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Zusammenfassung

Es wird eine differentielle Erweiterung des univariaten Potenzreihenrings über Körpern po-

sitiver Charakteristik konstruiert. Es wird gezeigt, dass in dieser Erweiterung jeder lineare

Differentialoperator der Ordnung n mit Potenzreihen als Koeffizienten äquivalent zu seiner

Initialform ist, bis auf einen Automorphismus, der algorithmisch bestimmt werden kann.

Dies ermöglicht die Konstruktion eines n-dimensionalen Vektoraums von Lösungen solcher

Gleichungen über den Konstanten, der die Fuchs-Frobenius-Methode auf positive Charakte-

ristik verallgemeinert. Einige bekannte Resultate über Lösungen von Differentialgleichungen

in positiver Charakteristik werden im Licht des Normalformensatz betrachtet. Mögliche An-

wendungen auf Grothendiecks p-Krümmungsvermutung werden diskutiert und anhand von

Beispielen aufgezeigt.
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Abstact

A differential extension of the univariate power series ring over fields of positive characteristic

is constructed. It is shown that in this extension any linear differential operator of order n

with power series coefficients is equivalent to its initial form, up to an automorphism which

can be algorithmically determined. This allows the construction of an n-dimensional space

of solutions of such equations over the constants, generalizing the Fuchs-Frobenius method

to positive characteristic. Several well-known results on solutions of differential equations

in positive characteristic are viewed in the light of the normal form theorem. Possible

applications to the Grothendieck p-curvature conjecture are discussed.
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1 Introduction

An ordinary linear differential equation over the complex numbers with meromorphic co-

efficients is said to have a regular singularity at a point, if the equation admits a basis of

local solutions that grow at most polynomially as one approaches the singular point. This

definition was introduced by Fuchs, who characterised regular singularities by the order of

vanishing of the coefficients of the equation [Fuc66]. He then constructed a basis of local

solutions at such a point using linear combinations of (multivalued) meromorphic functions

and powers of logarithms. Frobenius and Fuchs later developed a method of obtaining this

basis of solutions using local exponents [Fro73]. The full construction is tedious, especially

in the case of resonance (i.e., when local exponents have integer differences). However, if

one takes a slightly different viewpoint and focuses on the study of the differential operator

itself instead of trying to describe its solutions, one can obtain a very elegant reformulation

of Frobenius’ method and an algorithm for the computation of a basis of solutions. Hauser

proves, colloquially formulated, the following result [Hau22].

Theorem 1.1. Let L be a linear differential operator with regular singularity at 0, holo-

morphic coefficients and initial form L0. Then there is a space F of holomorphic functions

and logarithms, depending on the local exponents of L on which L acts and there is an

automorphism u of F with

L ◦ u−1 = L0.

Moreover, F contains a basis of solutions over the constants of the equation Ly = 0. These

solutions can be obtained by applying u−1 to a basis of solutions of L0y = 0.

The solutions to L0y = 0 can be computed by solving a polynomial equation and the

automorphism u can be algorithmically determined.

A motivation for studying differential equations over fields with characteristic different from

0 was provided by Grothendieck. He conjectured that a linear differential equation with

rational coefficients in characteristic 0, or equivalently a system of first order equations,

has a full set of algebraic solutions, if and only if it has a full basis of solutions over the

field with p elements for almost all prime numbers p. This is known as the Grothendieck

p-curvature conjecture. Hauser’s normal form theorem allows the construction of a basis of

solutions of the equation in characteristic 0. We will develop a similar theorem in positive

characteristic and try to compare the solutions obtained in characteristic 0 to the ones

in positive characteristic. In particular, we will discuss applications of the normal form

theorems in combination with a variant of the Grothendieck conjecture by Bézivin [Béz91].

The definition of a regular singular point of a differential equation using the growth of the

local solutions cannot be translated to characteristic p. However, the equivalent formulation

by Fuchs using the order of vanishing of the coefficients of the equation applies. Honda pro-

vided an elementary overview on what was known about the p-curvature conjecture around

1980 [Hon81]. He also proposed to extend the space of possible solutions of differential

equations in characteristic p by introducing a new variable z with derivative 1/x. Still,

Frobenius’ method cannot be carried over to characteristic p in this way, as the existence of

a full basis of solutions in this space is not guaranteed.

In the following we will introduce more generally countably many new variables z1, z2, . . .
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to extend the space of solutions to linear differential equations with regular singularities in

characteristic p. Those new variables will behave like the k-fold iteration of the logarithm

with respect to taking derivatives. This will allow us to formulate and prove the normal

form theorem for differential operators in positive characteristic by carefully defining the

“correct” space of solutions:

Theorem 1.2 (Normal form theorem in characteristic p, see Theorem 5.2 for details). Let

k be a field of characteristic p and let L ∈ k[[x]][∂] be a linear differential operator with

power series coefficients and initial form L0. Then there is a space F depending on the

local exponents of L on which L acts and which contains a basis of solutions of the equation

Ly = 0. Further, there exists an automorphism u of F with

L ◦ u−1 = L0.

The solutions of Ly = 0 then can be obtained by applying u−1 to a basis of solutions of

L0y = 0.

We will construct such a space F explicitly together with the solutions of the differential

equations Ly = 0. For example we will find a solution to the exponential differential equation

y′ = y in characteristic 3, given by

1+x+2x2+2x3z1+x4(1+2z1)+x5z1+2x6z21+x7(1+2z1+2z21)+x8(2+z21)+x9(2z1+z31z2)+. . . ,

where the coefficients of xi can be algorithmically computed and the derivation of F is given

by

z′1 =
1

x
, z′2 =

1

x

1

z1
, z′k =

1

x

1

z1 · · · zk−1
.
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2 Singular points of differential equations in character-

istic 0 and p

Let k be a field. Let

L = pn(x)∂
n + . . .+ p1(0)∂ + p0(x) ∈ k[[x]][∂]

with pn ̸= 0 be a differential operator of order n with formal power series coefficients. We

will consider differential equations of the form Ly = 0 for such operators L.

We can rewrite the operator L as

L =

n∑
j=0

∞∑
i=0

cijx
i∂j

and rearrange the terms to write L = L0 + L1 + . . ., where

Lk =
∑

i−j=τk

cijx
i∂j

is an Euler operator. We call τk ∈ Z the shift of the operator Lk. The operator L0 of smallest

shift is called the initial form of L at 0 and τ := τ0 is called the shift of L itself. As multiplying

an operator by x−τ does not change the solutions of the differential equation Ly = 0 we

may assume without loss of generality that τ = 0, which we will do in the following. We say

that L has a singularity at x = 0 if at least one of the quotients pi(x)/pn(x) has negative

order at 0 as a Laurent series in x. We say that the singularity is regular if the order of x

in pi(x)/pn(x) is greater than or equal to i− n. It is easy to show that this is equivalent to

requiring that the order of L0 is the same as the order of L, i.e., that cnn ̸= 0.

The indicial polynomial of L is defined by

χL(s) =

n∑
i=0

ciis
i,

where si = s(s− 1) · · · (s− i+ 1) denotes the falling factorial. The roots ρ in the algebraic

closure k of k of χL = χL0
are called the local exponents of L at 0 and we will denote their

multiplicity by mρ ∈ N. In the following we will assume for simplicity that k is algebraically

closed. However, if all local exponents are contained in k, this assumption is not necessary.

In fact, in many of our examples we will pick k = Fp or k = Q.

Remark 2.1. We can rewrite any differential operator with positive shift in terms of δ := x∂,

the Euler derivative. The base change between xn∂n and δ is given by the Stirling numbers

of the second kind Sn,k. This is readily verified using the recursion relation Sn+1,k =

kSn,k + Sn,k−1. This allows to read off the indicial polynomial of an operator: If the initial

form of an operator L is given by L0 = φ(δ) for some polynomial φ, then the indicial

polynomial of the operator is χL = φ.

We recall some basic facts from differential algebra. If (R, ∂) is a differential ring (or field),

a constant is an element r ∈ R, such that ∂r = 0. The set of constants of R forms a sub-

ring (or field). A linear differential equation of order n has at most n linearly independent

solutions in any differential field R over its field of constants. This is a simple corollary of
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the Wronski lemma, see [SP03], p. 9 or [Hon81]. A set of n such solutions is called a full

basis of solutions of the equation in R.

Let us first consider the complex case. For Euler equations, i.e., equation of the form Ly = 0

for some Euler operator L, the solutions at 0 are obvious. They are of the form xρ log(x)k

where ρ ∈ C ranges over the local exponents of L and k is a natural number smaller than

the multiplicity of ρ. Let us describe the solutions in a more algebraic setting. We search for

solutions in spaces of the form xρC((x))[z], where we introduce a new variable z to represent

the logarithm. Here C((x)) = Quot(C[[x]]) denotes the field of formal Laurent series. The

important thing about the logarithm in our setting is that its derivative is 1/x. We equip

xρC((x))[z] with the derivation ∂ such that

∂ : C((x))[z] → C((x))[z],

∂xρ := ρxρ−1

∂z :=
1

x

We define ∂k to be the k-fold composition of ∂ with itself. The action of any differential

operator L ∈ C[[x]][∂] extends naturally to C((x))[z]. We call this the extension of L. In this

notation the space of solutions of Ly = 0 is spanned by the set of monomials

{xρzk | ρ is a local exponent of L, 0 ≤ k < mρ}.

The local solutions to general regular singular equations over C are of the form
∑m

k=0 x
ρzka(x),

where a(x) ∈ C((x)). These solutions are, however, in general not well-defined functions in

0; they can be interpreted only as multi-valued functions. In general fields, different from

C, there is no such interpretation of xρ as a function if ρ is an arbitrary element of the field.

From now on let k be a field of characteristic p. If we try to transfer the description of a

basis of solutions of differential equations over C to fields of characteristic p, we run into

troubles, as the following example shows.

Example 2.2. Let n ∈ N and let

L = δn = (x∂)k = xn∂n + Sn,n−1x
n−1∂n−1 + Sn,2x

n−2∂n−2 + . . .+ Sn,1x∂ + Sn,0.

