
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

„Prototypical – A Board Game Development Framework“

verfasst von / submitted by

Vincente Andrew Campisi

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2022 / Vienna, 2022

Studienkennzahl lt. Studienblatt / UA 066 935
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Medieninformatik UG2002
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dipl.-Ing. Dr. Helmut Hlavacs

Abstract

Despite an iterative workflow and common characteristics, board game design differs from
its video game counterpart in the tasks and frequency with which digital technologies are
leveraged. We sought to develop a software application explicitly intended to support
the board game design process and to identify why and how it might be used. While
commercial solutions already exist, our efforts attempted an intuitive but novel approach
by making use of proprietary concepts such as component selectors, actions, checks,
conditions and filters. We created Prototypical, a board game development framework,
to provide modelling, simulation and analysis features when prototyping and developing
individual board game mechanics. Three examples were used to demonstrate its current
capabilities and Monte-Carlo Tree Search AI agent performance, while a user study
involving five participants and System Usability Scale surveys identified the need for user
interface improvements. The ability to aggregate and display information is expected to
help the designer test assumptions and make better-informed decisions. Our software
demonstrates potential to achieve this and presents ways to inspect individual and evolving
game state information.

i

Kurzfassung

Trotz einem sich wiederholenden Workflow und gemeinsamer Eigenschaften, unterscheiden
sich Brettspieldesign und Videospieldesign durch die Aufgaben und Häufigkeit der Ver-
wendung von digitalen Technologien. Es wurde versucht, eine Software, die den Brett-
spieldesignprozess unterstützt, zu entwickeln und zu eruieren, warum und wie sie verwendet
werden könnte. Da kommerzielle Lösungen dafür schon existieren, war das Bestreben
einen neuen aber intuitiven Ansatz, durch Nutzung von eigenen Konzepten wie component
selectors, actions, checks, conditions und filters, zu bieten. Zur Modellierung, Simulation
und Analyse bei der Entwicklung einzelner Brettspielmechaniken wurde Prototypical,
ein Brettspielentwicklungsframework, erstellt. Anhand dreier Beispiele wurden aktuelle
Features sowie die Performance des Monte-Carlo Tree Search Algorithmus demonstriert.
Durch eine Nutzerstudie mit fünf Teilnehmern und die System Usability Scale Umfrage
wurde die Notwendigkeit einiger User Interface Verbesserungen identifiziert. Die Struktur-
ierung und Abbildung von Informationen über ein Brettspieldesign soll als Hilfestellung
für den Entwickler dienen, um Hypothesen zu testen und fundierte Entscheidungen zu
treffen. Unsere Software weist das Potenzial auf, dies zu fördern und liefert dements-
prechende Möglichkeiten, sich entwickelnde Spielelemente über verschiedene Zeitfenster
zu überprüfen.

iii

Contents

Abstract i

Kurzfassung iii

List of Tables vii

List of Figures ix

List of Algorithms xi

Listings xiii

1. Introduction 1
1.1. History and Motivation . 1
1.2. Synopsis . 2

2. Related Work 5
2.1. Literature Review . 5
2.2. Existing Software . 9

3. Game and Artificial Intelligence Concepts 11
3.1. Game Concepts . 11
3.2. Artificial Intelligence Concepts . 13

4. Prototypical – A Board Game Development Framework 19
4.1. Modelling . 19

4.1.1. Components . 19
4.1.2. Conditions . 21
4.1.3. Actions . 25

4.2. Simulation . 29
4.2.1. Executions . 29
4.2.2. AI Agents . 32

4.3. Analysis . 35
4.3.1. State Inspection . 36
4.3.2. Queries . 37
4.3.3. Compound Queries . 39

v

Contents

5. Results 41
5.1. Examples . 41

5.1.1. Movement Points . 41
5.1.2. Polis: Rise of the City State . 49
5.1.3. Tic-Tac-Toe . 60

5.2. User Trials . 63
5.3. Hardware and Software . 66
5.4. Discussion . 66

6. Conclusion and Future Work 73
6.1. Conclusion . 73
6.2. Future Work . 74

Bibliography 77

A. Appendix 83

vi

List of Tables

4.1. Comparators and corresponding symbols 22
4.2. Complexity of available selection strategies, Big O notation 24
4.3. add action event compatibility and behavior. Row indicates receiver type,

columns target . 29
4.4. remove action event compatibility and behavior. Row indicates receiver

type, columns target . 29

5.1. Initial distribution of move values (Movement Points) 41
5.2. Execution run times in milliseconds (Movement Points) 43
5.3. Final distribution of move values (Movement Points) 45
5.4. execution run times in milliseconds (Polis) 55
5.5. Grid layout of 3x3 Tic-Tac-Toe board . 61
5.6. Tic-Tac-Toe win rates and execution time benchmarks 63
5.7. System Usability Scale results from five participants (converted) 64
5.8. System Usability Scale statements and participant responses (unconverted) 65
5.9. Object counts required to implement each example 67

vii

List of Figures

5.1. Average score, executions 1-10. Player 1 in blue, player 2 in red (Movement
Points) . 44

5.2. Average score, executions 11-20. Player 1 in blue, player 2 in red (Movement
Points) . 45

5.3. Player 1 average score, executions 1-10 in blue, executions 11-20 in red
(Movement Points) . 46

5.4. Player 2 average score, executions 1-10 in blue, executions 11-20 in red
(Movement Points) . 46

5.5. Average score, executions 21-30. Player 1 in blue, player 2 in red (Movement
Points) . 47

5.6. Player 1 average score, executions 1-10 in blue, executions 21-30 in red
(Movement Points) . 47

5.7. Player 2 average score, executions 1-10 in blue, executions 21-30 in red
(Movement Points) . 48

5.8. Initial and final distributions of move values. executions 1-10 in blue,
21-30 in red (Movement Points) . 48

5.9. Original Card VP Distribution (Polis) . 50
5.10. Score sum, executions 1-10. Player 1 in blue, player 2 in red (Polis) 52
5.11. Player 1 score sum. Executions 1-10 in blue, executions 11-20 in red (Polis) 53
5.12. Player 2 score sum. Executions 1-10 in blue, executions 11-20 in red (Polis) 54
5.13. Player 1 score sum. Executions 11-20 in blue, executions 21-30 in red (Polis) 55
5.14. Player 2 score sum. Executions 11-20 in blue, executions 21-30 in red (Polis) 56
5.15. Player 1 score sum. Executions 21-30 in blue, executions 31-40 in red (Polis) 56
5.16. Player 2 score sum. Executions 21-30 in blue, executions 31-40 in red (Polis) 57
5.17. Player 1 score sum. Executions 1-10 in blue, 11-20 in red, 21-30 in orange,

31-40 in yellow, 41-50 in green (Polis) . 57
5.18. All player scores. Blue group 1 is executions 1-10, orange group 2 is 11-20,

green group 3 is 21-30, red group 4 is 31-40, purple group 5 is 41-50 and
brown group 6 is 51-60 (Polis) . 58

5.19. Empty chart with created queries on the left and compound queries on the
right (Polis) . 59

5.20. Chart involving both queries and compound queries (Polis) 59
5.21. x3InARow condition with sub-Condition 62
5.22. o3InARow condition with sub-Condition 62
5.23. System Usability Scale Rubric . 64

ix

List of Algorithms

1. Monte-Carlo Tree Search Pseudo-code . 14

xi

Listings

A.1. computeUct function . 83

xiii

1. Introduction

1.1. History and Motivation

With the increasing popularity of video games and the commercial success of the in-
dustry [45], the terms game design and game development are often used in the context
of software. There is an abundance of choice when it comes to technologies meant to
support the creation of digital games, ranging from game engines such as Unity [73] and
Unreal Engine [74] to individual programming libraries focused on improving workflow.
The game design process itself is naturally iterative, involving an initial and final version,
the latter reached after navigating multiple intermediate versions through modifications.

The developer begins with an idea and initial design, then repeatedly performs playtest-
ing and makes changes until a desirable result has been achieved. The process often
includes human playtesters who participate in gameplay and provide valuable feedback
about the user experience. This can be affected by a range of factors, such as the complex-
ity of the game rules, number and types of game elements (e.g. components, characters
and actions), the appearance and the interface through which it is played. While the
video game industry has an estimated value of over 300 billion USD [1], other types of
commercial games do exist and are worth considering.

Board games are a popular form of entertainment and commonly-explored subject
of professional and academic efforts. They can be viewed as a physical counterpart to
digital games because similar and/or equivalent concepts are observable in both mediums.
Regardless of type, all games have several qualities in common and when comparing video
games and board games, it is clear that the development process is equally as iterative.
Time, resources and human assistance are required, while it is rare for a significant portion
of this overhead to be offset by current technologies.

In contrast with the variety of available digital technologies to assist video game
development, board game designers tend to take an analog approach. Digital solutions are
used sparingly, such as to assist the formatting or production of physical components (e.g.
art or publishing software) [11]. Another use might be to create a digital implementation
of an existing physical game. With this discrepancy in mind, we attempted to create
software with the explicit purpose of assisting the development of physical board games.

The scope was a single game mechanic at a time in the context of an iterative develop-
ment approach. We assumed that changes in aspects of a game design can be used to
estimate corresponding effects on the gameplay and user experience. We do not claim
to have observed specific metrics or guidelines for interpretation, however. Using such
software was expected to help the designer save time through automated playtesting and
provide insights with comprehensive game state information. AI agents were seen as a way

1

1. Introduction

to lower overhead normally associated with traditional playtesting. We also assume that
a well-informed game designer is more likely to make superior design decisions throughout
the development process. It is this perspective that Prototypical strives to enable.

We sought to create a software application to assist the board game designer during the
iterative development process and analyzed why and how the software might be useful.
We simulated the playtesting of game mechanics for several examples using an algorithm
that is effective without significant domain knowledge. We then evaluated the utility of
the obtained results.

Prototypical is the name of our GUI-based software application, which allows the
user to model and simulate game mechanics through the input of information about
game components, component state and interactions, success conditions and simulation
parameters. The heuristic Monte Carlo tree search algorithm is used to handle decision
making in the simulations. The user is given the ability to inspect game state minutiae
and discover trends from which the effects on user experience might be inferred.

1.2. Synopsis

This section provides a brief description of each chapter and serves as an overview for
the structure of this research. This paper does not include research from the field of
Game Theory. Our focus is on physical, non-theoretical turn-based board games intended
to be played by one or two individuals. All of the presented examples will cover the
latter. There are countless applications relating to games and game development and it
is impossible for the survey performed here to be exhaustive. The use of this software
requires basic computer knowledge, the ability to interact with websites and web-based
applications and an understanding of the concepts in 3.1.

Chapter one introduces the context and problem this research seeks to address, while
noting a few limitations and assumptions for this research. The general relationship
between video games and board games is mentioned and this synopsis provides an overview
of the structure and focus of each chapter.

Chapter two covers existing work relating to this research. Existing literature in areas
such as game properties, mechanics, balance and user experience is surveyed. Lastly,
research using the Monte-Carlo Tree Search algorithm for decision making in games is
covered.

Chapter three introduces fundamental concepts relating to games and artificial intelli-
gence. A short description of Game Studies is provided. Game properties are described
and the concept of user experience in the context of board games is introduced. The
relationship between game properties and the resulting user experience is then argued
and the claim that playtest data can be used to discover useful information is made. The
necessity of artificial intelligence algorithms for decision making in the context of this
research is explained. The Monte-Carlo Tree Search algorithm and UCT are introduced.

Chapter four thoroughly describes the Prototypical framework. Primary features are
listed and implementation details provided. The implementation of Monte-Carlo Tree

2

1.2. Synopsis

Search is then explored. Hardware, programming languages and other implementation-
specific details are also mentioned.

Chapter five introduces three use cases for the Prototypical software and the results
from user surveys. A walk-through of implementation details for each is presented. The
methods used for the user trials are recounted and the resulting user experiences are
evaluated. An overall analysis including capabilities, successes and failures of the software
is presented and discussed.

Chapter six contains final statements about this work and its contribution to the related
areas of research. Improvements or new features are also described. These include new or
enhanced AI algorithms, other supported game types and UI adjustments. Additional
information regarding the deployment and future availability and use of the Prototypical
application is provided.

3

2. Related Work

2.1. Literature Review

To discuss the game development process, fundamental characteristics inherent to games
of all types must first be understood. [26] investigated details of games and contributed
more than thirty characteristics by which board games may be differentiated from one
another. An analytical framework to do so was presented by [17]. Comparisons attempted
to reflect significant influences on generated player experience and focused on the four
main traits of rules, randomness, representational backdrop and interaction. Efforts have
been made to precisely measure luck across varying types of games, including modern
commercial board games such as Race for the Galaxy and Seasons [31]. [35] provided
an abstract analysis of games and presented a rules typology which applies to games
of all types. Reasons for playtesting, as well as the link between game rules and the
gameplay experience itself were described. Games were broken down into five major
elements: components, procedures, environment, theme and interface. While a detailed
implementation was lacking, the research served as a basis for linking gameplay mechanics
and user experience.

The relationship between user experience and mechanics was further explored through
an analysis of board game metadata, which included details about game mechanics,
community rankings and user ratings from the BoardGameGeek website [59, 12]. Ten
thousand board games for the forty year period of 1980-2020 were considered, with the
efforts exploring trends in specific board game characteristics present in the industry
(Empirical Analysis over Time), correlations between rankings and game properties
(Correlation of Board Game Attributes) and interactions between specific mechanics
for potential co-occurrences and mutual dependencies (Interactions of Board Game
Mechanics). Positive correlations existed between complexity and number of mechanics,
as well as between game rating and number of mechanics; however, most were moderate
or negligible. The metadata may not have been representative of the entire community or
accurate for older games.

Additional correlations between specific game metrics, the Information Theory concept
of Relevant Information, identifiable design flaws and player experience have been sugges-
ted [58]. A method to approximate Relevant Information in a game design was presented,
supporting the idea that a system implementing such functionality would prove useful
when evaluating and/or balancing game mechanics.

[34] provided examples of common playtesting approaches for games and provided ways
to recognize and address gameplay imbalances, which often survive to later stages of a
game’s development. AI playtesting through restricted play was utilized to develop a novel

5

2. Related Work

playtesting software prototype which permitted the measurement of gameplay balance
and rapid iteration. It was possible to guide the board game development process and
improve both measurable and perceived gameplay balance using a digital tool. While our
research is based on this premise, we do not focus exclusively on simultaneously-played
two player perfect information games and our implementation is not tightly coupled to
specific games.

Gameplay balance itself has been a popular research topic, which has included efforts
to differentiate between implicitly and explicitly balanced games, as well as statically
balanced and dynamically balanced games. Attempts to dynamically achieve game balance
and reconcile gaps in player skill levels were at times successful, which led to a positive
impact on a player’s feeling of success [37]. It was hypothesized that multiple balanced
designs for a given design are possible and an integrated (i.e. manual and automated)
balancing process for different games was presented. When applied to a video game,
it was demonstrated that automated balancing led to a greater number of satisfactory
designs in less time (compared to manual playtesting), including previously unconsidered
ones [8]. Such a system applied to board games could potentially assist in the design
process, possibly discovering relationships between interconnected game parameters.

Similar efforts included the application of population-based meta-heuristics to map
generation for the board game Terra Mystica [18], framed as a combinatorial optimization
problem with two approaches: particle swarm optimization and steepest ascent hill
climbing with a random restart. Resulting maps were checked for rules compliance as
well as balance of initial and overall conditions for all players. It was concluded that
manual playtesting feedback was necessary, despite successful generation of compliant
maps. Similarly, Sentient Sketchbook was presented as a map sketch generation tool with
an intuitive interface, real-time feedback and suggestions (generated by feasible-infeasible
two-population paradigm and novelty search) which assisted game designers to create
video game levels [41, 76].

Leveraging digital technology to support the game development experience is a mixed-
initiative approach to a design experience, which is the topic of other efforts relating
to game balancing. A case study on applying digital technologies to the board game
development process was carried out and the extensibility of existing games was demon-
strated by using digital technologies to conceptualize and manufacture modularized game
components. These were used to generate new game layouts [48]. Differences in balancing
digital and physical games has been described and techniques to utilize digital technology
for the latter have been explored [3]. A resulting user study concluded that dynamic
adjustments when reconciling player skill level differences led to a more positive overall
player experience.

Other approaches included a time-saving Java-based programming framework to assist
with digitally implementing multiplayer board games [40] and the FlexibleRules [28]
framework. Results of the first showed that participating designers had a superior
experience with the software compared to without it. The latter allowed the user to model
board games and implement games digitally, such that game logic and implementation
details were decoupled. It used a two-part structure consisting of a conceptual model of a

6

2.1. Literature Review

game design and a set of tools to implement it. Software capabilities were demonstrated
using three games - Awele, Go and Himalaya - and characteristics such as entity types,
rules complexity, user interaction and game variants were compared. The desired end
result of both frameworks was a fully-playable digital implementation of a board game.
Other mixed-initiative digital tools include Tenagra [64] and Ropossum [61], a software
tool to assist in the design of 2D platforming levels and another to help create and test
physics-based puzzle game levels. Procedural generation and verification was used in both
of these solutions.

In considering a potential lack of research on measuring user experience in games, the
Game Experience Questionnaire was applied as part of a mixed-method approach (i.e.
using quantitative and qualitative methods) to a non-digital board game [5]. It was seen
to be effective in measuring user experience, despite an original context of purely digital
games. The results indicated a link between positive user experience and what can be
considered good game design. Similar efforts tend to exist in the context of video games,
such as Riot Games’ increasing use of quantitative data from games to scientifically
optimize a given design, with the goal of improving player experience [54].

The intersection of artificial intelligence and games has led to a significant body
of research. Before the successes of AlphaGo in 2016 [2], Objective Monte-Carlo [16]
incorporated move-selection and backpropagation improvements into the existing software
Mango [44]. Monte Carlo tree search was originally proposed as a general game-playing
artificial intelligence framework superior to hand-designed algorithms which make use
of evaluation functions and domain knowledge [15]. The highly randomized and weakly-
simulated approach was applied to turn-based, perfect information classic board games,
modern turn-based, imperfect information board games with stochastic elements and
real-time video games with complex and evolving state. The titles were Go, Settlers of
Catan and Spring, respectively.

Similar efforts include the implementation of an MCTS agent for the full rule set of
7 Wonders, which performed better than a standard rule-based AI agent [56]. MCTS
incorporating Upper Confidence Bound Applied to Trees (UCT) was implemented for
the two player board game Mr.Jack [46]. Performance of MCTS agents with various
improvements - including discretization and chance events - was compared for the game
of Ticket to Ride [32].

UCT [13] was originally introduced to improve on vanilla Monte-Carlo move planning,
which it achieved through selective sampling of actions, whereby a balance between
testing the most-promising candidates and ignoring sub-optimal ones was achieved. In
the context of deterministic games, it was concluded that UCT always converges faster
to the lowest failure rate in all tested scenarios [36]. Additionally, knowledge-based
decision-making with probabilities derived from domain knowledge was incorporated into
move selection [13].

It was clearly demonstrated that performance of MCTS can be improved by using
pseudo-random move selection (i.e. heavy playout) instead of uniform probability move
selection during simulations. The motivation for such an approach referenced the strong
tactical ability and weak global awareness of domain-knowledge dependent solutions, with

7

2. Related Work

Monte-Carlo demonstrating the opposite. Other improvements to vanilla MCTS exist,
such as mixmax backups and partial expansion, both of which were applied to the video
game Super Mario Bros with satisfying performance results [33].

As the complexity and performance of game-playing AI agents grew, so did attempts to
incorporate them in software and the game design process. Building on previous projects
related to the application of artificial intelligence to the game of Go, [27] presented
Fuego, an open-source software framework which provided functionality for developing
full-information two-player board game agents using game-independent Monte Carlo Tree
Search. Originally presented in [23, 24], new features of the Machinations framework [42]
were introduced [25], all of which continued to assist the user in simulating gameplay
mechanics of early prototypes to promote balanced game design. Machinations generates
and utilizes diagrams to model the internal economy of game mechanics. Artificial players
can simulate playtest behavior until specified end conditions are reached, and dynamic
charts can display game information, such as resource values. The unreleased game
SimWar was used to demonstrate that a subset of a design can be implemented using
the framework, potentially helping the game designer during the prototyping stage of
development. While the provided example was a digital game, all concepts would apply
to board games. Further details regarding the Machinations tool will be covered in 2.2.

