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Abstract

We construct a deformed Lorentzian fuzzy sphere as a toy model of a nhon-commutative
cosmology with emergent singularities which appear in the semi-classical limit. The Lapla-
cian on the Lorentzian fuzzy sphere does not agree with the Laplacian on the standard
sphere. This leads to a modified scalar field propagator for the scalar field theory in the
commutative limit. The induced metric on the Lorentzian fuzzy sphere does not agree
with the standard metric on the sphere and we find a signature change around the poles of
the sphere. We show how the singularities on the deformed Lorentzian fuzzy sphere and
the corresponding scalar field propagator behave for di [erknt deformation parameters.

Zusammenfassung

Wir konstruieren eine deformierte Lorentzsche Fuzzy Sphére als Modell einer nicht-
kommutativen Kosmologie mit emergenten Singularitéten im semi-klassischen Limes. Der
Laplace-Operator auf der Lorentzschen Fuzzy Sphére ist nicht derselbe wie der Laplace-
Operator auf der Standard Sphére. Das fuhrt zu einem modifizierten Skalarfeldpropa-
gator fur die skalare Feldtheorie im kommutativen Limes. Die induzierte Metrik auf der
Lorentschen Fuzzy Sphare ist nicht dieselbe wie die tbliche Metrik auf der Sphare und wir
finden einen Signaturwechsel bei den Polen der Sphére. Wir zeigen das Verhalten der Sin-
gularitaten auf der deformierten Lorentschen Fuzzy Sphéare und des Skalarfeldpropagators
fur verschiedene Deformationsparameter.
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1 Introduction

1.1 Motivation

Historically, Western philosophy and science has long believed space and time to be
independent of other physical objects; they were absolute, the backdrop to our experienced
reality. We had the presumption that space and time are not in uenced by and do not
in uence our 'world' It were most notably Hume and Mach who put this paradigm into
guestion for us. [1]

With Einstein and the theory of relativity it became clear that time and space are
not absolute frameworks and that we do not live in a xed box of absolute space and
time coordinates. Moreover, space and time are interdependent, now commonly known
as spacetime, and the Einstein equations display the relationship between spacetime (ge-
ometry) and matter.

This was already one of the biggest changes of worldview as is. But why stop there?
Why should this be all that we got wrong about our understanding of space/time? What
else should we be rethinking?

Thus the rst very simplistic motivation for fuzzy physics is this:

We know from quantum mechanics that at very small scales some physical elements
are quantized. We've learned that space and time are not the presumed unchangeable
backdrop on which all other phenomena take place but that both are interwoven with
each other and play a part in cosmic storytelling. In conclusion spacetime is part of the
physical reality. If we let that sink in for a moment we must allow ourselves to also
consider spacetime to be quantized. And that's simply because itould be and we don't
want to unnecessarily put ourselves into a paradigm box yet again.

Ydri [2] argues qualitatively that forming a relationship between the Heisenberg prin-
ciple and the Einstein equations will result in quantized spacetime:

Following the Heisenberg principle the measurement of a coordinate point requires a
momentum uncertainty which is the dependent on the accuracy of the measurement and,
therefore, energy. But the Einstein equations tell us that matter/energy is coupled to
geometry, in other words: superposition of matter means superposition of geometries [3].

What would it mean for spacetime to be quantized? Basically it suggests that there
is a fundamental length scale where it is impossible to precisely measure time and space
coordinates. What scale are we talking about? We already know from the study of quan-
tum eld theory that there is a fundamental length scale of the order of the Planck scale
[4]: This scale with time intervals around 10 “®s and lengths around 10 3°m is associ-
ated with the uni cation of the fundamental interactions because at this scale gravity
becomes comparably strong to the other interactions. Instead of assuming that at this
scale something magical happens, we can hypothesize that the Planck scale itself the
lengths and times are fundamental.

Analogous to how gquantization in quantum mechanics is achieved by expressing func-
tions as operators and implementing commutation relations between them we can elevate
each (time/space) coordinate to be an operator and formulate commutation relations
between the coordinate operators. These commutation relations naturally introduce the
desired fundamental length scale because it becomes impossible to measure the position of
a particle exactly when the space coordinates cannot be simultaneously diagonalised. [5]
A eld theory formulated on a fuzzy space is therefore already regularized (if compatible
with the right symmetry group), i.e., the number of independent states per ( classical )
unit volume is nite [4][6]. This is also a technical reason for the use of hon-commutative
geometry.

However, this hope to eliminate the ultraviolet divergences that arise in the conven-
tional formulation of quantum eld theory has led to more di culty, namely the UV/IR
(ultraviolet/infrared) mixing: Imposing a UV cuto via non-commutative geometry re-
sults in IR divergences. [5][7]



Another motivation is that we might already come to the notion of hon-commutative
geometry purely by thinking about our understanding of relativity theory alone: we're
aware that the universe looks dierent depending on where you are; i.e. it matters
whether or not you are accelerated with respect to another observer or whether you are
in a gravitational eld. With non-commutative geometry we can put this on an even
more fundamental level: the idea is it's not the existence of acceleration/gravity that is
fundamental, but instead that on very small scalesany change or measurement of position
on spacetime is relevant. The naive picture which might help to visualise the concept of
non-commutative geometry is to imagine that when you move one Planck-scale amount of
length to the side then the geometry, hence also matter, changes with you (in actuality the
notion of localisation vanishes entirely) but as you leave the Planck scale and get closer
to classical length scales the overall geometry will emerge from this non-commutative
geometry.

More information on the historical motivations behind using non-commutative spaces
in physics can be found in [8].

It is (for now) a question of taste whether one views spacetime at a fundamental length
scale as discrete (a lattice ) or indeterminate in the sense of Heisenberg's uncertainty
principle with the loss of any notion of a point. In any case we will call this feature
fuzzy.

We will get to a more technical understanding in the next chapter. For now we are
satis ed with knowing that by using this approach the quantum nature of reality is al-
ready embedded in thegeometry of the fundamental model and that gravity, because it is
fundamentally coupled to geometry, naturally emerges as you get further away from the
Planck scale.

Let me just spend a moment on my own motivation, which is easily explained by the
following observation: For years | did not realise that | misheard the lyrics to a song* (a
song which actually never talked about gravity ). My version goes like this:

And | would give all this and heaven too

| would give it all if only for a moment

That | could just understand the meaning of gravity

'‘Cause I've been scrawling it forever, but it never makes sense to me at all

The song (truly) ends with the line and | was screaming out a language that | never
knew existed before which is precisely what happened in this thesis. Now let me walk
you through this language.

1.2 Quantization

In theoretical physics we use di erent ways of quantizing a classical theory. Best known is
probably canonical quantization. Here we are more interested in geometrical quantization
because this is coordinate-free and appropriate also for phase spaces which aren't at. [9]

In order to easily jump between the classical and quantum systems we construct a
guantization map. In general a quantization map assigns to each mathematical object of
the quantum system an appropriate mathematical object of the classical system. In our
case this will mean that we can identify elements of the matrix algebraof the quantum
system with functions of the classical system.

Someone using a quantization map may want to use it to quantize an already known
classical system. We start the other way around, with the matrix algebra (i.e. with the
guantum system), because we are looking for an underlying structure that is quantum
in nature which will then reduce to a classical system in the limit. In this thesis we
discuss the semi-classical limit, that is, the leading classical approximation of the non-
commutative geometry in which the commutators are replaced with Poisson brackets [3].

1Florence + The Machine, All This And Heaven Too



We are satis ed with the semi-classical limit because we can already see the emerging
structure there. Methods of how to get to the classical system (Star Products, Coherent
States) can be found e.g. in [10], [11].