If we interpret L as a differential operator in C[[x]][∂] and solve the equation Ly = 0 in

C((x))[z], we obtain a full basis of solutions {1, z, . . . , zn−1} over C. In characteristic p the

field of constants of k((x))[z] clearly contains k((xp))[zp]. So for n > p the set {1, z, . . . ,
zn−1} cannot be a full basis of solutions, as 1 and zp are linearly dependent over the field

of constants. In fact the situation is even worse. There can only exist p2 monomials of the

form xizj that are linearly independent over the constants. Hence if n > p2, there cannot

exist a monomial basis of n solutions of any Euler equation of order n.

In order to resolve this issue in positive characteristic, we construct a differential extension

of k((x))(z) which will contain a full basis of solutions for any linear differential operator

with regular singularity at 0. Regularity of the differential operator is required to have as

many local exponent, counted with multiplicity, as the order of the differential operator. For

each ρ ∈ k let tρ be a symbol. It will play the role of the monomial xρ from before; if ρ lies
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in the prime field of k we may substitute x for t to recover the classical setting. We will call

ρ the exponent of t in tρ. Further, let

R =
⊕
ρ∈k

tρk(z1, z2, . . .)((x)),

the direct sum of Laurent series in x with coefficients in the field of rational functions over

k in countably many variables zi. We will simply write k(z) instead of k(z1, z2, . . .).

We consider R as a ring with respect to the obvious addition and the multiplication given

by

(tρf) · (tσg) = tρ+σ(f · g)

for ρ, σ ∈ k, f, g ∈ k[z][[x]]. We equip R with the derivation ∂ = ∂R satisfying:

∂x = 1,

∂t = t
1

x

∂tρ = ρtρ
1

x
,

∂z1 =
1

x
, ∂z2 =

1

x

1

z1
, ∂zk =

1

x

1

z1 · · · zk−1
, ∀k ≥ 1.

This turns R into a differential ring.

The action of ∂ on zi is chosen to mimic the usual derivation of the i-fold composition

log(. . . (log(x)) . . .) of the complex logarithm with itself.1 Indeed we have, writing log[i] for

the i-fold repetition of the logarithm(
log[i](x)

)′
=

1

x

1

log(x) · log(log(x)) · · · log[i−1](x)
.

Remark 2.3. (i) The ring R is not an integral domain. Indeed, (1+ t+ . . .+ tp−1)(1− t) = 0.

Thus, we are not able to form its quotient field and use the machinery of differential fields,

as e.g. the Wronski Lemma and the concept of a basis of solutions. Still, in the course of the

next sections, we will be able to provide a precise description of all solutions of a differential

equation Ly = 0 in R.

(ii) The derivation ∂ commutes with the direct sum, i.e., one has ∂ (tρk(z)((x))) ⊆ tρk(z)((x)).
This is the reason for not simply defining ∂tρ = ρtρ−1.

(iii) Note that the elements of R may have unbounded degree in each of the variables zi,

only the coefficient of a given power of x has finite degree. This differs from the situation in

characteristic 0 where the exponent of the logarithm in a solution of the equation Ly = 0 is

bounded for each differential operator.

(iv) The doubly iterated logarithm log(log(x)) does not satisfy any homogeneous linear

differential equation with holomorphic coefficients, but only the non-linear equation

xy′′ + y′ + x(y′)2 = 0.

1After the finishing of this text, we became aware that Bernard Dwork already considered iterated

logarithms in positive characteristic in [Dwo90] p. 752. Apparently he did not exploit the full repertoire of

this extension.
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Alternatively, it satisfies the equation

x log(x)y′ = 1

in which the standard logarithm appears as a coefficient.

For elements of R the exponents of x are integers, while the exponents of t are elements of

the field k of characteristic p (formally tρ for ρ ∈ k is just a symbol). However, we will see

that the exponents of x and t interact in a certain way. We will use the following convention:

In case that ρ is in the prime field Fp of k, we will write xρ∗ = xρ where ρ∗ ∈ {0, 1, . . . , p−1}
is a representative of ρ in Z. Conversely we will write tk

∗
= tk for some k ∈ Z, where k∗ ∈ Fp

is the reduction of k modulo p.

Before we proceed, we will determine the constants ofR. Denote by k(zp) the field k(zp1 , z
p
2 , . . .)

of the field of rational functions k(z).

Proposition 2.4. The ring of constants of (R, ∂) is

C :=
⊕
ρ∈Fp

tρxp−ρk(zp)((xp)),

where Fp denotes the prime field of k. Moreover, C is a field.

Proof. Let f ∈
⊕

ρ∈k t
ρk(z)((x)) and assume that

∂f = 0.

Taking derivatives in R commutes with the direct sum, so it suffices to find constants of the

form tρh for some ρ ∈ k and h ∈ k(z)((x)).

Fix some ρ ∈ k. As for all k ∈ Z the derivation ∂ maps tρk(z)xk into tρk(z)xk−1 by

definition, it further suffices to find constants of the form tρhxk, where h ∈ k(z). Therefore
we are reduced to search for elements tρhxk of R with ∂(tρhxk) = 0. Write h = g1/g2 for

g1, g2 ∈ k[z]. Then ∂(tρhxk) = 0 is equivalent to ∂(tρg1g
p−1
2 xk) = 0, as gp2 is a constant. So

without loss of generality we may assume that h ∈ k[z] is a polynomial. We expand:

0 = ∂(tρhxk) = tρ((∂h)x+ (k + ρ)h)xk−1. (1)

Let l be minimal such that h ∈ k[z1, . . . , zl]. Consider the leading monomial of h with

respect to the inverse lexicographic ordering in Nl. That is (α1, . . . , αl) ≤ (β1, . . . , βl) if

βl > αl or βl = αl and (α1, . . . , αl−1) ≤ (β1, . . . , βl−1) in the inverse lexicographic ordering.

We write

h = czα1
1 zα2

2 · · · zαl

l + r,

for some c ∈ k and some r ∈ k[z1, . . . , zl], where the exponents of all monomials in r are

smaller than α.

Taking the derivative ∂ of a monomial decreases the exponents of at least one of the zi,

therefore yields a sum of smaller monomials with respect to the chosen ordering. Thus, in

x∂h the coefficient of zαl

l z
αl−1

l−1 · · · zα1
1 vanishes by the maximality of the exponents αi. If we

compare coefficients of tρxk−1zαl

l z
αl−1

l−1 · · · zα1
1 in Equation (1) we get k+ρ = 0. So it follows

that ρ ∈ Fp and that k ≡ ρ mod p. Moreover we see from Equation (1) that ∂h = 0. This

6



is clearly equivalent to h ∈ k[zp]. Together with the reductions from above this proves that

the ring of constants of R is indeed⊕
ρ∈Fp

tρxp−ρk(zp)((xp)).

Finally, we show that C is a field. Let

f =
∑
ρ∈Fp

tρxp−ρfρ ∈ C,

where fρ ∈ k(zp)((xp)). Then we have

fp =
∑
ρ∈Fp

tpρxp2−pρfp
ρ =

∑
ρ∈Fp

xp2−pρfp
ρ ∈ k(zp)((xp)),

where fp
ρ ∈ k(zp2

)((xp2

)). The element fp vanishes precisely if fρ vanishes for all ρ ∈ Fp, as

the exponents of x in each of the summands are from a different residue class modulo p2.

Thus, fp is a unit for all f ̸= 0 and we see that (fp−1)(fp)−1 is an inverse to f . □

Let us come back to Example 2.2 with k = p + 1 and the operator L = (x∂)p+1 ∈ k[x][∂].
In R we have

(x∂)p+1(zp1z2) = 0.

So we have found another solution to the equation Ly = 0. This completes a basis of a p+1−
dimensional vector space of solutions over the constants ofR, namely {1, z11 , z21 , . . . , z

p−1
1 , zp1z2},

as those elements are C linearly independent.

Remark 2.5. (i) This example motivates the idea behind the definition of R: we introduce

new variables z1, z2, . . . to solve equations of the form (x∂)k for all k ∈ N. Having done so,

we will see that this suffices to solve any differential equation with regular singularity.

(ii) From a different viewpoint, the problem of solving differential equations can be reduced

to finding primitives. For power series in characteristic 0 the monomial 1
x has no integral

and one introduces the logarithm to overcome this lack. In characteristic p monomials of the

form xkp−1 for k ∈ Z have no integral, so introducing a variable z1 with ∂z1 = 1
x resolves the

issue. However, then monomials of the form zkp−1
1 for k ∈ Z will again have no primitive,

so we need to introduce z2,z3, etc. So in total we have to introduce countably many new

variables zi to obtain a ring that is closed under taking primitives.

7



3 Extensions of Euler operators to the ring R

Our goal now is to prove that Euler operators admit “enough” solutions in the ring R =⊕
ρ∈k t

ρk(z)((x)) and then to compute these solutions. For this we first investigate how Euler

operators act on monomials tρzβxk, see Lemma 3.3. For a multi-index β ∈ Z(N) = {(βi)i∈N |
βi = 0 for almost all i} we write zβ for zβ1

1 · · · zβn
n , if βj = 0 for j > n. We define a partial

ordering on Z(N) by α ≺e β if

e(α) := α1 + pα2 + p2α3 + . . . < β1 + pβ2 + p2β3 + . . . =: e(β),

where α1, βi ∈ {0, 1, . . . , p − 1} are chosen such that αi ≡ αi mod p respectively βi ≡ βi

mod p. In other word ≺e is induced by the inverse lexicographic ordering on F(N)
p via the

element-wise reduction modulo p.

We also write zα ≺e z
β if α ≺e β.

Lemma 3.1. Let β ∈ Z(N). Then (x∂)zβ is a sum of monomials that are smaller than zβ

with respect to ≺e and there is exactly one summand zγ with e(γ) = e(β)− 1. In particular,

e(β) is the minimal number j such that (x∂)j(zβ) = 0.

