
Text File Format Identification: An Applicationof AI for the Curation of Digital Records
Santhilata Kuppili Venkata

The National Archives
United Kingdom

email: santhilata.venkataa
0000-0003-2406-073X

a@nationalarchives.gov.uk

Paul Young
The National Archives

United Kingdom
email: paul.younga

0000-0002-1102-9664
a@nationalarchives.gov.uk

Alex Green
The National Archives

United Kingdom
email: alex.greena

0000-0003-2463-3649
a@nationalarchives.gov.uk

Abstract – File format identification is a necessary step
for the effective digital preservation of records. It allows
appropriate actions to be taken for the curation and ac-
cess of file types. The National Archives (TNA) has existing
processes for dealing with binary file formats, using tools
such as PRONOM and DROID. They rely on using header
information (metadata) and consistent binary sequences.
However, thesemethods cannot be applied to text file for-
mats as text files do not contain recognisable header in-
formation. Even though many text file formats can be
opened using a plain text editor, the file type information
is often needed to understand the context of these files
especially when the file is partially corrupted. We need
automated intelligentmethods to extract patterns and in-
formation from the content of the files and detect the file
type. The representative data collected from the GitHub
repositories of UK Government departments suggest that
there are predominantly source code files (such as python
and Java) and data files(such as .csv, .tsv and .txt). The
first prototype using AI methodologies has achieved rea-
sonably good performance in successfully detecting five
file formats. Current results encourage us to carry out ad-
ditional experiments to include further text file formats.

Keywords – Text file formats, supervised learning, dig-
ital preservation.

Conference Topics – Scanning the New Development.

I. Motivation
As the official archive and publisher for the UK Gov-ernment and England and Wales, The National Archives(TNA) is responsible for collecting and securing the fu-ture of the government record. TNA is already receiv-ing born-digital material from government departmentsand will need to process larger numbers of digital filesevery year. One of the key steps of processing a newcollection of digital records is ‘knowing what you havegot’1. An important factor of this is understanding thefile format of each digital record. This allows appropri-

1https://nationalarchives.gov.uk/document/information-management/parsimonious-preservation.pdf

ate preservation actions (e.g. migration, emulation) tobe taken in order to ensure that the record is accessi-ble for future researchers. Identifying specific formatsof text files presents a problem for current processes atTNA. This project was undertaken in order to researchsophisticated methods which would allow the identifica-tion of formats for text files in an automated fashion.
A. Why do text files present a problem?

The National Archives develops and maintains thefile format registry PRONOM2. It contains informationfor over 1800 different formats. PRONOM informa-tion is used to identify formats of digital files in everymajor digital preservation system via the use of toolssuch as DROID3 which utilise the PRONOM information.PRONOM’s primary form of identification is by signaturepatterns based on the structure of the format, deter-mined by observing sample files, magic byte4 informa-tion stored at the header of the format or by observingfile format technical specifications. The aim is to provide‘unambiguous’ identification of formats through uniquepattern sequences.
For binary formats this has proved to be very effec-tive, for text formats however, there is often no con-sistent pattern to observe so an ‘unambiguous’ identi-fication is not possible. Identification via DROID andPRONOM for text files is often achieved by the file ex-tension only e.g ‘txt’, ’csv’ or ‘py’. The extension of theformat is generally an unreliable form of identification,prone to corruption or loss. The same extension canoften be used for multiple formats e.g. ‘dat’. Contentsof text formats are often human-readable. i.e they canbe opened as plain text files using a simple text editor.However, if the file extension is missing, incorrect or un-

2https://www.nationalarchives.gov.uk/PRONOM/Default.aspx3https://www.nationalarchives.gov.uk/information-management/manage-information/policy-process/digital-continuity/file-profiling-tool-droid/4Signature bytes at the beginning of binary file types, used by appli-cations to detect how to appropriately parse the file
17th International Conference on Digital PreservationiPRES 2021, Beijing, China.Copyright held by the author(s). The text of this paper is publishedunder a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).DOI: 10.1145/nnnnnnn.nnnnnnn

ambiguous and the format is not known, it is hard toknow how the file should be used and accessed. TNAreceives such files in the form of supporting files. Moreeffective automated processes are needed for text fileformat identification. The file format would provide ad-ditional context to use the document appropriately.
B. The importance of text formats to the public record