Let's get into the technical part.

First, we need a Poisson manifold(M ;f;:;g) this is a manifold M equipped with
a Poisson structuref;:; g. A Poisson structure onM is a bilinear map

fi;;0:CM) C(M)IC (M) (2)
which satis es antisymmetry, the Leibniz rule and the Jacobi identity.
A quantization map may be de ned as follows:

De nition:  Let P be a Poisson manifold. A quantization map is a linear map

Q:QP)! End(P) (2)

satisfying the axioms
T QM=
T Q(fF)Y=Q(f ) 8f 2C(P)

the correspondence principle:( is the scale / quantization parameter)
lim L([Q(f):Q(e] iQ(ff;gg)=0 8f;ig2C(P)
im (Q(fg) Q (1)Q(@)=0 8fg 2C(P)

irreducibility:
If ffi;gg=0 8i 21l impliesg/ 1
then [Q(fi);A]=0 8i 21 impliesA/ 1

The Poisson manifold can be directly associated to a Lie groupG: A symmetry of
the systemP is an elementg of a Lie group G which acts symplectically on P. [9] This
may look like a lot right now but we will learn more about this in the course of the thesis
as we need it. For an in-depth discussion of the mathematical structures see e.g. [12], [13].

In particular, quantization of the two-sphere S? leads to representations of the Lie
group SU(2). The symmetries of the quantized two-sphere are realised as the Lie algebra
su(2) which is well-known in quantum mechanics. We will see this play out once we make
the construction of our modi ed fuzzy sphere in Chapter 2.

To prepare us for this we will now review the construction of the fuzzy sphereS? .

1.3 Mathematical formulation of the fuzzy sphere S2

The general idea is the following: We may construct a fuzzy space as a manifold equipped
with a nite-dimensional matrix algebra which approximately reduces to the in nite di-
mensional algebra of functions in the commutative limit [4]. We choose a Lie algebra
because these immediately give the right symmetry conditions and are equipped with
natural derivations (vector elds) [6]. They have a symplectic form and resemble the al-
ready well-known quantum phase spaces [5]. The spacetime coordinates are the generators
of the algebra, i.e. linear operators on irreducible representations of the Lie group.

Let's see now how that works for the two-sphere.

2for some notes on Poisson manifolds, Lie groups and Lie algebras see the Appendix 7



We know that the standard two-sphere S? with radius r 2 is a two-dimensional compact
manifold de ned by the set of points (x1; X»; x3) of R® which satisfy:

Xp+ x5+ 5= (3)

An algebra on this sphere is commutative with respect to pointwise multiplication of
functions. One can choose the spherical harmonic¥, as a basis for this algebra.

The fuzzy sphereS3 [2][3][5][10] is a quantization of the standard two-spheres? with
a cuto in angular momentum. As we quantize the coordinates (x;X2; X3) to opera-
tors on a Hilbert space we choose to write them as matricedlat (N; C) in the adjoint
representation of the Lie group SU(2). This is why we say we are working with matrix
algebras; matrices are at the basis of all fuzzy spaces. The cuto in angular momentum
is realised via a cuto in the spherical harmonics.

The quantization map Q betweenS? and S is then given by

Q:C(S?) ! Mat(N;C) (4)
x2 71 X3= g2 (5)
| Y, 1<N
Yo 7U T N (6)

This reads as follows:

In the rst line, Eq. (4), we say that: The quantization map Q maps the space of
smooth functions on the sphereS? to the space ofN N dimensional complex matrices.

The Lie group SU(N) consists precisely of these matrices:

SU(N) := fA 2 Mat(N; C); AAY = |;det(A)=1g (7)

Their dimension is

dim(SUN))= N2 1 (8)

and the corresponding Lie algebra is

su(N):= fA2gl(N;C);AY= A;Tr(A)=0g 9)

In the second line of the quantization map, Eq. (5), we read: The coordinatex?® map
to the matrices X @ which are chosen such thatX? = J 2. 2 R is a constant. J2 are
the well-known generators ofsu(2) in the N -dimensional irreducible representation. You
may also know them as angular momentum operators.

These satisfy*

[Ja;Jb] =i apcd® (10)

The last line, Eq. (6) furthermore tells us that: The spherical harmonics Y, map to
the so-calledfuzzy spherical harmonicsY,, which have a cuto at | = N.

31n this subchapter most variables will have a bar on top in order to distinguish them from the variables
used throughout the rest of the thesis.

4Indices in this section are raised and lowered with the Euclidean metric, therefore we don't really
care whether they are up or down yet. Don't worry about it until the next chapter.



We do know more about the angular momentum operators which are used in the
construction of the matrices and can therefore read o even more information from the
guantization map.

The quadratic Casimir operator J? ° is given by

J2= 32+ 03+ 02 (12)

for su(2) and commutes with all generators:

[3%,3%1=0 12)
The eigenvalue toJ? for some eigenvecton is I(I +1):
J2v = 1(1+1)v (13)
wherel =0;1;2;::; N

By Schur's Lemma, J2 must also be a multiple of the identity matrix:

J? = (14)

The constant cg depends only on the irreducible representation. Here it is

J? = %1(N2 1)l (15)

This knowledge helps us to nd a constraint to the fuzzy sphere:

X2+ (XD?4 (X3 = 202+ 95+ 9D)= 22N> 1)l a6)

We can choose to x the constant 2 to be a useful multiple of the constant radius of
the sphere

2
2 17 _ o 4
= — =4 — 17
= NZ 1 (17)
such that
(X2 +(X2)2+(X32%=r? (18)

And hooray, this ts perfectly with what we know to be true for the classical two-
sphereS?: In view of the quantization map it is clear that Eq. (18) goes to Eqg. (3) in
the commutative limit!

This commutative limit is obviously given for N ! 1 (where we would return to
the 'usual’, not the fuzzy, spherical harmonics). But not only that: Notice that the

commutative limit can also be reached by letting ! 0
r = prz = pL 1 0 (19)
Cr NZ 1

5A Casimir operator, sometimes called Casimir invariant, can be formed for any Lie algebra and is a
polynomial out of the generators that commutes with all generators.



which makes the parameter assume the role of Planck's constant- for the spacetime
structure [6].

Going back to the quantization map we see that the generatorsX 2 of the algebra
Mat (N; C) satisfy the commutation relations

[Xa;xb]: i apc X°© (20)
(21)

wherea=1;2;3.

We can now con dently call X 2 the generators of the fuzzy sphere. We can interpret
eigenvalues ofX 2 = J2 as the fuzzy points on the fuzzy sphere. [6] The operatorX 2 ©
are a quantization of the coordinate functionsx? in the Euclidean spaceR3:

X3=Q(x?: s?! RS (22)

This says essentially the same as the rst two lines Eq. (4) and Eqg. (5) of the quan-
tization map above.

The algebraMat (N; C) can be decomposed into irreducible representations under the
adjoint action of su(2):

Mat(N;C)ucN cN (23)
=1 © (2N 1) (24)
= fYgg fYn g (25)

which is another way of putting the last line, Eq. (6), of the quantization map. These
are the de nitions for the fuzzy sphere you will most often nd.

The Laplacian  on the fuzzy sphere is the same as for the usual sphere:

1 1 .
= o @ + S @Gsin @) (26)
It has the solutions
YL )= 10+2)Y,) (27)
I3 (51 )= mYy, (28)

(29)

where the eigenvectors are the spherical harmonics. We have = 0;1;2;::: and
m = |;::; +1 for the usual sphere; however, in the fuzzy case the spherical harmon-
ics Y,L have a cuto at | = N.

