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Abstract

This doctoral thesis aims to take a different look at stellar structure censuses in the Milky
Way. Speciőcally, it aims to provide interpretable analysis methods to uncover both
previously unknown stellar structures and new members of known stellar populations,
providing astronomers with a more complete picture of the different stellar structures in
the local Milky Way.

The thesis contributions to the őeld are twofold: őrst, it introduces Uncover, an
extended membership analysis technique that integrates known members of star clusters
to search for yet undetected cluster members. Uncover is successfully applied to two
different use cases, the recently discovered Meingast 1 stream, a Pleiades-age structure
covering about 120◦ of the sky, and the well-studied star-forming region ρ Ophiuchus.
For these two very different stellar structures, Uncover increased the number of members
by tenfold and by about 200, respectively. Second, the thesis introduces Signiőcance
Mode Analysis (SigMA), an innovative clustering algorithm that studies the topological
properties of the density őeld in multidimensional phase space. The application of SigMA
to Gaia EDR3 data of the closest young association to Earth, the Scorpio-Centaurus
(Sco-Cen) association, őnds, for the őrst time, 48 co-moving and coeval clusters in Sco-Cen,
many of them previously unknown. These 48 clusters are independently validated using
astrophysical knowledge unknown to SigMA.

Both Uncover and SigMA are formulated in domain-speciőc language, use expressive
hyper-parameters, and allow for result validation to provide conődence in the results.
With these tools, we seek to contribute to changing the current culture of blind acceptance
of machine learning results and help astronomers build and modify models based on their
expertise.
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1. Motivation

The ESA/Gaia [44, 42, 43] mission is an unprecedented all-sky survey, providing as-
tronomers with high-precision positions and kinematic measurements 200 times more
accurate than the predecessor mission Hipparcos [92]. For the őrst time, position and
kinematic information are available for over 1.6 billion stars, providing enough statistics
to study physical processes to a level of detail never seen before. One of Gaia’s key science
objectives is to disentangle stellar populations in the Milky Way, by studying co-moving
and coeval populations, or star clusters. Star clusters1 are systems of a few dozen up to
thousands stars that constitute the elementary building blocks of galaxies [75]. These
stars are created in the same formation event and from the same collapsing molecular
cloud and carry crucial information on star formation processes imprinted from their
birthplaces, like velocity and chemical composition. Star clusters are valuable probes for
studying fundamental processes such as the formation and evolution of the Milky Way
structure, stellar physics, and exoplanet evolution [86]. Still, pre-Gaia, this meant we
could only rely on the few high-contrast clusters, like the Pleiades, Hyades, or the still
forming Orion Nebula Cluster. Gaia has completely changed the őeld, giving access to
cluster identiőcation well below the average stellar density of the background [82, 83].

Both empirical evidence and theoretical modeling support the basic notion that stars
that were born together move together [61]. Hence, star clusters can be identiőed
via positional and kinematic analyses, which have gained signiőcant traction with the
advent of Gaia and its high precision astrometric measurements. However, disentangling
and extracting stellar populations is notoriously difficult. Firstly, as a consequence of
interactions with the Milky Way potential and giant molecular clouds, these initially quite
compact objects are stretched into elongated, sometimes non-convex structures in position
space. This łgalactic-stretchingž leads to a variety of cluster shapes from very compact
overdensities (when young), to low-contrast, spread out, s-shaped clusters dominated
by the Milky Way tidal forces [81, 96]. Second, due to the low amount of available
radial velocities, about 0.4% in Gaia’s second data release (DR2 [42]2), one is, for the

1This thesis uses the word łcluster" to describe a stellar structure, or a cluster of stars, in the statistical
sense of the word cluster as an enhancement over a background, meaning, it does not discriminate
between physically bounded or unbounded cluster, itself a difficult distinction to make observationally.
These stellar structures include structures known in the literature as open clusters, associations,
moving groups, streams, clusterings, aggregates, subgroups, etc., i.e., coeval and co-moving stellar
populations.

2This work used Gaia DR2 data, and as soon as it was available, it switched to data from the early
data release three (EDR3 [43]). EDR3 replaced the second data release on December 3, 2020. While
DR2 is based on observations from the őrst 22 months of the mission, the EDR3 catalog summarizes
measurements from the őrst 34 months. Regarding measurements related to this work, EDR3 features
about 10% more sources with the so-called őve-parameter solutions, i.e. celestial positions, parallaxes,
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most part, restricted to two tangential velocity axes. Thus, even if we assumed perfectly
Gaussian distributed three-dimensional (3D) velocities within these groups, the on-sky
projection to the curved two-dimensional (2D) surface can distort original symmetrical
convex shapes into arbitrary, non-convex shapes depending on the size, orientation, and
distance to the stellar group. Complicating matters further, members of star clusters
make up only a tiny subset of the data, with őeld stars generating background noise that
cannot be easily removed in 5D phase space3. The (usually) őve-dimensional phase space
is populated with stellar clusters of various shapes and densities embedded in a sea of
noise, making parametric clustering algorithms practically unfeasible. Such distributions
are too complex to be modeled precisely in a functional form, and the total number
of clusters is also unknown. These circumstances make extracting clusters with a high
signal-to-noise ratio a difficult task, especially in the low-density regime.

Nevertheless, Gaia has had a major impact on the discovery and characterization of
previously unknown clusters, and even uncovered an entirely new type of stellar structure,
Milky Way disk stellar streams [82, 96, 63, 81, 8, 69, 58, 94, 83, 59]. The origin of the
new shapes is not yet fully understood and is a hot topic of research, particularly for
young stellar clusters.

This work identiőes two main modes of how stellar clusters are analyzed in the literature.
First, astronomers aim to uncover yet unidentiőed member stars of already known
stellar clusters. Typically, new star clusters’ discoveries consist of small high-conődence
samples that minimize misclassiőcation of stars. However, larger samples would not
only dramatically improve the quality of the derived cluster’s physical parameters but
also uncover the so far unseen low-density regions of stellar clusters, containing precious
information on the cluster formation and evolution [12, 31, 40, 83]. Additionally, such
improved membership lists often add low mass stellar members, which are the less
prominent cluster members and are often not included in previous membership lists.
To know the complete stellar cluster membership, including low-mass stars, allows for
improved statistics, in particular on the shape of the initial mass function (IMF), which
gives a statistical overview of the probability of the mass distribution in Milky Way
stellar clusters. This thesis őnds that the existing literature (see Sect. 1.2.1 for a detailed
analysis) on identifying new member stars often ignores previously identiőed members
which we aim to incorporate.

The second main mode is to discover yet unidentiőed stellar groups in the Gaia data

and proper motions. The full six-dimensional phase space is available for 7.2 million stars (about
0.4%) of the entire catalog, as crucial radial velocities are mostly missing (unchanged to DR2). The
upcoming Gaia data release three (DR3), planned for June 13th, 2022, aims to increase available
radial velocities to about 33 million, facilitating more detailed membership studies.

3The standard deőnition of phase space is a set of coordinates required to determine the state of
a particular physical system. Thus, a point in phase space corresponds to a single system state.
In mechanics, the phase space is usually six-dimensional (6D) and consists of three position axes
and three axes that encode the momentum of a system along these axes. Here, similar to a star’s
momentum, we consider its precisely determined velocity, the variable of interest in stellar cluster
analyses [61]. In case of missing kinematic information, we relax our deőnition of phase space to a
5D feature space consisting of three positional axes and two velocity axes, as provided by the Gaia
astrometry.
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set. The meta-study of Kharchenko et al. [64], which was published pre-Gaia, lists 2267
probable stellar clusters in the Milky Way disk. Although the census was believed to
be rather complete at the time, Gaia studies found that many established groups were
random ŕuctuations, as well as new clusters [12, 11, 17, 16, 77, 105, 15, 22, 69, 63]. This
hints to a large population of yet undetected star clusters which have evaded detection,
most likely due to low phase-space density. This thesis őnds that currently used clustering
tools are not well suited for the task of extracting stellar groups and aims to improve
upon existing techniques to provide effective and interpretable methods to identify yet
unseen stellar groups.

1.1. Research aims

Disentangling and extracting stellar populations is notoriously difficult. However, the
payoff is huge: a complete catalog of stellar populations in our Milky Way would serve as
a baseline for investigations on several fundamental properties of stellar physics. Star
clusters provide probes to tackle problems such as the assembly of the Milky Way, the
initial mass function, local gas star formation rate, and timescales for planet formation
(see also the reviews by McKee & Ostriker [80] and Kennicutt & Evans [62]).

Instead of a one-size-őts-all solution toward a complete catalog, research often happens
in a two-pronged approach: őrst, star cluster discovery, and second, extended membership
analysis. Separating this workŕow into two steps is advantageous because practitioners
can optimize tools for the speciőc use case. By improving currently used methods, this
work aims to further the journey towards a complete catalog.

This thesis considers both extended membership analysis and cluster identiőcation
as machine learning problems. In both cases, the methodological perspective is to
develop tools that are interpretable by design while at least maintaining or improving
the effectiveness and accuracy of existing methods. This work, rather than directly
working on astronomical research questions (RQ), aims to create resources that support
sense-making, exploration, and discovery of new knowledge in astronomical data. To
change the current culture of blindly trusting machine learning models, we focus on
two issues where we see opportunities for improvement. First, we identify the need for
comprehensible model selection procedures for existing powerful and efficient machine
learning models. Second, we aim to develop innovative tools designed with interpretable
hyper-parameters in mind to facilitate the model selection process. Further, this thesis’s
immediate goal is to validate developed methods on astronomical data directly.

While this thesis focuses on the development of innovative methods in the domain
of astronomy, we expect our methods and őndings to generalize to other applications
with large unlabeled data with high noise, arbitrary cluster shapes, and heteroscedastic
measurement errors where modeling the data distribution from őrst principles is tedious
to impossible.
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1.2. Research questions

Given the vast amount of data Gaia provides and its high-dimensional search space,
recent analyses (almost entirely) are based on automated and computerized procedures.
These challenges have sparked the employment of a multitude of analysis methods from
the őelds of data mining and statistical learning and the development of new tools
tailored to astronomical data. This thesis critically assesses their performance in extended
membership analysis (A) and clustering (B) and identify potential for further development.

1.2.1. A. Extended membership analysis

To uncover potentially new cluster members, star clusters are often subject to follow-up
studies. Especially the advent of Gaia has sparked many extended membership analysis
approaches, as it not only provides more precise positional and kinematic measurements,
but also data on very faint stars never seen before.

Current membership analysis approaches can be divided into either unsupervised
heuristics (e.g. Clusterix [6], [72], Meingast et al. [82], Röser et al. [95]) or probabilistic
models (e.g. Sarro et al. [98], BANYAN Σ [41], Cantat-Gaudin et al. [13], Gao [46],
Jaehnig et al. [57], ML-MOC [1]) which predominantly focus on modeling stellar clusters
as multivariate Gaussians in phase space. However, diverse non-convex star cluster
shapes caused by multiple initial conditions and complex interactions with the Milky
Way (e.g., tidal tails [82, 96]) introduce signiőcant deviations from Gaussianity. In
contrast, unsupervised methods ignore information obtained in previous studies, which
could increase the recall and accuracy of searches revisiting known populations.

To the best of our knowledge, we not őnd in the astronomical literature any occurrence
of supervised learning techniques for identifying unseen cluster members. These methods
can incorporate a preliminary set of high-ődelity members and (depending on the employed
algorithm) provide enough ŕexibility to estimate highly non-convex decision boundaries
in high-dimensional space. However, due to the lack of labeled outlier data, only novelty
detection methods (also called one-class algorithms) can successfully train a classiőer
from a list of cluster members.

A powerful algorithmic choice that adapts to highly non-linear decision scenarios is
one-class support vector machines (OCSVM [99]). OCSVMs learn a tight and smooth
boundary around a target data set. By applying the kernel trick, this boundary is highly
ŕexible and can describe non-linear, arbitrarily shaped boundary regions. However, its
extraordinary versatility quickly becomes its biggest drawback, as its performance depends
heavily on the choice of input hyper-parameters. We conjecture that OCSVMs, although
powerful, have not been applied to identify star cluster members because model selection
is tedious and requires a high level of expert knowledge of the algorithm itself. This
thesis identiőes a need for comprehensible model selection procedures for OCSVM. These
considerations culminate in the following research questions:

A.1 How can members of previously studied star clusters guide the search for yet
undetected member stars?
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A.2 How to apply novelty detection searches in the domain of astronomy with variously
shaped groups where the target class is a minority among a sea of outliers and the
available training data has unknown contamination from the outlier class.

A.3 How to effectively provide an overview of the vast space of possible star classiőcation
models.

A.4 How to decompose the membership identiőcation process into small, interpretable
steps. Speciőcally, how to support users to apply their domain expertise to assess
the goodness of trained models and effectively build conődence in the őnal classiőer
among domain experts?

1.2.2. B. Cluster analysis

Finding coeval stellar populations amounts to a needle in a haystack-style search. Less
than 5% of all stars are clustered; the rest ś so-called őeld stars ś form a non-uniform
background in phase space. Various shapes, space densities, and cluster sizes make it a
hard challenge to do right. This task is further complicated as (compared to supervised
learning) principled model selection techniques (such as cross-validation) cannot be applied.
The lack of labeled data means the lack of an optimization criterion. The unsupervised
nature also implies that partitioning data into łmeaningfulž clusters is, in general, an
ill-posed problem. Each clustering method comes with individual assumptions about
what the clustered space should look like. While parametric clustering algorithms such
as Gaussian mixture models (GMM [28]) are easy to interpret, non-parametric methods
such as popular star cluster extraction methods DBSCAN [35] and HDBSCAN [10]
have more complex selection functions. Although powerful, many heuristics use complex
or incomprehensible hyper-parameters. Since no optimization objective exists, many
practitioners fall back to manual trial and error searches, effectively aimlessly wandering
through the hyper-parameter space. This challenging situation is also reŕected in the
wide variety of methods used on Gaia data to identify groups. These methods can be
roughly separated into the following categories:4

• Parametric approaches (e.g., Cantat-Gaudin et al. [13])

• Non-parametric machine learning methods (e.g., DBSCAN [35] by Castro-Ginard
et al. [16, 15], Zari et al. [119], Fürnkranz et al. [39], Hunt and Reffert [56];
HDBSCAN [10] by Kounkel et al. [69, 70], Hunt and Reffert [56], Kerr et al. [63];
OPTICS [4] by Ward et al. [114]; SNN [34] by Chen et al. [22]; EnLink [104] by
Kos et al. [68] and Chen et al. [22])

• Analysis and machine learning techniques designed toward stellar cluster discovery
(e.g. UPMASK [72] by Cantat-Gaudin et al. [12, 11], Peña Ramírez et al. [91];
StarGO [118] by Tang et al. [108], Pang et al. [89, 90]; and other unnamed analysis

4The following lists are not exhaustive literature surveys but rather intend to provide a rough overview
of the current clustering landscape.
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techniques by Kushniruk et al. [73], Oh et al. [87], Galli et al. [45], Meingast et
al. [82])

Given the plethora of analysis initiatives that pursue the same goal, we highlight the
following research directions. These directions address clustering challenges toward a
consolidated star clustering approach: (1) Visual solution space exploration alongside
clustering result validation options for domain experts (e.g., the Hertzsprung-Russell
diagram (HRD5 [38]). (2) Meaningful and interpretable hyper-parameters that alleviate
or facilitate manual solution space exploration. (3) Internal validation criteria [79]
(e.g., Silhouette score [97]) based on heuristic measures such as cluster compactness and
separation, optimized for star cluster results, enable automatic model selection.

Of these three options discussed above, this work focuses on the second. It sees a-
priori intrepretable tools (or interpretable hyper-parameters) as the fundamental level
of model selection techniques. This thesis aims to achieve interpretability by modifying
crucial internal algorithmic decisions to conceptually simpler paradigms without sacriőcing
accuracy. If this modiőcation is not possible, the research directions (1) and (3) mentioned
above represent alternative research avenues.

The goal of this work is to facilitate the search for star clusters in phase space. Providing
meaningful clustering tools for star cluster extraction faces these challenges:

B.1 How to increase interpretability and robustness of model agnostic, density-based
clustering methods that generalize to variously shaped clusters with variable density,
in over 95% background noise with non-uniform background distribution, and
heteroscedastic measurement errors?

B.2 What constitutes a meaningful cluster? Or, how to automatically őnd the number
of groups contained in a data set while using an interpretable measure of łclustered-
nessž.

1.3. List of contributions

The main contribution of this thesis is a set of two analysis tools that facilitate the
thorough study of stellar clusters in positional and kinematic data sets. In particular,
it aims to provide interpretable methods to combat the culture of blind acceptance of a
machine learning result. The two methods, which follow the two main modes of stellar
cluster analysis, are the following:

5The distribution of stars in the positional and kinematic feature space, alongside their distribution in
the Hertzsprung Russell diagram (HRD) provides evidence for or against a łtruež (coeval) star cluster
hypothesis. The HRD shows the evolutionary distribution of stars. It is a scatter plot in which the
absolute magnitude of stars, a measure of their brightness, is plotted against the color, a measure of
surface temperature of the same stars. The position of a star on the HRD depends on several factors,
but notably, on its mass, chemical composition, and age. During its life, a star follows an evolutionary
path through the HRD. Stars in stellar clusters are łbornž together, originating from large collapsing
molecular clouds and thus have the same age and chemical composition. Therefore, star cluster
members with different masses are found to lie on and around (due to errors in the measurement
process and the variability of ś especially young ś stars) a curve in the 2D plane.
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A) Uncover, an interactive, visual novelty detection framework to identify unseen
members of given stellar groups. Suitable models are selected in three steps: First,
astronomers deőne a priori knowledge about the star cluster. Second, they use
their domain expertise to quantify the goodness of the model. Third, the qualitative
assessment by the users creates the opportunity to update prior knowledge and
select appropriate models accordingly. Uncover is explained in detail in Ch. 3, in
which this thesis aims to answer the research questions RQ A.1, A.2, A.3, and
A.4. The contributions are summarized in the following points:

i) This thesis presents Uncover, an innovative model selection method for highly
ŕexible novelty detection models aimed at extended star cluster membership
analyzes (see Sect. 3.4).

ii) This thesis validates membership identiőcation capabilities in two case studies.
The application to the recently discovered Meingast 1 stream [82] unveils
about 2000 new high-ődelity members, increasing the population size tenfold
(see Sect. 3.5). The application to the well-studied ρ Oph region őnds 191
new high-ődelity members, demonstrating the effectiveness of Uncover (see
Sect. 3.18).

iii) Using the newly identiőed Meingast 1 members, this thesis corrects the original
age estimate, which was from 1 Gyr to ∼ 110 Myr, and determines it’s mass
to around 2000 M⊙, making it by far the most massive stream in the solar
neighborhood. In addition, this work can assign several white dwarfs to the
Meingast 1 stream (see Sect. 3.5).

iv) Using the newly identiőed ρ Oph members, this thesis reveals two main
populations that show slightly different ages (see Sect. 3.19).

v) This thesis embeds Uncover into a visually assisted workŕow for cases of vague
prior knowledge on the number and distribution of yet unseen member stars
and in the presence of training set contamination and high outlier fractions
(see Sect., 3.31.2).

vi) This thesis introduces an analysis and abstraction of data, tasks, and require-
ments for the star formation domain (see Sect. 3.33).

vii) This thesis provides a breakdown of the star classiőcation process into small,
interpretable steps. This workŕow supports users to apply their domain exper-
tise to assess the goodness of trained models, effectively building conődence in
the őnal classiőer among domain experts (see Sect. 3.34).

viii) This thesis validates the visual interface Uncover in two scientiőc use cases
that demonstrate the efficiency and effectiveness of the Uncover interface in
őnding new stars (see Sect. 3.38).

B) Signiőcant Mode Analysis (SigMA), a density-based clustering method that aims
to őnd modes in the data separated by density dips. The method studies the
topological properties of the density őeld in the multidimensional phase space. The
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set of critical points in the density őeld gives rise to the cluster tree, a hierarchical
structure in which leaves correspond to modes of the density function. Typically,
however, non-parametric density estimation methods lead to an over-clustering
of the input data. We propose an interpretable cluster tree pruning strategy by
determining minimum-energy paths between pairs of neighboring modes directly
in the input space. We tested for deviations from unimodality along these paths,
which provides a measure of signiőcance for each pair of clusters. SigMA is explained
in detail in Ch. 4, in which this thesis aims to answer the research questions RQ

B.1 and B.2.

i) This thesis presents SigMA, a novel clustering method that takes density peaks,
separated by dips, as signiőcant clusters. Using a graph-based approach, it
detects peaks and dips directly in the multi-dimensional phase space, providing
a measure of signiőcance. The method is able to adapt to non-convex shapes,
variable densities, properly incorporates astrometric uncertainties, and is őne-
tuned to large-scale surveys in astrophysics (see Sect. 4.4.2)

ii) This thesis identiőes about 104 members in the ScorpiusśCentaurus association
(Sco-Cen) arranged in 48 clusters of co-spatial and co-moving young stars.
The HRD for each cluster shows a narrow and well-deőned sequence providing
a validation test to the ability of SigMA to extract coeval and co-moving
populations (see Sect. 4.5).

iii) This thesis őnds a large fraction of clusters are (tentatively) associated with
well-known Sco-Cen massive stars, too bright to be in Gaia EDR3. Because
the proposed method is not aware of these massive stars, the association with
clusters also constitutes a validation test to SigMA (see Sect. 4.5).

iv) When comparing the 48 identiőed stellar populations in Sco-Cen to previous
results from the literature, this thesis őnds mostly agreement; however, several
discrepancies exist. Visual selection methods used recently on Gaia data
of Sco-Cen produce a 15% larger number of candidates when compared to
unsupervised methods. On the other hand, the proposed methods are able
to őnd more spatial and kinematical substructure for the same data set, and
produce samples with lower contamination levels (see Sect. 4.5.2).

1.3.1. Thesis structure

The remaining thesis is loosely structured into two parts following the two main modes
of stellar cluster analysis. In sections associated with part A, it discusses methods to
uncover unseen star cluster members. In sections associated with part B, it covers the
identiőcation of unknown star clusters. These parts coincide with two main contributions
of this thesis, discussed in Sect. 1.3.

In Ch. 2, the state of research is brieŕy surveyed. Speciőcally, Sect. 2.1 (A) discusses
model selection techniques in one-class situations and Sect. 2.2 (A) highlights related
work regarding visual and interactive model selection methods. In Sect. 2.3 (B), density
based clustering techniques are surveyed and its challenges are discussed.
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Following the state-of-the-art discussion, the main research contributions of this thesis
are presented in Ch. 3 (A) and Ch. 4 (B). These chapters include a brief introduction
followed by the respective research works, which are presented without modiőcations
to formatting and prefaced by an evaluation of contributions by individual co-authors.
Speciőcally, Ch. 3 introduces the Uncover analysis method and its application and
validation on astronomical data. Furthermore, a visually assisted workŕow for Uncover is
introduced that incorporates prior knowledge of the number and location of unseen star
cluster members. This work proposes strategies for updating (even vaguely formulated)
prior beliefs, which, in turn, effectively provide means for model selection. This work has
produced the following papers:

Ratzenböck, S., Meingast, S., Alves, J., Möller, T., & Bomze, I. 2020. łExtended
stellar systems in the solar neighborhood - IV. Meingast 1: the most massive stellar
stream in the solar neighborhood.ž Astronomy & Astrophysics. Supplement Series,
639, A64.

Grasser, N., Ratzenböck, S., Alves, J., Großschedl, J., Meingast, S., Zucker,
C., Hacar, A., Lada, C., Goodman, A., Lombardi, M., Forbes, J. C., Bomze, I.
M., & Möller, T. 2021. łThe ρ Ophiuchi region revisited with Gaia EDR3 - Two
young populations, new members, and old impostors.ž Astronomy & Astrophysics.
Supplement Series, 652, A2.

Ratzenböck, S., Obermüller, V. Möller, T. Alves, J. & Bomze, I. 2022. łUncover: To-
ward Interpretable Models for Detecting New Star Cluster Membersž in IEEE Trans-
actions on Visualization and Computer Graphics, doi: 10.1109/TVCG.2022.3172560.
Accepted in April 2022.

Chapter 4 presents SigMA, a hierarchical, density-based clustering method with measures
of signiőcance. This clustering technique is presented in the following manuscript:

Ratzenböck, S., Möller, T., Großschedl, J., Alves, J., Bomze, I. & Meingast, S.
2022. łSigniőcance Mode Analysis (SigMA) for hierarchical structures: An application
to the Sco-Cen OB associationž
Major revision decision with Astronomy & Astrophysics in May 2022.

This thesis concludes with Ch. 5 where a summary of results is presented in Sect. 5.1
and future work is discussed in Sect. 5.2.
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2. Methodology and state of research

Here, the state of research for each research question is brieŕy discussed, providing a
framework and guideline for this work’s contributions. With the aim of interpretable
methods for star cluster searches, the research questions have interdisciplinary őelds of
investigation. On the one hand, the methodological side of this thesis aims to contribute
to the őeld of data science, or more precisely, data visualization and machine learning. On
the other hand, it seeks őrst to validate this thesis’ őndings in an astronomical context to
prove its viability and usefulness.

Related work this thesis builds upon that directly affects the techniques developed
in this study are brieŕy discussed. To address RQ A.1 and A.2, one-class model
selection approaches are discussed in the context of stellar clusters in Sect. 2.1. Building
upon lessons learned from Ratzenböck et al. [94] and Grasser et al. [51], this work
considers model selection techniques in cases where qualitative, visual inspection of
inferred stars can guarantee maximal conődence in the model, addressing RQ A.3 and
A.4 in Sect. 2.2. Finally, in Sect. 2.3, it addresses RQ B.1 and B.2 by discussing related
work in non-parametric, density based clustering.

Following the discussion on state-of-the-art methods in the domain of astronomy in
Sect. 1.2, this chapter will contextualize this work with modern data science practices
and achievements.

2.1. One-class model selection (A)

Due to the lack of labeled outlier data, traditional model selection techniques such as
cross-validation cannot be applied to one-class methods. Since no second class can restrict
model growth, models that encompass the whole feature space would achieve a perfect
test score. The optimal hyper-parameter selection for one class models remains an open
problem to this day [110].

To mitigate the non-trivial selection process of OCSVM hyper-parameters, automatic
hyper-parameter selection approaches have been proposed, which should provide suitable
results. Automatic strategies either provide selection heuristics, or focus on producing a
set of pseudo-outliers [110, 109, 29, 7, 32, 113]. These artiőcial outliers are subsequently
used as an opposing class to the training data during cross-validation. Heuristics are
often limited to speciőc kernel parametrizations. As radial basis function (RBF) kernels
bring a high degree of model ŕexibility most heuristics usually focus on them [36, 65, 112,
116, 48].

Both automatic approaches, however, often assume a problem in which the target
class is sufficiently represented while the other class has almost no measurements in
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comparison [110]. This class imbalance assumption towards the training set is in stark
contrast to stellar clustering where the target class is a minority embedded in, and
outnumbered by, a background of non-member stars. Furthermore, automatic methods
usually provide point estimates for hyper-parameters, providing only a single model to
infer new member stars with.

Even in the case of optimal model hyper-parameters, one-class algorithms are shown to
exhibit poor performance [109] which can be combated by using also non-optimal learners
in an ensemble approach, improving the performance and robustness of the prediction.
Additionally, point estimates are not able to adapt to speciőc user expectations. Moreover,
point estimates can also be troubling in the case of noisy training data. Since residual
contamination in the training sample from non-member stars is expected, one has to
consider that OCSVM classiőers can be sensitive to contamination from outlier data [55,
78]. In this case, the OCSVM classiőers tend to skew toward the anomalies. Amer et al. [2]
propose to mitigate the inŕuence of outliers by altering the OCSVM objective function
introducing training sample weights. Instead of tweaking the objective function, Ghafoori
et al. [47] introduce a pre-processing step which removes anomalies from the training
set and simultaneously tries to estimate suitable hyper-parameters. Both approaches,
however, need some form of outlier estimate, be it either through the distance to the data
centroid [2] or via a k-NN density estimate [47] implying that outliers occur towards the
border, or in low density regions of the training set. While this assumption is sufficient
for many applications, it does necessarily generalize to star clusters where contamination
depends greatly on the training set selection method.

This work will focus on automatic model selection heuristics that are adopted to the
domain of star cluster extractions.

2.2. Visual model selection (A)

Although no ground truth information is available for individual stars, ensembles of stars
can be qualitatively validated by domain experts. The distribution of stars in phase
space, alongside their distribution in the HRD1 provides evidence for or against a łtruež
star cluster hypothesis.

Since solutions need qualitative veriőcation, the process of őnding appropriate and
effective models is inherently unsupervised. The difficult problem of hyper-parameter-
őnding of unsupervised algorithms has been addressed by the visualization community
and is known as the paradigm of visual parameter space analysis (VPSA [102]). VPSA
aims to replace the tedious manual process with a systematic approach that facilitates
the comprehensive visual exploration of the solution space.

A large body of previous work exists on interactive tools to support the exploration
of possible models; a summary is listed in the following paragraphs. General purpose
tools provide means for exploratory data and cluster analysis. The Hierarchical Clus-
tering Explorer (HCE [103]) is an early example of an interactive visualization tool that

1See footnote 3 in Sect. 1.2.2 for more details.
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improves the users’ understanding of different clusters. HCE organizes the hierarchical
cluster structure as a dendrogram with heatmaps. DICON [14] introduced techniques
for comparing clustering results across different algorithms and even data sets. To fa-
cilitate cluster analysis DICON uses an icon-based cluster visualization that embeds
statistical information into a multi-attribute display. Clustrophile 1+2 [27, 18] is a cluster
analysis and exploration tool which guides a user through different choices of clustering
hyper-parameters and provides interpretable cluster explanations. Clustervision [74],
similar to Clustrophile 1+2, is a general purpose clustering tool which performs a meta
clustering analysis using multiple different clustering techniques and hyper-parameters.
Users can explore these solutions on the basis of őve summary statistics measuring cluster
compactness and separation with the goal of providing a domain independent comparison
of clustering results.

Extensive work has been done on incorporating user feedback into the clustering
process. VISTA [23] was developed with the understanding that human interaction is an
important factor in clustering. It is designed with the concept in mind, that clustering
is not őnished without human interaction. Thus, users can interactively reőne clusters
while improving their understanding of the result and acceptance of the pattern applied.
ClusterSculptor [85] enables users to intervene in the clustering processes. Users can
iteratively re-organize and interact with clusters using expert knowledge. The system
aims to derive clustering rules from these examples. Schreck et al. [100] use user feedback
to inŕuence the result of self-organizing map (SOM) clusterings of trajectory data.
Matchmaker [76] extends ideas from HCE [103] allowing users to modify clusterings by
grouping data dimensions. Open-Box Spectral Clustering [101] is an interactive tool that
visualizes mathematical quantities involved in 3D spectral clustering. The system provides
hyper-parameter value suggestions and immediately reacts to user feedback to increase
the quality of image segmentation. Packer et al. [88] present a distance-based spatial
clustering approach and provide a heuristics computation of input hyper-parameters
that supports the search for meaningful cluster results. ReVision [117] allows users
to steer hierarchical clustering results by utilizing both public knowledge and private
knowledge from users. By reformulating this knowledge into constraints, the data items
are hierarchically clustered using an evolutionary Bayesian rose tree.

Conceptually similar research to ours include Geono-Cluster [26] and PK-clustering [93].
Geono-Cluster enables biologists to insert their domain expertise into clustering results.
The tool displays the expected clustering results to users based on a small subset of
data. The system estimates users’ intentions and generates potential clustering results.
PK-clustering enables users to input prior knowledge and explore the space of clustering
results in the context of the provided prior knowledge. The study of consensus between
prior assumptions and cluster results allows users to acquire and update their prior
knowledge.

In contrast to previous works, this thesis aims to shift the focus from data exploration
and insight generation towards effective model generation targeted at a single cluster.
Additionally, it őnds that currently available systems fail to incorporate previously
identiőed members and no work has been done on visual parameter space exploration on
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novelty detection methods.

2.3. Non-parametric, density based clustering (B)

This thesis considers model agnostic approaches to identify stellar groups in positional and
kinematic data sets. Speciőcally, it aims to study the structure of the density distribution,
considering its modes as stellar groups. Related research on non-parametric density-based
clustering methods is vast. In the following, a brief introduction is provided and critical
literature is discussed along the way. In the following, bold, lower-case variables denote
d-dimensional vectors.

2.3.1. Cluster definition in density-based analyses

The clustering analysis builds on the assumption that observed data X= {x1, . . . ,xN}
with xi ∈ Rd are drawn from an unknown density function f . The goal is to understand the
structure of the underlying density function, which is estimated from data. Wishart [115]
provided an early interpretation, which deőnes clusters as data samples associated with
modes in f . Koontz et al. [67] proposed a őrst mode-seeking clustering algorithm, and
similarly, later works such as the widely used Mean-Shift algorithm and its variants [24,
25, 111] build upon Wishart’s idea.

Hartigan [54] proposed an alternative cluster deőnition in which clusters are the
connected components of the level-sets of f . Assuming f has compact support X , the
resulting level-sets for the threshold λ can be formally written as the following:

L(λ) := {x ∈ X : f(x) ≥ λ} (2.1)

Thus, L(λ) constitutes a set of connected components that are identiőed as clusters. The
connected components of the level-set L(c) are the resulting clusters, while the remaining
data is treated as noise. See the second to last panels in Fig. 4.1 for four clustering
solutions, depending on various density threshold levels.

A single threshold, as is, e.g., employed in the DBSCAN [35] algorithm, cannot reveal all
peaks for many data sets containing clusters with variable densities. Instead, a hierarchy
of clustering solutions emerges by considering all possible threshold values in a hierarchical
clustering approach.

Hierarchical, density-based clustering

The set of critical points, where ∇f = 0, in the density őeld gives rise to the cluster
tree, a hierarchical structure in which leaves correspond to modes of the density function.
Conceptually, the cluster tree is obtained by sweeping the density threshold λ from ∞
to −∞ and tracking connected components at each step; see Fig. 4.1 for a schematic
illustration.

Similar to gradient estimation in mode-seeking algorithms, the computational realization
of cluster tree extractions faces several implementational challenges. Estimating the
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connected components, while easy in one dimension, gets nontrivial in higher dimensions.
To approximate connected regions in higher dimensions, implementations and theoretical
analyses [5, 107, 19, 71, 20] adopt a graph G(λ) over the data samples where vertices
and/or edges are őltered according to λ, thus {x ∈ X : f̂(x) ≥ λ}.

However, Stuetzle & Nugent [107] point out that samples from the same connected
component in L(λ) may end up in different connected components of G(λ). Additionally,
density estimates are inherently noisy; both effects, thus, lead to an artiőcial increase in
the number of clusters. To counteract this over-clustering, the resulting graph cluster tree
is usually pruned in a post processing step during which spurious clusters are identiőed
and merged back into the łparent clusterž [107, 71, 20].

Cluster tree pruning

Various methods for cluster tree pruning have been suggested. The popular HDBSCAN [10]
algorithm, for example, prunes the cluster tree in two ways; őrst, clusters that have fewer
members than a given threshold value are merged back to the parent mode. Second,
HDBSCAN estimates the stability of each cluster in the hierarchy via the concept of
relative excess of mass (EOM) [84]. The EOM heuristic measures the lifetime and size of
a cluster and favors more prominent and stable clusters that live longer in the cluster
tree.

A related pruning heuristic comes from considering each mode’s topological stability, or
persistence, in f̂ , introduced by Chazal et al. [21]. Persistence is deőned as the lifespan of
each connected component, i.e., the difference in density from a mode’s birth to its death
by merging into its parent mode. The concept of persistence is an effective measure to
prune the cluster tree, as it is stable under small perturbations to the underlying density
f [33, 120, 49, 21].

Similarly to persistence, Ding et al. [30] present the saliency index, a mode’s birth to
death density ratio. The cluster tree is generated by varying the saliency index between 0
and 1. Cluster conőgurations that are unchanged for the longest time as the saliency is
varied are considered relevant results.

Both heuristics, persistence and salience, have the desirable ability to automatically
provide sensible hyper-parameter choices, i.e., largest value ranges where the clustering
remains unchanged. However, in the case of many clusters and large data sets, these
stable regions typically disappear and selecting the input parameters again warrants a
proper parameter search.

Compared to the heuristic notions of stability, there is also growing research to apply
statistical methods that test the modality structure of the data. These methods offer
the advantage of an interpretable and meaningful parameter α, deőning the signiőcance
level of a corresponding hypothesis test. The null hypothesis H0 commonly assumes that
the data, or subsets of it, are sampled from a uni-modal density, whereas the alternative
hypothesis H1 suggests multi-modality. The null hypothesis is rejected at a signiőcance
level α if the p-value from the corresponding test procedure exceeds this signiőcance level.

Hypothesis test procedures have been used to estimate the number of clusters in k -
means and EM frameworks. G-means [52], PG-means [37], and Dip-means [60] employ
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the Anderson-Darling [3], Kolmogorov-Smirnov [66, 106], and Hartigan’s dip [53] test
to estimate the number of clusters, respectively. Burman & Polonik [9] proposed a
conceptually similar approach, which examines the modality structure on a straight line
path between two candidate modes. Two neighboring peaks are true clusters in the data
if there exists no path between them that does not undergo a substantial dip in density.

This work proposes a meaningful cluster tree pruning method by employing a modiőed
version of the modality test by Burman & Polonik [9]. The integration into the hierarchical,
density based framework provides a highly accurate clustering algorithm with interpretable
hyper-parameters that alleviate practitioners from haphazardly trusting machine learning
output.
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3. Extended membership analysis (A)

łHow can members of previously studied star clusters guide the search for yet undetected
member stars?ž And: łHow to decompose the membership identiőcation process into
interpretable steps such that practitioners can conődently build powerful novelty detection
classiőers themselves?ž This chapter answers these questions in three steps.

In the őrst publication (A1), we1 developed a heuristic analysis framework we call
Uncover, which incorporates users’ prior knowledge of yet unseen members to select
suitable novelty detection classiőers. We express prior knowledge as ranges of interpretable
summary statistics that trained classiőers have to adhere to, instead of directly tuning
model hyper-parameters. The method is validated by applying it to the Meingast 1 stellar
stream [82], increasing its size roughly tenfold. By considering the selection criteria that
led to the stream’s discovery, we can place strict constraints on given summary statistics.

In paper two (A2), we discuss methodological updates in the case of vague and uncertain
prior knowledge in the application of Uncover to the ρ Oph region. In contrast to Meingast
1, ρ Oph has been studied extensively. Its age and proximity to earth make it a vital
star formation probe. The region’s prominence and treatment in the past provide an
edge case to the Uncover analysis pipeline. Compared to Meingast 1, estimating the
number and distribution of yet unseen members is not straightforward. Due to the vague
nature of prior knowledge, model selection becomes practically unfeasible as the space
of possible solutions cannot be constrained effectively. We propose to sample the space
of prior assumption tuples and provide an updated automatic model selection approach
which reduces the contamination fraction of inferred stars.

Summary statistics, as demonstrated in the őrst publication A1, provide an efficient
and precise model selection approach if sufficient prior knowledge of undetected group
members is available. However, in reality, this knowledge is often vague and abstract.
In such cases, we have demonstrated that we can constrain possible models by limiting
the contamination fraction, which is determined using radial velocities. A downside
of this methodology is its dependence on radial velocity measurements. Less than one
percent of data instances across the Gaia DR2 (and EDR3) catalog have radial velocities
measurements. Thus, a small and typically uncertain subset of sources determines the
goodness of trained models, leading to many false rejections. We aim to őnd alternative
or complementary model selection tools in the case of vague prior knowledge, which
considers a more holistic view of the solution space. To do so we have developed a visually
supported őve-step workŕow approach in which we (1) provide a comprehensive overview

1Throughout this work, łwež refers to the author team of respective articles. The individual contributions
of all co-authors are outlined in the corresponding publication sections, see Sect. 3.1, Sect. 3.14,
Sect. 3.29, and Sect. 4.1.
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of the vast solution space, (2) give users the opportunity to validate groups of similar
models, (3) derive rules for łgoodž models from users’ judgements at the previous step,
(4) facilitate What-If analyzes where users can study the effect of individual rules on the
őnal set of inferred stars. We show in two case studies on ρ Oph and Corona-Australis,
see Sect. 3.38.1, and a usability study, see Sect. 3.38.2, that users are effectively, and
efficiently building models themselves.
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ABSTRACT

Context. Nearby stellar streams carry unique information on the dynamical evolution and disruption of stellar systems in the Galaxy,
the mass distribution in the disk, and they provide unique targets for planet formation and evolution studies. Recently, Meingast 1, a
120◦ stellar stream with a length of at least 400 pc, was dicovered.
Aims. We aim to revisit the Meingast 1 stream to search for new members within its currently known 400 pc extent, using Gaia DR2
data and an innovative machine learning approach.
Methods. We used a bagging classifier of one-class support vector machines with Gaia DR2 data to perform a 5D search (positions and
proper motions) for new stream members. The ensemble was created by randomly sampling 2.4 million hyper-parameter realizations
admitting classifiers that fulfill a set of prior assumptions. We used the variable prediction frequency resulting from the multitude of
classifiers to estimate a stream membership criterion, which we used to select high-fidelity sources. We used the HR diagram and the
Cartesian velocity distribution as test and validation tools.
Results. We find about 2000 stream members with high fidelity, or about an order of magnitude more than previously known, unveiling
the stream’s population across the entire stellar mass spectrum, from B stars to M stars, including white dwarfs. We find that, apart
from being slightly more metal poor, the HRD of the stream is indistinguishable from that of the Pleiades cluster. For the mass range
at which we are mostly complete, ∼0.2 M⊙ < M <∼ 4 M⊙, we find a normal IMF, allowing us to estimate the total mass of stream
to be about 2000 M⊙, making this relatively young stream by far the most massive one known. In addition, we identify several white
dwarfs as potential stream members.
Conclusions. The nearby Meingast 1 stream, due to its richness, age, and distance, is a new fundamental laboratory for star and planet
formation and evolution studies for the poorly studied and gravitationally unbound star formation mode. We also demonstrate that
one-class support vector machines can be effectively used to unveil the full stellar populations of nearby stellar systems with Gaia
data.

Key words. methods: statistical – open clusters and associations: individual: Meingast 1 – stars: luminosity function, mass function –
stars: massive – stars: low-mass – white dwarfs

1. Introduction

Coherently moving groups of stars in the Milky Way are
unique laboratories where we can coherently study a large

⋆ The full source catalog described in Table G.1 is only avail-
able at the CDS via anonymous ftp to cdsarc.u-strasbg.fr
(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/
cat/J/A+A/639/A64
⋆⋆ In our original discovery paper, we did not name the stream. The
authors of the first follow-up paper (Curtis et al. 2019) contacted us re-
garding a name for the structure but did not agree with our proposed name
and decided on their own to name the system the Pisces-Eridanus stream.
Their chosen name, however, not only does not capture the true size of the
stream (the stream stretches across at least 10 constellations and likely
extends beyond these), it is ambiguous as it can lead to confusion with the
Pisces moving group (Binks et al. 2018). In general, given the number
of new streams being found by Gaia and the finite number of constel-
lations, it seems appropriate to move away from using constellations to
name streams (e.g., Ibata et al. 2019). An unambiguous remedy to this
particular situation is to name the stream after the original discoverer,
which we do in this paper, naming the structure Meingast 1.

variety of astrophysical processes. For instance, the similar
birth conditions in nearby moving groups have provided much
insight into individual stellar properties (e.g., Torres et al. 2008;
Gagné et al. 2014; Riedel et al. 2017, and references therein).
Moreover, while older stellar systems experience mass loss
due to the gravitational interaction with the Galaxy’s grav-
itational potential (e.g., Meingast & Alves 2019; Röser et al.
2019), young co-moving groups can give us important clues
on the governing star formation processes in the Milky
Way.

Recently, Meingast et al. (2019), the second installment in
this series (hereinafter referred to as Paper II), discovered a 120◦

stellar stream that is currently traversing the immediate solar
neighborhood at a distance of only ∼100 pc. For this paper, the
authors determined the age of the system to be 1 Gyr. Their
assumption was mostly based on the presence of a single star
in their selection, namely the subgiant 42 Ceti. Shortly after the
stream’s discovery, Curtis et al. (2019) determined stellar rota-
tion periods of stream members to be very similar to stars in the
Pleiades. Their application of gyrochronolgy thus sets the age of

Article published by EDP Sciences A64, page 1 of 10
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the stream at close to 120 Myr, implying that the star 42 Ceti is
likely an unfortunate interloper.

The search criteria in Paper II were based on the 3D space
velocities in a cylindrical coordinate frame derived from astro-
metric measurements provided with the second Gaia data release
(Gaia DR2; Gaia Collaboration 2016, 2018c). While space
velocities provide a robust estimate on membership, evaluat-
ing 3D motions of stars requires radial velocity measurements.
This requirement substantially limits the identification of mem-
bers to a small subset of Gaia DR2, specifically to stars with
G . 13 mag, which in the case of Meingast 1 translate to stellar
masses between ∼0.5 and 1.5 M⊙.

The goal of this paper is to unveil the stellar population of
the Meingast 1 stream, from B stars down to mid-M stars, or
the completeness limit of the Gaia DR2 data. To this end, we
applied state-of-the-art machine learning tools, where we used
the previously identified members as a training set. The struc-
ture of this paper is as follows: in Sect. 2, we present the data
used for the analysis. Section 3 summarizes the method used to
select potential stream member sources from the Gaia DR2 data
set. Finally, in Sect. 4, we present a final high-fidelity source cat-
alog on which we determine the age and mass of the Meingast 1
stream1.

2. Data

For the analysis, we used the 5D position (α, δ, ̟) and velocity
(µα, µδ) information, provided by Gaia DR2. Following the data
selection in Paper II, we preferred distance estimates provided
by Bailer-Jones et al. (2018). The distance limit of the stellar
sample is kept at ≤300 pc in accordance with Paper II. This is
motivated by the choice of our classifier, which predicts member
stars within the limits of the previously determined extent of the
stream. Furthermore, the subsequently described method works
independently from quality criteria. Therefore, quality filters are
only applied for visualisation purposes. This selection results in
a data set of 18 692 951 total stars.

For Paper II, the sources were extracted in a 6D parame-
ter space spanned by three spatial (X, Y , Z) and three velocity
dimensions (vr, vφ, vz). Specifically, the velocities were repre-
sented in a galactocentric cylindrical coordinate system to bet-
ter represent the bulk motion stars. Consequently, the source
identification in Paper II depended on radial velocity measure-
ments, which are scarce in Gaia DR2. Within the search region
of 300 pc, about 95% of all sources in the catalog were, there-
fore, not taken into account in Paper II due to missing radial
velocity data.

