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Logicism was a dominant position in the foundations of mathematics of the late nineteenth and 

early twentieth century. Roughly put, it is the view that pure mathematics is reducible to higher-

order logic. More specifically, the logicist thesis is usually taken to consist of two claims. First, all 

primitive terms of an axiomatized mathematical theory can be explicitly defined by using only 

logical vocabulary. Second, all axioms of the theory can be deduced from purely logical principles. 

It follows from these two claims that all theorems of a mathematical theory are also derivable from 

purely logical principles. Let us call this the classical or standard logicist thesis. 

It is well known that the pioneering logicists Frege, Russell, Whitehead as well as subsequent 

philosophers such as Ramsey or Carnap defended variants of this view. However, the contributions 

of second generation logicists often differed from classical logicism in important respects, in 

particular concerning (i) the mathematical theories considered, (ii) the logical principles adopted, 

and (iii) the very concept of a logicist reduction. Thus, based on different accounts of what is meant 

by “logic,” “mathematics,” and “reducible,” one can identify a number of nonstandard theories of 

logicism developed in the 1920s and later on. 

Logicism should thus not be viewed as a monolithic research program, but rather as a family 

of different approaches on how the general project of reducing mathematics to logic can be made 

precise. The focus of this entry will be on different theories of logicism developed in the heyday of 

logical empiricism, that is, roughly between 1920 and 1940. The central aim here is to survey how 
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Frege’s and Russell’s logicist programs were modified in the period in question. The changes 

concern not only formal details of the underlying logic such as the adoption of a simple theory of 

logical types, but also the kind of mathematical theories considered for the reduction to logic. 

Whereas classical logicism focused mainly on arithmetic, logical empiricists such as Carnap and 

Hahn were interested in a generalized logicist thesis which is applicable to any axiomatic theory of 

pure mathematics. 

 

Logicism and type theory 

The origins of classical logicism can be traced back to foundational work in nineteenth century 

mathematics, in particular on the arithmetization and rigorization of analysis. Frege’s own work on 

the logicist reduction of arithmetic is usually considered as a natural consequence of this line of 

foundational research. As is well known, Frege’s logicism is developed most systematically in 

Grundgesetze der Arithmetik (1893). Part 1 of the book—titled “Exposition of the 

Begriffsschrift”—contains a description of the logical system used for the reduction of arithmetic. 

This is, roughly put, a higher-order logic complemented by a naive theory of sets or, in Frege’s 

terminology, a theory of concept extensions. Frege’s central objective in the book was to show that a 

version of the Dedekind-Peano axioms of arithmetic can be derived from his logical principles and 

that explicit logical definitions can be given for the primitive arithmetical terms. Unfortunately, this 

project was doomed to failure given the fact that his naive theory of classes turned out to be 

inconsistent. In his famous letter of 1902, Russell informed Frege that a class theoretic paradox can 

be derived from his logical system containing the infamous basic law V. 

Subsequent research on logicism in the twentieth century was driven by the attempt to block 

Russel’s paradox as well as related paradoxes based on a theory of logical types. Roughly put, this 

is a system of higher-order logic that describes the stratification of the logical universe into a 

hierarchy of typed objects. The inventor and main proponent of such a logic was, of course, Russell. 

A systematic development of his new system was given in the first edition of Principia 

Mathematica (Russell and Whitehead 1910-13). The ramified type theory presented there was 
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modified substantially in work by a second generation of logicians, including Hilbert and 

Ackermann, Carnap, Gödel, Tarski, Ramsey, Chwistek, and Quine. Their work led to the 

simplification of type theory as well as to a purely extensional treatment of types. Another important 

modification of Russell and Whitehead’s original framework concerns the distinction between the 

syntax and the semantics. The picture emerging in work by Carnap, Tarski, and others is that of type 

theory as a formal set theory, i.e. a theory describing a rich and stratified universe of objects. 

