
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

”
Analysis and Improvements on the Horn and Schunck

Optical Flow Algorithm“

verfasst von / submitted by

Florian Schwarz, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2022 / Vienna 2022

Studienkennzahl lt. Studienblatt / UA 066 910
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Computational Science
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dipl.-Ing. Dr. Otmar Scherzer

Mitbetreut von / Co-Supervisor: Dipl.-Ing. Dr. Clemens Kirisits, BA

Contents

1. Introduction 3
1.1. Forms of Representation . 4
1.2. Evaluation . 5
1.3. Optical Flow and Brightness Constancy 6
1.4. Complications in Optical Flow Computation 8
1.5. Relevant Mathematical Principles . 9

2. Approaches for solving Optical Flow: an Overview 12
2.1. Horn and Schunck . 12
2.2. Lucas and Kanade . 12
2.3. Region-based . 13
2.4. Feature-based . 14
2.5. Machine-learning-based . 14

3. Horn-Schunck-Optical-Flow in detail 16
3.1. Setting up the Horn-Schunck Energy functional 16
3.2. Solving the Euler-Lagrange-Equations . 17
3.3. Well-posedness and Convergence . 18
3.4. Implementation . 21
3.5. Influence of α and the Iteration Count 23
3.6. Influence of Gaussian Blur . 27
3.7. The Problem of Large Displacements . 28

4. Improving on Horn and Schunck via a Warping Technique 30
4.1. Deriving the Scheme . 30
4.2. Pyramidal Approach . 32
4.3. Implementation . 33
4.4. Justification and Relation to Non-Linear Schemes 37
4.5. Solving Large Displacements . 38
4.6. Contrast Invariance . 42
4.7. Warping and its Limitations . 44
4.8. Parameter Influence and Convergence Behaviour 50

5. Conclusion 53

A. Additional Figures 57

B. Middlebury Sequences [3, 4] 60

C. UCL Sequences [24, 26] 62

D. Abstract 64

1

Bibliography 66

2

1. Introduction

Given a video consisting of many individual frames, which appears fluent to the human
eye, moving objects which are depicted may be interpreted to flow across the screen.
This flow can be mathematically calculated and described as a vector field, which is
typically called optical flow field, velocity field or brightness displacement field. Since a
video, or more generally any kind of sequence of images is inherently a transformation of
the three-dimensional world to a two-dimensional domain, any motion we observe in such
an image sequence may only ever be called apparent. This means that certain effects,
e.g. change of illumination in the scene of interest, may lead an observer to misinterpret
actual motion occurring in the scene, which is an example for why the problem of optical
flow has shown to be a particularly hard one to solve.
Therefore, calculating apparent motion of objects in a sequence of images is still

an important open question in computer vision. Applications include traffic analy-
sis, autonomous driving, segmentation of regions in an image and surveillance systems.
Generally, the determination and calculation of optical flow will often times be a basic
algorithm in higher level applications and algorithms.
A key distinction is that of sparse vs. dense optical flow: while the former describes

optical flow only for the most distinct features of the images, making it computationally
significantly less demanding and prone to error caused by noise, the latter calculates the
flow for every pixel in the image, which delivers more exact results in theory. The two
most basic and well-known algorithms in each regard are the Lucas-Kanade-Algorithm
[25] (sparse) and the Horn-Schunck-Algorithm [19] (dense).

Figure 1: Optical flow of the image sequence in figure 2, shown in the two most common
display methods: color wheel-1 and arrow-representation

1see Appendix (Fig. 34)

3

Figure 2: An image sequence2 taken from [3] as it is usually fed into optical flow algo-
rithms

1.1. Forms of Representation

Optical flow can be visualized in different manners, the two ones relevant for this thesis
are depicted in Figure 1 and described below.

❼ Color Wheel Representation: In order to capture both the absolute value as
well as the direction of the flow vectors, while maintaining an uncluttered look, this
representation is used. It requires the definition of a color wheel, where varying
saturation corresponds to displacement distance and color corresponds to displace-
ment direction.

❼ Arrow Representation: This representation offers a very intuitive understand-
ing of the flow present in the image sequence. Drawbacks includes cluttering
especially for complex flow fields. In this case it is advised not to represent the
displacement vector of every pixel, but only represent vectors at certain intervals.
Secondly, visualisation of image sequences with particularly little motion need to
be artificially enhanced after the fact, in order to be able to make out flow vec-
tors to begin with. This naturally manipulates actual length of displacement and
should be used with caution.

Accurate visualisation is critical, as it is vital for humans mainly in the context of
verification and debugging during algorithmic development but also provides the most
intuitive understanding of the optical flow at hand. Of course, in many applications
when computationally evaluating an optical flow field by e.g. comparing it with the
assumed correct flow of the sequence (see Chapter 1.2), visualisation is simply omitted
in the process.

2resolution and aspect ratio changed

4

1.2. Evaluation

In order to determine whether the optical flow computed by some technique or algo-
rithm reflects the actual underlying flow of an image sequence accurately enough, it
typically does not suffice to judge the result by eye. Instead, the optical flow field will
be compared numerically either with flow fields computed by different algorithms or,
if available, the so-called ground-truth flow. The ground truth is understood to model
the actual underlying flow as well as possible using various techniques. As validation
of algorithms is important especially during developement of new techniques and for
sequences with complex optical flow3, computation of accurate ground-truth has proven
to be an important task in the field.
Techniques for computing ground-truth include:

❼ Structured Light: In this approach, every pixel is labelled by a unique code via
usage of structured light. By matching codes in different images, displacement
vectors of each pixels can be obtained [34].

❼ Hidden markers: Fluorescent paint and additional imaging in UV light or minute
visible markings on the scene’s contents make it possible to compute the exact
displacement of objects [33].

❼ Synthetic Generation: As an alternative for natural sequences, at this point,
scenes may synthetically be generated quick and highly realistic using 3D-modelling
software. In [26], the authors developed a plugin of such a software, namely Maya,
which makes precise optical flow calculation possible. Some of these scenes are
used in the theoretical part of this thesis in Chapter 4.

As described by Baker et al. in [3], the two most common ways of numerically comparing
two flow fields with one another are the Angular Error (AE)

AE = arccos

[
~hF1 · ~hF2

‖~hF1‖ · ‖~hF2‖

]

, (1.2.1)

and the Endpoint error (EE),

EE = ‖~hF1 − ~hF2‖, (1.2.2)

where ~hF1 and ~hF2 describe the flow vectors of the two flow fields to be compared, at
specific points. These are the evaluation methods which will also be used in this thesis,
with the extension of averaging over all pixels of the flow field (ĀE, ĒE), as well as
computing standard deviations (σAE, σEE), in order to get a grasp on outliers.

3e.g. non-rigid and independent motion

5

1.3. Optical Flow and Brightness Constancy

In order to compute optical flow from a sequence of images, the most popular and
basic approach is to consider the constancy of brightness I of a point (x, y) in an image
sequence. This means that an object should not change its brightness too much when
moving across the screen to be properly tracked via this method, a pre-condition which
is not met in a scene with drastic changes in illumination.
Mathematically, brightness constancy is expressed as

I(x, y, t) = I(x+ ∂x, y + ∂y, t+ ∂t). (1.3.1)

Here, dt describes the time interval between two images, which may be arbitrarily big -
however in practise is usually very small, e.g. 1 frame. dx and dy refer to the displace-
ment of the brightness at point (x, y) to a new position (x+∂x, y+∂y) in the 2D image
space and therefore describe the optical flow field.
Approximation via Taylor Series (to the 1st order) is now applied on the right side

I(x, y, t) = I(x, y, t) +
∂I

∂x
∂x+

∂I

∂y
∂y +

∂I

∂t
∂t, (1.3.2)

which leads to

0 =
∂I

∂x

∂x

∂t
+

∂I

∂y

∂y

∂t
+

∂I

∂t

∂t

∂t
, (1.3.3)

after cancelling and dividing by ∂t. Dependencies are omitted to avoid cluttering.
On an important note, this truncation of the Taylor Series approximation after the 1st

order implicates, that schemes born from this approach only work accurately if changes
in ∂x, ∂y and ∂t are small enough. Finally, introducing velocities in the limit u = dx

dt
,

v = dy

dt
,

−
∂I

∂t
=

∂I

∂x
u+

∂I

∂y
v,

or equivalently and most commonly in vector notation,

−It = ~∇I · ~h, (1.3.4)

is derived. Here, ~h(x, y) =

(
u(x, y)
v(x, y)

)

, the optical flow at point (x, y). Further, unless

indicated otherwise throughout this work ab =
∂a
∂b

holds.
The complication of (1.3.4) arises from the fact that two unknowns u, v appear in only

one equation. This lack of information is often referred to as the aperture problem in the
field of motion detection: When observing the motion of an object through an aperture,
one may only comprehend the motion in the direction of the brightness gradient of
that object. This leads to perceived motion potentially being created by a multitude of
different actual motions (Fig. 3).

6

Figure 3: Various actual motions appear identical through an aperture [40]

v

u

~∇I

constraint

Figure 4: An infinite number of vectors ~h (cyan) solve (1.3.4)

(1.3.4) is also depicted geometrically in Figure 4. Naturally, due to the definition of the

scalar product ~a ·~b = ‖~a‖ · ~ba, there is not one solution that can be attributed to the
problem, but rather infinitely many. The constraint line merely constrains the length of
the projection of ~h onto ~∇I in the following way [19],

~∇I · ~h = ‖~∇I‖ · ~h~∇I = −It

‖~h~∇I‖ =
It

‖~∇I‖
.

In order to solve the problem of optical flow with the main assumption of brightness
constancy it is therefore necessary to employ additional constraints, most popularly in-
troduced in the variational approach by Horn and Schunck which is discussed in Chapter
3.

7

Many algorithms do not consider brightness constancy in the first place, utilising en-
tirely different approaches in order to tackle optical flow, and are discussed in the Chapter
2. They include gradient-, region-, feature- and machine learning-based approaches.

1.4. Complications in Optical Flow Computation

❼ Large Displacements: One of the main challenges in optical flow computation is
that of properly dealing with so-called Large Displacements. A Large Displacement
is usually defined as an object’s or scene’s motion larger than merely a few pixels,
which leads to schemes derived from linearisation like (1.3.2) to struggle. Employ-
ing pyramidal approaches, where large movement is resolved at lower resolutions
aids in tackling this issue. The effects of Large Displacements on an algorithm not
fit for dealing with them are more closely demonstrated in Chapter 3.7.

Aside from pyramidal or multi-scale approaches [28], usage of non-linear approaches
[1, 32] or diverting from gradient-based approaches all-together is typically em-
ployed. Specifically feature- or region-based approaches generally offer satisfying
results as well [7].

In Fact, appropriately dealing with Large Displacements will be the focus of the
improvements made over the basic Horn and Schunck algorithm (Chapter 4).

❼ Occlusions: Parts of a scene or objects may become more or less occluded
throughout a sequence of images. This is problematic, since an object which
becomes visible only in the latter frame can not be assigned a flow field, since its
origin is unknown to the algorithm. Occluded areas are thus often times under-
stood to be un-solvable, i.e. any flow could be assigned to them. However, if e.g.
parts of uniformly moving background become occluded, Occlusion filling via e.g.
inpainting methods [5], which are usually for instance used to restore damaged
paintings, may be viable.

Although occlusions are encountered during measurements and in part discussed
in Chapter 4.5, solving them is not a particular focus of this thesis.

❼ Illumination Changes: Naturally, algorithms based on brightness constancy
are not suited to deal with significant Illumination Changes throughout an image
sequence. Possible improvement of the situation may be offered by schemes em-
ploying brightness gradient constancy alongside brightness constancy, as seen e.g.
in the variational approach of Papenberg et al.[32]. On top of that, since illumi-
nation change occurs in the structural rather than the textural part of an image,
basing optical flow computation on the latter is the basis of the work of Wedel et
al. in [39].

Of the image sequences analysed in this thesis, none exhibit particular illumination
changes, i.e. pixel intensities of the same objects in two images of a sequence remain
largely unchanged.

8

❼ Motion Discontinuities: Assuming smooth flow and low amounts of motion
discontinuities was popularised by Horn and Schunck in their work originally and
significantly simplifies calculation [19]. The assumption of large areas in an image
sequence moving in unison is not unwarranted, however flow computation may as
a result appear unsatisfying around structural edges and corners.

