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Abstract

In this paper we present a brief introduction into both the theory of 2-dimensional foli-
ations and 3-dimensional contact topology. Afterwards we develop the most important
tools to discuss both Giroux’s theory of convex surfaces [9] and Honda’s method of bypass
attachments [14]. The goal of this paper is to prove a conjecture by Honda [13, Theorem
11.1], Etnyre [6, Theorem 7.2.] and others that one can build up contact structures on
3-manifolds of the form Σ × [−1, 1] up to isotopy relative to the boundary entirely by
bypass attachments.

In diesem Papier präsentieren wir eine kurze Einführung sowohl in die Theorie der
Foliierungen auf 2-Mannigfaltigkeiten als auch in die 3-dimensionale Kontakttopologie.
Anschließend entwickeln wir die wichtigsten Werkzeuge um Giroux’s Theorie konvexer
Flächen [9] und Honda’s Technik der Beipässe [14] zu diskutieren. Ziel der Arbeit ist es
eine Vermutung von Honda [13, Theorem 11.1], Etnyre [6, Theorem 7.2.] und anderen
zu beweisen, dass Kontaktstrukturen auf 3-Mannigfaltigkeiten der Form Σ × [−1, 1] bis
auf Isotopie, die den Rand fixiert, mit Hilfe von Beipässen beschrieben werden können.
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1 Introduction

3-dimensional contact topology is one of the major fields of study in modern low-dimensional
topology. Roughly one considers 3-manifolds endowed with an extra structure, a 2-plane
field fulfilling a non-degeneracy condition (see Definition 3.1). Meaning that at each
point of the 3-dimensional manifold one chooses a 2-dimensional subspace. This could
be done more generally for n-manifolds and k-plane fields. However, 3-dimensional con-
tact structures are special in this area of mathematics, in so far as they do not have
geometric properties but they indeed possess no local properties at all. For example,
Riemannian metrics do possess a local invariant: its curvature. That a contact structure
possesses no local structure is often called Darboux’s Theorem (see Corollary 3.9).

Even though contact structures do not possess local structure, it is a fundamental result
due to Bennequin [1, Théorème 1] that contact structures are topologically interesting.
Roughly speaking they decompose into two big classes: tight- and overtwisted contact
structures (see Definition 4.16). The classification of contact structures is especially
interesting on closed and oriented 3-manifolds. Here there is a big difference between the
tight and overtwisted world: Any 2-plane field is homotopic to an overtwisted contact
structure and the isomorphism class of an overtwisted contact structure is equivalent to
its isotopy class. This is a theorem by Eliashberg [3, Theorem 1.6.1.].

On the other hand, tight contact structures are rare in a certain sense: S3 possesses
a unique tight contact structure up to isotopy (this is a theorem due to Eliashberg [4,
Theorem 2.1.1.]). In fact, some closed and orientable 3-manifolds admit no tight contact
structure. So the existence and classification of tight contact structures is a very subtle
and important topic.

One major approach is to decompose the 3-manifold into smaller pieces where contact
structures are easier to understand. These pieces can, for instance be standard neighbor-
hoods of points (see Corollary 3.9) or standard neighborhoods of certain embeddings of
S1 (see Theorem 3.11). However, more often one considers pieces of the form Σ× [−1, 1]
where Σ is a closed and oriented surface. Both Giroux and Honda developed approaches
to study tight contact structures on manifolds of this form up to isotopy relative to the
boundary.

Given a surface Σ embedded in a contact manifold one obtains a structure called a
characteristic foliation induced by restricting the plane field to the surface (see Definition
3.20). Using this information Giroux used deep results from the theory of foliations
on closed surfaces to obtain a foliation-theoretic classification of contact structures on
Σ× [−1, 1], see Theorem 4.19.

On the other hand, Honda developed a new technique called bypass attachment to
classify those contact structures. The main objects are convex surfaces first considered
by Giroux [9]. Roughly speaking these are surfaces which admit an I-invariant contact
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structure (see Definition 4.1). Isotopies of convex surfaces preserve an invariant which
is given by a homotopy class of embedded curves on Σ. Honda’s approach requires that
there is a special convex annulus Σ′ called a bypass which intersects Σ in a sufficiently
nice way. Then one can show that one may attach Σ′ to Σ to obtain a new convex surface
Σ′′ which is isotopic to Σ. The homotopy class of embedded curves is then obtained from
the original one on Σ by a specific change.

The interesting thing to note is that the discrete changes of foliations described by
Giroux’s normal form theorem gives rise to a change of isotopy class of convex surfaces
as if there was a bypass attached. The goal of this thesis is to prove in full detail an
equivalent formulation of Giroux’s normal form theorem (Theorem 4.19) in terms of
bypasses, see Theorem 1.1.

To start, we will introduce one of our main tools; the theory of foliations on surfaces in
Section 2. These are equivalence classes of vectorfields on compact and oriented surfaces
Σ, see Definition 2.6. In Subsection 2.1, we introduce the most regular kind of foliations,
the Morse-Smale foliations and discuss Peixoto’s density theorem 2.18/ [19, Theorem 2]
which says that Morse-Smale foliations are generic.

Then we proceed to study two classes of foliations, non-isochore foliations (see Def-
inition 2.19) and divided foliations(see Defintion 2.21). Those foliation which appear
as characteristic foliations of surfaces embedded in contact manifolds, respectively the
characteristic foliations of convex surfaces embedded in contact manifolds. In particular,
we provide a full proof of Theorem 2.22. This theorem has been claimed by Giroux [10,
Proposition 2.5.] which claims that if X is non-isochore and fulfills a certain regularity
condition then there are exactly two obstructions for the foliation to be divided.

To finish Section 2, we discuss Sotomayor’s density Theorem 2.34 [21, Theorem II.2.].
In his work, he describes that given any family of vectorfields (Xr)r∈[−1,1], one finds a
C∞-close family of vectorfields (X ′

r)r∈[−1,1] which are Morse-Smale on an open dense
set J ⊂ [−1, 1] and otherwise X ′

r contains a degeneration which can only be one of
5 different types. Sotomayor’s density theorem is one of the key theorems needed for
Giroux’s normal form theorem.

In Section 3, we will give an introduction into the world of 3-dimensional contact
structures. In Subsection 3.1 we will discuss the other important tool which we will use
extensively: Moser’s stability trick. If M is assumed to be closed (compact with empty
boundary) then one can prove that a homotopy of contact structures ξt can be induced
by an isotopy ϕt of M and this isotopy preserves the contact structure, see Theorem 3.7
In general, we will not work on closed manifolds M . However, if one is careful Moser’s
stability trick can still be used.

Afterwards, in Subsection 3.2 we proceed to consider surfaces Σ embedded in a contact
manifold (M, ξ). There is a special kind of foliation which the contact structure induces
on Σ. As it turns out, this foliation is non-isochore and encodes all local information
of the contact structure close to Σ, see the Reconstruction Lemma 3.24. Even more,
any non-isochore foliation can be induced by some contact structure on Σ×R, compare
Theorem 3.23.

At last, in Section 4 we will come to the main theory: We first discuss the most
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important properties of convex surfaces. They are C∞-generic by a Theorem of Giroux
(see Lemma 3.25) and a surface is convex if and only if the induced foliation is divided,
see Definition 4.1. We will observe that the aforementioned homotopy class of embedded
arcs, also called the dividing curve Γ decides the convex isotopy class. In Subsection 4.1
we reprove some of the most important results which say that in the convex isotopy class
of a convex surface one has great freedom to choose characteristic foliations. The main
result to do so is Giroux’s flexibility lemma 4.6.

We will briefly touch on one of the fundamental objects of contact topology in general,
the so-called overtwisted disks 4.2. Omitting many details, we will only state Giroux’s
Criterion 4.15 which allows us to characterise the existence of overtwisted disks close to
surfaces using only the dividing curve Γ. In addition, it tells us that certain phenomena
such as contractible components of Γ cannot occur (if Σ ̸= S2) if there are no overtwisted
disks arbitrarily close to Σ.

Having dealt with the preliminaries, we will proceed to discuss Giroux’s normal form
theorem 4.19/ [11, Lemme 15]. This theorem is based upon Sotomayors density theorem
2.34 and allows us to characterise all contact structures on Σ × [−1, 1] where Σ−1,Σ1

are convex up to isotopy (relative to the boundary) by a single degeneration, a so-called
retrograde connection. This is a connection between singularities of a foliation X such
that it flows from a singularity with negative divergence to a singularity with positive
divergence. By Theorem 2.22 these foliations cannot be divided. If the dividing curves of
Σ−1 and Σ1 are not homotopic then these levels have to occur. So Giroux’s normal form
theorem provides a foliation-theoretic description of contact structures on Σ× [−1, 1].

The other picture which we will introduce is the theory of bypasses due to Honda
[14]. Roughly speaking a bypass D2 is a half-disk with a certain foliation transversal to
Σ which can be attached to Σ which results in a convex surface Σ + D2. The convex
surfaces Σ and Σ + D2 have dividing curves which differ by a certain kind of change.
This change of the dividing curve looks the same as the one found by Giroux when a
retrograde connection occurs. So it has been long believed that these approaches are
equivalent. Thus, we will prove the following version of Giroux’s normal form theorem:

Theorem 1.1. Let (Σ × [−1, 1], ξ) be a contact manifold such that Σ−1 and Σ1 are
convex. Then there is a contact structure ξ0 on Σ × [−1, 1] isotopic to ξ relative to the
boundary such that:

(i) Except for finitely many values r1, . . . , rn Σr is convex.

(ii) For each ri there is a sufficiently small ϵ such that Σti−ϵ and Σti+ϵ are related by a
bypass attachment.
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2 Foliations on surfaces

First, we recount some of the fundamental results about 2-dimensional compact oriented
manifolds, also called surfaces:

Theorem 2.1. (Classification of closed surfaces) A surface Σ with empty boundary, is
isomorphic to a sphere or a genus g surface. They are uniquely determined by their Euler
characteristic χ(Σ) = 2− 2g.

A proof of this can be found in the Differential Topology textbook by Hirsch [12,
Theorem 9.3.11.].

Surfaces with empty boundary are also called closed. However, we will need to con-
sider surfaces with non-empty and sometimes even non-smooth boundary:

Remark 2.2. We say that Σ is a surface with polygonal boundary, if Σ is orientable
and compact and each point p ∈ Σ has a neighborhood U which is diffeomorphic to an
open subset V ⊂ R2

++ where R2
++ is the first quadrant {(x, y) ∈ R2 : x, y ≥ 0}. We say

that p is an interior point if V can be chosen to be disjoint from the x- and y- axis. p
is a boundary point if V can be chosen disjoint from the origin. Otherwise p is called a
corner of Σ. 1

There is a special class of surfaces:

Definition 2.3. A surface Σ is called planar, if there is an embedding Σ → R2.

Essentially all of them are spheres with polygons/disks removed:

Lemma 2.4. Assume that Σ is a surface with corners embedded in R2 and ∂Σ ̸= ∅ then
there is an embedding of Σ into S2.

Proof. One merely has to note that R2 ∪ {∞} can be endowed with a smooth structure
making it isomorphic to a sphere using the stereographic projection. So Σ is naturally a
subset of S2. QED

In a certain sense all surfaces with polygonal boundary can be seen as subsets of closed
surfaces:

Lemma 2.5. Let Σ be a surface with polygonal boundary then there is an embedding of
Σ into a genus g surface, where g is given by g = −1

2 (χ(Σ) + b− 2) where b denotes the
amount of polygonal- and smooth boundary component. In addition, there is no embedding
of Σ into a surface with lower genus.

1Note that some details have been omitted. To state this precisely, one needs to work with smooth
atlases. But we will keep this section brief.
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2.1 Morse-Smale foliations

To start, we will consider oriented foliations on surfaces, possibly with polygonal bound-
ary. Foliations can either be described by their flow-lines or as equivalence classes of
vectorfields, respectively 1-forms. For our purposes we will mainly stick to the later
picture:

Definition 2.6. Let Σ be a surface. An (oriented) foliation F on Σ is an equivalence
class of vectorfields X under multiplication by functions f : Σ → R>0. We say that
X ∈ F orients the foliation.

Dually if ω is a positive volume form on Σ, then β = ιXω induces an equivalence class
of 1-forms closed under multiplication of functions f : Σ → R>0. We will refer to both
equivalence classes as foliations, whichever is convenient. Before starting with theory, we
will discuss some foliations in more detail:

Example 2.7. Let S2 be the unit sphere in R3, and consider the function f : R3 → R

the projection on the third coordinate. Then we can consider the restriction of f to
S2 and calculate its gradient foliation where the gradient is taken with respect to the
restriction of the euclidean metric <,>.

The gradient of a function g : S2 → R is defined as the unique vectorfield grad(g) of
S2 such that < grad(g), Z >= dg(Z) for all Z tangent to S2. Similarly grad(f)R3 = d

dz
fulfills the second property for all Z tangent to R3, so in particular for all Z tangent to
(the embedding of) S2. However grad(f)R3 is not tangent to S2.

If we restrict ourselves to S2: df(Z) =< grad(f), Z > for Z tangent to S2 then we can
change grad(f)R3 to grad(f)S2 : Consider n := x d

dx+y
d
dy+z

d
dz the unit normal to the unit

sphere, then we can observe that for any function a : S2 → R: < grad(f)R3−an, Z >=<
grad(f)R3 , Z > for all tangent vectors of S2. So we subtract an =< grad(f)3R, n > n and
obtain:

grad(f)S2 = −xz d
dx

− yz
d

dy
+ (1− z2)

d

dz

We observe that this vectorfield never vanishes, except if z = ±1 and thus x = y = 0.
Otherwise the flow always points "upward", since the coefficient of d

dz is always positive.
In addition, we wish to consider the determinant and trace of the vectorfield at the points
where it vanishes, the so-called singularities: We oberserve that

D(grad(f)) =

(
−1 0
0 −1

)
div(grad(f)) = tr(grad(f)) = −2

det(D(grad(f)) = 1

Similarly one calculates that the divergence and determinant of the south pole are posi-
tive. Singularities with positive determinant and non-vanishing trace are called nodes,
for an illustration see Figure 2.1. A node has an associated sign given by the sign of its
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Figure 2.1: A positive and a negative node. The foliation is oriented away from positive
node and oriented towards the negative node.

trace which happens to be + if all leaves point away from the node and − if all leaves
point towards the sink.

