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Abstract
This Master’s Thesis provides a (geometrical) formula to determine the boundary
index of an isolated, saturated equilibrium of a vector field in the plane. It is
assumed that the non-negative orthant (or other state spaces, e.g., the probability
simplex) is forward invariant and the equilibrium is part of the boundary of R2

+.

In the beginning, Brouwer degree theory is used to introduce the general concept
of the index of an equilibrium. Then, we focus on biological systems and the
boundary index, in particular we give a proof of the boundary index theorem
by Hofbauer on the simplex. The first chapter is completed by a study of plane
vector fields and the concept of rotation, which happens to be equivalent to the
degree.
In the second chapter we prove an analogue of Bendixsons’s index formula for the
boundary index of an isolated, saturated equilibrium in the plane. We continue
with a superficial treatment of homogeneous vector fields and conclude with a
boundary index formula for non-degenerate systems.



Zusammenfassung
Diese Masterarbeit liefert eine (geometrische) Formel um den Randindex eines
isolierten, saturierten Gleichgewichts eines Vektorfeldes in der Ebene zu bestim-
men. Es wird angenommen, dass der erste Quadrant (oder andere Zustandsräume,
z.B., der Wahrscheinlichkeits-Simplex) forwärts invariant belassen wird und das
Gleichgewicht Teil des Randes von R2

+ ist.

Zu Beginn wird die Theorie des Abbildungsgrades von Brouwer verwendet um
das generelle Konzept des Index eines Gleichgewichtes einzuführen. Als nächstes
legen wir den Fokus auf biologische Systeme und den Randindex, insbesondere
werden wir das Randindex-Theorem von Hofbauer am Simplex beweisen. Das
erste Kapitel wird vervollständigt mit einer Untersuchung von Vektorfeldern in
der Ebene und dem Konzept der Rotation, die wie sich zeigt äquivalent zum
Abbildungsgrad ist.
Im zweiten Kapitel beweisen wir ein Analogon zur Indexformel von Bendixson
für den Randindex eines isolierten, saturierten Gleichgewichts in der Ebene. Wir
setzen fort mit einer oberflächlichen Betrachtung homogener Vektorfelder in
der Ebene und beschließen mit einer Randindex-Formel für nicht degenerierte
Systeme.
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1 Mapping Degree and Index

1.1 Brouwer Degree

Consider a continuous function f : [a, b] → R defined on a closed interval [a, b].
If f(a)f(b) ≤ 0, then there exists some c ∈ [a, b] such that f(c) = 0. This is a
special case of the intermediate value theorem. It is mainly used to prove the
existence of solutions of equations. When it comes to differential equations this
may be employed to prove the existence of equilibria. However, the statement is
restricted to one dimension. In order to generalize it, we follow [16, Chapter 12]
and start by introducing the mapping degree of Brouwer. First, we will focus
on the generic situations. In a second step, the range of applications will be
enlarged by approximation arguments. To define what we mean by generic, we
introduce the following notion of regularity.

Definition 1.1 (Regular Point). Let U ⊂ Rn be open and bounded, f : U → Rn

a function continuous on U and continuously differentiable on U . If x ∈ U and
det(Df |x) ̸= 0, where Df := ( ∂fi

∂xj
)1≤i,j≤n is the Jacobian of f , we say that x is

a regular point of f.

With this definition we can talk about the regularity of points in the domain of
f . In the following we will do the same for the image.

Definition 1.2 (Regular Value). Let U ⊂ Rn be open and bounded, f : U → Rn

a function continuous on U and continuously differentiable on U . A point y ∈ Rn

is called a regular value of f, if y /∈ f(∂U) and every point in the preimage of y,
with respect to f , is regular.

Now we can define a mapping degree which assigns an integer to a triple
containing a function, a domain and a value. This definition is due to Nagumo,
see [14].

Definition 1.3 (Brouwer Degree). Let U ⊂ Rn be open and bounded, f : U → Rn

a function continuous on U and continuously differentiable on U , y a regular
value. Then the integer

Deg(f, U, y) :=
∑

x∈U :f(x)=y

sgn(det(Df |x))

is called the Brouwer degree.

Remark 1.4. If the preimage of y is empty we get Deg(f, U, y) = 0 by definition.
To make sure that the degree is well-defined, we have to show that the cardinality
of the set {x ∈ U : f(x) = y} is finite, see [15, p. 146]. Assume the contrary.
Then there exists a sequence (xn)n≥1 with xn ̸= xm for n ̸= m and f(xn) = y.
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Figure 1: Intermediate value theorem via Brouwer degree

The set U is closed and bounded, therefore compact, hence there is a convergent
subsequence (xnk

)k≥1 with lim
k→+∞

xnk
= x̃ ∈ U . From the continuity of f on

U we can infer that f(x̃) = y. Since y is regular, it holds that y /∈ f(∂U) and
we can conclude that x̃ ∈ U . Moreover, we deduce from the regularity of y

that det(Df |x̃) ̸= 0. The inverse function theorem informs us that there is a
neighbourhood V of x̃ such that f |V is bijective. On the one hand we derived
that f(xnk

) = y for all k ≥ 1 and there exists k0 ∈ N such that xnk
∈ V for

k ≥ k0. On the other hand f is one-to-one on V, so we arrived at a contradiction.
Therefore the Brouwer degree is well-defined.

With Definition 1.3 we can also check that the Brouwer degree is normalized (D1),
i.e., Deg(IdU , U, y) = 1 ∀y ∈ U , where IdU is the identity map on U . In addition,
we see that it inherits a translation invariance property, i.e., Deg(f, U, y) =
Deg(f − y, U, 0). This we can verify by noticing that {x ∈ U : f(x) = y} = {x ∈
U : f(x) − y = 0} and Df = D(f(·) − y). Moreover it is straight forward to
check that if y is a regular value, then Deg(f, U, y) ̸= 0 implies the existence of
a point x̃ ∈ U such that f(x̃) = y.
As an example we calculate Deg(f, (a, b), 0) in Figure 1. Inserting the definition
gives Deg(f, (a, b), 0) =

∑5
i=1 sgn det Df |xi = 1 − 1 + 1 − 1 + 1 = +1 ̸= 0.

Therefore we get the existence of at least one point x̃ ∈ (a, b) with f(x̃) = 0.

We see that this is the same result we would get from the intermediate value
theorem.
We want to drop the restriction that y /∈ f(∂U) needs to be a regular value. A
detailed treatment can be found in [15, p. 148]. Basically we use Sard’s Lemma,
telling us that the set of regular values lies dense in the image of f . So we can
define Deg(f, U, y) := lim

n→+∞
Deg(f, U, yn) for any sequence of regular values yn

approaching y. It can be shown that this definition is independent of the choice
of the sequence.
Now we can define the Brouwer degree uniquely by the following three properties.
Note that, due to the definition above, we can also allow irregular values.

Proposition 1.5 (Defining properties of the Brouwer degree). Let U ⊂ Rn be
open and bounded, f : U → Rn continuous on U and continuously differentiable
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on U , y ∈ Rn \ f(∂U). The following three properties define a unique function
Deg(·, ·, ·), which assigns an integer Deg(f, U, y) to each triple (f, U, y).

(D1) Deg(IdU , U, y) = 1 if y ∈ U.

(D2) Let U1, U2 ⊂ U be open, U1 and U2 disjoint, y /∈ f(U \ (U1 ∪ U2)), then

Deg(f, U, y) = Deg(f, U1, y) + Deg(f, U2, y).

(D3) Let f, g : U → Rn be two functions continuously differentiable on U and
continuous on U . If there exists a homotopy H : [0, 1] × U which connects
f and g such that y /∈ H(λ, ∂U) for all λ ∈ [0, 1], then for all λ ∈ [0, 1]

Deg(H(λ, ·), U, y) = Deg(f, U, y) = Deg(g, U, y).

We use the following notion of homotopy.

Definition 1.6 (Homotopy). Let f, g : X → Y be continuous maps between two
topological spaces X and Y . We say that f and g are homotopic, if there exists
a continuous map H : X × [0, 1] → Y with

H(x, 0) = f(x) and H(x, 1) = g(x) ∀x ∈ X.

The function H is called the homotopy (connecting f and g).

For a proof of Proposition 1.5 see [6, p. 5].
We have already named the first property in Proposition 1.5. The second one
(D2) is called additivity and (D3) will be referred to as homotopy invariance.
Property (D3) gives rise to a second approach to calculate the degree, if y is an
irregular value. In fact, the homotopy invariance of the Brouwer degree allows us
to perturb the function f in such a way that an irregular value becomes regular
for the perturbation f̃ . If we can connect these two functions via a homotopy
H such that H(0, x) = f(x), H(1, x) = f̃(x) and y /∈ H(λ, ∂U) for all λ ∈ [0, 1],
we can use (D3) to arrive at Deg(f, U, y) = Deg(f̃ , U, y). The last expression is
again straight forward to calculate. The following basic example may give some
insight.

Example 1.7. Consider f : R → R with f(x) = x3 as in Figure 2a. We see
that y = 0 is not a regular value, since f ′(0) = 0. In order to determine
Deg(f, (−1, 1), 0) we have to use either a perturbation or a sequence of regular
values approaching 0. In the first case we can use Hϵ(λ, x) = x3 − λϵ, which is
continuous and for −1 < ϵ < 1 it holds that 0 /∈ Hϵ(λ, ∂(−1, 1)) for all λ ∈ [0, 1].
Choose ϵ = 1

8 as in Figure 2b and define H(λ, x) := H 1
8
(λ, x). From the homotopy
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Figure 2: Degree of an irregular value

invariance we can deduce that Deg(f, (−1, 1), 0) = Deg(H(0, ·), (−1, 1), 0) =
Deg(H(1, ·), (−1, 1), 0). Since the unique zero of H(1, ·) is x1 = 1

2 and DH =
∂H
∂x = 3x2 we finally get that Deg(f, (−1, 1), 0) = sgn DH|x1 = +1. In order to
give an example for the second approach we need a sequence of regular values
approaching 0, ( 1

n )n≥1 will do. From the definition above we see that

Deg(f, (−1, 1), 0) = lim
n→+∞

Deg
(

f, (−1, 1), 1
n

)
= lim

n→+∞
sgn f ′

(
1

3
√

n

)
= lim

n→+∞
sgn 3

(
1

3
√

n

)2
= +1.

As mentioned above the definition is independent of the choice of the approaching
sequence.

It remains to show that with the extension for irregular values, the statement
on the existence of preimages remains unchanged. We may collect this result in
the following proposition.

Proposition 1.8. Let U ⊂ Rn be open and bounded, f : U → Rn a function
continuous on U and continuously differentiable on U , y /∈ f(∂U). Then,
Deg(f, U, y) ̸= 0 implies the existence of a point x̃ ∈ U with f(x̃) = y.

Proof. The case where y is a regular value is already done. Let y be irregular.
From Sard’s Lemma we get that there is a sequence (ym)m≥1 of regular values
with lim

m→+∞
ym = y. It follows from 0 ̸= Deg(f, U, y) = lim

m→+∞
Deg(f, U, ym) that

there is m0 ∈ N such that Deg(f, U, ym) ̸= 0 for all m > m0. Since (ym)m≥m0 is
a sequence of regular values there is a corresponding sequence (xm)m≥m0 ∈ U

of regular points such that f(xm) = ym. From the compactness of U and the
continuity of f we can again, as in Remark 1.4, conclude that x̃ ∈ U and
f(x̃) = y.

We have now shown that the Brouwer degree enables us to generalize the
statement of the intermediate value theorem to higher dimensions. Yet, we do
not have a sufficiently easy way to calculate the degree. Recall that in Definition
1.3 it is even necessary to know the preimage of the value of interest in advance.
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Figure 3: Degree on a star-shaped domain

Having this in mind, Proposition 1.8 is not revealing anything. The power of the
intermediate value theorem, however, is the fact that it is sufficient to know the
value of f on the two boundary points of the closed interval [a, b]. Therefore we
are interested in statements, which draw conclusions towards the degree, without
a priori knowledge of f in the interior of U.

To this end, we can use the homotopy invariance property. Given two continuously
differentiable functions f, g : U → Rn, such that f = g on ∂U and f(∂U) ̸= y,
we get with H(λ, x) = λf(x) + (1 − λ)g(x) that H(λ, ∂U) ̸= y for all λ ∈ [0, 1].
As a consequence we have Deg(f, U, y) = Deg(g, U, y), if f and g coincide on the
boundary of U. Following this idea, we can now prove a first result on actually
calculating the degree.

Lemma 1.9. Let U ⊂ Rn be non-empty, open, bounded and star-shaped, f :
U → Rn a function continuous on U , continuously differentiable on U and
pointing inwards on ∂U . Then Deg(f, U, 0) = (−1)n holds.

Proof. Since U is star-shaped and non-empty there is a point p ∈ U such that
this point can be connected to every point x ∈ U via a straight line which
is entirely in U , i.e., px ⊂ U for all x ∈ U. Since a star-shaped set remains
star-shaped after closure, the same holds true for U . We now define a homotopy
H(λ, x) = λf(x) + (1 − λ)(p − x) for all x ∈ U and λ ∈ [0, 1], which is clearly
continuous.
In order to use the homotopy invariance property it remains to check that
0 /∈ H(λ, ∂U) for all λ ∈ [0, 1]. As depicted in Figure 3 the vector p − x connects
every point x on the boundary with the point p in the interior. Since f(x)
is pointing inwards at these boundary points and H(λ, x) is just the convex
combination of these two vectors we have the desired result. Altogether we
can now calculate the Brouwer degree of f, where we also use the translation
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invariance.

Deg(f, U, 0) = Deg(p − Id |U , U, 0) = Deg(−Id|U , U, −p)

=
∑

x∈U :−x=−p

sgn det D(− Id |U )|x = sgn det diag(−1) = (−1)n.

Remark 1.10. An immediate consequence is that every domain U , together with
a function f, meeting the assumptions of Lemma 1.9 contains a point x̃ such
that f(x̃) = 0.

