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Introduction 
Structuralism in the philosophy of mathematics is a family of views tied together by the con-

viction that mathematics is the study of structure. For example, the natural numbers constitute 

the natural number structure, ℕ. The immediate promise of structuralism is that it ignores non-

relevant properties, and captures the relevant ones. A relevant property of the natural number 

2 is that it is the second natural number, so that 1 precedes it, and 3 follows. This means that 

positions of a structure have no ‘inner nature’, and that they are determined by their relation-

ships to the structure to which they belong.  

Structuralist ideas have notably been defended by Paul Benacerraf (1965), Geoffrey 

Hellman (1989, 2001), Stewart Shapiro (1997, 2000, 2011), Michael Resnik (1982, 1997) and 

Charles Parsons (1990, 2008). Structuralism comes in various guises with diametrically differ-

ent views on ontology, spanning from fervent anti-realism to platonist realism (see Reck & 

Price 2000). While Hellman argues for a version of structuralism called eliminative, Parsons, 

Resnik, and Shapiro defend non-eliminative structuralism. Eliminative structuralism rejects the 

objective existence of abstract structures and their objects. Non-eliminative structuralism is, on 

the other hand, a realist position. The abstract structures are believed to exist objectively and 

independently of humans, and they also exist before any realisation of the structure by a par-

ticular system. For the non-eliminative structuralist, the ontological commitments to mathe-

matical structures are thus not far removed from that of platonism. My research is placed firmly 

within non-eliminative structuralism, and the questions of ontology and epistemology that are 

raised in this thesis are decidedly spurred on by its realist ontology.1 

This thesis approaches fundamental questions for structuralism from different angles. I 

clarify particular questions and difficulties and defend structuralism against a number of criti-

cisms, thereby contributing to develop the position further. By doing a cumulative dissertation, 

I target specific issues that are more narrowly delineated. As my overall aim is to show that 

structuralism is a viable position, I can address particular hinders that question that viability. 

First of all, I can cast my net wider and concentrate on issues that are not in immediate disci-

plinary proximity, e.g., I can switch from ontological to epistemological hinders. Second, by 

having a more narrowly delineated scope for each individual article, I do not lose specificity in 

my work. My project of defending the viability of structuralism thus remains general in char-

acter, while each paper tackles particular issues in need of address. 

 
1 From now on, unless explicitly stated, all reference to ‘structuralism’ will be to non-eliminative structuralism. 
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An overarching theme of the dissertation is that each article concerns the legitimacy 

and sustainability of structuralism as a philosophical position. Whether structuralism is overall 

defensible turns on whether the justification offered up for it is all-purpose, i.e., it methodically 

accounts for the broad view, and whether it can also alleviate particular objections, i.e., serving 

as a buffer against specific attacks. For instance, if we are concerned with explaining our epis-

temic access to structures, but the arguments for their existence are severely lacking, the broad 

defence for structuralism suffers. I therefore argue that whatever field in which a problem oc-

curs, be it epistemology, metaontology, or ontology, the proposed solution – and the justifica-

tion for it – should not only address the specific problem, but also serve as raising the general 

likelihood of the position as a whole. In order to see how each individual paper adds to the 

overall defence for structuralism, I need to broach the contents and conclusions of each paper.  

The dissertation consists of four chapters. Each chapter can be read as an autonomous 

text, as they will be free-standing articles intended for submission to relevant philosophical 

journals. Still, they are cumulative, so that each article builds upon the previous ones. They are 

all systematic in character, addressing issues relevant for the contemporary structuralist discus-

sion. Articles 1, 3, and 4 have elements that draw on history of philosophy, as I believe they 

offer valuable insight for the contemporary discussion. While Article 1 looks to the historical 

background of metaontology in order to differentiate between two modern approaches, Article 

3 uses an older account (Gödel 1944, 1964) as an example. Article 4 looks to a Husserlian 

relation of ontological dependence, but applies it to our present case in an original way. 

 Articles 1 and 2 are sister papers, where the second clearly builds upon the first. Article 

1 examines the relationship between metaontology and ontology in the philosophy of mathe-

matics. It clarifies what role metaontology can serve in formulating mathematical ontology, 

and how we can view it as rectifying a position’s theoretical insufficiency. The first article is 

not specifically on structuralism, but argues that a mathematical realist should adopt a metaon-

tology that puts mathematical ontology first. Arguments for mathematical realism have often 

been entangled with arguments for empirical science (see Putnam 1979). I argue that an appro-

priate metaontology disentangles itself from empirical science, as the relationship between phi-

losophy, empirical science, and mathematics needs clarification, so that there is a ‘division of 

labour’ (see Husserl 2001a).  

Article 2 takes as its starting point the conclusion that mathematical realism in ontology 

generally benefits from implementing an appropriate metaontology. In the context of structur-

alism, coherentist ideas have been defended (see Shapiro 1997). The second article develops 

metaontological coherentism, and investigates its relation to – and fit with – structuralist 
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ontology. To this end, I look to coherence theories in analytic epistemology, as the notion of 

‘coherence’ is unclear. The upshot is that coherentist structuralism better accounts for when we 

allow structures to exist, as it offers a framework in which existence claims can be expressed 

in terms of coherence.  

Article 3 answers the question of when an epistemological account is deemed adequate 

with regard to the so-called access problem. I argue that we should differentiate between two 

approaches. Each approach has implicit metaepistemological leanings, which accounts for mis-

communication in the epistemological debate generally, and within structuralism specifically. 

One approach takes an extra-mathematical stance on justification, while the other allows for 

the use of mathematical knowledge, the access to which we are out to explain. I argue for the 

latter, rejecting the prudence of pursuing a foundationalist account from an extra-mathematical 

starting point. We should rather explain our access from within, i.e., not denying our mathe-

matical knowledge while trying to explain our access to it.  

Article 4 takes on ontological dependence relations for structuralism. I argue we should 

look to a Husserlian relation of dependence – foundation – as it allows for infinite chains of 

dependence that cycle. Such a non-linear account of dependence fits with how mathematical 

objects are thought to be incomplete and dependent on the structure to which they belong. As 

they are also thought to depend on the other objects belonging to the same structure, a cyclical 

picture of how dependence relations hold among them, captures these structuralist intuitions. 

Article 4 thus advocates a non-linear account of dependence. 

 From these brief descriptions of each individual article’s line of argument, we see a 

recurring theme. The topics of coherence and non-linearity run through Articles 2, 3, and 4. 

Coherence describes a quality of interconnectedness, consistency, and systematic unity (see 

Bender 1989). A more thorough discussion of the notion is to be found in Article 2. As for non-

linearity, it can be applied to various disciplinary areas. The quality of being non-linear, in the 

case of epistemology, is strongly connected to the rejection of epistemological foundationalism 

(Article 3) (see Williams 2001). In the case of general metaphysics, it is connected to the re-

jection of metaphysical foundationalism (Article 4) (see Thompson 2018). As for metaontology 

of mathematics, it can be put in contrast to a neo-Fregean metaontology (consider Linnebo’s 

asymmetrical abstractionism (2018)) (Article 2). Articles 2, 3, and 4 are thus thematically 

linked, not by their disciplinary proximity, as they range from metaontology to epistemology 

to dependence, but rather by what they invoke in order to make their case. Non-linearity and 

coherence are properties that describe a certain way of looking at a delimited field. That these 
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qualities play an integral role in Articles 2, 3, and 4 – both in content and methodology – is 

apparent from the discrete conclusions of each article.  

Moreover, there is also a thematic link between Articles 1 and 3, as they both argue for 

the need to implement meta-perspectives; metaontology for mathematical realism (Article 1), 

and the fruitfulness of classifying two approaches exhibiting metaepistemological leanings 

(Article 3). Article 1 clearly lays the ground for Article 2, which contains more direct contri-

butions to the development of structuralism. Article 3, though it is not followed up in the same 

way (i.e., by a direct contribution to structuralist epistemology), adds to the overall framework, 

thus also providing some ground for the other articles. This is perhaps most clear when it comes 

to Articles 1 and 3’s mutual use of the Carnapian distinction between internal and external 

questions (see Carnap 1950).  

The chosen perspectives in this thesis are spurred on by identifying certain gaps in the 

structuralist literature. Metaontology for mathematics, still being a recent field, is developed 

so that a proper metaontology for structuralism, i.e., coherentism, is implemented (Articles 1-

2). To overcome miscommunication in the literature on structuralist epistemology, a classifi-

cation of two approaches clarifies the issue (Article 3). The final perspective argues for a his-

torically inspired dependence relation, but, importantly, a relation that we also find to be pre-

sent in structuralist epistemology, and, moreover, that fits with a coherentist picture of the met-

aphysical structure of reality (Article 4). These perspectives add to the overall justification for 

structuralism – as they converge thematically and methodologically – thus constituting a co-

herent and systematic defence, progressing the viability of structuralism.  

  

 

List of manuscripts and their status 

All articles are single-authored, in the English language, and will be submitted for publishing 

in international peer-reviewed journals. 

 

 

à Article 1: “Metaontology for Mathematical Realism” 

o Not yet submitted. 
 

à Article 2: “Coherentist Structuralism: Structures as Thin Objects”  

o Not yet submitted. 
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à Article 3: “Two Approaches to the Access Problem” 

o Not yet submitted. 
 

à Article 4: “Ontological Dependence in Mathematical Structuralism” 

o Submitted for publishing – European Journal of Philosophy of Science,  

(28.02.2022). 
 
 

Abstracts of papers 

Article 1: “Metaontology for Mathematical Realism” 

Questions of existence and ontological commitment are central to philosophy of mathematics. 

No matter which philosophical theory we ascribe to, there are mathematical objects we are 

ontologically committed to and not. While the Quinean question of what there is tends to be 

directly addressed within a philosophical view, there are also considerations as to how to go 

about such ontological questions. Metaontology, as introduced by Peter Van Inwagen (1998), 

targets exactly these considerations.  

This first paper investigates the relationship between ontology and metaontology, and 

argues that metaontology can be construed as a methodology for – and qualification of – on-

tology. By construing metaontology as methodology, we can look at how we come to be onto-

logically committed to certain entities. It becomes a way of addressing theoretical underpin-

nings and philosophical assumptions that are otherwise only implicit in an ontology, but still 

shape our ontological views. In a way, we provide a vetting process, i.e., a framework in which 

we can trace how we ended up being committed to the existence of some entities and not to 

others. By construing metaontology as qualification, we consider metaontology as serving an 

ordering function. This would arguably result in our ontological views becoming more uniform. 

That is, by adopting a metaontology, we get some criteria for what entities to accept into our 

ontology. By adhering to these, we effectively put certain limiting conditions in place for what 

our theory should look like, thereby providing our ontology with a certain lawfulness.  

 While metaontology as a discipline was rather recently coined, its roots continue to be 

of interest to the contemporary discussion. The historical background can be traced to the 

Quine-Carnap debate, and their introduction of key notions such as ‘ontological commitment’ 

and ‘linguistic frameworks’. The Quine-Carnap debate centres on the legitimacy of doing on-

tology, and whether it yields genuine knowledge. Moreover, it questions what it means to be 

ontologically committed to abstract entities, e.g., mathematical objects, and how we should go 

about justifying such commitment. We generally want to come up with a philosophical 
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narrative in which mathematics has a subject-matter that is objective, and where we can use 

mathematics in our best empirical sciences without making mathematical knowledge subser-

vient to them.  

From the Quine-Carnap debate, we can draw a distinction between an inflationary and 

a deflationary attitude towards metaontology. This has to do with the relationship between 

ontology and science, where an inflationary attitude sees metaphysics as continuous with sci-

ence, thus modelling ontology on science. A deflationary attitude puts mathematics first, and 

rather emphasises the limitations of ontological results. I argue that existence questions regard-

ing mathematical ontology should be disentangled from their prospective applicability in em-

pirical science, and that we should take a more modest approach towards our potential onto-

logical insights. Rather, we should enlist metaontology as a way to provide a philosophical 

theory with the tools to qualify and specify the objects to which it is ontologically committed. 

As the burden of proof is on the mathematical realist rather than the nominalist, she should 

adopt such a qualifying tool, allowing her to streamline her ontological views. 

 

Article 2: “Coherentist Structuralism: Structures as Thin Objects” 

There is a metaontological view that has gotten recent traction within a realist setting, namely 

that of metaontological minimalism, defended by Øystein Linnebo (2018). It is not so that meta-

ontological minimalism supports a minimal ontology, on the contrary, generous ontological 

views are very much compatible with this metaontological stance. It is rather the criteria for 

one’s ontological commitments that are minimal. This allows for what Linnebo calls thin ob-

jects, where the idea is that an object is considered thin if it does not make substantial demands 

on the world. While a pure mathematical object is thin in an absolute sense (viz., sets, numbers, 

etc.), there are objects that are thin only in a relative sense, as well. An example is the set of 

two trees, where the set does not make any further substantial demands on the world, other 

than that of the spatio-temporal make-up of the trees in question.  

 While Linnebo pursues a Fregean abstractionist approach to metaontological minimal-

ism and thin objects, there is also that of the coherentist. Coherentism is the view that given 

the coherence of a mathematical theory, the existence of the objects described by the theory in 

question is ensured. Coherentist approaches have roots in Hilbert’s views, but have more re-

cently been defended by Shapiro (1997). Coherentism is minimalist insofar that what is needed 

for an object to exist is very little. The existence of the intended object depends on the coher-

ence of the theory that describes it, i.e., if the theory is coherent, all the objects described by it 

exist. As such, coherentism constitutes another approach to thin objects. The existence of 
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objects resulting from this coherence is thin because, as Linnebo phrases it, their existence does 

not put any further metaphysical demands on the world, other than that of the theory providing 

their description (and thereby their existence).  

In this second article I pursue a position I will call coherentist structuralism. It is a 

combination view that unites: i) a position’s ontological commitments, and ii) metaontological 

considerations. The metaontological component consists of coherentist minimalism, while the 

ontological commitments are those of non-eliminative structuralism. The aim is to show that 

these are compatible with each other, and will reciprocally inform and clarify the other position. 

I argue that the structuralist benefits from a combination view with metaontological ambitions. 

The central claim of structuralism – that abstract structures exist – is given added justification, 

as the metaontological framework qualifies the ontological commitments made.  

Crucial to Shapiro’s structuralism, is the existence axiom for structures and their posi-

tions, viz., the Coherence Principle: “Coherence: If F is a coherent formula in a second-order 

language, then there is a structure that satisfies F” (1997:95). Shapiro uses the coherence of a 

formula to assert that there exists a structure that satisfies the formula in question. This is 

clearly a position that commits itself to the existence of abstract structures by way of coherence. 

And while Shapiro uses the Coherence Principle as an existence criterion, he stops short of 

developing a larger metaontological framework. Moreover, what the notion ‘coherence’ really 

means, remains unclear. As Shapiro concedes: “The problem, of course, is that it is far from 

clear what ‘coherent’ comes to here”, and also: “Coherence is not a rigorously defined mathe-

matical notion, and there is no noncircular way to characterize it” (Shapiro 1997:95, 13).  

The notion of coherence thus remains woolly. This opens up the possibility of looking 

somewhere else than to philosophy of mathematics. Coherence finds its most developed form 

in theories of justification. Coherence theories of justification in analytic epistemology 

provides a distinction between systemic and relational coherence, in order to characterise how 

the system’s internal arrangement, and how the system as a whole, provides justification in 

different ways (see Bender (1989)). This distinction finds a correspondence in mathematical 

structuralism, where there is an ontological dependence relationship between a structure and 

the objects making up that structure. Epistemological theories of coherence are worth looking 

into, as the notion of coherence for metaontological coherentism needs clarification. If the 

distinction between systemic and relational coherence can inform our metaontological 

coherentist framework, developing coherentist structuralism holds some promise, as we might 

advance our understanding of how we think of structures and their objects, and what it takes 

for them to exist.   
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Article 3: “Two Approaches to the Access Problem” 

Benacerraf’s paper “Mathematical Truth” (1973) formulated the so-called access problem, an 

epistemological challenge faced by positions in philosophy of mathematics that endorse a re-

alist ontology of mathematical objects. Given that we have mathematical knowledge, it be-

comes a problem to explain how mathematical propositions are reliably justified and knowable 

to us. Many attempts have been made to overcome this apparently fatal objection, but it remains 

one of the more dire obstacles for the contemporary mathematical realist.  

To sort the different attempts made, I employ Audrey Yap’s (2009) distinction between 

external and internal answers to the access problem. An external answer to the access problem 

is characterised by accepting the challenge as posed. This means that the gulf between physical 

and mathematical reality must be bridged, and that some means – capable of both breaching 

the causal limits of physical reality and probing into mathematical reality – must be endorsed. 

An internal answer does not need the gap between physical and mathematical reality to be 

filled in a metaphysically loaded way. Rather, we can explain our epistemic access using math-

ematical knowledge, thus providing an answer “in terms of mathematical adequacy” (Yap 

2009:169). While the internal/external distinction describes different answers to the access 

problem, it does not sufficiently capture what is going on. For that, the distinction is too narrow, 

as it only indicates parts of a broader methodology in accounting for our epistemic access.  

In this third paper I argue that the two kinds of answer lead to two distinct approaches, 

which I want to call the Head On Approach and the Tweaking the Question Approach. While 

the kind of answer we favour is reflected in the approach we pursue, each approach has other 

characteristics that determine what an appropriate epistemological story for mathematics 

should look like. As the two approaches diverge on the issue of adequacy in the face of the 

access problem, this frames the eligible positions sorted to each approach, and leads not only 

to different, but incompatible stories of how we acquire mathematical knowledge. This reveals 

that the two approaches have different metaepistemological tenets (i.e., fundamental aspects of 

epistemic theorising regarding implicit aims and standards), and that their respective accepted 

methodologies diverge in important ways. A consequence of this is miscommunication be-

tween the two camps, as the epistemological story of each approach violates implicit demands 

for what counts as adequate in the other.  

To this end, I bring forth two example positions that have dealt with the access problem 

in paradigmatic ways. By looking at specific accounts, it becomes easier to draw out the meth-

odological considerations of each approach. The Head On Approach involves the postulation 

of a special faculty that has a transcending quality. The postulation of this special faculty has 
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often been made in the guise of mathematical intuition; a faculty described by analogy to sense 

perception. My example account of the Head On Approach is one of the more famous (and 

divisive) accounts of mathematical intuition, that of Kurt Gödel (1947, 1964). The second ex-

ample account is Stewart Shapiro’s stratified epistemology (1997, 2011), which does not in-

volve a special faculty, and allows for mathematical means in pursuing an epistemological 

story of how we come to have mathematical knowledge. These two accounts serve to instantiate 

the characteristics prescribed by each approach.  

This paper thus operates with different theoretic levels: we have the internal/external 

distinction, the two representative positions, and, most importantly, the two approaches mani-

festing different metaepistemological stances when confronted with the access problem. My 

aim in this paper is twofold: 1) to show how the kinds of answer that Yap presents – leading to 

the two corresponding approaches – deal with the epistemological challenge, and 2) to show 

that the Tweaking the Question Approach is superior to the Head On Approach and therefore 

should be pursued.  

The classification of two approaches with different standards for adequacy allows us to 

understand the incommensurability tendencies present in realist responses to the access prob-

lem. The discussion of the two example positions makes this tendency clear; as the accounts 

are criticised on different grounds. While Shapiro is criticised for his way of answering the 

access problem, i.e., his chosen approach, Gödel is criticised for his proposed solution. We see 

this tendency also within the epistemological debate on structuralism. The objections raised by 

Fraser MacBride (2008) against Shapiro (1997) centres on how Shapiro fails to properly ad-

dress the access problem. And in Shapiro’s reply to MacBride (2011), it becomes evident that 

Shapiro considers MacBride to misconstrue his intentions, and setting the bar too high for when 

an epistemological account is deemed acceptable.  

 

Article 4: “Ontological Dependence in Mathematical Structuralism” 

Ontological dependence relations determine how objects and domains of objects depend on 

each other. While such relations are of continued importance to contemporary metaphysics, it 

is also an issue across local fields of philosophy, such as philosophy of mathematics. Mathe-

matical objects can ontologically depend on other mathematical objects or domains of such. 

Ontological dependence relations are especially salient to the debate on mathematical structur-

alism, which is the view that mathematical objects have no ‘inner nature’, and that a mathe-

matical object is what it is due to its mathematical context, i.e., the mathematical structure in 

which it appears. This means that the natural number 2 simply is the second place in the natural 
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number structure, and so depends on the elements belonging to the same structure (the other 

natural numbers) and on the structure as a whole (the natural number structure, ℕ). This is why 

objects are deemed to be incomplete on a structuralist account (see Parsons 1980:149-150, 

1990:334-5; Linnebo 2008:62-66). Linnebo calls this the Incompleteness Claim (2008:62-63). 

Linnebo further formulates the twofold Dependence Claim, consisting of two tenets, for some 

domain D of some mathematical structure:    

 

ODO. Each object in D depends on every other object in D.  
ODS. Each mathematical object depends on the structure to which it belongs. (2008:67-8) 

 

The idea of the Dependence Claim is to cash out one of the characteristic features of structur-

alism; that mathematical objects are defined by their relationships to other mathematical ob-

jects belonging to the same structure. Mathematical objects fully depend on their context, i.e., 

their places within a certain structure. By being determined by its relational standing to other 

objects, a mathematical object is what it is at the mercy of those relationships. This is how the 

incompleteness of mathematical objects is thoroughly interlinked with their dependence. 

While there is general consensus that there are ontological dependence relations within 

structuralism, there have been surprisingly few attempts to characterise the relation itself. No-

table exceptions are Linnebo (2008) and Wigglesworth (2018). To further the work on the 

nature of ontological dependence in structuralism, other options should also be considered. One 

of the early discussions of ontological dependence is Edmund Husserl’s discussion of parts 

and wholes and the relation of foundation that holds between them. This discussion makes up 

the third Logical Investigation and tries to render (more) clear how a part and whole have 

varying degrees of dependence and independence. Interestingly, Husserl shows in his philoso-

phy of mathematics clear structuralist tendencies, especially in the Logical Investigations and 

Formal and Transcendental Logic where he discusses formal manifolds (see Centrone 2010; 

Hartimo 2021). According to Hartimo, Husserl fulfils both the Incompleteness Claim and the 

Dependence Claim (2021:162). This makes for the interesting case of considering the ontolog-

ical dependence relation of foundation as a possible candidate for structuralism. 

This fourth article argues that the relation of foundation has some natural affinity with 

the dependence relations relevant for non-eliminative structuralism. The immediate promise of 

the relation is that it allows for a more fine-grained analysis, due to its unifying character and 

its reference to essence: “One sees at once how such differences determine essential divisions 

of the whole” and how “every content [in the range of the whole] is foundationally connected, 

whether directly or indirectly, with every content” (2001b:34). The third Investigation is 
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difficult to pin down, and an accurate analysis of foundation is equally challenging to come by. 

The relation does make certain distinctions, e.g., between mediate and immediate foundation 

(to capture a difference in transitivity) and, to follow Kit Fine’s terminology, between generic 

and objectual foundation (Fine 1995b:465). While generic foundation is a relation between 

species A and B, objectual foundation is between individual objects either of the same species 

or of two different species. Sometimes, Husserl seemingly transitions from a generic relation 

to an objectual one, without making it clear, which complicates an accurate analysis (Fine 

1995b:465). However, this distinction makes the relation of foundation even more relevant to 

our structuralist case, as there is a strong parallel between ODO and objectual foundation. ODS 

would then concern a relation of foundation between a species A and the object a of species A. 

Moreover, we also have the distinction between reciprocal and one-sided foundation, thus al-

lowing for symmetrical relations of dependence. As the relation permits transitive and sym-

metrical relations of foundation, in the context of mathematical structuralism and ODO, we 

end up with chains of infinite founding relations. Foundation thus permits for cyclical relations 

of dependence. As we have chains of dependence relations that cycle, a linear structure of 

dependence is abandoned. The upshot for non-eliminative structuralism is twofold. First, it 

would account for the constitutive nature of a structure and its elements. Second, it would clari-

fy the reciprocal dependence relation between the elements belonging to the same structure, 

and between a structure as a whole and the elements belonging to it. This suggests that the 

property of non-linearity generally meshes well with structuralism. Structuralism has clear anti-

foundationalist (i.e., linear) tendencies both in epistemology and metaontology,2 preferring a 

holistic approach that emphasises coherence. That the choice of an ontological dependence 

relation should fit with this general metaphysical picture, gives added incentive to pursue this 

non-linear account of ontological dependence.  
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Metaontology for Mathematical Realism* 
 

Abstract: 
This paper is on metaontology for mathematics. This means that the questions of 
ontology are those of numbers, sets, lines, and groups. The aim of the paper is 
twofold: 1) to show that doing metaontology and ontology of mathematics is gen-
erally worthwhile, and can provide genuine philosophical insight, and 2) that im-
plementing an appropriate metaontology facilitates justifying mathematical realism 
as a viable position. If these claims are successfully defended, metaontological per-
spectives are shown to be welcome and fruitful additions to the endeavours of nu-
ancing and furthering the debate on mathematical ontology. 

 

1. Introduction 

Existence questions take many forms. First, there are the questions of which entities exist and 

what their natures are. Second, one can question what the notion ‘existence’ means, whether 

there is such a thing as an existence predicate that all existing entities share, or discuss whether 

existence and reality are layered, so that an entity could have a degree of existence considered 

to be more real than another. While the former existence questions – the which’s and the what’s 

– are covered by ontology, i.e., the study of being and existence, the latter questions are rather 

part of metaontology. Metaontology concerns the nature and methodology of ontology, and it 

has seen increasing interest after the publication of Peter Van Inwagen’s paper “Meta-

Ontology” (1998), thus introducing a new field to the analytic philosophical stage. Since Van 

Inwagen (1998), metaontology has continued to raise scientific interest, with contemporary 

debates mainly focusing on two sets of questions: 1) the legitimacy of doing ontology – 

especially ontological realism – and 2) the philosophical depth and promise of ontology as such 

(Eklund 2013:229). In addition to these sets of questions, metaontological endeavours and 

positions – however diverging – have in common that they share an interest in the historical 

background of their field. While metaontological questions have implicitly formed part of 

ontology long before it became its own field of study, the historical background that draws the 

most attention is centred on the debate between W. V. O. Quine and Rudolf Carnap, each 

representing competing metaontological stands.1 By now, metaontology has been a hot topic 

 
* This project has received funding from the European Research Council (ERC) under the European Union's 
Horizon 2020 research and innovation program (grant agreement No. 715222). I would like to thank Günther 
Eder, Eduardo Giovannini, Henning Heller, Julie Lauvsland, and Georg Schiemer for helpful comments. 
1 For some recent discussions, see Alspector-Kelly (2001), Putnam (2004), Eklund (2006, 2009, 2013), Chalmers 
(2009), Soames (2009), Thomasson (2009, 2014), Blatti & Lapointe (2016), Turner (2016).  
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for a couple of decades, and it has branched into several narrower subcategories. The present 

paper is on metaontology for mathematics, so that the which’s and the what’s at stake – i.e., the 

questions of ontology – are those of numbers, sets, lines, and groups. The overarching aim of 

the paper is twofold, reflecting the two sets of questions mentioned above: 1) to show that 

doing metaontology and ontology of mathematics is generally worthwhile, and can provide 

genuine philosophical insight, and 2) that implementing an appropriate metaontology 

facilitates justifying mathematical realism as a viable position. If these claims are successfully 

defended, metaontological perspectives are shown to be welcome and fruitful additions to the 

endeavours of nuancing and furthering the debate on mathematical ontology.  

In the next section, I will make some observations with regard to the general backdrop 

of the ontology for mathematics, and give a few reasons as to why ontological realism is 

attractive in the first place. In section 3, I go into the historical background for metaontology 

with the Quine-Carnap debate. In section 4, I look at the general relationship between ontology 

and metaontology, and how we can construe it as methodology (in section 4.1) and as 

qualification (in section 4.2), before looking at the genealogical relationship of ontology and 

metaontology (in section 4.3). Section 5 is on metaontology for mathematics in particular, 

where I apply the insights drawn from the previous general discussion. Two metaontological 

positions are presented, one inflationary and the other deflationary, both of which can be traced 

back to the Quine-Carnap debate. As such they can (to some extent) be categorised as either 

broadly neo-Quinean (inflationary) or neo-Carnapian (deflationary). Lastly, I argue that if one 

is a mathematical realist, one should adopt the deflationary metaontological attitude.  

 

2. Mathematical ontology 

One of the key questions in philosophy of mathematics is what mathematical objects are. Are 

they independent abstracta, fictional perhaps, or maybe they are referents of singular terms? 

The answers are diverse. Attendant to – and inseparable from – these issues, is the question of 

whether mathematical objects exist in the first place. A rough divide presents itself: realism or 

anti-realism in ontology. Realism in ontology comprise positions where mathematical objects 

exist independently of the human mind, while anti-realist positions deny such existence.2 There 

 
2 There is also the difference between realism in truth-value and realism in ontology, where one can supposedly 
be a realist in truth-value and not in ontology (see Shapiro 2000). If one takes mathematical propositions at ‘face 
value’, the terms appearing in mathematical propositions are taken to refer, without defending a realm of 
mathematical objects as such. In a way, this allows for an ontologically more lightweight (albeit also more 
ambiguous) position without minimising how we take the content of mathematical propositions to hold real sway 
and purport to refer to objects belonging to some ‘real’ domain. For now, I operate with the bigger (and 
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is, of course, some element of degree in the answers to this question. One can, for example, 

think that the existence of mathematical objects depends on other facts, or try to circumvent 

the question by denouncing purported reference to, or quantification over a domain of, 

mathematical objects as a mere façon à parler.3 However, some basic divide stands: If a 

position neither hails to a full-fledged recognition nor a repudiation of the existence of 

mathematical objects, but rather to a position placed among the degrees in between, some initial 

or naïve divide still remains. And this is our point of departure. 

If one falls down on the realist side, the concept ‘existence’ poses trouble in itself. Or 

rather, we seem to falter as soon as existence concerns non-ordinary objects, by which I mean 

non-spatio-temporal objects. When we speak of non-ordinary objects, like mathematical ones, 

it suddenly becomes more difficult to defend a realist position. Suppose mathematical objects 

exist. Do they exist on a par with my favourite mug? Or with the earth? The difficulty these 

questions bring forth is linked to how we think of truth and facts. Their existence, in turn, forms 

an important part of our justification for the truth of those states of affairs.4 From the fact that 

I am currently sitting here at my desk, we conclude that I, as a particular person, exist. 

Moreover, we implicitly accept that the words used, such as ‘person’, ‘chair’ or ‘sitting’, are 

meaningful and intersubjectively understood. Generally, we are happy to accept such 

inferences. However, we do so with a strong restriction in mind; namely, that these acceptances 

of inference apply only to ‘ordinary objects’. When we do not talk of ordinary objects, but 

rather of mathematical objects, the previous inference becomes problematic.  

It is tempting to extend the same generosity towards mathematical states of affairs as to 

spatio-temporal states of affairs, so that similar inferences can be made. From some 

mathematical proposition accepted as true, we would – in similar fashion – conclude that the 

words used i) are meaningful, and ii) refer to objects, relations, or properties that exist. And 

while the former is not particularly controversial, the latter certainly is.5 If we do postulate that 

 
metaphysically more heavyweight) chasm; realism and anti-realism in ontology, where the sole criterion is 
whether mathematical objects – whatever that may mean – exist or not. 
3 The first is an example of modal structuralism, where the existence of abstract structures depends on their 
realisation by a particular system. Geoffrey Hellman (1989) is a proponent of this view. It is important to note 
that Hellman wants to defend nominalism in his proposed structuralist account, and means to eliminate structures 
altogether, i.e., he is firmly placed within the anti-realist camp. 
4 There are, of course, genuine problems related to these sorts of inferences and judgments about the tangible 
world as well. There are always questions concerning our ‘conceptual carving of reality’ and whether the concepts 
used to designate certain objects, events, or phenomena capture, so to speak, the domain over which they theorise. 
These domains could be empirical sciences or fields of philosophy like philosophy of science, philosophy of art, 
or metaethics.  
5 That is not to say that mathematicians and philosophers of mathematics consistently have had the same view on 
what these meanings are – or whether they have meaning or content at all – on the contrary, this is one of the core 
tenets of philosophy of mathematics. But, I do make the much milder claim that there is general consensus that 
mathematical language and linguistic practices in mathematics are meaningful, and not nonsense. Interestingly, 
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the mathematical objects we purportedly quantify over exist, and that the relations holding 

between them describe certain states of affairs, we are suddenly faced with the issue of having 

posited the existence of a vast, infinite domain of objects.  

What lies at the core of the queasiness felt when confronted by such a picture? In a way, 

the answer is simple: Our lack of hard-hitting evidence, that is, empirical evidence. The endless 

possibilities we have of producing true mathematical propositions conveying some state of 

affairs comprise such vastness, that our lack of any “real” evidence for their existence is 

troubling. However, such real evidence, if charged by the accusation that we lack it, is not 

possible to come by in the ‘ordinary’ sense. We will not be confronted by the spatio-temporal 

presence of a mathematical object, nor will we absent-mindedly walk into a mathematical 

proposition and thus be forced to acknowledge its existence (consider a lamp post for 

comparison).  

Our evidence for the truth of mathematical propositions and for the coherence of this 

field of knowledge is of a different kind, namely largely conceptual. This is why we cannot 

fully ease the nagging uncertainty that is seemingly always present: Why are we justified in 

positing the existence of any abstract mathematical objects, when we do not have empirical 

evidence for such existence?6 How can we justifiably posit the existence of something we have 

never been in any substantial contact with, but only have vague intuitions of? These 

considerations serve as the backdrop of this paper, against which our theorising will be put in 

sharper relief.  