3. Member selection

As mentioned above, the bulk of Gaia DR2 catalog sources were
not used in the original member identification of the stream
in Paper II. Omitting the radial velocity component yields a
much more complete source list, but at the same time limits any
analysis to projected tangential velocities given by the proper
motion measurements. While members of spatially confined star
clusters can be identified reliably in proper motion space, the
recently discovered stream encompasses at least 120◦ on sky.
This large extent introduces significant projection effects in tan-
gential velocities, posing a nontrivial problem for member iden-
tification in 5D.

1 We acknowledge the simultaneous publication by Röser & Schilbach
(2020), who have also studied member stars of the Meingast 1 stream.

3.1. Supervised member selection

To avoid the difficult task of clustering in the 5D posi-
tion and proper motion space, we pursued a supervised
approach based on one-class support vector machines
(OCSVM; Schölkopf et al. 2001). Instead of finding a decision
boundary between distinct groups in the training sample like a
typical SVM (Cortes & Vapnik 1995), an OCSVM constructs
a decision surface that attains a maximum separation between
the training samples and the origin. Consequently, the algorithm
infers the properties of the input samples by enclosing the
support of its joint distribution with a hyper surface during
the training process. Depending on the position of unseen data
points2 to this surface, a trained predictor acts as a binary
function which groups new example points as either resembling
the previously seen training data or not. We aim to estimate the
extent of the stellar stream by using the OCSVM algorithm and
the already classified sources from Paper II as a training set.
Subsequently, we predict the membership of unseen stars to the
stream within a 300 pc sphere around the Sun (see Sect. 2). In
order to find a model that is capable of providing a physically
meaningful characterization of the stellar stream in the 5D fea-
ture space, the corresponding hyper-parameters of the OCSVM
classifier have to be set sensibly.

3.2. Parameter tuning

We made use of the libsvm (Chang & Lin 2011) OCSVM imple-
mentation, which features two main hyper-parameters for the
RBF-kernel3, γ and ν. The parameter γ defines a region of influ-
ence of the support vectors selected by the model. The variable
ν controls the fraction of possible outliers as well as the fraction
of support vectors. Thus, γ and ν are crucial hyper-parameters
that define the shape of the enveloping hull.

Additionally, these parameters, and subsequently the classi-
fier shape, depend on the input variable range. Since the parame-
ter γ describes a support vector region of influence, different fea-
ture ranges lead to a varying model flexibility within each input
variable. To mitigate an asymmetric feature weighting, a com-
mon approach is to standardize each input variable to a common
variance by dividing each feature by its standard deviation. How-
ever, as we are dealing with a combined feature space of posi-
tion and proper motion information a certain weighting towards
one of the two feature spaces might be beneficial to properly
characterize the joint probability of stream members. Conse-
quently, after scaling the features to unit variance, we added an
additional hyper-parameter: cx/cv. This parameter describes the
scaling fraction between positional and proper motion features.
When cx/cv = 1 the variance in both feature spaces is the same.
In practice, we set cv = 1 and vary cx within a certain range.

As we chose a classifier via a set of hyper-parameters, we
have to be aware of existing contamination in the training set
(estimated to amount to a few percent in Paper II). Additional
selection biases caused by the original clustering and parameter
choice that influence the final obtained stream selection should
be considered. Therefore, only crude estimates about the true
joint distribution of the sources in 5D are possible. Nevertheless,

2 Stars in the data set are represented as points in a 5D space with three
position axes and two proper motion axes constituting the so-called fea-
ture space. Thus, in a machine learning context, we refer to stars in the
data set as points in a feature space.
3 We conclude from extensive hyper-parameter searches that the RBF
kernel always outperformed the alternative options. Hence we omit the
description of other kernel types in this section.
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we have information about the resulting classifier shape, which
limits the space of possible solutions. Firstly, based on the
number of missing radial velocity measurements, we estimate
that the total number of member stars should roughly increase
twenty-fold. Secondly, due to a lack of a better description we
estimate that the true extent is comparable to the original selec-
tion in Paper II, which found that the stream is roughly prolate
spheroidal with a length of about 400 pc and an equatorial diam-
eter of about 50 pc.

A trained classifier has to be able to capture these prior
assumptions. Therefore, we used the above mentioned character-
istics to eliminate predictions that seem unfit to describe the stel-
lar stream in 5D. Since we cannot infer the true joint distribution
from the available stream members, and our prior assumptions
entail some allowable margin of variation, the model param-
eters cannot be tuned to optimal values. Instead, we aggre-
gated the predictions of multiple models that conform to our
prior assumptions into an ensemble of OCSVMs. This proce-
dure is referred to as bootstrap aggregating, also known as bag-
ging (Breiman 1996). A benefit of using multiple aggregated
classifiers, in comparison to one single model, is an improve-
ment in prediction stability. Due to its variance-reducing ability,
bagging has been successfully applied, especially to noise-prone
classifiers, whose predictions vary significantly with small vari-
ations in the training data. In Grandvalet (2004), the author sug-
gests that bagging systematically reduces the influence of outlier
samples in the training data. Furthermore, by bundling together
multiple models, a notion of stability for each star is obtained
as different regions of the 5D training space have varying pre-
diction frequencies. Ideally, the ensemble of classifiers has a
higher prediction frequency towards the center region of the
stellar stream (in 5D) where sources are less likely to be ran-
domly selected field stars. Bagging, therefore, automatically cre-
ates a hierarchy from more robust to less robust stream mem-
bers, which reduces prediction variance compared to a single
classifier.

A schematic illustration of a small ensemble classifier is
shown in Fig. 1. The black scatter points represent the train-
ing set, whereas the colored shapes depict the bounding surfaces
of individual OCSVM classifiers trained with different sets of
hyper-parameters. The unification of multiple classifiers results
in an ensemble classifier where overlapping bounding regions
result in different levels of prediction frequency.

The final bagging predictor is obtained in a two step pro-
cess: Firstly, the actual training phase and, secondly, the val-
idation phase, which rejects models that do not represent our
expectations well. In the learning phase (see Appendix A for
more details) the model is trained using ten-fold cross validation
on a random set of hyper-parameters (γi, νi, (cx/cv)i). Before
deploying the classifier on the full data set, we filtered out mod-
els below a mean accuracy score of 0.5, or a standard deviation
above 0.15 across the hold-out sets. Models passing this filter
criterion enter the validation phase, which assess the classifiers
capability of capturing our prior assumptions about the distribu-
tion and quantity of predicted sources. We require the model to
comply with the following criteria. Firstly, the number of pre-
dicted stream members Ns must not exceed a physically sensi-
ble range, which is limited to Ns ∈ [500, 5000]. Secondly, the
extent of the predicted stream members in position and proper
motion space must be similar to the original ones. Thirdly, the
cylindrical velocity distribution of the stream members must not
deviate too much from the training sample distribution. For a
full description on the implementation of these three validation
criteria, see Appendix B.

X (pc) 

Y
 (p

c)
 

10
0

20
0

Fig. 1. Schematic figure illustrating the effect of different hyper-
parameters on the classifier shape in the Galactic X–Y plane. Black
points represent the training set, whereas the colored shapes depict the
bounding surfaces of individual OCSVM classifiers trained with a dif-
ferent set of hyper-parameters. The unification of multiple classifiers
results in an ensemble classifier where overlapping bounding regions
result in different levels of stability.

Since we cannot formulate an exact objective function to
be minimized, we did not converge to a single, optimal hyper-
parameter selection. Instead, the models were assessed as either
plausible candidates, which capture out prior assumptions about
the distribution of the predicted sources, or not. Therefore, for
small ensemble classifiers with only a few models, the prediction
depends on the sampling strategy in hyper-parameter space. To
reduce the dependency on the search strategy, we iterate through
2.4 million random realizations of (γi, νi, (cx/cv)i) within their
respective range in order to converge to a stable solution. Alto-
gether, the final classifier ensemble consists of a total of 8515
classifiers, which have passed the validation steps. Figure C.1
shows the distribution of accepted models with respect to the
hyper-parameters ν, γ, and cx/cv. The software used to train the
ensemble classifier is publicly available4.

3.3. Limitations and caveats

Any supervised model based on OCSVMs is limited by the pro-
vided training data, because the shape of the decision surface is
determined by the input training set. As suggested in Paper II,
the stream’s extent might potentially be much larger due to sen-
sitivity limitations. The method used in this paper is not able
to infer the stream membership of stars outside the constructed
decision boundary. Finding externally located stream members
would require, for example, a transition to unsupervised meth-
ods, which are not limited by a fixed training set.

Additionally, the constructed decision boundary depends
heavily on the outermost points in the training sample as they
are more likely to act as support vectors for the decision surface.
As the density of points decreases towards these outer regions
(in 5D), the decision boundary depends on random fluctuations
of these border points present in the training set. Furthermore,
we suspect the fraction of contaminants in stream member stars

4 https://github.com/ratzenboe/uncover and http://

uncover.cs.univie.ac.at/
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per unit volume increase towards border regions. Thus, outliers
in the border region have an increasing chance of being a sup-
port vector defining the shape of the decision surface. These
effects, however, are somewhat mitigated by the choice of bag-
ging multiple predictors, which helps to reduce unstable decision
surfaces.

While omitting the radial velocity component opens up the
possibility to search for more stream members, we lose, at the
same time, an additional discriminative dimension. By neglect-
ing the radial velocity distribution of the input data, the imple-
mented classification scheme impacts the contaminant fraction
of our final source list. This leads to an increasing recall at the
cost of reduced precision.

4. Results and discussion

Using no pre-filter selection the classifier ensemble predicts
a total of 4243 stream members. This source list does not,
however, contain all members from the original training set.
Approximately 10% of the training data are not captured by the
ensemble classifier. This reduction can be attributed to the model
validation phase, where we prioritized more conservative mod-
els in an attempt to prevent overfitting. To increase this retrieval
rate, we would need to omit the bootstrapping step combined
with the subsequent majority voting (see Appendix A) and use
the entire sample to train individual classifiers. Also, to be sen-
sitive to more remote points, we would need to include more
flexible models in the classifier ensemble. However, these tools
and choices have been installed to prevent serious overfitting on
the training data and to dampen the influence of outlier sam-
ples in the training data. Since an important goal is to find a
robust model that minimizes the contamination fraction of the
inferred points, we tolerate a slightly reduced retrieval fraction
of the original training set points.

To visualize our results, we implemented a series of quality
selections described in Appendix D, hereinafter referred to as fil-
ter Q1. For a direct comparison to the original training sample,
we implemented the filter criteria as in Paper II (excluding the
criterion on radial velocities), hereinafter referred to as filter Q2.
The quality filters Q1 and Q2 reduce the total number of classi-
fied member stars to 2567 and 2913, respectively. This selection
contains, however, many sources that are predicted by only a
marginal fraction of the 8515 classifiers in the bagging ensem-
ble. Each individual classifier is associated with an individual set
of classified stream members. Thus, considering all 8515 classi-
fiers, each source can be assigned a prediction frequency. We
define this prediction frequency, hereinafter referred to as sta-
bility, as the fraction of classifiers in the bagging ensemble that
include a certain star in their prediction set. Figure 2 shows the
5D distribution of the training sample (top row) and the stream
members classified by our trained OCSVM (quality filter Q1),
where the color indicates the stability of each source for our new
classification. We observe that, on average, stability values tend
to increase towards the central parts of the stream. Additionally,
we find that when inspecting the new source set in the color-
absolute magnitude diagram (see Fig. 5), sources with lower sta-
bility numbers correlate with a larger scatter, while sources with
higher stability values are more compactly distributed around an
idealized isochronal curve. Therefore, stability can be used as a
measure to filter out potential contaminant sources.

Since the training process includes a validation step, even
stars with low stability values can be regarded as potential stream
members. Hence, stability constitutes not a probability estimate,
but rather a quality feature for which we aim to find a suitable

criterion to clean our prediction sample. To determine the relia-
bility of the predicted stellar sample, we estimated the level of
contamination at various stability filters.

We measured the contamination via the velocity dispersion
in 3D, parametrized via vr, vφ, and vz. However, due to con-
tributions of random contaminants, the standard error of the
prediction set is largely dominated by outliers, regardless of the
stability filter criterion. Hence, we describe the variability of
the velocity distribution with the median absolute deviation
(MAD), which is a robust estimate of statistical dispersion. For
reference, the training data distribution measures an MAD in the
3D velocities of 2.1 km s−1.

Figure 3 displays the influence of a variable stability filter
criterion on the 3D velocity distribution. By moving in the plot
from left to right, we gradually added less “stable” sources to
the predicted data set. We identified two distinct sections in this
curve that are dominated by different slopes. Firstly, the section
with stabilities from 100% decreasing to 4% is comprised of a
roughly constant growing scatter around the expected 3D Carte-
sian velocity. Secondly, adding sources with a stability below
∼4% results in a rapid growth of the MAD. This sudden increase
is most likely caused by adding a significant number of contam-
inating field stars. Here, we assumed that these contaminating
field stars are more likely associated with the outer borders of
the stream in the 5D parameter space, which is also where the
trained classifier ensemble is less confident about the stream
membership of stars. This decrease in stability values of pre-
dicted sources towards the outer regions of the stream is also
well visible in Fig. 2.

In addition to the sudden increase at 4%, we identify another
characteristic property of the MAD distribution in Fig. 3. Start-
ing at about 40%, we observe an extended flat distribution up
to 24%. In this range, the amount of scatter remains nearly con-
stant. This filter criterion (stability≥ 24%) yields a very sta-
ble subsample to the more lenient stability> 4% criterion.

The filter behavior can be observed in more detail in Fig. 4,
where the successive cleaning of the prediction set is displayed
in each individual velocity component. The solid lines in the
figure represent a kernel density estimation of the marginal
distributions for various color-coded stability filter criteria.
Specifically, we sampled the distributions at constant intervals
in stability with a step size of 5%. The hue change from red
to shades of blue indicates the transition from a contamination-
dominated to a more robust filter regime. In the marginal distri-
butions, the disproportionately large reduction in the amount of
scatter around mean velocities by applying the stability> 4%
filter criterion becomes apparent. For subsequent filter criteria,
the contamination outside the training sample distribution (black
line) is reduced at a nearly constant rate, particularly in the vr

and vφ observables. Moreover, we identify a kinematic substruc-
ture in the panel displaying vz velocities. Sources identified with
this substructure have systematically larger vertical velocities by
about 5 km s−1 compared to the bulk motion of the stream. These
sources are only clearly separable in vz and do not show any
obvious correlation in other velocities or can be segregated in
spatial coordinates. We note here that this substructure accounts
for the high MAD of the predicted sources and is removed only
for very conservative stability filter criteria above 90%.

Following the above outlined characteristics in the velocity
distributions, we therefore implemented an additional criterion
of stability> 4% or stability> 24% for a more conser-
vative approach. Depending on the quality filter selection, the
stability >4% filter criterion reduces the number of predicted
stream members to 1869 or 2110 for Q1 and Q2, respectively.
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Fig. 2. Positional and proper motion projections of the training and prediction set are displayed in the first and second rows, respectively. Using
a quality pre-selection (see Appendix D), we find a total of 2567 member stars (bottom row), compared to 256 in the training set (top row). The
color information highlights the stability of a given star, which tends to grow towards the central regions of the stream.

In order to quantify the contamination fraction in our source
catalog, we considered the fraction of outliers in the marginal
3D velocity distributions. To do this, we defined, for each veloc-
ity component, a region of inliers as the 3σ around the training
sample mean. This definition constitutes a very conservative esti-
mate, as the velocity distribution of the training data is by design
very narrow. Furthermore, the kinematic substructure in the vz

component naturally leads to very large contamination fractions.
For this reason, we only considered the radial and azimuthal
velocity components when estimating the contamination for var-
ious stability filter criteria. Figure 6 shows the outlier fraction
within each velocity component. Based on our assumptions, we
obtain a contamination estimate of roughly 25% and 20% for the
stability criteria >4% and >24%, respectively. However, we note
again that this is a very conservative estimate that assumes an
intrinsic velocity dispersion of only around 1 km s−1. By increas-
ing the estimated velocity dispersion to 2 km s−1 the contamina-
tion drops to roughly 10 − 15%, which we suspect to be a more
realistic estimate.

Since the ensemble classifier is trained on positional and
proper motion data, we can apply it to any survey that pro-
vides these measurements. In an effort to increase the source
list, especially toward brighter stars, we applied our ensemble
classifier to the Hipparcos (van Leeuwen 2007) source cat-
alog, see Appendix F for more details. In total, we find 21
new potential stream members in the Hipparcos catalog, 10
of which we consider to be robust. We added the 10 pre-
dicted Hipparcos sources to the HRD plot in Fig. 5. Among
the prediction set, we find α Aquarii, the brightest star in the
Aquarius constellation. Using the radial velocity information
from Soubiran et al. (2008), we find a galactocentric velocity
of u = (−3.15, 229.19,−8.73) km s−1, which is well within the
3σ region of the training set. However, a comparison of paral-
lax measurements between Gaia and Hipparcos reveals a large
systematic discrepancy of a factor of approximately two, which
makes α Aquarii a low-fidelity stream member.

Using gyrochronology, Curtis et al. (2019) concluded that
the stream has an age comparable to the Pleiades. This contrasted
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Fig. 3. Median absolute deviation of sources from expected 3D velocity
as a function of the stability quality filter. The x-axis is reversed display-
ing very strict filter criteria on the leftmost side and lenient filter criteria
toward the right side. A trend is visible where the amount of scatter over
the stability filter is split into two parts, where each is characterized by a
different slope. Suitable quality filters are realized by stability> 4%
and, more conservatively, stability> 24%.

with the isochronal age derived in Meingast et al. (2019), which
was hinging on a single star, 42 Ceti, a subgiant. With the new
and larger member list, we can now attempt to make a more pre-
cise estimate regarding the stream’s age.

We compared the stream to a selection of the Pleiades mem-
bers (Gaia Collaboration 2018a). By introducing a slight color
offset of (GBP–GRP + 0.03) to the stream, we find that the source
distributions in the HRD of the Meingast 1 stream and the
Pleiades match almost perfectly, as seen in Fig. 7, implying a
similar age between the two stellar systems. The small color
shift could imply either the presence of dust extinction towards
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Fig. 5. Distribution of predicted sources in color-absolute magnitude
diagram. The shades of gray encode the stability information of each
source. The hue change in the color map at 4% denotes the transition
from robust stream members in gray tones to less reliable sources in red.
Additionally, we show 10 new potential stream members, identified by
applying the same classifier to the Hipparcos catalog.

the Pleiades, or a lower metallicity of the stream, or both. The
Pleiades are known to be affected by small amounts of extinc-
tion. Additionally, we find a slight metallicity difference between
the stream and the Pleiades measured by LAMOST Liu et al.
(2015), which is illustrated Fig. E.1. The plot shows a discrep-
ancy between the mean metallicity fraction of the two stellar
populations, where sources in Meingast 1 appear to be slightly
more metal poor than the ones in the Pleiades, which could help
to explain the reddening in color space.

100 75 50 024 4

Stability quality criterion (>%)

0

10

20

30

40

O
ut

lie
r f

ra
ct

io
n 

(%
)

vr

v

vz

strict lenientfilter

Fig. 6. Outlier fraction in individual velocity components for a variable
stability filter criterion. Due to a newly identified kinematic substructure
in vz, we estimate the contamination only in the radial and azimuthal
velocity components (see Sect. 4). Based on this premise, the contami-
nation is estimated to be roughly 25% and 20% for the stability criteria
>4% and >24%, respectively.

The three panels in Fig. 7 show the source distributions in
the HRD of both, the Meingast 1 stream and the Pleiades, plot-
ted on top of each other and highlighted by different colors. In
the left plot, sources in the Meingast 1 stream are highlighted in
red, while the Pleiades members selection are kept in gray. The
center plot displays both stellar populations, which are shown in
gray. The right plot displays the Pleiades in blue on top of Mein-
gast 1 in gray. In order to make a fair comparison, we define the
stability filter in such a way that the number of sources of the
stream is equal to that of the Pleiades. This results in the fol-
lowing filter criterion: stability > 45.9. The particular simi-
larity of the two distributions suggests an approximately iden-
tical age. The Gaia collaboration (Gaia Collaboration 2018b)
estimates the age and metallicity fraction of the Pleiades to be
110 My and Z = 0.017, respectively. Therefore, our age estimate
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Fig. 8. Mass function for Meingast 1 stream sources (light blue) and the
training examples (dark blue). The dotted lines indicate model IMFs
within a cluster mass range of 1000−3000 M⊙.

is within the expected error range, consistent with Curtis et al.
(2019).

We estimated the total mass of the selected sources in accor-
dance with Paper II by using PARSEC isochrones. Using an age
estimate of 110 My and a metallicity fraction of Z = 0.016
results in the mass distribution shown in Fig. 8. The plot depicts
the mass distribution of the training samples (dark blue) versus
the predicted samples (light blue). The dotted gray lines indicate
IMFs (Kroupa 2001) for clusters masses of 1000 M⊙, 2000 M⊙,
and 3000 M⊙. A comparison to the model IMFs suggests an

approximate mass of 2000 M⊙, as suggested in Paper II. To our
knowledge, this makes the Meingast 1 stream the most massive
stellar stream in the solar neighborhood.

Finally, we can speculate on the origin of the Meingast 1
stream. In Paper II, we put forward the possible cluster ver-
sus association scenarios for the origin of this extended struc-
ture, but opted not to favor one over the other, even though
we found evidence for the existence of at least four overden-
sities in the structure. This ambiguity resulted mainly from the
older age derived in Paper II, which made it not obvious to
favor one of the two scenarios without a proper simulation. The
much younger age determined in Curtis et al. (2019), that we
confirm in this work, allowed these authors to favor the associa-
tion scenario (because ∼100 Myr is too short for cluster dissolu-
tion). The best and most obvious example is the Pleiades cluster,
which is a relatively compact cluster with essentially the same
age as Meingast 1. The velocity substructure we found in this
paper (see Fig. 4) now allows us to make a stronger case favor-
ing the association scenario as the likely initial configuration of
Meingast 1. Unlike compact clusters, stellar associations such as
Sco-Cen are known to have velocity substructures of a few to
several km s−1 (e.g., Wright & Mamajek (2018), Goldman et al.
(2018)). A more meaningful look into the origin of Meingast
1, which would require n-body simulations and the effects of
the Galactic potential, will enable us to clarify the origin of this
mesmerizing structure.

5. Summary and conclusion

We revisited the stream discovered in Meingast et al. (2019) to
search for new members using Gaia DR2 data and a machine-
learning approach. Using the original source selection as training
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data, we deployed a bagging classifier of one-class support vec-
tor machines to the full Gaia DR2 data, searching for new stream
members in position and tangential velocity space. The ensemble
classifier is created in a hyper-parameter search combined with a
model selection that rejects models that do not meet a set of pre-
conditions. The resulting set of classifiers creates a variable pre-
diction frequency for possible stream member stars, which we
used as a criterion to select high-fidelity sources. Subsequently,
we validated the newly found sources in the HR diagram and the
Cartesian velocity distribution.

In total, we find about 2000 stream high-fidelity member
stars, increasing the source population approximately tenfold.
As the newly predicted stream members are no longer limited
by radial velocity measurements, the new selection substantially
extends the main sequence to unveil the stream’s population
across the entire stellar mass spectrum, from B stars to M stars,
including white dwarfs. In a comparison in the color-absolute
magnitude diagram, we find that, apart from being slightly more
metal poor, the stream is indistinguishable from that of the
Pleiades cluster, suggesting a similar age. In the mass range at
which we are mostly complete, ∼0.2 < M⊙ <∼ 4 M⊙, we iden-
tify a normal IMF. This comparison allows us to estimate the
total mass of the stream to approximately 2000 M⊙, making it by
far the most massive stream we know. Additionally, we find sev-
eral white dwarfs as members of the stream. We speculate with
more confidence, given the velocity substructure found in this
work, that Meingast 1 is the likely outcome of a stellar associa-
tion, but call for a full, state-of-the-art simulation to be done to
characterize the origin of this mesmerizing structure.
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Appendix A: Training process

The training of each individual predictor in the full model
ensemble is summarized in the following two steps.

Firstly, we select a random pair of hyper-parameters (γi, νi,
(cx/cv)i) and train a model with tenfold cross validation (CV).
Due to a contamination of field stars of a few percent in Paper II,
we encourage stricter and more compact descriptions of the
stream (in 5D), ignoring potential outliers in the training sam-
ple. In a first selection step, we filter models with a low average
accuracy across the holdout sets of <0.5 or a standard deviation
of above 0.15. The standard deviation filter helps to obtain fairly
conclusive predictors for different subsamples on a fixed set of
hyper-parameters.

Secondly, models that pass the CV step are deployed on the
full data set (see Sect. 2). In an effort to minimize contamina-
tion of nearby5 field stars and thus boost robustness of the predic-
tion, we train the model on 10 bootstrap samples, with a sample
size of 80% of the training data size. The union of all 10 predic-
tions is then considered the final model. Before we add the newly
trained model (with the hyper-parameter set (γi, νi, (cx/cv)i) into
the final bagging classifier, we validate its performance against our
prior beliefs about the approximate model structure described in
Sect. 3.2

Appendix B: Validation process

After training a classifier, we validate its ability to capture impor-
tant physical aspects about the estimated size and shape of the
stellar stream. We require the classifier to capture at least the
following criteria:

1. The number of predicted stream members Ns must not
exceed a physically sensible range, which is limited to Ns ∈

[500, 5000].
2. The extent of the predicted stream members in position

and proper motion space must be similar to the original ones.
3. The cylindrical velocity distribution of the stream mem-

bers must not deviate too much from the training sample distri-
bution.

The similarity condition (2.) is achieved by requiring the dis-
persion of the predicted to the original stream members in position
and proper motion space to be approximately equal. We approx-
imate the extent, or dispersion of the stream in both spaces by a
single number, namely the mean distance d of its member stars
to the centroid of the full stream. For a point in position space
r = (x, y, z) and its corresponding centroid rc, dr is

dr =
1
N

N∑

i

||ri − rc||, (B.1)

where N is the number of stars belonging to the cluster. Respec-
tively, in proper motion space with a point u = (µα, µδ) and

centroid uc, du is:

du =
1
N

N∑

i

||ui − uc||. (B.2)

We use these two structure parameters dr and du to determine the
extent of the stream in position and proper motion space, respec-
tively. Our aim is to find models whose predicted points retain a
similar dispersion to the original ones. To avoid overfitting, we
compare the dispersion of the prediction set to the training set
which acts as an upper limit:

d
orig
r/u > d

pred
r/u . (B.3)

Lastly, we control the centroid position of the predicted
stream members to avoid systematic shifts. The predicted and
original stream centroid must be reasonably close to each other
with respect to the average dispersion of training points.

||r
org
c − r

pred
c || < d

org
r
× 0.1 (B.4)

||u
org
c − u

pred
c || < d

org
u
× 0.1 (B.5)

The third condition is implemented by examining the con-
tamination of predicted samples compared to the training sam-
ple. To get a rough estimate of the contamination, we compare
the galactocentric velocity distribution, meaning u = (vr, vφ, vz),
of the predicted sources to the training sample. Instead of com-
paring the velocity dispersion of both samples, we characterize
the level of contamination by considering the fraction of outlier
sources. This way, we try to mitigate the influence of large outliers,
which increase the dispersion drastically for such a low number of
sources. In order to characterize outlier sources, we consider the
training examples. Assuming that almost all sources lie within the
±3σ range around the mean, we consider the ratio of sources lying
outside of the 3σ range compared to the total amount of sources.
A classifier is rejected if on average, across the individual velocity
components, more than 25% of sources are considered outliers.
The aim of this criterion is to remove models that extend into a
region of feature space where the radial velocity distribution does
not match our assumption of a co-moving structure.

Appendix C: Parameter tuning results

The hyper-parameter search in combination with a classifier
selection and validation step (see Sect. 3.2) yields a set of
approvedparameter triples (νi, γi, (cx/cv)i) that make up the final
OCSVM bagging predictor. The distribution of accepted triples
is displayed in Fig. C.1. The color information illustrates the
accepted model faction within a certain hyper-parameter bin
range. A model is accepted if it passes the quality criteria pre-
sented in Sect. 3.2. The model ensemble consists of 8515 indi-
vidual predictors.

5 Nearby refers to sources in the vicinity of the stellar stream in the
5D feature space.
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Fig. C.1. Hyper-parameter search in parameters ν, γ, and cx/cv yielding the one-class support vector machine bagging predictors. The color
information illustrates the accepted model faction within a certain hyper-parameter bin range. A classifier is accepted if it passes the quality
criteria presented in Sect. 3.2. The model ensemble consists of 8515 individual predictors.

Appendix D: Quality criteria

In general, the source identification method we present in this
paper is independent of any quality criteria. However, in order to
show the distribution of stars in the color magnitude diagram,
we apply the following error criteria on data quality. Follow-
ing the description in Lindegren et al. (2018) the five-parameter
solution depends on the number of visibility periods used for
a certain source. A visibility period is defined as a group of
observations separated from other groups by a gap of at least
four days. Since a five-parameter solution is accepted only for
visibility_periods_used> 6, we implement said criterion.

A recommended astrometric quality parameter is the re-
normalised unit weight error (RUWE) described by Lindegren
(2018). It is based on a re-calibration of the unit weight error
described in Lindegren et al. (2018). We follow the advice
in the technical note (Lindegren 2018) and use the criterion
RUWE< 1.4 to select astrometrically reliable sources. Further-
more, we implement additional astrometric quality measures,
astrometric_sigma_5D_max< 0.5 and ̟/σ̟ > 10, which
reduce the number erroneous measurements.

Finally, we adopt the following photometric qual-
ity criteria, phot_bp_mean_flux_over_error> 10 and
phot_rp_mean_flux_over_error> 10.

Appendix E: Metal content
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Fig. E.1. Comparison of metallicity fraction of Pleiades and Meingast
1 memeber stars. The vertical lines indicate the mean metal content of
both populations. We find that the members of the Meingast 1 associta-
tion are slightly more metal poor than the Pleiades.

Figure E.1 shows a comparison of the metallicity fraction
Z between a Pleiades member selection (Gaia Collaboration
2018a) and the stream members. A cross-match of the Pleiades
and stream source selections to the LAMOST DR5 Liu et al.
(2015) catalog results in 383, and 83 matches, respectively. The

conversion from chemical abundance ratios [Fe/H] to the
metallicity fraction Z has been made in accordance with the
PARSEC (Bressan et al. 2012) solar value of Z = 0.015. Subse-
quently, we filter out the most untrustworthy sources by requir-
ing that the error of the measured chemical abundance ratios
[Fe/H] is below 0.05 and [Fe/H] > −1. Additionally, we only
select sources above an effective temperature of 5000 K. These
criteria yield 197 and 44 matched sources for the Pleiades and
the Meingast 1 stream, respectively. The metal content distri-
butions of the Pleiades and stream members show a large scat-
ter, but the positions of their respective mean indicate that the
Meingast 1 stream members appear to be slightly more metal
poor compared to the Pleiades member stars.

Appendix F: Hipparcos source selection

Compared to the training samples from the Gaia DR2 catalog,
the Hipparcos sources have larger associated standard errors
of measured quantities. Considering the higher uncertainty in
the Hipparcos catalog variables, we adopt a more conservative
stability filter criterion of stability> 50%. Despite a rather
high stability cut, a large standard error increases the chance
of contaminant stars falling into the selection. Therefore, we
adopt a second quality filter where we sample each data point
from marginal normal distributions centered on the provided
mean value with a standard deviation of the provided standard
error of each observable. We then draw 100 samples per source
from these marginal distributions and count how often these re-
sampled sources are again predicted to be a stream members
with stability> 50%. Eventually, this quality criterion yields
11 additional sources with a re-sampling fraction of over 50%.

Appendix G: Table content

Table G.1. Contents of the source catalog, which are available online
via CDS.

Column name Description

source_id Gaia DR2 source identification number
ra RA (deg)
dec Declination (deg)
X x-Position (pc)
Y y-Position (pc)
Z z-Position (pc)
pmra µα (mas yr−1)
pmdec µδ (mas yr−1)
Stability Stability percentage (%)
q1 Filter criterion Q1 (bool); see Appendix D
q2 Filter criterion Q2 (bool); see Paper II

Notes. The positional data XYZ are measured in Galactic Cartesian
coordinates centered on the Sun.

The content of the published source catalog is summarized
in Table G.1.
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ABSTRACT

Context. Young and embedded stellar populations are important probes of the star formation process. Their properties and the
environments they create have the potential to affect the formation of new planets. Paradoxically, we have a better census of nearby
embedded young populations than of the slightly more evolved optically visible young populations. The high accuracy measurements
and all-sky coverage of Gaia data are about to change this situation.
Aims. This work aims to construct the most complete sample to date of young stellar objects (YSOs) in the ρ Oph region.
Methods. We compile a catalog of 1114 Ophiuchus YSOs from the literature and cross-match it with the Gaia EDR3, Gaia-ESO, and
APOGEE-2 surveys. We apply a multivariate classification algorithm to this catalog to identify new, co-moving population candidates.
Results. We find 191 new high-fidelity YSO candidates in the Gaia EDR3 catalog belonging to the ρ Oph region. The new sources
appear to be mainly Class III M stars and substellar objects and are less extincted than the known members, while we find that 28
of the previously unknown sources are YSOs with circumstellar disks (Class I or Class II). The analysis of the proper motion distri-
bution of the entire sample reveals a well-defined bimodality, implying two distinct populations sharing a similar 3D volume. The
first population comprises young stars’ clusters around the ρ Ophiuchi star and the main Ophiuchus clouds (L1688, L1689, L1709).
In contrast, the second population is slightly older (∼10 Myr), more dispersed, has a distinct proper motion, and is possibly from the
Upper Sco group. The two populations are moving away from each other at about 4.1 km s−1 and will no longer overlap in about
4 Myr. Finally, we flag 17 sources in the literature sample as likely impostors, which are sources that exhibit large deviations from
the average properties of the ρ Oph population. Our results show the importance of accurate 3D space and motion information for
improved stellar population analysis.

Key words. astrometry – methods: data analysis – stars: formation – stars: pre-main sequence

1. Introduction

Since the development of millimeter-wave receivers and infrared
(IR) detectors in the 1970s, local star formation studies have
mostly concentrated on the densest star-forming structures in
molecular clouds. Successive generations of instruments have
opened a fundamental window into molecular cloud structure,
cloud fragmentation, and collapse and have unveiled the dust-
enshrouded young stellar object (YSO) populations in nearby
clouds. This approach has generated an almost paradoxical situ-
ation where we currently know more about the very young dust-
obscured populations than we know about the more evolved and
optically revealed population in nearby star-forming regions.

More evolved YSOs show less IR excess emission and
escape detection in IR surveys but are critical to reconstructing

⋆ Interactive 3D version of Figures 6 and 7 are available online at
https://www.aanda.org/10.1051/0004-6361/202140438/olm
⋆⋆ The final catalog i s only available a t the CDS via anonymous ftp 
to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.
u-strasbg.fr/viz-bin/cat/J/A+A/652/A2

a region’s star formation history. Therefore, identifying the
young optically visible population is essential for reconstruct-
ing a star formation event. Moreover, sources in the unobscured
environments of nearby star-forming gas include some of the
lowest-mass objects (brown dwarfs and planetary-mass objects)
and some of the closest proto-planetary disks we can study, the
latter becoming important targets for resolved ALMA studies
(e.g., ALMA Partnership 2015) in the submillimeter wavelength
range.

Optical data from the Gaia mission (Gaia Collaboration
2016), with its exquisite sensitivity and all-sky coverage, have
changed this situation. With its latest data release, the mission
has made a breakthrough in terms of studies of gas shape and
motion (Großschedl et al. 2018, 2021) and previously unknown
young stellar structures (Meingast et al. 2019, 2021), signif-
icantly improving upon its second data release, Gaia DR2
(Gaia Collaboration 2018). In this work, we revisit one of the
nearest star-forming regions, the ρ Ophiuchi region, by using
the newly available Gaia Early Data Release 3 (EDR3) data
(Gaia Collaboration 2021).
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The ρ Ophiuchi (ρ Oph) star-forming region (Wilking et al.
2008) is one of the nearest active star-forming regions, at
a distance of approximately 139 pc (Lombardi et al. 2008;
Zucker et al. 2020). It comprises the cluster of young stars
around the ρOphiuchi star (Pillitteri et al. 2016) and the young
stars associated with the dense gas in the Ophiuchus cloud
complex, mainly the L1688, L1689, and L1709 clouds (Loren
1989a,b). Due to its youth and proximity to Earth, it has played
an essential role in many star formation studies, in particular
in the definition of the YSO classes (Wilking & Lada 1983;
Lada & Wilking 1984; Andre et al. 1993; Greene et al. 1994).
The ρOph region is located in the foreground of the southeastern
edge of Upper Scorpius, which is a subgroup of the Scorpius-
Centaurus OB association, and has a distance of around 145 pc
(Wilkinson et al. 2018). It has long been suspected that star for-
mation in the ρ Oph region was triggered by feedback from mas-
sive stars from Upper Sco (Vrba 1977; Loren & Wootten 1986;
Loren 1989a,b; de Geus 1992).

The youngest stars in the region are associated with the
densest gas in the Ophiuchus cloud complex, mostly L1688,
with an average age of about 0.3 Myr (Greene & Meyer 1995;
Luhman & Rieke 1999), while the stellar population on the
lower column density surface has an average estimated age of
2–5 Myr (Wilking et al. 2008; Erickson et al. 2011). There are
three main dark clouds in the ρ Oph complex, the mentioned
Lynds dark clouds L1688, L1689 and L1709 (Lynds 1962; Loren
1989a,b). The large column density toward particular regions in
these clouds, where the optical extinction can reach values of up
to AV above 40–50 mag (Wilking & Lada 1983; Wilking et al.
1989; Lombardi et al. 2008), make IR observations essential for
studying the embedded young stellar population in the cloud.
There is a rich embedded cluster of YSOs in L1688, which is
mostly invisible at optical wavelengths, whose stars have not yet
dispersed (Ducourant et al. 2017).

In this paper, we apply the recently developed method from
Ratzenböck et al. (2020) to Gaia EDR3 data, to unveil the most
complete sample to date of YSOs toward the ρ Oph region.
The method uses the astrometric properties of known YSOs
in combination with a bagging classifier of one-class support
vector machines (OCSVMs) on Gaia EDR3 data to perform a
5D search (3D positions and 2D proper motions) for possible
new population members. The algorithm creates a hyper-surface
around the positional and proper motion distribution of the input
samples in a 5D space to find new sources with similar proper-
ties. Radial velocities of the input population are also necessary
for constraining the models. We remove models that identify
stars with significantly different 3D velocities than the those of
training set.

In Sect. 2 we present the data used in this work; this includes
known sources from the literature, which we cross-matched with
further astronomical surveys. In Sect. 3 we summarize how
the classification algorithm operates to identify new sources.
We present the results of the algorithm in Sect. 4, including a
detailed analysis. In Sect. 5 we discuss some implications of our
findings.

2. Data

2.1. Literature catalog

In this section, we summarize how we compiled our literature
catalog of ρOph sources. This work is based on studies of ρOph
and L1688 from 11 papers, which are summarized in Table 1,
including the number of sources utilized from each work, which

results in a total of 1114 sources. We note that the same source
can be presented in more than one work. We assign each paper
a digit for citation purposes in our final catalog. Some papers
also include sources from IR observations, which are essential
for a complete sample due to the high optical extinction in the
region and for identifying Class II and earlier Class YSOs. The
highest number of sources are provided by Wilking et al. (2008),
Cánovas et al. (2019), and Esplin & Luhman (2020). Duplicates
were removed with an internal match within a 1.0 arcsec match
radius and an internal match on the Gaia source IDs. Our result
is a final literature table of 1114 unique sources.

Sullivan et al. (2019) provide radial velocities on their
sources, while Ducourant et al. (2017) provide proper motions
on their sources. Astrometric data (proper motions, parallaxes,
and radial velocities) for the remaining sources were obtained
by selecting three surveys for cross-matching with our liter-
ature sample, which is essential for identifying new sources
with the algorithm. The Gaia survey provides us with unprece-
dented astrometry with improved quality and statistics com-
pared to any previous comparable survey, such as Hipparcos
(Perryman et al. 1997). Therefore, proper motions and par-
allaxes were obtained from Gaia EDR3 (Gaia Collaboration
2021). To complement Gaia astrometry and constrain the mod-
els of the algorithm, we combined it with radial velocities
from APOGEE-2 (Majewski et al. 2017), a large-scale spectro-
scopic survey conducted in the near-infrared, and Gaia-ESO
(Gilmore et al. 2012), a spectroscopic survey by the European
Southern Observatory (ESO) combined with the Gaia astrome-
try catalog. Radial velocities from these surveys deliver superior
resolution and statistics compared to radial velocities from Gaia.

A cross-match of the literature sources with data from Gaia
EDR3 yielded a total of 675 matches, which is 60.5% of the
entire literature sample, leaving many sources without Gaia
equivalents. One explanation for this is that Gaia is only sensi-
tive to optical wavelengths, while many of the obtained literature
sources are too embedded in the cloud and can only be observed
at IR wavelengths. Additionally, several sources, such as from
Esplin & Luhman (2020), are brown dwarfs, which are often too
faint to be seen by Gaia. A cross-match of the total literature
sources with APOGEE-2 resulted in 188 matches, while a cross-
match with Gaia-ESO data yielded 61 matches in our literature
catalog. For sources with multiple measurements, higher prior-
ity was given to surveys with higher accuracy. Therefore we use
Gaia proper motions and parallaxes over those obtained from the
literature. For sources with multiple radial velocity values, data
from Gaia-ESO has the highest priority, followed by APOGEE-
2 and then Gaia.

The distances to the sources were calculated through the
inverse of the parallax, which is a good approximation for the
relatively close distance to the region of about 130–140 pc (e.g.,
Luri et al. 2018). Furthermore, the tangential velocities vα and
vδ, as well as their errors, were calculated through the proper
motions and parallaxes, as shown in Eqs. (A.1)–(A.4). For a bet-
ter overview, we list the symbols and abbreviations of frequent
parameters used throughout this paper:

– α, δ (deg): right ascension and declination
– l, b (deg): galactic longitude and latitude
– ̟ (mas): parallax of the sources
– d (pc): distance to the sources, inverse of parallax
– µ∗α (mas yr−1): µαcos(δ), proper motion along α
– µδ (mas yr−1): proper motion along δ
– vr (km s−1): heliocentric radial velocity
– vα, vδ (km s−1): tangential velocities along α and δ
– vl, vb (km s−1): tangential velocities along l and b
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Table 1. Overview of the literature that was used to collect young stellar members of the ρ Oph region.

Paper Method Sources used Ref

Greene et al. (1994) Mid-IR photometric study 56 1
Haisch et al. (2002) Near- and mid-IR observations 13 2
Padgett et al. (2008) Multiband Imaging Photometer for Spitzer (MIPS) point-sources 46 3
Wilking et al. (2008) X-ray and IR photometric and spectroscopic surveys 316 4
Evans et al. (2009) Spitzer c2d Legacy survey 292 5
Dunham et al. (2015) Spitzer c2d and GB Legacy surveys 292 6
Rigliaco et al. (2016) Dynamical analysis with Gaia-ESO survey 45 7
Ducourant et al. (2017) Near-IR observations to determine proper motions 82 8
Cánovas et al. (2019) Density-based clustering algorithms with Gaia DR2 831 9
Sullivan et al. (2019) Radial velocity survey with data from IR spectrographs 34 10
Esplin & Luhman (2020) Astrometry from Gaia DR2, proper motions from Spitzer 373 11

Notes. The table lists the used methods and the number of sources we obtained from each paper, resulting in a total of 1114 literature sources. We
note that the same source can be presented in more than one work.

– X,Y,Z (pc): positions in Galactic Cartesian coordinates,
where X, Y , and Z point toward the Galactic center, the direc-
tion of the Galactic rotation, and the north Galactic pole,
respectively

– U,V,W (km s−1): velocities in Galactic Cartesian coordinates

2.2. Impostors

We have discovered several sources within the literature cata-
log that have properties that do not fit very well to the region’s
average astrometric values. In Appendix A we list the interval
ranges in which most of the distance, radial velocity, and tan-
gential velocity values in ρ Oph are found, which were used to
create a training set (Sect. 3.1). There are 28 sources that have at
least one of these values outside our defined intervals and smaller
errors than the upper limits listed in Appendix A. However, some
of them have values that are still close to the interval limits and
could therefore still be a part of ρ Oph, since deviating motions
can be caused by interactions in the cluster or by multiple stellar
systems. There are, nonetheless, several sources with very large
radial velocity deviations from the average. Therefore, we iden-
tified all sources with radial velocities vr < −30 and vr > 20 and
errors <3 as uncertain members and labeled them as impostor
candidates in our catalog. We found 17 of such impostor can-
didates among the literature sources. However, it is important
to note that these deviating radial velocities could be caused by
multiplicity, such as binary star systems, and could therefore still
be members. Due to this uncertainty, and since our intervals are
more or less arbitrarily defined, we chose not to remove these
impostors from our catalog. Instead, we created a separate col-
umn named “Impostors,” where they are labeled with a “1” and
all others are labeled with a “0”.

3. Methods

In our work, we applied the classification strategy described
in Ratzenböck et al. (2020) for identifying new members of
the ρ Oph region in the Gaia EDR3 catalog. The goal of
Ratzenböck et al. (2020) was to model the extent of the Mein-
gast 1 stellar stream (Meingast et al. 2019) in the combined
space of proper motions and positions and subsequently use it to
identify new members in Gaia DR2, while we use the latest data
release EDR3. The model consists of multiple OCSVM classi-
fiers in a bagging ensemble. In the following we refer to sources

classified by the OCSVM as members of a stellar population as
“predicted” members. Based on the model quality, the prediction
set contains known and potentially new candidate sources. In the
following we discuss means of selecting high quality models via
prior assumption filters.

3.1. Training set selection

To provide reliable sources for the classification algorithm, we
created a training set by removing outliers and applying quality
cuts. The quality cuts are described in Appendix A, where we
also present the training set. To guarantee a high-fidelity training
set, we limited our selection to sources with radial velocity mea-
surements. Since the hypersurface created by the OCSVM algo-
rithm depends heavily on the distribution of peripheral sources,
it is susceptible to outliers. The use of a soft-margin SVM some-
what mitigates this, but to further reduce the effect of potential
contaminants on the final model shape, we removed the most
extreme outliers from the training set as well. To do so, we
estimated the local outlier factor (Breunig et al. 2000) of each
source in 5D and removed 5% of the training set with the high-
est outlier factor. This removal lead to a final training set of 150
sources, which corresponds to 13.5% of the literature sample.

