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Abstract

Various cell types migrate in different environments and in response to different stimuli. Cell
migration may include the navigation and locomotion through complex environments, as in the
case of Leukocyte migration where cells have to translocate through small pores in the extracellular
matrix (ECM) by squeezing their cell body considerably [1].
The aim of this project was to study the influence of pores in the ECM on the speed and surface
deformation of cells, using a simplified model of an externally driven deformable cell moving
through ordered polymer networks.
The cell and network were modelled as structures of discrete particles interacting via several
interaction potentials under the influence of thermal noise. An external force was applied to
investigate the propagation of driven deformable cells in networks by means of Brownian dynamics
simulations.
A rigid polymer network was chosen as a first simplified model for pores in the ECM. The
resulting speed of the driven cell showed oscillatory behaviour with minima before and maxima
after each network pore. The speed maxima exceeded the terminal velocity of the respective cell
in a network-free fluid, with the speed enhancement being correlated to the total cell interaction
energy at the speed maximum. This indicates that in the squeezing process elastic interaction
energy is utilized to locally enhance the cell speed. Furthermore, the mean cell speed through
the network shows a non-linear unimodal dependence on the bending elasticity of the cell surface
bending potential. This unimodal behaviour is mirrored by the maximum cell surface bending
energy, implying a causal relationship between both properties.
Finally, simulations using a deformable network were performed successfully, showing oscillatory
behaviour in both cell and network properties which represents the bi-directional mechanical
crosstalk of cell and network.
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Chapter 1

Introduction

Cell migration, referring to the translation of cells from one place to another, plays a crucial role
in the development and maintenance of the human body and multicellular organisms in general.
This may include the navigation and propagation through complex environments. An example
are Leukocytes (white blood cells), which during migration encounter various different surround-
ings, including environments where they need to translocate through small pores by squeezing
their cell body considerably [1]. Depending on the environment and context, cells can migrate
along narrow linear structures (1D migration), along sheet-like structures (2D migration), or in a
complex three-dimensional environment (3D migration). While many experimental studies have
investigated the detailed molecular and biophysical processes involved in 2D migration, much less
is currently known about the physical mechanisms of cell migration in complex three-dimensional
environments [2].

3D migration shows a variety of different migration modes. However, most of these locomotion
strategies share fundamental principles of force generation using the actomyosin cytoskeleton [2],
described in the following.
Actin polymerization on the front end of the cell can lead to actin filaments effectively pushing
themselves from the front to the back of the cell. Combined with contraction of the cell cortex,
this can generate an intracellular rearward-directed force. This force can be coupled by friction to
the extracellular environment to produce a net forward motion of the cell. This coupling is often
mediated by certain transmembrane adhesion receptors. As a complementary strategy, cortical
actomyosin can through contraction generate hydrostatic pressure in order to create so-called
blebs, little protrusions which can aid cell propagation.
Exceptions to this force generation method include cells swimming with the aid of helical flagella
[3] or cells using the coordinated motion of cilia [4]. Within the discussed cytoskeleton-mediated
locomotion framework, the different migratory modes emerge through the varying contributions
of adhesion to the extracellular substrate, forward actin protrusion and actomyosin contraction.
Two prominent modes are mesenchymal and amoeboid migration [2], visualized in figure 1.1.
Mesenchymal migration describes rather elongated cells. Through actin polymerization at the
cell front, they generate protrusions and use strong adhesive interactions for locomotion. Amoe-
boid migration on the other hand makes use of strong cell body deformations while they use only
weak adhesive interactions. Environmental factors can also lead to a reversible switching between
the two migration modes [2].
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Figure 1.1: Visualization of mesenchymal and amoeboid migration, taken from [2].

Cell migration is an adaptive process. Environmental factors guiding cell adaptations are of
chemical, mechanical, and geometrical nature [5]. In general, cells can encounter a broad range
of different microenvironments. A prominent example in this case are cancer cells. During the
metastatic process, they have to navigate through a variety of different environments [6] like
bundled collagen fibres or blood vessels, as visualized in figure 1.2. Cells can penetrate confined
environments like small pores using two complementary strategies [7]. They can enlarge the open-
ing through mechanical effects or by degrading parts of the environment. On the other hand,
they can deform and change their own shape to squeeze through openings which are significantly
smaller than their cell body. This bi-directional relationship between a cell and its environment,
which depends on and responds to both physical and chemical stimuli, leads to a coupled evolu-
tion of both the cell and the tissue through which it migrates.
A rate-limiting factor of cell body deformations is a cell’s nucleus. The nucleus is usually much
stiffer than the surrounding cytoplasm. Therefore, once a cell encounters a pore below a critical
size, the nucleus becomes a limiting factor resulting in reduced migration speeds [8].

Figure 1.2: Microenvironments for the confined migration of cancer cells, taken from
[9].

Cells interact with their environment through their surface which is the cell membrane. Moti-
vated also by the observed variety of shapes of red blood cells (RBC), there have been many
efforts to model such membranes in an accurate and realistic manner. The thickness of biological
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membranes is several orders of magnitude smaller than the overall size of a typical membrane
surface. This motivates the simplified description of the cell surface as a two-dimensional sur-
face embedded in three-dimensional space, which is usually modelled using the triangulation of
discrete particles on a surface. Membrane models have been shown to reproduce observed shape
transitions when introducing interaction potentials accounting for bending elasticity, shear elas-
ticity as well as geometrical constraints. Examples include investigations of the shape transitions
during sedimentation of RBCs [10] or RBCs in capillary flows [11].
The bending potential represents a crucial component in this model. A membrane’s bending
resistance is typically described by the Helfrich model [12], which describes the bending energy
as an integral over the local averaged principle curvatures. The computation of resulting bending
forces can be complex, such that studies have been done to investigate the quality of different
approaches [13].
Building on this model, computational studies have been done adding surface pattern formation
using Reaction-Diffusion equations in order to reproduce amoeboid cell swimming in a pure fluid
[14] as well as in a confined environment [15].

This project serves as a first simulation study investigating the mechanical aspects of the afore-
mentioned bi-directional crosstalk during cell migration in confined environments. The influence
of pores in the ECM on the speed and surface deformation of cells was investigated using a sim-
plified model of an externally driven deformable cell moving through ordered polymer networks
by means of Brownian dynamics simulations.
The simulation methods described in the following chapter introduce the Brownian Dynamics
simulation method as well as the relevant interaction potentials which define the cell and network
model. The subsequent chapter presents and discusses the results. The conclusion relates the
results to the research question and presents an outlook to potential future research.
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Chapter 2

Simulation methods

The project’s aim was to simulate driven deformable cells in ordered polymer networks. Both cell
and network were modelled as structures of discrete particles interacting via several interaction
potentials, while their time evolution was investigated using Brownian dynamics simulations. In
order to distinguish between cell and network particles, the cell particles are referred to as nodes,
while the network particles are referred to as beads in the course of this thesis. Figure 2.1 shows
visualizations of the initial configurations of both cell and network, using the software Visual
Molecular Dynamics (VMD) [16]. All three-dimensional visualizations in this thesis were created
using VMD. The visualization of the cell surface only shows bonds between surface nodes such
that the surface is clearly visible. The bonds, however, were drawn automatically in VMD and
therefore show additional bonds which are not part of the actual surface triangulation. This
applies to all cell surface visualizations in this thesis. The visualization of the network shows the
individual network beads, while the sizes of the beads do not necessarily represent the physical
bead sizes. The long axis of the network represents the direction in which the cell is pulled.

Figure 2.1: Visualization of the initial configurations of both the cell and the network.

Table 2.1 summarizes the simulation methods by presenting the equation of motion governing
the particle’s time evolution, the implemented integration scheme, as well as the used interaction
potentials for the cell and network particles.
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Equation of motion: Brownian dynamics [18] (equation 2.5)

Integration scheme: Van Gunsteren and Berendsen algorithm [17]
(equation 2.8)

Cell interaction potentials: Bond potential (equation 2.10)
Bending potential (equation 2.15)
Area potentials (equation 2.16)
Volume potential (equation 2.31)
SW potentials (equation 2.38)

Network interaction potentials: WCA potentials (equation 2.48)
FENE potentials (equation 2.44)
Bending potentials (equation 2.53)

Cell-Network interaction potentials: WCA potential (equation 2.48)

Table 2.1: Summary of the simulation methods.

2.1 Brownian dynamics

Brownian dynamics is a method used for simulating systems whose behaviour is dominated by
thermal fluctuations [18]. Biological systems in the mesoscopic regime are especially suitable for
this technique. They fall in the gap between the microscopic atomic-level and the macroscopic
continuum-level regime. This mesoscopic approach allows faster simulations, while reproducing
the observed diffusion-dominated trajectories. This transition from the microscopic to the meso-
scopic regime is visualized in figure 2.2. Instead of simulating individual fluid atoms, the influence
of the thermal background is modelled by the sum of a damping force as well as a stochastic force.

Figure 2.2: Visualization of the mesoscopic approach to simulating dynamics of bodies
in a thermal environment, taken from [18].

The starting point for describing the time evolution of a particle in such a system is the Langevin
equation for particles of mass m, which is basically Newton’s equation of motion with additional
terms accounting for friction and stochastic collisions. Considering the one-dimensional time
evolution of the position of a particular particle, the Langevin equation reads:
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mẍ = − d

dx
U(x)− γẋ+

√
2γkBT W (t) . (2.1)

The dots represent derivatives with respect to time. U(x) represents a potential energy function, γ
denotes the friction coefficient, T denotes the fluid temperature. The friction coefficient γ as well
as the diffusion constant D are asummed to be independent of x. W (t) represents a random noise
variable satisfying ⟨W (t)⟩ = 0 and ⟨W (t)W (t̃)⟩ = δ(t− t̃) and is implemented during simulations
using a random number generator based on the Ziggurat algorithm [19]. The equation of motion
therefore includes force contributions from a potential energy function, a frictional contribution,
as well as a stochastic force contribution imitating the effects of thermal collisions with fluid
molecules. The impact of the frictional term is stronger for a larger friction coefficient γ, while
the impact of the stochastic term is stronger for larger γ or for larger temperature T .
Since a frictional force is present, any initial acceleration resulting from a constant external force
will be damped until a constant terminal velocity is reached. A friction force with an additional
constant external driving force Fext acting on a particle lead to a terminal velocity which is
proportional to the strength of the driving force. The constant of proportionality is the so-called
mobility µ. Using the Einstein relation, one can identify the mobility as the ratio of the diffusion
constant and the thermal energy µ = D

kBT
. This gives an analytical prediction for the terminal

velocity:

vterminal = µFext =
D

kBT
Fext . (2.2)

The timescale of the damping of the initial acceleration can be quantified by the relaxation time:

τ ≡ m

γ
. (2.3)

For typical cells with sizes in the micrometer range moving in an aqueous environment, this
timescale is negligibly small. In this overdamped regime, the left-hand side of the Langevin
equation (2.1) is negligible and can be set to zero:

0 = − d

dx
U(x)− γẋ+

√
2γkBT W (t) . (2.4)

Using the Einstein relation γD = kBT , this can be rewritten to the one-dimensional Brownian
dynamics equation of motion:

ẋ(t) = − D

kBT

d

dx
U(x) +

√
2D W (t) . (2.5)

In order to simulate Brownian dynamics, one needs a discretized version of equation 2.5. For the
following considerations, the derivative of the potential with respect to the position is rewritten
as the force F. The simplest algorithm, the so-called Conventional Brownian Dynamics (CBD)
algorithm [17], is at the level of the first-order Euler method for ordinary differential equations,
thus requiring a rather small time step to provide satisfying results:

∆x =
D

kBT
F (x, t)∆t+

√
2D∆t W (t) . (2.6)
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At zero external force, this algorithm reproduces ⟨∆x⟩ = 0 and ⟨∆x2⟩ = 2D∆t, as expected
for diffusive motion. There are higher-order Runge-Kutta-like methods which, however require
multiple force evaluations per time step. An alternative algorithm proposed by van Gunsteren
and Berendsen (GB) [17] provides an improvement to the CBD algorithm, while only requiring
one force evaluation per time step. The GB algorithm replaces the force F (x, t) in equation 2.6
with 1

2
[2F (x, t) + ∆tḞ (x, t)] with Ḟ (x, t) ≡ 1

∆t
[F (x, t)− F (x, t−∆t)]. This yields:

∆x =
1

2

D

kBT
[3F (x, t)− F (x, t−∆t)]∆t+

√
2D∆t W (t) . (2.7)

This can be extended to a three-dimensional algorithm to update the position coordinates of both
cell nodes and network beads. Starting from an initial configuration, the position coordinate j
(j ∈ 1, 2, 3) of particle i can be updated according to:

rji (t+∆t) = rji (t) +
D

2kBT
[3F j

i (t)− F j
i (t−∆t)]∆t+

√
2D∆t W (t) . (2.8)

Here, the particles i ∈ 1, ...N include both cell nodes Nnodes and network beads Nbeads such that
N = Nnodes +Nbeads. The force vector on each particle i contains the gradient of the sum Utot

of all its interaction potentials. The external driving force pulling the cell through the network
was simulated by applying a constant force F⃗ext on each cell node. Therefore, the force vector
on cell node j contains the potential forces as well as the external force:

F⃗ j = −∇⃗jUtot,j(r⃗1, ...r⃗Nnodes
) + F⃗ext j = 1, ...Nnodes (2.9)

So, from knowledge of the current forces acting on all particles of the system, one can calculate
the positions of all particles at the next time step. In order to calculate the acting forces, one
first needs to define all interaction potentials between the different particles of the system. The
next chapter describes the simulation methods including the definitions of all relevant interaction
potentials used in this project.

2.2 Cell model

Model overview

The thickness of biological membranes is several orders of magnitude smaller than the overall
size of a typical membrane surface, which motivates the simplified description of the cell surface
as a two-dimensional surface embedded in three-dimensional space. Therefore, the cell nodes are
initialized on a spherical surface forming a triangulated surface. Interaction potentials between
individual surface nodes were introduced such that the collective surface behaviour reproduces
some typical mechanical behaviour of biological cells or vesicles encapsulated by lipid bilayer
membranes. The behaviour of the cell surface is influenced not only by the cell membrane, but
also its intracellular components like protein filaments of the cytoskeleton. In principle, different
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potentials with different strengths could be used to mimic the variability in cell mechanical prop-
erties of different cells.

The triangulation of the cell was performed using a so-called Delaunay triangulation. Delaunay
triangulation is a popular method in computational geometry [20] . Starting from a set of discrete
nodes on a spherical surface, the method allows to produce a grid of triangles connecting the
nodes while satisfying the Delaunay condition: the circumcircle of each triangle contains only
the nodes of the respective triangle. This way, one has a clean surface spanned by neighbouring
triangles, such that the triangle nodes and edges can be later used for force computations ac-
counting for properties like bending rigidity. An example for a Delaunay triangulation is given in
figure 2.3a.
The grid resolution of the Delaunay triangulation is quantified by a triangulation factor. For
the simulations of this project, a factor of 10 was used. This generates a surface containing
1002 nodes. The topology then restricts the surface to have 3000 edges (bonds) and 2000 faces
(triangles). Most of the surface nodes have 6 nearest neighbours, while a few only have 5. A
larger factor leads to a smoother surface and thus a better representation of a continuous surface,
but also leads to higher computational cost. Using a factor of 10, the surface area and volume
deviation of the initialized surface from a perfect sphere is rather small while the computational
cost is bearable. Due to the Delaunay triangulation, the individual cell surface bonds follow a
bond length distribution instead of having just one single value. The initial bond lengths were
normalized by their initial mean value b0. Figure 2.3b shows a histogram of the initial bond
lengths b with a bin size of about 0.01.

(a) Visualization of a Delaunay triangulation
of a discrete set of points, taken from [21].
The dashed lines represent the Delaunay tri-
angulation.

(b) Initial surface bond length distribution
of the triangulated cell surface. The in-
dividual bond lengths were normalized to
their mean value.

Figure 2.3: Delaunay triangulation of the cell surface

The possibility to initialize the cell as an ellipsoid of a given axis ratio was also implemented.
Figure 2.4 shows a visualization of an ellipsoidal cell. An ellipsoidal geometry allows the surface
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to take different shapes of minimal energy when including a bending potential and constraints
of constant volume and area. In the case of a sphere, the constraints would allow only small
deformations. However, simulations using ellipsoidal initial cells were not performed in the course
of this project.

Figure 2.4: Visualization of an ellipsoidal cell, initialized with axis ratios 1:1:1.3.

Interaction potentials accounting for elasticity, bending rigidity as well as the tendency to keep a
constant surface area and volume were implemented. In order to account for those interactions
in a simulation, one has to derive analytical expressions for the resulting force contributions, such
that those can be computed using only knowledge of the position coordinates of all participating
particles. In the following, the implemented interaction potentials are described and the necessary
force expressions are derived. All force expressions were derived as part of this project, except
the bending forces of both cell surface and network chains.

Bond potential

A harmonic bond potential was used for the edges (bonds) of the triangulated surface, such
that deviations from the respective equilibrium bond length cost energy. The strength of the
interaction is given by kBend, while the equilibrium bond length is rij,0. Let r⃗ij ≡ r⃗i − r⃗j be
the bond vector connecting nodes i and j, with length rij ≡ |r⃗ij|. The unit distance vector is

defined as ˆ⃗rij ≡ r⃗ij
rij
. Let B be the set of surface bonds. The total bond potential is then given

by:

UBond =
kBond

2

∑
ij∈B

(rij − rij,0)
2 . (2.10)

The gradient with respect to the position of node i, ∇⃗i ≡ ( ∂
∂xi

, ∂
∂yi

, ∂
∂zi

)T , of the bond vector can
be written as:

∇⃗irij = ∇⃗i |r⃗i − r⃗j| =
r⃗i − r⃗j
|r⃗i − r⃗j|

=
r⃗ij
rij

=ˆ⃗rij . (2.11)

Let Bi be the set of bonds node i contributes to. The resulting force on membrane node i with
position r⃗i can therefore be obtained by:

F⃗Bond,i = −∇⃗iUBond = −kBond

∑
j∈Bi

[ (rij − rij,0) ∇⃗irij ] = −kBond

∑
j∈Bi

[ (rij − rij,0)ˆ⃗rij ] .

(2.12)

The resulting bond force on node i can therefore be written as:
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F⃗Bond,i = −kBond

∑
j∈Bi

[ (rij − rij,0)ˆ⃗rij ] . (2.13)

For rij < rij,0 this will result in a force pushing node i further away from j, while rij > rij,0
results in a force pulling node i towards j.

Bending potential for a membrane surface

According to the Helfrich model [12], the curvature energy of the triangulated surface can be
computed as a quantity proportional to the integrated local mean curvature. The local mean
surface curvature is defined as the average of the inverse principle radii of curvature H = 1

2
[ 1
R1

+
1
R2
]. The total surface curvature energy can then be computed using the bending modulus

kBend:

U = 2kBend

∫
S

[H(r⃗)dS(r⃗)] . (2.14)

S denotes the continuous membrane surface. The minimum energy configuration would in this
case be zero curvature and thus a flat sheet. A reference curvature representing a different min-
imum energy configuration could in principle be included in the curvature energy. It should also
be noted that the actual curvature energy has another energy contribution which, however, is
constant for constant topology. Since the curvature energy is mainly used for force calculations in
this project, this additional contribution cancels and can be dropped in this context [12]. When
simulating such a membrane, one deals with discrete particles approximately representing a con-
tinuous surface. Guckenberger et al. [13] describe and compare different algorithms to compute
bending forces for triangulated surfaces. The method used in this project is described as method
B in [13] and computes the curvature energy using a discretized version of the Laplace-Beltrami
operator ∆S. The Laplace-Beltrami operator represents a generalization of the Laplace opera-
tor defined on submanifolds in Euclidian space. The resulting force expression for a discretized
triangulated surface is a large expression with several different contributions. The exact form
can be found in [13]. The essential point is that one ends up with an analytical expression to
compute the resulting bending force on node i from knowledge of the positions of all membrane
nodes:

F⃗Bend,i = [−∇⃗iUBend] (r⃗1, ...r⃗i, ...r⃗N) . (2.15)

This interaction was implemented to act on all surface nodes.

Area potential

A harmonic potential was used to simulate the tendency of keeping a constant area. Individual
potentials were implemented to act locally on each surface triangle. The interaction strength is
given by kA, while the respective equilibrium area of triangle t is given by At. Let T be the set of
all surface triangles, then the total surface area is given by Atot =

∑
t∈T At. The total potential

can then be written as:
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UA =
kA
2

∑
t∈T

(At − At,0)
2. (2.16)

Let Ti be the set of triangles which node i contributes to. The resulting force on membrane node
i can then be calculated as:

F⃗A,i = −∇⃗iUA = −kA
∑
t∈Ti

[ (At − At,0) ∇⃗iAt ] . (2.17)

For the following derivation, a particular triangle t ∈ Ti is considered and denoted by A. This
allows to calculate a single contribution to the force on node i, such that afterwards all single
contributions can be summed up to obtain the total force on node i. In order to determine the
force vector, one needs analytical expressions for the surface area as well as its gradient. Let the
three nodes constituting the triangle A be i, j, and k. The surface area can then be obtained by :

A =
1

2
|(r⃗i − r⃗j)× (r⃗i − r⃗k)| . (2.18)

For the following calculations, the notation is further being uncluttered by rewriting a ≡ r⃗i,
b ≡ r⃗j, and c ≡ r⃗k. The task then translates to calculating ∇⃗aA with A = 1

2
|(a− b)× (a− c)|.