1.2 Index via Degree

In the qualitative analysis of vector fields, or equivalently differential equations,
one is often challenged with the task of finding equilibria. Moreover, information
on the behaviour of solutions near an equilibrium is needed. In the context
of differential equations of the form ẋ = f(x), the set of equilibria is given by
{x ∈ U : f(x) = 0}. This suggests that Deg(f, U, 0) might contain some of the
required information about equilibria of a differential equation. The following
definition formalizes this idea.

Definition 1.11 (Isolated zero). Let U ⊂ Rn be open and bounded, f : U → Rn

continuous on U. A point x̂ ∈ U is an isolated zero of f (in the context of
differential equations we speak of an isolated equilibrium), if f(x̂) = 0 and there
is an open neighbourhood V , called isolating neighbourhood, with x̂ ∈ V such
that for all x ̸= x̂ ∈ V, f(x) ̸= 0.

Definition 1.12 (Index of an isolated zero). Let U ⊂ Rn be open and bounded,
f : U → Rn a function continuous on U and continuously differentiable on U .
Let x̂ ∈ U be an isolated zero of f with isolating neighbourhood V. Then we define
the integer

Indf (x̂) := Deg(−f, V, 0)

as the index of x̂ (with respect to f).

Remark 1.13. This naturally carries over the properties of the Brouwer degree
in Proposition 1.5 to the index of an equilibrium. In particular, the additivity
property of the degree implies that Definition 1.12 is independent of the isolating
neighbourhood. In contrast to the classical definition, we added an extra minus
sign in Definition 1.12. This results in assigning index +1 to asymptotically stable
regular equilibria, independent of the dimension. A straightforward computation
shows that in the case of a regular zero, we have Indf (x̂) = (−1)k̃, where k̃ is
defined as the number of positive eigenvalues of the Jacobian of f evaluated at

6



x̂, i.e., k̃ := # positive eigenvalues of Df |x̂. This implies for an asymptotically
stable regular equilibrium Indf (x̂) = +1.

In addition we can express Deg(f, U, 0) via the indices of the equilibria x̂i ∈ U.

We collect this result in the following corollary.

Corollary 1.14. Let U ⊂ Rn be open and bounded, f : U → Rn a function
continuous on U , continuously differentiable on U and non vanishing on ∂U.

Assume in addition that all zeroes are isolated, i.e., all x̂i ∈ U , i = 1, ..., s, such
that f(x̂i) = 0, have an isolating neighbourhood Vi ⊂ U (this already implies
that there are only finitely many zeroes). Then, by the additivity property of the
degree and the fact that the Vi can be chosen pairwise disjoint

Deg(f, U, 0) =
s∑

i=1
Deg(f, Vi, 0) = (−1)n

s∑
i=1

Indf (x̂i).

If, in addition, we also meet the assumptions of Lemma 1.9 we are left with∑s
i=1 Indf (x̂i) = +1. In the case of 0 being a regular value this implies that the

number of zeroes of f is odd.

Definition 1.12 above also shows that, in the case of regular values, the index is
bound to evaluate to ±1. In the case of irregular values this is not necessarily
true, as the following example shows.

Example 1.15. We may look at the complex function fn : C → C, fn(z) = zn,
where C is interpreted as R2. Here the origin has index n. To see this we note
that there is only one point ẑ = 0 ∈ C with fn(ẑ) = 0, so we choose the unit
disk D1 as isolating neighbourhood. The case n = 1 is straight forward, since 0
is a regular value.
Let n ≥ 2. Now 0 is not regular anymore, so we again define a homotopy
H(λ, z) = zn − λϵ with 0 ≤ λ ≤ 1 such that H(λ, ∂D1) ̸= 0. To make things
concrete, we fix ϵ = 1

4 and define H(1, z) = zn − 1
4 =: gn(z). Let us rewrite the

function and define un : R2 → R and vn : R2 → R as the real- and imaginary
part of gn, respectively. The perturbed function gn = un + ivn is holomorphic,
therefore the Cauchy-Riemann equations hold and we are left with

det
(

D

(
un

vn

))
= det

(
∂xun ∂yun

−∂yun ∂xun

)
= (∂xun)2 + (∂yun)2 ≥ 0.

The preimage of 0 (with respect to gn), are the points ẑk = n

√
1
4 e2πi k

n , k =
0, ..., n − 1. After differentiating the real part of gn with respect to x and y, we
see that (∂xun)(ẑk) = n( 1

4 )1− 2
n Re(ẑk) and (∂yun)(ẑk) = n( 1

4 )1− 2
n Im(ẑk). Since

we have for all k = 0, ..., n − 1 that ẑk ̸= 0, i.e., real- and imaginary part do not

7



vanish simultaneously, the strict inequality

det
(

D

(
un

vn

)∣∣∣∣
ẑk

)
> 0,

for all k = 0, ..., n − 1, follows. Since all zeroes ẑk are isolated, we can now
use the additivity property of the degree, and therefore also for the index, to
conclude with

Indfn
(0) = Deg(−fn, D1, 0)

= Deg(−gn, D1, 0) =
n−1∑
k=0

sgn det
(

D

(
un

vn

)∣∣∣∣
ẑk

)
= n.

Where we used in the third step that in the case of a matrix M ∈ C2×2 it holds
that det(M) = det(−M). Along the same lines one can show that for f(z) = z̄n

we have Indf (0) = −n.

Example 1.15 shows that already in two dimensions the index can be any integer.
In order to regain at least some control we are forced to add assumptions on the
functions and vector fields under consideration. In the following we will examine
semiflows generated by a differential equation ẋ = f(x) with f : U ⊂ Rn → Rn.

The following definition can be found in [8, p. 96].

Definition 1.16 (Dissipativity). A semi flow is called dissipative, if there exists
a compact set K ⊂ U such that it attracts all points of U. That is, for all x ∈ U

there is some time t(x) > 0 such that x(t) ∈ K for all t ≥ t(x).

With Definition 1.16 at hand we can now formulate our first result on the index
sum of all equilibria arising from a differential equation defined on whole Rn.
The proof is taken from [9].

Lemma 1.17. A differential equation ẋ = f(x) on U = Rn, generating a
dissipative semiflow, has degree (−1)n with respect to any bounded open set
B ⊂ Rn containing all its equilibria, i.e., Deg(f, B, 0) = (−1)n.

If, in addition, all equilibria are isolated we can conclude that the sum of their
indices equals +1.

Proof. From the dissipativity it follows that there exists a compact set K ⊂ Rn

with nonempty interior containing the ω-limits of all x ∈ Rn. We define the
function

τ(x) = inf{t ≥ 0 : x(t) ∈ int K} (1.1)

for all x ∈ Rn.

We show that, x 7→ τ(x) is upper-semicontinuous and consequently it attains
its maximum on the compact set K. Indeed, if x0 ∈ int K then there is an open
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Figure 4: Degree of a dissipative semiflow

neighbourhood Nx0 ⊂ int K such that for all x ∈ Nx0 0 = τ(x) < T for all
T > τ(x0) = 0. Assume now that x0 /∈ int K. From (1.1) and the dissipativity it
follows that x0(τ(x0)) ∈ ∂K and for all T > τ(x0) there exists τ(x0) < t̃ < T :
x0(t̃) ∈ int K. Hence there is a neighbourhood of x0(t̃) contained in int K, i.e.,
Bϵ(x0(t̃)) ⊂ int K for some ϵ > 0. The continuous dependence on the initial
condition of the flow map implies that there exists a δ > 0 such that for all
x ∈ Bδ(x0) : x(t̃) ∈ Bϵ(x0(t̃)) ⊂ int K. Hence we have shown for all x0 /∈ int K

and T > τ(x0) that there exists an open neighbourhood Bδ(x0) such that for
all x ∈ Bδ(x0) we have τ(x) < t̃ < T, which completes the proof of the upper
semi-continuity of τ.

Therefore TK := max{τ(x) : x ∈ K} < ∞, as the maximal return time of points
in K, exists. As a result we have that

K+ := {x(t) : x(0) ∈ K and 0 ≤ t ≤ TK}

is compact and forward invariant. Now consider an open ball B such that
K+ ⊂ B. Since B also contains the ω-limit set we have, with the same reasoning
as before, that there exists TB := max{τ(x) : x ∈ B} + 1 < ∞. Again we will
use the homotopy invariance of the degree and define

H(λ, x) :=

f(x) λ = 0
x(TBλ)−x

TBλ 0 < λ ≤ 1,

for all x ∈ B. Clearly H is continuous and since ω(x) ⊂ K for all x ∈ Rn, there
are no equilibria or periodic orbits on ∂B resulting in H(λ, ∂B) ̸= 0 for all
λ ∈ [0, 1].
Finally we point out that H(1, x) = x(TB)−x

TB
, for all x ∈ ∂B is just a vector

pointing inwards, as shown in Figure 4, since K+ is forward invariant. Together
with B being convex and Lemma 1.9, we arrive at Deg(f, B, 0) = (−1)n. The
additivity property of the degree allows us to replace the set B with any open
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and bounded set containing all equilibria. If they are all isolated we can deduce
from Corollary 1.14 that the sum of their indices equals +1.

Lemma 1.17 also implies that every dissipative semiflow has at least one equi-
librium. In some cases it is possible to use results like Lemma 1.17 to prove
the existence of further equilibria. If, for example, we are in the situation that
the sum of the indices of all known equilibria x̂i of a system does not equal +1,
i.e., S :=

∑
i Indf (x̂i) ̸= +1, then this proves the existence of at least one more

equilibrium. If S < 1 (S > 1) we even know that there exists at least one more
equilibrium with positive (negative) index.

1.3 Index Theorem

So far we have considered functions f defined on Rn. Anyway, many models in
mathematical biology are defined only on the nonnegative orthant Rn

+ = {x ∈
Rn : xi ≥ 0, i = 1, ..., n} or other state spaces, e.g., the probability simplex
Sn = {x ∈ Rn+1

+ :
∑n+1

i=1 xi = 1}. In the following we will focus on these domains
and try to carry over some of the already established results. We will follow the
ideas of [9].
Let

ẋ = f(x), where f : Rn
+ → Rn, (1.2)

be an autonomous differential equation with continuously differentiable f . Through-
out this section we will assume that Rn

+ is forward invariant, i.e.,

If x = x(0) ∈ Rn
+, then also x(t) ∈ Rn

+ for all t ≥ 0. (1.3)

In mathematical biology, this restriction is fulfilled quite naturally. One often
models systems, which describe the interaction of different species, keeps track
of the densities of alleles or counts the number of infected individuals in a
population. All these parameters make sense only if they remain non-negative
and therefore a reasonable model in mathematical biology will often be forward
invariant anyway. The second assumption we make is that f is dissipative, or
equivalently, the semiflow generated by f is ultimately uniformly bounded, i.e.,
there exists a constant k > 0 such that for all x ∈ Rn

+

lim sup
t→∞

xi(t) ≤ k, for all i = 1, ..., n. (1.4)

In [1, p. 219] we can find the following equivalent, more applicable, formulation
of assumption (1.3)

xi = 0 ⇒ fi(x) ≥ 0 for all i = 1, ..., n. (1.5)

10



Intuitively this means that the non-negative orthant Rn
+ is forward invariant if

and only if the flow on the boundary does not point outwards. If we had asked for
strict forward invariance of Rn

+ (xi = 0 ⇒ fi(x) > 0 for all i = 1, ..., n), which
implies that there are no equilibria on the boundary, then it would have followed
from Lemma 1.17 that Deg(f, int B, 0) = (−1)n. Here B := {x ∈ Rn

+ : xi ≤ b} is
a box, similar to the ball in the proof of Lemma 1.17, that contains the ω−limit
set of Rn

+ in its interior (by dissipativity) and the flow on ∂B points inwards. If
all (interior) equilibria are isolated, then their index sum equals +1.
If we only assume forward invariance, however, some parts of the boundary of
Rn

+ may be invariant under the flow. There, the flow does not point inwards and
may even contain equilibria. As it turns out, some of the boundary equilibria are
more important to us than others. To tell these equilibria apart we investigate
the Jacobian at these equilibria. We define the complement of the support of
an equilibrium x̂ ∈ Rn

+ as the set I := {i ∈ {1, ..., n} : x̂i = 0}. The support is
given by the set J := {1, ..., n} \ I. We focus on two cases:

1) Let i ∈ I and j ∈ J . To calculate ∂fi

∂xj
(x̂), we first note that x̂ + sej =

(x̂1, ..., x̂j + s, ..., x̂n)T ∈ Rn
+, where ej is the j-th unit vector, for all s ∈ R

with s ≥ −x̂j . Since i ∈ I, it follows from (1.5) that fi(x̂ + sej) ≥ 0.
Together with fi(x̂) = 0 this implies that ∂fi

∂xj
(x̂) = 0.

2) Let i, j ∈ I and i ̸= j. In this case x̂ + sej = (x̂1, ..., x̂j + s, ..., x̂n)T ∈ Rn
+,

for all s ≥ 0. Thus we can conclude that ∂fi

∂xj
(x̂) ≥ 0.

After rearranging the indices such that I = {1, ..., k} for some 0 ≤ k ≤ n, the
Jacobian at an equilibrium has the form of a block matrix

Df(x̂) =
(

∂fi

∂xj
(x̂)
)

1≤i,j≤n

=
(

A 0
B C

)
, (1.6)

where we will refer to A and C as the external- and internal part of the Jacobian,
respectively. From property 2) above we infer that A is a quasipositive matrix,
i.e., a matrix with only non-negative off-diagonal entries (aij ≥ 0 if i ̸= j). We
are now able to define the identifying property of the somewhat more important
equilibria.

Definition 1.18 (Saturated equilibrium). An equilibrium x̂ ∈ Rn
+ is called

(strictly) saturated, if all eigenvalues of the external part of the Jacobian at x̂

have non-positive (negative) real part.

We can now state our first theorem.