Generally this issue may be dealt with for instance by usage of specific regularisa-
tion potentials, which support smooth motion in areas of uniform movement, while
still detecting significant discontinuities [15]. More precisely, combining so-called
Total Variation,

RTV (~h) = ‖∇~h‖1,

which deals well with sharp edges, and the smoothness assumption posed by Horn
and Schunck,

RHS(~h) = ‖∇~h‖22,

is an approach most favourable for real-life sequences, as summed up in [9]. The
nature and use of such a regularisation term is more closely discussed in Chapter
3.

1.5. Relevant Mathematical Principles

❼ Least Squares Solution:

An over-determined system of equations A~x = ~b is unsolvable, since ~b /∈ col(A),

i.e. ~b is not in the column space of A. In order to approximate a solution ~x∗, the
least squares approach is employed,

~x∗ = argmin
~x

‖~b− A~x‖2, (1.5.1)

which aims to minimize the error of that solution. Geometrically, the goal is to
find the orthogonal projection ~b‖ onto col(A), i.e. the closest point to ~b still in

col(A). In order to eliminate the orthogonal component ~b⊥ and be left only with
~b‖, A

⊤ is applied onto ~b, since A⊤~b⊥ = ~0. This then leads to the normal equations,

A⊤A ~x = A⊤~b, (1.5.2)

which may be solved if A⊤A is regular, i.e. has full rank, is invertible.

9

❼ Tikhonov Regularisation:

An under-determined system of equations A~x = ~b is ill-conditioned, since it may
have infinitely many solutions. In order to fix this problem one may use a prior in
form of an additional regularisation term in (1.5.1),

~x∗ = argmin
~x

(‖A~x−~b‖2 + ‖Γ~x‖2). (1.5.3)

This term should contain additional a-priori information of the system in order to
select for a favourable solution, which is then defnined as,

~x∗ = (A⊤A+ Γ⊤Γ)−1A⊤b,

i.e. the (almost) singular matrix A⊤A is manipulated such that its condition
number decreases and the system becomes well-conditioned.

❼ Euler-Lagrange Equations:

Minimizing a functional of form4,

J [y] =

∫

Ω

F (x, y, y′)dx,

is known to be the simplest problem of variational calculus [12]. It is conventionally
addressed by solving the related Euler-Lagrange-Equations, which are a necessary
but not sufficient condition a function y must satisfy in order to minimize functional
(1.5). With n functions and m dimensions the Euler-Lagrange-Equations in first
order are derived to be,

∂F

∂yi
−

m∑

j=1

∂

∂xj

∂F

∂yi,j
= 0, (1.5.4)

i = 1, ..., n yi,j =
∂yi
∂xj

∂y

∂n
= 0 on ∂Ω

with the natural homogeneous Von Neumann boundary conditions.

❼ Frobenius Norm:

The Frobenius Norm as it is used in the scheme of Horn and Schunck as well as
for evaluation purposes in the practical part of this thesis, is defined as,

‖A‖F =

√
√
√
√

m∑

i=1

n∑

j=1

‖ai,j‖2, (1.5.5)

i.e. the Euclidian Norm extended to a matrix.

4first order, one function, one dimension

10

❼ Lemma of Lax-Milgram [35, 42]:

(A vector ~x is denoted as x.)

Given a bilinear form a(·, ·) : V × V → R, with a Hilbert space V . Assume the
following holds,

‖a(h, g)‖ ≤ c1‖h‖V ‖g‖V (continuity)

‖a(h,h)‖ ≥ c2‖h‖
2
V (coercivity, V-ellipticity)

with constants c1 > 0 and c2 > 0. Then, assuming a continuous, linear mapping
F : V → R, i.e. F ∈ V ′, where V ′ is the dual space of V , there exists exactly one
solution h∗ for every g,

a(h∗, g) = F (g) = 〈F, g〉. (1.5.6)

Identifying a(·, ·) with linear bounded operator A : V → V ′ and specific to coer-
civity, A is invertible with,

‖A−1‖ ≤
1

c2
. (1.5.7)

11

2. Approaches for solving Optical Flow: an Overview

As with many problems in computational science, there is not one single approach which
obtains the best results, but it is rather about weighing advantages and drawbacks
against one another. Over the last decades, a multitude of different schemes with the
aim of producing the most accurate flow field from a sequence of images, have been
developed. The following shall give a short overview of the most relevant concepts.

2.1. Horn and Schunck

One of the earliest works on the topic of optical flow was done by Horn and Schunck in
1981 [19]. To this day it is often viewed as the prototypical optical flow algorithm and,
even though it is not used in high performance environments today anymore, certain
key aspects are still employed in various modern algorithms. As it plays a vital role in
the practical section of this thesis, an extensive overview is provided in Chapter 3.

2.2. Lucas and Kanade

Also in 1981, Lucas and Kanade published an approach for solving the problem of Image
Registration (IR) [25], which is related to optical flow, using a translational warp model.
It is especially relevant in fields like medical imaging and deals with the alignment of
two images of the same scene5, which may be arbitrarily shifted, scaled and skewed.
Optical flow can be seen as a sub-problem of IR and for both, similar solving techniques
are employed. Mathematically, IR may be solved by finding the disparity vector ~h∗ at
some position ~x, e.g. in an L1 norm,

~h∗ = argmin
~h∈Ω

‖I1(~x+ ~h)− I2(~x)‖, (2.2.1)

where I1, I2 denote the two images respectively.
As a special case of this approach, Lucas-Kanade-Optical-Flow was developed, which

much like the scheme of Horn and Schunck, is initially based on brightness constancy
(1.3.1) and referred to as a gradient-based scheme. In order to solve the under-determined
system of equations (1.3.4), the constraint of locally constant flow is employed. This
means that given a small enough window in the image, it can be assumed that all
contained pixels share the same6 optical flow vectors.
Using e.g. a 3× 3 window, (1.3.4) becomes,

5at least partially
6in practise: very similar

12









~∇I
⊤

0,0

~∇I
⊤

0,1

..

~∇I
⊤

2,2









(
u
v

)

= −







It;0,0
It;0,1
..

It;2,2







,

which is simply a system of form,
A ~x = ~b,

most likely overdetermined and thus solvable by a least squares approach (1.5.2).
As was already mentioned in the introduction, the approach of Lucas and Kanade

produces sparse optical flow, because it assumes patches of unified flow. The method
struggles with two situations specifically [31]:

❼ Smooth areas, i.e. those with small and uniform brightness changes in all direc-
tions, as there is not much texture for the algorithm to ”cling” onto. If gradients
in a chosen patch are equal for all pixels, the resulting matrix is not regular and
the patch becomes unsolvable.

❼ Edges, i.e. areas where the derivative in one direction is much greater in magnitude
than the derivative in the other direction. This is due to the eigenvalues of A⊤A
corresponding to the largest gradient of the window in each direction x and y. The
condition number of a self-adjoint matrix A, which measures the stability of the
solution x given some perturbation to the matrix or the right hand side, is given
by,

cond(A) =
λmax

λmin

,

where λmax and λmin describe the biggest and smallest eigenvalue. For big disparity
between greatest and smallest eigenvalues, the condition number will be large and
thus the system will be ill-conditioned and hard to solve.

2.3. Region-based

The key idea of region-based optical flow is to have an algorithm recognize similar-
looking regions in a sequence of images and thus compute the displacement this region
has undergone. Usually, as e.g. described in [16] such an approach consists of three
steps: Region-Extraction, Region-Matching, Flow-Calculation.

❼ Region-Extraction: The process of region-extraction or region- respectively
object-detection aims at identifying regions or areas in an image which mean-
ingfully describe a coherent structure. It is itself an extensive and important field
in computer vision and may be solved using a multitude of different algorithms,

13

as e.g. described in [27, 17]. Most of these methods usually employ some kind of
region hierarchy and different applications, e.g. computation of optical flow, op-
erate on high or low hierarchy respectively. Depending on the algorithm at hand,
a certain hierarchy level is chosen in order to have a region represent a uniformly
moving part of the image as well as possible.

❼ Region-Matching: Two images, for which region extraction has previously been
performed can be processed by a region-matching algorithm. Its goal is to find
pairs of regions, which are most likely to correspond to each other by usage of
affinity measures. Measures such as average intensity, area distance and distance
between region centroids may be employed [16]. Techniques like nearest-neighbour-
matching may be used in order to evaluate the differences in these parameters of
different regions [7].

❼ Flow-Calculation: By merely comparing the region centroids of two matched
regions, a first approximation of the displacement field in that region may be
obtained. Further smoothing via median filtering may be applied [16], or the results
of region-matching may be introduced into further computation via a different
technique, like a variational approach [7], among others.

2.4. Feature-based

Similar to region-based flow, the steps of extraction and matching also need to be un-
dertaken in the approach of feature-based optical flow. As the name suggests, striking
image features are extracted by usage of algorithms and are subsequently matched in
separate frames of an image sequence. Depending on what features to extract, there
exists a wide variety of edge detectors (e.g. [10]), corner detectors (e.g [18]) or blob
detectors (e.g. [23]). The latter detection type is especially useful if some large area in
the image with low brightness gradient does not have distinct features to track by other
methods, and is close in essence to region-extraction. Still, these methods may struggle
when dealing with images which feature large untextured patches and produce rather
sparse flow.
Optical flow is calculated on a feature-based approach for instance in [41], which also

tackles the problems of feature-wise over- and under-representation of certain objects in
the scene. After matching the features, the resulting motion fields are then influencing
a final minimization procedure to obtain the displacement for individual pixels.

2.5. Machine-learning-based

As in most areas of computational science, many state-of-the-art algorithms are based
on machine learning whose importance is ever increasing in the field of science. Convolu-
tional Neural Networks (CNNs) have been especially successful (popularly e.g. flowNet

14

[13] and RAFT [36]). Here, end-to-end processes are employed, meaning given the most
basic input, i.e. two images, optical flow is computed for every pixel. Naturally, machine-
learning, specifically CNNs, may be trained to perform a sub-task of other approaches,
e.g. extracting features from an image.
The performance of machine-learning based approach RAFT is shown and compared

to that of the improved Horn and Schunck approach implemented in this thesis, in
Chapter 5.

15

3. Horn-Schunck-Optical-Flow in detail

In 1981, Berthold Horn and Brian Schunck published their first work focused on optical
flow, with the goal of solving the issue of inherent lack of information in the aperture
problem by introducing an additional constraint. Even though effort was put into deter-
mining velocities of objects on a screen up to that point (e.g. [14, 22]), the work of Horn
and Schunck kick-started the field of optical flow estimation and led to its increased
attention throughout the scientific community.

3.1. Setting up the Horn-Schunck Energy functional

Tikhonov Regularisation (1.5.3) is introduced into the problem of Optical Flow by first
constructing an energy functional, which is further solved using variational calculus,
more specifically the Euler-Lagrange Equations (1.5.4).
Setting up a functional such as this based on the aperture problem (1.3.4) and expand-

ing it with a regularization term, leads to the famous and rather generic energy-functional
proposed by Horn and Schunck,

J [~h] =

∫

Ω

[(~∇I · ~h+ It)
2 +R(~h)]d~x. (3.1.1)

Commonly, (~∇I · ~h + It)
2 is referred to as the data term, which is depicted in its most

basic form, but may be altered in various ways in order to improve performance of
consequential algorithms.
In the case of Horn and Schunck, R(~h) can be interpreted as some kind of Frobenius

Norm (1.5.5) of the outer product of ~∇ and the optical flow, where the former serves as
the analog to matrix Γ in (1.5.3),

R(~h) =

∫

Ω

α2‖~∇~h‖2Fd~x. (3.1.2)

Here, and in the following, ~h =

(
u
v

)

again describes the optical flow field at a certain

point. α is a commmonly introduced scaling factor which is usually chosen and adapted
empirically but famously difficult to optimize for. In the original work, the regularization
term is reasoned as being a smoothness constraint, since the added term is equivalent to
a sum of squared derivatives in all directions,

‖~∇~h‖2F =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2

.

Minimizing the squared derivatives in all directions assumes smooth flow generally, an
assumption which holds in many image sequences, where large parts of the image move
in uniform and abrupt changes in flow are rare.