Text formats are becoming increasingly important tothe government record. Plain text files ‘.txt’ and CSV files‘.csv’ can contain important information and datasets.TNA’s digital strategy states that records can be held inall sorts of formats including ‘structured datasets andcomputer code’5. Programming code is held in text for-mats. DROID reports of material already held withinTNA’s digital archive show, based on extensions of thefiles, that programming code and plain text files makeup the majority of text based formats received by TNA.
As the archive of UK Government, TNA is aware thatsoftware is created and used in a number of contextsacross government, including policy creation, implemen-tation and analysis. It follows that collecting its under-lying source code, as well as preserving, and providingfuture access to that source code is important. Beingable to reliably determine the nature of that source code,for example what language it is written in, provides im-portant context for future researchers. The 2018 UN-ESCO ‘Paris Call’ highlights the importance of ‘SoftwareSource Code as Heritage for Sustainable Development’.This recognises that preserving software source codeand making it widely available is vital to human culturalheritage. It calls on member states to ‘recognise soft-ware source code as a fundamental research documenton a par with scholarly articles and research data’6.
Aside from digital archiving, file type identification isa serious problem in the areas of digital forensics andcyber security. Research in digital forensics is mainly fo-cused on the identification of image file types and theirmetadata. While most of the research targets binaryfile formats, very little focuses on plain text files. Beingflat files (without header information), text files are diffi-cult to reconstruct if they are corrupted fully or partially.This leads to our research question: How can we correctly

identify the file type of a plain text file from its contents?

To answer this, we have tested an iterative machinelearning based approach starting with the five file typesmost predominant in TNA’s collections. Unlike a rule-based approach, the machine learning approach is flexi-ble and can includemore andmore file types over futureiterations of a suitable model’s development.
This paper is structured as follows: a literature sur-vey to review existing methodologies, approaches for-mulated, and their adaptability from other fields is ex-plained in section II. Relevant algorithms reconstructed

5https://www.nationalarchives.gov.uk/documents/the-national-archives-digital-strategy-2017-19.pdf6https://unesdoc.unesco.org/ark:/48223/pf0000366715.locale=gb

are explained in section IV. Given the nature of the prob-lem, we narrowed our investigation to the classificationcategory of supervised learning. A Python-based ma-chine learning prototype was developed to understandthe intricacies of different classification models duringthe ’proof of concept’ development phase. The modelconstruction, testing and evaluation are in section V.
II. Literature Review

The Automated file type identification (AFTI) is ahighly researchedproblem in digital preservation, digitalforensics and related fields. Binary files are computer-readable but not human-readable. All executable pro-grams are stored as binary files similar to numeric datafiles. In contrast, text files are stored in a form (usuallyASCII - the numeric format of alphabets) that is human-readable. AFTI techniques use the metadata of a binaryfile for the identification of its type. The metadata in-cludes information about file extensions, header andfooter signatures [1]–[3], and binary information suchas magic bytes etc.
All these methods work well when the metadatais available and unaltered. However, traditional ap-proaches are not reliable when the integrity of themeta-data is not guaranteed. An alternative paradigm is togenerate ’fingerprints’ of file types based on the set ofknown input files and use them to classify the type ofthe unknown file. Another prominent approach is to cal-culate the centroid7 for a given file type from its salientfeatures. Each unknown file is examined for the dis-tance from the known set of centroids to predict the filetype. The centroid paradigm uses supervised and unsu-pervised learning techniques to infer a file (object) typeclassifier by exploiting unique inherent patterns that de-scribe a file type’s common file structure. Alamri et al.[4] have published a taxonomy of file type identificationranging over 30 algorithms and approaches. In this sec-tion, we review the literature related to predicting filetype from fragments and content-based methods usingfinger print and centroid paradigms.