Identifying the absolute value of a vector with the square root of the scalar product of the vector
with itself, as well as using the chain rule, one finds:

∇⃗aA =
1

4

1

|(a− b)× (a− c)|
∇⃗a[ [(a− b)× (a− c)] · [(a− b)× (a− c)] ]. (2.19)

In order to calculate the gradient term on the right hand side, the Levi-Civita tensor ϵijk and
the Kronecker delta δij are used, both defined in the following, as well as Einstein’s summation
convention:

ϵijk =


+1 for even permutations of i,j,k

−1 for uneven permutations of i,j,k

0 else

δlm =

{
+1 for l = m

0 for l ̸= m .
(2.20)

The gradient term on the right hand side of equation (2.19) can thus be written component-wise
as:

∇ai [ ϵjkl(a− b)k(a− c)l ϵjmn(a− b)m(a− c)n ] (2.21)

which, using the product rule, yields:

[∇aiϵjkl(a− b)k(a− c)l] ϵjmn(a− b)m(a− c)n + ϵjkl(a− b)k(a− c)l [∇aiϵjmn(a− b)m(a− c)n]
(2.22)

Using ∇aiak = δik, this gives:

∇aiϵjkl(a− b)k(a− c)l = ϵjkl [ (a− b)k ∇ai(a− c)l + (a− c)l ∇ai(a− b)k ]

= ϵjkl [ (a− b)k δil + (a− c)l δik ]. (2.23)

One can then use the identity ϵjklϵjmn = δkmδln − δknδlm to rewrite the left-hand term of the
sum in equation 2.22 as:

ϵjklϵjmn [ (a− b)k δil + (a− c)l δik ] [ (a− b)m(a− c)n ]

= [ δkmδln − δknδlm ] [ (a− b)k δil + (a− c)l δik ] [ (a− b)m(a− c)n ] (2.24)
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Using δkmδik = δim, this reduces to:

[ δim(a− c)n − δin(a− c)m + δin(a− b)m − δim(a− b)n ] [ (a− b)m(a− c)n ]

= [ δim(b− c)n − δin(c− b)m ] [ (a− b)m(a− c)n ]

= (a− b)i(b− c)n(a− c)n + (a− c)i(c− b)m(a− b)m

= (a− b)i [ (b− c) · (a− c) ] + (a− c)i [ (c− b) · (a− b) ]. (2.25)

The above term is equal to the left-hand part of the sum in equation (2.22). The right hand side
term in the sum is equal to the left, only with change of indices (k, l) 7→ (m,n). Since those
indices do not appear in the resulting expression, one can conclude that the right hand side term
has the exact same contribution to the gradient.
This gives the gradient term which can be inserted into equation (2.19) to obtain an expression

for ∇⃗aA:

∇⃗aA =
2 [ (a− b) [(b− c) · (a− c)] + (a− c) [(c− b) · (a− b)] ]

4 |(a− b)× (a− c)|
. (2.26)

In order to reduce the number of operations needed to perform the calculation of one gradient,
one can simplify the above equation using the Graßmann identity: a⃗× (⃗b× c⃗) = (⃗a · c⃗) b⃗− (⃗a · b⃗) c⃗.
Therefore:

(a− b) [(b− c) · (a− c)] + (a− c) [(c− b) · (a− b)] = (b− c)× [(a− b)× (a− c)] (2.27)

Inserting this result into the area gradient term and changing back to the original notation for
the position vectors leads to :

∇⃗iA =
2 (r⃗j − r⃗k)× [(r⃗i − r⃗j)× (r⃗i − r⃗k)]

4 |(r⃗i − r⃗j)× (r⃗i − r⃗k)|
=

(r⃗j − r⃗k)× A⃗

2A
(2.28)

with A⃗ = 1
2
[(r⃗i − r⃗j)× (r⃗i − r⃗k)] and A = |A⃗|.

The expression for the area gradient can be inserted into equation (2.17) to obtain an expression
for the single contribution to the area force on node i :

F⃗A,i = −kA
2

(A− A0)
(r⃗j − r⃗k)× A⃗

2A
=

kA
4

[
A0

A
− 1] [(r⃗j − r⃗k)× A⃗] . (2.29)

Let jt and kt be the nodes which together with node i constitute triangle t ∈ Ti and let At be
defined according to equation 2.18. The contributions of all participating triangles can then be
summed up to obtain an expression for the resulting area force on node i :

F⃗A,i =
kA
4

∑
t∈Ti

[
At,0

At

− 1] [(r⃗jt − r⃗kt)× A⃗t] (2.30)

The effect of an area deviation on the resulting area force can be checked by considering an
equilateral triangle in the xy-plane, centered at the origin, with ri pointing in positive x-direction.
The force contribution of At on this node i is considered. The vector (rj − rk) then points in
y-direction and the area vector stands normal on the triangle, in this case pointing in positive z-
direction. Therefore, their cross product points in positive x-direction, which is also the direction
in which the force would act. Now, if At < At,0, the prefactor will be larger than zero such that a
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force will push r1 to larger x-values, resulting in a triangle area increase. If At > At,0, the prefac-
tor will be smaller than zero such that a force will pull r1 to smaller x-values, resulting in a triangle
area decrease. Equation (2.30) also shows that there is only a force contribution from triangle t
for At ̸= At,0. This is exactly what one would expect from the chosen potential in equation (2.30).

Alternatively to the chosen potential (2.16) one could define one single area potential acting
on the cell as a whole, such that deviations of the total surface area from the equilibrium total
surface area cost energy. This would lead to a similar expression as equation (2.30). However,
the prefactor would change from an individual triangle prefactor to one global prefactor for all
individual triangle contributions. As in this case local perturbations would be fought globally
instead of locally, this could lead to a more unstable configuration.

Volume potential

Another harmonic potential was used to simulate the tendency of keeping a constant volume.
The interaction strength is given by kV , while the equilibrium total volume is given by V0. The
potential thus reads:

UV =
kV
2
(V − V0)

2. (2.31)

In order to calculate the force, the total volume is separated into individual volume contributions.
Each surface triangle contributes a tetrahedral volume element to the total volume. Let Ti

be the set of all surface triangles. The total volume is then given by V =
∑

t∈Ti
Vt. Using

∇⃗iV =
∑

t ∇⃗iVt, the total force on node i can thus be splitted into contributions from each
surface triangle t:

F⃗V,i = −∇⃗iUV = −kV (V − V0)∇⃗iV =
∑
t

(−kV ) (V − V0) ∇⃗iVt ≡
∑
t

F⃗Vt,i . (2.32)

In the following, the force contribution F⃗Vt,i = −kV (V −V0)∇⃗iVt of volume element Vt is consid-
ered. The tetrahedral volume element is built by connecting the three nodes of the corresponding
surface triangle with the center of mass of the membrane. The positions of the three surface
triangle nodes are again called r⃗i, vecrj, vecrk. They are connected to the membrane’s center
of mass vecrc. This gives a tetrahedron for which the volume can be calculated using the triple
product:

Vt =
1

6
| (r⃗i − r⃗c) · [ (r⃗j − r⃗c)× (r⃗k − r⃗c) ] | (2.33)

There is some freedom in choosing which tetrahedron edges to use at which part in the triple
product. However, when having to calculate the gradient with respect to r⃗i, the above choice
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makes the computation easier:

∇⃗iṼ =
1

6
∇⃗i

√
[ (r⃗i − r⃗c) · [ (r⃗j − r⃗c)× (r⃗k − r⃗c) ] ] 2

=
1

6

(r⃗i − r⃗c) · [ (r⃗j − r⃗c)× (r⃗k − r⃗c) ]

| (r⃗i − r⃗c) [ (r⃗j − r⃗c)× (r⃗k − r⃗c) ] |
∇⃗i[ (r⃗1 − r⃗c) · [(r⃗j − r⃗c)× (r⃗k − r⃗c)] ]

=
1

6

(r⃗i − r⃗c) · [ (r⃗j − r⃗c)× (r⃗k − r⃗c) ]

| (r⃗i − r⃗c) · [ (r⃗j − r⃗c)× (r⃗k − r⃗c) ] |
[(r⃗j − r⃗c)× (r⃗k − r⃗c)] (2.34)

The quotient term only contributes a sign±1, depending on the angle between the vectors (r⃗i−r⃗c)
and (r⃗j − r⃗c)× (r⃗k− r⃗c). The vector of the cross product stands orthogonal on the area spanned
by the two vectors of the cross product. Assuming the indices are counted counterclockwise, it
points in a similar direction as r⃗1 (but with a non-zero angle to r⃗1). The angle between those
vectors will always be between 0°and 90°. Therefore, their scalar product is larger than zero, and
the quotient of the scalar product and its absolute value will be +1, such that:

∇⃗iVt =
1

6
[(r⃗j − r⃗c)× (r⃗k − r⃗c)] . (2.35)

Therefore :

F⃗Vt,i = −kV (V − V0)
1

6
[ (r⃗j − r⃗c)× (r⃗k − r⃗c) ] . (2.36)

Let jt and kt be the nodes which together with node i constitute triangle t ∈ Ti. The resulting
force contribution on node i can then be written as:

F⃗V,i =
kV
6
(V0 − V )

∑
t∈Ti

[ (r⃗jt − r⃗c)× (r⃗kt − r⃗c) ] . (2.37)

The cross product in the force contribution points orthogonal to both vectors of the product,
roughly in the direction of r⃗i. Therefore, for V < V0 there will be a force pushing node i away
from the center of the triangle, leading to a surface area and thus volume increase. The reverse
holds for V > V0.

Stillinger-Weber potential

In order to prevent surface bonds from potentially rupturing, an additional Stillinger-Weber (SW)
potentials was implemented to optionally act on all surface bonds, as an addition to the harmonic
bond interactions. This is based on the description in [10]. The additional potential consists of
an attractive as well an repulsive contribution. The idea is that the interaction generates a strong
force pulling the bonds back towards equilibrium length once the displacement is sufficiently
large.
A particular surface bond with bond vector r⃗ij is considered in the following. The attractive
potential for a bond vector r⃗ij reads:
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USW,A =

{
kSW

lmax−rij
exp

{
1

lc,0−rij

}
for rij > lc,0

0 else
(2.38)

Assuming r > lc,0, this gives a force contribution according to:

F⃗SW,A,i = −∇⃗iUSW,A

= −kSW [ (∇⃗i exp

{
1

lc,0 − rij
)

}
1

lmax − rij
+ exp

{
1

lc,0 − rij

}
(∇⃗i

1

lmax − rij
) ] ∇⃗ir

= − kSW
lmax − rij

exp

{
1

lc,0 − rij

}
[

1

(lc,0 − rij)2
+

1

lmax − rij
] ∇⃗irij (2.39)

The resulting attractive force contribution can thus be expressed as:

F⃗SW,A,i = [ − kSW
lmax − rij

exp

{
1

lc,0 − rij

}
[

1

(lc,0 − rij)2
+

1

lmax − rij
] ]

r⃗ij
rij

. (2.40)

So, for some lc,0 < rij < lmax, all individual terms in the brackets in the above force expression
are positive, such that, taking into account the negative sign at the front, the force really does
act as an attractive force.
The repulsive potential reads:

USW,R =

{
kSW

rij−lmin
exp

{
1

rij−lc,1

}
for rij < lc,1

0 else
(2.41)

Again, the resulting force contribution is computed:

F⃗SW,R,i = −∇⃗iUSW,R

= −kSW [ (∇⃗i exp

{
1

rij − lmin

)

}
1

rij − lmin

+ exp

{
1

rij − lc,1

}
(∇⃗i

1

rij − lmin

) ] ∇⃗irij

= − kSW
rij − lmin

exp

{
1

rij − lc,1

}
[− 1

(rij − lc,1)2
− 1

rij − lmin

] ∇⃗irij (2.42)

The resulting repulsive force contribution can thus be expressed as:

F⃗SW,R,i = [
kSW

rij − lmin

exp

{
1

rij − lc,1

}
[

1

(rij − lc,1)2
+

1

rij − lmin

] ]
r⃗ij
rij

(2.43)

So, for some lmin < rij < lc,1, all individual terms in the brackets in the above force expression
are positive, such that the force really does act as a repulsive force.
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Furthermore, it holds that lmin < lc,1 < lc,0 < lmax. The bond length is then effectively restricted
to the range lmin < r < lmax, while in the range lc,1 < r < lc,0 the resulting SW force is zero. For
a proper choice of parameters, this gives a good way to prevent bond rupturing, since parameters
can be chosen such that under normal conditions there is no additional force contribution. But
if bond length displacements are sufficiently large, the SW interaction contributes a strong force,
effectively restricting the bond lengths to a desired range.

