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Abstract 
Given the large number of new small organic molecules that are being developed and 

commercialized for diverse applications, there is an urgent need for robust risk assessment 

strategies to ensure the safety of chemicals with respect to health and the environment. Toxicity 

assessment currently relies on animal assays that imply serious ethical concerns as well as high 

costs in terms of time and money. Therefore, substantial efforts are set on the development of 

in vitro assays and computational tools that can reduce or replace these animal assays while 

ensuring the compounds¶�VDIHW\�� 

This dissertation aims at the development of computational toxicology tools tackling current 

difficulties for the advancement of safe and robust alternative methods. The first part focuses 

on approaching in vivo toxicity prediction from a lower complexity perspective by predicting 

single molecular initiating events (MIEs) as a starting point for the determination of adverse 

outcome pathways of in vivo effects. This was studied at the example of endocrine disruption, 

a specially challenging toxicity endpoint due to the many regulation pathways involved. The 

following three parts of the dissertation tackle the prediction of in vivo effects directly. These 

models aim to enhance in vivo toxicity prediction by including complementary biological 

information (e.g. pharmacokinetics, MIEs or metabolism) already in the model development 

phase. Moreover, these in vivo models explore the opportunities that conformal prediction, a 

framework for the mathematical estimation of the confidence of the predictions, offers in the 

context of computational toxicology.  
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Zusammenfassung 
Angesichts der großen Zahl neuer kleiner organischer Moleküle, die kontinuierlich für 

verschiedene Anwendungen entwickelt und vermarktet werden, wird der Bedarf an robusten 

Risikobewertungsstrategien zur Gewährleistung der Sicherheit für unsere Gesundheit und 

Umwelt verstärkt. Die Toxizitätsbewertung beruht derzeit auf Tierversuchen, die sowohl 

ethisch bedenklich als auch zeitlich und finanziell sehr kostspielig sind. Daher werden 

erhebliche Anstrengungen unternommen, um in-vitro-Assays und in-silico-Tools zu 

entwickeln, die diese Tierversuche reduzieren oder ersetzen können und gleichzeitig die 

Sicherheit der Substanzen gewährleisten. 

Diese Dissertation befasst sich mit der Entwicklung von in-silico-Toxizitätsmodellen, die 

aktuelle Herausforderungen für die Weiterentwicklung sicherer und robuster alternativer 

Methoden adressieren. Der erste Teil beschäftigt sich mit der Vorhersage von in-vivo Toxizität 

aus einer Perspektive geringerer Komplexität, indem einzelne molekulare auslösende 

Ereignisse (MIEs) als Ausgangspunkt für die Bestimmung adverser Signalwege von toxischen 

in-vivo-Effekten vorhergesagt werden. Dies wurde am Beispiel der Störung des 

Hormonsystems untersucht, einem besonders schwierigen Toxizitätsendpunkt aufgrund der 

vielen beteiligten Regulationswege. Die weiteren drei Teile der Dissertation befassen sich 

direkt mit der Vorhersage von in-vivo Effekten und insbesondere mit der Entwicklung neuer 

Methoden, um in-vivo Toxizitätsmodelle zu verbessern. Zu diesem Zweck werden 

komplementäre biologische Informationen (z. B. Pharmakokinetik, MIE oder Metabolismus) 

bereits in der Modellentwicklungsphase eingeführt. Darüber hinaus untersuchen diese in-vivo 

Modelle die Möglichkeiten, die Conformal Prediction, ein Verfahren zur mathematischen 

Schätzung der Zuverlässigkeit der Vorhersagen, im Kontext der computergestützten 

Toxikologie bietet. 
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1 Introduction 

1.1 Safety assessment of newly developed compounds 

Humans and animals are constantly exposed to a great variety of chemicals. Some of these 

chemicals are naturally formed (e.g. by microorganisms) while others have been developed by 

humans for a variety of purposes. As the number of available drugs, cosmetics, agrochemicals, 

or household products grows, our organism is inevitably in contact with more and more new 

compounds. Not only us, but also the environment can suffer from the increasing amount of 

chemicals, especially through the vast use of pesticides.1, 2  

All chemicals can potentially induce toxicity on one or more species through on-target or off-

target effects. On-target toxicity refers to exaggerated or adverse effects caused by small 

molecules interacting with their intended target. This is, for example, the case of the drug statin, 

DQ�LQKLELWRU�RI�ȕ-K\GUR[\�ȕ-methylglutaryl-CoA (HMG-CoA) reductase widely used to reduce 

cholesterol in blood in people with cardiovascular risks. Since this reductase is also necessary 

for other vital functions (e.g. generation of coenzyme Q10 and heme-A), its on-target inhibition 

also causes several adverse effects (like muscles weakness or inflammation).3 Off-target 

toxicity corresponds to adverse effects derived from the interaction of substances with 

unintended (and often promiscuous) targets. For instance, many drugs that have been 

withdrawn from the market due to their interaction with human ether-à-go-go-related gene 

(hERG) channels that results in cardiotoxicity issues.4 

Extensive testing of newly developed compounds on a variety of toxicity endpoints is of high 

importance to avoid the risk of severe adverse reactions. In this regard, the EU Registration, 

Evaluation, Authorisation and Restriction of Chemicals (REACH) regulation deals with the 

approval of newly developed chemicals to ensure their safety for humans and the environment. 

REACH establishes a series of protocols to determine the properties and hazards of compounds 

and decide upon their authorization. Since a comprehensive study of all possible toxicological 

endpoints is not feasible, the required studies are based on the intended use of the chemical and 

its exposure routes and concentrations. For instance, the ecological safety of a compound (e.g. 

with regard to bees or fish) is often required for the registration of agrochemicals or household 

products, while it is usually not a requirement for the approval of pharmaceutical drugs.  
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Toxicological data on closely related compounds may sometimes be used to fill data gaps for 

the authorization of substances by the so-FDOOHG�³UHDG-DFURVV´�DSSURDFK��5HDG-across is based 

on the assumption that similar compounds have similar bioactivities.5 Following this principle, 

the activity of a new compound may be inferred from experimental safety data on closely 

related compounds. Although the definition of molecular similarity is not straightforward or 

unique, similarity is commonly determined by the Euclidean or Tanimoto distance based on 

features describing molecular properties.6 Both the increasing amount of available 

experimental data and the demanding testing requirements imposed by REACH are boosting 

the application of read-across cases in the last few years. Moreover, the support of more 

accurate in silico quantitative structure-activity relationship (QSAR) predictions also facilitates 

the acceptance of read-across studies. Nevertheless, a thorough documentation of each read-

across case is still required and the final decision on its acceptance remains at the judgement 

of the regulatory body. 

Identifying toxic compounds in early stages of the substance discovery pipeline can prevent 

investing resources on unfeasible substances that will fail on the unavoidable requirements of 

the safety assessment. Nevertheless, toxicity testing is usually first conducted at advanced 

stages of the substance development process as it involves a high number of animal tests, as 

well as high costs and time investment. Despite important differences between animal species 

leading to mismatches between the outcome of animal assays and clinical trials, in vivo animal 

assays are still considered the most accurate safety assessment approach and are required for 

most toxicological endpoints.7 However, significant efforts are ongoing to develop alternative 

methods based on in vitro assays and in silico modeling to limit animal suffering to a non-

reducible minimum.8, 9 

Computational methods for predicting the toxicity of compounds represent valuable tools at 

several stages of the substance discovery pipeline. In early stages, they can help to prioritize 

promising candidates with less or no predicted toxicity warnings. As candidate substances 

advance in the development pipeline and require safety evaluation, toxicity prediction models 

can highlight certain toxicity assays that present the highest risk of a positive result to accelerate 

the identification of failing candidates. Finally, in silico methods can support read-across cases 

to avoid extensive testing of all registered compounds. 
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1.2 In vivo toxicity testing 

In vivo assays are so far the most widespread and accepted approaches for determining the 

toxicity of a compound on a specific endpoint. These assays are carried out on living animals 

and can take years to complete (e.g. carcinogenicity studies) and involve several generations 

of animals (e.g. reproductive toxicity and embryotoxicity studies). Therefore, in vivo assays 

not only entail ethical concerns due to animal suffering, but also an immense resource 

investment with regard to time and money. Considering the large amount of compounds being 

developed and released to the environment every year, it is not feasible to conduct in vivo 

studies for each compound on a high number of toxicity endpoints. 

The indisputable advantage of in vivo assays over other approaches lies in the consideration of 

the complex interactions present in whole organisms. Taking all of these interactions into 

account is of utmost importance, as these can have a great influence on the observed effects of 

a compound on the target organisms. The outcome may be for instance determined by the 

pharmacokinetics of the compound and its availability at a given time and location in the body. 

The effects defining this complex system are generally summarized as the absorption, 

distribution, metabolism and excretion (ADME) parameters. 

Absorption refers to the ability of a compound to move from the site of administration to the 

bloodstream. The bloodstream is the most common vehicle for compounds to move inside the 

organism and is often reached through intestinal absorption or inhalation. Absorption may be 

KHQFH� GHWHUPLQHG�� DPRQJ� RWKHU� SURSHUWLHV�� E\� WKH� FRPSRXQG¶V� VROXELOLW\� RU� LWV� FKHPLFDO�

stability in the stomach. The distribution of compounds to the target organ or tissue through 

the bloodstream is the next necessary step to elicit a response. Several factors like the blood 

flow at the target site, the molecular size or the binding to serum proteins can influence the 

distribution of substances.  

Metabolism also plays a major role in the toxic outcome of a substance, as it may chemically 

modify its molecular structure and, hence, its properties. In principle, metabolism is the primary 

defense of the body for the detoxification of xenobiotics. Nevertheless, compounds may also 

be bioactivated through metabolic transformations resulting in more active (as is the case of 

prodrugs) or toxic compounds. Metabolic transformations usually convert compounds into 

more hydrophilic metabolites to facilitate their elimination. The excretion of compounds and 

their metabolites through the kidneys (via urine) or the bile (via feces) avoids their 

accumulation and possible toxic effects.  
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Results from animal assays are extrapolated to humans to decide upon the toxicity of a 

compound prior to clinical trials. However, biological differences between organisms may lead 

to substantial discrepancies in the observed effects on animals and humans.10 For instance, off-

target proteins responsible for toxic outcomes in humans may not be present in the animal 

models. Also variations in the metabolic pathways may lead to the formation of different 

(potentially toxic) metabolites or different metabolic rates.11 Perel et al.12 conducted a 

systematic review comparing the (beneficial or harmful) effects of drugs in humans during 

clinical trials and the observed effects in animal studies. From the six analyzed endpoints, the 

animal studies agreed with the observations during clinical trials in only half of the cases. 

Moreover, some of these agreements are believed to be also biased by the study design or be 

caused by random error. 

Despite the limited extrapolation to humans, in vivo animal assays are nowadays still the most 

reliable method for assessing the safety of compounds as they consider a whole biological 

system and therefore all the interactions that the substance may undergo in the body. However, 

following the 3Rs-Principle (Reduction, Replacement, Refinement) roadmap for a more ethical 

use of animal testing, safety assessment is experiencing a shift towards the use of alternative 

methods better aligned with ethical concerns and regulatory requirements. Especially in the 

case of cosmetic ingredients, in vitro assays and in silico methods are widely applied and set a 

good precedent for the development of toxicity testing in this direction.13 

1.3 In vitro toxicity testing 

In vitro toxicity assays are carried out on microorganisms or isolated biological targets, cells 

or tissues. These assays present the advantages of avoiding animal suffering and often 

supporting high-throughput screening. Therefore, they may also be conducted early in the 

substance development pipeline to identify toxic hazards straight away.  

There are many efforts set by industry and governmental entities on the development of reliable 

in vitro toxicity assays. Some well-known initiatives in this area are the Tox21 (Toxicology in 

the 21st Century program) and ToxCast (U.S. Environmental Protection AJHQF\¶V� �(3$��

Toxicity Forecaster) projects. The Tox21 program was initiated by several U.S. government 

agencies with the aim of detecting adverse effects of small molecules on humans based on 

high-throughput screening assays. The project covers around 70 assays and over 9000 

substances that span from commercial chemicals and pesticides to food additives and medical 
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compounds. Within the ToxCast project from the U.S. EPA, 4500 substances have been 

screened in more than 700 high-throughput assays. Similarly to the Tox21, the ToxCast library 

of compounds also includes a high number of pesticides, but also pharmaceutical compounds, 

cosmetic ingredients and food additives.14  

In parallel, the Organisation for Economic Co-operation and Development (OECD) is focusing 

on the identification of adverse outcome pathways (AOP). The AOPs describe the sequence of 

causally linked events at different levels of the biological systems and help to analyze the 

pathways leading to a toxic effect. As part of this effort, the OECD is hosting the Adverse 

Outcome Pathway KnowledgeBase (AOP-KB) to enable sharing and discussing AOPs in the 

scientific community. Among others, AOPs are of highest relevance for the reduction of animal 

tests for the identification of endocrine disruptors, as these trigger cascades of events difficult 

to evaluate with isolated in vitro assays.15  

Although in vitro toxicity testing is in some cases a valid alternative to animal tests, it also has 

some clear limitations. These assays only account for localized effects on the target protein, 

cell or tissue and hence do not consider the ADME effects (or only a subset of them). Therefore, 

there are often inconsistencies observed between in vitro and in vivo assay outcomes. To 

overcome the limitations of individual in vitro assays, a battery of assays may be combined to 

reproduce a concrete in vivo toxicity endpoint. This is the case of the strategy for identifying 

skin sensitizing substances recently approved by the OECD, which includes three in vitro 

methods and has shown to perform at least as well as the widely accepted murine local lymph 

node assay (LLNA) animal test.16 Another strategy to reduce the gap between in vitro and in 

vivo results is the emulation of some ADME properties in the in vitro assays. This may be 

achieved by reproducing the organ tissue instead of working with isolated cells or molecular 

targets, or by including metabolizing enzymes (with liver microsomes, liver S-9 fractions or 

hepatocytes) in the culture medium. Moreover, the outcome of in vitro assays may also be 

combined with in silico models based on human or animal data with the aim of further reducing 

the in vitro-in vivo gap and reliably substitute animal assays.  

1.4 In silico prediction of toxicity 

In silico tools for predicting the toxicity of new, untested compounds are developed using 

existing, measured biological data. Such computational tools can be designed for high-

throughput profiling, enabling predictions of the toxicity (or any other property) of hundreds 
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of compounds within a matter of seconds or minutes. Moreover, in silico tools bring a paradigm 

shift into the compound development pipelines as they enable the evaluation and interactive 

optimization of conceptual molecules not yet synthesized. These methods are hence a powerful 

tool for the prioritization of molecules for testing or for choosing relevant assays (e.g. by 

predicting molecular initiating events (MIEs)). Since computational tools can be trained on 

human data, they also present the advantage of avoiding issues related to interspecies 

differences.  

The robustness and reliability of in silico models is limited by the quantity and quality of the 

available experimental data. These models are usually not able to extrapolate the results to new 

compounds that are overly different from those used to train the models. Therefore, before 

applying the models, it is of utmost importance to determine both their accuracy and their 

applicability domain (AD). The AD defines the compounds for which a reliable prediction can 

be made, and its clear definition and communication are of high relevance to ensure the correct 

XVDJH�RI�WKH�PRGHO��VHH�³$SSOLFDELOLW\�GRPDLQ´�VHFWLRQ�IRU�GHWDLOV��� 

As the available data and computational power increase, in silico tools for toxicity prediction 

have evolved as well. The first QSAR models were based on small data sets and linear 

combinations of physically meaningful descriptors. Higher amounts of data and evolving 

machine learning (ML) algorithms allowed the development of more accurate models, often at 

the cost of less interpretable predictions.17 Nowadays, the term QSAR is commonly used to 

describe all forms of predictive models, including ML and deep learning models. 

1.4.1 Classical quantitative structure-activity relationship analysis 

Structure-activity relationship (SAR) analysis aims to relate the substitution of functional 

groups with the observed changes in the bioactivity of a compound. Building on that, QSAR 

analysis intends to quantify these differences through mathematical or statistical relationships. 

These relationships are typically represented by linear models combining one or several 

structural or physicochemical properties.18, 19 One example of such a QSAR model is a recently 

developed model by Naseem et al. for the prediction of human skin permeability of neutral 

organic chemicals based on a linear combination of the partition coefficients for octanol-water 

and air-water systems.20 

In order to relate small chemical changes with the biological activity, traditional QSAR 

analyses are generally restricted to specific classes of compounds or ligand-target interactions 
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and binding modes. This characteristic is hence limiting the usability of classical QSAR models 

for the prediction of some toxicity endpoints, in which several physicochemical and biological 

events are involved (e.g. permeability, bioavailability, interaction with off-targets, etc.). 

Nevertheless, classical QSAR analysis may still be useful for the examination of isolated 

toxicological targets in order to understand and minimize the interactions leading to the toxic 

outcome.21, 22 

1.4.2 Machine learning 

ML models are statistical methods that uncover patterns on new data, based on learned 

observations on past data. The methods can be classified in two main groups based on the input 

data and the final goal: unsupervised and supervised ML. In unsupervised ML, the input data 

is unlabeled (i.e. there is not a predefined correct answer to the problem) and the aim of the 

model is to find patterns that separate the data in two or more groups. These methods are often 

used in in silico toxicity applications for visualizing the chemical space covered by the 

available data. Popular models used for this purpose are principal component analysis23 (PCA) 

and uniform manifold approximation and projection24 (UMAP). These methods conduct a 

dimension reduction on the input features to allow a two-dimensional representation of the 

samples. PCA reduces the dimensions by creating new variables that maximize the explained 

variance (i.e. the information content). In contrast, UMAP is designed to maintain the pairwise 

distance between samples in the lower dimensional space. 

In supervised ML the input data are labeled (e.g. with measured activity values) and the aim is 

to map the input features describing the samples with the given values. In toxicity prediction, 

supervised ML models are applied to predict the activity of untested compounds, based on 

assay outcomes of a set of measured compounds. For training, the models are presented with a 

VHW�RI�IHDWXUHV�UHSUHVHQWLQJ�FKDUDFWHULVWLFV�RI�WKH�FRPSRXQGV��VHH�³0ROHFXODU�HQFRGLQJ´�VHFWLRQ�

for details), as well as the measured activity of these compounds. Supervised ML models can 

be further divided into clasVLILFDWLRQ��LI�WKH�ODEHO�LV�FDWHJRULFDO��H�J��³DFWLYH´�DQG�³LQDFWLYH´��

and regression (if the label is continuous; e.g. LD50 value) models. Given the small size of the 

available data sets in toxicity prediction applications, the development of regression models 

returning a continuous activity value (e.g. LD50) is often challenging. Regression models 

usually require samples to cover a wide range of values and to have a similar distribution over 

all possible values (i.e. no skewed data) in order to be robust. Classification models, on the 

RWKHU�KDQG��DUH�QRUPDOO\�WUDLQHG�XVLQJ�ELQDU\�FODVVHV�IRU�D�JLYHQ�FRPSRXQG��H�J��³DFWLYH´�DQG�
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³LQDFWLYH´���KHQFH�VLPSOLI\LQJ�WKH�SUREOHP��1HYHUWKHOHVV��VHWWLQJ�D�FXW-off on the activity value 

WR�ODEHO�WKH�FRPSRXQGV�DV�³DFWLYH´�RU�³LQDFWLYH´�LV�QRW�DOZD\V�VWUDLJKWIRUZDUG�DQG�PD\�VWURQJO\�

influence the relevance, quality and interpretation of the classification model.  

Some of the most commonly employed, supervised ML algorithms are linear and logistic 

regression25 (LR; for regression and classification applications, respectively), support vector 

machine26 (SVM), random forest27 (RF) and gradient boosted trees28 (GBT). Linear regression 

and LR models map a function describing a linear combination of one or more independent 

features to the given values. SVMs project the features into a hyperplane that maximizes the 

margin between samples from different classes and which is used as a decision boundary. RF 

classifiers combine the predictions from an ensemble of decision trees trained on different 

subsets of data. GBT models are also based on ensembles of decision trees but built in a stage-

wise manner where each tree is designed to correct the mistakes made by the previous one. 

Moreover, deep learning, a subtype of ML based on neural networks (NN),29 has been strongly 

developed and applied in recent years. These networks are formed by several hidden layers of 

interconnected neurons that aim to simulate the functions of the human brain. The model learns 

by transferring information back and forth along the network with the objective of minimizing 

the error between the prediction and the correct label. 

Even in cases where a relatively large amount of toxicological data are available, these data 

often contain only small amounts of active compounds. This data imbalance can hinder the 

recognition of active compounds by the model, as a small variety of active samples may not be 

enough to derive general characteristics.30 Moreover, having a small percentage of active 

compounds may bias the model to predict all compounds as inactive, since ML models are 

trained to minimize wrong predictions (and predicting a compound as inactive is in most cases 

correct). To avoid this bias, a method for bias correction, such as class weight balancing, 

oversampling or undersampling, is often applied. By balancing the class weights, errors 

committed on samples from the minority class (usually active compounds) are penalized harder 

than errors on samples from the majority class (usually inactive compounds). The oversampling 

technique revolves around the increase of the number of samples representing the minority 

class in the training data, either by duplicating samples or by creating new synthetic samples 

by inference (e.g. with the SMOTE31 method). In the undersampling approach, some samples 

from the majority class are removed from the training data to balance the ratio of samples 

between classes (effectively causing a loss of information).  
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It is essential to define the AD of ML models and recognize unreliable predictions, as the false 

prediction of a toxic compound as non-toxic must be avoided. In general, the AD and quality 

of the predictions of ML models rise as the amount and diversity of training data increase. 

Large and diverse data sets may allow the model to generalize better to unseen compounds, as 

they represent more significant correlations between the input features and the activity than 

data sets with only few hundreds of compounds. Unfortunately, the amount of available data is 

often the biggest limitation for developing well performing toxicity prediction models. In the 

case of in vivo assays, data is usually exceptionally scarce, as the number of animal 

experiments are small. Occasionally, in vivo data for drugs is also available from reports during 

clinical trials or from consumers once the compound has been released to the market. 

3UREOHPDWLF�GUXJV�PD\� WKHQ�EH�ZLWKGUDZQ�IURP�WKH�PDUNHW�RU�DQQRWDWHG�ZLWK�D�³EODFN�ER[�

ZDUQLQJ´�DQd also serve as input data for ML models. Thanks to initiatives like the Tox21 and 

ToxCast, the amount of publicly available in vitro toxicity data has increased over the last 

years. The higher amount of data together with the lower complexity of the assays (compared 

to in vivo endpoints) makes in vitro assays often good candidates for the development of ML 

models. Several well-performing in silico models for the prediction of in vitro assays have 

already been developed. To assess the performance of different ML algorithms and workflows 

on in vitro toxicity endpoints, the Tox21 data challenge compared several approaches for the 

prediction of the outcome of 12 assays covering nuclear receptor signaling and stress pathway 

assays using only the chemical structure of the compounds.32, 33 The best performing models 

of the challenge were normally consensus models combining the predictions from several 

underlying models and types of descriptors, proving that different models can learn different, 

useful information. However, there is a great variety of algorithms and approaches for training 

a ML model and no universal best method for it. Hence, the model development workflow 

usually needs to be adapted for each individual endpoint. 

1.4.2.1 Molecular encoding 

Chemical information describing the compounds needs to be encoded in machine readable 

features from which ML models can learn. The selection of input descriptors may have an 

important influence on model performance, as different encodings capture distinct properties 

and characteristics of the molecules. 

General features derived from 0D to 3D properties of the molecules can be used as input 

descriptors for ML models. 0D descriptors (such as atom and bond counts, or sums of atom 
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properties) require no structural information for calculation. 1D descriptors represent 

information about molecular substructures, such as the count of functional groups or molecular 

fragments. 2D descriptors are calculated from the graph representation of a molecule, 

considering connectivity and adjacency properties. These can describe features such as size, 

shape or polarity, as well as atom-specific properties like the hybridization state. Finally, 3D 

descriptors are derived from the molecular conformation (i.e. geometrical representation). 

These descriptors can capture properties that are particularly relevant to the interactions 

between compounds and biological targets but are limited by the uncertainties related to the 

biologically active conformations of compounds. For calculating 3D descriptors, intense 

conformational sampling is generally conducted to predict the energetically most favorable 

conformation, which is yet not necessarily the biologically active one. Moreover, quantum 

chemical features describing e.g. atomic charges, energies of the highest occupied (HOMO) 

and lowest unoccupied (LUMO) molecular orbitals or orbital electron densities, are also widely 

applied in QSAR models and are particularly well suited for modeling reactivity and physical 

properties.34 There are several cheminformatic tools available for calculating physicochemical 

properties, like RDKit,35 alvaDesc36 or the Molecular Operating Environment (MOE).37 

Besides physicochemical properties, one of the most commonly used chemical descriptors are 

molecular fingerprints, which encode structural features in the form of a vector indicating the 

absence, presence or count of each feature in a molecule. MACCS keys38 are an example of a 

common and straightforward molecular fingerprint that encodes a set of 166 fixed structural 

properties (e.g. presence of a sulfur bond or more than three oxygen atoms). Popular and more 

complex descriptors are the extended-connectivity fingerprints (ECFP)39 or Morgan 

fingerprints, a type of circular fingerprints encoding the presence of molecular fragments of 

different length (depending on the selected radius). The features corresponding to the circular 

IUDJPHQWV�DUH�PDSSHG��L�H��³IROGHG´��LQWR�D�YHFWRU�RI�IL[HG�OHQJWK��W\SLFDOO\������RU������ELWV��

to reduce the size and sparsity of the vector containing all possible fragments. 

One type of features commonly used in toxicity prediction are the so-called structural alerts. 

Structural alerts are substructures that commonly appear in compounds exhibiting toxicity with 

a similar mode of action. They exist for a number of toxicological endpoints and are usually 

derived from expert knowledge40 or by statistical evaluation of the appearance of molecular 

fragments in toxic compounds.41, 42 For ML applications, a vector encoding the presence or 

absence of each structural alert can be used as input descriptor. The drawback of structural 

alerts is their limitation to already known problematic features that prevents the extraction of 
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information or recognition of new modes of action. However, their simplicity and 

interpretability still make them a useful asset for understanding the underlying mechanism of 

toxicity and help to interpret the predictions.43 

In recent years there has been an explosion of methods for deriving task-specific molecular 

descriptors that are directly learned from the molecular graph. These methods are usually based 

on graph-convolutional networks (GCN) that automatically extract the best representation of 

the molecules (i.e. the most relevant features) for the given task. GCNs are a very promising 

tool for property prediction and have already shown to perform at least as good as predefined 

molecular fingerprints like ECFPs in a variety of setups.44, 45 However, this kind of models 

generally need a high amount of input data to avoid model overfitting and derive descriptors 

that can generalize well to unseen data. 

Other research studies have shown that descriptors derived from biological data are also 

promising for training activity prediction models.46-48 To this end, the outcomes of a set of 

compounds on several assays (often high-throughput screening assays) are concatenated and 

used as input features. This information may improve ML models by describing the behavior 

of compounds in biological systems and hence complementing the structural information 

contained in chemical descriptors. The bottleneck of this approach is usually the quality and 

quantity of the available biological assay data for building these bioactivity descriptors.47, 49 

Generally, to train a ML model with bioactivity descriptors, the outcome of compounds in all 

the assays comprising the descriptor is needed. Otherwise, the data matrix would contain 

missing values that must be filled using imputation techniques, which at the same time may 

add bias and/or noise to the models. 

1.4.2.2 Model performance evaluation 

In order to estimate the quality and reliability of the predictions, model performance should be 

evaluated on a test set of samples with known labels not used during model training. One of 

the most common model evaluation frameworks is cross-validation (CV), which is especially 

popular in applications where the available data are limited. In a k-fold CV workflow, the data 

are split into k fixed groups of samples, and at each fold, k-1 groups are used as a training set 

(on which the model is trained) and the remaining group as a test set (on which the model is 

evaluated). With this approach, all samples are once contained in the test set, and used for 

model training in the remaining k-1 folds. Generally, the data are randomized prior to the 
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splitting to avoid possible bias due to the ordering of samples in the data set. Furthermore, there 

are also other variations of CV that allow e.g. stratified splitting (containing the same 

percentage of samples from each class in each fold), time splitting (separating the training and 

test set based on a timestamp in the data), or cluster splitting (maintaining complete clusters of 

similar samples always in the same set to ensure chemical diversity between training and test 

set). 

A holdout test set with samples not considered at any point during model training may also be 

used to estimate model performance. This approach is usually employed when the amount of 

data is large and reserving some data for evaluation does not impact the robustness of the 

model, or in scenarios where new data are generated after model development. 

The performance evaluation on the test set is performed by comparing the predictions with the 

real value. One way to assess the performance of a binary classification model is the confusion 

matrix, which indicates the number of true positives, true negatives, false positives and false 

negatives (Figure 1.1). These values can also be summarized in a single metric (e.g. F1 score 

or Matthews correlation coefficient (MCC)) to facilitate the comparison of models (see 

Methods for details). In the case of regression models, some of the most common metrics used 

to assess model performance are the coefficient of determination (R2) and the root mean 

squared error (RMSE). The R2 represents the proportion of the variance that is explained by 

the model and the RMSE measures the difference between the correct and the predicted value 

(being an RMSE of zero the perfect prediction). 
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Figure 1.1: Confusion matrix for the evaluation of predictions of binary classifiers. There 

are four types of possible predictions depending on the predicted and the true value (true 

positive, true negative, false positive, and false negative). 

1.4.3 Applicability domain 

Model performance is usually estimated on a small subset of compounds (test set) and should 

reflect how accurate the predictions on a new subset of unlabeled compounds will be. However, 

the error rate on new compounds not well embedded in the chemical space of the training data 

may be higher than for those in the test set (which usually have a similar distribution to the 

training set).50 To avoid predictions with a higher than expected error rate, a definition of the 

compounds on which the model should be applied to is needed. This domain of compounds for 

which the model can make reliable predictions is referred to as the AD of a model. Compounds 

may fall out of the AD mainly due to two reasons: novelty and anomaly.51 On the one hand, 

novel compounds are located in a widely differing descriptor space than the training data and 

the model may not have enough information to make reliable predictions on them. These 

compounds can be identified by novelty detection techniques, like the distance to the nearest 

neighbor in the descriptor space of the training data. On the other hand, anomalous compounds 

may be well embedded in the descriptor space covered by the model but be outliers with regard 

to their label. These compounds are usually detected with confidence estimations of the 

prediction (e.g. built-in class probability estimates). A large benchmark study comparing error 

reduction using several AD definitions concluded that built-in class probability estimates 

generally performed better than the alternatives (e.g. distance measures).52 Since confidence 

estimation methods consider not only the descriptor space (like novelty detection methods) but 

also the class labels, these methods may be more reliable.51 
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A popular method for confidence estimation and AD definition of in silico models is conformal 

prediction (CP). CP models generate predictions at a user-defined error rate as long as the 

exchangeability assumption between training and test sets holds.53 These models have the 

advantage of mathematically defining the AD by just determining the allowed error rate, and 

without the need of setting more or less arbitrary thresholds to confidence estimates like 

distance measures. This advantage makes CP an especially powerful tool for toxicity 

prediction, where the definition of the AD is of utmost importance.54-56 

To estimate the uncertainty of the predictions in the CP framework, the training set is further 

divided into a proper training set and a calibration set. The ML model is only trained on the 

proper training set, while the calibration set is used to estimate the confidence of the predictions 

made on the test set (Figure 1.2.a.).57 For that purpose, both the predictions on the calibration 

and test sets are first transformed into a nonconformity (nc) score (by applying a nc function) 

that presents low values for predictions close to the true value. The calibrated probabilities 

(named p-values) are then calculated as the rank of the nc score obtained for the test sample 

among the nc scores for the calibration set. Based on the p-value and the defined allowed error 

rate, a set of classes (in the case of classification) or a value range (in the case of regression) 

are reported (see Methods for details).  

There are several variations of the CP framework depending on (a) the splitting of the training 

data and averaging of the predictions or (b) the separation of nc scores based on the class label 

(Figure 1.2.). The inductive CP (ICP) is the baseline framework and uses fixed proper training 

and calibration sets. In aggregated CP58 (ACP), the splitting in proper training and calibration 

sets is repeated several times to minimize the possible bias introduced by the random splitting 

of the training set, as well as the effects of the information loss caused by only using part of 

the training data for model development. The final p-value is obtained by averaging the 

resulting p-values from the different models. In the synergy CP59 (SCP) workflow, the 

calibration set is kept constant, while several models are trained on different proper training 

sets. The nc scores for the calibration and test sets are averaged across the predictions made by 

the different models. This approach has shown to be useful for federated learning, where 

individual institutions can train a different model on their (confidential) data without needing 

to pool or disclose the data.60 Moreover, these three CP types may be combined with the 

Mondrian CP approach to address the problem of imbalanced data in binary classification.61 

Although CP models should output the defined error rate (as long as the exchangeability 
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assumption holds), the errors may be unevenly distributed between classes. To maintain the 

expected error rate in both classes, in the Mondrian approach the nc scores obtained for the 

calibration set are separated in independent nc score lists depending on the class label of the 

sample. For the test samples, one p-value for each of the two classes is calculated by comparing 

the predictions with the respective nc score list.  

Figure 1.2: Overview of different conformal prediction (CP) workflows. Compared to the 

(a) baseline inductive CP (ICP) workflow, the main differences between workflows reside 

in the way the data is split for model training ((c) aggregated CP (ACP) and (d) synergy 

CP (SCP)) or in the class separation for calculating the nonconformity (nc) scores and p-

values ((b) Mondrian ICP).
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2 Aims 
The safety assessment of chemicals with regard to human health and the environment is an 

indispensable requirement for the authorization of newly developed compounds, including 

drugs, cosmetics and agrochemicals. However, toxicity testing entails critical ethical concerns 

from the use of animals and is highly time consuming and expensive. Therefore, toxicity is 

usually first evaluated at late stages of the substance development process, causing high 

attrition rates. Computational methods are a useful tool for predicting the toxicity of 

compounds in a high-throughput manner early in the development pipeline to help the 

prioritization of promising candidates. Moreover, they can also support read-across cases as 

well as the extrapolation from in vitro to in vivo results.  

This dissertation focuses on the development of novel in silico toxicity tools approaching in 

vivo toxicity prediction from different angles and complexity levels. With the presented studies 

we aim to answer the following questions: 

1. Can in silico models identify endocrine disruptors and determine which MIEs they 

are triggering? The identification of endocrine disruptors, a complex toxicity endpoint 

involving many regulation pathways, was tackled by the development of in silico 

models for a set of MIEs involved in the perturbation of hormone homeostasis. This 

approach was elaborated at the example of thyroid hormones, a highly relevant 

endocrine pathway, for which only few in silico tools have been developed so far. 

Experimental data for a battery of protein targets involved in thyroid hormone 

homeostasis was collected and curated. These data were used to develop ML and deep 

learning models that can predict MIEs of endocrine disruption to determine or confirm 

the triggered AOPs. 

2. To what extent can in vivo toxicity prediction be enhanced by bioactivity 

descriptors representing the activity of compounds in biological systems? The 

outcome of in vivo assays is often challenging to predict with in silico models due to 

the high number of parameters that come into play when considering whole organisms. 

To address the issue of building well-performing ML models for in vivo endpoints, 

novel predicted bioactivity descriptors (defining the outcome of compounds in over 300 

in vitro and pharmacokinetics assays) were developed within a CP framework. By 

combining these descriptors with state-of-the-art chemical features, we aimed to bridge 

the in vitro-in vivo gap. 



22 

3. Can we mitigate the effects of data drifts on CP models to make them applicable 

to samples from different feature distributions? Data drifts between the training and 

test data may appear over time or when models trained on public data are applied on 

proprietary data. This is usually the case if the test data cover a different part of the 

descriptor space or were derived with differing experimental conditions. We evaluated 

an approach for recalibrating models (without the need to retrain them) in order to 

overcome the problem of the described data drift scenarios and make models directly 

applicable to differing test sets. 

4. Can the incorporation of information about predicted metabolites in toxicity 

models improve the identification of toxic compounds? Initially safe compound 

structures may be bioactivated by metabolism into reactive and toxic metabolites. 

Considering possible metabolic structures of each parent compound in toxicity 

prediction models may be a key element to improve the predictions when this 

bioactivation occurs. To study this possibility, a variety of approaches for including 

predicted xenobiotic metabolism information into ML models were explored with the 

aim of improving toxicity predictions. 
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3 Methods 

3.1 Data collection, curation and processing 

Most of the data used in this thesis for model development was collected from public domain 

databases and literature (including ToxCast,14, 62 eMolTox63 and eChemPortal).64 Details about 

the data used in each study can be found in the respective section. Only in section 4.3. 

proprietary data from BASF SE for two endpoints (micronucleus test (MNT) and liver toxicity) 

were used. 

In order to standardize the collected molecular structures, data curation and processing 

workflows were developed using KNIME.65 Starting with the molecular structure represented 

as SMILES strings, steps for removing solvents, salts and small fragments, annotating 

aromaticity, removing stereochemical information, neutralizing charges and mesomerizing 

structures (returning their canonical resonant form) were included. The canonical SMILES was 

calculated from the processed structure and further used for deduplication. In cases of duplicate 

SMILES with conflicting class labels, the structures were removed from the specific data set. 

This deduplication procedure was also applied when data from different sources was merged 

to increase the size and coverage of an endpoint-specific data set.  

3.2 Machine learning approaches 

As input for the ML models developed in this thesis, the molecular structure of the compounds 

was encoded with Morgan fingerprints, a type of circular fingerprints, and physicochemical 

GHVFULSWRUV�FDOFXODWHG�ZLWK�5'.LW��VHH�³0ROHFXODU�HQFRGLQJ´�VHFWLRQ�IRU details). Moreover, 

some of the models (sections 4.2. and 4.3.) also included predicted bioactivity descriptors 

encoding the outcome of compounds in pharmacokinetics and in vitro assays.  

The unsupervised models PCA and UMAP were used in this dissertation to visualize the 

FKHPLFDO�VSDFH�FRYHUHG�E\�WKH�FROOHFWHG�GDWD�VHWV��VHH�³0DFKLQH�OHDUQLQJ´�VHFWLRQ�IRU�GHWDLOV���

PCA was trained on a set of physically meaningful descriptors to interpret differences in the 

properties of active and inactive compounds, while UMAP was trained on the whole set of 

calculated descriptors to analyze the representation of the chemical space used as input for 

training the predictive ML models. 
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The supervised ML models developed within this thesis were in all cases classification models 

IRU�WKH�SUHGLFWLRQ�RI�GLVFUHWH�FODVV�ODEHOV��³DFWLYH´�DQG�³LQDFWLYH´�RU�³WR[LF´�DQG�³QRQ-WR[LF´���

Several classification algorithms, such as LR, SVM, RF and GBT, were explored (see 

³0DFKLQH� OHDUQLQJ´� VHFWLRQ� IRU� GHWDLOV��� 0RUHRYHU�� PXOWLOD\HU� SHUFHSWron NN (a type of 

feedforward NN with multiple hidden layers) were trained for single-task and multi-task 

models. Multi-task models are trained on several endpoints at the same time to try to enable 

transfer learning and benefit from features learned from complementing data on other 

endpoints. Keras66 was used to develop the single- and multi-task NN models. For the PCA, 

LR, SVM, RF and GBT models the scikit-learn67 implementation was employed.  

3.3 Conformal prediction framework 

The CP framework was used in this thesis to mathematically define the AD of the models with 

a fixed error rate and to explore how the CP characteristics may be exploited in different ML 

scenarios. More specifically, CP was applied for the derivation of predicted bioactivity 

descriptors, as well as for the prediction of genotoxicity in vivo and organ toxicity (section 

4.2.). Moreover, a method for mitigating the effects of data drifts on CP models was also 

explored (section 4.3.).  

For developing the CP models, the data sets were split into a training and a test set (80% and 

20% of the data, respectively; with a random stratified split). The training set was then further 

divided into a proper training set and a calibration set (70% and 30% of the training data, 

respectively) using also random stratified splitting. RF models were trained on the proper 

training set and applied on both the calibration and the test sets to obtain the predicted 

probabilities. From the predicted probabilities, nc scores were calculated by applying the 

inverse probability error function (i.e. one minus the predicted probability for the true class).  

The nc score of each test sample was then compared with the list of nc scores from the 

calibration set, and its rank in the list was used to calculate the p-value (from which the 

predicted class is finally derived as described below; Figure 3.1.). To ensure that the 

significance level (i.e. error rate) is evenly distributed between classes, the Mondrian CP 

approach was used (Figure 1.2.b.). Hence, the nc scores of the calibration set were separated 

in two lists based on the experimental class labels. After comparing the nc scores of a test 

sample with both lists, a p-value for each class was obtained.  
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Figure 3.1: Calculation of p-values by comparing the nonconformity scores of the 

calibration set (separated by class labels) and the nonconformity scores of a test sample. 

$W�D�VLJQLILFDQFH�OHYHO�RI������WKH�SUHGLFWHG�ODEHOV�ZRXOG�EH�ERWK�³DFWLYH´�DQG�³LQDFWLYH´��

whiOH�DW�D�VLJQLILFDQFH�OHYHO�RI������WKH�RQO\�SUHGLFWHG�ODEHO�ZRXOG�EH�³DFWLYH´� 

An aggregated CP approach was conducted by repeatedly splitting the training set into different 

calibration and proper training sets (Figure 1.2.c.). Within the aggregated CP framework, 

several models trained on different proper training sets were applied on a variety of calibration 

sets (and on the unaltered test set). The final p-value for a test sample was calculated as the 

median p-value among all splits. 

The output of CP models is a set of class labels, which is derived from the defined significance 

level and the p-values. If the p-value for a class is above the significance level, that class is 

DVVLJQHG�WR�WKH�VDPSOH��%HVLGHV�WKH�ELQDU\�RXWFRPHV��H�J��³DFWLYH´�DQG�³LQDFWLYH´), a sample 

FDQ�DOVR�EH�SUHGLFWHG�WR�EH�³ERWK´��LI�ERWK�S-YDOXHV�DUH�DERYH�WKH�VLJQLILFDQFH�OHYHO��RU�³QRQH´�

(if none of the p-values are above the significance level). These two sets of labels indicate that 

the model does not have enough information to make a single class prediction at that 

significance level, or that the sample is outside the AD of the model. 
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3.4 Model performance evaluation 

In the context of this thesis, models were evaluated within 5-fold or 10-fold CV using random 

stratified splitting. Also holdout test sets were employed in section 4.3. to evaluate the 

performance of CP models after data drifts. These holdout test sets were either derived by a 

time-splitting approach or collected from additional sources.  

Several metrics were applied to evaluate the performance of the predictions on the respective 

test sets: recall, precision, F1 score, MCC, balanced accuracy and area under the receiver 

operating curve (AUC). The recall (Eq. 1) measures the ratio of predicted true positives among 

all real positives, while the precision (Eq. 2) measures the ratio of predicted true positives 

among all positive predictions. These two metrics may be further summarized into the F1 score 

(Eq. 3), which is the harmonic mean of the precision and the recall. Another popular metric is 

the MCC (Eq. 4), as it considers the four classes of predictions (true positive, true negative, 

false positive, and false negative predictions). The MCC takes values in the range of -1 to +1, 

being +1 the perfect prediction. Other commonly used metrics are balanced accuracy (Eq. 5), 

which quantifies the average recall obtained for each class, and the AUC (Eq. 6), which 

measures the ability of the model to rank the predictions according to their true label. The F1 

score, MCC and balanced accuracy have the advantage that they are robust against data 

imbalance, which is the usual scenario in toxicity prediction applications. 
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In the case of CP models, there are two further specific metrics that need to be considered due 

to the output of a set of labels (instead of single labels): validity and efficiency. The validity 

PHDVXUHV�WKH�UDWLR�RI�SUHGLFWLRQV�FRQWDLQLQJ�WKH�FRUUHFW�ODEHO��EHLQJ�³ERWK´�SUHGLFWLRQV�DOZays 

FRUUHFW�DQG�³QRQH´�SUHGLFWLRQV�DOZD\V�ZURQJ��7KH�YDOLGLW\�VKRXOG�EH�DSSUR[LPDWHO\�RQH�PLQXV�

the significance level (if the calibration and test data are exchangeable), indicating that the 

model is valid and guarantees the defined error rate. The efficiency measures the ratio of single 

class predictions (i.e. predictions containing exactly one label) and gives an indication of how 

good the coverage of the model is on the test set. Moreover, the abovementioned metrics for 

the general evaluation of ML models can also be calculated on the single class predictions of 

CP models to evaluate their quality.  
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4 Results 

4.1 Prediction of molecular initiating events of endocrine disruption at 

the example of thyroid hormones 

Endocrine disrupting chemicals are compounds affecting hormone homeostasis in the body by 

interfering with the synthesis, transport, degradation, or action of hormones. Given the large 

amount of chemicals we are exposed to and the high relevance of hormone homeostasis for 

multitude of body functions, regulatory agencies are setting their focus on the detection of these 

compounds.68, 69 Computational methods could help not only to detect endocrine disruptors in 

a high-throughput set up, but also to identify the addressed biological target and to give a 

mechanistic explanation (which is often missing in in vivo assays). Identifying the addressed 

off-target can enable the understanding of the disruption mechanism and the redesign of the 

toxic compound to avoid the interaction with the target.  

Several QSAR and ML approaches have already been developed for the identification and 

characterization of estrogen and androgen disruptors.70-74 However, only few studies about in 

silico tools for identifying thyroid hormone disruptors are available so far. Moreover, these 

studies are limited to two protein targets (thyroid peroxidase (TPO) and thyroid receptor 

(TR)).75-77  

In the following study, ML models for a battery of assays on targets related to the dysregulation 

of thyroid hormone homeostasis (TPO, TR, deiodinases 1, 2 and 3, sodium/iodide symporter, 

thyrotropin-releasing hormone receptor, and thyroid-stimulating hormone receptor) were 

developed based on data from the ToxCast database and related literature. After a thorough 

data curation procedure, predictive ML models were developed by optimizing the combination 

of the selected algorithm (including RF, LR, SVM, GBT, single-task and multi-task NN) and 

the data balancing technique (including class weight balancing, oversampling and 

undersampling). Moreover, a deeper analysis on the predictivity of the models was conducted 

by evaluating the correlation of the performance with distance metrics and probability 

estimates.  
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ABSTRACT: Disturbance of the thyroid hormone homeostasis
has been associated with adverse health effects such as goiters and
impaired mental development in humans and thyroid tumors in
rats. In vitro and in silico methods for predicting the effects of
small molecules on thyroid hormone homeostasis are currently
being explored as alternatives to animal experiments, but are still in
an early stage of development. The aim of this work was the
development of a battery of in silico models for a set of targets
involved in molecular initiating events of thyroid hormone
homeostasis: deiodinases 1, 2, and 3, thyroid peroxidase (TPO),
thyroid hormone receptor (TR), sodium/iodide symporter,
thyrotropin-releasing hormone receptor, and thyroid-stimulating
hormone receptor. The training data sets were compiled from the
ToxCast database and related scientific literature. Classical statistical approaches as well as several machine learning methods
(including random forest, support vector machine, and neural networks) were explored in combination with three data balancing
techniques. The models were trained on molecular descriptors and fingerprints and evaluated on holdout data. Furthermore, multi-
task neural networks combining several end points were investigated as a possible way to improve the performance of models for
which the experimental data available for model training are limited. Classifiers for TPO and TR performed particularly well, with F1
scores of 0.83 and 0.81 on the holdout data set, respectively. Models for the other studied targets yielded F1 scores of up to 0.77. An
in-depth analysis of the reliability of predictions was performed for the most relevant models. All data sets used in this work for
model development and validation are available in the Supporting Information.

■ INTRODUCTION
Thyroid hormones regulate physiological processes such as
basal metabolism and the growth and development of the
pituitary gland, heart, liver, bone, and brain.1 Disturbances of
the thyroid hormone homeostasis have been linked to goiters,
hypothyroidism, and impaired mental development in
humans2−5 and thyroid tumor formation in rats.6−9 Thyroid
hormone homeostasis is maintained by a complex system
involving thyroid hormone synthesis, distribution via the
bloodstream, metabolism, elimination, and a negative feedback
loop between the hypothalamic−pituitary−thyroid (HPT)
axis. In brief, the hypothalamus secretes the thyrotropin-
releasing hormone (TRH), which binds to the thyrotropin-
releasing hormone receptor (TRHR) in the anterior pituitary,
triggering the production and secretion of the thyroid
stimulating hormone (TSH).10 TSH binds to the TSH
receptor (TSHR) of the thyroid gland, initiating thyroid
hormone synthesis.11 As an initial step of the thyroid hormone
synthesis, the sodium iodide symporter (NIS), an intrinsic
membrane transporter located at the basolateral membrane of
thyrocytes, mediates the active transport of iodide into the

thyroid gland.12 Thyroid peroxidase (TPO), a heme
containing peroxidase located at the apical membrane of the
thyrocytes, catalyzes the iodination as well as the coupling of
tyrosine residues to thyroglobulin to form tetraiodothyronine
(T4) and, to a lesser extent, the more active form
triiodothyronine (T3). Deiodinases (DIO), a group of
selenocysteine-containing enzymes, regulate thyroid hormone
signaling through the deiodination of thyroid hormones,
resulting in the formation of thyroid hormone metabolites
with differing activity. DIO1 not only plays an important role
in systemic T3 production in the thyroid but also in recycling
iodide from thyroid hormone metabolites in excreting organs
like the liver and kidney. DIO2 and DIO3 regulate local
thyroid hormone signaling in peripheral tissue through

Special Issue: Computational Toxicology

Received: July 29, 2020
Published: November 13, 2020

Articlepubs.acs.org/crt

© 2020 American Chemical Society
396

https://dx.doi.org/10.1021/acs.chemrestox.0c00304
Chem. Res. Toxicol. 2021, 34, 396−411

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.chemrestox.0c00304&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00304?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00304?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00304?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00304?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00304?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/crtoec/34/2?ref=pdf
https://pubs.acs.org/toc/crtoec/34/2?ref=pdf
https://pubs.acs.org/toc/crtoec/34/2?ref=pdf
https://pubs.acs.org/toc/crtoec/34/2?ref=pdf
https://pubs.acs.org/toc/crtoec/34/2?ref=pdf
https://pubs.acs.org/toc/crtoec/34/2?ref=pdf
pubs.acs.org/crt?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.chemrestox.0c00304?ref=pdf
https://pubs.acs.org/crt?ref=pdf
https://pubs.acs.org/crt?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


activation (DIO2) and inactivation (DIO3) of thyroid
hormones. DIO2-expressing tissues include the pituitary
gland, skeletal muscle, bone, brown adipose tissue, and the
thyroid, while DIO3 is mainly present in placental tissue and
the developing embryo as well as in neurons in the brain.13

The transcription of thyroid hormone-regulated genes is
initiated through the binding of thyroid hormones (T3 in
particular) to thyroid hormone receptors (TR). Upon
hormone binding, the TR−thyroid hormone complex trans-
locates into the nucleus and interacts with response elements
on the DNA, leading to the transcription of thyroid hormone-
regulated genes.14

Chemicals have been reported to disturb the HPT axis
through a variety of mechanisms. In the context of regulations
(EU) no. 528/2012 and (EC) no. 1107/2009, the European
Food Safety Authority published a guideline for the
identification of endocrine disrupting compounds. This
guideline defines scientific criteria for the determination of
endocrine-disrupting properties of chemicals,15 leading to an
increased need for methods to detect endocrine-mediated
effects.
The Organization for Economic Co-operation and Develop-

ment (OECD) proposes a tiered approach for the evaluation
of potential endocrine disruptors using all existing toxicological
data. Level 1 of this tiered approach involves physical and
chemical property analysis, read-across, quantitative structure−
activity relationship (QSAR) analysis, and further in silico
methods. Level 2 involves in vitro assays for individual end
points, and Levels 3−5 involve in vivo assays providing
different layers of information.16 In vitro models are available
for many key events related to the HPT axis,17 but none of
these have been validated and accepted by the OECD yet. In
silico and in vitro methods can guide product development and
avoid higher-tier regulatory testing, hence reducing the need
for in vivo studies in accordance with the 3R principle.18

Further, in vitro and in silico models can be used to build and
confirm adverse outcome pathways (AOPs); multiple HPT-
a x i s - r e l a t e d AOP s a r e a l r e a d y a v a i l a b l e a t
https://aopwiki.org/.19 AOPs can serve as guidance for
integrated testing and assessment strategies and enable the
integration of in vivo and in vitro data.
A variety of in vitro methods for the evaluation of end points

involved in thyroid hormone homeostasis have been reported
in the scientific literature. Moreover, the Endocrine Disruptor
Screening Program of the United States Environmental
Protection Agency (U.S. EPA) has started high-throughput
in vitro assays for key events in the regulation of thyroid
hormone homeostasis and has fed their testing results into the
Toxicity Forecaster (ToxCast) database.20 Many of these high-
throughput assays show high rates of positive outcomes. These
are in part related to nonspecific effects such as cytotoxicity,
protein synthesis inhibition, nonspecific enzyme inhibition,
and others. For this reason, any compounds reported as active
by these assays are generally subjected to testing in orthogonal
assays.
In vitro data have been utilized to develop in silico models.

For example, Rosenberg et al.21 have developed QSAR models
for predicting the interaction of substances with the TPO
based on data obtained within ToxCast phase 1 and phase 2
(consisting of primarily pesticides and chemicals of research
and regulatory interest) as well as E1K (such as chemicals of
interest to the EPA’s Endocrine Disruption Screening
Program). Rosenberg et al. first built a model on the 1126

chemicals in the ToxCast phase 1 and 2 data sets and tested it
on the ToxCast E1K data set (containing 771 compounds that
are not included in the ToxCast phase 1 and 2 data sets), on
which it obtained a balanced accuracy of 85%. In addition, the
authors generated a classifier on the combined data set. This
classifier obtained an averaged balanced accuracy of 83%
during a five-time two-fold stratified cross-validation. Several
QSAR models for predicting the binding affinity of small
molecules to the TR have also been reported.22−24

The aim of this study was the development of a battery of
machine learning models for the prediction of interactions of
small molecules with proteins involved in molecular initiating
events (MIEs) of thyroid hormone homeostasis, including the
three DIOs (DIO1, DIO2, and DIO3), TPO, TR, NIS, TRHR,
and TSHR. In addition to logistic regression (LR), random
forest (RF), gradient boosting (XGB), support vector machine
(SVM), and neural networks (NN) were explored as well as
strategies for the generation of multi-task models.
The in silico approaches presented in this work could

provide guidance in the assessment of the safety profiles of
small molecules during early development phases. The models
could also prove useful in mode of action prediction for
endocrine disruptors.

■ MATERIALS AND METHODS
Data Sets. For DIO1, TPO, TR, NIS, TRHR, and TSHR, data

sets with measured binary assay outcomes (“active”, “inactive”) were
obtained from the ToxCast database25 (Figure 1; Table 1). All these
data sets have in common that they include at least 50 active
compounds after data processing (see below for details on the data
processing procedure). Binary activity labels were assigned according
to the “hitc” value (“active” if the “hitc” value is one and “inactive” if it
is zero; Table 2). The hitc value is calculated by fitting a curve to

Figure 1. Overview of the protein families involved in MIEs of
thyroid hormone homeostasis that are investigated in this work.
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concentration−response data and determining whether the minimum
activity threshold, defined individually for each assay, was reached.26

For DIO1, TPO, and NIS, the ToxCast database only includes
compounds that were tested in a multiconcentration assay (after they
had previously been tested active in a single-concentration assay).
Therefore, information on inactive compounds (these are the
compounds that were tested negative in the single-concentration
assay) was collected from the scientific literature (note that these
works originate from the same lab as large parts of the ToxCast
database). More specifically, data on 1678 compounds inactive on
DIO1 were collected from Olker et al.,27 data on 746 compounds
inactive on TPO were collected from Friedman et al.,28 and data on
663 compounds inactive on NIS were collected from Wang et al.29

For DIO2 and DIO3, all data used in this work were extracted from
Olker et al. The data are derived with a colorimetric single-
concentration assay measuring the release of iodide from the
hormone substrate (at 200 μM concentration). Compounds
inhibiting either deiodinase by at least 50% were then tested at
multiple concentrations in the same assay setup. For the purpose of
this study, binary activity labels were assigned according to the
following rules: Any compounds with inhibition rates in the
multiconcentration assay of 20% or higher were labeled as “active”;
all other compounds, including those showing <50% inhibition in the
single-concentration assay, were labeled as “inactive”.
The compounds tested in the assays for the three DIOs, TPO, TR,

NIS, TRHR, and TSHR are part of the Tox21 (Toxicology in the 21st
Century program) and ToxCast (EPA’s Toxicity Forecaster) projects.
The Tox21 program is a collaboration between United States
government agencies to develop high-throughput assays for the
determination of adverse effects of small molecules on human health.
The Tox21 library contains over 9000 substances, covering
commercial chemicals, pesticides, food additives, and medical
compounds. The ToxCast project is run by the U.S. EPA and has
screened around 4500 substances in more than 700 high-throughput
assays so far. The substances screened in the ToxCast project include
not only a high number of pesticides but also food additives,
pharmaceutical compounds, and cosmetics.30 The ToxCast com-
pound library has been built incrementally, by adding new subsets of
compounds in each phase. For the assays considered in this work,
different subsets of the ToxCast data sets or the complete Tox21
compounds library were tested in each assay (Table 1; see also the
“Compound library” column in the Supporting Information Excel
file).
The ToxCast database provides information (flags; see Table S1 for

details) that can help in the identification of potentially false-positive
and false-negative assay outcomes. For the seven data sets collected
from the ToxCast database, data points tagged with any flag that
indicate a potential quality issue were filtered out.
The results of confirmatory assays for TR and TSHR are also

included in the ToxCast database and were used for refining the
corresponding data sets with the following procedure: For the
compounds tested in the confirmatory assay of TR (“TOX21_TR_-
LUC_GH3_Antagonist_Followup”),31 the activity labels of the initial
data set were corrected with the confirmatory assay information. For

the TSHR end point, any compounds tested positive in an assay setup
that lacks the TSHR reporter (“TOX21_TSHR_wt_ratio”) were
removed from the data (as positive results in this assay indicate that a
compound’s activity is not caused by a specific interaction with the
TSHR; Figure 2; Table 3).

A “global thyroid toxicity” data set was generated by merging the
nine data sets (see section Structure Preparation for details). This
data set as well as the data source of each data point and the assay
setup on which each compound was tested are provided as Supporting
Information (“Complete data set” Excel sheet). Two complementary
Excel sheets in the Supporting Information file report the data points
filtered out due to a ToxCast flag (“Flag filtered compounds” Excel
sheet) and the raw and standardized SMILES with the standardization
steps applied on each compound (“Raw and standardized SMILES”
Excel sheet).

The DrugBank,32 containing a total of 11,355 approved,
experimental, or withdrawn drugs, served as a reference data set to

Table 2. Overview of the Data Sets Used for In Silico Model Development

number of

target abbreviation assay name active compounds inactive compounds ratio

DIO1 NHEERL_MED_hDIO1_dn 109 1610 1:15
DIO2 DIO2 inhibition 178 1551 1:9
DIO3 DIO3 inhibition 183 1545 1:8
TPO NCCT_TPO_AUR_dn 256 796 1:3
TR TOX21_TR_LUC_GH3_Antagonist 1251 5091 1:4
NIS NIS_RAIU_inhibition 55 747 1:14
TRHR TOX21_TRHR_HEK293_Antagonist 70 6548 1:94
TSHRAnt TOX21_TSHR_Antagonist_ratio 116 6591 1:57
TSHRAg TOX21_TSHR_Agonist_ratio 202 6587 1:33

Figure 2. Data processing workflow from the raw data to the final
processed data sets used for modeling.

Table 3. Number of Compounds for Each Class at Different
Steps in the Data Processing Workflow

number of compounds

raw data

after filtering of
compounds with
any ToxCast flag

processed data sets
used for model
development

end point active inactive active inactive active inactive

DIO1 136 1683 119 1683 109 1610
DIO2 194 1625 −a −a 178 1551
DIO3 194 1625 −a −a 183 1545
TPO 489 830 264 810 256 796
TR 2376 5929 1354 5574 1251 5091
NIS 282 756 55 756 55 747
TRHR 317 7554 81 7161 70 6548
TSHRAnt 336 7535 116 7206 116 6591
TSHRAg 489 7382 222 7192 202 6587

aData not in the ToxCast database - no flag filtering step.
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represent the drug-like chemical space. The EU CosIng database,33

containing 1089 compounds, was utilized for the representation of the
chemical space of cosmetic substances. Herbicides, insecticides, and
fungicides were represented by all 522 compounds in the ChEMBL
database34 that have a mechanism of action classification assigned
according to the Fungicide Resistance Action Committee (FRAC),
Herbicide Resistance Action Committee (HRAC), or Insecticide
Resistance Action Committee (IRAC) systems.
Data Sets Filtered for Cytotoxicity and Nonspecificity. In an

attempt to further increase the quality of the data sets utilized for
model development, any compound for which there was any data
available suggesting that its measured activity could be related to
cytotoxicity, the inhibition of cell growth or multiplication, or
nonspecific protein inhibition was removed from the data sets. For the
end points, for which these types of interference have been specifically
studied and published (i.e., TPO, TR and NIS), the information was
collected from the related publications (Table 4). For DIO1, TRHR,
TSHRAnt, and TSHRAg, the Z-score from the ToxCast database,
based on the AC50 of the assay of interest and of a cytotoxicity assay,
was used for determining cytotoxicity. For DIO2 and DIO3, no
information on the cytotoxicity of the compounds tested in these
assays was identified. In the case of TPO, the selectivity value
calculated by Friedman et al.28 served as the criterion for identifying
cytotoxic compounds and nonspecific inhibitors. Any compounds
with a selectivity value below 1.0 were discarded. In the case of TR,
cytotoxicity data were collected from the viability assay provided as
part of the ToxCast database (assay “TOX21_TR_LUC_GH3_An-
tagonist_viability”). For NIS, the outcome of a cytotoxicity filter was
obtained from the work of Wang et al.29 In the case of DIO1, TRHR,
and two TSHR end points, compounds with a Z-score from the
ToxCast database lower than 3.0 were removed. With this
information, data sets containing only compounds that did not
show any interference were compiled for DIO1, TPO, TR, NIS,
TRHR, TSHRAnt, and TSHRAg. This data set is also provided as
Supporting Information (“Filtered data set” Excel sheet). In the
Supporting Information, filtered out compounds in this data set are
tagged with the label “filtered out data point”, and the data source for
the filtering is indicated as well.
Software and Hardware Setup. All calculations were performed

on Linux workstations running Red Hat Enterprise 7.8 and equipped
with Intel Xeon Gold 6136 processors (3.00 GHz) and 64 GB of main
memory.
KNIME35 was used for the preparation of the structures (with the

ChemAxon Standardizer36 and RDKit Canon SMILES37 nodes) and
descriptor calculation (RDKit Count-Based Fingerprint and RDKit
Descriptor calculation nodes). The principal component analysis
(PCA) as well as model training and evaluation were performed in
Python with the packages scikit-learn38 and Keras.39

Structure Preparation. The molecules tested in one or several of
the nine assays (including those assays not included in the ToxCast
database) originate from one or more chemical libraries compiled
within the ToxCast program (phases 1, 2, and 3). The SMILES
strings for these compounds were obtained from the ToxCast

database, where available. In the absence of such information, the
NCI/CADD Chemical Identifier Resolver40 was queried with the
CAS number instead. Ultimately, for compounds without a match, the
“RDKit from IUPAC” node of RDKitin KNIME was used to try to
derive a structure from the chemical name.

