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Abstract: The European Commission supported 
ARCHIVER project (Archiving and Preservation for 
Research Environments) aims to “introduce significant 
improvements in the area of archiving and digital 
preservation services, supporting the IT requirements 
of European scientists and providing end-to-end 
archival and preservation services, cost-effective for 
data generated in the petabyte range with high, 
sustained ingest rates, in the context of scientific 
research projects”.  This paper presents a software 
solution developed by Arkivum to meet the needs of 
long-term digital preservation of scientific datasets in 
ARCHIVER.  We present and discuss how this solution is 
scalable (able to process and store very large volumes 
of research data) and sustainable (both economically 
and environmentally). This is achieved through a 
combination of serverless computing, deployment on 
hyperscale infrastructure, and implementation of 
configurable ‘Minimum Effort Ingest’ workflows.  In 
particular, we show how high-performance and 
scalable Long Term Digital Preservation (LTDP) of very-
large datasets can be done in a way that is entirely 
compatible with high levels of cost-efficiency and 
minimized environmental impact. 

Keywords: Scalability, Sustainability, Environment, 
Cost, Research Data 

Conference Topics: Building the Capacity & 
Capability; Scanning the New Development. 

I. BACKGROUND AND CHALLENGES 

The ARCHIVER digital preservation project [1], is 
part of the European Open Science Cloud initiative 
(EOSC).  EOSC aims “to federate existing research 

data infrastructures in Europe and realise a web of 
FAIR data and related services for science, making 
research data interoperable and machine actionable 
following the FAIR guiding principles”.  FAIR means 
that data should be Findable, Accessible, 
Interoperable and Reusable.  EOSC targets 1.7 
million European researchers and 70 million 
professionals in science, technology, the humanities 
and social sciences. There is significant value in 
making research data open and accessible [3] 
according to FAIR principles [4].  Benefits include 
science that is higher quality and more productive, 
faster development of new products and services, 
and increased impact for research when addressing 
societal challenges.  These benefits only fully accrue 
if FAIR data remains accessible and usable for the 
long-term.  As described in the TRUST article in 
Nature [5], “to make data FAIR whilst preserving 
them over time requires trustworthy digital 
repositories (TDRs) with sustainable governance and 
organizational frameworks, reliable infrastructure, 
and comprehensive policies supporting community-
agreed practices”.   As identified in the ARCHIVER 
D2.1 report on the state of the art into LTDP for large 
scale scientific data, there is much work still to be 
done to achieve this vision, including the need for 
better LTDP infrastructures and software [6].  This is 
backed up by the Digital Preservation Coalition (DPC) 
report ‘FAIR Forever’ [7] which makes a series of 
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urgent recommendations for digital preservation 
within EOSC.   

ARCHIVER is currently the only EOSC project that 
is addressing the need for new software and services 
for LTDP of large scientific datasets.  ARCHIVER has 
contracted several organisations, including Arkivum, 
to develop new digital preservation solutions.  The 
aim is to provide new services in EOSC that will help 
research organisations to deliver long-term FAIR 
data through TDRs.   ARCHIVER is driving this through 
a set of use cases [8] from scientific organisations 
including CERN, EMBL-EBI, PIC and DESY. All of the 
use cases involve very large datasets (Petabyte scale), 
decade or longer retention timescales, and fast 
ingest and access (at the time of writing the 
ARCHIVER project is in its Prototype phase with a 
target ingest rate of 100TB per day per organization).  
These datasets need to be archived cost-effectively 
with long-term preservation and access that is 
economically sustainable.  As described in the 
ARCHIVER D2.1 report, this is not achievable using 
current digital preservation products and services, 
which is why ARCHIVER is funding new Research and 
Development in this area.  

In addition to the need for economic 
sustainability of LTDP, the need for environmental 
sustainability should not be overlooked.  This topic is 
covered in detail in the Pendergrass report [9] which 
offers both stopgap measures for reducing digital 
preservation’s negative environmental impacts and 
proposed shifts in digital preservation practice in the 
areas of appraisal, permanence, and availability.  
This is important given the scale of the ICT 
infrastructure needed for PB scale LTDP and decade-
level storage and access to huge datasets.    