The fuzzy spherical harmonics satify the orthonormalization condition:
z
d

o 4 —Yim " Wiomo(5" )= o mmo (30)

SWhy do | sometimes call X 2@ operators and sometimes generators? The name generator refers
to their nature as generators of the algebra, which is also what we call J2, the generators of angular
momentum. The name operator relates to the usual language of quantization where we say that we
map classical observables to quantum operators. So X @ are the generators of the fuzzy sphere but also
operators.



and we can use a linear combination expansion:

fim Yim (5" ) (31

fim = o« TYIm(;' o' ) (32)

Let's take a quick look at a bit of physics on the fuzzy sphere as well: A simple, free
Euclidean action for a scalar eld on the fuzzy sphere can look like

1 2
Se=Tr  SDGIXf]+ —f (33)

We recall a property of the trace and the quantization condition involving the trace:

T X, fIX; f] = Tr f[X; [X; ] (34

1 4
mME)= - o f (35)

These together with the symplectic form  providing the integration measure allow
us to rewrite the action in terms of the Laplacian

z 1 . 5 '
Se=k TGN G TG (36)

wherek is some constant that takes on di erent values depending on de nitions.
We can now plug in the linear combination expansion off (;' ) (Eq. (32)) into fuzzy

spherical harmonics and evaluate the Laplacian to nd the action expressed in terms of
the eigenmodes:

i jf2 J
Sk = '—g‘(l(l +1)+ ?) (37)
I;m

These steps will be done more rigorously for the modi ed fuzzy sphere that is subject
to this thesis. Here we have simply established the preexisting framework and we can
now dive into the principal part of the thesis. In the following chapter | will construct a
speci ¢ version of a deformed fuzzy sphere living on a Minkowski metric. | will closely
follow the procedure outlined above.

10



2 Construction of a deformed Lorentzian fuzzy sphere

Matrix models and especially the fuzzy sphere as a basic example have been investigated
in various ways, i.e. constructing quantum eld theories on these spaces. [14]

The next step has been to investigate matrix models and more speci cally fuzzy spaces
with Lorentzian signature. The beauty in these models is that gravity appears as an
emergent e ect of the underlying quantum spacetime [15]. It has been shown that a
suitable action on some Lorentzian fuzzy spaces lead in the commutative limit to solutions
which can be interpreted as cosmologies with big bang singularities [16] [17]. One such
space will be constructed here.

2.1 Action and equations of motion

Let us start our adventure with the action

sx)= tr 1 X X X X ] XX 4 OO (38)
- g 4 () 0 3 ] 2 1 2 0

The action is chosen similarly to the action Sg that we've previously seen for the
standard fuzzy sphere in Eq. (33). However, we now use the Minkowski metric tensor in
2 +1 dimensions with

( )=diag( 1;1;1) (39)
the indicesare; =0;1;2andi;j =1;2and we use to raise and lower indices.

Another di erence is that we now have two terms which could potentially be identi ed
as a kind of mass term. Right away we want to distinguish between possibly "space"-
type operators, X 1; X2, and a possibly time -type operator X,. Each kind has their own
mass -like parameter. Keep in mind that this is but an explanation for the reason we
chose this kind of action and immediately forget these physical terms of describing the
action. A priori we cannot identify anything that should be called mass, timelike,
spacelike or anything else like this. We will however stick to calling Eq. (38) an action
and proceed to nd the equations of motion (after all, we want to nd something physical
in the end and conveniently choose a physicist's path of calculations).

The equations of motion can be found by varying the action. We will explicitly write
down the following calculation:

0=dTr X% X"[Xa;Xp] =2Tr d[X2; XP|[Xa;Xp] = (40)
ATr [dX2;XPI[Xa;Xp] =4Tr dX3[X 5 [Xa; Xp]] (41)
(42)

where for the last line we use the identity

Tr([A;B][C;D]) = Tr(A[B; [C;D]]) (43)
We also know that
T(AB)=08A =) B =0 (44)
and nd that
[Xa; Xp] =0 (45)

11



With this in mind it is easy to see that the equations of motion are:
X ;X ;X' *x'=0 (46)

X ;X ; X%+ 3X°=0 (47)

This is our preliminary investigation of the action Eq. (38) which will give us impor-
tant information later.

2.2 Generators

We are on a sphere and therefore comfortably choose the generators $fJ(2)

[Ji; 31 =1 4k Ik (48)

to de ne the matrices

’X():: !(0)J3;X1:= !(1)J1;X2:= !(2)\]2 (49)

where! () 2 R.

The generators of SU(2) should be well-known to readers as the angular momentum
operators; they are explained in more detail in the appendix 7.

Apart from the fact that we use a Minkowski instead of Euclidean signature the def-
inition given by Eq. (49) is the second main di erence from the standard fuzzy sphere:
the three generatorsX dier according to the choice of ! ( .

A word on notation: The bracketed indices of! ( ) are not to be summed over, hence
the round brackets, but they change according to the corresponding change of the usual
indices on the matrices. It might take a moment to get used to this notation. It is a
trick that enables me to do general calculations instead of having to do them separately
for each possible choice of coordinate combinations. It becomes easier to read once you
realise that the constants! ...y stick with their accompanying matrices by changing
index with them.

Example: ! ()X = I'(yX , where we've summed over the indices of the matrix
X and to get X and have manually changed the bracketed index of the constant
'(yto! () because we know that the index of the matrix is now .

In summary: the constants have indices in round brackets which are not summed over;
they keep track of the matrix that the constant belongs to.

We choose

18)=1% =12 (50)

to implement rotational invariance. This remains true for the rest of the calculations.

' CIZaIcuIating the individual commutators in terms of the X matrices, e.g.[Xo; X 1] =
i%xz;, we generally nd

X :X ]=i '(,’(')”x (51)

12



This is the rst exercise of reading my index notation: The omegas in the numerator
carry the same greek index as the matrices on the left side of the equation. The omega in
the denominator belongs to the matrix X on the right side of the equation. According
to the de nition Eq. (49) this is exactly as it should be.

We now go on to the more di cult task of calculating the double bracket. In the
following calculation we will use lowered indices only. We implement the metric tensor

in the next step; for now it is enough to try to understand how the indices behave
without worrying about the metric.

LT OO
[X ;[X ;X ]]ZIﬁ[X ; X 1] (52)
2t OO TONO X (53)
| |
o o
_ fOototo
) o) X (54)
(56)

Something interesting happens from the third to the last line: When we evaluate
and the bracketed indices of the omegas change as well and cancel out.

We can now apply the metric tensor

X X X )= XX X ] (57)

_ 2 2
= 12X 12X | (59)
= 15X +212X + J1EX0 12! (60)
(61)

We can now distinguish two cases:

X ;X ;X'I= 12 1% X! (62)
[X ;[X ;XO]=212x° (63)

We can put these into the equations of motion Eq. (47) which we've found for the
action Eq. (38) before. We nd:

X ;X X'+ 2x'= 12 18+ 2 X'=0 (64)

X X XN gx%=@2t? §X°=0 (65)

and this gives us a constraint for the constants! and! () :

5 1723 (66)
— 2 1 2 2
=) o= 5 0t2 °) (67)

13



2=1% 3 §meansthat inordertolet 2R,!% > 3 §and thus

1% > 72 (68)

2.3 Casimir and eigenvalues

Let's remember that we've based this on the generators o8U(2) and that we can learn
a lot from our understanding of SU(2).
We can relate the X 's to the quadratic Casimir by

1232 (69)
12
= % ! (20) (J3)? + ! (21) (J1)? + ! (22) (J2)? (70)
1 2
= "Txox°+ X X1+ X,X2 (71)
"0
where we've made use of the choice that?, = 15, =12,

Keep in mind that indices are still raised and lowered with the Minkowski metric, and
therefore we have a sign-change when we rewrite:

] 2
T (X0)2+(X1)?+(X2)? = 1 232 (72)
")

This is the constraint for our sphere.