A similar trick can be done to calculate such a flow for the torus:

Example 2.8. Consider the torus T 2 = (S1)2 as the image of F : S1 × S1 → R3:

F (ϕ, θ) = ((R+ rcos(ϕ))cos(θ), (R+ rcos(ϕ))sin(θ), rsin(ϕ))

r < R

this map is 2π-periodic in both coordinates and this translates to an embedding of the
torus after the quotient is taken. Now, we can consider the function f which is the
projection to the y-coordinate and calculate the gradient vectorfield. As before one
can calculate the outer normal, by first calculating DF , normalising the vectors and
completing to a normal basis. Then one obtains the following:

DF (ϕ, θ) =

−rsin(ϕ)cos(θ) −(R+ rcos(ϕ))sin(θ)
−rsin(ϕ)sin(θ) (R+ rcos(ϕ))cos(θ)

rcos(ϕ) 0


n(ϕ, θ) =

−cos(ϕ)cos(θ)
cos(ϕ)sin(θ)

sin(ϕ)


So one may calculate grad(f)T 2 :

grad(f)T 2 = −cos(ϕ)2cos(θ)sin(θ) d
dx

+ (1− cos(ϕ)2sin(θ)2)
d

dy
− sin(ϕ)cos(ϕ)sin(θ)

d

dz

= −sin(ϕ)sin(θ)
r

d

dϕ
+

cos(θ)

(R+ rcos(ϕ))

d

dθ
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Figure 2.2: A representation of the gradient foliation of the torus.

In this case the dynamics are a lot more interesting, for an illustration see Figure 2.2.
The singularities can only be at the values: ϕ ∈ {0, π}, θ ∈ {π

2 ,
3π
2 }. So as above, we

obtain:

Dgrad(f)(0,
π

2
) =

(
−1

r 0
0 − 1

R+r

)
det =

1

r(R+ r)
div =

−R− 2r

r(R+ r)

Dgrad(f)(π,
π

2
) =

(
1
r 0
0 − 1

R−r

)
det =

−1

r(R− r)
div =

R− 2r

r(R− r)

Dgrad(f)(0,
3π

2
) =

(
1
r 0
0 1

R+r

)
det =

1

r(R+ r)
div =

R+ 2r

r(R+ r)

Dgrad(f)(π,
3π

2
) =

(
−1

r 0
0 1

R−r

)
det =

−1

r(R− r)
div =

2r −R

r(R− r)

We have a positive node at (0, 3π2 ) and a negative node at (0, π2 ). However the other two
singularities have negative determinants and thus are not nodes. Such points are called
saddles.

For the saddle at (π, π2 ) we observe the following: The gradient along the line {ϕ = π}
has vanishing d

dϕ component, thus the direction of the gradient vectorfield is completely
determined by the sign of cos(θ). Thus it is also always tangent to the line {ϕ = π}. In
fact, in this case they point away from the node at (0, π2 ) and towards the saddle. So in
a certain sense the node and the saddle are connected.

We denote by FlX the flow of X. This map is defined on an open subset of M × R
and the image of (p, t) is defined as the unique point FlX(p, t), where FlX(p, ·) is the
solution to the differential equation ċ(t) = X(c(t)) with initial value c(0) = p. See for
instance the lecture notes on Analysis of manifolds by Cap [2].

For a fixed p, we call the image of FlX(p, t) the orbit or leaf of p. Should the flow be
defined for all positive, respectively all negative times, we can ask ourselves to what does
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this orbit limit? We define the set {p′ ∈ M : ∃(tn) : lim(tn) = ∞, lim(FlX(p, tn)) = p′}
to be the stable limit set. Replacing ∞ with −∞ we obtain the unstable limit set,
which can be interpreted as the future, respectively past limit of the orbit. It is important
to note, that while the flow changes if one changes X to fX (as before f : Σ → R>0)
the orbits of a given point remain the same.

In the last example one can thus say that the saddle at (π, π2 ) and the node at (0, π2 )
are connected, via orbits whose stable limit set consists of the node and unstable limit set
is the saddle. In fact, any saddle is the the unstable limit set of 2 orbits and the stable
limit set of 2 orbits (not necessarily distinct, as two of these orbits may form a loop).
These orbits are called called separatrices. Those orbits which limit into the saddles
are called stable separatrices and those limiting away are called unstable separatrices. 2

The above calculations for the type of singularities of a foliation are only partially true
up to now since we did not show yet, that the sign of the determinant or the divergence
are independent of the choice of X, the choice of volume element ω or the coordinate
representation of X:

Lemma 2.9. Let ω be a volume form on Σ, X a vectorfield and f : Σ → R>0 a smooth
function, then the following formulae hold:

divω(fX)ω = fdivω(X)ω + df ∧ ιXω (2.1.1)
fdivfω(X) = divω(fX) (2.1.2)
divω(fX) = fdivω(X)− df(X) (2.1.3)

here divωX is defined by d(ιXω) = divωXω.

Proof. The proof is just a straightforward computation:

divω(fX)ω = d(ιfXω) = d(fιXω) = df ∧ ιXω + fd(ιXω)

The second follows from the same computation except that f has to be accounted for:

divfω(X)fω = d(ιXfω) = df ∧ ιXω + fdiv(ω)(X)ω

To proof the last equality, one may find a vectorfield X ′ such that X ′ = 0 if and only if
X = 0. This is done using a metric <,> then one obtains a vectorfield X ′ which fulfills
that < X ′, · >= ω(X, ·). In particular, if X ̸= 0 then they form a basis of the tangent
space if and only if X ̸= 0 since < X ′, X >= ω(X,X) = 0. If X = 0 then the equation
is obvious, since both ιXω = 0 and df(X) = 0. So assume X ̸= 0, then one obtains:

divω(fX)ω(X,X ′) = fdivω(X)ω(X,X ′) + df(X)ω(X,X ′)− df(X ′)ω(X,X)

where the last term vanishes since ω(X,X) = 0. Since ωp is an antisymmetric bilinear
in each point, this equation fully determines ω on all of Σ. QED

2In other conventions the stable separatrix of a saddle is the union of both of these orbits, we will stick
to this naming convention as it is done by Sotomayor [21].
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Theorem 2.10. Let X be a vectorfield and p a singularity and x = (x1, . . . , xn), y =
(y1, . . . , yn) coordinate charts around p. Then the matrix DxX = ( d

dxiX
j(p)), where∑n

j=1X
jej is the coordinate expansion with respect to x, is related to the corresponding

matrix for y by conjugation by the coordinate change matrix ( dy
i

dxj )

Proof. This is again just a straightforward verification:

d

dxi
Xj

x(p) =
d

dxi
(

n∑
l=1

dxj

dyl
X l

y)(p) =
n∑

l=1

d

dxi
(
dxj

dyl
)X l

y(p) +
dxj

dyl
d

dxi
X l

y(p) =

n∑
l=1

d

dxi
(
dxj

dyl
)X l

y(p) +
n∑

k=1

dxj

dyl
dyk

dxl
d

dyk
X l

y(p)

Since X(p) = 0 the first sum vanishes and the last sum can be rewritten as:

DxX = (
dxi

dyj
)DyX(

dyi

dxj
)

So DxX and DyX are related by conjugation. Thus the determinant and the trace are
well-defined for fixed X. QED

The well-definedness of the sign of the determinant then follows from the chain rule:
DxX and Dx(fX) are related by fDxX = Dx(fX) at singular points, since f is strictly
positive the sign remains unchanged by this transformation.

The example of the torus gives rise to some more important examples, first we will
look at a case of the so-called saddle-node bifurcaton, which we will encounter later again
(see Example 2.30):

Example 2.11. Let X = −sin(ϕ)sin(θ) d
dϕ + cos(θ) d

dθ be a slightly changed version of
the vectorfield from the above example. As we have seen above, there are 4 singularities:
2 nodes and 2 saddles. In general it is not possible to modify the vectorfield and remove
singularities, however we may remove a node-saddle pair, if they are connected by a
separatrix: Let H(θ) be a smooth cut-off function which is 1 around θ = π

2 and 0 around
θ = 3π

2 . Then we may consider the s-dependent vectorfield Xs:

Xs = (H(θ)s− sin(ϕ))sin(θ)
d

dϕ
+ cos(θ)

d

dθ

We notice that the singularities on θ = π
2 move towards (π2 ,

π
2 ) as s increases towards

1. At s = 1 there is exactly one singularity at (π2 ,
π
2 ) whose linearisation is a non-zero

matrix with vanishing determinant. In addition, the second derivative of the vectorfield
X in the direction of the eigenvector corresponding to 0 is non-vanishing. We call such
points saddle-nodes. Similarly to Theorem 2.10, one may show that this definition is
independent of the choice of X.

For s > 1 there are no more singularities, however the line θ = π
2 is still an orbit of the

foliation, called a closed orbit, see Figure 2.3. The orbit of p is a closed orbit, precisely
if FlX(p, t) = p for some t and p is not a singularity.
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Figure 2.3: As s increases, the node and saddle start moving towards one another. Finally
they merge into a saddle-node and then turn into a nonsingular attractive
closed orbit.

As we have done for singularities there are also non-degeneracy conditions for closed
orbits: Consider a closed orbit C of period 1 in the interior of Σ and a small (non-
singular) neighborhood S1 × [−1, 1] of C = S1 × {0}. Then by the continuity of the
flow one can define the so-called Poincaré-first return map: Consider all points of
the form {x}× [−1, 1], where x ∈ S1 is arbitrary. Then one can try to define a map π(s)
which assigns to s the next intersection of FlX((x, s), ·) with {x}× [−1, 1], where s is the
coordinate on [−1, 1], see Figure 2.4 This map is defined for s = 0, since it is a closed
orbit. Furthermore, it will be defined for a small interval (−ϵ, ϵ) around 0. An analogous
construction can be done if C coincides with a boundary component of Σ, however one
needs to restrict to one-sided neighborhoods. See for instance the introductory book by
Teschl [22, Lemma 6.9.]. Essentially, this map measures the behaviour of orbits close-by,
compare Figure. This leads us to the following definition:

s
π(s)

Figure 2.4: A repelling closed orbit and a nearby leaf. The grey line represents {x} ×
[−1, 1].

Definition 2.12. Let Σ be a surface and F a foliation. Let C be a closed orbit, we say

10



that C is an attractive closed orbit, if π′(0) < 1. It is repelling, if π′(0) > 1. We call
it a degenerate closed orbit, otherwise.

The upshot is that π′ is independent of the choice of X and x ∈ S1. However in
practice, the first return map is unwieldy to use. However, there is a formula for its first
derivative at 0, which is defined only in terms of the divergence:

Lemma 2.13. ([22, Lemma 12.6.]) Let Σ be a surface and F a foliation. Assume that
C is a closed orbit and X a representative of F . Denote by T the period of C with respect
to X. Then the following relationship holds:

π′(0) = e
∫ T
0 div(X(C(t)))dt

QED
Using this definition, one can say that any closed orbit is attractive, repelling or degen-

erate, since it does not depend on the existence of orbits close-by. Consider for instance
a closed orbit which intersects two different boundary components, in such a way that all
orbits on either side leave the surface then the Poincaré-first return map does not exist,
while the above integral can still be calculated.

As in Example 2.11 (replacing H with the identity) one can generate a fully non-singular
foliation on the torus. In particular, a closed surface can only support a non-vanishing
vectorfield if the Euler characteristic vanishes. Thus the torus is the only closed surface
supporting such a foliation. These can however be very ill-behaved:

Example 2.14. Let r be a rational number. Then consider the foliation induced by:

Xr =
d

dϕ
+ r

d

dθ

Changing from the torus to its universal cover R2, one easily sees that the orbits of Xr

are precisely the lines lp = {(x, p+xr) : x ∈ R}. Since r is rational it can be represented
as r = n

n′ , where n and n′ are coprime. Thus the line l0 originating from (0, 0) goes
through (n′, n), projecting it to the torus will thus create closed circles. Since all other
orbits of Xr are obtained through translation, the torus is thus foliated by closed circles.
If one calculates the divergence of this foliation, one obtains div = 0 so all closed orbits
are degenerate.

However assume now that r is an irrational number. Then one can show that the
orbits of Xr lie dense in the torus: The basic argument is to go to the universal cover
R2 and show that there are whole numbers n, n′ such that (n, nr) comes arbitrarily close
to (n, s +m) for each s ∈ [0, 1]. This observation is originally due to Kronecker [16, p.
50-51]. Thus in this case the whole torus is stable and unstable limit set of each orbit.

As can be seen this behaviour is not topologically stable, since the rational numbers
lie dense in the reals and so in any small interval the change of topology of the foliation
happens infinitely often. Additionally, foliations with dense leafs are very degenerate
and so we wish to prevent such things from happening, this leads one to introduce the
following regularity property:
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Definition 2.15. Let Σ be a surface and F a foliation on it. We say that F fulfills the
Poincaré-Bendixson property if the stable, respectively unstable limit sets of a point
are one of the following:

• A singular point;

• A closed orbit;

• A polygon of leafs, consisting of singularities and leafs in between them.

Sadly, the Poincaré-Bendixson property is not stable under isotopies, since the ratio-
nally foliated torus fulfills the property, however the irrationally foliated torus does not.
There is an important class of surfaces for which the Poincaré-Bendixson property is
fulfilled in a special case:

Theorem 2.16. (Poincaré-Bendixson, [22, Theorem 7.16.]) Let U be an open region
of R2 with compact closure. Let the foliation F have only isolated singularities, then
any leaf contained in U in positive(respectively negative) time has a stable (respectively
unstable) limit set of either:

• A singular point;

• A closed orbit;

• A polygon of leafs, consisting of singularities and leafs in between them.

QED
For an example of such a polygon, see Figure 2.5.
Naturally, should a foliation of a surface F decompose into planar regions and all its

singularities have non-vanishing determinant(so they are isolated and stable under small
isotopies) then the Poincaré-Bendixson property is stable. This leads us to introduce
an additional property. To understand this definition, we need to discuss boundary
conditions of foliations: The foliation F may be parallel to a boundary component e, so
X ∈ F is tangent to the tangent space of e. Otherwise, it may be foliated transverse
to the boundary. In this case, we differentiate between X pointing outward along e or
X pointing inward depending on whether the flow of X would displace points out of
Σ or into the interior of Σ.

Definition 2.17. Let Σ be a surface endowed with a foliation F that is tangent to the
boundary of Σ. We call F essentially planar, if there is a decomposition of Σ into two
subsurfaces Σ+ and Σ−, which are planar and F points out of Σ+ and into Σ− along the
boundary which is in the interior of Σ.

Our first two examples, where essentially planar. For the sphere it would have sufficed
to take the equator and on the singular foliation of the torus from Example 2.8, set
Σ− = {(ϕ, θ) : π ≥ θ ≥ 0} and Σ+ = {(ϕ, θ) : 2π ≥ θ ≥ 0}: Recall the vectorfield:

X = −sin(ϕ)sin(θ)
r

d

dϕ
+

cos(θ)

(R+ rcos(ϕ))

d

dθ
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Figure 2.5: A triple of singularities with two saddles at (0, 0) and (2, 0) such that two sep-
aratrices connect. Note that each orbit in the interior is a degenerate closed
orbit or the singularity at (1, 0). This may still happen, if the singularity was
non-degenerate. Consider adding X ′ = H((x− 1) d

dx + y d
dy ) to the vectorfield

generating this foliation, where H is a function with support inside the poly-
gon. Then the singularity at (2, 0) becomes non-degenerate, however orbits
sufficiently close to the orbit remain closed. So infinitely many closed orbits
may appear even though there are only saddles and nodes present.

