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Abstract 

Environmental niche models are becoming increasingly important to investigate the distribution 

of species in times of global change. These models are mostly based on occurrence rather 

than abundance data, but for many applications abundances are the more relevant parameter. 

As this data is rarely available, predicting abundances based on habitat suitability derived from 

occurrence models could help ameliorate this problem. A relationship between abundance and 

suitability appears to generally exist, but its predictive power is highly variable. In this study 

abundance–suitability relationships in tropical Odonata species were explored. Fine-scale 

environmental variables were used to model habitat suitability, which was then related to 

observed abundances. Additionally, it was tested if the species’ degree of habitat specialisation 

determined the strength of these relationships. Abundance was significantly related to habitat 

suitability in ten of eleven Odonata species. Yet, the explanatory power of these relationships 

was only moderate for most species. The strength of these relationships was further 

significantly related to the species’ degree of habitat specialisation. This suggests that 

occurrence models can be used to infer abundances. Caution is advised, however, as their 

predictive power is highly variable and can potentially be influenced by numerous factors. As 

demonstrated by the effect of the species’ degree of habitat specialisation. 

 

Keywords: Costa Rica, damselflies, dragonflies, environmental niche models, habitat 
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Introduction 

Patterns of species distribution and abundance have long intrigued biologists and studying the 

mechanisms responsible for these patterns is one of the key areas of ecological research 

(Brown, 1984). Understanding the underlying processes is especially important in the present 

time, with global change altering species’ distributions (Guo et al., 2018; Hill et al., 2001) and 

increasing extinction rates (Ceballos et al., 2015). 

Numerous statistical techniques, referred to as ecological niche models (ENMs) have been 

developed to investigate species distributions. These models relate species occurrence 

(presence-absence) or abundance data to environmental variables and predict probabilities of 

occurrences or the most probable abundances, respectively (Elith & Leathwick, 2009; Guisan 

& Zimmermann, 2000). The applications of such models are manifold, including the 

identification of priority areas for conservation, forecasting the invasion potential of species 

and predicting the effects of climate change (Peterson, 2006). As occurrence data is usually 

considerably easier to obtain than abundance data, ENMs have mostly been based on 

occurrence rather than abundance data (Kissling et al., 2018; Waldock et al., 2022). Yet, for 

many applications, e.g., assessing a species’ extinction risk, modelling abundances may be 

more appropriate (Ashcroft et al., 2017; Ehrlén & Morris, 2015), as presence-absence models 

do not differentiate between small and large populations, albeit population size is a strong 

predictor for extinction risk (O'Grady et al., 2004). Assessing species’ extinction risk based on 

occurrence data could therefore potentially lead to the conservation of marginal sink 

populations rather than the most viable core populations (Ashcroft et al., 2017). 

Still, the issue remains that abundance data is rarely available to the necessary extent. 

Estimating abundances from presence-absence models, if possible, could ameliorate this 

problem. Following the concept of the Hutchinsonian niche (Hutchinson, 1957), Brown (1984) 

proposed that both a species’ distribution and abundance depend on a number of different 

environmental variables. Population densities of a species should be highest in habitats most 

closely matching their ecological requirements. As the favourable environmental conditions in 

high-quality habitats relate to the successful survival and reproduction of a species (Morrison 

et al., 2006), habitat quality is frequently assessed by means of abundance (Johnson, 2007). 

Occurrence probabilities derived from presence-absence models are regularly interpreted as 

environmental suitability scores (Peterson, 2006), which themselves are often assumed to be 

correlated with habitat quality (Gutiérrez et al., 2013). It may therefore be plausible to expect 

the suitability of a habitat for a particular species, as predicted by a model, to be related to the 

species’ abundance in this habitat. This putative relationship is most commonly referred to as 

the abundance–suitability (AS) relationship. 
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During the last two decades, this AS relationship has received some attention and multiple 

studies have been conducted to provide evidence for its existence. These studies covered a 

variety of different taxonomic groups and while some did find strong support for a link between 

habitat suitability and abundance (e.g., de la Fuente et al., 2021; Gutiérrez et al., 2013; Oliver 

et al., 2012; Weber & Grelle, 2012), others reported no to only weak AS relationships (e.g., 

Dallas & Hastings, 2017; Filz et al., 2013; Jiménez-Valverde et al., 2009; Nielsen et al., 2005). 

Nonetheless, a recent meta-analysis concluded that suitability and abundance are generally 

positively correlated, and that presence-absence data can be a reasonable proxy for 

abundance (Weber et al., 2017). However, it was cautioned against accepting the AS 

relationship as universal, as multiple factors could be reasonably suspected to affect its 

strength. 

In arthropods for example, abundances can fluctuate considerably across time, potentially 

weakening AS relationships (Jiménez-Valverde et al., 2009). This is highlighted by stronger 

correlations between habitat suitability and abundance in vertebrates compared to 

invertebrates, with the latter also exhibiting larger variations in reported correlation coefficients 

(Weber et al., 2017). Another influential characteristic of species may be their vagility, as more 

vagile species show a tendency towards stronger AS relationships compared to sedentary 

species (Jiménez-Valverde et al., 2009). Nielsen et al. (2005) further suggested that suitability 

and abundance should be more closely linked in specialist species. Finally, the choice of 

predictors used for modelling suitability could affect the resulting AS relationships (de la Fuente 

et al., 2021; Weber et al., 2017). Climatic variables are the most commonly utilised predictors 

for deriving habitat suitability, but correlations between suitability and abundance were higher 

in studies considering not only climatic and topographic, but also additional fine-scale 

environmental variables (Weber et al., 2017). Although the results of these studies suggest 

that a relationship generally exists between suitability and abundance, the strength of this 

relationship and thus the potential for predicting abundances from presence-absence data 

appears to be highly variable. 