The top plot in figure 2.5 shows the combined SW potential using kSW = 10, lmin = 0.67,
lc,1 = 0.85, lc,0 = 1.15, and lmax = 1.33, inspired by the choice of parameter values in [10], as
well as the individual contributions from the attractive (USW,A) and repulsive (USW,R) part. The
bottom plot shows the impact of a SW potential as an addition to a harmonic bond potential
with kBond = 102 and x0 = 1. For small bond distance displacements, the SW potential has no
impact. As the distance approaches lmin or lmax, the SW potential contributes a strong potential
gradient, leading to a strong force trying to restore the equilibrium distance.

Distance R−5000

0

5000

10000

15000

En
er
gy

 E

lmin, lc, 1, lc, 0, lmax

USW,A
USW,R
USW

0.7 0.8 0.9 1.0 1.1 1.2 1.3
Di tance R

0

2

4

6

8

10

12

En
er
gy

 E

lmin, lc, 1, lc, 0, lmax

USW,A
USW,R
Uharmonic

USW+Uharmonic

SW and SW+harmonic potential land cape

Figure 2.5: Visualization of the energy landscapes of SW and SW+Bond potentials.
The chosen parameters were kSW = 10, lmin = 0.67, lc,1 = 0.85, lc,0 = 1.15,
lmax = 1.33, kBond = 102 and x0 = 1.
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2.3 Network model

Model overview

The cell’s environment is modeled as an ordered polymer network. A rectangular cuboid is chosen
as the system’s box with two equally long axes (x and y) and one larger axis (z). The larger axis
is chosen to be the direction of the acting driving force. The network can be viewed as being built
of individual cubes or unit cells, such that the number of unit cells Ncells,z along the z-direction
determines the length and the number of unit cells Ncells,xy along the x- and y-direction deter-
mines the size of the network. In the x- and y -direction, additional polymer strands attach the
outer network cells to the walls of the simulation box, as seen in figure 2.1. The individual chains
consist of identical polymer beads at close contact. Beads are crosslinked when three chains
meet, at the corners of each unit cell, those are therefore part of all three chains including their
interactions.
The implemented algorithm constructs such a network based on the variable input of four char-
acteristic length quantities: the polymer bead diameter d, the network grid size agrid, as well as
the number of cells in both x/y - and z-direction: Ncells,xy and Ncells,z.
The interactions between the polymer beads are based on the Kremer-Grest model [23] for
polymer chains. The bonds between neighbouring beads within a chain are simulated by an
attractive and a repulsive potential contribution. The repulsive contributions are modeled by
Weeks-Chandler-Andersen (WCA) [24] potentials while the attractive contributions are modeled
by Finitely Extensible Nonlinear Elastic (FENE) bond potentials. An additional contribution ac-
counting for the bending of a polymer chain is given using a potential for angular displacements.
The interactions between membrane nodes of the cell and polymer beads of the network are
modeled by purely repulsive WCA potentials.

Network construction

From the input parameters, all other necessary characteristic network parameters can be com-
puted:

• The number of beads which construct one edge of a unit cell: Ndpa =
agrid
d

+ 1.

• The number of crosslinks in both directions: Nc,xy = Ncells,xy + 1 and Nc,z = Ncells,z + 1.

• The number of beads on each chain in both directions: Nxy = (Nc,xy + 1)agrid + 1 and
Nz = (Nc,z − 1)agrid + 1.

• The rectangular cubic box dimensions: Lxy = (Nxy − 1)d and Lz = (Nz − 1)d+ 2agrid.

The network is built in two steps. First, the horizontal z-chains are built, then the vertical xy -
grids are built. The total number of beads can thus be split into two contributions: Nbeads =
Nbeads,z +Nbeads,xy. In order to avoid double counting, the crosslink beads are counted as being
only part of the z-chains.
The number of beads per z-chain is given by Nz. The number of z-chains is given by the number
of crosslinks in the xy -directions squared, such that the total number of beads in the z-chains is
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given by Nbeads,z = N2
c,xyNz.

When building the xy -grids, one has to avoid double counting the crosslink beads. So, when
counting the additional beads in those x and y chains, one has to drop the crosslink beads.
The x- and y -chains at a given z coordinate are viewed as constituting one xy -grid. Then there
are a total of Nc,z xy -grids in the network. The number of beads per x-chain, while avoiding
double counting the crosslink beads, is given by Nxy − Nc,xy. The same applies to the number
of beads per y -chain. In each xy -grid, there are Nc,xy x-chains and Nc,xy y -chains. This gives
2Nc,xy(Nxy −Nc,xy) beads per xy -grid, and a total of Nbeads,xy = 2Nc,xy(Nxy −Nc,xy)Nc,z in the
whole network.
The total number of beads in a network is therefore given by:

Nbeads = 2Nc,xy(Nxy −Nc,xy)Nc,z +N2
c,xyNz .

For implementing the interactions within in the network and the interactions between cell and
network later, one needs (i) a chain list containing all nearest neighbour bond IDs in this chain,
and (ii) a bond list containing the bond partner IDs for a given bond ID. The number of polymer
chains along the z-direction is given by N2

c,xy, while the number of polymer chains in the xy -grids
is given by 2Nc,xyNc,z. The number of nearest neighbour bonds in a chain with m members is
given by m-1. Therefore, the number of bonds is given by the number of chains times the beads
per chain minus 1, respectively. This gives:

Nbonds = N2
c,xy(Nz − 1) + 2Nc,xyNc,z(Nxy − 1) .

The network can be viewed as consisting of individual network chains, which are crosslinked. The
network interactions act between neighbouring beads within a chain. Due to the crosslink beads
which are part of three chains each, the chains are linked forming one network. The following
derivations always consider interactions within an individual chain.

Finitely extensible nonlinear elastic (FENE) bond interactions

The attractive part of the bond interaction between two polymer beads in a chain is modeled
using a FENE potential. The corresponding bond vector between beads i and j is again given
by r⃗ij. The interaction strength is given by kF , while the bond length rij ≡ |r⃗ij| is effectively
restricted by the maximum displacement ∆rmax. Let Bc be the set of neighbour bonds of the
respective chain and Bci be the set of bonds bead i contributes to. The total potential then
reads:

UF =
∑
ij∈Bc

[ −kF
2

∆r2max ln [1− (
rij

∆rmax

)2] ] . (2.44)

It should be noted that the logarithm is only defined for positive arguments. For the following
force computation, it is therefore assumed that rij < ∆rmax. The force contribution within chain
c on bead i is thus :

F⃗F,i = −∇⃗iUF = −∇⃗i

∑
ij∈Bci

[ −kF
2
∆r2max

1

1− (
rij

∆rmax
)2

] [ −2
rij

∆rmax

]
1

∆rmax

∇⃗irij (2.45)

This gives the force expression:
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F⃗F,i = kF
∑

ij∈Bci

[
rij

(
rij

∆rmax
)2 − 1

] ˆ⃗rij (2.46)

For rij < ∆rmax, the denominator in the force contribution is negative such that the force tries
to decrease rij towards zero. As rij approaches ∆rmax, the denominator approaches zero, such
that the resulting force contribution tends to ±∞ .
The equilibrium distance of such a FENE bond is zero. In the simulations, however, each FENE
potential is accompanied by a repulsive WCA potential, such that the effective equilibrium distance
has a non-zero value.

Weeks-Chandler-Andersen (WCA) interactions

The repulsive part of the bond interaction between two polymer beads is modeled using a Weeks-
Chandler-Andersen (WCA) potential. Additionally, the repulsive interactions between membrane
nodes and polymer beads are modeled using a WCA potential. The following derivations are
considered for two general particles i and j. It then applies to the interactions between two
polymer beads as well as the interactions between membrane node and polymer bead. Let B be
the set of all bonds and Bi be the set of the bonds particle i contributes to .
A WCA potential is a truncated and shifted Lennard-Jones potential. The Lennard-Jones potential
(LJ) is a popular potential used to model realistic molecular interactions:

ULJ = 4ϵ [ (
σ

rij
)12 − (

σ

rij
)6 ] . (2.47)

The parameter σ is a measure for the size of the interacting particles, defining the location of
the minimum of the potential at r = 21/6σ. The parameter ϵ defines the potential depth and
thus measures the strength of the interaction. The WCA represents the purely repulsive part of
this interaction. It is an LJ potential which is cut off at the minimum and shifted to the top such
that the energy and force are smooth at r = 21/6σ. The total WCA interaction potential can be
written as UWCA =

∑
ij∈B UWCA, ij with the individual contributions being defined as:

UWCA, ij =

{
4ϵ [ ( σ

rij
)12 − ( σ

rij
)6 + 1

4
] for rij ≤ 21/6σ

0 else
(2.48)

In the following, the force on particle i from a single bond with particle j is considered. For
rij ≥ 21/6σ, the resulting force is zero. Assuming rij < 21/6σ, the resulting force can be
computed as:

F⃗WCA,i = −∇⃗iUWCA = −4ϵ [ ∇⃗i(
σ

rij
)12 − ∇⃗i(

σ

rij
)6 ] (2.49)

To unclutter notation, for the following line rij is rewritten to be r ≡ rij. The index of r is then
free to denote its Cartesian components. Then:

∇⃗i(
1

rm
) = ∇⃗i(rlrl)

−m
2 = −m

2
(rlrl)

−m
2
−1∇⃗i(rlrl)−

m

2
(rlrl)

−m+2
2 2ri = − m

rm+2
r⃗ . (2.50)
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Changing back notation, this yields:

F⃗WCA,i = ϵ [ 48(
σ12

r14ij
)− 24(

σ6

r8ij
) ] r⃗ij = ϵ [ 48(

σ

rij
)12 − 24(

σ

rij
)6 ]

r⃗ij
r2ij

(2.51)

Therefore, the final force contribution of the bond between i and j on i for rij < 21/6σ can be
written:

F⃗WCA,i = ϵ
∑
ij∈Bi

[ 48 (
σ

rij
)12 − 24 (

σ

rij
)6 ]

r⃗ij
r2ij

. (2.52)

The term in brackets in the force contribution is always positive. Combined with the distance
vector after the bracket, one can verify that the force contribution pushes both interacting parti-
cles i and j away from each other, as one would expect from a purely repulsive potential. WCA
interactions were implemented to act between all nearest neighbour pairs in each polymer chain,
as well as between all pairs of membrane node and polymer bead.
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Figure 2.6: Visualization of the energy landscapes of WCA and WCA+FENE poten-
tials for σWCA = ϵWCA = 1, kFENE = 30 and ∆rmax,FENE = 1.5. Those particular
parameters are inspired by the Kremer-Grest model [25].

Figure 2.6 shows the energy landscape of both WCA and FENE+WCA potentials. The visualized
potentials use the parameter values σWCA = ϵWCA = 1, kFENE = 30 and ∆rmax,FENE = 1.5.
These are the numerical values which were also used in the simulations of this project. The first
plot, showing the pure WCA interaction potential, models the interactions between membrane
nodes and polymer beads. One can see that there’s already a weak potential gradient for R > 1.
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However, in simulations membrane nodes and polymer beads could ”overlap” for a short period of
time before the potential gradient is strong enough to push them apart. The second plot, showing
the combination of both WCA and FENE potential landscapes, models the interactions between
two polymer beads. One can see that, using the discussed parameter values, the equilibrium
distance R0, representing the minimum of the combined WCA and FENE potential, is located
at a numerical value of about 0.961, slightly below 1. It should also be noted that for R >
∆rmax,FENE = 1.5 the WCA potential is zero while the FENE potential is not defined.

