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Abstract. We study the ocean flow in Arctic gyres using a recent model for gyres derived in spherical coordinates on the
rotating sphere. By projecting this model onto the plane using the Mercator projection, we obtain a semi-linear elliptic
partial differential equation in an unbounded domain, difficulty which is then overcome by projecting the PDE onto the unit
disk via a conformal map. We then study existence, regularity and uniqueness of solutions for constant and linear vorticity
functions.
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1. Introduction

The shape of our coasts and the mixing and transportation of temperature, chemicals, and nutrients are
largely due to oceanic currents: these currents sometimes link up to form large-scale spiraling circulations
called gyres. The movements of gyres drive the “ocean conveyor belt”, which in turn circulates ocean
water around the entire planet. This thermohaline circulation also carries around heat from the sun,
making gyres essential in understanding the role of the ocean in climate.

The motion of gyres is due mostly to two major forces, the first one being the wind patterns. The
waters move in the direction of the winds on small scales but on large-scales they are deflected by the
second major force, due to the rotation of the Earth. This force, commonly referred to as the Coriolis
force, produces clockwise circular motions in the Northern hemisphere and counterclockwise ones in the
Southern hemisphere. Finally, the currents are interrupted and diverted by the landmasses. Note that,
whereas winds mostly only act on the surface of the water, landmasses and the Coriolis force also act
beneath the surface. Each deeper layer in the water column is deflected by slightly less than the one above
it, thus creating in non-equatorial regions a spirally pattern of approximately 100 meters deep, known as
the Ekman spiral. We refer to [7,21] for a discussion of the Ekman spiral.

Gyres can be found in every major ocean, with the Atlantic and the Pacific ocean containing four
each. There are five major large-scale gyres and numerous smaller, moderate-scale ones. There are three
types of gyres. The first ones are the subpolar gyres. They are the smallest ones on the planet and are
situated in the polar regions. There are several in the Northern hemisphere, such as the Beaufort gyre,
and two large gyres in the Southern ocean. There are also tropical gyres, formed near the Equator but
confined strictly to the Northern or Southern hemispheres (as there is no Coriolis force at the Equator,
there are no gyres on or crossing it). Lastly, we have the subtropical gyres, situated between the Equator
and the polar regions. Since they lie beneath areas of high atmospheric pressure, they are gigantic placid
ocean areas with thousands of kilometers of diameter.

In this paper we will only be focusing on the Arctic gyres. In this respect, we would like to point
out that the Arctic is very different from the Antarctic. Whereas the Arctic is made up of sea and
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ice, surrounded by land, the Antarctic is a landmass surrounded by a very powerful current known as
the antarctic circumpolar current (ACC). This geographical difference makes the study of Arctic gyres
significantly more difficult than that of the ACC. Indeed, as we will see in the next section, projecting the
Arctic region onto the plane using the Mercator projection gives us an unbounded domain whereas the
projection of the ACC is a nice bounded strip. See discussions in [6,15,17,19] and the references therein
for studies of the ACC.

The plan of the paper is the following: we reduce the model for gyres on the rotating sphere derived
by Constantin and Johnson to a semi-linear elliptic partial differential equation by projecting it onto the
plane using a cylindrical projection. We then study the existence, uniqueness and regularity of solutions
to this PDE for constant and linear vorticity functions.

2. The Arctic Gyres

Before we recall the Mercator projection, we briefly present the Constantin and Johnson model for gyres
derived in [5]. We begin by denoting by θ ∈ [0, π) the polar angle such that θ = 0 corresponds to the South
Pole. Consequently, our latitude angle will be θ − π

2 . We denote by ϕ the azimuthal, or longitude, angle.
Following this model for gyres in spherical coordinates, the polar and azimuthal velocity components of
the flow on the Earth are given by

1
sin(θ)

ψϕ, −ψθ ,

respectively, where ψ(θ, ϕ) represents the stream function in spherical coordinates.
Furthermore, the governing equation for gyres is given by

1
sin2(θ)

Ψϕϕ + Ψθ cot(θ) + Ψθθ = F (Ψ − ω cos(θ)), (1)

where Ψ(θ, ϕ) = ψ(θ, ϕ) + ω cos(θ) is associated with the vorticity of motion of the ocean relative to the
Earth’s surface, 2ω cos(θ) is the spin vorticity due to the rotation of the Earth and F (Ψ − ω cos(θ)) is
the oceanic vorticity, due to the motion of the ocean and specific to a particular gyre. Other than linear
(and piecewise linear) functions F , the case of exponential functions is of interest because of the link to
Stuart vortices (see [8,9,20] for more details on Stuart vortices).