Whilst the core use cases for ARCHIVER center on 
very large-scale research datasets, EOSC has a much 
broader remit and also aims to support the Long Tail 
of Science (LToS).  LToS refers to the large number of 
individual researchers and small laboratories who do 
not have access to dedicated computational 
resources and online services to manage and 
analyse large amount of data [10].  In science terms, 
the long tail is made up of scientific/research projects 
handled by individual laboratories or small groups of 
researchers.   Only an estimated 16% of users of 
cloud services for research have a need for huge 
usage [11].  Therefore, the LTDP services provided as 
part of EOSC need to support usage scenarios that 
range from the very small scale (long-tail) through to 
the very large scale (ARCHIVER core use cases).   

In summary, there are a series of significant 
challenges that need to be addressed in order to 
support LTDP of FAIR data in EOSC.  ARCHIVER is 
addressing these challenges through the R&D of a 
new set of LTDP solutions and services.  This includes 
the need for: 

• Scalable and high performance LTDP systems 
that can process, store and provide access to 
multi-petabyte datasets and support ingest rates 
of 100TB+ per day. 

• Cost effective LTDP that helps minimizes the 
Total Cost of Ownership (TCO) of FAIR data over 
decade level timescales and longer. 

• Environmentally sustainable LTDP that 
minimizes energy consumption and use of ICT 
infrastructure. 

• LTDP services in EOSC that can be made available 
to all EOSC users from the long-tail of science 
through to very large-scale data-intensive 
institutions and research infrastructures. 

II. APPROACH 

LTDP systems will often perform a series of data 
processing steps. Typical processing activities 
include checksum generation and validation, file 
format identification, virus scanning, file format 
conformance checks, metadata extraction and 
format characterisation, content extraction, file 
format conversions, e.g. as part of migrations or 
normalisation, compression and decompression, 
encryption and decryption, package generation, 
replication of files/packages to multiple storage 
locations, and initial and ongoing fixity checks.  These 
correspond to preservation activities and events 
such as those defined in the PREMIS event 
vocabulary [12] and described by PAR [13][34].  In 
some cases, further specialist processing may need 
to be done such as forensic analysis, redaction, and 
using legacy software applications for rendering and 
using content e.g. as part of emulation based 
approaches to digital preservation.   LTDP systems 
typically execute these steps using a range of tools 
and according to preservation policies and 
workflows.  To do this at scale for large datasets can 
require significant computing resource. The 
conventional approach to processing large volumes 
of data in LTDP systems is to use large servers with 
significant memory, CPU cores and fast disks (scale-
up).  Multiple servers allows large-scale parallel 
processing, e.g. by using a scale-out compute cluster.  
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However, this server-based model can be inefficient 
and hard to scale.  Provisioning sufficient resources 
to meet peak load (e.g. 100TB per day ingests) risks 
that the system is significantly underutilized at other 
times – potentially with periods where the whole 
system is idle.  This wastes money and energy. It also 
requires more hardware than actually necessary so 
is not economically or environmentally sustainable.    

Moving servers to the cloud can partially address 
this problem by making use of the elastic nature of 
Infrastructure as a Service (IaaS) offerings from 
hyperscale cloud providers such as Amazon (AWS) 
and Google (GCP).  However, it is a common 
misconception that virtual machines in the cloud are 
provided on a ‘pay per use’ basis.  VMs in the cloud 
will typically incur costs irrespective of whether they 
are being used or not.  Furthermore, scaling up or 
scaling down a set of VM servers used for LTDP in the 
cloud (or anywhere else for that matter) will typically 
involve manual processes for adding/removing 
servers in order to match the total computing 
capacity to the data load that needs to be handled at 
any given time.  Whilst cloud platforms do provide 
‘autoscaling’ facilities that can dynamically 
increase/reduce the number of servers in response 
to load, this is not something that LTDP systems have 
traditionally been architected and designed to take 
advantage of.   This leads to further inefficiencies and 
increased costs. 