16

3.2. Solving the Euler-Lagrange-Equations

Starting from (3.1.1), the general case (1.5.4) reduces to two equations for the compo-

nents of ~h, u and v respectively,

∂F

∂u
−

∂

∂x

∂F

∂ux

−
∂

∂y

∂F

∂uy

= 0

∂F

∂v
−

∂

∂x

∂F

∂vx
−

∂

∂y

∂F

∂vy
= 0,

(3.2.1)

with F =

[

~∇I ·

(
u
v

)

+ It

]2

+ α2

∥
∥
∥
∥
~∇

(
u
v

)∥
∥
∥
∥

2

F

.

Afterwards, (3.2.1) simplifies to

2

[

~∇I ·

(
u
v

)

+ It

]

Ix −
∂

∂x

(

2α2∂u

∂x

)

−
∂

∂y

(

2α2∂u

∂y

)

= 0

2

[

~∇I ·

(
u
v

)

+ It

]

Iy −
∂

∂x

(

2α2 ∂v

∂x

)

−
∂

∂y

(

2α2∂v

∂y

)

= 0

2

[

~∇I ·

(
u
v

)

+ It

]

Ix − 2α2

(
∂2u

∂x2
+

∂2u

∂y2

)

= 0

2

[

~∇I ·

(
u
v

)

+ It

]

Iy − 2α2

(
∂2v

∂x2
+

∂2v

∂y2

)

= 0

and finally identifying the Laplacian,

(Ixu+ Iyv + It)Ix − α2 △u = 0

(Ixu+ Iyv + It)Iy − α2 △v = 0
(3.2.2)

yielding a system of two partial differential equations of second order. In order to
numerically solve (3.2.2), Horn and Schunck make use of an iterative approach, by first
approximating

△u ≈ κ(ū− u),

where ū uses the stencil 



1
12

1
6

1
12

1
6

0 1
6

1
12

1
6

1
12



 , (3.2.3)

similarly for △v. κ = 3 for this approximation scheme, although it is further omitted as
it serves merely as a scaling factor for the weighting term α. Numerical approximations
of derivatives Ix, Iy, It are further shown in Chapter 3.4 alongside implementation of the

scheme. Then, for every pixel, a system of equations A~x = ~b is recovered,

(
I2x + α2 IxIy
IxIy I2y + α2

)(
u
v

)

=

(
−ItIx + α2ū
−ItIy + α2v̄

)

,

17

which is solved via usage of iteration scheme (3.2.5) in the original work. It may be
derived using Cramer’s Rule, which states the i-th component of the solution vector,

xi =
det(Ai)

det(A)
, (3.2.4)

where Ai describes the original matrix A with the i-th column being substituted by right
hand side b. For the case of u, with

Au =

(
−ItIx + α2ū IxIy
−ItIy + α2v̄ I2y + α2

)

,

the determinants compute to be,

det(A) = α2(I2x + I2y + α2), det(Au) = α2(−IxIt + I2y ū+ α2ū− v̄IxIy),

using (3.2.4) and rearranging,

u =
−IxIt + (I2y + α2)ū− v̄IxIy

I2x + I2y + α2

u(I2x + I2y + α2) = −IxIt + (I2y + α2)ū− v̄IxIy + (I2xū− I2xū)

u(I2x + I2y + α2) = −Ix(ūIx + v̄Iy + It) + ū(I2x + I2y + α2)

finally leading to the update scheme,

uk+1 = ūk −
Ix(ū

kIx + v̄kIy + It)

I2x + I2y + α2

vk+1 = v̄k −
Iy(ū

kIx + v̄kIy + It)

I2x + I2y + α2
,

(3.2.5)

where vk+1 is derived analogously.

3.3. Well-posedness and Convergence

In his work in 1991, Christoph Schnörr [35] answered the question of well-posedness, i.e.
existence, uniqueness and continuous dependence on input data, for the problem posed
by Horn and Schunck7 (3.1.1, 3.1.2).
(A vector ~x is denoted as x.)
Schnörr sets up a basic functional of form,

J(g) =
1

2
a(g, g)− f(g) + c J : G → R, (3.3.1)

7and also that of Nagel [29]

18

and subsequently uses the Lax-Milgram-Lemma (Chapter 1.5) based on assuming a(g, g)
to be a continuous bilinear and f(g) a continuous linear form. Then, J(g) is uniquely
minimized by the solution h of,

a(h, g) = f(g). (3.3.2)

With (1.5.6), (3.3.2) may be written as,

〈Ah− f, g〉 = 0,

implying existence,
Ah = f,

and further uniqueness,
h = A−1f,

with inverse A−1. Continuous data dependence is then guaranteed by,

‖h‖ ≤
1

c2
‖f‖,

using (1.5.7), again with c2 > 0.
In order to check whether the Horn-Schunck functional fits into this framework, a(h, g)
and f(g) need to be set up first.

a(h, g) =

∫

Ω

I2xh1g1 + IxIy(h1g2 + h2g1) + I2yh2g2

+α2(h1,xg1,x + h1,yg1,y + h2,xg2,x + h2,yg2,y) dx,

f(g) = −2

∫

Ω

ItIxg1 + ItIyg2 dx,

(3.3.3)

with h =

(
h1

h2

)

, g =

(
g1
g2

)

and hi,j =
∂hi

∂j
where the constant factor c in (3.3.1) may be

omitted. The key results are then those for continuity of a(h, g) and f(g),

‖a(h, g)‖ ≤ C‖h‖1‖g‖1, C = 2 max{2‖I2x‖∞, 2‖I2y‖∞, α2}

‖f(g)‖ ≤ 2‖It~∇I‖0‖g‖1,
(3.3.4)

where the norm subscripts other than ∞ denote the order of derivative influencing the
calculation and are based on the scalar product in the corresponding Hilbert Space V ,
which is a product of Sobolev Space H1(Ω),

V :=

(
h1

h2

)

∈ H1(Ω)×H1(Ω),

and ‖ · ‖∞ the maximum norm. Further, the bilinear form a(h, g) is shown to be elliptic
with reference to G under the critical assumption of intensity gradients Ix, Iy being
linearly independent, i.e. strictly fulfilling the Cauchy-Schwarz-Inequality,

‖〈Ix, Iy〉0‖ < ‖Ix‖0 · ‖Iy, Iy‖0.

19

Another important result is that of convergence of the approximate to the exact so-
lution in the case of the Horn-Schunck algorithm. After previous attempts the problem
seems to have finally been solved in 2013 for arbitrary dimension in [21].
Precisely, the authors first set up three hypotheses about the Laplace-Approximation

M(h)i =
∑

j∈Λ λi,jhj used by Horn and Schunck, based on stencil (3.2.3) in 2D in the
given lattice of pixels Λ:

❼ λji = λij, ∀i, j ∈ Λ

❼

∑

j∈Λ λi,j = 1, ∀i ∈ Λ

❼ Graph G with vertices V (G) = Λ and edges E(G) = {(i, j) ∈ Λ2 : λi,j 6= 0} is
connected.

With ∇Ii being the gradient of intensity field I at point i, it is subsequently proven
that,

❼ if the rank of ∇Ii is 2, (3.2.2) has a unique solution and iteration scheme (3.2.5)
converges to it.

❼ if the rank of ∇Ii is not 2, i.e. all intensity gradients are contained in the same
hyperplane, the problem is ill-posed and the solution of (3.2.2) is not unique.

This result is further extended to an approximation of the Laplacian in n dimensions.

20

3.4. Implementation

Naturally, the Horn-Schnunck Optical Flow Algorithm has been implemented in various
programming languages over the years, e.g. OpenCV [6], Open Source Computer Vision
Library, among others. Nevertheless, all code in this Thesis is written from scratch,
starting from the original Work by Horn and Schunck [19]. This excludes packages for
tasks like plotting data, etc. Using Python 3.10 [37] as a language of choice is justified
by personal experience as well as high flexibility and great community/developer sup-
port online. Of course, this comes at the price of speed and efficiency in comparison
to languages like C or Fortran, which are regarded highly in the field of Computational
Science, however these properties should not be in focus here. All code, including com-
ments, may be found at https://github.com/schwarzflo/masters_thesis, where key
passages are explained in comment where necessary.

Relevant File: basic hs.py
Starting from the update scheme (3.2.5), calculation of the image intensity gradients
Ix, Iy, It as well as ū, v̄ is necessitated beforehand. The latter is computed via usage
of a built in function of the package scipy [38], as the application of stencil (3.2.3) is
understood to be a convolution of it with the initial or previous velocity field.
Further, for calculation of the image gradients in space and time at a given pixel the
following finite difference scheme is proposed by Horn and Schunck.

Ix(j, k) =
1

4
· (Ii,j+1,k − Ii,j,k + Ii,j+1,k+1 − Ii,j,k+1

+Ii+1,j+1,k − Ii+1,j,k + Ii+1,j+1,k+1 + Ii+1,j,k+1)

Iy(j, k) =
1

4
· (Ii,j,k+1 − Ii,j,k + Ii,j+1,k+1 − Ii,j+1,k

+Ii+1,j,k+1 − Ii+1,j,k + Ii+1,j+1,k+1 + Ii+1,j+1,k)

It(j, k) =
1

4
· (Ii+1,j,k − Ii,j,k + Ii+1,j,k+1 − Ii,j,k+1

+Ii+1,j+1,k − Ii,j+1,k + Ii+1,j+1,k+1 + Ii,j+1,k+1)

(3.4.1)

Here, the three indices in Ii,j,k refer to time, x-axis and y-axis in the image in that order.
That is, neighbouring pixels in space and time are taken into account. The resulting
gradients lose the time component since for an image sequence of two images, only one
set of gradients is computed. The scheme can geometrically be represented as a cube
where each of the eight corners refers to a term in the gradient computations in (3.4.1).
At the image edges ∂Ω, homogeneous Neumann boundary conditions are employed,

∂I

∂n
= 0 on ∂Ω, (3.4.2)

meaning the intensity values are assumed constant from the edge onwards, in all direc-
tions. Unless a previous guess for the flow field is available, the flow field is initially

21

https://github.com/schwarzflo/masters_thesis

considered to be 0 everywhere,

~h0(x, y) =

(
0
0

)

, ∀ (x, y) ∈ Ω. (3.4.3)

A quick summary of the algorithm looks as follows:

Data: images, α, iteration count/error threshold
for width of image do

for height of image do

Gradient Calculation (3.4.1);
end

end

while iteration count/error threshold not met do
scipy.ndimage.convolve8;
for width of image do

for height of image do

Update Scheme (3.2.5);
end

end

end

Algorithm 1: Horn-Schunck Optical Flow

The runtime estimation of this algorithm is composed of 24 · m · n for the gradient
calculation and it · (2 · 9 ·m ·n+24 ·m ·n) for the update scheme. Here, m and n denote
the width and height of the images, respectively. it refers to the maximum iteration
count, either previously chosen or based on the error threshold used. The factor of 24
refers to the floating point operations (FLOPS) needed for executing (3.4.1) and (3.2.5)
respectively. The additional 2 · 9 ·m · n in brackets refers to the spn.convolve routine,
which naturally needs to work through every pixel of the image twice for each direction
u and v and apply the stencil (3.2.3).
Overall, runtime performance RHS is,

RHS = 24 ·m · n+ it · (2 · 9 ·m · n+ 24 ·m · n)

= 24 ·m · n+ 42 · it ·m · n

= (24
1

it
+ 42) · it ·m · n

∈ O(it ·m · n).

8Scipy Package: apply stencil (3.2.3) via convolution to compute ū, v̄

22

Figure 5: The runtime is expectedly fitted by a · n2, in a squared image (n × n) and
negligibly small iteration count it = 10

3.5. Influence of α and the Iteration Count

As mentioned previously, optimizing for the regularisation parameter α is generally con-
sidered a serious challenge and is highly dependent on the image sequence at hand. In
the following, the Whale Sequence (Fig. 42) is examined and the influence of chang-
ing α, as well as the iteration count, is highlighted. To verify the validity of a value,
comparison with the ground-truth, i.e. the best possible optical flow estimate available
of a sequence, is made. The measures described in Chapter 1.2, namely Angular Error
(1.2.1) as well as Endpoint Error (1.2.2) are employed. Afterwards, the average and the
standard deviation of these errors over the whole image plain are computed.

Importantly, as mentioned in Chapter 1.1, arrow representation needs to be altered
for small displacement sequences,in order to improve visualisation, which is also done
in the following. Lengths of arrows therefore do not accurately reflect displacement
distance.
Differences in the computed flow fields are already easily noticeable visually for various

values of α (Fig. 6), although even when knowing the original sequence, it may be
hard to determine the best result. Therefore, scalar fields of the Angular Error and the
Endpoint Error are displayed for each case (Fig. 7), to provide a direct visual comparison
with ground truth. Specifically, increasing α seems to lead to the computed flow being
more prominent around significant edges, while the opposite holds for decreasing the
parameter.