Simple type theory came to serve as the standard logic in the 1920s and 1930s (see Ferreirós 

1999 for detailed overview). Type theoretic systems usually discussed at the time usually contained 

two important higher-order axioms, namely an axiom scheme for comprehension and an axiom 

scheme of extensionality which states that properties are identical if they are co-extensional. In 

Russell’s original presentation, three other axioms were taken to belong to the logical principles. The 

first one is the multiplicative axiom which is roughly equivalent to the set-theoretic axiom of choice. 

The second one is an axiom of infinity, which states that the there is a countable infinite number of 

objects in the individual domain of the language. A third axiom, relevant only for the original 

ramified treatment of types, is the axiom of reducibility. 

With the adoption of type theory as a way to block the set-theoretic paradoxes deducible from 

Frege’s logical system, it is easy to see how classical logicism can be reformulated in this new 

framework. A natural way to specify the logicist thesis can be given in terms of the notion of an 

interpretation of a theory in another one. Roughly put, given two axiomatic theories S and T 

(expressed in languages LS and LT respectively), an interpretation of T in S is given by a 

translation of the formulas in LT into formulas of LS that preserves (i) their logical structure of LT 

sentences and (ii) the theorems of T. The second condition states that the translation of every 

theorem of the interpreted theory should also be provable from the axioms of the interpreting theory. 

Applied to the reduction of arithmetic to logic, one can show that the theory of Dedekind-Peano 

arithmetic (expressed in the second-order language) can be interpreted in type theory (expressed in 

the purely logical language). More specifically, there exists a translation of all arithmetical 

statements into purely logical statements based on Frege’s logical definitions of the primitive 
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arithmetical terms. This translation is theorem-preserving in the sense that for any arithmetical 

statement that is provable from the Dedekind-Peano axioms, its purely logical translation is 

derivable from the principles of type theory. 

 

Logical truth in logical empiricism 

Logical empiricism took shape as a philosophical movement in direct reaction to the foundational 

debates in mathematics at the turn of the last century. In particular, Frege’s and Russell’s thesis that 

mathematics is a branch of logic played a central role in the revival of empiricist philosophies in 

Vienna and elsewhere. While thinkers such as Hahn and Carnap took simple type theory to be the 

standard logical system for the logicist reduction of mathematics, their accounts differed from 

classical logicism in central respects. This is mainly due to the fact that, at their time, the conception 

of logic was subject to significant revision, largely in response to Wittgenstein’s Tractatus Logico-

Philosophicus (1922). Wittgenstein proposed a new analysis of logical truth in terms of the notion 

of a tautology. Such truths do not assert facts about the world, but concern only the logical form of 

statements. This new conception of logic as a systems of tautologies marks a sharp break with 

previous accounts, in particular the logical universalism shared by Frege and Russell. 

As is well known, the members of the Vienna Circle wholeheartedly adopted the Tractatus 

conception of logic. How did the new understanding of logic as a set of tautologies transform the 

way in which logicism was understood by them? On first glance, both Carnap and Hahn seem to 

have embraced classical logicism in the sense outlined above. This is evident in a number of 

publications from the time, for instance, in several articles written by Carnap around 1930 that 

explicitly discuss Frege’s and Russell’s logicism (e.g., 1931). However, an important difference to 

their program becomes visible if one considers how the “fundamental logical sentences” are 

understood in these writings. Instead of characterizing logical laws as universal truths, they are 

conceived by Carnap as tautologies in Wittgenstein’s sense. Consequently, assuming that 

mathematics is reducible to logic, it follows that all mathematical theorems are also purely 

tautological in character. This account of the nature of higher mathematics was widely shared 
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among members of the Vienna Circle, as the following passage in the circle’s official manifesto of 

1929 indicates: “The conception of mathematics as tautological in character, which is based on the 

investigations of Russell and Wittgenstein, is also held by the Vienna Circle.” (Verein Ernst Mach 

1929/2012: 85) 