All structures in the modeling data sets were processed and
standardized with the ChemAxon Standardizer node in KNIME.
More specifically, the tool was used for removing solvents, stripping
salts, detecting and annotating aromaticity, removing stereochemical
information, neutralizing charges, mesomerizing structures, and
removing small fragments. Canonical SMILES were derived from
the standardized molecules with RDKit (with default parameters) and
used for deduplication. Duplicate compounds with conflicting activity
labels for an assay were removed. The global thyroid toxicity data set,
generated by merging the nine end-point-specific data sets based on
the previously generated canonical SMILES, consists of 8001
substances.

Descriptor Calculation. Count-based Morgan fingerprints with a
radius of 2 bonds and a length of 2048 bits were calculated with the
“RDKit Count-Based Fingerprint” node of RDKit in KNIME. In
addition, all 119 one-dimensional (1D) and two-dimensional (2D)
physicochemical property descriptors implemented in the “RDKit
Descriptor Calculation” node were computed, which describe, among
other properties, the number of particular types of atoms, the
numbers of bonds and rings in a molecule, as well as polarity and
solubility. Prior to model building, the 1D and 2D descriptors were
subjected to Z-score normalization using the “Normalizer” node in
KNIME. Descriptors for which no variance was observed for the
global thyroid data set were removed.

Chemical Space Analysis. Dimensionality reduction was
performed on the global thyroid data set with the PCA
implementation of scikit-learn, based on a subset of 23 physically
meaningful and interpretable molecular descriptors generated with
RDKit (Table S2).

Machine Learning Methods. Five machine learning approaches
for classification were explored: LR, RF, XGB, SVM, and NN. LR
classification models employ a mathematical function that is a linear
combination of one or more independent variables. RF is an ensemble
learning method that utilizes a multitude of decision trees for making
predictions. The XGB algorithm makes decisions based on an
ensemble of decision trees, too, with the special feature that each new
tree is designed to correct the mistakes made by the previous one.
SVMs project the features into a hyperplane that maximizes the
distance to each class point in space and which then acts as the
decision boundary. Multilayer perceptron NN are formed by nodes,
or so-called “neurons”, located in different interconnected layers.
Information is transferred back and forth between layers to update the
functions in the neurons, with the objective of minimizing the error
between the correct class and the prediction.

The NN models were generated with Keras, and all other types of
models were implemented with scikit-learn in Python. The
optimization of hyperparameters (Table 5) was performed during a

Table 4. Overview of the Criteria Employed for Filtering Compounds for Cytotoxicity and of Resulting Data Set Compositions

number of compounds after
filtering cytotoxicity

end point data source cytotoxicity filter active inactive

DIO1 ToxCast database Z-score > 3 17 1610
DIO2 No data − − −
DIO3 No data − − −
TPO Friedman et al.28 selectivity value > 1 188 796
TR ToxCast database TOX21_TR_LUC_GH3_Antagonist_viability hitc value = 1 422 5072
NIS Wang et al.29 Hit2 value = 0 31 747
TRHR ToxCast database Z-score > 3 5 6552
TSHRAnt ToxCast database Z-score > 3 1 6593
TSHRAg ToxCast database Z-score > 3 41 6590
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grid search within a 10-fold cross-validation framework. The F1 score
was used as the optimization criterion.

Generation and Evaluation of Single-Task Models. To
address data imbalance (excess of inactive compounds in this case),
weight balancing, undersampling, and oversampling techniques were
explored.
For the weight balancing approach, balanced weights for the active

and inactive classes were calculated with scikit-learn and employed in
combination with the ML methods: RF, LR, SVM, and NN. For XGB,
balanced weights were not used, as the method itself is designed to
deal with class imbalance by successively constructing training sets
with misclassified examples.
An inner 10-fold cross-validation (CV) was applied for hyper-

parameter selection, and an outer 10-fold CV was applied for
performance assessment.
For the undersampling approach, the following workflow was

developed, which generates an ensemble of models built on different
training sets (Figure 3):

(1) Preparation of the data sets: The data were divided into a
training set (80%) and a test set (20%). To evade class
imbalance, the number of inactive compounds (majority class)
in the training set was reduced by random selection, while all
active compounds were retained. For data sets with an active-
to-inactive ratio of <1:10, the ratio was changed to 2:3. For
data sets with an active-to-inactive ratio ≥1:10, the ratio was
changed to 1:2 (Table 6).

(2) Hyperparameter optimization: Hyperparameter optimization
was performed on the resampled data sets within a 10-fold CV
framework. The 10 models obtained from the CV were
grouped based on the selected hyperparameter values to
calculate the mean F1 score for each hyperparameter set. The
best model of the group with the highest mean value was
selected and subsequently evaluated on the test set.

(3) Generation of the final ensemble of models: By repeating this
workflow 100 times, an ensemble of 100 models, trained on
different balanced data sets, was obtained for each method. In
order to determine the best overall hyperparameters for the
end point classification problem and ensure model robustness,
the 100 models were grouped according to their hyper-
parameter values, and the best ensemble of models was chosen
as the predictive model. The selection of the best ensemble is
based on a score calculated as the mean F1 score plus the
number of models in the ensemble.

For the oversampling approach, the SMOTENC41 method was
employed. Molecular fingerprints were defined as categorical features,
and the “sampling strategy” parameter, which defines the resulting
ratio between the minority and majority class, was set to 0.7. The RF,
LR, XGB, SVM, and NN models were trained on these oversampled
data sets, with an inner 10-fold CV for hyperparameter selection and
an outer 10-fold CV for performance estimation.

Generation and Evaluation of Multi-task Models. A multi-
task model was generated based on the global thyroid toxicity data set.
Additional three multi-task models were generated from subsets of the
global data set that include only a subset of end points. All models
were derived with multilayer perceptron NNs with a shared
architecture for all tasks. Only the output layer is independent for
each learned task. Missing values in the training set (related to the fact
that not all compounds have been tested in all assays) were not
considered during model training and evaluation by masking (i.e.,
ignoring) them during the loss and performance calculation. Class
imbalance was addressed by balancing the class weights for the loss
calculation based on the active-to-inactive ratio in the training set. A
workflow similar to the one used for the single-task models (but
skipping the undersampling step) was employed to derive an
ensemble of models (Figure 3). A grid search for hyperparameter
optimization was carried out within a 10-fold CV framework (Table
7), and four combinations of assay end points were evaluated. The
combinations covered two to nine end points, starting with TPO and
TR, and incrementally adding (i) the three DIOs, (ii) NIS and

Table 5. Overview of Hyperparameters Applied for Each
Method

method hyperparametersa valuesb

logistic regression C 0.7, 0.8, 1
random forest number of estimators 500, 1000

min_samples_leaf 1, 2
gradient boosting estimators 500, 1000
support vector
machine

C 0.01, 1, 10
gamma scale, auto

neural network number of layers 3
neurons (4000, 1000, 1), (1000,

500, 1)
dropout rate 0, 0.3
learning rate 0.001, 0.0001

aHyperparameters for which the default values were preserved are not
reported. bA grid search was conducted to identify the optimum value
for parameters for which more than one value is reported in this table;
otherwise, the value was fixed.

Figure 3. Workflow for generating and testing models based on
training sets balanced by undersampling. The hyperparameters of the
ML models are optimized during a grid search within a 10-fold CV
framework. The performance of the resulting best model is evaluated
on the test set. The result of the workflow is an ensemble of models
with optimized hyperparameters for each method.

Table 6. Composition of the Training Sets after
Undersampling

number of

end point
active

compounds
inactive

compounds
ratio of active and inactive

compounds

DIO1 87 147 1:2
DIO2 142 213 2:3
DIO3 146 219 2:3
TPO 205 307 2:3
TR 1001 1501 2:3
NIS 44 88 1:2
TRHR 56 112 1:2
TSHRAnt 93 186 1:2
TSHRAg 162 324 1:2
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TRHR, and (iii) both TSHR end points. In the case of the multi-task
models, the performance was evaluated and optimized on the mean
F1 score among all end points included in the model.
Metrics for Model Performance Evaluation. Six different

metrics were employed for the evaluation of model performance:
(1) Precision: measures the proportion of true positive predictions

out of all positive predictions (eq 2).
(2) Recall: measures the proportion of correctly identified positive

samples (eq 3).
(3) F1 score: is the harmonic mean of precision and recall (eq 4).

It is robust against data imbalance.
(4) Matthews correlation coefficient (MCC): considers all four

classes of predictions (true positive, true negative, false
positive, and false negative predictions; eq 5). MCC values
range from −1 to +1, with a value of +1 indicating perfect
prediction. The metric is robust against data imbalance.

(5) Balanced accuracy: quantifies the average recall obtained for
each class and, therefore, is robust against data imbalance (eq
6).

(6) Area under the receiver operating curve (AUC): is a measure
of the ability of a model to distinguish between positive and
negative samples. The AUC is calculated as the bidimensional
area under the receiver operating curve (eq 7).

precision TP
TP FP

= + (2)

recall TP
TP FN

= + (3)

F1 score 2
precision recall
precision recall

= × ×
+ (4)

MCC TP TN FP FN
(TP FP)(TP FN)(TN FP)(TN FN)

= × − ×
+ + + +

(5)

( )
balanced accuracy

2
P N

TP TN

=
+

(6)

x
xAUC TPR

FPR( )
d

x 0

1∫=
= (7)

where FN is false negatives, FP is false positives, TN is true negatives,
TP is true positives, FPR is false positive rate, and TPR is true positive
rate.

■ RESULTS AND DISCUSSION
In this study, five machine learning methods (RF, LR, XGB,
SVM, and NN) were employed with the aim to develop
predictive classifiers for nine end points involved in thyroid
hormone homeostasis: DIO1, DIO2, DIO3, TPO, TR, NIS,
TRHR, TSHRAnt, and TSHRAg. Because of a lack of active
compounds across all training sets (the active class represents
only 1 to 32% of the training data), a weight balancing
approach, an undersampling method, and an oversampling
strategy were explored. In addition, the use of multi-task
models was investigated as a possible avenue to obtain better
performing and more widely applicable in silico models.

Chemical Space. The chemical space represented by the
training data defines the applicability domain of a model. An
in-depth analysis of the composition and properties of the
ToxCast and Tox21 data sets was conducted by Richard et
al.30 In their work, Richard et al. describe how the chemicals
included in the ToxCast data sets were selected (e.g.,
compounds with available in vivo toxicity results, donated by
pharmaceutical companies, or known endocrine disruptors)
and how this selection yielded a high chemical structure
diversity and a broad chemical property coverage.

Table 7. Overview of Combinations of Hyperparameters
Explored

number of
layers parameter valuesa

4 neurons (8000, 4000, 1000, X), (4000, 2000, 500, X)
dropout rate 0, 0.3
regularizer
rate

0.000001

learning rate 0.0001
5 neurons (9000, 4000, 1000, 100, X), (5000, 2000,

1000, 100, X)
regularizer
rate

0, 0.0000001

learning rate 0.0001
a“X” in the number of neurons denotes the number of end points
employed for each multi-task model (i.e., number of neurons in the
output layer).

Table 8. Percentage of Compounds in the Reference Data Sets Covered by a Compound in the End-Point-Specific Data Sets at
the Given Tanimoto Similarity Thresholds

end point

Tanimoto similarity DIO1 DIO2 DIO3 TPO TR NIS TRHR TSHRAnt TSHRAg

% coverage pesticides 1.0. 57 57 57 47 56 35 65 65 70
≥0.8 58 58 58 48 57 36 66 65 71
≥0.6 67 68 68 58 68 47 76 76 79
≥0.4 84 84 84 78 85 68 87 89 90
≥0.2 99 99 99 98 99 98 99 99 99

% coverage cosmetics 1.0 16 16 16 9 37 7 39 40 39
≥0.8 20 20 20 11 41 9 43 44 43
≥0.6 34 34 34 19 58 17 59 60 59
≥0.4 69 70 70 52 98 49 86 86 86
≥0.2 95 95 95 92 98 92 98 98 98

% coverage drugs 1.0 5 5 5 3 22 2 20 20 20
≥0.8 5 5 5 3 24 3 22 22 22
≥0.6 10 10 10 7 37 6 33 34 33
≥0.4 28 29 29 22 62 20 60 60 60
≥0.2 95 95 95 93 98 91 98 98 98
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In order to determine the relevance of the data employed in
this study, we compared the chemical space covered by our
global thyroid toxicity data set (containing measured data on
the nine modeled thyroid end points for 8001 compounds) as
well as the end-point-specific data sets to the chemical space
covered by pesticides (all compounds in ChEMBL that are
linked with the HRAC, IRAC or FRAC systems), cosmetic
substances (from the EU CosIng database), and drugs (from
DrugBank). We found that the global thyroid toxicity data set
covers pesticides (coverage 78%) better than cosmetic
substances (39%) and drugs (25%). Analysis of the end-
point-specific data sets shows that at least 47% of all
agrochemicals are represented by training set compounds
with a Tanimoto coefficient (based on Morgan2 fingerprints)
of 0.6 or higher (Table 8). For cosmetics and drugs, this

percentage is only 17% and 6%, respectively. Only in the case
of TR, TRHR, and both TSHR end points, the coverage of
cosmetics and drugs is higher (58% and 33%; at a similarity
threshold of 0.6). The higher coverage is related to the fact that
the size of the training sets for these end points is much larger
and that the compounds tested in these assays include the
Tox21 compound library, which has a higher percentage of
cosmetics and drugs.
PCA scatter plots derived from the global thyroid toxicity

data set using physically meaningful and interpretable
molecular descriptors (Figure 4) show a strong overlap of
the areas most densely populated by the active and inactive
compounds of any of the target-specific subsets. A small
number of outliers is observed for any of the data sets. These
are mostly macrocyclic molecules or large compounds with a

Figure 4. PCA based on a selection of interpretable molecular descriptors generated with the RDKit for the end-point-specific data sets. Active
compounds are colored in red and inactive compounds in purple. The shift of the active compounds toward higher values on the y-axis is mainly
due to a high number of aromatic rings.
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high number of rings. For most end points, the active
compounds tend to have high values in the second component
of the PCA (y-axis), which are primarily a result of high
numbers of aromatic rings.
Molecular diversity within the end-point-specific data sets

was analyzed with plots of the pairwise similarities (based on
atom-pair fingerprints)42 among (a) all pairs of active
compounds, (b) all pairs of inactive compounds, and (c) all
pairs consisting of one active and one inactive compound. The
distribution of similarities among these three sets of
compounds is comparable and shows a tailing toward small
similarities (examples for DIO1 and TPO are shown in Figure
5 and are representative of all targets; the figures for all other

investigated targets are provided in Figure S1). This analysis
confirms the high molecular diversity of the compounds
included in the data sets, as it was also concluded by Richard et
al.30 Note that the distribution of pairwise similarities among
the active compounds is comparable to the distribution of
pairwise similarities between the active and inactive com-
pounds.
To further analyze the chemical diversity of the data sets, we

calculated the number of distinct Murcko scaffolds in each
end-point-specific data set and in the global thyroid toxicity
data set. Additionally, also the number of compounds without
a Murcko scaffold (i.e., without a ring system) and the number
of compounds with a unique scaffold (defined as the sum of
compounds with a unique Murcko scaffold and compounds
without Murcko scaffold) were calculated (Table 9). From this
analysis, it can be seen that there is a high number of distinct
scaffolds in the data sets (between 330 distinct Murcko
scaffolds for NIS and 2327 for the global data set) and that
around half of the compounds have a unique scaffold (between
45% for the global data set and 61% for the NIS data set).
The relationship between specific chemical groups and

active compounds for the different assays was analyzed by
searching the list “SMARTS Patterns for Functional Group
Classification”43 distributed by Open Babel,44 which contains
309 SMARTS patterns, in the respective inactive and active
compounds of each data set. The number of hits per class was
analyzed, and a ratio, defined as the number of hits in active
compounds divided by the number of hits in inactive
compounds, was calculated. Only functional groups with ratios
>1.7 were considered. The total number of hits was also taken
into account, and only functional groups found in at least six

compounds were regarded. Following these criteria, only for
the TPO and TR end points, a relationship between some
functional groups and active compounds could be established.
Compared to inactive compounds, a high proportion of active
compounds for TPO have at least one primary aromatic amine,
phenol, sulfenic derivative, enol, thiourea, vinylogous acid, and
phosphoric acid derivative (Table 10). Among the compounds
active on TR organometallic compounds, diarylthioethers and
enamine groups are over-represented.

Single-Task Classification Models. For each of the nine
thyroid-related end points, the data obtained from the ToxCast
database and relevant publications were employed for training
and evaluation of single-task classification models (see
Methods for details). The models were developed based on
molecular fingerprints and physicochemical descriptors. All
possible combinations of the five ML algorithms and three data
balancing techniques were explored.
The performance of the models based on any of the five ML

algorithms was in general very similar. For example, the
maximum difference in the F1 scores observed among ML
algorithms in combination with the oversampling approach
was no higher than 0.10 (maximum difference observed for the
NIS end point, with F1 scores of 0.70 and 0.60 for the LR and
RF models, respectively).
The impact of the data balancing approach on model

performance was also, in general, small. The largest differences
in the mean F1 scores for different balancing approaches
among the ML models for the same end point were between
0.02 (for TR) and 0.19 (for TRHR) (see Figure 6 for a
comparison of the F1 scores obtained by the RF models; the
figures for all other models are provided in Figure S2).
However, a tendency for ML models to perform best when
trained on oversampled data was observed. The maximum
difference in F1 scores between a ML method trained on
oversampled data and one trained on undersampled or
imbalanced data (using weight balancing) was −0.23 (for the
TRHR model with SVM in combination with undersampling).
Only in one case, which is the RF model for NIS, the model
based on undersampled data performed favorably to the model
based on oversampled data (F1 score 0.66 vs 0.60). The
biggest differences related to data sampling were observed for
the TRHR and the two TSHR end points, for which the
undersampling approach yielded up to 0.24 lower mean F1
scores than the other two sampling approaches. The reason for

Figure 5. Examples of the distribution of pairwise Tanimoto
similarities based on atom-pair fingerprints for three types of
compound pairs: (a) active-to-active, (b) inactive-to-inactive, and
(c) active-to-inactive. The distributions for all other end-point-specific
data sets are provided in Figure S1.

Table 9. Number of Distinct Murcko Scaffolds and
Compounds without a Ring System

end point
number of distinct
Murcko scaffolds

number of compounds
without ring systems

percentage of
unique

scaffoldsa

DIO1 554 455 53%
DIO2 557 456 52%
DIO3 557 456 52%
TPO 418 231 55%
TR 1877 1608 48%
NIS 330 202 61%
TRHR 1810 1712 47%
TSHRAnt 1834 1733 47%
TSHRAg 1876 1728 47%
global data
set

2327 1871 45%

aUnique scaffolds are defined as the sum of compounds with unique
Murcko scaffold and compounds without Murcko scaffold.
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this is likely the extreme imbalance of the training sets for these
three end points, with only 1−3% of active compounds.
Undersampling in these cases leads to a substantial loss of
information on inactive compounds, which is otherwise
preserved. However, the gain in performance related to
oversampling comes at the cost of an increased standard
deviation across models trained on different splits of the data.
Because of the overall favorable performance of models

trained on oversampled data, further discussion focuses on
these models. Unless stated otherwise, all results refer to mean
values obtained by 10-fold cross-validation. Although the main
text only discusses the F1 score results, MCC values, balanced
accuracies, and AUC values are also provided in Table 11.
The classification models derived for DIO1, DIO2, and

DIO3 all showed comparable performance, with mean F1
scores ranging from 0.67 to 0.71, depending on the ML
method used (Table 11). Within the individual end points, the
largest difference in F1 scores between ML methods was just
0.04. SVM produced the best model for DIO1 (mean F1 score
of 0.71) and DIO2 (mean F1 score of 0.71), whereas NN
worked best for DIO3 (mean F1 score of 0.71).
The models for the TPO and TR end points yielded mean

F1 scores between 0.77 (for TR with LR and SVM) and 0.83
(for TPO with XGB). The best-performing algorithm for TPO
was XGB (mean F1 score of 0.83), while RF performed best
on the TR data set (mean F1 score of 0.81). For the NIS
models, the mean F1 scores ranged from 0.60 (with RF) to
0.70 (with LR). Linear models (LR and SVM) outperformed
decision trees (RF and XGB) and NNs on this data set, with
up to 0.10 higher F1 scores. The standard deviation of the F1
score among the 10-fold CV models ranges from 0.08 to 0.10
with the different algorithms. The high standard deviation may
be related to an overfitting of models as a result of the low
number of active compounds in the training set (only 55 active
compounds and 747 inactive compounds).

It should also be considered that the data sets for the DIOs,
TPO, and NIS include data measured in single- and
multiconcentration assays. The class labels for the single-
concentration results were set considering the inhibition cutoff
of 50%, while for the multiconcentration results, the class
labels were derived from a more precise curve fitting on the
concentration−response data (for DIO1, TPO, and NIS) or
from an inhibition cutoff of 50% (for DIO2 and DIO3; see
Materials and Methods for details). The combination of these
two types of data may increase the uncertainty of the models
and result in lower performance. This difference in the cut-offs
for the multiconcentration results may also be the reason why
for DIO2 and DIO3, a higher percentage of active compounds
does not seem to be beneficial to model performance when
compared to DIO1. Although for the latter end point the
number of active compounds is lower, they were identified by
curve fitting instead of the fixed 50% inhibition threshold
applied for DIO2 and DIO3, which may cause a higher
number of false positives. In the case of TPO, the better
performance of the models could be explained, to some extent,
by the fact that the active compounds were also derived from
the concentration−response curve and that the percentage of
active compounds is higher. Similar causes could explain the
performance of the TR models, for which all data was derived
from the multiconcentration assays and which has a higher
percentage of active compounds.
For the TRHR end point, where the number of active

compounds is also small (70 active compounds and 6545
inactive compounds), the standard deviation of the mean F1
score was between 0.08 and 0.12. However, the mean F1
scores were higher than for NIS and ranged from 0.68 (with
XGB) to 0.77 (with SVM). The mediocre results and the
variability of these models may be caused by the assay design
itself. In this assay, the activity of compounds against this
receptor is derived from the concentration of intracellular
calcium as a marker of GPCR activation (via fluorescence) and
is thus prone to interference, for example, by any alteration of
intracellular calcium or autofluorescence.
The outcomes of the two TSHR assays were predicted with

mean F1 scores ranging from 0.60 (for TSHRAnt with LR) to
0.69 (for TSHRAg with RF). For TSHRAnt, the best results
(mean F1 score of 0.65) were obtained with NN, whereas for
TSHRAg, the best results (mean F1 score of 0.69) were
obtained with RF. An important limitation of the data used for
model development is related to assay technology, which
employs fluorescent antibodies coupled to a second messenger
to derive the activity of the compounds against TSHR.45 Since
this second messenger is nonspecific and may be activated via
several pathways, and fluorescence measurements may be
positive due to fluorescent compounds and dyes, the false-
positive rate in the data may be substantial.
Overall, the presented models could contribute to the first

level of the OECD approach for the evaluation of potential
endocrine disruptors, by making available models for an initial

Table 10. Number of Hits of Functional Groups in the Inactive and Active Compounds of the Data Sets

SMARTS hits for the functional groups (inactive:active compounds)a

end
point

primary aromatic
amine

organometallic
compounds phenol

sulfenic
derivative diarylthioether enol enamine thiourea

vinylogous
acid

phosphoric acid
derivative

TPO 20:40 − 48:95 6:15 − 1:6 − 1:8 10:20 13:27
TR − 7:27 − − 9:49 − 7:20 − − −

aOnly values with ratios (active/inactive compounds) >1.7 and with at least 6 hits in the active compounds are shown.

Figure 6. Comparison of the mean F1 score obtained with the RF
method in combination with the different data sampling techniques
(weight balancing, oversampling, and undersampling) for the nine
thyroid end points.
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screen to detect the interaction of small molecules with key
targets related to thyroid hormone homeostasis. Moreover, the
models could help to build or confirm HPT-axis related AOPs.
However, it is important to highlight the intrinsic nature of

the modeled assays. These are high-throughput in vitro assays,
which usually show high rates of (false) positive outcomes due
to interferences, as shown by Paul-Friedman et al.31 for the
case of TR. Therefore, compounds showing activity in these
assays should be tested in orthogonal assays, and the same
principle should be applied to the presented models.
In-Depth Analysis of Model Performance and

Prediction Reliability. Among all end points investigated,
the best models were obtained for TPO and TR. As these well-
performing models will be of primary relevance to inves-

tigators, we conducted additional analyses with them in order
to gain an in-depth understanding of model performance and
the reliability of predictions. Since all algorithms showed a
similar performance on TPO and TR, the analysis is
exemplified for the RF models in combination with over-
sampling, which obtained a mean F1 score of 0.81 for both end
points during 10-fold CV.
First, we investigated how the distance of the prediction

probability to the decision boundary relates to the reliability of
a prediction. More specifically, we gradually reduced the
coverage of the model by removing compounds from the test
set which are predicted with probabilities close to the decision
threshold, starting with those closest to the boundary (Figure
7). For both the TPO and TR models, the F1 scores increased

Table 11. Mean and Standard Deviation of the Performance of Different Methods for All Modeled End Points

end point method F1 score MCC balanced accuracy AUC

DIO1 RF 0.68 (± 0.07) 0.41 (± 0.15) 0.64 (± 0.06) 0.87 (± 0.04)
LR 0.68 (± 0.06) 0.37 (± 0.12) 0.67 (± 0.07) 0.83 (± 0.08)
XGB 0.70 (± 0.08) 0.45 (± 0.15) 0.66 (± 0.07) 0.84 (± 0.05)
SVM 0.71 (± 0.07) 0.44 (± 0.15) 0.68 (± 0.06) 0.86 (± 0.04)
NN 0.70 (± 0.05) 0.43 (± 0.10) 0.67 (± 0.06) 0.86 (± 0.08)

DIO2 RF 0.70 (± 0.05) 0.43 (± 0.11) 0.66 (± 0.04) 0.85 (± 0.06)
LR 0.67 (± 0.05) 0.35 (± 0.10) 0.67 (± 0.05) 0.81 (± 0.05)
XGB 0.70 (± 0.06) 0.41 (± 0.11) 0.67 (± 0.05) 0.81 (± 0.06)
SVM 0.71 (± 0.04) 0.43 (± 0.09) 0.68 (± 0.04) 0.84 (± 0.04)
NN 0.69 (± 0.05) 0.39 (± 0.10) 0.67 (± 0.04) 0.82 (± 0.05)

DIO3 RF 0.69 (± 0.05) 0.41 (± 0.10) 0.66 (± 0.05) 0.85 (± 0.04)
LR 0.70 (± 0.05) 0.39 (± 0.09) 0.69 (± 0.04) 0.82 (± 0.05)
XGB 0.69 (± 0.05) 0.40 (± 0.11) 0.67 (± 0.05) 0.82 (± 0.06)
SVM 0.68 (± 0.04) 0.38 (± 0.08) 0.66 (± 0.04) 0.85 (± 0.04)
NN 0.71 (± 0.05) 0.42 (± 0.11) 0.68 (± 0.05) 0.85 (± 0.06)

TPO RF 0.81 (± 0.05) 0.63 (± 0.10) 0.79 (± 0.05) 0.91 (± 0.04)
LR 0.80 (± 0.06) 0.60 (± 0.12) 0.80 (± 0.07) 0.88 (± 0.05)
XGB 0.83 (± 0.04) 0.67 (± 0.09) 0.82 (± 0.05) 0.90 (± 0.04)
SVM 0.80 (± 0.05) 0.60 (± 0.10) 0.80 (± 0.05) 0.88 (± 0.05)
NN 0.82 (± 0.04) 0.64 (± 0.08) 0.81 (± 0.04) 0.90 (± 0.04)

TR RF 0.81 (± 0.01) 0.62 (± 0.03) 0.80 (± 0.01) 0.92 (± 0.01)
LR 0.77 (± 0.02) 0.54 (± 0.04) 0.76 (± 0.02) 0.87 (± 0.03)
XGB 0.80 (± 0.02) 0.61 (± 0.04) 0.79 (± 0.02) 0.91 (± 0.02)
SVM 0.77 (± 0.04) 0.54 (± 0.09) 0.75 (± 0.04) 0.87 (± 0.05)
NN 0.79 (± 0.01) 0.59 (± 0.02) 0.77 (± 0.02) 0.89 (± 0.02)

NIS RF 0.60 (± 0.10) 0.23 (± 0.20) 0.58 (± 0.07) 0.86 (± 0.10)
LR 0.70 (± 0.08) 0.41 (± 0.16) 0.68 (± 0.06) 0.86 (± 0.08)
XGB 0.66 (± 0.09) 0.32 (± 0.19) 0.63 (± 0.07) 0.82 (± 0.11)
SVM 0.68 (± 0.08) 0.40 (± 0.15) 0.66 (± 0.08) 0.84 (± 0.10)
NN 0.66 (± 0.10) 0.32 (± 0.20) 0.64 (± 0.09) 0.81 (± 0.12)

TRHR RF 0.76 (± 0.10) 0.58 (± 0.17) 0.70 (± 0.09) 0.91 (± 0.05)
LR 0.72 (± 0.09) 0.46 (± 0.18) 0.69 (± 0.09) 0.86 (± 0.07)
XGB 0.68 (± 0.08) 0.39 (± 0.15) 0.66 (± 0.10) 0.84 (± 0.14)
SVM 0.77 (± 0.11) 0.57 (± 0.22) 0.73 (± 0.11) 0.90 (± 0.03)
NN 0.72 (± 0.12) 0.45 (± 0.25) 0.69 (± 0.13) 0.83 (± 0.07)

TSHRAnt RF 0.62 (± 0.05) 0.30 (± 0.13) 0.58 (± 0.04) 0.87 (± 0.06)
LR 0.60 (± 0.06) 0.22 (± 0.14) 0.58 (± 0.04) 0.78 (± 0.09)
XGB 0.63 (± 0.06) 0.28 (± 0.15) 0.60 (± 0.04) 0.82 (± 0.06)
SVM 0.63 (± 0.06) 0.32 (± 0.15) 0.59 (± 0.05) 0.82 (± 0.07)
NN 0.65 (± 0.06) 0.32 (± 0.13) 0.62 (± 0.05) 0.76 (± 0.08)

TSHRAg RF 0.69 (± 0.04) 0.44 (± 0.08) 0.63 (± 0.03) 0.89 (± 0.03)
LR 0.66 (± 0.06) 0.34 (± 0.13) 0.62 (± 0.06) 0.80 (± 0.06)
XGB 0.67 (± 0.05) 0.36 (± 0.11) 0.63 (± 0.04) 0.83 (± 0.04)
SVM 0.66 (± 0.04) 0.38 (± 0.07) 0.62 (± 0.03) 0.82 (± 0.04)
NN 0.68 (± 0.06) 0.37 (± 0.11) 0.64 (± 0.05) 0.79 (± 0.07)
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as more compounds close to the decision boundary were
removed, indicating that there was a higher rate of wrong
predictions among compounds closer to the cutoff. We also
investigated the number of compounds that are not covered by
the model, as we increase the minimum distance to the
decision threshold. When excluding around 20% of the test
compounds, the TPO model had an F1 score of 0.86 (+0.05)
and the TR model an F1 score of 0.89 (+0.07). Reducing the
coverage of the model to those compounds predicted with high
confidence could therefore increase the validity of the model.
The similarity of the query compounds to the training data

can be decisive for prediction success. To determine how this
affects model performance, for each compound in the test set,
the (average) Tanimoto similarity of the ECFP fingerprint to
the one, three, and five nearest neighbors in the training set
was calculated. For both the TPO and TR end points, a linear
relationship between the similarity of the compounds and the
F1 score was observed, consistent when considering different
numbers of nearest neighbors (Figure 8). For the TPO model,

the F1 score was 0.21 points higher for compounds that are
similar to the training data (Tanimoto similarity higher than
0.8) than for compounds that are not represented by
structurally related molecules in the training data (Tanimoto
similarity lower than 0.2) when considering one nearest
neighbor. For the TR model, this difference was 0.18 points.
Determining the similarity of new compounds to those in the
training sets can therefore help to estimate the reliability of the
predictions.

Single-Task Models Generated from Filtered Data
Sets. The data modeled so far originate from high-throughput
screening assays and are therefore often error-prone. False
positive outcomes may occur if, for instance, a nonspecific
interaction between a compound and a protein is measured, or
if a compound is falsely perceived as active due to its
cytotoxicity. On the other hand, false negative outcomes may
be caused by the volatility or low solubility of compounds,
which reduces their concentration in the assay sample. In some
cases, they may also be caused by the cytotoxicity of
compounds, as it impedes the identification of a possible
interaction.
Available information about the specificity and cytotoxicity

of the assay outcomes was collected from the ToxCast
database as well as other publications, and the affected
measured data were filtered out from the data sets (see
Materials and Methods for details). After this filtering step,
sufficient amounts of data for model development (i.e., at least
50 active compounds) remained available only for TPO and
TR. Compared to the complete data sets, the filtered data sets
for TPO and TR contain 27% and 66% less active compounds
(total of 68 and 829 active compounds less), respectively. For
TPO, the number of inactive compounds remains the same,
and for TR, it is reduced by only 0.3% (16 compounds). Note
that filtering does not mitigate the problem of false-negative
outcomes related to, for example, compound volatility or
solubility issues.
With the filtered data sets for TPO and TR, classification

models with the same five ML algorithms in combination with
oversampling were developed. For TPO, the models obtained
F1 scores of up to 0.81 (with RF in combination with
oversampling; Table 12). However, the best F1 score obtained
by models trained on the unfiltered data set was marginally
higher (0.83). Also for TR, the highest F1 score obtained by
the models built on the filtered data set (0.68, obtained with
the RF model in combination with oversampling) was 0.13
points lower than the best F1 score obtained by the models
trained on the complete data set. The observed lower
performance of the models on the filtered data sets may be
related to the substantial reduction of active compounds,
which leads to a significant loss of information.
Although reducing the number of compounds to only those

more specific for the inhibitory or antagonistic activity of the
targets does not improve the ability of the model to
differentiate between active and inactive compounds, these
models may have more biological relevance, as they represent a
more specific mechanism. However, the substantial reduction
of the data sets severely narrows the coverage of the chemical
space by the models and therefore their applicability domain.

Multi-task Classification Models. In a further attempt to
maximize the performance and scope of in silico models, we
explored the use of multi-task models for toxicity prediction,
which present the opportunity to combine information and
learn a common representation for the molecules.46 These
models are trained on multiple end points simultaneously and
may hence benefit from regularization and transfer learning
(Figure 9). This could be particularly beneficial in the case of
small or imbalanced training sets, like some of the ones
handled in this work. For the implementation of multi-task
models, we selected NNs as they are the preferred approach for
multi-task models in the literature47,48 and benefit most from
the use of larger data sets.

Figure 7. Changes in the F1 score (solid lines) and coverage (dashed
lines), as compounds with predicted probabilities close to the decision
boundary for the RF model of TPO (green) and TR (blue) were
considered out of the applicability domain and removed.

Figure 8. F1 scores as a function of the Tanimoto similarity between
the compounds in the test set and in the training set. The similarity
was calculated based on the ECFP fingerprint between one, three, or
five nearest neighbors.
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Four multi-task models were built based on different
combinations of end points, each covering two to nine end
points. As the single-task models for TPO and TR showed
good performance (indicating that the training sets for these
end points have a high information content), these end points
were included in all multi-task models. The other end points
were incrementally added to the training data of the multi-task
models.
The multi-task models were developed within a workflow

that generates 100 models built on different training sets and
with optimized hyperparameters (see Materials and Methods
for details). The 100 models are grouped based on their
hyperparameters, and one group of models with common
hyperparameters is selected as the final model. This selection is
based on the number of models in the ensemble and its mean
F1 score over the respective test sets of the single models. The
performance of the multi-task models was evaluated on the
mean F1 score of the selected ensemble.
In all cases, the performance of the multi-task NN models

was similar to that of the single-task NN model implementing
the oversampling approach (Figure 10). The best mean F1
scores obtained among the models with different end point
combinations were of 0.81 for TPO (vs 0.82 for the single-task
NN model), 0.79 for TR (vs 0.79), 0.69 for DIO1 (vs 0.70),
0.69 for DIO2 (vs 0.69), 0.68 for DIO3 (vs 0.71), 0.64 for NIS
(vs 0.66), 0.72 for TRHR (vs 72), 0.64 for TSHRAnt (vs
0.65), and 0.66 for TSHRAg (vs 0.68) (Table 13). The mean
F1 score of the multi-task models was also in general
comparable to the one obtained by the best single-task
model (Figure 10).
Those end points implemented in models with different

combinations of end points showed similar performance in all

combinations (difference in the mean F1 score up to 0.02
points), suggesting that an increase in the number of end
points and data sets represented by a model does not
contribute much to the learning process. Although all targets
are related to thyroid hormone homeostasis, their structure
and functions as well as the assays employed for measuring
their function are diverse. The transfer of information between
end points is then limited to simple molecular features, without
benefiting from common biological features. Since these
features are already contained in the descriptors used as
input for all the models, there would be no information gain in
the combination of these end points, explaining the similar
results to the single-task models.

■ CONCLUSIONS
We have compiled a comprehensive set of experimental data
on the interference of small molecules with nine targets
involved in molecular initiating events of thyroid hormone
homeostasis (DIO1, DIO2, DIO3, TPO, TR, NIS, TRHR, and
TSHR antagonism and agonism) from the ToxCast database
and published studies. Five ML algorithms in combination
with three data balancing approaches were explored for the
generation of single-task models. In addition, NNs were
explored for the development of multi-task models combining
several end points.
The classifiers for TPO and TR showed high predictive

performance during a 10-fold CV, with mean F1 scores of up
to 0.83 and 0.81, respectively. The models for the other end
points (DIO1, DIO2, DIO3, NIS, TRHR, TSHRAnt, and
TSHRAg), for which the quantity and quality of the available
data were more limited, yielded mean F1 scores between 0.65

Table 12. Mean and Standard Deviation of the Performance of Different Methods for the Models Built on the Filtered Data
Sets for Nonspecific and Cytotoxic Compounds for TPO and TR

end point method F1 score MCC balanced accuracy AUC

TPO RF 0.81 (± 0.05) 0.63 (± 0.10) 0.78 (± 0.04) 0.91 (±0.03)
LR 0.79 (± 0.07) 0.59 (± 0.13) 0.79 (± 0.06) 0.87 (± 0.04)
XGB 0.80 (± 0.04) 0.60 (± 0.09) 0.79 (± 0.04) 0.89 (± 0.02)
SVM 0.79 (± 0.03) 0.58 (± 0.07) 0.78 (± 0.04) 0.89 (± 0.03)
NN 0.79 (± 0.05) 0.58 (± 0.11) 0.77 (± 0.05) 0.88 (± 0.04)

TR RF 0.68 (± 0.05) 0.39 (± 0.10) 0.65 (± 0.04) 0.88 (± 0.02)
LR 0.63 (± 0.03) 0.28 (± 0.05) 0.62 (± 0.02) 0.77 (± 0.05)
XGB 0.67 (± 0.05) 0.37 (± 0.10) 0.64 (± 0.04) 0.85 (± 0.04)
SVM 0.66 (± 0.04) 0.34 (± 0.07) 0.66 (± 0.05) 0.82 (± 0.04)
NN 0.64 (± 0.04) 0.29 (± 0.07) 0.61 (± 0.04) 0.81 (± 0.04)

Figure 9. Representation of single-task (left) and multi-task (right)
NNs. On the single-task models, only one problem (assay result) is
solved at a time, while multi-task models can learn and solve different
problems simultaneously. Figure 10. Comparison of single- and multi-task models. Results for

single-task methods are divided in (a) best method (orange) and (b)
NN method (blue). Performance of multi-task NN is shown in green.
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and 0.77. Overall, the impact of the selected ML algorithm and
data balancing method on model performance was minor.
Larger differences in the performance of the different models
were observed for end points for which the amount of data
available for model development is very limited (mainly NIS,
TRHR, and TSHR). For these end points, models derived in
combination with weight balancing and oversampling usually
performed better than models derived in combination with
undersampling (F1 scores up to 0.24 higher). However, this
increase in performance comes with the cost of a higher
standard deviation during CV. The performance of the multi-
task models was comparable to those of the single-task models,
indicating that these models were not able to benefit from a
transfer of information. We also showed that the reliability of
the predictions is correlated with the similarity of the test
compounds and the training instances as well as with the
distance of the predicted probability from the decision
boundary.
The initial data sets were further filtered with comple-

mentary information available on the reliability of assay
outcomes (related to cytotoxicity and nonspecific protein
inhibition). However, the substantial reduction of training data
caused by this refinement procedure resulted in models that
did in no case outperform the models trained on unfiltered
data. Although the chemical space represented by these models
is narrower than the chemical space of those derived from the
unfiltered data, these models may be of higher biological
relevance as they represent a more specific interaction of the
compounds with the target protein.
Overall, the models presented in this work can help in the

identification of substances with the potential to disturb the
thyroid hormone homeostasis and point out which key events
are affected. Thus, they may help to prioritize compounds for
further testing in early stages of development and to support
read-across. This will ultimately reduce animal testing and
increase efficiency of product development and regulatory
testing.
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4.2 Enhancement of in vivo toxicity prediction with predicted 

bioactivity descriptors 

In vivo toxicity prediction is still a challenging problem due to the high complexity of the 

endpoints and the scarce data. Chemical similarity to measured compounds is often not enough 

to predict the outcome of untested compounds in in vivo assays, as small structural changes 

may influence any of the ADME parameters determining the in vivo effects. Some studies on 

read-across applications78-80 and toxicity prediction46-48 have already shown that describing the 

behavior of compounds in biological systems may better capture similarities on a biological 

level.  

A common problem of in silico models including biological information is the sparsity of the 

available experimental data for building bioactivity descriptors. The following study presents 

an approach for exploiting the benefits of biological data while overcoming the data sparsity 

issue by the generation of predicted bioactivity descriptors. For developing these descriptors, 

data sets for over 300 in vitro and pharmacokinetics assays were collected and used to train 

ML models. These models were then used to compute predicted bioactivity descriptors that, 

alone or in combination with chemical descriptors, constituted the input features for the 

development of in vivo toxicity prediction models. The approach was tested on a genotoxicity 

in vivo assay (MNT) and two organ toxicity endpoints (drug-induced liver injury (DILI) and 

cardiological complications (DICC)). All developed models were built within a CP framework, 

which enabled the direct definition of the AD for both the bioactivity models (used for 

calculating the bioactivity descriptors) and the in vivo toxicity models. Moreover, an analysis 

of the most important bioactivity descriptors for the prediction of each endpoint was conducted 

to understand relevant biological relationships found by the models and define the best strategy 

for applying the method on new in vivo endpoints. 
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ABSTRACT: Computational methods such as machine learning approaches have a strong
track record of success in predicting the outcomes of in vitro assays. In contrast, their ability to
predict in vivo endpoints is more limited due to the high number of parameters and processes
that may influence the outcome. Recent studies have shown that the combination of chemical
and biological data can yield better models for in vivo endpoints. The ChemBioSim approach
presented in this work aims to enhance the performance of conformal prediction models for in
vivo endpoints by combining chemical information with (predicted) bioactivity assay outcomes.
Three in vivo toxicological endpoints, capturing genotoxic (MNT), hepatic (DILI), and
cardiological (DICC) issues, were selected for this study due to their high relevance for the
registration and authorization of new compounds. Since the sparsity of available biological assay
data is challenging for predictive modeling, predicted bioactivity descriptors were introduced instead. Thus, a machine learning
model for each of the 373 collected biological assays was trained and applied on the compounds of the in vivo toxicity data sets.
Besides the chemical descriptors (molecular fingerprints and physicochemical properties), these predicted bioactivities served as
descriptors for the models of the three in vivo endpoints. For this study, a workflow based on a conformal prediction framework (a
method for confidence estimation) built on random forest models was developed. Furthermore, the most relevant chemical and
bioactivity descriptors for each in vivo endpoint were preselected with lasso models. The incorporation of bioactivity descriptors
increased the mean F1 scores of the MNT model from 0.61 to 0.70 and for the DICC model from 0.72 to 0.82 while the mean
efficiencies increased by roughly 0.10 for both endpoints. In contrast, for the DILI endpoint, no significant improvement in model
performance was observed. Besides pure performance improvements, an analysis of the most important bioactivity features allowed
detection of novel and less intuitive relationships between the predicted biological assay outcomes used as descriptors and the in vivo
endpoints. This study presents how the prediction of in vivo toxicity endpoints can be improved by the incorporation of biological
informationwhich is not necessarily captured by chemical descriptorsin an automated workflow without the need for adding
experimental workload for the generation of bioactivity descriptors as predicted outcomes of bioactivity assays were utilized. All
bioactivity CP models for deriving the predicted bioactivities, as well as the in vivo toxicity CP models, can be freely downloaded
from https://doi.org/10.5281/zenodo.4761225.

■ INTRODUCTION
Modern toxicity testing heavily relies on animal models, which
entails ethical concerns, substantial costs, and difficulties in the
extrapolation of results to humans.1 The increasing amount
and diversity of not only drugs but also more generally of
chemicals present in the environment and the lack of
knowledge about their toxic potential require the development
of more efficient toxicity assessment tools.
In recent years, in silico tools for toxicity prediction have

evolved into powerful methods that can help to decrease
animal testing.2−4 This is particularly true when applied in
tandem with in vitro methods.5 Machine learning (ML)
models trained on data sets of compounds with known
activities for an assay can be used as predictive tools for
untested compounds.6 These models are generally trained on
chemical and structural features of compounds with measured
activity values.7 However, the outcomes of in vivo toxicological

assays depend on a number of biological interactions such as
the administration, distribution, metabolism, and excretion
(ADME) and the interaction with different cell types.4 The
ability of chemical property descriptors to capture these
complex interactions and, consequently, the predictive power
of ML models trained on these molecular representations are
limited. By the example of classification models for hit
expansion8,9 and toxicity prediction,10−13 recent studies have
shown that the predictive power of in silico models can be
improved by the amalgamation of chemical and biological
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information. More specifically, it has been shown that
bioactivity descriptors could help to infer the activity of new
substances by capturing the similarity of compounds in the
biological space, i.e., identifying those compounds that behave
similarly in biological systems (but may be chemically
dissimilar). However, options to integrate biological data into
models are limited by the sparsity of the available experimental
data. In principle, the use of bioactivity features in ML requires
compounds of interest to be tested in all assays conforming the
bioactivity descriptor set. Norinder et al.14 however showed, by
the example of conformal prediction (CP) frameworks built on
random forest (RF) models, that the use of predicted
bioactivity descriptors in combination with chemical descrip-
tors can yield superior cytotoxicity and bioactivity predictions
while circumventing the problems of sparsity of data and
extensive testing. CP models are a robust type of confidence
predictors that generate predictions with a fixed error rate
determined by the user.15 To estimate the confidence of new
predictions, the predicted probabilities of a set of compounds
with known activity (calibration set) are used to rank the
predicted probabilities for new compounds and calculate their
so-called p-values (i.e., calibrated probabilities). An additional
feature of CP models is their ability to handle data imbalance
and predict minority classes more accurately.16

The CP approach offers the advantage of a mathematical
definition of a model’s applicability domain (AD); i.e.,
chemical space within the model makes predictions with a
defined reliability based on the allowed error rate.17 Other
common approaches for defining the applicability domain are
based on compound similarity or predicted probability and a
more or less arbitrary (user-defined) threshold. However, CP
models return a statistically robust class membership
probability for each class. Under the exchangeability
assumption of the samples (assumption also made for classical
ML models), the observed error rate returned by CP models
will be equal to (or very close to) the allowed (i.e., user-
defined) error rate.
The aim of this study is to determine if, and to what extent,

classification models for the prediction of in vivo toxicity
endpoints can benefit from integrating chemical representa-

tions with data from biological assays. To include the biological
assay information in the models, predicted bioactivities were
derived from 373 CP models, each representing an individual
biological assay. The results obtained for models trained
exclusively on chemical descriptors (“CHEM”), trained
exclusively on bioactivity (“BIO”) descriptors, or trained on
the combination of chemical and bioactivity descriptors
(“CHEMBIO”) were analyzed for three toxicological in vivo
endpoints: in vivo genotoxicity (with the in vivo micronucleus
test (MNT)), drug-induced liver injury (DILI), and cardio-
logical complications (DICC).
The in vivo MNT assay is used to detect genetic

(clastogenic and aneugenic) damage induced by a substance
causing the appearance of micronuclei in erythrocytes or
reticulocytes of mice or rats.18 DILI describes the potential
hepatotoxicity of a compound. Although there is no consensus
method for assessing the DILI potential of a compound, the
U.S. Food and Drug Administration (FDA) proposed a
systematic classification scheme based on the FDA-approved
drug labeling.19 The DICC endpoint comprises five cardio-
logical complications induced by drugs and annotated in
clinical reports: hypertension, arrhythmia, heart block, cardiac
failure, and myocardial infarction.
Severe organ toxicity, as observed with DILI and DICC, but

also genotoxicity (which can lead to carcinogenesis and
teratogenic effects) must be avoided and hence recognized
early in the development of industrial chemicals and drugs.
Both hepatic and cardiovascular adverse effects are listed as
two of the most common safety reasons for drug withdrawals20

and failures in drug development phases I−III.21 Moreover,
REACH, the chemical control regulation in the European
Union, is requiring the in vivo MNT as follow up of a positive
result in any genotoxicity test in vitro.22 The Organisation for
Economic Co-operation and Development (OECD) Guideline
474 and the International Council for Harmonisation of
Technical Requirements for Pharmaceuticals for Human Use
(ICH) list the in vivo MNT assay as one of the recommended
tests for detecting genotoxicity, as it can account for ADME
factors and DNA repair processes.18,23

Table 1. Overview of Collected Assay Data

database/
endpoint description source

ToxCast
database

• 222 high-throughput screening assays, including endpoints related to cell cycle and morphology control, steroid
hormone homeostasis, DNA-binding proteins, and other protein families (e.g., kinases, cytochromes, and
transporters)

ToxCast database version
3.324

eMolTox
database

• 136 in vitro assays, including endpoints related to mutagenicity, cytotoxicity, hormone homeostasis,
neurotransmitters, and several protein families (e.g., nuclear receptors, cytochromes, and cell surface receptors)

Ji et al.25

genotoxicity • AMES mutagenicity assay AMES assay: eChemPortal,26
Benigni et al.,28 Hansen et
al.29

• chromosome aberration (CA) assay

• mammalian mutagenicity (MM) assay CA and MM assays:
eChemPortal, Benigni et al.

bioavailability • human oral bioavailability assay Falcoń-Cano et al.27

permeability • Caco-2 assay Wang et al.30

thyroid
hormone
homeostasis

• deiodinases 1, 2, and 3 inhibition assays Garcia de Lomana et al.31

• thyroid peroxidase inhibition assay
• sodium iodide symporter inhibition assay
• thyroid hormone receptor antagonism assay
• thyrotropin-releasing hormone receptor antagonism assay
• thyroid stimulating hormone receptor agonism and antagonism assays

P-glycoprotein
inhibition

• P-glycoprotein (ABCB1) inhibition assay Broccatelli et al.32

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c00451
J. Chem. Inf. Model. 2021, 61, 3255−3272

3256

pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00451?rel=cite-as&ref=PDF&jav=VoR


This study introduces an improvement of the in silico
prediction of in vivo toxicity endpoints by considering the
activity of compounds in multiple biological test systems. We
show that predicted bioactivities, which present the benefit of
not needing further experimental testing for new compounds,
are often enough to achieve ML models with increased
performance.

■ MATERIALS AND METHODS
Data Sets. In the following paragraphs, the data from

biological assays used for generating descriptors based on
predicted bioactivities are introduced followed by the data
related to the three in vivo toxicological endpoints (MNT,
DILI, and DICC). Finally, the reference data sets used to
analyze the chemical space covered by the in vivo endpoints
are described.
All information required for the download of any of the data

sets used for modeling in this study (including download links,
exact json queries, as well as MD5 file checksums) are provided
in Table S1 (for the in vivo endpoints) and Table S2 (for the
biological assays).
Biological Assays. For the generation of descriptors from

predicted bioactivities, a total of 373 data sets (each belonging
to a single biological assay) were collected (Table 1): 372 data
sets from in vitro assays obtained from the ToxCast,24

eMolTox,25 and eChemPortal26 databases and the literature,
and one data set from an in vivo assay (a human oral
bioavailability assay) obtained from Falcoń-Cano et al.27 From
the ToxCast and eMolTox databases, only endpoints with at
least 200 active and 200 inactive compounds listed (after
structure preparation and deduplication; see the section
Structure Preparation for details) were considered for
modeling. Besides the endpoints selected from these two
databases, data sets for assays covering genotoxicity, bioavail-
ability, permeability, thyroid hormone homeostasis disruption,
and P-glycoprotein inhibition were considered (Table 1). A
more detailed description of the data collection and activity
labeling of these data sets is provided in Table S2. The
numbers of active and inactive compounds in each of the 373
data sets (after the structure preparation and deduplication
steps) are reported in Table S3.
In Vivo Endpoints. During the development of this study, a

larger number of publicly available in vivo endpoint data sets
were investigated for their suitability for modeling. Taking into
account the quantity and quality of the data, as well as the
regulatory relevance of the toxicological endpoints, three in
vivo endpoints were selected for this study: MNT, DILI, and
DICC. The collection of the respective data sets is introduced
in the following paragraphs.
MNT Data Set. For the MNT assay, data from the European

Chemicals Agency (ECHA) available at the eChemPortal were
collected. Only experimental data derived according to the
OECD Guideline 474 (or equivalent) were considered. All
assay outcomes annotated as unreliable or related to
compounds that are cytotoxic were discarded. All compounds
(identified based on CAS numbers) with conflicting activity
data were also removed. Additional data were obtained from
the work of Benigni et al.,28 which includes curated data sets
from the European Food Safety Authority (EFSA) data. In
addition, data sets for MNT on mouse (1001 compounds) and
rat (127 compounds) compiled by Yoo et al.33 and containing
binary activity labels for MNT were obtained. These additional
data sets include data, among other sources, from the FDA

approval packages, the National Toxicology Program (NTP)
studies, the U.S. EPA GENETOX database, the Chemical
Carcinogenesis Information System (CCRIS) and the public
literature. The mouse and rat data sets did not contain
overlapping compounds and an overall MNT result
(independent from the species) was derived for the 1128
compounds in the data set. The final data set (after the
structure preparation and deduplication steps) contains a total
of 1791 compounds (316 active and 1475 inactive compounds;
Table 2).

DILI Data Set. The data for the DILI endpoint were
obtained from the verified DILIrank data set compiled by the
FDA.34 In this data set, drugs are classified as “Most-DILI-
concern”, “Less-DILI-concern”, “No-DILI-concern”, and “Am-
biguous-DILI-concern”. For the purpose of this study,
compounds in the “Most-DILI-concern” and “Less-DILI-
concern” classes were labeled as ″active″ and compounds in
the “No-DILI-concern” class were labeled as ″inactive″.
Compounds of the ″Ambiguous-DILI-concern″ class were
removed from the data set. The final binary DILI data set
contained 692 compounds (445 active and 247 inactive
compounds).
DICC Data Set. For the DICC endpoint, the data set

compiled by Cai et al.35 on different cardiological complica-
tions was used. In their work, Cai et al. gathered individual
data sets for hypertension, arrhythmia, heart block, cardiac
failure, and myocardial infarction from five databases:
Comparative Toxicogenomics Database (CTD),36 SIDER37

(side effect resource), Offsides38 (database of drugs effects),
MetaADEDB39 (adverse drug events database), and Drug-
Bank.40 In this study, a unique DICC data set was built that
combines the five data sets of Cai et al. In the DICC data set,
compounds were labeled as “active” if they were measured to
be active on at least one of the cardiological endpoints (and
active, inactive, or “missing” on the remaining endpoints), and
as “inactive” otherwise. This resulted in a data set of 3256
compounds after the structure preparation and deduplication
steps (988 active and 2268 inactive compounds; see section
Structure Preparation for details).

Reference Data Sets. Three reference data sets were
obtained to represent the chemical space of pesticide active
ingredients, cosmetic ingredients, and drugs in order to analyze
the coverage of these types of substances by the in vivo
endpoint data sets. The chemical space of pesticides was
represented by the 2417 compounds (after structure
preparation and deduplication; see the section Structure
Preparation for details) collected in the Pesticide Chemical
Search database41 (from the Environmental Protection
Agency’s (EPA) Office of Pesticide Programs) and down-
loaded from the CompTox Dashboard.42 The chemical space
of cosmetic ingredients was represented by the 4503
compounds (after structure preparation and deduplication)
included in the COSMOS cosmetics database,43 created as part

Table 2. Overview of the Data Sets for the in Vivo
Endpoints

number of

endpoint active compounds inactive compounds ratio

MNT 316 1475 1:5
DILI 445 247 2:1
DICC 988 2268 1:2
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of a European Union project for determining the safety of
cosmetics in industry without the use of animals, and
downloaded from the CompTox Dashboard as well. The
chemical space of drugs was represented by the 10087 (after
structure preparation and deduplication) approved, exper-
imental, or withdrawn drugs contained in DrugBank.44

Structure Preparation. The structures of all molecules
were prepared starting from the respective SMILES strings,
which are directly available from most data resources. For
resources that do not provide SMILES strings (e.g.,
eChemPortal and the work of Yoo et al.), this information
was obtained by querying the PubChem PUG REST
interface45 with the CAS numbers. CAS numbers for which
no SMILES was retrieved by this PubChem search were
queried with the NCI/CADD Chemical Identifier Resolver.46

For the 977 compounds that did not produce any match with
this procedure either, the “RDKit from IUPAC” node of
RDKit47 in KNIME48 was used in an attempt to derive a
structure from the chemical name. For 131 out of these 977
compounds, the chemical structure was successfully derived
with this method. The remaining 846 compounds, without
known chemical structures (e.g., including compound mixtures
and unspecific formulas), were removed.
All obtained SMILES notations were interpreted, processed,

and standardized with the ChemAxon Standardizer49 node in
KNIME. As part of this process, solvents and salts were
removed, aromaticity was annotated, charges were neutralized,
and structures were mesomerized (taking the canonical
resonant form of the molecule). All compounds containing
any element other than H, B, C, N, O, F, Si, P, S, Cl, Se, Br,
and I were removed from the data set with the “RDKit
Substructure Filter” node in KNIME. In the case of
multicomponent compounds, the structures of the individual
components forming the compound were compared. More
specifically, the canonical SMILES of the components were
derived with RDKit, and in case the components had identical
canonical SMILES, one of them was kept; otherwise, the whole
compound was filtered out. Lastly, compounds with fewer than
four heavy atoms were discarded.
Canonical SMILES were derived with RDKit from all

standardized compounds. For each endpoint data set, duplicate

canonical SMILES with conflicting activity labels were
removed from the respective endpoint data set.
A KNIME workflow with the specific steps and settings for

the preparation of the structures as well as for the calculation
of the chemical descriptors (see Descriptor Calculation
section) is provided in the Supplementary Information.

Descriptor Calculation. Chemical Descriptors. Molecular
structures were encoded using count-based Morgan finger-
prints with a radius of 2 bonds and a length of 2048 bytes,
computed with the ″RDKit Count-Based Fingerprint″ node in
KNIME. Morgan fingerprints encode circular environments
and capture rather local properties of the molecules. To
capture global molecular properties, all 119 1D and 2D
physicochemical property descriptors implemented in the
“RDKit Descriptor Calculation” node in KNIME were
calculated. These descriptors encode properties such as the
number of bonds and rings in a molecule, the number of
particular types of atoms, or the polarity and solubility of the
compound. Two acidic and two basic pKa values were also
calculated per molecule with the “pKa” KNIME node from
ChemAxon.50 Missing pKa values (for molecules without two
acidic or basic groups) were replaced with the mean value of
the data set.

Bioactivity Descriptors. For the calculation of the
bioactivity descriptors, first, 373 CP modelsone per
assaywere fitted on the respective biological assay sets (see
the Data Sets section for details). The workflow for the
generation of these models is explained in detail in the “Model
development” section. With the generated bioactivity CP
models, two p-values for each compound contained in the
three in vivo endpoint data sets were predicted (Figure 1).
Both the p-values for the active (p1) and for the inactive (p0)
classes for each assay were used as bioactivity descriptors,
resulting in 746 descriptors.