In this study we therefore aim to further explore AS relationships in tropical odonates (i.e., 

dragonflies and damselflies; Insecta: Odonata), at a relatively small spatial scale. The required 

abundance data was collected over multiple years at sampling sites spread across a highly 

variable landscape in Costa Rica. Suitability values for several different species were then 

derived from presence-absence models utilising environmental variables measured directly in 

the field. These model-derived suitability values were related to the abundances of the 

respective species and the strength of the resulting AS relationships to the species’ degree of 

habitat specialisation. 
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Overall, this study is concerned with answering the following questions: (1) Do significant AS 

relationships exist in tropical odonates and if yes, are they strong enough to reasonably predict 

abundances? (2) Is the strength of a species’ AS relationship related to its degree of habitat 

specialisation? 

Based on the studies published so far, we expect significant and strong positive AS 

relationships in tropical Odonata. The fact that adult odonates are generally highly mobile 

species (Stevens & Bailowitz, 2009) should contribute to strong AS relationships (Jiménez-

Valverde et al., 2009). As should the inclusion of fine-scale environmental variables for 

modelling suitability, since these variables may better represent local conditions and could thus 

be more relevant than climatic variables (de la Fuente et al., 2021; Weber et al., 2017). Based 

on suggestions made by other authors we would further expect specialist species to exhibit 

stronger AS relationships than generalist species (Jiménez-Valverde et al., 2009; Nielsen et 

al., 2005). 

Methods 

Study area 

The study area is situated in the southern 

Pacific lowlands of Costa Rica, in the 

Puntarenas province. It comprises a large 

network of drainages, rivers and small 

tributaries (hereafter collectively referred to 

as rivers) that cross the Piedras Blancas 

National Park, the Golfito Forest Reserve and 

the adjacent agricultural areas surrounding 

the village La Gamba (8.70783, −83.18539; 

65 m a.s.l.; Figure 1). The countryside 

consists of a wide variety of different land 

cover types, ranging from pristine primary 

forests, over secondary forests to cultivated 

land (i.e., pastures and oil palm plantations) 

and small settlements (Weissenhofer et al., 

2008). The climate is characterised by high 

annual rainfalls (c. 5,800 mm) with rainfall maxima and minima occurring around October (c. 

800 mm) and February (c. 200 mm), respectively (Weissenhofer & Huber, 2008). 

  

Figure 1. Overview of the study area surrounding 
the village La Gamba (black star) and indication of 
its position within Costa Rica (red square, bottom 
right). Forest areas are shaded in grey. Orange 
circles indicate Odonata sampling sites, and black 
lines represent rivers. 
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Odonata surveys 

Data on Odonata abundances was collected over the course of three sampling periods at sites 

distributed along the rivers in the study area. The first two surveys were conducted from 

November 2015 to January 2016, and October 2016 to February 2017, respectively. For these 

surveys, sampling sites were chosen to represent one of four habitat types: forest interior, 

forest margin, gallery forest and open land. Eight sites, at least 200 m apart from each other, 

were established per habitat type, for a total of 32 sampling sites. Each of these sites was 

sampled a total of ten times during the two surveys (Sarah Degenhart and Felix Meyer, 

unpublished). A third survey was conducted between February and March 2018 which 

comprised six different sampling sites that were sampled three times each. The sites of this 

third survey were specifically chosen to represent habitat types not yet covered by the two 

previous surveys (e.g., drainages in oil palm plantations or very wide river sections). 

All three surveys followed the same general sampling method. At each site, a 50-metre 

transect was established along the river stretch. Transects were surveyed between 8 am and 

5 pm for one hour per visit and every encountered odonate was recorded. Individuals we could 

not identify in the field were killed with ethyl acetate and collected for later identification. 

The nomenclature used in this study follows Paulson and Haber (2021). 

Environmental variables 

To characterise Odonata habitats, several environmental variables were recorded along the 

rivers (Table 1). However, as the initial concept for this study differed from the final approach 

presented here and required characterisation of the complete riverine system in the study area, 

these environmental variables were not just recorded for the 38 Odonata sampling sites 

mentioned above. Instead, all rivers were divided into sections of 200 m length, resulting in 

233 such sections. At the centre points of these sections, 50-metre transects were established 

and environmental variables were recorded along these transects. 

The following 9 environmental variables were recorded directly in the field to characterise each 

of the river sections. These variables were chosen as they can be assumed to potentially affect 

the occurrence of Odonata species. We quantified the amounts of both woody debris and rocks 

protruding above the water surface, the amount of surrounding vegetation hanging over the 

water surface, as well as the presence of mostly gravelled, but at least unvegetated riverbanks 

on an ordinal scale from missing (0) to very abundant along the whole transect (5). The 

average grain size of the stream bed sediments was also classified on an ordinal scale, ranging 

from very fine (1; mainly silt and sand) to very coarse (5; predominantly cobbles and boulders). 

The width of the river (m) was estimated at its widest point. However, as water levels can 

fluctuate greatly due to precipitation, or lack thereof, width was not estimated based on the 
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current water level but rather the highest level it commonly reaches, as indicated by e.g., 

relatively recent depositions of fluvial sediments along the riverbanks. Flow velocity of the river 

(m/s) was measured using a chip log, a small board weighted by lead which is attached to a 

string. The chip log was dropped into the water at the centre of the river cross section and the 

time it required to travel 10 m (the length of the string) was then used to calculate the flow 

velocity. Further, the maximum height of the vegetation (m) at either side of the transect within 

a 5-metre buffer was estimated, as well as the canopy cover (%) directly above the waterbody 

in 10% increments. 

Table 1. Environmental variables recorded to characterise individual river sections, including their units 
(if applicable), the scales on which the ordinal variables were measured, as well as mean, minimum and 
maximum values for the continuous variables. 

An additional 6 environmental variables were measured using the GIS software QGIS 

(QGIS.ORG, 2019). First, a map of the different habitat types in the study area was created, 

based on the vegetation map published by Weissenhofer et al. (2008), the most recent aerial 

photographs (Google Earth Pro, 2015) and information obtained directly in the field. Five 

different habitat types were differentiated: old growth forest (i.e., primary and old secondary 

forests), young secondary forest, oil palm plantation, open land, and settlement (including 

gardens). Then, for each of the river sections, the fraction of the area covered by the individual 

habitat types in a 50-metre buffer around the river section was calculated. To prevent buffers 

of adjacent river sections from overlapping, the buffers were created around the central 100 m 

stretch of the individual river sections. Finally, the linearity of the individual river sections was 

quantified by dividing the distance between the two endpoints of the river section by the total 

length of the section (i.e., 200 m in most cases). This results in a linearity value of 1 for a 

completely straight section, and a much lower value for e.g., S-shaped sections. 

