for a manifold as we assume it to be paracompact.
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Usually one defines the Čech cohomology ring Ȟ∗(U , R) with coefficients in a ring
R only for a cover U := {Ui}i∈I , however there is a theorem [Wer19, Theorem 2.3.7]
which states that if U is a good cover of M then Ȟ∗(U ;R) ∼= H∗

sing(M,R), where
H∗
sing(M,R) is the singular cohomology of M . Which in particular implies that our

construction is independent of the choice of cover U up to isomorphism.
For a given Riemannian manifold (M, g) we will now construct an element of

Ȟ1(M,Z2) using the orthonormal frame bundle SO(M). Let {Ui}i∈I be a good
covering of M and let {Ui, ϕi}i∈I be a bundle atlas for SO(M). Then the cocy-
cle {ϕi,j}i,j∈I , see Appendix A, can be used to define a Čech 1-cochain by setting
f(i, j) := det(ϕij(x)) = ±1 for any x ∈ Ui ∩ Uj ̸= ∅. This is independent of x
because {Ui}i∈I is a good cover, thus we will drop the x dependence from now on. In
particular the so defined function is locally constant and furthermore f(i, j) = f(j, i)
so it is indeed a Čech 1-cochain. Acting with the coboundary operator δ on f shows
that it is δ-closed:

δf(i, j, k) = det(ϕij)det(ϕjk)det(ϕki)

= det(ϕijϕjkϕki)

= det(ϕikϕki)

= det(idn)

= 1

by the cocycle conditions. We define the first first Stiefel–Whitney class w1(M) ofM
as the cohomology element represented by f : w1(M) := [f ] ∈ Ȟ1(M,Z2). It can be
shown that w1(M) is independent of the choice of bundle maps {ϕi}i∈I , see [Wer19,
Chapter 2.3.2] for more details. The significance of the first Stiefel–Whitney class
lies in the following theorem.

Theorem 2.1.6. Let (M, g) be an Riemannian manifold.

1. M is orientable if and only if its first Stiefel–Whitney class is trivial.

2. If M is orientable, then there is a bijection between the set of isomorphism
classes of orientations on M and the Čech cohomology group Ȟ0(M,Z2).

Proof. “ =⇒ ” If M is orientable, the frame bundle can be reduced to a SO(n)-
bundle and for every bundle atlas {Ui, ϕi}i∈I we have ϕij ∈ SO(n) and therefore
f(i, j) = det(ϕij) = 1, so [f ] = w1(M) is trivial.
“ ⇐= ” If w1(M) is trivial we have an f0 ∈ Č0(M,Z2) such that δf0 = f . Since
f0(i) = ±1 we always find hi ∈ O(n) such that det(hi) = f0(i), using these {hi}i∈I
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we can define a new chart {ϕ̄i}i∈I by setting ϕ̄i := hi · ϕi such that for any pair of
indices (i, j) with det(ϕij) = −1 we set f0(i) = 1 and f0(j) = −1 then det(ϕ̄ij) =
det(hi · ϕij · h−1

j ) = −det(ϕij) = 1. So M is orientable.
For a proof of the second statement see [LM89, Theorem 1.2].

This theorem shows that the first Stiefel–Whitney class is an obstruction to the
orientability of M , in other words w1(M) is a characteristic class for O(n)-bundles.

As explained in Appendix A we should be able to obtain the first Stiefel–Whitney
on more general grounds. For this recall that orientability of M is equivalent to the
existence of a continuous map g : M → BSO(n) lifting the classifying map τM of the
frame bundle O(M), such that the following diagram commutes up to homotopy

BSO(n)

M BO(n).τM

g (2.1.2)

Further consider the short exact sequence of groups

0 SO(n) O(n) Z2 0

given by the determinant homomorphism, this sequence induces the homotopy fibra-
tion

BSO(n) BO(n) BZ2.

We can now combine this fibration with Diagram (2.1.2) to obtain

BSO(n)

M BO(n) BZ2.τM

g

w1

(2.1.3)

This diagram is exactly of the form of diagram (A.0.2), because BZ2 is a K(Z2, 1)
space [Die08, Example 14.4.8]. The cohomology element w1 ∈ H1(BO(n),Z2) cor-
responds to the first Stiefel–Whitney class from above in the sense that τ ∗M(w1) =
w1(M). Indeed using more general methods, it is possible to show that w1(M)
corresponds to an element w1 ∈ H∗(BO(n);Z2) [LM89, Chapter II].

Continuing in a similar way we will now consider the question if a manifold admits
a spin structure. Let (M, g) be an oriented n-dimensional Riemannian manifold,
{Ui}i∈I a good covering of M , and {Ui, ϕi}i∈I a bundle atlas for SO(M). Using the
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group homomorphism λ : Spin(n) → SO(n) we consider a lifting ϕ̃ij of the cocycle
ϕij, i.e. λ

(
ϕ̃ij

)
= ϕij. Note that for the lift of ϕij a choice between ϕ̃ij and −ϕ̃ij can

be made. Since
λ
(
ϕ̃ijϕ̃jkϕ̃ki

)
= ϕijϕjkϕki = idn

we have ϕ̃ijϕ̃jkϕ̃ki ∈ ker(λ) = {−I, I}, where I denotes the unit element of Spin(n).
In order to define a Spin(n)-bundle the ϕ̃ij need to satisfy the cocycle condition
ϕ̃ijϕ̃jkϕ̃ki = I. This motivates the definition of a Čech 2-cochain f(i, j, k) by

f(i, j, k)I := ϕ̃ijϕ̃jkϕ̃ki.

It can be checked that f is symmetric and closed. Furthermore the cohomology
element [f ] is independent of any choices we made. Therefore we have an element
w2(M) := [f ] ∈ Ȟ2(M,Z2) called the second Stiefel–Whitney class of M .

Theorem 2.1.7. Let (M, g) be an oriented, Riemannian manifold.

1. M admits a spin structure if and only if the second Stiefel–Whitney class
w2(M) ∈ Ȟ2(M,Z2) is trivial, i.e. w2(M) = 1.

2. If M admits a spin structure, then there is a bijection between the set of
isomorphism classes of spin structures on M and the Čech cohomology group
Ȟ1(M,Z2).

Proof sketch. The proof of the first statement is similar to the proof of the statement
about orientability and the first Stiefel–Whitney class:
“ =⇒ ” IfM has a spin structue, then we have a Spin(n)-bundle with transition func-
tions {ϕ̃ij}i,j∈I which satisfy the cocycle condition, ϕ̃ijϕ̃jkϕ̃ki = I, therefore w2(M) is
trivial.
“⇐= ” Assume w2(M) is trivial and consider a lift {ϕ̃ij}i,j∈I of the transition func-
tions {ϕij}i,j∈I of SO(M) through λ, remember there is a choice to pick ±ϕ̃ij. Let
f ∈ w2(M) be a representative of w2(M), there is a Čech 1-cochain f1, such that
f(i, j, k) = δf1(i, j, k). We consider the 1-cochain f1(i, j) to be defined as the sign
of the chosen lift ϕ̃ij. If we define new transition functions by ϕ̃′

ij = f1(i, j)ϕ̃ij, this

gives us ϕ̃′
ijϕ̃

′
jkϕ̃

′
ki =

(
δf1(i, j, k)

)2
I = I. Hence the {ϕ̃′

ij}i,j∈I define a Spin(n)-bundle
over M , which gives a spin structure because the transition functions are explicitly
constructed from the oriented orthonormal frame bundle [Wer19, Chapter 2.3].
For a proof of the second statement see [LM89, Corollary 1.5].

In analogy to the first Stiefel–Whitney class also the second defines a universal
characteristic class as explained in [LM89, Appendix A].
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2.2 Spin surfaces and circles

We will now focus on spin structures on surfaces, where a surface is understood as
an oriented, connected, compact two dimensional manifold, possibly with boundary.
Recall from Section 1.4, the classical result from differential topology, which states
that surfaces are classified, up to diffeomorphism, by their genus g and the number of
oriented boundary components h. We will denote a surface of genus g and h oriented
boundary components by Σg,h and simply Σg for a closed surface of genus g. For our
purposes only oriented surfaces will be of interest so in the following smooth maps
between them are understood as orientation preserving, furthermore the oriented
orthonormal frame bundle SO(Σ) of the surface Σ will be simply referred to as the
frame bundle of Σ.

Definitions 2.2.1. A spin surface is a tuple given by a surface Σ together with a
spin structure Λ: Spin(Σ)→ SO(Σ).

According to Theorem 2.1.7 the classification and existence of spin structures on
a surface Σ is tied to the Čech cohomology groups Ȟ1(Σ,Z2) and Ȟ

2(Σ,Z2) which
are, as noted in the previous chapter, isomorphic to the singular cohomology groups
H1(Σ,Z2) and H2(Σ;Z2). For a closed surface Σg it is well known from algebraic
topology that H1(Σg,Z) ∼= Z2g and H2(Σg,Z) ∼= Z [Nak03, Example 3.12], thus
H2(Σg,Z2) = 0, by the universial coefficient theorem [Hat01, Theorem 3.2]. This
means that every closed surface can be equipped with a spin structure. Furthermore
|H1(Σg,Z2)| = 22g, so there are 22g inequivalent spin structures.

In two dimensions the spin group can be constructed using quite elementary
means, this will be sketched in what follows, see [Ham17, Chapter 6] for the general
approach based on Clifford algebras. For the rest of this chapter we will tacitly
identify the complex plane C with R2 and use a complex coordinate z.2 Furthermore

by identifying z ∈ C with the real 2× 2 matrix
(

Re(z) −Im(z)
Im(z) Re(z)

)
gives us isomorphisms

S1 ∼= SO(2) ∼= U(1) of Lie groups.
We define a map

U(1)→ U(1)

z 7→ z2.

It can be checked that composition of this map with the before mentioned ismor-
phisms defines a smooth double covering homomorphism λ : U(1) → SO(2). Thus
we find Spin(2) ∼= U(1) and ker(λ) ∼= Z2.

2We still consider our manifolds and maps to be real and smooth, and not complex and holo-
morphic.
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For a given spin surface Spin(Σ) acting from the right with the non-trivial element
in the kernel of λ induces an involution w : Spin(Σ)→ Spin(Σ) sometimes called the
spin flip. This involution is precisely a deck transformation of Spin(Σ) viewed as a
Z2-bundle over SO(Σ).3

Remark 2.2.2. It should be noted here that in two dimensions there is the possibility
to consider the r-fold cover Spinr(2) of SO(2) instead of the double cover and define
a corresponding r-spin structure on a surface analogous to Definition 2.1.3 for any
r ∈ Z+, see [RS21; SS20] for more details. In this context what we call a spin
structure would be a 2-spin structure and an orientation a 1-spin structure.

Closely related to a surface in our context is the notion of a compact Riemann
surface, i.e. a complex one dimensional manifold. For such a compact Riemann
surface Σ̃ there is another way to think of spin structures: The spinor bundle S
associated to a spin structure is a square root bundle (S ⊗ S ∼= K) of the canonical

line bundle K = Λ1T ∗Σ̃. The isomorphism is induced by the double covering of
principal fiber bundles,4 for a more detailed account on this point of view see [Ati71].

An important topological invariant for a manifold with spin structure is given by
the Atiyah invariant, this is defined as the index of a differential operator (the Dirac
operator) associated to the canonical spinor bundle of the manifold. For surfaces
there is an equivalent algebraic invariant, given by the Arf invariant of a quadratic
form on H1(Σ,Z2) of symplectic type which is related to the choice of spin structure
on the surface [Joh80].

Example 2.2.3. As our motivation comes from topological field theory in two di-
mensions we will need to describe a category for bordisms with spin structure. To
this end we will now discuss spin structures for the oriented circle S1 and the asso-
ciated spinor bundles. This will also allow us to relate our discussion to the use of
different spinor fields in physics. Note that for n = 1 the spinor space from Defintion
2.1.4 is C.

According to Theorem 2.1.7 we expect two non-isomorphic spin structures on S1,
because H1(S1,Z2) ∼= Z2 [Nak03, Example 3.8]. To construct them note that S1

is a Lie group and therefore its frame bundle is trivial, i.e. SO(S1) = S1 × SO(1).
Note further that this space is isomorphic to S1 itself because SO(1) ∼= {1}, the
trivial group. In more geometric terms this means that there is exactly one oriented
unit basis vector for the tangent space at each point. From Remark 2.1.2 we know

3The involution w exists for any manifold with spin structure, not just 2-dimensional ones.
4Technically this gives a spin structure with respect to the cotangent bundle and not the tangent

bundle, but these two structures are “dual” to one another, see [Ebe06, Chapter 3.2].
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that Spin(1) ∼= Z2, thus a spin structure on S1 corresponds to a double cover of S1.
We will therefore use the terms double cover and spin structure interchangeably. As
noted above there are two non-isomorphic spin structures of the circle. We will now
directly construct the spaces and double covering maps. A different way to construct
them is by lifting a cocycle of SO(S1) to a Spin(1) cocycle for a good cover of S1,
see [Wer19, Example 2.3.17] for this approach.

The first double cover is the trivial, disconnected one with total space SpinR(S1) =
S1 × Z2

∼= S1 ⊔ S1, and covering map given by

πR : S1 ⊔ S1 → S1

(z1, z2) 7→ z1.

We will call this spin structure the Ramond structure on S1. The terminology is
chosen to be in accordance to the one used in physics, as will be shown below.
As an associated vector bundle of a trivial bundle, the spinor bundle is also trivial
SR = S1×C [Nak03, Corollary 9.2]. We can therefore view spinor fields as maps from
S1 to C, i.e. spinor fields of the Ramond structure are complex valued 2π periodic
functions.

The second spin structure is given by the connected double cover SpinNS(S1) ∼=
S1. The map

πNS : S1 → S1

z 7→ z2

provides a double cover of S1 because every z ∈ S1 has exactly two square roots
±
√
z. We will call this the Neveu–Schwarz structure on S1. Embedded in R3 this

space can be thought of as the boundary of the Möbius strip, see Figure (2.1b).
The associated spinor bundle is given by a “Möbius like” complex vector bundle

SNS = (S1 × C)/ ∼ where we identify (z1, z2) ∼ (z1,−z2). The spinors from this
bundle are 2π anti-periodic. This can be seen by considering SNS as the quotient
space of R×C by the equivalence relation (x, z) ∼ (x+2π,−z). As indicated above
the name convention we have chosen for the spin bundles is in accordance to the
convention used in physics for periodic and anti-periodic spinors on a circle [Pol98,
Chapter 10.2].