A. File Type Identification from File Fragments

Researchers have concentrated on the identificationof image file types with corruptedmetadata andmissingchunks from the contents. Methods were developed toreconstruct damaged files from their fragments. Identi-fication of file type from fragments is mainly used as arecovery technique. It allows file recovery or rebuildingof the file without contextual information or metadata.This process is also referred to as ’file carving’ in someof the literature. Image type files are mainly targeted bythis technique.
Calhoun et al. [5] investigated two algorithms forpredicting the type from fragments in computer foren-sics. They have performed experiments on the frag-

7A centroid is the mean position of all the points in all of the coor-dinate directions in a multi-dimensional space.
iPRES 2021 - 17th International Conference on Digital PreservationOctober 19-22, 2021, Beijing, China 2

ments that do not contain header information. Thefirst algorithm was based on the linear discriminant andthe second was based on the longest common sub-sequences of fragments. Their work provided variousrelevant statistics such as byte frequency, entropy, etc.as features to predict the file type. Ahmed et al. [6],[7] also published two techniques to identify the filetypes from file fragments. These techniques aim to re-duce the time spent in processing the contents. Theirfirst technique selects a subset of features describingthe frequency of occurrence of certain fragments. Thesecond technique speeds up classification by randomlysampling file blocks. They have performed experimentson .png, .jpg and .tiff file types. Poisel et al. [8], [9] pub-lished a comprehensive survey of file carving researchto detect the file types from their fragments. They havealso provided a useful file carving ontology. In a simi-lar work, Evensen et al. [10] explored the use of thenaive Bayes classifier combined with n-gram analysis ofbyte sequences in files to correctly identify the file type.Gopal et al. [11] presented the evaluation and analysisof the robustness of Support Vector Machine (SVM) andk-Nearest Neighbours (kNN) in handling damaged filesand file segments. They have restricted their study tothe file type identification from metadata. Their evalu-ation reveals that SVM and kNN methods learn betterthan any commercial off-the-shelf tools that have beendeveloped based on file extensions. In his thesis, Wilgen-bus [12] presented a combined multi-layer perceptronneural network and linear programming discriminantclassifiers for the multiple class file fragment type iden-tification problems. This solution could help our textfile format identification problem, as neural networkslearn from features of the contents and help in classi-fication of discrete file types. In their work, Karampidiset al. [13], [14] examine a three-stage methodology forAFTI, using feature selection (Byte Frequency Distribu-tion) and genetic algorithm. They have tested this withclassification models including decision tree, SVM, neu-ral networks, logistic regression and kNN. Their method-ology showed that artificial neural networks performedwith exceptional accuracy in most cases.
B. Content-based File Type Identification

Content-based file type detection methods haveproved to be more robust and accurate so far. Theyare built on the principle of extracting features from thefiles. Initial work on content-based file type identifica-tion [15], [16] was based on three algorithms: byte fre-quency analysis, byte frequency cross-correlation andFile header/trailer analysis. Li et al.[17] have providedimprovements to these algorithms by generating fileprints (file signatures) using the K-means algorithmwithManhattan distance metric. They produced file printswith the help of the statistical features extracted andselected. The file prints are also called as ’centroid’ inliterature. An unknown file is tested against a set ofknown centroids. The distance between the centroidsis compared to predict the possible file type. The Ma-