Variable  

Ordinal variables Scale 

Protruding woody debris 0 – 5 

Protruding rocks 0 – 5 

Overhanging vegetation 0 – 5 

Riverbank 0 – 5 

Grain size of stream bed sediment 1 – 5 

Continuous variables Mean (min. – max.) 

River width (m) 9.7 (1.0 – 28.0) 

Flow velocity (m/s) 0.5 (0.1 – 1.7) 

Height of surrounding vegetation (m) 15.0 (0.1 – 42.0) 

Canopy cover (%) 26.6 (0.0 – 90.0) 

Fraction of old growth forest in a 50-m buffer 0.3 (0.0 – 1.0) 

Fraction of young secondary forest in a 50-m buffer 0.3 (0.0 – 1.0) 

Fraction of oil palm plantations in a 50-m buffer 0.2 (0.0 – 1.0) 

Fraction of open land in a 50-m buffer 0.2 (0.0 – 1.0) 

Fraction of settlements in a 50-m buffer 0.02 (0.0 – 0.5) 

Linearity of river section 0.9 (0.3 – 1.0) 
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The biological relevance of these variables can be inferred for a variety of reasons. Some (e.g., 

woody debris, overhanging vegetation) may represent potential perching structures, while 

others (e.g., flow velocity, stream bed sediment) may indicate larval habitat quality (Corbet, 

2004). The habitat buffers could describe the different foraging habitats available to adults at 

a specific site, and the linearity value of a river section may allow for some inference regarding 

habitat heterogeneity. However, individual variables can be important for different aspects of 

odonate life histories. For example, the mentioned perching structures may also be used for 

oviposition by some species. 

Habitat specialisation 

To quantify the species’ degree of habitat specialisation, a principal component analysis (PCA) 

based on the environmental variables of all 233 surveyed river sections was calculated in 

advance. As the environmental variables included both ordinal and continuous variables, the 

PCA was calculated using the ‘mixedCor’ and ‘principal’ functions in the ‘psych’ package 

(Revelle, 2021) which can handle this kind of mixed data. Subsequently, the number of 

principal components to be retained was determined using the Kaiser-Guttman criterion (only 

components with eigenvalues > 1; Guttman, 1954; Kaiser & Dickman, 1959). Then, for each 

species, the principal component scores of all sampled sites it occurred in were extracted. 

These scores were used to calculate the species’ habitat niche breadth by constructing 

hypervolumes via one-class support vector machine learning models using the ‘hypervolume’ 

function in the ‘hypervolume’ package (Blonder et al., 2014). To make this measure more easily 

interpretable as the degree of habitat specialisation, the initial hypervolumes were normalised 

and inverted, so that the resulting values ranged from 0 (highly unspecialised) to 1 (highly 

specialised). 

Suitability models 

Habitat suitability values for the different Odonata sampling sites were calculated separately 

for each species using logistic regressions, relating species’ occurrences (presence-absence) 

to the environmental variables. For this purpose, abundance data were converted to 

occurrence data, only distinguishing between absences and presences of a given species at 

the individual sites. To mitigate the risk of single stray individuals observed during a survey 

potentially obscuring true absences, a species was also defined as absent from a site when it 

was encountered there only once across all replicate samples (i.e., singletons were removed). 

At one site sampled in the first two surveys, the waterbody had dried out by the time the 

environmental variables of the river sections were recorded. This site was therefore excluded, 

reducing the number of Odonata sampling sites considered for further analyses to 37. 
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Continuous predictor variables (i.e., river width, flow velocity, vegetation height, canopy cover, 

the five habitat type buffers and linearity of the river section) were square-root transformed and 

further standardised to zero mean and unit standard deviation. Before calculating the models, 

the correlation structure of all predictor variables was checked to avoid high collinearity (r/ρ ≥ 

0.7 or ≤ −0.7). When predictors were highly correlated, the one predictor that was on average 

most highly correlated with the remaining predictors was excluded from all further analyses. 

To avoid problems with model fit, only species with a sufficient number of both presences and 

absences were included in the analyses. Hence, the set of model species only comprised 

species which were present at a minimum of 10 (> 25% of all sampled sites), and a maximum 

of 27 sites (< 75% of all sampled sites). 

For these model species, logistic regression models were calculated including either one or 

two predictor variables. All possible combinations of predictor variables were considered, and 

for every predictor both linear and quadratic terms were included. As the number of predictors 

per model had to be limited due to sample size, an information-theoretic approach using 

multimodel inference was applied to derive habitat suitability values not based on only a single 

model but a larger set of the models ('confidence set'; Burnham & Anderson, 2002, 2004). This 

approach can mitigate model selection bias, thus leading to more accurately estimated 

suitability values. To obtain this confidence set, we first calculated the Akaike information 

criterion adjusted for small sample size (AICC; Hurvich & Tsai, 1989) for every model and then 

calculated their corresponding Akaike weights (Burnham & Anderson, 2002). These weights 

were summed from largest to smallest until their sum reached 0.95. The corresponding models 

then made up the 95% confidence set. The parameter estimates of the models in this set were 

averaged and weighted by their associated Akaike weights. If a certain variable was not in a 

given model its parameter estimate was set to 0, to not bias its averaged parameter estimate 

away from zero (Burnham & Anderson, 2002). Suitability for a given species at each of the 

sampling sites was then derived based on these averaged parameter estimates. The 

calculation of AICC values and Akaike weights, as well as model averaging were performed 

using the ‘MuMIn’ package (Bartoń, 2022). 

Abundance–suitability relationships 

To evaluate AS relationships, observed abundances were regressed against habitat suitability, 

separately for each species using ordinary least squares (OLS) regressions. For this purpose, 

the relative mean abundances were calculated by first averaging the abundances across all 

replicate samples for each site and then dividing these mean abundances by the maximum 

mean abundance. These relative mean abundances were then log transformed. To avoid the 

problem of taking logarithms of zero, abundances were log (x + 1) transformed. To address 
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the potentially non-linear nature of AS relationships, the OLS regressions included a quadratic 

term for the effect of suitability on abundance. 