Interestingly from the point of view of bordism theory, the NS-structure is the
“trivial” one, which means that the NS-structure is the one induced by the unique (up
to isomorphism) spin structure of the unit disk B2 ⊂ R2. To see this first note that
B2 is contractible and therefore the fundamental group of B2 is trivial, this implies
the first cohomology group of B2 is trivial as well, now according to Theorem 2.1.7
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(a) Disconnected or
“Ramond” double
cover.

(b) Connected or “Neveu–
Schwarz” double cover
with shaded mesh to
indicate the “Möbius band
like” structure.

Figure 2.1: The two non isomorphic double covers of the circle in blue with base
circle in black and shaded mesh to indicate the “Möbius band like” structure for the
connected case.

there is a unique spin structure on B2. Furthermore contractability implies triviality
of the frame bundle SO(B2) = B2×SO(2) ∼= B2×S1 [Ham17, Corollary 4.2.9]. As S1

and B2 are both embedded submanifolds of R2 we will use the standard coordinates
(x, y) of R2, with these we get a global section, which gives in particular a global
trivialisation of SO(B2) which assigns the standard orthonormal basis (ex, ey) to a
point. In this picture the right action of SO(2) is given by counterclockwise rotation
of this basis. A natural choice for the spin structure is now given by the trivial
Spin(2)-bundle Spin(B2) = B2×Spin(2) ∼= B2×S1 with projection to SO(B2) given
by the map

Λ: Spin(B2)→ SO(B2)

(x, g) 7→ (x, λ(g)),

i.e. the identity on the B2 factor and the doubling map on the S1 factor. A direct
computation shows that this indeed defines a spin structure on B2. The inclusion of
SO(S1) into SO(B2) in the trivialization chosen above is given by

ι : SO(S1)→ SO(B2)

eθ 7→ ((cos(θ), sin(θ)), θ),

where eθ denotes the unit tangent vector at θ ∈ S1. Using this inclusion we can
pullback the double cover Spin(B2) of SO(B2) to a double cover of SO(S1) ∼= S1 and

therefore obtain a Spin(1) ∼= Z2 bundle over S
1 which we will denote by SpinB

2

(S1).
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A natural question now is which of the two double covers described above have we
obtained. From the definition of the pullback bundle in Theorem A.0.8 we can see
that SpinB

2

(S1) = Λ−1
(
ι(SO(S1))

)
, which is connected, therefore we indeed find

SpinB
2

(S1) ∼= SpinNS(S1).

2.3 Bordisms with extra structure

2.3.1 Tangential structures

Following [Fre12, Chapter 9] and [Sch18, Section 6] we will now define the notion of
tangential structures, which generalizes the previous idea of defining extra structure
on a manifold by a reduction of the frame bundle. First we will define the general
notion of a class of structure, afterwards we will define what it means for a manifold
M to be equipped with this structure.

Most of this section will not be directly relevant for the rest of this thesis and
serves only as an outlook on how to embed the previous ideas into a more general
framework. This means we will not explain all of the details and further suppose the
reader has familiarity with concepts from algebraic topology such as fibrations and
direct limits as developed in [Die08] or [DK01].

First recall, for example from [LM89, Appendix B] the construction of the classi-
fying space BO(n) of the orthogonal group in n-dimensions as a direct limit of finite
dimensional Grassmanians, i.e.

BO(n) = colim
m→∞

Grn
(
Rm+n

)
from the inclusions Grn

(
Rm+n

)
⊂ Grn

(
Rm+n+1

)
, induced by the inclusions Rm+n ⊂

Rm+n+1. Furthermore we also have inclusions Grn
(
Rm+n

)
⊂ Grn+1

(
Rm+n+1

)
which

induce maps BO(n)→ BO(n+ 1), using these we define

BO = colim
n→∞

BO(n).

This is a classifying space for the stable orthogonal group O = colimn→∞O(n) [Fre12,
Definition 9.45].

Definitions 2.3.1. 1. (a) An n-dimensional tangential structure is a topologi-
cal space X (n) together with a fibration ξn : X (n) → BO(n). A stable
tangential structure is a topological space X and a fibration ξ : X → BO.
A stable tangential structure defines a n-dimensional tangential structure
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for every n ∈ Z+ by defining ξn : X (n) → BO(n) to be given as the
pullback

X (n) X

BO(n) BO

ξn ξ

Note that ξn : X (n)→ BO(n) is indeed a fibration. Analogously, a similar
pullback diagram defines a m-dimensional tangential structure coming
from a n-dimensional tangential structure for any m < n.

(b) Two n-dimensional tangential structures (X (n), ξn) and (X ′(n), ξ′n) are
called equivalent if there is a homotopy equivalence X (n) ≃ X ′(n) such
that the diagram

X (n) X ′(n)

BO(n)

ξn ξ′n

≃

commutes up to homotopy. Analogously, two stable tangential structures
(X , ξ) and (X ′, ξ′) are called equivalent if there is a homotopy equivalence
X ≃ X ′ such that the diagram

X X ′

BO
ξ ξ′

≃

commutes up to homotopy.

2. (a) An X (n)-structure on an m-dimensional manifold M , for m ⩽ n, is given
by the homotopy class of a lift

X (n)

M BO(n)
τ
(m,n)
M

ξn
θM

where τ
(m,n)
M denotes a classifying map of the bundle TM ⊕ Rn−m, i.e.

the tangent bundle stabilized to rank n, where Rn−m denotes the trivial
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Rn−m vector bundle over M . Note that the classifying map τ
(m,n)
M is only

specified up to homotopy, therefore a X (n)-structure on M is really a

homotopy class of lifts coming from the class of τ
(m,n)
M .

A stable X -structure on an m-dimensional manifold M is a family of
coherent X (n)-structures on M for n sufficiently large.5

(b) Two n-dimensional tangential structures on M , θM and θ′M are called
equivalent if there is an isotopy, this means a homotopy over BO(n),
between them. If such an isotopy exists we will denote this by θM ≃ θ′M .

(c) A manifold with X (n)-structure is a tuple (M, [θM ]), where M is a k-
dimensional manifold and [θM ] is a X (n)-structure on M as above.

Examples 2.3.2. We will now give a list of n-dimensional tangential structures, and
indicate if they arise from a stable tangential structure:

• X (n) = BO(n) with ξn the identity is again the trivial tangential structure,
and corresponds to the stable tangential structure X = BO.

• X (n) = BSO(n) with ξn induced from the inclusion SO(n) → O(n) is, as we
have seen before, orientation. The corresponding stable tangential structure is
X = BSO.

• X (n) = BSpin(n) with ξn = Bλ◦Bι induced from the covering map λ : Spin(n)→
SO(n) composed with the inclusion SO(n) ⊂ O(n) is exactly a spin structure,
the corresponding stable structure is X = BSpin. Note that a spin structure
on M induces an orientation on M by post-composing the lift of τM with Bλ.

• For r ∈ Z+, X (2) = BSpinr(2) with ξn induced from the r-fold covering map
Spinr(2) → SO(2) is called an r-spin structure. Orientations and spin struc-
tures on two dimensional manifolds are examples of this for r = 1 and r = 2,
respectively. Note that r-spin is not stable for r /∈ {1, 2}.

• X (n) = BG for some topological group G together with a homomorphism
G→ O(n) inducing the fibration ξn is a reduction of the structure group to G,
often called a G-structure. Orientations and spin structures are special cases
of this.

• X (n) = pt with ξn the inclusion is called an n-framing. This is a special case
of a G-structure for G = {1}, the trivial group. From this point of view the

5For a precise definition see [Sto68, Chapter II].
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geometric interpretation of an n-framing on an n-dimensional manifold is a
trivialization of the tangent bundle.

• X (n) = BG × BO(n) for some topological group G with ξn the projection
corresponds to principal G-bundles.

• More generally X (n) = Y × BO(n) for some topological space Y with ξn the
projection, corresponds to homotopy classes of maps to Y .

Let us now briefly discuss how homotopic groups G ≃ G′ lead to equivalent
tangential structures. For this recall, for example from the discussion after Definition
A.0.9, that the classifying spaces of G and G′ are also homotopic BG ≃ BG′. Now
any group homomorphism ϕ : G→ O(n) induces aG-structure, moreover the induced
group homomorphism ϕ′ : G′ → O(n) induces a G′-structure which is by definition
equivalent to the G-structure induced by ϕ. This shows that taking O(n) instead of
GL(n) leads to an equivalent theory without the use of an auxiliary metric.

Let (X (n), ξn) be an n-dimensional tangential structure and let (M, [θM ]) be an
n-dimensional manifold with X (n)-structure such that M has non-empty boundary
∂M . Then there is an induced X (n)-structure on the boundary ∂M . To define an
X (n)-structure on the boundary ∂M we need a classifying map of the stabilized

tangent bundle of the boundary T̃ (∂M) := T (∂M)⊕R. To get this recall the short
exact sequence of vector bundles

0 T (∂M) ι∗TM N(∂M) 0

where ι : ∂M → M is the canonical inclusion of the boundary which defines the
normal bundle N(∂M) of the boundary. It can be shown that this sequence always
splits [Fre12, Section 5.3], i.e. there is a vector bundle isomorphism

ι∗TM ∼= T (∂M)⊕N(∂M).

Furthermore the bundle ι∗TM is by definition classified by the map τM ◦ ι. Now
to use τM ◦ ι as a classifying map of the stabilized tangent bundle of the boundary
the normal bundle needs to be trivialized. A trivialization of the normal bundle
corresponds to the choice of an outward or an inward pointing normal vector, thus
there are, up to isomorphism, two possibilities. The standard convention is to use
the outward normal. With this we obtained an X (n)-structure on the boundary ∂M
by [θM ◦ ι]. The tangential structure on the boundary corresponding to using the
inward normal will be called the opposite or reversed tangential structure −[θM ◦ ι].
Technically the X (n)-structure on ∂M is really a X (n− 1)-structure.
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2.3.2 Bordism category

In order to define a bordism category we need to be able to glue two manifolds
with tangential structure along a common boundary. To see how this works let
(X (n), ξn) be an n-dimensional tangential structure, and let (M, [θM ]) and (N, [θN ])
be n-dimensional manifolds such that ∂M ∼= ∂N =: Σ. Instead of working with
the homotopy classes of maps [θM ] and [θN ] we will fix a representative θM of [θM ]
and θN of [θN ], and ignore most of the subtleties coming from this to make the
argument below clearer. Note that we can define a X (n−1)-structure on Σ by either
θΣ = θM ◦ ιM or θΣ = θN ◦ ιN , in order to have any chance of gluing M and N along
Σ in a way compatible with the tangential structures we need to require that these
two maps coincide.6 This means we have the following commutative diagram

Σ N

M X (n)

BO(n)

ξn

τM

θM

θN
τN

Recall now, for example from Section 1.4, the universal property of the pushout
M ⊔Σ N , along the inclusions, gives us two maps

τM⊔ΣN : M ⊔Σ N → BO(n), (2.3.1)

θM⊔ΣN : M ⊔Σ N → X (n). (2.3.2)

Moreover θM⊔ΣN ◦ ξn = τM⊔ΣN by the uniqueness of the map from the universal
property, therefore θM⊔ΣN gives a X (n)-structure on M ⊔Σ N .

With this we can now define closed bordisms with arbitrary tangential structure
and the resulting category.

Definition 2.3.3. Let X (n) ≡ (X (n), ξn) be an n-dimensional tangential structure.
The symmetric monoidal category of closed bordisms with X (n)-structure BordX

n,n−1

is defined as follows:

• Objects are given by closed (n−1)-dimensional manifolds with X (n)-structure
(Σ, [θΣ]).

6Being homotopic would suffice.
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• Morphisms are bordism classes where the underlying compact manifolds are
equipped with a X (n)-structure, such that the restriction is equivalent to the
ones on the objects.

• Composition is given by gluing as described above.

• The symmetric monoidal structure is given by disjoint union.

Note here that it is equivalent to take cylinders over (n−1)-dimensional manifolds
together with a X (n)-structure as objects.
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Chapter 3

Open-closed spin TQFTs

In this chapter we will give a short review two dimensional open-closed spin TQFTs
and their algebraic classification in terms of knowledgebale Λ2-Frobenius algebras by
Stern and Szegedy [SS20]. In addition to this review we will slightly extend their
results to allow for decorations on the free boundaries of the bordisms. This will
lead us to an algebraic notion which we term “Λ2-Calabi–Yau category” in analogy
to the oriented case. The purpose of this chapter is to acquaint the reader with two
dimensional spin TQFTs and can thus be seen as a “warm-up” before we consider
two dimensional defect spin TQFTs.

We begin with a very brief geometric description of the open-closed spin bordism
category. After this we will turn to the generators and relations description of this
category. However instead of giving the relations directly, we will make a slight
detour and discuss the corresponding algebraic structures first. This will allow us to
shorten the presentation of the bordism category drastically. From this presentation
we can then directly review the classification result of open-closed TQFTs.

After this review we will slightly modify the open sector of the bordism category
to allow for different decorations on the “free boundaries”. These decorations can
be interpreted as “boundary conditions” [MS09]. In order to classify TQFTs on
this enlarged bordism category we will then introduce the notion of a certain type
of category and finally use the results of [SS20] to give a classification result for
open-closed spin TQFTs with boundary conditions.

Throughout this chapter, let (C,⊗,1, β) be a symmetric monoidal category, which
we will often abbreviate to C.
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3.1 The open-closed spin bordism category

In Section 2.3.2 we gave a definition for closed bordism categories with arbitrary
tangential structure, including spin structures. In this section we are interested in a
category with not only closed spin bordisms but also open ones. However before we
come to the spin case, we will first very briefly describe what open and open-closed
bordism means. First the prefix open in open-closed bordism comes from open strings
in string theory, and has nothing to do with open in point set topology.

The rough idea is to allow the objects of the category to also have non-trivial
boundary, in two dimensions this means the objects are no longer only finite disjoint
unions of circles S1 (“closed strings”), but finite disjoint unions of circles and closed
intervals I = [0, 1] (“open strings”). Due to this the bordisms can no longer be
represented as just compact manifolds with parameterised boundaries1 but rather
compact manifolds with corners.2. Moreover we now need to differentiate between
parameterised boundaries and free boundaries. A free boundary is “free” in the sense
that it does not come with a boundary parameterisation and therefore does not
correspond to an incoming or outgoing boundary.