halanobis distance metric is deployed for the compari-son. The file prints (centroids) are developed using Nat-ural Language Processing (NLP) techniques such as pat-tern matching of n-gram contiguous sequence models.While theirwork is pioneering for its kind, their approachrestricts the input file to follow a specific style only. Theyalso fail to differentiate files when the target file typeshave almost similar structures, for example, Java and Cprogramming source codes. We need to generate filefeatures and classification models in such a way thatthey describe file types distinctly.
Other improvements in this area include neural net-works [18] and Byte Frequency Distribution (BFD) to clas-sify file types [19], [20]. Amirani et al. [21] proposed acontent-based file type detection method for files nor-malised using BFD. Their model uses principal compo-nent analysis for feature selection. Themodel is then fedinto an auto-associative unsupervised neural network.Mitlohner et al. [22] published a comprehensive studyof characteristics of open data CSV files. Their work ana-lyzes an open data corpus containing resources from adata consumer perspective. This study provided a deepinsight to feature engineering the CSV file type.
Predicting the file type from the contents of text filescomplicates the problem of AFTI. Though several ap-proaches are available, they are highly domain-specific.Hence we could not use them for the identification ofall file types from their contents. We need to researchgeneric methods to fill this gap based on existing ap-proaches.

III. Methodology
From the existing literature, there aremainly two ap-proaches to work with file type identification that can beadopted for text files. The first approach is to treat thetext file as a plain text file (no prior knowledge about thefile type) and search for specific characteristics for possi-ble file types. The signature of the file type is a combina-tion of the characteristics of that type. This is a genericmethod and canbe extended to any number of file types.However, this approach needs a thorough knowledgeof each file type to generate its characteristic features.The second approach is based onprior knowledge abouta file. For example, if we predict a file belongs to aprogramming language, we could validate the file typeby running its compiler(s), or searching for specific textpatterns corresponding to the programming language.Though the second approach can be implemented, it isnot scalable given the volume of file types. TNA dealswith a huge variety of file types for digital preservation.A flexiblemethodology using the first approach suits thissituationwell. Themethodology should implement an it-erative process model to include file features graduallyas more file types are included. As and when a new filetype is to be included, its features (specific characteris-tics) should be compared against the existing featuresof other existing file types and engineered to add to thelist. The flow graph in Fig. 1 depicts the pipeline of activ-

iPRES 2021 - 17th International Conference on Digital PreservationOctober 19-22, 2021, Beijing, China 3

ities.
a) The File Corpus is the set of files that serve as thedataset for the identification task.
b) External resources comprise various external toolsused for data cleaning and pre-processing. Forexample, TNA’s tool ’DROID’ is used to eliminateknown file types as a first step in case the file typescan be identified.
c) Feature Extraction is the process of extracting Char-acteristic features that determine the style and na-ture of the file type.
d) Feature Engineering is the process of using domainknowledge of the data to create features that makemachine learning algorithms work. It helps to finetune the machine learning models by reducing thecomputational processing overhead. The carefullyselected features help to establish rules (and thusknowledge generation) for file type classification us-ing rule-based models. For machine learning mod-els, features can supplement the information gain.
e) Classifier Development and Test Machine learning(ML) is chosen to develop a classifier. ML algorithmsare used to understand and extract the patternsfrom the data and help to predict the outcome.

IV. Data Pre-processing
As a representative collection of the type of text for-mat material that TNA would receive, this study clonedfiles from publicly available Github repositories of theGovernment Digital Service8 (GDS) and TNA9. In all, wecloned 1457 public repositories from these two sources.They contain over 410,000 files representing 928 filetypes that can be opened with a simple text editor pro-gram as a test bed. However, it is an huge task to de-velop a single classifier model that classifies all 928 filetypes. So we have grouped files into 14 categories to un-derstand the priority file types to start our experimenta-tion. With the help of DROID reports, five file types areshortlisted including programming source files such asPython and Java with three data file types: .txt, .tsv and.csv.

8https://github.com/alphagov9https://github.com/nationalarchives

File corpus
Feature extraction Feature engineering Develop a classifierExternal resources

Test Hyper parameter modification
Figure 1: Methodology to include file types progressively

A. Feature Extraction

The data consists of unstructured text files. Sothe first phase was to recognise features that describePython and Java source codes and .txt, .csv and .tsv filescorrectly. We have identified a total of 45 features thatare suitable across five file types. Automated scriptsare developed to make the feature extraction uniformacross files.
B. Feature Engineering