Chemical Space Analysis. To visualize the chemical space
covered by the data sets of the in vivo endpoints,
dimensionality reduction was performed on a subset of 23
physically meaningful and interpretable molecular descriptors
generated with RDKit (Table S4). For that purpose, the
principal component analysis (PCA) implementation of scikit-
learn51 was applied on the merged in vivo endpoint data sets

Figure 1. Workflow for the derivation of the bioactivity descriptors for the in vivo toxicity CP models. For each biological assay, a conformal
prediction model is built and used to predict the p-values of the compounds in the three in vivo endpoint data sets. These predicted p-values are
used as bioactivity descriptors, in combination with chemical descriptors, for training the models of the in vivo endpoints.
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(merged on the canonical SMILES). A further visualization of
the chemical space defined by the complete CHEM and
CHEMBIO descriptor sets was performed with the Uniform
Manifold Approximation and Projection (UMAP).52 This
method conducts a dimension reduction while maintaining the
global structure of the data (i.e., the pairwise distance between
samples). For each of the three in vivo endpoint data sets, a
two-dimensional projection was performed on the CHEM and
CHEMBIO descriptor sets, respectively, with 50 nearest
neighbors, a minimum distance of 0.2, and use of the
“euclidean” metric as the distance measure.
The molecular similarities of the compounds of the in vivo

endpoint data sets and the collected pesticides, cosmetics, and
drugs reference data sets were quantified with Tanimoto
coefficients calculated from Morgan fingerprints with a radius
of 2 bonds and a length of 1024 bits (fingerprints computed
with the ″RDKit Fingerprint″ node in KNIME).
Model Development for the Biological Assays and In

Vivo Toxicity Endpoints. Workflow for the Development
of CP Models. The same model development workflow was
followed to train the CP models used for the calculation of the
bioactivity descriptors, as well as to train the final models for
the in vivo toxicity endpoints. Note that the structure
preparation and chemical descriptor calculation was done in
KNIME, but the following workflow was implemented in
Python. All hyperparameters of the functions used in the
workflow for deriving the CP models are specified in Table S5.

Prior to model development, a variance filter was applied to
all features used as input for the in vivo toxicity CP models
(including the bioactivity features if present) in order to
remove any features with low information content. More
specifically, any features with a variance (among the
compounds in the respective data set) of less than 0.0015
were removed. Note that, in order to preserve the homogeneity
of the input features, this variance filter was not part of the
workflow for the biological assay CP model development (used
to calculate the bioactivity descriptors). Also, in all cases
(including the biological assay CP models), the features were
scaled (by subtracting the mean and scaling to unit variance)
prior to model development by applying the StandardScaler
class of scikit-learn on each endpoint-specific data set.
For CP model development, each endpoint-specific data set

was divided into 80% training and 20% test set using the
StratifiedShuffleSplit class of scikit-learn (Figure 2). For
performance assessment, this splitting of the data was
performed within a 5-fold cross-validation (CV) framework.
During each CV run, the training set was further divided
(stratified) into a proper training set (70% of the training set)
and a calibration set (30% of the training set) with the
RandomSubSampler class from the nonconformist Python
package.53 An RF model was trained on the proper training set
using the scikit-learn implementation (with 500 estimators and
default values for the rest of the hyperparameters). The trained
RF model was then used to predict the probabilities of the
compounds in the calibration set. From these probabilities, the

Figure 2. Workflow of the aggregated Mondrian CP set up for the development of the models for the biological assays and the in vivo endpoints.
The aggregated CP framework included 20 random splits in calibration and proper training data sets, on which individual RF models were trained,
and the resulting p-values per test compound were afterward averaged. The feature selection step was implemented with a lasso model and only
included in the development of the in vivo toxicity CP models (in vivo toxicity CP models without feature selection were also trained for
comparison).

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c00451
J. Chem. Inf. Model. 2021, 61, 3255−3272

3259

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.1c00451/suppl_file/ci1c00451_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451?fig=fig2&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00451?rel=cite-as&ref=PDF&jav=VoR


so-called nonconformity score (nc score) was derived by
applying a nonconformity error function, which yields low nc
scores for predictions close to the true value. Here, the inverse
probability error function from the nonconformist package
(named “InverseProbabilityErrFunc”) was used to calculate the
nc scores. This error function is defined as

= − ̂ |P y xnc score 1 ( ),i

with P̂(yi | x) being the probability of predicting the correct
class.
By definition, errors produced by CP models do not exceed

the significance level ε (i.e., indicated error rate) under the
assumption that training and test compounds are independent
and belong to the same distribution. However, these errors
may be unevenly distributed across classes. To achieve
conditional validity with respect to the active and inactive
classes, the Mondrian approach was used. Following the
Mondrian CP approach, a sorted nc score list with the
calculated nc scores of the calibration set was created for each
class (active/inactive) independently. After calculating the nc
scores (one per class) for the test compounds, their rank (with
regard to the calibration set) in the respective list was
calculated. The rank of the nc score of each test compound
defines the predicted p-value for the respective class.
An aggregated CP approach54 was conducted by repeating

the random splitting of the proper training and calibration sets
20 times. As a result, the p-values for a test set were calculated
20 times and the final p-value was derived from the median
value.
CP models output a set of labels, which contain one class

(“active” or “inactive”), both classes, or none. If the final p-
value for any of the classes was higher than the significance
level ε, the compound was assigned to that class (or to both
classes if both p-values were higher than ε). Thus, based on the
p-values and the significance level, the CP model determines
whether a compound is within the applicability domain (AD)
of the model.55 Compounds within the AD of the model are
assigned to one or both classes and those outside of the AD are
assigned to the empty class (i.e., no class label is assigned).
The predicted p-values obtained by applying the bioactivity

CP models on the in vivo endpoint data sets (for the
generation of the bioactivity descriptors) were used as is, and
no class labeling was performed (i.e., no significance level was
assigned). Instead, the p-values for both classes were
considered.
In Vivo Toxicity CP Models Including Feature Selection.

The workflow for developing the in vivo toxicity CP models
that include feature selection is similar to the general workflow
described in the previous section but additionally includes a
least absolute shrinkage and selection operator (lasso)
model.56 Lasso is a regression method that penalizes the
coefficients of the input features for the selection of variables
and the regularization of models. Some feature coefficients are
shrunk to zero and therefore eliminated from the model.
In our workflow, a lasso model with the LassoCV

implementation of scikit-learn was trained on the complete
training set (prior to splitting the complete training set into
proper training and calibration set; see Figure 2). To optimize
the regularization parameter alpha of the lasso model, an inner
5-fold CV is applied. The list of coefficients assigned to each
feature is obtained, and those features with a coefficient
shrunken to zero are filtered out from the data set. Only the

selected features (i.e., with a coefficient higher than zero) are
used as input for the aggregated CP workflow described in the
previous section.
In order to use the coefficients for ranking the features

according to their importance for the analysis of the models,
the mean among the absolute values of the coefficients
obtained during each outer CV run was calculated.
Since the lasso model discards highly correlated features,

considering only the lasso coefficients for the analysis of the
most relevant features could lead to an underestimation of the
importance of some biological assays. Therefore, this analysis
was mainly based on the feature importance values of the RF
models without feature preselection with lasso. The feature
importance values of RF were extracted, and the mean across
CV runs were calculated. Lastly, to better estimate the relative
importance of each feature, a min-max normalization with the
MinMaxScaler class of scikit-learn (with a range of 0.01 to
one) was applied on the mean coefficients higher than zero and
on the mean feature importance values of RF.

Performance Evaluation of CP Models. Two important
metrics for the evaluation of CP models were calculated based
on all predictions of the respective test sets: the validity and
the efficiency. CP models are proven to be valid (i.e., guarantee
the error rate indicated by the user) if the training and test data
are exchangeable.15 To achieve the indicated validity of the
predictions, CP models output a set of class labels that can be
empty, contain both labels, or only one of the labels (i.e., single
class predictions). The validity is defined as the ratio of
predictions containing the correct label (the “both” class set is
therefore always correct and the “empty” set is always wrong).
The efficiency measures the ratio of single class predictions
(i.e., predictions containing only one class label) and,
therefore, how predictive a model for a given endpoint is.
Additionally, the F1 score, Matthews correlation coefficient

(MCC), specificity, sensitivity, and accuracy (both overall and
independently for each class) were calculated (on the single
class predictions only), to determine the model quality. The F1
score is the harmonic mean of precision and recall and is
robust against data imbalance. The MCC considers all four
classes of predictions (true positive, true negative, false
positive, and false negative predictions) and takes values in
the range of −1 to +1 (a value of +1 indicates perfect
prediction). This metric is also robust against data imbalance.
The specificity is determined by the proportion of inactive
compounds correctly identified, while the sensitivity is
determined by the proportion of active compounds correctly
identified. The accuracy is defined as the ratio of correct
predictions.
The CP models were evaluated at a significance level ε of

0.2, i.e., at a confidence level (1 − ε) of 0.80. The set of
predicted classes at this confidence level will contain the true
class label in at least 80% of the cases (for valid models). This
significance level was selected because it usually offers an
adequate trade-off between efficiency and validity.57,58

The difference in performance between models with distinct
descriptors was evaluated with the nonparametric Mann−
Whitney U test.59 For each pair of models compared, the
distribution of values obtained in the different CV runs for a
given performance metric (e.g., efficiency) was given as input
in the “mannwhitneyu” function implemented in SciPy.60
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■ RESULTS AND DISCUSSION
In this study, we investigated if, and to what extent, the
consideration of predicted bioactivities can improve the
performance of in silico models for the prediction of the in
vivo toxicity endpoints MNT, DILI, and DICC. To this end,
we first trained CP models for 373 biological assays and
applied them on the in vivo endpoint data sets for deriving the
predicted bioactivities. For training the models for the three in
vivo endpoints, we embedded three types of RF models in CP
frameworks: (a) CHEM models based exclusively on chemical
descriptors, (b) BIO models based exclusively on (predicted)
bioactivity descriptors, and (c) CHEMBIO models based on
the combination of both types of descriptors.
Chemical Space Analysis. In order to develop an

understanding of the chemical space represented by the
training data from the three in vivo endpoints (MNT, DILI,
and DICC), we compared the overlap of the chemical space
between the in vivo endpoint data sets and three reference data
sets. The overlap between data sets serves as an indication of
the relevance of models trained on the in vivo data sets for
different chemical domains (pesticides, cosmetics, and drugs).
The reference data sets represent pesticides (2417 compounds
from the EPA’s Office of Pesticide Programs), cosmetics (4503
cosmetics ingredients from the COSMOS database), and drugs
(10,087 approved, experimental, or withdrawn drugs from
DrugBank).
We found that the MNT data set covers 16% of the

pesticides reference set, 10% of the cosmetics reference set,
and 8% of the drugs reference set, considering exact matches
only (exact matches defined as any pair of compounds with a
Tanimoto coefficient of 1.00; Table 3). The DICC data set
covers 34% of the drugs reference set but just 7 and 6% of the
cosmetics and pesticides reference sets, respectively. The
lowest coverage rates were observed for the DILI data set (as it
is also the smallest data set), with just 6, 2, and 1% for the
drugs, pesticides, and cosmetics reference sets, respectively.

For assessing the structural relationships between the active
and inactive compounds present in the MNT, DILI, and DICC
in vivo data, we referred to PCA. The PCA was performed on
selected interpretable molecular descriptors, which describe,
e.g., the number of bonds, rings, and particular types of atoms
in a molecule, or the polarity and solubility of the compounds
(Table S4). The three in vivo toxicity data sets were combined
(containing 4987 compounds) and used to perform the PCA.
The PCA plots reported in Figure 3 indicate that the

physicochemical properties of the active and inactive
compounds of the individual in vivo endpoint data sets are
mostly similar, with only a few outliers. Outliers with high
values for the first principal component (PC1, x axis) are
molecules with high molecular weight. Outliers with low values
in the second component of the PCA (PC2, y axis) are mostly
acyclic and polar, while molecules with high values on this axis
have a high number of rings. Most outliers are inactive on the
three investigated endpoints. The loadings plots (indicating
how strongly each descriptor influences a principal compo-
nent) are provided in Figure S1.
In order to investigate the chemical space with regard to the

full set of descriptors used for model training, we utilized
UMAP to compare the two-dimensional projections of the
CHEM and CHEMBIO descriptor sets. UMAP conducts a
dimension reduction of the data while maintaining the pairwise
distance structure among all samples. In general, no clear
separation of activity classes emerged for any of the three
endpoints. Moreover, no significant difference was observed in
the projections derived from the two descriptor sets regarding
their ability to cluster compounds with different activity labels.
The resulting UMAP plots are provided in Figure S2.
The structural diversity within the individual compound sets

was determined based on the distribution of pairwise
Tanimoto coefficients (based on atom-pair fingerprints)61

among (a) all pairs of active compounds, (b) all pairs of
inactive compounds, and (c) all pairs consisting of one active
and one inactive compound (Figure 4). For the three in vivo
endpoints, the distribution of pairwise compound similarities
shows a tailing toward low similarities for the three sets of
compounds (a, b, and c), indicating a high molecular diversity
in the data sets. It is also shown that compounds in one class
are not more similar to each other than they are to compounds
of the other class, since the distribution of similarities of the
three subsets is in all cases comparable.
Hence, the classification of compounds in the active and

inactive classes based only on their structural similarity is not
straightforward and complementary information may be
necessary for in silico methods to be able to differentiate
between classes.

Performance of CP Models for Deriving the Predicted
Bioactivities. With the aim to improve the predictive
performance for in vivo toxicity endpoints, we included
information about the outcome of the compounds in biological
assays (obtained from the ToxCast database, eMolTox,
eChemPortal, and other publications) as input for the in
vivo toxicity CP models. To avoid increased sparsity of the
data due to missing experimental values, a fingerprint based on
predicted bioactivities was developed. More specifically, for
each of the 373 collected biological assay data sets, a
bioactivity CP model was trained on molecular fingerprints
and physicochemical property descriptors (see Materials and
Methods for details).

Table 3. Percentage of Compounds in the Reference Data
Sets Covered by Compounds in the Three In Vivo Endpoint
Data Sets (MNT, DILI, DICC) at Given Similarity
Thresholds

endpoint

parameter
Tanimoto coefficient

thresholda MNT DILI DICC

% coverage
pesticides

1.0 16 2 6
≥0.8 17 2 7
≥0.6 29 3 11
≥0.4 62 10 36
≥0.2 99 85 97

% coverage
cosmetics

1.0 10 1 7
≥0.8 14 1 9
≥0.6 29 3 17
≥0.4 68 17 58
≥0.2 99 89 99

% coverage drugs 1.0 8 7 34
≥0.8 9 8 37
≥0.6 16 15 51
≥0.4 40 34 73
≥0.2 99 96 100

aTanimoto coefficients calculated from binary Morgan fingerprints
(1024 bits and radius 2).
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CP models are a type of confidence predictor that use the
predictions made by the model on a set of compounds with
known activities (calibration set) to rank and estimate the
certainty of the predictions for new compounds57 (see
Materials and Methods section for details). These models
output a set of labels (instead of only one label), which can
contain one class (active or inactive), both classes, or none of
them. Therefore, two important metrics for the evaluation of
CP models are the validity, which measures the ratio of
prediction sets containing the correct label (i.e., the “both”
class is always correct), and the efficiency, which measures the
ratio of single class predictions. Furthermore, the quality of the
single class predictions (covered by the AD of the model) can
be evaluated with common metrics like the F1 score or the
MCC. The performance of models developed in this work was
evaluated on the validity, efficiency, and F1 score results
referring to mean values obtained by 5-fold CV at a
significance level ε of 0.2 (Table S6). The MCC, specificity,
sensitivity, and overall and class-wise mean accuracies of the
single class predictions are also provided in Table S6.
The AD of ML models defines the region in chemical space

where the model makes predictions with a given reliability.
Depending on the focus of the study, there are different ways
to define the AD. For example, unusual compounds or
unreliable predictions can be flagged, assuming that they are
likely outside the aforementioned region. In our case, error rate

reduction is the focus of defining an AD; hence, it is mandatory
to use confidence measures to identify objects close to the
decision boundary and reject their predictions. A large
benchmark study from Klingspohn et al. concluded that
built-in class probability estimates performed constantly better
than the alternatives (e.g., distance measures) in terms of error
reduction.62,63 In the current study, we are using the RF
prediction score (best confidence measure for RF) as
nonconformity measure for the CP. Hence, it is expected
that no other nonconformity measure (or method) will
outperform the prediction score to estimate the confidence
of the predictions.
All 373 bioactivity CP models showed adequate mean

validities for the given significance level (for which the
expected validity is 0.80) that ranged from 0.78 to 0.83 (Figure
5) and thus obtained the defined error rate. The mean
efficiency values and F1 scores spread over a wider range.
There were 19 CP models (5%) with mean efficiencies lower
than 0.70 (Figure 6). The lowest mean efficiency (0.41) was
obtained for the ToxCast assay “ATG Ahr CIS dn”. On the
other hand, mean efficiencies higher than 0.90 were achieved
for 101 CP models (27%), where the highest mean efficiency
of 0.99 was obtained for the two eMolTox assays “Substrates of
cytochrome P450 2C19” and “Differential cytotoxicity
(isogenic chicken DT40 cell lines)”, and the two ToxCast
assays “TOX21 ERa LUC VM7 antagonist 0.1nM E2” and

Figure 3. Principal component analysis based on a selection of interpretable molecular descriptors generated with RDKit on the merged in vivo
toxicity data sets. Inactive compounds are colored in red and active compounds in green. The variance explained by the first two principal
components is indicated in the axes.

Figure 4. Distribution of pairwise Tanimoto coefficients based on atom-pair fingerprints for three types of compound pairs: (a) active-to-active
(blue), (b) inactive-to-inactive (orange), and (c) active-to-inactive (green).
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“TOX21 SBE BLA antagonist ratio”. Hence, the ratio of single
class predictions obtained by the bioactivity CP models was
relatively high and only in a few cases the models showed poor
efficiencies. In general, the models with the lowest mean
efficiency had highly imbalanced classes and a low number of
active compounds, while the contrary was observed for the
models showing the highest mean efficiencies.
Seventy-seven models (21%) obtained F1 scores higher than

0.90, indicating a very good performance of these models on
the single class predictions. There were 149 CP models (40%)
with mean F1 scores lower than 0.70. Only for 15% of all
models, the mean F1 scores were lower than 0.60, indicating
poor performance. The worst-performing model was that for
the ToxCast assay “ATG Ahr CIS dn” (mean F1 score of 0.38)
and the best-performing ones for the eMolTox assays
“Modulator of Neuropeptide Y receptor type 1”, “Modulator
of Urotensin II receptor”, and “Agonist of Liver X receptor
alpha” (F1 score of 1.00). One explanation for the good
predictivity could be the fact that the chemical space of the
active and inactive compounds is well differentiated (PCA
plots of the chemical space of these data sets are shown in
Figure S3). The classification of these compounds might
therefore be easier than for data sets with more similar
compounds between classes.
The performance of all CP models for the biological assays

can be found in the Supplementary Information (Table S6).
In Vivo Toxicity CP Model Performance. The in vivo

toxicity CP models were trained on three sets of descriptors:

(i) the chemical descriptor set (“CHEM”) comprising
physicochemical features and the molecular fingerprint; (ii)
the bioactivity descriptor set (“BIO”) containing the predicted
p-values for the biological endpoints; and (iii) the “CHEM-
BIO” descriptor set, which contains all features from both the
CHEM and the BIO descriptor sets.
The number of features in the CHEM descriptor set (2171

features) is almost three times higher than the number of
features of the BIO descriptor set (746 features), and together,
they add up to 2917 features. The underrepresentation of
bioactivity features in the CHEMBIO descriptor set and, more
generally, the high number of total features could lead to a
dilution of relevant information in the high-dimensional
feature space. Moreover, since no prefiltering has been applied
to the BIO descriptor set, some features may be redundant or
less relevant for the specific in vivo endpoints. In order to test
whether a reduction of the feature space could increase the
performance of the in vivo toxicity CP models, we introduced a
feature selection procedure based on a lasso model (which
assigns coefficients, i.e., weights, to all features) that we applied
prior to model training (see Materials and Methods for
details).
With each of the CHEM, BIO, and CHEMBIO descriptor

sets, two types of models were trained: (i) baseline models
based on all features of the respective descriptor set (only
filtering out those features with low variance; see Materials and
Methods for details) and (ii) models based on a subset of
features selected with a lasso model (built on the feature subset
after the variance filter). For the model training, only those
features with coefficients higher than zero in the lasso model
were selected (see Materials and Methods for details).
The models based on the preselected set of features (based

on (ii) lasso procedure) generally performed better (details
will be discussed together with the individual in vivo endpoint
performances below) and also present the computational
advantage that only the p-values for the selected biological
assays need to be computed to build the bioactivity descriptor
for new compounds. Therefore, in the following paragraphs,
only the results of these models will be further discussed. The
results from the baseline models without feature selection with
lasso (as described in (i)) are presented in Figure S3 and Table
S7. All models were evaluated on the mean validity, efficiency,
and F1 score (on the single class predictions) over 5-fold CV
at a significance level ε of 0.2. The MCC is presented in Table
4 (see discussion in the next paragraph); specificity, sensitivity,
and overall and per class accuracy data are provided in Table
S8. The differences in the performance among models with

Figure 5. Histogram of the performance distribution of the CP
models for the biological assays. All models were valid but their
efficiencies and F1 scores showed a high degree of variability.

Figure 6. Percentage of the 373 bioactivity CP models showing mean efficiencies and mean F1 scores in the four given ranges.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c00451
J. Chem. Inf. Model. 2021, 61, 3255−3272

3263

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.1c00451/suppl_file/ci1c00451_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.1c00451/suppl_file/ci1c00451_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.1c00451/suppl_file/ci1c00451_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.1c00451/suppl_file/ci1c00451_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.1c00451/suppl_file/ci1c00451_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.1c00451/suppl_file/ci1c00451_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.1c00451/suppl_file/ci1c00451_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451?fig=fig6&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00451?rel=cite-as&ref=PDF&jav=VoR


different descriptors are evaluated with a Mann−Whitney U
test at a p-value <0.05.
It is important to consider the inherent noise and errors in

experimental data, which sets the upper limit for the models’
performance, as a model can only be as good as the data it is
trained on.64 Hence, models trained on chemical descriptors
only, which already achieve high performance rates, may not
benefit from the addition of bioactivity fingerprints, as the

noise in the data may be the bottleneck in these cases.
Unfortunately, there is no information available on the noise in
the data sets under investigation. Since studies such as that by
Zhao et al.65 have shown that low levels of noise are often
tolerated by models while the removal of suspicious data
points often decreases model performances and causes
overfitting issues, we decided to not attempt to identify and
remove noise in the data.

Table 4. Average Performance of the CP Models Generated from a Selected Set of Featuresa

endpoint descriptor validity STD validity efficiency STD efficiency F1 score STD F1 score MCC STD MCC

MNT CHEM 0.77 0.02 0.76 0.05 0.61 0.02 0.28 0.05
BIO 0.82 0.03 0.81 0.05 0.70 0.03 0.46 0.06
CHEMBIO 0.81 0.03 0.85 0.03 0.70 0.03 0.44 0.07

DILI CHEM 0.78 0.05 0.91 0.04 0.74 0.05 0.49 0.09
BIO 0.81 0.04 0.83 0.07 0.76 0.04 0.53 0.07
CHEMBIO 0.81 0.03 0.88 0.04 0.77 0.03 0.55 0.06

DICC CHEM 0.79 0.02 0.84 0.02 0.72 0.03 0.46 0.05
BIO 0.79 0.02 0.96 0.02 0.81 0.01 0.63 0.02
CHEMBIO 0.79 0.02 0.94 0.01 0.82 0.01 0.65 0.03

aMean and standard deviation (STD) calculated over a 5-fold CV. The highest mean per metric and endpoint is highlighted (bold).

Figure 7. Distribution of the validity, efficiency, and F1 score values obtained within the 5-fold CV framework for the (a) MNT, (b) DILI, and (c)
DICC CP models built on the different descriptor sets after feature selection. The CHEM descriptor set includes the molecular fingerprint and
physicochemical descriptors; the BIO descriptor set includes the predicted p-values for a set of biological endpoints (bioactivity descriptor); the
CHEMBIO descriptor set includes the previous two descriptor sets. Significant differences in the distribution (p-value <0.05) are denoted by a star.
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To evaluate the influence of the predicted bioactivities on
model performance, the results of the in vivo toxicity CP
models (including feature selection with lasso) based on the
CHEM, BIO, and CHEMBIO descriptor sets were analyzed
for each of the three in vivo endpoints.
For the MNT endpoint, the mean validities obtained by the

two models including the BIO descriptor set (0.82 (±0.03)
with the BIO and 0.81 (±0.03) with the CHEMBIO descriptor
sets) were significantly higher than the validity of the model
trained on the CHEM descriptor set alone (mean validity of
0.77 (±0.02); Figure 7, Table 4). While the validity of the
model based on the CHEM descriptor set (0.77 ± 0.02) was
lower than the expected validity at a significance level of 0.2
(i.e., expected validity of 0.80), the validity could be restored
by adding the bioactivity descriptors (in the BIO and
CHEMBIO descriptor sets). The mean efficiency obtained
with the CHEMBIO descriptor set (0.85 ± 0.03) was
significantly higher than the one obtained with the CHEM
descriptor set alone (0.76 ± 0.05) but also higher than with the
BIO descriptor set (0.81 ± 0.05) only. The two models
including the BIO descriptor set significantly increased the
predictive performance of the single class predictions, as
reflected by the F1 score. More specifically, the model based
on the CHEM descriptor set yielded a mean F1 score of 0.61
(±0.02), while the models based on the BIO and CHEMBIO
descriptor sets both obtained a mean F1 score of 0.70 (±0.03).
Thus, the model based on the CHEMBIO descriptor set not
only increased the number of single class predictions but also
the accuracy of these predictions.
The analysis of the number and type of the features selected

with lasso for the models based on the CHEMBIO descriptor
set showed that a total of 157 features were selected, 30 of
which were bioactivity features (19%). Of the 15 features with
the highest lasso coefficients, seven were bioactivity features
and eight are chemical features (Table S10). Compared to the
models without feature selection, the efficiency of the
CHEMBIO MNT model including feature selection was
significantly higher (0.07 higher mean efficiency). Otherwise,
the difference in the performance between models with and
without feature selection (only comparing models with the
same descriptor set) was not significant.
The DILI models obtained mean validities between 0.78

(±0.05; with the CHEM descriptor set) and 0.81 (±0.04 with
the BIO and ±0.03 with the CHEMBIO descriptor sets). The
distribution of efficiencies within the CV from models trained
on the different descriptor sets was not significantly different.
However, the mean efficiencies ranged from 0.83 (±0.07; with
the BIO descriptor set) to 0.91 (±0.04; with the CHEM
descriptor set; Figure 7). The mean F1 score based on the

single class predictions was also comparable among the three
models and was between 0.74 (±0.05) with the CHEM
descriptor set and 0.77 (±0.03) with the CHEMBIO
descriptor set. Although there is no model for DILI that
outperforms the others, the models including biological
features (CHEMBIO and BIO) have a slightly higher mean
validity and F1 score (while a lower number of single class
predictions is obtained compared to the model trained on the
CHEM descriptor set). Thus, both the BIO and CHEM
descriptor sets may contain relevantbut not complement-
inginformation for the prediction of the DILI endpoint. In
the model based on the CHEMBIO descriptor set, 648
features were selected by the lasso model, 59 of which were
bioactivity features (9%). The smaller percentage of bioactivity
features (compared to the number of features in the MNT
model) among the selected features also reflects the fact that
including the bioactivity descriptor set did not improve the
performance of the models significantly for this endpoint.
Nevertheless, among the 15 features with the highest lasso
coefficients, nine were bioactivity features and six were
chemical features (Table S10). Compared to the models
without feature selection by lasso, the efficiencies of the BIO
and CHEMBIO models were significantly increased (up to
0.08 higher mean efficiency).
In the case of the DICC endpoint, the models based on each

of the three different descriptor sets yielded mean validities of
0.79 (±0.02). The models trained on the BIO and CHEMBIO
descriptor sets showed significantly higher efficiencies (0.96 ±
0.02 and 0.94 ± 0.01, respectively) than the model trained on
the CHEM descriptor set (0.84 ± 0.02, Figure 7). Not only the
ratio of single class predictions (i.e., efficiency) was improved
in the models including the BIO descriptor set but also the
quality of these predictions. The two models including the BIO
descriptor set obtained significantly higher F1 scores (mean F1
score of 0.81 (±0.01) with the BIO and 0.82 (±0.01) with the
CHEMBIO descriptor sets) than the model based on the
CHEM descriptor set (mean F1 score of 0.72 (±0.03)). The
significantly better performance of the DICC models making
use of the BIO descriptor set over the DICC models based
solely on CHEM descriptors is also reflected in the nature of
the features selected by lasso from the CHEMBIO descriptor
set: among the 666 features selected, 101 are bioactivity
features (15%). Furthermore, the bioactivity features were
assigned high coefficients by the lasso model, and from the top
50 features (ranked after the mean coefficient), 34 belong to
the bioactivity descriptor set (15 out of the top 15 features are
bioactivity features; Table S10). Compared to the models
without feature selection, the efficiencies of the two models
including the BIO descriptor set decreased when the feature

Table 5. Summary of Model Performances of the ChemBioSim Models and Existing Methods

endpoint model
mean

sensitivity
mean

specificity evaluation modeling approach comments

MNT Yoo et al. 0.54−
0.74

0.77−0.93 5% leave-
many-out

Leadscope Enterprise and CASE Ultra software variations related to different modeling
approaches

our method 0.78 0.76 5-fold CV CP built on RF models CHEMBIO model with feature selection
DILI Ancuceanu et

al.
0.83 0.66 nested CV meta-model with a naiv̈e Bayes model trained

on output probabilities of 50 ML models
our method 0.78 0.78 5-fold CV CP built on RF models CHEMBIO model with feature selection

DICC Cai et al. 0.69−
0.75

0.72−0.81 5-fold CV combined classifier using neural networks
based on four single classifiers

results refer to five cardiological
complications endpoints evaluated
independently

our method 0.83 0.86 5-fold CV CP built on RF models CHEMBIO model with feature selection
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selection was included (up to 0.03 lower mean efficiency).
Also, the mean F1 score of the model trained on the CHEM
descriptor set decreased by 0.04 when including the feature
selection procedure. One possible explanation for the decrease
in performance is the potential overfitting of the models
without feature selection to the training data due to the high
number of features.
In summary, it was shown that the addition of bioactivity

descriptors in the form of predicted p-values for a set of
biological assay outcomes can improve the predictive ability of
CP models with regard to the number of single class
predictions as well as to the quality of these predictions.
However, this effect and its magnitude were endpoint-
dependent and not achieved in all cases. It was also shown
that including feature selection before training, the models can
help to discard irrelevant features favoring those more relevant
for the specific endpoint.
Comparison with Existing Models. Several in silico

models for MNT, DILI, and DICC are described in the
literature (Table 5). However, to our knowledge, no CP
models have been previously developed for these endpoints.
Note that the studies cannot be directly compared given
differences in underlying data and techniques. Also, the
evaluation of the models differs since the quality of the
predictions of CP models is in general evaluated on single class
predictions only. However, considering existing models can
help to put the results of this study into context.
Yoo et al.33 recently collected data sets for MNT in mice and

rats, containing 1001 and 127 compounds, respectively. They
developed statistical-based models with the Leadscope and
CASE Ultra software combined with different balancing
techniques for the mouse data set based on chemical features
and structural alerts (functional groups or substructures
frequently found in molecules eliciting a determined biological
effect). Their best model with regard to specificity (i.e., the
proportion of inactive compounds correctly identified) on a
5% leave-many-out framework yielded a mean specificity of
0.93 but a mean sensitivity (i.e., the proportion of active
compounds correctly identified) of only 0.54. The model with
the highest sensitivity (and also with the most balanced
sensitivity-to-specificity ratio) obtained a mean specificity of
0.77 and a mean sensitivity of 0.74. To train our MNT CP
models, we combined the mouse and rat data sets from Yoo et
al. and added further data sources (see Materials and Methods
section) to obtain a data set with 1791 compounds. For
comparison, the specificity and sensitivity values obtained by
our models trained on the CHEMBIO descriptor set including
feature selection with lasso were also calculated (Table 5). The
CHEMBIO model for the MNT endpoint yielded a mean
specificity of 0.76 and a mean sensitivity of 0.78. Thus,
compared to the most balanced model of Yoo et al., our model
showed a slightly higher sensitivity and comparable specificity
on a significantly larger data set (790 additional compounds).
Several in silico models with adequate predictive perform-

ance have already been reported for the DILI endpoint.66−68 In
a recent study based on the same data set as our models,
Ancuceanu et al.68 built 267 different models combining
feature selection techniques with ML algorithms. Meta-models
using the output of 50 ML models as input for a final model
were developed. Their meta-model with the highest balanced
accuracy (0.75) evaluated in a nested CV was built training a
naiv̈e Bayes model on output probabilities of 50 ML models.
This model yielded a mean specificity of 0.66 and a mean

sensitivity of 0.83. In comparison, our CHEMBIO DILI model
yielded a much more balanced sensitivity-to-specificity ratio.
The mean specificity and sensitivity obtained by our model
were both 0.78.
Although in silico models for cardiological complications are

more scarce, Cai et al.35 compiled data sets for five different
cardiological complications (hypertension, arrhythmia, heart
block, cardiac failure, and myocardial infarction), on which our
DICC data set is based, and developed a combined classifier
for each of the five endpoints. These classifiers yielded mean
specificities between 0.72 and 0.81 and sensitivities between
0.69 and 0.75 (depending on the endpoint). Our CHEMBIO
model for the DICC endpoint yielded a mean specificity of
0.86 and a mean sensitivity of 0.83, thus increasing the
performance observed for the previous models (especially with
regard to the sensitivity).
Overall, our models yielded a high balanced sensitivity-to-

specificity ratio and often generally good performance. It
should be considered that the existing models used for
comparison were built on complicated and highly optimized
model architectures for the studied endpoint, while in this
study, we used simple RF models without hyperparameter
optimization embedded in a CP framework for the predictions
with the aim of comparing the different descriptors.

Analysis of Feature Importance to Discover Bio-
logical Relationships. Understanding which bioactivity
features are most important for the prediction can help to
identify the most relevant assays for an endpoint and to
discover unknown biological relationships. From the complete
CHEMBIO descriptor set (i.e., the descriptor set without
feature selection with lasso), we analyzed the 15 descriptors
that were assigned the highest feature importance values by the
RF model. The reason for using the complete set of
CHEMBIO descriptors instead of the subset of features
selected by the lasso method (which generally yields better
performing models) is that the lasso model discards highly
correlated features during the feature selection. Therefore,
feature importance analysis involving a descriptor preselection
with lasso may lead to an underestimation of the importance of
some of the features.
The RF model for the MNT endpoint ranked the features

from (i) the AMES assay, (ii) the eMolTox assay for
mutagenicity, and (iii) the eMolTox assay for agonism on
the p53 signaling pathway as the most important features
(Table S9). These three in vitro assays are known to be
biologically related to the MNT endpoint: the AMES and
mutagenicity assays evaluate the genotoxic potential of
compounds in vitro by measuring the capability of substances
to induce mutations in bacterial strains. DNA damage leading
to these gene mutations could also cause the chromosome
aberrations observed in the MNT.69 The tumor suppressor
p53 has the capacity of preventing the proliferation of cells
with a damaged genome and is also referred to as “the
Guardian of the Genome”.70 The p53 signaling pathway is
activated i.a. when DNA damage accumulates in a cell. As a
result, a mechanism of cell cycle arrest, cellular senescence or
apoptosis is initiated. Since genotoxic damage is one of the
primary triggers of the activation of the p53 signaling pathway,
the detection of agonism of the p53 pathway could be an
indication of the genotoxic activity of a compound, which
could also lead to micronuclei formation in vivo.71 The
contribution of the p53 signaling pathway for the prediction of
MNT in vivo is highlighted by the high feature importance
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assigned to features corresponding to further assays related to
this endpoint (ToxCast assays “TOX21 p53 BLA p3 ratio,”
“TOX21 p53 BLA p5 ratio,” and “TOX21 p53 BLA p2 ratio”
(each measuring the ratio of two measurements with the
inducible beta lactamase (BLA) reporter); Table S9). Also the
biological function of the constitutive androstane receptor
(CAR) and aryl hydrocarbon receptor (AhR) could explain the
high importance assigned by the model to the ToxCast assay
“TOX21 CAR antagonist” and the eMolTox assay “Activator
the aryl hydrocarbon receptor (AhR) signaling pathway.” The
AhR and the CAR are ligand-activated transcription factors
functioning as sensors of xenobiotic compounds. Upon
activation of these receptors, i.a. the expression of enzymes
involved in the metabolism of xenobiotic compounds, is
upregulated.72,73 The downregulation of enzymes detoxifying
compounds (or their metabolites) mediated by CAR
antagonists, as well as the AhR-mediated upregulation of
enzymes activating compounds to form genotoxic metabolites
seem to contribute to the observed effects in the MNT. The
remaining features among the 15 most important features for
MNT are related to the eMolTox assay “Antagonist of the
farnesoid-X-receptor (FXR) signaling pathway.” The FXR, also
called bile acid receptor, is a nuclear receptor that regulates,
among other things, bile acid and hepatic triglyceride levels.74

Its possible biological relationship with genotoxicity has not
been reported so far (to the best of our knowledge).
Comparing the features with the highest feature importance
values with RF to the features with the highest lasso
coefficients during feature selection (Table S9 and Table
S10), an overlap of the assays for AMES, the p53 signaling
pathway, and the CAR antagonism was observed, highlighting
the relevance of these biological endpoints for the prediction of
MNT.
Although in the case of DILI the performance of the RF

models making use of bioactivity descriptors was not superior
(see Table 4) over that of the models trained on chemical
descriptors only, 14 out of the 15 top-ranked features were
bioactivity features. The highest feature importance was
obtained for a chemical descriptor (smr VSA10) that captures
polarizability properties of compounds. The bioactivity
features ranked at positions 3 and 4 are the two p-values (of
the active and inactive classes) for human oral bioavailability,
respectively. Since any compound must be absorbed and
distributed in order to be able to elicit any kind of biological
response, bioavailability is essential to induce liver injury.
Moreover, orally administered substances undergo a hepatic
first pass before they become systemically available. Other than
that, several features related to modulators of G protein-
coupled receptors were of high importance (see Table S9).
Despite the lack of a clear biological relationship between liver
injury and opioid receptors (kappa, mu and delta) or
muscarinic acetylcholine receptors (M2, M3, M4 and M5),
the activity of compounds against these receptors showed high
predictivity for DILI. Between the features with the highest
feature importance values for RF and the features with the
highest lasso coefficients (Table S10) we found an overlap of
descriptors for the bioavailability, mu opioid receptor, and
muscarinic acetylcholine receptor assays.
Consistent with the DILI model, also the DICC model

assigned high ranks (rank 1 and rank 4) to the two features
related to human oral bioavailability (i.e., p-values for the
active and inactive classes). The importance of these features is
plausible, as substances first need to be absorbed in order to be

able to elicit any response. We also found the ToxCast assay
“TOX21 ERa LUC VM7 agonist”, an assay for detecting
agonists of the estrogen receptor alpha, to have a high
relevance value assigned by the DICC RF model. There is
evidence about the important correlation between estrogen
levels and cardiovascular diseases.75 The cardioprotective
effects shown by estrogen derive from the increase in
angiogenesis and vasodilation as well as the decrease in
oxidative stress and fibrosis. Another feature that was assigned
a high importance is agonism on the retinoid X receptor (RXR;
eMolTox assay “Agonist of the RXR signaling pathway” and
ToxCast assay “TOX21 RXR BLA agonist”). Following its
activation, RXR forms homo- or heterodimers with other
nuclear receptors (e.g., thyroid hormone receptor), regulating
the transcription of several genes and therefore playing a role
in diverse body functions. It has been shown that the
functionality of RXR influences, for example, the composition
of the cardiac myosin heavy chain, thus affecting the correct
functionality of the heart.76 The induction of phospholipidosis,
a phospholipid storage disorder in the lysosomes, was also
assigned a high importance value by the DICC RF model.
There is still controversy whether phospholipidosis is a toxic or
an adaptive response, as it does not necessarily result in target
organ toxicity.77 However, a high percentage of compounds
inducing phospholipidosis has been found to also inhibit the
human ether-a-̀go-go-related gene (hERG),78,79 an ion channel
that contributes to the electrical activity of the heart. Inhibitors
of hERG can lead to fatal irregularities in the heartbeat
(ventricular tachyarrhythmia).80 Another bioactivity that was
of high importance for the prediction of cardiological
complications is the agonism of the p53 signaling pathway
(ToxCast assays “TOX21 p53 BLA p2 ratio” and “TOX21 p53
BLA p3 ratio”). As already mentioned, the p53 transcription
factor is related to tumor suppressor mechanisms of the cell,
but it also inhibits the hypoxia-inducible factor-1 (Hif-1) in the
heart. Inhibition of Hif-1 hinders cardiac angiogenesis (i.e., the
formation of new blood vessels). This hindrance presents a
problem in cases of cardiac hypertrophy (an adaptive response
to increased cardiac workload), as blood pressure overload can
lead to heart failure.81,82 Recently, heart failure has also been
related to DNA damage. Higo et al.83 showed that single-
stranded DNA damage is accumulated in cardiomyocytes of
failing hearts and that mice lacking DNA repair mechanisms
are more prone to heart failure. This relationship between
DNA damage and heart failure could also explain the high
relevance assigned by the DICC RF model to the three
features related to genotoxicity in cells lacking DNA damage
response pathways (from the eMolTox assay “Differential
cytotoxicity against isogenic chicken DT40 cell lines with
known DNA damage response pathways - Rad54Ku70 mutant
cell line” and the ToxCast assay “TOX21 DT40 657”). The
comparison of the most important features for RF with the
features assigned the highest coefficients by lasso showed an
overlap of the descriptors for the bioavailability and estrogen
agonism assays. Furthermore, other assays related to
genotoxicity (and correlated with the ones with a high feature
importance shown in Table S9) were also assigned high
coefficients.
Apart from biological relationships, there are other factors

that may influence the importance values assigned to the
respective bioactivity features. One should keep in mind that
predicted p-values are used for the representation of biological
properties, not measured bioactivity values. This means that
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feature importance values are likely affected by the perform-
ance and applicability of the individual models used for
predicting the p-values. For example, bioactivity features based
on biological assay data sets with a strong overlap with the in
vivo endpoint data sets could be favored by a model, as the
predicted p -values for structurally similar compounds are likely
more accurate (as they were also used to train the bioactivity
model itself).
Therefore, the overlap between the in vivo endpoint data set

and the data sets of the selected biological assays, as well as the
performance of the biological assay models, was analyzed to
test possible correlations with the assigned feature coefficients.
Overall, we observed no strong correlation between the extent
of overlaps in the data and the assigned feature importance
values. Also, no pronounced correlation between the perform-
ance of the bioactivity CP models and the feature importance
values was observed (Figure 8), but bioactivity descriptors
predicted with models showing lower efficiencies also often
resulted in less important features.
The comparison between the data set overlap and model

performance with the coefficients obtained during feature
selection with the lasso model showed similar effects and
correlations to the feature importance of the RF models
discussed here (Figure S5).
In general, it was observed that the most predictive

biological assays have a clear biological relationship with the

corresponding in vivo endpoint. However, not all biological
assays with a clear biological connection were assigned a high
feature importance. Moreover, biological assays with a less
obvious biological relationship were sometimes given a high
relevance, as they may describe a more general behavior of the
compounds in biological systems. These less obvious relation-
ships could also reflect yet unknown effects and point to
further lines of investigation.

■ CONCLUSIONS
In this work, we have explored the potential of incorporating
predicted bioactivities to improve the in silico prediction of in
vivo endpoints beyond the level of accuracy reached by
established molecular descriptors. More specifically, in the first
part of this work, we collected 373 compound data sets with
biological assay outcomes from the literature for modeling, and
in the second part, we developed an elaborate conformal
prediction framework in combination with the random forest
algorithm, with the aim to identify the scope and limitations of
the developed bioactivity descriptors for in vivo toxicity
prediction on three selected in vivo endpoints (MNT, DILI,
and DICC).
Overall, valid in vivo toxicity CP models could be produced

with the different descriptors for all endpoints. For the MNT
and DICC endpoints, the incorporation of predicted
bioactivities was highly beneficial for the performance of the

Figure 8. Mean feature importance reported by the RF model for the bioactivity descriptors in relationship with the percentage of overlapping
compounds (of the in vivo data set), the efficiency and F1 score of the models for each biological assay. For each of the 373 biological assays, the
highest mean feature importance of the two p-values used as descriptors (for the active and inactive classes of each assay) was taken. The feature
importance values were normalized with a min-max normalization (from 0.01 to 1; see Materials and Methods section) for easier comparison.
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models. Compared to the models based only on chemical
descriptors, the mean efficiencies of the models for MNT and
DICC including bioactivity descriptors increased by 0.09
(from 0.76 to 0.85) and 0.12 (from 0.84 to 0.96), respectively.
The mean F1 scores also increased by 0.09 (from 0.61 to 0.70)
and 0.10 (from 0.72 to 0.82), respectively. The performance of
the model for the DILI endpoint did not significantly improve
by the integration of bioactivity descriptors, but a slight
increase in the mean F1 score was also observed. The chemical
and bioactivity descriptors may not complement each other for
the prediction of DILI, which could explain the lower influence
of the selected descriptor set on the performance. The
prediction of the DILI endpoint may be especially challenging
due to the nature of the data set, which has a reduced number
of compounds and combines substances producing major and
less severe effects in the active class. Further investigations are
needed to determine how to improve the learning power of
ML models for this endpoint.
In general, applying a feature selection procedure with a

lasso model prior to model training with RF increased the
mean efficiency of the models (up to 0.08 for the MNT and
DILI endpoints). Feature selection proved especially beneficial
in the models including the bioactivity descriptor set, as some
biological assays may be redundant or not related to the in vivo
endpoints.
The analysis of the most important features of the models

based on the CHEMBIO descriptor set for each in vivo
endpoint showed that generally these features had an
explainable relationship with the biological mechanism eliciting
the toxicity in vivo. For instance, some of the most important
features for the MNT, an in vivo genotoxicity assay, are
measuring genotoxicity in vitro or are involved in tumor
suppressor mechanisms of the cells. In the case of the DILI and
DICC endpoints, human oral bioavailability was ranked as one
of the most important features, as bioavailability is an
unavoidable requirement to elicit organ toxicity. Furthermore,
the high feature importance assigned to assays with a less clear
biological relationship could hint to unknown interactions that
might help to better understand the toxic mechanisms.
The determination of which features will make the largest

impact on the in vivo models prior to model development
remains a difficult task since there are many factors influencing
the relevance of the bioactivity features. However, using
biological assays with known biological relevance for the in
vivo endpoints is a well-suited approach. Also, for which in
vivo endpoints the bioactivity descriptor will enhance the
results cannot be predicted beforehand and may require
evaluation case-by-case.
Overall, the approach presented in this work shows how the

prediction of in vivo endpoints, which entail a high complexity
due to all interactions taking place in biological systems, can be
improved by the incorporation of bioactivity fingerprints.
Moreover, the CP framework supporting the developed
models also presents the advantage of intrinsically defining
the applicability domain of these models and ensuring a
defined error rate. Our approach also showed that bioactivity
information can be included in the form of predicted
probabilities, opening the possibility to apply these models
directly on new compounds, without the need to fill their
bioactivity profile experimentally. The bioactivity CP models
for deriving the predicted bioactivities as well as the in vivo
toxicity CP models trained on the different descriptor sets (and

including feature selection with lasso) are freely available for
download (https://doi.org/10.5281/zenodo.4761225).84
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4.3 Mitigation of data drift effects on conformal prediction models 

In order to get predictions with the expected error rate, ML models should only be applied if 

test and training data have the same distribution. This requirement limits the applicability of 

predictive ML models and makes them unsuitable as they get outdated over time or need to be 

applied to slightly diverging data. However, the amount of available data similar to the new 

test data is often not enough to train robust ML models for the specific application.50, 81 

In the following study, a strategy for mitigating the effects of data drifts on CP models, without 

the need of completely retraining them, was investigated on two common scenarios: (i) changes 

in the descriptor space over time (simulated with a time-split on data from 12 ChEMBL82 

endpoints) and (ii) the application of models trained on public domain data to predict 

proprietary data (analyzed on two BASF SE inhouse data sets). In these two scenarios, test data 

deviates from the training data as the assay set up or conditions change, or as the descriptor 

space covered by the different data sets diverges. Data drifts can be recognized by a decrease 

in the expected validity (i.e. 1 - significance level) of CP models, which indicates that the 

exchangeability assumption between calibration and test set is not hold. With the aim of 

restoring the validity of the models on the new test data, the calibration set was replaced by 

samples from the same (or more similar) distribution as the test data, while keeping the trained 

ML model unchanged. The influence of this recalibration strategy was investigated on the 

balanced validity, efficiency and accuracy obtained for models trained on data from 14 toxicity-

related endpoints and based on CHEMBIO descriptors (developed as part of this thesis; section 

4.2.). 
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Machine learning (ML) models are usually trained—and evaluated—on available historical data, and then used 
to make predictions on prospective data. !is strategy is o"en applied in the context of toxicological data to 
predict potential toxic e#ects of novel  compounds1–6. Internal cross-validation (CV) is a common practice for 
assessing the performance of ML models. When applying the model to new data, it is advisable to observe the 
applicability domain (AD) of an ML  model7,8. !e AD determines the compound space and the response value 
(label) range in which the model makes reliable  predictions9. Investigating classi%cation models, Mathea et al.8 
distinguished AD methods that rely on novelty from those relying on con%dence estimation. Novelty detection 
methods focus on the %t of the query samples to the given descriptor space. Con%dence estimation methods 
determine the reliability of the predictions by taking into account that samples may be well-embedded in the 
descriptor space but be unusual in terms of their class membership.
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A popular method for con%dence estimation is conformal prediction (CP)10,11. !e framework of an inductive 
conformal predictor uses three types of datasets: proper training, calibration, and test set. !e proper training 
set is used to train an underlying ML model. With this model, predictions are made for the calibration and test 
set. According to the rank that is obtained for the prediction outcome of the test compound as compared to the 
calibration set, so-called p-values are calculated to give an estimate of the likelihood of a compound to belong to 
a certain class. If a signi%cance level, i.e. an expected error rate, is de%ned, the compounds are assigned labels for 
those classes where the p-value is larger than the signi%cance level. For binary classi%cation, the possible predic-
tion sets are ‘empty’ ({∅}), ‘single class’ ({0}, {1}), and ‘both’ ({0,1}). Single class predictions indicate a con%dent 
prediction for a certain class. Additionally, the CP framework recognises compounds for which it cannot make 
a reliable prediction ({∅ }) and compounds at the decision boundary, for which the predictions are reliable but 
indecisive ({0,1}). Provided that the calibration and test data are exchangeable, the framework of the conformal 
predictor is mathematically proven to yield valid predictions at a given signi%cance  level10,11.

!e performance and AD of a model are determined by the quality and quantity of the data it has been 
trained on. One prerequisite for building good models is the availability of large, well-distributed and consist-
ent datasets. To assemble large datasets, modellers o"en need to collect data from di#erent sources, e.g. data 
which were produced in di#erent assays or laboratories or over longer periods of  time12–14. However, data from 
di#erent sources and data taken at di#erent time points may have distinct property distributions, re&ecting, 
for example, the evolution of research interests or changes in assay technologies and  protocols15,16. Since the 
predictivity of ML models is constrained by their AD, data dri"s pose a challenge to modelling tasks, including 
toxicity or bioactivity prediction.

When ML models are validated using CV, the data is usually randomly split into training and test data. !e 
resulting sets intrinsically stem from the same distribution and, typically, high model performance on the test 
set is observed. Nevertheless, it has been shown that model performance can be substantially lower for datasets 
obtained by time split or datasets from other  sources5,17–19. !is may be an indicator that the distribution of the 
data has changed. Hence, it is essential to con%rm that ML models can be applied to a speci%c dataset and to 
determine the con%dence in the predictions.

!e data dri"s, which challenge the underlying ML models, do also a#ect conformal predictors when the 
trained and calibrated models are applied to a new dataset. In previous  work17, a new strategy was introduced 
to mitigate the e#ects related to data dri"s by exchanging the calibration set with data closer to the holdout 
set. !e study built on the Tox21 data  challenge2, which was invented to support and compare ML models for 
twelve toxicity endpoints and included three subsequently released datasets. We showed that internally valid CP 
models resulted in poor performance when predicting the holdout data. !e observed e#ects were associated 
to data dri"s between datasets and could be mitigated by exchanging the calibration set with the intermediate 
set—without the need to retrain the models.

Here, we aim to expand and challenge our previous analysis on the recalibration strategy by a wider variety 
of datasets, beyond Tox21. Furthermore, we utilise enhanced compound encodings which combine molecular 
%ngerprints with predicted bioactivity descriptors, speci%cally designed for toxicity  prediction12,20.

First, temporal data dri"s are studied using twelve toxicity-related endpoint datasets extracted from the 
ChEMBL  database21,22. !e ChEMBL database is a manually-curated data collection containing quantitative and 
qualitative measurements for more than two million compounds tested in up to more than 1.3 million assays. 
!e large size of the database makes it a primary data resource for ML, in particular in the context of activity 
 prediction23–25 and target  prediction26,27. Moreover, it is one of only a few publicly-available bioactivity databases 
that provides temporal information on bioactivity measurements in the form of the publication date.

In the second part of this study, the impact on model validity from using data with di#erences in assay set-
ups and source laboratories is investigated. !erefore, models were trained on public datasets for two in vivo 
endpoints, i.e., ‘liver toxicity’ and ‘in vivo micro nucleus test (MNT)’, and applied to predict proprietary data. 
Both, liver toxicity and MNT are in vivo endpoints with high relevance for the registration and authorisation of 
new chemical  compounds28–30.

����������������
In this section, %rst, the used datasets are described, including chemical structure standardisation, data splitting 
and compound encoding. Second, the CP setup together with the individual modelling strategies is explained. 
Finally, further data analysis and visualisation methods are outlined.

����� ��������Ǥ� Dataset description, collection and !ltration. Large toxicity-related ChEMBL data-
sets. To investigate temporal data dri"s, the ChEMBL  database21,22 version 26 was queried following the pro-
tocol described by Škuta et  al.31. In short, the presented 29 target datasets each  containing more than 1000 
compounds were downloaded with measured pIC50 values and publication year. Next, the datasets were cleaned 
to handle molecules contained more than once in a target dataset, called duplicates (see Supplementary Material 
Section A1.1). !en, compounds were standardised (see Section “Data assembly”) and the datasets temporally 
split (see Section “Data assembly”). Activity was assigned based on the target family and following the activity 
cuto# suggestions by the Illuminating the Druggable Genome  Consortium32. Only datasets with more than 50 
active and 50 inactive compounds in the holdout set were retained for the study. From the resulting 20 target 
datasets, only twelve targets that are linked to  toxicity33,34 (see Supplementary Material Section A1.1 and Table 1) 
were selected for this study.

Public and inhouse datasets for liver toxicity and MNT. To assess dri"s between data originating from di#erent 
sources, public and proprietary datasets for two in vivo endpoints (drug-induced liver injury (DILI) and MNT) 
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were collected. For CP model training, the same public datasets for DILI and MNT were used as compiled and 
described by Garcia de Lomana et al.12. A"er data pre-processing and deduplication the respective DILI dataset 
consists of 445 active and 247 inactive compounds; the MNT dataset of 316 active and 1475 inactive compounds 
(see Supplementary Material Section A1.2 for more details). Note that we will from here on refer to the DILI 
endpoint as ‘liver toxicity’.

Two proprietary BASF SE inhouse datasets for liver toxicity and MNT in vivo were used as independent 
test and update sets. In short, liver toxicity was measured in rats according to the OECD Guidelines 407, 408 
and  42235–37. MNT was determined in mice following the OECD Guideline  47429, or in (non-GLP) screening 
assays. !e liver toxicity dataset contains 63 active and 77 inactive compounds and the MNT dataset contains 
194 active and 172 inactive compounds, a"er data pre-processing and deduplication (see Supplementary Mate-
rial Section A1.3).

Chemical structure standardisation. Standardisation of chemical structures was conducted as described by 
Garcia de Lomana et al.12. Brie&y, the SMILES of each of the compounds were standardised with the ChemAxon 
 Standardizer38 node in  KNIME39,40 to remove solvents and salts, annotate aromaticity, neutralise charges and 
mesomerise structures (i.e. taking the canonical resonant form of the molecules). Multi-component compounds 
as well as compounds containing any unwanted element were removed from the dataset. Canonical SMILES 
were derived for the standardised compounds and used for removing duplicates. In cases where duplicate 
SMILES had con&icting labels, the compounds were removed from the dataset.

Compound encoding. To encode the molecules for training the CP models, the ‘CHEMBIO’ descriptors devel-
oped by Garcia de Lomana et al.12 were used. !ese descriptors combine chemical with predicted bioactivity 
descriptors to describe the compounds. !e chemical descriptor comprises a 2048-byte Morgan count %nger-
print (with a radius of 2 bonds)41 and a 119-byte physicochemical property descriptor from  RDKit42 (calculated 
with  KNIME39,40).

For deriving the bioactivity descriptors, Garcia de Lomana et al.12 %rst built binary classi%cation CP models 
for 373 in vitro toxicological endpoints, such as cytotoxicity, genotoxicity and thyroid hormone homeostasis 
(including datasets from  ToxCast33,  eMolTox43 and literature). !ese models were used to calculate the p-values 
(see Section “Conformal prediction”) per target endpoint model and class, thus, resulting in a 746-byte predicted 
bioactivity %ngerprint. For use in CP-based toxicity prediction model studies, the individual features were scaled 
prior to model training. !e combination of chemical and bioactivity descriptors into the 2913-byte ‘CHEMBIO’ 
descriptor has shown superior performance in the CP study by Garcia de Lomana et al.12 and was therefore used 
in this study.

Data splitting. A"er standardising the compounds (see Section “Data assembly”), the target datasets derived 
from the ChEMBL database were temporally split based on the publication year. !is resulted in four subsets, 
i.e. train, update1, update2, and holdout set, see Table 2. !us, compounds were ordered by publication year (old 
to new).

Aiming for the typically used ratio of 80% training (further divided in 70% proper training and 30% calibra-
tion set) and 20% test  set5,6,44, year thresholds were set to assign at least 50% of the total compound number to 
the proper training set, and at least 12% to each calibration set. !e remaining compounds were used as holdout 
data (see Supplementary Material Section A1.4 for more details).

For the computational experiments with the liver toxicity and MNT data, the standardised public datasets 
were used for training. !e standardised proprietary data were time-split into update and holdout set based on 
the internal measurement date (see Supplementary Material Section A1.4 for details). Due to the small number 
of available inhouse compounds, only one update set was deducted, containing at least 50% of the total available 
inhouse dataset, see Table 2.

Table 1.  ChEMBL target datasets used to investigate data dri"s including the target name and the number of 
active and inactive compounds.

ChEMBL ID Name Active compounds Inactive compounds
CHEMBL220 Acetylcholinesterase (human) 1334 1339
CHEMBL4078 Acetylcholinesterase (%sh) 2056 1755
CHEMBL5763 Cholinesterase 1871 884
CHEMBL203 EGFR erbB1 2955 1104
CHEMBL206 Estrogen receptor alpha 826 590
CHEMBL279 VEGFR 2 3782 1392
CHEMBL230 Cyclooxygenase-2 1148 872
CHEMBL340 Cytochrome P450 3A4 2501 815
CHEMBL240 hERG 1601 3375
CHEMBL2039 Monoamine oxidase B 1413 1121
CHEMBL222 Norepinephrine transporter 406 1160
CHEMBL228 Serotonin transporter 449 1662
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���������� ����������Ǥ� Inductive and aggregated conformal predictor. !e framework of an inductive 
conformal predictor (ICP) (see Fig.  1a) uses three types of datasets: proper training set, calibration set, and 
test  set45. On the proper training set, an underlying ML model is %tted to make predictions for the calibration 
and test set instances. !e outcomes, i.e. the probabilities for a compound to be assigned to class 0 or 1 in bi-
nary classi%cation, are converted into so-called nonconformity (nc scores) by using a nonconformity function. 

Table 2.  Number of active and inactive compounds and year threshold used for the time split. ChEMBL data 
were temporally split into training, update1, update2 and holdout set based on the publication year. Models 
for the micro nucleus test and liver toxicity endpoint were trained on public data while the inhouse data were 
split into update and holdout set based on the internal measurement date. *!resh: Data points published 
(ChEMBL) or measured (micro nucleus test, liver toxicity) until this year threshold are included in the 
corresponding subset.

Target (ID)
Training set Update1 set Update2 set Holdout set
!resh* Inactive Active !resh* Inactive Active !resh* Inactive Active !resh* Inactive Active

CHEMBL220 2014 802 840 2016 211 248 2017 217 138 2020 104 113
CHEMBL4078 2014 1031 1008 2015 259 275 2016 267 202 2020 499 270
CHEMBL5763 2015 1125 600 2016 302 75 2017 307 95 2020 137 114
CHEMBL203 2012 1660 433 2014 526 213 2016 428 291 2020 341 167
CHEMBL206 2006 437 325 2012 117 63 2016 114 97 2020 158 105
CHEMBL279 2010 1955 649 2013 523 307 2014 618 137 2020 686 299
CHEMBL230 2010 475 542 2013 218 78 2015 237 80 2020 218 172
CHEMBL340 2012 1272 496 2014 439 153 2015 341 59 2020 449 107
CHEMBL240 2012 797 1938 2014 301 413 2016 265 526 2020 238 498
CHEMBL2039 2014 710 645 2015 189 192 2017 380 212 2020 134 72
CHEMBL222 2009 231 673 2011 61 227 2015 40 206 2020 74 54
CHEMBL228 2009 242 858 2011 97 373 2014 31 235 2020 79 196
Micro nucleus test - 1475 316 2005 70 134 – – – 2020 98 50
Liver toxicity - 247 445 2011 42 48 – – – 2020 35 15

Figure 1.  (a) Framework of an inductive conformal predictor. An ML model is %tted on the compounds of 
the proper training set to make predictions for the calibration and test (holdout) set instances. !e predictions 
are transformed into nonconformity scores. By comparing the outcome of the test compound to the outcomes 
of the calibration set, p-values are calculated, which give an estimate on the likelihood of the compound to 
belong to a certain class. If a signi%cance level is selected, prediction sets are calculated. Blue-purple box In the 
‘update calibration set’ strategy, the calibration set is updated. Yellow box If multiple conformal predictors are 
aggregated, the part highlighted in the yellow box is repeated n times. (b) Overview of CP experiment setup: 
Experiments (i) CV, and prediction of holdout set using (ii) original calibration set, (iii) updated calibration sets 
to investigate temporal data dri"s and dri"s between data from di#erent origin, i.e., ChEMBL and inhouse data.
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Here, the inverse probability error function, which is typically used together with random forest (RF) models, 
is  applied20,46–48.