23

This may be reasoned in the following way: choosing α large leads the denominator
in (3.2.5) to be similar for areas of big and small intensity change. Therefore, the values

in the numerator control the final value ~h in magnitude and enhance it at structural
edges. Small α in contrast do not wash out insignificant gradient changes and place less
emphasis on edges, leaving a more uniform flow field. However, the extreme case of very
small α results in a noisy flow field, where small intensity changes are not suppressed
and in-appropriately favoured.
In an attempt to truly optimize for α, Fig. 8 (top) depicts averages and standard

deviations of these errors for different values. As can be observed, very low values of α
tend to lead to high standard deviation in the errors of both angle and endpoint. This
is to mean there will be areas in an image sequence which may be described particularly
poorly, while the general optical flow approximation seems fine. This is also visible in
Fig. 7 for α = 1, where the highest Endpoint Error is > 25 pixels. The metrics generally
hint at an improvement and a subsequent decline in performance for increasing values
of α. In any case, the optimal choice of α will be a trade-off in some way, and lies
somewhere between α = 1 and α = 10 for the present sequence of images.
Since the ground truth files themselves usually contain many holes, i.e. unknown flow
values, mainly due to occlusions, the validity of the computed flow field can not be eval-
uated in these positions. In Fig. 7, these positions are coloured white - they are further
simply omitted in calculations of averages and standard deviations.

In order to empirically prove convergence of the algorithm, the change of the optical
flow field from one iteration to the next is monitored. More precisely, the relative
change is computed as follows,

∆uk =
‖uk−1 − uk‖F

‖uk−1‖F
, ∆vk =

‖vk−1 − vk‖F
‖vk−1‖F

. (3.5.1)

Here, uk,vk refer to scalar fields for the flow in u and v direction at every pixel in the
image at the k-th iteration. Interpreting these as matrices, the difference and subse-
quence use of the Frobenius Norm (1.5.5) give an insight on the (relative) change at
each iteration.
Figure 8 (middle) highlights the convergence of the algorithm for different α towards no
change between iterations at all. Specifically, lower values of α tend to converge faster.
This makes sense, since large values will reduce the effect of the quotient and thus the
change per iteration in (3.2.5).
Lastly, Figure 8 (bottom) depicts how the result of the computation on average improves
for more iterations compared to ground truth flow, with relatively steady behaviour of
the standard deviation. This is expected, since problem areas will not be drastically
improving via applying more iterations. Therefore, variation in the result should stay
roughly the same.

9parameter div controls in which period flow vectors are shown in the arrow representation

24

Figure 6: Computed optical flow9 from sequence Whale 42

Figure 7: Angular and Endpoint Error for different α

25

Figure 8: top: Error Statistics for different α and fixed iteration; middle: Relative Differ-
ence to previous iteration for different α; bottom: Error Statistics for different
iterations and fixed α

26

3.6. Influence of Gaussian Blur

Application of a Gaussian Filter on image sequences before computing optical flow is a
common attempt to improve results [32]. Due to the nature of Horn-Schunck Optical
Flow and its smoothness constraint in form of the regularisation term, it generally does
not perform as well around sharp flow edges and corners, but decent for gradual flow
changes as found for instance in rotations of objects (Fig. 35). The use of Gaussian Blur
aims so diminish exactly these rapid flow changes, by smoothing the image intensities
themselves.
However, the expected effect can not be observed in every case. Fig. 9 depicts error

statistics of two image sequences different in nature. While results of the Hydrangea
Sequence (Fig. 41) admit of slight improvement in Average Errors when blurring the
images, the same can not be said for the Whale Sequence. This seems to be due to the
former featuring a distinct edge separating the background from the foreground at which
the flow is rapidly changing. Additionally, the plant shows many intensity irregularities
which get lessened by blurring. Opposed to this, the latter sequence features multiple
smaller regions, where adjacent ones rarely do not move in unison.
Of course, since a Gaussian Filter alters the image intensities, valuable information

may be lost at some stage. For many sequences, this is still outweighed by the advan-
tages of smoothing up to some radii - for others, there may never be an advantage and
subsequent improvement to begin with.

Figure 9: Error Statistics for increasing Gaussian blur10:Hydrangea Sequence (lhs);
Whale Sequence (rhs)

10radius refers to the standard deviation of the gaussian kernel in function GaussianBlur() from package
Pillow [11], radius = 0 being the unblurred image sequence

27

3.7. The Problem of Large Displacements

As previously discussed, the problem of Large Displacements remains an important
challenge in Optical Flow Calculation. Sequence 50 displays two images where large
object motion occurs. When applying the Horn-Schunck Optical-Flow Algorithm 1 to it,
the results appear highly insufficient in comparison to the ground truth (Fig. 10) with the
usual error statistics applied in Fig. 1111. The computed flow field appears particularly
noisy, tolerable only in large areas of continuous flow. Further, the phenomenon of
certain objects appearing twice is noticeable - consider the triangle structure in the
lower left corner for instance.
Fig. 12 displays a simpler, albeit extreme12 case of the problem - when an object

moves too far from its initial position, and the algorithm has no access to constant
brightness in the immediate area, it assumes the object to vanish at the original and
reappear at the new position. In the flow field, this will be portrayed as a sink (i.e.
background brightness flowing into the position) at the initial position and a source at
the new position.

Figure 10: The Horn-Schunck Optical Flow algorithm struggles with sequences where
large displacements occur: Computed Flow (lhs), Ground-Truth Flow (rhs)

Naively integrating the original Horn-Schunck Scheme into a multi-scale system serves
only little to improve the situation. Here, the algorithm is repeatedly applied on the
same image sequence with increasing resolution, always using the result of the last step
as initial flow field of the next one13. Since a large motion may be visible in the computed
flow of a low resolution image sequence, this hopes to guide the algorithm in the right
direction.
However, as Fig. 36 and 37 are showing, even though the multi-scale version outper-

forms the default version of the algorithm in some areas and the result seems less noisy,

11Neither changes of α nor of the iteration count serve to improve the result
12i.e. very Large Displacement
13The details of such a pyramidal scheme will be discussed in the following chapter

28

the same issues still persist. Ultimately, the input given to the Horn-Schunck algorithm
may only change convergence speed, not actual result. Even when given a good initial
guess to start on, the Horn-Schunck Algorithm remains limited by approximation (1.3.3)
and will thus always struggle when dealing with large enough motion.

Figure 11: Angular and Endpoint Error for α = 5, 25 iterations

Figure 12: An object moving over multiple times its own size creating a source and a
sink in the flow field (from Backyard Sequence (Fig. 45))

29

4. Improving on Horn and Schunck via a Warping

Technique

In this chapter, the Horn and Schunck approach is improved by modifying the original
brightness constancy assumption (1.3.1) in such a way, that the parameter of interest

is a change in the flow field ~dh, rather than the flow field ~h itself. This results in the
usage of a version of a warping technique, as it has already been investigated in by
Anandan et al. [2] and Bruhn et al. [8], for instance. Besides showing the extent of
the improvement achieved through such a scheme, its justification as well as relation to
non-linear approaches is pointed out.

4.1. Deriving the Scheme

Again, starting from (1.3.1),

I(~x, t) = I(~x+ ~h(~x), t+ dt),

and substituting
~h(~x) = ~h0(~x) + ~dh(~x),

I(~x, t) = I(~x+ ~h0(~x) + ~dh(~x), t+ dt),

represents the brightness constancy assumption for an incremental scheme, where change
~dh should be optimized for and ~h0 refers to an already existing initial guess.

Notably, ~h =

(
dx
dy

)

represents a displacement instead of a velocity field here. The

schemes remain comparable still, due to the ability to freely choose dt = 1 in the basic
Horn-Schunck approach, which makes differentiating between velocity and displacement

field unnecessary. In the following due to simplicity, notation is again ~h =

(
u
v

)

.

After applying Taylor-Approximation to 1st order to the right side,

I(~x, t) = I(~x+ ~h0(~x), t+ dt) + ~∇I(~x+ ~h0(~x), t+ dt) · ~dh(~x), (4.1.1)

is derived. Letting I1 = I(~x, t) and I2 = I(~x, t + dt) be the intensities of the two
consecutive images, (4.1.1) may be written as,

Ĩ2 + ~∇Ĩ2 · ~dh− I1 = 0, (4.1.2)

where Ĩ2 practically refers to the application of the initial flow field ~h0(~x) onto the second
image I2, i.e. it is warped by the flow.
Naturally, (4.1.2) is still considered a gradient-based scheme, due to Taylor-

30

Approximation. Therefore, the guess of ~h0(~x) for the initial flow field need be good

enough, so to avoid the change ~dh to be optimized for, needing to be too large. Gen-
erally, ‖ ~dh‖ ≪ ‖~h‖ holds. This prerequisite may be fulfilled by usage of a pyramidal
scheme, under the same reasoning as given in Chapter 4.5: Optical flow estimation at
low resolution sufficiently captures large motion.
(4.1.2) is now substituted into (3.1.1) as a new data term, giving,

JW [~dh] =

∫

Ω

(Ĩ2 + ~∇Ĩ2 · ~dh− I1)
2 + α2‖∇(~h0 + ~dh)‖2F , (4.1.3)

as the energy functional, where the regularisation-smoothness-term is still that of the
original Horn-Schunck approach, now also employing the increment ~dh.
Setting up the Euler-Lagrange-Equations works similar to Chapter 3.2, with analogous

notational convention:
∂F

∂du
−

∂

∂x

∂F

∂dux

−
∂

∂y

∂F

∂duy

= 0

∂F

∂dv
−

∂

∂x

∂F

∂dvx
−

∂

∂y

∂F

∂dvy
= 0,

(4.1.4)

with F =

[

Ĩ2 + ~∇Ĩ2 ·

(
du
dv

)

− I1

]2

+ α2

∥
∥
∥
∥
~∇

(
u0 + du
v0 + dv

)∥
∥
∥
∥

2

F

.

Then (4.1.4) becomes,

2

[

Ĩ2 + ~∇Ĩ2 ·

(
du
dv

)

− I1

]

Ĩ2x −
∂

∂x

(

2α2∂(u0 + du)

∂x

)

−
∂

∂y

(

2α2∂(u0 + du)

∂y

)

= 0

2

[

Ĩ2 + ~∇Ĩ2 ·

(
du
dv

)

− I1

]

Ĩ2y −
∂

∂x

(

2α2∂(v0 + dv)

∂x

)

−
∂

∂y

(

2α2∂(v0 + dv)

∂y

)

= 0

[

Ĩ2 + ~∇Ĩ2 · ~dh− I1

]

Ĩ2x − α2 △ (u0 + du) = 0
[

Ĩ2 + ~∇Ĩ2 · ~dh− I1

]

Ĩ2y − α2 △ (v0 + dv) = 0
(4.1.5)

These two Euler-Lagrange Equations are subsequently rearranged into a linear system
of equations in the following.

[

Ĩ2 + ~∇Ĩ2 · ~dh− I1

]

~∇Ĩ2 − α2 △ (~h0 + ~dh) = 0

Rewriting ~dh = ~hk+1 − ~hk, with ~h0 = ~hk simply referring to the previous iteration, then
leads to, [

Ĩ2 + ~∇Ĩ2 · (~h
k+1 − ~hk)− I1

]

~∇Ĩ2 − α2 △ ~hk+1 = 0, (4.1.6)

and, [

Ĩ2 + ~∇Ĩ2 · (~h
k+1 − ~hk)− I1

]

~∇Ĩ2 − α2(~̄hk − ~hk+1) = 0,

with usage of stencil (3.2.3) in order to approximate14 △~hk+1 ≈ κ(~̄hk−~hk+1), with κ = 3.

14Using ~̄hk instead of ~̄hk+1 simplifies computation drastically

31

Here again, κ is omitted as in Chapter 3.2. Then,

[

Ĩ2 + ~∇Ĩ2~h
k+1 − ~∇Ĩ2 ~hk − I1

]

~∇Ĩ2 − α2~̄hk = −α2~hk+1

[

Ĩ2 − ~∇Ĩ2 ~hk − I1

]

~∇Ĩ2 − α2~̄hk = −α2~hk+1 − ~∇Ĩ2~∇Ĩ2
T~hk+1.