Proof. Let β = (β1, β2, . . .). We compute:

∂zβ =
1

x

t∑
i=1

βi z
β1−1
1 zβ2−1

2 · · · zβi−1
i z

βi+1

i+1 · · · zβt

t︸ ︷︷ ︸
=:zγi

If βi ̸≡ 0 mod p, then clearly γi ≺e β, otherwise its coefficient in (x∂)zβ vanishes. A fast

computation shows that if j is the least index, such that βj ̸= 0, then e(γj) = e(β) − 1.

Moreover, e(γj) < e(β)−1 for all other j. This proves in particular that e(β) is the minimal

number j such that (x∂)jzβ = 0. □

Let s be a variable and k ∈ N. We define the j-th Hasse derivative or divided derivative

by (sk)[j] =
(
k
j

)
sk−j and extend it linearly to k[s] [Jeo11]. We will apply it below to the

indicial polynomial χL of an operator L, viewed as a polynomial in the variable s. The next

three lemmata are inspired by Frobenius’ “differentiation with respect to local exponents”

[Fro73]. See also similar adeptions in characteristic 0 in [Hau22].

Lemma 3.2. Let k, l ∈ N. Then we have

(sk)[l] + (sk)[l+1](s− k) = (sk+1)[l+1].

Proof. Let q, r ∈ k[s]. The Hasse derivatives satisfy the product rule (qr)[l] =
∑

i q
[i]r[l−i].

Applying this to sk+1 = sk(s−k) and using that (s−k)[i] = 0 for i > 2 we obtain the result.

□

Lemma 3.3. Let j ∈ N, k ∈ Z, β ∈ Z(N). Then we have

∂j(tsxkzβ) = tsxk−j
(
(s+ k)jzβ + ((s+ k)j)[1]x∂zβ + . . .+ ((s+ k)j)[j](x∂)jzβ

)
.

8



Proof. The proof uses induction on j. For j = 0 the claim is obvious. Assume now the

formula holds for some j ≥ 0. Applying ∂ yields

∂j+1(tsxkzβ) = ∂
(
tsxk−j

(
(s+ k)jzβ + ((s+ k)j)[1]x1∂zβ + . . .+ ((s+ i)j)[j](x∂)jzβ

))
= tsxk−j−1(s+ k − j)

(
(s+ k)jzβ + ((s+ k)j)[1]x∂zβ + . . .+ ((s+ k)j)[j](x∂)jzβ

)
+

+ tsxk−j
(
(s+ k)j∂zβ + ((s+ k)j)[1]∂(x∂)zβ + . . .+ ((s+ k)j)[j]∂(x∂)jzβ

)
= tsxk−j−1

(
(s+ k − j)(s+ k)j +

(
(s+ k − j)((s+ k)j)[1] + (s+ k)j

)
x∂zβ + . . .

)
= tsxk−j−1

(
(s+ k)j+1zβ + ((s+ k)j+1)[1]x∂zβ + . . .+ ((s+ k)j+1)[j+1](x∂)j+1zβ

)
,

where we have used the previous lemma in the last step. □

Lemma 3.4. Let L be an Euler operator of order n with indicial polynomial χL. Then for

any β ∈ Z(N), k ∈ Z and ρ ∈ k we have

L(tρxkzβ) = tρxk
(
χL(ρ+ k)zβ + χ′

L(ρ+ k)x∂(zβ) + . . .+ χ
[n]
L (ρ+ k)(x∂)n(zβ)

)
(2)

Proof. For two differential operators L,M we clearly have χL+M (s) = χL(s) + χM (s).

Substituting s = ρ in Lemma 3.3, this gives the result. □

For a field K of characteristic 0 a polynomial q ∈ K[s] has a j-fold root at α ∈ K if and

only if the first j−1 derivatives of q vanish in α, but the j-th derivative does not. This very

statement is false in characteristic p, but if one replaces derivatives with Hasse derivatives

it holds true.

Lemma 3.5. Let q ∈ k[s] be a polynomial. Then α is a j-fold root of q if and only if

q[i](α) = 0 for i < j, but q[j](α) ̸= 0.

Proof. Write q(s) = (s− α)jr(s) for some j ∈ N, r ∈ k[s], where r(α) ̸= 0. Then

q[i](s) =

i∑
l=0

((s− α)j)[l]r[i−l](s).

If i < j, then ((s − α)j)[l]|s=α = 0 for all l < i and thus q[i] vanishes in α. Moreover

q[j](s)|s=α = r(α) ̸= 0 and therefore the first implication is clear. For the other implication

write q(s) = (s− α)kr(s), where r(α) ̸= 0. As q(α) = 0 we have k ≥ 1. From the vanishing

of the l-th Hasse derivative, where l < j, we can conclude recursively that k ≥ l. Then,

from q[j](α) ̸= 0 it follows that k = j. □

With these results we can finally solve Euler equations over our ring R. We prove that,

similar to the complex case, the solutions form a vector space of dimension n over the

constants C ⊆ R.
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Proposition 3.6. Let L be an Euler operator of order n acting on K and let Ω := {ρ1, . . . , ρk}
be the set of local exponents of L at 0 and let mρ1 , . . . ,mρk

be their multiplicities. The so-

lutions of Ly = 0 form a free C-subspace of R of dimension n. A basis of this vector space

is given by {
yρ,i := tρzβ(i)

∣∣∣ρ ∈ Ω, i < mρ

}
,

where

β(i) = (i, ⌊i/p⌋, ⌊i/p2⌋, ⌊i/p3⌋, . . .) ∈ Z(N).

Before we prove the proposition let us consider an example.

Example 3.7. Consider the differential operator L = x4∂4 + x3∂3 + x2∂2 ∈ F2[x][∂] with

indicial polynomial χL(s) = (s−1)3s. As the operator has order 4 one expects 4 solutions of

Ly = 0, independent over C. The proposition asserts that a basis is given by 1, x, xz1, xz
2
1z2.

Indeed, one easily verifies that all these monomials are solutions and are C-linearly indepen-

dent.

Proof. The operator L is C-linear and maps tρxkk(z) into itself. Therefore it suffices to find

solutions of Ly = 0 of the form tρf(z)xk, where f ∈ k(z). Further we can argue similar as

in Proposition 2.4: we write f = g1/g2 for g1, g2 ∈ k[z]. If tρf(z)xk is a solution, then so is

g2(z)
p
(
tρf(z)xk

)
= tρg1(z)g2(z)

p−1xk,

as gp2 ∈ k[zp] ⊆ C. So we may assume without loss of generality that 0 ̸= f ∈ k[z].

Let zβ be the largest monomial of f(z) with respect to the ordering ≺e. By Lemma 3.4 and

the linearity of L we obtain

L(tρf(z)xk) = tρ
(
χL(ρ+ k)f(z) + χ

[1]
L (ρ+ k)(x∂)f(z) + . . .+ χ

[n]
L (ρ+ k)(x∂)nf(z)

)
.

Hence L(tρf(z)xk) vanishes if and only if

χL(ρ+ k)f(z) + χ
[1]
L (ρ+ k)(x∂)f(z) + . . .+ χ

[n]
L (ρ+ k)(x∂)nf(z)

vanishes. We compare the coefficients of monomials in z starting with the largest. All

appearing monomials are smaller than or equal to zβ by Lemma 3.1 and for all monomials

zγ in the summand χL(ρ + k)(x∂)j we have e(γ) ≤ e(β) − j. So in order for the sum to

vanish, χL(ρ + k) has to vanish by comparing coefficients of zβ . Further, by comparing

coefficients of the next smaller monomials, we obtain χ
[1]
L (ρ + k) = 0 or (x∂)zβ = 0, i.e.

e(β) = 1. Inductively we obtain that the sum vanishes, if and only if χ
[l]
L (ρ+ k) ̸= 0 implies

that e(β) < l. Put differently, by Lemma 3.5, if ρ+k is a local exponent of L of multiplicity

mρ+k, then e(β) < mρ+k. Thus we can give a complete description of the elements in the

kernel of L. They are of the form tρxkzβ , where e(β) < mρ+k.

A quick calculation using Lemma 3.1 shows that the last condition is fulfilled for multi-

indices, whose entries differ by multiples of p from β(i) for i = 0, . . . ,mρ+k − 1. This shows

on the one hand that the elements yρ,i are indeed solutions of Ly = 0. On the other hand,

the elements yρ,i are chosen such that ρ ranges over all local exponent of L exactly once.

For ρ + k to be a local exponent, i.e., a zero of χL, we may add multiples of p to k, or

subtract an element of the prime field from ρ and add it to k. Those transformations can be

10



realized by multiplying a solution tρxkf(z) by an element from C. So indeed, all solutions

of Ly = 0 are linear combinations of the elements yρ,i; that is they generate the C-vector
space of solutions.

Assume now that a C-linear relation between the solutions yρ,i exists. Let

D :=
⊕
ρ∈Fp

tρxp−ρk[zp][[xp]]

As C = QuotD, it suffices to consider a relation with coefficients in D. Let Ω =
⊔

j Ωj be

the set of all local exponents, where two local exponents ρ, σ are in the same subset Ωj if

and only if their difference is in the prime field. Assume that∑
j

∑
ρ∈Ωj

i<mρ

yρ,i · dρ,i = 0

for some dρ,i ∈ D. As the exponents of t of elements of D are in the prime field of k, it
follows that for each j the sum ∑

ρ∈Ωj

i<mρ

yρ,i · dρ,i

vanishes. So it suffices to focus on relations between solutions corresponding to local expo-

nents in the same set set Ωj . Without loss of generality Ωj = Fp, the prime field of k. We

consider now a relation of the form ∑
ρ∈Fp

i<mρ

yρ,i · dρ,i = 0.

Without loss of generality we may assume that at least one of the constants dρ,i has order 0

in x and let fρ,i ∈ k[zp] be their constant term. Taking the coefficient of the monomial with

smallest degree with respect to x in the sum above, we obtain a relation of the form∑
ρ∈Fp

i<mρ

tρzβi · fρ,i = 0.

This sum vanishes if and only if the summand for each ρ ∈ Fp vanishes. Furthermore the

multi-exponents β(i) = (i, ⌊i/p⌋, ⌊i/p2⌋, . . .) are defined such that no two of them differ by

multiples of p in every component. Thus fρ,i = 0 for all ρ and i, as required.