Unlike the commonmachine learning problems, thetext file format identification presents a non-linear learn-ing problem. By non-linear learning we mean, the filefeatures do not represent a direct correlation betweendifferent file types. For example, a very high correlationbetween the Java and Python programming file struc-tures make it difficult for the file type classification taskto differentiate the two formats. An approach using re-gression analysis might not find a difference betweenthese two types. Similarly, .csv and .tsv files share someof their file features. Often a comma separated file (.csv)may contain unformatted textual lines, leaving very littleto differentiate between .txt and .csv file formats. Hencefeature engineering should be a combined effort for adomain expert andmachine learning researcher. For ex-ample,
• a Python source code file differs from a Java fileby its commenting style, strict indentation require-ment at the beginning of each line of the code, theuse of specific keywords etc. Whereas, the Javasource code follows a pre-defined structure to beable to compile successfully (such as, every linemust end with a ’;’ (semi-colon), Python does notneed any specific line encoding).
• even though .csv and .tsv files are largely cate-gorised as text-based, they can be recognised bytheir use of the number of commas (or other delim-iters). A comparison of the delimiters could becomea deciding factor in file identification.
• in general, a .txt file has no rules for its layout com-pared to .csv or .py. It is difficult to extract a patternfrom a normal .txt file. Hence the count of commonwords in normal English can be a good characteris-tic of text files10.
• another significant characteristic is the ’word-combination’ proximity. For example, the combina-tions ofwords such as<def-return>,< if-then-else
> etc. are likely to appear in closer proximity in theprogramming codes than in a .txt file. So, we de-rived a threshold for the word-combination sets.

After feature engineering, 33 features were selected forclassification. Features extracted and used for classifica-tion are listed in the Appendix.
10We assume the use of common words is more frequent in normaltext files than in programming or data files

iPRES 2021 - 17th International Conference on Digital PreservationOctober 19-22, 2021, Beijing, China 4

Table 1: Performance of classification models
Classification model Accuracy PrecisionDecision tree 92.58% 86%kNN 83.4% 80%MLP 90.28% 88%

V. Classification Models & Evaluation
There are four prominent types of classification al-gorithms. They are (i) Linear models, (ii) Tree-based al-gorithms, (iii) k-nearest algorithms and (iv) Neural net-work based algorithms. Since our problem has discreteoutputs and non-linear inputs, only approaches whichrequired explicit feature engineering were considered,omitting linear models. All models were trained andhyperparameters were tuned to improve the accuracyover many iterations11.
A Decision tree [23] is a flowchart-like tree struc-ture where an internal node represents a feature. Thebranch represents a decision rule, and each leaf noderepresents the outcome. Each parent node learns to par-tition the data based on the attribute value. It partitionsthe tree recursively until all the data in the partition be-longs to a single class.
The k-Nearest Neighbour classifier [23] (kNN) isbased on feature similarity that determines howwe clas-sify a given data point. The output is a classmembership(predicts a class — a discrete value). An object is classi-fied by a majority vote of its neighbours, with the objectbeing assigned to the class most common among its k-nearest neighbours.
A Multilayer perceptron (MLP) is a deep, artificialneural network, composed of more than one percep-tron [24], [25]. MLPs train on a set of input-output pairsand learn tomodel the correlation between those inputsand outputs. Training involves adjusting the parameters,or the weights and biases, of the model, in order to min-imize error.
The MLP model designed for our classification is a3-layer fully connected neural network with 33 nodesin the input layer, 12 nodes each in the hidden layersand 5 nodes (one for each of the output classes) in theoutput layer. The number of nodes in each of the lay-ers was decided by trial and error. The parameters setfor the MLP are as follows: activation function : relu,no.of epochs(iterations): 30 and batch-size set to 20. Wechose categorical cross_entropy12 and accuracy13 as theparameters for loss and performance metrics.
The evaluation of above models is in Table 1. Thetrain-to-test ratio is set ideally as 80:20 to achieve better