Theorem 1.19 (Index Theorem, Hofbauer 1990). Every semiflow on Rn
+ gener-

ated by (1.2), satisfying (1.4) and (1.5), admits at least one saturated equilibrium.
In the case that all saturated equilibria are regular, their index-sum equals +1.
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In the subsequent only the basic ideas of the proof are given, for details consider
[9]. In order to sketch a proof of Theorem 1.19 we perturb the differential
equation, by adding a suitably chosen inward flow ρ(x) such that the flow on
∂Rn

+ points inward, and we investigate the new system

ẋ = fϵ = f(x) + ϵρ(x), ϵ > 0. (1.7)

Then, by Lemma 1.17 we can conclude, for a large enough box B = {x ∈ Rn
+ :

xi ≤ b}, that Deg(fϵ, int B, 0) = (−1)n. This implies the existence of at least
one equilibrium of (1.7) in int B ⊂ Rn

+. The following claim (a variant of it will
be proven in the proof of Theorem 1.22) guarantees the existence of a saturated
equilibrium x̂ ∈ Rn

+ for (1.2).

A) A limit point x̂ of equilibria of (1.7) is a saturated equilibrium of (1.2).

Finally, it remains to make sure that we do not lose boundary equilibria after
the perturbation. This is important to justify the second part of Theorem 1.19.
Together with the homotopy invariance of the degree (and therefore also of the
index) the statement below ensures that in the case that all saturated equilibria
are regular, the sum of their indices equals +1.

B) A regular, saturated equilibrium x̂ of (1.2) gives rise to a unique C1-family
of equilibria of (1.7) x̂(ϵ) ∈ intRn

+ for ϵ > 0.

1.4 Boundary Index

In Theorem 1.19 it is assumed that all saturated equilibria of (1.2) are regular,
which is necessary for the proof of assertion B) above. However, this regularity
assumption restricts us to the case of saturated equilibria with index ±1. In
many cases, the transition of an equilibrium from saturated to non-saturated is
of large interest. One may think of the situation, when an absent species can
finally invade into a community being in equilibrium, as treated in [5]. This
change takes place, when an external eigenvalue of (1.6) is zero and therefore the
equilibrium is non-regular. Since we would like to understand these transitions
we have to improve our result. First, we modify the definition of the index as
suggested in [9].

Definition 1.20 (Boundary index). Let x̂ ∈ Rn
+ be an isolated equilibrium of

(1.2). Let V ⊂ Rn be an isolating neighbourhood and ϵ : Rn
+ → Rn a, in absolute

value, sufficiently small, smooth perturbation. For all x ∈ ∂Rn
+, ϵ must generate

an inward flow, i.e., xi = 0 ⇒ ϵi(x) > 0. Define V + := V ∩ Rn
+. Then we say

that
Bd_Indf (x̂) := Deg(−(f + ϵ), int V +, 0)

12



is the boundary index of x̂.

The boundary index is independent of the perturbation, since they are all
homotopic. Adding a small enough perturbation in Definition 1.20, ensures
that there are no equilibria on ∂Rn

+ and therefore also not on ∂V +, i.e., 0 /∈
(f + ϵ)(∂V +). As a result, the degree of −(f + ϵ) with respect to int V +, and
therefore the boundary index of x̂, is well defined.
The concept of the boundary index is naturally very similar to the index.
For a non-saturated equilibrium x̂, we have that Bd_Indf (x̂) = 0. To justify
this we use statement A) and see that for a small enough perturbation f + ϵ

there is no equilibrium in V+. From the definition of the degree it follows that
Bd_Indf (x̂) = 0. In the case of a regular, saturated equilibrium it follows from
statement B) and the homotopy invariance that Bd_Indf (x̂) = Indf (x̂) = ±1.

Since we introduced the boundary index to get rid of the regularity assumption
in Theorem 1.19, we expect that the two concepts may differ for non-regular
equilibria. The following example shows that this is indeed the case.

Example 1.21. Consider the differential equation

ẋi = fi(x) = −x2
i , i = 1, ...n,

with the origin as unique and isolated equilibrium. Since the support of the
origin is empty, the Jacobian, Df(0) = 0n×n, only consists of the external part.
We conclude that the origin is a non-regular, saturated equilibrium. It remains to
show that Indf (0) = 0 ̸= 1 = Bd_Indf (0). We will restrict ourselves to the case
n = 2. Let us define a homotopy componentwise as H(λ, x) = (H1, H2)T (λ, x),
with Hi(λ, x) = −x2

i + λϵ2
i , for i = 1, 2. We choose the unit disk as isolating

neighbourhood, ϵi > 0 and ϵ2
1 +ϵ2

2 < 1, accordingly. This changes the equilibrium
structure as shown in Figure 5. The four equilibria of H(1, x) are x̂1 = (ϵ1, ϵ2)T ,
x̂2 = (−ϵ1, ϵ2)T , x̂3 = (ϵ1, −ϵ2)T and x̂4 = (−ϵ1, −ϵ2)T . The Jacobian of H(1, x)
has the form

DH(1, x) =
(

−2x1 0
0 −2x2

)
.

For that reason all equilibria x̂i, i = 1, ..., 4 are regular and we have

Indf (0) = Deg(−f, D1, 0) =
4∑

i=1
sgn det DH(1, x̂i) = 1 − 1 − 1 + 1 = 0.

In contrast we only have one equilibrium, namely x̂1, in D1 ∩ R2
+. As a result

Bd_Indf (0) = Deg(−(f + ϵ2), int(D1 ∩ R2
+), 0) = sgn det DH(1, x̂1) = +1.
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x̂1x̂2

x̂3 x̂4

D1 ∩ R2
+

Figure 5: Equilibria of ẋi = −x2
i + ϵ2

i , with ϵi = 1
2 .

If n ̸= 2, the same ideas are used, but the bookkeeping and visualization becomes
more tiring. After the perturbation there are 2n regular equilibria. One half
(2n−1) consists of equilibria which contribute +1 to the index. Every remaining
equilibrium (2n−1 are left) contributes −1 to the index. In total this implies
that

Indf (0) = 2n−1 − 2n−1 = 0.

For the boundary index we again have only one equilibrium in B1(0) ∩ Rn
+.

At this equilibrium, the determinant of the Jacobian of the perturbed field is
positive, resulting in

Bd_Indf (0) = +1.

We can now improve the statement of Theorem 1.19. In the proof we used
Lemma 1.17 to conclude that the sum of the indices of the saturated equilibria
in the perturbed system is +1, or equivalently Deg(fϵ, B, 0) = (−1)n. But if we
assume that all saturated equilibria, x̂i, are isolated in the first place, we have
per definition that∑

i

Bd_Indf (x̂i) =
∑

i

Deg(−fϵ, int V +
i , 0) = Deg(−fϵ, B, 0) = +1.

So we can drop the regularity assumption, since we no longer have to guarantee
the uniqueness of the equilibria after perturbation, i.e, assertion B) above. The
following result sums up the preceeding ideas.

Theorem 1.22 (Boundary Index Theorem, Hofbauer 1990). Every semiflow
generated by (1.2), satisfying (1.4) and (1.5), admits at least one saturated
equilibrium. In the case that all saturated equilibria are isolated, the sum of their
boundary indices equals +1.

Theorem 1.22 can also be extended to differentiable manifolds with corners, since
they are locally diffeomorphic to Rn−1

+ . The probability simplex Sn−1 = {x ∈
Rn

+ :
∑n

i=1 xi = 1} is an example. In the following we prove the boundary index
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theorem on the simplex, where we use ideas from [9] and [10, p. 159].
Consider a semiflow ẋ = f(x) on the simplex Sn−1, such that the two assumptions∑n

i=1 ẋi = 0 and xi = 0 ⇒ fi(x) ≥ 0 hold. Define

ẋi = gϵ
i (x) := fi(x) + ϵ(1 − nxi) (1.8)

for all x ∈ Sn−1, i = 1, ..., n and ϵ > 0 small enough as perturbation. The
orbits of the semiflow generated by the continuous perturbation (1.8) still
remain on the simplex, i.e.,

∑n
i=1 ẋi =

∑n
i=1 gϵ

i (x) = 0. Moreover we see that
xi = 0 ⇒ gϵ

i (x) = fi(x) + ϵ > 0 for all ϵ > 0, and therefore the flow points
inwards on ∂Sn−1. Since Sn−1 ⊂ Rn−1 is convex it follows at once from Lemma
1.9 that Deg(gϵ, int Sn−1, 0) = (−1)n−1.
It remains to show that a limit point x̂ = x̂(0) of equilibria x̂(ϵ) for ϵ > 0 of
(1.8) (which exist since Deg ̸= 0 for all ϵ > 0) is saturated. Let us reorder the
indices as in (1.6), i.e., I = {i ∈ {1, ..., n} : x̂i = 0} = {1, ..., k} for some k ≤ n.

For i and j ∈ I, we define

di(x1, ..., xn) = fi(0, ..., 0, xk+1, ..., xn) (1.9)

aij(x1, ..., xn) =


fi(0,...,0,xj ,xj+1,...,xn)−fi(0,...,0,xj+1,...,xn)

xj
if xj > 0

∂fi

∂xj
if xj = 0.

(1.10)

From the forward invariant assumption we infer that di(x) ≥ 0 for all x ∈ Sn−1

and since x̂ is an equilibrium di(x̂) = 0. By assumption, f is continuously
differentiable and therefore this also holds for aij in the interior of Sn−1. On
the boundary of the simplex, the aij ’s are still continuous. If we compare (1.10)
with (1.6), we see that the matrix A = A(x̂) := aij(x̂) is simply the external part
of the Jacobian of (1.8) for ϵ = 0 and therefore has non-negative off-diagonal
entries. For any point x ∈ Sn−1 and i ∈ I it holds that

fi(x) =
k∑

j=1
aij(x)xj + di(x). (1.11)

This follows from the definition of the aij ’s in (1.10), which leaves us with a
telescopic sum in (1.11). Assume now that x̂ = x̂(0) is not saturated, i.e., A has
at least one eigenvalue with positive real part. We define the spectral bound of
a real square matrix M as s(M) := max{Re(µ) : µ eigenvalue of M}. Since A is
quasi-positive, there exists c > 0 such that A′ = A + cI ≥ 0 is a non-negative
matrix and the Perron-Frobenius Theorem implies the existence of a non-negative
eigenvalue s(A′) = λ ≥ 0 with corresponding non-negative left eigenvector v ≥ 0
such that vA′ = λv, see [4, p. 26]. Inserting the definition of A′ we see that v is
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also a left eigenvector of A corresponding to the eigenvalue λ − c. Together with
λ = s(A′) = s(A) + c this implies that s(A) = λ − c. We assume that x̂ is not
saturated and therefore λ − c > 0 must hold and consequently

k∑
i,j=1

viaij(x̂) =
k∑

j=1
(vA)j =

k∑
j=1

(λ − c)vj > 0 (1.12)

since v is non-negative and not vanishing. In particular there is at least one
j ∈ {1, ..., k} such that (vA)j > 0. Consider now an equilibrium x̂(ϵ) of (1.8)
with ϵ > 0 small enough. Together with (1.11) we infer that

k∑
j=1

aij(x̂(ϵ))x̂j(ϵ) = −di(x̂(ϵ)) − ϵ(1 − nx̂i(ϵ)) < 0 (1.13)

for all ϵ > 0 small enough and i = 1, ..., k. But as shown above the aij ’s are
continuous on the simplex and therefore (1.12) also holds in a small neighbour-
hood of x̂. For all ϵ > 0 small enough, x̂(ϵ) is in this neighbourhood. Since (1.8)
has no equilibria on the boundary of Sn−1, x̂(ϵ) has only positive entries for
ϵ > 0, which implies that

∑k
i,j=1 viaij(x̂(ϵ))x̂j(ϵ) > 0 which contradicts (1.13).

As a result, x̂ is saturated. If the saturated equilibria x̂i are all isolated, with
isolating neighbourhood V +

i ⊂ Sn−1, we obtain∑
i

Bd_Indf (x̂i) =
∑

i

Deg(−g, int V +
i , 0) = Deg(−g, int Sn−1, 0)

= (−1)n−1(−1)n−1 = +1.

1.5 Degree for Plane Vector Fields

1.5.1 Rotation of a Plane Vector Field

Let us now take a closer look at the degree and the index of vector fields in the
plane, i.e., Φ : U ⊂ R2 → R2, where U is bounded. We will establish another
notion of the degree in two dimensions, called rotation of a vector field. Let
us start with some preparatory steps, following [2, Chapter 5]. If not stated
otherwise we assume that the vector field

Φ(x) =
(

P (x)
Q(x)

)
(1.14)

is continuous, i.e., P : R2 → R and Q : R2 → R are continuous, where x =
(x1, x2)T ∈ R2. A vector field (1.14) is said to be non-vanishing on a set U , if
Φ(x) ̸= 0 for all x ∈ U.

We are interested in the angle ϕ between points of the vector field and the
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positive x-axis, measured counterclockwise (in the positive direction). In the
case of a non-vanishing vector field, this angle is defined for every point and
given by

cos ϕ = P (x)√
P (x)2 + Q(x)2

, sin ϕ = Q(x)√
P (x)2 + Q(x)2

. (1.15)

From (1.15) we see that for every point x ∈ U , the angle between the x-axis
and the vector field there, is uniquely determined (up to multiples of 2π) and a
continuous function of x. In contrast we define the angle θ(v1, v2) between two
vectors v1, v2 ̸= 0 ∈ R2 as the in absolute value smallest angle one has to rotate
v1 to coincide in direction with v2. A positive (negative) angle corresponds to
counterclockwise (clockwise) rotation of v1. If v1 and v2 have opposite directions,
i.e., there exists λ > 0 such that v1 + λv2 = 0, we define θ(v1, v2) = π and
therefore we have

− π < θ(v1, v2) ≤ π, for all v1, v2 ̸= 0 ∈ R2. (1.16)

Definition 1.23 ((Parametrized) Simple Arc). Let f1, f2 : [t0, T ] → R be
continuous for all t0 ≤ t ≤ T. Furthermore there must not be self-intersections,
i.e., for all t1, t2 ∈ [t0, T ] with t1 ̸= t2 we demand (f1(t1) − f1(t2))2 + (f2(t1) −
f2(t2))2 ≠ 0. Then the set l := {x ∈ R2 : x1 = f1(t), x2 = f2(t), t ∈ [t0, T ]}
is called a simple arc. If there are t1, t2 ∈ [t0, T ] such that x1 = x(t1) and
x2 = x(t2), we say that the set x1x2 := {x(t) ∈ R2 : x1 = f1(t), x2 = f2(t), t ∈
[t1, t2]} ⊂ l is a subarc of l.