 

2.1 Ontological realism in mathematics 

Now that the problems pertaining to the existence of abstract mathematical objects have be-

come somewhat clearer, this section offers some incentive for why one should still choose to 

embrace ontological realism. Various arguments have been given for accepting mathematical 

realism, I will only mention three: (i) Conforming with general usage and naïve understanding, 

(ii) the Indispensability of mathematics to the empirical sciences, and (iii) the Principle of epis-

temological parity. 

 

 

 
Edmund Husserl treats exactly the topic of ‘Unsinn’ (nonsense) in relation to formal logic and the necessity for 
linguistic rules in order to prevent occurrences of nonsense (see Husserl (1969), (2001a:§15)). 
6 This is the point of departure in James Schwartz’ (2015) paper on Stewart Shapiro’s ante rem structuralism. 
There, Schwartz not only denounces Shapiro’s evidence for not being independently compelling, but argues that 
the evidence offered by Shapiro actually works more in favour of Hellman’s nominalist account. 
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(i) Conforming with general usage and naïve understanding 

First of all, ontological realism conforms with some naïve conception of what mathematics is 

about. If one steps into some pre-philosophical way of thinking, one would arguably come to 

think that mathematics is about something, i.e., it is not devoid of content or meaning. Penelope 

Maddy (1990) argues exactly this, but also goes further: She says it conforms with how math-

ematicians speak and act when doing mathematics. Let us say that a mathematician has found 

a new proof for some theorem, perhaps simplifying it in some elegant and time-saving way. 

The point has already been somewhat indicated: One says that she has found a new proof for 

the theorem. Implicit in this linguistic practice is a general feeling of discovery, and in ‘discov-

ery’ it is embedded that the thing discovered already had some existence before it was discov-

ered. Coming-into-existence does not, usually, coincide with the discovery, given that we are 

still operating with a naïve and pre-philosophical understanding of these matters.7  

 

(ii) Indispensability of mathematics to the empirical sciences 

It is clear that mathematics is necessary for the practice and development of empirical science. 

From this uncontroversial fact springs an argument for ontological realism, commonly known 

as the Quine-Putnam indispensability argument. For our best empirical theories, reference to 

(or quantification over) mathematical entities is indispensable, and so we ought to accept the 

existence of mathematical entities. The argument surfaces in many of Quine’s writings and is 

discussed at length in Hilary Putnam’s (1979), thus becoming known as the Quine-Putnam 

argument. 

 
[Q]uantification over mathematical entities is indispensable for science, both formal and 
physical; therefore we should accept such quantification; but this commits us to accepting 
the existence of the mathematical entities in question. This type of argument stems, of 
course, from Quine, who has for years stressed both the indispensability of quantification 
over mathematical entities and the intellectual dishonesty of denying the existence of 
what one daily presupposes. (Putnam 1979:347) 

 

The applicability of mathematics to the empirical sciences is thus linked to our acceptance of 

the existence of the mathematical entities. The argument allows us to appeal to the success of 

our best scientific theories, and perhaps more importantly, to our reliance on them. As we do 

not want to own up to any “intellectual dishonesty”, we draw the metaphysical conclusion 

necessary to keep our empirical sciences afloat. Ontological commitment to abstract 

 
7 If one steps away from this pre-philosophical perspective and allows for an example mathematician to have deep 
philosophical leanings, say, towards constructivism, and also be heavily occupied with the foundational debate, 
then, of course, it would be a different matter. 
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mathematical entities is not the worst of fates. Perhaps then, from a strictly empirical point of 

view, we are justified in relaxing the standards for existence, and not let the abstractness of 

them gnaw at us too much. In the end, it is a question of weighing the advantages and disad-

vantages. On the one hand, we are left with well-functioning empirical sciences at the price of 

ontological commitment to abstract mathematical entities, and on the other, we have the em-

pirical sciences but without full access to the entirety of the mathematical toolbox, which must 

mean that the sciences eventually will suffer. The Quine-Putnam argument is very successful 

at inducing concessions and allowing for something to be the case in spite of previously held 

beliefs or scruples. And it does make sense; one feels the threat of being labelled “intellectually 

dishonest” as rather swaying, which is why it is one of the stronger arguments for accepting 

ontological realism and has been defended by many.8 

 

(iii) Principle of epistemological parity (van Atten & Kennedy 2003) 

There is another argument for ontological realism that also takes indispensability and success 

into the equation. But instead of appealing to the success of the empirical sciences, this argu-

ment appeals to the success of mathematics itself. It approaches the topic from epistemology 

and the success of our mathematical knowledge. Roughly, it goes as follows: On the basis of 

what we know, i.e., our mathematical knowledge, there is no reason to believe that mathemat-

ical objects do not exist. Hence, mathematical entities exist. To bring this out more clearly, let 

us consider a passage from Kurt Gödel’s “Russell’s Mathematical Logic”.  

 
It seems to me that the assumption of such objects [classes and concepts] is quite as 
legitimate as the assumption of physical bodies and there is quite as much reason to be-
lieve in their existence. They are in the same sense necessary to obtain a satisfactory 
system of mathematics as physical bodies are necessary for a satisfactory theory of our 
sense perceptions and in both cases it is impossible to interpret the propositions one 
wants to assert about these entities as propositions about the “data”, i.e., in the latter case 
the actually occurring sense perceptions. (Gödel 1944:128, my emphasis) 

 

Gödel argues by analogy: If we believe in the existence of the entities referred to in our empir-

ical theories, so should we believe in the existence of the entities referred to in our mathematical 

theories. He also draws on indispensability; the existence of mathematical entities is deemed 

as necessary for our mathematical theories as physical bodies are for our physical theories. By 

putting the blocks of knowledge on equal footing, we should accept the existence of mathe-

matical entities due to our acceptance of physical bodies. Mark van Atten and Juliette Kennedy 

call this line of argument the principle of epistemological parity, and argue that it was a 

 
8 See for example Maddy (1990, 1992), Resnik (1995, 1997), Colyvan (2001). 
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regulative principle in Gödel’s thought (van Atten & Kennedy 2003:434). Kennedy argues that 

if we think of “physical objects on the one hand and abstract or mathematical objects on the 

other, from the point of view of what we know about them, there is no reason to be more (or 

less) committed to the existence of one than the other” (Kennedy 2014:6). The principle of 

epistemological parity argues for the existence of mathematical entities by drawing on the se-

curity and success of mathematical knowledge as a whole, and not in terms of mathematics’ 

applicability to the empirical sciences.  

The principle of epistemological parity shares another characteristic with the indispen-

sability argument. Whereas the Quine-Putnam argument plays on our fear of losing full access 

to our best empirical sciences, the principle of epistemological parity plays on our fear of scep-

ticism and the general erosion of the security of knowledge. This has to do with the status and 

place of mathematical knowledge as compared to other fields. If compared to other sciences, 

mathematical facts or truths are often deemed extra secure instances of knowledge. A true 

mathematical proposition is less exposed to revision than, for instance, facts based on fallible 

empirical observation. There are more ways in which an experiment, measurement, or obser-

vation can be tainted, imprecise, or misinterpreted, than for a proof or a theorem to be thusly 

challenged. If a theorem turns out to be false, it is not due to imprecision when measuring or 

failure of technical equipment. This is not to say that mathematical propositions – that were 

previously accepted as true – cannot be false; I am merely stating that there is added room and 

opportunity to make mistakes in the empirical sciences.  

Now, if you compare mathematical knowledge to moral knowledge – which there is, in 

fact, quite a tradition of doing – ethicists sometimes appeal to the security of mathematical 

knowledge when defending the existence of moral facts.9 If mathematical knowledge can enjoy 

the security of its knowledge – while being about abstract entities – perhaps moral realism can 

argue by analogy? The defences and rejections of this line of argument are many, but my point 

here remains valid: Mathematical knowledge is privileged as fields of knowledge go. The two 

arguments both play on something we would prefer not to entertain. With the Quine-Putnam 

indispensability argument, we contemplate the possibility of banning the use of mathematical 

knowledge in our best empirical sciences. With the principle of epistemological parity, we 

question mathematical knowledge by somehow considering it lesser than empirical 

knowledge, when we generally do not believe this to be the case. These are both argumentative 

moves that appeal to our fears of the prospect of diminishing our general bulk of knowledge.  

 

 
9 See Putnam (2004), Clarke-Doane (2014). 
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3. Historical background: Quine-Carnap debate 

As mentioned above, the central historical background for the contemporary metaontological 

discussion is due to a debate between Quine and Carnap, particularly Quine’s “On What There 

Is” (1948) and “Two Dogmas of Empiricism” (1951), and Carnap’s “Empiricism, Semantics, 

and Ontology” (1950). The received view is that Quine emerged victorious, putting the 

analytic/synthetic distinction to bed, and reclaiming ontology as respectable and deserving of 

philosophical study. Hilary Putnam (2004) and David Chalmers (2009) both trace the 

development and rise of ontology as ‘respectable’ back to Quine’s (1948) paper “On What 

There Is”. Matti Eklund follows suit, declaring that the standard story of how ontological 

pursuits, and especially, ontological realism, again became respectable, is due to Quine (Eklund 

2013:230). Also, Marc Alspector-Kelly sees it as the Quinean success of making ontological 

realism not fall prey to the so-called “disdain for the metaphysical”, and to ensure that 

metaphysics “has a legitimate place within a generally naturalistic framework” (2001:93). It 

seems, then, to be some general consensus that the Quine-Carnap debate ended with the 

redemption of ontology, and that in the decades since – within the analytic tradition – ontology 

has reaped the benefits. Before we go into the consequences of this declared Quinean victory, 

let us focus on the central elements of the debate that will be relevant for our purposes. 

 First of all, following Jason Turner (2016), we can observe several points of agreement.  

They both believe being to be univocal; that is, there is no conceptual difference between 

existing and being, which means that if there is an entity, it equally exists. Moreover, there are 

no different ways of being or existing, and there is no use in contemplating the different ways 

something can exist. Pertaining to these points is viewing ontology as being “flat” (Schaffer 

2009:354). This is a somewhat reductionist or simplifying view: Ontology is about figuring out 

which entities exist, and “once the list is done, ontological inquiry is done” (2016:6). Beyond 

their agreement on a “flat” interpretation of existing/being, there is, according to Scott Soames 

(2009), a further likening between the two. Quine and Carnap share the overarching goal of 

reforming metaphysics, considering it to be subsumed or in service of the investigation of 

science. They both, according to Soames, agree on “eschew[ing] metaphysics of the traditional 

apriori sort”, but they disagree on the best way to do so (2009:424).  

 This is thus where their diverging metaphysical views begin: They disagree on how to 

go about doing ontology – and what ontology to adopt – so that it is conducive to the 

overarching goal of making philosophy of science the centre of philosophy. In what follows 

we will first discuss the Quinean idea of ontological commitment to abstract entities and then 

go on to the Carnapian use of linguistic frameworks. 
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3.1 Ontological commitment to abstract entities  

To be able to come up with a list of which entities exist, the notion of ‘ontological commitment’ 

is crucial. In his (1948), Quine writes on ontological commitment: “A theory is committed to 

those and only those entities to which the bound variables of the theory must be capable of 

referring in order that the affirmations made in the theory be true” (Quine 1948:33). To be, 

then, is to be referred to by a bound variable of a theory, so that whatever the theory quantifies 

over is seen as existing. This makes existence theory-dependent: Depending on which theory 

we ascribe to, there are objects and entities whose existence we admit, and some whose 

existence we omit. Accepting a philosophical theory thus entails accepting the existence of the 

entities posited by the theory. That existence beliefs are formed by their entailment from a 

theory, makes it clear that Quine’s concept of ‘ontological commitment’ already bears on 

metaontology rather than ontology (Van Inwagen 1998:233). This is because the threshold for 

existence is explicated in the metalanguage rather than the object-language; if our theory 

quantifies over or refers to certain variables, we are – by our acceptance of the theory – obliged 

to admit their existence. This is an integral part of the Quine-Putnam argument described above, 

where the existence of mathematical entities is accepted on the basis that they are indispensable 

to our best empirical sciences. As discussed in section 2.1, having full access to our best 

empirical sciences – with the necessary tools for furthering these sciences – seemingly 

outweighs the scruples we might have when it comes to accepting the existence of abstract 

entities. If the theory demands it, they must be admitted. It is thus a matter of considering 

whether ontological commitment to abstract entities is worth it, and for Quine and Putnam, the 

benefits of allowing empirical sciences to have their toolboxes fully equipped clearly was.  

This brings the idea of calculating ontological cost to the fore. If the existence of an 

entity is accepted, it is by the authority of the theory’s ontological commitments. By this same 

authority, we can now measure how demanding a theory’s ontological commitments are, and 

thereby, we can compare theories with each other. The more entities allowed among a theory’s 

ontological commitments, the higher the ontological cost (Quine 1960:270). The ontological 

cost of a theory can thus be considered as a basis for what theory to choose, as the ontological 

cost can simply be deemed too high. The theory-dependence present in ontological 

commitment is thus twofold. Not only are there direct consequences for what entities we admit 

into the domain of existing things, but we also judge which theories we should adhere to. The 

concept of ontological commitment not only tells us which entities exist (by the authority of 

the theory), but it also becomes a measure by which theories are deemed better or worse due 
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to their cost. In this way, the concept of ontological commitment provides something more than 

a list of ‘what there is’ in the flat sense described above. By implementing the concept we add 

theoretic virtues into the mix.  

 

3.2 Linguistic frameworks: Internal and external existence questions 

Carnap (1950) introduces the concept of linguistic frameworks as a way of being able to safely 

use language referring to abstract entities and notions, e.g., numbers, properties, classes, and 

propositions. Empiricists, Carnap writes, are often sceptical toward such entities and try to 

avoid reference to them (1950:241). However, for mathematics, that strategy often results in 

characterising it as a formal system for which no interpretation is available (Carnap 1950:241). 

Carnap believes it is possible to keep reference to such entities, without being led to embracing 

some platonic realm, i.e., circumventing the ‘pitfall’ of platonism by acknowledging different 

linguistic frameworks. 

 
And now we must distinguish two kinds of questions of existence: first, questions of the 
existence of certain entities of the new kind within the framework; we call them internal 
questions; and second, questions concerning the existence or reality of the system of 
entities as a whole, called external questions. (Carnap 1950:242, emphasis original) 

 

The difference between theory-internal and theory-external questions comes down to whether 

one operates from within or from the outside of a particular linguistic framework. For 

mathematics, the question of the reality or existence of numbers, for example, can be posed as 

an internal or external one. Let us consider the internal question first. To the question ‘Are 

there numbers?’, if posed from within the linguistic framework the system of numbers, Carnap 

answers in the affirmative: 

 
‘Is there a prime number greater than a hundred?’ Here, however, the answers are found, 
not by empirical investigation based on observations, but by logical analysis based on 
the rules for the new expressions. Therefore the answers are here analytic, i.e., logically 
true. (Carnap 1950:244) 

 

As the system of numbers relates to conceptual rather than empirical concerns, the methods by 

which we answer are also conceptual. Carnap does not use the word ‘conceptual’ but sticks to 

describing the answers as analytically or logically true, as his answer incorporates a defence of 

the analytic/synthetic distinction.10 This is not necessary though. It is enough to note that the 

 
10 This is also one of the drawbacks of Carnap (1950), as Quine rather successfully attacked the analytic/synthetic 
distinction in his (1951).  
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methods vary across different fields, so that an internal question asked within an empirical 

science (e.g., chemistry) is answered by empirical investigation, while disciplines considered 

logical or conceptual (e.g., mathematics) answer questions by conceptual investigation.11 As 

we see, internal questions are to be answered pretty straightforwardly – we appeal to the 

framework in question and see how to go about answering them by the nature of the framework 

(viz., conceptually or empirically).  

What then about the external questions? Whereas we answer an internal question from 

within the framework – and by making use of the framework itself – this is not the case for 

theory-external questions. Carnap writes that from the internal question we must distinguish 

“the external question of the reality of the thing world [or system of numbers] itself”, as this 

“is raised neither by the man in the street nor by scientists, but only by philosophers” (Carnap 

1950:243). Philosophers occupied with the ontological question of numbers, i.e., the external 

question that is “prior to the acceptance of the [number] framework” are, according to Carnap, 

asking a pseudo-question devoid of any cognitive content (1950:245).12 

 How does linguistic frameworks fare when it comes to the question of whether numbers 

are part of reality? The philosophical question thus posed does not impress Carnap much. He 

considers it ‘non-theoretical’ and is very clear that while we still speak of accepting abstract 

entities, it remains just that, a way of speaking. 

 
We must still speak (and have done so) of ‘the acceptance of the new entities’ since this 
form of speech is customary; but one must keep in mind that this phrase does not mean 
for us anything more than acceptance of the new framework, i.e., of the new linguistic 
forms. Above all, it must not be interpreted as referring to as assumption, belief, or 
assertion of ‘the reality of the entities’…. Thus it is clear that the acceptance of a 
linguistic framework must not be regarded as implying a metaphysical doctrine 
concerning the reality of the entities in question. (Carnap 1950:250) 

 

While the distinction between internal and external questions of existence allows for the 

acceptance of abstract entities, there is no metaphysical claim about their existence involved. 

By implementing linguistic frameworks and the internal/external distinction,13 we accept the 

entities that belong to a framework, and we allow for the methods that the frameworks 

necessitate (e.g., reference to abstract entities for mathematics and conceptual analysis of 

them), in order to further the different sciences (here: mathematics). 

 
11 See Frank Jackson (1998) for a discussion of conceptual analysis and its role for doing ‘serious’ metaphysics 
(Jackson 1998:41).  
12 See Flocke (2020) on Carnap’s noncognitivism. 
13 See Audrey Yap’s (2009) use of the distinction of internal and external questions regarding epistemic access to 
mathematical objects. Stewart Shapiro (2011) argues along similar lines, but without using the internal/external 
distinction explicitly. 
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4. Ontology and metaontology  

Ontology and metaontology are undeniably interlinked, as the latter takes the former as its 

subject of study. David Chalmers (2009) points out that this is a characteristic that 

metaontology shares with another philosophical discipline, that of metaethics. By drawing this 

comparison, Chalmers views the relationship between ontology and metaontology as 

paralleling the relationship between ethics and metaethics. While the basic question of ethics 

is ‘what is right?’, the basic question of ontology is ‘what exists?’. In abstracting from the basic 

questions of ethics and ontology, taking the disciplines as the starting point for new 

philosophical fields, we reach a higher level with two novel sets of basic questions. For 

metaethics, the question becomes whether there are “objective answers to the basic question of 

ethics”. Similarly for metaontology, where we investigate whether there are “objective answers 

to the basic question of ontology”. This basic question, of course, is ‘what exists?’ (Chalmers 

2009:77). Metaontology thus operates on a higher level than ontology. The initial basic 

question of ontology is bracketed and abstracted on. The basic question – and thereby the 

discipline of ontology – has become the object of a new field of study, where the ambitions go 

beyond those of ontology.  

The subject-matter of ontology can be considered evasive. This is in one way true, and 

in another not at all. The question of reality and what is in it, is complicated by the fact that our 

starting point is deeply entrenched in it. Whatever our position is on what there is, we can only 

contemplate reality through the ambiguous categories and concepts like ‘exist’, ‘being’, and 

‘object’. It seems that the only way to progress, is to continuously apply these concepts to the 

questions at hand, and see whether our understanding of the answers help us when we reapply 

them to the basic question ‘What exists?’.  

However, for many of the variants of the basic questions that are asked – and the 

answers we receive in return – the subject-matter is more straightforward. As we know, there 

are many answers to ‘What exists?’. Quite a few of them are, supposedly, not in need of too 

much metaphysical heavy lifting. Questions that are common-sensical in nature, e.g., ‘Does the 

floor on which I stand exist?’, seem to be easily answered in the affirmative (given that one 

accepts some rudimentary realism about the external world). But alas, it is not that easy. While 

ontology is occupied with what exists, it is also an exercise in ‘carving reality’ in the 

appropriate and correct manner. And this is where the difficulties begin. We can deny the 

existence of the floor by arguing that ‘floor’ is an artificial concept and does not appropriately 
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pick out any existing entity.14 It turns out that there is no unison solution to this problem, since 

it is possible to deny the existence of entities that – from a common-sensical perspective – 

obviously do exist.  

  This tells us something about what we consider to be the task – and the risk – of 

formulating ontological questions; that sometimes, we end up defending the existence of 

objects whose non-existence appears absurd. But does this tell us something about the 

relationship between ontology and metaontology? I would argue it does. The above makes it 

salient that ontological disputes can easily end up as an exercise in philosophical scepticism – 

albeit a scepticism that challenges our conception of reality as consisting of separate entities 

that we can successfully refer to and that are conceptually delineated. The position is thus not 

an epistemological scepticism about reality and whether we can know anything about it. Rather, 

it constitutes a position on the far side of the anti-realist metaontological spectrum, where we 

question whether we can talk of the existence of entities at all, as our “conceptual carving” 

inevitably cannot capture reality. In this case, there are no objective answers to the basic 

question. Moreover, we cannot meaningfully say that basic things or objects exist (e.g., ‘This 

table exists’), without automatically questioning that such statements can be easily accepted as 

true. But how could we ever confidently say that anything exists? We end up not seeing the 

wood for the trees, as our cautious behaviour towards existence questions prevent us from 

claiming that anything exists, as the risk of carving reality wrongly looms over us. For the 

purposes in this paper, I will not seriously consider such a scepticism. I will, that is, accept that 

there is an external world, that there are other people in it apart from myself, and that I can say 

with confidence that ‘This table exists’. 

In the remainder of this section, I will characterise metaontology as (i) methodology, 

and (ii) as qualification, before I look at the genealogical relationship between ontology and 

metaontology. 
 

4.1 Metaontology as methodology 

Let us first characterise metaontology as methodology of ontology, so that a metaontological 

line of inquiry provides an ontological theory with tools to study that to which it is ontologically 

committed. On this picture, the addition of a metaontological framework is, presumably, a 

 
14 This picks up on what I called ‘ordinary objects’ in the above introduction. The existence of an ‘ordinary object’ 
is not at all as easy as I indicated there. In Ordinary Objects (2007) Amie Thomasson provides a defence of 
common-sense realism when it comes to ordinary objects and combines that with a deflationary metaontology. 
Thomasson’s defence of so-called ‘ordinary objects’ seeks to systematically disprove reductionist or 
simplificationist tendencies in ontology, on which common-sensical objects such as ‘table or ‘floor’ are denied 
existence, because they are seen as unnecessary by-products of the ontological recarving of reality. 
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welcome addition to any position with ontological commitments. But are there any reasons to 

believe that a metaontology functions as an added toolbox that can improve an ontological 

view? Linnebo’s suggestion – that metaontology investigates the key concepts of ontology – 

could be an example of this. Investigating ‘objecthood’ and ‘existence’ means clarifying two 

concepts that appear every time we want to assert that ‘there is a mathematical object X’. Such 

a process of sharpening concepts can be seen as following a methodology, in order to figure 

out what mathematical entities exist on a given theory. And to commit to such a sharpening 

process (if the metaontology is good) could provide ontology with methodological rigour akin 

to the standards of a scientific process. Something similar comes up in Edmund Husserl’s 

Prolegomena (2001a) when he describes the incompleteness of the sciences. 

 
Even the mathematician, the physicist and the astronomer need not understand the ulti-
mate grounds of their activities in order to carry through even the most important scien-
tific performances. Although their results have a power of rational persuasion for them-
selves and others, yet they cannot claim to have demonstrated all the last premisses in 
their syllogisms, nor to have explored the principles on which the success of their meth-
ods reposes. The incomplete state of all sciences depends on this fact. … Even mathe-
matics, the most advanced of all sciences, can in this respect claim no special position. 
… Though the sciences have grown great despite these defects, and have helped us to a 
formerly undreamt of mastery over nature, they cannot satisfy us theoretically. They are, 
as theories, not crystal-clear: the function of all their concepts and propositions is not 
fully intelligible, not all of their presuppositions have been exactly analysed, they are not 
in their entirety raised above all theoretical doubt. (Husserl 2001a:15-16, my emphasis) 

 

Husserl thus compares the empirical sciences to mathematics, and he sees the same sort of 

incompleteness in them, as relating to a proper explication of the concepts, propositions, and 

their underlying presuppositions. Husserl urges us to rectify this theoretical insufficiency, and 

if we are “[t]o reach this theoretical goal we first need, as is fairly generally admitted, a type 

of investigation which belongs to the metaphysical realm” (Husserl 2001a:16). Though he does 

not include such a metaphysical foundation for mathematics, for our case, we can extend this 

need so that a metaphysical investigation – i.e., a metaontological investigation – can be sought 

out for mathematical ontology as well.15  

To pursue this point further, let us compare realist ontology for mathematics to an 

empirical science such as chemistry. Typical questions of ontology face us: What entities are 

there? What are atoms and their properties? Questions like these make up the starting point for 

any domain of knowledge. They are fundamental questions which one expects chemistry to 

 
15 He writes: “Such a metaphysical foundation is not, however, sufficient to provide the desired theoretical 
completion of the separate sciences. It concerns, moreover, only such sciences as have to do with actual reality, 
… certainly not the purely mathematical sciences whose objects are numbers, manifolds etc., things thought of as 
mere bearers of ideal properties independent of real being or non-being” (Husserl 2001a:16).  
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hold the answers to, as the answers describe the basic nature of the field. One of the decisive 

points in the development of chemistry was the implementation of scientific method, which 

effectively separated it from alchemy, the unscientific precursor to chemistry. The 

implementation of proper scientific method can certainly be thought of as a partial rectifying 

of theoretical insufficiency. There is no doubt that clarity and accuracy in methodology play a 

decisive role for the potential results of science. This is no less clear for chemistry. It seems 

obvious that if there occurs ever so slight a variance of conditions under which experiments 

are conducted, the results of these are contaminated. If this is discovered, one expects, due to 

good scientific practice, if not to nullify the results completely, at least to rerun and retest a 

number of times, in order to eliminate any disturbance that might alter the outcome. This, at 

any rate, seems to constitute a bare minimum.  

The thought is that no one doubts the prudence of such measures for an empirical 

science like chemistry. And if metaontology is the methodology of ontology, we ought, by 

analogy, to rerun and retest our metaontological framework, and see how this potentially alters 

our ontological results. For example, if there is an ever so slight variance within the use of the 

concept of ‘objecthood’ in mathematical ontology, different entities would fall under the 

concept. It is clear how this would have massive implications for an ontological view: Entities 

previously considered objects are not, and entities previously not considered objects suddenly 

are! An example comes from mathematical structuralism, where you can either see the places 

of a structure as ‘offices’ to be filled by objects (say, the position “2” in the natural number 

structure is ‘filled’ by, say, the von Neumann ordinal “{Æ, {Æ}}”). Alternatively, we can regard 

the places as being objects in themselves, so that the natural number 2 simply is the second 

place in the natural number structure (Shapiro 1997:10-11). Another example comes from the 

conceptual realism of Gödel: “It seems to me that the assumption of such objects [classes and 

concepts] is quite as legitimate as the assumption of physical bodies and there is quite as much 

reason to believe in their existence” (1944:137). Here, we see that Gödel actually identifies 

both classes and concepts as objects. Due to Gödel’s very robust realism, his inclusion of 

mathematical concepts as worthy of objecthood and independent existence is not all that 

surprising. But it does radically change the ontological view in question by expanding the 

ontology and adding to the robustness of the realism. To have some sort of ‘safety net’ designed 

to catch the possible slipups of what is admitted into the ontology seems prudent, and if we 

need to formulate a metaontology to do this, that seems like the natural next step to take. 

One might argue that there is no reason to accept an ‘ought’ from another discipline, 

another domain of knowledge. Why would prudent methodological measures for chemistry be 
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applicable to the relation between ontology and metaontology for mathematics? However, 

arguing by analogy is not new when it comes to philosophy of mathematics. The comparison 

between the empirical sciences and mathematical platonism has been drawn to argue for the 

veracity and independence of mathematical knowledge, and, more importantly, for the 

existence of mathematical objects. But no matter how successful these lines of arguments were, 

a comparison between the disciplines is not the point here. My point is justificatory and relates 

to methodology. We saw that that which separates alchemy from chemistry is the 

implementation of scientific method. I argue that metaontology can serve the same principal 

methodological role in mathematical ontology. While the questions asked in chemistry and 

mathematical ontology are radically different, the process of sceptically inquiring into the most 

basic questions is the same. It has to do with eliminating all possible gaps of reasoning, and 

with making sure – even only for an extra check-up – that the process by which we ended up 

with the ontological view we endorse has been vetted and scrutinised. 

 

4.2 Metaontology as qualification 

So much for metaontology as methodology. To further explicate the relation between ontology 

and metaontology, let us look at another way of construing it, namely, to view metaontology as 

qualification. The main thought is that a metaontology is in some respect restrictive, so that the 

existence claims put forth by a theory meet certain limiting conditions. From what a theory 

claims to exist, there are criteria that the existence claims must share and fulfil. Unlike the 

rigour provided by methodology when we ‘sharpen concepts’, adhering to a schema of criteria 

for what entities we take to exist (in our theory) can provide rigour in a unifying sense. When 

a theory exhibits ‘unifying rigour’ it means that the theory in question (be it empirical, 

economic, linguistic, mathematical, or philosophical) adheres to certain commitments to ensure 

the coherence and unity of the theory. Let us consider a passage from Thomas Kuhn (2012), 

where he discusses what he calls a scientific paradigm. 

 
After about 1630, … and particularly after the appearance of Descartes’s immensely 
influential scientific writings, most physical scientists assumed that the universe was 
composed of microscopic corpuscles and that all natural phenomena could be explained 
in terms of corpuscular shape, size, motion, and interaction. That nest of commitments 
proved to be both metaphysical and methodological. As metaphysical, it told scientists 
what sorts of entities the universe did and did not contain: there was only shaped matter 
in motion. As methodological, it told them what ultimate laws and fundamental 
explanations must be like: laws must specify corpuscular motion and interaction, and 
explanation must reduce any given natural phenomenon to corpuscular action under 
these laws. (Kuhn 2012:41, my emphasis) 
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We see that there were strong restrictions in place for what entities were allowed to exist at the 

time; there was only to be shaped matter in motion. The resultant theories would be uniform 

with respect to their ontological commitments, and no entity or phenomenon that was not 

reducible to shaped matter in motion would have passed the threshold. However limiting this 

might be, one can at least not fault the resultant theories for lacking in theoretically unifying 

rigour.  

While Kuhn was trying to explain how scientific paradigms shape and limit what kinds 

of theories could be pursued within a scientific community, the idea of shared metaphysical 

commitments is reminiscent of how we can view criteria for what entities we allow to exist in 

an ontology. Interestingly, what Kuhn writes on the methodological commitments reveals 

another side to the existence criteria for entities; namely, that there is a normative component 

to it.16 Not only are the existing entities restricted to shaped matter in motion, but we are told 

‘what the ultimate laws and fundamental explanations must be like’, and that any natural 

phenomenon must be reducible to ‘corpuscular action under these laws’ (Kuhn 2012:41).  

Let us apply this to our case at hand, the relationship of ontology and metaontology and 

the possible construal of metaontology as qualification. The formulation of shared 

commitments can provide an ontological view with lawfulness. We adopt a schema of criteria 

for why we should be ontologically committed to some entities and not to others. At the same 

time, we delineate the entities in question by our own conceptual apparatus (consider section 

4.1). The commitments determine what something should be like for us to accept them in our 

theory, that is, they are rules of governance. They recommend ideal scenarios for what entities 

should be accepted, which makes them normative.  

Let us also consider the descriptive side. As science is an activity, every scientific 

community shares common commitments of various sorts, viz., conceptual, methodological, 

instrumental, theoretical, and metaphysical (Kuhn 2012:42). Consequently, scientific com-

munities often have a clear understanding of what their goals are, which methodological routes 

they pursue to advance in their research, and, to some extent, what they expect to find in terms 

of scientific results. Let us look at another passage from Kuhn. 

 
The scientist must … be concerned to understand the world and to extend the precision 
and scope with which it has been ordered. That commitment must, in turn, lead him to 
scrutinize, either for himself or through colleagues, some aspect of nature in great 
empirical detail. And, if that scrutiny displays pockets of apparent disorder, then these 

 
16 A critique often directed at Kuhn was that he conflated descriptive and normative considerations in describing 
the activity of science. The point I argue – that metaontology can be conceived of as qualification – does not 
depend on whether Kuhn did indeed conflate the two. For instance, see Kuhn (1983) for his remarks on this topic. 
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must challenge him to a new refinement of his observational techniques or to a further 
articulation of his theories. (Kuhn 2012:42, my emphasis) 

 

When the scientist is faced with apparent disorder in her findings, it spurs on further 

investigation. For our case, this would amount to accepting the existence of some entity that 

does not mesh well with our other ontological commitments, perhaps even contradicting them. 

If such an ontological dissonance is discovered, it is a given that ‘a further articulation of [her] 

theories’ is necessary. This further articulation will be tasked to make sense of the apparent 

disorder. As a general goal in formulating scientific theories, we wish to categorise, order, and 

discover relations previously unknown, in order to further our understanding of a field of study. 

In our efforts to advance theories of the world and thus our understanding of it, we have an 

uncanny knack for finding commonalities and patterns. And we prefer the subsequent theories 

to be exemplary in exhibiting characteristics of order. If a theory faces serious discrepancies, 

and our attempts at further articulation or accommodation are in vain, we tend to conclude that 

the theory under consideration is unlikely to be true, and we discard it. But the process of 

further articulating, and the directions given by certain criteria, are useful in weeding out 

instances of ontological dissonance. When we adopt a metaontology, we adopt a restrictive 

framework that limits our theoretical manoeuvres, and prescribes lawfulness for what is 

included in the ontology. This is one way of construing what metaontology is to ontology, and 

the task of metaontology as one of qualification. If this task is successful, the commitments are 

laid down, and pursuing a metaontology can thus be an act of ordering one’s ontological views, 

and giving them unifying rigour. 