A bordism from I ⊔S1 to itself could for example be represented by the following
manifold with corners

(3.1.1)

where the thick red line indicates the free boundary, while the thick blue ones corre-
spond to the parameterised boundary. The middle part

1In the sense of coming with germs of collars, see Section 1.4.
2This roughly means they are not modelled on the half plane R× R⩾0 but the quadrant R2

⩾0.
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is called a whistle bordism. The underlying manifold of this bordism is a cylinder over
the circle, however the bordism is non-trivial because only “half” of the “incoming
circle” is parameterised. More precisely the free boundary of this cylinder is an
interval (in red) while the parameterised boundary is the disjoint union of an interval
and a circle (in blue). This bordism shows that the closed and the open sector are
not disjoint from one another. In string theory such a bordism can be interpreted as
the worldsheet of an open string which evolves into a closed string over time. Gluing
of open-closed bordisms can be defined analogously to the case of closed bordism
discussed in Section 1.4. We will not discuss the details of the oriented open-closed
bordism category Bordoc, or

2,1 , for this see [Laz01; MS09; LP08].

The open-closed spin bordism category Bordoc, Spin
2,1 is defined analogously by re-

placing oriented manifolds with spin manifolds. This means the objects are finite
disjoint unions of intervals with spin structures and circles with spin structures. The
interval has only has one spin structure, the trivial one, because it is contractible
while the cirlce has two, as explained in Section 2.2. Morphisms are oriented open-
closed bordisms together with a spin structure which restricts to the spin structures
of the source and target objects. We will now turn to the generators and relation
description of the open-closed spin bordism category, for the full definition see [SS20,
Section 2].

We already saw that the set of generators G0 of Bordoc, Spin
2,1 consists of the interval

I with trivial spin structure, the Neveu–Schwarz circle SNS, and the Ramond circle
SR. As explained in [SS20, Section 5] a set of generators G1 for the open-closed
spin bordism category Bordoc, Spin

2,1 can be obtained by considering all possible spin
structures on the generators of the oriented open-closed bordism category Bordoc, or

2,1 .
However it actually turns out to be sufficient to consider these generators with a single
fixed spin structure as well as cylinders with different spin structures. In [SS20] the
spin structures on the generators of Bordoc, or

2,1 were fixed using a combinatorial model.
We will not further discuss this combinatorial model and instead tacitly assume the
fixed spin structures we consider are always those, see there for more details.

The set G1 consists of the following:
the closed sector:

, , , , ⟲ ; (3.1.2)
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the open sector:

, , , , ⟲ ; (3.1.3)

and finally the “whistle” bordisms of the open-closed sector:

and . (3.1.4)

Here the ⟲ inside the cylinders indicates that they are mapping cylinders of the deck
transformation mentioned before Remark 2.2.2. These cylinders are not directly part
of the generators, however they will be useful later on.

As mentioned above we will not state the relations between these generators now,
instead we will first introduce the relevant algebraic structure, and then describe the
relations through this structure in a compact form.

3.2 Knowledgeable Λ2-Frobenius algebras

In this section we will describe the algebraic structure underlying open-closed spin
bordisms. We begin with a special type of Frobenius algebra which will turn out to
describe open spin TQFTs. After this we will describe the structure corresponding
to closed spin TQFTs and the algebraic incarnation of the whistle bordisms. Finally
we will state the algebraic classification of open-closed spin TQFTs by [SS20].

Definition 3.2.1. Let (A, µ,∆, η, ϵ) be a Frobenius algebra in C. We call (A, µ,∆, η, ϵ)
a Λ2-Frobenius algebra if its Nakayama automorphism NA satisfies N2

A = idA. We
will oftentimes only write A to mean the whole data of an Λ2-Frobenius algebra
(A, µ,∆, η, ϵ). Recall that in the graphical calculus we denote the structure maps
by:

µ =

A A

A

, ∆ =

A A

A

, η =

A

, ϵ =

A

; (3.2.1)
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Recall further that in our conventions of Frobenius algebras the Nakayama automor-
phism is given by

NA =

A

A

(3.2.2)

A Λ2-Frobenius algebra is not necessarily symmetric however its pairing satisfies

= NA
= NA

. (3.2.3)

For C = Vectk a Λ2-Frobenius algebra is Z2-graded Frobenius algebra where the
grading is given by decomposition into eigenspaces of the Nakayama automorphism.
Furthermore we can recover the open sector of the Frobenius algebras discussed in
[MS09, Section 3.4] if we consider C = SVectk and assume that the above grading
into eigenspaces of the Nakayama automorphism and the super grading coincide.

Definitions 3.2.2. A closed Λ2-Frobenius algebra in C is given by a pair of objects
(C0, C1) of objects in C together with morphisms

µx,y : Cx ⊗ Cy → Cx+y−1, η1 : 1→ C1

∆x,y : Cx+y+1 → Cx ⊗ Cy, ϵ1 : C1 → 1

Nx : Cx → Cx

where x, y ∈ Z2. We will draw these structure morphisms as

µx,y =

CyCx

Cx+y+1

x, y , ∆x,y =

CyCx

Cx+y+1

x, y , η1 =

C1

, ϵ1 =

C1

, Nk
x =

Cx

Cx

k . (3.2.4)

These morphisms are required to satisfy the following relations for x, y, z, w ∈ Z2
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with x+ y − 2 = z + w:

Cx+y+z−2

CzCx Cy

x+ y − 1, z

x, y
=

Cx+y+z−2

Cx CzCy

x, y + z − 1

x, y
(associativity), (3.2.5)

Cx+y+z+2

CzCx Cy

x, y + z + 1

x, y
=

Cx+y+z+2

Cx CzCy

x+ y + 1, z

y, z
(coassociativity), (3.2.6)

Cx

Cx

x, 1 =

Cx

Cx

=

Cx

Cx

x, 1 (unitality),

Cx

Cx

x, 1 =

Cx

Cx

=

Cx

Cx

x, 1 (counitality),

(3.2.7)

Cx Cy

Cz Cw

x, y

z, w
=

Cx Cy

Cz Cw

x, z − w + 1

y − w − 1, w
=

Cx Cy

Cz Cw

z, x− z + 1

w − y + 1, y
(Frobenius), (3.2.8)

CxCy

Cx+y+1

x, y
=

CxCy

Cx+y+1

y, x

1− x

=

CxCy

Cx+y+1

y, x

1− y

(commutativity), (3.2.9)
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Cx

Cx

x,−x

x,−x

=

Cx

Cx

x =

Cx

Cx

(twist), (3.2.10)

and finally

C1

k

x,−x

x,−x

=

C1

k

x+ k + 1,−x− k − 1

x+ k + 1,−x− k − 1

(twist′). (3.2.11)

We will often abbreviate the data of a closed Λ2-Frobenius algebra to just (C0, C1).
A map of closed Λ2-Frobenius algebras ϕ : (C0, C1) → (D0, D1) is a collection of

morphisms ϕx : Cx → Dx preserving the structure morphisms in the sense that

CyCx

ϕx ϕy

Dx+y+1

x, y =

CyCx

ϕx+y+1

Dx+y+1

x, y ,

DyDx

ϕx+y+1

Cx+y+1

x, y =

DyDx

ϕx ϕy

Cx+y+1

x, y , (3.2.12)

D1

ϕ1
=

D1

,

C1

ϕ1 =

C1

. (3.2.13)

The following lemma follows directly from the relations above and provides an
explanation of the relationship between C0 and C1.

Lemma 3.2.3. Let (C0, C1) be a closed Λ2-Frobenius algebra with structure maps
as above. Then the following hold:
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1. (C1, µ1,1,∆1,1, η1, ϵ1) is a commutative Frobenius algebra in C.

2. (C0, µ0,1, µ1,0) is a C1-C1-bimodule.

3. (C0,∆0,1,∆1,0) is a C1-C1-bicomodule.

4. The bimodule and bicomodule structures of C0 are compatible in the sense that
the (co-)actions are (co-)module maps.

5. The composition ϵ1 ◦ µ0,0 is a non-degenerate pairing with copairing ∆0,0 ◦ η1,
making C0 self dual.

From this Lemma it follows that maps of closed Λ2-Frobenius algebras are, anal-
ogously to the maps of regular Frobenius algebras, always isomorphisms. This is
because maps of closed Λ2-Frobenius algebras respect the duality data of C0 and C1.
See the argument for regular Frobenius algebras in Section 1.2 for more details.

Remark 3.2.4. In the case where C = Vectk the data of a closed Λ2-Frobenius
algebra (C0, C1) can be shortened using the direct product of vector spaces. More
precisely for C := C0 ⊕ C1 we obtain the linear maps

µ : C ⊗ C → C, η : 1→ C,

∆: C → C ⊗ C, ϵ : C → 1,

N : C → C;

from the structure morphisms of the closed Λ2-Frobenius algebra (C0, C1) by using
the canonical injections Cx → C and projections C → Cx for x ∈ Z2, and the
universal properties of the direct sum.3 More generally this reformulation works if C
is a additive category, see for example [Eti+16, Chapter 1] for a definition of additive
categories, the direct sum is then a biproduct, i.e. an object which is a product and
a coproduct in a compatible way.

Example 3.2.5. In the case where C = SVectk and the decomposition of C0 and C1

coincides with the decomposition given by decomposition into eigenspaces of Nx, we
recover the algebras described in [MS09, Section 2.6]. In this case C1 is purely even
while C0 can have even and odd components.

We now have the open and the closed sector, thus we still need the algebraic
incarnation of the whistle bordisms and how the open and closed sector interact
through them.

3Recall, for example from [Lei14, Chapter 5], that the direct sum of vector spaces is both a
product and coproduct.
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Definition 3.2.6. A knowledgeable Λ2-Frobenius algebra in C is given by:

• a closed Λ2-Frobenius algebra (C0, C1) in C,

• a Λ2-Frobenius algebra A in C,

• two morphisms ιx ∈ HomC(Cx, A) and πx ∈ HomC(A,Cx) for each x ∈ Z2,
which will be written as

ιx =

Cx

A

x , πx =

Cx

A

x (3.2.14)

such that the following equations are fulfilled for every x ∈ Z2:

A

ACx

x

=

A

ACx

x

x (knowledge), (3.2.15)

ACx

x =

ACx

−x

x,−x

(duality), (3.2.16)

A

A

x

x

=

A

A

x

(Cardy condition). (3.2.17)
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A map of knowledgeable Λ2-Frobenius algebras

Φ: ((C0, C1), A, ιx, πx)→ ((D0, D1), B, ι
′
x, π

′
x) (3.2.18)

consists of

• a map of closed Λ2-Frobenius algebras ϕ : (C0, C1)→ (D0, D1);

• a morphism of Frobenius algebras ψ : A→ B;

such that for any x ∈ Z2

Cx

B

x

ϕx

=

Cx

B

x

ψ
and

Cx

A

x

ϕx

=

Cx

A

x

ψ
. (3.2.19)

The category with knowledgeable Λ2-Frobenius algebras in C as objects and maps
of knowledgeable Λ2-Frobenius algebras as morphisms will be denoted by Λ2 −
KnFrob(C).

Note that the category of knowledgeable Λ2-Frobenius algebras in C is a groupoid.

Example 3.2.7. Let us assume C is idempotent complete. For a Λ2-Frobenius
algebras A in C with µ ◦ ∆ invertible there is a notion of Z2-graded center Z2(A)
which can be defined using an idempotent build from the structure morphisms of A in
a similar way to the usual center of an algebra, see [SS20, Section 4.2] for details. The
Λ2-Frobenius algebras A together with its Z2-graded center Z2(A) and the canonical
projection and inclusion maps form a knowledgeable Λ2-Frobenius algebras in C.

With this preparation we can now finally complete the description of Bordoc, Spin
2,1

through generators and relations.

Proposition 3.2.8 ([SS20, Proposition 5.1.2]). The objects SR, SNS, I ∈ G0 together
with the bordisms G1 form a knowledgeable Λ2-Frobenius algebra with SR ≡ C0,
SNS ≡ C1, and I ≡ A, in the notation used above.

Theorem 3.2.9 ([SS20, Theorem 5.2.1]). The open-closed spin bordism category
Bordoc, Spin

2,1 is generated as a symmetric monoidal category by the knowledgeable
Λ2-Frobenius algebra (G0,G1) from above.
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From this the classification result of open-closed spin TQFTs follows immediatly:

Corollary 3.2.10 ([SS20, Corollary 5.2.2]). The groupoids Fun⊗,sym(Bordoc,Spin
2,1 , C)

and KnFrob2(C) are equivalent.

The proof of this statement is conceptually analogous to our proof sketch of
Theorem 1.5.4.

We will now briefly sketch an intuitive argument on why Proposition 3.2.8 is true
in the style of [MS09, Section 2.6], for the closed sector, the open sector can be
argued analogously.

We want to find all possible spin structures on the generators of the oriented closed
bordism category. For G0 as in Theorem 1.5.4 we already know that we have two
possibilities, the Neveu–Schwarz and the Ramond circle. Now for the generators G1
of the oriented closed bordism category, we see that we have two types of underlying
manifolds: pairs of pants and disks. Thus we now want to find all possible spin
structures on pairs of pants and disks, including different spin structures on the
boundaries.

From Example 2.2.3 we already know that there is only one spin structure on the
disk and it induces an NS-type spin structure on its boundary circle.

To find the possible spin structures on the pair of pants, let us first consider the
cylinders over SR and SNS, respectively. To obtain pairs of pants from these cylinders
we “cut” a disk out of each cylinder. Now because the disk only has one possible
spin structure, the boundary resulting from this cutting process also needs to have
the same induced spin structure. Therefore we have two types of spin structure on
a pair of pants: the first induces three NS-type boundary circles and the second two
R-type boundaries and one of NS-type. This is the geometric origin of the algebraic
description of the R-sector as a bimodule over the NS-algebra.

Furthermore for SR there is non-trivial cylinder bordism given by the mapping
cylinder induced by the non-trivial deck transformation w discussed before Remark
2.2.2. For SNS the deck transformation cylinder is equivalent to the trivial cylinder
through a Dehn twist [MS09, Section 2.6]. This is the geometric origin of the Nx

morphisms.

3.3 Boundary conditions

We will generalise the above results to allow decorations or “boundary conditions”
on the free boundaries in the sense of [MS09]. Working this out in detail will lead us
to the notion of what we term a C-enriched Λ2-Calabi–Yau category, in analogy to
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Calabi–Yau categories which are relevant for the oriented version [LP08]. The whole
discussion will be quite analogous to the one in [Car18, Section 3.2], and serves as
a warm-up for defect spin TQFTs. In this section and Chapter 5 we will need the
notion of enriched category, for an introduction to this field see [Kel05].