Bending interactions for a polymer chain

The bending elasticity of an individual polymer chain in a polymer network can be simulated
by constraining the bond lengths between neighbouring beads, while including a potential for
variations in the bond angles.
Such a potential for variations in the bond angle θ should be symmetric and periodic in θ. This is
satisfied for a potential which only depends on the angle’s cosine, such that U(θ) = U(cos θ). One
potential is included for each bond angle of the chain. So for a chain with m members, one obtains
m-1 angles between nearest neighbours. Using an energy penalty quadratic in displacements of
cos θ leads to:

UBend, NW =
m−1∑
i=1

kBend, NW

2
( cos θi − cos θ0 )

2 . (2.53)

The parameter cos θ0 defines the spontaneous curvature and was chosen to be cos θ0 = 1 such
that the minimum energy configuration is a straight chain. One can define the distance vectors
between neighbouring beads: d⃗i ≡ r⃗i − r⃗i−1. The cosine can then be calculated as:

cos θi =
d⃗i · d⃗i−1

|d⃗i| · |d⃗i−1|
(2.54)

The position vector of bead i will therefore appear in the potentials of the angles θi, θi+1, and
θi+2. The force on bead i can thus be calculated as:

F⃗i = −∇⃗
i+2∑
k=i

kBend, NW

2
( cos θk − cos θ0 )

2 . (2.55)

The exact expression of the resulting force contributions can be found in [26]. Each polymer bead
then has force contributions from its two nearest neighbours. The boundary beads, having only
one neighbour, only have one force contribution, while the crosslink beads, participating in three
bonds, have six force contributions. The essential point is that one ends up with an analytical
expression to compute the resulting bending forces on bead i from knowledge of the positions of
all polymer beads:

F⃗Bend,i = [−∇⃗iUBend] (r⃗1, ...r⃗i, ...r⃗N) . (2.56)
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2.4 Units and code structure

In the simulations, the numerical values of the thermal energy kBT , the mean initial bond length
of the cell surface edges b0 (see figure 2.3b), and the diffusion constant D0 of a single node were
chosen to have a numerical value of 1. This means all energies are measured in units of the ther-
mal energy, lengths are measured in units of the mean initial bond length, and time is measured in

units of
b20
D0

. The latter represents the diffusive timescale of an individual node. The time step was

chosen to be ∆t = 10−4 in all simulations. In the visualized plots in the results, time is plotted
in simulation units if the plots are regarded as simulation results. For estimation of equilibration
times or investigations relevant for parameter choices, time is plotted in time steps, since this is
the relevant quantity for the simulation setup. Choosing the units as described above, with a De-
launay triangulation of factor 10, results in a cell surface model with a radius of about Rcell ∼ 7.9.

In the course of this project, a code for the simulation of driven deformable cells in deformable
polymer networks was written. The code can be roughly structured into two parts. The first part
concerns the generation of the initial system. This includes defining all the relevant parameters,
generating the initial position coordinates of both cell nodes and network beads as well as gen-
erating all the arrays containing the information necessary for the following force computations.
The second part concerns the time evolution of the system. For each time step, force computa-
tions and the subsequent numerical integrations of the equations of motion are performed. The
total force vectors on each particle are computed accounting for the cell interactions, cell-network
interactions, network interactions as well as the external driving force. The position updates are
done using the GB algorithm [17]. During each time step or in periodic intervals, relevant pa-
rameters like positions, forces or energies can be stored in external files for data analysis purposes.

The code sections for the Delaunay triangulation as well as for the bending force computations
of both cell surface nodes and polymer beads were already implemented and provided by the
co-supervisor of this thesis, Dr. Andreas Zöttl. The rest of the simulation code was written from
scratch in the course of this project.
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Chapter 3

Results and Discussion

The results are discussed in 3 subsections. The first subsection discusses different cell models by
investigating the impact of different cell surface interaction potentials on relevant properties of
the cell surface. The second subsection presents the results from simulations of driven deformable
cells in rigid networks. This includes a discussion of the generic cell behaviour and an investigation
of the influence of relevant parameters on the cell behaviour. The third subsection presents results
from a simulation of driven deformable cells in deformable networks.

3.1 Cell models

Equilibration

The Brownian dynamics integrator is used to simulate cell motion in a thermal environment
of a given temperature T. However, the surface nodes are initialized with zero velocity. The
cell surface is therefore effectively a system initially at zero temperature which is brought into
contact with a heat bath of non-zero temperature. The cell then equilibrates approaching thermal
equilibrium and the temperature of the heat bath. The cell can be viewed as equilibrated when all
energy contributions fluctuate around a constant plateau value. Figure 3.1 shows a visualization
of the shape evolution of the triangulated surface of a minimal cell model including only bond and
bending potentials (kBond = 102, kBend = 1). The cell on the left shows the initial configuration,
the one in the middle shows the configuration after just a few time steps, while the right one
shows the equilibrated cell surface after a few thousand time steps. It should be noted that the
shown bonds in the visualization were automatically drawn between particles in VMD and do not
necessarily represent the actual triangulation. Nonetheless, the visualization is useful to show the
evolution of the general surface structure. The chosen interaction potentials are relatively weak,
that is why the equilibrium surface fluctuations are relatively strong.
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Figure 3.1: Time evolution of the cell surface structure, using a minimal cell model
including only bond and bending potentials (kBond = 102, kBend = 1).

Impact of different potentials

Figure 3.1 shows that the equilibrium cell surface deviates from the initial surface. In general,
this also depends on the chosen interaction parameters. In order to show the impact of adding
different potential contributions, the bond length distributions as well as the volume, and area time
evolution were investigated for 4 different cell models, as shown in figure 3.2. The first model only
includes bond potentials, while the other three each add one yet different contribution: bending,
volume, or area potentials, respectively. The interaction strengths are shown in the figure. The
simulations were run for 100.000 time steps, while measurements such as volume, surface area,
and bond lengths were taken every 200 time steps. The shown distributions were averaged over
the last 200 measurements. The distributions are plotted as probability densities, while both area
and volume values are normalized to their respective initial value.
The top plot in figure 3.2 shows the distribution of the deviations of the surface bond lengths from
their respective initial value. For this curve, the deviations of individual bond lengths from their
respective initial value were taken, averaged over time, and then transformed into a smooth curve
using a Gaussian kernel density estimator. Considerations from statistical mechanics show that the
distribution of an isolated single bond in a thermal environment and subjected to an interaction
potential follows a Boltzmann distribution, with the distribution width being determined by the
potential strength kBond. This means for the distribution of the bond length deviations ∆b:

P (∆b) ∝ exp

{
−UBond

kBT

}
∝ exp

{
−kBond (∆b)2

}
. (3.1)

This gives a first approximation for how the bond length distribution should look like. Since the
surface bonds are not isolated, their distribution should deviate from equation 3.1, but show a
similar trend. The top plot in figure 3.2 shows that the simulation including only bond interactions
produces a bond length distribution quite similar to the Boltzmann approximation. The deviation
can be explained by the fact that the surface bonds are not isolated such that the individual
bond potentials are not independent. Comparing the curve of the first simulation including only
bond interactions to the other three shows the impact of the different potentials, explained in the
following. The chosen plots are meant to show the qualitative impact of the different potentials
using a particular set of interaction strengths, while the precise quantitative impact also depends
on the chosen interaction strengths.
Including a bending potential slightly narrowed the distribution, which can be explained by the
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Figure 3.2: The influence of adding different potential contributions on the equilibrium
bond length distributions, as well as the volume and area time evolution. Each plot
shows the simulation results of four minimal cell models, taking into account bond
interactions with one additional yet different type of interaction potential each. The
legend shows only the non-zero force constants of the respective model.

25



minimal energy configuration of the bending potential being a flat surface. This limits the bond
length fluctuations. Including a volume potential accounting for constant volume resulted in
a narrower but also shifted distribution. The narrowing can be explained by the fact that the
volume potential introduces an additional energy penalty for bond lengths deviating from their
initial value. The shifting of the distribution to the right can be explained by a non-linear interplay
between volume and bond potentials. A bond length deviation including a position displacement
orthogonal to the triangulated surface results in a volume displacement, which leads to an energy
penalty. However, a bond length displacement directed towards the cell outside leads to a smaller
volume displacement and thus a smaller energy penalty than the same bond length displacement
directed towards the cell inside. This is a result of the reference configuration being a curved
surface. This effect could be seen as an explanation of the asymmetric impact of the volume
potential on the bond length distribution. This, however, does not necessarily explain why the
peak value of the distribution changes. Including area interaction potentials also resulted in a
narrower distribution. Similarly, this can be explained by the additional energy penalty for a bond
length displacement. In contrast to the volume potential, the impact of the area potential is
symmetric since the direction of the displacement does not influence its energy penalty.
It should be noted that in these simulations the initial area and surface were taken as reference
values for the area and volume interaction potential, respectively. One could in principle simulate
osmotic pressure by changing the values of the reference volume. Choosing a larger reference
value could be used to simulate an effective hypotonic environment, while a smaller value could
be used to simulate an effective hypertonic environment.

It is apparent in the middle plot of figure 3.2 that the cell model including only bond interactions
does not conserve the initial volume. In fact, this model eventually shrinks down to a clump
of below 5 percent of the initial volume (this takes more than the 100.000 time steps shown in
the figure). Including area interactions, the volume conservation appears to be slightly better.
This can be explained by the fact that for a sphere, area increase/decrease also implies volume
increase/decrease. Including bending interactions, one can see that the volume drops from the
initial value but approaches a plateau value once the cell is equilibrated. Considering the flat sheet
as the minimum energy configuration of the bending potential, this behaviour can be motivated
by the bending potential providing the necessary outward pressure to prevent the shrinking of the
surface. Including a volume potential, one can see that the initial volume is conserved extremely
well.

The bottom plot of figure 3.2 shows the area evolution of the different models. Interestingly,
including volume interactions resulted in an apparent equilibrium plateau surface area which
is larger than the initial surface area. This is caused by the thermal equilibrium bond length
fluctuations combined with the constraint of constant volume. For the other three models, the
area peaks at the beginning, then decreases and roughly approaches a plateau value below the
initial value. In those cases, the thermal equilibrium bond length fluctuations have a similar effect,
however, the area is conserved better at the cost of the volume conservation. The most efficient
surface area conservation is achieved for the model including the additional area potentials.
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Driven cells in a fluid

The different interaction potentials should not have a significant impact on the velocity evolution
of a driven cell’s center of mass in a fluid. The velocity evolution was therefore investigated for
different constant external force strengths using a cell model including only bond interactions.
Inserting the diffusion constant of an individual node D = 1 and the thermal energy kBT = 1 into
equation 2.2 shows that in this case the numerical values of the driving force and the resulting
terminal velocity are equivalent. Figure 3.3 shows the evolution of the projection of the cell’s
center of mass velocity in the direction of the driving force, normalized to the respective terminal
velocity vt. The direction of the driving force is denoted by the z-direction. The projection of the
velocity in this direction is called the speed vz. One can see that in all four cases the measured
speed fluctuates around the value of the respective terminal velocity. The fluctuations of all
cases are synchronized, since all simulations used the same seed number for the random number
generation. For small external forces, the thermal fluctuations still play a dominant role resulting
in large relative speed fluctuations. The impact of the thermal fluctuations decreases, however,
for increasing external force strengths.
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Figure 3.3: Speed evolution of driven cells in a fluid, normalized by the corresponding
analytically predicted terminal velocity.
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3.2 Driven deformable cells in rigid networks

In order to get a first overview of the generic behaviour of a driven deformable cell squeezing
through a network, simulations were run with a rigid network. This means the network beads
take part in interactions with cell nodes but their positions stay fixed. The distance between
two neighbouring beads was chosen to be equal to the mean initial bond length between two
neighbouring cell surface nodes bbeads = bnodes,0 ≡ b0 = 1. Using a rigid network, simulations
of driven cells were found to be stable for network grid sizes larger or equal to 12 in a certain
range of cell surface interaction parameters. Simulating the network as a rigid body also allows
to reduce the size of the network which reduces the computational cost of each simulation.
Since all network beads stay at a fixed position, there are no boundary effects to worry about.
Therefore, the network can be initialized as only one channel through which the cell can be pulled
(Ncells,xy = 1). The length of the network was set to Ncells,z = 10. It should be noted that,
while the network has 10 network cells along the z-direction, it effectively has 11 pores.