Finally, note that
∑

ρ∈Ω mρ = n, as χL is a polynomial of degree n. So the dimension of the

space of solutions is indeed n. □
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4 The ρ-function space associated to an operator L

We have seen that a basis of solutions of Euler equations is of a very special form. It is not

to be expected that solutions of general differential equations with regular singularities are

similarly simple. We now try to find a description of the solutions of differential equations

L based on the basis of monomial solutions of their initial form L0. In the following let ρ

be a fixed local exponent of L at 0. We define a function ξ = ξρL : N → N:

ξ(0) = mρ, ξ(k + 1) = ξ(k) +mρ+k+1,

where mρ+k = 0, if ρ+ j is not a root of the indicial polynomial. In other words:

ξ(k) = mρ +mρ+1 + . . .+mρ+k.

Note here that if k > p the summand mρ appears at least twice in the sum. Moreover we

define the ρ-function space F = Fρ
L associated to L as

F := tρ
∞∑
k=0

⊕
β∈B(k)

kzβxk,

where

B(k) :=
{
β ∈ N(N)

∣∣∣β1 < ξ(k), βj+1 ≤ βj/p ∀j ∈ N
}

is a finite subset of N(N). Note that F only depends on the initial form of the differential

operator L, more precisely only on the multiplicity of all local exponents of L that differ

from ρ by an element of the prime field of k.

Example 4.1. Consider the differential operator L = x3∂3 + 2x2∂2 + L̃ ∈ F3[[x]][∂], where

L̃ ∈ F3[[x]][∂] has positive shift. The local exponents of L are 0 with multiplicity 2 and 1

with multiplicity 1. The monomials included in F0
L are depicted below in Figure 1.

Figure 1: The set of exponents (k, β1, β2) of monomials xkzβ1

1 zβ2

2 in F0
L with k ≤ 6,

exponents of monomials in Ker(L0) in red. They are 1, z1, x, x
3, x3z1, x

3z31 , x
3z41 , x

4, x4z31 ,

x6, x6z1, x
6z31 , x

6z41 , x
6z61 , x

6z71 .

Lemma 4.2. Let L ∈ k[[x]][∂] be a linear differential operator and let ρ be one of its local

exponents. The space Fρ
L = F is invariant under all differential operators with non-negative

shift. In particular we have LF ⊆ F .
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Proof. We can rewrite any differential operator with non-negative shift in terms of the

operator δ = x∂ instead of ∂, where the base change between xn∂n and δn is given by

the Stirling numbers, see Remark 2.1. So we investigate the action of δ on a monomial

tρxizβ ∈ F , where β = (β1, . . . , βn) ∈ N(N). We compute as in Lemma 3.1:

δ(tρxkzβ) = x∂(tρxkzβ) = tρxk

(k + ρ)zβ +

n∑
j=1

βjz
β1−1
1 · · · zβj−1

j z
βj+1

j+1 · · · zβn
n


We want to show that all exponents of monomials with non-zero coefficient in the sum above

are in B(k). It is clear that β ∈ B(k) by assumption, so it is left to prove that if βj ̸≡ 0

mod p then

(β1 − 1, . . . , βj − 1, βj+1, . . . , βn) ∈ B(k)

for j = 1, . . . , n. If βl+1 ≤ βl/p then also βl+1 − 1 ≤ (βl − 1)/p for l < j. It remains to show

that βj+1 > (βj − 1)/p implies βj ≡ 0 mod p. For this we see that from

βj − 1 < pβj+1 ≤ βj

it follows indeed that p divides βj = pβj+1. □

Proposition 4.3. Let L ∈ k[[x]][∂] be a linear differential operator with local exponent ρ and

associated ρ-function space F . Then L0(F) = x · F .

Proof. First we show that any monomial in F gets mapped to x·F under L0. Let t
ρxkzβ ∈ F .

By Lemma 3.4 we have

L0(t
ρxkzβ) = tρxk

(
χL(ρ+ k)zβ + χ′

L(ρ+ k)x∂(zβ) + . . .+ χ
[n]
L (ρ+ k)(x∂)n(zβ)

)
.

By Lemma 4.2 this expression is contained in F . The first mρ+k summands of the sum

vanish due to Lemma 3.5. In the remaining summands x∂ is applied at least mρ+k times to

zβ , decreasing the exponent of z1 by at least mρ+k. Thus for each monomial with non-zero

coefficient in

χ
[mρ+k]
L (ρ+ k)(x∂)mρ+k(zβ) + . . .+ χ

[n]
L (ρ+ k)(x∂)n(zβ)

the exponents of z are in B(k − 1) and thus L0(t
ρxkzβ) ∈ x · F .

Now we show that every monomial of x · F is in the image of F under L0. We proceed by

induction on e(β) = β1 + pβ2 + p2β3 + . . . Let tρxk+1zβ ∈ x · F ; that is β ∈ B(k). Assume

that ρ + k + 1 is an l-fold root of χL, where l is set equal to 0 if ρ + k + 1 is not a root at

all. We define an element α ∈ B(k + 1) such that L0(t
ρxk+1zα) = tρxk+1zβ + r, where r is

a sum of smaller monomials with respect to ≺e. Set

α1 = β1 + l, αj = βj + ⌊αj−1/p⌋ − ⌊βj−1/p⌋.

As tρxkzβ ∈ F , we have β1 < ξ(k) and therefore α1 = β1 + l < ξ(k + 1). Moreover, we

know that βj ≤ ⌊βj−1/p⌋ and therefore also αj = βj + ⌊αj−1/p⌋ − ⌊βj−1/p⌋ ≤ αj−1/p. By

construction we have α1 = β1+l and thus α1 < ξ(k+1). Altogether this proves α ∈ B(k+1).

Finally we show that L0(t
ρxk+1zα) is of the desired form. Again by Lemma 3.4 we have

L0(t
ρxk+1zα) = tρxk+1

(
χL(ρ+ k + 1)zα + . . .+ χ

[n]
L (ρ+ k + 1)(x∂)n(zα)

)
13



As ρ+k+1 has multiplicity l as a zero of χL, the first l summands of this expansion vanish,

according to Lemma 3.5. If one expands the further summands using the Leibniz rule one

gets a sum of monomials of the form cγt
ρxk+1zγ , with cγ ∈ k. The exponents γ are in B(k)

and by Lemma 3.1 we have e(γ) ≤ e(α) − l = e(β). Only one of these summands fulfils

e(γ) = e(β). It is of the form cβt
ρxk+1zβ by construction. Now by the induction hypothesis,

all other summands are in the image of F under L0; they are in x · F because of Lemma

4.2. Thus, tρxk+1zβ ∈ L0(F), which concludes the proof. □

Remark 4.4. The proof of the surjectivity of L0 is constructive: For each monomial tρxkzβ

in x · F one constructs a monomial tρxkzα in F , such that L0(t
ρxkzα) = ctρxkzβ + r, where

r is a sum of smaller monomials. If r = 0 we divide by c and are done. Otherwise we iterate

the construction for all monomials in r and subtract the monomials obtained this way from

c−1tρxkzα. After at most e(β) steps r = 0 and we have constructed an element of F which

is sent to tρxkzβ by L0.
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5 The normal form theorem

Recall that the constants of R are, according to Proposition 2.4, given by

C =
⊕
ρ∈Fp

tρxp−ρk(zp)((xp)).

Further, recall that we have described in Proposition 3.6 the kernel of L0 in R. Let us

investigate the situation in F .

Lemma 5.1. The kernel of the restriction of L0 to F = Fρ
L is topologically spanned over k

by monomials of the form tρxkzβ, where

β ∈ B(k) =
{
β ∈ N(N)

∣∣∣β1 < ξ(k), βj+1 ≤ βj/p ∀j ∈ N
}

with e(β) < mρ+k. Consequently, a direct complement H of kerL0|F is topologically spanned

by monomials of the form tρxkzβ, where β ∈ B(k).

Proof. We have seen that e(β) is the least number k, such that (x∂)kzβ = 0. So every

monomial tρxkzβ with e(β) < mρ+k is in the kernel of L0 according to Lemma 3.4. Arguing

as in the proof of Proposition 3.6 we see that those elements indeed span kerL0|F . □

Now we are ready to state and prove the normal form theorem.

Theorem 5.2 (Normal Form Theorem in Characteristic p). Let k be an algebraically closed

field of characteristic 0. Let L ∈ k[[x]][∂] be a differential operator with initial form L0 and

shift τ = 0 acting on R. Let ρ be a local exponent of L at 0 and F = tρ
∑∞

k=0

⊕
β∈B(k) kzβxk

the associated ρ-function space.

(i) The map L0|H : H → x · F is bijective and the composition of its inverse (L0|H)−1 :

x · F → H composed with the inclusion H ⊆ F defines a C-linear right inverse S :

x · F → F of L0.

(ii) Let T = L0 − L : F → x · F . Then the map

u = IdF − S ◦ T : F → F

is a continuous C-linear automorphism of F with inverse v =
∑∞

j=0(S ◦ T )j : F → F .

(iii) The automorphism v of F transforms L into L0, i.e.

L ◦ v = L0.

Proof. For (i) note that by Proposition 4.3 the map L0 : F → x · F is surjective and thus

the restriction to a direct complement of its kernel is bijective. Clearly S then defines a

right inverse of L0. One easily checks that the construction of preimages of L0 mentioned

in Remark 4.4 is C-linear.

The assertions (ii) and (iii) use modifications of the perturbation lemma to our setting,

although we are not working in a normed vector space [Hau22]. We view elements of F
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as power series in x and equip F with the x-adic topology, which turns it into a complete

metric space. The operator T has positive shift by definition and thus increases the order in

x of a monomial tρxkzβ and thus of any element of F . The operator S maintains the order

in x of a monomial as L0 does so. T maps F to x · F = Im(L0). Because of this and the

completeness of F the series v(f) =
∑∞

j=0(S ◦ T )j(f) is well-defined for each f ∈ F . If f

and g agree up to order N , so do v(f) and v(g), thus v is continuous. A standard argument

shows that v is an inverse to u and thus u is a continuous automorphism. Both S and T are

C-linear and so is u.