We would now like to project this model from the sphere onto the plane. For this, we turn to the
Mercator projection, a conformal cylindrical projection (see [10]). Using the change of variable

X̃ = − ln
[
tan

(
θ

2

)]
, Ỹ = ϕ (2)

our new plane has the Equator as Ỹ -axis and the Central Meridian as X̃-axis, with the North Pole
situated at X̃ = −∞ (see Fig. 1).
Using the change of variable (2), we get that X̃ is negative in the Northern Hemisphere with

cos(θ) = tanh(X̃), sin(θ) = cosh−1(X̃).

Let us set
U(X̃, Ỹ ) = ψ(θ, ϕ).

We can then rewrite the governing equation as the following semi-linear elliptic PDE

ΔU(X̃, Ỹ ) =
F (U(X̃, Ỹ ))
cosh2(X̃)

+ 2ω
sinh(X̃)
cosh3(X̃)

, (3)

with boundary condition
U(X̃0, Ỹ ) = U0(Ỹ ), X̃ = X̃0 < 0,

if the boundary of our spherical region corresponds to the parallel θ0 = 2arctan(e−X̃0) ∈ (
π
2 , π

)
, situated

in the Northern Hemisphere.
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Fig. 1. The Mercator Projection We project the polar angle onto the X̃-axis and the azimuthal angle onto the Ỹ -axis.
The North Pole is situated at X̃ = −∞

The North Pole is a stagnation point if and only if

lim
X̃→−∞

{
(
UX̃(X̃, Ỹ ), UỸ (X̃, Ỹ )

)
cosh(X̃)} = (0, 0) (4)
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uniformly in Ỹ ∈ R since the horizontal velocity is(
1

sin(θ)
ψϕ,−ψθ

)
= (UỸ , UX̃) cosh(X̃).

We will see that the solutions we construct have this property, which makes them physically admissible.

We are now interested in investigating the partial differential equation (3). However, our domain
Ω = (−∞, X̃0] × [0, 2π) is unbounded in the X̃ direction, making the analysis difficult. We therefore
use a conformal map to project (3) into the unit circle.

3. The Conformal Mapping

In order to map (3) from the unbounded strip on the plane into the unit circle, we begin by setting
Z̃ = X̃ + iỸ . We then translate Z̃ to get

ξ = X̃ − X̃0 − iπ

and finally use an exponential map to get into the unit circle:

Λ = exp(ξ).

We now denote by x and y the new variables in the unit disk, defined by:

x = −eX̃−X̃0 cos(Ỹ ),

y = −eX̃−X̃0 sin(Ỹ ),

and the function u(x, y) in the disk, such that u(x, y) = U(X̃, Ỹ ).
Notice that in terms of the original spherical variables (θ, ϕ), we have

x =
tan θ

2

tan θ0
2

cos(ϕ), y =
tan θ

2

tan θ0
2

sin(ϕ).

Therefore, (3) becomes

Δu(x, y) − 4F (u)(x2 + y2)
[eX̃0(x2 + y2) + e−X̃0 ]2

− 8ω
[eX̃0(x2 + y2) − e−X̃0 ](x2 + y2)

[eX̃0(x2 + y2) + e−X̃0 ]3
= 0, (5)

with boundary condition

u0(x, y) = U0

(
arctan

(y

x

))
.

We will consider here the case where

u0(x, y) = 0.

Similarly as in (4), a necessary and sufficient condition for the North Pole to be a stagnation point is the
condition

lim
x2+y2→0

{ux, uy} = 0. (6)

Notice that (6) is equivalent to

lim
r→0

ur = lim
r→0

uθ

r
= 0. (7)
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4. Constant Vorticity

We begin by looking at the case when our oceanic vorticity is constant: F (u) = F0, where F0 is an
arbitrary constant. We therefore obtain the Poisson equation:

−Δu = f(x, y), (8)

where

f(x, y) = − 4F0(x2 + y2)
[eX̃0(x2 + y2) + e−X̃0 ]2

− 8ω
[eX̃0(x2 + y2) − e−X̃0 ](x2 + y2)

[eX̃0(x2 + y2) + e−X̃0 ]3
,

with boundary condition

u0 = 0 on ∂D.

From the theory of partial differential equations (see [4]), we know that the Poisson equation with homo-
geneous Dirichlet boundary condition admits a unique weak solution in D and since f(x, y) is smooth in
our domain, we have that this unique solution u(x, y) ∈ C∞(D) (uniqueness being recovered using the
maximum principle for elliptic partial differential equations). Moreover, since the solution to the Poisson
equation on the unit disk is radial, the asymptotic conditions are also satisfied. We can therefore state
the following proposition.

Proposition 1. On our domain D, the Poisson equation (8) with boundary condition (9) admits a unique
solution u ∈ C∞(D) satisfying the asymptotic conditions (7).

