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Abstract

This thesis aims to introduce Chern-Moser-Beloshapka-Normalforms in C2*2. First a
general overview of the topic has been made, covering the Fischer inner product, the
group of isomorphisms in C2*? as well as a general introduction on the area of nor-
malforms. Furthermore, an overview of the results of the paper Convergence of the
Chern—Moser—Beloshapka normal forms, by Bernhard Lamel and Laurent Stolovitch
has been made, on which the research of this thesis is based. For the main part of this
thesis the program Wolfram Mathematica has been used to solve the appearing normal-
izing conditions. These are explicitly stated for the elliptic case in C2*2, and a simple
adaptation of the code leads to results for the parabolic and hyperbolic cases.
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1 Introduction

This chapter aims to cover the basic themes and concepts needed to construct Chern-
Moser-Beloshapka Normalforms, which are the basis of this thesis. Normalforms for
hypersurfaces, the Fischer inner product and Levi-nondegenerate manifolds will be in-
troduced.

1.1 Normalforms

In this subsection Normalforms for Hypersurfaces will be introduced following the paper
Real Hypersurfaces in Complex Manifolds by S.S. Chern and J.K. Moser [4]. Further-
more the Chern-Moser normalizing conditions will be stated, based on Normal forms
in Cauchy-Riemann geometry by Martin Kolar, Ilya G. Kossovskiy, Dmitri Zaitsev [7] as
well as Convergence of the Chern—Moser—Beloshapka normal forms by B. Lamel and L.
Stolovitch [8]. These notions are fundamental for the further concepts of this thesis.

Take 21,...,2p41 to be the coordinates in C"*!. Let M be a real hypersurface in C"+!
at the origin, which can be described by the following equation

7(21y - Zng1, 215 - - -5 Zng1) = 0

with r being a real analytic function, where at the origin its first derivatives are not
all equal to zero.

Applying transformation on M, which are holomorphic near the origin, can help us
find a simple normal form. We can define the individual variables z,4+1 and Zz, ;71 as

Znil =W = U410, Zpyl=U—iv (1.1)
and further assume that
. =0, a=1....n
Tw = —Tw 7é 0

holds at the origin. By using a linear transformation this step can be accomplished.
Solving equation 1.1 for the variable v yields

v="F(z,Z,u) (1.2)

where the function F' maintains the analytic property in the 2n + 1 variables z,Z, v and
vanishes at the origin along with its first derivatives. The hypersurface M uniquely
determines the function F'.



1 Introduction

We can apply a holomorphic transformation to the hypersurface M of the form
2= f(z,w), w"=g(z,w) (1.3)

with f being an n-vector valued holomorphic function and g a holomorphic scalar. Fur-
thermore, we require f and g to vanish at the origin and would like the complex tangent
space 1.2 at the origin (w = 0) to be preserved. This results in the following conditions

99 _

=0 =0
f ) g ) az

0 at z=w=0. (1.4)
Thus the new hypersurface M* can be written as
o' = F*(2%, 2% ub).

Choosing 1.3 wisely will reduce the representation of M* to a simpler form. We can
replace the assumption that F' is real analytic and instead consider it as a formal power
series in the variables 21, ..., 2n, 21, . . ., 2, and u with F'(z,Z,u) = F(Z, z,u) as its reality
condition. Furthermore we will assume that F' does not contain any constant or linear
terms. The space of these formal power series F is linear. The transformations in 1.3
can also be described by two formal power series for f and g in z1,...,2,, w where no
constant terms appear and for g no linear terms appear based on the last equation in 1.4.
Formal transformations of this type create a group G under composition. Elements inside
F can be decomposed into quasihomogeneous parts, such as F € F, F =% F,(z,%,u),
with F,(tz,tz,t?u) = t*F,(2,%,u) for any t > 0. Therefore u will be given the weight 2
and z and Z will be assigned weight 1. The terms of weight ¥ = 2 do not contain any
terms with u, since F' does not contain any linear terms. This means that

Fy =Q(2) + Q(2) + H(z, 2)
with @) being a quadric form of z and H a Hermitian form.

Taking the following transformation

<w> ~ (w - ;Q(Z))

will remove the quadric forms, and leaves us with a Hermitian form for F5 of the shape
Fy = H(z,z). This specific form is referred to as the Levi form, which we will denote by
(z,z) = F» and require to be nondegenerate. (z,z) denotes the corresponding bilinear
form, which fulfills (Az1, pze) = Ai(z1, 22).



1.1 Normalforms

Applying these concepts to our hypersurface, M can be described by
v={_z,2) + F (1.5)

with F' = >"7° . F,, containing only those terms which have weight > 3. We will further
restrict the transformation 1.3 with the condition that 9°9/9-29-¢ = 0 at the origin of the
manifold.

To achieve a normal form for M we will need to find a proper formal transformation in
G and will begin by writing it in the form

[e.e] oo
z*:z—i—Zf,,, w*:z—l—ZgV (1.6)
v=2 v=3

where f,(tz,t?w) = t f,(z,w), g, (tz,t?w) = tYg,(z,w), with v being the weight of the
polynomials f,, g,.

These new forms 1.6 can be inserted into the equation v* = (z*, 2*) 4+ F™*. The variables z
and w can be restricted to the hypersurface 1.5 to yield us the transformation equations,
in which the variables z, Z and w are independent. In this relation we can gather all
terms of the same weight u and get

Fy+Tmg,(z,u+i(z,2)) = 2Re(f—1,2) + Fjy + ...

where the dots represent terms which depend on f,_1,9,, F,, F, where v < p. The
arguments in F), are z and w = u + i(z, z). Furthermore we can define a linear operator
L, referred to as the Chern — Moseroperator which maps h = (f, g) into

Lh = Re {2<27 f> + ig}w:u+i(z,z> (17>

which turns the relation above into
Lh=F,—F;+... forh=(fu-1,9,) (1.8)

noting that L maps f, 1,9, into terms which have the weight p. Simplification of the
power series F}; is closely related to finding the complement of the range of the operator
L.

The goal is to establish a linear subspace N of F such that A and the range of the
operator L span F. This means that if O is the space of h = (f,g) with f =2, f,

and g =Y 7 4 gy, then
F=LO+Nand NNLO = {0} (1.9)

Therefore AV is indeed the complement of the range of L. In equation 1.8 we can directly
see that we can choose F); to be in N and solve the rest of the equation for h. By
induction we can see that equation 1.6 can be solved such that the function F™* lies inside
N. Hypersurfaces M* where Fx € N are said to be in normal form.
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The transformation into normal form directly correlates to the null space of the oper-

ator L. Therefore finding a transformation of M into normal form is reduced to finding
a complement of the range N and the null space of the operator L, as described by S.S.
Chern and J.K. Moser.
Take ®(z,z,u) = Zj’k ®; 1(2,Z,u) to be a power series in the variables z, Z, u with the
degrees j in z and k in Z respectively, ®; 1, is then referred to be of type (j, k). Further-
more the condition that ®;(tz, sZ,u) = tjskfbj,k(z, z,u) is satisfied. The trace operator,
a second order linear differential operator is defined as

T = ((,i)tJ (i) (1.10)

S.S. Chern and J.K. Moser proved that ker £ = {0} and that A is the linear space
containing power series of the form

Djo=Po; =0, j=0, (1.11)
Pj1=01;=0, j=1, (1.12)
T ®op =T @o3=T" P33=0 (1.13)

Every real-analytic Levi-nondegenerate hypersurface M € C"*1 n > 1 and any point
p € M can be transformed by formal power series from (M, p) into the normal form

v=1{2,2) + ®(2,z,u), with® e N

where N is the linear space containing the power series fulfilling 1.11.
Furthermore the transformation into normal form is unique only up to holomorphic
mappings that preserve the hyperquadric as well as the origin.

1.2 The Fischer inner product

In this subsection the properties of the Fischer inner product will be outlined based
on the paper Uber die Differentiationsprozesse der Algebra by E. Fischer [6] and the
paper Convergence of the Chern—Moser—Beloshapka normal forms by B. Lamel and L.
Stolovitch, as well as Invariant normal forms of formal series, by G.R. Belitskii [2]. Fur-
ther input on this topic can also be found in Convergence of the Chern—-Moser—Beloshapka
normal forms by B. Lamel and L. Stolovitch.

The Fischer inner product sets a basis for the construction of linear operators with formal
adjoints, which will be needed for stating the normalization conditions.

Take V to be a finite dimensional vector space over C or R, with an inner product
denoted by (-,-). Let u = (u1,...,uq) be a formal variable and V [u] symbolize the space
of all formal power series in © with corresponding coefficient values in V. The elements
f € V[u] will be written in the following way

fw) =" fau®, fa€V

a€eNd



1.2 The Fischer inner product

We can extend the inner product defined on V' to an inner product defined on V{u] by
defining

a! <fa’ga>7 a=f

a By —
<f0£u 7g,3u >_ {0’ Ck?éﬂ

This inner product (f, g), referred to as the Fischer inner product, is only defined when-
ever at most finitely many of the products (fs, g) are nonzero. The product (f,g) is
defined as soon as g € F[u].

Take T : F1[u] — Fz[u] to be a linear map, then it has a formal adjoint if we can find a
map T% : FyJu] — Fi[u] such that

(Tf,g)2=(f,T"gh

where both sides have to be defined.
For a linear map 7', as above, a formal adjoint exists, if T'(Fi[u]) C Fa[u], where Fj[u]
are spaces of polynomials in « with values in F}, j = 1,2. For a proof see [8].

The map D,, : Flu] — F[u] defined as

Il
D110 =2 =5 () g

has the formal adjoint
Myg(u) = u’g(u),
since
(Z) M =N fa, gay) = (fau®,gpu”),  f=a—7y
0, B # a—n.

Let L : Fy — F5 be a linear operator, then we can define the induced operator
Tr, : Filu] — F2[u] by

<D’yfauaa gﬁu'8> =

Ty (Z fauo‘> = ZLfauO‘.

This induced operator has the formal adjoint TF = T+, since

ol (Lfa,gs)2 = a! (fa, L*gg)1 = (fau®, Tr+gsu), a=p

<TLfozuaa gﬁu6>2 =
0, else.
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This concept can be extended to multiple operators. Take L; : Fu] — Fj;[u] to be
linear operators where j = 1,...,n, and each operator has a corresponding formal adjoint
Lj. Then the operator defined as

L= (Ly,...,Ly) : Fu] = @Fj[[u]],

where (B, Fj stands for the orthogonal sum, has the formal adjoint L* = >, L7. This
concept can also be applied to differential operators. Take the map Dy, : Fu] — S ymFF,
with Sym*F being the space of symmetric k-tensors on C? (or R?, respectfully) with
values in F', defined by

Dkf(u) = (Daf(u))anNd, la|=k"
This map has the formal adjoint Dj = M;, defined by

Mig(u) = > gy(wu?, where g(u) = (gy(u))})=-
YENY, |y|=k

The space Sym”*F can be realized as the space of homogeneous polynomials of degree k
in d different variables (uq,...,uq), i.e.

(kerfl )

d—1
SymFF = GB F,
j=1
with the induced norm as an orthogonal sum.

If Ly : Flu] — FiJu] and Ly : Fu] — F[u] are two linear maps which each possess
a formal adjoint, then L = L9 o Ly has the formal adjoint L* = L} o L3.

The normalized Fischer inner product, defined by

‘%i!<fayga>a a=f
0, a#p

can be convenient to use in certain cases. The adjoints with respect to the normalized
and the standard Fischer inner product only differ by constant factors for terms which
have the same homogeneity, but the existence of their adjoints and their corresponding
kernels agree. For the sake of looking at the kernels of adjoints it is not necessary to
distinguish between the normalized and the standard Fischer inner product.

<f06uaa gﬁuﬂ> = {



1.3 Levi-nondegenerate manifolds in C2 x C2

The coefficient spaces F; and F5 of our linear operator are going to be spaces of
polynomials in z and Z of specific homogeneities, which are equipped with the Fischer
norm. Take H, ,, to be the space of homogeneous polynomials of degree m in z € C".
Applying the Fischer inner product on monomials gives us

<Za725> — {@i!’ a=p
0, aF B

The inner product on (’Hn’m)l is induced by the Fischer inner product by declaring
the components to be orthogonal with each other if f = (f,..., f!) € (Hnm)', then

(f.9) = XL (. 97)

Take Ry, 1 to be the space of polynomials in z and z, valued in C?, that are homoge-
neous of degree m (respectively k) in z (respectively z). This space can also be equipped
with the Fischer inner product (.,.)qx, where the components are also declared to be or-
thogonal. This means that the inner product of a polynomial P = (Pi, ..., Py)' € Ry
with another polynomial @ = (Q1,...,Qq)" € Ry is defined by (P,Q) = Zj (P, Q),

where the latter inner products within the sum are given on the basis monomials by

ailas!

(ozoe gy _ | Taltlaa)n 1= PLo2=0
0, ay # B1 or ag # fa.

The Fischer inner product and its properties prove themselves to very useful for defining
the operators used to specify the normalizing conditions.

1.3 Levi-nondegenerate manifolds in C? x C?

This section is based on the paper Convergence of the Chern—Moser—Beloshapka
normal forms by B. Lamel and L. Stolovitch and will also cover results of the paper
Holomorphic automorphisms of quadrics by Vladimir Ezov and Gerd Schmalz, Gerd [5].

