

# **MASTERARBEIT / MASTER'S THESIS**

Titel der Masterarbeit / Title of the Master's Thesis

## "A Detachment localised in the Stangalm Mesozoic (s.l.)

## (Upper Austroalpine Unit, Carinthia, Austria)"

verfasst von / submitted by Manuel Werdenich, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Master of Science (MSc)

Wien, 2022 / Vienna 2022

| Studienkennzahl It. Studienblatt /<br>degree programme code as it appears on<br>the student record sheet: | UA 066 815                              |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Studienrichtung It. Studienblatt /<br>degree programme as it appears on<br>the student record sheet:      | Masterstudium Erdwissenschaften UG2002  |
| Betreut von / Supervisor:                                                                                 | Univ. Prof. Mag. Dr. Bernhard Grasemann |
| Mitbetreut von / Co-Supervisor:                                                                           | -                                       |

#### Erklärung

Hiermit versichere ich, Manuel Werdenich

- dass ich die vorliegende Masterarbeit selbstständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubter Hilfe bedient habe,
- dass ich dieses Masterarbeitsthema bisher weder im In- noch im Ausland in irgendeiner Form als Prüfungsarbeit vorgelegt habe
- und dass diese Arbeit mit der vom Begutachter beurteilten Arbeit vollständig übereinstimmt.

Wien, am 20.09.2022

## I. Acknowledgements

I am in the fortunate position of having met many people with a high level of professional competence early on during my studies, who have always supported and helped me.

First and foremost, I would like to thank my supervisors Bernhard Grasemann from the University of Vienna and Christoph Iglseder from the GBA for their support and advice in the realisation of this Thesis. Christoph, thank you for the conception of this work and for sharing ideas regarding the evolution of the Alps with me. I enjoyed the fieldwork and the nice evenings in Predlitz with you, as much as I learned how to proper map a region. Also thank you for your never-ending motivation and patience in teaching me the differences between tectonic units and lithostratigraphic units and much more for pulling me out when I saw no progress.

Bernhard, thank you for your helpful input and support in microscopical and structural geological issues. Also, thanks for the given time and free space to find my way.

Special giant thanks to Marianne Sophie Hollinetz (aka. Frau Professor) thank you so much for proof reading and correcting my "farmer boy English" and for your helping hand while fieldwork and your helping brain in fruitful discussions, while I was writing this thesis. You have significantly influenced the way I think about and deal with geological issues. I learned a lot from you. You have always kept me grounded and helped me to deal with my worries.

Also big thanks to Gerd Rantitsch from the Montanuniversity of Leoben for providing the Raman Data and the instructive session in Leoben, while I was doing a few Raman measurements by my own.

I would also like to thank my mother Silvia and my sadly deceased grandmother for their financial and mental support throughout my entire time at university, without their support, none of this would have been possible. Also mentioned are my former roommates Daniela (although her role as my sister is much more important), Tobias and Anna, who have not always contributed to my productivity but have accompanied me through the difficult time of the pandemic.

I furthermore want to thank my fellow students Gerald, Moritz, Eva, Lukas, 2x Steffi, Michi, Sophia and all others for the wonderful hours after studying and working, and for the countless times when I complained about situations. Without you, the studies would never have been successful.

i

## II. Abstract

Mechanisms of exhumation in the Upper Austroalpine Unit are rarely investigated. Based on new structural field data, microstructural observations, and Raman micro-spectroscopy on carbonaceous material a major detachment juxtaposing Drauzug-Gurktal Nappe System against the transgressive Permo-Mesozoic cover sequence of the Ötztal-Bundschuh Nappe System (Stangalm Mesozoic s. l.) with Eo-alpine top-SE kinematics has been identified in the area south of Flattnitz (Carinthia, Austria).

The hanging wall unit comprises phyllites, and graphite schists, which experienced deformation at greenschist facies conditions. Raman microspectroscopy of carbonaceous matter constrains maximum temperatures between 388°C and 409°C. Isoclinal and open folds recognized in these units are attributed to alpine deformation.

The footwall unit consists of dolomitic ultra-mylonite and impure calcitic marble ultra-mylonite corresponding to the Stangalm Mesozoic s.l. (Bundschuh Nappe). An association of metaconglomerate and graphite schist intercalated in the Mesozoic carbonate lithologies exhibits the same structural element as the surrounding rocks. Metamorphic peak temperatures are comparable in all lithologies and range between 435°C and 519°C. Based on lithological characteristics these rocks are identified as metamorphic equivalent of the Upper Carboniferous Stangnock Formation, previously described as the Oberhof Lithodeme. The results show that this unit was incorporated during nappe stacking and was exhumed together with the Stangalm Mesozoic s.l. Therefore, it constitutes a separate nappe of the Ötztal-Bundschuh Nappe system and the term Kuster Nappe is proposed.

In all lithologies an ESE-trending stretching lineation is the pervasive structural element. C-type shear bands, flanking folds, crystal- and shape preferred orientation of mineral grains consistently indicate top-E kinematics. Any top-W deformation related to nappe stacking was entirely overprinted. From structurally lower to higher levels, a decrease of deformation temperature is identified.

Due to the observed strong coaxial deformation in quartz and carbonate rich lithologies of the footwall units ductile thinning is interpreted as main exhumation process. Trigonometrical estimation of the distance of displacement indicates approximately 60 kilometres of displacement along the shear zone. Therefore, an Eo-alpine low angle normal fault with top E kinematics is present around Flattnitz and at Mount Kuster.

ii

## III. Zusammenfassung

Die Mechanismen der Exhumation in den Oberostalpinen Einheiten sind bisher nur wenig untersucht worden. Auf Grundlage neuer strukturegeologischer Felddaten, mikrostruktureller Beobachtungen und Raman-Mikrospektroskopie Messungen an kohlenstoffhaltigem Material wurde im Gebiet südöstlich von Flattnitz (Kärnten, Österreich) eine mächtige Scherzone identifiziert, die das Drauzug-Gurktal-Deckensystem und die transgressive permo-mesozoische Bedeckung des Ötztal-Bundschuh-Deckensystems (Stangalm-Mesozoikum s. l.) mit Eo-Alpiner Top-E-Kinematik trennt.

Die hangenden Einheiten bestehen aus Phylliten und Graphitschiefern, die unter grünschieferfaziellen Bedingungen deformiert wurden. Die Raman-Mikrospektroskopie zeigt ein Temperaturmaximum der Metamorphose zwischen 388°C und 409°C. Isokline und offene Falten in diesen Einheiten werden auf Alpine Deformation zurückgeführt.

Die Liegenden Einheiten bestehen aus dolomitischem Ultramylonit und unreinem kalzitischem Marmor-Ultramylonit, welche dem Stangalm-Mesozoikum s.l. (Bundschuh-Decke) zugeordnet werden. Eine Assoziation von Metakonglomerat und Graphitschiefer, welche in den mesozoischen Lithologien eingebettet ist, weist die gleiche Strukturprägung wie die umgebenden Gesteine auf. Die Temperaturen der Metamorphose sind in allen Lithologien vergleichbar und liegen zwischen 435°C und 519°C. Aufgrund der lithologischen Merkmale werden diese Gesteine als höher metamorphes Äquivalent der karbonen Stangnock-Formation identifiziert und dem Oberhof Lithodem zugeordnet. Die Ergebnisse zeigen, dass diese Assoziation während der Deckenstapelung inkorporiert und zusammen mit dem Stangalm-Mesozoikum s.l. exhumiert wurde. Daher stellt sie eine eigenständige Decke des Ötztal-Bundschuh-Deckensystems dar und wird als Kuster-Decke bezeichnet.

In allen Lithologien ist eine ESE-streichende Lineation das vorherrschende Strukturelement. C-Typ Scherbänder, flanking structures sowie die kristall- und formpräferierte Orientierung der Mineralkörner weisen durchwegs auf eine Top-E-Kinematik hin. Jegliche Top-W-Verformung, die mit der Stapelung der Decken zusammenhängt, wurde vollständig überprägt. Von den strukturell niedrigeren zu höheren Einheiten wird eine Abnahme der Deformationstemperatur festgestellt.

Aufgrund der beobachteten starken koaxialen Deformation in den quarz- und karbonatreichen Lithologien der Liegenden Einheiten wird "ductile thinning" als Hauptprozess der Exhumierung interpretiert. Eine trigonometrische Abschätzung der Distanz der Abschiebung deutet auf eine Versatzweiten von etwa 60 Kilometern entlang der Scherungszone hin. In der Umgebung um Flattnitz und am Berg Kuster ist eine Eo-Alpine Scherzone mit Top E Kinematik aufgeschlossen.

iii

## IV. List of abbreviations

| NS     | Nappe System                           |
|--------|----------------------------------------|
| KWNS   | Koralpe-Wölz Nappe System              |
| ÖBNS   | Ötztal-Bundschuh Nappe System          |
| DGNS   | Drauzug-Gurktal Nappe System           |
| s.str. | sensu stricto                          |
| s.l.   | sensu lato                             |
| D.     | Deformation phase                      |
| SPO    | Shape preferred orientation            |
| СРО    | Crystallographic preferred orientation |
| DPC    | Dissolution precipitation creep        |
| Qz     | Quartz                                 |
| Fsp    | Feldspar                               |
| Wm     | White mica                             |
| Wm-det | White mica detrital                    |
| Tre    | Tremolite                              |
| Cal    | Calcite                                |
| Ру     | Pyrite                                 |
| Tlc    | Talc                                   |
| Tur    | Turmaline                              |
| Fe-Ox  | Iron oxide                             |
| Grt    | Garnet                                 |
| Chl    | Chlorite                               |
| S      | Schistosity planes                     |
| L      | Lineation                              |
| FA     | Fold axis                              |
| AP     | Axial plane                            |
|        |                                        |

## Table of Content

| II. Abstract                                                              | ii         |
|---------------------------------------------------------------------------|------------|
| III. Zusammenfassung                                                      | <i>iii</i> |
| IV. List of abbreviations                                                 | iv         |
| 1 Statement of aim & Introduction                                         | 3          |
| 2 State of the Art                                                        | 4          |
| 2.1 Geology of the Eastern Alps                                           | 4          |
| 2.2 Gurktal Alps                                                          | 6          |
| 2.3 Geology of the research area                                          | 9          |
| 2.4 Deformation phases (in the Gurktal Alps)                              | 11         |
| 2.5 Geomorphology                                                         | 13         |
| 3 Methods                                                                 | 14         |
| 3.1 Mapping, Field work & Sampling                                        | 14         |
| 3.2 Raman micro-spectroscopy                                              | 14         |
| 3.3 Microstructural analysis & Imaging                                    | 15         |
| 3.4 Quantification                                                        | 15         |
| 3.4.1 Refold structures                                                   | 15         |
| 3.4.2 Paleo-piezometry                                                    | 15         |
| 4 Results                                                                 | 17         |
| 4.1 Mapping                                                               | 17         |
| 4.2 Description of Lithologies of the lithostratigraphic units / Lithodem | nes 21     |
| 4.2.1 Stangalm Mesozoic s.l.                                              | 21         |
| 4.2.1.1 Weißwände Lithodeme                                               | 22         |
| 4.2.1.2 Bockbühel Lithodeme                                               | 23         |
| 4.2.1.3 Karnerboden Lithodeme                                             | 24         |
| 4.2.1.4 Leckenschoder Lithodeme                                           | 25         |
| 4.2.2 Obernor Littloderne<br>4.2.3 Murau Group                            | 20<br>27   |
| 4.2.4 Spielriegel Complex                                                 | 28         |

| 4.3 Structural observations & measurements                         | 29 |
|--------------------------------------------------------------------|----|
| 4.4 Microstructural observations                                   | 35 |
| 4.4.1 Weißwände Lithodeme & Karnerboden Lithodeme                  | 35 |
| 4.4.2 Leckenschober Lithodeme                                      | 37 |
| 4.4.3 Oberhof Lithodeme                                            | 39 |
| 4.4.4 Murau Group                                                  | 41 |
| 4.4.5 Spielriegel Complex                                          | 42 |
| 4.5 Refold structures                                              | 44 |
| 4.5.1 Vector Triangle plots:                                       | 47 |
| 4.6 Results from Raman micro-spectroscopy                          | 48 |
| 4.7 Results from Paleopiezometry                                   | 50 |
| 5 Discussion & Interpretation                                      | 52 |
| 5.1 Structural evolution & metamorphism (during D <sub>3a</sub> ): | 52 |
| 5.2 The Detachment                                                 | 54 |
| 5.2.1 Structures of the shear zone                                 | 54 |
| 5.2.2 Shear zone evolution                                         | 55 |
| 5.2.3 Geochronological Data                                        | 57 |
| 5.2.4 Low angle Detachment vs. ductile thinning                    | 58 |
| 5.3 Estimation of the distance of displacement                     | 59 |
| 5.4 The Kuster Nappe                                               | 61 |
| 6 Conclusion                                                       | 64 |
| 7 References                                                       | 66 |
| 8 List of Figures                                                  | 71 |
| 9 List of Tables                                                   | 74 |
| 10 Appendix                                                        | 75 |

### 1 Statement of aim & Introduction

Since the discovery of plate tectonics in the 1960s, the understanding of plate movement and the processes associated with mountain building has been continuously expanded. Thus, in the example of the Alps, which result from the accumulation, subsidence and exhumation of rocks and sedimentary products from different epochs of the geological era, a complex mountain range is formed. It is therefore of fundamental interest to assign the originally laterally distributed deposited (palaeographic/ lithodemic) units, which in this case form the Alps, to jointly experienced deformation mechanisms and phases (correlated to "geological events") and to classify them together in the sense of tectonic units (nappes).

For this purpose, this study investigates a major tectonic boundary located in Flattnitz (Carinthia, Austria). In this area, nappe system boundaries separating the Ötztal-Bundschuh - and the Drauzug-Gurktal Nappe System are exposed. The aim of this work is to characterize these (complex) contact/ shear zones between the nappe systems in terms of their jointly experienced deformation history, thermal evolution, and properties of the evolved nappes.

The research area is located south of the village of Flattnitz in Carinthia and extends from Mount Kuster (1669 m) to the SE flank of Mount Hirnkopf (1800 m). Based on previous mappings by Stowasser (1956) and Beck Mannagetta (1959), a revised map covering 10 km<sup>2</sup> is presented. From structural data from outcrop to microscope scale, the deformation history of this area is outlined. Metamorphic peak temperatures got determined by Raman microspectroscopy of carbonaceous material, that infers a temperature peak of 520°C. Using the grain size tool and the included paleo-piezometry toolbox of (Marco A. Lopez-Sanchez, 2018), the reconstruction of the paleo-differential stress regarding to deformation and subsidence of the quartz and calcite rich lithologies of both nappe systems is attempted. Based on the new data, a revised tectonic subdivision of the nappe systems in nappes and consequences for Upper Austroalpine tectonics is presented.

## 2 State of the Art

#### 2.1 Geology of the Eastern Alps

The Eastern Alps were formed as the result of the continuous collision of the European plate and the Adriatic plate. Accumulation of microcontinents, slope sediments and oceanic deposits resulted in a mountain range with a complex structure. The division of major tectonic units in the Eastern Alps is based on their paleogeographic origin from the European Continent, Penninic Oceans, Neo-Tethys Ocean, and Adriatic Continent (Froitzheim et al., 2008; Schmid et al., 2004). In the latter named units an intracontinental subduction event (Janak et al., 2004; Stüwe & Schuster, 2010) took place during the Cretaceous. The associated high-pressure metamorphism and deformation is referred as the Eo-Alpine event (Thöni & Jagoutz, 1993), which lead to the formation of the Upper Austroalpine nappe stack. This nappe stack is subdivided into several nappes belonging to several nappe systems with different metamorphic and structural characteristics. The units are built of partly polymetamorphic crystalline basement, Paleozoic and Permo-Mesozoic (meta-)sediments (Schuster, 2015; Schuster et al., 2010). The Austroalpine Unit was earlier subdivided in a Lower, an Upper and a Middle Austroalpine Unit after the nomenclature of Tollmann (1977). Insights of Schmid et al. (2004) suggested that the Middle and the Upper Austroalpine Unit are summarized in the Upper Austroalpine Unit, just the latter one is of relevance in this study. The Upper Austroalpine Unit consists of upper crustal nappe systems that experienced ductile (Veitsch-Silbersberg NS; Tirolic-Noric NS) and brittle deformation (Bajuvaric and Juvavic NS) as well as poly-metamorphic basement nappe systems. These are, from structurally highest to lowest level, the Drauzug-Gurktal Nappe System (DGNS), the Ötztal-Bundschuh Nappe System (ÖBNS), the Koralpe-Wölz Nappe System (KWNS). Cretaceous eclogites only occur in the KWNS which comprises the deepest subducted part. During extrusion of these HP units the metamorphic gradient in the hanging wall records normal and in foot wall inverted metamorphic gradients. The structurally lowest unit is the Silvretta-Seckau Nappe System (SSNS).

This study focuses on the transition between the (paleographic) Ötztal-Bundschuh Nappe System and Drauzug-Gurktal Nappe System and their interaction during Cretaceous nappe stacking followed by Upper Cretaceous normal faulting.

4



*Figure 1: Tectonic map of the alps by Schmid et al.; the black box and the red arrow mark the research area. Coordinates of Mount Kuster N46.931197, E14.039298 (Carinthia, Austria).* 

#### 2.2 Gurktal Alps

The Gurktal Alps are built from nappes of the Koralpe-Wölz NS, the Ötztal-Bundschuh NS and the eponymous Drauzug-Gurktal NS. Lithologically, these units consist of (1) a crystalline basement, (2) pre-Variscan metasediments, (3) a post-Variscan (Pennsylvanian-Cisuralian) cover, (4) a Permo-Mesozoic cover and (5) a Cretaceous-Paleogene cover, although these constituents comprise different proportions of the tectonic units.



*Figure 2: Tectonic map of the Gurktal Alps; the white square indicates the position of Figure 4; from and modified after Rantitsch et al., 2020.* 

The structurally lowest units can be assigned to the uppermost part of the Koralpe-Wölz NS (Gstoder Nappe and undefined mica schist nappes). The main lithostratigraphic unit in the Gstoder Nappe is the Radenthein Complex, which shows a heterogeneous assemblage of metapelites with amphibolite and hornblende bearing mica schists, marble, and graphite schist (crystalline basement type 2 according to Schuster, 2015). This nappe experienced a tectono-metamorphic overprint during the Eo-Alpine event at metamorphic peak conditions of c. 550-600°C and 9-11 kbar (Koroknai et al., 1999; Kaindl & Abart, 2002; Hoinkes et al., 2010; Krenn et al., 2011; Hollinetz et al., 2018; Iglseder et al., 2018). Raman micro

spectroscopy temperatures yielded temperatures of around 540-580° C in the Ramingstein window (Iglseder et al., 2018; Rantitsch et al., 2020) and 520-550°C in the Oberhof window (Hollinetz, 2018). The metamorphic peak is constrained by <sup>144</sup> Sm/<sup>143</sup> Nd garnet dating and occurred at 84-100 Ma (Schuster & Frank, 1999). <sup>40</sup>Ar/<sup>39</sup>Ar muscovite ages and Rb/Sr biotite ages document subsequent exhumation at 83-86 Ma and further cooling below 300°C between 72-77 Ma (Schuster & Frank, 1999; Hollinetz et al., 2018; Iglseder, 2019).

The overlying Bundschuh Nappe of the Ötztal-Bundschuh NS is lithostratigraphically subdivided in a basement of the Bundschuh-Priedröf Complex that consists of garnet-bearing mica schist, paragneiss, and Ordovician intrusions of the Bundschuh-Orthogneis Lithodeme (crystalline basement type 1 according to Schuster, 2015), as well as a Permo-Mesozoic cover (Stangalm Mesozoic s.str. after Stowasser, 1956; respectively s.l. after Iglseder, 2019; Iglseder et al., 2019).

Two-phased garnets in the crystalline basement document a polyphase metamorphic overprint with peak conditions at 600-650 °C and 10-11 kbar (Koroknai et al., 1999; Schuster & Frank, 1999). Eo-Alpine peak conditions are constrained by petrological investigations and Raman microspectroscopy measurements at 520-560 °C and 10 kbar in the Eastern parts of the Bundschuh Nappe (Hollinetz, 2018; Hollinetz et al., 2019). Raman data from structural lower levels yields temperatures of 510-590 °C in the Basement and in covering parts 450-530 °C, which indicates a normal metamorphic gradient (Iglseder et al., 2018; Rantitsch et al., 2020). The age of the Eo-Alpine overprint is determined form U-Th-Pb monazite dating and <sup>40</sup>Ar/<sup>39</sup>Ar muscovite ages that range between 99 and 82 Ma (Neubauer et al., 1998; Schuster & Frank, 1999; Iglseder et al., 2018; Hollinetz et al., 2019). Cooling below 300 °C documented by Rb/Sr biotite ages occurred between 81 and 87 Ma (Schuster & Frank, 1999; Iglseder et al., 2018).

Five previously identified nappes corresponding to the Drauzug-Gurktal NS and comprise the uppermost part of the nappe stack in the Gurktal Alps (Huet, 2015; Iglseder et al., 2016). The structurally lowest unit is the Murau Nappe, which consists of pre-Variscan siliciclastic metasediments in the basal part ("Murau Group"), and carbonate dominated lithologies ("Murau Limestone") in the structurally upper proportions. In the Northern parts, a Permo-Mesozoic cover is also present (Neubauer et al., 2019). The Murau Nappe is overlain by the Ackerl (Ackerl crystalline Complex) and Pfannock Nappes (Pfannock orthogneiss). Both nappes contain metasediments that transgressed on the crystalline basement and range from the Carboniferous (Stangnock Formation) to the Triassic (e.g., Lantschfeldquarzite, "Pfannock Trias") (Iglseder & Huet, 2019 and references therein). The overlying Königstuhl Nappe contains a pre-Variscan low-grade metamorphic basement made of pyroclastic

metavolcanic and (siliciclastic) metasedimentary rocks as well as dolomite marbles (Kaser Complex, Iglseder et al., 2019). Large proportions of the nappe consist of Upper Carboniferous continental metasediments of the Stangnock Formation (Schönlaub, 2014a). This formation is built of coarse to fine-grained molasse-type sediments of a braided river network composed of quartz-rich polymictic conglomerates at the base, sandstones and arenaceous shales with a sub-greenschist facies overprint in the region around Turrach (Iglseder et al., 2019). Relative dating of plant fossils suggests an age of 310 – 305 Ma of the Upper Carboniferous (Fritz et al., 1990; Fritz & Krainer, 2007; Kabon & Iglseder, 2019 and references therein). These are overlain by the Lower Permian (Cisuralian) Werchzirm Formation (Iglseder, 2019).

The tectonically uppermost unit is the Stolzalpe Nappe, which consists of pre-Variscan siliciclastic metasediments (Spielriegel Complex) and Upper Ordovician metavolcanics (Kaser Complex, Iglseder et al., 2018, Iglseder, 2019). In structurally higher levels of this nappe, post-Variscan metasediments of Upper Permian to Cisuralian age of the Stangnock Formation and Werchzirm Formation occur, as well as a Permo-Mesozoic and Cretaceous-Paleogene cover in the South-Eastern areas of this unit. Which experienced a low-grade metamorphic overprint due to the Eo-Alpidic event.

The peak of metamorphism in these five nappes range from upper greenschist facies at basal proportions (Frimmel, 1987; Koroknai et al., 1999; Neubauer, 1987) to sub-greenschist and very-low-grade facies in structural higher levels (Rantitsch et al., 2020; Huet, 2015; Iglseder et al., 2016; Von Gosen et al., 1985). Garnet growth at the base of the Murau Nappe indicates Variscan amphibolite facies conditions during the metamorphic overprint. The Eo-Alpine peak and overprint occurred at 460-500°C (Koroknai et al., 1999). Raman microspectroscopy show for the structurally uppermost nappes (Stolzalpe and Königstuhl Nappe) a Variscan peak of metamorphism of 350°C and an Eo-Alpine overprint of average 250°C (Iglseder et al., 2016).

#### 2.3 Geology of the research area

Introductory structural and lithologic features are described in lithostratigraphic and lithodemic units belonging to nappes in higher ranked nappe systems. Based on their definition (Schmid et al., 2004; Froitzheim et al., 2008; Schuster, 2015 and references therein) nappe systems correspond to rock units and their paleogeographic position at +/- Jurassic times before involved in Alpine orogenesis. Nevertheless, most nappe definitions correspond to Alpine tectonics and superposition. In the following, I tried to use the description of features in a lithostratigraphic/ lithodemic unit. Sometimes, for better understanding I use the Stratigraphic + Tectonic combination.

The research area is located south of the village of Flattnitz in Carinthia and extends from Mount Kuster (1669 m) to the SE flank of Mount Hirnkopf (1800 m). The exposed rocks correspond to nappes of the ÖBNS and the overlying DGNS. In the following, the lithostratigraphic units that build up these nappes are described in more detail:

In a large part of the study area, rocks of the Permo-Mesozoic cover of the Bundschuh nappe are found; in contrast, no evidence of a crystalline basement is described in the area of mount Kuster (Stowasser, 1956). The occurrence of a crystalline basement is described in northern parts of the research area (Weissenbacher, 2015). The Permo-Mesozoic Cover consists predominantly of carbonate lithologies with siliciclastic intercalations. Formerly known as the "Flattnitz Trias" (Von Gosen et al., 1985), it corresponds to the Stangalm Mesozoic s.l. (Iglseder, 2019 and references therein; Iglseder et al., 2019). The protolith age of the metasediments ranges from the uppermost Permian to the Jurassic and is based on correlation with undeformed, non-metamorphic equivalents that occur in the Northern Calcareous Alps. Pistotnik (1976) interpreted a transgressive contact to the basement of the Bundschuh nappe and proposed a stratigraphic classification where the cover lithologies are subdivided in several formations. However, in the Flattnitz area the stratification sequence as described cannot be found due to a pronounced tectonometamorphic overprint that occurred during the Eo-Alpine tectonics. Thus, a subdivision in lithodemic units seems more appropriate, as recent research by Iglseder et al., (2019) suggests. Their classification of the Stangalm-Mesozoic s.l is used in this work and briefly summarized in the following:

The Weißwände Lithodeme (formerly "Unterer Dolomit" after Stowasser, 1956; "Wettersteindolomit" after Tollmann, 1958; Pistotnik 1973, 1974) consists of bright, fine-grained banded dolomites and is interpreted as metamorphic equivalent of the Wetterstein dolomite (Iglseder et al., 2019). Phyllites

9

and mica schists of the Bockbühel Lithodeme (formerly "Bockbühel Schiefer", Stowasser, 1956) comprise a metamorphic equivalent of the Partnach Formation (Weissenbacher, 2015; Iglseder et al., 2019) and occur intercalated in the Weißwände Lithodeme. The Karnerboden Lithodeme (formerly "Oberer Dolomit", "Trümmerdolomit", Stowasser, 1956) consists of dark greyish medium-grained dolomites and is interpreted as metamorphic equivalent of the Hauptdolomit (Iglseder et al., 2019). The uppermost Leckenschober Lithodeme (formerly "Kalkschiefer, Mergelschiefer, Kieselkalkschiefer", Stowasser, 1956; "Aptychen-Kalkschiefer", Tollmann, 1977) is comprised by platy limestones with intercalated phyllitc layers, and interpreted as metamorphic equivalent of the Allgäu- and Ammergau Formation (Iglseder et al., 2019 and references therein).

A special unit (of importance for the investigated area) was documented by Beck-Mannagetta (1959) incorporated into the Stangalm-Mesozoic. He described the occurrence of a well delimited lithological association consisting of strongly foliated quartz conglomerates, mica-rich meta-sandstone, and partly graphitic mica schist in the area between Johanniswand and Mount Kuster. He saw the lithologic affiliation of these lithologies as part of the Upper Carboniferous Stangnock Formation. Similarities to the Oberhof Lithodem (Hollinetz, 2018; Hollinetz et al., 2019) are suggested and are a main part of this study, defining a new tectonic unit, named the Kuster Nappe (see chapter 5.4).

The structurally higher parts belong to units of the DGNS. The Murau Group within the Murau Nappe is the structurally lowest lithostratigraphic unit in the research area and comprise pre-Variscan metasediments as garnet bearing, graphitic phyllites respectively mica schists. This is overlain by lithologies of the Stolzalpe Nappe namely the Spielriegel Complex. It comprises meta-sandstones in exchangeable layering with meta-siltstone and quartz-phyllite as well as rarely occurring layers of graphite-schist, chlorite-phyllite, chlorite-schist, greenish-slate, meta-tuff, meta-tuffite and quartzite. Subordinated dolomite marble ("iron dolomite") and calcite-marble exist. Towards upper structural levels, the occurrence of chlorite schist, chlorite, and quartz-phyllite is increasing (Iglseder, 2019).

10

#### 2.4 Deformation phases (in the Gurktal Alps)

Rocks exposed in the study area were subjected to polyphase deformation. In the following, the main pre- and alpidic deformation phases are presented. Based on earlier studies (Frimmel, 1987; Schuster, 1994; Huet, 2015; Hintersberger et.al., 2017; Iglseder & Huet, 2019), the main deformation phases of the research area are explained. Pre-Variscan structures belong to deformation phase D<sub>0</sub> only obvious in the Spielriegel Complex. Deformation phases  $D_1-D_2$  related to the Variscan event (after Hintersberger et al.; 2017) are obvious in the metasediments of the Spielriegel Complex. The  $D_3-D_4$ deformation phases are related to the Eo-Alpine event (after Hintersberger et al.; 2017), followed by the  $D_5$  deformation phase corresponding to the Neo-Alpine event (after Hintersberger et al.; 2017). These are most prominently expressed in the Permo-Mesozoic Stangalm-Mesozoic s.l. and Oberhof Lithodeme, partly in metasediments of lowermost parts of the Spielriegel Complex.

The oldest structural features  $(D_0)$  are observed in lithologic units of the Stolzalpe-Nappe and are classified as sedimentary and volcano-clastic sedimentary layering. These features comprise convolute bedding, cross bedding, and ripples are only preserved in regions that experiences less deformation during the following Variscan event. In most areas, these structures are largely overprinted by a penetrative axial plane schistosity. The sedimentary layering shows kilometre ranged domains of coherent layering dipping shallowly towards SE (Huet, 2015). Furthermore, the formation of the earliest phase is described as symmetric isoclinal parallel-folds (D<sub>1</sub>). This phase is shown in lithologic units of the Stolzalpe-Nappe (Spielriegel Complex and Kaser Complex) in shallow NW-SE dipping fold axis. Locally these folds show S-, Z-, and M-geometries. In the Murau Group this phase is indicated by folded quartz veins which pervasively overprint the sedimentary layering (Frimmel, 1987). The D<sub>2</sub> phase is represented by ENE verging, asymmetric kink folds with cm to km extent. The overprint of  $D_1$ folds by D<sub>2</sub> folds results in an interference pattern. Structural elements related to D<sub>2</sub> are a crenulation lineation parallel to the fold axis and a stretching lineation perpendicular to the fold axis. The Murau Group shows in this phase isoclinal folds parallel to the schistosity planes (s2) (Frimmel, 1987). However, due to the stronger overprint of later deformation phases, the  $D_1$  and  $D_2$  elements may be ambiguous in the Murau Group.