Let B be any non-empty set, we enlarge the open spin bordism category Bordo, Spin
2,1

such that free boundary components of bordisms are labeled with elements in B,
and the labels at the endpoints of the objects coincide with the ones of the adjacent
free boundaries. More precisely the category of open spin bordisms with bound-
ary conditions in the set of boundary labels B, is the symmetric monoidal category
Bordo, Spin

2,1 (B) with generators

G0 =
{
b a ≡ Ib,a | a, b ∈ B

}

G1 =

 c b b a

c a

,

abc b

ac

, a a ,

a a

,

b a

a a

⟲

∣∣∣∣∣ a, b, c ∈ B


and relations analogous to the ones of Bordo, Spin
2,1 . In analogy to open oriented TQFTs

we can use any open spin TQFT

Z : Bordo,Spin
2,1 (B)→ C

to construct a C-enriched category with B as set of objects and morphisms built from
the TQFT, see [Car18, Section 3.2.2] for a review of the oriented version:

Construction 3.3.1. Let B be any set of boundary labels. For the open spin TQFT

Z : Bordo, Spin
2,1 (B)→ C

we define the category of boundary conditions OZ by:

• For the set of objects we set Ob (OZ) = B.

• For a, b ∈ Ob (OZ) we define the set of morphisms by

HomOZ (a, b) := Ab,a = Z
(
b a

)
∈ C.
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• Composition µc,b,a : Ac,b ⊗ Ab,a → Ac,a is defined as

µc,b,a := Z


c b b a

c a


.

If we assume Z to be strict, then this composition is associative due to functo-
riality of Z, and the relations, see Proposition (3.2.8) for comparison. If Z is
not strict we would need to incorporate the natural ismorphisms governing the
monoidality of Z in a similar way as outlined in the proof of Theorem 1.5.4.

• The unit morphisms are given by

1a := Z

 aa
 .

Before we discuss the special properties of categories of boundary conditions, we
will first define the properties we will encounter in the general setting.

Definition 3.3.2. Let C be a symmetric monoidal category. A C-enriched Λ2-Calabi–
Yau category, consists of the following:

• A C-enriched category O;

• a morphism for all a ∈ O

ϵa : EndB(a)→ 1 (3.3.1)

in C, called the trace;

• a morphism for every pair of objects a, b ∈ O

γb,a : HomB(a, b) ≡ Hb,a → Hb,a (3.3.2)

in C;

such that
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• the morphism

κb,a := ϵa ◦ µa,b,a : Ha,b ⊗Hb,a → 1, (3.3.3)

with µ the composition in O, is a non-degenerate pairing in C;

• the pairing is not necessarily symmetric, but satisfies

κb,a ◦ βHb,a,Ha,b
= κa,b ◦ (γb,a ⊗ 1Ha,b

)

= κa,b ◦ (1Hb,a
⊗ γa,b);

(3.3.4)

• γ2b,a = 1Hb,a
.

Remark 3.3.3. C-enriched Λ2-Calabi–Yau categories are a “categorification” of Λ2-
Frobenius algebras in C in the sense that for every Λ2-Calabi–Yau category O, the
endomorphisms of any object a, i.e. Ha,a form a Λ2-Frobenius algebra in C with
Nakayama automorphism γa,a. Furthermore Hb,a is a Hb,b-Ha,a-bimodule and a Hb,b-
Ha,a-bicomodule, such that the module and comodule structures commute. In this
sense we can think of Λ2-Calabi–Yau categories as “many” Λ2-Frobenius algebras
together.

Lemma 3.3.4. Let B be any set of boundary conditions, and let Z : Bordo, Spin
2 (B)→

C be an open spin TQFT. Then the category of boundary conditions OZ of Z is a
C-enriched Λ2-Calabi–Yau category.

Proof. First we define the data of an Λ2-Calabi–Yau category, for this let

• the trace morphism

ϵa := Z


aa

 : Aa,a → 1 (3.3.5)

for a ∈ O;

• the “Nakayama” morphism

γb,a := Z


ab

ab

⟲


(3.3.6)

for a, b ∈ O, Ab,a;
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With this data the claim follows by adapting the proof of Theorem 3.2.10 to incor-
porate labels on the free boundaries.

Before we come to the classification result, we will first need to define morphisms
between C-enriched Λ2-Calabi–Yau categories. However we only need the ones be-
tween two C-enriched Λ2-Calabi–Yau categories with the same set of objects. In this
case the definition can be simplified to the following:

Definition 3.3.5. Let O, O′ be C-enriched Λ2-Calabi–Yau categories such that
Ob(O) = Ob(O′). A morphism F : O → O′ is given by a family of morphisms
Fb,a : Hb,a → H ′

b,a in C such that:

µ′

Hc,b Hb,a

H ′
c,a

Fb,aFc,b
= µ

Hc,b Hb,a

H ′
c,a

Fc,a

,

H ′
a,a

1a

Fa,a =

H ′
a,a

1′a

,

Ha,a

ϵ′a

Fa,a =

Ha,a

ϵa

. (3.3.7)

We call the resulting category of C-enriched Λ2-Calabi–Yau categories and morphisms
the category of B-colored, C-enriched Λ2-Calabi–Yau categories Λ2-CY

B(C), where
B is the set of objects.

Remark 3.3.6. It can be shown that Λ2-CY
B(C) is a groupoid. The proof is again

analogous to the one for FrobAlg(C).

With this preperation we can now state the classification result of open spin
TQFTs with boundary conditions.

Theorem 3.3.7. Construction 3.3.1 gives an equivalence of the category of open
spin TQFTs with boundary conditions B and the category of B-colored, C-enriched
Λ2-Calabi–Yau categories.

Proof sketch. One direction is clear by Lemma 3.3.4. For the other direction let
O be any B-colored, C-enriched Λ2-Calabi–Yau. We define an open spin TQFT
ZO : Bordo,Spin

2,1 (Ob(O)) → C by defining its action on the generators G0 and G1 of

Bordo, Spin
2,1 (B):

• The intervals get mapped to the Hom sets:

ZO

(
b a

)
:= HomO (a, b) .
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• The pair of pants gets mapped to composition in O:

ZO


abbc

c a


:= µc,b,a : HomO(b, c)⊗ HomO(a, b)→ HomO(a, c).

• The cup gets mapped to the identity morphism:

ZO

 aa
 := 1a.

• The cap gets mapped to the trace morphism:

ZO


aa

 := ϵa.

• The upside down pair of pants gets mapped to the “co-composition” in O
obtained from the non-degenerate pairing κ and the composition µ.

• The deck transformation cylinder gets mapped to the “Nakayama” morphism:

Z


ab

ab

⟲

 := γb,a (3.3.8)

Note that we ignored subtleties leading to a non-strict ZO as in the proof of Theorem
1.5.4.
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3.3.1 Serre functors

For regular Calabi–Yau categories, there is a shorter definition using the notion of
a Serre functor, see [Car18, Section 3.2] for a few more comments on this. In this
subsection we will discuss the question if being a Λ2-Calabi–Yau category can also
be phrased using a Serre functor.

Definitions 3.3.8. Let O be a C-enriched category.

1. A Serre functor on O is a C-enriched functor S : O → O, together with non-
degenerate pairing

HomO(a, b)⊗ HomO(b,S(a))→ 1 (3.3.9)

natural in a, b ∈ B.

2. O is called a Calabi–Yau category if it has trivialisable Serre functor, i.e. S ∼=
1O.

Before we can discuss this further we need to make a simplifying assumption on
the category C.

Assumption 3.3.9. The symmetric monoidal category C is sovereign, i.e. C is rigid
and the left and right duality endofunctors are equal [FS08]. This property can be
seen as a strict version of pivotality.4

Lemma 3.3.10. Let C = vectk. The category of boundary conditions O of any open
spin TQFT Z has a Serre functor S given by

S : O → O
a 7→ a

ϕ 7→ γb,a(ϕ)

for ϕ : a→ b, with Serre pairing

κ̃b,a = ϵa ◦ µa,b,a : HomO(b,S(a))⊗ HomO(a, b)→ 1.

Proof. Functoriality of S can be proved analogously to the proof that the Nakayama
automorphism of a Frobenius algebra in a sovereign category is an algebra morphism
[FS08, Proposition 18], note here that for this we need the above assumption.

4It would already suffice to assume equality of left and right duals for some of the structure
morphisms of the Λ2-CY-categories.

84



Non-degeneracy of the pairing is clear by Lemma 3.3.4. To prove naturality
note that for C = vectk non-degeneracy of the pairing κ̃b,a is equivalent to having
isomorphisms κ̃′b,a : HomO(b,S(a)) → HomO(a, b)

∗. For naturallity we now need to
show that the following diagram, and an analogous one,

Homk(b,S(a)) Homk(b,S(a′))

Homk(a, b)
∗ Homk(a

′, b)∗

S(f)◦(−)

(−)◦f

κ̃′a,b κ̃′
a′,b

commutes for all a, b ∈ O, and f : a → a′. For this let ϕ ∈ Homk(b, a), we get the
condition

κ̃a′,b ◦ ((γa′,b(f) ◦ ϕ)⊗ (−)) = κ̃a′,b ◦ (ϕ⊗ ((−) ◦ f)).

This condition is fulfilled by the defining property Equation (3.3.4) of γa,b. The
second naturality diagram yields a similar condition.

This Lemma also holds in the case for general C, however the naturality is harder
to prove.

Corollary 3.3.11. The square of Serre functor S of the category of boundary con-
ditions OZ of any open spin TQFT Z is trivialisable, i.e. S2 ∼= 1OZ .

Proof. This follows immediatly from the previous lemma and Lemma 3.3.4.

With these results the following equivalent characterisation of Λ2-Calabi–Yau
categories is straightforward.

Proposition 3.3.12. Let B be any set, and let O be a C-enriched category with
Ob(O) = B. The following are equivalent:

1. O is a B-colored, C-enriched Λ2-Calabi–Yau category,

2. O has a Serre functor S with S2 ∼= 1O;

An interesting consequence of this whole discussion is the following.

Lemma 3.3.13. Let Z : Bordo, Spin
2,1 (B) → Vectk be an open spin TQFT. Then the

category of boundary conditions O of Z is a supercategory, i.e. it is an SVectk-
enriched category.
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Proof. The grading on the Hom spacesAb,a is given by decomposition into eigenspaces
of the linear maps γb,a : Ab,a → Ab,a. The composition is an even function with respect
to this grading due to functoriality of the Serre functor S.

We are now finally in a place to at least mention a possible example of a Λ2-
Calabi–Yau category, we will be very brief with this as an adequate treatment would
need further techniques from homological algebra.

Example 3.3.14. Let a W ∈ C[x1, . . . , xn] be a polynomial in n ∈ Z+ variables
such that its Jacobi algebra, see Example 1.5.5, is finite-dimensional. A matrix
factorization of W is a Z2-graded C[x1, . . . , xn]-module X = X0 ⊕X1 together with
an odd C[x1, . . . , xn]-linear endomorphism dX : X → X such that d2X = W1X . For
(X, dX) and (Y, dY ) matrix factorization of W we define a map

δXY : HomC[x1,...,xn](X, Y )→ HomC[x1,...,xn](X, Y )

Φ 7→ dY ◦ Φ− (−1)|Φ|Φ ◦ dX .
(3.3.10)

It is straightforward to show that δXY is a differential, i.e. δ2XY = 0. The homotopy
category of matrix factorization hmf(C[x1, . . . , xn],W ) of W is defined as:

• objects are matrix factorization (X, dX) of W ;

• morphisms are elements of the δXY -cohomology, i.e.

Homhmf(C[x1,...,xn],W )((X, dX), (Y, dY )) := HδXY
(HomC[x1,...,xn](X, Y )). (3.3.11)

The cohomology is naturally Z2-graded because δXY is an odd operator. This cat-
egory corresponds to the open sector of the B-twisted Landau–Ginzburg model, see
for example [CM16, Section 2.2] for more details and further references to the original
literature. The results of [CS21, Section 4.2] suggest that if the number of variables n
of the potential W is odd then hmf(C[x1, . . . , xn],W ) should correspond to an open
spin TQFT, however a more careful analysis of this is still needed.

3.3.2 Open-closed sector

We can now extend the description of open spin TQFTs we just described to open-
closed spin TQFTs by combining it with Definition 3.2.6. For this note that the
bordisms (3.1.4) will carry only a label on their free boundaries, therefore the maps
ιx and πx will now be indexed by an element in B. From this idea we get the following
final result by slightly modifying Theorem (3.2.10):
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Theorem 3.3.15. An open-closed spin TQFT with set of boundary conditions B
Z : Bordoc, Spin

2,1 (B)→ C is equivalent to the following data:

• a closed Λ2-Frobenius algebra (C0, C1);

• a B-colored, C-enriched Λ2-Calabi–Yau category O;

• two morphisms ιx ∈ HomC(Cx, Aa,a) and πx ∈ HomC(Aa,a, Cx) for each x ∈ Z2,
which will be written as

ιax =

Cx

Aa,a

x , πax =

Cx

Aa,a

x (3.3.12)

such that for any a, b ∈ B and x ∈ Z2 the following equations, of morphisms in C,
are fulfilled:

Aa,a

Aa,aCx

x

=

Aa,a

Aa,aCx

x

γxa,a
(knowledge), (3.3.13)

Aa,aCx

x =

Aa,aCx

−x

x,−x

(duality), (3.3.14)
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Aa,a

Ab,b

x

x

=

Aa,a

Ab,b

γxb,a

(Cardy condition). (3.3.15)

The data
(
(C0, C1),O, (ιax)x∈Z2, a∈B , (π

a
x)x∈Z2, a∈B

)
is called a B-colored, knowledge-

able Λ2-Calabi–Yau category enriched in C.
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Chapter 4

Defect spin bordisms

In this chapter we will propose a possible definition for the appropriate bordism
category to study spin TQFTs in the presence of topological defects. To this end we
will modify the definitions of stratified oriented manifolds, and their labeled version,
given in [CMS20, Section 2], to account for the presence of non-trivial spin structures
on the strata.

In Section 4.1 we begin our discussion with a general definition of what we term
stratified spin manifolds of dimension n ∈ Z+, with or without boundaries, and the
corresponding morphisms between such manifolds. We will then define a bordism
category for such manifolds. Finally we will explain the relation of our bordism
category to the closed spin bordism category, discussed in Section 2.3.2, and the
stratified oriented bordism category of [CMS20].

After this in Section 4.2 we will focus solely on 2 dimensions and describe how to
consistently label a stratified spin bordism. The interpretations of these labels will
be either as topological defects, which can be seen as a generalisation of boundary
conditions as discussed in Section 3.3, or closed spin TQFTs.