LUDOCORE, a “logical game engine” [63], served as a bridge between game design
and conventional logic-based AI tools. It provided both higher-level syntax to describe
games and achieved “a concise representation of a game’s mechanics” [63], along with
potential to playtest and simulate gameplay. Real-time graphics capabilities and input
were leveraged in previous research [62] for the software BIPED, which produced both a
playable prototype and a formal rules system from a single game description. Machine
playtesting was found to be useful in combination with normal human playtesting and,
collectively, both applications provided helpful feedback to board game designers during
the early stage of development.

Using the game of Blackjack, [19] algorithmically generated heuristics which fit the
profile of (or could easily be followed by) novice players. Some of the approaches were
too resource intensive or could not easily be scaled up for games of higher complexity but
these efforts have potential implications for measuring game balance by analyzing the
performance of a profiled AI agent for a given game design.

[49] proposed seven different strategies complementary to playtest data in which AI
and visualization techniques might help a game designer to extract knowledge from a
game design. It was shown how using game traces can be used for tracking game state
information, debugging and improving designer understanding of the dynamics of a given
design. Thresholds for specific design constraints were determined using a logic-based
branch-and-bound approach.

Among other examples of AI technology used to assist in balancing games, [43] studied
the deck-building card game Dominion and showed that specific cards contribute to
the perceived game balance, irrespective of player strategy. This was accomplished by
comparing the competitive performance of three profiled AI agents. These findings
should be applicable to other types of games and the area of automatic game design.

8

2.2. Existing Software

[38] designed and implemented a digital collectible card and board game hybrid, using
an AI agent to play and progressively modify the game components. Such procedural
balancing provided lackluster results but could potentially be applied elsewhere with
more effectiveness, including non-digital games. [21] used an AI agent-based approach
involving A* and MCTS to model 4 distinct playing styles of the game Ticket to Ride
and analyze its mechanics, using data from eleven variants of the board game. Two game
states not covered by the game rules were identified and it was demonstrated how small
modifications to game entities could have drastic effects on preferred game strategies and
gameplay itself. Such changes were verified to have a greater effect compared to simply
altering the number of players. Another instance in which previously unknown corner
cases were discovered involved exploring the potential of using AI agents - two custom
gameplay strategies, A* and MCTS, respectively - to simulate gameplay in order to save
time and resources during the board game design process. It was concluded that these
efforts pointed toward the possibility of a future “robust system that aids modern board
game designers” [20].

While not specifically focused on balancing games, events such as the General Game
Playing AI competition [52] are proof that interest exists in these topics. Participants in
the yearly event have been tasked with implementing artificial intelligence agents using
the Video Game Definition Language (VGDL). The agents played video games without
knowing the rule set beforehand. VGDL allows the modeling of game objects, their
interactions and termination conditions, much like our own board game development
framework.

2.2. Existing Software

We will now provide an overview of several software applications which assist or are
otherwise involved in the development of board games. We believe this information to
be comprehensive but not exhaustive. Some entries may be used with more than one
objective in mind, but it can be helpful to group them according to those which support
the game development process, assist playing digital implementations of games and those
which do both.

The Machinations framework is similar to our approach and offers a web-based visual
programming language to generate game simulation flow charts and view related informa-
tion. It does not require programming knowledge and is Turing-complete, utilizing nine
node types and two connection types for its economy-based flowchart perspective [42]. It
allows specific game parameters to be monitored during random or Monte-Carlo-based
simulations using generated charts (e.g. histogram). Such charts support plotting either
raw values of node data or statistical operations. Currently supported operations are
mean, median, minimum and maximum values. Either a random or Monte-Carlo-based
simulation type can be selected.

In the context of prototyping, Machinations seeks to provide the designer with tools to
simulate emergence in a given system and balance player experiences. As with our own
framework, the end result should be an improved ability to spot problematic elements

9

2. Related Work

of a game mechanic and make informed design decisions. We attempt to explore an
approach not involving flowchart construction while still supporting similar functionality.
Machinations is well-documented and provides both written and video tutorials, however,
it still provides an initial impression of high complexity. We assume that some game
designers might not require the extensive features provided by Machinations, especially
those which target the design and prototyping of video games or projects designed in a
corporate setting involving many participants.

Currently only available as a technical preview during active development, Boardgame
Lab is a web application which allows the user to prototype and playtest tabletop
games [10]. If all features are implemented as described, it will consist of three main
focus areas - prototyping, playtesting and automation - and provide the user with similar
functionality to Prototypical.

Iterary is a web application which provides basic prototyping tools and allows the user
to model limited game mechanics and simulate results. Examples of components include
card, die and table, all of which track textual information regarding state. Simulations do
not utilize a specific AI algorithm. Game state can be shared in the form of a snapshot,
accessible by a customized URL. Extensive log data is available. The appearance and
feature set is rudimentary and, besides the most basic use cases, no useful insights
regarding balance of the mechanics can be easily gained.

Tabletopia [72] is a virtual tabletop system with a suite of tools to assist designing,
playing and publishing board games. It uses a graphical interface and no programming
knowledge is required, but there are seemingly no tools related to simulations, gameplay
balancing or rules enforcement. Tabletop Simulator [71] is comparable, but is rendered in
a 3D environment. It lacks the direct publishing options of Tabletopia, but can be easily
used for prototyping [57] and incorporated into the design process.

Vassal [75] is a free open-source tabletop game engine written in Java, popular for
playing community-made digital implementations of physical turn-based card and board
games. There is no modeling of game rules but there is extensive logging and scripting
which allows the user to provide quality of life improvements such as automatic game
setup and custom events. Live play through the internet or turn-based play by E-Mail is
available, often paired with Voice over IP communication systems. ZunTzu [77] is also
popular and provides networking and voice communication for online play. Both of these
applications are intended to help the user play digital versions of existing games, but can
potentially be used to some extent during the prototyping phase of game development.

Additionally, BoardGameGeek community members have discussed several other applic-
ations which assist the process of creating physical board game components during the
early prototyping phase of development [9]. nanDECK [47] is software intended to speed
up the process of designing and creating physical cards. Squib [65] is a domain-specific
language in Ruby which has similar uses and even describes itself as “nanDECK done
the Ruby way” [65]. It simplifies the process of preparing printable images from card
descriptions. Neither of these applications allow the user to model gameplay information
or run simulations.

10

3. Game and Artificial Intelligence
Concepts

3.1. Game Concepts

Game Studies, also referred to as Ludology, can be defined as "a discipline that studies
games in general" [29] and it is responsible for a wealth of research on the development
and play of games. It provides a theoretical framework with which games of all types
and their development process may be analyzed. While we defer requests for precise
definitions of ludological terms to other authors, it is important to clarify first-hand our
understanding of several concepts central to this research and make evident the resulting
scope.

We begin with a general description of games. We hope to review terminology for relating
these concepts with user experience. It is our expectation that a basic understanding of
game design and its elements can be formed, making it possible to explore why and how
software might be used in this context.

Games can be considered to have several equally-important elements such as mechanics,
story, aesthetics and technology [60]. Mechanics are the rules of the game which provide
structure and direction to participants, while story is the series of events and decisions
that are underscored by the mechanics. Aesthetics and technology relate to how and in
what ways a participant interacts with the game. These four elements form a product and
resulting experience, created as an extension of a designer and conveyed to the participant.
The product in this case is a physical or digital entity which, when engaged with according
to the predefined rules and through the prescribed interface, dynamically generates a
series of events and decisions. We refer to this entire process as gameplay.

The entity in the case of physical board games is the collection of physical pieces which
serve to facilitate gameplay when used in conjunction with the game rules. Common
physical objects include cards, dice and tokens and are referred to as components. A
component may also be used interchangeably for abstract objects, however, such as a
player area or token bag of arbitrary size and shape. Game participants themselves
could be considered abstract game components. In the game of Chess, the black and
white pieces, game board and even the individual fields which the pieces occupy can be
considered components. The result of this classification is that components form the
subject group of all action-related events and conditions which take place during gameplay
and can be viewed as the subject or direct object of gameplay actions.

Game rules provide the set of conditions and permitted decisions from which gameplay
events emerge. Ideally, all potential game states, including uncommon ones, are addressed.
Rules are meant to guide player decision-making by imposing constraints where, if they

11

3. Game and Artificial Intelligence Concepts

are too restrictive or too liberal, the subjective player experience might suffer. There is
no single metric to apply here, as it is for the designer to determine the rules of the game
so that they convey the desired experience.

The observations, reactions and perspectives of a participant determined through
gameplay are considered to be the user experience. Some examples of concepts relating
to user experience include difficulty and fun. The first refers to user skill and how easily
dexterity with the involved tasks may be achieved, whereas the second relates to a sense
of satisfaction and the enjoyment obtained through participation in gameplay.

Balance is a concept which exists at the intersection of mechanics and user experience.
It is both partially objective and subjective and can be described as the relationship
between engaging player decisions and meaningful outcomes. Player agency in gameplay
determines events and their effects to varying degrees, based on factors such as chance,
player skill and the limitations or handicaps inherent to (or otherwise permitted by) the
rule set. User experience can be negatively influenced if the effects of a player decision
are unobservable or insignificant in succeeding game states, which is also possible if
the perceived changes are not proportional to the resources, risk or effort required for
the respective decision path. There are many more potential sources of discontent in
user experience which we have not mentioned here. If poor balance is due to bias in
player perspective, such as a lack of game rules understanding, it can be said in this
case to be primarily subjective. If, however, it is due to the functional qualities of the
game system, such as disadvantageous resource allotment or asymmetric effectiveness of
otherwise equivalent actions, it can be said to be at least primarily objective.

We have mentioned several elements which relate to gameplay balance, but there are
many more quantifiable aspects of games to be considered. These include component
count, supported player count, action structure, chance, timing and other measurable
aspects of game economy. As mentioned, it is possible for there to exist a direct or indirect
relationship between these parts of a design and the resulting player experience. This
research makes the assumption that analyzing quantifiable game data may potentially
provide insights into the subjective user experience during gameplay. Furthermore, we
propose that it may be possible for the designer to leverage such information during the
development process.

Developing turn-based board games is an analog process, using software only selectively
compared to other types (e.g. video games). In developing a board game, the designer
firstly defines the components, mechanics and objectives. To explore the interactivity
between these elements, they play the game with the help of volunteers using handmade
physical components. Playtesting helps to discover gameplay anomalies and deficits
through critical user feedback. It helps elicit improvements to be incorporated into the
next iteration of the design. The process is continued until the desired result has been
achieved.

However, playtesting physical board games is a challenge. Time constraints and
geographical limitations notwithstanding, the circle of playtesters might never expand to
more than just a few individuals, possibly also consisting exclusively of friends and personal
acquaintances of the game designer. This can lead to biases in the design. Playtesting

12

3.2. Artificial Intelligence Concepts

can be described as “the process of trying out a game, examining what worked (and what
didn’t), and making the necessary adjustments to improve the players’ experience.” [22].
Gameplay at least initially occurs under direct visual supervision and/or participation of
the designer and feedback is often direct. Co-creator of Pandemic Legacy and Restoration
Games designer Rob Daviau recalls board game playtesting being compared to “inviting
people over so they can tell you that your child is ugly.” [22]. This dynamic differs
strongly from impersonal or anonymous video game metadata and feedback forms which
can exist entirely through online channels. While the internet might prove useful for Do
It Yourself board game component creation (i.e. “print and play”), the final deliverable is
a physical product intended to be experienced in person. There is the distinct possibility
that playtesting in a digital environment does not map appropriately to the same user
experiences in real life with the physical version. Additionally, creating physical game
components requires effort, time and skill.

3.2. Artificial Intelligence Concepts

Drawing its name from the famous casino in Monaco, the Monte-Carlo method can be
described as a class of algorithms which rely on random sampling of a given problem
space to arrive at a best estimate of the optimal solution. There are many possible
implementations and improvements for vanilla Monte-Carlo, but the problems for which
it is used are often deterministic in nature and centered on two distinct categories:
optimization and approximation.

In the context of board games, we find ourselves confronted mostly with the latter.
More specifically, the Monte-Carlo method has become a popular choice when designing
artificial intelligence agents for games. It has demonstrated both results and future
potential when applied to the task of discovering optimal moves for a given player and
turn. In this research, we concern ourselves with an implementation of Monte-Carlo called
Monte-Carlo Tree Search. It is a search algorithm which uses heuristics and random
simulations to approximate the ideal move from a given game state.

A tree consisting of one or more nodes at one or more levels is constructed, where each
node represents a given or potential game state. Each edge between nodes represents a
possible state-changing action and each level deeper in the tree represents a potential
future game state. In the context of a two-player turn-based perfect information game,
the root node represents the current game state. Each edge connection between two
nodes represents a possible action that could be taken by the current player of the first
node state which would result in the game state represented by the second node. The
current player for a given state alternates at each level in the tree; therefore, the game
state perspective at each level is specific to the current player and it changes accordingly.
This is of interest when considering that each node also contains information regarding
simulation counts and traversal history. As the algorithm executes, this information
is propagated towards the root of the tree and updated at each relevant node. This
influences how future traversals of the tree are performed.

MCTS consists of four phases: Selection, Expansion, Simulation and Backpropagation.

13

3. Game and Artificial Intelligence Concepts

These phases execute sequentially and are repeated until either a specific duration of
time has elapsed or a desired number of iterations has completed. It is referred to as an
“anytime” algorithm, implying that a result is always available, regardless of execution time
or iteration quantity. However, the quality of the result - i.e. how closely the algorithm
approximates the optimal solution of the given problem space - generally improves over
time. These characteristics make MCTS suitable for situations in which there is no
hard limit for execution time or instances in which the availability of a result must be
guaranteed at varying intervals. Pseudo-code can be seen in algorithm 1.

Data: Current state St, selection policy Pselection, rollout policy Prollout,
exploration policy Pexploration, playout policy Pplayout, backpropagation
policy Pbackpropagation, best node policy Pbest

Result: Node for estimated best action a, containing state St+1

root← St;
while completedIterations < maxIterations and elapsedTime < timeLimit do

child←selectNode(root, Pselection);
rollout(child, Prollout)
childchild ←selectNode(child, Pexploration);
result←playout(childchild, Pplayout);
backpropagate(result, Pbackpropagation);

end
return selectNode(root, Pbest);

Algorithm 1: Monte-Carlo Tree Search Pseudo-code

A starting state St is the first input. It must make accessible all relevant contextual
information necessary to structure and carry out simulated behavior. In the context of a
turn-based board game, this would involve information regarding game rules, participating
components and other implementation-specific information.

The remaining inputs represent the policies used at the various stages of the algorithm
to determine the respective behavior. Pselection defines how the tree is traversed and
ultimately how a leaf node is chosen during the selection phase. Prollout describes how
many child nodes - each corresponding to a potential move from the selected node - are
to be created. Pexploration refers to how one of these newly-added nodes are to be selected
as the starting point for the playout phase and Pplayout determines how such playout
simulations are conducted. Pbackpropagation describes how the results of the simulation are
stored upwards throughout the tree and Pbest determines how a node is chosen as the
final result. The chosen node will always be an immediate child node of the root. While
defined here individually, it is possible for two or more of the stated policies to implement
the same strategy. Such would be the case if randomness were used in both the selection
and playout phases, resulting in random leaf node selection and light playouts.

14

3.2. Artificial Intelligence Concepts

We see that the current state is cloned and stored as the root node of the tree. This
also preserves the starting state and prevents the hypothetical states of MCTS from
interfering. It is at this point that the main loop of the algorithm begins. The four phases
of the algorithm execute until the computational budget has been reached. This can be
specified as a number of iterations to be performed, a time limit to be reached, or both.
The suitability of each may vary between theoretical and practical contexts.

The Selection phase is responsible for choosing the next node in the tree that is to be
explored. It begins at the root node and navigates down the tree according to a given
tree policy until a leaf node has been reached. This type of node does not have any child
nodes and should not represent a terminal state (i.e. a state for which a terminating
condition has been reached). The most basic selection policy chooses candidates which
have not yet been considered and candidates with the greatest win potential (i.e. highest
win rate). However, the best move may not always fit into either category, a phenomenon
which has led to variations and policy improvements.

Those of Upper Confidence Bounds Applied to Trees are arguably the most popular in
the context of board games. Instead of selecting the best candidate firstly according to
visit count and secondly according to win rate, UCT attempts to balance the likelihood
between exploration and exploitation. In this context, exploration refers to a tendency
towards selecting nodes which have not yet been visited, and exploitation refers to those
which have demonstrated the highest win rates. UCT will be covered in more detail at
the end of this section.

Once a candidate has been selected, the Expansion phase begins. For each possible
action, the resulting state is added as a child node to the current one. Nodes are initialized
with metadata indicating a win rate and visit count of zero and are updated throughout
the execution of the algorithm. One of these new leaf nodes is chosen according to a
desired policy. For example, this might be done randomly.

A simulation is then started from the node during the Simulation phase. This is
done according to the desired policy, which can be classified as either “light” or “heavy”
playout. The first indicates that all moves during a simulation are chosen randomly and
domain-specific knowledge is not necessary. Heavy playouts may make use of domain
knowledge in evaluation functions or heuristics, making light playouts more suited for
handling multiple game types and general game playing. An MCTS agent using light
playouts would be easily applied to different game rule sets compared to heavy playouts
because the latter would require adjustments to adhere to the unique rule sets. Moves
are chosen until a result has been reached or a time limit has been exceeded, at which
point, the final phase of MCTS begins.

Backpropagation is the last of the four phases and it serves to populate the results of
the simulation upwards through the tree. After updating the win rate and visit count
information of the current node, the scores and visit counts of the preceding nodes
are also updated. It is important to consider the aforementioned alternating (per ply)
current player during this phase. Depending on the game type and player count, a
simulation result may need to be stored according to the perspective of the current player.
For example, two-player zero sum games would require a win for the current node and

15

3. Game and Artificial Intelligence Concepts

player to be stored as a loss for the other player in the previous and following nodes.
Implementation-specific details to address this problem are provided in 4.2.2.

As these four phases execute, the tree expands while favoring either nodes with a higher
win rate or nodes which have not yet been explored. This poses a problem, however, as
there may be a discrepancy between the immediate and long-term value of a move. Value
is relevant at both short-term and long-term gameplay horizons, however, these may not
be equal at every point in time. Stated differently, a possible move may appear to have a
low value for the current turn, but this does not necessarily imply that it will never lead
to a highly advantageous state. This poses a dilemma, namely, how can the short- and
long-term potential values of a given move be reconciled during run time? It is of course
possible in some situations to fully solve the given problem to determine this. However,
many games are highly complex and usually there are not enough computational resources
for MCTS to do so. As mentioned earlier, Upper Confidence Bounds applied to Trees
(UCT) attempts to address this in a relatively straightforward way.

One of many such improvements for the basic MCTS algorithm, UCT utilizes the
perspective of a multi-armed bandit problem. This is a type of problem in which a single
action may be taken among several, for which one or more potential payoffs are unknown.
To understand UCT, it is worth first exploring characteristics of this problem type in
more detail.

Multi-Armed bandit problems illustrate the dilemma of how to balance the exploitation
of promising actions against the pursuit of those with hitherto unknown payoffs at the
current decision point, while seeking the greatest overall long-term gain. The common
analogy is that of a gambler presented with several slot machines of unknown payoffs,
whose personal goal is clearly to maximize winnings in the given period of time.

As in this scenario, one or more actions are mutually-exclusive and there is a probability
distribution for the payoff of available choices, where one or more are currently unknown.
Any discrepancies may lead to more information regarding the payoffs of alternate (future)
actions. The terms greedy and non-greedy are also relevant, in that the first prioritizes
actions with high values and the second focuses instead on exploring to better estimate
the average.

The payoff – or value – of an action is provided by equation 3.1 [67, 68]. At a decision
point t, At is the selected action and Rt is the resulting reward. Therefore, if the
chosen action is a, the value q×(a) can be defined as the expected average value of its
corresponding reward.

q×(a) = E[Rt|At = a] (3.1)

Since the true value of an action can be approached by repeating it and continuously
averaging the resulting values, the estimated value of an action a at time t is given by
equation 3.2 [55, 68]. The number of instances before time t in which action a was chosen
is reflected by n. The respective reward at each time step is Ri. The cumulative nature
of this estimated value means that it will converge faster and closer to the true value with

16

3.2. Artificial Intelligence Concepts

increased sampling frequency and more total samplings. This mirrors the performance
profile of MCTS, where more iterations usually provide better results.