 

4.3 Genesis of metaontology and ontology  

Metaontological approaches are developed in union with ontological views and leanings. It is 

noteworthy that the metaontological approach one has adopted usually stems from already held 

views in ontology. More often than not, it is the need to qualify one’s ontological view that 

provides the incentive to develop a metaontological framework. An example here would be 

Quine’s concept of ontological commitment. By putting this metaontological constraint in 

place, he not only made belief in the existence of objects theory-dependent, but also formulated 

his justification as to why we ought to accept the existence of mathematical objects (see section 

2.1 on Quine-Putnam Indispensability). Initially, then, there seems to be a methodological order 

to it. The ontological views come first, which then spurs on the development of an appropriate 

metaontology, in order to qualify and justify one’s belief in the existence of objects.  
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However, one can also look at it in the reverse order. If we grant that the set of 

ontological beliefs and leanings held at the outset makes salient the need for a metaontological 

framework, who is to say that these beliefs and leanings were not the result of implicitly held 

metaontological beliefs? In this way, the development of a metaontological approach would 

simply be the exercise or process of making implicitly held beliefs – beliefs that have already 

shaped the ontological view in question – explicit. This would amount to a formulation of the 

background methodology of ontology, that is, the very activity of metaontology. Remember 

here, Husserl’s point above, that the sciences are “not crystal-clear: the function of all their 

concepts and propositions is not fully intelligible, not all of their presuppositions have been 

exactly analysed, they are not in their entirety raised above all theoretical doubt” (Husserl 

2001a:15-16, my emphasis). If metaontology can be construed as both methodology and 

qualification, we see how metaontology and ontology share a common goal – to give an 

account of what exists – but with more theoretical sufficiency. Then our beliefs are justified, 

and the underlying presuppositions examined and clarified. 

Whatever the position one takes on the question of order – whether ontology or 

metaontology comes first, and which makes explicit what is implicit in the other – they do 

certainly influence each other. For example, it is rare to endorse robust realism in ontology 

(e.g., mathematical Platonism), only to argue that ontology does not provide genuine and ‘deep’ 

philosophical insight. It would be equally strange to defend ontology as capable of yielding 

substantial truths about reality, while eschewing the existence of all mind-independent entities 

(be they spatio-temporal or abstract). While a metaontology generated by certain ontological 

views can give input to the ontology in question, this is generally not in a radically revisionary 

sense. Likewise with an ontology generated by certain metaontological views, depending, of 

course, in both cases on the metaontological and ontological views in question. Ideally, they 

should both inform and improve each other, so that, no matter in which direction the views are 

generated (metaontology → ontology, or ontology → metaontology), the views reciprocally 

feed into each other and yield mutual improvement. If this is achieved, they can go hand in 

hand, and together, they can each add justificatory weight to the other.  

 

5. Metaontology for mathematics 

So much for a preliminary introduction to metaontology and mathematical realism, now we 

need to broach what metaontology for mathematics means. As has become clear, metaontology 

is on a level abstracted from ontology, and as such, metaontology for mathematics concerns 
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the question of whether there are – to echo Chalmers (see section 4) – objective answers to the 

question ‘What mathematical entities exist?’. A definitive reply to the question thus phrased is 

not, however, easily come by. In the case of mathematics, perhaps not surprisingly,  it is mostly 

mathematical realists that have pursued metaontology. It is the task of the realist to provide 

evidence that mathematical objects exist; a task more precarious than that of the nominalist, 

whose task is to provide evidence that mathematical objects do not exist. This is simply because 

it is on the realist to provide an ontological account which makes it plausible that mathematical 

objects do indeed exist, i.e., the burden of proof is on the realist, not on the nominalist.17 Most 

metaontologies for mathematics therefore have realist ambitions.18 According to Øystein 

Linnebo (2018), metaontology for mathematics is concerned with the key concepts of ontology 

in mathematics, such as ‘existence’ or ‘objecthood’. In order to list what objects there are, we 

need to determine what the concept of objecthood means. What are the criteria for a 

mathematical something to count as an object?19  

The concept of existence poses different concerns. We briefly explored this in section 

2, where the existence of a mathematical abstractum was compared to that of a medium-sized 

physical object, say, the chair I am sitting on. They obviously do not have the same properties 

or nature, the mathematical abstractum wholly lacking in causal powers and with no spatio-

temporal make-up. But that is not the question. The question is rather whether the word ‘exists’ 

has the same meaning in both cases. That is, is existence univocal? We saw in section 3, that 

both Carnap and Quine considers this to be the case. Van Inwagen (following in Quine’s 

footsteps, not Carnap’s) also answers in the affirmative, citing the intimate connection between 

number and existence. It does not matter that the fourteen books on my desk are different 

objects than the fourteen favourite films you have on your watchlist; the number of these 

different things are the same, and the number of books on my desk simply is the same as the 

number of the films on your watchlist (Van Inwagen 1998:236). There is little sense to say that 

‘fourteen’ changes its meaning dependent on what kind of objects it is ascribed to. According 

to Van Inwagen, the supposed existence of a mathematical abstractum thus follows the normal 

usage of the word ‘exist’, i.e., how we ascribe it to ordinary objects (1998:236). This thought 

 
17 For instance, consider Russell’s teapot. Also, we do not expect the same kind of evidence for existence and 
non-existence. Whereas lack of evidence of something can be considered evidence for non-existence, this cannot 
be said for the case of existence, where a lack of evidence surely remains a deficit.  
18 See, for instance, MacBride (2003), Hawley (2007), Sider (2007), Hale & Wright (2009), and Eklund (2006, 
2016) for discussion of neo-Fregean metaontology. Another metaontology from mathematical realism comes by 
way of Shapiro’s (1997) ante rem structuralism, who pursues (though not explicitly) a metaontology based on 
coherence. Also, the second paper of this dissertation is on coherentist metaontology for non-eliminative 
structuralism.   
19 For Linnebo, objecthood is expressed by the Fregean triangle, where reference, identity criteria, and objecthood 
function together (2018:21-26). 
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is central to the neo-Fregeans’ use of Hume’s Principle, which says that the number of F’s is 

identical to the number of G’s if and only if there is a one-to-one correspondence holding 

between F and G, formalised as: #F’s = #G’s ↔ F ≈ G. Here, it is the very fact that a number 

is ascribed to the objects that fall under the different concepts, F’s and G’s, and that these are 

identical if there is a one-to-one mapping from each F to each G. This means that in my 

example, the number of books on my desk and the number of films on your watchlist can be 

put in a one-to-one correspondence, and that it simply does not matter that the objects in 

question are different.  

However, in this paper, I want to give a general defence of why the mathematical realist 

should adopt a metaontology. I will present two alternative metaontological approaches, which 

pick up on the historical roots of the contemporary metaontological discussion. First, we have 

the inflationary attitude, which follows a broadly neo-Quinean tradition. Second, we have the 

deflationary attitude, which follows a broadly neo-Carnapian tradition. I say ‘broadly’ here, as 

the two attitudes – while incorporating elements from each philosopher and the traditions they 

spurred on – cannot be said to faithfully represent the historical Quine and Carnap. I do believe 

though, that naming the metaontological attitudes thus is warranted by the general views 

professed in each. 
 

5.1 Inflationary attitude: Neo-Quinean tradition 

We saw in section 3.1 that adopting the Quinean concept of ontological commitment allows us 

to list what entities we take to exist on a given theory. Existence thus becomes theory-depend-

ent, and, moreover, we are able to measure the ontological cost of a theory. This, in turn, can 

form a basis for theory-choice. If the costs of two theories are compared, that can give us the 

incentive to adopt the theory with the lower ontological cost. To value lower ontological costs 

is tantamount to evaluate theories on the basis of traditionally scientific virtues – like simplicity 

and explanatory power – or in this case, ontological parsimony. This is in line with the idea of 

regarding ontology as being continuous with science: “I see metaphysics, good and bad, as a 

continuation of science, good and bad, and grading off into meaninglessness” (Quine 

1988:117). The view is, then, that ontology is considered good when it is modelled on science, 

so that the ontological view exhibits scientific virtues. We must also note Quine’s end comment 

here – “…and grading off into meaninglessness” – as this makes it clear that sometimes, in 

Quine’s view, metaphysics trails off and becomes something akin to the pseudo-questions de-

scribed by Carnap. That is, Quine is not inclined to follow metaphysics’ every whim, and there 

is some inherent distrust. This distrust, however, has to do with the overall task of philosophy, 
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refashioned into philosophy of science. As Soames (2009) noted, Quine (and Carnap) both saw 

the main task of philosophy as one of servitude to the investigation of science, so that philoso-

phy of science becomes the centre of philosophy. This is clearly in line with the continuity 

claim. Turner, in addressing the claim, characterises our attitudes toward science and philo-

sophical ontology as inflationary thus:  

 
Our naïve attitude toward science is inflationary. Although some strands of scientific 
anti-realism demur, the naïve attitude is that long before anyone started theorizing, the 
world was as it was – either with electrons, or without. … An inflationary attitude toward 
more philosophical ontology is similar. Long before anyone started theorizing, reality 
was as it was – either with numbers, or without. … The inflationary attitude toward sci-
ence is natural. Anyone who holds that attitude and is convinced by Quine that philo-
sophical ontology is continuous with science should also have an inflationary attitude 
toward philosophical ontology. As a matter of fact, most contemporary self-styled Quin-
eans in metaphysics do endorse inflationism, both about science and about ontology. 
Whether Quine held such a view, however, is less straightforward. (Turner 2016:5).20 

 

Turner describes the inflationary attitude towards science as natural. An inflationary attitude 

has to do with the independent existence of i) the external world (for science), and ii) mathe-

matics (for philosophical ontology, following the example above). The interesting step is taken 

when he writes that: If you are inflationary about science, and you believe in the Quinean thesis 

that philosophical ontology is continuous with science, then you should also have an inflation-

ary view about ontology. That might very well be. It depends on whether you think philosophy 

should serve scientific investigation, or whether you think that philosophy of science is merely 

one part of a self-standing discipline. Let us, for now, further explore the idea that ontology is 

indeed continuous with science.  

 One way to consider this continuity claim is to look at it through the lens of the 

arguments of section 3.2 above, i.e., metaontology as qualification. Commitment to the 

existence of entities is integral to theoretical endeavours; this is common ground for science 

and ontology. If we take the continuity claim seriously – and the idea that philosophical 

ontology should be modelled on science – the resultant view can be seen as simply putting 

scientific values in action as means of qualification. That is, by entertaining ontological 

parsimony, we are actually implementing and sharpening a certain pattern of lawfulness. 

Traditionally scientific virtues thus draw up the limits for the operational and structural 

 
20 According to Turner, there is room to interpret Quine as being more deflationary toward science and ontology 
in general than the received neo-Quinean view of today. In that respect I am guilty of the same broad brushstrokes: 
I do not try to paint Quine as having held the inflationary view described in this section, but I do use certain 
broadly Quinean ideas as the figurehead for the inflationary approach (see also Price 2009). Soames (2009) also 
discusses the Quine-Carnap dispute as sometimes being misunderstood, in the way that views that today are called 
neo-Carnapian or neo-Quinean do not capture the views held by the historical Carnap or Quine.  
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framework. In order to safeguard from superfluous or pointless commitment, we are putting a 

principle of prudence in place. From a common-sensical point of view, it is better to commit to 

too little and remain agnostic about further commitment, than to embrace a too generous 

ontology, and thereby undervalue the commitments made. If one turns out to be wrong about 

some small part, it immediately diminishes the correctness of the rest, no matter how the 

justification for the rest stands. This is one way to look at a Quinean variant of metaontology 

as qualification; letting theoretical virtues constitute the lawfulness under which our 

ontological view is ordered. 

 

5.2 Inflationary drawbacks  

One of the drawbacks of the inflationary attitude is that it is formulated with the empirical 

sciences as a backdrop. The thought that metaontology for mathematics should conform to 

scientific virtues and standards means that what is inherently special to ontology of 

mathematics is put in second row. It becomes a view where metaphysics – as continuous and 

at the service of science – has priority over mathematics. This is clearly seen in the reliance on 

the Quine-Putnam indispensability argument. Maddy (2011), who previously embraced 

indispensability and shared a generally more Quinean outlook (see Maddy 1990), revokes her 

support of the indispensability argument. 

 
Though some take me to task for apostasy, I soon despaired of this position [naturalistic 
variant of Gödel’s Robust Realism as from Maddy 1990], for three reasons: it relies on a 
Quine/Putnam indispensability argument that I couldn’t continue to endorse; arguments 
for and against axiom candidates that seem compelling don’t fit well with the 
metaphysics; and most importantly, just as a fundamentally naturalistic perspective 
counts against criticizing a bit of mathematics on the basis of extra-mathematical 
considerations, it counts just as heavily against supporting a bit of mathematics on the 
basis of extra-mathematical considerations. (Maddy 2011:ix, emphasis original) 

 

Notice the first and third reasons. Let us look at the third first, which, according to Maddy, is 

the most important one. It says that one should not support a bit of mathematics on the basis of 

extra-mathematical consideration, just as one should not criticise a bit of mathematics on that 

basis. What does she mean here? It seems like while she always rejected the criticism of parts 

of mathematics on grounds not connected to mathematics, this is not the case for her support 

of parts of mathematics on grounds not connected to mathematics. To rephrase: we must not 

allow non-mathematical considerations to bias our view of parts of mathematics. Let us look 

at the first reason again; she can no longer endorse the Quine-Putnam indispensability 

argument. This argument can be seen as an instance of the third reason: We accept the existence 
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of mathematical abstract entities on extra-mathematical grounds. In this case, these grounds 

are that referral to mathematical objects is considered necessary for our best empirical theories. 

 A consequence of considering the interests of the empirical sciences is that our 

justification for pure mathematics suffers. Considering to “pursue only the mathematics that’s 

directly needed for natural science”, is a “sentiment [that] is often based on a Quinean holism 

that sees mathematics in application as confirmed along with the rest of our overall web of 

belief, but leaves the remaining pure mathematics without justification” (Maddy 2011:87n45, 

my emphasis). By such a standard, we end up accepting mathematics not en bloc, but based on 

its applicability, and as we cannot find similar extra-mathematical functions for the pursuit of 

pure mathematics, it is left behind.21 

 
[T]he justification – or lack of justification – for mathematical methods is based on a 
metaphysical account of its subject matter. From the Second Philosopher’s point of view, 
this gets things backwards: the order of justification goes the other way ‘round, from the 
math to the metaphysics, not the metaphysics to the math. From her point of view, 
metaphysical considerations of this sort shouldn’t be allowed to restrict the free pursuit 
of pure mathematics – and, in fact, they haven’t. (Maddy 2011:87) 

 

From a “mathematics first” perspective, the inflationary attitude to metaontology does indeed 

seem to get the order of things wrong.22 Instead of putting mathematics first and providing 

justification for the whole of it, we end up i) modelling it on the empirical sciences (even though 

it is not itself one), ii) effectively devaluing parts of mathematics by its lack of applicability to 

empirical science, and iii) trying to figure out a metaontology for mathematical ontology from 

the point of view of general metaphysics and philosophy of science instead of letting our sub-

ject-matter – i.e., mathematics – take centre stage. There is one consolation to be had from 

Maddy’s analysis however, that while the “metaphysics first, mathematics second” sort of view 

is popular, it has not succeeded at stifling the pursuit of pure mathematics, because, when it 

comes to it, most mathematicians do not let their research be restricted by the considerations 

of metaphysicians.  

 

5.3 Deflationary attitude: The rise of neo-Carnapian alternatives 

While the inflationary neo-Quinean attitude towards ontology has reigned supreme since 

ontology’s redemption, deflationary approaches to metaontology have recently been on the rise 

(e.g., Hirsch 2002; Schiffer 2003; Rayo 2013; Thomasson 2014; Hofweber 2016; Linnebo 

 
21 See also Feferman (1993). 
22 According to Mirja Hartimo (2020) Edmund Husserl also endorsed a “mathematics first” sort of view. 
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2018) (Marschall & Schindler 2021:99). One of the motivations for Amie Thomasson is to 

offer an alternative to the “mainstream” neo-Quinean metaphysics.  

  
The neo-Quinean approach has become so dominant as to become almost invisible as a 
methodological choice. As Ted Sider puts it, “Recent work on ontology nearly always 
relies on the Quinean methodology” (2011, 169). The new metaphysics, dominated by 
ontology, is, from a methodological point of view, a neo-Quinean metaphysics—so much 
so that David Manley simply refers to this approach as “mainstream metaphysics” 
(2009). To those brought up on analytic philosophy over the past sixty years, the neo-
Quinean conception of ontology has come to seem natural, even inevitable. (Thomasson 
2014:3) 

 

One of Thomasson’s main critiques of the neo-Quinean view on metaphysics is that it is 

modelled on science, i.e., ontological theories are presented as adhering to a scientific standard, 

that metaphysicians are doing something like science, and therefore that they are capable of 

providing deep and general truths (Thomasson 2014:9). It boils down to a belief that, on the 

neo-Quinean ‘mainstream metaphysics’ attitude, the prospects and results of metaphysics are 

overinflated. The antidote to the inflationary metaontology is thus a deflationary one, 

historically traceable to Carnap and his distinction between internal and external questions. 

Thomasson wants to prescribe a more modest role for philosophy, where a Husserlian division 

of labour is again welcome.23 Let us consider these two passages from Husserl’s Prolegomena. 

 
It is not, fortunately, essential insight which makes science, in the common, practically 
most fruitful sense, possible, but scientific instinct and method. For this very reason the 
ingenious, methodical work of the special sciences, more concerned with practical results 
and mastery than with essential insight, is in need of a continuous ‘epistemological’ 
reflection which only the philosopher can provide …. Philosophical investigation has 
quite other ends [than the special sciences], and therefore presupposes quite other 
methods and capacities. It does not seek to meddle in the work of the specialist, but to 
achieve insight in regard to the sense and essence of his achievements as regards method 
and manner. (Husserl 2001a:159)  
 
Philosophical research so supplements the scientific achievements of the natural scientist 
and of the mathematician …. The ars inventiva of the special investigator and the 
philosopher’s critique of knowledge, are mutually complementary scientific activities, 
through which complete theoretical insight, comprehending all relations of essence, first 
come into being. (Husserl 2001a:160) 

 

The first passage makes a division of labour between the special sciences (empirical science 

and mathematics) and philosophy clear. Not only do they have different goals, but their 

methods are also different. While science is occupied with ‘practical results and mastery’, 

 
23 Also, consider earlier views on metaphysics, like the Humean perspective. Hume reflected on the limitations of 
metaphysical investigation, and would surely not present it as in the image of natural scientific investigation 
(Thomasson 2014:9-10). 
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philosophy takes on the role of giving epistemological reflection and insight. It is the task of 

the philosopher to investigate the scientific output and the ‘method and manner’, but not to 

‘meddle’. This limits the scope of the philosopher’s task, and it does not attempt to paint a 

picture where the philosopher is doing something like science. The second passage highlights 

how philosophy is a supplement to scientific results – to make sense of them in a more 

fundamental ‘theory of science’ kind of way. The fact that philosophy under no circumstance 

is to have revisionary input on science, does not make philosophical investigation insignificant 

or render it incapable of providing insight. But it is important to acknowledge the differences 

between the special sciences and philosophy, thereby acknowledging their inherent limitations, 

both when it comes to method and resulting theories. By doing so, we do not overly inflate the 

role of philosophy or, in this case, ontology, but give it a more modest role. 

  To see ontology as something that interprets scientific achievements in order to gain 

insight of general theoretical underpinnings and knowledge as such, brings us to the next point: 

the order by which we consider metaphysics and mathematics. As opposed to the inflationary 

way of doing it – the “metaphysics first, mathematics second” sort of view, a deflationary 

attitude – which realises the limitations of metaphysical inquiry – has it the other way around. 

From the outset of the ontological investigation, the goal is a quest for insight “in regard to the 

sense and essence of [the special investigator’s] achievements as regards method and manner” 

(Husserl 2001a:159). This means that we first consider the mathematics, and only then the 

metaphysics. By this order it is the task to analyse mathematics on the basis of mathematical 

methods and results, and not from a general metaphysics point of view that is modelled on 

natural science. An upshot of the deflationary attitude is that it does not put any undue influence 

on empirical science. This is reflected by the fact that it avoids relying on indispensability of 

mathematics for empirical science. Instead, I believe the principle of epistemological parity 

(see section 1.2) fits the deflationary attitude better. This argument is developed from an 

epistemological point of view (in line with Husserl’s suggestion in the passage above), where 

we consider the success of mathematics and its achievements. If we think of mathematical 

knowledge, and compare it to the body of empirical knowledge, there is no more reason to be 

less committed to the entities described by mathematics than to those described by empirical 

science. In this case, there is no servitude of mathematics to empirical science. There is only 

the epistemological perspective of weighing mathematical knowledge to empirical knowledge, 

and finding them equal.  

This is in line with Carnapian internal questions. If we consider mathematics from 

within the linguistic framework of mathematics, the question of whether we should take 
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mathematical objects to exist can be answered straightforwardly by i) conceptual or ii) 

empirical means. Let us look at a passage from Soames (2009). 

 
Can there be any serious doubt that there are prime numbers greater than a million, and 
hence that there are numbers? Surely not. Perhaps, then, what needs to be abandoned is 
the idea that the existence of abstract objects is especially questionable, requiring an 
unusually demanding justification. This idea was, I would argue, one of Quine’s central 
unexamined presuppositions. It is worth re-examining. Here, my sympathies are with 
Carnap. … [H]e was, I suspect, right in thinking that our ready appeal to them in 
mathematics and semantics is all the justification they need. (2009:442-43) 

 

We can answer the internal questions of mathematical existence by conceptual means within 

the relevant framework. If this is posed as an external question, we cannot. Where there is room 

for ‘empirical means’ in this scenario, however, is our comparison between empirical and 

mathematical knowledge, and us finding them to be on a par. This we do by empirical consid-

erations; we look at the fields’ respective progress, the standing within the special investiga-

tors’ community, and the overall success of the disciplines. But the question in mathematical 

ontology ‘are there numbers?’ is conceptual, as the threshold for mathematical existence is 

placed where it belongs, as a straightforwardly answerable question, if posed internally. The 

existence of mathematical objects is not in need of some extra justification, least of all an extra-

mathematical justification.  

 

6. Conclusion 

In this paper we have seen how metaontology takes ontology as its subject-matter, and thus 

operates on a higher level. As such, it is for metaontology to put in place certain guidelines, 

within which we can actively reflect on the challenges mathematical ontology faces. To this 

end, we construed metaontology in two different ways, as methodology and qualification. First, 

by construing metaontology as methodology, we saw that it can serve as a process of sharpen-

ing. As a methodology, it formulates the need to ponder the framework in which we operate, 

and to consider how it potentially alters our ontological views. This is in some respect an ex-

ploratory process. By pursuing a metaontology for mathematics we are identifying an ontol-

ogy’s theoretical insufficiency, and by identifying implicit presuppositions, we complement 

the theoretical underpinnings that shape our ontological views. Second, by construing metaon-

tology as qualification, we saw that metaontology takes on the task of prescribing lawfulness 

to ontological views. As we commit to the methodological aspect, we are also considering how 

commonalities and ontological dissonance appear in our theories. By putting limiting 
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conditions in place, we effectively weed out the existence of entities which goes against our 

qualified ontological commitments. This contributes to a theory being more uniform, as we 

delineate what – and on which grounds – we are willing to accept into our ontology.  

 By tracing the historical debate of Quine and Carnap, we described two attitudes to-

wards metaontology and ontology. We saw, by differentiating between an inflationary and a 

deflationary approach, that views on ontology and metaontology for mathematics is deeply 

entrenched in issues concerning empirical science, justificatory concerns when it comes to ev-

idence for abstract entities, and in what way we should consider philosophy and ontology to be 

at the service of science. For a mathematical realist, who wants to argue for the objective ex-

istence of mathematical entities, the deflationary view on metaontology disentangles the status 

of mathematical objects’ existence from other scientific concerns. This is arguably an ad-

vantage, as the upshot is that mathematical ontology is investigated on its own premises, and 

not investigated as analogous – neither in content nor results – to another discipline. Moreover, 

mathematical knowledge is considered privileged, and our study of mathematical ontology and 

metaontology should reflect that. As the burden of proof is borne by the realist to make their 

case rather than by the anti-realist, implementing a suitable metaontology – to serve as a meth-

odological and qualifying framework – seemingly makes assumptions that were previously 

implicit in our theory explicit.    
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Coherentist Structuralism: Structures as 

Thin Objects* 
 

Abstract: 
This paper explores the position of coherentist structuralism in philosophy of math-
ematics. The idea is that non-eliminative structuralism has a natural ally in coher-
entist minimalism, and that the positions have certain traits that suggest they should 
be combined. This paper aims at developing a combination view of the ontology 
of non-eliminative structuralism and the metaontology of coherentist minimalism. 
Moreover, I argue that the central claim of non-eliminative structuralism – that 
abstract structures exist – is given added justification by situating it within a 
broader philosophical framework; namely, by adopting metaontological coherent-
ism. 

 

1. Introduction 

In philosophy of mathematics, the questions of what mathematical objects are and whether they 

exist continue to be of interest. These are topics pertaining to mathematical ontology. Non-

eliminative structuralism is one position that provides answers to these issues. On the non-

eliminative structuralist’s view, mathematical ontology consists of abstract structures and their 

positions, which are thought to exist independently of humans, i.e., it is a variant of realism in 

ontology. Interestingly, non-eliminative structuralism has not been pursued from an explicitly 

metaontological perspective. Metaontology for mathematics has to do with methodology of 

ontology and the qualification of – or limiting restrictions on – one’s ontological views. Coher-

entist minimalism is one such metaontological position, which holds that given a mathematical 

theory’s coherence, the mathematical objects described by the theory exist. It is a 

metaontologically minimalist position because the criterion for mathematical existence – that 

a theory is coherent – is minimal, which thus allows for a generous ontology. The lower we set 

the bar for existence, the more entities exist. While coherentist ideas have been defended, it has 

not been developed as a metaontological background theory in which to frame one’s onto-

logical views.  

 
* This project has received funding from the European Research Council (ERC) under the European Union's 
Horizon 2020 research and innovation program (grant agreement No. 715222). I would like to thank Günther 
Eder, Eduardo Giovannini, Henning Heller, Julie Lauvsland, and Georg Schiemer for helpful comments. 
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The notion of coherence remains woolly, which is why a connection to other coherence 

theories is useful. Coherence theories of justification in analytic epistemology provides a 

distinction between systemic and relational coherence, in order to characterise how the 

system’s internal arrangement, and how the system as a whole, provides justification in 

different ways (see Bender (1989)). This distinction finds a correspondence in mathematical 

structuralism, where there is a dependence relationship between a structure and the elements 

making up that structure. This correspondence, I argue, is worth looking into.  

This paper explores the position of coherentist structuralism in philosophy of 

mathematics. It is a combination view that unites the ontology of non-eliminative structuralism 

and the metaontology of coherentist minimalism. The idea is that non-eliminative structuralism 

has a natural ally in coherentist minimalism, and that the positions have certain traits that 

suggest they could benefit from being combined. Moreover, I argue that the central claim of 

non-eliminative structuralism – that abstract structures exist – is given added justification by 

situating it within a broader philosophical framework; namely, by adopting a suitable 

metaontology. Attendant to pursuing this combination view, is a general elucidation of 

coherentism and coherence, which I will strive to achieve by investigating possible areas of 

conceptual overlap with – or applicability from – coherence theories in analytic epistemology.  

In section 2, I explain what is meant by a metaontology for mathematics, and sketch 

two approaches to it (inflationary and deflationary). Section 3 is on metaontological mini-

malism and thin objects, and how these ideas are instances of a deflationary approach to 

metaontology. In section 4, I outline what coherentist minimalism entails as a metaontological 

position, and I provide different explications of the notion ‘coherence’. In section 5, I move on 

to the combination view of coherentist structuralism and point to how the incompleteness and 

dependence of objects on a structuralist picture can be construed as coherence claims. On the 

combination view, structures can be conceived of as thin objects, thus making them 

metaphysically lightweight. This allows for a thinner realism, as opposed to a robust realism à 

la platonism in mathematics.  

 

2. Metaontology for mathematics 

Metaontology for mathematics has mathematical ontology as its subject-matter. When we ask 

‘what mathematical entities exist?’, we are still within the field of ontology. When, on the other 

hand, we ask whether there are objective answers to the question ‘what mathematical entities 
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exist?’ we are within the field of metaontology for mathematics (Chalmers 2009:77).1 The 

questions of ontology are bracketed and abstracted on, and thereby made into a new field of 

study. When we pursue metaontology for mathematical ontology, we want to figure out what 

is required for mathematical entities to exist, and how we go about determining that. We are, 

then, in pursuit of a set of criteria that the entities to which we are ontologically committed 

must meet in order to exist. Metaontology is thus about the methodology of ontology, and can 

be characterised as an effort to investigate the legitimacy and standing of the field of ontology 

as such. According to Matti Eklund (2006) and Øystein Linnebo (2018), metaontology for 

mathematics is occupied with the basic concepts of ontology, like existence and objecthood. 

The answers to the question of when a mathematical ‘something’ counts as an object, and what 

it takes for a mathematical ‘something’ to exist, determine our mathematical ontology proper. 

Not only will our metaontological presuppositions have been clarified, but the resultant onto-

logical view will be fixed. In this way, metaontology is concerned with the methodology of 

ontology, in the way the crucial concepts are subjected to a process of sharpening, leading to a 

better thought-out ontological account. Attendant to the idea that metaontology provides a 

methodology for mathematical ontology, is the idea that metaontology amounts to a sort of 

qualification of one’s ontological views. Most metaontologies for mathematics are developed 

by ontologically realist positions, as the burden is on the realist to prove the existence of math-

ematical objects. It is the ontological realist that needs added justification for her views, and 

one way to go about that is to impose certain limiting requirements. If her ontological claims 

must submit to restrictive conditions, the claims will i) follow the same guiding principle, ii) 

become uniform, and iii) ensure that the ontology as a whole has a desired unity. Ontological 

claims thus receive qualification, making implicit theoretical underpinnings explicit, by artic-

ulating criteria for when we allow mathematical entities to exist. 

While metaontology as a field was coined by Peter Van Inwagen as recently as (1998), 

there is some historical background that is useful to mention for the purposes of this paper. W. 

V. O. Quine (1948, 1951) and Rudolf Carnap (1950) engaged in a discussion about ontology, 

the analytic/synthetic distinction, and ontological commitment to abstract entities. For the case 

at hand, metaontology for mathematics, the issue of ontological commitment to abstract entities 

is especially relevant. In (1948) Quine describes what it takes to be committed to the existence 

of an entity: “A theory is committed to those and only those entities to which the bound varia-

bles of the theory must be capable of referring in order that the affirmations made in the theory 

 
1 For interesting discussions on metaontology, see, for instance, Eklund (2006) and the essays in Metametaphysics 
(2009), edited by David Chalmers, David Manley and Ryan Wasserman. 
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be true” (Quine 1948:33). Thus, we are ontologically committed to entities depending on which 

theories we accept, and what successful referring is needed for the theory to come out true. In 

the wake of the Quine-Carnap dispute,2 two metaontological approaches were developed. 

There is the inflationary approach, which hails back to (broadly) Quinean ideas, and there is 

the deflationary approach, based on (broadly) Carnapian ideas. 

Let us start off with the neo-Quinean inflationary approach. The received view is that 

Quine “won” the debate, and reinstated ontology and ontological realism, as legitimate enter-

prises with a natural place within the analytic tradition.3 It is an inflationary attitude towards 

metaontology insofar as it models ontology on science, so that metaphysics is thought to be 

continuous with science (Quine 1988:117). As the existence of abstract entities is theory-de-

pendent – due to Quine’s criterion for ontological commitment – we have to look at the theories 

that include reference to abstract mathematical entities, specifically, the empirical sciences. 

Mathematics is indispensable for the empirical sciences, and thus reference to mathematical 

entities follows: We are ontologically committed to abstract mathematical entities. This brief 

statement is, in its spelled-out form, known as the indispensability argument.4 We appeal to 

the applicability of mathematics to the empirical sciences and accept the existence of abstract 

entities, due to their indispensability for the sciences’ full execution. The existence of mathe-

matical entities thus relies on our desire to keep the toolbox for the empirical sciences fully 

equipped.  

Let us move on to Carnap’s contribution to the dispute and the deflationary neo-Car-

napian approach to metaontology. Carnap (1950) introduces so-called linguistic frameworks to 

secure continued face-value talk of mathematical objects. He distinguishes between internal 

and external questions. 

 
And now we must distinguish two kinds of questions of existence: first, questions of the 
existence of certain entities of the new kind within the framework; we call them internal 
questions; and second, questions concerning the existence or reality of the system of en-
tities as a whole, called external questions. … In contrast to the former questions, this 
question is raised neither by the man in the street nor by scientists, but only by philoso-
phers. (Carnap 1950:243) 

 

Internal questions are answered within a particular linguistic framework about the entities be-

longing to that framework, e.g., mathematics. These questions can be answered straight-

 
2 See Putnam (2004), Chalmers (2009), Soames (2009), Eklund (2013), for discussion on the Quine-Carnap dis-
pute.  
3 I go more into the Quine-Carnap dispute and the inflationary and deflationary approach to metaontology in the 
first article of this dissertation. 
4 It is known as the Quine-Putnam indispensability argument, see Putnam (1979) for a formulation of it, for dis-
cussion, see for instance Maddy (1990, 1992), Resnik (1995, 1997), and Colyvan (2001). 
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forwardly, either by conceptual or empirical means. So, if I were to ask whether there are num-

bers, our knowledge of mathematics would provide the answer that there are numbers, for ex-

ample the natural number 2. In this way, we appeal to mathematics itself and the inner workings 

of it. Now, an external question is something else entirely. The external question is about the 

framework, or thing-world, and the entities described as such. If I were to ask whether there 

are numbers, I could not answer as easily. The external question is metaphysically deeper. It is 

about whether the whole of mathematics captures some true aspect of reality or whether it is 

an artificial field, made up by mathematicians. The external question is only ever asked by 

philosophers, and has as such no bearing on the day-to-day practice of mathematics, nor on the 

layperson’s everyday usage of elementary mathematics.  