For each test data point, the calibrated model outputs two so-called p-values in the binary setup. !erefore, 
the nc scores of the calibration set are sorted into two lists, one per class. !e ratio of nc scores of the calibra-
tion set, which are larger than the nc scores for a test sample, results in a p-value. If a signi%cance level, i.e. an 
expected error rate, is selected, prediction sets can be derived. !ey contain the class labels for which the p-value 
is larger than the signi%cance level. For binary classi%cation, the possible prediction sets are { ∅ }, {0}, {1}, {0,1}. 
Given that calibration and test data are exchangeable, the CP framework ensures that the observed error rate 
does not exceed the signi%cance  level10,11.

In an ICP, only part of the information available in the training set is used for calibration as the other part 
is required to %t the underlying ML model. To improve the informational e(ciency, multiple ICPs are typically 
aggregated in an aggregated conformal predictor (ACP)47, as in this study. !erefore, the training and prediction 
part (see yellow box in Fig. 1) is repeated n times (here n = 20 ). In fact, the training set was 20 times split into 
calibration and proper training set, 20 models were built on the proper training set and calibrated with the cor-
responding calibration set. Each compound was predicted 20 times and the calculated p-values were aggregated 
taking the median  value49.

Evaluation of conformal predictors. Conformal predictors are generally evaluated with respect to their validity, 
e(ciency and accuracy of single class predictions. Validity is de%ned as the ratio of prediction sets containing the 
correct class label. As predictions are considered correct when they contain the correct label, ‘both’ predictions 
({0,1}) are always correct. Empty prediction sets ({∅ }) count as erroneous. E(ciency of the predictions can be 
assessed by the ratio of prediction sets containing a single class label, i.e. {0} and {1}. !e ratio of these single class 
predictions containing the correct label is o"en calculated as the single class accuracy. In the case of unbalanced 
datasets, class-wise metrics, i.e. separate metrics for the compounds belonging to the active and inactive class, 
can also be calculated. Balanced metrics (e.g. balanced validity, balanced e(ciency and balanced accuracy), are 
then calculated as the arithmetic mean of the class-wise metrics.

CP setup and experiments. In this work, it was further explored how e#ects of data dri"s can be mitigated by 
recalibrating a CP model. In the ‘update calibration set’ strategy, the original calibration set (Fig. 1a, blue-purple 
box) is exchanged with data assumed to be closer to the holdout set (Fig. 1b). !ree main experiments were 
performed and compared. First, an internal %vefold CV experiment was performed (Fig. 1b.i). Hence, the train-
ing set was %ve times randomly strati%ed split into 80% training and 20% test set. Within each CV fold, an ACP 
consisting of 20 ICPs (inverse probability error function, Mondrian condition, nonconformist Python library, 
version 2.1.046) using an underlying RF classi%er (500 estimators, else default parameters, scikit-learn Python 
library, version 0.22.250) was implemented. Each model was trained on 70% (proper training set) and calibrated 
on 30% (original calibration set) of the selected training data. !e test sets from the CV-splits were predicted 
with the CV-models calibrated with the original training set. Second, the same calibrated CV-models were used 
to predict the holdout set, i.e. the ‘newest’ data from the ChEMBL datasets or the inhouse DILI and MNT test 
sets (Fig.  1b.ii). !ird, the same models were recalibrated using the update sets, which were determined as 
described in Section “Data assembly”. For the experiments with the ChEMBL data, two update sets (update1 and 
update2) were used each, as well as a combination of update1+update2. For the inhouse data, only one update 
set was investigated. !e recalibrated models were used to make predictions on the same holdout sets (Fig. 1b.iii) 
All models were evaluated at a signi%cance level of 0.2, as it has been shown that this level o#ers a good trade-o# 
between e(ciency and  validity51,52.

���������������������������������������Ǥ� Visualisation. Data visualisations were created using mat-
plotlib version 3.2.153.

UMAP. For descriptor space analysis, UMAPs were generated on the CHEMBIO %ngerprints using the umap-
learn Python library, version 0.4.654. !e parameters were set to n_neighbors = 100 , min_distances = 0.8 and 
distance_metric = “euclidean′′ , meaning that a range of 100 nearest neighbours was considered to learn the 
manifold data structure. !e distance between two points plotted in the UMAP is at least 0.8 and the distance 
between two data points is calculated using the euclidean distance.

Compound clustering. To analyse commonalities between compounds per set, compounds were clustered, 
using the “Hierarchical Clustering” node in KNIME. !e clusters were annotated based on the Tanimoto coef-
%cients of Morgan %ngerprints (1024 bits, radius 2) between all compound pairs. A distance threshold of 0.5 was 
chosen, i.e., clusters were split so that all compounds within a cluster have a smallest distance below the thresh-
old. Since the analysis focused on detecting clusters that spread over more than one set (training/test/update/
holdout), clusters with less than two compounds, i.e. singletons, were not considered. Clustering and %ngerprint 
calculation was performed in KNIME.

����������������������
When using (ML) algorithms, it is assumed that the training data and test data are independent and identically 
distributed (I.I.D.). Similarly, CP models are designed to be valid if training and test data originate from the same 
distribution, i.e., are  exchangeable10. !is prerequisite, however, is not always ful%lled, especially when new com-
pound spaces or di#erent assay sources are explored. Hence, given comprehensive training data and modelling 
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tasks, valid CP models can o"en be generated in a random-split k-fold CV setup. However, when predictions on 
external test data are performed, model performance has been shown to  drop55. Here, we analysed the e#ects of 
data dri"s on the validity of CP models. !ereby, we assessed the impact of recalibrating a CP model with updated 
data to restore the validity and positively a#ect performance. Note that this strategy has been introduced in the 
previous study, exempli%ed on the Tox21 challenge  data17, and is further investigated here for di#erent datasets, 
molecular encodings and study settings.

In the %rst part of this study, temporal data dri"s were analysed on twelve toxicity-related datasets from the 
ChEMBL database. In the second part, the applicability of models trained on public data to proprietary toxicity 
datasets was investigated.

����Ǧ���������������������������������������������Ǥ� To analyse the impact of temporal data dri"s 
on CP model performance, ChEMBL datasets for twelve endpoints were prepared. !e selected endpoints are 
toxicologically-relevant targets, known for o#-target e#ects, drug-drug interactions or as ecotoxicological end-
points, which need to be considered during the development of new  chemicals33,34 (see Supplementary Table S1). 
!e collected datasets were temporally split into training, update1, update2 and holdout subsets based on their 
publication date (see Section “Data and methods” and Table 2).

Experiments i and ii: CV and predictions using original calibration set. Fivefold CV on the training data pro-
duced valid (mean balanced validity: 0.81), e(cient (mean balanced e(ciency: 0.93), and accurate (mean bal-
anced accuracy: 0.87) models at signi%cance level  of 0.2 (see experiment cv_original in Table  3 and Fig.  2). 
However, predictions with the same CV-models on the holdout data, i.e., newest data w.r.t. publication year, 

Figure 2.  Time split evaluation (balanced validity, balanced e(ciency, balanced accuracy) of CV experiments 
and predictions for the holdout set using the original (cal_original), update1 (cal_update1), update2 (cal_
update2) and combined update1_and_2 (cal_update1_and_2) calibration sets for twelve ChEMBL datasets.

Table 3.  Overall, balanced and class-wise evaluation of time-split experiments with ChEMBL data.

CV
Predict holdout set
Cal_original Cal_update1 Cal_update2 Cal_update1_and_2

Validity 0.81 ± 0.01 0.57 ± 0.14 0.75 ± 0.07 0.77 ± 0.09 0.78 ± 0.07
E(ciency 0.93 ± 0.04 0.82 ± 0.14 0.78 ± 0.12 0.74 ± 0.13 0.73 ± 0.15
Accuracy 0.87 ± 0.04 0.68 ± 0.10 0.68 ± 0.08 0.70 ± 0.10 0.70 ± 0.09
Balanced validity 0.81 ± 0.01 0.56 ± 0.11 0.73 ± 0.09 0.76 ± 0.08 0.77 ± 0.08
Balanced e(ciency 0.93 ± 0.04 0.83 ± 0.14 0.79 ± 0.12 0.74 ± 0.13 0.73 ± 0.15
Balanced accuracy 0.87 ± 0.04 0.65 ± 0.09 0.65 ± 0.09 0.66 ± 0.10 0.67 ± 0.09
Validity inactive class 0.81 ± 0.01 0.62 ± 0.26 0.76 ± 0.22 0.78 ± 0.22 0.78 ± 0.20
E(ciency inactive class 0.93 ± 0.04 0.84 ± 0.14 0.79 ± 0.14 0.72 ± 0.14 0.73 ± 0.16
Accuracy inactive class 0.87 ± 0.05 0.72 ± 0.26 0.69 ± 0.26 0.68 ± 0.29 0.70 ± 0.24
Validity active class 0.81 ± 0.01 0.50 ± 0.22 0.71 ± 0.19 0.74 ± 0.18 0.75 ± 0.14
E(ciency active class 0.93 ± 0.05 0.81 ± 0.14 0.78 ± 0.13 0.75 ± 0.10 0.73 ± 0.16
Accuracy active class 0.87 ± 0.04 0.59 ± 0.20 0.61 ± 0.26 0.64 ± 0.23 0.64 ± 0.20
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resulted in non-valid models with a higher-than-expected error rate (mean balanced validity of 0.56) as well as 
lower mean e(ciency and accuracy (see experiment cal_original in Table 3 and Fig. 2). Class-wise evaluations 
for all experiments are provided in Supplementary Fig. S1.

!e poor calibration of the model, i.e., a mean absolute loss in balanced validity of 0.25, for predictions on 
the holdout set may be an indicator for data dri"s over time. Changes in the descriptor space or assay conditions 
(also due to diverse groups investigating the same target class) over the years may be responsible for such data 
dri"s. Note that the data points in the holdout set were published at least %ve to ten years later than the training 
set instances (depending on the endpoint, see Table 2). !us, it was investigated if the e#ects of these dri"s can 
be mitigated by updating the calibration set with intermediately published data, i.e. update1 or update2 sets.

Experiment iii: update calibration set. To investigate whether valid models can be obtained with a small 
amount of new data, the calibration set was updated with more recent data while the trained CV-models were 
le"  unchanged17. For the ChEMBL experiments, the new calibration sets consist of the update1, update2 set, or 
a combination of both update sets.

Measured over all twelve endpoints, updating the calibration set with update1 or update2 led to an improve-
ment of the mean balanced validity by up to 0.20 compared to the models with the original calibration set, reach-
ing values of 0.73 and 0.76 with update1 and update2, respectively (see experiments cal_update1 and cal_update2 
in Table 3 and Fig. 2). However, a slight decrease in the mean balanced e(ciency by up to 0.09 was also observed 
(reaching values of 0.79 and 0.74 for update1 and update2, respectively).

It should be noted that restoring the validity is a prerequisite for applying CP models with  con%dence7,17. 
In the absence of validity, the con%dence of the predictions is not guaranteed and the e(ciency becomes an 
irrelevant metric (CP model would not o#er any advantage and could be exchanged by the base model (e.g. ran-
dom forest) to obtain an e(ciency of one). With validity being a prerequisite for the application of CP models, 
restoring it by recalibration is an improvement. !e concurrent loss in e(ciency is undesired but also expected, 
since many instances in the holdout set may fall outside the AD of the underlying model. Lower e(ciency along 
with improved validity indicates that the model recognises more compounds, for which it does not have enough 
information to classify them into a single class. Hence they are predicted as ‘both’. To avoid the loss in e(ciency, 
the underlying model could be retrained with more up-to-date data. For example, compound representatives 
classi%ed as empty or both sets by the current model could be experimentally screened to include their outcomes 
in an updated training set, feeding the model the necessary information to increase its e(ciency. However, to 
achieve an improvement in the e(ciency by retraining, a high amount of new data is usually required. Other 
 studies56–58 have explored the use of CP-based active learning approaches to select data points that provide the 
most information to the model if experimentally evaluated. By using these approaches, a small number of addi-
tional data points can greatly extend the AD of the model.

While no overall improvement—or impairment—was observed in terms of accuracy (see Table 3 and Fig. 2), 
restored validity allows predictions with an associated con%dence.

To analyse the impact of the size of the calibration set on the model performance, the two update sets were 
combined and used as a new calibration set (update1 + 2). In summary, all evaluation values remained at a similar 
level as for the update1 and update2 experiments. Mean balanced validity of 0.77, mean balanced e(ciency of 
0.73 and mean balanced accuracy of 0.67 were achieved (see experiment cal_update1_and_2) in Table 3 and 
Fig. 2). !is indicates that the variation in size of the di#erent calibration sets (from around 500 compounds 
in the original, update1, and update2 calibration sets to around 1000 compounds in the update1 + 2 set) in the 
‘update calibration set’ strategy does not have a major in&uence on model performance in this study. Previous 
studies have shown that the size of the calibration set, nevertheless, has an in&uence on the resolution of the 
p-values, i.e. if more data points are available for calibration, the calculation of the p-values becomes more 
precise/distinct6,17. For instance, a calibration set with only 4 active compounds can only produce %ve di#erent 
p-values, while a larger calibration set will be more precise in the p-value assignment.

ChEMBL data composition analysis. It is concluded that the validity of predictions for the holdout set can be 
restored when using more recent data to calibrate the CP models.

!is could be attributed to the fact that the distribution of calibration and holdout sets are more similar 
compared to the training data. !e e(ciency of the models is slightly a#ected by this strategy, as the model still 
lacks information to make single class predictions. Nevertheless, the characteristics of the time-split within the 
ChEMBL data based on the publication year should be considered with care. In theory, a cluster CV (where by 
design compounds belonging to the same cluster are always in the same splits) should present a more challenging 
task than a temporal CV (where series of compounds could be further developed a"er the splitting date)26. How-
ever, this situation could be di#erent for time splits on public domain data. Yang et al.19 showed on a benchmark 
study that time-split CV is a much harder task on public domain data  (PDBbind59–61 in this case) than in industry 
setups. Using ChEMBL data, we observe that one publication may contain a whole chemical series, which was 
developed over a longer period of time, but is labelled in ChEMBL with the same publication date. Moreover, 
the fact that public data in ChEMBL arise from di#erent sources reduces the chances that a compound series is 
further developed over time (and is therefore present in several splits). !is might increase the chemical diver-
sity between time-splits within openly collected data compared to data from a single institution. Analysing the 
molecular clusters of the ChEMBL data used in this study and their distribution among time-splits, we observed 
that only few clusters are scattered over di#erent splits. Only between 7% and 16% of the compounds in a single 
cluster (with distance threshold of 0.5 and only considering clusters with at least two compounds) were spread 
over more than one split (see Supplementary. Fig. S5). !is result indicates that, in this case, the prediction of 
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the holdout set may be even more challenging than in an industrial (time-split) scenario, where early developed 
compounds of a compound series may be included in the consecutive training/update/holdout sets.

Individual endpoint performance analysis. !e above discussed performance values referred to average values 
over models built for twelve endpoints. !is led to the conclusion that updating the calibration set on average 
improves the validity at the cost of a small loss in e(ciency. Considering the endpoints individually, the in&u-
ence of updating the calibration set on the performance of the models varied. On average there was no substan-
tial di#erence between updating the calibration set with update1 or update2 data. However, looking at individual 
models (Fig. 3a, Supplementary Fig. S4), e.g. endpoint ChEMBL228, the continuous calibration worked better in 
restoring the validity with update1 than update2 sets. In contrast, recalibrating with the update2 sets led to bet-
ter performance for endpoints ChEMBL206, ChEMBL222, and ChEMBL279 (see also Supplementary Figs. S2 
and S3).

!e observations that the e#ects of recalibration for each endpoint are dependent on the update set might be 
explained by the descriptor space covered by the respective holdout, update and training sets. Our hypothesis is 
that updating the calibration set might be more bene%cial if the update set compounds cover a descriptor space 
more similar to the holdout compounds than the original calibration set.

To investigate the in&uence of the descriptor space, the compounds’ ‘CHEMBIO’ descriptors of the training, 
update1, update2, and holdout set were transformed into a two-dimensional space using UMAP (Fig. 3b). For 
endpoint ChEMBL206, for which the update2 strategy worked clearly better, a large part of the update1 set over-
laps with the training set, indicating that less improvement can be expected when recalibrating with it. Contrary, 
there is more overlap between the holdout and update2 sets. !is might explain the particularly positive e#ects 
of recalibrating with update2 on the validity and accuracy for predicting the ChEMBL206 holdout set.

To quantify these di#erences in a rational manner, the Tanimoto coe(cient based on Morgan %ngerprints 
of each holdout compound to its nearest neighbour in the training and update sets, respectively, was calcu-
lated. Exempli%ed for endpoint ChEMBL206, the median coe(cient of the holdout compounds to their nearest 
neighbour in the respective sets con%rmed that the the holdout set is on average more similar to the update2 set 
(median coe(cient of 0.42) than to the update1 or training sets (median coe(cients of 0.29 and 0.33, respectively; 
distribution of distances to nearest neighbours provided in Supplementary Fig. S6).

������������������������������� ����������������Ǥ� When insu(cient internal data are available to 
build ML models (or, in general, to extent the descriptor space coverage of the models), public data can be used 
in industrial setups for model training. Exempli%ed by MNT in vivo and liver toxicity CP models, we explored 
whether the applicability and validity of predictions on internal data could be improved by recalibrating models 
trained on public data with part of the internal data.

CP models were %tted on publicly-available data for MNT in vivo and liver toxicity, previously collected and 
used for model building by Garcia de Lomana et al.12. Liver toxicity induced by chemicals is a growing cause 
of acute liver  failure62. MNT in vivo is an assay to assess  mutagenicity29. Both endpoints are highly relevant for 
registration and authorisation of new  chemicals28–30. !e internal data were temporally split into update (older 

(a) (b)

Figure 3.  Analysis of individual endpoints (a) Balanced evaluation of time-split experiments for four selected 
ChEMBL endpoints. Each plot represents CV results (cv) and predictions for the holdout set using the original 
(cal_original), update1 (cal_update1), update2 (cal_update2) and combined update1_and_2 (cal_update1_
and_2) calibration sets. !e doted line at 0.8 denotes the expected validity for the chosen signi%cance level 
of 0.2. (b) UMAP showing the descriptor space covered by the compounds in the di#erent time-split sets for 
ChEMBL206 endpoint.



Ϳ

Vol.:(0123456789)

�������Ƥ��������� |         (2022) 12:7244  |  �����ǣȀȀ���Ǥ���ȀͷͶǤͷͶ͹;Ȁ�ͺͷͻͿ;ǦͶ͸͸ǦͶͿ͹ͶͿǦ͹

www.nature.com/scientificreports/

data) and holdout (more recent data) sets. Note that due to the limited data size only one update set was created 
(see Table 2).

Experiments i and ii: CV and predictions using original calibration set. !e CP models were built on the pub-
licly-available training data and validated within a %vefold CV. !e predictions for the liver toxicity and the MNT 
endpoints resulted in a balanced validity of 0.81 and 0.82, a balanced e(ciency of 0.81 and 0.79 and a balanced 
accuracy of 0.77 and 0.77, respectively (see Table 4). !us, valid models with high e(ciency and accuracy were 
obtained when evaluated within CV experiments.

Applying these models to the holdout set containing internal data, the balanced validity dropped drastically 
by up to 0.34 points (liver toxicity: 0.47, MNT: 0.50). !e balanced accuracy of the models also decreased strongly 
(liver toxicity: 0.43, MNT: 0.49), while the balanced e(ciency increased (liver toxicity: 0.89, MNT: 0.94). !e lat-
ter indicates that mostly single class predictions were made. !e class-wise evaluation of the MNT model predic-
tions discloses that almost all internal compounds were predicted to be inactive (accuracy inactive compounds: 
0.99, accuracy active compounds: 0, see Table 4 and Supplementary Fig. S7). For the liver endpoint, a similar 
trend was observed (accuracy inactive compounds: 0.7, accuracy active compounds: 0.16). !ese observations 
indicate that the distributions of the holdout and calibration data, i.e. of internal and external data, are highly 
di#erent. Summarising, applying the models trained on public data to the internal data resulted in non-valid 
models that mainly predict all internal compounds as inactive.

Experiment iii: update calibration sets. For the liver toxicity endpoint, exchanging the calibration set with the 
earliest developed internal data (years 2005-2019, containing at least 50% of all internal data) could restore the 
validity for both compound classes (inactive: 0.84, active: 0.80). !e balanced e(ciency decreased largely from 
0.89 to 0.38 (inactive compounds: 0.45, active compounds: 0.31) as many single class predictions were now 
identi%ed as inconclusive and shi"ed to the ’both’ class. !e balanced accuracy increased only slightly from 0.43 
to 0.49. Nevertheless, the accuracy became more balanced (inactive: 0.63, active compounds: 0.35), as now more 
active compounds were correctly identi%ed as such. !e observations for the liver toxicity endpoint are similar 
to those for the ChEMBL endpoints. It is promising that the validity could be restored, although the balanced 
e(ciency dropped. !e improved balanced accuracy of 0.49 still leaves room for further improvements. To 
visualise the di#erences in the descriptor space covered by the public and internal data, UMAPs were derived 
(see Fig. 4a,b). Both datasets seem to cover a similar area of the descriptor space calculated with UMAP. !e low 
accuracy obtained by applying the model on internal data could thus be better explained by the di#erences in the 
endpoint de%nition, as public and internal data were derived from di#erent assays and species. !ese di#erences 
could lead to inconsistencies in the class labelling of a compound (i.e. one compound having di#erent outcomes 
in each assay). Although the validity of the models could be restored by recalibration, these inconsistencies could 
be one explanation for the poor performance in terms of accuracy.

For MNT, updating the calibration set led to an improved balanced validity from 0.50 to 0.74 (inactive com-
pounds: 0.61, active compounds: 0.88) and a strongly reduced balanced e(ciency from 0.94 to 0.40 (inactive 
compounds: 0.54, active compounds: 0.26). !e fact that the validity for the active class is high while the e(ciency 
of this class remains low, indicates a high number of both predictions for the active compounds. !us, the model 
is lacking information about active compounds to make single class predictions. A reduction in the balanced 
accuracy to 0.39 was observed, while the values are again more balanced between classes (inactive compounds: 
0.29, active compounds: 0.50). Concluding, in the case of MNT, the balanced validity could be improved when 
recalibrating the models, but for the inactive compounds, it could not be restored to the expected level of 0.8. 
Analysing the descriptor space of the di#erent datasets and their class labels (see UMAPs in Fig. 4c,d), it can be 
observed that almost all holdout compounds overlapping with the training set are inactive, while most of the 
holdout compounds overlapping with the update set are active. A"er updating the calibration set, the validity 

Table 4.  Evaluation of experiments to investigate dri"s between internal and external data.

Liver toxicity Micro nucleus test

CV
Predict holdout set

CV
Predict holdout set

Cal_original Cal_update Cal_original Cal_update
Balanced validity 0.81 0.47 0.82 0.82 0.50 0.74
Balanced e(ciency 0.81 0.89 0.38 0.79 0.94 0.40
Balanced accuracy 0.77 0.43 0.49 0.77 0.49 0.39
Validity inactive class 0.81 0.75 0.84 0.80 0.99 0.61
E(ciency inactive class 0.84 0.84 0.45 0.79 0.89 0.54
Accuracy inactive class 0.77 0.70 0.63 0.75 0.99 0.29
Validity active class 0.82 0.20 0.80 0.83 0.00 0.88
E(ciency active class 0.78 0.95 0.31 0.79 1.00 0.26
Accuracy active class 0.77 0.16 0.35 0.78 0.00 0.50
Validity 0.82 0.58 0.84 0.81 0.66 0.70
E(ciency 0.80 0.87 0.40 0.79 0.93 0.45
Accuracy 0.77 0.52 0.57 0.76 0.63 0.33
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of the active class increased and could be restored, as this class is now better represented in the calibration set. 
However, the contrary is observed for the inactive class. Moreover, the e(ciency drops as the analysed com-
pounds are very di#erent from the training set and the models are missing information about this area of the 
descriptor space to make single class predictions.

Although exchanging the calibration set with data from the same origin as the holdout set, i.e. with inhouse 
data, did help to increase the validity, these results show that the descriptor space of the holdout set still needs 
to be better represented by the training set to obtain e(cient and accurate—and therefore useful—models.

����������
CP models, or generally ML models, are widely used for molecular property predictions, including activity and 
 toxicity5,6,63. Notably, the CP framework is based on the assumption that test and calibration data stem from the 
same  distribution10,11. If this prerequisite is not given, the models are not guaranteed to be valid (i.e. return the 
expected error rate). !e goal of this study was twofold. Firstly, the performance of internally valid CP models, 
when applied to either newer time-split or (true) external data, was assessed. Second, the impact of model updat-
ing strategies exchanging the CP calibration set with data closer to the prediction set was evalutated. Building 
on previous work performed on the Tox21  datasets17, we investigated here two scenarios with data subsets that 
may stem from di#erent distributions. First, temporal data dri"s were analysed at the example of twelve toxicity-
related datasets collected from the ChEMBL bioactivity database. Second, discrepancies between performance 
of models trained on publicly-available data vs. models recalibrated on inhouse data was evaluated on holdout 
inhouse data for the liver toxicity and MNT in vivo endpoints.

Due to changes in descriptor space and assays, over time or between laboratories, data dri"s occur and were 
observed through the performed experiments (i and ii) on both the twelve ChEMBL as well as the liver toxicity 
and MNT datasets. Overall, valid CP models within CV were built for all endpoint datasets at a signi%cance 
level of 0.2. In contrast, validity dropped below the expected error rate of 0.8, when applied to the holdout sets. 
Resulting mean balanced validities were 0.56 ± 0.11 over all twelve ChEMBL datasets, 0.47 for liver toxicity and 
0.50 for MNT.

Figure 4.  Descriptor space analysis of the liver toxicity (a, b) and MNT datasets (c, d) derived by UMAP. !e 
descriptor space covered by the active and inactive compounds of the test sets is compared to the space covered 
by the training (a, c) and update sets (b, d), respectively.
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To address the poor validity on the holdout set, CP updating strategies were implemented (experiment iii), 
in which the calibration sets were exchanged by part of the newer or proprietary data, with the aim of restoring 
the validity. For most of the ChEMBL endpoints, the validity (at 0.2 signi%cance level) could be mostly restored 
(mean balanced validity: 0.77 ± 0.08). !e same holds for predictions on the proprietary liver toxicity endpoint 
data (balanced validity: 0.82). For the MNT data, the calibration was also improved, but to a lower extent 
(balanced validity: 0.74). Note that the improved validity comes at the cost of reduced e(ciency for ten of the 
ChEMBL endpoints (average absolute loss between 0.04 and 0.10, depending on the update set used), which is 
more prominent for the liver toxicity and the MNT endpoints (absolute loss up to 0.55). A drop in e(ciency is, 
however, more acceptable than non-valid models, which cannot be con%dently applied. Too low e(ciency may 
indicate that the model lacks information, e.g., chemical and biological descriptor space coverage, for classifying 
the new compounds.

With regard to the accuracy of the single class predictions, no change was observed on average for the 
ChEMBL endpoints when updating the calibration set. However, for the liver toxicity and MNT endpoints a more 
balanced accuracy between classes was observed a"er the update, as more compounds were identi%ed as active.

In principle it is not possible to de%ne an overall update/calibration criteria for all applications, but more 
research is needed to derive a generic approach on how to de%ne it within the speci%c use-cases. In future studies 
it should be investigated how the degree of deviation of the calibration set from the training and holdout sets 
in&uences the models validity, e(ciency and accuracy. !is trade-o# between the similarity of the calibration 
data to each set and the amount of available update data will probably determine in which scenarios the recali-
bration strategy is a good approach to overcome data dri"s, and when a complete model retraining is necessary.

It is in the nature of the %eld of compound toxicity prediction or drug design that ML models are applied 
to completely new compounds that are potentially quite di#erent from the training set. !is work showed the 
necessity of considering data dri"s when applying CP or ML models to new and external data and the need of 
developing strategies to mitigate the impact on the performance.

�����������������
!e input data for the twelve ChEMBL endpoint models can be retrieved from https:// doi. org/ 10. 5281/ zenodo. 
51676 36. !e public data for the liver toxicity and in vivo MNT endpoints are freely available as described in 
Garcia de Lomana et al.12. !e in house data for liver toxicity and in vivo MNT are proprietary to BASF SE.

�����������������
Code is available on GitHub at https:// github. com/ volka merlab/ CPrec alibr ation_ manus cript_ SI. !e GitHub 
repository contains example notebooks on how to perform the recalibration experiments on a selected endpoint 
as well as on all twelve ChEMBL endpoints together. !e code can be adapted and used for other datasets.
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4.4 Consideration of xenobiotic metabolism information in toxicity 

prediction models 

One of the most relevant parameters influencing the discrepancies between in vitro and in vivo 

assay results is xenobiotic metabolism. In vivo, the parent compound may undergo several 

biotransformations resulting in a variety of metabolite structures. Although metabolism is 

intended to detoxify xenobiotics and facilitate their excretion, compounds may also be 

activated into more reactive or toxic metabolites. The relevance of metabolism for the toxic 

outcome has already been described in multiple studies83-85 and the formation of toxic 

metabolites has forced the withdrawal of several drugs from the market (e.g. the antidepressant 

nefazodone).86 Nevertheless, studies considering metabolism information in toxicity prediction 

models are very scarce and often only limited to data sets with measured metabolites87, 88 or 

focused on a specific endpoint89-92 from which no general conclusions can be drawn.  

The following publication analyses different approaches for including metabolism information 

in toxicity prediction models based on five endpoints: two genotoxicity assays (AMES in vitro 

with metabolic activation and MNT in vivo), two organ toxicity endpoints (DILI and DICC) 

and a skin sensitization assay (LLNA). The developed approaches could be divided in two main 

workflows, (i) the generation of new input features for a parent compound based on chemical 

properties of its metabolites or on the metabolic transformations the compound may undergo, 

and (ii) the combination of the predictions made for a parent compound and its metabolites. In 

order to expand the coverage of the models and make them directly applicable to new, untested 

compounds, predicted metabolites instead of measured ones were employed in this study. 

Moreover, filters to discard unlikely or highly soluble metabolites were also implemented to 

further clean the predicted metabolism data and improve the toxicity predictions. 
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Consideration of predicted small-molecule
metabolites in computational toxicology†

Marina Garcia de Lomana, ab Fredrik Svensson, c Andrea Volkamer, d

Miriam Mathea *a and Johannes Kirchmair *b

Xenobiotic metabolism has evolved as a key protective system of organisms against potentially harmful

chemicals or compounds typically not present in a particular organism. The system's primary purpose is

to chemically transform xenobiotics into metabolites that can be excreted via renal or biliary routes.

However, in a minority of cases, the metabolites formed are toxic, sometimes even more toxic than the

parent compound. Therefore, the consideration of xenobiotic metabolism clearly is of importance to the

understanding of the toxicity of a compound. Nevertheless, most of the existing computational

approaches for toxicity prediction do not explicitly take metabolism into account and it is currently not

known to what extent the consideration of (predicted) metabolites could lead to an improvement of

toxicity prediction. In order to study how predictive metabolism could help to enhance toxicity

prediction, we explored a number of different strategies to integrate predictions from a state-of-the-art

metabolite structure predictor and from modern machine learning approaches for toxicity prediction.

We tested the integrated models on five toxicological endpoints and assays, including in vitro and in vivo

genotoxicity assays (AMES and MNT), two organ toxicity endpoints (DILI and DICC) and a skin

sensitization assay (LLNA). Overall, the improvements in model performance achieved by including

metabolism data were minor (up to +0.04 in the F1 scores and up to +0.06 in MCCs). In general, the

best performance was obtained by averaging the probability of toxicity predicted for the parent

compound and the maximum probability of toxicity predicted for any metabolite. Moreover, including

metabolite structures as further input molecules for model training slightly improved the toxicity

predictions obtained by this averaging approach. However, the high complexity of the metabolic system

and associated uncertainty about the likely metabolites apparently limits the benefit of considering

predicted metabolites in toxicity prediction.

Introduction
The metabolic system has evolved as the primary defense
system against xenobiotic, potentially toxic substances. Its
protective function is based on the biotransformation of xeno-
biotics into more hydrophilic and, hence, more rapidly excret-
able compounds (metabolites). However, a minority of
metabolites produced by the metabolic system are more active

than their parent compound (which is exploited by the prodrug
concept) or even toxic.1

The important role of metabolism in the toxicity of small
organic molecules highlights the need for the consideration of
metabolic pathways also in the computational prediction of
toxicity. However, so far only a few in silico models for toxicity
prediction have integrated metabolism information. For
example, Dmitriev et al.2 built linear models for the prediction
of rat acute toxicity using self-consistent regression, thereby
considering parent compounds and measured metabolites.
More specically, they trained a model on about 3000 parent
compounds and used it to predict the LD50 value of 37 test
parent compounds and their measured metabolites (around
200 known metabolites). To calculate the nal LD50 value,
different strategies for averaging the LD50 values predicted for
the parent compounds and their metabolites were investigated.
However, only minor improvements in the overall performance
of the model were achieved compared to using only the pre-
dicted probability of the parent compounds (R2 increased from
0.78 to 0.81 and RMSE remained at 0.49). In a more recent study
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from the same research group,3 classication models based on
a Bayesian approach were trained on parent compounds with
annotated bioactivity data for a variety of endpoints. The
bioactivity of a compound was then calculated as the maximum
probability predicted among the parent compound and its
measured metabolites. For the 28 endpoints in the “toxic and
adverse effects” category (with data sets ranging from 15 to 5583
toxic and non-toxic compounds), an increase of up to 0.14 in the
precision and 0.16 in the recall during leave-one-out cross-
validation (CV) was obtained on average (compared to taking
the predicted probability of the parent compound only). These
results show that the consideration of metabolism in prediction
models can substantially improve the identication of poten-
tially toxic compounds.

Data on measured metabolites can be valuable for esti-
mating the toxicity of compounds but such approaches rely on
the availability of experimental data. For this reason, in silico
approaches to predict the likely metabolites of substances
based on molecular structures are in high demand. Several
predictors of this kind are available today, including Bio-
Transformer,4 CyProduct,5 GloryX,6 Meteor Nexus,7 SyGMA,8

TIssue MEtabolic Simulator (TIMES)9 and XenoSite.10

In previous works, researchers from the Laboratory of
Mathematical Chemistry (LMC) have combined in silicomodels
for toxicity prediction with their TIMES metabolite predictor.
The rst model from LMC taking into account the parent
compound and its metabolites (predicted with the S-9 metab-
olism simulator of TIMES) was developed for the prediction of
in vitro mutagenicity (i.e. outcomes of the AMES assay).11,12 This
AMES model was based on decision trees trained on the reac-
tivity prole of compounds and labeled a compound as toxic if
any of its predicted metabolites were predicted as toxic. The
evaluation of the model on the training data showed that the
metabolism-aware approach resulted in lower sensitivity (0.77)
and specicity (0.74) compared to the performance of the model
considering only the parent compound (sensitivity 0.82; speci-
city 0.94). The lower sensitivity obtained by this approach may
be related to the fact that compounds without any predicted
metabolites were automatically classied as inactive. Another
drawback of this approach is the decrease in specicity due to
false positive predictions derived from non-mutagenic parents
with metabolites predicted as mutagenic. In addition to the
training data, the model was evaluated on a test set of 36
mutagenic compounds, obtaining a sensitivity of 0.58 (corre-
sponding to 21 correctly classied compounds). Despite the
overall drop in performance, the metabolism-aware approach
correctly identied compounds of which their mutagenicity is
related to the metabolites formed.

Two further decision tree models from LMC targeting skin
and respiratory sensitization, respectively,13,14 also included the
evaluation of several properties of predicted metabolites (e.g.
reactivity prole or ability to cross-link proteins) to classify the
parent compounds as non-sensitizers or sensitizers (further
distinguished between strong or weak sensitizers in the case of
the skin). The evaluation of this skin sensitization model on the
training data yielded 80% correct predictions for strong sensi-
tizers, 34% for weak sensitizers and 72% for non-sensitizers,

while the respiratory sensitization model obtained a sensi-
tivity of 0.89 and a specicity of 0.52.

A further model of this kind from LMC was reported for the
in vivo micronucleus test (MNT).15 By comparing the assay
outcomes of the (in vitro) AMES assay with a liver genotoxicity
and an MNT in vivo assays, bioactivated compounds and “bio-
exhausted” compounds (i.e. highly reactive compounds inter-
acting with off-targets before reaching the target) were analyzed
to establish in vitro–in vivo relationships. Based on this analysis,
an in vivo rat liver metabolism predictor reproducing phase II
conjugation reactions and detoxication pathways was devel-
oped. The toxicity prediction model of MNT applied on the
predicted metabolites (derived with the in vivo metabolite
predictor) reached a sensitivity of 0.82 and a specicity of 0.61
on the training data.

The performance of this MNT model, as well as the skin and
respiratory sensitization models, was not compared to the
performance of models not considering predicted metabolites.
Therefore it is not possible to conclude on the benets or
drawbacks of these metabolism-aware models compared to
models considering only parent compounds.

Overall, these recent reports on efforts to enhance toxicity
prediction of small organic molecules by the consideration of
their biotransformation provide valuable insights and starting
points for the further development of methods for computa-
tional toxicology. Although metabolism is key to understanding
the pharmacokinetics and toxicity of compounds, the inherent
uncertainty of the complex metabolic data could also hinder the
improvement of models integrating this information. So far, the
existing works on this topic are either based on only a few
parent compounds and their measured metabolites, or focused
on a single endpoint, making it therefore difficult to derive
more general conclusions.

With this work, we aim to provide a systematic study on how,
and to what extent, the consideration of metabolism can help
the in silico prediction of toxicity. In order to cover a wide
chemical space and make models applicable to new, untested
compounds, we referred to the use of predicted metabolites.
Five relevant toxicological endpoints and assays were selected
for investigation: the in vitro AMES assay (consideringmetabolic
activation with S-9 liver extract), the in vivo micronucleus test
(MNT), a skin sensitization assay (the murine local lymph node
assay, LLNA), and the drug-induced liver injury (DILI) and
cardiological complications (DICC) endpoints.16–18 All selected
endpoints and assays have in common that their outcome is
known to be related, to some extent, to the biological activity of
metabolites. Positive outcomes of the genotoxicity assays (AMES
and MNT) and the skin sensitization assay (LLNA) can be
produced by reactive metabolites that bind to DNA or skin
proteins. The in vitro AMES assay (considering metabolic acti-
vation) was specically chosen to evaluate the impact of adding
metabolism information to a less complex endpoint (that is less
dependent on pharmacokinetic variables than other in vivo
endpoints). Moreover, reactive metabolites are also known to be
a recurrent trigger of idiosyncratic adverse effects of drugs (i.e.
unpredictable and infrequent adverse reactions oen unrelated
to dose).16 The role of metabolites in the two organ toxicity
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endpoints (DILI and DICC), oen triggered by idiosyncratic
adverse reactions, was hence also investigated.17,18

Materials and methods
Data sets

AMES. AMES assay data were collected from the Chemical
Carcinogenesis Research Information System (CCRIS),19 the
Genetic Toxicology Data Bank (GENE-TOX)20 and the U.S.
National Toxicology Program (NTP; Table S1†).21 These data
sources were selected because they provide information about
the consideration of metabolic activation in the assay setup.
Since the inuence of the metabolites on the toxic effect was
investigated in this study, only results obtained from the AMES
assay accounting for metabolic activation were considered.

More specically, the CCRIS database (stored in XML le
format) was queried for mutagenicity studies based on the
AMES assay, resulting in 67 907 study results (i.e. experimental
assay outcomes on a set of compounds). For extracting these
studies, the word “ames” was queried in the test system eld
(“mstu/tsstm”) of the XML le. The retrieved AMES data were
further ltered for experiments that test for metabolic activa-
tion, by querying the data for the words “liver”, “hepatocytes”,
“s9” and “s-9” in the “matvm” eld. The resulting data (38 267
study results) were further curated by removing any inconclu-
sive or potentially ambiguous results. This was achieved by
removing studies with results labeled as “weak” or as both
“positive” and “negative” (e.g. “positive (retest was negative)”).
Also inconclusive results caused by precipitating compounds
were removed from the data set by querying the labels “nega-
tive” and “precipitation” (e.g. “negative, precipitation at 3
highest doses.”).

The remaining data (38 200 study results) were labeled as
“toxic” if the results eld matched the word “positive”, or “non-
toxic” if the results eld matched the word “negative”. To obtain
only one result per compound, the data were deduplicated
based on the CAS number and any compounds with conicting
class labels were removed from the data set. This resulted in
4721 compounds with AMES data.

The GENE-TOX database was obtained from PubChem.22 The
different genotoxicity study types contained in this database
were queried to select only those studies belonging to the AMES
assay (i.e.matching the “Histidine reverse gene mutation, Ames
assay” assay type). From the 1057 compounds with AMES data
only the 238 results considering metabolic activation (i.e.
matching “with metabolic activation” in the “activation” eld)
were conserved. The activity labels were used as is.

The NTP AMES data set contains 64 246 study results.
Results from assay setups without S-9 activation and from
assays with microsome-activating conditions of less than 5%
were removed from the data set. Results without an activity label
reported in the study conclusion and results labeled as
“equivocal” were removed from the data set. These ltering
steps resulted in 40 859 study results. Study outcomes with
a “positive” or “weakly positive” study conclusion label were
annotated as “toxic”, and study outcomes with the “negative”
conclusion label as “non-toxic”. Compounds were deduplicated

based on the CAS number, and duplicate compounds with
conicting labels were removed from the data set. In contrast to
the above data sets, the NTP set did not include SMILES strings
for the tested compounds. The SMILES strings were obtained by
querying PubChem via the PUG REST interface23 using the CAS
numbers provided with the NTP data set. This resulted in 1959
compounds annotated with AMES results.

The data from the three databases were merged based on the
canonical SMILES (see section Structure preparation for
details). Compounds with identical canonical SMILES but
differing AMES activity labels (72 compounds) were removed
from the data set. This resulted in a total of 5061 compounds
(1908 toxic and 3153 non-toxic compounds; Table 1).

Micronucleus test. MNT data was collected, as described by
Garcia de Lomana et al.,24 from (i) the European Chemicals
Agency (ECHA; available at the eChemPortal),25 (ii) the Euro-
pean Food Safety Authority (EFSA), curated by Benigni et al.,26

and (iii) the work of Yoo et al.27 The nal, processed and
deduplicated MNT data set consists of a total of 1775
compounds (315 toxic and 1460 non-toxic compounds; Table
1).

Drug-induced liver injury. The data set for the DILI endpoint
was obtained from the veried DILIrank data (i.e. the revised
version of their original DILIrank data set) of the U.S. Food and
Drug Administration (FDA).28 These data were derived from the
observed hepatotoxicity of FDA-approved drugs described in
drug labeling documents as well as evidence in literature. The
drugs in this data set are classied as “most-DILI-concern”,
“less-DILI-concern”, “no-DILI-concern” and “ambiguous-DILI-
concern”. For this study, binary class labels were assigned: 182
“most-DILI-concern” and 271 “less-DILI-concern” compounds
were labeled as “toxic”, 268 “no-DILI-concern” compounds as
“non-toxic”, and 239 “ambiguous-DILI-concern” compounds
were removed from the data set. The nal, processed and
deduplicated DILI data set consists of a total of 661 compounds
(435 toxic and 226 non-toxic compounds; Table 1).

Drug-induced cardiological complications. The data set for
DICC was compiled, as described by Garcia de Lomana et al.,24

from the work of Cai et al.29 The DICC data set covers ve
cardiological complications: hypertension, arrhythmia, heart
block, cardiac failure and myocardial infarction. Compounds
were labeled as “toxic” if they were active in at least one of the
ve cardiological endpoints and labeled as “non-toxic” other-
wise. The nal, processed and deduplicated DICC data set

Table 1 Sizes of the data sets used in this work

Endpoint

Number of

RatioToxic compounds
Non-toxic
compounds

AMES 1908 3153 1 : 2
MNT 315 1460 1 : 5
DILI 435 226 2 : 1
DICC 965 2243 1 : 2
LLNA 521 749 1 : 1
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contains a total of 3208 compounds (965 toxic and 2243 non-
toxic compounds; Table 1).

Murine local lymph node assay. The data set for the LLNA
was obtained from the work of Wilm et al.30 The binary activity
labels from this data set were used as is, resulting, aer pro-
cessing and deduplication in a total of 1270 compounds (521
toxic and 749 non-toxic compounds; Table 1).

Structure preparation

The standardization of the molecular structures followed the
same procedure as described by Garcia de Lomana et al.24 (with
one exception, indicated below). Briey, the SMILES strings
were standardized with the ChemAxon Standardizer31 node in
KNIME32 to remove solvents and salts, annotate aromaticity,
neutralize charges andmesomerize structures (i.e. returning the
canonical resonant form of the molecule). Moreover,
compounds containing any element other than H, B, C, N, O, F,
Si, P, S, Cl, Se, Br and I as well as multi-component compounds
were removed from the data set. Lastly, compounds with fewer
than four heavy atoms or with molecular weight greater than
1000 Da (this criterion has been introduced for the current work
only) were ltered out from the respective data set.

For the remaining standardized structures, canonical
SMILES were derived with RDKit33 in KNIME. These canonical
SMILES were used for the deduplication of compounds in each
data set. Compounds with identical canonical SMILES but
conicting labels for an endpoint were removed from the
respective endpoint data set.

Descriptor calculation

Molecular structures were encoded with count-based Morgan
ngerprints with a radius of 2 bonds and a length of 2048 bytes
(computed with the “RDKit Count-Based Fingerprint” node in
KNIME) plus 119 1D and 2D physicochemical property
descriptors (computed with the “RDKit descriptor calculation”
node in KNIME). These RDKit physicochemical property
descriptors capture properties such as the number of occur-
rences of a specic atom type, bond or ring, as well as global
molecular properties such as polarity and solubility. Moreover,
up to two acidic and two basic pKa values were calculated for
each molecule with the “pKa” KNIME node from ChemAxon.34

For molecules with fewer than two acidic or basic groups, the
remaining pKa feature values were lled with the mean value of
the respective data set.

Model development and evaluation

Prior to model development, a variance lter was applied to all
input features to remove those with a variance of less than
0.001. The remaining features were scaled with the Stand-
ardScaler class of scikit-learn35 by subtracting the mean and
scaling to unit variance. Both variance ltering and scaling were
performed individually for each data set.

The models were evaluated within a 5-fold cross-validation
(CV) framework by splitting the data into 80% training and
20% test set with the StratiedShuffleSplit class of scikit-learn.
To account for data imbalance, oversampling with SMOTENC

(an extension of SMOTE that handles categorical features)36 was
performed on the training set (with a ratio of samples in the
minority class with respect to the majority class of 0.8). All
molecular ngerprints and discrete RDKit descriptor features
(e.g. number of hydrogen bond donors or ring count) were
specied as categorical features in SMOTENC.

For each training set, random forest (RF) models were
trained with the RandomForestClassier of scikit-learn, with
default parameters, except for num_trees ¼ 1000, min_sam-
ples_leaf ¼ 3 and class_weights ¼ “balanced”.

For evaluating the performance of the models, the precision,
recall, F1 score andMatthews Correlation Coefficient (MCC) were
calculated on the respective test set of the CV. The precision
measures the proportion of true positive predictions out of all
positive predictions, while the recall measures the proportion of
correctly predicted positive samples. The F1 score is the
harmonic mean of precision and recall. The MCC takes into
consideration all four classes of predictions (true positive, true
negative, false positive and false negative predictions) and ranges
between"1 and +1 (being +1 the perfect prediction). Both the F1
score and the MCC are robust against data imbalance.

Differences in the performance between models were eval-
uated with the nonparametric Mann–Whitney U test.37 For
comparing a pair of models, the values for a given performance
metric obtained in the different CV runs were used as input for
the “mannwhitneyu” function implemented in SciPy.38 The p-
value threshold of 0.05 was applied to consider a difference as
signicant. Due to the negligible number of signicant results,
a correction of the p-value accounting for the number of
comparisons performed was deemed to be not necessary.

Metabolite prediction with Meteor Nexus

The metabolites were predicted with Meteor Nexus,7,39 a leading
soware package for metabolism prediction that is widely
applied in the industries. Meteor Nexus covers a broad range of
approximately 500 manually curated biotransformations gath-
ered from several public sources and proprietary data sets from
member organizations of Lhasa Limited.

In this study, starting from the prepared molecular struc-
tures (canonical SMILES), four generations of metabolites were
predicted and subsequently scored with the “Site of Metabolism
(SOM) Scoring” method,40 which is the default scoring method
of Meteor Nexus. Other processing options were retained at
their default setting. The score given to eachmetabolite is based
on experimental data for compounds that are chemically related
to the query compound around the site of metabolism. The
molecular structures of the predicted metabolites were
prepared and standardized following the same procedure
described for the parent compounds (starting from the SMILES
string output by Meteor Nexus).

Predicted metabolite information as input descriptors for
parent compounds

Two different approaches for including metabolite information
as input features in machine learning were explored (Fig. 1A). In
the rst approach, the above-mentioned molecular ngerprints
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and physicochemical properties for each parent compound
were concatenated with chemical descriptors calculated for the
top-5 predicted metabolites of that parent compound (if avail-
able; metabolite scoring with Meteor). The chemical descriptors
of the metabolites comprise count-based Morgan ngerprints
(radius of 2; length of 1024 bytes) and all of the 200 physico-
chemical property descriptors of RDKit listed under “rdkit.Ch-
em.Descriptors._descLis”. For parent compounds with fewer
than ve predicted metabolites, the empty values of the Morgan
ngerprint vectors from the remaining metabolites were lled
with zeros (indicating the absence of the structural feature) and
the features corresponding to RDKit descriptors were lled with
the mean value of the whole data set for that feature. Models
were trained combining the molecular descriptors of the parent
compounds with (a) Morgan ngerprints of the metabolites, (b)
RDKit physicochemical property descriptors of the metabolites
or (c) a combination of both.

In the second approach, the above-mentioned ngerprints
and physicochemical properties for each parent compound
were concatenated with a count-based “biotransformation
ngerprint”. The biotransformation ngerprint encodes the
number of occurrences of a particular biotransformation (as
labeled by Meteor Nexus) in the predicted metabolic tree. For
each endpoint data set only those biotransformation predicted
for at least one parent compound were included in the nger-
print. The feature length of the ngerprint ranges from 238 for
the LLNA data set to 330 for the AMES data set. In addition to
models based on the complete descriptor vector, models were
also built on subsets of features selected prior to model
building (in an attempt to reduce noise related to the sparsity of
the biotransformation ngerprints). The feature selection was
conducted on all descriptors (including ngerprints and phys-
icochemical descriptors) and using the LassoCV implementa-
tion from scikit-learn within a 5-fold CV. Any feature with an
output coefficient of zero was removed from the data prior to
the training of the RF models.

Combination of the probabilities of toxicity predicted for
a parent compound and its predicted metabolites

Overall predicted probability of a compound's toxicity. An
overall probability for the parent compounds' toxicity was
calculated by combining the predicted probabilities for the
parent compounds and their predicted metabolites.

Two types of models were used for predicting the probability
of toxicity:

(i) Baseline model: without the consideration of metabolites
(i.e. trained only on the parent compounds).

(ii) Metabolism-aware model: with the consideration of
metabolites (i.e. trained on the parent compounds and labeled
metabolites).

The molecular descriptors dened in the “Descriptor calcu-
lation” section were used as input features for the parent
compounds and metabolites in both types of models. For the
metabolism-aware model the labels of the metabolites were
assigned according to the workow described in “Assignment of
toxicity labels to metabolites”. The predicted probabilities for
the parent compounds (with the baseline model) were used as
a baseline result to analyze whether model performance
improves when considering metabolites for the prediction of
toxicity.

In an attempt to obtain the most accurate predicted proba-
bility for the parent compounds and metabolites, two
approaches combining the baseline model and metabolism-
aware model were investigated:

(a) Baseline-approach: baseline model for the prediction of
both parent compounds and metabolites.

(b) Hybrid-approach: baseline model for the prediction of
parent compounds plus metabolism-aware model for the
prediction of metabolites.

To obtain the overall probability of toxicity of a compound (i.e.
with the consideration of its metabolites), the selected model was
applied to calculate the probability of toxicity of the parent
compound and that of the predicted metabolites (up to four

Fig. 1 Overview of the different strategies explored to integrate predicted metabolite information into the in silico models.
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generations; Fig. 2). In addition, a number of different strategies
for ltering predicted metabolites according to their relevance to
toxicity were explored by a grid search. These lters are based on
calculated log P, the Meteor score and/or predicted phase II
metabolism, and are intended to remove any non-toxic (since
readily excretable or unlikely) metabolites. The investigated
threshold values, below which metabolites were removed, are
0 and 3 for log P, and 100, 200 and 300 for the Meteor score. When
the phase II metabolism lter was applied, metabolites formed by
phase II reactions, as well as thosemetabolites further transformed
by phase II reactions, were ltered out. A grid search over the 23
possible combinations of lters (always including the possibility of
not ltering for one or more properties) was performed.

The predicted probabilities of toxicity calculated for the
selected metabolites were then combined with the predicted
probability for the respective parent compound. For the
combination of the predicted probabilities of toxicity, four
strategies were explored (Fig. 1B):

(1) Strategy 1: mean predicted probability over all compounds
(i.e. the parent compound and all predicted metabolites).

(2) Strategy 2: median predicted probability over all
compounds (i.e. the parent compound and all predicted
metabolites).

(3) Strategy 3: maximum predicted probability among the
parent compound and its predicted metabolites.

(4) Strategy 4: mean between the predicted probability of the
parent compound and the maximum probability among all
predicted metabolites.

If the overall probability was above 0.5, the compound was
predicted as toxic and otherwise as non-toxic.

Assignment of toxicity labels to metabolites. In preparation
of the use of the predicted metabolites for the generation of the
metabolism-aware models, the metabolites were assigned
toxicity labels according to the following procedure, individu-
ally for each endpoint data set:

(1) All metabolites with identical canonical SMILES as
a parent compound were assigned the toxicity label of the
parent compound.

(2) All metabolites not covered by step 1 and originating from
non-toxic parent compounds were labeled as “non-toxic”.

(3) All metabolites not covered by step 1 and originating from
toxic parent compounds were compared with the already
labeled metabolites. If an identical metabolite (based on the
canonical SMILES) was labeled in one of the previous steps (as
toxic or non-toxic), the same label was assigned.

(4) The remaining unlabeled metabolites from toxic parent
compounds were labeled as “toxic” (Table 2).

Data splitting. All models were trained within a 5-fold CV
framework. In order to ensure comparability between the base-
line models and the metabolism-aware models, the same splits
(with regard to parent compounds) were used in both cases.

To ensure that no data leak occurred in the metabolism-
aware model due to the presence of identical metabolites in
the training and test sets, the following procedure was con-
ducted on each split:

(1) Stratied shuffle split was applied on the parent
compounds (see Model development for details).

(2) The metabolites from the parent compounds in the test
and training set were collected independently.

(3) The metabolites in the training set, which were also
present in the test set (as parent or metabolite), were removed
from the training set.

(4) The compounds of the training set were deduplicated based
on the canonical SMILES (duplicates may appear due to repeated
metabolites or metabolites identical to parent compounds).

Machine learning methods for further modeling optimization

RF, gradient boosted trees and k-nearest neighbors models with
optimized hyperparameters were also trained in the hybrid-
approach. The scikit-learn implementations ‘GradientBoos-
tingClassier’ and ‘KNeighborsClassier’ were used for training
the gradient boosted trees and k-nearest neighbor models,
respectively. The hyperparameter optimization was conducted
on the training set within a grid search evaluated on an inner 5-
fold CV over the hyperparameters shown in Table 3.

A further set of molecular descriptors, the Continuous and
Data-Driven molecular Descriptors (CDDD),41 was employed as
input for RF models. These descriptors are derived from
a neural network trained to translate between two syntactically

Fig. 2 Workflow for calculating the overall probability of toxicity. The
baseline model or the metabolism-aware model are used to predict
the probability of toxicity of parent compounds and predicted
metabolites independently. The predictions for a compound and its
predicted metabolites are then combined into an overall probability to
obtain the toxicity label.
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different molecular representations. In order to make the
translation, the model rst learns to compress meaningful
information for the representation of molecules into a vector.
This vector can hence be used as a data-driven molecular
descriptor, offering a conceptually different method to repre-
sent molecules, compared to the xed Morgan ngerprints and
RDKit physicochemical descriptors.

Results and discussion
Analysis of the chemical space of the parent compounds and
their predicted metabolites

To understand the nature and composition of the metabolites
predicted for the parent compounds in each data set, several
characteristics of the predicted metabolites were analyzed.

The predicted metabolites result from phase I or phase II
reactions (considering up to four generations of metabolites).

The number of unique metabolites for the individual parent
compounds (aer removing duplicate metabolites from the
respective metabolic tree) varied greatly (from 0 to 828).
However, the median number of predicted metabolites among
all parent compounds of an endpoint-specic data set was
between 8 and 12 in all cases (Table 4).

By comparing the molecular properties of the parent
compounds and their predicted metabolites (Fig. 3 reports on
the AMES and MNT data sets; the graphs for the other
endpoints are provided in Fig. S1†) we found the latter to have,
averaged over all endpoints, a higher molecular weight (+43.9
Da) as well as a larger polar surface area (+44.4 !A2). The pre-
dicted metabolites also tended to have a lower log P value than
the parent compounds ("1.5; averaged over all endpoints).
These shis are primarily a result of the addition of polar
groups to the parent compounds, which make themmore water
soluble and therefore easier to excrete. This observation is in
concordance with the higher number of hydrogen bond donors
and acceptors observed in metabolites compared to parent
compounds (1.8 more hydrogen bond donors and acceptors on
average; Fig. 3). Overall, the shis in the physicochemical
property space between the parent compounds and the pre-
dictedmetabolites are consistent with those observed for parent
compounds and experimentally detected metabolites,42 a fact
that supports the relevance of the predicted metabolites.

Analysis of metabolites originating from toxic and non-toxic
parent compounds

The toxicity observed for a compound may be a direct result of
the parent compound or of one or several of its metabolites.

Table 2 Overview of the metabolites labeled in each step of the labeling workflow

Endpoint
Number of
metabolites

Percentage of metabolites

With the same molecular
structure as a parent
compound (step 1) (%)

Originating from
non-toxic parent
compounds (step 2) (%)

Originating from toxic parent
compounds already labeled
as toxic (step 3) (%)

Labeled as toxic
as part of step 4 (%)

AMES 86 629 5.19 59.03 3.43 32.34
MNT 27 105 2.11 81.53 2.22 14.14
DILI 10 730 0.40 32.25 4.60 62.75
DICC 46 881 2.21 67.43 4.82 25.54
LLNA 16 842 3.46 51.62 5.66 39.26

Table 3 Grid of hyperparameters applied for each method

Method Hyperparameter Values

Random forest n_estimators 400, 700, 1000
Min_samples_leaf 1, 2, 3
Class_weight ‘Balanced’

Gradient boosted trees n_estimators 200, 400, 600
Min_samples_leaf 1, 2, 3
Learning_rate 0.1, 0.01

K-nearest neighbors n_neighbors 3, 5, 8
Weights ‘Uniform’, ‘distance’

Table 4 Overview of the number of predicted metabolites for the parent compounds in each endpoint data set

Endpoint

Mean number of
metabolites
per compound

Median number of
metabolites
per compound

Percentage of parent
compounds
without any
predicted metabolite

Percentage of parent
compounds with fewer than
ve predicted metabolites

AMES 17.34 10 1.28 19.67
MNT 15.52 9 1.66 20.90
DILI 16.28 12 0.30 11.53
DICC 14.74 10 0.88 15.94
LLNA 13.38 8 0.87 23.75
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Understanding the differences in the metabolites formed by
toxic and non-toxic compounds may therefore help in their
discrimination. However, when comparing the physicochemical

properties of the (predicted) metabolites originating from toxic
and from non-toxic parent compounds, we did not detect any
substantial, systematic differences. This is not surprising

Fig. 3 Comparison of the physicochemical properties of the parent compounds (blue) and predicted metabolites (orange) represented in the
AMES and MNT data sets.
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because toxic effects may be related to a single metabolite,
which is difficult to detect.

Most notable was a minor shi in the log P distribution (see
Fig. S2† for an example of the log P distributions of AMES and
MNT): the log P of metabolites originating from non-toxic
compounds was generally lower (log P of 0.8; averaged over all
metabolites of all endpoints) than for metabolites from toxic
compounds (log P of 1.2; averaged over all metabolites of all
endpoints). The higher log P of metabolites originating from
toxic parent compounds could be related to the observed
toxicity, as these metabolites are more likely to evade excretion
and to cross membranes.

Another aspect that could differ from toxic to non-toxic
compounds are the types of biotransformations that they are
undergoing. Testa et al.43 observed that some reactions are more
prone to generate reactive or toxic metabolites than others. They
showed that toxic metabolites are mainly formed by redox
reactions, followed by conjugation reactions and, lastly,
hydrolysis. Hence, the type of biotransformation that
a compound undergoes may be an indicator of the compound's
toxicity. To investigate whether the types of biotransformations
in the metabolic trees of toxic and non-toxic compounds differ,
the percentage of parent compounds of each toxicity class
undergoing each biotransformation (as labeled by Meteor
Nexus) was calculated for all endpoints.

We observed that some biotransformations occur more
frequently in toxic parent compounds than in non-toxic ones
(and vice versa). However, there was no single biotransforma-
tion observed to be related to the same toxicity class for all
endpoints (see Fig. S3† for the examples of AMES andMNT). For
instance, “aromatic reductive dehalogenation” is predicted
more frequently for toxic compounds in theMNT assay (than for
non-toxic compounds in this assay) while it is more oen
observed for non-toxic compounds in the AMES assay (than for
toxic compounds in this assay).

In an analogous way, the enzymes catalyzing biotransfor-
mations in the metabolic tree of toxic and non-toxic compounds
were also investigated. Similar results as for the biotransfor-
mations were observed, but, in this case, the differences
between classes were smaller (i.e. there were few enzymes
metabolizing a higher percentage of toxic or non-toxic
compounds).

Baseline performance of the models

To enable the (later) quantication of the added value of
metabolism prediction in toxicity prediction we generated
baseline models trained exclusively on physicochemical prop-
erties of the parent compounds (encoded by count-based
Morgan ngerprints and RDKit physicochemical property
descriptors; see Materials and methods section for details).