We speak of a parametrized simple arc, if we refer to a triple (f1, f2, l).

Definition 1.24 (Angle Function). Let Φ be a non-vanishing vector field on a
simple arc l. A function α : l → R is called angle function (of the vector field
Φ defined on the arc l), if α is continuous and for all x ∈ l, α(x) is the angle
between the positive x-axis and the vector Φ(x).

In a first step we show that angle functions exist. Note that |θ(v1, v2)| is a metric
for unit vectors v1, v2 ∈ R2. Since l is a compact set and Φ is non-vanishing,
we can conclude that Φ

|Φ| is uniformly continuous on l. As a consequence for all
x, y ∈ l there is a constant δ > 0 such that from ∥x − y∥ < 2δ it follows that

∣∣∣θ( Φ(x)
|Φ(x)| ,

Φ(y)
|Φ(y)|

)∣∣∣ < π.

We can now cover l with a finite number of open balls Bδ(xi) with radius δ

and centers xi, i = 0, ..., n, where x0 and xn are the start- and endpoints of l,
respectively. Here we want to point out that we choose these points such that an
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x0
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B2δ(xi)

Φ(xi)

Φ(x)

Figure 6: Construction of an angle function

increase in i corresponds to a definite direction on the arc, as shown in Figure 6.
Since for all x on the subarc xixi+1 we have ∥x − xi∥ < 2δ we can now define
an angular function inductively.
Let ϕ0 be a fixed value of the angle between the positive x-axis and Φ(x0) and
define α0(x) := ϕ0 + θ(Φ(x0), Φ(x)) for all x in the subarc x0x1. Assume we
have defined αi−1 for i = 1, ..., n − 1, then αi(x) := αi−1(xi) + θ(Φ(xi), Φ(x)) for
all x in the subarc xixi+1. Now α := αi on the subarc xixi+1 for i = 0, ..., n − 1
is an angle function. Indeed, since θ is continuous as long as |θ| < π, it follows
from the piecewise definiton that α is continuous. With the choice of α0 it also
holds that α(x) is the angle between the positive x-axis and Φ(x) for all x ∈ l.

Now we can define the rotation.

Definition 1.25 (Rotation of a subarc). Let l be a simple arc, Φ a non-vanishing
vector field on l, x1x2 a subarc of l and α any angle function corresponding to
the arc and the vector field. Then the rotation of the field Φ along the subarc
x1x2 is defined as the real number

γ(Φ, x1x2) = 1
2π

[α(x2) − α(x1)].

Remark 1.26. The rotation in Definition 1.25 is independent of the choice of the
angle function. Assume α and α̃ are two angle functions. Then by Definition
1.24 we have that α(x) − α̃(x) = 2πr(x) for all x ∈ l, where r(x) is an integer.
From the continuity of both angle functions it follows that r(x) = const. for all
x ∈ l and we are done. In addition we see that reversing the direction on the
arc, changes the sign of the rotation, i.e.,

γ(Φ, x2x1) = −γ(Φ, x1x2). (1.17)

Let C be a simple closed curve, i.e., a simple arc with the exception that there
is a common start- and endpoint x(t0) = x(T ). On a closed curve there are two
possibilities to define a subarc x1x2. We therefore fix a direction on a curve such
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that the interior points are to the left (anti-clockwise). We pick two different
points x1 ̸= x2 ∈ C and define

γ(Φ, C) := γ(Φ, x1x2) + γ(Φ, x2x1). (1.18)

Note that since we fixed a direction on C, the subarc x2x1 of C is, in contrast
to (1.17) not the subarc x1x2 traversed in the opposite direction.
Equation (1.18) is independent of the choice of the points, since γ(Φ, x1x3) =
γ(Φ, x1x2) + γ(Φ, x2x3) for all x1, x2, x3 ordered in the direction of traversal
on the arc x1x3. Since the start- and endpoints of a closed curve are identical,
we can conclude that γ(Φ, C) ∈ Z. In [11, p. 6] one finds a simple geometric
interpretation of the rotation γ(Φ, C) on a closed curve - it counts the number
of full turns of Φ(x) as x runs through C.

If there is a parametrization of C, i.e., C = {x(t) : t0 ≤ t ≤ T, x(t1) ̸= x(t2) ⇔
t1 ≠ t0 or t2 ̸= T} where x(t) = (f1(t), f2(t))T for fixed f1, f2, then there exists
(like above but this time depending on the parametrization) an angle function
α : [t0, T ] → R with α(t) being the angle between the x-axis and Φ(t) = Φ(x(t)).
It holds that γ(Φ, C) = 1

2π [α(T ) − α(t0)]. As above the rotation changes sign,
when we change the orientation of the curve. We define

γ(Φ, −C) := −γ(Φ, C) = 1
2π

[α(t0) − α(T )] (1.19)

as the rotation of the set of points C, but traversed in reversed direction.

Example 1.27. Let us consider the unit circle S1 with parametrization x(t) =
(cos(2πt), sin(2πt))T for t ∈ [0, 1] and the vector field Φ(x) = (x1, x2)T . An angle
function is given by α(t) = 2πt. We therefore get for the rotation γ(Φ, S1) =
1

2π [α(1) − α(0)] = +1.

1.5.2 Rotation is Degree

Our goal now is to show that in the case of plane vector fields, the two concepts
of rotation and degree (with respect to the value 0) coincide. Before doing this,
we have to clarify what the rotation of an open set is. Until now, we have defined
the rotation for simple closed curves only. Therefore we have to restrict to sets
with nice enough boundary.

Definition 1.28. Let U ∈ R2 be an open and bounded set with ∂U a simple
closed curve. Let Φ be a vector field non-vanishing on ∂U . The rotation with
respect to U is defined as γ(Φ, U) := γ(Φ, ∂U).

Definition 1.29 (Open-connected set). Let C, C1, ..., Cn be simple closed curves
and denote U, U1, ..., Un as the sets of points enclosed by C, C1, ..., Cn respectively.
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(a) Open-connected set Γ.
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(b) Adding arcs L1, ..., Lk.

Figure 7: Rotation of open-connected set without zero vectors

Assume that U 1, ...,U n ⊂ U are pairwise disjoint, then we say that the set
Γ := U \

⋃n
i=1 Ui , is an open-connected set.

An example of an open-connected set is shown in Figure 7a. The boundary of Γ
is given by ∂Γ =

⋃n
i=1 Ci ∪ C. Given an open-connected set Γ and a vector field

Φ non-vanishing on ∂Γ, we define the rotation as

γ(Φ, Γ) := γ(Φ, U) −
n∑

i=1
γ(Φ, Ui). (1.20)

The ideas in the proof of the following proposition are taken from [12, p. 21].

Proposition 1.30. Let Γ ⊂ R2 be open-connected. Suppose Φ is non-vanishing
on Γ, then it holds that γ(Φ, Γ) = 0.

Proof. From the continuity of Φ it follows that Φ is uniformly continuous on the
compact set U . Therefore there exists δ > 0 such that for all x1, x2 ∈ U with
∥x1 − x2∥ < δ : |θ(Φ(x1), Φ(x2))| < π

2 . We now decompose the bounded set Γ
into subsets G1, ..., Gm such that for all i = 1, ..., m we have that ∥x1 − x2∥ < δ

for all x1, x2 ∈ Gi. We denote the simple arcs, which form the boundaries of the
sets G1, ..., Gm, by L1, ..., Lk. The direction on the arcs on the boundaries of
the sets Gi shall be such that the interior of Gi is to the left, while traversing
the boundary. As a result we have that ∂U is traversed anti-clockwise and ∂Ui

clockwise for all i = 1, ..., n.

As shown in Figure 7b, we have two possible positions of an arc Lj . If such an
arc is part of the boundary of Γ, it is part of the boundary of only one of the
sets G1, ..., Gm and we are passing it once. If Lj is in the interior of Γ we are
going through it twice, once in each direction. We may look at G1 and G3, for
example. We are traversing the boundary of G1 via L1, L2, L3, L4 and L5. If
we follow ∂G3 we go through L6, L7, L8, L9, L10 and L4. We have passed the
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interior arc L4 in two different directions. For this reason, it follows from (1.17)
and (1.19) that the rotation of the arcs in the interior of Γ in

∑m
i=1 γ(Φ, Gi)

cancel out. What remains is the boundary of Γ.
By construction it holds that for every i = 1, ..., m |θ(Φ(x1), Φ(x2))| < π

2 for all
x1, x2 ∈ Gi. This implies that

|γ(Φ, Gi)| = |γ(Φ, x1x2) + γ(Φ, x2x1)| ≤ |γ(Φ, x1x2)| + |γ(Φ, x2x1)|

<
1

2π
(π + π) < 1.

Since ∂Gi is a simple closed curve, its rotation must be an integer and therefore
vanishes on each Gi, which is leading us to

γ(Φ, Γ) = γ(Φ, U) −
n∑

i=1
γ(Φ, Ui)

= γ(Φ, U) +
n∑

i=1
γ(Φ, −Ui) =

m∑
i=1

γ(Φ, Gi) = 0.

A direct consequence of Proposition 1.30 is that the rotation fulfills the additivity
property (D2) of Proposition 1.5 for open-connected sets Γ. Moreover, we notice
that the vector field Φ, generated by the identity, has only one equilibrium -
the origin. Given an open-connected set Γ such that Id is non-vanishing on its
boundary, i.e., 0 /∈ ∂Γ, we have two possibilities. In the case of 0 /∈ Γ it follows
from Proposition 1.30 that γ(Id, Γ) = 0. If 0 ∈ Γ it follows from the fact that
the origin is the only zero of Id and (1.20) that γ(Id, Γ) = γ(Id, U). But, if we
traverse the boundary of a simple closed curve which has the origin in its interior,
the vector field on that curve (with respect to the identity) makes one full turn
in the anti-clockwise direction. As a consequence we have that γ(Id, Γ) = +1
and property (D1) of Proposition 1.5 is fulfilled for open-connected sets Γ. It
remains to show that the rotation is invariant under homotopies. We follow the
ideas of [2, pp. 189–190].

Lemma 1.31. Let Φ and Ψ be two non-vanishing vector fields on a simple
closed curve C. Assume that the vectors Φ(x) and Ψ(x) do not point in opposite
directions for all x ∈ C, then γ(Φ, C) = γ(Ψ, C).

Proof. Let the curve C be given via a parametrization x(t) = (f1(t), f2(t))T

for t ∈ [t0, T ]. Let α = α(t) be any angle function corresponding to Φ. By
assumption it holds that |θ(t)| := |θ(Φ(x(t)), Ψ(x(t)))| < π for all [t0, T ] and
therefore θ(t) is continuous on that interval. As a consequence we can define
α∗(t) := α(t) + θ(t) for all t ∈ [t0, T ], which is continuous and by construction
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an angle function of Ψ. Note that θ(t0) = θ(T ), since x(t0) = x(T ) and therefore

γ(Ψ, C) = 1
2π

[α∗(T ) − α∗(t0)] = 1
2π

[α(T ) + θ(T ) − α(t0) − θ(t0)]

= 1
2π

[α(T ) − α(t0)] = γ(Φ, C).

Lemma 1.32. Let Φ and Ψ be two non-vanishing vector fields on a simple closed
curve C. If there exists a homotopy H : [0, 1] × C → R2 with H(λ, x) ̸= 0 for all
λ ∈ [0, 1], x ∈ C and H(0, ·) = Φ and H(1, ·) = Ψ, then γ(Φ, C) = γ(Ψ, C).

Proof. From the continuity of H on the compact set [0, 1] × C, it follows
again that H is uniformly continuous. Therefore there exists δ > 0 such that
|θ(H(λ′

, x), H(λ′′
, x))| < π holds for all x ∈ C whenever |λ′ − λ

′′ | < δ. On
the interval [0, 1] we define a partition 0 = λ0 < λ1 < ... < λn−1 < λn = 1,

such that |λi − λi+1| < δ for all i = 0, ..., n − 1. From Lemma 1.31 we con-
clude that γ(H(λi, ·), C) = γ(H(λi+1, ·), C) for all i = 0, ..., n − 1. In par-
ticular we get that γ(H, C) is constant for all λ ∈ [λi, λi+1] and therefore
γ(H(0, ·), C) = γ(H(1, ·), C).

So far we have shown the homotopy invariance only for a simple closed curve.
Recall that in (1.20) the rotation of an open-connected set Γ is defined via the
rotation of all its parts, i.e., a sum of rotations of simple closed curves. As a
result, we can state an immediate corollary of Lemma 1.32.

Corollary 1.33. Let Φ and Ψ be two vector fields, defined on an open-connected
set Γ and non-vanishing on ∂Γ. If there exists a homotopy H : [0, 1] × ∂Γ → R2

with H(λ, x) ̸= 0 for all λ ∈ [0, 1], x ∈ ∂Γ and H(0, ·) = Φ and H(1, ·) = Ψ,

then γ(Φ, Γ) = γ(Ψ, Γ).

We have now shown, that the rotation has the properties (D1)-(D3) of Proposition
1.5. Since these three properties define the degree uniquely we can conclude that
given an open-connected set Γ ⊂ R2 and a continuous vector field Φ : Γ → R2,
non-vanishing on ∂Γ, it holds that γ(Φ, Γ) = Deg(Φ, Γ, 0).

Remark 1.34. In Proposition 1.5 we have restricted the degree to continuously
differentiable maps, which met the needs of our discussion there. However, at
this point we want to mention that this definition can also be extended, via the
Weierstrass approximation theorem, to continuous maps, see [15, p. 148].

Thus, all the results established for the degree, as well as the notion of the index
of an isolated equilibrium, can be used for the rotation. Recall, from Definition
1.12, that for an equilibrium x̂ with isolating neighbourhood V we have defined
IndΦ(x̂) = Deg(−Φ, V, 0). Unlike the rotation, the degree in two dimensions
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was defined for arbitrary open and bounded subsets of R2. However, given
any isolating neighbourhood V ⊂ R2, we can inscribe a circle C with center x̂
with small enough radius such that C ⊂ V and define IndΦ(x̂) := γ(−Φ, C) =
Deg(−Φ, C, 0) = Deg(−Φ, V, 0). From Proposition 1.30 and Definition 1.12 we
see that this definition is independent of the choice of C. A direct proof of the
equivalence of the index defined via the rotation and the index defined via the
degree is given in [6, p. 30]. It should be kept in mind that the rotation is an
even function, i.e., γ(−Φ, C) = γ(Φ, C), and therefore IndΦ(x̂) = γ(Φ, C) holds.