Qt(a) =
1

n

n∑︂
i=1

Ri (3.2)

Now that the value of an action has been described, we are ready to consider the
UCT equation 3.3. The UCT value can be described in three components, where Wn

is the estimated value of the action corresponding to the node. Across many simulated
playouts, this is the win ratio of the node and may vary by context. For zero-sum game
simulations, it might be given by the number of wins plus draws minus losses, divided by
total simulations. The second component is a constant value parameter C, relating to
exploration. A common value for this is usually an approximation of

√
2, which is the

theoretical value [36]. It is also possible to dynamically adjust this parameter during
run-time. The last component is the square root of the given fraction, which is a ratio
relating to visits of the parent node and visits of the current node. The natural log of
parent visits is the numerator, while the number of visits to n is the denominator.

UCTn = Wn + C ×

√︄
lnVp

Vn
(3.3)

The first component Wn reflects the tendency toward exploitation of promising nodes,
whereas the second C and third

√︁
lnVp/Vn collectively reflect the tendency toward

exploration of lesser-known ones. The UCT is repeatedly calculated and it improves over
time.

17

4. Prototypical – A Board Game
Development Framework

Prototypical provides a feature set intended to allow the user to implement and study
one specific game mechanic at a time. Depending on the complexity of the target game,
implementation of a complete game model may be possible. There exists no prescribed
workflow or strategy when implementing mechanics in Prototypical and it is up to the
designer to follow a modelling approach or set of guidelines. Similar to a programming
language, Prototypical provides the user with a set of tools and a smaller set of enforced
conventions, expecting the user to best apply these to the task at hand. While we make
no attempt to suggest or otherwise outline a particular workflow, we will provide an
overview of features and several use cases with example protocols.

There are often multiple ways to represent a given game entity or mechanical element.
Current features of Prototypical can be broken down into the categories of modelling,
simulation and analysis. It should be noted that words corresponding to entities from the
Prototypical framework will be italicized and literal values will be in bold font.

4.1. Modelling

Modelling describes the process of representing game elements using the features and
constraints of the Prototypical framework. While such entities may vary, Prototypical
classifies all entities relating to a game design as one of either component, action or
condition. Additional objects, such as selectors, are proprietary and specific to the
experience of using the Prototypical framework. This is commonly due to software design
choices. We will now describe each available type of component in detail.

4.1.1. Components

All components have a single component type, zero or more properties and zero or more
child components. Properties can be used to reflect game-related information in the
component state and they consist of one pair of a property key and related value. The
set of properties or respective values may change over the course of gameplay simulation,
depending on the configuration of the applied related actions. Child components can be
assigned and/or removed, depending on the type of the parent and any conditions assigned
to the actions which involve those in question. Said differently, the set of possible children
for a component is determined by both its type and the set of conditions prerequisite to
the execution of the actions configured to interact with the involved components during
gameplay.

19

4. Prototypical – A Board Game Development Framework

Component states collectively contribute to what constitutes the overall game state at
any given time. Game state can be thought of as the aggregate of all component states at
a specific step during simulation. Group, field, card, deck and d6 are the five types which
are currently supported and will now be described in this respective order.

The group, as the name implies, is for logically organizing any number or combination
of components. It provides a single entity under which others are assigned as children.
Groups may or may not correspond to a true organizational entity or phenomenon in
the underlying game design and might exist solely to enable the implementation of a
mechanic with respect to the details and constraints of the Prototypical framework. In
other words, the user may choose this type to represent a small number of physical entities
classified together out of convenience, such as tokens in a resource pool. This means it
might not correspond to anything from the game design itself. If not directly mirroring
the underlying design, a group would instead be used in a meta-informational sense
to make implementation easier; for example, when tracking specific elements. Another
example might be a group containing both players, making it easier to write and execute
a compound query to analyze the sum of player scores across simulations. See 5.1.1 and
5.1.2 for examples.

Field components are intended to represent a discrete sub-area of the physical space
in which a game takes place. They do not have inherent size or shape, although this
can be represented through properties as necessary. As with groups, they may contain
any number of children – including other fields – but such behavior can be guarded by
conditions attached to any actions which involve an add or remove interaction (4.1.3) for
which the given field is a receiver. A user may choose field components when representing
areas of a game board or other logical units of two- or three dimensional space in which
game pieces would normally be placed or otherwise arranged. For example, a Chess board
could be modeled as a group containing 32 child fields with a property with name color
and value white, and another 32 child fields with this set to black. Each field could
then contain the respective algebraic notation coordinates (e.g. LOC:A4) as one or more
additional properties.

Card components represent their physical counterparts which are usually two-sided
rectangular pieces of thick paper or cardboard with printed images and/or text and
game-related information. In the Prototypical framework, a card can be assigned as
a child to another component of a different type, but it is not possible to hold child
components itself. Any relationship of this type could be represented using group, field or
deck components instead. For example, a group containing several card children could be
used to represent a player tableau.

It is sometimes necessary to model game characteristics or states involving cards which
are not inherent to the card component itself. This would be the case when one might be
rotated 90 degrees to indicate a specific state. It is possible to use properties to manage
this information, even if the states are closer to component metadata than actual entities.
The user is free to discover and use any preferred approaches within the confines of the
Prototypical framework.

Analogous to a stack of physical cards, the deck is the most appropriate way to group

20

4.1. Modelling

multiple cards together. Behavior when drawing child cards from or placing them into
or onto the deck can be set through any relevant actions and conditions, as well as the
selection strategy of the relevant component selectors. While a deck functions similarly to
the group, it is sensible to use both so that the language surrounding an implemented
mechanic closely mirrors that of a physical design. In other words, using a deck to model
what would normally be referred to as a deck in physical designs is simply meant to
prevent confusion and the need for mental mapping between Prototypical framework
components and their real-life counterparts.

The d6 is intended to represent a cubical six-sided die, possibly the most common
type found in tabletop games. The name is derived from the first letter of the word "die"
and the face count of six. Following this same convention, d8, d10, d12 and d20 are
other common types of dice found in tabletop games; however, these are not currently
supported in the framework. It is of course possible to do this as part of future efforts.
D6 components provide a random number value stored in the value property from 1 to
6, inclusive.

4.1.2. Conditions

A condition reflects a component state at a given time interval through the evaluation
of a set of one or more criteria. The application of a criterion yields a true or false
result, which is combined to determine whether the given condition is currently met. It is
possible to classify all conditions as either simple or complex, which refers to quantity
and respective inter-relationships and logical structure. An example of the first might
be Card 1 is red, which, when evaluated against the respective component state at the
current time, would provide either true or false. The latter could range from three such
conditions combined by a Boolean AND operator (where it is true only if all three are
true) or could itself be a combination of complex conditions joined by varying Boolean
operators. Prototypical does not enforce any limitations on such constructions but they
may eventually become unwieldy to use.

Complex constructions are often used for conditions which trigger the end of a game,
commonly known as victory conditions. A clear instance of this is the victory condition
for the Pokemon Trading Card Game, which is met when any of the following are true:
a player has drawn six prize cards, a player has no fielded Pokemon or a player must
draw a card but does not have any remaining in the draw deck. The second and third
sub-conditions can be further expanded, demonstrating the potentially recursive structure
of composite arrangements.

All conditions have a corresponding type, provide a Boolean result when evaluated
according to a provided state and optionally return information about which player will
benefit once it is met. Simple conditions also contain information about which component
holds the relevant state, in the form of a component selector. While there exists only
one type of simple condition, complex conditions are represented by and conditions,
or conditions and none conditions (or any combination thereof). The type is one of
these four, while the name is a user-specified label which may or may not correspond to
the underlying game design. Due to potentially multiple ways of expressing equivalent

21

4. Prototypical – A Board Game Development Framework

Comparator Symbol Description
GT > greater than
GTE >= greater than or equal to
LT < less than
LTE <= less than or equal to
EQ = equal to
NE ̸= not equal to

Table 4.1.: Comparators and corresponding symbols

conditional logic, the conditions of a game mechanic implemented in Prototypical may
not exactly match those of the design itself. This is not a reason for concern, as long as
the overall set of possible game states is mapped consistently between the model and the
design.

A simple condition serves as a building block for complex conditions and it is incapable of
containing subordinate conditions (i.e. sub-conditions). It contains a singular conditional
statement, known as a check, which provides a Boolean result when assessed. A check
might represent a statement such as The count Property of the Discard Pile Deck
component is equal to 120. The result of the check directly determines whether the
overall condition is met. If the check evaluates to true, the simple condition is met;
likewise, if the conditional statement is false, the simple check is not met and it evaluates
to false.

The conditional statement of a check consists of a value that is to be assessed using the
given comparator against another reference value. This triple is also known in Prototypical
as a property filter. The first value, comparator and second value are all mandatory but
are non-exclusive. Accordingly, a check must have exactly one of each, but multiple
checks may share similar (or even identical) constructions and are in such cases equally
valid. The values correspond to the current and expected value of the same component
property. The comparison makes use of one of the six supported comparators listed in
table 4.1. Each corresponds to a relational operator. The Boolean result of a property
filter therefore determines the Boolean result of the encompassing check.

The second type of supported condition is the and condition, which combines multiple
simple conditions using a Boolean AND operation. The Boolean result of an and condition
is therefore determined by the Boolean results of the respective sub-conditions, where
true is only given if all subordinates evaluate to true. If any evaluate to false, the
result of the encapsulating and condition will be false. There is no limit to the number
of sub-conditions one and condition may store, nor are there rules regarding types or
orderings. This means that a single and condition can store a mix of condition types,
including simple conditions and and conditions.

Similar to the above but using a Boolean OR operation is the or condition. The result
of an or condition is true if any of its sub-conditions evaluate to true. To illustrate, it
would be possible to create an or condition with one hundred complex sub-conditions
where, if the first 99 fail but the very last one passes, the overall result would evaluate

22

4.1. Modelling

to true. Once again, there is no limit to the size or characteristics of the set of sub-
conditions that can be configured. For the example above, this would also mean that the
true sub-condition could exist at any index and the ordering of the others is irrelevant.

The last type is the none condition. This is the inverse of the or condition and true
is returned only if all sub-conditions evaluate to false. Said differently, if one or more
sub-conditions evaluate to true, the encompassing none condition will evaluate to false.
As with the two previous types, there is no limitation on the quantity, types or structure
of the stored sub-conditions.

As mentioned above, conditions compare a given component state against expected
thresholds and can be either met or unmet at a given point in time. The component
state is determined partly through the use of what is called a component selector. This
is an entity which, when applied to the current game state, returns a set of components
which fulfill the set of specified criteria. This comparison is performed by sequentially
filtering the set of all components according to one or more conditional statements and
including each entry for which all are met. Both a specific component, quantity and
selection ordering process can be specified, among other information. We will now review
the details which comprise a component selector.

Component selectors contain a grouping of additional criteria, called a filter. The
specified information is used to require values and characteristics of a component that
could possibly be returned as part of a component selector result. If any provided details
are not matched by the candidate result component, it is ignored and excluded from the
result set. Each of the currently-supported characteristics will now be described.

If a single component is sought and its id is known in advance (i.e. before simulation
execution), it is possible to specify this in the id field of the filter. No other filter or
component selector information is required in such cases and will be ignored, as ids are
unique per project and remain unchanged.

If known ahead of time, it is possible to specify the id of the component which maintains
a parent relationship with the possible candidate component(s). This is done using the
root field of the component selector filter and can help to quickly narrow the possible
candidates. For example, if an action were to involve drawing cards from a designated
deck component, the respective component selector would only be concerned with those
components which are children of the deck. Another example might be actions involving
components belonging to a specific player, where those of other players could be completely
ignored by the relevant component selectors. With this in mind, it might be useful to also
think of root as the parent id.

Property filters have already been covered above, but a set may be optionally specified
in a filter as properties. If any of the specified entries evaluate to false, the encompassing
candidate component is excluded from the component selector result set. In other words,
all property filters must evaluate to true in order for the component to which they belong
to be included in the result set.

Expected types of candidate components can be specified using types. The default
value is a set of all supported component types, but the user may specify any combination
between this and a set containing a single type. It is useless to provide an empty set, as all

23

4. Prototypical – A Board Game Development Framework

components have a mandatory value assigned upon creation and therefore the respective
component selector would always only return an empty list.

The selection strategy of a component selector or action selector determines the ordering
of the preliminary result set of components or actions. Once a list of result candidates
has been compiled according to the above criteria, it is mutated according to a specified
strategy before being returned. In effect, it enables the user to describe the priority with
which otherwise equally-valid result entities should be used. This becomes relevant, for
example, when actions require certain components to be prioritized over others when
implementing a specific procedure (e.g. drawing a random card). Without the ability
to specify how a result set should be ordered, it would not be possible to replicate such
behavior, potentially leading to situations in which all components are selected in the same
order for all actions across all simulations. This would not yield effective simulations.

The complexities of available selection strategies for components and actions are found
in table 4.2. The first strategy has the lowest and completes in constant time, as no
changes are made to the result list before it is returned. The last strategy reverses
the ordering of this data and therefore is linearly dependent on the quantity of result
candidates. This same complexity applies to the random strategy, which arbitrarily
reorders the result data before returning it.

Selection Strategy Complexity
first O(1)

last O(n)

random O(n)

Table 4.2.: Complexity of available selection strategies, Big O notation

The default strategy is FIRST, which does not perform any ordering operations and
simply returns the result set as it is. In cases where a single component is to be selected
from a preliminary result set of size two or greater, this strategy will return the first
element of the preliminary set (i.e. entry with the lowest index). The FIRST strategy is
often useful when gameplay actions do not require specific ordering.

Opposite to this is the LAST strategy, which reverses the ordering of the result set.
The entity at the first index becomes the last, the second becomes the second to last,
and so on. Similarly, when a single component is to be selected, the entity located at the
largest index of the preliminary result set will be returned.

RANDOM applies a randomly-driven reshuffling of the result set indexes. This could
be used in conjunction with a deck, so that child cards are removed in a way which mimics
a shuffled deck. If either of the FIRST or LAST strategies are used, there is potential for
the same cards to always be returned. This could even happen across different simulations,
making this functionality useful.

Quantity is used to set a hard limit for the size of the resulting set of components. This
allows the user to expect an exact maximum number of matching entities. It is possible
for the user to specify 1 if only a single component is expected to match. If the quantity

24

4.1. Modelling

value is larger than or equal to the number of resulting components, the entire set will
be used. If it is smaller, the result set will be truncated so that its size is equal to the
quantity value. There are two ways to conceptualize this: items at larger indexes in the
result set are dropped; or items are taken from the beginning until the size of the result
set equals the quantity value and/or the result set does not contain any more values.
These two descriptions may differ in implementation but, for all intents and purposes,
the results are equivalent.

4.1.3. Actions

Actions drive forward the gameplay experience by means of discrete events and the
resulting changes in game state. If game states are represented as nodes, actions can be
conceptualized as the transitional edges between them. The starting state of an action in
this case is the node before the edge, and the resulting state is the node after the edge.

Any subordinate actions or action events of which the action is comprised are applied
successively along the edge until their collective result is reflected in the new state. An
initial state (i.e. before it is applied) reflects no sub-actions or action events, while a
resulting game state reflects all such state changes. With this in mind, the application of
an action may result in several intermediate or preliminary states temporarily existing
along this transitional edge; but these are not visible to the user. In considering a possibly
nested hierarchy, an action is represented by an edge, which itself contains one or more
action events and the potential for nested actions.

There are several types of action entities which enable the modelling of complex
gameplay events and the respective changes in game state. Functionality and properties
common to all action objects in Prototypical will be covered next, followed by a detailed
description of each type.

Actions in Prototypical provide the ability to check if they may be carried out for a
given game state, as well as attempt to do so. If one can be applied, it is equivalent to
claiming that it is valid or that it can be performed. Whether or not an action may be
applied to the current game state, however, depends on its type and the state itself. This
varies and will be covered in detail for each. Assuming this prerequisite has been met,
however, performing an action results in also performing any subordinates and invoking
the respective action events. During this process, the last component involved is always
taken into consideration. Sub-actions are simply nested actions, whereby they also adhere
to the same characteristics. An action event is one of several types, all of which can be
described as the elements of an action which collectively affect the changes in a game
state. The types and structure of action events will be detailed shortly, but for now they
can be considered the procedural steps by which an action transitions between the game
states before and after it is performed. To summarize, an action may be one of several
types but all provide information on whether they can be performed on a given starting
state and what the resulting state would be after they have been fully applied.

Before reviewing the various types of actions available, we will first list the information
which is present in all instances. Every action contains exactly one component selector,
used at run-time to determine which component(s) may be a receiver of the action.

25

4. Prototypical – A Board Game Development Framework

Receiver, just like in software programming, indicates the primary component, or subject,
of the action. It is the component which carries out the action. For example, it would
be the deck in an action where a card is added to a draw deck (e.g. DrawDeck add
Card1). The component selector is used to differentiate between actions that are possible
for each of the players during a simulation. Although potentially empty, actions contain
the list of sub-actions which are to be performed during execution. The behavior by which
they are carried out depends on the type of the containing action. Because some result
in non-deterministic or random behavior, a chance value is stored for each action. This
contains a number reflective of the upper limit of possible outcomes for the given action.
For example, an action in which a d6 is rolled would have a chance value of six (6). A
default value is used if none is provided. For actions involving multiple sub-actions, the
last component value makes available the component involved in the preceding sub-action.
This is useful for actions containing sub-actions which all act on the same entity. For
example, a Discard to Discard Pile action would need to have a sub-action to first
remove a card from a player area and a second to place this same card in the discard area.
To ensure that the same exact component is used throughout both steps, last component
is used. Finally, all actions contain information regarding their type. We will now cover
each of these in detail, using the following order: and action, or action, ordered eager fold
action, ordered breaking fold action and simple action.

An and action is valid only if all of its sub-actions are valid. This type of all-or-nothing
approach allows for it to depend on several areas of a game state. For example this might
be used to model game rules such as "score one point and draw a card" and "roll a die,
lose that number of resources and lose one point". The first example consists of two
steps – "score one point" and "draw a card" – while the second uses three different steps:
"roll a die", "lose that number of resources" and "lose one point". When an and action
is performed, its sub-actions are performed in sequence and the information about the
last-used component is updated at each interval.

The or action is considered valid if any of its sub-actions can be performed, making it
less strict than the previous. When an or action is performed, the set of valid sub-actions
for the current state is taken and each member is performed sequentially. It is therefore
possible for the behavior of an or action to vary, depending on which of the sub-actions
are valid. It is useful for modelling player decisions where only one of several possible
choices may be selected. For example, if a game design allows the player to either roll
a die or draw a card, this could be implemented in Prototypical as an or action named
Roll 1d6 or draw 1 Card, where the first sub-action is an action to roll a d6 and the
second is an action to draw one card.

Despite the seemingly complex name, the ordered eager fold action is similar to the or
action, whereby it is valid if any of its sub-actions are valid. It differs only slightly when
it is performed, because an attempt will be made to sequentially execute every sub-action.
This behavior can be summarized as performing as many actions as are possible. Instead
of filtering before iterating, this action type will at least try to execute every sub-action
in order. If an invalid entry is encountered, it is simply ignored and iteration continues
normally.

26

4.1. Modelling

For cases in which the user would want to stop immediately after encountering an
invalid sub-action, the ordered breaking fold action may be used. The behavior of this
can be summarized as performing until one fails, then immediately stopping. An ordered
breaking fold action is considered valid if the first sub-action is valid.

As its name implies, the simple action is the most atomic action in Prototypical. The
other types may contain nested entries, but entities at the deepest levels of such hierarchies
will always be a simple action. The list of sub-actions for this type is therefore always
empty, but there is additional information not found in other action types. A tuple
consisting of a condition and an action event is used to store event information, which is
used during a simulation to make changes to the game state. This information can also
be described as a type of logical if/then statement, where the condition determines if an
event should be applied to the game state, and the action event determines how the game
state should be modified. Conditions have been previously covered in 4.1.2, so we will
now describe action events in more detail.

There are three parts of which an action event is comprised. They collectively describe
the type of event that is to occur, an initiating component and a targeted component. The
latter two are represented using component selectors and are referred to as the receivers
selector and targets selector, respectively. If we consider the receiver, event and target
using the analogy of language, the receiver is the subject, the event is the verb and
the target is the direct object. An action event describes a change in the relationship
between the receiver and target by means of an event, the effects of which depend on its
respective type. Although there are three different types of action events, all contain such
information and are used to modify the state of involved components and, by extension,
the overall game state.