Serverless computing [14] is a relatively recent 
cloud computing innovation that removes the need 
for an application to run on one or more servers 
(virtual or physical).  Instead, an application consists 
of services (code) to which compute resources are 
allocated on-demand.  If no processing is required at 
a given point, no services are executed, and no 
compute infrastructure is either consumed or paid 
for.  Furthermore, splitting an application (LTDP 
system in this case), into a set of small services that 
are stateless and run in a serverless environment 
also affords a great deal of scalability.  If there is a 
large dataset to process that consists of many files 
and where there a large number of processing steps 
to be done for each file, then this can be done 
massively in parallel in a serverless environment.  
Hundreds or even thousands of files can be 
processed concurrently.  This approach has already 
been used to good effect for analysing very large-
scale scientific datasets in the cloud [15].  Our 
approach in the ARCHIVER project uses serverless 
computing for LTDP.  The system we have developed 

consists almost entirely of small services that run in 
a serverless environment (using Kubernetes and 
knative in our case).  This allows the LTDP solution to 
scale-up to meet big workloads, but just as 
importantly, to also scale-down (scale-zero) so that 
resources are not consumed if the system is idle or 
under minimal load. 

LTDP requires data to be processed in order to 
be preserved and accessed, but it also needs storage.  
Data needs to be physically stored, typically in 
multiple locations and with ongoing integrity 
management and hardware/software migrations to 
guard against technical obsolescence.  Good practice 
in this area is described by the NDSA levels of 
preservation [16], DPC RAM [17] and the Digital 
Preservation Storage Criteria [18].   The conventional 
approach for archiving and storing large-scale 
scientific datasets is to use Hierarchical Storage 
Management (HSM) systems that combine storage 
technologies such as disk servers and data tape 
robots.  There is a move towards data archiving in 
the cloud, e.g. using cloud storage services such as 
AWS Glacier and Google archive storage, but this is 
not yet mainstream for long-term storage of 
scientific datasets.   Large-scale on-premise archival 
storage systems can be difficult to scale, difficult to 
provision so that they are not underutilized yet also 
have capacity to cope with big ingests, and difficult to 
build in a way that meets a wide range of data usage 
scenarios that go from very high frequency access to 
datasets over the Internet through to low-cost deep-
archiving of very infrequently accessed raw datasets. 

Cloud infrastructure providers have evolved to 
provide multiple tiers/classes of cloud storage where 
each class will typically have a different profile for 
cost, frequency of access, retention period and data 
safety.  Google cloud storage is an example with four 
tiers: standard, nearline, coldline and archive [19].  
Individual files (objects) can be quickly and easily 
moved or replicated across tiers, either through APIs 
or through policies that form part of automated 
Object Lifecycle Management (OLM).  The ability to 
optimize the storage of data at a fine level of 
granularity allows for cost optimization.  For example, 
original raw data files in a scientific research dataset 
might be stored using low-cost deep-archive tiers.  
Derived data on the other hand might be held on fast 
access tiers for easy download and reuse by a 
scientific community.  Cloud storage has a pricing 
model that is primarily based on the volume of data 
that is being stored (often with discounts for large 
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volumes) and how often it is being accessed.  This is 
a pay-per-use model and means that storage costs 
are not incurred when data is not being stored or not 
being accessed.  This helps minimize the TCO of 
storage across a wide range of use cases from 
frequent public access through to deep archiving for 
Disaster Recovery (DR). 

The combination of cloud serverless computing 
and multi-tiered cloud storage goes a long way to 
addressing both the scalability/performance and 
cost-efficiency requirements of LTDP in EOSC.   The 
need to support LTDP from the long-tail through to 
the large-scale is accommodated by using multi-
tenanting techniques, both at the application level 
and also at the cloud infrastructure level.   We do this 
in our solution so that small organisations (long-tail) 
can use and take advantage of the same LTDP 
services and cost-efficiencies that are available for 
large organisations who have very big datasets.   