The objects of study are real-analytic, Levi-nondegenerate manifolds of CV. Take
M C CV to be a real submanifold. At a point p € M, given the suitable coordinates
(z,w) € C"* x C? = CV, this manifold can be described using a defining equation of the
form

Imw = ¢(z, z2, Rew)
where ¢ : C" x R? — R is a germ of a real analytic map which satisfies
©(0,0,0) =0 and V¢(0,0,0)=0

The second order invariant of this is its Levi form £,, which is a natural Hermitian
vector-valued form defined on V,, = CT,,M N CT, ,Eo’l)CN as

Lp(Xp, Yp) = [Xp, Y] mod V, @V, € (CT,M)/(V, V).
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The manifold M is said to be Levi-nondegenerate (at p) if the Levi-form £, is a
nondegenerate, vectorvalued Hermitian form and it is of full rank.
The Levi-nondegenerate condition on the Levi-form £, means that if £,(X,,Y},) = 0 for
all Y, € V), then X, = 0.
L, is of full rank if §(L,(X,, Yp)) = 0 for all X, Y, € V, and 6 € TOM = V- NV implies
that 6 = 0.
A hyperquadric is the typical model for this case, where the corresponding equation to
the manifold takes the form

Q1 (Z, 2) zt J1z
Imw = Q(Za 2) = = ’
Qd(z’ 2) zZ Jaz
where the J; are Hermitian n X n matrices.
In this situation the conditions of nondegeneracy and full rank can be expressed by

d d
(Vker Jpe={0}, > MeJe=0 = N =0, k=1,....d. (1.14)
k=1 k=1

Endowing z with weight 1 and w with weight 2 the defining equation of the hyperquadric
becomes of degree 1, which we will assume to be the case from now on.

Therefore, at each point a Levi-nondegenerate manifold can be interpreted as a "higher
order deformation" of such a hyperquadric. Thus their defining function can be written
as

Imw = Q(z, 2) + >3(z, Z, Rew) (1.15)

where ®>3 contains only quasihomogeneous term of order at least 3.

This thesis aims to study Levi-nondegenerate manifolds in C? x C2 which can be
written in the way above

Imw = Q(z,2) + ¢>3(z, 2, Rew),
where
Q(z,2) = (2" 12, 2" Ja2) .

We will assume that @ is a Hermitian form on C? defined by two Hermitian 2 x 2 matrices
Ji. In particular, we note that

Q(a,b) = Q(b,@)
for a,b € C". The higher-order deformation ®>3(z,z, Rew) is an analytic map germ at
0 and is, based on construction, of quasi-order > 3 and can thus be written as

P>3(z, 2, Rew) = Z ®,(2,Z,Rew).
p=>3



1.3 Levi-nondegenerate manifolds in C2 x C2

The individual terms ®,(z, Z, Rew) are homogeneous of degree p.

We have the following three quadrics in the case n = d = 2.

Elliptic:

Hyperbolic:

Parabolic:

Q1:v1 = |21|2‘f‘|«z2‘2

Vo = 2129 + 2227

(1.16)

Q-1:v1 = |z]*—|z/

Vo = 2129 + 22271

Qo :v1 =

|21 [?

(1.17)

(1.18)

Vg = 2129 + 2921

All possible Levi-nondegenerate quadric models of codimension 2 in C* are isomorphic
to one of the these three aforementioned quadrics by using the following action of the

group G*? = GL(2,C) x GL(2,

R):

(C.p)((z,2) = p(C™2,C7 ).

These quadrics are referred to as elliptic, parabolic or hyperbolic, since the correspond-
ing characteristic polynomial P(t) = det(H' + tH?) has either two real, two complex
conjugate or one real root, respectively, as introduced by Ezov and Schmalz. These can
be written in the following matrix notation.

Q1 :

LU = (21

V] = (Z_l
Vg = (51
U = (Z_l
Vo = (51

Vo = (21

%) <é
%) (?
%) <é
%) (?

)
)
96)
)C)
()
)

Where the corresponding 2 x 2 matrices J; and Jy can easily be detected.






2 General case

In this section the results of the paper Convergence of the Chern-Moser-Beloshapka
normal forms by B. Lamel and L. Stolovitch [8] will be described. Furthermore the paper
Construction of the normal form of the equation of a surface of high codimension by V.
Beloshapka, [3], acts as basis for defining the operators within this chapter.

First the invidivial operators will be introduced, which will help us define the normalizing
conditions for the power series in the second section. In the final section of this chapter
the main results of the paper will be outlined.

2.1 Operators

The Fischer inner product sets the basis for the construction of the operators and their
corresponding adjoints needed to further describe the normalizing conditions.

The operator K is the first important operator which will be defined. I acts on formal
power series in z and u and maps these to power series in z, Z, u, that are linear in z.

K : Clz,u]? = (Clz, 2, u]) /(%))

KC is defined as

21 (p(2,u))
K(p(z,u)) = Q(p(z,u),2) = :
2 Ja(p(z,u))

where Q(-, ) stands for the Hermitian form of the normal form and consists of Hermitian
matrices Ji, ..., Jg.

The complex conjugate of this operator, K, will also be used to define the complex
conjugates of the normalizing conditions, which will need to be fulfilled as well.

K:Clz,ul! = (Clz, 2, u]) /(%)

is defined as

11



2 General case

The corresponding adjoint operator with respect to the Fischer inner product of /C,
which will be denoted by K*, maps vice versa power series in z, Z, u, which are linear in
Z to power series in z and u

K (C[[z,Z,u]]d)/((ZQ)) — (C[[z,u]]d

with
0
bl(z,é,u) d oz 0
K* = Z Jj bj.
bd(z>27 u) =1 i,
0zZq 0

The complex conjugate of K*, namely K* will also be of use when stating the normalizing
conditions.

The operator A, introduced in by Beloshapka is another key operator and acts on
power series in z, Z and u with values in an arbitrary space. It is defined by

with Q(-, ) representing the Hermitian form of the normal form again.
The corresponding adjoint, with respect to the Fischer inner product, A*, is the final
operator we will need to define the normalizing conditions. This operator is defined as

d
. o 0
A ‘PZZUJ'QJ' <8z’82> 2
j=1

A* has similar properties to the trace operator 7, defined in 1.10, and will be used in a
similar sense.

These operators will not only be helpful for the specific normalization conditions but
also for simplifying the conjugacy equations.

2.2 Normalization conditions

In this section the individual normalization conditions will be stated. In particular, the
choice of the third normalization condition is an interesting one. These will later help
define the spaces of power series for which the general results of section 2.4 apply to.

The set of all power series in z, z and u is denoted by C[z, z, u]. A power series in this
set ®(z,z,u) € C[z, z,u] can be decomposed into a sum in the following way

(o @]
D(z,z,u) = Z D, 1(z, 2, u).
J,k=0

12



2.2 Normalization conditions

The first set of normalizing conditions applies to the (0,p)— and (p,0)—terms, namely
®,0=Pg, =0, forp>0. (2.1)

These conditions are equivalent to the definition of "normal" coordinates as Baouendi,
Ebenfelt and Rothschild introduced (e.g. [1]). Furthermore this is equivalent to the fact
that ® does not contain any harmonic terms. The set of all power series which fulfill this
first condition will be denoted by N and specifically is given by

NV :={® € C[z,z,u] : ®(2,0,u) = (0,2, u) = 0}.

The second set of normalizing conditions apply to the (p,1)— and (1, p)—terms for p > 0.
The operators used for these conditions * and K* are defined on spaces which are linear
in z, respectively z. Since ®,; € (C[z,z,u]?)/((?)) and @1, € (C[z, z,u]?)/((2?)) the
computation is possible. These conditions differ from the Chern-Moser conditions and
state that

K" @1 = (K)*®1, =0, forp > 0. (2.2)
The analogical normal form space is then
ngk = {<I> € C[[Z,Z,u]] :K*@m :/C_*q)l,p =0,1<p< k:}

In the ®; there is the possibility that terms appear which cannot be removed, so
the trace conditions need to in fact remove all invariant parts of ®;; for j < 3. In
general ®1 1 does not have a polar decomposition, so the choice of which terms should be
removed and which terms should be kept is quite difficult. The approach B. Lamel and
L. Stolovitch choose is a balanced one where the diagonal terms (1, 1), (2,2) and (3, 3)
are included. The normalization conditions state that

— 6A*¢)1,1 + (A*)g(I’g’g =0 (23)

KC* (@11 — iA* Dy g — (A*)2D33) = 0, (2.4)

where the set of all power series ® € C[z, z, u], which fulfill these two equations, will be
denoted by N

In the final set of normalizing conditions the off-diagonal terms (2, 3) and (3,2) will
be used, which do not appear in the Chern-Moser approach. These state that

K (A*)2 (Do 3 + iAD 9) = K*(A*)? (P39 — iADy 1) =0 (2.5)
N°/J shall denote the set of all power series which fulfill these conditions. It is given by

Noff = {(I) € C[[Z, Z,u]] : K*(A*)Z(q)g’g + Z‘A(I)Lg) = E*(A*)Z(@gg — Z‘Aq)QJ) = 0} .

13



2 General case

These individual normal form spaces help us define two spaces which the general results
are based on. Set

Ny =N nNL nNIANeTT (2.6)
and
Ni =N nNL  nNe. (2.7)

We can see that Nf C ./(/ﬂ;

2.3 Transformation of a perturbation of the intial quadric

This section covers the transformation of a perturbation of the inital quadric based on
the construction of Lamel and Stolovitch. The inital quadric can be rewritten using
the defined operators from section 2.1. The conjugacy equation describes these terms.
Individual equations based on the found operators and previously discovered equations
will be stated which will later help define the (p,q)— terms of the conjugacy equation.

Take M to be the germ of a real analytic manifold at 0 of the space C"t%. This can
be described using following equation

UI = Q(zlv 2/) + @23(2,/7 2/7 U/), (28)

with v’ := v/ + i’ € C% « = Rew € R?%, ¢/ = Imw' € R? and 2/ € C". Where, as
defined before, Q(2/,%') is a map of quadric polynomial type which takes values in R?
and ®>3(2, 2, '), the germ of an analytic map at the origin.

The variables 2’ and z’ will be assigned the weights p; = po = 1 and the variables v’ as
well as u and v will receive weight p3 = 2.

Thus Imw = Q(z, z), the defining equation of a modelquadric is quasi-homogeneous
of quasi-degree 2. The term of the higher order deformation ézg(z,z,u) then has a
quasi-order which is > 3 and can be written as

<I>>3z:z:u E(I)ZZU
p>3

where i)p(z’ ,Z',u') stands for all polynomials which are quasi-homogeneous of degree p.
Therefore M, the germ of the real analytic manifold, can be interpreted as a higher order
perturbation of the quadric defined by a homogeneous equation of the type v' = Q(2/, ).
From this point on further restrictions on Q(z’, z’) can be made, such as being a Hermi-
tian form and Levi nondegeneracy. These concepts were introduced in section 1.3.

Take the following formal holomorphic change of coordinates of the form

2 =Cz+ fsao(z,w) = f(z,w), w =sw+g>3(z,w) = g(z,w)

14



2.3 Transformation of a perturbation of the intial quadric

where C is an invertible n X n matrix and s is an invertible real d x d matrix which satisfy
Q(C2,Cz) = sQ(z, 2).
Using this coordinate change, our given manifold 2.8 can be described by
v=Q(z %) + P>3(z, 2, u).

Here the equation for the manifold M depends on the coordinates z and w. The goal is
to find an expression for the terms ®>3. The conjugacy equation

50+ Tm(gss(2,0)) = Q(Cx + fo(z,w), C% + fos(2,))
+ ©53(Cz + foo(em) OF + f>2(2,0), su + Re(g>3(z,w)))
Following the notation of Lamel and Stolovitch, we will set
= f(z,u+iv) and f := f(Z,u —iv),

knowing that v := Q(z,2) + ®>3(2, Z,u). In the following ) will be used to represent
Q(z,z). The conjugacy equation then takes the form

30-0) = QD) + s (17257, (29

Analogously to the above notation we will set f>2 := f>o(z, u+iv) and fzg = fzg(f, uU—
iv). Furthermore we have that
1

5 (s(u+iv) = s(u—iv)) = sQ(z,2) + 5P>3(2, Z,0),

21
Q(Cz + f>2, Cz + fzz
Q(Cz, f>2) + Q(f>2,C2) + Q(Cz,Cz) + Q(f>2, [>2),

QUf, )
(f,f, [g+g]> $>3(Cz, CZ, su)
<<I>>3 ( slo+ g]) — &53(Cz,C%, su)> .

Using these properties the conjugacy equation 2.9 can be written as

2,1 [923(2,u +1iQ) — §>3(2,u — Q)] — (Q(C%, f>2(2,u —iQ)) + Q(f>2(2,u +iQ), C7))
(f f>2) + @23(02, Cf, S’U,) — 8@23(2, Z,u)

(f f,= (g —l—g)) - ézg(Cz,C_'E, su)>
2(923(2, 0 +1Q) — g>3) — %(Qz:’a(?v u—iQ) — g>3)
Q(CZ, f>2) — Q(C%fzz(zau —1Q)))

Q(f>2,C%) — Q(f>2(z,u+1iQ),Cz)).

M\u/\@

+
_|_
_|_

—~~

(2.10)
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2 General case

Setting the matrices to C' = id and s = 1, this equation can be written in a concise way
to become

[’(f227923) = T(Z, Z,U; f22a9237 q)) — .

Here L(f>2,9>3) stands for the left-hand side of the equation 2.10 and is a £ linear
operator. This operator £ acts on the set of homogeneous holomorphic vector fields which
have quasi-degree k — 2 > 1, denoted by QHj_o. Elements of this set are expressions of
the form

0 0

8 a Jz1 ow1
fk—l(Z,w)% +gk(2,w)% = fr_1(z,w) - i + gu(z, w) - i ’

Ozn owy

with fr_1 being a quasi-homogeneous polynomial which takes values in the spaces C"
and g, being of the same type but taking values in C% and both map to the set of quasi-
homogeneous polynomials of degree k > 3 taking values in C?. The operator £ restricted
to the space QHj_o will henceforth be denoted by Ly.