2 Index Formulas

In the following we will use some geometrical arguments in order to derive results
on the rotation of a plane vector field. It will often be convenient to make a
change to polar coordinates. We will study a differential equation of the form(

ẋ

ẏ

)
= ẋ = Φ(x) =

(
P (x, y)
Q(x, y)

)
, (2.1)

with P and Q continuously differentiable. By substituting r =
√

x2 + y2,
tan φ = y

x and applying the chain rule we arrive at

rṙ = xẋ + yẏ = xP + yQ,

φ̇ = 1
1 + ( y

x )2
ẏx − ẋy

x2 = Qx − Py

r2 .
(2.2)

2.1 Phase Portrait near an Equilibrium

The material covered in this chapter can be found in [7, pp. 17–18].
Consider an isolated equilibrium x̂ of (2.1). Then there exists an isolating
neighbourhood W such that ∂W is a parametrized simple closed curve. A
characteristic orbit (of an equilibrium x̂) is an orbit x(t) of some point x ̸=
x̂ ∈ W tending to x̂ in a fixed direction, i.e., lim

t→∞
∥x(t) − x̂∥ = 0 (respectively

lim
t→−∞

∥x(t) − x̂∥ = 0) and the limit

lim
t→∞

x(t) − x̂
∥x(t) − x̂∥

(
respectively lim

t→−∞

x(t) − x̂
∥x(t) − x̂∥

)
exists, and the orbit transversely intersects ∂W at a unique point p ∈ ∂W.

We say that x̂ has the finite sectorial decomposition property if there exists an
isolating neighbourhood V of x̂ such that C := ∂V is a parametrized simple
closed curve and one of the following conditions is satisfied:
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ci+1
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pi
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Figure 8: Sector Si.

(i) If C is a periodic orbit, i.e., there exists T ∈ R such that x(T ) = x ∈ C,

and all orbits in V are periodic, we say that x̂ is a center.

(ii) If at all points of C the vector field points inward, the ω-limit of all
x ̸= x̂ ∈ V only consists of x̂, i.e., ω(x) = {x̂}, and there exists t < 0 such
that x(t) ∩ C ̸= ∅. Then we say that x̂ is an attracting spiral/node.

(iii) If at all points of C the vector field points outward, the α-limit of all
x ̸= x̂ ∈ V only consists of x̂, i.e., α(x) = {x̂}, and there exists t > 0 such
that x(t) ∩ C ̸= ∅. Then we say that x̂ is a repelling spiral/node.

(iv) We say that x̂ has a non-trivial finite sectorial decomposition if we are
not in one of the cases (i), (ii) or (iii) above and if there is a finite
number of characteristic orbits c0, ..., cn−1 each intersecting C at a unique
point p0, ..., pn−1 (ordered in such a way that the order induced by the
parametrization of C is respected) such that within one sector Si (the
compact region bounded by pi, ci, x̂, ci+1, pi+1 and the piece of C between
pi and pi+1, where c0=cn, see Figure 8) there is one of the following
situations:

(a) If at all points of the subarc pipi+1 ⊂ C the vector field points inward
(outward) and for all x ̸= x̂ ∈ Si ω(x) = {x̂} (α(x) = {x̂}) and there
exists t < 0 (t > 0) such that x(t) ∩ C ̸= ∅, then we say that Si is
an attracting (a repelling) parabolic sector. The phase portrait in
a repelling parabolic sector is shown in Figure 9a. In the attracting
case one may think of the same picture with reversed flow direction.

(b) If there is a point p̃ ∈ pipi+1 ⊂ C such that at all p ̸= p̃ ∈ pip̃ the
flow points inwards (outwards) while at all p ̸= p̃ ∈ p̃pi+1 the flow
points outwards (inwards), the flow at p̃ is tangent to C and p̃(t) /∈ Si
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(b) Hyperbolic sector
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p̃

(c) Elliptic sector

Figure 9: Different flows in a sector.

for all t ̸= 0, while for all x ∈ int Si there are t1 < 0 < t2 such that
x(ti) ∩ C ̸= ∅ for i = 1, 2, then we say that Si is a hyperbolic sector.
An example is shown in Figure 9b.

(c) If there exists a point p̃ ∈ pipi+1 such that α(p̃) = ω(p̃) = {x̂}
and p̃(t) ⊂ Si for all t ∈ R; At all points p ̸= p̃ ∈ pip̃ the flow
points inwards, ω(p) = {x̂} and p(t) ⊂ int Si for all t > 0 while
at all p ̸= p̃ ∈ p̃pi+1 the flow points outwards, α(p) = {x̂} and
p(t) ⊂ int Si for all t < 0; Define F1 :=

⋃
p∈pip̃{p(t) : t ≥ 0} and

F2 :=
⋃

p∈p̃pi+1
{p(t) : t ≤ 0}, then for all x ∈ Si \ (F1 ∪ F2) it holds

that ω(x) = α(x) = x̂, then we say that Si is an elliptic sector, see
Figure 9c for an example. The same is also true for reversed flow
directions.

In the cases (i)-(iii) we speak of a trivial sectorial decomposition, while case (iv)
is referred to as non-trivial sectorial decomposition. The definition of sectors
used here is not the most general, for an extensive treatment one may see [2,
Chapters 7-8].

2.2 Bendixson’s Index Formula

Assume now that x̂ has a non-trivial finite sectorial decomposition property and
that the characteristic orbits c0, ..., cn−1 are given by straight lines and divide
C, which is assumed to be the boundary of a circular isolating neighbourhood,
into n ≥ 1 equally large parts.
Let pipi+1 be a subarc of C corresponding to a repelling parabolic sector. Since
the characteristic orbits are straight lines and the subarcs between two orbits
on C are of the same length, it holds that θ(pi, pi+1) = 2π

n . A possible angle
function on this arc is given by α(p) = θ(e1, pi) + θ(pi, Φ(p)), where e1 is the
first unit vector. Since we have chosen c0, ..., cn−1 as straight lines we have for
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all k = 0, ..., n − 1 Φ(pk) = c(pk)pk for some c(pk) > 0 and therefore

γ(Φ, pipi+1) = 1
2π

[α(pi+1) − α(pi)] = 1
2π

θ(pi, c(pi+1)pi+1) = 1
n

. (2.3)

If we reverse the flow direction, i.e., we look at the vector field −Φ instead of Φ,
a repelling parabolic sector becomes attracting. The rotation is an even function
and therefore we have for an attracting, as well as for a repelling, parabolic
sector γ(Ψ, pipi+1) = γ(−Ψ, pipi+1) = 1

n . In what follows, we therefore will not
distinguish between these two cases.
Now consider a hyperbolic sector, as shown in Figure 9b. If the flow direction is
reversed, we can again use the fact that the rotation is an even function. An
angle function for p ∈ pipi+1 is given by α(p) = θ(e1, −pi) + θ(−pi, Φ(p)),
which is leading us to

γ(Φ, pipi+1) = 1
2π

θ(−pi, c(pi+1)pi+1) = 1
2π

[
−
(

π − 2π

n

)]
= −1

2 + 1
n

. (2.4)

Given an elliptic sector, we can use the same angle function as in the hyperbolic
case to arrive at

γ(Φ, pipi+1) = 1
2π

θ(−pi, c(pi+1)pi+1) = 1
2π

[(
π + 2π

n

)]
= 1

2 + 1
n

. (2.5)

Define E as the number of elliptic sectors, H as the number of hyperbolic sectors
and P as the number of parabolic sectors. Under the above assumptions we have
for the vector field Φ that n = P + H + E. Combining now the results of (2.3),
(2.4), (2.5) and using the additive definition of the rotation in (1.18) we arrive at

γ(Φ, C) =
n−1∑
i=0

γ(Φ, pipi+1) =
P∑

j=1

1
n

+
H∑

k=1

(
− 1

2 + 1
n

)
+

E∑
l=1

(1
2 + 1

n

)
= P + H + E

n
+ E − H

2 = 1 + E − H

2 .

(2.6)

We can also include the cases (i)-(iii) of the finite sectorial decomposition property.
If x̂ is a node (a small neighbourhood of the equilibrium does not contain spiraling
solutions), then it holds that E = H = 0 and we define P = 1. It can be shown
that the index of a node is +1, which also fits (2.6). If there are spiraling
solutions (center or spiral) then we say by definition that E = H = P = 0. Since
the index of a center or a spiral is also +1, we are done.
This is a special case of an old result of Bendixson. The ideas in the derivation
are taken from [7, Chapter 6.7]. We have made some simplifications to avoid
technical difficulties, but the formula holds in a more general way, as shown in
[3].
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Theorem 2.1 (Bendixson’s Index Formula). Let x̂ ∈ R2 be an isolated equi-
librium of the vector field Φ having the finite sectorial decomposition property.
Let E, H and P denote the number of elliptic, hyperbolic and parabolic sectors
respectively. Then IndΦ(x̂) = 1 + E−H

2 .

2.3 Geometric Index Formula for Biological Systems

Let us consider a differential equation ẋ = Φ(x) on R2
+. Assume that R2

+ is
forward invariant, i.e., (1.5) holds, and that x̂ ∈ ∂R2

+ is an isolated, saturated
equilibrium which has the finite sectorial decomposition property. Similar to
Theorem 2.1, we want to draw conclusions on Bd_IndΦ(x̂), by examining the
phase portrait of the differential equation near x̂. Since we are interested in the
boundary index, we restrict our attention to the sectorial decomposition within
the non-negative orthant R2

+. The main tools we use are Theorem 1.22 and ho-
motopic transformations. In the current chapter the homotopic transformations
(which are non-trivial) are not stated explicitly, rather we will content ourselves
with a geometric discussion.

2.3.1 Preparatory steps

Since x̂ has the finite sectorial decomposition property, there exists an isolating
neighbourhood V, such that ∂V is a simple closed curve. Define V + := V ∩ R2

+.
The forward invariance assumption excludes centers and spirals. Assume now
that there is at least one characteristic orbit in V +.

When it comes to the boundary index, we are only interested in the local be-
haviour of the vector field. We therefore compactify V +, and the flow there, with a
suitable homotopy to the simplex S2. The characteristic orbits, c0, ..., cn−1 ⊂ R2

+

with n ≥ 1, will then lead to, or come from, isolated equilibria p0, ..., pn−1

respectively, on the boundary of S2, see Figure 10. Moreover, we can choose the
homotopy in such a way that the external eigenvalue at each equilibrium pi is
nonzero and therefore Bd_IndΦ(pi) ∈ {−1, 0, +1}. In addition, the edge AB,
which contains the equilibria pi, is invariant under the flow.
Now the special case of Theorem 1.22 on the simplex is applicable. The flow
direction of the characteristic orbit ci determines if the equilibrium pi is saturated
or not. This allows us to decide, whether we have to include pi in the index
sum. Since the index is invariant under homotopies, the transformations did not
change it and all the results we obtain for x̂ and the compactified flow will also
hold for the equilibrium in the original system.
Next we will show, that we can w.l.o.g. assume that the whole boundary of the
simplex is invariant, i.e., forward and backward in time. Assume we have at least
two characteristic orbits, i.e., c0, ..., cn−1 with n ≥ 2. If c0 and cn−1 coincide
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(a) Flow in the isolating neighbourhood.
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B
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pn−2
pn−1

(b) Flow after
compactification.

Figure 10: Homotopic compactification onto the simplex.

with the boundaries x̂A and x̂B, we are done. Assume at least one of them does
not. We deform the orbits c0 and cn−1 via a homotopy, such that they coincide
with the boundary x̂A and x̂B, respectively.
Since we want to apply Theorem 1.22, it is necessary to determine the boundary
index of the equilibria p0, ..., pn−1. Together with the result on the boundary
index sum, it is then possible to find out the boundary index of x̂. To this end,
we have to make sure that the index sum of all the equilibria, is invariant under
the homotopic transformations.
If c0 and cn−1 lead to (or come from) A and B, we may deform these orbits such
that they overlap with x̂A and x̂B, respectively. This has no influence on the
equilibrium structure and therefore does not alter the index sum. Now assume
that at least one of the two orbits does not lead to (or come from) one of the
corners A or B, w.l.o.g. consider A and c0. Then the corner A is no equilibrium
and the flow direction on AB is from A to p0, by forward invariance. After
applying an appropriate homotopy, p0 and pn−1 coincide with A and B, which
are now equilibria. Moreover the orbits c0 and cn−1 coincide with the edges x̂A

and x̂B, respectively.
These corner equilibria play an important role in the following analysis, since
they have two external eigenvalues. This implies that they are not saturated
(ns) as soon as one of these eigenvalues is positive. The deformation did not
change the behaviour of the vector field near all the other equilibria. So we only
have to check that the boundary index sum of p0 and pn−1 is invariant under
the applied homotopies. In Figure 11 we show this for p0, the second case is
completely analogous.
Let us now consider the case n = 1, i.e., only one characteristic orbit c0. We split
this orbit into two, such that a parabolic sector P appears. We will treat this
sort of transition in more detail, but in reversed order, in the proof of Theorem
2.4 and Figure 14. As before we move the two emerged orbits to the boundary of
the simplex and observe in Figure 12, that this does not change the index sum.
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x̂ A
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(a) Case 1

x̂ A

B

0

h

x̂ A
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B

(b) Case 2

x̂ A

B

ns

h

x̂ A
ns

B

(c) Case 3

Figure 11: In Case 1, the equilibrium p0 is saturated before and after applying
the homotopy h. The boundary index remains constant and equals +1 since the
equilibrium is locally asymptotically stable.
Case 2 shows that before the deformation by h, p0 is saturated, but
Bd_Ind(p0) = 0 since a small perturbation lets this equilibrium disappear.
Afterwards it is not saturated (ns), since the flow on p0B points away from p0
and therefore p0 does not contribute to the index sum.
In Case 3, the equilibrium is not saturated in all possible configurations, since the
flow on c0 points from p0 to x̂. We omitted the flow direction on p0B, because
this has no effect on the justification above.
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(a) Case 4
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P +1
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P

A
+1

B
ns

(b) Case 5

Figure 12: In Case 4, we begin with a non-saturated equilibrium p0. After
splitting the characteristic orbit c0, which connects x̂ and p0, a parabolic sector
P appears. We are left with two non-saturated equilibria at the corners, which
also do not contribute to the boundary index sum.
Case 5 covers the same steps as Case 4, but this time p0 is saturated. After
the split, there are two saturated equilibria p′ and p′′ with Bd_Ind(p′) = +1
and Bd_Ind(p′′) = 0. When moved to the corners, p′′ is not saturated anymore
and does not contribute to the index sum. The second equilibrium p′ remains
saturated with index +1 and therefore the overall index sum is again constant.
The same can, of course, be done with reversed flow direction on the arc AB.