3.2. Model selection and prior assumptions

Due to the high model flexibility of OCSVMs, choosing ade-
quate model parameters is critical to guarantee a suitable
description of the stellar system. Instead of directly selecting
models in the OCSVM hyperparameter space, Ratzenböck et al.
(2020) have suggested to constrain the models via prior assump-

tions they have to adhere to, implicitly tuning the model param-
eters. In addition, as summary statistics, prior assumptions
are usually much easier to interpret compared to the original

OCSVM parameters. Each set of prior beliefs corresponds to
a distribution of allowed models in the input parameter space,
such that there is a mapping from a prior assumption tuple to
regions in the OCSVM parameter space that contain models that
adhere to the given rule set. Instead of explicitly characteriz-
ing this map, we sampled uniformly from the OCSVM hyper-
parameter space and removed unfit models. To determine a set
of prior assumptions for identifying new high-fidelity ρ Oph
members, we considered their application in Ratzenböck et al.
(2020). The prior assumptions were motivated by the training
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set selection process. Since only sources with radial velocities
were previously identified to be part of the Meingast 1 stream,
the authors formulated prior assumptions based on completeness
arguments regarding radial velocities. Specifically, the goal was
to find still unknown members without radial velocity measure-
ments, which were confined to the training set extent. However,
the ρ Oph training set selection function is much more complex
as we combined radial velocity information across multiple data
surveys. This also means we have much less information about
potentially concealed ρ Oph members. Therefore, we adjusted
the previous assumptions to the ρ Oph population. In the follow-
ing, we briefly discuss the selection of the six prior assumptions
constraining models via the number and distribution of predicted
sources.

3.2.1. Population size

Firstly, we aim to restrict the number of sources a model identi-
fies. Because the ρ Oph population has been studied extensively
– with some studies using Gaia data as well – we do not expect
to find a dramatic increase in overall population size. Based on
the number of Gaia EDR3 sources in the literature catalog, we
estimated a very conservative upper limit of a maximum pop-
ulation size of about twice the number of sources from the lit-
erature catalog that have Gaia source IDs to be predicted by a
single model, setting it to 1400 maximal members. We note here
that the prior assumption restrictions only apply to single mod-
els, meaning the model ensemble, as a final classifier can exceed
individual or multiple prior assumption limits.

3.2.2. Contamination fraction

Secondly, we constrained the contamination fraction of pre-
dicted sources across models. The contamination fraction is
determined via the 3D velocity distribution of ρ Oph candidate
sources. Precisely, we first modeled the 3D velocity distribution
of the training samples as a single Gaussian distribution. The
mean and covariance matrix were determined by maximizing
the likelihood of the training data. Subsequently, we defined the
contamination as the fraction of sources outside the 3σ (99.7%)
range of the training set. In practice, we observe very few radial
velocities in the predicted set for a single model, and, therefore,
the contamination fraction assumption has a minor effect for
removing single models. This effect is highlighted in Fig. C.1,
where we see an almost constant and maximal number of models
adhering to the contamination rule for various maximal values.
Since the influence is small across such a large range, we set it
to a value of 15%.

3.2.3. Estimated extent and systematic shift

Lastly, we want to constrain the extent of predicted ρ Oph mem-
bers in position and proper motion space. This was done by mea-
suring the dispersion and systematic shift between training and
predicted member distributions. We characterize the dispersion
in position and proper motion space by the mean deviation of
its member stars to their centroid. The prior assumption cor-
responds to a constraint on the ratio between the average pre-
dicted deviation to the average training deviation. For further
details, we refer to Appendix B in Ratzenböck et al. (2020). In
the case of ρ Oph, we cannot give a concrete estimate on the
expected extent of unknown members in position and proper
motion space. Instead, we motivate a range of maximal values.
We postulated a constraint on the parameter to be within 1, which

constrains the predicted extent to the training set extent, and 2,
where models can have twice the dispersion of the training set.
We explicitly separated the positional from the proper motion
axes since both dispersion measures have physically different
meanings, and we might want to restrict one more than the other.

To avoid systematic shifts of the predicted to the training
set distribution, we constrained the distance between the cen-
troids of the training and predicted sources. We measured the
centroid distance in terms of the mean deviation of the training
set sources. A value of one would correspond to a centroid shift
with a distance of one mean deviation from the training centroid.
Again, finding a precise value is not straightforward, as the value
cannot be properly inferred for the unknown ρ Oph population.
Therefore, we limited the maximum shift parameter to a range
between 0.1 and 0.7, which we consider already a quite large
systematic deviation from the training set.

3.3. Building the ρ Oph classifier

We subsequently searched for model ensembles within these
three parameters, the mean deviation in position, proper motions,
and the maximal systematic shift, while keeping the other two
prior assumptions, the maximum number of predicted sources,
and the maximum contamination fraction, fixed. As stated in
Sect. 3.2.1, a prior assumption tuple corresponds to a model
ensemble that adheres to the respective beliefs. For each of these
ensembles, we determined a stability threshold by minimiz-
ing the Kullback–Leibler (KL) divergence (Kullback & Leibler
1951) between the 3D velocity distributions of training and
predicted ρ Oph members (see Appendix E for more details).
We randomly selected 100 prior assumption tuples within their
respective range, resulting in 100 model ensembles with a corre-
sponding stability threshold.

To select single or multiple suitable classifiers from this
space of model ensembles, we considered the following. We
aimed to maximize the number of predicted ρOph sources while
minimizing the number of contaminants in our final prediction
set. Thus, we studied the distribution of the number of predicted
sources over the contamination fraction across the 100 model
ensembles. The contamination fraction is determined via the
ratio of predicted sources outside the 3σ range of the training
velocity distribution. The distribution of the 100 randomly sam-
pled model ensembles can be seen in Fig. D.1. We observed a
clear trend for high-contamination models, which tend to have
larger velocity dispersion and interestingly a rather low system-
atic shift to “good” models. This sample of low-contamination
models were identifying possibly new ρ Oph members in a
nonsymmetric region around the training set. To construct the
final classifier, we combined the predictions of the 90 models
with the lowest contamination fraction of <28%1, correspond-
ing to the two left-most columns of models in the top row of
Fig. D.1. Finally, we determined a stability threshold for the
final ensemble following the procedure outlined in Appendix E.
Doing so, we obtained a stability threshold of 4%. To prop-
erly validate the final classifier, we had to consider the previ-
ously untouched information, the distribution of sources in the
Hertzsprung-Russell Diagram (HRD). In order for the predicted
sources to be actual members of the ρ Oph population, they
must follow the same isochrone as the training set. Therefore,
we determined the residuals of predicted sources to the best
fitting isochrone on the training set, where we obtained an age of

1 The contamination fraction is determined without any quality filters
applied.
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Fig. 1. Venn diagram depicting the amount of sources in the literature
sample, the predicted sample, and the amount of sources both of them
have in common. In total, 791 sources were predicted by the algorithm.
Of these, 229 are new sources, with 191 having a stability >4. 562 of the
total predicted sources are already among the 1114 literature sources,
413 of those having a stability >4. 552 literature sources were not pre-
dicted by the algorithm.

about 5 Myr, and compared them to the training set residuals. In
Fig. F.1, the standard deviation of the training set residuals and
predicted residuals can be seen, highlighting an almost perfect
agreement with the training data across the full stability range.

4. Results

In this section we present the results of the algorithm. Sources
from the literature are labeled as “Known” while the new sources
are labeled as “New.” The following plots in this section show
the known sources in blue, the new sources in red, and a control
sample in gray, labeled as “Control,” which serves as a compar-
ison. The control sample was selected in a relatively dust-free
region to the Galactic west of ρ Oph at the same galactic lati-
tude, within 346◦ ≤ l ≤ 349◦ and 15◦ ≤ b ≤ 18◦.

4.1. Predicted sources

A total of 791 sources in the Gaia EDR3 catalog were predicted
by the algorithm as belonging to the ρ Oph region, based on
the properties of the training set. The predicted sources include
a total of 229 new sources that are not in the ρ Oph literature
catalog. A total of 562 of the predicted sources are already part
of the literature sample of 1114 known sources, meaning that
50.4% of the literature sources were recovered by the algorithm.

Only the sources with stability >4%, namely 191 of the
new sources, are considered in the following results. These new
sources together with the known ones result in 1305 total sources
in the ρ Oph region, while when excluding impostor sources we
end up with 1288 high probability members. In our final cata-
log, we also include the new sources predicted by the algorithm
with a stability <4%, resulting in a table of 1343 total sources.
Figure 1 visualizes the amount of shared sources in the literature
and the prediction set in a Venn diagram, showing sources with
a prediction stability >4% and all stabilities. More information
on the stability can be found in Appendix E. An overview of the
final numbers of sources per (sub)sample is given in Table 3. A
column overview of the final master catalog of the ρ Oph young
stellar members is presented in Appendix H.
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Fig. 2. Distribution of ρOph sources in galactic coordinates. The known
sources from the literature are in blue, while new sources are in red.
Sources from the training set are represented by black squares. The
approximate location of the extinction peak is marked by a yellow cross.

A probable reason for the relatively small overlap in Fig. 1
(the algorithm only predicts 50.4% of the known sources from
the literature) is the fact that many of the literature sources were
obtained through IR surveys since embedded stars in ρ Oph
cannot be detected at optical wavelengths. Furthermore, some
sources in the literature are impostors, as described in Sect. 2.2.
It is also important to note that only 675 literature sources
(60.6%) have Gaia EDR3 IDs. Therefore, the algorithm has
effectively recovered 83.3% of literature sources that are in Gaia
EDR3. Gaia is an optical telescope, hence it is insensitive to high
extinction sources in the L1688 dense clump, where the peak of
the surface density of YSOs in the cloud complex is located (e.g.,
Ortiz-León et al. 2017; Ducourant et al. 2017). Sources not visi-
ble at optical wavelengths cannot be predicted by the algorithm.

4.2. Astrometric properties

Figure 2 shows the distribution of the ρ Oph sources in galactic
coordinates with the known sources in blue and the new ones
in red. The 150 sources in the training set, labeled as “Train,”
are included as unfilled black squares for comparison. As can be
seen in the figure, the new sources are more dispersed, with many
of them being shifted toward the Galactic north, west, and south
of the known sources. Hardly any new sources were found near
the core of the cloud and toward the Galactic east. The extinction
peak of the L1688 cloud, marked by a yellow cross in the figure,
lies at around l ≈ 353.0◦ and b ≈ 16.7◦ (Alves et al., in prep.). It
is most likely responsible for the lack of new sources in the core
since sources with a high optical extinction cannot be detected
by Gaia. Furthermore, the core region is the most thoroughly
studied part of ρ Oph by previous surveys, thus it is unsurprising
that few new sources were found near the core region.

Figure 3 shows a histogram of the distances to the ρ Oph
sources, which were determined through the inverse of their
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Fig. 3. Histogram of distances to the ρ Oph sources. The distribution of
the known sources from the literature is in blue, and the new sources are
in red.

parallaxes. Most of the sources are clustered around a mean dis-
tance of approximately 140 pc (see Table G.1), which agrees
well with the literature value of around 139 pc (Zucker et al.
2020). In general, the average astrometric properties of the
known and new sources are very similar and overlap within ±1σ
(see Table G.1), further confirming that they belong to the same
region.

Figure 4 shows the tangential velocity distribution of the
ρ Oph sources. The impostor sources (see Sect. 2.2) from the lit-
erature are not included in the diagram, to avoid the influence of
outliers. Although the distribution of the new sources shows an
overlap with the bulk of the known sources around −6 < vα < −3
and −19 < vδ < −16, a large part of the population is shifted
toward more negative values of vα and less negative vδ, hinting
at more than a single population. These two separate dynami-
cal populations can already be recognized in the known sources
alone, while the new sources further add to the second dynamical
subgroup around −10 < vα < −6 and −14 < vδ < −18.

For further analysis of this distinct kinematic subgroup, we
determined the proper motions in Galactic coordinates and the
angles between the Galactic proper motion vectors (µl,b) and
the l-axis (θl,HEL) in the heliocentric reference frame, and added
these values to our table in a new column for all the sources
with proper motion measurements. Analyzing these angles in
a histogram reveals the two dynamically different populations
as two distinct peaks, as can be seen in the histogram in Fig. 5
in the bottom left image. To disentangle these two populations,
we use the angle distribution as a visual aid and apply a cut of
θl,HEL < 200◦, resulting in a subgroup of 304 sources for the sec-
ond population when excluding 2 impostor sources. Using the
proper motion angles relative to the local standard of rest (θl,LSR)
produces a similar result, as shown in the bottom right image of
Fig. 5. However, using this method, the separation between the
two populations is not as evident, indicating that there might be
more than two dynamical populations. For simplicity, we consid-
ered only two populations in our work and refer to future stud-
ies on Sco-Cen (Ratzenböck et al., in prep.) for a more detailed
analysis.
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Fig. 4. Tangential velocities of the ρ Oph sources. The known sources
are shown in blue, and the new sources are shown in red.

Figure 5 highlights the influence of the Sun’s reflex motion

on the heliocentric proper motions. The top panels show the
direction of motion using the heliocentric velocities (left) and the

direction of motion when correcting for the Sun’s motion (right),
showing velocities relative to the local standard of rest (LSR).

The latter show a less clear separation between the two popula-
tions. To separate the two populations, we used the heliocentric

proper motion to avoid injecting in the final selection uncertain-
ties related to the Sun’s motion (Schönrich et al. 2010). In any
case, making a selection of the populations in θl,LSR would not

change the result significantly.
For further discussion, this second dynamically distinct pop-

ulation shall be referred to as “Pop 2,” while the remaining shall
be referred as “Pop 1” sources, after excluding impostors (see
Sect. 2.2). We define the sources in Pop 1 to be all sources
from our ρ Oph catalog excluding impostors and Pop 2 sources.
This population comprises the clusters of young stars around the
ρ Ophiuchi star and the main Ophiuchus clouds (L1688, L1689,
L1709). Concluding, we identify 304 sources in Pop 2 and 1022
in Pop 1 when including sources of all stabilities. When apply-
ing a cut at stability >4% for the new sources, we are left with
296 sources in Pop 2 and 993 sources in Pop 1 (see Table 3).

The 304 sources in Pop 2 coincide with the sources whose
tangential velocities create the second dynamical structure in
Fig. 4. In other words, the two subpopulations seen in this figure
and the bimodal angle distribution consist of the same stars.
115 of these 304 sources (37.8%) are new sources identified by
the algorithm. Further examination of this subgroup reveals that
unlike Pop 1, Pop 2 sources are mostly dispersed and are dis-
tributed relatively evenly all around the core of the cloud (see
Fig. 11). Their distances exhibit a similar distribution to the other
ρ Oph sources, which shows that the two populations occupy
approximately the same 3D volume.

Table 2 shows the average values of the distances, proper
motions, radial velocities, Galactic Cartesian positions X,Y,Z
and Galactic Cartesian velocities U,V,W, and the standard devi-
ations of these parameters for the two populations (Pop 1 and
Pop 2) in the ρ Oph region. The average 3D positions of the two
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Fig. 5. Analysis of the two populations in ρOph based on their proper motion. Top row: galactic distribution of the known and new ρOph members,
including all new sources (without stability cut), while impostors are excluded. Arrows represent the tangential velocity vectors, color-coded for
the angle between the vectors and the l-axis (θl,HEL and θl,LSR in left and right panel, respectively). Left panel: heliocentric tangential velocity
vectors (uHEL), as derived from Gaia EDR3 parameters (vl, vb), right panel: tangential velocity vectors relative to the local standard of rest (uLSR

based on vl,LSR, vb,LSR). The black arrows in the bottom right corners indicate the vector length for velocities of 20 km s−1 and 5 km s−1 for uHEL and
uLSR, respectively. These reference vectors have an angle of 180◦ relative to the l-axis. Bottom row: histograms showing the distributions of angles
θl,HEL and θl,LSR for the sources as in the top panels. The bins in the left histogram have a width of 1◦ and in the right histogram of 2.5◦ since θl,LSR

covers a larger range of angles. The histograms are color-coded for the angles as in the top panels.

populations only exhibit small deviations, showing that they are
not merely a 2D overlap, but mixed in all three spatial dimen-
sions. As can be seen from the proper motions and tangential
velocities in Table 2, the Pop 2 sources exhibit slightly different
dynamical properties, which set them apart. Although the U and
V velocities of the two populations hardly differ from each other,
they occupy different regions in the UVW velocity space because
of the larger differences in W. The bimodality seen in Fig. 4
can also be seen in the UVW space; however, only 55 sources
(18.1%) from the second population have UVW velocities. By
computing the difference between the UVW vectors of the two
populations, we find that they are moving away from each other
at about 4.1 km s−1 and will no longer overlap in about 4 Myr.

Figure 6 shows the Galactic Cartesian coordinates of the
known and new ρ Oph sources for a visualization of their 3D
distribution. The literature sources exhibit a more elongated

distribution. Previously labeled impostors in Sect. 2.2 are marked
with black crosses in Fig. 6. The elongation is most prominent
along the line-of-sight, which is mostly caused by the larger errors
in the parallax measurements compared to celestial coordinates,
while some of the elongation could be caused by outliers. It can
be seen in Fig. 6 that the new sources are rather distributed at
the outskirts of the main cluster, indicating that they have been
missed previously because they are more dispersed in space.

In Fig. 7 we show the same Galactic Cartesian representa-
tion as in Fig. 6, this time highlighting the 3D distribution of the
Pop 1 and Pop 2 sources. It can be seen that the two populations
largely occupy the same space, while there is a lack of Pop 2
sources at very high Z when compared to Pop 1, best visible in
the X versus Z panel. This distribution is consistent with the pro-
jected Galactic distribution in Fig. 11, where a similar lack of
Pop 2 sources to the Galactic north can be seen.
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Table 2. Average astrometric properties, including their standard devi-
ations (1σ), for the two populations (Pop 1 and Pop 2) in the ρ Oph
region.

Dimension Pop 1 Pop 2

α (deg) 246.4 ± 1.3 246.0 ± 1.2
δ (deg) −24.2 ± 0.8 −23.9 ± 1.4
̟ (mas) 7.1 ± 0.4 7.1 ± 0.4
d (pc) 140.4 ± 8.0 141.3 ± 7.9

µ
∗
α (mas yr−1) −7.2 ± 2.1 −11.4 ± 1.9

µδ (mas yr−1) −25.3 ± 2.3 −23.4 ± 2.1

vα (km s−1) −4.7 ± 1.1 −7.6 ± 1.2

vδ (km s−1) −17.0 ± 1.4 −15.7 ± 1.2

vr (km s−1) −6.2 ± 4.5 −3.9 ± 3.3
X (pc) 132.8 ± 7.7 133.5 ± 7.5
Y (pc) −16.2 ± 2.0 −16.3 ± 2.9
Z (pc) 42.3 ± 3.8 42.8 ± 3.9

U (km s−1) −5.5 ± 3.4 −4.1 ± 3.0

V (km s−1) −15.1 ± 1.3 −16.2 ± 1.5

W (km s−1) −9.4 ± 1.4 −5.7 ± 1.5

4.3. Observational HRD

Figure 8 (left) shows an observational Hertzsprung–Russel
Diagram (HRD) of the ρ Oph sources with the known sources
in blue and the new ones in red. To create the diagram we use
the Gaia EDR3 passbands G and GRP, for both the ρ Oph and
the control sample. Since Gaia EDR3 photometry is affected
by systematic errors, corrections were applied to the G band as
described in Riello et al. (2021). Using the observed magnitudes
mG in the G band and the individual distances d of the sources,
we computed the absolute magnitudes MG in the G band with
MG = mG+5−5 log10 d. Quality cuts as described in Appendix B
were applied to the Gaia data of the ρ Oph and control sample to
include only high quality photometry and astrometry. Isochrones
from the PARSEC models (Marigo et al. 2017) for Gaia EDR3
photometry are over-plotted in Fig. 8 for 1, 5, and 10 Myr. An
extinction vector in the V passband, labeled as AV , is shown to
visualize the direction and magnitude of extinction in this color–
magnitude space using the reddening law from Cardelli et al.
(1989) and O’Donnell (1994) provided by PARSEC. Two equal-
mass-curves for sources with 0.09 M⊙ and 1 M⊙ are over-plotted.

The distribution of the known and new sources in the left
panel of Fig. 8 overlap, indicating similar ages and luminosities,
as also described in Sect. 3.3 and shown in Fig. F.1. This further
confirms that they belong to the same region. Their distribution
is consistent with earlier work of Luhman & Rieke (1999) and
Esplin & Luhman (2020), who find ages of 0.3–6 Myr for ρ Oph
sources. Most of the new sources are low-mass stars, similar to
the known sources, probably consisting mainly of M-type spec-
tral classes or substellar objects.

In the right panel of Fig. 8 we show a similar observational
HRD as in the left panel, showing the two dynamical popula-
tions in the ρ Oph region. The first population (Pop 1), which
comprises the clusters of young stars around the ρ Ophiuchi
star and the main Ophiuchus clouds (L1688, L1689, L1709),
is shown in red, and the second dynamically distinct popula-
tion (Pop 2) is shown in yellow. One can see that the sec-
ond population appears to be slightly older than the first and
aligns better with older isochrones. To determine the approxi-
mate age of the second population, we compute a least mean
square fit to the data, as similarly done in Sect. 3.3, using the

G, BP and RP passbands, to isochrones with solar metallicity
from the PARSEC models (Bressan et al. 2012). We use only

high-fidelity sources with stability >4, and quality cuts of ruwe
<1.4 and astrometric_sigma5d_max <0.5 (for definitions of used

Gaia parameters, see Table H.1). With this we obtain an approx-

imate age of 10 Myr for the second population, which is older
than the average age of about 5 Myr of the whole sample.

4.4. Analysis of infrared colors: Infrared-excess sources

The evolutionary stages of young stars can be estimated by using
IR measurements, which reveal the presence of protoplanetary

disks and envelopes around the pre-main-sequence stars. Disks
and envelopes emit light in IR wavelengths due to their warm

dust emission. Cross-matching our complete ρ Oph catalog with
data from WISE (Wright et al. 2010), in our case the AllWISE

catalog, provides stars with the required IR photometry to ana-
lyze IR excesses. We note that not all sources are represented by

WISE. The cross-match yielded 1110 sources with WISE data,
which is 82.7% of our ρOph sources. The W1, W2, and W3 pass-
bands correspond to wavelengths of 3.4 µm, 4.6 µm, and 13 µm,
respectively. To use only high quality measurements in our dia-
gram, we only included sources above a specific signal-to-noise
ratio (S/N). Sources had to fulfill w1snr > 10, w2snr > 10, and
w3snr > 7 for the W1, W2, and W3 passbands. This cut was
applied to the ρ Oph and the control sample, leaving 750 sources
for the diagram, which is 55.8% of the total ρ Oph sample.

Figure 9 shows a color-color diagram for W1 − W2 versus
W2 − W3, with the known sources in blue and the new ones
in red. The control sample is included in gray, and the sources
of the second population (Pop 2) are marked by black sym-
bols. The extinction vector in the KS passband, labeled as AK ,
was determined using the reddening law for the W1, W2, and
W3 passbands as in Meingast et al. (2018). A dashed line, serv-
ing as a rough estimate, separates two regions in the diagram,
namely those with and without IR excess, as similarly done in
Koenig & Leisawitz (2014). The functional form of the dashed
line is given by W1 −W2 = 1.05−0.8 · (W2 −W3). Sources fur-
ther to the top and right in the diagram exhibit an IR excess and
are therefore most likely YSOs with envelopes or circumstellar
disks, Class I or Class II, while Class II are similar to Classical T
Tauri stars (Greene et al. 1994).

Most of the new sources have little or no IR excess, which
could be the reason why they have not been identified in any
previous IR surveys. Sources below and to the left of the dashed
line in Fig. 9 are either Class III YSOs or main sequence stars.
As Fig. 8 confirms that ρ Oph consists mainly of young stars,
this implies that the ρ Oph sources below the line can only be
Class III YSOs, which are associated with tenuous disks or bare
photospheres, therefore creating no detectable infrared excess
(Cánovas et al. 2019).

As can be seen from the red sources above and to the right
of the dashed line in Fig. 9, we have found 28 new sources
with IR excess, which are likely Class II candidates. This cor-
responds to a disk fraction of about 19.9% in the new sources,
considering the displayed 141 new sources in the diagram. The
known sources contain both Class I and Class II candidates. The
fraction of sources with IR excess in the known population is
roughly 48.6%, considering the 609 known sources within our
WISE quality criteria, with 313 Class III YSOs and 296 YSOs
with IR excess. Further analysis of the 28 new YSOs with IR
excess reveals that they are located further away from the core
of the cloud, which might explain why they have not been found
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Fig. 6. Heliocentric Galactic Cartesian coordinates of the ρ Oph sources. The known sources from the literature are marked with blue dots, the new
sources with red dots, and impostor sources (Sect. 2.2) with black crosses (see legend). No quality or stability criteria were applied to the displayed
sources. The black arrows in each panel indicate the line-of-sight from the Sun, pointing toward the star ρ Oph and plotted from d = 100–110 pc,
which results in different arrow lengths due to projection effects. An interactive 3D version is available online.
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Fig. 8. Observational HRDs using the Gaia G and GRP passbands, with corrections applied to the G passband. An extinction vector with AV = 1 mag
is shown as black arrow. The isochrones correspond to ages of 1, 5 and 10 Myr (see legend). The iso-mass lines (left: orange, right: blue) for 0.09 M⊙
and 1 M⊙ include stars with ages from 0.1 to 100 Myr. A control sample is shown in gray in the back. Left: comparing known (blue) and new (red)
sources in ρ Oph. Right: comparing the two populations in ρ Oph, with Pop 1 in red and Pop 2 in yellow.

in any previous IR study of ρ Oph, which focused mainly on
the core region. 19 of the 28 new disk sources are from Pop 1,
while 9 of them belong to Pop 2. The positions of the new IR
excess sources in the HRD align well with most of the other new
sources, showing very little scatter.

The distribution of Pop 2 members in Fig. 9 shows deviations
from the average, with only 30 YSOs with IR excess and 154
Class III sources in the diagram, corresponding to a disk frac-

tion of 16.3%, while Pop 1 has 293 YSOs with IR excess and
260 Class III sources in the diagram, resulting in a larger frac-
tion of sources with IR excess of 53.0%. We conclude that Pop 2
contains overall more evolved stellar members and is likely at

a later evolutionary stage compared to Pop 1 since the major-
ity do not show any IR excess. This is consistent with the older
age of Pop 2 seen in the optical HRD (Fig. 8, right panel). We
note that the fraction of sources with IR excess could be over-
estimated for Pop 1 since even sources without proper motion
values were counted to Pop 1, as defined in Sect. 4.2. Therefore,
sources without measured astrometry are highly uncertain Pop 1
members since some could belong to Pop 2 or could even be
galaxies, which could contaminate an IR-selected YSO sample.

We note that there are two known sources from Pop 2 that
show untypically red colors compared to most other Pop 2
sources. The source with the largest W1 −W2 value has a Gaia
source ID of 6049129800518036992, and it is located near the
core of the molecular cloud. Based on its color, it could be a
flat-spectrum source or Class I (protostar). The proper motion

direction indeed seems to fit to the Pop 2 sample; however,
after checking the source in more detail, we find that the source
has overall larger errors, indicating that its proper motion and
distance, hence the tangential velocity, could be dominated by
errors. Therefore, the Pop 2 membership of this source is uncer-
tain, and it could be part of the younger Pop 1. This would reduce
the disk percentage of Pop 2 down to 14.8%. The other Pop 2
source with a very significant IR excess, namely the one with
the largest W2 − W3 value at the right of the diagram, has a
Gaia source ID of 6050279163829546112. The IR excess in
W3 could indicate that the source is a transition disk.

We conclude that we have found 28 new YSOs with IR
excess and 113 new Class III YSOs in Ophiuchus. The fraction
of IR excess sources to Class III YSOs is around 0.25 in the new
sources, 0.95 in the known sources, and around 0.76 in the entire
population. Again, the fraction of known sources with IR excess
could be slightly overestimated due to above mentioned reasons.
An overview of the final numbers is given in Table 3. All sources
with IR excess (Class I or Class II) according to Fig. 9, in total
324, are marked in our final catalog in the column “IR_excess”
with a “1”, while the remaining sources (Class III) are marked
with a “0”. Sources not included in Fig. 9 are not classified in
this work.

Cross-matching our complete ρ Oph sample with data from
2MASS (Skrutskie et al. 2006) provides us with further IR
measurements in the J, H, and KS passbands, which correspond
to wavelengths of 1.25 µm, 1.65 µm, and 2.17 µm, respectively.
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Table 3. Final numbers of sources resulting from our ρOph stellar member analysis.

(Sub)sample N

Known literature selected sources 1114
Literature selected sources with measured Gaia EDR3 parallax 682
Literature selected sources without impostors 1097
Impostor sources in the literature 17

All new sources without stability cut 229
New sources with stability cut 191
New sources with circumstellar disks (Class II) 28
New Class III sources 113

Total number of ρOph sources without stability cut 1343
Total number of ρOph sources with stability cut for new sources 1305
Total number of ρOph sources without impostors 1326
Total number of ρOph sources with stability cut for new sources and without impostors 1288

Pop 1 sources without stability cut 1022
Pop 1 sources with stability cut for new sources 993
Pop 2 sources without stability cut 304
Pop 2 sources with stability cut for new sources 296
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Fig. 9. Mid-infrared color-color diagram of the known ρ Oph sources in
blue and the new ones in red, including the control sample in gray, using
the W1, W2, and W3 passbands from the WISE catalog. The sources
comprising the second population (Pop 2) are marked by black symbols.
An extinction vector in the KS passband, labeled as AK , is also included.
The sources above the dashed line with W1−W2 > 1.05−0.8·(W2−W3),
are YSOs with IR excess due to a circumstellar disk (Class I or Class II),
while those below the line are Class III YSOs.

Figure 10 shows a color–color diagram of H − KS versus J − H.
In order to show only high quality measurements, we use the
quality cuts j_cmsig, h_cmsig, k_cmsig < 0.1. The known, new,
and control sources are in blue, red, and gray, respectively, while
the sources from the second population (Pop 2) are marked by
black symbols. The main sequence (MS) and giant branches
are included in the diagram, as determined by Bessell & Brett
(1988). The extinction vector in the KS passband, labeled as AK ,
was determined using the reddening law for the J, H and KS

passbands by Meingast et al. (2018). Two parallel lines with the
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Fig. 10. Near-infrared color–color diagram of the know (blue) and new
(red) ρ Oph sources, including the control sample in gray and the
sources from the second population (Pop 2) as black symbols, using
the J, H and KS passbands from 2MASS. The main sequence and the
giant branches from Bessell & Brett (1988) are included in the diagram,
as well as an extinction vector in the KS passband, labeled as AK . The
two parallel lines with the slope of the extinction vector enclose sources
that are reddened mainly due to extinction in this color space.

slope of the extinction vector were added to enclose reddened
sources above the main sequence.

As can be seen from their positions in Fig. 10, most of the
known and new sources are M stars. However, there are also

several higher-mass stars among the new sources, as seen in the
bottom left of the diagram. We find that these stars are located

relatively far from the core of the cloud, which could explain
why they have not been added as members in previous studies.

Furthermore, the new sources are, on average, less extincted than

A2, page 11 of 21

41



A&A 652, A2 (2021)

the known ones, as would be expected, since they were selected
based on the Gaia catalog.

5. Discussion

In this work we applied the classification strategy developed by
Ratzenböck et al. (2020) to identify new members of the ρ Oph
region in Gaia EDR3. This method yielded 191 new high sta-
bility members with similar properties in position and motion to
the 1114 known sources from the literature. From these results,
we were able to create a master catalog of all known sources in
ρ Oph, including our new sources from Gaia EDR3. This so far
most complete sample of ρ Oph contains 1305 sources (or 1343
when also including the new sources with a stability <4).

5.1. The ρ Oph region is a mixture of two young populations

The tangential velocity distribution of the final sample, presented
in Fig. 4, reveals structure hinting at the presence of more than
one population. The bimodal distribution of the proper motion
angles presented in Fig. 5 further asserts the existence of two
main populations in the surveyed area, which we call Pop 1
and Pop 2. What is discussed in the literature as the “ρ Oph
star-forming region” or “ρ Oph core” is in fact a mixture of
at least two populations, with similar but distinct dynamical
properties and ages, occupying approximately the same 3D vol-
ume. The first (Pop 1), with ages 0.3–6 Myr (Luhman & Rieke
1999; Erickson et al. 2011; Esplin & Luhman 2020), as con-
firmed in Fig. 8, comprises clusters of young stars around the
ρ Ophiuchi star and the main Ophiuchus clouds, namely L1688,
L1689, L1709 (see Fig. 11). The second population (Pop 2)
appears more dispersed in comparison and has an older age
up to ∼10 Myr, a disk fraction of ∼16.3%, and 3D motions of
U,V,W = −5.5,−16.2,−5.7 km s−1. Given that the age, disk
fraction, and 3D motion are similar to those of Upper Sco
(U,V,W = −5.1,−16.0,−7.2 km s−1, disk fraction ∼20%, age
∼10 Myr, Pecaut & Mamajek 2016; Luhman & Esplin 2020), it
is possible that the 304 Pop 2 sources in the dispersed pop-

ulation originate from the much larger Upper Sco population
toward the Galactic north. However, we note that the sources
from Pop 2 appear to be cut off toward the Galactic north, as can
be seen in Figs. 7 and 11. Considering that Upper Sco lies in the

north of ρ Oph, it seems unclear if Pop 2 really originates from
there. Still, the proper motion of Pop 2 is essentially the same as
the proper motion of Upper Sco (Luhman & Esplin 2020), mak-

ing it highly unlikely that Pop 2 is not associated with Upper
Sco (same age, distance, and motions). More likely, because the
training set consists of 77.3% Pop 1 sources, it is possible that

this bias caused the algorithm to find fewer Pop 2 sources, caus-
ing the apparent cutoff. This will be further examined in future
work (Ratzenböck et al., in prep.).

The clear kinematic difference between these two popula-
tions, only detectable because of the unprecedented accuracy of
Gaia EDR3, is the main finding of our study as it sheds light on
the genesis of the ρ Oph star-forming region. The proper motion

distribution found in Fig. 5, in combination with RVs, translates
into a 3D space motion difference between the two populations

of about 4.1 km s−1. This relative space motion indicates that the
regions are moving away from each other and could imply that
the origin of the ρ Oph star-forming region is connected to that

of the Upper Sco population. A study of the space motion of the
two populations is called for as it will give insights on the origin
of the different motions.

The closest active star formation region to Earth, the ρ Oph
region, remains a natural laboratory for star formation studies,
from core formation and collapse to disk formation and evolu-
tion into planets. Our work demonstrates how the unprecedented
astrometric precision of Gaia is revealing the fine dynamical
structure of this nearest star-forming regions.

5.2. Multiple young populations in star-forming regions

Our finding in this paper of a mixed population in ρ Oph is
similar to the discovery of the foreground population in front
of the Orion Nebula (Alves & Bouy 2012; Bouy et al. 2014;
Chen et al. 2020). Unfortunately, two of the closest benchmark
star formation regions to Earth, the ρ Oph region and the Orion
Nebula Cluster, are now known to contain multiple young pop-
ulations, either in projection or intermingled, which complicates
the extraction of star formation observables. These two cases are
unlikely the exception. Mixed populations are to be expected,
for example, in triggered star formation as a previous generation
compresses interstellar gas into a new generation of stars. Char-
acterizing the existence of multiple populations in nearby star
formation regions is critical because it directly affects the funda-
mental star formation observables, such as star formation history,
rate, efficiency, and the initial mass function (IMF). Looking for-
ward, multiple populations should be looked for in other nearby
star-forming regions, and for at least ρOph and the Orion Nebula
Cluster, they need to be disentangled for a precise description of
the basic star formation observables.

5.3. Caveats

Some of the literature sources are located off from the center
of the cloud, in particular the ones that seem to trace the B44
filament (L1689, L1712, L1759), away from the center of the

distribution and toward the lower Galactic east in Fig. 2. These
sources might be too far from the cluster center to be considered
by the algorithm, since the training set is only located near the
center of the distribution (Fig. 2). Still, the sources seen in pro-
jection onto B44 are also located at the edge of the proper motion
distribution, making them even less likely to be predicted. How-
ever, since there are only a handful of sources located so far off,
this suggests that the algorithm is not missing a significant num-
ber of sources toward the filaments B44 and B45.

5.4. Comparison with previous work using Gaia data

Cánovas et al. (2019) applied several clustering algorithms
(DBSCAN,OPTICS,HDBSCAN) to identify new sources in the
ρ Oph region using the Gaia DR2 catalog. We have found
sources that were not identified as potential members by
Cánovas et al. (2019), despite also running our search algorithm
on the Gaia DR2 catalog before the availability of Gaia EDR3.
Our search in only Gaia DR2 yielded around 150 new members,
depending on how strictly we set our prior assumptions. Find-
ing so many new YSOs in the same data set suggest that our
approach is an effective tool for searching for new members of
co-moving stellar structures.

Esplin & Luhman (2020) used Gaia DR2 data and derived
proper motions with multi-epoch data from the Spitzer Space

Telescope to find 155 new young stars, 102 of these associated
with the Ophiuchus clouds and 47 with Upper Sco. Unlike our
study, Esplin & Luhman (2020) did not use multivariate classi-
fication techniques to identify new sources, so we attribute the
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Fig. 11. Spatial distribution of the two dynamical populations in ρ Oph in red and yellow circles. The ρ Oph cluster, centered on the ρ Ophiuchi
star, is marked by a white open circle. The actively star-forming clouds, L1688, L1689, and L1709, are also marked. Impostors (see Sect. 2.2)
are not included in this figure, whereas low stability sources are. The background grayscale is a column density map of Ophiuchus made with
Herschel, Planck, and 2MASS data (Alves et al., in prep.).

discovery of the 191 new YSOs over their search to tailored clas-
sification techniques as the one described in this paper, which
are powerful tools to disentangle stellar populations in the high-
precision Gaia-era data.

Concluding, the algorithm from Ratzenböck et al. (2020) has
shown to be an effective method for identifying stars belonging
to a particular population, based on the properties of a subsam-
ple of known sources. The method was able to identify 191 new
optically visible sources in ρ Oph, providing more information
on the optically revealed population of the region. Therefore, we
conclude that our method is a useful tool suitable for similar
research in the future.

6. Conclusions

The main results from this work can be summarized as follows:
1. We searched the literature to construct a catalog of 1114

known YSOs toward the ρ Ophiuchi region. We cross-
match this catalog with the Gaia EDR3, Gaia-ESO, and
APOGEE-2 surveys and use it to feed a classification algo-

rithm designed to find new, co-moving population candidates

in Gaia EDR3 using a training set of 150 sources.
2. We found 191 new YSO candidates in Gaia EDR3 belong-

ing to the ρ Ophiuchi region (229 new YSOs including low-

fidelity members). The distribution of the new sources in an

HR-diagram is very similar to previously known young stars
in the region, validating our selection.

3. The new sources appear to be mainly Class III M stars and
substellar objects, and they are generally less extincted than
the known members.

4. We found 28 new sources with excess IR emission suggest-
ing the presence of disks.

5. A proper motion analysis of the ρ Ophiuchi region reveals
the presence of two main populations: the first population
(Pop 1) of 1022 sources comprises clusters of young stars
around the ρ Ophiuchi star and the main Ophiuchus clouds
(L1688, L1689, L1709), while the second population (Pop
2) of 304 sources is slightly older and more dispersed, with a
similar but distinct proper motion from the first. Both pop-
ulations occupy approximately the same 3D volume. The
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second population’s age and proper motion suggest that it
may have originated from the Upper Sco population.

6. The two populations are moving away from each other at
about 4.1 km s−1, and will no longer be overlapping in about
4 Myr.

7. Future studies of this benchmark region should treat these
two populations separately or risk biasing the star formation
observables, such as star formation history, rate, efficiency,
or the IMF.

8. The algorithm used in this paper (OCSVM, Ratzenböck et al.
2020) has proven to be an effective method for identifying
stars belonging to a particular population, based on the prop-
erties of a subsample of known sources.
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Appendix A: Training set criteria

In this appendix, we describe the quality cuts determined for the
training set, which were used in the classification algorithm to
identify new members. We used the tangential velocities vα and
vδ and their errors for determining the cuts of the training set.
The tangential velocities were calculated through the parallaxes
̟ and proper motions µ∗α and µδ using the following formulas:

vα = 4.74047 · µ∗α/̟, (A.1)

vα_err = 4.74047 ·

√

µ∗2α_err/̟
2 + µ∗2α ·̟

2
err/̟

4, (A.2)

vδ = 4.74047 · µδ/̟, (A.3)

vδ_err = 4.74047 ·

√

µ∗2
δ_err
/̟2 + µ∗2

δ
·̟2

err/̟
4. (A.4)

The cuts for the training set were determined by using plots as
a visual aid. Figure A.1 shows plots of various properties of the
complete literature sample in blue and sources that satisfy our
chosen quality cuts in orange. We applied the following quality
cuts for constructing the training set:

100 pc < d < 180 pc, (A.5)

̟err/̟ < 0.2, (A.6)

− 15 km s−1 < vr < 5 km s−1, (A.7)

vr_err < 3 km s−1, (A.8)

− 12 km s−1 < vα < 2 km s−1, (A.9)

vα_err < 3 km s−1, (A.10)

− 22 km s−1 < vδ < −11 km s−1, (A.11)

vδ_err < 3 km s−1. (A.12)

As the sources are located around a distance d of 140 pc, we
applied a symmetrical distance range of 100 to 180 pc for the
training set. A relative error-to-value cut was also applied for
the parallax ̟. Radial velocities vr are mostly around a value of
−5 km s−1, so we applied a symmetrical range of −15 to 5 km s−1.
A relative error cut is not sensible for the radial velocities since
many of them are close to zero, which could lead to losing
sources that actually belong to ρ Oph. Therefore, we applied an
absolute radial velocity error cut. Since the errors of the tangen-
tial velocities vα and vδ are comparable to the radial velocity
errors, similar cuts can be made in all three velocity directions.
We applied the same absolute error cut to the tangential veloci-
ties, since several vα values are also close to zero. These condi-
tions select sources that do not deviate much from the average
values of the chosen properties, creating a suitable selection for
finding new sources with similar properties.
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Fig. A.1. Various properties of the ρ Oph literature sample shown in blue, while the sources that fulfill all of the quality cuts are shown in orange.
These plots were used as a visual aid to determine the cuts for the training set.

Appendix B: Gaia quality criteria

For the observational HRD in Fig. 8, we applied quality cuts
to Gaia sources in order to reduce contamination by inferior
data, similar to the cuts used in Großschedl et al. (2021). Further
details on the Gaia parameters can be found on the official web-
site of the mission:2. We applied the following quality criteria to
Gaia sources:

2 https://gea.esac.esa.int/archive/documentation/

index.html

̟err/̟ < 0.2, (B.1)

ruwe < 1.4, (B.2)

Gerr < 0.05 mag, (B.3)

visibility_periods_used > 6, (B.4)

astrometric_sigma5d_max < 1.4. (B.5)

The Gerr value is defined as:

Gerr = 1.0857 · phot_g_mean_flux_error/phot_g_mean_flux.

(B.6)
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Appendix C: Contamination fraction constraint

Following Ratzenböck et al. (2020), we seek to constrain the
contamination fraction of predicted sources across models. As
discussed in Sect. 3, the contamination fraction is determined via
the 3D velocity distribution of ρ Oph candidate sources. How-
ever, for single models, we observed few sources that feature
radial velocity measurements in the prediction set, which leads
to a marginal effect of the contamination fraction prior assump-
tion on the number of rejected models. This effect is highlighted
in Fig. C.1, where we see that over 99% of models adhere to
the contamination rule across various maximal threshold values.
For each contamination threshold value we sampled 20 models
where we have set the maximal number of samples to 800 and
sampled the remaining prior assumptions within their respec-
tive ranges (see Sect. 3 for more details). The reported accepted
model fraction constitutes a mean value across the 20 sampled
prior assumption tuples. The standard deviation is negligibly
small.
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Maximum contamination in vr [%]
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0.995

1
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od
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 fr
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n

Fig. C.1. Accepted model fraction according to various maximal
contamination requirements. The prior assumption value was varied
between 5% and 30%. We found no significant impact of the contamina-
tion fraction restriction for individual models on the number of accepted
models.

Appendix D: Sampling in prior assumption space

Following the discussion in Sect. 3, we randomly sampled 100
prior assumption tuples within their respective range, which
resulted in 100 model ensembles. In Fig. D.1 the distribution
of the number of predicted sources and contamination fraction
space of these ensemble classifiers is shown. The prior assump-
tion space of the maximal positional extent (left column), the
maximal velocity extent (middle column) and the maximal sys-
tematic shift (right column) was uniformly sampled within their
respective ranges. We use color to encode the maximal prior
assumption value in this space. On the bottom, the sampled prior
assumption distributions for models showing minimal contami-
nation (in purple) and the remaining models (in gray) can be
seen. In models with high contamination, we observe a ten-
dency to higher velocity dispersion but low systematic shifts.
We observe that “good” models with lower contamination expe-
rience sometimes even a drastic systematic shit. This shift is due
to the second population we uncovered.
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Fig. D.1. Distribution of the number of predicted sources and contamination fraction space of these ensemble classifiers. Top: distribution of 100
ensemble classifiers trained using various prior assumption constraints in the number of predicted sources and contamination fraction space. We
have randomly sampled the prior assumption of the maximal positional extent (left column), the maximal velocity extent (middle column) and the
maximal systematic shift (right column) within their respective ranges. The color highlights the maximal prior assumption value. Bottom: sampled
prior assumption distributions for models showing a contamination of less than 0.28 (in purple) and remaining models (in gray). For models with
a higher contamination fraction we observe a tendency to higher velocity dispersion and a small systematic shift.

Appendix E: Stability
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Fig. E.1. Stability (in percent) of the known and new sources, as deter-
mined by the OCSVM method.

We discuss the stability of the predicted sources as well as the
stability cut we chose. Although the model selection process
via a set of prior assumptions (see Sect. 3) removed a major-
ity of unsuitable models, the lack of a clear objective function
still leaves some contamination in our final prediction sample.
To find a set of high-fidelity members, we studied the prediction
frequency, or stability, of the predicted sources across the model
ensemble. Figure E.1 shows a histogram of the stability of the
known and new sources. Both of them show a relatively similar
stability distribution. Many of the known sources from the liter-
ature are predicted with a stability of 0 because they are not in
the Gaia EDR3 catalog.

As discussed in Ratzenböck et al. (2020), an appropriate sta-
bility threshold should reduce spurious sources while maximiz-
ing the number of legitimate cluster members. For this purpose,
the authors studied the impact of the stability criterion on the
Cartesian velocity dispersion and selected an optimal value by
eye. Now we aimed to train multiple model ensembles under
different prior assumptions and jointly attempt to characterize
each model ensemble corresponding to a single prior belief
tuple in terms of a contamination estimate and the number of
identified points at their respective optimal stability thresholds
(see Sect. 3). Therefore, we intend to automatically determine a
threshold value for each model ensemble. To do so we consid-
ered the following. The distribution of predicted members and
training members in 5D is by design very close and adheres to
our prior assumptions, so we cannot infer an independent quality
criterion from the prediction in 5D. However, since stars that are
born together move together (Kamdar et al. 2019), we can, sim-
ilarly to Ratzenböck et al. (2020), use the, albeit sparsely avail-
able, full 3D velocity information for determining the stability
criterion.