T (2,2, u; f>2,g>3, ®) — ® represents the right-hand side 2.10 and is 7 of nonlinear type.
Equation 2.10 can be extended into the homogeneous components and takes on the form

‘C(f227923) — {T(Z,E,U; f22agz3a (I))}k - (I)k‘

={T(z z,u; ;f_l,ggg, D) e — Pk (2.11)
The terms of {7 (z, z,u; ><§*1,g§§,<13<k)}k stand for the quasi-homogeneous terms of
degree < k for g>3 and < k — 1 for f>o of the Taylor expansion of T (2, Z, u; f>2, g>3, ®)
at the point 0.

The assumed conditions on the form ), namely linear independence and nondegener-
acy, have a grave impact on the linear operator £. These assumptions have the con-
sequence that £, which acts on the space of formal holomorphic vector fields, has a
finite-dimensional kernel. This kernel corresponds to the space of infinitesimal CR auto-
morphisms of the standard quadric Imw = Q(z, Z) where the origin is stabilized.
Therefore, a formal normal form can be generated for any k > 3 by examining the
complimentary subspace N to the image of the operator L.

Applying basic induction on k, to this principle, one can prove that a (fx_1,9x) as well
as a ® € N, can be found, such that equation 2.11 is fulfilled. This means that a unique
formal holomorphic change of coordinates can be found such that the rewritten defining
function lies inside the space of normal forms N := @,~3N}j. This successful change
of coordinates works up to elements in the space of infinitesimal automorphisms of the
model quadric.

The choice and construction of AN is therefore very important. Moreover it would be
beneficial if N” would fulfill further properties, namely if the defining functions are an-
alytic, the change of coordinates should also be analytic. B.Lamel and L.Stolovitch,
choose an approach which rewrites the components of the operator £ as a series of partial

16



2.3 Transformation of a perturbation of the intial quadric

differential operators.

Following notation, the terms in Taylor series expansion will be denoted by subscripts
p and ¢, which represent exactly those terms which are of degree p in z and degree ¢
in z. For maps depending on on further variables, these terms will be analytic in the
other variables in a fixed domain and remain independent of p and ¢. Furthermore the
homogeneous polynomial of degree k in the Taylor expansion of a function f shall be
denoted by fi(z,u).

A new set of conditions can be gained by taking a closer look at the expression
DEg(z,u)(Q + ®)*. Under the assumption that @ + @ is a scalar, which does not affect
our expression, since the goal is to find a lower bound for the order at which a fix set of
monomials in the variables z and Z vanishes. Taking the opportunity to treat D¥g as a
symmetric multilinear form where the arguments are monomials of z and Z, one obtains
equalities replacing the equations. These are

&
g23(z,u+1Q) — g=3(z,u+iQ +i®) =Y %Dq’igzs(zaw(@k -Q+®)" (212
E>1
and

Z'k

Qo2 = foo(2,u+iQ),C2) = Q | 3 7 Dif22(2u)(Q + ®)F = QF),C2

E>1
Thus, taking the Taylor coefficient yields

{Dyg(z,u)(Q" = (Q + ) )}pg = D Dian(z, w{Q" — (Q + ©)*}pig
=0

and

{Q(f>2 — f>2(z,u+1Q),C2)}p g
=Q({f>2 — f>2(z,u+1iQ)}pg-1,C%)

P e
SO0 HRDEAG W{(Q + ) = Q1 1,C)
=0

E>1

(2.13)

Since the first condition on the ®; is that ®,¢ = ®g4 =0, (Q + ®)! does not have any
(p, q)—terms where p < [ or ¢ < [. Therefore

(2.12),0 = 0, (2.14)

(2.12)p1 =1 Y _ Dugp—j®j1 + iDugp—1(u) P11, (2.15)
J<p
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2 General case

(2.12)2’2 = Z'Dugo(u)q)gg + iDugl(u)qu,g

1 (2.16)
+ §D390(u)(2<1>1,162 + 87 ),
(2.12)33 = iDygo(u) P33 + 1Dy g1 (u) P23 + 1Dy g2 (u) P13
1
+ 5@%90(“)@%,2@ +{®*}33
(2.17)

1
+ §D391(U)(2‘I’1,2Q +{9%}23

7
- 6D290(U)(3‘I’%,1Q + (I):f,l +30,10Q%),

(2.12)32 = 1Dygo(u) P32 + iDyg1 (1) P22 + iDyg2 (1) P12
1
+ 5 Dago(w) (2221Q + {2}32) (2.18)

1
+ 5 Da01 () (2211Q + {B%}2),

(2.12)31 = iDygo(u)®3.1 + iDyg1 (u)Po1 + iDyga(u)®q 1 (2.19)

Using these results and replacing the values g; and g;, by ¢ and —i, the terms of the form
g>3(z,u —1Q) — g>(2,u —iQ — i®) can be acquired.

(2.13)p71 = (2.13)},70 =0, (2.20)
(2.13)2,2 = Q(iDufo(u)(I)Q,l + 1Dy f1 (U)CI)Ll, C_'E), (2.21)

(2.13)373 = Q(iDufo(u)(I)3,2 +iDy f1 (u)q)gg + ’L'Dufg(u)@lg, CZ)
+ QD2 fo(u) (292,Q + {#7)s.) (2.22)

+ %Difl(U)(NH;Q + {(132}2,2), C_'Z),

(2.13)372 = Q(ZDufo(u)q):;’l + ZDufl (U)@QJ + iDufg(u)Q)Ll, 02> (223)
It holds that

ikJrl(_l)l

QD foa(,u)(@ + ©)F, Dl foa(2,u) (Q + @)Y).

Q(fs2,f>2) = )

k>0

Using a similar approach to the one above, the functions Dﬁfj/(z,u)(Q + ®)F and
D! fi(z,u)(Q + ®)! only contain (p,q)—terms when p > j' + k and ¢ > k or p > I

18



2.3 Transformation of a perturbation of the intial quadric

and ¢ > | + j, respectively. These conditions can be merged and state that the bilinear
form Q(Dﬁfj/(z, u)(Q+®)*, D! fi(z,u)(Q+®)" includes (p, g)— terms where p > j'+k+1
and q¢ > 7+ k + . This yields

Q(f>2, [>2)p0 = Q(fp: fo), (2.24)

Q(f22: f22)p1 = Q(fps 1) +iQ(D fp1(Q + ®10) + Y Dufpj®j1, fo)

¢ (2.25)
—iQ(fp—1, Dufo(Q + ®1.1)),

Q(f>2, [>2)22 = Q(f2, f2) +iQ(D f1(Q + ®1.1), f1)
—iQ(f1, Df1(Q + P11)) — %(Q(fo, D2 fo(Q + ®11)?)

+ Q(D2fo(Q + ®1,1), fo))
— Q(Dy fo(u)(Q + ®1,1), Dy fo(u)(Q + 1,1)),

(2.26)

Q(f>2, [>2)33 = Q(f3, f3) +iQ(Dfo®s1 + D f1®21 + Df2(Q + ®1.1).f2)
—iQ(f2, Dufo®1,3 + Dufi®1,2 + Dufo(Q + ®1,1))

+@Q <z <Duf0<1>3,2 + Dy f1®P22 + Dy fo(Q + P1.1)

- %(Difo(Q + ®11) @1 + D f1(Q + @171)2)) : f1>

+Q (fl, —z‘(Dufocbg,g + Dy fi®o2 + Dy f2(Q + ®1,1)

- %(Difo(Q + @12+ D2 (Q+ <I>%,1)>>

+Q( G D@+ 0108 + S (DRAQ + 810 (2.27)
+ D3 f1(Q, ®1,1)®12), f0> + Q(fo, %Dﬁfo(Q + @)

+ %(Dgfo(Q + ®11) P22 + DL f1(Q, <I>1,1)‘1>2,1))

-+ Q(—Z‘(Dufgq)&g + Duflq)g,zg + Duf2@2,3)7 .]EO)
+ Q(fo,i(Dufo®33 + Dy fi®32 + Dy foP32))

+ 5 QDufo(w)Q + @11, D2 fo(u)(Q + @1.0)°)

FLQUDL)(Q + 11)% Dufow)(@ + 1.)
+ Q(iDy f1(2,u)(Q + ®11), Dufi(2,u)(Q + ®1,1)),
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2 General case

Q(f>2, [>2)32 = Q(f3, f2) — iQ(f2, Duf1(Q + ®1,1) + DufoP1,2)
—iQ(f1, Dufo(Q + ®11)* + Dy f1®2 1)
—iQ(fo, Dy f1®31 + Dy fo®32) (2.28)
+ Q(Duf1(2,u)(Q + P1,1), Dy fo(u)(Q + P1,1))

— SQUDEAQ+ 8102 o).
And
b2 (1. 500+ 9) ) - B20(C2,C2,50)
(2.29)

1 OFdeg _ 5 (1 3\
\O<|+|£\>+1\7\:’€

where o, f € N* and v € N9,

2.4 Computed (p, ¢)—terms of the conjugacy equation

In this section the results of the computed equations of the relevant (p,q)—terms of the
conjugacy equation will be stated. A full computation can be found in Convergence of the Chern—
Moser — Beloshapka normal forms by Lamel and Stolovitch, [8]. These equations will

provide a basis for which the linear operator £ can be split into a series of differential
operators.

For p, ¢ being non negative integers, let

Tpq = {(i)>3 (f’ fjé(g+§)> — ‘izg(CZ,C_'E, su)} ,

p.q

where latter subscripts p and ¢, denote the terms in the Taylor series expansion of degree
pin z and degree ¢ in Z.
After computations using 2.14,2.20 and 2.24 the (p,0)— term of the conjugacy equation
is
1 . - . )
ng = Q(fp7 fO) + Tp70 + (I)p,()(CZv sz Su) - S(IJP,U(Zv 2 u)

=: Fpo,

(2.30)

for p > 2. In the case where p = 1, an extra term —Q(C?z, fy) is added to the previous
equation by the operator £. Thus the equation

1 ) ] ~ . )
591 Q(Cxz, fo) = Q(f1, fo) + Thp + P1,0(Cz,CZ, su) — s®1 (2, 2, u)

2
=:Fipo
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2.4 Computed (p, q)—terms of the conjugacy equation

can be obtained. The final equation of (p,0)—type can be found in the case where p = 0.
Then the following equation holds

Im(go) = Q(fo, ]Fo) + Tgyo + @0,0(02, ég, su) — S(I)070(Z, z, ’LL)
=: Fp.

For the (p,1)— terms computations of the conjugacy equation using 2.15, 2.20 and 2.25
yield

1Dugp—lQ - Q(fp: C’E) =Im1 ZDugp—j(I)j,l + Q(fp7 fl)

2
Jj<p
+iQ(D fp—1(Q + ®11), fo) — iQ(fp—1, Dufo(Q + ®1,1))
+ @pvl(Cz, su) —s®p1(z,u) +Tp1 =: Fpq,

(2.31)

for p > 3. If p = 2 the equation is a slight variant of the previous equation in the sense
that the right-hand side remains unchanged but the left-hand side gains a term of the
type iQ(Cz, Dy foQ) rendering

1 _ ] _
5 Dug1@ — Q(f2, Cz) +iQ(Cz, Dy foQ) = Fy1. (2.32)
For p = 1 the following holds

Dy Re(go(u)) - Q — Q(Cz, f1(Z,u)) — Q(f1(z,u)CZ) = Fi. (2.33)

After computations the (3,2)— terms turn into an equation of the type

_%Dggl (Z7 U)Q2 + %Q(CZ7 DZ]EO(U)Q2) - ZQ(Dqu(Z) U)Q, 62)
= (2.28) + %(2.18) +(2.23) + ®32(C2, 0%, su) — sP39(2, 2, u) (2.34)

1 -

- Z(2.18) +(2.23) + (2.29)32 := F39

where the reference (2.29)3 2 denotes the (3,2)— component of the equation (2.29), (2.18)
represents the (3, 2)— component of (§>3(z, u—iQ)—g>3) and (2.23) stands for the (3,2)—
component of (Q(Cz, f>2) — Q(Cz, f>2(z,u —iQ))).

Applying a similar principle one yields the following for the (2,2)— terms

5D Im(go) - Q* +iQ(C2 Dufi(z,w)- Q) — iQ(Dufi(2,0) - Q, C2)
— (2.26) + %(2.16) +(2.21) + Boa(Cz, Oz, su) — s a2, 2, 1) (2.35)
1 -

- 5(2'16) +(2.21) 4 (2.29)9.0 =: Fya.
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2 General case
Lastly the (3,3)— terms yield

L DiRe(gn) - @+ Q(C2 DAz ) @) + QDA (=) - Q7 C2)

1
= (2.2
(2.27) + 5

7(2.17) +(2.22) + Ci>373(C’z, Cz,su) — sP33(z, 2, u) (2.36)

1
— 272(217) + (222) + (2.29)33 == F373

2.5 Construction of the operator £

Using the results from the previous chapter the operator £ will be defined using differ-
ential operators, following the construction of Lamel and Stolovitch. Starting with a
basic transformation and applying the discovered equations will result in a proof of the
first theorem, as seen in [8].

Take a transformation of the following type

z*:z—i-ka, w*:w+ng

k>0 k>0

where both fi(z,w) and gx(z, w) are homogeneous of degree k in the variable z. A similar
approach to the one outlined above can also be taken where f;, and gi can be interpreted
to be power series maps.

The equations yielded by the computations of the specific (p, ¢)—terms can be combined
to result in a series of conditions. Using equations 2.30 and 2.31 of the (p,0)— and the
(p, 1)— terms one obtains

Im(go) = Fo,0,

1

272.91 - Q(CZ, fO) = Fl,Oa
1
—g, = F > 2
22’9 p0s P =4
1 _
§DugpQ - Q(fp-l—la Z) = Fp-‘rl,l) p Z 2.

Combining the equation for the (p,1)-term where p = 2 with the equation for the
(3,2)—term, gives

%Dung —Q(f2,2) +iQ(z, DufoQ) = Fa1
—%Dggl(%u)@2 + %Q(Za D? fo(u)Q?) — iQ(Dy fo(z,u)Q, 2) = Fj 5.