As some authors (e.g., Pearce & Ferrier, 2001) have shown that the predictive performance of 

AS relationships can be substantially worse when removing sites at which a species was 

absent, we evaluated AS relationships twice for each species. For the first approach, we simply 

considered all observed abundances for a species, which also included absences (i.e., 

abundances = 0) and related them to the corresponding suitability values. In the second 

approach we discarded absences, thus only relating abundances-when-present to suitability. 

Correlations have shown to be high, while the predictive power often remains relatively weak 

(e.g., VanDerWal et al., 2009). Therefore, we used the R², i.e., the explanatory power of the 

OLS regressions, which should be a more representative measure, to quantify the strength of 

AS relationships. However, as these relationships are often measured by means of correlation 

coefficients, we also calculated Spearman’s rank correlation coefficient (ρ) to ease 

comparability. 

Effects of habitat specialisation 

The strength (i.e., R²) of the AS relationships considering all abundances (i.e., including 

absences) was then regressed against the respective species’ degree of habitat specialisation 

via OLS regression. This regression included only a linear term for the effect of habitat 

specialisation on the strength of the AS relationship. 

All analyses were performed using R (R Core Team, 2021) and plots were created using the 

‘ggplot2’ package (Wickham, 2016). 

Results 

Across all three survey periods a total of 4532 Odonata individuals belonging to 62 species 

and ten families were recorded. After removing singletons, eleven of these species fulfilled the 

predetermined criterion of occupying between 10 and 27 sites (Appendix Table A1), thus 

allowing them to be considered for the suitability models. 

Two of the environmental variables, vegetation height and canopy cover, emerged as highly 

correlated (r = 0.73; Appendix Table A2). Of the two variables, canopy cover on average 

exhibited stronger correlations with the other predictor variables and was therefore excluded 

from all further analyses, reducing the number of predictors to 14. 

Habitat specialisation 

The first five principal components of the PCA calculated to derive the species’ degree of 

habitat specialisation had associated eigenvalues > 1. These five principal components 

explained a combined 69% of the variance (for more detailed information, including principal 
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component loadings see Appendix Table A3). The species’ degree of habitat specialisation 

(Table 2) derived from hypervolumes calculated using the scores of occupied sites along these 

five principal components was moderately, but not significantly, correlated with the number of 

sites the species occupied (ρ = 0.57, p = 0.068). 

Table 2. Degree of habitat specialisation for the eleven model species, derived from normalising and 
inversing the hypervolumes which were calculated based on the scores of the first five principal 
components at sites occupied by the respective species. 

Suitability models 

A total of 105 logistic regression models (14 single- and 91 two-predictor models) were 

calculated for each of the eleven model species. The 95% confidence sets, from which 

suitability values for these species were derived, comprised between 3 and 39 of the 105 

possible models and included between 5 and 14 different predictors (Appendix Table A4). The 

presence of protruding rocks and the old growth forest buffer emerged as the most important 

predictors and were included in the 95% confidence sets of all species. Furthermore, the young 

secondary forest and open land buffer variables were included in these model sets for all but 

one species. The presence of overhanging vegetation, the grain size of the stream bed 

sediment and the settlement buffer were the least important predictor variables, present in less 

than half of the eleven 95% confidence sets. 

Abundance–suitability relationship 

Spearman’s rank correlations between log-transformed relative mean abundances observed 

at the 37 sampling sites and their respective suitability values as predicted by means of logistic 

regression were significantly positive for all eleven species. Correlation coefficients were 

generally high (ρ mean = 0.74), ranging from 0.60 to 0.89 (Table 3). 

Species Hypervolume Degree of habitat specialisation 

Argia cupraurea 4.93 0.52 

Argia oculata 2.91 0.76 

Argia oenea 1.13 0.98 

Argia pulla 9.20 0.00 

Dythemis sterilis 5.79 0.41 

Enallagma novaehispaniae 1.39 0.94 

Erythrodiplax fusca 4.02 0.63 

Hetaerina caja 5.54 0.44 

Hetaerina fuscoguttata 0.93 1.00 

Hetaerina titia 2.38 0.82 

Heteragrion erythrogastrum 2.45 0.82 
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Figure 2. Relationships between log (x + 1)-transformed relative mean abundance and suitability 
derived from averaged logistic regression models. Black lines represent regression lines of an OLS 
regressions. 

OLS regressions further investigating these AS relationships (Figure 2) were significant for all 

but one (Hetaerina caja; Figure 2h) of the model species. The explanatory power of the 

significant models was moderate to high (R² mean = 0.41, range = 0.25 – 0.64), while it was 

low (R² = 0.12) in the non-significant model (Table 3). After examination of the plots, the non-

significance of the regression for Hetaerina caja appeared to be caused by a single outlier. 
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Removal of this one outlier resulted in a highly significant regression model (R² = 0.44, p < 

0.001); however, further analyses were based on the original model for this species. 

Table 3. Relationships between log-transformed relative mean abundances and suitability values 
derived from averaged logistic regressions models. These relationships are expressed as Spearman’s 
rank correlation coefficient (ρ) and the R² of an OLS regression. P-values reported for OLS regressions 
represent the respective global p-values. 

When considering only abundances-when-present, log-transformed relative mean 

abundances and suitability values were negatively and positively correlated for five and six 

species, respectively (Table 4). These correlations were not significant, except for Hetaerina 

titia (ρ = 0.66, p < 0.01). 

The corresponding OLS regressions revealed similar results (Table 4). The AS relationship 

was significant only for Hetaerina titia with moderate explanatory power (R² = 0.34, p = 0.023). 

For the remaining ten species, the amount of variance explained by these models was 

substantially reduced when compared to the models including absences (R² mean = 0.13, 

range = 0.01 – 0.31). 

Table 4. Relationships between log-transformed relative mean abundances-when-present and 
suitability. These relationships are expressed as Spearman’s rank correlation coefficient (ρ) and the R² 
of an OLS regression. P-values reported for OLS regressions represent the respective global p-values. 