We can use thesu(2) eigenvalue equations [18], where is an eigenvalue andv an
eigenvector, to nd the eigenvalues for our matrices:

Jv = 1(1+1)v (73)
XoV o= MV o (74)
wherem = |;:;+1and | =0;1;2;:::. This means that in our case,
12372v = 12|(1+1) v (75)
XovO:!(O)va (76)
(77)
wherem= |;u:;+landl1=0;1;2;:::;;N.

We have now gathered enough information from the matrices and will try to nd out
how these translate to the semi-classical limit.

3 The semi-classical limit

We consider the semi-classical Euclidean sphei®® R 2! which carries a natural SU(2)-
invariant Poisson structure. At the end of this chapter we will have a quantization map.

Carrying the matrix calculations over to the semi-classical realm | will replace the

matrices X by space-time commuting coordinatesx . x° denotes a time coordinate x'
with i =1;2 denote space coordinates.

14



The constraint on the su(2) Casimir operator (Eq. (72) ) must be satis ed in the
commutative limit as well:

1 2
Xg+ X+ x5 =1%R? (78)
")
with a constant R that is yet to be determined. Note: Here indices are still raised/lowered
via the Minkowski metric so that we see a change of sign in the following: ‘!22 Xox? +
C(0)

x1x1 + Xox2 = 1 2R2, To avoid as much confusion as possible | will try to keep indices
lowered and otherwise comment in the text. For now summation is obvious everywhere
it occurs.

Next | need to replace the commutator of generatorsX by a Poisson bracket of the
functions of the coordinatesx . We found that the commutation relations of our opera-
tors with i;j = f1;2g are

Xo; Xil =1 o ! 0) X] (79)
!2

[Xi;X;1= 0 oj 7——Xo (80)
O]

these are carried over to Poisson brackets with our semi-classical coordinates as follows:

fXo:Xig= oj ! (o)X (81)

] 2

fXi;xjg= jo ,7)(0 (82)
(0)

wherei;j 2f1;2g.

With this we can realize the action of SU(2) on functions by the Hamiltonian vector
elds acting on a function  via the poisson bracket.

J;B = IifXO; g (83)
JiB = l—fxi; g (84)

The triangle B is math symbolism for acting on from the left. A group element, here
Js and J;, can act on some other object, here , and it acts on this object from the left or
from the right. We distinguish between left action B and right action C because things
are non-commutative. You will see this again only in the appendix and in the referenced
mathematics literature.

Explicitly, we can calculate:

JaB = qfxoy g= T 0i ' Xi@ =1 0j X @ (85)
(86)
12 [ 12
JiB = X 9= o X @ * o ;7X@ (87)
'I(i) = (i) (0) = (i) - (0)
—i%ijo(xj@ Xo @ ) (88)
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We will need these later but we will use them explicitely for spherical coordinates
which makes it more comprehensible what they do. For now it's okay if they only seem
like pretty, curly symbols.

Luckily we don't need to gure out a double action / double Poisson bracket at this
stage and will do this later when we know which speci ¢ double Poisson brackets we need.
3.1 The Laplacian

We now want to build the Laplacian on this fuzzy sphere. Recall the quadratic Casimir
on S2 and rewrite it in terms of the semi-classical coordinates:

C@ = J32+32+ )2 (89)

1 1 1
X fxa 99+ 5fxeifxe; 9o+ 5—fxoifxo; 99 (90)
! ! 12

Notice that here, all terms have positive sign.
The Laplacian with respect to the embedding metric is de ned as:

x = F Xo;fXo; gg+ fxg;fxq; gg+ fxo;fx2; g9 (92)

notice that there is one term with negative sign because of the metric.
We can plug Eg. (90) into the Laplacian:

x = f Xoifxe; gg+ fxq;fx1; gg+ fx2;fX2; gg (92)
1 2
= f xo;fxo; gg+ !?C®  H—fxo;fxo; gg (93)
' (0)
12
=12c@ 1+ —— fxoifxo; g9 (94)
* (0)

The brackets in the extra term, fxo;fXo; gg, are proportional to J2 . In the following |
will show what fXxg;fXo; ggis in spherical coordinates.

3.2 Poisson Brackets in spherical coordinates

For a fuzzy sphere, of course, spherical coordinates are the obvious choice. The Poisson
bracket on the sphere representing the coadjoint orbit for a given radiug is de ned by

f; g=0 (95)
fi' g=0 (96)
firg=1"% g (97)

We found the poisson brackets on the semiclassical fuzzy sphere &? in Eq. ( 82).
For the individual coordinates they are:

fXo;x19=! g X2 (98)

fX2;X09= ! g X1 (99)
1 2

fX1;X20= —Xo (100)

"o
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For easier calculation we can now introduce new coordinateg such that their Poisson
bracket reads

fy ;y g= y (101)

which means that we must de ne them as

= Iix (202)
()

| want the y to be spherical coordinates, so | choose:

y1 = rsin cos'
Y2 = rsin sin’
Yo = r COS
where 2 [0; ];' 2[0;2 ).
Note that, since the original operators X were dened as Xg := ! g Js; X1 =
'yJdi; X2 := 15 J2 we see that they coordinates are immediately related to angular
® @
momentum. This xes r to the value:
I 27
N 1
r = 103
" (103)
We can also show now thatR = r using the constraint on the Casimir:
1 2
12R? = xg + X + X3 (104)
" (0
12
!'%! ricos +12%r?sin® cos' +!?r?sin® sin®' (105)
=12r2¢od + ! 2%r2sin? (106)
=122 (207)
and therefore the constraint can also be written as
12 5 2 2_ 1.2 | 2
TTXot XTt+ X5 = 21(N 1! (108)

"0

Now that we can use spherical coordinates let's rst evaluatef %; Yog using the Leibniz
rule:

ya, 1. Yoo o oo Y2 _ %
for¥oa= -fy2ivod  ofyiiyog=1 G( yz)=1+ y% (109)
When we plug the spherical coordinates into Eq. (109) we nd
fSinl ;T Ccos g= 1+£ =(1+tan 2" )= ! (110)
cos ' 9= cog' "~ cog’

17



We can also look at the relation

@f@
F(C )90 )g= = 29 111
(" )9()g @@ (111)

and putin f (" )=tan ;g ( )= rcos and nd for this equation:
ftan';r cos g= ir sin f'; (112)
’ 9% Cog’ 9
We can put Eq. (110) and Eg. (112) together and now see that

1. — 1

9= rsin (113)

We can cross-check this by evaluatindg yo; y19 and f y;; y.g with the use of this result.