Therefore, a linear system of equations is recovered,

(

α2I + ~∇Ĩ2~∇Ĩ2
T
)

︸ ︷︷ ︸

A

~hk+1

︸︷︷︸

~x

=
[

~∇Ĩ2 ~hk + I1 − Ĩ2

]

~∇Ĩ2 + α2~̄hk

︸ ︷︷ ︸

~b

. (4.1.7)

Here, I denotes the 2 × 2 identity matrix. At every iteration, a previous good enough

guess ~hk and its Laplace-Approximation ~̄hk need to be available. Additionally, image
intensities of the warped second image Ĩ2 and the corresponding derivatives ~∇Ĩ2 are
needed.
(4.1.7) may be expressed similarly to (3.2.5) by again using Cramer’s Rule starting

from (4.1.6) as A~x = ~b,

(

Ĩ2
2

x + α2 Ĩ2xĨ2y

Ĩ2xĨ2y Ĩ2
2

y + α2

)(
uk+1

vk+1

)

=

(

−Ĩ2Ĩ2x + Ĩ2
2

xu
k + Ĩ2xĨ2yv

k + I1Ĩ2x + α2ūk

−Ĩ2Ĩ2y + Ĩ2xĨ2yu
k + Ĩ2

2

yv
k + I1Ĩ2y + α2v̄k

)

,

with determinants,

det(A) = α2(Ĩ2
2

x + Ĩ2
2

y + α2)

det(Au) = α2[−Ĩ2(Ĩ2x + I1Ĩ2x + ukĨ2
2

x + vkĨ2xĨ2y + ūk(Ĩ2
2

y + α2)− v̄kĨ2xĨ2y]

for the case of uk+1. Finally arriving at update schemes,

uk+1 = ūk −
Ĩ2x(Ĩ2 − I1 + Ĩ2x(ū

k − uk) + Ĩ2y(v̄
k − vk))

Ĩ2
2

x + Ĩ2
2

y + α2
,

vk+1 = v̄k −
Ĩ2y(Ĩ2 − I1 + Ĩ2x(ū

k − uk) + Ĩ2y(v̄
k − vk))

Ĩ2
2

x + Ĩ2
2

y + α2
,

(4.1.8)

where vk+1 is derived analogously.

4.2. Pyramidal Approach

As described in Chapter 1.4, employing multi-scale, alias pyramidal schemes in optical
flow computation is no novelty. The obvious appeal is to resolve large motion by either
applying a Gaussian Filter or decreasing the image resolution to such an extent so that a
basic non-large-displacement algorithm computes sufficiently good results. It is further
explicitly necessary to employ such an algorithm at the initial stage, since no good enough

32

guess ~h0 can be assumed to be available a priori for any given image sequence. For all
following stages, the scheme derived in Chapter 4.1 is then used and the result of the
previous stage is chosen as initial condition.

Basic HS-Scheme (3.2.5)

Incremental HS-Scheme (4.1.7)
~h0

~h0

~h0

~h0

Figure 13: Pyramidal scheme in the present case

More specifically, the pyramidal scheme used in the following is based on using quadratic
images: the pixel count from one image to the next is increased by a factor of 4, the
width and height of the images in each pyramid step are powers of 2. This necessitates
not only resizing the initial image sequence but also changing its aspect ratio, which
may introduce errors. However, using a pyramid such as this greatly simplifies the
implementation.
Figure 13 essentially equates the width of one pixel at each stage with the width of

the rectangles shown. From bottom to top, the width of the images in pixels could
for instance increase like {32, 64, 128, 256, 512}. The initial image resolution should be
chosen in a way that the majority of the motion is best resolved, but is usually chosen
as 16 × 16 or 32 × 32. The last step should optimally be closest to the original image
resolution, since conversion of the flow field from the quadratic representation to that
size is favourable15 and conversion errors are minimized that way. As indicated, the
initial flow field ~h0 at each stage is taken from the previous stage, except for the basic
Horn-Schunck algorithm, where the initial flow field will again be chosen as the zero flow
(3.4.3).

4.3. Implementation

Again, all code is provided at https://github.com/schwarzflo/masters_thesis.
Relevant File: incr warping ms.py

Concerning the individual terms in (4.1.7), α and I1 are trivially available and ~̄hk is
computed like in Chapter 3.4, via scipy.ndimage.convolve().

15e.g. in order to compare with ground-truth flow

33

https://github.com/schwarzflo/masters_thesis

In order to warp the second image I2 → Ĩ2, the current flow field estimation ~hk, is
applied onto a matrix storing the intensity values of the second image,

I2(i+ uk, j + vk) = Ĩ2(i, j), (4.3.1)

i.e. with ground truth flow as input and no occlusions16 present, Ĩ2 = I1 holds. It is
necessary to introduce boundary conditions (3.4.2), since a pixel (i, j) could be warped
to the outside of the image. Due to the discrete nature of the images, any values for u, v

will be rounded down, e.g ~h(i, j) =

(
1.2
0

)

will warp the intensity value from (i + 1, j)

to (i, j), which has empirically proven to be the best choice.

The warped derivatives ~∇Ĩ2 are further computed via a simple central difference ap-
proach, in x and y direction respectively,

Ĩ2x =
Ĩ2(i+ 1, j)− Ĩ2(i− 1, j)

2
,

Ĩ2y =
Ĩ2(i, j + 1)− Ĩ2(i, j − 1)

2
.

(4.3.2)

In all definitions above, indexes i and j denote the position in the intensity matrices.
Choosing the definition of ~∇Ĩ2 such as this and not applying derivatives first and warping
subsequently, i.e. (~∇I2)(i+ u, j + v), is reasoned with better performance and warping
for almost all reviewed sequences. In general, equality between these two approaches
does not hold,

(~∇I2)(i+ u, j + v) 6= ~∇I2(i+ u, j + v). (4.3.3)

Algorithm 2 outlines the key points of the implementation:
Besides the original images of the sequence at hand and the side lengths of the resized
images in the pyramid, two separate sets of parameters have to be chosen as input:
a regularisation weight (αhs, αihs) for each of the two present schemes, as well as an
iteration count (iths, itihs) or alternatively, an error threshold. As it is later discussed,
the best choice of these parameters appears non-trivial and counter-intuitive at times.
Resizing the images is done via the function Image.resize, of Python package Pillow

[11]. Although different resampling filters may be chosen, none substantially change the
end result, therefore default cubic interpolation is used.
Between pyramid stages, a conversion takes place ~hk

prev →
~h0
next. Not only is the initial

field for the next stage set, but the resolution is increased along with the actual values
being doubled. The reason for this is that the computed numerical values naturally
depend on the resolution of the images used17. An increase in image-side-length by 2
results in a needed change of the values by that factor.

16practically impossible in real life scenes
17A motion in pixels in a 32× 32 image will be half as large as in a 64× 64 image

34

Lastly, numpy.linalg.solve employs LU-Factorisation to solve the linear system of equa-
tions.
The algorithm runtime RIHS will naturally be dominated by the last pyramid stage

(mmax ·nmax), and should increase by a factor of 4 each time. Additionally, the following
FLOPS are assigned to the various operations:

❼ Ĩ2: 1 FLOP for transitioning in the storage matrix (4.3.1), for both x and y
direction

❼
~∇Ĩ2: 2 FLOPS using (4.3.2), for both x and y direction

❼
~̄hk: 9 FLOPS using (3.2.3), for both u and v

❼ numpy.linalg.solve : 13.3 FLOPS for solving linear system of equations (4.1.2)
with LU-Factorisation of 2× 2 matrix

Therefore, in any given stage a factor of 1 ·2+2 ·2+2 ·9+13.3 = 37.3 must be employed.
Then, the following holds,

RIHS = (24
1

iths
+ 42) · iths ·minit · ninit

︸ ︷︷ ︸

Basic HS-Scheme

+37.3 · itihs · [..+
1

16
(mmax · nmax) + ·

1

4
(mmax · nmax) +mmax · nmax

︸ ︷︷ ︸

Incremental HS-Scheme

],

(4.3.4)

where itihs is similarly pulled out. The Basic HS-Scheme is executed only once at
initial resolution (minit · ninit), while the Incremental HS-Scheme is executed one time
less than kres, the number of pyramid stages, excluding exactly that initial execution.

Additionally, the sum
∑kres−1

0

(
1
4

)2
= 1+ 1

4
+ 1

16
+..may be identified, which approximates

to 4
3
, for pyramids over 3 stages tall, i.e. kres > 3. Finally, the runtime RIHS comes out

to be,

RIHS = (24
1

iths
+ 42) · iths ·minit · ninit + 49.7 · itihs ·mmax · nmax, (4.3.5)

∈ O(m2
max),

for squared images. This circumstance is verified in Fig. 14, where each measurement
is taken after completion of the indicated stage, including the first stage of basic Horn-
Schunck algorithm at 16× 16 pixels.

35

Data: images, resolutions
Data: αhs, iteration count iths/error threshold for hs
Data: αihs, iteration count itihs/error threshold for incr. hs
for resolutions do

Resize images;
if lowest resolution then

Basic HS-Algorithm (1);
end

else

Convert ~hk
prev and set to ~h0

next

while iteration count/error threshold not met do

Compute Warped Image Ĩ2;

Compute Gradients of Warped Image ~∇Ĩ2 (4.3.2);

Compute ~̄hk via scipy.ndimage.convolve18;
for width of image do

for height of image do
Solve (4.1.7) with numpy.linalg.solve;

Update ~hk;
end

end

end

end

end

Algorithm 2: Incremental Iterative Optical Flow Algorithm with Warping

Figure 14: The runtime is expectedly fitted by a ·m2, with iteration count it = 20 per
stage

18Scipy Package [38]: apply stencil (3.2.3) via convolution to compute ~̄hk

36

4.4. Justification and Relation to Non-Linear Schemes

The effectiveness of the algorithm in dealing with Large Displacements is not arbitrary
- it rather stems from close relationship with non-linear schemes, which are usually
introduced to combat the problem, i.e.,

JNL =
1

2

∫

Ω

Ψ
(

I2(~x+ ~h)− I1(~x)
)

~dh+R(~h), (4.4.1)

as energy functional based on brightness constancy. In [28] for instance, a variant of
(4.4.1) is used with Horn-Schunck regularisation term (3.1.2) and subsequent introduc-
tion into a multi-scale pyramidal scheme is investigated.
A connection of incremental schemes with warping in general and non-linear ap-

proaches was already made in [32], the following shows the relation. Starting from
the semi-implicit fixed-point scheme based on the Euler-Lagrange Equations for JNL set
up by the authors in [32]19,

Ψ′
(

‖I2(~x+ ~hk+1)− I1(~x)‖
2
)(

I2(~x+ ~hk+1)− I1(~x)
)

∇I2(~x+ ~hk) +R′(~hk+1) = 0.

Now, linearising I2(~x+~hk+1) ≈ I2(~x+~hk)+∇I2(~x+~hk)·d~hk and writing ~hk+1 = ~hk+d ~hk,

Ψ′
(

‖I2(~x+ ~hk) +∇I2(~x+ ~hk) · d~hk‖2
)

(

I2(~x+ ~hk) +∇I2(~x+ ~hk) · d~hk − I1(~x)
)

∇I2(~x+ ~hk) +R′(~hk + d~hk) = 0.

Again, the warped notation Ĩ2 = I2(~x+~hk) and ∇Ĩ2 = ∇I2(~x+~hk) is introduced, leaving
us with,

Ψ′
(

‖Ĩ2 +∇Ĩ2 · d~h
k − I1‖

2
)(

Ĩ2 +∇Ĩ2 · d~h
k − I1

)

∇Ĩ2 +R′(~hk + d~hk) = 0.

This however, just describes the Euler-Lagrange Equations for a more generalised version
of Energy Functional JW (4.1.3),

J =
1

2

∫

Ω

Ψ
(

‖Ĩ2 +∇Ĩ2 · d~h− I1‖
2
)

d~h+R(~h0 + d~h),

using initial guess ~h0 instead of previous guess ~hk and d~h instead of d~hk therefore high-
lights the connection between non-linear schemes and iterative incremental models with
warping, as well as explains the success of the latter.