30



2.3.2 Boundary Index Formula

We have now shown that, after applying suitable homotopies, we can work in
the framework of a simplex with invariant boundary. Since the deformations
did not change the index of x̂, all the results we obtain for the system on the
simplex remain valid in the initial case.

Definition 2.2 (Inward extremal characteristic orbits). Let ẋ = Φ(x) be an
autonomous differential equation on R2

+, such that R2
+ is forward invariant.

Moreover, let x̂ ∈ ∂R2
+ be an isolated equilibrium with isolating neighbourhood V

and characteristic orbits c0, ..., cn−1 ⊂ V +. Then, the number of inward extremal
characteristic orbits, η ∈ {0, 1, 2}, is the number of flows on the characteristic
orbits c0 and cn−1 pointing towards x̂.

If n = 1, we define η :=

2 if c0 points inwards.

0 if c0 points outwards.

Remark 2.3. In Figure 10a we see that η = 1. An Example for η = 2 and η = 0
is Figure 12a and Figure 12b, respectively.

Theorem 2.4 (Boundary Index Formula). Let ẋ = Φ(x) be an autonomous
differential equation on R2

+. Assume that Φ is continuously differentiable and
leaves R2

+ forward invariant. Consider an isolated, saturated equilibrium x̂ ∈ ∂R2
+

having the finite sectorial decomposition property and with isolating neighbourhood
V . Assume that there exists at least one characteristic orbit c0 ⊂ V +. Let E, H

and P be the number of elliptic, hyperbolic and parabolic sectors contained in
V +, respectively. Then Bd_IndΦ(x̂) = η

2 + E−H
2 holds.

Remark 2.5. One may drop the assumption that the equilibrium is saturated. We
include it in the boundary index formula, since we heavily exploit Theorem 1.22
in the proof. However, if we consider a non-saturated equilibrium it holds that
there is at least one positive eigenvalue of A (the external part of the Jacobian).
In particular it follows from the Perron-Frobenius Theorem that the spectral
bound s(A) > 0 is the leading eigenvalue with a corresponding non-negative
eigenvector v ∈ R2

+. So we either get one characteristic orbit (a parabolic sector)
or two characteristic orbits (spanning either a parabolic or a hyperbolic sector)
as shown in Figure 13a, Figure 13b and Figure 13c respectively. All these cases
fit the boundary index formula, since the boundary index of a non-saturated
equilibrium is 0.

The assumption on the existence of at least one characteristic orbit in V + is not
really restricting, since we can consider the remaining case separately. Assume
that there is no characteristic orbit in V +. The forward invariance of R2

+ ensures
that V + is neither part of the interior of a hyperbolic sector nor of the interior
of an elliptic sector. So it is part of a parabolic sector. It can be shown that if
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Figure 13: Behaviour near a non-saturated equilibrium.

it is attracting, the boundary index of x̂ is +1. If it is repelling, the boundary
index of x̂ equals 0.

Remark 2.6. Since we assume that R2
+ is forward invariant, x̂ is neither a center

nor a spiral. It can be shown that the boundary index of an attracting (repelling)
node is +1 (0), it holds that E = H = 0 and we define η = 2 (η = 0), which fits
the boundary index formula. It remains to prove the boundary index formula in
the case of a non-trivial sectorial decomposition.
The main steps in the proof will be the following: As the formula suggests, we
show that we can neglect parabolic sectors via homotopic deformations. Next,
we perform an induction step, which merges an elliptic and a hyperbolic sector
into one characteristic orbit. Finally, the statement is verified by checking the
induction hypothesis for each value of η separately. The key observation in all
these steps is that this can be done without changing the index sum of the
saturated equilibria. Therefore we are able to apply Theorem 1.22. All the
characteristic orbits ci in the figures of the proof are simplistically represented
by straight lines. Since we are only interested in the types of sectors, this does
not affect the argument.

Proof. Consider a non-trivial sectorial decomposition. We have shown above
that we can w.l.o.g. assume that the vector field is given on the simplex S2

with invariant boundary. A parabolic sector occurs if and only if two adjacent
characteristic orbits ci and ci+1 have the same flow direction. In this case we can
apply a homotopy h, to merge this parabolic sector to one single characteristic
orbit c̃. Therefore also the equilibria pi and pi+1 on the edge AB will be replaced
by a single equilibrium p̃.

In Figure 14, all possible flow configurations are shown. We choose the homotopy
h in such a way that the equilibria in all the remaining sectors are not affected.
All possible flows have in common that the index sum is constant when applying
h, i.e., Bd_IndΦ(pi) + Bd_IndΦ(pi+1) = Bd_IndΦ(p̃). If pi and pi+1 are not
saturated, then neither is p̃ and consequently does not contribute to the index
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Figure 14: Merging a parabolic sector.
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Figure 15: Merging a parabolic sector on the boundary.

sum. As mentioned above, the boundary equilibria have to be considered
separately since they have two external eigenvalues.
In Figure 15, the situation on the boundary is shown. Again we observe that
Bd_IndΦ(p0) + Bd_IndΦ(p1) = Bd_IndΦ(p̃), (here non-saturated equilibria
are assigned with Bd_Ind = 0). If the flow on c0 and c1 is reversed, i.e., p0 and
p1 are not saturated, then p̃ is also not saturated and the index sum is constant
under h. Therefore this procedure has no influence on the index of x̂, and we
can get rid of all parabolic sectors, until we are left with a single characteristic
orbit or a phase portrait with only hyperbolic and elliptic sectors.
We will perform an induction, therefore define Eold and Hold as the number of
elliptic and hyperbolic sectors before the induction step respectively. After this
step we will denote these numbers by Enew and Hnew. Let now Eold, Hold ≥ 1,

meaning there are n ≥ 3 characteristic orbits. Since we have already excluded
parabolic sectors (by homotopic deformations), there exists a neighbouring pair
consisting of an elliptic and a hyperbolic sector, as shown in Figure 16.
In Figure 16a, both sectors are bounded by the characteristic orbits cE , cH (lead-
ing to the saturated equilibria of the elliptic and hyperbolic sector, respectively)
and the line pEpH . Since pE is saturated and belongs to the elliptic sector,
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Figure 16: Merging hyperbolic and elliptic sectors.

the flow on pEpH has to point away from it. The saturated equilibrium pH of
the hyperbolic sector must be attracting on this line. As a consequence, the
non-saturated equilibrium between pE and pH has internal eigenvalue 0 and
can be removed via a small perturbation h. The qualitative behaviour around
the other two equilibria pE and pH does not change. Therefore also their index
remains constant and we have created a parabolic sector. However, as we have
shown above, we can merge this parabolic sector into a single orbit, without
changing the index sum.
Consider now a flow as indicated in Figure 16b. Here, the equilibrium between
pE and pH is saturated. Anyway, it has boundary index zero, since it can again
be removed via a small perturbation. A parabolic sector remains, but as before
we can merge it into a single characteristic orbit without changing the index
sum.
Since the deformations did not change the index sum it holds by Theorem 1.22,
that the index of x̂ is the same before and after the homotopic deformations, i.e.,
Bd_IndΦ(x̂) = Bd_Indh(Φ)(x̂). We assumed that we had n ≥ 3 characteristic
orbits and we have merged three of them into one. Consequently, there are n − 2
orbits left and Enew = Eold − 1 and Hnew = Hold − 1 holds. We can use the
induction hypothesis on the transformed system to get

Bd_IndΦ(x̂) = Bd_Indh(Φ)(x̂)

= η

2 + Enew − Hnew

2 = η

2 + Eold − Hold

2 .

Until now we have shown that, given any flow in a non-negative isolated neigh-
bourhood of the saturated boundary equilibrium x̂ with n ≥ 3 characteristic
orbits, we can first merge all parabolic sectors together. If, after that, we have
H, E ≥ 1, we must have a neighbouring pair of sectors, one of hyperbolic type
and one of elliptic type. We can also merge these two sectors. If we continue
in this manner, we will end up with n = 1 or n = 2 characteristic orbits, only
hyperbolic or only elliptic sectors. It remains to show the statement for these
four basic scenarios. We have to consider three different cases, depending on the
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number of inward extremal orbits η.
Let us start with the case η = 2. In the scenarios n = 1 and n = 2, there is one
single characteristic orbit or one parabolic sector, and therefore E = H = 0.

As shown in Figure 12, n = 1 can be transformed into the case n = 2. Assume
now we have already transformed the system, such that the boundary of S2

is invariant. Since η = 2, the two corner equilibria p0 and p1 are both not
saturated and x̂ is the only saturated equilibrium on the simplex. According to
Theorem 1.22, it must hold that the index sum of all the saturated equilibria
equals +1 and therefore Bd_IndΦ(x̂) = +1 = η

2 . We have now shown the cases
n = 1 and n = 2.

Assume that there are only elliptic sectors, i.e., H = P = 0. An elliptic sector
can occur if and only if two adjacent characteristic orbits, ci and ci+1, have
different flow direction and the saturated equilibrium on AB, belonging to this
sector, is repelling on AB (restricted to this sector). Since we assume that η = 2,

c0 and cn−1 have the same flow direction (inward) and n = 2k + 1 for some
k ≥ 1 ∈ N must hold. Consequently there are E = n − 1 elliptic sectors. Since
c0 and cn−1 both lead to non-saturated equilibria, we have n−1

2 = k saturated
equilibria pi i = 1, 3, ..., 2k − 1 with Bd_IndΦ(pi) = −1 (repelling on AB). An
application of Theorem 1.22 yields

Bd_IndΦ(x̂) = 1 −
k∑

i=1
Bd_IndΦ(p2i−1) = 1 + n − 1

2 = 2
2 + E

2 = η

2 + E

2 .

Assume now that we only have hyperbolic sectors, i.e., E = P = 0. Such a sector
can occur if and only if two adjacent orbits have different flow direction and
the saturated equilibrium on AB, belonging to this sector, is attracting on AB

(restricted to this sector). Again we have k = n−1
2 saturated equilibria pi. This

time there are H = n − 1 hyperbolic sectors and Bd_IndΦ(pi) = +1 (attracting
on AB), and therefore by Theorem 1.22 we conclude that

Bd_IndΦ(x̂) = 1 −
k∑

i=1
Bd_IndΦ(p2i−1) = 1 − n − 1

2 = 2
2 − H

2 = η

2 − H

2 .

Let η = 0. As in the case η = 2, we can transform the case n = 1 and
assume w.l.o.g that we have n = 2 characteristic orbits on the boundary of
the simplex. Again these orbits bound a parabolic sector, i.e., E = H = 0.
Since η = 0, depending on the flow on p0p1, one of the corner equilibria p0

and p1 is saturated with Bd_Ind = +1 and the other one is not saturated.
Assume w.l.o.g. that p0 is saturated. From Theorem 1.22 it follows that
Bd_IndΦ(x̂) = 1 − Bd_IndΦ(p0) = 0 = η

2 .

From η = 0, it follows that c0 and cn−1 have the same flow direction (outward).
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As above, there must be n = 2k + 1 characteristic orbits to have only elliptic, or
only hyperbolic sectors. Assume we have only elliptic sectors, i.e., E = n − 1 and
P = H = 0. Therefore, the flow on AB has to be repelling for all the equilibria
with inward flow from their characteristic orbit. This implies that the two corner
equilibria p0 and pn−1 are not saturated (even if the flow on c0 and cn−1 points
in their direction). Consequently there are n−1

2 − 1 = k − 1 saturated equilibria
pi, i = 2, 4, ..., n − 3 with Bd_IndΦ(pi) = −1. Theorem 1.22 implies

Bd_IndΦ(x̂) = 1 −
k−1∑
i=1

Bd_IndΦ(p2i) = 1 + 2k − 2
2 = E

2 = η

2 + E

2 .

If we have only hyperbolic orbits, i.e., H = n − 1 and P = E = 0, then the
flow on AB has to be attracting for all the equilibria with inward flow on their
characteristic orbit. Therefore the two corner equilibria are saturated with
boundary index +1 in this case. The same is true for all the other saturated
equilibria and we have n−1

2 + 1 = k + 1 saturated equilibria pi, i = 0, 2, ..., n − 1
with Bd_IndΦ(pi) = +1 and therefore

Bd_IndΦ(x̂) = 1 −
k∑

i=0
Bd_IndΦ(p2i) = 1 − 2k + 2

2 = H

2 = η

2 + H

2 .

We conclude with the case η = 1. It follows from Definition 2.2, that one
characteristic orbit, i.e., n = 1, is not possible. Consider the case n = 2,

where we have either H = 1 or E = 1. Assume that H = 1 and w.l.o.g.
that the corner equilibrium p0 is saturated, i.e., Bd_IndΦ(p0) = +1. Then
Bd_IndΦ(x̂) = 1 − Bd_IndΦ(p0) = 0 = η

2 − H
2 . If E = 1, then both corner

equilibria are not saturated and it must hold that Bd_IndΦ(x̂) = 1 = η
2 + E

2 .