11The Jupyter notebooks developed as a proof of concept areavailable here- https://github.com/nationalarchives/Text-File-Format-Identification12Categorical cross_entropy describes a loss function to improve theperformance of a neural network model13Accuracy is a performance measure to show the goodness of amodel

accuracy. Though the accuracy of classification is veryhigh, we consider the precision metric more significant,given the non-uniformdistribution of file types in the filecorpus. For the kNN classification, the ’minkowski’ dis-tance metric14 is used to establish the distance betweenclasses. The value for ’K’ is set to 3.
VI. Discussion & Scope

The National Archives has initiated the project, ’TextFile Format Identification’ to identify file formats of cor-rupted text files during the curation of digital docu-ments. We have chosen an iterative machine learningapproach to develop a prototype with the flexibility toinclude more file types over the next iterations of the itsdevelopment. Hence we did not experiment with rule-based approaches which would limit the nature of thefile types to be included in our next iterations.
Our methodology included extraction of featuresand feature engineering to build suitable machine learn-ing models from the raw text files corpus. The featureengineering make the models scalable. We have alsopresented the suitability of deep learning models forclassification. These can provide better results whendealing with large numbers of file types with almost sim-ilar features, which will be included in the future. Thismethodology is used for text based files as they do nothave signature finger prints as binary file types.
The prototype achieved good accuracy and preci-sion, proving that this approach can be successful foridentifying five of the predominant text file formats.However, satisfactory accuracy and precision dependupon the dataset at hand. Python and Java program-ming code file types were classified with higher accuracycompared to .tsv and .csv files. This is probably dueto the inherent structure of programming files, whichis able to be defined better than those of .csv and .tsvfiles. The decision tree classifier performed better thanthe other two models. In future we would like to focuson revising the dominant feature identification for .csvand .tsv file types. We would like to work on the neuralnetwork approach, for the classification of file typeswithsimilar features (such as .csv and .tsv) with large volumesof training data.
As of now, it was assumed that each .csv file con-tained only one table. However, it is possible that mul-tiple tables exist within a single .csv file. This issue alsocould be investigated in future. Even though the currentprototype works well for the five file types, a revision offeature engineering will be necessary whenever a newfile type is included. In this experiment, we have notconsidered the ‘average length of a line’ and ‘number oflines of the text files’ as special features to train modelsas they do not provide enough support for classification.However, we would like to add them to see how neuralnetworkmodels utilise such information to learn how to

14https://www.sciencedirect.com/topics/computer-science/minkowski-distance
iPRES 2021 - 17th International Conference on Digital PreservationOctober 19-22, 2021, Beijing, China 5

better identify almost-similar file types.
This work belongs to © Crown copyright (2021). Li-censed under the Open Government Licence v 3.0.

References
[1] DROID, https://www.nationalarchives.gov.uk/information-management/manage-information/preserving-digital-records/droid/, 2013.
[2] TrID, http://mark0.net/soft-trid-e.html.
[3] Siegfried, https://www.itforarchivists.com/siegfried/.
[4] N. S. Alamri and W. H. Allen, “A taxonomy offile-type identification techniques,” in Proceedings

of the 2014 ACM Southeast Regional Conference,ser. ACM SE ’14, Kennesaw, Georgia: ACM, 2014,49:1–49:4, isbn: 978-1-4503-2923-1. doi: 10.1145/
2638404.2638524.

[5] W. C. Calhoun and D. Coles, “Predicting the typesof file fragments,” Digit. Investig., vol. 5, S14–S20,Sep. 2008. doi: 10.1016/j.diin.2008.05.005.
[6] I. Ahmed, K. suk Lhee, H. Shin, and M. Hong,“Content-based file-type identification using co-sine similarity and a divide-and-conquer ap-proach,” IETE Technical Review, vol. 27, no. 6, p. 465,2010. doi: 10.4103/0256-4602.67149.
[7] I. Ahmed, K.-S. Lhee, H.-J. Shin, and M.-P. Hong,“Fast content-based file type identification,” in Ad-

vances in Digital Forensics VII, Springer Berlin Hei-delberg, 2011, 65–75. doi: 10.1007/978-3-642-
24212-0_5.

[8] R. Poisel and S. Tjoa, “A comprehensive literaturereview of file carving,” in 2013 International Con-
ference on Availability, Reliability and Security, IEEE,2013. doi: 10.1109/ares.2013.62.

[9] R. Poisel, M. Rybnicek, and S. Tjoa, “Taxonomy ofdata fragment classification techniques,” in Lec-
ture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engi-
neering, Springer International Publishing, 2014,67–85. doi: 10.1007/978-3-319-14289-0_6.

[10] J. D. Evensen, S. Lindahl, and M. Goodwin, “File-type detection using naive bayes and n-gram anal-ysis,” in 2014: NISK 2014, 2014.
[11] S. Gopal, Y. Yang, K. Salomatin, and J. Carbonell,“Statistical learning for file-type identification,” in

2011 10th Intl conf on Machine Learning and Appli-
cations and Workshops, IEEE, 2011. doi: 10.1109/
icmla.2011.135.

[12] E. F. Wilgenbus, “The file fragment classificationproblem : A combined neural network and linearprogramming discriminant model approach,” M.S.thesis, N, 2013. [Online]. Available: http://hdl.
handle.net/10394/10215.

[13] K. Karampidis, E. Kavallieratou, and G. Pa-padourakis, “Comparison of classification algo-rithms for file type detection a digital forensicsperspective,” Polibits, vol. 56, 15–20, 2017.

[14] K. Karampidis and G. Papadourakis, “File typeidentification - computational intelligence for digi-tal forensics,” The Journal of Digital Forensics, Secu-
rity and Law, 2017. doi: 10.15394/jdfsl.2017.
1472.

[15] M. McDaniel and M. Heydari, “Content based filetype detection algorithms,” in 36th Annual Hawaii
International Conference on System Sciences, 2003.
Proceedings of the, IEEE, 2003. doi: 10.1109/hicss.
2003.1174905.

[16] M. McDaniel, “Automatic file type detection al-gorithm,” M.S. thesis, James Madison University,2001.
[17] W. J. Li, S. J. Stolfo, andB. Herzog, “Fileprints: Identi-fying file types by n-gram analysis,” in Proceedings

from the Sixth Annual IEEE SMC Information Assur-
ance Workshop, 2005, 64–71. doi: 10.1109/IAW.
2005.1495935.

[18] J. G. Dunham and J. C. R. Tseng, “Classifying filetype of stream ciphers in depth using neural net-works,” in The 3rd ACS/IEEE International Conference
on CSA, 2005., 2005, 97–. doi: 10.1109/AICCSA.
2005.1387088.

[19] M. Karresand andN. Shahmehri, “File type identifi-cation of data fragments by their binary structure,”in 2006 IEEE Information AssuranceWorkshop, 2006,140–147. doi: 10.1109/IAW.2006.1652088.
[20] L. Zhang and G. B. White, “An approach to detectexecutable content for anomaly based network in-trusion detection,” in 2007 IEEE International Par-

allel and Distributed Processing Symposium, 2007,1–8. doi: 10.1109/IPDPS.2007.370614.
[21] M. C. Amirani, M. Toorani, and S. Mihandoost,“Feature-based type identification of file frag-ments,” Security and Communication Networks,vol. 6, no. 1, 115–128, 2012. doi: 10.1002/sec.

553.
[22] J. Mitlöhner, S. Neumaier, J. Umbrich, and A.Polleres, “Characteristics of open data csv files,” in

2016 2nd International Conference on Open and Big
Data (OBD), 2016, 72–79. doi: 10.1109/OBD.2016.
18.

[23] P.-N. Tan,M. Steinbach, and V. Kumar, Introduction
to Data Mining, US ed. Addison Wesley, May 2005,isbn: 0321321367.