Species 
Spearman correlation  OLS regression 

ρ p  R² F p 

Argia cupraurea 0.77 < 0.001  0.37 9.86 < 0.001 

Argia oculata 0.66 < 0.001  0.35 9.12 < 0.001 

Argia oenea 0.67 < 0.001  0.34 8.94 < 0.001 

Argia pulla 0.74 < 0.001  0.26 5.93 < 0.01 

Dythemis sterilis 0.64 < 0.001  0.25 5.78 < 0.01 

Enallagma novaehispaniae 0.71 < 0.001  0.64 30.29 < 0.001 

Erythrodiplax fusca 0.60 < 0.001  0.25 5.56 < 0.01 

Hetaerina caja 0.73 < 0.001  0.12 2.34 0.112 

Hetaerina fuscoguttata 0.85 < 0.001  0.57 22.26 < 0.001 

Hetaerina titia 0.89 < 0.001  0.46 14.68 < 0.001 

Heteragrion erythrogastrum 0.85 < 0.001  0.59 24.26 < 0.001 

Species 
Spearman correlation  OLS regression 

ρ p  R² F p 

Argia cupraurea 0.29 0.172  0.10 1.06 0.364 

Argia oculata −0.02 0.949  0.01 0.04 0.956 

Argia oenea −0.47 0.173  0.24 1.12 0.378 

Argia pulla −0.02 0.920  0.04 0.42 0.662 

Dythemis sterilis −0.26 0.251  0.20 2.34 0.124 

Enallagma novaehispaniae 0.09 0.802  0.20 0.89 0.451 

Erythrodiplax fusca −0.25 0.352  0.03 0.20 0.825 

Hetaerina caja 0.12 0.655  0.07 0.52 0.607 

Hetaerina fuscoguttata 0.38 0.136  0.07 0.50 0.614 

Hetaerina titia 0.66 < 0.01  0.34 4.68 < 0.05 

Heteragrion erythrogastrum 0.49 0.033  0.31 3.55 0.053 
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Effects of habitat specialisation 

The strength of the AS relationships (considering all abundance, i.e. including abundances = 

0) was significantly related to the degree of habitat specialisation across the eleven model 

species (OLS regression: F(1, 9) = 8.03, p = 0.019, R² = 0.47; Figure 3). 

 

Figure 3. Relationships between the strength of the species’ AS relationships (R² of models relating 
abundance to suitability, considering all abundances) and their degree of habitat specialisation. The 
black line represents the regression line of the OLS regressions. 

Discussion 

Abundance–suitability relationships 

The tropical Odonata species considered for this study exhibit strong abundance–suitability 

relationships. The degree of correlation found between abundance and suitability was on par 

with (Gutiérrez et al., 2013) or even exceeding (Filz et al., 2013; Jiménez-Valverde et al., 2009) 

the correlations previously reported from the few studies exploring these relationships in 

insects. In addition, regression models relating abundances to suitability were significant for 

all but one species. In the case of this one species (Hetaerina caja), a single outlier was 

responsible for the non-significant result of the regression. This outlier represented a site at 

which this species exhibited its maximum abundance, but the model predicted only 

intermediate suitability. Recalculating the regression without this outlier resulted in a highly 

significant relationship. Hence, it is plausible that a strong AS relationship exists for this species 

as well. 

Although most relationships were significant, the explanatory power of these relationships was 

only moderate for most species, with the regression models on average accounting for roughly 

38% of the variation in observed abundances. Yet, while some studies report larger R² values 

(de la Fuente et al., 2021; Weber & Grelle, 2012), they still compare favourably to many other 

studies (Weber et al., 2017). However, most studies assumed linear relationships between 

abundance and suitability, whereas we considered these relationships to be quadratic. Since 

neither significance nor explanatory power of AS relationships changed to any meaningful 
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extent when only including a linear term (results not shown), these values should still be 

comparable. 

When excluding unoccupied sites, thus only relating abundances-when-present to suitability, 

the AS relationships break down for all but one species (Hetaerina titia), both in terms of 

correlation coefficients and regression models. This approach of only considering abundance-

when-present was used by some authors (e.g., Pearce & Ferrier, 2001) as they argued that 

strong correlations when including unoccupied sites indicate good discrimination between 

presences and absences, rather than the capacity to explain abundance variation (Jiménez-

Valverde et al., 2009). Guarino et al. (2012) on the other hand suggested that the non-

significance in these cases may instead be caused by the significant reduction in sample size 

and a concomitant loss of analytical power. There are however cases, in which AS 

relationships remain strong even when exclusively considering abundances > 0, which 

suggests that strong AS relationships are not necessarily a consequence of the high 

discrimination capacity of suitability models (Gutiérrez et al., 2013; Muñoz et al., 2015). Still, 

further reducing the sample size by omitting unoccupied sites could be the reason for the 

observed loss of predictive power in this study. Further, this truncation of the data may be 

counterproductive if the goal is to predict abundances across the whole range of unsuitable to 

highly suitable habitats. When disregarding unoccupied, i.e., largely unsuitable sites, one 

cannot expect the resulting relationship to accurately predict abundances across the whole 

suitability gradient. 

Nevertheless, this pattern, as well as the visual examination of abundance–suitability plots, 

highlight that suitability is only able to explain abundance variation to some extent. This 

observation has led VanDerWal et al. (2009) to suggest a ‘wedge-shaped’, rather than a linear 

relationship between abundance and suitability. That is, suitability is only able to predict the 

upper limit of abundances, while realised abundances can deviate substantially from this upper 

limit at the most suitable sites but show little variation at less suitable sites. These wedge-

shaped relationships have since been reported by multiple studies (Acevedo et al., 2017; 

Carrascal et al., 2015; Gutiérrez et al., 2013) and although limited sample size may obscure 

these patterns for the species analysed in this study, some of the abundance–suitability plots 