The receivers selector is a component selector providing the set of components which
serve as the subject of the event in question. Similar to actions as described above, a
receiver here indicates that a resulting component is the subject or initiating entity of the
event. An example of this would be a deck when removing a card from its set of children.

The targets selector is also a component selector, but one which instead provides the
set of components to be acted upon. Target in this sense describes the component serving
as the direct object of the event. In continuing the above example, the target would be
the card itself that was removed from the deck.

Exactly how a game state is changed through an action event depends on both the
type involved, as well as the acting components from the receivers selector and targets
selector. This means that the same type of action event may cause different behavior
when any of the involved parameters are different. See tables 4.3 and 4.4 for a breakdown
of compatibility and behavior for combinations of currently-supported components for
add action events and remove action events, respectively. The rows indicate the type of
the component given by the receivers selector, and the columns indicate the component
type given by the targets selector. The intersection of these is either empty to indicate
an incompatible combination, + and the attributes which are to be incremented, - and
the attributes to be decremented, or the phrase update value which indicates that the
implementation-specific property would be updated according to the predefined behavior

27

4. Prototypical – A Board Game Development Framework

of the relevant component. For example, d6 assigns to a property a new random value
between one and six, inclusive.

Despite such variation, general statements can be made about the original intent of
each action event type. The add action event is meant to create a direct association with
another component, often in the form of a parent-child relationship. Of the currently-
supported components in Prototypical, all but d6 behave this way. As mentioned, the
latter instead assigns a new value to its value property. In all other cases, an add action
event assigns the target as a child component of the receiver. For example, a player
tableau can be described as a parent entity, where all associated items within are child
entities. Unless already reflected in the initial game state, additional entities not currently
belonging to the tableau may potentially be assigned as children through the execution of
add action events.

Conversely, a remove action event is intended to undo such a relationship between
the receiver and target components. While the same exceptions for the d6 type must be
considered, remove action events can otherwise be used to decouple components so that
they can be associated with others. Gameplay is manifested in part through the changes
in component relationships, which take form through add action events and remove action
events.

The last of the currently implemented action event types, update property action events
modify the state of only a single component. A component property is set to the specified
value, and all relationships (or lack thereof) between components, as well as the properties
of other components, remain unchanged. An example usage of an update property action
event would be updating an arbitrary player score property upon the completion of a
victory condition. Deck components make use of what can be described as an implicit
update property action event, whereby the count property is automatically incremented
upon each successful add action event and decremented upon each successful remove
action event.

When using an update property action event, there are two ways in which the new value
can be derived. The first, and simplest, is a value expression. This is used for static values
which do not depend on any other element of game state and will always remain the same.
For example, if an update property action event should always assign a value of x as seen
in 5.1.3, a value expression would be appropriate. If, however, the new value is dynamic
and it depends on some other state, a property expression can be used. Once configured
with the name of a component property and a component selector, a property expression
will retrieve the respective value from the result component at run time. This becomes
useful when the effects of an event vary according to the preceding event(s). An example
use case for this might be adding the number of points from a card to a player score. A
property expression in this case would use the name of the respective score property (e.g.
score) and null for the component selector, assuming the target component in this case
had been drawn immediately before.

28

4.2. Simulation

deck card group field d6

deck +child,count

card

group +child,count +child,count +child,count +child,count +child,count

field

d6 update value update value update value update value update value

Table 4.3.: add action event compatibility and behavior. Row indicates receiver type,
columns target

deck card group field d6

deck -child,count

card

group -child,count -child,count -child,count -child,count -child,count

field

d6 update value update value update value update value update value

Table 4.4.: remove action event compatibility and behavior. Row indicates receiver type,
columns target

4.2. Simulation

After all entities and interactions have been modeled, it is possible to simulate gameplay.
This is achieved by configuring and running executions, sometimes with the help of AI
agents, to yield execution results. Requirements and details of these entities and concepts
will now be covered.

4.2.1. Executions

An execution in Prototypical refers to a simulation of a modeled game design according to
a set of parameters, collectively called an execution context. The execution context contains
information such as the component which represents each player, all modeled entities of
the game design, the simulation approach that is to be taken, and a condition which halts
the execution when it is met. An execution context exists solely at the implementation
level and is simply convenience terminology from a user perspective. Beginning at the
starting game state and alternating for each player until the halting condition has been
met, the chosen AI agent selects an appropriate action for each player and the current
game state is updated with the result of its application. Intermediate states are saved
and, along with other information, are used to construct an execution result. We will
briefly cover in more detail the parameters within an execution context, followed by the

29

4. Prototypical – A Board Game Development Framework

steps involved in running an execution and a listing of the currently-supported AI agents
in Prototypical.

In order for an execution to be carried out, the user must first specify in the execution
context the component corresponding to each player. For example, there might be two
groups named Player 1 and Player 2, where any actions and components relating to
the first player would be associated with the Player 1 component, with a similar setup
for the Player 2 component. This information is required because for each step in an
execution, the next move must be chosen with respect to the currently-active player. The
id of the first and second player components are used to instantiate an internal object in
Prototypical called a turn counter. A turn counter is used during executions to manage
the active and non-active players, but it is not visible to the user. It stores the id of each
player, sets the first as the initial active player, and provides functions to both get the
current active player, as well as swap the active and non-active players.

While perhaps an obvious inclusion, all modeled entities of the game design are also
required in order to carry out an execution. This includes, but is not limited to, all
components, actions and conditions. Internally, Prototypical manages entities using a
respective service, such as component service, action service or condition service. This is
again unseen by the user but it may be of interest to know that such service classes prevent
accidental duplication of entities and any unexpected behavior. They are instantiated
once per project, which is why entity ids are often only unique at the project-level.

Besides specifying the acting and modeled entities in an execution, the user must also
provide some type of halting condition when creating an execution context. At each step
of the execution, the condition is evaluated and, if met, no more actions are carried out.
The current state is then evaluated and an execution result generated. The respective
condition depends entirely on the motivations of the user and could be as simple as an
arbitrary expression to always apply the same number of events; or, it could be complex
and modeled after the victory condition of an existing board game. An example of the
first might be a condition which halts the execution after a player takes a single action.
An example of the second might be one which permits an execution to run until a player
has drawn a specific number of cards, gained a set number of points or fulfilled one of
several other sub-conditions.

The remaining information required for an execution context is the preferred AI agent.
Prototypical currently supports a random agent and a UCT-based Monte-Carlo Tree
Search agent. We will soon describe each of these in detail, but will first cover the general
process by which an execution is carried out, then describe the structure of an execution
result.

Once an execution context has been configured, it can be used to instantiate and carry
out an execution. The relationship between these is one-to-many, as the same execution
context may be used to create several executions. As described previously, the contexts
are simply a grouping of parameters and can be thought of as a blueprint for an execution.

Carrying out an execution involves several steps which occur before, during and after a
main simulation loop, which adheres to an execution timeout window. First, the initial
game state is cloned so that it does not interfere with the modeled entities at the project

30

4.2. Simulation

level. The condition, turn counter and all components and actions are grouped and copied
to a game object separate from that of the initial state. A timestamp is then stored to
mark the beginning of the execution. Continuing until either a terminal state has been
reached or a timeout has been exceeded, the next move is performed and the resulting
intermediate state is stored and used to evaluate the halting condition. At each iteration,
the most recent game state is passed to the AI agent to determine the next move. If the
AI is unable to suggest a next move, the execution is finished, as there are no possible
actions remaining. If the timeout has been exceeded, the execution is also finished but
with an Error status, as it was unable to complete in time. If, however, a move was made
by the AI agent, the updated game state is returned and stored as both an intermediate
state and the current game state. The halting condition is evaluated and the process
continues unless it is met or the above timeout has been exceeded. The intermediate
states are aggregated to provide a complete timeline of the evolution of the game state
throughout the simulation.

Now that it is clear what must happen in order to create and carry out an execution, it
is appropriate to discuss the related structure. Executions contain an execution status
and an execution result. In Protoytpical, they are associated with an id unique to each
execution service. Though overwhelmingly unlikely, this means it is possible for two
executions to be assigned the same id if they belong to different Prototypical projects.
For all intents and purposes, projects are treated independently in Prototypical, which
prevents any conflicts from arising from this potentially duplicated data.

Execution status can be one of three values: PENDING, DONE or ERROR. The
first of these is the initial value and is set during creation of the execution itself. It remains
this value until either of the two other status have been obtained. DONE indicates that
an execution has finished within the timeout value, which has a default timeout of two
minutes. The final variant indicates that either the execution was unable to finish in the
allotted time, or it has reached an exceptional state and can not be recovered. The exact
reason for the failure is not specified here, but can be found in the second of the two
fields of an execution (i.e. execution result). In summary, an execution which has not yet
completed is expected to have a PENDING status, one that has successfully reached a
valid terminal state within the configured timeout is expected to have a DONE status,
and one that has failed exceptionally or exceeded the timeout is expected to have an
ERROR status.

The execution result contains all information pertaining to a completed execution and
is used to provide the analysis features described in 4.3. The id of the respective execution
and its timestamps provide important information used to organize and sort the potentially
multiple executions Prototypical might be managing at a given time. Ids are unique to
each execution result on a per-project basis, similar to how execution ids are handled.
The start time is a system timestamp in milliseconds, at a point shortly before the first
turn is attempted by the AI agent. Similarly, the end timestamp is recorded immediately
before the execution result itself is created and stored. As previously mentioned, the
execution result may contain a message in order to provide additional details to the user.
An example of this might be an error message indicating that the timeout has been

31

4. Prototypical – A Board Game Development Framework

exceeded for an execution which finished with an error result.
In order to track the game state as it develops throughout an execution, two final pieces

of information are stored in an execution result. The initial state is stored the same way
as it is passed to the AI agent. To review, this is a bundle of information containing a
condition, a turn counter and all modeled entities and respective state (e.g. components
and actions). It follows that the information aggregated in the initialState variable of
an execution result matches exactly the modeled game design at the moment before any
action is applied. As the game state migrates away from this initial state during the
course of an execution, changes are recorded through the generation of what Prototypical
calls frames.

A frame is a grouping of two game states, where one state reflects the game before a
specific action has been applied, and another state represents the game afterwards. In
correlating these pre- and post-event states, Prototypical manages to track every change
in state for the user. A list of frames allows the entire evolution of an execution to be
reconstructed and evaluated. The post-event state stored in the frame at a given index in
the list matches the pre-event state of the frame at the succeeding index. Comparisons to
a linked list may be drawn. The initial, intermediate and terminal game states can all
be encoded in the entries of a list of frames. The initial game state corresponds to the
pre-event state of the frame at the first index, and the final game state corresponds to
the post-event game state of the frame at the last index. With this understanding it is
now possible to explore how intermediate states are generated.

4.2.2. AI Agents

We cover now in detail the two currently-supported AI agents in Prototypical: Random
and Monte-Carlo Tree Search. For a general understanding on the latter, please refer to
3.2. Regardless of details specific to a given AI approach, all AI agents receive a complete
snapshot of the current game state and return a similar snapshot which reflects the game
state after a move has been chosen and applied. The state received as input includes
information about the execution halting condition, both players (including active and
non-active information from the turn counter) and all modeled components and actions.
We will now describe how each AI approach operates within the Prototypical framework.

When the AI agent in an execution context is set to Random, an action from the set
of possible actions for the game state and active player is chosen and performed. Given
an indexed set of possible actions with size two or greater, however, an integer bounded
by the size of the set is generated randomly and the action at the corresponding index
is applied to the game state. If no moves are possible, none are performed. Winning
player information is not required for top-level (or any) actions, as no domain-specific
information is required when selecting moves randomly.

The Monte-Carlo Tree search agent – MCTS – implements the principles outlined in
3.2, constructing and performing a best-effort search of the tree of potential game states.
The root node of the tree corresponds to the input game state. Immediate child nodes of
the root correspond to the game state after which a respective possible action has been
performed. For example, if the set of possible actions consists of drawing one of three

32

4.2. Simulation

cards, the child nodes below the current root node would exclusively represent the game
state after having drawn the first, second or third of the three possible cards, respectively.
All nodes in the tree contain references to any parent and children nodes, as well as all
data required for the calculation of the UCT value. The latter includes wins, losses, draws
and total visits. In order to build the tree and generate these child nodes, the four phases
of the MCTS algorithm are performed. They are repeated a set number of iterations,
after which the most-visited node is returned. The concept of visits will be clear after
reviewing how the MCTS phases are implemented in this AI agent.

In the selection phase, the most-promising child node of the current root node is chosen
according to largest UCT value. If there are no child nodes, the current root node is
selected. In order to compute the UCT value of a node, its wins, losses, draws and visit
count are considered. The visit count of the parent node is also necessary; otherwise 0 is
used if no parent exists.

Kotlin code for the computeUct function can be found in A.1. Note that Xi corresponds
to node losses subtracted from summed wins and draws, all of which is divided by the
node visit count. A decimal approximation of the square root of two is used for the
constant c. All input values to the function are converted to the double data type in
order to prevent inaccuracies from int truncation. Also note that if there are no visits
to the node, the maximum supported double value is used instead [4]. This default
value is an approximation of infinity and ensures that unvisited nodes take precedence
over previously-visited siblings. Alternatives to this approach exist, however, such as
considering this value a "First-play Urgency" hyper-parameter in conjunction with a
UCB1 algorithm variant [30].

After a node has been selected, the expansion phase begins. All possible moves for the
given state with active player are collected in list form and handled sequentially. Each
action is applied to a cloned instance of the game state and a node is instantiated with the
result. All such nodes are then added to the tree as children of the node corresponding to
the current state. It is important for the active player to be swapped in new nodes, so
that the integrity of the alternating two player turn structure may be maintained.

In order to partially handle stochastic events, actions during this phase may be applied
multiple times until either a child node has been added for each possible resulting state
for the given action, or a timeout has been exceeded. The chance value of an action
determines how many nodes are expected to be added in total. For example, a d6
component involved in an action with a chance value of 6 can be expected to result in six
added child nodes during this phase in total. The AI agent compares the resulting game
states after the action has been applied and disregards duplicate or equivalent states with
consideration to the value. In other words, this phase will continue adding only distinct
child nodes until either their quantity equals the chance value of the action, or the overall
timeout of the process has been exceeded. The default timeout is five seconds and it is
not configurable at this time.

Before the next phase of MCTS can begin, a node must be chosen as an exploration
candidate. To do so, the MCTS agent refers to the set of child nodes of the current node.
This set contains any newly-created nodes from the preceding operations of this phase. If

33

4. Prototypical – A Board Game Development Framework

the set is not empty, the entity at the first index is chosen. Otherwise, if there are still no
child nodes through this point in the expansion phase, the current node is taken instead.
This would be the case if there were no possible actions to be made from the current
node. In other words, no moves for the given state and active player are valid and the
current node is what is called a terminal state or leaf node.

The selected exploration node then becomes the focus for the next MCTS phase:
simulation. It is named this way because a standalone simulation of gameplay is initiated
from this state, which continues until either a terminal state is reached, or an overall
timeout has been exceeded. It is isolated in that it operates on a cloned game state and
does not directly influence the original game state which was passed to the AI agent at
the start. The purpose of these simulations is to explore the possible space of the given
game design and review data potentially indicative of strategically preferable moves for
the active player with the current game state.

There are three possible outcomes for a simulation, not considering error states. Either
the terminal state indicates a win for the active player, a loss for the active player, or
a draw. The first two are determined by consulting the winning player information
contained in the halting condition of the execution context. If the component id matches
that of the current player it is considered a win. If it does not, it is considered a loss. If
the halting condition has not been met, the result is considered a draw. Bear in mind
that wins for the active player and losses for the non-active player (and vice versa) are
functionally equivalent in zero-sum games.

In order to carry out a single playout, the MCTS agent attempts to perform a valid
move at random for the active and non-active players in an alternating fashion until the
timeout or halting condition has been met or there are no possible moves to make. The
turn counter is used at each iteration to construct the set of possible moves for the given
state and active player. If the set is not empty, one action is performed randomly, the
active player swapped and the halting condition checked. If the condition has been met,
the game state is evaluated and a playout result returned. Otherwise, the next iteration
is started. If, however, the set of possible moves was empty, the game design does not
permit anything else to be done and the halting condition is now checked. As with the
above, if the condition has been met, the game state is evaluated and the appropriate
result returned.

It is for this reason, however, that winning player information must always be contained
in the actions stored in any execution contexts which make use of the MCTS agent.
Evaluation of a playout state is only possible when the agent is able to interpret the
terminal state. The playout result is then prepared for backpropagation.

The purpose of the backpropagation phase is to update the tree with the result data
from recently-performed simulations. Remember that every node stores information
to track the quantity of visits, wins, draws and losses. This data is incremented or
decremented according to the results. Beginning at the terminal node at which the
MCTS simulation finished, the visit count is incremented by one and the draw count is
incremented according to the result value. The win and loss count of the node is either
incremented or decremented, depending on the ply at which backpropagation is currently

34

4.3. Analysis

being handled.
For a constructed MCTS tree involving two players and a strictly alternating turn

structure, a ply corresponds to one level in the tree hierarchy. Beginning at either the
top or bottom of the tree, each ply upwards or downwards in the structure corresponds
to the turn of a different player. If the terminal node represents the turn by the first
player, the ply above corresponds to the second player. This pattern repeats in both
directions through the tree and is tracked throughout the backpropagation phase by
means of a Boolean variable called isCurrentPlayerPly. The variable is invisible and
inaccessible to the user but is mentioned here for clarification purposes. The value of
isCurrentPlayerPly at the terminal node is false because at that point, the hierarchy
reflects the current player having completed a move and play having already been passed
to the other participant. When recording simulation result wins or losses, this ply
information is taken into account. If the result indicates a win and isCurrentPlayerPly
is true, wins are incremented. If the ply value was instead false, the win result is recorded
as a loss. Similar logic is used when recording loss results.

After simulation result data has been recorded to the current node, both the simulation
result data and ply information is passed to the parent node, where the same backpropaga-
tion procedure is carried out. It is important to note, however, that the ply Boolean value
is inverted upon being passed to the parent node backpropagation procedure. This must
be done so that the wins and losses remain accurate from the perspective of the active
player to which the respective ply corresponds. If done improperly, the MCTS agent will
not perform as expected, as it will incorrectly estimate the value of outcomes originating
from the decisive actions. This is explained from experience and was observed during the
initial implementation of the AI agent.

Backpropagation continues until there are no parent nodes left to which the procedure
can be relegated. It is at this point that this phase ends and, if iterations remain, the
MCTS phases continue to loop. Any nodes at which simulation result data was recorded
are said to have been visited, which is reflected by incrementing the value.

Once the predetermined iterations of the MCTS phases are finished executing, the AI
agent is prepared to choose a final result. This will be one of the actions originating from
the root node (representing the current game state of the execution), which leads to the
child node with the highest visit count. Because of the MCTS approach used in this
agent, more visits correspond to a higher potential payoff originating from the action in
question. In selecting the node with the highest visit count, the AI agent is performing a
best-guess attempt to steer the user (in this case, the first or second player component
from the execution) towards strategically advantageous branches of the tree of possible
decisions and the corresponding game moves. If no child nodes exist, nothing (null) is
returned because there is no possible action which can be performed.

4.3. Analysis

Analysis is arguably the most important feature set of Prototypical and it affords insight
into the inner workings of a game design through several methods of viewing and querying

35

4. Prototypical – A Board Game Development Framework

simulation data. With the intent that designers will make better-informed decisions
during the development process while using Prototypical, there exist several focuses when
it comes to the analytical insights currently available. These are state inspection, chart
generation, informational queries and compound informational queries. The latter two
have been implemented as objects named queries and compound queries, respectively.
State inspection uses frames, described in 4.2, to provide the user with the ability to view
any aspect of game state at any step of a completed execution. "Step" here indicates
an arbitrary point during the run time of an execution. If the user wishes to track a
state element across several steps during an execution, this can be done by constructing a
query and generating and visualizing the resulting chart data. For insights across several
executions, however, a compound query can be used to link and plot the information
referenced by simple queries. It is even possible to plot multiple compound queries on
the same chart. This set of features, along with those from 4.1 and 4.2, is expected to
provide the user with unique data to assist the game design process.