Now, both Hahn and Carnap were aware that this revised logicist thesis built on the notion of 

logical tautology is problematic. It is difficult to see how logical type theory (let alone theories of 

higher mathematics) can be tautological in character, that is, without any ontological 

commitments. How did the logical empiricists aim to vindicate the logicist thesis in light of this 

fact? Two lines of reasoning can be mentioned here. The first concerns different attempts to 

generalize the notion of a tautology in order to make it applicable to type-theoretic logic and a 

fortiori also to mathematics. Hahn fully embraced the Tractatus-style conception of logic in his 

philosophical writings from the 1920s and early 1930s (e.g. 1929). In particular, he defended the 

view that logical laws concern only the logical form of statements and have no representational 

function. However, in contrast to Wittgenstein’s “thin” account of tautologies, Hahn was interested 

in formulating a “wider” conception of tautologies (1933). This is based on the fact that he, in 

contrast to Wittgenstein, adopted an early conventionalism about the choice of logical principles 

(see Uebel 1995). Thus, Hahn argued that one can freely adopt our logical system for the study of 

inferences in our language. This includes the possibility to adopt set-theoretic principles such as the 

axioms of infinity or choice. Consequently, what counts as a valid tautological transformation is 

specified relative to the particular choice of a logical framework. 

A second strategy to vindicate logicism is also based on the reassessment of the logical status 

of certain axioms of type theory. As is well known, Russell’s and Whitehead’s axioms of choice, 

infinity, and reducibility were viewed critically by many proponents of logicism, including also 

philosophers of logical empiricism. Consider, for instance, Carnap’s Abriss der Logistik, where the 

status of these axioms is discussed in detail. As Carnap points out, neither the axioms of choice nor 

infinity “should not be included among the basic principles of logic, since its admissibility has been 

problematic” (1929, §24b). The decidedly existential and thus non-logical status of these axioms 
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thus presented a central problem to type-theoretic logicism. It was clear to Carnap and others that 

these axioms are independent of the other logical principles of type theory but at the same time 

indispensable for the logicist reduction of mathematics. A possible solution to this problem was to 

view these axioms not as proper logical principles but rather as hypothetical assumptions in logical 

reasoning. More specifically, that central idea here was to reformulate those mathematical 

statements whose proof depends on these axioms in terms of conditional statements where the 

axioms in question occur in the antecedent. 

This “conditional” logicism presents a weakened form of classical logicism that can be found 

in several works of the time (see Musgrave 1977 and Coffa 1981). The first systematic formulation 

of this approach was given in Russell’s Introduction to Mathematical Philosophy (1919). This 

approach was also adopted by several members of logical empiricism. Carnap, in particular, 

formulated variants of the strategy to conditionalize mathematical statements in his writings from 

the period in question. Thus he wrote: “[Russell] . . .  transformed a mathematical sentence, say S, 

the proof of which required the axiom of infinity, I, or the axiom of choice, C, into a conditional 

sentence; hence S is taken to assert not S, but I É S or C É S, respectively. This conditional sentence 

is then derivable from the axioms of logic.” (1931/1964: …)  

The central motivation for this logical reconstruction was to reduce mathematics to logic 

without having to assert the logical truth of existential axioms such as choice and infinity. Applied 

to the program of reducing arithmetic to logic, this method yields a nonstandard form of logicism: 

arithmetical statements are also translated into purely logical statements here, but not based on 

explicit “logicist” definitions of the primitive terms. Instead, they are translated into conditional 

statements in the language of type theory. 

 

If-thenism and general axiomatics 

Logical empiricists including Hahn and Carnap formulated variants of a “conditional logicism” 

based on the critique of the non-tautological nature of axioms such as infinity and choice. 

Interestingly, the if-thenist reconstruction of mathematical statements is also adopted to generalize 
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the logicist thesis in a different way, namely to make it applicable to non-arithmetical theories in 

mathematics. This approach is again rooted in Russell’s foundational work.  