Themean F1 score obtained by the baselinemodels within 5-
fold CV ranged from 0.64 (for MNT) to 0.82 (for AMES; Table 5).
The superior performance of the AMES baseline model (F1
score at least 0.09 higher than for any other baseline model) is
attributed to the larger size of the data set (it is the biggest data
set considered in this study with at least 1853 compounds more

than any other data set) as well as the nature of the endpoint:
the AMES test is an in vitro assay carried out on bacteria, hence
representing a more simple problem than the in vivo endpoints
based on living mammals and considered in this work. Among
the in vivo endpoints, the model for the LLNA assay, a skin
sensitization assay measuring cellular proliferation in the
draining lymph nodes of mice, obtained the highest mean F1
score (0.73). The lowest F1 score (0.64) was obtained by the MNT
baseline model. The precision and recall yielded by each
endpoint-specic model were on a similar level in all cases,
indicating a balanced ratio of false positive and false negative
predictions.

Metabolite information as input descriptors for parent
compounds

Molecular descriptors for metabolites. One or several
chemical features present in the metabolites could be associ-
ated with the toxic effect observed for a parent compound. In an
attempt to include this information in the model, molecular
descriptors of the ve best-scored predicted metabolites were
included as further input features for model building. These
molecular descriptors include (a) count-based Morgan nger-
prints, (b) RDKit physicochemical property descriptors and (c)
a combination thereof (see Materials and methods for details).
In cases where fewer than ve metabolites were predicted for
a parent compound (between 12% and 24% of the compounds;
Table 4), the remaining features were lled with zeros (in the
case of the Morgan ngerprints) or with the mean value of the
feature (in the case of the RDKit property descriptors). The
trainedmodels were evaluated by comparing the predicted label
for each test parent compound with their experimental toxicity
label within 5-fold CV.

When comparing the performance of these models con-
taining metabolite information with that of the baseline
models, no improvements of performance were observed (Table
S2†). The fewminor gains in performance did not exceed a value
of +0.04 among all evaluated metrics and were not signicant
(at a p-value of 0.05; Table S3†). In several cases the addition of
descriptors for the predicted metabolites led to small decreases
in performance (up to a value of "0.09 among all metrics).

Biotransformation ngerprint. Our analysis of the types of
biotransformations recorded for toxic and non-toxic
compounds (see “Analysis of metabolites originating from
toxic and non-toxic parent compounds”) found indications that
this information could be utilized to enhance toxicity predic-
tion. Therefore, we derived a biotransformation ngerprint
which encodes the number of occurrences of each biotrans-
formation in the predicted metabolic tree of a compound. In
combination with the molecular descriptors calculated for the
parent compounds, this biotransformation ngerprint was
used for the training of machine learning models (see the
Materials and methods section for details).

Within the 5-fold CV framework, the performance of these
models was comparable to the baseline performance of each
endpoint. For all evaluated metrics the difference from the
baseline performance did not exceed #0.01 (Tables S4 and
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S5†). The lack of an improvement in performance may be
related to the sparsity of the biotransformation ngerprint:
most of the biotransformations were not predicted to take
place on more than 10% of the compounds. This low coverage
of compounds may not be sufficient to enhance toxicity
prediction. In order to remove possible noise caused by the
sparse ngerprints, feature selection with a lasso model was
applied to all input features (in order to discard irrelevant
features prior to the training of the RF model). However, no
relevant improvement in the performance compared to the
baseline models was observed when feature selection was
included prior to model training (F1 score deviations ranged
from "0.05 to +0.01 among all endpoints).

Combination of predicted probabilities for parent compounds
and metabolites

Another approach for considering metabolite information in
toxicity prediction is the calculation of an “Overall predicted
probability of toxicity” by combining the probabilities predicted
for the parent compounds and their metabolites. A related
approach (although based on distinct modeling methods and
utilizing measured metabolites; explored for different
endpoints) was applied, with some success, by Dmitriev et al.2

and Filimonov et al.3 (see the Introduction section for details).
In this work, we explored four strategies to combine

prediction probabilities:
Strategy 1: mean of the probabilities of the parent compound

and all predicted metabolites.
Strategy 2: median probability of the parent compound and

all predicted metabolites.
Strategy 3: maximum probability among the parent

compound and all predicted metabolites.
Strategy 4: mean between the predicted parent compound

probability and the maximum probability among all metabo-
lites (i.e. the probability of the metabolite that the model deems
most likely to be toxic, among all predicted metabolites).

To evaluate model performance, the obtained “Overall
probability of toxicity” (derived by the different strategies) was
compared to the experimental toxicity label of each parent

Table 5 Performance of the baseline models within 5-fold cross-
validationa

Endpoint F1 score MCC Precision Recall

AMES 0.82 (#0.01) 0.65 (#0.03) 0.83 (#0.01) 0.82 (#0.01)
MNT 0.64 (#0.03) 0.29 (#0.05) 0.67 (#0.02) 0.62 (#0.03)
DILI 0.68 (#0.04) 0.37 (#0.08) 0.69 (#0.04) 0.68 (#0.04)
DICC 0.69 (#0.02) 0.39 (#0.04) 0.71 (#0.02) 0.69 (#0.03)
LLNA 0.73 (#0.02) 0.47 (#0.04) 0.74 (#0.02) 0.73 (#0.02)

a Numbers reported in parentheses are the standard deviations.

Fig. 4 Overview of the steps (i–iv) of the workflow for combining the predicted probability of parent compounds and predicted metabolites,
showing the variations investigated at each stage. A grid search among all combinations of parameters at the different stages was conducted to
identify the optimum solution.
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compound (within 5-fold CV; see the “Data splitting” section for
details). Note that all predicted metabolites (not only the ve
best-scored metabolites) were considered here.

The four strategies were applied to two approaches that
differ in the underlying models used for calculating the pre-
dicted probabilities (Fig. 4ii). In the baseline-approach, we
applied the baseline models on the test parent compounds and
their metabolites and combined them with each of the above-
mentioned strategies. With strategy 1, strategy 2 and strategy
3, a drop in F1 score and MCC was observed for all investigated
endpoints. Strategies 1 and 2 especially showed a decrease in
recall (up to "0.17), which was sometimes compensated, to
some extent, by an increased precision (up to +0.04), while the
opposite effect was observed for strategy 3 (Table S6†).

Out of the four strategies, the best classication performance
was obtained, in general, with strategy 4. However, the gain in F1
scores compared to the respective baseline models was 0.02 or
less (and hence not signicant, according to the Mann–Whitney
U test; see Table S7† for details). Compared to strategies 1 and 2,
strategy 4 may provide a well-balanced compromise between an
improved capacity to detect toxicity related to metabolism and
noise introduced by the predicted metabolites. A similar result
was also observed in the study by Dmitriev et al.,2 where several
strategies to combine the predicted LD50 value (for acute rat
toxicity) for parent compounds and their measured metabolites
were investigated (mean of the predicted LD50 of all metabolites;
mean of the predicted LD50 of the parent compound and all
metabolites; maximum predicted LD50 among all metabolites;
mean of the predicted LD50 of the parent compound and the
most toxic metabolite). In agreement with our observations,
Dimitriev et al. obtained their best results for the prediction of
acute rat toxicity when taking the mean of the predicted LD50 for
the parent compound and that of the most toxic metabolite. Also
the increase in model performance (compared to taking the
prediction of the parent compound only) in their case was minor
(+0.03 in R2 and no differences in RMSE).

In the hybrid-approach, the predicted probabilities of the
metabolites to be toxic were calculated with a dedicated model.
We addressed the possibility that the absence of relevant
improvement by the four above-mentioned strategies was due to
a decient coverage of the chemical space of the metabolites by
the baseline model. The differences observed in the chemical
space of parent compounds and metabolites (see the section
“Analysis of the chemical space of the parent compounds and
predicted metabolites” for details) could indicate that some
metabolites fall outside the applicability domain of the models
trained only on parent compounds (baseline models).

To expand the chemical space coverage of the models and try
to improve the toxicity predictions for the metabolites, models
including metabolites as input data (i.e. with their molecular
descriptors as input features and the assigned toxicity as class
label) were also developed (metabolism-aware models). The
toxicity label of the metabolites for these models was assigned
following the workow described in the section “Assignment of
toxicity labels to metabolites”. Instead of applying this

straightforward labeling approach, the toxicity labels of the
metabolites could have also been predicted with the baseline
model. However, we did not investigate this option further as it
would increase the complexity of the workow and does not t
the purpose of this study. By labeling the metabolites we pretend
to analyze whether the reason for the small model performance
improvement is due to poor quality of the predicted probabilities
of toxicity of the metabolites. Hence, predicting the toxicity label
of the metabolites would suffer from the same limitation. We
acknowledge that any manual or automatic metabolite labeling
approach is a limitation of this study. The only way to overcome
this limitation is the use of a large dataset of metabolites with
measured toxicities. However, to our best knowledge no such
dataset is in existence in the public domain.

With the hybrid-approach we aim to obtain the best
predictions for each compound by predicting the probability of
the parent compound to be toxic with the baseline model, and
the probability to be toxic of the individual metabolites with the
metabolism-aware model. Note that we also investigated the
possibility to predict both the toxicity of the parent compound
and the metabolites with the metabolism-aware model, but we
did not see a relevant improvement compared to the baseline-
or hybrid-approaches in this case and therefore did not further
investigate this direction.

Compared to the baseline-approach, the hybrid-approach
yielded better results in toxicity prediction. However, with
improvements in the F1 scores and MCCs not exceeding 0.03
and 0.05, respectively, these results are not signicantly better
(based on the Mann–Whitney U test) than those obtained with
the baseline model (Table 6). Few signicant improvements
were recorded for precision or recall for the MNT and DICC
models (Table S8†).

The decrease in performance with strategies 1 and 2
(considering the predictions of all metabolites) in combination
with the hybrid-approach was in general not as drastic as with
the baseline-approach. This may indicate that the predicted
probabilities for the metabolites were more accurate and did
not include as much noise in the overall prediction. Again in
this case, the best performance was observed with strategy 4
(averaging the probability of the parent compound and the
most toxic metabolite), with only minor improvements in the F1
score of up to +0.03. Only for the DILI endpoint the F1 score
decreased (by "0.02) with this strategy.

In addition, we analyzed whether the improvements in model
performance may be limited due to the consideration of metab-
olites that are irrelevant to the observed toxic effect. In order to
reduce the noise in the prediction caused by these metabolites,
we applied several metabolite lters removing predicted metab-
olites that (a) have a low Meteor Nexus prediction score, (b) have
a low calculated log P, or (c) are predicted to be further metab-
olized by conjugating enzymes (Fig. 4i).

Metabolites predicted with a low score by Meteor Nexus may
be less likely to be observed in vivo and hence irrelevant to
toxicity prediction. Metabolic reactions oen lead to
compounds with low log P values, making them more water
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soluble and therefore easier to excrete. These metabolites are
also unlikely to cross membranes and they are less likely to
induce toxic effects. Along the same lines, phase II metabolism
facilitates the conjugation of compounds with polar moieties,
making them more water soluble. It has already been observed
that only few conjugation reactions lead to toxic metabolites.43

Following this reasoning, several thresholds for removing
metabolites based on their Meteor Nexus score as well as
calculated log P values were investigated. Also strategies to
remove metabolites formed by phase II reactions, or remove
metabolites which are further transformed by phase II reactions
were explored. A grid search over all ltering possibilities (and
all above-mentioned approaches and strategies) was conducted
on each data set to obtain the most favorable combinations.

In most cases, reducing the number of metabolites consid-
ered for the prediction based on these parameters did not yield
better models. Among the ve top-ranked models (based on the
F1 score) of the grid search, only in a few cases, minor
improvements of up to +0.06 among all metrics and endpoints
were observed (Table S9†). However, these performance
improvements were not signicant for any endpoint compared
to the baseline performance (Table S10†).

Exploration of further modeling approaches with the hybrid-
approach

To evaluate whether the predictions may be improved by opti-
mizing the modeling approach, different machine learning

modeling methods with optimized hyperparameters (within
a grid search; see Materials and methods section for details)
and a further, distinct set of descriptors (CDDD descriptors)41

were investigated at the example of the best performing
approach, namely the hybrid-approach.

The F1 score obtained for the following machine learning
setup combinations is shown in Table S11:† RF, gradient boosted
trees and k-nearest neighbors, each with and without the use of
oversampling with SMOTENC (based on Morgan ngerprint and
RDKit physicochemical descriptors as input descriptors). More-
over, the performance of RFmodels trained on CDDDdescriptors
(including oversampling with SMOTE) are also provided.

The results obtained with these new models do not deviate
from those obtained with the models generated with the initial
modeling setup (i.e. RF with xed hyperparameters; combination
of Morgan ngerprints and RDKit physicochemical descriptors;
oversampling with SMOTENC; results reported in Table 6): the
largest observed improvement in F1 scores yielded by the new
models was of just +0.01. The conclusions derived in the
‘Combination of predicted probabilities for parent compounds
and metabolites’ section remain consistent with the new results.
The explicit incorporation of predicted metabolite information
in toxicity prediction models did not signicantly improve the
toxicity predictions of these models either. Although there was
oen no benet compared to the baseline models (or the benet
was small), the best strategy for combining the predicted prob-
abilities of parent compounds and metabolites was, also in this
case, strategy 4 (taking the mean between the predicted

Table 6 Average performance within 5-fold cross-validation for the different combinations of predicted probabilities with the hybrid-approach

Endpoint Combinationa F1 score MCC Precision Recall

AMES Baseline performance 0.82 (#0.01) 0.65 (#0.03) 0.83 (#0.01) 0.82 (#0.01)
Strategy 1 0.80 (#0.01) 0.61 (#0.02) 0.82 (#0.01) 0.80 (#0.01)
Strategy 2 0.80 (#0.01) 0.61 (#0.02) 0.81 (#0.01) 0.79 (#0.01)
Strategy 3 0.79 (#0.02) 0.60 (#0.03) 0.79 (#0.01) 0.81 (#0.01)
Strategy 4 0.83 (#0.02) 0.65 (#0.03) 0.82 (#0.02) 0.83 (#0.02)

MNT Baseline performance 0.64 (#0.03) 0.29 (#0.05) 0.67 (#0.02) 0.62 (#0.03)
Strategy 1 0.61 (#0.03) 0.31 (#0.05) 0.75 (#0.02) 0.59 (#0.03)
Strategy 2 0.61 (#0.04) 0.29 (#0.06) 0.74 (#0.03) 0.59 (#0.03)
Strategy 3 0.65 (#0.02) 0.31 (#0.03) 0.64 (#0.02) 0.67 (#0.02)
Strategy 4 0.66 (#0.03) 0.33 (#0.06) 0.69 (#0.04) 0.65 (#0.03)

DILI Baseline performance 0.68 (#0.04) 0.37 (#0.08) 0.69 (#0.04) 0.68 (#0.04)
Strategy 1 0.66 (#0.03) 0.33 (#0.06) 0.67 (#0.03) 0.66 (#0.03)
Strategy 2 0.66 (#0.03) 0.32 (#0.06) 0.67 (#0.03) 0.65 (#0.03)
Strategy 3 0.59 (#0.05) 0.31 (#0.07) 0.73 (#0.03) 0.60 (#0.03)
Strategy 4 0.66 (#0.03) 0.37 (#0.05) 0.73 (#0.02) 0.65 (#0.03)

DICC Baseline performance 0.69 (#0.02) 0.39 (#0.04) 0.71 (#0.02) 0.69 (#0.03)
Strategy 1 0.68 (#0.02) 0.40 (#0.03) 0.75 (#0.02) 0.66 (#0.01)
Strategy 2 0.68 (#0.02) 0.39 (#0.04) 0.73 (#0.02) 0.66 (#0.02)
Strategy 3 0.68 (#0.01) 0.38 (#0.01) 0.67 (#0.00) 0.70 (#0.00)
Strategy 4 0.72 (#0.02) 0.44 (#0.03) 0.72 (#0.01) 0.72 (#0.02)

LLNA Baseline performance 0.73 (#0.02) 0.47 (#0.04) 0.74 (#0.02) 0.73 (#0.02)
Strategy 1 0.70 (#0.02) 0.42 (#0.04) 0.73 (#0.02) 0.70 (#0.02)
Strategy 2 0.71 (#0.03) 0.44 (#0.05) 0.73 (#0.02) 0.71 (#0.03)
Strategy 3 0.69 (#0.01) 0.42 (#0.03) 0.71 (#0.02) 0.71 (#0.01)
Strategy 4 0.74 (#0.02) 0.48 (#0.05) 0.74 (#0.02) 0.74 (#0.03)

a The baseline performance corresponds to models considering only parent compounds. Strategies 1, 2 and 3 correspond to taking the mean,
median and maximum predicted probability among the parent compound and its metabolites, respectively. Strategy 4 corresponds to the mean
between the predicted probability for the parent compound and the highest probability predicted for any of its metabolites.
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probability of the parent compound and the maximum proba-
bility among all predicted metabolites).

Conclusions
In this work we systematically investigated a variety of strategies
to enhance toxicity prediction by taking into account xenobiotic
metabolism. Our results show that none of these strategies
produces models that consistently outperform others. The best
results were obtained by averaging the probability of toxicity
predicted for the parent compound and the maximum proba-
bility of toxicity predicted for any metabolite. This approach
yielded models with F1 scores up to +0.03 higher than the
baseline models disregarding metabolism.

We observed that models trained exclusively on the parent
compounds oen produce poor predictions for the metabolites
as their chemistry oen differs. Including labeled metabolites
in the training set of the models slightly improved the predic-
tions of toxicity for the metabolites and hence the overall result
of averaging the probabilities of toxicity for parent compounds
and their metabolites. In some cases, discarding unlikely or
water-soluble metabolites slightly improved the predictions (F1
score up to +0.04 higher than for the baseline models).

While metabolites can be key to detecting and under-
standing toxicity, they also add a new layer of complexity. The
metabolites formed, their concentrations in the organism, and
their excretion kinetics are oen unknown. Therefore,
including metabolism data in toxicity prediction poses veritable
challenges. The fragile balance between added signal and
added noise, when working with predicted metabolites in
machine learning, may explain the small differences in perfor-
mance of the models including metabolism information for
toxicity prediction compared to the baseline models. It is clear
from these results that there is still a long way to go in the
development of sufficiently accurate models for metabolism
prediction which, in turn, can boost toxicity prediction.

Abbreviations
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CV Cross-validation
DICC Drug-induced cardiological complications
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information about the data sets. Also detailed KNIME work-
ows used for preprocessing each data set and calculating the
chemical descriptors of the parent compounds are provided in
the ESI.† The workows and parameters used for developing the
models and necessary for reproducing the results are described
in detail in the Materials and methods section. The code used
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J. Kühnl and J. Kirchmair, Skin Doctor CP: Conformal
Prediction of the Skin Sensitization Potential of Small
Organic Molecules, Chem. Res. Toxicol., 2021, 34, 330–344.

31 Standardizer was used for structure canonicalization and
transformation, JChem 3.5.0, ChemAxon, http://
www.chemaxon.com.

32 M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter,
T. Meinl, P. Ohl, C. Sieb, K. Thiel and B. Wiswedel,
KNIME: The Konstanz Information Miner, in Studies in

© 2022 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2022, 1, 158–172 | 171

Paper Digital Discovery

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 2
3 

Fe
br

ua
ry

 2
02

2.
 D

ow
nl

oa
de

d 
on

 5
/5

/2
02

2 
4:

51
:0

8 
PM

. 
 T

hi
s a

rti
cl

e 
is 

lic
en

se
d 

un
de

r a
 C

re
at

iv
e 

Co
m

m
on

s A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
Li

ce
nc

e.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1dd00018g


Classication, Data Analysis, and Knowledge Organization
(GfKL 2007), Version 4.3.3., Springer, 2007.

33 G. Landrum, RDKit: Open-Source Cheminformatics Soware,
Version 4.2.0., 2016.

34 The pKa Plugin was used for the calculation of the pKa
constant value of molecules, JChem 3.5.0, ChemAxon,
http://www.chemaxon.com.

35 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot and É. Duchesnay, Scikit-learn:
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5 Conclusions and future directions 
Risk assessment is a requirement for the registration of any developed chemical, including 

pharmaceutical drugs, agrochemicals and cosmetics. Nowadays, toxicity testing still relies 

heavily on animal assays. Not only do these tests involve ethical concerns but they also are 

demanding with respect to costs, expertise and time. As the number and amounts of chemicals 

released to the environment are growing and more detailed studies on the safety of chemicals 

are required by the authorities for their registration, the urge to develop alternative methods 

and reduce animal assays is increasing. Such alternative methods rely on in vitro, in chemico 

or in silico methods that aim to reproduce in vivo effects. However, the substitution of in vivo 

animal assays by alternative methods is still a challenging task for most toxicity endpoints due 

to the highly complex processes taking place in the body that cause poor in silico predictivity 

and discrepancies between the in vitro and in vivo observations. For instance, compounds 

active on an off-target in vitro may not show such activity in vivo if the off-target effect is 

compensated by other routes or regulation pathways (e.g. thyroid hormone homeostasis can be 

regulated, among others, by the conversion to more or less active forms of the thyroid hormone 

or by changes in the synthesis rate of the hormones). The contrary relationship between in vitro 

and in vivo observations is also possible, as compounds that are inactive in vitro may cause 

toxic effects in vivo if, for example, compounds are metabolized in the living organism into 

toxic metabolites. Therefore, integrative approaches including in vitro and in silico models for 

different targets and pharmacokinetic processes are necessary for a successful substitution of 

animal assays and improvement of the current risk assessment strategies. Alternative models, 

designed directly on human tissues or effects, may even be more accurate than in vivo models, 

as they avoid the interspecies discrepancies observed when interpolating results from animal 

models to humans. To benefit from all current tools in regulatory contexts as well, the 

Integrated Approaches to Testing and Assessment93 (IATA) aim to integrate existing 

information and methods (including QSAR, in vitro and in vivo models) to make decisions 

about the safety of compounds. 

This thesis aims to contribute to the establishment of alternative methods by the development 

of computational toxicology tools that help to reproduce in vivo effects and bridge the in vitro-

in vivo gap from several perspectives. In the first study, we tackled the prediction of endocrine 

disruptors by setting the focus on a set of single, more approachable biological targets involved 

in the endocrine regulation. Since hormone homeostasis is regulated by highly complex 
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pathways, the in silico prediction of endocrine disruption effects in vivo is particularly 

challenging. Reducing the complexity of the problem to the prediction of MIEs allows the 

development of useful tools for determining the AOPs and guiding the detection of endocrine 

disruptors. This approach was investigated at the example of thyroid hormones, one of the least 

studied endocrine systems in computational toxicology. For this study, data sets for nine assays 

related to MIEs of thyroid hormone homeostasis disruption were collected (from the ToxCast 

database and related literature) and thoroughly curated (section 4.1.). This data served for the 

development of ML models, which were optimized with regard to the ML algorithm (among 

five possible algorithms) and the data balancing technique (among three techniques). The 

models for the TPO and TR endpoints achieved high predictive performance (0.83 and 0.81 F1 

score within a 10-fold CV), while the F1 score for the remaining endpoints ranged from 0.65 

to 0.77. The reduced performance of these endpoints may be related to the limited amount of 

data available for model development (especially active compounds) as well as the quality of 

this data (e.g. due to assay set ups prone to false positives). Multi-task NN models, trained on 

all endpoints (or a subset of them) at the same time, were also investigated. In contrast to our 

expectation, these models did not benefit from a transfer of information between endpoints and 

showed similar performance to the single-task models. The lack of benefit of multi-task models 

may be due to the small complementarity of the data sets (since all data sets contain compounds 

from the ToxCast library) and the limited biological and structural relationship of the biological 

targets. In order to do a deeper analysis of the reliability of the models, we evaluated the 

confidence of the predictions with regard to (i) their distance to the decision threshold and (ii) 

the similarity of the test compounds to the compounds in the training set. We observed that 

these two metrics correlate with the confidence of the predictions, and may be used to define 

thresholds for the AD of the models. 

The models developed within this study can help to identify the mechanisms of action of 

endocrine disruptors and to elucidate or confirm their related AOPs. The establishment of high 

quality AOPs can serve for the generation of reliable assessment strategies based on in vitro 

and in silico data, and hence reduce the frequency of animal assays to its minimum. As more 

compounds are tested on the studied assays in the future, and orthogonal assays are carried out 

to discard false positive readouts, it would be interesting to update the models to ensure the 

best coverage of the chemical space and highest quality of the models. 

In the second study of this thesis, an integrative approach was developed for enhancing the 

performance of in silico models targeted directly to the prediction of in vivo effects. For this 
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purpose, the outcome of compounds in in vitro and pharmacokinetics assays were included in 

in vivo toxicity prediction models in the form of bioactivity descriptors (section 4.2.). We 

investigated whether these bioactivity descriptors can better represent the behavior of 

compounds in biological systems and enhance the prediction of in vivo toxicity endpoints 

compared to using only chemical descriptors. Exclusively public domain data was used in this 

study, which covered over 300 biological assays (employed to build the bioactivity descriptors) 

and three in vivo endpoints (used as final modeling target): a genotoxicity assay (MNT) and 

two organ toxicity assays (DILI and DICC). Due to the sparsity of the biological assay data, 

predicted outcomes for the in vitro and pharmacokinetics assays were introduced instead of 

measured ones. For calculating the predicted bioactivity descriptors, a ML model was trained 

on each biological assay and applied on the in vivo toxicity data sets to compute the predicted 

outcomes. All the developed models in this study were embedded in a CP framework, which 

enabled the mathematical definition of their AD. The results showed a significant increase in 

the performance of models including bioactivity descriptors for two of the three analyzed in 

vivo endpoints (MNT and DICC) compared to models trained exclusively on chemical 

descriptors. Both an increase in the efficiency (up to 0.12), measuring the ratio of single class 

predictions, and in the F1 score (up to 0.10), measuring the quality of the single class 

predictions, were obtained with the developed bioactivity descriptors for these endpoints.  

The positive outcome of this study is not only relevant for the development of better performing 

ML models for in vivo toxicity prediction. The predicted bioactivity descriptors are also 

promising for improving the similarity assessment of compounds for read-across applications. 

After confirming the suitability of the described approach, future work should be centered on 

the application of the predicted bioactivity descriptors on defined endpoints following the 

OECD principles94 (i.e. with homogeneous data sets derived by the exact same experimental 

protocol and conditions), in order to make the models suitable for regulatory applications as 

well. 

Before applying ML models on new data for regulatory purposes or research applications, it 

has to be ensured that the model can be applied on the test data with confidence. A common 

issue in computational toxicology is the appearance of data drifts over time or between data 

sets from different sources, which hinder the reliable application of ML models. When data 

drifts appear and the training and test sets have different distributions, CP models can no longer 

ensure the defined error rate (i.e. they are not valid). This was also the observation made when 

applying the developed CP models for MNT and DILI to BASF SE inhouse data that covered 
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different parts of the descriptor space than the training data or were derived with differing assay 

conditions. To preserve the information learned from the public data and avoid a complete 

model retraining (for which the amount of inhouse data was also too scarce), we evaluated a 

strategy to adapt the already trained models to the new data. This strategy consists of 

exchanging only the calibration set of the CP models by data from the same distribution as the 

new test data. Simulating a real-case scenario, the oldest BASF data was used for recalibration 

and the model performance was evaluated on the newest inhouse data (section 4.3.). A similar 

strategy was also tested on ChEMBL time-split data to analyze the value of the approach for 

mitigating temporal data drifts. It was observed that exchanging the calibration set helped to 

restore the validity to its expected value (i.e. 0.8 at a significance level of 0.2) in most cases, 

making the models applicable to the new test sets. The models with restored validity were 

hence able to identify samples for which the model lacks information to make a reliable 

prediction. Since the new test data was in many cases only poorly covered by the data used to 

train the model (which remained unchanged), a high number of unreliable predictions was 

observed. In contrast to the original models, the recalibrated models identified these unreliable 

predictions and therefore showed decreased efficiencies and increased validities. Compared to 

the original models, the updated models yielded up to 0.10 lower efficiencies for the ChEMBL 

endpoints, and up to 0.55 lower efficiencies for the two inhouse endpoints. This efficiency drop 

may be considered acceptable as long as the validity is restored, which is the prerequisite for 

applying the CP models with confidence. In cases where the efficiency is too low, completely 

retraining the model may be required to have useful models in practice. With regard to the 

quality of the predictions, the balanced accuracy remained stable for the ChEMBL endpoints 

after the recalibration. In the case of the two inhouse endpoints, a more balanced accuracy 

between active and inactive predictions was obtained compared to the original models, which 

predicted almost all compounds to be inactive. In future work, it should be investigated further 

how the recalibration strategy compares to the results of retraining the ML models as the 

quantity of new data increases, or as the new data show different degrees of similarity to the 

original training data. Although defining an overall best approach may be unfeasible, such an 

analysis could deliver a thorough best practice guide for future applications. 

With the previously developed bioactivity descriptors we achieved to account for some of the 

ADME parameters that contribute to the discrepancies between in vitro and in vivo outcomes. 

In the last study of this thesis, we tried to go a step further and include information about 

metabolism in the predictive models for five toxicity endpoints (covering two genotoxicity, 
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two organ toxicity and one skin sensitization endpoints; section 4.4.). Xenobiotic metabolism 

is one of the key parameters influencing the outcome of in vivo assays but is, nevertheless, 

usually disregarded in in silico toxicology. In this study, predicted metabolites instead of 

measured ones were employed to expand the coverage of the chemical space and make the 

developed models easily applicable to new data. Several strategies for incorporating 

metabolism information in ML models were evaluated, including (i) the computation of a 

³ELRWUDQVIRUPDWLRQ� ILQJHUSULQW´� �LQGLFDWLQJ� WKH� RFFXUUHQFH� RI� VSHFLILF� PHWDEROLF�

transformations on a parent compound), (ii) the concatenation of physicochemical descriptors 

of the predicted metabolites as further input features for model development, or (iii) the 

combination of the predicted probability of toxicity for each parent compound and its predicted 

metabolites. Among all the strategies, the best results were obtained by taking the mean of the 

probability of toxicity for the parent compound and the maximum probability of toxicity for 

any of its metabolites. However, compared to the baseline models not including metabolism 

information, this approach yielded only up to 0.03 higher F1 scores among all evaluated 

endpoints. A further data cleaning step using several filters to remove unlikely or highly soluble 

metabolites was also implemented but did not result in relevant model performance 

improvements either. Although metabolism plays a major role in the toxicity outcome of a 

compound, it was shown that including predicted metabolism information in the models may 

incorporate high levels of uncertainty that counteract the valuable added information. As more 

metabolism data are available and metabolism predictors get better at prioritizing relevant 

structures, these approaches could be revised to try to improve the results. 

In recent years there has been a great increase in the number of ML algorithms and 

computational power that allows the development of highly accurate models. However, the 

performance of toxicity prediction models remains mainly limited by the quality and 

availability of the data. Experimental data contain inherent noise and errors that lower the upper 

limit for the predictive performance, as models can only get as good as the underlying data.95 

Moreover, sufficiently large data sets for model training may often only be achieved by 

merging data from several sources. This approach may introduce noise in the data, as 

experimental results obtained in different laboratories or with different protocols often present 

inconsistencies. Also merging data sets from publications derived with different data curation 

workflows may reduce the consistency and hence the quality of the data.  

In order to improve the acceptance of in silico toxicity models in early discovery stages and 

regulatory applications, both the data quality and the chemical space covered by the models 
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need to be expanded to allow for a wider AD and more confident predictions. For that matter, 

governmental initiatives like the ToxCast project need to be further developed to support the 

increase of high-quality toxicity data. Special emphasis should be set on screening putative 

active compounds to increase the representation of toxic substances in the data sets, as these 

are often the limiting factor for training well-generalizing and sensitive predictive models. 

Besides these governmental projects, a lot of effort is put on the development of federated 

learning methods that allow training ML models on confidential data from several companies 

without the need to pool or reveal this information.96, 97 Such approaches enable the exploitation 

of data otherwise only accessible to the individual companies, as well as the increase of the 

overall amount and coverage of available training data. To this end, projects like 

MELLODDY,98 a consortium of several industrial and public organizations, may be key for 

pushing the development of ML models with greater generalization capacity that boost the 

utility of in silico approaches in substance development pipelines. However, one of the biggest 

challenges that federated learning approaches are still facing is guaranteeing the safety of the 

intellectual property of industrial partners, while still having access to useful data for the 

development and interpretation of the models.99 

As the amount of toxicity data increases over time, e.g. via more published data or federated 

approaches, more complex, big-data-oriented ML algorithms like deep learning methods are 

becoming more powerful tools for enhancing the performance of computational toxicology 

models. However, the increased performance of these models comes at the cost of a low 

interpretability of the predictions.17 Not having a mechanistic understanding behind the 

prediction not only limits the acceptance of the models by the users, but also their usefulness 

for guiding the redesign of compounds in the desired direction. As deep learning algorithms 

become more frequent in many research areas, the field of explainable artificial intelligence 

has also gained great relevance.100 Explainable artificial intelligence allows the understanding 

of how the different input parameters are influencing the prediction and can hence help to guide 

research in the desired direction.101, 102 This information may also be valuable to confirm that 

models are learning meaningful relationships in the data and not just noise or bias. The 

implementation of these explainability methods in toxicity prediction models can also promote 

their acceptance in regulatory applications and may be mandatory in the future, as the OECD 

principles for QSAR models already require mechanistic interpretation whenever possible.94 

When enough data is still not available for training robust deep learning models, transfer 

learning methods offer the opportunity to exploit the benefits of these complex architectures 
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and at the same time reuse information learned on related topics with abundant data.103 A 

common transfer learning approach consists of first training a model on a task and using it as 

a starting point (as a whole or parts of it) for training and fine-tuning a model on a second task. 

Also multi-task models, where several tasks are learned at the same time (as described in 

section 4.1.), are commonly applied in chemical property prediction applications to exploit the 

benefits of transfer learning.104, 105 Besides the information exchange between related tasks, 

transfer learning approaches also present further advantages, such as shorter training times 

(especially important for big data applications) and better generalization by reducing 

overfitting. 

All these advancements in data sciences and the increase of available toxicological data pose 

in silico toxicology as a powerful tool for the development of robust IATA in the following 

years. The determination of in vivo effects is a highly challenging problem that requires safety 

assessment strategies approaching it from different perspectives to achieve robust and reliable 

results. Here, we aim to cover some of these aspects with the development of computational 

tools that, for instance, predict MIEs for the establishment of AOPs, or improve the molecular 

similarity definition for read-across applications using bioactivity descriptors.  
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Table S1. Flags Available in the ToxCast Database for Tagging Potential Errors in Class 
Labeling. 

ToxCast flags 

Only one concentration above baseline (active) 

Multiple points above baseline (inactive) 

Noisy data 

Borderline active 

Borderline inactive 

Gain AC50 lower than the lowest concentration and loss AC50 lower than the mean 
concentration  

Gain AC50 lower than the lowest concentration and loss AC50 lower than the mean 
concentration  

Hit-call potentially confounded by overfitting 

Biochemical assay with less than 50% efficacy 
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Table S2. List of Molecular Descriptors Used in Principal Component Analysis. 
 

Descriptors 

SlogP 

TPSA 

ExactMW 

NumLipinskiHBA 

NumLipinskiHBD 

NumRotatableBonds 

NumHBD 

NumHBA 

NumAmideBonds 

NumHeteroAtoms 

NumHeavyAtoms 

NumAtoms 

NumStereocenters 

NumUnspecifiedStereocenters 

NumRings 

NumAromaticRings 

NumSaturatedRings 

NumAliphaticRings 

NumAromaticHeterocycles 

NumSaturatedHeterocycles 

NumAliphaticHeterocycles 

NumAromaticCarbocycles 

NumSaturatedCarbocycles 

NumAliphaticCarbocycles 

FractionCSP3 
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Figure S1. Distribution of pairwise Tanimoto similarities based on atom-pair fingerprints, 
for DIO2, DIO3, TR, NIS, TRHR, TSHRAg and TSHRAnt and three types of compound 
pairs: a) active-to-active, b) inactive-to-inactive and c) active-to-inactive.  
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Figure S2. Comparison of the mean F1 score obtained for the nine thyroid end points with 
(a) LR, (b) XGB, (c) SVM and (d) NN in combination with the three data sampling 
techniques. 
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Figure S1. Loadings plot of the PCA based on a selection of interpretable molecular 
descriptors generated with RDKit on the global in vivo toxicity data set. The loadings plot 
shows how strongly each feature influences a principal component. 
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Figure S2. UMAP projections for the three in vivo endpoints (MNT in vivo, DILI and 
DICC) on (A) the CHEM descriptor set and (B) the CHEMBIO descriptor set.  
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Figure S3. Principal component analysis based on a selection of interpretable molecular 
descriptors generated with RDKit. The PCA was derived from the merged data set of three 
H0RO7R[�DVVD\V��³0RGXODWRU�RI�1HXURSHSWLGH�<�UHFHSWRU�W\SH��´��³0RGXODWRU�RI�8URWHQVLQ�
,,�UHFHSWRU´�DQG�³$JRQLVW�RI�/LYHU�;�UHFHSWRU�DOSKD´��IRU�ZKLFK the CP models yielded 
mean F1 scores on the single class predictions of 1.0. The active and inactive compounds of 
these data sets are located in differentiated parts of the chemical space, facilitating their 
classification. 

(a)  
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(b)  

(c)  

Figure S4. Distribution of the validity, efficiency and F1 score values obtained within the 5-
fold CV framework for the (a) MNT, (b) DILI and (c) DICC CP models built on the 
different descriptor sets without feature selection. The CHEM descriptor set includes the 
molecular fingerprint and physicochemical descriptors; the BIO descriptor set includes the 
predicted p-values for a set of biological assays (bioactivity descriptor); the CHEMBIO 
descriptor set includes the previous two descriptor sets. Significant differences in the 
distribution (p-value < 0.05) are denoted by a star. 
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Figure S5. Mean coefficient reported by the lasso model for the bioactivity descriptors in 
relationship with the percentage of overlapping compounds (of the in vivo data set), the 
efficiency and F1 score of the models for each biological assay. For each of the 373 
biological assays, the highest mean coefficient of the two p-values used as descriptors (for 
the active and inactive classes of each assay) was taken. The coefficients higher than 0 were 
normalized with a min-max normalization (from 0.01 to 1; see Materials and Methods 
section) for easier comparison. 
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Table S1. Data Sources and Download Links for the Original in Vivo Toxicity Data. 

Endpoint Data sources Download link1 Query (json format) MD5 file checksum Checksum input file 

MNT 

10.1016/j.yrtph.2020.1

04620 
- - 

6174327EB2B69D4326

B36E5D610ACDE7 
Supplementary .xlsx file 

eChemPortal (active) 

https://www.echemportal
.org/echemportal/propert

y-search 

{"blocks":[{"level":0,"type":"property","id":"dis3i1p7tjkdijou2p","label":"Genetic 

toxicity in vivo","endpointKind":"GeneticToxicityVivo"}],"endpoints": 
{"dis3i1p7tjkdijou2p":{"ENDPOINT_STUDY_RECORD.GeneticToxicityVivo.Admin
istrativeData.StudyResultType":{"1342":"","phrase":["1895"]},"ENDPOINT_STUDY_

RECORD.GeneticToxicityVivo.AdministrativeData.Reliability":{"1342":"","phrase":["
16","18","24","1342"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVivo.Materi

alsAndMethods.Guideline.Qualifier":{"phrase":["1680","1880"]},"ENDPOINT_STUD
Y_RECORD.GeneticToxicityVivo.MaterialsAndMethods.Guideline.Guideline":{"1342
":"","phrase":["1290"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVivo.Result

sAndDiscussion.TestRs.Genotoxicity":{"1342":"","phrase":["2276"]},"ENDPOINT_ST
UDY_RECORD.GeneticToxicityVivo.ResultsAndDiscussion.TestRs.Toxicity":{"phras

e":["2170","2197","2207"]},"endpointKind":"GeneticToxicityVivo"}}} 

6D1771634AE4FBDFD

C9C517A0F2594FC 

.csv file resulting from 

eChemPortal query 

eChemPortal (inactive) 

https://www.echemportal

.org/echemportal/propert

y-search 

{"blocks":[{"level":0,"type":"property","id":"dis3i1p7tjkdijou2p","label":"Genetic 
toxicity in vivo","endpointKind":"GeneticToxicityVivo"}],"endpoints": 

{"dis3i1p7tjkdijou2p":{"ENDPOINT_STUDY_RECORD.GeneticToxicityVivo.Admin
istrativeData.StudyResultType":{"1342":"","phrase":["1895"]},"ENDPOINT_STUDY_

RECORD.GeneticToxicityVivo.AdministrativeData.Reliability":{"1342":"","phrase":["
16","18","24","1342"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVivo.Materi
alsAndMethods.Guideline.Qualifier":{"phrase":["1680","1880"]},"ENDPOINT_STUD

Y_RECORD.GeneticToxicityVivo.MaterialsAndMethods.Guideline.Guideline":{"1342
":"","phrase":["1290"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVivo.Result

sAndDiscussion.TestRs.Genotoxicity":{"1342":null,"phrase":["2148"]},"ENDPOINT_
STUDY_RECORD.GeneticToxicityVivo.ResultsAndDiscussion.TestRs.Toxicity":{"ph

rase":["2170","2197","2207"]},"endpointKind":"GeneticToxicityVivo"}}} 

10BC1CB5B9C4F0FED

DAEF41600E13937 

.csv file resulting from 

eChemPortal query 

DILI 
10.1016/j.drudis.2016.

02.015 
- - 

4EA88A5523A6717B91

18AF7C4DAA9442 
Supplementary .xlsx file 

DICC 
10.1021/acs.jcim.7b00

641 
- - 

80B6A4048F31A9EC74

DD84522B1F861D 
Supplementary .xlsx file 

1 Missing download links correspond to data sets available as supplementary material of the publication indicated as data source. 
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Table S2. Description of in Vitro Assays Endpoints and Databases and Corresponding Download Links. 

Database/Endpoint Description 

ToxCast database 

The ToxCast project is run by the U.S. Environmental Protection Agency (EPA) and has screened thousands of compounds in more than 700 high-throughput assays so far. In this work, the ToxCast 

database serves as the primary source of in vitro assay data. Binary activity labels for the individual endpoints ("active" and "inactive") were assigned based on the binary "hit-call" values ("0" and 

"1") obtained from the ToxCast database version 3.3. The hit-call values themselves were derived from activity curves. They indicate whether a minimum activity threshold has been reached. In this 

study, only endpoints with at least 200 active and 200 inactive compounds listed (after structure preparation and deduplication; see the section Structure Preparation for details) were considered for 

PRGHOLQJ��)XUWKHUPRUH��HQGSRLQWV�FRUUHVSRQGLQJ�WR�EDFNJURXQG�PHDVXUHPHQWV��L�H��DVVD\V�LQFOXGLQJ�³FK�´��³FK�´�RU�³YLDELOLW\´�in their name) were discarded. This procedure resulted in a total of 

222 ToxCast endpoints (Table S3). 

eMolTox database 

The eMolTox web server contains models for the prediction of the activity of compounds in 174 in vitro and in vivo toxicity-related assays. The experimental data used for training these models is 

also available and was collected for this study. The activity labels provided with the eMolTox database are binary and were directly used. In analogy to the protocol followed for the ToxCast 

database, only endpoints with at least 200 active and 200 inactive compounds (after the structure preparation and deduplication steps; see section Structure Preparation for details) were considered 

for modeling. Any data on in vivo toxicity endpoints were discarded. This procedure resulted in a total of 136 in vitro assays (Table S3). 

AMES mutagenicity 

assay 

For the AMES assay, data from the European Chemicals Agency (ECHA) available at the eChemPortal were collected. Only experimental data derived according to the OECD Guidelines referring 

to this genotoxicity assay (OECD Guideline 471, 473 or 476; or equivalent) were considered. All assay outcomes annotated as unreliable or related to compounds that are cytotoxic were discarded. 

All compounds (identified based on CAS numbers) with conflicting activity data were also removed. Additional data on the AMES, chromosome aberration and mammalian cell gene mutation 

endpoints were obtained from the work of Benigni et al.[28], which includes curated data sets from the European Food Safety Authority (EFSA) data. In addition, the benchmark data set for the 

AMES test compiled by Hansen et al.[29] was incorporated. 

Chromosome 

aberration assay 

For the chromosome aberration assay, data from the European Chemicals Agency (ECHA) available at the eChemPortal were collected. Only experimental data derived according to the OECD 

Guideline referring to this genotoxicity assay (OECD Guidelines 473 or equivalent) were considered. All assay outcomes annotated as unreliable or related to compounds that are cytotoxic were 

discarded. All compounds (identified based on CAS numbers) with conflicting activity data were also removed. Additional data on the AMES, chromosome aberration and mammalian cell gene 

mutation endpoints were obtained from the work of Benigni et al.[28], which includes curated data sets from the European Food Safety Authority (EFSA) data. 

Mammalian 

mutagenicity assay 

For the mammalian cell gene mutation assay, data from the European Chemicals Agency (ECHA) available at the eChemPortal were collected. Only experimental data derived according to the 

OECD Guideline referring to this genotoxicity assay (OECD Guidelines 476 or equivalent) were considered. All assay outcomes annotated as unreliable or related to compounds that are cytotoxic 

were discarded. All compounds (identified based on CAS numbers) with conflicting activity data were also removed. Additional data on the AMES, chromosome aberration and mammalian cell 

gene mutation endpoints were obtained from the work of Benigni et al.[28], which includes curated data sets from the European Food Safety Authority (EFSA) data. 

Bioavailability 
A data set describing human oral bioavailability was collected from Falcón-Cano et al.[27] To derive a binary label for the bioavailability data indicated in the data set, a cut-off of 50% 

bioavailability, as proposed by Falcón-Cano et al., was applied (compounds were labeled "inactive" if the bioavailability percentage is lower than 50%; otherwise they were labeled "active").  

Permeability 

Permeability data were obtained from the work of Wang et al.[30] on Caco-2 cells, where the permeability of a compound is indicated by its apparent permeability coefficient (Papp). To derive 

binary labels, a cut-off of 20 × 10±6 cm/s was applied on the Papp values, as proposed by Wang et al. (compounds were labeled "inactive" if the Papp value is lower than the threshold; otherwise, 

they were labeled "active"). 

Thyroid hormone 

homeostasis 

Nine data sets for molecular initiating events related to thyroid hormone homeostasis were collected from Garcia de Lomana et al.[31] These nine assays describe inhibitors of deiodinases 1, 2 and 3, 

thyroid peroxidase and sodium iodide symporter; antagonists of the thyroid hormone receptor, thyrotropin-releasing hormone receptor and thyroid stimulating hormone receptor (TSHR); as well as 

agonists of TSHR. The data sets contain binary activity labels primarily obtained from the ToxCast hit-call values and related literature and including data curation steps for removing possible false 

positive and false negative results. 

P-Glycoprotein 

inhibition 

A data set on P-Glycoprotein (ABCB1) inhibition by small molecules was obtained from Broccatelli et al.[32] The binary activity labels provided with this data set are based on IC50 and percent 

inhibition values of the compounds and were used as is. 
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Database/Endpoint Data sources Download link1 Query (json format) MD5 file checksum 
Checksum input 
file 

ToxCast database 
ToxCast version 
3.3 

ftp://newftp.epa.gov/COMPTOX/
High_Throughput_Screening_Dat
a/InVitroDB_V3.3/ToxCast_Data
_July_2020/ 

- 
962EFEE512FEE51DFA
FB2FECD210ACB5 

"INVITRODB_V
3_3_LEVEL5.zip
" file 

eMolTox database 
10.1093/bioinfor
matics/bty135 

http://xundrug.cn/moltox/about - 
3401033F5FC1CB907A
B295419199301D 

"train_data" 
.tar.gz file 

AMES mutagenicity 
assay 

10.1021/ci900161
g 

- - 
AA408BCD82C3F98D0
86C9D63C38AA488 

Supplementary 
.smi file 

10.2903/sp.efsa.2
019.EN-1598 

https://efsa.onlinelibrary.wiley.co
m/doi/10.2903/sp.efsa.2019.EN-
1598 

- 
2DE6AFD2C3F46FE52
38E48E25350ED62 

Supplementary 
.xlsx file 

eChemPortal 
(active) 

https://www.echemportal.org/ech
emportal/property-search 

{"blocks":[{"level":0,"type":"property","id":"ifmhvogurmskdigbmf4","label":"Genetic 
toxicity in vitro","endpointKind":"GeneticToxicityVitro"}],"endpoints": 
{"ifmhvogurmskdigbmf4":{"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.Adm
inistrativeData.StudyResultType":{"1342":"","phrase":["1895"]},"ENDPOINT_STUDY_
RECORD.GeneticToxicityVitro.AdministrativeData.Reliability":{"1342":"","phrase":["16
","18","24","1342"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.MaterialsA
ndMethods.Guideline.Qualifier":{"phrase":["1680","1880"]},"ENDPOINT_STUDY_REC
ORD.GeneticToxicityVitro.MaterialsAndMethods.Guideline.Guideline":{"1342":"","phra
se":["1287"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.MaterialsAndMeth
ods.GLPComplianceStatement":{"phrase":null},"ENDPOINT_STUDY_RECORD.Geneti
cToxicityVitro.ResultsAndDiscussion.TestRs.Genotoxicity":{"1342":"","phrase":["2276"]
},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.ResultsAndDiscussion.TestRs.
Cytotoxicity":{"1342":"","phrase":["64852","4120","4121","2196","2207","1342"]},"end
pointKind":"GeneticToxicityVitro"}}} 

9E450D7E6F3C9FC0D8
33993187E7D4CE 

.csv file resulting 
from eChemPortal 
query 

eChemPortal 
(inactive) 

https://www.echemportal.org/ech
emportal/property-search 

{"blocks":[{"level":0,"type":"property","id":"ifmhvogurmskdigbmf4","label":"Genetic 
toxicity in vitro","endpointKind":"GeneticToxicityVitro"}],"endpoints": 
{"ifmhvogurmskdigbmf4":{"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.Adm
inistrativeData.StudyResultType":{"1342":"","phrase":["1895"]},"ENDPOINT_STUDY_
RECORD.GeneticToxicityVitro.AdministrativeData.Reliability":{"1342":"","phrase":["16
","18","24","1342"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.MaterialsA
ndMethods.Guideline.Qualifier":{"phrase":["1680","1880"]},"ENDPOINT_STUDY_REC
ORD.GeneticToxicityVitro.MaterialsAndMethods.Guideline.Guideline":{"1342":"","phra
se":["1287"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.MaterialsAndMeth
ods.GLPComplianceStatement":{"phrase":null},"ENDPOINT_STUDY_RECORD.Geneti
cToxicityVitro.ResultsAndDiscussion.TestRs.Genotoxicity":{"1342":null,"phrase":["2148
"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.ResultsAndDiscussion.TestR
s.Cytotoxicity":{"1342":"","phrase":["64852","4120","4121","2196","2207","1342"]},"en
dpointKind":"GeneticToxicityVitro"}}} 

7126FB1A36E9CAB843
03669F68CD14A6 

.csv file resulting 
from eChemPortal 
query 
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Chromosome 
aberration assay 

10.2903/sp.efsa.2
019.EN-1598 

https://efsa.onlinelibrary.wiley.co
m/doi/10.2903/sp.efsa.2019.EN-
1598 

- 
2DE6AFD2C3F46FE52
38E48E25350ED62 

Supplementary 
.xlsx file 

eChemPortal 
(active) 

https://www.echemportal.org/ech
emportal/property-search 

{"blocks":[{"level":0,"type":"property","id":"ifmhvogurmskdigbmf4","label":"Genetic 
toxicity in vitro","endpointKind":"GeneticToxicityVitro"}],"endpoints": 
{"ifmhvogurmskdigbmf4":{"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.Adm
inistrativeData.StudyResultType":{"1342":"","phrase":["1895"]},"ENDPOINT_STUDY_
RECORD.GeneticToxicityVitro.AdministrativeData.Reliability":{"1342":"","phrase":["16
","18","24","1342"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.MaterialsA
ndMethods.Guideline.Qualifier":{"phrase":["1680","1880"]},"ENDPOINT_STUDY_REC
ORD.GeneticToxicityVitro.MaterialsAndMethods.Guideline.Guideline":{"1342":null,"phr
ase":["64850","64851"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.Materia
lsAndMethods.GLPComplianceStatement":{"phrase":null},"ENDPOINT_STUDY_REC
ORD.GeneticToxicityVitro.ResultsAndDiscussion.TestRs.Genotoxicity":{"1342":null,"ph
rase":["2276"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.ResultsAndDisc
ussion.TestRs.Cytotoxicity":{"1342":"","phrase":["64852","4120","4121","2196","2207",
"1342"]},"endpointKind":"GeneticToxicityVitro"}}} 

EEF5BCA9FF1A0FD12
8026410D4B83345 

.csv file resulting 
from eChemPortal 
query 

eChemPortal 
(inactive) 

https://www.echemportal.org/ech
emportal/property-search 

{"blocks":[{"level":0,"type":"property","id":"ifmhvogurmskdigbmf4","label":"Genetic 
toxicity in vitro","endpointKind":"GeneticToxicityVitro"}],"endpoints": 
{"ifmhvogurmskdigbmf4":{"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.Adm
inistrativeData.StudyResultType":{"1342":"","phrase":["1895"]},"ENDPOINT_STUDY_
RECORD.GeneticToxicityVitro.AdministrativeData.Reliability":{"1342":"","phrase":["16
","18","24","1342"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.MaterialsA
ndMethods.Guideline.Qualifier":{"phrase":["1680","1880"]},"ENDPOINT_STUDY_REC
ORD.GeneticToxicityVitro.MaterialsAndMethods.Guideline.Guideline":{"1342":null,"phr
ase":["64850","64851"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.Materia
lsAndMethods.GLPComplianceStatement":{"phrase":null},"ENDPOINT_STUDY_REC
ORD.GeneticToxicityVitro.ResultsAndDiscussion.TestRs.Genotoxicity":{"1342":null,"ph
rase":["2148"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.ResultsAndDisc
ussion.TestRs.Cytotoxicity":{"1342":"","phrase":["64852","4120","4121","2196","2207",
"1342"]},"endpointKind":"GeneticToxicityVitro"}}} 

4408C9F92CAA548888
BC21A72D5B4CEE 

.csv file resulting 
from eChemPortal 
query 

Mammalian 
mutagenicity assay 

10.2903/sp.efsa.2
019.EN-1598 

https://efsa.onlinelibrary.wiley.co
m/doi/10.2903/sp.efsa.2019.EN-
1598 

- 
2DE6AFD2C3F46FE52
38E48E25350ED62 

Supplementary 
.xlsx file 
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eChemPortal 
(active) 

https://www.echemportal.org/ech
emportal/property-search 

{"blocks":[{"level":0,"type":"property","id":"ifmhvogurmskdigbmf4","label":"Genetic 
toxicity in vitro","endpointKind":"GeneticToxicityVitro"}],"endpoints": 
{"ifmhvogurmskdigbmf4":{"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.Adm
inistrativeData.StudyResultType":{"1342":"","phrase":["1895"]},"ENDPOINT_STUDY_
RECORD.GeneticToxicityVitro.AdministrativeData.Reliability":{"1342":"","phrase":["16
","18","24","1342"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.MaterialsA
ndMethods.Guideline.Qualifier":{"phrase":["1680","1880"]},"ENDPOINT_STUDY_REC
ORD.GeneticToxicityVitro.MaterialsAndMethods.Guideline.Guideline":{"1342":null,"phr
ase":["64855"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.MaterialsAndMe
thods.GLPComplianceStatement":{"phrase":null},"ENDPOINT_STUDY_RECORD.Gen
eticToxicityVitro.ResultsAndDiscussion.TestRs.Genotoxicity":{"1342":null,"phrase":["22
76"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.ResultsAndDiscussion.Test
Rs.Cytotoxicity":{"1342":"","phrase":["64852","4120","4121","2196","2207","1342"]},"e
ndpointKind":"GeneticToxicityVitro"}}} 

3E83FF9EBC8E392FE5
D0BEA55934D817 

.csv file resulting 
from eChemPortal 
query 

eChemPortal 
(inactive) 

https://www.echemportal.org/ech
emportal/property-search 

{"blocks":[{"level":0,"type":"property","id":"ifmhvogurmskdigbmf4","label":"Genetic 
toxicity in vitro","endpointKind":"GeneticToxicityVitro"}],"endpoints": 
{"ifmhvogurmskdigbmf4":{"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.Adm
inistrativeData.StudyResultType":{"1342":"","phrase":["1895"]},"ENDPOINT_STUDY_
RECORD.GeneticToxicityVitro.AdministrativeData.Reliability":{"1342":"","phrase":["16
","18","24","1342"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.MaterialsA
ndMethods.Guideline.Qualifier":{"phrase":["1680","1880"]},"ENDPOINT_STUDY_REC
ORD.GeneticToxicityVitro.MaterialsAndMethods.Guideline.Guideline":{"1342":null,"phr
ase":["64855"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.MaterialsAndMe
thods.GLPComplianceStatement":{"phrase":null},"ENDPOINT_STUDY_RECORD.Gen
eticToxicityVitro.ResultsAndDiscussion.TestRs.Genotoxicity":{"1342":null,"phrase":["21
48"]},"ENDPOINT_STUDY_RECORD.GeneticToxicityVitro.ResultsAndDiscussion.Test
Rs.Cytotoxicity":{"1342":"","phrase":["64852","4120","4121","2196","2207","1342"]},"e
ndpointKind":"GeneticToxicityVitro"}}} 

96602EA7965095B4245
A96C9015450A1 

.csv file resulting 
from eChemPortal 
query 

Bioavailability doi.org/10.1021/a
cs.jcim.0c00019 - - 8DE686BF3664E5CC32

7420CDA7EB8480 
Supplementary 
.xlsx file 

Permeability 10.1021/acs.jcim.
5b00642 - - 879BA561143296B2DD

99C334F9A66A9E 
Supplementary 
.xlsx file 

Thyroid hormone 
homeostasis 

10.1021/acs.chem
restox.0c00304 - - 6415103CF4F96B9D4F

8845765F30475B 
Supplementary 
.xlsx file 

P-Glycoprotein 
inhibition 

10.1021/jm10142
1d - - 7FFACE7954090CBD28

47BC41ADE7D42A 
Supplementary 
.xls file 

1 Missing download links correspond to data sets directly available as supplementary material of the publication indicated as data source 
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Table S3. List of Biological Assays With the Number of Active and Inactive 
Compounds in Their Data Sets. 