Then one notices that at θ = π the vectorfield is strictly negative in the θ-direction and
for θ = 0, 2π the vectorfield is strictly positive in the θ-direction. Thus it points into Σ−

and out of Σ+.
Recall, that the type of closed orbit is determined by the integral over the divergence.

Using this, we may calculate the divergence of the non-parallely and non-singularly foli-
ated torus from Example 2.11. We will do so for the closed orbit at θ = π

2 :

X2 =
d

dϕ
+

cos(θ)

(2− sin(ϕ))sin(θ)

d

dθ

div(X2)(·,
π

2
) = − 1

2− sin(ϕ)

Thus the integral is negative, so the closed orbit at θ = π
2 is attractive.

As it turns out one can remove all degenerate cases by an arbitrarily small change of
the foliation and they exist in abundance:

Theorem 2.18. (Peixoto’s density theorem, [19, Theorem 2]) Any foliation F on a
closed surface Σ, can be changed C∞-small such that the resulting foliation F ′ fulfills the
following:

(i) All singularities are either saddles or nodes;

(ii) All closed orbits are non-degenerate;
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(iii) All leafs limit to either a singularity or a closed orbit;

(iv) There is no leaf forming a saddle-saddle connection.

Such foliations are called Morse-Smale foliations. Furthermore the set of Morse-Smale
foliations form an open and dense subset of all foliations on a closed surface.

QED
Note that the third condition implies the Poincaré-Bendixson property. Morse-Smale

foliations will reappear again later though they are too restrictive for our purposes, so
we will work with another property.

2.2 Non-isochore and divided foliations

In this section, we will discuss the relationship between two different foliations: Non-
isochore foliations and divided foliations. The goal of this section is to provide a full
proof of a claimed theorem by Giroux which seems to be missing from the literature up
to now.

Definition 2.19. Let Σ be a surface and F a foliation. Let p be a singularity then we say
that p is a positive/negative singularity, if the divergence of F at p is positive/negative.
If all singularities of F are either positive or negative, then we call F non-isochore.

Recall that we have already encountered three types of singularities: nodes, whose
determinant is non-zero and the real parts of the eigenvalues have the same sign. Saddles,
whose determinant is non-zero and the eigenvalues have opposite sign. Saddle-nodes
whose determinant vanishes, however there is one non-zero eigenvalue and the saddle-
node is infinitesimally quadratic in the direction of the 0 eigenvalues.

So in fact, nodes and saddle-nodes always have a sign attached to them, while saddles
might not. However, one can upgrade Peixoto’s density theorem so that one has a non-
isochore foliation: First take a Morse-Smale foliation and then around each saddle add a
Hϵx d

dx term, where H is some smooth cut-off function which is supported inside a small
neighborhood of p, 1 inside a smaller neighborhood of p and d

dx(p) is an eigenvector.
Thus the eigenvalues are no longer negatives of one another and since the Morse-Smale
condition is open, we can choose ϵ small enough so that it still fulfills the Morse-Smale
conditions.

However, we will necessarily encounter some foliations which have more general non-
isochore singularities. We will consider one typical example:

Example 2.20. Let F be a foliation on T 2 = (S1)2 given by X = cos(θ) d
dθ , where θ

is the coordinate on the first copy of S1. At θ ∈ {π
2 ,

3π
3 } there is a line of singularities.

Indeed their linearisation is given by:

DX =

(
−sin(θ) 0

0 0

)
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So, the determinant of the linearisation of these two lines of singularities vanishes while
the traces do not so they come with an associated sign. Note that this foliation still
fulfills the Poincaré-Bendixson property, since each orbit is a subset of the parallel line
{(θ, x)} where x is an arbitrary value of S1.

In general, the non-vanishing of the linearisation of a singularity implies that there is
at least one non-zero eigenvalue. This in turn implies that for each singularity p of a
foliation X there is a neighborhood Up of p and a 1-dimensional submanifold lp such that
any other singularities in Up most lie on lp. Even more p divides lp into two components,
if there are orbits in Up limiting to p in the "wrong" direction then they must be a subset
of lp:

Assume that p = (0, 0) ∈ R2 is not nodal. Then there is at least one non-zero real
eigenvalue λ ̸= 0, since the divergence of p does not vanish. After a possible chart-change,
we may assume that the eigenvector corresponding to λ at p is d

dy . Possibly shrinking
the area of definition of X : U → R2, we may assume that the y-derivative of the second
component of X does not vanish. Then denote by π2 : R2 → R the projection onto the
y-coordinate, so the second derivative of π2 ◦X : U → R does not vanish. Thus 0 is a
regular value of this map and so by the implicit function theorem l := (π2 ◦X)−1(0) is
a 1-dimensional submanifold of U . So singularities in a neighborhood of p = (0, 0) may
at most lie along l.

We also need to obtain control over the number of connections between singularities
of the same sign: So assume that l′ is a smooth arc such that X is parallel to l′ and
p ∈ l′. For easy of argument assume that p is a positive singularity and λ is the positive
eigenvalue. If d

dy (p) ∈ Tp(l
′) then denote by Z the vectorfield orienting l′ such that Z(p)

is a positive multiple of d
dy (p). Since X is paralell to l′ it is a multiple of Z. Since

d
dy (p)(X) > 0 one can observe that the coefficient function g such that gZ = X has to
have positive derivative at p. So X is pointing away from p. So l cannot contain any
incoming orbits into p. So assume that d

dy (p) is transversal to l′ at p. Then on a small
neighborhood of p in l′ d

dy is also transversal. So we can consider a neighborhood of
p ⊂ U with coordinates given by l′ in the form (x′, y) where x′ is the coordinate on l′ and
y′ is obtained by considering the flow of Fl d

dy
(x′). Now at (x, 0) X is a multiple of d

dx

and the derivative of X in the direction of d
dy′ is a positive number at p = (0, 0). Possibly

shrinking the neighborhood we may assume that this derivative is positive on the whole
neighborhood. Now we may observe that X = g d

dx′ + h d
dy′ where h > 0 if y′ > 0. So

the flow originating at the point (a, b) with b positive has increasing second coordinate.
So it may at most happen that flow has p as unstable limit set but not as positive one.
Similarly for b negative and if p is a negative singularity.

If l′ has p as a boundary component then one can repeat the same arguments as
above on the half neighborhood U ′ which is obtained by considering splitting U into
two components along γ = {(x, y) : x = 0}. If there are singularities on these possibly
shrunken neighborhoods they have to lie on these arcs l′ by the above arguments. So one
observes that each singularity p has a neighborhood U where the only orbits which can
limit to a singularity in the "wrong" direction lie along a curve l′ which may be broken
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at p ∈ l′. In particular, we may choose U to be a neighborhood of p where the divergence
already fulfills sgn(div(X) = sgn(div(X(p))) and each such U has at most two flow lines
which connect the outside of U with a singularity inside U .

We now come to one of the most important types of non-isochore foliations.

Definition 2.21. Let Γ be a set of compact properly embedded arcs on a surface Σ.
Furthermore let F be a non-isochore foliation. Then we say that Γ is a dividing set for
F or Γ divides F if the following conditions are satisfied:

(i) Γ is the regular preimage of divω(X)−1(0) for some choice of orientation X of F
and some volume form ω of Σ;

(ii) The foliation F points out of R+ = divω(X)−1([0,+∞)) and into R− = divω(X)−1((−∞, 0]))

So in particular, R+ contains all positive singularities and R− all negative singularities.
In addition, since any orbit leaving R+ never re-enters it, any closed orbit must either be
completely contained in R+ or R−. Since the integral over the divergence on a degenerate
closed orbit has to vanish a divided foliation cannot include any. Similarly, attractive
closed orbits have to be in R− and repelling closed orbits in R+. Thus, we will also refer
to attractive/repelling closed orbits as negative/positive.

The other important observation is that there are no orbits from the negative into the
positive area. In particular, there are no retrograde connections which limit from a neg-
ative singularity to a positive singularity. A claimed theorem of Giroux [11, Proposition
2.5.], now reads as:

Theorem 2.22. Let Σ be a surface endowed with a non-isochore foliation F which fulfills
the Poincaré-Bendixson property and which is parallel to the boundary. Then the following
are equivalent:

(i) The foliation is divided.

(ii) The foliation does not contain any retrograde connections and no degenerate closed
orbits.

One direction is clear by the above discussion. The other direction is a bit more
subtle. This proof is based upon the one presented by Honda [14, Proposition 3.1.], there
he proves the special case of non-isochore Morse-Smale foliations. A direct corollary of
the Poincaré-Bendixson property is the following simplification: Any polygon which is a
limit set consists of at most finitely many singularities. In addition since there can be at
most 2 orbits which enter a singularity in the "wrong" direction the number of all orbits
that these singularities have is bounded above. Moreover, since there are no retrograde
connections the only possible polygons have either all positive or all negative singularities.
Thus we will refer to these polygons as positive, respectively negative polygons. Even
better positive polygons cannot be stable limit sets and negative polygons cannot be
unstable limit sets, as is the case for positive/negative closed orbits.

The proof below is based upon an observation by Sotomayor [21, p. I.4.6.]. He provided
the argument for polygons with one corner which is a saddle.
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Lemma 2.23. Let F be a foliation on a surface Σ. Then there are no points p whose
stable limit set is a positive polygon. Similarly there are no points p whose unstable limit
set is a negative polygon.

Proof. Let l be a separatrix which is part of a positive polygon. Then one can construct
an analogue of a Poincaré-Return map [21, p. I.4.6.]: There is an arc a which is transversal
to the foliation and one endpoint is a point p ∈ l. Then one can define π : a\{p} → a\{p},
by defining π(x) to be the next intersection of the leaf originating from x with a.

The next observation is that given a volume form ω one can find a function f : Σ → R>0

such that the divergence of divω(fX) > 0 along the leafs forming the polygon. So let X
be some vectorfield orienting F and let γ be a leaf which limits from one corner of the
polygon p to another p′. For both of these we may find neighborhoods Up and U ′

p such that
the divergence of some X is positive on both Up and Up′ . Then we additionally observe
that γ : R→ Σ fulfills that there is a sufficiently big R such that γ([R,+∞)) ⊂ Up′ and
γ(−∞,−R]) ⊂ Up. Thus we have that

∫
γ div(X)γ = +∞. In particular (by possibly

increasing R), we can assume K :=
∫ R
−R div(X)(γ(s))ds > 0. By Lemma 2.9 we need

to solve df(X) > −fdivω(X) to achieve that divω(fX) is strictly positive. ODE theory
tells us a trivial solution to this problem by choosing:

f(s) = e
s+R
2R

K−
∫ s
−R div(X)(γ(s))ds

One observes that f(−R) = f(R) = 1 so, we may extend f to the rest of Σ by choosing a
smooth cut-off function which smoothly normalises it to 1 outside a small neighborhood
of the strip [γ(−R), γ(R)] which is disjoint from the other edges of the polygon. We do
this along all edges of the polygon.

Then consider the area Σ′ formed by the positive polygon, the leaf γ′ between x and
π(x) where x ∈ a \ {p} and the piece a′ of a between x and π(x), compare Figure 2.6.
This is a closed, planar area whose boundary is always part of the foliation, except along
A′. The induced orientation of A′ is in such a way that it forms a positive basis with
X in the first slot if the flow lines leave Σ′ along A′, respectively with −X if flow lines
enter Σ′ along A′. Thus, we observe by Stoke’s theorem:∫

Σ′
divωX =

∫
∂Σ′

ιXω =

∫
A′
ιXω

The first integral is positive, and thus must be the third one. This means in particular,
that there is at least one point along A′ where the vectorfield X points out of A′. Since
A was transversal to the foliation this has to be true for all of them. Thus π(x) is farther
away along A than x. This implies that all orbits close to γ must limit away from γ.
Since the next intersection will either not hit A (which all close enough orbits on this
side of the polygon do) or be farther away than the previous one.

QED

Since the point x has to move outward along a, we similarly observe that there are no
closed orbits close to a positive/negative polygon:
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Figure 2.6: A polygon with 4 positive saddles as corners. The violet area is Σ′.

Corollary 2.24. Let F be a non-isochore foliation which fulfills the Poincaré-Bendixson
property. Assume that all polygons and closed orbits are either positive or negative. Then
there are at most finitely many closed orbits.

Proof. Since positive/negative orbits are isolated, closed orbits may not accumulate on
each other. By the previous proof there are no closed orbits close to positive, resp.
negative polygons. Since in this case x = π(x) and so the integral would have to vanish.

QED

Lemma 2.25. Let F be a non-isochore foliation on a surface Σ which fulfills the Poincaré-
Bendixson property. Furthermore let ω be a choice of volume form for Σ. Then there is
an X orienting F such that the divergence of X is positive/negative on positive/negative
singularities, repelling/attracting closed orbits, positive/negative polygons and orbits con-
necting such sets of the same sign.

Proof. We will show the statement only for the positive case, the negative case follows
analogously.

Let X be any vectorfield orienting F . The case of positive singularities follows trivially.
In addition, the set of singularities of X is a compact subset of Σ: Both the images of
the vectorfield X and the 0-vectorfield are compact in TΣ, so their intersection is as well.
Since the projection TΣ → Σ is continuous, the image of this compact intersection is also
compact. Thus we may cover the set of singularities with finitely many neighborhoods
U such that the divergence does not vanish on U and the foliation is nonsingular on U
except perhaps along a line lU , which follows from the discussion after Example 2.20.

One observes that the amount of orbits between positive singularities which are not
fully contained in one of these U is at most finite. If the leaf γ between two singularities
p and p′ is contained in such a U as above then the divergence is already strictly positive
along it. So let γ limit between singularities p and p′ in different U and U ′. Using the
construction in the proof of Lemma 2.23, we obtain a vectorfieldX such that divω(X) > 0
along γ. Choosing the cut-off function to be disjoint from the lines lU and the finitely
many other orbits between positive singularities, one can iteratively achieve that divω(X)
is positive on all orbits between singularities.
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Since positive closed orbits C fulfill that the integral of the divergence of X is positive,
thus we may use a similar construction to obtain strictly positive divergence along C.
Since there are at most finitely many orbits and finitely many Up and finitely many orbits
connecting singularities not entirely contained in Up, we can choose the cut-off functions
to be disjoint from these sets.