Further efficiencies and cost reduction can be 
achieved by adopting a Minimal Effort Ingest (MEI) 
[24] approach, which in our case we term Minimal 
Viable Preservation (MVP) [25].  This reduces the 
application of unnecessary processing in the early 
stages of preservation.  Instead, the focus is on doing 
the bare minimum in the context of the specific data 
that is being preserved and how it may need to be 
used in the future.  In our case, this will typically 
involve an ingest process that does basic fixity checks, 
identifies and records file formats, extracts basic 
metadata, organizes files into searchable datasets, 
and then puts these files into archival storage as fast 
as possible.  More advanced operations, for example 
file format normalisations or detailed content 
analysis, can be deferred to a later stage.  We allow 
the minimal set of steps to be defined using 
metadata and at a very granular level.  This includes 
storage requirements as well as processing 
requirements.  For example, this allows a user to 
specify that files X,Y,Z in their ingest are raw data files 
that should be check-summed, replicated and deep-
archived but otherwise need no further processing. 
However, files A,B,C in the same ingest might be 
frequently accessed so need to go on a fast access 
storage tier, they should be fully indexed so will need 
to undergo metadata extraction, they need file 
format conformance checks so need to undergo 
format identification and validation, and they need 
to be virus scanned because they will be put online 
for use by others.  This minimizes processing so that 
specific operations are only applied by the system to 

the files that it makes sense to apply them to.   
Furthermore, it allows the same core LTDP solution 
to be used in a wide range of scenarios, e.g. for long-
tail science, because users are able to define what 
happens to their data in order to meet their needs 
without this being ‘hard coded’ into preset workflows 
within the system. 

One of the challenges enumerated in the first 
section of this paper was the need for environmental 
sustainability.   As described in the Pendergrass 
report and further discussed by this author [20], the 
ICT aspects of environmental impact can be broken 
down into the impact of the ‘production’ of ICT (the 
embodied footprint) and the ‘use’ of that ICT (e.g. 
energy consumption and cooling).  The 
environmental costs should not be underestimated 
of extracting and processing the raw materials 
needed to make up computer hardware along with 
its eventual disposal and, ideally, recycling – which 
along with manufacturing and transport constitutes 
the embodied footprint.  LTDP requires ICT hardware 
for processing, storing and providing access to data 
and this applies both to the cloud and on-premise 
deployments.  In recent years, cloud hyperscalers 
have made significant advances and commitments 
towards the environmental sustainability of their 
facilities and services – for example as described in 
the Greenpeace click-clean report [21].   The move 
towards renewable energy sources, natural cooling, 
and higher-efficiency infrastructure, including ICT, all 
means that the ‘use’ dimension of environmental 
impact is not as ‘dirty’ or ‘spiraling out of control’ [22] 
as some would have us believe.   For example, 
Google, which provides the IaaS that Arkivum uses in 
ARCHIVER, was carbon neutral in 2007, purchases 
100% of its energy from renewable sources, and is 
committed to be carbon free by 2030 [23].  This still 
leaves the ‘production’ phase of ICT and the position 
of cloud IaaS providers is less clear in this respect.  
However, given their position and status, they are all 
increasingly incentivized to both encourage and 
adopt environmentally sustainable ICT equipment in 
their facilities.  Their scale and leverage means this is 
far easier for them to achieve at their scale of 
operations than it is for organisations who instead 
procure their own ICT equipment and run it on-
premise or in private data centres.    

The combination of serverless computing, 
optimized placement of data onto appropriate 
storage classes, and hyperscale infrastructure all go 
hand-in-hand to reducing environmental impact.   
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For example, the adoption of serverless 
architectures at the application level (our LTDP 
software system) affords the IaaS provider (Google in 
our case) more flexibility for resourcing the 
application and minimizing the physical ICT systems 
they need to have in place.  Serverless computing 
allows the IaaS provider to optimize their hardware 
to achieve higher efficiencies and utilization levels.  
This not only lowers energy consumption (use phase) 
but also reduces the amount of hardware needed 
(production phase).   The result is a lower total cost 
both economically and environmentally.  Achieving 
these efficiencies is much harder when using 
dedicated servers or in-house infrastructures.   
Whilst not a panacea, and with clearly more work to 
be done by cloud IaaS providers on environmnental 
sustainability, the use of hyperscale platforms such 
as Google to underpin LTDP does offer many positive 
environmental benefits compared with alternative 
approaches. 