The final set of equations can be obtained by using the equations of the (3,3)—, the
(2,2)— and (p,1)—terms where p = 1. They are

Im(go) = Foo
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2.5 Construction of the operator L

Dy Re(go(u) - Q — Q(z, fi(2,u)) — Q(fi(z,w)Q, 2) = Fi1,
—%Di Im(go) - Q* +iQ(z, Dufi(z,u) - Q) — iQ(Dufi(z,u) - Q, 2) = Fay

~ D Re(go) - Q° + Q= DAfi(2,0) - Q%) + QDA fa(z,w) - @,2) = Fyg

The operator which we are trying to construct acts on a space of maps and takes on
values in the space of formal power series in C[z, Z,u]?, with a corresponding Hermitian
product. To achieve the operator necessary, the left-hand sides will be simplified, the
linear occurrence of the terms ®,, of the transformed manifold will be rewritten and
the right-hand side will be adjusted along with it. This yields the following system of
equations

Im go = ®o 0 + Foo,

1 ~
ng = ¢p70 + F 707

— Q(fp41,2) = ©pi11 + Fppaa,
— Q(f2,2) +iQ(2, Dy foQ) = ®a1 + Foy,

500 D2 fo(u)Q?) — iQ(Dufalzu)Q, 2) = By + Fia, (237

Dy Re(go(u)) - Q — Q(z, fi(2,u)) — Q(f1(z,u),2) = 1,1 + Fi,
iQ(2, Dy f1(2,u) - Q) — iQ(Dyufi(z,u) - Q,2) = Pop + Fho,

- éDi Re(go) ' QS + Q(Z’D?Afl('z’u) : Q2) + Q(Difl('z’u) : Q272)
= B33+ Fy3,

with p > 2. To show existence of a normal form, it would be enough to look at the injectiv-
ity of the linear operator which appears on the left-hand side of the equation above 2.37.
The equations stated here are the basis for the normalization conditions from section 2.2.

To get the conditions for the ®, o, where p > 0, the normalizing conditions 3.1 can be
applied to the above equation 2.37, and using the results to substitute for Im gy and g,
in the leftover equations. The normalizing conditions for the ®, 1 terms, the operator *
needs to be applied to the third and fourth line of 2.37. After applying the normalizing
condition stated in 2.2, the system of equations becomes implicit in f, for p > 2. The
solution to this problem can be used to replace the f,-terms in the other equations. This
process leaves us with a new set of equations that take on the form

1 _ A
—§ICA2f0 = B35 —iADy 1 + F3,

ARe(go) —Kfi =K f1 = @11 + Fi1,

0 ) (2.38)
ICAf1 =i KAf1 = $o0 + Fh o,

1 o .
_6A3 Re(go) + KA f) + K A% = B33+ E33,
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2 General case

where the previously introduced operators are now used.

These equations now give us the operator we require and we can define the operator

L Clu]™ x R[u]? x Clu]™ — %4, D %], @ %5, ® %34 as

e
ARe(go) = Kf1 =K f1
iKAf — i K Afy
—%A?’ Re(go) + KA%f1 + K A2 f

E(an RegUa fl) =

The space of normal forms is then the kernel of the adjoint operator, with respect to
the Hermitian product on the individual spaces of £. A formal solution to this problem
exists and is in fact unique up to modulo ker £. Uniqueness occurs as soon as we require
(fo,Rego, f1) € ImL*. Constructing the normal form space is exactly what proves
Theorem 1.

2.6 General results

In this section the results of the paper Convergence of the Chern— M oser — Beloshapka
normal forms by B. Lamel and L. Stolovitch will be outlined. The authors prove three
important theorems related to the existence of a normal form and the convergence of the
formal normal forms in this setting.

Take a Levi-nondegenerate hyperquadric Imw = Q(z,2). For perturbations, which
take the form Imw = Q(z,2) + ®>3(z, zZ, Rew), it is possible to find a formal normal
form. This is what the first main result states in detail.

Theorem 1 Let Q(z,Z) to be a non degenerate form of full rank on C"™ with values in
CY, i.e. Q takes the form Q(z,%) = (2t J12,. .., 2 Jy2), where the individual matrices Jj,
satisfy the nondegeneracy conditions 1.14. Then, a subspace ./Vf C C[z, z,u] defined in
2.6 exists such that the following can be stated. Let M be a manifold given near 0 € CN,
defined by an equation of the following type

Imw' = Q(2/,7) + ®>3(¢, 2, Rew’)
where ® € Clz,z,u]. Then a formal biholomorphic map, which is unique up to a finite-
dimensional set of parameters, exists and takes the form H(z,w) = (24 f>2,w+g>3). In
these new formal coordinates (z,w) = H~1(2',w') the given manifold M can be described
by an equation of the type
Imw = Q(z, 2) + >3(z, 2, Rew)

where ®>3 € ./Vf.
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2.6 General results

This result can be interpreted as a specific description of the construction Beloshapka
made for abstract normal forms.

The space N ¢ defined in 2.6 is the set of all formal power series which fulfill all of the
normalizing conditions from the previous section. The second defined space N 1; in 2.7
does not include the normalizing conditions of the (2,3)— and (3,2)— terms and thus
only considers the transversal d—manifold z = fy(w) only as a parameter. This concept
is what leads to the second theorem.

Theorem 2 Take a nondegenerate form Q(z,%z) on C™ which has values in C% and is
of full rank, which means that Q takes the form Q(z,%) = (2t J1z,..., 2 Jy2), where the
indiwidual matrices Jy satisfy the nondegeneracy conditions 1.14. Using N}U from 2.7, let

NV = N}U NC{z,z,Rew}. For the space N following holds. Take M to be a manifold
defined near 0 € CN by an equation of the following type

Imw' = Q(z, 7)) + ®>3(z, 7, Rew).

Then for any fo € C{w}"™ which disappears at the origin subsequently, a biholomorphic
map of the type

H(z,w) = (z+ fo+ [>2,w + g>3)

can be found, which fulfills the condition that f>2(0,w) = 0 and is unique up to a finite-
dimensional space of parameters. The manifold M can then be described in the new
coordinates (z,w) = H=Y(',w') by an equation of the type

Imw = Q(z,2) + ¢>3(2, 2, Rew)
where >3 € N'*.

The final result covers the conditions under which convergence for Theorem 1 holds.
Convergence for every normal form cannot be guaranteed, so putting basic, algebraic
conditions on the subset of formal normal forms, will force convergence of the trans-
formation to the normal form under the condition that the data is convergent. This
algebraic condition acts on the (1,1)— and (1,2)—terms from the decomposition

O(z,z,u) = Z Q;1(z,2,u), Pjr(tz,sz,u) = tjskq)j,k(z, Z,u).
ik
Furthermore the notation <I>;. i Will be used for

oD . 0P’
!/ = _ 7y Jy
k(2 Zu) = ( Rl

where the left hand side is a d x d matrix with entries consisting of formal power series
in u, which take values in the space of polynomials in z and Z.
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2 General case

Theorem 3 Let Q(z,2) to be a non degenerate form of full rank on C"™ with values in
CY, ie. Q takes the form Q(z,2) = (2t J1z,...,2"J042), where the individual matrices
Jy, satisfy the nondegeneracy conditions 1.14. Let M be a manifold given near 0 € CN,
defined by an equation of the following type

Imw' = Q(,7) + ®>3(2', 7, Rew)

where ® € C {z,z,u}. Then the convergence of any formal biholomorphic from Theorem
1 is guaranteed of the following normal form

Imw = Q(z, 2) + ®>3(z, 2, Rew)
and fulfills
‘13/1,1‘1)1,2 + ‘1’11,2(62 +®11) =0 (2.39)

The normalization in Theorem 3 differs from the approach Chern and Moser take.
However in the case of a hypersurface (d = 1) the normal form in Theorem 1 converges
by default, without further restrictions. In this specific case equation 2.39 is always sat-
isfied, since ®1 1 = ®12 = 0.

This different approach to the one Chern and Moser use is actually beneficial to dealing
with higher codimensional manifolds and can be adapted to manifolds with lower codi-
mensions.

The construction of the sets in these proofs and the full proofs are outlined in the later
section of the paper Convergence of the Chern — Moser — Beloshapka normal forms
by B. Lamel and L. Stolovitch.
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3 Elliptic case

In this section the normalizing conditions of the elliptic case in C?*2, will be described.
These have been solved using Wol fram Mathematica, in which a code as been written
for the conditions 2.4 and 2.5 (see Bibliograpy [9]). The other two sets of normalizing
conditions are of a simpler type and have been solved by hand.

In the case that n = d = 2, the matrices J; and J, can explicitly be written out for the
elliptic, hyperbolic and parabolic cases listed above. Within the Mathematica code, the
matrix input can be adapted to yield the correct operators for the individual cases. This
thesis outlines the elliptic case and in a similar way the other two cases can be retrieved
by adapting the code.

We can now summarize the normalization conditions for an elliptic submanifold defined
by
Imw; = |21 |2 +| 22| +® (21, 22, Z1, Z2, Rewr, Re ws),

Imwo = 2125 + 20271 + \I’(Zl, 29,21, 29, Rewq, Re ’LUQ).
3.1 First set of normalizing conditions - (0,p)-terms

The first set of normalizing conditions 3.1 apply to power series of order (0,p)— or (p,0)
and state that

®,0=Pg, =0, forp>0. (3.1)
We will start by decomposing the power series into
(I)(Zl, 29,21, 29, Rewi, Re ’U)Q) = 21(1)170(21, Zzs, Re w1, Re ’LUQ) + 22(1)071(51, zs, Rewi, Re ’LUQ)

\I/(Zl, Z2, 21,22, Re wl,Rewg) = 2’1\111’0(51, Z9, Rewy, Rewg) + 22\11071(21, Z2, Re wl,Rewg)

so that 3.1 becomes
Vo1 =—P10, ¥10=-Po;.

3.2 Second normalizing conditions - (1,p)-terms

For the second set of normalizing conditions 2.2 we have that

K*®p1 = (K)*®1, =0, forp>0.

Which gives us the following two equations
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3 Elliptic case

0 0
— — P— -2
071 1o + 079 ’0b2 0 (3 )
0 0
R — b pr— .
82‘2‘ o5 ‘0 2=0 (3:3)

We recall that @, € (C[z, z,u]?)/((2%)), such that b; and by are the first and second
coordinates of this power series and thus take the form

b= Y 8l (e b= Y 02 5027
|oe|=p |oo|=p
18]=1 18|=1

We can plug these into equations 3.2 and 3.3 to analyze what these normalizing conditions
look like. For equation 3.2 we obtain the following.

B = 2 =B —
821 Z@ zaz—i- 95 o ZCD u)z*z” =0

|oo|=p |a|=p
18]=1 18l=1

Splitting the sum into the cases ey, where 51 = 1, 82 = 0 and ey, where 81 =0, 82 = 1 for

£ we obtain:
Sl (e + > B2 (u)z* =0 (3.4)
la|=p la=p

For equation 3.3 we get

0 _

AR Z @}lﬂ(u)zazﬁ + A Z @i’ﬁ(u)z =0
|a|=p |al=p
1B]=1 8]=1

After splitting the sum into the different cases for 5 again, we obtain

D@L, (w4 D DL =0. (3.5)

la|=p la|=p

3.3 Third set of normalizing conditions - diagonal terms
The third set of normalization conditions are expressed in terms of conditions on the

O (21, 22, 21, Z2, Rwy, Rwy) = Z D, 8~,6(Rwi, Rws) 2T zgzl zg
a,B,7,0

where a+ 8+ v+ < 3.
We start with solving the first of the two equations, 2.4, for the terms

Qo101 (ur,u2), Poii0(ui,u2), Wigon (uwi,uz), Wio1o(ur,u2),
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3.3 Third set of normalizing conditions - diagonal terms

where the dependencies on (u1,us) will be omitted for sake of readability. This yields

D101 = 36P0303u5 + 8D 91 0us + 4Dy 1 91Ul
+ 12\11073,1721@ + 8\111,2,2711@ + 12\112717370114%
+ 4i®g 2 0 2u1 + 24usPo 3,1 0u1 + 1P 11,11
+ 24uo®1 2.0, 3u1 + 8uaPy 221Ut + 8ua P 1,1 2u1
+2iWo 21,101 + 24uaVWo 32,1u1 + 20011 2 guy
+ 8uaWi 21,
+ 2iup®g 911 + 12u5P0 391 + 2iua®1 102
+8us®1 012+ 12u3P2 103 — Vo110
+ diugWo 200 + 36usWo 330 + iuaWy 111

2 2
+8usWi 291 +4usWa 112

ou1 + 24uo Wy 23 0u1 + 8uaWa 1 2 1u1

2 2 2
Do 1,10 = 12Pg312u] + 8P1 22 1u] + 12P9 1 3 0u]
2 2 2
+ 36\11073,073u1 + 8\1117271721141 + 4\1’271,2,1%
+ 21'(130727171’&1 + 247,62@)07372,1”1 + 21'(131717270711

+ 8ua®Pq 2,1 2u1 + 24us P 2 3 0u1 + 8uaPo 1 21Ut

+ 41V 900u1 + 24usWo 31 2u1 + W1 1,1,1U1

+ 24usW1 20 3u1 + 8uaWi 22 1u1 + 8uaWa 1.1 0u1
+ 4ius®02,2,0 + 36u3Po3,3,0 + 1u2P11,11
+8us®1 001 + 4uiP2112 — Po101

+ 2iusWg 011 + 1203¥0 321 + 2iua¥i 102

+ 8ug‘1’1,2,1,2 + 12U%‘P2,1,0,3

2 2 2
V10,01 = 4Py 212u] + 8P 12 1u] + 36P30 3 0u7
2 2 2
+ 12‘1’17270731@ + 8\112717172111 + 12\11370727111,1
+ 1Py 1,1,0u1 + Buo®y 221Ut + 4iP9 2 0U1

+ 8ua®a 1 1 2u1 + 24usPo; 3

1yt It Al

+ 20V 1,00u1 + 8uaWi 21

14y

ou1 + 24us®30.2,1u1
out + 21W9 0 1,1U1

+ 24uoVWo 1 0 3u1 + 8uaWo 1 2 1u1 + 24u2¥3 01 2us
— @010 + 20usP1 12,0 + 12u3P1 250

+ 27:U2¢2707]_7]_ + 8U%<I>271,271 + 12u%<1>3,071,2

. 2 .
+iuoWi 11,1 +4usWi 21 + 4iusWa o2
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3 Elliptic case

+ 8u§\1’2,171,2 + 36u§\1137070,3

and

U010 = 1201203uf + 8Po 11 2uf + 128502 1u]
+ 4‘1’1,2,1,21@ + 8‘1’2,1,2,11@ + 36\1'3,0,3,01@
+ 2i®1 1 02u1 + BuaPy 21 2u1 + 21Po 011U
+ 24us®o 1,0,3u1 + 8uaPo 1 2 1u1 + 24usP3 0 1 2u1
+ iUy 1,1,1u1 + 8uaWi 20 1ur + 41Wa 02 0ur

It Rkl 144

+ 8U2\I/2 1.1

It At ]

ou1 + 24usWa 1 3.0u1 + 24usW3021u1
— By 001 +iug®r 11 +4udDr oo

+ diug®g 00,2 + 8usPa11.2 + 36u3P300,3

+ 2iuWq 100 + 120301 230 + 2iuaWa 11

+ 8u3Wa 101 + 12050301 2.