Both query and compound query objects outline a request for a set of execution result
data. Similar to a database query, query objects of either type contain parameters which
are used to retrieve and modify a set of data and return the result. Prototypical uses
these to allow the user to track specific elements of game state across various execution
result data sets.

The user constructs a query object by providing the relevant information, such as
a component property name for queries or query id for compound queries. The query
information is then applied to the relevant execution result data by an internal service.
All queries exist at the project level. Details regarding how each query type is handled by
the service will follow, but for now it is important to understand that a set of data points
is generated through this process. Each data point is a pair of values, where the first
value corresponds to the x-axis of a generated chart, and the second value corresponds to
the y-axis. To display queries, Prototypical simply plots the values of any active queries
to a color-coded line graph and scales the axes appropriately. Scaling occurs when the set
of active queries concerns itself with a smaller or larger set of values compared to those
which were displayed before. For example, an execution involving only five steps would
involve scaling different than one involving fifty steps. Scaling and the resulting chart is
adjusted dynamically, whenever the set of active queries is modified. Note that a query is
considered active if the user has marked it in the interface by checking the respective box.
We will now explain what exactly is meant by state inspection, what type of chart can be
generated, and how the basic query is constructed. Then we will describe the structure
and details of each query type and how several queries are combined into a compound
query.

4.3.1. State Inspection

State inspection allows the user to view component state details for any step of a completed
execution. It is possible to view the state either before or after the relevant action of
the frame, labeled Before and After, respectively. These labels also include the active
player name for that Frame. An example would be Before Player 1 Action and After

36

4.3. Analysis

Player 1 Action, where the name of the active player for this frame is Player 1.
Both of these provide a complete list of components and the ability to individually

view state information for each at the given step. The component list includes the
component name and type. Upon inspecting an individual entry, this information, along
with component id and any properties are listed. In effect, the user is able to focus on the
the most-interesting areas of a game state at an arbitrary point of an execution. This
information, however, is not editable and reflects state that no longer exists outside of
the containing execution result.

Prototypical offers the ability to visualize the state information data. Currently, line
graphs can be generated through the use of queries and compound queries ; however, other
chart types can easily be added in the future. Before covering details on how a chart is
populated, it should be clear how to interpret the resulting visual data. All charts in
Prototypical are dynamically generated and consist of an x-axis, y-axis and several data
points connected by lines. The x-axis represents the steps of the relevant execution(s)
and the y-axis represents the numerical values derived from one or more query and/or
compound query objects. Query objects are used to track the numerical value of a specific
property throughout the course of an execution. Compound query objects are meant
to combine multiple query objects by means of a mathematical operator and track the
calculated value across two or more executions.

More details on each type of query object will follow, but for now it is important
to understand that Prototypical dynamically generates a chart in order to display the
relevant data. The user selects which execution and query/compound query objects to
plot by marking the respective elements as active. A chart displays data for multiple
queries or any number of compound queries, given that all are applied to the same exact
set of execution result data.

Because an execution result may contain lists of frames which vary in length, it is
important that any applied queries or compound queries point to data sets similar in
size. For example, unlimited queries may be applied to generate a chart, as a query may
only ever refer to a single execution. It would be problematic for one compound query to
refer to a data-set that is shorter than another, as there would be insufficient data points
to combine. An example use case for generating a chart using normal queries might be
to plot the score of each player for a single execution. An example utilizing compound
queries might average these same queries across multiple executions. For clarification
purposes, we use the term query to refer to simple query objects, compound query to refer
to compound query objects, and query in lowercase to refer generally to either type.

4.3.2. Queries

The purpose of a query is to track a specific component property for one or more steps of
an execution. The utility of Prototypical presents itself once multiple queries are plotted
and the user is able to track more information than would otherwise be practical manually.
Several parameters are required to construct one, which will now be listed.

Every query requires a name, which may contain any characters (alphanumerical or
otherwise) of any length and must be unique per project. We suggest using a name

37

4. Prototypical – A Board Game Development Framework

that is clearly indicative of the purpose and scope of the query itself. An example of an
undesirable name would be MyQuery, whereas a useful name might be Player 1 Score
After. It is immediately clear in the latter example that this query will plot the score
property of the Player 1 component at each step of anexecution after the respective move
has been made.

Because the scope of the query can vary, both a start and end index is needed. The
start index value determines the first frame (i.e. step of the execution) that is to be
plotted, where any preceding elements are simply ignored. Similarly, the end index
value determines the last (i.e. largest) index of the data values which are to be plotted
(exclusive). Both start index and end index values are optional and, if omitted by the
user, will default to values such that all available data points are included. In other
words, a query will always plot the entire set of execution result data, unless configured
otherwise.

If a query should track a component property, it follows that a component selector and
property name are required during construction. The receiver field holds the component
selector which returns the component possessing the property to be observed. Please note
that this component selector must always only return a single result. If no results are
returned, the query lacks the necessary data; likewise, if two or more are returned, it
would not be clear which component was originally desired. The property name must
refer to an existing property for the resulting receiver component for the same reasons;
however, properties are unique and the latter situation holds less relevance. In summary,
both the receiver and propertyName fields are mandatory and must each refer to a single
component and property, respectively.

The final field of a query is query temporality, an enumerated value which indicates
whether the desired information should be observed before or after the action of the
encapsulating frame was applied. Remembering that each frame contains both a Before
and After game state, the query must be configured to focus on only one. This value
may be useful when comparing the effects of an action on game state. The underlying
enum, therefore, has only these two values, where the second is the default: BEFORE
and AFTER.

Now that the structure of a query has been outlined, we will describe how they are
used by the internal service to generate chart data. With both the query and relevant
execution id at hand, the service selects the frames according to the start and end indexes.
Iterating through this selection of frames, the game state is extracted according to the
query temporality enum and the desired component is found. The property matching the
property name is mapped to the respective frame index. This results in a map of integer
and string values, where the integer is the frame index and the string value is the value
of the property for the referenced component at this index and query temporality. As an
example, suppose we have three frames and a component property which starts at zero
and increases by one each frame. The resulting data would be a map of three entries,
where entry one has the integer zero as its first element and "0" as the second value. The
entire map in this case could be represented as follows: { 0: "0", 1: "1", 2: "2" }. It
should now be clear how query data can be generated and visualized.

38

4.3. Analysis

4.3.3. Compound Queries

Compound queries differ from normal queries, as they are used to track property values
across multiple executions using one of several mathematical operators. Compound queries
use data from a normal query applied to several execution results. Given a set of data
points for each query and execution result, the chosen operator determines how they are
combined. The end result of a compound query is a single list of data pairs, similar to
that of a normal query result set. We will first describe the required values when creating
a compound query, then discuss how the internal service executes them and why they are
useful.

Similar to regular queries, compound queries require a unique name. Internally they
are also assigned a unique id so that they can be managed properly by an internal service.
This service provides the same functionality as the one for queries and is likewise an
implementation detail and not relevant to a user perspective.

The first values unique to compound queries are the query and executions fields. Since
there is a direct one-to-one relationship to a query, its respective id must be known.
This value must correspond to exactly one Query, considering project-level exclusivity.
Similarly, a compound query applies to one or more executions, whose ids must be known.
The relationship is one compound query to potentially many executions, which is reflected
by this value being a list. If the list is empty, there are no values to plot and if list entries
do not all correspond to existing and accessible executions (e.g. completed), result data
can not be retrieved. It is important to ensure that these situations are avoided and that
accurate, unambiguous id information is provided for both query and execution ids.

The last information necessary when creating a compound query is the mathematical
operation that should be used to combine the sets of query result data into a single
compound query result data set. The compound query operation is provided as an
enum and may be one of four values: SUM, DIFFERENCE, PRODUCT, QUOTIENT
and AVERAGE. When SUM is used, query results will be folded (i.e. added) at each
corresponding index. The compound query result value at index zero corresponds to
the sum of all query result values at this same index, and so on for all indexes. The
DIFFERENCE operator successively subtracts values in a similar way. The PRODUCT
operator multiplies these values and the QUOTIENT operator divides them. It would not
be surprising for the SUM and PRODUCT operators to yield large results, and for the
DIFFERENCE and QUOTIENT operators to yield comparatively small ones. The final
operator is AVERAGE, which results in the mean of all respective values per index. This
corresponds to the SUM operator result divided by the size (i.e. quantity of elements) of
the data set.

It should already be at least partially clear how the internal service uses compound
queries to obtain data to be plotted. For the sake of detail, however, we will explain
this now. The process begins by retrieving the executions referenced in the executions
list and mapping each to the result of performing the query referenced by query id. The
result of this step is a list of query results. The entries of this list are then folded and the
respective entry applied. Since the result of this procedure is a set of pairs containing two
values, no special precautions or processing is required; each pair is mapped to a single

39

4. Prototypical – A Board Game Development Framework

data point on the line chart, where the first element of the pair is the x-axis value and
the second is the y-axis value.

Compound queries are useful because they provide the user with the ability to visualize
data across many executions and potentially discover patterns and details that might
otherwise go unnoticed. Using the previously described parameters, a compound query
can be configured to focus on only the areas and data of interest. It is up to the user to
utilize these tools to gain useful insights into a given game design.

40

5. Results

This chapter first covers three example uses of Prototypical, then presents the results of a
five-participant user study. The hardware and software used for the implementation will
be described, followed by general observations and assessments.

5.1. Examples

Three examples were implemented to demonstrate the capabilities of Prototypical. The
first, Movement Points, covers a proposed card-based mechanic for determining player
resources. The second focuses on the combat mechanic from a board game currently in
development, Polis: Rise of the City State. The last example is the well-known game of
Tic-Tac-Toe, presented here to demonstrate AI agent performance and potential support
in Prototypical for complete rule sets.

5.1.1. Movement Points

This example is based on a proposed game mechanic which uses card values to determine
player movement resources each turn. A deck of cards is used, where each has a move
value with an initial value according to the distribution outlined in table 5.1. Each player
draws the top card and may allocate the respective quantity of movement points during
the current turn. Drawn cards are not added back into the draw deck and gameplay
ends once the deck is empty. No actions during gameplay may otherwise modify the
composition of the draw deck or any values of the contained cards. This is a strictly
two-player action resource mechanic and the potential changes suit themselves for iteration
because they could be implemented piecemeal and the updated design simulated before
proceeding. If at any point the design avoids these pitfalls and the designer is satisfied,
the process can be stopped because the potential changes are decoupled from one another
and would not require a refactoring of the modeled components. This makes it a useful
example to include and we will now explain how it was implemented in Prototypical then
cover the observed data.

move Value Quantity
0 6
1 6
2 6

Table 5.1.: Initial distribution of move values (Movement Points)

41

5. Results

The complete process involved modeling the necessary entities, running simulations,
making design modifications and iterating until a satisfactory result was achieved. This
required thirty executions in total, where modifications were made after the first set of
ten and after the second set of ten (i.e. after the tenth and twentieth executions). First, a
new project named Movement Points was created. A group was created for each player,
named Player 1 and Player 2, respectively. Another group was created to represent the
hand of each player, named Player 1 Hand and Player 2 Hand. The draw deck was
modeled using a deck component named Draw Deck, to which all card components were
added after they were created. Eighteen cards were used in this example (nine per player)
and each was assigned an appropriate name with an integer index, such as Movement
Card 3 and Movement Card 5. An alternate naming scheme could have incorporated
the actual movement value, such as Movement Card 3 (M2). Each card was assigned
a property named move with a value of either 0, 1 or 2. Six cards were assigned each of
these values, dividing the eighteen total into three groupings. To clarify, six had a move
value of 0, six had a value 1 and the remaining six were given the value 2 (5.1). The last
step to model the necessary components was to ensure that the cards were all added to
the deck as child components.

Two primary actions were modeled in order to achieve the desired simulation behavior.
These corresponded to one per player and each consisted of an and action which cleared the
previous turn score, removed one draw deck child component randomly, added the same
component to the player hand and updated the move score according to the associated
move value. Note that it was not necessary to model this as a component property in
advance, as it was assigned at run time and Prototypical always overwrites existing values
or creates them if they do not yet exist. Before covering each of these four sub-actions
individually, it is worth mentioning several remaining top-level characteristics. The name
reflected the relevant player and intent, for example Player 2 Draw 1 Card. The
receiver component selector was set to return the player component and the chance value
was set to the default of 1.

The four sub-actions of each and action were all simple actions, since the process
could be broken down into: resetting the score, removing the card from the deck, adding
the card to the player hand and updating the player move score. The first of these
was named Reset Player move score. Since the sub-actions were player-specific, a
component selector was used which returned the respective player component. An always
met condition was paired with the update property action event because resetting the
score was always possible with a basic property modification. The score value was stored
as a component property on the player hand component (not the player component), so
the appropriate component selector was used. This property name was set to score and
a value expression was used to provide 0 as the new value.

The second simple action was named Remove card from draw deck. A remove
action event was accompanied by a condition that was met whenever the draw deck was
not empty. To validate this, a simple condition called Draw Deck Not Empty used a
property filter which checked the count property using a gt comparator (4.1) against
the value 0. The selector was configured to use the draw deck id. When the condition

42

5.1. Examples

was met, the remove action event used this same component selector so that the draw
deck was the receiver and that the target would be taken from it. The target itself was
provided by a component selector which returned one component of type card using a
random strategy where the draw deck was the root (i.e. the draw deck id was used for
the root parameter). Using this selection strategy ensured that cards would be chosen
randomly, modelling withdrawal from a shuffled set.

The Add Card to hand from draw deck simple action used an always met condition
and add action event to achieve what the name implies. The details of the card (or any
other component) would not have influenced the validity of the event, so an always met
was used here. A component selector configured with the player hand id was used for the
receivers selector, while the target selector was null. Since the target selector was not
provided, the last component was used instead; and, in this case, it was the component
used by the previous simple action Remove card from draw deck.

The final simple action updated the player move score using an always met condition
and an update property action event, similar to the Reset Player move score simple
action. Instead of using a value expression, however, a property expression for the move
source property with a null receiver was used instead. The result was that the value of
the move component property of the last used component was returned according to the
then current game state.

Now that it is clear how the components and actions were modeled, we will explain
the parameters used for the executions. The Player 1 and Player 2 components were
set as the first and second players. Because this game mechanic related to resource
management and the early phase of a game turn, the random AI agent was selected. The
decision-making that the MCTS agent affords was unnecessary because there was only
one possible action per player each turn when determining movement score. Because the
execution was meant to continue until no cards were left in the draw deck, we created
and assigned an appropriate halting condition called Draw Deck Is Empty. Using a
component selector configured to return the draw deck component, it checked that the
count component property was equal to zero by using the eq comparator (4.1) and value
0. The winning player information was also not necessary, as a winning player was not
meant to be decided during this phase of the related game.

Execution Low High Median Mean
1-10 1100 1167 1139 1139
11-20 711 777 732 735
21-30 682 755 737 729

Table 5.2.: Execution run times in milliseconds (Movement Points)

A set of ten executions was performed and a chart generated to display the average
movement score of the players for this interval. Table 5.2 shows the lowest, highest,
median and mean run times per execution for each set of ten, which were executed in
parallel. Figure 5.1 shows both average player scores, where blue corresponds to the first

43

5. Results

Figure 5.1.: Average score, executions 1-10. Player 1 in blue, player 2 in red (Movement
Points)

player and red corresponds to the second. The x-axis shows the turn or frame number,
where each actual turn has been represented by two frames and the y-axis corresponds to
the average score value. Game state snapshots of both before and after a move by the
active player of a given turn leads to duplicated data points, which can be seen by the
plotted line segments with width two (i.e. both values are the same). Additionally, it is
also possible for data points to be missing, as is the case for the second player during the
first turn in the same figure (5.1). In this example, the second player has not yet taken a
turn and no initial property value was set, so data for this interval is omitted. Note that
all such details were considered for numerical calculations presented in this and following
sections. Repeated data points may be safely ignored when viewing.

All observed values ranged from 0.5 to 1.5 (inclusive), which was deemed too low.
Higher values were desired because low ones limit the quantity possible actions during
gameplay, potentially resulting in limited or stagnant player experience. Modifications
to the card values were made, such that six with a value of 0 were changed to have a
value of 1. Three additional cards were created with a value of 3 and added as child
components to the draw deck. Ten more executions were then performed and the same
queries and compound queries plotted, which can be seen in figure 5.2. The new range is
between 1.3 and 2.5, inclusive. While the shape of the plotted data is noticeably different
from the previous, it is useful to consider figures 5.3 and 5.4.

The first (5.3) superimposes the observed first player average score values of the second
set of iterations (11-20) onto those of the first set (1-10). The second (5.4) does the same
for the second player. The values for the second set of executions (11-20) in both are
consistently higher than those from the first set (executions 1-10) and there are more
data points in the second set than in the first. As the simulations were performed until

44

5.1. Examples

the draw deck was empty, adding cards increased the number of turns/frames in the
execution data.

Figure 5.2.: Average score, executions 11-20. Player 1 in blue, player 2 in red (Movement
Points)

In order to widen the range of observed values and create a tendency toward higher
observed minimums, four card values were changed from 2 to 5. The resulting chart
can be seen in figure 5.5, which displayed satisfactory results. To further investigate the
relationship between the original design, performed modifications and resulting simulation
data, two additional charts can be referenced. Figures 5.6 and 5.7 compare the original
simulation data of each player with the corresponding data from executions 21-30, once
all changes had been implemented. The later data values are consistently higher than
those of the initial set and there is a clear relationship between the desired trends in
simulation data and the modifications made between execution sets. Table 5.3 shows
the final distribution of card values and figure 5.8 visualizes the data as a combined bar
graph, contrasting it with the initial distributions.

move Value Quantity
1 12
2 2
3 3
5 4

Table 5.3.: Final distribution of move values (Movement Points)

45

5. Results

Figure 5.3.: Player 1 average score, executions 1-10 in blue, executions 11-20 in red
(Movement Points)

Figure 5.4.: Player 2 average score, executions 1-10 in blue, executions 11-20 in red
(Movement Points)

46

5.1. Examples

Figure 5.5.: Average score, executions 21-30. Player 1 in blue, player 2 in red (Movement
Points)

Figure 5.6.: Player 1 average score, executions 1-10 in blue, executions 21-30 in red
(Movement Points)

47

5. Results

Figure 5.7.: Player 2 average score, executions 1-10 in blue, executions 21-30 in red
(Movement Points)

Figure 5.8.: Initial and final distributions of move values. executions 1-10 in blue, 21-30
in red (Movement Points)

48

5.1. Examples

To create the charts above, two queries and several compound queries were needed.
The first was a basic query which recorded the score component property of the first or
second player hand component, after the relevant turn has taken place. These were named
Player 1 Score After and Player 2 Score After respectively. The receiver was a
component selector which used the id of the corresponding player hand component and
the property name was score. The query temporality was set to AFTER_ACTION
and both the start index and end index was left as null, so that all frames from the
execution result were considered.

Utilizing the two queries were compound queries for each player. Each referenced one
third of the performed executions, which resulted in one compound query for execution
results 1 to 10, another for 11 to 20 and a third for 21 to 30. This triple was created
for each player, resulting in six compound queries in total. The names of the compound
queries were chosen to indicate the corresponding player, relevant component property of
the underlying query and the executions within its scope. An example of this is P2-Score-
Avg-1-10, relating to the average score of the second player for the first ten executions.
The query id parameter was set according to the related query, the AVERAGE operation
was used and executionIds consisted of a list of the relevant execution ids.

5.1.2. Polis: Rise of the City State

This example involves a game currently in development called Polis: Rise of the City
State [53]. It is a tableau-building game in which players research technologies, construct
buildings and leverage military might to conquer territories in the hopes of founding the
best empire, measured by victory points. Military power is represented using meeples,
while technology and buildings take the form of cards. Regions exist in a shared location
at the center of the game board and combat occurs when meeples belonging to both
players have been placed in a shared region. Each player secretly picks a card from their
hand, where the victory point value on the card becomes a combat modifier. The modifier
is added to the quantity of friendly meeples in the region, resulting in a total score for
each player. The scores are compared and the highest score deemed the winner. It is
this mechanic that we chose to implement in Prototypical, with special focus on the
composition of the technology and building cards deck and victory point values. We will
now describe how this was accomplished.