In summary, our approach is to: 

• Use hyperscale cloud IaaS (Google in our case) in 
order to resource the LTDP system so that it can 
achieve very high ingest and storage rates (up to 
100TB per day per organization) 

• Use serverless computing to achieve very high 
levels of parallelism and performance whilst at 
the same time ensuring resources are only 
consumed and paid for when actually needed. 

• Use metadata attributes on datasets to provide 
users with fine-grained control over the specific 
processing and storage applied to their content.  
This helps users adopt MEI/MVP and minimize 
costs. 

• Use multi-tenanting and a single core platform to 
deliver a LTDP service for all sizes of organization 
from the long-tail of science through to very big 
organisations such as CERN and EMBL-EBI. 

• Use a combination of all of the above to minimize 
the need for ICT resources (in both the 
production and use phases) and hence minimize 
the environmental impact of LTDP. 

III. IMPLEMENTATION AND RESULTS 

In order to take advantage of serverless 
computing, the Arkivum solution is architected as a 
set of microservices.  The services that form the 
solution are shown in the diagram below (Figure 1).  
This includes services provided by Google as part of 

GCP, services provided by the Arkivum software, and 
services provided by external applications such as 
keycloak for authentication.   In addition, (not shown) 
there are further services that provide supporting 
infrastructure for messaging (Kafka), metadata 
storage (MongoDB) and indexing/search 
(ElasticSearch).    

The services are grouped in the diagram 
according to the requirements of the ARCHIVER end-
users [26].  L1 (level 1) is large scale archival storage, 
L2 (level 2) is Long Term Digital Preservation, L3 (level 
3) is added value services for example dataset 
management, and L4 (level 4) is services for 
analysing archived data, for example being able to 
run scientific analysis codes.  

 
Figure 1  High-level services based architecture of the ARCHIVER 

solution. 

The services are deployed as containers that run 
in Kubernetes (k8s) [32] clusters.  The initial 
deployment of the infrastructure is automated using 
Ansible and Terraform.  Knative [27] is used to 
manage the k8s clusters and, in particular, to 
autoscale the number of pods and nodes in 
response to workload.  This includes both scaling up 
and scaling down.  Rancher [31], Prometheus [29] 
and Grafana [28] are used for monitoring the k8s 
clusters and have proven useful in optimising the 
workflow of the system and identifying bottlenecks. 

 
Several datasets have been used to test the 

scalability, performance and efficiency of the 
solution.  These include scientific datasets from 
ARCHIVER end-users and datasets from the heritage 
domain, for example images from the British 
Library’s Digitised Books collection [28].    
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A. Large scale ingest (50TB) 

50TB of data consisting of 100,000 files was 
ingested into the system.   Files represent scientific 
experiments done at the DESY synchrotron in 
Germany (DESY is one of the ARCHIVER end-users).  
The ingest and storage process completed in 8 hours.  
This corresponds to an ingest rate of 150TB/24hrs.  
The ingest process included: checksum generation 
(four algorithms were computed: Adler32, MD5, 
Sha256 and Sha512); file format identification 
(Apache Tika with most of the files in the dataset 
being identified as application/x-hdf, which is HDF5 
format [33]); caching into internal storage; chopping 
up of large files into 100MB size pieces that could be 
processed and stored in parallel; and then 
replicating the content into two separate long-term 
GCP storage locations (buckets), which included MD5 
checks to confirm storage was successful.   Data was 
first uploaded to a GCP bucket (upload bucket) and 
was ingested into the system from there.  The end of 
the process resulted in data being replicate so that 
there are two complete and separate copies of the 
data held in long-term storage buckets (the exact 
class of bucket depends on user requirements – see 
the discussion on costs below). 

Figure 2 shows the number of CPUs used by the 
system during the ingest.  The number climbs 
sharply when the ingest starts (just before 9:00am), 
stays relatively high (240 – 290 vCPUs during the 
ingest), and then falls back down when the ingest 
completes (just before 5:00pm).   This shows (a) how 
compute resources have been dynamically allocated 
in response to the ingest workload and (b) how 
resources are only consumed when there is work to 
be done.  The much lower background level before 
and after the ingest corresponds to CPUs that are 
permanently allocated to persistent services (e.g. 
Mongo, ElasticSearch, UI, system scheduler). 