 How does Carnap’s idea of linguistic frameworks lead to a deflationary approach to 

metaontology? We could say that it relativises existence questions. It means that we can ask 

questions within different linguistic frameworks, and that within each and every framework the 

existence questions do not need external justification. To answer a question about mathematical 

existence, we simply answer from within the mathematical framework. And likewise for other 

frameworks. If we ask an existence question within linguistics, e.g., whether genitives exist, 

we can answer in the affirmative, only relying on the framework we operate within. If we were 

to ask whether genitives exist from an external perspective, we would engage in a futile debate, 

since questions concerning whether natural language concepts pick out existing qualities or 

categories are meaningless for Carnap. The neo-Carnapian deflationary approach to metaon-

tology thus drastically lowers the bar for when we can adequately claim that certain entities 

exist; every syntactically well-defined framework comes with a domain of objects that exist 

relative to the framework.  

Deflationary approaches to metaontology are on the rise (Marschall & Schindler 2021). 

Amie Thomasson (2014) argues for a deflationary approach, claiming that some existence 

questions should be easy. We should not demand extra special justification for claiming that 

certain entities exist, from the fear that they do not accurately ‘carve reality at its joints’. If we 

successfully operate with certain concepts, and they pick out entities we have no problem re-

ferring to, then we should also be allowed to make easy existence claims about them. The 

Carnapian idea of linguistic frameworks is an important forerunner to this line of argument.  

 Where, then, does this leave us for our case of metaontology for mathematics? Let us 

consider Scott Soames’ (2009) take on the Quine-Carnap dispute and the ontological commit-

ment to abstract mathematical entities. 
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Can there be any serious doubt that there are prime numbers greater than a million, and 
hence that there are numbers? Surely not. Perhaps, then, what needs to be abandoned is 
the idea that the existence of abstract objects is especially questionable, requiring an un-
usually demanding justification. This idea was, I would argue, one of Quine’s central 
unexamined presuppositions. It is worth re-examining. Here, my sympathies are with 
Carnap. … [H]e was, I suspect, right in thinking that our ready appeal to them in mathe-
matics and semantics is all the justification they need. (Soames 2009:442-43) 

 

Soames charges Quine with holding that mathematical existence claims require “unusually de-

manding justification”, and that this is one of Quine’s “central unexamined presuppositions”. 

Interestingly, such unexamined presuppositions are exactly what is addressed by metaontolog-

ical efforts. This is at the centre of the Quine-Carnap dispute, and much of the contemporary 

metaontological debate departs from this point. Are we allowed to accept the existence of ab-

stract mathematical objects without such extra demanding justification? And what would such 

extra demanding justification even look like? Due to the scope of this paper, I will not provide 

answers to these questions. For now, though, we have seen what characterises different meta-

ontological approaches to mathematics, and become clearer on some of its historical roots. 

 

3. Metaontological minimalism 

A metaontological view that has gotten recent traction within an ontologically realist setting is 

that of metaontological minimalism, defended by Linnebo (2012, 2018). Linnebo characterises 

metaontology as the “study of the key concepts of ontology, such as existence and objecthood”, 

and if these concepts have a minimal character, we have a form of metaontological minimalism 

on our hands (Linnebo 2018:4). This means that the bar for when mathematical entities exist is 

rather low, i.e., the requirements for mathematical existence are minimal. Metaontological 

minimalism does not support a minimal ontology, on the contrary, generous ontological views 

are very much compatible with this metaontological stance.  
 

Metaontological minimalism has consequences concerning ontology proper. The thinner 
the concept of an object, the more objects there tend to be. Metaontological minimalism 
thus tends to support a generous ontology. By contrast, a generous ontology does not by 
itself support a metaontological minimalism. The universe might just happen to contain 
an abundance of objects whose existence makes substantial demands on the world. 
(Linnebo 2018:5) 

 

If the requirement for a mathematical ‘something’ to be an object is minimal, it leads to more 

objects. The more objects there are, the more generous an ontology do we have. It is important 

to note, as Linnebo does, that a generous ontology does not automatically support 
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metaontological minimalism. But minimalism lends support the other way around. The neo-

Fregeans Bob Hale and Crispin Wright are charged with being maximalists, as they support a 

generous (or “promiscuous” as Eklund puts it) ontology (Eklund 2016:79). However, they 

would rather characterise their position as minimalist (Hale & Wright 2009). We see here, then, 

that while it might be appropriate to call their ontology maximalist, minimalism is appropriate 

for their metaontology. This distinction is important. 

 Let us consider a neo-Fregean example of how existence and objecthood can have min-

imal character. It is based on Hume’s principle, 

#F = #G  «  F » G 

which says that the number of Fs is the same as the number of Gs if and only if there is a one-

to-one correspondence between the Fs and Gs. If the equinumerosity claim is true, the number 

identity is also true, and the number ascribed to the Fs and Gs exists. For example, if you have 

set the table, and the number of forks match the number of knives, the set of forks is equinu-

merous to the set of knives. From this, we get that the number identity of forks and knives 

holds, and that the number of forks and knives exists. In this example, we have a view where 

we can get existence and objecthood from a metaphysical recarving of reality from already 

accepted objects. The truth of the right-hand side suffices for the truth of the left-hand side, 

thus ensuring the existence of the numbers figuring there. We see here that what is required for 

the numbers to exist is not that much. We have not said anything about the numbers before we 

claim that they exist. What we do say is that the truth of the one side is sufficient for the truth 

of the other, by using a mathematical principle. Much of the neo-Fregean program relies on 

this principle, and other so-called abstraction principles. The thought is to “get at” new or other 

objects by showing that what we have done so far is legitimate. This requires metaphysical 

recarving, and one has to get on board with the idea that reality can be carved at its joints in 

different – equally good – ways.  

While this is one way to let existence and objecthood have minimal character, how can 

we think about the resultant objects? This is where the idea of thin objects come into play, 

which is central for Linnebo’s metaontological minimalism. The thought is that an object is 

considered thin if it does not make substantial demands on the world (Linnebo 2018:xi). This 

is, as Linnebo acknowledges, still very vague. What does it mean for an object to not substan-

tially alter the world? One way to look at it is illustrated by considering an object that does 

alter the world, e.g., the chair I am sitting on right now. The chair ensures my continued sitting, 

thereby substantially altering the world. But, if I were to consider the set of the chair I am 

sitting on, it does not ensure anything of the sort. The set of the chair would be considered thin, 



 

 60 

while the chair itself would be considered thick. The draw of thin objects is to find a way to 

have minimal requirements for existence. If this is achieved, we can make easy or non-demand-

ing existence claims about mathematical entities. 

According to Linnebo, metaontological positions are minimalist if they allow for thin 

objects (Linnebo 2018:5).  

  
Minimalists need not hold that all objects are thin. Their claim is that our concept of an 
object permits thin objects. Additional “thickness” can of course derive from the kind of 
object in question. Elementary particles, for example, are thick in the sense that their 
existence makes a substantial demand on the world. But their thickness derives from what 
it is to be an elementary particle, not from what it is to be an object. (Linnebo 2018:5) 

 

The concept of an object needs extending if we are to permit thin objects. To avoid any confu-

sion here; minimalism is not a claim about all objects in general or how we should conceive of 

spatio-temporal reality. We do not have to accept all objects as thin, or that we choose which 

objects that substantially alter the world. Metaontological minimalism is a specific thesis re-

garding the key concepts of mathematical ontology. If we widen the concepts of existence and 

objecthood – that is, make them minimal in character – they will include more ‘somethings’, 

and we end up with a more generous ontology. By doing that, we allow for the existence of 

more objects, some of which are thin. But whether thin or thick, objects do not get their thin- 

or thickness from what it means to be an object, but from being the particular objects they are, 

be it a set or a chair.  

This brings us to levels of thinness. An object can be thin in an absolute sense, so that 

it does not make a substantial demand on the world, e.g., pure abstracta, sets, numbers. But 

objects can also be thin in a relative sense. An object is thin in a relative sense, if given the 

existence of some objects X, the existence of an additional object Y makes no further substantial 

demand on the world. An example is the set of two trees, where the set does not make any 

further substantial demands on the world, other than that of the spatio-temporal make-up of the 

trees in question. This distinction leads to a metaphysical gradation of objects. First, we have 

the metaphysically demanding thick objects. Spatio-temporal objects are always considered to 

be thick (e.g., the chair I’m sitting on). Second, we have the metaphysically least demanding 

objects, the absolutely thin objects. These are non-demanding and pure, insofar as they have 

no representational imprint or concrete quality to them. Examples are pure mathematical ob-

jects such as sets and numbers. Third, we have the relatively thin objects. This is a middle 

category with one foot in each camp. On the one hand, they make barely any demand on the 

world. On the other hand, they can have elements that are clearly thick, like in the example of 
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the set of the two trees. A type might also qualify as a relatively thin object, whose tokens are 

concrete instantiations. Related to the idea of relatively thin objects are dependence relation-

ships, which we will come back to in section 5.2. 

For now, let us consider how metaontological minimalism and the idea of thin objects 

fit with the two metaontological approaches above (section 2). Metaontological minimalism is 

an effort to give the key concepts of ontology – existence and objecthood – a minimal character. 

This is pursued so that we can have a metaphysically lightweight ontology. A metaphysically 

lightweight ontology is one where there are thin objects, objects that do not substantially alter 

the world. The inclusion of thin objects is well-suited for mathematical ontology. It is easier to 

justify existence claims in mathematical ontology, if the realism is less “robust”, i.e., the thin-

ner the realism, the better. As the bar for mathematical existence is lowered, there is less need 

for extra special justification. Rather, the justification for mathematical existence claims can 

be found within the linguistic framework of mathematics, as straightforwardly answerable in-

ternal questions by conceptual means. From these considerations, it seems that metaontological 

minimalism and the idea of thin objects bear all the hallmarks of a deflationary metaontological 

account.  

Before we move on to coherentism, let me first give a brief description of Linnebo’s 

own approach to metaontological minimalism, namely, abstractionism. This is a neo-Fregean 

approach to thin objects, where the ingenuity of Hume’s principle is transmitted to other ab-

straction principles, i.e., principles of the form: §a = §b  « a ~ b. Here, ‘§’ is an operator, 

while ‘~’ is an equivalence relation. An example of such a principle is that for the direction of 

lines: l1 ççl2 Þ d(l1) = d(l2). This means that if line 1 and line 2 are parallel, the direction of line 

1 is the same as the direction of line 2. But, beware: This constitutes another metaphysical 

picture than that of the neo-Fregeans Hale & Wright. While Frege and the neo-Fregeans have 

a biconditional between the left-hand side and the right-hand side, Linnebo prefers the suffi-

ciency operator ‘Þ’ (Linnebo 2018:18-19). This means that Linnebo cannot go from the right 

to the left, but only from the left to the right. i.e., his abstraction principles are one-directional. 

This makes for an asymmetric picture of abstraction and metaphysical reality. From the left-

hand side, that line 1 and line 2 are parallel, we can get to the right-hand side and thus realise 

that their directions are the same. We are thereby given genuinely new objects, i.e., the concept 

of direction. In favouring this asymmetric sufficiency operator, Linnebo dismisses the Fregean 

idea of recarving the same metaphysical content. The idea is that we can always get genuinely 

new objects from old and known ones. 
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4. Coherentist minimalism 

Now, another approach to thin objects is that of coherentist minimalism.5 While Fregean ab-

stractionism has a one-directional or linear methodology to ‘get at’ the ontology we want, co-

herentist minimalism does not. Coherentism as a clear-cut metaontological approach has not 

been pursued,6 though coherentist ideas have already been defended in non-eliminative struc-

turalist accounts, e.g., Charles Parsons (1990), Michael Resnik (1997) and Stewart Shapiro 

(1997). Coherentism as an explicitly metaontological prism, through which we characterise 

mathematical ontology, has not – as of yet – claimed its proper standing as a potential back-

ground framework. The goal, surely, shoud be that the ontological, epistemological, and met-

aontological stories all fit together, so as to provide a general account of mathematical entities 

and knowledge, where the reasons for which we allow mathematical existence are explicated 

and made integral to the philosophical whole. 

 What are the specific traits of metaontological coherentism? And what makes it mini-

malist? As a metaontology, it aims at articulating criteria for when mathematical entities exist. 

Linnebo describes coherentism thus. 

 
The coherence of a mathematical theory suffices for the existence of the objects that the 
theory purports to describe. … All that the existence of these new mathematical objects 
involves, according to the view in question, is the coherence of the theories that describe 
the relevant structures. (Linnebo 2018:5) 

 

Coherentism thus provides mathematical ontology with boundaries, and serves as a qualifica-

tion of views. The threshold for the existence of mathematical entities is made explicit: If the 

theory is coherent, the entities described by the theory exist. This leads to ontological uni-

formity, for every ontological claim within a coherentist framework, we can be sure that the 

entity in question fulfils this criterion, it belongs to – or is described in – a coherent theory. 

Coherentism is thus minimalist, insofar as what is needed for an entity to exist is very little. 

Coherence suffices for mathematical existence. This makes metaontological coherentism a ra-

ther straightforward position. However, it is not that easy. The remaining difficulty lies ahead; 

to provide an adequate notion of coherence. This is what the next section will be occupied with.  

 

 
5 In (2018) Linnebo suggests coherentism as another (yet unexplored) road to thin objects. His abstractionism is 
not against coherentism, they can rather be seen as two different metaphysical pictures coming from different 
perspectives.  
6 This is probably because metaontology as a discipline was not yet named as such. Remember, ‘metaontology’ 
was first introduced be Peter Van Inwagen with the paper bearing that name (1998). 
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4.1 Coherence 

While neo-Fregean abstractionism hails back to Gottlob Frege’s logicist program, coherentist 

minimalism has its roots in David Hilbert’s views.7 The so-called Frege-Hilbert controversy 

was an exchange of letters between Frege and Hilbert at the turn of the century. In a response 

to Frege, Hilbert writes on the criterion for existence. 

 
As long as I have been thinking, writing and lecturing on these things, I have been the 
exact reverse: if the arbitrarily given axioms do not contradict each other with all their 
consequences, then they are true and the things defined by them exist. This is for me the 
criterion of truth and existence. (Hilbert in letter to Frege, Dec 29 1899, in (Frege 1980)) 

 

For Hilbert, consistency is enough. As long as we cannot, from a given set of axioms, deduce 

both a sentence Φ and its negation ¬Φ, the theory defined by the axiom system is consistent.8 

According to Hilbert, consistency is the criterion for truth and existence, and the mathematical 

entities described by the theory exist. However, this seems too weak a criterion. We can have 

a set of propositions that are perfectly consistent without what is described by those proposi-

tions existing. For example, the set of propositions describing a pink elephant in various de-

tailed ways might be consistent, without such an elephant existing. One could argue, continuing 

the idea of thin objects, that consistency is not a sufficient criterion only for thick objects, as 

the existence of the pink elephant would substantially alter the world. But perhaps consistency 

would be enough for thin objects. According to Stewart Shapiro, however, consistency does 

not work for the entities of mathematical ontology either (1997:13). On Shapiro’s view, where 

the envisioned background metatheory is second-order, coherence cannot be defined as deduc-

tive consistency: “When it comes to structures, consistency does not imply existence, contra 

Hilbert. Some consistent second-order theories have no models…. Surely, such theories are not 

coherent” (Shapiro 1997:13). So, equating coherence with logical consistency does not seem 

to cut it as the relevant existence criterion. 

 Let us see how Shapiro considers coherence and its role in his version of non-elimina-

tive structuralism, called ante rem structuralism. In (1997) he proposes a criterion for the ex-

istence of mathematical structures, which he calls the Coherence principle. 

 

 
7 For discussion on the Frege-Hilbert controversy, which can be seen as some historical origin to the contemporary 
metaontological debate, see Resnik (1974), Blanchette (1996, 2018), Doherty (2019), and Dean (2020). 
8 Hilbert’s notion of consistency is not the same as the modern-day notion, as he was not explicit about this. For 
our purposes, Hilbert’s views on consistency as criterion for existence is nonetheless relevant as a precursor to 
coherence as existence criterion in metaontological coherentism. For a historical and accurate discussion of Hil-
bert’s notion of consistency, see Dean (2020). 
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The main principle behind structuralism is that any coherent theory characterizes a struc-
ture, or a class of structures. For what it is worth, I state this much: Coherence: If F is a 
coherent formula in a second-order language, then there is a structure that satisfies F. 
The problem, of course, is that it is far from clear what “coherent” comes to here. 
(Shapiro 1997:95) 

 

This is clearly a position that commits itself to the existence of abstract structures by way of 

coherence. Shapiro uses the coherence of a formula in a second-order language to assert that 

there is a structure that satisfies the formula in question. For Shapiro (1997) the Coherence 

principle thus plays an important role; it is the principle by which abstract structures exist. The 

main problem, as Shapiro acknowledges, is that it remains uncertain what coherence really 

amounts to. Shapiro suggests that coherence is an informal analogy to mathematical satisfi-

ability. 

 
The relevant formal rendering of “coherence,” then, is not “deductive consistency.” A 
better analogue for coherence is something like “satisfiability.” It will not do, of course, 
to define coherence as satisfiability. Normally, to say that a sentence F is satisfiable is to 
say that there exists a model of F. The locution “exists” here is understood as “is a 
member of the set-theoretic hierarchy,” which is just another structure. What makes us 
think that set theory itself is coherent/satisfiable? (Shapiro 1997:135) 

 

The main justification for and understanding of what coherence is rest on a similarity with 

satisfiability in mathematics, as set theory is taken to be the “ultimate court of appeal for exist-

ence questions” and doubts whether a particular mathematical entity exists are “resolved by 

showing that objects of this type can be found or modelled in the set-theoretic hierarchy” 

(Shapiro 1997:136). James Schwartz (2015) writes that it is not clear how heavily Shapiro’s 

justification rests on this similarity. One thing is to point out this similarity and say that it makes 

for a nice analogy. The problem arises because their similarity is meant to support the Coher-

ence principle, though they are explicitly not the same, as Shapiro refuses to define coherence 

in terms of satisfiability. So how helpful is the analogy really? And what is the analogy meant 

to point to? It seems muddled to on the one hand claim that their similarity offers support for 

the Coherence principle, but on the other hand shy away from an explicit explication of the 

relationship between the two. Shapiro should not play up the importance of their similarity as 

justification for the principle, while explaining what the coherence means by comparing it to 

satisfiability. Shapiro admits that his notion of coherence is circular, but argues that it is not 

viciously so: “Coherence is not a rigorously defined mathematical notion, and there is no 

noncircular way to characterize it” (Shapiro 1997:13). While reaffirming its familiarity with 

mathematical satisfiability, he chooses to consider it as an intuitive primitive that cannot be 

reduced to anything more fundamental or to something formal (Shapiro 1997:135). The 
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circularity charge is also brought forth by Schwartz (2015), who argues that not only is 

Shapiro’s reliance on the Coherence principle circular, it is viciously so.  

 
It may be true that the coherence of set theory is presupposed in mathematics, but that 
does not mean that mathematics also presupposes the applicability of the coherence prin-
ciple to set theory, or that it presupposes the existence of a set-theoretic ante rem struc-
ture. And Shapiro nowhere claims that either of these things are presuppositions of math-
ematics.  
 What follows is that Shapiro must look beyond mathematics in order to justify 
the coherence principle. Shapiro recognizes this himself, of course. For instance, he is 
perfectly aware that the satisfiability principle, which he claims ‘underlies mathematical 
practice’ [1997, p. 136], does not directly imply the existence of ante rem structures. 
Rather, what one produces when using the satisfiability principle are systems. (Schwartz 
2015:372-73, emphasis original) 

 

While Schwartz gives some plausibility to the initial thought that coherence is presupposed in 

mathematics, and that it is a quality that mathematics exhibits, that does not mean that the 

Coherence principle is found in mathematics. If we have to search beyond mathematics to 

justify the principle, the reliance on the similarity to satisfiability seems even less fruitful. 

While it may provide the necessary springboard to consider the principle seriously, once the 

informal analogy has reached its potential, we are in need of philosophical justification for 

relying on coherence for the existence of structures.9 While consistency and satisfiability are 

properties best defined within mathematics, coherence is a property to be attributed on philo-

sophical merit. The informal analogy Shapiro draws between coherence and mathematical sat-

isfiability is, presumably, meant only as guidance as to the philosophical content of coherence. 

While Shapiro recognises that the Coherence principle requires philosophical justification, he 

stops short of providing its philosophical content. 

 

4.2 Another concept of coherence 

Now that we have seen some of the muddle that arises when the justification for the Coherence 

principle and the explication of coherence are taken together, let us consider another route. The 

goal must be to get a clearer understanding of what coherence amounts to. As a criterion for 

existence, we have seen that consistency is not enough, it can only be a minimum ingredient. 

We are thus in need of something more, which is why we should cast our net a bit wider and 

 
9 As Schwartz notes, Shapiro is well aware of this: “[Shapiro] is furthermore explicit about mathematical practice 
not providing the final say à propos of the ontology of mathematics, writing that ‘at no time did the mathematical 
community don philosophical hats and decide that mathematical objects – numbers, for example – really do exist’ 
[1997, p. 25], and that the ‘true ontology’ cannot be ‘read off’ of mathematical practice [1997, p. 34]” (Schwartz 
2015:373). 
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see what comes up. In addition to being a view in metaontology, coherentism is also a view in 

another philosophical field; namely, epistemology.10 Coherentism in epistemology is often 

considered as the refusal of one of the main theses of foundationalism,11 viz.,  

 
… [the view] that justification is transmitted from one belief (or small set of beliefs) to 
another belief in a strongly directional or linear manner, and that all such lines of trans-
mission find their source in one or another form of basic belief, a belief characterized by 
a kind of epistemic priority, in that its own justification is not, in turn, transmitted to it 
from other beliefs. (Bender 1989:1) 

 

Foundationalism is linear, one-directional and reductionist in character, where some beliefs 

have epistemic priority over others. This is not the case for coherentism. In coherentism beliefs 

lend mutual support and justification to each other, as long as they all belong to the same system 

of beliefs.12 John Bender characterises epistemological coherentism as the view where “no em-

pirical beliefs enjoy epistemic priority, and all rely for their justification on their connection to, 

or membership in, the body of other things believed or accepted” (Bender 1989:1).  

The notion of coherence also poses some difficulty in epistemological coherentism. 

There is a “tendency for coherence theorists to think of ‘coherence’ in two ways”, and as these 

have been considered interchangeable, it has led to the notion being “obscured” (Williams 

2001:117). The ‘two ways’ refer to a distinction between relational and systemic coherence, a 

distinction that was first drawn attention to by Bender (1989) (see Hansson 2006:95). First, let 

us have a look at systemic coherence. 

 
A large part of the initial, intuitive appeal of the coherence theory is traceable to the 
metaphor involved in the idea that a body of beliefs should “hang together” or “mesh”, 
the threads of the fabric of knowledge being, as they are, interwoven. Thus envisioned, 
coherence is a holistic (and not obviously relational) property, ascribable, presumably in 
varying degrees, to the system as a whole, much as the property of strength applies to 
fabric. (Bender 1989:2) 
 

Systemic coherence is thus a property of a whole, and, as suggested by Bender, it can be at-

tributed in varying degrees. While coherence has also been treated as a categorical either-or 

property, in which a system is either altogether coherent or not at all, I will, following Elke 

Brendel (1999), assume a gradational approach to coherence here; it is not a property the sys-

tem either fully exhibits or not, but a system can have more and less of it (see 
 

10 For some classic literature on epistemological coherentism, see Bonjour (1985), Davidson (1986), Bender 
(1989), Lehrer (1990), and Olsson (1999). 
11 Foundationalism has a long history of widespread accept (e.g., consider Descartes’ first principles). For inter-
esting contributions to resuscitate old-school foundationalism, see DePaul (2000). 
12 Consider Quine and Ullian’s ‘web of belief’ metaphor and book (1970). Quine (1961) is also considered to have 
clear coherentist elements (Williams 2001:126n1).   
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Hansson:2006:94).13 In describing Laurence BonJour’s (1985) notion of systemic coherence, 

Bender writes: 

 
Overall coherence of the system is (at least in part) determined by its logical consistency, 
degree of probabilistic consistency, the number and strength of inferential interconnec-
tions among its members, its unity or lack of isolated subsystems, and its freedom from 
unexplained anomalies. (Bender 1989:2) 

 

There are thus certain qualities and markers that are subsumed by the coherence notion, and 

that must – to a varying degree – be in place for the system to be systemically coherent. In 

contrast to systemic coherence, relational coherence is not a property ascribable to a whole, but 

rather a relation where a belief is cohering with a suitable system. 

 
Coherence here is being conceived in way subtly different from the “strength of the fab-
ric” metaphor above. It has now become a relation between a given belief and a system 
of other beliefs, rather than a property of the whole system. Perhaps this distinction is 
not viewed as important, since the coherence of the system may simply be a function of 
the strength with which each member coheres with the rest, but I think there are … rea-
sons for keeping the “relational” and the “systemic” notions of coherence clear. (Bender 
1989:2) 

 

The main difference between systemic and relational coherence is that while systemic coher-

ence is ascribed due to a totality’s internal arrangement, relational coherence describes the in-

ternal arranging itself. As such, we can conceive of systemic and relational coherence as two 

sides of the same coin, as one can be explained via the other. Sven Ove Hansson (2006) notes 

that whereas BonJour and Quine favour systemic coherence, Keith Lehrer favours relational 

coherence (2006:95). This raises the question of interdefinability; are they truly two equal sides 

of the same coin, or does one take precedence? There are different answers to this. Erik Olsson 

argues, against Lehrer (1997), that relational coherence presupposes systemic coherence, “as 

coherence in the systematic14 sense is the holistic property in virtue of which cohering things 

fit together” and a “theory of relational coherence that does not employ systematic coherence 

cannot be a theory of ‘fitting with in virtue of coherence’” (Olsson 1999:287). Bender (1989) 

and Hansson (2006) ask whether the converse holds; whether systemic coherence can only be 

had if there is relational coherence among the system’s members. Whether they are mutually 

interdefinable is a question I will not attempt to settle in any finality here. The line of inquiry, 

however, does point to something worthy of note; that even in the coherentist debate, there are 

issues of fundamentality.  

 
13 This is not to deny, of course, that a system can also be completely devoid of any coherence whatsoever. 
14 Olsson prefers ‘systematic’ to ‘systemic’ coherence, however, I choose to follow Bender’s coinage. 
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Hansson further remarks that while relational and systemic coherence both have a tra-

dition in epistemology, “the distinction [between relational and systemic coherence] can easily 

be transferred to other subject-matter than knowledge, and it can therefore be included in a 

general theory of coherence” (2006:95). This is where we make our entrance: What is the in-

sight begot from this epistemological notion of coherence? And how can it be relevant for our 

metaontological case of coherentism? First of all, let us keep the noted distinction. Whereas 

systemic coherence is attributed to a whole, relational coherence describes particular instances 

of cohering within the larger whole. This means that there is a clear part-whole difference to 

be preserved, and that the notion allows for nuance. We can individuate the particulars of a 

system that relationally cohere with each other, and, by the token of systemic coherence, the 

system as such is covered by one harmonious property as well. The distinction between sys-

temic and relational coherence is thus relevant for recognising the parts of a whole, and explain 

how both the parts and the whole can exhibit coherence, as relation and property, respectively. 

The spelling out of the conditions to be met in systemic coherence is enlightening. 

While Shapiro’s notion relied on an informal analogue without explaining the notion itself, the 

qualities belonging to systemic coherence highlights the threads that must be in place to ensure 

the “strength of the fabric”. Logical consistency, Hilbert’s alternative, is included as an ingre-

dient. It is not, however, sufficient for coherence, but merely one thread out of many. In addi-

tion, there must be unity and lack of isolated subsystems. This also seems a reasonable condi-

tion for coherence in mathematics. Unity is provided by implementing metaontology and set-

ting a common threshold for when we take mathematical entities to exist, as it sets restrictive 

conditions for our ontological views. A related point goes for the lack of isolated subsystems. 

As we have construed metaontology as methodology of ontology, it would be worrisome if 

there was an abundance of isolated subsystems. A methodology that results in isolated subsys-

tems cannot claim to yield to a regulative principle. We would not ascribe the property of sys-

temic coherence to the metaontology if the ontological views were cleft.  

For metaontological coherentism, the demand that we have freedom from unexplained 

anomalies, e.g., paradoxes, is also reasonable. While it is not unrelated to the ingredient of 

logical consistency, it suggests something different in this context. An anomaly does not have 

to pick out an instance of inconsistency, but can also characterise how something is unusual or 

not agreeing with the rest in a looser or informal sense.15 Moreover, that the degree of coher-

ence would depend on how many and how tightknit the inferential interconnections among the 

totality’s members are, is again a call for unity and general regularity, not to say that it also 

 
15 Consider Thomas Kuhn’s notion of anomaly in normal science (2012). 
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provides a constitutive quality, so that the overall system, i.e., mathematical theory, forms a 

whole out of its members. The spelling out of what systemic coherence means thus gives rise 

to the general property of a system being overall intelligible, where each part is contributing to 

form a united – and coherent – whole, whilst keeping the parts distinct enough to be individu-

ated.  

Coherentism might not be as straightforward a position as initially hoped (beginning of 

section 4). This is due to the difficulties attendant to get a clear understanding of the central 

notion of coherence. While the systemic/relational distinction borrowed from analytic episte-

mology contributes to our conceptual apparatus, thus making it easier to express nuances of 

coherence, it is still meant as the bar for which mathematical objects exist. That is, it is the 

epitome of our minimalist metaontology. While coherence has gotten more philosophical con-

tent, it is still problematic as an existence criterion. Let us reconsider the deflationary compo-

nent of metaontological coherentism. The neo-Carnapian deflationary metaontology proclaims 

that we do not need extra special justification that certain entities exist, and that existence ques-

tions that can be answered by straightforward empirical and conceptual means should be con-

sidered easy.16 A potential hurdle for our account of coherence is that we described it as a 

property which can be attributed in degrees, i.e., a theory can be more or less coherent (see 

Bender (1989), Brendel (1999)). While such a gradational account of coherence is useful when 

explaining degrees of justification, it is less ideal as an existence criterion in metaontology. We 

can still not insert our developed notion of coherence as the articulated threshold for mathe-

matical existence, so that we get the straightforward answers we are seeking on our deflationary 

account. For while the philosophical content of coherence has been advanced, it stops short of 

being a criterion by which our ontological views are regulated.  

Another upshot of borrowing from epistemological coherence theory is that it picks up 

on the historical roots of the two metaontologically minimalist views; neo-Fregean abstraction-

ism and coherentism. We saw in section 4.1 that each hails back to the Frege-Hilbert contro-

versy; the neo-Fregean abstractionism from Frege, and coherentism is indebted to Hilbert, due 

to his existence criterion of consistency, a minimum ingredient of the coherence notion. The 

neo-Fregean abstractionist project has a one-directional approach, in which an asymmetric suf-

ficiency operator gives us new objects from old ones (e.g., equinumerosity claim). This ap-

proach picks up on the linear aspect of epistemological foundationalism. To make this clearer, 

let us consider a passage from Michael Williams (2001) on the difference between epistemo-

logical foundationalism and coherentism. 

 
16 See Thomasson (2014). 
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Whereas foundationalist theories are atomistic, coherence theories are holistic. For the 
coherence theorist, there is not a question of a belief’s being justified all by itself, as the 
foundationalist’s basic beliefs are supposed to be. To be justified, a belief must fit into a 
justified system; and the system is more or less justified depending on how well it ‘hangs 
together’ considered as a whole. This reference to whole systems is crucial. … The dif-
ference between foundationalism and the coherence theory is sometimes explained in 
terms of two competing models of justifying inference. The foundationalist conceives 
justifying inference on a linear model, in which justification proceeds from given ‘prem-
ises’ to ‘conclusions’ by justification-transmitting rules. The coherence theorist’s holistic 
model of justification is decidedly non-linear. While the beliefs that comprise a given 
system will be logically interconnected in various ways, these connections are not in 
themselves relations of justification. … The coherence theory’s distinctiveness arises 
from tracing the epistemic status of the background system to the way the entire system 
fits together. This systematic17 coherence implies radical holism. (Williams 2001:117, 
emphasis original) 

 

On the one side, there is some structural overlap between abstractionism and epistemological 

foundationalism, and on the other, between metaontological coherentism and epistemological 

coherentism. The latter is not directly shocking. Coherence theories, whether in metaontology 

or epistemology, have the rejection of linearity in common, whether it concerns the transmis-

sion of justification between beliefs, or how we get at mathematical entities and how their 

existence is given to us. Shapiro, in describing how we should i) accept the circular aspect of 

coherence, and ii) treat coherence as an intuitive primitive, writes:  

 
There is no getting around this situation. We cannot ground mathematics in any domain 
or theory that is more secure than mathematics itself. All attempts to do so have failed, 
and once again, foundationalism is dead …. The circle that we are stuck with … is not 
vicious and we can live with it. (Shapiro 1997:135)  

 

The circularity of coherence and the non-linearity of coherentist theories have therefore a likely 

explanation. Coherence theories are motivated by giving a non-linear account of how things 

are and can be explained, that is, coherentism provides a competing picture, choosing to high-

light the many interconnections and how those add to the whole system, be it a system of beliefs 

or of mathematical entities. 