5. Linear Vorticity

We now turn to the case of linear vorticity. We set F (u) = au + b where a, b ∈ R. Our partial differential
equation (5) becomes

−Δu + ag(x, y)u = f(x, y). (9)

Here

g(x, y) =
4(x2 + y2)

[eX̃0(x2 + y2) + e−X̃0 ]2
,

f(x, y) = − 4b(x2 + y2)
[eX̃0(x2 + y2) + e−X̃0 ]2

− 8ω
[eX̃0(x2 + y2) − e−X̃0 ](x2 + y2)

[eX̃0(x2 + y2) + e−X̃0 ]3
.

(10)

Theorem 5.1. On the domain D, for b ∈ R and a ≥ 0, the elliptic equation (9) admits a unique solution
u ∈ C∞(D) satisfying the boundary condition u

∣∣
∂D

= 0. Moreover, for the case a < 0, such a unique
solution u exists if X̃0 ≤ −Ca, where Ca > 0 is a constant depending on a.

Remark 1. Notice that existence of solutions for a < 0 depends on the location of X̃0. In fact, we shall
see in the proof that the further we move away from the Equator, the more vorticity we can allow.

Proof. We begin by rewriting (9) in its variational formulation. For any v ∈ H1
0 (D), we have∫

D

∇u · ∇v + a

∫
D

guv =
∫

D

fv. (11)

We set

β(u, v) =
∫

D

∇u · ∇v + a

∫
D

guv, (12)

as our bilinear form on H1
0 (D) × H1

0 (D) and

j(v) =
∫

D

fv,
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as our linear form on H1
0 (D). Clearly, β(u, v) and j(v) are continuous (for the bilinear form, this can be

shown using the Cauchy-Schwarz inequality).
Using the Poincare inequality, the bilinear form β(u, v) is coercive for all a ≥ 0. Therefore, from the

Lax-Milgram theorem, we get that there exists a unique weak solution u ∈ H1
0 (D) to (9) for all positive

a ∈ R.
It can be shown that the operator La := −Δu + ag(x, y)u = f(x, y) is “semi”-Fredholm (has closed

range and finite-dimensional kernel). The proof follows exactly as in [14]. Moreover, by self-adjointness of
the operator, the index of La is equal to zero for all a ∈ R. Consequently, we have existence of solutions
for all a for which the operator is injective.

Note that since D is of class C∞ and f ∈ C∞(D) and g ∈ C∞(D), by the theory on regularity for
elliptic problems with smooth and periodic coefficients, if the solution u to (9) exists we have a unique
solution u ∈ C∞(D). (Uniqueness follows from Lax-Milgram, or alternatively from the maximum principle
for elliptic partial differential equations on bounded domains).
We now look at the case when a is negative. Since g ∈ L∞(D), by the generalized maximum principle for
elliptic problems (see [18]), if we can find a function σ > 0 on D such that (Δ − ag)[σ] ≤ 0 in D, then (9)
has at most one solution.

For simplicity of notation, consistency with results in [13,14], and to make the physical implications
easier to see, we will express this σ in terms of the variables (X̃, Ỹ ) in the strip: this can all easily be
mapped into the unit disk setting using the change of variables presented at the beginning of this paper.
From [13] we know that a solution to (3) satisfying the asymptotic conditions is the Legendre polynomial
(see [1,2,16] for more details on such special functions):

P k
l (z) =

(−1)k

2ll!
(1 − z2)

k
2

dk+l

dxk+l
(z2 − 1)l, (13)

where z = tanh(X̃) and a = −l(l + 1), l ∈ Z, with l an integer.
For l = 1, we set σ1(X̃) = − tanh(X̃) which is strictly positive on −∞ ≤ X̃ ≤ X̃0 < 0 and therefore(

Δ − a

cosh2(X̃)

)
[σ1] = Δσ1 +

2
cosh2(X̃)

σ1 +
(−a − 2)
cosh2(X̃)

σ1 (14)

is negative if and only if a ≥ −2.
For l = 2, we set σ2(X̃) = 3 tanh2(X̃) − 1 which is strictly positive for −∞ ≤ X̃ ≤ X̃0 ≤ −0.66.

Similarily as in (14) we get uniqueness for a ≥ −6.
For σ3(X̃) = − 1

2 (5 tanh3(X̃) − 3 tanh(X̃)) we will require X̃0 ≤ −1 to obtain uniqueness for all
a ≥ −12. For σ4(X̃) = 1

8 (35 tanh4(X̃) − 30 tanh2(X̃) + 3) we will require X̃0 ≤ −1.3 for uniqueness for
all a ≥ −20.