Keep in mind that f'; g= f ;' g.
fyo;y10= frcos;r sin cos' g
= r2fcos; cos' gsin
=r2( sin )( sin')f ;' gsin

= r?sin®> sin' —
r sin

= rsin sin'

=Y

fyi;y2.0= frsin cos';r sin sin'g
= r2sin fcos’; sin gsin' + r2cos' fsin ; sin' gsin

=r2sin ( sin')cos f'; gsin' +r2?cos cos cos f ;' gsin
. . 1 .
=r?sin cos ( sin®')( ——)+cos?' cos sin (——)
rsin r sin
= rcos
= Yo

Works out! Therefore, when we look at the e ect of the poisson brackets on a function
(;" ) we can use this result and immediately see that:

frcos; (;')g=( rsin )f;' g@ (114)
=( rsin )r sn @ (115)
= @ (116)
Of course this operation can be done twice:
frcos; frcos; gg= @ (117)
Now recall the relationship between they and x coordinates:y = 2-x . This

. ()
means that we now have our additional term:

fxo;fxo; 9g= 1% @ (118)

and can be very happy.
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3.3 Solutions to the Box-Operator Di erential Equation

In Eq. (94) we found the corrected Laplacian for our model. We can now work with it
because we know the explicit form of the extra-term accompanying it:

!
1 2
=12¢c@ 1+ 5 fxoifxo; gg (119)
'

!2
ut? g 1+ 5 15 @ (120)
L 0)

We want to consider eigenfunctions of the form , =

!
1 2

12 1+ 5 fxoifxo; gg= (121)
*(0)

(122)

The rst part of this equation is the usual spherical Laplace operator 4 . We notice
that the second term can be identi ed with ! (20) times the J3 operator acting twice on

multiplied by the factor 1+
O
This means that we already have the following solutions:

The eigenvalue equation for an eigenvalue (y)

12 4 = (123)

is solved by the fuzzy spherical harmonicsy|, (; ) (these are the same as the usual
spherical harmonics but with a cuto at | = N) and the eigenvalues! ?I(I +1) and ! ?m:
12 gYm (5 )= A0+ Yim (5 ) (124)
1233Yim (5 )= !12mYm (; ) (125)

and the eigenvalue equation of the second term for an eigenvalue,

|
! 2 2 2
1+ - ligds = ¢ (126)

1 2

"0
is actually the same as thels solution above only multiplied by another factor, so the
eigenvalue equation for the eigenvalue () is solved again by fuzzy spherical harmonics

| |
!2 . 2 2 !2 - 2 2
T2 !(0)J3Ylm(; )= 1+|T Lom Yim (5 ) (127)
O] (0

1+

This means that the eigenvalue for the eigenvalue equation

!
1 2

12, 1+ 5 fxoifxo; gg= (128)
*(0)

(129)
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is given by

= ot @='A0+1) 1H+12m (130)

with  =0;1;2;::;N andm= ;5 +]1

3.3.1 Solving the eigenvalue equation with spherical coordinates

We have a signi cant change to the standard eigenvalue solution, therefore we might want
to try a second approach to verify the result. We are on a sphere after all so we can try
to solve the di erential equation

x = (131)

by hand with the use of spherical coordinates:

1 . 1 12
L =12 W@(sm @ )+ = @ 1+ T (20) 1% @ (132)
1 _ 1
1 . 1
=1 2 ﬁ@(Sln @ )+ '[617@ (0) @ (134)

Because depends on two variables this calls for a separation ansatz:

¢ )=10)al) (1395)

in detail this looks as follows

MUGE@ERE 7@(Sln @If (" )g( )+ 1 %@ )]

(136)

=12 Dasin @y )+ tgflz) Gr¢)  1he)EIC) (3
2 2

= 1)@ @ N+ o) - 'h @) (139

which then leads to the following equation where we omit the indication of variable
dependencies for better readability:

! #

11 . 11 g
£ x(fg)= | 2 QW@(Sm @Y+ ¢ % @f (139)
This can again be rewritten:
" I
, 11 1 1'% i
f— «(fg)=1 gsn cos@g+sin @g + an? 12 a@f (140)
" ! #
120 @f
_,208@, @, 1 ' Cf
" sin g * g T an? 1z f (141)
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. . . . . . f
Our separation of variables is complete and we immediately realize that@?— must be

constant. The homogeneous di erential equation for' is

G

; (142)

with m =0;1;2;::: and solved by

f()=em (143)

We can use this result and now have a di erential equation dependent only on the
variable

1
7 x({9)=xg (144)
" ! #
1 2
_,2 Cos @g @g 1 Q) 2
" osin g " g T an? 12 ¢ m% (145)
" 5 1%
!
=1 2 ﬁ@ + @ + m2 N i (146)
sin g g 12 tan?

This looks complicated so we go to what we know: The eigenvalue equation for spher-
ical Laplacians can usually be solved by (associated) Legendre polynomials. We will
remind ourselves how these look like [19] and will try to bring our equation to the appro-
priate form.

The associated Legendre polynomial®™ (s) solve an ordinary di erential equation of
the form

m2
1 s2

@(1 s)@p)+

p=p (147)

wherep = p(s). The eigenvalues are = I(I +1) wherel is an integer0 m | and
the eigenfunctions are

dl+m
ds|+m

these are the a bit more complicated version of the Legendre polynomialB, (s)

"

PR = i

1 §)m? (s> 1) (148)

1 d
211 ds
in terms of these the associated Legendre functions are

P (s) = (s> 1) P(1)=1 (149)

PM(s)=(1 32)m 2@

The associated Legendre di erential equation is therefore solved by

Pi(s) (150)

2
@1 D@+ g PME= DR (151)
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wherem;| are integers andm = [;:::; +1.

Let s=cos sothatsin? =1 co¥ =1 s? then the dierential equation takes
the following form (compare e.g. [19])

cos m?2
@p+ sin @p+ sin? P=P (152)

Now that we've refreshed our memory we can compare our di erential equation Eg.
(146) with Eqg. (152) by rewriting it as follows:

1 " cos '% 1 v
£ ox(fa)= xg=1% @+ ——@+m® el (153)
" !#
) cos , ' 1 sin?
=1 + 2@+ 9 = = 154
@ sin @+m 12 sin? g (154)
" I#
cos , ' 1
=12 @+ —@+ - 1 155
@ sin @+m 12 sin? g (159)
" ) ! I#
| 2
=12 @+ B @+ m? L4 m 1
@ sin @+ m 12 sin? g (156)

This is already what we want! We see that our eigenvalue equation

x = (157)
in terms of spherical coordinates
!
2 ! 2 2
12 g 1+ . 15@ = (158)
can be rewritten as
" ! I#
1 ) cos , ' m?
7 «(fg)= xg=! @ + an @t M g7tl oo g (159)

and compared to Eq. (152). We identify

1 2
2.2 — 12 -2
I“m !—2+1 =1 =19 +1) (160)
from the associated Legendre equation and therefore see thaty, = is solved by
the eigenvalues
= 1A0+1) 1§+ m? (161)

with the eigenfunctions such that
«P™(cos )€™ = PM(cos )e™ (162)
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but this is, up to a relatively arbitrary normalization condition, exactly the de nition
of the spherical harmonics that we've encountered before!

Yim (i' )= NP["(cos )e™ (163)

with
Yim G )= D™V m(5") (164)

This means that we have seen for the second time that the di erential equation for
the deformed fuzzy sphere Laplacian  is solved by thefuzzy spherical harmonics (these
have a cuto at | = N)

«Ym = 121(1+1) 1%+ 12 m? Yy (165)

and can be comfortable using this result.

3.4 Symplectic form

The biggest chunk of legwork is done now. But to complete our analysis of this system
we still need to be able to do integration. For this we look at the symplectic structure.