Consider the case of elliptic sectors only, i.e., P = H = 0. Since we have different
flow directions on c0 and cn−1 there must be an even number of characteristic
orbits n = 2k for some k ≥ 1 ∈ N. This leads to E = n − 1 elliptic sectors
and again the flows of two adjacent orbits have to point in opposing directions.
Assume w.l.o.g. that the flow on c0 points away from x̂. However, since there are
only elliptic sectors, p0 is not saturated and there are n

2 − 1 saturated equilibria
pi, i = 2, 4, ..., n − 2, with boundary index −1. Again we use Theorem 1.22 to
arrive at

Bd_IndΦ(x̂) = 1 −
k−1∑
i=1

Bd_IndΦ(p2i) = 1 + n − 2
2 = 1

2 + n − 1
2 = η

2 + E

2 .

It remains to show the case of hyperbolic sectors only, i.e., P = E = 0 and all
saturated equilibria have boundary index +1. Again it must hold that n = 2k
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and H = n − 1. Assume w.l.o.g. that p0 is saturated, then there are n
2 saturated

equilibria pi, i = 0, 2, ..., n − 2, leading us to

Bd_IndΦ(x̂) = 1 −
k−1∑
i=0

Bd_IndΦ(p2i) = 1 − n

2 = 1
2 − n − 1

2 = η

2 − H

2 .

Remark 2.7. Of course one can use the same ideas to give an alternative proof of
Theorem 2.1. However, there are minor simplifications that can be made in the
arguments. We do not have to distinguish between different values of η, since we
are then looking at a complete open neighbourhood of an equilibrium. Therefore
we cannot compactify to the simplex, but have to compactify the flow to the
unit disk with invariant boundary. With combinatorial considerations on the
number of characteristic orbits, we can then verify the cases of only hyperbolic
and elliptic sectors. The arguments in the induction step in the case of E ≥ 1
and H ≥ 1 remain unchanged, as well as the merging of a parabolic sector.
Finally, we only have to consider the basic cases of one and two characteristic
orbits separately.

Example 2.8. Consider the degenerate Lotka-Volterra system

ẋ = x(ax + by)

ẏ = y(cx + dy)
(2.7)

where a, b, c, d ∈ R. The Jacobian of (2.7) at the origin is given by J = ( 0 0
0 0 )

and therefore has a double zero eigenvalue. As a consequence the origin is a
saturated equilibrium. Assume that a ̸= 0 ̸= d, otherwise the origin is not
isolated. An equilibrium of (2.7), not located on one of the axes, must satisfy
ax + by = 0 = cx + dy, which is equivalent to ad = bc. In this case, there is a
line of equilibria through the origin with slope k = − a

b . So let ad ̸= bc, such that
Theorem 2.4 is applicable.
The phase portrait of the system depends on the choice of the parameters, we
show here only some cases. Let a, d > 0 and b, c < 0, then the phase portraits
are shown in Figure 17a and 17b for the cases ad > bc and ad < bc, respectively.
In Figure 17a we see two parabolic sectors and in Figure 17b there are two
hyperbolic sectors. At the same time the flow on c0 and c2 points away from
the origin and therefore η = 0. According to Theorem 2.4 the boundary indices
of the origin in Figure 17a and 17b are 0 and −1, respectively.
Consider now the case a, d < 0 and b, c > 0. If in addition ad > bc holds, then
we observe from Figure 17c that there are two parabolic sectors and η = 2. We
infer from the boundary index formula that Bd_Ind(0) = +1. In the subcase of
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Figure 17: Phase portraits of (2.7). In (a) and (b) we have a, d > 0 and b, c < 0.
In (c) and (d) we have a, d < 0 and b, c > 0.

ad < bc, shown in Figure 17d, we have two hyperbolic sectors with η = 2 and
therefore boundary index 0.

2.4 An analytical Approach

As shown in Example 2.8, we can easily determine the boundary index of an
isolated and saturated equilibrium with the help of Theorem 2.4. However, it
is necessary to know the phase portrait in a neighbourhood of the equilibrium.
This is sometimes a quite complicated task and we are therefore interested to
develop results where this is not needed. In a first step we will look at a simple
class of vector fields - homogeneous systems. In particular, these vector fields are
holomorphic and in [13, Chapter 10] we see that this implies that homogeneous
systems have the finite sectorial decomposition property.
After treating this special case, the results are generalized to non-homogeneous
fields with additional regularity assumptions on the vector fields under consider-
ation. Similar conclusions were already made in [12] for the rotation. We will
employ their ideas to derive further results on the boundary index.

2.4.1 Homogeneous Systems

Definition 2.9 (Homogeneous polynomial vector field of degree m). Consider a
vector field of the form (2.1). We say that Φ is a homogeneous polynomial vector
field of degree m if P and Q are homogeneous polynomials of degree m, i.e.,

P (x, y) =
m∑

i=0
ai

m−ix
m−iyi, with ai

m−i ∈ R,

Q(x, y) =
m∑

i=0
bi

m−ix
m−iyi, with bi

m−i ∈ R.

(2.8)

With a change to polar coordinates and (2.2), we compute for a homogeneous
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Figure 18: Detecting hyperbolic and elliptic sectors

polynomial vector field

ṙ = rm
m∑

i=0
[ai

m−i cos(φ) + bi
m−i sin(φ)] cosm−i(φ) sini(φ)

φ̇ = rm−1
m∑

i=0
[bi

m−i cos(φ) − ai
m−i sin(φ)] cosm−i(φ) sini(φ).

(2.9)

We are only interested in forward invariant systems. For homogeneous vector
fields this is guaranteed if we assume that am

0 ≥ 0 and b0
m ≥ 0. The y-axis is

invariant if and only if φ̇ = 0 for all (r, π
2 ) with r > 0. From (2.9) it follows

that this is equivalent to am
0 = 0. Let φ ̸= π

2 then φ̇ = 0 ⇐⇒
∑m

i=0[bi
m−i −

ai
m−i tan(φ)] tani(φ) = 0, which is independent of the radius r. Therefore the

characteristic orbits, which separate two adjacent sectors are given by straight
lines. When it comes to the boundary index, we are only interested in the
behaviour in the first quadrant. Therefore the characteristic orbits cj are given
by straight lines through the origin with angle φj = arctan(x̃j), where x̃j are
the non-negative solutions of

Z(x) =
m∑

i=0
bi

m−ix
i − ai

m−ix
i+1 = 0. (2.10)

The standing assumption is that the origin is isolated, consequently ṙ(r, φj) ̸= 0
for all r > 0 small enough. Since cos(φ) > 0 for all 0 ≤ φ < π

2 , the flow direction
on cj is given by the sign of Y (x̃j), where

Y (x) =
m∑

i=0
ai

m−ix
i + bi

m−ix
i+1. (2.11)

In the case of am
0 = 0, the flow direction on the invariant y-axis is determined

by sgn bm
0 .

In order to employ Theorem 2.4, it is necessary to detect hyperbolic and elliptic
sectors. We do so by looking at the zeroes of P (x, y) and the behaviour of
Q(x, y), from (2.9), at these points. An elliptic or a hyperbolic orbit, as shown
in Figure 18, has one point (x̃, ỹ) where P (x̃, ỹ) = 0. Since P is homogeneous,
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Figure 19: Problematic Cases

there is in fact a line of zeroes through the origin in this sector with slope ỹ
x̃ . It

holds that, P (x, y) = xmP (1, y
x ), and therefore we may as well look for zeroes of

the polynomial in k, P (1, k) =
∑m

i=0 ai
m−ik

i. However, we only want to detect
zeroes in R2

+, so we restrict ourselves to non-negative solutions of P (1, k) = 0.

The same is true for the homogeneous polynomial Q. Of course, we lose the
possible solution x = 0, but this is not of interest for us. Indeed, if the y-axis
is invariant (am

0 = 0), then x = 0 is not part of a hyperbolic or elliptic orbit.
If there is an inward flow on the y-axis (am

0 > 0), then this sector is neglected
since we are only interested in the behaviour of the flow in the first sector which
is completely contained in intR2

+.

Let k̃ be a zero of P (1, k) in an elliptic sector as shown in Figure 18a, then either
P (1, k) was positive before and negative afterwards (left), i.e., P (1, k̃ − ϵ) > 0
and P (1, k̃ + ϵ) < 0, while Q(1, k̃) > 0. Or the other way round Figure 18a
(right), i.e., P (1, k̃ − ϵ) < 0, P (1, k̃ + ϵ) > 0 and Q(1, k̃) < 0.

Let P (1, k̃) = 0 in a hyperbolic sector. In the first case, Figure 18b (left), we
observe P (1, k̃ − ϵ) > 0 and P (1, k̃ + ϵ) < 0, while Q(1, k̃) < 0. In Figure 18b
(right) we have P (1, k̃−ϵ) < 0 and P (1, k̃+ϵ) > 0, while Q(1, k̃) > 0. We want to
count +1 and −1 for each elliptic and hyperbolic sector, respectively. Together
with the observations above this is done by

s∑
i=1

1
2 sgn Q(1, ki)[sgn P (1, ki − ϵ) − sgn P (1, ki + ϵ)], (2.12)

where we sum over all zeroes k1, ..., ks of P (1, k).
However, there are two cases which are not included in (2.12). A problem may
arise in the sector which contains the positive y-axis, if the positive y-axis is
invariant. There is also a zero k̃ of P (1, k) in Figure 19a, with P (1, k̃ − ϵ) > 0,

P (1, k̃ + ϵ) < 0 and Q(1, k̃) > 0 and therefore this parabolic sector would falsely
be counted as an elliptic sector. The second problem could be a hyperbolic
sector, next to the positive y-axis, as shown in Figure 19b. In this sector there
is no zero of P (1, k) and consequently we would overlook this hyperbolic sector.
Anyway, if one of the two problematic cases above appears, (2.12) is almost
correct, i.e., E − H + 1 =

∑
i

1
2 sgn Q(1, ki)[sgn P (1, ki − ϵ) − sgn P (1, ki + ϵ)].
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Definition 2.10 (Ecological differential equation). We say that a differential
equation ẋ = Φ(x) is ecological, if the non-negative x-axis and the non-negative
y-axis are invariant.

Consider the case of an ecological differential equation, which is, in the framework
of homogeneous systems, equivalent to am

0 = 0 = b0
m. From P (x, 0) = a0

mxm

and Q(0, y) = bm
0 ym we see that a0

m and bm
0 determine the flow direction on the

positive x- and y-axis, respectively. It follows, that η = 1 − sgn a0
m+sgn bm

0
2 , where

we assume that a0
m ≠ 0 ̸= bm

0 (otherwise the origin is not isolated). In view of
Theorem 2.4, we define

ΩP (0) := 1
2 − sgn a0

m + sgn bm
0

4

+
s∑

i=1

1
4 sgn Q(1, ki)[sgn P (1, ki − ϵ) − sgn P (1, ki + ϵ)],

(2.13)

where k1, ..., ks are all the positive zeroes of P (1, k). With the two exceptional
cases from above and the fact that the boundary index is an integer, we can now
formulate a Corollary of Theorem 2.4.

Corollary 2.11. Let ẋ = Φ(x) be an ecological, homogeneous polynomial
differential equation and Φ of the form (2.9). Let the origin be an isolated,
saturated equilibrium of Φ. Then

Bd_IndΦ(0) =

ΩP (0) if ΩP (0) ∈ Z

ΩP (0) − 1
2 else.

Remark 2.12. The same can be done (with minor adjustments) if we consider
the zeroes of Q(1, k). In this case the problems from above may arise in the
sector which contains the x-axis. Instead of formula (2.13), we then get

ΩQ(0) = 1
2 − sgn a0

m + sgn bm
0

4

+
r∑

i=1

1
4 sgn P (1, ki)[sgn Q(1, ki + ϵ) − sgn Q(1, ki − ϵ)],

(2.14)

where k1, ..., kr are the positive zeroes of Q(1, k). Corollary 2.11 may as well be
formulated with ΩQ(0).

Example 2.13. Consider again the degenerate Lotka-Volterra system (2.7) in
Example 2.8, i.e.,

P (x, y) = x(ax + by) ; P (1, k) = a + bk

Q(x, y) = y(cx + dy) ; Q(1, k) = k(c + dk).
(2.15)
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Assume that a ̸= 0 ̸= d and ad ̸= bc. It is immediate that Q(x, 0) = 0 and
P (0, y) = 0 or equivalently am

0 = 0 = b0
m, hence (2.15) is an ecological homo-

geneous system. In Example 2.8 we have already checked that the origin is an
isolated and saturated equilibrium, so we can employ Corollary 2.11. The unique
zero of P (1, k) is given by k1 = − a

b , which is positive if and only if sgn(ab) = −1,

(the possible non-negative solution a = 0 cannot be included, since then there
is a line of equilibria on the x-axis and the origin is no longer isolated). First,
let a, d > 0 and c, b < 0. Observe that a = a0

2, b = a1
1, c = b1

1, d = b2
0 and m = 2

which gives

ΩP (0) = 1
2 − sgn a + sgn d

4

+
1∑

i=1

1
4 sgn Q(1, ki)[sgn P (1, ki − ϵ) − sgn P (1, ki + ϵ)]

= 0 + 1
4 sgn

(a

b

(
− c + d

a

b

))
[1 − (−1)]

= 1
2 sgn

(a

b

)
︸ ︷︷ ︸

−1

sgn
(

− c + da

b

)
︸ ︷︷ ︸

sgn(bc−ad)

= 1
2 sgn(ad − bc).

Since ΩP (0) is not an integer, we are in one of the problematic cases and we
have to substract 1

2 to arrive at the boundary index

Bd_Ind(0) =

−1 if ad < bc

0 if ad > bc.

If a, d < 0 and b, c > 0 we get

ΩP (0) = 1
2 − sgn a + sgn d

4 + 1
4 sgn

(a

b

(
− c + d

a

b

))
︸ ︷︷ ︸

sgn(bc−ad)

[−1 − 1]

= 1 − 1
2 sgn(bc − ad)

and consequently

Bd_Ind(0) =

+1 if ad > bc

0 if ad < bc,

which of course coincides with the results in Example 2.8.