This game mechanic was suitable for implementation in Prototypical for the same
reasons presented in 5.1.1, as it is functionally similar. The designer wanted to simulate
the combat system of the rules because it did not present itself as dynamic enough
to produce interesting gameplay. It was explained that a sense of thrill for the user
was desired, which might have been promoted by reducing the predictability of the
combat outcomes. In other words, the possible results of a combat should not be overly
predictable, regardless of outside influence (e.g. deck composition information). For this
reason, the designer wanted to iteratively modify the composition of the card deck until
the simulation data pointed toward more-varied outcomes. The range of the difference
between player scores was permitted to increase between turns but the average difference
across all simulations needed to remain relatively the same. Described differently, the

49

5. Results

outcomes from one combat round to the next were expected to become more disparate,
but neither player should have gained an inherent asymmetrical advantage due to the
modifications.

The original design consisted of ninety-six cards in total, divided into victory point
value categories of one to four. Thirty-eight cards had a value of 1, twenty-six a value of
2, twenty-three a value of 3 and nine had a value of 4. While the game rules defined the
possible range of meeple counts to be from five to fifteen (inclusive), the most-common
range was expected to be nine through twelve. For this reason, we chose to model only
the most-common meeple values.

To model the necessary entities, a group was first created for each player and the central
board region, as well as an additional one for each possible quantity of meeples. The player
groups were named Player 1 and Player 2 and the region was simply named Region,
as there was only one. Groups were used for meeple quantities due to implementation-
specific reasons which will be covered later; however, all included information in the name
indicated the respective value (e.g. 9 Meeples). The property name was used to store
the corresponding value of either 9, 10, 11 or 12.

A deck component named Cards was created, along with 96 card components which
were then added to it as children. The vp property of each was set according to the
distribution outlined in 5.9 (provided by the designer).

Figure 5.9.: Original Card VP Distribution (Polis)

A condition was created to check whether the deck was empty. This was not strictly
necessary, as the game rules dictated that a maximum of four combat rounds may occur
per game (i.e. one per round for four rounds), which could never fully exhaust a deck of
ninety-six. Another condition was created to be met after four rounds had been played,
corresponding to the second player having taken four top-level actions. To do so, its
component selector was configured with the region component id to check that the property
round was greater than or equal to four. For this a gte comparator (4.1) checked against
the value 4. The round property was updated after each second player turn. A simple
action called Record End of Round used a second player-linked component selector
with a chance value of 1, an always met condition and an update property action event.
The action event component selector was configured with the region component id. The

50

5.1. Examples

property name was set to round and the value was given by a value expression with a
value set to 1 and add operator (4.1). This ensured that it would be incremented each
round.

Player turns consisted of a single and action per player and had six simple actions as
sub-actions. Most of these were used for copying property values to be tracked by queries
and were not directly related to the game mechanics. The first sub-action cleared the
player score. The second copied the meeples value from a randomly-selected group of
meeples to a player meeples component property. The third was responsible for removing
a random card from the deck, while the fourth copied the associated vp property to a
player combat score property. The final two actions summed the meeple and combat
values to create a combined, total score.

Aside from round-related upkeep, both player actions were identical and actions as
described above. The player score was cleared with the Player _ Clear Score simple
action, where _ corresponds to the player number (i.e. 1 or 2). An update property
action event with an always met condition was carried out with the region as a receiver,
targeting the Player _ Score component property. A value expression with value 0
was used. The acceptedReceiverComponentsSelector field for this action – and all
others to be discussed here – used the respective player id.

To simulate placing an arbitrary number of meeples onto the region board, the Player _
meeples simple action updated the Player _ meeples property of the region component.
This was accomplished using a property expression configured for the source property
meeples and a component selector with the random selection strategy. This source
property corresponded to that of the meeple groups and the Random Meeple Group
filtered using the region component id, accordingly. This method to randomly choose
one set of meeples each turn was previously mentioned and was a simpler approach in
Prototypical than modelling individual meeple components.

The next sub-actions involved drawing the card and recording the relevant values. The
removal of one card each turn by the player used a remove action event and the deck not
empty condition. The event used the deck id and the random card selector. The latter
functioned similarly to that of meeple groups, selecting from card child components of the
deck instead. An important difference, however, is that the card was fully removed from
the set of child components and discarded because it was not added to another component.
This was possible because the victory point value of the card held significance only when
it was drawn. It was immediately recorded to the Player _ combat card property
in the next simple action using the vp source property. The receivers selector here
was left null because the previously drawn card contained the relevant property value.
The meeple value was then recorded with Player _ Score and Player _ meeples
property name and source property values for the region. The add operator ensured
that the scores were summed throughout all four rounds. The overall player combat score
was then recorded with the Player _ Record Score Combat simple action using the
Player _ Score and Player _ Combat card property name and source property
values. The add operator (4.1) was again used for the same reason. The executions were
configured with Player 1 and Player 2 components as first and second players and the

51

5. Results

described Played Round 4 simple condition.

Figure 5.10.: Score sum, executions 1-10. Player 1 in blue, player 2 in red (Polis)

The random AI agent was chosen and ten executions were performed as a starting
point. Figure 5.10 shows the resulting data from both players, which was bound to an
overall range from 128 to 142, inclusive. The data itself was derived by summing the
score of the respective player at each corresponding interval (i.e. turn/frame) across the
ten executions belonging to the set.

Fifteen vp values were then changed from 1 to 0 to lower the possible or expected scores.
After running ten more executions, figures 5.11 and 5.12 were generated to compare the
original and new data for the first and second player, respectively. While 5.11 did not
clearly indicate that the individual summed scores of the first player were now lower,
the total sum for the original data was 548, whereas it was 540 for the second. This –
along with the resulting average of the summed scores of 137 for the first execution set
(1-10) and 135 for the second (11-20) – remained consistent with the expected results
when considering the implemented changes at this stage of iteration. Figure 5.12 further
supported this, as all data points for the second player in the second iteration set (11-20)
were indeed lower than those at the respective intervals in the first set (1-10).

After ten more simulations, the changes were considered too excessive and were partially
reverted by changing ten card values from 0 back to 1. Additionally, thirteen values were
changed from 2 to 3 to increase the frequency of higher sums. Figures 5.13 and 5.14
showed that the values observed in the next execution set (21-30) were consistently higher
than the previous ones, with a single data point of the first player as an exception. The
second player observed a new higher upper bound of 144 (5.14).

Ten further executions led to results which centered too closely on mid-range values, so
eight card values were changed from 3 to 4 in an attempt to add variation. Figures 5.15
and 5.15 showed the data from the newest set of ten executions. Both players showed

52

5.1. Examples

Figure 5.11.: Player 1 score sum. Executions 1-10 in blue, executions 11-20 in red (Polis)

values which could be considered dynamic and not concentrated among the middle range.
A higher upper bound was once again desired, so four values were changed from 4 to 5.

The collective result of this, and all previous changes, was most evident in figure 5.17,
which compared all first player values up to this point and showed that a highest upper
bound of 154 was observed by the first player. The final changes involved modifying
two values from 4 to 7 and the resulting values did not have a noticeable effect on the
simulation data for either player in the generated charts.

However, figure 5.18 provides insight into not only the final change set, but also offers
a comprehensive view of how the raw score data evolved throughout the iterations. Each
of the six groups in the table and box plot are labeled and color-coded with respect to a
single set of iterations performed. Groups one through six correspond to iteration sets
1-10, 11-20, 21-30, 31-40, 41-50 and 51-60, respectively. Each group consists of eighty
values because every execution set involves ten performed executions with four played
rounds (5.1.2). Table 5.4 lists the minimum, maximum, median and mean run times for
each of the six execution sets in milliseconds. The difference in first and second player
scores summed across all frames for executions 1 through 10 and 51-60 was 35 and 16,
respectively. The corresponding averages were 8.75 and 4.

Comparing the first and sixth groups provides a clear impression that both the range
and distribution of scores changed. The minimum and maximum observed scores of any
group were 9 and 18, where both values were seen in the sixth group (executions 51-60)
and neither in the first (executions 1-10). The median value remained the same between
first and last groups, while the mean value slightly increased from 12.3875 to 12.5125.
The standard deviation, however, increased by over twenty-five percent, from 1.4539 to
1.8211.

Six queries were created in total, corresponding to three per player. All tracked

53

5. Results

Figure 5.12.: Player 2 score sum. Executions 1-10 in blue, executions 11-20 in red (Polis)

properties were stored in the region component, so an appropriate component selector
with this id was used. They were configured with AFTER_ACTION query temporality
and null start index and end index values. The tracked properties were Player _
meeples, Player _ combat card and Player _ Score.

A compound query was created for each player per set of ten executions to track the
summed total combat score at each interval. Names were reflective of this (e.g. P2 Score
Sum 21-30). The query id corresponded to the respective Player _ Score property
and the operation was sum. The linked execution ids corresponded to the executions
of the relevant set (e.g. 10-20).

Figure 5.19 shows an empty chart and execution details. The queries described above
can be seen on the left hand side of the screen in the Queries panel, while compound
queries are in the Compound Queries panel on the right. It is possible to mix and
match queries and compound queries on the same generated chart, as seen in figure 5.20.
In this example, the individual scores for the first and second players in execution 0 are in
blue and red, respectively. Orange corresponds to the sum of player 1 scores for executions
1-10 and yellow to that of player 2 across the same interval.

54

5.1. Examples

Figure 5.13.: Player 1 score sum. Executions 11-20 in blue, executions 21-30 in red (Polis)

Execution Low High Median Mean
1-10 506 563 544.5 540.6
11-20 360 437 417.5 411
21-30 421 443 430.5 431
31-40 358 398 377 374.6
41-50 391 420 406.5 406.9
51-60 222 281 250.5 250

Table 5.4.: execution run times in milliseconds (Polis)

55

5. Results

Figure 5.14.: Player 2 score sum. Executions 11-20 in blue, executions 21-30 in red (Polis)

Figure 5.15.: Player 1 score sum. Executions 21-30 in blue, executions 31-40 in red (Polis)

56

5.1. Examples

Figure 5.16.: Player 2 score sum. Executions 21-30 in blue, executions 31-40 in red (Polis)

Figure 5.17.: Player 1 score sum. Executions 1-10 in blue, 11-20 in red, 21-30 in orange,
31-40 in yellow, 41-50 in green (Polis)

57

5. Results

Figure 5.18.: All player scores. Blue group 1 is executions 1-10, orange group 2 is 11-20,
green group 3 is 21-30, red group 4 is 31-40, purple group 5 is 41-50 and
brown group 6 is 51-60 (Polis)

58

5.1. Examples

Figure 5.19.: Empty chart with created queries on the left and compound queries on the
right (Polis)

Figure 5.20.: Chart involving both queries and compound queries (Polis)

59

5. Results

5.1.3. Tic-Tac-Toe

Tic-Tac-Toe was implemented in Prototypical for several reasons, among which are the
characteristics of the game itself and the simplicity of gameplay and strategies. It has
been the subject of a vast body of research. Due in part to a low branching factor, it is
considered a solved game and all possible game states can be easily mapped out with
an identifiable optimal strategy. It contains no hidden or stochastic information and is
a zero-sum game. To review, in zero-sum games a win for one player is equivalent to a
loss for the opposing player. The inverse also holds true. It is therefore suitable for both
general implementation in Prototypical, as well as for the use of the MCTS AI agent.
For the sake of completeness, we will also point out the two-player turn-based structure
of its gameplay, low component count, few possible actions, and a typically short game
duration.

Tic-Tac-Toe is presented here as a proof of concept and demonstration that Prototypical
may potentially support the implementation of complete rule-sets. This is opposed to the
stated scope of only a singular mechanic at a time. Additionally, no iterative changes were
made to the design itself. This game also holds value in demonstrating the performance
of the MCTS agent, as sensible gameplay moves can be easily inferred and poor strategic
choices quickly identified. All necessary elements have been modeled in Prototypical and
several executions were performed using MCTS agents. The MCTS agent played the
game against itself. We estimated performance by running executions and periodically
changing the MCTS iteration count parameter. The observed gameplay choices for both
agents adhered to all game rules and had the appearance of a natural human-like strategy.
We will now explain the implementation of Tic-Tac-Toe in Prototypical, then we will
present the collected simulation data and review AI agent performance.

Tic-Tac-Toe was implemented in a Prototypical project of the same name. To model
the playing area, a component of type group with the name Board (3x3) was created.
The nine potential areas which may be marked by either player throughout the course
of gameplay each were modeled using a field. These were named using an integer value
between zero and eight (inclusive) and corresponded to a specific location on the 3x3
grid. Location numbers increased from left to right and top to bottom, as seen in table
5.1.3. Examples of this naming scheme include Field 3 and Field 7, as the number
corresponds to a grid location that the field is supposed to represent. Additionally, all
such fields had a component property called value, instantiated as a - character. This
property was changed when either player had marked the field with either an x or o and
was updated accordingly. The original value of - indicated that it is empty. The property
was set to x when the field had been marked by the first player and o when it was marked
by the second player. More details on these actions will follow. The nine empty field
components were assigned to the Board component as children and the count property of
the board was implicitly updated, while the modelling of each player was accomplished
using a group for each. The first was named Player X and the second Player O.

The possible game actions for each player were then modeled. Eighteen actions were
created in total, which corresponded to a count of one per potential game action per
player. If we consider that there were at most nine spaces on the board from which to

60

5.1. Examples

field 0 field 1 field 2

field 3 field 4 field 5

field 6 field 7 field 8

Table 5.5.: Grid layout of 3x3 Tic-Tac-Toe board

choose at any given point during the game, it follows that each player would have had
a maximum of nine possible moves to be modeled. Each action was named according
to which field it targeted and which character (x or o) would be assigned to it. Some
examples included Mark Field 0 with x and Mark Field 0 with o, as well as Mark
Field 3 with x and Mark Field 3 with o. All actions were of type simple action
and therefore did not contain any sub-actions. Each used a component selector which
targeted the player respective of the symbol that was to be marked. This meant that two
component selectors in total were necessary for the project - one for each player. Each
used a quantity parameter of 1, a first selection strategy and a filter which contained
the component id of the respective player. The quantity was set here because an action
was always unique to one player (i.e. either x or o). The selection strategy was set to the
default and was irrelevant, because of the component id used in the filter. The root id
remained the default of null, because neither player component was a child component.
The accepted component types and list of filter properties also stayed at the default values
to include all types and an empty list, respectively.

In order for each of the actions to function as expected, it was necessary to determine
during a simulation whether a space was empty or had been previously filled. Therefore,
a simple condition was created for each of the fields and named accordingly. For example,
the Field 0 is empty condition corresponded to the field at grid space 0 and was met if
it has not yet been assigned a value from either player. It was configured with a check,
where the property filter had a name of value, an eq comparator and a - value. If the
value property was still set to the initial value (-), the condition was met, as this implied
that the field remained untouched by either player and must be empty.

Action events were the last modelling necessary for the actions of this example. One
was created for each field, where both the receiver and target component selectors were
configured to return the respective field. The property name was set to value and a value
expression was used to provide the new value (x or o), depending on the player with
which the encompassing action was associated.

The id of the previously mentioned first and second player components were set
accordingly in the execution context, and a halting condition was created. For this, an
or condition was created and named Either player 3-in-a-row. As the name implies,
this condition was met if either player had filled three adjacent fields, either horizontally,
vertically or diagonally. The sub-conditions list contained two additional or conditions,
x3-in-a-row and o3-in-a-row. These were met if the corresponding player had achieved

61

5. Results

any of the winning patterns, for which there were eight distinct possibilities. For each
acceptable combination, the winningPlayer parameter was assigned a component selector
to return the respective player component ; if this condition was met, it indicated a win
for that player. Each of the eight sub-conditions were modeled using an and condition
containing three simple conditions and was met when all three sub-conditions were met.
Each such simple condition corresponded to a specific field and player and was named
accordingly (e.g. as 5 Filled x). To clarify, the halting condition contained an or
condition for each player to check for one of eight winning patterns. Each winning pattern
was represented using an and condition, which checked whether the three respective fields
were filled through three simple conditions. Each of the sub-conditions checked to see
if the relevant field was filled using a check whose property filter referenced the value
parameter using the eq comparator and a player-dependent value of either x or o. See
figures 5.21 and 5.22 for another representation of this.

Figure 5.21.: x3InARow condition with
sub-Condition

Figure 5.22.: o3InARow condition with
sub-Condition

To benchmark MCTS AI agent performance, executions were carried out and the result
data aggregated. This can be seen in 5.1.3. Sixty executions were run in total, divided

62

5.2. User Trials

Playouts Draw P1 Win P2 Win executions Time (s) Per execution (s)
50 20 0 0 20 150.07 7.50
500 20 0 0 20 266.73 13.34
1000 20 0 0 20 515.13 25.76

Table 5.6.: Tic-Tac-Toe win rates and execution time benchmarks

across sets of varying parameters. Both the number of MCTS iterations - referred to
interchangeably as playouts or playout count - and quantity of executions per data set
varied. The winning player (or draw) of each was recorded and summed across execution
sets based on playout parameter count. There were three different values used: 50, 500
and 1000, where twenty executions were performed in total for each. Twenty executions
which made use of 50 playouts were broken into two sets of ten sequential executions.
Those using 500 playouts were divided into one set of ten and two sets of five. For the
1000 playouts set, two sets of ten were again used. The start and end timestamps for each
sequential set were recorded and the respective mean time per playout set was calculated
(see last column of table 5.1.3). All executions ended with a draw result, where neither
AI agent won against the other.

The end game states from several executions were observed at random and no anomalies
or rules errors were observed. The playout values (50, 500 and 1000) were chosen because
a direct relationship between higher playout values and superior performance was observed.
This, however, was at the expensive of time and computing resources, which can be seen
in 5.1.3. The shortest execution times were observed for 50 playouts, while the longest
were for 1000. Lower values than these produced unsatisfactory decision-making results,
while higher values took significantly longer to finish. We believe the chosen values to
be a good indication of what can be expected from normal use cases. If the number
of playouts and corresponding wait time for a result is too high, the user experience
will suffer. Likewise, if the results are generated quickly but without sensible strategic
decision-making, Prototypical will not be as usable (or useful) in real game design context.

5.2. User Trials

A small study was conducted to measure the user experience of the current Prototypical
web application interface. The goal was to present and explain the features of the software
and estimate its utility through participant interviews. Another purpose was to solicit
feedback and considerations for future work and improvements.

The target demographic was individuals of any age who identified as a board game
designer or player. The latter in this case means that the individual willingly participated
in a board game with others, whether regularly or only occasionally. Regularly implies a
frequency of at least once per month, while occasionally indicates at least once per year.

Sessions took place individually over the course of two weeks. Each began with a
short explanation about the intended use of Prototypical, followed by a tour of the

63

5. Results

example from 5.1.1. The user was then instructed to explore various features and ask
questions. It was then requested that the example was modified and one or more changes
implemented in order to arrive at what the participant would consider a more-balanced
or interesting design. Some users created additional cards, while others only modified
component property values. All participants regularly asked questions and consistently
required additional instruction.

To qualitatively measure these experiences, users were asked to fill out the System
Usability Scale (SUS) questionnaire. The SUS is a Likert scale with ten statements, meant
to gauge subjectively the usability of a given system. Answers range from scores one to
five (inclusive), where one indicates that the participant strongly disagrees with the given
statement. A score of five indicates that the user strongly agrees with the statement.
The survey was presented electronically and without a time limit. All were completed
immediately following the demo and each took fewer than fifteen minutes. The results
were aggregated and translated into scores out of 100 [66].

The statements and raw user response data can be seen in table 5.8. Participant
identities were mapped to letters A through E and all users answered all survey questions.
The final two columns are the unconverted sum and average response value for the
respective survey question. Similarly, table 5.2 provides the total survey score from each
user, as well as the minimum, maximum, median and mean for the entire participant data
set (all converted to 100-based range). The median total score was 62.5, where the overall
range was between 50 and 75, inclusive. The mean score was 61.5, which indicates that
the usability of the current Prototypical interface is "poor" (see 5.23). No further user
studies are planned until after the relevant considerations in 6.1 and 6.2 have been made.

Score A Score B Score C Score D Score E Minimum Maximum Median Mean
65 55 62.5 50 75 50 61.5 62.5 61.5

Table 5.7.: System Usability Scale results from five participants (converted)

Figure 5.23.: System Usability Scale Rubric

64

5.2. User Trials

St
at

em
en

t
A

B
C

D
E

S
u
m

A
vg

I
th

in
k

th
at

I
w

ou
ld

lik
e

to
us

e
th

is
sy

st
em

fr
eq

ue
nt

ly
.

