
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

„Exploratory Data Analysis with Google’s Tensor Processing
Unit (TPU): Enhancing Traditional Data Mining Algorithms with
the Use of the TPU on the Example of the k-Means Algorithm“

verfasst von / submitted by

Anna Wolff, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2022 / Vienna, 2022

Studienkennzahl lt. Studienblatt / UA 066 926
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Wirtschaftsinformatik
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dipl.-Inform.Univ. Dr. Claudia Plant

Mitbetreut von / Co-Supervisor: Dipl.-Ing. Dr. techn. Martin Perdacher, BSc

Abstract

In the past few years, there has been an immense increase in the volume of collected data
worldwide. Dealing with the continuously growing amount of data requires two strategies.
On the one hand, methods and algorithms are needed to extract meaningful information
from the amount of data, and on the other hand, there is a need for the computational
ability to handle the amount of data. Both challenges are tackled. The research field of
data mining is concerned with identifying patterns in data, interpreting the identified
patterns and performing qualitative or quantitative predictions or descriptions. One focus
of the research in data mining is on scaling algorithms for large and very large data sets.
Enterprises like Google are developing powerful hardware to meet the computing needs
of modern technologies. In 2016, Google announced the Tensor Processing Unit (TPU),
which is specifically designed to meet the computational demands of deep neural networks
in Google’s data centers. However, other data mining and machine learning techniques
can also profit from the computational power of the TPU.
This master thesis aims to enhance the k-Means algorithm with the use of the Google
TPU in terms of runtime while preserving the quality of the clustering results. We
implemented a k-Means algorithm with matrix-matrix multiplication that is tailored to
the requirements of the TPU. We developed two versions that distribute training on the
TPU in two different ways. The clustering results of the versions have advantages that
complement each other in terms of runtime and accuracy. Therefore, combining both
versions is also explored.
The computation time of the k-Means algorithm can be greatly accelerated by using
the TPU. However, it should be taken into consideration that loading the data set on
the TPU takes additional time and using a TPU compared to a CPU or GPU is more
expensive. Therefore, we recommend using the TPU only for large data sets and/or when
the k-Means algorithm is repeated multiple times for the same data set.

i

Kurzfassung

In den letzten Jahren ist Menge der weltweit gesammelten Daten immens gestiegen.
Der Umgang mit dieser stetig wachsenden Menge an Daten erfordert zwei Strategien.
Einerseits werden Methoden und Algorithmen benötigt, um aussagekräftige Informa-
tionen aus der Datenmenge zu extrahieren, und andererseits werden Rechenleistungen
benötigt, um die Menge an Daten zu verarbeiten. Beide Herausforderungen werden
adressiert. Das Forschungsgebiet Data Mining befasst sich mit der Identifizierung von
Mustern in Daten, der Interpretation der identifizierten Muster und der Durchführung
qualitativer oder quantitativer Vorhersagen oder Beschreibungen. Ein Schwerpunkt der
Forschung im Data Mining ist die Skalierung von Algorithmen für große und sehr große
Datensätze. Unternehmen wie Google entwickeln leistungsstarke Hardware, um den
Rechenanforderungen moderner Technologien gerecht zu werden. Im Jahr 2016 kündigte
Google die Tensor Processing Unit (TPU) an, die speziell für die Rechenanforderungen
von tiefen neuronalen Netzwerken (Deep Neural Networks) in den Rechenzentren von
Google konzipiert ist. Aber auch andere Data-Mining- und Machine-Learning-Techniken
können von der Rechenleistung der TPU profitieren.
Ziel dieser Masterarbeit ist es, den k-Means-Algorithmus durch den Einsatz der Google
TPU in Bezug auf die Laufzeit zu verbessern und gleichzeitig die Qualität der Clustering-
Ergebnisse zu erhalten. Im Rahmen der Masterthesis wurde ein k-Means-Algorithmus
mit Matrix-Matrix-Multiplikation implementiert, der auf die Anforderungen der TPU
zugeschnitten ist. Es wurden zwei Versionen entwickelt, die das Training auf der TPU auf
zwei verschiedene Arten verteilen. Die Clustering-Ergebnisse der beiden Versionen haben
Vorteile, die sich in Bezug auf Laufzeit und Genauigkeit ergänzen. Daher wird auch die
Kombination beider Versionen untersucht.
Die Berechnungszeit des k-Means-Algorithmus kann durch die Verwendung der TPU
erheblich beschleunigt werden. Es sollte jedoch berücksichtigt werden, dass das Laden
des Datensatzes auf die TPU zusätzliche Zeit in Anspruch nimmt und die Verwendung
einer TPU im Vergleich zu einer CPU oder GPU teurer ist. Daher wird die Verwendung
der TPU nur für große Datensätze epmfohlen und/oder wenn der k-Means-Algorithmus
mehrfach für denselben Datensatz wiederholt wird.

iii

Contents

Abstract i

Kurzfassung iii

List of Tables ix

List of Figures xi

List of Algorithms xiii

Listings xv

1. Introduction 1
1.1. Motivation . 1
1.2. Objective and Structure of the Thesis . 2

2. Theoretical Background and Related Work 5
2.1. Exploratory Data Analysis and Data Mining 5
2.2. k-Means Algorithm . 6

2.2.1. Origin of the k-Means Algorithm 6
2.2.2. Objectives of Cluster Analysis with the k-Means Algorithm 7
2.2.3. Limitations of the k-Means Algorithm 8
2.2.4. Adaptations and Extensions of the k-Means Algorithm 10

2.3. Tensor Processing Units . 13
2.3.1. Introduction of the Tensor Processing Unit 13
2.3.2. Differentations of the Tensor Processing Unit to CPU and GPU . . 14
2.3.3. Tensor Processing Unit Architecture and Versions 15
2.3.4. The Cloud Tensor Processing Unit System 19
2.3.5. Performance Evaluations and Applications of the Tensor Processing

Unit . 22
2.4. Evaluation Metrics . 25

2.4.1. External Metrics . 25
2.4.2. Internal Metrics . 26
2.4.3. Relative Metrics . 28

3. Proposed Method 29
3.1. Goal . 29
3.2. Requirements . 29

v

Contents

3.3. Concept . 29
3.4. Parameters and Efficiency . 31

3.4.1. Number of Objects and Number of Features 31
3.4.2. Batch Size and Number of Features 32
3.4.3. Formulation of the k-Means Algorithm 32

3.5. Internal Metrics for Validating the Clustering Quality 33
3.5.1. Notations . 33
3.5.2. Sum of Squared Error . 33
3.5.3. Calinski-Harabasz Index . 33
3.5.4. Davies Bouldin Index . 34

3.6. External Metrics for Validating the Clustering Quality 34
3.6.1. Normalized Mutual Information Score 34
3.6.2. Rand Index . 34

4. Implementation 35
4.1. Project Setup . 35
4.2. Used Technology . 36
4.3. Used Hardware . 38
4.4. Data Sets . 39

4.4.1. Synthetic Data Sets . 39
4.4.2. Real Data Sets . 39

4.5. Experimental Setup . 40
4.5.1. Experiment 1: Batch Size . 41
4.5.2. Experiment 2: Convergence Tolerance 42
4.5.3. Experiment 3: Comparison of Versions 42
4.5.4. Experiment 4: Combination of Versions 42
4.5.5. Experiment 5: Performance Comparison to GPU and CPU 42

5. Evaluation and Discussion 43
5.1. Experiment 1: Batch Size . 43
5.2. Experiment 2: Convergence Tolerance . 44
5.3. Experiment 3: Comparison of Versions . 46
5.4. Experiment 4: Combination of Versions 50

5.4.1. Part 1: Comparison of the Combinations and Versions 51
5.4.2. Part 2: Verification With Random Initial Centroids 54
5.4.3. Part 3: Verification With Real Data Sets 55

5.5. Experiment 5: Performance Comparison to CPU and GPU 56

6. Conclusion 59
6.1. Summary . 59
6.2. Future Work . 60

Bibliography 63

vi

Contents

Acronyms 73

A. Appendix 75
A.1. Custom Training Loops . 75

A.1.1. Custom Training Loop v1 distribute_repeat 75
A.1.2. Custom Training Loop v2 distribute_mean 76

A.2. Class KMeans . 77
A.3. Standard k-Means . 80
A.4. Adpations of the main.py Script . 82
A.5. Additional Data Experiment 3 . 82
A.6. Additional Data Eperiment 4 . 82

A.6.1. Part 1: Runtime Comparison . 82
A.6.2. Part 1: Quality Comparison . 83
A.6.3. Part 2: Using Random Initial Centroids 83
A.6.4. Part 3: Verify Results With Real Data Sets 93

A.7. Additional Data Experiment 5 . 95

vii

List of Tables

2.1. 2x2 Contingency . 25

4.1. Synthetic Data Sets . 39
4.2. Real Data Sets . 40
4.3. Tested Batch Sizes . 41

5.1. Best Batch Sizes . 43
5.2. SSE Development Version 1 distribute_repeat 50
5.3. SSE Development Version 2 distribute_mean 51

A.1. Python Scripts for the Experiments . 82
A.2. Quality Comparison Internal Metrics (Variable Number of Iterations) . . . 97
A.3. Quality Comparison External Metrics (Variable Number of Iterations) . . 98

ix

List of Figures

2.1. Procedure of k-Means Clustering . 8
2.2. Poor Random Initalization of the Centroids 9
2.3. Choosing an Appropriate k . 9
2.4. Clustering of Not Gaussian Distributed Data 10
2.5. Clustering of Data With Uneven Cluster Density 10
2.6. TPU v2 Processor Layout of the Chip . 15
2.7. TPU v3 Processor Layout of the Chip . 16
2.8. Block Diagram of the TPU Core of TPU v2/v3 17
2.9. TPU v2 Chip Floor Plan . 18
2.10. Systolic Data Flow of the Matrix Multiplication Unit 19
2.11. TPU Board,Versions v1 - v4 . 19
2.12. TPU v3 Pod . 20
2.13. TPU - TPU Host Connection . 20
2.14. TPU Node Architecture . 21
2.15. TPU Virtual Machine Architecture . 21
2.16. TPU Roofline . 22
2.17. CPU Roofline . 23
2.18. GPU Roofline . 23
2.19. Relative Comparison of TPU v2 to TPU v3 and GPU Volta 24
2.20. Compactness of Clusters . 27
2.21. Separation of Clusters . 27

3.1. Concept Version 1 distribute_repeat . 30
3.2. Concept Version 2 distribute_mean . 31

5.1. Batch Size Per Replica Runtime Comparison 44
5.2. Batch Size Per Replica Runtime Comparison 44
5.3. Batch Size Per Replica Runtime Comparison 45
5.4. Comparison of TPU-Optimized and Data Set Optimized Batch Size 45
5.5. Quality Comparison of ε = 0.001 and ε = 0.01 45
5.6. Runtime Comparison of ε = 0.001 and ε = 0.01 45
5.7. Runtime Comparison for Data Sets 1-3 . 46
5.8. Runtime Comparison for Data Sets 4-6 . 46
5.9. Runtime Comparison for Data Sets 7-9 . 47
5.10. Runtime Comparison for Data Sets 10-12 47
5.11. Quality Comparison Based on Sum of Squared Error 48
5.12. Quality Comparison Based on Calinski-Harabasz Index 48

xi

List of Figures

5.13. Quality Comparison Based on Davies Boulding Index 49
5.14. Quality Comparison Based on Adjusted Rand Index 49
5.15. Quality Comparison Based on Normalized Mutual Information 50
5.16. Comparison of Number of Iterations Needed 51
5.17. Runtime Comparison (Variable Numbers of Iterations) 52
5.18. Runtime Comparison of the Combinations for Data Set 5 52
5.19. Runtime Comparison of the Combinations for Data Set 7 53
5.20. Runtime Comparison of the Combinations for Data Set 9 53
5.21. Quality Heatmap Based on Sum of Squared Error 54
5.22. Detailed Benchmark Comparison for the MNIST Data Set 55
5.23. Runtime Comparison of TPU, GPU, and CPU for Data Set 1 57
5.24. Runtime Comparison of TPU, GPU, and CPU for Data Set 9 57
5.25. Runtime Comparison of TPU, GPU, and CPU for Bank Marketing Data Set 57

A.1. Runtime And Quality Comparison (Fixed Number of Iterations) 96
A.2. Runtime Comparison of the Combinations for Data Set 1 98
A.3. Runtime Comparison of the Combinations for Data Set 2 98
A.4. Runtime Comparison of the Combinations for Data Set 3 99
A.5. Runtime Comparison of the Combinations for Data Set 4 99
A.6. Runtime Comparison of the Combinations for Data Set 6 99
A.7. Runtime Comparison of the Combinations for Data Set 8 100
A.8. Runtime Comparison of the Combinations for Data Set 10 100
A.9. Runtime Comparison of the Combinations for Data Set 11 100
A.10.Runtime Comparison of the Combinations for Data Set 12 101
A.11.Quality Heatmap Based on Calinski-Harabasz Index 101
A.12.Quality Heatmap Based on Davies Boulding Index 101
A.13.Quality Heatmap Based on Normalized Mutual Information 102
A.14.Quality Heatmap Based on Adjusted Rand Index 102
A.15.Benchmark Comparison of Runtime and Quality 103
A.16.Runtime Comparison of TPU, GPU and, CPU 104
A.17.Quality Comparison of TPU, GPU and, CPU 104

xii

List of Algorithms

1. Outline of the k-Means Algorithm . 7

xiii

Listings

4.1. Initialize TPU . 36
4.2. Strategies for Distributed Training . 37
4.3. Distance Calculation with Matrix Multiplication 38

A.1. Custom Training Loop v1 distribute_repeat 75
A.2. Custom Training Loop v2 distribute_mean 76
A.3. Class KMeans . 77
A.4. Standard k-Means . 80

xv

1. Introduction

1.1. Motivation

The amount of data stored in digital form has doubled every nine months on average
over the last decades. This is twice the rate Moore’s law predicted for the increase of
computing power. Moore’s law is now replaced by the storage law, as the doubling of the
amount of data is called. With regard to the vast amount of data and the fact that data
exists in all sorts of varieties, extracting meaningful information is often beyond human
capabilities. This leads to the necessity for developing algorithms which can extract
meaningful information from the huge amount of data but also for the computational
ability to process large amounts of data.

The increase of data is one of the motivations for data mining. Data Mining is also referred
to as Knowledge Discovery in Databases (KDD) and is concerned with identifying patterns
in data, interpreting the identified patterns and performing qualitative or quantitative
predictions or descriptions. For this reason, the algorithms employ a variety of models
from the areas of statistics, databases, machine learning, experimental algorithms as
well as mathematical approaches. One focus of the research in data mining is on scaling
algorithms for large and very large data sets. [1]

In addition to the field of research, the demand for handling these amounts of data
has led to the rise of data centers with more than seven million data centers worldwide
today. Data centers are facilities that are composed of computing infrastructure, storage
systems and network computers. They are used to assemble, process, store and dissem-
inate large amounts of data and are an integral part of companies to support business
applications and provide services. Companies rely on the data, applications, and services
contained within data centers, which makes them a critical asset for everyday operations.

The massive growth in data requires powerful algorithms as well as the computational
ability to continuously evolve and improve. In 2011, Deep Neural Networks (DNNs), used
for technologies such as speech or image recognition, achieved a breakthrough. However,
this almost led to a crises in Google’s data centers: If every Google user used speech
recognition for just three minutes a day, that would have doubled the computational
demands in Google’s data centers. Using conventional Central Processing Units (CPUs),
this would have been too cost-intensive.

1

1. Introduction

To tackle this problem, Google started a project and developed the Tensor Processing
Unit (TPU) within 15 months. [2, 3] The TPU was announced in 2016 at the Google
I/O event [4]. In 2018, it was made available to the public through the Google Cloud
Platform (GCP) [5].

TPUs are custom-developed Application-Specific Integrated Circuits (ASICs). They
are designed for maximum performance and flexibility and therefore used to accelerate
machine learning. Using the TPU, the train time of models can converge in hours instead
of weeks as before on other hardware platforms. [6, 7]
TPUs are specialized in handling the computational demands of DNNs. DNNs are pre-
dictive models for classification in data mining, which is a supervised learning technique
in machine learning. Supervised learning outputs precise recommendations and makes
predictions based on an analysis of input data with a given target variable. However,
labeled training is often resource intensive to create since data is often unlabeled in
reality. Unsupervised learning, in contrast, learns from unlabeled raw data by learning
the relationships and patterns within the data. One important and widely used data
mining and unsupervised machine learning algorithm is the k-Means algorithm. It is one
of the most well-known and popular clustering algorithms. k-Means is powerful because
it provides a simple method for partitioning a data set into a user-selected number of
clusters and it is well suited for analyzing large data sets.

1.2. Objective and Structure of the Thesis

This master thesis contributes to the research of dealing with large data and explores
how to extend the research on the TPU to other methods in data mining on the example
of the k-Means algorithm. The aim is to enhance the k-Means algorithm with the use
of the Google TPU in terms of runtime while preserving the quality of the clustering results.

For this, the current state of research on the k-Means algorithm and the TPU is presented.
Moreover, a k-Means algorithm is implemented with consideration to the requirements
of the TPU and validated with regard to runtime and quality of the clustering results.
For this purpose, synthetic data sets are generated, which are ideally tailored to k-Means
and TPU. Real data sets are used to verify and generalize the results. The results on the
TPU are also compared with results on a CPU and a Graphic Processing Unit (GPU) to
verify the achievement of the defined goal.

2

1.2. Objective and Structure of the Thesis

Based on the objectives, the master thesis is structured as follows:

Chapter 1 Introduction In Chapter 1, the motivation for the topic as well as the
problem is explained. Furthermore, the objectives are defined and the structure of the
work is described.

Chapter 2 Theoretical Background and Related Work In Chapter 2, a brief
overview of the topics Exploratory Data Analysis (EDA) and data mining with regards
to the k-Means algorithm is given. After that, the k-Means algorithm is described with a
focus on well-known extensions and adaptations. Furthermore, an introduction of the
TPU is given including a comparison to CPU and GPU as well as an overview of recent
research on this topic. Finally, an overview of evaluation metrics is given.

Chapter 3 Proposed Method In Chapter 3, the proposed method to improve the
k-Means algorithm in terms of runtime is presented. Furthermore, the goals of and
requirements for the method are defined. Lastly, important influencing parameters are
discussed and the metrics for evaluation are introduced.

Chapter 4 Implementation In Chapter 4, the implementation of the method is
described and the details of the technology and hardware used are stated. Furthermore,
the data sets used and the procedure of the experiments are described.

Chapter 5 Evaluation and Discussion In Chapter 5, the results of the experi-
ments are analyzed and discussed with regard to the defined objectives.

Chapter 6 Conclusion In Chapter 6, the results and findings of the experiments
are summarized and an outlook for future work is provided.

3

2. Theoretical Background and Related
Work

2.1. Exploratory Data Analysis and Data Mining

Exploratory Data Analysis (EDA) is an essential, fundamental early step in research
analysis. It takes place after data is collected and pre-processed. The main goal of EDA
is the examination of data to understand the present status of data, i.e., distribution,
anomalies and outliers, before making any assumptions. For this, the data is visualized,
plotted and manipulated without bias. EDA is used for assessing the quality of data and
is applied before models are build. [8]
Many EDA techniques are used in data mining. Data mining is an important step in the
KDD process as it transforms data into knowledge. Generally, any kind of data can be
used as long as it is meaningful to the field of application. A common categorization of
the data mining methods is as follows [9]:

• Characterization and Discrimination,

• Mining of Frequent Patterns,

• Association and Correlation Analysis,

• Classification and Regression,

• Clustering, and

• Outlier Analysis.

The k-Means algorithm, on which is the focus of this thesis, belongs to cluster analysis.
Clustering is concerned with discovering groupings or clusters in data. Objects within a
cluster should be highly similar to each other and highly dissimilar to objects in other
clusters. Unlike in classification, the class label of the data in clustering is unknown. In
machine learning, clustering is part of unsupervised learning while classification belongs
to supervised learning. With clustering, class labels can be generated. This is necessary
since in many cases, class-labeled data is not available. Clustering can be classified into
the following categories, even though these may overlap:

• Partitioning methods,

• Hierarchical methods,

• Density-based methods,

5

2. Theoretical Background and Related Work

• Grid-based methods. [9]

k-Means is a partitioning method. Partitioning methods separate a set of n objects in
k clusters (k ≤ n) where each object belongs exclusively to one cluster. Partitioning
is a simple and straight-forward method. The separation in clusters is most of the
time distance-based: objects within a cluster are close and objects of different clusters
are far away from another. The algorithms usually start with an initial clustering and
iteratively improve the partitioning by relocating objects between clusters. A widely used
partitioning clustering criterion is the square error criterion. This partitioning strategy is
employed by the k-Means method. [9, 10]

2.2. k-Means Algorithm

2.2.1. Origin of the k-Means Algorithm

The k-Means algorithm is one of the most well-known and popular algorithms in data
mining. It provides a simple method for partitioning a data set into a user-selected
number of clusters and is well suited for analyzing large data sets. The algorithm was
voted as one of the top ten algorithms in data mining in 2008 [11].
The term k-Means was introduced by MacQueen [12] in 1967. The aim of his work was
to describe a process that, based on a sample, divides an n-dimensional population into k
sets. To do this, the population is divided into k groups, each initially consisting of one
randomly chosen data point. New points are assigned to the group whose mean is closest
to the new point. After adding a point, the mean of the group is recalculated. Therefore, k
is always the means of the group and hence the name of the process ’k-Means’. In his work,
MacQueen suggests variations of this general approach for different applications. One of
them is based on the method of Forgy ([13] as cited in [12]) which obtains partitions with
low within-class variance. This improvement varies from the general k-Means process since
it extends the initial clustering by a two-step iteration until convergence: (1) compute the
means of each partition (2) reassign the points to the (re)calculated means based on the
squared distance, thus forming new clusters. MacQueen describes the advantages of the
k-Means process as easily programmable and computationally economic and the results
as fairly efficient by within-class variance.
Today’s most common use of the k-Means algorithm is based on Lloyd’s work on pulse-
code modulation from 1957 (published in 1982) [14], even though the term k-Means is
not used to describe the algorithm. Lloyd’s algorithm differs from MacQueen’s k-Means
process in that it is a batch algorithm: The centroids of the clusters are not calculated
after each new assignment of a data point, but applied to all cases at once after the
(initial) assignment of the data points.
Another variation of the k-Means algorithm was introduced by Hartigan [15] in 1975. It
differs in the (re)assignment phase since it partitions the data set based on locally optimal
within-cluster Sum of Squared Error (SSE). It reassigns objects to another cluster only, if
the sum of squares (SSE2) is smaller than the present one (SSE1). This means that an

6

2.2. k-Means Algorithm

object may be assigned to another subspace even though it is closer to the centroid of
another cluster.

2.2.2. Objectives of Cluster Analysis with the k-Means Algorithm

The k-Means algorithm aims to obtain a partitioning of a data set, X, consisting of n
objects into k clusters C with a high intracluster and a low intercluster similarity. Each
object belongs to exactly one cluster. The k-Means is a centroid-based technique. The
data set can be described as a set of d-dimensional vectors X = {xi | i = 1, ..., N} where
xi ∈ Rd stands for the ith data point. The centroid cj of a cluster, Cj , j = 1, ..., k, which
is defined by the mean in the k-Means algorithm, is conceptionally the central point of
that cluster and therefore, represents it. For initializing the algorithm, k arbitrary objects
in Rd are selected as the initial centroids.
Based on the sum of squares criterion, the algorithm tries to minimize the sum of squared
errors for all objects in the data set and by that iteratively improves the within-cluster
variation. The mathematical function of the SSE is depicted in equation 2.1

E =

k∑︂
i=1

∑︂
xi∈Cj

||xi − cj ||2 (2.1)

where ||xi − cj ||2 is the Euclidean distance. Hence, the k-Means assigns each object to
the nearest centroid based on the Euclidean distance. Solving this equation exactly is a
NP-hard problem with kn possible clusterings. The process will always terminate. The
k-Means algorithms (e.g. by Lloyd or MacQueen) are heuristics which implement the
above mentioned strategy in an efficient way. [9, 10, 11]
The procedure of k-Means is described in Algorithm 1 and visualized in Figure 2.1.

Algorithm 1: Outline of the k-Means Algorithm
Data: Data set X containing n objects
Result: A set of k clusters

1 Specify the number of clusters k
2 Randomly choose k objects from X as initial centroids
3 repeat
4 Assign each data point to its nearest centroid (Assignment Step)
5 Calculate the new centroid (mean) for each cluster (Update Step)
6 until Convergence criterion is met ;

The time complexity of the k-Means algorithm is O(nkt), where n is the number of
objects, k the number of clusters, and t the number of iterations. Usually, k ≪ n and
t ≪ n. Therefore, the algorithm is comparably scalable and processing large data sets
with k-Means is rather efficient. [9]

7

2. Theoretical Background and Related Work

Figure 2.1.: Procedure of k-Means Clustering

2.2.3. Limitations of the k-Means Algorithm

The k-Means algorithm has its limitations. It is appealing because of its speed but not
because of its accuracy. One of the limitations is that a global optimum is not guaranteed
and the algorithm usually terminates in a local optimum. This is heavily dependent
on the initial selection of the centroids (see Figure 2.2). In addition, it is necessary to
determine the number of clusters in advance (see Figure 2.3). Another drawback of the
k-Means algorithm is its sensitivity to noise and outliers. Even a small amount of such

8

2.2. k-Means Algorithm

data points heavily influences the position of the centroid, and thus the cluster assignment.
Furthermore, the data needs to be convex-shaped, ideally Gaussian-distributed (see Figure
2.4). And last, but not least, the size of clusters needs to be even and the density spread
of the data points across the data space needs to be similar (see Figure 2.5).

Figure 2.2.: Poor Random Initalization of the Centroids

Figure 2.3.: Choosing an Appropriate k

9

2. Theoretical Background and Related Work

Figure 2.4.: Clustering of Not Gaussian Distributed Data

Figure 2.5.: Clustering of Data With Uneven Cluster Density

2.2.4. Adaptations and Extensions of the k-Means Algorithm

k-Means is a simple but efficient algorithm for clustering. For this reason, the algorithm
has been and still is subject of many optimization efforts. The k-Median algorithm [10] is

10

2.2. k-Means Algorithm

a well-known alteration of the k-Means. It uses Manhattan distance instead of Euclidean
distance and therefore determines the centroid of a cluster by calculating the Median. The
k-Medoids [9] is another alteration. It is a representative object-based technique which
picks actual objects of the data set rather than the mean value. It therefore minimizes
the absolute-error criterion aiming to reduce the outlier sensitivity of the k-Means.

The following sections give an overview of the most important adaptations and ex-
tensions of the k-Means algorithm. We split the areas of improvement into five different
categories: (1) selection of the number of clusters k, (2) initialization, (3) assignment, (4)
acceleration of the update step of the algorithm, and (5) environment specific improve-
ments of k-Means.
The selection of the papers is based on their relevance in this category, i.e., publications
in important data mining conferences and number of citations. The last category only
considers more recent publications since hardware itself underlies continuous development.