(Figure 2) could be interpreted in a way to suggest that tropical odonates may also follow this 

pattern. Since carrying capacity seems to be mostly positively related to suitability (Thuiller et 

al., 2014), it has been suggested, that the upper limit predicted by wedge-shaped AS 

relationships could be related to carrying capacity (Muñoz et al., 2015). A variety of different 

factors may then be expected to be responsible for the deviations of observed abundances 

from this upper limit, thus reducing the ability to accurately predict abundance from suitability. 
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Species interactions may weaken AS relationships, as strong competitors could prevent 

species from occupying the most suitable habitats, forcing them to migrate into less suitable 

habitats (McGill et al., 2006). Source-sink dynamics could further obscure AS relationships, 

with high abundances in sink habitats caused by immigration from source habitats where 

reproduction is high (Van Horne, 1983). Both processes could lead to unexpectedly high and 

low abundances in unsuitable and highly suitable habitats, respectively but exploring species 

interactions and potential metapopulation dynamics lies beyond the scope of this study. This 

pattern could further be caused by dispersal limitation, when species are unable to colonise 

suitable habitats and are therefore restricted to less suitable habitats (Pulliam, 2000; 

VanDerWal et al., 2009). Indeed, Jiménez-Valverde et al. (2009) noticed that more vagile 

arthropods tend to exhibit stronger AS relationships. Similarly, de la Fuente et al. (2021) 

reported that dispersal capacity was significantly and positively related to the predictive power 

of AS relationships in tropical vertebrates. Although little is known about the dispersal capacity 

of the Odonata species treated in this study, it has been shown that dispersal limitation can 

affect an odonate’s ability to colonise newly formed habitats (McCauley, 2006). In general, 

Odonata are still highly proficient fliers (Corbet, 2004), hence, when considering the spatial 

scale of this study, an effect of dispersal limitation on the observed AS relationships appears 

to be highly unlikely. 

Spatial scale itself could influence the strength of AS relationships by not investigating this 

relationship across a wide enough range of different habitats (He & Gaston, 2007; Nielsen et 

al., 2005). At small spatial scales, environmental variables used for modelling suitability may 

only vary within a small range of values, consequently reducing the predictive power of 

suitability models (Van Couwenberghe et al., 2013; Weber et al., 2017). Yet, when comparing 

reported correlations between abundance and suitability, Weber et al. (2017) did not find 

significant differences between studies conducted over either small or large proportions of a 

species’ range. While the spatial extent of this study is considerably smaller than that of the 

studies included in this meta-analysis, we expect a lack of variation in predictor variables to 

not be an issue. This problem should rather affect climatic variables, which are available at 

much coarser spatial resolutions compared to the fine-scale environmental variables utilised 

in this study. As the study area comprises a variety of different waterbodies and surrounding 

habitats, these fine-scale environmental variables do vary substantially even within this 

relatively small study area. 

The choice of variables for modelling suitability can also sway observed AS relationships, as 

some variables may not be directly or only weakly related to species occurrence and 

abundance (Weber et al., 2017). While a variety of different fine-scale environmental variables 

that could be assumed to be relevant for Odonata occurrences were considered in this study, 

it predominantly focused on variables more likely to affect adults rather than larvae. However, 
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a habitat must meet the requirements of all stages in the life cycle of an odonate (Corbet, 

2004). Therefore, including additional variables concerning the properties of the waterbodies 

themselves, e.g., temperature, salinity, pH, oxygen content and the concentrations of 

pollutants and pesticides, are likely to strengthen observed AS relationships. 

Abundance fluctuations and detectability of a species have also been suggested to affect 

whether observed abundances are a reasonable measure for real abundances (Jiménez-

Valverde et al., 2009; Pearce & Ferrier, 2001; Van Horne, 1983). For this study, sampling sites 

were visited multiple times to collect data on Odonata abundances and these abundances 

were then averaged for each site. Therefore, we expect that a species’ detectability and the 

temporal variability of abundances contribute only marginally to the deviations between 

predicted and observed abundances. 

While the aforementioned exclusion of variables indicative of larval habitat quality potentially 

reduced the quality of suitability models, thus likely weakening the resulting AS relationships, 

we suspect sample size, i.e., the number of sampled sites, to be the biggest limitation of this 

study. Even though it has been demonstrated that sample size does not significantly affect AS 

relationships (Dallas & Hastings, 2017), de la Fuente et al. (2021) found that sample size and 

the strength of AS relationships were negatively, although not significantly, related. Still, even 

with our limited sample size, we could demonstrate that tropical odonates show strong 

correlations between observed abundance and model-derived suitability and that AS 

relationships explain at least moderate amounts of abundance variation. The inclusion of fine-

scale environmental variables has likely contributed to finding stronger AS relationships than 

previously reported for arthropods (Filz et al., 2013; Jiménez-Valverde et al., 2009). Only 

Gutiérrez et al. (2013), who also utilised fine-scale environmental variables, reported even 

stronger AS relationships, which could potentially be ascribed to the larger sample size in their 

study. 

While a substantial amount of variance is left unexplained, the fact remains that occurrence 

data is much more readily available than abundance data. Abundance models are plagued by 

many of the same problems discussed above (e.g., species interactions, metapopulation 

dynamics, temporal variability) and can be outperformed by occurrence models in terms of 

their ability to accurately predict abundances (Guarino et al., 2012; Gutiérrez et al., 2013; 

Pearce & Ferrier, 2001). Additionally, both species occurrences and abundances appear to be 

controlled by similar environmental variables (Carrascal et al., 2015; Gutiérrez et al., 2013). 

Hence, until abundance models can significantly outperform occurrence models, strong AS 

relationships suggest, that occurrence can be a reasonable, efficient proxy to predict 

abundance. 
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Effect of habitat specialisation on the strength of AS relationships 

It has previously been suggested that the species’ degree of specialisation may also influence 

whether species exhibit either weak or strong AS relationships (Jiménez-Valverde et al., 2009; 

Nielsen et al., 2005). Stronger AS relationships in specialist compared to generalist species 

were assumed, as specialist species have narrower ecological niches, which restrict them to 

occur in a limited number of habitats (Brown, 1984). Accordingly, habitat generalists have been 

shown to be more widespread than habitat specialists. Verberk et al. (2010) further 

demonstrated that specialists can occur in higher abundances compared to generalists. 

Indeed, studies investigating AS relationships in single, specialist species found strong 

relationships between abundance and suitability (Muñoz et al., 2015; Weber & Grelle, 2012). 