In his Principles of Mathematics (1903), the method of conditionalization was originally 

introduced in the discussion of non-Euclidian geometries (see Gandon 2009). Russell argued that 

the axioms of mutually inconsistent geometrical theories should not be viewed as assertative 

statements but rather as hypothetical claims about possible structures of space. Geometrical 

theorems, in turn, are to be expressed as quantified conditional statements that contain the ramsified 

axioms as the antecedent. This logical reconstruction has an important consequence: a geometry, 

conceived now as class of conditional statements, is expressible in a pure logical language and thus 

does not express any factual content about the world. Russell was well aware of this fact and 

suggested if-thenism as a natural approach to describe theories of pure mathematics: “Pure 

mathematics is the class of all propositions of the form ‘p implies q’, where p and q are propositions 

containing one or more variables, the same in two propositions, and neither p nor q contains any 

constants except logical constants.” (1903: 3) This logical reconstruction exercised an important 

influence on the philosophers of logical empiricism. In particular, independent of the classical 

logicist project to reduce arithmetic to a firm logical basis, Russell’s account was viewed by Carnap 

and Hahn, among others, as a way to capture modern axiomatic reasoning in non-arithmetical 

branches of mathematics. 

Carnap, in particular, did not view logicism and formal axiomatics as opposing programs in 

the foundations of mathematics. One can view his early work on the philosophy of mathematics as 

an attempt to reconcile modern axiomatic mathematics with a generalized version of the Fregean or 

Russellian logicist thesis (compare Awodey and Carus 2001 and Reck, 2004). This is most explicit 

in his work on “general axiomatics” from the late 1920s. In particular, in Part II of Carnap’s 

Abriss— titled “Applied Logistic”—Carnap suggests the following type-theoretic formalization of 

axiomatic theories: the primitive terms of a theory are expressed as free variables (each of a given 

arity and type). Axioms and theorems are expressed as sentential functions, that is, as open formulas 

in modern sense. Carnap argues that an axiomatic theory does not only give an implicit definition of 
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the primitive terms occurring in the axioms in the sense specified by Hilbert, but also an explicit 

definition of a higher-order concept, the so-called Explizitbegriff of an axiom system. More 

specifically, he holds that: 

 

For instance, if x, y, . . . α, β, . . . P, Q, . . . are the primitive variables of the AS and if 

we name the conjunction of axioms (that is a propositional function)  

AS(x, y,. . . α, β,. . . P, Q, . . . ), then the definition of the explicit concept of this AS is: 

x̂, ŷ, . . .  α, β, . . . P̂, Q̂ , . . . {AS(x, y, . . . α, β, . . . P, Q, . . . )} 

(1929: 72) 

 

How is this approach of formalizing axiomatic theories related to the if-thenism described in 

Russell’s Principles of Mathematics? Interestingly, Carnap’s understanding of mathematical 

statements is highly similar to Russell’s in this respect. While the if-thenist reconstruction is not 

mentioned in Abriss, Carnap explicitly discusses it in a related paper titled “Proper and 

Improper Concepts” (1927). He argues there that the mathematical content of a theorem is best 

expressed by a closed formula, namely a quantified conditional statement that contains the 

“logical product” of the axioms of a given theory in the antecedent. The theorems of a given 

theory are thus to be translated into purely logical statements of the form: 

 

  x, y, . . . α, β, . . . P,Q, . . . [AS(x, y, . . . α, β,. . . P,Q, . . . ) → φ (x, y, . . . α, β, . . .P,Q,. . . )] 

 

where variables x, y, . . . α, β, . . . P, Q, . . . present the primitive vocabulary of the theory, AS 

presents the axioms of a theory, and j the ramsified theorem in question. (This if-thenist 

construction can also be found in the writings of other logical empiricists, e.g. Hempel 1945.) 
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A central philosophical motivation underlying Carnap’s adoption of this Russelian if- thenism 

was to defend some form of non-classical logicism. This generalized version of a logicist reduction 

is usually characterized in the modern literature in terms of two conditions (Musgrave 1977: 117-8): 

 

(1) All mathematical statements have the logical form of conditional statements with the 

logical product of the axioms in the antecedent and a ramsified theorem in the 

consequent. 

(2) All true mathematical statements are derivable from logical axioms. 

 

The first condition states that all mathematical statements can be reformulated in purely logical 

terms. This language logicism corresponds to the weak logicist thesis discussed in Carnap’s 

Abriss. Given that the explicit concept of an axiom system can be expressed in purely logical 

terms, it follows that any mathematical theory (including non-arithmetical ones such as 

geometry or topology) ”can be represented as a branch of logistic itself” (1929: …). Moreover, 

any theorem of a given theory can be translated into a purely logical sentence based on the if-

thenist reconstruction. 