4.1 Stratified spin bordisms

In this section we propose a definition for stratified spin manifolds, and the corre-
sponding bordisms in any dimension. To do this we modify the definitions of the
oriented case given in [CMS20, Section 2] to account for spin structures on the strata.
The content of this section can in principle be generalised to any tangential structure
which factorizes through orientations, see Section 2.3.1, in a straightforward manner.

Definition 4.1.1. An n-dimensional stratified manifold with spin structure (without
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boundary) is an n-dimensional manifold with spin structure (Σ,Λ) (without bound-
ary) together with a filtration (Fj) := (Σ = Fn ⊃ Fn−1 ⊃ · · · ⊃ F0 ⊃ F−1 = ∅) of Σ
subject to the following conditions:

1. Σj := Fj\Fj−1 is a j-dimensional submanifold of Σ (which may be empty) for
all j ∈ {0, 1, . . . , n}; connected components of Σj are denoted by Σα

j and are
referred to as j-strata; each j-stratum Σα

j is equipped with a choice of spin
structure λαj on Σα

j × (0, 1)n−j, which may differ from the one induced by Σ
unless the filtration is trivial, i.e. Fj = ∅ for j ̸= n.1 For any n-stratum we
further impose that the chosen spin structure induces the same orientation as
the one induced by Λ.

2. Frontier condition: for all strata Σα
i ,Σ

β
j with Σα

i ∩ Σ
β

j ̸= ∅, we have Σα
i ⊂ Σ

β

j ,

where (−) denotes topological closure.

3. Finiteness condition: the total number of strata is finite.

We will often denote a stratified manifold with spin structure ((Σ,Λ), (Fj)) by (Σ,Λ)
or Σ and will also call it a stratified spin manifold. For a fixed stratified spin manifold,
the set of all j-strata with spin structure λ will be denoted by Sλj .

It is important to observe here that this is really well-defined, i.e. any stratum
indeed admits at least one spin structure, namely the one induced by the global spin
structure Λ through the inclusion map.

Definition 4.1.2. A morphism from an n-dimensional stratified manifold with spin
structure (Σ,Λ) to an n-dimensional stratified manifold with spin structure (Σ̃, Λ̃) is
given by:

• a continuous map f : Σ→ Σ̃;2

• a family of isomorphisms Fα
j : (Σα

j , λ
α
j )→ (Σ̃β

j , λ̃
β
j ) of manifolds with spin struc-

ture for every j ∈ {0, 1, . . . , n} and all α.3

such that for f and the induced maps between base spaces fαj : Σ
α
j → Σ̃β

j it holds

that f
(
Σj

)
⊆ Σ̃j, and for the restriction to strata f |Σα

j
= fαj . The morphism is

called an embedding of stratified spin manifolds if all the fαj are diffeomorphisms.

1Note that we equip every j-stratum with a spin structure corresponding to the group Spin(n)
and not Spin(j).

2If we would require f to be smooth or a morphism of manifolds with spin structure we would
run into the same problem as mentioned in the footnote at [CRS19, Page 11].

3Note that specifying α already determines β because continuous functions map connected sets
to connected sets.
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When comparing with the oriented case, one might feel like our definition of
stratified spin manifolds is to “loose”, in the sense that the global spin structure Λ
only enters in at two places: To ensure, as explained above, the definition makes
sense, and to give a global notion of orientation on the n-strata. There are several
other places where the global spin structure Λ could enter. One important stricter
special case is the following.

Definition 4.1.3. An n-dimensional induced stratified spin manifold (without bound-
ary) is an n-dimensional stratified spin manifold (without boundary) (Σ,Λ) such that
each j-stratum Σα

j is equipped with a spin structure that is equivalent to the one
induced by Λ up to a change of underlying orientation. For any n-stratum the spin
structure is equivalent to the one induced by Λ.

Induced stratified spin manifolds consist of alot less data then other stratified spin
manifolds, they are basically the data of an oriented stratified manifold together with
a spin structure on the whole space. We will see how induced stratified spin manifolds
are more rigid in the proof of Lemma 5.1.6.

In order to define a bordism category we also need to define stratified spin man-
ifolds with boundary, for this recall from Section 2.3.2 that a spin structure on a
manifold with boundary induces a spin structure on its boundary. Furthermore we
call a submanifoldN ⊂M neat if ∂N = N∩∂M andN∩M̊ ̸= ∅, where M̊ :=M\∂M
denotes the interior of M .

Definition 4.1.4. An n-dimensional stratified spin manifold with boundary is an
n-dimensional spin manifold with boundary (M,Ξ) together with a filtration (Fj) :=
(M = Fn ⊃ Fn−1 ⊃ · · · ⊃ F0 ⊃ F−1 = ∅) of M subject to the following conditions:

1. The interior M̊ together with the filtration (M̊ ∩Fj) is an n-dimensional strat-
ified manifold with spin structure.

2. Mj := Fj\Fj−1 is a neat j-dimensional submanifold ofM (which may be empty)
for all j ∈ {0, 1, . . . , n}; connected components of Mj are denoted by Mα

j and
are referred to as j-strata; each j-stratumMα

j is equipped with a choice of spin

structure on Mα
j × (0, 1)n−j, which induce the choices for the j-strata of M̊ .

3. ∂M together with the filtration (∂M∩Fj+1) is an (n−1)-dimensional stratified
manifold with spin structures, such that the spin structures on the strata are
the ones induces from the Mj.

Definition 4.1.5. A morphism from an n-dimensional stratified spin manifold with
boundary (M,Ξ) to an n-dimensional stratified spin manifold with boundary (M̃, Ξ̃)
is given by:
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• a continuous map f : M → M̃ between manifolds with spin structure;

• a family of isomorphisms Fα
j : (Mα

j , ξ
α
j ) → (M̃β

j , ξ̃
β
j ) of manifolds with spin

structure for every j ∈ {0, 1, . . . , n} and all α;

such that for f and the induced maps between base spaces fαj : M
α
j → M̃β

j it holds
that

• f (∂M) ⊆ ∂M̃ ,

• f
(
Mj

)
⊆ M̃j,

• f |Mα
j
= fαj .

In particular f |M̊ and Fα
j |M̊ , and f |∂M and Fα

j |∂Mα
j
are compatible morphisms of

stratified spin manifolds without boundary. we will sometimes abbreviate the data
to just f : M → M̃

With this we can now define stratified spin bordisms.

Definition 4.1.6. Let (Σ1,Λ1), ((Σ2,Λ2)) be closed (n − 1)-dimensional stratified
spin manifolds. A stratified spin bordism is given by:

• a n-dimensional stratified spin manifold with boundary (M,Ξ);

• a decomposition ∂M = (∂M)1 ⊔ (∂M)2 into the in-going boundary (∂M)1 and
out-going boundary (∂M)2;

• germs of embeddings of stratified spin manifolds4

θ1 : [0, ϵ)× Σ1 →M (4.1.1)

θ2 : (−ϵ, 0]× Σ2 →M (4.1.2)

such that

– the continous map underlying θ1 is orientation reversing and the one of
θ2 orientation preserving;

– θi({0} × Σi) = (∂M)i for i ∈ {1, 2};
– Im(θ1) ∩ Im(θ2) = ∅;

4With spin structures on the stratified cylinder [0, ϵ) × Σ1 the ones induced by the ones of Σ1

through the deformation retract [0, ϵ)× Σ1 → Σ1 and analogously for (−ϵ, 0]× Σ2.
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For (M, θ1, θ2) and (M ′, θ′1, θ
′
2) stratified spin bordisms Σ1 → Σ2. A diffeomorphism

(M, θ1, θ2)→ (M ′, θ′1, θ
′
2) is a morphism of stratified spin manifolds f : M →M ′ such

that f((∂M)i) = (∂M ′)i, and f ◦ θi = θ′i hold for i ∈ {1, 2}.

We may now define a symmetric monoidal category Bordstrat, Spin
n,n−1 of stratified spin

bordisms in analogy to the closed spin bordism category BordSpin
n,n−1:

Definition 4.1.7. The category of stratified spin bordisms Bordstrat,Spin
n,n−1 is defined

as follows:

• objects are isomorphism classes of closed (n − 1)-dimensional stratified spin
manifolds;

• morphisms are diffeomorphism classes of stratified spin bordisms;

• composition is given by applying the standard construction of gluing in terms
of collars in BordSpin

n,n−1 to the boundary strata;

• Disjoint union of manifolds gives the standard symmetric monoidal structure;

The composition can be shown to be associate, and unital with respect to the
bordism class of the cylinder over (Σ,Λ), see Section 1.4 and Section 2.3.2 for a
detailed discussion.

In complete analogy we can define a category of induced stratified spin bordisms,

which we will denote as Bord
strat, Spin

n,n−1 , it is clear that this is a non-full subcategory

of Bordstrat, Spin
n,n−1 .

An example of a 2-dimensional stratified spin bordism from two circles with one
0-stratum, and one 1-stratum to a circle with two 0-strata, and two 1-strata could
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have

≺

≻

≻

≺

(4.1.3)

as underlying stratified manifold, where we view the smaller orange circles inside the
disk as ingoing boundaries, and the big one as outgoing boundary. The red dots
illustrate the 0-strata, with any possible orientation. The blue lines illustrate the
1-strata with the arrows indicating the orientation. The orange patches illustrate
the 2-strata. The 0-strata can only have on spin structure per orientation. For the
1-strata we need to differentiate between circles and intervals. The circles could
have different spin structures, for example one could be of NS-type and the other
one of R-type. The intervals can only have the trivial spin structure because they
are contractible, note that the boundaries of these 1-strata, lie completely in the
boundary of the whole manifold. The 2-stratum with no 0-stratum inside is also
contractible and thus only allows the trivial spin structure. The other two 2-strata
are topologically non-trivial and can thus allow non-trivial spin structures.

Remarks 4.1.8. 1. The category of closed spin bordisms BordSpin
n,n−1 is a subcat-

egory of Bordstrat,Spin
n,n−1 because spin manifolds are stratified spin manifolds with

trivial stratification. It is a non-full subcategory due to the presence of strata
that do not reach the boundary.

2. The oriented category Bordstrat, SO
n,n−1 is obtainable from Bordstrat, Spin

n,n−1 because a
spin structure needs an underlying orientation, see Chapter 2, in other words
there is a functor

Bordstrat, Spin
n,n−1 → Bordstrat, SO

n,n−1
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that forgets the spin structure of every stratum and only remembers the un-
derlying orientation: For n ⩽ 2 every oriented n-manifold posses at least one
spin structure therefore the above forgetful functor is essentially surjective and
full, it will however not be faithful because there are already non-isomorphic
spin structures on S1.

4.2 Defect spin bordisms in two dimensions

Similarly to the boundary labels we introduced on the free boundaries of open bor-
disms in Section 3.3, we want to find a consistent way to label the strata of a stratified
spin bordism. To do this we will solely focus on n = 2, as we would need to introduce
a notion of standard neighbourhoods of strata, see [CMS20, Section 2.2]. Further-
more we will not discuss how to label 0-strata in the interior of bordisms for now,
because in Chapter 5 we will see how the TQFTs we are going to study will give us
the allowed labels automatically.

To decorate a bordism, we follow the “physical” interpretation of the different
strata from [DKR11] for the oriented case:

labels for 2-strata =̂ closed spin TQFTs

labels for 1-strata =̂ line defects

See Section 3.2 for a review of closed spin TQFTs.
First we need to consider if the labels should depend on the spin structure of

the strata. For the 2-strata this can be answered right away through the physical
interpretation. The labels should correspond to closed spin TQFTs and a closed
spin TQFT can differentiate between different spin structures on the same smooth
manifold. Thus the label of a 2-stratum should not depend on the spin structure of
the 2-strata.

For the 1-strata the argument is a bit more subtle. First note that a 1-stratum is
either homeomorphic to an interval I or to the circle S1. Any oriented interval only
has one spin structure, the trivial one, because it is contractible while the circles
have two, as explained in Section 2.2. From this point of view it seems reasonable
for us to use three different sets to label 1-strata, one for each type. However this
is a fallacy, because we can glue two intervals to obtain a circle. Naively one would
expect that we can only get one of the possible spin structures of the circle, however
using a mapping cylinder of a non-trivial deck transformation it is possible to obtain
both.5 To understand this it is easier to think about the associated spinor bundles

5This is a similar construction as the clutching construction of vector bundles on spheres, see

95



instead of thinking about the spin bundles. Recall from Example 2.2.3 that the
spinor bundles of a circle are cylinder like for the R-structure and Möbius strip like
for the NS-structure. The spinor bundle of an interval is just a “strip” I × C. By
gluing two of such strips we get a cylinder S1×C, however if we twist one end of one
strip we obtain the Möbius strip. The non-trivial deck transformation mentioned
above corresponds exactly to twisting of one end of the strip before gluing. Thus the
labels of 1-strata should also be independent of the spin structure.

We now need to find a way to label bordisms consistently, for this we will need
to understand how 2-strata are allowed to meet at a 1-stratum. To understand this
let (Σ,Λ) be a stratified spin bordism, recall that we denote with Sλj the set of all j-
strata with spin structure λ. However as we just discussed, the labels will not depend
on the spin structure, therefore we are interested in Sj. Let L be a 1-stratum. We

can find exactly at most 2-strata S1 and S2 such that L ⊆ S1∩S2, where (−) denotes
the topological closure. This property can be pictured as:

L

S1S2

(4.2.1)

Note that S1 and S2 are not necessarily distinct. In analogy to the oriented case,
we have a global notion of orientation, by definition. Using this global orientation of
the 2-strata we can employ the same convention as in [CRS19; CMS20] and think of
S1 as the ‘source’ (and S2 as the ‘target’) of L if and only if an arrow from S1 to S2

together with a positive frame of L gives a positive frame of Σ. This convention is
illustrated as:

L

S1S2
⟳ ⟳

≻

L

S2S1
⟳ ⟳

≺ (4.2.2)

Note that we choose the opposite global orientation than the one given in [DKR11;
CMS20; CRS19], this is done because we want to read such a picture from right to
left, bottom to top, in analogy to string diagrams. This means we have a map

m1 : S1 × {±} → S2 × S2
(L,+) 7→ (S1, S2)

(L,−) 7→ (S2, S1)

. (4.2.3)

[Hat17, Section 1.2]
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With this we can now define the allowed labels on bordisms and how to label a
bordism.

Definition 4.2.1. By defect data D we mean a choice of:

• two sets D1 and D2, called defect labels

• maps s̃, t̃ : D1 → D2, which we extend to maps s, t : D1×{±} → D2 by setting

s(x,+) = s̃(x), s(x,−) = t̃(x)

t(x,+) = t̃(x), t(x,−) = s̃(x)

for x ∈ D1. We call s and t the source and target maps, respectively.