4
3

3
5

4
19

3.
8

I
fo

un
d

th
e

sy
st

em
un

ne
ce

ss
ar

ily
co

m
pl

ex
.

3
2

1
4

1
11

2.
2

I
th

ou
gh

t
th

e
sy

st
em

w
as

ea
sy

to
us

e.
4

3
3

2
4

16
3.

2

I
th

in
k

th
at

I
w

ou
ld

ne
ed

th
e

su
pp

or
t

of
a

te
ch

ni
ca

lp
er

so
n

to
be

ab
le

to
us

e
th

is
sy

st
em

.
2

4
3

3
4

16
3.

2

I
fo

un
d

th
e

va
ri

ou
s

fu
nc

ti
on

s
in

th
is

sy
st

em
w

er
e

w
el

li
nt

eg
ra

te
d.

5
4

5
5

5
24

4.
8

I
th

ou
gh

t
th

er
e

w
as

to
o

m
uc

h
in

co
ns

is
te

nc
y

in
th

is
sy

st
em

.
2

2
1

1
1

7
1.

4

I
w

ou
ld

im
ag

in
e

th
at

m
os

t
pe

op
le

w
ou

ld
le

ar
n

to
us

e
th

is
sy

st
em

ve
ry

qu
ic

kl
y.

4
3

2
2

3
14

2.
8

I
fo

un
d

th
e

sy
st

em
ve

ry
cu

m
be

rs
om

e
to

us
e.

3
2

4
4

2
15

3.
0

I
fe

lt
ve

ry
co

nfi
de

nt
us

in
g

th
e

sy
st

em
.

3
2

3
2

4
14

2.
8

I
ne

ed
ed

to
le

ar
n

a
lo

t
of

th
in

gs
be

fo
re

I
co

ul
d

ge
t

go
in

g
w

it
h

th
is

sy
st

em
.

4
3

2
4

2
15

3.
0

T
ab

le
5.

8.
:S

ys
te

m
U

sa
bi

lit
y

Sc
al

e
st

at
em

en
ts

an
d

pa
rt

ic
ip

an
t

re
sp

on
se

s
(u

nc
on

ve
rt

ed
)

65

5. Results

5.3. Hardware and Software

Implementation and experiments were done on an Apple MacBook Pro 2019 laptop with
Intel i7 2.8 GHz Quad-Core processor, 16 GB of 2133 MHz DDR3 RAM, Intel Iris Plus
Graphics 655 and MacOS 11.4. The IntelliJ (2020.1.1-2021.1.1) IDE with relevant plugins
was used for both development and testing, with Git and GitHub for version control.
Dependency management was handled by Gradle (5.6-7.1.1) and the web application was
run in the Chrome (83.0-93.0) browser.

The back-end module was implemented in Kotlin (1.3-1.5.21) with a Java 1.8 compile
target. The front-end module used the Flutter SDK beta channel until Flutter Web was
officially released; after which SDK version 2.2.3 stable was used.

The SyncFusion [69] library handled all chart-related functionality in Prototypical. For
this text, however, tables were created with assistance from Tables Generator [70], box
plot diagrams were made using Box-and-Whisker Plot Maker [14] and bar graphs were
done with or Bar Graph Maker [7] or code adapted from [6].

5.4. Discussion

Prototypical was successful in modelling the game concepts necessary to simulate playtest-
ing of a limited scope. It demonstrated potential for board game designers if incorporated
into the game design process and provided early playtest data without the need for human
participants. This was accomplished using AI agents without significant domain knowledge
and, after running simulations, the framework visualized subsets of the simulation data
and displayed changes in game state parameters and potential trends. Both individual
mechanics and a full simple rule set for two-player games were implemented, while a
user study demonstrated that the current user interface is inadequate for practical use.
We hold the opinion that improvements would make Prototypical a viable board game
development tool for general public use. As such, it would offer a unique approach to
modelling game mechanics without flowcharts like other existing software [42]. While
hindered by the UI, current features of Prototypical do support the defined goals of
modeling, simulating and analyzing game mechanics, as evidenced by the Movement
Points, Polis: Rise of a City State and Tic-Tac-Toe examples.

Table 5.9 outlines the number of objects created when modeling the mechanic(s) of
each example. Movement Points required the fewest and was the simplest mechanic of
the three to implement. The second example required the most components but the
fewest conditions, needing only one which was always met and another for tracking the
current round number. It is unsurprising that Tic-tac-toe used the most conditions, as it
contained the entire rule set of the game and conditions were necessary for every potential
winning board state per player (e.g. fields 0, 1 and 2 containing the same player value).

While implementing the examples may have been possible using fewer components,
these quantities can be expected to represent typical usage of the software and should
be considered from a usability perspective. Currently, all objects must be modeled
individually, as no duplication features exist. As a result, all objects had to be created

66

5.4. Discussion

component action condition Total
Movement Points 23 10 3 36

Polis: Rise of the City State 104 15 2 121
Tic-tac-toe 12 18 77 107

Table 5.9.: Object counts required to implement each example

and configured individually which required significant time. We see this as detrimental
to overall usability and would expect improvements such as spreadsheet import and
duplication to decrease the time required to model games and increase the usefulness of
Prototypical as a whole.

From a positive perspective, most executions were run considerably fast. Tables
5.2 and 5.4 show the lowest, highest, median and mean run times per execution for
each set of ten performed in the first two examples. Surprisingly, measurements were
consistently higher for the Movement Points example than for Polis, which does not
support a linearly increasing relationship between component count and run time. While
this type relationship is expected to exist at a minimum, since more objects in memory
requires more resources to manage, we believe the observed values are obfuscated by the
resource overhead of the framework itself. This could be due to either the design and
implementation choices or even those of the Kotlin programming language or Java Virtual
Machine.

The resource requirements for the MCTS AI agent are evident from testing performed
for Tic-Tac-Toe, which varied from roughly 2576 to 7500 milliseconds per individual
execution (table 5.1.3). While longer than the run times of the other two examples,
these benchmarks are still significantly faster than it would take two human players to
complete games against one another. As executions are performed using the user interface
asynchronously, we expect Prototypical to scale well for instances where run time far
exceeds these ranges.

Support for asynchronous executions is achieved by performing each one on a separate
thread in parallel, where the total time to execute all from a given set is close to that
of its maximum recorded value. In other words, the total time to execute a set can
never be less than that of any of its individual values and is normally expected to be
slightly higher than its highest value. The consequences of this environment are again
positive, implying that users can potentially perform many sets of simulations in a short
period of time. When considering the amount of time required to carry out a manual
playtest – disregarding any organizational and social overhead such as scheduling – the
potential advantages of fast run times becomes clear. While we do not offer a process by
which the value of simulated and manual play-tests can be compared or contrasted, we
find it reasonable to assume that the time savings offered by the former would enable
the designer to iterate quickly during the early stages of prototyping and development.
This is an important characteristic for an iterative workflow and would avoid disrupting
concentration due to long wait times.

67

5. Results

The Movement Points example made use of several different component types and
permitted design changes to be made iteratively. A complex AI agent was unnecessary,
so the random AI agent chose moves accordingly. This did not require the user to
specify winning player information using domain knowledge, only requiring input on
which components corresponded to each player and what the respective top-level choices
were. The performed simulations produced execution result data, which allowed the user
to inspect game state before or after any move had been made. The ability to review this
type of data after gameplay had already finished would not be easily achieved through
standard playtesting. Other possible solutions include video, audio and manually-written
gameplay event protocols, but all of these methods would have high technical overhead
and/or become intrusive for participants and interrupt gameplay. We therefore consider
these features of Prototypical to be a superior approach.

This first example was particularly suitable for Prototypical because it involved only
cards and had low rules complexity. It was easy to implement gameplay-altering design
changes, but this could have been attributable to the simplicity of the mechanic itself.
Changing small quantities of values caused noticeable effects on the observed game
states, possibly due to the low component count involved (eighteen cards). The changes
themselves focused on updating one property type, which was also the case for the resulting
simulation data. This made it easy to view both the values of the move property for
each frame of an execution result data set, but also across multiple sets. The average of
this property was displayed on a line graph and could have also been superimposed on
other data, such as the deck count property.

We were successful in our attempt to use Prototypical to iteratively guide the devel-
opment of this mechanic and effectively made use of the data visualizations to better
understand gameplay effects from each modification set. Figures 5.3 and 5.4 show how
consistently the first design modifications increased the minimum observed values, as all
data points for the second execution set (11-20) are above those from the first set (1-10).
This also holds true when comparing the first and last sets of visualized simulation data,
as seen in figures 5.6 and 5.7. Figure 5.8 becomes relevant, as the bars for executions
21-30 are of a larger quantity and are distributed across a wider interval of higher values
on the x-axis. These details support our claim that the design modifications succeeded in
the original objectives of increasing the observed range and minimum values. It is also
possible to visually confirm using figure 5.5 that the collective changes were symmetrical
and did not provide either player a significant inherent advantage or disadvantage. While
not expected to be exactly the same in shape or length, the line data for both players
have a similar range and frequency of slope changes.

With this in mind, observing the characteristics of the visualized properties made it
clear that design changes had taken effect but it did not help explain to what extent. It
also did not provide enough information to estimate appropriate future changes. The end
result of this example was that Prototypical could assist the designer to make observations
and hypotheses about the current state of a game design but could not fully guide the
development process alone. For this, a clearer characterization of the direct relationship
between objective simulation data and the subjective user experience would be required.

68

5.4. Discussion

The Polis: Rise of the City State example was of particular interest as a mechanic
from a board game in active development. It was proposed directly by the designer and
was unintentionally similar to the Movement Points example. Comparatively, however,
a greater number of components were needed to model all of the necessary concepts.
The manner in which meeple placement was handled demonstrated the flexibility of the
framework and how a user has freedom when defining the details with which Prototypical
constructs a given design. Some modeled entities had no design equivalent and existed
as helpers for simulating a unique sub-mechanic. Likewise, this revealed how useful it
might be to support additional physical and abstract component types, such as meeples
and random number generators. With these available, meeple placement could have been
modeled using an action to add a quantity of meeple components defined by the number
generator, where meeple counts would be found by filtering for children of the respective
type.

A modest number of simulations were taken into consideration when analyzing results,
but there is no strong indication that this adequately sampled the game space. It is
possible that the results and assumptions in this (and the previous) example contained
biases and did not reflect the normal outcomes of the game. In other words, we do not
have enough information to determine whether the observed results are typical or atypical
of the given designs. To do so, we would require either mathematical analysis or real
playtest data and evaluation for improved estimates.

What is clear in the second example, however, is that the chosen component modifica-
tions did not significantly increase the difference, or average thereof, between observed
scores summed across multiple executions. As presented earlier, this difference in first
and second player scores summed across all frames for executions 1 through 10 and 51-60
was 35 and 16, respectively. The corresponding averages were 8.75 and 4. The last ten
executions (51-60) actually lowered this difference, potentially dispelling concerns about
the implemented changes having given an inherent advantage to one of the players. Since
we would expect these values to fluctuate in any case, this observation does not have clear
consequences for our evaluation but we believe it is worth mentioning, regardless. This
fulfills our initial condition that no modifications may introduce a large discrepancy in
opposing scores.

The generated charts show that it is possible to unify multiple game state properties
and associate them with a single visualization. The charts were used to display the total
score of each player at each frame and used compound queries to do this for multiple
executions. However, the combat score itself was comprised of the meeple count and card
victory point value, demonstrating that it is possible to simultaneously track multiple
elements of game state.

While not generated by Prototypical itself, figure 5.18 is valuable in analyzing the
potential effects of the implemented changes on gameplay. We consciously made changes
to increase the overall range and variability of the player scores, which is reflected by
comparing several values from the first and last execution sets. Group 1 had a range from
10 to 16 (inclusive) which increased in size to eventually span from 9 to 18 in Group 6.
It is possible (and likely) that the simulation results from this quantity of executions to

69

5. Results

only partially sample the possible value space; however, we expect the results from ten
simulations to provide an adequate estimate in order to make design decisions pertaining
to the next iteration of development.

What is most pertinent about 5.18 is both the notable increase in standard deviation, as
well as the visual differences in plotted data between the first and last groups. The standard
deviation for Group 1 was 1.4539 and was 1.8211 for Group 6, which corresponds to
an increase of twenty-five percent. We interpret this as an indication that the design
changes implemented over the course of the six execution sets led to player score values
more-evenly distributed and across a larger range.

The potential gameplay or user experience implications of this include reducing gameplay
predictability and increasing the sense of fairness of the design. If a player can easily
predict gameplay events and outcomes, the user experience would likely be negative. We
expect the inverse of this to be true, namely, that these observed changes would positively
influence the sense of enjoyment, fairness and challenge for the player experience. We
expect similar insights to be valuable during the board game design process, which further
supports the idea that Prototypical could be used to this end.

The Tic-Tac-Toe example proved that Prototypical can potentially be used to implement
a full rule set and simulate an entire game using AI agents. The implementation did
not require any workarounds for peculiarities of the framework itself. Gameplay was
easy to follow during analysis, likely because of the simplicity of the game and the small
board size. It was not a useful demonstration for how Prototypical might be involved
in the development process but this is because the original aim was to demonstrate
the modelling capabilities of the framework and the AI agent performance. Another
appealing aspect of this game design was the ease with which the actions of the AI could
be evaluated. Tic-Tac-Toe is easy to learn and it has a clear optimal strategy. While we
did not use optimal moves as a benchmark, the random sampling of performed moves did
not reveal obviously strategically sub-par choices which would indicate poor performance.
Additionally, the results from table 5.1.3 indicate consistent decision-making behavior.
Inconsistent win rates would indicate unpredictability from one or both opposing agents,
indicative of an incorrect implementation [4]. We did not observe performance differences
at these levels in the benchmarks but the execution time required increased linearly with
the configured number of MCTS iterations. This was expected, as higher decision-making
performance requires more iterations per selected move, resulting in longer computing
time.

The user study and accompanying SUS surveys revealed both successes and failures of
the Prototypical user interface. The time required to explain the premise and functionality
of Prototypical, which was done before completion of the survey, was acceptable. This is
supported by the responses to survey question two, which were generally low (i.e. positive
sentiment). While participants asked questions throughout the demonstration, this could
be interpreted in several ways. Without more information it is equally likely that the
questions were asked out of curiosity rooted in comprehension or that they resulted from
a lack thereof. Based on the collated average scores and an unexceptional median score
of 3.0 (unconverted), we assume it is the former.

70

5.4. Discussion

The results, however, indicated without doubt severe deficits in the UI. With only five
participants, the user study was small in scale. We do not believe that increasing the
sample size would have affected this result, due to the strong consistency of the responses.
At best mixed, tending toward negative scores, it is unlikely that additional responses
would have created a discrepancy or bias toward significantly different results.

We stated that no further user surveys would be pursued until additional features have
been implemented because we believe the existing results to be reflective of the current
feature set and UI. We expect that implementing features and improvements related to
usability would have a strong positive influence on future survey scores. The same is
also likely if additional documentation or an interactive tutorial were made available. It
should be noted that we emphasize the utility of the core features of Prototypical and
hold the opinion that it should not be overshadowed by the inadequacies of the UI. It
may be worth exploring efforts to make Prototypical available as a programming library
if improving the UI becomes untenable.

Other areas of concern are the ineffective handling of games with imperfect information
and/or stochastic events. While the current implementation using chance nodes handles
select situations well, it is clear that either a user will eventually encounter difficulties
implementing other games or the simulation data (and AI performance) will not accurately
reflect the modeled designs. The inability to comprehensively handle imperfect information
limits the potential of Prototypical. We were unable to address these concerns within the
scope and constraints of this work, but we believe future efforts could potentially rectify
them. It may be possible to accomplish most of the work within a new AI agent, but
other core framework changes would likely be required.

Prototypical may be of particular interest to researchers or other individuals who
require a general platform for testing game-playing AI agents. Although not clear from
the user interface, the framework was designed with extensibility in mind. It would be
easy to implement new AI agents and provide a generic platform for modelling game rules.
There is a potential use for general platforms which interface AI game-playing agents
and provide rules modelling and enforcement, such as those utilized in the General Game
Playing AI competition [52]. This saves the researcher time and the effort of implementing
boilerplate functionality.

Applications of Monte-Carlo Tree Search appear to focus on one specific domain and
rule set. Prototypical finds itself among other software such as Machinations.io [42] and
Board Game Lab [10] in offering a generic MCTS AI agent in the context of games. These
peers underscore its importance and the potential advantages when used to further the
principles and techniques of game design.

We acknowledge potential in our approach and suggest that future research might
explore fixing the UI-related issues or extracting the core functionality of Prototypical to
a different interface altogether. As suggested, this could take the form of a programming
library or API.

71

6. Conclusion and Future Work

6.1. Conclusion

This research aimed to create a software application to assist the board game designer
in the context of an iterative development process. It attempted to investigate why
such a tool might be useful and in what ways the assistance might take form. Our
efforts yielded Prototypical, a board game development framework which has a graphical
user interface and supports modelling, simulation and analysis of game mechanics. The
included examples demonstrated all three of these features, as well as inadequacies of the
user interface. However, it is clear that Prototypical may be useful to a game designer
by providing new ways to view game state information, such as inspection of individual
properties and the tracking and charting of one or more of these throughout the course
of simulated gameplay. We also recognized potential for Prototypical to replace human
playtesters, saving resources in the early stages of a mechanic’s development.

In order to be modeled in the framework, a game mechanic must be turn-based and
involve two players. Perfect information games and those with minimal stochastic events
are where Prototypical excels, as hidden information is not supported and the use of
chance nodes to handle non-deterministic actions is not optimal. The Movement Points
and Polis: Rise of the City State examples showed how a simple card-based resource
mechanic could be modified across several iterations. It was clear from the generated charts
from before and after the implemented changes how the movement or score properties
evolved throughout the performed simulations. It was immediately clear when the range
of observed values increased or decreased and when the values varied at specific points
in simulations. This comparative data and additional information is potentially helpful
to the designer when making decisions. With the assumption that more information
promotes improved decision-making, the utility of Prototypical becomes clear.

The Tic-Tac-Toe example further demonstrated the flexibility of the Prototypical
framework, as well as its robustness and ability to support complete rule sets. Although
the original scope remains a single mechanic at a time, evidence of other potential use
cases remains beneficial to this research. Another potential use would see Prototypical
become a general platform for testing AI agents, which was not considered until after its
development. The AI and game rules are decoupled, which would allow other work to
focus on applying AI agents to the game mechanics by avoiding excessive overhead. This
example also demonstrated the performance of the UCT-based MCTS AI agent, which
was found to be sufficient for the objectives of this research. Tests showed behavioral
consistency, while random inspection of moves yielded only strategically-sound choices
and the resulting AI agent decisions collectively resembled the skill of a human player.

73

6. Conclusion and Future Work

While similar to several peers in overall functionality (see 2.2), Prototypical takes a
novel non-flowchart approach using proprietary concepts such as component selectors,
and actions, checks, conditions and filters. Although applying these concepts in practice
appeared mostly intuitive to the study participants, the overall complexity of the software
was higher than desired. This is evident in the critical aspects of the user interface and
low System Usability Scores. Many usability features are absent from the UI, such as
tool-tips and shortcuts to create many components, actions or executions at once. We
would rate the Prototypical UI lower than its peers in this regard, yet on equal footing
when it comes to its modelling and simulation approach and potential.

We are confident that future efforts have the potential to fix the aforementioned issues
and implement additional features, making Prototypical a valuable tool for developing
board game mechanics. Increased player counts, additional game types, improved UI
workflows and stability improvements are all areas which come to mind. In the current
state, the software controls a modest set of features and demonstrates potential to be
naturally integrated into the board game design process. It is our hope that others agree
and are willing to drive its evolution alongside the ever-changing landscape of board game
development.

6.2. Future Work

The current AI algorithm is the core which drives simulation in Prototypical and could
be extended to enhance both the simulation quality and coverage. The first obvious area
of improvement is player count. For example, [50] point out the increasing popularity
of MCTS in the context of multi-player games with more than two players and propose
enhancements. Supporting even only four players would allow Prototypical to simulate
many more game designs, as thousands of already available board games are intended for
this number of participants [12].