Endpoint Number of Total 

 active 
compounds 

inactive 
compounds  

AMES 3530 5136 8666 

Mammalian cell gene mutation 56 789 845 

Chromosome aberration 143 813 956 

Human oral bioavailability 797 678 1475 

PGP inhibition 651 567 1218 

Caco-2 328 718 1046 

DIO1 inhibition 108 1563 1671 

DIO2 inhibition 175 1504 1679 

DIO3 inhibition 180 1498 1678 

TPO inhibition 252 780 1032 

TR antagonism 1209 4912 6121 

NIS inhibition 49 736 785 

TRHR antagonism 52 6340 6392 

TSHR antagonism 102 6380 6482 

TSHR agonism 196 6379 6575 

eMolTox - Modulator of Muscarinic acetylcholine 
receptor M5 287 1625 1912 

eMolTox - Antagonist of the thyroid receptor (TR) 
signaling pathway 356 5102 5458 

eMolTox - Modulator of Glucocorticoid receptor 1778 9373 11151 

eMolTox - Mutagenicity 3299 2758 6057 

eMolTox - Modulator of GABA-A receptor alpha-
5beta-3gamma-2 601 1896 2497 

eMolTox - Modulator of Muscarinic acetylcholine 
receptor M2 1075 5730 6805 
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eMolTox - Modulator of Neuropeptide Y receptor 
type 1 381 1990 2371 

eMolTox - Modulator of Cannabinoid CB2 receptor 3527 11052 14579 

eMolTox - Modulator of Androgen Receptor 1269 6890 8159 

eMolTox - Modulator of Monoamine oxidase A 435 2250 2685 

eMolTox - Agonist of the thyroid stimulating 
hormone receptor (TSHR) signaling pathway 310 6241 6551 

eMolTox - Modulator of Cholecystokinin A receptor 247 1325 1572 

eMolTox - Modulator of Neurokinin 1 receptor 2008 9501 11509 

eMolTox - Modulator of Serotonin 2c (5-HT2c) 
receptor 2136 11622 13758 

eMolTox - Modulator of GABA-A receptor alpha-
2beta-3gamma-2 485 1897 2382 

eMolTox - Modulator of Acetylcholinesterase 1717 9250 10967 

eMolTox - Modulator of Cannabinoid CB1 receptor 2714 11627 14341 

eMolTox - Modulator of Neurokinin 2 receptor 666 3640 4306 

eMolTox - Modulator of Histamine H1 receptor 858 4550 5408 

eMolTox - Modulator of Alpha-1a adrenergic 
receptor 1265 7183 8448 

eMolTox - Antagonist of the androgen receptor 
(AR) signaling pathway 507 5640 6147 

eMolTox - Modulator of Neuronal acetylcholine 
receptor protein alpha-7 subunit 344 1920 2264 

eMolTox - Activator Alzheimers amyloid precursor 1982 19855 21837 

eMolTox - Differential cytotoxicity (isogenic 
chicken DT40 Rev3 mutant cell line) 1923 4367 6290 

eMolTox - Antagonist of the estrogen receptor alpha 
(ER-alpha) signaling pathway dup 348 5936 6284 

eMolTox - Modulator of HERG 1568 8027 9595 

eMolTox - Antagonist of the retinoic acid receptor 
(RAR) signaling pathway 540 4672 5212 

eMolTox - Modulator of Serotonin 2b (5-HT2b) 
receptor 1053 5552 6605 
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eMolTox - Modulator of Platelet-derived growth 
factor receptor beta 712 3600 4312 

eMolTox - Antagonist of the retinoid-related orphan 
receptor gamma (ROR-gamma) signaling pathway 483 4600 5083 

eMolTox - Modulator of Serotonin 1a (5-HT1a) 
receptor 3000 11721 14721 

eMolTox - Modulator of Neuronal acetylcholine 
receptor alpha4beta2 525 2960 3485 

eMolTox - Agonist of H2AX 379 6241 6620 

eMolTox - Modulator of GABA-A receptor alpha-
3beta-3gamma-2 610 1898 2508 

eMolTox - Induce genotoxicity in human embryonic 
kidney cells 274 6772 7046 

eMolTox - Modulator of Glutamate NMDA receptor 254 1335 1589 

eMolTox - Modulator of Norepinephrine transporter 1953 11164 13117 

eMolTox - Modulator of Serotonin transporter 3123 11233 14356 

eMolTox - Modulator of Sodium channel protein 
type IX alpha subunit 2116 8545 10661 

eMolTox - Agonist of the AP-1 signaling pathway 552 5878 6430 

eMolTox - Agonist of the p53 signaling pathway 494 6307 6801 

eMolTox - Modulator of Serotonin 3a (5-HT3a) 
receptor 329 1825 2154 

eMolTox - Modulator of Serotonin 1b (5-HT1b) 
receptor 863 4535 5398 

eMolTox - Modulator of Delta opioid receptor 2144 11186 13330 

eMolTox - Modulator of Vascular endothelial 
growth factor receptor 1 1030 5204 6234 

eMolTox - Modulator of Beta-2 adrenergic receptor 1026 5471 6497 

eMolTox - Modulator of Muscarinic acetylcholine 
receptor M4 407 2240 2647 

eMolTox - Modulator of TNF-alpha 340 1745 2085 

eMolTox - Modulator of Calcitonin gene-related 
peptide type 1 receptor 527 2451 2978 
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eMolTox - Modulator of Alpha-2a adrenergic 
receptor 577 3101 3678 

eMolTox - Modulator of Sigma opioid receptor 1724 9309 11033 

eMolTox - Differential cytotoxicity against isogenic 
chicken DT40 cell lines with known DNA damage 
response pathways - Rad54Ku70 mutant cell line 

1931 4632 6563 

eMolTox - Modulator of GABA-A receptor alpha-
1beta-3gamma-2 569 1919 2488 

eMolTox - Modulator of Dopamine transporter 1535 8975 10510 

eMolTox - Modulator of GABA-A receptor anion 
channel 927 2748 3675 

eMolTox - Differential cytotoxicity (isogenic 
chicken DT40 cell lines) 1804 4615 6419 

eMolTox - Cytotoxicity in HEK293 cells - 16 hour 307 6386 6693 

eMolTox - Aromatase inhibitors 295 5515 5810 

eMolTox - Modulators of myocardial damage 2264 22689 24953 

eMolTox - Antagonist of the androgen receptor 
(AR) signaling pathway dup 378 5703 6081 

eMolTox - Modulator of Adenosine A2a receptor 2924 12881 15805 

eMolTox - Modulator of Serotonin 2a (5-HT2a) 
receptor 2896 13019 15915 

eMolTox - Modulator of Beta-3 adrenergic receptor 1273 6617 7890 

eMolTox - Agonist of the estrogen receptor alpha 
(ER-alpha) signaling pathway 402 6575 6977 

eMolTox - Modulator of Kappa opioid receptor 2536 13272 15808 

eMolTox - Modulator of Adenosine A3 receptor 2634 8893 11527 

eMolTox - Modulator of Serotonin 7 (5-HT7) 
receptor 1378 7083 8461 

eMolTox - Modulator of Beta-1 adrenergic receptor 847 4412 5259 

eMolTox - Antagonist of the estrogen receptor alpha 
(ER-alpha) signaling pathway 349 5787 6136 

eMolTox - Modulator of Adenosine A2b receptor 1415 5004 6419 

eMolTox - Modulator of Vascular endothelial 
growth factor receptor 3 356 1820 2176 
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eMolTox - Modulator of Vascular endothelial 
growth factor receptor 2 4569 9429 13998 

eMolTox - Modulator of Receptor protein-tyrosine 
kinase erbB-2 987 5175 6162 

eMolTox - Modulator of Alpha-2b adrenergic 
receptor 327 1767 2094 

eMolTox - Modulator of Serotonin 4 (5-HT4) 
receptor 433 2225 2658 

eMolTox - Modulator of Platelet-derived growth 
factor receptor alpha 323 1655 1978 

eMolTox - Modulator of Melatonin receptor 1B 705 1540 2245 

eMolTox - Antagonist of the glucocorticoid receptor 
(GR) signaling pathway 363 5614 5977 

eMolTox - Agonist of the androgen receptor (AR) 
signaling pathway 240 6496 6736 

eMolTox - Cytotoxicity in HEK293 cells - 32 hour 531 6022 6553 

eMolTox - Modulator of Muscarinic acetylcholine 
receptor M1 1112 5935 7047 

eMolTox - Modulator of Dopamine D2 receptor 4352 11910 16262 

eMolTox - Modulator of Angiotensin II type 2 (AT-
2) receptor 283 1224 1507 

eMolTox - Modulator of Urotensin II receptor 272 1460 1732 

eMolTox - Modulator of P2X purinoceptor 7 1790 4075 5865 

eMolTox - Agonist of the antioxidant response 
element (ARE) signaling pathway 908 4690 5598 

eMolTox - Block Bile Salt Export Pump 350 301 651 

eMolTox - Cytotoxicity in HepG2 cells - 8 hour 305 6432 6737 

eMolTox - Agonist of the farnesoid-X-receptor 
(FXR) signaling pathway 402 5366 5768 

eMolTox - Antagonist of the peroxisome 
proliferator-activated receptor gamma (PPARg) 
signaling pathway 

368 5388 5756 

eMolTox - Cytotoxicity in HepG2 cells - 24 hour 592 5941 6533 

eMolTox - Modulator of Adenosine A1 receptor 2520 12934 15454 
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eMolTox - Agonist of Liver X receptor alpha 396 3407 3803 

eMolTox - Modulator of Dopamine D1 receptor 712 3825 4537 

eMolTox - Modulator of Peroxisome proliferator-
activated receptor gamma 1932 10491 12423 

eMolTox - Agonist of the peroxisome proliferator-
activated receptor gamma (PPARg) signaling 
pathway 

206 6266 6472 

eMolTox - Cytotoxicity in HEK293 cells - 40 hour 641 5878 6519 

eMolTox - Modulator of Endothelin receptor ET-B 501 1077 1578 

eMolTox - Induce Phospholipidosis 220 520 740 

eMolTox - Inhibitors of Hepatocyte nuclear factor 4 
(HNF4) dimerization 1711 509 2220 

eMolTox - Cytotoxicity in HEK293 cells - 8 hour 257 6458 6715 

eMolTox - Modulator of Bradykinin B2 receptor 377 1930 2307 

eMolTox - Inhibit CYP2C19 Activity 20287 20283 40570 

eMolTox - Disruptors of the mitochondrial 
membrane potential 935 4918 5853 

eMolTox - Modulator of Endothelin receptor ET-A 1073 1007 2080 

eMolTox - Modulator of Mu opioid receptor 2532 12213 14745 

eMolTox - Agonist of the RXR signaling pathway 208 5374 5582 

eMolTox - Modulator of Muscarinic acetylcholine 
receptor M3 1261 6815 8076 

eMolTox - Antagonist of the vitamin D receptor 
(VDR) signaling pathway 326 5578 5904 

eMolTox - Modulator of P2X purinoceptor 3 827 564 1391 

eMolTox - Inhibit CYP1A2 Activity 4064 3363 7427 

eMolTox - Cytotoxicity in HepG2 cells - 40 hour 786 5685 6471 

eMolTox - Cytotoxicity in HEK293 cells - 24 hour 432 6187 6619 

eMolTox - Substrates of Cytochrome P450 2C19 1846 5896 7742 

eMolTox - Modulator of Alpha-1b adrenergic 
receptor 960 5417 6377 

eMolTox - Antagonist of the farnesoid-X-receptor 
(FXR) signaling pathway 274 5966 6240 
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eMolTox - Cytotoxicity in HepG2 cells - 16 hour 445 6203 6648 

eMolTox - Activators of the human pregnane X 
receptor (PXR) signaling pathway 228 1660 1888 

eMolTox - Activators of Cytochrome P450 2A9 1368 13676 15044 

eMolTox - Modulator of Platelet activating factor 
receptor 285 688 973 

eMolTox - Modulator of Vasopressin V1a receptor 497 2665 3162 

eMolTox - Modulator of Type-1 angiotensin II 
receptor 589 2367 2956 

eMolTox - Inhibitors and Substrates of Cytochrome 
P450 3A4 3271 6192 9463 

eMolTox - Modulator of Cyclooxygenase-1 292 1476 1768 

eMolTox - Inhibit CYP2C9 Activity 18725 18719 37444 

eMolTox - Agonist of Liver X receptor beta 451 3407 3858 

eMolTox - Antagonist of the farnesoid-X-receptor 
(FXR) signaling pathway dup 214 5679 5893 

eMolTox - Modulator of Cyclooxygenase-2 1506 7793 9299 

eMolTox - Antagonist of the constitutive androstane 
receptor (CAR) signaling pathway 418 6267 6685 

eMolTox - Activator the aryl hydrocarbon receptor 
(AhR) signaling pathway 838 5721 6559 

eMolTox - Inhibitors and Substrates of Cytochrome 
P450 2D6 1559 5851 7410 

eMolTox - Modulator of Angiotensin-converting 
enzyme 321 1879 2200 

eMolTox - Agonist of the constitutive androstane 
receptor (CAR) signaling pathway 867 5550 6417 

eMolTox - Cytotoxicity in HepG2 cells - 32 hour 695 5792 6487 

eMolTox - Activators of the heat shock response 
signaling pathway 389 5842 6231 

eMolTox - Inhibitors and Substrates of Cytochrome 
P450 2C9 1226 6427 7653 

ToxCast - ACEA AR antagonist 80hr 676 991 1667 

ToxCast - ACEA ER 80hr 398 2376 2774 
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ToxCast - APR HepG2 CellCycleArrest 72h dn 225 778 1003 

ToxCast - APR HepG2 CellLoss 24h dn 284 722 1006 

ToxCast - APR HepG2 CellLoss 72h dn 424 581 1005 

ToxCast - APR HepG2 MitoticArrest 72h up 266 722 988 

ToxCast - APR HepG2 OxidativeStress 24h up 224 779 1003 

ToxCast - APR HepG2 OxidativeStress 72h up 235 768 1003 

ToxCast - ATG AP 1 CIS up 581 2716 3297 

ToxCast - ATG Ahr CIS dn 203 3105 3308 

ToxCast - ATG Ahr CIS up 422 2899 3321 

ToxCast - ATG BRE CIS up 355 2952 3307 

ToxCast - ATG CMV CIS up 502 2794 3296 

ToxCast - ATG CRE CIS up 328 2972 3300 

ToxCast - ATG C EBP CIS up 223 3088 3311 

ToxCast - ATG DR4 LXR CIS dn 647 2649 3296 

ToxCast - ATG DR5 CIS up 294 3016 3310 

ToxCast - ATG EGR CIS up 472 2829 3301 

ToxCast - ATG ERE CIS up 818 2492 3310 

ToxCast - ATG ERa TRANS up 735 2583 3318 

ToxCast - ATG E Box CIS dn 296 3005 3301 

ToxCast - ATG Ets CIS dn 211 3105 3316 

ToxCast - ATG HIF1a CIS up 354 2947 3301 

ToxCast - ATG HSE CIS up 387 2920 3307 

ToxCast - ATG IR1 CIS dn 323 2980 3303 

ToxCast - ATG ISRE CIS dn 430 2865 3295 

ToxCast - ATG MRE CIS up 685 2615 3300 

ToxCast - ATG NFI CIS up 253 3061 3314 

ToxCast - ATG NF kB CIS dn 268 3055 3323 

ToxCast - ATG NRF2 ARE CIS up 1245 2040 3285 

ToxCast - ATG Oct MLP CIS up 526 2762 3288 
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ToxCast - ATG PBREM CIS up 373 2929 3302 

ToxCast - ATG PPARa TRANS up 229 3100 3329 

ToxCast - ATG PPARg TRANS up 923 2383 3306 

ToxCast - ATG PPRE CIS up 492 2813 3305 

ToxCast - ATG PXRE CIS dn 303 3019 3322 

ToxCast - ATG PXRE CIS up 1619 1679 3298 

ToxCast - ATG PXR TRANS up 934 2347 3281 

ToxCast - ATG Pax6 CIS up 419 2882 3301 

ToxCast - ATG RARa TRANS dn 217 3093 3310 

ToxCast - ATG RORE CIS up 369 2942 3311 

ToxCast - ATG RXRb TRANS up 498 2806 3304 

ToxCast - ATG SREBP CIS up 490 2814 3304 

ToxCast - ATG Sox CIS up 214 3107 3321 

ToxCast - ATG Sp1 CIS up 318 2987 3305 

ToxCast - ATG TA CIS up 209 3108 3317 

ToxCast - ATG TCF b cat CIS dn 405 2882 3287 

ToxCast - ATG VDRE CIS up 882 2395 3277 

ToxCast - ATG Xbp1 CIS up 422 2879 3301 

ToxCast - ATG p53 CIS dn 307 2999 3306 

ToxCast - BSK 3C Eselectin down 374 1028 1402 

ToxCast - BSK 3C HLADR down 529 872 1401 

ToxCast - BSK 3C IL8 down 315 1087 1402 

ToxCast - BSK 3C MCP1 down 360 1042 1402 

ToxCast - BSK 3C Proliferation down 558 841 1399 

ToxCast - BSK 3C SRB down 447 953 1400 

ToxCast - BSK 3C TissueFactor down 292 1110 1402 

ToxCast - BSK 3C VCAM1 down 331 1071 1402 

ToxCast - BSK 3C Vis down 425 971 1396 

ToxCast - BSK 3C uPAR down 391 1011 1402 
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ToxCast - BSK 4H Eotaxin3 down 402 998 1400 

ToxCast - BSK 4H MCP1 down 356 1039 1395 

ToxCast - BSK 4H Pselectin down 373 1029 1402 

ToxCast - BSK 4H SRB down 369 1032 1401 

ToxCast - BSK 4H VCAM1 down 391 1010 1401 

ToxCast - BSK 4H uPAR down 319 1081 1400 

ToxCast - BSK BE3C HLADR down 363 1035 1398 

ToxCast - BSK BE3C IL1a down 247 1155 1402 

ToxCast - BSK BE3C IP10 down 347 1053 1400 

ToxCast - BSK BE3C PAI1 down 257 1139 1396 

ToxCast - BSK BE3C tPA down 210 1187 1397 

ToxCast - BSK BE3C uPA down 213 1186 1399 

ToxCast - BSK CASM3C HLADR down 259 1141 1400 

ToxCast - BSK CASM3C MCP1 down 202 1200 1402 

ToxCast - BSK CASM3C MCSF down 241 1159 1400 

ToxCast - BSK CASM3C Proliferation down 429 970 1399 

ToxCast - BSK CASM3C SRB down 235 1168 1403 

ToxCast - BSK CASM3C Thrombomodulin up 225 1174 1399 

ToxCast - BSK CASM3C VCAM1 down 259 1141 1400 

ToxCast - BSK CASM3C uPAR down 232 1167 1399 

ToxCast - BSK KF3CT ICAM1 down 205 1196 1401 

ToxCast - BSK KF3CT IL1a down 269 1131 1400 

ToxCast - BSK KF3CT IP10 down 295 1103 1398 

ToxCast - BSK KF3CT MCP1 down 230 1168 1398 

ToxCast - BSK KF3CT MMP9 down 359 1040 1399 

ToxCast - BSK KF3CT SRB down 217 1182 1399 

ToxCast - BSK KF3CT TGFb1 down 258 1138 1396 

ToxCast - BSK KF3CT TIMP2 down 286 1111 1397 

ToxCast - BSK KF3CT uPA down 241 1155 1396 
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ToxCast - BSK LPS CD40 down 384 1016 1400 

ToxCast - BSK LPS Eselectin down 290 1112 1402 

ToxCast - BSK LPS IL1a down 287 1114 1401 

ToxCast - BSK LPS IL8 down 293 1102 1395 

ToxCast - BSK LPS MCP1 down 310 1090 1400 

ToxCast - BSK LPS MCSF down 373 1027 1400 

ToxCast - BSK LPS PGE2 down 270 1128 1398 

ToxCast - BSK LPS SRB down 346 1058 1404 

ToxCast - BSK LPS TNFa down 275 1125 1400 

ToxCast - BSK LPS TissueFactor down 211 1189 1400 

ToxCast - BSK LPS VCAM1 down 401 1000 1401 

ToxCast - BSK SAg CD38 down 418 981 1399 

ToxCast - BSK SAg CD40 down 401 996 1397 

ToxCast - BSK SAg CD69 down 372 1030 1402 

ToxCast - BSK SAg Eselectin down 384 1015 1399 

ToxCast - BSK SAg IL8 down 324 1076 1400 

ToxCast - BSK SAg MCP1 down 328 1073 1401 

ToxCast - BSK SAg MIG down 217 1185 1402 

ToxCast - BSK SAg PBMCCytotoxicity down 302 1102 1404 

ToxCast - BSK SAg Proliferation down 530 872 1402 

ToxCast - BSK SAg SRB down 346 1055 1401 

ToxCast - BSK hDFCGF CollagenIII down 398 998 1396 

ToxCast - BSK hDFCGF IP10 down 389 1009 1398 

ToxCast - BSK hDFCGF MCSF down 381 1017 1398 

ToxCast - BSK hDFCGF MIG down 273 1129 1402 

ToxCast - BSK hDFCGF MMP1 down 247 1154 1401 

ToxCast - BSK hDFCGF PAI1 down 362 1037 1399 

ToxCast - BSK hDFCGF Proliferation down 590 809 1399 

ToxCast - BSK hDFCGF SRB down 308 1095 1403 
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ToxCast - BSK hDFCGF TIMP1 down 240 1160 1400 

ToxCast - BSK hDFCGF VCAM1 down 377 1022 1399 

ToxCast - LTEA HepaRG ABCB11 dn 326 677 1003 

ToxCast - LTEA HepaRG ABCB1 up 245 757 1002 

ToxCast - LTEA HepaRG ABCG2 up 246 757 1003 

ToxCast - LTEA HepaRG ACOX1 dn 208 791 999 

ToxCast - LTEA HepaRG AFP dn 351 651 1002 

ToxCast - LTEA HepaRG ALPP dn 234 769 1003 

ToxCast - LTEA HepaRG APOA5 dn 233 768 1001 

ToxCast - LTEA HepaRG CAT dn 235 762 997 

ToxCast - LTEA HepaRG CYP1A1 up 793 210 1003 

ToxCast - LTEA HepaRG CYP1A2 up 478 523 1001 

ToxCast - LTEA HepaRG CYP2B6 up 535 468 1003 

ToxCast - LTEA HepaRG CYP2C19 up 327 675 1002 

ToxCast - LTEA HepaRG CYP2C9 dn 206 793 999 

ToxCast - LTEA HepaRG CYP2E1 dn 489 514 1003 

ToxCast - LTEA HepaRG CYP3A4 up 329 673 1002 

ToxCast - LTEA HepaRG CYP3A7 up 247 757 1004 

ToxCast - LTEA HepaRG CYP4A11 dn 311 691 1002 

ToxCast - LTEA HepaRG CYP4A22 dn 305 696 1001 

ToxCast - LTEA HepaRG CYP7A1 dn 357 645 1002 

ToxCast - LTEA HepaRG DDIT3 up 215 787 1002 

ToxCast - LTEA HepaRG FABP1 dn 340 662 1002 

ToxCast - LTEA HepaRG FASN dn 239 763 1002 

ToxCast - LTEA HepaRG FMO3 dn 260 739 999 

ToxCast - LTEA HepaRG GSTA2 dn 232 769 1001 

ToxCast - LTEA HepaRG HMGCS2 dn 298 704 1002 

ToxCast - LTEA HepaRG IGF1 dn 326 676 1002 

ToxCast - LTEA HepaRG IGFBP1 up 238 764 1002 
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ToxCast - LTEA HepaRG KRT19 dn 261 740 1001 

ToxCast - LTEA HepaRG LIPC dn 248 751 999 

ToxCast - LTEA HepaRG MYC up 221 779 1000 

ToxCast - LTEA HepaRG PEG10 dn 336 668 1004 

ToxCast - LTEA HepaRG SLC22A1 dn 314 688 1002 

ToxCast - LTEA HepaRG SLCO1B1 dn 203 797 1000 

ToxCast - LTEA HepaRG THRSP dn 225 777 1002 

ToxCast - LTEA HepaRG UGT1A1 up 366 638 1004 

ToxCast - NHEERL ZF 144hpf TERATOSCORE 
up 471 210 681 

ToxCast - OT AR ARSRC1 0480 261 1425 1686 

ToxCast - OT AR ARSRC1 0960 377 1310 1687 

ToxCast - OT ER ERaERb 0480 226 1460 1686 

ToxCast - OT ER ERaERb 1440 300 1381 1681 

ToxCast - OT ER ERbERb 0480 213 1472 1685 

ToxCast - OT ER ERbERb 1440 229 1457 1686 

ToxCast - OT FXR FXRSRC1 0480 366 1302 1668 

ToxCast - OT FXR FXRSRC1 1440 325 1343 1668 

ToxCast - TOX21 AP1 BLA Agonist ratio 879 5912 6791 

ToxCast - TOX21 ARE BLA agonist ratio 1364 4974 6338 

ToxCast - TOX21 AR BLA Agonist ratio 414 6736 7150 

ToxCast - TOX21 AR BLA Antagonist ratio 1294 5697 6991 

ToxCast - TOX21 AR LUC MDAKB2 Agonist 303 6860 7163 

ToxCast - TOX21 AR LUC MDAKB2 Antagonist 
0.5nM R1881 1314 5490 6804 

ToxCast - TOX21 AR LUC MDAKB2 Antagonist 
10nM R1881 810 6318 7128 

ToxCast - TOX21 AhR LUC Agonist 632 6485 7117 

ToxCast - TOX21 Aromatase Inhibition 897 6164 7061 

ToxCast - TOX21 CAR Agonist 723 6110 6833 
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ToxCast - TOX21 CAR Antagonist 572 6243 6815 

ToxCast - TOX21 DT40 2419 4462 6881 

ToxCast - TOX21 DT40 100 2590 4299 6889 

ToxCast - TOX21 DT40 657 2291 4527 6818 

ToxCast - TOX21 ERR Agonist 254 6641 6895 

ToxCast - TOX21 ERR Antagonist 1439 5303 6742 

ToxCast - TOX21 ERa BLA Agonist ratio 331 6822 7153 

ToxCast - TOX21 ERa BLA Antagonist ratio 886 6161 7047 

ToxCast - TOX21 ERa LUC VM7 Agonist 903 6010 6913 

ToxCast - TOX21 ERa LUC VM7 Antagonist 
0.1nM E2 857 5923 6780 

ToxCast - TOX21 ERa LUC VM7 Antagonist 
0.5nM E2 738 6400 7138 

ToxCast - TOX21 ERb BLA Antagonist ratio 1295 5471 6766 

ToxCast - TOX21 ESRE BLA ratio 205 6361 6566 

ToxCast - TOX21 FXR BLA antagonist ratio 901 5545 6446 

ToxCast - TOX21 GR BLA Agonist ratio 362 6826 7188 

ToxCast - TOX21 GR BLA Antagonist ratio 637 6512 7149 

ToxCast - TOX21 H2AX HTRF CHO Agonist ratio 438 6400 6838 

ToxCast - TOX21 HDAC Inhibition 461 6425 6886 

ToxCast - TOX21 HRE BLA Agonist ratio 274 6599 6873 

ToxCast - TOX21 HSE BLA agonist ratio 426 6078 6504 

ToxCast - TOX21 MMP fitc 404 6757 7161 

ToxCast - TOX21 MMP ratio down 1131 5975 7106 

ToxCast - TOX21 MMP ratio up 281 6933 7214 

ToxCast - TOX21 MMP rhodamine 952 6167 7119 

ToxCast - TOX21 PGC ERR Agonist 279 6607 6886 

ToxCast - TOX21 PGC ERR Antagonist 910 5863 6773 

ToxCast - TOX21 PPARd BLA antagonist ratio 471 6041 6512 

ToxCast - TOX21 PPARg BLA antagonist ratio 659 5833 6492 
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ToxCast - TOX21 PR BLA Antagonist ratio 1780 4983 6763 

ToxCast - TOX21 RAR LUC Agonist 239 6327 6566 

ToxCast - TOX21 RAR LUC Antagonist 720 6086 6806 

ToxCast - TOX21 RORg LUC CHO Antagonist 695 6111 6806 

ToxCast - TOX21 RXR BLA Agonist ratio 276 6502 6778 

ToxCast - TOX21 SBE BLA Antagonist ratio 949 5875 6824 

ToxCast - TOX21 SSH 3T3 GLI3 Antagonist 1286 5399 6685 

ToxCast - TOX21 TR LUC GH3 Antagonist 1899 5150 7049 

ToxCast - TOX21 TSHR Agonist ratio 354 6516 6870 

ToxCast - TOX21 TSHR Antagonist ratio 242 6651 6893 

ToxCast - TOX21 VDR BLA antagonist ratio 388 6145 6533 

ToxCast - TOX21 p53 BLA p1 ratio 574 6553 7127 

ToxCast - TOX21 p53 BLA p2 ratio 705 6398 7103 

ToxCast - TOX21 p53 BLA p3 ratio 611 6511 7122 

ToxCast - TOX21 p53 BLA p4 ratio 670 6445 7115 

ToxCast - TOX21 p53 BLA p5 ratio 638 6481 7119 

ToxCast - UPITT HCI U2OS AR TIF2 Nucleoli 
Agonist 208 1580 1788 

ToxCast - UPITT HCI U2OS AR TIF2 Nucleoli 
Antagonist 443 1344 1787 

ToxCast - UPITT HCI U2OS AR TIF2 Nucleoli 
Cytoplasm Ratio Antagonist 224 1567 1791 

ToxCast - NCCT HEK293T CellTiterGLO 285 246 531 
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Table S4. List of Molecular Descriptors Used in Principal Component Analysis. 

Descriptors 

SlogP 

TPSA 

ExactMW 

NumLipinskiHBA 

NumLipinskiHBD 

NumRotatableBonds 

NumHBD 

NumHBA 

NumAmideBonds 

NumHeteroAtoms 

NumHeavyAtoms 

NumAtoms 

NumStereocenters 

NumUnspecifiedStereocenters 

NumRings 

NumAromaticRings 

NumSaturatedRings 

NumAliphaticRings 

NumAromaticHeterocycles 

NumSaturatedHeterocycles 

NumAliphaticHeterocycles 

NumAromaticCarbocycles 

NumSaturatedCarbocycles 

NumAliphaticCarbocycles 

FractionCSP3 
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Table S5. Hyperparameters Used for Deriving the CP Models. 

Step Implementation Function Hyperparameter1 

variance filter scikit-learn VarianceThreshold threshold=0.0015 

CV split scikit-learn StratifiedShuffleSplit 
n_splits=5, test_size=0.2, 
random_state=2020 

CP framework 
nonconformist 
python package 

NcFactory 
err_func= 
InverseProbabilityErrFunc()
, normalizer_model=None 

IcpClassifier 
condition=(lambda instance: 
instance[1]) 

RandomSubSampler calibration_portion=0.3 

AggregatedCp 

n_models=20, 
sampler=RandomSubSampl
er(), 
aggregation_func=(lambda 
x: np.median(x,axis=2)) 

random forest 
model 

scikit-learn 
RandomForestClassif
ier 

n_estimators=500, 
random_state=2020 

lasso model scikit-learn LassoCV 
 cv=5, random_state=2020, 
max_iter=1000000 

1 Hyperparameters not specified here were kept with the default values. 
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Table S6. Average Performance of the CP Models for the Biological Assays.1 

Endpoint Validity Efficiency Overall 
accuracy 

Accuracy 
active 
class 

Accuracy 
inactive 
class 

F1 score 

AMES 0.80 (+/- 
0.01) 

0.93 (+/- 
0.01) 

0.87 (+/- 
0.01) 

0.87 (+/- 
0.01) 

0.87 (+/- 
0.01) 

0.86 (+/- 
0.01) 

Mammalian cell gene 
mutation 

0.82 (+/- 
0.03) 

0.51 (+/- 
0.04) 

0.65 (+/- 
0.07) 

0.67 (+/- 
0.23) 

0.64 (+/- 
0.08) 

0.49 (+/- 
0.03) 

Chromosome 
aberration 

0.79 (+/- 
0.03) 

0.70 (+/- 
0.02) 

0.70 (+/- 
0.04) 

0.72 (+/- 
0.06) 

0.69 (+/- 
0.05) 

0.60 (+/- 
0.03) 

Human oral 
bioavailability 

0.82 (+/- 
0.04) 

0.79 (+/- 
0.03) 

0.77 (+/- 
0.04) 

0.79 (+/- 
0.07) 

0.75 (+/- 
0.05) 

0.77 (+/- 
0.04) 

PGP inhibition 0.81 (+/- 
0.02) 

0.86 (+/- 
0.02) 

0.95 (+/- 
0.01) 

0.94 (+/- 
0.02) 

0.95 (+/- 
0.01) 

0.95 (+/- 
0.01) 

Caco-2 0.83 (+/- 
0.02) 

0.96 (+/- 
0.01) 

0.86 (+/- 
0.02) 

0.87 (+/- 
0.04) 

0.86 (+/- 
0.03) 

0.85 (+/- 
0.01) 

DIO1 inhibition 0.79 (+/- 
0.03) 

0.93 (+/- 
0.03) 

0.78 (+/- 
0.03) 

0.77 (+/- 
0.14) 

0.78 (+/- 
0.03) 

0.59 (+/- 
0.04) 

DIO2 inhibition 0.81 (+/- 
0.01) 

0.91 (+/- 
0.01) 

0.79 (+/- 
0.02) 

0.79 (+/- 
0.06) 

0.80 (+/- 
0.02) 

0.66 (+/- 
0.02) 

DIO3 inhibition 0.83 (+/- 
0.02) 

0.89 (+/- 
0.01) 

0.81 (+/- 
0.02) 

0.77 (+/- 
0.06) 

0.81 (+/- 
0.02) 

0.67 (+/- 
0.03) 

TPO inhibition 0.79 (+/- 
0.03) 

0.96 (+/- 
0.04) 

0.82 (+/- 
0.03) 

0.82 (+/- 
0.04) 

0.82 (+/- 
0.04) 

0.79 (+/- 
0.03) 

TR antagonism 0.80 (+/- 
0.01) 

0.94 (+/- 
0.01) 

0.85 (+/- 
0.01) 

0.87 (+/- 
0.01) 

0.85 (+/- 
0.01) 

0.80 (+/- 
0.01) 

NIS inhibition 0.79 (+/- 
0.04) 

0.88 (+/- 
0.07) 

0.76 (+/- 
0.03) 

0.78 (+/- 
0.19) 

0.76 (+/- 
0.04) 

0.57 (+/- 
0.04) 

TRHR antagonism 0.82 (+/- 
0.01) 

0.95 (+/- 
0.02) 

0.83 (+/- 
0.02) 

0.80 (+/- 
0.12) 

0.83 (+/- 
0.02) 

0.49 (+/- 
0.01) 

TSHR antagonism 0.81 (+/- 
0.01) 

0.86 (+/- 
0.03) 

0.78 (+/- 
0.01) 

0.85 (+/- 
0.08) 

0.78 (+/- 
0.01) 

0.49 (+/- 
0.01) 

TSHR agonism 0.80 (+/- 
0.02) 

0.92 (+/- 
0.03) 

0.79 (+/- 
0.02) 

0.84 (+/- 
0.03) 

0.79 (+/- 
0.02) 

0.53 (+/- 
0.01) 
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eMolTox - Modulator 
of Muscarinic 
acetylcholine receptor 
M5 

0.81 (+/- 
0.01) 

0.85 (+/- 
0.01) 

0.96 (+/- 
0.01) 

0.94 (+/- 
0.01) 

0.96 (+/- 
0.01) 

0.93 (+/- 
0.02) 

eMolTox - Antagonist 
of the thyroid receptor 
(TR) signaling 
pathway 

0.80 (+/- 
0.01) 

0.94 (+/- 
0.02) 

0.79 (+/- 
0.00) 

0.78 (+/- 
0.05) 

0.79 (+/- 
0.01) 

0.60 (+/- 
0.01) 

eMolTox - Modulator 
of Glucocorticoid 
receptor 

0.81 (+/- 
0.01) 

0.81 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - 
Mutagenicity 

0.81 (+/- 
0.01) 

0.98 (+/- 
0.01) 

0.83 (+/- 
0.01) 

0.83 (+/- 
0.00) 

0.83 (+/- 
0.01) 

0.83 (+/- 
0.01) 

eMolTox - Modulator 
of GABA-A receptor 
alpha-5beta-3gamma-
2 

0.82 (+/- 
0.02) 

0.82 (+/- 
0.02) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Modulator 
of Muscarinic 
acetylcholine receptor 
M2 

0.80 (+/- 
0.02) 

0.81 (+/- 
0.02) 

0.99 (+/- 
0.00) 

0.97 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.98 (+/- 
0.01) 

eMolTox - Modulator 
of Neuropeptide Y 
receptor type 1 

0.82 (+/- 
0.02) 

0.82 (+/- 
0.02) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Modulator 
of Cannabinoid CB2 
receptor 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.01) 

0.99 (+/- 
0.00) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Modulator 
of Androgen Receptor 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Modulator 
of Monoamine 
oxidase A 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.97 (+/- 
0.02) 

0.99 (+/- 
0.01) 

0.97 (+/- 
0.01) 

eMolTox - Agonist of 
the thyroid stimulating 
hormone receptor 
(TSHR) signaling 
pathway 

0.80 (+/- 
0.01) 

0.89 (+/- 
0.03) 

0.77 (+/- 
0.01) 

0.78 (+/- 
0.04) 

0.77 (+/- 
0.01) 

0.55 (+/- 
0.01) 

eMolTox - Modulator 
of Cholecystokinin A 
receptor 

0.80 (+/- 
0.04) 

0.80 (+/- 
0.04) 

0.99 (+/- 
0.01) 

0.97 (+/- 
0.04) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.01) 
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eMolTox - Modulator 
of Neurokinin 1 
receptor 

0.81 (+/- 
0.01) 

0.81 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Modulator 
of Serotonin 2c (5-
HT2c) receptor 

0.81 (+/- 
0.01) 

0.81 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Modulator 
of GABA-A receptor 
alpha-2beta-3gamma-
2 

0.80 (+/- 
0.02) 

0.80 (+/- 
0.02) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Modulator 
of 
Acetylcholinesterase 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.98 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.98 (+/- 
0.00) 

eMolTox - Modulator 
of Cannabinoid CB1 
receptor 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Modulator 
of Neurokinin 2 
receptor 

0.81 (+/- 
0.01) 

0.81 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Modulator 
of Histamine H1 
receptor 

0.80 (+/- 
0.02) 

0.81 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.98 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.01) 

eMolTox - Modulator 
of Alpha-1a 
adrenergic receptor 

0.80 (+/- 
0.01) 

0.80 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Antagonist 
of the androgen 
receptor (AR) 
signaling pathway 

0.80 (+/- 
0.02) 

0.99 (+/- 
0.00) 

0.80 (+/- 
0.01) 

0.81 (+/- 
0.01) 

0.80 (+/- 
0.01) 

0.64 (+/- 
0.01) 

eMolTox - Modulator 
of Neuronal 
acetylcholine receptor 
protein alpha-7 
subunit 

0.82 (+/- 
0.02) 

0.84 (+/- 
0.01) 

0.98 (+/- 
0.00) 

0.98 (+/- 
0.02) 

0.98 (+/- 
0.00) 

0.96 (+/- 
0.01) 

eMolTox - Activator 
Alzheimers amyloid 
precursor 

0.81 (+/- 
0.01) 

0.90 (+/- 
0.01) 

0.89 (+/- 
0.01) 

0.92 (+/- 
0.01) 

0.89 (+/- 
0.01) 

0.78 (+/- 
0.01) 

eMolTox - 
Differential 
cytotoxicity (isogenic 
chicken DT40 Rev3 
mutant cell line) 

0.80 (+/- 
0.01) 

0.94 (+/- 
0.01) 

0.79 (+/- 
0.01) 

0.79 (+/- 
0.03) 

0.78 (+/- 
0.01) 

0.76 (+/- 
0.01) 
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eMolTox - Antagonist 
of the estrogen 
receptor alpha (ER-
alpha) signaling 
pathway dup 

0.80 (+/- 
0.02) 

0.96 (+/- 
0.01) 

0.79 (+/- 
0.02) 

0.82 (+/- 
0.03) 

0.79 (+/- 
0.02) 

0.59 (+/- 
0.01) 

eMolTox - Modulator 
of HERG 

0.81 (+/- 
0.00) 

0.86 (+/- 
0.01) 

0.95 (+/- 
0.01) 

0.92 (+/- 
0.01) 

0.95 (+/- 
0.01) 

0.91 (+/- 
0.01) 

eMolTox - Antagonist 
of the retinoic acid 
receptor (RAR) 
signaling pathway 

0.81 (+/- 
0.01) 

0.90 (+/- 
0.01) 

0.79 (+/- 
0.01) 

0.83 (+/- 
0.02) 

0.79 (+/- 
0.01) 

0.66 (+/- 
0.01) 

eMolTox - Modulator 
of Serotonin 2b (5-
HT2b) receptor 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.02) 

0.99 (+/- 
0.00) 

0.96 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.98 (+/- 
0.00) 

eMolTox - Modulator 
of Platelet-derived 
growth factor receptor 
beta 

0.81 (+/- 
0.01) 

0.84 (+/- 
0.01) 

0.97 (+/- 
0.01) 

0.94 (+/- 
0.03) 

0.98 (+/- 
0.00) 

0.95 (+/- 
0.01) 

eMolTox - Antagonist 
of the retinoid-related 
orphan receptor 
gamma (ROR-gamma) 
signaling pathway 

0.81 (+/- 
0.01) 

0.98 (+/- 
0.01) 

0.80 (+/- 
0.01) 

0.81 (+/- 
0.02) 

0.80 (+/- 
0.01) 

0.66 (+/- 
0.01) 

eMolTox - Modulator 
of Serotonin 1a (5-
HT1a) receptor 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Modulator 
of Neuronal 
acetylcholine receptor 
alpha4beta2 

0.81 (+/- 
0.03) 

0.82 (+/- 
0.03) 

0.99 (+/- 
0.01) 

0.99 (+/- 
0.01) 

0.99 (+/- 
0.01) 

0.98 (+/- 
0.01) 

eMolTox - Agonist of 
H2AX 

0.82 (+/- 
0.01) 

0.86 (+/- 
0.03) 

0.79 (+/- 
0.01) 

0.78 (+/- 
0.06) 

0.79 (+/- 
0.01) 

0.59 (+/- 
0.01) 

eMolTox - Modulator 
of GABA-A receptor 
alpha-3beta-3gamma-
2 

0.83 (+/- 
0.01) 

0.83 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Induce 
genotoxicity in human 
embryonic kidney 
cells 

0.80 (+/- 
0.00) 

0.91 (+/- 
0.03) 

0.78 (+/- 
0.01) 

0.84 (+/- 
0.05) 

0.78 (+/- 
0.01) 

0.55 (+/- 
0.01) 
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eMolTox - Modulator 
of Glutamate NMDA 
receptor 

0.80 (+/- 
0.03) 

0.81 (+/- 
0.03) 

0.98 (+/- 
0.00) 

0.95 (+/- 
0.02) 

0.99 (+/- 
0.00) 

0.97 (+/- 
0.00) 

eMolTox - Modulator 
of Norepinephrine 
transporter 

0.81 (+/- 
0.00) 

0.81 (+/- 
0.00) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Modulator 
of Serotonin 
transporter 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Modulator 
of Sodium channel 
protein type IX alpha 
subunit 

0.82 (+/- 
0.00) 

0.82 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Agonist of 
the AP-1 signaling 
pathway 

0.79 (+/- 
0.02) 

0.90 (+/- 
0.02) 

0.77 (+/- 
0.02) 

0.79 (+/- 
0.03) 

0.77 (+/- 
0.02) 

0.62 (+/- 
0.02) 

eMolTox - Agonist of 
the p53 signaling 
pathway 

0.80 (+/- 
0.01) 

0.93 (+/- 
0.01) 

0.78 (+/- 
0.01) 

0.79 (+/- 
0.05) 

0.78 (+/- 
0.01) 

0.61 (+/- 
0.01) 

eMolTox - Modulator 
of Serotonin 3a (5-
HT3a) receptor 

0.83 (+/- 
0.02) 

0.84 (+/- 
0.02) 

0.99 (+/- 
0.00) 

0.96 (+/- 
0.02) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.01) 

eMolTox - Modulator 
of Serotonin 1b (5-
HT1b) receptor 

0.82 (+/- 
0.01) 

0.82 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.98 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Modulator 
of Delta opioid 
receptor 

0.81 (+/- 
0.01) 

0.81 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Modulator 
of Vascular 
endothelial growth 
factor receptor 1 

0.81 (+/- 
0.01) 

0.85 (+/- 
0.01) 

0.95 (+/- 
0.01) 

0.90 (+/- 
0.02) 

0.96 (+/- 
0.01) 

0.91 (+/- 
0.01) 

eMolTox - Modulator 
of Beta-2 adrenergic 
receptor 

0.82 (+/- 
0.01) 

0.83 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.98 (+/- 
0.01) 

eMolTox - Modulator 
of Muscarinic 
acetylcholine receptor 
M4 

0.82 (+/- 
0.02) 

0.84 (+/- 
0.02) 

0.98 (+/- 
0.01) 

0.96 (+/- 
0.02) 

0.99 (+/- 
0.01) 

0.97 (+/- 
0.02) 

eMolTox - Modulator 
of TNF-alpha 

0.82 (+/- 
0.01) 

0.83 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.97 (+/- 
0.02) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 
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eMolTox - Modulator 
of Calcitonin gene-
related peptide type 1 
receptor 

0.81 (+/- 
0.01) 

0.81 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Modulator 
of Alpha-2a 
adrenergic receptor 

0.82 (+/- 
0.02) 

0.83 (+/- 
0.02) 

0.98 (+/- 
0.00) 

0.96 (+/- 
0.03) 

0.99 (+/- 
0.01) 

0.96 (+/- 
0.01) 

eMolTox - Modulator 
of Sigma opioid 
receptor 

0.80 (+/- 
0.01) 

0.81 (+/- 
0.02) 

0.99 (+/- 
0.00) 

0.98 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.98 (+/- 
0.00) 

eMolTox - 
Differential 
cytotoxicity against 
isogenic chicken 
DT40 cell lines with 
known DNA damage 
response pathways - 
Rad54Ku70 mutant 
cell line 

0.80 (+/- 
0.01) 

0.98 (+/- 
0.01) 

0.80 (+/- 
0.01) 

0.81 (+/- 
0.02) 

0.79 (+/- 
0.01) 

0.77 (+/- 
0.01) 

eMolTox - Modulator 
of GABA-A receptor 
alpha-1beta-3gamma-
2 

0.81 (+/- 
0.01) 

0.81 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Modulator 
of Dopamine 
transporter 

0.80 (+/- 
0.02) 

0.81 (+/- 
0.02) 

0.99 (+/- 
0.00) 

0.98 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.98 (+/- 
0.00) 

eMolTox - Modulator 
of GABA-A receptor 
anion channel 

0.81 (+/- 
0.01) 

0.81 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - 
Differential 
cytotoxicity (isogenic 
chicken DT40 cell 
lines) 

0.81 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.81 (+/- 
0.00) 

0.81 (+/- 
0.03) 

0.81 (+/- 
0.01) 

0.78 (+/- 
0.01) 

eMolTox - 
Cytotoxicity in 
HEK293 cells - 16 
hour 

0.80 (+/- 
0.01) 

0.77 (+/- 
0.02) 

0.74 (+/- 
0.01) 

0.77 (+/- 
0.06) 

0.74 (+/- 
0.01) 

0.53 (+/- 
0.01) 

eMolTox - Aromatase 
inhibitors 

0.80 (+/- 
0.01) 

0.90 (+/- 
0.02) 

0.78 (+/- 
0.01) 

0.79 (+/- 
0.09) 

0.78 (+/- 
0.01) 

0.57 (+/- 
0.01) 

eMolTox - Modulators 
of myocardial damage 

0.80 (+/- 
0.01) 

0.91 (+/- 
0.01) 

0.89 (+/- 
0.00) 

0.88 (+/- 
0.01) 

0.89 (+/- 
0.01) 

0.76 (+/- 
0.01) 
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eMolTox - Antagonist 
of the androgen 
receptor (AR) 
signaling pathway dup 

0.81 (+/- 
0.02) 

0.89 (+/- 
0.02) 

0.78 (+/- 
0.01) 

0.80 (+/- 
0.03) 

0.78 (+/- 
0.01) 

0.59 (+/- 
0.02) 

eMolTox - Modulator 
of Adenosine A2a 
receptor 

0.81 (+/- 
0.01) 

0.81 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Modulator 
of Serotonin 2a (5-
HT2a) receptor 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.00) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Modulator 
of Beta-3 adrenergic 
receptor 

0.82 (+/- 
0.01) 

0.82 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Agonist of 
the estrogen receptor 
alpha (ER-alpha) 
signaling pathway 

0.81 (+/- 
0.01) 

0.79 (+/- 
0.02) 

0.75 (+/- 
0.01) 

0.80 (+/- 
0.03) 

0.75 (+/- 
0.01) 

0.58 (+/- 
0.01) 

eMolTox - Modulator 
of Kappa opioid 
receptor 

0.81 (+/- 
0.01) 

0.81 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Modulator 
of Adenosine A3 
receptor 

0.81 (+/- 
0.00) 

0.82 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.98 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.98 (+/- 
0.00) 

eMolTox - Modulator 
of Serotonin 7 (5-
HT7) receptor 

0.81 (+/- 
0.01) 

0.81 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.00) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Modulator 
of Beta-1 adrenergic 
receptor 

0.81 (+/- 
0.02) 

0.81 (+/- 
0.02) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Antagonist 
of the estrogen 
receptor alpha (ER-
alpha) signaling 
pathway 

0.80 (+/- 
0.01) 

0.97 (+/- 
0.01) 

0.80 (+/- 
0.01) 

0.77 (+/- 
0.05) 

0.80 (+/- 
0.01) 

0.59 (+/- 
0.01) 

eMolTox - Modulator 
of Adenosine A2b 
receptor 

0.81 (+/- 
0.01) 

0.81 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Modulator 
of Vascular 
endothelial growth 
factor receptor 3 

0.82 (+/- 
0.02) 

0.94 (+/- 
0.01) 

0.87 (+/- 
0.01) 

0.87 (+/- 
0.02) 

0.87 (+/- 
0.02) 

0.81 (+/- 
0.01) 
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eMolTox - Modulator 
of Vascular 
endothelial growth 
factor receptor 2 

0.81 (+/- 
0.00) 

0.83 (+/- 
0.00) 

0.98 (+/- 
0.00) 

0.97 (+/- 
0.00) 

0.99 (+/- 
0.00) 

0.98 (+/- 
0.00) 

eMolTox - Modulator 
of Receptor protein-
tyrosine kinase erbB-2 

0.80 (+/- 
0.01) 

0.81 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.98 (+/- 
0.02) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.01) 

eMolTox - Modulator 
of Alpha-2b 
adrenergic receptor 

0.82 (+/- 
0.01) 

0.85 (+/- 
0.01) 

0.97 (+/- 
0.01) 

0.95 (+/- 
0.03) 

0.98 (+/- 
0.01) 

0.95 (+/- 
0.01) 

eMolTox - Modulator 
of Serotonin 4 (5-
HT4) receptor 

0.83 (+/- 
0.02) 

0.83 (+/- 
0.02) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Modulator 
of Platelet-derived 
growth factor receptor 
alpha 

0.80 (+/- 
0.02) 

0.91 (+/- 
0.01) 

0.89 (+/- 
0.01) 

0.89 (+/- 
0.03) 

0.88 (+/- 
0.02) 

0.83 (+/- 
0.02) 

eMolTox - Modulator 
of Melatonin receptor 
1B 

0.80 (+/- 
0.01) 

0.81 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Antagonist 
of the glucocorticoid 
receptor (GR) 
signaling pathway 

0.82 (+/- 
0.01) 

0.97 (+/- 
0.02) 

0.81 (+/- 
0.01) 

0.83 (+/- 
0.04) 

0.81 (+/- 
0.01) 

0.62 (+/- 
0.01) 

eMolTox - Agonist of 
the androgen receptor 
(AR) signaling 
pathway 

0.81 (+/- 
0.02) 

0.90 (+/- 
0.05) 

0.79 (+/- 
0.03) 

0.81 (+/- 
0.05) 

0.79 (+/- 
0.03) 

0.55 (+/- 
0.02) 

eMolTox - 
Cytotoxicity in 
HEK293 cells - 32 
hour 

0.80 (+/- 
0.01) 

0.85 (+/- 
0.02) 

0.76 (+/- 
0.02) 

0.78 (+/- 
0.06) 

0.76 (+/- 
0.02) 

0.60 (+/- 
0.01) 

eMolTox - Modulator 
of Muscarinic 
acetylcholine receptor 
M1 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.98 (+/- 
0.02) 

0.99 (+/- 
0.01) 

0.98 (+/- 
0.01) 

eMolTox - Modulator 
of Dopamine D2 
receptor 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Modulator 
of Angiotensin II type 
2 (AT-2) receptor 

0.82 (+/- 
0.01) 

0.82 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 
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eMolTox - Modulator 
of Urotensin II 
receptor 

0.82 (+/- 
0.02) 

0.82 (+/- 
0.02) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Modulator 
of P2X purinoceptor 7 

0.81 (+/- 
0.01) 

0.81 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Agonist of 
the antioxidant 
response element 
(ARE) signaling 
pathway 

0.80 (+/- 
0.01) 

0.91 (+/- 
0.02) 

0.78 (+/- 
0.00) 

0.80 (+/- 
0.04) 

0.78 (+/- 
0.00) 

0.70 (+/- 
0.01) 

eMolTox - Block Bile 
Salt Export Pump 

0.83 (+/- 
0.04) 

0.93 (+/- 
0.02) 

0.89 (+/- 
0.02) 

0.90 (+/- 
0.03) 

0.89 (+/- 
0.04) 

0.89 (+/- 
0.02) 

eMolTox - 
Cytotoxicity in HepG2 
cells - 8 hour 

0.81 (+/- 
0.01) 

0.67 (+/- 
0.05) 

0.71 (+/- 
0.03) 

0.75 (+/- 
0.10) 

0.71 (+/- 
0.03) 

0.52 (+/- 
0.01) 

eMolTox - Agonist of 
the farnesoid-X-
receptor (FXR) 
signaling pathway 

0.81 (+/- 
0.02) 

0.98 (+/- 
0.01) 

0.81 (+/- 
0.02) 

0.79 (+/- 
0.04) 

0.81 (+/- 
0.02) 

0.63 (+/- 
0.02) 

eMolTox - Antagonist 
of the peroxisome 
proliferator-activated 
receptor gamma 
(PPARg) signaling 
pathway 

0.80 (+/- 
0.02) 

0.95 (+/- 
0.03) 

0.79 (+/- 
0.02) 

0.78 (+/- 
0.07) 

0.79 (+/- 
0.02) 

0.60 (+/- 
0.01) 

eMolTox - 
Cytotoxicity in HepG2 
cells - 24 hour 

0.80 (+/- 
0.02) 

0.85 (+/- 
0.03) 

0.77 (+/- 
0.02) 

0.81 (+/- 
0.03) 

0.76 (+/- 
0.02) 

0.63 (+/- 
0.01) 

eMolTox - Modulator 
of Adenosine A1 
receptor 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Agonist of 
Liver X receptor alpha 

0.80 (+/- 
0.01) 

0.80 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Modulator 
of Dopamine D1 
receptor 

0.81 (+/- 
0.01) 

0.81 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Modulator 
of Peroxisome 
proliferator-activated 
receptor gamma 

0.81 (+/- 
0.01) 

0.81 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.00) 
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eMolTox - Agonist of 
the peroxisome 
proliferator-activated 
receptor gamma 
(PPARg) signaling 
pathway 

0.81 (+/- 
0.02) 

0.87 (+/- 
0.02) 

0.78 (+/- 
0.02) 

0.81 (+/- 
0.02) 

0.78 (+/- 
0.02) 

0.54 (+/- 
0.02) 

eMolTox - 
Cytotoxicity in 
HEK293 cells - 40 
hour 

0.80 (+/- 
0.02) 

0.85 (+/- 
0.01) 

0.77 (+/- 
0.02) 

0.80 (+/- 
0.04) 

0.76 (+/- 
0.02) 

0.64 (+/- 
0.02) 

eMolTox - Modulator 
of Endothelin receptor 
ET-B 

0.80 (+/- 
0.01) 

0.81 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.01) 

0.99 (+/- 
0.01) 

0.99 (+/- 
0.01) 

eMolTox - Induce 
Phospholipidosis 

0.82 (+/- 
0.04) 

0.73 (+/- 
0.03) 

0.75 (+/- 
0.05) 

0.78 (+/- 
0.06) 

0.74 (+/- 
0.06) 

0.73 (+/- 
0.05) 

eMolTox - Inhibitors 
of Hepatocyte nuclear 
factor 4 (HNF4) 
dimerization 

0.81 (+/- 
0.03) 

0.94 (+/- 
0.02) 

0.80 (+/- 
0.03) 

0.80 (+/- 
0.04) 

0.80 (+/- 
0.05) 

0.75 (+/- 
0.03) 

eMolTox - 
Cytotoxicity in 
HEK293 cells - 8 hour 

0.80 (+/- 
0.02) 

0.65 (+/- 
0.04) 

0.69 (+/- 
0.02) 

0.74 (+/- 
0.11) 

0.69 (+/- 
0.02) 

0.48 (+/- 
0.01) 

eMolTox - Modulator 
of Bradykinin B2 
receptor 

0.82 (+/- 
0.02) 

0.82 (+/- 
0.02) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Inhibit 
CYP2C19 Activity 

0.81 (+/- 
0.00) 

0.80 (+/- 
0.00) 

0.76 (+/- 
0.00) 

0.76 (+/- 
0.01) 

0.76 (+/- 
0.01) 

0.76 (+/- 
0.00) 

eMolTox - Disruptors 
of the mitochondrial 
membrane potential 

0.80 (+/- 
0.01) 

0.92 (+/- 
0.01) 

0.87 (+/- 
0.01) 

0.86 (+/- 
0.03) 

0.87 (+/- 
0.01) 

0.80 (+/- 
0.01) 

eMolTox - Modulator 
of Endothelin receptor 
ET-A 

0.82 (+/- 
0.02) 

0.84 (+/- 
0.01) 

0.97 (+/- 
0.01) 

0.98 (+/- 
0.01) 

0.97 (+/- 
0.00) 

0.97 (+/- 
0.01) 

eMolTox - Modulator 
of Mu opioid receptor 

0.81 (+/- 
0.00) 

0.81 (+/- 
0.00) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Agonist of 
the RXR signaling 
pathway 

0.81 (+/- 
0.01) 

0.42 (+/- 
0.02) 

0.54 (+/- 
0.04) 

0.85 (+/- 
0.06) 

0.53 (+/- 
0.04) 

0.41 (+/- 
0.02) 
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eMolTox - Modulator 
of Muscarinic 
acetylcholine receptor 
M3 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.98 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Antagonist 
of the vitamin D 
receptor (VDR) 
signaling pathway 

0.82 (+/- 
0.01) 

0.99 (+/- 
0.01) 

0.82 (+/- 
0.01) 

0.80 (+/- 
0.04) 

0.82 (+/- 
0.02) 

0.61 (+/- 
0.01) 

eMolTox - Modulator 
of P2X purinoceptor 3 

0.79 (+/- 
0.02) 

0.79 (+/- 
0.02) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Inhibit 
CYP1A2 Activity 

0.82 (+/- 
0.01) 

0.98 (+/- 
0.01) 

0.83 (+/- 
0.00) 

0.83 (+/- 
0.02) 

0.83 (+/- 
0.02) 

0.83 (+/- 
0.00) 

eMolTox - 
Cytotoxicity in HepG2 
cells - 40 hour 

0.81 (+/- 
0.01) 

0.86 (+/- 
0.02) 

0.78 (+/- 
0.01) 

0.78 (+/- 
0.04) 

0.78 (+/- 
0.01) 

0.67 (+/- 
0.02) 

eMolTox - 
Cytotoxicity in 
HEK293 cells - 24 
hour 

0.80 (+/- 
0.01) 

0.85 (+/- 
0.01) 

0.76 (+/- 
0.01) 

0.79 (+/- 
0.03) 

0.76 (+/- 
0.01) 

0.58 (+/- 
0.01) 

eMolTox - Substrates 
of Cytochrome P450 
2C19 

0.80 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.80 (+/- 
0.01) 

0.81 (+/- 
0.02) 

0.80 (+/- 
0.01) 

0.76 (+/- 
0.01) 

eMolTox - Modulator 
of Alpha-1b 
adrenergic receptor 

0.81 (+/- 
0.01) 

0.81 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.99 (+/- 
0.01) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.00) 

eMolTox - Antagonist 
of the farnesoid-X-
receptor (FXR) 
signaling pathway 

0.80 (+/- 
0.01) 

0.96 (+/- 
0.02) 

0.79 (+/- 
0.01) 

0.79 (+/- 
0.05) 

0.79 (+/- 
0.01) 

0.57 (+/- 
0.01) 

eMolTox - 
Cytotoxicity in HepG2 
cells - 16 hour 

0.80 (+/- 
0.01) 

0.81 (+/- 
0.02) 

0.76 (+/- 
0.01) 

0.75 (+/- 
0.04) 

0.76 (+/- 
0.01) 

0.58 (+/- 
0.01) 

eMolTox - Activators 
of the human pregnane 
X receptor (PXR) 
signaling pathway 

0.81 (+/- 
0.03) 

0.97 (+/- 
0.02) 

0.83 (+/- 
0.02) 

0.85 (+/- 
0.08) 

0.83 (+/- 
0.02) 

0.72 (+/- 
0.03) 

eMolTox - Activators 
of Cytochrome P450 
2A9 

0.81 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.02) 

0.81 (+/- 
0.01) 

0.66 (+/- 
0.01) 
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eMolTox - Modulator 
of Platelet activating 
factor receptor 

0.81 (+/- 
0.03) 

0.82 (+/- 
0.03) 

0.99 (+/- 
0.01) 

0.98 (+/- 
0.02) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.01) 

eMolTox - Modulator 
of Vasopressin V1a 
receptor 

0.82 (+/- 
0.02) 

0.82 (+/- 
0.02) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Modulator 
of Type-1 angiotensin 
II receptor 

0.80 (+/- 
0.02) 

0.80 (+/- 
0.02) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Inhibitors 
and Substrates of 
Cytochrome P450 
3A4 

0.80 (+/- 
0.01) 

0.89 (+/- 
0.01) 

0.90 (+/- 
0.01) 

0.89 (+/- 
0.01) 

0.90 (+/- 
0.01) 

0.89 (+/- 
0.01) 

eMolTox - Modulator 
of Cyclooxygenase-1 

0.80 (+/- 
0.01) 

0.88 (+/- 
0.01) 

0.90 (+/- 
0.01) 

0.93 (+/- 
0.01) 

0.90 (+/- 
0.01) 

0.85 (+/- 
0.01) 

eMolTox - Inhibit 
CYP2C9 Activity 

0.80 (+/- 
0.00) 

0.82 (+/- 
0.01) 

0.76 (+/- 
0.00) 

0.76 (+/- 
0.01) 

0.76 (+/- 
0.01) 

0.76 (+/- 
0.00) 

eMolTox - Agonist of 
Liver X receptor beta 

0.81 (+/- 
0.02) 

0.81 (+/- 
0.02) 

1.00 (+/- 
0.00) 

0.99 (+/- 
0.01) 

1.00 (+/- 
0.00) 

1.00 (+/- 
0.00) 

eMolTox - Antagonist 
of the farnesoid-X-
receptor (FXR) 
signaling pathway dup 

0.80 (+/- 
0.02) 

0.96 (+/- 
0.03) 

0.80 (+/- 
0.02) 

0.80 (+/- 
0.10) 

0.80 (+/- 
0.02) 

0.55 (+/- 
0.02) 

eMolTox - Modulator 
of Cyclooxygenase-2 

0.81 (+/- 
0.01) 

0.84 (+/- 
0.01) 

0.97 (+/- 
0.01) 

0.97 (+/- 
0.01) 

0.97 (+/- 
0.01) 

0.94 (+/- 
0.01) 

eMolTox - Antagonist 
of the constitutive 
androstane receptor 
(CAR) signaling 
pathway 

0.81 (+/- 
0.01) 

0.79 (+/- 
0.02) 

0.75 (+/- 
0.02) 

0.78 (+/- 
0.02) 

0.75 (+/- 
0.02) 

0.57 (+/- 
0.01) 

eMolTox - Activator 
the aryl hydrocarbon 
receptor (AhR) 
signaling pathway 

0.80 (+/- 
0.01) 

0.97 (+/- 
0.01) 

0.83 (+/- 
0.01) 

0.86 (+/- 
0.01) 

0.82 (+/- 
0.01) 

0.73 (+/- 
0.01) 

eMolTox - Inhibitors 
and Substrates of 
Cytochrome P450 
2D6 

0.80 (+/- 
0.01) 

0.93 (+/- 
0.01) 

0.86 (+/- 
0.01) 

0.85 (+/- 
0.02) 

0.86 (+/- 
0.01) 

0.81 (+/- 
0.01) 

eMolTox - Modulator 
of Angiotensin-
converting enzyme 

0.82 (+/- 
0.02) 

0.83 (+/- 
0.02) 

0.99 (+/- 
0.00) 

0.98 (+/- 
0.01) 

0.99 (+/- 
0.01) 

0.98 (+/- 
0.01) 



 S39 

eMolTox - Agonist of 
the constitutive 
androstane receptor 
(CAR) signaling 
pathway 

0.81 (+/- 
0.01) 

0.96 (+/- 
0.01) 

0.84 (+/- 
0.01) 

0.87 (+/- 
0.01) 

0.84 (+/- 
0.01) 

0.75 (+/- 
0.00) 

eMolTox - 
Cytotoxicity in HepG2 
cells - 32 hour 

0.81 (+/- 
0.02) 

0.86 (+/- 
0.03) 

0.78 (+/- 
0.02) 

0.80 (+/- 
0.05) 

0.77 (+/- 
0.01) 

0.65 (+/- 
0.02) 

eMolTox - Activators 
of the heat shock 
response signaling 
pathway 

0.81 (+/- 
0.01) 

0.70 (+/- 
0.04) 

0.73 (+/- 
0.01) 

0.76 (+/- 
0.05) 

0.72 (+/- 
0.02) 

0.56 (+/- 
0.01) 

eMolTox - Inhibitors 
and Substrates of 
Cytochrome P450 2C9 

0.81 (+/- 
0.02) 