In math terms, the symplectic structure on the coadjoint orbit of a Lie Algebra is
de ned by a Poisson bracket and symplectic 2-form *

1
= > dx ~ dx (166)
the symbol ~ is called awedge productor exterior product and is an antisymmetric
product of di erential forms.

de nes the basic geometric structure of the phase space and transforms as a covariant
rank-two tensor. It is closed and non-degenerate. is antisymmetric just like the Poisson
brackets and also non-degenerate and closed. The closure, in local coordinates, is the same
as the statement @ + @ + @ = 0. This corresponds to the Jacobi identity
for the Poisson brackets. The relationship between the symplectic form and the Poisson
brackets is as follows:

figg= @f@g (167)

If you recall, we have already done most of the required calculation for spherical
coordinates when we were looking for the Poisson brackets in terms of the variablés
Note that we usedy as the spherical coordinates, but our semi-classical coordinates
have but a linear relationship with y which allows the use of the spherical coordinate
Poisson bracket here.

We reiterate what we've found before in Eq. (113):

O )ia( )g= %%9'; g (168)
Yf 5 g= (rsin) ! (169)

“you will often see the variable ! instead of  but the small omega is already occupied as a variable.

23



where the functions where chosen such that (" ) =tan ;g ( ) = rcos .

We can immediately read o the contravariant symplectic 2-form:

0 (rsin ) !

¢ )= (rsin ) ! 0 (170)
We also know that
= (171)
so the inverse is easily calculated:
N 0 rsin
¢ ) r sin 0 (172)
Thus,
1 .
= > dx "dx =rsind ~d (173)
We now look at an important property of the symplectic form:
Y4
=2 n (174)

wheren 2 N and M is a noncontractible two-surface like e.g. our spheroid. This is
basically the same as requiring that wave functions on this space are single-valued. This
is of course true when ourM is the surface of a sphere or, respectively, a sphere that is
slightly deformed. [20][18]

This is often called a quantization condition. That's because given a quantization map
Q which transports a function f to a quantized version of it, Q(f ), we have as a property
of the trace

z

TQi)= 5 179

so this is why we needed to nd the symplectic form.

3.5 Quantization Map and Important Results

We can take all of the results obtained in this chapter to form our quantization map. Let
us rst reiterate the de nition of a quantization map:

De nition: Let M be a Poisson manifold. A linear map
Q:CM)! End(M) (176)
satisfying the axioms
S Q)=
T Q(fF)Y=Q(f ) 8f 2C(M)

the correspondence principle:( is the scale / quantization parameter)
Ii!moi([Q(f);Q(g)] iQ(ff;gg) =0 8f;g 2C(M)
“[mO(Q(fg) Q (f)Q(g) =0 8f;g 2C(M)
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irreducibility:
If ffi;gg=0 8i 21| impliesg/ 1
then [Q(fi);A]=0 8i 21 impliesA/ 1

is called a quantization map

The quantization map for the fuzzy sphere considered here is the following:

Q:C(S?) ! Mat(N;C) (77)
X 7VX =1(,4J (178)
Yl 7 Yo I<N (179)

0 I N

J@ are the generators ofsu(2) in the N -dimensional irreducible representation. The
Y. are the so-called fuzzy spherical harmonics with a cut-o atl = N.
The generatorsX of the algebraMat (N; C) satisfy the commutation relations

| |
X ;X ]=i %x (180)

where =0;1;2.
The X are the generators of this fuzzy sphere and a quantization of functiong in
the Euclidean spaceR®:

X =Q(x): s?)! R® (181)

We see that the algebraMat (N; C) can be decomposed into irreducible representations
under the adjoint action of su(2):

Mat(N;C)ucN cN (182)
=1 © (2N 1) (183)
=fydg f YNg (184)

where Y are precisely the fuzzy spherical harmonics mentioned above. They satisfy
the orthonormalization condition:

Z 4
2 Yim (7 )Yiome(5" )= o mme (185)
SZ

The Laplacian on this fuzzy sphere has a correction term to the Laplacian on the usual
fuzzy sphere:

I
12

=12c® 1+ fxo;fxo; gg (186)
"0

which for spherical coordinates reads:

1 2
=12c@ 1+ —— @ (187)
" (0)
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We also found that the eigenvalue equation for the modi ed box operator

. = (188)

is solved by the fuzzy spherical harmonics

Ym = 12(1+1) & +!17 m? Y (189)
with 1 =0;1;2;::;N 1IL,m= |+

At last we recall the symplectic form on the sphere:

= % dx "dx =rsind ~d (190)
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4 Scalar Fields on my Fuzzy Sphere
We began our adventure with this action:

sx)= 17 1 X %X X X ] VI e (191)
- g 4 0 0 ’ I 2 | 2 0

We now want to look at this acting on a scalar function

4.1 An educational failure

First, we will try to do this by using the following action for a real scalar function:
!
1.1 m?
S()==Tr = X IX; ]+—ijij? 192
()= 5T 5 XX 1+ ] (192)
where m? 2 R. However, we will soon see that we cannot nd any on-shell solutions. It
is educational to see how that happens.

First recall some useful properties of the trace:

z
Tr(OGEIXGCE D =Tr( XX ) Tr(Q(f)) = Zi o f (193)

From this we see that we can rewrite the action in terms of semi-classical coordinates
by replacing the commutators with our special Laplacian and the trace by an integral
with respect to the symplectic form. Note that the Laplacian has the correction term as
shown above (94). The action now reads:

z !

1 1 m?
S()= = - + —j j? 194
() g 4% 5 ] (194)
Reminder: The eigenvalue-equation x = was solved by fuzzy spherical harmon-
ics with the eigenvalues = ! 2|(l +1) 120412 m2 wherel =0;1;,2 ;N 1,

O]
m= I+,

Therefore, it is best to decompose the scalar function in terms of the fuzzy spherical
harmonics @ into

K 1ox!
(;')= m Yim (') (195)
2:0 m= |
d 1 ]
m= 7 YmG) G (196)
SZ
with the orthonormalization condition
z d
2 Yim (57 )Yiemo(5" )= 4o mmo (197)
SZ

With this decomposition the action can be written as

8we ommit the bar on top of the spherical harmonics which indicated that they have a cuto until
now; all spherical harmonics in this chapter are fuzzy and cut o at I=N.
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1XtX 2 2 2\ 2 2 2
S()= = 7! I(1+1) (& +!Hm? +2m?  § (198)

If we now look at the Euler-Lagrange equations

@L @L_
@@ ) @

where we use the decomposed form of the action and therefore simplity = L( 1m)
to:

@ 0 (199)

L( m)= % PAI(1+1) (1 f + ! HmP+2m? f (200)

then we see at once that the equations of motion would read:

P2(+1) (1f +!HmP+2m* 4 =0 (201)

but these would be discrete as both and m are integers.
This obstacle is not unique to this particular fuzzy sphere, but it has been useful to
see how it happened.

4.2 Complex scalar eld with Feynman prescription

We've seen that carrying the action over to semi-classical in a straightforward way does
not give us what we've hoped for: We do not nd on-shell solutions.

We therefore look at a complex scalar eld and compute the scalar eld propagator.
The properties of the trace are obviously still the same, so we immediately look at the
action in the following form:

z
1 .
S[; 1== x+ m? i (202)
g wm
Recall that we found that the integral over our symplectic form is (Eq. 174):
z
=2 n (203)
M

where we choose to let the constang in our action swallow the n and all amounts of
's that will appear in the integration process. These would cancel anyway, so we can
stop thinking about them right away.