19Note that R′ denotes the derivative of a functional, as opposed to Ψ′

37

4.5. Solving Large Displacements

As described in Chapter 3.7, the basic Horn and Schunck Algorithm 1 HSb as well as a
naive extension to a pyramid approach prove insufficient in dealing with the problem of
large displacements. In the following, the Iterative Incremental approach with Warping
2 HSinc is applied to such problematic image sequences, demonstrating significant im-
provement in performance.

Starting from the Brickbox sequence (Fig. 50), which was examined (Figs. 10, 37)
by the mentioned algorithms, improvements become visible already without numerical
analysis (Fig 15). Obvious errors are only present in areas where occlusion occurs, i.e.
where warping will be at least partly un-successful. These are however usually also those
areas, where optical flow may not be determined, since information is missing in the first
place. Other error prone regions include image borders, where possible disappearance
of objects or patterns leads to flow discrepancies (e.g. left edge Fig. 15, lhs).
As can be further observed in Fig. 16, rhs, some areas around the occluded parts are

affected by erroneous warping in those regions, i.e. along the right edge of the cylindrical
structure in the foreground. In order to improve the readability of Fig. 16, lhs, the
extreme points on the left edge of the scalar field were removed, since they negatively
affect visual representation of other problematic regions. However, these extreme points
will still be used for numerical evaluation, since their existence is caused by insufficient
behaviour of HSinc around image edges, rather than unsolvable occlusions.

Figure 15: The incremental Horn-Schunck approach with warping produces visually
pleasing results20: Computed Flow (lhs), Ground-Truth Flow (rhs)

20due to some erroneous extreme values the colors of the whole image plain are damped

38

Figure 16: Angular and Endpoint Error for αhs = 1, iths = 25, αihs = 10, itihs = 20

In the following, the computed flow fields by HSb and HSinc are shown for additional
sequences taken from [24], originally produced in [26] where movements contained are
always declared as large. All observed sequences may be found in the Appendix, a
more precise numerical comparison of performances in Endpoint- and Angular Errors in
reference to ground truth for these sequences are depicted in Table 1.

Figure 17: Sponza Sequence 49: Basic Horn-Schunck Algorithm (lhs), Incremental Horn-
Schunck Algorithm with Warping (rhs)

39

Figure 18: Robot Sequence 47: Basic Horn-Schunck Algorithm (lhs), Incremental Horn-
Schunck Algorithm with Warping (rhs)

Figure 19: Woodbox Sequence 48: Basic Horn-Schunck Algorithm (lhs), Incremental
Horn-Schunck Algorithm with Warping (rhs)

Notes regarding Figures 17 - 19:

❼ Figure 17: The Sponza sequence entails very smooth motion, which makes it
reasonably solvable by HSb. As the flow is ever over-pronounced along edges
and corners, general flow orientation fits for large parts of the images. Still, an
improvement is again provided by usage of HSinc - with some irregularities on
the right image-side, again due to occlusions. Nevertheless, satisfying results are
obtained.

❼ Figure 18: HSb only works in a very limited region in the background of the
images - where motion is small enough, and fails completely in the foreground and
around various structures. HSinc on the other hand produces satisfying results for
vast areas of the images, with significant errors only around the robot in the image
center, where occlusions are present and along the image edges, which again, stem
from disappearing structures of some kind.

40

❼ Figure 19: This sequence is the most demanding sequence movement-wise, to
a point where even HSinc produces insufficient results in multiple areas of the
images, e.g. around the boxes. Further, even though background movement is
minimal, the complex pattern of the bricks and subsequent intensity irregularities
tend to pose problems around the image-edges. Still, significant improvement is
made as HSb can not deal with box-movement and the background-irregularities
at all.

In all sequences, the parameters for HSb (α = 10, it = 25), and HSinc (αhs = 1, iths =
25, αihs = 10, itihs = 20) are chosen equally. Although this means they are not optimized
for each sequence, they represent an educated guess working reasonably well for all
sequences examined. Increased run times may lead to improvements by a few percentages
on both sides in any case. A starting resolution of 32 × 32 is employed for all but the
Woodbox Sequence, where 16× 16 is chosen.
Overall, depending on the sequence at hand, the decrease in average Endpoint Error

ĒE and average Angular Error ĀE ranges from around 50% down to under 25% of the
corresponding errors for HSb. Standard deviations (σEE, σAE) elicit similar behaviour,
although problematic, unsolvable regions will always exist and create significant values
in those measures even for HSinc.

Sponza Brickbox Robot Woodbox
HSb HSinc HSb HSinc HSb HSinc HSb HSinc

ĒE(px) 6.70 3.07 12.91 3.76 15.75 4.45 17.59 7.60
ĀE(rad) 0.84 0.30 1.01 0.21 1.19 0.27 1.13 0.35
σEE(px) 3.38 3.41 8.39 3.81 9.48 5.06 12.01 8.00
σAE(rad) 0.67 0.49 0.85 0.36 0.84 0.42 0.79 0.51

Table 1: Averages and Standard Deviations for Angular and Endpoint Errors

As before, regions where flow is un-computable due to lack of information21 were
excluded from numerical analysis. As previously described, the computed flow in the
highest stage is converted to the original image’s resolution. Because of this, conversion
errors may occur but are hard to estimate. If not mentioned otherwise, 512×512 defines
the last pyramid stage.

Moving away from Large Displacements, the algorithm also fares better in scenes like
Hydrangea (Fig. 41). This proposes that in scenes with many intensity irregularities
but little disappearing structures, HSinc has the upper hand on HSb, even without the
main argument of Large Displacements in play. However, in other scenes with similar
motion distances, which are already handled very well by HSb, e.g. Whale (Fig. 42),
application of an iterative incremental approach with warping should not be expected
to improve the result significantly or even at all. Here, subtle errors in warping along
edges and corners almost outweigh the gain that can be made in comparison to HSb.

21white areas in ground truth flow

41

Processing another image sequence of similar kind, Dimetrodon (Fig. 43), it becomes
obvious that it is of tremendous importance to properly choose the starting resolution
in HSinc, as will further be explained in Chapter 4.7. While HSb does resolve the
optical flow in the sequence reasonably well, it is easily outperformed by HSinc choosing
starting resolutions of 64 × 64 or higher. This makes sense, since in sequences of small
displacement the basic Horn-Schunck algorithm in the first pyramid stage resolves the
image well even at high resolution. A starting resolution at 256 × 256 gives the best
initial flow field ~h0 for the subsequent warping scheme at 512 × 512 and produces the
best results.
Table 2 depicts the performance of four non-large displacement sequences, including

those already mentioned for the two algorithms in discussion.

Hydrangea Whale Dimetrodon V enus
HSb HS∗

inc HSb HS∗∗
inc HSb HS∗∗

inc HSb HS∗
inc

ĒE(px) 3.29 1.57 0.61 0.52 1.76 0.62 3.56 2.9
ĀE(rad) 0.82 0.22 0.26 0.27 0.62 0.17 0.94 0.44
σEE(px) 1.48 1.36 0.64 0.46 0.86 0.45 2.00 3.36
σAE(rad) 0.71 0.18 0.46 0.41 0.65 0.14 0.78 0.61

Table 2: Averages and Standard Deviations for Angular and Endpoint Errors
Starting resolutions:
∗32× 32
∗∗256× 256

Even though parameters were not optimized particularly well in each algorithm, the
general take-away is that HSinc can certainly improve performance in comparison to
HSb for non-large displacement sequences. The extent of the improvement is however
highly dependant on the image sequence at hand and the starting resolution chosen for
HSinc.

4.6. Contrast Invariance

As described in [20], contrast dependence in context of optical flow calculation may
negatively affect results and wrongfully favour certain motion over other. However,
contrast invariance may be recovered via dividing the data term in the energy functional
such as (3.1.1) through a term ω,

Jω[~h] =

∫

Ω

(
~∇I · ~h+ It

ω

)2

+R(~h),

ω =
√

‖∇̄I‖2 + ǫ2, ∇̄I =





Ix
Iy
It



 , ǫ > 0.

(4.6.1)

42

In fact, the contrast dependence may be observed when considering famous Sequence
Hamburg Taxi 39, the result of applying Algorithm 1 on it shown in Fig. 40, left. While
the movement of the white car in the center is modelled well, the same can not be said
about the black car on the bottom left, even though roughly the same displacement field
is applied to it.
However, the introduction of ω in the described form into the iterative scheme does not

amplify the under-represented motion of low contrast objects significantly, and rather
increases the noise in the result as seen in Fig. 40, right.

Interestingly, contrast dependence is not as much of a factor when using Algorithm
2, even though the basic Horn-Schunck algorithm, which fails to capture the dark vehi-
cle at the bottom in Fig. 40, is employed in the first pyramid stage at 32 × 32 pixels.
In fact, since the movement of the dark car appears even larger than that of the white,
it is rightfully displayed that way. Fig. 20 shows the satisfying representation of the
actual flow22, although the tree in the foreground on the right makes warping ineffective
in that area which reduces performance.
Again, introducing weight 1

ω
into the energy functional (4.1.3) leads to,

JWω[~dh] =

∫

Ω

(

Ĩ2 + ~∇Ĩ2 · ~dh− I1
ω

)2

+ α2‖∇(~h0 + ~dh)‖2F , (4.6.2)

and further into a system of equations,

(

ω2α2I − ~∇Ĩ2~∇Ĩ2
T
)

︸ ︷︷ ︸

A

~hk+1

︸︷︷︸

~x

=
[

Ĩ2 − ~∇Ĩ2 ~hk − I1

]

~∇Ĩ2 − ω2α2~̄hk

︸ ︷︷ ︸

~b

. (4.6.3)

Here again, ω simply scales the regularisation term itself based on the position in the
image, as defined in (4.6.1).
Figure 20 (right) displays the weighted version (4.6.2) incoorporated into Algorithm

(2), HSinc,ω. Again, the overall impression is noisier, velocities seem to be amplified
uniformly across the image plain and an improvement in performance may not be judged
visually. Numerically, the case is not entirely clear: Table 3 shows how for some large-
displacement sequences an improvement in multiple measures is noticeable, while for
others, there is not. In any case, the change in results is restricted to less than about
5%.

22ground truth not available

43

Figure 20: Hamburg Taxi Sequence: un-weighted (left), weighted (right)

Sponza Brickbox Robot Woodbox
HSinc HSinc,ω HSinc HSinc,ω HSinc HSinc,ω HSinc HSinc,ω

ĒE(px) 3.07 2.91 3.76 3.99 4.45 4.11 7.60 8.08
ĀE(rad) 0.30 0.29 0.21 0.19 0.27 0.26 0.35 0.42
σEE(px) 3.41 2.82 3.81 3.71 5.06 4.51 8.00 7.97
σAE(rad) 0.49 0.48 0.36 0.29 0.42 0.44 0.51 0.58

Table 3: Averages and Standard Deviations for Angular and Endpoint Errors

4.7. Warping and its Limitations

The performance of the warping scheme (4.3.1) expectedly improves with higher reso-

lution at which point the input flow field ~hk is already a very good approximation of
the ground truth flow and the resolution is close to that of the original image sequence.
Figure 21 depicts warped images23 at a resolution of 128× 128, at the first and the 20th

iteration at that stage, as well as the same for resolution 512×512. As suggested before,
the area of occlusion at the robot’s head poses a major problem. However, most areas of
the image resemble the original image (comp. Sequence 47) very well after 20 iterations
on 512× 512, even though large motion certainly occurs there.

23in greyscale

44

Figure 21: Robot Sequence 47: The warped image approximates the first frame of the
Sequence increasingly well with more iterations and higher resolution

As previously mentioned, during computation of the optical flow for the Woodbox
Sequence, a starting resolution of 16 × 16 is used. The reason for this is that the large
motion of the boxes is not sufficiently captured by the basic Horn-Schunck algorithm in
the first stage when using 32× 32. In fact, Figure 22 shows how the final warping (20th

iteration) at resolution 512× 512 changes for different initial resolutions.

45

Figure 22: Woodbox Sequence 48, final warping: starting resolution from top left to
bottom right: 16× 16, 32× 32, 64× 64, 128× 128

Throughout the pyramid stages, an insufficient initial flow field can never be corrected,
and rather worsens the situation in the erroneous regions. Note that the areas where the
warped image is still slightly flawed with starting resolution 16× 16, e.g. top and right
edge and around the boxes, are those areas where the computed flow appears faulty in
Fig. 19, rhs.