Selection of the Number of Clusters

One of the limitations of the k-Means algorithm is that the number of clusters k must be
known in advance which is very often not possible. X-Means [16] is an extension of the
k-Means algorithm which provides an efficient estimation of the number of clusters given
a range within which k reasonably lies. The Unsupervised K-Means (U-K-Means) [17]
improves X-Means further. It automatically finds the optimal number of k without the
need to specify a range. It adopts the entropy concept introduced by Yang et al. [18] and
starts with the number of points n as the initial number of clusters.
The G-Means algorithm [19], like the improvement algorithms presented above, assumes
Gaussian data distribution, but follows a different strategy for choosing k. It assumes
that one Gaussian cluster should be represented by one cluster center and learns k while
clustering by increasing k in a hierarchical manner until this hypothesis is validated.

Initalization

The final clustering result depends on the initialization. A greedy and widely used
approach is repeating k-Means with different initial centroids [12] until a reasonably
quality of the clustering is reached. The perhaps most famous initialization strategy is
k-Means++ [20]. The authors propose a variant of the algorithm that uses a simple,
randomized seeding technique. As already known, the initial centers are chosen randomly.
The difference to k-Means is that the data points are weighted based on their squared
distance to the nearest centroid already selected.
k-Means|| [21] is an optimized version of k-Means++ by parallelizing the initalization
of the cluster centers which is better suited for the increasing size of current data sets.
Other well known initialization optimizations are bisecting k-Means [22], a hierarchical
top-down approach, and the global k-Means clustering algorithm [23].

11

2. Theoretical Background and Related Work

Assignment Step

The k-Means algorithm uses a hard assignment of the cluster members. However, in
real word data sets, clusters can overlap. Prominent weakened k-Means versions are the
Expectation-Maximization (EM) algorithm [24], the Fuzzy C-Means (FCM) clustering
[25], which is further improved in [26], and the Non-Exhaustive, Overlapping K-Means
(NEO-K-Means) [27]. k-Means-- [28] addresses the problem with outliers. The algorithm
simultaneously clusters and discovers outliers and even extends to all distance measures
that are in the form of Bregman divergences [29].

Update Step

Accelerating the update step of the k-Means algorithm has been proposed by some
researchers. Na et al. [30] propose an improved k-Means clustering algorithm that reduces
the run-time of k-Means. By storing information about labels and the distance of all
data points to the nearest centroid, the calculations of the distance between each data
point and all centroids, repeated in each iteration, can be avoided. Elkan [31], Hamerly
et al. [19], and Ding et al. [32] avoid unnecessary distance calculations by applying the
triangle-inequality and monitoring upper and lower bounds for the distances between
data point and centroid. Pelleg and Moore [33] introduce the use of k-d trees to update
centroids in bulk instead of object by object. K-d trees can also be applied for initializing
the cluster centers more efficiently.

Environment Specific Improvements of k-Means

Today’s microprocessors are capable of performing multiple computations such as addi-
tions, multiplications and other operations simultaneously. For this reason, more recent
advancements of the k-Means also exploit the capabilities of today’s microprocessors, such
as CPUs and GPUs. Böhm and Plant [34] exploit Single Instruction Multiple Data (SIMD)
instruction sets by parallelizing the operations within each core of a CPU. This permits
up to 16 double precision floating points operations per clock cycle. Other proposals
accelerate the k-Means algorithm using parallel shared-memory of multi-core systems.
One approach is splitting the data set into chunks and then clustering each chunk in a
separate thread. The data is split into chunks by reading the data line by line until a
pre-defined chunk size is reached. The chunks are then put in a queue and distributed to
the cores. Independently from another, each core clusters one chunk of data. This allows
for multiple clustering in parallel. In the final stage, the results are merged by performing
the k-Means on the centroids extracted from the chunks. [35]
Another approach for accelerating k-Means is by distributing the calculations across cores
using Open Multi-Processing (OpenMP) [36].
Multi-core k-Means [37] is another extension of k-Means. The algorithm uses two types
of parallelism, i.e., SIMD, parallelization within a core as already proposed in [34], and
Multiple Instructions Multiple Data (MIMD), parallelization of different code on different
CPU cores. This strategy allows for reducing the data transfer between the different

12

2.3. Tensor Processing Units

memory components, main memory, cache and register.
Operations cannot only be distributed within a core or across cores of a CPU, but also
across multiple nodes [38, 39].

Extensions of the k-Means are not limited to the CPU and exist for the GPU as well.
Dhillon and Modha [40] propose an approach based on distributed memory with the
Single Program Multiple Data (SPMD) model using Message Passing (MPI). Acceler-
ating k-Means on the GPU via Compute Unified Device Architecture (CUDA) is an
approach which executes the distance calculations on the GPU in parallel but sequentially
updates the cluster centroids on the CPU. With this optimization strategy targeted at
the architecture, Zechner and Granitzer [41] aim to exploit the available computational
capabilities of the GPU. A recent approach from 2021, suggests two different clustering
extensions of the k-Means on the GPU, one is tailored to low dimensional data and the
other one to high dimensional data. The version for low-dimensional data exploits on-chip
registers on multi-core systems which reduces the data access latency. Parallelization is
achieved by using the OpenMP standard. The high-dimensional data design simulates
matrix multiplications by exploiting on-chip shared memory aiming to realize a high
compute-to-memory-access ratio.

The k-Means is a well-known, popular algorithm. Its simplicity but yet effectiveness have
inspired many adaptations and extensions. Most aim to improve quality at various stages
of the algorithm, and only a few exploit the capacities of modern processors. In the
following chapter, Google’s Tensor Processing Unit is presented, which has been developed
specifically for machine learning applications.

2.3. Tensor Processing Units

2.3.1. Introduction of the Tensor Processing Unit

The TPU is a custom ASIC designed by Google. It is specifically built for accelerating
machine learning applications and tailored to Google’s open-source Artificial Intelligence
(AI) program library TensorFlow. [4] TPUs are designed to provide maximum performance
and flexibility. The development is targeted at machine learning researchers, engineers,
developers and data scientists. Google provides well-optimized, open-source reference
models to get started with developing machine learning applications on the TPU using
TensorFlow. [42, 7]. The TPU is offered as a service (Cloud TPU) that allows users to
access the TPUs through the GCP. The Cloud TPU Application Programming Interface
(API) allows for automated and flexible TPU management. [43]

13

2. Theoretical Background and Related Work

2.3.2. Differentations of the Tensor Processing Unit to CPU and GPU

CPUs, GPUs and TPUs are designed for different purposes and therefore differ in their
applications. This section gives a brief overview of the three processing units in order
to highlight benefits but also drawbacks of the TPU in comparison to CPU and GPU.
However, the comparison does not go into technical details.

CPUs are general purpose processors. They are based on the von Neumann archi-
tecture. A great benefit of CPUs is the flexibility they provide. CPUs are suitable for all
kinds of software in many different applications, i.e., they can be used for processing in
a computer, executing bank transactions, controlling rocket engines, but also for neural
networks applications such as image classifications. However, this great flexibility of
CPUs is also their weak point. Because CPUs can run all kinds of software, they only
know which calculation to execute next when they read the instruction. This leads to the
fact that CPUs have to store the calculation results in the registers or in the cache for
each calculation. Memory access becomes the drawback of the CPU architecture since it
limits the overall throughput and moreover is energy consuming. This downside of the
CPU is also known as the von Neumann bottleneck and is especially problematic for huge
neural network calculations. [44]

Disregarding technical details, GPUs increase throughput by increasing the number
of Algorithmic Logic Units (ALUs) featured, which hold and control the mathematical
operations, such as addition and multiplication, compared to a CPU. Additionally, the
design of GPU ALUs allows for eight, 16 or even 32 operations at once instead of only
one or two. Typically, a modern GPU consists of 2,500 to 5,000 ALUs in a processor
allowing for thousands of operations simultaneously. This architecture makes it possible
to execute applications with a lot of parallelism such as matrix multiplication. It is the
most popular processing architecture for deep learning activities. Even though, the GPU
is specifically designed for massive parallelization, e.g., in 3D graphics processing, it is
still a general-purpose processor. Furthermore, just as the CPU, it has the issue of the
von Neumann bottleneck. [44]

Unlike the CPU and the GPU, the TPU is a custom-specific processor, designed for
matrix operations. Its custom design makes it possible to perform massive multiplications
and additions at very high speed and low power consumption, as required by large neural
networks. The advantage of TPUs over GPUs is that due to their specialization in matrix
processing, they already know the next step of the operation. Furthermore, the von
Neumann bottleneck can be overcome with the architecture of the TPU. [42]

CPUs are suited for quick prototyping when maximum flexibility is required, for simple
models that do not need much time to train or for small models with small effective
batch sizes. Meanwhile, GPUs find their use for models with a large number of custom
TensorFlow operations or for operations which are not available for the Cloud TPU. GPUs
are suitable for models of medium to large size, with large effective batch sizes. The

14

2.3. Tensor Processing Units

TPU works well for models that are dominated by matrix computations and that do not
have custom TensorFlow operation within the training loop. The TPU converges the
runtime of models that took weeks to train to hours and is therefore useful for large and
very large models that have very large effective batch sizes. However, the TPU will not
perform well for linear algebra programs which need frequent branching or programs that
are dominated elementwise by algebra. Furthermore, it is neither suited for high-precision
arithmetic workloads such as double-precision arithmetic nor for neural network workloads
with custom TensorFlow operations used in the main training loop. And finally, the TPU
should not be used for workloads that sparsely access memory. [44]

2.3.3. Tensor Processing Unit Architecture and Versions

TPU v1

The first version of the TPU, the TPU v1, consisted of one chip with one core and could
only perform predictions. Google reduced the precision of calculation by only using
eight-bit integers instead of 32-bit floating point numbers which allowed to fit more integer
multiplier units into a single core and reduced energy consumption: six times less for
eight-bit multiplication, and 13 times less for eight-bit additions. Furthermore, Google
argues that using eight-bit integers is normally good enough for inference. This first
version of the TPU was only used in Google’s data centers and never released to the
public. [3]

TPU v2

The TPU v2 board consists of four TPU chips. Two cores with 8 Gibibyte (GiB)1 of
High-Bandwidth Memory (HBM) are placed on each chip, which means that a board has
a total of 16 GiB of HBM. Each core contains a Matrix Multiply Unit (MXU), Vector
Processing Unit (VPU), and scalar unit. [6] Figure 2.6 shows the processor layout of the
TPU v2 chip.

Figure 2.6.: TPU v2 Processor Layout of the Chip (adapted from [6])

11 GiB ≈ 1.073741824 GB = 1024 Mebibytes (MiBs) = 230 Bytes = 1.073.741.824 Bytes

15

2. Theoretical Background and Related Work

TPU v3

Like the TPU v2, the TPU v3 contains four chips each with two cores equipped. Each
core has a memory capacity of 16 GiB, which is double the size compared to the TPU
v2 and contains two MXUs. In addition to the MXUs, the core consists of a VPU and
a scalar unit. [6] Figure 2.7 depicts the processor layout of the TPU v3 chip. The

Figure 2.7.: TPU v3 Processor Layout of the Chip (adapted from [6])

additional memory capacity as well as the increased Floating Point Operations Per Second
(FLOPS) per core, allow for an improved performance: Compute-bound models achieve
significant better performance on the TPU v3 than on the TPU v2. Memory-bound
models achieve performance improvements only if they are not compute-bound at the
same time. However, if the data does not fit in the memory of a TPU v2 configuration,
an upgrade to the TPU v3 can improve performance as well as reduce the re-computation
of interim results. Moreover, TPU v3 allows for larger batch sizes. [6]

Detailed Architecture of TPU v2 and TPU v3

The architecture of the TPU v2 and v3 are quite similar. A single TPU board consists of
four chips which contain two TPU cores, respectively. Each TPU core has a Scalar Unit,
a VPU, and one or more MXUs. The cores on the TPU board allow for executing user
computations independently. The chips can communicate directly with each other via
high-bandwidth interconnects. The exact layout of the TPU device depends on the version
of the TPU. Furthermore, the amount of HBM, the interconnects between the cores on each
board as well as the networking interfaces used for the inter-device communication vary. [6]

Figure 2.8 shows the six major blocks of a TPU core. In Figure 2.9 their placement in
the TPU v2 chip is depicted (floorplan of the TPU v2).
When the TPU project was started, the TPU was designed to be a coprocessor connected
via Peripheral Component Interconnect Express (PCIe) I/O bus to the CPU which makes
it possible to plug it into existing servers. This architectural decision was made in order
to reduce development time and to avoid a deployment delay.
The TPU v2 uses the HBM Dynamic Random Access Memory (DRAM). It connects
the TPU v2 chip via 32 128-bit buses to four short stacks of DRAM chips. The core

16

2.3. Tensor Processing Units

Figure 2.8.: Block Diagram of the TPU Core of TPU v2/v3 (adapted from [45])

sequencer fetches Very Long Instruction Word (VLIW) instructions from the on-chip,
software managed instruction memory of the TPU core. It furthermore executes scalar
operations and forwards vector instructions to the VPU. In total, eight operations can be
launched by the VLIW: two scalar, two vector ALU, vector load and store, as well as a
pair of slots which queue data to and from the MXU and transpose units.

The VPU performs vector operations. It executes general computations such as ac-
tivation or softmax functions. The VPU uses a large on-chip vector memory and 32
two-dimensional vector registers. Each of the registers contains 128 times eight 32-bit
elements. From the vector memory, the VPU collects and distributes data via data-level
parallelism and instruction-level parallelism. Data is streamed to and from the MXU by
decoupling First In – First Outs (FIFOs) from the VPU. [45]

The scalar unit is responsible for maintenance operations such as control flow and
calculating memory address [6].

The MXU, comprising of 128 times 128 multiply/accumulators in a systolic array, provides
the majority of the compute power. Each MXU is able to perform 16,000 multiply-
accumulate operations in each cycle. The MXUs use the brain floating point (bfloat16)
number format, which is a custom 16-bit floating point representation2 providing a higher
accuracy of training and model than the half-precision floating point representation of
the IEEE standard. [6] The TPU software stack provides automatic, seamless conversion
between 32-bit IEEE floating point and bfloat16 on the Cloud TPU. To accelearate the
matrix multiplication operations, the format bfloat16 is carefully used. For each multi-
plication in the multiply-accumulate operation bfloat16 is used, for each accumulation,
32-bit IEEE floating point is used. Even though the conversion is done automatically, in
some cases it may be useful to save the values manually in bfloat16 format. [47]
The MXU is the heart of the TPU. It uses systolic executions which saves energy since it
reduces read and write access of the unified buffer. In regular intervals, the data arrives

2For details refer to [46]

17

2. Theoretical Background and Related Work

Figure 2.9.: TPU v2 Chip Floor Plan (adapted from [45])

in an array from different directions at the cells where these are combined. As shown
in Figure 2.10, the data comes in from the left. The MXU loads the weights from the
top, after they were preloaded. This causes the given multiply-accumulate operations to
flow through the matrix like a diagonal wave. With each advancing wave, the weights
and the data become effective. It seems like the 256 input elements are read at once
because control and data are pipelined. Technically, the software does not know about the
systolic array but performance-wise it is concerned with the latency of the unit. [3, 48]
The required bandwidth for feeding and obtaining results from the MXU is proportional
to its perimeter whereas the computation that is provided by the MXU is proportional to
its area [45].

18

2.3. Tensor Processing Units

Figure 2.10.: Systolic Data Flow of the Matrix Multiplication Unit (adapted from [3])

TPU v4

The latest version of the TPU, TPU v4, has been announced on May 18, 2021 at the
Google I/O event. The TPU v4 chip is twice as fast as the TPU v3 chip. It is able to
deliver up to 1018 FLOPS computing power. The TPU v4 is already widely deployed in
Google’s data centers and used for internal machine learning workloads. To the public, it
is currently only available upon special request. [49]
Figure 2.11 shows the different versions of the TPU board, v1 - v4.

Figure 2.11.: TPU Board Versions v1 - v4 [3, 45, 50]

2.3.4. The Cloud Tensor Processing Unit System

The TPU is accessible to the user as a service, the Cloud TPU, through the GCP. This
makes the cloud resources scalable. The Cloud TPU API allows for automated and
flexible TPU management. [6]

19

2. Theoretical Background and Related Work

TPU Configurations

There are three configurations of the TPU available: TPU Pods, as can be seen in Figure
2.12, TPU slices, and single TPU boards which are available to the user via the GCP.
TPUs were designed to be extended to a TPU Pod, which is a supercomputer that can

Figure 2.12.: TPU v3 Pod [45]

contain up to 2,048 TPU cores, i.e., up to 1,024 chips (TPU v2 and v3). [6] The TPU v4
Pod contains 4,096 chips [49]. It allows for distributing the processing load across several
TPU boards. As a consequence the machine learning workloads have access to a larger
group of memory. TPU Pods can be portioned into TPU slices if the entire resources of a
TPU Pod are not needed. TPU slices are available for 32, 128, 512, 1,024, or 2,048 cores.
A single TPU board is not part of a TPU Pod, but a stand-alone device. [6]

Cloud Tensor Processing Units Virtual Machine Architectures

TPU boards are connected via high-speed network interfaces to a CPU-based host-machine
(= TPU host). Since TPUs are only capable of matrix operations, the host machine is
used to perform all other operations such as loading and preprocessing data, and finally
sending it to the TPU. Within a TPU Pod, each TPU board is connected to a TPU host.
Figure 2.13 shows the architecture of TPU and TPU host.

Figure 2.13.: TPU - TPU Host Connection (adapted from [6])

For the interaction between TPU host and TPU, there are two options available: TPU
Nodes and TPU Virtual Machines (VMs). TPU Nodes (see Figure 2.14), which is the
original setting, need an additional user VM. The communication between user VM and

20

2.3. Tensor Processing Units

TPU host works over gRPC3 which means that the TPU host is only indirectly accessed.
Using TPU VMs (see Figure 2.15), the Google Compute Engine VM, which is physically
connected to the TPU board, is directly accessed via SSH connection. Getting root access
to the VM, the user can run arbitrary code and access debug logs of compiler and runtime,
as well as error messages. [6]

Figure 2.14.: TPU Node Architecture (adapted from [6])

Figure 2.15.: TPU Virtual Machine Architecture (adapted from [6])

Supported Frameworks

The TPU supports several frameworks like TensorFlow, JAX, and PyTorch. The shared
library libtpu gives these frameworks access to the TPU VM. It includes:

• the Accelerated Linear Algebra (XLA) compiler for compiling TPU programs,

• the TPU runtime for running compiled programs,

• the TPU driver for low-level access to the TPU used by the runtime. [6]

3Remote Procedure Call, developed by Google

21

2. Theoretical Background and Related Work

2.3.5. Performance Evaluations and Applications of the Tensor Processing
Unit

When Google announced the TPU, they published a paper as well as an article [3, 51]
along with it, which covered together with a general introduction of the TPU, a perform-
ance comparison of the TPU (v1) with a CPU (18-core, dual-socket Haswell processor
from Intel) and a GPU (NVIDIA K80 GPU) in terms of Roofline, response time, and
throughput. The Roofline comparison showed that the TPU works well for DNNs. Five
of the six tested applications4 performed close to the Roofline of the TPU (see Figure
2.16), while they were further below for Roofline of the used CPU (see Figure 2.17) and
GPU (see Figure 2.18).

Figure 2.16.: TPU Roofline: The LSTMs and MLPs are under the oblique line of the
graph, which means they are constrained by memory bandwidth. The
CNNs are bound by the peak computation rate. The ridge point is at 1,350
multiply-accumulate operations per byte. (adapted from [3])

According to Google, response time is the reason for the good performance of the TPU,
especially in inference. The 99th-percentile limit for the response time was seven milli-
seconds, server host time and accelerator time included. The CPU and the GPU only
achieved 42 percent and 37 percent, respectively, of the highest throughput that could be
achieved for MLP0 when the limit for the response time was loosen up. The TPU was
affected by the bounds as well, but achieved 80 percent of its highest MLP0 throughput.
The authors explain this due to the minimalism of the domain-specific processor which
has no caches, branch predictions, multiprocessing, out-of-order-processing and so on.
The throughput can be increased by using larger batch sizes. However, this also increases
the response time to such an extent that it exceeds the set limit. For this reason, CPUs
and GPUs must use batch-sizes that are smaller and consequently, less-efficient. These

4Two Long Short-Term Memory applications, a type of Recurrent Neural Networks (RNNs), (Long Short-
Term Memory (LSTM)0, LSTM1), two Multilayer Perceptron applications (Multilayer Perceptron
(MLP)0, MLP1), and two Convolutional Neural Networks (Convolutional Neural Network (CNN)0,
CNN1)

22

2.3. Tensor Processing Units

Figure 2.17.: CPU Intel Haswell Roofline: LSTM0 and MLP1 are faster on the CPU
than on the GPU, vice-versa the other DNNs are faster on the GPU. The
performance of the DNN is limited by response time. The ridge point is at
13 multiply-accumulate operations per byte. (adapted from [3])

Figure 2.18.: GPU NVIDIA K80 Roofline: DNNs are far away from the Roofline. This is
due to response time caps. The ridge point is at nine operations per byte
and thus further to the left than in Figure 2.17 and is due to the higher
memory bandwidth. (adapted from [3])

comparisons show that although the TPU is connected to a host via an I/O bus and also
has limited memory bandwidth, the performance is still significantly better than that of
the CPU or GPU used.
In 2020, the hardware and software engineers involved in the TPU project at Google
published another paper [45], comparing the performance of the TPU v2, the TPU v3,
and the Volta GPU developed by NVIDIA. The results of the comparison are depicted in
Figure 2.19. They compared the chip performance based on five programs5, which were

5ResNet50 (Deep Residual Network with 50 layers), Single Shot Detector (SSD), Mask Region-Based
Convolutional Neural Network (RCNN), (Google) Neural Machine Translation (NMT), Transformer

23

2. Theoretical Background and Related Work

submitted by both Google and NVIDIA to MLPerf 0.6 in July 2019 ([52]). The results
showed a geometric speedup of these programs of 1.8 for the TPU v3 over the TPU v2
and a speedup of 1.9 for the Volta GPU over the TPU v2 (MLPerf 0.6 Geometric Mean
(GM)). Comparing the chip performance for six production applications6, similar to those
of the TPU v1 comparison, the speedup relative to the TPU v2 is 1.8 for the TPU v3,
and 0.4 for the Volta GPU (Production GM).

Figure 2.19.: Relative Comparison of TPU v2 to TPU v3 and GPU Volta (adapted from
[45])

A concern of the developers was that inference latency could be hurt since the TPU v2
and TPU v3 require large batch sizes to run efficiently but it turned out that DNN models
with batch sizes ≥ 1,000 can meet the latency targets. Considering that there are billions
of Google users daily, the required batch sizes should not be a problem. Comparing the
scaling performance on the ResNet50 MLPerf 0.6 of the TPU v3 and Volta, the results
are quite similar for the TPU v3 chip at 52 percent accuracy.
Ying et al. [53] analyzed the scaling performance of the TPU v3 Pod with 1,024 chips.
They achieved an accuracy of 76.3 percent in 2.2 minutes training ResNet50 on ImageNet.
The throughput was more than one million images per second without a drop in accuracy.
This shows the strength of the TPU v3 supercomputer in parallel scaling for production
applications compared to a single TPU v3 chip or Volta GPU.
The research of Gordienko et al. [54] concludes that even the TPU v2 can achieve higher
performance (throughput) compared to a GPU. The authors used algorithmically different
DNNs, such as VGG16, ResNet50, Capsule Neural Network (CapsNet), for their analysis.
As mentioned before, the performance of the TPU compared to a GPU depends on the
batch size. This was also evaluated by Kochura et al. [55]. They investigated the impact

6MLP0, MLP1, RNN0, RNN1, CNN0, CNN1

24

2.4. Evaluation Metrics

of the largest possible batch size during training and inference on the standard MNIST
and Fashion-MNIST data sets. For the training phase, an acceleration of ten times and
for the prediction phase, one of up to two times was examined for batch sizes of > 512
images and > 40,000 images, respectively. Since the TPU v4 Pod was announced, Google
bench-marked its performance against other Machine Learning hardware at MLPerf 1.0
[56]. The benchmark results demonstrated the outstanding performance of the TPU v4
supercomputers at scale [57]. It was able to achieve a speedup between 0.49 and up
to 1.74 times over the fastest non-Google submission, the NVIDIA A100, in any of the
available categories. [49]

The TPUs are deployed in Google’s own data centers, for which they were developed and
used for their solutions, such as industry solutions, AI, business application platforms,
databases, data cloud, smart analytics, and many more [58], and products, e.g. AI and
machine learning, data analytics, hybrid and multi-cloud, Internet of Things, and many
more [59]. Beyond Google’s own application, the TPU v2 and TPU v3 were used for
developing a learned performance model. Because contemporary processors are complex,
these models are usually difficult to develop. Phothilimthana et al. [60] showed that the
developed model for the TPU was able to outperform a massively improved analytical
performance model. Furthermore, learning the performance model could be automated
and the model can be generalized well to similar programs. Islam et al. [61] used the
TPU in an experiment for image recognition to classify flowers.

2.4. Evaluation Metrics

2.4.1. External Metrics

External metrics evaluate the performance of an algorithm by matching the clustering
result to a reference result which is considered as the ground truth. An external evaluation
criterion measures the degree of similarity of the clustering result obtained to the ground
truth, e.g. the number of clusters and the category labels.
One index for comparing the resulting clustering U = {U1, ..., Ur} with r clusters to the
ground truth, reference clustering V = {V1, ..., Vs} with s clusters, is expressed in the
following contingency Table 2.1 for a two indicator function :

U\V Pairs in the same cluster Pairs in different clusters
Pairs in the same cluster a b

Pairs in different clusters c d

Table 2.1.: 2x2 Contingency

The parameters a, b, c, and d are defined as follows:

• a: The number of pairs of data points which are in the same cluster in U and V

25

2. Theoretical Background and Related Work

• b: The number of pairs of data points which are in the same cluster in U but not in
V

• c: The number of pairs of data points which are in the same cluster in V but not in
U

• d: The number of pairs of data points which are in different clusters in U and V

The total number of pairs of data points is

M = a+ b+ c+ d =
n(n− 1)

2
(2.2)

where n is the number of data points in the data set.
Indices which are based on this two indicator functions are Rand index, Jaccard index or
Folkes and Mallows index. [10]

Since in real world data sets, reference results are often not available, external metrics
are usually used for synthetic data and tuning clustering algorithms.

2.4.2. Internal Metrics

Internal metrics evaluate the clustering quality only using the data themselves. They
assess the fit between the structure and the data, e.g. the structure of detected clusters
and their relations to each other. One approach is to measure the degree to which a
partition is justified by the given proximity matrix. Internal evaluation is generally used
after the clustering algorithm terminated. For a few clustering algorithms, the metrics
are also used in the validation phase. This is the case for k-Means, k-Medoids, and EM
among others. [10, 62]

There are two important concepts for evaluating the clustering quality when using internal
metrics: compactness and separation.

Compactness

Compactness measures the internal cohesion among objects in a cluster, i.e., how closely
are the data points grouped in a cluster. The assumption is that points in a cluster are
related to each other by sharing a common feature. Compactness is normally measured
by calculating the distance between objects in a cluster. A commonly used approach is
through calculating the variance - the average distance to the mean. A cluster has high
compactness if the variance is small. [10, 62] Figure 2.20 shows an example for different
degrees of compactness: on the left side, the clusters have higher compactness than on
the right side.