If we want to find explicit expressions for the normalization conditions 2.3 we substitute
the solutions above into it and decompose each of the series into power series depending
on the dependencies and if it is one of the terms to be solved for. For these rules the use
of ® will be used to denote both ® and ¥. We have following decompositions.

Do, py,6(u1,u2) = Pagy,6(0,0) + u1P10,0,8,6(u1) + u2Po,1,0,8,7,6(u2)
+ urua® 1,0.8,,5(u1, u2)

for terms that will be solved for, as well as

D1.0,0,,7,0(U1) = ©1,0,0,6,7,6(0) + P2,0,0,87,6(u1)

for terms where a + 5 + v+ § = 2. Furthermore we will decompose the term with us in
a similar fashion

D0,1,0,8,7.6(U1) = P0,1,0,87.5(0) + Po2,0,8,7,6(u1)
where the same condition on «, 3,7, hold as above and we have that
®4.,5(0,0) =0

when o + 8+ + 6 = 2, where ®, 5,5, € C. After applying these expansions to the
equation, where the first conditions have been substituted, we can start to solve for the
individual terms. To compute the constant terms of the u}, u; will be set to zero and
the equation can be simplified. After setting us to zero the constant terms are left and
can be solved for

@0’27270(0, 0) and \1127070,2(0, O).
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3.3 Third set of normalizing conditions - diagonal terms

These terms can then be expressed in the following way

1. 1 1.
$0,22,0(0,0) = 11‘1)0,1,1,0,0,1(0) - Z(I)l,l,l,l(oa 0) — 11‘1’0,1,0,1,0,1(0)

1 1
— 5‘1’072,1,1(07 0) — 5\1’1,1,0,2(0,0)

1 1 1 (3.6)
U50,0,2(0,0) = _1@0’1’1’0’1’0(0) — §<I>1,1,2,0(0,0) - 5‘192,0,1,1(070)

1. 1
+ 11‘1’0,1,0,1,1,0(0) — 1‘111,1,1,1(0, 0)

Working backwards, these equations can be applied to the equation used to solve for
these, where us has not been set to zero. Now this equation can be solved for

D0.1,0,2,2,0(u2) and Yo 120,02 (u2)
and gives us

15 . 1 3.
P0,1,0,2,2,0(u2) = ?Zu2¢’0,1,073,3,0 (u2) — Z‘I’o,m,l,l,l (u2) + 5%62‘1’0,1,1,2,2,1 (u2)

1, 3. 1.
+ —iua®o 121,12 (u2) — —iua®o 1,3,0,0,3 (u2) + Zlq’o,zl,o,o; (u2)

2 2
1 ) 1
- 5‘1’0,1,0,2,1,1 (u2) + 3iuaVo 10321 (u2) — 5‘%,1,1,1,0,2 (u2)
) : 1.
+ 2iugWo 1,1,2,1,2 (u2) + 3iuaVo 121,03 (u2) — 11‘1’0,2,0,1,0,1 (u2)
15 . 3. 1,
+ ?Z¢073,3,0(07 0) + 52‘1’1,2,2,1(07 0) + 52‘1’2,171,2(0, 0)
3. . .
— 51@370,073(0, 0) + 31\110737271(0, O) + 22\1’1727172(0, 0)

+ 3’L'\I/27170,3(0, 0)

and

1 . 1
Uo1200.2 (u2) = —§‘I>0,1,1,1,2,0 (u2) + 3iuaPo 1,1,2,3,0 (u2) — 5‘1)0,1,2,0,1,1 (u2)

) ) 1.
+ 2iug®o 12,121 (u2) + 3iuaPo1,3,0,1,2 (u2) — —iPo.2.1,0,1,0 (u2)

4
3. 1 1.
— 51712‘1’0,1,0,3,3,0 (ug) — 1‘110,1,1,1,1,1 (u2) + 5“62‘%,1,1,2,2,1 (u2)
3. 15, 1.
+ §ZU2‘I’0,1,2,1,1,2 (u2) + ?“1«2\1/0,1,3,0,0,3 (u2) + 11‘1’0,2,0,1,1,0 (u2)

+ 3i®1 9.3,0(0,0) + 2i®s1 51 (0,0) + 3ids.0.1.2(0,0)

3. 1. 3.
- 51‘110,3,3,0(0, 0) + 51\1’1,2,2,1(0, 0)+ 52‘112,1,1,2(0, 0)

15 .
+ ?Z\II37070’3(0, 0).
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3 Elliptic case

To obtain the constant terms for u{, this same principle can be applied to the expanded
equation, where the constant terms have been substituted in. Therefore we can solve for
the two terms

0.2,0,2(0,0) and ¥s.20(0,0)

and this gives us the following equations

1. 1 1.
©020.2(0,0) = —i®101,01,000) — =P1,1,1,1(0,0) — =i W19,0,1,1,0(0)

4 4 Rt Rl 4
1 1
- 5‘110,2,1,1(07 0) — 5‘111,1,2,0(070)
1 1 1 (3.7)
¥50,20(0,0) = —1@1,0,1,0,0,1(0) - 5‘51,1,0,2(070) - 5‘1’2,0,1,1(0,0)

1. 1
+ ZZ‘IJ1,0,0,1,0,1(0) — 1‘1’1,1,1,1(0, 0)

for the constant terms. Continuing the system, we can find explicit solutions for the
terms

10,0202 (u1) and ¥i192020 (u1)

after substituting the constant solutions back in. They can be written as

15 . 1 3.
®100202 (1) = §ZU1@1,0,0,3,0,3 (u1) — Z¢170,1,1,1,1 (u1) + §W1<I>170,1,2,1,2 (u1)

1. 3. 1.
+ 5“61%,0,2,1,2,1 (u1) — §Zu1<191,o,3,0,3,0 (u1) + Zlq’z,o,l,o,l,o (u1)
1

. 1
- 5‘111,0,0,2,1,1 (u1) + 3t Wi 003,12 (u1) — 5‘1’1,0,1,1,2,0 (u1)

. ) 1,
+ 2iu1 ¥y 01,221 (u1) + 3w V102,130 (u1) — 11‘1’2,0,0,1,1,0 (u1)
15 . 3. 1,
+ ?@0,3,0,3(0, 0)+ 51‘131,2,1,2(0, 0) + 5@2,1,2,1(07 0)

3. . . .
— 5z<I)3707370(0, 0) + 32‘11073,172(0, 0) + 22\111,272’1(0, 0) + 31\1’27173’0(0, 0)

and

1 . 1
U1 02020 (u) = —5‘1)1,0,1,1,0,2 (u1) + 3iu1P1,0,1,2,0,3 (u1) — 5‘191,0,2,0,1,1 (u1)

1

+ 20u1P102,1,1,2 (u1) + 3iui P10,3,0,2,1 (u1) — Zi‘bzog,op,l (u1)
3. 1 1.
— §w1‘I’1,0,0,3,o,3 (u1) — 1‘1’1,0,1,1,1,1 (u1) + §ZU1‘I/1,0,1,2,1,2 (u1)
1

3. 15 . .
+ §Zu1‘1/1,0,2,1,2,1 (u1) + 7Zu1‘l’1,0,3,0,3,0 (u1) + ZZ‘I/2,0,0,1,0,1 (u1)
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3.3 Third set of normalizing conditions - diagonal terms

+ 3i®1.9,0.3(0,0) + 2i®y 1 1.2(0,0) + 3i®3,051(0,0)

3. 1. 3.
- 51‘110,3,0,3(0, 0) + 52‘1’1,2,1,2(0, 0)+ 52‘112,1,2,1(0, 0)

15,
+ 32\1’37073’0(0, 0).

The normalizing condition 2.3, after substituting the solutions for 2.4 and applying
the four sets of equations listed above, gives us the complete solution for the rest of the
power series for the terms

U902 (u1,u2) and P20 (ur,us)

They are

15 . 3. 1,
Uo2,02 (Ui, u2) = 5 ®11.0303 (w1, u2)ui + 51‘1)1,1,1,2,1,2 (1, ug) ul + 52@1,1,2,1,2,1 (u1,ug) ul

3
: 3, o 3, o 3
- 51‘1)1,1,3,0,3,0 (ur,u2) uy + 3iW11,031,2 (w1, u2) uj + 201 11221 (w1, u2) uy

. 15 9.

+ 300112130 (u1, ug) uf + 5 1P1003,1,2 (1) ui + 31101203 (u1) ui
) ) 3.

+3i®1 01221 (u1) uf +i®1021,12 (u1) Ui + 5i®102.1,30 (u1) uf

2

3. 15 . 3.
— 5@1,0,3,0,2,1 (uy) uf + 5@0,1,0,3,0,3 (ug) uj + 51@0,1,1,2,1,2 (ug) u}

1. 3.
+5i®o12121 (ug) uf — 519013030 (ug) uf — ®1,1,02,02 (u1, uz) uj

15 1 9
. 2 2 , 2
+ ?ZU2<I>1,1,0,3,1,2 (w1, ug) uy — 1‘%,1,1,1,1,1 (w1, uz) uy + §w2‘1>1,1,1,2,0,3 (u1,u2) u

, 2, . 2, 3. 2
+ 3iug Py 112,21 (w1, u2) uy +iua®i1,21,1,2 (w1, u2) ui + 5%62‘1’1,1,2,1,3,0 (u1,u2) uj

by

3. . .
— 51162‘1’1,1,3,0,2,1 (ur,u2) ui +9iW1 00303 (u1) uf + 61V 00321 (u1) ui

+4iW1 012,12 (u1) uf +6i%1 01230 (u1) ui +3i%1021,21 (u1)uf

+ 300010312 (u2) u?d +2iWo 11991 (ug) ul 4+ 30012130 (u2) ul

1
2 , 2 , 2
- 5‘1’1,1,0,2,1,1 (u1,u2) ui + 9iuaWi 103,03 (w1, u2) ui + 6iuVq 10321 (w1, u2) uj

1
2 2 | 2
— 5‘1’1,1,1,1,2,0 (ur,u2) ui + 4iuaWy 11,212 (U1, u2) ui + 6iuVq 11,230 (w1, u2) uy

) 15 .
+ 3iugWq 19121 (u1,us) ui + 52U2@1,0,0,3,2,1 (ur)ug — 5‘131,0,1,1,0,2 (u1) uy
1

) 9.
— =Dy 01,120 (u1) ur + 3iuaPi 91,212 (u1) ur + 5W2(I)1,071,2,3,0 (u1) uy

2 Rinb b int)
3. . 3.
+ §W2‘I’1,0,2,1,0,3 (1) ur 4+ iua®i 021,21 (u1) ur — §w2¢’1,0,3,0,1,2 (u1) wy
) 15 .
+ 11(1)2,0,1,0,0,1 (u1) ur — Po.1,0,2,0,2 (u2) ur + ?2U2‘I>0,1,0,3,1,2 (u2) uy
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3 Elliptic case

1

9. )
— 1‘1)0,1,1,1,1,1 (u2) ur + §ZU2<I>0,1,1,2,0,3 (u2) ur + 3iugPo 112,21 (u2) uy

) 3. 3.
+iua®o 12,112 (u2) ur + §w2¢’0,1,2,1,3,0 (ug) up — QZUZ(I)O,I,B,O,ZJ (u2) uy

15, 9. .
+ 52@0737172(0, O)u1 + 51(13172,073(0, O)U1 + 32@1,272,1(07 0)u1

) 3. 3.
+1i®o112(0,0)u; + 52@2,1,370(07 0)u; — 51(133,0,2,1(0, 0)uq

It Rkl

15 1
.9 .
+ 77/“2(1)1,1,0,3,2,1 (Uly U2) up + 1@y g 1,0,1,0 (Ula U2> up — su2®1 1,1,0,2 (uh u2) U1l

2 4 IR 2 IR]
1

. 9 9. 2
— 5“2@1,1,1,1,2,0 (ur,u2) uy + 3iuz®y 11,212 (w1, u2) up + §ZU2<I>1,1,1,2,3,0 (u1,u2) uy

3 3
-2 - 2 -2
+ 52u2<1>1,1727170’3 (’LL1, ’LLQ) (3] + 1u2<I>171,271,271 (Ul, Ug) Uy — §ZU2<I>1’1737071’2 (’LL1, ’LLQ) (73]