We can now decorate any stratified spin bordism (M,Ξ) with defect data D as
follows: AD-decorated spin bordism or defect spin bordism is a stratified spin bordism
(M,Ξ) together with decoration maps

d1 : S1 → D1, (4.2.4)

d2 : S2 → D2 (4.2.5)

such that the following diagram commutes

S1 × {±} D1 × {±}

S2 × S2 D2 ×D2

d1

m1 (s, t)

d2×d2

We say that a j-stratum Σα
j is decorated with x ∈ Dj if dj(Σ

α
j ) = x. A morphism

of D-decorated spin bordisms is a morphism (M,Ξ) → (M̃, Ξ̃) of stratified spin
bordisms such that every stratum in M carries the same decoration as the stratum
in M̃ into which it is mapped.

With this we can now finally define the bordism category on which we want to
study TQFTs.

Definition 4.2.2. The symmetric monoidal category Borddef, Spin
2,1 (D) of 2-dimensional

defect spin bordisms with defect data D is given by:

• Objects are isomorphism classes of 1-dimensional stratified spin manifolds
[(Σ,Λ)] ∈ Bordstrat, Spin

2,1 together with the structure of a D-decorated spin bor-
dism on the cylinder (Σ× [0, 1],Λ).6 Note that on the object Σ itself this means
that j-strata are labeled by (j + 1)-dimensional defect data.

6With spin structures on the strata of Σ× [0, 1] induced analogously to Defintion 4.1.6.
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• Morphisms are equivalence classes of D-decorated spin bordisms such that the
collars are morphisms of D-decorated spin bordisms.

• Composition is the gluing from Bordstrat, Spin
2,1 such that the decorations match.

• The symmetric monoidal structure is given by disjoint union of manifolds.

There is again a subcategory with only induced spin structures which will be

denoted as Bord
def,Spin

2,1 (D).

Remark 4.2.3. For any set of defect data D there is a forgetful functor

Borddef, Spin
2 (D)→ Bordstrat,Spin

2 (4.2.6)

which sends a defect spin bordism to its underlying stratified spin bordism.

As an example consider the stratified bordism (4.1.3). A possible labeled version
of this could be

≺

≻

≻

≺

wz

x

y

β γ

α

α

(4.2.7)

for w, x, y, z ∈ D1, and α, β, γ ∈ D2. If we assume the standard orientation for
2-strata then the source and target of for example x would both be α while for z we
have s(z,−) = β and t(z,−) = α.

A simple example of defect data, and corresponding bordism category is the
following:
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Example 4.2.4. We define a set of defect data D∗ by:

• D2 = {∗};

• D1 = ∅;

• s, t the empty functions;

This defect data can only label bordism with S1 = ∅, i.e. Borddef, Spin
2,1 (D∗) ∼= BordSpin

2,1 .
In this sense, we see that closed spin TQFTs are special cases of defect TQFTs. More-
over this explains the physical interpretation of defect labels given in the beginning
of this chapter. We will see the relations between elements in D2 and closed spin
TQFTs even more clearly in Chapter 5.
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Chapter 5

The 2-category of a defect spin
TQFT

We are now finally in a position to define and rigorously study defect spin TQFTs.
In the first part of this chapter we will follow the ideas of [DKR11] and construct
something similar to a 2-category from the data of a given defect spin TQFT. For
ease of notation we will still call the resulting mathematical object a 2-category and
postpone the discussion of the precise 2-categorical structure to Section 5.2. The
construction can be thought of as the defect version of Construction 3.3.1. We will
then study the 2-category in some detail, especially focusing on the differences to
the oriented version. For the necessary background on 2-categories see Section 1.3,
and the references therein.

5.1 Defect spin TQFTs and their 2-categories

Throughout this chapter let (C, ⊗̃,1, β) be a symmetric monoidal category. Note
that we use ⊗̃ instead of ⊗ for the monoidal product of C, we do this because ⊗ will
be used to denote horizontal composition later on. Now for any choice of defect data
D, we can finally define the central object of this thesis:

Definition 5.1.1. A 2-dimensional defect spin TQFT with defect data D and values
in C is a symmetric monoidal functor

Z : Borddef, Spin
2,1 (D)→ C.

From now on we will also fix the defect data D and abbreviate 2-dimensional
defect spin TQFT with defect data D and values in C to defect spin TQFT. We will
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not discuss morphisms and the category of defect spin TQFTs here, as we would first
need to discuss morphisms of defect data and the category of defect data, see [CRS19,
Section 2.3] for a discussion of these for oriented defect TQFTs. The definitions for
the spin version can be obtained analogously. However we will not need these notions
for the following.

Following the spirit of [DKR11], which was reviewed in great detail in [Car18],
we will now construct a 2-category BZ out of a given defect spin TQFT

Z : Borddef, Spin
2,1 (D)→ C

which captures as much of the structure of the TQFT as possible. This construction
will greatly resemble Construction 3.3.1. Indeed under some assumptions, it should
in principle be possible to derive the category of boundary conditions as a subsector
of the defect 2-category. For the oriented case this is explained in [Car18, Section
3.3].

The data of the 2-category we want to construct should have a physical interpre-
tation in terms of the defect spin TQFT. In analogy to [DKR11] we try to find the
following structure:

objects =̂ closed spin TQFTs

1-morphisms =̂ line defects

2-morphisms =̂ “local” operators

vertical composition =̂ operator product

horizontal composition =̂ fusion product

adjunction =̂ spin structure reversal

This interpretation will in turn allow us to compute correlation functions of the
TQFT as string diagrams in the 2-category, which indisputably gives a powerful tool
for computations in specific models.

However before we can begin with the construction we need to make one assump-
tion on the target category C.

Assumption 5.1.2. The monoidal category C is additive. We will denote the biprod-
uct of C by ⊕.

This assumption is motivated by the idea that local operators of the TQFT
should be generalized elements of the state space, and the bulk of a defect spin
TQFT should be described by a closed spin TQFTs. From Remark 3.2.4 we know
that if C is additive, we can form the complete state space as the biproduct of the
NS- and R-sector of a closed spin TQFT.
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Construction 5.1.3. Given any defect spin TQFT Z : Borddef, Spin
2,1 (D)→ C we will

now construct a 2-category BZ :

• For the set of objects we set Ob(BZ) = D2.

• For α, β ∈ Ob(BZ) we define a 1-morphism from α to β to be a list

(
(xn, ϵn), . . . , (x1, ϵ1)

)
∈

n∏
i=1

(D1 × {±})

for any n ∈ N, such that

s(x1, ϵ1) = α, s(xi, ϵi) = t(xi+1, ϵi+1), t(xn, ϵn) = β.

The reason for this definition comes from the following picture on bordisms:

x1x2xn−1xn

αt(x1, ϵ1)s(xn, ϵn)β

By abuse of notation we will denote the set of all 1-morphisms between α and
β in the same way as the Hom category, i.e. by BZ(α, β).

• For X =
(
(xn, ϵn), . . . , (x1, ϵ1)

)
∈ BZ(α, β) and Y =

(
(ym, νm), . . . , (y1, ν1)

)
∈

BZ(β, γ) we define their horizontal composition to be the concatenation of lists:

Y ⊗X :=
(
(ym, νm), . . . , (y1, ν1), (xn, ϵn), . . . , (x1, ϵ1)

)
∈ BZ(α, γ).

Again this corresponds to the following picture:

x1xny1ym

αγ s(y1, ν1) = t(xn, ϵ1)

β

This composition is strictly associative and unital with respect to the empty
sequence, i.e. 1α = (), we will sometimes denote this by

α α

1α
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• We want 2-morphisms to correspond to “local” operators but such operators
should correspond to labels for 0-strata, which we did not discuss until now.
We will now use the defect spin TQFT Z to compute the local operators.

If we view boundary conditions as a special type of defect lines we expect, ac-
cording to the classification of open/closed spin TQFTs, three types of possible
local operators: Neveu–Schwarz operators, and Ramond operators in the bulk,
and defect operators living on junction points of defect lines.

We begin with the defect operators, for this let α, β ∈ Ob(BZ), and non-empty
lists X, Y ∈ BZ(α, β). Consider the following neighborhood of a 0-stratum

β α

x1
x2

xn

y1
y2

ym

. . .

. . .

of some defect bordism, where the orientations of the 1-strata are in way to
incorporate the signs in the lists X and Y . For this we employ the convention
that the 1-stratum labeled with xi (resp. yj) points towards the red dot if
ϵi = − (resp. νj = −) and away from it otherwise, e.g. in this example ϵ1 = +
while ϵn = −.
We want to find a way to label the red junction point so that it corresponds
to a local operator. To do this we think of a small circle around the unlabeled
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0-stratum:

β α

x1
x2

xn

y1
y2

ym

. . .

. . .

If we now cut out the stratified disk bounded by this circle, and label the new
boundary of the bordism and the disk in such a way that the labels on the
strata match the ones from the bordism we started with, we obtain

β α

x1
x2

xn

y1
y2

ym

x1x2
xn

y1
y2ym

. . .

. . .

and

β α

x1
x2

xn

y1
y2ym

. . .

. . .
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The resulting boundary circle will be denoted by S1(X, Y ), i.e.

S1(X, Y ) ≡

. . .

. . . (x1,+)
(x2,+)

(xn,−)

(y1,+)
(y2,−)

(ym,+)

(5.1.1)

for the example above. The labels for 1-strata of S1(X, Y ) are fully deter-
mined by X and Y through the source and target maps. Furthermore the spin
structures on the strata can only be the trivial ones because every stratum is
contractible.

Note that we did not loose any information because we could just glue the disk
back in. Moreover this also holds if we apply Z due to functoriality. Applying
Z on the disk we obtain a generalized element of the state space Z

(
S1(X, Y )

)
.

A defect operator is now defined to be exactly a generalized element of the
state space Z

(
S1(X, Y )

)
. We can think of this procedure as “regularizing”

the point defect to a disk. However it is important to stress here that not
every generalized element of Z

(
S1(X, Y )

)
is the image of a defect disk under

Z, because Z might not be full.

With this motivation, we define the set of 2-morphisms between X and Y as

HomBZ(α,β) (X, Y ) := HomC

(
1,Z

(
S1(X, Y )

))
.

We now come to the trickier part, the bulk. Consider again a defect bordism
for which 0-strata are not labeled. We are interested in the situation where the
0-stratum lies completely inside a 2-stratum

αα
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from the above procedure we expect to obtain a defect disk with label α for its
single 2-stratum and no label for the 0-stratum

αα .

We will use the shorthand notation S1
α ≡ S1(1α, 1α) for the boundary circle of

this defect disk.

In contrast to the previous case with 1-strata present the spin structure on
the 2-stratum is not fixed. This is because even though the disk itself is con-
tractible, the 2-stratum is homotopic to a cylinder and could thus have a spin
structure of either NS- or R-type. Therefore we need to incorporate both pos-
sibilities into our definition of 2-morphisms.

In general this would not be possible, however due to Assumption 5.1.2 we
know that the biproduct Z

(
SNS
α

)
⊕Z

(
SR
α

)
exists, where we used the notation

SNS
α and SR

α for α labeled NS- and R-circles, respectively. We can now define

EndBZ(α,α)(1α) := HomC

(
1,Z

(
SNS
α

)
⊕Z

(
SR
α

))
. (5.1.2)

Furthermore from the universal properties of the biproduct it follows that gen-
eralized elements Z

(
SNS
α

)
⊕ Z

(
SR
α

)
decompose into elements of Z(SNS

α ) and
Z(SR

α ), respectively. The generalized elements of Z(SNS
α ) will be called Neveu–

Schwarz operators and the generalized elements of Z(SR
α ) Ramond operators.

Motivated by Section 3.2 we will introduce the notation

Cα
0 := HomC

(
1,Z

(
SR
α

))
,

Cα
1 := HomC

(
1,Z

(
SNS
α

))
.

• For two 2-morphisms Φ ∈ HomBZ(α,β)(X, Y ) and Ψ ∈ HomBZ(α,β)(Y, Z) we
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define their vertical composition to be

Ψ · Φ := Z



(z1, µ1)(zl, µl)

(xn,−ϵn) (x1,−ϵ1)

(ym,−νm) (y1,−ν1)

(z1, µ1)(zl, µl)

(y1, ν1)(ym, νm)

(x1,−ϵ1)(xn,−ϵn)

. . .

. . .

. . .

αβ



◦ (Ψ⊗̃Φ)

where we view the smaller circles inside the disk as ingoing, and the big one as
outgoing. From now on we will often suppress the orientation on the 1-strata
of defect bordisms.

Associativity (even strict) of this composition follows from scaling invariance
in the bordism category as well as functoriality of Z. It is unital with respect
to the identity 2-morphism 1X associated to the disk

1X = Z


(x1,−ϵ1)

(x1, ϵ1)

(xn,−ϵn)

(xn, ϵn)

. . .

. . .

. . .

αβ
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• Finally for two 2-morphisms Φ ∈ HomB(α,β)(X, Y ) and Φ̃ ∈ HomB(β,γ)(X̃, Ỹ )
we define their horizontal composition to be

Φ̃⊗ Φ := Z



(y1, ν1)

(ym, νm)(ỹ1, ν̃1)

(ỹm̃, ν̃m̃)

(x1, ϵ1)

(xn, ϵn)(x̃1, ϵ̃1)

(x̃ñ, ϵ̃ñ)

αβγ

. . .

. . .

. . .

. . .



◦ (Φ̃⊗̃Φ)

where we again view the smaller circles as ingoing, and the big one as outgoing.

Until now we have been very vague about why the above construction does not
define a 2-category in contrast to the oriented case. This will be explained in the
following: In any 2-category the 2-endomorphisms of any unit 1-morphism should
form a commutative algebra with multiplication given by vertical composition as the
endomorphism space of the unit of any monoidal category always is a commutative
algebra [Eti+16, Proposition 2.2.10]. This follows from the interchange law (− ⊗
−) · (−⊗−) = (− ·−)⊗ (− ·−) which is a consequence of functoriality of horizontal
composition [JY20, Explanation 2.1.6]. However for any α ∈ BZ the endomorphisms
EndBZ(α,α)(1α) might not be a commutative algebra because

Ψ · Φ = Φ ·Ψ (5.1.3)

does not need to hold if Ψ and Φ are Ramond operators. This follows from Equation
(3.2.9) in Chapter 3 and the observation that horizontal (as well as vertical) com-
position of 2-endomorphisms is defined through a spin pair of pants bordism with
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trivial stratification. Therefore BZ might not be a 2-category, but something closely
related. We will postpone our discussion of the subtleties relating to the interchange
law to Subsection 5.2.1 and will still the 2-categorical structure BZ a 2-category for
now.