We can now realize that
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S[; 1= = crm
gZM
1 1 1, 5 ..
= j— — + —
9 2 x TMm i)
1 1X X 2 2 2 2 ' '
= 6 y - FAl(l+1) !(0)+! M Y, (" YWiomo(5' ) 1 1omo
10 m;m©
1 X X .
5 (m i)Y G )Yiomo(5' ) m 1omo
1510 m;m©

X
- 12(1+1) (13 +12mZ+2(m? 0) | 2
Iim

(204)

(205)

(206)
(207)

(208)

where in the second to last line we performed the integral using the orthonormalization

condition of the spherical harmonics.

4.3 Two-point function

After nding a useful version of the action we can now move on to nd the two-point

function of the theory. It is given by

hm  omoi

where

Z is the zero-point function and we will have a look at it rst.

Because our action is quite long we will de ne

W(im):= 12(1+1) (1§ +!)m*+2(m* i)

such that our action is more readable:

S[; 1 PAI+1) (Lo + M2 +2(m® i) g m

W(l, m) Im Im

I;m
We now plug it into the zero-point function Z

Z OX 1
Z= D exp@ W(m) , mA

I;m

This is a Gaussian integral, which means we must take a short detour to see how these

can be solved in this case.
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4.3.1 Complex Gaussian integral for matrices

In general the Gaussian integral for an N-dim positive de nite Hermitian complex matrix
B and an N-dimensional complex vectorv is written as

Z 0 R 1 Z
d?Nvexp@ viBjviA = dNve VB = NdetB ! (217)
ihj =1

Q
whered™ v = <N d<(vi)d=(Vi).

We introduce a unitary matrix U which diagonalizes the matrix B :

UYBU =diag(by;::;5by) (218)

and introduce complex variablesz:

z=U() v=Uz (219)

which we can use to nd

X
WBv = ZUYBUz = hjzj? (220)
i=1

we put this into the Gaussian integral to nd the result:

z 0 N 1 Z
d*Nvexp@ viBjvjA = dMNve VB (221)
i =1
|
z 2N X\I H -2. w N
= dVzexp hjzijc = b = Qﬁ (222)
i=1 i=1 i=1
N
" detB (223)

You might notice that usually there is a square-root in the solution of Gaussian inte-
grals, however, we have twice as many variables here (real and imaginary).

This is the solution that we need for Z, the denominator of the two-point function.
For the more complicated Gaussian integral we introduce a linear term into the exponent.
Then the Gaussian integral becomes

Z
dNvexp VBvV+ Z'v+ Wz (224)

We now complete the square:

Bviv+ ZVv+ Vz (225)
= (v B}zB(v B 2+ 2B !z (226)

we put this in and shift the integration variables:
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z

dNvexp VBvV+ v+ Vz (227)
Z
=exp[zB 1z] dNvexp (v B 2B (v B 12 (228)
Z
=exp[z’B !z] d™Nvexp VBv (229)
1 N
=exp[2B 'z]—— 2
exp[z Z] 4eiB (230)

Similarly to the way we usually solve these integrals we will make use of the derivation
properties of the exponential function to nd solutions to more integrals.

Z
dNvwvexp VBV + Zv+ Vz (231)
Z
=@@ dNvexp VWBv+Z'v+ Wz (232)
— B 1z
= 2
@@ ¢ JeiB (233)
N yB 1z
" @B @@ ¢ (239
N
= @ 7B T (235)
N
= o @28 We'® T+ 2B (@ ) (236)
N
= Joig B 1g'B 'z 4 g 1B 1z¢#'B 'z (237)
(238)
We now setz = 0:
Z
d®Nvwvexp VBv (239)
N 1
= B 24
detB (240)
(241)

We now take the fraction of both integrals:

@"vvvexp VBv

R 242
dNv exp( WBvV) (242)
N
_—_ B 1!
_ detB . (243)
det B
=B ! (244)

and have hereby completed our detour into Gaussian integrals. We can now nd the
two-point function:

R
. D I 10 OeW(l;m)
him  jomoi = RD'“ 5 m’,“(l;m) (245)
= o mmoW(l;m) ! (246)
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Remember that W (I; m) was merely the replacement for a longer term to aid us during
the calculation and we can plug it back in; the two-point function is then given by

1
him gomoi = 12(1+1) (1§ +!12m*+2(m? i) 10 mm 0 (247)

The scalar function in position space can be found by Fourier transform as follows:

h (x) (y)i= Yim () Yjomo(Y)N 1m  1omoi (248)
11 9mm ©
_ Yim (X)Yjop0(Y) 110 mm o
= ommo ! 2+ 1) (! (20)' +12)m2+2(m2 i) (249)
X Yim (X)Ylm (y)

m 211+1) (! (20) Frymz+2(m2 i) (250)

and with this result we have almost everything we need to understand what happens

on the modi ed fuzzy sphere. But before we go into the interpretation we will still have
a look at the geometrical features in the next chapter.
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5 Geometrical Considerations

To understand the properties of this fuzzy sphere better | will intersect here with a small
study of the underlying geometric structure.

In general, the induced metrich () is the metric tensor de ned on a submanifold
that is induced from the metric tensorg (x)on a manifold M into which the submanifold
is embedded.

h ()=g ))%()%() (251)

where ; are indices of coordinates 2 of the submanifold, while the functions x ( &)
encode the embedding into the higher-dimensional manifold whose tangent indices are
denoted ; . [21]

For us, the metric tensor on the manifold M is just the Minkowski metric tensor

We know that x =! )y , so iny-coordinates, the metric is

dsj(y) = ! {gydys + ! 2(dy + dy3) (252)

which is clearly a Lorentzian metric.

But y are also spherical coordinates, so we can write down explicitly:

0 1
cos

x =1(y@sin cos A (253)
sin sin'
sin
=1y @cos cos A (254)
cos sin'

0
@x =!(,y@ sin sin' A (255)
sin cos'

®
>
|

We see that theh -component of the induced metrich  (Eq. 251) does not agree
with the usual metric on the sphere:

h =( t§sin® +!?cos )d? (256)

whereash- has (up to a constant) the usual value

h. =12sin? d' 2 (257)
The mixed components vanish.

Therefore, the induced metricds? in spherical coordinates is

d2(;' )=( !2,sin? +12cog )d 2+ 12sin d 2 (258)

12
For this metric to reduce to the usual spherical metric, we would need{%- = 1,
which never happens sincé ;! 2 R.
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We remind ourselves that we found! 20) > 1 2 from the matrix equations of motion,
Eqg. (47), in the beginning of our journey and look at speci ¢ points for :

dsy(0;' )= dsi(;' )=17%d? (259)

At the north and south pole (Eq. 259), where = 0; respectively, d' > becomes
irrelevant as would be expected, and the metric is Euclidean.

dsi(5:')= !fpd 2+ 1% 2 (260)

>
Between = =4and =3 =4the metric is always Minkowski irrespective of the free
parameters! &, and! 2.
For = =2this is clear immediately (Eq. 260), for the rest of the interval we know
this because! (20) > 1 2 always, which makes the sign in Eq. (261) in front ofd ? even for

= gz and = % negative.

1

3 1
dsi(4: )= dsi(75 )= 501G 1Ad 2+ S12d 2 (261)

From then on, the signature depends on the values of 2 © and ! 2. Let's look at that
dependence:

(! sin® +! 280552 )=i) (262)
12
) =arctan @ %A (263)

q___
I've chosen not to evaluate the square root and keep ,#} because since the time
"0

we've chosen! (21) = 1%, =12 in chapter 2 we have only dealt with the squares of and
|
. (O) .

The ratio T must be between 0 and 1 (again, becaus!e(o) >12),
)
2
From now on we will use the inverse of this ratio, +2- to keep everything consistent

with other results. This means that in the following plot the axis starts at the value

“’) = 1. This switcheroo might seem confusing now but this way there is no confusion
When comparing to all other upcoming plots in chapter 6.