. . 1
+ 6iuaW1,0031,2 (u1) ur + YiuaWi 003,30 (u1) ur — 5‘1’1,0,1,1,1,1 (u1) wy
+ 6iug ¥ 01,203 (u1) w1 + 4iuaWi 01221 (u1) ur + 3iugWi 921,12 (u1) uy

1. 1 .
— 12‘112,0,0,1,0,1 (ur)ug — 5‘1’071,0,2,1,1 (ug) ur + 9iua¥o 10,303 (u2) ur
. 1 ‘
+ 61uaWo 10,321 (u2) up — 5‘110,1,1,1,2,0 (u2) ur + 4iuaWo 112,12 (u2) ur

Pt it Lt )

+ 67u2Wo 1,1,2,3,0 (u2) ur + 3iuaWo1,2,1,2,1 (u2) w1 + 9i1V¥o3,0.3(0,0)uq

byt

+ 6i\110737271(0, O)U1 + 42'\111,27172(0, O)U1 + 61'\1/1,273,0(0, O)ul

. 1. .
+3iW05121(0,0)u; — 11‘1’1,1,0,1,1,0 (w1, u2) ur + 6w§@1,1,0,3,1,2 (w1, u2) ur

1
.2 .9
+ 9iu3V¥1.1,0,33,0 (u1,u2) ur — §U2‘I’1,1,1,1,1,1 (w1, u2) ur + 61u5¥1.1,1,2,03 (w1, u2) ut

. ) 1.
+ 4w%‘1’1,1,1,2,2,1 (w1, u2)ur + 3lu§\1/1,1,2,1,1,2 (w1, u2)ur + 12‘1)0,1,1,0,1,0(0)

1 15
+ 1@1,0,1,0,0,1(0) —u2®P1,00,220 (u1) + gwg‘bl,o,o,s,&o (u1)

1 3. 1.
— ~up®1 01111 (u1) + Siud®1 01021 (u1) + ~iudPr 02112 (u1)

4 b Rt Eb) 2 2
3, L

~3 u5®P10300,3 (1) + ?ZUQ(I)O,LO,{S,Q,I (ug) — 5@%,1,1,1,0,2 (u2)
1 . 9.

— 5u2®o111.20 (u2) + Bius®o,1,1,2,1,2 (u2) + §Zu%¢o,1,1,2,3,0 (u2)
3. ) 3.

+ §ZU§<I>0,1,2,1,0,3 (ug) + iu3®o,1,2.1,2,1 (u2) — B u3P0,1,30.1,2 (uz)
1. 15 . 1

+ ZZU2(I>O,2,1,O,1,O (u2) + ?ZU2¢0,3,2,1(0, 0) — §¢1,1,0,2(0»0)
1 ) 9.

- §¢1,1,2,0(0, 0) + 3iua®12,12(0,0) + §ZU2(1)1,2,3,0(0, 0)
3. . 3.

+ §W2(I>2’1’0’3(0’0) +iug®212,1(0,0) — §’Lu2q’3,0,1,2(07 0)
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3.3 Third set of normalizing conditions - diagonal terms

15 .
— ®p211 (u1,u2) — usP1 10290 (u1,u2) + ?Zugq)l,l,o,&s,o (u1,uz)
1 1, 3
+ ZZUQ(I)LI,LO,O,I (ur,u2) — Zuzq)l,l,l,l,l,l (u1,u2) + 51162(1’1,1,1,2,2,1 (u1,u2)

1, 3. 1,
+ iui®y 19119 (U1, u2) — —ius®y 13003 (u1,uz) — ~i¥101.1.0(0)

2 2 4
1. 1 .
— 11\1/1,0,0,1,0,1(0) — §U2‘I/1,0,0,2,1,1 (u1) + 3iud Wy 00321 (u1)
1 . .
— ju2¥ro102 (u) + 2ius V1 0,1,2.1,2 (1) + 3iuz V102,103 (u1)
. . 1
+ 6iuiWo 10312 (u2) + 9iudVo 10330 (uz) — 5162‘1’0,1,1,1,1,1 (u2)

+ 6ius o 1 1 2,0,3 (u2) + 4iu%‘110,1,1,2,2,1 (u2) 4 3iusWo 19112 (u2)

IR sLydytydly

1. ) .

— ZW2‘1’0,2,0,1,1,0 (u2) + 67u2Wg 31,2(0,0) + 9ius W 330(0,0)
1 . .

— 5\11171,171(0, 0) + 62u2\111,27073(0, 0) + 42162\1/1’27271(07 0)

. 1. 1
+ 3iugWa1,1,2(0,0) — Yo 290 (u1,u) — ZZUQ\I/LI,O,I,O,I (ur,ug) — §u%‘111,1,0,2,1,1 (u1,u2)

) 1 )
+ 3ius Wy 10321 (U1, u2) — §U%W1,1,1,1,0,2 (w1, u2) + 2iu ¥y 11219 (u1,us)

.3
+ 3ius ¥y 12,103 (U1, u2)
and

D020 (w1, u2) = 3iP1,1,1,2,0,3 (w1, u2) uf 4+ 20112112 (U1, ug) Ui + 3i®1,1,3,0,2,1 (U1, u2) ul

PRkt ] eyt

3 1 3
- 3 4 3 , 3
- 51‘111,1,0,3,0,3 (w1, u2) uj + 52‘111,1,1,2,1,2 (w1, ug) uj + 52‘111,1,2,1,2,1 (w1, ug) uy

15 . . .
+ ?Z‘I’1,1,3,0,3,0 (u1,u) ul + 3i®1 01912 (1) ud + 6i®1 091,03 (u1) ul

+4i®1 09121 (u1) ud +6iD1 03012 (u1) u? + 9Py 03030 (u1) ul

+3iP0,1,1,2,0,3 (u2) uf + 2iPo12.11,2 (u2) uf + 3iPo1 30,21 (u2) uf
1 . 1
— 5@1,1,1,1,0,2 (u,ug) uf + 3iug®y 11912 (U1, ug) us — §¢1,1,2,0,1,1 (u1,u2) ui

, 2, 4 2, 2
+ 6iug®1 12103 (w1, u2) uy + diug®q 121,21 (w1, u2) ui + 6iua®y 13,012 (U1, ug) u
3 3
. 2 , 2 . 2
+ 9iua®1,1,3,0,3,0 (U1, u2) Uy — 52‘1’1,0,0,3,1,2 (w1)uy + 51\1’1,0,1,2,0,3 (u1) uy

, . 9.
+1iW1 01,221 (u1) uf + 3iW1 021,12 (u1) uf + 51‘1/1,0 2,1,3,0 (u1) ui

sy ey 4y 145

15 . 3. 1.
+ 71‘1/1,073,0,2,1 (uy) uy — 51\110,1,0,3,0,3 (ug) ut + 52\110,1,1,2,1,2 (ug) u?

. 15 . .
+ 52\1’0,1,2,1,2,1 (ug) u? + 32‘110,1,3,0,3,0 (ug) us — §Zu2\111,1,0,3,1,2 (u1, u2) ul

1

2, 3. 2, . 2
— 1‘111,1,1,1,1,1 (w1, u2) uf + §ZU2‘I/1,1,1,2,0,3 (w1, ug) uf +iuaWi 11,221 (U1, u2) uy
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3 Elliptic case

2 | o 2, 9. 2
— V112,020 (w1, u2) ui + 3iuaVi 121,12 (w1, uz) uy + §ZU2‘I’1,1,2,1,3,0 (w1, ug) uf

15, 1 )
+ ?ZUQ\Ijl,l,S,O,Z,l (w1, ug) uf — 5‘1)1,0,1,1,1,1 (1) ur + 3iug®P1,0,1,2,2,1 (u1) us

+ 4diua®10.2,1,1,2 (u1) ur + 61uaP1,02,1,3,0 (1) ur + 9iuaP1,0,3,0,0,3 (1) ur
. 1. 1
+ 6iug®1 03021 (u1) ur — 12@2,0,1,0,1,0 (ur) ug — 5‘1)0,1,1,1,0,2 (u2) uq

. 1 )
+ 3tua®o 11,212 (u2) U1 — §®o 1,2,0,1,1 (u2) w1 + 6iua®Po 1,2,1,0,3 (u2) U1

by byt iRt

+ diug®o 121,21 (u2) ur + 6iuaPo 130,12 (u2) ur + 9iuaPo 1,3,0,3,0 (u2) U1
+ 3’L"1)1,27172(0, O)U1 + 62'@271,073(0, O)Ul + 42'(192,172,1(0, O)U1

) ) 1,
+ 6i®30.1,2(0,0)u1 + 9iP30.30(0,0)u; — 11‘1’1,1,1,0,0,1 (u1, ug) ug

.9 9
- §u2‘1>1,1,1,1,1,1 (w1, u2) ur + 3ius 11,1221 (U1, u2) ur + 4wy P11.2.1,1,2 (w1, u2) ur

9 9 9
+ 6iu5P1 12130 (w1, u2) ur + 9ius 11,3003 (U1, u2) uy + 6ius Py 13,021 (U1, u2) ug

3. 1 1
- 51U2\1/1,0,0,372,1 (ur)ug — 5\1’1,0,1,1,0,2 (ur) ug — 5\1’1,0,1,172,0 (u1) uy

) 3. 9.
+iua Wi 01,2,1,2 (u1) ur + §Z’u2‘111,0,1,2,370 (u1)ur + §ZU2‘IJ1,0,271,0,3 (u1) uy

. 15, 1.
+ 3iua W1 02,121 (1) ur + ?Zu2q’1,0,3,0,1,2 (w1)ur + 1“112,0,0,1,1,0 (u1) ug

) 1 3.
- §Zu2‘I’0,1,0,3,1,2 (u2) ur — 1‘1’0,1,1,1,1,1 (u2) ur + §ZU2‘I/0,1,1,2,0,3 (u2) uy

+iuaWo,1,1,2,2,1 (u2) u1 — Wo,1,2,0,2,0 (u2) w1 + 3iugVo 121,12 (u2) U1

[t ekt Tt ) PRkl sty ly

9 15 . 3.
+ §ZU2‘I’0,1,2,1,3,0 (u2) ur + ?ZU2W0,1,3,0,2,1 (ug) up — 52‘1’0,3,1,2(0, 0)uq

3. . .
+ 51‘1’1,2,0,3(07 0)ut 4+ iW1221(0,0)ur + 3iWa 1 1.2(0,0)u

9. 15 . 1,
+ 51‘1’2,1,3,0(07 0)u; + 31\1’3,0,2,1(0, 0)ur + 11\1’1,1,0,170,1 (u1,u2) ug

3 1 1
9
—3 ua V11,0321 (U1, u2) Uy — §U2‘I/1,1,1,1,072 (u1,u2)ur — §u2\1’1,1,1,1,2,0 (u1,u2) uy

9
9
1,1,2,3,0 (U1, u2) ug + §1u2‘111,1,2,1,0,3 (w1, u2) ug

IR]

.9 3.5
Wiz (u, ug) v + Siugly

] 15 . .
+ 3ius Wy 19191 (U1, ug) up + —iusWy1301.2 (U1, uz) uy — 12@0,1,1,0,0,1(0)

9
1 1 -
- 11‘1’1,0,1,0,1,0(0) — 5u2Pr01120 (u1) + 3iuz®10,1,2,30 (v1)

1

- 5“2‘1)1,0,2,0,1,1 (u1) + 2iu§‘1>1,0,2,1,2,1 (u1) + 3iu§<1>1,o,3,0,1,2 (u1)

1 . .
—5u2Po11110 (ug2) + 3iuzPo,1,1,2,2,1 (ug) + 4iusz®o1,2,1,1,2 (u2)
+ 6iuzPo,1,2,1,3,0 (u2) + 9iuzPo1,3,0,0,3 (u2) + 6ius®o1,30.2,1 (u2)
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3.4 Fourth set of normalizing conditions - mixed terms

1

1. .
— ZZU2(I)0,2,1,0,0,1 (u2) — §¢1,1,1,1(0, 0) + 3iua®1,2,2,1(0,0)

+ 4iug P2 1.1.2(0,0) + 6iugP21.30(0,0) + YiugP300.3(0,0)

IR

+ 6iu2®3,0,2,1(0,0) — 20,02 (w1, u2) — Ziu2‘1>1,1,1,0,1,0 (u1,u2)

1 . 1
- 5“3‘191,1,1,172,0 (u1,u2) + 3ius®1 11230 (w1, u2) — 5”%%,1,2,0,1,1 (u1,u2)

. . 1.
+ 20u3P1,1,2,1,2,1 (w1, u2) + 3iup®1,1,3,0,1,2 (un, us) + 17%0.10.10.(0)

Pt b hat]

1. 3. 1
+ ZZ\I’LO,O,I,LO(O) - §ZU§W1,0,0,3,3,0 (u1) — Zu2qf1,o,1,1,1,1 (u1)

1. 3.
+ §ZU3‘P1,0,1,2,2,1 (u1) —u2¥1 02,002 (u1) + ilug‘l’l,oz,lm (u1)

15 . 3. 1
+ 31u3W1,0,3,0,0,3 (u1) — 5“63‘1’0,1,0,3,2,1 (u2) — Su2¥o.1,1,1,02 (u2)

1 . 3.
— 5u2%0,1,11.20 (u2) + iu3Wo,1,1,2,1,2 (u2) + 51@‘1’0,1,1,2,3,0 (u2)

9. ) 15 .
+ §W§‘1’0,172,1,0,3 (u2) + 3iuzWo,1,2,1,21 (u2) + gwg‘l’o,l,s,o,l,z (u2)

1. 3. 1
+ sz‘I/o,Q,o,l,o,l (ug) — 5“62‘110,3,2,1(0, 0) — 5\1’1,1,0,2(07 0)

1 _ 3.
- 5‘111,1,2,0(0, 0) +iua¥i212(0,0) + §Zu2‘111,2,3,0(07 0)

9. . 15 .
-+ 52’&2\1}2,1’0,3(0, O) + 3Z’LL2\I/271’2,1(0, O) + ?Z'UQ\II&OJ’Q (O, 0)

1, 3.
— W11 (ur,ug) + ~iug®y 10110 (U1, u2) — ~ius¥q 10330 (u1,us)

4 2
~ Lz Liusw — UiV
12¥ii (U1,UQ)+21U2 1,1,1,2,2,1 (w1, u2) —u3 Wi 120002 (U1, u2)
3 15
.3 3
+ §Zu2‘1’1,1,2,1,1,2 (u1,u2) + ?ZUQ\I’LI,S,O,OB (u1,u2)

3.4 Fourth set of normalizing conditions - mixed terms

The fourth set of normalizing conditions 2.5, apply to the mixed terms ®33, ®12,
®35,891. To solve equation 2.5 the terms will again be split into their power series
with the following rules, where ® stands for both ® and V.