26

2.4. Evaluation Metrics

Figure 2.20.: Compactness of Clusters

Separation

Separation measures how isolated a cluster is, i.e., how different the detected cluster (or
pattern) is from other clusters (or patterns). As for compactness, distance is a commonly
used measure for identifying separation, e.g. by calculating the pairwise distance of
centroids or the pairwise minimum distance between data points in different clusters.
[10, 62] Figure 2.21 shows an example for different degrees of separation: on the left side,
the clusters have better separation than on the right side.

Figure 2.21.: Separation of Clusters

For a cluster to be valid, it must be unusually compact and unusually separated. Clusters
are valid in a restricted sense if they are separated but not compact and vice-versa. All
indices for the validity of individual clusters measure compactness and separation. It
is advisable to define a reference population and a baseline for which "unusual" has a
meaning. This meaning of "unusual" should be intuitive and derivable from theory. [10]

27

2. Theoretical Background and Related Work

2.4.3. Relative Metrics

Relative criteria evaluate which of two structures is better in a certain way, e.g. more
stable or better suited for the data. The criterion would e.g. quantitatively measure
whether a single-link or a complete-link hierarchy is a better fit for the data. Relative
metrics can also be used to find a suitable parameter configuration for an algorithm. The
algorithm is repeated with different parameter settings. Using relative metrics, the best
parameter setting is determined. [10]

28

3. Proposed Method

3.1. Goal

The goal is to develop a method to speed up the k-Means algorithm by using the TPU.
The method should therefore take advantage of the benefits offered by the TPU. At the
same time, the clustering quality should be preserved.

3.2. Requirements

The following three properties should be satisfied: First, the algorithm should be able to
start with any initial centroids, so that all available adaptations and extensions that exist
for initialization can be applied. Second, the clustering quality should be the same for the
implemented k-Means on the TPU as for standard k-Means. And third, the developed
method should be executable on the TPU as well as on CPU and GPU.

3.3. Concept

The proposed method builds on a bachelor thesis written at the University of Vienna
from 2019 [63], in which the performance of the k-Means algorithm on the TPU (TPU
v2) was compared with the performance on a CPU (Intel ® Xeon CPU). As part of the
work, three versions of the k-Means were developed. The first version used only one of
the eight available cores for the k-Means computations. The second version used all eight
cores of the TPU. The input was distributed across, and the centroids were broadcasted
to all cores. Each core then performed the assignment step. In-between iterations, the
cores communicated their results to the CPU, on which these were combined and the
update step was performed. The two steps were repeated, as with standard k-Means,
until convergence. In the third version the data was distributed across all cores and each
core performed the entire calculation of the k-Means and only reported back the final
clustering results which were then combined on the CPU using the mean. The work
concluded that the second version provides higher quality because the entire data set is
seen before the new centroids are computed. Advantage of the third version is that it
is faster since there is less communication between CPU and TPU. The first version is
not interesting for further consideration, since it is outperformed by the second and third
version.
The method developed in this master thesis uses the idea of implementing different
versions, similar to the second and third version of the previous work, as a starting point
to build on. The idea is to combine the two versions to achieve both benefits, speed and

29

3. Proposed Method

accuracy.
As described in Chapter 2.3.4, tasks such as loading and preprocessing of data are
performed on the CPU. In the proposed method, in the first step, the data is loaded
on the CPU and the centroids are initialized. In addition, the data set is batched into
smaller subsets. The actual computation of the k-Means algorithm takes place on the
TPU. For this purpose, the batched data set is distributed to the cores and the initial
centroids are transmitted to each core. Figure 3.1 and Figure 3.2 show the proposed
method on a conceptual level. In version 1 distribute_repeat only the assignment step is
performed on the TPU and the assignments, the summed centroids as well as the number
of data points per cluster are returned from the TPU to the CPU after each iteration.
The sum of the centroids as well as the number of data points per cluster serve as input
for the calculation of the new centroids. This calculation is performed on the CPU. The
process is carried out until convergence. In version 2 distribute_mean, the batched data
set is distributed to the cores and the initial centroids are transmitted to each core just
as in version 1 distribute_repeat. In contrast to version 1 distribute_repeat, however, all
iterations up to convergence are performed on the respective TPU core and finally the
assignments as well as the final centroids per core are communicated back to the CPU. On
the CPU, the batches are then concatenated into a complete data set. The final centroids
per core are merged to final centroids by calculating the mean.

Figure 3.1.: Concept Version 1 distribute_repeat

30

3.4. Parameters and Efficiency

Figure 3.2.: Concept Version 2 distribute_mean

Combining the two versions, there are two conceivable scenarios. First, version 1 distrib-
ute_repeat is run for a certain number of iterations and then version 2 distribute_mean.
Thus, a high-quality starting position is first created before the algorithm is fully acceler-
ated. Conversely, version 2 distribute_mean can also be executed first and then version 1
distribute_repeat. The algorithm is only accelerated at first and version 1 distribute_repeat
is used at the end to increase the clustering quality.

3.4. Parameters and Efficiency

3.4.1. Number of Objects and Number of Features

For efficient memory use, the input data should be structured so that it can be tiled
into chunks of 128 by eight. As described in Chapter 2.3.4, the TPU supports several
frameworks such as TensorFlow, JAX, and PyTorch which get access to the XLA compiler
for compiling programs. The XLA compiler automatically pads tensors, if they do not
fulfil the above mentioned criteria. To avoid padding, it is recommended to pick tensor
dimensions that are well suited for TPU because padding requires higher on-chip memory

31

3. Proposed Method

storage for a tensor and out-of-memory errors can happen. Furthermore, the TPU cores
are under-utilized with padded tensors. Last but not least, padding can significantly
increase the execution time. [64]

3.4.2. Batch Size and Number of Features

For maximum runtime performance and to avoid padding, one of the following conditions
should be satisfied:

• The batch size is a multiple of 64, which is a batch size of eight per core. The
number of feature dimensions is a multiple of 128.

• The batch size is a multiple of 1,024, which is a batch size of 128 per core. The
number of feature dimensions is a multiple of eight.

If one of these conditions is fulfilled, the recommendation for the chunk size described in
the previous section is fulfilled. To achieve maximum efficiency, a batch size of 1,024 with
128 feature dimensions is recommended. [64]

3.4.3. Formulation of the k-Means Algorithm

As described in Chapter 2.2.2, the k-Means algorithm is composed of the two steps,
assignment step and update step. In the assignment step, the data objects are assigned to
the nearest centroid, the distance being determined by Euclidean distance. Determining
the distance is the most computationally expensive part of clustering with k-Means. Since
the systolic array architecture of the MXU (see Chapter 2.3.3), which provides the majority
of the compute power, is specifically designed to perform thousands of multiply-accumulate
operations, it appears particularly attractive to determine the distance calculations through
a matrix multiplication. In both versions, Version 1 distribute_repeat and Version 2
distribute_mean, as introduced in section 3.3, the assignment step is performed on the
TPU. A possible formulation of distance calculation with matrix multiplication can be
defined as follows [37]: Let X ∈ Rn×d be the matrix of data objects, M ∈ Rk×d be the
matrix of centroids and mT := [⟨c0, c0⟩, ..., ⟨ck−1, ck−1⟩] the vector of scalar products of
each centroid with itself. Then the distance matrix D ∈ Rn×k is defined as in equation
3.1:

D :=
1

2
1nm

T −XMT (3.1)

where 1n is a column vector of n ones. The cluster ID of point xi is argminjDi,j since
Di,j =

1
2 ||xi − cj ||2 − 1

2⟨xi, xi⟩).

32

3.5. Internal Metrics for Validating the Clustering Quality

3.5. Internal Metrics for Validating the Clustering Quality

3.5.1. Notations

This section presents three well-known internal metrics that are used in the experiments
for quality assurance.
First, we introduce the notations used in the formula of these internal metrics:

• X: The input data set

• n: The number of data points in X where xi is the i-th data point

• Cj : Cluster Cj , j = 1, ..., k with centroid cj

• k: The number of clusters

• g: The center of the whole data set

• d(x, y): The distance between data points x and y

For convenience, we will introduce an abbreviation for each metric and use it through the
rest of this thesis.

3.5.2. Sum of Squared Error

The SSE was already introduced in section 2.2.2 as an error function that the k-Means
algorithm tries to minimize. However, it is also suitable as an internal metric that
describes the compactness of the clusters. For each cluster, it calculates the squared
distance of the points in that cluster to the centroid of the cluster and then sums these
values. It can be calculated with formula 3.2.

SSE =

k∑︂
i=1

∑︂
xi∈Cj

d(xi − cj)
2 (3.2)

3.5.3. Calinski-Harabasz Index

The Calinski-Harabasz Index (CH) [65] measures compactness and separation simultan-
eously. Compactness is reflected by how close the data points within a cluster are gathered
around the the cluster centroid; separation is reflected by how much the centroids are
spread. CH is formally defined as:

CH =

∑︁
j d

2(cj , g)/(k − 1)∑︁
j

∑︁
x∈Cj

d2(x, cj)/(n− k)
(3.3)

A higher value of the CH index means that the clusters are well separated and dense,
although there is no "acceptable" threshold.
CH calculates the clustering quality in the form of separation / compactness.

33

3. Proposed Method

3.5.4. Davies Bouldin Index

Davies Boulding Index (DB) [66] is an old but widely used internal validation metric.
The index calculates the average similarity of each cluster with a cluster most similar to
it. A lower average similarity score indicates a better cluster separation and consequently
a better clustering result. Equation 3.4 shows the formal definition of DB

DB =
1

k

∑︂
t

max
j ̸=i

1
ni

∑︁
x∈Ci

+d(x, ci)
1
nj

∑︁
x∈Cj

d(x, cj)

d(ci, cj)
(3.4)

3.6. External Metrics for Validating the Clustering Quality

3.6.1. Normalized Mutual Information Score

The Normalized Mutual Information (NMI) [67] is a measure for characterizing the
accuracy of clustering algorithms. The method evaluates how mutual the information
of two clusterings is. The method can be used to compare the clustering result of a
clustering algorithm with the ground truth or, if this is not available, to compare it
with the clustering result of another clustering algorithm. The mutual information is
normalized by some generalized mean. The adjusted NMI is adjusted to account chance.
NMI is generally higher for two clusterings with a larger number of clusters, regardless of
whether more information is actually shared. The NMI is a symmetric measure.

3.6.2. Rand Index

The Rand Index (RI) [68] is a measure for comparing two arbitrary clusterings and
evaluating their similarity. The measure is based on the contingency Table 2.1 introduced
in Chapter 2.4.1. The metric is defined as follows:

RI =
a+ d

M
(3.5)

with M = a+ b+ c+ d. The Adjusted Rand Index (ARI) [69] is corrected for chance
by using the expected similarity. The general form of the index adjusted for chance is
defined as follows:

ARI =
RI − Expected RI

MaximumRI − Expected RI
(3.6)

The ARI is a symmetric measure.

34

4. Implementation

4.1. Project Setup

The implementation of the proposed method is written in Python. The project layout
looks like this:

tpu-k-means/
evaluation/

all_results.csv
logs/

<YYYY-MM-DD>_log.log
results_tmp/

<YYYY-MM-DD_hh-mm-ss>_<input_filename>_evaluation.txt
data_final_labels_<input_filename>_<YYYY-MM-DD_hh-mm-ss>.csv
final_centroids_<input_filename>_<YYYY-MM-DD_hh-mm-ss>.csv
initial_centroids_<input_filename>_<YYYY-MM-DD_hh-mm-ss>.csv

arguments.py
authenticate.py
data.py
evaluation.py
k-means-authentication.json
kmeans.py
main.py
README.md
requirements.txt

The Python script is started with the file main.py. In this file all important functions and
processes are triggered. Important global and constant variables are defined in main.py,
as well as the procedures for the versions described in Chapter 3.3. This file also queries
available devices, in the order TPU, GPU or CPU, connects to the available device and
initializes the corresponding strategy.
The functionalities are outsourced to the other Python files. arguments.py takes the
terminal arguments data_dir and tpu_name. The authentication for Google happens
in the file authenticate.py which requires a json file with the authentication credentials1.
The file is provided by Google when creating a service account for the TPU project.
In the file data.py the corresponding data set is read in and if available, the true labels
are queried. The file also defines the functionality for batching the data set. In addition,
the logic for saving and uploading the processed data sets to the cloud is stored. The files

1The file contains individual authentication data for the Google Cloud and is therefore not provided.

35

4. Implementation

with the clustering results, initial centroids, and final centroids are stored temporarily in
the folder results_tmp/ and can be uploaded to the Google Cloud Storage bucket.
The class KMeans is defined in the file kmeans.py. It contains the functions for initializing
the centroids as well as the two clustering steps assign and update for version 2 distrib-
ute_mean or assign and prepare for version 1 distribute_repeat. Finally, the clustering
results are evaluated in the file evaluation.py. Additionally, the set parameters, the quality
metrics and the elapsed time are saved in a csv file. The file is stored in the evaluation/
folder. The folder logs/ contains the logs written during the execution.

The input data sets as well as the clustering and evaluation results are stored in a
Google Cloud Storage bucket. This is recommended by Google as it allows for efficient
loading of data and a continuous stream of data if the data is split across multiple files.
The structure of the bucket created for the project looks like this:

k-means-bucket/
evaluation/
external/
processed/
raw/

The directory evaluation contains the evaluation of the clustering results. In the directory
external, the data sets of third parties, i.e. the real data sets, are stored. The folder
processed contains the clustering results, i.e. the data sets with the computed labels,
the final centroids and the initial centroids. The directory raw contains the unprocessed
synthetic data sets.

4.2. Used Technology

The TPU supports different Python frameworks such as TensorFlow, JAX and PyTorch.
Therefore, the code is is written in Python using TensorFlow (TensorFlow 2.8.0). Tensor-
Flow is selected since the TPU is tailored to Google’s library TensorFlow and because it
is well suited for large-scale distributed training.
To run the code on TPUs, which are typically Cloud TPU workers, they need need to
be initialized at the beginning of the program. This is done using the following APIs as
listed in Listing 4.1 with tpu_name being the name set for the TPU. [70]

1 tpu_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu=
tpu_name)

2 tf.config.experimental_connect_to_cluster(tpu_resolver)
3 tf.tpu.experimental.initialize_tpu_system(tpu_resolver)

Listing 4.1: Initialize TPU

TensorFlow offers several distribution strategies, to run training in parallel. For TPUs,
this is strategy = tf.distribute.TPUStrategy(tpu_resolver), for GPUs this is strategy = tf

.distribute.MirroredStrategy(["GPU:0", "GPU:1", "GPU:2"]), which is the equivalent to the
TPU strategy. It takes as many GPUs as arguments as are available. The default strategy
is strategy = tf.distribute.get_strategy() which is applicable for CPUs as well as GPUs

36

4.2. Used Technology

with one replica in sync. [71]
Listing 4.2 shows the code for the distribution strategies as implemented. This way, the
same script can be executed on TPU, GPU or CPU. tpu_name is set to None per default
and must be set when the code is executed on a TPU.

1 physical_devices_cpu = tf.config.list_physical_devices(’CPU’)
2 physical_devices_gpu = tf.config.list_physical_devices(’GPU’)
3 try:
4 tpu_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu=

tpu_name)
5 except ValueError:
6 tpu_resolver = None
7 if tpu_resolver:
8 tf.config.experimental_connect_to_cluster(tpu_resolver)
9 tf.tpu.experimental.initialize_tpu_system(tpu_resolver)

10 strategy = tf.distribute.TPUStrategy(tpu_resolver)
11 else:
12 if len(physical_devices_gpu) > 0:
13 strategy = tf.distribute.MirroredStrategy(
14 ["GPU:0", "GPU:1", "GPU:2", "GPU:3", "GPU:4", "GPU:5",
15 "GPU:6", "GPU:7"]) # 8 replicas
16 else:
17 strategy = tf.distribute.get_strategy ()

Listing 4.2: Strategies for Distributed Training

For efficient use of the TPU it is recommended to use the tf.data.Dataset API to feed
data quickly to the Cloud TPUs. In the implementation, the API tf.data.Dataset.

from_tensor_slices is used. To improve efficiency, all data files read by the Dataset should
be stored in Google Cloud Storage buckets.
For clustering, the input data set is batched. The batch size is determined by two para-
meters: BATCH_SIZE_PER_REPLICA, which is the batch size, each core will see per iteration,
and strategy.num_replicas_in_sync which is the number of devices available retrieved by
the strategy API. The argument drop_remainder is set to True to prevent the smaller batch
of being produced. Furthermore, this is recommended when using the XLA compiler
which is the case for the TPU. [72] To distribute the training across multiple devices, i.e.
the TPU cores or GPUs, it is necessary to create a tf.distribute.DistributedDataset. This
can be done with the API strategy.experimental_distribute_dataset. It takes the batched
data set as argument. The objects are Python iterables. [73]
For clustering with k-Means, we implemented a custom training loop using a py-
thonic for-loop construct which repeats the k-Means clustering for each subset in the
DisributedDatasest. To replicate and run the computation on all cores, it must be passed
into the API strategy.run. The API takes two arguments: the function to be executed
and the arguments passed to the function. The API returns results from each local
replica in the strategy. tf.distribute.Strategy.reduce aggregates the results of the replicas
to one value. [70, 74] The training loops for version 1 distribute_repeat and version 2
distribute_mean can be found in the Appendix A.1, Listings A.1 and A.2.
The heart of the implementation is the k-Means algorithm. The k-Means is executed
when strategy.run is called inside the custom training loop. The algorithm is imple-

37

4. Implementation

mented in the class KMeans. The class comprises the methods initialize_centroids,
assign_fn, assign_and_prep_fn, and assign_and_update_fn. The method assign_fn is used
by both, assign_and_prep_fn, which is called when executing version 1 distribute_repeat,
and assign_and_update_fn, which is called when executing version 2 distribute_mean. All
methods use the @tf.function decorator for better performance. It converts Python eager
code into graph-compatible TensorFlow operations. The assignment step, i.e. the distance
calculations (see Listing 4.3), are implemented as matrix multiplication as described in
Chapter 3.4.3. The code of the entire class KMeans can be found in the Appendix A.2,
Listing A.3.

1 @tf.function
2 def assign_fn(self , points , centroids):
3 """ assign points to cluster , return assignment """
4 # compute scalar products (m^T) of each centroid with itself
5 m = tf.linalg.diag_part(tf.tensordot(centroids , centroids , [[1],

[1]]))
6 # Column vector of n ones (1_n)
7 n = tf.ones(tf.shape(points)[0])
8 # calculate 0.5 * 1_n * m^T
9 d1 = tf.multiply(tf.constant ([0.5]) , tf.einsum(’i,j->ij’, n, m))

10 # calculate X*M^T
11 d2 = tf.matmul(points , centroids , transpose_b=True)
12 # calculate distance D:= 1/2 * 1_n * m^T - X * M^T
13 distance = tf.subtract(d1 , d2)
14 # find minimum distance
15 assignments = tf.math.argmin(input=distance , axis=1, output_type=tf.

int32)
16 return assignments

Listing 4.3: Distance Calculation with Matrix Multiplication

At the end of the script, the labels are assigned to the remainder, that has been dropped
while batching. And last but not least, the clustering quality is measured.
The script takes csv files as input files. It is possible to use data sets with and without
true labels. Accordingly, the LABELS_EXIST variable must be set to True or False at the
beginning of the script. By setting the variable INIT_CENTROIDS_FIXED to False or True the
initialization of the centroids happens randomly or the first k data points are chosen as
initial centroids. In addition, suitable values must be found for the following variables:
EPOCHS, i.e. the number of iterations the first version runs (fixed number of iterations),
MAX_EPOCHS, i.e. number of iterations the second version runs (not fixed), TOLERANCE and
BATCH_SIZE_PER_REPLICA. The number of clusters is given for each of the used files.

4.3. Used Hardware

TPU Environment: We use a single device Cloud TPU v3 via a VM with 128 GiB
RAM memory [7]. TPU v3 is the latest available version. It is is offered in two different
regional zones, Iowa (us-central1) and Netherlands (europe-west4). For optimal perform-
ance the TPU should be located in the same zone as the Google Cloud Storage bucket.

38

4.4. Data Sets

We choose Iowa because the TPU there is less expensive and the data we use is not
sensitive. It costs $8.00 per hour [75]. The cloud storage costs $0.02 per GB per month [76].

GPU Environment: We use a NVIDIA Tesla K80 with 12.68 GB RAM memory
via Google Colab (free version). The GPU loads the data from the Google Cloud Storage
bucket.

CPU Environment: We use a Intel® CoreTM i7-8550U CPU with 1.80GHz and
8,192 MB RAM memory. The CPU loads the data from the Google Cloud Storage bucket.

4.4. Data Sets

4.4.1. Synthetic Data Sets

For a systematic analysis of the proposed method, we generated several synthetic data sets.
The data sets vary in the parameters of number of data points n, number of dimensions
d and number of clusters k. This is to cover a wide range. The clusters are Gaussian
distributed (standard deviation 1.5) and are randomly distributed in the data space. The
synthetic data sets are optimized for the TPU to exploit its full potential (see Chapter
3.4.2 for reference). Table 4.1 shows all synthetic data sets used.

No. n d k
1 10,240 8 8
2 10,240 32 16
3 10,240 64 16
4 102,400 64 32
5 102,400 128 64
6 102,400 512 64
7 512,000 128 128
8 512,000 256 64
9 512,000 512 32
10 1,024,000 64 32
11 1,024,000 128 128
12 1,024,000 256 64

Table 4.1.: Synthetic Data Sets

The files are named according to the following scheme: data_<n>_<d>_<k>.csv.

4.4.2. Real Data Sets

We use three publicly available real data sets. The data set Bank Marketing [77] is from
the UCI Machine Learning Repository [78]. It contains features related with bank client,
product and social-economic attributes and is used to predict the success of telemarketing

39

4. Implementation

calls for selling term deposit subscriptions. Therefore, the data set consists of two
classes with labels ’yes’ or ’no’. Since a few features are text or categorical features, we
preprocessed the data set converting these features into numerical features.
The second data set Internet of Things (IoT) Botnet [79] is from Kaggle database [80]. It
is a collection of nine network attack data sets and is already preprocessed. We used the
data of the botnet malware ’Mirai’ attack. Since the true labels are available, we derived
the number of clusters from there.
The third data set is the MNIST [81] data set from Keras database. The data set is split
into a train set (60,000 objects) and a test set (10,000) objects. Since we use the data set
for clustering, we concatenated the train and test set. The data set contains image data,
and for this reason, it is preprocessed with k = 256 as the optimal number of clusters.
Table 4.2 gives an overview of the properties2 of the data sets.

Data Set n d k
Bank Marketing 41,188 48 2
IoT Botnet 764,137 115 2
MNIST 70,000 784 256

Table 4.2.: Real Data Sets

4.5. Experimental Setup

The bachelor thesis was used as inspiration for the proposed method. Since the state of
technology is outdated, the project is restarted and set up from scratch again using only
the idea of implementing two versions.
The experiment is divided into three parts: In the first part, two important parameters,
batch size and convergence tolerance, are optimized or constrained. In the second part,
version 1 distribute_repeat and 2 distribute_mean as described in Chapter 3.3 are com-
pared against each other to verify if the findings of the bachelor thesis still hold for the
newer stake of technology. In the third part, both versions are combined on the basis of
these findings, and the combination is optimized.
To make all experiments comparable, the first k data objects were always chosen as initial
centroids. In order to make the experiments transparent, understandable and replicable,
the code is made available in the GitLab repository of the University of Vienna3. To
run the experiments, main.py is adapted. In each section it is mentioned which of the
adaptations should be used in order to replicate the experiment. An overview can be
found in Table A.4 in Appendix A.4.

2Properties after data preprocessing
3https://git01lab.cs.univie.ac.at/wolffa95/tpu-k-means

40

https://git01lab.cs.univie.ac.at/wolffa95/tpu-k-means

4.5. Experimental Setup

4.5.1. Experiment 1: Batch Size

To achieve the highest possible efficiency on the TPU, first the parameters batch size and
convergence tolerance ε (allowed deviation between the previous centroids and the new
centroids) are optimized by a few experiments.

Five different batch sizes (per replica) are tested for each of the synthetic data sets.
For the real data sets, nine different batch sizes are tested; four of them optimized for
the data set, and five of them optimized for the TPU. A distinction is made between
these two optimizations because drop_remainder is set to True in batching for efficiency
reasons. Since real data often does not meet the criterion that the number of objects is
divisible by 64 or 1,024, optimized for the data set means that the remainder is kept as
small as possible. As a consequence, as many data objects as possible are clustered with
k-Means and only as few objects as possible need to be predicted.
Optimized for the TPU means that the batch size is a multiple of 64 or 1,024 and the
size of the remainder is neglected.
Table 4.3 shows with which batch sizes the data sets were tested as well as in how many
batches this batch size results. The TPU optimum refers to the setting of a global batch
size of 1,024, i.e., a batch size per replica of 128. The batch size that results in the shortest
runtime is used for further experiments.

TPU Optimized
Number of Objects /
Number of Batches

TPUit
Optimum 20 10 5 1

10,240 (1-3) 128 64 128 256 1,280
102,400 (4-6) 128 640 1,280 2,560 12,800
512,000 (7-9) 128 3,200 6,400 12,800 64,000
1,024,000 (10-12) 128 6,400 12,800 25,600 128,000
41,188 (Bank Marketing) 128 256 512 1,024 5,120
764,137 (IoT Botnet) 128 4,736 9,536 - -
70,000 (MNIST) 128 384 832 1,728 8,704

Data Set Optimized
41,188 (Bank Marketing) - 257 514 1,029 5,148
764,137 (IoT Botnet) - 4,775 9,551 19,103 95,517
70,000 (MNIST) - 437 875 1,750 8,750

Table 4.3.: Tested Batch Sizes

For the data set IoT Botnet, only three "TPU-optimized" settings are tested, since the
number of objects of the remainder for the other two settings is almost the same number
of objects of the entire data set.
The experiment can be replicated by running main_repeat_batch_loop.py

41

4. Implementation

4.5.2. Experiment 2: Convergence Tolerance

The convergence tolerance is tested for two values, ε = 0.001 and ε = 0.01, since the
goal is to speed up the k-Means algorithm. To ensure that quality is maintained, this
experiment is performed with standard k-Means and k-Means with matrix multiplication.
The experiment is performed with data set 7 (data_512000_128_128.csv) with a batch
size per replica of 12,800. The number of iterations is fixed at 20. The experiment can be
replicated by running main_repeat.py.

4.5.3. Experiment 3: Comparison of Versions

In the second part of the experiment, the two versions presented in Chapter 3.3 are each
executed in isolation on the TPU using the k-Means Algorithm with matrix multiplication.
This step is to check whether the findings from the bachelor thesis still apply to the newer
state of technology. The experiment is only applied on the synthetic data sets. Each of
the data sets is executed four times with a fixed number of iterations (5, 10, 20, 100) and
once with a variable number of iterations of maximum 100 iterations. The experiment
can be replicated by running main_repeat_loop.py.