It is left to show that v transforms L into L0. As L0 ◦ S = Idx·F we have L0 ◦ S ◦ L0 = L0.

Moreover L = L0−T , so ImL ⊆ ImL0. This implies that S◦L is well-defined and L0◦S◦L = L

holds. Then

L0 ◦ u = L0 ◦ (IdF − S ◦ T )
= L0 ◦ (IdF − S ◦ (L0 − L))

= L0 ◦ (IdF − S ◦ L0 + S ◦ L)
= L0 − L0 ◦ S ◦ L0 + L0 ◦ S ◦ L
= L0 ◦ S ◦ L
= L.

Composing with v yields part (iii). □
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6 Solutions of regular singular equations

The normal form theorem allows us to describe all solutions of differential equations with

regular singularities.

Corollary 6.1. Let L ∈ k[[x]][∂] be a linear differential operator with regular singularity at 0

acting on R. Let ρ ∈ k be a local exponent of L. Denote by uρ : Fρ
L → Fρ

L the automorphism

associated to ρ given in (ii) of the normal form theorem. The solutions of the differential

equation Ly = 0 in R form an n-dimensional C-vector space. A basis is given by

yρ,i = u−1
ρ (tρzβ(i)),

where ρ varies over the local exponents of L at 0 and 0 ≤ i < mρ and β(i) = (i, ⌊i/p⌋, ⌊i/p2⌋,
. . .).

Proof. By the normal form theorem and the description of the solutions of Euler equations

(Proposition 3.6), we have

L(yρ,i) = L ◦ u−1
ρ (tρzβ(i)) = L0(t

ρzβ(i)) = 0,

so these functions clearly are solutions of the differential equation Ly = 0. Assume now that

there is another solution y that is linearly independent to the solutions yρ,i over C. Again,

as L commutes with the direct sum decomposition of

R =
⊕
ρ∈k

tρk(z)((x))

and upon multiplication with constants of the form xkp we may assume that y is of the form

y = tρ
(∑∞

k=0 fk(z)x
k
)
for fk ∈ k(z). If we write L = L0 − T we obtain

L0y − Ty = 0,

where T has positive shift, i.e., it strictly increases the order in x. Thus, tρf0(z) is a solution

to the Euler equation Ly = 0 and therefore

tρf0(z) =
∑
(σ,i)

cσ,it
σzβi ,

where σ varies over the local exponents, 0 ≤ i < mσ, and cσ,i ∈ C is homogeneous of order

0 in x. We compute

L

y −
∑
(σ,i)

cσ,iyρ,i

 = L

−
∑
(σ,i)

cσ,iu
−1
σ (tσzβi)

 = −
∑
(σ,i)

cσ,iL(u
−1
σ (tρzβ(i))) = 0.

Note that for all f ∈ F we have ordx(f−u(f)) > ordxf , i.e., the monomial of order 0 remains

unchanged under u. So y −
∑

(σ,i) cσ,iyσ,i has positive order in x. Iteration yields constants

dσ,i ∈ C with y =
∑

(σ,i) dσ,iyσ,i. Thus, y is a linear combination of yσ,i. Conversely, any

such linear combination is a solution of Ly = 0. This proves that the solutions of Ly = 0

in R form an n-dimensional C-vector space with basis yρ,i, where ρ varies over the local

exponents and 0 ≤ i < mρ. □
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Remark 6.2. We have assumed for convenience that our field k is algebraically closed. If

this is not the case, e.g., in the case of a finite field Fp, there is no need to pass to the entire

algebraic closure. In the constructions involved in the normal form theorem for an operator

L we have to find the roots of the characteristic polynomial χL ∈ k[s], the local exponents

ρ. Further we have to evaluate the characteristic polynomial at the values ρ+k for elements

k of the prime field of k. Thus, if χL splits over k the normal form theorem works without

problems within k. Otherwise it is sufficient to pass to a splitting field of χL to describe a

full basis of solutions.

Example 6.3 (Exponential function in characteristic 3). We consider the equation y′ = y.

Solving over the holomorphic functions, or in C[[x]] one obtains the exponential function as

a solution. However there is no reduction of this function modulo any prime, as all prime

numbers appear in the denominators of the expansion of the exponential function. But one

can obtain solutions modulo p for any prime in R using the normal form theorem. Pick for

example p = 3. Write L = x∂ − x = δ − x, so our equation is equivalent to Ly = 0. The

only local exponent of the equation is 0, thus one needs to compute the series

∞∑
n=0

(S ◦ T )n(1).

The operator T is simply given by the multiplication by x, where S is, as constructed above,

a right-inverse of L0 = x∂. One obtains:

(S ◦ T )1(1) = S(x) = x,

(S ◦ T )2(1) = S(x2) = 2x2,

(S ◦ T )3(1) = S(2x3) = 2x3z1,

(S ◦ T )4(1) = S(2x4z1) = 2x4z1 + x4,

(S ◦ T )5(1) = S(2x5z1 + x5) = x5z1,

(S ◦ T )6(1) = S(x6z1) = 2x6z21 ,

(S ◦ T )7(1) = S(2x7z21) = 2x7z21 + 2x7z1 + x7,

(S ◦ T )8(1) = S(2x8z21 + 2x8z1 + x8) = x8z21 + 2x8,

(S ◦ T )9(1) = S(x9z21 + 2x9) = x9z31z2 + 2x9z1.

One gets the solution

1+x+2x2+2x3z1+x4(1+2z1)+x5z1+2x6z21+x7(1+2z1+2z21)+x8(2+z21)+x9(2z1+z31z2)+. . . ,

which could be considered as the exponential function in characteristic 3. Note that ob-

taining the rightmost column needs some computational effort. One has to follow the steps

described in Remark 4.4. There seems to be no obvious pattern in the coefficients of the

obtained power series.

Similarly, one can compute the exponential functions expp for other characteristics p. For

p = 2 the first terms are

1+x+x2z1+x3(z1+1)+x4(z21z2+z1)+x5z21z2+x6(z31z2+z31)+x7(z31z2+z21z2+z31+z1+1)+. . .

and for p = 5 we get

1+x+3x2+x3+4x4+4x5z1+x6(4z1+1)+x7(2z1+2)+x8(4z1+1)+x9z1+3x10z21 + . . .
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Example 6.4. We consider the minimal complex differential equation Ly = 0 for

y(x) = − log(1− x) = x+
x2

2
+

x3

3
+ . . . ∈ C[[x]].

It is given by L = x2∂2− (x2∂+x3∂3). The local exponents are 0, 1 and a basis of solutions

in C[[x]] is given by {1, y}. Reducing L modulo a prime number p one again finds the local

exponents 0, 1. Clearly y0,0 = u−1
0 (1) = 1. Further we compute

y1,0 = u−1
1 (t1) =

∞∑
k=0

(S ◦ T )(t1) = t

(
1 +

x

2
+

x2

3
+ . . .+

xp−2

p− 1
+ xp−1z1

)
.

Here only adjoining the variable z1 instead of countably many zi is necessary to obtain

enough solutions. In the next section we will describe the class of operators, where the

addition of finitely many of the variables zi suffice.

Remark 6.5. (i) The space R provides us with n linearly independent solutions for any

operator with a regular singularity at 0 in characteristic p. It is minimal in the following

sense: we only introduce a new variable zi, when the algorithm constructing solutions would

get “stuck”, i.e., when we would be forced to divide by p. However, it is possible to choose

a system of representatives Λ ⊆ k of the set k/Fp. Without loss of generality assume that

0 ∈ Λ. We can define

R̃ :=
⊕
ρ∈Λ

tρk(z)((x)),

which suffices to construct solutions to any linear differential equation Ly = 0 having a

regular singularity at 0, similar to above. For example, if σ ∈ k is a local exponent of an

Euler operator and there is ρ ∈ Λ with ρ+ k = σ for some σ ∈ Fp and k ∈ Fp, then tρxk is

a solution of the equation Ly = 0. This construction has the advantage that the constants

are much simpler, as they are given by

CR̃ = k(zp)((xp)).

However it involves a choice of a system of representatives of k/Fp.

(ii) In characteristic 0 a minimal extension of k((x)) in which every regular singular equa-

tion has a full basis of solutions is the universal Picard-Vessiot ring or field for differential

equations with regular singularities, discussed in [SP03].

19



7 Equations with local exponents in the prime field

The situation becomes easier if we consider a linear differential equation Ly = 0, whose

local exponents are all contained in the prime field Fp ⊆ k. In this case there is no need to

introduce monomials tρ with exponents ρ ∈ k. We define the differential subfield K of R as

K := k(z)((x)).

One easily checks that K is indeed differentially closed with respect to ∂R. Moreover, its

field of constants is given by

CK = k(zp)((xp)).

The assumption on the local exponents allows one to modify the normal form theorem to

use the function space

Gρ
L := xρ

∞∑
k=0

⊕
β∈B(k)

kzβxk,

instead of

Fρ
L = tρ

∞∑
k=0

⊕
β∈B(k)

kzβxk,

by “substituting t = x” and analogously one obtains a full basis of solutions over CK in

K: For each local exponent ρ one computes u−1(xρ) instead of u−1(tρ), where u is the

automorphism described in the normal form theorem.

One class of operators with all local exponents in the prime field of k are operators with

nilpotent p-curvature. The p-curvature of an operator L can be defined as the action of mul-

tiplication by ∂p on the space k[x][∂]/k[x][∂]L. An alternate description of these operators

was provided by Honda [Hon81]: We say that an equation Ly = 0 of order n has sufficiently

many solutions in the weak sense if Ly = 0 has one solution y1 ∈ k[[x]] and recursively the

equation in u′ of order n − 1 obtained from Ly = 0 by the ansatz y = y1u has sufficiently

many solutions in the weak sense.

Theorem 7.1 (Honda, [Hon81], p. 201). A linear differential operator L has nilpotent p-

curvature if and only if the equation Ly = 0 has sufficiently many solutions in the weak

sense.