 
Figure 2.  CPU count (the total number of virtual CPUs in use 

across all k8s clusters) 

The dynamic provisioning of nodes in the cluster 
can be seen in Figure 3.  This shows a node being 
used for part of the ingest (blue line) and then 

another node taking its place later in the ingest to do 
further work (green line).  This is the result of using 
pre-emptible nodes as a cost saving strategy (see 
further discussion later in this paper).  During the 
ingest, the average level of CPU utilisation across all 
nodes in the k8s clusters was just over 50%.  This 
includes the infrastructure nodes running Mongo, 
ElasticSearch which were only lightly loaded.  For the 
nodes running microservices that are directly 
involved in data processing, e.g. checksum 
generation or file format identification, the CPU 
utilisation reached near 100%.   

 

Figure 3. CPU utilisation for individual compute nodes.  Two 
nodes are highlighted (blue, green) showing how different nodes 

are spun-up/spun-down during the ingest process. 

During the ingest, data was read from storage, 
which includes reading from the GCP upload bucket 
containing the data to be ingested plus reading data 
from the internal cache.  Read operations achieved a 
sustained rate of approx. 4GB/sec (32Gbit/sec) 
across the ingest and cache buckets.  This is shown 
in Figure 4.  Likewise, data was written to storage 
during the ingest.  This includes putting data into the 
internal cache and then creating two copies in the 
long-term storage locations used for archival storage.  
The write operations achieved a sustained rate of 
approximately 2GB/sec (16Gbit/sec) as shown in 
Figure 5.    

The high and sustained data rates show the 
capability of object storage to support I/O intensive 
digital preservation processes such as replication 
and fixity checks.  The overlapping reads and writes 
that happen throughout the duration of the ingest is 
a result of the high level of parallelism in the system.  
For example, one file might be being replicated to 
long-term storage (write) whilst another file is being 
check-summed (read) and another file is being 
copied into the system cache from the source bucket 
(read and write). 

The read bandwidth is higher than the write 
bandwidth because files are read multiple times, for 
example when computing checksums and 
performing file format identification.  
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Figure 4.  Read data rate (GiBytes/sec) 

 
Figure 5. Write data rate (GiByte/sec) 

During the ingest, nodes (compute resources) 
and pods (groups of containers that run the 
microservices) were added on demand by knative.  A 
snapshot of this process can be seen below.  This 
shows the Rancher Dashboard that is used to 
monitor the system and track the number of pods 
and cores being used.  In this example, some events 
are shown that correspond to the creation of a new 
container that provides integrity services (checksum 
generation in this case). 

 
Figure 6.  Rancher dashboard showing a snapshot of pod and 

node usage along with container provisioning events. 

B. Large scale ingest (216,000 files) 

Images from the British Library’s Digitised Books 
collection [28] were ingested to investigate how the 
system responded to large numbers of files.  The 

ingest consisted of approximately 216,000 files in 
jpeg format with a total data volume of 88GB.   

The ingest process was the same as described 
above for the 50TB ingest of scientific data.  However, 
in addition, metadata extraction was also done for 
each of the files (using Apache Tika).   This added an 
extra microservice to the workflow.  The results of 
metadata extraction were stored in the system’s 
Mongo database, indexed using ElasticSearch so that 
the metadata is searchable, and also serialised and 
replicated to the long-term storage buckets along 
with the jpeg files. 

The number of virtual CPUs used to process the 
ingest is shown in Figure 7.  Ingest started at 12:45am 
and completed by 6:45pm.   The number of CPUs in 
use is higher in the early part of the ingest because 
of the processing intensive steps done at the 
beginning of the ingest process, which include file 
format identification, metadata extraction and 
checksum generation.  The number of CPUs 
allocated to the k8s clusters then drops and in this 
stage of the ingest the system is completing the 
replication and fixity checking part of the process. 