Clearly, an object’s translation of significantly more than one time its own width may
generally not be tackled using HSinc. Figure 23 shows how at a resolution, where all
area moving in unison is represented by one pixel, movement distance is more than one
pixel to the right. This subsequently leads to sub optimally performing HSb at the first
pyramid stage. At higher resolutions, there are even more pixels between the objects, at
even lower resolutions, the whole motion might already be represented by a single pixel.

46

Figure 23: Optimal resolution leaves a pixel in between circle positions in first image
(filled) and second image (outline)

Still, an interesting case of Large Displacements is that of a single object translating
about once its own width, in front of a steady background, the same phenomenon as
already discussed in Chapter 4.5.
A simple motion such as this (Seq. 38), uncovers a possible flaw in the warping

technique at first sight: the ground-truth flow or a reasonably good guess for it would
not properly warp the second image onto the first. Instead, the warped image appears
like in Figure 24, essentially doubling the moving object. Note that the same would
not be the case, if the input flow was uniform over the whole image plain, which given
the input image sequence is also a possibility due to the lack of information about the
background.

Figure 24: Warping initially fails to work for large motion over steady background for
input flow already close to the ground-truth

Interestingly however, with increased iteration count the computed flow at the position
of the circle in image B slowly drains the faulty circle in the warped image, until the
warped image in fact closely resembles image A, as depicted in Figure 26. More precisely,
the computed flow at each iteration improves the warped image and vice versa, until a
satisfying end result is achieved. Therefore, this doubling of objects in images is not an
issue, and should resolve itself24.
Still, this kind of motion remains the biggest challenge in the context of large dis-

placements alongside occlusions. As can be seen from the example of Seq. 46, both
the basketball and the right person’s arms undergo large displacement, they translate a
little less than once their own width, in front of a steady background. The computed

24for more information, see Chapter 5

47

flow (Fig. 46, rhs), while a significant improvement over the basic Horn-Schunck ap-
proach HSb, is ultimately not completely satisfactory. Especially the warping (Fig. 46,
lhs) of the basketball in front of a background featuring intensity irregularities proves
insufficient.

Figure 25: After 1 iteration (lhs), after 500 iterations (rhs)

Figure 26: Warped Image at various iteration counts, top left to bottom right: 10, 25,
75, 150, 300, 500

48

Figure 27: Basketball Sequence 46: Computed Flow Field25(lhs), Warped Image at 20th

iteration and highest resolution (rhs)

25incorrect flow computation on the right upper edge due to occlusions

49

4.8. Parameter Influence and Convergence Behaviour

As previously discussed, two sets of parameters need to be chosen at the start of Algo-
rithm 2: regularisation weight αhs and iteration count iths for the first pyramid stage
where the basic Horn-Schunck algorithm is employed, and αihs and itihs, for the rest of
the pyramid stages. The former pair of parameters is chosen on the same basis as in
Chapter 3.5, for most test runs specifically, αhs = 1 and iths = 25. In any case, the flow
of the resized image sequence in the first stage should be estimated as well as possible
and large motion should be captured.
At a fixed iteration count of itihs = 20 per stage, the error measures in dependence of

αihs behave like depicted in Fig. 28 for the Brickbox and the Robot Sequence: similar
convex behaviour as for the basic Horn-Schunck algorithm (Fig. 8, top) is observed.

Figure 28: Error Statistics for different αihs at fixed iteration:
top: Brickbox Sequence; bottom: Robot Sequence

The choice of itihs in each pyramid stage proves to be more difficult, since while
increasing iterations at a given stage should theoretically improve the result, it may also
amplify the effects of erroneous warping in some areas of the images. For instance, Fig.

50

29, top depicts how the average endpoint error in fact increases, albeit only slightly,
for more iterations due to poor warping at stage 128 × 128 for the Robot Sequence. At
the same time, major improvements in the other error metrics occur within the first 10
iterations. Because of that, and in order to avoid negative effects to take over, iteration
counts should be kept low at early pyramid stages and may be increased e.g. in the
ultimate stage, where warping is already believed to have solved large parts of the image
sequence. This is again underlined by Fig. 29, top, which shows that error metrics
for stage 512× 512 uniformly and smoothly improve for increased iteration count, with
the exception of standard deviation of the endpoint error, due to faulty extreme values
arising as already seen in Fig. 19, rhs.

Figure 29: Robot Sequence, left-to-right: Standard Deviation EE (px), Standard Devia-
tion AE (rad), Average EE (px), Average AE (rad); top: 128× 128; bottom:
512× 512

Further examining the change of the computed flow field in each iteration in the
same manner as in Fig. 8 (middle), initially gives the impression of non-convergent
and rather oscillatory behaviour (Fig. 30). However, this stagnation of the relative
error (3.5.1) particularly for low resolutions comes about due to flow vectors in occluded
regions seemingly arbitrarily changing direction and length each iteration because of

51

erroneous warping behaviour (Fig. 31). This fact should be expected and can be used
to gauge when to halt iteration at a certain pyramid stage, without having to compute
error measures, since it indicates the flow field outside the problematic regions remains
largely unchanged.

Figure 30: Robot Sequence: Convergence Behaviour for different pyramid stages

Figure 31: Robot Sequence: flow field unpredictably changes direction and magnitude in
problematic regions

52

5. Conclusion

The basic Horn and Schunck algorithm as it was proposed in 1981 does give reasonable
approximations for different sequences (e.g. Seq. 42), as long as no major complica-
tions are introduced. It is however particularly shown, that Large Displacements are
absolutely unsolvable for this basic scheme and as expected even naive introduction into
pyramid schemes does not improve the matter significantly. Certainly, usage of Gaussian
filters may be employed to improve results, although that is highly dependant on the
image sequence at hand and may also lead to adverse effects due to information loss.
Otherwise, a fine-tuning of the regularisation weight α is always in-order, even though
depending on the images, a trade-off might have to be struck in regards to different error
measures. From a computational standpoint the run times of the algorithm are generally
relatively short even for image sequences of high resolution, while the implementation
remains rather simple.

Employing an iterative incremental scheme with warping in the context of Large Dis-
placements is reasoned with its theoretical equivalence with non-linear approaches. The
scheme derived works on the basis of an initial good enough guess in order for the warp-
ing to work reasonably well. Indeed, significant improvement may be observed for all
considered scenes in which Large Displacements occur. Average errors only 1

4
as large

as those for the basic Horn and Schunck algorithm are achieved. The algorithm natu-
rally still struggles when dealing with occlusions. Of course, sequences featuring Large
Displacements are also more likely to feature significant areas which are being occluded
in one of the two images processed, which leads to its own problems. In all observed
sequences, performance is the poorest in these areas. As discussed, the immediate sur-
rounding of an occluded area will also be affected by erroneous warping and therefore
actively influences the result26.
For sequences which do not feature large motion, the case is not entirely clear - and

is very dependant on the individual image sequence. While performance for a sequence
like Seq. 41 improves drastically, apparently due to improved handling of intensity
irregularities in the center of the plant, the same can not be said for an unproblematic
sequence like Seq. 42. Images which are dealt with well already are not guaranteed
to further improve using this more complicated scheme, where warping may introduce
more problems than it solves.
An issue which circumvents straight-forward use of this algorithm is that of parameter

choice. Although αhs and αihs may be chosen in the same vein as with the basic Horn-
Schunck algorithm, i.e. there is a minimum where optimal performance is achieved,
the iteration count is difficult to get right at times. In some cases, less iterations may
approximate the optical flow better around tricky areas as errors may only be enhanced
subsequently. Generally, iterating less in early pyramid stages and more in late stages
is deemed favourable, although iteration stop is best estimated by observing the conver-

26occluded areas themselves are not evaluated

53

gence behaviour from one iteration to the next. At some point, areas in which warping
fails will still continuously change while the rest of the flow field remains largely un-
changed. Then, convergence halts and constant change in the relative error from one
iteration to the next is observed. Further, choice of the initial resolution at the first
pyramid stage is vital and dependent on the size of the motion present in the image
sequence. The larger the motion, the less likely it is that it will be resolved by the basic
Horn-Schunck algorithm at a given resolution, the antidote for which is reducing the
resolution further.
Interestingly, contrast dependence does not seem to be a major problem for this al-

gorithm. When observing a scene where dominant motion is caused by low and high
contrast objects moving, motion appears to be captured very well. This may be reasoned
with decreasing resolution acting in a similar way to Gaussian Blur, which may aid in
decreasing the effect high contrast has in a sequence, since it washes out and creates
a more uniform intensity field. Introducing the weight from [20] as done for the basic
Horn-Schunck algorithm, again does not influence the result significantly and rather in-
troduces noise. Numerical comparison between using the weight and not doing so, is
also not making a clear cut case for either version.
Lastly, the interesting situation of Large Displacement for an object in front of a

steady background gives rise to the question as to why warping even works in the first
place. Indeed, in the first iteration the warped image does not at all resemble the initial
image, but rather appears as a fusion of both images. Naturally, the produced flow
field will not be correct and appear like in Fig. 25, lhs, reminiscent of how HSb dealt
with such a problem (Chapter 3.7). Repeatedly applying the scheme and updating the
warping however slowly solves this issue and the produced flow (Fig. 25, rhs) certainly
may be correct. Since no background information is present however, the correct flow
may as well be a uniform movement to the right across all the image plain. What can
be said nevertheless, is that a theoretical ground truth where only the circle itself is
moving may never be obtained, rather some kind of washed-out version of it. Therefore,
a limitation of warping schemes is observed.

A multitude of techniques lend themselves to being introduced into the proposed algo-
rithm, altering data as well as regularisation term, to further improve its performance.
This includes aforementioned TV-approaches [9] or additionally employing image gradi-
ent constancy [32] in order to deal with illumination changes, as well as spatio-temporal
regularisation, where flow is also assumed to change smoothly over time. The mentioned
Gaussian Filtering was not employed for Algorithm 2, but is expected to similarly en-
hance quality of the result in certain scenes. Avoiding to use only resolutions of powers
of 2 and therefore having to change aspect ratio of the input image, should reduce errors
at increased implementation complexity. Additionally, implementing (scene specific)
a-priori knowledge about e.g. occluded areas in a sequence has its own benefits.

54

Finally, in order to test the performance of the suggested Algorithm 2 in the tough-
est environment, as well as compare27 it to state-of-the art algorithms, the MPI Sintel
Database [39] is consulted. As per the official website, the dataset includes problematic
features like Large Motion, Specular Reflections, Motion Blur, Defocus Blur and Atmo-
spheric Effects. Although the algorithm at hand is not designed to deal with most of
these complications, an insight in what optical flow computation can currently already
deal with is warranted. Figure 32, 33 depict the ground truth flow of sequence Ambush 3
and Market 3 from the database as well one of the best approximations, achieved by
the previously mentioned RAFT [36] and the results obtained via algorithm (2).
As expected, performance of the incremental iterative scheme with warping can not

come close to ground-truth for a complex sequence such as Ambush 3, with improvement
for an easier sequence in Market 3. Specifically, the former sequence features plenty of
large motion, occlusions and motion blur, which creates an insurmountable task for
Algorithm 2. Again, this underlines the fact that machine-learning based methods far
outscore a variational approach at this point, even for Large Displacements which the
latter was specifically designed to deal with.