And indeed, the following theorem holds:

Theorem 7.2. Let L ∈ k[x][∂] be a differential operator with nilpotent p-curvature. Then

its local exponents are in the prime field Fp ⊆ k.

For a proof, see [Hon81] p. 179. Further, there is another interesting characterisation of

operators with nilpotent p-curvature due to Dwork [Dwo90].

Theorem 7.3 (Dwork, [Dwo90], p. 756). An operator L ∈ k[x][∂] has nilpotent p-curvature
if and only if there is l ∈ N such that Ly = 0 has a full basis of solutions in k(z1, . . . , zl)((x))
over its field of constants k(zp1 , . . . , z

p
l )((x

p)).

This is a generalisation of a result of Honda, who proved the result for l = 1 and operators

of order smaller than p, see [Hon81] p. 186.

For example, the operator annihilating log(1 − x), discussed in Example 6.4, has nilpotent

p-curvature.
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8 Polynomial solutions

It is well-known that if a Laurent series solution y ∈ Fp((x)) to Ly = 0 for an operator

L ∈ Fp[x][∂] with polynomial coefficients exists, then there already exists a polynomial

solution to the equation, e.g. see [Hon81] p. 174. We generalize the result to solutions

avoiding all but finitely many of the variables zi.

Lemma 8.1. Let k be a field of characteristic p. Let L ∈ k[x][∂] be a differential operator

with local exponent ρ ∈ k. Let y ∈ tρk[z1, . . . , zl][[x]] a solution of the differential equation

Ly = 0. Let c ∈ N. Then there exists a polynomial q ∈ k[x, z1, . . . , zl], such that L(tρq) = 0

and y − tρq ∈ tρxc+1k[z1, . . . , zl][[x]]. In particular, if a basis of power series solutions

of Ly = 0 in
⊕

ρ t
ρk[z1, . . . , zl][[x]] exists, then there already exists a basis of polynomial

solutions in
⊕

ρ t
ρk[z1, . . . , zl, x].

We will give two proofs of the statement. The first one is an adaptation of the proof presented

by Honda.

Proof 1. Let y = tρ
(
a0 + a1x+ a2x

2 + . . .
)
∈ tρk[[x]] with ai ∈ k[z1, . . . , zl] and a0 ̸= 0. We

write L as the sum of finitely many Euler operators and let j be the maximal shift of them.

Thus, if j consecutive coefficients ai of a solution y vanish, say aN+1, . . . , aN+j , then

tρ
(
a0 + a1x+ . . .+ aNxN

)
is a solution of the equation as well. Indeed, this can be seen by rewriting the equation as

a recursion for the coefficients ai.

The space of j-tuples of elements of k[z1, . . . , zl] is jpl-dimensional, hence finite dimensional,

over k[zp1 , . . . , z
p
l ]. Let m = jpl. So there are k1 < . . . < km < km+1 such that (km+1 −

km)p > c and b1, . . . , bm ∈ k[zp1 , . . . , z
p
l ] with

(apkm+1
, apkm+1+1, . . . , apkm+1+j−1) =

= b1(apk1 , apk1+1, . . . , apk1+j−1) + . . .+ bm(apkm , apkm+1, . . . , apkm+j−1).

Thus for

q := y ·
(
1− b1x

p(km+1−k1) − . . .− bmxp(km+1−km)
)

j consecutive coefficients vanish. Moreover, it is the product of y and a constant in

k[zp1 , . . . , z
p
l , x

p], so it is a solution and it agrees up to order c with y. This proves the

assertion. □

Proof 2. (Hauser). We consider tρk[z1, . . . , zl][[x]] as a free k[zp1 , . . . , z
p
l ][[x

p]]-module of rank

pl+1 with basis G = {tρxkzβ |k ∈ {0, 1, . . . , p − 1}, β ∈ {0, 1, . . . , p − 1}l}. Without loss of

generality assume that ρ = 0. We can write

y(x) =
∑
g∈G

yg(z
p
1 , . . . , z

p
l , x

p)g

with series yg ∈ k[z1, . . . , zl][[x]]. Then

Ly =
∑
g∈G

yg(z
p
1 , . . . , z

p
l , x

p)L(g) = 0
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implies that the series yg(z
p
1 , . . . , z

p
l , x

p) form a k[zp1 , . . . , z
p
l ][[x

p]]-linear relation between the

polynomials L(g) in the finite free k[zp1 , . . . , z
p
l , x

p]-module k[z1, . . . , zl, x] for g ∈ G. By the

flatness of k[zp1 , . . . , z
p
l ][[x

p]] over k[zp1 , . . . , z
p
l , x

p] there are polynomials qg(z
p
1 , . . . , z

p
l , x

p) ∈
k[zp1 , . . . , z

p
l , x

p] approximating yg(z
p
1 , . . . , z

p
l , x

p) up to any prescribed degree and such that∑
g∈G

qg(z
p
1 , . . . , z

p
l , x

p)L(g) = 0.

Now set

q(z1, . . . , zl, x) =
∑
g∈G

qg(z
p
1 , . . . , z

p
l , x

p)g

to get the required polynomial solution of Ly = 0. □

Remark 8.2. (i) Assume that L ∈ k[x][∂], where k is a finite field of characteristic p with

algebraic closure k. Then if y ∈ tρk[[x]] is a solution obtained by the normal form theorem,

we already have y ∈ tρk(ρ)[[x]], where k(ρ) is a finite extension of k. Recall the operators S

and T from the normal form theorem: S is a right inverse to L0 and T = L− L0. It holds

S(xρ+k+p) = xpS(xρ+k) and T (xρ+k+p) = xpT (xρ+k). There are only finitely many n-tuples

of elements from k(ρ). Write y = tρ(a0 + a1 + a2x
2 + . . .). Two n-tuples of consecutive

coefficients ai of y, starting at powers of an index divisible by p, have to agree. Thus the

sequence (ai)i∈N becomes periodic. Hence it suffices to take a suitable sufficiently large k

to obtain a polynomial solution (1− xkp)y of Ly = 0, which approximates y to a prescribed

degree c, as in the first proof of Lemma 8.1.

(ii) The algorithm from the normal form theorem may but need not provide us with a

polynomial solution of Ly = 0, when applied to an operator L in Fp[x][∂]. To see this

consider the following two examples:

(a) Let L = x∂ − x2∂ − x and

yL(x) =
1

1− x

the solution of the equation Ly = 0. Over Fp we compute using the algorithm from the

normal form theorem with L0 = x∂ and T = x2∂+x and obtain u−1(1) =
∑∞

k=0(SL◦TL)
k =

1 + x+ x2 + . . .+ xp−1 ∈ Fp[x], a polynomial solution.

So we obtain u−1(1) =
∑∞

k=0(SL ◦ TL)
k = 1 + x + x2 + . . . + xp−1 ∈ Fp[x], a polynomial

solution.

(b) Let now M = (−x−2x4)+(x+x2+−2x4−x5+x7)∂. The equation My = 0 is satisfied

by the algebraic function 1 + x
1−x3 . Reducing modulo 3 we get

T = (x+ 2x2∂) + (2x4∂) + (2x4 + x5∂) + (2x7∂) = T1 + T3 + T4 + T6

and the initial form M0 = x∂. We compute the solution

u−1(1) =

∞∑
i=0

aix
i

∞∑
i=0

(S ◦ T )i(1) = 1 + x+ x4 + x7 + x10 + . . .

Because the maximal shift of T is 6 and (a1, a2, a3, a4, a5, a6) = (a4, a5, a6, a7, a8, a9) the

sequence of coefficients of this series becomes periodic, as described in (i), with period
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length 3. Thus, the solution obtained by the normal form theorem in characteristic p agrees

with the reduction modulo p of the solution obtained in characteristic 0.

(iii) The latter of the two examples from above illustrates that the degree of a minimal

degree polynomial solution of a differential equation in characteristic p need not be p−1, as

one could expect. Indeed using the periodicity of the coefficients of the solution from above

one obtains that

ŷ(x) = u−1(1)− x3u−1(1) = 1 + x− x3

is a polynomial solution. Any other polynomial solution has to be a multiple of ŷ with a

constant. Indeed, making the ansatz

(1 + x− x3) · (1 + c1x
3 + c2x

6 + · · · ) = 1 + ax+ bx2

one immediately obtains c1 = 1, which leads to a contradiction. Therefore no polynomial

solution of degree less than 3 exists.
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9 The Grothendieck p-curvature conjecture

We now turn to the Grothendieck p-curvature conjecture and want to discuss a prospective

approach using the normal form theorems in characteristic 0 and p. In the following let

L ∈ Q[x][∂] be a differential operator defined over Q and denote by Lp ∈ Fp the differential

operator that arises from reducing the coefficients of L modulo p, whenever this is defined.

The reduction Lp is defined for all but finitely many prime numbers p. We are interested in

the interplay between solutions of the equations Ly = 0 and Lpy = 0. Most prominent here

is the Grothendieck p-curvature conjecture. A very simple formulation is the following:

Conjecture 9.1 (Grothendieck p-curvature conjecture, [Hon81]). Let L ∈ Q[x][∂]. Assume

that Lpy = 0 has a basis of Fp[[x
p]]-linearly independent solutions in Fp[[x]] for almost all

prime numbers p. Then there exists a basis of Q-linearly independent algebraic solutions of

Ly = 0 in Q[[x]].

Remark 9.2. (i) One can easily generalize this conjecture to number fields, by replacing Q
with K = Q(α) and Fp by the residue fields modulo prime ideals p ⊆ OK .

(ii) Let k be a field of characteristic p. Recall that the p-curvature of a differential operator

L ∈ k[[x]][∂] is the action of ∂p on the space k[[x]][∂]/k[[x]][∂]·L. A lemma of Cartier shows that

L has a basis of solutions in k[[x]] if and only if the p-curvature of L vanishes, or equivalently

L divides ∂p. It can be found in an abstract formulation for example in [Kat70], or more

“down-to-earth” in [SP03]. This explains the name of the conjecture.

A weaker statement than the Grothendieck conjecture was conjectured by Bézivin.