Do, 5,5(u1,u2) = Po g4,6(0,0) + u1P10,0,8,6(u1) + u2P0,1,0,8,7,6(u2)

+ urua®y 1,0,8,,5 (U1, uz)

applied first to terms that will be solved for and then to the other terms appearing in

equation 2.5.

Furthermore the terms consisting of derivatives with respect to u; and us, denoted by
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3 Elliptic case

the superscripts (1,0) and (0, 1), respectively, will be expanded in the following way
1,0 1,0
‘1)&,57)%5 (u1,u) = Uluz‘l’g,l;,m,a (1, u2) + ur®] .0 5,5 (W1)
+ @1,0,0,8,7,6 (U1) + u2P11,0,54,6 (U1, u2)

and
CIDSE,)W; (uy,ug) = uqu’fﬁi,,@,y,& (uq,ug) + UQ(I)G,La,BmtS (ug)
+ Do.1,0,8+,6 (U2) + u1P11,0,8~.6 (U1, u2) .
Using the same structure as in section 3.3, we will first solve the constant terms
$(0,0)(0,2,3,0) and ¥(0,0)(0,2,3,0) (3.8)
and then the terms

® (u2)(0,1,0,2,3,0) and ¥ (u2) (0,1,0,2,3,0). (3.9)

To obtain results for the constant terms, in the expanded equation 2.5 u; will be set to
zero and the equation will be simplified. Then it is possible to solve for the terms in 3.8.
This yields

4. (0,1 2. (0,1 1. a0
B0.2,30(0,0) = —= 01 1(0,0) — 2@ | (0,0) — ~i®{}) 1 (0,0)

3 3 3
- %'@536?3,2(07 0) - %iq’%é?%,o(oy 0) — %4’1,1,2,1(0, 0)
S ®201(0,0) — S (0,0) — w50,
— W 5(0,0) — LY 0 (0,0) — w1 0,0)
- %‘1’0,2,2,1(0, 0) — %\1’1,1,1,2(070) —W20,0,3(0,0)

and

2 (01 4 (01 1. a0
\1’0,273,0(070) = _gzé((],l,%,l(o’o) - gZ(Dg, ,3,2(070) - gzq)é,l,()),Q(O’ 0)

- éifbgfi?%,o(& 0) - %@f@?{l(o, 0) — %q)0,2,2,1(05 0)
- %‘1’171,1,2(0,0) — ®20,03(0,0) — gi\lfé?f%,o@, 0)

= 20,0) — vl 1(0,0) - Liwl) 50,0
- éiqfﬁé?;,o(o, 0) — é\plm,l(o,o) - %%,O,Lg(o, 0)
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3.4 Fourth set of normalizing conditions - mixed terms

By substituting these solutions into the expanded equation one can solve for the second
pair of terms 3.9 and obtain

4 0.1 2, 0,1 1,0
©0,1,0,2,30 (u2) = 31(1)8,1,3,1,2 o (uz) — gl‘pé,l,i,o,m (uz2) — 3 ©6,1,3,1,1,1 (u2)
1 (1,0 1
32@8 2 00 (u2) - 3@&1,%,0,2,0 (u2) = 3011121 (u2)

1 2 0,1
- gq’o,m 0,12 (u2) — 32‘11(() 1 ()) 111 (u2) — 31‘1&() M 0.0.2 (u2)

Pk it ] PRk ikl

(1,0 1. a0
‘I’(() ())1,0,2 (u2) — gZ‘IJ((),L()),Lz,o (uz) — *Z‘I’((),l,%,o,l,l (uz)

3 3
1
5‘1’0,1,0,2,2,1 (ug) — 5‘1’0,1,1,1,1,2 (u2) — ¥0,1,2,0,0,3 (u2)
and
2. (0,1 4 01 1. 0
W0,1,02,3,0 (u2) = —§Z¢é,1,3,1,1,1 (uz) — 52@8,13,0,0,2 (uz) — 52‘1)((),1,()),1,0,2 (uz2)

1 1 (0 1

T3 (I)(() 1 3,1,2,0 (u2) — 5“1)8,1,%,0,1,1 (uz) — §¢071,0,272,1 (uz)
1 4 (0,1

— 5 ®0n112 (u2) = Pon2003 (u2) = VG0 1 (u2)

2. (01 (1,0 1. (10
51@6,1,2,0,1,1 (u2) — gZ‘I’((),1,3,1,1,1 (u2) — gZ‘I’((),Ll),O 02( 2)

3 %0112 (u2) — 3 V012012 (uz),

This same system can be applied where we solve for the constant terms

(1,0
- gZ\I}((),L%,O,Q,O (u2) —

®0,2,0,3(0,0) and Wo,2,0,3(0,0) (3.10)

in the expanded equation, where us is set to zero. We get the following results

®0,20,3(0,0) = ~3 q)(()olli 1(0,0) — g <I>g(’]3 (0,0) — %@5%3,0(0,0)
- g <I>81%2(0,0) - g <I>§ % (0,0) — %4’1,1,1,2(0,0)
 S021(0,0) - 7 S0, 0)—%2‘@6”3%0(0 0)
- 10,0 = Siwf 1 0,0) - Siwl)o(0,0)
:1))\110,2,1,2(0 0) — %‘111 1,2,1(0,0) — ¥230(0,0)

and

1. 01 1. 01 0,1
W0.203(0,0) =~ i947),,(0,0) — i3 ,(0,0) — <ie] (0,0

2, 4. 1
— i1 1(0,0) — Zi®T 0(0,0) — 5@02,1.2(0,0)

39



3 Elliptic case

1

- §<I>1,1,2,1(0,0) ©2,0,3,0(0,0) — 3 ‘I’é 21(0a0)
1. (0,1 (0,1 4. (10

— Si0(0,0) - 52\1};0,370(0, 0) — 5i%(10(0.0)
2 1 1

- 51‘1’%6?%,1(07 0) = 3¥1,11.2(0,0) = 3¥20.21(0,0)

Continuing the process as above, these solutions can be substituted into the expanded
equation and we can then solve for the terms

10,0203 (u1) and ¥ 00203 (u1) -

These then take the form

10,0203 (u1) = —éiq’g(,)(’)%JJJ (u1) — %iq’goélio,og (ur) — éiq)g(,)ég,o,zo (u1)
g 00102 (u1) 3Z<I>§lo,i,o,1,1 (u1) = %‘1’1,0,1,1,1,2 (u1)
- é‘bl,oz,oz,l (u1) — %Z‘I’goolc)noz (u1) — ; W0 100 (1) - %Z‘l’goo?on (u1)
_ 2 563,1,1,1 (u1) — %i‘l’%é?i,o,z,o (u1) — %‘1’1,0,0,2,1,2 (u1)
= %\111,0,1,1,2,1 (u1) — ¥1,0.2030 (u1)
and
W1,0,0203 (u1) = —%1‘1)5?6%3,1,0,2 (ur) — éi(ﬁg?&()),l,2,0 (u1) — %iq)g?é}%,o,l,l (u1)

2,10 4. 10 1

3Z‘I’§ 0 3,1,1,1 (u1) — 3@5,0,2,0,2,0 (u1) — §¢’170,0,2,1,2 (u1)

1 1.

— 3Pr0121 (u1) = Proz030 (u1) — 51‘1’5(,)6}3,1,1,1 (u1)

1 101 4 _q
go%oo (u1) — ‘I’go,%,mo( 1) — ‘1’50())102( 1)

3 3 3

2 1

—3 iwt 0, ) o011 () = 5¥i01112 (u1) — 5102021 (u1).

3 3

Using these found equations and substituting them into the expanded equation, we can
solve for the rest of the terms of the power series. We will be solving for

@103 (u1,u2) and Wy 103 (u1,us)

and obtain the following two solutions

1 1
D103 (ur,u2) = —®1 10203 (U1, ug) ud — @1 11112 (ur,ug) ud — @y 12021 (ur,uz) u?
3 3
1 9 1 2 2
— 5‘1/1,1,0,2,1,2 (w1, ug) uy — 5‘111,1,1,1,2,1 (ur,u2) ui — ¥i12030 (u1,u2) uj
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3.4 Fourth set of normalizing conditions - mixed terms

0,1 1 0,1
3111(u1,u2)u% o1

—

~
-

2 (0,1) 2

1,1,1,0,0,2 (u1,uz) uy — 32(1)1 1,1,0,2,0 (u1,u2) uy
1

2 (0,1)

1,1,0,1,2,0 (u1,u2) uy — gz 1,1,1

0,1

)

—~

~
—

,1,0,2 (w1, ug) uy — 0,1,1 (w1, u2) U%

[
O —

1,

)

3’
2 Lg0n
3"

1,0
717

=

1,0 9 2..(1,0
1,0,2 (U17U2) - 51‘1’571,%7071,1 (u1,u2) uy — 5295,1,3,1,1,1 (u1,u2)u

@
A

—

=

0 1
Z\I/fiio,g,o (u1, ug) ui — ®0,1,02,0,3 (u2) ug — 3Po11 112 (u2) u1
2 1

D0.1.202,1 (u2) Uy — gq)l 002,12 (1) ug — gq)l 0,1,1,2,1 (u1) ug

ww\)—nw\.noo\.&wm—\w\»—n

- 5@1,0,2,0,1,2 (u1) ur — §u2‘§1,1,0,2,1,2 (u1,u2) ur — §u2¢1,1,1,1,2,1 (w1, u2) ug
2 1 1
— §U2<I>1,1,2,0,1,2 (u1,u2) ur — §W0,1,0,2,1,2 (u2) ur — 5‘1’0,1,1,1,2,1 (u2) uy

1
— V012030 (u2)up — 5‘1’1,0,0,2,2,1 (ur)ug — 5‘1’1,0,1,1,1,2 (u1) uq
2

1
— 5‘1’1 0,2,0,2,1 (u1) u1 — §U2‘1’1 1,0,2,2,1 (U1, u2) ug — §U2‘1’1,1,1,1,172 (u1,u2) uy

(0,1 ,
— cu2¥i120.2,1 (U1, uz) ur — gzq)é,l,(%,l,l,l (uz) uy — 5 ‘I’é | f 002 (u2) ur

3
L. 5 (0,1 1. (o,
31‘1’((),1,2,020 (ug) uy — §’¢§70,3,1,0,2 (u1) ur — gzq’g 0(% 1 20( 1) U1

sy

. 5(0.1) 5. =(01) L. (01
- Z‘1)1,0,1,0,1,1 (u1)ug — §1U2‘I’1,1,0,1,0 o (u1,u) ur — gw2q>1,1,0,1,2,0 (u1,u2) ug

sLyty

0, 1
—2“2‘1’513011 (u1,u2)ug — g ‘1’813102( 2) U — 3@‘1’((),1,()),1,2,0( 2) U1

- zl)) ‘1’(()?12,0,1,1 (u2)uy — iqj&?(’)%()),l,l,l (u1)ur — 3“1’5002,00 o (u1) uy

- gl‘l’gooliozo (ur) ug — s W |1 () iy — éiu?q’g?ﬂ,o,og (u1,u2) uy

- giu?mfig,og,o (u1,u2) ur §Z¢é,1,3,1,0 o (u2) ur — gi@(()%i?z,mg (u2) uy

0% 1 () = i@ g () e — i o ()

- W2<I>§ D (ur,uz) ug — Zluzq)g ) 002 (w1, uz) ug — ;iuybfﬂp,m (u1, uz) uy
T3 ‘1’(() ()),1,1,1 (u2)ug — 52‘1’(()%1?%,020( 2) Ul — %i‘l’gé?c)),l,o,z (u1)uq
g ‘1’5 0 3 1,2,0 (u1)ug — Z"I’gé?i,o,m (u1)ug — %wﬂglio()) 1,0,2 (u1,u2) uy

- giuﬂ&?&,m,o (ur, uz) ur — iup @0 o (un, o) un = 5%,2,1,2(0 0)

- éq)1,1,2,1<07 0) — 2@2,0,1,2(0, 0) — %‘1’0,2,2,1(0,0)

- %‘111,1,1,2(0, 0) — W11,30 (u1,uz) — ;‘112,0,2,1(0,0)
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3 Elliptic case

5. (0,1 L. 01 (0,1

— 5i010,2(0.0) — iR 5(0,0) i@y 1(0,0)
. (0,1 1. (0,1 5. (01

— w3 1(0,0) - 52\1{073’2(0,0) - 51\1'57 4.0(0,0)

(1,0 9. (1,0 1.0
- Z(I)g],l,%,l(ov O) - glq)g,[),())Q(O? 0) - glq)g,o,g,o(oa 0)