 
Figure 7. CPU count (the total number of virtual CPUs in use 

across all k8s clusters) 

The different phases of the ingest process can 
also be seen in the data read rate (Figure 8).  Data 
read operations are heavily loaded towards the first 
part of the ingest because each file is read multiple 
times at this stage.  Read rate then drops and 
corresponds to files being read as part of the copying 
process where they are replicated to long-term 
storage buckets. 

 
Figure 8 Figure 9.  Read data rate during ingest (MiBytes/sec) 

The ingest completed in just under 6 hours, 
including replication and checking of the files in the 
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long-term storage locations.  This corresponds to a 
file processing rate of approximately 860,000 files 
per 24hrs.    

From a user point of view, progress of the ingest 
can be tracked through the system’s Dashboard and 
reports are also available through a REST API.  The 
user can see what the system is currently doing, 
including the throughput for the last seven days, and 
how many files have been ingested and replicated to 
each long-term storage location (Figure 10).  Note 
that in the example shown, more files had been 
subsequently ingested into the system in addition to 
the British Library dataset (1.84M files in total).     

 

 

Figure 10.  System Dashboard showing overall status of the 
system. 

Reporting is available for the individual steps in 
the ingest process for each file.  For example as 
shown in Figure 11 for one of the files in the British 
Library dataset.  The processing steps are on the 
right with details shown for the metadata extraction 
microservice. 

 
Figure 11.  Steps of the ingest process for a specific file. 

The user can see the results of each step, for 
example the metadata that has been extracted from 
the image. An example is shown in Figure 12 for one 
of the jpeg images in the British Library dataset. 

 

Figure 12.  Subset of the metadata fields extracted from one of 
the images in the dataset. 

C. Cost optimization 

As described above, the system is able to scale-
up and scale-down the resources it consumes in 
response to workload.  The use of k8s and the 
serverless model allows for costs only to be incurred 
when resources are being consumed.  This contrasts 
with more conventional server-based computing 
approaches where Virtual Machines (VMs) used to 
run server applications.  These VMs will incur costs 
even if those applications are not being used.  It is a 
common misconception that cloud compute servers 
(VMs) are ‘pay per use’.  This is typically not the case 
and the charging model used by cloud providers 
involves customers paying for capacity (e.g. based on 
the number of cores and memory for a VM and the 
duration it is provision for) irrespective of whether 
the VM is used or not.  For example, the same per-
minute cost will apply for a VM irrespective of 
whether it is utilized at 1% or 100%.   In the case of 
Google Kubernetes Environment (GKE), costs are 
only incurred for actual resources used because 
nodes are only added and used in the cluster when 
there is work to be done.  If there is no work to be 
done on a node then it is automatically removed and 
costs are no longer incurred. Furthermore, our 
system uses pre-emptible nodes in the cluster when 
processing data.  In GCP, pre-emptible nodes have a 
lifetime of less than 24hrs and GCP can reclaim them 
for other purposes at any time (e.g. for other 
customers who pay more for guaranteed availability 
and performance).  However, pre-emptible nodes 
are available at up to 70% lower cost for each CPU-
hour consumed.  This is a large cost reduction.   In 
many archiving scenarios, processing of data is not 
time-critical and it doesn’t matter if available 
resources fluctuate.  Therefore, we designed our 
system to be robust so that ingest workflows will 
continue even if nodes in the k8s clusters are pre-
empted.  This can be seen in Figure 3 where 7 nodes 
were reclaimed by GCP at one point in the workflow 
(one such pre-emption is shown in the diagram).  
These nodes were automatically replaced with 
others that were available and processing continued 
with very little disruption and no need for any 
manual intervention. 

Pre-emptible nodes are not used for the 
persistent part of the system such as the 
infrastructure services that run the Mongo database, 
the ElasticSearch index, and the UI service.  These 
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components incur costs irrespective of the system 
load.  However, these components are also multi-
tenanted so that costs can be distributed across 
multiple organisations and efficiencies of scale are 
achieved.  The infrastructure services are deployed 
within k8s so that they can be scaled up or down if 
needed. 