At last, we can repeat the same argument for orbits limiting from a positive polygon/
or positive closed orbit to a positive singularity. QED

So given a non-isochore foliation F without retrograde connections and degenerate
closed orbits which fulfills the Poincaré-Bendixson property it has a representative X
such that the divergence with respect to a fixed volume form ω is positive/negative
on a neighborhood of the positive/negative singularities, positive/negative closed orbits,
positive/negative polygons and orbits connecting them. So, we only have to extend this
to the complement such that the divergence is 0 exactly along a 1-dimensional line. To
do so, we observe that the already positive region retracts onto a neighborhood where
the foliation is pointing outward, similarly for the negative region. So the complement of
these retracts Σ′ has a foliation which is nonsingular, contains no closed orbits, fulfills the
Poincaré-Bendixson property and has boundary components which are either completely
pointing outward (where it borders the negative region), completely pointing inward
(where it borders the positive region) or transversal (where the boundaries of Σ and Σ′

coincide). Thus, we must classify all those polygons which support such foliations:

Theorem 2.26. Let Σ be a surface with polygonal boundary. Assume that there is a
foliation F on Σ, which is nonsingular, contains no closed orbits, fulfills the Poincaré-
Bendixson property and each edge, respectively smooth boundary component is either
purely transversly or parallely foliated. Additionally no edges with in- and outgoing foli-
ation are neighboring each other. Then Σ is either an annulus (possibly with polygonal
boundary) where one boundary is strictly ingoing and one is strictly outgoing or a polygon
with exactly two parallely foliated edges, compare Figure 2.7.

Proof. The proof below is reconstructed from a discussion on math.stackexchange [20].
The discussion there was about surfaces with smooth boundaries, however if one is careful
about removing vertices of polygonal boundaries the proof works in essentially the same
way.

The main idea of the proof is to show that, we can turn a nonsingular foliation on Σ
into a nonsingular foliation on a closed surface Σ′′. Every step will either leave the euler
characteristic unchanged or decrease it. Thus in the end, we can use the characterisation
that every Σ is obtained from a closed genus g surface and the Euler characteristic of Σ
calculates as 2 − 2g − (c + p), where c + p is the sum over the circular and polygonal
boundary components. Since the Euler characteristic has to vanish for a closed surface to
support a nonsingular vectorfield, this leaves only the torus Σ′′. Thus 2−2g− (c+p) ≥ 0
since we do not increase the Euler characteristic when building Σ′′. The exact analysis
is done at the end.

There are two main observations: First since Σ contains no closed orbits no smooth
boundary component is parallely foliated, since this would be a closed orbit. Secondly,

19



Figure 2.7: The only two surfaces (up to the addition of corners) which support a foliation
which is nonsingular, circlefree and fulfills the Poincaré-Bendixson property.

Figure 2.8: The procedure to smoothen out a corner. The black line represents the new
boundary of Σ′.

a parallely foliated edge e of a polygonal boundary component bounds on one-side an
ingoing boundary and on the other side an outgoing boundary: In coordinates let (0, 0)
be a corner of the edge e (associated to {(x, y) : x ≥ 0, y = 0}) then the foliation along
e1 = {(x, y) : y ≥ 0, x = 0} induces the sign of X along e. At (0, 0) X = ϕ d

dx and ϕ must
be positive if e1 is foliated inward. Since X is non-vanishing, the direction of X at the
other corner p′ of e is already defined. However in this case X has to point towards p′,
which means that the foliation has to be outward pointing on e2 the edge neighboring p′.

The first step is then to remove non-essential corners, which are between edges that
are both inward or outward pointing. Let p be such a corner where both edges meeting p
are inward pointing. Again in coordinates let p = (0, 0) and the edges be the coordinate
axis. Then we can consider the following alternative boundary curve:

γ(t) =

(
H(t)(t+ ϵ)

H(−t)(−t− ϵ)

)
where H is some smooth cut-off function which is 1 if t > ϵ and 0 if t < −ϵ, where

1 > ϵ > 0 is some number, compare Figure 2.8. One may calculate that γ has non-
vanishing derivative and is strictly contained in the first quadrant. Thus we can consider
Σ′ which is the surface on the opposite side of γ. This surface has one corner less.
However, we need to make sure that X is still pointing outward, for this we observe that
originally at p = (0, 0) we had X = ϕ d

dx + ψ d
dy , where both ϕ, ψ < 0 at p = (0, 0) so we
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may have just assumed that this was true in the whole neighborhood. Thus one can try
to solve the following equation:

(
γ̇x
γ̇y

)
= aX(γ)

a =
γ̇x
ϕ(γ)

a =
γ̇y
ψ(γ)

where the first equation implies that a has the same sign as γ̇x and the second that a
has the same sign as γ̇y, which can only be satisfied by a = 0. However a = 0 implies
that the derivative of γ needs to vanish, which does not happen. One can indeed show
that if t > −1− ϵ then the first derivative is non-zero. And for t ≤ −1− ϵ: γ coincides
with (0,−t) for which γ̇y is non-vanishing. Now, we know X ′ is either inward or outward
pointing. For t = −1 one can now see that γ̇ is (0,−1) thus X ′(0,−1) = (2, 1) is pointing
inward. Removing corners from outward pointing edges works analogously.

So we may assume that the only corners on Σ are between edges where the foliation
is transversal and parallel. Now since transversal edges separate inward and outward
pointing edges there must be an even number of them. So let 2l be the amount of
transversal edges. Now around each outward pointing edge e there are two transversal
edges e′ and e′′. We can glue these edges to one another. In such a way that the corner
p′ which separates e and e′ and p′′ which separates e and e′′ are identified. In this way,
we increase the amount of boundary components by 1, since e is now a closed smooth
circle. On a neighborhood of e′, respectively e′′ we can normalise X (possibly changing
it to agree with the vectorfield orienting e′ on a neighborhood of e′) and obtain that X
glues to a smooth vectorfield which has no closed orbits nor singularities and along the
smoothened edge e the vectorfield is outward pointing, while on the remaining polygonal
boundary, where e, e′, e′′ originally belonged to there are now 2 transversal components
less, compare Figure 2.9.

Iterating this process, yields a change in the euler characteristic χ(Σ′) = χ(Σ) − l.
However Σ′ has only transversally foliated smooth boundary components now, of which
there are exactly c + p + l-many where c is the original number of smooth boundaries
and p was the amount of polygonal boundary components. Now change X close to the
boundary components so that the derivative with respect to some neighborhood C×R+

vanishes, i.e. it agrees with the d
dr , where r is the coordinate on R+. This can again

be done in such a way that X remains nonsingular. Now glue a second copy of Σ′ to
Σ′ (where the orientation on the second copy has to be reversed). This new surface Σ′′

now has a nonsingular foliation induced by gluing X and −X (on the second copy of Σ′)
together. This will be a smooth vectorfield since we smoothed X close to the boundary,
by using the neighborhood C ×R+ to glue Σ′ to itself we ensure that they fit together.

Now χ(Σ′′) = 2χ(Σ′) and Σ′′ is now a closed surface with a nonsingular foliation, thus
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e
e′

e′′

e
e′ = e′′

Figure 2.9: Gluing two edges together. Before the gluing e was an edge where the vector-
field was pointing outward. Afterwards e is a smooth boundary component
such that the vectorfield is still pointing outward.

it must be the torus. So we have to find all solutions to the following equation:

0 = 2((2− 2g)− (c+ p+ l))

0 = 4− 4g − 2c− 2p− 2l

4 = 4g + 2c+ 2p+ 2l

If g = 1, then c = p = l = 0 thus Σ would have been a torus. The foliation on the torus
was originally Poincaré-Bendixson, nonsingular and free of closed orbits, which cannot
be. Since orbits need to either limit to a singularity, a closed orbit or a polygon.

So g = 0, this leaves the options of c = 2 and p = l = 0, c = 1 and p = 1, l = 0,
c = 0 and p = 1, l = 1. The first two options are annuli where possibly one boundary
was polygonal, the second option is a polygon with exactly two transversal edges.

The last claimed statement is that there have to be both ingoing and outgoing edges,
respectively circles. This follows again from the Poincaré-Bendixson property: If there
where only ingoing boundaries then all orbits in forward time would be trapped inside
surface and thus there must be some kind of limit set. However, if there are no singular-
ities and no closed orbits then the limit sets cannot exist, which is a contradiction.

QED

Proof of Theorem 2.22. By Lemma 2.25, we may assume that div(X) ̸= 0 on a neighbor-
hood of all positive/negative singularities/polygons/closed orbits and orbits connecting
these. So we only need to find an f such that div(fX)−1(0) divides the foliation on the
complement Σ′ which by Theorem 2.26 consists of annuli and strips. Using the methods
used in the proof of Theorem 2.26, we may remove all edges and assume that the annuli
are regular [−1, 1]× S1 and the strips are ([−1, 1])2. In addition, we choose coordinates
such that the foliation is given by d

dx where x is the first coordinate. Then, recall that
div(fX) = fdiv(X) + df(X) by Lemma 2.9 and so we must only choose f such that it
fulfills the following ODE:
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f ′ = (c+ ax− div(X))f (2.2.1)

c =

∫ 1

−1
div(X)

|c| < a

which has a solution, which depends smoothly upon the second coordinate. After possibly
smoothening f out close to the boundary. One easily verifies, that f ′+fdiv(X) = div(fx)
has a regular 0-set. In addition, by the choice of f ′ the d

dx -vectorfield on each annulus and
strip is transversal to this 0-set. Thus, we have verified all claimed statements. QED

Up to now, we started with a fixed volume form ω and found an X such that the
divergence of X with respect to ω leads to a divided foliation. However, this property is
independent of the choice of X. So let X be some vectorfield and ω some volume form.
Then using the above procedure, we may find f : Σ → R>0 such that divωfX is of the
desired form. Using Lemma 2.9:

fdivfω(X) = divω(fX)

we observe that X is adapted to fω in the above way. This is not surprising since
ιfXω = ιX(fω) lead to the same 1-form. There is another description of a divided
foliation which can be found in the convex surfaces lecture notes by Etnyre [6, Theorem
2.15.]. The proof presented below is based upon his arguments:

Lemma 2.27. Let Σ be a surface endowed with a non-isochore foliation F . The foliation
F is divided if and only if for each β representing F there exists a function u : Σ → R>0

such that β ∧ du+ udβ > 0.

Proof. First assume that F is divided then there is a volume form ω and a vectorfield X
representing F such that 0 is a regular value of div(X). So let β = ιXω and u = ±(divωX)
outside a sufficiently small neighborhood of Γ = divω(X)−1(0) on a tubular neighborhood
of the latter let u be a smooth transition function between ±1 which decreases along leafs
and is 0 exactly on divω(X)−1(0). This is possible since the foliation is transversal to
the 0-set. Then we observe the following:

udβ = udivωXω ≥ 0

udβ = 0 ⇔ u = dβ = 0

β ∧ du(X,Z) = iXω ∧ du(X,Z) = ω(X,X)du(Z)− ω(X,Z)du(X)

The last inequality says precisely that if (X,Z) is a positive basis at some point p then
ω(X,Z)du(X) has the sign of −du(X). Our choice implies du(X) ≤ 0, where u(X) = 0
outside a small neighborhood of the dividing curve. The above formula holds if X ̸= 0
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and if X = 0 then β = ιXω = 0. Thus both 2-forms are non-negative multiples of the
volume form and for each point on Σ at least one of them is non-vanishing, which is
exactly the statement we wanted.

On the other hand, assume that β represents F and there was a function u : Σ → R>0
such that ω := udβ + β ∧ du > 0 is a positive volume form. Then let X be dual to β
(ιXω = β). Then one readily verifies:

divω(
1

u
X) =

1

u2

So in particular, if u ̸= 0 then divω(
sign(u)

u X) = sign(u)
u2 which leads to an X ′ which almost

has the correct divergence, however close to u−1(0) we need to do something different:
Recall that if u = 0 then ω = β ∧ du > 0, so in particular the vectorfield X orienting F
is transversal to u−1(0), which in particular makes it into a submanifold. Now consider
around each u−1(0) push-offs given by X which are so small that the neighborhood is
nonsingular. Let g = sign(u)

u2 outside these collections of annuli and strips around u−1(0)
and on a neighborhood of their boundaries. Then consider an extension of g onto the
interior as in Equation 2.2.1 where we choose the constants in such a way that they are
exactly 0 if u−1(0). Thus, we have realised u−1(0) as the desired dividing curve. QED

2.3 Generic 1-parameter families of foliations

In this section, we will present the generalisation of Peixoto’s density Theorem to families
of foliations indexed by an interval. I.e. we consider (Xr)r∈[−1,1], whereXr is a vectorfield
on a closed surface Σ. We recall Peixoto’s density Theorem 2.18:

Let Σ be a closed surface. Then the set of Morse-Smale vectorfields X lies dense and
open in the space of all vectorfields.

In other words, given a vectorfield X there is a C∞-small vectorfield X ′ such that
X + X ′ is Morse-Smale. In addition, if X is Morse-Smale then X + X ′ will be Morse-
Smale for any sufficiently small vectorfield X ′. Naturally, this cannot be true for families
of vectorfields indexed by an interval. Consider for example some family where X−1

and X1 are Morse-Smale and X1 has two singularities more than X−1. Then there is
no C∞ change of X1 which removes these additional singularities, so for some t the
singularities need to be brought into existence which necessarily needs to be a non-Morse
Smale foliation. In this section, we will discuss Sotomayor’s density Theorem, we will
not go into any details and only discuss the so-called generic bifurcations. Most of this
section is based upon Sotomayor’s original work [21].

Definition 2.28. Let X be a vectorfield on a closed surface Σ whose induced foliation
F satisfies the following conditions:

(i) All singularities of F are either saddles or nodes.

(ii) All closed orbits are non-degenerate.
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(iii) There are no saddle-saddle connections.

Then X is called a Kupka-Smale vectorfield.

Note that the above notion is strictly weaker than Morse-Smale: A Kupka-Smale
vectorfield which satisfies the Poincaré-Bendixson property is Morse-Smale. On the other
hand the irrationally foliated torus from Example 2.14 is Kupka-Smale but not Morse-
Smale.

Definition 2.29. Let (Xr)r∈[−1,1] be a family of vectorfields on a closed surface Σ. We
call r ∈ [−1, 1] an ordinary value of (Xr) if for all sufficiently close values r′ to r there
is a homeomorphism Σ → Σ carrying flow lines of Xr onto flow lines of Xr′ .

If r is not ordinary, then r is called a bifurcation value.

A trivial observation is that since Morse-Smale vectorfields are an open subset of all
vectorfields that if a vectorfield Xr is Morse-Smale for some r ∈ [−1, 1] then r is an
ordinary value. However, if Xr is only Kupka-Smale then it is not necessarily ordinary,
as the example of the rationally/irrationally foliated torus from Example 2.14 shows.
Considering a constant family of irrationally foliated tori leads to ordinary values. So
one cannot trivially exclude them. We call this phenomenon the Poincaré-Bendixson
bifurcation, for bifurcation values r when a vectorfield is Kupka-Smale, but not Morse-
Smale.

Example 2.30. (saddle-node bifurcation) This special bifurcation is a phenomenon,
we have already observed at the very beginning in Example 2.11: Let r be a value
of [−1, 1] such that Xr is Morse-Smale, except for a single saddle-node p. Denote by
U a small neighborhood such that p is the only singularity in U . Then we call r a
saddle-node bifurcation if there is a neighborhood (r − ϵ, r + ϵ) of r such that either
U contains a saddle and a node for r′ < r or r′ > r and U contains no singularities for
r′ > r,respectively r′ < r.

Example 2.31. (focus bifurcation) As it will turn out this bifurcation cannot happen
in our setting. So we will not go into too many details:

Let r be a value of [−1, 1] such that Xr is Morse-Smale, except for a singularity p
with two complex eigenvalues with vanishing real part, so in particular the trace of
p vanishes. If p satisfies an additional non-degeneracy condition(see Sotomayor [21,
Definition I.3.11.]) then we call r a focus bifurcation, if p has a neighborhood U such
that p is the only singularity of U and there is a neighborhood (r− ϵ, r+ ϵ) of r such that
U contains a single node with non-vanishing real part if r′ < r or r′ > r and U contains
a non-degenerate closed orbit and a single node with non-vanishing real part if r′ > r,
respectively r < r′.

Note that the sign of the real parts has to flip during the focus bifurcation. Since,
we do not provide all details, we give only an example below which looks like a focus
bifurcation:

Consider the open unit disk D2 ⊂ R2. Then we define the following vectorfield Xr:
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Figure 2.10: As r decreases the leafs close to the singularity start to rotate more and
more. Until at r = 0 the singularity is no longer repelling. For r < 0 there
is a repelling closed orbit and an attractive focus.

Xr = ((x2 + y2 + r)x+ y)
d

dx
+ ((x2 + y2 + r)y − x)

d

dy

For r ̸= 0, one observes that p = (0, 0) has a Jacobi matrix with 0-s on the main diagonal
and −1, 1 on the off-diagonal while for r < 0 the main diagonal is strictly positive and
for r > 0 the main diagonal is strictly negative. For r > 0 there are no closed orbits,
while for r < 0 there is a repelling orbit at x2 + y2 = −r, see also Figure 2.10.

Example 2.32. (birth-death bifurcation) Let Xr be a foliation which is Morse-Smale
except for a single degenerate closed orbit C which is quasi-generic which means that
the second derivative of the Poincaré-return map is non-vanishing. We then call r a
birth-death bifurcation, if there is a non-singular neighborhood U of C and a neigh-
borhood (r − ϵ, r + ϵ) of r such that if r < r′(or r > r′) there are no closed orbits in U
and if r > r′(or r < r′) there are two non-degenerate closed orbits, one attracting and
one repelling, in U .

One such example is given on R2 by:

Xr = (((x2 + y2 − 2)2 + r)x− y)
d

dx
+ (((x2 + y2 − 2)2 + r)y + x)

d

dy

One observes that if r > 0 the vectorfield is always pointing outward, so there are no
closed orbits. At r = 0 there appears a closed orbit at x2 + y2 = 2 which is necessarily
degenerate. Then for r < 0 there are two closed orbits, one repelling at x2+y2 = 2+

√
−r

and one attracting at x2 + y2 = 2−
√
−r, see also Figure 2.11.

Example 2.33. (saddle-saddle connection bifurcation) Let Xr be a foliation which is
Morse-Smale except for a single saddle-saddle connection between p1 and p2 (possibly
p1 = p2) where s1 and s2 denote the unstable separatrix of p1 and the stable separatrix of
s2. We say that r is a saddle-saddle connection bifurcation if there is a neighborhood
(r − ϵ, r + ϵ) of r such that for r′ ̸= r (s1)r and (s2)r do not coincide and there is an
arc A transversal to s1 such that the intersection point of A with (s1)r (this exists by
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Figure 2.11: For r > 0 there are no closed orbits. As r decreases towards 0, the orbits
close to x2+y2 = 2 start to spiral more and more, until at r = 0 they form a
degenerate closed orbit. As r decreases further this degenerate closed orbit
breaks into two non-degenerate closed orbits.

continuity) has non-vanishing derivative along A, compare Figure 2.12. An example of
this is given by the following vectorfield:

Xr = (x2 − 1)
d

dx
− (2xy + r(x2 − 1))

d

d
dy

Note that for all r there are saddles at (0, 0) and (1, 0). For r = 0 the strip {(x, 0) : 0 <
x < 1} is part of the foliation. Thus the saddles are connected. For r > 0 the foliation
always points downwards on this strip so the saddles cannot be connected. Similarly for
r > 0.

Figure 2.12: For negative r the separatrix of the saddle at (1, 0) passes above the one
at (−1, 0). For r = 0 they conincide, until for r < 0 the separatrix of (0, 1)
passes below the one of (−1, 0).

We differentiate between p1 = p2 and p1 ̸= p2. The first kind is called a loop or
sometimes a homoclinic orbit. If p1 ̸= p2 then this connection is called a heteroclinic
orbit.

A homoclinic orbit can be found using the equation X = y d
dx + (x2 − x) d

dy . This is
a classical example which is taken from the introductory book by Teschl [22, Problem
6.23.], for an illustration see Figure 2.13.

Now, we may state the main result of this section:
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Figure 2.13: This is the standard example of a saddle where two separatrices of a saddle
coincide, forming a homoclinic orbit.

Theorem 2.34. (Sotomayor’s density Theorem, [21, Theorem II.2.]) Consider the subset
X1 of 1-parameter vectorfields (Xr)r∈[−1,1] which fulfill the following properties:

(i) The set of ordinary values J of (Xr) is open and dense in [−1, 1]. Furthermore r
is an ordinary value if and only if Xr is Morse-Smale.

(ii) Any bifurcation value r is either a Poincaré-Bendixson bifurcation, a saddle-node
bifurcation, a focus bifurcation, a birth-death bifurcation or a saddle-saddle connec-
tion bifurcation.

Then X1 is dense in the space of all 1-parameter vectorfields.

This result is probably the most important result in this section, as this is one of the
key steps in showing the main Theorem of this thesis. Note that the set of bifurcation
values Jc is the complement of an open dense set. So accumulation points of Jc must
be bifurcation values. So it is of great importance to understand when and how they
accumulate. Sotomayor has classified all accumulation conditions for each bifurcation
except the Poincaré-Bendixson bifurcation:

Remark 2.35. (i) The set of saddle-node and focus bifurcations are isolated. ([21,
Remark I.3.13.])

(ii) Let r be a birth-death bifurcation. Then there are 3 possibilities: ([21, Remarks
I.2.8.b)-d)])

a) r is isolated.

b) r is an accumulation point of saddle-saddle connection bifurcations, if the
quasi-generic closed orbit C is limit set of a stable and an unstable separatrix.

c) r is an accumulation point of birth-death bifurcations, if the quasi-generic
closed orbit C is both stable and unstable limit set of an orbit diffrent from
C.

(iii) Let r be a saddle-saddle connection bifurcation. Then there are 2 possibilities([21,
Remarks I.4.8.1.]):
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a) r is isolated.

b) r is an accumulation point of saddle-saddle connection bifurcations, if the
saddle-connection is contained in the limit set of some other saddle-separatrix.
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3 3-dimensional contact topology

After the basic definition and some examples, we will introduce Moser’s stablity trick in
subsection 3.1. This is one of the most powerful tools in Contact Topology. Afterwards
we will introduce the characteristic foliation (see Definition 3.20) of a surface embedded
in a contact manifold and in subsection 3.2 discuss its connection to the surrounding
contact structure.

Definition 3.1. Let M be a smooth orientable 3-manifold, possibly with boundary. We
call ξ ⊂ TM a contact structure or a contact distribution, if there is a 1-form α
such that for each p ∈M the planefield ξ ∩TxM =: ξp = ker(αp) and α∧ dα is a positive
volume form. A choice of α induces an orientation dα of ξ.

Normally, such contact structures are called positively co-oriented contact structures
and one drops the second condition (positivity) and only requires ξ to be the kernel of
locally defined 1-forms(co-orientable). However, both conditions are usual assumptions
for many applications. So we will not deal with these details.

One of the first observations, is that neither property depends on the exact α but are
preserved under multiplication by non-vanishing scalar functions. However, if the scalar
function is negative it reverses the induced orienation of ξ:

Lemma 3.2. Let M be an orientable 3-manifold and ξ a contact structure on M . Fur-
thermore let α be a 1-form positively co-orienting ξ and f : M → R \ {0}. Then fα is
also a contact form with kernel ξ. If f is positive, then the orientation induced by dα
agrees with the orientation induced by d(fα).

Proof. Since f is non-vanishing, the kernels of α and fα coincide pointwise. Furthermore
fα also gives rise to a positive volume form:

fα ∧ d(fα) = fα ∧ (df ∧ α+ fdα) = fα ∧ (df ∧ α) + f2α ∧ dα.

The first term vanishes, since ∧ is skew-symmetric and thus if two entries agree it must
be 0. The last term is then just a positive multiple of the positive volume form α ∧ dα
and thus also a positive volume form.

If f is positive, then d(fα) = df ∧ α + fdα. If one inserts two vectors of ξ, the first
term vanishes and thus the sign of dα and d(fα) agree. QED

Now we will discuss two classical examples on R3. First the standard contact structure
and then the overtwisted contact structure. Afterwards, we will discuss an example of a
contact structure arising from a foliation. Giroux has characterised when foliations give
rise to contact structures, we will discuss this later.

30



Figure 3.1: A visualisation of the standard contact structure. One notices that this
structure is independent of shifts in the y and z directions. Along one ray
{(x, y, z) : x ∈ R3} the plane field does half a rotation in the limit. The
image belongs to Patrick Massot and was published on his webpage [17].

Example 3.3. (Standard/tight R3) Consider R3 endowed with the contact structure ξ
induced by α = dz + xdy, where (x, y, z) are coordinates on R3. One easily observes
that dα = dx ∧ dy and thus α ∧ dα = dz ∧ dx ∧ dy = dx ∧ dy ∧ dz. This is the so-called
standard contact structure on R3, for a visualisation see Figure 3.1.

This contact structure is isotopic to the contact structure induced by α1 = dz+xdy−
ydx, meaning that there is a diffeomorphism ϕ : R3 → R3 such that ϕ∗α1 = α. This
diffeomorphism is given by:

ϕ(x, y, z) = (
x+ y

2
,
x− y

2
, z +

xy

2
)

One readily verifies that this leads to the desired pullback.

Example 3.4. (Overtwisted R3) Normally the overtwisted R3 is given as the kernel of
the 1-form α = cosrdz+ rsinrdϕ, where (r, ϕ, z) are cylindrical coordinates on R3. That
this extends to a 1-form on all of R3 is shown in the Introductory book by Geiges [8,
Example 2.1.6.]. In essence these are just some smoothness arguments at r = 0 and thus
we will omit this. This contact structure is visualised in Figure 3.2

Example 3.5. (Overtwisted disk) Consider D2 the unit disk in R2 endowed with the
1-form β given by:

β = (1− x2 − y2)(−ydx+ xdy)

X = (1− x2 − y2)(x
d

dx
+ y

d

dy
)

where X is dual to β via ω = dx ∧ dy. This induces a foliation with the following
properties, see also Figure 3.3:
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Figure 3.2: A visualisation of the overtwisted contact structure on the unit disk in the
(x, y)-plane. In contrast to Figure 3.1 the contact structure does an infinite
amount of full turns along each half-ray {(r, θ, z) : r > 0} for fixed θ and z.
The image belongs to Patrick Massot and was published on his webpage [17].

(i) There is an isolated singularity at the origin (x, y) = (0, 0).

(ii) There is a circle of singularities at {(x, y) : x2 + y2 = 1}.

(iii) The leafs of the foliation point radially outward from the origin towards the circle
of singularities.

(iv) The limit set of each leaf is either the origin or a point of the circle of the circle
{(x, y) : x2 + y2 = 1}.

(v) dβ is given by (2− 4x2 − 4y2)dx ∧ dy

The first idea is now to find a function u such that α = β+udz is a contact form. This
cannot be done for any β in general, as we shall see later. However, in this case it does
work: Both at the origin and at the circle of singularities dβ does not vanish, in fact it
only vanishes at the circle x2 + y2 = 1

2 . So if, we wish to find a real-valued function u
such that α = β + udz satisfies the contact condition, this translates to the following:

α ∧ dα = (β + udz) ∧ (dβ + du ∧ dz) =
β ∧ dβ + β ∧ du ∧ dz + udz ∧ dβ + udz ∧ du ∧ dz =

β ∧ du ∧ dz + udβ ∧ dz

So we need β ∧ du + udβ > 0. By Lemma 2.27 this is equivalent to the foliation being
divided. This foliation satisfies the conditions of Theorem 2.22 thus, with the methods
presented in its proof one can construct such a u.
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Figure 3.3: Two overtwisted disks. They have exactly one singularity in the interior and
a limit of oppsite sign at the boundary.

A Morse-Smale version of this example can be constructed by slightly varying X:

Xϵ = (1− x2 − y2)(x
d

dx
+ y

d

dy
) + ϵ(y

d

dx
− x

d

dy
)

If ϵ ̸= 0 one obtains that the singularities at x2 + y2 = 1 disappear and instead give rise
to an attracting closed orbit. The direction of rotation is given by the sign of ϵ. This
foliation for ϵ > 0 is depicted in Figure 3.3.

3.1 Moser’s stability trick

Before starting to discuss Moser’s stability trick there is one further ingredient which we
will need:

Lemma 3.6. Let (M, ξ) be a contact manifold and α a choice of co-orientation for ξ.
Then there is a unique vectorfield Rα called the Reeb vectorfield which satisfies:

α(Rα) = 1

dα(Rα, ·) = 0

Proof. This proof can be found in the introductory book by Geiges [8, Lemma/Definition
1.1.9.] though we provide many of the omitted details.

The first observation is that pointwise dα is an antisymmetric matrix and thus its
kernel will be 1-dimensional. Since α ∧ dα ̸= 0, it follows that there is a uniqe vector
Rα(p) fulfilling the above equations. It only remains to be shown that Rα is smooth:

First choose a Riemannian metric ⟨·, ·⟩ and denote by Y1 the vectorfield such that
⟨Y1, ·⟩ = α. Using a chart, we can complete {Y1(p)} to a basis {Y1(p), Y2(p), Y3(p)}
around a the point p, where Y2 and Y3 are some of the coordinate vectorfields. Since
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linear independence is an open condition {Y1, Y2, Y3} will form a local frame of TM
around p. Now, we may orthonormalise this frame and so (keeping notation) {Y1, Y2, Y3}
is an orthonormal frame of TM around p. Observe that ⟨Y1, ·⟩ = fα, up to a multiple
of f . Thus Y2 and Y3 form a local frame of the kernel of α and thus of ξ. In particular,
dα(Y2, Y3) ̸= 0, since dα defines a volume form on ξ. Now define:

R = Y1 −
dα(Y1, Y3)

dα(Y2, Y3)
Y2 −

dα(Y1, Y2)

dα(Y3, Y2)
Y3

One now calculates that dα(R, ·) = 0:

dα(R, Y1) = −dα(Y1, Y3)dα(Y1, Y2)
dα(Y2, Y3)

− dα(Y1, Y2)dα(Y1, Y3)

dα(Y3, Y2)

dα(R, Y2) = dα(Y1, Y2)−
dα(Y1, Y2)

dα(Y3, Y2)
dα(Y3, Y2)

The second line is 0 and the first line vanishes as well, after recognising that the denomi-
nators are related by −1. An analogous calculation shows that dα(R, Y3) vanishes as well.
Now Rα is obtained by rescaling R with 1

α(R) . Thus Rα is the desired vectorfield. QED

Now, we will present Moser’s stability trick as it can be found in the introductory book
by Geiges [8, Theorem 2.2.2.]:

Let ξt be a smooth family of contact distributions which are given by contact forms
αt. Then we can ask ourselves if there is an isotopy ϕt : M → M such that ϕ∗t ξt = ξ0.
This can be rephrased as:

ϕ∗tαt = gtα0

Differentiating this with respect to t, yields:

d

dt
(ϕ∗tαt) = ġtα0 (3.1.1)

There is a formula expressing the left hand side in terms of Yt, where Yt is generating ϕt,
in other words Yt = d

dtϕt where ϕt is also viewed as a function in t. See for instance the
derivation of this formula by Geiges [8, Theorem 2.2.1.]:

d

dt
(ϕ∗tαt) = ϕ∗t (α̇t + LYtαt)

Now substituting Cartan’s magic formula into Equation 3.1.1 gives:

ϕ∗t (iYtdαt) + ϕ∗td(iYtαt) + ϕ∗t α̇t = ġtα0

Now we pull this equation back along ϕt. The pullback of ġt will be labelled by h. Thus,
we arrive at the following equation:
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ιYtdαt + d(ιYtαt) + α̇t = hαt (3.1.2)

Since we have not made any choices, one could retrace the proof and see that any Yt
fulfilling the last equation gives rise to the desired isotopy. Thus, we will only need to care
about finding Yt and whether or not its flow is defined. The most powerful application
is Gray’s stability Theorem, the formulation below is taken from the introductory book
by Geiges [8, Theorem 2.2.2.]

Theorem 3.7. (Gray stability Theorem) Let M be a closed 3-manifold and αt a smooth
family of contact structures. Then there is an isotopy ϕt such that ϕ∗tαt = gtα0.

Proof. By the discussion of Moser’s stability trick, we need only find a vectorfield Yt
satisfying Equation 3.1.2. We even have the freedom to assume that Yt ∈ ξt. Then
Equation 3.1.2 simplifies to:

ιYtdαt = α̇t + hαt

Since Yt ∈ ξt and dαt|ξt is non-degenerate there is a unique solution to the above equation,
if h is chosen correctly. To find the appropriate h, we insert the Reeb-vectorfield Rt of
αt:

0 = α̇t(Rt) + hαt(Rt)

h = −α̇t(Rt)

Now there is a unique solution to the above equation. Since M is closed Yt has compact
support and so we may integrate Yt to the desired isotopy. QED

If M is not compact, we need to be a bit more careful with the existence of the flow
of Yt for time 1. One of the trivial ways to achieve this is shown below:

Theorem 3.8. Let (M, ξ) be a contact manifold and let ξ1 be another contact distribution
defined on an open subset U ⊂ M . If there is a compact subset A ⊂ U such that
ξ|A = ξ1|A then there is an isotopy ϕt : M → M such that ϕ∗1ξ1 = ξ on a neighborhood
V of A and ϕt coincides with the identity outside of U .

Proof. Let H : [0, 1] → [0, 1] be a smooth transition function that is constant on [0, ϵ]
and [1 − ϵ, 1]. Then consider the 1-forms α and α1 coorienting ξ and ξ1 respectively.
Since ξ|A = ξ1|A, there is a non-vanishing function f such that α = fα1. Extending
f to an open neigborhood V ′ of A, we can assume that α = α1 on A. For fixed β,
the positive contact condition β ∧ dβ > 0 is open and convex linear in dβ. Thus αt :=
H(t)α1+(1−H(t))α is contact on A and thus on the open neighborhood V ′(after possibly
shrinking V ′) of A. Possibly shrinking V ′ we may assume that it has compact closure.

We will use Moser’s stability trick as in the proof of Theorem 3.7, so we observe that
the following equation with the additional condition that Yt ∈ ξt has a unique solution:

ιYtdαt = −α̇t + hαt
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Since α̇t = 0 on A, Yt must vanish identically: Consider any Y ∈ ξt, inserting it into
the above equation, will yield 0 on the right hand side and so Yt can only be 0, since dαt

is non-degenerate on ξt. In addition, the flow of the 0 vectorfield exists for all times. So
in particular, the flow of Yt exists on A for time 1. Thus there exists a neighborhood V
of A such that the flow ϕ exists for time 1− ϵ and does not leave V ′. Additionally, since
α̇t = 0 for t > 1 − ϵ, the flow exists for time 1 on V . Now let Y ′

t coincide with Yt on
Im(ϕ|V×[0,1]) and Y ′

t = 0 outside of V ′. Thus Y ′
t is compactly supported and so we may

integrate it to an isotopy ϕt of M . QED

A special case is Darboux’s Theorem: All contact structures look locally the same, in
the sense that for each point x ∈ (M, ξ) one can find coordinates such that ξ is locally
given by ker(dz − ydx) which is isomorphic to the contact structure given in Example
3.3. The idea is to choose coordinates in such a way that the contact structures agree at
p = (0, 0) and then use the above Theorem 3.8.

Corollary 3.9. (Darboux’s Theorem) Let (M, ξ) be a contact manifold. Then for each
point p ∈M there is a local chart (x, y, z) such that ξ = ker(dz − ydx).

Proof. Recall the vectorfields Rα, Y2, Y3 which were constructed in the proof of Lemma
3.6: They formed a local frame around the point p ∈M and {Y2, Y3} formed a frame of
ξ around p. Now consider the following composition of flows:

FlRα(z, F lY2(y, F lY1(x, p)))

This map is defined on an open neighborhood of (0, 0, 0) ∈ R3 and fulfills that the
pullback of α agrees with dz at (0, 0, 0). Thus, we may apply Theorem 3.8 and this
yields the isomorphism on the open neighborhood of (0, 0, 0). After concatentation with
the inverse of the composition of flows, we are done. QED

Before returning to the discussion of surfaces embedded in contact manifolds, we need
to discuss some details of compact 1-submanifolds:

Definition 3.10. Let C be a function from [0, 1] into (M, ξ). We say that C is a Leg-
endrian arc, if C is an embedding and the image of TxC is contained in ξx for all
x ∈ [0, 1]. If C descends to an embedding of a circle S1 = [0, 1]/(0 ∼ 1) then we call C a
Legendrian knot.

We have an important strengthening of Darboux’s Theorem close to Legendrian knots,
namely that all contact structures close to Legendrian knots are isomorphic. The proof
is in essence just a normal form analysis of the contact structure, coupled with Theorem
3.8.

Theorem 3.11. Let L be a Legendrian knot in a contact manifold (M, ξ) then there is
a neighborhood of L isomorphic to (R2 × S1, ker(cos(z)dx− sin(y)dy)).
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Proof. In essence the proof follows the same line as Darboux’s Theorem 3.9. The only
difference is to find a complete frame of ξ along L. So let p ∈ L be a point, then as in
Lemma 3.6, we find an open neighborhood U of L(p) such that {Rα, Y2, Y3} form a local
frame for TM |U and {Y2, Y3} form a frame for ξ|U . Now the derivative of L, d

dθ also lies
in ξ, so either Y2 or Y3 are not colinear to it at p. Assume then that {Y2, d

dθ} form a local
frame of ξ|L∩U . Now if dα(Y2, d

dθ ) < 0, we replace Y2 by −Y2. In this manner we obtain
around each point p ∈ L a vectorfield Y2 which fulfills dα(Y2, d

dθ ) > 0, so any positive
sum of such vectorfields also fulfills this condition. Since L is compact, we can cover L
with finitely many such neighborhoods and use smooth partition functions to glue these
vectorfields together to Y such that Y ∈ ξ and dα(Y, d

dθ ) > 0. Then we may consider
the following composition of flows:

FlRα(y, F lY (x, L(z)))

This flow is defined on an open neighborhood of {0, 0} × S1 ⊂ R2 × S1, thus we may
consider the pullback of α along it, which induces a contact structure on this neigh-
borhood. Note that α = dy along S1 × {0, 0}. Now repeat the same procedure along
{0, 0}×S1 ⊂ (R2×S1, ker(cos(z)dx− sin(y)dy). Composing these two isomorphisms of
contact structures, we obtain the desired isomorphism between the two structures. QED

Associated to a surface Σ bounding a Legendrian knot L there is an invariant called
the Thurston-Bennequin invariant, which roughly measures the twisting of ξ along the
boundary with respect to the tangent space of Σ:

Remark 3.12. Smooth maps f : S1 → S1 can be assigned a number deg(f) which counts
the preimages of a regular value y ∈ S1 with sign given by the sign of d(f)(x), where
F (x) = y. It is an essential observation from Differential Topology that this number is
independent of the choice of y ∈ S1 and invariant under smooth homotopies of f . See for
example, the introductory notes on Differential Topology by Milnor [18, Chapter 4/5].

Remark 3.13. (Normal bundle) Denote by ⟨, ⟩ some choice of Riemannian inner product
on M . Then one can define the normal bundle NL of L ⊂ M3 as NL := {Z ∈ TM |L :
Z ⊥ TL}. This comes with a projection map pr : TM |L → NL with pr(Z) = Z− <
d
dr , Z > d

dr where d
dr is the coordinate of some orientation preserving embedding of

S1 ↪→ M with image L such that || ddr || = 1. The kernel of pr is exactly TL, so pr :
(TM |L \ TL) → (NL \ {0x}x∈L).

Now a surface Σ provides us with a section σ of TΣ|TL the outward pointing normal,
so {σ(x), d

dr (x)} is a positive basis for each x ∈ L. So pr(σ) is a non-vanishing section
of NL thus pr(σ)

||pr(σ)|| provides us with a section of SL := {Z ∈ TML : Z ⊥ TL, ||Z|| = 1}.
In particular SL is an S1 bundle over L, so a non-vanishing section provides us with a
trivialisation SL ∼= L× S1, where pr(σ)

||pr(σ)||(x) = (x, 1) for 1 ∈ S1.

Definition 3.14. Let L be a Legendrian knot which is part of the boundary of a surface
Σ embedded in a contact manifold (M, ξ). Define the Thurston-Bennequin invariant
of L with respect to Σ as tb(L,Σ) = deg(f) where f : S1 → S1 is the function obtained

37



from the section Y |L from Theorem 3.11 projected to the trivialisation of SL = L × S1

from Remark 3.13.

This invariant is of fundamental importance to the classification of contact mani-
folds, for more details see Chapter 4.2. However before proceeding, let us calculate the
Thurston-Bennequin number of the overtwisted disk from Example 3.5:

Example 3.15. Recall that the boundary was a circle of singularities, so the map f
only hits one point of the trivialisation. Since all points which are not in the image of f
are regular, it follows that deg(f) = 0 and thus the Thurston-Bennequin invariant of the
overtwisted disk vanishes.

Another important tool coming from contact structures are special classes of vector-
fields:

Definition 3.16. Let (M, ξ) be a contact manifold with empty boundary. We call Y a
contact vectorfield if the isotopy generated by Y preserves ξ under pushforward. Such
an isotopy is called a contact isotopy.

We already encountered one such vectorfield Rα. In fact, the Reeb vectorfield is the
"standard" contact vectorfield using the following correspondence induced by a choice of
α:

Lemma 3.17. Let (M, ξ) be a contact manifold with empty boundary. Then the set
of all contact vectorfields is in 1 : 1-correspondence with the set of compactly supported
functions g : M → R. In particular, any contact vectorfield defined on a compact subset
may be extended to a global one.

Proof. Starting from a contact vectorfield Y , we obtain a compactly supported function
g via:

α(Y ) =: g

Y must be supported compactly since it integrates to an isotopy. On the other hand if,
we have a compactly supported function g, we may try to find a vectorfield Z tangent
to ξ such that Y = gRα + Z is a contact vectorfield where Rα is the Reeb vectorfield of
some co-orientation α of ξ. Recall Equation 3.1.2:

iY dα+ d(iY α) = −α̇+ hα

Y is then a contact vectorfield if and only if α̇ = 0. So by inserting Y = gRα + Z the
above equation simplifies to:

iZdα = hα− dg

This equation has to be true if we insert Rα. In which case we obtain h = dg, on the other
hand this equation defines a uniquely defined vectorfield Z, if we enforce Z ∈ ξ. QED
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The above characterisation leads us to a stronger notion of a contact vectorfield which
also allows us to define it if the boundary is non-empty:

Definition 3.18. Let (M, ξ) be a contact manifold. We call Y a contact vectorfield if
α(Y ) = −g is a comptactly supported function and ιY (dα) = dg − dg(Rα)α, where α is
some choice of co-orientation for ξ and Rα is the Reeb vectorfield.

The above notion is stronger in the sense that if the boundary is non-empty we must
not necessarily obtain an isotopy when integrating Y . If Y is inward pointing along a
boundary component then the isotopy generated by Y will not have the original boundary
in its image.

3.2 Surfaces in contact manifolds

We can now return to the discussion of surfaces in contact manifolds.

Example 3.19. Recall the foliation from our discussion of the rational/irrational torus
from Example 2.14:

Xr =
d

dϕ
+ r

d

dθ

In fact, if we look at T 2×R with the 1-form α = −rdϕ+dθ, we see that ker(α) gives rise
to a contact structure. Since dα = −dr∧dϕ = dϕ∧dr. Then if we choose the orientation
of T 2 ×R to be given by dθ ∧ dϕ ∧ dr, we see that this gives rise to a contact structure.

Taking the pullback of α via the embedding ir : T 2 → T 2 × R, we recover the initial
foliation. In fact, this can be done for any embedding of a compact surface:

Definition 3.20. Let (M, ξ) be a contact 3-manifold, α a choice of co-orientation for ξ,
Σ a surface in M and i : Σ ↪→ M an embedding. Then we call the foliation i∗α ∈ FΣ

induced by α via the embedding i the characteristic foliation of the embedding i into
(M, ξ).

Since the co-orientation induced by α is consistent with multiplication by positive
functions f :M → R>0 this indeed gives rise to a well-defined oriented foliation.

As we will see a bit later, a foliation is the characteristic foliation of an embedding if
and only if the foliation is non-isochore. So one might as well take this as a definition.
However, before proceeding, we will discuss two crucial examples:

Example 3.21. (The tight sphere) Consider (R3, ker(dz + xdy − ydx)) the tight R3

we encountered in Example 3.3. Furthermore let us look at the characteristic foliation
induced from this structure on the unit sphere S2. For x, y ̸= 0 it is more convenient
to consider the contact form in cylindrical coordinates α = dz + r2dϕ. At the point
(0, 0,±1) the contact structure is tangent to S2, thus β = 0, away from it, we can
parametrize the sphere by F (ϕ, z) = (

√
1− z2, ϕ, z). So the pullback of α along F looks

like dz + (1− z2)dϕ. Thus there are no further singular points of β = i∗α except at the
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north, resp. south pole. Additionally the characteristic foliation points from the north
to the south pole. In fact, the foliation resembles that of Example 2.7 except that the
leafs twist as they move downward.

Example 3.22. (Overtwisted disks) Recall the contact structure of the overtwisted R3

from Example 3.4 which was given by α = cos(r)dz + rsin(r)dϕ. If we consider the
disk D2 := {(r, ϕ, 0) : |r| ≤ π}, then we observe that by continuity α(0) = dz, so there
is a positive singularity at D2 and if r = π then there is a circle of singularities, since
α = −dz. However, since if 0 < r < π we observe that the vectorfield X = 1

rsin(r)
d
dr is

dual to β = α|TD2 and thus each ray {(r, ϕ, 0) : 0 < r < π, ϕ = const.} is a leaf of the
foliation. Thus this foliation coincides with the foliation obtained in Example 3.4.

In fact, as we will discuss later the existence of disks with such foliations is of funda-
mental importance to the study of contact structures.

Next, we consider an embedding i of Σ×R into a contact manifold (M, ξ). This yields
both a characteristic foliation βr for each Σr := Σ × {r} and a function ur := α( d

dr ),
where r is the coordinate on R. Thus, we may rewrite α as βr + urdr and the contact
condition can be written as:

0 < α ∧ dα = (βr + urdr) ∧ (dβr − β̇r ∧ dr + dur ∧ dr) =
(βr ∧ (dur − β̇r) + urdβr) ∧ dr

which translates into:

0 < βr ∧ (dur − β̇r) + urdβr (3.2.1)

An immediate consequence of this is, that if βr = 0 then dβr may not vanish. If we
take the dual vectorfield Xr via a volume form ω this means, that at a singularity the
divergence of Xr cannot vanish. This exactly means that the foliation is non-isochore. As
it turns out non-isochore and characteristic foliations are essentially equivalent. However
for the following statement to make sense, we need that each embedded surface Σ admits
a neighborhood of the form Σ×(−ϵ, ϵ) (or at least one-sided Σ×[0, ϵ)) where ϵ ∈ (0,∞]. In
the cases which we will consider this can be constrcuted from the following construction:

Theorem 3.23. (Giroux, [9, Proposition II.1.2.]) Let Σ be a surface and F be a foliation
on Σ. Then F is the characteristic foliation of an embedding of Σ into a contact manifold
if and only if the divergence of any X ∈ F does not vanish at singularities.

Proof. The proof presented here is in essence the same as the original proof by Giroux
[9, Proposition II.1.2.], however some details have been appended.

By definition the characteristic foliation of i : Σ →M is given by i∗α = β. Furthermore
if β(i(x)) = 0 then TΣ|i(x) = ξi(x)). Now by the contact condition α ∧ dα > 0 we have
that dα|ξ ̸= 0 and so dβ = d(i∗α) = i∗dα ̸= 0 if β(x) = 0.
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To prove the converse, let X orient F then we wish to find appropriate functions ur
and βr such that they fulfill Inequality (3.2.1) together with β0 = ιXω, where ω is a fixed
positive area form for Σ. First we choose ur: Since dβ0 = (divωX)ω does not vanish
when β0 = 0, we can choose ur = divωX thus if r = 0 urdβr = (divωX)2ω > 0. So we
are left to find an appropriate extension βr of β0: To do so we take any choice of metric
⟨·, ·⟩ for Σ and consider the unique vectorfield Z such that β0 = ⟨Z, ·⟩. Then ιZω =: λ
provides us with another 1-form. Thus we have the following 3 relations.

β(·) = ⟨Z, ·⟩
β(·) = ω(X, ·)
λ(·) = ω(Z, ·)

For X,Z ̸= 0 we have:

ω(X,Z) = −λ(X) = β0(Z) = ⟨Z,Z⟩ > 0

(β0 ∧ −λ)(X,Z) = −β0(X)λ(Z) + β0(Z)λ(X)

= −ω(X,X)ω(Z,Z) + ω(X,Z)2 > 0

So β0∧(−λ) > 0 if β0 ̸= 0. Now βr := β0+r(du+λ) provides the necessary extension. So
the contact condition is fulfilled at r = 0, we will verify this by inserting it into Equation
3.2.1;

0 < β0 ∧ (du− du+ λ) + udβ0

β0 ∧ λ+ (divωX)2ω

where the first term vanishes only if β0 = 0 and the second term is strictly positive at
singularities.

Since the contact condition is open there is an open neighborhood U of Σ× {0} such
that (U, ker(βr + udr)) is a contact manifold. QED

Let us move on to the next important question: Given a characteristic foliation F of a
surface Σ embedded in (M, ξ), how much local information about the contact structure
ξ is encoded in F? The answer in the closed case has first been observed by Giroux [9,
Proposition II.1.2.].

From now on, we will only consider a sufficiently nice subclass of surfaces: We presume
i(Σ) is an extensible surface in M , i.e. there exists a sligthly larger surface Σ′ ⊂M such
that i(Σ) is contained in the interior of Σ′. Note that if Σ is a closed surface this condition
is trivially true. In addition, each boundary component of Σ shall be either a Legendrian
arc or a Legendrian knot. Furthermore, we will require that there is a vectorfield Y
transverse to i(Σ) whose flow exists at least for some time around 0.

Lemma 3.24. (Reconstruction Lemma, [9, Proposition II.1.2.]) Let (M, ξ0) be a contact
manifold, i : Σ ↪→ M an embedding of a surface. Assume that ξ1 is another contact
structure defined on an open neighborhood of i(Σ). If the characteristic foliations induced
on i(Σ) by ξ0 and ξ1 agree, then there is an isotopy ϕt :M →M and two neighborhoods
V ⊂ U ⊂M of i(Σ) such that:
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(i) ϕ0 = idM

(ii) ϕt(i(Σ)) = i(Σ)

(iii) (ϕ1)∗ξ
0 = ξ1 on V

(iv) ϕt|M\U = id

Proof. Consider a slightly larger surface Σ′ that contains i(Σ) and a tubular neighborhood
Σ′ × R where both ξ0 = ker(α0) and ξ1 = ker(α1) are defined. On this set, we can
consider the following representations:

α0 = β0r + u0rdr

α1 = β1r + u1rdr

where βir = i∗rα
i is the pullback of αi along the inclusions ir : Σ′ → M which are

obtained by Fl d
dr
(Σ′) where r is the variable on R. Recall Equation 3.2.1 then the main

observation is that, if you fix βr and dβr, then this equation is convex in ur and β̇r. Since
the characteristic foliations of Σ agrees w.r.t. ξ0 and ξ1, we can rescale α0 and α1 such
that i∗α0 agrees with i∗α1 on i(Σ) ⊂ Σ′ × {0}.

Thus, we can consider the family of contact structures αt = tα1 + (1 − t)α0 (To be
completely precise, we need the same trick with the cut-off function as in the proof of
Theorem 3.8, however for brevity we will omit this). By the above argument, this 1-form
induces a contact structure at least along i(Σ). Since the contact condition is open, this
is true for an open neighborhood of i(Σ), so we may assume that it is true on Σ′× (−ϵ, ϵ)
after possibly shrinking Σ′.

The main subtlety is to show that the flow of the vectorfield generated by Moser’s
stability trick exists on Σ. Recall the condition from Equation 3.1.2:

ιY t(dαt) + d(ιY t(αt)) = α̇t + hαt

Where Y t is the vectorfield that gives rise to the desired isotopy ϕt. First we will prove
that we can choose Y t such that (ii) is fulfilled: As before, we will set Y t ∈ ξt as an
additional constraint.

Consider the restriction of the equation to TΣ: Since βt0 is constant, it follows that
α̇t|TΣ vanishes. So let X orient the characteristic foliation of Σr considered as the push-
off of the image of i, then αt(X) vanishes. This implies however that dαt(Y t, X) = 0.
Since dα is non-degenerate on i(Σ), it follows that Y t is a multiple of X, away from
singularities. On singularities of the characteristic foliation αt vanishes on all tangent
vectors, thus dαt(Y t, ·) vanishes for all tangent vectors. Since at singularities the tangent
space of Σ and ξ agree, it follows that Y t must vanish.

This implies however that the embedding is isotoped along flow lines of the characteris-
tic foliation. So the image remains fixed and its characteristic foliation is preserved. This
also implies that the flow of Yt exists on i(Σ). Using openness of the existence of flows
and the compactness of the image of the embedding, we know that there are numbers r
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and R such that the flow also exists for all times for points in Σ′′ × [−r, r] and they do
not leave Σ′′′ × [−R,R], where i(Σ) ⊂ Σ′′ ⊂ Σ′′′ ⊂ Σ′. So take a smooth cut-off function
so that the vectorfield vanishes outside a compact neighborhood U of Σ′′′ × [−R,R].

Integrating the vectorfield Y t now yields that ϕ0 is the identity so (i) is fulfilled. Y t

fulfills the above equation for the flow originating from Σ′′ × [−r, r] so (iii) is also true.
Since Y t vanishes outside of U (iv) follows. QED

Another important observation by Giroux allows us to extend Peixoto’s density The-
orem to characteristic foliations:

Lemma 3.25. (Giroux-Peixoto Lemma, [9, Lemme II.1.3.]) Let i : Σ → M be an
embedding of a closed surface into a contact manifold (M, ξ) then there is a C∞-small
isotopy of the embedding i to an embedding i′ such that the induced characteristic foliation
is Morse-Smale.

Proof. Recall that one can rewrite α in a neighborhood i(Σ)× [−1, 1] as α = βr + urdr
and then the contact condition is equivalent to: (Equation 3.2.1):

0 < βr ∧ (dur − β̇r) + urdβr

Where ur : Σ → R and β0 is a representative of the characteristic foliation of Σ. Accord-
ing to Peixoto’s density Theorem 2.18 we may choose a C∞-small γ in such a way that
γ + β0 is Morse-Smale. In order to obtain the isotopy, we will deform α close to i(Σ)
using Moser’s stability trick and then compose i with the obtained isotopy.

Since we need to smoothly deform α, let H : [−1, 1] → [0, 1] be a smooth cut off-
function which is supported away from {−1, 1} and is 1 at 0. Thus we can choose γ such
that it fulfills the contact condition of α1 = βr+H(r)γ+urdr, i.e. it fulfills the following
inequality:

0 < βr ∧ (dur − β̇r − Ḣ(r)γ) + ur(dβr +H(r)dγ) +H(r)γ ∧ (dur − β̇r)

In addition, β0 + γ shall be Morse-Smale. Since the prior condition is open, we can find
a C∞-small γ. Thus, we can extend H(r)γ by 0 to the rest of M and thus obtain a
family αt = α + tH(r)γ which is constant outside a compact neighborhood. Thus we
obtain an isotopy ψt : M → M and Σ′ := ψ−1

1 (i(Σ)) is a C∞ isotopy of i(Σ) which has
Morse-Smale characteristic foliation. Now let i′ := ψ1 ◦ i and i′(Σ) = Σ′ has the desired
Morse-Smale characteristic foliation. QED

Recall that Peixoto’s Theorem does not provide us automatically with a foliation whose
singularities have non-vanishing derivative. Though the contact condition of β0+γ0+u0dr
automatically enforces it.
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4 Convex surfaces

The following chapter serves as an introduction to the study of convex surfaces originally
due to Giroux [9] for closed surfaces. The generalisation to surfaces with Legendrian
boundary was first observed by Kanda [15]. We will roughly follow the lecture notes by
Honda [13] and Etnyre [6].

In the picture of Section 2.2 we have up to now only talked about non-isochore fo-
liations. However divided foliations appear naturally in our setting as well: Recall the
equivalent formulation of divided foliations introduced in Lemma 2.27: A non-isochore
foliation F of a surface possesses a dividing curve if and only if there is a β representing
F and a function u : Σ → R such that the following equation holds:

0 < udβ + du ∧ β (4.0.1)

Compare this to equation :

0 < βr ∧ (dur − β̇r) + urdβr

The essential difference is that in the first inequality both β and u are independent of the
factor r. This precisely means that if F is induced by an embedding of Σ into a contact
manifold, there is a contact vectorfield Y transversal to Σ which gives rise to the above
representation.

Definition 4.1. Let (M, ξ) be a contact manifold and i : Σ ↪→M an embedding. We call
i(Σ) a convex surface if there is a contact vectorfield Y which is transversal to i(Σ).

Equivalently i(Σ) is a convex surface if and only if the characteristic foliation induced
by i is a divided foliation.

As it is useful, we will sometimes also refer to Σ as a convex surface itself. This is a
shorthand for the property of the embedding i.

Theorem 4.2. Let Σ be a convex surface. Assume that ΓΣ and Γ′
Σ are two dividing

curves for Σ. Then these curves are homotopic through dividing curves.

Proof. Let α = β+udr = β′+u′dr′ two different representations of the contact structure
of Σ × [−1, 1]. Since the characteristic foliation coincides, we can set β = β′. Thus we
get by convex linearity of the defining conditions:

0 < β ∧ du+ udβ

That αt := β+(1− t)udr+ tu′dr is a homotopy of contact structures. By the arguments
as in Theorem 3.24, this leads to an isotopy defined around Σ × {0}. Now each ut =
(1− t)u+ tu′ induces a homotopy of dividing curves upon Σ. QED
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The most important observation is that the dividing curve Γi = {u = 0} captures all
of the topological information of a convex surface. This was first observed by Giroux [10,
Lemme 2.4.]:

Definition 4.3. Let Σ be a surface and i0, i1 two embeddings into a contact manifold
such that i0(Σ) and i1(Σ) are convex. We call i0(Σ) and i1(Σ) convexly isotopic if there
is an isotopy it : Σ →M such that for all t ψt(Σ) is an embedded convex surface.

Theorem 4.4. Let i : Σ ↪→ M and i′ : Σ ↪→ M be embedded convex surfaces, which are
convexly isotopic. Then their dividing curves are homotopic as properly embedded curves.

Proof. Let i : Σ× [0, 1] → (M, ξ) be the convex isotopy. Then for each t we obtain a ut
such that α = βt + utdr. Since the contact condition is open, we may vary βt slightly,
so that α = βt′ + utdr is still contact for t′ sufficiently close to t. Since the unit intervall
is compact, we obtain a finite covering Ui of [0, 1]. Now, we may iteratively change the
dividing curve of Σ × {0} to the dividing curve of Σ × {1} since on the overlap of two
Ui we have two different divding curves induced by ui which are homotopic as divinding
curves and thus as properly embedded arcs by the previous Theorem 4.2. QED

Lastly, if a surface Σ decomposes into two convex subsurfaces Σ1, Σ2 joined along
a Legendrian boundary, we may extend a contact vectorfield Y transverse to Σ1 to a
contact vectorfield Y ′ transverse to Σ. This follows from the methods used in Subsection
2.2. To find a function f : Σ → R>0 such that divω(fX)−1(0) is a regular submanifold
where X orients F . If X already fulfills this on Σ1 then the procedure used in the proof
of Theorem 2.22 allows us to modify X only on Σ2 supported away from the common
boundary of Σ1 and Σ2. This leads to a representation of the contact structure as
α = β + udr, where Y = d

dr |Σ1 . Thus the Reconstruction Lemma 3.24 provides us with
an extension of Y to a contact vectorfield Y ′ which coincides with Y on i(Σ). Thus we
have proven the following lemma:

Lemma 4.5. (Contact vectorfield extension) Assume i : Σ → M is a convex surface
whose characteristic foliation fulfills the Poincaré-Bendixson property. Furthermore, let
Σ = Σ1 ∪ Σ2 where Σ1 and Σ2 meet along a Legendrian boundary. Then a contact
vectorfield Y which is transverse to Σ1 can be extended to a contact vectorfield Y ′ which
is transverse to Σ and Y ′ agrees with Y on an open neighborhood U of Σ1.