Consider now the case of non-ecological equations, i.e., am
0 or b0

m does not vanish.
Let R2

+ be forward invariant and assume that am
0 ̸= 0 and therefore positive

(otherwise we have to make some obvious changes in the following arguments).
From the forward invariance assumption, the intermediate value theorem and
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am
0 > 0, it follows that there exists a 0 ≤ k̃ < ∞ such that Z(k̃) = 0, where Z is

from (2.10). In other words, there is at least one characteristic orbit, which is by
assumption not the positive y-axis. Since Z is a polynomial of order m + 1 we
have finitely many zeroes 0 ≤ k̃1 < ... < k̃s < ∞, written in ascending order and
s ≤ m + 1. In the following we will construct a sequence of polynomials, which
allows us to draw conclusions on E − H, without computing the phase portrait.
Define T0(k) := P (1, k), T1(k) := Q(1, k) and apply the euclidean algorithm
with negative remainders, i.e.,

T0(k) = q1(k)T1(k) − T2(k)
...

Ti−1(k) = qi(k)Ti(k) − Ti+1(k)
...

Tl−1(k) = ql(k)Tl(k).

(2.16)

Remark 2.14. Here, Tl(k) = gcd(T0(k), T1(k)) and therefore has no non-negative
real roots. Indeed, assume otherwise, then P (1, k) and Q(1, k) would have a
common real root c ≥ 0. Since P (x, y) and Q(x, y) are homogeneous, this implies
that for all (x, y)T ∈ R2

+ with y
x = c, P (x, y) = Q(x, y) = 0 and therefore we

have a line of equilibria. This is a contradiction to the standing assumption that
the origin is isolated.

From (2.16), we can extract a sequence of polynomials

T0(k), T1(k), ..., Tl(k). (2.17)

Define a function σ : [0, ∞) −→ N0 such that σ(k) is equal to the number of
sign changes in (2.17), where we ignore possible zeroes. It is easy to see that σ

changes its value only at a zero of one of the polynomials Ti in (2.17). Let 0 ≤ k0

be a zero of one of the polynomials Ti, where i = 1, ..., l − 1. Then it follows
from (2.16), that Ti−1(k0) = −Ti+1(k0) ̸= 0. Indeed, from (2.16) we get that if
Ti+1(k0) = 0, then also Tj(k0) = 0 for all j ≤ i + 1. As in Remark 2.14 above,
it would follow that the origin is not isolated and we arrive at a contradiction.
Consequently we are in one of the following situations:

1) sgn Ti−1(k0) = sgn Ti−1(k0±ϵ) < 0 and sgn Ti+1(k0) = sgn Ti+1(k0±ϵ) > 0

2) sgn Ti−1(k0) = sgn Ti−1(k0±ϵ) > 0 and sgn Ti+1(k0) = sgn Ti+1(k0±ϵ) < 0

where 0 < ϵ is sufficiently small.
This implies that σ does not change its value at the zeroes of T1, ..., Tl−1. The
possible effects on (2.17) are shown in Figure 20.
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i) . . . ± − ∓ . . . −→ . . . ± 0 ∓ . . . −→ . . . ± + ∓ . . .

ii) . . . ± + ∓ . . . −→ . . . ± 0 ∓ . . . −→ . . . ± − ∓ . . .

iii) . . . ± − ∓ . . . −→ . . . ± 0 ∓ . . . −→ . . . ± − ∓ . . .

iv) . . . ± + ∓ . . . −→ . . . ± 0 ∓ . . . −→ . . . ± + ∓ . . .

Figure 20: Possible sign changes in (2.17), when passing through a zero k0
of Ti, i = 1, ..., l − 1. An ordered triple of signs ∈ {0, +, −} corresponds to
(sgn Ti−1, sgn Ti, sgn Ti+1). The first, second and third column evaluates the
triples at k0 − ϵ, k0 and k0 + ϵ for ϵ small enough, respectively.

As mentioned above, Tl does not have any non-negative roots and therefore σ may
only change its value at a zero k0 of T0(k) = P (1, k). Define ∆σ(k0) as the change
of σ, when passing through k0 from below, i.e., ∆σ(k0) := σ(k0 + ϵ) − σ(k0 − ϵ),
with ϵ > 0. We have to consider three different cases with P − := P (1, k0 − ϵ)
and P + := P (1, k0 + ϵ).

∆σ(k0) =


+1 if sgn P − sgn P + < 0 and sgn P + sgn Q(1, k0) < 0

−1 if sgn P − sgn P + < 0 and sgn P + sgn Q(1, k0) > 0

0 if sgn P − sgn P + > 0.

(2.18)

It is easily seen, that we can write (2.18) simply as

∆σ(k0) = 1
2 sgn Q(1, k0)[sgn P (1, k0 − ϵ) − sgn P (1, k0 + ϵ)].

Consider two values 0 ≤ a < b < ∞, such that P (1, a) and P (1, b) do not vanish.
Between two consecutive zeroes ki and ki+1 of P (1, k) in (a, b), the value of σ is
constant. It follows that σ(ki + ϵ) = σ(ki+1 − ϵ), and therefore

σ(b) − σ(a) =
n∑

i=1
σ(ki + ϵ) − σ(ki − ϵ) =

n∑
i=1

∆σ(ki)

= 1
2

n∑
i=1

sgn Q(1, ki)[sgn P (1, ki − ϵ) − sgn P (1, ki + ϵ)],
(2.19)

holds where k1 < ... < kn are all the zeroes of P (1, k) in the open interval
(a, b). Recall the derivation of (2.12) and the fact that the smallest and largest
non-negative zeroes 0 ≤ k̃1 < k̃s < ∞ of (2.10) bound the region of interest for
the boundary index. In fact, arctan(k̃1) and arctan(k̃s) are the angles of the
first and last characteristic orbit with the x-axis in R2

+, respectively. We observe
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that from (2.19) and the assumption am
0 ̸= 0, it follows that

E − H = σ(k̃s) − σ(k̃1). (2.20)

It remains to determine the flow direction on these two characteristic orbits.
Recall from (2.11), that this is done by sgn Y (k̃1) and sgn Y (k̃s). The results
can be combined in the following Corollary of Theorem 2.4.

Corollary 2.15. Let ẋ = Φ(x) be a homogeneous polynomial differential equation
and Φ of the form (2.9), with the origin an isolated, saturated equilibrium. Assume
that am

0 ̸= 0 and R2
+ is forward invariant, then

Bd_IndΦ(0) = 1
2 − sgn Y (k̃1) + sgn Y (k̃s)

4 + σ(k̃s) − σ(k̃1)
2 .

Remark 2.16. To avoid the restriction am
0 ̸= 0 one can either use the case

distinction made in Corollary 2.11, or work out the results for b0
m ̸= 0. An

analogous result on the index of the origin on R2 was established in [12, p. 86].
There the assumption is that the origin is isolated and that am

0 ̸= 0. Then the
index with respect to the homogeneous polynomial vector field Φ is given by

IndΦ(0) = σ(∞) − σ(−∞),

where σ(±∞) := lim
k→∞

σ(±k).

2.4.2 Towards non-homogeneous Systems

So far, the class of vector fields on which we can apply Corollaries 2.11 and
2.15 is rather small. In the following, we enlarge the range of the results above.
The standing assumption is that the vector field Φ has an isolated, saturated
equilibrium at the origin, i.e., Φ(0) = 0. If the equilibrium under consideration
is not the origin, we have to perform a change of coordinates in advance.

Definition 2.17 (Principal Part). Let Φ and Φ0 be two vector fields defined on
R2

+. We say that Φ0 is a principal part of Φ, if there exists a δ > 0 such that for
all (x, y)T ̸= 0 ∈ R2

+ with ∥(x, y)T ∥ < δ

∥Φ(x, y) − Φ0(x, y)∥ < ∥Φ0(x, y)∥.

Proposition 2.18. Let Φ be a continuous vector field, leaving R2
+ forward

invariant, and Φ0 its principal part. Assume that in the set Aδ := {(x, y)T ∈
R2

+ : x2 + y2 ≤ δ2} there is no equilibrium except the origin. Then it holds that
Bd_IndΦ(0) = Bd_IndΦ0(0)
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Proof. Recall from Definition 1.20 that the boundary index is invariant under
homotopic deformations. So it remains to show that every vector field is ho-
motopic to its principal part. From Definition 2.17 and the reversed triangle
inequality it follows, that ∥Φ0∥ > ∥Φ∥

2 and therefore Aδ does not contain an
equilibrium different from the origin for Φ0 as well. If Φ and Φ0 do not point in
opposite directions on Aδ, we can connect these two vector fields homotopically
via H(x, λ) = λΦ(x) + (1 − λ)Φ0(x), on Aδ. Assume towards a contradiction
that Φ and Φ0 are opposing on Aδ, i.e., there exists a point (x̃, ỹ) ∈ Aδ and
α > 0 : Φ(x̃, ỹ) = −αΦ0(x̃, ỹ). Since Φ0 is a principal part of Φ it holds that

∥Φ(x̃, ỹ) − Φ0(x̃, ỹ)∥ < ∥Φ0(x̃, ỹ)∥

and it follows that
(1 + α)∥Φ0(x̃, ỹ)∥ < ∥Φ0(x̃, ỹ)∥,

and we arrived at the desired contradiction.

With Proposition 2.18 at hand, we are now able to enlarge the class of vector
fields where we can apply the developed theory. Assume that Φ is sufficiently
smooth such that we can apply Taylor’s Theorem, i.e.,

P (x, y) = a1(x, y) + ... + am(x, y) + ω1(x, y)

Q(x, y) = b1(x, y) + ... + bm(x, y) + ω2(x, y),
(2.21)

with ai and bi homogeneous polynomials of order i and ω1, ω2 = o
(
(x2 + y2) m

2
)
,

i.e.,
lim

x2+y2→0

ω1(x, y)
(x2 + y2) m

2
= lim

x2+y2→0

ω2(x, y)
(x2 + y2) m

2
= 0. (2.22)

The strategy is to show that the vector field

Φm
0 (x, y) :=

(
a1(x, y) + ... + am(x, y)
b1(x, y) + ... + bm(x, y)

)
(2.23)

in (2.21) has the same boundary index as Φ. This will be done by checking that
(2.23) is a principal part of Φ, if we add one more assumption.

Definition 2.19 (Non-degeneracy). A vector field (2.23) on R2
+ is non-degenerate

if there exist α > 0 and δ > 0 such that

∥Φm
0 (x, y)∥ ≥ α(x2 + y2) m

2 (2.24)

for all (x, y)T ∈ R2
+ with x2 + y2 ≤ δ2.
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Lemma 2.20. Let Φ be a vector field of the form (2.21), leaving R2
+ for-

ward invariant and assume that Φm
0 is non-degenerate. Then it holds that

Bd_IndΦ(0) = Bd_IndΦm
0

(0).

Proof. From (2.21) and (2.23) we infer that ∥Φ − Φm
0 ∥ = ∥(ω1, ω2)T ∥. Since

ωi = o
(
(x2 + y2) m

2
)

we can find for all ϵ > 0 some ϱ ≤ δ such that |ωi(x, y)| <

ϵ(x2 + y2) m
2 for all x2 + y2 ≤ ϱ2 and i = 1, 2. Therefore

∥Φ − Φm
0 ∥ = (ω2

1 + ω2
2) 1

2 <
√

2ϵ(x2 + y2) m
2 ≤ ∥Φm

0 ∥

holds for all x2 + y2 ≤ ϱ2 ≤ δ2 if we choose ϵ = α√
2 . Now we have shown

that Φm
0 is a principal part of Φ and it follows that the origin has an isolating

neighbourhood. Indeed, for all (x, y)T ̸= 0 ∈ R2
+ such that x2 + y2 ≤ ϱ2, we see

that the triangle inequality implies

∥Φm
0 ∥ ≤ ∥Φ − Φm

0 ∥ + ∥Φ∥ < ∥Φm
0 ∥ + ∥Φ∥

and therefore 0 < ∥Φ∥. Finally, the claim follows from Proposition 2.18.

Now we can combine Lemma 2.20 with Corollary 2.15. Given a vector field Φ,

with Taylor expansion (2.21) and am or bm is the first non-vanishing term in the
expansion, i.e.,

a1 ≡ a2 ≡ ... ≡ am−1 ≡ 0

b1 ≡ b2 ≡ ... ≡ bm−1 ≡ 0,
(2.25)

and additionally Φm
0 is non-degenerate, we can infer the boundary index of Φ by

considering the homogeneous vector field Φm
0 .

Example 2.21. We may demonstrate the above results for a vector field with
m = 2. Consider again the degenerate Lotka-Volterra system, but with higher
order terms, i.e.,

Φ(x, y) = Φ2
0(x, y) + ω(x, y) =

(
x(ax + by)
y(cx + dy)

)
+
(

ω1(x, y)
ω2(x, y)

)
(2.26)

where ω1(x, y), ω2(x, y) = o(x2+y2). In addition let ω1(0, y) ≥ 0 and ω2(x, 0) ≥ 0
to retain the forward invariance. In Example 2.8 we have already shown that the
origin is isolated for Φ2

0 if and only if a ̸= 0 ̸= d and ad ̸= bc. Since Proposition
2.18 only requires an isolating neighbourhood in the non-negative orthant, we
can be less restrictive. It is enough to assume ad ̸= bc or that the slope of the line
of equilibria is negative, i.e., k = − a

b < 0. Let now C := {x ∈ R2
+ : x2 + y2 = 1}

be the positive unit circular arc and define α0 := min
x∈C

∥Φ2
0∥. Since ∥Φ2

0∥ > 0 on
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the compact set C by assumption and the vector field is continuous, its minimum
is attained there. Consequently α0 > 0 holds. Via a change to polar coordinates
we see that

∥Φ2
0(r, φ)∥ = r2

∥∥∥∥∥
(

a cos2(φ) + b cos(φ) sin(φ)
c cos(φ) sin(φ) + d sin2(φ)

)∥∥∥∥∥ ≥ r2α0

for all (r, φ) with φ ∈ [0, π
2 ]. In other words, Φ2

0 is non-degenerate. Now we
can apply Lemma 2.20, which implies that Bd_IndΦ(0) = Bd_IndΦ2

0
(0) holds.

Which means that we may use the results of Example 2.13 to draw conclusions
on the boundary index of the perturbed system (2.26).
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