To be co-moving, we postulate that the predicted sources
with radial velocity information should be distributed as simi-
larly as possible to the training set 3D velocities. To test this
similarity, we modeled the 3D velocity data using a multivari-
ate normal distribution. We determined the mean and covari-
ance by maximizing the likelihood of the training data under the
model. To estimate the difference between the trained and pre-
dicted sources, we used the Kullback–Leibler (KL) divergence
(Kullback & Leibler 1951) DKL(p ‖ q) where q and p both con-
stitute probability distribution functions. The KL divergence of
p(x) from q(x) of the continuous variable x is defined via
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Fig. E.2. KL divergence between Cartesian velocity distributions of
training and predicted source populations determined across various
stability threshold values. We found an optimal threshold criterion of
stability >4% for the final ensemble across various prior assumptions
that produce minimal contamination (see Sect. 3 for a more detailed
discussion).

DKL(p ‖ q) =

∫ ∞

−∞

p(x) log

(

p(x)

q(x)

)

. (E.1)

It can be interpreted as the information content that is lost
when the true distribution p is substituted by an approximate

distribution q (Burnham & Anderson 2002). Here, p represents
our training set distribution, while the approximate distribution

q describes the distribution of predicted sources. To evaluate

DKL(p ‖ q), we modeled q, the velocity distribution of the derived
members, assuming a single Gaussian. For two multivariate nor-

mal distributions, the KL divergence can be written analytically
in the following form (Petersen & Pedersen 2012):

DKL =
1

2

[

log
|Σq|

|Σp|
− d + tr(Σ−1

q Σp) + (µq − µp)TΣ−1
q (µq − µp)

]

.

(E.2)

Here, µ and Σ refer to the mean and covariance matrices of the

multivariate normal distributions, respectively. The variable d
describes the number of dimensions, which is in this case d = 3.

To find the optimal stability threshold we seek to minimize the
KL divergence between the Cartesian velocity distribution of
training and predicted sample populations, which is illustrated

in Fig. E.2. We found an optimal threshold criterion of stabil-

ity >4%. The stability is included in our final catalog shown in
Table H.1.

Appendix F: Validation of predicted sources in the

HRD

As a final validation step, we compare the predicted source dis-
tribution to the training set distribution in the HRD. Since both

populations should be coeval, we can characterize the HRD dis-
tribution by their deviation from the best fitting isochrone on

the training set. In Fig. F.1, the standard deviation of residuals
between the data and the 5 Myr isochronal curve is shown. We

found no significant difference between the training set members
and the predicted sources based on their HRD distributions.
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Fig. F.1. Comparison between the training and predicted (inferred)
sources across the full stability range. The y-axis shows the standard
deviation of residuals between the data and an isochrone of 5 Myr,
describing the best fit to the training data. We find no significant differ-
ence between the training set members and the predicted sources based
on their HRD distributions.

Appendix G: Astrometric properties of known and

new sources

Table G.1. Average astrometric properties of the known and new
sources in ρ Oph.

Dimension Known New All ∆

α (deg) 246.6 ± 1.0 245.2 ± 1.6 246.3 ± 1.3 1.4
δ (deg) −24.2 ± 0.8 −23.8 ± 1.5 −24.1 ± 0.9 −0.4
̟ (mas) 7.2 ± 0.4 7.0 ± 0.3 7.1 ± 0.4 0.1
d (pc) 140.0 ± 8.5 142.5 ± 5.8 140.6 ± 7.9 −2.4

µ∗α (mas yr−1) −8.2 ± 3.0 −9.6 ± 1.9 −8.6 ± 2.8 1.4

µδ (mas yr−1) −24.9 ± 2.5 −23.9 ± 2.0 −24.7 ± 2.4 −1.0

vα (km s−1) −5.4 ± 1.9 −6.5 ± 1.3 −5.7 ± 1.8 1.1

vδ (km s−1) −16.7 ± 1.6 −16.1 ± 1.1 −16.5 ± 1.5 −0.6

vr (km s−1) −5.8 ± 4.3 −5.0 ± 5.1 −0.9 ± 68.5 −0.8
X (pc) 132.7 ± 8.1 134.1 ± 5.8 133.0 ± 7.6 −1.4
Y (pc) −15.8 ± 1.9 −17.4 ± 3.0 −16.2 ± 2.4 1.6
Z (pc) 41.8 ± 3.4 44.6 ± 4.2 42.5 ± 3.9 −2.9

U (km s−1) −5.2 ± 3.3 −4.9 ± 4.5 −5.9 ± 5.8 −0.2

V (km s−1) −15.3 ± 1.4 −15.9 ± 1.0 −15.3 ± 1.5 0.6

W (km s−1) −8.6 ± 2.1 −7.3 ± 2.5 −8.7 ± 2.5 −1.3

Notes. The average positional and dynamical values, including their
standard deviations (1σ), were determined for the known and new
sources separately, as well as for all of them together. The column ∆
contains the difference of the known and new mean values for compar-
ison of the two.

Table G.1 shows the average astrometric properties of the
sources in ρ Oph, such as the distances, proper motions, radial
and tangential velocities, Galactic Cartesian positions X,Y,Z and
Galactic Cartesian velocities U,V,W, as well as the standard
deviations (1σ) of these parameters. These average values were
determined for the known and new sources, as well as for all
of them together. To avoid the influence of outliers, impostors
defined in Sect. 2.2 were not included in the calculations. The
column ∆ contains the difference of the known and new mean
values for comparison.
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There appear to be only small deviations between the prop-
erties of the known and new sources, which are not signifi-
cant within 1σ. This further confirms that, on average, they
belong to the same region. The average values of ρ Oph for
̟, µ∗α, µδ, X,Y,Z agree relatively well with those determined by
Cánovas et al. (2019) within 1σ.

Appendix H: ρ Oph catalog overview

In this appendix we present our final catalog of ρ Oph sources,
which is available at the CDS. It includes all known sources from
the literature and all sources identified by the OCSVM, even
those with a stability <4, resulting in a total of 1343 sources.
Table H.1 shows an overview of the column names, their units
and their descriptions. In total, our catalog contains 67 columns.

The column “Ref” serves as a reference for the literature sources,
where each paper is cited by their reference number given in

Table 1. Several sources were obtained from more than one
paper; therefore, some sources have more than one reference
number.

Since the known sources have proper motions and radial
velocities obtained from the literature, Gaia EDR3, APOGEE-

2, or Gaia-ESO, we provide the column “Ref_pm_rv” for the
reference of the proper motions and radial velocity values,
respectively. Each row contains two numbers for citation of
these values, where “1,” “2,” “3,” and “4” signify measure-
ments obtained from the literature, Gaia EDR3, APOGEE, and
Gaia-ESO, respectively. “0” implies that a source does not
have a corresponding proper motion, parallax or radial velocity
measurement.

Table H.1. Column overview of the final catalog containing known and new ρ Oph sources.

Column name Unit Description

source_id_edr3 – Gaia EDR3 ID
RA deg Right ascension (J2000)
Dec deg Declination (J2000)
l deg Galactic longitude
b deg Galactic latitude
parallax mas Parallax
parallax_error mas Parallax error
distance pc Distance, determined from the inverse of the parallax

pmra mas yr−1 Proper motion in ra direction

pmra_error mas yr−1 Error in pmra

pmdec mas yr−1 Proper motion in Dec direction

pmdec_error mas yr−1 Error in pmdec

radial_velocity km s−1 Heliocentric radial velocity

radial_velocity_error km s−1 Error in radial velocity

v_alpha km s−1 Tangential velocity in ra direction

v_alpha_error km s−1 Error in v_alpha

v_delta km s−1 Tangential velocity in dec direction

v_delta_error km s−1 Error in v_delta
X pc Galactic Cartesian X position component
Y pc Galactic Cartesian Y position component
Z pc Galactic Cartesian Z position component

U km s−1 Galactic Cartesian U velocity component

V km s−1 Galactic Cartesian V velocity component

W km s−1 Galactic Cartesian W velocity component
ruwe – Renormalized unit weight error
astrometric_sigma5d_max mas Longest principal axis in the 5D error ellipsoid
astrometric_params_solved – Which parameters have been solved for
visibility_periods_used – Number of visibility periods in the astrometric solution
phot_g_mean_flux e-/s G-band mean flux
phot_g_mean_flux_error e-/s Error on G-band mean flux
phot_g_mean_mag mag G-band mean magnitude
phot_bp_mean_mag mag Integrated BP mean magnitude
phot_rp_mean_mag mag Integrated RP mean magnitude
bp_rp mag BP–RP color
Train – =1 for sources in the training set
Predict – =1 for predicted sources in Gaia EDR3
New – =1 for new sources in Gaia EDR3
Stability – Stability of the sources, range: 0–100
Impostors – =1 for impostor sources

Notes. Column overview of the final catalog of ρ Oph sources, which includes the known sources from the literature as well as the new sources
identified by the algorithm. The complete table is available at the CDS.
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Table H.1. continued.

Column name Unit Description

pml mas yr−1 Proper motion in l direction

pmb mas yr−1 Proper motion in b direction

v_l km s−1 Velocity in l direction

v_b km s−1 Velocity in b direction
angle_l_hel deg Heliocentric proper motion angle to l-axis

pml_lsr mas yr−1 Proper motion in l direction (LSR)

pmb_lsr mas yr−1 Proper motion in b direction (LSR)

v_l_lsr km s−1 Velocity in l direction (LSR)

v_b_lsr km s−1 Velocity in b direction (LSR)
angle_l_lsr deg LSR proper motion angle to l-axis
Pop – =1 for Pop 1 sources, =2 for Pop 2 sources, =0 if neither
IR_excess – = 1 for YSOs with IR excess, = 0 for Class III sources
designation_2MASS – 2MASS ID
j_m mag J-band magnitude
j_cmsig mag Uncertainty in J-band magnitude
h_m mag H-band magnitude
h_cmsig mag Uncertainty in H-band magnitude
k_m mag K-band magnitude
k_cmsig mag Uncertainty in K-band magnitude
designation_WISE – WISE ID
w1mpro mag WISE W1 magnitude
w1snr – W1 S/N
w2mpro mag WISE W2 magnitude
w2snr – W2 S/N
w3mpro mag WISE W3 magnitude
w3snr – W3 S/N
Ref – Reference for literature sources, see Table 1, range: 1–11
Ref_pm_rv – Reference for proper motions and radial velocity: literature=1,

Gaia EDR3=2, APOGEE=3, Gaia-ESO=4
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Uncover: Toward Interpretable Models
for Detecting New Star Cluster Members

Sebastian RatzenbÈock, Verena ObermÈuller, Torsten MÈoller, Senior Member, IEEE,

João Alves, and Immanuel M. Bomze

AbstractÐIn this design study, we present Uncover, an interactive tool aimed at astronomers to find previously unidentified member

stars in stellar clusters. We contribute data and task abstraction in the domain of astronomy and provide an approach for the non-trivial

challenge of finding a suitable hyper-parameter set for highly flexible novelty detection models. We achieve this by substituting the

tedious manual trial and error process, which usually results in finding a small subset of passable models with a five-step workflow

approach. We utilize ranges of a priori defined, interpretable summary statistics models have to adhere to. Our goal is to enable

astronomers to use their domain expertise to quantify model goodness effectively. We attempt to change the current culture of blindly

accepting a machine learning model to one where astronomers build and modify a model based on their expertise. We evaluate the

tools’ usability and usefulness in a series of interviews with domain experts.

Index TermsÐInterpretable models, model selection, novelty detection, star clusters

✦

1 MOTIVATION

S TAR clusters constitute the elementary building blocks
of galaxies [45]. They provide probes for studying fun-

damental processes such as galaxy structure formation and
evolution, stellar physics, and exoplanet evolution [55].
However, what astronomers know about stellar clusters is
limited by the discovery process itself. Due to complex inter-
actions with their dusty birthplaces, the tidal forces from the
Milky Way, and unavoidable imperfect measurements and
missing data, finding and extracting star clusters is challeng-
ing. Typically, new star clusters’ discoveries consist of small
high-confidence samples that minimize misclassification of
stars. These high-fidelity samples are usually restricted to
the dense cluster centers. However, larger samples would
not only dramatically improve the quality of the derived
cluster’s physical parameters, but they also uncover the
so far unseen low-density regions of stellar clusters. These
low-density regions contain essential information on cluster
formation and evolution [9], [23], [28], [52]. Although there
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is no conclusive methodology to identify new cluster mem-
bers, the advent of deep, space-based all-sky surveys makes
it a timely topic.

The search for new stars faces the challenges inherent
to unsupervised clustering approaches. The absence of la-
beled data makes finding an optimal clustering result a
highly nontrivial task. The two main challenges are hyper-
parameter space exploration and result validation. To search
for meaningful solutions, users often fall back to a laborious,
manual trial-and-error process.

To mitigate the time spent blindly wandering through
the hyper-parameter space, interactive tools such as
Tuner [72], and Clustrophile 1+2 [13], [21] provide a system-
atic approach to hyper-parameter space navigation. Con-
versely, validation depends on the context of the analysis,
the users’ goals, and expertise. General purpose systems
thus often make efforts to increase the interpretability of
results beyond so called internal validation measures [48]
based on cluster compactness and separation. These scores
provide proxies for the goodness of a clustering result.
However, since clustering results usually cannot be fully
validated, internal validation measures should not be used
to optimize clustering results.

This situation changes in the case of star clusters. Al-
though no ground truth information is available for in-
dividual stars, systems of multiple stars can be validated
by domain experts. General purpose visual cluster analysis
tools often focus on data exploration and insight generation
rather than generating an effective and accurate clustering
result. Moreover, to generalize to a broad range of appli-
cation scenarios tools such as Clustrophile 2 [13] hardly
provide any clustering algorithms that can deal with com-
plex feature spaces. Notably, in the search for new member
stars of stellar clusters, we already have a set of previously
identified members which currently available systems fail to
incorporate. The given set of cluster members provides the
chance of employing powerful novelty detection methods
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Fig. 1. Uncover Interface. a) Dendrogram Tab showing the silhouettes of model groups from the selected difference threshold. b) Model Group Tab
showing the distributions of individual model groups. c) Prior assumption Tab to set accepted ranges for selected summary statistics. d) Stability
Tab showing the final model ensemble and the prediction frequency of inferred members.

in which known stars are used as training samples.

Our goal is to enable astronomers to use their domain
expertise to assess the quality of novelty detection models
and in the process create interpretable (to astronomers) and
accurate star classification models.

Given these design considerations, we present a five-
stage workflow approach in which users (1) specify a priori
knowledge in terms of constrained summary statistic ranges
which influence the training of an ensemble of novelty
detection models. Models are (2) clustered into user-defined
groups which are subsequently (3) judged on their quality
by domain experts. The users’ quality assessment then up-
dates the range of valid summary statistics. Subsequently,
we support users to study and discover the effect of sum-
mary statistics on the shape of the predicted distribution
in the context of their qualitative assessment. This gives
users the opportunity to update their prior knowledge and
influence the filter range (4). The updated statistics influence
hyper-parameter restrictions on which a final large ensem-
ble classifier is trained. Finally, the user is able (5) to filter out
individual stars based on the prediction frequency across
models, to finalize the novelty classifier. The contributions
can be summarized in the following:

• We present a novel visually assisted workflow for
finding appropriate hyper-parameters for highly
flexible one-class support vector machines in the
presence of training set contamination and extremely
high outlier fractions (see Sect. 2).

• We introduce an analysis and abstraction of data,
tasks, and requirements for the star formation do-
main (see Sect. 4).

• We breakdown the star classification process into
small interpretable steps. We support users to apply
their domain expertise to assess the goodness of
trained models, effectively building confidence in the
final classifier among domain experts (see Sect. 5).

• We validate our approach in two scientific use cases
that demonstrate the efficiency and effectiveness
of the Uncover interface in finding new stars (see
Sect. 9).

2 ALGORITHMIC AND DOMAIN BACKGROUND

Our goal is to enable users to select meaningful models
from the vast space of possible star classification solutions.
Instead of guiding users through the hyper-parameter space
we provide an overview of possible model configurations.

To facilitate model selection, we aim to increase the
transparency and interpretability of individual models. To
provide trust in selected models, we provide means of vali-
dating their outputs. We substitute unintuitive model hyper-
parameters with a set of interpretable summary statistics
and provide means to study their effect on the model
outputs.

In the following, we discuss the necessary expertise to
validate star clusters. We highlight and motivate cluster-
ing challenges in the context of star clusters more deeply.
Subsequently, we discuss one class models and strategies to
validate them.

2.1 Domain Background

Star clusters are dense groups of at least a few dozen stars.
Although it is widely agreed that most stars form in stellar
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clusters [45] their exact formation history and subsequent
evolution is currently subject to ongoing discussion [44],
[76]. This discussion on fundamental star formation prin-
ciples is fueled by the Gaia mission [29], [30], [31] which
provides unprecedented positional and kinematic measure-
ments of over 1.6 billion stars in our Milky Way. Since its
public release the richness of the Gaia data has sparked a
wave of discoveries of star clusters [10], [12], [16], [51]. By
studying their size, age, and chemical compositions, stellar
clusters provide valuable insights into galaxy formation,
structure evolution, and stellar physics.

The precise study of physical processes and inference
of physical model parameters is, however, limited by the
discovery process. Star clusters appear as stellar over-
densities in the space of position and velocity [42]. Due
to physical processes such as complex interactions with the
galaxy, imperfect measurements, and missing data, finding
and extracting star clusters is challenging. Consequently,
discoveries of new star clusters are often accompanied by
a small high-confidence sample to avoid a high number
of misclassified stars. Thus, when a new star cluster is
discovered, domain scientists frequently sacrifice recall for
high precision.

To infer physical quantities or test hypotheses on stellar
physics and/or Galaxy structure and evolution, a suffi-
ciently large sample of stars is needed. In these situations, a
high recall is equally important. To uncover potentially new
cluster members, star clusters are often subject to follow-up
studies [9], [23], [28], [52]. Even though a set of high-fidelity
stars already exists, these follow-up studies usually employ
fully unsupervised learning, i.e., in data sets without labels
indicating a class. Nevertheless, a common aim is to assign
new members to previously identified stellar groups. We
actually face a gray area between supervised and unsu-
pervised learning, in statistical jargon between classification
and clustering (not in the astronomy sense).

Recently however, novelty (or anomaly) detection ap-
proaches have been used to search for new member
stars [37], [59]. Specifically, one-class support vector ma-
chines (OCSVM) [64] are trained on a set of high-fidelity
member stars which are then able to identify unseen mem-
bers. However, OCSVM classifiers are quite tedious to train.
Their high flexibility and the lack of labeled outlier data
limits their ability to generalize well on account of the pro-
vided training data only. Due to the lack of a clear objective
function, domain experts usually fall back to manual trial-
and-error processes.

Although no ground truth information is available for
individual stars, ensembles of stars can be validated by
domain experts. The distribution of stars in the positional
and kinematic feature space, alongside their distribution in
the Hertzsprung Russell diagram (HRD) provides evidence
for or against a ªtrueº star cluster hypothesis.

The HRD shows the evolutionary distribution of stars.
It is a scatter plot in which the absolute magnitude of
stars, a measure of their brightness, is plotted against the
color, a measure of surface temperature, of the stars (see
left side of Fig. 10). The position of a star on the HRD
depends on a number of factors but notably on its mass,
chemical composition, and age. During its life a star follows
an evolutionary path through the HRD. Stars in stellar clus-

ters are ªbornº together, originating from large collapsing
molecular clouds, and thus have the same age and chemical
composition. Therefore, star cluster members with different
masses are found to lie on and around (due to errors in the
measurement process) a curve in the 2D plane.

We aim to provide a visual interface that enables as-
tronomers to use their domain expertise to search for mean-
ingful star classification results.

2.2 Algorithmic Background

In this work, we focus on one-class support vector machines
following their recent success in identifying unseen mem-
bers in star clusters [37], [59]. The OCSVM method is an
outlier and novelty detection algorithm which learns a tight
and smooth boundary around a target data set. By applying
the kernel trick, this boundary is highly flexible and can
describe non-linear, arbitrarily shaped boundary regions.
However, its extraordinary versatility quickly becomes its
greatest drawback, as its performance depends heavily on
the choice of input hyper-parameters.

Due to the lack of labeled outlier data, traditional model
selection techniques such as cross-validation cannot be ap-
plied. Since no second class can restrict model growth, mod-
els that encompass the whole feature space would achieve a
perfect test score. The optimal hyper-parameter selection for
one class models remains an open problem to this day [70].

2.2.1 Summary Statistics Heuristics

To formally quantify the goodness of a classifier, a set of
labeled data instances is needed. In the case of one-class
models and unsupervised learning algorithms, principled
quantitative validation is impossible. Although the OCSVM
approach uses a set of training data in an extended sense,
the absence of data instances labeled as abnormal may lead
to a trivial model including all observations.

Instead, summary statistics such as the Silhouette
score [62] offer an automated model selection heuristics. A
set of summary statistics and respective predefined ranges
provide straight-forward model filters.

In contrast to the hyper-parameters of the classifier (e.g.,
the bandwidth parameter γ in the kernel function or the
relaxation level ν, see below), statistics can be chosen by the
domain experts themselves and carry an immediate mean-
ing that can be interpreted by astronomers. Statistics such as
velocity dispersion, or the center of mass are metrics already
used to quantify star clusters [28], [51]. Such a domain spe-
cific model selection heuristics was applied by RatzenbÈock
et al. [59] who initially motivated and described the use
of OCSVMs to search for new member stars. Instead of
tuning the model hyper-parameters directly, they compiled
six ªinterpretableº summary statistics and selected models
based on a priori defined ranges of these statistics. The final
star classification model results then from aggregating the
prediction of accepted models.

In the limit of sufficient statistics [27] a set of maximum
likelihood estimates for the parameters of the data gen-
erating model can be determined. This requires, however,
a-priori knowledge on the nature of the joint probability
distribution function. In reality, we are left with a set of
observed data and insufficient but still informative statistics
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on the unknown population. Due to the unknown complex
interaction and physical model uncertainties, the nature of
the underlying star clusters distribution is indeterminate.
Domain expertise and a high-fidelity training set can be
used to create informed summary statistics for model se-
lection.

A major drawback of using summary statistics for model
validation is owed to the vague and abstract nature of prior
knowledge. For example, instead of specifying explicitly
how many stars domain experts predict to find, a com-
mon answer would be: ªThe population is expected to in-
crease only slightly but not by much.º Qualitative feedback
provides an effective validation alternative over summary
statistics that is much less sensitive to vague knowledge.

2.2.2 Qualitative Validation

In qualitative validation, users directly assess the model
predictions. The goodness of star cluster models is tied
to the distribution of inferred stars in the positional and
kinematic features, respective to the training data. Especially
the HRD provides means to support this decision.

Although summary statistics provide a fast model fil-
ter approach, visual analysis of inferred stars guarantees
maximal confidence in the model. However, the manual
inspection of up to millions [59] of models is practically
infeasible. We aim to combine the best of both worlds by
providing an update scheme on a-priori defined summary
statistic ranges informed by manually validated models.

2.2.3 A Combined Approach

To enable astronomers to become model builders them-
selves, we provide domain experts with a variety of po-
tential model candidates for validation. We derive limits to
summary statistics from validated models, which provides
an automatic model filter for a subsequent exhaustive model
search.

The high flexibility of OCSVM models results in a vast
space of possible star classification results. Thus, for consis-
tent results we have to properly sample the space of possible
solutions. To deal with a large number of model realizations,
we adopt a clustering strategy in which similar models are
first grouped and then jointly evaluated. A similar strategy
can also be found in FluidExplorer [7] where similar frames
in a fluid simulation are grouped together.

To account for different star cluster shapes and sizes we
cannot impose a strict clustering rule. Instead, our goal is
to enable domain experts to summarize models into user-
defined groups. A reasonable and interpretable framework
to introduce user control is through hierarchical clustering
using a complete-linkage criterion [20]. Compared to other
popular linkage criteria such as single or average linkage,
the complete-linkage criterion provides an easy to grasp
conceptual framework for users. Complete-linkage trans-
lates the merge threshold domain experts are able to modify
into a maximal difference between individual models in
a cluster. In addition, models in a group are expected to
show characteristic properties, implying a small intra-group
variation. Single-linkage, however, can lead to a very high
intra cluster variation as it applies a local merge decision,
compared to the complete-linkage criterion.

To represent the distance between two models we choose
the symmetric difference cardinality (SDC) between inferred
sets of stars. The SDC of two sets A and B is the number of
elements which appear in either A or B but not in both. To
deal with various cluster sizes we normalize the SDC by
the union of both sets, a modification which still preserves
the metric quality of the difference measure [81]. This metric
measures the relative difference between models, that is the
fraction of stars by which models differ. It provides an in-
terpretable difference compared to more complex distances
such as the Hausdorff distance [61] that is less sensitive to
border point fluctuations.

By using a global-to-local [67] approach we essentially
cluster the solutions that allows a domain expert to inspect
groups of similar models instead of having to validate
each model individually. Each model group summarizes a
common classifier trait giving users a much more concise
overview of the solution space. Instead of qualitatively
inspecting models individually domain experts assess re-
sulting model clusters, thus, scaling to thousands of models.

The number of trained models affects the wait time for
the initial training phase and the interpretability of the hier-
archical model grouping algorithm in subsequent workflow
steps. This is contrasted by the need to properly sample
the space of possible star classification results. To cover
the hyper-parameter space quickly and evenly, we draw
samples from the Sobol sequence [2], [69] until convergence.
We stop the sampling process if the majority (> 90%) of the
previous 50 hyper-parameter tuples lack significantly novel
models. Model novelty is defined as a normalized SDC of at
least 0.05 from previously trained models.

To improve the chance of finding many suitable models
we pre-filter models based on initially defined summary
statistic ranges based on a priori assumptions. This step
limits the models presented to domain experts to plausible
solutions.

Models are then trained according to RatzenbÈock et
al. [59] who have initially motivated and described the use
of OCSVMs to search for new member stars. We briefly sum-
marize the training steps here. To reduce overfitting, models
are trained using five-fold cross validation1, admitting only
classifiers above a test accuracy of 50% and a maximum
standard deviation of 20% across folds. Although cross
validation cannot be used to select an optimal model which
generalizes well, we can get rid of models that are unable to
identify already known members. To reduce the influence
of potential contamination by outliers in the training set,
bagging is performed. To do so, individual models are
trained on a random subset using 80% of the initial training
set.

Subsequently, domain experts are tasked to assess the
goodness of self-defined model clusters. We derive updated
ranges for the initially defined summary statistics from
the user choices during the model validation step. Domain
experts then have the option to further examine and modify
the proposed ranges. Afterwards, a final training step that
can be ªrun overnightº is performed where a much larger
number of models are trained. These models have to comply
to the user-informed, updated set of summary statistics.

1. The training data is randomly shuffled before cross validation.
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In the second, more detailed, model training step we are
now able to narrow the hyper-parameter space which we
derive from user validated models and the final summary
statistic range. Therefore, we reduce the number of samples
drawn from hyper-parameter space regions with unfit mod-
els while densely sampling from hyper-parameter space
regions with a high acceptance rate. This strategy drastically
reduces training time compared to a manual selection of
initially vaguely informed summary statistic ranges [59].

3 RELATED WORK

Although OCSVM models require a training step, the lack of
labeled outlier data prevents us to quantify the goodness of
trained models. Since solutions need a qualitative verifica-
tion, the process of finding appropriate and effective models
is inherently unsupervised.

A large variety of visual tools have been proposed to
explore the space of possible classifiers. These tools are often
based on visual hyper-parameter space exploration and aim
to improve machine learning performance.

Uncover specifically focuses on one-class support vector
machines and draws from prior work on optimal hyper-
parameter selection.

3.1 Visual Clustering Analysis

A large body of previous work exists on interactive tools
to support visual clustering analysis. General purpose tools
provide means for exploratory data and cluster analysis.
The Hierarchical Clustering Explorer (HCE [68]) is an early
example of an interactive visualization tool that improves
the users understanding of different clusters. HCE organizes
the hierarchical cluster structure as a dendrogram with
heatmaps. DICON [11] introduced techniques for compar-
ing clustering results across different algorithms and even
data sets. To facilitate cluster analysis DICON uses an icon-
based cluster visualization that embeds statistical informa-
tion into a multi-attribute display. Clustrophile 1+2 [13], [21]
is a cluster analysis and exploration tool which guides a user
through different choices of clustering hyper-parameters
and provides interpretable cluster explanations.

Extensive work has been done on incorporating user
feedback into the clustering process. ClusterSculptor [54]
enables users to intervene in the clustering processes. Users
can iteratively re-organize and interact with clusters using
expert knowledge. The system aims to derive clustering
rules from these examples. Schreck et al. [65] integrate
user feedback to influence the result of SOM clusterings
of trajectory data. Matchmaker [46] extends ideas from
HCE [68] allowing users to modify clusterings by group-
ing data dimensions. Open-Box Spectral Clustering [66] is
an interactive tool that visualizes mathematical quantities
involved in 3D spectral clustering. The system provides
hyper-parameter value suggestions and immediately reacts
to user feedback to increase the quality of image segmen-
tation. Packer et al. [56] present a distance-based spatial
clustering approach and provide a heuristics computation
of input hyper-parameters that supports the search for
meaningful cluster results. ReVision [80] allows users to
steer hierarchical clustering results by utilizing both public

knowledge and private knowledge from users. By reformu-
lating this knowledge into constraints, the data items are
hierarchically clustered using an evolutionary Bayesian rose
tree.

Conceptually similar research to ours include Geono-
Cluster [18] and PK-clustering [58]. Geono-Cluster enables
biologists to insert their domain expertise into clustering
results. The tool displays the expected clustering results to
users based on a small subset of data. The system estimates
users’ intentions and generates potential clustering results.
PK-clustering [58] enables users to input prior knowledge
and explore the space of clustering results in the context
of the provided prior knowledge. The study of consensus
between prior assumptions and cluster results allows users
to acquire and update their prior knowledge.

In contrast to previous works we shift the focus from
data exploration and insight generation towards effective
model generation targeted at a single cluster. We also in-
corporate previously identified members which currently
available systems fail to consider by using a supervised
novelty detection approach.

3.2 OCSVM Hyper-parameter Selection

Optimal hyper-parameter selection for one class models
remains an open problem [70]. In the following, we discuss
automated as well as visually supported model selection
approaches.

3.2.1 Automatic Hyper-parameter Selection

To mitigate the non-trivial selection process of OCSVM
hyper-parameters, automatic hyper-parameter selection ap-
proaches have been proposed, which should provide suit-
able results. Automatic strategies either provide selection
heuristics, or focus on producing a set of pseudo-outliers [4],
[22], [24], [70], [71], [74]. These artificial outliers are sub-
sequently used as an opposing class to the training data
during cross-validation. Heuristics are often limited to spe-
cific kernel parametrizations. As RBF kernels bring a high
degree of model flexibility most heuristics usually focus on
them [26], [34], [43], [75], [78].

Both automatic approaches, however, often assume a
problem in which the target class is sufficiently represented
while the other class has almost no measurements in com-
parison [70]. This class imbalance assumption towards the
training set is in stark contrast to stellar clustering where the
target class is a minority embedded in, and outnumbered
by, a background of non-member stars. Furthermore, auto-
matic methods usually provide point estimates for hyper-
parameters, providing only a single model to infer new
member stars with.

Even in the case of optimal model hyper-parameters,
one-class algorithms exhibit poor performance [71], which
we can combat by using non-optimal learners in an ensem-
ble approach. Bagging estimators improve the performance
and robustness of the prediction [36]. Additionally, point
estimates cannot adapt to specific user expectations and
introduce errors in the case of noisy training data. Since
residual contamination in the training sample from non-
member stars is expected, we have to consider that OCSVM
classifiers can be sensitive to contamination from outlier
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data [39], [47]. In this case, the OCSVM classifiers tend
to skew toward the anomalies. Amer et al. [1] propose to
mitigate the influence of outliers by altering the OCSVM
objective function introducing training sample weights. In-
stead of tweaking the objective function, Ghafoori et al. [33]
introduce a pre-processing step which removes anomalies
from the training set and simultaneously tries to estimate
suitable hyper-parameters. Both approaches, however, need
some form of outlier estimate, be it either through the
distance to the data centroid [1] or via a k-NN density es-
timate [33] implying that outliers occur towards the border,
or in low density regions of the training set. While this
assumption is sufficient for many applications, we cannot
generalize this to star clusters where contamination depends
greatly on the training set selection method.

3.2.2 Visual OCSVM Hyper-parameter Estimation

A different and more user-centered approach to find a
suitable model was presented by Xie et al. [79] in which
the OCSVM classifier is trained in an active learning sce-
nario. User feedback on uncertain samples near the decision
boundary updates the decision boundary.

Although active learning is able to adapt to specific user
expectations, it fails in the context of star clusters. Data
instances can rarely, if ever, be assessed on an individual
basis. Conversely, however, it is very much possible for
domain experts to discern a genuine star cluster from an
incoherent system of stars.

4 DATA AND TASK ANALYSIS

We now discuss the data and tasks, and a derived workflow
to support the search of new star cluster members. The data
flow and workflow are schematically depicted in Fig. 2 and
Fig. 3, respectively.

4.1 Data

The main data source is the aforementioned Gaia data
set [29], [30], [31], a tabular data set containing measure-
ments of over 1.6 billion stars in our Milky Way. Fea-
tures relevant for this analysis constitute continuous, real-
valued measurements of position and velocity, and color
and absolute magnitude information which are used for
model fitting, and validation, respectively. Users input two
separate data sources, a training set and a prediction set.
The latter is used to infer cluster membership with trained
models. We note here that the full 3D kinematic information
is available only for a small subset of stars in the Gaia data
set. As discussed in RatzenbÈock et al. [59], during training
a reduced 2D velocity space is used, called proper motion
space. Stars that have the full 3D kinematic information are
used to validate models.

To speed up the inference process it is advised to provide
a small subset of stars in the positional vicinity of the
training set where new stars are assumed to lie in. Usually,
both the training and prediction set are subsets of the Gaia
catalogue. In principle, these two data sources can originate
from different star catalogues as long as the feature set is
identical2.

2. In case two different source catalogues are used, special care must
be taken to correctly consider differences in statistical and systematic
errors between them.

4.1.1 Model Abstraction

The OCSVM model can be abstracted as a basic determinis-
tic input-output model converting input tuples to outputs.

Given the input hyper-parameters γ, ν, and cx

cv

and
the training set, OCSVM constructs a decision surface that
aims to maximize the separation between the training data
and the origin. The resulting model is a decision hyper
surface enclosing the training data in the input space which
constitutes a binary function that classifies new data as in- or
outliers. The hyper-parameter γ is related to the RBF kernel
and controls the region of influence of support vectors. The
variable ν provides an upper bound on the fraction of out-
liers and at the same time a lower bound on the fraction of
support vectors used to construct the decision surface. The
hyper-parameter cx

cv

provides a scaling relationship between
positional and proper motion features [59]. Both subspaces
are weighted equally when cx

cv

= 1 in which case the variance
in both feature spaces is the same.

The kernelized nature of OCSVMs provides an ex-
tremely flexible model that adapts well to arbitrary cluster
shapes observed in star clusters. In extreme cases, a strongly
concave shape is observed resulting from projection effects
due to the lack of radial velocities.

Among the outputs are a Boolean member classification
for each star in the prediction set and a set of six informative
summary statistics derived from the predicted members.

4.2 Summary Statistics

Here we make use of the following summary statistics
defined by RatzenbÈock et al. [59]:

The ªnumber of predicted stream membersº is the
amount of cluster members a trained model infers from the
given prediction set.

The statistics ªpositional extentº and ªvelocity disper-
sionº measure the mean deviation from inferred cluster
members from the training set centroid in position and
proper motion space, respectively.

The relative position or systematic shift of inferred stars
compared to the training set in these two subspaces is char-
acterized by ªpositional shiftº and ªvelocity shiftº. These
statistics characterize the distance between the centroids of
training and inferred stars.

Lastly, ªfraction of outliersº utilizes information of stars
in the training set and inferred stars that have radial velocity
measurements. Models that show significantly different 3D
velocities than the training set are considered outliers. This
statistic measures the fraction of inferred stars with radial
velocities that are outside the 3σ region of training set stars
in marginal 3D velocity distributions.

The authors referred to these summary statistics as prior
assumptions (PA) which we use synonymously in the follow-
ing sections.

4.3 Task Analysis

We aim to enable astronomers to update vague prior knowl-
edge on the number, location, and movement of unidenti-
fied stars, altogether six summary statistics. The assessment
of the goodness of multiple models should thereby provide
the necessary information to reduce the uncertainty in these
summary statistics.
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Fig. 2. Schematic data flow of Uncover.

To facilitate this transition the user has to be able to
validate and influence the model selection process down to
the individual classifier. With this characterization in mind,
we carry out a task analysis. To facilitate comparison to
other works, we try to provide abstract reasoning why a
task is performed [5].

T1 Verify/Validate a trained model via its predicted
members. To validate models, summary statistics usually
provide too little information to inform a confident decision.
Instead, domain experts use qualitative judgement to assess
the goodness of models, requiring the following. First, users
have to be able to assess the distribution of predicted stars
in the space of position and velocity (T1.1) and compare them
to the training set. Second, the distribution of stars in the
HRD provides additional evidence for or against a valid
star cluster (T1.2).

T2 Identify suitable summary statistics ranges. Ranges
on summary statistics provide a filter criterion during the
full training process (see Sect. 2.2.3) to automatically remove
unfit models. We derive updated ranges for each of the
six statistics from the users’ qualitative model assessment.
However, to provide insight into these filters, users have
to be able to study and discover their effect on the shape
of the predicted distribution (T2.1). Users should also be
able to explore and analyze the distribution of assessed
models in the context of summary statistics (T2.2). This
gives them the opportunity to update and substantiate their
prior knowledge. Finally, users must be able to apply their
updated knowledge and interactively refine filter ranges on
summary statistics (T2.3).

T3 Explore the effect of stability filters on the inferred
stars. Stability is the prediction frequency of stars across the
model ensemble. Stars with high stability are thus inferred
by most of the models and vice-versa. RatzenbÈock et al. [59]
have shown that removing stars with low stability values
removes disproportionately more contaminant stars than

Fig. 3. Schematic workflow of the tool.

genuine cluster members, effectively cleaning the sample.
We aim to facilitate the exploration of different stability
thresholds to study the effects on the ensemble model
prediction. Using their domain expertise, users should
thereby be able to select a meaningful stability threshold.

T4 Present the inferred cluster members of the final
ensemble model. To validate the final ensemble model we
present the distribution of training and inferred stars in
the space of position and velocity, in combination with the
HRD. In case domain experts see the final model as unfit,
users can go back to previous workflow steps and intervene
accordingly.

T5 Summarize the model ensemble in terms of their
hyper-parameters at different workflow steps. To provide a
transparent view on the OCSVM algorithm, users have to be
able to inspect the distribution at any time. To understand
the model selection effect on the hyper-parameters, we
present the distribution of hyper-parameters of models that
domain experts deemed fit in comparison to the initially
trained, unfiltered models.

5 UNCOVER INTERFACE

We now discuss the design of the tool starting with the
general layout, followed by descriptions of the individual
tabs and visualization components.

5.1 Layout

The prototype comprises six different views in total, one
for each workflow step as well as an additional view for
showing information on the hyper-parameters. At the top of
each view is a tab-bar, which enables the user to navigate be-
tween the different workflow steps and the hyper-parameter
view. The tabs are arranged in order of the workflow steps,
see Fig. 1 for an overview of the interface from the second to
the last workflow steps. The first workflow phase is shown
in Fig. 4.

For each of the five tabs, the same general layout (see
supplemental material Fig. 2) is used to create a consistent
interface throughout the tool. If users can already anticipate
where certain information will be presented, users can more
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Fig. 4. First workflow step of Uncover.

quickly adapt to a new view and therefore reduce mental
overhead [63]. We divide the interface into two equal sized
sections, the scatterplot matrix and update section. The update
section in the right half adapts to each workflow step.
It contains interaction components which facilitate cluster
selection, model navigation and assessment, updating and
refining prior knowledge (T2), and stability threshold ex-
ploration and selection (T3). The left section provides a
reduced scatterplot matrix, which shows the position and
proper motion dimensions separately. This is used to dis-
play the multi-dimensional data set (T1, T4). Depending
on the respective workflow step, different data aspects
and models are highlighted. This can be the training set,
different model groups, medoid models, the models at the
minimum and maximum of each summary statistic range,
or the final ensemble model. We describe the scatterplot
matrix component in more detail when it first appears on
the ªDendrogram Tabº in Sect. 5.2.2.

5.2 Visualization Components

In this section, the chosen visualizations as well as their
intended function for carrying out the corresponding work-
flow step are discussed in more detail.

5.2.1 Dendrogram Tab

Based on training set characteristics, the number of hyper-
parameter tuples needed to properly cover the space of
possible star classification results can be in the hundreds
or even thousands. However, users cannot be tasked to
assess the quality of each individual model. Instead, we

support users to choose groups of similar models that can
be assessed together instead of individually.

To summarize possible model clustering configurations
the update section of this view, shown in Fig. 9, features a
dendrogram. The dendrogram provides an overview of the
clustering hierarchy of models resulting from a complete-
linkage agglomerated clustering approach. At each step, the
two model clusters with the smallest relative difference in
predicted points are combined into the same cluster. This
difference value is shown on the x-axis of the dendrogram
plot. To be able to perceive structure in the dendrogram
towards smaller distances, its lines become progressively
thinner from 1 to 0 to avoid visual overlaps. The slider can
be used to set a threshold for the difference, where merging
will stop, so that models with a difference greater than the
selected value will remain in separate groups. The bar chart
below the dendrogram shows the number of models in each
group resulting from the current threshold.

5.2.2 Scatterplot Matrix

The scatterplot matrix, seen in the left half of the view (see
Fig 1a), shows the model groups resulting from the current
cut along with the training set representing the baseline. We
aim to provide an overview of the clustering results and
thus facilitate a comparison between the resulting groups
of models. We choose two summary operands for model
groups; the union and the intersection of points inferred by
individual models in a group.

The intersection provides a summary of common model
features across a group. By comparing the intersection and
union of stars inferred by group members we provide an es-
timate of within-group variation that is easy to understand.
The further the two group summaries diverge, the less the
models in a group form a coherent cluster. In such cases,
a better clustering result can be achieved by reducing the
difference threshold.

We choose to summarize models as silhouettes in the
scatterplot matrix which shows the maximal extent region
of the predicted distribution in each projection. It acts as
a visual simplification of a model in the form of a con-
vex hull around the predicted points. Compared to scatter
points, silhouettes allow users to easily compare multiple
model groups. In this scenario, indicating group identity
is nontrivial in scatter points. Not only is the use of color
limited to roughly six to seven groups [53] but a large
amount of points are also part of multiple groups which
drastically increases the amount of unique visual encodings
required. Therefore, since examining the stars inferred by
individual model groups and assessing their goodness is
not the purpose of this workflow step, but of the following
one, we omit the display of scatter points here.

To assess a group of models in detail, in order to
determine whether they form a meaningful unit, domain
experts can explicitly display the convex hull of each model
in a given group. Additionally, users can highlight the
group medoid, the representative model of the group. It
provides an opportunity to identify group characteristics
like a certain set of stars that this model group has in
common. A comparison with the remaining models should
provide further insight into the model variation within the
group. By studying the group medoid and the overlap and
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Fig. 5. Different selections in the scatterplot matrix during the model
group validation step. On the left (a) three group summaries are high-
lighted; the union and intersection of predicted members, as well as the
group medoid are shown in the form of silhouettes. The middle view
(b) shows predicted members as scatter points. In the right view (c) a
combination of both model group summaries ± points and silhouettes
± are used. The training data are displayed as gray scatter points in all
three views.

variation between silhouette shapes, users can determine an
appropriate threshold.

5.2.3 Model Group Tab

In this workflow step, users are tasked to assess the good-
ness of model groups defined in the previous step.

The scatterplot matrix view displays the model groups
one after the other. The user can choose to plot the training
set in the same scatterplot matrix to compare it to the
currently shown model group. Depending on the use case,
the distribution of inferred member stars in positional and
proper motion space in relation to the training can give
strong indications towards a good and bad model, see Fig. 5.

To validate the models, positional and kinematic infor-
mation is provided in the scatterplot matrix (T1.1) and an
HRD is provided in the update section (T1.2). To assess a
model, domain experts can verify whether predicted mem-
bers are distributed in a narrow line in the HRD according to
the training set or not. To leverage the kinematic information
from the inferred stars for model validation, we provide
two kinematic views, see Fig. 1b for more details. First, the
proper motion information used for training is displayed
in the scatterplot matrix. Second, the Cartesian velocity
distribution is displayed in three histograms next to the
HRD, see Fig. 10. To verify that the predicted member stars
constitute a stellar cluster the Cartesian velocity distribution
should roughly follow a normal distribution and not deviate
significantly from the training set [42].

For both the training set and the model group, the
user can switch between viewing individual data points,
which are classified as members, or the silhouette thereof
by clicking the buttons labeled accordingly. For each model
group, the user can choose to view the union of all inferred
members or only the stars that are predicted members across
all models in the group. This selection can be done via
the buttons labeled ªunionº or ªintersectionº above the
scatterplot matrix, respectively, see Fig. 5. Additionally, to
facilitate the judgement of a group of models, the medoid
can be selected as a model representative. Compared to
the union and intersection of stars via a model group, the
medoid represents an individual model in which character-
istic model details become more apparent.

The number of predicted points for both the union and
intersection of the models in each group is visualized using

Fig. 6. Visualization components for assessing the model groups. The
stacked bar chart shows the number of predicted members resulting
from the union and intersection of models in each group. The blue and
red cells indicate a good or bad marking of the corresponding model
group, respectively.

a stacked bar chart in the update section. Since users aim
to find additional star cluster members, this is the most
important summary statistic which provides an overview
across model groups.

The number of inferred stars is considered to strongly
correlate with model goodness. Depending on the level of
prior knowledge, domain experts might be interested in
specific ranges of inferred member sizes. Therefore, we sort
the bar chart in descending order by union size to support
different levels of attention during the users’ workflow.
This allows users to string together groups that require
more attention during the validation process, followed by
groups that require less consideration. This attention bias
applies, for example, to models that find about the same
number or even fewer members compared to the training
set. These models typically require less validation effort, as
their member size alone indicates a lack of new discoveries.
To facilitate a comparison with the training set a horizontal
dashed line is drawn indicating its size.