— W 5(0,0) — 20w (0,0) - 1w (0,0)
- §U2(I’0,1,0,2,1,2 (u2) — %u2‘1’0,1,1,1,2,1 (u2) — §u2@0,1,2,0,1,2 (u2)
- %U2¢1,0,0,2,2,1 (u1) — %U2@1,0,1,1,1,2 (u1) — u2®1,0,2,0,0,3 (u1)
— éugqh,l,o,z,m (u1,u2) — éugq)l,l,l,l,lﬁ (u1,u2) — u3®112003 (u1, uz)
- §U2‘1’0,1,0,2,2,1 (u2) — éu2‘1’071,1,1,1,2 (u2) — §U2‘1’0,1,2,0,2,1 (u2)
—uaWi00230 (u1) — §u2\1’1,o,1,1,2,1 (u1) — §U2\1’170,2,0,1,2 (u1)
—u3Vy 10030 (u1,u2) — %ug\lf1,1,1,1,2,1 (u1,u2) — éug\h,m,o,m (u1,u2)
- gi“ﬂ)(()?fgg,o,z (u2) — %iuﬂ)(()?ﬂ())g,zo (u2) — i“2‘I’(()(,)i2,0,1,1 (uz)
~ Zin@5) 11 () — i g0 () — SR ()
- giuéfbﬁ?’fio,og (u1,uz) — Z'UZ‘I’(()(,]’}()),LM (u2) — ém?‘l’é?ﬂ,o,o,z (uz)
- g“Q‘I’(()?ig,o,Q,o (uz) — %iU2‘1’§?&3,1,2,o (u1) — ;iuﬂ’fbﬁ,al,l (u1)
- %m%w&?f&mo (u1,u2) — %iugq’g%i,o,l,l (u1,uz) — W2‘I’8i?()),1,1,1 (uz)
- 21“2‘1)81%,0,0,2 (u2) — éiuﬁ)é}i?{,o,zo (u2) — %WZ(I’%%,LO,Q (u1)
- %iuﬂ)%%g,zo (u1) — %iuﬂ’fé?z,o,m (u1) — %iugq’fi?()),l,oz (u1,us2)
- éw%@gfg),m,o (u1,u2) — giug@g}ﬂ,mJ (u1,u2) — éiu?q’&%,l,w (uz)
- giu?q’((fi?())mzo (uz) — iu2‘1’8fi,0,1,1 (uz) — %Z’U2‘1’Sé(,)()),1,1,1 (u1)
- éiu?q’gé?i,o,o,z (u1) — %Z’W‘I’Sé?i,o,z,o (u1) — éiugll’%i?()),l,l,l (u1,u2)
- ém%‘yg%ﬂ,mo,z (u1,u2) — éiugq’g}i(,?,o,z,o (u1,uz)
and
U103 (u1,u2) = —é<1>1,1,0,2,1,2 (u1, uz) uf — %‘51,1,1,1,2,1 (w1, u2) ud — ®11.903,0 (u1,u2) uj
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3.4 Fourth set of normalizing conditions - mixed terms

- ‘1’1,1,0,2,0,3 (ur,u) uf — ~Wy 11112 (ug,u2) us — *‘1’1,1,2,0,2,1 (u1,u2) ui

3 3
(0,1)

2 0,1 2 0,1 2
1,1,0,1,0,2 o (w1, u2) uy — gl‘bg,l,g 1,2,0 (w1, ug) uy — gl 51 %,0,1,1 (w1, u2) uy

) 0,1 1.
g 1 ()) 1,1 (U17U2) - 51‘1’3,1,2,0,0,2 (u1,u2) uf — gl

3

1 0,1

3 ‘1’5,1,2,0,2,0 (u1,u2)u
2 (1,0) 2 (1,0) (1,0)
3

2

2
1,1 071,1,1(u17u2)u1 32@1,1,1,020(U17U2)U1 31‘1’11,0,1,0,2(“17“2)“1

1,0 1 1
3Z il,%,(} 1 (un, ug) uf — 3‘1’0 10,212 (u2) u1 — 3@0,1,1,1,2 1 (u2) ur
2 1
— ®0.1,2,0,3,0 (u2) ur — §¢1,0,0,2,2,1 (1) ur — §®1,0,1,1,1,2 (u1) uy
2 2 1

- §¢1,0,2,0,2,1 (w1)ur — §u2¢1,1,0,2,2,1 (u1,u2) ur — §U2‘1>1,1,1,1,1,2 (u1,u2) uy

1
- §U2<I’1,1,2,0,2,1 (ur,u2) ur — ¥o,1,0,2,0,3 (u2) ur — 3‘1’0,1,1,1,1,2 (u2) uy

1

— §W0,1,2,0 2.1 (u2) uy — §‘1’1 0,0,2,1,2 (1) ur — 5‘1’1 0,1,1,2,1 (u1) w1

Pt b Rk it ]

2 1
§ vy ,0,2,0,1,2 (ul) uy — §u2‘If1,1,0,2,1,2 (Uh Uz) uy — §u2‘111 1,1,1,2,1 (Uh U2) ui

—_

1
— gua¥ii2012 (ur, uz2) ur — 5 (I)(()Oll()) 102 (u2)ur — 2 CI’((),i,()),Lz,o( 2) U1

3
(0,1)

w

1. (01 (0,1 1.
—3 1053 o (u2) ur — @0y (un)wr — 31%10,1002 (u1) w

_ 50D (u

. (0,1) 1 (0,1)
1,0,1,0,2,0 1) ur — ZU2®1,1,0,1,1,1 (u1,u2)ug — 3W2‘I)1 1,1,0,0,2 (u1,u2) ug

5 1 1 01
- 5“‘2‘1)5 1 i 02,0 (U1, u2) ur — 3“1’6 1 3,1,1,1 (u2) ur — 31‘1’8,13,0,0,2 (u2) u1

31‘1’8,13,0 2,0 (uz2) w1 31\I/§ 0 ()),1,0,2 (u1)ug — gl‘l’g,o,&lz,o (u1) ug

. (0,1) 5. _(01) L. (01
— Wi 01.0,1,1 (u1) ur — Fiu2¥i1 0102 (w1, u2) ur — §1U2‘I’1,1,0,1,2,0 (u1,uz)

3
. 0,1 2. (1,0 4
- Zu2‘I’(1 1,%,0,1,1 (ur,ug)uy — 51(1’((),17()),1,1,1 (u2) u1 — 3“1)((),1,%,0 2,0 (u2) ug
, 1,0 (1,0
g 0()) 1,0,2 o (u1) ur — 3@<I>g 0 3,1,2 o (u1)ur — Zég,o,i,o,m (u1) uy

(1,0) D iy (L0) 1y (L0)
- 5“‘2‘1’1 1.0,1,02 (U1, ug) w1 — 5“12(1)1,1,0,1,2,0 (1, ug) ur — dug®y 17 011 (w1, u2) wy

3

4 1,0 1,0 (1,0
- 31‘1’8,1,()),1,0,2 (ug) ur — g ‘1’8,1,2,0,1,1 (u2)uy — Z\Ijg,o,()),l,l,l (u1)ua

1,0 1. 10 ) 1,0
- 31‘1’3 07%,0 0,2 (u1)uy — gz‘I’g 0,2,0 2,0 (u1)ur — Z1l2‘1’§71,f)),1,1,1 (u1,u2) uy
. 1. 2
- §W2‘I’fi?f,o,o,2 (w1, ug) uy — gwﬂ’fi?f,o,g,o (u1,u2) ur = 5 ®0,22,1(0,0)
1 2
— §¢1,1,1,2(0, 0) — ®1,1,30 (u1,u2) — 5‘52,0,2,1(0,0)
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3 Elliptic case

2 1 2
— =Up212(0,0) — =¥1121(0,0) — =¥20.1,2(0,0)

3 3 3
(0,1 1. (01 9. (0,1
— ol 1(0,0) - gz<1>§70’3’2(0, 0) — §z®§707%,0(070)
5. (0,1 1. 01 (0,1
3 \118,1,2),2(07 0) — 51‘1’8,1,3,0(070) - N’%,O,%J(Oa 0)
1. a0 9. (1,0 (1,0
- gzq)((),l,aﬁ(ov 0) - §Z®é,17%,0(07 O) - Z(I)g,o,%,l(()? O)
(1,0 5. (1,0 1 a0
— UG 1(0,0) = ZiWg0,(0.0) — ZiW),(0.0)
2 1 2
— §u2@0,1,0,2,2,1 (ug) — §u2¢0,1,1,1,1,2 (ug) — guzcbo,l,z,o,z,l (u2)
1 1
—u2®1,0,0,2,3,0 (1) — §u2‘1>1,0,1,1,2,1 (u1) — §U2¢1,0,2,0,1,2 (u1)
2 Iy 1 4
—u5®P11,02,3,0 (U1, u2) — §U2‘P1,1,1,1,2,1 (u1,u2) — §U2¢1,1,2,0,1,2 (u1,u2)
— §U2W0,1,0,2,1,2 (u2) — §u2‘1’0,1,1,1,2,1 (u2) — §u2‘1’0,1,2,0,172 (u2)
- §U2‘I’1,0,0,2,271 (u1) — §U2‘I’1,0,1,1,1,2 (u1) —u2¥1,0,2,0,0,3 (1)
_Lee _Lew —ulv
3 2%11,0,2,2,1 (ul,uz) 3U2 1,1,1,1,1,2 <U17U2) U9 ¥'1,1,2,0,0,3 (u17u2)
. 0,1 1. 0,1 5. 0,1

- W2q)((),1,()J,1,1,1 (ug) — §W2(I)((),1,%,0,0,2 (ug) — gwﬂ)((m,%,o,z,o (uz)
4

5 (0.1) 2. =01 4. 52(0,1)
- gw2<b1,0,0,1,2,0 (u1) — glu2<b1,0,1,0,1,1 (u1) — §W2q’1,1,0,1,2,0 (u1,u2)

2. 501 5. 0,1 1. 0,1
- gw2‘1’§,1,i,0,1,1 (u1,u2) — gZUZ‘I’E),l,g,l,o,Q (uz) — gwﬂ’((),l,g,l,z,o (uz)

. 0,1 2. 0,1 4. 0,1
- Zuqué,l,i,ﬂ,l,l (u2) — *Wﬂ’g, ,3,1,1,1 (ur) — *WQ‘I’g,o,i,o,o,z (u1)

3 3
- ;iugq’ﬁ)ﬂ%ggJ (u1,uz) — %iuiﬁfﬁ?ﬂ,mo,g (u1,uz) — %Z’U?‘I’&i%,l,oz (uz)
- ngI’(()H%,LZO (uz) — iUZ‘I)(()%’?%,O,M (ug) — %iuzq)fé%m,l (u1)
- %iu?q)gé?%,o,og (u1) — %Z’W@g{){,}%,o,z,o (u1) — %Z’U%‘I’%{,}g,lJJ (u1,u2)
- %iug‘bgi?i,o,o,z (u1,u2) — %W%‘bgﬂ,o,zo (u1,u2) — i“2‘1’8f()),1,1,1 (u2)
- giu?q’é%’?i,o,og (u2) — éiw\l’&ﬂ,oz,o (u2) — %iuz‘lffé%,l,o,z (u1)
- éiu?q’g}é?()u,z,o (u1) = éiUZ‘I’%(’)?%,o,u (u1) = %iug‘l’gi%,mz (u1, ug)
- %W%‘I’ng,m,o (u1, ug) — éiu%q’%ﬂ,ogJ (u1,u2)
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4 Outlook

Within this thesis the explicit solutions of the normalization conditions of the elliptic
case in C2*2 have been described. These individual conditions are the foundation on
which the Theorems of chapter 2.6 are based.
Furthermore, the code which has been created to solve the individual normalizing condi-
tions has been made adaptable such that not only the elliptic case has been solved, but
also the parabolic and hyperbolic cases.
To do this, the input matrices simply need to be changed to the matrices of the case one
would like to study, based on the following information

For the hyperbolic case the equation

Q_1:v1 = |z1)*—|zf

Vo = 2129 + 2221

- a (b ) ()
vy = (a1 %) <(1) (1)> <2>

where the input matrices are (é _01) and (9{). As for the parabolic case the general

equations take the form

(4.1)

can be rewritten as

(4.2)

Qo : vy = |21

_ _ (4.3)
Vo = 2122 + 2221

where using matrix notation yields

Qo:vi= (a1 2) <(1) 8)

Thus the matrices are (§J) and (9}).
By computing also the outputs for the other two cases, the space of manifolds in C?*2

has been covered, since in C2*? there always exists an isomorphism which maps to one
of the cases above.

45



4 Outlook

It is of interest to not only solve the normalizing conditions listed in this thesis, but also

to look at the results of the £ operator used to prove Theorem 1. To do this the coordinate
transformation needs to be solved, which can be done based on the construction of the
operator £. A result for this would finish the cases in C?*2.
Another fascinating aspect is what happens in higher dimensions where n > 3 and/or
d > 3. Particularly cases where n # d would be of great interest to analyse, as they
might show further aspects on this topic. This task poses of higher complication since
the manifolds cannot be classified into cases as in the n = 2 = d situation.
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Zusammenfassung

Diese Arbeit befasst sich mit Chern-Moser-Beloshapka-Normalformen im C?*2. Am An-
fang wird dieses Thema mit einer Beschreibung des Fischer Inneren Produkts, der Gruppe
von Isomorphismen in C?*2 und dem Gebiet der Normalformen eingeleitet. In den weit-
eren Kapiteln werden die Resultate von Convergence of the Chern—M oser—Beloshapka
normal forms, von Bernhard Lamel and Laurent Stolovitch hervorgehoben, welche die
Basis fiir die Forschung dieser Arbeit sind. Um zu den Ergebnissen im C2%? zu gelan-
gen ist ein Wolfram Mathematica Programm geschrieben worden, mit dem die Nor-
malisierungsbedingungen vom elliptischen Fall im C2*? gelost worden sind. Durch eine
Adaption des Programms ist es auch moglich die beiden anderen Fille, ndmlich hyper-
bolisch und parabolisch, zu analysieren.
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