To our knowledge, only one study has yet directly explored the effect of habitat specialisation 

on AS relationships. Carrascal et al. (2015) related a measure of habitat niche breadth to AS 

model residuals and found that AS relationships generally overestimated abundances for 

generalist species, which exhibited a larger mismatch between predicted and observed 

abundances than in specialist species. Factors other than the environmental variables included 

in the models may be responsible for shaping realised abundances of generalists, therefore 

AS relationships appeared to be stronger for specialist rather than generalist species 

(Carrascal et al., 2015). These findings are corroborated by the results of this study, as we 

found the species’ degree of habitat specialisation to be a significant predictor for the strength 

of AS relationships. This relationship explains 47% of the variation in the strength of AS 

relationships. While a large amount of variation is still left unaccounted for, the explanatory 

power of habitat specialisation is substantial, highlighting the important role habitat 

specialisation may play in determining the strength of AS relationships. 

Conclusion 

Overall, this study demonstrates that most of the analysed tropical Odonata species exhibit 

strong correlations between their abundances and model-derived suitability values. Yet, the 

explanatory power of abundance–suitability relationships is only moderate for most species. 

Sample size limitations, as well as the non-consideration of potentially important indicators of 

larval habitat quality are presumed reasons for the observed deviations between observed and 

predicted abundances. Further, this study provides evidence, that a species’ degree of habitat 

specialisation affects the strength of its abundance–suitability relationship, with abundances 

of specialists being more tightly linked to suitability than those of generalist species.  
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Appendix A 

Table A1. Species recorded across the three surveys, including suborder and family association, as 
well as the total number of recorded individuals and the number of occupied sites (excluding singletons). 

Species Number of recorded indivduals Number of occupied sites 

Anisoptera   

Gomphidae   

Agriogomphus tumens 1 – 

Perigomphus pallidistylus 1 – 

Progomphus pygmaeus 1 – 

Libellulidae   

Anatya guttata 1 – 

Brechmorhoga nubecula 3 – 

Dythemis nigra 25 6 

Dythemis sterilis * 173 22 

Elasmothemis cannacrioides 9 2 

Erythemis peruviana 2 – 

Erythemis plebeja 3 1 

Erythrodiplax fervida 9 1 

Erythrodiplax fusca * 191 16 

Erythrodiplax umbrata 2 1 

Macrothemis imitans 1 – 

Macrothemis inequiunguis 2 – 

Miathyria simplex 1 – 

Micrathyria aequalis 3 – 

Nephepeltia phryne 8 1 

Oligoclada heliophila 5 2 

Orthemis biolleyi 1 – 

Orthemis discolor 28 9 

Orthemis ferruginea 8 2 

Orthemis levis 1 – 

Perithemis domitia 2 1 

Perithemis electra 13 4 

Perithemis tenera 5 1 

Rhodopygia hinei 4 – 

Uracis imbuta 15 4 

Erythrodiplax kimminsi 3 1 

Zygoptera   

Calopterygidae   

Hetaerina caja * 163 16 

Hetaerina capitalis 1 – 

Hetaerina fuscoguttata * 214 17 

Hetaerina occisa 965 32 

Hetaerina sempronia 2 – 

Hetaerina titia * 549 21 

Coenagrionidae   

Acanthagrion trilobatum 14 4 

Argia adamsi 44 6 

Argia carolus 35 8 

Argia cupraurea * 377 23 
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Table A1. Continued. 

* Species for which suitability models were calculated 

Species Number of recorded indivduals Number of occupied sites 

Coenagrionidae (continued)   

Argia frequentula 8 2 

Argia indicatrix 5 1 

Argia oculata * 97 15 

Argia oenea * 43 10 

Argia pocomana 1 – 

Argia pulla * 447 22 

Argia translata 65 6 

Argia underwoodi 1 – 

Enallagma novaehispaniae * 127 10 

Ischnura capreolus 55 6 

Ischnura ramburii 4 – 

Leptobasis vacillans 7 1 

Mecistogaster modesta 1 – 

Mecistogaster ornata 1 – 

Psaironeura angeloi 9 2 

Megapodagrionidae   

Heteragrion erythrogastrum * 686 19 

Perilestidae   

Perissolestes remotus 1 – 

Philogenidae   

Philogenia championi 3 1 

Platystictidae   

Palaemnema reventazoni 2 1 

Polythoridae   

Miocora semiopaca 1 – 

Protoneuridae   

Neoneura esthera 28 4 

Protoneura amatoria 47 7 

Protoneura sulfurata 8 2 
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Table A2. Correlations among environmental variables. Values represent Spearman’s rank correlation coefficient (ρ) for correlations including the ordinal variables 
(i.e., PWD, PR, OV, RB, GSS), and Pearson’s correlation coefficient (r) otherwise. Correlation coefficients ≥ 0.7 or ≤ −0.7 are highlighted in bold. 

Variable abbreviations: 
PWD … Protruding woody debris  CC … Canopy cover 
PR … Protruding rocks  OGF … Old growth forest in buffer 
OV … Overhanging vegetation  YSF … Young secondary forest in buffer 
RB … Riverbank  OPP … Oil palm plantation in buffer 
GSS … Grain size of stream bed sediment  OL … Open land in buffer 
RW … River width  SET … Settlements in buffer 
FV … Flow velocity  LIN … Linearity of river section 
VH … Height of surrounding vegetation     

Variable PWD PR OV RB GSS RW FV VH CC OGF YSF OPP OL SET 

PR −0.04              

OV 0.07 0.33             

RB 0.09 0.32 0.03            

GSS −0.15 0.29 0.17 −0.04           

RW 0.40 −0.08 −0.18 0.30 −0.11          

FV −0.16 0.02 0.26 −0.04 0.37 0.26         

VH 0.18 0.36 0.44 0.22 0.43 −0.06 0.01        

CC −0.20 0.43 0.49 0.06 0.29 −0.43 −0.04 0.73       

OGF 0.15 0.66 0.26 0.25 0.31 −0.33 −0.34 0.57 0.64      

YSF −0.07 −0.23 −0.09 0.24 0.03 0.45 0.27 0.10 −0.13 −0.42     

OPP −0.05 −0.47 0.18 −0.30 −0.17 −0.01 0.15 −0.37 −0.31 −0.48 −0.31    

OL −0.07 −0.37 −0.09 −0.24 −0.23 0.16 0.12 −0.38 −0.47 −0.62 0.13 0.24   

SET −0.06 0.04 −0.05 −0.06 −0.03 −0.13 −0.12 0.02 0.05 −0.03 −0.04 −0.26 −0.09  

LIN 0.07 −0.25 −0.04 −0.54 0.03 0.23 0.18 −0.15 0.07 −0.15 −0.03 0.09 −0.01 0.15 
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Table A3. Principal component analysis (PCA) based on the 14 environmental variables. Values 
represent the loadings of the first five principal components used for calculating the species’ habitat 
specialisation, as well as the eigenvalues of and the variance explained by the individual principal 
components. 