The MCTS AI agent is convincing when applied to zero-sum games without hidden
player information and, at most, inadequately so for others. Improving handling of
stochastic events would improve overall simulation quality and the variety of supported
designs by correctly considering hidden information, additional actions and more complex
strategies. This could be achieved through additional AI agents, such as those following an
Open-Loop MCTS approach as described in [51] for the context of video games. Improved
AI would also enable Prototypical to support new game types.

The technical limitations of Prototypical make it most suitable for a small subset of game
types. As covered in 3.1, many other types of games exist, which include simultaneous-play,
social deduction and storytelling. While it is not within the scope of this work to provide
approaches for supporting these genres, it is easy to expect Prototypical to both eventually
be compatible with and useful in some of these contexts. For example, AI agents could be
implemented to mimic specific human-like strategies during deductive actions or to have
specific reactions to keywords in properties for components of a narrative-driven design.
The previous work of [32] would be useful as a starting point for such work. Additional
component types could of course be implemented in order to support actions specific to

74

6.2. Future Work

any genre.
As the most immediate point of interaction between a user and the Prototypical

framework, the user interface and respective aesthetics mold the user experience and
present several areas of potential improvement. Additions to the user interface in order
to improve the aesthetics or workflow and allow new usability features could be made.
The results from user trials in 5.2 and respective interpretation in 6.1 further support
this view.

The overall theme and visual style, including such aspects as button shapes, font styles,
and color palette are perhaps the easiest and fastest to update. A simple and functional
appearance was the goal during this research and there was no particular emphasis on
aesthetic appeal or cohesion of the above stylistic considerations. Improving any of these
would likely result in a different, possibly enhanced, user experience. Without venturing
too far into the area of human-computer interaction, the user experience might also benefit
from a resizing, reordering or restructuring of the current interface components. Some
examples might be enlarging text for visibility on mobile devices, using wider drop-down
menu buttons or adding help icons and tool tip popups to remind the user of specific
features or elements. We suggest the field of user interface design as a source for principles
to follow and incorporate, if further efforts in this area are made.

The first of such features could be the ability to input modelling data through spread-
sheet import. It is possible to extend Prototypical with a parser for CSV-based (or
proprietary format) data containing the necessary information to create multiple com-
ponents at once. Since many game designs incorporate significant quantities of unique
game pieces, it would likely be easier in many cases to use this import feature instead of
manually creating each one through the existing interface.

In a similar vein, the ability to duplicate an existing component or action by use of a
button might also prove useful. Due to implementation details, the underlying id and
name of the object itself must vary; however, a dialog could allow the user to immediately
set the required information during the duplication process.

Both UI areas would benefit from improved user input validation. There are several
situations in which a user is able to provide incompatible input throughout the stages of
component, action or execution creation. This may lead to ambiguous error messages and
confuse the user as to how to proceed. A list of reserved words (e.g. count, id) could be
maintained and shown to the user as a text tool-tip popup, along with a descriptive error
message whenever the user disregards this.

These are only a few suggestions on how Prototypical might be extended to further
achieve its original design goals. The software currently controls a small set of features but
demonstrates potential to comprehensively assist the designer when it comes to inspecting
simulated playtest data and searching for trends in evolving game state. We consider
well-informed designers as having an inherent advantage when in designing enjoyable
games and we believe that Prototypical can play a part in the process. At the very least,
this software serves as inspiration for what a modern board game design system might
provide and we invite the board game design community to explore and grow with it.

75

Bibliography

[1] Gaming: The next super platform. https://www.accenture.com/us-en/insights
/software-platforms/gaming-the-next-super-platform. Accessed: 2022-02-28.

[2] The google deepmind challenge match. https://deepmind.com/alphago-korea.
Accessed: 2021-10-03.

[3] David Altimira, Jenny Clarke, Gun Lee, Mark Billinghurst, Christoph Bartneck,
et al. Enhancing player engagement through game balancing in digitally augmented
physical games. International Journal of Human-Computer Studies, 103:35–47, 2017.

[4] Monte carlo tree search for tic-tac-toe game in java. https://www.baeldung.com/j
ava-monte-carlo-tree-search. Accessed: 2022-02-04.

[5] Jonathan Barbara. Measuring user experience in board games. International Journal
of Gaming and Computer-Mediated Simulations (IJGCMS), 6(1):64–79, 2014.

[6] Basic bar chart with text as x axis labels. https://tex.stackexchange.com/a/85
84/5645. Accessed: 2022-06-05.

[7] Bar graph maker. https://www.rapidtables.com/tools/bar-graph.html.
Accessed: 2022-06-22.

[8] Marlene Beyer, Aleksandr Agureikin, Alexander Anokhin, Christoph Laenger, Felix
Nolte, Jonas Winterberg, Marcel Renka, Martin Rieger, Nicolas Pflanzl, Mike Preuss,
et al. An integrated process for game balancing. In 2016 IEEE Conference on
Computational Intelligence and Games (CIG), pages 1–8. IEEE, 2016.

[9] Early prototype software. https://boardgamegeek.com/thread/1982913/early-p
rototype-software. Accessed: 2021-10-02.

[10] Boardgame lab. https://boardgamelab.app/. Accessed: 2021-10-02.

[11] Tools & resources. https://boardgamedesignlab.com/tools-resources/#art.
Accessed: 2022-06-03.

[12] Boardgamegeek. https://boardgamegeek.com/. Accessed: 2021-10-02.

[13] Bruno Bouzy. Associating domain-dependent knowledge and monte carlo approaches
within a go program. Information Sciences, 175(4):247–257, 2005.

[14] Box-and-whisker plot maker. https://goodcalculators.com/box-plot-maker/.
Accessed: 2022-06-05.

77

https://www.accenture.com/us-en/insights/software-platforms/gaming-the-next-super-platform
https://www.accenture.com/us-en/insights/software-platforms/gaming-the-next-super-platform
https://deepmind.com/alphago-korea
https://www.baeldung.com/java-monte-carlo-tree-search
https://www.baeldung.com/java-monte-carlo-tree-search
https://tex.stackexchange.com/a/8584/5645
https://tex.stackexchange.com/a/8584/5645
https://www.rapidtables.com/tools/bar-graph.html
https://boardgamegeek.com/thread/1982913/early-prototype-software
https://boardgamegeek.com/thread/1982913/early-prototype-software
https://boardgamelab.app/
https://boardgamedesignlab.com/tools-resources/#art
https://boardgamegeek.com/
https://goodcalculators.com/box-plot-maker/

Bibliography

[15] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-carlo
tree search: A new framework for game ai. AIIDE, 8:216–217, 2008.

[16] Guillaume Chaslot, Jahn-Takeshi Saito, Bruno Bouzy, JWHM Uiterwijk, and H Jaap
Van Den Herik. Monte-carlo strategies for computer go. In Proceedings of the 18th
BeNeLux Conference on Artificial Intelligence, Namur, Belgium, pages 83–91, 2006.

[17] David Chircop. An experiential comparative tool for board games. Replay. The
Polish Journal of Game Studies, 3(1):11–28, 2016.

[18] Luiz Jonatã Pires de Araújo, Alexandr Grichshenko, Rodrigo Lankaites Pinheiro,
Rommel D Saraiva, and Susanna Gimaeva. Map generation and balance in the
terra mystica board game using particle swarm and local search. In International
Conference on Swarm Intelligence, pages 163–175. Springer, 2020.

[19] Fernando de Mesentier Silva, Aaron Isaksen, Julian Togelius, and Andy Nealen.
Generating heuristics for novice players. In 2016 IEEE Conference on Computational
Intelligence and Games (CIG), pages 1–8. IEEE, 2016.

[20] Fernando de Mesentier Silva, Scott Lee, Julian Togelius, and Andy Nealen. Ai as
evaluator: Search driven playtesting of modern board games. In AAAI Workshops,
2017.

[21] Fernando de Mesentier Silva, Scott Lee, Julian Togelius, and Andy Nealen. Ai-based
playtesting of contemporary board games. In Proceedings of the 12th International
Conference on the Foundations of Digital Games, pages 1–10, 2017.

[22] Scythe, pandemic legacy and yogi creators on the unending, essential process of
playtesting board games to perfection. https://www.dicebreaker.com/topics/p
laytesting/feature/playtesting-board-games-scythe-pandemic. Accessed:
2021-09-10.

[23] Joris Dormans. Visualizing game dynamics and emergent gameplay. In Proceedings
of the Meaningful Play conference, 2008.

[24] Joris Dormans. Machinations: Elemental feedback structures for game design. In
Proceedings of the GAMEON-NA Conference, volume 20, pages 33–40, 2009.

[25] Joris Dormans. Simulating mechanics to study emergence in games. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
volume 7, 2011.

[26] George Skaff Elias, Richard Garfield, and K Robert Gutschera. Characteristics of
games. MIT Press, 2012.

[27] Markus Enzenberger, Martin Müller, Broderick Arneson, and Richard Segal.
Fuego—an open-source framework for board games and go engine based on monte
carlo tree search. IEEE Transactions on Computational Intelligence and AI in Games,
2(4):259–270, 2010.

78

https://www.dicebreaker.com/topics/playtesting/feature/playtesting-board-games-scythe-pandemic
https://www.dicebreaker.com/topics/playtesting/feature/playtesting-board-games-scythe-pandemic

Bibliography

[28] Fulvio Frapolli, Amos Brocco, Apostolos Malatras, and Béat Hirsbrunner. Decoupling
aspects in board game modeling. In Interdisciplinary Advancements in Gaming,
Simulations and Virtual Environments: Emerging Trends, pages 78–96. IGI Global,
2012.

[29] Gonzalo Frasca. Simulation versus narrative: Introduction to ludology. In The video
game theory reader, pages 243–258. Routledge, 2013.

[30] Sylvain Gelly and Yizao Wang. Exploration exploitation in go: Uct for monte-carlo
go. In NIPS: Neural Information Processing Systems Conference On-line trading of
Exploration and Exploitation Workshop, 2006.

[31] Daniel E Gilbert and Martin T Wells. Ludometrics: luck, and how to measure it.
Journal of Quantitative Analysis in Sports, 15(3):225–237, 2019.

[32] Carina Huchler. An mcts agent for ticket to ride. Master’s esis. Maastricht University,
2015.

[33] Emil Juul Jacobsen, Rasmus Greve, and Julian Togelius. Monte mario: platforming
with mcts. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation, pages 293–300, 2014.

[34] Alexander Benjamin Jaffe. Understanding game balance with quantitative methods.
PhD thesis, University of Washington, 2013.

[35] Aki Järvinen. Making and breaking games: a typology of rules. In DiGRA Conference,
2003.

[36] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In
European conference on machine learning, pages 282–293. Springer, 2006.

[37] Eva Kraaijenbrink, Frank van Gils, Quan Cheng, Robert van Herk, and Elise van den
Hoven. Balancing skills to optimize fun in interactive board games. In IFIP Conference
on Human-Computer Interaction, pages 301–313. Springer, 2009.

[38] Jonas Krucher. Algorithmically balancing a collectible card game. Bachelor’s esis.
ETH Zurich, 2015.

[39] Thesis template - faculty of computer science, university of vienna. https://www.ov
erleaf.com/latex/templates/thesis-template-faculty-of-computer-scien
ce-university-of-vienna/whyzmtqggxzz.

[40] Wei-Po Lee, Li-Jen Liu, and Jeng-An Chiou. A component-based framework for
rapidly developing online board games. International Journal of Computers and
Applications, 33(4):293–302, 2011.

[41] Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. Sentient sketchbook:
computer-assisted game level authoring. In FDG. ACM, 2013.

79

https://www.overleaf.com/latex/templates/thesis-template-faculty-of-computer-science-university-of-vienna/whyzmtqggxzz
https://www.overleaf.com/latex/templates/thesis-template-faculty-of-computer-science-university-of-vienna/whyzmtqggxzz
https://www.overleaf.com/latex/templates/thesis-template-faculty-of-computer-science-university-of-vienna/whyzmtqggxzz

Bibliography

[42] Machinations.io. https://machinations.io/. Accessed: 2021-10-02.

[43] Tobias Mahlmann, Julian Togelius, and Georgios N Yannakakis. Evolving card sets
towards balancing dominion. In 2012 IEEE Congress on Evolutionary Computation,
pages 1–8. IEEE, 2012.

[44] Mango. https://project.dke.maastrichtuniversity.nl/games/go4go/mango/
index.htm. Accessed: 2021-10-03.

[45] Videogames are a bigger industry than movies and north american sports combined,
thanks to the pandemic. https://www.marketwatch.com/story/videogames-are
-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pan
demic-11608654990, 2020. Accessed: 2022-06-03.

[46] Ahmad Mazyad, Fabien Teytaud, and Cyril Fonlupt. Monte-carlo tree search for
the “mr jack” board game. International Journal on Soft Computing, Artificial
Intelligence and Applications (IJSCAI), 2015.

[47] nandeck. http://www.nandeck.com/. Accessed: 2021-10-02.

[48] Taro Narahara. Exploring board game design using digital technologies. In ACM
SIGGRAPH 2014 Studio, pages 1–1. Association for Computing Machinery, 2014.

[49] Mark J Nelson. Game metrics without players: Strategies for understanding game
artifacts. In Workshops at the Seventh Artificial Intelligence and Interactive Digital
Entertainment Conference, 2011.

[50] J Pim AM Nijssen and Mark HM Winands. Enhancements for multi-player monte-
carlo tree search. In International Conference on Computers and Games, pages
238–249. Springer, 2010.

[51] Diego Perez Liebana, Jens Dieskau, Martin Hunermund, Sanaz Mostaghim, and
Simon Lucas. Open loop search for general video game playing. In Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation, pages 337–344,
2015.

[52] Diego Perez-Liebana, Jialin Liu, and SM Lucas. General video game ai as a tool for
game design. In Tutorial at IEEE Conference on Computational Intelligence and
Games (CIG), 2017.

[53] Rise of the city state | undead design lab. https://www.undeaddesignlab.com/ri
se-of-the-city-state.

[54] Riot games launches player dynamics to help improve multiplayer experiences. https:
//venturebeat.com/2020/03/11/riot-games-launches-player-dynamics-to-
help-improve-multiplayer-experiences/. Accessed: 2021-10-02.

[55] Steve Roberts. Multi-armed bandits: Part 1. https://towardsdatascience.com/m
ulti-armed-bandits-part-1-b8d33ab80697. Accessed: 2021-10-24.

80

https://machinations.io/
https://project.dke.maastrichtuniversity.nl/games/go4go/mango/index.htm
https://project.dke.maastrichtuniversity.nl/games/go4go/mango/index.htm
https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
http://www.nandeck.com/
https://www.undeaddesignlab.com/rise-of-the-city-state
https://www.undeaddesignlab.com/rise-of-the-city-state
https://venturebeat.com/2020/03/11/riot-games-launches-player-dynamics-to-help-improve-multiplayer-experiences/
https://venturebeat.com/2020/03/11/riot-games-launches-player-dynamics-to-help-improve-multiplayer-experiences/
https://venturebeat.com/2020/03/11/riot-games-launches-player-dynamics-to-help-improve-multiplayer-experiences/
https://towardsdatascience.com/multi-armed-bandits-part-1-b8d33ab80697
https://towardsdatascience.com/multi-armed-bandits-part-1-b8d33ab80697

Bibliography

[56] Denis Robilliard, Cyril Fonlupt, and Fabien Teytaud. Monte-carlo tree search for the
game of “7 wonders”. In Workshop on Computer Games, pages 64–77. Springer, 2014.

[57] How to make a tabletop simulator demo of your board game. https://brandonthega
medev.com/how-to-make-a-tabletop-simulator-demo-of-your-board-game/.
Accessed: 2021-10-02.

[58] Christoph Salge and Tobias Mahlmann. Relevant information as a formalised
approach to evaluate game mechanics. In Proceedings of the 2010 IEEE Conference
on Computational Intelligence and Games, pages 281–288. IEEE, 2010.

[59] Dilini Samarasinghe, Michael Barlow, Erandi Lakshika, Timothy Lynar, Nour
Moustafa, Thomas Townsend, and Benjamin Turnbull. A data driven review of board
game design and interactions of their mechanics. IEEE Access, 9:114051–114069,
2021.

[60] Jesse Schell. Tenth Anniversary: The Art of Game Design: A Book of Lenses. AK
Peters/CRC Press, 2019.

[61] Noor Shaker, Mohammad Shaker, and Julian Togelius. Ropossum: An authoring
tool for designing, optimizing and solving cut the rope levels. In Ninth Artificial
Intelligence and Interactive Digital Entertainment Conference, 2013.

[62] Adam Smith, Mark Nelson, and Michael Mateas. Prototyping games with biped. In
Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 4, 2009.

[63] Adam M Smith, Mark J Nelson, and Michael Mateas. Ludocore: A logical game
engine for modeling videogames. In Proceedings of the 2010 IEEE Conference on
Computational Intelligence and Games, pages 91–98. IEEE, 2010.

[64] Gillian Smith, Jim Whitehead, and Michael Mateas. Tanagra: A mixed-initiative level
design tool. In Proceedings of the Fifth International Conference on the Foundations
of Digital Games, pages 209–216, 2010.

[65] Squib. https://squib.rocks/. Accessed: 2021-10-02.

[66] Sus calculator. https://uiuxtrend.com/sus-calculator/. Accessed: 2022-02-16.

[67] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. Adaptive computation and machine learning. The MIT Press, Cambridge,
Massachusetts London, England, second edition. edition, 2018.

[68] Sutton barto summary chap 02 - multi-armed bandits. https://lcalem.github.io
/blog/2018/09/22/sutton-chap02-bandits. Accessed: 2021-10-24.

[69] Buildbeautiful mobile & web apps with flutter widgets | syncfusion. https://www.
syncfusion.com/. Accessed: 2022-06-03.

81

https://brandonthegamedev.com/how-to-make-a-tabletop-simulator-demo-of-your-board-game/
https://brandonthegamedev.com/how-to-make-a-tabletop-simulator-demo-of-your-board-game/
https://squib.rocks/
https://uiuxtrend.com/sus-calculator/
https://lcalem.github.io/blog/2018/09/22/sutton-chap02-bandits
https://lcalem.github.io/blog/2018/09/22/sutton-chap02-bandits
https://www.syncfusion.com/
https://www.syncfusion.com/

Bibliography

[70] Tables generator. https://www.tablesgenerator.com/. Accessed: 2022-01-21.

[71] Tabletop simulator. https://www.tabletopsimulator.com/. Accessed: 2021-10-02.

[72] Tabletopia. https://tabletopia.com/. Accessed: 2021-10-02.

[73] Unity real-time development platform | 3d, 2d vr & ar engine. https://unity.com/.
Accessed: 2022-02-28.

[74] The most powerful real-time 3d creation tool - unreal engine. https://www.unreal
engine.com/en-US/. Accessed: 2022-02-28.

[75] Vassal. https://vassalengine.org/. Accessed: 2021-10-02.

[76] Georgios N. Yannakakis, Antonios Liapis, and Constantine Alexopoulos. Mixed-
initiative co-creativity. In FDG, 2014.

[77] Zuntzu. https://www.zuntzu.com/. Accessed: 2021-10-02.

82

https://www.tablesgenerator.com/
https://www.tabletopsimulator.com/
https://tabletopia.com/
https://unity.com/
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/
https://vassalengine.org/
https://www.zuntzu.com/

A. Appendix

1 fun computeUct(
2 parentVisits: Int ,
3 wins: Int ,
4 draws: Int ,
5 losses: Int ,
6 visits: Int
7): Double {
8 val v: Double = if (visits != 0) visits.toDouble () else return Double.

MAX_VALUE
9 val w: Double = wins.toDouble ()

10 val d: Double = draws.toDouble ()
11 val l: Double = losses.toDouble ()
12 val xi: Double = (w - l + d) / v
13

14 return xi + c * sqrt(ln(parentVisits.toDouble ()) / v)
15 }

Listing A.1: computeUct function

83

	Abstract
	Kurzfassung
	List of Tables
	List of Figures
	List of Algorithms
	Listings
	Introduction
	History and Motivation
	Synopsis

	Related Work
	Literature Review
	Existing Software

	Game and Artificial Intelligence Concepts
	Game Concepts
	Artificial Intelligence Concepts

	Prototypical – A Board Game Development Framework
	Modelling
	Components
	Conditions
	Actions

	Simulation
	Executions
	AI Agents

	Analysis
	State Inspection
	Queries
	Compound Queries

	Results
	Examples
	Movement Points
	Polis: Rise of the City State
	Tic-Tac-Toe

	User Trials
	Hardware and Software
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix

