
filedriller
Marrying Siegfried and the National Software Reference Library

Steffen Fritz
German Literature Archive

Germany
steffen.fritz@dla-marbach.de

https://orcid.org/0000-0002-9853-
8903

Abstract – Working with huge collections of unstruc-
tured data is a common yet still challenging task in digi-
tal preservation. This paper presents a tool for finding ir-
relevant files in large data sets to spot the relevant. The
tool builds on two well-known and frequently used appli-
cations, respectively data sets and combines and extents
them in a meaningful way.

Keywords – format identification, tool, automation,
siegfried, NSRL

Conference Topics – Scanning the New Development

I. Introduction

In addition to more than 1.5 million books, journals,
media carriers, publishing archives and objects, the Ger-
man Literature Archive Marbach is home to more than
1400 independent individual archives. While the vast
majority of the latter are analog, the number of digital
estates is constantly increasing.

In addition to manuscripts and libraries, the estates
of writers, scientists and artists include more and more
personal computers, hard drives and external data car-
riers, containing highly diverse file types. In some rare
cases relatives or colleagues of the testator can support
the archivists and librarians during the structuring and
rough assessment of data. But even in these cases, the
vast amount of information, stored and created during a
lifetime, must be prepared. Where possible, the source
objects to be sifted must be reduced.

Which data are relevant? And how can relevance be
defined in this context? Files that are common in off-the-
shelf products like software libraries, wallpapers or op-
erating system files are mostly less interesting in terms
of studying the author’s works. These assets are prob-
ably not important for the geneses from a nontechnical
view. Of course, this means not that such files should be
neglected in terms of long-term digital archiving. In this
paper a tool is presented that supports an automatic
preassessment of large amounts of data. It returns a list
of files that might be relevant for further investigations.

The tool is named filedriller and is under develop-
ment at the German Literature Archive in Marbach. It

is built on top of siegfried1 and the National Software
Reference Library (NSRL)2.

A. Siegfried

Siegfried is a file format identification tool using the
PRONOM, freedesktop.org’s MIME-info and Library of
Congress’s format description documents as well as tika-
mimetype signatures[1]. The signatures are stored in a
signature file, used by siegfried for pattern matching.

The development started in 2014 following the re-
lease history on Github. Siegfried is written in golang
and is published under the Apache license 2.0. It is a
command line tool and available on all major hardware
platforms and operating systems[2]. The executable is
named sf. Siegfried works on files and can walk down
directories recursively. An example clarifies the usage
and shows the output in the default format to standard
out:

$ ~/Documents> sf filedriller.png

siegfried : 1.9.1
scandate : 2021-05-27T14:53:08+02:00
signature : default.sig
created : 2020-10-06T19:13:40+02:00
identifiers :

- name : ’pronom’
details : ’DROID_SignatureFile_V97.xml;

container-signature-20201001.xml’

filename : ’filedriller.png’
filesize : 21600
modified : 2021-05-27T00:04:37+02:00
errors :
matches :

- ns : ’pronom’
id : ’fmt/12’
format : ’Portable Network Graphics’
version : ’1.1’

1https://www.itforarchivists.com/categories/siegfried
2https://www.nist.gov/itl/ssd/software-quality-group/national-

software-reference-library-nsrl

17th International Conference on Digital Preservation
iPRES 2021, Beijing, China.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).
DOI: 10.1145/nnnnnnn.nnnnnnn

mime : ’image/png’
basis : ’extension match png;

byte match at [[0 16] [37 4]
[21588 12]] (signature 3/3)’

warning :

Siegfried is not only a command line tool but also a
library that can be used in other golang projects. While
not all functions are exported, i.e. importable, the for-
mat identification capabilities are available.

B. National Software Reference Library

The NSRL is a huge software corpus that consists of
more than 140 millions of files from commercial prod-
ucts and software packages[3]. The collection is split in
legacy and modern sets. The modern set contains appli-
cations created in or after 2010 while the legacy set con-
tains applications created in or before 2009. The NSRL
also provides databases that hold "metadata about the
files that make up those software packages". These
metadata sets are calledNSRL ReferenceData Sets (RDS)
and are available via a free download[4].

Themetadata are stored in csv files and can easily be
parsed. In the files are file names, associated MD5 and
SHA-1 hash sums, file sizes, vendors, supported operat-
ing systems and more information stored. The useful
property is the availability of hash sums of off-the-shelf
products.

The decision if a file is relevant is based on the thesis
that if the hash sum of a file is in the NSRL, it is probably
not interesting for a discussion of the contents. Files not
in the NSRL are therefore of interest.

II. Filedriller and Redis

A. Redis

Filedriller is written in golang and uses siegfried’s for-
mat identification methods and the signature file, com-
piled and provided by its authors. It also has to have the
information if the hash sum of a file is in the NSRL. While
just the hash sums are needed for this task, the csv file
is still 1 GB in size. Also a file does not scale for a lot of re-
quests in a short time. Therefore the SHA-1 hash sums
were parsed from the RDS and fed to a redis docker con-
tainer as keys while the value for each key is TRUE. The
container formed the basis for a docker image that can
be pulled from Docker Hub3.

A bash script to create an import with current data is
available on Codeberg4. The script can be used to create
a redis NSRL instance serving SHA-1 hashes, even with-
out the need for docker. The script fetches the modern
RDS set, extracts all SHA-1 sums with awk, builds a redis
protocol file and imports it using redis-cli. A sample of
the protocol file can be seen in the following excerpt, all

3https://hub.docker.com/r/ampoffcom/nslredis
4https://codeberg.org/steffenfritz/nslredis

hash sums are abbreviated:

SET 0000001FFEF4BE31...B53AEAA3E4684D85 TRUE
SET 00000079FD7AAC9B...50750E1F50B27EB5 TRUE
SET 000000F694CA836D...EB5E2724338B422D TRUE
SET 000001169CF30652...459D9E167B132C06 TRUE

To be able to consume such services, filedriller imple-
ments a redis client. Server address and port are config-
urable via runtime flags. If the redis server flag is omit-
ted filedriller does not check if a file is in the NSRL.

B. Filedriller

Filedriller is a command line tool that recursively
walks a directory tree and creates a file list. In the next
step it iterates over the list and performs for every entry
a file identification and creates and gathers additional
metadata. These are file sizes, PRONOM UIDs, hash
sums and file entropies. It also generates UUID version
4 strings for unambiguous referencing.

A diagram showing the components and their com-
munication paths can be seen in Figure 1.

Figure 1: Architecture

iPRES 2021 - 17th International Conference on Digital Preservation
October 19-22, 2021, Beijing, China

2

C. Installation and example

Filedriller can be downloaded as a precompiled fat
binary, it therefore has no external dependencies. There
are executables for Linux, macOS and Windows. They
can be downloaded from Github5. The binary is named
friller. Friller can also be compiled from source with

go get github.com/dla-marbach/filedriller
/cmd/friller.

The compilation is placed in $GOPATH/bin. If this is
in your search path you can execute friller from any lo-
cation on the host system.

A common setup consists of a read-only filesystem,
mounted to the host system running friller and a local
or remote redis instance. On the first run friller checks
if a signature file is locally available. It expects the file in
the same directory where itself is located. If not found it
downloads a mirrored version from Github6.

A run of filedriller with the mandatory -i flag and op-
tional -s flag, i.e. the redis server address, looks like the
following. Output is written to info.csv, logs.txt and er-
rorlogs.txt in the same directory. All file names are con-
figurable via runtime flags.

$ ~/> friller -i /mnt/imagefile -s 10.10.0.10
2021/05/27 22:22:56 info: friller started
2021/05/27 22:22:57 info: Created file list.

Found 54962 files.
2021/05/27 22:22:57 info: Started file format

identification
54962 / 54962 [------------] 100.00% 2546 p/s
2021/05/27 22:23:19 info: Inspected 54962 files.
2021/05/27 22:23:19 info: Creating output file
2021/05/27 22:23:19 info: Writing output

to info.csv
2021/05/27 22:23:19 info: Output written

to info.csv
2021/05/27 22:23:19 info: Log file written

to logs.txt
2021/05/27 22:23:19 info: Error log file written

to errorlogs.txt
2021/05/27 22:23:19 info: friller ended
$ ~/>

A complete call may look like this:

$ ~/> friller -i /mnt/imagefile
--redisserv localhost
--redisport 6378
--algo sha256
--entropy
--output myoutput.csv

5https://github.com/dla-marbach/filedriller/releases/
6https://github.com/dla-marbach/filedriller/tree/main/third_party

--errlog myerror.log
--log my.log

The csv result can be imported easily and processed
by third-party tools. This could be spreadsheet applica-
tions, OpenRefine7 or SQLdatabases. The schemaof the
file has the following fields:

Filename, SizeInByte, Registry, PUID, Name,
Version, MIME, ByteMatch, IdentificationNote,
SHA256, UUID, inNSRL, Entropy

The naming of the tenth column, in the example
SHA256, depends on the used fixity function.

It is not always desired to write log files or examine
multiple files at once. There are also use cases where
several files are examined at once, but the results are
to be processed immediately and individually. For these
cases friller provides the -f flag. This writes the result
directly to standard out:

$ ~/> friller -i testbinary

The output for this example file has the format of a
single line in a regular output of friller:

"testbinary","10751680","pronom","fmt/693",
"Mach-O","64bit","", "byte match at 0, 4
(signature 2/2)","","fc86eb3b3f12b500b...",
"b037aae2-dffa-43ef-8cdf-aba6e3019683",,

III. Conclusion and next steps

Filedriller is a simple tool to inspect large quantities
of data. It can assist archivists by giving a first assess-
ment to decide which files are worth a more thorough
look. It helps to optimize workloads on more sophisti-
cated applications, e.g. tools that are indexing and ana-
lyzing content. Next steps are to optimize the code and
make filedriller faster by using goroutines where possi-
ble. It is also planned to extent its functionality and cre-
ate a graphical user interface.

References

[1] Siegfried, Homepage. [Online]. Available: https://
www.itforarchivists.com/siegfried/.

[2] Siegfried code repository, Github. [Online]. Avail-
able: https : / / github . com / richardlehane /
siegfried/releases.

[3] T. Owens, The Theory and Craft of Digital Preserva-
tion. Baltimore,MD: JohnsHopkinsUniversity Press,
2018, pp. 168–170.

[4] Nsrl introduction, Webpage. [Online]. Available:
https : / / www . nist . gov / itl / ssd / software -
quality-group/national-software-reference-
library-nsrl/about-nsrl/nsrl-introduction.

7https://openrefine.org

iPRES 2021 - 17th International Conference on Digital Preservation
October 19-22, 2021, Beijing, China

3

https://www.itforarchivists.com/siegfried/
https://www.itforarchivists.com/siegfried/
https://github.com/richardlehane/siegfried/releases
https://github.com/richardlehane/siegfried/releases
https://www.nist.gov/itl/ssd/software-quality-group/national-software-reference-library-nsrl/about-nsrl/nsrl-introduction
https://www.nist.gov/itl/ssd/software-quality-group/national-software-reference-library-nsrl/about-nsrl/nsrl-introduction
https://www.nist.gov/itl/ssd/software-quality-group/national-software-reference-library-nsrl/about-nsrl/nsrl-introduction

	Introduction
	Siegfried
	National Software Reference Library

	Filedriller and Redis
	Redis
	Filedriller
	Installation and example

	Conclusion and next steps