4.5.4. Experiment 4: Combination of Versions

Assuming Experiment 3 confirms the results, it sounds promising to combine the two
versions. This way, it is possible to receive the benefits of both: the quality of version
1 distribute_repeat and the speed of version 2 distribute_mean. Based on the findings,
both versions are combined. The combination is tested in both directions: first version 1
distribute_repeat and then version 2 distribute_mean (v1 → v2), and vice versa (v2 → v1).
Both combinations are repeated five times for each of the twelve synthetic data sets. The
number of iterations for the first version is fixed to 2, 5, 10, 20, and 50, respectively. For the
second version being executed, the number of iterations is variable and set to a maximum
of 100. In total, a maximum of 150 iterations is possible. In addition to comparing
both combinations to each other, the results of this experiment are also compared to
the runtime results of version 1 distribute_repeat and version 2 distribute_mean from
Experiment 3, when both versions were executed in isolation. This way, it is possible
to see whether combining both versions is beneficial. The experiment is conducted on
both, synthetic as well as real data sets. The experiment can be replicated by running
main_combine_loop.py.
When the experiment was conducted, it was extended by two parts. These can be
replicated by executing the files main_repeat_loop2.py and main_combine_loop2.py

4.5.5. Experiment 5: Performance Comparison to GPU and CPU

In Experiment 5, the performance of the implementation on the TPU is compared to the
performance on a GPU and CPU. Based on the results of Experiment 4, the version /
combination with the best performance is used for this comparison. The experiment can
be replicated by running main_repeat_loop3.py.

42

5. Evaluation and Discussion

5.1. Experiment 1: Batch Size

The results of this experiment are saved in the file all_results_sep.csv as well as in the
log file 2022-04-24_log.log. To evaluate the experiment, we filtered the csv-file by the
number of objects, since the number of batch sizes should correlate to the number of
objects in the data set. For each of the two versions, we marked the batch size with the
shortest runtime per number of objects n. The runtime is always measured for only the
k-Means clustering if not stated differently. The batch size that most often resulted in the
best runtime per n is shown in Table 5.1. This batch size is used for all further experiments.

Number of Objects Data Sets Best Batch Size Per Replica
10,240 1-3 256
102,400 4-6 2,560
512,000 7-9 12,800
1,024,000 10-12 25,600
41,188 Bank Marketing 5,120
764,137 IoT Botnet 19,103
70,000 MNIST 1,750

Table 5.1.: Best Batch Sizes

The statement that the setting with a global batch size of 1,024, i.e. a batch size per
replica of 128, in combination with 128 dimensions on the TPU is optimal, does not apply
to clustering with k-Means. As seen in Figures 5.1, 5.2, and 5.3, the runtime for batch
size per replica of 128 is (significantly) worse.

For the real data sets, a distinction was made in the experiment between "data set
optimized" and "TPU optimized". As can be seen in Figure 5.4, the results hardly differ.
However, it should be considered in the decision that predicting the remainder takes time.
The selected batch sizes for the real data sets can also be found in Table 5.1.

Discussion: The experiment showed that large batch sizes are possible when clustering
with k-Means on the TPU. The batch sizes are many times larger than recommended
by Google in all tested cases. One explanation is that the calculation of the k-Means
algorithm is much less complex than that of DNNs, for which the TPU was developed
and tested.

43

5. Evaluation and Discussion

Figure 5.1.: Batch Size Per Replica Runtime Comparison

Figure 5.2.: Batch Size Per Replica Runtime Comparison

5.2. Experiment 2: Convergence Tolerance

Experiment 2 shows that reducing the convergence tolerance from ε = 0.001 to ε = 0.01
has no effect on clustering quality as can be seen in Figure 5.5.
As Figure 5.6 shows, the runtime can be improved by lowering the tolerance. For this
reason, the convergence tolerance is set to ε = 0.01 for the following experiments.
Furthermore, the metrics are at least equally good for both k-Means, with matrix mul-
tiplication and standard k-Means. This holds for version 1 distribute_repeat as well as
version 2 distribute_mean. The code for standard k-Means as implemented can be found
in Appendix A.3.
The evaluation of this experiment is based on the data collected in the files all_results_sep.csv
and 2022-04-24_log.log.

44

5.2. Experiment 2: Convergence Tolerance

Figure 5.3.: Batch Size Per Replica Runtime Comparison

Figure 5.4.: Comparison of TPU-Optimized and Data Set Optimized Batch Size

Figure 5.5.: Quality Comparison of ε = 0.001 and ε = 0.01

Figure 5.6.: Runtime Comparison of ε = 0.001 and ε = 0.01

45

5. Evaluation and Discussion

5.3. Experiment 3: Comparison of Versions

Experiment 3 confirms the findings of the bachelor thesis. For the newer stack of technology
it is still true that version 1 distribute_repeat results in a higher quality but version 2
distribute_mean is faster.
Figures 5.7, 5.8, 5.9, and 5.10 show a runtime comparison of both versions for all data
sets when the number of iterations is fixed to 5, 10, 20 or 100. The data sets are
summarized by number of objects. Version 1 distribute_repeat performs slower than
version 2 distribute_mean, and the higher the number of iterations, the greater the
difference becomes visible. Version 2 distribute_mean is at least 50% faster and up to
99% times faster (data sets 10, 11, 12) than version 1 distribute_repeat.

Figure 5.7.: Runtime Comparison of Version 1 distribute_repeat and Version 2 distrib-
ute_mean for Data Sets 1-3

Figure 5.8.: Runtime Comparison of Version 1 distribute_repeat and Version 2 distrib-
ute_mean for Data Sets 4-6

Version 1 distribute_repeat achieves (slightly) better quality than version 2 distrib-
ute_mean in almost all cases (85.83%). A direct comparison is shown for data set 7 in

46

5.3. Experiment 3: Comparison of Versions

Figure 5.9.: Runtime Comparison of Version 1 distribute_repeat and Version 2 distrib-
ute_mean for Data Sets 7-9

Figure 5.10.: Runtime Comparison of Version 1 distribute_repeat and Version 2 distrib-
ute_mean for Data Sets 10-12

Figures 5.11, 5.12, 5.13, 5.14, and 5.15. Referring to the internal metrics, the quality
of version 2 distribute_mean is better, referring to the external metrics, the quality of
version 1 distribute_repeat is higher. But as can be seen, the range on the y-axis is very
small which means that the quality differences are not large. Furthermore, more iterations
cannot increase the quality significantly.
Tables 5.2 and 5.3 show the relative improvement of the SSE after 5 and 100 iterations
compared to the initial SSE for version 1 distribute_repeat and version 2 distribute_mean,
respectively.
For both versions, there is not much of a difference after 5 or 100 iterations. Equally, the
difference between v1 and v2 is marginal.
The complete data can be found in Appendix A.5 in Figure A.1. A check mark means
that the statements of the bachelor thesis are correct; i.e. version 1 distribute_repeat is
more accurate and version 2 distribute_mean is faster.

47

5. Evaluation and Discussion

Figure 5.11.: Quality Comparison of Version 1 distribute_repeat and Version 2 distrib-
ute_mean Based on Sum of Squared Error

Figure 5.12.: Quality Comparison of Version 1 distribute_repeat and Version 2 distrib-
ute_mean Based on Calinski-Harabasz Index

Furthermore, we compared the number of iterations needed by version 1 distribute_repeat
and version 2 distribute_mean until convergence with a convergence tolerance ε = 0.01.
The number of iterations for version 2 distribute_mean is an average value based on all
distributed data sets per replica. As can be seen in Figure 5.16, version 2 distribute_mean
sometimes requires significantly more iterations than version 1 distribute_repeat (data
sets 7-9, 11-12) with the exception of data set 5 and 6, where version 1 distribute_repeat
needs more iterations. Nevertheless, version 2 distribute_mean is significantly faster than
version 1 distribute_repeat as can be seen in Figure 5.17.
The clustering quality of the internal metrics are very similar for most cases. A few
exceptions occur, where the quality of the clustering results of version 2 is clearly lower
than of version 1 distribute_repeat. The external metrics, i.e. the correctness of the label
assignments, is close to the same for both versions. Table A.2 and Table A.3 in Appendix

48

5.3. Experiment 3: Comparison of Versions

Figure 5.13.: Quality Comparison of Version 1 distribute_repeat and Version 2 distrib-
ute_mean Based on Davies Boulding Index

Figure 5.14.: Quality Comparison of Version 1 distribute_repeat and Version 2 distrib-
ute_mean Based on Adjusted Rand Index

A.5 display a detailed quality comparison.
The evaluation of this experiment is based on the data collected in the files all_results_sep.csv
and 2022-04-24_log.log.

Discussion: Version 1 distribute_repeat results in a higher clustering quality because,
unlike version 2 distribute_mean, the new centroids are calculated based on the entire
data set, whereas in version 2 distribute_mean the new centroids are calculated based
on a small fraction of the entire data set. This can also be the reason why version 2
distribute_mean needs more iterations than version 1 distribute_repeat.
The large increase in the clustering quality right at the beginning and the subsequent
slight improvement can be explained by the fact that the centroids shift by the greatest
distance in the beginning and then only position themselves within the cluster. This is
also true if the initial centroids are chosen poorly.

49

5. Evaluation and Discussion

Figure 5.15.: Quality Comparison of Version 1 distribute_repeat and Version 2 distrib-
ute_mean Based on Normalized Mutual Information

Data Set Initial SSE
SSE after
5 Iterations

Rel.
Imp.

SSE after
100 Iterations

Rel.
Imp.

1 11,306.46 579.43 95% 579.41 95%
2 316,460.86 29641.47 91% 29641.46 91%
3 562,967.09 34947.23 94% 34947.23 94%
4 2,503,102.55 306,057.01 88% 306,057.01 88%
5 19,761,435.11 2,889,620.30 85% 2,889,620.30 85%
6 82,070,990.02 10,027,015.22 88% 10,027,015.20 88%
7 46,302,607.44 5,303,198.09 89% 5,303,198.09 89%
8 42,652,781.73 5,282,051.37 88% 5,282,051.37 88%
9 21,079,112.58 3,428,496.28 84% 3,428,496.28 84%
10 2,558,262.59 224,798.01 91% 224,798.01 91%
11 45,724,417.04 5,074,685.35 89% 5,074,685.35 89%
12 40,792,315.20 4,975,061.66 88% 4,975,061.66 88%

Table 5.2.: SSE Development Version 1 distribute_repeat

The calculation of the k-Means with version 2 distribute_mean is faster than with version
1 distribute_repeat, because the communication between CPU and TPU between the
iterations is omitted. In fact, the calculation speed is so fast that a required high number
of iterations is hardly significant.

5.4. Experiment 4: Combination of Versions

Experiment 4 was extended by two additional parts due to the results, which is why the
evaluation is divided into part 1, part 2 and part 3.

50

5.4. Experiment 4: Combination of Versions

Data Set Initial SSE
SSE after
5 Iterations

Rel.
Imp.

SSE after
100 Iterations

Rel.
Imp.

1 11,306.46 682.66 94% 682.70 94%
2 316,460.86 30,346.58 90% 30,346.58 90%
3 562,967.09 46,506.13 92% 46,506.13 92%
4 2,503,102.55 326,028.89 87% 325,939.80 87%
5 19,761,435.11 2,923,537.61 85% 2,923,541.66 85%
6 82,070,990.02 10,148,912.70 88% 10,148,912.70 88%
7 46,302,607.44 5,303,199.94 89% 5,303,199.95 89%
8 42,652,781.73 ,5282,051.97 88% 5,282,051.99 88%
9 21,079,112.58 3,428,496.61 84% 3,428,496.64 84%
10 2,558,262.59 224,985.25 91% 224,988.94 91%
11 45,724,417.04 5,074,685.87 89% 5,074,685.88 89%
12 40,792,315.20 4,97,5062.04 88% 4,975,062.05 88%

Table 5.3.: SSE Development Version 2 distribute_mean

Figure 5.16.: Comparison of Number of Iterations Needed by Version 1 distribute_repeat
and Version 2 distribute_mean

5.4.1. Part 1: Comparison of the Combinations and Versions

In Experiment 4 we have combined version 1 distribute_repeat and version 2 distrib-
ute_mean in both directions; v1 → v2 and v2 → 1. As before, the measures runtime,
number of variable iterations and quality were evaluated. First runtime as well as the
required number of iterations were evaluated. The results for data sets 5, 7 and 9 can be
seen in Figures 5.18, 5.19 and 5.20, respectively. These three data sets seemed to be the
most representative. The results for the other data sets can be found in Appendix A.6.1
for reference. The figures show the fixed number of iterations tested on the x-axis and
the total runtime as well as the number of iterations needed by the second version in the
combination on the y-axis. Furthermore, the runtime of the combinations was compared
with those of version 1 distribute_repeat and version 2 distribute_mean from Experiment

51

5. Evaluation and Discussion

Figure 5.17.: Runtime Comparison of Version 1 distribute_repeat and Version 2 distrib-
ute_mean (Variable Numbers of Iterations)

3, since the goal is to speed up the calculation of the k-Means using the TPU. Combining
the two versions is just one approach to test. The runtime of version 1 distribute_repeat
and version 2 distribute_mean refers to the measurement with a variable number of
iterations and is shown as a constant.
As can be seen in the figures, the results of the options are not very consistent. The
performance of the option v1 → v2 deteriorates the more iterations of version 1 distrib-
ute_repeat are performed. This can be observed for all twelve data sets. The performance
of option v2 → v1 varies a lot, as can be seen especially in figure 5.19 and 5.20.

Figure 5.18.: Runtime Comparison of the Combinations for Data Set 5

It is also noticeable - and this applies to both combinations - that regardless of how many
iterations the first version has performed, the second one requires about the same number
of iterations. This is also, with a few exceptions, very well seen in the figures of the other
data sets in Appendix A.6.1. The runtime performance of the combination v2 → v1,
when not fluctuating, is comparable to that of version 1 distribute_repeat. The runtime

52

5.4. Experiment 4: Combination of Versions

Figure 5.19.: Runtime Comparison of the Combinations for Data Set 7

Figure 5.20.: Runtime Comparison of the Combinations for Data Set 9

performance of the combination v1 → v2 is similar to that of version 2 distribute_mean,
although this is only true if the proportion of iterations of version 1 distribute_repeat in
the combination is low.
The quality of version 1 distribute_repeat or also the combination v2 → v1 is better
than that of version 2 distribute_mean or the combination v1 → v2. Figure 5.21 shows
the quality comparison based on the SSE as a heatmap. The heatmaps for the other
metrics are attached in Appendix A.6.2 (Figures A.11, A.12, A.13, A.14). The scale of
the heatmap goes from lowest to highest value, with the highest quality marked in light
blue and the lowest quality in medium blue. However, looking closely at the figures it can
be seen that the values are usually very close to each other. For this reason, the focus in
the next part is on runtime, neglecting quality.
To further narrow down the results, this experiment is extended as follows. However, only
the combination v1 → v2 and version 2 distribute_mean are considered.
The evaluation of the first part of this experiment is based on the data collected in the
files all_results_comb.csv, all_results_sep.csv and 2022-04-30_log.log.

53

5. Evaluation and Discussion

Figure 5.21.: Quality Heatmap Based on SSE

Discussion The experiment showed that no additional benefits can be obtained by
combining the versions. However, one should keep a few points in mind when considering
the results. First, the runtime comparison is not entirely fair, since up to 150 iterations
are possible with the combination, but only 100 iterations were possible in Experiment
3. Also, many parameters have an impact that cannot be tested in detail within the
scope of the master’s thesis. These include number of objects, number of dimensions,
number of clusters as well as initial centroids. In the experiments so far, the first k data
objects have always been used as initial centroids without making any statement about
whether they are good or not. But it is known that initial centroids have a great impact
on the performance of the k-Means algorithm. For these reasons, a second part is added
to Experiment 4.

5.4.2. Part 2: Verification With Random Initial Centroids

In the second part of the experiment only the combination v1 → v2 as well as version 2
distribute_mean are considered. The initial centroids are now chosen randomly, with both
options receiving the same random initial centroids so that the results are comparable. In
addition to that, the final centroids are stored. Both options are run ten times. Version
2 distribute_mean runs through a maximum of 100 iterations. Combination v1 → v2
is also repeated ten times, with version 1 distribute_repeat making two, five, and ten
iterations, respectively, and version 2 distribute_mean making a maximum of 98, 95, and
90 iterations, respectively, so that a total of 100 iterations is possible.

Even with different randomly chosen initial centroids, version 2 distribute_mean re-
mains much faster than the combination v1 → v2. The quality of the combination
is usually better, but when looking closely at the numbers, the difference often only
becomes apparent in the decimal places. The document in Appendix A.6.3 shows a
detailed list of the results. The results for each data set, each of the initial centroids
(the filename reference is given) and each of the versions, i.e., combination v1 → v2 with
2 iterations fixed and up to 98 iterations variable, with 5 iterations fixed and up to 95

54

5.4. Experiment 4: Combination of Versions

iterations variable, with 10 iterations fixed and up to 90 iterations variable, and version 2
distribute_mean with up to 100 iterations variable (shown as "-") are listed here. For
each of the initial centroids of each data set, the best value is marked in gray.
The evaluation of the second part of this experiment is based on the data collected in the
files all_results_comb.csv, all_results_sep.csv and 2022-05-04_log.log.

Discussion Randomizing the initial centroids does not change the runtime behaviour of
the combinations / versions. This is not surprising since both options, though randomly
selected, received the same initial centroids and performed basically the same calculations.

5.4.3. Part 3: Verification With Real Data Sets

In the third part of the experiment, the second part of Experiment 4 is repeated with
real data sets, to see if these findings only apply for "perfect" Gaussian distributed data
or also for data in different shapes.

Part 3 of Experiment 4 confirms the findings of part 2 for real data sets. As in part 2,
version 2 distribute_mean is a lot faster than the combination v1 → v2 but the quality is
better when the data set is clustered with the combination v1 → v2. For the runtime,
this is true for each of the data sets and each of the initial centroids without exception.
For the evaluation metrics, this is true with the exception of the ARI for the MNIST data
set. The full report on the results is attached in Appendix A.6.4. The best result per
initial centroid per data set is highlighted in gray.
The impact of the quality differences in the clustering results for the real data sets is more
difficult to recognize at first glance. For this reason, we calculated the relative deviation
to the benchmark result, i.e., the best result per initial centroids per data set. Figure
5.22 shows this for the MNIST data set. The calculations for all data sets can be found
figure A.15 in Appendix A.6.4.

Figure 5.22.: Detailed Benchmark Comparison for the MNIST Data Set

55

5. Evaluation and Discussion

The deviations for the runtime as well as the evaluation metrics SSE, CH, DB, NMI and
ARI are shown. The runtime is highlighted if it is more than 100% slower, half as fast
as the benchmark. The values of the metrics are highlighted if they deviate more than
10% from the benchmark value. The runtime for the combination deviates by more than
100% in all cases. In the best case this is -128% and in the worst case it is -1,282.97%.
In contrast, the metrics of version 2 distribute_mean deviate from the benchmark of
the combination v1 → v2 by more than 10% only for the internal metrics. The largest
deviation is -23.9%.
The evaluation of the second part of this experiment is based on the data collected in the
files all_results_comb.csv, all_results_sep.csv and 2022-05-04_log.log.

Discussion It can be stated that the combination v1 → v2 performs better in terms
of quality, but significantly worse in terms of runtime. The goal of the master thesis is
to enhance the k-Means with the use of the TPU with respect to the runtime without
major losses in quality. As Experiments 3 and 4 show, version 2 distribute_mean distrib-
ute_mean gives the best results on the TPU. Therefore, this is used for the comparison
with CPU and GPU in Experiment 5.

5.5. Experiment 5: Performance Comparison to CPU and
GPU

We analyzed and compared the performance of TPU, GPU and CPU in terms runtime
and quality. On the TPU as well as on the GPU, there are eight replicas in sync, i.e. the
training is distributed across eight cores. The CPU has one replica in sync, which means
that the training is not distributed. The runtime for both, the pure calculation and in
total, i.e. including reading, batching and distributing the data set as well as initializing
the centroids, is measured. The results for runtime performance are depicted for the data
sets 1, 9 and Bank Marketing in the Figures 5.23, 5.24, 5.25, respectively. The results for
all data sets can be found in Appendix A.7, Figures A.16 and A.17. The TPU is shown
in light blue in all figures, the GPU in gray and the CPU in beige.
The shortest runtime for the calculation of data set 1 (10,240 objects, 8 dimensions, 8
clusters; 1.46 MB) is achieved on the CPU. The total runtime is shortest on the GPU by
0.4 seconds compared to the CPU. For data set 9 (512,000 objects, 512 dimensions, 32
clusters; 4.4 GB) this looks different. Here, the TPU delivers by far the best calculation
runtime (302% faster than the GPU and 2,215% faster than the CPU).
Looking at the total runtime, however, the GPU performs better. The difference is 3%
compared to the TPU and 302% compared to the CPU.
The runtime performance for the data set Bank Marketing (41,188 data objects, 48
dimensions, 2 clusters; 4.57 MB) is best with the TPU.
Comparing the quality, the best results are often achieved on the TPU. Generally, the dif-
ferences in quality between the three processors are small. The results of this comparison
can be found in Appendix A.7 Figure A.17.
The evaluation of Experiment 5 is based on the data collected in the files all_results_sep.csv

56

5.5. Experiment 5: Performance Comparison to CPU and GPU

Figure 5.23.: Runtime Comparison of TPU, GPU, and CPU for Data Set 1

Figure 5.24.: Runtime Comparison of TPU, GPU, and CPU for Data Set 9

Figure 5.25.: Runtime Comparison of TPU, GPU, and CPU for Bank Marketing Data
Set

57

5. Evaluation and Discussion

and 2022-05-05_log.log.

Discussion: The runtime required for clustering with k-Means is on the TPU a lot faster
than on GPU or CPU. Nonetheless, the total runtime takes longer compared to the other
processors. It can be deduced from this that a lot of time is needed for reading in the
data and, in the case of the TPU, also for transferring the data from the CPU to the
TPU. Moreover, it should be taken into consideration that for the GPU Google colab was
used which is part of the Google infrastructure and hosted in the Cloud. This could be
one of the reasons why the overall runtime performance on the GPU was often better.
k-Means converges to a local optimum instead of a global optimum. For this reason, in
practice, the algorithm is often repeated multiple times with different initial clusters. In
the experiment however, k-Means was only executed once per data set. But running
k-Means multiple times for one data set, reduces the proportion of the runtime required
to load the data set in relation to the calculation time. This makes the TPU competitive
overall.
Additionally, there are some potential improvements that can shorten execution time
spent with loading the data set. These include, for example, using the TFRecord data
format instead of csv files. This could improve the overall runtime on all three processors,
since the data format is specific to Tensorflow. Another measure that could improve
runtime is to split large data sets into smaller ones and read them in chunks. Using version
2 distribute_mean, this is possible since the data set does not need to be synchronized
between assignment steps. It only needs to be ensured, that there is a continuous income
stream of data.
Last but not least, the final experiment proved that the clustering quality of the k-Means
algorithm performed on the TPU is equally good compared to GPU and CPU.

58

6. Conclusion

6.1. Summary

The massive increase in data stored in digital form leads to two necessities: On the one
hand, algorithms are needed that can extract meaningful information from these volumes
of data, and on the other hand, the computational ability to process these volumes of data.
The former is the subject of data mining, the goal of which is to interpret large data sets.
The latter challenge has also been recognized by Google, which developed the TPU to
stem the user demands in their data centers. In Google’s data centers, the TPU is mainly
used for executing DNNs. The master thesis explored to extend this research to other
Data Mining algorithms. The k-Means algorithm is one of the most popular algorithms in
data mining. It is scalable and well suited for analyzing large data sets. Furthermore, it
can be formulated as matrix calculation which makes it possible to exploit the potentials
of the TPU. The aim of the master thesis is to enhance the k-Means algorithm with the
use of the TPU in terms of runtime while preserving the quality of the clustering results.
We implemented two versions, version 1 distribute_repeat and version 2 distribute_mean,
for which the concept is based on a bachelor thesis written at the University of Vienna.
Since both versions have complementary advantages we furthermore, combined these two
versions to the two options v1 → v2 and v2 → v1 and experimented with different fixed
number of iterations, the first version is being executed.
The comparison of all four options showed that version 2 distribute_mean is the fastest
with comparable clustering results to the other three options. The slower runtime per-
formance of version 1 distribute_repeat can be explained by the communication overhead
between TPU and CPU in each iteration and that the update step is entirely performed
on the CPU.
This obviously takes so much time to do that version 2 distribute_mean is faster even if
it takes significantly more iterations to converge. This observation can also be applied
to the combinations. The larger the share of version 1 distribute_repeat in the total
number of iterations is, the slower the runtime performance. Combination v1 → v2 came
close to the runtime performance of version 2 distribute_mean, but only if version 1
distribute_repeat has a share of 2 or maximum 5 iterations. The clustering results of
version 2 distribute_mean are of lower quality than for other options but the deviation is
small with a maximum of 24%. The runtime was up to 1,283% faster in the experiments
compared to the other options.

Furthermore, it can be stated that the clustering quality based on Concept 2 with
matrix multiplication is as good as that of the standard k-Means.

59

6. Conclusion

Comparing the clustering results of version 2 distribute_mean executed on the TPU to
the results on the CPU or GPU, the quality is at least equally.
In the experiments, it was also found that the runtime for calculating the k-Means on the
TPU is significantly faster than on the CPU or GPU. However, reading in the data and
loading it onto the TPU takes more time. However, if one considers that k-Means often
has to be repeated several times with different initial centroids in practice, this is less
significant. In the experiment, k-Means was only executed once, so this effect could not
be recorded. In addition, optimization approaches for reading in the data were proposed.
The results described above apply to both the TPU optimized synthetic data sets and
real data sets.
In the experiments, we additionally investigated possible batch sizes. For k-Means, much
larger batch sizes can be chosen than recommended by Google, although it can be assumed
that this recommendation refers to DNNs. The recommended optimal batch size by
Google is 128 per replica, but we were able to successfully test the k-Means with a batch
size of 128,000 per replica, which corresponds to a global batch size of 1,024,000 on a single
TPU v2 or v3 device. It is reasonable to assume that larger batch sizes are possible for
k-Means because the computations performed are far less complex than those of DNNs.
We were also able to show with our experiments that the implementation can be run with
any initial centroids and thus the optimizations presented at the beginning of the paper
can be applied. And last but not least, the same code is executable on TPU, GPU and
CPU and thus can be used flexibly.

In summary, k-Means can be enhanced with the TPU in terms of runtime without
major deviations in the quality of the clustering results. However, it has been found that
combining the two versions is not beneficial, since the increase in quality does not justify
the longer runtime. The results that can be achieved with version 2 distribute_mean are,
however, sufficient.
Using a TPU is much more expensive than using a GPU or CPU. For this reason, costs
and performance need to be put in relation. The use of the TPU is beneficial for large
and very large data sets in terms of number of objects, number of dimensions and number
of clusters and/or if k-Means is repeated several times for a data set.

6.2. Future Work

In future work the influence of the data set properties number of objects n and number
of dimensions d as well as the number of clusters k can be investigated in more detail so
that better statements can be made about the performance of the k-Means on the TPU
and to be able to better assess under which conditions the use of the TPU is beneficial.
This also includes making a meaningful comparison with CPU and GPU, i.e. with more
powerful processors. On this basis, a good cost-performance comparison could be made
and better statements made as to when the use of the TPU is really worthwhile.
Future work could also include the investigation of common k-Means extensions on the
TPU. It is conceivable that this could lead to further benefits from the use of the TPU.