Let's examine Fig. 1. This is a plot of Eq. 263 with a Iogarlthm|c horizontal axis.

We can see where the signature changes with increasing value Q?L The upper region
of the plot above the curve is colored blue to indicate the negative signature (Minkowski)
region. The lower region underneath the curve |s colored green and represents the posi-

tive signature (Euclidean) region. As the ratio (‘” increases the region with Euclidean
signature quickly shrinks to a small region around the poles. (It looks the same for the

south and north pole). We also see dashed lines to indicate speci c values of the ratio
12 . . . . .
-9 : some of these will serve as examples in the following plot, Fig. 2, and we will look

T2

at these values even more closely in Chapter 6.
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Flgure 1. The signature change of the metric in the region 0< < 5 as it depends on the value
2

of -9 (°) . The horizontal axis is logarithmic. The values ﬁ} = (1:1;1:31; 4:95;7) are speci cally
marked The Minkowski region is colored blue, the Euclidean region is colored green.

In Fig. 2 we see where the S|gnature change on spheroids for some example values

of - “” takes place. In Fig. 2a where- !“2 = 1:1 the signature change happens close to
- = 45 and 3 =135 , specically at =43:6 and =136:4 . The next spheroid Fig.

2b with - “’) =1:31is already visible elongated and has its signature changes already at

=41:1 and = 138:9 . The third spheroid Fig. 2c with “’) = 4:95is actually scaled
to 33%to make it t to the page. Here the green Euclidean reg|on is already very small:
The signature changes happen at = 24:2 and = 155:8 . This is approximately at

6
= and =

| 2
(@ -9-=11

12
(b) % =1:31 (©)
e -
Tz
4:95
|2
Figure 2: The signature change specically on the spheroid with the values -9 =

12
(1:1;1:31; 4:95). The spheroid in (c) with ?w} = 4:95 is scaled to 33% of the size of the other
spheroids.

The slope of the lightcones is easily found:
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si(;')=( 1§ sin® +1%cos )d 2+ !?sin® d =0 (264)

12 sin? 1 2cog
2 - " 2
d-= 27 d (265)
- 12 sin? | 2cog
¢ _ o _ (266)
d I 2sin
The trajectory of the lightcones is given by:
si(;')=( !§sin® +12cos )d?+12%sin” d ?=0 (267)
12 sin?  12cog
I (V) 2
d-= 27 d | (268)
z U 2 :
) 1
= T2 +1 S d (269)

(b)
@

1 2

Figure 3: The slope (a) and the trajectory (b) of the lightcones for the spheroid with %~ =1:1.

2
The slope and trajectory for the lightcone where%- = 1:1 are shown in Fig. 3. We
see that the lightcone begins close to =4 and ends at approximately 3 =4 which
is consistent with the information we've seen on the previous page.

6 Visualisation

In this section we will nally look at the results. Apart from the fact that they give a
really pretty graphic resembling woven fabric and | will hang some on my wall they do
tell us a lot about the equations we've seen here.

2
First, we will look at the results where | chose !!“’2’ = 1:1 (remember that ! (20) >1 2
and therefore we will never see an exact sphere). We sit at the equator of the spheroid,
as indicated by a red dot in Fig. 4a. This plot is generated via use of the formula for a
spheroid

X . X5, X5 _
|(2)+|7+|7_1 (270)
1z !

with 1 &) =1:1;12=1.
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The plots next to it, Fig. 4b and Fig. 4c represent the two-point propagator in
position space

. X Yim (X)Ylm (y)
he) i= AAFD) (2 +129mera(m? 1) (271)
Im (0)
evaluated at the equator where = =2 and, arbitrarily chosen,' = =4. This means

that the coordinate dependence for one of the spherical harmonics is xed such that
y=vy(;" )= y(=2; =4) and we let the plot run through the coordinates of the second
spherical harmonic x = x( ;" )).

In Figures 4b and 4c we see the same plot viewed from di erent viewpoints. Fig. 4c
shows the e ect of the signature change beautifully: Between =0 and =4 we see a
at region, which corresponds nicely with the green region around the south pole of the
spheroid in Fig. 4a. This repeats around the north pole as we move from 3=4to

In between those at regions we can see what happens in the region that is indicated
with a blue color on the representation of the spheroid in Fig 4a. We can clearly see
lightcones that wrap around the spheroid! The colors dark-blue to light-blue indicate
what we see explicitly in Fig. 4b: as' goes around the spheroid, the value of the
propagator goes up and down. This can be attributed to the trajectory of the lightcones
which we've seen in Fig. 3b.

The wobbles inside the Minkowskian region are sets of re ections of the lightcones;
their nature can be seen better in upcoming graphics.
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(b)
@

(©

Figure 4: In (a) we see a representation of the spheroid with an indicator to tell us that we
sit on the equator. (b) and (c) both show the evaluation of the scalar function as seen from
this point. In (b) we see that the lightcones have di erent heights. (c) clearly shows where the
signature changes.

Before we continue to explore what we see here, let us rst compare these plots to the
lightcones we would expect to see for a usual scalar eld which doesn't live on a fuzzy
sphere.

Fig. 5 are plots of the Feynman propagatorGe (a;b) of a free scalar eld with four-
momentum p
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z o DX )

o 1

Gr(a;b = Il(g‘n0 DL d*p A pi ) (272)
M g+ M HP (M) s 0

) 4‘ziE*sK1(m2p 's) s<0 @r9

si=(a% B2 (a D? (274)

wherex;y are two points in Minkowski spacetime. Hil) is the Hankel function of the
rst kind and K ; the modi ed Bessel function of the second kind. We choosen =1 and
show the absolute value as well as the real part and imaginary part separately.

@ (b) ©

Figure 5: 3D plot of the free scalar eld propagator Gr (a;b). (a) shows the absolute value, (b)
the real part and (c) the imaginary part.

We can see that the lightcone is clearly pronounced. If we were to extend the axes
farther out the lightcone would simply continue on.

As we compare Fig. 5 to Fig. 4c we also notice that on the spheroid there are
multiple lightcones as we move around the spheroid. There are actually only two distinct
lightcones (one up, one down) which repeat with" = . | know this because these plots
are evaluated where one of the spherical harmonics is xed at = =2;' = =4 and
the impression that the downward lightcone around' = =4 goes down less than the
downward lightcone around' = 3 =4 is an e ect that stems from the position we've
xed the spherical harmonic in. The e ect of the spherical harmonics can be seen more
clearly in upcoming graphics (e.g., see Fig. 6c).

Let us now see what happens when we're not sitting directly on the equator but outside
the Minkowskian region at 5. Fig. 6a shows where we are on the spheroid. Next to it, in
Fig. 6b we notice shadows of cones and a bright dot in the corner where= =8;' = =4.
This dot appears preciselybecausewe are in the positive-signature region: the spherical
harmonics in the scalar eld propagator dominate.

I've added another plot, Fig. 6c, that shows what the plain sum over the spherical
harmonics at this point would look like:

XX

Yin (0Yin ) with y=y(i')=(5ig) (275)
1I=0 m= |

We see immediately how this peak relates to the bright dot in Fig. 6b. Note that the
wave pattern is only there because we cut o the spherical harmonics aN = 30. The
spherical harmonics dominate only in the positive-signature region of the metric. Once
we cross over to points in the negative-signature region of the metric, the peak becomes
a lot less pronounced and the lightcones dominate the picture. However, we've seen that
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