In general, assume that a ∈ [−l(l + 1),−l(l − 1)) for some integer l. We now seek the associated σl.
Notice that for k = 0, the Legendre polynomial (13) can be expressed as

σ̃l =
l∑

j=0

(
n
j

)(
n + j

j

)(
tanh(X̃ − 1)

2

)j

. (15)

We denote by X̃
(l)
0 the largest value of X̃ such that σ̃l has a fixed sign on (−∞, X̃

(l)
0 ]. If that sign is

positive, we define σl by σl = σ̃l and if it is negative, we choose σl = −σ̃l. We denote by Ca the positive
constant such that X̃

(l)
0 ≤ −Ca.

We therefore notice that the further away from 0 we are, the easier it gets to prove uniqueness. In
other words, the further away we are from the Equator, the larger vorticity we can allow. The uniqueness
and therefore also the existence of solutions to (9) will depend X̃0.

We now go back to the unit disk setting.
We still need to check the asymptotic condition (7). Notice that the solution u to (9) is radial. Indeed,
this can easily be shown using a moving plane argument such as in Sect. 9.5.2 in [11]. As a result, since
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ux(0, 0) is an odd function of x, which is smooth close to the origin, we get

ux(0, 0) = uy(0, 0) = 0.

This concludes the proof. �

6. Physical Relevance of the Results

As shown in the previous section, the negative linear vorticities for which we have existence, uniqueness
and regularity of solutions depend on X̃0, and in other words, on how far away we are from the Equator.
Arctic gyres are located between the North Pole and 84◦N, which is approximately equal to 14π

15 .
From our Mercator projection, we therefore have

X̃0 = − ln
[
tan

(
14π

30

)]
≈ −2.253. (16)

Following the process we used in the proof of Theorem 5.1, we notice that

σ10 =
1

256
(46189 tanh10(X̃) − 109395 tanh8(X̃) + 90090 tanh6(X̃)

− 30030 tanh4(X̃) + 3465 tanh2(X̃) − 63)

which is strictly positive for −∞ ≤ X̃ ≤ X̃0 ≤ −2.17, and the value of a associated with σ10 is a = −110.
(Note that σ11 already requires that X̃0 ≤ −2.255.)

We now show that we can find an L∞ bound on u from estimates on ω. Moreover, by estimating F ,
we then provide some conditions on a > 0 and b such that the above mentioned L∞ bound holds. We
refer to these values as physically relevant. From the non-dimensionalization described in [5] and recalled
[14] the parameter ω, which accounts for the spin vorticity due to the rotation of the Earth, is defined by

ω =
Ω′R′

c′ .

Here Ω′ � 7.29 × 10−5rad.s−1 is the constant rate of rotation of the Earth (see the discussion in [5]),
R′ � 6378km is the radius of the Earth and c′ � 0.1m.s−1, the speed scale, is the typical horizontal
velocity of large-scale ocean flows [21]. In particular, the typical value of ω can be calculated to be
approximately 4650.

Similarly, as the typical vorticity values for a gyre are of the order of 10−5rad s−1 [3], we get that
F (u) = au + b is of order 10−4 and we can therefore set |F (u)| ≤ Cv, where Cv > 0 is a constant of order
10−4.

We use the following weak maximum principle of Aleksandrov (see [12]). Notice that this theorem
only holds for c(x, y) := −ag(x, y) negative, which implies that we must choose a > 0. We will therefore
only obtain results for part of the solutions obtained in Theorem 5.1.

Theorem 6.1. Let Δu + c(x, y)u ≥ f(x, y) with c < 0, in a bounded domain Ω and u ∈ C0(Ω) ∩ C2(Ω).
Then

sup
Ω

u ≤ sup
∂Ω

u+ + C‖f‖L2(Ω) ≤ sup
∂Ω

u+ + C(m(Ω))
1
2 ‖f‖L∞(Ω),

where the constant C only depends on the diameter of Ω and the dimension of the domain.

In our notation, the domain Ω is the unit disk D in R
�, where we have sup∂D

u = 0 and c(x, y) :=
−ag(x, y) with a > 0 and f and g defined as in (10).

The constant C (see [12]) in our case is given by

C = diam(D)
(
e

1
4 − 1

) 1
2 ≈ 1.1,
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and so we find that

m(D)
1
2 ‖f‖L∞(D) ≈ (0, 04|b| + 0.08ω)π

1
2 ≈ 0.7|b| + 7 × 102,

since we know from the considerations above that ω � 4.7 × 103.
As a result, we obtain that

‖u‖L∞(D) ≤ 7.8(10−2|b| + 102). (17)
We would now like to find conditions on a and b such that the corresponding solution u satisfies (17).
Since we know that |F (u)| ≤ Cv, we have |au + b| ≤ Cv which implies that

−Cv − b

a
≤ u ≤ Cv − b

a
.

As a result, we conclude that acceptable values of a > 0 and b ∈ R must satisfy
−Cv − b

a
≥ −7.8(10−2|b| + 102) and

Cv − b

a
≤ 7.8(10−2|b| + 102).
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