60

6.2. Future Work

Furthermore, it could be interesting to extend the research and explore the use of
the TPU for other clustering algorithms as well, or for other methods in the area of
Unsupervised Learning. The only prerequisite for this is that the algorithms can at least
be expressed as matrix operations, but ideally as matrix multiplications.

61

Bibliography

[1] K. R. Chowdhary. Data Mining. In K.R. Chowdhary, editor, Fundamentals of
Artificial Intelligence, pages 507–555. Springer India, New Delhi, 2020.

[2] Norman Jouppi, Cliff Young, Nishant Patil, and David Patterson. Motivation for
and Evaluation of the First Tensor Processing Unit. IEEE Micro, 38(3):10–19, May
2018.

[3] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau,
Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William
Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt,
Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit
Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon
MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana
Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani,
Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy
Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay
Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-
Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the
44th Annual International Symposium on Computer Architecture, ISCA ’17, pages 1–
12, New York, NY, USA, June 2017. Association for Computing Machinery. Comment:
17 pages, 11 figures, 8 tables. To appear at the 44th International Symposium on
Computer Architecture (ISCA), Toronto, Canada, June 24-28, 2017.

[4] Norm Jouppi. Google supercharges machine learning tasks with TPU custom chip.
https://cloud.google.com/blog/products/ai-machine-learning/google-su
percharges-machine-learning-tasks-with-custom-chip/, May 2016. Accessed
17 Nov 2021.

[5] Release Notes | Cloud TPU. https://cloud.google.com/tpu/docs/release-no
tes. Accessed 23 Oct 2021.

[6] System Architecture | Cloud TPU. https://cloud.google.com/tpu/docs/system
-architecture-tpu-vm. Accessed 19 Nov 2021.

63

https://cloud.google.com/blog/products/ai-machine-learning/google-supercharges-machine-learning-tasks-with-custom-chip/
https://cloud.google.com/blog/products/ai-machine-learning/google-supercharges-machine-learning-tasks-with-custom-chip/
https://cloud.google.com/tpu/docs/release-notes
https://cloud.google.com/tpu/docs/release-notes
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm

Bibliography

[7] Cloud Tensor Processing Units (TPUs) | Google Cloud. https://cloud.google.c
om/tpu/docs/tpus. Accessed 23 Oct 2021.

[8] Chong Ho Yu. Exploratory data analysis in the context of data mining and resampling.
International Journal of Psychological Research, 3, June 2010.

[9] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques.
The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann,
Boston, third edition edition, 2012.

[10] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall,
Inc., USA, 1988.

[11] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi
Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou,
Michael Steinbach, David J. Hand, and Dan Steinberg. Top 10 algorithms in data
mining. Knowledge and Information Systems, 14(1):1–37, January 2008.

[12] J. MacQueen. Some methods for classification and analysis of multivariate observa-
tions. In In 5-Th Berkeley Symposium on Mathematical Statistics and Probability,
pages 281–297, 1967.

[13] Edward Forgy. Cluster analysis of multivariate data: Efficiency vs. interpretability of
classification. Biometrics. Journal of the International Biometric Society, 21(3):768–
769, 1965.

[14] S. P. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Theory, 1982.

[15] John A. Hartigan. Clustering Algorithms. John Wiley & Sons, Inc., USA, ninety-ninth
edition, 1975.

[16] Dan Pelleg, Andrew W Moore, et al. X-means: Extending k-means with efficient
estimation of the number of clusters. In Icml, volume 1, pages 727–734, 2000.

[17] K. P. Sinaga and M. Yang. Unsupervised K-Means Clustering Algorithm. IEEE
Access, 8:80716–80727, 2020.

[18] Miin-Shen Yang, Chien-Yo Lai, and Chih-Ying Lin. A robust EM clustering algorithm
for Gaussian mixture models. Pattern Recognition, 45(11):3950–3961, November
2012.

[19] Greg Hamerly and Charles Elkan. Learning the k in k-means. Advances in neural
information processing systems, 16:281–288, 2003.

[20] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding.
Technical Report 2006-13, Stanford InfoLab, June 2006.

[21] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei
Vassilvitskii. Scalable K-Means++. arXiv:1203.6402 [cs], March 2012.

64

https://cloud.google.com/tpu/docs/tpus
https://cloud.google.com/tpu/docs/tpus

Bibliography

[22] Michael Steinbach, George Karypis, and Vipin Kumar. A Comparison of Document
Clustering Techniques. Report, University of Minnesota, May 2000.

[23] Aristidis Likas, Nikos Vlassis, and Jakob J. Verbeek. The global k-means clustering
algorithm. Biometrics, 36(2):451–461, February 2003.

[24] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete
Data Via the EM Algorithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39(1):1–22, 1977.

[25] J. C. Dunn. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting
Compact Well-Separated Clusters. Journal of Cybernetics, 3(3):32–57, January 1973.

[26] James C Bezdek, Robert Ehrlich, and William Full. FCM: The fuzzy c-means
clustering algorithm. Computers & geosciences, 10(2-3):191–203, 1984.

[27] Joyce Jiyoung Whang, Inderjit S. Dhillon, and David F. Gleich. Non-exhaustive,
Overlapping k-means. In Proceedings of the 2015 SIAM International Conference on
Data Mining (SDM), Proceedings, pages 936–944. Society for Industrial and Applied
Mathematics, June 2015. doi:10.1137/1.9781611974010.105.

[28] Sanjay Chawla and Aristides Gionis. K-means–: A unified approach to clustering
and outlier detection. In Proceedings of the 2013 SIAM International Conference on
Data Mining, pages 189–197. SIAM, 2013.

[29] Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, and Joydeep Ghosh. Clus-
tering with bregman divergences. Journal of Machine Learning Research, 6(58):1705–
1749, 2005.

[30] S. Na, L. Xumin, and G. Yong. Research on k-means Clustering Algorithm: An
Improved k-means Clustering Algorithm. In 2010 Third International Symposium
on Intelligent Information Technology and Security Informatics, pages 63–67, April
2010.

[31] Charles Elkan. Using the triangle inequality to accelerate k-means. In Proceedings of
the 20th International Conference on Machine Learning (ICML-03), pages 147–153,
2003.

[32] Yufei Ding, Yue Zhao, Xipeng Shen, Madanlal Musuvathi, and Todd Mytkowicz.
Yinyang k-means: A drop-in replacement of the classic k-means with consistent spee-
dup. In Francis Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 579–587, Lille, France, July 2015. PMLR.

[33] Dan Pelleg and Andrew Moore. Accelerating exact k-means algorithms with geometric
reasoning. In Proceedings of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 277–281, 1999.

65

Bibliography

[34] Christian Böhm and Claudia Plant. Mining Massive Vector Data on Single Instruction
Multiple Data Microarchitectures. In 2015 IEEE International Conference on Data
Mining Workshop (ICDMW), pages 597–606, November 2015.

[35] Ali Hadian and Saeed Shahrivari. High performance parallel k-means clustering
for disk-resident datasets on multi-core CPUs. The Journal of Supercomputing,
69(2):845–863, August 2014.

[36] Wojciech Kwedlo and Michał Łubowicz. Accelerated K-Means Algorithms for Low-
Dimensional Data on Parallel Shared-Memory Systems. IEEE Access, 9:74286–74301,
2021.

[37] Christian Böhm, Martin Perdacher, and Claudia Plant. Multi-core K-means. In
Proceedings of the 2017 SIAM International Conference on Data Mining (SDM),
Proceedings, pages 273–281. Society for Industrial and Applied Mathematics, June
2017.

[38] David Pettinger and Giuseppe Di Fatta. Scalability of efficient parallel k-means. In
2009 5th IEEE International Conference on E-Science Workshops, pages 96–101,
2009.

[39] Maria Florina Balcan, Steven Ehrlich, and Yingyu Liang. Distributed k-Means and
k-Median Clustering on General Topologies. 2020.

[40] Inderjit S. Dhillon and Dharmendra S. Modha. A Data-Clustering Algorithm on
Distributed Memory Multiprocessors. In Mohammed J. Zaki and Ching-Tien Ho,
editors, Large-Scale Parallel Data Mining, Lecture Notes in Computer Science, pages
245–260, Berlin, Heidelberg, 2000. Springer.

[41] Mario Zechner and Michael Granitzer. Accelerating K-Means on the Graphics Pro-
cessor via CUDA. In 2009 First International Conference on Intensive Applications
and Services, pages 7–15, April 2009.

[42] Cloud TPU beginner’s guide | Google Cloud. https://cloud.google.com/tpu/doc
s/beginners-guide. Accessed 23 Oct 2021.

[43] System Architecture | Cloud TPU | Google Cloud. https://cloud.google.com/t
pu/docs/system-architecture-tpu-vm. Accessed 23 Oct 2021.

[44] Introduction to Cloud TPU. https://cloud.google.com/tpu/docs/intro-to-tpu.
Accessed 19 Nov 2021.

[45] Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil, James
Laudon, Cliff Young, and David Patterson. A domain-specific supercomputer for
training deep neural networks. Communications of the ACM, 63(7):67–78, June 2020.

[46] Bfloat16 and TensorFlow models | Cloud TPU. https://cloud.google.com/tpu/d
ocs/bfloat16. Accessed 03 Nov 2021.

66

https://cloud.google.com/tpu/docs/beginners-guide
https://cloud.google.com/tpu/docs/beginners-guide
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
https://cloud.google.com/tpu/docs/intro-to-tpu
https://cloud.google.com/tpu/docs/bfloat16
https://cloud.google.com/tpu/docs/bfloat16

Bibliography

[47] BFloat16: The secret to high performance on Cloud TPUs.
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-
to-high-performance-on-cloud-tpus/. Accessed 30 Mar 2022.

[48] Kaz Sato, Cliff Young, and David Patterson. An in-depth look at Google’s first
Tensor Processing Unit (TPU). https://cloud.google.com/blog/products/ai-
machine-learning/an-in-depth-look-at-googles-first-tensor-processing
-unit-tpu/. Accessed 20 Nov 2021.

[49] Tao Wang and Aarush Selvan. Google wins MLPerf benchmarks with TPU v4.
https://cloud.google.com/blog/products/ai-machine-learning/google-wi
ns-mlperf-benchmarks-with-tpu-v4/.

[50] Sundar Pichai. Google I/O 2021: Hilfreicher sein in Momenten, in denen es darauf
ankommt. https://blog.google/intl/de-de/unternehmen/inside-google/goo
gle-io-2021-hilfreicher-sein-momenten-denen-es-darauf-ankommt/, May
2021.

[51] Norman P. Jouppi, Cliff Young, Nishant Patil, and David Patterson. A domain-specific
architecture for deep neural networks. Communications of The Acm, 61(9):50–59,
August 2018.

[52] MLPerf™ Training v0.6 results. https://mlcommons.org/en/training-normal-06/.
Accessed 23 Nov 2021.

[53] Chris Ying, Sameer Kumar, Dehao Chen, Tao Wang, and Youlong Cheng. Image
classification at supercomputer scale. arXiv preprint arXiv:1811.06992, 2018.

[54] Yuri Gordienko, Yuriy Kochura, Vlad Taran, Nikita Gordienko, Alexandr Rokovyi,
Oleg Alienin, and Sergii Stirenko. Scaling Analysis of Specialized Tensor Processing
Architectures for Deep Learning Models. In Witold Pedrycz and Shyi-Ming Chen,
editors, Deep Learning: Concepts and Architectures, Studies in Computational
Intelligence, pages 65–99. Springer International Publishing, Cham, 2020.

[55] Yuriy Kochura, Yuri Gordienko, Vlad Taran, Nikita Gordienko, Alexandr Rokovyi,
Oleg Alienin, and Sergii Stirenko. Batch Size Influence on Performance of Graphic
and Tensor Processing Units During Training and Inference Phases. In Zhengbing Hu,
Sergey Petoukhov, Ivan Dychka, and Matthew He, editors, Advances in Computer
Science for Engineering and Education II, Advances in Intelligent Systems and
Computing, pages 658–668, Cham, 2020. Springer International Publishing.

[56] MLPerf™ Training v1.0 Results. https://mlcommons.org/en/news/mlperf-train
ing-v10/. Accessed 23 Nov 2021.

[57] V1.0 Results. https://mlcommons.org/en/training-normal-10/. Accessed 23
Nov 2021.

67

https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu/
https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu/
https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu/
https://cloud.google.com/blog/products/ai-machine-learning/google-wins-mlperf-benchmarks-with-tpu-v4/
https://cloud.google.com/blog/products/ai-machine-learning/google-wins-mlperf-benchmarks-with-tpu-v4/
https://blog.google/intl/de-de/unternehmen/inside-google/google-io-2021-hilfreicher-sein-momenten-denen-es-darauf-ankommt/
https://blog.google/intl/de-de/unternehmen/inside-google/google-io-2021-hilfreicher-sein-momenten-denen-es-darauf-ankommt/
https://mlcommons.org/en/training-normal-06/
https://mlcommons.org/en/news/mlperf-training-v10/
https://mlcommons.org/en/news/mlperf-training-v10/
https://mlcommons.org/en/training-normal-10/

Bibliography

[58] Cloud Solutions | Google Cloud. https://cloud.google.com/solutions. Accessed
23 Nov 2021.

[59] Products and Services | Google Cloud. https://cloud.google.com/products.
Accessed 23 Nov 2021.

[60] Mangpo Phothilimthana, Mike Burrows, Sam Kaufman, and Yanqi Zhou. A Learned
Performance Model for the Tensor Processing Unit. Technical report, 2020.

[61] Towhidul Islam, Nurul Absar, Abzetdin Z. Adamov, and Mayeen Uddin Khandaker.
A machine learning driven android based mobile application for flower identification.
In Mufti Mahmud, M. Shamim Kaiser, Nikola Kasabov, Khan Iftekharuddin, and
Ning Zhong, editors, Applied Intelligence and Informatics, pages 163–175, Cham,
2021. Springer International Publishing.

[62] Marwan Hassani and Thomas Seidl. Using internal evaluation measures to validate
the quality of diverse stream clustering algorithms. Vietnam Journal of Computer
Science, 4(3):171–183, August 2017.

[63] Thomas Spendlhofer. Evaluating the Usage of Tensor Processing Units (TPUs) for
Unsupervised Learning on the Example of the k-Means Algorithm. Bachelor thesis,
University of Vienna, Vienna, 2019. Accessible in the archive of the University of
Vienna.

[64] Cloud TPU performance guide. https://cloud.google.com/tpu/docs/performance-
guide. Accessed 13 Feb 2022.

[65] Tadeusz Caliński and Joachim Harabasz. A dendrite method for cluster analysis.
Communications in Statistics-theory and Methods, 3:1–27, 1974.

[66] David L. Davies and Donald W. Bouldin. A cluster separation measure. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2):224–227,
1979.

[67] Byron E. Dom. An information-theoretic external cluster-validity measure. In
Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence,
UAI’02, pages 137–145, San Francisco, CA, USA, August 2002. Morgan Kaufmann
Publishers Inc.

[68] William M. Rand. Objective Criteria for the Evaluation of Clustering Methods.
Journal of the American Statistical Association, 66(336):846–850, December 1971.
doi: 10.1080/01621459.1971.10482356.

[69] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification,
2(1):193–218, December 1985.

[70] Use TPUs | TensorFlow Core. https://www.tensorflow.org/guide/tpu. Accessed 27
Mar 2022.

68

https://cloud.google.com/solutions
https://cloud.google.com/products

Bibliography

[71] Distributed training with TensorFlow | TensorFlow Core. ht-
tps://www.tensorflow.org/guide/distributed_training. Accessed 18 Dec 2021.

[72] Tf.data.Dataset | TensorFlow Core v2.8.0. ht-
tps://www.tensorflow.org/api_docs/python/tf/data/Dataset. Accessed 27
Mar 2022.

[73] Tf.distribute.DistributedDataset | TensorFlow Core v2.8.0. ht-
tps://www.tensorflow.org/api_docs/python/tf/distribute/DistributedDataset.
Accessed 27 Mar 2022.

[74] Custom training with tf.distribute.Strategy | TensorFlow Core. ht-
tps://www.tensorflow.org/tutorials/distribute/custom_training. Accessed 28
Mar 2022.

[75] Pricing | Cloud TPU. https://cloud.google.com/tpu/pricing. Accessed 28 Mar 2022.

[76] Pricing | Cloud Storage. https://cloud.google.com/storage/pricing. Accessed 28 Mar
2022.

[77] Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the
success of bank telemarketing. Decision Support Systems, 62:22–31, 2014.

[78] UCI Machine Learning Repository: Bank Marketing Data Set. ht-
tps://archive.ics.uci.edu/ml/datasets/Bank+Marketing. Accessed 22 Apr 2022.

[79] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: An
Ensemble of Autoencoders for Online Network Intrusion Detection. arXiv:1802.09089
[cs], May 2018.

[80] Kitsune Network Attack Dataset. https://www.kaggle.com/ymirsky/network-attack-
dataset-kitsune. Accessed 23 Apr 2022.

[81] MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges.
http://yann.lecun.com/exdb/mnist/. Accessed 24 Apr 2022.

69

Acronyms

AI Artificial Intelligence. 13, 25

ALU Algorithmic Logic Unit. 14, 17

API Application Programming Interface. 13, 19, 36, 37

ARI Adjusted Rand Index. 34, 55, 56, 98

ASIC Application-Specific Integrated Circuit. 2, 13

bfloat16 brain floating point. 17

CapsNet Capsule Neural Network. 24

CH Calinski-Harabasz Index. 33, 56, 97

CNN Convolutional Neural Network. 22, 24

CPU Central Processing Unit. 1–3, 12–14, 16, 20, 22, 23, 29, 30, 35–37, 39, 42, 50, 56–60,
104

CUDA Compute Unified Device Architecture. 13

DB Davies Boulding Index. 34, 56, 97

DNN Deep Neural Network. 1, 2, 22–24, 43, 59, 60

DRAM Dynamic Random Access Memory. 16

EDA Exploratory Data Analysis. 3, 5

EM Expectation-Maximization. 12, 26

FCM Fuzzy C-Means. 12

FIFO First In – First Out. 17

FLOPS Floating Point Operations Per Second. 16, 19

GCP Google Cloud Platform. 2, 13, 19, 20

71

Acronyms

GiB Gibibyte. 15, 16, 38

GM Geometric Mean. 24

GPU Graphic Processing Unit. 2, 3, 12–14, 22–24, 29, 35–37, 39, 42, 56–58, 60, 104

gRPC Remote Procedure Call, developed by Google. 21

HBM High-Bandwidth Memory. 15, 16

IoT Internet of Things. 40, 41, 43

KDD Knowledge Discovery in Databases. 1, 5

LSTM Long Short-Term Memory. 22, 23

MiB Mebibyte. 15

MIMD Multiple Instructions Multiple Data. 12

MLP Multilayer Perceptron. 22–24

MPI Message Passing. 13

MXU Matrix Multiply Unit. 15–18, 32

NEO-K-Means Non-Exhaustive, Overlapping K-Means. 12

NMI Normalized Mutual Information. 34, 56, 98

NMT Neural Machine Translation. 23

OpenMP Open Multi-Processing. 12, 13

PCIe Peripheral Component Interconnect Express. 16

RCNN Region-Based Convolutional Neural Network. 23

ResNet Deep Residual Network. 23, 24

RI Rand Index. 34

RNN Recurrent Neural Network. 22, 24

SIMD Single Instruction Multiple Data. 12

SPMD Single Program Multiple Data. 13

72

Acronyms

SSD Single Shot Detector. 23

SSE Sum of Squared Error. 6, 7, 33, 47, 50, 51, 54, 56, 97

TPU Tensor Processing Unit. 2, 3, 13–25, 29–32, 35–39, 41–43, 45, 50, 52, 56–61, 104

U-K-Means Unsupervised K-Means. 11

VLIW Very Long Instruction Word. 17

VM Virtual Machine. 20, 21, 38

VPU Vector Processing Unit. 15–17

XLA Accelerated Linear Algebra. 21, 31, 37

73

A. Appendix

A.1. Custom Training Loops

A.1.1. Custom Training Loop v1 distribute_repeat

1 stop_criterion = False
2 assert EPOCHS > 0, "EPOCHS must be at least 1"
3 for ep in range(EPOCHS):
4 per_batch_centroids_sum = 0
5 per_batch_count = 0
6 count = 0
7 # iterate over the ‘tf.distribute.DistributedDataset ‘
8 for x in dataset:
9 per_replica_centroids_sum , per_replica_count , per_replica_output

= strategy.run(clf.assign_and_prep_fn , args=(x, centroids))
10

11 per_batch_centroids_sum += strategy.reduce(tf.distribute.ReduceOp
.SUM , per_replica_centroids_sum , axis=None)

12 per_batch_count += strategy.reduce(tf.distribute.ReduceOp.SUM ,
per_replica_count , axis=None)

13

14 # concatenate assignments only in last iteration
15 if ep + 1 == EPOCHS or stop_criterion:
16 if strategy.num_replicas_in_sync > 1:
17 per_replica_values = tf.convert_to_tensor(

per_replica_output.values)
18 a, b, c = per_replica_values.shape
19 per_batch_output = tf.reshape(per_replica_values , [a * b,

c])
20 else:
21 per_batch_output = tf.convert_to_tensor(

per_replica_output)
22

23 if count == 0:
24 output = per_batch_output
25 else:
26 output = tf.concat ([output , per_batch_output], axis =0)
27

28 count += 1
29

30 prev_centroids = centroids
31 centroids = per_batch_centroids_sum / per_batch_count
32

33 if not epochs_fixed:
34 # stopping condition = no change (small tolerance)

75

A. Appendix

35 relative_change = tf.sqrt(
36 tf.square(tf.divide(tf.subtract(centroids , prev_centroids),

prev_centroids)))
37 change_bool = tf.math.less_equal(relative_change , TOLERANCE)
38 num_true = tf.reduce_sum(tf.cast(change_bool , tf.int32))
39 if num_true == n_clusters * n_features:
40 if stop_criterion:
41 break
42 else:
43 stop_criterion = True

Listing A.1: Custom Training Loop v1 distribute_repeat

A.1.2. Custom Training Loop v2 distribute_mean

1 per_batch_iterations_sum = 0
2 per_batch_centroids = 0
3 count = 0
4

5 for x in dataset:
6 per_replica_centroids , per_replica_output , per_replica_iterations =

strategy.run(clf.assign_and_update_fn , args=(x, centroids ,
epochs_fixed))

7 per_batch_centroids += strategy.reduce(tf.distribute.ReduceOp.SUM ,
per_replica_centroids , axis=None)

8 per_batch_iterations_sum += strategy.reduce(tf.distribute.ReduceOp.
SUM , per_replica_iterations , axis=None)

9

10 if strategy.num_replicas_in_sync > 1:
11 per_replica_values = tf.convert_to_tensor(per_replica_output.

values)
12 a, b, c = per_replica_values.shape
13 per_batch_output = tf.reshape(per_replica_values , [a * b, c])
14 else:
15 per_batch_output = tf.convert_to_tensor(per_replica_output)
16

17 if count == 0:
18 output = per_batch_output
19 else:
20 output = tf.concat ([output , per_batch_output], axis =0)
21 count += 1
22 denominator = n_objects // BATCH_SIZE_PER_REPLICA
23 centroids_final = per_batch_centroids / denominator
24 num_iterations_avg = per_batch_iterations_sum / denominator

Listing A.2: Custom Training Loop v2 distribute_mean

76

A.2. Class KMeans

A.2. Class KMeans

1 class KMeans:
2 """K-means computation
3 Attributes
4 ----------
5 n_clusters -- the number of clusters (k) in the
6 dataset
7 n_features -- number of dimensions for a single
8 data point
9 tolerance -- the dataset

10 max_iter -- maximum iterations
11

12 Methods
13 -------
14 initialize_centroids -- return initial centroids
15 assign_fn -- return cluster labels for each
16 data point
17 assign_and_prep_fn -- return new centroids , number of
18 points per cluster , data points
19 with labels
20 assign_and_update_fn -- return final centroids , data
21 points with labels , number of
22 iterations needed
23 """
24 def __init__(self , n_clusters , n_features , tolerance , max_iter):
25 self.n_clusters = n_clusters
26 self.n_features = n_features
27 self.tolerance = tolerance
28 self.max_iter = max_iter
29

30 @tf.function
31 def initialize_centroids(self , data , centroids_fixed=False) -> tf.

slice:
32 """ initialize random centroids """
33 if centroids_fixed:
34 init_centroids = tf.slice(data[:, :-1], [0, 0], [self.

n_clusters , -1])
35 else:
36 shuffled_data = tf.random.shuffle(data)
37 init_centroids = tf.slice(shuffled_data [:, :-1], [0, 0], [

self.n_clusters , -1])
38 logging.info(’Centroids initialized; fixed = {}’.format(

centroids_fixed))
39 return init_centroids
40

41 @tf.function
42 def assign_fn(self , points , centroids):
43 """ assign points to cluster , return assignment """
44 # compute scalar products (m^T) of each centroid with itself
45 m = tf.linalg.diag_part(tf.tensordot(centroids , centroids , [[1],

[1]]))
46 # Column vector of n ones (1_n)

77

A. Appendix

47 n = tf.ones(tf.shape(points)[0])
48 # calculate 0.5 * 1_n * m^T
49 d1 = tf.multiply(tf.constant ([0.5]) , tf.einsum(’i,j->ij’, n, m))
50 # calculate X*M^T
51 d2 = tf.matmul(points , centroids , transpose_b=True)
52 # calculate distance D:= 1/2 * 1_n * m^T - X * M^T
53 distance = tf.subtract(d1 , d2)
54 # find minimum distance
55 assignments = tf.math.argmin(input=distance , axis=1, output_type=

tf.int32)
56

57 return assignments
58

59 @tf.function
60 def assign_and_prep_fn(self , data , centroids):
61 points = data[:, :-1]
62 assignments = self.assign_fn(points , centroids)
63

64 centroids = tf.math.unsorted_segment_sum(points , assignments ,
self.n_clusters)

65 counts = tf.math.unsorted_segment_sum(tf.ones_like(points , dtype=
tf.float32), assignments , self.n_clusters)

66

67 assignments_expanded = tf.expand_dims(assignments , 1)
68 output = tf.concat ([tf.cast(points , tf.float32), tf.cast(

assignments_expanded , tf.float32)], 1)
69

70 return centroids , counts , output
71

72 @tf.function
73 def assign_and_update_fn(self , data: tf.float32 , centroids: tf.

float32 , epochs_fixed) -> tuple:
74 points = data[:, :-1]
75 assert self.max_iter > 0, "max_iter must be at least 1"
76 for it in tf.range(self.max_iter): # must be tf -loop because of

stopping condition
77 assignments = self.assign_fn(points , centroids)
78

79 centroids_prev = centroids
80 centroids = tf.math.unsorted_segment_mean(points , tf.cast(

assignments , tf.int32), self.n_clusters)
81

82 if not epochs_fixed:
83 # stopping condition = no change (small tolerance)
84 change = tf.square(tf.divide(tf.subtract(centroids ,

centroids_prev), centroids_prev))
85 cx = tf.maximum(change , 1e-9)
86 rel_change = tf.sqrt(cx)
87

88 bool_change = tf.math.less_equal(rel_change , self.
tolerance)

89 num_true = tf.reduce_sum(tf.cast(bool_change , tf.int32))
90 # if num_true == self._n_clusters * self._n_features:

78

A.2. Class KMeans

91 if tf.equal(num_true , tf.multiply(self.n_clusters , self.
n_features)):

92 break
93 assignments_expanded = tf.expand_dims(assignments , 1)
94 output = tf.concat ([tf.cast(points , tf.float32), tf.cast(

assignments_expanded , tf.float32)], 1)
95 return centroids , output , it + 1
96

97 @tf.function
98 def predict_fn(self , data , centroids):
99 points = data[:, :-1]

100 assignments = self.assign_fn(points , centroids)
101 assignments_expanded = tf.expand_dims(assignments , 1)
102 output = tf.concat ([tf.cast(points , tf.float32), tf.cast(

assignments_expanded , tf.float32)], 1)
103 return output

Listing A.3: Class KMeans

79

A. Appendix

A.3. Standard k-Means

1 class KMeans:
2 def __init__(self , n_clusters , n_features , tolerance , max_iter):
3 self.n_clusters = n_clusters
4 self.n_features = n_features
5 self.tolerance = tolerance
6 self.max_iter = max_iter
7

8 @tf.function
9 def initialize_centroids_fn(self , data , centroids_fixed=False) -> tf.

slice:
10 """ initialize random centroids """
11 if centroids_fixed:
12 init_centroids = tf.slice(data[:, :-1], [0, 0], [self.

n_clusters , -1])
13 else:
14 shuffled_data = tf.random.shuffle(data)
15 init_centroids = tf.slice(shuffled_data [:, :-1], [0, 0], [

self.n_clusters , -1])
16 logging.info(’Centroids initialized; fixed = {}’.format(

centroids_fixed))
17 return init_centroids
18

19 @tf.function
20 def assign_fn(self , points , centroids):
21 # calculate distance to each centroids (result = array of

cluster_num arrays)
22 centroids_expanded = tf.expand_dims(centroids , 1)
23 d = tf.reduce_sum(tf.square(tf.subtract(points ,

centroids_expanded)), 2)
24 distance = tf.sqrt(tf.maximum(d, 1e-9))
25 assignments = tf.math.argmin(input=distance , axis =0)
26 return assignments
27

28 @tf.function
29 def assign_and_prep_fn(self , data , centroids):
30 points = data[:, :-1]
31 assignments = self.assign_fn(points , centroids)
32

33 centroids = tf.math.unsorted_segment_sum(points , tf.cast(
assignments , tf.int32), self.n_clusters)

34 counts = tf.math.unsorted_segment_sum(tf.ones_like(points , dtype=
tf.float32), assignments , self.n_clusters)

35

36 assignments_expanded = tf.expand_dims(assignments , 1)
37 output = tf.concat ([tf.cast(points , tf.float32), tf.cast(

assignments_expanded , tf.float32)], 1)
38 return centroids , counts , output
39

40 @tf.function
41 def assign_and_update_fn(self , data: tf.float32 , centroids: tf.

float32 , epochs_fixed) -> tuple:

80

A.3. Standard k-Means

42 points = data[:, :-1]
43 assert self.max_iter > 0, "max_iter must be at least 1"
44 for it in tf.range(self.max_iter):
45

46 assignments = self.assign_fn(points , centroids)
47

48 centroids_prev = centroids
49 centroids = tf.math.unsorted_segment_mean(points , tf.cast(

assignments , tf.int32), self.n_clusters)
50 logging.info(’Centroids updated ’)
51

52 if not epochs_fixed:
53 change = tf.square(tf.divide(tf.subtract(centroids ,

centroids_prev), centroids_prev))
54 cx = tf.maximum(change , 1e-9)
55 rel_change = tf.sqrt(cx)
56

57 bool_change = tf.math.less_equal(rel_change , self.
tolerance)

58 num_true = tf.reduce_sum(tf.cast(bool_change , tf.int32))
59 if tf.equal(num_true , tf.multiply(self.n_clusters , self.

n_features)):
60 break
61 assignments_expanded = tf.expand_dims(assignments , 1)
62 output = tf.concat ([tf.cast(points , tf.float32), tf.cast(

assignments_expanded , tf.float32)], 1)
63 return centroids , output , it + 1
64

65 @tf.function
66 def predict_fn(self , data , centroids):
67 points = data[:, :-1]
68 assignments = self.assign_fn(points , centroids)
69 assignments_expanded = tf.expand_dims(assignments , 1)
70 output = tf.concat ([tf.cast(points , tf.float32), tf.cast(

assignments_expanded , tf.float32)], 1)
71 return output

Listing A.4: Standard k-Means

81

A. Appendix

A.4. Adpations of the main.py Script

Table A.4 lists all adaptations of the main.py Script that are used for the experiments.

Python Script Description
main.py Contains the optimal version

main_combine.py Combines v1 → v2 or v2 → v1, depending on which
version is set as first.

main_combine_loop.py

Combines v1 → v2 or v2 → v1, depending on which
version is set as first, and loops over all synthetic or
real data sets. It must be specified whether the synthetic
or real data sets should be used. It is important to set the
correct directory of the files.

main_combine_loop2.py main_combine_loop2.py adapted for Experiment 4
part 2 and 3

main_repeat.py Executes version 1, resets the centroids to the initial
centroids, and repeats the execution with version 2.

main_repeat_loop.py

Executes version 1, resets the centroids to the initial
centroids, and repeats the execution with version 2,
and loops over all synthetic or real data sets. It
furthermore, loops over the iterations array and
switches between max iterations fixed or not fixed.

main_repeat_loop2.py main_repeat_loop.py adapted for Experiment 4
part 2 and 3

main_repeat_loop3.py main_repeat_loop.py adapted for Experiment 5
main_repeat_batch_loop.py main_repeat_loop.py adapted for Experiment 1

Table A.1.: Python Scripts for the Experiments

A.5. Additional Data Experiment 3

Additional data for Experiment 3 include Figure A.1, Table A.2 and Table A.3.

A.6. Additional Data Eperiment 4

A.6.1. Part 1: Runtime Comparison

Additional data for Experiment 4 include Figures A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9,
and A.10 as part of the runtime comparison.

82

A.6. Additional Data Eperiment 4

A.6.2. Part 1: Quality Comparison

Additional data for Experiment 4 include Figures A.11, A.12, A.13, and A.14 as part of
the quality comparison.

A.6.3. Part 2: Using Random Initial Centroids

The results of the second part of the experiment are summarized in the included document
1.

83

Comparison v1 -> v2 vs. version 2 Min. von Elapsed time Min. von SSE Max. von CH Min. von DB Max. von NMI Max. von RI
1 00:01.0 670.753411 12901.444909 1.346372 0.936263 0.835041

2022-05-04_08-37-43 00:02.0 2 054.087881 3228.593942 2.225034 0.846085 0.606418
2 00:06.0 2 054.095767 3228.574657 2.250556 0.846085 0.605058
5 00:02.0 2 054.090721 3228.586529 2.233243 0.845954 0.604704
10 00:04.0 2 054.087881 3228.593942 2.225034 0.845970 0.604747
- 00:02.0 2 065.723432 3203.427739 2.404847 0.840596 0.606418

2022-05-04_09-00-37 00:01.0 2 667.998269 2507.714557 2.655368 0.797421 0.532506
2 00:02.0 2 667.998269 2507.714557 2.655368 0.797421 0.532506
5 00:02.0 2 668.011881 2507.693458 2.705751 0.797419 0.532499
10 00:04.0 2 668.012460 2507.692601 2.708536 0.797406 0.532465
- 00:01.0 3 108.320917 2010.333955 2.710281 0.751393 0.497446

2022-05-04_09-20-38 00:01.0 1 135.566700 7022.255962 2.371902 0.874884 0.706561
2 00:02.0 1 135.589763 7022.084824 2.440531 0.870459 0.695019
5 00:02.0 1 135.572950 7022.208906 2.388058 0.869947 0.693623
10 00:04.0 1 135.566700 7022.255962 2.371902 0.869614 0.692706
- 00:01.0 1 136.973965 7021.551088 2.649958 0.874884 0.706561

2022-05-04_09-39-14 00:01.0 670.753411 12901.444909 1.346372 0.936263 0.835041
2 00:02.0 670.757105 12901.365221 1.356758 0.936263 0.835041
5 00:02.0 670.753411 12901.444909 1.346372 0.936129 0.834696
10 00:04.0 670.757626 12901.352198 1.362896 0.936119 0.834670
- 00:01.0 746.384647 11448.053231 1.432045 0.914965 0.814181

2022-05-04_09-55-59 00:01.0 1 495.500016 4980.347479 1.625007 0.877883 0.718004
2 00:02.0 1 495.510153 4980.305473 1.650821 0.877472 0.717264
5 00:03.0 1 495.506820 4980.318782 1.639682 0.877355 0.717055
10 00:04.0 1 495.500016 4980.347479 1.625007 0.877362 0.717067
- 00:01.0 1 495.537464 4980.193595 1.726418 0.877883 0.718004

2022-05-04_10-12-39 00:01.0 3 330.287765 1431.884912 2.786382 0.676360 0.383577
2 00:02.0 3 330.330102 1431.848947 2.900287 0.673327 0.378044
5 00:03.0 3 330.313113 1431.863371 2.855036 0.673030 0.377480
10 00:04.0 3 330.287765 1431.884912 2.786382 0.672984 0.377391
- 00:01.0 3 346.692480 1431.775740 3.066695 0.676360 0.383577

2022-05-04_10-28-09 00:01.0 1 245.878237 7316.993797 1.651507 0.888775 0.729184
2 00:02.0 1 245.880331 7316.979740 1.677964 0.888773 0.729179
5 00:03.0 1 245.878237 7316.993797 1.668650 0.888775 0.729184
10 00:04.0 1 245.878237 7316.993797 1.668650 0.888775 0.729184
- 00:01.0 1 353.915679 6424.305121 1.651507 0.883294 0.726398

2022-05-04_10-45-34 00:01.0 1 253.557546 6252.307714 1.746219 0.918142 0.821316
2 00:02.0 1 253.557546 6252.307714 1.746219 0.918112 0.821235
5 00:03.0 1 253.558129 6252.305051 1.748291 0.918085 0.821164
10 00:04.0 1 253.558129 6252.305051 1.748291 0.918085 0.821164
- 00:01.0 1 253.566848 6252.250545 1.781867 0.918142 0.821316

2022-05-04_11-00-32 00:01.0 2 196.853528 2923.699262 2.416261 0.751513 0.411513
2 00:02.0 2 196.877546 2923.651641 2.485141 0.751513 0.405640
5 00:02.0 2 196.853528 2923.699262 2.416261 0.751276 0.405009
10 00:04.0 2 196.857784 2923.690453 2.444552 0.751234 0.404930
- 00:01.0 2 215.661064 2901.408396 2.729213 0.749165 0.411513

2022-05-04_11-16-11 00:01.0 2 370.583566 2602.302121 1.848841 0.800682 0.553394
2 00:02.0 2 370.612162 2602.252373 1.940779 0.797623 0.550050
5 00:02.0 2 370.599563 2602.273731 1.884074 0.797314 0.549674
10 00:04.0 2 370.583566 2602.302121 1.848841 0.797368 0.549745
- 00:01.0 2 396.301391 2602.105617 2.158462 0.800682 0.553394

2 00:01.0 10 211.322187 9384.739580 1.621636 0.955481 0.858327
2022-05-04_08-37-43 00:01.0 34 645.720982 2285.327288 3.178137 0.873789 0.534151

2 00:02.0 34 651.687998 2285.326628 3.184435 0.873789 0.531296
5 00:03.0 34 651.586539 2285.327235 3.178137 0.873552 0.530723
10 00:04.0 34 645.720982 2285.327288 3.183387 0.873390 0.530401
- 00:01.0 35 801.873536 2202.650879 3.334753 0.871648 0.534151

2022-05-04_09-00-37 00:01.0 14 205.330793 6554.451386 2.107353 0.952860 0.849106
2 00:02.0 14 214.536929 6554.446865 2.107353 0.952860 0.848631
5 00:03.0 14 205.331079 6554.451316 2.113392 0.952325 0.846976
10 00:04.0 14 205.330793 6554.451386 2.113178 0.952319 0.846955
- 00:01.0 14 867.397891 6263.321764 2.120321 0.948742 0.849106

2022-05-04_09-20-38 00:01.0 41 228.213139 1811.610230 3.920738 0.854221 0.506951
2 00:02.0 41 241.757999 1811.609017 4.095633 0.847706 0.492433
5 00:03.0 41 228.213221 1811.610196 4.023640 0.847459 0.491722
10 00:04.0 41 228.213139 1811.610230 4.025102 0.847354 0.491508
- 00:01.0 42 085.807168 1811.603713 3.920738 0.854221 0.506951

2022-05-04_09-39-14 00:01.0 26 577.264675 3186.044879 3.235666 0.900024 0.689539

A. Appendix

84

2 00:02.0 26 577.272682 3186.043805 3.262069 0.899281 0.687239
5 00:02.0 26 577.264675 3186.044879 3.235666 0.899300 0.687268
10 00:04.0 26 577.270171 3186.044224 3.254231 0.899310 0.687292
- 00:01.0 26 586.505508 3186.041336 3.306567 0.900024 0.689539

2022-05-04_09-55-59 00:01.0 14 531.003190 6392.683228 1.621636 0.955481 0.858327
2 00:02.0 14 531.012347 6392.677953 1.654713 0.955481 0.858327
5 00:03.0 14 531.003190 6392.683228 1.621636 0.955379 0.858108
10 00:04.0 14 539.255199 6392.682616 1.624489 0.955397 0.858147
- 00:01.0 16 937.775060 5456.995047 1.784149 0.943611 0.844734

2022-05-04_10-12-39 00:01.0 10 211.322187 9384.739580 2.004475 0.953789 0.851369
2 00:02.0 10 211.365903 9384.699862 2.068631 0.953789 0.851369
5 00:03.0 10 211.322199 9384.739580 2.004475 0.952379 0.847146
10 00:05.0 10 211.322187 9384.739345 2.007998 0.952339 0.847019
- 00:01.0 13 068.914611 7464.936904 2.398649 0.938981 0.834922

2022-05-04_10-28-09 00:01.0 26 007.471108 3272.269361 2.919374 0.913868 0.665584
2 00:02.0 26 007.471108 3272.267033 2.980367 0.910780 0.656911
5 00:03.0 26 007.649370 3272.267783 2.967881 0.910701 0.656672
10 00:04.0 26 007.763866 3272.269361 2.919374 0.910682 0.656618
- 00:01.0 26 354.287848 3272.258637 2.994696 0.913868 0.665584

2022-05-04_10-45-34 00:01.0 29 223.800241 2836.470947 3.353110 0.901154 0.691382
2 00:02.0 29 223.860239 2836.469388 3.434047 0.899684 0.688206
5 00:03.0 29 228.712077 2836.470923 3.355261 0.899580 0.687954
10 00:04.0 29 223.800241 2836.470947 3.353110 0.899448 0.687649
- 00:01.0 29 286.748368 2836.465709 3.425148 0.901154 0.691382

2022-05-04_11-00-32 00:01.0 35 519.633387 2380.570772 3.454202 0.874625 0.617923
2 00:02.0 35 519.633387 2380.569360 3.512228 0.874625 0.617509
5 00:03.0 35 596.354438 2380.570772 3.454202 0.874384 0.616968
10 00:05.0 35 595.438311 2380.570294 3.486982 0.874352 0.616858
- 00:01.0 35 638.831167 2221.648877 3.618125 0.872705 0.617923

2022-05-04_11-16-11 00:01.0 56 497.376792 1140.317720 3.910056 0.797083 0.445414
2 00:02.0 56 584.124591 1140.317132 3.934891 0.797083 0.433782
5 00:03.0 56 501.629188 1140.317720 3.912601 0.796655 0.433145
10 00:04.0 56 497.376792 1140.317640 3.910056 0.796673 0.433218
- 00:01.0 58 136.274359 1109.293291 4.108474 0.793783 0.445414

3 00:01.0 34 573.149269 5531.723054 2.645216 0.952240 0.846705
2022-05-04_08-37-43 00:01.0 34 573.149269 5531.723054 2.706848 0.952200 0.846581

2 00:02.0 34 573.153538 5531.722249 2.729315 0.952196 0.846568
5 00:03.0 34 573.150092 5531.722964 2.710654 0.952197 0.846570
10 00:04.0 34 573.149269 5531.723054 2.706848 0.952200 0.846581
- 00:01.0 40 993.916398 4613.602780 2.792303 0.937358 0.829585

2022-05-04_09-00-37 00:01.0 86 686.892472 1927.497266 3.489726 0.878638 0.630382
2 00:02.0 86 686.892472 1927.496627 3.537746 0.878638 0.630382
5 00:03.0 86 782.049405 1927.497123 3.489726 0.878555 0.630083
10 00:04.0 86 720.369245 1927.497266 3.507597 0.878368 0.629671
- 00:01.0 99 069.714471 1622.595489 5.060531 0.859227 0.604314

2022-05-04_09-20-38 00:01.0 109 661.490999 1277.288666 6.211214 0.832020 0.508598
2 00:02.0 109 661.513099 1277.288339 6.275143 0.828635 0.499271
5 00:03.0 109 661.495631 1277.288567 6.222025 0.828680 0.499425
10 00:04.0 109 661.490999 1277.288666 6.211214 0.828486 0.498810
- 00:01.0 109 902.367532 1277.286325 6.494032 0.832020 0.508598

2022-05-04_09-39-14 00:01.0 71 941.413593 2469.198999 3.218409 0.906958 0.704575
2 00:02.0 71 941.428599 2469.198089 3.296002 0.906958 0.704575
5 00:03.0 71 941.413593 2469.198745 3.242219 0.906816 0.704258
10 00:04.0 71 955.526893 2469.198999 3.218409 0.906849 0.704333
- 00:01.0 87 216.812721 1952.661664 3.672842 0.872940 0.659208

2022-05-04_09-55-59 00:01.0 88 500.016088 1749.712361 4.470173 0.865980 0.603205
2 00:02.0 88 559.388856 1749.711890 4.492235 0.865980 0.581431
5 00:03.0 88 500.016088 1749.712361 4.470173 0.865511 0.580385
10 00:04.0 88 546.793507 1749.712317 4.481732 0.865525 0.580401
- 00:01.0 95 708.320591 1600.815923 4.492428 0.862037 0.603205

2022-05-04_10-12-39 00:01.0 74 585.522129 2355.778958 4.019196 0.910545 0.734520
2 00:02.0 74 585.535383 2355.778400 4.084544 0.910545 0.734520
5 00:03.0 74 608.880489 2355.778921 4.027328 0.910463 0.734254
10 00:04.0 74 585.522129 2355.778958 4.019196 0.910461 0.734248
- 00:01.0 75 630.744569 2186.705411 4.069523 0.907252 0.732630

2022-05-04_10-28-09 00:01.0 91 568.080864 1664.348465 5.098081 0.862879 0.571478
2 00:02.0 91 568.099926 1664.348001 5.157808 0.862879 0.571089
5 00:03.0 91 568.080871 1664.348461 5.106541 0.862723 0.570566
10 00:04.0 91 568.080864 1664.348465 5.098081 0.862754 0.570658

A.6. Additional Data Eperiment 4

85

- 00:01.0 101 080.535840 1522.514156 5.210931 0.856534 0.571478
2022-05-04_10-45-34 00:01.0 67 621.315580 2495.132652 3.319564 0.902688 0.699132

2 00:02.0 67 621.334891 2495.131795 3.396798 0.902251 0.698261
5 00:03.0 67 621.321901 2495.132420 3.350709 0.902286 0.698336
10 00:04.0 67 621.315580 2495.132652 3.319564 0.902285 0.698335
- 00:01.0 68 357.909107 2495.125685 4.224682 0.902688 0.699132

2022-05-04_11-00-32 00:01.0 36 021.333842 5281.974105 2.645216 0.952240 0.846705
2 00:02.0 36 021.343879 5281.972415 2.694364 0.952234 0.846687
5 00:03.0 36 021.336328 5281.973611 2.659951 0.952239 0.846703
10 00:04.0 36 021.333842 5281.974105 2.645216 0.952240 0.846705
- 00:01.0 37 451.808607 5054.855857 2.797664 0.948777 0.844905

2022-05-04_11-16-11 00:01.0 72 371.449840 2287.215756 4.079615 0.910997 0.740305
2 00:02.0 72 371.929761 2287.215529 4.107905 0.906145 0.728369
5 00:03.0 72 371.724723 2287.215672 4.095621 0.906020 0.728115
10 00:04.0 72 371.449840 2287.215756 4.079615 0.906055 0.728212
- 00:01.0 72 731.717583 2287.211393 4.096720 0.910997 0.740305

4 00:01.0 159 802.938193 24922.775636 3.461554 0.954134 0.810830
2022-05-04_08-37-43 00:01.0 326 156.329310 10470.697562 7.271524 0.907667 0.642741

2 00:02.0 326 156.332950 10470.697312 7.315030 0.907647 0.642676
5 00:03.0 326 156.331211 10470.697442 7.320942 0.907660 0.642712
10 00:05.0 326 156.329310 10470.697562 7.271524 0.907667 0.642741
- 00:01.0 346 920.748190 9728.558033 8.980401 0.900031 0.628546

2022-05-04_09-00-37 00:01.0 211 415.971428 17424.335895 3.821869 0.944719 0.783689
2 00:02.0 211 415.974064 17424.335652 3.836762 0.944336 0.782925
5 00:03.0 211 415.971428 17424.335895 3.821869 0.944348 0.782946
10 00:05.0 211 415.972158 17424.335877 3.850465 0.944348 0.782946
- 00:01.0 211 416.024453 17424.330533 4.782028 0.944719 0.783689

2022-05-04_09-20-38 00:01.0 159 802.938193 24922.775636 3.461554 0.954134 0.810830
2 00:02.0 159 802.945724 24922.774459 3.618257 0.954124 0.809372
5 00:03.0 159 802.938193 24922.775522 3.461554 0.954134 0.809401
10 00:05.0 159 802.938322 24922.775636 3.464646 0.954132 0.809392
- 00:01.0 167 046.679883 24326.051922 4.336114 0.953712 0.810830

2022-05-04_09-39-14 00:01.0 324 045.623560 10220.346023 7.720566 0.904982 0.635729
2 00:02.0 324 045.623600 10220.346023 7.720566 0.904641 0.634394
5 00:04.0 324 045.623560 10220.345910 7.752955 0.904634 0.634392
10 00:05.0 324 045.623662 10220.345975 7.748616 0.904627 0.634373
- 00:01.0 325 669.359235 10220.341810 10.619167 0.904982 0.635729

2022-05-04_09-55-59 00:01.0 213 086.270544 17261.878302 4.951564 0.949864 0.797269
2 00:02.0 213 086.270544 17261.878302 4.951564 0.949864 0.795718
5 00:04.0 213 086.272600 17261.878098 4.987335 0.949860 0.795702
10 00:05.0 213 086.272498 17261.877990 4.990176 0.949862 0.795710
- 00:01.0 214 750.453452 17105.273655 6.545633 0.948838 0.797269

2022-05-04_10-12-39 00:01.0 249 929.988671 14704.885051 6.234330 0.927242 0.741364
2 00:02.0 249 929.991027 14704.884850 6.318372 0.927242 0.741251
5 00:04.0 249 929.989149 14704.885048 6.234330 0.927236 0.741232
10 00:05.0 249 929.988671 14704.885051 6.245515 0.927237 0.741237
- 00:01.0 265 775.105939 14497.111933 7.762724 0.926280 0.741364

2022-05-04_10-28-09 00:01.0 223 722.758543 16284.183834 4.744204 0.937674 0.775941
2 00:02.0 223 722.758543 16284.183834 4.744204 0.937118 0.774768
5 00:03.0 223 722.762736 16284.183584 4.831559 0.937089 0.774713
10 00:05.0 223 722.761975 16284.183592 4.807547 0.937087 0.774705
- 00:01.0 223 722.808682 16284.179467 5.610474 0.937674 0.775941

2022-05-04_10-45-34 00:01.0 225 804.771219 16103.602798 6.629067 0.933313 0.758307
2 00:02.0 225 804.771950 16103.602798 6.629067 0.932967 0.756957
5 00:04.0 225 804.771940 16103.602613 6.649635 0.932967 0.756957
10 00:05.0 225 804.771219 16103.602656 6.641034 0.932967 0.756960
- 00:01.0 225 804.838137 16103.597136 8.560655 0.933313 0.758307

2022-05-04_11-00-32 00:01.0 233 912.744260 15430.937306 5.425270 0.932760 0.746752
2 00:02.0 233 912.744649 15430.937194 5.448041 0.932749 0.746721
5 00:03.0 233 912.744260 15430.937306 5.425270 0.932746 0.746707
10 00:05.0 233 912.747335 15430.937047 5.513921 0.932760 0.746752
- 00:01.0 242 777.483397 14779.310096 6.799587 0.927212 0.740272

2022-05-04_11-16-11 00:01.0 235 129.444509 15334.011606 5.521202 0.935052 0.751658
2 00:02.0 235 129.444509 15334.011606 5.521202 0.932763 0.746747
5 00:03.0 235 129.445740 15334.011534 5.582094 0.932742 0.746691
10 00:05.0 235 129.446245 15334.011469 5.605280 0.932746 0.746700
- 00:01.0 235 537.614900 15334.006019 6.820441 0.935052 0.751658

5 00:01.0 1 461 789.038040 10298.055632 6.273266 0.957762 0.798949
2022-05-04_08-37-43 00:01.0 1 970 973.173441 7096.694449 8.311893 0.941439 0.708931

A. Appendix

86

2 00:02.0 1 970 973.182629 7096.694348 8.544419 0.939679 0.702349
5 00:04.0 1 970 973.174554 7096.694449 8.323434 0.939695 0.702403
10 00:05.0 1 970 973.173441 7096.694447 8.311893 0.939690 0.702399
- 00:01.0 1 976 597.302512 7096.694327 9.692402 0.941439 0.708931

2022-05-04_09-00-37 00:01.0 2 685 829.040619 4775.501725 10.387496 0.921250 0.656831
2 00:02.0 2 685 829.051505 4775.501685 10.656260 0.920179 0.654098
5 00:04.0 2 685 829.040619 4775.501715 10.387496 0.920202 0.654185
10 00:05.0 2 685 829.043425 4775.501725 10.457897 0.920215 0.654187
- 00:01.0 2 687 869.797025 4775.501570 12.575494 0.921250 0.656831

2022-05-04_09-20-38 00:01.0 1 461 789.038040 10298.055632 6.273266 0.957762 0.798949
2 00:02.0 1 461 789.040071 10298.055631 6.297105 0.956772 0.794686
5 00:04.0 1 461 789.038040 10298.055632 6.273266 0.956806 0.794815
10 00:05.0 1 461 789.039795 10298.055596 6.312006 0.956776 0.794722
- 00:01.0 1 465 058.497545 10134.495235 7.021585 0.957762 0.798949

2022-05-04_09-39-14 00:01.0 2 262 891.568676 5971.646831 9.881952 0.932526 0.693842
2 00:02.0 2 262 891.572108 5971.646793 9.963457 0.932505 0.693742
5 00:03.0 2 262 891.568676 5971.646798 9.881952 0.932503 0.693778
10 00:05.0 2 262 891.570713 5971.646831 9.921029 0.932526 0.693842
- 00:01.0 2 296 764.995766 5865.236665 11.589610 0.930680 0.692902

2022-05-04_09-55-59 00:01.0 2 253 419.346630 6100.463776 9.209748 0.932846 0.689615
2 00:02.0 2 253 419.346630 6100.463729 9.209748 0.932826 0.689534
5 00:04.0 2 253 419.348509 6100.463768 9.270452 0.932846 0.689615
10 00:05.0 2 253 419.347573 6100.463776 9.266811 0.932845 0.689609
- 00:01.0 2 297 052.561517 5937.607465 11.553707 0.930671 0.685913

2022-05-04_10-12-39 00:01.0 2 417 091.650964 5487.068041 8.685604 0.929630 0.674972
2 00:02.0 2 417 091.662644 5487.068021 8.952860 0.929630 0.674972
5 00:04.0 2 417 091.656761 5487.068041 8.891731 0.929453 0.674501
10 00:05.0 2 417 091.650964 5487.068018 8.685604 0.929479 0.674563
- 00:01.0 2 672 226.046972 5031.993582 10.208030 0.923353 0.663380

2022-05-04_10-28-09 00:01.0 1 917 042.698423 7342.019232 7.205726 0.944464 0.746714
2 00:02.0 1 917 042.698423 7342.019203 7.355783 0.943744 0.745041
5 00:04.0 1 917 118.965774 7342.019232 7.205726 0.943744 0.745019
10 00:05.0 1 917 112.721301 7342.019213 7.259982 0.943742 0.744991
- 00:01.0 1 920 179.125356 7342.018969 8.668768 0.944464 0.746714

2022-05-04_10-45-34 00:01.0 2 438 231.495295 5425.402531 9.241087 0.929591 0.686959
2 00:02.0 2 438 231.495295 5425.402531 9.241087 0.929558 0.686863
5 00:04.0 2 438 231.500982 5425.402521 9.416629 0.929591 0.686959
10 00:05.0 2 438 231.503471 5425.402512 9.488232 0.929581 0.686923
- 00:01.0 2 475 250.530153 5325.033186 11.223729 0.926699 0.681699

2022-05-04_11-00-32 00:01.0 1 718 217.319335 8379.581222 7.118295 0.946066 0.718684
2 00:02.0 1 718 217.320159 8379.581205 7.187833 0.946040 0.718581
5 00:04.0 1 718 217.319335 8379.581206 7.118295 0.946056 0.718651
10 00:05.0 1 718 217.321180 8379.581222 7.135796 0.946066 0.718684
- 00:01.0 1 809 582.095166 8073.156672 8.129865 0.944118 0.714690

2022-05-04_11-16-11 00:01.0 1 841 764.847567 7708.508637 7.203599 0.945548 0.737616
2 00:02.0 1 841 764.850754 7708.508618 7.254714 0.945548 0.736659
5 00:04.0 1 841 764.847567 7708.508605 7.203599 0.945527 0.736611
10 00:05.0 1 841 764.848535 7708.508637 7.270068 0.945531 0.736623
- 00:01.0 1 888 609.238381 7543.034854 8.372769 0.945072 0.737616

6 00:02.0 8 161 059.002974 6768.693619 10.100550 0.946914 0.756775
2022-05-04_08-37-43 00:02.0 10 140 703.653395 5130.220744 12.693119 0.930684 0.647510

2 00:04.0 10 140 703.672376 5130.220738 14.088811 0.926675 0.633037
5 00:06.0 10 140 703.656735 5130.220718 13.874534 0.926591 0.632668
10 00:08.0 10 140 703.653395 5130.220744 13.631185 0.926922 0.634059
- 00:02.0 10 147 727.517857 5130.220641 12.693119 0.930684 0.647510

2022-05-04_09-00-37 00:02.0 10 059 420.153454 5184.798817 10.936059 0.934015 0.682489
2 00:04.0 10 059 420.155862 5184.798804 11.373198 0.931689 0.675150
5 00:06.0 10 059 420.153454 5184.798817 11.411489 0.931635 0.674831
10 00:09.0 10 059 420.154825 5184.798810 11.386848 0.931707 0.675181
- 00:02.0 10 064 634.909462 5184.798789 10.936059 0.934015 0.682489

2022-05-04_09-20-38 00:02.0 11 746 142.342013 4207.096536 12.755277 0.923154 0.652177
2 00:04.0 11 746 142.342013 4207.096536 13.560375 0.920502 0.644776
5 00:06.0 11 746 182.934996 4207.096525 13.349578 0.920091 0.643167
10 00:09.0 11 746 250.327362 4207.096519 13.215953 0.920185 0.643648
- 00:02.0 11 757 110.258502 4207.096489 12.755277 0.923154 0.652177

2022-05-04_09-39-14 00:02.0 8 754 711.449849 6299.633677 10.617209 0.943685 0.744646
2 00:04.0 8 754 711.458342 6299.633629 10.815860 0.943618 0.741899
5 00:06.0 8 754 711.449849 6299.633639 10.829103 0.943349 0.740685
10 00:08.0 8 754 711.456471 6299.633677 10.807926 0.943473 0.741365

A.6. Additional Data Eperiment 4

87

- 00:02.0 8 977 373.076968 6216.394150 10.617209 0.943685 0.744646
2022-05-04_09-55-59 00:02.0 9 317 318.557594 5727.140708 12.017392 0.941305 0.748301

2 00:04.0 9 317 318.570176 5727.140648 12.593220 0.940263 0.742989
5 00:06.0 9 317 318.565645 5727.140681 12.231965 0.940564 0.744257
10 00:09.0 9 317 318.557594 5727.140708 12.309092 0.940274 0.742984
- 00:02.0 9 360 886.296122 5694.381124 12.017392 0.941305 0.748301

2022-05-04_10-12-39 00:02.0 12 397 587.601137 3900.597339 13.956128 0.916183 0.625366
2 00:04.0 12 397 587.615669 3900.597325 14.911881 0.913105 0.614579
5 00:06.0 12 397 587.601137 3900.597339 14.696558 0.913252 0.615218
10 00:09.0 12 397 587.603575 3900.597338 14.841384 0.913043 0.614206
- 00:02.0 12 399 477.830381 3900.597318 13.956128 0.916183 0.625366

2022-05-04_10-28-09 00:02.0 10 055 505.880358 5187.449878 11.880505 0.926373 0.628273
2 00:04.0 10 055 505.888753 5187.449854 12.191128 0.926179 0.611798
5 00:06.0 10 055 505.880358 5187.449859 12.035092 0.926339 0.612269
10 00:08.0 10 055 505.882264 5187.449878 12.129977 0.926211 0.611765
- 00:02.0 10 217 391.886294 5087.675760 11.880505 0.926373 0.628273

2022-05-04_10-45-34 00:02.0 8 161 059.002974 6768.693619 10.100550 0.946914 0.756775
2 00:05.0 8 161 377.637328 6768.693599 10.917713 0.946247 0.750872
5 00:06.0 8 161 059.002974 6768.693619 10.580985 0.946528 0.752226
10 00:09.0 8 161 059.006972 6768.693601 10.449215 0.946914 0.753842
- 00:02.0 8 282 972.474057 6660.506463 10.100550 0.946832 0.756775

2022-05-04_11-00-32 00:02.0 10 961 231.932342 4624.578754 12.511611 0.920015 0.606206
2 00:04.0 10 961 231.943305 4624.578738 13.374918 0.919610 0.600238
5 00:06.0 10 961 231.932701 4624.578754 13.306417 0.919419 0.599459
10 00:08.0 10 961 231.932342 4624.578748 13.090745 0.919855 0.601284
- 00:02.0 11 176 168.346854 4517.139559 12.511611 0.920015 0.606206

2022-05-04_11-16-11 00:02.0 11 269 549.856394 4453.630653 11.656255 0.927320 0.671835
2 00:04.0 11 269 726.314530 4453.630620 12.266441 0.924905 0.663378
5 00:06.0 11 269 549.862332 4453.630637 12.167621 0.924706 0.662824
10 00:08.0 11 269 549.856394 4453.630653 12.220794 0.924418 0.661614
- 00:02.0 11 299 760.596803 4444.148951 11.656255 0.927320 0.671835

7 00:02.0 4 157 463.790502 18917.553312 7.839878 0.951747 0.710882
2022-05-04_08-37-43 00:02.0 5 299 418.657003 13972.552316 10.298382 0.936706 0.648174

2 00:04.0 5 299 418.657003 13972.552316 10.368361 0.936683 0.648134
5 00:07.0 5 299 418.658720 13972.552228 10.394843 0.936697 0.648155
10 00:11.0 5 299 418.657606 13972.552282 10.298382 0.936691 0.648132
- 00:02.0 5 300 337.087510 13972.552066 12.505198 0.936706 0.648174

2022-05-04_09-00-37 00:02.0 5 971 496.959792 11946.351061 12.402428 0.926582 0.577071
2 00:05.0 5 971 496.961471 11946.351033 12.733982 0.926582 0.577069
5 00:07.0 5 971 496.959792 11946.351061 12.402428 0.926573 0.577031
10 00:11.0 5 971 496.959992 11946.351045 12.483566 0.926582 0.577071
- 00:02.0 5 971 771.192954 11946.350899 15.626095 0.926541 0.576846

2022-05-04_09-20-38 00:02.0 5 211 642.939512 14275.765017 10.861246 0.937369 0.644366
2 00:04.0 5 211 642.942152 14275.764966 11.071460 0.937369 0.642965
5 00:07.0 5 211 642.939925 14275.765017 10.861246 0.937363 0.642946
10 00:11.0 5 211 642.939512 14275.764990 10.896948 0.937364 0.642949
- 00:02.0 5 266 474.212934 14105.844183 14.081280 0.936743 0.644366

2022-05-04_09-39-14 00:02.0 4 157 463.790502 18917.553312 7.839878 0.951747 0.710882
2 00:04.0 4 157 463.793762 18917.553287 8.040914 0.951736 0.710838
5 00:06.0 4 157 463.790903 18917.553310 7.839878 0.951747 0.710882
10 00:11.0 4 157 463.790502 18917.553312 7.925829 0.951744 0.710866
- 00:02.0 4 209 499.603319 18672.172644 10.546057 0.950820 0.709033

2022-05-04_09-55-59 00:02.0 5 041 540.519180 15021.066987 11.553544 0.942200 0.686104
2 00:04.0 5 041 540.520483 15011.652994 11.553544 0.942199 0.686099
5 00:07.0 5 041 540.519180 15011.652970 11.596602 0.942197 0.686089
10 00:12.0 5 041 540.522043 15011.652978 11.780254 0.942200 0.686104
- 00:02.0 5 129 051.003062 15021.066987 13.947483 0.941805 0.685692

2022-05-04_10-12-39 00:02.0 5 194 158.721426 14337.386317 10.485848 0.936306 0.628683
2 00:04.0 5 194 158.723186 14337.386317 10.567718 0.936306 0.628683
5 00:07.0 5 194 158.722257 14337.386225 10.502510 0.936297 0.628654
10 00:11.0 5 194 158.721426 14337.386261 10.485848 0.936296 0.628654
- 00:02.0 5 216 496.720564 14262.070160 13.168194 0.935814 0.627987

2022-05-04_10-28-09 00:02.0 5 016 946.576872 14986.187506 10.403737 0.940635 0.662577
2 00:04.0 5 016 946.576872 14986.187504 10.403737 0.940632 0.662572
5 00:06.0 5 016 946.577702 14986.187506 10.510283 0.940633 0.662567
10 00:11.0 5 016 946.577638 14986.187493 10.607200 0.940635 0.662577
- 00:02.0 5 026 369.396179 14951.307651 12.370109 0.940315 0.662064

2022-05-04_10-45-34 00:02.0 5 857 239.267817 12355.321863 10.698947 0.928369 0.615413
2 00:04.0 5 857 239.267817 12355.321847 10.851232 0.928369 0.615413

A. Appendix

88

5 00:07.0 5 857 239.270379 12355.321863 10.698947 0.928365 0.615399
10 00:11.0 5 857 239.270431 12355.321850 10.820005 0.928366 0.615403
- 00:02.0 5 860 012.515040 12258.011617 14.257338 0.927874 0.613672

2022-05-04_11-00-32 00:02.0 5 288 528.042683 14009.628347 10.424709 0.938824 0.677738
2 00:04.0 5 288 528.050768 14009.628270 10.897722 0.938814 0.677697
5 00:07.0 5 288 528.042683 14009.628347 10.424709 0.938820 0.677716
10 00:11.0 5 288 528.044672 14009.628329 10.507318 0.938824 0.677738
- 00:02.0 5 295 772.538433 13985.102257 12.671692 0.938516 0.677385

2022-05-04_11-16-11 00:02.0 5 140 543.068400 14528.963791 9.668918 0.936850 0.634861
2 00:04.0 5 140 543.068400 14528.963765 9.676001 0.936850 0.634861
5 00:07.0 5 140 543.071501 14528.963791 9.668918 0.936845 0.634840
10 00:11.0 5 140 543.071145 14528.963779 9.691591 0.936844 0.634840
- 00:02.0 5 184 830.884806 14411.069239 12.278674 0.936186 0.633509

8 00:02.0 3 844 251.083423 36470.049497 15.838654 0.945253 0.734193
2022-05-04_08-37-43 00:02.0 4 105 362.723070 33766.067327 17.684982 0.941313 0.721434

2 00:05.0 4 105 362.723070 33766.067278 17.684982 0.941297 0.721361
5 00:09.0 4 105 362.723261 33766.066916 17.782715 0.941306 0.721398
10 00:15.0 4 105 362.723529 33766.067327 17.806058 0.941302 0.721388
- 00:02.0 4 105 362.743651 33766.067096 22.230566 0.941313 0.721434

2022-05-04_09-00-37 00:02.0 4 642 874.751938 28442.188645 17.103341 0.937166 0.724344
2 00:05.0 4 642 874.753524 28442.188519 17.334490 0.937159 0.724319
5 00:10.0 4 642 874.751938 28442.188645 17.234673 0.937160 0.724312
10 00:15.0 4 642 874.751977 28442.188432 17.103341 0.937166 0.724344
- 00:02.0 4 725 948.606274 27865.857337 20.529482 0.935031 0.721156

2022-05-04_09-20-38 00:03.0 4 545 172.505300 29228.251534 18.554064 0.933998 0.674987
2 00:06.0 4 545 172.506854 29228.251466 18.823716 0.933974 0.674899
5 00:09.0 4 545 172.507641 29228.251408 19.011965 0.933998 0.674987
10 00:16.0 4 545 172.505300 29228.251508 18.554064 0.933990 0.674964
- 00:03.0 4 545 172.529296 29228.251534 22.298304 0.933984 0.674929

2022-05-04_09-39-14 00:02.0 6 240 127.100095 19082.029332 24.705985 0.909192 0.578679
2 00:05.0 6 240 127.103906 19082.029307 25.159899 0.909179 0.578633
5 00:09.0 6 240 127.100095 19082.029332 24.705985 0.909182 0.578648
10 00:15.0 6 240 127.100759 19082.029314 24.791827 0.909192 0.578679
- 00:02.0 6 250 775.149600 19035.857935 30.581977 0.908475 0.578410

2022-05-04_09-55-59 00:02.0 5 429 860.030681 23142.125855 23.764094 0.918791 0.619481
2 00:06.0 5 429 860.031821 23142.125659 23.908315 0.918791 0.619481
5 00:10.0 5 429 860.032485 23142.125855 24.023200 0.918784 0.619446
10 00:15.0 5 429 860.030681 23142.125594 23.764094 0.918787 0.619452
- 00:02.0 5 468 296.570288 22944.076521 29.820653 0.917317 0.616658

2022-05-04_10-12-39 00:02.0 3 857 171.466735 36470.049497 16.601285 0.942300 0.695944
2 00:06.0 3 857 171.466735 36470.049363 16.602576 0.942287 0.695899
5 00:09.0 3 857 171.467103 36470.049147 16.601285 0.942285 0.695878
10 00:16.0 3 857 171.467514 36470.049497 16.638434 0.942300 0.695944
- 00:02.0 3 887 247.133208 35891.088704 20.883658 0.942076 0.695499

2022-05-04_10-28-09 00:02.0 3 844 251.083423 36039.034506 16.390678 0.945253 0.734193
2 00:06.0 3 844 251.083992 36039.034415 16.390678 0.945233 0.734124
5 00:09.0 3 844 251.083423 36039.034506 16.398735 0.945253 0.734193
10 00:15.0 3 844 251.083694 36039.034504 16.526707 0.945228 0.734102
- 00:02.0 3 844 251.100139 36039.034344 19.785717 0.945239 0.734160

2022-05-04_10-45-34 00:02.0 4 944 669.918839 26210.273587 21.268840 0.927573 0.672771
2 00:05.0 4 944 669.923793 26210.273516 22.025627 0.927573 0.672771
5 00:09.0 4 944 669.921395 26210.273587 21.575842 0.927568 0.672742
10 00:16.0 4 944 669.918839 26210.273501 21.268840 0.927556 0.672698
- 00:02.0 4 944 669.949933 26210.273377 27.403875 0.927556 0.672694

2022-05-04_11-00-32 00:02.0 4 557 793.846184 29594.624738 15.838654 0.939357 0.716815
2 00:06.0 4 557 793.847977 29594.624738 15.979823 0.939346 0.716782
5 00:09.0 4 557 793.846184 29594.624467 15.838654 0.939357 0.716804
10 00:15.0 4 557 793.847206 29594.624693 15.952476 0.939349 0.716780
- 00:02.0 4 557 793.868676 29594.624558 20.142119 0.939357 0.716815

2022-05-04_11-16-11 00:02.0 4 521 547.353100 29423.426421 19.497147 0.932976 0.669810
2 00:06.0 4 521 547.355264 29423.426124 19.883279 0.932974 0.669799
5 00:10.0 4 521 547.354064 29423.426261 19.598499 0.932976 0.669810
10 00:15.0 4 521 547.353100 29423.426421 19.497147 0.932966 0.669763
- 00:02.0 4 521 547.383556 29423.426218 24.990183 0.932966 0.669763

9 00:03.0 1 495 531.057293 97489.798735 12.380740 0.953718 0.824819
2022-05-04_08-37-43 00:03.0 1 495 531.057293 97489.798735 14.674612 0.953718 0.824819

2 00:08.0 1 495 531.059143 97489.798735 15.047848 0.953663 0.824666
5 00:15.0 1 495 531.057983 97489.798312 14.852498 0.953673 0.824699
10 00:24.0 1 495 531.057293 97489.798073 14.674612 0.953681 0.824727

A.6. Additional Data Eperiment 4

89

- 00:03.0 1 495 531.082518 97489.797016 18.856730 0.953718 0.824819
2022-05-04_09-00-37 00:04.0 2 767 083.441563 45101.358775 20.638266 0.910625 0.654871

2 00:08.0 2 767 083.443294 45101.358762 20.899534 0.909715 0.653730
5 00:15.0 2 767 083.441563 45101.358482 20.638266 0.909740 0.653835
10 00:24.0 2 767 083.441770 45101.358775 20.865828 0.909721 0.653780
- 00:04.0 2 767 094.832276 45101.357752 26.838593 0.910625 0.654871

2022-05-04_09-20-38 00:03.0 2 852 046.635843 43265.790747 22.922711 0.908925 0.661624
2 00:08.0 2 852 046.635843 43265.790747 22.981274 0.908925 0.661624
5 00:15.0 2 852 046.635936 43265.790320 22.922711 0.908923 0.661603
10 00:24.0 2 852 046.636497 43265.790415 23.017435 0.908916 0.661592
- 00:03.0 2 852 046.686343 43265.789601 30.870697 0.908924 0.661590

2022-05-04_09-39-14 00:03.0 1 509 878.160568 96406.565232 12.380740 0.952416 0.806745
2 00:08.0 1 509 878.161147 96406.564979 12.498334 0.952396 0.806693
5 00:16.0 1 509 878.160568 96406.565232 12.380740 0.952403 0.806717
10 00:24.0 1 509 878.161689 96406.565142 12.607579 0.952410 0.806739
- 00:03.0 1 509 878.187979 96406.562940 16.621131 0.952416 0.806745

2022-05-04_09-55-59 00:03.0 2 863 288.681164 43031.103047 24.623941 0.908242 0.657728
2 00:09.0 2 863 288.684588 43031.101956 25.044822 0.908197 0.657574
5 00:17.0 2 863 288.681251 43031.102511 24.681500 0.908203 0.657597
10 00:25.0 2 863 288.681164 43031.103047 24.623941 0.908199 0.657580
- 00:03.0 2 863 288.737221 43031.100734 33.998820 0.908242 0.657728

2022-05-04_10-12-39 00:03.0 2 864 771.079086 44433.690199 22.257458 0.906793 0.633611
2 00:08.0 2 864 771.083708 44433.689988 22.733482 0.906793 0.633611
5 00:15.0 2 864 771.080682 44433.690199 22.457323 0.906770 0.633571
10 00:25.0 2 864 771.079086 44433.689809 22.257458 0.906772 0.633581
- 00:03.0 2 903 287.331343 43000.260501 30.755637 0.906285 0.632922

2022-05-04_10-28-09 00:03.0 2 827 659.749638 43781.391728 22.612678 0.907717 0.646635
2 00:08.0 2 827 659.753465 43781.391728 23.067466 0.907717 0.646635
5 00:15.0 2 827 659.750124 43781.390581 22.718715 0.907709 0.646616
10 00:23.0 2 827 659.749638 43781.391642 22.612678 0.907717 0.646608
- 00:03.0 2 834 293.461535 43641.561599 30.781416 0.906872 0.646098

2022-05-04_10-45-34 00:03.0 2 810 959.375263 44139.618600 23.697906 0.907186 0.645196
2 00:08.0 2 810 959.376824 44139.618086 23.869010 0.907158 0.645112
5 00:15.0 2 810 959.376955 44139.618600 23.953762 0.907177 0.645173
10 00:24.0 2 810 959.375263 44139.618516 23.697906 0.907173 0.645166
- 00:03.0 2 810 959.420955 44139.617895 31.053075 0.907186 0.645196

2022-05-04_11-00-32 00:04.0 2 169 607.662106 62069.548877 21.103061 0.931650 0.741456
2 00:08.0 2 169 607.663338 62069.548877 21.346179 0.931585 0.741232
5 00:15.0 2 169 607.662106 62069.548385 21.103061 0.931626 0.741387
10 00:24.0 2 169 607.664147 62069.548010 21.340898 0.931628 0.741382
- 00:04.0 2 169 607.703149 62069.547010 28.458820 0.931650 0.741456

2022-05-04_11-16-11 00:03.0 2 146 283.607461 65021.111720 15.632418 0.937348 0.757801
2 00:09.0 2 146 283.611114 65021.111322 15.928945 0.936380 0.756504
5 00:15.0 2 146 283.607461 65021.111720 15.632418 0.936379 0.756482
10 00:24.0 2 146 283.609358 65021.111635 15.813568 0.936363 0.756444
- 00:03.0 2 158 664.402191 62923.533386 21.075902 0.937348 0.757801

10 00:02.0 157 699.374092 236010.026353 4.024494 0.950067 0.796300
2022-05-04_08-37-43 00:02.0 157 699.374092 236010.026353 4.024494 0.950067 0.796300

2 00:05.0 157 699.376943 236010.026353 4.054371 0.950067 0.796300
5 00:09.0 157 699.374092 236010.024895 4.024494 0.950064 0.796290
10 00:15.0 157 699.374092 236010.024895 4.024494 0.950064 0.796290
- 00:02.0 157 699.443102 236009.909669 5.050677 0.950046 0.796221

2022-05-04_09-00-37 00:02.0 343 987.735617 90309.227867 6.372139 0.884896 0.530584
2 00:05.0 343 987.735617 90309.227867 6.372139 0.884862 0.530509
5 00:09.0 343 987.738066 90309.226686 6.399286 0.884855 0.530487
10 00:16.0 343 987.737287 90309.226907 6.386921 0.884856 0.530491
- 00:02.0 343 987.832305 90309.189773 7.751646 0.884896 0.530584

2022-05-04_09-20-38 00:02.0 325 734.742041 97220.931037 6.676479 0.893905 0.603490
2 00:05.0 325 734.746370 97220.926113 6.745471 0.893795 0.603105
5 00:09.0 325 734.743399 97220.929857 6.706474 0.893778 0.603052
10 00:16.0 325 734.742041 97220.931037 6.676479 0.893786 0.603051
- 00:02.0 325 734.833179 97220.885574 8.104898 0.893905 0.603490

2022-05-04_09-39-14 00:02.0 209 885.435586 169115.379847 4.457223 0.937278 0.729864
2 00:05.0 209 885.435586 169115.378743 4.457223 0.937268 0.729842
5 00:09.0 209 885.437062 169115.379847 4.471377 0.937269 0.729849
10 00:15.0 209 885.436487 169115.378978 4.460062 0.937270 0.729850
- 00:02.0 209 885.499936 169115.315199 5.292776 0.937278 0.729864

2022-05-04_09-55-59 00:02.0 279 642.930059 118689.472838 5.028249 0.905455 0.569548
2 00:05.0 279 642.932524 118689.472400 5.057238 0.905425 0.569441

A. Appendix

90

5 00:10.0 279 642.930059 118689.472838 5.028249 0.905432 0.569460
10 00:16.0 279 642.931020 118689.472471 5.032016 0.905428 0.569449
- 00:02.0 279 642.999489 118689.441656 6.091427 0.905455 0.569548

2022-05-04_10-12-39 00:02.0 299 000.131606 108867.168372 4.968464 0.907973 0.581788
2 00:05.0 299 000.131937 108867.168358 4.970189 0.907973 0.581788
5 00:10.0 299 000.131718 108867.167570 4.969909 0.907967 0.581774
10 00:16.0 299 000.131606 108867.168372 4.968464 0.907968 0.581777
- 00:02.0 308 914.989179 104534.163115 6.074496 0.904099 0.577451

2022-05-04_10-28-09 00:02.0 290 507.254065 113015.475075 6.237891 0.910966 0.675083
2 00:05.0 290 507.254065 113015.475075 6.237891 0.910966 0.675045
5 00:09.0 290 507.254453 113015.474143 6.260377 0.910960 0.675026
10 00:16.0 290 507.255535 113015.473375 6.271152 0.910956 0.675011
- 00:02.0 290 507.346300 113015.427952 7.739872 0.910966 0.675083

2022-05-04_10-45-34 00:02.0 268 861.354051 124773.717466 5.315204 0.923777 0.720970
2 00:05.0 268 861.356757 124773.717466 5.338860 0.923717 0.720782
5 00:09.0 268 861.354051 124773.715603 5.315204 0.923667 0.720593
10 00:16.0 268 861.355622 124773.717193 5.325940 0.923660 0.720575
- 00:02.0 268 861.439335 124773.677045 6.567466 0.923777 0.720970

2022-05-04_11-00-32 00:02.0 361 457.615309 84348.122049 6.038805 0.893812 0.587295
2 00:05.0 361 457.617737 84348.121489 6.073706 0.893724 0.587012
5 00:09.0 361 457.615443 84348.122049 6.038805 0.893729 0.587020
10 00:16.0 361 457.615309 84348.121799 6.039351 0.893729 0.587021
- 00:02.0 361 457.720620 84348.085356 7.810757 0.893812 0.587295