As pointed out above, this condition is usually accompanied by a second thesis, namely 

that all true mathematical statements so construed become derivable from the logical (i.e. type 

theoretic) axioms in question. Expressed in modern logical terminology, (2) states that the if-

thenist translation is also theorem-preserving, that is, it induces an interpretation of a 

mathematical theory in type theory in the sense specified earlier. Although this second thesis of 

conditional logicism is usually not described explicitly in published work from the 1920s and 

early 1930s, it is likely that this view shared by Carnap and his fellow logical empiricists. (A 

version of this thesis can be found in his (2000).) Obviously, this if-thenism presents a weaker 

form of logicism than Frege’s and Russell’s original programs. In particular, what is missing 

here are explicit logicist definitions of the primitive terms of a mathematical theory. Moreover, 

mathematical axioms are not supposed to be derived from purely logical principles in the 
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present account. What is derived from the principles of type theory are the ramsified conditional 

statements described above. Thus, the conditional logicism effectively shows that all proofs of 

theorems can be formalized within a general type-theoretic system. This is given by the fact that 

for any axiomatic mathematical theory A and every statement j in the language LA, the 

following equivalence holds: 

 

TT  {A}  φ ↔ TT    (A(  ) → φ (  )) 

 

Thus, whenever a statement is derivable from theory A (plus the logical axioms of TT, then the 

universal ramsification of (A→φ ) is derivable from the logical axioms alone (compare again 

Musgrave 1977 and Coffa 1981). 

 

Logical pluralism 

Logicism lost much of its philosophical significance in the course of the 1930s, mainly as a result of 

Gödel’s incompleteness results. Roughly put, Gödel’s results show that arithmetical truth cannot be 

identified with logical provability. This was a serious blow for the traditional logicist thesis that 

arithmetic is reducible to higher-order logic. A second reason for the gradual demise of the Frege’s 

and Russell’s program was that the scope of logic changed significantly in the period in question. 

First-order logic was eventually established as the standard logical system and replaced the logical 

theory of types. Moreover, logic also underwent a metatheoretic turn in work by Tarski, Carnap, and 

Gödel (among others). The new metalogical approach and the clear syntax-semantics distinction 

implied by it was clearly incompatible with the logical universalism present in the work of Frege, 

Russell, but also in Wittgenstein’s Tractatus. 

While logicism was challenged by these developments, it would be wrong to conclude that it 

was given up at the time. In fact, it remained a central position in work by philosophers affiliated 

with logical empiricism well after the 1930s. This is true, in particular, of Carnap’s work. His 

project on general axiomatics—originally devised as two volumes of Untersuchungen zur 
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allgemeinen Axiomatik—was eventually abandoned in 1930, mainly in response to Tarski’s 

metatheoretic definition of notions such as categoricity, truth, and logical consequence (see Awodey 

and Carus 2001). As is well known, Tarski emphasized the distinction between the formulation of 

axiomatic (or “deductive”) theories in an object language and the specification of their 

metatheoretic properties in a separate and richer metalanguage. Given this background, Carnap 

eventually developed a similar approach that presented a sharp break with Wittgenstein’s position. 

Moreover, influenced by a correspondence with Gödel in 1932, he also adopted a purely syntactic 

conception of logic and, more importantly, the idea of logical syntax as the study of metalinguistic 

properties of “logico-mathematical” languages. This new approach culminated in his Logical Syntax 

of Language, first published in 1934. 

Carnap’s work on logical syntax is marked by a number of important innovations. First, his 

account of logico-mathematical systems is decidedly metatheoretic: mathematical theories such as 

arithmetic are presented axiomatically in a fully specified object language. In the case of Peano 

arithmetic this is the higher-order language of simple types LII. As in Tarski’s work, the formation 

and transformation rules of this language are expressed in separate syntax language. Given this 

setup, a central syntactic concept introduced in Logical Syntax is the notion of analyticity which is 

explicitly introduced by Carnap as an explication of logical truth. Thus, Wittgenstein’s notion of 

tautological truth is replaced here by a decidedly metatheoretical concept. Roughly put, analyticity 

for sentences in LII is defined analogously to Tarski’s treatment of formal truth, namely in terms of 

several recursive clauses for the valuation (or satisfaction) of open formulas. 