 

5. Coherentist structuralism 

As staked out in the introduction, this paper aims at developing a combination view of meta-

ontological coherentism and non-eliminative structuralism. Now that we have covered 

 
17 Williams also uses ‘systematic’ instead of ‘systemic’, but he refers to the same distinction described by Bender. 
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metaontological coherentism and gotten a better understanding of what coherence is, it is time 

to apply our metaontological insights and see where it gets us. We have characterised coher-

entism as a deflationary approach to metaontology, due to the reduced requirements for math-

ematical existence. The goal is to make the existence of mathematical entities more palatable, 

by conceiving structures as thin. This section sets out to show some of the natural connections 

between coherentism and structuralism, picking up on the gradation of thinness of objects (as 

described in section 3) and relating the distinction between systemic and relational coherence 

(section 4.2) to one of the main tenets of structuralism; mathematical objects are incomplete, 

which leads to dependence relations between a structure and its elements. 

 

5.1 Non-eliminative structuralism 

Structuralism is the philosophical position that mathematics is the study of abstract structures, 

for example, that the natural numbers constitute the natural number structure. Structuralist 

ideas have notably been defended by Paul Benacerraf (1965), Geoffrey Hellman (1989, 2001), 

Shapiro (1997, 2011), Resnik (1982, 1997) and Parsons (1980, 1990, 2008).18 An official 

starting point for mathematical structuralism came with Benacerraf ‘s “What Numbers Could 

Not Be” (1965), in which he concluded that numbers are not objects.  

 
Therefore, numbers are not objects at all, because in giving the properties (that is, neces-
sary and sufficient) of numbers you merely characterize an abstract structure – and the 
distinction lies in the fact that the ‘elements’ of the structure have no properties other 
than those relating them to other ‘elements’ of the same structure. (Benacerraf 1965:291)  

 

This means that particular mathematical objects have no more inner nature than what can be 

captured by their structural properties, so that the natural number 2, for instance, has the 

properties it does have due to its place in the natural number structure. Structuralism comes in 

various guises with diametrically different views on ontology. While Benacerraf and Hellman 

argue for an eliminative version of structuralism, Parsons, Resnik and Shapiro defend non-

eliminative structuralism. Eliminative structuralism rejects the objective existence of abstract 

structures. Non-eliminative structuralism is, on the other hand, a realist position. The abstract 

structures are believed to exist objectively and independently of humans, and they also exist 

before any realisation of the structure by a particular mathematical system. For the non-

eliminative structuralist, the ontological commitment to mathematical structures and their 

elements is thus not far removed from that of platonism. Compared to platonism however, 

 
18 See Reck & Price (2000). 
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realist structuralism holds the promise of ignoring properties such as ‘7 is Inger’s favourite 

number’, and rather focus on the properties that are mathematically relevant.  

 When it comes to mathematical objecthood, I hold the view that positions in a structure 

are mathematical objects in their own right. That is, I will not regard the positions in a structure 

as offices that must be filled or instantiated by objects belonging to a particular system.19 Here 

I follow Shapiro (1997), who writes that “mathematical objects – places in a structure – are 

abstract and causally inert” (112). When it comes to structures, the question is whether these 

also should be considered as mathematical objects, or whether they are sui generis entities. 

Here I do not, again following Shapiro, characterise structures as mathematical objects, but 

rather as a “one-over-many entity”, and as the pattern or form of a system, which, “in turn, is 

a collection of related objects” (1997:84). 

 On the structuralist picture, then, what is the nature of the natural number 2? Given that 

structuralism considers mathematical objects as positions in a structure, let us see a couple of 

characterisations of objects by non-eliminative structuralists. Resnik describes these positions 

as follows: “A position is like a geometrical point. It has no distinguishing features other than 

those it has in virtue of being the particular position it is in the pattern to which it belongs” 

(1997:203). Parsons characterises structuralism in terms of an object’s lack of ‘nature’: “The 

idea behind the structuralist view of mathematical objects is that such objects have no more 

‘nature’ than is given by the basic relations of a structure to which they belong” (2004:57). 

And finally, Shapiro points to the dependency mathematical objects exhibit: “The number 2 is 

no more and no less than the second position in the natural number structure; and 6 is the sixth 

position. Neither of them has any independence from the structure in which they are positions, 

and as positions in this structure, neither number is independent of the other” (2000:258). These 

quotes all point to an important property; that mathematical objects qua positions are incom-

plete.20 They are at the mercy of their relations, so that their nature is exhausted by their math-

ematical context. Talk of mathematical objects must refer to their structural backdrop. But if a 

mathematical object is inconceivable alone, what does this incompleteness lead to? Enter: on-

tological dependence. Ontological dependence is a relation that tracks metaphysical fundamen-

tality and priority. An object can ontologically depend on something for its existence, its iden-

tity, or its essence. It can also be conceived of as a metaphysical primitive; in which case it is 

 
19 This is the view of in re structuralism, where the abstract structure does not exist unless there is a system that 
exemplifies it. On this view structure is not ontologically prior to a system, rather, there would be no natural 
number structure if all systems exemplifying the natural numbers were destroyed. This makes systems ontologi-
cally prior to structure (Folina 2020:276-77). 
20 The incompleteness of mathematical objects on a structuralist picture is not to be confused with mathematical 
incompleteness, as in Kurt Gödel’s two Incompleteness Theorems (see Gödel 1931). 
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not possible to reduce the relation to anything more fundamental or give it a further definition. 

I will not venture into determining the nature of the ontological dependence relation fitting for 

structuralism here,21 and will settle for treating it as a metaphysical primitive. Linnebo (2008) 

formulates what he calls the Dependence Claim for structuralism thus: 

 
ODO. Each object in D depends on every other object in D.  

ODS. Each mathematical object depends on the structure to which it belongs. (2008:67-8) 

 

A mathematical object stands in a twofold dependence relation: 1) it depends on the other ob-

jects belonging to the same structure, and 2) it depends on the structure as such. As we saw 

from the citations above, the idea of incompleteness and dependence of objects is defended by 

structuralists (Parsons 1990, 2004; Resnik 1997; Shapiro 1997). In addition to ODO and ODS, 

there is also the issue of whether a structure depends on its positions or is only depended on. 

According to Janet Folina, ante rem structuralism “asserts the ontological priority and inde-

pendence of structures from objects and systems” (2020:278). And, consider Shapiro: 

 
Each mathematical object is a place in a particular structure. There is thus a certain pri-
ority in the status of mathematical objects. The structure is prior to the mathematical 
objects it contains, just as any organization is prior to the offices that constitute it. The 
natural-number structure is prior to 2, just as “baseball defense” is prior to “shortstop” 
and “U.S. Government” is prior to “vice president.” (Shapiro 1997:78). 

 

If we compare this to set theory, the dependence idea is that a set depends upon its members, 

e.g., how the singleton of Socrates depends on Socrates. Here it seems like the larger whole 

depends upon its parts. Should we not say that a structure, as the larger whole, also depends 

upon its parts, that is, the positions belonging to it? We could, if we hold the view that positions 

constitute the structure. But it seems to go the other way around. Consider the incompleteness 

of mathematical objects on the structuralist view: the number 2 is incomplete in terms of being 

what it is due to its relational backdrop. And the relational backdrop is the structure to which 

it belongs and the other objects belonging to it. Moreover, a position is, by its nature, situated 

– the property a position has is exactly that of standing in structural relationship with other 

positions. Without the number 2, there would be no position 6, as they are irrevocably interde-

pendent. Thus, the structure is ontologically prior to its positions. When it comes to the set 

 
21 The fourth paper of this dissertation concerns the ontological dependence relation present in structuralism. Two 
accounts have been given as to what the ontological dependence relation of structuralism should be, Linnebo 
(2008) describes it as a relation of individuation, and John Wigglesworth (2018) as a grounding relation. I sketch 
another alternative, and consider the Husserlian relation of foundation. 
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depending on its members, we are here talking of how a specific mathematical object, a set, 

depends upon its members, so the relevant structure – the set-theoretical hierarchy – keeps its 

role as ontologically prior to the particular set. The idea is that a structure need not be instanti-

ated by any objects, it exists independently.  

So far, we have seen that on the structuralist picture, mathematical objects stand in a 

twofold ontological dependence relation; they depend on the other objects belonging to the 

same structure (ODO), and they depend on the structure as a whole (ODS). But how do these 

dependencies relate to metaontological coherence? As seen in section 4, given coherentist min-

imalism, coherence is the criterion for existence. If a mathematical theory is coherent, the ob-

jects described by the theory exist. We borrowed from epistemological coherentism, and saw 

how there are two notions of coherence, where one is a relation, while the other is a property. 

While relational coherence is “how a belief is justified if it ‘fits in’ or coheres with a suitable 

background system”, systemic coherence “is how the epistemic status of the background sys-

tem is traced to the way the entire system fits together or is internally arranged” (Williams 

2001:117). We also saw that while our analysis of coherence has made its philosophical content 

clearer, it has yet to function as a criterion. To fully work as an existence criterion in metaon-

tology – so that if a theory is coherent, the entities described by the theory exist – a gradational 

account is not ideal. How would we determine whether a theory is coherent enough, so that the 

described entities is granted existence? However, when it comes to analysing coherence, there 

are reasons why we consider systems to be more or less coherent. In our application of episte-

mological coherence to metaontological coherentism, we saw how the distinction between sys-

temic and relational coherence allows for a more accurate analysis. It is clear that if we ascribe 

systemic coherence to a whole, without its parts being arranged in a relationally coherent way, 

the stamp of systemic coherence holds less sway, and the whole is less coherent than it other-

wise would have been. This is one reason to accept the gradational approach to coherence.  

 A related point, also from section 4.2, is how the interdefinability of relational and 

systemic coherence brings out issues of fundamentality. For instance, characterising the par-

ticulars of a system as relationally coherent adds to the systemic coherence of the system. Ols-

son (1999) argues that relational coherence presupposes systemic coherence, as systemic co-

herence is “the holistic property in virtue of which cohering things fit together” (1999:287). 

Relational instances of coherence can also be seen as recognition of the particulars of a sys-

temically coherent system, so that a twofold coherence is expressed. Interestingly, there is a 

clear parallel between how we have analysed coherence, and how, on the structuralist’s view, 

mathematical objects stand in a twofold dependence relation. If we compare relational 
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coherence to ODO (how objects depend on objects), there is some correspondence. As the 

object ontologically depends on the other objects belonging to the same structure, we have an 

instance of relational coherence if a belief ‘fits in’ or coheres with the other beliefs belonging 

to the same system of beliefs.  

As we want a coherentist metaontology, and there are already ontological dependence 

relations present in structuralism, we can combine the two, and formulate the ontological de-

pendence relation in terms of coherence, thereby formulating coherence as our existential cri-

terion. 

 

 ODO ⇢ Relational coherence: 
If a mathematical object coheres with the other objects belonging to the same structure, 
the object exists. 
 

And if we consider ODS and systemic coherence, we see something similar.  

 

ODS ⇢ Systemic coherence: 
If the internal arrangement of objects in a structure is relationally coherent, so that the 
objects form a united whole, the structure is systemically coherent. 
If the structure is systemically coherent, the structure exists. 

 

We have now reformulated the dependence relations of mathematical objects as coherence 

claims. The parallel between relational coherence and ODO is formally straightforward: they 

both characterise how a part stands in a specific relation to other parts, and where all the parts 

are of the same whole. How ODS can be reformulated in terms of systemic coherence, is 

slightly more complicated, as systemic coherence is a property ascribable only to wholes. A 

system exhibits systemic coherence when the internal arranging of the system’s objects is re-

lationally coherent. This means that each and every object must cohere with the others.22 Re-

membering the conditions for systemic coherence in section 4.2, a system is systemically co-

herent if it exhibits unity and logical consistency, there is freedom from unexplained anomalies 

and a lack of separated subsystems, and the inferential interconnections are strong and many. 

In combining ODS and systemic coherence, we can reformulate ODS as a systemic coherence 

claim about mathematical structure, in which these conditions are all met. As coherentist struc-

turalism is a combination view of metaontological coherentism and ontological structuralism, 

we have now explicated the threshold for the existence of structures and their objects by 
 

22 We are, then, to some extent following Bender (1989) and Hansson (2006) when they ask whether a system can 
be systemically coherent, only insofar as the objects belonging to the structure are relationally coherent. Olsson 
(1999) holds the other view, where objects relationally cohere in virtue of being instances of the systemic coherent 
system to which they belong. I believe that a reciprocal view of the interdefinability of systemic and relational 
coherence is the better option, and that they are equally enlightening sides of the same coin. 
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merging a main thesis of structuralism – that mathematical objects are incomplete and stand in 

ontological dependence relationships – with the main thesis of coherentism – that if a theory is 

coherent, the entities described by that theory exist. 

It is important to remember that there are different levels of coherence. Coherence can 

be a property of a whole and a relation between entities. To quote Bender: “Coherence cycles 

but is not circular”, and while the “threat of circularity certainly exists at this juncture”, there 

is a “more promising avenue that opens up if we begin to think of the coherence theory dynam-

ically rather than purely structurally” (1989:8). While Bender is talking of belief acceptance 

and justification from prior acceptances, he has a point that is also relevant for us: That de-

pending on the perspective, an entity can exhibit both relational and systemic coherence. This 

means that we, supposedly, can have a structure that is systemically coherent, but which can 

also be relationally coherent with other structures within the larger frame of a mathematical 

theory. And, as we know, the systemic coherence of the structure depends on the relational 

coherence of the internal arrangement of interconnections. We should, then, be allowed to talk 

of coherence at different levels, as both property and relation. 

 

5.2 Structures as thin objects 

In the above section we saw that one of the main tenets of structuralism – the incompleteness 

of mathematical objects and their resultant ontological dependency relationships – can be re-

formulated as coherence claims. This shows that the ontological dependence from our ontol-

ogy, and the two-level notion of coherence from our metaontology have some natural affinity. 

In this section I want to draw attention to a facet of Parsons’ (1990) structuralism; the distinc-

tions he draws between different levels of abstractness of mathematical objects. The idea is to 

make a plausible connection to the gradation thinness described in section 4, so that the levels 

correspond. 

How does the idea of thin objects translate to a structuralist setting? First of all, as 

structures are not considered ‘mathematical objects’, I will refrain from identifying a structure 

with a thin object, but merely call a structure thin, by which I mean its existence is thin. To the 

structuralist, a coherentist approach means that the structures and the mathematical objects they 

consist of are regarded as thin. In order to see what this might mean, let us briefly look at 

Parsons’ account of mathematical intuition with regard to mathematical objects. Parsons 

develops an account of mathematical intuition where we contemplate objects that are said to 

be quasi-concrete (as opposed to pure mathematical objects). This is a variety of Hilbertian 

intuition, where you take certain strings of strokes to inhabit the properties of the natural 
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numbers (see Hilbert 1926). A string of strokes, e.g. “||||||... ” and “|, ||, |||, ||||”, can then realise 

the properties of the natural number structure. From our experience with these strings of 

strokes, we realise that the tokens are of the same type, and that the string can always be 

extended by an additional stroke (Parsons 2008:159-162). By arranging a pattern consisting of 

strings of strokes where each string is extended by one stroke, the properties of the natural 

number structure are realised. In this case, then, the strings of strokes exemplifying the pattern 

can be viewed as thick, relative to the natural number structure that is considered thin. Let us 

see what these quasi-concrete objects are meant to be.  

 
Pure mathematical objects are to be contrasted not only with concrete objects, but also 
with certain abstract objects, that I call quasi-concrete, because they are directly ‘repre-
sented’ or ‘instantiated’ in the concrete. Examples might be geometric figures (as tradi-
tionally conceived), symbols whose tokens are physical utterances or inscriptions, and 
perhaps sets or sequences of concrete objects. (Parsons 1990:304) 
 
The most important examples of quasi-concrete objects are those in which the concrete 
representations are the sort of objects that can be perceived. … Although sets are in gen-
eral not quasi-concrete, it does seem that sets of concrete objects should count as such; 
here the relation of representation would be just membership. As I am understanding the 
notion, sets of physical objects that are inaccessible to observation would also count as 
quasi-concrete. (Parsons 2008:35) 

 

We see here that Parsons contrasts pure mathematical objects with concrete objects (i.e., objects 

that have concrete representation, e.g., spatio-temporal objects). Additionally, there is another 

type of abstract objects, the quasi-concrete objects, which have instantiations in the concrete. 

An example here is a set whose members are physical objects. There are, then, three levels 

described: 1) pure mathematical objects, 2) quasi-concrete objects, and 3) concrete objects. If 

we remember how thin objects also allow for a gradation in thinness, a natural correspondence 

between the layers presents itself. Thin objects can be thin in an absolute sense, i.e., pure 

mathematical objects, but they can also be thin in a relative sense, e.g., the set of five books. 

And lastly, we have thick objects, which are objects that make a substantial demand on the 

world, e.g., spatio-temporal objects. The pure mathematical objects of Parsons naturally relate 

to objects that are thin in an absolute sense. Concrete objects correspond to thick objects. And 

lastly, the quasi-concrete objects correspond to objects that are thin in a relative sense. Parsons 

(1990) structuralist account thus finds a natural ally in the idea of thin objects, as it provides a 

conceptual framework to express metaphysically graded objects. For instance, the existence of 

a structure is thin relative to the existence of any systems that might exemplify the structure. 

But, as a structure does not need to be instantiated by any particular system, a structure is 

actually thin in an absolute sense. By allowing for relatively thin objects, or quasi-concrete, we 
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can accommodate and explain how particular systems exemplify abstract structures. This 

feature is connected to ontological dependency relationships. We saw above that ontological 

dependence is a relation to analyse ontological priority and fundamentality. And, the quasi-

concrete objects, while a type of abstract objects, do depend on their representations. What 

makes the structuralism we are pursuing here decidedly realist when it comes to ontology, is 

that the structures need not be instantiated by particular systems. It is still a nice feature of our 

framework that it is able to express this distinction. This potential for conceptual explanation 

is another point on which the ontology of structuralism and the metaontology of coherentism 

find common ground, and strengthens their complementary companionship.  

Coherentism thus constitutes an alternative approach to thin objects. The existence of 

objects resulting from the coherence of a mathematical theory is thin because, as Linnebo 

phrases it, their existence does not put any further metaphysical demands on the world, other 

than that of the theory providing their description. As a metaontological position, the coherent-

ist version of minimalism is attractive exactly because of this descriptive character. The coher-

entist brings to the fore a mathematical system’s capacity for describing objects in a coherent 

manner, and thus ties an object’s existence to its description. Moreover, it provides a meta-

physical picture of the existence of mathematical objects that is not linear and foundationalist. 

This is an upshot, since it is difficult to see what the ‘basic belief’ or first principles should be 

for a structuralist view of mathematics. Structuralism, along with coherentism, is committed to 

a view where the whole is considered a crucial notion, and has priority to particular mathemat-

ical objects. A formulation of a metaontological criterion for mathematical existence should 

follow this non-linearity. But aside from these nice features, we might still want to ask whether 

the coherentist criterion is in fact true. Do all coherent structures really exist? Here we ought 

to remember though, that our inquiry is metaontological. Coherentist structuralism is a meta-

ontologically minimalist account of mathematics, and as such, the entities it describes are not 

only an altogether different case from that of our pink elephant, but our metaontological inquiry 

is also decidedly distinct from the ontological inquiry. For our present case, it is not the coher-

entist structuralist’s task to prove from indubitable beliefs that mathematical structures and 

objects exist. What is at stake, and what I have tried to show, is that a coherentist approach to 

thin objects is compatible with a structuralist account of mathematics.   
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6. Conclusion 

In this paper we have seen how metaontological coherentism fits with non-eliminative 

structuralist ontology. Non-eliminative structuralism is a position that is committed to the 

existence of abstract mathematical structures; hence, it is a variant of realism in mathematical 

ontology. The question is whether mathematical objects can be construed so as to not be 

existentially too demanding, so that we can more readily accept them as existing entities, 

without supporting a robust platonic heaven. Coherentism advocates a lightweight 

metaphysics, by providing an approach to thin objects. This makes it a deflationary meta-

ontology, as it lowers the bar for existence and does not demand extra special justification. 

Rather, mathematical existence questions are answerable as internal questions in the 

metaontological framework provided. The criterion for existence – a mathematical theory’s co-

herence – constitutes a minimal requirement. We saw from coherence theories in epistemology, 

that a distinction between systemic and relational coherence allows us to differentiate levels or 

cycles of coherence. Moreover, in applying this notion of coherence to our structuralist 

ontology, we could reformulate one of its main tenets: The twofold ontological Dependence 

Claim is reflected in – or is possible to spell out as – relational and systemic coherence claims. 

Also, the relative and absolute thinness of abstract objects have a corresponding distinction in 

Parsons (1990, 2008), between pure and quasi-concrete abstract objects. There are thus 

important theoretical areas in which structuralism and coherentism overlap and allow for 

reformulation and explanation. This lends support to our thesis that a structuralist with 

ontologically realist ambitions can also be a metaontological coherentist, as it provides her with 

complementary theoretical underpinnings. The investigation into coherence and coherentism 

pursued a philosophical elucidation of the criterion, but one in which emphasis was put on its 

opposition to linear accounts of justification and metaontology. While our coherentist inquiry 

of structuralism has shown that there is a natural affinity, there are open questions worth 

pursuing; for instance, whether a coherentist structuralist really is better off than her purely 

structuralist counterpart in justifying the existence of abstract structures. And, how we spell out 

the conditions of systemic coherence so that we can determine whether a mathematical theory 

is adequately coherent, so that the thin existence of structures and their entities is ensured. 

These will have to be addressed elsewhere. For now, I have tried to develop another notion of 

coherence, one that draws on distantly related coherence theories, so that structuralist claims 

of dependence can be construed as metaontological coherence claims, and we can formulate a 

cyclical notion of systemic coherence as a suitable existence criterion for structures and their 

objects.  
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Two Approaches to the Access Problem* 

 

Abstract: 
In this paper I argue that there are two approaches to the access problem – the Head 
On Approach and the Tweaking the Question Approach. These are reflective of two 
kinds of answer to the problem, viz., internal and external answers, a Carnapian 
distinction made salient for epistemology by Audrey Yap (2009). The kind of an-
swer one favours, determines the approach one pursues in order to account for 
mathematical knowledge. The two approaches are characterised by different views 
on what counts as an adequate epistemological account. A consequence of this is 
miscommunication between the two camps, as the epistemological story of each 
approach violates implicit demands and premises for what counts as adequate for 
the other. This paper demonstrates how the two kinds of answer that Yap presents 
deal with the epistemological challenge, and shows that the Tweaking the Question 
Approach is superior to the Head On Approach.  

 

1. Introduction 

In the paper “Mathematical Truth” (1973) Paul Benacerraf formulated the so-called access 

problem. This is an epistemological challenge faced by positions in philosophy of mathematics 

that pursue a platonist ontology. If mathematical objects exist outside of space and time, it is 

not clear how we can, from our spatio-temporal starting point, epistemically access and come 

to have knowledge of them. While Benacerraf’s paper was not intended to refute mathematical 

platonism specifically, it is often taken to present a fatal objection to realist positions in math-

ematical ontology. There have been several efforts to overcome this challenge. To sort the 

different attempts made, I employ Audrey Yap’s (2009) distinction between external and in-

ternal answers to the access problem.1 While an external answer means that we must ensure 

epistemic access to mathematical objects by bridging the apparent gulf between them and us, 

an internal answer argues that there is no need for extra-mathematical justification to explain 

this access. In this paper I argue that the two kinds of answers lead to two distinct approaches, 

which I want to call the Head On Approach and the Tweaking the Question Approach. While 

the kind of answer we favour is reflected in the approach we pursue, each approach has other 

 
* This project has received funding from the European Research Council (ERC) under the European Union's 
Horizon 2020 research and innovation program (grant agreement No. 715222). I would like to thank Günther 
Eder, Eduardo Giovannini, Henning Heller, Julie Lauvsland, and Georg Schiemer for helpful comments. 
1 This distinction hails from Carnap (1950), and is used to differentiate between existence questions. I will come 
back to this origin in section 4. 
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characteristics that determine what an appropriate epistemological story for mathematics 

should look like. As the two approaches diverge on the issue of adequacy in the face of the 

access problem, this frames the eligible positions sorted to each approach, and leads to not only 

different, but incompatible stories of how we acquire mathematical knowledge. This reveals 

that the two approaches have different metaepistemological tenets (i.e., fundamental aspects of 

epistemic theorising regarding implicit aims and standards), and that their respective accepted 

methodologies diverge in important ways. A consequence of this is miscommunication be-

tween the two camps, as the epistemological story of each approach violates implicit demands 

for what counts as adequate for the other. To this end, I bring forth two specific accounts that 

have dealt with the access problem in paradigmatic ways, in order to exemplify and make the 

methodological considerations of each approach explicit. This paper thus operates with differ-

ent theoretic levels: we have the internal/external distinction, the two representative positions, 

and, most importantly, the two approaches manifesting different metaepistemological stances 

when confronted with the access problem. My aim in this paper is thus twofold: 1) to show 

how the kinds of answer that Yap presents – leading to the two corresponding approaches – 

deal with the epistemological challenge, and 2) to show that the Tweaking the Question Ap-

proach is superior to the Head On Approach and therefore should be pursued.  

In section 2 I introduce the access problem and explain why it poses a problem for 

positions with a realist ontology of mathematical objects. In section 3 I outline two example 

positions that attempt to overcome the access problem in different ways, Kurt Gödel’s account 

of mathematical intuition and Stewart Shapiro’s stratified epistemology. In section 4 I look at 

the kinds of answer outlined by Yap (2009) and develop the two corresponding approaches, 

before I show how these approaches are exemplified by the two positions described in section 

3. In section 5 I look at how the classification of the two approaches reveals different standards 

for when an account is deemed epistemologically adequate, which accounts for the incommen-

surability tendencies in the epistemological debate on structuralism (e.g., between MacBride 

(2008) and Shapiro (1997, 2011)). I end this section by arguing that the Head On Approach 

should be discarded in favour of the Tweaking the Question Approach, due to justificatory 

concerns. 

 

2. The access problem 

Generally, platonist positions in the philosophy of mathematics share three commitments: i) 

mathematical objects exist, ii) they exist independently of us and our language, thought, action, 
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etc., and iii) they are abstract. The abstractness component means that they are in some realm 

causally closed off from our own. And, as mathematical objects exist, the axioms, theorems, 

and propositions referring to them are true or false independently of human language, thought, 

or actions. For example, the natural number 2 is an abstract mathematical object that exists, 

and the statement ‘2 + 2 = 4’ is true even if no rational agent ever had knowledge of its truth. 

All objects that mathematical theories deal with, such as natural numbers, real numbers, sets, 

etc., have this same sort of independent existence, which is why we can discover their proper-

ties and relations, and also why we can express our knowledge of them in our language. A true 

mathematical proposition successfully refers to some mathematical objects and accurately de-

scribes their properties and the relations that hold between them. This also means that mathe-

matics can only be discovered, as opposed to being constructed or extended by our minds. This 

is not to say that our mathematical knowledge cannot be furthered or extended (as it most cer-

tainly can), but rather that the domain of true mathematical propositions is, and always has 

been, exhaustive. 

In “Mathematical Truth” (1973) Benacerraf writes that accounts of mathematical truth 

have been motivated by two different concerns, a semantical and an epistemological concern. 

The semantical concern is described as “the concern for having a homogenous semantical the-

ory in which semantics for the propositions of mathematics parallel the semantics for the rest 

of the language” while the epistemological concern is that “the account of mathematical truth 

[must] mesh with a reasonable epistemology” (1973:661).2 For the case at hand – i.e., the pos-

sibility of epistemic access to abstract, mind-independent entities – it is the latter that occupies 

us. The epistemological concern is reflected in the formulation of a condition that must be met, 

to secure a “coherent over-all philosophic account of truth and knowledge” (Benacerraf 

1973:666). 

 
[A] satisfactory account of mathematical truth must be consistent with the possibility that 
some such [mathematical] truths be knowable. To put it more strongly, the concept of 
mathematical truth … must fit into an over-all account of knowledge in a way that makes 
it intelligible how we have the mathematical knowledge that we have. (1973:667) 

 

Later in the paper, Benacerraf states how it is exactly lack of attention to the above condition 

that leads the realist into trouble.  

 

 
2 The semantic concern is spelled out as a semantic condition, where “any theory of mathematical truth [should] 
be in conformity with a general theory of truth – a theory of truth theories, if you like – which certifies that the 
property of sentences that the account calls “truth” is indeed truth. This, it seems to me, can be done only on the 
basis of some general theory for at least the language as a whole” (Benacerraf 1973:666). 
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[O]n a realist (i.e., standard) account of mathematical truth our explanation of how we 
know the basic postulates must be suitably connected with how we interpret the referen-
tial apparatus of the theory. … For what is missing is precisely what my second principle 
demands: an account of the link between our cognitive faculties and the objects known. 
… We accept as knowledge only those beliefs which we can appropriately relate to our 
cognitive faculties. (Benacerraf 1973:674, emphasis original) 

 

Justin Clarke-Doane notes that while Benacerraf’s “Mathematical Truth” has been “deeply in-

fluential”, this is “more for its theme than for its detail” (2016:18).3 This is because Benacerraf 

demands that there must be causal connection between the objects of knowledge and the know-

ers, as he favours a causal theory of knowledge (1973:671). Since a causal theory of knowledge 

is no longer much supported, one could argue, following Øystein Linnebo, that Benacerraf’s 

considerations are biased against mathematics at the outset (Linnebo 2006:546). By demanding 

a causal connection, we are treating “platonistic mathematics much like physics and the other 

garden-variety empirical sciences”, but, as Linnebo notes, mathematics is different, and there-

fore “philosophers have no right to subject it to epistemological standards that have their home 

in contingent empirical knowledge” (Linnebo 2006:546).4  

There is an improvement of the problem that is due to Hartry Field (1989), which avoids 

invoking any specific theory of knowledge (Field 1989:232-33). As is generally noted, most 

contemporary discussions of the problem take Field’s improved formulation (1989) as their 

point of departure.5 

 
Perhaps the most widely discussed challenge to the platonist position is epistemological. 
… Benacerraf’s formulation of the challenge relied on a causal theory of knowledge 
which almost no one believes anymore; but I think that he was on to a much deeper 
difficulty with platonism. … Benacerraf’s challenge––or at least, the challenge which his 
paper suggests to me––is to provide an account of the mechanisms that explain how our 
beliefs about those remote entities can so well reflect the facts about them. The idea is 
that if it appears in principle impossible to explain this, then that tends to undermine the 
belief in mathematical entities, despite whatever reason we might have for believing in 
them. (Field 1989:25-26, emphasis original) 

 

Field avoids causality, but still makes the challenge for the platonist clear: If we cannot justify 

or explain the reliability of our mathematical beliefs – even if we grant that mathematical ob-

jects exist and that we have knowledge of them – that is bad news. As Field sagely argues, we 

should be able to give an account of mathematical knowledge, where the correctness of our 
 

3 See Pataut (2016) for essays on Benacerraf’s philosophy. 
4 This is dubbed the “natural response” by Linnebo (2006:546). 
5 For instance, Clarke-Doane (2016). Clarke-Doane further argues that there is no satisfying characterisation of 
what Benacerraf’s Problem really amounts to, and moreover, that problems in Beneacerraf’s vein appear in many 
other areas than philosophy of mathematics (Clarke-Doane 2016:17-18). For a response to Clarke-Doane, see 
Liggins (2018), who argues that the problem remains a serious objection to mathematical platonism and cannot 
be dismissed. 
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beliefs about mathematical objects is not made into a “huge coincidence” (Field 2005:77). If 

we cannot provide an account which avoids this coincidence component, we have failed to 

explain our epistemic access to mathematical objects. As David Liggins points out: “Field is 

seeking to cast doubt on platonist theories by calling attention to a phenomenon which they are 

committed to recognizing but seem unable to explain” (Liggins 2010:74). That is, the platonist 

theory that claims that mathematical objects exist is undermined, as it seems we have no way 

of explaining how our beliefs about these entities are reliable. Thus, we end up with the access 

problem, and while many attempts have been made to overcome it, it remains a dire obstacle 

for the contemporary mathematical realist.6  

 

3. Two exemplifying positions 

Let us now look into some attempts that have been made to explain our access to mathematical 

entities. I will introduce two positions with a platonist ontology, which have dealt with the 

problem in different ways; Kurt Gödel’s mathematical intuition and Stewart Shapiro’s ante 

rem structuralism.7 There are a few reasons for this choice. First of all, Hale & Wright (2002), 

in describing platonist responses to the access problem as conservative, bring forth Gödel’s 

and Shapiro’s accounts as two such instances (2002:104).8 There is thus some precedent for 

choosing the two as example positions. Second, Gödel’s account of mathematical intuition is 

in some sense paradigmatic, modelled as it is on sense perception, and driven by an analogy 

between mathematics and empirical science. Moreover, Benacerraf (1973) himself uses Gödel 

as the representative for what he calls the “standard view” of mathematical truth.9 Third, 

Shapiro’s structuralism makes for an interesting contemporary case; it is unrepentingly realist 

in its ontology, but nevertheless tries to render the epistemological story naturalistic. Fourth 

and finally, Shapiro likens his own methodology to that of Gödel: “The methodology is con-

sonant…with that sketched by Kurt Gödel and a host of others, most of whom see a clean 

 
6 See Liggins (2006, 2010), Linnebo (2006) for discussion. 
7 Gödel proposed his account of mathematical intuition before the publication of “Mathematical Truth” and the 
improved argument by Field (1989). However, it is still an account that tries to explain how we come to have 
knowledge of mathematical objects existing in an abstract realm. 
8 Hale & Wright call them intuitional and intellectual responses: Gödel’s account involves a special faculty of 
intuition, as opposed to the intellectual tactic, where “access to the objects of pure mathematics is afforded by our 
general abilities of reason and understanding” (Hale & Wright 2002:104). Hale & Wright favour the intellectual 
response themselves. 
9 That is, platonistic accounts in which the sentence “there are at least three perfect numbers greater than 17” is 
analysed as being of the form “there are at least three FG’s that bear R to a” (Benacerraf 1973:663, 674). That is, 
the account “assimilates the logical form of mathematical propositions to that of apparently similar empirical 
ones: empirical and mathematical propositions alike contain predicates, singular terms, quantifiers, etc.” 
(Benacerraf 1973:668). As such, the “standard view” complies with the semantical condition from footnote 2. 
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separation between mathematics and empirical science” (Shapiro 2011:140). As the two posi-

tions are introduced as representative positions, the choice seems justified, considering their 

paradigmatic role in previous discussions, their immediate differences (faculty of intuition vs. 

naturalistic story), and the fact that there seems to be areas of methodological overlap. In sec-

tion 4, we will see how these two positions exemplify two basic approaches to the access prob-

lem. 

 

3.1 Gödelian mathematical intuition 

Kurt Gödel, who is perhaps most famous for the Completeness theorem and the two Incom-

pleteness theorems, defended a robust realist position within philosophy of mathematics. Not 

only did he argue for the existence of mathematical objects such as sets and numbers, but also 

for the independent existence of mathematical concepts. By mathematical concepts, Gödel 

meant the relations and properties of set theory, such as “property of set”, the primitive notion 

of membership (as denoted by “Î”) and “the concept of set itself” (Parsons 1995:48). This 

means that he endorsed conceptual realism as well as objectual realism. This is most clearly 

expressed in the Gibbs Lecture of 1951: 

 
What is wrong, however, is that the meaning of the terms (that is, the concepts they de-
note) is asserted to be something man-made and consisting merely in semantical conven-
tions. The truth, I believe, is that these concepts form an objective reality of their own, 
which we cannot create or change, but only perceive and describe. (*1951:320) 

 

It is the meaning of the primitive terms of set theory, then, that are deemed to exist as part of 

mathematical reality. The world of concepts (mathematical reality) exists separately from the 

world of things (physical reality). As a consequence, he also rejects Aristotelian realism, that 

is, the view that “concepts are parts or aspects of things” (Gödel *1951:321). Gödel thus pro-

poses a mathematical realm in the vein of Plato’s realm of Forms, so that mathematical objects 

and concepts need not be instantiated by physical objects, but where they exist in a realm 

wholly unrelated to physical reality.10 

Gödelian concepts are also described as being perceived by reason: “For while with 

that latter [the senses] we perceive particular things, with reason we perceive concepts (above 

all primitive concepts) and their relations” (version IV of (*1953/9), quoted from Parsons 

 
10 There is a similar distinction in mathematical structuralism between in re and ante rem structuralism. In re 
structuralism requires that a structure be instantiated by a particular system in order to exist, while ante rem 
structuralism does not require such instantiation. In re structuralism is closer to the Aristotelian view, while ante 
rem structuralism is platonist. However, ‘instantiation’ is not understood in physical terms à la Aristotelian 
realism (though there can also be cases of physical instantiations of structures). 



 

 91 

1995:63). Gödel, in his 1964 paper “What is Cantor’s Continuum Problem?”, calls the ability 

to perceive abstract concepts through reason mathematical intuition:11 

 
But, despite their remoteness to sense experience, we do have a perception also of the 
objects of set theory, as is seen from the fact that the axioms force themselves upon us as 
being true. I don’t see why we should have less confidence in this kind of perception, 
i.e., mathematical intuition, than in sense perception, which induces us to build up phys-
ical theories and to expect that future sense perceptions will agree with them and, more-
over, to believe that a question not decidable now has meaning and may be decided in 
the future. (1964:268) 

 

Here we see that mathematical intuition is likened to sense perception.12 Its role in building 

mathematical theories is compared to how the senses are necessary for sense perception, upon 

which physical theories are built. This perception of mathematical reality apparently must be 

the case because of how “the axioms force themselves upon us as being true”.  

This is an instance of what has become known as intrinsic evidence for axioms in set 

theory, as opposed to extrinsic evidence, a distinction introduced earlier in the 1964 paper.13 

Intrinsic evidence for axioms is characterised by some aspect of self-evidence, together with 

having a thorough understanding of the concepts underlying mathematics. It is instances of 

mathematical intuition that constitute intrinsic evidence. Extrinsic evidence for axioms are in-

stances of abductive reasoning. The “success” of an axiom, in the form of “fruitfulness in con-

sequences”, such as the contraction of many proofs into one and making them simpler and 

easier to discover, is taken as evidence for that axiom being true (Gödel 1964:261). The axiom 

is then said to have “verifiable consequences”. If there is an abundance of such consequences, 

and the axiom is “shedding so much light on a whole field, and yielding … powerful methods 

for solving problems”, the axiom should be accepted, even if it is not supported by intrinsic 

evidence (Gödel 1964:261).  

Mathematical intuition is meant to ensure epistemic access to mathematical reality. It 

is a faculty described as analogous to sense perception, in that they inhabit the same role when 

we build up our mathematical and physical theories of reality. Gödel writes that the success of 

our best mathematical theories is evidence in favour of such a faculty, leading him to propose 

mathematical intuition as a “psychological fact” (1964:268). Furthermore, mathematical 

 
11 For an excellent discussion of Gödel’s platonism and mathematical intuition, see Parsons (1995). Parsons makes 
the distinction between intuition of objects and intuition that a proposition is true. In light of Gödel’s conceptual 
intuition, and how “the axioms force themselves upon us as being true”, this is a useful distinction, as it brings 
out the immediacy component of grasping that is inherent in intuition.  
12 For contemporary accounts of mathematical intuition, see Maddy (1990), Parsons (1980, 2008), Tieszen (1989). 
See also Føllesdal (1992) and Tieszen (2005) for a likening of Gödel’s mathematical intuition and Edmund 
Husserl’s phenomenology. Gödel’s admiration for Husserl and phenomenology is well known, notably expressed 
in (Gödel *1961/?). 
13 See Russell (1906), Maddy (1988). 
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intuition is not meant to yield immediate mathematical knowledge, but rather works as a source 

of it:  

 
It should be noted that mathematical intuition need not be conceived of as a faculty giving 
an immediate knowledge of the objects concerned. Rather, it seems that, as in the case of 
physical experience, we form our ideas also of those objects on the basis of something 
else which is immediately given. … That something besides the sensations actually is 
immediately given follows (independently from mathematics) from the fact that even our 
ideas referring to physical objects contain constituents qualitatively different from sen-
sations, e.g., the idea of objects itself … Evidently the “given” underlying mathematics 
is closely related to the abstract elements contained in our empirical ideas. … [T]he data 
of this second [mathematical] kind … may represent an aspect of objective reality, but, 
as opposed to the sensations, their presence in us may be due to another kind of relation-
ship between ourselves and reality. (Gödel 1964:268) 

 

This move ensures that the comparison between mathematical intuition and the senses is 

strengthened. In “Russell’s Mathematical Logic” Gödel considers the analogy between physi-

cal and mathematical reality: 

 
It seems to me that the assumption of such objects [classes and concepts] is quite as 
legitimate as the assumption of physical bodies and there is quite as much reason to be-
lieve in their existence. They are in the same sense necessary to obtain a satisfactory 
system of mathematics as physical bodies are necessary for a satisfactory theory of our 
sense perceptions and in both cases it is impossible to interpret the propositions one wants 
to assert about these entities as propositions about the “data”, i.e., in the latter case the 
actually occurring sense perceptions. (1944:128)  

 

We see here that sense perceptions are compared to mathematical data. We are capable of 

“having” these due to the objective reality of physical and mathematical objects. Sense percep-

tions constitute our evidence for the natural laws, on the one hand, and mathematical data con-

stitute our evidence for the truth of the axioms, on the other. Moreover, our ability to have 

sense perceptions is due to our senses, on the one hand, and our ability to have mathematical 

data is due to our mathematical intuition, on the other. For while the senses give us sense per-

ception caused by physical reality, mathematical intuition leads us to perceive “mathematical 

data” of mathematical reality (Gödel 1964:268).  

Gödel’s arguments for his realist views largely rest on two assumptions, i) that there is 

an analogy between physical and mathematical reality, and ii) the principle of epistemological 

parity. The analogy holds between physical and mathematical reality, between the senses and 

mathematical intuition and between sense perception and “mathematical data”. Our best math-

ematical theories are about existing mathematical objects, just as our best physical theories are 

about existing physical objects. Mathematical theories do not purport to describe mathematical 
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data, just as physical theories do not describe sense perception. This analogy is meant to make 

the existence of mathematical objects and our perceiving of them more palatable. According 

to Penelope Maddy, if our acquisition of mathematical knowledge mirrors our acquisition of 

knowledge of physical reality, some pre-philosophical attitude is captured (1990:ch. 1). This 

pre-philosophical attitude is the belief – held by both mathematicians and laypeople – that 

mathematical truths are eternal and unchanging, i.e., they are discoverable and not constructed 

by us (e.g., the statement ‘2 + 2 = 4’ always has been and always will be true).  

Mathematical objects are said to be just as necessary to build up our mathematical the-

ories, as physical objects are necessary to build up our theories of physical reality (Gödel 

1944:137). The success of our mathematical theories should verify both the existence of math-

ematical intuition and its capability to “have” mathematical data of mathematical objects. Mark 

van Atten and Juliette Kennedy (2003) call this appeal to mathematics itself the principle of 

epistemological parity (van Atten & Kennedy 2003:434). It brings the legitimacy of the claim 

that mathematical objects exist to the fore. If we take physical objects and mathematical ob-

jects, and consider our knowledge of them, there is “no reason to be more (or less) committed 

to the existence of one than the other” (van Atten & Kennedy 2003:434; Kennedy 2014:6). It 

can be seen as an appeal to scepticism. As we definitely do not want to doubt the existence of 

physical reality, we should also not doubt the existence of mathematical reality. Gödel induces 

us to make the connection that if we compare our knowledge, and if we find that mathematical 

knowledge is as good as our knowledge of physical reality, then we ought to accept that they 

both constitute knowledge of existing domains, one mathematical and one physical. 

Gödel has faced harsh criticism for the postulation of mathematical intuition. One of 

the harsher judgements to be passed came from Charles Chihara, who described Gödel’s appeal 

to mathematical perceptions to justify the existence of sets to be “strikingly similar to the appeal 

to mystical experiences that some philosophers have made to justify their belief in God” 

(1990:21).14 Benacerraf also points to problems pertaining to the analogy: 

 
What troubles me is that without an account of how the axioms ‘force themselves upon 
us as being true,’ the analogy with sense perception and physical science is without much 
content. For what is missing is precisely what my second principle demands: an account 
of the link between our cognitive faculties and the objects known. (Benacerraf 1973:674) 

 

While the faculty of mathematical intuition is described as giving us “mathematical data” akin 

to how we are given sense perceptions, what mathematical intuition is or how it provides this 

 
14 See also Chihara (1973:ch. 2) for Gödel’s lack of justification for his mathematical intuition. 
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access to mathematical reality is left completely open. There are, then, serious deficits in Gö-

del’s attempt at explaining our mathematical knowledge.  

 

3.2 Shapiro’s stratified epistemology 

Let us now turn to a second realist position, ante rem structuralism. Ante rem structuralism is 

a version of mathematical structuralism, whose slogan is that mathematics is the science of 

structures (Shapiro 1997:5).15 A structure is distinguished from systems, in that a particular 

mathematical system is the realisation of an abstract structure. 

 
I define a system to be a collection of objects with certain relations…. A structure is the 
abstract form of a system, highlighting the interrelationships among the objects, and ig-
noring any features of them that do not affect how they relate to other objects in the 
system. (Shapiro 1997:73-4) 

 

While there are different versions of mathematical structuralism with different ontological 

views (spanning from anti-realism to realism), ante rem structuralism, as coined by Stewart 

Shapiro (1997), endorses a platonist ontology of mathematical reality. While Gödel believed 

that mathematical knowledge is knowledge of mathematical objects and concepts, Shapiro’s 

position is structuralist, so that mathematical knowledge is knowledge of structures.  

On the ante rem structuralist view, the structures in question exist independently of 

human thought and action, are abstract and exist independently of their realisation by a partic-

ular system. Shapiro also thinks that there are mathematical objects such as the number 2. These 

objects are construed as places of an ante rem structure, so that the number 2 is the second 

place in the natural-number structure, which is a particular infinite pattern (Shapiro 1997:77). 

The structures exist before the thing, and so an Aristotelian version, in which the structure 

exists as an aspect or part of a physical system, is rejected.16 That ante rem structuralism17 is 

subject to the access problem, is made clear by Shapiro and Michael Resnik.  

 
The realist… owes some account of how a physical being located in a physical universe 
can come to know about abstracta like mathematical objects…. The burden is on the 
realist to show how realism in ontology is compatible with naturalized epistemology. 
(Shapiro 1997:110) 

 

 
15 This goes for other variants of structuralism as well, even if they do not hold that structures have a platonist 
kind of existence. See for example Hellman (1989), Benacerraf (1965). 
16 See footnote 10. 
17 From now on I will use only ‘structuralism’ when talking of ante rem structuralism. 
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If mathematics is about abstract entities, then how is mathematical knowledge possible? 
In particular, how can we have access to the subject matter of mathematics? (Resnik 
1982:95) 

  

Are there any advantages of endorsing a structuralist picture when dealing with the access 

problem? There might be, but for now that will not be my main objective. What is clear is that 

the challenge changes. It is no longer a question of how we can have knowledge of particular 

natural numbers such as the number 2, but rather how we can have knowledge of the natural-

number structure. It is knowledge of this structure that will yield knowledge of the natural 

number 2. In the case of structuralism, then, the question becomes: How can we have 

knowledge of abstract structures, when the structures we describe and quantify over exist in a 

realm so wholly closed off from our own? Given that we do have mathematical knowledge, it 

becomes a problem for structuralists to explain how mathematical propositions are reliably 

justified and knowable to us.  

As mathematical knowledge is about structures, it allows Shapiro to talk of patterns as 

a means to explain the genesis of mathematical knowledge. Resnik’s version also focuses on 

the recognition of patterns, especially on experiencing something as patterned (Resnik 

1982:97). This idea is also shared by Shapiro: “Structure is to structured as pattern is to pat-

terned, as universal is to subsumed particular, as type is to token” (1997:84). Shapiro presents 

an account where our acquiring of mathematical knowledge is stratified (Shapiro 1997:12-13, 

112-118, 129-132; 2011:138-40). Shapiro’s stratified story of how we acquire mathematical 

knowledge is characterised by the following layers: 

 

1. Pattern recognition: Our ability to recognise small, finite patterns. Recognition of 

the 2-pattern (all systems consisting of two things), the 3-pattern (all systems con-

sisting of three things), and so on. Limited to the grasping of small finite structures. 

2. Projection: The faculty of arranging the small, finite cardinality patterns, then pro-

jecting a larger pattern on them to create an overarching pattern. Realisation that 

each pattern within the overarching pattern is succeeded by a next-longest pattern 

and projecting that this property goes for all structures, so that one grasps the nat-

ural-number structure. From this structure, other infinite structures are also grasped. 

3. Characterisation: By giving an implicit definition of a structure, the relations be-

tween the positions in the structure are described, and so the structure is made 

“available as an object of intellection” (Hale & Wright 2002:112). 
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According to Shapiro, we acquire mathematical knowledge by a step-by-step process. As soon 

as we have managed one level, we abstract and generalise so that our mathematical understand-

ing is extended. The last stage, implicit definition, is where the Coherence principle comes in: 

“Coherence: If F is a coherent formula in a second-order language, then there is a structure 

that satisfies F” (Shapiro 1997:95). As the “main principle behind structuralism is that any 

coherent theory characterizes a structure, or a class of structures”, the Coherence principle – 

and its elucidation – is crucial (Shapiro 1997:95). It is the central existence axiom in his axio-

matic structure theory, and moreover, it also plays an integral role on the epistemological side 

of things.18 

 
One underlying theme of my book, repeated several times, is that the ability to discuss a 
given structure coherently is evidence that the structure exists. This plays a role at every 
level in the stratified epistemology, starting with pattern recognition, but it comes to the 
fore more centrally with the fourth19 and most powerful epistemic strategy, implicit def-
inition. The theme is codified in the coherence principle in the formal development. 
(Shapiro 2011:147) 

 

It is in terms of us being able to coherently discuss a structure that a structure is said to exist. 

Shapiro appeals to mathematical knowledge to explain: “[I]t follows from the coherence of set 

theory that if we show that any proposed implicit definition D is satisfiable, then D is itself 

coherent, and thus D describes a structure” (2011:149). Shapiro thus appeals to the coherence 

of set theory. But set theory is not assumed to be a background ontology for structuralism, as 

the set-theoretic hierarchy is considered “just another structure” (Shapiro 1997:135). Shapiro 

uses a mathematical notion within that particular structure (viz., satisfiability within the set-

theoretical hierarchy), as a model of structure theory, in order to argue that we have knowledge 

of structures.  

In “Can ‘Ante Rem’ Structuralism Solve the Access Problem?” (2008), Fraser Mac-

Bride criticises Shapiro for not answering the access problem. MacBride brings forth Shapiro’s 

admission that some epistemic access to the abstracta of mathematics must be secured. While 

MacBride does acknowledge we might be capable of the first step, abstraction and recognition 

of small finite patterns, he objects to Shapiro’s second and third step, that of projection and 

characterisation. The first charge has to do with going from particular to general knowledge, 

i.e., how the projection of an overarching pattern onto finite ones can make us realise that every 

finite structure has its own distinct successor. 

 
18 See the second paper of this dissertation for discussion on the Coherence principle in Shapiro (1997, 2011) and 
on coherence in metaontology for mathematics. 
19 Shapiro says characterisation is the fourth strategy in his (2011), as he also includes holism as a general 
epistemic strategy. However, in (1997), characterisation is the third step. 
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How the mathematical novice may legitimately pass from (1) particular knowledge that 
a given structure has a successor distinct from it, to (2) general knowledge that all struc-
tures … have their own distinct successors. One way… is to derive (2) from (1).… But 
however … this transition is effected, (2) cannot be got out of (1) without appeal being 
made to truths which are no less general in character than (2). (MacBride 2008:160) 

 

As this move cannot be made without appeal to truths containing the generality it seeks to 

establish, the move is illegitimate, MacBride argues. More specifically, the idea that a law of 

generalisation from finite patterns holds for general finite patterns (and not only for the specific 

one of Shapiro’s example), presupposes the exact amount of generality that the law itself seeks 

to explain. Shapiro, on his side, denies ever claiming that (2) is deducible from premises of 

pattern recognition. Rather he sees the mathematical novice as postulating (2) as a hypothesis: 

“A proposition can start life as a working hypothesis, or even a blind guess, and can later be-

come an established belief or a known fact if it proves fruitful, serving a central essential role 

in a successful system” (Shapiro 2011:140). This is tantamount to how Gödel describes the 

role of extrinsic evidence for axioms and how consequences are verifiable in the sense that they 

come to serve “a central essential role” by “shedding so much light on a whole field” (Shapiro 

2011:140; Gödel 1964:261). Shapiro also mentions how the hypothesis eventually can be 

adopted as an axiom, if it turns out to be fruitful enough. It seems that Shapiro – like Gödel – 

appeals to indispensability within mathematics itself, in his proposed solution for how we ac-

quire mathematical knowledge. 

In the same passage we can also find some trace of intrinsic evidence. “Perhaps S thinks 

(2) is true as a result of something innate, or by being somehow compelled to think it true, or 

perhaps just having a hunch” (Shapiro 2011:140). This innateness component is reminiscent of 

the appeal to the mathematical data given to us by mathematical intuition. For Gödel, it was 

exactly these instances of mathematical intuition that constituted intrinsic evidence. What ex-

actly is going on here is difficult to pinpoint. But, Shapiro’s account for why S has reasons to 

believe that (2), at least seems to suggest that there is some room for intrinsic evidence as well. 

Let us consider the charge against the third step, characterisation. MacBride criticises 

the use of mathematics and lack of extra-mathematical security: “For even if coherent categor-

ical descriptions are guaranteed to be non-empty, there still remains the epistemological issue 

about how it can be established that descriptions are coherent and categorical” (2008:162). As 

the notions of categoricity and coherence are to be explicated within mathematics, and thus 

require a lot of mathematical knowledge, MacBride argues that Shapiro’s picture is viciously 

circular. Shapiro concedes that his account is circular, but not that it is viciously so. The reason 
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is that Shapiro is not out to “justify mathematics from non-mathematical premises” (Shapiro 

2011:149). The use of set theory in explaining coherence and categoricity is perfectly fine be-

cause, in trying to give an interpretation of mathematics as ante rem structures, Shapiro does 

not have to show that mathematics as a discipline is true and secure.  

 

4. Two answers and two approaches 

Now that the two positions have been introduced, we can turn to their paradigmatic role. The 

positions exhibit certain methodological traits, which makes it clear that they operate with dif-

ferent rules for deciding what makes for an acceptable epistemological story. To draw out this 

tension, I believe that we are best served by classifying them as belonging to two approaches. 

By belonging to distinct approaches, I mean that they manoeuvre within different epistemolog-

ical frameworks, so that how they respond to the access problem is determined by structural 

requirements or conditions. By characterising the approaches to which the positions are in-

stances, meta-epistemological leanings are brought to the fore, viz., epistemological aims and 

standards for epistemic theorising.20 The advantage of characterising two approaches is that 

they are more general than any specific attempts at solving the access problem. Moreover, we 

can use the specific attempts (Gödel’s and Shapiro’s) to discuss how the approaches handle the 

problem, and thereby reveal how they determine what counts as an adequate epistemological 

story.  

The two approaches I outline find their basis in the Carnapian internal/external distinc-

tion for existence questions (1950). Audrey Yap (2009) proposes that this distinction is appli-

cable to epistemology, and specifically, to how we deal with the access problem (2009:168).21 

I follow Yap in this, and further argue that this distinction serves as a stepping stone for the 

Head On and the Tweaking the Question Approaches. Why, we may ask, go further than the 

two kinds of answer to the access problem? I believe there are reasons for this. By characteris-

ing an approach, we can draw out more general and implicit theoretical underpinnings than we 

could with a distinction between kinds of answer. Baked into our notion of approach, we have 

the idea that we, as epistemologists of mathematics, operate within a theoretical space that is 

delimited. This means that the accounts that are eligible on an approach are effectively 

 
20 Metaepistemology is a rising field, modelling itself on the success of metaethics. See Gerken (2018), Kyriacou, 
& McKenna (2018), McHugh, Way & Whiting (2018).  
21 From what I can gather, Yap is the only one to have applied the distinction to our case at hand. 
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restricted. We are, by describing the approaches, characterising general traits and issues for 

epistemological accounts of mathematical knowledge.  

Before we broach our epistemological approaches, we look at how the distinction be-

tween internal and external questions appears in Rudolf Carnap’s paper “Empiricism, Seman-

tics, and Ontology” (1950). It does not, originally, pertain to epistemology, but is rather a way 

of distinguishing between different kinds of existence questions.22  

 
And now we must distinguish two kinds of questions of existence: first, questions of the 
existence of certain entities of the new kind within the framework; we call them internal 
questions; and second, questions concerning the existence or reality of the system of 
entities as a whole, called external questions. (Carnap 1950:242, emphasis original) 

 

The notion of a linguistic framework is put forth to safeguard domains of knowledge whose 

language refers to abstract objects – e.g., mathematics – from “implying a metaphysical doc-

trine concerning the reality of the entities in question” (Carnap 1950:250). Accepting a linguis-

tic framework “does not need any theoretical justification because it simply does not imply any 

assertion of reality” (Carnap 1950:250). To differentiate between questions that are internal or 

external relative to a framework is thus a way of weeding out unduly metaphysically laden 

questions, which we have no means of determining as they have not (yet) been formulated in 

“the common scientific language” (Carnap 1950:245).  

Internal questions are meant to be answered straightforwardly, either by empirical or 

by conceptual means. This depends on the framework in question. In the framework the world 

of things, questions are to be answered by empirical investigation (e.g., “Did King Arthur ac-

tually live?”) (Carnap 1950:242-43). Here, the existence or reality component is of an “empir-

ical, scientific, non-metaphysical” character (Carnap 1950:243). In the framework the system 

of numbers, on the other hand, which is of a logical rather than factual nature, the methods are 

ruled by logical and conceptual analysis (Carnap 1950:244-45). If we ask, then, whether there 

are numbers from within the framework of mathematics, the answer is a resounding ‘yes’. For 

by the acceptance of the framework, we already have that “Five is a number” is recognised as 

a true statement, and thus internally there is a number five.  

If, on the other hand, we ask the external question (viz., ‘does the system of numbers 

as such exist?’), the question is deemed a “pseudo-question”, as “[philosophers] have not suc-

ceeded in giving to the external question and to the possible answers any cognitive content” 

 
22 Carnap (1950) along with Quine (1948, 1951) form the historical background for the contemporary field of 
metaontology. See the first paper of this dissertation for more on metaontology for mathematics.  
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(Carnap 1950:245).23 The external question is only ever asked by philosophers, and is supposed 

to be “prior to the acceptance of the new framework” (Carnap 1950:245). This means that we 

are not given access to the linguistic tools of the framework – nor to our knowledge of the 

system of things described by the framework – when we attempt to answer it. The external 

question is the philosophical question of the ontological status of numbers, and is thus not 

straightforwardly answerable.  

 How does the distinction between internal and external existence questions fare when 

applied to epistemology? Carnap briefly mentions the task of a “pure, as distinguished from a 

psychological, epistemology” in relation to carrying out the empirical investigation in answer-

ing an internal question about the world of things (Carnap 1950:243). While the evaluation of 

the results of the empirical investigation follows certain rules of confirming or disconfirming, 

this is “usually carried out … as a matter of habit rather than as a deliberate, rational procedure” 

(Carnap 1950:243). One of the main tasks of epistemology, according to Carnap, is to lay down 

explicit rules for the evaluation in a rational reconstruction (Carnap 1950:243). This seems 

acceptable: When we formulate an epistemology, we lay down rules for the evaluation of evi-

dence, thus restricting the format that acceptable evidence can take in order to be knowledge-

conducive. But this seems manageable only if we are dealing with factual knowledge. For the 

case at hand – providing a story of how we come to have knowledge of mathematics – we have 

not gotten much further. To make matters worse, we are operating within an ontologically re-

alist perspective, i.e., we are proclaiming the reality of mind-independent mathematical enti-

ties, or in Carnap’s words, we are answering the external question in the affirmative.  

 Yap (2009) employs the Carnapian distinction in characterising Richard Dedekind as a 

logical structuralist.24 According to her, Dedekind provides an answer to the access problem if 

we construe it as an internal question (2009:168).  

 
Benacerraf’s problem is originally posed as a metaphysical problem. An account of math-
ematical objects ought to explain what they are, as well as how it is that we have epis-
temic access to them. Yet there are two distinct kinds of answers to the question, “what 
are natural numbers?” 
  Benacerraf’s own presentation of the dilemma invites an external answer, more 
metaphysically substantive than “the smallest system of objects containing 0 and closed 
under the successor function” (for instance). But this latter [internal] answer is essentially 
Dedekind’s. The reason why he finds it acceptable, is that an answer in the same vein is 
given to the second question, “how can we have knowledge of them?” We can have 
knowledge of them because the axioms defining them are categorical, which implies that 
every proposition in the language of arithmetic, or its negation, is a semantic consequence 
of those axioms. This is the sense in which we can say that knowledge of the axioms 

 
23 See Flocke (2020) for a paper on Carnap’s noncognitivism about ontology. 
24 According to Yap, Erich Reck (2003) provides an improved reconstruction of Dedekind’s position, a recon-
struction that is similar to Yap’s own interpretation of Dedekind as a logical structuralist. 
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suffices for knowledge of the objects’ properties. The reason why this counts as an inter-
nal answer is because it is given in terms of the mathematical adequacy of the natural 
number definition. (Yap 2009:168-69) 

 

Yap uses the internal/external distinction in a double manner; on the ontological question 

(“what natural numbers are”) and on the epistemological question (“how we can have 

knowledge of them”). That the distinction is applicable to the epistemological question is taken 

as added support for the internal answer to the ontological question. That is, the ontological 

and epistemological story of the natural numbers both prefer the same kind of answer, which 

means that the overall account is rendered more cohesive. According to Yap, Dedekind prefers 

an internal answer, as it is less metaphysical and more mathematical in spirit. Yap argues that 

this fits with her construal of Dedekind as a logical structuralist, as one of the main motivations 

for structuralism originally was an “acknowledgment of the axiomatic character of modern 

mathematics, and an attempt to give a philosophical account accordingly” (Yap 2009:169). So 

far, we have some indication that there are different philosophical and epistemological aims 

attendant to the kind of answer one favours.  

The subsequent sections stake out two different approaches to the access problem. By 

characterising these approaches, metatheoretical considerations will be made explicit, i.e., we 

can show how the approaches exhibit general – but diverging – metaepistemological outlooks 

as to how we should go about responding to the access problem. To this end, the earlier discus-

sion of our two specific example positions will come in handy, as they instantiate some of the 

general traits of each approach. First, I outline what an external answer amounts to and how it 

leads to the Head On Approach. For this purpose, I will bring up Gödelian intuition. Favouring 

an external answer shapes what accounts are eligible, as the Head On Approach lays down 

certain conditions that restrict how we deal with the access problem. Second, I give an account 

of the internal type of answer and the corresponding approach of Tweaking the Question. 

Shapiro’s stratified picture will be shown to be in the vein of the Tweaking the Question Ap-

proach. Interestingly, MacBride’s critique of Shapiro and Shapiro’s response to it bring out 

underlying metaepistemological leanings. The tension between the Head On Approach and that 

of Tweaking the Question is made explicit, as the aspects MacBride criticises go directly at 

Shapiro’s methodology, i.e., his chosen approach.  

 

4.1 External answer and the Head On Approach 

An external answer to the access problem is characterised by accepting the challenge as posed. 

According to Yap, Benacerraf formulated it as an external question, demanding a metaphysical 
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answer (2009:168). If we remember Carnap’s characterisation of an external question and an-

swer, it has to do with “prior acceptance” of the “reality of the thing world itself” (Carnap 

1950:243, 245). If applied to epistemology and the access problem, it seems that we must find 

a way of explaining how we come to have mathematical knowledge without using mathemati-

cal knowledge. We must, then, find a wholly philosophical account for our access to mathe-

matical entities. This means that the metaphysical gulf between physical and mathematical re-

ality must be bridged by some means or another. One must, in Fraser MacBride’s words, “do 

the impossible: [Mathematicians] must transcend their own concrete natures to pass over to the 

abstract domain” (2008:156). So, how are we capable of both breaching the causal limits of 

physical reality and probing into the abstract mathematical reality? We cannot fill the gap with 

something solely from the mathematicians’ sphere (i.e., physical reality) or solely from the 

abstract domain (i.e., mathematical reality). Something else must be added, something capable 

of breaching the respective spheres and establishing an epistemic connection.  

The approach favouring the external kind of answer I call the Head On Approach, as it 

rises to the challenge and charges at the access problem head on.25 On this approach, the choice 

of possible solutions is limited, as certain rules are laid down. First of all, we are not allowed 

to use the tools of the domain of knowledge we have set out to explain, i.e., mathematical 

notions and facts. Second, as the gulf to be filled is between two layers of reality, whatever 

“filling” found will be metaphysical (as opposed to scientific). And third, the metaphysical 

connection sought after will have a transcending quality, as it must defy the limits of the two 

spheres it tries to connect. A consequence of these conditions is that a naturalised epistemolog-

ical account is more or less ruled out.26 That is, the Head On Approach and an external answer 

feature a priori considerations, as figured out from a “philosophy first” point of view.  

We must, then, somehow “possess” an abstract component, so as to explain some af-

finity with the abstract domain. An immaterial and eternal soul would provide this, such as 

Plato’s account of remembrance in Meno. Another alternative would be to say that mathemat-

ical objects have some imprint in the concrete, and that we are capable of detecting the abstract 

elements instantiated. An example could be something akin to the view put forth by Penelope 

Maddy (1990), in which she argues that we can perceive sets that contain spatio-temporal ele-

ments. If there are three eggs in the carton, we have perceived a set of three eggs (Maddy 

1990:58). 

 
25 Another reason might be the image of banging one’s head against the barrier of physical reality, hoping to reach 
into some abstract domain. 
26 By this, I take naturalised epistemology to mean the Quinean view that the methods by which we acquire know-
ledge should be explainable in terms of natural science, e.g., by analysing our faculties in line with cognitive 
science. See Maddy (1997). 
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Gödelian mathematical intuition is another way of answering the access problem head 

on. We saw in section 3.1 that the belief in such a faculty is troublesome. Where does it belong? 

Is it part of reason? If so, why differentiate it from normal intellectual powers? Or does it have 

physical place in the brain?27 Gödel took mathematical intuition to be a psychological fact, a 

statement he was confident to make because of our capability “to produce the axioms of set 

theory and an open series of extensions of them” (Gödel 1964:268). The success of mathemat-

ics is taken to justify the faculty by which we come to have mathematical knowledge. Gödel’s 

arguments for the existence of mathematical intuition thus amounts to an inference to the best 

explanation. We can see that Gödelian mathematical intuition satisfies the condition of being 

a wholly philosophical account of how we epistemically access mathematical entities, as no 

mathematical knowledge is used to explain what the special faculty consists of. But this is 

hardly a benefit, seeing that it is also not given a philosophical elucidation as to how it works. 

It is only given an approximate characterisation by way of its analogy to sense perception. This 

makes for a meagre explanation of how we come to have mathematical knowledge. While the 

faculty adheres to the philosophical standard of being prior to the acceptance of the thing world, 

Gödel still relies on the success of mathematics (i.e., our mathematical knowledge), in order to 

argue that we simply must possess the faculty that gave us this knowledge.  

 

4.2 Internal answer and the Tweaking the Question Approach 

The internal type of answer does not require that the gap between physical and mathematical 

reality be bridged in a metaphysically loaded way. As Yap argues, an answer to the access 

problem can also be “given in terms of mathematical adequacy of the natural number defini-

tion” (2009:169). This amounts to answering the access problem in an internal fashion, which 

allows for the use of mathematical tools to explain our epistemic access to mathematical ob-

jects.  

An internal answer leads to the Tweaking the Question Approach. It is important to note 

that an internal answer is not an outright rejection of the external answer. If we find that an 

external answer still gives us the best explanation for our acquisition of mathematical 

knowledge, that is perfectly fine. But Tweaking the Question is a rejection of the Head On 

Approach. The boxes that must be checked in order to deal with the access problem Head On, 

are considered not only unnecessary, but hindering. On a Tweaking the Question kind of view, 

there is no reason why the epistemology should not be in line with a naturalistic outlook. 

 
27 According to Hao Wang (1987), Gödel toyed with the idea of mathematical intuition being a “physical organ” 
(Folina 2014:55). 



 

 104 

Consider Quine’s use of Neurath’s science-as-boat image, in which he also includes philoso-

phy: “Neurath has likened science to a boat which, if we were to rebuild it, we must rebuild 

plank by plank while staying afloat in it. The philosopher and the scientist are in the same boat” 

(Quine 1960:3). This fits well with the Tweaking the Question Approach. We cannot demand 

that we explain our mathematical knowledge from a perspective that is prior to the knowledge 

that we have. This is opposed to the foundationalist tendencies of the Head On Approach, 

where we are tasked to explain epistemic access in a linear fashion, from indubitable philo-

sophical principles, devoid of mathematical content. 

Moreover, not only are we allowed to use mathematical notions in our epistemological 

account, the metaphysical requirement for “bridging of the gap” is relaxed. By the Carnapian 

meaning of an internal question for the system of numbers, we should answer the internal ques-

tion “by logical analysis based on rules for the new expressions” (Carnap 1950:244). For our 

epistemological purposes, we should take this to mean that we are already operating within a 

domain of knowledge, and we should not disregard the fact that the linguistic expressions of 

that domain are coherent and meaningful to us. That is, we should, on the other hand, disregard 

the possibility that we do not have access to this domain. Tweaking the Question positions thus 

tend to downplay the severity of the metaphysical chasm. One such attempt at diminishing our 

metaphysical distance to the mathematical entities has been made by Øystein Linnebo (2018). 

He argues that we must lighten the burden placed on the epistemologist. That means to lower 

the standard for what counts as an adequate epistemological account and lessen our ontological 

commitment. Linnebo’s project of reducing the ontological commitment is pursued with the 

notion of a thin object. The idea is that the abstract objects of mathematics are metaphysically 

undemanding. For instance, the existence of the set of two trees does not make a substantial 

further demand on the world than that of the existence of the trees themselves. This route will 

perhaps explain the problem of ontological abundance in the ontology of mathematics.  

How is Shapiro’s stratified picture an instance of the Tweaking the Question Approach? 

First of all, he allows for the use of mathematical notions in the explanation of mathematical 

knowledge, namely satisfiability in set theory as a model of the coherence of structure theory. 

Shapiro advocates a holistic approach to epistemology (and philosophy), where our epistemic 

access to mathematical objects is not explained from the ground and up. Rather, we must settle 

for a view where the coherence of mathematics itself is valued, and where our ability to cor-

rectly pick out mathematical objects because they are sufficiently determined by our theories 

is granted.  
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I present an account of the existence of structures, according to which an ability to co-
herently discuss a structure is evidence that the structure exists…. This account is per-
spicuous and accounts for much of the ‘data’ – mathematical practice and common intu-
itions about mathematical and ordinary objects. The argument for realism is an inference 
to the best explanation. (Shapiro 1997:118, my emphasis) 
 

If successful referring is what is needed for securing our mathematical knowledge, and where 

mathematical adequacy is made the standard for an acceptable story, then that amounts to a 

definite Tweaking of Question.  

The main focus should be on mathematics, and what is needed in order to make sense 

of and successfully reason about mathematics. The “philosophy first” sort of view – as the 

Head On Approach agrees with – is not supported here. The emphasis put on mathematical 

practice meshes well with Shapiro’s penchant for naturalised epistemology. 

 
[I]n setting up the epistemological task I endorsed the naturalistic thesis that ‘any faculty 
that the knower has and can invoke in pursuit of knowledge must involve only natural 
processes amenable to ordinary scientific scrutiny’. Even putting indispensability theses 
aside, it is clear that ordinary scientific scrutiny of just about anything is going to involve 
mathematics, and the philosopher can make use of mathematics just as anyone else can. 
(Shapiro 2011:133) 

 

Shapiro puts an additional constraint on the realist: we must make sure that our access to the 

abstract structures is compatible with naturalised epistemology. Epistemology of mathematics 

should follow mathematics’ lead, i.e., it is a “mathematics first” sort of view. For Shapiro, 

naturalised epistemology has to do with delimiting the role of faculties, certainly ruling out a 

“special” faculty à la Gödelian intuition, which is not ‘amenable to ordinary scientific scru-

tiny’.  

Moreover, he argues that mathematical tools and notions are available to us in our epis-

temological efforts, as mathematics is already part of ‘ordinary scientific scrutiny’. From 

Shapiro’s naturalism, we get a defence for operating from an internal perspective. This amounts 

to a rejection of foundationalism and a reinforcement of Shapiro’s holistic approach: “There is 

no getting around this situation. We cannot ground mathematics in any domain or theory that 

is more secure than mathematics itself. All attempts to do so have failed, and once again, foun-

dationalism is dead” (Shapiro 1997:135).28 Interestingly, Shapiro brings up his anti-founda-

tionalism in relation to his explication of the Coherence principle. We saw in section 3.2 that 

coherence is a central notion in Shapiro’s third step, i.e., characterisation. MacBride’s criticism 

of characterisation turns on the issue of how we come to know that a description is coherent 

 
28 See also Shapiro (1991). 



 

 106 

and categorical, as these are explained by our knowledge of mathematics. That is, MacBride 

argues that Shapiro’s account is viciously circular, as an account of “how finite creatures can 

reliably access truths about the abstract and infinite is just as wanting in the case of set theory 

as it is in any other branch of mathematics” (MacBride 2008:163). Let us consider Shapiro’s 

reply. 

 
[A]nte rem structuralism is itself no more secure than is set theory…. So if I were looking 
to provide some sort of extra-mathematical justification or security for set theory, making 
use of set theory would be viciously circular, and structures would have dropped out of 
the picture…. But that is not my game. 

My game, again, is to provide a justification for a philosophical interpretation of 
mathematics…This… is not a deductive enterprise, where I would have to start with non-
mathematical, self-evident premises. This is a different game from showing a sceptic that 
mathematics itself is true and known. (Shapiro 2011:149, my emphasis) 

 

It seems that MacBride and Shapiro disagree on exactly this last point. Should we show that 

mathematics itself is true or not within the philosophical account of mathematics, and can we 

use mathematical tools in answering the epistemological challenge? MacBride demands that 

Shapiro should give an account that “provid[es] a source of extra-mathematical certainty to 

underpin mathematical practice” (MacBride 2008:164). This, MacBride argues, is necessary to 

answer the task set up by Shapiro, namely how a physical being can come to have knowledge 

of abstract mathematical objects.  

MacBride’s negative answer relies on the attitude that the access problem should be 

answered externally. That is, the only type of answer that would satisfy MacBride is one that 

provides a metaphysical bridging between mathematical and physical reality. 

 
[I]t does not follow from the death of foundationalism that we cannot intelligibly ask, 
given our understanding of the contrasting natures of mathematicians and the subject-
matter of their discipline, how it is ever more than a coincidence that our beliefs about 
mathematical objects are true. Of course, if it is not just foundationalism but epistemol-
ogy more generally whose death-knell has sounded, then such questions cannot be intel-
ligibly raised. (MacBride 2008:164) 
 

Shapiro’s response is to clarify that he rejects the need to answer in this way, and that he accepts 

a different approach, namely that of Tweaking the Question. His goal is not to ensure that 

structuralism is more secure than set theory, but to provide an epistemological story that sup-

ports his position that mathematics is the study of ante rem structures, where importance is 

placed on coherence within mathematics.29 

 
29 Øystein Linnebo (2018) also efforts to give an epistemological story of how mathematical objects are made 
available to us that is within the Tweaking the Question Approach. It is not, as Shapiro’s is, based on coherence, 
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5. Untangling and comparing 

We have seen how the two kinds of answer spurs on two distinct approaches to the access 

problem. Gödelian mathematical intuition and Shapiro’s stratified picture were shown as rep-

resentative positions for each approach. While Yap’s application of the internal/external dis-

tinction to epistemology suggests a difference in preferred solutions to the access problem (De-

dekind preferring an internal answer), it does not capture the larger philosophical assumptions 

that come with it. The two approaches have different views as to what counts as an acceptable 

epistemological story of mathematical knowledge, which is reflected in the nature of the ob-

jections raised against the representative positions. Criticism therefore attacks different as-

pects; whereas some objections are directed at justificatory failings of the account in question, 

some are also directed at the structural set-up of the account, i.e., the approach or methodology 

the account instantiates. This is apparent in the two approaches and the two representative po-

sitions we have covered. The most common objections against Gödelian intuition have been 

that neither is the existence of such a faculty sufficiently backed up, nor is the nature of the 

faculty sufficiently explicated. The objections raised against Shapiro’s stratified account rather 

focus on how he ‘misses the mark’ and does not properly address the access problem. That is, 

Gödel is criticised for his proposed solution, while Shapiro is criticised for how he attempts to 

solve the problem.  

 To get a better grasp of this difference of objections raised, let us turn to Gödel and 

Shapiro’s accounts once more. Interestingly, now that we have covered some of the arguments 

for and objections against the accounts, as well as the respective approaches of Gödel and 

Shapiro, we see that there is some common ground. They both use extrinsic evidence in the 

form of the success of mathematics and the appeal to indispensability to argue for their respec-

tive positions. Gödel argues that mathematical objects are necessary for our best mathematical 

theories. Shapiro prompts us to accept “(2) general knowledge that all structures… have their 

own distinct successors” from “(1) particular knowledge that a given structure has a successor 

distinct from it”, and so get general knowledge of a structure’s distinct successor from partic-

ular knowledge of a particular structure’s distinct successor (MacBride 2008:160). Both bring 

up some level of success of mathematics. Also, they both use the secure position of mathemat-

ical knowledge as a means to explain how we acquire mathematical knowledge.  

 
but is rather an abstraction-based method. The idea is that you have abstraction principles, where the abstraction 
is asymmetric, so that one is given “new” objects from “old” ones. As our access to the “old” is deemed 
uncontroversial, we are led to the “new” objects from uncontroversial moves. See also Linnebo & Pettigrew 
(2014). 
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To this end, Shapiro brings up Ernst Zermelo’s views on why we should accept the 

Axiom of Choice. If it is necessary for science, it must be accepted, as “principles must be 

judged from the point of view of science, and not science from the point of view of principles 

fixed once and for all” (quoted from Shapiro 2011:141). Furthermore, in describing what 

Shapiro calls his ‘holistic’ view on epistemology, Shapiro likens his methodology to that of 

Gödel: “The methodology is consonant … with that sketched by Kurt Gödel and a host of 

others, most of whom see a clean separation between mathematics and empirical science” 

(Shapiro 2011:140). While Gödel tries to establish an analogy between mathematics and em-

pirical science, it is not so that mathematics is to be infused with principles from empirical 

science, e.g., causal connections to the subject-matter, need for observation, etc. If anything, it 

is the other way around, where the idea of objecthood and formal ideas are projected onto our 

experience of physical reality. Gödel develops this point in an infamous passage from his 1964 

paper:  

 
That something besides the sensations actually is immediately given follows (inde-
pendently of mathematics) from the fact that even our ideas referring to physical objects 
contain constituents qualitatively different from sensations or mere combinations of sen-
sations, e.g. the idea of object itself, whereas, on the other hand, by our thinking we 
cannot create any qualitatively new elements, but only reproduce and combine those that 
are given. Evidently the “given” underlying mathematics is closely related to the abstract 
elements contained in our empirical ideas. (Gödel 1964:268)  

 

This idea is also picked up by Shapiro, in explaining how the applicability of mathematics in 

empirical sciences can be seen as physical reality exemplifying the pure structures of mathe-

matics: “There is no sharp distinction between the mathematical and the mundane. To speak of 

objects at all is to impose structure on the material world, and this is to broach the mathemati-

cal” (1997:17). There are, then, some overlap when it comes to conceiving physical reality as 

exhibiting structural or formal elements.30 

How does abstraction and conceptualising of mathematical reality come up in the two 

accounts? Let us start off with structuralism. Resnik describes pattern recognition as going 

“through a series of stages during which we conceptualize our experience in successively more 

abstract terms. At the last stage we leave experience far enough behind that our theories are 

best construed as theories of abstract entities” (1982:99). Shapiro describes this conceptualisa-

tion as happening when our experience with tokens results in our understanding the type, and 
 

30 Carnap makes a related point about the difference between mathematical and factual knowledge: “Quine does 
not acknowledge the distinction [between accepting a linguistic framework and the reality of the thing-world] 
which I emphasize above, because according to his general conception there are no sharp boundary lines between 
logical and factual truth, between questions of meaning and questions of fact, between the acceptance of a 
language structure and the acceptance of an assertion formulated in the language.” (1950:250n6). 
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when we grasp some structures through their systems (1997:11). But experiencing something 

as patterned does have some element of immediacy to it. When we experience something as 

patterned, it seems to already involve some understanding that there is a pattern to be experi-

enced. And seeing something as a type suggests that the something has already been concep-

tualised in some way. Perhaps Gödel’s intuition of concepts, e.g., the intuition of the concept 

of set itself, has more in common with pattern recognition after all. We could, at least, imagine 

that if we implement the abstraction process on sets, as described by Resnik, this is how we 

come to grasp the concept of set itself. And perhaps, if we continue the abstraction process on 

structures, we come to grasp the concept of structure itself.  

This line of thought is supported by Charles Parsons, who describes a variant of math-

ematical intuition for structuralism, in which we can intuit the tokens instantiated in the con-

crete. 

 
One has to approach [the string of stroke-tokens] with the concept of a type, first of all 
to have the capacity to recognize other tokens as of the same type or not. Something more 
than the mere capacity is involved, which might be described as seeing something as the 
type. (Parsons 1980:154) 

 

The pure mathematical objects (viz., sets, numbers, etc.) and structures cannot be intuited in 

this way; mathematical intuition can only yield knowledge of concrete tokens.31 It is thus re-

semblant of how Shapiro describes our experience with tokens in order to grasp the type. Par-

sons links this kind of intuition, based on Hilbertian intuition of strings of strokes (viz., ‘| , || , 

|||’), and the Husserlian notion of foundation, a dependence relation introduced in the third 

Logical Investigation.32 Parsons suggests that we can think of the intuition of a type as being 

founded on the perception of a token (Parsons 2008:161).  

There is seemingly more in common between mathematical intuition and the experi-

ence with tokens, resulting in knowledge of a type. It is important to note, however, that the 

stages described by Shapiro are meant as a contribution to naturalised epistemology: “Any 

faculty that the knower has and can invoke in pursuit of knowledge must involve only natural 

processes amenable to ordinary scientific scrutiny” (1997:110). He thus underlines the differ-

ence between his strata and Gödelian mathematical intuition. When it comes to the two ap-

proaches, and how Gödelian mathematical intuition and Shapiro’s picture fall under the Head 

On Approach and the Tweaking the Question Approach respectively, there is still more that 

 
31 Parsons call these tokens “quasi-concrete objects” (2008:151). 
32 Elijah Chudnoff (2013) also relates this kind of intuitive knowledge to the Husserlian relation of foundation 
(Chudnoff 2013:370). See also Tieszen (1989, 2005). See the fourth paper of this dissertation for more on the 
relation of foundation and ontological dependence in structuralism. 
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divides than unifies them. This is manifest in the conditions that must be fulfilled to be deemed 

epistemologically acceptable, which seems to constitute the roots of the debate between Mac-

Bride and Shapiro. Despite Shapiro’s efforts to provide a philosophical interpretation of how 

we come to have mathematical knowledge, MacBride is, to borrow Shapiro’s turn of phrase, 

‘playing a different game’. MacBride is playing the game of Head On, while Shapiro is engaged 

in Tweaking the Question. Their apparent miscommunication, or – depending on one’s view – 

their lack of understanding for the other’s perspective, stems from their different epistemolog-

ical standards.  

The classification of the two approaches accounts for these incommensurability tenden-

cies, as they each demand that the other follow their approach in resolving the access problem. 

The Head On Approach demands a metaphysical answer, in order to fully bridge the gap of the 

realms. MacBride seems to agree, as “the access problem which Shapiro set out to solve cannot 

be dealt with by appeal to our grasp of set theory” (MacBride 2008:163). That is, MacBride 

rejects how Shapiro attempts to solve the problem. Shapiro’s naturalistic account, responsive 

to our ordinary scientific means (i.e., including mathematics), rejects a foundationalist, meta-

physically laden, account of epistemic access. To argue against foundationalism and champi-

oning naturalism is not the same as foregoing the epistemological enterprise. It does, however, 

wave off the need for an ultimate ground on which to build human knowledge, i.e., some indu-

bitable Cartesian first principles. Moreover, it professes ‘philosophical modesty’,33 as it urges 

us to take the limitations of human understanding and our abilities for knowledge seriously. 

This is not a failing of human reason, nor for the Tweaking the Question approach, but rather 

a strength. The project of providing epistemic access to mathematical entities from non-math-

ematical justification seems futile, and should therefore be adjusted. 

One final point needs mentioning. As we have seen, both approaches lean heavily on 

abductive reasoning and indispensability arguments. With the Head On Approach there seems 

to be a gap between the types of arguments used and that which is argued for. On the Head On 

Approach, here exemplified by Gödel’s account, there must be something capable of trans-

cending the limits for our existence and reaching into the abstract domain. This is explained in 

terms of mathematical intuition. In this respect, the faculty becomes a sort of placeholder for 

the mystery component, that of transcendence. To postulate – as a psychological fact – that we 

have a faculty that happens to fit the bill perfectly, seems arbitrary. As the arguments for the 

faculty are not only intrinsic evidence within mathematics or indubitable evidence that we have 

instances of mathematical intuition, it seems prudent to forgo this special faculty. With the 

 
33 Maddy equates naturalism in mathematics with ‘philosophical modesty’ (1997:161).  
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types of arguments we have seen, ontological parsimony and less metaphysically speculative 

proposals seem in order.34 That means to uphold Shapiro’s naturalised epistemology and pur-

sue an epistemological account where the processes involved are “amenable to ordinary scien-

tific scrutiny”. And this task cannot be achieved unless the Head On Approach is discarded, 

and concerns and concepts are allowed to be explicated from within mathematics itself. 

 

6. Conclusion 

We saw that the internal/external distinction serves as a stepping stone for two approaches to 

the access problem. The characterisation of The Head On and Tweaking the Question Ap-

proaches revealed different views as to what counts as an acceptable epistemological story of 

mathematical knowledge. The discussion of the two specific accounts – Gödelian intuition and 

Shapiro’s stratified picture – highlights how the approaches operate with different sets of 

metaepistemological outlooks. From this general metatheoretical level, the representative po-

sitions serve a paradigmatic role by instantiating these outlooks. While the Head On Approach 

demands that we must propose something that is able to transcend physical reality and reach 

into mathematical reality, this is not easy to justify. At least, it is not easy to argue for such a 

special faculty without appealing to indispensability or the success of mathematics. The argu-

ments for both accounts amount to an inference to the best explanation. Given the similarity 

and plausibility of the arguments made for each specific account, and, more importantly, the 

type of justification that is available to each approach, the approach which is less metaphysi-

cally demanding should be preferred. This is not to say that Shapiro’s account is not open to 

objections, nor that it is the best possible example of a Tweaking the Question Approach. Ra-

ther, if we must choose a route to pursue, the one where the processes involved are amenable 

to ordinary scientific scrutiny is preferable to the one that demands a metaphysically transcend-

ing bridging faculty. The outlining of the approaches, and the use of two specific accounts as 

instantiating these, have shown that there are philosophical assumptions at play. These assump-

tions are best seen as metaepistemological guides; that is, by aligning ourselves with an ap-

proach, we are also taking on board general outlooks as to what is deemed epistemologically 

adequate. From the discussion between Shapiro and MacBride, this became apparent; they sup-

port different approaches, and therein lies the main reason for their disagreement. Moreover, 

 
34 One could, of course, object to how a theoretical virtue like ontological parsimony squares with realism in 
mathematical ontology in the first place. However, there is no reason to liken object realism in mathematics to 
general ontological promiscuity, nor to extend such generosity to include human faculties.  
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while Gödel’s account primarily has been criticised for its lack of justification for and expla-

nation of the faculty of mathematical intuition, Shapiro is criticised for the way he attempts to 

answer. The classification of the two approaches thus serves to explain some of what is going 

on when we are dealing with the access problem. Different attempts made, endorse different 

metatheoretical premises. The support of particular metaepistemological outlooks is reflected 

in the resulting accounts, as they must adhere to the epistemological standard prescribed.  
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Ontological Dependence in Mathematical 

Structuralism* 
 

Abstract: 
Mathematical objects can ontologically depend on other mathematical objects or 
domains of such. Ontological dependence relations are therefore integral to the on-
going effort to characterise non-eliminative structuralism. While there is general 
consensus that there are such dependence relations, there have been surprisingly 
few attempts to characterise the relation itself. Interestingly, due to the recent con-
struals of Husserl as a proponent of early mathematical structuralism, his relation 
of foundation presents itself as a candidate. This paper explains how the relation of 
foundation can be a suitable dependence relation for non-eliminative structuralism, 
as it can (i) account for the constitutive nature of a structure and its elements, and 
(ii) clarify the reciprocal dependence relation among the elements belonging to the 
same structure on the one hand, and between a structure as a whole and the ele-
ments belonging to it on the other.  
 

1. Introduction 

Ontological dependence relations determine how objects and domains of objects depend on 

each other. In identifying what objects are dependent and what they depend on, we describe 

the metaphysical structure of reality. For instance, the orthodox view of metaphysical founda-

tionalism holds that reality is hierarchical, structured by chains of dependence relations ending 

in fundamental things that do not depend on anything further (Bliss & Priest 2018:2). Naomi 

Thompson’s (2018) suggestion of metaphysical interdependence or coherentism, on the other 

hand, allows for symmetrical relations of dependence, and rejects the requirement that chains 

of dependence are well-founded. These constitute very different pictures of how reality is met-

aphysically structured.  

While such relations are of continued importance to contemporary metaphysics, they 

are also an issue in philosophy of mathematics. Ontological dependence relations are especially 

salient to non-eliminative structuralism, a realist position in ontology, whose slogan is that 

‘mathematics is the science of structure’.1 On this view, particular mathematical objects are 

 
* This project has received funding from the European Research Council (ERC) under the European Union's 
Horizon 2020 research and innovation program (grant agreement No. 715222). I would like to thank Günther 
Eder, Eduardo Giovannini, Henning Heller, and Georg Schiemer for helpful comments. 
1 This is not only the slogan of non-eliminative structuralism, but of eliminative structuralism as well.  
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characterised by the web of relations in which they stand. The relations holding between a 

structure and its elements are considered instances of such ontological dependence, thus 

prompting an analysis of them.  

There have been a couple of attempts at describing the nature of ontological dependence 

in the case of non-eliminative structuralism. Øystein Linnebo (2008) puts forth a Dependence 

Claim, where the relevant dependence relation is construed as the possible individuation of 

mathematical objects. A more recent account is given by John Wigglesworth (2018), who con-

strues the dependence as differentiating between a partial and full grounding relation, where 

mathematical objects belonging to the same structure partially ground each other, while a struc-

ture fully grounds the mathematical objects it consists of. Due to recent interpretations of Ed-

mund Husserl as a proponent of early mathematical structuralism, there is another option that 

should be considered. Husserl’s discussion of parts and wholes in the third Logical Investiga-

tion (2001),2 introduces the ontological dependence relation foundation (‘Fundierung’) that 

holds between them. This paper argues that the relation of foundation has some natural affinity 

with the dependence relations relevant for non-eliminative structuralism. The immediate prom-

ise of the relation is that it allows for a more fine-grained analysis, due to its unifying character, 

and, moreover, that it permits for cyclical relations of dependence, as the foundation relation 

can be symmetrical. This means that we can have chains of dependence relations that cycle, 

thereby eschewing a linear structure of dependence. The upshot for non-eliminative structural-

ism is twofold. First, it would account for the constitutive nature of a structure and its elements. 

Second, it would clarify the reciprocal dependence relation between the elements belonging to 

the same structure, and between a structure as a whole and the elements belonging to it. These 

benefits for structuralism mesh well with the general metaphysical picture of interdependence 

or coherentism. Non-eliminative structuralism has clear anti-foundationalist tendencies both in 

epistemology and metaontology,3 preferring a holistic approach that emphasises coherence. 

That the choice of an ontological dependence relation should fit within this general metaphys-

ical picture, gives added incentive to pursue this non-linear account of ontological dependence. 

In the next section, I outline non-eliminative structuralism, and show why ontological 

dependence relations play an integral part, due to their view that mathematical objects are in-

complete. In section 3, I move on to the Husserlian relation of foundation and argue that it can 

be a suitable dependence relation for non-eliminative structuralism.  In section 4, I connect the 

 
2 Originally 1900/1901. All references to Husserl are to the English translation of 2001.  
3 See the second and third papers of this dissertation. 
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benefits for non-eliminative structuralism with a general coherentist view on the metaphysical 

structure of reality.  

 

2. Structuralism and incomplete objects 

Mathematical structuralism is the view that mathematical objects have no ‘inner nature’, and 

that a mathematical object is what it is due to its mathematical context, i.e., the mathematical 

structure in which it appears. Paul Benacerraf’s paper “What Numbers Could Not Be” (1965) 

is considered an official starting point for mathematical structuralism, in which he concludes 

that numbers are not objects. 

 
Therefore, numbers are not objects at all, because in giving the properties (that is, neces-
sary and sufficient) of numbers you merely characterize an abstract structure – and the 
distinction lies in the fact that the ‘elements’ of the structure have no properties other 
than those relating them to other ‘elements’ of the same structure. (Benacerraf 1965:291)   
 

Benacerraf’s characterisation of how elements are made up within a larger relational structure 

shows how we are no longer concerned with the particular natures of each mathematical object, 

but rather abstract on their particularities, so that we consider the structure in which they appear 

to have priority. Whether one endorses realism in ontology or not (Benacerraf did not), the 

issue of referring to an object’s structural backdrop remains of importance in structuralism, as 

most structuralists hold that there is some relation of dependence at play between the different 

places in a structure and/or between a place and the whole of the structure. However, the ques-

tion of the nature of ontological dependence relations is more pressing for the non-eliminative 

structuralist, i.e., where the existence of the ‘elements’ in question is not eliminated and thus 

endorses realism in ontology (see Parsons 2008; Shapiro 1997). This paper concerns itself only 

with the non-eliminative realist perspective.4  

The relations of ontological dependence advertised and the referring to mathematical 

objects’ structural backdrop are related to how objects are deemed incomplete on a structuralist 

account.5 Linnebo (2008) dubs this the Incompleteness Claim, the thesis that mathematical 

objects lack any intrinsic properties.6 Mathematical objects are known by their context, i.e., by 

 
4 From now on, all mention of ‘structuralism’ will be referring to non-eliminative structuralism. 
5 See Parsons (1980, 1990), Resnik (1997), Shapiro (1997, 2000), Linnebo (2008), Hartimo (2019). 
6 Linnebo differentiates between two strains of the Incompleteness Claim. The first characterisation is that 
mathematical objects do not have any non-structural properties (i.e., NS-incompleteness), while the second is the 
one stated above (i.e., I-incompleteness). Linnebo settles for the latter, as there are several counter-examples to 
NS-incompleteness (e.g., having the property of being abstract), and is rejected by at least one prominent 
structuralist (Shapiro in his (2006)) (Linnebo 2008:64). 
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being positions within a certain structure. A mathematical object is defined by its relations to 

other objects, and so is what it is at the mercy of its relationships.  

 
A position is like a geometrical point. It has no distinguishing features other than those 
it has in virtue of being the particular position it is in the pattern to which it belongs. 
(Resnik 1997:203) 
 
The idea behind the structuralist view of mathematical objects is that such objects have 
no more ‘nature’ than is given by the basic relations of a structure to which they belong. 
(Parsons 2004:57) 
 
The number 2 is no more and no less than the second position in the natural number 
structure; and 6 is the sixth position. Neither of them has any independence from the 
structure in which they are positions, and as positions in this structure, neither number is 
independent of the other. (Shapiro 2000:258) 

 

On the structuralist picture, a mathematical object is, in a sense, inconceivable alone. What 

does this incompleteness lead to? The answer comes readily enough: We must consider them 

against their structural backdrop. The incompleteness of objects thus naturally leads to, and is 

thoroughly interlinked with, their standing within webs of relations of ontological dependence. 

While there is general consensus that there are ontological dependence relations within 

mathematical structuralism, there have been surprisingly few attempts to characterise the rela-

tion itself. Notable exceptions are made by Linnebo (2008) and Wigglesworth (2018). Linnebo 

formulates a twofold Dependence Claim, and spells out its two tenets, for some domain D of 

some mathematical structure:    

 

ODO. Each object in D depends on every other object in D.  

ODS. Each mathematical object depends on the structure to which it belongs. (2008:67-8) 

 

Structuralists like Michael Resnik (1997) and Stewart Shapiro (1997, 2000) are committed to 

these, while Charles Parsons (2008) argues that structuralism holds of pure mathematical ob-

jects, but not of objects that are said to be quasi-concrete, in that they are partly given by intu-

ition by their representation in the concrete, e.g., geometrical figures and linguistic types 

(Linnebo 2008:72; Parsons 1990:337-8). The idea of the Dependence Claim is to cash out one 

of the characteristic features of structuralism, that mathematical objects are defined by their 

relationships to other mathematical objects belonging to the same structure, and that a mathe-

matical object has no other properties than structural ones. 

While Linnebo’s Dependence Claim (ODO and ODS) spells out relations of depend-

ence between different types of objects (object~object and object~structure), it does not 
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sufficiently specify the relation itself. The notion Linnebo develops, relies on the possible in-

dividuation of objects, so that an object a depends on object b if the process of individuation is 

so that in order for object a to be individuated, object b must be individuated (Linnebo 

2008:78). The relation thus seems to take on an epistemological quality, so that it has to do 

with the possibility of our individuating the different objects. This brings our reasoning about 

mathematical objects and domains of such more to the fore and seems to be an attempt to 

alleviate metaphysically (more) heavyweight notions of ontological dependence.  

Wigglesworth’s (2018) construal of the dependence relation as one of partial and full 

grounding accommodates the twofoldness of Linnebo’s Dependence Claim. ODO becomes a 

claim about partial grounding: the mathematical objects belonging to the same structure par-

tially ground each other. And ODS becomes a claim about full grounding: a structure fully 

grounds every mathematical object belonging to it. Wigglesworth views the relevant grounding 

relation as one of metaphysical explanation of the identity of an object or structure, and thus 

picks up on Linnebo’s preferred dependence relation as one of individuation. According to 

Wigglesworth, the relation of ground is generally thought to “have certain structural properties: 

irreflexivity, asymmetry, transitivity, and well-foundedness” (2018:217). Interestingly, Wig-

glesworth argues that the case of ground for non-eliminative structuralism serves as a counter-

example, as the partial grounding relation of mathematical objects is shown to be reflexive, 

symmetrical, and transitive. These features lead to chains of partial ground that progresses in-

finitely, which means that the relation, in the context of mathematical structuralism, is non-

well-founded (Wigglesworth 2018:233). However, it is still “bounded from below”, i.e., “there 

is some fact F (not necessarily in the chain) such that each fact in the chain is either partially 

grounded by F or identical to F” (Wigglesworth 2018:233). The mathematical objects of a 

structure that partially ground each other give rise to infinite chains of partial ground. However, 

the identity of the structure fully grounds every mathematical object in its domain, and so 

“serve[s] as a lower bound for each chain” (Wigglesworth 2018:234). As “each chain is 

bounded from below, each chain has a foundation” (Wigglesworth 2018:234). Wigglesworth 

thus allows for a combination of infinite chains of ground and the inclusion of something fun-

damental. 

In the next section, I want to pursue a dependence relation taken from Husserl’s third 

Logical Investigation. Like Wigglesworth’s account of ground, it has the structural properties 

of symmetry and transitivity. Wigglesworth’s relation of ground tracks a notion of metaphysi-

cal explanation that holds between different hierarchical levels of the world, so that lower levels 

ground higher levels (Wigglesworth 2018:217-18). The relation, thus described, has a rather 
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narrow area of applicability; it is only concerned with domains that are metaphysically struc-

tured in a hierarchical way. In turning to a Husserlian relation of dependence, its range is ex-

tended, as it pervades other areas than the metaphysical structure of the world.7 This is an 

advantage for a suitable dependence relation for mathematical structuralism. If the relation 

tracking dependence (between a structure and its objects and among the objects belonging to 

the same structure) can also be used to explain other aspects of structuralism, it would give the 

relation an edge. We would possibly observe regularities in the position, as, say, ontology 

would share structural properties with epistemology, thus yielding an overall more cohesive 

account.  