Once the user has come to a decision regarding the
suitability of the currently shown model group, the cor-
responding button in the update section shown in Fig. 6
can be clicked to either mark it as ªgoodº or as ªbadº.
Afterward, the next model group is shown. The bar between
the buttons and the bar chart highlights the progress and
gives an overview of the model group assessment. Blue and
red indicate a good or bad model group, respectively. Model
groups which have not been assessed yet are colored in gray.
When all the model groups have been evaluated, the button
labeled ªDoneº can be clicked to generate the estimate for
the accepted Prior Assumption (PA) ranges.

5.2.4 Prior Assumption Tab

The third workflow step, seen in Fig. 1c, supports the
analysis and possible adjustment of the PA ranges which
result from the previous step.

Each of the six PAs and the corresponding derived
ranges are visualized with the help of scented widgets [77].
The widget is made up of two sliders, one for the minimum
and one for the maximum of each PA range. These are
positioned on top of the visual scent in the form of a bar,
which shows the distribution of PA values from all models
as a heatmap. The darker the luminance of a cell, the more
models have a PA value in the matching range. See Fig. 7
for a detailed view of the PA range interface.
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Fig. 7. Scented widget for setting the accepted PA range. The heatmap
visualizes the distribution of PA values among either all trained models,
all models marked as good, or the difference between the two. Clicking
on a heatmap-cell will update the remaining heatmaps to show the
models in the selected range in a red colormap.

The heatmap provides a means to analyze the distribu-
tion of assessed models in the context of summary statistics
(T2.2). Users can explore correlations between a selected PA
and the remaining PAs. By clicking on a cell of a given
PA, all the models whose PA value lies in the selected
range will be highlighted in the remaining five heatmaps. To
visually separate the distribution of models from a selected
heatmap cell in the other summary statistics we choose a
red colormap, as can be seen in the update section of Fig. 1c.
This interaction supports users to find model trends and
correlations.

When first opening the tab, the initial slider position
shows the estimate for the accepted PA ranges created in the
previous step. For each PA, the sliders are placed according
to the minimum and maximum PA value of the models
that were marked as good. Additionally, by clicking on
the buttons above the heatmaps users can either study the
distribution of all initially trained models, under ªAll PAº,
the distribution of models assessed as good by the user,
under ªEstimated PAº, and the models judged as bad, under
ªDifferenceº.

By studying the correlation between models’ summary
statistics and the distribution of ªgoodº and ªbadº models,
users can substantiate their prior knowledge and interac-
tively refine PA filter ranges giving them the opportunity to
(T2.3) precisely control the properties of the final model.

The slider positions in the heatmaps correspond to mod-
els shown in the scatterplot matrix. We provide a what-
if-analysis where users can isolate the effects of a single
PA and study its influence on the inferred stars. At each
slider position, stars inferred by models which adhere to the
selected filter criterion are shown in the scatterplot matrix.
The minimum slider position corresponds to a minimum
set of stars that these models can identify. A sensible choice
is to require models to at least identify large parts of the
training set. The maximum slider represents stars that can
be detected by models up to the selected PA value. To
illustrate the effect of the whole slider range, we exclusively
show stars that can be detected beyond the minimum slider
value. Stars associated with the minimum slider position
are colored in light blue whereas stars associated with
the maximum slider position are highlighted in a darker
shade of blue. Light gray points in the background indicate
stars outside the maximum slider position which are not
inferred by selected models. When no PA is selected, stars

inferred by models which adhere to the slider range filters
are highlighted in gray in the scatterplot matrix.

By interactively changing the slider position for one
or multiple PAs users can study the influence of various
summary statistics on the shape and distribution of inferred
stars in position, velocity, and the HRD, as well as the corre-
lations between the model behavior and a given summary
statistics in more detail (T.2.1). This interaction provides
additional information for users to update their prior belief
and refine given filter ranges (T2.3).

The bar visualization at the very bottom of the right half
encodes the number of models out of the initially trained
ensemble that pass the PA range filter. Thus, it informs the
user how restrictive their current ranges are setup. The bar
length is updated whenever slider positions are changed.

In this step outlier models can motivate an alternative
workflow. As discussed, Uncover is not aimed at providing
means for exploratory data analysis, but rather for effective
model building. Thus, identifying and characterizing outlier
models is not an important task for the user. Especially
outlier models which are classified as ªbadº require no
further investigation on the users’ end. Hence, outlier mod-
els are not explicitly marked as such in the tool to avoid
drawing unnecessary attention to them. However, if an
outlier model is considered ªgoodº, a user may find few
appropriate models in the initially trained model ensemble.
In an effort to increase the diversity of ªgoodº models,
domain experts might want to restart the training process.
This can be done by returning to the first workflow step
and modifying initial summary statistic ranges. A sensible
choice is to center updated ranges around those of given
outlier models. Their respective summary statistics can be
analyzed in the heatmap view, see Fig. 7.

5.2.5 Stability Tab

The last step of the workflow is dedicated to the final
ensemble model and the stability of its predicted members.
The final ensemble model is the result of combining the
predictions of the models that fulfil the PA restrictions set
up in the previous workflow steps. The final predicted
distribution of the stellar cluster in question is shown in
the scatterplot matrix, the HRD, as well as in the histograms
displaying the Cartesian velocity, as shown in Fig. 1d. These
views also show the training set to facilitate comparison (T1)
and allow the user to verify that the final ensemble model
creates a suitable prediction.

To switch between viewing the points and the silhou-
ettes, the buttons on top of the scatterplot matrix can be
used. However, in the case of the HRD, showing the silhou-
ette of a distribution is not always useful. Stars in different
stages of stellar evolution typically occupy distinct sub-
regions of the diagram [30], so a predicted distribution that
comprises stars in varying evolutionary phases could form
separate clusters with large gaps between them in the HRD.
Drawing a silhouette encompassing all the points would
then result in a shape that is too coarse and does not reflect
the underlying distribution in a useful manner.

The threshold for the stability can be set with the help
of a scented widget [77] which features a line chart showing
the stability in percent and the median absolute deviation
(MAD) of predicted members from the expected 3D velocity.
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Fig. 8. Histogram of one of the three hyper-parameters. The dark gray
line corresponds to all trained models, the bright blue line to all accepted
models. The difference between these two is shown by the the dark
blue line. The light gray lines show the accepted models from previous
settings.

The right side of the brush on the line chart can be moved
to set the minimum stability for the final classifier. This also
updates the presentation of the predicted distribution in
the remaining plots: All points with accepted stability are
colored black, while points that will be filtered out because
their stability is too low are shown in red, an example of this
can be seen in Fig. 1d. If the silhouette-button is selected,
the silhouette resulting from the points with acceptable
stability is colored black while the silhouette encompassing
all predicted members is shown in red.

5.2.6 Hyper-parameter Tab

The previous tab aims to provide supplementary informa-
tion on the hyper-parameters of the accepted models. Even
though the aim of the tool is to relieve the user of having
to work directly with the hyper-parameters, information on
them should still be available to give the user the possi-
bility to get a better understanding of them. For each of
the three hyper-parameters [59] γ, ν and cx

cv

, there is one
histogram showing the number of accepted models as well
as the number of trained models for each possible hyper-
parameter value as can be seen in Fig. 8.

6 DESIGN RATIONALE

In this section, the motivations behind the chosen visual
encodings are discussed regarding the data and task abstrac-
tion.

6.0.0.1 Why a tab-based interface?: An alternative
to tabs would be to present the necessary visualizations for
carrying out the different workflow steps on a single page.
This would remove the need to switch between different
views and therefore impose a lower cognitive load on the
user [14]. However, the number of required visualizations
would not fit onto a single screen in a reasonable size
without requiring to scroll the page. The different workflow
steps were therefore separated into individual tabs to ensure
that the visualizations for each step fit appropriately onto a
single screen. To reduce the cognitive load caused by the
user, each tab functions as a self-contained unit. This means
that every tab contains all necessary visualizations to fully
carry out the associated tasks and does not require the user
to remember information shown in previous tabs.

To further reduce the mental load when opening a new
tab the interface layout (see supplemental material Fig. 2),
remains the same throughout the tool. Especially the scatter
plot matrix and the actual data displayed on the left-hand
side stay the same across the entire tool.

Although the tool supports a linear workflow once the
initial model ensemble is trained, the user can decide to go
back to any workflow step and modify their decisions. The
first step is not part of this tab interface since it amounts
to starting the tool up again from the beginning, which
requires another time-consuming training step.

6.0.0.2 Why scatterplot matrices?: The 3D position
and proper motion of the stars are always shown using
scatterplot matrices, since this is the standard way of vi-
sualizing stellar clusters in the field of astronomy. Other
visualization methods for multi-dimensional data were ini-
tially considered but found to be unsuitable in this context.
Parallel coordinates [40] would be an alternative to scat-
terplot matrices; However, they are not commonly used in
astronomy and would therefore not be very intuitive for
the target audience. Additionally, scatterplots can act as 2D
projections of the underlying real-world objects described
by the data, which reside in a 3D space, and are therefore
much more straightforward to interpret. 3D scatterplots
were also considered, but showing the data in 3D can result
in a variety of problems [53]. The large number of points that
need to be presented would make the use of 3D especially
challenging, since this would lead to a significant amount
of occlusion and thus make it hard to get a full view of the
distribution.

Showing the apparent motion of stars as an oriented line
anchored at their sky position is a common visual encoding
used in astronomy, e.g. de Zeeuw et al. [19] famously
showcase three co-moving groups in the nearby Scorpius-
Centaurus OB association. The instantaneous velocity of
a star is encoded as a small arrow whose origin is at its
position. The length of the arrow encodes speed while the
angle channel represents the direction of movement.

However, this hybrid visualization presents the follow-
ing problems. First, available velocity information is limited
to proper motion data which may suffer from drastic pro-
jection effects. Large stellar populations such as the Mein-
gast 1 stream [51] show significant distortions in proper
motion which can lead users to misguided decisions. Sec-
ond, trained OCSVM models are bound by given training
data. Thus, inferred stars will largely have similar velocities
which eliminates random background noise that can cause
a visual pop-out effect. Third, not only is the angle channel
less accurately perceived as the positional channel [49] but
it also lacks an absolute scale. Due to variable star cluster
positions and projection effects, changes in angle do not
carry an unambiguous meaning.

Users have to judge star clusters by considering their
positional and kinematic distribution of its members where
especially the search for outliers constitutes an essential
task. These tasks benefit from the more effective spatial
position channel compared to the less accurately perceived
angle channel [38]. Combined with discussed projection ef-
fect issues we thus refrain from adding velocity information
into the positional scatter plot via the angle channel.

6.0.0.3 Why a reduced scatterplot matrix?: The re-
duced scatterplot matrix, which shows the position and
proper motion dimensions separately, was designed to use
the available screen space more efficiently. Since it consists
of fewer panels than the full scatterplot matrix, it would
have the advantage of displaying the individual scatterplots
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in a bigger size. Both versions were presented to astronomy
experts in the course of iterative prototyping.

6.0.0.4 Why silhouettes in addition to points?: An
integral part of each step in the workflow is to compare
different distributions of stars. This can mean comparing
model groups or the final ensemble model to the training
set to see if they are a good match or examining the models
with the smallest and largest permitted value of each PA to
see how much they differ. To facilitate this comparison, the
silhouettes of the distributions can provide a summary of
their overall shape that is easier to interpret [17].

6.0.0.5 Why scented widgets with heatmaps?: An
integral part of the workflow is to set accepted PA ranges
that result in a suitable final classifier. To facilitate this task,
supplementary information is necessary to help the user
make an informed decision about how to best constrain the
PA. The corresponding sliders were therefore implemented
as scented widgets [77], which feature additional visualiza-
tions in the form of heatmaps to show the number of models
for each PA value. Histograms were considered as an alter-
native to heatmaps. These would enable the user to read the
exact number of models in each bin more accurately. But
this comes at the cost of taking up more screen space, since
the histograms would need to be shown in an appropriate
size to discern the exact length of a bar. However, in this
context, communicating the exact number of models in each
bin of the PA range is not the goal. Instead, the user should
get an idea of the overall distribution of PA values to see if
many models are concentrated around a certain range and
then set the sliders accordingly. This can be accomplished
adequately with the help of heatmaps; therefore histograms
would only provide a level of detail that is not necessary in
this context at the cost of taking up more screen space.

6.0.0.6 Why histograms and scatter plots to show
kinematics?: Kinematic information is used during both
training and validation. As discussed, due to largely missing
radial velocity measurements, models are trained with two
instead of three velocity features. Although star clusters
are approximately normally distributed in Cartesian veloc-
ity space, the observed 2D velocities, i.e. proper motions,
are subject to sometimes drastic projection effects. The ob-
served, potentially highly concave shapes contribute to the
difficulties of traditional clustering approaches.

Since very few stars have radial velocity measurements
and, thus, 3D velocity information, stellar kinematics is
commonly displayed in proper motions space. Typically,
proper motion information is displayed in scatter plots as
discussed above.

Stars that have 3D velocities are used as model vali-
dation. Models that show significantly different 3D veloc-
ities than the training set are removed. This information is
quantified in the PA ªfraction of outliersº which measures
the fraction of inferred stars with radial velocities that are
outside the 3σ region in marginal 3D velocity distributions
of the training set. To validate models qualitatively, domain
experts are tasked to compare the training set distribution
against the distribution of inferred star cluster members. To
compare the velocity distributions, two design alternatives
were considered, scatter plots and histograms.

As discussed above, other designs such as parallel co-
ordinates are unfamiliar to the domain experts and were

judged as confusing. Domain experts noted that both design
alternatives facilitate the comparison between distributions.
Due to the low number of stars, however, users noted that
histograms make it easier to reason on the distribution
shape. Especially determining if the data are approximately
normally distributed, and thus providing means of validat-
ing a model, was perceived to be easier with histograms.

Thus, three histograms showing the Cartesian, marginal
velocity distributions are provided alongside the HRD to
support model validation. We add them to the Model Group
Tab and Stability Tab, see sections 5.2.3 and 5.2.5, respec-
tively. In the PA Tab, see Sect. 5.2.4, the velocity histograms
are not included as model validation plays a secondary role
in this workflow step. Additionally, the summary statistic
ªfraction of outliersº, whose influence the user can interac-
tively explore already supports a quantitative evaluation of
3D velocities.

6.0.0.7 Why histograms for showing hyper-
parameters?: The distribution of hyper-parameters for the
accepted models could also be presented using the same
heatmaps as before. But an additional task is to provide an
overview on the OCSVM hyper-parameter distribution at
any time. This helps domain experts to gain insights on the
effects that model selection via summary statistics has on
the model hyper-parameters themselves (T.5). Therefore,
the chosen visualization type should support displaying
multiple distributions at once. When using heatmaps,
this can be achieved by juxtaposing several heatmaps to
show different distributions [35]. However, length can be
judged more accurately than color [53], which would be
an advantage of histograms. Instead of juxtaposing several
histograms, another option is to add a line corresponding
to each distribution that needs to be presented on the same
plot as shown in Fig. 8. Superimposing the distributions in
this manner also allows for easier comparison between the
heights of different bins [41].

7 IMPLEMENTATION

The front-end visualization components and interactions
are implemented in JavaScript and use d3.js and vue.js.
Additional data processing for building the dendrogram
and calculating the PA for the trained models has been
separated from the front-end and is implemented using
python and the web framework Flask.

We made use of the libsvm [15] OCSVM implementation
available in scikit-learn [57] library and the Sobol sampling
sequence implemented in SciPy [73]. The software is pub-
licly available to foster open science and reproducibility3.

8 EVALUATION

In the following, we discuss both formative and summative
evaluation steps we performed in the course of this design
study.

8.1 Formative Evaluations

During progressing from initial paper prototypes to the
final implementation, the tool was repeatedly presented to

3. https://github.com/ratzenboe/uncover-tool
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experts in data visualization, statistics, as well as astronomy
and subsequently underwent changes based on their feed-
back.

In the first stage of the design process, the paper proto-
types were reviewed in the group of co-authors featuring
a visualization expert, a domain expert, and an applied
mathematician and statistician. The feedback sessions were
held bi-weekly and lasted for 3 months.

After arriving at a final design, the paper prototype was
implemented as an interactive wireframe tool which was
used during the second review stage. This interactive proto-
type was then tested and discussed in two interview session
with astronomy experts who had no previous involvement
in the design process. The two domain experts had different
levels of prior knowledge about the underlying algorithm.
One test user already had substantial experience using the
algorithm and could therefore confidently navigate through
the views of the prototype. The domain expert noted that
the proposed design would alleviate many challenges she
was facing when searching for new member stars. The
second user was less familiar with the inner workings of
the algorithm, but with the help of additional explanations
it was possible to correctly interpret the visualizations and
carry out the associated tasks. These interviews suggest
that additional documentation for the final tool would be
helpful. The user tests also resulted in a number of feature
requests, which were taken into consideration when creat-
ing the implementation of the final prototype. For a more
detailed description of the prototyping process see Sect. 2 of
the supplemental material.

8.2 Summative Evaluations

To evaluate the usability of the tool, the final implementa-
tion was tested by nine domain experts in astronomy. Three
of the participants were experts in the field of stellar clusters
while the remaining six test users classified their knowledge
as intermediary level knowledge of the subject. All test sub-
jects had previous experience in validating stellar clusters
via the HRD and 3D velocities. Six of the participants had
no previous experience using the algorithm, the other three
test users had worked with the algorithm at least once and
were familiar with the basic properties of it. One of the users
had already tested the interactive prototype in a formative
test, the remaining users were new to the tool.

Each test user was given 60 minutes to test the tool.
Every session started with a brief introduction to provide
some information on the aim of the test as well as the algo-
rithm itself. The participants were then asked to use the tool
and instructed to ªthink-aloudº while doing so. Additional
explanations for the individual steps were provided upon
request.

All users tested the tool with the same training set as
well as a subset of the Gaia DR2 catalogue as the prediction
set and were tasked with finding new member stars for
the given training data. Since the main purpose of these
tests was to assess the usability of the tool and creating
a suitable prediction for a stellar cluster might take more
refinement than was possible during the given time, the
resulting outputs were not checked for their correctness.

The last 20 minutes of each test were reserved for fill-
ing out the SUS-questionnaire [6] as well as conducting a

short interview. The resulting SUS-score was 78.06 with a
standard deviation of 7.89, which would indicate acceptable
usability [3].

Participants, who were inexperienced with the underly-
ing algorithm, mentioned that providing more information
and explanations as part of the tool would be helpful.
Specifically, the statistical foundations of the PA and sta-
bility were deemed as hard to interpret without additional
explanations. The dendrogram was considered the least
intuitive visualization component by test users regardless
of their experience level with the algorithm. All users re-
quested extra explanations but after its purpose and use
was explained, the information it provides was deemed very
helpful by all participants, for more details see supplemental
material Sect. 1. The intended purpose of the remaining
views was more straightforward to understand without re-
quiring supplementary clarifications. The overall workflow
and sequence of steps was judged as well thought-out.
They fully cover the necessary functionality for the required
data analysis according to all test users. All participants
considered the tool a helpful addition to the algorithm and
stated that they would prefer it rather than working directly
with the algorithm. This suggests that our main goal for the
tool was fulfilled. One test user, who had made use of the
algorithm before, also expressed interest in using the tool
for their future work.

9 SCIENTIFIC USE CASES

In this section, we showcase the efficiency and effectiveness
of the Uncover interface in finding new stars to a given
stellar cluster in a case study and use case, respectively.
More details on the interactive session discussed in the case
study can be found in screenshots throughout this paper
and in the accompanying video.

9.1 Case Study: Searching for New ρ Oph Members

Recently, Grasser et al. [37] have detected over 100 new
member stars for the ρ Oph cluster using an ensemble
of OCSVM models. Following model selection ideas from
RatzenÈock et al. [59] the authors had to limit the result space
via prior assumption ranges that models have to adhere to.
Since the ρ Oph cluster has been thoroughly investigated
in multiple earlier studies [8], [25], [60] their search for
new members was highly uninformed. Due to the lack of
substantial prior knowledge Grasser et al. had to resort to
randomly sampling different prior assumption ranges and
analyze the results manually. In the following we repeat
this study, using the same training and prediction set, and
showcase a more efficient workflow using Uncover.

The target user is an astronomer who aims to find addi-
tional sources in the ρ Oph cluster. Upon starting the tool,
the user specifies her prior knowledge on the yet uniden-
tified stellar population via range sliders, see Fig. 4. Since
the ρ Oph cluster has been studied extensively in the past,
she suspects to find new members predominantly outside
the currently known cluster region. She limits ªpositional
extendº and ªvelocity dispersionº to 0.5 − 2 and ªnumber
of predicted membersº to 1 − 10 times the training set
size. Having no specific prior knowledge on limiting other

65



MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

Fig. 9. Dendrogram with corresponding slider and bar chart which shows
the number of model groups and their respective size.

summary statistics she leaves the remaining sliders at their
initial position (see Fig. 4). On clicking close she arrives at
the next workflow step.

In the Dendrogram Tab the astronomer aims to group
multiple models into a meaningful unit. She explores var-
ious difference thresholds in the dendrogram via the slider
interface. Looking for a sensible clustering of models she
clicks on the leftmost bar in the bar chart to inspect its
individual group members in the scatterplot matrix, see
Fig.9. She notes that models within each group ± represented
as silhouettes ± highlight very different characteristics of
the ρ Oph cluster. To find more meaningful model groups
which capture a single model characteristic she gradually
decreases the differences threshold while inspecting silhou-
ettes of corresponding group members. At the normalized
SDC threshold of 0.15 she stops her search (see Fig. 1a);
not only does she find low variation between individual
silhouettes and the group medoid, but also different model
groups seem to capture different aspects of the ρ Oph
cluster.

In the Model Group Tab the astronomer is tasked with
assessing the goodness of previously defined model groups.
She analyzes the distribution of inferred members in the
space of position and proper motions as well as the HRD
and three velocity histograms. She finds that the first three
models show a large scatter in the HRD and velocities,
see Fig.10. Co-evolving stellar groups show a distinguished
narrow and well-defined sequence in the HRD as well
as a roughly Gaussian distributed 3D velocity. Thus, such
increased scatter indicates a large contamination fraction in
the sample. Consequently, she marks these groups as ªbadº.

The next few models are the most interesting ones. They
show a second population near the training set, highlighted
in gray, in position and kinematic space, but the HRD and
3D velocities indicate a good model. The astronomer con-
jectures that she just uncovered a second stellar population
right next to ρ Oph cluster (see Fig. 5), which Grasser et

al. [37] recently discovered. She assesses models featuring
this second population as ªgoodº. Model groups thereafter
do not capture the adjacent population and are thus rejected
by the astronomer.

In the PA tab the user observes that her initially defined
ranges on summary statistics have been updated based on
the distribution of accepted models. All updated ranges
are rather concentrated towards larger values. By interac-
tively changing the minimum and maximum position of the
range slides she learns that the PA ªvelocity dispersionº
and ªvelocity shiftº have a stark influence on the second
population as well as the distribution of inferred stars in
the HRD. Models with both a lower velocity dispersion
and shift are not able to infer stars from the second pop-
ulation. By clicking through the heatmap bins (see Fig. 7)
the astronomer finds that a very large fraction of outliers
does not correlate with a large ªfraction of outliersº scores
indicating that these ranges are a good selection. To study
the influence of the positional extent statistic on the inferred
stars, the astronomer clicks on the corresponding heatmap
row. The scatterplot matrix now highlights in dark blue
possible stars that can be inferred at the maximum slider
position. She increases the slider position and sees a large
increase in scatter in position and the HRD. She conjectures
that this selection criterion correlates with an increasingly
contaminated sample. Thus, she reduces the maximal slider
again to exclude likely non-cluster members. By clicking on
the next tab she arrives at the Stability Tab.

The astronomer explores the influence of various stabil-
ity thresholds by brushing the line graph representing the
3D velocity dispersion on the right-hand side. She observes
a sudden drop in scatter around the training sources in
the HRD at about 85% at which coincides with a rapid
drop in the 3D velocity dispersion (see Fig 1d). At this
threshold both populations seem to be perfectly separated.
Not only does the second population, colored in red, show
an older age indicated by a shift in the HRD, its 3D velocity
distribution is also slightly shifted compared to the training
set.

A comparison with the results reported by Grasser et al.4

yields a 93.3% recall and a relative percentage difference in
detected stars of only 3.8%5. These findings highly coincide
with their validated study results [37], which the user was
able to replicate with ease in a single session using Uncover.

Finally, she exports the final model with a click on the
ªExport Final Classifierº button.

9.2 Use Case: Finding New Corona-Australis Members

Uncover was used to discover previously unknown mem-
bers of the Corona-Australis cluster. Due to its proximity
and young age Corona-Australis is an important laboratory
for studying the star formation process. We chose Corona-
Australis specifically, as our collaborators at the Astronom-
ical Institute are interested in finding the most complete
sample of the star cluster for follow-up studies. The stellar
content of Corona-Australis has recently been studied by

4. The catalog is publicly available at: https://cdsarc.cds.unistra.fr/
viz-bin/cat/J/A+A/652/A2

5. The results are compared by applying a quality filter in accordance
to Grasser et al. [37].
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4. Clustering analysis (B)

The main research question of this Chapter concerns: łHow to consistently search for
stellar populations?ž And: łHow to design interpretable methodologies that robustly őnd
arbitrary shaped clusters in a sea of noise?ž To answer these questions this thesis has
developed an innovative clustering technique, SigMA, which aims to extract clusters with
a measure of signiőcance that can scale to millions of data points.

In the following publication (B1) the clustering pipeline SigMA is presented. Its main
methodological approach is to build clusters from the bottom up. First SigMA locates
initial cluster candidates in the data set and subsequently iterates over them, merging
them in the process if a statistical hypothesis test on uni-modality cannot be rejected.
This work adapted the modality test procedure proposed by Burman and Polonik (2009)
[9] to handle randomly shaped clusters, astrometric uncertainties, and background noise
from a őeld star population, taking projection effects into account. To increase the
robustness of the result, the identiőed clusters are tracked through a space of smoothed
density őelds where clusters are identiőed as structures that persist for a long time.

To showcase the performance of our clustering technique, this study applied SigMA to
the Scorpius-Centaurus OB association1. Although Sco-Cen is the closest and best-studied
OB association to Earth this work has uncovered yet unseen detail in our kinematic and
positional study. Although Sco-Cen is traditionally subdivided into three main groups, it
found 48 groups of co-spatial and co-moving young stars that can each be validated via a
narrow and well-deőned sequence in the HRD. Compared to earlier studies on the region,
SigMA is able to un-mix populations previously thought to be single populations. This
provides the basis for assigning precise ages to individual groups of stars for the őrst time
(łhigh-resolution age datingž).

1The association gets its name from the spectral class of it’s most prominent members, O and B stars.
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ABSTRACT

We present a new clustering method, Significance Mode Analysis (SigMA), to extract co-spatial and co-moving stellar populations
from large-scale surveys such as ESA Gaia. The method studies the topological properties of the density field in the multidimensional
phase space. We apply the new method to Gaia EDR3 data of the closest OB association to Earth, Scorpio-Centaurus (Sco-Cen), and
find about 104 co-moving young objects, about 7% of these sub-stellar. SigMA finds 48 co-moving clusters in Sco-Cen. These clusters
are independently validated by their narrow HRD sequences and, to a certain extent, by their association with massive stars too bright
for Gaia, hence unknown to SigMA. We compare our results with similar recent work and find that the SigMA algorithm recovers
richer populations being able to distinguish clusters with velocity differences down to about 0.3 km/s and reaching cluster volume
densities as low as 0.01 stars/pc3. The 3D distribution of these 48 coeval clusters implies a larger extent and volume for the Sco-Cen
OB association than typically assumed in the literature. Additionally, we find the association to be more actively star-forming, and
dynamically richer than previously thought. We confirm that the mostly star-forming molecular clouds in the Sco-Cen region, namely,
Ophiuchus, L134/L183, Pipe Nebula, Corona Australis, Lupus, and Chameleon are part of the Sco-Cen association. The application
of SigMA to Sco-Cen demonstrates that advanced machine learning tools applied to the superb Gaia data will allow an accurate census
of the young populations, quantify their dynamics, and reconstruct the recent star formation history of the local Milky Way.
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1. Introduction

The ESA Gaia mission (Gaia Collaboration et al. 2016, 2018,
2021a) is transforming our knowledge of the local Milky Way,
in particular considering the distributing of young stellar popula-
tions. However, disentangling and extracting coeval populations
remains notoriously difficult. This is reflected in the wide vari-
ety of methods applied to the Gaia data (e.g., Oh et al. 2017;
Kushniruk et al. 2017; Zari et al. 2017; Castro-Ginard et al.
2018; Cantat-Gaudin et al. 2018; Galli et al. 2018; Zari et al.
2019; Damiani et al. 2019; Meingast et al. 2019b; Kounkel &
Covey 2019; Chen et al. 2020; Hunt & Reffert 2021; Olivares
et al. 2021; Meingast et al. 2021). The wide range of approaches
in the literature reflects the rather complex feature space from
where the stellar populations are extracted. Firstly, as a conse-
quence of interactions with the Milky Way potential, spiral arms,
and giant molecular clouds, these initially compact objects are
stretched into elongated, sometimes concave structures in posi-
tion space (e.g., Kamdar et al. 2021). This “galactic-stretching”
leads to a variety of cluster1 shapes from compact (when young),
to low-contrast, spread-out, sometimes S-shaped clusters domi-

1 In this paper, we use the word “cluster” in the statistical sense,
namely, an enhancement over a background. This avoids creating a new
word for the spatial/kinematical coherent structures we find in Sco-Cen.
None of the Sco-Cen clusters is expected to be gravitationally bound.

nated by Milky Way tidal forces (e.g., Meingast & Alves 2019a;
Röser et al. 2019; Meingast et al. 2019b; Beccari et al. 2020;
Kounkel & Covey 2019; Jerabkova et al. 2019; Ratzenböck et al.
2020; Meingast et al. 2021; Jerabkova et al. 2021; Kerr et al.
2021; Kamdar et al. 2021). Secondly, due to the low number of
available radial velocities, about 0.4% in Gaia DR2 and EDR3
database (Gaia Collaboration et al. 2018, 2021a), one is, for the
most part, restricted to two tangential velocity axes plus the spa-
tial three coordinate axes as derived from Gaia positions, paral-
laxes, and proper motions (5D phase space). Thus, even under
the assumption of perfectly Gaussian distributed 3D velocities
within clusters, the projection on the sky distorts the multivari-
ate Gaussian (5D space) into arbitrary shapes depending on the
orientation, distance and size of the stellar cluster. To make mat-
ters worse, stellar cluster members constitute a minute subset of
the Gaia data, with unrelated field stars creating a background
noise that is not easily removable in the 5D space. The feature
space consists of stellar clusters of various shapes and densities
embedded in a sea of noise.

To tackle the challenge of identifying sub-populations in a
star-forming region, we developed a method that analyses the
topological structure of the 5D density field spanned by 3D posi-
tions and tangential velocities. We apply a fast modality test pro-
cedure, which introduces a measure of significance to peaks in
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the density distribution, thus, providing an interpretable cluster
definition. This clustering method is called Significance Mode
Analysis, or SigMA, and it is designed to extract co-spatial and
co-moving stellar populations from large-scale surveys such as
ESA Gaia.

The goal of this paper is to present the SigMA method, apply
it to the Scorpius-Centaurus OB association (Sco-Cen, Blaauw
1946, 1952, 1964a,b) to identify the different sub-populations,
and compare results with recent papers attempting similar goals.
Sco-Cen is the closest and best studied OB stellar association
(e.g., de Geus et al. 1989; de Geus 1992; de Zeeuw et al.
1999; de Bruijne 1999; Preibisch & Zinnecker 1999; de Zeeuw
et al. 2001; Lépine & Sartori 2003; Preibisch & Mamajek 2008;
Makarov 2007, 2008; Diehl et al. 2010; Pöppel et al. 2010; Riz-
zuto et al. 2011; Pecaut et al. 2012; Pecaut & Mamajek 2016;
Forbes et al. 2021), with an age. 20 Myr (Pecaut, Mamajek, &
Bubar 2012). These and many other papers in the literature have
established Sco-Cen as an important laboratory for star forma-
tion, for the characterization of stellar associations, and for un-
derstanding the impact of massive stars on the ISM and planet
formation. Since the advent of large-scale astrometric data from
the ESA Gaia mission that started in 2016 (Gaia Collaboration
et al. 2016), there has been a renewed interest on this bench-
mark region focusing on the kinematics and 3D structure of the
association (Villa Vélez et al. 2018; Wright & Mamajek 2018;
Goldman et al. 2018; Damiani et al. 2019; Luhman & Esplin
2020; Grasser et al. 2021; Squicciarini et al. 2021; Schmitt et al.
2021; Kerr et al. 2021; Luhman 2022a).

In this paper we present the method SigMA in Sect. 3, us-
ing Gaia EDR3 data (Sect. 2), with an application on Sco-Cen
discussed in Sect. 4, including comparisons to previous work
(Sect. 4.2). In Sect. 5 we give a summary of our findings.

2. Data

In this work we apply the newly developed method presented
in this paper, SigMA, to Gaia data of the Sco-Cen OB associ-
ation. We select a box of about 107 pc3 from the Gaia EDR3
Archive (Gaia Collaboration et al. 2021a), which extends well
beyond the traditional and well studied Sco-Cen regions. Several
hints in the literature suggest that the Sco-Cen OB association is
a larger complex than traditionally defined by Blaauw (1946)
and outlined by de Zeeuw et al. (1999), and it includes several
star-forming regions that have originally not been assigned to
Sco-Cen (e.g., Lépine & Sartori 2003; Sartori et al. 2003; Bouy
& Alves 2015; Kerr et al. 2021; Zucker et al. 2022). The box
is defined in a Heliocentric Galactic Cartesian coordinate frame
(XYZ) within:

−50 pc < X < 200 pc

−200 pc < Y < 50 pc

−95 pc < Z < 80 pc

(1)

The 3D space positions (XYZ)2 are derived from the Gaia EDR3
positions right ascension (α, deg) and declination (δ, deg), and
the parallax (̟, mas). The distance (d, pc) is derived from the
inverse of the parallax, which is a fairly good approximation of
the distance for sources within 200 pc and with low errors3.

2 The observed positions are transformed to XYZ using
astropy.coordinates.SkyCoord from Astropy v4.0.
3 For more distant sources, or intrinsically faint sources with high par-
allax errors, the distance estimate becomes a non-trivial inference prob-
lem (e.g., Luri et al. 2018; Bailer-Jones et al. 2021)

The clustering is done in a 5D phase space, using the 3D
spatial coordinates XYZ in pc, and the 2D tangential veloci-
ties vα and vδ in km s−1. The different dimensions are scaled
to each other, as described in Sect. 3.3.3. The proper motions
(µ∗α = µα cos(δ), µδ) are transformed from mas yr−1 to tangential
velocities in km s−1 as follows:

vα = 4.74047 · µ∗α/̟
vδ = 4.74047 · µδ/̟

(2)

We do not use the third velocity dimension, radial velocity (vr),
since Gaia only includes radial velocity measurements for about
0.5% of the sources with parallaxes. Adding auxiliary radial ve-
locity data would improve the statistics, but it would constitute
a very inhomogeneous data sample with 6D phase space infor-
mation. Therefore, we restrict our clustering procedure to the 5D
phase space, as provided by Gaia, allowing us to create a homo-
geneous and more complete overview of the existing clusters in
regions like Sco-Cen. Moreover, by focusing on the 5D phase
space, we are able to create a method that does not rely on radial
velocities, which then can be used more widely on larger data
samples. For validation purposes, in Sect. 3.5 we use Gaia DR2
radial velocities4 (Cropper et al. 2018; Gaia Collaboration et al.
2018, 2021a) to remove noise.

To reduce the influence from spurious measurements, we ap-
ply the following quality criteria to the Gaia EDR3 data within
the selected box:

fidelity_v2 > 0.9

̟ > 0 mas

e_̟/̟ < 0.2

e_µ∗α, e_µδ < 2 mas/yr

(3)

The parameter fidelity_v2 is a classifier to identify spurious
sources in the Gaia EDR3 catalog, developed by Rybizki et al.
(2022), which can be used to select high fidelity astrometry. The
parallax-error and proper-motion-error cuts reduce additional
uncertainties in distance and velocities. This leaves 451,127
sources inside the box to which we apply the SigMA clustering
algorithm, as described in the following Sect. 3. See also Ap-
pendix A for details on the data retrieval.

3. Methods

In this section, we first give a brief overview of the basic defini-
tions of several widely used clustering algorithms, which leads
to detailed explanations on the buildup of the Significance Mode
Analysis clustering algorithm (SigMA) in Sect. 3.2, as developed
in this work.

3.1. Clustering algorithms: a brief review

Understanding the Milky Way, or any object in the Universe is
directly linked to the quantity and quality of the available data.
Paradoxically, the advent of large, high-dimensional data has
led to an apparent problem: the more information we have, the
less we seem to be able to grasp the big picture hidden in the
data. “Big data” usually contain extensive information, diversity,
and complexity and, thus, we require more complex methods to
model its observations. However, many traditional analysis tech-
niques have time and memory complexities that fail to perform

4 The Gaia EDR3 catalog includes the DR2 radial velocities, while
updated RVs will be provided in DR3, increasing the RV sample by
about a factor 4.6.
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Fig. 1. Merge tree generation. Via a continuous change of λ from∞ to −∞ a new component is created at each maximum (white points). At each
saddle point (black points) components are merged. The merge tree is fully computed when λ reaches the global minimum.

under millions or even billions of data samples (Ashok Kumar
2020). Consequently, many studies start with an exhaustive pre-
filter step to improve downstream analyses (e.g. Zari et al. 2019;
Kerr et al. 2021).

To escape this paradox, new interpretive methods need to be
tailored to the particular scientific question, in our case, the iden-
tification of co-moving and coeval groups of stars inside the 1+
billion stars in the Gaia archive. Clustering analysis, or unsu-
pervised machine learning, has recently become essential to the
identification of coeval stellar structures. The goal of cluster-
ing is to obtain an organization of data points into meaningful
groups. However, due to the lack of labeled data, partitioning
into “meaningful” clusters is in general an ill-posed problem.
The choice of the algorithm and its parameters have to match the
problem at hand. This constraint applies especially to parametric
clustering algorithms.

3.1.1. Parametric clustering

Parametric clustering algorithms are appealing because of the
probabilistic interpretation of the clusters these algorithms gen-
erate. The model-based approach introduces a finite mixture
of density functions of a given parametric class. The cluster-
ing problem reduces to the parameter estimation of the mix-
ture components, which is typically done using the expectation-
maximization (EM) algorithm (Dempster et al. 1977). The EM
algorithm tries to find maximum likelihood estimates of given
parameters iteratively. A popular approach is to model the mix-
ture components as multivariate Gaussian density (e.g. Gagné
et al. 2018; Cantat-Gaudin et al. 2019).

A considerable downside of parametric clustering algorithms
is that they will try their best to fit the model to the data even
if none exists. In the case of stellar populations, the range of
possible shapes of signal and noise, especially considering only
the projected 2D velocity information, cannot be modeled accu-
rately by simple distributions, such as multivariate Gaussians.

Moreover, the number of mixture components is unknown,
and model selection methods such as Akaike Information Cri-
terion (AIC, Akaike 1974) and Bayesian Information Criterion
(BIC, Schwarz 1978) only work well in cases with plenty of
data samples, well-separated clusters, and a well-behaved back-
ground distribution (Hu & Xu 2003). These circumstances make
extracting clusters with a low signal-to-noise ratio difficult, es-
pecially in the low-density regime.

3.1.2. Non-parametric, density-based clustering

The premise of non-parametric density-based methods states that
the observed data points5 X = {x1, . . . , xN} with xi ∈ Rd are
drawn from an unknown density function f . The goal of non-
parametric cluster analysis is then to understand the structure of

5 In the following, bold, lower-case variables denote d-dimensional
vectors.

the underlying density function, which is estimated from data.
In one of the earliest formulations, Wishart (1969) argues that
clusters are data samples associated with modes in f . The work
proposed by Koontz et al. (1976) and the widely used Mean-
Shift algorithm and its variants (Cheng 1995; Comaniciu & Meer
2002; Vedaldi & Soatto 2008) are examples of this mode-seeking
category.

Mode-seeking methods proceed to group the data by locat-
ing local peaks in f and their corresponding attraction basins.
Attraction basins are regions in which all gradient trajectories
converge into one single peak. However, the gradients and modes

are highly dependent on the density function approximation f̂ . In
order to increase the robustness of the result, Mean-Shift seeks
to reduce random fluctuations by employing a smoothing ker-

nel to f̂ . The introduction of an extra parameter shifts the issue
to the user, who is tasked to carefully select the non-intuitive
smoothing factor in order to obtain a satisfying clustering result.
Moreover, the time complexity of at least O(N2) makes them not
great candidates for application to astronomical data sets.

Hartigan (1975) proposed a similar definition of clustering
in which a cluster is defined as the connected components of
the level-sets6 of f . Given a data set X drawn from an unknown
density function f which has compact supportXwe can formally
write the resulting level-sets for the threshold λ as:

L(λ) := {x ∈ X : f (x) ≥ λ} (4)

Thus, L(λ) constitutes a set of connected components which we
identify as clusters.

In the level-set framework, popular clustering algorithms
such as DBSCAN (Ester et al. 1996) can be simply thought
of as a single level which is obtained by fixing λ. DBSCAN
avoids estimating the data density explicitly, by employing a ra-
dius parameter, usually called ǫ, along with a minimum number
of points parameter, min_points. Clusters are defined as con-
nected regions of points that contain at least min_points within
ǫ-sized shells around them.

The connected components of the level-set L(c) are the re-
sulting clusters while the remaining data is treated as noise.
However, the choice of the parameter λ which is related to DB-
SCAN’s ǫ parameter, is ambiguous, a task which gets especially
challenging when the number of clusters varies greatly between
levels. We find a reflection of this difficulty in choosing the right
parameters in the astronomical literature, which employs a vari-
ety of different heuristics to select the parameter ǫ (e.g. Castro-
Ginard et al. 2018; Zari et al. 2019; Fürnkranz et al. 2019; Hunt
& Reffert 2021).

For many data sets containing clusters with variable densi-
ties, employing a single threshold λ cannot reveal all peaks in f .
A hierarchy of clustering solutions can be obtained by consider-
ing all possible threshold values at once.

6 Often also referred to as superlevel-sets.
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3.1.3. Hierarchical, density-based clustering

The strength of level-set formulation now lies in the natural
emergence of a cluster tree, a clustering hierarchy which arises
from sweeping the density threshold λ from ∞ → −∞. Under
a continuous change of λ, the number of connected components
changes when the threshold passes through a critical point in f ,
thus ∇ f = 0. A new cluster is born when λ reaches the height of
a mode in f . On the other hand, a cluster dies when λ traverses
a saddle point or a local minimum, in which case the two con-
nected components merge into a single one. The cluster creation
and merging process is schematically shown in Fig. 1.

However, estimating the connected components of level-sets,
while easy in one dimension, gets nontrivial in higher dimen-
sions. Consequently, algorithmic realizations of the Hartigan
(1975) level-set idea rely on graph heuristics and graph theory in
which connected components arise naturally. Early implementa-
tions by Azzalini & Torelli (2007) and Stuetzle & Nugent (2010)
and subsequent theoretical analyses (Chaudhuri & Dasgupta
2010; Kpotufe & von Luxburg 2011; Chaudhuri et al. 2014)
adopt a graph G(λ) over the data samples where vertices and/or

edges are filtered according to λ, thus {x ∈ X : f̂ (x) ≥ λ}7.

However, the use of graphs to represent the connectivity
comes with its own limitations. This scheme guarantees that two
samples from one connected component of G(λ) are to be found
in a connected component in L(λ). However, as Stuetzle & Nu-
gent (2010) point out, the reverse implication is not necessarily
given. This means, samples from the same connected component
in L(λ) may end up in different connected components of G(λ).
Since density estimates are inherently noisy, usually too many
clusters arise from this iterative filtration procedure. To counter-
act this over-clustering, the resulting graph cluster tree is usually
pruned in a post processing step during which spurious clusters
are identified and merged back into the “mother cluster” (Stuet-
zle & Nugent 2010; Kpotufe & von Luxburg 2011; Chaudhuri
et al. 2014).

3.1.4. The HDBSCAN algorithm

A well-known algorithm belonging to the family of hierarchical
level-set methods is the HDBSCAN algorithm (Campello et al.
2013) (Hierarchical Density-Based Spatial Clustering of Appli-
cations with Noise), which recently has been gaining attention
in the astronomical community (e.g., Kounkel & Covey 2019;
Kounkel et al. 2020; Hunt & Reffert 2021; Kerr et al. 2021).
In order to prevent over-clustering, the authors introduce the
minimum cluster size parameter which provides an interpretable
pruning strategy.

At each cluster split decision, the smaller cluster created is
merged back into the “mother cluster” if it has less than mini-
mum cluster size points, otherwise a new cluster is created. To
obtain a flat clustering result from the cluster tree, HDBSCAN
estimates the stability of a cluster in the hierarchy via the con-
cept of relative excess of mass (EOM). Similar to the concept of
excess mass (Muller & Sawitzki 1991), it measures the lifetime
and size of a cluster. The heuristic favors more prominent and
stable clusters that live longer in the cluster tree. For example,
a group that persists for a long time as a single connected com-
ponent should be preferred over the two small clusters it breaks
into that quickly vanish.

7 Edges are commonly assigned the minimum density sampled along
the path connecting two vertices.

However, the EOM criterion tends to produce too large clus-
ters in practice. If a large group persists in the hierarchy for a
long enough time, its children are unlikely to exceed the par-
ent’s EOM. Alternatively, the HDBSCAN implementation by
McInnes et al. (2017) offers the opportunity to extract the leaf
nodes from the cluster tree. Since the leaf nodes are extracted
only considering the minimum cluster size criterion, the resulting
clusters lack any stability guarantee; thus, the clustering result
is highly susceptible to random density fluctuations. In general,
these methods suffer from complex and hard-to-interpret prun-
ing procedures and parameters, which affects the confidence and
interpretability of the clustering result.

3.1.5. Topological methods

Extracting a flat clustering from the cluster tree requires a notion
of cluster stability. As discussed, the concept of relative excess
of mass, which inherently depends on the pruning process, can
lead to too coarse clusters. A related pruning heuristic comes

from considering the topological persistence of each mode in f̂ ,
introduced by Chazal et al. (2013). Persistence is defined as the
lifespan of each connected component. The notion of persistence
is shown to be stable under small perturbations to the inital den-
sity f (Edelsbrunner et al. 2000; Zomorodian & Carlsson 2005;
Ghrist 2008).

A variation on the persistence formulation is proposed by
Ding et al. (2016), who instead of thresholding the cluster life-
time, use cluster saliency ν, defined by the ratio of birth and
death density, as a cluster stability criterion. By varying ν be-
tween 0 and 1 the cluster tree is revealed and the most stable and
long-lived configuration is chosen as an appropriate clustering
result.