2022-05-04_11-16-11 00:02.0 233 957.144370 148316.651434 5.006457 0.929235 0.722012
2 00:05.0 233 957.145064 148316.646809 5.012420 0.929128 0.721672
5 00:09.0 233 957.145367 148316.649282 5.017514 0.929128 0.721677
10 00:16.0 233 957.144370 148316.651434 5.006457 0.929139 0.721715
- 00:02.0 233 957.222360 148316.590686 6.041127 0.929235 0.722012

11 00:02.0 4 167 574.959160 38157.865712 8.234709 0.953533 0.744248
2022-05-04_08-37-43 00:02.0 5 539 975.779089 27070.867706 9.289851 0.931416 0.565343

2 00:05.0 5 539 975.780041 26919.952201 9.338467 0.931416 0.565033
5 00:10.0 5 539 975.779146 26919.952126 9.308564 0.931416 0.565034
10 00:19.0 5 539 975.779089 26919.952037 9.289851 0.931416 0.565030
- 00:02.0 5 567 184.343954 27070.867706 11.460414 0.931281 0.565343

2022-05-04_09-00-37 00:02.0 5 458 282.017992 27664.077464 9.604580 0.939115 0.652884
2 00:06.0 5 458 282.020546 27664.077464 9.738025 0.939110 0.652855
5 00:10.0 5 458 282.017992 27664.077407 9.662237 0.939109 0.652853
10 00:20.0 5 458 282.018493 27664.077365 9.604580 0.939115 0.652884
- 00:02.0 5 588 163.077029 26966.844751 12.182741 0.937172 0.647335

2022-05-04_09-20-38 00:02.0 5 621 756.642980 26202.158441 11.313551 0.934056 0.634690
2 00:05.0 5 621 756.646372 26202.158441 11.458661 0.934056 0.634690
5 00:11.0 5 621 756.642980 26202.158229 11.313551 0.934054 0.634679
10 00:19.0 5 621 756.643609 26202.158186 11.362346 0.934054 0.634679
- 00:02.0 5 665 727.118951 25965.229971 13.353248 0.933091 0.632833

2022-05-04_09-39-14 00:02.0 4 699 556.194898 32925.857676 9.565811 0.945942 0.695595
2 00:05.0 4 699 556.196757 32925.857571 9.565811 0.945942 0.695595
5 00:10.0 4 699 556.194898 32925.857676 10.034191 0.945935 0.695554
10 00:19.0 4 699 556.195531 32925.857561 10.197260 0.945935 0.695555
- 00:02.0 4 717 713.460348 32786.415372 11.434712 0.944757 0.691221

2022-05-04_09-55-59 00:02.0 5 939 950.553616 24366.686701 11.847252 0.928523 0.607027
2 00:06.0 5 939 950.564302 24366.686701 12.360909 0.928523 0.607027
5 00:11.0 5 939 950.554633 24366.686587 11.888081 0.928516 0.606988
10 00:19.0 5 939 950.553616 24366.686609 11.847252 0.928514 0.606982
- 00:02.0 5 989 210.227972 24119.831632 15.473164 0.927289 0.606786

2022-05-04_10-12-39 00:02.0 6 787 485.550365 20809.016005 13.325443 0.919522 0.558932
2 00:06.0 6 787 485.551530 20809.015953 13.350980 0.919519 0.558910
5 00:10.0 6 787 485.550467 20809.015904 13.325443 0.919519 0.558923
10 00:19.0 6 787 485.550365 20809.016005 13.326198 0.919522 0.558932
- 00:02.0 6 840 905.102444 20512.328439 14.942172 0.918238 0.557643

2022-05-04_10-28-09 00:02.0 4 523 993.279862 34516.483773 9.350791 0.948489 0.734475
2 00:06.0 4 523 993.283964 34516.483558 9.558599 0.948480 0.734430
5 00:10.0 4 523 993.279925 34516.483715 9.481851 0.948484 0.734449
10 00:19.0 4 523 993.279862 34516.483773 9.350791 0.948489 0.734475
- 00:02.0 4 523 993.331955 34516.483522 11.272946 0.948471 0.734378

2022-05-04_10-45-34 00:02.0 4 167 574.959160 38157.865712 8.394200 0.953533 0.744248
2 00:06.0 4 167 574.960409 38157.865530 8.394200 0.953532 0.744239
5 00:11.0 4 167 574.959160 38157.865712 8.588586 0.953527 0.744218
10 00:19.0 4 167 574.959831 38157.865570 8.548614 0.953533 0.744248
- 00:02.0 4 173 449.118254 38157.865379 9.774933 0.953527 0.744225

A.6. Additional Data Eperiment 4

91

2022-05-04_11-00-32 00:02.0 5 660 250.329460 26175.278938 8.234709 0.934924 0.643807
2 00:06.0 5 660 250.329460 26175.278910 8.234709 0.934924 0.643807
5 00:10.0 5 660 250.329916 26175.278919 8.269942 0.934916 0.643783
10 00:18.0 5 660 250.330811 26175.278938 8.274487 0.934920 0.643804
- 00:02.0 5 660 306.014852 26175.278528 10.486534 0.934890 0.643680

2022-05-04_11-16-11 00:02.0 4 468 911.190421 35319.424775 9.027130 0.947403 0.677430
2 00:06.0 4 468 911.191342 35319.424660 9.367083 0.947396 0.677402
5 00:10.0 4 468 911.190792 35319.424775 9.243363 0.947395 0.677398
10 00:19.0 4 468 911.190421 35319.424744 9.027130 0.947403 0.677430
- 00:02.0 4 479 310.670878 35220.637162 10.571383 0.947059 0.676893

12 00:03.0 3 201 373.595013 89980.187186 12.908943 0.954936 0.781942
2022-05-04_08-37-43 00:03.0 3 201 373.595013 89980.187186 12.908943 0.954936 0.781942

2 00:09.0 3 201 373.595612 89980.187186 13.115068 0.954936 0.781942
5 00:15.0 3 201 373.595013 89980.186507 12.908943 0.954921 0.781870
10 00:28.0 3 201 373.595331 89980.185928 12.935451 0.954934 0.781919
- 00:03.0 3 201 373.617720 89980.186270 16.364888 0.954935 0.781936

2022-05-04_09-00-37 00:04.0 5 105 649.035981 50357.961488 17.621603 0.918333 0.559950
2 00:08.0 5 105 649.038306 50357.961488 17.756110 0.918317 0.559887
5 00:15.0 5 105 649.035981 50357.960977 17.621603 0.918317 0.559882
10 00:27.0 5 105 649.036806 50357.960639 17.727668 0.918318 0.559896
- 00:04.0 5 105 649.076119 50357.960203 23.549862 0.918333 0.559950

2022-05-04_09-20-38 00:03.0 3 777 365.064428 73781.240653 14.647059 0.948412 0.770988
2 00:08.0 3 777 365.068712 73781.240229 15.244865 0.948396 0.770921
5 00:16.0 3 777 365.064830 73781.240291 14.684459 0.948391 0.770903
10 00:27.0 3 777 365.064428 73781.240653 14.647059 0.948412 0.770988
- 00:03.0 3 801 246.831076 73233.649025 21.459105 0.947173 0.768512

2022-05-04_09-39-14 00:03.0 4 248 624.684131 63794.573178 14.939142 0.934979 0.652720
2 00:08.0 4 248 624.686747 63794.573178 15.069611 0.934944 0.652589
5 00:15.0 4 248 624.684575 63794.572723 14.972712 0.934974 0.652698
10 00:27.0 4 248 624.684131 63794.573099 14.939142 0.934979 0.652720
- 00:03.0 4 275 390.226114 63302.222948 19.739260 0.933632 0.651081

2022-05-04_09-55-59 00:03.0 4 448 988.727272 60189.572012 18.442194 0.933570 0.678268
2 00:09.0 4 448 988.728006 60189.572012 18.463059 0.933561 0.678257
5 00:16.0 4 448 988.727272 60189.571587 18.465502 0.933546 0.678181
10 00:28.0 4 448 988.727342 60189.571928 18.442194 0.933568 0.678268
- 00:03.0 4 448 988.761780 60189.571575 24.284252 0.933570 0.678261

2022-05-04_10-12-39 00:03.0 5 920 920.787466 41186.075827 21.501713 0.916772 0.644742
2 00:08.0 5 920 920.791374 41186.075264 21.920466 0.916772 0.644732
5 00:15.0 5 920 920.791044 41186.075744 21.649998 0.916772 0.644736
10 00:27.0 5 920 920.787466 41186.075827 21.501713 0.916769 0.644727
- 00:03.0 5 920 920.835836 41186.075358 28.422880 0.916770 0.644742

2022-05-04_10-28-09 00:03.0 4 937 835.086028 52621.775464 18.978293 0.929966 0.687385
2 00:08.0 4 937 835.087050 52621.775252 19.045558 0.929962 0.687385
5 00:15.0 4 937 835.088895 52621.775464 19.139857 0.929956 0.687357
10 00:27.0 4 937 835.086028 52621.775021 18.978293 0.929961 0.687384
- 00:03.0 4 937 835.122945 52621.775007 24.926914 0.929966 0.687372

2022-05-04_10-45-34 00:03.0 4 463 158.214129 59946.912001 15.414404 0.941305 0.742057
2 00:08.0 4 463 158.214586 59946.911715 15.575150 0.941292 0.742006
5 00:15.0 4 463 158.214129 59946.912001 15.414404 0.941304 0.742057
10 00:28.0 4 463 158.215035 59946.911697 15.520168 0.941298 0.742029
- 00:03.0 4 463 158.248658 59946.910945 20.534779 0.941305 0.742050

2022-05-04_11-00-32 00:03.0 4 156 390.110687 66628.591654 15.584688 0.944068 0.747885
2 00:08.0 4 156 390.116238 66628.591319 16.938191 0.944068 0.747885
5 00:15.0 4 156 390.112892 66628.590742 15.957813 0.944063 0.747867
10 00:26.0 4 156 390.110687 66628.591654 15.584688 0.944062 0.747850
- 00:03.0 4 207 149.532535 65570.929908 23.140438 0.943657 0.746955

2022-05-04_11-16-11 00:03.0 4 138 457.951480 66988.851113 15.683230 0.944749 0.746597
2 00:08.0 4 138 457.952011 66988.850882 15.683230 0.944732 0.746552
5 00:15.0 4 138 457.951480 66988.851029 16.073736 0.944735 0.746568
10 00:28.0 4 138 457.953349 66988.851113 16.312886 0.944727 0.746528
- 00:03.0 4 138 457.980049 66988.850897 20.729667 0.944749 0.746597

Gesamtergebnis 00:01.0 670.753411 236010.026353 1.346372 0.957762 0.858327

A. Appendix

92

A.6. Additional Data Eperiment 4

A.6.4. Part 3: Verify Results With Real Data Sets

The results of the third part of the experiment are summarized in the included document
2.

93

Comparison v1 -> v2 vs. version 2 Min. von Elapsed time Min. von SSE Max. von CH Min. von DB Max. von NMI Max. von RI
Bank Marketing 00:00.0 67 333.459587 22 833.809625 0.348630 0.172158 0.355464

2022-05-04_19-05-43 00:01.0 67 335.096572 22 824.713438 1.047483 0.172158 0.355464
2 00:07.0 67 338.997540 22 794.599797 1.047597 0.170777 0.353374
5 00:03.0 67 338.997540 22 794.599797 1.047597 0.170777 0.353374
10 00:04.0 67 335.096572 22 824.713438 1.047483 0.172158 0.355464
- 00:01.0 67 338.997540 22 794.599797 1.047597 0.170777 0.353374

2022-05-04_19-09-03 00:00.0 67 333.459587 22 833.809625 1.047476 0.172029 0.355413
2 00:02.0 67 338.997540 22 794.599797 1.047597 0.170777 0.353374
5 00:03.0 67 338.997540 22 794.599797 1.047597 0.170777 0.353374
10 00:04.0 67 333.459587 22 833.809625 1.047476 0.172029 0.355413
- 00:00.0 67 338.997540 22 794.599797 1.047597 0.170777 0.353374

2022-05-04_19-11-43 00:00.0 67 333.459587 22 833.809625 1.047476 0.172029 0.355413
2 00:02.0 67 338.997540 22 794.599797 1.047597 0.170777 0.353374
5 00:03.0 67 338.997540 22 794.599797 1.047597 0.170777 0.353374
10 00:04.0 67 333.459587 22 833.809625 1.047476 0.172029 0.355413
- 00:00.0 67 338.997540 22 794.599797 1.047597 0.170777 0.353374

2022-05-04_19-14-25 00:00.0 68 289.381020 21 521.809289 0.348630 0.120967 0.241260
2 00:02.0 68 289.381020 21 521.809289 0.348630 0.120967 0.241260
5 00:03.0 68 289.381020 21 521.809289 0.348630 0.120967 0.241260
10 00:04.0 68 289.381020 21 521.809289 0.348630 0.120967 0.241260
- 00:00.0 68 289.381020 21 521.809289 0.348630 0.120967 0.241260

2022-05-04_19-16-55 00:00.0 67 335.096572 22 824.713438 1.047483 0.172158 0.355464
2 00:03.0 67 338.997540 22 794.599797 1.047597 0.170777 0.353374
5 00:03.0 67 338.997540 22 794.599797 1.047597 0.170777 0.353374
10 00:04.0 67 335.096572 22 824.713438 1.047483 0.172158 0.355464
- 00:00.0 67 338.997540 22 794.599797 1.047597 0.170777 0.353374

IoT Botnet 00:01.0 500 348 541 656 024 000 000 000 000 000 000 1 424 498.569720 0.474492 0.000172 0.001918
2022-05-04_19-05-43 00:02.0 500 348 541 656 024 000 000 000 000 000 000 1 424 498.569720 0.474492 0.000172 0.001918

2 00:04.0 504 118 265 456 912 000 000 000 000 000 000 1 408 956.973829 0.482464 0.000162 0.001889
5 00:08.0 504 118 265 456 912 000 000 000 000 000 000 1 408 956.973829 0.482464 0.000162 0.001889
10 00:14.0 500 348 541 656 024 000 000 000 000 000 000 1 424 498.569720 0.474492 0.000172 0.001918
- 00:02.0 504 118 265 456 912 000 000 000 000 000 000 1 408 956.973829 0.482464 0.000162 0.001889

2022-05-04_19-09-03 00:01.0 500 348 541 656 024 000 000 000 000 000 000 1 424 498.569720 0.474492 0.000172 0.001918
2 00:04.0 504 118 265 456 912 000 000 000 000 000 000 1 408 956.973829 0.482464 0.000162 0.001889
5 00:10.0 504 118 265 456 912 000 000 000 000 000 000 1 408 956.973829 0.482464 0.000162 0.001889
10 00:15.0 500 348 541 656 024 000 000 000 000 000 000 1 424 498.569720 0.474492 0.000172 0.001918
- 00:01.0 504 118 265 456 912 000 000 000 000 000 000 1 408 956.973829 0.482464 0.000162 0.001889

2022-05-04_19-11-43 00:01.0 500 348 541 656 024 000 000 000 000 000 000 1 424 498.569720 0.474492 0.000172 0.001918
2 00:04.0 504 118 265 456 912 000 000 000 000 000 000 1 408 956.973829 0.482464 0.000162 0.001889
5 00:09.0 504 118 265 456 912 000 000 000 000 000 000 1 408 956.973829 0.482464 0.000162 0.001889
10 00:15.0 500 348 541 656 024 000 000 000 000 000 000 1 424 498.569720 0.474492 0.000172 0.001918
- 00:01.0 504 118 265 456 912 000 000 000 000 000 000 1 408 956.973829 0.482464 0.000162 0.001889

2022-05-04_19-14-25 00:01.0 500 348 541 656 024 000 000 000 000 000 000 1 424 498.569720 0.474492 0.000172 0.001918
2 00:04.0 504 118 265 456 912 000 000 000 000 000 000 1 408 956.973829 0.482464 0.000162 0.001889
5 00:09.0 504 118 265 456 912 000 000 000 000 000 000 1 408 956.973829 0.482464 0.000162 0.001889
10 00:15.0 500 348 541 656 024 000 000 000 000 000 000 1 424 498.569720 0.474492 0.000172 0.001918
- 00:01.0 504 118 265 456 912 000 000 000 000 000 000 1 408 956.973829 0.482464 0.000162 0.001889

2022-05-04_19-16-55 00:01.0 500 348 541 656 024 000 000 000 000 000 000 1 424 498.569720 0.474492 0.000172 0.001918
2 00:04.0 504 118 265 456 912 000 000 000 000 000 000 1 408 956.973829 0.482464 0.000162 0.001889
5 00:09.0 504 118 265 456 912 000 000 000 000 000 000 1 408 956.973829 0.482464 0.000162 0.001889
10 00:14.0 500 348 541 656 024 000 000 000 000 000 000 1 424 498.569720 0.474492 0.000172 0.001918
- 00:01.0 504 118 265 456 912 000 000 000 000 000 000 1 408 956.973829 0.482464 0.000162 0.001889

MNIST 00:01.0 25.133888 302.881123 2.767778 0.500777 0.066072
2022-05-04_19-05-43 00:02.0 25.196287 301.905425 2.767778 0.497899 0.064449

2 00:05.0 25.884314 287.359736 2.967489 0.486854 0.062046
5 00:07.0 25.411329 297.055997 2.838609 0.493660 0.060731
10 00:10.0 25.196287 301.905425 2.767778 0.497899 0.060226
- 00:02.0 27.940671 249.999306 3.358288 0.453553 0.064449

2022-05-04_19-09-03 00:01.0 25.133888 302.881123 2.802719 0.500777 0.066072
2 00:05.0 25.875705 287.069641 3.008075 0.491157 0.064590
5 00:07.0 25.337827 298.288192 2.867435 0.497205 0.063142
10 00:10.0 25.133888 302.881123 2.802719 0.500777 0.062599
- 00:01.0 28.062046 247.818009 3.386787 0.454864 0.066072

2022-05-04_19-11-43 00:01.0 25.190030 301.328505 2.768265 0.498925 0.062311
2 00:05.0 25.932080 285.622958 2.982816 0.486409 0.061590
5 00:08.0 25.438692 295.848886 2.840880 0.494878 0.060312
10 00:10.0 25.190030 301.328505 2.768265 0.498925 0.059977
- 00:01.0 28.006516 248.377171 3.372874 0.451050 0.062311

2022-05-04_19-14-25 00:01.0 25.172986 302.069924 2.788854 0.499127 0.065060
2 00:05.0 25.864252 286.628138 3.026508 0.486001 0.062466
5 00:07.0 25.391086 297.072391 2.872931 0.495184 0.061590
10 00:10.0 25.172986 302.069924 2.788854 0.499127 0.061249
- 00:01.0 27.987573 248.297292 3.455446 0.453371 0.065060

2022-05-04_19-16-55 00:01.0 25.147495 302.438124 2.769545 0.496392 0.063608
2 00:06.0 25.793939 288.568621 2.961892 0.485801 0.061179
5 00:08.0 25.349037 298.130471 2.838869 0.493460 0.059805
10 00:11.0 25.147495 302.438124 2.769545 0.496392 0.059615
- 00:01.0 28.031595 248.726998 3.340536 0.451266 0.063608

Gesamtergebnis 00:00.0 25.133888 1 424 498.569720 0.348630 0.500777 0.355464

A. Appendix

94

A.7. Additional Data Experiment 5

Figure A.15 shows the results in more detail, comparing the results to the benchmark
result per initial centroid per data set.

A.7. Additional Data Experiment 5

Figure A.16 shows the runtime comparison of Experiment 5 in detail. Figure A.17 shows
the clustering quality comparison of Experiment 5 in detail.

95

A. Appendix

F
igure

A
.1.:R

untim
e

A
nd

Q
uality

C
om

parison
of

version
1

distribute_
repeat

and
version

2
distribute_

m
ean

(F
ixed

N
um

ber
of

Iterations)

96

A.7. Additional Data Experiment 5

D
at

a
S
et

S
S
E

v1
S
S
E

v2
R
el

.
C
H

v1
C
H

v2
R
el

.
D

B
v1

D
B

v2
R
el

.

1
57

9.
43

68
2.

69
-1

8%
15

16
5.

21
12

79
2.

84
-1

6%
1.

13
1.

49
-3

2%
2

29
64

1.
46

30
34

6.
58

-2
%

27
86

.1
9

27
86

.1
8

0%
2.

03
2.

23
-1

0%
3

34
94

7.
23

46
50

6.
13

-3
3%

54
65

.2
0

42
56

.5
1

-2
2%

2.
53

2.
59

-2
%

4
30

60
57

.0
1

32
59

39
.8

0
-6

%
12

19
5.

68
11

38
2.

40
-7

%
3.

75
8.

86
-1

36
%

5
28

89
62

0.
30

29
23

54
1.

66
-1

%
43

24
.1

4
42

57
.6

6
-2

%
8.

81
13

.9
5

-5
8%

6
10

02
70

15
.2

0
10

14
89

12
.7

0
-1

%
52

06
.7

9
51

36
.6

8
-1

%
10

.4
5

9.
91

5%
7

53
03

19
8.

09
53

03
19

9.
95

0%
13

95
9.

71
13

95
9.

71
0%

8.
85

14
.4

2
-6

3%
8

52
82

05
1.

37
52

82
05

1.
99

0%
24

01
7.

11
24

01
7.

11
0%

11
.8

5
26

.6
9

-1
25

%
9

34
28

49
6.

28
34

28
49

6.
64

0%
33

21
4.

52
33

21
4.

52
0%

15
.9

3
35

.5
7

-1
23

%
10

22
47

98
.0

1
22

49
85

.4
5

0%
15

57
05

.4
4

15
57

05
.3

5
0%

4.
26

5.
71

-3
4%

11
50

74
68

5.
35

50
74

68
5.

88
0%

29
89

5.
97

29
89

5.
96

0%
8.

19
13

.3
1

-6
2%

12
49

75
06

1.
66

49
75

06
2.

05
0%

52
10

6.
41

52
10

6.
41

0%
11

.1
4

23
.4

6
-1

11
%

T
ab

le
A

.2
.:

Q
ua

lit
y

C
om

pa
ri

so
n

In
te

rn
al

M
et

ri
cs

(V
ar

ia
bl

e
N

um
be

r
of

It
er

at
io

ns
)

97

A. Appendix

Data Set NMI v1 NMI v2 Rel. ARI v1 ARI v2 Rel.
1 0.94 0.91 -3% 0.84 0.81 -3%
2 0.90 0.90 0% 0.64 0.65 0%
3 0.95 0.94 -2% 0.85 0.83 -2%
4 0.92 0.92 0% 0.68 0.68 -1%
5 0.91 0.91 0% 0.63 0.63 0%
6 0.93 0.93 0% 0.68 0.69 0%
7 0.94 0.93 0% 0.63 0.63 0%
8 0.92 0.92 0% 0.66 0.66 0%
9 0.88 0.88 0% 0.57 0.57 0%
10 0.93 0.93 0% 0.75 0.75 0%
11 0.94 0.94 0% 0.68 0.68 0%
12 0.93 0.93 0% 0.66 0.65 0%

Table A.3.: Quality Comparison External Metrics (Variable Number of Iterations)

Figure A.2.: Runtime Comparison of the Combinations for Data Set 1

Figure A.3.: Runtime Comparison of the Combinations for Data Set 2

98

A.7. Additional Data Experiment 5

Figure A.4.: Runtime Comparison of the Combinations for Data Set 3

Figure A.5.: Runtime Comparison of the Combinations for Data Set 4

Figure A.6.: Runtime Comparison of the Combinations for Data Set 6

99

A. Appendix

Figure A.7.: Runtime Comparison of the Combinations for Data Set 8

Figure A.8.: Runtime Comparison of the Combinations for Data Set 10

Figure A.9.: Runtime Comparison of the Combinations for Data Set 11

100

A.7. Additional Data Experiment 5

Figure A.10.: Runtime Comparison of the Combinations for Data Set 12

Figure A.11.: Quality Heatmap Based on Calinski-Harabasz Index

Figure A.12.: Quality Heatmap Based on Davies Boulding Index

101

A. Appendix

Figure A.13.: Quality Heatmap Based on Normalized Mutual Information

Figure A.14.: Quality Heatmap Based on Adjusted Rand Index

102

A.7. Additional Data Experiment 5

F
ig

ur
e

A
.1

5.
:B

en
ch

m
ar

k
C

om
pa

ri
so

n
of

R
un

ti
m

e
an

d
Q

ua
lit

y

103

A. Appendix

Figure A.16.: Runtime Comparison of TPU, GPU and, CPU

Figure A.17.: Quality Comparison of TPU, GPU and, CPU

104

	Abstract
	Kurzfassung
	List of Tables
	List of Figures
	List of Algorithms
	Listings
	Introduction
	Motivation
	Objective and Structure of the Thesis

	Theoretical Background and Related Work
	Exploratory Data Analysis and Data Mining
	k-Means Algorithm
	Origin of the k-Means Algorithm
	Objectives of Cluster Analysis with the k-Means Algorithm
	Limitations of the k-Means Algorithm
	Adaptations and Extensions of the k-Means Algorithm

	Tensor Processing Units
	Introduction of the Tensor Processing Unit
	Differentations of the Tensor Processing Unit to CPU and GPU
	Tensor Processing Unit Architecture and Versions
	The Cloud Tensor Processing Unit System
	Performance Evaluations and Applications of the Tensor Processing Unit

	Evaluation Metrics
	External Metrics
	Internal Metrics
	Relative Metrics

	Proposed Method
	Goal
	Requirements
	Concept
	Parameters and Efficiency
	Number of Objects and Number of Features
	Batch Size and Number of Features
	Formulation of the k-Means Algorithm

	Internal Metrics for Validating the Clustering Quality
	Notations
	Sum of Squared Error
	Calinski-Harabasz Index
	Davies Bouldin Index

	External Metrics for Validating the Clustering Quality
	Normalized Mutual Information Score
	Rand Index

	Implementation
	Project Setup
	Used Technology
	Used Hardware
	Data Sets
	Synthetic Data Sets
	Real Data Sets

	Experimental Setup
	Experiment 1: Batch Size
	Experiment 2: Convergence Tolerance
	Experiment 3: Comparison of Versions
	Experiment 4: Combination of Versions
	Experiment 5: Performance Comparison to GPU and CPU

	Evaluation and Discussion
	Experiment 1: Batch Size
	Experiment 2: Convergence Tolerance
	Experiment 3: Comparison of Versions
	Experiment 4: Combination of Versions
	Part 1: Comparison of the Combinations and Versions
	Part 2: Verification With Random Initial Centroids
	Part 3: Verification With Real Data Sets

	Experiment 5: Performance Comparison to CPU and GPU

	Conclusion
	Summary
	Future Work

	Bibliography
	Acronyms
	Appendix
	Custom Training Loops
	Custom Training Loop v1 distribute_repeat
	Custom Training Loop v2 distribute_mean

	Class KMeans
	Standard k-Means
	Adpations of the main.py Script
	Additional Data Experiment 3
	Additional Data Eperiment 4
	Part 1: Runtime Comparison
	Part 1: Quality Comparison
	Part 2: Using Random Initial Centroids
	Part 3: Verify Results With Real Data Sets

	Additional Data Experiment 5