Structures interpreted as Eo-Alpine (Cretaceous) structures can be subdivided into two major phases: (A) ( $D_{3a}$ ) related previous WNW-verging close folds and brittle-ductile shear structures with WNWdirected kinematics are assigned to nappe stacking and thrusting. These structures got subsequently overprinted. (B) ( $D_{3b}$ ) top-to ESE directed structures related to WNW-ESE-directed extension due to exhumation and normal-faulting (Iglseder & Huet, 2019). These phases are expressed to a different degree in different units depending on the prevailing metamorphic grade during deformation and the magnitude of later overprint. This can be observed in the Radenthein Complex, Bundschuh-Priedröf Complex, Stangalm Mesozoic s.l., Murau Group, and in the Spielriegel Complex. Therefore, the structural features in the Spielriegel Complex corresponding to the ( $D_{3a}$ ) phase shown by WNW-verging, closed folds. Also, brittle-ductile transition shear structures with top-to WNW-directed kinematics are included. C'-type-shear bands with slickensides have a shallow dip towards SW to NW. Less common are conjugated shear planes. Phase  $D_{3b}$  in the Spielriegel Complex described by Huet (*2015*) is shown by normal faults dipping to ESE or WNW. These structures cut all pre-existing features. It could be shown that the maximum compressive principal stress axis ( $\sigma$ 1) is oriented vertically, and the minimum compressive principal stress axis ( $\sigma$ 3) is horizontally (N 280) oriented. The ( $D_{3b}$ ) structures especially are localised at nappe boundaries to and of the Königstuhl- & Bundschuh-Nappe (Iglseder & Huet, 2019, ATA, 2019 and references therein).

The structural overprint of the Murau Group can also be assigned to the Eo-Alpine event.  $(D_{3a})$  structures are ENE-WSW dipping fold axes as well as stretching lineation and partly top to the W thrusting (Neubauer, 1987).  $(D_{3b})$  structures are correlated with WNW-ESE extension and top to the E shearing which leads to the formation of C'-type shear bands (Hollinetz et al., 2018; Iglseder et al., 2018).

The units of the Stangalm Mesozoic s.l. show asymmetric isoclinal N-verging folds with E-W orientated fold axes originated from WNW thrusting while nappe stacking ( $D_{3a}$ ). There are geometric similarities of the ( $D_{3b}$ ) related isoclinal folds and therefore the formation of schistosity planes and ESE-WNW-directed mineral lineation parallel to the sedimentary layering (Frimmel 1987). Frimmel reported evidence for the formation of isoclinal folds and corresponding axial plane schistosity during this phase. They mostly occur in conjunction with C'-type shear bands with a detaching top to the ESE kinematic (Iglseder & Huet, 2019; Iglseder et al., 2019).

The D<sub>4</sub> phase is referred to the Neo-Alpine (Late Cretaceous-Neogene) event and therefore expressed as open obtuse to acute-angle folds in cm to dm scale. A diffuse crenulation lineation indicates a NNW-SSE shortening. Due to cross cutting relationships this event overprints further deformation phases and can be interpreted as tectonic structure (Huet, 2015). In the Stangalm Mesozoic s.l. this phase/ structure is presented in open asymmetric folds, which refold the older Eo-Alpine ones. Fold axes are orientated from E-W to ESE-WNW with slightly steeper orientated axial planes as in the D<sub>3b</sub> event.

 $D_5$  is expressed as a brittle deformation feature by steep joint sets.

#### 2.5 Geomorphology

Geomorphological observations were included into mapping of the area around Flattnitz, which experienced in the Würm massive overprint by glacial erosion of the Mur Glacier and northern parts of the Drau Glacier (Van Husen, 2019). This glacial activity originated from the eastern end of the Hohe Tauern. The ice was flowing in eastern direction via the Lungau into the Murtal. More southern proportions flowed in south-eastern direction via the Lieser- and Maltatal to the northern boundary of the Drau Glacier. In this ice accumulation area, a closed ice flow network was active. Due to the thick ice layer, the flow of ice from the accumulation area and the resulting accompanying pressure, a flow off in northern direction was not possible. Therefore, in the region of Turrach and Flattnitz the ice of the Mur Glacier drifted further to the south and formed SE of Turrach a transfluence with the Drau Glacier and in Flattnitz an overflow of Mount Kuster and an ice fall. Van Husen (2019) shows that the ice flow in the region of Turracher Höhe had a width of 1500 meters and thickness of 300 meters. At Flattnitz he showed a filling of the valley of 3500 meters width and a thickness of the ice layer of 400-500 meters, documented by glacial erratic blocks. This leads to massive glacial erosion as deepening of the valley bottoms and steepening of mountain flanks, what enables mass movements as the ice retreated. In the Würm LGM the ice cover reaches its maximum.



*Figure 3 left: Reconstruction and iceflow from glacier system of the Mur glacier during the last ice age (Würm); Right: Reconstruction of glaciation in the region of Turrach & Flattnitz; Figures from Van Husen, 2019.* 

### 3 Methods

The aspiration of this work is the presentation of a revised map, structural interpretation, and deformation history with correlation of the maximum thermal evolution of the area around Mount Kuster S of Flattnitz.

#### 3.1 Mapping, Field work & Sampling

Geological mapping focused on the lithological units, structural geological and tectonic aspects, metamorphic overprint, and the quaternary development. The tectonic and stratigraphic position of the lithodemic units as well as their geological affiliation were identified by detailed mapping of a 10 km<sup>2</sup> extended area around Flattnitz in Carinthia, including Mount Kuster.

Samples of all units were taken and prepared for microscopical and structural investigations. The thin sections were compounded in the thin section laboratory of the Department of Geology and Department of Lithospheric Research at the University of Vienna.

#### 3.2 Raman micro-spectroscopy

Carbonaceous material especially graphite schist and graphite-bearing metasediments were systematically mapped and sampled. The sample set comprises 17 samples which were taken during the mapping for this thesis and from preceded mappings by C. Iglseder from the Geological Survey of Austria, partly published in Rantitsch et al., 2020. Carbonaceous matter for the Raman measurements was isolated from the rock matrix using hydrochloric and hydrofluoric acid treatment described by Rantitsch et al., (2004). Raman spectra were acquired by using a Dilor confocal Raman spectrometer equipped with a frequency-doubled Nd-YAG laser (100 mW, 532 nm), a diffraction gratings of 1800 grooves/mm and a Peltier-cooled, slow-scan, CCD matrix-detector. Laser focusing and sample viewing were performed through an Olympus BX 40 microscope fitted with a 10 × long working distance objective lens. To obtain a better signal to noise ratio five scans with an acquisition time of 30 s in the 700–2000 cm–1 region was averaged. Minimum 20 spectra for each sample were recorded. The results were provided by Professor Dr. Gerd Rantitsch from the University of Leoben.

#### 3.3 Microstructural analysis & Imaging

Microstructural and thin section analysis has been done with the optical microscope Nikon Optiphot2-Pol. Images from thin sections were taken with the optical camera microscope Leica DM 4500 P.

#### 3.4 Quantification

#### 3.4.1 Refold structures

Measurements of axial planes and fold axis of different deformation phases were taken to classify the type of refold structure after the nomenclature of Grasemann et al., (2004). These measurements are used to present a ternary diagram (vector-triangle plot), which allows a simple representation of a complex three-dimensional structure.

#### 3.4.2 Paleo-piezometry

The size of dynamical recrystallised grains in highly deformed monomineralic rocks is a function of differential stress. This method to measure the magnitude of paleo differential stress is called paleopiezometer (Twiss, 1977). Consequently, for a particular differential stress during deformation, different minerals have each particular grainsize depending on the deformation mechanism, water content of grains and deformation temperature (Passchier, 2005).

Generally, the four main deformation mechanisms are (1) cataclasis, which means deformation and displacement by cracks and microcracks of rigid particles. (2) Diffusive mass transfer by solution (DMT) or dissolution and precipitation, this is understood as deformation by the movement of lattice defects, ions, atoms, and molecules driven by chemical potential gradients. Natural examples are cleavage domains, SC, and SCC' fabrics. (3) Intracrystalline plasticity is shown in permanent misorientation of the crystal lattice. This deformation is driven by the movement of extra half planes, seen in grain boundary sliding and twinning. (4) Solid-state diffusive mass transfer is expressed as phase transformation commonly seen in mineral reactions and chemical zonation (Blenkinsop, 2000).

The estimation of the differential stress is carried out using the toolbox coded in Phyton by Marco Lopez Sanchez (2018). Therefore, the grains of nearly monomineralic samples were considered and mapped. The area of each grain was calculated using the software ImageJ. Further on the circular diameter of each measured grain area must be calculated by the formular:  $d = 2 * \sqrt[2]{\left(\frac{\text{Area}}{\pi}\right)}$ . Depending on the piezometer used, the distribution of the grain sizes must be given in the form of the arithmetic mean or in the form of the rooted mean squared. The script provides different piezometers which were calibrated using different sets of natural samples and experiments, therefore different piezometers provide slightly different values for the differential stress.

#### 4.1 Mapping

The areal mapping of the research area leads to the following map (Fig. 4). In this thesis, all coordinates are given in the WGS 1984 UTM Zone 33N coordinate system. Lithological, structural geological and geomorphological issues were considered during mapping. Mount Kuster and Mount Hirnkopf SW of Flattnitz (Carinthia), which are mostly built of lithologies of the Mesozoic cover unit of the Bundschuh Nappe the so called Stangalm Mesozoic s.l. overlain and juxtaposed by units of the Drauzug-Gurktal Nappe System. The resulting map and the corresponding legend are presented below. For better readability, fold axes of the different deformation events are shown in chapter 4.3 (Fig. 19 A & B). An interpreted lithological and tectonic profile from field observations and measurements is provided (Fig. 5 & 6)



Figure 4: Geological map of the research area, drawn in ArcGis v.10.7.



*Figure 5: Interpreted profile of Eo-Alpine nappe stacking structure with incorporated Oberhof Lithodeme, overprinted by the D3b phase.* 



*Figure 6: Interpreted tectonic profile, Ötztal-Bundschuh Nappe System in footwall position (Kuster Nappe & Bundschuh Nappe), Drauzug-Gurktal Nappe System in hanging wall position.* 

#### 4.2 Description of Lithologies of the lithostratigraphic units / Lithodemes

In this part, a description of the lithodemic units and their corresponding lithologies using the nomenclature of Iglseder et al., (2019) and Iglseder (2019) (Fig. 7) based on macroscopically observations in the field as well as microscopic investigations of the samples is provided. The description follows from structurally lower to structurally higher units.

4.2.1 Stangalm Mesozoic s.l.



*Figure 7: Ideal profile of the Stangalm Mesozoic s.I. & comparison with units of the Northern Calcareous Alps from Iglseder et al., (2019).* 

#### 4.2.1.1 Weißwände Lithodeme

The Weißwände Lithodeme comprises the lowermost structural and lithological unit in the study area and covers around 4km<sup>2</sup> S and W of the village Flattnitz. It is exposed at the waterfall 300 meters E from Lake Flattnitz and in the orographic western side of the corresponding valley as well as on the northern flank of Mount Kuster. It shows in the investigated area a thickness of approximately 800 meters increasing towards NW.

The Weißwände Lithodeme is characterised by a whitish and greyish banded ultra-fine-grained dolomite marble (Fig. 8 A & B). In the field, these dolomite marbles have a massive and dense/consolidated appearance. The outcrops are mostly strong fractured by mainly two joint sets (Fig. 8 D), whereby the fracture density is increasing towards hanging wall direction. The surface of these rocks is mostly covered with whitish weathering products.

Macroscopic observations show a very fine-grained fabric. Tests with hydrochloric acid (3%) indicates that these rocks are mainly build up from dolomite grains. Furthermore, newly formed white mica in submillimetre scale on the schistosity planes can be observed. In ruptures perpendicular to the schistosity planes whitish and greyish layers at millimetre scale can be seen. In hanging wall direction, the fine-grained occurrence of these rocks is decreasing. This means a change in colour towards a darker greyish appearance, which is cut by a branched network of calcite veins. In some fractures whitish radially grown amphibole identified as tremolite (Fig. 8 C) can be detected as well as yellowish to brownish iron precipitations.



Figure 8: Outcrop of fractured dolomite mylonite; B: Detail photo of calcitic veins in dolomite marble (A & B UTM 33N: 0426970/5198332 – sample MW 1906); C: Joint in dolomite with Tremolite (UTM 33N: 0426991/5198299); D: Contact of dolomite of the Weißwände Lithodeme and the Karnerboden Lithodeme (UTM 33N: 0426893/5198525).

#### 4.2.1.2 Bockbühel Lithodeme

Graphite and mica schist corresponding to the Bockbühel Lithodeme occur in only two small outcrops in the research area (indicated as greenish squares in Fig. 4). One spot is at the SE end of lake Flattnitz. The other location is approximately 100 m in the S of the lake. These rocks have a macroscopically different appearance compared to mica schist in other lithodemic units. On the side at the end of the lake a graphite schist is cropping out, it has a pronounced layering and lacks detrital white mica. On the elevated side the outcrop has a dimension of one cubic meter; the rocks are distinguished as mica schist corresponding to the mica schist type (intermediate type) as Weissenbacher (2015) described in his thesis. These rocks made of quartz, feldspar, and millimetre sized white mica. A detailed description of the Bockbühel-Lithodeme is given by Weissenbacher (2015) and Iglseder (2019).

#### 4.2.1.3 Karnerboden Lithodeme

The dolomite of the Karnerboden Lithodeme can be found at the summit and on the northern flank of mount Kuster as well as at the NE flank of mount Hirnkopf. This unit reaches a maximum thickness of 50 metres at mount Kuster and approximately 100 metres at mount Hirnkopf.

Macroscopically, this lithology is characterised by a dark-greyish medium to fine grained, partly mylonitic, massive dolomite-marble. Often these rocks are permeated by a branched network of calcite (Fig. 9 A) and subordinate quartz veins (Fig. 9 B) that are deformed. Close to the contact zones to the Leckenschober Lithodeme these dolomites are cataclastically overprinted. Mylonitisation of this unit can be observed in a few outcrops in the northern part of the summit of mount Kuster. In contrast to the Weißwände Lithodeme, the grain size is generally larger. Stowasser (1956) reported the occurrence of fossil, however no evidence for such fossils was found during fieldwork.



Figure 9 A: En-echelon veins with an orientation of 45 degree to the extension in the Karnerboden Lithodeme, view to N (UTM 33N: 0426229/5197682); B: Dolomite with isoclinal and open folded quartz mobilisates, view to E (UTM 33N: 0426413/5197747).

#### 4.2.1.4 Leckenschober Lithodeme

The Leckenschober Lithodeme is the uppermost unit of the Stangalm Mesozoic s. l. In the research area, it mainly consists of fine to medium-grained dark greyish impure calcite-marble, which show brownish crusts on the weathered surface (Fig. 10 A). Greyish-whitish-blueish banded calcite-marble-mylonite with S-parallel phyllitic intercalations is typical for this lithodemic unit as well (Fig. 10 B). Strongly sheared graphite-, chlorite- and clay-schists occur rarely with a maximum thickness of 0.5 meters (Fig. 10 B). Sometimes meter scaled boudins of dolomite are observed (Fig. 10 C). Macroscopically, this lithology shows strongly elongated phyllite lenses and a well pronounced lineation on the schistosity planes. Throughout the entire Leckenschober Lithodeme isoclinal folds are

prominent. Cubic mostly strongly weathered pyrite are regularly distributed in the coarse-grained layers of this unit (Fig. 10 D).



Figure 10 A: Isoclinal folded calcite-marble with brownish weathering layers (UTM 33N: 0427115/5197866); B: Banded calcite-marble; C: Calcite-marble with graphite schist layer & dolomite boudin in Leckenschober Lithodeme (UTM 33N: 0427531/5197799); D: Pyrite inclusion in impure calcite-marble (UTM 33N: 0426021/5197596).

#### 4.2.2 Oberhof Lithodeme

A heterogeneous association of meta-conglomerate and graphitic mica schist forms an elongate, NW to SE striking body on the NE flank of Mount Kuster. Its extent corresponds to the description of Beck-Mannagetta (1959). Following Hollinetz (2018), these lithologies are assigned to the Oberhof Lithodeme. South of lake Flattnitz, this unit shows an apparent thickness of approximately 50 m, increasing towards SE. Boulders of several cubic meters of carbonaceous schists with a large amount of irregular white mica grains reaching up to one millimetre in size are observed. Further to the SE, the lithology gradually changes to massive and dense meta-conglomerate and quartzite with increasing thickness. This lithology dominates in this occurrence of the Oberhof Lithodeme and shows characteristic quartz components (Fig. 11 A; B; C). The deformed pebbles have a size of several centimetres to decimetres and are embedded in a dark greyish quartz rich and white mica poor matrix. The long axis of the elongated clasts is E-W oriented, and they occasionally show isoclinal and open folding (Fig 11 A). Further towards the SW a strongly foliated mica schist is cropping out. In the contact zone to the Leckenschober Lithodem in upper structural levels, strongly foliated very fine-grained mylonitic quartzite boulders occure.



Figure 11 A: Folded quartz clast of meta-conglomerate in outcrop, view parallel to fold axis (UTM 33N: 0427008/5198587); B: Boulder of meta-conglomerate (UTM 33N:0427453/5198180); C: Quartzite with shear band geometries (UTM 33N: 0427267/5198410); D: Outcrop of meta-conglomerate & sample location MW 1918 (UTM 33N: 0427453/5198194).

#### 4.2.3 Murau Group

Lithologies corresponding to the Murau Group are present in the NE of the mapping area and mainly build up parts of the Johanniswand. Outcrops can be found along the Flattnitztal Landstrasse (L63), as well as in the N and W region of lake Flattnitz.

Typical lithologies are quartzite, quartz-phyllite (Fig. 12 B & C), mica schist with coarse grained white mica and subordinate graphite schist (Fig. 12 B) and calcite-mica schist (Fig. 12 D).

Macroscopically and structurally these lithologies are very similar to lithologies of the Spielriegel Complex. The main difference is the lower chlorite content in the Murau Group which, results in a brighter appearance of the rocks. Moreover, a higher white mica content consisting of larger grains can be observed.



Figure 12 A: Quartz rich lithology with deformed quartz veins of the Murau Group (UTM 33N: 0427774/5198134); B: Graphite schist layer; C: isoclinal folds B & C (UTM 33N: 0426711/5198738); D: Calcitic mica shist with C'type shear bands record top E shear sense (UTM33N: 0427589/5198622).
#### 4.2.4 Spielriegel Complex

In the study area, the Stolzalpe Nappe represents the uppermost tectonic unit. The occurring lithologies are assigned to the Spielriegel Complex. These lithologies crop out on the southern shares of the summit, the southern flank of Mount Kuster and in the southwestern area of Mount Hirnkopf.

In the Spielriegel Complex quartzite, chlorite- & quartz-rich phyllites with changing amounts of finegrained white mica and chlorite is distinguished as the main lithologies. A continuous transition between chlorite-rich packages and quartz-rich bodies is observed (Fig. 13 B). The rocks are completely dissected by quartz mobilisates up to centimetres thick in the form of isoclinal and openly folded veins (Fig. 13 C), which occur parallel to the foliation. Mostly brownish and reddish iron oxides are found in these veins (Fig. 13 C). Macroscopically the phyllites show well pronounced schistosity planes with a lepidoblastic fabric and crenulation lineation, therefore a platy appearance with dark greenish to blackish surfaces, depending on the amount of chlorite in the samples (Fig. 13 A). The quartz-rich lithologies, on the other hand, have silvery shiny surfaces with a much lower chlorite content.



Figure 13 A: Excavation of Quartz-chlorite-Phyllite (UTM 33N: 0427580/5197373); B: Deformed quartzite next to nappe boundary & sample location MW 1910 (UTM 33N: 0427115/5197866); C: Quartzite with deformed quartz veins (UTM 33N: 0426609/5197420); D: C'-Type shear bands give top-to-the E shear sense (UTM 33N: 0426410/5197375).

## 4.3 Structural observations & measurements

Based on field observations and measurements of planar and linear features, different deformation phases can be distinguished in the area around mount Kuster. These phases are named according to their temporal occurrence, starting with the oldest-"event"  $D_0$  to the youngest structural overprint  $D_4$ . Essentially, pre-Alpidic and alpidic phases can be distinguished by superposition of the different fold structures, the different orientation of the axial plane surfaces of the folds and crosscutting relationships of the structures. In the following plots the coloured great cycle shows the best fit great cycle of the fold axial plane poles to plot a  $\pi$ -diagram. The different deformation phases have been outlined before in chapter 2.4.

In the research area, no evidence for structures related to the sedimentary and volcano-sedimentary deposition of lithologies in the Murau and Stolzalpe nappes (D<sub>0</sub>, Iglseder, 2019; Huet, 2015) is observed.

 $D_1$  corresponds to the first observable folding event. Pre-existing centimetre thick quartz mobilisate layers are observed which show relicts of isoclinal folds with shallow dipping fold axis towards W-NW (Fig. 14 D1-isoclinal folds & Fig. 19 A). Theses folds commonly are refolded by a later event. The  $D_1$  event is only present in the lithologies of the Spielriegel Complex (i.e., Stolzalpe Nappe).

 $D_2$  is mostly recognised in the Spielriegel Complex. This event is shown in open, asymmetric folds with slightly steeper fold axis as in the  $D_1$  event recorded (Fig. 14 D2-open asymmetric folds & Fig. 19 A). The orientation of these fold axes varies from NW to SW.  $D_1$  and  $D_2$  structures are related to the Variscan event (*Huet, 2015*).



Figure 14: lower hemisphere stereoplots of pre-Alpidic deformation phases D1 & D2. Plotted with Stereonet v.11.



Figure 15: Lithologies of the Spielriegel Complex A: Quartz-chlorite phyllite with isoclinal folded quartz vein FA1 dipping shallowly towards W (UTM 33N: 0426930/5197444); B: Chlorite-schist/greenschist isoclinal fold FA1 dipping towards W, open asymmetric folds with FA2 dipping WSW (UTM 33N: 0427008/5197884).

 $D_3$  represents structures related to the Eo-Alpidic event, which can be observed in the research area. Since the  $D_{3b}$  phase shows the most dominant structural imprint of the research area, no evidence for  $D_{3a}$  structures was found. Structural elements related to the  $D_{3b}$  phase are observed in all units. This deformation pattern can be subdivided into three major phases, which can further get subdivided into high temperature structures and low temperature structures, discussed in chapter 5.2.1

1) Formation of isoclinal folds: These folds can be distinguished from meter to centimetre scale. Mostly the folds show shallow dipping E-W oriented fold axis and sub-horizontally orientated axial planes to the main schistosity (Fig. 17 D<sub>3b</sub>-isoclinal folds & Fig. 19 B). The measured schistosity planes follow the same systematic as the axial planes and are commonly sub-horizontally orientated and dipping in nearly all directions with an angle of approximately 10-20 degrees. These folds are best seen in the lithologies and quartz clasts of the Oberhof Lithodeme (Fig 11 A), units of the Spielriegel Complex near the nappe system boundary (Fig. 18 C), and in the calcite-marble of the Leckenschober Lithodeme (Fig. 18 A).

Further structures correlated with this phase (ductile top to the E shearing) are expressed by the mylonitisation of the previously mentioned units and the formation of a pervasive stretching lineation and mineral lineation with an ESE-WNW directed alignment and shallow dipping orientation towards SE and NW which is best seen in the carbonatic and dolomitic marbles of the Stangalm Mesozoic s.l. (Bundschuh Nappe) and units of the Stolzalpe Nappe next to the nappe boundary. The dolomitic marble rarely shows flanking structures with a top to the E kinematic (Fig. 18 B). Boudins of dolomitic rocks can be spotted in the calcite-marble of the Leckenschober Lithodem (Fig 10 C).



Figure 16 inverse nappe stack evidence for km scaled isoclinal folds A: Weißwände Lithodeme in hanging wall position of Karnerboden Lithodeme (UTM 33N: 0426893/5198525); B: Weißwände Lithodeme on top of the Murau Group (UTM 33N: 0426656/5198730).

- 2) D<sub>3b</sub> related ductile to brittle-ductile transition is recorded in C'-type shear bands. These are a very common feature in the area. They are overprinting the whole fabric of schistosity planes, folds, and axial planes of the older fabric. These have a normal fault character dipping towards E. The fault planes show quartz fibres and striations with a top to the (E)SE kinematic (Fig 17 D<sub>3b</sub>-shearbands & Fig. 18 E). Commonly seen in lithologies of the Murau and Stolzalpe Nappe, less common in the calcite-marble of the Leckenschober Lithodeme and not present in the dolomite marble of the Weißwände Lithodeme and the Karnerboden Lithodeme.
- 3) The last phase of folding in this area can be distinguished by the superposition of isoclinal folds of the D<sub>3b</sub> event in outcrop and thin section scale. These folds have steep to moderate steep axial planes and shallow dipping EW oriented fold axis (*Decker, 1998*). The crenulation lineation follows the same trend as the fold axes of open folding (Fig. 17 D<sub>3b</sub>-open folds, Fig. 18 D & Fig. 19 B).

D<sub>4</sub> brittle deformation is recorded in steep mostly conjugated and sometimes orthogonal joints occurring in mainly two sets (Fig. 17 D4, Fig. 8 A & Fig. 18 F). The first joint set is orientated NE-SW with steeply dipping fault planes towards SE. The second one is oriented NE-SW with steeply dipping fault planes towards NW. The sets show an angle between of approximately 10-20 degrees. The joints cut all pre-existing structures and are observed predominantly in the dolomite marble of the Weißwände Lithodeme.



*Figure 17: Lower hemisphere stereoplots of alpidic phases of deformation D3b & D4. The same colour code as in figure 14 is used.* 



Figure 18 A: Isoclinal folds in calcitic-marble (Leckenschober Lithodeme) refold structure type 3, refolded by later open folding event (FIP - D<sub>3b</sub>) (UTM 33N: 0427115/5197866); B: Top to the E flanking structure, stretching lineation (Ls) in dolomite marble ultra-mylonite & sample location MW 1911 (Weißwände Lithodeme) (UTM 33N: 0426656/5198730); C: Refolded isoclinal folds of quartz veins D<sup>3b</sup> related (Spielriegel Complex) with FIP (UTM 33N: 0425887/5197547); D: Open folds of the Weißwände Lithodeme bounden to D<sub>3b</sub> (UTM 33N: 0427303/5198372); E: C'-type shear bands with quartz fibres with top to the SE shear sense (Spielriegel Complex) (UTM 33N: 0426741/5197439); F: Steep NW-oriented fractures in Dolomitic marble (Weißwände Lithodeme) (UTM 33N: 0427292/5198387).



In the following maps the structures related to the different deformation events are plotted.

Figure 19 A: Isoclinal folds of D1 (white arrows) & open asymmetric folds of D2 (red arrows); B: Isoclinal folds (green arrows) & open folds of D3b phase (blue arrows). Legend as in Figure 4.

## 4.4 Microstructural observations

#### 4.4.1 Weißwände Lithodeme & Karnerboden Lithodeme

In the microscope the footwall shares of the dolomites of the Weißwände Lithodeme consists mainly of ultra-fine-grained dolomite. These grains reach a minimum size from 12.5  $\mu$ m to maximum 25 microns (Fig. 20 A). Along cracks bigger aggregates of dolomite, rarely feldspar, subordinate quartz, and calcite grains can be detected. The calcite grains often show twinning lamella. The silicate minerals feldspar and quartz furthermore occur in the dolomitic matrix. Quartz and feldspar have a larger grain size than dolomite and often show a xenomorphic, elongated shape. Along the long axis the grains have a size from 125  $\mu$ m up to 750  $\mu$ m in cracks. White mica occurs frequently in the thin sections especially on the schistosity planes (Fig. 20 A). They show a well pronounced E-W regulation and sizes up to 100  $\mu$ m, with crossed nicols they show undulose extinction. Minor amounts of a cubic opaque phase can be seen, which is arranged in S-parallel planes with sizes up to 125  $\mu$ m.

Towards the hanging wall, the appearing dolomite of the Weißwände Lithodeme show microscopically similar properties. Differences are shown in grainsize and their distribution. Therefore, in comparison, a bimodal grain size distribution can be recognised in these samples. The bigger grain fraction reach dimensions of 500  $\mu$ m the smaller grain size fraction have an extent up to 20  $\mu$ m. The grains show hypidiomorphic grain shapes. Subordinate they show twinning lamellae. The grains arranged in an E-W regulation. The coarse-grained layers often display boudins between the fine-grained layers (Fig. 20 D). White mica occurs in minor amounts in the hanging wall shares than in footwall proportions. In the uppermost parts of the hanging wall the absence of these can be shown. Minor amounts of hypidiomorphic feldspar and quartz with a length of up to 200  $\mu$ m can be distinguished. A reddish to nearly opaque iron phase is identified as siderite or ankerite. Along from cracks tremolite is observed which reach a size up to 200  $\mu$ m (Fig. 20 B).



Figure 20 (Weißwände Lithodeme) A: Dolomite ultra-mylonite, white mica, quartz, and feldspar occur parallel to the S-planes Sample MW1911B (UTM33N: 0426656/ 5198730); B: fractured dolomite with tremolite in cracks sample MW1906 (UTM33N: 0426991/ 5198299) ; C: aggregate of bigger dolomite grains in fine grained matrix sample MW1904; D: Boudin in dolomite mylonite sample MW1904 (UTM33N: 0426787/ 5198431).

In contrast to the dolomite of the Weißwände Lithodeme the dolomite of the Karnerboden Lithodeme show much bigger grainsize and no banded appearance. This lithology also consists mainly of dolomite grains, which are bigger developed and show a maximum size of 150 µm. In the footwall shares and intercalated in the Leckenschober Lithodeme, this dolomite shows mylonitisation, but to a much lesser extent than in the Weißwände Lithodeme. A difference is seen in the occurrence of quartz in the samples, which are more likely and bigger in size in the Karnerboden than in the Weißwände Lithodeme (Fig. 21 C). Pyrite is also found in the samples (Fig. 21 D). Structurally the dolomite of the Karnerboden Lithodeme shows lesser ductile deformation, therefore the formation of stylolites which truncate the fabric (Fig. 21 B) and in the contact zone to the Leckenschober Lithodeme a cataclastic overprint is seen.



Figure 21:(Karnerboden Lithodeme) A: calcite veins in dolomite, Sample Foss1A (no orientation); B: Stylolite in Sample Foss1B; C: Intersection of quartz vein in Foss1A (UTM33N: 0426356 /5197828); D: Dolomite grains in Sample MW1905.

# 4.4.2 Leckenschober Lithodeme

In the microscope this calcite-marble shows a variety of minerals, listed below according to their frequency. The most frequent mineral in this lithology is calcite, it builds up 80 percent of the analysed samples. The grains show sizes from 50  $\mu$ m to 750  $\mu$ m with mostly slightly irregular grain boundaries and E-W regulated grains (SPO) (Fig. 22 A). The large grains show twin lamella of type 2 and type3 according to Passchier (2005) (Fig. 22 C). White mica appears abundantly, the mineral is spread homogeneously across the thin sections. It reaches sizes from 100  $\mu$ m to 1 cm. The small white mica grains are associated with the smaller calcite grains. The grains bigger than 500  $\mu$ m show a well pronounced E-W directed regulation and subordinated a mica fish with a top to the E sense of shear (Fig. 20 D). Subordinated kinked white mica grains occur which show undulatory extinction. The grains show sizes from maximum 500  $\mu$ m to 125  $\mu$ m. In the sample MW1920 white mica occur in isoclinal

folded "pellets" (Fig. 22 D). Feldspar is not abundant and mostly of irregular rounded shape, but these grains can be found in the whole section. They have a dimension of 100  $\mu$ m to 500  $\mu$ m and occasionally show growth twins. Quartz occurs mostly as rhombic porphyroclasts due to the rhombic habit no consistent sense of shear can be derived from these clasts. On the one side the grains have a length up to 2.5 mm and show undulose extinction, on the other side these grains look strongly elongated and have small, delimited grains with sizes to maximum 25  $\mu$ m and no noticeable undulose extinction (Fig. 20 C bulging). The opaque phase is dispersed in all thin sections. Idiomorphic grains showing a cubic habit were identified as pyrite. Furthermore, in the thin sections the mineral dolomite which shows less twinning and bigger grain sizes than calcite can be seen. The dolomite grains preferably appear in layers. At the boundaries of calcite grains, feldspar and quartz grains talc occurs (Fig. 22 C).



Figure 22 (Leckenschober Lithodeme) A: Impure calcite-marble Sample MW1902 (UTM33N: 0427256/ 5198578); B: Quartz porphyroclast in fine grained calcite matrix; C: Stylolite in impure calcite marble, quartz grains show bulging, calcite grains twinning of type 2 & 3, B & C sample MW1909A (UTM 33N: 0427115/5197866); D: Isoclinal folded white mica layer & mica fish texture top to the E kinematics (black circle) in calcite-marble sample MW1920 (UTM33N: 0427342/5198370).

#### 4.4.3 Oberhof Lithodeme

Microscopic observations of the samples exhibit that the main minerals which build up the Oberhof Lithodem at Mount Kuster are quartz, white mica, chlorite, feldspar and rarely tourmaline. Accessory minerals are zircon and apatite. Opaque phases are pyrite and iron oxides which mostly occur along cracks. Quartz is the most abundant mineral and occurs with a frequency of 90 percent in the samples. The quartz grains show a bimodal grain size distribution with hypidiomorphic to xenomorphic grain shapes. The bigger quartz grains are settled in the deformed quartz clasts. These grains can reach up to one centimetre in length and show a strong E-W elongation and oscillatory extinction with crossed nicols (Fig. 23 A). In the rim area of the quartz clasts the formation of smaller grains is observed. Therefore, they reach a maximum size of approximately 200 µm, while the quartz grains, which build up the matrix have a size of 50 µm. The smaller grains are found in all layers around the clasts, they show hypidiomorphic grain shape and an E-W elongated shape partly deformed by shearbands. The appearance of the quartz grains as well as the chlorite content changes with respect to the sample position. Towards higher structural levels, the formation of subgrains is increasing and there is no evidence for sutured grain boundaries. Moreover, the overall grain size is decreasing towards the nappe boundary in hanging wall direction. Additionally, the quartz pebbles are stretched and observed shear band boudinages indicates a top to the E shear sense (Fig. 23 D). White mica occurs in the thin sections mostly in S parallel planes, in corresponding folds and arranged in shear bands (Fig. 23 C & D). Frequently single white mica grains are observed in the matrix determined as detrital white mica. These grains reach sizes up to 250  $\mu$ m (Fig. 23 E). Both types show a well pronounced E-W regulation. The grains have dimensions up to 200 microns. A few grains in the matrix with a mica fish texture are observed which indicates a top to the E shearing. Chlorite is less abundant than white mica but behaves in a similar way as the arranged ones. Close to the nappe boundary, the chlorite content is increasing as the white mica content is decreasing. A few grains of feldspar can be spotted in the sections. Most of them show irregular grain boundaries and polysynthetic twinning. Greenish pleochroitic tourmaline is observed (Fig. 23 B) in the quartz rich layers with a maximum size up to 150  $\mu$ m.



Figure 23 (Oberhof Lithodeme) A: Meta-conglomerate clast geometries; B: Meta-conglomerate with accessory tourmaline A & B sample IGL 20/52 I; C: Crenulation in mica rich layers (sample MW1918, UTM33N: 0427453/5198194); D: Shearband Boudinage (Top to E) Sample (MW1919B, UTM33N: 0427303/5198370); E: Quartz clast with rhombic geometry & detrital white mica in matrix (mica fish texture top to E) Sample IGL 20/52 II.

#### 4.4.4 Murau Group

Microscopically the lithologies of the Murau Group mainly made of quartz (approximately 80% in modal composition). Most grains have a size of around 200 µm and are well E-W elongated. With crossed nicols less grains show undulose extinction. Another microstructural type of quartz is found in S-parallel layer distinguished as deformed veins, which have a maximum length of 750 µm. With crossed nicols the grains have a strong oscillatory extinction with an angle of 20 degrees to the main schistosity. In the rim area of those grains, the formation of the first grain type is observed. White mica occurs as aggregates in layers, as well as isolated grains between the layers and rarely between quartz grains. The single mica grains have a length of 100  $\mu$ m to maximum 750  $\mu$ m; most of these grains are arranged parallel to the S-planes, the bigger ones grow oblique to the S-planes. The mica layers follow the S-planes with smaller sizes and show oscillatory extinction. The white mica grains, which are oblique to the S-planes are often kinked or cracked. Chlorite grains have the same systematic as white mica grains but show smaller grain sizes and they occur more frequently in quartz rich layers. Feldspar can be found in the whole thin section with sizes up to  $100 \,\mu\text{m}$  and hypidiomorphic grain shapes. With crossed nicols a few grains show twinning. Rare, hypidiomorphic garnet is found in mica rich layers reaching sizes of up to 100 µm (Fig. 24 A & B). No biotite was found in the samples of the Murau Group. Accessory minerals are identified as zircon, tourmaline, iron oxides occur along cracks.

Structurally the schistosity planes with big white mica grains, bigger quartz grains, and C'-type shear bands (Fig. 24 C) are the most obvious features in the lithologies of the Murau Group.



*Figure 24 (Murau Group) Sample: MW1903 (UTM 33N: 0427115/5197866). A: Mica shist with small garnet grain & SPO of white mica, B: with crossed nicols.* 



Figure 24 (Murau Group) C: C'-Type shear bands (top to the E sense of shear).

### 4.4.5 Spielriegel Complex

Microscopic observations show that the lithologies of the Spielriegel Complex consist mainly of quartz, white mica, chlorite, and subordinate chloritized biotite. A few grains of tourmaline can be seen (Fig. 25 A & C). The rocks exhibit a well pronounced lepidoblastic fabric. Quartz occurs in different grainsizes. The biggest grains occur in quartz veins with undulating grain boundaries. They are well aligned to the schistosity and have an extent up to 500  $\mu$ m and show strong oscillatory extinction. Smaller grains build up most of the quartz in the samples and their grainsize differs from 10  $\mu$ m to 50  $\mu$ m. All of them show nearly straight grain boundaries and hardly any undulose extinction. White mica, biotite and chlorite only can be observed in S-parallel layers with a bimodal grain size distribution.

Small grains occur in the same areas as the small quartz grains and have similar sizes. Big grains have an extent of  $400 \ \mu m$  and occasionally a mica fish texture.

Feldspar can be observed in all thin sections and occurs as rounded, partly rotated grains spread over the thin sections. They have an extent of  $200 \,\mu\text{m}$  with a rhombic geometry. In the strain shadows small quartz grains are observed.

They show the same systematics as the quartz grains, which build up the matrix (Fig. 25 B). Due to the symmetric distribution of strain shadows, these clasts are not suitable as shear sense indicators. Rarely occurring quartz clasts with stair stepping and rotated minerals indicate a top to the E shearing (Fig. 25 A). Most obvious are C'-type shear bands with a top to the E sense of shear (Fig. 25 C & D). Structurally, however, they show the same characteristics than the quarzitic mica shist of the Murau Group. Major differences are seen in the occurring minerals as garnet in the Murau Group, the grainsize of white mica and quartz grains.



Figure 25 (Spielriegel Complex) Sample MW1910 (UTM 33N: 0427115/5197866) A: Quartz rich mylonite with rotated mineral (Top to the E sense of shear), B Mica rich layer and rounded clast with rhombic geometry, C & D: C'-Type shear bands (top to the E sense of shear).

# 4.5 Refold structures

Due to the occurrence of different folds with associated fold axes and axial planes resulting from older and younger deformation phases (folding events) it is possible to quantify them in the form of a vector triangle plot according to Grasemann et al., (2004). In this study, the 6 endmembers of possible refold structure types get discussed and a possibility to represent these endmembers by a direction-cosine matrix is explained. This matrix can be used to classify the angle between overlapping folds and display them in a triangular diagram.



*Figure 26: Representation of the 6 endmember types of superposition of folds. (Figure from Grasemann et al., 2004).* 

From measurements and observations of superposition of folds in the field, the matrix L\* can be calculated. The calculation requires the fold axis of the older fold (FAo -  $x_1$ ) and the pole of the corresponding older axial plane (APo -  $x_2$ ), as well as the fold axis (FAy -  $x'_1$ ) and the pole of the axial plane (APo -  $x'_2$ ) of the younger superposing fold (Tab. 1). The conversion of the respective  $l_{ij}$  -value is done by calculating the angle between the linear features, shown in Fig. 27 C, according to Grasemann et al., (2004).



### Field measurements Data table:

| point | unit      | generation | FAo(x1)  |     | Apo APo(pole)(x2) |     |          | FAy(x'1) Apy |          | Apy(pole)(x'2) |          |     |          |     |
|-------|-----------|------------|----------|-----|-------------------|-----|----------|--------------|----------|----------------|----------|-----|----------|-----|
|       |           |            | dip dir. | dip | dip dir.          | dip | dip dir. | dip          | dip dir. | dip            | dip dir. | dip | dip dir. | dip |
| 001   | Murau     | F2-F3      | 241      | 14  | 329               | 04  | 149      | 86           | 084      | 03             | 337      | 09  | 157      | 81  |
| 800   | Murau     | F2-F3      | 255      | 10  | 268               | 09  | 088      | 81           | 244      | 16             | 325      | 06  | 145      | 84  |
|       |           |            |          |     |                   |     |          |              |          |                |          |     |          | 90  |
| 018   | St.M      | F3-F4      | 130      | 08  | 200               | 30  | 020      | 60           | 290      | 20             | 240      | 20  | 060      | 70  |
| 073   | St.M      | F3-F4      | 115      | 08  | 220               | 42  | 040      | 48           | 277      | 16             | 189      | 30  | 009      | 60  |
| 110   | St.M      | F3-F4      | 096      | 10  | 050               | 22  | 230      | 68           | 273      | 08             | 199      | 32  | 019      | 58  |
| 113   | St.M      | F3-F4      | 100      | 20  | 160               | 40  | 340      | 50           | 264      | 01             | 339      | 32  | 159      | 58  |
|       |           |            |          |     |                   |     |          |              |          |                |          |     |          |     |
| 027   | Oberhof   | F3-F4      | 237      | 10  | 228               | 19  | 048      | 71           | 236      | 09             | 179      | 36  | 359      | 54  |
|       |           |            |          |     |                   |     |          |              |          |                |          |     |          |     |
| 017   | Stolzalpe | F1-F2      | 194      | 16  | 207               | 25  | 027      | 65           | 216      | 13             | 233      | 28  | 053      | 62  |
| 017   | Stolzalpe | F2-F3      | 216      | 13  | 233               | 28  | 053      | 62           | 084      | 01             | 309      | 21  | 129      | 69  |
| 018   | Stolzalpe | F1-F2      | 165      | 18  | 240               | 44  | 060      | 46           | 287      | 17             | 251      | 21  | 071      | 69  |
| 018   | Stolzalpe | F2-F3      | 287      | 17  | 251               | 21  | 071      | 69           | 075      | 10             | 271      | 20  | 091      | 70  |
| 046   | Stolzalpe | F1-F2      | 276      | 01  | 003               | 27  | 183      | 63           | 249      | 15             | 245      | 25  | 065      | 65  |
| 056   | Stolzalpe | F1-F2      | 285      | 20  | 286               | 18  | 106      | 72           | 240      | 22             | 275      | 32  | 095      | 58  |
| 056   | Stolzalpe | F2-F3      | 240      | 22  | 275               | 32  | 095      | 58           | 141      | 01             | 180      | 20  | 000      | 70  |
| 069   | Stolzalpe | F1-F2      | 187      | 20  | 278               | 80  | 098      | 10           | 294      | 19             | 019      | 05  | 199      | 85  |
| 081   | Stolzalpe | F1-F2?     | 130      | 30  | 110               | 35  | 290      | 55           | 050      | 37             | 054      | 52  | 234      | 38  |
| 081   | Stolzalpe | F1-F2      | 269      | 12  | 106               | 20  | 286      | 70           | 125      | 13             | 246      | 46  | 066      | 44  |
| 081   | Stolzalpe | F2-F3      | 246      | 21  | 270               | 31  | 090      | 59           | 092      | 15             | 352      | 05  | 172      | 85  |
| 081   | Stolzalpe | F1-F2      | 260      | 01  | 310               | 20  | 130      | 70           | 234      | 14             | 312      | 34  | 132      | 56  |
| 081   | Stolzalpe | F2-F3      | 234      | 14  | 312               | 34  | 132      | 56           | 075      | 19             | 140      | 20  | 320      | 70  |
| 101   | Stolzalpe | F1-F2      | 092      | 10  | 335               | 28  | 155      | 62           | 200      | 03             | 333      | 55  | 153      | 35  |
| 101   | Stolzalpe | F2-F3      | 200      | 03  | 333               | 55  | 153      | 35           | 054      | 12             | 126      | 50  | 306      | 40  |
| 106   | Stolzalpe | F1-F2      | 280      | 01  | 022               | 13  | 202      | 77           | 200      | 07             | 289      | 35  | 109      | 55  |

| Table 1: Table of field measurements of superposing folds. | Fold axis singed by FA, axial planes by Ap and |
|------------------------------------------------------------|------------------------------------------------|
| corresponding poles.                                       |                                                |

|                        |     | I <sub>11</sub>  | I <sub>12</sub>        | I <sub>21</sub>        | I <sub>22</sub>              |           |
|------------------------|-----|------------------|------------------------|------------------------|------------------------------|-----------|
|                        |     | FAo(x1)-FAy(x'1) | FAy(x'1)-APo(pole)(x2) | Apy(pole)(x'2)-FAo(x1) | Apy(pole)(x'2)-APo(pole)(x2) | fold axis |
| Murau group            | 001 | 28               | 85                     | 75                     | 5                            | F2-F3     |
| wurau group            | 008 | 12               | 82                     | 82                     | 8                            | F2-F3     |
|                        | 018 | 34               | 73                     | 76                     | 19                           | F3-F4     |
| Stangalm Mesozic s l   | 073 | 30               | 82                     | 89                     | 22                           | F3-F4     |
| Stallgalli Wesozic S.I | 110 | 18               | 66                     | 75                     | 52                           | F3-F4     |
|                        | 113 | 26               | 80                     | 57                     | 72                           | F3-F4     |
| Oberhof Lithodeme      | 027 | 1                | 80                     | 80                     | 27                           | F3-F4     |
|                        | 017 | 22               | 78                     | 84                     | 12                           | F1-F2     |
|                        | 017 | 50               | 65                     | 77                     | 30                           | F2-F3     |
|                        | 018 | 67               | 76                     | 75                     | 24                           | F1-F2     |
|                        | 018 | 42               | 59                     | 88                     | 7                            | F2-F3     |
|                        | 046 | 30               | 66                     | 70                     | 44                           | F1-F2     |
|                        | 056 | 42               | 81                     | 78                     | 15                           | F1-F2     |
|                        | 056 | 82               | 67                     | 79                     | 39                           | F2-F3     |
| Spielriegel Complex    | 069 | 81               | 33                     | 65                     | 81                           | F1-F2     |
| spielitieger complex   | 081 | 65               | 75                     | 82                     | 41                           | F1-F2?    |
|                        | 081 | 44               | 84                     | 60                     | 62                           | F1-F2     |
|                        | 081 | 44               | 44                     | 68                     | 31                           | F2-F3     |
|                        | 081 | 29               | 82                     | 71                     | 14                           | F1-F2     |
|                        | 081 | 39               | 56                     | 82                     | 54                           | F2-F3     |
|                        | 101 | 73               | 68                     | 61                     | 27                           | F1-F2     |
|                        | 101 | 37               | 90                     | 80                     | 79                           | F2-F3     |
|                        | 106 | 80               | 70                     | 56                     | 38                           | F1-F2     |

Table 2: Calculation table for fold interference pattern, each value calculated in the way described in figure 27 C shows the angle between mentioned linear features.

### 4.5.1 Vector Triangle plots:

The following diagrams show the intersections of the folds that appear in the research area. These are plotted by the values  $I_{11} \& I_{12}$  which define the origin of the vector, and by the values  $I_{21} \& I_{22}$  which define the direction and the end point.

This method applied to all interfering folds encountered in the lithologies gives an overview of the interference structures that can be found in the study area. The arrows shown in Fig. 28 A & B get compared with the arrows on the outside of the triangle plot. If the direction of the arrows resembles that of the outer ones, the respective fold interference type is present.



*Figure 28: Vector triangle plots A: Fold interference pattern of lithologies of the Spielriegel Complex. B: Superposing folds of lithologies of the Stangalm Mesozoic s.l. (blueish), Oberhof Lithodem (greyish) and the Murau Group (greenish). The number on the arrows indicates the number of the outcrop point.* 

The triangular plots illustrate the present fold interference structures as shown in Fig. 26. The lithologies of the Spielriegel Complex (Fig. 28 A) show mainly refold structures of type  $0_3 \& 0_2$ . In a few outcrops a type 3 refold structure can be detected. A similar picture presents itself for the lithologies of the Stangalm Mesozoic s.l. (Fig. 28 B). This shows interferences of type  $0_3$  and type 3. The lithologies of the Oberhof Lithodeme and the Murau Group present exclusively refold structures of type  $0_3$ .

## 4.6 Results from Raman micro-spectroscopy

In this part the results of the applied RAMAN microspectroscopy of the graphite bearing units of the research area are presented and shown in the map.



Figure 29: RAMAN micro-spectroscopy data plotted on the map in the boxes are the values of T-max in  $^{\circ}C$  +- Error; the measurements are colour coded temperatures < 450  $^{\circ}C$  in red, 400-450  $^{\circ}C$  in yellow, < 400  $^{\circ}C$  in green. Legend as in Figure 4.

All graphite-bearing units were sampled and analysed using RAMAN microspectroscopy carried out by Dr. Gerd Rantitsch from the University of Leoben [8 samples, highlighted in green in Table 3 are New Data, the other samples highlighted in yellow are already published in Rantitsch et al., 2020]. These temperatures show the maximum temperature during metamorphism (Lünsdorf et al., 2017). The maximum temperatures are plotted on the map above and colour coded. The structurally lower

lithologies of the Stangalm Mesozoic s.l. as well as the Oberhof Lithodem experienced the highest temperatures, while structurally higher units as the Murau Group and the Spielriegel Complex show lower peak temperatures. Graphite was found in the dolomite-marble of the Karnerboden Lithodeme in the contact zone to the Weißwände Lithodeme. The maximum thermal overprint shows a temperature of 499°C. In the Leckenschober Lithodeme graphitic schist layers with a maximum thickness of 0.5 m alternating with impure calcite-marble layers occur. The measurements show temperatures from 480°C to 435°C. The graphite bearing lithologies of the Oberhof Lithodeme are distinguished as carbonaceous schists with a big amount of detrital mica grains. The samples show a peak of temperature at 519°C. Graphite can also be found in quarzitic mica schists of the Murau Group. this usually can be found in thin layers with a thickness of a few centimetres distributed along the schistosity planes. These show a temperature of 475°C. A decrease in temperature is observed in structurally higher lithologies of the Spielriegel Complex. Here, the analyses show temperatures of 388°C - 409°C.

| Probe_NR | UTM33_N | UTM33_E | Lithology                       | Lithodemic unit | Temp [°C] | +/- |
|----------|---------|---------|---------------------------------|-----------------|-----------|-----|
|          |         |         |                                 |                 |           |     |
| IGL19/14 | 5198421 | 427367  | Dol-Mbl-myl, graphitic          | Weißwände       | 435       | 33  |
| IGL17/22 | 5198596 | 426968  | Meta-marl, graphitic            | Bockbühel       | 460       | 26  |
| IGL18/03 | 5198530 | 426899  | Graphite schist                 | Bockbühel       | 500       | 29  |
|          |         |         |                                 |                 |           |     |
| IGL18/15 | 5197952 | 427020  | Phyllite, graphitic             | Leckenschober   | 482       | 34  |
| IGL18/18 | 5197951 | 427185  | Phyllite, graphitic             | Leckenschober   | 446       | 47  |
| IGL19/06 | 5197785 | 427556  | Graphite schist in Cal-Mbl-myl  | Leckenschober   | 435       | 33  |
| RAMAN 1  | 5197803 | 427515  | Graphite layer in Cal-Mbl-myl   | Leckenschober   | 485       | 34  |
| RAMAN 2  | 5197964 | 427392  | Graphite layer in Cal-Mbl-myl   | Leckenschober   | 480       | 34  |
| RAMAN 3  | 5198336 | 427348  | Graphite layer in Cal-Mbl-myl   | Leckenschober   | 476       | 34  |
|          |         |         |                                 |                 |           |     |
| IGL19/13 | 5198459 | 427333  | Graphite schist                 | Oberhof         | 519       | 34  |
| RAMAN 4  | 5198454 | 427196  | Graphite schist                 | Oberhof         | 509       | 44  |
| RAMAN 5  | 5198381 | 427303  | Graphite schist with detr. wm   | Oberhof         | 482       | 34  |
|          |         |         |                                 |                 |           |     |
| IGL17/26 | 5198738 | 426711  | Graphite Schist                 | Murau Group     | 475       | 26  |
|          |         |         |                                 |                 |           |     |
| RAMAN 6  | 5197675 | 427515  | Graphitic Qz-phyllite           | Spielriegel     | 409       | 34  |
| RAMAN 7  | 5197911 | 427023  | Graphite Schist                 | Spielriegel     | 385       | 75  |
| RAMAN 8  | 5197904 | 427139  | Graphite Schist                 | Spielriegel     | 388       | 75  |
|          |         |         |                                 |                 |           |     |
| IGL18/14 | 5197941 | 426829  | Graphite Schist - Erratic block | Stangnock       | 349       | 32  |

*Table 3: Result table from Raman micro spectroscopy, the data highlighted in green are new data, the yellowish are already published in Rantitsch et al., (2020).* 

# 4.7 Results from Paleopiezometry

The estimation of the differential stress is carried out using the toolbox coded in Phyton by Marco Lopez Sanchez (2018). The recrystallized grains of nearly monomineralic samples of the Leckenschober Lithodeme, the Oberhof Lithodeme, and from the Spielriegel Complex were investigated.

The different values in the calculation table are given in [MPa] and show the differential stress for each published piezometer. These values give the differential stress in the lithospheric crust while dynamic recrystallisation and the distribution plots indicate the apparent grain size of the corresponding lithologies and shows the different mean values, as the arithmetic mean, the geometric mean, and the median. Therefore, the Leckenschober Lithodeme and the Spielriegel Complex show differential stresses of approximately 60 MPa and a mean of grain sizes of 16.91  $\mu$ m and 20.47  $\mu$ m. The Oberhof Lithodeme shows lower differential stress of 20-50 MPa. The mean diameter of the grains is varying from 28.32 – 32.60  $\mu$ m.

|         |           |                 |          | piezometer Quartz (SGR) in [Mpa] |         |             |        |          | piezometer calcite in [Mpa] |             |        |
|---------|-----------|-----------------|----------|----------------------------------|---------|-------------|--------|----------|-----------------------------|-------------|--------|
| sample  | lithology | Lithodemic unit | def mech | Twiss                            | Holyoke | Stipp_Tulis | Cross  | Cross_hr | Barnhorn                    | Rutter corr | Rutter |
|         |           |                 |          |                                  |         |             |        |          |                             |             |        |
| 1909A   | Calcite   | Leckenschober   | SGR      |                                  |         |             |        |          | 61,02                       | 77,95       | 67,51  |
|         |           |                 |          | -                                |         |             |        |          |                             |             |        |
| 1910    |           |                 |          | 326,73                           | 73,73   | 100,61      | 109,62 | 102,46   |                             |             |        |
| 1910_1  | Quartz    | Spielriegel     | SGR      | 67,18                            | 41,10   | 56,08       | 64,84  | 64,30    |                             |             |        |
| 1910_2  |           |                 |          | 65,03                            | 42,74   | 58,32       | 67,15  | 66,33    |                             |             |        |
|         |           |                 |          |                                  |         |             |        |          |                             |             |        |
| 1918_8  |           |                 |          | 48,95                            | 25      | 34,12       | 41,48  | 43.25    |                             |             | Δ      |
| 1919B_7 | Quartz    | Oberhof         | SGR      | 26,98                            | 15,13   | 20,64       | 26,41  | 28,98    |                             |             | A      |
| 1923_3  |           |                 |          | 53,87                            | 34,29   | 46,79       | 55,1   | 55,65    |                             |             | 12     |



Table 4 A: Calculation table for paleopiezometry; Figure 30 B: Sample 1909A calcite-marble of the LeckenschoberLithodeme with drawn outlines of subgrains; C: Sample 1910 Quartzite from Spielriegel Complex (B & C UTM 33N:0427115/5197866); D: Sample 1923 Quartzite from Oberhof Lithodeme (UTM 33N: 0427338/5198343).

## 5.1 Structural evolution & metamorphism (during D<sub>3a</sub>):

The investigated lithologies contain few minerals that allow accurate estimates about the P-T conditions during metamorphism using geothermobarometry. However, microstructures of quartz and calcite (e.g., different grain sizes, different twinning in calcite) allow estimates of the temperature during deformation. Combined with the Raman microspectroscopy data, metamorphic conditions during the structural evolution can be interpreted.

Sedimentary structures are not found in the investigated area. Compositional layering observed in many lithologies may be inherited from the protolith, but this feature is completely recrystallized and overprinted by younger deformation phases.

Structures originated and related to the oldest observable deformation phase are interpreted as Pre-Alpine. The  $D_1 \& D_2$  related structures only can be observed in structurally higher levels of the Spielriegel Complex, where the Eo-Alpine overprint was less pronounced. In this sense the isoclinal folds of  $D_1$  and the asymmetric open folds of the  $D_2$  phase cannot be used for deriving kinematics of these "old" deformation phases. But the same top-to the W-NW kinematics are assumed as in earlier studies discussed (Neubauer, 1987; Ratschbacher et al., 1989; Schuster, 1994).

The Eo-Alpine event is the dominant feature in the research area and therefore subdivided into different phases as described in chapter (2.4). From cross-cutting relationships of different structural elements, and microstructures that are indicative for a particular deformation phase, a relative chronology is established.

In lithologies of the Stangalm Mesozoic s.l., the chronology starts with the transgressive deposition of the Weißwände Lithodeme and the Bockbühel Lithodeme onto the Bundschuh Priedröf Complex which was followed by the Karnerboden Lithodeme and the Leckenschober Lithodeme. This package was overthrusted by older lithologies of the Spielriegel Complex, the Murau Group, and the former Stangnock Formation (nowadays Oberhof Lithodeme). This phase is described as D<sub>3a</sub> phase of the Eo-Alpine event (Iglseder & Huet, 2019). In this phase the peak of metamorphism occurred, due to the deepest subduction of all units. The Raman microscopy data suggest a thermal peak of the structurally lowest units (Stangalm Mesozoic s.l. and Oberhof Lithodeme) of 435°C-519°C. This temperature is consistent with the observed microstructure of the ultra-mylonite of the Weißwände Lithodeme, which is interpreted as ductile recrystallization at peak temperatures. This leads to the interpretation that both units jointly experience this peak, which is discussed in more detail in chapter (5.4). The

measured maximum temperature is decreasing in structural higher levels. Peak temperatures of the Murau Group show 475°C, therefore the growth of garnet is possible (Hollinetz et al., 2019). Koroknai et.al., (1999) interpreted occurring garnets at the base of the Murau Nappe as Variscan but recent investigations from Hollinetz et al. (2019) shows evidence for single-phased garnet growth during the Eo-Alpine event of this Nappe. The rarely occurring garnet in the sample from Mount Kuster are very small in size and can be interpreted as inherited as well as newly formed. However, the overlaying Spielriegel Complex show a significant drop in temperature and a peak at 388°C which is the highest measured temperature of units of the Stolzalpen Nappe but indicates an upright Eo-Alpine metamorphic gradient in this unit.

The comparison of grainsize and habit of quartz and white mica of similar lithologies of the Murau Group and the Spielriegel Complex also gives a hint on deformation temperature and deformation mechanism discussed in more detail in chapter 5.2.2. Further on the exhumation related deformation of  $D_{3b}$  phase of this nappe stack, the retrograde metamorphism, and cooling of the system took place. Due to the low diversity in the mineralogical composition this phase is mostly recognised in deformation structures.

In the regime of brittle deformation, the presence of a fluid phase is shown by the occurrence of tremolite in the different steep joint sets of the Weißwände Lithodeme. Therefore, a mixed fluid reaction can be used for this hydration-decarbonation reaction, which is strongly dependent on the availability of CO<sub>2</sub>.

 $5Dol + 8 Qtz + H_2O = Tr + 3Cal + 7CO_2$ 

## 5.2 The Detachment

#### 5.2.1 Structures of the shear zone

Structures related to phase  $D_{3b}$  result in the main structural overprint of all units, whereby all traces of earlier  $D_s$  and  $D_{3a}$  phase got lost, except in the Stolzalpe Nappe. However, the preserved structural overprint is bounden to the  $D_{3b}$  phase. All observed structures in the research area which are used to reconstruct a sense of shear consistently indicate a Top to the E sense of shear. This is indicated by flanking structures in the dolomite ultra-mylonite (Fig. 18 B), mica fish textures, and clast geometries in other lithodemic units. Furthermore, structures are identified which indicate a strong coaxial deformation bounden to  $D_{3b}$ . The formation of a pervasive stretching lineation dipping mainly towards SE, as well as isoclinal folds with E-W oriented fold axis in nearly all lithodemic units and the formation of corresponding axial plane schistosity is observed. Further on the formation of meter to centimetre scaled boudins of dolomite, as well as the consistent E-W oriented shape preferred orientation (SPO) of mineral grains indicate strong coaxial deformation.

Further cooling is reflected by the formation of brittle-ductile transition structures in the quartz rich lithologies and rarely in the calcite-marble occur in form of C'-type shear bands, that overprint the whole fabric and accumulate minor amounts of displacement. No shearbands were observed in the dolomite-marble of the Weißwände and the Karnerboden Lithodeme. Since dolomite marble is monomineralic and fairly massive, no glide horizons to form shearbands exist. Instead, the formation of stylolites is observed (Fig. 21 B, 22 C). The last recognisable step is recorded in centimetre to kilometre open folds which overprint the whole nappe stack and result in refold structures. This phase can be interpreted as independent phase of NNW-SSW shortening as Huet (2015) described, or as last syngenetic exhumation phase of D<sub>3b</sub>.



Figure 31: Schematic sketch of the low angle normal fault in the upper Austroalpine unit, from and modified after Neubauer et al., 1998, The red square indicates the position of the research area in the nappe stack.

### 5.2.2 Shear zone evolution

In active ductile shear zones, the higher the strain-rate at low temperatures the smaller is the stable recrystallized grainsize (Passchier, 2005). Mylonites also may undergo grain growth during dynamic recrystallisation in a shear zone to reach the stable grain size (Masuda and Fujimura, 1981). Dynamic recrystallisation leads to a balance between grain size reduction and growth processes. (De Bresser et al. 2001). The grainsize distribution plots shown in chapter 4.6 indicates a grain size reduction in hanging wall direction This can be interpreted as lower deformation temperatures in structural higher levels. Microstructural evidence of the preserved structures that were briefly described above indicates different deformation mechanisms were active and are subdivided into high temperature structures and low temperature structures mentioned in chapter 4.3.

The main active deformation mechanisms are diffusive mass transfer as dissolution & precipitation creep (DPC) and intracrystalline plasticity seen in twinning, recovery of grains as bulging (BLG) and subgrain rotation (SGR). Along phase boundaries in mica rich lithologies and in the dolomite ultra-mylonite grain boundary sliding was active.

In this sense, the different lithologies and syngenetic phases of exhumation are subjected to different deformation mechanisms. In the very fine-grained dolomite ultra-mylonite grain size sensitive flow was active (Herwegh et.al. 2001), which commonly occurs at high temperatures (Passchier, 2005). The deformation temperature is decreasing in structural higher levels, seen in the change of deformation mechanism. Lithologies in upper levels, therefore, show dominantly microstructures indicative of DPC such as a spaced foliation, cleavage and less common microlithon domains. DPC microstructures are best seen in the calcite-marble of the Leckenschober Lithodeme, where soluble material is dissolved, and insoluble material as white mica and phyllitic/graphitic material remains with an E-W orientated shape preferred orientation (SPO). Calcite is recrystallising and shows the same SPO. DPC is also evident from the formation of strain caps and strain shadows around porphyroclasts where newly formed small grains are observed in the quartz rich lithologies. Hereby the isoclinal folds and the penetrative axial plane schistosity were formed seen in isoclinal folded pyllitic inclusions of the Leckenschober Lithodeme (Fig. 20 D).

Ongoing deformation during exhumation also caused intracrystalline deformation in quartz grains and quartz porphyroclasts. Where at the expense of the rim area of big clasts and preexiting veins, which show a highly undulose extinction, newly formed subgrains are observed. The deformation mechanism is interpreted as SGR. This deformation concerns all quartz rich lithologies and indicates a deformation temperature of minimum 400°C according to Passchier (2005).

At decreasing temperature, the impure calcite-marble on the one hand commonly show twinning of type 2 and 3 of large, recrystallised grains which indicates temperatures of deformation of ~200°C. On the other hand, quartz in these samples often show bulging which is in good correlation of the deformation temperature suggested by the twinning (Fig. 22 C). In later phases of exhumation also the DPC occurred like formation of stylolites in the dolomitic and calcitic-marble, whereas in quartz- and mica-rich lithologies the formation of C and C'-type shearbands is most prominent. This formation is related to high finite strain accommodated by grain boundary sliding which leads to a grain size reduction (Ree, 1994; Schmid et al., 1987; Walker et al., 1990).

Since the deformation mechanism in the nearly monomineralic systems is consistently identified as SGR, which is best seen in large, deformed grains which subsequently replaced by small unstrained grains, the confining pressure of lithologies was calculated with piezometry. It is shown that both units The Leckenschober Lithodeme and the Spielriegel Complex which defining the nappe system boundary experienced the same pressure. This is an indication that both nappes were exhumed together and formed an several 100 m thick Top ESE shear zone which is most localised at the nappe system boundary between the Drauzug-Gurktal Nappe System and the Ötztal-Bundschuh Nappe System mostly in the Stangalm Mesozoic s.l. These observations are in good correlation with research from Hollinetz (2018) who investigated detaching structures on top of the Gstoder Nappe and saw evidence for a detachment in structural higher levels. Weissenbacher (2015) also found evidence for Top E orientated detaching structures in the Bundschuh Priedröf Complex but did not assign them to a major detachment localised in the Stangalm Mesozoic.

Results of paleopiezometry must be interpreted with caution due to the following reasons: (1) the investigated samples are not perfectly monomineralic. (2) some degree of error may arise from errors in grain mapping; (3) deformation mechanisms other that SGR may have been active. For more precise results of paleopiezometry, it is highly recommended to use EBSD maps. EBSD measurements allows the calculation of the flow law and an accurate description of the deformation mechanism and the grain boundaries. Which further leads to more precise values of the confining pressure.

### 5.2.3 Geochronological Data

For a better understanding of the temporary relationships and the cooling history, the following section will explain the available geochronological data related to the shear zone in the study area. The geochronological interpretation is based on published data from Iglseder & Huet (2019) respectively Iglseder et al. (2019) & references therein.

The cooling history of the Bundschuh nappe shows a cooling below 300°C between 81-87 Ma based on Rb/Sr data of biotite. A further cooling below 150 °C based on U-Th-He measurements on zircons of between 45-50 Ma. For the structurally higher Murau nappe there is an <sup>40</sup>Ar/<sup>39</sup>Ar plateau age measured on muscovite, which shows cooling at 86 Ma. A U-Th-He age on zircon in the Stolzalpe nappe indicates cooling below 150° C by about 76 Ma.

These cooling ages show in connection with the detachment the exhumation of the units of the nappe stack, whereby the structurally deeper units start to exhume first and this movement is progressing continuously to higher crustal levels. Therefore, it can be shown that the shear zone at mount Kuster is a cretaceous ductile shear zone which exhumed units from the Ötztal Bundschuh Nappe System together with units from the Drauzug Gurktal Nappe System from 87 – 76 Ma.

### 5.2.4 Low angle Detachment vs. ductile thinning

Deformation in the Earth's crust occur in localised fault planes. Depending on temperature and strain rate, both brittle or ductile processes can occur. Crustal detachments play an important role in the exhumation of deeply subducted units. Generally, these detachments are defined by an increase of mylonitic deformation in the footwall. The detachment plane is defined by a zone of cataclasis which get formed as a result of exhumation. (Daniel et al., 1996; Gautier et al., 1993; Grasemann et al., 2012; Haertel and Herwegh, 2014; Jolivet et al., 1994). These criteria are used to discuss the existence of a large-scale detachment at Mount Kuster, where structural lower units of the Drauzug-Gurktal Nappe System juxtapose the structural highest units of the Ötztal-Bundschuh Nappe System. The structures observed show on the one hand an increasing mylonitisation of the rocks in structurally deeper levels (e.g., ultra-mylonitic dolomite marble of the Weißwände Lithodeme), and on the other hand decrease of deformation temperature that leads to the overprint of ductile mylonites by brittle-ductile structures (e.g., flanking structures). In hanging wall levels, the fault plane shows less evidence of cataclasis itself, which indicates that displacement along the detachment ceased at lower greenschist facies conditions. This fact also can be interpreted as ductile thinning in the first stages of exhumation.

This assumption is further supported by the occurrence of a 10-meter-thick quartzite mylonite directly above the detachment plane in hanging wall direction of the Spielriegel Complex. This gradient decreases continuously towards structural higher levels. A few shear sense indicators were found in the research area but in a large-scale normal fault setting much more indicators are expected. This fact is interpreted as strong coaxial (pure shear dominated) deformation and can be linked to ductile thinning. Further evidence of ductile thinning is given in the rheologic behaviour, according to research from Sean & Matthew, (2020). Their study showed that weaker rocks do not have the ability to transmit shear traction, this results in a pure shear dominated, thrust-normal thinning and transport-parallel stretching (e.g., Means, 1989; Camilleri, 1998; Yonkee, 2005; Law et al., 2013). In quartz rich lithologies, ductile thinning is at deformation temperatures of 300°C possible (e.g., Stipp et al., 2002; Yonkee, 2005; Long et al., 2011), with strain magnitude expected to increase with increasing deformation temperature (e.g., Ring and Kassem, 2007). Therefore, it can be shown that lithologies from the hanging-wall. Possibly both exhumation models can be observed at the shear zone of Mount Kuster.

58

## 5.3 Estimation of the distance of displacement

As Stowasser (1956) reported the Stangalm Mesozoic cropping out at Mount Kuster show a thickness of 300-400 meters. The most western parts around Innerkrems are measured from maps from the Geological Survey of Austria show a thickness of 1600 meters. This nearly horizontal layered package thins from W to E out by a factor of 4 in the 25 kilometres in between. Due to these observations and with a few assumptions, it is possible to find a minimum distance of displacement the lithologies of the Stangalm Mesozoic s.l. have experienced. To get an idea of the magnitude of displacement during exhumation, a simplified trigonometric solution is presented.

For the calculation the angle of the Detachment is interpreted as the dip of the mylonitic foliation and for further calculation an angle of 10°, 15° and 20° is used. The hypotenuse in this case is interpreted as rough estimation of the distance of displacement (Fig. 32 B). It is also assumed that the angle of this detachment hasn't changed while exhumation.

The attempt is to use measured Raman temperatures and correlate them in terms of subduction depth and vertical uplift. An average geothermal gradient for upper crustal levels of 30°C/km for the upper 10 kilometres of the nappe stack is assumed.

In deeper horizons a geothermal gradient of 15°C/km is used. Therefore, an exhumation from 500°C peak temperature to 200°C shows a vertical exhumation (h) of approximately 16.6 kilometres.



|                | Stangalm Mesozoic s.l. | Stangnock Fm. | Oberhof Lithodeme |   |
|----------------|------------------------|---------------|-------------------|---|
| angle $\alpha$ | h = 16.6 km            | h = 4 km      | h = 4.7 km        |   |
| 10°            | 95.96                  | 23.03         | 27.07             |   |
| 15°            | 64.14                  | 15.45         | 18.16             |   |
| 20°            | 48.54                  | 11.69         | 13.74             | C |

Figure 32 A: schematic crustal profile and calculation of vertical exhumation; B: simplified trigonometrical illustration of the detachment & relation of the angle and the uplift distance. C: Calculation table with distances of displacement.

The same procedure can be done for lithologies of the Stangnock Formation. Which also show a thinning from W to E. In Western parts a thickness of 1000 m is reported (Iglseder et al., 2019) at the flank of mount Stangnock. The E most outcrops show a thickness of 250 meters measured from maps E of the Wintertalernock. Therefore, a thinning by the factor 4 is observed in 15 kilometres in between. Metamorphic peak temperatures range from 280-350°C (Rantitsch et al., 2020) from structural lower

to higher levels (ATA 2019, and references therein). The Thermal profile shows a vertical uplift of 4 kilometres and distances of displacement from 23.03 – 11.69 kilometres.

The Oberhof Lithodeme is cropping out in the Oberhof Window and show an apparent thickness of ~200 meters described by Hollinetz (2018). At Mount Kuster the apparent thickness is 50 meters described by Beck-Mannagetta (1959) and shown as a result of this study. Therefore, this lithodemic unit is thinning out in between five kilometres in W direction by a factor of 4. Modelled peak temperatures from Hollinetz (2018), indicates a metamorphic peak at 570°C in Oberhof. Raman temperatures from mount Kuster indicates a peak at 500°C. The resulting distance of displacement ranges from 13.7 – 27 kilometres.

In this highly simplified model, a thinning by the factor of four is shown for all affected units.

### 5.4 The Kuster Nappe

In the following point it will be discussed why it could be useful to introduce a new nappe named Kuster Nappe as the structural highest nappe of the Ötztal-Bundschuh Nappe System. The main reasons can be found in the (1) lithological composition, (2) the peak of metamorphism, as well as the apparent (3) deformation in this unit.

To clarify the lithological affiliation of the Oberhof Lithodeme and the Kuster Nappe the origin of these must be examined. The Oberhof Lithodeme was first described by Hollinetz (2018) as a higher metamorphic deformed equivalent of the Stangnock Formation.

The Stangnock Formation is an association of intercontinental sediments of the Upper Pennsylvanian (Iglseder, 2019 and references therein) which is the transgressively overlying cover of the Kaser Complex and the Spielriegel Complex. This cover was formed after the Variscan orogeny. Which means that the Stangnock Formation occurs due to Eo-Alpine thrust tectonics (D<sub>3a</sub>) as "cover" formation in the (1) Königstuhl Nappe as well as the structurally uppermost formation in the (2) Stolzalpe Nappe. In the out of sequence thrusted Königstuhl Nappe this association shows a decreasing temperature gradient from E to W of 350°C in E parts and 260°C in W parts of the nappe (Rantitsch et al., 2020). (2) In the structurally uppermost Stolzalpe Nappe this cover experienced temperatures of 200-240°C (Rantitsch et al., 2020).

The Oberhof Lithodem therefore, is a relatively young term in the regional geology of the Upper Austroalpine unit. It is latterly described in the region of Oberhof by Hollinetz et al., (2018). The lithologies are distinguished as an association of graphite bearing metapelites and meta-psammites structurally above the Bundschuh-Orthogneis Lithodeme (Iglseder, 2019 & references therein). The main lithologies could be differentiated (1) garnet- and chloritoid-bearing graphite schist and (2) quartzitic mica schist and quartzite (Hollinetz et al., 2018). This earlier study suggests due to the similarities of the Permian graphite rich metasediments of the Stangnock Formation described in the Stolzalpe Nappe (Krainer, 1989) that the Oberhof Lithodem can be interpreted as a metamorphic equivalent of these. In the area around Flattnitz I interpret the occurring lithological association of graphite schists, meta-conglomerates, and mica schists intercalated into lithologies of the Stangalm Mesozoic s.l. as lithologies originating from the Stangnock Formation and due to the higher grade of metamorphose this lithological association corresponds to the Oberhof Lithodeme as described above. In comparison, the lithological units of the Stangalm Mesozoic s.l. consist mainly of carbonate-rich rocks, only the structural highest parts of the Stangalm Mesozoic shows lithological similarities. On closer examination, however, these have no genetic connection and can be clearly distinguished by the association of carbonate-rich lithologies with rare and low thickness intercalations of graphite schists and mica-rich horizons. No evidence for terrestrial deposition products is found in the units of the Stangalm Mesozoic. The exact lithological description is given in chapter 4.1. Besides of the lithological difference of the Stangalm Mesozoic s.l. and the Oberhof Lithodeme the age of the protolith should be considered. Therefore, as mentioned in Chapter 2.3 the deposition age of the Stangalm Mesozoic s.l. ranges from the uppermost Permian to the Jurassic, while the depositional age of the Stangnock Formation respective of the Oberhof Lithodeme was dated 310 – 305 Ma which corresponds to the lowermost Permian.

Another argument that should be considered is seen in (2) the peak of metamorphism, which affects both nappes (Kuster nappe & Stangalm Mesozoic s.l.) in the same way. Raman microspectroscopy data suggest for both units, maximum temperatures of metamorphism from 519±37°C to 435±39°C, as shown and discussed briefly in chapter 5.1. The Raman data from units of the DGNS in the research area show a lower temperature of metamorphism across the nappe system boundary of 380±70°C. Therefore, the Oberhof Lithodeme experienced much higher temperatures of metamorphism as the units of the DGNS have experienced, described in the literature. This indicates an earlier decoupling and deeper subduction of these parts of the former Stangnock Formation.

Like the metamorphic and thermal evolution of the units, the apparent deformation can be used as an argument to clarify the affiliation of the units. Therefore, both units show the same deformation caused by the same event.

Strong evidence for tectonic incorporation of the Oberhof Lithodeme while nappe stacking (D<sub>3a</sub>) is obscured, although nearly all traces of thrusting are lost because of extensive D<sub>3b</sub> shearing caused by the evolution of the shear zone. Arguments regarding to this can be found in the fact that the Oberhof Lithodeme at Mount Kuster is surrounded by Mesozoic units which can be shown by the inverse nappe stack found on the NE flank of Mount Kuster. This inverse nappe stack also can be found in lithologies of the Stangalm Mesozoic s.l. were the Weißwände Lithodeme is in hanging wall position of the Karnerboden Lithodeme (Fig. 16 A) and at the lake side where the Weißwände Lithodeme is on top of lithologies of the Murau Group (Fig. 16 B). This is good evidence for km scale (mountain ranged) isoclinal fold architecture as also described by Hollinetz (2018) in structural lower levels. The maximum temperatures of metamorphism which indicates the same peak temperature for both units indicate the same metamorphic peak and therefor the same depth of subduction during geodynamic evolution.

These facts lead to a possible model which focuses on the major ductile accretion structure bounden to  $D_{3a}$ , which got massively overprinted by the Top ESE Eo-Alpine Detachment structure related to the  $D_{3b}$  phase.
## 6 Conclusion

Lithological and structural geological mapping at mount Kuster and mount Hirnkopf is carried out, where a major Eo-Alpine Detachment is exposed. From structural investigations from outcrop to micro scale an interpreted evolution and deformation history of the lithologies in the research area is provided. The nappe system boundaries are classified and interpreted in terms of an Eo-Alpine Detachment where structurally lower units from the Drauzug-Gurktal Nappe System are juxtaposed against structurally higher units from the Ötztal-Bundschuh Nappe System.

The results of this study lead to following conclusions:

- Several deformation phases from pre-Alpine (D<sub>1</sub> & D<sub>2</sub>) to Eo-Alpine (D<sub>3</sub> & D<sub>4</sub>) are preserved in different lithodemic units, whereby the D<sub>3b</sub> phase is the dominant overprint in the research area and related to a major Top SE Detachment localised in the Stangalm Mesozoic s.l.
- Paleopiezometry from nearly monomineralic units from the footwall and hanging wall of the Detachment is provided, which suggest the same differential stress for lithologies affected by the shear zone.
- 3) Raman Microspectroscopy data suggest a temperature peak of metamorphism of 519°C for units of the Oberhof Lithodeme. The Stangalm Mesozoic s.l. shows a peak at 485 °C, lower peak temperatures are determined across the nappe system boundary in hanging wall direction. Therefore, the Spielriegel Complex shows a maximum temperature of 388°C. These are the highest temperatures measured to date in the two last-mentioned units.
- 4) Lithologies originated from the Permian Stangnock Formation (Königstuhl Nappe) were systematically mapped and due to the grade of metamorphism assigned to the Oberhof Lithodeme, which is suggested to be a part of a new tectonic unit as structural highest unit of the Ötztal-Bundschuh Nappe system. The so called Kuster Nappe.
- 5) Due to the rheologic behaviour of quartz and carbonate rich lithologies in the footwall, the exhumation process is dominated by coaxial deformation driven by ductile thinning in the footwall and by non-coaxial deformation in the hanging wall, both of which are linked to a major low-angle detachment where units of the nappe stack got exhumed.
- 6) Comparison of the maximum thickness of outcropping units with their highly deformed equivalent lithologies show a thinning by the factor of 4 in the Stangalm Mesozoic s.l., in the Stangnock Formation, and in the Oberhof Lithodeme. Trigonometrical estimation of the distance of displacement indicates, depending on the assumed angle of the detachment an offset of approximately 60 kilometres for all three affected units.

- Beck-Mannagetta, P. (1959). "Übersicht über die östlichen Gurktaler Alpen." Jahrbuch der Geologischen Bundesanstalt, 102, 313–352.
- Beyssac, O., B. Goffé, C. Chopin, J. N. Rouzaud (2002). "Raman spectra of carbonaceous material in metasediments: A new geothermometer." – Journal of Metamorphic Geology, 20/9, 859–871. doi:10.1046/j.1525-1314.2002.00408.x.
- Blenkinsop, T. G. (2000). "Deformation microstructures and mechanisms in minerals and rocks." Kluwer Academic Publishers, Dordrecht, p. 150.
- Daniel, J. M., Jolivet, L., Goffe, B., Poinssot, C. (1996). "Crustal-scale strain partitioning: Foot wall deformation below the Alpine Oligo-Miocene detachment of Corsica." Journal of Structural Geology, 18/1, 41–59. doi: 10.1016/0191-8141(95)00075-0.
- De Bresser, J. H. P, Ter Heege, J. H., Spiers C. J., (2001). "Grain size reduction by dynamic recrystallization: can it result in major rheological weakening?" International Journal of Earth Sciences, 90, 28–45.
- Decker, K. (1998). "Tektonik der spröden Kruste: Methoden der sprödtektonischen Strukturanalyse" Skriptum Universität Wien, 31-56.
- Frimmel, H. (1987). "Strukturgeologische, geochemische und geochronologische Untersuchungen zur Entwicklungsgeschichte des NW-Randes der Gurktaler Decke (Oberostalpin)." – Dissertation. Universität Wien, p. 199.
- Fritz, A. & Krainer, K. (2007). "Vegetationsgeschichtliche und florenstratigraphische Untersuchungen im Oberkarbon und Unterperm der Ost- und Südalpen (Teil 2)." Carinthia II, 197/117, 91–148.
- Fritz, A., Boersma, M., Krainer, K. (1990). "Steinkohlenzeitliche Pflanzenfossilien aus Kärnten." Sonderheft der Carinthia II, 49, p. 189.
- Froitzheim, N., Plašienka, D., Schuster, R. (2008). "Alpine tectonics of the Alps and Western Carpathians." In: McCann, T. (Ed.): The geology of Central Europe. – Geological Society of London, 1141–1232.
- Gautier, P., Brun, J., Jolivet, L. (1993). "Structure and kinematics of Upper Cenozoic extensional detachment on Naxos and Paros (Cyclades Islands, Greece)." Tectonics, 12/5, 1180–1194. doi: 10.1029/93TC01131.
- Grasemann, B., Wiesmayr, G., Draganits, E., Fusseis, F. (2004). "Classification of Refold Structures." The Journal of Geology, 112/1, 119–125.
- Grasemann, B., Schneider, D. A., Stockli, D. F., Iglseder, C. (2012). "Miocene bivergent crustal extension in the Aegean: Evidence from the western Cyclades (Greece)." Lithosphere, 4/1, 23–39. doi: 10.1130/L164.1.
- Griesmeier, G.E.U. & Iglseder, C. (2019): "Arbeitstagung 2019 der Geologischen Bundesanstalt: Geologie des Kartenblattes GK25 Radenthein-Ost." Geologischen Bundesanstalt, p. 285.

- Haertel, M. & Herwegh, M. (2014). "Microfabric memory of vein quartz for strain localization in detachment faults: A case study on the Simplon fault zone." – Journal of Structural Geology, 68/PA, 16–32. doi: 10.1016/j.jsg.2014.08.001.
- Herwegh, M. & Jenni, A. (2001). "Granular flow in polymineralic rocks bearing sheet silicates: New evidence from natural examples." Tectonophysics, 332/3, 309–320. doi: 10.1016/S0040-1951(00)00288-2.
- Hintersberger, E., Iglseder, C., Schuster, R., Huet, B. (2017). "The new database "Tectonic Boundaries" at the Geological Survey of Austria." Jahrbuch der Geologischen Bundesanstalt, 157, 195–207.
- Hoinkes, G., Koller, F., Demény, A., Schuster, R., Miller, C., Thöni, M., Kurz, W., Krenn, K., Walter, F. (2010). "Metamorphism in the eastern Alps." – Acta Mineralogica-Petrographica, Field Guide Series, 1, 1–47.
- Hollinetz, M.S., Werdenich, M., Iglseder, C., Huet, B., Reiser, M., Schuster, R., Tropper, P., Rantitsch, G., Grasemann, B. (2019). "Bundschuh or not Bundschuh? Discussing criteria defining the Bundschuh Nappe in the light of new P-T-t data from two localities in the Gurktal Alps (Upper Austroalpine Unit, Eastern Alps)." In: Griesmeier, G.E.U. & Iglseder, C. (Eds.): Arbeitstagung 2019 der Geologischen Bundesanstalt Geologie des Kartenblattes GK25 Radenthein-Ost, 87–95, Geologische Bundesanstalt, Wien.
- Hollinetz, M.S. (2018). "Tectono-metamorphic evolution of the upper part of the Eo-Alpine extrusion wedge. A case study from the Oberhof window (Carinthia, Austria)." Diplomarbeit, Universität Wien, p. 100.
- Huet, B. (2015). "Strukurgeologie der Stolzalpe-Decke auf Blatt Radenthein-Ost (UTM 3106)." Jahrbuch der Geologischen Bundesanstalt, 155, 121–145.
- Iglseder, C. (2019). "Geologische und Tektonische Karte der Gurktaler Alpen 1:250.000." In: Griesmeier, G.E.U. & Iglseder, C. (Eds.): Arbeitstagung 2019 der Geologischen Bundesanstalt – Geologie des Kartenblattes GK25 Radenthein-Ost, 48–54, Geologische Bundesanstalt, Wien.
- Iglseder, C. & Huet, B. (2019). "Tektonische Einheiten auf GK25 Blatt Radenthein-Ost und angrenzenden Gebieten." In: Griesmeier, G.E.U. & Iglseder, C. (Eds.): Arbeitstagung 2019 der Geologischen Bundesanstalt Geologie des Kartenblattes GK25 Radenthein-Ost, 5–18, Geologische Bundesanstalt, Wien.
- Iglseder, C. & Huet, B. (2015). "Evidence for Eoalpine top to the WNW thrusting and top to the ESE normal faulting in the Gurktal nappes (Drauzug-Gurktal nappe system, Upper Austro-Alpine, Austria)." – EGU series Emile Argand Conference – 12th Alpine Workshop, 13th – 19th September 2015, Montgenevre, Briancon, French Hautes-Alpes: Abstract Volume (2015), 22–23.
- Iglseder, C. & Schuster, R. (2015). "Lithostratigraphy in low-grade metamorphic rocks Examples from the Upper Austroalpine Stolzalpe Nappe and Bundschuh Nappe (Eastern Alps/Europe)." – Berichte des Institutes für Erdwissenschaften Karl-Franzens-Universität Graz, 21, 173.
- Iglseder, C., Huet, B., Rantitsch, G., Ratschbacher, L., Pfänder, J. (2016). "Age and structure of the Stolzalpe nappe Evidence for Variscan metamorphism, Eoalpine top-to-the-WNW thrusting and top-to-the-ESE normal faulting (Gurktal Alps, Austria)." In: Ortner, H. (Ed.): GeoTirol 2016: Annual Meeting DGGV: 25-28 September 2016, Innsbruck, Austria: Abstract Volume (2016), 137.

- Iglseder, C., Huet, B., Schuster, R., Rantitsch, G., Dunkl, I., Ratschbacher, L. (2018). "A section through the uppermost Upper Austroalpine Insights from the Gstoder, Bundschuh, Königstuhl and Stolzalpe Nappes (Gurktal Alps, Austria)." In: Koukal, V. & Wagreich, M. (Eds.): PANGEO AUSTRIA 2018 Abstracts. Berichte der Geologischen Bundesanstalt, 128, 66.
- Iglseder, C., Van Husen, D., Huet, B., Knoll, T., Schönlaub, H.P. (2019). "Geologische Karte der Republik Österreich 1:25.000, Blatt Radenthein-Nordost." Geologische Bundesanstalt, Wien.
- Janák, M., Froitzheim, N., Lupták, B., Vrabec, M., Krogh Ravna, E.J. (2004). "First evidence for ultrahigh-pressure metamorphism in Pohorje, Slovenia: Tracing deep continental subduction in the Eastern Alps." – Tectonics, 23, TC5014, Washington. doi: 10.1029/2004TC001641.
- Jolivet, L., Daniel, J., Truffert, C., Goffé, B. (1994). "Exhumation of deep crustal metamorphic rocks and crustal extension in arc and back-arc regions." Lithos, 33/1-3, 3–30. doi: 10.1016/0024-4937(94)90051-5.
- Kabon, H. & Iglseder, C. (2019). "Fossile Floren der Stangnock-Formation in den Gurktaler Alpen (Turracher Höhe, Nesselbachgraben, Reißeck, Frauennock)." – In: Griesmeier, G.E.U. & Iglseder, C. (Eds.): Arbeitstagung 2019 der Geologischen Bundesanstalt – Geologie des Kartenblattes GK25 Radenthein-Ost, 55–83, Geologische Bundesanstalt, Wien.
- Kaindl, R. & Abart, R. (2002). "Reequilibration of fluid inclusions in garnet and kyanite from metapelites of the Radenthein Complex, Austroalpine Basement, Austria." – Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 467–486.
- Koroknai, B., Neubauer, F., Genser, J., Topa, D. (1999). "Metamorphic and tectonic evolution of Austroalpine units at the western margin of the Gurktal nappe complex, Eastern Alps." – Schweizerische mineralogische und petrographische Mitteilungen, 79, 277–295. doi: 10.5169/seals-60209.
- Krainer, K. (1989). "Die fazielle Entwicklung der Oberkarbonsedimente (Stangnock-Formation) am NW-Rand der Gurktaler Decke." Carinthia II 179/99, 563–601.
- Krenn, K., Kurz, W., Fritz, H., Hoinkes, G. (2011). "Eoalpine tectonics of the Eastern Alps: implications from the evolution of monometamorphic Austroalpine units (Schneeberg and Radenthein Complex)." – Swiss Journal of Geosciences, 104/3, 471–491, Basel.
- Lopez-Sanchez, M. A. (2018). "GrainSizeTools: a Python script for grain size analysis and paleopiezometry based on grain size." Journal of Open Source Software, 3/30, 863, https://doi.org/10.21105/joss.00863.
- Lünsdorf, N. K., Dunkl, I., Schmidt, B. C., Rantitsch, G., von Eynatten, H. (2017). "Towards a Higher Comparability of Geothermometric Data Obtained by Raman Spectroscopy of Carbonaceous Material. Part 2: A Revised Geothermometer." Geostandards and Geoanalytical Research, 41/4, 593–612. doi: 10.1111/ggr.12178.
- Masuda T. & Fujimura A. (1981). "Microstructural development of finegrained quartz aggregates by syntectonic recrystallisation." Tectonophysics, 72, 105–128.
- Neubauer, F.R., Koroknai, B., Genser, J., Handler, R., Topa, D. (1998). "Middle and Upper Austroalpine units of Gurktal Mountains/Nock region." Karpato-Balkanische Geologische Assoziation Kongress (KBGA), 16.F.1, 85–101, Salzburg.

- Neubauer, F. & Pistotnik, J. (1984). "Das Altpaläozoikum und Unterkarbon des Gurktaler Deckensystems (Ostalpen) und ihre paläogeographischen Beziehungen." – Geologische Rundschau, 73/1, 149–174. doi: 10.1007/BF01820365.
- Neubauer, F. (1980). "Die Geologie des Murauer Raumes Forschungsstand und Probleme." Mitteilungen Abteilung Geologisches Palaontologisches Bergbau Landesmuseum Joanneum, 41, 67–79.
- Passchier, C. W. & Trouw, R. A. J. (2005). "Microtectonics 2nd ed." Springer Science & Business Media, p. 366. isbn: 9783540640035.
- Pistotnik, J. (1973). "Zur Geologie des NW-Randes der Gurtaler Masse (Stangalm-Mesozoikum; Österreich)." Mitteilungen der geologischen Gesellschaft in Wien, 66-67, 127–141.
- Rantitsch, G. & Russegger, B. (2000). "Thrust-related very low grade metamorphism within the Gurktal Nappe Complex (Eastern Alps)." Jahrbuch der Geologischen Bundesanstalt, 142/2, 219–225, Wien.
- Rantitsch, G., Iglseder, C., Hollinetz, M.S., Huet, B., Schuster, R., Werdenich, M. (2020). "Organic metamorphism as a key for reconstructing pre-, syn- and post-orogenic processes: the Eoalpine upper plate (Eastern Alps) as a case study." International Journal of Earth Sciences, 109/2235-2253. doi:10.1007/s00531-020-01897-2.
- Rantitsch G, Grogger W, Teichert Ch, Ebner F, Hofer C, Maurer E-M, Schaffer B, Toth M (2004). "Conversion of carbonaceous material to graphite within the Greywacke Zone of the Eastern Alps." International Journal of Earth Sciences, 93, 959–973. doi: 10.1007/s0053 1-004-0436-1.
- Ree, J. H. (1994). "Grain boundary sliding and development of grain boundary openings in experimentally deformed octachloropropane." Journal of Structural Geology, 16/3, 403–418. doi: 10.1016 / 0191 8141(94)90044-2.
- Schmid, S. M., Fügenschuh, B., Kissling, E., Schuster, R. (2004). "Tectonic map and overall architecture of the Alpine orogen." Swiss Journal of Geosciences, 97/1, 93–117. doi: 10.1007/s00015-004-1113-x.
- Schmid, S. M., Panozzo, R., Bauer, S. (1987). "Simple shear experiments on calcite rocks: rheology and microfabric." Journal of Structural Geology, 9/5-6, 747–778. doi: 10.1016/0191-8141(87)90157-X.
- Schönlaub, H.P. (2014a). "Stangnock-Formation." In: Piller, W.E. (Ed.): The lithostratigraphic units of the Austrian Stratigraphic Chart 2004 (sedimentary successions), Vol. I: The Paleozoic Era(them): 2nd Edition. – Abhandlungen der Geologischen Bundesanstalt, 66, 39–40, Wien.
- Schuster, R. (1994). "Die Alpine Großüberschiebung an der Basis des Bundschuhkristallins." Diplomarbeit. Universität Wien, 1–120. – (2015). "Zur Geologie der Ostalpen." – Abhandlungen der Geologischen Bundesanstalt, 64, 143–165.
- Schuster, R., & Frank, W. (1999). "Metamorphic evolution of the Austroalpine units east of the Tauern Window: Indications for Jurassic strike slip tectonics." – Mitteilungen der Gesellschaft der Geologie-und Bergbaustudenten in Österreich, 42, 37–58.
- Schuster, R., Kurz, W., Krenn, K., Fritz, H. (2010). "Introduction to the Geology of the Eastern Alps." Berichte der Geologischen Bundestanstalt, 99, 121–133.
- Sean, P. L. & Matthew, J. K. (2020). "Distributed ductile thinning during thrust emplacement: A commonly overlooked exhumation mechanism." Geology, 48/4, 368–373. doi: 10.1130/G47022.1.

- Stowasser, H. (1956). "Zur Schichtfolge, Verbreitung und Tektonik des Stangalm-Mesozoikums (Gurktaler Alpen)." – Jahrbuch der Geologischen Bundesanstalt, 99, 65–199.
- Stüwe, K. & Schuster, R. (2010). "Initiation of subduction in the Alps: Continent or ocean?" Geology, 38/2, 175–178. doi: 10.1130/G30528.1.
- Thöni, M. & Jagoutz, E. (1993). "Isotopic constraints for eo-Alpine high-P metamorphism in the Austroalpine nappes of the Eastern Alps: bearing on Alpine orogenesis." Schweizerische Mineralogische und Petrographische Mitteilungen, 73/2, 177–189.
- Tollmann, A. (1963). "Ostalpensynthese". Vienna: Deuticke, p. 235. (1977). "Die Geologie von Österreich" Band I: Die Zentralalpen. Vienna: Deuticke.
- Tollmann, A. (1958). "Das Stangalm-Mesozoikum (Gurktaler Alpen)." Mitteilungen der Gesellschaft der Geologieund Bergbaustudenten in Wien, 9, 57–74, Wien.
- Twiss, R. J. (1977). "Theory and applicability of a recrystallized grain size paleopiezometer." Pure and Applied Geophysics, 115, 227–244. doi: 10.1007/BF01637105.
- Van Husen, D. (2019). "Eiszeitliche Entwicklung im Gebiet der Turrach zwischen dem Mur- und Draugletscher." In: Griesmeier, G.E.U. & Iglseder, C. (Eds.): Arbeitstagung 2019 der Geologischen Bundesanstalt – Geologie des Kartenblattes GK25 Radenthein-Ost, 45–47.
- Von Gosen, W., Haiges, K. H., Neubauer, F., Pistotnik, J., Thiedig, F. (1985). "Die tektonischen Baueinheiten am Nord- und Westrand der Gurktaler Decke (Österreich)." Jahrbuch der Geologischen Bundesanstalt, 127, 693–699.
- Walker, A. N., Rutter, E. H., Brodie, K. H. (1990). "Experimental study of grain-size sensitive flow of synthetic, hotpressed calcite rocks." – Geological Society, London, Special Publications 54/1, 259–284. doi: 10.1144/GSL.SP.1990.054.01.24.
- Weissenbacher, M. (2015). "Strukturen der Bundschuh- und Murau Decke im Raum Flattnitz (Kärnten, Österreich)." Masterarbeit, Universität Graz, p. 121., Graz.

## 8 List of Figures

 Figure 7: ideal profile of the Stangalm Mesozoic s.l. & comparison with units of the Northern Calcareous Alps from

 Iglseder et.al., (2019).

 21

Figure 9 A: En-echelon veins with an orientation of 45 degree to the extension in the Karnerboden Lithodeme, view to N (UTM 33N: 0426229/5197682); B: Dolomite with isoclinal and open folded quartz mobilisates, view to E (UTM 33N: 0426413/5197747).

Figure 14: lower hemisphere stereoplots of pre-Alpidic deformation phases D1 & D2. Plotted with Stereonet v.11.

Figure 25 (Spielriegel Complex) Sample MW1910 (UTM 33N: 0427115/5197866) A: Quartz rich mylonite with rotated mineral (Top to the E sense of shear), B Mica rich layer and rounded clast with rhombic geometry, C & D: C'-Type shear bands (top to the E sense of shear). 43

 Figure 26: Representation of the 6 endmember types of superposition of folds. (Figure from Grasemann et al., 2004)

 2004)

## 9 List of Tables

 Table 1: Table of field measurements of superposing folds. Fold axis singed by FA, axial planes by Ap and corresponding poles.
 46

 Table 2: Calculation table for fold interference pattern, each value calculated in the way described in figure...C

 shows the angle between mentioned linear features.

 46

Table 3: Result table from Raman micro spectroscopy, the data highlighted in green are new data, the yellowishare already published in Rantitsch et al., (2020).49

 Table 4 A: Calculation table for paleopiezometry.
 51

## 10 Appendix

| Point            | 001             | 001          | 002       | 003         | 004            | 004           |
|------------------|-----------------|--------------|-----------|-------------|----------------|---------------|
| Lithology        | Qtz-Phyllit/    | Qtz-Phyllit/ | Dolomite  | Dolomite    | Calcitemarble  | Calcitemarble |
|                  | Quartzite       | Quartzite    |           |             | myl            | myl           |
| Comment          | ca rich, refold | structure    | courser   | graphitic?, | impure, Pyrit, |               |
|                  |                 |              | grained,  | veins,      |                |               |
| Lithodemic unit  | Murau           | Murau        | Weißwände | Weißwände   | Leckenschober  | Leckenschober |
| Nappe            | Murau           | Murau        | Stangalm  | Stangalm    | Stangalm       | Stangalm      |
|                  |                 |              | Mesozoic  | Mesozoic    | Mesozoic       | Mesozoi       |
| Nappesystem      | DG              | DG           | BS        | BS          | BS             | BS            |
| Plane (type)     |                 |              |           | S           | S              | S             |
| Dip direction    |                 |              |           | 069         | 080            | 066           |
| Dip              |                 |              |           | 12          | 27             | 25            |
| Lineation (type) |                 |              |           |             |                | Ls            |
| Dip direction L  |                 |              |           |             |                | 123           |
| Dip L            |                 |              |           |             |                | 20            |
| Fold (type)      | open            | assym        |           |             |                |               |
| Generation       | FA3             | FA2          |           |             |                |               |
| FA dip direction | 084             | 241          |           |             |                |               |
| FA dip           | 03              | 14           |           |             |                |               |
| AP dip direction | 337             | 329          |           |             |                |               |
| AP dip           | 09              | 04           |           |             |                |               |
| UTM_N            | 5198134         | 5198134      | 5198625   | 5198577     | 5198578        | 5198578       |
| UTM_E            | 427774          | 427774       | 427246    | 427222      | 427256         | 427256        |
| Sample           |                 |              |           | MW1901      | MW1902         |               |

| Point            | 004          | 004          | 004           | 004           | 005           |
|------------------|--------------|--------------|---------------|---------------|---------------|
| Lithology        | Calcitemarbl | Calcitemarbl | Calcitemarble | Calcitemarble | Dolomite      |
|                  | e myl        | e myl        | myl           | myl           | myl           |
| Comment          |              |              |               |               |               |
| Lithodemic unit  | Leckenschob  | Leckenschob  | Leckenschober | Leckenschober | Leckenschober |
|                  | er           | er           |               |               |               |
| Nappe            | Stangalm     | Stangalm     | Stangalm      | Stangalm      | Stangalm      |
|                  | Mesozoic     | Mesozoic     | Mesozoic      | Mesozoic      | Mesozoic      |
| Nappesystem      | BS           | BS           | BS            | BS            | BS            |
| Plane (type)     | S            | S            | S             | S             | S             |
| Dip direction    | 125          | 105          | 052           | 068           | 234           |
| Dip              | 25           | 01           | 28            | 10            | 32            |
| Lineation (type) | Ls           | Ls           | Ls            | Ls            |               |
| Dip direction L  | 104          | 108          | 122           | 108           |               |
| Dip L            | 01           | 04           | 09            | 10            |               |
| Fold (type)      |              |              |               |               |               |
| Generation       |              |              |               |               |               |
| FA dip direction |              |              |               |               |               |
| FA dip           |              |              |               |               |               |
| AP dip direction |              |              |               |               |               |
| AP dip           |              |              |               |               |               |
| UTM_N            | 5198578      | 5198578      | 5198578       | 5198578       | 5198625       |
| UTM_E            | 427256       | 427256       | 427256        | 427256        | 427294        |
| Sample           |              |              |               |               |               |

| Point            | 006                            | 007                                          | 007               | 008                                |
|------------------|--------------------------------|----------------------------------------------|-------------------|------------------------------------|
| Lithology        | Micaschist                     | Dolomite myl                                 | Dolomite myl      | Micaschist                         |
| Comment          | contact<br>Murau -<br>Stangalm | shattered rock, fine joints, graphitic lense |                   | phylonitic, course<br>grained mica |
| Lithodemic unit  | Murau                          | Weißwände                                    | Weißwände         | Murau                              |
| Nappe            | Murau                          | Stangalm Mesozoic                            | Stangalm Mesozoic | Murau                              |
| Nappesystem      | DG                             | BS                                           | BS                | DG                                 |
| Plane (type)     | S                              | S                                            | S                 | S                                  |
| Dip direction    | 168                            | 262                                          | 268               | 202                                |
| Dip              | 33                             | 20                                           | 44                | 07                                 |
| Lineation (type) |                                | Ls?                                          |                   | Ls                                 |
| Dip direction L  |                                | 337                                          |                   | 286                                |
| Dip L            |                                | 03                                           |                   | 02                                 |
| Fold (type)      |                                |                                              |                   | iso                                |
| Generation       |                                |                                              |                   | FA1                                |
| FA dip direction |                                |                                              |                   | 133                                |
| FA dip           |                                |                                              |                   | 01                                 |
| AP dip direction |                                |                                              |                   | 200                                |
| AP dip           |                                |                                              |                   | 10                                 |
| UTM_N            | 5198644                        | 5198652                                      | 5198652           | 5198744                            |
| UTM_E            | 427326                         | 427295                                       | 427295            | 426713                             |
| Sample           | MW1903<br>(no)                 |                                              |                   |                                    |

| Point            | 008        | 008        | 008        | 008        | 008        | 008        | 008        |
|------------------|------------|------------|------------|------------|------------|------------|------------|
| Lithology        | Micaschist |
| Comment          |            |            |            |            |            |            |            |
| Lithodemic unit  | Murau      |
| Nappe            | Murau      |
| Nappesystem      | DG         |
| Plane (type)     | S          | S          | S          | S          | S          | S          | Sb         |
| Dip direction    | 243        | 118        | 195        | 241        | 304        | 226        | 173        |
| Dip              | 31         | 25         | 18         | 29         | 05         | 25         | 01         |
| Lineation (type) | Ls         | Ls         | Ls         | Ls         | Ls         | Ls         | Lstr       |
| Dip direction L  | 292        | 118        | 139        | 301        | 176        | 117        | 144        |
| Dip L            | 11         | 15         | 09         | 12         | 01         | 02         | 02         |
| Fold (type)      | iso        | iso        | iso        | iso        | iso        |            |            |
| Generation       | FA1        | FA1        | FA1        | FA1        | FA1        |            |            |
| FA dip direction | 284        | 258        | 318        | 205        | 334        |            |            |
| FA dip           | 15         | 05         | 15         | 16         | 05         |            |            |
| AP dip direction | 292        | 315        | 278        | 254        |            |            |            |
| AP dip           | 12         | 05         | 14         | 02         |            |            |            |
| UTM_N            | 5198744    | 5198744    | 5198744    | 5198744    | 5198744    | 5198744    | 5198744    |
| UTM_E            | 426713     | 426713     | 426713     | 426713     | 426713     | 426713     | 426713     |
| Sample           |            |            |            |            |            |            |            |

| Point            | 008        | 008        | 009                   | 009                  | 009                  | 009                  |
|------------------|------------|------------|-----------------------|----------------------|----------------------|----------------------|
| Lithology        | Micaschist | Micaschist | Dolomite myl          | Dolomite myl         | Dolomite myl         | Dolomite myl         |
| Comment          |            |            | flanking<br>structure |                      |                      |                      |
| Lithodemic unit  | Murau      | Murau      | Weißwände             | Weißwände            | Weißwände            | Weißwände            |
| Nappe            | Murau      | Murau      | Stangalm<br>Mesozoic  | Stangalm<br>Mesozoic | Stangalm<br>Mesozoic | Stangalm<br>Mesozoic |
| Nappesystem      | DG         | DG         | BS                    | BS                   | BS                   | BS                   |
| Plane (type)     | Sb         | Sb         | S                     | S                    | S                    | joint                |
| Dip direction    | 118        | 126        | 238                   | 258                  | 247                  | 134                  |
| Dip              | 35         | 31         | 12                    | 09                   | 12                   | 85                   |
| Lineation (type) | Lstr       | Lstr       | Ls                    | Ls                   |                      |                      |
| Dip direction L  | 133        | 130        | 294                   | 297                  | 298                  |                      |
| Dip L            | 26         | 32         | 09                    | 06                   | 07                   |                      |
| Fold (type)      |            |            |                       |                      |                      |                      |
| Generation       |            |            |                       |                      |                      |                      |
| UTM_N            | 5198744    | 5198744    | 5198730               | 5198730              | 5198730              | 5198730              |
| UTM_E            | 426713     | 426713     | 426656                | 426656               | 426656               | 426656               |
| Sample           |            |            | Mw1911                |                      |                      |                      |

| Point            | 009                  | 009                  | 009                            | 009        | 009        | 009        | 009        |
|------------------|----------------------|----------------------|--------------------------------|------------|------------|------------|------------|
| Lithology        | Dolomite<br>myl      | Dolomite<br>myl      | Micaschist                     | Micaschist | Micaschist | Micaschist | Micaschist |
| Comment          |                      |                      | contact<br>Stangalm -<br>Murau |            |            |            |            |
| Lithodemic unit  | Weißwände            | Weißwände            | Murau                          | Murau      | Murau      | Murau      | Murau      |
| Nappe            | Stangalm<br>Mesozoic | Stangalm<br>Mesozoic | Murau                          | Murau      | Murau      | Murau      | Murau      |
| Nappesystem      | BS                   | BS                   | DG                             | DG         | DG         | DG         | DG         |
| Plane (type)     | joint                | contactplan<br>e S   | S                              | S          | S          | S          | S          |
| Dip direction    | 130                  | 354                  | 294                            | 334        | 311        | 286        | 272        |
| Dip              | 87                   | 04                   | 03                             | 10         | 12         | 17         | 18         |
| Lineation (type) |                      |                      | Ls                             | Ls         |            |            |            |
| Dip direction L  |                      |                      | 217                            | 231        |            |            |            |
| Dip L            |                      |                      | 04                             | 05         |            |            |            |
| UTM_N            | 5198730              | 5198730              | 5198730                        | 5198730    | 5198730    | 5198730    | 5198730    |
| UTM_E            | 426656               | 426656               | 426656                         | 426656     | 426656     | 426656     | 426656     |
| Sample           |                      |                      |                                |            |            |            |            |

| Point            | 009        | 009        | 009        | 009        | 009        | 010          | 010          |
|------------------|------------|------------|------------|------------|------------|--------------|--------------|
| Lithology        | Micaschist | Micaschist | Micaschist | Micaschist | Micaschist | Dolomite myl | Dolomite myl |
| Comment          |            |            |            |            |            |              |              |
| Lithodemic unit  | Murau      | Murau      | Murau      | Murau      | Murau      | Weißwände    | Weißwände    |
| Nappe            | Murau      | Murau      | Murau      | Murau      | Murau      | Stangalm     | Stangalm     |
|                  |            |            |            |            |            | Mesozoic     | Mesozoi      |
| Nappesystem      | DG         | DG         | DG         | DG         | DG         | BS           | BS           |
| Plane (type)     | Sb         | Sb         | Sb         | Sb         | Sb         | S            | S            |
| Dip direction    | 150        | 092        | 120        | 122        | 117        | 209          | 219          |
| Dip              | 20         | 28         | 25         | 20         | 18         | 12           | 05           |
| Lineation (type) | Lstr       | Lstr       | Lstr       | Lstr       | Lstr       |              | Ls           |
| Dip direction L  | 139        | 135        | 125        | 123        | 130        |              | 315          |
| Dip L            | 19         | 20         | 30         | 19         | 18         |              | 01           |
| Fold (type)      |            |            |            |            |            |              |              |
| Generation       |            |            |            |            |            |              |              |
| FA dip direction |            |            |            |            |            |              |              |
| FA dip           |            |            |            |            |            |              |              |
| AP dip direction |            |            |            |            |            |              |              |
| AP dip           |            |            |            |            |            |              |              |
| UTM_N            | 5198730    | 5198730    | 5198730    | 5198730    | 5198730    | 5198611      | 5198611      |
| UTM_E            | 426656     | 426656     | 426656     | 426656     | 426656     | 426347       | 426347       |
| Sample           |            |            |            |            |            |              |              |

| Point            | 010          | 010          | 010          | 010          | 010.1        | 010.2        |
|------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Lithology        | Dolomite myl |
| Comment          |              |              |              |              |              |              |
| Lithodemic unit  | Weißwände    | Weißwände    | Weißwände    | Weißwände    | Weißwände    | Weißwände    |
| Nappe            | Stangalm     | Stangalm     | Stangalm     | Stangalm     | Stangalm     | Stangalm     |
|                  | Mesozoic     | Mesozoic     | Mesozoic     | Mesozoic     | Mesozoic     | Mesozoi      |
| Nappesystem      | BS           | BS           | BS           | BS           | BS           | BS           |
| Plane (type)     | S            | joint        | joint        | joint        | S            |              |
| Dip direction    | 222          | 125          | 123          | 124          | 272          |              |
| Dip              | 11           | 82           | 79           | 76           | 02           |              |
| Lineation (type) | Ls           |              |              |              | Ls           |              |
| Dip direction L  | 304          |              |              |              | 314          |              |
| Dip L            | 01           |              |              |              | 01           |              |
| Fold (type)      |              |              |              |              |              |              |
| Generation       |              |              |              |              |              |              |
| FA dip direction |              |              |              |              |              |              |
| FA dip           |              |              |              |              |              |              |
| AP dip direction |              |              |              |              |              |              |
| AP dip           |              |              |              |              |              |              |
| UTM_N            | 5198611      | 5198611      | 5198611      | 5198611      | 5198611      | 5198611      |
| UTM_E            | 426347       | 426347       | 426347       | 426347       | 426347       | 426347       |
| Sample           |              |              |              |              |              |              |

| Point            | 011                  | 011                  | 011                  | 011                  | 011                  | 011                 |
|------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|
| Lithology        | Dolomite myl         | Dolomite myl        |
| Comment          |                      |                      |                      |                      |                      |                     |
| Lithodemic unit  | Weißwände            | Weißwände            | Weißwände            | Weißwände            | Weißwände            | Weißwände           |
| Nappe            | Stangalm<br>Mesozoic | Stangalm<br>Mesozoic | Stangalm<br>Mesozoic | Stangalm<br>Mesozoic | Stangalm<br>Mesozoic | Stangalm<br>Mesozoi |
| Nappesystem      | BS                   | BS                   | BS                   | BS                   | BS                   | BS                  |
| Plane (type)     | S                    | S                    | S                    | S                    | S                    | S                   |
| Dip direction    | 249                  | 232                  | 204                  | 221                  | 216                  | 221                 |
| Dip              | 37                   | 15                   | 15                   | 30                   | 29                   | 40                  |
| Lineation (type) | Ls                   |                      | Ls                   | Ls                   | Ls                   | Ls                  |
| Dip direction L  | 319                  |                      | 136                  | 312                  | 314                  | 303                 |
| Dip L            | 15                   |                      | 08                   | 01                   | 01                   | 01                  |
| Fold (type)      |                      |                      |                      |                      |                      |                     |
| Generation       |                      |                      |                      |                      |                      |                     |
| FA dip direction |                      |                      |                      |                      |                      |                     |
| FA dip           |                      |                      |                      |                      |                      |                     |
| AP dip direction |                      |                      |                      |                      |                      |                     |
| AP dip           |                      |                      |                      |                      |                      |                     |
| UTM_N            | 5198431              | 5198431              | 5198431              | 5198431              | 5198431              | 5198431             |
| UTM_E            | 426787               | 426787               | 426787               | 426787               | 426787               | 426787              |
| Sample           | MW1904               |                      |                      |                      |                      |                     |

| Point            | 011          | 011          | 011          | 011          | 011.1        | 011.2        |
|------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Lithology        | Dolomite myl |
| Comment          |              |              |              |              |              |              |
| Lithodemic unit  | Weißwände    | Weißwände    | Weißwände    | Weißwände    | Weißwände    | Weißwände    |
| Nappe            | Stangalm     | Stangalm     | Stangalm     | Stangalm     | Stangalm     | Stangalm     |
|                  | Mesozoic     | Mesozoic     | Mesozoic     | Mesozoic     | Mesozoic     | Mesozoi      |
| Nappesystem      | BS           | BS           | BS           | BS           | BS           | BS           |
| Plane (type)     | joint        | joint        | joint        | joint        | S            | joint        |
| Dip direction    | 291          | 295          | 300          | 112          | 312          | 114          |
| Dip              | 85           | 82           | 84           | 86           | 30           | 85           |
| Lineation (type) |              |              |              |              |              |              |
| Dip direction L  |              |              |              |              | 324          |              |
| Dip L            |              |              |              |              | 15           |              |
| Fold (type)      |              |              |              |              |              |              |
| Generation       |              |              |              |              |              |              |
| FA dip direction |              |              |              |              |              |              |
| FA dip           |              |              |              |              |              |              |
| AP dip direction |              |              |              |              |              |              |
| AP dip           |              |              |              |              |              |              |
| UTM_N            | 5198431      | 5198431      | 5198431      | 5198431      | 5198431      | 5198431      |
| UTM_E            | 426787       | 426787       | 426787       | 426787       | 426787       | 426787       |
| Sample           |              |              |              |              |              |              |

| Point            | 012               | 013                      | 013                           |
|------------------|-------------------|--------------------------|-------------------------------|
| Lithology        | Dolomite myl      | Dolomite                 | Dolomite                      |
| Comment          |                   | h, s-par                 | allel veins, mica on S-planes |
| Lithodemic unit  | Weißwände         | Weißwände<br>Karnerboden | Weißwände/Karnerboden         |
| Nappe            | Stangalm Mesozoic | Stangalm Mesozoic        | Stangalm Mesozoic             |
| Nappesystem      | BS                | BS                       | BS                            |
| Plane (type)     | joint             | joint                    | S                             |
| Dip direction    | 294               | 293                      | 245                           |
| Dip              | 90                | 89                       | 22                            |
| Lineation (type) |                   |                          |                               |
| Dip direction L  |                   |                          |                               |
| Dip L            |                   |                          |                               |
| UTM_N            | 5198431           | 5198332                  | 5198332                       |
| UTM_E            | 426787            | 426970                   | 426970                        |
| Sample           |                   | MW1905                   |                               |

| Point            | 013                       | 013                       | 013                       | 013                       | 014                             |
|------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------------|
| Lithology        | Dolomite                  | Dolomite                  | Dolomite                  | Dolomite                  | Dolomite                        |
| Comment          |                           |                           |                           |                           | greyisch, Tremolit<br>in joints |
| Lithodemic unit  | Weißwände/Karne<br>rboden | Weißwände/Karne<br>rboden | Weißwände/Karne<br>rboden | Weißwände/Karn<br>erboden | Weißwände/Karne<br>rboden       |
| Nappe            | Stangalm<br>Mesozoic      | Stangalm<br>Mesozoic      | Stangalm<br>Mesozoic      | Stangalm<br>Mesozoic      | Stangalm<br>Mesozoic            |
| Nappesystem      | BS                        | BS                        | BS                        | BS                        | BS                              |
| Plane (type)     | S                         | S                         | S                         | joint                     | S                               |
| Dip direction    | 293                       | 280                       | 324                       | 288                       | 355                             |
| Dip              | 17                        | 20                        | 23                        | 90                        | 20                              |
| Lineation (type) |                           | Ls                        | Ls                        |                           | Ls                              |
| Dip direction L  |                           | 328                       | 335                       |                           | 275                             |
| Dip L            |                           | 15                        | 20                        |                           | 03                              |
| Fold (type)      |                           |                           |                           |                           |                                 |
| Generation       |                           |                           |                           |                           |                                 |
| UTM_N            | 5198332                   | 5198332                   | 5198332                   | 5198332                   | 5198299                         |
| UTM_E            | 426970                    | 426970                    | 426970                    | 426970                    | 426991                          |
| Sample           |                           |                           |                           |                           | MW1906                          |

| Point               | 014                  | 015                                    | 015                  | 015               | 015               |
|---------------------|----------------------|----------------------------------------|----------------------|-------------------|-------------------|
| Lithology           | Dolomite             | Calcitemarble myl                      | Calcitemarble myl    | Calcitemarble myl | Calcitemarble myl |
| Comment             |                      | isoklinal folds,<br>flanking structure |                      |                   |                   |
| Lithodemic          | Weißwände/           | Leckenschober                          | Leckenschober        | Leckenschober     | Leckenschober     |
| unit                | Karnerboden          |                                        |                      |                   |                   |
| Nappe               | Stangalm<br>Mesozoic | Stangalm Mesozoic                      | Stangalm<br>Mesozoic | Stangalm Mesozoic | Stangalm Mesozoic |
| Nappesyste<br>m     | BS                   | BS                                     | BS                   | BS                | BS                |
| Plane (type)        | joint                | S                                      | S                    | S                 | S                 |
| Dip direction       | 115                  | 130                                    | 122                  | 186               | 112               |
| Dip                 | 88                   | 41                                     | 45                   | 40                | 42                |
| Lineation<br>(type) |                      | Lcren2                                 | Lcren2               | Lcren2            | Lcren2            |
| Dip direction<br>L  |                      | 087                                    | 071                  | 124               | 079               |
| Dip L               |                      | 37                                     | 30                   | 25                | 35                |
| Fold (type)         |                      | iso                                    |                      |                   | iso               |
| Generation          |                      | FA3                                    |                      |                   | FA3               |
| FA dip<br>direction |                      | 099                                    |                      |                   | 072               |
| FA dip              |                      | 15                                     |                      |                   | 23                |
| AP dip<br>direction |                      | 334                                    |                      |                   | 110               |
| AP dip              |                      | 33                                     |                      |                   | 40                |
| UTM_N               | 5198299              | 5197969                                | 5197969              | 5197969           | 5197969           |
| UTM_E               | 426991               | 427024                                 | 427024               | 427024            | 427024            |
| Sample              |                      | MW1907                                 |                      |                   |                   |

| Point               | 015              | 015                  | 016         | 017         | 017         | 017         |
|---------------------|------------------|----------------------|-------------|-------------|-------------|-------------|
| Lithology           | Calcitemarble my | Calcitemarble        | Qtz-Phyllit | Qtz-Phyllit | Qtz-Phyllit | Qtz-Phyllit |
| Comment             |                  |                      | 2 fold      |             | FA1-FA2 /   | Foto SW     |
|                     |                  |                      | generations |             | FA2-FA3 FIP |             |
| Lithodemic unit     | Leckenschober    | Leckenschober        | Spielriegel | Spielriegel | Spielriegel | Spielriegel |
| Nappe               | Stangalm Mesozo  | Stangalm<br>Mesozoic | Stolzalpe   | Stolzalpe   | Stolzalpe   | Stolzalpe   |
| Nappesystem         | BS               | BS                   | DG          | DG          | DG          | DG          |
| Plane (type)        | S                | S                    |             |             | S           |             |
| Dip direction       | 145              | 122                  |             |             | 158         |             |
| Dip                 | 40               | 30                   |             |             | 09          |             |
| Lineation (type)    | Lcren2           | Lcren2               |             |             | Lint        |             |
| Dip direction L     | 078              | 082                  |             |             | 147         |             |
| Dip L               | 28               | 25                   |             |             | 04          |             |
| Fold (type)         | iso              | iso                  | iso         | assym       | iso         | assym       |
| Generation          | FA3              | FA3                  | FA1         | FA2         | FA1         | FA2         |
| FA dip direction    | 076              | 061                  | 119         | 228         | 234         | 187         |
| FA dip              | 20               | 10                   | 15          | 22          | 10          | 06          |
| AP dip<br>direction | 140              | 120                  | 148         | 251         | 222         | 226         |
| AP dip              | 38               | 33                   | 22          | 34          | 18          | 32          |
| UTM_N               | 5197969          | 5197969              | 5197884     | 5197884     | 5197884     | 5197884     |
| UTM_E               | 427024           | 427024               | 427008      | 427008      | 427008      | 427008      |
| Sample              |                  |                      |             |             |             |             |

| Point            | 017         | 018             | 018                                 | 018                          | 018         | 018         |
|------------------|-------------|-----------------|-------------------------------------|------------------------------|-------------|-------------|
| Lithology        | Qtz-Phyllit | Qtz-<br>Phyllit | Qtz-Phyllit                         | Qtz-Phyllit                  | Qtz-Phyllit | Qtz-Phyllit |
| Comment          |             |                 | nappe system<br>boundary iso folded | FA2 - FA3 hook<br>shaped FIP |             |             |
| Lithodemic unit  | Spielriegel | Spielriegel     | Spielriegel -<br>Leckenschober      | Spielriegel                  | Spielriegel | Spielriegel |
| Nappe            | Stolzalpe   | Stolzalpe       | Stolzalpe - Stangalm<br>Mesozioc    | Stolzalpe                    | Stolzalpe   | Stolzalpe   |
| Nappesystem      | DG          | DG              | DG-BS                               | DG                           | DG          | DG          |
| Plane (type)     |             | S               | S                                   | S                            |             |             |
| Dip direction    |             | 111             | 088                                 | 208                          |             |             |
| Dip              |             | 27              | 10                                  | 09                           |             |             |
| Lineation (type) |             | Lcren2          | Ls                                  | Ls                           |             |             |
| Dip direction L  |             | 059             | 138                                 | 129                          |             |             |
| Dip L            |             | 10              | 09                                  | 04                           |             |             |
| Fold (type)      | open        | open            | open                                | open                         | iso         | assym       |
| Generation       | FA3         | FA3             | FA4                                 | FA3                          | FA1         | FA2         |
| FA dip direction | 084         | 062             | 090                                 | 074                          | 165         | 287         |
| FA dip           | 01          | 13              | 08                                  | 08                           | 18          | 17          |
| AP dip direction | 309         | 328             | 140                                 | 344                          | 240         | 251         |
| AP dip           | 21          | 13              | 10                                  | 37                           | 44          | 21          |
| UTM_N            | 5197884     | 5197866         | 5197866                             | 5197866                      | 5197866     | 5197866     |
| UTM_E            | 427008      | 427115          | 427115                              | 427115                       | 427115      | 427115      |
| Sample           |             | MW1910          |                                     |                              |             |             |

| Point            | 018         | 018           | 018           | 018           | 018           | 018           |
|------------------|-------------|---------------|---------------|---------------|---------------|---------------|
| Lithology        | Qtz-Phyllit | Calcitemarble | Calcitemarble | Calcitemarble | Calcitemarble | Calcitemarble |
|                  |             | myl           | myl           | myl           | myl           | myl           |
| Comment          |             |               |               |               | s-folds       | z-folds       |
| Lithodemic unit  | Spielriegel | Leckenschober | Leckenschober | Leckenschober | Leckenschober | Leckenschober |
| Nappe            | Stolzalpe   | Stangalm      | Stangalm      | Stangalm      | Stangalm      | Stangalm      |
|                  |             | Mesozoic      | Mesozoic      | Mesozoi       | Mesozoic      | Mesozoic      |
| Nappesystem      | DG          | BS            | BS            | BS            | BS            | BS            |
| Plane (type)     |             | S             |               | S             | S             | S             |
| Dip direction    |             | 082           |               | 204           | 188           | 239           |
| Dip              |             | 05            |               | 40            | 33            | 22            |
| Lineation (type) |             | Lcren2        | Ls            |               | Ls            | Ls            |
| Dip direction L  |             | 064           | 124           |               | 104           | 294           |
| Dip L            |             | 06            | 10            |               | 07            | 20            |
| Fold (type)      | open        |               |               | iso           |               | iso           |
| Generation       | FA3         |               |               | FA3           |               | FA4           |
| FA dip direction | 305         |               |               | 130           |               | 290           |
| FA dip           | 24          |               |               | 08            |               | 20            |
| AP dip direction | 338         |               |               | 200           |               | 240           |
| AP dip           | 28          |               |               | 30            |               | 20            |
| UTM_N            | 5197866     | 5197866       | 5197866       | 5197866       | 5197866       | 5197866       |
| UTM_E            | 427115      | 427115        | 427115        | 427115        | 427115        | 427115        |
| Sample           |             | MW1909        |               |               |               |               |

| Point            | 019               | 020                 | 021                   | 022                     | 023                  | 023                  |
|------------------|-------------------|---------------------|-----------------------|-------------------------|----------------------|----------------------|
| Lithology        | Dolomite          | Quartzite           | Graphitschist         | Micaschist/<br>Quartzit | Dolomite myl         | Dolomite myl         |
| Comment          | greyisch          | isoklinal<br>folded | qtz rich,<br>Boulders |                         |                      |                      |
| Lithodemic unit  | Karnerbod<br>en   | Oberhof             | Oberhof               | Murau                   | Weißwände            | Weißwände            |
| Nappe            | tangalm<br>Mesozo | Königsstuh<br>I     | Königsstuhl           | Murau                   | Stangalm<br>Mesozoic | Stangalm<br>Mesozoic |
| Nappesystem      | BS                | DG                  | DG                    | DG                      | BS                   | BS                   |
| Plane (type)     |                   | S                   |                       |                         | S                    | joint                |
| Dip direction    |                   | 161                 |                       |                         | 122                  | 302                  |
| Dip              |                   | 10                  |                       |                         | 06                   | 82                   |
| Lineation (type) |                   | Ls                  |                       |                         | L                    |                      |
| Dip direction L  |                   | 117                 |                       |                         | 060                  |                      |
| Dip L            |                   | 07                  |                       |                         | 02                   |                      |
| Fold (type)      |                   |                     |                       |                         |                      |                      |
| Generation       |                   |                     |                       |                         |                      |                      |
| UTM_N            | 5198501           | 5198454             | 5198513               | 5197939                 | 5198352              | 5198352              |
| UTM_E            | 427232            | 427196              | 427088                | 427841                  | 427464               | 427464               |
| Sample           |                   |                     | MW1912                |                         |                      |                      |

| Point            | 023          | 023          | 024           | 024           | 024           | 024           |
|------------------|--------------|--------------|---------------|---------------|---------------|---------------|
| Lithology        | Dolomite myl | Dolomite myl | Calcitemarble | Calcitemarble | Calcitemarble | Calcitemarble |
|                  |              |              | myl           | myl           | myl           | myl           |
| Comment          |              |              | impure        |               |               |               |
| Lithodemic unit  | Weißwände    | Weißwände    | Leckenschober | Leckenschob   | Leckenschob   | Leckenschober |
|                  |              |              |               | er            | er            |               |
| Nappe            | Stangalm     | Stangalm     | Stangalm      | Stangalm      | Stangalm      | Stangalm      |
|                  | Mesozoic     | Mesozoic     | Mesozoic      | Mesozoi       | Mesozoic      | Mesozoic      |
| Nappesystem      | BS           | BS           | BS            | BS            | BS            | BS            |
| Plane (type)     | joint        | joint        | S             | S?            | S             |               |
| Dip direction    | 304          | 316          | 134           | 304           | 254           |               |
| Dip              | 85           | 80           | 01            | 12            | 04            |               |
| Lineation (type) |              |              | L             |               | L             |               |
| Dip direction L  |              |              | 081           |               | 350           |               |
| Dip L            |              |              | 05            |               | 03            |               |
| Fold (type)      |              |              |               |               | iso           | iso           |
| Generation       |              |              |               |               | FA3           | FA3           |
| FA dip direction |              |              |               |               | 250           | 248           |
| FA dip           |              |              |               |               | 25            | 10            |
| UTM_N            | 5198352      | 5198352      | 5198347       | 5198347       | 5198347       | 5198347       |
| UTM_E            | 427464       | 427464       | 427461        | 427461        | 427461        | 427461        |
| Sample           |              |              |               |               |               |               |

| Point            | 024               | 025                         | 025                     | 026         |
|------------------|-------------------|-----------------------------|-------------------------|-------------|
| Lithology        | Calcitemarble myl | Dolomite - Calcitmarble     | Dolomite - Calcitmarble | Quartzite   |
| Comment          | Karnerboden-      | Karnerboden-Leckenschober,  |                         | Blockwerk   |
|                  | Leckenschober     | Dolomitelense               |                         |             |
| Lithodemic unit  | Karnerboden -     | Karnerboden - Leckenschober | Karnerboden -           | Oberhof     |
|                  | Leckenschober     |                             | Leckenschober           |             |
| Nappe            | Stangalm Mesozoic | Stangalm Mesozoic           | Stangalm Mesozoic       | Königsstuhl |
| Nappesystem      | BS                | BS                          | BS                      | DG          |
| Plane (type)     | contactplane S    | S?                          |                         |             |
| Dip direction    | 182               | 194                         | 322                     |             |
| Dip              | 06                | 17                          | 26                      |             |
| Lineation (type) |                   | Ls                          |                         |             |
| Dip direction L  |                   | 258                         |                         |             |
| Dip L            |                   | 30                          |                         |             |
| Fold (type)      | iso               | iso                         |                         |             |
| Generation       | FA3               | FA3                         |                         |             |
| FA dip direction | 220               | 260                         |                         |             |
| FA dip           | 06                | 30                          |                         |             |
| AP dip direction | 152               | 264                         |                         |             |
| AP dip           | 10                | 42                          |                         |             |
| UTM_N            | 5198347           | 5198319                     | 5198319                 | 5198321     |
| UTM_E            | 427461            | 427485                      | 427485                  | 427499      |
| Sample           |                   |                             |                         |             |

| Point            | 027                | 027         | 027         | 028         | 029            |
|------------------|--------------------|-------------|-------------|-------------|----------------|
| Lithology        | Quartzite          | Quartzite   | Quartzite   | Quartzite   | Dolomite       |
| Comment          | meta conglomerate, |             |             |             | greyisch veins |
|                  | folded, Qtz-clasts |             |             |             |                |
| Lithodemic unit  | Oberhof            | Oberhof     | Oberhof     | Spielriegel | Weißwände      |
| Nappe            | Königsstuhl        | Königsstuhl | Königsstuhl | Stolzalpe   | Stangalm       |
|                  |                    |             |             |             | Mesozoic       |
| Nappesystem      | DG                 | DG          | DG          | DG          | BS             |
| Plane (type)     | S                  | S           | S           | S           | S              |
| Dip direction    | 242                | 242         | 235         | 236         | 012            |
| Dip              | 27                 | 25          | 19          | 17          | 32             |
| Lineation (type) | Ls                 | Ls          | Ls          |             |                |
| Dip direction L  | 270                | 244         | 250         |             |                |
| Dip L            | 25                 | 16          | 19          |             |                |
| Fold (type)      | iso                | iso         |             |             |                |
| Generation       | FA3                | FA3         |             |             |                |
| FA dip direction | 243                | 256         |             |             |                |
| FA dip           | 05                 | 05          |             |             |                |
| AP dip direction | 240                |             |             |             |                |
| AP dip           | 30                 |             |             |             |                |
| UTM_N            | 5197944            | 5197944     | 5197944     | 5197909     | 5198379        |
| UTM_E            | 427692             | 427692      | 427692      | 427684      | 426686         |
| Sample           |                    |             |             | MW1913      |                |

| Point            | 029                       | 029                       | 029                       | 029                       | 030                  |
|------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------|
| Lithology        | Dolomite                  | Dolomite                  | Dolomite                  | Dolomite                  | Dolomite myl         |
| Comment          |                           |                           |                           |                           |                      |
| Lithodemic unit  | Weißwände/<br>Karnerboden | Weißwände/<br>Karnerboden | Weißwände/<br>Karnerboden | Weißwände/<br>Karnerboden | Weißwände            |
| Nappe            | Stangalm<br>Mesozoic      | Stangalm<br>Mesozoic      | Stangalm<br>Mesozoic      | Stangalm<br>Mesozoic      | Stangalm<br>Mesozoic |
| Nappesystem      | BS                        | BS                        | BS                        | BS                        | BS                   |
| Plane (type)     | S                         | S                         | joint                     | joint                     | S?                   |
| Dip direction    | 358                       | 224                       | 104                       | 300                       | 008                  |
| Dip              | 20                        | 15                        | 89                        | 85                        | 40                   |
| Lineation (type) | Ls                        | Ls                        |                           |                           |                      |
| Dip direction L  | 294                       | 302                       |                           |                           |                      |
| Dip L            | 10                        | 10                        |                           |                           |                      |
| Fold (type)      |                           |                           |                           |                           |                      |
| Generation       |                           |                           |                           |                           |                      |
| FA dip direction |                           |                           |                           |                           |                      |
| FA dip           |                           |                           |                           |                           |                      |
| AP dip direction |                           |                           |                           |                           |                      |
| AP dip           |                           |                           |                           |                           |                      |
| UTM_N            | 5198379                   | 5198379                   | 5198379                   | 5198379                   | 5198352              |
| UTM_E            | 426686                    | 426686                    | 426686                    | 426686                    | 426519               |
| Sample           |                           |                           |                           |                           |                      |

| Point            | 030               | 030              | 031               | 032                  |
|------------------|-------------------|------------------|-------------------|----------------------|
| Lithology        | Dolomite myl      | Dolomite myl     | Dolomite          | Dolomite             |
| Comment          |                   |                  | less deformed     |                      |
| Lithodemic unit  | Weißwände         | Weißwände        | Karnerboden       | Karnerboden          |
| Nappe            | Stangalm Mesozoic | Stangalm Mesozoi | Stangalm Mesozoic | Stangalm<br>Mesozoic |
| Nappesystem      | BS                | BS               | BS                | BS                   |
| Plane (type)     | S                 | S                |                   |                      |
| Dip direction    | 224               | 270              |                   |                      |
| Dip              | 02                | 10               |                   |                      |
| Lineation (type) |                   | Ls               |                   |                      |
| Dip direction L  |                   | 270              |                   |                      |
| Dip L            |                   | 08               |                   |                      |
| Fold (type)      |                   |                  |                   |                      |
| Generation       |                   |                  |                   |                      |
| FA dip direction |                   |                  |                   |                      |
| FA dip           |                   |                  |                   |                      |
| UTM_N            | 5198352           | 5198352          | 5198250           | 5198177              |
| UTM_E            | 426519            | 426519           | 427237            | 427261               |
| Sample           |                   |                  |                   |                      |

| Point            | 033               | 033               | 034                | 034                |
|------------------|-------------------|-------------------|--------------------|--------------------|
| Lithology        | Dolomite/         | Dolomite/         | Qtz                | Qtz                |
|                  | Calcitmarble      | Calcitmarble      | Phyllit/Micaschist | Phyllit/Micaschist |
| Comment          | contact           |                   | corse grained mica |                    |
| Lithodemic unit  | Karnerboden -     | Karnerboden -     | Murau?/            | Murau?/            |
|                  | Leckenschober     | Leckenschober     | Bockbühel?         | Bockbühel?         |
| Nappe            | Stangalm Mesozoic | Stangalm Mesozoic |                    |                    |
| Nappesystem      | BS                | BS                | DG/BS              | DG/BS              |
| Plane (type)     | S                 | S                 | S                  | S                  |
| Dip direction    | 010               | 356               | 204                | 307                |
| Dip              | 40                | 43                | 02                 | 11                 |
| Lineation (type) | Ls                | Ls                | Ls                 |                    |
| Dip direction L  | 094               | 260               | 280                |                    |
| Dip L            | 10                | 02                | 02                 |                    |
| Fold (type)      |                   |                   |                    |                    |
| Generation       |                   |                   | FA3                | FA3                |
| FA dip direction |                   |                   | 235                | 250                |
| FA dip           |                   |                   | 05                 | 01                 |
| AP dip direction |                   |                   | 328                | 257                |
| AP dip           |                   |                   | 08                 | 10                 |
| UTM_N            | 5198149           | 5198149           | 5198605            | 5198605            |
| UTM_E            | 427259            | 427259            | 426767             | 426767             |
| Sample           |                   |                   |                    |                    |

| Point            | 034         | 034                    | 034               | 034        | 035               |
|------------------|-------------|------------------------|-------------------|------------|-------------------|
| Lithology        | Qtz Phyllit | Qtz Phyllit/Micaschist | Qtz               | Micaschist | Dolomite/Dolomite |
|                  |             |                        | Phyllit/Micaschis |            | dark              |
| Comment          |             |                        |                   |            | Weißwände-        |
|                  |             |                        |                   |            | Karnerboden       |
| Lithodemic unit  | Murau?/     | Murau?/ Bockbühel?     | Murau?/           | Murau?/    | Weißwände -       |
|                  | Bockbühel?  |                        | Bockbühel?        | Bockbühel? | Karnerboden       |
| Nappe            |             |                        |                   |            | Stangalm Mesozoic |
| Nappesystem      | DG/BS       | DG/BS                  | DG/BS             | DG/BS      | BS                |
| Plane (type)     | S           | S                      | S                 | Sb         | S                 |
| Dip direction    | 277         | 148                    | 289               | 320        | 191               |
| Dip              | 22          | 20                     | 30                | 01         | 17                |
| Lineation (type) |             |                        |                   |            | Ls                |
| Dip direction L  |             |                        |                   |            | 122               |
| Dip L            |             |                        |                   |            | 07                |
| FA dip direction | 249         |                        |                   |            |                   |
| FA dip           | 08          |                        |                   |            |                   |
| AP dip direction | 319         |                        |                   |            |                   |
| AP dip           | 23          |                        |                   |            |                   |
| UTM_N            | 5198605     | 5198605                | 5198605           | 5198605    | 5198525           |
| UTM_E            | 426767      | 426767                 | 426767            | 426767     | 426893            |
| Sample           |             |                        |                   |            |                   |

| Point            | 035               | 035               | 035               | 035               |
|------------------|-------------------|-------------------|-------------------|-------------------|
| Lithology        | Dolomite/Dolomite | Dolomite/Dolomite | Dolomite/Dolomite | Dolomite/Dolomit  |
|                  | dark              | dark              | dark              | e dark            |
| Comment          | extension veins - |                   |                   |                   |
|                  | Calcite           |                   |                   |                   |
| Lithodemic unit  | Weißwände -       | Weißwände -       | Weißwände -       | Weißwände -       |
|                  | Karnerboden       | Karnerboden       | Karnerboden       | Karnerboden       |
| Nappe            | Stangalm Mesozoic | Stangalm Mesozoic | Stangalm Mesozoic | Stangalm Mesozoic |
| Nappesystem      | BS                | BS                | BS                | BS                |
| Plane (type)     | S                 | S                 | joint             | joint             |
| Dip direction    | 193               | 202               | 315               | 272               |
| Dip              | 07                | 16                | 89                | 70                |
| Lineation (type) | Ls                | Ls                |                   |                   |
| Dip direction L  | 119               | 120               |                   |                   |
| Dip L            | 01                | 04                |                   |                   |
| Fold (type)      |                   |                   |                   |                   |
| Generation       |                   |                   |                   |                   |
| FA dip direction |                   |                   |                   |                   |
| AP dip           |                   |                   |                   |                   |
| UTM_N            | 5198525           | 5198525           | 5198525           | 5198525           |
| UTM_E            | 426893            | 426893            | 426893            | 426893            |
| Sample           |                   |                   |                   |                   |

| Point            | 035            | 035           | 035           | 036       | 037           |
|------------------|----------------|---------------|---------------|-----------|---------------|
| Lithology        | Dolomite/      | Dolomite/     | Dolomite/     | Dolomite  | Dolomite dark |
|                  | Dolomite dark  | Dolomite dark | Dolomite dark |           |               |
| Comment          |                |               |               | greyisch  | less deformed |
| Lithodemic unit  | Weißwände -    | Weißwände -   | Weißwände -   | Weißwände | Karnerboden   |
|                  | Karnerboden    | Karnerboden   | Karnerboden   |           |               |
| Nappe            | Stangalm       | Stangalm      | Stangalm      | Stangalm  | Stangalm      |
|                  | Mesozoic       | Mesozoic      | Mesozoic      | Mesozoic  | Mesozoic      |
| Nappesystem      | BS             | BS            | BS            | BS        | BS            |
| Plane (type)     | contactplane S | S             | S             | S         | S             |
| Dip direction    | 193            | 213           | 188           | 207       | 124           |
| Dip              | 23             | 14            | 28            | 22        | 29            |
| Lineation (type) |                | Ls            | Ls            |           | Ls            |
| Dip direction L  |                | 139           | 121           |           | 130           |
| Dip L            |                | 02            | 15            |           | 21            |
| Fold (type)      |                |               |               |           |               |
| Generation       |                |               |               |           |               |
| UTM_N            | 5198525        | 5198525       | 5198525       | 5198359   | 5198073       |
| UTM_E            | 426893         | 426893        | 426893        | 426990    | 427014        |
| Sample           |                |               |               |           |               |

| Point            | 037.1          | 037.2         | 037.3         | 037.3         | 037.3             |
|------------------|----------------|---------------|---------------|---------------|-------------------|
| Lithology        | Dolomite dark  | Dolomite dark | Dolomite dark | Dolomite dark | Dolomite dark myl |
|                  |                |               | myl           | myl           |                   |
| Comment          | increasing     |               |               |               |                   |
|                  | mylonitisation |               |               |               |                   |
| Lithodemic unit  | Karnerboden    | Karnerboden   | Karnerboden   | Karnerboden   | Karnerboden       |
| Nappe            | Stangalm       | Stangalm      | Stangalm      | Stangalm      | Stangalm Mesozoic |
|                  | Mesozoic       | Mesozoic      | Mesozoic      | Mesozoic      |                   |
| Nappesystem      | BS             | BS            | BS            | BS            | BS                |
| Plane (type)     | S              |               | S             | S             | S                 |
| Dip direction    | 038            |               | 201           | 273           | 257               |
| Dip              | 30             |               | 03            | 11            | 19                |
| Lineation (type) |                |               | Ls            |               | Ls                |
| Dip direction L  | 100            |               | 084           |               | 284               |
| Dip L            | 13             |               | 02            |               | 10                |
| Fold (type)      |                |               |               |               |                   |
| Generation       |                |               |               |               |                   |
| FA dip direction |                |               |               |               |                   |
| FA dip           |                |               |               |               |                   |
| AP dip direction |                |               |               |               |                   |
| AP dip           |                |               |               |               |                   |
| UTM_N            | 5198128        | 5198128       | 5198104       | 5198104       | 5198104           |
| UTM_E            | 426957         | 426861        | 426642        | 426642        | 426642            |
| Sample           |                |               |               |               |                   |

| Point            | 037.3         | 038       | 038           | 038.1         | 038.2           | 039           |
|------------------|---------------|-----------|---------------|---------------|-----------------|---------------|
| Lithology        | Dolomite dark | Dolomite  | Dolomite dark | Dolomite dark | Dolomite,       | Dolomite dark |
|                  | myl           | dark      |               |               | Calcitemarble   |               |
| Comment          |               | courser   |               |               | Leckenschober - | mylonitic     |
|                  |               | grained   |               |               | Karnerboden     |               |
| Lithodemic unit  | Karnerboden   | Karnerbod | Karnerboden   | Karnerboden   | Leckenschober - | Karnerboden   |
|                  |               | en        |               |               | Karnerboden     |               |
| Nappe            | Stangalm      | Stangalm  | Stangalm      | Stangalm      | Stangalm        | Stangalm      |
|                  | Mesozoic      | Mesozoi   | Mesozoic      | Mesozoic      | Mesozoic        | Mesozoic      |
| Nappesystem      | BS            | BS        | BS            | BS            | BS              | BS            |
| Plane (type)     | joint         | S         | S             | S             |                 | jointset1     |
| Dip direction    | 286           | 277       | 292           | 276           |                 | 106           |
| Dip              | 87            | 20        | 28            | 28            |                 | 84            |
| Lineation (type) |               |           | Ls            | Ls            |                 |               |
| Dip direction L  |               |           | 296           | 312           |                 |               |
| Dip L            |               |           | 25            | 01            |                 |               |
| Fold (type)      |               |           |               |               |                 |               |
| Generation       |               |           |               |               |                 |               |
| UTM_N            | 5198104       | 519805    | 5198051       | 5198051       | 5198051         | 5198171       |
|                  |               | 1         |               |               |                 |               |
| UTM_E            | 426642        | 426567    | 426567        | 426567        | 426567          | 426542        |
| Sample           |               | MW191     |               |               |                 |               |
|                  |               | 4         |               |               |                 |               |

| Point            | 039           | 039           | 039           | 040            | 041           | 041           |
|------------------|---------------|---------------|---------------|----------------|---------------|---------------|
| Lithology        | Dolomite dark | Dolomite dark | Dolomite dark | Dolomite dark  | Calcitmarble  | Calcitmarble  |
| Comment          |               |               |               | course grained |               |               |
| Lithodemic unit  | Karnerboden   | Karnerboden   | Karnerboden   | Karnerboden    | Leckenschober | Leckenschober |
| Nappe            | Stangalm      | Stangalm      | Stangalm      | Stangalm       | Stangalm      | Stangalm      |
|                  | Mesozoic      | Mesozoic      | Mesozoic      | Mesozoic       | Mesozoic      | Mesozoi       |
| Nappesystsm      | BS            | BS            | BS            | BS             | BS            | BS            |
| Plane (type)     | jointset2     | S             | S             |                | S fold limb   | S fold limb   |
| Dip direction    | 202           | 332           | 320           |                | 265           | 312           |
| Dip              | 50            | 07            | 16            |                | 36            | 85            |
| Lineation (type) |               | Ls            | Ls            |                | L             | L             |
| Dip direction L  |               | 270           | 292           |                | 246           | 226           |
| Dip L            |               | 05            | 15            |                | 33            | 14            |
| Fold (type)      |               |               |               |                |               |               |
| Generation       |               |               |               |                |               |               |
| FA dip direction |               |               |               |                |               |               |
| FA dip           |               |               |               |                |               |               |
| AP dip           |               |               |               |                |               |               |
| direction        |               |               |               |                |               |               |
| AP dip           |               |               |               |                |               |               |
| UTM_N            | 5198171       | 5198171       | 5198171       | 5198228        | 5197980       | 5197980       |
| UTM_E            | 426542        | 426542        | 426542        | 426663         | 426571        | 426571        |
| Sample           |               |               |               |                |               |               |

| Point            | 041           | 041           | 041.1         | 042              | 042           | 042           |
|------------------|---------------|---------------|---------------|------------------|---------------|---------------|
| Lithology        | Calcitmarble  | Calcitmarble  | Calcitmarble  | Calcitmarble     | Calcitmarble  | Calcitmarble  |
| Comment          |               |               |               | isoclinal folded |               |               |
| Lithodemic unit  | Leckenschober | Leckenschober | Leckenschober | Leckenschober    | Leckenschober | Leckenschober |
| Nappe            | Stangalm      | Stangalm      | Stangalm      | Stangalm         | Stangalm      | Stangalm      |
|                  | Mesozoic      | Mesozoic      | Mesozoic      | Mesozoic         | Mesozoic      | Mesozoi       |
| Nappesystem      | BS            | BS            | BS            | BS               | BS            | BS            |
| Plane (type)     | S             |               |               | S                |               |               |
| Dip direction    | 208           |               |               | 281              |               |               |
| Dip              | 45            |               |               | 23               |               |               |
| Lineation (type) | L             |               |               | L                |               |               |
| Dip direction L  | 274           |               |               | 262              |               |               |
| Dip L            | 20            |               |               | 21               |               |               |
| Fold (type)      | iso           | iso           |               | iso              | iso           | iso           |
| Generation       | FA3           | FA3           |               | FA3              | FA3           | FA3           |
| FA dip direction | 214           | 244           |               | 285              | 281           | 288           |
| FA dip           | 39            | 14            |               | 05               | 04            | 10            |
| AP dip direction | 268           |               |               | 006              | 010           | 346           |
| AP dip           | 65            |               |               | 83               | 86            | 89            |
| UTM_N            | 5197980       | 5197980       | 5197980       | 5197906          | 5197906       | 5197906       |
| UTM_E            | 426571        | 426571        | 426571        | 426574           | 426574        | 426574        |
| Sample           |               |               |               |                  |               |               |

| Point            | 042                  | 042                  | 043                  | 044                              | 044                  |
|------------------|----------------------|----------------------|----------------------|----------------------------------|----------------------|
| Lithology        | Calcitmarble         | Calcitmarble         | Calcitmarble         | Qtz-Phyllit                      | Qtz-Phyllit          |
| Comment          |                      |                      | with Phyllitflachsen | Spielriegel                      |                      |
| Lithodemic unit  | Leckenschober        | Leckenschober        | Leckenschober        | Spielriegel -                    | Spielriegel -        |
| Nappe            | Stangalm<br>Mesozoic | Stangalm<br>Mesozoic | Stangalm Mesozoic    | Stolzalpe - Stangalm<br>Mesozioc | lpe - Stangalm<br>Me |
| Nappesystem      | BS                   | BS                   | BS                   | DG-BS                            | DG-BS                |
| Plane (type)     |                      |                      | S                    | S                                |                      |
| Dip direction    |                      |                      | 192                  | 222                              |                      |
| Dip              |                      |                      | 80                   | 35                               |                      |
| Lineation (type) |                      |                      | L                    | Ls                               | Lcren1               |
| Dip direction L  |                      |                      | 274                  | 105                              | 284                  |
| Dip L            |                      |                      | 21                   | 03                               | 05                   |
| Fold (type)      | iso                  | iso                  |                      |                                  |                      |
| Generation       | FA3                  | FA3                  |                      |                                  |                      |
| FA dip direction | 275                  | 274                  |                      |                                  |                      |
| FA dip           | 06                   | 28                   |                      |                                  |                      |
| AP dip direction |                      | 012                  |                      |                                  |                      |
| AP dip           |                      | 87                   |                      |                                  |                      |
| UTM_N            | 5197906              | 5197906              | 5197851              | 5197847                          | 5197847              |
| UTM_E            | 426574               | 426574               | 426583               | 426579                           | 426579               |
| Sample           |                      |                      | MW1915               |                                  |                      |

| Point            | 045         | 046         | 046               | 047         | 047         | 047         | 048         |
|------------------|-------------|-------------|-------------------|-------------|-------------|-------------|-------------|
| Lithology        | Qtz-Phyllit | Qtz-Phyllit | Qtz-<br>Phyllit   | Qtz-Phyllit | Qtz-Phyllit | Qtz-Phyllit | Qtz-Phyllit |
| Comment          |             |             | 2<br>folding<br>s |             |             | Bc          | oulders     |
| Lithodemic unit  | Spielriegel | Spielriegel | Spielri<br>egel   | Spielriegel | Spielriegel | Spielriegel | Spielriegel |
| Nappe            | Stolzalpe   | Stolzalpe   | Stolzal<br>pe     | Stolzalpe   | Stolzalpe   | Stolzalpe   | Stolzalpe   |
| Nappesystem      | DG          | DG          | DG                | DG          | DG          | DG          | DG          |
| Plane (type)     | S           | S           | S                 | S           | S           | Sb          |             |
| Dip direction    | 148         | 272         | 240               | 236         | 286         | 054         |             |
| Dip              | 25          | 17          | 22                | 25          | 32          | 06          |             |
| Lineation (type) | Lcren1      | Lcren1      | Ls                |             |             |             |             |
| Dip direction L  | 288         | 281         | 150               |             |             |             |             |
| Dip L            | 07          | 15          | 10                |             |             |             |             |
| Fold (type)      |             | assym       |                   | assym       |             |             |             |
| Generation       |             | FA2         |                   | FA2         |             |             |             |
| FA dip direction |             | 249         |                   | 240         |             |             |             |
| FA dip           |             | 15          |                   | 22          |             |             |             |
| AP dip direction |             | 245         |                   | 275         |             |             |             |
| AP dip           |             | 25          |                   | 32          |             |             |             |
| UTM_N            | 5197779     | 5197701     | 51977<br>01       | 5197763     | 5197763     | 5197763     | 5197763     |
| UTM_E            | 426612      | 426651      | 42665<br>1        | 426739      | 426739      | 426739      | 426739      |
| Sample           |             |             |                   |             |             |             |             |

| Point            | 049             | 049         | 050         | 051                  | 052                  | 053                           |
|------------------|-----------------|-------------|-------------|----------------------|----------------------|-------------------------------|
| Lithology        | Qtz-<br>Phyllit | Qtz-Phyllit | Qtz-Phyllit | Calcitmarble         | Calcitmarble         | Calcitmarble, Qtz-<br>Phyllit |
| Comment          |                 |             |             | Phyllitflachsen      | Phyllitflachsen      |                               |
| Lithodemic unit  | Spielrieg<br>el | Spielriegel | Spielriegel | Leckenschober        | Leckenschober        | enschober -<br>Spielr         |
| Nappe            | Stolzalp<br>e   | Stolzalpe   | Stolzalpe   | Stangalm<br>Mesozoic | Stangalm<br>Mesozoic | alm Mesozoic-<br>Stol         |
| Nappesystem      | DG              | DG          | DG          | BS                   | BS                   | BS-DG                         |
| Plane (type)     | S               | S           | S           |                      | S                    | nes with<br>phyllitflac       |
| Dip direction    | 224             | 195         | 110         |                      | 178                  |                               |
| Dip              | 23              | 30          | 16          |                      | 47                   |                               |
| Lineation (type) | Lcren1          | Lcren1      | Ls          |                      |                      |                               |
| Dip direction L  | 292             | 272         | 120         |                      |                      |                               |
| Dip L            | 10              | 01          | 15          |                      |                      |                               |
| Fold (type)      |                 |             |             |                      |                      |                               |
| Generation       |                 |             |             |                      |                      |                               |
| UTM_N            | 5197909         | 5197909     | 5197911     | 5197973              | 5197952              | 5197955                       |
| UTM_E            | 426756          | 426756      | 426762      | 426757               | 426796               | 426821                        |
| Sample           |                 |             |             |                      |                      | MW1917 (no)                   |

| Point            | 054         | 055         | 056         | 056         | 056         | 057         | 057              |
|------------------|-------------|-------------|-------------|-------------|-------------|-------------|------------------|
| Lithology        | Qtz-Phyllit | Qtz-Phyllit | Qtz-Phyllit | Qtz-Phyllit | Qtz-Phyllit | Qtz-Phyllit | Dolomite myl     |
| Comment          | myl?        |             |             |             |             |             | Mica on S-planes |
| Lithodemic unit  | Spielriegel | Spielriegel | Spielriegel | Spielriegel | Spielriegel | Spielriegel | Weißwände        |
| Nappe            | Stolzalpe   | Stolzalpe   | Stolzalpe   | Stolzalpe   | Stolzalpe   | Stolzalpe   | Stangalm Mesozoi |
| Nappesystem      | DG          | DG          | DG          | DG          | DG          | DG          | BS               |
| Plane (type)     | S           |             | S           | S           | S           | Sb          | S                |
| Dip direction    | 198         |             | 155         | 291         | 280         | 114         | 004              |
| Dip              | 20          |             | 25          | 13          | 40          | 10          | 15               |
| Lineation (type) | Ls          |             | Ls          | Lcren1      |             | Lstr        | Ls               |
| Dip direction L  | 110         |             | 130         | 280         |             | 133         | 360              |
| Dip L            | 03          |             | 21          | 10          |             | 12          | 03               |
| Fold (type)      |             |             | iso         | open        |             |             |                  |
| Generation       |             |             | FA1         | FA3         |             |             |                  |
| FA dip direction |             |             | 285         | 141         |             |             |                  |
| FA dip           |             |             | 20          | 01          |             |             |                  |
| AP dip direction |             |             | 286         | 180         |             |             |                  |
| AP dip           |             |             | 18          | 20          |             |             |                  |
| UTM_N            | 5197930     | 5197953     | 5197880     | 5197880     | 5197880     | 5197880     | 5198902          |
| UTM_E            | 426797      | 426834      | 426937      | 426937      | 426937      | 426937      | 426623           |
| Sample           |             |             |             |             |             |             |                  |

| Point            | 057          | 057          | 057          | 057             | 058          | 058           |
|------------------|--------------|--------------|--------------|-----------------|--------------|---------------|
| Lithology        | Dolomite myl | Dolomite myl | Dolomite myl | Dolomite<br>myl | Micaschist   | Micaschist    |
| Comment          |              |              |              | C               | ourse graine | ed mica, S-C- |
| Lithodomic unit  | Waißwända    | Waißwända    | Waißwända    | Waißwänd        | Гар          | Murau         |
|                  | Ctausedus    | Changeling   | Ctanada      | Ctan salus      | iviui au     | Nurau         |
| марре            | Stangaim     | Stangaim     | Stangaim     | Stangaim        | wurau        | wurau         |
|                  | IVIESOZOIC   | IVIESOZOIC   | IVIESOZOIC   | Mesozoic        |              |               |
| Nappesystem      | BS           | BS           | BS           | BS              | DG           | DG            |
| Plane (type)     | S            | S            | joint        | S               | S            | S             |
| Dip direction    | 017          | 041          | 129          | 290             | 221          | 249           |
| Dip              | 15           | 20           | 87           | 15              | 14           | 04            |
| Lineation (type) | Ls           | L            |              | Ls              | Lcren        |               |
| Dip direction L  | 295          | 114          |              | 294             | 134          |               |
| Dip L            | 02           | 03           |              | 13              | 05           |               |
| Fold (type)      |              |              |              |                 | iso          | iso           |
| Generation       |              |              |              |                 | FA1          | FA1           |
| FA dip direction |              |              |              |                 | 306          | 298           |
| FA dip           |              |              |              |                 | 11           | 17            |
| AP dip direction |              |              |              |                 | 248          |               |
| AP dip           |              |              |              |                 | 10           |               |
| UTM_N            | 5198902      | 5198902      | 5198902      | 5198902         | 5198822      | 5198822       |
| UTM_E            | 426623       | 426623       | 426623       | 426623          | 426665       | 426665        |
| Sample           |              |              |              |                 |              |               |

| Point            | 058        | 059           | 060         | 061           | 061           | 062           |
|------------------|------------|---------------|-------------|---------------|---------------|---------------|
| Lithology        | Micaschist | Qtz-Phyllit   | Phyllit     | Qtz-chlorite- | Qtz-chlorite- | Qtz-chlorite- |
|                  |            |               |             | Phyllit       | Phyllit       | Phyllit       |
| Comment          | m          | yl ,Bolders ( | Excavation  | Boulders      |               | Fe-rich qtz   |
|                  |            |               |             |               |               | veins         |
| Lithodemic unit  | Murau      | Spielriegel   | Spielriegel | Spielriegel   | Spielriegel   | Spielriegel   |
| Nappe            | Murau      | Stolzalpe     | Stolzalpe   | Stolzalpe     | Stolzalpe     | Stolzalpe     |
| Nappesystem      | DG         | DG            | DG          | DG            | DG            | DG            |
| Plane (type)     | Sb         |               | S           | S             |               | S             |
| Dip direction    | 254        |               | 203         | 180           | 160           | 255           |
| Dip              | 30         |               | 80          | 56            | 50            | 30            |
| Lineation (type) | Lstr       |               |             | L             | L             | L             |
| Dip direction L  | 143        |               | 240         | 134           | 190           | 265           |
| Dip L            | 21         |               | 70          | 50            | 25            | 25            |
| Fold (type)      |            |               |             |               |               |               |
| Generation       |            |               |             |               |               |               |
| FA dip direction |            |               |             |               |               |               |
| FA dip           |            |               |             |               |               |               |
| AP dip direction |            |               |             |               |               |               |
| AP dip           |            |               |             |               |               |               |
| UTM_N            | 5198822    | 5198052       | 5197373     | 5197191       | 5197191       | 5197144       |
| UTM_E            | 426665     | 427688        | 427580      | 427515        | 427515        | 427487        |
| Sample           |            |               |             |               |               |               |

| Point            | 062           | 063           | 064           | 065           | 066         | 067           |
|------------------|---------------|---------------|---------------|---------------|-------------|---------------|
| Lithology        | Qtz-chlorite- | Qtz-chlorite- | Qtz-chlorite- | Qtz-chlorite- | Phyllit     | Qtz-chlorite- |
|                  | Phyllit       | Phyllit       | Phyllit       | Phyllit       | Excavation  | Phyllit       |
| Comment          |               |               | Qtz veins     |               | folded Qtz  | fabric, slope |
|                  |               |               |               |               | veins       | move          |
| Lithodemic unit  | Spielriegel   | Spielriegel   | Spielriegel   | Spielriegel   | Spielriegel | Spielriegel   |
| Nappe            | Stolzalpe     | Stolzalpe     | Stolzalpe     | Stolzalpe     | Stolzalpe   | Stolzalpe     |
| Nappesystem      | DG            | DG            | DG            | DG            | DG          | DG            |
| Plane (type)     | S             | S             |               |               |             | S             |
| Dip direction    | 288           | 115           |               |               |             | 304           |
| Dip              | 20            | 30            |               |               |             | 19            |
| Lineation (type) | L             | L             |               |               |             | L             |
| Dip direction L  | 308           | 135           |               |               |             | 269           |
| Dip L            | 30            | 25            |               |               |             | 13            |
| Fold (type)      |               |               |               |               |             |               |
| Generation       |               |               |               |               |             |               |
| FA dip direction |               |               |               |               |             |               |
| FA dip           |               |               |               |               |             |               |
| AP dip direction |               |               |               |               |             |               |
| AP dip           |               |               |               |               |             |               |
| UTM_N            | 5197144       | 5197072       | 5196904       | 5196991       | 5196990     | 5197043       |
| UTM_E            | 427487        | 427397        | 427236        | 427171        | 427065      | 426805        |
| Sample           |               |               |               |               |             |               |

| Point            | 067                      | 067                      | 067                      | 068                      | 069                      | 069                      |
|------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Lithology        | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit |
| Comment          |                          |                          |                          |                          |                          |                          |
| Lithodemic unit  | Spielriegel              | Spielriegel              | Spielriegel              | Spielriegel              | Spielriegel              | Spielriegel              |
| Nappe            | Stolzalpe                | Stolzalpe                | Stolzalpe                | Stolzalpe                | Stolzalpe                | Stolzalpe                |
| Nappesystem      | DG                       | DG                       | DG                       | DG                       | DG                       | DG                       |
| Plane (type)     | S                        | S                        | S                        |                          |                          |                          |
| Dip direction    | 213                      | 150                      | 097                      |                          |                          |                          |
| Dip              | 21                       | 30                       | 26                       |                          |                          |                          |
| Lineation (type) |                          |                          | L                        |                          |                          |                          |
| Dip direction L  |                          |                          | 113                      |                          |                          |                          |
| Dip L            |                          |                          | 27                       |                          |                          |                          |
| Fold (type)      |                          |                          |                          |                          | assym                    | iso                      |
| Generation       |                          |                          |                          |                          | FA2                      | FA1                      |
| FA dip direction |                          |                          |                          |                          | 294                      | 187                      |
| FA dip           |                          |                          |                          |                          | 19                       | 20                       |
| AP dip direction |                          |                          |                          |                          | 019                      | 278                      |
| AP dip           |                          |                          |                          |                          | 05                       | 80                       |
| UTM_N            | 5197043                  | 5197043                  | 5197043                  | 5196955                  | 5197103                  | 5197103                  |
| UTM_E            | 426805                   | 426805                   | 426805                   | 426699                   | 427362                   | 427362                   |
| Sample           |                          |                          |                          |                          |                          |                          |

| Point            | 070                  | 071                                   | 072                    | 073                  | 073                 |
|------------------|----------------------|---------------------------------------|------------------------|----------------------|---------------------|
| Lithology        | Qtz-chlorite-Phyllit | Calcitemarble                         | Dolomite               | Dolomite             | Calcitmarble        |
| Comment          |                      | with Phyllitflachsen,<br>Boulders (m) | Breccia, Qtz<br>veins, | folded               | footwall            |
| Lithodemic unit  | Spielriegel          | Leckenschober                         | Karnerboden            | Karnerboden          | Leckenschobe<br>r   |
| Nappe            | Stolzalpe            | Stangalm Mesozoic                     | Stangalm<br>Mesozoic   | Stangalm<br>Mesozoic | Stangalm<br>Mesozoi |
| Nappesystem      | DG                   | BS                                    | BS                     | BS                   | BS                  |
| Plane (type)     | S                    |                                       |                        |                      | S                   |
| Dip direction    | 235                  |                                       |                        |                      | 198                 |
| Dip              | 23                   |                                       |                        |                      | 45                  |
| Lineation (type) | Lcren                |                                       |                        |                      | L                   |
| Dip direction L  | 148                  |                                       |                        |                      | 106                 |
| Dip L            | 12                   |                                       |                        |                      | 10                  |
| Fold (type)      | assym                |                                       |                        |                      | iso                 |
| Generation       | FA2                  |                                       |                        |                      | FA3                 |
| FA dip direction | 329                  |                                       |                        |                      | 104                 |
| FA dip           | 11                   |                                       |                        |                      | 04                  |
| AP dip direction |                      |                                       |                        |                      | 228                 |
| AP dip           |                      |                                       |                        |                      | 55                  |
| UTM_N            | 5197529              | 5197681                               | 5197782                | 5197799              | 5197799             |
| UTM_E            | 427474               | 427499                                | 427541                 | 427531               | 427531              |
| Sample           |                      |                                       |                        |                      |                     |

| Point            | 073          | 073          | 073          | 073          | 073           | 073                                  |
|------------------|--------------|--------------|--------------|--------------|---------------|--------------------------------------|
| Lithology        | Calcitmarble | Calcitmarble | Calcitmarble | Calcitmarble | Calcitmarble  | Calcitmarble with<br>phyllitflachsen |
| Comment          |              |              | hanging wall |              |               |                                      |
| Lithodemic unit  | Leckenschobe | Leckenschobe | Leckenschobe | Leckenschobe | Leckenschober | Leckenschober                        |
|                  | r            | r            | r            | r            |               |                                      |
| Nappe            | Stangalm     | Stangalm     | Stangalm     | Stangalm     | Stangalm      | Stangalm Mesozoic                    |
|                  | Mesozoic     | Mesozoic     | Mesozoic     | Mesozoic     | Mesozoi       |                                      |
| Nappesystem      | BS           | BS           | BS           | BS           | BS            | BS                                   |
| Plane (type)     | S            | S            | S            | S            | S             | S                                    |
| Dip direction    | 184          | 190          | 197          | 200          | 206           | 162                                  |
| Dip              | 40           | 42           | 54           | 40           | 60            | 53                                   |
| Lineation (type) | L            | L            | L            | L            | Ls            | L                                    |
| Dip direction L  | 112          | 088          | 111          | 106          | 287           | 108                                  |
| Dip L            | 11           | 15           | 12           | 01           | 20            | 13                                   |
| Fold (type)      | iso          | iso          | open/assym   | open/assym   | open/assym    |                                      |
| Generation       | FA3          | FA3          | FA4          | FA4          | FA4           |                                      |
| FA dip direction | 109          | 116          | 272          | 246          | 260           |                                      |
| FA dip           | 05           | 06           | 20           | 05           | 06            |                                      |
| AP dip direction | 201          | 272          | 183          | 204          | 178           |                                      |
| AP dip           | 47           | 22           | 43           | 04           | 15            |                                      |
| UTM_N            | 5197799      | 5197799      | 5197799      | 5197799      | 5197799       | 5197799                              |
| UTM_E            | 427531       | 427531       | 427531       | 427531       | 427531        | 427531                               |
| Sample           |              |              |              |              |               |                                      |

| Point            | 073           | 073           | 073               | 073               | 073         | 073         |
|------------------|---------------|---------------|-------------------|-------------------|-------------|-------------|
| Lithology        | Dolomite      | Dolomite      | Phyllit Quartzite | Phyllit Quartzite | Phyllit     | Phyllit     |
|                  |               |               |                   |                   | Quartzite   | Quartzit    |
| Comment          | lense         |               | graphitic layer   | Raman IGL 19/06   |             |             |
| Lithodemic unit  | Leckenschober | Leckenschober | Leckenschober     | Leckenschober     | Leckenschob | Leckenschob |
|                  |               |               |                   |                   | er          | er          |
| Nappe            | Stangalm      | Stangalm      | Stangalm          | Stangalm          | Stangalm    | Stangalm    |
|                  | Mesozoic      | Mesozoic      | Mesozoic          | Mesozoic          | Mesozoic    | Mesozoic    |
| Nappesystem      | BS            | BS            | BS                | BS                | BS          | BS          |
| Plane (type)     | S             | joint         | S                 | S                 | Sb          | S           |
| Dip direction    | 248           | 305           | 260               | 250               | 196         | 190         |
| Dip              | 50            | 75            | 40                | 54                | 47          | 25          |
| Lineation (type) | L             |               | L                 |                   | Lstr        |             |
| Dip direction L  | 276           |               | 265               |                   | 137         |             |
| Dip L            | 50            |               | 25                |                   | 27          |             |
| Fold (type)      |               |               | open/assym        |                   | iso         |             |
| Generation       |               |               | FA4               |                   | FA3         |             |
| FA dip direction |               |               | 279               |                   | 132         |             |
| FA dip           |               |               | 17                |                   | 15          |             |
| AP dip           |               |               | 186               |                   | 178         |             |
| direction        |               |               |                   |                   |             |             |
| AP dip           |               |               | 35                |                   | 42          |             |
| UTM_N            | 5197799       | 5197799       | 5197799           | 5197799           | 5197799     | 5197799     |
| UTM_E            | 427531        | 427531        | 427531            | 427531            | 427531      | 427531      |

| Point            | 073                  | 073               | 073               | 073               | 073               |
|------------------|----------------------|-------------------|-------------------|-------------------|-------------------|
| Lithology        | Phyllit Quartzite    | Phyllit Quartzite | Phyllit Quartzite | Phyllit Quartzite | Phyllit           |
| Comment          |                      |                   |                   |                   | Bockbühl?         |
| Lithodemic unit  | Leckenschober        | Leckenschober     | Leckenschober     | Leckenschober     | Leckenschober     |
| Nappe            | Stangalm<br>Mesozoic | Stangalm Mesozoic | Stangalm Mesozoic | Stangalm Mesozoic | Stangalm Mesozoic |
| Nappesystem      | BS                   | BS                | BS                | BS                | BS                |
| Plane (type)     | Sb                   | Sb                | S                 | Sb                | S                 |
| Dip direction    | 187                  | 178               | 210               | 170               | 120               |
| Dip              | 60                   | 30                | 30                | 52                | 30                |
| Lineation (type) | Lstr                 | Lstr              |                   |                   | Ls                |
| Dip direction L  | 141                  | 138               |                   |                   | 139               |
| Dip L            | 50                   | 25                |                   |                   | 32                |
| Fold (type)      |                      |                   |                   |                   |                   |
| Generation       |                      |                   |                   |                   |                   |
| FA dip direction |                      |                   |                   |                   |                   |
| FA dip           |                      |                   |                   |                   |                   |
| AP dip direction |                      |                   |                   |                   |                   |
| AP dip           |                      |                   |                   |                   |                   |
| UTM_N            | 5197799              | 5197799           | 5197799           | 5197799           | 5197799           |
| UTM_E            | 427531               | 427531            | 427531            | 427531            | 427531            |
| Sample           |                      |                   |                   |                   |                   |

| Point            | 073                  | 073               | 073               | 073              | 073               |
|------------------|----------------------|-------------------|-------------------|------------------|-------------------|
| Lithology        | Phyllit              | Phyllit           | Phyllit           | Phyllit          | Phyllit           |
| Comment          | Bockbühl?            |                   |                   |                  |                   |
| Lithodemic unit  | Leckenschober        | Leckenschober     | Leckenschober     | Leckenschober    | Leckenschober     |
| Nappe            | Stangalm<br>Mesozoic | Stangalm Mesozoic | Stangalm Mesozoic | Stangalm Mesozoi | Stangalm Mesozoic |
| Nappesystem      | BS                   | BS                | BS                | BS               | BS                |
| Plane (type)     | S                    | S                 | S                 |                  | Sb                |
| Dip direction    | 155                  | 223               | 245               |                  | 178               |
| Dip              | 30                   | 43                | 50                |                  | 47                |
| Lineation (type) | Ls                   | L                 | L                 |                  |                   |
| Dip direction L  | 134                  | 285               | 320               |                  |                   |
| Dip L            | 26                   | 10                | 25                |                  |                   |
| Fold (type)      |                      | open/assym        | open/assym        | open/assym       |                   |
| Generation       |                      | FA4               | FA4               | FA4              |                   |
| FA dip direction |                      | 295               | 274               | 314              |                   |
| FA dip           |                      | 15                | 34                | 15               |                   |
| AP dip direction |                      | 200               |                   | 180              |                   |
| AP dip           |                      | 45                |                   | 40               |                   |
| UTM_N            | 5197799              | 5197799           | 5197799           | 5197799          | 5197799           |
| UTM_E            | 427531               | 427531            | 427531            | 427531           | 427531            |
| Sample           |                      |                   |                   |                  |                   |

| Point            | 074                                             | 074               | 074               | 074            |
|------------------|-------------------------------------------------|-------------------|-------------------|----------------|
| Lithology        | Calcitemarble, Dolomite                         | Calcitemarble,    | Calcitemarble,    | Calcitemarble, |
|                  |                                                 | Dolomite          | Dolomite          | Dolomite       |
| Comment          | folded together, cal massiv,<br>clastgeometries |                   |                   |                |
| Lithodemic unit  | Leckenschober                                   | Leckenschober     | Leckenschober     | Spielriegel    |
| Nappe            | Stangalm Mesozoic                               | Stangalm Mesozoic | Stangalm Mesozoic | Stolzalpe      |
| Nappesystem      | BS                                              | BS                | BS                | DG             |
| Plane (type)     | S                                               | S                 | Sb                | S              |
| Dip direction    | 212                                             | 115               | 169               | 230            |
| Dip              | 35                                              | 07                | 33                | 47             |
| Lineation (type) | L                                               | Ls                | Lstr              | L              |
| Dip direction L  | 136                                             | 139               | 117               | 301            |
| Dip L            | 03                                              | 07                | 27                | 15             |
| Fold (type)      |                                                 | iso               |                   |                |
| Generation       |                                                 | FA3               |                   |                |
| FA dip direction |                                                 | 140               |                   |                |
| FA dip           |                                                 | 07                |                   |                |
| AP dip direction |                                                 | 120               |                   |                |
| AP dip           |                                                 | 10                |                   |                |
| UTM_N            | 5197819                                         | 5197819           | 5197819           | 5197819        |
| UTM_E            | 427513                                          | 427513            | 427513            | 427513         |
| Sample           |                                                 |                   |                   |                |

| Point            | 074                        | 075                                | 075         | 075         | 077                  |
|------------------|----------------------------|------------------------------------|-------------|-------------|----------------------|
| Lithology        | Calcitemarble,<br>Dolomite | Quartzite                          | Quartzite   | Quartzite   | Qtz-chlorite-Phyllit |
| Comment          |                            | Metaconglomerate,<br>detrital mica |             |             | chlorite + sericite  |
| Lithodemic unit  | Leckenschober              | Oberhof                            | Oberhof     | Oberhof     | Spielriegel          |
| Nappe            | Stangalm Mesozoic          | Königsstuhl                        | Königsstuhl | Königsstuhl | Stolzalpe            |
| Nappesystem      | BS                         | DG                                 | DG          | DG          | DG                   |
| Plane (type)     | S                          | S                                  | S           | S           | S                    |
| Dip direction    | 169                        | 226                                | 142         | 225         | 188                  |
| Dip              | 33                         | 17                                 | 35          | 20          | 82                   |
| Lineation (type) | Ls                         | Ls                                 | Lcren       | Ls          | L                    |
| Dip direction L  | 117                        | 139                                | 214         | 260         | 100                  |
| Dip L            | 27                         | 02                                 | 12          | 03          | 01                   |
| Fold (type)      |                            | open/assym                         |             | open/assym  |                      |
| Generation       |                            | FA4                                |             | FA4         |                      |
| FA dip direction |                            | 238                                |             | 233         |                      |
| FA dip           |                            | 06                                 |             | 12          |                      |
| AP dip direction |                            | 174                                |             | 184         |                      |
| AP dip           |                            | 35                                 |             | 36          |                      |
| UTM_N            | 5197819                    | 5198194                            | 5198194     | 5198194     | 5197979              |
| UTM_E            | 427513                     | 427453                             | 427453      | 427453      | 427443               |
| Sample           |                            | MW 1918                            |             |             |                      |

| Point            | 078                              |     | 079                      | 079            | )           | 080                  |       |                                              | 081                       |
|------------------|----------------------------------|-----|--------------------------|----------------|-------------|----------------------|-------|----------------------------------------------|---------------------------|
| Lithology        | Calcitemarble,<br>Graphiteschist | Cal | citemarble myl           | Calcitem<br>my | arble       | Calcitemarble<br>myl |       | e Calcitmarble myl, Qtz-<br>chlorite-Phyllit |                           |
| Comment          | fault                            | ph  | nyllit rich layers       |                |             |                      |       | Leck<br>S                                    | enschober -<br>pielriegel |
| Lithodemic unit  | Leckensch                        | L   | eckenschober             | Leckenso       | chobe       | Leckensch            | nober | Lec                                          | kenschober                |
|                  | ober                             |     |                          | r              |             |                      |       |                                              |                           |
| Nappe            | Stangalm                         | Sta | ngalm Mesozoic           | Stanga         | alm         | Stanga               | lm    | Stang                                        | alm Mesozoic              |
|                  | Mesozoic                         |     |                          | Mesoz          | zoic        | Mesoz                | oic   |                                              |                           |
| Nappesystem      | BS                               |     | BS                       | BS             |             | BS                   |       |                                              | BS                        |
| Plane (type)     | fault                            |     | S                        | S              |             | S                    |       |                                              | S                         |
| Dip direction    | 200                              |     | 146                      | 148            | 3           | 202                  |       |                                              | 209                       |
| Dip              | 70                               |     | 20                       | 23             |             | 32                   |       |                                              | 17                        |
| Lineation (type) |                                  |     | L                        | Ls             |             | L                    |       |                                              | L                         |
| Dip direction L  |                                  |     | 246                      | 108            | 3           | 136                  |       |                                              | 123                       |
| Dip L            |                                  |     | 15                       | 19             |             | 25                   |       |                                              | 06                        |
| Fold (type)      |                                  |     |                          | iso            |             | iso                  |       |                                              |                           |
| Generation       |                                  |     |                          | FAS            | 3           | FA3                  |       |                                              |                           |
| FA dip direction |                                  |     |                          | 105            | 5           | 095                  |       |                                              |                           |
| FA dip           |                                  |     |                          | 18             | 18          |                      | 30    |                                              |                           |
| AP dip direction |                                  |     |                          | 150            | 0 200       |                      |       |                                              |                           |
| AP dip           |                                  |     |                          | 22             |             | 30                   | 30    |                                              |                           |
| UTM_N            | 5197978                          |     | 5197921                  | 51979          | 97921 51978 |                      | 6U 5  |                                              | 5197784                   |
| UTM_E            | 427392                           |     | 427400                   | 4274           | 400 42737   |                      | '3    |                                              | 427283                    |
| Sample           |                                  |     |                          |                |             |                      |       |                                              |                           |
| Point            | 081                              |     | 081                      |                |             | 081.1                | 0     | 81.1                                         | 081.1                     |
| Lithology        | Calcitmarble, Qtz-               | -   | Calcitmarble             | , Qtz-         | Qtz         | -chlorite-           | Qtz-c | hlorite-                                     | Qtz-chlorite-             |
| Comment          | chionte-rhylit                   |     | chionte-rh               | ynne           | folds axis  |                      | F I   | Tyme                                         | Filyint                   |
|                  |                                  |     |                          |                | ort         | hogonal              |       |                                              |                           |
| Lithodemic unit  | Leckenschober -                  |     | Leckenscho               | ber -          | Spielriegel |                      | Spie  | elriegel                                     | Spielriegel               |
|                  | Spielriegel                      |     | Spielrieg                | el             |             |                      |       |                                              |                           |
| Nappe            | Stangalm Mesozoio<br>Stolzalne   | 2 - | Stangalm Mes<br>Stolzalo | ozoic -        | Stolzalpe   |                      | Sto   | lzalpe                                       | Stolzalpe                 |
| Nappesystem      | BS-DG                            |     | BS-DG                    | -              |             | DG                   |       | DG                                           | DG                        |
| Plane (type)     | S                                |     | S                        |                |             | S                    |       | S                                            |                           |
| Dip direction    | 110                              |     | 209                      |                |             | 112                  |       | 114                                          |                           |
| Dip              | 34                               |     | 17                       |                |             | 36                   |       | 20                                           |                           |
| Lineation (type) | Lcren                            |     | Ls                       |                |             | Lcren                | L     | cren                                         |                           |
| Dip direction L  | 144                              |     | 123                      |                |             | 174                  |       | 127                                          |                           |
| Dip L            | 40                               |     | 06                       |                |             | 26                   |       | 12                                           |                           |
| Fold (type)      |                                  |     |                          |                |             |                      | as    | ssym                                         | iso                       |
| Generation       | FA1                              |     | FA2?                     |                |             |                      | I     | -A2                                          | FA1                       |
| FA dip direction | 130                              |     | 050                      |                |             |                      |       | 125                                          | 269                       |
| FA dip           | 30                               |     | 37                       |                |             |                      | -     | 13                                           | 12                        |
| AP dip direction | 110                              |     | 054                      |                |             |                      | 2     | 246                                          | 106                       |