While easy to interpret, these stability parameters can get
quite tedious to select in practice. In the large data and cluster
regime, the separation between stable and unstable clusters be-
comes less apparent. In these limiting cases, selecting the input
parameters again warrants a proper parameter search.

3.1.6. Extracting stable and significant clusters

Compared to the notion of persistence, there is also growing re-
search to apply statistical methods that test the modality struc-
ture of the data. These methods offer the advantage of an inter-
pretable and meaningful parameter α, defining the significance
level of a corresponding hypothesis test. The null hypothesis H0

commonly assumes that the data, or subsets of it, are sampled
from an uni-modal density, whereas the alternative hypothesis
H1 suggests multi-modality. The null hypothesis is rejected at a
significance level α if the p-value from the corresponding test
procedure exceeds this significance level.

We identify first applications of hypothesis test procedures in
the clustering literature in the context wrapper methods around
the k-means and EM frameworks. G-means (Hamerly & Elkan
2004) employs the Anderson-Darling statistic to test the hy-
pothesis that each cluster is generated from a Gaussian distribu-
tion. Instead of testing on a per-cluster basis, Pg-means (Feng &
Hamerly 2007) tests the whole Gaussian mixture model (GMM)
at once. Dip-means (Kalogeratos & Likas 2012) proposes an in-
cremental clustering scheme for selecting k in k-means which
employs Hartigan’s dip statistic (Hartigan & Hartigan 1985). In
case the distance distribution of one or more points to their co-
cluster members exhibit a significant multimodal structure, the
cluster is split.
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Fig. 2. The proposed clustering process SigMA, highlighted on a 2D toy data set of three Gaussians with variable covariance matrices and means. (1)
The generated toy data set consisting of three bivariate Gaussians is shown in white alongside 2σ confidence ellipses in color. (2) The clustering
procedure starts off by estimating the density of the input data. (3) Next, a graph-based hill climbing step is performed in which points are
propagated along gradient lines towards local peaks. (4) This gradient propagation results in a preliminary segmentation of input samples which
typically is far too fine-grained. (5) These segmented regions are iteratively merged with a parent mode if a modality test along the “minimum
energy path” detects no significant density dip. (6) The final segmentation retains all three clusters.

Skinny-dip (Maurus & Plant 2016) also implements Harti-
gan’s dip test and applies it to one-dimensional linear projections
of the data set. Distinct density peaks are to be identified based
on the gradient of the projected cumulative distribution function
(cdf). By projecting the data iteratively into multiple axes, the
samples are partitioned into clusters. Skinny-dip is specifically
able to handle background noise very well, however, it consid-
ers noise samples to be uniformly distributed and clusters to be
axis-parallel.

These algorithms, however, are intrinsically tied to con-
vex or Gaussian cluster assumptions. The recently proposed M-
dip (Chronis et al. 2019) is able to deal with arbitrary oriented
and shaped clusters, which applies a simulation strategy to ap-
proximate values for smallest density dips of uni-modal data sets
of the same size and density. However, we do not want to depend
on simulations but instead directly obtain a measure of signifi-
cance from given data.

3.2. SigMA: Significance Mode Analysis

This section describes our clustering pipeline, SigMA, which
builds on several established methods, as described above.
SigMA is tuned to astrometric data provided by Gaia, and aims
at producing astrophysically meaningful clustering results. Our
technique seeks to identify modal regions in the data set (5D
phase space) which are separated by dips. By applying a modal-
ity test for each pair of neighboring modes, we obtain a clus-
tering result with measures of significance. The workflow is

schematically highlighted in Fig. 2. A modal region is defined
as the set of points that all end in a particular mode when fol-
lowing the path tangent to the gradient field at each point. It is
important to note that modal regions fully segment the data set,
as seen in Fig. 2 (panel 6). Thus, modal regions are a mixture
of cluster members and field stars, while the field stars will be
removed as noise as outlined in Sect. 3.5 and shown in Fig. 4.

3.2.1. A fast modality test procedure

We consider the hypothesis test introduced by Burman &
Polonik (2009) which examines the modality structure of a path
between two peaks in the density. Conceptually two neighbor-
ing peaks are “true” clusters in the data if there exists no path
between them that does not undergo a significant dip in density.

Given the d-dimensional data X = {x1, . . . , xN} drawn from
f and any point r on a path connecting two modes ci, c j in f ,
Burman & Polonik (2009) show that

ŜB(r) = d
√

k/2
[
log dk(r) −max(log dk(ci), log dk(c j)

]
(5)

is asymptotically standard normal distributed. Here dk(z) de-
notes the distance to the k’th nearest neighbor of the point z.
The null hypothesis of uni-modality is rejected at significance
level α if

ŜB(r) ≥ Φ−1(1 − α) (6)

where Φ is the standard normal cdf. For a more thorough deriva-
tion of Eq. (5) and Eq. (6) see Appendix B.
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Since Eq. (5) processes a single point rather than a complete
path, the modality test in Eq. (6) describes a pointwise proce-
dure. Burman & Polonik (2009) employ the test with samples
generated along the straight line connecting two modal candi-
dates to determine the modality for an entire path. The null hy-
pothesis is rejected if any single test fulfills Eq. (6). However,
this procedure only applies to convex clusters and does not scale
well as tens to hundreds of distance computations along each
path increase the run-time drastically.

We aim to minimize the number of distance computations
while also extending the test procedure to concave cluster
shapes. To do so, we analyze the nature of possible connections
between modal candidates in the data. Of all possible paths be-
tween two peaks, only the “minimum energy path” (MEP) needs
to be considered. The MEP is the optimal solution for the prob-
lem of finding the continuous path from one peak to another
through input space X with highest minimal density. Thus, the
density dip along the MEP is the minimal possible dip that can
exist between two neighboring peaks.

Given a set of initial modal candidate regions in f̂ the MEP
leads over the connecting saddle point when moving from one
mode to another. At the saddle point position, the path reaches
its global density minimum. Figure 2 (panel 5) schematically
illustrates two possible paths, the MEP and a second arbitrary
path.

Instead of evaluating the test statistics in Eq. (5) multiple
times, we aim to reduce the calculations to a single one. Since
the test procedure is dominated by the point s which maximizes
the test statistic it needs to be evaluated only at s. Due to the
test statistics proportionality to the distance dk(s), its value is
maximal when the density is minimal.

For two neighboring modal regions the modality test proce-
dure can, therefore, be reduced to a single pointwise test at the
saddle point s connecting the two peaks. As the saddle point gov-
erns the modality test, we can assign a p-value which takes the
following form:

p = 1 − Φ
(
d
√

k/2
[
log dk(s) −max(log dk(ci), log dk(c j)

])
(7)

Determining the saddle point is discussed in the following
section. If all density minima lie on the boundary of modal re-
gions, the saddle point of two neighboring modes lies at their
common border. Using this monotonous property assumption,
we aim to provide a fast and yet accurate test procedure to ex-
amine the modality structure of the data.

3.2.2. Identifying and pruning modal candidates

To identify modal regions from the data set X we implement a
graph-based, hill-climbing algorithm analogous to Koontz et al.
(1976) where the vertex set of the graph G represents the data
X. The initial modal search is performed in one pass over the

vertices of G sorted in descending f̂ -order.

A data point is defined as a local mode of f̂ if all its neighbor
connections have lower densities. Alternatively, points are prop-

agated according to their slope in f̂ . Each point is iteratively as-

signed to neighbors with maximum f̂ -value, see Fig. 2 (panel 3)
for a schematic illustration. After this pass the data is separated
into m disjoint modal sets M = {M1, . . . ,Mm}.

Since graph-based hill-climbing procedures are susceptible

to perturbations in f̂ , a second pass is needed to merge insignif-
icant modal regions into their stable parent mode. To determine
the merge order we compute the cluster tree of M. As described

in Sect. 3.1.2, the cluster tree is obtained by varying the density
threshold λ from ∞ → −∞ and registering modal regions when

λ passes through a peak in f̂ and their unification when λ passes
through the respective saddle point. To finalize the cluster tree
we need to identify the saddle points between modal regions of
M.

We determine the saddle point between two modes via an
edge search in G. Specifically, we consider edges which con-
nect vertices that lie in different modal sets. We assume extracted
modal regions are proper ascending manifolds. Thus, the modal
regions are devoid of local minima on the inside, which only lie
on the border; consequently, saddle points are found at the com-
mon boundary of both regions. The “saddle edge” represents the
bridge between two modal regions where the density is maxi-
mal. We define edge density as the minimum density along the
connecting line segment. To account for density dips along the
edge path while limiting the number of distance computations,
the edge density is set to be the minimum density between its
two vertices and the density at the geometric mean of the vertex
positions. The corresponding saddle point density between two
adjacent modal regions is approximated by this edge density.

The merging of spurious modes then proceeds by iterating
over the set of predetermined saddle points sorted in descending

f̂ -value order. At each step, the uni-modality test in Eq. (7) is
evaluated and neighboring modal regions are merged if the re-
spective p-value exceeds the significance level α. Therefore, the
significance level α provides an immediate and meaningful way
to simplify the initial cluster tree.

3.3. Parameter selection

In the following, we discuss various parameter choices which
affect the final clustering result. The presented mode seeking
methodology is agnostic to the choice of (1) the graph used in
the hill-climbing step, (2) density estimator, and (3) scaling fac-
tors between positional and velocity features. In the following,
we will explain our decisions on these three algorithmic aspects.

3.3.1. Graph

The choice of the graph directly affects the gradient approxi-
mation. For example, in a complete graph where every pair of
vertices are connected via an edge, the graph-based gradient
approximation loses its locality meaning entirely. In this case,
the hill-climbing algorithm merges each vertex with the dens-
est point in the data set on the first pass. Thus, over-connected
graphs lead to clusters that falsely merge numerous distinct
modes in the data set.

Conversely, under-connected graphs such as minimum span-
ning trees restrict the gradient estimation too much, producing
vast amounts of spurious clusters. Furthermore, the low num-
ber of neighboring vertices greatly restricts the possible paths
between two initially formed modes. Thus, under-connected
graphs introduce significant errors in determining saddle points,
which drastically compromises the validity of extracted modal
regions.

We consider empty region graphs (ERG) to strike a balance
between over and under connecting points in X. In an ERG, a
vertex between two points is created if a given region around
them does not contain any other point, see Jaromczyk & Tous-
saint (1992) for a review.

The β-skeleton (Kirkpatrick & Radke 1985) is a one-
parameter generalization of an ERG where β determines the size
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of the empty region. For β = 1 the graph becomes the Gabriel
graph (Gabriel & Sokal 1969), while for β < 1 and β > 1 edges
are added or removed from it, respectively. Correa & Lindstrom
(2011) find that critical point searches (important for topological
decomposition, clustering, and gradient estimation) are more ac-
curate with β-skeletons, with β < 1 compared to k-nearest neigh-
bor graphs and the Gabriel graph. Since the number of vertices
grows very fast in size as β gets smaller we choose a value of
β = 0.95.

Adopting a β-skeleton on our 5D data we find that points
have on average approximately 50 neighbors. To reduce the
chance of separate modal regions being connected via vertices
and, thus, erroneously merging in the first hill-climbing step, we
prune the initially computed graph in a post-processing step. We
remove vertices that show a significant density dip as one moves
from one vertex to another. For simplicity, we assume that the
saddle point lies at the arithmetic mean of the two vertex points.

3.3.2. Density estimation

Such as the graph choice, density estimation is a core part of the
algorithmic pipeline that affects gradient propagation and, con-
sequently, the initial mode finding step (see panels 2 and 3 in
Fig. 2). Since we cannot describe the complex stellar distribu-
tion via parametric models, we employ a model-agnostic, non-
parametric estimator for the underlying density.

The most popular non-parametric density descriptors are k-
nearest-neighbor (k-NN) and kernel density estimation (KDE).
KDE models the density by convolving the data with a symmet-
ric kernel function. The bandwidth parameter can be thought of
as the standard deviation of the kernel, which determines the
smoothing effect of convolution. A gradual increase in band-
width and its impact on the density is shown in Fig. 5. The k-NN
method takes a more naive approach to estimate the underlying
density. The density value at any given point in the phase space is
inversely proportional to the distance to its k-th nearest neighbor.

The KDE inherits the smoothness properties of the kernel.
Thus, the density becomes infinitely differentiable for a Gaus-
sian kernel. Conversely, the k-NN density estimate is not smooth
and, in fact, not even continuous. Despite its non-continuous na-
ture, the k-NN density estimation method has several advantages
for modal clustering. Notably, Dasgupta & Kpotufe (2014) show
that point modes of a k-NN density estimate approximate the true
modes of the underlying density function. Further, the approach
has efficient implementations due to fast kd-tree queries that
provide desirable memory complexity (Bentley 1975). Further,
choosing the number of neighbors k is more straightforward than
the bandwidth parameter for KDE. Finally, the locality of the k-
NN approach provides a versatile method to determine densities
when structures exist at different densities scales. Since KDE
employs a constant bandwidth, it can only adapt to a single char-
acteristic density scale. A fixed, “intermediate” bandwidth may
adequately resolve medium-density clusters when structures are
present at various scales. However, fine-grained and large-scale
patterns will be over-smoothed or under-smoothed, respectively.

We employ a k-NN estimator to approximate the density
function considering these advantages. Specifically, we use a
density estimator based on the distance to an empirical measure
(DTM) described by (Biau et al. 2011). It is a weighted k-nearest
neighbor estimate which incorporates distances d1, . . . , dk to all
nearest neighbors up to k. The DTM is a distance-like function
robust to the addition of noise and is used to recover geometric

and topological features such as level sets. It is defined in the
following:

dm(x) =

√
1

k

∑

yi∈Nk(x)

||yi − x||2 (8)

where Nk(x) is the neighborhood point set of x of size k. In other
words, the distance to empirical measure takes the form of a
mean distance from the point x to its k nearest neighbors. The
density estimator is defined via the inverse of this quantity:

f̂m(x) =
1

nVd


∑k

j=1 j2/d

kd2
m(x)


d/2

(9)

where Vd denotes the volume of the d-dimensional unit ball and
n is the number of data points.

Since in our use case the order of density values is important,
we can ignore constant normalization terms in Eq. (9).

The k-NN algorithm is not only used to estimate the den-
sity but also during the modality test procedure, see. Sect. 3.2.1.
Since classical k-NN, as employed in the modality test, automat-
ically ignores points within its k-distance, SigMA has a built-in
limit to the size of structures it can resolve. This allows us to
determine a lower bound on the velocity dispersion of a popu-
lation that SigMA can identify. We find the minimally resolvable
velocity dispersion to be 0.3 km s−s by analyzing the distribution
of k-distances with a lower bound on k = 15, which we also as-
sume to be the minimum cluster size. Clusters with lower veloc-
ity dispersion get smoothed to at least this minimum dispersion.
This value increases as k gets larger.

3.3.3. Scaling factors

The clustering analysis of co-moving populations in position and
velocity occurs in a combined positional and kinematic phase
space. Distance relationships among stars are needed to express
densities and build a graph from the input data. Since tangential
velocities are measured in km s−1 and galactic coordinates in pc,
both sub-spaces have different ranges. Significant range discrep-
ancies between dimensions influence the clustering process as
it directly impacts the distance function. Individual 1D distance
contributions along feature axes with narrow ranges can be ig-
nored when features with large standard deviations are present.
Hence, we consider scaling factors between positional and kine-
matic feature sub-spaces.

Scaling factors ci put weight on specific sub-spaces to in- or
decrease their importance in the clustering process. The multi-
plicative factor affects the range of feature axes impacting the
distance function. Thus, scaling factors ci > 1 increase the dis-
tance to objects in a given dimension i, increasing their im-
portance in the process. We apply the same scaling cv to both
tangential velocity axes while leaving the positional axes un-
changed; thus, cx = 1. SigMA is applied to the following set
of dimensionsD:

D = {X,Y,Z, cv × vα, cv × vδ} (10)

Theoretical considerations of the scaling relationship cx/cv

depend on various initial cloud and cluster configurations and
interactions. However, the estimation of these influences is
plagued by substantial uncertainties. Instead, we aim to deter-
mine a suitable scaling factor empirically by considering suc-
cessful past extractions. Since the tangential velocity is inverse
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Fig. 3. Empirical distance-scaling relationship using data from Gagné
et al. (2018) and Cantat-Gaudin & Anders (2020). The x-axis repre-
sents the distance to stellar groups; the y-axis shows the dispersion ra-
tio of positional over kinematic sub-spaces. To compensate for unequal
feature ranges in favor of the position axes, the velocity scaling factor
must be set to the observed dispersion ratio. Seeing a trend, we fit a
linear model to this data.

proportional to parallax, our goal is to extract a relationship be-
tween a stellar group’s distance and its scaling factor.

The Sco-Cen association is at a distance of about 100–200 pc
from us. To model the empirical distance-scaling relationship
and subsequently apply it to Sco-Cen, we need data on stellar
groups within at least 300 pc. Cantat-Gaudin & Anders (2020)
provide a survey on open clusters in the Milky Way disk. Since
they use the clustering tool DBSCAN to identify groups, their
census is also prone to scaling issues. We substitute and add
groups covered by Gagné et al. (2018), who have used a mul-
tivariate Bayesian model to identify members of young associa-
tions within 150 pc.8

The scaling fraction should account for the distance differ-
ences between positional and kinematic sub-spaces. To quantify
this idea, we consider the distance distribution of sources to the
cluster’s center in each sub-space. Specifically, we compare the
median absolute deviation of sources from their centers in posi-
tion and velocity space, providing a robust statistic for statistical
dispersion. We refer to this ratio of observed dispersion in the
respective sub-spaces as the x-v dispersion ratio. To compensate
for unequal feature ranges in favor of the position axes, the ve-
locity scaling factor cv must be set to the observed x-v dispersion
ratio.

Figure 3 shows the relation between a cluster’s distance and
its x-v dispersion ratio, which equivalently is our choice of cv.
We identify a linear trend and fit a linear model to the data, the
gray band indicates a deviation of one standard deviation away
from the mean assuming constant Gaussian model uncertainty.
Since we observe several outliers, we use the Huber loss (Huber
1964), which is less sensitive to anomalies.

Using this empirical model, we find mean suitable scaling
factors cv between approximately 4–9, assuming the groups of
Sco-Cen are at a distance of about 100–200 pc. These values are
similar to those of Kerr et al. (2021), who apply correction fac-
tors of 5 and 6 in their clustering approach.

8 We cross match the Gaia DR1 sources identified by Gagné et al.
(2018) and DR2 sources from Cantat-Gaudin & Anders (2020) with
EDR3 for more precise astrometry. If a cluster appears in both surveys,
we opted for the Gagné et al. (2018) census to reduce the influence of
scaling issues with DBSCAN clustering.

At first glance, the model suggests sampling values in the
range of 4–9 or using the mean 7.5. However, we also observe
a significant scatter around the model that we need to consider.
Instead of a single mean scaling factor, we aim to obtain a dis-
tribution of values from a given range of distances to the groups
we aim to find.

As discussed in Appendix C, possible scaling factors can be
expressed by the conditional probability integrated over a range
of distance values. Given the linear model and associated Gaus-
sian model uncertainties, we find a resulting distribution of scal-
ing factors within distances of 100–200 pc. Since we need to per-
form a separate clustering run for each sample that we draw from
the distribution, keeping the number as small as possible is es-
sential. We generate ten samples which try to cover the sample
space while keeping the underlying probability distribution in
mind. The resulting samples can be seen in Fig. C.2.9

We run the clustering pipeline for each scaling fraction sam-
ple, creating an ensemble of ten clustering solutions. By sum-
marizing the (potentially conflicting) results, we obtain a single
consensus clustering solution. The consensus result is more ro-
bust against noisy data by aggregating multiple clustering so-
lutions. This aggregation technique creates a meta-solution that
usually provides better accuracy than any single clustering result
can (Strehl & Ghosh 2002; Vega-Pons & Ruiz-Shulcloper 2011).

A consensus function aims to produce a result which shares
as much information as possible with individual clustering re-
sults among the ensemble. Thus, the objective is commonly for-
malized in terms of optimizing the shared mutual information
between ensemble labels and the consensus result. Due to the
large sample sizes, we make use of the hybrid bipartite graph for-
mulation algorithm introduced by Fern & Brodley (2004), who
leverage graph partitioning techniques for an efficient implemen-
tation.

3.4. The role of uncertainty

Rigorous integration of positional uncertainties into the modal-
ity testing procedure of Burman & Polonik (2009) is a highly
complex task, primarily due to the heteroscedastic nature of the
uncertainties. Instead, we use a Monte Carlo approach that at-
tempts to approximate the sensitivity of the modality structure
to positional uncertainties. We do this by resampling the data
using a Gaussian distribution centered on each point with an ap-
propriate covariance matrix obtained from Gaia data.

Re-computing the modal structure on each resampled data
set individually is computationally expensive. Therefore, we aim
to study the effect of deviations on the initially computed modal
layout instead. Since every merge decision impacts the final
modal structure, we must evaluate the impact of uncertainty at
each saddle point. While looping through all saddle points, we
re-evaluate the hypothesis test for each resampled modal and
saddle point density. However, testing each hypothesis multiple
times increases the likelihood of rejecting the null hypothesis.
Assuming statistical independence between individual tests, we
can introduce a correction term on the significance level α.

We use the Bonferroni correction (Bonferroni 1936), which
compensates for an increased rejection probability by dividing
the significance level of α by the number of n comparisons. If at
least one test is rejected with a p-value < α/n, adjacent modal
regions are not merged. In practice, we compute distances to

9 We want to point out that the distance notation in the appendix
changes from d to r to minimize confusion in the derivation of the final
pdf.
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the k‘th neighbor of each initial modal candidate and the cor-
responding saddle points for each resampled data set. The num-
ber of resampled data sets limits the proposed procedure, as data
generation is costly. Thus, we restrict the number of samples to
50, which means that two modal regions are kept separate if at
least one p-value falls below α/50 which results in 0.001 for a
significance level of 5%.

3.5. Noise removal

Following the procedures described above, we obtain a data set
segmentation into prominent peaks by iteratively merging modal
regions separated by insignificant dips in density. This segmenta-
tion yields a list of non-overlapping areas in the data set without
a noise characterization in mind. In principle, each modal region
contains a dense core and background population corresponding
to the stellar group and field content. In this section we aim to
remove the field star component from the modal region to obtain
a final clustering result.

We aim to remove the field star component in each modal re-
gion separately. By assuming the density of field stars and cluster
stars to be approximately Gaussian distributed, we can model the
observed density distribution in each modal region via a mixture
of two univariate Gaussians. Thus, one Gaussian component de-
scribes the distribution of field star densities and the other one
describes the stellar group densities. In Figure 4 we show an ex-
ample of two Gaussians fitted to the density data of one modal
region.

3.5.1. Bulk velocity estimation

The Gaussianity assumption of density components is appropri-
ate only in the original Cartesian coordinate system. Densities
computed from proper motions suffer from perspective effects
leading to deviations from normality due to the non-linearity of
projections. We find such distortions also empirically when an-
alyzing distributions of various modal regions in projected 2d
(see, e.g., the tangential velocity space in Fig. 8) compared to
Cartesian 3D velocities. Thus, we aim to transform all data into
the six-dimensional parameters space (3D positions and 3D ve-
locities) to facilitate efficient signal and background models.

A transformation from proper motion space to a 3D Carte-
sian velocity space is only possible if radial velocity informa-
tion is available. However, only less than 5% of all sources in
our sample have radial velocity measurements from Gaia. Nev-
ertheless, we can exploit the co-moving property of stellar pop-
ulations. We aim to adopt a similar strategy to Meingast et al.
(2021), inspired by convergence point ideas (e.g., van Leeuwen
2009). The expected radial velocity value can be determined
when the 3D bulk motion of stars alongside their positions is
known.

However, compared to the method proposed by Meingast
et al. (2021), we cannot determine the bulk 3D velocity for all
groups. Hence, before we can determine the individual radial
velocities in the first place, we have to estimate the space motion
of individual populations. We determine the space motion of in-
dividual populations of size n by minimizing the following loss
function:

L(ṽ) =

n∑

i=1


∆v2

α,i

σ2
vα,i

+
∆v2

δ,i

σ2
vδ,i

+
∆v2

r,i

σ2
vr,i

 (11)

∆vx,i = vobs.
x,i − ṽx,i (12)

The minimization is done over the tangential (vα, vδ) and ra-
dial (vr) velocities. The delta terms describe the offset between
observed and computed values at the specified velocity ṽ. Al-
though we introduce an additional observational error due to the
parallax uncertainty, we choose the tangential velocities to match
the unit of radial velocities, the essential component in the sum
in Eq. (11). Each term in the sum is weighted by its respective
uncertainty, which decreases the influence of observations with
large measurements errors. If all observations lack radial veloc-
ities, then the last term is set to zero; if only a subset of vr’s are
missing, their values are imputed with the average of its comple-
ment.

For a perfectly co-moving population, the loss in Eq. (11)
has a global minimum with a value of 0 at the group motion.
Observational uncertainties, contamination from field stars, and
a non-zero velocity dispersion will increase the minimum value
accordingly. To search the 3D bulk motion that minimizes the
proposed loss, we use the quasi-Newton method of Broyden,
Fletcher, Goldfarb, and Shanno (BFGS) (Nocedal & Wright
1999) with an initial guess of the mean 3D velocity10. We de-
note the velocity which minimizes the loss (11) as the optimal
bulk motion (OBM).

To determine the group motion of the co-moving population
via our minimization approach, finding the OBM needs a large
and pure selection of cluster sources; meaning truly co-moving
stars. We attempt to obtain a rather clean sample of cluster stars
via the aforementioned mixture model approach (Fig. 4). By fit-
ting a mixture of two univariate Gaussians to the density distri-
bution of a modal region we get a classifier that roughly sep-
arates cluster from field stars11. Since the input density is one-
dimensional, the classifier – also referred to as cluster-noise clas-
sifier – becomes a simple threshold classifier. Sources with a
density greater than the threshold are classified as cluster mem-
bers. As the classifier is trained on densities determined in the
5D space which experiences projection distortion, we only use
the 80% most dense stars in the cluster sample to determine the
OBM. This density filter is designed to remove likely field star
contaminants (false positives) which are typically expected to be
less dense than cluster members. In Figure 4 we show an exam-
ple of the contamination estimation.

The OBM is used to infer an “ideal” radial velocity which
minimizes the Euclidean distance between the OBM and the
velocity vector constrained by the measured proper motions.
We call the 3D motion resulting from measured proper motions
and the computed radial velocity the minimally different velocity
(MDV) which we infer for sources without vr measurements as
well as for cases with large relative uncertainties of vr/σvr

< 2.
After this step, all sources have an associated radial velocity, ei-
ther measured or inferred.

The 3D velocity information is used to determine cluster
membership in the following steps. We pre-filter unlikely mem-
bers via a kinematic selection before applying the cluster-noise
classifier to the now complete 6D phase space including the com-
puted vr estimates. The pre-filter removes possible contaminant
stars that have vastly different 3D motion, namely more than
10 km s−1 from the OBM.

10 If no radial velocities are available, our initial guess is the null vector.
11 We use a simple threshold classifier where both mixture components
have equal class (posterior) probability. The likelihoods and class frac-
tions are estimated using a univariate GMM.
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Fig. 4. Noise reduction schematic. We fit the observed 1D density dis-
tribution ρ with a mixture of two Gaussians modeling the cluster (red
line) and field star (black line) population, respectively. We obtain an
approximation to the field star contamination, and incompleteness rate
in the cluster sample via the cluster-noise classifier’s false positive, and
false negative rate, respectively.

3.5.2. Removing field star contamination

To remove field star contamination, we create a combined 6D
Cartesian position and velocity space using determined MDVs
to obtain a separation of signal and background content. Com-
bining the space directly puts an emphasis on one of the sub-
spaces (position or velocity) due to different value ranges; see
Sect. 3.3.3 for more details. Large axis ranges automatically
dominate the extraction as distances along these dimensions are
penalized, more drastically impacting density estimation. Thus,
we scale one subspace over the other and subsequently compute
a density distribution for a given modal region.

We separate the stellar population from the field star compo-
nent using a cluster-noise classifier. This classifier is applied to
the 1D density estimation ρ determined in 6D phase space; see
the x-axis in Fig. 4. By boiling down the high-dimensional in-
formation into a single variable, the classifier ignores positional
information of sources in the original feature space. Thus, ran-
dom over-densities in the field might be extracted alongside the
cluster. To reduce the contamination of random field star compo-
nents, we introduce a neighborhood graph from which we delete
vertices which fall below the computed density threshold ρ0, as
shown in Fig. 4. We define sources within the densest (and typ-
ically the largest) connected component as cluster members. To
extract cluster members more robustly we compute one extrac-
tion for a range of scaling parameters, see Sect. 3.3.3. We obtain
a final cluster catalog by removing sources which appear in less
than half of these extractions.

3.5.3. Contamination and completeness estimate

The applied noise reduction scheme presents a direct way of es-
timating the field star (F) contamination fraction fFP (false posi-
tive rate) in the cluster (C) sample, as well as the incompleteness
fraction fFN (false negative rate) of unidentified members. The
contamination fraction or false positive rate is simply the proba-
bility of observing a sample from the field star distribution with

a value larger than the density threshold ρ0:

fFP = PF(ρ > ρ0) (13)

Similarly, we estimate the incompleteness fraction or false nega-
tive rate as the probability of observing a sample from the cluster
distribution with a value less than ρ0:

fFN = PC(ρ < ρ0) (14)

The determination of fFP and fFN is schematically shown in
Fig. 4. We compute both values for each group, which gives us a
distribution of contamination and incompleteness rates. Eventu-
ally, we obtain a mean contamination estimate across all groups
in Sco-Cen of 3% with a standard deviation of 2% across groups
(see also Sect. 4 for an independent contamination estimate us-
ing astrophysical knowledge). This estimate does not take care of
systematic uncertainties. One source of systematic uncertainty is
a possible deviation from Gaussianity of any of the mixture com-
ponents. Further uncertainty is added via the density estimation
to which the mixture model is fit. Since we do not have access
to f , we inevitably make mistakes by substituting it with our es-

timate f̂ .

Although these factors of uncertainty are not considered in
our simple contamination estimate, these findings seem to coin-
cide quite well with the empirical HRD contamination estimate
shown in Fig. 9 in Sect. 4.

We find the mean completeness across groups of approxi-
mately 83% with a standard deviation of 10%. Similarly to the
contamination fraction, determining the incompleteness depends
on the mixture components and density approximation. Still,
compared to the contamination fraction, the incompleteness esti-
mate is relatively high. A caveat of our noise reduction procedure
is that we reduce high-dimensional phase space information into
a univariate variable that is used to filter the data. This univariate
formulation lacks descriptions about local positional and kine-
matic relationships that might help to increase the completeness
of our catalog. Further, we estimate the actual value even lower,
as we find multiple connected components in the neighborhood
graph of which we only extract the main component. We also
only admit stars that pass a threshold of 50% across different
scaling fractions. All these decisions increase the precision of
our sample at the cost of a reduced recall.

A lower completeness fraction compared to our initial esti-
mate is also what we find when comparing our sample to past
extractions in the literature in Sect. 4.2. These comparisons sug-
gest sample completeness towards 75%.

We consider increasing the completeness fraction as an im-
portant future work. Until then, tools such as BANYAN (Gagné
et al. 2018), or Uncover (Ratzenböck et al. 2020) can help to
improve our presented membership list.

3.6. Multi-scale clustering

The density field is the main parameter of the proposed cluster-
ing method. Its topology is affected by the estimation process,
which impacts the final result. Especially the smoothing param-
eter can create, on the one hand, a very rough and, on the other
hand, an over-simplified density field. The schematic Figure 5
illustrates the dependence of the cluster number to the density
estimation process. Applying a smoothing operator generates a
family of density fields, called a scale space (Witkin 1987). We
use this scale space concept to study the dependence of extracted
clusters on the density estimation. Clusters with a long lifetime
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Fig. 5. Schematic figure linking the cluster number to the density estimation process. Applying a smoothing operator generates a family of density
fields. This hierarchical family of functions is called a scale space.

in the scale space are preferred over, for example, “short lived”
children.

We approximate the scale space by running SigMA N times
obtained by progressively smoothing the initial density field.

Given an ensemble of N density estimates { f̂ }i, i ∈ [0,N], we
track clusters through various density filters. To track clusters
through different levels of scale space we use three cluster con-
nection rules based on cluster modes which we approximate by
the densest point in a modal region. The connections we define
are the following: direct link, merge, and split.

A direct link connection denotes a connection between two
modal regions whose Jaccard similarity is larger than 50% and
both cluster modes lie in the intersection set. A merge connec-
tion is a weaker condition and is only placed if no direct link
can be established. A merge link is made when a parent cluster12

contains the cluster mode of its child. If both conditions for di-
rect and merge link are not satisfied, a split connection is placed
between a parent and child cluster if the child contains the cluster
mode from its parent.

The emergence of critical points, or additional clusters, in
smoother versions of the scale space is a result of the non-exact
nature of our density estimation (Reininghaus et al. 2011; Lif-
shitz & Pizer 1990) as well as due to randomness introduced
by our Monte Carlo strategy. In the absence of noise, smoother
density filters result in a simplified topology. Thus, we apply the
pruning strategy introduced by Reininghaus et al. (2011) to the
resulting merge-split graph which generates a simplified merge
tree. The merge tree for our running toy data set is schemati-
cally illustrated in Fig. 5. The resulting merge tree was analyzed
visually, from which we selected the 48 most stable clusters in
Sco-Cen (Sect. 4).

3.7. Validation using astrophysical knowledge

Two direct observables, that can be identified in our applica-
tion on Sco-Cen (see Sect. 4), serve as a validation test of the
method. First, and apart from the youngest groups that are af-

12 The parent cluster resides in the i+1’th level, whereas the child clus-
ter is from level i.

fected by dust extinction, the Gaia color-absolute-magnitude di-
agrams (equivalent to observational Hertzsprung-Russell Dia-
grams, HRDs) for the stars in each group show a narrow (coeval)
distribution (see Fig. 9 and Paper II). There is no procedural rea-
son why this should be the case, the method does not know about
the brightness and colors of the stars. Only a meaningful selec-
tion of co-moving stellar siblings can produce the observed nar-
row sequences in the HRDs. Another observable that serves as
test is the prominence of massive stars associated in 2D projec-
tion with the groups identified, while they are often located at a
central position within the concerned clusters (e.g., αSco, βSco,
δSco, ν Sco; see Sect. 4 and Table 2). These massive stars are too
bright to have reliable measurements in the Gaia archive and the
brightest are not even in Gaia (like Antares, Ohnaka et al. 2013),
still, the method finds groups around them. Based on Hipparcos
astrometry (Table 2) we find strong evidence that many of these
bright stars share similar parallaxes and proper motions as the
clusters they seem to belong to in projection. This is an astro-
physically relevant result (massive stars do not form alone and
are often found at central positions) and it serves as another di-
rect validation of the method.

4. Application to Sco-Cen

We apply SigMA to Gaia EDR3 data inside a box of about 107 pc3

containing the Sco-Cen OB association, as defined in Sect. 2.
The box was chosen to include the classical Blaauw definition
of Sco-Cen, including the classical sub-groups Upper-Scorpius
(US), Upper-Centaurus-Lupus (UCL), and Lower-Centaurus-
Crux (LCC), and to go beyond them and include the molecular
cloud complexes of Pipe, Corona Australis (CrA), Chameleon
(Cham), and L134/L183. Some of these regions were tentatively
associated with Sco-Cen in the past (e.g., Lépine & Sartori 2003;
Sartori et al. 2003; Preibisch & Mamajek 2008; Bouy & Alves
2015; Kerr et al. 2021).

In this paper we discuss the SigMA extracted young stellar
groups in Sco-Cen, which are part of the . 20 Myr Sco-Cen
star formation event (Pecaut et al. 2012), and their connection to
previous work. In a future paper (Ratzenböeck et al. in prep, Pa-
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Fig. 6. The distribution of the 48 SigMA clusters in Sco-Cen projected in Galactic coordinates. Traditionally, the Sco-Cen OB association was
separated into US, UCL, and LCC, marked with gray dashed lines. The SigMA extracted clusters reveal a more complex substructure of Sco-Cen
than initially proposed by Blaauw (1946), and they show a more extended spatial distribution that includes the CrA, Pipe, Cham, and L134/L183
regions. The clusters are ordered in the legend by region, as given in Table 1. See here an interactive 2D version. For a better visualization of these
clusters see the interactive 3D version (see Fig. 7).

per II) we discuss in more detail the ages of the individual SigMA
groups and the star formation history of the Sco-Cen complex.

In total SigMA extracts about 70 clusters inside the defined
search box. Of these, approximately 20 clusters are older pop-
ulations with ages > 20 Myr, for example, IC 2602 (∼30 Myr,

e.g., Dobbie et al. 2010; Damiani et al. 2019). Groups older than
20 Myr are not discussed further here, although they might be
related to Sco-Cen at larger scales (e.g., “blue streams”, Bouy &
Alves 2015). We will discuss these older groups in future work.
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Fig. 7. 3D distribution of the 48 SigMA Sco-Cen clusters in Heliocentric Galactic Cartesian coordinates. The Sun is at (0,0,0). Colors and labels
are as in Fig. 6. See also the interactive 3D version of the figure, which allows a better separation of the clusters (by double-clicking on a cluster
in the legend of the interactive version, the selected cluster can be isolated).

We find that 48 stellar groups are associated spatially and
kinematically with the Sco-Cen OB association, containing in
total 9810 stellar cluster members, which will be discussed in
more detail in this paper. In Figure 6 we show the distribution of
the 48 Sco-Cen SigMA clusters projected in Galactic coordinates,
and in Fig. 7 in 3D space using a Heliocentric Galactic Cartesian
coordinate frame (see also the interactive version of the 3D fig-
ure). The 48 clusters seem to form the continuous body of the
Sco-Cen association, beyond Blaauw’s original three subgroups
boundaries.

In Figure 8 we show the location of the SigMA clusters in the
tangential velocity plane (vα/vδ). Since the clusters partially oc-
cupy similar velocity spaces in the vα/vδ plane, we also provide
an interactive version of this figure, allowing a better appreci-
ation of 2D kinematical properties of the clusters in Sco-Cen.
The 48 young clusters all fall on a connected loop-like pattern
in tangential velocity space, a pattern largely created by the re-
flex motion of the Sun. This is highlighted in Fig. D.1 in Ap-
pendix D, showing that these projected motions are expected for
stellar groups at Sco-Cen positions and distances, since they fol-
low the theoretical Galactic orbits of sources at these Galactic
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Fig. 8. Tangential velocity distribution of the 48 SigMA clusters. The observed tangential velocities relative to α and δ are strongly influenced by
the Sun’s reflex motion, while stellar groups at similar distances and with similar space motions are arranged along a loop-like pattern. Sources at
l ∼ 0° are located in the lower right part of the figure, and sources at l ∼ 290° in the upper left part of the figure (see also Fig. D.1 in Appendix D).
See the interactive version of the figure for a better appreciation of 2D kinematical properties of the clusters in Sco-Cen.

positions when assuming the velocity of the local standard of
rest (LSR, Schönrich et al. 2010).

The Sco-Cen association, as extracted with SigMA, reaches
well below the Galactic plane, as was indicated by previous
works (e.g., Kerr et al. 2021) and is now further confirmed
here. This includes regions that are not traditionally associated
with Sco-Cen, like Pipe, CrA, Cham, and L134/L183. Moreover,
other well know stellar groups, traditionally not assigned to Sco-
Cen but later suggested to be associated with it, were picked
up by SigMA, like the ǫ Cha and ηCha (e.g., Mamajek et al.
1999, 2000; Fernández et al. 2008) or the βPictoris moving-
group (βPic, e.g., Fernández et al. 2008; Miret-Roig et al. 2020).

We decided to not include the young nearby moving group
βPic as part of our final sample of 48 stellar groups. The SigMA
clustering extraction of βPic covers only one side of the known
population as defined in Miret-Roig et al. (2020). This is likely
due to the relatively close distance to the Sun (average distance
of about 40 pc) which makes it more difficult to extract members
from the 5D phase space as used by SigMA in this work. Gen-
erally, the observed proper motions of sources very close to the
Sun are highly influenced by the reflex motion of the Sun (see
also Appendix D), and sources of such nearby populations are

scattered all over the sky, therefore, one can only confirm their
dynamical membership by knowing the true 3D space velocities.

The majority of the 48 groups can be related to previously
identified groups from the literature, which are often larger
scale structures containing several of the SigMA clusters (see
Sect. 4.2). The rich sub-structure as identified by SigMA also in-
cludes clusters with no clear counterpart in previous works. We
decided to name such clusters after their location in a constel-
lation, or after the brightest star that is part of a cluster or the
brightest star that is seen in projection to a cluster. We often find
bright B-stars towards cluster centers, at approximately the same
distance and proper motion. We used Hipparcos astrometry (van
Leeuwen 2007) to tentatively associate bright B-stars to the new
clusters and list them and their astrometric properties in Table 2,
showing the HIP ID and the Hipparcos astrometry. This table
allows a direct comparison with the average properties of the
SigMA clusters in Table 1. For the cases where there is a rea-
sonable match, we name the cluster with the name of the bright
B-star. Additionally, we index the stellar groups within this work
from 1 to 48 as given in Col. “SigMA” in Table 1.

In Figure 9 we show the SigMA cluster members in a Gaia
HRD (see Appendix E for details), confirming the youth of
the majority of the sources. We find an excess of older low-
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Fig. 9. Gaia color-absolute-magnitude diagram (HRD) Gabs versus BP − RP of the SigMA stellar cluster members. Left: SigMA cluster members
that pass the photometric quality criteria as given in Appendix E. Middle: Potential contamination from older sources (orange), selected with a
25 Myr isochrone from PARSEC (black line) and with two additional cuts (black dashed lines). The cut at Gabs = 3 mag excludes the upper–main-
sequence. The bottom black dashed slope accounts for the larger scatter of faint sources. Looking at the left panel, one can see a clear separation
of an older sequence, which we attempt to separate with this cut, since the 25 Myr isochrone from PARSEC would be too conservative at the
low-mass end. This indicates a contamination from older sources of about 4%. Right: Potential sub-stellar candidates (red dots) are selected with
a 0.09 M⊙ iso-mass line (dark-red line) from PARSEC. This cut indicates that there are roughly 7% of sub-stellar sources in the young SigMA
Scon-Cen clusters. More details on the quality criteria, the selection borders, and the used PARSEC models are given in Appendix E.

mass sources that clearly separate from the Sco-Cen population,
which are likely false positive SigMA sources. We use a 25 Myr
isochrone (to allow for random scatter) plus two additional cuts,
as shown in Fig. 9 (middle panel), and explained in Appendix E,
to have a rough estimate for the fraction of contaminants to be
about 4%. This contamination fraction is similar to the estimate
in the methods section (Sect. 3.5.3). In Appendix E we give more
details on the chosen photometric quality criteria and the selec-
tion conditions. In a follow up paper (Paper II) we will investi-
gate the individual ages of each SigMA cluster in more detail with
the help of isochrone fitting, allowing a more detailed investiga-
tion of the star formation history of the Sco-Cen complex.

When further investigating the young SigMA Sco-Cen mem-
bers in the HRD in Fig. 9 (right panel), we find that there are
about 6–7% sub-stellar objects (brown-dwarf candidates) within
our sample (see also Appendix E). In the future, more com-
plete samples of the individual clusters can be obtained by us-
ing the known members as training sets (e.g., as demonstrated
in Ratzenböck et al. 2020), allowing to get more complete ini-
tial mass functions and a better characterization of the sub-stellar
population (e.g., Miret-Roig et al. 2022).

4.1. Overview of the seven subregions in Sco-Cen

In the following, and to help comparing SigMA results with the
literature, we give a brief overview for each sub-region within
Sco-Cen (US, UCL, LCC, Pipe, CrA, Cham and L134/L183).
We then give a more detailed comparison to recent works in
Sect. 4.2. The listed seven subregions include four regions that
are not a traditional part of the Sco-Cen OB association, namely
CrA, Pipe, Cham, and L134/L183, while we find them to be co-

moving with the larger Sco-Cen complex. Even if we assign each
stellar group to one of the seven subregions, we stress that this
classification should not be seen as physically distinct regions
inside Sco-Cen, but simply to help compare our results with the
literature.

4.1.1. Upper Scorpius (US)

Toward US we identify 11 clusters (2558 stellar sources), which
are partially extending beyond the traditional borders (Fig. 6). Of
these 11 clusters, seven appear higher surface density and tend
to be associated with prominent B-stars, as already pointed out
above, namely ρOph/L1688, Antares, βSco, βSco-South, δSco,
ν Sco, and σSco (see Tables 1 & 2).

Antares is the most extended among these clusters, show-
ing substructure in velocity space. Moreover, Antares and
ρOph/L1688 are the only clusters showing significant overlap
in the same volume in space within the SigMA clusters. In a
recent paper (Grasser et al. 2021) we studied the ρOph/L1688
cluster with Gaia EDR3 data and identified two kinematically
distinct populations within the same volume (Pop 1 and Pop 2).
These two populations are coincident with the ρOph/L1688 and
Antares groups, respectively. In detail, the cross-matched Pop 1
sample contains ∼85% of the ρOph/L1688 group (and ∼4% of
Antares, ∼9% of δSco). The cross-matched Pop 2 sample con-
tains ∼85% of the Antares group and also a fraction of the
σSco group (∼11%). Luhman (2022a) point out that “new”
ρOph/L1688 members in Grasser et al. (2021) have already been
identified previously by other literature as being part of US. We
clarify here that the “new” sources in Grasser et al. (2021) refers
to sources that have not been assigned previously as members
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Table 1. Average parameters of the 48 SigMA clusters in Sco-Cen.

SigMA Region Group Name Brightest star Nr. l b ̟ d µ∗α µδ vα vδ X Y Z

(deg) (mas) (pc) (mas/yr) (km/s) (pc) (pc) (pc)

1 US ρOph/L1688 i Sco 463 353.20 16.99 7.195 139 -6.80 -25.97 -4.49 -16.98 131.69 -15.82 40.70

2 US ν Sco nu Sco 139 354.56 22.89 7.181 139 -8.48 -24.35 -5.62 -16.12 127.55 -12.12 54.20

3 US δSco ome Sco 388 350.65 22.08 7.049 142 -11.69 -23.99 -7.83 -16.20 129.50 -21.40 53.29

4 US βSco HD144273 147 353.40 23.84 6.540 153 -9.67 -21.54 -7.01 -15.63 138.85 -16.09 61.80

5 US βSco-South HD146367 28 352.21 20.26 6.449 155 -8.33 -23.57 -6.15 -17.37 144.22 -19.80 53.85

6 US σSco c02 Sco 354 351.16 17.82 6.271 159 -10.60 -21.56 -8.03 -16.45 149.80 -23.50 48.90

7 US Antares HD146001 449 352.81 17.21 7.209 139 -11.16 -23.68 -7.35 -15.62 131.14 -16.51 41.24

8 US Scorpio-Body HD154310 315 349.15 7.21 6.997 143 -8.08 -26.64 -5.44 -17.69 139.78 -26.86 17.21

9 US US-foreground-3 HD151012 46 349.47 11.57 8.696 115 -17.71 -32.12 -9.43 -17.47 110.58 -19.29 22.84

10 US US-foreground-1 HD145964 170 349.32 20.59 9.151 109 -20.53 -31.72 -10.54 -16.59 100.72 -19.45 38.26

11 US US-foreground-2 HD140968 59 348.60 23.25 8.109 123 -18.83 -26.67 -11.15 -15.40 111.25 -22.55 48.17

12 UCL Lupus-3 LL Lup 139 339.56 9.44 6.277 159 -10.13 -23.48 -7.56 -17.86 147.34 -54.68 26.20

13 UCL Lupus-4 MY Lup 23 336.09 8.35 6.245 160 -11.11 -23.51 -8.39 -17.87 144.53 -63.75 23.43

14 UCL ǫ Norma eps Nor 69 335.65 5.02 5.512 181 -14.38 -19.82 -12.26 -17.34 164.14 -75.19 16.45

15 UCL V1062 Sco mu02 Sco 794 343.30 4.58 5.658 177 -12.01 -21.23 -10.08 -17.83 168.52 -50.84 14.15

16 UCL Lupus-West HD125777 112 319.89 13.74 5.960 168 -20.16 -17.01 -15.98 -13.68 124.16 -105.68 39.97

17 UCL Lupus-1 HD140817 110 338.78 15.76 6.728 149 -16.72 -23.44 -11.74 -16.60 133.55 -52.20 40.25

18 UCL ψ02 Lup psi02 Lup 229 336.01 11.44 7.833 128 -19.62 -28.99 -11.84 -17.41 113.27 -49.25 25.19

19 UCL νCen nu Cen 897 315.41 17.77 7.365 136 -25.00 -19.89 -15.99 -12.88 90.51 -90.76 41.40

20 UCL ρLup rho Lup 116 321.22 12.45 8.237 121 -25.42 -24.86 -14.56 -14.26 91.09 -73.64 26.41

21 UCL V795 Cen V795 Cen 351 314.28 10.11 7.652 131 -26.25 -20.62 -16.16 -12.67 87.99 -91.35 22.77

22 UCL ηLup HD 143699 242 339.42 10.92 7.244 138 -17.53 -27.57 -11.45 -18.07 126.57 -47.55 26.16

23 UCL b Cen b Cen 546 332.51 19.59 8.133 123 -24.00 -26.35 -13.98 -15.39 101.98 -53.45 41.88

24 UCL V1019 Cen HD132238 188 330.89 20.76 6.406 156 -16.61 -20.63 -12.27 -15.21 127.34 -70.68 55.23

25 UCL Lupus-East HD143022 87 334.34 10.44 5.875 170 -16.10 -19.57 -12.98 -15.86 149.69 -71.93 30.86

26 UCL µSco HD150641 80 346.02 3.87 6.065 165 -11.74 -22.46 -9.22 -17.53 159.68 -39.90 11.16

27 UCL e Lup e Lup 139 327.85 12.07 6.851 146 -20.57 -21.89 -14.34 -15.17 121.38 -76.19 30.70

28 UCL φ02 Lup HD137432 116 334.99 16.98 7.028 142 -19.43 -23.55 -13.02 -15.83 122.77 -57.51 41.21

29 UCL Libra-South TYC-6762-602-1 38 338.31 27.51 6.558 152 -16.33 -20.81 -11.60 -15.33 123.84 -50.13 70.33

30 LCC ηCham eta Cha 20 292.46 -21.64 10.137 99 -30.05 26.89 -14.06 12.56 34.92 -84.67 -36.33

31 LCC ǫ Cham DX Cha 41 300.23 -15.59 9.807 102 -41.03 -5.76 -19.79 -2.81 49.64 -85.09 -27.52

32 LCC Musca-foreground HD104600 67 300.48 -10.02 9.748 103 -39.37 -9.40 -19.20 -4.50 51.54 -86.34 -17.73

33 LCC Centaurus-Far HD121808 24 311.18 0.03 5.523 181 -19.77 -14.27 -17.00 -12.23 118.93 -137.99 0.10

34 LCC αMusca HD112383 64 302.47 -5.87 9.700 103 -38.10 -13.67 -18.63 -6.69 55.41 -86.51 -10.54

35 LCC Acrux zet Cru 215 299.76 -1.51 9.347 107 -37.92 -10.56 -19.20 -5.33 52.62 -92.70 -2.87

36 LCC σCen sig Cen 1417 300.59 7.23 8.795 114 -33.82 -12.66 -18.40 -7.15 57.79 -96.82 14.11

37 LCC f Cen f Cen 326 306.63 12.69 8.258 121 -30.71 -17.18 -17.62 -10.03 69.67 -94.86 26.35

38 Pipe B59 AS 220 21 357.09 7.07 6.218 161 -0.35 -18.94 -0.26 -14.42 159.67 -8.20 19.76

39 Pipe Sgr-West HD163296 15 7.24 1.36 9.963 100 -5.95 -39.55 -2.80 -18.93 99.17 12.71 2.43

40 Pipe Pipe-foreground CD-25-12033 29 0.13 8.03 9.646 104 -13.37 -33.67 -6.49 -16.66 102.62 0.23 14.30

41 Pipe Pipe-North HD155427 22 4.85 12.73 7.554 132 -4.93 -23.36 -3.11 -14.60 128.37 10.87 28.91

42 Pipe θOph HD158704 82 359.88 7.04 6.768 148 -4.71 -21.70 -3.28 -15.37 146.72 -0.32 18.49

43 CrA Corona Australis HD176270 124 359.86 -17.66 6.485 154 4.36 -27.16 3.20 -19.81 147.07 -0.37 -46.80

44 CrA CrA-North HD172910 265 359.05 -13.66 6.753 148 0.84 -27.67 0.58 -19.43 144.02 -2.41 -35.12

45 CrA Scorpio-Sting HD159807 36 350.63 -5.96 6.973 143 -7.65 -29.54 -5.20 -19.82 140.06 -22.72 -14.71

46 Cham Chamaeleon-1 CV Cha 148 297.23 -15.44 5.231 191 -22.54 0.30 -20.32 0.27 83.99 -164.35 -50.00

47 Cham Chamaeleon-2 Hen 3-854 40 303.68 -14.71 5.085 197 -20.22 -7.52 -18.95 -7.01 105.35 -158.52 -49.73

48 L134 L134/L183 HD141569 20 358.12 36.92 8.854 113 -17.53 -20.28 -9.69 -10.85 90.57 -3.05 67.43

of the young ρOph/L1688 star-forming event. In fact, the two
intertwining distinct populations within the same volume have
been mentioned the first time in Grasser et al. (2021).

The three groups US-foreground-1,2,3 are located in front of
the more compact clusters, visible in 3D space (Fig. 7), hence
the chosen names. Finally, the group called Scorpio-Body ex-
tends from US toward the Galactic South, beyond the traditional
borders of US, with a significant fraction located in UCL and
in the direction of CrA (Sect. 4.1.5). It spans across the central
body of the Scorpius constellation, hence the name. The 11 clus-
ters toward US reveal a complex star formation history, which
will be further discussed in a follow-up paper, where we analyze
the ages of the SigMA clusters (Paper II).

4.1.2. Upper Centaurus Lupus (UCL)

We identify rich substructure within UCL, containing 18 SigMA
clusters (4276 stellar sources), as listed in Table 1. The most
prominent cluster in the region is V1062 Sco (Röser et al. 2018),
lying towards the far side of Sco-Cen. This cluster was picked up
easily by visual selection methods (e.g., by Damiani et al. 2019
or Luhman 2022a; see Sects. 4.2.1, 4.2.5). We identify a second
cluster close to V1062 Sco, which we call µSco, since its mem-
bers are scattered around that bright B-star. We find that the po-
sitions and velocities of the two SigMA clusters are very similar,
and members of both groups are part of V1062-Sco-selections
in previous work. The star µ01 Sco, which is the name giver of
µSco lies in the center of the cluster, while the star µ02 Sco is
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Table 2. Hipparcos astrometry from van Leeuwen (2007) of bright stellar members in Sco-Cen.

HIP Name SigMAa SpT l b ̟ db µ∗α µδ

(deg) (mas) (pc) (mas/yr)

80473 rho Oph 1 B2V 353.69 17.69 9.03 111 -5.53 -21.74

79374 nu Sco 2 B2IV 354.61 22.70 6.88 145 -7.65 -23.71

78401 del Sco 3 B0.2IV 350.10 22.49 6.64 151 -10.21 -35.41

78820 bet Sco 4 B0.5V 353.19 23.60 8.07 124 -5.20 -24.04

80112 sig Sco 6 B1III 351.31 17.00 4.68 214 -10.60 -16.28

80763 Antares 7 M1Ib+B2.5V 351.95 15.06 5.89 170 -12.11 -23.30

80582 eps Nor 14 B4V 336.00 0.98 6.15 163 -13.68 -19.89

81477 V1062 Sco 15 ApSi 343.57 5.18 7.54 133 -10.25 -21.59

82545 mu02 Sco 15 B2IV 346.20 3.86 6.88 145 -11.09 -23.32

76945 psi02 Lup 18 B5V 338.48 16.08 8.97 111 -21.37 -29.98

67464 nu Cen 19 B2IV 314.41 19.89 7.47 134 -26.77 -20.18

71536 rho Lup 20 B5V 320.13 9.86 10.32 97 -28.26 -28.82

69618 V795 Cen 21 B4Vne 314.13 3.96 6.77 148 -23.80 -20.92

78384 eta Lup 22 B2.5IV 338.77 11.01 7.38 136 -16.96 -27.83

71865 b Cen 23 B2.5V 325.90 20.10 9.62 104 -29.92 -30.68

72800 V1019 Cen 24 B7II/III 327.93 19.11 6.63 151 -20.48 -19.20

82514 mu01 Sco 26 B1.5IV+B 346.12 3.91 6.51 154 -10.58 -22.06

74449 e Lup 27 B3IV 327.83 11.43 6.47 155 -22.01 -21.75

75304 phi02 Lup 28 B4V 333.84 16.75 6.28 159 -18.24 -20.72

42637 eta Cha 30 B9IV 292.40 -21.65 10.53 95 -28.89 27.21

58484 eps Cha 31 B9Vn 300.21 -15.62 9.02 111 -40.34 -8.30

61585 alf Mus 34 B2IV-V 301.66 -6.30 10.34 97 -40.20 -12.80

60718 Acrux 35 B0.5IV 300.13 -0.36 10.13 99 -35.83 -14.86

60823 sig Cen 36 B3V 299.10 12.47 7.92 126 -32.36 -12.51

63945 f Cen 37 B5V 305.47 14.34 8.36 120 -29.85 -15.17

84970 tet Oph 42 B2IV 0.46 6.55 7.48 134 -7.37 -23.94

Notes. Shown are mostly B-type stars that are either part of the SigMA selected clusters, or which are the name-givers of some clusters. (a) Col. 3
gives the index of the SigMA cluster, that is likely related to the given star. (b) The distance is simply 1000/̟ from Hipparcos, shown here for
completeness for an easier comparison with average distances of the SigMA clusters as derived from Gaia parallaxes in Table 1. The Hipparcos
distance estimates should be treated with caution, since significant deviations to Gaia distance estimates are possible, while proper motions show
deviations on the order of about ±2 km s−1 when comparing sources which are both in Hipparcos and Gaia EDR3.

part of the SigMA selected members for V1062 Sco, located at
the periphery of this cluster. This suggests a possible connection
between the two clusters, but this statement is tentative at this
point. To the West of V1062 Sco, and also located towards the
far side of Sco-Cen, are the clusters ǫ Norma and Lupus-East.

The Lupus molecular clouds are located within UCL (Teix-
eira et al. 2020). SigMA extracts at least three clusters that might
be related to the clouds, which are Lupus-1,3,4. Lupus-3 and
4 appear better correlated with regions of high dust column-
density, matching with previous selections of Lupus-3 and 4 stel-
lar members (e.g., Damiani et al. 2019; Kerr et al. 2021). The
Lupus-4 cloud matches well with estimated cloud distances from
Zucker et al. (2019) (both are located at about 160 pc; the dust-
distance to Lupus-3 was not as directly measured as to Lupus-4).
Lupus-1 is a more dispersed population, while members at its
center seem to correlate with the Lupus-1 cloud (at about 155 pc
from Leike et al. 2020; Zucker et al. 2021, while the SigMA clus-
ter is at about 149 pc).

At the heart of UCL lie the clusters e Lup and φ02 Lup,
which likely belong to the oldest parts of Sco-Cen, probably the
clusters where the first supernovae in Sco-Cen originated from
(Zucker et al. 2022). To the North of the traditional UCL bor-
ders we find a clustering, which has not been isolated in previ-
ous works, named Libra-South, based on its location within that
constellation. The cluster lies at the northern borders of our in-

vestigated XYZ box, hence it needs more investigations in the
future, since it might be a larger cluster than the SigMA extracted
cluster.

4.1.3. Lower Centaurus Crux (LCC)

We find eight SigMA clusters (2174 stellar sources) toward the
LCC region (see Table 1), which is now reaching farther below
the Galactic plane compared to most of the work in the literature.
For the SigMA extraction, the young local associations ǫ Cha and
ηCha are part of LCC, located at the Southern most tip, con-
firming the results of Mamajek et al. (1999, 2000) or Fernández
et al. (2008). Toward LCC, SigMA extracted a cluster that seems
unrelated to the main body of LCC, which we name Centaurus-
Far since it lies about 60 pc further away from it, at a distance
similar to that of the Chamaeleon clouds. This cluster was al-
ready identified in Kerr et al. (2021), as part of the TLC21 group
(Cham-group) as EOM3, and named Cen-South (see Sect. 4.2.4
and Table F.2).

4.1.4. Pipe Nebula

Although not traditionally considered part of the Sco-Cen as-
sociation, we find five SigMA clusters toward the Pipe nebula
(169 stellar sources), including B59, Sgr-West, Pipe-foreground,
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Pipe-North, and θOph. The group B59 seems to be closely re-
lated to the star forming B59 cloud (e.g., Lombardi et al. 2006;
Brooke et al. 2007; Román-Zúñiga et al. 2007, 2010). This is
supported not only by projection in the sky towards cluster and
cloud but also by the cloud distance of about 147–154 pc (Zucker
et al. 2021), compatible within the uncertainties with the cluster
distance about 161 pc. The θOph cluster, surrounding the θOph
B2 star, is located at about the same distance to B59 and is close
to the stem of the Pipe Nebula cloud, giving ground to stud-
ies of a possible interaction between the B2 star and the cloud
(Gritschneder & Lin 2012). The other three groups in the Pipe
Nebula are more dispersed and mostly located in-front of the
Pipe Nebula cloud.

4.1.5. Corona Australis (CrA)

The possible physical connection between CrA and the Sco-Cen
association was already pointed out in previous studies (e.g., Ma-
majek & Feigelson 2001; Preibisch & Mamajek 2008; Kerr et al.
2021) and confirmed by our work. We identify a distinct clus-
ter projected on top of the CrA molecular cloud and the em-
bedded Coronet clusters, which we simply call the Corona Aus-
tralis or CrA group. To the north we identify a second more ex-
tended group, called CrA-North, which was already discussed
in Galli et al. (2020) or Esplin & Luhman (2022). Addition-
ally, we identify a third group to the north-west of the two
other groups, apparently building a bridge to the main body of
Sco-Cen. This group we name Scorpio-Sting since its projected
location matches the sting of the Scorpio constellation. Sco-
Sting has only one clear counterpart in the literature, namely
the TLC22/EOM7 group in Kerr et al. (2021) (see Sect. 4.2.4
and Table F.2), while they identify a smaller sub-sample of this
group (12 members in Kerr et al. 2021 versus 36 members in
this work). In total, the three stellar groups contain 425 stellar
sources.

4.1.6. Chamaeleon (Cham)

The well-known star-forming molecular clouds of Chamaeleon
are seen through the same line-of-sight as the southern tip of
the LCC, but lie clearly towards the back of LCC when seen in
3D (Fig. 7). We identify two clusters with a total of 188 stellar
sources, Chamaeleon-1,2, which are likely directly related to the
two molecular clouds of the same name and are already char-
acterized with Gaia (e.g. Roccatagliata et al. 2018; Galli et al.
2020; Kerr et al. 2021, see also Sect. 4.2.4). Due to their youth,
position, and tangential velocities we assume that the Cham clus-
ters and clouds are part of the Sco-Cen star formation event, but
this must be confirmed by tracebacks of the young population
(see, e.g., Großschedl et al. 2021). Similar suggestions appear in
Lépine & Sartori (2003) or Sartori et al. (2003).

4.1.7. L134/L183

The cluster L134/L183 is a small, newly identified group to the
Galactic North of US (with 20 stellar members). We assign this
group to a separate region, since it does not fit to any other of
the predefined Sco-Cen subregions. This stellar group is likely
associated with the small molecular clouds L134 and L183 (or
MBM 36 and 37, Magnani, Blitz, & Mundy 1985), that are cur-
rently non star-forming (Pagani et al. 2003, 2004, 2005). The dis-
tances to the clouds in Zucker et al. (2019) are about 105–120 pc,
which match the cluster distance of about 113 pc. The presence

of the close-by young stellar group suggests that (1) the clouds
are remnants of a larger cloud that formed the newly identified
SigMA cluster and (2) that the newly identified sources might
be playing a role in the observed “cloudshine” phenomenon to-
wards this cloud (Steinacker et al. 2010, 2015).

4.2. Comparison with previous work

In the following we compare the SigMA selected stellar groups
with recent results from the literature, including Damiani et al.
(2019), Schmitt et al. (2021), Squicciarini et al. (2021), Kerr
et al. (2021), and Luhman (2022a). The studies by Damiani et al.
(2019), Schmitt et al. (2021), and Luhman (2022a) discuss the
whole Sco-Cen region, slightly extending beyond the traditional
Sco-Cen borders, while excluding the regions to the Galactic
South (CrA and Cham). These three studies select members
within broad selection borders decided by hand, which we call
in this paper visual selection methods. Squicciarini et al. (2021)
focus only on the US region and extract clusters using a com-
bination of a machine learning method and visual inspection.
Kerr et al. (2021) present an all-sky study of young stars within
333 pc, hence covering the new extended view of the Sco-Cen
association, using an unsupervised machine learning approach,
which is more similar to our work then the aforementioned stud-
ies. The literature samples are cross-matched with the SigMA
clusters using the Gaia EDR3 source_id, as specified in Ap-
pendix A. We provide an overview of the discussed literature
samples in Table 3, giving the total number of sources of each
literature sample, the total number of sources in SigMA Sco-Cen
clusters within the respective studied areas, and the number of
total matches.

4.2.1. Comparison with Damiani et al. (2019)

Damiani et al. (2019) (hereafter, DPP19) analyzed Sco-Cen with
the help of Gaia DR2 data. They used a traditional approach,
selecting by hand over-densities in velocity space and position
space, followed by selecting pre–main-sequence (PMS) stars
from an HRD. Such an approach will deliver the most promi-
nent clusters. However, somewhat less dense clusters can not be
identified easily, when compared to unsupervised machine learn-
ing tools, like SigMA, and their method is less sensitive to pos-
sible spatial and kinematical structure in the Sco-Cen popula-
tion. Their field of view (FOV) was slightly extended beyond
the traditional borders of the association (see Table 3). They
discuss eight compact clusters, which are prominently peaked
in projection and in velocity space; these are UCL-1, UCL-2,
UCL-3, Lupus 3, LCC-1, US-far, US-near, and the well studied
IC 2602 (e.g. Randich et al. 1995; Stauffer et al. 1997; Dobbie
et al. 2010; Meingast et al. 2021). Although SigMA easily detects
IC 2602, we do not discuss this cluster since its age (∼ 30 Myr)
excludes it as a part of the recent Sco-Cen star formation event
(that we define as . 20 Myr, as in Pecaut et al. 2012). DPP19
also discuss four diffuse populations (D1, D2a, D2b, US-D2),
which are generally distributed across large parts of the tradi-
tional Blaauw Sco-Cen OB association. Moreover, their catalog
includes sources, which have not been assigned to any group
(labeled with “N” in Table F.1). DPP19 were not able to further
substructure the diffuse populations with their methods.

The DPP19 catalog contains in total 14,437 sources, of
which 1734 are in their seven clustered Sco-Cen populations
(350 in IC 2602), 8727 are in their four diffuse populations, and
the rest 3626 have not been assigned to any population (labeled
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Table 3. Overview of the recent Literature to which we compare our results in more detail.

Reference Data Studied Area Number statistics

Ref.a SigMAb Matchesc

Damiani et al. (2019)d Gaia DR2 (l = 360◦ to 280◦, b = 0◦ to 30◦) ∨ 10,185 8919 7221

(l = 315◦ to 280◦, b = −10◦ to 0◦) 1703 clustered (∼17%) 1539

FOV = 2750 deg2, d < 200 pc 8482 diffuse (∼83%) 5682

Kerr et al. (2021)e Gaia DR2 The whole TLC22 stellar group 7394 9598 5135

Schmitt et al. (2021)f Gaia EDR3 & de Zeeuw et al. (1999) borders: 6190 8593 2614

eROSITA US (l = 343◦ to 360◦, b = 10◦ to 30◦)∨ ∼65% vel-clustered 2614

UCL (l = 312◦ to 350◦, b = 0◦ to 25◦)∨ ∼30% vel-diffuse 0

LCC (l = 285◦ to 312◦, b = −10◦ to 22◦), ∼5% IC 2602 0

FOV = 2050 deg2, d ∼ 60–200 pc

Luhman (2022a) Gaia EDR3 l = 2◦ to 283◦, b = −12◦ to 35◦, 10,509 9155 7713

FOV = 3252 deg2, d ∼ 90–250 pc

Squicciarini et al. (2021)g Gaia EDR3 α = 236◦ to 251◦, δ = −29◦ to −16◦ 2745 1918 1857

(only US) (subsample FOV = 195 deg2, d ∼ 125–175 pc 1442 clustered (∼53%) 1199

with RVs) 1303 diffuse (∼47%) 658

Notes. (a) Number of stellar members from the given reference. If there was a distinction in the literature between members in a more clustered or
diffuse mode (which are generally differently defined in each reference), then the numbers are given below. (b) Number of stellar cluster members
from SigMA in the given studied area (volume), out of the total 9810 SigMA stellar cluster members. (c) Number of matches between the given
reference and the SigMA clusters. If a distinct comparison with clustered or diffuse sources was possible, then the matches with these are given
below. (d) For DPP19 we only give the number of sources within their clustered or diffuse populations within 1000/̟EDR3 < 200 pc after a cross-
match with Gaia EDR3, and without IC 2602. (e) For KRK21 we do not give the surveyed area, since they extracted the clusters from all-sky data
within 333 pc from the Sun. We show the comparison to their whole TLC22 group, while this group also includes somehwat older stellar groups,
like IC 2602, as furhter explained in the text. (f) The X-ray selected sources from SCF21 included velocity-clustered and velocity-diffuse sources.
The separation of these was applied by us by hand, guided by Fig. 7 in SCF21. Hence, the fractions are only given roughly. The fraction of potential
IC 2602 members is also given. The SigMA clusters have only matches with their velocity-clustered population. (g) SGB21 only studied the US
region, finding sources in a more clustered mode and sources in a more diffuse mode, while the latter are simply the residuals of their clustering
procedure. They study a subsample of sources with vr information in the 6D phase space (∼28%), which is not further discussed in this work.

with “N”). When cross-matching the DPP19 Gaia DR2 sample
with EDR3 astrometry, we find that 654 stars (4.5%) are rejected
when applying the distance criteria from DPP19 (d < 200 pc),
due to updated parallaxes in EDR3. The majority of these are
sources that have not been assigned to any group or that be-
long to their diffuse populations. When now considering only the
sources in the clustered and diffuse populations within 200 pc,
then there are 10,185 potential Sco-Cen members in DPP19.

In total there are 7419 cross-matches between the SigMA
clusters and DPP19, while 7221 of these belong to either the
clustered or diffuse populations (198 are not assigned, “N”). Of
the 7221 cross-matches, 5682 belong to one of the four diffuse
populations. Comparing this number to their total diffuse popu-
lation (8482 within 200 pc), we find that about 2/3 are a match
with the SigMA clusters. In most cases, more than one DPP19
group (both clustered or diffuse) fits to one of our groups (see
Table F.1), and vice versa. In particular, their diffuse groups each
contain sub-parts of about 10 to 20 of the SigMA groups.

Focusing on the DPP19 compact groups (1539 matches out
of 1703 within 200 pc), we find that their US-near and US-far
can not be assigned clearly to only one of the SigMA groups
(see Table F.1). US-near is most closely related to ρOph/L1688,
while also containing significant fractions of ν Sco, δSco, and
the Antares group. US-far correlates best with σSco, while
also containing significant parts of δSco, βSco, and Antares.
In particular, Antares is distributed almost equally among these
two groups. The Antares group is indeed quite extended in
space, partially occupying the same volume as ρOph/L1688 (see
Sect. 4.1.1 and Grasser et al. 2021). The case of the Antares and
ρOph/L1688 groups highlights the capability of SigMA to un-

tangle young populations that share the same volume but have
slightly different space motions.

The rest of the DPP19 compact groups are more clearly
correlated with the SigMA groups, with UCL-1 matching with
V1062 Sco and µSco, UCL-2 with Lupus-West, UCL-3 with
φ02 Lup, LCC-1 with Acrux, and Lup III with Lupus 3. The
unassigned sources in DPP19 (N) correlate with a large fraction
(about 80%) of our SigMA clusters, within the DPP19 FOV.

Regarding the comparison between the DPP19 visual section
method and the SigMA unsupervised clustering method, we first
note that the method used by DPP19 starts with a selection of
stars by hand in velocity space, followed by a selection by hand
of PMS stars on the HRD. This approach will always find more
candidates than an unsupervised method. For example, a look at
Figs. 2, 3, and 4 in DPP19 will make clear that the total number
of member candidates using this approach is a strong function of
the size of the selection shapes used in tangential velocity space
and the HRD. These selection borders will necessarily select a
larger number of true positives than an unsupervised method,
while also the total number of false positives is likely higher.

We compare the number of sources in DPP19 stellar groups
(compact and diffuse within 200 pc, 10,185 sources) to the num-
ber of matched SigMA cluster members (7221 within 200 pc)
(see Table 3). There are 2964 sources only in DPP19, imply-
ing that we could be missing about 29% of possible members
if all 10,185 sources were good members. We did not perform
a detailed comparison but find that the 2964 sources also con-
tain sources that seem to be older then the SigMA clusters when
investigated in an HRD (similar as in Fig. 9), hence the incom-
pleteness based on this comparison is likely lower than 29% (see
also comparison with Luhman 2022a). As mentioned above, we
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expect SigMA to be missing possible candidates when compared
with the method followed by DPP19 (which is a method that se-
lects broad regions in various 2D planes of the phase space) but
also expect the SigMA sample to be less contaminated. A deeper
analysis is needed, although not warranted in this paper.

4.2.2. Comparison with Schmitt et al. (2021)

Recently, Schmitt et al. (2021) (hereafter, SCF21) used
eROSITA13 (Merloni et al. 2020) to search for low-mass Sco-
Cen members by cross-correlating the eRASS1 source catalog
with the Gaia EDR3 catalog. They discuss 6190 possible Sco-
Cen members within the traditional Blaauw borders (de Zeeuw
et al. 1999), which are both observed by eROSITA and Gaia.
Since X-ray emitting sources are expected to be young (e.g.,
Schmitt 1997; Feigelson & Montmerle 1999; Favata & Micela
2003; Bouvier et al. 2014), the sources detected by eROSITA,
as discussed in SCF21, are potential members of Sco-Cen. They
found X-ray sources down to about 0.1 M⊙, and, unexpectedly,
they also found the existence of a population of young X-ray
emitting stars that appears to be more diffuse in velocity space14,
calling into question search schemes relying on kinematic selec-
tions.

We cross-matched the 6190 SCF21 X-ray selected sources
with the SigMA selection. We find in total 2614 cross-matches
in their studied area (see Table 3), while none of these belong-
ing to their velocity-diffuse population. The latter is expected,
SigMA only selects groups which are confined in position-
velocity space, which naturally excludes any such velocity-
diffuse sources. SCF21 claim that the diffuse population is
largely composed of young stars, only somewhat older compared
to the kinematically confined Sco-Cen members. We confirm the
general youth of the sources by inspecting the two populations
in an HRD, however, we see a relatively clear age separation
between the velocity-clustered and velocity-diffuse populations.
X-ray sources in the velocity space of the majority of Sco-Cen
members have ages between 0.1–20 Myr, while X-ray sources
that are velocity-diffuse have ages between 10–1000 Myr, with
the majority at about 30–100 Myr. While these are technically
young stars, they seem too old to be related to the Sco-Cen asso-
ciation.

The origin of this co-spatial but velocity diffuse population
remains mysterious. Since these sources are older than Sco-Cen,
they are unlikely to result from stellar interactions in Sco-Cen
(an a priori unlikely process given the low stellar density of Sco-
Cen). The diffuse population, or the co-eval part of it, could be
related to a relatively older star-formation episode, sharing to-
day the volume space of Sco-Cen, a plausible scenario in the
Milky Way (Fürnkranz et al. 2019). We posit here that the SCF21
velocity-diffuse young sources are unlikely to be part of Sco-
Cen, but represent a mystery that needs to be solved. As SCF21
point out, the sensitivity of eROSITA will allow in the near fu-
ture to detect virtually all young Sco-Cen low-mass members. A
combination of eROSITA future releases and Gaia data in Sco-
Cen will be crucial to increase statistics and lead to a better un-
derstanding of the relation between observed X-ray luminosity

13 Extended ROentgen Survey with an Imaging Telescope Array. A
wide-field X-ray telescope on-board the Russian-German “Spectrum-
Roentgen-Gamma” (SRG) observatory.
14 We applied the separation of kinematically clustered and diffuse pop-
ulations by hand in vα/vδ space, as indicated in Fig. 7 in SCF21, since
the selection conditions are not clearly outlined by the authors.

with distance, age, stellar masses, and the origin of the velocity-
diffuse population.

Finally, when concentrating on the velocity-coherent sample
in SCF21 (without IC 2602), we find that there are about 35%
in the whole SCF21 sample that could be additional Sco-Cen
candidate members, which are only in SCF21 and have similar
velocities as SigMA Sco-Cen members. When investigating ad-
ditionally older-star possible contaminants in an HRD (similar
to Fig. 9), this fraction would reduce to about 30%. This rel-
atively high number is of interest, which might result from the
broad selection conditions in SCF21, based on all X-ray detected
sources within the Blaauw borders in a distance range of 60 to
200 pc (Table 3), while restricted to low-mass stars (BP−RP > 1,
according to Pecaut & Mamajek 2013). These broad conditions,
which do not attempt to identify any underlying clustered struc-
ture, will naturally pick up more members, while also more false
positives, as also discussed in Sect. 4.2.1 and 4.2.6.

4.2.3. Comparison with Squicciarini et al. (2021)

Squicciarini et al. (2021) (hereafter, SGB21) studied 2745 po-
tential US members (see Table 3) by selecting subgroups solely
based on kinematics. They divided the region into eight groups
which they call the clustered population (1442 stars), and into an
older diffuse population (1303), which is, however, differently
defined then the velocity-diffuse population in Schmitt et al.
(2021).

When comparing their selection to the SigMA clusters, we
find that there are 1857 cross-matches in total out of the 2745
sources in SGB21, matching with 11 of the SigMA clusters,
while only seven SigMA clusters have significant cross-matches.
We list the cross-matches of SigMA with SGB21 in Table F.1 in
Appendix F. We highlight more significant cross-matches here:
Group 1, 2, and 3, match best with ρOph/L1688, ν Sco, and
δSco, respectively. Group 4 matches best with βSco and βSco-
South, while also Group 6 has significant matches with βSco.
Group 5 matches best with σSco, while the majority of σSco
is in the SGB21 diffuse population. Group 7 and Group 8 match
best with Antares, while the majority of Antares is also in the
SGB21 diffuse population. Generally, the Antares group seems
to split up into more than one cluster, also in other previous work.
The four groups Sco-Body, ψ02 Lup, and US-foreground-1 & 2
have only a few matches with the diffuse population. The SGB21
diffuse population is largely contained within the σSco and
Antares groups, with some diffuse members distributed among
each mentioned group (see Table F.1). This suggests that the dif-
fuse population is not a separate older group but stars that were
not clustered by the methodology in SGB21.

Focusing on the SGB21 candidate members in the clustered
populations, there are 243 sources only in SGB21 (∼9% out of
their total, or 17% out of their clustered). However, in total we
find more clusteres sources toward US (1918 in this work versus
1442 in SGB21 in the same volume, see Table 3).

The differences in the final cluster definition in US likely
arise from the different clustering methodologies. To better un-
derstand the SGB21 approach we outline the basics here. SGB21
use a semi-automated approach based on iterative k-means clus-
tering on a 4D sample, using 2D sky positions and 2D tangential
velocities. The authors propagate the sky positions 15 Myr into
the past and future, producing a new 4D data set at each step;
tangential velocities are constant throughout individual data sets.
By studying the sky distribution of each slice, SGB21 visually
identify over-densities. These over-densities are extracted via k-
means clustering in 4D space at a given time step. Subsequently,
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the clustered data points are removed from the data set, and the
process of looking for over-densities starts anew. The clustering
process terminates when the authors cannot find any apparent
density peaks in the sky distribution.

Besides the feature space difference, SigMA has significant
differences compared to SGB21’s iterative clustering approach.
First, the k-means algorithm cannot deal with the observed non-
convex cluster shapes in projected coordinates. The extracted
clusters are 4D Voronoi cells15 which can have very elongated
shapes. Second, SGB21 analyze 2D projections of the high-
dimensional data to identify clusters visually. Thus, cluster se-
lection is influenced by projection effects and human judg-
ment. Conversely, SigMA employs a modality test directly in
the high-dimensional phase space, taking into account multi-
dimensional relationships between data axes. These rather dif-
ferent approaches to extract clusters in US make it clear that the
results can not be compared at face value, while fractions of the
most robust clusters (ρOph/L1688, ν Sco, δSco, βSco, σSco,
and Antares) have been identified by either method.

4.2.4. Comparison with Kerr et al. (2021)

Recently, Kerr et al. (2021) (hereafter, KRK21) presented a study
of nearby young stellar populations within 333 pc from the Sun.
They use the HDBSCAN clustering algorithm (see Sect. 3.1.4)
on Gaia DR2 parallaxes and proper motions, on a pre-selected
sample of PMS stars with ages . 50 Myr. They identify 27 top-
level clusters (TLC), including Chameleon as TLC 21 and the
Sco-Cen association as TLC 22. The latter was further broken
down into another 27 sub-groups based on the excess of mass
(EOM) method, selecting the most persistent clusters in the clus-
tering tree. Three of these EOM sub-groups (EOM 12, Lupus;
EOM 17, Upper-Sco; and EOM 27, LCC) where further broken
down into leafs, which are nodes of the clustering tree.

The TLC 22 covers the Sco-Cen region in KRK21 and
TLC 21 covers the Chamaeleon region. These two groups com-
bined show a similar extent to our Sco-Cen extraction. SigMA
finds more groups (48 in this work versus 44 in KRK21), while
the TLC 22 sub-groups in KRK21 also include older populations
(e.g., IC 2602 or Platais 8), which are not in our final Sco-Cen
sample, since we do not discuss older groups (yet). Therefore,
only 38 of the KRK21 groups toward Sco-Cen fall within the
younger selected SigMA clusters from this work.

In Table F.2 in Appendix F we show an overview of the
matches of SigMA groups with corresponding KRK21 groups.
Overall, the SigMA Sco-Cen groups are more richly populated
compared to the KRK21 groups. In most cases, there is at least
some overlap between our groups and their main TLC 22 group
(and with TLC 21, Cham), while some of our groups also dis-
tinctly correspond to EOM subgroups (or leafs). For about 40%
of the SigMA groups, a clear accordance with a single EOM
group (or leaf group) is not possible, due to overlaps with more
than one SigMA group, or due to no or only insignificant overlap.

Some differences of the SigMA and KRK21 clustering re-
sults might arise from the different data input, since we use Gaia
EDR3 and KRK21 use DR2, while this would only create mi-
nor deviations if DR2 data would have been used for SigMA.
Although both HDBSCAN and SigMA approximate the hierar-
chical cluster tree, we expect discrepancies in clustering results.
The primary reason for this difference is the cluster tree pruning
strategy discussed in Sect. 3.1.4. The EOM heuristic prioritizes

15 As far as we know, scaling between sky coordinates and tangential
velocities was not considered.

large clusters over their children when they maintain a long life-
time in the density hierarchy. The resulting children fail to ex-
ceed the parent’s EOM. Conversely, our pruning strategy does
not depend on cluster lifetimes but only cares about substantial
density valleys between neighboring density peaks.

The additional leaf separations in KRK21 were applied to
the US, Lupus, and LCC regions, since they found that there are
substructures that have not been identified by the EOM method.
Their leaf clustering is, however, often not a good match with
the SigMA clustering, especially concerning LCC. The SigMA
clusters are differently separated within the larger LCC and they
are also richer and mostly more extended when compared to
KRK21 clusters. Compared to the EOM heuristic or SigMA’s
multi-modality considerations, leaf clusters do not come with
statistical guarantees. The clustering result is highly suscepti-
ble to random density fluctuations since leaf nodes are extracted
only considering the minimum cluster size criterion (Stuetzle &
Nugent 2010); see Sects. 3.1.3 and 3.1.4 for more details. With-
out any additional pruning strategy which deals with spurious
clusters, leaf clustering results need to be taken with a grain of
salt. Nevertheless, some of the leafs in US (ρOph/L1688, ν Sco,
δSco, βSco) show good agreement with the SigMA US cluster
separations, indicating the robustness of these clusters.

When comparing the TLC22 group (7394) with our Sco-
Cen SigMA extraction (9598 without Cham) we find 5135 cross-
matches in total (Table 3). Hence, 2259 (∼31%) sources are only
in TLC22, and 4463 are only in SigMA. We find that the KRK21
only sample contains older stellar groups, which gets also appar-
ent from their Table 6 (including, e.g., βPic or IC 2602). How-
ever, a clear separation of the younger Sco-Cen stellar groups
as discussed in this work, and the somewhat older groups is not
straight forward, since about 50% of the sources in the TLC22
group have not been assigned to a separate sub-cluster (EOM
or leaf). The somewhat older sources can also be estimated
when investigating the HRD16 or the velocity space. There are
sources that have deviating motions from SigMA Sco-Cen mem-
bers, which largely coincide with the KRK21 older EOM groups.
We try to estimate the “older-star contamination” in KRK21 by
taking into account all these points, resulting in a lower frac-
tion of TLC22 only sources, which could be young candidate
members missed by SigMA (∼23%). The reason for these extra
source in the KRK21 TLC22 group is similar to the mentioned
reasons above (e.g., in Sect. 4.2.1). The TLC22 group represents
a cluster root, enveloping the whole Sco-Cen region and some-
what beyond, and no additional substructure was extracted (yet).
In a following step KRK21 use the EOM and leaf methods to
identify individual clusters, while in this step they lose almost
50% of the original TLC22 group, as mentioned above.

Generally, the TLC22 group seems to be overall more in-
complete compared to the SigMA Sco-Cen extraction, since we
find in total more members, while also finding more substruc-
ture. In conclusion, the comparison with KRK21 highlights the
differences that can arise with different unsupervised machine
learning clustering tools, and a careful choice of the appropri-
ate clustering algorithm should be considered for the scientific
question at hand.

4.2.5. Comparison with Luhman (2022)

Luhman (2022a) (hereafter, L22A) recently investigated the Sco-
Cen region containing selections for US, UCL/LCC, V1062 Sco,
Ophiuchus, and Lupus (the Southern parts of Sco-Cen are not

16 The KRK21 PMS selection includes sources up to about 50 Myr.
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discussed in L22A), and using Gaia EDR3 data to identify
10,509 candidate members of Sco-Cen (see Table 3). L22A con-
centrates on established stellar groups in Sco-Cen to guide their
selection. The visual selection approach of L22A is not suitable
to separate the underlying kinematical substructure of the Sco-
Cen population. For example, it is clear from Fig. 4 in L22A
(bottom panel) that the UCL/LCC group contains several over-
densities in l/b space, but these are not extracted or identified.
The L22A selection is based on global kinematic criteria, ex-
tracting candidates exhibiting proper motions similar to expected
proper motions of known members.

Cross-matching the 10,509 L22A Sco-Cen candidate mem-
bers with the SigMA clusters gives a total of 7713 matches, 2796
L22A only sources, and 1442 SigMA only sources within the
L22A studied area (Table 3), where the SigMA sample contains
9155 sources in total. When investigating the 2796 L22A only
sources, we find that they do not show significant signs of be-
ing older than 20 Myr, or of having significant deviating motions
from SigMA Sco-Cen cluster velocities. These extra sources, or
part of them, could be Sco-Cen members, meaning we might
be missing up to about 1/4 of the candidates in L22A. This is
not surprising because methods based on visual selection, using
broad selection borders, will naturally find more candidates as
discussed in Sect. 4.2.1.

4.2.6. Concluding remarks on the comparisons

In general, the visual selection methods used recently on Gaia
data of Sco-Cen (Damiani et al. 2019; Luhman 2022a), produce
in total a ∼15% larger number of candidates (Table 3) when
compared to unsupervised machine learning methods within the
same area (e.g., Kerr et al. 2021, and this work). This is mainly
because these methods select by eye broad regions in projected
sub-spaces of the multi-dimensional phase space to identify Sco-
Cen candidates. On the other hand, unsupervised machine learn-
ing methods find more spatial and kinematical substructure in
the Sco-Cen population, and produce samples with lower con-
tamination level when compared with visual selection methods.

When compared to other unsupervised methods that stud-
ied the whole Sco-Cen area (in particular Kerr et al. 2021), the
SigMA clusters are often richer. More importantly, for describing
the formation process of OB associations such as Sco-Cen, the
SigMA method reveals not only more clusters but a more com-
plex velocity structure across the entire Sco-Cen.

Focusing on the US region, we find generally good agree-
ment for US clusters from SGB21, KRK21, and SigMA. Not sur-
prisingly, the denser clusters in US (ρOph/L1688, ν Sco, δSco,
βSco) have been all recovered to some extend by the different
approaches. The Antares cluster and also the σSco cluster are
slightly more dispersed, especially in SigMA, and they have less
clear matches across the methods. The newly identified veloc-
ity substructure in the US region, as revealed with Gaia data,
is relevant to understand the star formation processes at play in
OB associations like Sco-Cen and will be an obvious target with
future Gaia releases, where the additional radial velocity infor-
mation (increasing by a factor of about 5 for Gaia DR3) will be
critical to further characterize these clusters.

Finally, SigMA appears to miss candidates when compared
with visual selection methods (of the order of 25%), while, at the
same time, finding significant numbers of sources not present in
those samples. More work is needed to understand the sources
SigMA misses, but at face value, the way forward toward a most
complete sample of Sco-Cen members is to use 3D velocities
(by including radial velocities) and SigMA cluster members as

training sets to the Uncover method (Ratzenböck et al. 2020), a
validated bagging classifier of one-class support vector machines
(see application in Ratzenböck et al. 2020 to Meingast-1, Mein-
gast et al. 2019b). In the near-future, improved membership lists
will allow a more precise analysis of the star formation history
of Sco-Cen, the initial mass function of each cluster, and the dy-
namical state of the Sco-Cen complex.

5. Summary

In this paper, we present SigMA, a method that explores the topo-
logical properties of a density field to define significant structure.
To test and validate SigMA, we apply it to Gaia EDR3 data of the
nearest OB association to Earth, Sco-Cen. The main results of
this work can be summarized as follows:

1. We present SigMA, a novel clustering method that takes den-
sity peaks, separated by dips, as significant clusters. Using a
graph-based approach, we detect peaks and dips directly in
the multi-dimensional phase space.

2. SigMA is fine-tuned to large-scale surveys in astrophysics.
This new method is able to identify co-spatial and co-moving
groups with non-convex shapes and variable densities, with
a measure of significance. SigMA is able to properly incor-
porate 5D astrometric uncertainties, does not need any pho-
tometric pre-filtering, and scales to millions of points.

3. SigMA is capable of finding clusters in Gaia EDR3 data,
reaching stellar volume densities as low as 0.01 stars/pc3

and tangential velocity differences of about 0.3 km/s between
clusters.

4. SigMA identifies about 104 Sco-Cen members arranged in 48
clusters of co-spatial and co-moving young stars. The HRD
for each cluster shows a narrow and well-defined sequence.
Because SigMA is not aware of a star’s brightness nor color,
the well-defined stellar sequences in the HRD constitute a
validation test to the ability of SigMA to extract coeval and
co-moving populations.

5. A large fraction of clusters is seen towards well-known Sco-
Cen massive stars, too bright to be in Gaia EDR3, and are
(tentatively) associated with them. Because SigMA is not
aware of these massive stars, the association with clusters
also constitutes a validation test to SigMA.

6. When comparing the 48 SigMA stellar populations in Sco-
Cen to previous results from the literature we find mostly
agreement, however, several discrepancies exist. Visual se-
lection methods used recently on Gaia data of Sco-Cen pro-
duce a ∼15% larger number of candidates when compared
to unsupervised methods. On the other hand, unsupervised
methods like SigMA find more spatial and kinematical sub-
structure for the same data set, and produce samples with
lower contamination levels.

In the future, in particular with the radial velocities in the
upcoming Gaia DR3 data release (plus auxiliary radial velocity
surveys), a detailed comparative study of the different clustering
methods is fully warranted. The application of SigMA to upcom-
ing Gaia data releases promises the unveiling of detailed clusters
distributions like the one presented here but for all the nearest
benchmark star-forming regions. Reconstructing an accurate and
high-spatial resolution Star Formation History of the last 50 Myr
in the Local Milky Way with Gaia data is within reach.
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Appendix A: Gaia EDR3 data retrieval

The Gaia EDR3 data was downloaded from the Gaia Archive17

using the following ADQL query:

SELECT * FROM gaiaedr3.gaia_source

WHERE (1000./parallax*COS(l*PI()/180)*COS(b*PI()/180))>-50

AND (1000./parallax*COS(l*PI()/180)*COS(b*PI()/180))<250

AND (1000./parallax*SIN(l*PI()/180)*COS(b*PI()/180))>-200

AND (1000./parallax*SIN(l*PI()/180)*COS(b*PI()/180))<50

AND (1000./parallax*SIN(b*PI()/180))>-95

AND (1000./parallax*SIN(b*PI()/180))<100

AND (parallax_error/parallax)<0.2

AND parallax>0.