Generic behaviour

Using only bond and bending potentials, the cell surface deforms at the first pore, shrinking to
a size small enough to move through the rest of the network without any significant interactions
with the network. This can be seen in the example system using kBond = 500, kBend = 1,
and agrid = 13, which is visualized in figure 3.4. Instead of all network beads, only the bonds
between neighbouring network beads are shown such that the cell is clearly visible going through
the network. However, additional bonds around the crosslink beads were automatically drawn
in VMD which do not represent physical bonds. This also applies to the following network
visualizations. The shrinking process at the first pore can be seen going from snapshot 2 to 3.
Snapshot 4 shows that at the next pore the cell is small enough to avoid significant interactions
with the network.

Figure 3.4: Visualization of cell model using only bond and bending potentials.

Therefore, in order to represent more realistic cell behaviour, a volume potential was included.
This reproduced a squeezing behaviour where the cell needs to squeeze through each pore by
deforming its surface. However, simulations using those three types of cell interaction potentials
were found to be stable only for particular combinations of interaction strengths. Additionally
including area potentials allowed to simulate the system without surface bond instabilities for a
broader range of parameter combinations. As shown in table 3.1, a particular set of parameters is
used to discuss different cell properties in the following: kBond = 103, kV = 1, kA = 200, kBend =
100, agrid = 12. This example can be used to discuss the generic behaviour of an externally
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driven deformable cell in a rigid network with a cell size larger than the pore size.

kBond / (kBT/b
2
0) 103

kBend / (kBT/b0) 100

kV / (kBT/b
6
0) 10

kA / (kBT/b
4
0) 200

σWCA / b0 1

ϵWCA / kBT 1

Table 3.1: Interaction parameters used to investigate the generic cell behaviour when
having to squeeze through network pores. The first four parameters are cell surface
interaction parameters while the last two define the interactions between cell surface
nodes and network beads.

The system’s behaviour is affected by thermal noise. Therefore, in order to obtain significant
results, it is necessary to perform an ensemble of simulations using different seed numbers for
the random number generation. Then one can use ensemble-averages to determine relevant
quantities. An ensemble of 10 systems was run for 105 integration steps with 103 measurement
steps, such that relevant quantities were measured every 100 integration steps. The cells were
initialized at a z-distance of agrid + 10 from the first network pore, and at x- and y- coordi-
nates such that the cell’s center of mass is pulled exactly through the center of the pores. The
following discussion of the cell surface behaviour always refers to ensemble-averaged properties.
The ensemble-averaged time series like the evolution of energies are simply sample means at
each time step. Single ensemble-averaged mean values, like the mean speed when translocating
through a pore, were obtained as sample means of the respective mean values of the individual
simulations. The error σ̂ of such point estimates µ̂ = x ≡

∑N
i=1 xi for some true value µ can

thus be approximated by σ̂2 = σ2

N
with σ being the standard deviation of the sample of means

xi and N being the sample size.

Figure 3.5 shows the projection of the velocity of the cell’s center of mass in the direction of the
driving force, now referred to as the speed vz. The top plot shows the cell speed in its full extent
while the bottom plot shows the top region of the oscillations in more detail. The local speeds
were determined by calculating the distance between the position at the last time step and the
position at the current time step. The ensemble-averaged curve was then obtained by averaging
over the values of each individual simulation at each time step.
The top plot clearly shows that the network pores act as barriers slowing down the cell. When
encountering a network pore, the driven cell has to deform its surface and squeeze, such that the
speed decreases to a minimum value and then increases again. The subsequent speed maxima
after each pore exceed the terminal velocity of the respective cell in a network-free fluid. This
indicates that in the squeezing process, elastic interaction energy is utilized to locally enhance the
cell speed. The speed displays an overall oscillatory behaviour. However the curve looks less like
a sinusoidal curve, but more like almost linear curves with discrete turning points at the minima
and maxima.
For this particular set of interaction parameters, the cell speed in the network ranges from slightly
below 0.6 to slightly below 1.1 in units of the corresponding terminal velocity, with a mean value
of about 0.83 within the network. Interestingly, the peak values grow to values larger than 1.
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Figure 3.5: Speed evolution of a driven deformable cell in a rigid network. The top
plot shows the speed normalized to the respective terminal velocity in a network-
free fluid, while the bottom plot shows the speed enhancement with respect to the
terminal velocity in a percentage measure.

The difference of the speed maxima after each pore and the terminal velocity can be taken
as a measure for this observed speed enhancement. Figure 3.5 shows the speed enhancement
∆vz ≡ ⟨vz,peak⟩−vt after a pore, normalized to the terminal velocity and plotted as a percentage
measure. In this case, the speed enhancements after the pores fluctuates between about 8 and 9
%. After the last pore of the network, the cell speed returns to fluctuating around the terminal
velocity.

Figure 3.6 represents the time evolution of the different energy contributions. The top plot shows
the energy evolution using a logarithmic y-axis due to the different orders of magnitude. One
can see pronounced oscillatory behaviour of all energy contributions with maxima and minima
appearing at similar points in time. A closer look reveals that some contributions look synchro-
nized while others appear to have a constant phase shift. The WCA and bending energies appear
to be synchronized, while the volume and area interaction energies as well as the bond energies
seem to be also synchronized. However, a slight phase shift between these two groups is visible.
In order to quantify this phase shift, the bond and WCA energies were fitted using a sinusoidal
fit function f(t) = a sin (ωt+ ϕ) + f0. The obtained phase difference ∆ϕ in degrees can then
be converted to a time quantity via Tshift =

∆ϕ
360

Tout−Tin

10
. The parameters Tin and Tout represent

the points in time when the cell’s center of mass enters and leaves the network, respectively.
Therefore, Tout−Tin

10
represents the average time it takes the cell to travel through one of the ten

network cells. The transformation assumes that one oscillatory period of 360 degrees corresponds
to the cell travelling through one network cell. The time shift was then calculated to be about
505 ± 5 time steps. It should be noted though that the energies were measured only every 100
time steps which, due to the size of the time shift, constrains its precision. The bottom plot
in 3.6 shows the measured as well as fitted curves of both WCA and bond energies such that

30



10−1
100
101
102
103
104

En
er
gy
 / 
k B
T EBond

EBend
EV
EA
EWCA

0 2 4 6 8 10
Time / (b20 /D0)

0.0

0.2

0.4

0.6

0.8

1.0

En
er
gy
 / 
a

EWCA (measured)
EWCA (fitted)
EBond (measured)
EBond (fitted)

Energy evolution of driven deformable cell in rigid net ork

Figure 3.6: Energy evolution of a driven deformable cell in a rigid network. The top
plot shows the time evolution of the relevant energy contributions using a logarithmic
y-axis, while the bottom plot shows the measured WCA and bond energies with
sinusoidal fits, normalized to the fitted amplitude a.

the slight phase shift is visible. For visualization purposes, the curves were normalized by the
respective fitted oscillation amplitude, such that both curves peak at the value of 1.

Figure 3.7 represents the time evolution of the cell surface shape. The top and middle plots show
the cell volume and surface area evolution, normalized to the respective initial value. One can see
that, within the network, the cell surface increases periodically. The surface area has to increase
when encountering a pore due to the necessary cell surface squeezing. The surface area minima
are still larger than the equilibrium value since the cell surface cannot return to its equilibrium
shape between two pores, since the pore size is smaller than the cell size. The cell volume on
the other hand periodically decreases due to the cell squeezing. Due to the choice of interaction
parameters, the relative deviations of the cell volume are below 1 percent, while the surface area
deviations reach up to 10 percent. The time evolution of both volume and surface area should
in principle depend on the choice of kV and kV .
The bottom plot shows the so-called normalized asphericity parameter. This is a parameter
quantifying the deviations of the surface shape from the initial perfect sphere. First, the gyration
tensor of the cell surface is determined:

gij =
1

N

N∑
k=1

∆rki ∆rkj . (3.2)

Here, k denotes the respective node and i and j denote the Cartesian components. The relative
vectors are defined as ∆r⃗ ≡ r⃗ k− r⃗ c with r⃗ c ≡ 1

N

∑N
k=1 r⃗

k being the body’s center of mass. The
eigenvectors of the gyration tensor can then be calculated and used to determine the asphericity
parameter b:

b = λz −
1

2
(λy + λx) . (3.3)
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In this case, the eigenvalues are sorted such that λz represents the largest eigenvalue. In order
to get a measure which is independent of cell size, the asphericity can further be normalized to
the radius of the cell. Since the dimension of the eigenvalues is length squared, the asphericity
is divided by R2

cell. A value of zero then corresponds to a perfect sphere, while a large value
corresponds to a large deviation from the spherical shape. This calculation was performed for
each time step. The time evolution of b/R2

cell in figure 3.7 shows that at the beginning of the
simulation, the value already fluctuates around zero due to thermal fluctuations. Within the
network, b/R2

cell oscillates between values of about 0.17 to below about 0.03. This mirrors the
need for the cell surface to acquire a rather elliptical shape in order to translocate through network
pores. Interestingly, slightly before the oscillatory behaviour, one can see a small bump in the
bottom plot, where the asphericity increases but afterwards drops down to almost zero again.
This is not an essential feature of the generic behaviour of a cell squeezing through a pore, but
would still be an interesting point of further investigation.
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Figure 3.7: Shape evolution of a driven deformable cell in a network. The top
and middle plot show the time evolution of the cell volume and surface area, both
normalized to the respective initial value. The bottom plot shows the time evolution of
the so-called normalized asphericity, measuring the deviation from the initial spherical
surface shape.
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Figure 3.8: Visualization of the generic behaviour of a deformable cell in a rigid
network.

Figure 3.8 shows a visualization of the the time evolution of the discussed example system. The
9 snapshots represent a time interval of 9600 time steps, such that 1200 time steps separate the
different configurations. For a clearer visualization only the bonds are drawn of both cell surface
and network chains. Although the drawn bonds do not exactly represent the triangulation and
the network crosslink beads show additional bonds which are not part of the simulation, the vi-
sualization is still helpful to see the generic behaviour of the cell surface when squeezing through
the first network pore.
Snapshot 1 represents the point in time when the cell speed starts to decrease due to interac-
tions with the network beads. In the snapshot, the cell still seems to be rather far away from
the network, but this is a visualization bias. The size of the network chains do not necessar-
ily represent the actual size of the network beads in the simulation. The same applies to the
cell surface nodes. Snapshots 2 and 3 show how the pore acts as a barrier, with the cell front
translocating through the pore, while the rest of the cell body stays behind due to interactions
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with the network. Snapshot 4 represents the cell speed minimum. The rear part of the cell body
starts to squeeze through the pore leading to an increase in cell speed. Snapshot 5 represents the
approximate configuration of the maxima of the energy contributions. Snapshots 5 and 6 also
approximately represent the configuration when about half of the cell body has squeezed through
the first pore. Snapshot 7 shows the configuration of the cell speed maximum. At this point, the
rear part has successfully deformed such that it can translocate entirely through the pore. The
stored elastic energy in the surface deformations has been converted to kinetic energy, leading
to the local speed enhancement. Snapshots 8 and 9 show the cell encountering the next pore,
which leads to a cell speed decrease and subsequent cell surface deformations.