Figure 32: Ambush 3 Sequence [39]: frame 1 (left-top), ground-truth (right-top), com-
puted flow algorithm (2)(left-bottom), computed flow RAFT (right-bottom)

27only visually, as numerical ground-truth is not available for evaluation sets

55

Figure 33: Market 3 Sequence [39]: frame 1 (left-top), ground-truth (right-top), com-
puted flow algorithm (2)(left-bottom), computed flow RAFT (right-bottom)

56

A. Additional Figures

Figure 34: Colorwheel as it is also used in [3]

Figure 35: Visual Comparison of Computed Flow (left) vs. Ground Truth (right): while
the rotational part (inside the plant) is modelled well, the algorithm struggles
along the edges, where optical flow is changing rapidly

57

Figure 36: A multi-scale Horn Schunck Algorithm fares only slightly better for large
Displacements: Computed Flow (lhs), Ground-Truth Flow (rhs)

Figure 37: Angular and Endpoint Error for α = 10; 10 iterations per stage; 5 stages

58

Figure 38: Circle Sequence

Figure 39: Hamburg Taxi Sequence [30]

Figure 40: Taxi Sequence: unweighted (left), weighted (right) and ǫ = 0.01

59

B. Middlebury Sequences [3, 4]

Figure 41: Hydrangea Sequence

Figure 42: Whale Sequence

Figure 43: Dimetrodon Sequence

60

Figure 44: Venus Sequence

Figure 45: Backyard Sequence

Figure 46: Basketball Sequence

61

C. UCL Sequences [24, 26]

Figure 47: Robot Sequence

Figure 48: Woodbox Sequence

62

Figure 49: Sponza Sequence

Figure 50: Brickbox Sequence

63

D. Abstract

English Version

The topic of Optical Flow Determination is an important one in the field of Computer
Vision and deals with the accurate numerical computation of apparent object motion in
a sequence of images. In this Master’s Thesis, challenges, various different approaches
and recent advancements are discussed with the focus initially being laid on the pro-
totypical algorithm of Horn and Schunck dating back to 1981 [19]. It famously makes
use of a so-called variational approach, based on minimization of an energy functional
including a regularization term, on which many algorithms developed thereafter have
built on. The framework of said algorithm is thoroughly analysed and discussed, includ-
ing its drawbacks compared to related schemes. An effort is made to firstly implement
the basic algorithm in Python [37] as well as improvements to it, using finite-difference
methods.
In the second part, a pyramidal or multi-scale approach (see e.g. [28]) is investigated

and implemented, which also includes modification to the original Horn-Schunck energy
functional, by searching for a change of the flow field d~h instead of the whole flow
field ~h in each iteration. The result is a so-called warping approach which aims to
deal with the common problem of Large Displacements (LD) (see e.g. [7]) in Optical
Flow Computation, where many basic approaches fail. An argument is made for such
an approach to be equivalent in nature to LD-Algorithms that make use of non-linear
data terms in energy functionals, which was already hinted at by Papenberg et al. in
[32]. Results of the implemented algorithms are shown and compared to one another,
advantages and short-comings of such a warping scheme are high-lighted.

64

German Version

Die Thematik der Bestimmung des Optischen Flusses ist von großer Wichtigkeit im Feld
der maschinellen Bildverarbeitung und beschäftigt sich mit der akkuraten numerischen
Berechnung von scheinbarer Objektbewegung in Bildsequenzen. In dieser Masterarbeit
werden die Probleme, verschiedene Ansätze und kürzliche Weiterentwicklungen disku-
tiert, sowie der Fokus zunächst auf den prototypischen Algorithmus von Horn und
Schunck aus dem Jahr 1981 gelegt [19]. Dieser verwendet bekanntermaßen einen so-
genannten Variationsansatz, basierend auf Minimierung eines Energie-Funktionals mit
zusätzlichem Regularisierungsausdruck, auf welchem verschiedenste darauffolgende Al-
gorithmen aufgebaut sind. Das Horn-Schunck Konzept wird gründlich analysiert und
diskutiert, sowie dessen Nachteile gegenüber ähnlichen Ansätzen hervorgestrichen. Hi-
erzu wird der Grund-Algorithmus sowie Verbesserungen dieses in Python [37] unter
Verwendung der Methode finiter Differenzen implementiert.
Im zweiten Teil der Arbeit wird ein Pyramidenansatz (siehe z.B. [28]) implemen-

tiert, welcher eine Modifikation des ursprünglichen Horn-Schunck Funktionals beinhal-
tet, in dem in jeder Iteration lediglich nach einer Änderung des Flussfeldes d~h statt
dem gesamten optischen Fluss ~h gesucht wird. Das Resultat hiervon ist ein sogenan-
nter Warping-Ansatz, welcher in Theorie mit dem bekannten Problem der Large Dis-
placements (LD) (siehe z.B. [7]) besser umgehen kann. Es wird argumentiert, dass ein
solcher Ansatz mit anderen LD-Algorithmen gleichgesetzt werden kann, die nicht-lineare
Datenterme im Energie-Funktional verwenden, wie bereits in [32] von Papenberg et
al. angedeutet. Resultate der implementierten Algorithmen werden grafisch dargestellt
und miteinander verglichen, Vor- und Nachteile eines solchen Warping-Ansatzes her-
vorgestrichen.

65

Bibliography

[1] Luis Alvarez, Joachim Weickert, and Javier Sánchez. “Reliable estimation of dense
optical flow fields with large displacements”. In: International Journal of Computer
Vision 39.1 (2000), pp. 41–56.

[2] Padmanabhan Anandan. “A computational framework and an algorithm for the
measurement of visual motion”. In: International Journal of Computer Vision 2.3
(1989), pp. 283–310.

[3] Simon Baker et al. “A database and evaluation methodology for optical flow”. In:
International journal of computer vision 92.1 (2011), pp. 1–31.

[4] Simon Baker et al. vision.middlebury.edu. Middlebury College. 2011. url: https:
//vision.middlebury.edu/flow/.

[5] Marcelo Bertalmio et al. “Image inpainting”. In: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques. 2000, pp. 417–424.

[6] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools
(2000).

[7] Thomas Brox, Christoph Bregler, and Jitendra Malik. “Large displacement optical
flow”. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE. 2009, pp. 41–48.

[8] Andrés Bruhn, Joachim Weickert, and Christoph Schnörr. “Lucas/Kanade meets
Horn/Schunck: Combining local and global optic flow methods”. In: International
journal of computer vision 61.3 (2005), pp. 211–231.

[9] Martin Burger, Hendrik Dirks, and Lena Frerking. “On optical flow models for
variational motion estimation”. In: Variational Methods In Imaging and Geometric
Control, M. Bergounioux, G. Peyré, C. Schnörr, J.-P. Caillau, and T. Haberkorn,
eds 18 (2017), pp. 225–251.

[10] John Canny. “A computational approach to edge detection”. In: IEEE Transac-
tions on pattern analysis and machine intelligence 6 (1986), pp. 679–698.

[11] Alex Clark. Pillow (PIL Fork) Documentation. 2015. url: https://buildmedia.
readthedocs.org/media/pdf/pillow/latest/pillow.pdf.

[12] R Courant and D Hilbert. “Methods of mathematical physics”. In: Volume 1
(1954), p. 184.

[13] Alexey Dosovitskiy et al. “Flownet: Learning optical flow with convolutional net-
works”. In: Proceedings of the IEEE international conference on computer vision.
2015, pp. 2758–2766.

[14] Claude L Fennema and William B Thompson. “Velocity determination in scenes
containing several moving objects”. In: Computer graphics and image processing
9.4 (1979), pp. 301–315.

66

https://vision.middlebury.edu/flow/
https://vision.middlebury.edu/flow/
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf

[15] Denis Fortun, Patrick Bouthemy, and Charles Kervrann. “Optical flow modeling
and computation: A survey”. In: Computer Vision and Image Understanding 134
(2015), pp. 1–21.

[16] C-S Fuh and Petros Maragos. “Region-based optical flow estimation”. In: 1989
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
IEEE Computer Society. 1989, pp. 130–131.

[17] Stephen Gould, Tianshi Gao, and Daphne Koller. “Region-based segmentation
and object detection”. In: Advances in neural information processing systems 22
(2009).

[18] Chris Harris, Mike Stephens, et al. “A combined corner and edge detector”. In:
Alvey vision conference. Vol. 15. 50. Citeseer. 1988, pp. 10–5244.

[19] Berthold KP Horn and Brian G Schunck. “Determining optical flow”. In: Artificial
intelligence 17.1-3 (1981), pp. 185–203.

[20] José A Iglesias and Clemens Kirisits. “Convective regularization for optical flow”.
In: Variational Methods in Imaging and Geometric Control (2015), pp. 184–201.

[21] Louis Le Tarnec et al. “A Proof of Convergence of the Horn–Schunck Optical
Flow Algorithm in Arbitrary Dimension”. In: SIAM journal on imaging sciences
7.1 (2014), pp. 277–293.

[22] JO Limb and JA Murphy. “Estimating the velocity of moving images in television
signals”. In: Computer graphics and image processing 4.4 (1975), pp. 311–327.

[23] Tony Lindeberg. “Feature detection with automatic scale selection”. In: Interna-
tional journal of computer vision 30.2 (1998), pp. 79–116.

[24] University College London. “UCL Ground Truth Optical Flow Dataset v1.2”. In:
(2022). http://visual.cs.ucl.ac.uk/pubs/flowConfidence/supp/.

[25] Bruce D Lucas, Takeo Kanade, et al. “An iterative image registration technique
with an application to stereo vision”. In: Vancouver. 1981.

[26] Oisin Mac Aodha, Gabriel J Brostow, and Marc Pollefeys. “Segmenting video into
classes of algorithm-suitability”. In: 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. IEEE. 2010, pp. 1054–1061.

[27] Michael Maire et al. “Using contours to detect and localize junctions in natural
images”. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE. 2008, pp. 1–8.

[28] Enric Meinhardt-Llopis and Javier Sánchez. “Horn-schunck optical flow with a
multi-scale strategy”. In: Image Processing on line (2012).

[29] Hans-Hellmut Nagel. “On the estimation of optical flow: Relations between dif-
ferent approaches and some new results”. In: Artificial intelligence 33.3 (1987),
pp. 299–324.

[30] Hans-Hellmut Nagel. “Universität Karlsruhe, Fakultät für Informatik”. In: Image
Sequence Server: Taxi (). http://i21www.ira.uka.de/.

67

[31] Shree Nayar. Lucas-Kanade Method — Optical Flow. First Principles of Computer
Vision. 2021. url: https://www.youtube.com/watch?v=6wMoHgpVUn8&t.

[32] Nils Papenberg et al. “Highly accurate optic flow computation with theoretically
justified warping”. In: International Journal of Computer Vision 67.2 (2006),
pp. 141–158.

[33] Krishnan Ramnath et al. “Increasing the density of active appearance models”.
In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE.
2008, pp. 1–8.

[34] Daniel Scharstein and Richard Szeliski. “High-accuracy stereo depth maps using
structured light”. In: 2003 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, 2003. Proceedings. Vol. 1. IEEE. 2003, pp. I–I.

[35] Christoph Schnörr. “Determining optical flow for irregular domains by minimizing
quadratic functionals of a certain class”. In: International Journal of Computer
Vision 6.1 (1991), pp. 25–38.

[36] Zachary Teed and Jia Deng. “Raft: Recurrent all-pairs field transforms for optical
flow”. In: European conference on computer vision. Springer. 2020, pp. 402–419.

[37] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts Valley,
CA: CreateSpace, 2009. isbn: 1441412697.

[38] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-
019-0686-2.

[39] Andreas Wedel et al. “An improved algorithm for tv-l 1 optical flow”. In: Statistical
and geometrical approaches to visual motion analysis. Springer, 2009, pp. 23–45.

[40] Mark Wibrow. TikZ Aperture Problem. StackExchange. 2014. url: https://tex.
stackexchange.com/questions/198491/tikz-aperture-problem.

[41] Josh Wills, Sameer Agarwal, and Serge Belongie. “A feature-based approach for
dense segmentation and estimation of large disparity motion”. In: International
Journal of Computer Vision 68.2 (2006), pp. 125–143.

[42] Eberhard Zeidler. “Nonlinear Functional Analysis and Its Applications II/A: Lin-
ear Monotone Operators”. In: Springer Science & Business Media, 2013, p. 69.

68

https://www.youtube.com/watch?v=6wMoHgpVUn8&t
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://tex.stackexchange.com/questions/198491/tikz-aperture-problem
https://tex.stackexchange.com/questions/198491/tikz-aperture-problem

	Introduction
	Forms of Representation
	Evaluation
	Optical Flow and Brightness Constancy
	Complications in Optical Flow Computation
	Relevant Mathematical Principles

	Approaches for solving Optical Flow: an Overview
	Horn and Schunck
	Lucas and Kanade
	Region-based
	Feature-based
	Machine-learning-based

	Horn-Schunck-Optical-Flow in detail
	Setting up the Horn-Schunck Energy functional
	Solving the Euler-Lagrange-Equations
	Well-posedness and Convergence
	Implementation
	Influence of and the Iteration Count
	Influence of Gaussian Blur
	The Problem of Large Displacements

	Improving on Horn and Schunck via a Warping Technique
	Deriving the Scheme
	Pyramidal Approach
	Implementation
	Justification and Relation to Non-Linear Schemes
	Solving Large Displacements
	Contrast Invariance
	Warping and its Limitations
	Parameter Influence and Convergence Behaviour

	Conclusion
	Additional Figures
	Middlebury Sequences baker2011database, middleburyOnline
	UCL Sequences ucldatabase, mac2010segmenting
	Abstract
	Bibliography