0.99 (+/- 
0.00) 

0.82 (+/- 
0.02) 

0.81 (+/- 
0.02) 

0.82 (+/- 
0.02) 

0.74 (+/- 
0.02) 

ToxCast - ACEA AR 
antagonist 80hr 

0.83 (+/- 
0.02) 

0.84 (+/- 
0.02) 

0.80 (+/- 
0.02) 

0.78 (+/- 
0.04) 

0.81 (+/- 
0.02) 

0.79 (+/- 
0.02) 

ToxCast - ACEA ER 
80hr 

0.81 (+/- 
0.01) 

0.50 (+/- 
0.04) 

0.62 (+/- 
0.02) 

0.74 (+/- 
0.09) 

0.60 (+/- 
0.04) 

0.56 (+/- 
0.01) 

ToxCast - APR 
HepG2 
CellCycleArrest 72h 
dn 

0.82 (+/- 
0.03) 

0.65 (+/- 
0.05) 

0.72 (+/- 
0.02) 

0.75 (+/- 
0.03) 

0.71 (+/- 
0.03) 

0.66 (+/- 
0.02) 

ToxCast - APR 
HepG2 CellLoss 24h 
dn 

0.78 (+/- 
0.03) 

0.82 (+/- 
0.01) 

0.74 (+/- 
0.04) 

0.72 (+/- 
0.03) 

0.74 (+/- 
0.07) 

0.70 (+/- 
0.03) 

ToxCast - APR 
HepG2 CellLoss 72h 
dn 

0.78 (+/- 
0.03) 

0.85 (+/- 
0.03) 

0.74 (+/- 
0.03) 

0.73 (+/- 
0.03) 

0.75 (+/- 
0.06) 

0.74 (+/- 
0.03) 

ToxCast - APR 
HepG2 MitoticArrest 
72h up 

0.80 (+/- 
0.02) 

0.78 (+/- 
0.03) 

0.74 (+/- 
0.02) 

0.76 (+/- 
0.05) 

0.73 (+/- 
0.03) 

0.70 (+/- 
0.02) 

ToxCast - APR 
HepG2 
OxidativeStress 24h 
up 

0.81 (+/- 
0.04) 

0.73 (+/- 
0.04) 

0.74 (+/- 
0.04) 

0.78 (+/- 
0.04) 

0.73 (+/- 
0.06) 

0.69 (+/- 
0.03) 

ToxCast - APR 
HepG2 
OxidativeStress 72h 
up 

0.83 (+/- 
0.03) 

0.71 (+/- 
0.03) 

0.75 (+/- 
0.03) 

0.75 (+/- 
0.06) 

0.76 (+/- 
0.03) 

0.70 (+/- 
0.04) 
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ToxCast - ATG AP 1 
CIS up 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.02) 

0.77 (+/- 
0.01) 

0.79 (+/- 
0.03) 

0.76 (+/- 
0.02) 

0.69 (+/- 
0.01) 

ToxCast - ATG Ahr 
CIS dn 

0.79 (+/- 
0.02) 

0.41 (+/- 
0.02) 

0.48 (+/- 
0.02) 

0.60 (+/- 
0.10) 

0.48 (+/- 
0.03) 

0.38 (+/- 
0.01) 

ToxCast - ATG Ahr 
CIS up 

0.80 (+/- 
0.02) 

0.86 (+/- 
0.02) 

0.77 (+/- 
0.02) 

0.75 (+/- 
0.09) 

0.77 (+/- 
0.02) 

0.66 (+/- 
0.02) 

ToxCast - ATG BRE 
CIS up 

0.80 (+/- 
0.01) 

0.84 (+/- 
0.01) 

0.76 (+/- 
0.01) 

0.77 (+/- 
0.07) 

0.76 (+/- 
0.02) 

0.62 (+/- 
0.01) 

ToxCast - ATG CMV 
CIS up 

0.79 (+/- 
0.02) 

0.90 (+/- 
0.02) 

0.77 (+/- 
0.02) 

0.79 (+/- 
0.02) 

0.77 (+/- 
0.02) 

0.68 (+/- 
0.02) 

ToxCast - ATG CRE 
CIS up 

0.81 (+/- 
0.02) 

0.80 (+/- 
0.02) 

0.77 (+/- 
0.02) 

0.76 (+/- 
0.03) 

0.77 (+/- 
0.02) 

0.62 (+/- 
0.01) 

ToxCast - ATG C 
EBP CIS up 

0.80 (+/- 
0.01) 

0.72 (+/- 
0.03) 

0.72 (+/- 
0.01) 

0.74 (+/- 
0.08) 

0.72 (+/- 
0.01) 

0.53 (+/- 
0.00) 

ToxCast - ATG DR4 
LXR CIS dn 

0.81 (+/- 
0.02) 

0.89 (+/- 
0.01) 

0.78 (+/- 
0.01) 

0.80 (+/- 
0.04) 

0.78 (+/- 
0.01) 

0.72 (+/- 
0.02) 

ToxCast - ATG DR5 
CIS up 

0.81 (+/- 
0.02) 

0.74 (+/- 
0.04) 

0.75 (+/- 
0.01) 

0.81 (+/- 
0.08) 

0.74 (+/- 
0.01) 

0.61 (+/- 
0.02) 

ToxCast - ATG EGR 
CIS up 

0.80 (+/- 
0.01) 

0.89 (+/- 
0.02) 

0.78 (+/- 
0.01) 

0.77 (+/- 
0.03) 

0.78 (+/- 
0.02) 

0.68 (+/- 
0.01) 

ToxCast - ATG ERE 
CIS up 

0.81 (+/- 
0.02) 

0.70 (+/- 
0.02) 

0.73 (+/- 
0.02) 

0.76 (+/- 
0.03) 

0.72 (+/- 
0.02) 

0.70 (+/- 
0.02) 

ToxCast - ATG ERa 
TRANS up 

0.81 (+/- 
0.01) 

0.83 (+/- 
0.02) 

0.77 (+/- 
0.01) 

0.80 (+/- 
0.04) 

0.76 (+/- 
0.02) 

0.73 (+/- 
0.01) 

ToxCast - ATG E Box 
CIS dn 

0.80 (+/- 
0.01) 

0.74 (+/- 
0.02) 

0.73 (+/- 
0.02) 

0.74 (+/- 
0.03) 

0.73 (+/- 
0.02) 

0.57 (+/- 
0.02) 

ToxCast - ATG Ets 
CIS dn 

0.80 (+/- 
0.03) 

0.65 (+/- 
0.05) 

0.70 (+/- 
0.03) 

0.79 (+/- 
0.11) 

0.69 (+/- 
0.03) 

0.53 (+/- 
0.02) 

ToxCast - ATG HIF1a 
CIS up 

0.79 (+/- 
0.01) 

0.77 (+/- 
0.03) 

0.74 (+/- 
0.02) 

0.78 (+/- 
0.04) 

0.73 (+/- 
0.02) 

0.60 (+/- 
0.02) 

ToxCast - ATG HSE 
CIS up 

0.81 (+/- 
0.01) 

0.84 (+/- 
0.02) 

0.77 (+/- 
0.01) 

0.80 (+/- 
0.05) 

0.77 (+/- 
0.01) 

0.65 (+/- 
0.01) 

ToxCast - ATG IR1 
CIS dn 

0.80 (+/- 
0.02) 

0.79 (+/- 
0.02) 

0.75 (+/- 
0.02) 

0.79 (+/- 
0.02) 

0.74 (+/- 
0.02) 

0.61 (+/- 
0.02) 

ToxCast - ATG ISRE 
CIS dn 

0.81 (+/- 
0.01) 

0.75 (+/- 
0.02) 

0.75 (+/- 
0.02) 

0.82 (+/- 
0.03) 

0.74 (+/- 
0.02) 

0.65 (+/- 
0.03) 
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ToxCast - ATG MRE 
CIS up 

0.80 (+/- 
0.01) 

0.89 (+/- 
0.02) 

0.78 (+/- 
0.01) 

0.80 (+/- 
0.06) 

0.77 (+/- 
0.02) 

0.72 (+/- 
0.01) 

ToxCast - ATG NFI 
CIS up 

0.79 (+/- 
0.02) 

0.72 (+/- 
0.02) 

0.71 (+/- 
0.02) 

0.72 (+/- 
0.12) 

0.71 (+/- 
0.01) 

0.55 (+/- 
0.02) 

ToxCast - ATG NF 
kB CIS dn 

0.81 (+/- 
0.02) 

0.66 (+/- 
0.04) 

0.70 (+/- 
0.02) 

0.73 (+/- 
0.10) 

0.70 (+/- 
0.02) 

0.56 (+/- 
0.03) 

ToxCast - ATG NRF2 
ARE CIS up 

0.81 (+/- 
0.02) 

0.87 (+/- 
0.01) 

0.78 (+/- 
0.02) 

0.77 (+/- 
0.02) 

0.78 (+/- 
0.02) 

0.77 (+/- 
0.02) 

ToxCast - ATG Oct 
MLP CIS up 

0.81 (+/- 
0.02) 

0.87 (+/- 
0.02) 

0.78 (+/- 
0.02) 

0.77 (+/- 
0.02) 

0.78 (+/- 
0.03) 

0.68 (+/- 
0.02) 

ToxCast - ATG 
PBREM CIS up 

0.79 (+/- 
0.01) 

0.91 (+/- 
0.02) 

0.77 (+/- 
0.01) 

0.76 (+/- 
0.05) 

0.77 (+/- 
0.01) 

0.65 (+/- 
0.01) 

ToxCast - ATG 
PPARa TRANS up 

0.79 (+/- 
0.02) 

0.78 (+/- 
0.01) 

0.73 (+/- 
0.03) 

0.78 (+/- 
0.04) 

0.73 (+/- 
0.03) 

0.57 (+/- 
0.02) 

ToxCast - ATG 
PPARg TRANS up 

0.81 (+/- 
0.01) 

0.92 (+/- 
0.02) 

0.80 (+/- 
0.02) 

0.82 (+/- 
0.03) 

0.79 (+/- 
0.02) 

0.77 (+/- 
0.01) 

ToxCast - ATG PPRE 
CIS up 

0.81 (+/- 
0.02) 

0.88 (+/- 
0.01) 

0.78 (+/- 
0.03) 

0.79 (+/- 
0.02) 

0.78 (+/- 
0.03) 

0.69 (+/- 
0.03) 

ToxCast - ATG PXRE 
CIS dn 

0.79 (+/- 
0.01) 

0.59 (+/- 
0.03) 

0.64 (+/- 
0.01) 

0.70 (+/- 
0.08) 

0.63 (+/- 
0.02) 

0.50 (+/- 
0.02) 

ToxCast - ATG PXRE 
CIS up 

0.80 (+/- 
0.01) 

0.89 (+/- 
0.01) 

0.78 (+/- 
0.01) 

0.78 (+/- 
0.03) 

0.78 (+/- 
0.03) 

0.78 (+/- 
0.01) 

ToxCast - ATG PXR 
TRANS up 

0.80 (+/- 
0.02) 

0.94 (+/- 
0.01) 

0.79 (+/- 
0.02) 

0.81 (+/- 
0.03) 

0.78 (+/- 
0.03) 

0.77 (+/- 
0.02) 

ToxCast - ATG Pax6 
CIS up 

0.80 (+/- 
0.01) 

0.87 (+/- 
0.02) 

0.77 (+/- 
0.01) 

0.78 (+/- 
0.03) 

0.77 (+/- 
0.01) 

0.65 (+/- 
0.01) 

ToxCast - ATG RARa 
TRANS dn 

0.81 (+/- 
0.02) 

0.67 (+/- 
0.01) 

0.71 (+/- 
0.03) 

0.70 (+/- 
0.05) 

0.71 (+/- 
0.03) 

0.53 (+/- 
0.02) 

ToxCast - ATG RORE 
CIS up 

0.80 (+/- 
0.02) 

0.91 (+/- 
0.02) 

0.78 (+/- 
0.02) 

0.73 (+/- 
0.10) 

0.78 (+/- 
0.01) 

0.64 (+/- 
0.03) 

ToxCast - ATG RXRb 
TRANS up 

0.79 (+/- 
0.01) 

0.82 (+/- 
0.02) 

0.75 (+/- 
0.01) 

0.77 (+/- 
0.04) 

0.74 (+/- 
0.01) 

0.66 (+/- 
0.01) 

ToxCast - ATG 
SREBP CIS up 

0.80 (+/- 
0.02) 

0.90 (+/- 
0.01) 

0.78 (+/- 
0.02) 

0.78 (+/- 
0.03) 

0.78 (+/- 
0.02) 

0.68 (+/- 
0.02) 

ToxCast - ATG Sox 
CIS up 

0.81 (+/- 
0.01) 

0.66 (+/- 
0.04) 

0.71 (+/- 
0.02) 

0.74 (+/- 
0.10) 

0.71 (+/- 
0.03) 

0.54 (+/- 
0.02) 
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ToxCast - ATG Sp1 
CIS up 

0.80 (+/- 
0.02) 

0.73 (+/- 
0.04) 

0.73 (+/- 
0.02) 

0.78 (+/- 
0.13) 

0.73 (+/- 
0.02) 

0.59 (+/- 
0.02) 

ToxCast - ATG TA 
CIS up 

0.80 (+/- 
0.02) 

0.87 (+/- 
0.03) 

0.77 (+/- 
0.02) 

0.81 (+/- 
0.07) 

0.76 (+/- 
0.02) 

0.58 (+/- 
0.02) 

ToxCast - ATG TCF b 
cat CIS dn 

0.80 (+/- 
0.01) 

0.75 (+/- 
0.01) 

0.74 (+/- 
0.01) 

0.77 (+/- 
0.04) 

0.73 (+/- 
0.02) 

0.63 (+/- 
0.01) 

ToxCast - ATG 
VDRE CIS up 

0.79 (+/- 
0.01) 

0.92 (+/- 
0.01) 

0.78 (+/- 
0.01) 

0.81 (+/- 
0.02) 

0.77 (+/- 
0.01) 

0.75 (+/- 
0.01) 

ToxCast - ATG Xbp1 
CIS up 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.01) 

0.76 (+/- 
0.01) 

0.81 (+/- 
0.07) 

0.76 (+/- 
0.02) 

0.65 (+/- 
0.02) 

ToxCast - ATG p53 
CIS dn 

0.81 (+/- 
0.02) 

0.72 (+/- 
0.05) 

0.74 (+/- 
0.03) 

0.78 (+/- 
0.08) 

0.73 (+/- 
0.03) 

0.60 (+/- 
0.02) 

ToxCast - BSK 3C 
Eselectin down 

0.79 (+/- 
0.02) 

0.77 (+/- 
0.02) 

0.73 (+/- 
0.03) 

0.70 (+/- 
0.07) 

0.74 (+/- 
0.03) 

0.69 (+/- 
0.03) 

ToxCast - BSK 3C 
HLADR down 

0.79 (+/- 
0.04) 

0.81 (+/- 
0.05) 

0.75 (+/- 
0.03) 

0.73 (+/- 
0.02) 

0.76 (+/- 
0.04) 

0.74 (+/- 
0.03) 

ToxCast - BSK 3C 
IL8 down 

0.80 (+/- 
0.03) 

0.89 (+/- 
0.02) 

0.77 (+/- 
0.03) 

0.82 (+/- 
0.07) 

0.76 (+/- 
0.03) 

0.73 (+/- 
0.04) 

ToxCast - BSK 3C 
MCP1 down 

0.79 (+/- 
0.02) 

0.84 (+/- 
0.03) 

0.75 (+/- 
0.03) 

0.72 (+/- 
0.05) 

0.76 (+/- 
0.04) 

0.71 (+/- 
0.03) 

ToxCast - BSK 3C 
Proliferation down 

0.80 (+/- 
0.03) 

0.87 (+/- 
0.03) 

0.77 (+/- 
0.03) 

0.77 (+/- 
0.05) 

0.77 (+/- 
0.04) 

0.76 (+/- 
0.03) 

ToxCast - BSK 3C 
SRB down 

0.81 (+/- 
0.01) 

0.86 (+/- 
0.01) 

0.78 (+/- 
0.01) 

0.77 (+/- 
0.04) 

0.78 (+/- 
0.01) 

0.75 (+/- 
0.01) 

ToxCast - BSK 3C 
TissueFactor down 

0.82 (+/- 
0.02) 

0.80 (+/- 
0.03) 

0.78 (+/- 
0.02) 

0.80 (+/- 
0.05) 

0.77 (+/- 
0.03) 

0.72 (+/- 
0.02) 

ToxCast - BSK 3C 
VCAM1 down 

0.83 (+/- 
0.04) 

0.79 (+/- 
0.03) 

0.78 (+/- 
0.04) 

0.73 (+/- 
0.07) 

0.80 (+/- 
0.04) 

0.73 (+/- 
0.04) 

ToxCast - BSK 3C 
Vis down 

0.78 (+/- 
0.04) 

0.83 (+/- 
0.02) 

0.74 (+/- 
0.04) 

0.73 (+/- 
0.06) 

0.75 (+/- 
0.05) 

0.71 (+/- 
0.04) 

ToxCast - BSK 3C 
uPAR down 

0.81 (+/- 
0.02) 

0.85 (+/- 
0.01) 

0.77 (+/- 
0.02) 

0.81 (+/- 
0.07) 

0.76 (+/- 
0.04) 

0.75 (+/- 
0.03) 

ToxCast - BSK 4H 
Eotaxin3 down 

0.78 (+/- 
0.04) 

0.81 (+/- 
0.03) 

0.73 (+/- 
0.05) 

0.73 (+/- 
0.05) 

0.73 (+/- 
0.06) 

0.70 (+/- 
0.04) 

ToxCast - BSK 4H 
MCP1 down 

0.80 (+/- 
0.02) 

0.86 (+/- 
0.02) 

0.77 (+/- 
0.02) 

0.78 (+/- 
0.07) 

0.77 (+/- 
0.01) 

0.73 (+/- 
0.03) 
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ToxCast - BSK 4H 
Pselectin down 

0.80 (+/- 
0.01) 

0.85 (+/- 
0.02) 

0.76 (+/- 
0.02) 

0.79 (+/- 
0.06) 

0.75 (+/- 
0.03) 

0.73 (+/- 
0.02) 

ToxCast - BSK 4H 
SRB down 

0.81 (+/- 
0.02) 

0.84 (+/- 
0.02) 

0.77 (+/- 
0.01) 

0.77 (+/- 
0.02) 

0.77 (+/- 
0.02) 

0.73 (+/- 
0.01) 

ToxCast - BSK 4H 
VCAM1 down 

0.80 (+/- 
0.04) 

0.84 (+/- 
0.05) 

0.76 (+/- 
0.03) 

0.75 (+/- 
0.06) 

0.77 (+/- 
0.03) 

0.73 (+/- 
0.04) 

ToxCast - BSK 4H 
uPAR down 

0.81 (+/- 
0.03) 

0.82 (+/- 
0.02) 

0.77 (+/- 
0.03) 

0.78 (+/- 
0.07) 

0.76 (+/- 
0.03) 

0.71 (+/- 
0.04) 

ToxCast - BSK BE3C 
HLADR down 

0.80 (+/- 
0.03) 

0.82 (+/- 
0.03) 

0.75 (+/- 
0.03) 

0.77 (+/- 
0.03) 

0.75 (+/- 
0.03) 

0.72 (+/- 
0.03) 

ToxCast - BSK BE3C 
IL1a down 

0.81 (+/- 
0.01) 

0.81 (+/- 
0.02) 

0.76 (+/- 
0.02) 

0.76 (+/- 
0.03) 

0.76 (+/- 
0.02) 

0.68 (+/- 
0.02) 

ToxCast - BSK BE3C 
IP10 down 

0.81 (+/- 
0.02) 

0.86 (+/- 
0.03) 

0.78 (+/- 
0.01) 

0.79 (+/- 
0.09) 

0.77 (+/- 
0.02) 

0.74 (+/- 
0.02) 

ToxCast - BSK BE3C 
PAI1 down 

0.81 (+/- 
0.04) 

0.87 (+/- 
0.02) 

0.79 (+/- 
0.04) 

0.76 (+/- 
0.04) 

0.79 (+/- 
0.04) 

0.71 (+/- 
0.04) 

ToxCast - BSK BE3C 
tPA down 

0.81 (+/- 
0.03) 

0.83 (+/- 
0.03) 

0.77 (+/- 
0.03) 

0.77 (+/- 
0.04) 

0.77 (+/- 
0.04) 

0.67 (+/- 
0.03) 

ToxCast - BSK BE3C 
uPA down 

0.80 (+/- 
0.02) 

0.73 (+/- 
0.03) 

0.73 (+/- 
0.01) 

0.67 (+/- 
0.15) 

0.74 (+/- 
0.01) 

0.63 (+/- 
0.04) 

ToxCast - BSK 
CASM3C HLADR 
down 

0.80 (+/- 
0.02) 

0.72 (+/- 
0.03) 

0.72 (+/- 
0.02) 

0.78 (+/- 
0.06) 

0.71 (+/- 
0.02) 

0.65 (+/- 
0.03) 

ToxCast - BSK 
CASM3C MCP1 
down 

0.81 (+/- 
0.01) 

0.74 (+/- 
0.03) 

0.75 (+/- 
0.01) 

0.70 (+/- 
0.11) 

0.75 (+/- 
0.02) 

0.64 (+/- 
0.03) 

ToxCast - BSK 
CASM3C MCSF 
down 

0.82 (+/- 
0.03) 

0.70 (+/- 
0.06) 

0.74 (+/- 
0.03) 

0.71 (+/- 
0.12) 

0.75 (+/- 
0.03) 

0.66 (+/- 
0.04) 

ToxCast - BSK 
CASM3C 
Proliferation down 

0.79 (+/- 
0.04) 

0.80 (+/- 
0.05) 

0.74 (+/- 
0.03) 

0.74 (+/- 
0.08) 

0.73 (+/- 
0.02) 

0.71 (+/- 
0.04) 

ToxCast - BSK 
CASM3C SRB down 

0.82 (+/- 
0.01) 

0.82 (+/- 
0.04) 

0.78 (+/- 
0.02) 

0.77 (+/- 
0.11) 

0.78 (+/- 
0.04) 

0.69 (+/- 
0.02) 

ToxCast - BSK 
CASM3C 
Thrombomodulin up 

0.83 (+/- 
0.03) 

0.73 (+/- 
0.04) 

0.76 (+/- 
0.03) 

0.81 (+/- 
0.03) 

0.75 (+/- 
0.03) 

0.68 (+/- 
0.02) 
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ToxCast - BSK 
CASM3C VCAM1 
down 

0.81 (+/- 
0.01) 

0.74 (+/- 
0.02) 

0.74 (+/- 
0.02) 

0.69 (+/- 
0.07) 

0.75 (+/- 
0.02) 

0.65 (+/- 
0.03) 

ToxCast - BSK 
CASM3C uPAR down 

0.80 (+/- 
0.04) 

0.69 (+/- 
0.07) 

0.71 (+/- 
0.04) 

0.74 (+/- 
0.06) 

0.71 (+/- 
0.04) 

0.63 (+/- 
0.04) 

ToxCast - BSK 
KF3CT ICAM1 down 

0.80 (+/- 
0.03) 

0.83 (+/- 
0.04) 

0.77 (+/- 
0.04) 

0.78 (+/- 
0.05) 

0.76 (+/- 
0.04) 

0.67 (+/- 
0.04) 

ToxCast - BSK 
KF3CT IL1a down 

0.82 (+/- 
0.02) 

0.77 (+/- 
0.04) 

0.77 (+/- 
0.02) 

0.79 (+/- 
0.04) 

0.76 (+/- 
0.03) 

0.70 (+/- 
0.01) 

ToxCast - BSK 
KF3CT IP10 down 

0.80 (+/- 
0.03) 

0.80 (+/- 
0.01) 

0.75 (+/- 
0.03) 

0.82 (+/- 
0.05) 

0.73 (+/- 
0.05) 

0.70 (+/- 
0.03) 

ToxCast - BSK 
KF3CT MCP1 down 

0.81 (+/- 
0.01) 

0.76 (+/- 
0.07) 

0.75 (+/- 
0.02) 

0.80 (+/- 
0.10) 

0.74 (+/- 
0.04) 

0.68 (+/- 
0.01) 

ToxCast - BSK 
KF3CT MMP9 down 

0.82 (+/- 
0.02) 

0.81 (+/- 
0.03) 

0.78 (+/- 
0.02) 

0.81 (+/- 
0.06) 

0.77 (+/- 
0.02) 

0.74 (+/- 
0.03) 

ToxCast - BSK 
KF3CT SRB down 

0.82 (+/- 
0.03) 

0.86 (+/- 
0.05) 

0.80 (+/- 
0.03) 

0.80 (+/- 
0.07) 

0.80 (+/- 
0.03) 

0.71 (+/- 
0.03) 

ToxCast - BSK 
KF3CT TGFb1 down 

0.82 (+/- 
0.01) 

0.76 (+/- 
0.05) 

0.77 (+/- 
0.01) 

0.82 (+/- 
0.08) 

0.75 (+/- 
0.02) 

0.70 (+/- 
0.02) 

ToxCast - BSK 
KF3CT TIMP2 down 

0.82 (+/- 
0.05) 

0.81 (+/- 
0.05) 

0.78 (+/- 
0.05) 

0.79 (+/- 
0.06) 

0.77 (+/- 
0.06) 

0.71 (+/- 
0.06) 

ToxCast - BSK 
KF3CT uPA down 

0.82 (+/- 
0.01) 

0.80 (+/- 
0.04) 

0.78 (+/- 
0.01) 

0.79 (+/- 
0.07) 

0.78 (+/- 
0.01) 

0.70 (+/- 
0.02) 

ToxCast - BSK LPS 
CD40 down 

0.82 (+/- 
0.02) 

0.80 (+/- 
0.02) 

0.77 (+/- 
0.03) 

0.79 (+/- 
0.04) 

0.76 (+/- 
0.03) 

0.74 (+/- 
0.03) 

ToxCast - BSK LPS 
Eselectin down 

0.81 (+/- 
0.02) 

0.77 (+/- 
0.03) 

0.75 (+/- 
0.02) 

0.79 (+/- 
0.08) 

0.74 (+/- 
0.03) 

0.69 (+/- 
0.02) 

ToxCast - BSK LPS 
IL1a down 

0.80 (+/- 
0.02) 

0.81 (+/- 
0.01) 

0.76 (+/- 
0.03) 

0.73 (+/- 
0.01) 

0.77 (+/- 
0.04) 

0.69 (+/- 
0.03) 

ToxCast - BSK LPS 
IL8 down 

0.81 (+/- 
0.02) 

0.83 (+/- 
0.03) 

0.77 (+/- 
0.02) 

0.76 (+/- 
0.04) 

0.77 (+/- 
0.01) 

0.71 (+/- 
0.03) 

ToxCast - BSK LPS 
MCP1 down 

0.79 (+/- 
0.04) 

0.81 (+/- 
0.02) 

0.74 (+/- 
0.04) 

0.78 (+/- 
0.03) 

0.73 (+/- 
0.05) 

0.69 (+/- 
0.04) 

ToxCast - BSK LPS 
MCSF down 

0.82 (+/- 
0.02) 

0.82 (+/- 
0.02) 

0.77 (+/- 
0.02) 

0.77 (+/- 
0.05) 

0.78 (+/- 
0.04) 

0.74 (+/- 
0.02) 

ToxCast - BSK LPS 
PGE2 down 

0.80 (+/- 
0.02) 

0.80 (+/- 
0.02) 

0.75 (+/- 
0.02) 

0.79 (+/- 
0.08) 

0.74 (+/- 
0.02) 

0.70 (+/- 
0.03) 
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ToxCast - BSK LPS 
SRB down 

0.82 (+/- 
0.03) 

0.83 (+/- 
0.04) 

0.78 (+/- 
0.03) 

0.76 (+/- 
0.08) 

0.78 (+/- 
0.04) 

0.73 (+/- 
0.03) 

ToxCast - BSK LPS 
TNFa down 

0.80 (+/- 
0.02) 

0.80 (+/- 
0.02) 

0.75 (+/- 
0.02) 

0.78 (+/- 
0.04) 

0.74 (+/- 
0.03) 

0.68 (+/- 
0.01) 

ToxCast - BSK LPS 
TissueFactor down 

0.82 (+/- 
0.02) 

0.74 (+/- 
0.07) 

0.75 (+/- 
0.03) 

0.73 (+/- 
0.06) 

0.75 (+/- 
0.04) 

0.64 (+/- 
0.02) 

ToxCast - BSK LPS 
VCAM1 down 

0.82 (+/- 
0.02) 

0.81 (+/- 
0.03) 

0.78 (+/- 
0.03) 

0.75 (+/- 
0.03) 

0.79 (+/- 
0.03) 

0.74 (+/- 
0.03) 

ToxCast - BSK SAg 
CD38 down 

0.80 (+/- 
0.03) 

0.86 (+/- 
0.03) 

0.77 (+/- 
0.03) 

0.80 (+/- 
0.04) 

0.76 (+/- 
0.03) 

0.75 (+/- 
0.03) 

ToxCast - BSK SAg 
CD40 down 

0.82 (+/- 
0.03) 

0.83 (+/- 
0.04) 

0.79 (+/- 
0.03) 

0.83 (+/- 
0.07) 

0.77 (+/- 
0.04) 

0.76 (+/- 
0.03) 

ToxCast - BSK SAg 
CD69 down 

0.83 (+/- 
0.04) 

0.80 (+/- 
0.06) 

0.79 (+/- 
0.03) 

0.82 (+/- 
0.10) 

0.78 (+/- 
0.01) 

0.76 (+/- 
0.04) 

ToxCast - BSK SAg 
Eselectin down 

0.80 (+/- 
0.04) 

0.79 (+/- 
0.04) 

0.75 (+/- 
0.04) 

0.81 (+/- 
0.06) 

0.72 (+/- 
0.05) 

0.73 (+/- 
0.03) 

ToxCast - BSK SAg 
IL8 down 

0.81 (+/- 
0.02) 

0.86 (+/- 
0.02) 

0.77 (+/- 
0.02) 

0.79 (+/- 
0.09) 

0.77 (+/- 
0.03) 

0.73 (+/- 
0.03) 

ToxCast - BSK SAg 
MCP1 down 

0.81 (+/- 
0.04) 

0.79 (+/- 
0.04) 

0.76 (+/- 
0.04) 

0.78 (+/- 
0.05) 

0.76 (+/- 
0.05) 

0.72 (+/- 
0.04) 

ToxCast - BSK SAg 
MIG down 

0.80 (+/- 
0.02) 

0.87 (+/- 
0.01) 

0.77 (+/- 
0.02) 

0.78 (+/- 
0.08) 

0.77 (+/- 
0.02) 

0.67 (+/- 
0.02) 

ToxCast - BSK SAg 
PBMCCytotoxicity 
down 

0.83 (+/- 
0.04) 

0.85 (+/- 
0.02) 

0.80 (+/- 
0.04) 

0.80 (+/- 
0.10) 

0.80 (+/- 
0.04) 

0.75 (+/- 
0.05) 

ToxCast - BSK SAg 
Proliferation down 

0.81 (+/- 
0.03) 

0.82 (+/- 
0.03) 

0.77 (+/- 
0.02) 

0.73 (+/- 
0.05) 

0.79 (+/- 
0.02) 

0.75 (+/- 
0.03) 

ToxCast - BSK SAg 
SRB down 

0.80 (+/- 
0.02) 

0.86 (+/- 
0.02) 

0.77 (+/- 
0.02) 

0.80 (+/- 
0.05) 

0.76 (+/- 
0.02) 

0.73 (+/- 
0.02) 

ToxCast - BSK 
hDFCGF CollagenIII 
down 

0.83 (+/- 
0.02) 

0.85 (+/- 
0.02) 

0.80 (+/- 
0.02) 

0.81 (+/- 
0.06) 

0.80 (+/- 
0.01) 

0.77 (+/- 
0.02) 

ToxCast - BSK 
hDFCGF IP10 down 

0.81 (+/- 
0.02) 

0.76 (+/- 
0.03) 

0.75 (+/- 
0.02) 

0.77 (+/- 
0.02) 

0.75 (+/- 
0.04) 

0.72 (+/- 
0.02) 

ToxCast - BSK 
hDFCGF MCSF down 

0.83 (+/- 
0.03) 

0.80 (+/- 
0.03) 

0.79 (+/- 
0.03) 

0.83 (+/- 
0.03) 

0.77 (+/- 
0.04) 

0.76 (+/- 
0.03) 
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ToxCast - BSK 
hDFCGF MIG down 

0.81 (+/- 
0.01) 

0.84 (+/- 
0.02) 

0.77 (+/- 
0.02) 

0.78 (+/- 
0.12) 

0.76 (+/- 
0.05) 

0.70 (+/- 
0.02) 

ToxCast - BSK 
hDFCGF MMP1 
down 

0.82 (+/- 
0.03) 

0.83 (+/- 
0.03) 

0.78 (+/- 
0.03) 

0.76 (+/- 
0.04) 

0.78 (+/- 
0.04) 

0.70 (+/- 
0.03) 

ToxCast - BSK 
hDFCGF PAI1 down 

0.79 (+/- 
0.02) 

0.84 (+/- 
0.02) 

0.75 (+/- 
0.02) 

0.75 (+/- 
0.05) 

0.75 (+/- 
0.04) 

0.71 (+/- 
0.02) 

ToxCast - BSK 
hDFCGF Proliferation 
down 

0.80 (+/- 
0.02) 

0.81 (+/- 
0.02) 

0.75 (+/- 
0.02) 

0.77 (+/- 
0.05) 

0.74 (+/- 
0.03) 

0.75 (+/- 
0.02) 

ToxCast - BSK 
hDFCGF SRB down 

0.81 (+/- 
0.02) 

0.87 (+/- 
0.03) 

0.79 (+/- 
0.02) 

0.81 (+/- 
0.07) 

0.78 (+/- 
0.01) 

0.74 (+/- 
0.03) 

ToxCast - BSK 
hDFCGF TIMP1 
down 

0.82 (+/- 
0.02) 

0.79 (+/- 
0.02) 

0.77 (+/- 
0.01) 

0.73 (+/- 
0.03) 

0.78 (+/- 
0.01) 

0.68 (+/- 
0.02) 

ToxCast - BSK 
hDFCGF VCAM1 
down 

0.81 (+/- 
0.03) 

0.76 (+/- 
0.03) 

0.75 (+/- 
0.04) 

0.77 (+/- 
0.10) 

0.74 (+/- 
0.02) 

0.72 (+/- 
0.04) 

ToxCast - LTEA 
HepaRG ABCB11 dn 

0.78 (+/- 
0.01) 

0.86 (+/- 
0.02) 

0.75 (+/- 
0.01) 

0.76 (+/- 
0.03) 

0.74 (+/- 
0.02) 

0.72 (+/- 
0.02) 

ToxCast - LTEA 
HepaRG ABCB1 up 

0.81 (+/- 
0.01) 

0.91 (+/- 
0.03) 

0.79 (+/- 
0.01) 

0.79 (+/- 
0.11) 

0.79 (+/- 
0.04) 

0.74 (+/- 
0.01) 

ToxCast - LTEA 
HepaRG ABCG2 up 

0.83 (+/- 
0.03) 

0.84 (+/- 
0.03) 

0.80 (+/- 
0.03) 

0.80 (+/- 
0.02) 

0.80 (+/- 
0.03) 

0.76 (+/- 
0.03) 

ToxCast - LTEA 
HepaRG ACOX1 dn 

0.81 (+/- 
0.04) 

0.79 (+/- 
0.03) 

0.76 (+/- 
0.04) 

0.80 (+/- 
0.09) 

0.75 (+/- 
0.04) 

0.71 (+/- 
0.05) 

ToxCast - LTEA 
HepaRG AFP dn 

0.80 (+/- 
0.05) 

0.94 (+/- 
0.03) 

0.78 (+/- 
0.04) 

0.78 (+/- 
0.05) 

0.78 (+/- 
0.06) 

0.77 (+/- 
0.04) 

ToxCast - LTEA 
HepaRG ALPP dn 

0.79 (+/- 
0.02) 

0.89 (+/- 
0.03) 

0.76 (+/- 
0.02) 

0.82 (+/- 
0.05) 

0.75 (+/- 
0.04) 

0.72 (+/- 
0.01) 

ToxCast - LTEA 
HepaRG APOA5 dn 

0.82 (+/- 
0.03) 

0.77 (+/- 
0.04) 

0.77 (+/- 
0.03) 

0.81 (+/- 
0.09) 

0.75 (+/- 
0.01) 

0.73 (+/- 
0.04) 

ToxCast - LTEA 
HepaRG CAT dn 

0.80 (+/- 
0.05) 

0.80 (+/- 
0.03) 

0.75 (+/- 
0.06) 

0.78 (+/- 
0.11) 

0.73 (+/- 
0.07) 

0.70 (+/- 
0.06) 

ToxCast - LTEA 
HepaRG CYP1A1 up 

0.80 (+/- 
0.04) 

0.61 (+/- 
0.06) 

0.67 (+/- 
0.04) 

0.65 (+/- 
0.05) 

0.74 (+/- 
0.10) 

0.62 (+/- 
0.05) 

ToxCast - LTEA 
HepaRG CYP1A2 up 

0.81 (+/- 
0.05) 

0.55 (+/- 
0.04) 

0.66 (+/- 
0.07) 

0.66 (+/- 
0.05) 

0.67 (+/- 
0.10) 

0.66 (+/- 
0.07) 
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ToxCast - LTEA 
HepaRG CYP2B6 up 

0.83 (+/- 
0.03) 

0.73 (+/- 
0.05) 

0.77 (+/- 
0.02) 

0.75 (+/- 
0.03) 

0.78 (+/- 
0.04) 

0.77 (+/- 
0.02) 

ToxCast - LTEA 
HepaRG CYP2C19 up 

0.82 (+/- 
0.02) 

0.84 (+/- 
0.03) 

0.78 (+/- 
0.02) 

0.84 (+/- 
0.02) 

0.75 (+/- 
0.04) 

0.76 (+/- 
0.02) 

ToxCast - LTEA 
HepaRG CYP2C9 dn 

0.80 (+/- 
0.02) 

0.84 (+/- 
0.02) 

0.76 (+/- 
0.02) 

0.78 (+/- 
0.09) 

0.75 (+/- 
0.04) 

0.70 (+/- 
0.03) 

ToxCast - LTEA 
HepaRG CYP2E1 dn 

0.80 (+/- 
0.01) 

0.95 (+/- 
0.01) 

0.79 (+/- 
0.01) 

0.80 (+/- 
0.02) 

0.79 (+/- 
0.02) 

0.79 (+/- 
0.01) 

ToxCast - LTEA 
HepaRG CYP3A4 up 

0.83 (+/- 
0.03) 

0.89 (+/- 
0.02) 

0.81 (+/- 
0.04) 

0.79 (+/- 
0.06) 

0.82 (+/- 
0.05) 

0.79 (+/- 
0.04) 

ToxCast - LTEA 
HepaRG CYP3A7 up 

0.82 (+/- 
0.03) 

0.72 (+/- 
0.03) 

0.75 (+/- 
0.02) 

0.75 (+/- 
0.05) 

0.74 (+/- 
0.02) 

0.70 (+/- 
0.03) 

ToxCast - LTEA 
HepaRG CYP4A11 dn 

0.80 (+/- 
0.03) 

0.92 (+/- 
0.02) 

0.78 (+/- 
0.03) 

0.81 (+/- 
0.04) 

0.77 (+/- 
0.05) 

0.76 (+/- 
0.03) 

ToxCast - LTEA 
HepaRG CYP4A22 dn 

0.80 (+/- 
0.03) 

0.92 (+/- 
0.02) 

0.79 (+/- 
0.03) 

0.79 (+/- 
0.07) 

0.79 (+/- 
0.05) 

0.77 (+/- 
0.03) 

ToxCast - LTEA 
HepaRG CYP7A1 dn 

0.80 (+/- 
0.02) 

0.83 (+/- 
0.02) 

0.76 (+/- 
0.02) 

0.74 (+/- 
0.06) 

0.77 (+/- 
0.02) 

0.74 (+/- 
0.02) 

ToxCast - LTEA 
HepaRG DDIT3 up 

0.80 (+/- 
0.04) 

0.95 (+/- 
0.04) 

0.79 (+/- 
0.04) 

0.80 (+/- 
0.12) 

0.79 (+/- 
0.03) 

0.74 (+/- 
0.05) 

ToxCast - LTEA 
HepaRG FABP1 dn 

0.80 (+/- 
0.03) 

0.87 (+/- 
0.02) 

0.77 (+/- 
0.03) 

0.78 (+/- 
0.09) 

0.77 (+/- 
0.03) 

0.76 (+/- 
0.03) 

ToxCast - LTEA 
HepaRG FASN dn 

0.81 (+/- 
0.04) 

0.77 (+/- 
0.07) 

0.75 (+/- 
0.03) 

0.76 (+/- 
0.08) 

0.75 (+/- 
0.04) 

0.71 (+/- 
0.03) 

ToxCast - LTEA 
HepaRG FMO3 dn 

0.78 (+/- 
0.02) 

0.93 (+/- 
0.02) 

0.76 (+/- 
0.02) 

0.78 (+/- 
0.05) 

0.75 (+/- 
0.02) 

0.72 (+/- 
0.02) 

ToxCast - LTEA 
HepaRG GSTA2 dn 

0.79 (+/- 
0.03) 

0.88 (+/- 
0.03) 

0.76 (+/- 
0.03) 

0.79 (+/- 
0.01) 

0.75 (+/- 
0.04) 

0.71 (+/- 
0.03) 

ToxCast - LTEA 
HepaRG HMGCS2 dn 

0.82 (+/- 
0.02) 

0.87 (+/- 
0.02) 

0.79 (+/- 
0.02) 

0.80 (+/- 
0.05) 

0.78 (+/- 
0.02) 

0.77 (+/- 
0.03) 

ToxCast - LTEA 
HepaRG IGF1 dn 

0.81 (+/- 
0.03) 

0.94 (+/- 
0.02) 

0.80 (+/- 
0.03) 

0.82 (+/- 
0.07) 

0.79 (+/- 
0.04) 

0.79 (+/- 
0.03) 

ToxCast - LTEA 
HepaRG IGFBP1 up 

0.81 (+/- 
0.03) 

0.87 (+/- 
0.02) 

0.79 (+/- 
0.03) 

0.83 (+/- 
0.05) 

0.77 (+/- 
0.03) 

0.75 (+/- 
0.03) 

ToxCast - LTEA 
HepaRG KRT19 dn 

0.78 (+/- 
0.05) 

0.89 (+/- 
0.02) 

0.76 (+/- 
0.05) 

0.77 (+/- 
0.06) 

0.75 (+/- 
0.06) 

0.72 (+/- 
0.05) 
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ToxCast - LTEA 
HepaRG LIPC dn 

0.82 (+/- 
0.04) 

0.82 (+/- 
0.04) 

0.78 (+/- 
0.04) 

0.84 (+/- 
0.07) 

0.76 (+/- 
0.03) 

0.75 (+/- 
0.04) 

ToxCast - LTEA 
HepaRG MYC up 

0.82 (+/- 
0.03) 

0.86 (+/- 
0.04) 

0.79 (+/- 
0.02) 

0.83 (+/- 
0.04) 

0.78 (+/- 
0.03) 

0.74 (+/- 
0.02) 

ToxCast - LTEA 
HepaRG PEG10 dn 

0.82 (+/- 
0.03) 

0.89 (+/- 
0.02) 

0.79 (+/- 
0.03) 

0.79 (+/- 
0.07) 

0.80 (+/- 
0.04) 

0.78 (+/- 
0.03) 

ToxCast - LTEA 
HepaRG SLC22A1 dn 

0.82 (+/- 
0.04) 

0.87 (+/- 
0.03) 

0.79 (+/- 
0.04) 

0.80 (+/- 
0.08) 

0.79 (+/- 
0.04) 

0.77 (+/- 
0.05) 

ToxCast - LTEA 
HepaRG SLCO1B1 
dn 

0.81 (+/- 
0.05) 

0.79 (+/- 
0.04) 

0.76 (+/- 
0.06) 

0.78 (+/- 
0.10) 

0.75 (+/- 
0.05) 

0.70 (+/- 
0.07) 

ToxCast - LTEA 
HepaRG THRSP dn 

0.81 (+/- 
0.02) 

0.79 (+/- 
0.03) 

0.75 (+/- 
0.02) 

0.81 (+/- 
0.03) 

0.74 (+/- 
0.03) 

0.70 (+/- 
0.02) 

ToxCast - LTEA 
HepaRG UGT1A1 up 

0.83 (+/- 
0.04) 

0.80 (+/- 
0.04) 

0.78 (+/- 
0.04) 

0.79 (+/- 
0.08) 

0.78 (+/- 
0.04) 

0.77 (+/- 
0.04) 

ToxCast - NHEERL 
ZF 144hpf 
TERATOSCORE up 

0.82 (+/- 
0.04) 

0.84 (+/- 
0.03) 

0.79 (+/- 
0.05) 

0.77 (+/- 
0.08) 

0.82 (+/- 
0.10) 

0.77 (+/- 
0.05) 

ToxCast - OT AR 
ARSRC1 0480 

0.81 (+/- 
0.02) 

0.93 (+/- 
0.03) 

0.80 (+/- 
0.01) 

0.85 (+/- 
0.04) 

0.79 (+/- 
0.01) 

0.72 (+/- 
0.02) 

ToxCast - OT AR 
ARSRC1 0960 

0.81 (+/- 
0.02) 

0.95 (+/- 
0.02) 

0.80 (+/- 
0.01) 

0.82 (+/- 
0.04) 

0.79 (+/- 
0.01) 

0.75 (+/- 
0.02) 

ToxCast - OT ER 
ERaERb 0480 

0.81 (+/- 
0.02) 

0.97 (+/- 
0.02) 

0.83 (+/- 
0.02) 

0.85 (+/- 
0.05) 

0.83 (+/- 
0.02) 

0.74 (+/- 
0.02) 

ToxCast - OT ER 
ERaERb 1440 

0.82 (+/- 
0.01) 

0.83 (+/- 
0.04) 

0.78 (+/- 
0.01) 

0.81 (+/- 
0.07) 

0.78 (+/- 
0.02) 

0.71 (+/- 
0.01) 

ToxCast - OT ER 
ERbERb 0480 

0.81 (+/- 
0.01) 

0.96 (+/- 
0.03) 

0.81 (+/- 
0.01) 

0.80 (+/- 
0.06) 

0.81 (+/- 
0.02) 

0.70 (+/- 
0.02) 

ToxCast - OT ER 
ERbERb 1440 

0.82 (+/- 
0.02) 

0.68 (+/- 
0.03) 

0.73 (+/- 
0.02) 

0.80 (+/- 
0.06) 

0.72 (+/- 
0.04) 

0.65 (+/- 
0.02) 

ToxCast - OT FXR 
FXRSRC1 0480 

0.82 (+/- 
0.03) 

0.96 (+/- 
0.02) 

0.81 (+/- 
0.03) 

0.83 (+/- 
0.04) 

0.80 (+/- 
0.03) 

0.76 (+/- 
0.04) 

ToxCast - OT FXR 
FXRSRC1 1440 

0.81 (+/- 
0.01) 

0.85 (+/- 
0.02) 

0.78 (+/- 
0.01) 

0.80 (+/- 
0.05) 

0.77 (+/- 
0.02) 

0.71 (+/- 
0.01) 

ToxCast - TOX21 
AP1 BLA Agonist 
ratio 

0.81 (+/- 
0.01) 

0.91 (+/- 
0.01) 

0.79 (+/- 
0.01) 

0.84 (+/- 
0.03) 

0.79 (+/- 
0.01) 

0.69 (+/- 
0.01) 
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ToxCast - TOX21 
ARE BLA agonist 
ratio 

0.81 (+/- 
0.02) 

0.88 (+/- 
0.01) 

0.78 (+/- 
0.02) 

0.79 (+/- 
0.05) 

0.78 (+/- 
0.02) 

0.73 (+/- 
0.02) 

ToxCast - TOX21 AR 
BLA Agonist ratio 

0.81 (+/- 
0.01) 

0.92 (+/- 
0.02) 

0.80 (+/- 
0.01) 

0.77 (+/- 
0.09) 

0.80 (+/- 
0.01) 

0.60 (+/- 
0.01) 

ToxCast - TOX21 AR 
BLA Antagonist ratio 

0.80 (+/- 
0.01) 

0.97 (+/- 
0.00) 

0.80 (+/- 
0.01) 

0.79 (+/- 
0.02) 

0.80 (+/- 
0.02) 

0.73 (+/- 
0.01) 

ToxCast - TOX21 AR 
LUC MDAKB2 
Agonist 

0.80 (+/- 
0.01) 

0.78 (+/- 
0.03) 

0.75 (+/- 
0.01) 

0.82 (+/- 
0.06) 

0.74 (+/- 
0.02) 

0.54 (+/- 
0.00) 

ToxCast - TOX21 AR 
LUC MDAKB2 
Antagonist 0.5nM 
R1881 

0.81 (+/- 
0.01) 

0.97 (+/- 
0.01) 

0.84 (+/- 
0.01) 

0.87 (+/- 
0.01) 

0.83 (+/- 
0.01) 

0.78 (+/- 
0.01) 

ToxCast - TOX21 AR 
LUC MDAKB2 
Antagonist 10nM 
R1881 

0.81 (+/- 
0.01) 

0.97 (+/- 
0.01) 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.02) 

0.81 (+/- 
0.00) 

0.69 (+/- 
0.01) 

ToxCast - TOX21 
AhR LUC Agonist 

0.80 (+/- 
0.02) 

0.98 (+/- 
0.01) 

0.81 (+/- 
0.02) 

0.86 (+/- 
0.02) 

0.81 (+/- 
0.02) 

0.67 (+/- 
0.02) 

ToxCast - TOX21 
Aromatase Inhibition 

0.81 (+/- 
0.02) 

0.94 (+/- 
0.01) 

0.80 (+/- 
0.02) 

0.81 (+/- 
0.04) 

0.80 (+/- 
0.02) 

0.69 (+/- 
0.03) 

ToxCast - TOX21 
CAR Agonist 

0.81 (+/- 
0.01) 

0.97 (+/- 
0.01) 

0.83 (+/- 
0.01) 

0.85 (+/- 
0.02) 

0.83 (+/- 
0.01) 

0.71 (+/- 
0.01) 

ToxCast - TOX21 
CAR Antagonist 

0.80 (+/- 
0.01) 

0.90 (+/- 
0.02) 

0.78 (+/- 
0.01) 

0.76 (+/- 
0.05) 

0.78 (+/- 
0.01) 

0.62 (+/- 
0.02) 

ToxCast - TOX21 
DT40 

0.80 (+/- 
0.01) 

0.96 (+/- 
0.01) 

0.80 (+/- 
0.01) 

0.79 (+/- 
0.01) 

0.80 (+/- 
0.01) 

0.78 (+/- 
0.01) 

ToxCast - TOX21 
DT40 100 

0.80 (+/- 
0.01) 

0.97 (+/- 
0.01) 

0.80 (+/- 
0.01) 

0.80 (+/- 
0.03) 

0.79 (+/- 
0.01) 

0.79 (+/- 
0.01) 

ToxCast - TOX21 
DT40 657 

0.80 (+/- 
0.01) 

0.93 (+/- 
0.01) 

0.78 (+/- 
0.01) 

0.79 (+/- 
0.02) 

0.78 (+/- 
0.01) 

0.77 (+/- 
0.01) 

ToxCast - TOX21 
ERR Agonist 

0.81 (+/- 
0.01) 

0.94 (+/- 
0.03) 

0.80 (+/- 
0.01) 

0.84 (+/- 
0.04) 

0.80 (+/- 
0.01) 

0.56 (+/- 
0.01) 

ToxCast - TOX21 
ERR Antagonist 

0.81 (+/- 
0.02) 

0.97 (+/- 
0.01) 

0.80 (+/- 
0.02) 

0.82 (+/- 
0.04) 

0.80 (+/- 
0.02) 

0.75 (+/- 
0.02) 

ToxCast - TOX21 
ERa BLA Agonist 
ratio 

0.81 (+/- 
0.02) 

0.96 (+/- 
0.03) 

0.80 (+/- 
0.02) 

0.83 (+/- 
0.05) 

0.80 (+/- 
0.02) 

0.58 (+/- 
0.01) 
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ToxCast - TOX21 
ERa BLA Antagonist 
ratio 

0.80 (+/- 
0.02) 

0.98 (+/- 
0.01) 

0.80 (+/- 
0.02) 

0.81 (+/- 
0.05) 

0.80 (+/- 
0.02) 

0.69 (+/- 
0.02) 

ToxCast - TOX21 
ERa LUC VM7 
Agonist 

0.81 (+/- 
0.01) 

0.65 (+/- 
0.02) 

0.70 (+/- 
0.02) 

0.76 (+/- 
0.02) 

0.69 (+/- 
0.02) 

0.61 (+/- 
0.01) 

ToxCast - TOX21 
ERa LUC VM7 
Antagonist 0.1nM E2 

0.80 (+/- 
0.01) 

0.99 (+/- 
0.00) 

0.80 (+/- 
0.01) 

0.82 (+/- 
0.04) 

0.80 (+/- 
0.01) 

0.69 (+/- 
0.01) 

ToxCast - TOX21 
ERa LUC VM7 
Antagonist 0.5nM E2 

0.81 (+/- 
0.01) 

0.98 (+/- 
0.01) 

0.81 (+/- 
0.01) 

0.83 (+/- 
0.05) 

0.80 (+/- 
0.01) 

0.68 (+/- 
0.01) 

ToxCast - TOX21 
ERb BLA Antagonist 
ratio 

0.80 (+/- 
0.02) 

0.99 (+/- 
0.01) 

0.80 (+/- 
0.02) 

0.81 (+/- 
0.02) 

0.79 (+/- 
0.02) 

0.74 (+/- 
0.02) 

ToxCast - TOX21 
ESRE BLA ratio 

0.81 (+/- 
0.01) 

0.94 (+/- 
0.02) 

0.79 (+/- 
0.01) 

0.78 (+/- 
0.06) 

0.80 (+/- 
0.01) 

0.54 (+/- 
0.01) 

ToxCast - TOX21 
FXR BLA antagonist 
ratio 

0.81 (+/- 
0.02) 

0.98 (+/- 
0.01) 

0.80 (+/- 
0.01) 

0.82 (+/- 
0.02) 

0.80 (+/- 
0.02) 

0.71 (+/- 
0.02) 

ToxCast - TOX21 GR 
BLA Agonist ratio 

0.80 (+/- 
0.02) 

0.98 (+/- 
0.01) 

0.81 (+/- 
0.01) 

0.85 (+/- 
0.06) 

0.81 (+/- 
0.01) 

0.60 (+/- 
0.01) 

ToxCast - TOX21 GR 
BLA Antagonist ratio 

0.81 (+/- 
0.01) 

0.95 (+/- 
0.02) 

0.80 (+/- 
0.01) 

0.80 (+/- 
0.05) 

0.80 (+/- 
0.01) 

0.65 (+/- 
0.01) 

ToxCast - TOX21 
H2AX HTRF CHO 
Agonist ratio 

0.81 (+/- 
0.02) 

0.87 (+/- 
0.02) 

0.78 (+/- 
0.02) 

0.82 (+/- 
0.06) 

0.78 (+/- 
0.02) 

0.60 (+/- 
0.01) 

ToxCast - TOX21 
HDAC Inhibition 

0.81 (+/- 
0.01) 

0.94 (+/- 
0.00) 

0.86 (+/- 
0.01) 

0.88 (+/- 
0.03) 

0.86 (+/- 
0.02) 

0.69 (+/- 
0.01) 

ToxCast - TOX21 
HRE BLA Agonist 
ratio 

0.81 (+/- 
0.01) 

0.98 (+/- 
0.01) 

0.80 (+/- 
0.01) 

0.82 (+/- 
0.05) 

0.80 (+/- 
0.01) 

0.57 (+/- 
0.01) 

ToxCast - TOX21 
HSE BLA agonist 
ratio 

0.79 (+/- 
0.01) 

0.86 (+/- 
0.03) 

0.75 (+/- 
0.01) 

0.76 (+/- 
0.03) 

0.75 (+/- 
0.01) 

0.57 (+/- 
0.01) 

ToxCast - TOX21 
MMP fitc 

0.80 (+/- 
0.01) 

0.96 (+/- 
0.02) 

0.84 (+/- 
0.02) 

0.84 (+/- 
0.03) 

0.84 (+/- 
0.02) 

0.64 (+/- 
0.02) 

ToxCast - TOX21 
MMP ratio down 

0.81 (+/- 
0.01) 

0.95 (+/- 
0.01) 

0.85 (+/- 
0.01) 

0.87 (+/- 
0.02) 

0.85 (+/- 
0.01) 

0.78 (+/- 
0.01) 
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ToxCast - TOX21 
MMP ratio up 

0.80 (+/- 
0.01) 

0.97 (+/- 
0.02) 

0.82 (+/- 
0.02) 

0.85 (+/- 
0.06) 

0.82 (+/- 
0.02) 

0.59 (+/- 
0.01) 

ToxCast - TOX21 
MMP rhodamine 

0.79 (+/- 
0.01) 

0.93 (+/- 
0.00) 

0.85 (+/- 
0.01) 

0.85 (+/- 
0.02) 

0.85 (+/- 
0.01) 

0.76 (+/- 
0.01) 

ToxCast - TOX21 
PGC ERR Agonist 

0.81 (+/- 
0.00) 

0.91 (+/- 
0.03) 

0.80 (+/- 
0.01) 

0.77 (+/- 
0.09) 

0.80 (+/- 
0.01) 

0.56 (+/- 
0.01) 

ToxCast - TOX21 
PGC ERR Antagonist 

0.81 (+/- 
0.03) 

0.92 (+/- 
0.02) 

0.80 (+/- 
0.02) 

0.81 (+/- 
0.04) 

0.79 (+/- 
0.03) 

0.69 (+/- 
0.03) 

ToxCast - TOX21 
PPARd BLA 
antagonist ratio 

0.81 (+/- 
0.01) 

0.89 (+/- 
0.01) 

0.78 (+/- 
0.01) 

0.81 (+/- 
0.01) 

0.78 (+/- 
0.01) 

0.61 (+/- 
0.01) 

ToxCast - TOX21 
PPARg BLA 
antagonist ratio 

0.80 (+/- 
0.02) 

0.97 (+/- 
0.01) 

0.79 (+/- 
0.02) 

0.79 (+/- 
0.05) 

0.79 (+/- 
0.02) 

0.65 (+/- 
0.02) 

ToxCast - TOX21 PR 
BLA Antagonist ratio 

0.81 (+/- 
0.01) 

0.97 (+/- 
0.01) 

0.83 (+/- 
0.01) 

0.83 (+/- 
0.01) 

0.83 (+/- 
0.01) 

0.80 (+/- 
0.01) 

ToxCast - TOX21 
RAR LUC Agonist 

0.80 (+/- 
0.02) 

0.98 (+/- 
0.01) 

0.81 (+/- 
0.02) 

0.85 (+/- 
0.05) 

0.81 (+/- 
0.02) 

0.57 (+/- 
0.01) 

ToxCast - TOX21 
RAR LUC Antagonist 

0.80 (+/- 
0.01) 

0.94 (+/- 
0.02) 

0.79 (+/- 
0.01) 

0.79 (+/- 
0.03) 

0.79 (+/- 
0.01) 

0.66 (+/- 
0.02) 

ToxCast - TOX21 
RORg LUC CHO 
Antagonist 

0.81 (+/- 
0.01) 

0.98 (+/- 
0.01) 

0.81 (+/- 
0.01) 

0.82 (+/- 
0.03) 

0.81 (+/- 
0.02) 

0.68 (+/- 
0.01) 

ToxCast - TOX21 
RXR BLA Agonist 
ratio 

0.81 (+/- 
0.01) 

0.48 (+/- 
0.03) 

0.61 (+/- 
0.01) 

0.70 (+/- 
0.03) 

0.61 (+/- 
0.01) 

0.45 (+/- 
0.01) 

ToxCast - TOX21 
SBE BLA Antagonist 
ratio 

0.80 (+/- 
0.02) 

0.99 (+/- 
0.00) 

0.80 (+/- 
0.02) 

0.80 (+/- 
0.01) 

0.80 (+/- 
0.02) 

0.70 (+/- 
0.02) 

ToxCast - TOX21 
SSH 3T3 GLI3 
Antagonist 

0.81 (+/- 
0.01) 

0.89 (+/- 
0.02) 

0.78 (+/- 
0.01) 

0.79 (+/- 
0.04) 

0.78 (+/- 
0.02) 

0.72 (+/- 
0.01) 

ToxCast - TOX21 TR 
LUC GH3 Antagonist 

0.81 (+/- 
0.01) 

0.98 (+/- 
0.00) 

0.82 (+/- 
0.01) 

0.84 (+/- 
0.01) 

0.82 (+/- 
0.01) 

0.79 (+/- 
0.01) 

ToxCast - TOX21 
TSHR Agonist ratio 

0.80 (+/- 
0.01) 

0.90 (+/- 
0.01) 

0.78 (+/- 
0.01) 

0.83 (+/- 
0.04) 

0.77 (+/- 
0.01) 

0.57 (+/- 
0.01) 

ToxCast - TOX21 
TSHR Antagonist 
ratio 

0.81 (+/- 
0.01) 

0.91 (+/- 
0.03) 

0.79 (+/- 
0.00) 

0.83 (+/- 
0.07) 

0.78 (+/- 
0.01) 

0.54 (+/- 
0.01) 
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ToxCast - TOX21 
VDR BLA antagonist 
ratio 

0.81 (+/- 
0.02) 

0.93 (+/- 
0.01) 

0.79 (+/- 
0.02) 

0.82 (+/- 
0.05) 

0.79 (+/- 
0.02) 

0.60 (+/- 
0.01) 

ToxCast - TOX21 p53 
BLA p1 ratio 

0.81 (+/- 
0.02) 

0.92 (+/- 
0.01) 

0.80 (+/- 
0.02) 

0.86 (+/- 
0.06) 

0.79 (+/- 
0.02) 

0.64 (+/- 
0.02) 

ToxCast - TOX21 p53 
BLA p2 ratio 

0.81 (+/- 
0.01) 

0.88 (+/- 
0.01) 

0.78 (+/- 
0.01) 

0.81 (+/- 
0.03) 

0.78 (+/- 
0.01) 

0.65 (+/- 
0.01) 