AP dip

UTM\_N

UTM\_E
| Point            | 081.2                    | 081.2                    | 081.3                    | 081.3                    | 081.3                    | 081.3                    |
|------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Lithology        | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit |
| Comment          |                          |                          |                          |                          |                          |                          |
| Lithodemic unit  | Spielriegel              | Spielriegel              | Spielriegel              | Spielri<br>egel          | Spielriegel              | Spielriegel              |
| Nappe            | Stolzalpe                | Stolzalpe                | Stolzalpe                | Stolzal<br>pe            | Stolzalpe                | Stolzalpe                |
| Nappesystem      | DG                       | DG                       | DG                       | DG                       | DG                       | DG                       |
| Plane (type)     |                          | S                        | S                        |                          | S                        |                          |
| Dip direction    |                          | 117                      | 125                      |                          | 137                      |                          |
| Dip              |                          | 40                       | 27                       |                          | 20                       |                          |
| Lineation (type) | Ls                       | L                        | Ls                       | Lcren                    | Lcren2                   | Lcren1                   |
| Dip direction L  | 102                      | 135                      | 130                      | 163                      | 076                      | 128                      |
| Dip L            | 35                       | 25                       | 18                       | 15                       | 17                       | 20                       |
| Fold (type)      |                          | open                     |                          |                          | open                     |                          |
| Generation       |                          | FA3                      |                          |                          | FA3                      | FA2                      |
| FA dip direction |                          | 092                      |                          |                          | 075                      | 130                      |
| FA dip           |                          | 15                       |                          |                          | 19                       | 20                       |
| AP dip direction |                          | 352                      |                          |                          | 140                      | 232                      |
| AP dip           |                          | 05                       |                          |                          | 20                       | 86                       |
| UTM_N            | 5197784                  | 5197784                  | 5197784                  | 51977<br>84              | 5197784                  | 5197784                  |
| UTM_E            | 427283                   | 427283                   | 427283                   | 42728<br>3               | 427283                   | 427283                   |
| Sample           |                          |                          |                          |                          |                          |                          |

| Point            | 081.3                    | 081.3                    | 081.3                    | 081.3                    | 081.3                    | 081.4                    |
|------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Lithology        | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit |
| Comment          |                          |                          |                          |                          |                          |                          |
| Lithodemic unit  | Spielriegel              | Spielriegel              | Spielriegel              | Spielriegel              | Spielriegel              | Spielriegel              |
| Nappe            | Stolzalpe                | Stolzalpe                | Stolzalpe                | Stolzalpe                | Stolzalpe                | Stolzalpe                |
| Nappesystem      | DG                       | DG                       | DG                       | DG                       | DG                       | DG                       |
| Plane (type)     | Sb                       | S                        |                          |                          |                          |                          |
| Dip direction    | 121                      | 125                      |                          |                          |                          |                          |
| Dip              | 52                       | 27                       |                          |                          |                          |                          |
| Lineation (type) | Lstr                     | Ls                       | Lcren                    |                          |                          |                          |
| Dip direction L  | 142                      | 130                      | 163                      |                          |                          |                          |
| Dip L            | 47                       | 18                       | 15                       |                          |                          |                          |
| Fold (type)      |                          | iso                      | assym                    |                          |                          |                          |
| Generation       |                          | FA1                      | FA2                      | FA2                      | FA1                      |                          |
| FA dip direction |                          | 260                      | 234                      | 043                      | 023                      |                          |
| FA dip           |                          | 01                       | 14                       | 10                       | 04                       |                          |
| AP dip direction |                          | 310                      | 312                      | 320                      | 121                      |                          |
| AP dip           |                          | 20                       | 34                       | 25                       | 88                       |                          |
| UTM_N            | 5197784                  | 5197784                  | 5197784                  | 5197784                  | 5197784                  | 5197784                  |
| UTM_E            | 427283                   | 427283                   | 427283                   | 427283                   | 427283                   | 427283                   |

| Point            | 082           | 083                 | 084           | 085                  | 086                  |
|------------------|---------------|---------------------|---------------|----------------------|----------------------|
| Lithology        | Qtz-chlorite- | Qtz Phyllit/        | Qtz-chlorite- | Qtz-chlorite-Phyllit | Graphiteschist       |
|                  | Phyllit       | Quartzitee          | Phyllit       |                      |                      |
| Comment          | deformed      | course grained mica | netamorph th  | an Murau             | detrital mica, Raman |
|                  |               |                     |               |                      | IGL 1910             |
| Lithodemic unit  | Spielriegel   | Murau               | Spielriegel   | Spielriegel          | Oberhof              |
| Nappe            | Stolzalpe     | Murau               | Stolzalpe     | Stolzalpe            | Königsstuhl          |
| Nappesystem      | DG            | DG                  | DG            | DG                   | DG                   |
| Plane (type)     |               |                     |               | S                    |                      |
| Dip direction    |               |                     |               | 188                  |                      |
| Dip              |               |                     |               | 44                   |                      |
| Lineation (type) |               |                     |               | Ls                   |                      |
| Dip direction L  |               |                     |               | 190                  |                      |
| Dip L            |               |                     |               | 37                   |                      |
| Fold (type)      |               |                     |               |                      |                      |
| Generation       |               |                     |               |                      |                      |
| FA dip direction |               |                     |               |                      |                      |
| FA dip           |               |                     |               |                      |                      |
| AP dip direction |               |                     |               |                      |                      |
| AP dip           |               |                     |               |                      |                      |
| UTM_N            | 5197458       | 5197651             | 5197765       | 5197708              | 5198190              |
| UTM_E            | 428004        | 427912              | 427722        | 427657               | 427389               |
| Sample           |               |                     |               |                      |                      |

| Point            | 087                 | 088                      | 088         | 088       |
|------------------|---------------------|--------------------------|-------------|-----------|
| Lithology        | Calcitmarble        | Quartzite                | Quartzite   | Quartzite |
| Comment          | graphitschist layer | metaconglomerate inverse |             |           |
|                  | 0.5m                | layering                 |             |           |
| Lithodemic unit  | Leckenschober       | Oberhof                  | Oberhof     | Oberhof   |
| Nappe            | Stangalm Mesozoic   | Königsstuhl              | Königsstuhl | Königsstu |
|                  |                     |                          |             | hl        |
| Nappesystem      | BS                  | DG                       | DG          | DG        |
| Plane (type)     | S                   | S                        | S           | S         |
| Dip direction    | 230                 | 216                      | 214         | 260       |
| Dip              | 50                  | 34                       | 33          | 10        |
| Lineation (type) | Ls                  | Ls                       |             |           |
| Dip direction L  | 298                 | 298                      |             |           |
| Dip L            | 28                  | 07                       |             |           |
| Fold (type)      |                     |                          |             |           |
| Generation       |                     |                          |             |           |
| FA dip direction |                     |                          |             |           |
| FA dip           |                     |                          |             |           |
| AP dip direction |                     |                          |             |           |
| AP dip           |                     |                          |             |           |
| UTM_N            | 5198320             | 5198370                  | 5198370     | 5198370   |
| UTM_E            | 427358              | 427303                   | 427303      | 427303    |
| Sample           |                     |                          |             | MW 1919   |

| Point            | 089           | 090                                             | 090                              | 090                                |
|------------------|---------------|-------------------------------------------------|----------------------------------|------------------------------------|
| Lithology        | Calcitmarble/ | Calcitemarble, Dolomite myl,<br>Metakonglomerat | Calcitemarble,<br>Metakonglomera | Dolomite myl,<br>Metakonglo        |
| Comment          | medsemse      | contact Dol + Cal - Konglomerate                | Wetakongiomera                   | Wietakongio                        |
| Lithodemic unit  | Murau         | Leckenschober - Oberhof                         | Leckenschober -<br>Oberhof       | Leckenschober -<br>Oberhof         |
| Nappe            | Murau         | Stangalm Mesozoic - Königsstuhl                 | tangalm Mesozoic -<br>Königsstu  | Stangalm Mesozoic -<br>Königsstuhl |
| Nappesystem      | DG            | BS-DG                                           | BS-DG                            | BS-DG                              |
| Plane (type)     |               | S                                               | S                                | Smyl                               |
| Dip direction    |               | 187                                             | 226                              | 238                                |
| Dip              |               | 25                                              | 34                               | 30                                 |
| Lineation (type) |               |                                                 | Ls                               | Ls                                 |
| Dip direction L  |               |                                                 | 164                              | 166                                |
| Dip L            |               |                                                 | 12                               | 06                                 |
| Fold (type)      |               |                                                 |                                  | iso                                |
| Generation       |               |                                                 |                                  | FA3                                |
| FA dip direction |               |                                                 |                                  | 172                                |
| FA dip           |               |                                                 |                                  | 07                                 |
| AP dip direction |               |                                                 |                                  | 235                                |
| AP dip           |               |                                                 |                                  | 30                                 |
| UTM_N            | 5198678       | 5198477                                         | 5198477                          | 5198477                            |
| UTM_E            | 427322        | 427308                                          | 427308                           | 427308                             |
| Sample           |               |                                                 |                                  |                                    |

| Point            | 091                          | 092                                         | 093                              | 093              |
|------------------|------------------------------|---------------------------------------------|----------------------------------|------------------|
| Lithology        | Calcitmarble myl             | Calcitmarble, Dolomite                      | Dolomitemarble                   | Quartzite        |
| Comment          | graphitic, Raman<br>IGL 1913 | Dolomite Boudins, clast<br>geometries Top E | graphitic, footwall<br>carbonate | Metaconglomerate |
| Lithodemic unit  | Leckenschober                | Leckenschober                               | Weißwände                        | Oberhof          |
| Nappe            | Stangalm Mesozoic            | Stangalm Mesozoic                           | Stangalm Mesozoic                | Königsstuhl      |
| Nappesystem      | BS                           | BS                                          | BS                               | DG               |
| Plane (type)     | Smyl                         |                                             |                                  | S                |
| Dip direction    | 113                          |                                             |                                  | 154              |
| Dip              | 18                           |                                             |                                  | 24               |
| Lineation (type) | Ls                           |                                             |                                  |                  |
| Dip direction L  | 120                          |                                             |                                  |                  |
| Dip L            | 07                           |                                             |                                  |                  |
| Fold (type)      |                              |                                             |                                  | iso              |
| Generation       |                              |                                             |                                  | FA3              |
| FA dip direction |                              |                                             |                                  | 197              |
| FA dip           |                              |                                             |                                  | 20               |
| AP dip direction |                              |                                             |                                  | 155              |
| AP dip           |                              |                                             |                                  | 25               |
| UTM_N            | 5198468                      | 5198444                                     | 5198423                          | 5198423          |
| UTM_E            | 427342                       | 427357                                      | 427388                           | 427388           |
| Sample           | MW 1920                      |                                             |                                  |                  |

| Point            | 094               | 095         | 096          | 097         | 097         | 098         |
|------------------|-------------------|-------------|--------------|-------------|-------------|-------------|
| Lithology        | Mica schist       | Mica schist | meta         | Quartzite   | Quartzite   | Dolomite    |
|                  |                   |             | conglomerate |             |             | greyisch    |
| Comment          | to S conglomerate | no detrital | subanstehend |             |             |             |
|                  | more thick        | mica        |              |             |             |             |
| Lithodemic unit  | Oberhof           | Bockbühel   | Oberhof      | Oberhof     | Oberhof     | Karnerboden |
| Nappe            | Königsstuhl       |             | Königsstuhl  | Königsstuhl | Königsstuhl | Stangalm    |
|                  |                   |             |              |             |             | Mesozoic    |
| Nappesystem      | DG                | BS          | DG           | DG          | DG          | BS          |
| Plane (type)     | S                 |             |              | S           | joint       | S           |
| Dip direction    | 182               |             |              | 198         | 113         | 356         |
| Dip              | 50                |             |              | 19          | 86          | 77          |
| Lineation (type) | Ls                |             |              | Ls          |             | Ls          |
| Dip direction L  | 277               |             |              | 108         |             | 085         |
| Dip L            | 10                |             |              | 04          |             | 02          |
| Fold (type)      |                   |             |              | iso         |             |             |
| Generation       |                   |             |              | FA3         |             |             |
| FA dip direction |                   |             |              | 203         |             |             |
| FA dip           |                   |             |              | 23          |             |             |
| AP dip direction |                   |             |              | 180         |             |             |
| AP dip           |                   |             |              | 20          |             |             |
| UTM_N            | 5198015           | 5198599     | 5198587      | 5198410     | 5198410     | 5198372     |
| UTM_E            | 427659            | 426948      | 427008       | 427267      | 427267      | 427303      |
| Sample           | MW 1922           |             |              |             |             |             |

| Point            | 098         | 098         | 099          | 099           | 100                    |
|------------------|-------------|-------------|--------------|---------------|------------------------|
| Lithology        | Dolomite    | Dolomite    | Calcitmarble | Calcitmarble  | Quartzite              |
|                  | greyisch    | greyisch    |              |               |                        |
| Comment          |             |             |              |               | metakonglomerate umyl, |
|                  |             |             |              |               | shearbands (Top E)     |
| Lithodemic unit  | Karnerboden | Karnerboden | Leckenschob  | Leckenschober | Oberhof                |
|                  |             |             | er           |               |                        |
| Nappe            | Stangalm    | Stangalm    | Stangalm     | Stangalm      | Königsstuhl            |
|                  | Mesozoic    | Mesozoic    | Mesozoi      | Mesozoic      |                        |
| Nappesystem      | BS          | BS          | BS           | BS            | DG                     |
| Plane (type)     | S           | joint       | S            | S             | S                      |
| Dip direction    | 018         | 114         | 198          | 207           | 215                    |
| Dip              | 77          | 87          | 20           | 17            | 22                     |
| Lineation (type) | Ls          |             | Ls           | Ls            | Ls                     |
| Dip direction L  | 112         |             | 103          | 290           | 135                    |
| Dip L            | 01          |             | 01           | 01            | 03                     |
| Fold (type)      |             |             |              | iso           | iso                    |
| Generation       |             |             |              | FA3           | FA3                    |
| FA dip direction |             |             |              | 291           | 270                    |
| FA dip           |             |             |              | 02            | 19                     |
| AP dip direction |             |             |              | 207           | 130                    |
| AP dip           |             |             |              | 17            | 05                     |
| UTM_N            | 5198372     | 5198372     | 5198367      | 5198367       | 5198343                |
| UTM_E            | 427303      | 427303      | 427326       | 427326        | 427338                 |

| Point            | 101                      | 101                      | 101                      | 101                      | 101                      | 102                      |
|------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Lithology        | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit |
| Comment          |                          |                          |                          |                          |                          | massive, Foto<br>NW      |
| Lithodemic unit  | Spielriegel              | Spielriegel              | Spielriegel              | Spielriegel              | Spielriegel              | Spielriegel              |
| Nappe            | Stolzalpe                | Stolzalpe                | Stolzalpe                | Stolzalpe                | Stolzalpe                | Stolzalpe                |
| Nappesystem      | DG                       | DG                       | DG                       | DG                       | DG                       | DG                       |
| Plane (type)     | S                        | Sb                       |                          |                          |                          |                          |
| Dip direction    | 168                      | 135                      |                          |                          |                          |                          |
| Dip              | 13                       | 45                       |                          |                          |                          |                          |
| Lineation (type) |                          | Lstr                     |                          |                          |                          |                          |
| Dip direction L  |                          | 114                      |                          |                          |                          |                          |
| Dip L            |                          | 45                       |                          |                          |                          |                          |
| Fold (type)      |                          | iso                      | assym                    | assym                    | open                     |                          |
| Generation       |                          | FA1                      | FA2                      | FA2                      | FA3                      |                          |
| FA dip direction |                          | 092                      | 200                      | 022                      | 054                      |                          |
| FA dip           |                          | 10                       | 03                       | 04                       | 12                       |                          |
| AP dip direction |                          | 335                      | 333                      | 300                      | 126                      |                          |
| AP dip           |                          | 28                       | 55                       | 58                       | 50                       |                          |
| UTM_N            | 5197395                  | 5197395                  | 5197395                  | 5197395                  | 5197395                  | 5197420                  |
| UTM_E            | 426764                   | 426764                   | 426764                   | 426764                   | 426764                   | 426609                   |
| Sample           |                          |                          |                          |                          |                          |                          |

| Point            | 103                      | 103                      | 103                      | 104                  | 104                  |
|------------------|--------------------------|--------------------------|--------------------------|----------------------|----------------------|
| Lithology        | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-Phyllit | Qtz-chlorite-Phyllit |
| Comment          |                          |                          |                          | SC-fabric Top ESE    |                      |
| Lithodemic unit  | Spielriegel              | Spielriegel              | Spielriegel              | Spielriegel          | Spielriegel          |
| Nappe            | Stolzalpe                | Stolzalpe                | Stolzalpe                | Stolzalpe            | Stolzalpe            |
| Nappesystem      | DG                       | DG                       | DG                       | DG                   | DG                   |
| Plane (type)     | S                        | Sb                       | Sb                       | S                    | Sb (C') - FA3        |
| Dip direction    | 209                      | 177                      | 208                      | 168                  | 120                  |
| Dip              | 14                       | 28                       | 27                       | 24                   | 44                   |
| Lineation (type) |                          | Lstr                     |                          | Lint                 | Lstr                 |
| Dip direction L  |                          | 110                      |                          | 110                  | 114                  |
| Dip L            |                          | 12                       |                          | 10                   | 44                   |
| Fold (type)      | iso                      |                          |                          | open                 |                      |
| Generation       | FA1                      |                          |                          | FA3                  |                      |
| FA dip direction | 260                      |                          |                          | 201                  |                      |
| FA dip           | 06                       |                          |                          | 01                   |                      |
| AP dip direction | 210                      |                          |                          | 114                  |                      |
| AP dip           | 15                       |                          |                          | 49                   |                      |
| UTM_N            | 5197375                  | 5197375                  | 5197375                  | 5197567              | 5197567              |
| UTM_E            | 426410                   | 426410                   | 426410                   | 426384               | 426384               |
| Sample           |                          |                          |                          |                      |                      |

| Point            | 105                        | 106                          | 106                      | 106                      | 106                          | 106                      |
|------------------|----------------------------|------------------------------|--------------------------|--------------------------|------------------------------|--------------------------|
| Lithology        | Calcitmarble               | Qtz-chlorite-Phyllit         | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | Qtz-<br>chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit |
| Comment          | Qtz mobilisate,<br>Foto NE | nappe boundary<br>iso folded | cal umyl                 | nappe<br>boundary        |                              |                          |
| Lithodemic unit  | Leckenschober              | Spielriegel                  | Spielriegel              | Spielriegel              | Spielriegel                  | Spielriegel              |
| Nappe            | Stangalm<br>Mesozoic       | Stolzalpe                    | Stolzalpe                | Stolzalpe                | Stolzalpe                    | Stolzalpe                |
| Nappesystem      | BS                         | DG                           | DG                       | DG                       | DG                           | DG                       |
| Plane (type)     | S                          | S                            | Sb                       | Sb                       | Sb                           | Sb                       |
| Dip direction    | 152                        | 003                          | 122                      | 145                      | 148                          | 120                      |
| Dip              | 40                         | 08                           | 17                       | 20                       | 36                           | 26                       |
| Lineation (type) | Ls                         | Lint                         | Lstr                     | Lstr                     | Lstr                         | Lstr                     |
| Dip direction L  | 102                        | 287                          | 146                      | 140                      | 129                          | 133                      |
| Dip L            | 20                         | 08                           | 17                       | 17                       | 36                           | 24                       |
| Fold (type)      | iso                        | iso                          | assym                    |                          |                              |                          |
| Generation       | FA3                        | FA1                          | FA2                      |                          |                              |                          |
| FA dip direction | 150                        | 280                          | 200                      |                          |                              |                          |
| FA dip           | 40                         | 01                           | 07                       |                          |                              |                          |
| AP dip direction | 100                        | 022                          | 289                      |                          |                              |                          |
| AP dip           | 20                         | 13                           | 35                       |                          |                              |                          |
| UTM_N            | 5197711                    | 5197439                      | 5197439                  | 5197439                  | 5197439                      | 5197439                  |
| UTM_E            | 426279                     | 426741                       | 426741                   | 426741                   | 426741                       | 426741                   |
| Sample           |                            |                              |                          |                          |                              |                          |

| Point            | 106                      | 106                      | 106                   | 107                 | 108                             | 109                              |
|------------------|--------------------------|--------------------------|-----------------------|---------------------|---------------------------------|----------------------------------|
| Lithology        | Qtz-chlorite-<br>Phyllit | Qtz-chlorite-<br>Phyllit | tz-chlorite-<br>Phyll | Chlorite-<br>schist | Dolomite dark                   | Calcitmarble/Qtz-<br>Phyllit     |
| Comment          |                          |                          |                       |                     | Fossil bearing<br>(Diploporen?) | nappe system<br>boundary         |
| Lithodemic unit  | Spielriegel              | Spielriegel              | Spielriegel           | Spielriegel         | Karnerboden                     | Leckenschober -<br>Spielriegel   |
| Nappe            | Stolzalpe                | Stolzalpe                | Stolzalpe             | Stolzalpe           | Stangalm Mesozoic               | Stangalm Mesozoic -<br>Stolzalpe |
| Nappesystem      | DG                       | DG                       | DG                    | DG                  | BS                              | BS-DG                            |
| Plane (type)     | Sb                       | Sb                       | fault(gauc<br>he)     | S                   |                                 | S                                |
| Dip direction    | 114                      | 132                      | 245                   | 137                 |                                 | 193                              |
| Dip              | 38                       | 35                       | 27                    | 23                  |                                 | 35                               |
| Lineation (type) | Lstr                     | Lstr                     |                       |                     |                                 | Ls                               |
| Dip direction L  | 130                      | 122                      |                       |                     |                                 | 109                              |
| Dip L            | 36                       | 27                       |                       |                     |                                 | 20                               |
| Fold (type)      |                          |                          |                       |                     |                                 |                                  |
| Generation       |                          |                          |                       |                     |                                 |                                  |
| UTM_N            | 5197439                  | 5197439                  | 5197439               | 5197721             | 5197828                         | 5197799                          |
| UTM_E            | 426741                   | 426741                   | 426741                | 427035              | 426356                          | 426467                           |
| Sample           |                          |                          |                       |                     | FOS 1a/1b                       |                                  |

| Point            | 110            | 110      | 111           | 111           | 112           | 113                 |
|------------------|----------------|----------|---------------|---------------|---------------|---------------------|
| Lithology        | Dolomite dark  | Dolomit  | Dolomite dark | Dolomite      | Calcitemarble | Calcitmarble/Qtz-   |
|                  |                | e dark   |               | dark          |               | Phyllit             |
| Comment          | Qtz layers iso |          | En-enchelion  | folded in     | Pyrit         | nappe system        |
|                  | folded         |          | veins         | Leckenschober |               | boundary            |
| Lithodemic unit  | Karnerboden    | Karnerb  | Karnerboden   | Karnerbod     | Leckenschober | Leckenschober -     |
|                  |                | oden     |               | en            |               | Spielriegel         |
| Nappe            | Stangalm       | Stangalm | Stangalm      | Stangalm      | Stangalm      | Stangalm Mesozoic - |
|                  | Mesozoic       | Mesozoic | Mesozoic      | Mesozoic      | Mesozoic      | Stolzalpe           |
| Nappesystem      | BS             | BS       | BS            | BS            | BS            | BS-DG               |
| Plane (type)     | S              |          | S             | vein          | S             | S                   |
| Dip direction    | 076            |          | 151           | 128           | 177           | 230                 |
| Dip              | 22             |          | 30            | 72            | 54            | 16                  |
| Lineation (type) | Ls             |          | Ls            |               | Ls            | Lcren               |
| Dip direction L  | 114            |          | 084           |               | 096           | 300                 |
| Dip L            | 16             |          | 15            |               | 13            | 11                  |
| Fold (type)      | ios            | assym/o  |               |               | iso           | open (SE-vergent)   |
|                  |                | pen      |               |               |               |                     |
| Generation       | FA3            | FA4      |               |               | FA3           | FA4                 |
| FA dip direction | 096            | 273      |               |               | 095           | 264                 |
| FA dip           | 10             | 08       |               |               | 15            | 01                  |
| AP dip direction | 050            | 199      |               |               | 175           | 339                 |
| AP dip           | 22             | 32       |               |               | 55            | 32                  |
| UTM_N            | 5197747        | 5197747  | 5197682       | 5197682       | 5197596       | 5197547             |
| UTM_E            | 426413         | 426413   | 426229        | 426229        | 426021        | 425887              |
| Sample           |                |          |               |               |               |                     |

| Point            | ci14/247      | ci14/248    |  |
|------------------|---------------|-------------|--|
| Lithology        | Calcitemarble | Greenschist |  |
| Comment          |               |             |  |
| Lithodemic unit  | eckenschobe   | Spielriegel |  |
| Nappe            | ngalm Mesoz   | Stolzalpe   |  |
| Nappesystem      | BS            | DG          |  |
| Plane (type)     | S             | S           |  |
| Dip direction    | 140           | 219         |  |
| Dip              | 20            | 15          |  |
| Lineation (type) | Ls            | Ls          |  |
| Dip direction L  | 124           | 284         |  |
| Dip L            | 20            | 5           |  |
| Fold (type)      |               |             |  |
| Generation       |               |             |  |
| UTM_N            | 5198185       | 5198018     |  |
| UTM_E            | 425043        | 424976      |  |
| Sample           |               |             |  |

| Point            | 113                              | 114                       | 115                           | ci17/070                 | ci17/070   |
|------------------|----------------------------------|---------------------------|-------------------------------|--------------------------|------------|
| Lithology        | Calcitmarble/Qtz-<br>Phyllit     | Calcitemarble             | Dolomite                      | Micaschist               | Micaschist |
| Comment          | decoppeled qtz veins             | next to nappe<br>boundary | with veins - less<br>deformed | carbonatic,<br>graphitic |            |
| Lithodemic unit  | Leckenschober -<br>Spielriegel   | Leckenschober             | Karnerboden                   | Murau                    | Murau      |
| Nappe            | Stangalm Mesozoic -<br>Stolzalpe | Stangalm Mesozoic         | Stangalm Mesozoic             | Murau                    | Murau      |
| Nappesystem      | BS-DG                            | BS                        | BS                            | DG                       | DG         |
| Plane (type)     |                                  | S                         | S                             | S                        | Sb (C')    |
| Dip direction    |                                  | 164                       | 312                           | 238                      | 145        |
| Dip              |                                  | 40                        | 46                            | 26                       | 32         |
| Lineation (type) |                                  | Ls                        |                               | Ls                       | Lstr       |
| Dip direction L  |                                  | 101                       |                               | 281                      | 119        |
| Dip L            |                                  | 23                        |                               | 20                       | 27         |
| Fold (type)      |                                  |                           |                               | iso                      | down       |
| Generation       |                                  | FA3                       |                               | FA1                      |            |
| FA dip direction |                                  | 100                       |                               | 282                      |            |
| FA dip           |                                  | 20                        |                               | 19                       |            |
| AP dip direction |                                  | 160                       |                               | 250                      |            |
| AP dip           |                                  | 40                        |                               | 28                       |            |
| UTM_N            | 5197547                          | 5197557                   | 5198208                       | 5198786                  | 5198786    |
| UTM_E            | 425887                           | 425908                    | 425113                        | 426721                   | 426721     |
| Sample           |                                  |                           |                               |                          |            |

| Point            | ci17/071             | ci17/071         | ci17/026   | ci17/026       | ci18/006    | ci18/006    |
|------------------|----------------------|------------------|------------|----------------|-------------|-------------|
| Lithology        | Dolomit myl          | Dolomit          | Cal-       | Cal-Micaschist | Micaschist/ | Micaschist/ |
|                  |                      | myl              | Micaschist |                | Greenschist | Greenschist |
| Comment          | invers folded        |                  |            |                | carbonatic  |             |
| Lithodemic unit  | Weißwände            | Weißwände        | Murau      | Murau          | Murau       | Murau       |
| Nappe            | Stangalm<br>Mesozoic | angalm<br>Mesozo | Murau      | Murau          | Murau       | Murau       |
| Nappesystem      | BS                   | BS               | DG         | DG             | DG          | DG          |
| Plane (type)     | S                    | joint            | S          | Sb (C')        | S           | S           |
| Dip direction    | 293                  | 128              | 206        | 109            | 289         | 2           |
| Dip              | 7                    | 86               | 27         | 6              | 20          | 38          |
| Lineation (type) | Ls                   |                  | Lcren-int  | Lstr           | Lmin        | Lcren       |
| Dip direction L  | 286                  |                  | 118        | 116            | 289         | 286         |
| Dip L            | 9                    |                  | 1          | 5              | 20          | 8           |
| Fold (type)      |                      |                  |            |                | iso         |             |
| Generation       |                      |                  |            |                | FA1         |             |
| FA dip direction |                      |                  |            |                | 285         |             |
| FA dip           |                      |                  |            |                | 20          |             |
| AP dip direction |                      |                  |            |                | 285         |             |
| AP dip           |                      |                  |            |                | 020         |             |
| UTM_N            | 5198726              | 5198726          | 5198622    | 5198622        | 5198694     | 5198694     |
| UTM_E            | 426631               | 426631           | 427589     | 427589         | 427834      | 427834      |