Variable abbreviations: 
PWD … Protruding woody debris  OGF … Old growth forest in buffer 
PR … Protruding rocks  YSF … Young secondary forest in buffer 
OV … Overhanging vegetation  OPP … Oil palm plantation in buffer 
RB … Riverbank  OL … Open land in buffer 
GSS … Grain size of stream bed sediment  SET … Settlements in buffer 
RW … River width  LIN … Linearity of river section 
FV … Flow velocity     
VH … Height of surrounding vegetation     

Variable 
Principal components 

PC1 PC2 PC3 PC4 PC5 

PWD 0.26 0.12 −0.21 0.03 0.80 

PR 0.83 −0.15 0.36 −0.06 −0.26 

OV 0.58 0.15 −0.14 0.24 0.26 

RB 0.06 0.71 0.09 −0.27 0.03 

GSS 0.32 0.34 0.75 0.14 0.00 

RW −0.31 0.77 −0.03 −0.02 0.14 

FV −0.05 0.62 0.54 0.14 0.08 

VH 0.67 0.27 −0.43 0.13 0.10 

OGF 0.89 −0.08 −0.04 −0.16 −0.06 

YSF −0.24 0.64 −0.26 0.12 −0.29 

OPP −0.53 −0.37 0.36 −0.23 0.45 

OL −0.64 0.07 −0.16 0.26 −0.10 

SET 0.07 −0.04 −0.25 0.63 −0.02 

LIN −0.07 −0.26 0.42 0.66 0.09 

Eigenvalue 3.30 2.35 1.71 1.17 1.12 

Variance explained 0.24 0.17 0.12 0.08 0.08 

Cumulative variance explained 0.24 0.40 0.53 0.61 0.69 
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Table A4. The number of models comprising the 95% confidence set of each species, as well as the predictors included (+) in these model sets. 

Variable abbreviations: 
PWD … Protruding woody debris  OGF … Old growth forest in buffer 
PR … Protruding rocks  YSF … Young secondary forest in buffer 
OV … Overhanging vegetation  OPP … Oil palm plantation in buffer 
RB … Riverbank  OL … Open land in buffer 
GSS … Grain size of stream bed sediment  SET … Settlements in buffer 
RW … River width  LIN … Linearity of river section 
FV … Flow velocity     
VH … Height of surrounding vegetation     

Species 
Number 

of models 
PWD PR OV RB GSS RW FV VH OGF YSF OPP OL SET LIN 

Argia cupraurea 39 + +  + + + + + + + + + + + 

Argia oculata 38 + + + + + + + + + + + + + + 

Argia oenea 11  +  +  + + + + + + + + + 

Argia pulla 14 + + +   +  + + + + +  + 

Dythemis sterilis 3 + +       + +  +   

Enallagma novaehispaniae 29 + + + + +  + + + + + +  + 

Erythrodiplax fusca 27 + + + + + + + + + + + + + + 

Hetaerina caja 14 + +  +  +  + + + + +   

Hetaerina fuscoguttata 8 + +  +  +  + + + +    

Hetaerina titia 5 + +  +  +   +   +   

Heteragrion erythrogastrum 15  + +  + +  + + + + +  + 
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Appendix B 

Zusammenfassung 

Nischenmodelle werden in Zeiten des globalen Wandels immer wichtiger, um die Verbreitung 

von Arten zu untersuchen. Diese Modelle basieren meist auf Inzidenz- und nicht auf 

Abundanzdaten. Für viele Anwendungen ist die Abundanz jedoch der relevantere Parameter. 

Da solche Daten aber nur selten verfügbar sind, könnte die Vorhersage von Abundanzen durch 

die Habitateignung, die aus entsprechenden Inzidenz-basierten Modellen abgeleitet werden 

kann, zur Lösung dieses Problems beitragen. Im Allgemeinen scheint eine Beziehung 

zwischen Abundanz und Habitateignung zu existieren, ihre Vorhersagekraft variiert jedoch 

stark. In dieser Studie wird die Beziehung zwischen Abundanz und Habitateignung in 

tropischen Libellen untersucht. Die Habitateignung wurde mit Hilfe feinskaliger 

Umweltvariablen modelliert und dann mit den beobachteten Abundanzen in Beziehung 

gesetzt. Zusätzlich wurde untersucht, ob der Grad der Habitatspezialisierung der einzelnen 

Arten die Stärke dieser Beziehungen bestimmt. In zehn der elf untersuchten Libellenarten 

standen Abundanz und Habitateignung in einem signifikantem Zusammenhang, die 

Erklärungskraft dieser Beziehungen war jedoch für die meisten Arten nur mäßig. Die Stärke 

dieser Beziehungen stand außerdem in einem signifikantem Zusammenhang mit dem Grad 

der Habitatspezialisierung. Dies deutet darauf hin, dass Inzidenz-basierten Modelle verwendet 

werden können, um Abundanzen abzuleiten. Es ist jedoch Vorsicht geboten, da ihre 

Vorhersagekraft sehr variabel ist und von zahlreichen Faktoren beeinflusst werden kann. Wie 

für den Effekt der Habitatspezialiserung gezeigt. 

 

Schlagwörter: Abundanz, Costa Rica, Habitateignung, Habitatspezialisierung, Libellen, 
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