The most significant innovation in Carnap’s book is the fact that logical universalism of the 

traditional logicists is replaced by a form of logical pluralism. According to this view, there exist no 

unique or correct logic. Rather, according to Carnap, one can freely choose between different logical 

systems for the task of formalizing mathematics or the sciences. The different frameworks are 

equally valid or acceptable. Moreover, the choice between them should be based purely on 

pragmatic or instrumental considerations. Carnap’s adoption of this logical pluralism is best 

expressed in his famous remark on the principle of tolerance: “In logic, there are no morals. 
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Everyone is at liberty to build up his own logic, i.e. his own form of language, as he wishes. All that 

is required of him is that, if he wishes to discuss it, he must state his methods clearly, and give 

syntactical rules instead of philosophical arguments.” (1934/1937: 52) The principle expressed here 

also presents a fundamental break with the Tractatus-style conception of logic. It is no longer the 

case that the nature and role of logic is ultimately grounded in metaphysical considerations 

concerning the relation between our language and the world. Instead, different logical systems can 

be adopted for different theoretical purposes and studied by metatheoretical means. 

Given Carnap’s new framework for the study of logic and mathematics, the question arises 

what residual role is assigned to logicism in Logical Syntax (see Friedman 1999 and the papers in 

Wagner 2009). Frege’s and Russell’s original program of reducing mathematics to higher-order 

logic is discussed in §84 of the book. However, Carnap clearly does not ascribe to it the importance 

he did in his pre-Syntax work. In fact, the study of the logical syntax of formal languages is viewed 

here as a way to reconcile logicism with other foundational views, in particular Hilbert’s program. 

As a consequence, the particular understanding of the classical logicist project is significantly 

changed. 

Notice first that Carnap is still working with a simplified version of Russell’s logical theory 

of types in 1934. Type theory is expressed here in language LII which, in contrast to his previous 

work on general axiomatics, is explicitly treated as an object language now. Surprisingly, LII is no 

longer considered for the logical reduction of arithmetic. This is due to the fact that all arithmetical 

terms are already contained as primitive signs in the language. Moreover, the axioms of Peano 

arithmetic are not supposed to be deducible from the logical principles of type theory here, but they 

already belong to axiom base of the logical system (1934/1937: §30). Thus, Peano arithmetic is no 

longer interpreted in type theory, it is now taken to be a part of it. Given Carnap’s account of 

“logico-mathematical systems,” classical logicism obviously becomes irrelevant in this context. The 

logicist project of reducing mathematics to logic is replaced here by the more general project of 

showing that both logic and mathematics can be characterized as analytic in Carnap’s new sense of 

the term. 
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A second issue that distinguishes Carnap’s approach in Logical Syntax from classical 

logicism relates to his logical pluralism. We have seen that the definition of the notion of analyticity 

given in 1934 is a relative one: analytic truth, understood as an explication of logical or tautological 

truth, is specified relative to a particular language or logical system. Which mathematical 

statements count as analytic therefore depends on the prior choice of a logical system with its 

formation and transformation rules. For instance, statements of classical analysis will turn out as 

analytic relative to the type theoretic system LII, but not analytic relative to the weaker language LI 

of primitive recursive arithmetic also discussed in the book. Since one is free to choose between 

such logical frameworks, it follows that whether certain branches of mathematics count as logical 

also becomes a question of pragmatic choice. Thus, given Carnap’s new principle of logical 

tolerance, the logicist reduction of mathematics to logic is no longer “a question of philosophical 

significance, but only one of technical expedience” (ibid.: §84). To show that the logicist thesis 

holds, it suffices to adopt a sufficiently strong background system that (i) either contains the 

mathematical axioms and primitive terms in question or (ii) that allows one to deduce these axioms 

in terms of sufficiently strong transformation rules. 
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