In summary, figures 3.5, 3.6, 3.7, and 3.8 show the generic behaviour of a driven deformable
cell squeezing through a rigid ordered network, using a particular set of interaction parameters.
The results show oscillatory behaviour of many cell surface properties. Pores act like barriers
transitionally slowing down driven cells. In the squeezing process, elastic interaction energy is
utilized to locally enhance the cell speed after each pore. Additionally, a slight phase shift is visible
between the different types of energy contributions. Considering its small value, however, this
does not seem to be significant. The strength of these phenomena should in general also depend
on the different system parameters. In order to investigate the influence of bending elasticity
kBend and grid size agrid, further simulations were run.

Influence of cell bending elasticity and pore size on cell behaviour

The introduced parameters of the mean cell speed and the speed enhancement after the pores
were then investigated under the influence of a varying bending elasticity kBend and varying pore
size. The pore size is given by the grid size of the ordered polymer network agrid. However, this
distance represents the length of a network unit cell, when viewing the network beads as point
particles. Since membrane nodes and network beads see each other not as point particles, but as
particles of diameter σWCA due to the implemented WCA interactions, this has to be taken into
account. A better measure for the available free space for a membrane node within a network
pore would therefore be the pore size agrid−σWCA, and for the cell size 2Rcell+σWCA. Therefore,
the effective pore size relative to the cell size can be described by introducing the dimensionless
pore size parameter: α ≡ agrid−σWCA

2Rcell+σWCA
.

The influence of both parameters was investigated by keeping one of them fixed, while varying the
second one. The values of the other cell interaction potentials remained unchanged with respect
to the ones given in table 3.1. In order to investigate the influence of the bending elasticity
kBend, the pore size was fixed at agrid = 12, while kBend was varied between 0 and 200 using
the values shown in table 3.2. In order to investigate the influence of the pore size, the bending
elasticity was fixed at kBend = 200, while agrid was varied between 12 and 19, as shown in table
3.3. For the simulations using agrid > 16, the number of time steps was increased to 120.000
steps such that the cell still makes it through the whole network, while the ratio of time steps
and measurement steps was kept constant.

In order to investigate the influences on the mean behaviour of the cell when encountering a pore,
several properties were determined as an average over both the pores and the ensemble. Those
properties were denoted with an asterisk, and are defined in table 3.4. Averaging over the pores
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means that the respective time series was separated into 11 intervals with the length of one cell
squeezing period each, such that each interval contains one of the 11 peaks and thus represents
the time the cell spends at one pore. Those separated curves were then averaged to obtain one
curve representing the mean squeezing behaviour for an individual simulation.

Fixed grid size agrid/b0 12

Corresponding α 0.63

Varied bending elasticity kBend/(kBT/b0) 0, 1, 25, 50, 75, 85, 90, 100, 125, 150,
200

Table 3.2: Parameters used to investigate the influence of the bending rigidity on the
cell behaviour.

Fixed bending elasticity kBend/(kBT/b0) 200

Varied grid size agrid/b0 19, 18, 17, 16, 15, 14, 13, 12

Corresponding α 1.07, 1.01, 0.95, 0.89, 0.83, 0.77, 0.71,
0.65

Table 3.3: Parameters used to investigate the influence of the pore size on the cell
behaviour.

Introduced parameter Definition

Mean cell speed v∗z The time it took the cell’s center of mass to travel from the
beginning to the end of the network was averaged over the
ensemble.

Speed enhancement ∆v∗z The maximum value of the pore-averaged speed curve was
taken, then the terminal velocity was subtracted, and the re-
sulting value was ensemble-averaged.

Total energy at speed
maximum E∗

Tot,vpeak

Both speed and total energy curves were pore-averaged. The
total energy was evaluated at the time of the speed maximum
and then ensemble-averaged.

Maximum bending
energy E∗

Bend,max

The maximum bending energy value of the pore-averaged
curve was taken and averaged over the ensemble.

Table 3.4: Definition of introduced properties.

The top plot in figure 3.9 shows the mean cell speeds in units of the corresponding terminal
velocity as a function of the bending elasticity kBend. The measured ensemble means are plotted
including error bars. One can see that starting at kBend = 0 the mean cell speed has a value of
about 0.816, with the mean cell speed increasing for increasing kBend. The slope then flattens and
seems to reach a maximum mean cell speed of about 0.833 between kBend = 85 and kBend = 90.
After the peak, the mean cell speed decreases for increasing kBend down to a speed of about
0.823 for kBend = 200. The bottom plot in figure 3.9 shows the speed enhancement ∆v∗z after
each pore, plotted as a percentage measure. This parameter seems to grow monotonously with
increasing kBend, from an enhancement of about 2% at kBend = 0 to about 10 % at kBend = 200.
The curve seems to flatten slightly towards larger kBend.
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Figure 3.10 shows the same types of plots as a function of pore size α. The top plot, however,
now has a reversed x-axis, such that the pore size decreases going to the right. As expected, the
mean cell speed is unaffected by the network for α > 1, such that the cell speed is equal to the
terminal velocity in a network-free fluid. With decreasing α, the mean cell speed decreases, with
the slope of the curve getting steeper as α decreases. The smallest simulated pore size of about
0.65 results in a mean migration speed of about 0.82. The bottom plot in figure 3.10 shows
the speed enhancement ∆v∗z after each pore as a function of pore size. This value increases for
decreasing α, with the slope also getting steeper as α decreases. Comparing both figures 3.9 and
3.10 shows the similarities as well as the differences of the influence of both bending elasticity
and pore size. While the pore size size has a monotonous effect on the mean cell speed, varying
the bending elasticity leads to a unimodal behaviour. It is also apparent that varying the pore
size leads to larger variations in cell speed than varying the bending elasticity. A larger speed
enhancement, however, is obtained by either increasing bending elasticity or decreasing the pore
size. The fact that the speed enhancement is larger than zero for α > 1 can be reduced to the
fact that its value was determined using the maximum local speed value, which is affected by
thermal noise for small values.
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Figure 3.9: Influence of bending elasticity on mean cell speed and speed enhancement
after each pore.
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Figure 3.10: Influence of bending elasticity on mean cell speed and speed enhancement
after each pore.

Correlations of cell speed properties and interaction energies

In order to explain the trends observed in figures 3.10 and 3.9, some parameter correlations were
investigated. The speed enhancement was observed to show similar behaviour as the mean max-
imum value of the total interaction energy at the point in time of the speed maximum, denoted
in the plots as E∗

Tot,vpeak
. This correlation is shown as a function of bending elasticity in figure

3.11 and as a function of pore size in figure 3.12.
These correlations motivate the interpretation that elastic energy created by the surface defor-
mations is utilized to locally enhance the cell speed after the pores. Since surface deformations
not only lead to a change of total curvature, but also potentially to a change in bond lengths,
volume, and surface area, all of the cell interaction potentials contribute to this elastic energy, not
just the bending potential. This explains the large correlation of the speed enhancement with the
total interaction energy at the same time. The bending energy alone at that point in time was
found to show a less convincing correlation with the observed curve of the speed enhancement.
The unimodal behaviour of the mean cell speed as a function of the bending elasticity kBend is an
unexpected finding. The parameter kBend represents the interaction strength of the cell surface
bending potential. Its corresponding minimum energy configuration is a flat sheet. Therefore, a
larger kBend corresponds to a surface which has a stronger desire to reduce its total curvature,
which means that surface deformations cost more energy. So, starting from a configuration that
can squeeze through the network, the naive assumption would be that increasing kBend leads
to a stronger resistance to surface deformations and thus to a lower mean cell speed. Further
increasing kBend could then lead to a discrete hopping regime, and eventually to the cell getting
stuck in a pore. This would motivate the right part of the unimodal curve, but fails to explain
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the left part.
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Figure 3.11: Correlation of speed enhancement and total energy at the speed maxi-
mum as a function of bending elasticity.

0.60.70.80.91.01.1
α

2

4

6

8

10

Δv
* zΔ/

Δv
tΔΔ

[%
]

Co  elation of speed enhancement and total ene gy at speed maximum
 as a function of po e size

2000

4000

6000

8000

 E
* To
t,
v p

ea
k /

 k
B
T

Speed enhancement Δv*
z

Total ene gy at speed maximum E*
Tot, vpeak

Figure 3.12: Correlation of speed enhancement and total energy at the speed maxi-
mum as a function of pore size.

Figures 3.13 and 3.14 show a comparison of the behaviour of the mean cell speed and the
maximum bending energy E∗

Bend,max. Interestingly, the mean maximum bending energy shows
both the monotonous behaviour of the mean cell speed as a function of pore size as well as the
unimodal behaviour of the mean cell speed as a function of bending elasticity. The curves of
the mean cell speed and the maximum bending energy show similar behaviour in general, but
also deviations at a closer look. The peak value as a function of bending elasticity is achieved
at a larger value of kBend and the curve seems to fall quicker as a function of pore size. This
implies that the maximum bending energy is related to the mean cell speed, but does not define
it alone. Due to the observed correlations of maximum bending energy and mean cell speed,
a possible interpretation for the left part of the unimodal behaviour would be that including a
bending potential could lead to local flattening of the cell surface near the interaction sites with
the network. This flattening could in principle lead to weaker cell-network interactions such that
the pore acts as a weaker barrier, facilitating the cell propagation, such that the mean speed
could increase with kBend for small values of kBend. However, the WCA energy representing
the cell-network interactions was found to follow a monotonous curve as a function of bending
elasticity. Therefore, this interpretation does not seem to agree with the simulation results.
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tion of bending elasticity.
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Figure 3.14: Correlation of mean cell speed and maximum bending energy as a func-
tion of pore size.

3.3 Driven deformable cells in deformable networks

Deformable network models

In order to investigate the general case of a driven deformable cell in an ordered deformable
network, simulations were also run using a non-rigid network. Since in this case boundary effects
play a role, the network size along the x- and y-direction was increased from Ncells,xy = 1 (a
single channel) to Ncells,xy = 5. The network size along the z-direction was not changed at
Ncells,z = 10. The deformability of the network was modelled by including a polymer bending
potential, an attractive FENE potential as well as a repulsive WCA potential within the individual
polymer chains of the network. The interaction parameters for the polymer network were based
on the polymer model by Kremer and Grest [25]. The FENE parameters were thus chosen to be
kFENE = 30 and ∆rmax = 1.5, while the WCA parameters were chosen to be ϵ = σ = 1.

Simulations of the network alone were performed to estimate the network’s equilibration time.
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kFENE / (kBT/b
2
0) 30

∆rmax / b0 1.5

ϵ / kBT 1

σ / b0 1

kBend,NW / kBT 100

agrid,initial / b0 11

Table 3.5: Network parameters used to estimate equilibration time.
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Figure 3.15: Time evolution of the energy contributions of an equilibrating deformable
network. The upper two plots show the individual contributions from the WCA+FENE
and the bending potential, respectively, while the bottom plot shows the total energy
as a function of time.