It is important to note here that this construction only uses information of the
genus zero sector of the bordism category. The rest of this thesis is focused on
studying BZ in more detail. In particular we will discuss extra structure, which is
not present in the oriented case, in the next section. Before we come to this, we will
now first prove an analogous rigidity result as the one for oriented defect TQFTs
[DKR11, Remark 2.3].

Lemma 5.1.4. Let Z be a defect spin TQFT with corresponding 2-category BZ .
Then any 1-morphism X = ((xn, ϵn), . . . , (x1, ϵ1)) ∈ BZ(α, β) has left and right
adjoints given by:

†X = X† = ((x1,−ϵ1), . . . , (xn,−ϵn)) ∈ BZ(β, α) (5.1.4)

with adjunction maps

evX = Z

 (x1, ϵ1)(x1,−ϵ1)

(xn, ϵn)(xn,−ϵn)

α

β

..
.


: †X ⊗X → 1α,

coevX = Z



(x1,−ϵ1)(x1, ϵ1)

(xn,−ϵn)(xn, ϵn)
α

β

..
.


: 1β → X ⊗ †X.
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The maps ẽvX and c̃oevX are defined analogously, by appropriately reversing the
orientations and orders.

Proof. To verify this assertion we will prove one of the Zorro moves:

≺

≺

X

X

α αββ = Z



αβ

X

X

X†



◦
(
coevX⊗̃evX

)

= Z



αβ

X

X

X†



= Z


αβ X


= 1X

(5.1.5)

where in the first step we used the definition of horizontal and vertical composition
in BZ , in the second step we used functoriality of Z, and in the last step we used
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isotopy invariance in Borddef, Spin
2,1 (D). The second Zorro move, and the ones for right

adjoints, can be proven analogously.

Remark 5.1.5. In complete analogy to the oriented case one can even prove that
BZ is pivotal, i.e. the right and left adjoints of 2-morphisms are isomorphic. More
precisely the components of the pivotal structure are identities by a similar argument
as the one above.

Before we come to the differences to the oriented case, we will now discuss a lemma
which works for the oriented case, but can only be generalized to the subcategory

Bord
def,Spin

2,1 (D) of Borddef, Spin
2,1 (D) where all spin structures are induced from a global

spin structure. However this is not really a problem, as this result is not particularly
useful from a practical point of view and will not be used in the rest of the thesis.
We still include it as it can be viewed as a justification of the physical intuition of
calling the horizontal composition a “fusion product” of defects, and thus serves to
give a conceptually clearer picture. For this reason we will skip over some details of
the proof, which would require more care from a differential topology viewpoint, e.g.
smoothness of gluing.

Lemma 5.1.6. Let Z : Bord
def,Spin

2,1 (D) → C be a defect spin TQFT and BZ its

corresponding 2-category. Then there exist defect data D and a defect spin TQFT

Z : Bord
def,Spin

2, (D)→ C such that D1 ⊆ D1, D2 = D2, BZ ∼= BZ , and

Bord
def,Spin

2,1 (D) C

Bord
def,Spin

2,1 (D)

ι∗

Z

Z

commutes, where the functor ι∗ induced by the inclusion D1 ⊆ D1 is an equivalence
of categories.

Proof sketch. We begin with defining the defect data D:

• The labels for 2-strata stay the same:

D2 = D2.

• The labels for 1-strata are precisely the 1-morphisms in BZ :

D1 :=
⊔

α,β∈D2

BZ(α, β).
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• For X ∈ BZ(α, β) we define source and target maps sα,β, tα,β : BZ(α, β) ×
{±} → D2 by

sα,β(X,+) = α, tα,β(X,+) = β (5.1.6)

sα,β(X,−) = β, tα,β(X,−) = α (5.1.7)

which we extend to

s, t : D1 × {±} → D2 (5.1.8)

through the universal property of the disjoint union.

This gives rise to the bordism category Bord
def, Spin

2,1 (D). In this category any 1-
stratum between two 2-strata labeled with α and β, respectively, is by definition
labeled with an element of BZ(α, β).

The functor ι∗ : Bord
def, Spin

2,1 (D)→ Bord
def, Spin

2,1 (D) sends any defect spin bordism

labeled with D to the same stratified spin bordism labeled with D such that a 1-
stratum with label x ∈ D1 becomes a 1-stratum with label (x, ϵ) ∈ D1, where ϵ
is the orientation of the 1-stratum. It is straightforward to see that this functor is
faithful and symmetric monoidal. In the following we will see that it is also essentially
surjective and full, and therefore an equivalence.

Now we extend the TQFT Z to one defined on the new bordism category. To do
this we first define the action of Z on connected objects. For this let α ∈ D2 and
X = ((xn, ϵn), . . . , (x1, ϵ1)) ∈ BZ(α, α), we set

Z


α

(X,+)


:= Z


α

(x1, ϵ1)

(xn, ϵn)

..
.


(5.1.9)

Z


α

(X,−)


:= Z


α

(X†,+)


(5.1.10)
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where the circle in the first line on the right is an object in the original bordism

category Bord
def, Spin

2,1 (D), with induced spin structures on the 0-strata such that the
underlying orientation matches the ϵi. Note that the labels on the 2-strata are fully
determined by X through the original source and target maps. This prescription al-
ready fully determines the action of Z on connected objects because every connected

object in Bord
def, Spin

2,1 (D) is represented by one of this form through the horizontal
composition ⊗ in BZ . For example for X ∈ BZ(α, β) and Y ∈ BZ(β, α) we have

α

β

(X,+)(Y,+)
∼=

α

(Y ⊗X,+)
∼=

β

(X ⊗ Y,+)

in Bord
def,Spin

2,1 (D). The same reasoning shows that ι∗ is essentially surjective.
The action on objects with multiple connected components follows from monoidal-

ity of Z.
Using the same idea we can define the action of Z on bordisms: We define the

action of Z on a bordism [M ] “locally”, for this let X = ((xn, ϵn), . . . , (x1, ϵ)) ∈
BZ(α, β) be the label of a chosen 1-stratum in M . Locally a neighbourhood of X in
M is of the form

X

αβ (5.1.11)

We now define a new defect spin manifold M̃ by replacing all such neighbourhoods
of X with ones of the form

x1x2xn−1xn

αt(x1, ϵ1)s(xn, ϵn)β (5.1.12)

where the spin structures on the 1-strata are fixed using the ϵi as underlying orien-
tation. By repeating this step for every 1-stratum in M we arrive at a manifold M

which represents a bordism in Bord
def,Spin

2,1 (D). We will not make this construction
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more precise because it would require more care from a differential topology view-
point and we will not use this result in the rest of the thesis. The things one would
need to check are for example smoothness of the gluing and if the resulting bordism
[M ] is independent of the representative M of [M ]. This argument can be used to
show that ι∗ is full.

We can now define

Z(M) := Z(M). (5.1.13)

This indeed defines a functor because the above procedure respects gluing of stratified
manifolds and Z is a functor. Furthermore it is symmetric monoidal because Z is
symmetric monoidal and we can use the isomorphisms giving the symmetric monoidal
structure of Z and the inverse of the functor ι∗. Finally from the definition of D1

and the construction of Z it is evident that BZ ∼= BZ .
We call Z the D1-completion of Z.

Remark 5.1.7. It should be stressed here that the above proof fails for Borddef, Spin
2,1 (D)

because we would loose information. More precisely to construct the TQFT Z we
constructed bordisms labeled with D from ones labeled with D. To do this we need
to fix a way to choose the spin structures for the strata, otherwise the procedure
could never be unique. However as soon as we fix a choice of assigning spin struc-
tures, we loose the information of what Z assigns to the different possibilities. For
example let α, β ∈ BZ and X = ((xn, ϵn), . . . , (x1, ϵ1)) ∈ BZ(α, β). There are two
possible spin structures on the 1-stratum of the defect spin bordism

αα ββ

X
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in Borddef,Spin
2,1 (D). From the construction in the proof we should obtain a bordism

αα ββ

x1
xn

. . .. . .

in Borddef, Spin
2,1 (D), however there are 2n possible combinations of spin structures

on the 1-strata. In this sense there can never be an equivalence Borddef, Spin
2,1 (D) ∼=

Borddef, Spin
2,1 (D).

5.2 Extra structure of BZ
Up to now no structure on BZ was related to spin and could already be found in
the oriented case. In this section we are going to discuss the extra structures on BZ
related to the spin structures on the underlying bordisms. More precisely we will first
briefly consider the question what type of 2-categorical structure BZ is. Afterwards
we will discuss certain 2-morphisms in BZ and closely related morphisms C.

5.2.1 Deck transformations

In Chapter 3 we saw that deck transformation bordisms play an important role in
the algebraic structure of open-closed spin TQFTs, we thus expect them to also be
of great importance for defect spin TQFTs. In this subsection we will incorporate
them as a family of functors acting on the Hom categories of BZ .

Let α, β ∈ BZ and X, Y ∈ BZ(α, β). Recall the definition of the defect circle
S1(X, Y ) from the construction of BZ , we define the deck transformation bordism
Cw
S1(X,Y ) to be the mapping cylinder over S1(X, Y ) of a morphism w of stratified

spin manifolds where the bundle map for any stratum is the non-trivial deck trans-
formation discussed above Remark 2.2.2. More precisely w is an endomorphism of
the stratified spin manifold underlying S1(X, Y ) where for any stratum the endo-
morphism of spin manifolds is the non-trivial deck transformation, i.e. the action of
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the non-trivial element in Z2 on the spin bundles. It is straightforward to see that
w is an involution.

Lemma 5.2.1. There is a family of functors

Sβ,α : BZ(α, β)→ BZ(α, β)
X 7→ X

Φ 7→ Z
(
Cw
S1(X,Y )

)
◦ (Φ)

(5.2.1)

for Φ: X → Y which lift to a 2-functor

S : BZ → BZ . (5.2.2)

Proof. First to show that Sβ,α really defines a functor we need to check if it re-
spects vertical composition in BZ . For this recall that vertical composition is defined
through a pair of pants bordism. Recall further, for example from Footnote 13, that
gluing a bordismM with a mapping cylinder Cf

Σ along Σ, is equivalent to the bordism
M f which has the same underlying manifold as M but the boundary parameteriza-
tion of Σ is precomposed with f . From this we see that it is sufficient to analyze
pairs of pants with incoming boundaries parameterized through a non-trivial deck
transformations, and the usual parameterisation for the outgoing boundary. But
such a bordism is diffeomorphic to a pair of pants bordism with only the outgoing
boundary parameterized by a deck transformation, and the incoming ones trivially
parameterized, through a deck transformation on the whole bordism. This is com-
pletely analogous to the reasoning in [Koc03, Remark 1.3.22]. Schematically the
described equivalence of bordisms can be pictured as:

w w

∼=

w

(5.2.3)

Note that in the case of trivial stratifications this is exactly the statement that the
morphisms Nx of a closed Λ2-Frobenius algebra, from Chapter 3, commute with the
rest of the structure morphisms.

Applying this reasoning to the defect spin bordism corresponding to vertical
composition, and using functoriality of Z we indeed find that Sβ,α is functorial on
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BZ(α, β) in the sense that

Sβ,α(Ψ · Φ) = Sβ,α(Ψ) · Sβ,α(Φ). (5.2.4)

Moreover the same argument shows that Sβ,α(1X) = 1X for any X ∈ BZ , thus (Sβ,α)
is indeed a functor.

Now to show that the family of functors (Sβ,α) lifts to a 2-functor we need to
prove that it is compatible with horizontal composition of BZ in the sense that for
γ ∈ BZ we have

Sγ,β ⊗ Sβ,α = Sγ,α. (5.2.5)

To see that this holds recall that horizontal composition is also defined through a
pair of pants bordism. For this pair of pants we can argue analogously as for the one
of vertical composition. Thus we indeed find

Sγ,β ⊗ Sβ,α = Sγ,α. (5.2.6)

Corollary 5.2.2. The square of the 2-functor S : BZ → BZ is the identity 2-functor,
i.e. S2 = 1BZ .

Proof. This follows immediately because w is an involution.

We can now come back to the issue discussed at the end of Construction 5.1.3. Re-
call the problem was that for any α ∈ BZ the space of 2-endomorphisms EndBZ(α,α)(1α)
should form a commutative algebra. However we already saw that for Ramond op-
erators this is not necessarily the case since Ψ,Φ ∈ Cα

0 satisfy

Ψ · Φ = Φ · S(Ψ) = S(Φ) ·Ψ (5.2.7)

by Equation (3.2.9) and the observation that vertical (as well as horizontal) com-
position of 2-endomorphisms is defined through a spin pair of pants bordism with
trivial stratification.

One possible resolution of this problem would be to check if BZ is something
similar to a category enriched over the category of Π-categories. A Π-category as
defined in [BE17, Definition 1.6] is a k-linear category A together with a k-linear
endofunctor Π and a natural isomorphism Π2 ∼= 1A together with a mild compatibility
condition. There is also a notion of Π-functors between Π-categories which are k-
linear functors together with natural isomorphisms which mediate the compatibility
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of with the Π-structures. Verifying if BZ has such a structure is still an object for
further research.

However before we go on we will very roughly sketch the idea for C = Vectk: First
note that any Hom category BZ(α, β) of BZ is a k-linear category and the component
Sβ,α of S is a k-linear endofunctor. Moreover from Corollary 5.2.2 we know that
S2
β,α = 1BZ(α,β), this gives BZ(α, β) the structure of a Π-category. Furthermore

because the Sβ,α lift to S it seems reasonable to expect that horizontal composition
is a Π-functor.

It should also be noted here that there is a close relation between super categories
and Π-categories. For this one needs the additional notion of Π-super categories. A
Π-super category is a super category A together with a super functor Π: A → A
and an odd supernatural isomorphism Π ∼= 1A. There are functors

SCat Π-SCat Π-Catπ ε

between the category of super categories SCat, the category of Π-super categories
Π-SCat, and the category of Π-categories Π-Cat. The relation between super cate-
gories, Π-super categories, and Π-categories is explained through properties of thes
functors. The functor π : SCat → Π-SCat has the property that for any super cat-
egory A and any Π-super category B there is a super equivalence of super functor
categories

[πA,B] ∼= [A, νB]

with ν : Π-SCat → SCat the forgetful functor.1 The functor ε : Π-SCat → Π-Cat
is an equivalence of categories. For a more precise statement and details see [BE17,
Theorem 1.9].