 

3. The Husserlian relation of foundation 

In this section we look at a Husserlian relation of ontological dependence. Our interest in the 

relation is systematic, as we want to see how it can be a suitable dependence relation for struc-

turalism. We should therefore observe some affinity with the position. For instance, it should 

capture some structuralist traits, like the Incompleteness of objects. Moreover, it should be 

capable of accommodating both ODO and ODS, as well as formulating relations of ontological 

priority. Let us begin by taking a brief look at Husserl, before we move on to the relation itself. 

In recent years, Husserl’s structuralist tendencies in his philosophy of mathematics have 

been highlighted.8 Mirja Hartimo (2021) argues that Husserl’s notion of manifold is to be iden-

tified with structure in the structuralist sense. In describing the objects of a manifold, Husserl 

writes: 

 
The objects remain quite indefinite as regards their matter, to indicate which the mathe-
matician prefers to speak of them as ‘thought-objects’. They are not determined directly 
as individual or specific singulars, nor indirectly by way of their material species or gen-
era, but solely by the form of the connections attributed to them. (Husserl 2001a:156) 

 

We see that Husserl’s structuralism fulfils the Incompleteness Claim as put forth by Linnebo 

(Hartimo 2021:167). The particular natures of mathematical objects are indefinite, as they must 

be considered by their belonging to a certain manifold, or, translated to contemporary talk: they 

are incomplete, as they have “no more ‘nature’ than is given by the basic relations of a structure 

to which it belongs” (Parsons 2004:57). Husserl’s position also satisfies the Dependence Claim, 

 
7 Barry Smith and David Woodruff Smith argue that Husserl’s relation of dependence, i.e., foundation, holds in 
all aspects of his thinking, including ontology, epistemology, and phenomenology (1995:13-14). 
8 See Centrone (2010), Hartimo (2012, 2019, 2021). 
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as mathematical objects are solely determined by the form of the connections attributed to them 

(Hartimo 2021:162). As Husserl is a realist in ontology, this makes his structuralism of the 

non-eliminative variety (Hartimo 2021:162).9 Husserl’s structuralism can also be connected to 

his discussion of parts and wholes in the third Logical Investigation, where he differentiates 

between dependent and independent parts. Instead of connecting ‘structure’ with manifold, 

Simone Aurora identifies Husserl’s notion of ‘whole’ with the structuralist notion of structure 

(2015:8).10 Though the structuralism referred to in this quote is of the French structuralist 

movement, I believe the remarks are still relevant to our case, as structuralism encompasses a 

larger historical tendency than specific developments in philosophy of mathematics.11 In inter-

preting Husserl as a non-eliminative structuralist, Hartimo pursues the mathematical notion of 

manifold, rather than the mereological notion.  

What we are after in this paper, however, is a historically inspired ontological depend-

ence relation that is suitable for contemporary mathematical structuralism. To this end, we have 

two reasons why we should look to Husserl’s third Logical Investigation. First of all, as Peter 

Simons writes: “Although advertised as a theory of whole and part, Husserl’s [third] investi-

gation spends as much time on the concepts of dependence and independence, which, while 

they bear crucially on Husserl’s particular brand of whole-part theory, cannot be counted as 

purely mereological notions” (Simons 1982:115). As the notions of dependence are not purely 

mereological, it suggests that they can be applicable in other fields than mereology as well, 

e.g., philosophy of mathematics, and, moreover, that it might be relevant for specific positions 

in which dependence relations matter, i.e., non-eliminative structuralism. Second, according to 

Fabrice Correia, the dependence relation introduced to account for the relations between parts 

and wholes is “actually the main source of the contemporary interest in ontological depend-

ence” (2008:1020). That Husserl’s discussion of manifold can be directly construed as an in-

stance of non-eliminative structuralism, in addition to the notion of ‘whole’ being treated as 

‘structure’ within a larger structuralist tradition, gives us sufficient motivation and historical 

 
9 Hartimo compares it to Parsons’ non-eliminative structuralism from his (2008) (2021:162). 
10 In (2018) Aurora identifies the mathematical notion of ‘manifold’ with ‘structure’ as conceived of by Bourbaki 
and Jean Piaget. 
11 According to Richard Tieszen, “the [modern] understanding of the world in natural science … involves a shift 
to formal or structural features of experience in which we abstract from content or certain aspects of meaning. 
These shifts … are attended by a kind of idealization” (Tieszen 2013:111). Also, consider Ernst Cassirer: 
“Strcturalism is no isolated phenomenon; it is, rather the expression of a general tendency of thought that, in these 
last decades, has become more and more prominent in almost all fields of scientific research” (1945:120). 

The French structuralist tradition was at its height when mathematical structuralism was given its official 
starting point (with Benacerraf (1965)). Connections and lines of influence between these two structuralisms is a 
field worthy of study in its own right, and the lack of research on the field is mainly due to the lack of constructive 
engagement between the so-called analytic and continental tradition (see Tieszen 2013). 
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incentive to pursue the ontological dependence relation described in the third Logical Investi-

gation as a candidate for non-eliminative structuralism. 

Thus advertised, we can take on the ontological dependence relation used to describe 

the relationship between wholes and parts, i.e., the relation of foundation (‘Fundierung’).12 The 

interpretations of foundation are inconclusive, as some have considered it to be of the modal-

existential variety (Simons 1982; Fine 1995a, 1995b), while others have emphasised its essen-

tialist flair (Correia 2004, 2008).13 According to Correia, the third Investigation is mainly con-

cerned with the difference between “the dependent parts or ‘moments’ or ‘particularized prop-

erties’, like the redness of a visual datum …, and the independent parts or ‘pieces’, like the 

head of a horse or a brick in the wall” (2004:349). This distinction must be understood “in 

terms of the more fundamental notion of foundation, a form of ontological dependence” (Cor-

reia 2004:349). The main distinction takes a visual datum as an example, which recurs through-

out Husserl’s treatment of dependent and independent parts.  

However, as Kit Fine notes: “Although Husserl begins his study with examples from 

the psychological sphere, he intends his conclusions to have universal validity and to be appli-

cable to all objects whatever” (1995b:463). The universal applicability of the relation of foun-

dation is achieved by “ris[ing], in the case of any type of whole, to its pure form, its categorial 

type, by abstracting from the specificity of the sorts of content in question” (Husserl 2001b:39). 

Structural or formal aspects are thus given emphasis. This is reminiscent of Shapiro’s definition 

of structure, and how it is “the abstract form of a system … highlighting the interrelationships 

among the objects, and ignoring any features of them that do not affect how they relate to other 

objects in the system” (Shapiro 1997:74). Structure is on an abstracted level, similarly to the 

pure form of whole, where “its categorial type” is abstracted from the specificities. The relation 

of foundation plays a unificatory role, and is thus constitutive and regulatory, as the parts form 

something more together, i.e., a whole. 

There is a key passage from the third Investigation that allows us to highlight features 

of foundation relevant to our case of structuralism. 

 
A ‘founded’ content … depends on the specific ‘nature’ of its ‘founding’ contents: there 
is a pure law which renders the Genus of the ‘founded’ content dependent on the defi-
nitely indicated Genus of the ‘founding’ contents. A whole in the full and proper sense 
is, in general, a combination determined by the lowest Genera of its parts. A law corre-
sponds to each material unity. There are different sorts of whole corresponding to these 

 
12 In the foreword to the second edition, Husserl wrote that he believed the third Logical Investigation to be “all 
too little read”, and that “it is also an essential presupposition for the full understanding of the Investigations 
which follow” (Husserl 2001a:7). 
13 There have been several attempts at formalising the relations of foundation, see Simons (1982), Fine (1995b), 
Casari (2000), Correia (2004).  
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different laws, or, otherwise put, to the different sorts of contents that are to serve as 
parts. We cannot at will make the same content at one time part of one sort of whole, at 
another time part of another sort. To be a part, and, more exactly, to be a part of some 
determinate sort (a metaphysical, physical or logical part or whatever) is rooted in the 
pure generic nature of the contents in question, and is governed by laws which in our 
sense are a priori laws or ‘laws of essence’. (Husserl 2001b:38-39) 

 

This passage contains three related, but distinct points. Let us untangle them in turn.  

First, there is the distinction, following Fine’s terminology, between generic and objec-

tual foundation (Fine 1995b:465).  While generic foundation is a relation between species A 

and B, objectual foundation is between individual objects either of the same species or of two 

different species. The distinction between generic and objectual foundation thus finds a parallel 

in the twofold Dependence Claim formulated by Linnebo. ODO (objects depending on objects) 

would correspond to objectual foundation, while ODS (objects depending on structure) would 

concern a relation of foundation between a species A and the objects a of species A. This is one 

way in which foundation accommodates the Dependence Claim. This passage clearly describes 

generic foundation (or a case of ODS): That a founded content “depends on the specific ‘nature’ 

of its ‘founding’ contents”, and that “there is a pure law which renders the Genus of the 

‘founded’ content dependent on the definitely indicated Genus of the ‘founding’ contents” 

means, in a structuralist setting, that the positions belonging to a structure are of the same type, 

e.g., the mathematical objects belonging to the natural number structure are all natural numbers 

(Husserl 2001b:38). However, sometimes Husserl seemingly transitions from a generic relation 

to an objectual one, without making the shift clear, which complicates an accurate analysis 

(Fine 1995b:465). This is a general setback of Husserl’s explication of foundation, and the 

different formalisations of the relations thus differ in their analysis.14  

Second, we have the Incompleteness of objects and its relation to their Dependence. 

Consider again how a “whole in the full and proper sense is … a combination determined by 

the lowest Genera of its parts” (Husserl 2001b:38). The Incompleteness of objects is baked into 

the definition of part: “To be a part, and, more exactly, to be a part of some determinate sort (a 

metaphysical, physical or logical part or whatever) is rooted in the pure generic nature of the 

contents in question” (Husserl 2001b:38). On the structuralist picture, this means that what it 

means to be a mathematical object is to depend on a structure for being determined. To further 

explain this point, let us consider Robert Sokolowski’s take on ‘moments’ or dependent parts, 

again considering a visual datum. The dependent part is considered in relation to the datum in 

 
14 See footnote 13. 
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which it appears. This is akin to mathematical objects’ Incompleteness, if considered in relation 

to the structure in which they belong. 

 
Moments are parts that permeate each other. They are inseparable from one another and 
from their wholes. … The necessity of blending these different parts is not due to any 
psychological disposition in me or in my culture, but is grounded in the sense of the parts 
(III #7). Each part, by virtue of what it is, contains within itself a rule dictating the nec-
essary progression of supplements that it must possess, the necessary series of horizons 
within which it must rest: brightness entails color, color entails surface, surface entails 
extension. These are essentially dependent parts, moments of a whole (III #10). 
(Sokolowski 1977:96)15 

 

The incompleteness of moments is made salient, as is their resultant dependence. This is clear 

from the fact that dependent parts permeate each other, and are inseparable from one another 

and from their wholes. Moreover, this is due to the sense of the parts, as they are essentially 

dependent parts of a whole.  

Third, let us consider the reference to essence, specifically how it is that “to be a part 

of some determinate sort (a metaphysical, physical or logical part or whatever) is rooted in the 

pure generic nature of the contents in question, and is governed by laws which in our sense are 

a priori laws or ‘laws of essence’” (Husserl 2001b:39). These ‘laws of essence’, or the rule 

contained in each part (Sokolowski 1977:96), are expanded on in a following passage.  

 
[T]he Idea of Unity or the Idea of a whole is based on the Idea of ‘Founding’, and the 
latter Idea upon the Idea of Pure Law; the Form of Law is further as such categorial … 
and that to this extent the notion of a Founded Whole is a categorial notion. But the 
content of the law governing each such whole is determined by the material specificity 
of the ‘founding’ contents and consequently of the ‘founded’ types of content, and it is 
this law, definite in its content, which gives the whole its unity. For this reason we rightly 
call each ideally possible specification of the Idea of such unity a material or also a real 
(reale) unity. (Husserl 2001b:39) 
 

We see that the law governing a founded whole and it parts is connected to how the relation of 

foundation contributes to the whole’s unity. This law is categorial, or essential, and to this 

extent, the founded whole is also categorial. It is, however, its definiteness, that gives the whole 

its unity. Translated to our contemporary structuralist talk, this suggests that the unity of a 

structure is provided by how the mathematical objects serve to constitute the structure, which 

in turn, constitutes the parts and provides them with their nature. The law guiding each structure 

is different, depending on the structure in question: “There are different sorts of whole corre-

sponding to these different laws, or, otherwise put, to the different sorts of contents that are to 

 
15 ‘III’ refers to the third investigation, while ‘#7’ and ‘#10’ refer to chapter 7 and 10. 
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serve as parts. We cannot at will make the same content at one time part of one sort of whole, 

at another time part of another sort” (Husserl 2001b:39). This also seems to suggest an oppo-

sition to cross-structural identities, on which the real number 2 is identified with the natural 

number 2 (see Parsons 2008:§18). Moreover, we also capture the distinction between a system 

and a structure: “For this reason we rightly call each ideally possible specification of the Idea 

of such unity a material or also a real (reale) unity” (Husserl 2001b:39). The possible specifi-

cations would, on this interpretation, be the possible instantiations of a structure. And, possible 

instantiations of a structure are – in structuralist terms – the possible particular systems that 

realise a structure’s properties.  

 We looked at a central passage on foundation, which led to certain features being high-

lighted: its accordance with the Incompleteness Claim and the twofold Dependence Claim, its 

essentialist features, and its affinity with the contemporary notion of ‘structure’ and possible 

accommodation of ‘system’. There is another feature that deserves highlighting, namely, its 

anti-reductionism (Sokolowski 1997:xvi). By anti-reductionism, I mean the view that we 

should not, for reasons of ontological simplicity, overly reduce an entity to another by way of 

ontological dependence. For instance, we should not exclude artificial objects (e.g., ‘chair’) 

from our ontology. Even though their existence is wholly dependent on their molecular 

makeup, reducing it to a section of atoms, is tantamount to deny the object in question its im-

portance or relevance. According to Gian-Carlo Rota (1989), this is one of the great advantages 

of the relation of foundation. Rota differentiates between the facticity and the function of a 

foundation relation, where function depends on facticity. In order to bring out the difference, 

let us consider Rota’s example of reading.16 Rota compares the actual text that we read to the 

text’s content. Us learning the content of the text or reading it depends upon the text. This 

makes the text the facticity, i.e., the depended on, whereas the content of the text constitutes 

the function, i.e., the dependent.   

  
The text is the facticity that lets the content function as relevant. … Facticity is the es-
sential support (it is selbsständig), but it is meant not to upstage the function it founds. 
… Function is relevant; facticity is not. Nonetheless, function lacks autonomous standing 
(it is unselbsständig): take away the facticity, and the function also disappears. This ten-
uous umbilical chord between relevant function and irrelevant facticity is a source of 
anxiety. It is awkward to admit that what matters most, namely functions, is unselbsstän-
dig; we might feel more comfortable if we succeeded in reducing functions to selbsstän-
dig facticities. (Rota 1989:73) 

 

 
16 Rota takes his example from Wittgenstein’s Philosophical Investigations (1958:§§156-171).  
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To read some book, we need a copy of it. But we do not need a specific copy, we might as well 

read the same book, i.e., the same content, in a different copy. This is how function, i.e., the 

content, depends on facticity, i.e., the actual text, even though what is relevant is the content, 

not the specific copy of the text. This is where the issue of ontological anti-reductionism makes 

its entrance, as it “is awkward to admit that what matters most, namely functions, is un-

selbsständig”, thus feeding the need for ontological reduction (Rota 1989:73). According to 

Rota, foundation is a primitive logical relation that cannot be reduced to anything simpler, and 

conflating function and facticity would be “an instance of reduction, an error in reasoning” 

(Rota 1989:73). How do we determine what is relevant and what is not, what is function and 

what is facticity in a foundation relation? The clue is to be found in context-dependence. 

 
The point is that there is no single “what” that we necessarily “see” while watching four 
people around a table––or while watching anything. All what’s whatsoever are functions 
in Fundierung-relations. All what’s “are” by the grace of some Fundierung-relation 
whose context-dependence cannot be shoved under a rug. The context-dependence of 
Fundierung is taken by the reductionist for “arbitrariness.” But this is a mistake. The rules 
of bridge are dependent upon the context of the game of bridge, but they are in no way 
arbitrary. (Rota 1989:76) 

 

According to Rota, what serves as facticity and function in a foundation relation depends on 

what we are looking for, and what our anticipations are.17 If, say, we ask what makes the copy 

of the text an instance of some book, we can say that it is factically related to the writing, which 

is factically related to sheets of paper being bound, imprinted with ink, and being arranged in 

a certain way. What about the ink? It is factically related to the specific makeup of ingredients. 

But again, there are other “chain[s] of motivations” we could follow: We could, for instance, 

say that our reading the text is factically related to our being able to see, etc. (Rota 1989:76). 

The point is that foundation relations may be layered; so that what is the facticity in one foun-

dation relation is the function of another (Rota 1989:76).  

We might object that there is no reason this is applicable to mathematical structuralism. 

Rota’s examples are (at least partly) taken from the spatio-temporal world, and do not seem to 

be directly concerned with ontological dependence relation for mathematics. However, let us 

again consider the twofold Dependence Claim, and a recent objection to ODO.  

 
This objection is based on the claim that there cannot be circular relations of dependence. 
The objector can attempt to support this claim by observing that when an object b de-
pends on another object a, then a must be ‘prior’ to b. But then a cannot in turn depend 
on b, since two objects cannot be ‘prior’ to each other in one and the same sense. The 

 
17 The topic of anticipation and filling is integral to Husserl’s view, see Føllesdal (1988). 
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objector thus arrives at the claim that there cannot be any cyclical relations of depend-
ence. (Linnebo 2008:68-69) 

 

As the objects belonging to the same structure all depend on each other, a symmetrical notion 

of dependence fails to indicate which objects are ontologically prior. We saw in section 2 that 

Wigglesworth (2018) allows for symmetrical relation of ground, which – together with reflex-

ivity and transitivity – lead to infinite chains of dependence and non-well-foundedness. As the 

relation of foundation share these structural properties, we end up with the same infinite chains 

and non-well-foundedness (Husserl 2001b:27-28).18 While the objection correctly points out 

that we cannot determine ontological priority among the objects belonging to the same struc-

ture, this is rather like directing attention to a trait of structuralism, than identifying a disad-

vantage.  

There is also an objection of circularity raised against ODS, which takes as an assump-

tion that relations of dependence must be non-circular, or even well-founded (Linnebo 

2008:69).19 It continues by defending a general metaphysical picture of downwards depend-

ence where “any structure whatsoever depends on the objects that it involves” (Linnebo 

2008:69-70). ODS is meant as a case of upwards dependence, as the objects belonging to a 

structure depend on that structure. Downwards dependence is given initial plausibility if we 

consider the intuitive idea that a structure without the objects that constitute it does not make 

much sense. What is it a structure of, if it does not highlight the interrelationships between its 

objects, i.e., its positions? According to Shapiro, this is not the case: “The structure is prior to 

the mathematical objects it contains, just as any organization is prior to the offices that consti-

tute it. The natural-number structure is prior to 2, just as … ‘U.S. Government’ is prior to vice 

president’” (Shapiro 1997:78). However, a way to accommodate the objection, is to consider 

Rota’s emphasis on foundation’s anti-reductionism and the distinction between facticity and 

function. We saw that while the function is founded on the facticity, it is the function that is 

relevant. The anti-reductionism of foundation means that “[c]onflating function with facticity 

… is an instance of reduction, an error in reasoning” (Rota 1989:73). Moreover, the function 

and facticity in a foundation relation is context-dependent and layered, so that what is the fac-

ticity in one foundation can be the function in another (Rota 1989:76). This opens up for the 

 
18 Reflexivity, that something is founded on itself, is – to my knowledge – not addressed. However, as foundation 
is clearly symmetrical and transitive, we do end up with infinite chains, e.g., ‘1 ~ 2 ~ 3 ~ 1 ~ 3 ~ 2 ~…’. Husserl 
differentiates between mediate and immediate foundation, which supposedly captures a difference in transitivity 
(Husserl 2001b:28). We can think of mediate foundation as transitive, while immediate as not (this is suggested 
by Bliss & Priest (2018), though not in reference to Husserl). This allows for explaining containment of parts by 
other parts of a whole. See also Fine (1995a). 
19 This is due to Hellman (2001) and MacBride (2006). 
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view that while structure might be prior to its objects, i.e., ODS, we can also consider the 

structure to be founded on its objects, if we consider the structure to be the function, and the 

objects to constitute the facticity. The structure is still the relevant part of this foundation rela-

tion, which we could take to mean that it has priority over its objects, as reducing it to its 

factical objects would be an error, and go against the nature of foundation. 

 

4. Metaphysical interdependence and links to coherentism 

We saw that the objection against ODS rests on a general metaphysical picture of downwards 

dependence, according to which a structure depends on the objects it involves (Linnebo 

2008:69-70). This general metaphysical picture is an instance of metaphysical foundationalism, 

the view that reality is hierarchical (i.e., the hierarchy thesis), and structured by chains of de-

pendence relations ending in some fundamental thing(s) that do(es) not depend on anything 

further (i.e., the fundamentality thesis) (Bliss & Priest 2018:2). Metaphysical foundationalism 

has been the standard view among contemporary analytic metaphysicians. Concomitantly, the 

standard view on metaphysical dependence is that it is irreflexive, asymmetrical, and transitive. 

Ricki Bliss and Graham Priest argue that we ought to pay more attention to alternative accounts 

to both, as “[r]eality may well not have the metaphysical structure of a well-founded chain, but 

a much more complex and fascinating one” (2018:1, 31).20  

One such alternative is explored by Thompson (2018), who develops the view of met-

aphysical interdependence or coherentism.21 Thompson rejects two theses of metaphysical 

foundationalism: well-foundedness and asymmetry. While well-foundedness “guarantees that 

each fact is ultimately grounded in some foundational fact or facts” (i.e., the fundamentality 

thesis), asymmetry “guarantees that grounding hierarchies run only in one direction; from the 

more fundamental to the less fundamental” (i.e., the hierarchy thesis) (Thompson 2018:109). 

We thus end up with infinite chains of ground in both directions. Not only does her account 

allow for non-well-founded chains of ground, but reality also is not construed as hierarchically 

structured in more or less fundamental levels. As the structural property of transitivity is pre-

served, this leads to chains of ground that cycle, i.e., there are ontological loops of ground. 

It has been observed before that metaphysical coherentism – though a general meta-

physical picture of reality – is relevant for mathematical structuralism. As a mathematical 

 
20 See Bliss & Priest (2018) for a collection of papers that challenge aspects of metaphysical foundationalism. 
21 Thompson prefers ‘interdependence’ in her particular view, while Bliss & Priest call it ‘coherentism’ (2018:3, 
14, 31). We will use both, where it is explicitly Thompson’s formulation, ‘interdependence’ will be appropriate.  
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object stands within a web of ontological dependence relations, the web’s interconnections 

should exhibit some overall coherence. This idea turns up in Shapiro (1997), for whom coher-

ence is the existence criterion by which structures exist. As long as a theory is coherent, the 

structures described by it exist (Shapiro 1997:95). A coherentist metaphysical picture seems 

appropriate for structuralism, as a holistic approach is generally preferred.22 Fittingly, Thomp-

son uses mathematical structuralism as an example position where interdependence might be 

better suited than foundationalism (2018:118). The choice of an ontological dependence rela-

tion that favours cyclical chains of dependence, thus referring to an overall system of depend-

ence, should fit within this general coherentist metaphysical picture.  

Thompson’s view of metaphysical coherentism is, like Wigglesworth’s account of 

grounding and our account of foundation, non-well-founded and allows for symmetrical and 

transitive relations of dependence. But, she goes one step further than Wigglesworth. Wiggles-

worth holds that as a structure fully grounds its objects, it provides them with a foundation. He 

distinguishes between the non-well-foundedness of ODO and the well-foundedness of ODS, 

where, as “each chain in the structure is bounded from below, each chain has a foundation” 

(2018:234). In contrast to Thompson, Wigglesworth does not reject the fundamentality thesis, 

as the upward dependence of ODS is well-founded, and there is something fundamental that 

does not depend on anything further. Thompson calls this a weak form of interdependence, 

where all that is required is “that there be at least one counterexample to both well-foundedness 

and asymmetry”, in which case, we might get “hybrids featuring chains that bottom out in 

foundational facts alongside small pockets of interdependence” (2018:110). This seems to fit 

Wigglesworth’s bill: There is a counterexample in the non-well-foundedness and symmetry of 

partial ground for ODO, while the well-foundedness of ODS provides each infinite chain in 

the structure with a foundation. 

Thompson discusses integrated wholes (as compared to mere aggregates), and consid-

ers the example of a circle. There are good reasons, she writes, to consider any divisions of the 

circle, i.e., parts, as grounded in the whole (Thompson 2018:111). This would constitute ODS, 

i.e., how the objects depend on the structure. However, she also argues that there are good 

reasons to believe that the whole, e.g., circle, is grounded in its parts, e.g., two semi-circles. 

This is the upshot of metaphysical interdependence: A completely cyclical picture of reality 

can “simultaneously account for both these seemingly competing intuitions” (Thompson 

2018:111). When applied to our case, it would mean that the structure is founded on its objects. 

From our above discussion of function and facticity, we saw that a reduction of the function to 

 
22 See Shapiro (2011). 
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the facticity in a foundation relation would be an error of reasoning. The same applies here. 

There seems to be something wrong about saying that the circle is founded on two semi-circles 

being adjoined. The division into two semi-circles seems to happen after the construction of 

the circle, thus suggesting that the circle is indeed prior to its parts.23 A structure is similarly 

prior to its objects. However, the intuition that two semi-circles do form a circle by a unificatory 

relation of foundation also has merit. A way, then, to account for both directions of dependence 

is to consider the context-dependence of foundation as it appears in Rota (1989). We may 

consider the structure as that which is constituted by objects, but, importantly, we cannot reduce 

it to its objects.  

There are two further points that link Thompson’s interdependence to our case at hand, 

both epistemological. First, Thompson takes epistemological coherentism as inspiration for her 

view (Thompson 2018:109-110). Just as there is epistemological foundationalism and coher-

entism, there is, on the metaphysical side, foundationalism and interdependence. The thought 

is that just as justification is not transferred linearly but rather cycles and must be considered 

in reference to the system of beliefs as a whole, so do dependence relations cycle. This is rele-

vant, as the metaontological coherentism developed for structuralism above also takes episte-

mological coherentism as analogous to some extent. Whereas the twofold coherence is taken 

as an identity criterion in metaontology, the coherentism of interdependence is evident from 

the non-linearity of how dependence cycles.  

Second, Husserlian foundation is explicitly mentioned as a dependence relation in 

structuralism, but in relation to epistemology and mathematical intuition. Charles Parsons 

writes that we “can indeed talk, after Husserl, of intuition of a type as founded on perception 

of a token” (2008:161).24 This is reminiscent of Shapiro’s stratified epistemology, a step of 

which describes how our experience with tokens lead to understanding of the type (Shapiro 

1997:11). Moreover, Richard Tieszen writes that “[t]he general idea of founding and founded 

structures in mathematical cognition is a fundamental part of Husserl’s view” and Husserl’s 

foundation-relation is essential to understand “the independence and nonindependence of ob-

jects” in general (Tieszen 2005:259).  

That foundation pops up in epistemology for structuralism, as well as being used as a 

dependence relation that differentiates between founding and founded structures, suggests that 

 
23 The case of the table depending on its atoms for its existence is more straightforward, as there is causality at 
play. Metaphysical dependence in the case of circles and mathematical structure and objects seems different. And 
still, due to our anti-reductionist dependence relation, we would not reduce the table to its atoms, as that would 
deny the table its relevance as an artefact. 
24 Though the discussion of Husserl is not extensive, Parsons proclaims that Husserl has “the most developed and 
in some ways the clearest philosophical statements [of a structuralist view] from before World War II” (Parsons 
2008:41). 
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foundation encompasses more than mere ontological dependence. Not only can we implement 

it as the ontological dependence relation appropriate for the twofold Dependence Claim, but 

we can also implement it in our epistemological account for structuralism. This is surely a 

benefit, as it makes structuralist ontology and epistemology mesh well together, i.e., the differ-

ent aspects of structuralism are given over-all coherence, thus rendering structuralism as a more 

unified position. 

 

5. Conclusion 

We have seen that dependence relations play an integral part in characterising mathematical 

structuralism. A suitable dependence relation must be able to explain both how mathematical 

objects depend on their structure (ODS), and how they depend on each other (ODO). To this 

end, we took on the Husserlian relation of foundation and saw how it accommodates both. 

Foundation allows for cyclical chains of dependence, as it is asymmetrical, transitive, and non-

well-founded. As foundation is explicitly anti-reductionist and context-dependent, the distinc-

tion between function and facticity permits us to still make sense of the intuition that a whole 

is founded on its parts, while at the same time keeping the view that a structure is ontologically 

prior to its objects. Moreover, by looking at the general metaphysical picture of coherentism, 

we found that abandoning a linear structure of reality fits with the dependence relation appro-

priate for structuralism, and that, in this respect, it has commonalities with other non-linear 

aspects of structuralism. To construe the dependence relation in mathematical structuralism as 

foundation thus provides a more complete picture as to how a structure and its objects are 

irrevocably interlinked.  
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Abstract 
This thesis defends non-eliminative structuralism in philosophy of mathematics. Non-elimina-

tive structuralism combines the view that mathematics is the study of abstract structures with 

a realist ontology. It is a cumulative thesis, and in four independent articles I investigate ques-

tions of metaontology, epistemology, and ontology. The particular perspective of each article 

adds to the overall justification for structuralism – as they converge thematically and method-

ologically – thus constituting a coherent and systematic defence, and progressing the viability 

of the position.  

 Articles 1 and 2 are sister papers, where the second clearly builds upon the first. The 

first article examines the relationship between metaontology and ontology in the philosophy of 

mathematics. I argue that metaontology can serve a useful role in formulating mathematical 

ontology, and that we can view it as rectifying a position’s theoretical insufficiency. Article 2 

takes as its starting point the conclusion that mathematical realism in ontology generally ben-

efits from implementing an appropriate metaontology. It develops metaontological coherent-

ism, and investigates its relation to – and fit with – structuralist ontology. Article 3 answers the 

question of when an epistemological account is deemed adequate with regard to the so-called 

access problem. I argue that two approaches can be differentiated. Each approach has implicit 

metaepistemological leanings, which accounts for miscommunication in the epistemological 

debate generally, and within structuralism specifically. Article 4 takes on ontological depend-

ence relations for structuralism, between a structure and its objects and among the objects be-

longing to the same structure. I defend a Husserlian relation of dependence – foundation – as 

it allows for infinite chains of dependence that cycle. Such a non-linear account of dependence 

fits with how mathematical objects are thought to be incomplete and dependent on the structure 

to which they belong.  
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Zusammenfassung 
Die vorliegende Dissertation verteidigt den sogenannten nicht-eliminativen Strukturalismus 

(„non-eliminative structuralism“) als Position in der Mathematikphilosophie. Der nicht-elimi-

native Strukturalismus verbindet die Auffassung, dass Mathematik das Studium abstrakter 

Strukturen sei, mit einer realistischen Ontologie. In den vier unabhängigen Artikeln dieser ku-

mulativen Arbeit untersuche ich Fragen der Metaontologie, Epistemologie und Ontologie. Die 

jeweiligen Perspektiven der einzelnen Artikel tragen zur allgemeinen Rechtfertigung des 

Strukturalismus als Ganzes bei – da sie thematisch und methodisch konvergieren – und bilden 

somit eine kohärente und systematische Verteidigung des Strukturalismus, welche die Tragfä-

higkeit dieser Position fördert. 

 Die Artikel 1 und 2 sind „Schwesterartikel“, wobei der zweite Artikel auf den ersten 

aufbaut. Der erste Artikel untersucht die Beziehung zwischen Metaontologie und Ontologie in 

der Philosophie der Mathematik. Ich argumentiere, dass die Metaontologie eine nützliche Rolle 

bei der Formulierung der mathematischen Ontologie spielen kann und dass wir sie zur Ver-

vollständigung einer ontologischen Position betrachten können. Artikel 2 bezieht diese 

Schlussfolgerung auf den mathematischen Realismus, und argumentiert, dass diese ontologi-

sche Position im Allgemeinen von der Implementierung einer geeigneten Metaontologie pro-

fitiert. Der Aufsatz entwickelt einen metaontologischen Kohärentismus und untersucht dessen 

Beziehung zur strukturalistischen Ontologie – und dessen Kompabilität mit ihr. Artikel 3 be-

antwortet die Frage, wann ein erkenntnistheoretischer Ansatz im Hinblick auf das sogenannte 

„access problem“ als angemessen gilt. Ich argumentiere, dass zwei Ansätze mit verschiedenen 

impliziten metaepistemologischen Neigungen, welche zu Missverständnissen in der erkennt-

nistheoretischen Debatte im Allgemeinen und im Strukturalismus im Besonderen führen, un-

terschieden werden können. Artikel 4 befasst sich mit den ontologischen Abhängigkeitsver-

hältnissen im Strukturalismus. Ich verteidige ein Husserlsches Abhängigkeitsverhältnis – die 

Fundierung – da es unendliche, zyklische Abhängigkeitsketten zulässt. Eine solche nicht-line-

are Darstellung der Abhängigkeit entspricht der Betrachtung von mathematischen Objekten als 

unvollständig und abhängig von der Struktur, zu der sie gehören.  