In our tests, the net result of (a) serverless 
computing, (b) pay-per-use billing, and (c) cost-
reduction through pre-emptible nodes was very 
cost-effective ingests.  The 50TB ingest incurred 
compute costs of approx. $100, which represents a 
per TB cost of approx. $2.  The 216k file ingest 
incurred compute costs of approx. $40, which 
represents a cost of approx. $2 per 10,000 files.  
Mixed workloads would incur a mix of these costs.   
There are of course additional costs for long-term 
storage of the data.  There will also be costs for 
accessing and retrieving the data.  These additional 
costs depend on the type of storage being used and 
the frequency of access.   For example, GCP provides 
four tiers of object storage (standard, nearline, 
coldline and archive).  Each provides immediate 
access to data, but the cost per TB falls as the 
frequency of access decreases.  At the time of writing, 
if data is accessed less than once a year, i.e. deep 
archiving, then typical archive tier storage list prices 
are $0.0025 per GB per month, which equates to $30 
per TB per year.  Costs vary depending on which 
Google storage location is used (e.g. US, Europe, Asia) 
and whether the data is stored in multiple regions.  
For example, archive storage in GCP Finland as a 
single location is currently $14 per TB per year 
whereas multi-region storage using multiple 
geographic locations in Europe is $48 per TB per year.  
If data is accessed frequently, then other GCP 
storage tiers would become more appropriate and 
these have a higher per-TB costs.  Depending on the 
network used between the end-user and GCP, there 
can be additional egress charges too, for example 
when accessing data over the Internet.  

The Arkivum system design allows users to 
specify what classes of storage they would prefer to 
use for their data (e.g. hot, medium, cold) based on 
their expected access profiles along with the level of 
data safety that is needed.  This is done through 
metadata attributes that users can apply to some or 
all of their ingests.  The attributes can be applied to 
single files, subsets of a dataset, or to an ingest as a 
whole.  This gives users very fine-grained control 
over how their content is stored.  For example, a user 

might set attributes on the raw scientific data files in 
a dataset to indicate that these files must be stored 
with a high level of safety but can otherwise be deep-
archived because they will be accessed infrequently 
(cold). Whereas other files in the same ingest might 
have attributes set to indicate that these files are 
derived data, which requires a lower level of data 
safety, but these files will likely be accessed 
frequently by end users (hot). This gives the system 
the flexibility and information to store copies of the 
user’s data on appropriate tiers to achieve the 
required mix of accessibility, data safety and cost for 
each file or group of files.  For example, this might be 
done by storing three copies of the data – one on 
GCP standard storage as the ‘access copy’ used to 
serve access requests, one on GCP archive storage as 
a low-cost replica in a different GCP region, and one 
using an entirely independent cloud provider 
(Arkivum typically uses Azure) as an additional copy 
for DR and exit-strategy purposes.   

A detailed cost model that includes compute, 
storage and networking is not in the scope of this 
paper.   However, further work in ARCHIVER includes 
Arkivum creating a detailed cost model for LTDP 
using our system.  This is a contractual deliverable of 
the project.  The results of this will be included in the 
presentation of this paper if accepted for the 
conference. 

IV. SUMMARY AND CONCLUSIONS 

In this paper we have presented an approach to 
scalable and cost-effective long-term data archiving 
and digital preservation in the cloud.  Hyperscale 
cloud IaaS (GCP) is used to resource the LTDP system 
so that it can achieve very high ingest and storage 
rates (>100TB per day).  Serverless computing is used 
to achieve very high levels of parallelism and 
performance whilst at the same time ensuring 
resources are only consumed and paid for when 
actually needed.  Further cost optimizations include 
multi-tenanting so that a single core platform can 
deliver a LTDP service for all sizes of organization 
from the long-tail of science through to very big 
organisations such as CERN and EMBL-EBI.  The 
combination of the above all help to minimize the 
need for ICT resources for LTDP (in both the 
production and use phases) and hence helps to 
minimize the environmental impact of processing 
and storing data.  Tests show that the system scales 
well under various workloads, including large 
scientific datasets from ARCHIVER, but also for other 
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types of data such as image collections that are more 
common in memory institutions. 
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