[24] H. Ramchoun, M. A. J. Idrissi, Y. Ghanou, and M.Ettaouil, “Multilayer perceptron: Architecture opti-mization and training with mixed activation func-tions,” in Proceedings of the 2Nd International Con-
ference on BDCA, ser. BDCA’17, Tetouan, Morocco:ACM, 2017, 71:1–71:6, isbn: 978-1-4503-4852-2.

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep
Learning. The MIT Press, 2016, isbn: 0262035618,9780262035613.

A. Features generated from files
iPRES 2021 - 17th International Conference on Digital PreservationOctober 19-22, 2021, Beijing, China 6

https://doi.org/10.1145/2638404.2638524
https://doi.org/10.1145/2638404.2638524
https://doi.org/10.1016/j.diin.2008.05.005
https://doi.org/10.4103/0256-4602.67149
https://doi.org/10.1007/978-3-642-24212-0_5
https://doi.org/10.1007/978-3-642-24212-0_5
https://doi.org/10.1109/ares.2013.62
https://doi.org/10.1007/978-3-319-14289-0_6
https://doi.org/10.1109/icmla.2011.135
https://doi.org/10.1109/icmla.2011.135
http://hdl.handle.net/10394/10215
http://hdl.handle.net/10394/10215
https://doi.org/10.15394/jdfsl.2017.1472
https://doi.org/10.15394/jdfsl.2017.1472
https://doi.org/10.1109/hicss.2003.1174905
https://doi.org/10.1109/hicss.2003.1174905
https://doi.org/10.1109/IAW.2005.1495935
https://doi.org/10.1109/IAW.2005.1495935
https://doi.org/10.1109/AICCSA.2005.1387088
https://doi.org/10.1109/AICCSA.2005.1387088
https://doi.org/10.1109/IAW.2006.1652088
https://doi.org/10.1109/IPDPS.2007.370614
https://doi.org/10.1002/sec.553
https://doi.org/10.1002/sec.553
https://doi.org/10.1109/OBD.2016.18
https://doi.org/10.1109/OBD.2016.18

Table 2: Features extracted and Used
Feature Descriptionfile name Name of the file along with its complete pathfile extension File extension if availablenumlines Number of lines in the file separated by newline characterheader info File header information if availabletrailer info Trailer information, if availableindentation Number of spaces used for indentation (specific to Python)eol marker End-of-line markers, if any (specific to Java)sol marker Start-of-line markers, if anyisLowercase Methods Whether methods/functions start with lower case alphabetsnum stopwords Number of stop words used (specific to text files)num Python keywords Number of Python key words within the filenum Java keywords Number of Java key words used in the filePython comments Number of Python style of commentsJava comments Number of Java style of commentsangular brackets Number of angular brackets usedcurly brackets Number of curly brackets usedround brackets Number of round brackets usedsquare brackets Number of square brackets usednum def Number of ’def’ used (specific to Pythonnum returns Number of times the key word ’return’ usedif_else proximity Number of words between if and else (specific to programmingcodes)num carat Number of times the carat symbol used (specific to csv and tsv)num comma Number of times the comma symbol used (specific to csv and tsv)num fullstop Number of times the fullstop symbol used (specific to csv and tsv)num tab Number of times the tab used (specific to csv and tsv)num semicolon Number of times the semi colon symbol used (specific to csv andtsv)num colon Number of times the colon symbol used (specific to csv and tsv)num pipe Number of times the pipe symbol used (specific to csv and tsv)num hash Number of times the hash symbol used (specific to csv and tsv)averageline length Average length of a line (in characters)description File description in short, if availableprogramming Whether the file is a programming code, if knownstopwords normalised Normalised stop words across Java and Pythonfile type File Type information

iPRES 2021 - 17th International Conference on Digital PreservationOctober 19-22, 2021, Beijing, China 7

	Motivation
	Why do text files present a problem?
	The importance of text formats to the public record

	Literature Review
	File Type Identification from File Fragments
	Content-based File Type Identification

	Methodology
	Data Pre-processing
	Feature Extraction
	Feature Engineering

	Classification Models & Evaluation
	Discussion & Scope
	Features generated from files