5.2.2 States from line defects

In this final subsection we are going to focus on special 2-morphisms, which are
induced by cup bordisms. We will start with the simplest case with exactly one 1-
stratum. For this let α, β, γ ∈ D2, X = (x, ϵ) ∈ BZ(α, β), and Y = (y, ν) ∈ BZ(β, γ).

1In [BE17] this super equivalence is called a 2-adjunction.
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For σβ, σX ∈ {NS,R} we define the bordisms

Φ
σβ
X,σX

:= Z


ββ α

x


∈ Cβ

σ (5.2.8)

where the boundary circle is outgoing and of R-type if σβ = R and of NS-type if
σβ = NS. The orientation underlying the spin structure σX of the 1-stratum is
counterclockwise if ϵ = + and clockwise for ϵ = −.

Note that ΦR
X,R is the left or right (depending on ϵ) quantum dimension of the

1-morphism X in BZ , e.g.

ΦR
(x,+),R = Z


ββ α

x

≺

≻


= diml(X). (5.2.9)

This is because gluing of defect spin bordisms respects the spin structure and gluing
two spin intervals without twisting results in a R-type circle, see the discussion in
the beginning of Section 4.2 for more details.

For the special case where α = β and X = 1α, i.e. no 1-stratum, we will employ
the notation Ωα := ΦNS

1α , this notation will become clearer in a moment. Note here
that ΦR

1α does not exist because for trivially stratified spin disks there is only one
possible spin structure, for this reason we drop the spin structure σ in Ωα. From
now on we condense the label X and spin structure σX on any stratum to a single
expression X̂ ≡ (X, σX).
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Next we define four types of morphism in C with which we can “act” on the Φs:

F
σα,σβ

X̂
:= Z


αα ββ

x


∈ HomC

(
Cα
σα , C

β
σβ

)
(5.2.10)

where orientations and spin structures on the 1-stratum are defined analogous to the
definition of Φx

X̂
. The spin structures on the 2-strata are defined through σα, σβ ∈

{NS,R} in analogy to above, e.g. σα = R and σβ = NS means that the α labeled
2-stratum is of R-type while the β labeled stratum is of NS-type. We thus have four
possible versions of these maps, one for each combination of spin structures on the
2-strata.

Lemma 5.2.3. The map F
NS,σβ

X̂
generates the state Φ

σβ

X̂
in the sense that

Φ
σβ

X̂
= F

NS,σβ

X̂
◦ Ωα. (5.2.11)

Proof. A direct computation shows

F
NS,σβ

X̂
◦ Ωα = Z

 αα ββ

X


◦ Z

 α

 (5.2.12)

= Z

 α ββ

X


(5.2.13)

= Φ
σβ

X̂
(5.2.14)

120



where in the second step we used functoriality of Z.

The significance of Lemma (5.2.11) is that it allows us to restrict our attention to

only the maps F
1,σβ

X̂
because we can recover the Φ

σβ

X̂
from them. This also explains

the notation for Ωα. In analogy to conventional quantum field theory this equation
allows us to interpret Ωα as the “vacuum state” of the phase α, and we can view the

map F
NS,σβ

X̂
as a “creation operators” of the “state” Φ

σβ

X̂
. Moreover the vacuum Ωα

is the unit of the NS algebra. It is important to note here that we are able to get
the states in the NS- and R-sector of the phase β through these operators.

We can relax the definition of the F ’s two allow for bordisms with more then
one 1-stratum. The 1-strata are labeled with elements X = ((xn, ϵn), . . . , (x1, ϵ1)) ∈
BZ(α, β) such that the orientations match with the ϵ, i.e.

F
σα,σβ

X̂
:= Z


αα ββ

x1
xn

. . .. . .


∈ HomC

(
Cα
σα , C

β
σβ

)
. (5.2.15)

The following lemma can be proved completely analogously to Lemma 5.2.11.

Lemma 5.2.4. The maps F
σα,σβ

X̂
respect horizontal composition in the sense that

F
σβ ,σγ

Ŷ
◦ F σα,σβ

X̂
= F

σα,σγ

Ŷ⊗X
(5.2.16)

for composable X and Y .

Remark 5.2.5. The F operators cannot be used to define an 2-functor because they
do not respect vertical composition of 2-morphisms as

̸= . (5.2.17)

In summary we found how defect circles give rise to special 2-morphisms in both
the NS- and R-sector. Furthermore we described how cylinders can be used to define
“operators” which act on these 2-morphisms.
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Appendix A

Fiber bundles

In this appendix we will review some important notions from the theory of fiber
bundles and the closely associated classifying spaces. Regarding the general theory
of fiber bundles we will mostly follow [Ham17] and [Bau14], and [Joh80, Appendix
B], [Die08] and [Nak03] for characteristic classes and classifying spaces.

We begin by defining the notion of a fiber bundle over a smooth manifold with
general smooth fiber and introduce standard terminology and notions. After this we
will focus on the important cases of principal fiber bundles and vector bundles where
the fiber type is assumed to be a Lie group or a vector space respectively. Using the
pullback bundle construction we will then introduce the notion of a classifying space
of a topological group and the corresponding universal bundle.

The topological spaces we will be most interested in will be (smooth) manifolds
which we assume to be second countable.

Definition A.0.1. LetM,E, F be smooth manifolds and let π : E →M be a smooth
surjection. The tuple (E, π,M, F ) is called a smooth fiber bundle of fiber type F if
for any point x ∈ M there exists a neighbourhood U ⊂ M and a diffeomorphism
ϕ : π−1 (U)→ U × F such that pr1 ◦ ϕ = π:

π−1(U) U × F

U

π

ϕ

pr1

E is called the total space, M the base space and F the fiber type. We will often
abbreviate (E, π,M, F ) by E. The pair (U ;ϕU) is called a bundle chart or local
trivialization of E over U .
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Let {Ui}i∈I be a covering of M and let (Ui, ϕi) be a bundle chart for each i ∈ I.
Then {Ui, ϕi}i∈I is called a bundle atlas and the maps

ϕi ◦ ϕ−1
k : (Ui ∩ Uk)× F → (Ui ∩ Uk)× F

are called transition functions between the bundle charts (Ui, ϕi) and (Uk, ϕk). De-
noting by Diff(F ) the diffeomorphism group of F we obtain maps

ϕik : (Ui ∩ Uk)→ Diff(F )

x 7→
(
ϕi ◦ ϕ−1

k (x) : F → F
)

that satisfy the so-called cocycle conditions

ϕik(x) ◦ ϕkj(x) = ϕij(x) and ϕii(x) = idF

or equivalently
ϕik(x) ◦ ϕkj(x) ◦ ϕji(x) = idF

The collection of maps {ϕik}i,k∈I is called the cocycle of the bundle atlas {Ui, ϕi}i∈I .

Definition A.0.2. Two fiber bundles (E, π,M, F ) and (Ẽ, π̃,M, F̃ ) over the same
base spaceM are called isomorphic if there exists a diffeomorphism H : E → Ẽ such
that π̃ ◦H = π.

Definition A.0.3. Let G be a Lie group, P,M smooth manifolds and π : P →M a
smooth map. The tuple (P, π,M,G) is called a G-principal fiber bundle over M if:

1. G acts on P from the right as a Lie transformation group, and the action is
free and simply transitive on the fibers.

2. There exists a bundle atlas {(Ui, ϕi)} consisting of G-equivariant bundle maps,
i.e.:

• ϕi : π
−1 (Ui)→ Ui ×G is a diffeomorphism.

• pr1 ◦ ϕi = π|Ui
.

• ϕi(p · g) = ϕi(p) · g for all p ∈ π−1 (Ui) and g ∈ G, where G acts on Ui×G
via (x, a) · g = (x, ag).

We will often abbreviate the term G-principal fiber bundle simply to G-bundle.

Remark A.0.4. It is also possible to define a G-bundle over a topological space
M , using a topological group G and homeomorphisms instead of diffeomorphisms.
We will however mostly be working in the smooth category with the exception of
Z2-bundles.
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Definition A.0.5. Let (P, π,M,G) and (Q, π′, N,H) be principal fiber bundles.
A bundle morphism Q → P is a tuple (f, λ) where λ : H → G is a Lie group
homomorphism and f : Q → P is a smooth map such that f is a λ-equivariant
bundle map, i.e. f(q · h) = f(q) · λ(h) for all q ∈ Q and h ∈ H.

We call two principal G-bundles (P, π,M,G) and (P ′, π′,M,G) equivalent (or
isomorphic) if there exists a bundle morphism (f, idG) such that f : P → P ′ is
a diffeomorphism. We denote the set of equivalence classes of G-bundles over a
manifold M by PrinG(M). If we have a bundle morphism (f, λ) where the induced
map on the base manifold is given by idM , we call Q together with the morphism a
λ-reduction of P . Furthermore if H is a subgroup of G and λ the inclusion, we call
it an H-reduction of P .

Definition A.0.6. A fiber bundle (E, π,M, V ) is called a k-vector bundle of rank n
if:

1. The typical fiber V is a n-dimensional k-vector space.

2. Every fiber Ex is a k-vector space.

3. There exists a bundle atlas {(Ui, ϕi)} such that the fiber diffeomorphisms

ϕix : Ex → V

are linear isomorphisms.

1-dimensional vector bundles are usually called line bundles.

Definition A.0.7. Let (P, π,M,G) be a principal fiber bundle, F a smooth manifold
and ρ : G× F → F a smooth left action of G on F . Then we have a right action of
G on P × F by (p, v) · g := (p · g, ρ(g−1)v) we call the quotient by this action

P ×ρ F := (P × F )/G

the associated fiber bundle to P and ρ.

A particularly important special case arises when F is a vector space and ρ a
representation of G on F . Another construction we will need is the so called pullback
bundle.
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Theorem A.0.8. Let f : N →M be smooth and let (E, π,M, F ) be a smooth fiber
bundle. Then (f ∗E, π̄,N, F ) with

f ∗E := {(x, e) ∈ N × E
∣∣ f(x) = π(e)} ⊂ N × E

π̄((x, e)) := x

is a smooth fiber bundle called the pullback bundle.

See [Bau14, Satz 2.2] or [Ham17, Theorem 4.1.17].
The question to classify principal G-bundles over a fixed space relies heavily on

the pullback bundle construction and the additional fact that homotopic maps induce
isomorphic bundles, see [Die08, Theorem 14.3.3] for a proof of this assertion.

Definition A.0.9. Let G be a topological group. A classifying space of G is a
connected topological space BG together with a G-bundle EG → BG called the
universal bundle, such that the following is true. For any compact space M there is
a one-to-one correspondence between PrinG(M) and the homotopy classes of maps
M → BG. The correspondence is given by associating a homotopy class of a map
fP : M → BG to a fixed bundle P over M such that the pullback bundle f ∗

PEG is
isomorphic to P . Such a map fP is called a classifying map of the bundle P .

This idea is illustrated in the following diagram:

P f ∗
PEG EG

M BG

f∗P∼=

fP

where the vertical and diagonal arrows are bundle projections.
BG is unique up to homotopy and exists for any topological group [Die08, The-

orem 14.4.2]. Furthermore a principal G-bundle E → B is universal if and only if E
is contractible [LM89, Theorem B.3] [Die08, Theorem 14.4.12]. This result implies
the useful relation πn(BG) = πn−1(G) between homotopy groups of G and homotopy
groups of BG. To show this consider the long exact sequence of homotopy groups

· · · → πn(G)→ πn(EG)→ πn(BG)→ πn−1(G)→ . . .

of the fibration

G→ EG→ BG,
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see [Hat01, Section 4.2]. Now because EG is contractible we know that all its ho-
motopy groups are trivial, i.e. πn(EG) = {1} for all n ∈ N, thus exactness of the
sequence means πn(BG) = πn−1(G). From this relation it immediately follows that
homotopic groups G ≃ G′ have homotopic classifying spaces BG ≃ BG′.

Given a Lie group homomorphism ϕ : H → G, there is a continuous map

Bϕ : BH → BG

which classifies the principal G-bundle EH ×ϕ G over BH associated via ϕ, i.e. we
have

(Bϕ)∗(EG) := EH ×ϕ G.
The notation Bϕ comes from a functorial construction of classifying spaces. More
precisely for G a group one construction of the classifying space BG is as the ge-
ometric realization of the nerve of the delooping BG, i.e. BG ∼= |N (BG)|, see for
example [Ric20, Section 11.2].

Using the above language, a reduction (or lift) of a principle G-bundle P over M
to a principle H-bundle Q over M along the group homomorphism ϕ is equivalent
to the existence of a map fQ : M → BH such that the following diagram commutes
up to homotopy:

BH

M BG

Bϕ

fP

fQ (A.0.1)

where fP is a classifying map for the G-bundle P [Fre12, Proposition 9.38].
In general it is quite difficult to find necessary and sufficient conditions to find a

lifting fQ of fP , in the following we will sketch how to reformulate the problem using
obstruction theory, this will mostly be based on [DK01, Chapter 7]. Suppose we also
have the homotopy fibration

BH BG K(A, k).cBϕ

with K(A, k) the k-th Eilenberg–Mac Lane space [DK01, Chapter 7.7] of an abelian
group A and c : BG → K(A, k) a continuous map. We now combine this fibration
with Diagram (A.0.1) and consider the diagram

BH

M BG K(A, k).c

Bϕ

fP

fQ (A.0.2)
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Obstruction theory tells us that the existence of fQ turns out to be equivalent to
the condition that c ◦ fP is nullhomotopic [DK01, Chapter 7.10]. If we further use
the important property of Eilenberg–Mac Lane spaces that homotopy classes of maps
BG→ K(A, k) are naturally isomorphic to the k-th singular cohomology Hk(BG,A)
with coefficients in A, i.e. [BG,K(A, k)] ∼= Hk(BG,A), we can thus view the map c as
an element in Hk(BG,A) [DK01, Theorem 7.22].1 In this formulation the existence
of fQ is equivalent to the requirement that f ∗

P (c) ∈ Hk(M,A) vanishes.
This motivates us to define a universal characteristic class c for principal G-

bundles to be a non-zero element in the singular cohomology ring H∗(BG,A) with
coefficients in A. For a fixed class c ∈ Hk(BG;A) and any principal G-bundle
P → M . We define the c-characteristic class of P to be the class c(P ) = f ∗

P (c) ∈
Hk(M,A), where fP : M → BG is a classifying map of P . c(P ) is uniquely defined,
as fP is unique up to homotopy and cohomology is invariant under homotopy. Given
a continuous map F : N → M , the c-characteristic classes satisfy the naturality
condition c(F ∗P ) = F ∗c(P ) [LM89, Appendix B].

1This result precisely states that the singular cohomology functor Hk(−, A) is representable.
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