ToxCast - TOX21 p53 
BLA p3 ratio 

0.81 (+/- 
0.01) 

0.87 (+/- 
0.01) 

0.78 (+/- 
0.01) 

0.83 (+/- 
0.02) 

0.78 (+/- 
0.01) 

0.63 (+/- 
0.01) 

ToxCast - TOX21 p53 
BLA p4 ratio 

0.80 (+/- 
0.01) 

0.92 (+/- 
0.02) 

0.79 (+/- 
0.01) 

0.79 (+/- 
0.01) 

0.79 (+/- 
0.01) 

0.64 (+/- 
0.01) 

ToxCast - TOX21 p53 
BLA p5 ratio 

0.81 (+/- 
0.01) 

0.88 (+/- 
0.01) 

0.78 (+/- 
0.01) 

0.78 (+/- 
0.02) 

0.78 (+/- 
0.01) 

0.63 (+/- 
0.01) 

ToxCast - UPITT HCI 
U2OS AR TIF2 
Nucleoli Agonist 

0.80 (+/- 
0.03) 

0.77 (+/- 
0.03) 

0.74 (+/- 
0.04) 

0.77 (+/- 
0.09) 

0.73 (+/- 
0.05) 

0.63 (+/- 
0.04) 

ToxCast - UPITT HCI 
U2OS AR TIF2 
Nucleoli Antagonist 

0.82 (+/- 
0.03) 

0.81 (+/- 
0.03) 

0.78 (+/- 
0.03) 

0.74 (+/- 
0.03) 

0.79 (+/- 
0.04) 

0.73 (+/- 
0.03) 

ToxCast - UPITT HCI 
U2OS AR TIF2 
Nucleoli Cytoplasm 
Ratio Antagonist 

0.82 (+/- 
0.03) 

0.78 (+/- 
0.01) 

0.77 (+/- 
0.04) 

0.83 (+/- 
0.06) 

0.76 (+/- 
0.04) 

0.66 (+/- 
0.04) 

ToxCast - NCCT 
HEK293T 
CellTiterGLO 

0.83 (+/- 
0.03) 

0.84 (+/- 
0.03) 

0.80 (+/- 
0.04) 

0.83 (+/- 
0.03) 

0.76 (+/- 
0.06) 

0.79 (+/- 
0.04) 

1 Numbers in parentheses indicate the standard deviation. 
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Table S7. Average Performance of the CP Models Generated Based on the Complete Set of Features.1 

Endpoint Descriptor Validity Efficiency Overall 
accuracy 

Accuracy 
active 

Accuracy 
inactive F1 score MCC Sensitivity Specificity 

MNT 

CHEM 0,79 (+/- 
0.01) 

0,73 (+/- 
0.03) 

0,71 (+/- 
0.02) 

0,78 (+/- 
0.06)  

0,70 (+/- 
0.03) 

0,65 (+/- 
0.02) 

0,38 (+/- 
0.04) 

0,70 (+/- 
0.03) 

0,78 (+/- 
0.06) 

BIO 0,82 (+/- 
0.02) 

0,75 (+/- 
0.04) 

0,76 (+/- 
0.02) 

0,78 (+/- 
0.09) 

0,76 (+/- 
0.04) 

0,69 (+/- 
0.02) 

0,44 (+/- 
0.05) 

0,76 (+/- 
0.04) 

0,78 (+/- 
0.09) 

CHEMBIO 0,83 (+/- 
0.02) 

0,77 (+/- 
0.03) 

0,78 (+/- 
0.03) 

0,79 (+/- 
0.07) 

0,78 (+/- 
0.03) 

0,70 (+/- 
0.03) 

0,46 (+/- 
0.05) 

0,77 (+/- 
0.03) 

0,79 (+/- 
0.07) 

DILI 

CHEM 0,81 (+/- 
0.04) 

0,82 (+/- 
0.06) 

0,77 (+/- 
0.03) 

0,77 (+/- 
0.05) 

0,77 (+/- 
0.08) 

0,76 (+/- 
0.03) 

0,53 (+/- 
0.06) 

0,77 (+/- 
0.08) 

0,77 (+/- 
0.05) 

BIO 0,82 (+/- 
0.03) 

0,79 (+/- 
0.05) 

0,77 (+/- 
0.03) 

0,77 (+/- 
0.04) 

0,77 (+/- 
0.08) 

0,76 (+/- 
0.03) 

0,53 (+/- 
0.07) 

0,77 (+/- 
0.08) 

0,77 (+/- 
0.04) 

CHEMBIO 0,82 (+/- 
0.03) 

0,80 (+/- 
0.06) 

0,78 (+/- 
0.03) 

0,78 (+/- 
0.03) 

0,78 (+/- 
0.07) 

0,77 (+/- 
0.03) 

0,54 (+/- 
0.06) 

0,78 (+/- 
0.07) 

0,78 (+/- 
0.03) 

DICC 

CHEM 0,82 (+/- 
0.02) 

0,83 (+/- 
0.04) 

0,78 (+/- 
0.01) 

0,79 (+/- 
0.02) 

0,77 (+/- 
0.02) 

0,76 (+/- 
0.01) 

0,53 (+/- 
0.03) 

0,77 (+/- 
0.02) 

0,79 (+/- 
0.02) 

BIO 0,80 (+/- 
0.02) 

0,98 (+/- 
0.01) 

0,81 (+/- 
0.01) 

0,84 (+/- 
0.04) 

0,80 (+/- 
0.02) 

0,79 (+/- 
0.02) 

0,60 (+/- 
0.03) 

0,80 (+/- 
0.02) 

0,84 (+/- 
0.04) 

CHEMBIO 0,79 (+/- 
0.02) 

0,97 (+/- 
0.01) 

0,82 (+/- 
0.01) 

0,85 (+/- 
0.03) 

0,80 (+/- 
0.02) 

0,80 (+/- 
0.01) 

0,61 (+/- 
0.03) 

0,80 (+/- 
0.02) 

0,85 (+/- 
0.03) 

1 Numbers in parentheses indicate the standard deviation.  
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Table S8. Average Performance of the CP Models Generated from a Selected Set of Features.1 

Endpoint Descriptor Validity Efficiency Overall 
accuracy 

Accuracy 
active 

Accuracy 
inactive F1 score MCC Sensitivity Specificity 

MNT 

CHEM 0,77 (+/- 
0.02) 

0,76 (+/- 
0.05) 

0,70 (+/- 
0.02) 

0,65 (+/- 
0.07)  

0,71 (+/- 
0.03) 

0,61 (+/- 
0.02) 

0,28 (+/- 
0.05) 

0,71 (+/- 
0.03) 

0,65 (+/- 
0.07) 

BIO 0,82 (+/- 
0.03) 

0,81 (+/- 
0.05) 

0,78 (+/- 
0.03) 

0,78 (+/- 
0.07) 

0,78 (+/- 
0.04) 

0,70 (+/- 
0.03) 

0,46 (+/- 
0.06) 

0,78 (+/- 
0.04) 

0,78 (+/- 
0.07) 

CHEMBIO 0,81 (+/- 
0.03) 

0,85 (+/- 
0.03) 

0,76 (+/- 
0.03) 

0,76 (+/- 
0.06) 

0,78 (+/- 
0.03) 

0,70 (+/- 
0.03) 

0,44 (+/- 
0.07) 

0,78 (+/- 
0.03) 

0,76 (+/- 
0.06) 

DILI 

CHEM 0,78 (+/- 
0.05) 

0,91 (+/- 
0.04) 

0,77 (+/- 
0.05) 

0,77 (+/- 
0.08) 

0,72 (+/- 
0.04) 

0,74 (+/- 
0.05) 

0,49 (+/- 
0.09) 

0,72 (+/- 
0.04) 

0,77 (+/- 
0.08) 

BIO 0,81 (+/- 
0.04) 

0,83 (+/- 
0.07) 

0,75 (+/- 
0.03) 

0,75 (+/- 
0.05) 

0,79 (+/- 
0.08) 

0,76 (+/- 
0.04) 

0,53 (+/- 
0.07) 

0,79 (+/- 
0.08) 

0,75 (+/- 
0.05) 

CHEMBIO 0,81 (+/- 
0.03) 

0,88 (+/- 
0.04) 

0,78 (+/- 
0.03) 

0,78 (+/- 
0.04) 

0,78 (+/- 
0.09) 

0,77 (+/- 
0.03) 

0,55 (+/- 
0.06) 

0,78 (+/- 
0.09) 

0,78 (+/- 
0.04) 

DICC 

CHEM 0,79 (+/- 
0.02) 

0,84 (+/- 
0.02) 

0,74 (+/- 
0.02) 

0,74 (+/- 
0.05) 

0,75 (+/- 
0.03) 

0,72 (+/- 
0.03) 

0,46 (+/- 
0.05) 

0,75 (+/- 
0.03) 

0,74 (+/- 
0.05) 

BIO 0,79 (+/- 
0.02) 

0,96 (+/- 
0.02) 

0,86 (+/- 
0.01) 

0,86 (+/- 
0.04) 

0,81 (+/- 
0.02) 

0,81 (+/- 
0.01) 

0,63 (+/- 
0.02) 

0,81 (+/- 
0.02) 

0,86 (+/- 
0.04) 

CHEMBIO 0,79 (+/- 
0.02) 

0,94 (+/- 
0.01) 

0,86 (+/- 
0.01) 

0,86 (+/- 
0.03) 

0,83 (+/- 
0.02) 

0,82 (+/- 
0.01) 

0,65 (+/- 
0.03) 

0,83 (+/- 
0.02) 

0,86 (+/- 
0.03) 

1 Numbers in parentheses indicate the standard deviation. 
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Table S9. Top Fifteen Most Important Features in the RF Models based on the 
CHEMBIO descriptor set without feature selection.1 

Endpoint Feature 
type Feature1 Feature 

importance2 

MNT  

BIO p1 AMES 1.00 

BIO p0 AMES 1.00 

BIO p1 eMolTox - Mutagenicity 0.96 

BIO p0 eMolTox - Mutagenicity 0.90 

BIO p1 eMolTox - Agonist of the p53 signaling pathway 0.76 

BIO p0 eMolTox - Agonist of the p53 signaling pathway 0.61 

BIO p1 ToxCast - TOX21 CAR Antagonist 0.52 

BIO p0 ToxCast - TOX21 CAR Antagonist 0.52 

BIO p1 ToxCast - TOX21 p53 BLA p3 ratio 0.47 

BIO p1 eMolTox - Antagonist of the farnesoid-X-receptor 
(FXR) signaling pathway 0.40 

BIO p1 ToxCast - TOX21 p53 BLA p5 ratio 0.39 

BIO p0 eMolTox - Activator the aryl hydrocarbon receptor 
(AhR) signaling pathway 0.38 

BIO p0 eMolTox - Antagonist of the farnesoid-X-receptor 
(FXR) signaling pathway 0.38 

BIO p0 ToxCast - TOX21 p53 BLA p5 ratio 0.36 

BIO p1 ToxCast - TOX21 p53 BLA p2 ratio 0.36 

DILI 

CHEM Physicochemical descriptor (smr VSA10) 1.00 

BIO p0 eMolTox - Modulator of Kappa opioid receptor3 0.86 

BIO p1 eMolTox - Modulator of Kappa opioid receptor3 0.84 

BIO p0 Bioavailability 0.84 

BIO p1 Bioavailability 0.83 

BIO p1 eMolTox - Modulator of Mu opioid receptor3 0.83 

BIO p0 eMolTox - Modulator of Mu opioid receptor3 0.80 

BIO p0 eMolTox - Modulator of Muscarinic acetylcholine 
receptor M43 0.79 
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BIO p1 eMolTox - Modulator of Muscarinic acetylcholine 
receptor M43 0.65 

BIO p1 eMolTox - Modulator of Delta opioid receptor4 0.63 

BIO p0 eMolTox - Modulator of Muscarinic acetylcholine 
receptor M33 0.62 

BIO p0 eMolTox - Modulator of Delta opioid receptor4 0.61 

BIO p0 eMolTox - Modulator of Muscarinic acetylcholine 
receptor M23 0.60 

BIO p1 eMolTox - Modulator of Muscarinic acetylcholine 
receptor M33 0.59 

BIO p0 eMolTox - Modulator of Muscarinic acetylcholine 
receptor M53 0.58 

DICC 
 

BIO p1 Bioavailability 1.00 

BIO p0 ToxCast - TOX21 ERa LUC VM7 agonist 0.93 

BIO p1 ToxCast - TOX21 ERa LUC VM7 agonist 0.83 

BIO p0 Bioavailability 0.81 

BIO p0 eMolTox - Agonist of the RXR signaling pathway 0.69 

BIO p0 ToxCast - TOX21 HDAC Inhibition 0.60 

BIO p0 ToxCast - TOX21 RXR BLA Agonist ratio 0.56 

BIO p1 eMolTox - Agonist of the RXR signaling pathway 0.52 

BIO p1 eMolTox - Induce Phospholipidosis 0.50 

BIO p1 ToxCast - TOX21 p53 BLA p2 ratio 0.49 

BIO p0 ToxCast - TOX21 p53 BLA p3 ratio 0.49 

BIO 
p1 eMolTox - Differential cytotoxicity against isogenic 
chicken DT40 cell lines with known DNA damage 
response pathways - Rad54Ku70 mutant cell line 

0.49 

BIO p1 ToxCast - TOX21 p53 BLA p3 ratio 0.47 

BIO p0 ToxCast - TOX21 DT40 657 0.47 

BIO p1 ToxCast - TOX21 DT40 657 0.47 
1 p0 and p1 denote the predicted p-values for the inactive (0) and active (1) classes. 

2 Normalized mean feature importance over 5-fold CV. 

3 Features related to modulators of G protein-coupled receptors. 
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Table S10. Top Fifteen Features Obtained With the Lasso Models Based on the 
CHEMBIO Descriptor Set. 

Endpoint Feature 
type Feature1 Mean 

coefficient2 

MNT 

BIO p1 AMES 1.00 

BIO p1 eMolTox - Agonist of the p53 signaling pathway 0.70 

CHEM Fingerprint (byte vector 1994) 0.28 

CHEM Fingerprint (byte vector 1730) 0.25 

BIO p0 ToxCast - BSK BE3C IP10 down 0.25 

CHEM Fingerprint (byte vector 1809) 0.23 

BIO p0 ToxCast - BSK KF3CT MCP1 down 0.21 

BIO p0 Chromosome aberration 0.19 

BIO p0 PGP inhibition 0.19 

BIO p1 ToxCast - TOX21 CAR Antagonist 0.18 

CHEM Fingerprint (byte vector 302) 0.17 

CHEM Fingerprint (byte vector 1375) 0.16 

CHEM Fingerprint (byte vector 343) 0.16 

CHEM Fingerprint (byte vector 853) 0.15 

CHEM Fingerprint (byte vector 1181) 0.15 

DILI 

BIO p1 Bioavailability 1.00 

BIO p1 eMolTox - Modulator of Mu opioid receptor 0.73 

CHEM Physicochemical descriptor (peoe VSA3) 0.66 

CHEM Fingerprint (byte 845) 0.65 

BIO p1 ToxCast - OT ER ERbERb 1440 0.45 

BIO p0 eMolTox - Modulator of GABA-A receptor  
alpha-2beta-3gamma-2 0.45 

CHEM Physicochemical descriptor (MQN34) 0.43 

BIO p0 eMolTox - Modulator of Muscarinic acetylcholine 
receptor M1 0.42 

BIO p0 ToxCast - ATG PXRE CIS dn 0.39 
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BIO p0 ToxCast - TOX21 ERR Antagonist 0.38 

CHEM Physicochemical descriptor (MQN25) 0.38 

CHEM Fingerprint (byte vector1036) 0.35 

BIO 
p1 eMolTox ± Antagonist of the retinoid-related 
orphan receptor gamma (ROR-gamma) signaling 
pathway 

0.35 

CHEM Physicochemical descriptor (fraction of CSP3) 0.34 

BIO 
p0 eMolTox ± Agonist of the peroxisome 
proliferator-activated receptor gamma (PPARg) 
signaling pathway 

0.33 

DICC 

BIO p0 Bioavailability 1.00 

BIO p1 Bioavailability 0.96 

BIO p0 ToxCast - ACEA AR antagonist 80hr 0.27 

BIO p0 ToxCast - TOX21 ERa LUC VM7 agonist 0.26 

BIO p0 eMolTox - Cytotoxicity in HEK293 cells - 24 
hour 0.23 

BIO p0 ToxCast - TOX21 AR LUC MDAKB2 agonist 0.22 

BIO p0 Chromosome aberration 0.20 

BIO p0 ToxCast - TOX21 p53 BLA p2 ratio 0.17 

BIO p1 eMolTox - Differential cytotoxicity (isogenic 
chicken DT40 Rev3 mutant cell line) 0.16 

BIO p1 AMES 0.14 

BIO p0 ToxCast - TOX21 Aromatase Inhibition 0.14 

BIO p1 eMolTox - Modulator_of_Alpha-
2a_adrenergic_receptor 0.14 

BIO 
p0 eMolTox ± Agonist of the peroxisome 
proliferator-activated receptor gamma (PPARg) 
signaling pathway 

0.13 

BIO p1 ToxCast ± ATG ERE CIS up 0.13 

BIO p0 ToxCast - TOX21 HDAC Inhibition 0.11 
1 p0 and p1 denote the predicted p-values for the inactive (0) and active (1) classes. 
2 Normalized mean lasso coefficients over 5-fold CV. 
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Studying and mitigating the effects of data drifts on ML model performance at the

example of chemical toxicity data

Andrea Morger, Marina Garcia de Lomana Rodriguez, Ulf Norinder, Fredrik Svensson, Johannes
Kirchmair, Miriam Mathea and Andrea Volkamer

A1 Additional information on data and methods
A1.1 Target selection for the ChEMBL datasets
Target datasets were selected following a collection of 1360 ligand sets provided by Škuta et al.31 for similarity searching,
bioactivity classification and scaffold hopping. First, the 29 target datasets, for which Škuta et al. found � 1000 compounds
with reported pIC50 values, were downloaded, including pIC50 values and publication year. The following cleaning procedure
was applied to each target dataset: If there were multiple measurements per compound and endpoint, the mean and standard
deviation were calculated. Only the mean measurement of those duplicates was kept if the standard deviation was lower or
equal than 0.5, otherwise they were discarded. The oldest publication year (i.e. lowest number) was kept for aggregated data
points. The compounds were standardised as described in the main manuscript (section 2.1.2) and temporally split into training,
update1, update2, and holdout set as explained in 2.1.4. If fewer than 50 active and 50 inactive compounds were left in the
holdout set after the time-split, the target dataset was excluded from the study. Finally, 20 targets remained which match the
filtering criteria. Of these, a total of twelve targets were selected that are linked to toxicity. A target was defined to be associated
to toxicity if it was either assayed in ToxCast33, or part of the list of targets that are recommended to early assess the potential
hazard of a compound34.

A1.2 Public datasets for liver toxicity and MNT
To assess drifts between data originating from different sources, public and proprietary datasets for liver toxicity and micro
nucleus test (MNT) were collected. For CP model training, the same public datasets for liver toxicity (more specifically here
drug-induced liver injury (DILI)) and MNT in vivo were used as described by Garcia de Lomana et al.12. Data for the DILI
endpoint were gathered from the U.S. Food and Drug Administration (FDA)64 and for the MNT in vivo endpoint from three
sources (eChemPortal65, the work of Benigni et al.66 and Yoo et al.67). The respective datasets contain 692 (445 active and
247 inactive compounds) and 1791 compounds (316 active and 1475 inactive compounds) after the data pre-processing and
deduplication steps conducted by Garcia de Lomana et al.12.

A1.3 Inhouse datasets for liver toxicity and MNT
Two inhouse datasets for liver toxicity and MNT in vivo, with data generated by BASF SE, were used as holdout and update set
to investigate data drifts between data with different origin. Liver toxicity was measured in oral assays on rats (including OECD
Guidelines 407, 408 and 422, as well as range finding oral studies). Compounds showing adverse or adaptive effects in the liver
in any of these studies were labelled as active. MNT in vivo was determined in mice in an assay following the OECD Guideline
474 or in (non-GLP) screening assays (with 18 animals). The liver toxicity dataset contains 140 (63 active and 77 inactive)
compounds and the MNT in vivo dataset contains 366 (194 active and 172 inactive) compounds after the data pre-processing
and deduplication steps (following the same procedure as Garcia de Lomana et al.12, see "Chemical structure standardisation").

A1.4 Time-splitting procedure
Note that all compounds published (ChEMBL data) or assayed (inhouse data) in the same year were assigned to the same split.

ChEMBL data After standardising the compounds (see 2.1.2), the ChEMBL data were time-split into four datasets, i.e. train,
update1, update2, and holdout set based on the publication year. A minimum number of compounds per dataset was defined
based on a predefined ratio, i.e. the training set must contain at least 50% of the total number of compounds, the update1 and
update2 sets must contain at least 12% each. Starting from the earliest year, all compounds published in that year were assigned
to the training set and the number of training compounds was assessed. Same for the next year(s) until the training set contained
at least the minimum number of training compounds defined. Then, all compounds published in the following year(s) were
assigned to the update1 set until the respective threshold was reached. With the same procedure, the compounds published in
the subsequent year(s) were allocated to the update2 set. All remaining compounds belong to the holdout set. The number of
active and inactive compounds available per subset of the twelve holdout ChEMBL target datasets, as well as the corresponding
time thresholds for splitting, are provided in Table 2.
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Liver toxicity and MNT data To investigate the occurrence of discrepancies between external and internal data (see A1.2), the
liver toxicity and MNT datasets were investigated. The external data were used for model building as well as for the original
calibration set. The internal data were time-split into update and holdout set based on the date they were measured internally.
Due to the small number of available inhouse compounds, only one update set was deducted. The data was selected by year as
described for the ChEMBL data until at least 50% of the compounds were assigned to the update set. The number of training,
update and holdout compounds available for the liver toxicity and MNT endpoints are shown in Table 2.

Table S1. ChEMBL datasets and their biological relevance. A selection of possible toxicological or adverse effects due to
agonism (or activation) or antagonism (or inhibition) with the targets is provided.

ChEMBL ID name toxicological or adverse effects
CHEMBL220 Acetylcholinesterase (human) decreased blood pressure or heart rate, increased GI motility34, 68

CHEMBL4078 Acetylcholinesterase (fish) decreased blood pressure or heart rate, increased GI motility34, 68

CHEMBL5763 Cholinesterase decreased heart rate, QT interval prolongation69

CHEMBL203 EGFR erbB1 skin toxicity, cardiotoxicity70, 71

CHEMBL206 Estrogen receptor alpha antiandrogenic effects, hormone-dependent cancers72, 73

CHEMBL279 VEGFR 2 hypertension, disturbed wound healing, GI and skin toxicity74

CHEMBL230 Cyclooxygenase-2 myocardial infarction, increased blood pressure, ischaemic stroke,
atherothrombosi34, 75

CHEMBL340 Cytochrome P450 3A4 drug-drug interactions, detoxification by metabolism, activation of toxic
metabolites76

CHEMBL240 HERG QT interval prolongation77

CHEMBL2039 Monoamine oxidase B cell death78

CHEMBL222 Norepinephrine transporter increased heart rate or blood pressure, constipation34, 79

CHEMBL228 Serotonin transporter increased GI motility, insomnia, anxiety, sexual dysfunction34, 80

18/25



A2 Additional information on results

(a) Evaluation for inactive compounds

(b) Evaluation for active compounds

Figure S1. Class-wise time split evaluation (validity, efficiency, accuracy) of CV experiments and predictions for the holdout
set using the original (cal_original), update1 (cal_update1), update2 (cal_update2) and combined update1_and_2
(cal_update1_and_2) calibration sets for twelve ChEMBL datasets.
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Figure S2. Inactive compounds evaluation of time-split experiments for individual ChEMBL endpoints. i) cross-validation on
training data, predict holdout data using ii) original calibration set iiia) update1, iiib) update2, iiic) combined update1+2
calibration sets.

20/25



Figure S3. Active compounds evaluation of time-split experiments for individual ChEMBL endpoints. i) cross-validation on
training data, predict holdout data using ii) original calibration set iiia) update1, iiib) update2, iiic) combined update1+2
calibration sets.

21/25



Figure S4. Balanced evaluation of time-split experiments for individual ChEMBL endpoints. i) cross-validation on training
data, predict holdout data using ii) original calibration set, iii) updated calibration set, a) update1, b) update2, c) combined
update1+2 sets. The doted line at 0.8 denotes the expected validity for the chosen significance level (of 0.2).
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Figure S5. Spreading of clusters amongst the data subsets (i.e. splits) for the ChEMBL datasets. Most of the clusters (with at
least two compounds) do not spread over more than one subset (i.e. training, update1, update2 or holdout set).
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(a) training set (b) Update1 set (c) Update2 set

Figure S6. Distribution of Tanimoto coefficients between each holdout compound to its nearest neighbour in the
corresponding subset (training, update1 and update2) for ChEMBL206 endpoint .

Figure S7. Time split evaluation (validity, efficiency, accuracy) of experiments i) CV, predictions using ii) original calibration
set, iii) update calibration set for the liver toxicity and MNT inhouse datasets.
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Figure S8. Distribution of Tanimoto coefficients between each holdout compound to its nearest neighbour in the training (left)
and update (right) set for the liver (top) and MNT (bottom) endpoints.
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Figure S1. Comparison of the physicochemical properties of the parent compounds 

(blue) and predicted metabolites (orange) represented in the DILI, DICC and LLNA 
data sets. 
 



Figure S2. Distribution of the logP values for the metabolites from toxic (blue) and non-
toxic (orange) parent compounds in the AMES and MNT data sets. 

 

Figure S3. Percentage of occurrence of a subset of biotransformations between toxic 
(blue) and non-toxic (orange) compounds. The selected subset are the 15 
biotransformations most often observed for toxic compounds in AMES. Although some 
biotransformations appear more often in one of the activity classes, these ratios are 
different between endpoints. 



Table S1. Data Sources and Download Links for the Original Data Sets. 

Endp
oint Data sources Download link1 Access 

date Query (json format) MD5 file 
checksum 

Checksum 
input file 

AME
S 

CCRIS 
(https://www.
nlm.nih.gov/d
atabases/dow
nload/ccris.ht
ml) 

https://ftp.nlm.nih.g
ov/projects/ccrislea
se/ 

19.02.21 - 

B411532A
D80846CF
1D5FDD9
B08B79F9
3 

XML file 
in 
ccris.xml.2
0110828.zi
p 

GENE-TOX 
(https://www.
nlm.nih.gov/d
atabases/dow
nload/genetox
.html) 

https://pubchem.nc
bi.nlm.nih.gov/bioa
ssay/1259408 

19.02.21 - 

1A9706F5
C08DF8A2
4F6DB2BF
3DADDAB
0 

.csv file 

NTP 
(https://cebs.n
iehs.nih.gov/d
atasets/search
/ames) 

ftp://anonftp.niehs.
nih.gov/ntp-
cebs/datatype/NTP
_Data_Collections/
Ames_Conclusions
_DataCollection_2
020-02-19.xlsx 

19.02.21 - 

F442B6687
587F17B42
C9BA1D4
D82D4BB 

.xlsx file 

MNT 
10.1016/j.yrtp
h.2020.10462
0 

 
 

- 

6174327EB
2B69D432
6B36E5D6
10ACDE7 

Supplemen
tary .xlsx 
file 



eChemPortal 
(active) 

https://www.echem
portal.org/echempo
rtal/property-search 

06.08.20 

{"blocks":[{"level":0,"type":"property","id":"dis3i1p7tjkdijou2p",
"label":"Genetic toxicity in 
vivo","endpointKind":"GeneticToxicityVivo"}],"endpoints":{"dis
3i1p7tjkdijou2p":{"ENDPOINT_STUDY_RECORD.GeneticToxi
cityVivo.AdministrativeData.StudyResultType":{"1342":"","phra
se":["1895"]},"ENDPOINT_STUDY_RECORD.GeneticToxicity
Vivo.AdministrativeData.Reliability":{"1342":"","phrase":["16","
18","24","1342"]},"ENDPOINT_STUDY_RECORD.GeneticToxi
cityVivo.MaterialsAndMethods.Guideline.Qualifier":{"phrase":["
1680","1880"]},"ENDPOINT_STUDY_RECORD.GeneticToxicit
yVivo.MaterialsAndMethods.Guideline.Guideline":{"1342":"","p
hrase":["1290"]},"ENDPOINT_STUDY_RECORD.GeneticToxic
ityVivo.ResultsAndDiscussion.TestRs.Genotoxicity":{"1342":"","
phrase":["2276"]},"ENDPOINT_STUDY_RECORD.GeneticToxi
cityVivo.ResultsAndDiscussion.TestRs.Toxicity":{"phrase":["217
0","2197","2207"]},"endpointKind":"GeneticToxicityVivo"}}} 

6D1771634
AE4FBDF
DC9C517A
0F2594FC 

.csv file 
resulting 
from 
eChemPort
al query 

eChemPortal 
(inactive) 

https://www.echem
portal.org/echempo
rtal/property-search 

06.08.20 

{"blocks":[{"level":0,"type":"property","id":"dis3i1p7tjkdijou2p",
"label":"Genetic toxicity in 
vivo","endpointKind":"GeneticToxicityVivo"}],"endpoints":{"dis
3i1p7tjkdijou2p":{"ENDPOINT_STUDY_RECORD.GeneticToxi
cityVivo.AdministrativeData.StudyResultType":{"1342":"","phra
se":["1895"]},"ENDPOINT_STUDY_RECORD.GeneticToxicity
Vivo.AdministrativeData.Reliability":{"1342":"","phrase":["16","
18","24","1342"]},"ENDPOINT_STUDY_RECORD.GeneticToxi
cityVivo.MaterialsAndMethods.Guideline.Qualifier":{"phrase":["
1680","1880"]},"ENDPOINT_STUDY_RECORD.GeneticToxicit
yVivo.MaterialsAndMethods.Guideline.Guideline":{"1342":"","p
hrase":["1290"]},"ENDPOINT_STUDY_RECORD.GeneticToxic
ityVivo.ResultsAndDiscussion.TestRs.Genotoxicity":{"1342":null
,"phrase":["2148"]},"ENDPOINT_STUDY_RECORD.GeneticTo
xicityVivo.ResultsAndDiscussion.TestRs.Toxicity":{"phrase":["2
170","2197","2207"]},"endpointKind":"GeneticToxicityVivo"}}} 

10BC1CB5
B9C4F0FE
DDAEF41
600E13937 

.csv file 
resulting 
from 
eChemPort
al query 



DILI 
10.1016/j.dru
dis.2016.02.0

15 

- 

 

- 

4EA88A55

23A6717B

9118AF7C
4DAA9442 

Supplemen
tary .xlsx 

file 

DICC 
10.1021/acs.j
cim.7b00641 

- 

 

- 

80B6A404

8F31A9EC
74DD8452

2B1F861D 

Supplemen

tary .xlsx 
file (Table 

S1) 

LLN

A 

10.1021/acs.c
hemrestox.0c

00253 

- 

 

- 

E3F1E3FB

CC21AF71
4295BCFE

AA5B4DE

2 

Supplemen
tary .xlsx 

file 

1 Missing download links correspond to data sets available as supplementary material of the publication indicated as data source. 



Table S2. Performance of Models Including Molecular Descriptors for Metabolites. 

Endpoint Model1 F1 score MCC Precision Recall 

AMES 

baseline 
performance 

0.82 (+/- 
0.01) 

0.65 (+/- 
0.03) 

0.83 (+/- 
0.01) 

0.82 (+/- 
0.01) 

Morgan 
0.82 (+/- 
0.02) 

0.65 (+/- 
0.03) 

0.83 (+/- 
0.02) 

0.82 (+/- 
0.02) 

RDKit 
0.81 (+/- 
0.01) 

0.62 (+/- 
0.02) 

0.82 (+/- 
0.01) 

0.81 (+/- 
0.01) 

Morgan+RDKit 
0.81 (+/- 
0.01) 

0.62 (+/- 
0.03) 

0.82 (+/- 
0.01) 

0.80 (+/- 
0.01) 

MNT 

baseline 
performance 

0.64 (+/- 
0.03) 

0.29 (+/- 
0.05) 

0.67 (+/- 
0.02) 

0.62 (+/- 
0.03) 

Morgan 
0.61 (+/- 
0.03) 

0.24 (+/- 
0.06) 

0.66 (+/- 
0.05) 

0.59 (+/- 
0.02) 

RDKit 
0.60 (+/- 
0.03) 

0.25 (+/- 
0.06) 

0.69 (+/- 
0.05) 

0.59 (+/- 
0.02) 

Morgan+RDKit 
0.59 (+/- 
0.04) 

0.23 (+/- 
0.08) 

0.66 (+/- 
0.06) 

0.58 (+/- 
0.03) 

DILI 

baseline 
performance 

0.68 (+/- 
0.04) 

0.37 (+/- 
0.08) 

0.69 (+/- 
0.04) 

0.68 (+/- 
0.03) 

Morgan 
0.69 (+/- 
0.04) 

0.38 (+/- 
0.09) 

0.70 (+/- 
0.05) 

0.68 (+/- 
0.04) 

RDKit 
0.67 (+/- 
0.04) 

0.36 (+/- 
0.07) 

0.69 (+/- 
0.03) 

0.66 (+/- 
0.04) 

Morgan+RDKit 
0.66 (+/- 
0.03) 

0.34 (+/- 
0.06) 

0.68 (+/- 
0.04) 

0.66 (+/- 
0.03) 

DICC 

baseline 
performance 

0.69 (+/- 
0.02) 

0.39 (+/- 
0.04) 

0.71 (+/- 
0.02) 

0.69 (+/- 
0.03) 

Morgan 
0.66 (+/- 
0.02) 

0.33 (+/- 
0.05) 

0.68 (+/- 
0.02) 

0.65 (+/- 
0.02) 

RDKit 
0.64 (+/- 
0.03) 

0.30 (+/- 
0.06) 

0.67 (+/- 
0.03) 

0.64 (+/- 
0.03) 

Morgan+RDKit 
0.64 (+/- 
0.03) 

0.30 (+/- 
0.06) 

0.67 (+/- 
0.03) 

0.63 (+/- 
0.03) 

LLNA 

baseline 
performance 

0.73 (+/- 
0.02) 

0.47 (+/- 
0.04) 

0.74 (+/- 
0.02) 

0.69 (+/- 
0.03) 

Morgan 
0.73 (+/- 
0.02) 

0.46 (+/- 
0.04) 

0.73 (+/- 
0.02) 

0.73 (+/- 
0.03) 

RDKit 
0.69 (+/- 
0.02) 

0.39 (+/- 
0.05) 

0.70 (+/- 
0.02) 

0.69 (+/- 
0.02) 

Morgan+RDKit 
0.70 (+/- 
0.02) 

0.40 (+/- 
0.04) 

0.71 (+/- 
0.02) 

0.70 (+/- 
0.02) 

1 The baseline model does not include any metabolite descriptor. “Morgan” refers to the 
count-based Morgan fingerprint and “RDKit” to the RDKit physicochemical property 
descriptors of the metabolites. 

 



Table S3. P-values From the Mann-Whitney U Test Between the Baseline Performance 
and the Models Including Molecular Descriptors for Metabolites. 

Endpoint Model1 F1 score MCC Precision Recall 

AMES 

Morgan 1,00 1,00 0,92 1,00 

RDKit 0,14 0,14 0,35 0,07 

Morgan+RDKit 0,12 0,14 0,21 0,06 

MNT 

Morgan 0,21 0,21 0,83 0,14 

RDKit 0,09 0,3 0,4 0,07 

Morgan+RDKit 0,09 0,53 0,92 0,09 

DILI 

Morgan 1,00 1,00 0,83 0,92 

RDKit 0,53 0,68 1,00 0,60 

Morgan+RDKit 0,30 0,40 0,68 0,35 

DICC 

Morgan 0,09 0,09 0,09 0,09 

RDKit 0,04 0,04 0,14 0,04 

Morgan+RDKit 0,02 0,04 0,06 0,02 

LLNA 

Morgan 1,00 1,00 1,00 1,00 

RDKit 0,04 0,04 0,04 0,04 

Morgan+RDKit 0,06 0,06 0,04 0,06 
1 The baseline model does not include any metabolite descriptor. “Morgan” refers to the 
count-based Morgan fingerprint and “RDKit” to the RDKit physicochemical property 
descriptors of the metabolites. 
 
 

Table S4. Performance of Models Including the Biotransformation Fingerprint. 

Endpoint F1 score MCC Precision Recall 

AMES 0.82 (+/- 0.02) 0.65 (+/- 0.04) 0.83 (+/- 0.02) 0.82 (+/- 0.02) 

MNT 0.63 (+/- 0.03) 0.28 (+/- 0.05) 0.67 (+/- 0.02) 0.62 (+/- 0.03) 

DILI 0.69 (+/- 0.04) 0.38 (+/- 0.08) 0.70 (+/- 0.04) 0.68 (+/- 0.04) 

DICC 0.69 (+/- 0.02) 0.39 (+/- 0.04) 0.71 (+/- 0.02) 0.69 (+/- 0.02) 

LLNA 0.74 (+/- 0.03) 0.48 (+/- 0.05) 0.74 (+/- 0.02) 0.74 (+/- 0.03) 

 
 



Table S5. P-values From the Mann-Whitney U Test Between the Baseline Performance 
and the Models Including the Biotransformation Fingerprint. 

Endpoint F1 score MCC Precision Recall 

AMES 0,92 0,92 0,83 0,83 
MNT 0,68 0,92 0,83 0,53 
DILI 1,00 1,00 0,83 0,53 
DICC 0,92 1,00 1,00 0,92 
LLNA 0,60 0,60 0,53 0,75 

 
 
Table S6. Average Performance within 5-fold Cross-Validation for the Different 
Combinations of Predicted Probabilities with the Baseline-Approach. 

Endpoint Combination
1 F1 score MCC Precision Recall 

AMES 

baseline 
performance 0.82 (+/- 0.01) 0.65 (+/- 0.03) 0.83 (+/- 0.01) 0.82 (+/- 0.01) 

Strategy 1 0.73 (+/- 0.00) 0.51 (+/- 0.01) 0.80 (+/- 0.01) 0.71 (+/- 0.00) 
Strategy 2 0.73 (+/- 0.01) 0.50 (+/- 0.03) 0.79 (+/- 0.02) 0.72 (+/- 0.01) 
Strategy 3 0.79 (+/- 0.01) 0.59 (+/- 0.03) 0.79 (+/- 0.01) 0.80 (+/- 0.01) 
Strategy 4 0.82 (+/- 0.01) 0.64 (+/- 0.03) 0.82 (+/- 0.01) 0.82 (+/- 0.01) 

MNT 

baseline 
performance 0.64 (+/- 0.03) 0.29 (+/- 0.05) 0.67 (+/- 0.02) 0.62 (+/- 0.03) 

Strategy 1 0.59 (+/- 0.03) 0.25 (+/- 0.05) 0.71 (+/- 0.04) 0.57 (+/- 0.02) 
Strategy 2 0.59 (+/- 0.03) 0.24 (+/- 0.06) 0.70 (+/- 0.04) 0.57 (+/- 0.02) 
Strategy 3 0.61 (+/- 0.03) 0.27 (+/- 0.04) 0.61 (+/- 0.02) 0.67 (+/- 0.02) 
Strategy 4 0.66 (+/- 0.02) 0.33 (+/- 0.04) 0.67 (+/- 0.03) 0.66 (+/- 0.02) 

DILI 

baseline 
performance 0.68 (+/- 0.04) 0.37 (+/- 0.08) 0.69 (+/- 0.04) 0.68 (+/- 0.04) 

Strategy 1 0.67 (+/- 0.03) 0.34 (+/- 0.06) 0.67 (+/- 0.02) 0.67 (+/- 0.04) 
Strategy 2 0.66 (+/- 0.02) 0.33 (+/- 0.05) 0.67 (+/- 0.02) 0.66 (+/- 0.03) 
Strategy 3 0.55 (+/- 0.02) 0.22 (+/- 0.06) 0.68 (+/- 0.05) 0.57 (+/- 0.02) 
Strategy 4 0.65 (+/- 0.02) 0.35 (+/- 0.04) 0.71 (+/- 0.02) 0.64 (+/- 0.02) 

DICC 

baseline 
performance 

0.69 (+/- 0.02) 0.39 (+/- 0.04) 0.71 (+/- 0.02) 0.69 (+/- 0.03) 

Strategy 1 0.58 (+/- 0.04) 0.25 (+/- 0.06) 0.69 (+/- 0.04) 0.59 (+/- 0.03) 
Strategy 2 0.59 (+/- 0.04) 0.25 (+/- 0.07) 0.67 (+/- 0.04) 0.59 (+/- 0.03) 
Strategy 3 0.66 (+/- 0.00) 0.33 (+/- 0.01) 0.66 (+/- 0.01) 0.68 (+/- 0.01) 
Strategy 4 0.70 (+/- 0.01) 0.39 (+/- 0.02) 0.70 (+/- 0.01) 0.70 (+/- 0.02) 

LLNA baseline 
performance 

0.73 (+/- 0.02) 0.47 (+/- 0.04) 0.74 (+/- 0.02) 0.73 (+/- 0.02) 



Strategy 1 0.52 (+/- 0.02) 0.22 (+/- 0.04) 0.68 (+/- 0.05) 0.57 (+/- 0.01) 
Strategy 2 0.51 (+/- 0.02) 0.18 (+/- 0.02) 0.64 (+/- 0.02) 0.56 (+/- 0.01) 
Strategy 3 0.70 (+/- 0.01) 0.41 (+/- 0.02) 0.70 (+/- 0.01) 0.71 (+/- 0.01) 
Strategy 4 0.71 (+/- 0.01) 0.43 (+/- 0.02) 0.71 (+/- 0.01) 0.71 (+/- 0.01) 

1 The baseline performance corresponds to models considering only parent compounds. 
Strategies 1, 2 and 3 correspond to taking the mean, median and maximum predicted 
probability among the parent compound and its metabolites, respectively. Strategy 4 
corresponds to the mean between the predicted probability for the parent compound and 
the highest probability predicted for any of its metabolites. 
 
 

Table S7. P-values From the Mann-Whitney U Test Between the Baseline Performance 
and the Baseline-Approach Strategies. 

Endpoint Combination1 P-value of2 

  F1 score MCC Precision Recall 

AMES 

Strategy 1 0,01 0,01 0,01 0,01 

Strategy 2 0,01 0,01 0,01 0,01 

Strategy 3 0,02 0,04 0,01 0,17 

Strategy 4 0,83 0,83 0,40 0,92 

MNT 

Strategy 1 0,06 0,30 0,09 0,03 

Strategy 2 0,06 0,30 0,21 0,05 

Strategy 3 0,30 0,53 0,01 0,04 

Strategy 4 0,14 0,21 0,75 0,09 

DILI 

Strategy 1 0,68 0,83 0,53 0,83 

Strategy 2 0,53 0,68 0,40 0,53 

Strategy 3 0,01 0,02 0,40 0,01 

Strategy 4 0,21 0,53 0,83 0,21 

DICC 

Strategy 1 0,01 0,02 0,53 0,01 

Strategy 2 0,01 0,02 0,14 0,01 

Strategy 3 0,03 0,07 0,01 0,29 

Strategy 4 0,83 0,83 0,17 0,53 

LLNA 
Strategy 1 0,01 0,01 0,06 0,01 

Strategy 2 0,01 0,01 0,01 0,01 



Strategy 3 0,02 0,05 0,01 0,06 
Strategy 4 0,06 0,06 0,07 0,12 

1 Strategies 1, 2 and 3 correspond to taking the mean, median and maximum predicted 
probability among the parent compound and its metabolites, respectively. Strategy 4 
corresponds to the mean between the predicted probability for the parent compound and 
the highest probability predicted for any of its metabolites. 
2 P-values lower than 0.05 that indicate an improvement compared to the baseline 
performance are highlighted in bold. 
 
 
Table S8. P-values From the Mann-Whitney U Test Between the Baseline Performance 
and the Hybrid-Approach Strategies. 

Endpoint Combination1 P-value of2 
  F1 score MCC Precision Recall 

AMES 

Strategy 1 0,04 0,04 0,53 0,01 
Strategy 2 0,04 0,06 0,17 0,02 
Strategy 3 0,04 0,06 0,02 0,14 
Strategy 4 0,75 0,68 0,92 0,46 

MNT 

Strategy 1 0,30 0,40 0,01 0,21 
Strategy 2 0,21 0,68 0,01 0,14 
Strategy 3 0,53 0,53 0,06 0,02 
Strategy 4 0,21 0,30 0,30 0,21 

DILI 

Strategy 1 0,40 0,40 0,30 0,46 
Strategy 2 0,30 0,21 0,21 0,29 
Strategy 3 0,04 0,21 0,53 0,04 
Strategy 4 0,40 1,00 0,40 0,30 

DICC 

Strategy 1 0,35 1,00 0,01 0,17 
Strategy 2 0,21 0,92 0,05 0,21 
Strategy 3 0,14 0,21 0,03 0,21 
Strategy 4 0,14 0,21 0,21 0,06 

LLNA 

Strategy 1 0,06 0,14 0,46 0,06 
Strategy 2 0,53 0,53 1,00 0,53 
Strategy 3 0,02 0,09 0,07 0,17 
Strategy 4 0,83 0,83 1,00 0,68 

1 Strategies 1, 2 and 3 correspond to taking the mean, median and maximum predicted 
probability among the parent compound and its metabolites, respectively. Strategy 4 
corresponds to the mean between the predicted probability for the parent compound and 
the highest probability predicteds for any of its metabolites. 
2 P-values lower than 0.05 that indicate an improvement compared to the baseline 
performance are highlighted in bold. 
 
 



Table S9. Best Five Combinations of Model Type, Probability Combination and Metabolite Filters for Each Endpoint. 

Endpoint Scenario Combination1 Minimum 
Meteor score 

Minimum 
logP 

Phase II 
detoxification F1 score MCC Precision Recall 

AMES 

baseline 
performance 

    
0.82 (+/- 
0.01) 

0.65 (+/- 
0.03) 

0.83 (+/- 
0.01) 

0.82 (+/- 
0.01) 

hybrid-
approach 

Strategy 4 200 - No 
0.83 (+/- 
0.02) 

0.66 (+/- 
0.03) 

0.83 (+/- 
0.02) 

0.83 (+/- 
0.02) 

hybrid-
approach 

Strategy 4 200 0 No 
0.83 (+/- 
0.01) 

0.66 (+/- 
0.03) 

0.83 (+/- 
0.01) 

0.83 (+/- 
0.02) 

hybrid-
approach 

Strategy 4 300 0 No 
0.83 (+/- 
0.02) 

0.66 (+/- 
0.03) 

0.83 (+/- 
0.02) 

0.83 (+/- 
0.02) 

hybrid-
approach 

Strategy 4 300 - No 
0.83 (+/- 
0.02) 

0.66 (+/- 
0.04) 

0.83 (+/- 
0.02) 

0.83 (+/- 
0.02) 

hybrid-
approach 

Strategy 1 200 3 No 
0.83 (+/- 
0.01) 

0.65 (+/- 
0.02) 

0.83 (+/- 
0.01) 

0.82 (+/- 
0.01) 

MNT 

baseline 
performance 

    
0.64 (+/- 
0.03) 

0.29 (+/- 
0.05) 

0.67 (+/- 
0.02) 

0.62 (+/- 
0.03) 

baseline-
approach 

Strategy 4 - - No 
0.66 (+/- 
0.02) 

0.33 (+/- 
0.04) 

0.67 (+/- 
0.03) 

0.66 (+/- 
0.02) 

baseline-
approach 

Strategy 4 100 - No 
0.66 (+/- 
0.02) 

0.33 (+/- 
0.04) 

0.67 (+/- 
0.03) 

0.66 (+/- 
0.02) 

hybrid-
approach 

Strategy 4 - - Yes 
0.66 (+/- 
0.04) 

0.34 (+/- 
0.07) 

0.70 (+/- 
0.04) 

0.64 (+/- 
0.03) 

hybrid-
approach 

Strategy 4 - - No 
0.66 (+/- 
0.03) 

0.33 (+/- 
0.06) 

0.69 (+/- 
0.04) 

0.65 (+/- 
0.03) 



baseline-
approach 

Strategy 4 200 - No 
0.66 (+/- 
0.02) 

0.32 (+/- 
0.04) 

0.67 (+/- 
0.03) 

0.65 (+/- 
0.02) 

DILI 

baseline 
performance 

    
0.68 (+/- 
0.04) 

0.37 (+/- 
0.08) 

0.69 (+/- 
0.04) 

0.68 (+/- 
0.04) 

hybrid-
approach 

Strategy 4 100 3 Yes 
0.69 (+/- 
0.03) 

0.39 (+/- 
0.06) 

0.71 (+/- 
0.03) 

0.69 (+/- 
0.03) 

hybrid-
approach 

Strategy 4 200 3 Yes 
0.69 (+/- 
0.03) 

0.39 (+/- 
0.06) 

0.71 (+/- 
0.03) 

0.69 (+/- 
0.03) 

hybrid-
approach 

Strategy 4 - 3 Yes 
0.69 (+/- 
0.03) 

0.39 (+/- 
0.06) 

0.71 (+/- 
0.03) 

0.69 (+/- 
0.03) 

baseline-
approach 

Strategy 2 300 0 Yes 
0.69 (+/- 
0.04) 

0.39 (+/- 
0.08) 

0.70 (+/- 
0.04) 

0.69 (+/- 
0.04) 

hybrid-
approach 

Strategy 4 0 3 No 
0.69 (+/- 
0.03) 

0.39 (+/- 
0.06) 

0.71 (+/- 
0.03) 

0.68 (+/- 
0.03) 

DICC 

baseline 
performance 

    
0.69 (+/- 
0.02) 

0.39 (+/- 
0.04) 

0.71 (+/- 
0.02) 

0.69 (+/- 
0.03) 

hybrid-
approach 

Strategy 4 100 - Yes 
0.73 (+/- 
0.02) 

0.45 (+/- 
0.04) 

0.73 (+/- 
0.02) 

0.72 (+/- 
0.02) 

hybrid-
approach 

Strategy 4 - - Yes 
0.73 (+/- 
0.02) 

0.45 (+/- 
0.04) 

0.73 (+/- 
0.02) 

0.72 (+/- 
0.02) 

hybrid-
approach 

Strategy 4 200 - Yes 
0.73 (+/- 
0.02) 

0.45 (+/- 
0.05) 

0.73 (+/- 
0.02) 

0.72 (+/- 
0.03) 

hybrid-
approach 

Strategy 4 300 - No 
0.72 (+/- 
0.02) 

0.44 (+/- 
0.05) 

0.73 (+/- 
0.02) 

0.72 (+/- 
0.03) 

hybrid-
approach 

Strategy 4 200 - No 
0.72 (+/- 
0.02) 

0.44 (+/- 
0.04) 

0.72 (+/- 
0.02) 

0.72 (+/- 
0.02) 



LLNA 

baseline 

performance 
    

0.73 (+/- 

0.02) 

0.47 (+/- 

0.04) 

0.74 (+/- 

0.02) 

0.73 (+/- 

0.02) 

hybrid-

approach 
Strategy 1 300 0 Yes 

0.74 (+/- 

0.02) 

0.49 (+/- 

0.04) 

0.75 (+/- 

0.02) 

0.74 (+/- 

0.02) 

hybrid-

approach 
Strategy 4 - - No 

0.74 (+/- 

0.02) 

0.48 (+/- 

0.05) 

0.74 (+/- 

0.02) 

0.74 (+/- 

0.03) 

hybrid-

approach 
Strategy 2 300 0 Yes 

0.74 (+/- 

0.02) 

0.48 (+/- 

0.04) 

0.74 (+/- 

0.02) 

0.73 (+/- 

0.02) 

hybrid-

approach 
Strategy 4 100 0 No 

0.73 (+/- 

0.02) 

0.47 (+/- 

0.04) 

0.74 (+/- 

0.02) 

0.74 (+/- 

0.02) 

hybrid-

approach 
Strategy 4 - 0 No 

0.73 (+/- 

0.02) 

0.47 (+/- 

0.04) 

0.74 (+/- 

0.02) 

0.74 (+/- 

0.02) 

1 Strategies 1, 2 and 3 correspond to taking the mean, median and maximum predicted probability among the parent compound and its 

metabolites, respectively. Strategy 4 corresponds to the mean between the predicted probability for the parent compound and the highest 

probability predicted for any of its metabolites. 

 

 

  



Table S10. P-values From the Mann-Whitney U Test for the Best Five Model Combinations for Each Endpoint Compared to the Baseline 
Performance. 

Endpoint Scenario Combination1 Minimum 
Meteor score 

Minimum 
logP 

Phase II 
detoxification F1 score MCC Precision Recall 

AMES 

baseline 
performance     0,53 0,53 0,68 0,30 

hybrid-
approach Strategy 4 200 - No 0,68 0,68 0,84 0,40 

hybrid-
approach Strategy 4 200 0 No 0,84 0,84 1,00 0,60 

hybrid-
approach Strategy 4 300 0 No 0,68 0,68 1,00 0,60 

hybrid-
approach 

Strategy 4 300 - No 0,68 0,68 0,68 0,68 

hybrid-
approach Strategy 1 200 3 No 0,14 0,21 0,75 0,10 

MNT 

baseline 
performance     0,12 0,12 0,92 0,08 

baseline-
approach Strategy 4 - - No 0,40 0,30 0,21 0,40 

baseline-
approach Strategy 4 100 - No 0,21 0,30 0,30 0,21 

hybrid-
approach Strategy 4 - - Yes 0,30 0,30 0,75 0,14 



hybrid-
approach Strategy 4 - - No 0,75 0,53 0,40 0,84 

baseline-
approach Strategy 4 200 - No 0,75 0,53 0,40 0,84 

DILI 

baseline 
performance     0,75 0,53 0,40 0,84 

hybrid-
approach Strategy 4 100 3 Yes 1,00 1,00 1,00 0,83 

hybrid-
approach 

Strategy 4 200 3 Yes 0,84 0,68 0,60 1,00 

hybrid-
approach Strategy 4 - 3 Yes 0,06 0,09 0,10 0,06 

baseline-
approach Strategy 2 300 0 Yes 0,06 0,08 0,10 0,05 

hybrid-
approach Strategy 4 0 3 No 0,10 0,10 0,10 0,10 

DICC 

baseline 
performance     0,14 0,14 0,10 0,14 

hybrid-
approach Strategy 4 100 - Yes 0,10 0,14 0,14 0,06 

hybrid-
approach Strategy 4 - - Yes 0,53 0,30 0,30 0,60 

hybrid-
approach Strategy 4 200 - Yes 0,84 0,84 1,00 0,68 

hybrid-
approach 

Strategy 4 300 - No 1,00 0,68 0,4 0,92 



hybrid-

approach 
Strategy 4 200 - No 0,92 1,00 0,92 0,84 

LLNA 

baseline 

performance 
    0,92 1,00 0,92 0,84 

hybrid-

approach 
Strategy 1 300 0 Yes 0,53 0,53 0,68 0,30 

hybrid-

approach 
Strategy 4 - - No 0,68 0,68 0,84 0,40 

hybrid-

approach 
Strategy 2 300 0 Yes 0,84 0,84 1,00 0,60 

hybrid-

approach 
Strategy 4 100 0 No 0,68 0,68 1,00 0,60 

hybrid-

approach 
Strategy 4 - 0 No 0,68 0,68 0,68 0,68 

1 Strategies 1, 2 and 3 correspond to taking the mean, median and maximum predicted probability among the parent compound and its 

metabolites, respectively. Strategy 4 corresponds to the mean between the predicted probability for the parent compound and the highest 

probability predicted for any of its metabolites. 

  



Table S11. Mean F1 Score Obtained with Different Machine Learning Methods, Input Descriptors and Oversampling Setups on the Hybrid-
Approach.1 

Endpo
int 

Combination 

Random forest Gradient boosted trees K-Nearest neighbors 
CDDD 

descriptors 
with 

oversampling 

Without 
oversampling 

With 
oversampling 

Without 
oversampling 

With 
oversampling 

Without 
oversampling 

With 
oversampling 

AMES 

baseline 
performance2 

0.81 (+/-0.01) 0.83 (+/-0.01) 0.82 (+/-0.01) 0.81 (+/-0.01) 0.82 (+/-0.01) 0.66 (+/-0.02) 0.66 (+/-0.02) 

Strategy 1 0.78 (+/-0.01) 0.80 (+/-0.01) 0.80 (+/-0.01) 0.78 (+/-0.02) 0.79 (+/-0.02) 0.69 (+/-0.02) 0.69 (+/-0.02) 
Strategy 2 0.78 (+/-0.01) 0.80 (+/-0.01) 0.80 (+/-0.01) 0.78 (+/-0.02) 0.79 (+/-0.02) 0.69 (+/-0.03) 0.69 (+/-0.03) 
Strategy 3 0.80 (+/-0.02) 0.80 (+/-0.02) 0.79 (+/-0.02) 0.79 (+/-0.02) 0.78 (+/-0.02) 0.47 (+/-0.03) 0.47 (+/-0.03) 
Strategy 4 0.81 (+/-0.01) 0.83 (+/-0.02) 0.83 (+/-0.02) 0.82 (+/-0.02) 0.82 (+/-0.02) 0.56 (+/-0.01) 0.56 (+/-0.01) 

MNT 

baseline 
performance2 

0.58 (+/-0.04) 0.60 (+/-0.03) 0.64 (+/-0.03) 0.58 (+/-0.01) 0.62 (+/-0.02) 0.57 (+/-0.05) 0.39 (+/-0.02) 

Strategy 1 0.56 (+/-0.03) 0.59 (+/-0.05) 0.61 (+/-0.02) 0.54 (+/-0.04) 0.61 (+/-0.03) 0.57 (+/-0.01) 0.48 (+/-0.02) 
Strategy 2 0.56 (+/-0.04) 0.59 (+/-0.04) 0.61 (+/-0.02) 0.54 (+/-0.03) 0.61 (+/-0.03) 0.58 (+/-0.02) 0.48 (+/-0.02) 
Strategy 3 0.62 (+/-0.00) 0.64 (+/-0.02) 0.65 (+/-0.03) 0.63 (+/-0.02) 0.62 (+/-0.03) 0.52 (+/-0.02) 0.25 (+/-0.01) 
Strategy 4 0.62 (+/-0.01) 0.63 (+/-0.03) 0.65 (+/-0.04) 0.61 (+/-0.02) 0.65 (+/-0.03) 0.59 (+/-0.02) 0.31 (+/-0.02) 

DILI 

baseline 
performance2 

0.66 (+/-0.02) 0.68 (+/-0.03) 0.68 (+/-0.04) 0.69 (+/-0.05) 0.69 (+/-0.04) 0.56 (+/-0.02) 0.38 (+/-0.02) 

Strategy 1 0.65 (+/-0.03) 0.67 (+/-0.04) 0.67 (+/-0.04) 0.66 (+/-0.05) 0.68 (+/-0.03) 0.65 (+/-0.03) 0.51 (+/-0.02) 
Strategy 2 0.65 (+/-0.03) 0.65 (+/-0.04) 0.67 (+/-0.03) 0.66 (+/-0.04) 0.67 (+/-0.03) 0.65 (+/-0.05) 0.51 (+/-0.02) 
Strategy 3 0.56 (+/-0.04) 0.57 (+/-0.04) 0.60 (+/-0.04) 0.56 (+/-0.04) 0.57 (+/-0.03) 0.56 (+/-0.04) 0.60 (+/-0.03) 
Strategy 4 0.62 (+/-0.03) 0.64 (+/-0.03) 0.66 (+/-0.04) 0.64 (+/-0.04) 0.69 (+/-0.05) 0.63 (+/-0.02) 0.58 (+/-0.02) 



DICC 

baseline 
performance2 0.65 (+/-0.02) 0.70 (+/-0.02) 0.70 (+/-0.02) 0.68 (+/-0.01) 0.70 (+/-0.02) 0.62 (+/-0.02) 0.44 (+/-0.01) 

Strategy 1 0.61 (+/-0.04) 0.62 (+/-0.02) 0.68 (+/-0.02) 0.61 (+/-0.02) 0.66 (+/-0.02) 0.64 (+/-0.01) 0.53 (+/-0.01) 
Strategy 2 0.62 (+/-0.03) 0.64 (+/-0.01) 0.68 (+/-0.02) 0.62 (+/-0.01) 0.66 (+/-0.01) 0.64 (+/-0.02) 0.53 (+/-0.01) 
Strategy 3 0.68 (+/-0.01) 0.69 (+/-0.02) 0.68 (+/-0.02) 0.68 (+/-0.03) 0.66 (+/-0.02) 0.56 (+/-0.03) 0.31 (+/-0.00) 
Strategy 4 0.68 (+/-0.01) 0.71 (+/-0.02) 0.72 (+/-0.02) 0.69 (+/-0.01) 0.71 (+/-0.01) 0.62 (+/-0.02) 0.36 (+/-0.01) 

LLNA 

baseline 
performance2 0.74 (+/-0.03) 0.74 (+/-0.03) 0.74 (+/-0.03) 0.72 (+/-0.02) 0.73 (+/-0.03) 0.57 (+/-0.03) 0.52 (+/-0.03) 

Strategy 1 0.70 (+/-0.01) 0.71 (+/-0.03) 0.71 (+/-0.02) 0.70 (+/-0.02) 0.71 (+/-0.03) 0.62 (+/-0.02) 0.62 (+/-0.03) 
Strategy 2 0.73 (+/-0.01) 0.71 (+/-0.03) 0.71 (+/-0.03) 0.70 (+/-0.03) 0.70 (+/-0.03) 0.61 (+/-0.01) 0.62 (+/-0.02) 
Strategy 3 0.67 (+/-0.01) 0.68 (+/-0.01) 0.68 (+/-0.0) 0.66 (+/-0.03) 0.66 (+/-0.03) 0.52 (+/-0.03) 0.42 (+/-0.03) 
Strategy 4 0.74 (+/-0.02) 0.73 (+/-0.01) 0.73 (+/-0.02) 0.73 (+/-0.01) 0.74 (+/-0.02) 0.61 (+/-0.03) 0.53 (+/-0.03) 

1 Unless stated otherwise, Morgan fingerprint and RDKit physicochemical descriptors were used as input for model training. In all models 
(excepting the baseline models) hyperparameters were optimized within a 5-fold cross-validated grid search.  
2 RF model trained only on parent compounds (including oversampling and without hyperparameter optimization). 
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