The simulations were attempted using different choices of boundary conditions like freely equi-
librating boundary nodes or initializing the boundary nodes as damped rigid walls. However,
this revealed that the implemented network remained stable only for rather weak polymer chain
bending potentials. Instability in this case refers to some polymer chain bonds acquiring a bond
length near or larger than the maximum bond length of the respective FENE potential, such
that the bond interaction essentially vanishes, potentially leading to large repulsive force and
neighbouring bonds becoming unstable. Deviating from the Kremer-Grest parameter choice did
not seem to improve the stability. This already restricted the range of possible values for the
network bending elasticity kBend,NW . A stable network equilibration was achieved for the network
parameters described in table 3.5. The initial grid size was chosen to be agrid,initial = 11. It
should be noted though that the physical pore size of the equilibrated network can deviate from
this initial value.
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Figure 3.15 shows the energy evolution of a single simulation of a deformable network simulated
for 5 · 105 time steps. Measurements were taken every 500 time steps. The boundary beads were
fixed at the simulation box walls from the start of the simulation. The used interaction parameters
are summarized in table 3.5. The plots show that, due to the choice of interaction parameters,
the bond energies (WCA+FENE) have a larger energy contribution than the network bending
energies. While the bond energies peak at the start and then decrease, the bending energies
increase monotonously, until both energy curves approach a plateau value after an equilibration
time of approximately 2.5 · 105 time steps.
The Visualization in figure 3.16 shows a comparison of the initialized network configuration (red)
and equilibrated network configuration (blue). Looking at the vertical boundary chains on the
left and right end of the network, one can see that, during equilibration, the network tries to
contract due to entropic reasons. This means that the equilibrated network is under tension due
to the choice of boundary conditions. As a result, the effective grid size agrid,eff. in the center of
the network is smaller than the initial value of agrid,initial = 11. This is also visible in figure 3.16.

Figure 3.16: Visualization of the equilibration of a deformable network. The blue
beads represent the initialized network configuration, while the red beads represent
the equilibrated network configuration.

Driven deformable cells in deformable networks

Attempts to simulate a rigid cell being pulled through a deformable network were found to be
stable as long as the grid size a is larger than, equal to, or only slightly smaller than the cell
diameter 2Rcell. Trying to choose a smaller agrid in order to reproduce a rigid cell attempting to
translocate through a pore and getting stuck resulted in an unstable network. Similar behaviour
was found for deformable cells in deformable networks. For sufficiently small agrid, depending on
the chosen interaction parameters, either the cell or the network become unstable before the cell
can pass the first network pore. In the case of the cell, instability means that some bond lengths
diverge leading to a ruptured cell surface.
A stable example run was performed using a network with the network parameters described in
table 3.5 and a driven deformable cell with the same parameters as in the discussion of the generic
behaviour of deformable cells in rigid networks (table 3.1). Figure 3.17 shows different properties
of the system’s behaviour over time.
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The shown plots skip the equilibration time of the network of about 25
b20
D0

. Measurements were
taken every 100 time steps. The cell speed shows very weak oscillatory behaviour with the ex-
pected speed drops when encountering a pore. The general speed evolution, however, is strongly
influenced by thermal fluctuations. The cell shape represented by the normalized asphericity
shows a more pronounced oscillatory behaviour. The oscillation amplitude is rather small though,
with a peak value of about 0.017. This is about a tenth of the value observed in the rigid net-
work case in figure 3.7. One can see that the maximum value in each oscillation period varies
more strongly than in the case of the rigid network. This can be explained by the fact that the
network now also reacts to cell-network interactions with deformations. This means that the
cell encounters each pore in a different configuration, due to previous cell-network interactions
as well as thermal fluctuations. The cell interaction energies are dominated by thermal fluctua-
tions and do not show clear oscillatory behaviour. The point of first contact of cell and network
can be seen as a steep increase in the WCA energy representing the cell-network interaction.
This curve also shows week oscillatory behaviour as long as the cell travels inside the network.
The network bond energies (WCA+FENE) show clear oscillatory behaviour, while the network
bending energy is dominated by thermal fluctuations. Figure 3.18 shows a visualization of this
simulation. Comparing snapshots 2 and 4, one can see at the example of the upper network
chain of the first pore how the network deforms, enabling the cell to swim through the pore.
Due to the choice of parameters this is more like a sliding than a squeezing motion. Very weak
deviations of the cell surface from the spherical shape are visible, while change in the network
configuration is more dominant. This behaviour can be traced back to the rather weak network
bending potential (small kBend,NW ). In order to reproduce squeezing behaviour in a deformable
network, adjustments to the model would need to be made in order to prevent instabilities.
This simulation using a deformable network was performed as a proof of concept for the imple-
mentation of the deformable network model. However, the discussed instabilities made it difficult
to reproduce the desired squeezing behaviour of the cell. A smaller grid size as well as a stronger
network bending potential are necessary to reproduce squeezing behaviour.

Figure 3.18: Visualization of a deformable cell in a rigid network.
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Chapter 4

Conclusion

This project studied the influence of pores in biopolymer networks such as the ECM on the speed
and surface deformation of cells, using a simplified model of an externally driven deformable cell
moving through ordered polymer networks by means of Brownian dynamics simulations.
A driven deformable cell moving through a rigid network was used to investigate and discuss
the generic cell surface behaviour when squeezing through a pore. The cell speed was shown to
have oscillatory behaviour with speed minima before and subsequent maxima after each pore.
The speed maxima were larger than the respective terminal velocities in a network-free fluid. All
energy contributions showed oscillatory behaviour with small phase shifts between the different
types of contributions. In order to squeeze through the pores, the cell surface needs to deform.
This was visible in the time evolution of the cell asphericity with periodic changes to a more
elliptical surface shape.
Simulations for different bending elasticities and pore sizes revealed different effects. The speed
enhancement increased monotonously both with increasing bending elasticity and decreasing pore
size. Taking into account the strong correlations between the speed enhancement and the total
cell interaction energy at the speed maximum, this indicates that during the squeezing process
the cell utilizes elastic energy from the surface deformations in order to locally enhance its speed.
The mean cell speed showed a monotonous curve as a function of pore size, but a unimodal
behaviour as a function of bending elasticity. Both trends are mirrored by the maximum bend-
ing energy, implying a causal relationship between the two properties. These observations invite
further research to investigate how the interplay of cell and cell-network interactions gives rise to
this unimodal behaviour.
In addition, simulations using a deformable network were performed successfully, showing oscilla-
tory behaviour in some cell and network properties which represents the bi-directional mechanical
crosstalk of cell and network. For stability reasons, a weak network bending potential as well
as a rather large pore size were used. Therefore, the cell did not need to squeeze considerably.
Although some properties like the cell speed and shape or the network bond interaction energy
revealed clear oscillatory behaviour, the cell-network interactions were not strong enough to gen-
erate significant deformations which could lead to a significant local speed enhancement after
the pores. Still, the mean cell speed showed slight periodic drops.

It should be noted that even with kBend = 0, the cell surface resists bending while squeezing
through the pore due to the presence of further interaction potentials. This means that the phys-
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ical bending elasticity of the cell surface is not defined by kBend alone, but by the combination of
all cell surface interactions. In order to investigate the contributions of the different potentials
one could perform simulations with varying interaction strengths for each cell surface interaction
potential.
In the course of this project, simulations were performed for different bending elasticities and
pore size with one of those fixed while the other is varied, respectively. Instead of obtaining
just two single curves, one could perform such simulations using a parameter grid of different
combinations of bending elasticity and pore size. This could give a clearer image of how the
interplay of cell bending elasticity and pore size determines properties like the cell speed.
In order to understand the interplay of cell elasticity and network elasticity, further detailed sim-
ulations using a deformable network are necessary. The observed instabilities of the cell surface
could potentially be avoided by including Stillinger-Weber (SW) potentials. However, the dif-
ferent SW interaction parameters would have to be finely tuned such that the SW potentials
do not themselves contribute to instabilities. The network bond instabilities were accompanied
by network bonds acquiring bond lengths near or larger than the FENE maximum bond length
∆rmax. In principle, one could attempt to resolve this issue by changing the FENE interactions
parameters. A few first attempts to do so were unsuccessful in the course of this project. Alter-
natively, the instabilities could be prevented by choosing a different type of potential to simulate
the attractive interactions of network beads. In both cases, it may be helpful to have a closer
look at the time evolution of the network bond length distribution and use this insight to change
the different interaction parameters.
In biological cells, the properties of the cell nucleus are a major factor limiting the migration
speed when squeezing through pores [8]. This has to be taken into account when building a
realistic cell model. As an addition to the model used in this project, one could add a second
triangulated surface within the cell surface. By using a different interaction strength, this could
be a simple model of the cell’s nucleus. This way, when squeezing through a pore, the cell’s outer
surface has to deform first. However, at a certain point, when the pore size gets smaller than
the nucleus size, the nucleus surface has to deform as well. Results from such simulations could
then be compared to measurements from experiments.

In conclusion, this simulation study has shown that the pore size and bending elasticity have
different effects on the cell speed of a driven cell in an ordered rigid polymer network. While the
cell speed as a function of pore size shows monotonous behaviour, the cell speed as a function of
bending elasticity shows a unimodal curve. After having squeezed through a pore, the simulated
cells showed a local speed enhancement, which grows with both a decreasing pore size and larger
bending interaction strength. In order to fully explain this phenomenona, further research is
needed. Further simulations using deformable networks are also needed to investigate the general
cell behaviour in a more realistic environment.
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Attachments

Zusammenfassung

Zellen migrieren in verschiedenen Umgebungen und als Reaktion auf verschiedene Einflüsse. Ein
Beispiel von Zellmigration ist die Bewegung von Leukozyten durch komplexe Umgebungen, in
denen sie unter anderem kleine Poren in der Extrazellulären Matrix (EZM) durchdringen, indem
sie ihre Zellmembran erheblich deformieren müssen. [1]
Das Ziel dieses Projekts war es, die Auswirkungen von Poren auf die Geschwindigkeit und
Oberflächenverformungen von Zellen zu untersuchen. Dies geschah unter Benutzung eines vere-
infachten Modells einer extern angetriebenen Zelle in einem geordneten Polymernetzwerk.
Zelle und Netzwerk wurden dabei modelliert als Strukturen aus diskreten Teilchen, welche über
bestimmte Interaktionspotentiale in einer thermischen Umgebung miteinander wechselwirken.
Eine extern angelegte Kraft wurde benutzt, um die Fortbewegung der deformierbaren Zelle im
Netzwerk mithilfe der Simulationsmethode der Brownschen Dynamik zu untersuchen.
Ein starres Polymernetzwerk wurde als erstes vereinfachtes Modell von Poren im EZM verwen-
det. Die resultierende Geschwindigkeit der angetriebenen Zelle zeigt oszillierendes Verhalten mit
Minima vor und Maxima nach Durchdringen der jeweiligen Netzwerk-Pore. Die Geschwindigkeits-
Maxima können die Endgeschwindigkeiten der jeweiligen Zelle in der netzwerk-freien Flüssigkeit
überschreiten, während der Wert des Geschwindigkeits-Maximums mit der gesamten Interaktion-
senergie der Zelle am selben Zeitpunkt zusammenhängt. Dies weist darauf hin, dass während des
Deformierens elastische Interaktionsenergie verwendet wird um die Zellgeschwindigkeit lokal zu
steigern. Die mittlere Zellgeschwindigkeit durch das Netzwerk zeigt ein nicht-lineares unimodales
Verhalten als Funktion der Biegesteifigkeit. Dieser unimodale Verlauf zeigt sich ebenfalls in der
maximalen Biegeenergie, was einen kausalen Zusammenhang zwischen diesen beiden Parametern
nahelegt.
Zuletzt wurden Simulationen mit einem deformierbaren Netzwerk erfolgreich durchgeführt, welche
oszillierendes Verhalten von Zell- und Netzwerk-Eigenschaften zeigen. Dies zeigt die gegenseitige
Beeinflussung von Zelle und Netzwerk.
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