AND pmra_error<2.

AND pmdec_error<2.

The parameter fidelity_v2 from Rybizki et al. (2022) was re-
trieved with the following ADQL query, using the Topcat TAP

Query and the GAVO service18:

SELECT mine.source_id, gaia.*

FROM gedr3spur.main AS gaia

JOIN tap_upload.t1 AS mine

USING (source_id)

In Sect. 4.2 we compare the SigMA clusters with recent liter-
ature samples. To this end we cross-match the samples using the
Gaia EDR3 source_id. This cross-match is straight forward for
the samples of Schmitt et al. (2021), Squicciarini et al. (2021),
and Luhman (2022a), who also used Gaia EDR3 data. In the
case of Damiani et al. (2019) and Kerr et al. (2021), who used
Gaia DR2 data, we first retrieve the Gaia EDR3 source_id us-
ing the gaiaedr3.dr2_neighbourhood catalog from the Gaia
Archive, since the DR2 and EDR3 source_ids are not generally
the same. Such a cross-match delivers few sources that have sev-
eral possible matches of EDR3 wit DR2 sources (see Torra et al.
2021; Gaia Collaboration et al. 2021a). In such cases we choose
the closer match, using the provided angular_distance pa-
rameter.

Appendix B: Modality test procedure by Burman &

Polonik (2009)

Here we highlight the work of Burman & Polonik (2009) more
closely, who’s modality test procedure we adopt in this work.
The modality procedure is tied to the notion of a density dip
along a path between two points in the data set. In the following,
we aim to define the concept of such a path formally.

We consider directed, continuous paths from x1 to x2

through input space X. By assuming there exists a parametriza-
tion r(t), with t ∈ [0, 1], the path becomes the image of r(t).
With this map, we can uniquely express every point on the path
via the parameter t. For example, its start and endpoints are given
by x1 = r(0) and x2 = r(1), respectively.

Let f be the underlying density function and x1 and x2 two
candidate modes of f . We assume, without loss of generality,
that f (x1) < f (x2). If all possible paths undergo a density dip
when moving from x1 to x2, both points are found in two distinct
modal regions:

∃ t ∈ (0, 1) : f (r(t)) < f (x1) (B.1)

Conversely, if we can find a path between x1 and x2 where
all points have a higher density than x1, both points are part of
the same modal region:

f (r(t)) ≥ f (x1) ∀ t ∈ (0, 1] (B.2)

17 https://gea.esac.esa.int/archive/
18 German Astrophysical Virtual Observatory, https://dc.zah.
uni-heidelberg.de/

Eq. (B.2) describes the case of single-modality, which consti-
tutes the null hypothesis we aim to reject. For general pairs of
modal candidates it becomes:

f (r(t)) ≥ min( f (x1), f (x2)) ∀ t ∈ (0, 1] (B.3)

An equivalent and useful formulation is obtained by taking the
logarithm on both sides; after that the left side is subtracted from
the inequality.

SB(t) := −log f (r(t)) +min(log f (x1), log f (x2)) (B.4)

Using the variable SB(t), we can formulate the null hypothesis
as follows:

H0 : SB(t) ≤ 0 ∀ t ∈ (0, 1) (B.5)

Rather than testing H0 across the full path a point-wise test H0,t :
SB(t) ≤ 0 for some values of t is employed.

Since we do not have access to the underlying density f ,
we cannot test the hypothesis in Eq. (B.5) directly. Instead,
we have a data set of d-dimensional random variables drawn
from f . Given proper normalization of the coordinate axes (see
Sect. 3.3.3), Burman & Polonik (2009) show that the follow-
ing expression is asymptotically standard normal distributed and
converges – up to a constant factor – to SB(t) as the number data
samples approaches infinity:

ŜB(t) = d
√

k/2
[
log dk(r(t)) −max(log dk(x1), log dk(x2)

]

(B.6)

Here dk(x) denotes the distance to the k’th nearest neighbor of
the point x. The distance is an approximation to the density f .
Due to their inverse proportionality the sign is flipped between
Eq. (B.4) and Eq. (B.6); and the minimum is replaced with the
maximum function.

Since the corresponding test statistic ŜB(t) is approximately
standard normally distributed, the null hypothesis is rejected at
significance level α if

ŜB(t) ≥ Φ−1(1 − α) (B.7)

where Φ is the standard normal cdf. Therefore, if any t ∈ (0, 1)
fulfills condition (B.7), H0 is rejected.

Due to the employment of k nearest neighbor technique, this
test procedure applies naturally to multivariate data without the
need of projecting the data onto a one-dimensional line, as is
the case for most modality tests. Furthermore, nearest neigh-
bor queries have access to very efficient algorithms such as the
Kd-tree (Bentley 1975) which reduces neighbor searches to only
O(logN) distance computation. Thus, these considerations allow
us to study the modality structure of the data set at Gaia data
scales without careful projection loss considerations.

Burman & Polonik (2009) describe the iterative application
of the test procedure to modal candidates to cluster the data into
significant modal regions. However, the test is employed along
the straight line path connecting two modes, which limits the
procedure to convex cluster shapes only. Moreover, to detect sig-
nificant dips reliably, enough samples need to be tested along the
path.

We aim to provide a natural extension to the presented pro-
cedure, which applies to arbitrary cluster shapes while reducing
the number of point-wise tests to a single one; see Sect. 3.2 for a
detailed description.
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Appendix C: Scaling factor distribution

Here we discuss the derivation of the scaling factor distribution,
which we use to weigh the velocity sub-space in the clustering
process. For a more detailed motivation see Sect. 3.3.3.

We replace the scaling factor variable cv with y to simplify
and shorten the reading flow. Additionally, compared to the main
text, we denote the distance to a cluster with r instead of d. This
notation makes the integration alongside the differential dr easier
to read (otherwise the differential would be dd).

Our goal is to obtain the distribution f (y | r0 ≤ r ≤ r1),
which describes the behavior of the scaling factor y for a given
range of distances to groups of interest. A simple way to find
this distribution is to interpret the empirical linear model g(r)
and associated Gaussian uncertainties as an improper probability
function f (r, y)19.

As we are dealing with an improper pdf, we consider the fol-
lowing proportionality condition and handle the normalization
of the left hand side later.

f (y | r0 ≤ r ≤ r1) ∝
∫ r1

r0

f (r, y) dr

∝
∫ r1

r0

f (y | r) f (r) dr

(C.1)

Since f (r) ∝ 1 is independent on the distance r we can add
it to the yet unknown constant normalization factor and move it
out of the integral. Hence we can write the target distribution as:

f (y | r0 ≤ r ≤ r1) ∝
∫ r1

r0

f (y | r) dr (C.2)

Thus, to obtain an analytic solution to Eq. (C.2) we need
an expression for the conditional pdf f (y | r). Assuming that
the data are Gaussian distributed around the linear model with
a constant standard deviation σ20, we can write the following
expression:

f (y | r) ∝ exp

(
− (y − g(r))2

2σ2

)
(C.3)

Figure C.1 schematically shows the integrating process where
the conditional pdfs f (y | r) are shown for r = 100 and r = 200.

By substituting Eq. (C.3) into Eq. (C.2) and solving the inte-
gral we obtain:

f (y | r0 ≤ r ≤ r1) ∝ erf

(
y − g(r0)
√

2σ

)
− erf

(
y − g(r1)
√

2σ

)
(C.4)

where erf(x) is the error function. To normalize the probability
density in Eq. (C.4), we compute its integral. Since both sum-
mands are of the same type, we only need to solve the following
integral:

I(c) =

∫ +∞

−∞
erf

(
y − c
√

2σ

)
dy (C.5)

The variable c represents the constants g(r0) and g(r1). The inte-
gral in Eq. (C.5) evaluates to:

I(c) = exp

(
−(y − c)2

2σ2

) √
2σ2

π
+ (y − c) erf

(
y − c
√

2σ

) ∣∣∣∣∣∣
+∞

−∞
(C.6)

19 Since the marginal distribution f (r) ∝ 1 is a uniform distribution
over R+, the joint distribution f (r, y) is improper as it does not integrate
to unity.
20 We observe the standard deviation to be approximately constant for
the range of interest; r ∈ [100, 200]
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Fig. C.1. Scaling factor determination via the empirical distance-scaling
relationship. The scaling factor distribution for groups at a distance be-
tween 100 − 200 pc depends on the conditional distribution of scaling
factors at a given distance f (cx/cv | r).

Thus, the integral of Eq. (C.4) can be expressed in the following
form:
∫ +∞

−∞
f (y | r0 ≤ r ≤ r1) = n × [I(g(r0)) − I(g(r1))]

!
= 1 (C.7)

The factor n represents the normalization factor. Rearranging the
resulting terms by function type, we get the following:

I(g(r0)) − I(g(r1)) = h(y) + l(y)

∣∣∣∣∣∣
+∞

−∞
(C.8)

The functions h(y) and l(y) describe a sum of exponential and er-
ror functions, respectively. The functions are defined in the fol-
lowing:

h(y) =

√
2σ2

π

[
exp

(
−(y − g(r0))2

2σ2

)
− exp

(
−(y − g(r1))2

2σ2

)]

l(y) = (y − g(r0)) erf

(
y − g(r0)
√

2σ

)
− (y − g(r1)) erf

(
y − g(r1)
√

2σ

)

(C.9)

We evaluate the summands of this primitive integral at the bor-
der individually. First, sum Gaussians in h(y) goes to zero as y
approaches negative and positive infinity:

lim
y→±∞

h(y) = 0 (C.10)

The sum of error functions can be rearranged into the following
form:

l(y) = y

[
erf

(
y − g(r0)
√

2σ

)
− erf

(
y − g(r1)
√

2σ

)]

+ g(r1) erf

(
y − g(r1)
√

2σ

)
− g(r0) erf

(
y − g(r0)
√

2σ

) (C.11)

Evaluating l(y) at the borders results in the following:

lim
y→±∞

y

[
erf

(
y − g(r0)
√

2σ

)
− erf

(
y − g(r1)
√

2σ

)]
= 0 (C.12)

and

lim
y→±∞

[
g(r1) erf

(
y − g(r1)
√

2σ

)
− g(r0) erf

(
y − g(r0)
√

2σ

)]
=

= ±(g(r1) − g(r0))

(C.13)
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This last term is the only non-zero contribution to the integral.
Its evaluation at the lower edge results in the same but negative
value to the upper edge. Thus, the area under the curve is twice
that value. The normalization factor n then becomes the follow-
ing:

I(g(r0)) − I(g(r1)) = 2[g(r1) − g(r0)]

n =
1

2[g(r1) − g(r0)]
=:

1

2∆g

(C.14)

The function value difference, ∆g, is always positive since g(r)
is a strictly monotonically increasing function and r1 > r0, see
Fig. C.1. Thus, n is a proper normalization factor that is non-
zero and positive for all pairs r0 and r1. Using this normalization
constant, the conditional pdf can be written as:

f (y | r0 ≤ r ≤ r1) =
1

2∆g

[
erf

(
y − g(r0)
√

2σ

)
− erf

(
y − g(r1)
√

2σ

)]

(C.15)

The top part of Figure C.2 shows the resulting pdf when ap-
plying Eq. (C.4) to sources in Sco-Cen, where we assume a dis-
tance range of r ∈ [100, 200]. Here we can see an immediate
caveat of our simple constant model uncertainty assumption; the
resulting distribution has infinite support, thus, non-zero proba-
bility density for f (y < 0 | r). Although physically meaningless,
the total probability of such events is small and, as seen below,
does not drastically influence the final sample set.

We consider sampling strategies to obtain a set of scaling
factors to use in the clustering process. Random sampling can
generate almost identical realizations, so the possible solution
space might not be covered evenly. Since we need to perform a
separate clustering, run for each sample drawn, keeping the num-
ber as small as possible is essential. To cover the space evenly
while considering the underlying probability distribution, we se-
lect a set of 10 samples that represent 10 quantiles of the pdf. We
separate the pdf into 10 continuous intervals with equal proba-
bilities from which we derive samples as the mean position of
these intervals.

To compute the quantiles, we determine the cdf by solving
the integral over the conditional pdf in Eq. (C.15); using func-
tions h(y) and l(y) defined in Eq. (C.9) the cdf becomes:

F(y | r0 ≤ r ≤ r1) =

∫
f (y | r0 ≤ r ≤ r1) dy

=
1

2∆g
[h(y) + l(y)] +C

(C.16)

To obtain a proper cdf from Eq. (C.16), we set the constant of
integration C to 1/2. Thus, the cdf becomes:

F(y | r0 ≤ r ≤ r1) =
1

2

(
1 +

1

∆g
[h(y) + l(y)]

)
(C.17)

The cdf defined in Eq. (C.16) for r ∈ [100, 200] is shown in
the bottom part of Fig. C.2. The ten red scatter points21 indicate
samples drawn from the 10-quantile splitting procedure where
horizontal lines indicate equal probability intervals. To invert the
cdf and obtain scaling fraction samples from F−1(y | r0 ≤ r ≤ r1)
we used a numerical approximation22.

0.05

0.10

f (cv | 100< r<200)

Sample

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

cv

Fig. C.2. Pdf and cdf of scaling factor conditioned on a given range of
distances. The ten red scatter points indicate samples drawn from the
10-quantile splitting procedure. We separate the pdf into 10 continuous
intervals with equal probabilities from which we derive samples as the
mean position of these intervals.

Appendix D: Projected velocities

The reflex motion of the Sun influences how the observed
tangential velocities are distributed in vα/vδ space. In Fig-
ure D.1 we show theoretical positions of objects if they
follow a circular orbit around the Galactic center at the
given positions within the Galactic potential. The orbits are
estimated within a Milky Way potential including a disk,
bulge, and halo component, using the python package galpy
by Bovy (2015) (galpy.potential.MWPotential2014;
galpy.potential.vcirc) and assuming the local standard of
rest (LSR) velocity from Schönrich et al. (2010). The projected
motions are given for all Galactic longitude (l) positions at
distances (d) of 100 pc and 200 pc and at Galactic latitudes
(b) of −20◦, 0◦, and 25◦. These d and b ranges encompass the
Sco-Cen region, which reaches from about l = 0◦ to 290◦.
The members of Sco-Cen within the selected SigMA clusters
are plotted as gray dots in Fig. D.1. Overall, the young stellar
groups in Sco-Cen seem to roughly follow expected motions in
our Galaxy assuming LSR velocities. The figure additionally
highlights the issues the come with the projected tangential
velocity plane vα/vδ, which is a function of position in the sky
and distance of a source. Very nearby sources, like in nearby
young local associations, cloud cover large areas of this plane,

21 The velocity scaling values are:
cv = {2.17, 3.9, 4.93, 5.76, 6.51, 7.23, 7.97, 8.8, 9.84, 11.56}.
22 We made use of the open source library pynverse v0.1.4.4 to
calculate the numerical inverse of the cdf.
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Fig. D.1. Tangential velocities in the vα/vδ plane of theoretical sources with circular Galactic orbits and LSR velocities. Shown are six different
cases, while each of the lines represents sources at all l positions. The six cases are for two different distances (100 pc, dashed lines; 200 pc,
dash-dotted lines), and for three different b positions (b = −20◦, green; b = 0◦, blue; b = 25◦, magenta). The indicated longitude positions at l = 0◦

(box symbols) and l = 290◦ (diamond symbols) roughly mark the eastern and western borders of Sco-Cen. The SigMA selected Sco-Cen members
are shown with gray dots. See also Fig. 8 for a separation of the clusters.

while being at the same time confined in 3D velocity space
(UVW).

Appendix E: The Gaia EDR3 HRD

The HRD in Fig. 9 in Sect. 4 shows a color-absolute-magnitude
diagram using the magnitudes from the Gaia EDR3 passbands
G versus BP − RP. The G band is corrected as recommended in
Gaia Collaboration et al. (2021b)23, and the absolute magnitude
Gabs is calculated with the distance modulus using the inverse of
the parallax as distance. We applied the following quality criteria
to the photometry, which mainly affects faint sources.

Gerr < 0.006

∧BPerr < 0.1

∧RPerr < 0.02

(E.1)

This cut reduces lower quality measurements, mostly found scat-
tered at the low-mass regime. The magnitude errors are calcu-
lated as follows:

Gerr = 1.0857/phot_g_mean_flux_over_error

BPerr = 1.0857/phot_bp_mean_flux_over_error

RPerr = 1.0857/phot_rp_mean_flux_over_error

(E.2)

The isochrone in Fig. 9 shows a 25 Myr PARSEC
isochrone24 for Gaia EDR3 passbands (e.g., Bressan et al. 2012;

23 https://github.com/agabrown/

gaiaedr3-6p-gband-correction
24 http://stev.oapd.inaf.it/cgi-bin/cmd

Chen et al. 2014, 2015; Marigo et al. 2017; Riello et al. 2021),
assuming solar metallicity (metal fraction z = 0.0152) and no
extinction. To get a measure for the contamination from older
sources (older than the expected . 20 Myr), we select sources
to the left of a 25 Myr isochrone, allowing for random scat-
ter around the 20 Myr isochrone. Additionally, we do not con-
sider sources at the upper–main-sequence (UMS), since there
the trend reverses (younger sources are to the left of the UMS).
Hence, we apply a cut at Gabs > 3 mag, only selecting fainter
sources as older-source candidates. An additional selection cut
is applied at the low-mass regime, where we find that a sequence
of older sources is clearly discernible, while the majority of low-
mass stars is scattered around the 25 Myr low-mass–isochrone
and at younger ages. Since the models for low-mass stars are not
as well developed as for intermediate- and high-mass stars, and
the overall uncertainties for fainter sources are generally higher,
we apply an additional cut, as shown by the bottom dashed slope
in Fig. 9 (middle panel). This slope is defined as follows, select-
ing older sources to the left of it:

Gabs > 3 · (BP − RP − 7.4) + 1.95 (E.3)

The combined conditions deliver 333 out of 8392 sources
with applied photometric quality criteria, hence about 4%, which
are possible contaminants from older populations within the
SigMA clusters. Considering the chosen borders, we like to
stress that this separation can only be seen as rough estimate,
in particular because we made the additional slope cut by hand
(Eq. (E.3)), hence, the contamination by old sources is likely at
least about 4% or somewhat higher. Without the cut in Eq. (E.3)
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and using only the 25 Myr isochrone plus the cut at the UMS, the
contamination fraction from older sources could be up to 15%.

Finally, to get an estimate of sub-stellar sources in our sam-
ple, we use a 0.09 M⊙ iso-mass line in Fig. 9 (right panel), which
is again extracted from PARSEC models using ages from 104 to
1010 yr, to get a wide range. The lowest masses in the PARSEC
models are given for 0.09 M⊙, hence we select sources below
this line to get sources with masses of about 0.08 M⊙ (hydrogen-
burning limit) and lower (e.g., Baraffe et al. 1998; Burrows et al.
2001; Dieterich et al. 2014). The uncertainties at the low-mass
regime make this selection only a rough estimate. With the cut
we find that there are 552 out of 8392 (6.6%), or out of 8059
(6.8%) sources (considering either all sources from the left panel
or only the younger sources from the middle panel in Fig. 9).
This selection indicates a fraction of sub-stellar objects of about
6–7% within the SigMA clusters.

Appendix F: Comparisons with selected literature

samples

Here we provide two additional tables, giving an overview of
the literature comparisions between the SigMA clusters and the
Sco-Cen samples in Damiani et al. (2019) and Squicciarini et al.
(2021) in Table F.1, and Kerr et al. (2021) in Table F.2. More
details on the comparissons can be found in the main part of this
paper in Sect. 4.2.
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Table F.1. Comparing the SigMA clusters with stellar group selections from Damiani et al. (2019) and from Squicciarini et al. (2021). Only those
SigMA groups which have cross-matches with either of the two literature samples are given here.

SigMA Name (SigMA) Nra Matches with DDP19b Matches with SGP21c

1 (US) ρOph/L1688 463 US-f(3)US-n(287)US-D2(57)N(14) G1(404)G4(1)D(27)

2 ν Sco 139 US-n(59)US-D2(62)N(2) G2(105)G3(2)G6(8)D(19)

3 δSco 388 US-f(22)US-n(49)D1(29)US-D2(254)N(1) G1(6)G2(1)G3(330)G4(3)G5(10)G6(2)G8(1)D(26)

4 βSco 147 US-f(51)US-n(1)US-D2(80)N(3) G3(4)G4(100)G6(33)D(5)

5 βSco-South 28 US-f(3)US-n(10)US-D2(9) G4(19)G5(1)D(6)

6 σSco 354 US-f(141)US-n(2)D1(5)D2a(1)US-D2(162)N(3) G4(1)G5(79)D(250)

7 Antares 449 US-f(68)US-n(48)D1(50)D2a(4)US-D2(210)N(15) G1(11)G3(3)G7(41)G8(27)D(308)

8 Scorpio-Body 315 D1(2)D2a(208)US-D2(22)N(5) D(1)

9 US-foreground-3 46 D1(37)N(1)

10 US-foreground-1 170 D1(124)US-D2(1)N(10) D(1)

11 US-foreground-2 59 D1(35)US-D2(2)N(8) D(12)

12 (UCL) Lupus-3 139 LupIII(67)D2a(25)D2b(27)N(1)

13 Lupus-4 23 D2a(2)D2b(21)

14 ǫ Norma 69 D2a(58)D2b(1)N(1)

15 V1062 Sco 794 UCL-1(528)D1(8)D2a(109)N(8)

16 Lupus-West 112 UCL-2(47)D1(4)D2b(47)N(2)

17 Lupus-1 110 UCL-3(1)D1(55)D2a(19)D2b(12)N(3)

18 ψ02 Lup 229 D1(169)D2a(8)D2b(12)N(1) D(3)

19 νCen 897 D1(23)D2b(684)N(33)

20 ρLup 116 D1(32)D2b(64)N(4)

21 V795 Cen 351 D1(48)D2b(247)N(4)

22 ηLup 242 D1(214)D2a(2)D2b(2)N(2)

23 b Cen 546 UCL-3(2)D1(354)D2a(1)D2b(82)N(18)

24 V1019 Cen 188 D2a(12)D2b(141)N(2)

25 Lupus-East 87 D1(5)D2a(48)D2b(19)

26 µSco 80 UCL-1(51)D1(2)D2a(7)N(1)

27 e Lup 139 D1(122)D2b(4)

28 φ02 Lup 116 UCL-3(40)D1(48)D2a(3)D2b(13)N(3)

29 Libra-South 38 D1(5)D2a(6)D2b(15)US-D2(2)

32 (LCC) Musca-foreground 67 D2b(28)N(1)

33 Centaurus-Far 24 D2b(20)

34 αMusca 64 D1(1)D2b(55)

35 Acrux 215 LCC-1(84)D1(1)D2b(107)N(1)

36 σCen 1417 D1(25)D2b(1116)N(41)

37 f Cen 326 D1(8)D2b(265)N(3)

38 (Lupus) B59 21 N(15)

40 Pipe-foreground 29 D1(8)D2a(1)

42 θOph 82 D2a(32)US-D2(2)N(2)

Notes. (a) Number of sources from this work, for a direct comparison with the cross-matches as given in brackets in Cols. 4–5. (b) The DPP19 group
shortcuts are given for eight compact clusterings (UCL-1, UCL-2, UCL-3, Lupus 3, LCC-1, US-far, US-near), for four diffuse populations (D1,
D2a, D2b, US-D2), and for sources that have not been assigned to any of these groups (N), while the number in brackets gives the cross-matches
with the respective SigMA cluster. (c) The SGB21 groups (G) are numbered from 1 to 8, and their diffuse population is given with D. Again, the
number of cross-matches is given in brackets. The eight groups in SGB21 are associated with the brightest star in each group as follows: G1–i Sco;
G2–ν Sco B; G3–b Sco; G4–HD 144273; G5–HIP 77900; G6–HIP 78968; G7–HIP 79910; G8–HD 146467.
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Table F.2. Comparing the SigMA clusters with Kerr et al. (2021) clusters toward Sco-Cen.

SigMA Name (SigMA) Nra TLCb EOMc LEAFd Name (KRK21)e

1 ρOph/L1688 463 22(275) 17(249) I(102) UpperSco-I/ρOph

2 ν Sco 139 22(85) 17(83) E(53) UpperSco-E

3 δSco 388 22(260) 17(258) H(90)I(1) UpperSco-H

4 βSco 147 22(106) 17(105) G(28) UpperSco-G

5 βSco-South 28 22(12) 17(10) UpperSco

6 σSco 354 22(228) 17(194) C(16)D(22) UpperSco-C,D

7 Antares 449 22(309) 17(257) A(3)B(10)F(25) UpperSco-A,B,F

8 Scorpio-Body 315 22(164) 16(12)17(41) UpperSco

9 US-foreground-3 46 22(20) 9(1)

10 US-foreground-1 170 22(76) 13(26) EOM13

11 US-foreground-2 59 22(27) 13(3)17(1)

12 Lupus-3 139 22(95) 12(81) A(46) Lupus-IV

13 Lupus-4 23 22(20) 12(19) B(14) Lupus-III

14 ǫ Norma 69 22(47) 14(17) EOM14

15 V1062 Sco 794 22(409) 14(3)15(337) LowerSco

16 Lupus-West 112 22(50) 11(33) UPK606

17 Lupus-1 110 22(59) 23(5)

18 ψ02 Lup 229 22(110) 17(7) UpperSco

19 νCen 897 22(294) 11(1)24(107)26(3) EOM24

20 ρLup 116 22(53)

21 V795 Cen 351 22(186) 11(2)21(11)25(11)

22 ηLup 242 22(161) 22(101) EOM22

23 b Cen 546 22(182) 23(1)

24 V1019 Cen 188 22(45)

25 Lupus-East 87 22(50)

26 µSco 80 22(37) 15(31) LowerSco

27 e Lup 139 22(85) 20(73) EOM20

28 φ02 Lup 116 22(37) 23(5)

29 Libra-South 38 22(10)

30 ηCham 20 22(16) 18(16) ηCham

31 ǫ Cham 41 22(27) 27(23) A(16) LCC-A/ǫ Cham

32 Musca-foreground 67 22(46) 27(37) B(13) LCC-B

33 Centaurus-Far 24 21(18) 3(18) Cen-South

34 αMusca 64 22(44) 27(36) B(1)C(10) LCC-C/Crux-South

35 Acrux 215 22(153) 27(132) B(1)C(80) LCC-C/Crux-South

36 σCen 1417 22(823) 27(441) C(4)D(12)E(47) LCC-C,D,E

37 f Cen 326 22(191) 26(36)27(2) EOM26

38 B59 21 22(10) 6(9) Pipe

39 Sgr-West 15 22(3)

40 Pipe-foreground 29 22(13) 9(12) EOM9

41 Pipe-North 22 22(10)

42 θOph 82 22(41) 10(28) Theia67

43 Corona Australis 124 22(71) 8(70) CrA

44 CrA-North 265 22(173) 7(1)8(162) CrA

45 Scorpio-Sting 36 22(17) 7(10) EOM7

46 Chamaeleon-1 148 21(93) 1(93) Chamaeleon-1

47 Chamaeleon-2 40 21(26) 2(26) Chamaeleon-2

48 L134/L183 20 22(5)

Notes. (a) Number of sources from this work, for a direct comparison with the number of cross-matches as given in brackets in Cols. 4–6. (b) The
numbers give the KRK21 TLC group, with the number of cross-matches in brackets. There have been only cross-matches with the TLC groups
21 and 22. (c) The numbers give the KRK21 EOM sub-group, with the number of cross-matches in brackets, wile each EOM represents a sub-
clustering within the lower level TLC group. (d) The letters give the KRK21 LEAF sub-group, with the number of cross-matches in brackets, wile
a LEAF group represents a sub-clustering within the lower level EOM group. (e) Group names from KRK21, if significant overlap with SigMA
clusters was present. Only the (sub)group with the most significant number of cross-matches is given, as apparent from the numbers in brackets in
Cols. 5–6.
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5. Conclusion

In the following, the main results of this thesis are summarized in Sect. 5.1 and an outlook
on future work and follow-up projects are discussed in Sect. 5.2.

5.1. Summary of results

The main results of this thesis are two-fold: First, the thesis proposes two analysis
techniques for the detailed study of stellar structures. Second, the application of these
tools to Gaia DR2 and EDR3 update stellar cluster catalogs from which several domain
results can be derived.

1. In this thesis, the analysis pipeline Uncover was developed, facilitating the use
of powerful one-class support vector machines for extensive membership searches.
Since principled model selection for one-class models remains an open problem [110],
this work proposed selection heuristics involving interpretable summary statistics.
In Ratzenböck et al. [94], we deőned six complementary summary statistics based
on the number and distributional characteristics of yet unidentiőed cluster members.
These statistics, such as expected ranges on velocity dispersion and positional extent,
are speciőed in relation to high-ődelity members used to train OCSVM models.
This work showed that by sampling random hyper-parameters and rejecting models
if they do not adhere to a priori-deőned summary statistics ranges, effectively builds
a bagging classiőer of one-class support vector machines1.

2. Building on results from Ratzenböck et al. [94], Uncover was extended to work
with vague prior knowledge. As summary statistics ranges could not be determined
a priori, in Grasser et al. [51] we searched for suitable model ensembles and the
corresponding summary statistics ranges. This work determined an objective
that aimed to maximize the number of inferred members while minimizing the
contamination fraction deőned by comparing the 3D velocity distribution of training
and inferred members2. Finally, suitable ensembles were selected in the łnumber of

1In cases of high model ŕexibility and unknown őeld star contamination content in the training set,
bagging improves accuracy and reduces variance in the prediction [50]

2The contamination fraction is determined by comparing the 3D velocity distribution of training
members to inferred candidate sources. Precisely, the training samples are őrst modeled as a 3D
Gaussian distribution in velocity space (mean and covariance matrix are determined by maximizing
the likelihood of the training data). The contamination fraction is the number of candidate members
outside the 3σ (99.7%) region of training sources compared to the total number of inferred sources
(with a valid radial velocity measurement). Since only stars with radial velocity measurements have
access to the full 3D velocity information, the contamination fraction is a very rough estimate of the
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candidatesž and łcontamination fractionž plane. The selected model ensemble, i.e.,
the őnal classiőer, was validated by considering the distribution of inferred sources
in the HRD, which was previously untouched information. Inferred members can
also be validated via their isochronal age in comparison to training set sources.
The residual distribution of inferred candidates and training set sources to the
best őtting isochrone (to the training set) provided strong evidence that uncovered
sources are actual members of the ρ Oph system.

3. The application of Uncover to the recently discovered Meingast 1 stream [82]
found about 2000 high-ődelity stream members, increasing the source population
approximately tenfold. As the newly predicted stream members are no longer limited
by radial velocity measurements (as was the case in the discovery paper), the new
selection substantially extended the main sequence to unveil the stream’s population
across the entire stellar mass spectrum, from B stars to M stars3, including white
dwarfs. The comparison in the HRD of the newly identiőed stream members with
the Pleiades cluster (apart from being slightly more metal poor) suggested a similar
age, correcting the original age estimate which was from 1 Gyr to ∼ 110 Myr. In
the mass range of ∼ 0.2 < M⊙ < ∼ 4M⊙, this work identiőed a normal IMF which
allowed an estimation of the total mass of the stream to approximately 2000 M⊙,
making it by far the most massive stream in the solar neighborhood. In addition,
this work was able to assign several white dwarfs to the Meingast 1 stream.

4. The application of Uncover to the ρ Oph region found 191 new young stellar object
(YSO) candidates in Gaia EDR3 belonging to the ρ Oph system. An analysis of
stellar types revealed that these new sources appear to be mainly Class III M stars
and substellar objects. A total of 28 new members showed excess infrared emission
suggesting the presence of circumstellar dusty disks. The proper motion analysis of
the ρ Oph region revealed a bi-modal structure, suggesting the presence of two main
populations: the őrst population (1022 sources) comprises clusters of young stars
around the ρ Oph star and the main Ophiuchus clouds (L1688, L1689, L1709). The
second population (304 sources) is slightly older and more dispersed, with a similar
but distinct proper motion from the őrst. Both populations occupy approximately
the same 3D volume. The second population’s age and proper motion suggested that
its origin may have originated from the Upper Scorpius (US) population. Finally,
the velocity difference of about 4.1 km/s between the two populations suggested a
de-mixing of both populations in 3D space in about 4 Myr.

5. In this thesis a design study was performed which resulted in the visualization tool
Uncover, a further reőnement of previously developed extensive membership analysis
methods. This tool expands on the quantitative model selection process of previous
versions of Uncover by introducing astronomers’ qualitative judgement of inferred

true contamination.
3The spectral classiőcation of stars is subdivided into seven groups using the letters O, B, A, F, G, K,

and M. This sequence describes a gradual decrease in temperature, mass, and size from hottest (O
type) to the coolest (M type) stars.
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cluster candidates into the analysis pipeline. Although no ground truth information
is available for individual stars, systems of multiple stars can be validated by domain
experts (e.g., using tools such as the HRD). Typically, qualitative model assessment
is able to create maximal trust in the őnal classiőer. Further, although we have
demonstrated that model selection can be achieved by limiting the contamination
fraction, this methodology depends on radial velocity measurements, which are
scarce in Gaia EDR3.
To support interactively building interpretable and powerful models in unsupervised
scenarios where qualitative model validation is possible, this thesis devised a workŕow
with the following general guidelines: őrst, provide an overview of possible model
solutions. In the design study, the vast space of possible model conőgurations was
concisely summarized using a hierarchical clustering approach. Different model
clustering solutions could be explored by users who control the granularity of model
groups. Second, to support the model evaluation additional validation tools such as
HRD and 3D kinematic information were provided. Third, Uncover facilitates prior
knowledge declaration and updating on yet unseen cluster members via interpretable
summary statistics ranges. To update and substantiate the initial, potentially vague
prior knowledge, this work provided the following: the users’ qualitative model
assessment is translated into updating initial summary statistics rules. Further, users
were able to explore correlations between summary statistics via linked heatmaps
and perform What-If analyzes to study the effect of individual summary statistics
on inferred stars.
In a usability study with nine domain experts and two use cases, users were able to
efficiently build effective and high-performance novelty detection models. Further,
in a case study we efficiently recovered the second population discovered in Grasser
et al. [51] in a single session of Uncover.

6. This thesis developed an innovative clustering algorithm SigMA that identiőes
density peaks, separated by substantial dips, as clusters. By using a graph-based
approach, SigMA detects peaks and dips directly in the multi-dimensional phase
space. The method tracks clusters though a family of gradually smoothed density
őelds, creating a scale space of clustering solutions. The clustering solution is
obtained by identifying unchanged and stable clusters in scale-space that are
independent from a single density estimate. To integrate observational uncertainties
into the clustering procedure, SigMA employs a re-sampling strategy from which
density deviations in the dip depth across samples are derived. SigMA deals with
őeld stars in a two-step approach: őrst, the cluster’s bulk 3D motion is determined.
This work deőned an objective function that measures the differences in observed
proper motions and idealized proper motions given a random bulk motion. By
minimizing this objective function SigMA is able to approximate the cluster’s 3D
bulk velocity. Second, the bulk motion is used to compute optimal radial velocities
for cluster candidates, which permits a full 6D phase-space analysis to remove őeld
stars based on their phase-space density. Thus, SigMA is őne-tuned to large-scale
surveys in astrophysics. As shown in Ch. 4, this new method is specialized to identify

103



co-spatial and co-moving groups with non-convex shapes and variable densities,
with a measure of signiőcance. SigMA does not need any photometric pre-őltering
and scales to millions of points. It is capable of őnding clusters in Gaia EDR3 data,
reaching stellar volume densities as low as 0.01 stars/pc3 and tangential velocity
differences of about 0.3 km/s between clusters.

7. SigMA identiőed about 104 Sco-Cen members arranged in 48 clusters of co-spatial
and co-moving young stars. The HRD of each cluster showed a narrow and well-
deőned sequence. Because SigMA is not aware of a star’s brightness nor color,
the well-deőned stellar sequences in the HRD constitute a validation test to the
ability of SigMA to extract coeval and co-moving populations. This work found
that a large fraction of clusters towards Sco-Cen have massive stars, too bright to
be in Gaia EDR3, which are (tentatively) associated with them. Because SigMA

is not aware of these massive stars, the association with clusters also constitutes
a validation test to SigMA, based on the fact that massive stars are often found
at the centers of rich clusters. When comparing the 48 SigMA stellar populations
in Sco-Cen to previous results from the literature we found mostly agreement,
however, several discrepancies exist. Manual selection heuristics (via on-sky and
proper motion cuts) used recently on Gaia data of Sco-Cen produce a ∼15% larger
number of candidates when compared to unsupervised methods. On the other hand,
unsupervised methods like SigMA found more spatial and kinematical substructure
for the same data set, and produce samples with lower contamination levels.

5.2. Future work

The tools and stellar cluster catalogs originated from this thesis have already sparked
some potential future work which will be presented in the following section. Several of
these projects are currently (as of May 2022) in active development and their preliminary
results are brieŕy outlined.

In Sect. 5.2.1 age determination of the groups identiőed in Sco-Cen is discussed. In
Sect. 5.2.2 the value of Uncover and SigMA for future clustering applications to the local
Milky Way is highlighted. In Sect. 5.2.3 possible extensions to the membership analysis
approach of Uncover are presented. Finally, in Sect. 5.2.4 further work on SigMA in the
direction of visual hyper-parameter space exploration is highlighted.

5.2.1. The star formation history of Sco-Cen

Sub-populations encode different star formation events and offer a path to understand
how the formation process proceeds in time and space inside a cloud, as well as an
understanding of the origin of the global velocity dispersion in clusters and associations,
critical for the dispersal of young populations into the Galactic őeld. Knowing the age,
motion, size, and mass of these sub-populations will open a new window on how nature
forms bounded clusters and associations, by allowing a reconstruction of the sequence of
events in a star formation region.
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In a next step, the SigMA identiőed clusters can be used for a precise age study of the
48 stellar groups to reveal the star formation history of the OB association. In a őrst pilot
study we őnd that the HRD of each cluster shows a narrow and well-deőned sequence from
which we extract an isochronal age. Thus, we produce a high-resolution age map of the
association revealing an older population at the core of Upper Centaurus-Lupus (UCL),
and sequential, age ordered branches reaching to outer edges of the 3D distribution of
sources in Sco-Cen. Further, we can now precisely date stars inside US, solving its age
controversy. What is normally taken in the literature as US consists of 12 clusters with
ages between 4 and 17 Myr, naturally explaining the wide age spread. Finally, using this
high-resolution age map we compile a catalog with over thousands of Sco-Cen brown
dwarf candidates.

5.2.2. Application of SigMA and Uncover to the local Milky Way

SigMA can disentangle populations that are moving with velocities as small as 0.3 km/s.
In a complementary approach to identifying stellar structures, the application of Uncover
ensures a complete source catalog; together with isochronal age dating, these tools can
provide an unseen high-resolution age map of the local kpc. Together with Gaia DR3, the
legacy value of such a catalog would be huge; its accurate time scales could feed many
science cases such as the study of the initial mass function (IMF), star formation history,
the origin of associations, timescales for planet formation, and the dispersion of clusters
into the Galactic őeld.

5.2.3. Iterative model design

As shown throughout this thesis, OCSVMs are a powerful novelty detection method for
extensive analysis of star cluster membership. Their ability to incorporate previously
identiőed star cluster members into the search for new candidates gives them a powerful
advantage over fully unsupervised searches. However, the training set also limits the
model itself. The decision boundary created during the training process can reach beyond
the given training set only to a certain extent. In cases where the training set covers a
small sub-region of the entire population, Uncover is likely not able to őnd large portions
of the remaining sources.

To adapt the current analysis workŕow to these situations, an iterative and expanding
model procedure may be promising. A straight-forward way to facilitate an expanding
model is to allow the training set itself to grow in size. Thus, when the classiőer infers
new candidate members after each training iteration, a second workŕow step is added in
which a set of new high-ődelity cluster members is determined. To automate the process,
some quantitative measures (e.g., based on external factors such as HRD position or 3D
velocity in relation to the initial training set) are needed to identify these new training
set members.

If and under which conditions this procedure converges needs to be evaluated in future
research.
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5.2.4. Comprehensive visual parameter selection

When discussing the research goals in Sect.1.2.2, this thesis discussed potential research
avenues toward a consolidated star clustering approach. To recap, these were: (1) Visual

solution space exploration alongside clustering result validation options for domain
experts (e.g., HRD), (2) meaningful and interpretable hyper-parameters that
alleviate or facilitate manual solution space exploration, and (3) internal validation

criteria [79] optimized for star cluster results that enable automatic model selection.
This work focused on the second avenue, which resulted in the development of the

innovative SigMA analysis pipeline. Although model selection becomes easier with inter-
pretable hyper-parameters, depending on the complexity of input data, the output of
SigMA still needs some context to handle properly. In particular, exploring the scale-space
hierarchy and the inŕuence of different alpha values can become overwhelming without
proper visual presentation.

As discussed in Sect. 2.2, this thesis őnds that available visualization tools are not
transparent about the effects of different input parameters, but rather focus on the
clustering results itself. Since a blind trust in machine learning methods and their results
can lead to erroneous interpretations of data, interpretable łwhite boxž tools are highly
needed in the scientiőc community. This work identiőes the potential to implement the
clustering tool SigMA in a visual support system. The tool should support the analysis of
the sensitivity of different density smoothing parameters, i.e., the scale space, as well as
the inŕuence of different signiőcance levels α on the clustering solution.

By providing the environment mentioned above, astronomers may be able to properly
reŕect on the machine learning approach and the results it provides. In October 2021,
a pilot study was started together with master student Johannes Preisinger, in which
a series of interviews with eight domain scientists were conducted, which resulted in a
list of requirements such a tool has to fulőll. In end of April 2022, a őrst high-ődelity
prototype was presented to a group of 7 (4 completely new to the tool) domain experts
who interacted with the tool and provided further feedback towards a successful őnal
version. Future work is needed to deploy a őnal working version to facilitate large-scale
cluster analysis of Gaia data.
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List of abbreviations

G Graph over the data sample in which data points build the vertices.

L Level-set.

M⊙ Solar mass.

X The observed data.

x A d-dimensional data point.

α Signiőcance level of a statistical hypothesis test.

f̂ The estimated density function from data.

λ A real valued density threshold.

X The (compact) support of underlying dentity function f .

f The unknown data generating probability density function.

2D Two-dimensional.

3D Three-dimensional.

5D Five-dimensional.

6D Six-dimensional.

B Spectral classiőcation of the second hottest stars..

BANYAN Bayesian Analysis for Nearby Young AssociatioNs.

DBSCAN Density-Based Spatial Clustering of Applications with Noise.

DICON Dynamic ICON-based interactive visual analysis of multidimensional clusters.

DR2 Data Release two.

DR3 Data Release three.

EDR3 Early Data Release three.

EM ExpectationśMaximization.
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EOM Excess Of Mass.

ESA European Space Agency.

G Gaussian.

GMM Gaussian Mixture Models.

Gyr Giga year; one billion years.

H0 Null hypothesis.

H1 Alternative hypothesis.

HCE Hierarchical Cluster Explorer.

HDBSCAN Hierarchical DBSCAN.

HRD HertzsprungśRussell Diagram.

IMF Initial Mass Function.

M Spectral classiőcation of the coolest stars..

ML-MOC ML-MOC: Machine Learning based Membership determination for Open
Clusters.

Myr Mega year; one million years.

NN Nearest Neighbors.

OCSVM One-Class Support Vector Machines.

OPTICS Ordering Points To Identify the Clustering Structure.

pc Parsec; 1 pc ≈ 3.08616 meters.

PG Projected Gaussian.

PK Prior Knowledge.

RBF Radial Basis Function.

RQ Research Question.

Sco-Cen ScorpiusśCentaurus association.

SigMA Signiőcant Mode Analysis.
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SNN Shared Nearest Neighbor.

SOM Self-Organizing Map.

TBD To Be Determined.

UCL Upper Centaurus-Lupus.

US Upper Scorpius.

VPSA Visual Parameter Space Analysis.

YSO Young Stellar Object.
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Appendix

I. Kurzfassung

Die vorliegende Doktorarbeit beschäftigt sich mit dem Auffinden stellarer Gruppen
in der Milchstraße und beabsichtigt es, neue Blickwinkel auf gebräuchliche Methoden
in diesem Bereich zu eröffnen. Insbesondere sollen im Zuge der Arbeit transparente
Analysemethoden bereitgestellt werden, um bisher unbekannte Sternhaufen sowie neue
Mitglieder bekannter stellarer Populationen aufzudecken. Ziel ist es, Techniken für
Astronom*innen bereitzustellen, welche ein vollständigeres Bild verschiedener Sternhaufen
in der lokalen Milchstraße darstellen können.

Im Rahmen der Dissertation wird zunächst das Verfahren Uncover vorgestellt. Uncover
ist ein Verfahren zur umfangreichen Mitgliederanalyse stellarer Gruppen und kann zuvor
entdeckte zugehörige Sterne dieser Gruppen einbeziehen, um nach bisher unentdeckten
Sternen zu suchen. Die Methode konnte erfolgreich in zwei Anwendungsfällen durchge-
führt werden: bei der kürzlich entdeckten Meingast 1 Gruppe ś einem Sternhaufen,
das gleichzeitig mit den Plejaden geformt wurde und etwa 120◦ des Himmels einnimmt
ś und bei der bereits sehr eingehend erforschten Sternentstehungsregion ρ Ophiuchus.
Für diese beiden sehr unterschiedlichen Sternsysteme konnte Uncover die Anzahl der
gefundenen zugehörigen Sterne um das Zehnfache, somit um etwa 200 Sterne erhöhen. Bei
der zweiten Methode zur Auffindung stellarer Gruppen handelt es sich um einen innova-
tiven Clustering-Algorithmus, Signiőcance Mode Analysis (SigMA), der die topologischen
Eigenschaften der Dichteverteilung im mehrdimensionalen Phasenraum untersucht. Durch
die Anwendung von SigMA auf Gaia-EDR3-Daten der Scorpius-Centaurus-Assoziation
(Sco-Cen) konnten zum ersten Mal 48 sich gemeinsam bewegende und gleichaltrige Cluster
in Sco-Cen gefunden werden, von denen viele bisher unbekannt waren. Diese 48 Haufen
wurden unabhängig voneinander mit Hilfe von astrophysikalischem Wissen validiert.

Sowohl Uncover als auch SigMA sind in einer domänenspeziőschen Sprache formuliert,
verwenden aussagekräftige Hyperparameter und ermöglichen eine Ergebnisvalidierung,
um zuverlässige Ergebnisse sicherzustellen. Mit diesen Werkzeugen möchten wir dazu
beitragen, die derzeitige Kultur des blinden Vertrauens in Machine-Learning-Tools zu
verändern und Astronom*innen dabei helfen, Modelle auf Grundlage ihrer Fachkenntnisse
zu erstellen und zu modiőzieren.
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