Conjecture 9.3 (Bézivin conjecture, [Béz91]). Let L ∈ Q[x][∂] be a differential operator.

Assume that Ly = 0 has a basis of Q-linearly independent solutions in Z[[x]]. Then these

solutions are algebraic over Q(x).

Lemma 9.4. The validity of the Grothendieck p-curvature conjecture implies the validity of

the Bézivin conjecture.

In other words: The hypothesis of the Bézivin conjecture implies the hypothesis of the

Grothendieck p-curvature conjecture.

Proof. Assume that y ∈ Z[[x]] is an integral solution of Ly = 0. Its reduction modulo all

prime numbers is well-defined and a solution to Lpy = 0. For p larger than the maximal

difference of the local exponents of L, a basis of solutions of Ly = 0 gets mapped by

reduction to a basis of solution modulo p. The condition on p is necessary to ensure that

the reductions of the solutions do not become linearly dependent over Fp((x
p)). Thus by the

Grothendieck p-curvature conjecture Ly = 0 has a basis of algebraic solutions and y, as a

linear combination of those algebraic solutions, is algebraic itself. □

A substantial advance towards the Grothendieck p-curvature conjecture would be to prove

the inverse implication of Lemma 9.4: in fact it would transfer the problem from positive

characteristic to characteristic 0. To approach the converse implication, it is reasonable to

compare the algorithm of the normal form theorem in characteristic 0 applied to an operator
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L to the algorithm of the normal form theorem in characteristic p, applied to the reduction

Lp of the operator L modulo p. We investigate in the next paragraphs how the normal

form theorems could be used to achieve this. For this we state the normal form theorem in

characteristic 0 and a number theoretic result, we will use:

Theorem 9.5 (Normal form theorem in characteristic 0, Hauser, [Hau22]). Let K be a

field of characteristic 0. Let L ∈ K[[x]][∂] be a linear differential operator with power series

coefficients, initial form L0 and shift τ = 0. Denote by Ω = {ρ1, . . . , ρr} a set of increasingly

ordered local exponents ρk, with integer differences and multiplicities mk. Set nk = m1 +

. . .+mk and

F = FΩ
L =

r∑
k=1

K[[x]]xρk [z]<nk
.

Let L,L0 act on F via ∂x = 1 and ∂z = x−1.

(i) The map L sends F into x · F .

(ii) The map L0 has image x · F . Its kernel ker(L0) =
⊕r

k=1 Kxρk [z]<mk
has direct

complement

H =

r⊕
k=2

nk−1⊕
i=mk

Kxρkzi ⊕
r−1⊕
k=1

ρk+1−ρk−1⊕
e=1

Kxρ+e[z]<nk
⊕

nr−1⊕
i=0

K[[x]]xρr+1zi

in F . The restriction of L0 to H defines a linear automorphism between H and x · F .

(iii) The composition of the inverse (L0|H)−1 : x·F → H of L0|H with the inclusion H ↪→ F
defines a right inverse S : x · F → F of L0. Let T : F → x · F = L0 − L. The map

u = IdF − S ◦ T : F → F

is a linear automorphism of F , with inverse v = u−1 =
∑∞

k=0(S ◦ T )k : F → F .

(iv) The automorphism v of F transforms L into L0:

L ◦ v = L0.

(v) The space of solutions of the equation L0y = 0 in F is given by

ker(L0) =
⊕
ρ∈Ω

mρ−1⊕
i=0

Kxρzi.

(vi) Assume that L has a regular singularity at 0. Then a K-basis of solutions of Ly = 0

at 0 is given by

yρ,i = u−1
Ω (xρzi)

where Ω varies over all sets of local exponents, uΩ is the automorphism of assertion

(iii) corresponding to Ω, ρ ∈ Ω is a local exponent and 0 ≤ i < mρ.

For a proof see [Hau22].
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Theorem 9.6 (Kronecker, [Kro80], Frobenius, [Fro96]). Let f ∈ Q[x] be a polynomial of

degree n, let s ∈ N and n1, . . . , ns with n1 + . . .+ ns = n. The density of prime numbers p

for which the reduction of f splits into k factors of degrees f1, . . . , fk is equal to the number

of permutations of the roots of f in the Galois group of f consisting of s cycles of lengths

f1, . . . , fs. In particular, f splits into linear factors over Q[x] if and only if its reduction

modulo p splits in Fp[x] into linear factors for almost all primes p.

This version was proven by Frobenius, while similar results were formulated by Kronecker

before. It is also an easy corollary of the Chebotarev density theorem.

We now describe consequences of the hypothesis of the Grothendieck p-curvature conjec-

ture. They were already collected by Honda and we refer for parts of the proof to his

article. However, for the last assertion we give a different proof. It compares the two algo-

rithms obtained from the normal form theorems in characteristics 0 and p. This approach

demonstrates how the normal form theorems could be used to show the equivalence of the

Grothendieck p-curvature conjecture and the Bézivin conjecture.

We say that a power series g ∈ Fp[z][[x]] depends on logarithms, if it is not the product of

a power series in Fp[[x]] and a constant from Fp[z
p][[xp]]. In particular, if a power series is

independent of logarithms, every exponent of the variables zi is divisible by p. If L ∈ Fp[x][∂]

is an operator and the equation Ly = 0 has a basis of solutions in Fp[[x]] then any solution

of Ly = 0 is independent of logarithms.

Proposition 9.7 (Honda, [Hon81], p. 177ff., p. 190ff.). Let L ∈ Q[x][∂] be an operator of

order n. Assume that Lpy = 0 has a basis of n Fp[[x
p]]-linearly independent power series

solutions in Fp[[x]] for almost all prime numbers p. Then

(i) The operator L has a regular singularity at 0.

(ii) The local exponents of L at 0 are pairwise distinct rational numbers.

(iii) There is a basis of Puiseaux series solutions of Ly = 0 in
∑

ρi
xρiQ[[x]], where ρi

ranges over the local exponents of L. In particular, there is a basis of n solution in R,

independent of the variables t and zi.

Proof. For (i) we only sketch the reasoning presented by Honda. One first proves that the

reduction Lp has a regular singularity at 0 for all p for which it has a full basis of solutions.

For the details see Honda [Hon81], where the regularity is proven for operators Lp having

sufficiently many solutions in the weak sense for almost all primes p. This is a weaker

assumption than having a basis of solutions in Fp[[x]]: Indeed, Lpy = 0 having sufficiently

many solutions in the weak sense is equivalent to the nilpotence of its p-curvature, by 7.1.

On the other hand, the existence of basis of a basis of n solutions in Fp[[x]] is equivalent to

the vanishing of the p-curvature of Lp, by Cartier’s lemma. So we may assume that Lp has

a regular singularity for almost all p. Equivalently, the initial form of Lp has order n for

almost all p. So the initial form of L has order n and thus the singularity of L is regular.

We proceed by showing (ii). As a consequence of (i) there are n local exponents of L,

counted with multiplicity. Moreover for almost all prime numbers the local exponents of Lp

have to be elements of the prime field. Indeed for any local exponent ρ ̸∈ Fp we obtain using
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Corollary 6.1 a solution of the form tρf ∈ tρF[[x]], contradicting the existence of a basis of n

solutions of Lpy = 0 in F[[x]].

We show, as Honda [Hon81], that the local exponents of L are pairwise incongruent modulo

almost all prime numbers. The indicial polynomial χL of L has coefficients in Q and it splits

into linear factors over Fp when reduced modulo p for almost all primes p. Thus, by Theorem

9.6, χL splits into linear factors over Q and so all local exponents are rational. Assume now

that two local exponents are congruent modulo some p. Then their reduction modulo p is a

local exponent of Lp of multiplicity at least 2. So, Corollary 6.1 together with the remarks

in section 7 to avoid the variable t yield a solution of the form u−1(xρz1), where u is the

automorphism associated to the function space Gρ
L. This solution is in contradiction to our

assumption of a basis of solutions in Fp[[x]]. In particular all local exponents in characteristic

0 have to be distinct.

For (iii) the normal form theorem in characteristic 0 provides us with a basis of solutions

for Ly = 0 in ∑
ρi

xρiQ[[x]][z],

as all local exponents are rational numbers. So we only have to prove that the solutions

of Ly = 0 are independent of z. Assume there is a solution f involving a logarithm, i.e.,

f ∈
∑

ρ x
ρQ[z][[x]] \

∑
ρ x

ρQ[[x]]. Without loss of generality we may assume that

f = u−1(xρ) = xρ(1 + a1x+ a2x
2 + . . .)

for some local exponent ρ of L and some ai ∈ Q[z]. Let k ∈ N be minimal, such that ak is

dependent on z.

We will proceed by choosing a suitable prime p and a solution g of Lpy = 0, which agrees

with the reduction of f up to degree k − 1. This we will use show that the g necessarily

depends on logarithms, a contradiction.

We choose a prime p, subject to the following conditions:

� p is larger than the order n of L.

� There is a basis of solutions of Lpy = 0 in Fp[[x]].

� p does not divide any of the denominators of the local exponents of L, which are

rational by (ii).

� p does not divide any of the denominators of a1, . . . , ak.

We only excluded finitely many primes, so almost all p fulfil this.

Let Λ be the set of positive integers l smaller than k such that ρ + l is a local exponent of

Lp. Here we write ρ as well for its reduction modulo p, an element of {0, 1, . . . , p− 1}. We

define

g = u−1
p

(
xρ

(
1 +

∑
l∈Λ

alx
l

))
= xρ(1 + b1x+ b2x

2 + . . .),

where up is the automorphism of Gρ
Lp

from the normal form theorem, Theorem 5.2. We

show now that g is a solution of Lpy = 0. Recall that Lp ◦ u−1
p = Lp,0, where Lp,0 denotes
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the initial form of Lp. The monomial xρ+l is a solution of Lp,0y = 0 whenever ρ + l is a

local exponents of Lp. So indeed Lg = 0 holds.

Next we prove inductively that bi = ai. For this we first investigate how the operators

involved in the normal form theorems interact with the reduction modulo p.

Denote by T0 = L − L0 : Z(p)[x] → Z(p)[x] the tail of the operator L and by Tp = Lp −
Lp,0 : Fp[x] → Fp[x] the tail of Lp, both restricted to acting on polynomials for which the

denominators of the coefficients are not divisible by p. We write T0 = T0,1 + . . . + T0,M

and Tp = Tp,1 + . . . Tp,M as sum of Euler operators with positive shift. Further denote by

π : Z(p)[x] → Fp[x] the reduction of the coefficients modulo p. One easily verifies that the

following diagram commutes:

Z(p)[x] Z(p)[x]

Fp[x] Fp[x]

T0,m

π π

Tp,m

for each m = 1, . . . ,M . In particular,

Z(p)[x] Z(p)[x]

Fp[x] Fp[x]

T0

π π

Tp

commutes as well.

Moreover, denote by S0 = (L0|H)−1 : x · FΩ
L → FΩ

L the right inverse of L0 described in

the normal form theorem in characteristic 0, Theorem 9.5. Further let Sp : x · Gρ
Lp

→ Gρ
Lp

be the inverse of Lp,0. Then S(xl) = 1
χL(l)x

l whenever l is not a local exponent of L

and Sp(x
l) = 1

χLp (l)
xl, whenever l is not a local exponent of Lp. Further, we have that

π(χL(l)) = χLp
(l). In particular, if ρ + l is not a local exponent of Lp, then the following

diagram commutes:

xρ+lZ(p) xρ+lZ(p)

xρ+lFp xρ+lFp

S0

π π

Sp

If ρ+ l is a local exponent of Lp, then Sp(x
ρ+l) depends on the logarithm z1.

Assume bi = ai holds for i = 1, . . . , l − 1. We will distinguish the two cases whether ρ + l

is a local exponent of Lp or not. Assume first that ρ+ l is not a local exponent. Rewriting

the differential equations as a recursions we obtain

al = S0

(
M∑

m=1

T0,m(al−mxρ+l−m)

)
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and

bl = Sp

(
M∑

m=1

Tp,m(bl−mxρ+l−m)

)
,

where both sums are homogeneous of degree ρ + l in x. Thus the commutativity of the

diagrams above yields that bl indeed is the reduction of al modulo p.

If ρ+ l is a local exponent of Lp, then

bl = Sp

(
M∑

m=1

Tp,m(bl−mxρ+l−m)

)
+ al

by the definition of g and the recursion. As mentioned above, Sp(x
ρ+l) depends on z1. So if∑M

m=1 Tp,m(bl−mxρ+l−m) does not vanish, the solution g contradicts the existence of a basis

of solutions of Lpy = 0 not depending on the logarithms. Thus, bl is the reduction of al in

this case as well.

This allows us to show that bk depends on z1: As above we have

bk = Sp

(
M∑

m=1

Tp,m(bk−mxρ+l−m)

)
and

ak = S0

(
M∑

m=1

T0,m(ak−mxk+ρ−m)

)
.

As ak depends on z by assumption, ρ + k necessarily is a local exponent of L and thus of

Lp. So Sp(x
ρ+k) depends on z1. If Σp =

∑M
m=1 Tp,m(bk−mxρ+l−m) ̸= 0, then bk depends

on z1, contradicting the existence of a basis of solutions of Lpy = 0 not depending on the

logarithms. However, Σp equals the reduction of Σ0 =
∑M

m=1 T0,m(ak−mxk+ρ−m) modulo

p by the commutative diagrams from above. But Σ0 ̸= 0, because S(Σ0) = ak ̸= 0. As we

have only excluded finitely many prime numbers p so far, we can choose p not dividing Σ0.

This is a contradiction. Thus, no solution f of Ly = 0, depending on z may exist, which

concludes the proof. □

Our proof of (iii) is certainly not the fastest. However, it illustrates the interplay between

the normal form theorems in characteristic 0 and p. We illustrate what happens in the proof

of (iii) with an example.

Example 9.8. The operator L = x2∂2 − 3x∂ − 3x− x2 − x3 has the solution

f(x) = u−1(1) = 1 + a1x+ a2x
2 + . . . = 1− x+

1

2
x2 − 1

2
x3 − 1

2
x4z + . . . ,

so a4 = − 1
2z is the first coefficient, which depends on z. Assume that there was a full basis

of solutions in F3[[x]]. The local exponents in characteristic 3 are 0 and 1, so Λ = {1, 3}. We

compute, using T3 = x2 + x3 and L3,0 = x2∂2, the expansion of the following solution

u−1
3 (1 + 2x+ x3) = 1 + 2x+ 2x2 + x3 + . . . ,

which agrees with the reduction of f up to order 3. However, the next term in the expansion

is S3(x
4) = x4z1, so u−1

3 (1 + 2x+ x3) ̸∈ F3[[x]].
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10 Outlook

If one wants to pursue the goal of proving the equivalence of the Grothendieck p-curvature

conjecture and the Bézivin conjecture, number theoretic obstacles occur.

A power series y(x) ∈ Q[[x]] is called globally bounded if there is an integer N such that

y(Nx) ∈ Z[[x]]. In other words, there are only finitely many prime numbers p appearing in

the denominators of the coefficients of y and they only grow geometrically. A theorem of

Eisenstein [Eis52] says that any algebraic power series is globally bounded.

To prove that the validity of the Bézivin conjecture implies the validity of the Grothendieck

p-curvature conjecture it suffices to show that for a linear differential equation Ly = 0

whose reduction Lpy = 0 has a full basis of solutions in Fp[[x]] the basis of solutions in

characteristic 0 is globally bounded. For this it is natural to try to compare the algorithms

from the normal form theorems in characteristic 0 and p further. Ideally, p would not appear

in the denominators of solutions in characteristic p if and only if there is a basis of solutions

in Fp[[x]] of Lpy = 0, at least for almost all p. However, the situation is not as easy as one

might hope, as the following two examples illustrate:

Example 10.1. (i) The first example shows that for finitely many primes it may happen

that a full basis of solutions of the reduction of a linear differential equation modulo p

exists, although p appears in the denominator of one of the solutions in characteristic 0.

The solution of ∂−nxn−1 for n ∈ N is ex
n

, a power series where each prime number appears

eventually in the denominators. However, for all prime numbers p dividing n, the reduction

of the equation modulo p is an Euler equation having the solution 1 ∈ Fp[[x]]. As this

can happen only for a finite number of primes, this does not contradict the Grothendieck

p-curvature conjecture.

(ii) The next example shows that to rule out the appearance of the prime factor p in the

denominators of a solution of Ly = 0 it is not sufficient to work on the level of individual

solutions associated to a local exponent and its reduction. If possible at all, it has to take

into account the existence of a full basis of solutions.

The power series

y(x) =

∞∑
k=1

akx
k =

∞∑
k=1

k(k + 2)

(k + 1)
xk =

3

2
x+

8

3
x2+

15

4
x3+

24

5
x4+ . . . =

log(1− x)

x
+

x

(x− 1)2

is annihilated by the third order operator

L = x3∂3 + 4x2∂2 + x∂ − 1− (x4∂3 + 8x3∂2 + 13x2∂ + 3x).

This operator L is hypergeometric, i.e., T = L − L0 is an Euler operator with shift one.

Moreover, y is annihilated by the second order operator

M = 3x2∂2 + 3x∂ − 3 + (x4 − 4x3)∂2 + (3x− 12x2)∂ + x2 − 4x,

which is not hypergeometric. The operator M is a right divisor of L, as one verifies that(
− 1

x− 3
x∂ − 1

x− 3

)
M = L.
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Let us first concern ourselves with the operator L. Its local exponents are −1 with mul-

tiplicity two and 1 with multiplicity 1. We have y = 3
2 · u−1(x), where u is the automor-

phism described in the normal form theorem in characteristic 0. Moreover we compute

u−1(x−1) = x−1 and u−1(x−1z) = x−1z. Thus a basis of solutions of Ly = 0 is given by

y, x−1 and x−1 log(x).

For all prime numbers p the coefficient of xp−2 in the expansion of y is divisible by p, while

the denominators of a1, . . . , ap−2 are not. Thus

yp :=

p−2∑
k=1

akx
k

is well defined in characteristic p and a solution to the equation Lpy = 0. It is given as

u−1
p (x) where up is the automorphism defined in the normal form theorem in characteristic

p. The series y is not algebraic, as it is not globally bounded. In fact any prime number p

appears in the denominators of the coefficients ai. However, the solution in characteristic

p corresponding to the reduction of the local exponent 1 is a genuine power series. Other

linearly independent solutions in characteristic p are x−1 and x−1z1. We see that in neither

characteristic there is a basis of power series solutions.

Let us now turn to the operator M , which has local exponents −1 and 1 as well, both with

multiplicity 1. A basis of solutions is given by x−1 and y. This does not contradict the

Grothendieck p-curvature conjecture, as yp is not a solution of M . For L the construction

was very dependent on the fact that the equation is hypergeometric, which is no longer the

case for M .

There still remain several questions about linear differential equations over fields with posi-

tive characteristic. For linear differential equations with holomorphic coefficients there is a

criterion by Fuchs characterizing regular singular points of an operator L [Fuc66]. A point

a ∈ P1
C is at most a regular singularity of L if and only if there is a local basis of solutions

of Ly = 0, which grows at most polynomially when approaching a. One would expect a

similar criterion in characteristic p: an n-dimensional vector space of solutions in R over

the constants C should suffice to conclude that 0 is a regular singular point of L.

Moreover, the solutions of differential equations in R need to be better understood. For

example one would expect some kind of pattern in the exponential function in positive

characteristic discussed in Example 6.3. However, no such structure seems obvious.

In addition there is hope to extract information about the p-curvature and the Galois group

of linear differential equations in positive characteristics from the description of a full basis

of solutions in the differential extension R of k.

Finally, there remain, of course, the Grothendieck p-curvature conjecture and the Bézivin

conjecture. As Example 10.1 shows, the algorithms of the normal form theorems in charac-

teristic p and 0 show some unexpected discrepancy. The hope that solutions of the reduction

of differential operators are reductions of solutions of the operator seems to be unfounded.

However, the phenomena shown require further investigation.
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