In particular, this lemma makes sense of the statement that one can glue the dividing
curves of Σ1 and Σ2 together to obtain a dividing curve of Σ. Since restricting u to
either Σ1 and Σ2 provides dividing curves for either of them and the dividing curve is
well-defined up to homotopy of dividing curves.

Before moving, on we will need to introduce a compact way to describe non-isochore
foliations: Writing down explicit models of foliations containing several different struc-
tures at once is cumbersome, so we will use a pictorial way of describing them: Orbits
will be drawn as straight lines with an arrow indicating their orientation. Nodes with two
distinct eigenvalues will be drawn as circles while saddles are drawn as boxes. They are
either coloured in if they are negative or their interior is white if they have positive sign.
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However, we will need singularities of a less regular kind: Lines of singularities which ter-
minate in either a nodal or a saddle-like end. This means that close-by orbits behave as
if the singularities where isolated. So a negative nodal end has all orbits close-by entering
it and a negative saddle-like end has one orbit leaving it while others are deflected. The
full collection of these singularities and their diagrammatical representation is shown in
Figure 4.1.

Figure 4.1: From left to right: A positive node, a negative node, a positive saddle, a
negative saddle, a line of positive singularities with a nodal and a saddle-like
end and a line of negative singularities with a nodal and a saddle-like end.

4.1 Flexibility of convex surfaces

The most important tool in the study of flexibiltiy of convex surfaces is Giroux’s flexibility
Theorem. The Theorem essentially says that any two characteristic foliations which are
divided by a dividing curve Γ can be transformed into one another, remaining divided
by Γ:

Theorem 4.6. (Giroux’s flexibility Theorem, [9, Proposition 3.6.])
Let i : Σ →M be a convex surface and let Γi be a dividing curve corresponding to the

contact vectorfield Y . Assume that F1 is another foliation divided by Γi and that Fξ on
the boundary and on a tubular neighborhood of the dividing curve. Then for each ϵ there
is a convexly isotopic convex surface i′ : Σ → M contained in Σ × (−ϵ, ϵ) such that i′

induces the characteristic foliation F1. In addition, the convex isotopy it(Σ) is transverse
to Y for all t.

Proof. The proof we present here is the one presented by Etnyre in his introductory
lecture notes [6, Theorem 2.26.].

We will first deal with the case ϵ = +∞. The main observation is that given an r-
invariant representation of α = β + udr, we may choose u in such a way that du has
support inside a neighborhood of the dividing curve: This is simply done by choosing a
tubular neighborhood of the dividing curve Γ and then define a function which is defined
by f := 1

u outside the tubular neighborhood of the dividing curve and then normalises
to f = 1 on a smaller neighborhood of the dividing curve. Then fα = fβ + (fu)dr is as
desired.

Then let β0 and β1 co-orient the foliation Fξ = F0, respectively the foliation of F1

together with functions u0, u1 as above. Now consider a tubular neighborhood of the
dividing curve, where β0 is a multiple of β1 and dui are supported. There we may consider
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the function u1
u0

, which can be extended to Γi by L’Hôpitals law since the derivatives of
u1 and u0 do not vanish at the dividing curve. So multiplying β1(still denoted by β1) by
this function, we obtain that αi = βi + udr is a contact form, where u = u0. Now let
ω = β0 ∧ du + udβ0 and let Xi be the dual to βi. Then we may consider the following
family of 1-forms:

αt = ω(Xt, ·) + udr

where

Xt = tX1 + (1− t)X0

One observes that this is contact for all t, since Inequality 4.0.1 is convex linear in β.
Applying Moser’s stabily trick, we obtain the desired isotopy it. It remains to observe
that d

dr = Y is still a contact vectorfield transversal to it. The below proof technique is
taken from the Contact topology lecture notes of Honda [13]. Recall Equation 3.1.2 of
Moser’s stability trick.

ιZtdαt + d(ιZtαt) + α̇t = hαt

By construction if u ̸= ±1 then α̇t = 0, so Zt = 0 if u ̸= ±1. On the other hand if
α̇t ̸= 0 then du = 0. Assume u = 1, then we may specialise to the following equation for
αt = βt + udr and split Zt = gt

d
dr + Z ′

t where Z ′
t is tangent to Σ.

dβt(Z
′
t, ·) + d(βt(Z

′
t) + gt) + β0 − β1 = hβt + hdr

This has a solution given by:

dβt(Z
′
t, ·) = −β0 + β1 (4.1.1)

gt = −βt(Z ′
t) (4.1.2)

The first line has a unique solution since the divergence of Xt was non-vanishing if u
is positive. So we also obtain a unique gt. One calculates that for this choice h = 0.
The key observation is that the above choice of Zt is independent of r, so the isotopy is
transverse to Y = d

dr as desired.
Now, we only have that i′(Σ) ⊂ Σ × R and we observe that we may at most observe

that i′(Σ) ⊂ Σ × [−K,K] where K = max|gt| + 1. To obtain the convex isotopy that
leads to i′(Σ) ⊂ Σ × (−ϵ, ϵ) with the desired characteristic foliation we need to do a
preliminary isotopy: Let H : (−ϵ, ϵ) → R>0 be a smooth transition function which is
3K
ϵ if |r| < ϵ

3 and 1 if |r| > 2ϵ
3 . Then we consider the intermediary contact structure

α′ = β0 +Hdr. As shown in the proof of the Reconstruction Lemma 3.24 this isotopy
preserves the level sets of Σ× (−ϵ, ϵ) and even more is r-independent for |r| < ϵ

3 . So the

47



image of d
dr under this isotopy is a multiple of d

dr′ for r in this range. Now we redo the
steps above and obtain that Equation 4.1.1 leads to:

dβt(Z
′
t, ·) = −β0 + β1 (4.1.3)

g′t = −βt(Z
′
z)

H
(4.1.4)

So ||g′t|| =
||gt||
H and thus the flow is contained in Σ× (− ϵ

3 ,
ϵ
3). QED

One of the main questions we need to answer is that: Given an embedded surface
Σ ⊂ M , how much of the surface needs to be isotoped to obtain an embedded surface
Σ′ ⊂M with the desired foliation:

Lemma 4.7. Let i : Σ ↪→ M be a convex surface. Let F1 be another foliation of Σ
which satisfies the conditions of Theorem 4.6. In addition, let both F and F1 satisfy
the Poincaré-Bendixson property. Denote by A the set where the foliations do not agree:
Then let B be the set which contains A and for each p ∈ A the orbit of p with respect to
X. If the orbit of p intersects the dividing curve then B only has to contain the orbit of
p up to its intersection with the dividing curve.

Then i(BC) ⊂ i(Σ)∩ i′(Σ), so the isotopy of the embedded surfaces is supported inside
B.

Proof. Let α = β + udr and X be the vectorfield orienting F which is dual to β via
the volume form ω = du ∧ β + udβ and such that du is contained in a sufficiently small
tubular neighborhood of the dividing curve disjoint from A.

Now, we wish to construct a vectorfield X ′ orienting F1 such that X|BC = X ′|BC and
ιX′ω + udr is contact. To begin let X ′|AC = X|AC and X ′ orients F1. Let l be a leaf
of the foliation which intersects A and denote by p any point of l ∩ B. Say that the
whole orbit of p is contained in the positive region of Σ. Then we need to ensure that
div(fX ′) > 0 for some positive function f : Σ → R>0. By the methods introduced in
the proof of Theorem 2.22 we find such an f . If the orbit of p limits in either positive
or negative time to a limit set of X where X = X ′ then div(X ′) > 0 so we may choose
f = 1 on a neighborhood of this limit set, so X = X ′ close to this limit set.

If l intersects the dividing curve, then there is a point q along l such that q = l ∩ Γi.
Even more there is a point p′ such that X = X ′ along l for all points after p′ such
that FlX′(p, t) = p′ for t < T . Using the technique from the proof of Theorem 2.22 we
obtain that f(p′) might have to be some large number C to achieve div(fX ′) > 0 along
the flow of X ′ contained between p and p′. However along l between p′ and q, we have
that X ′ = X, so in particular we may calculate that: div( 1uX) = 1

u2 (an observation
by Etnyre [6]) and so in particular div(fuX) = f

u2 + 1
udf(X) by Lemma 2.9. So we only

need a solution for the inequality df(X) > −f
u , however since u goes to 0 as the flow

approaches q, we can achieve that f = 1 after some point p′′ which lies in between p′ and
q. We may extend f = 1 along the rest of the leaf l. Since all of these considerations
depend smoothly upon the point, we can use this to construct a smooth function f which
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is 1 except inside B. Thus X = X ′ outside of B and in particular the family of 1-forms
αt = ω(Xt, ·) + udr is t-invariant for points of Σ not in B ×R.

The above set i(B) is left invariant by the preliminary isotopy such that i′(Σ) ⊂
Σ × (−ϵ, ϵ) as in the proof of Giroux’s flexiblity Theorem 4.1. Note that the isotopy
α = β + udr to α = β + Kudr fulfills that α̇ = 0 if u = 0. So it is sufficient that B
contains the orbit of a point p ∈ A up to its intersection with the dividing curve since
this isotopy fixes the intersection point and the isotopy is chosen to be disjoint from the
dividing curve. QED

Giroux’s flexibility Theorem 4.1 now allows us to prove two very important techniques
to modify the characteristic foliation of a convex surface:

Lemma 4.8. (Node Flexibility) Let Σ be a convex surface whose characteristic foliation
fulfills the Poincaré-Bendixson property and n a node with in the interior of Σ. Further-
more let l and l′ be two leafs of Fi which limit to n. After an isotopy of Σ contained in a
neighborhood of the node one can assume that on the characteristic foliation l and l′ join
smoothly. In particular the isotopy preserves convexity, the Poincaré-Bendixson property
and remains transversal to a pre-assigned contact vectorfield Y for all times t.

Proof. This is a simple corollary of the previous Lemma 4.7: Assume n is a positive node
then there is a neighborhood U of n such that all leafs are pointing outward along the
boundary of U and n is the only singularity in U . Then one can find an explicit local
model such that l and l′ are joined smoothly, this is done for example in the dissertation
of Etnyre [7, Lemma 2.25.]. Since this is a change close to an isolated node, the Poincaré-
Bendixson property is fulfilled on U and since the rest of Σ is unperturbed the stable
limit sets of all orbits leaving U are unchanged it also remains true on Σ \ U . QED

There are several versions of the so-called Elimination Lemma, see Giroux [9, Lemme
II.2.3.] or Eliashberg-Fraser [5, Lemma 2.1.]. The Elimination Lemma states that given a
node and saddle of the same sign connected by a separatrix in the characteristic foliation
of Fi there is a C0-small isotopy of i with support close to the separatrix such that the
resulting surface has no singularities in this area. The Creation Lemma [5, Lemma 2.3.]
states the reverse, given any section of a leaf and a nonsingular neighborhood there is a
C0-small isotopy of the surface close to the leaf such that the neighborhood contains a
node-saddle singularity pair of the same sign. We only need this Creation Lemma in a
more specific situation, so we will only state it for the precise case we need.

Lemma 4.9. (Creation Lemma) Let Σ be a convex surface with a characteristic foliation
F which fulfills the Poincaré-Bendixson property and let Y be a contact vectorfield. Given
a leaf l which limits between two limit sets of opposite sign then one can convexly isotop
i to an embedding i′ such that i and i′ coincide except on a neighborhood U of a strip
of l where U is nonsingular with respect to F and the characteristic foliation of i′ has
exactly two singularities one node and one saddle of the same sign where the sign can
be arbitrarily chosen. In addition, one may choose the isotopy in such a way that the
Poincaré-Bendixson property is fulfilled for all times. Compare Figure 4.2.
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Figure 4.2: Adding a positive saddle-node pair along a chosen leaf l.

Proof. We will consider the case where we wish to add a positive pair. The negative pair
follows analogously.

Consider a small rectangle [−1, 1]× [−1, 2] where [−1, 1]×{2} is a piece of the dividing
curve and l∩ ([−1, 1]× [−1, 2]) = {0}× [−1, 2] and where the foliation X = d

dy . Then let
X ′ = X except inside the rectangle [−1, 1]2, where X ′ is given by Xϵ = x d

dx +(y2− ϵ2) d
dy

(using a smooth cut-off function so that X ′ is C∞). For ϵ = 0 there is a positive saddle-
node at (0, 0) thus the divergence of X0 is positive around (0, 0) thus there is a sufficiently
small ϵ such that div(Xϵ|{0}×[−ϵ,ϵ]) > 0. Choosing this ϵ, we may consider the condition
of Lemma 4.7 and observe that the rectangle [−1, 1] × [−1, 2] fulfills the criteria for B.
So we obtain that the isotopy which gives us i′ is supported inside this rectangle.

Regarding the Poincaré-Bendixson property: We choose ϵ so small that Xϵ has positive
divergence between the singularities at {0}×{ϵ} and {0}×{−ϵ} so the function f which
we used to achieve that div(fX ′) > 0 can be chosen constantly 1 along the leaf connecting
the new singularities. In fact the change from X to X ′ is either nonsingular on U or
there is exactly 1 saddle-node for for t =

√
1− ϵ2 since the transition vectorfields Xt are

given by:

(1− t) + t(y2 − ϵ2)
d

dy
+ (1− t)x

d

dx

close to the arc {0}×[−ϵ, ϵ]. And for times t > 1
1−ϵ2

there are two singularities. One node
at {0}×{ϵ} and one saddle at {0}×{−ϵ}. Thus this rectangle fulfills the conditions of the
Poincaré-Bendixson Theorem. Since all orbits which leave this rectangle do so through
the dividing curve they do not re-enter the rectangle. Thus their limit set is unaffected
by this change. The same is true for orbits entering the rectangle. So the characteristic
foliation of it fulfills the Poincaré-Bendixson Theorem for all times t. QED

Example 4.10. If the Theorem is used properly one can even generate non-convex
foliations: Consider the unit sphere S2 in the standard contact structure (R3, ker(dz +
r2dθ)). Recall that this has a characteristic foliation with exactly two singularities: A
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Figure 4.3: A positive node-saddle pair added along the stable separatrix of a negative
saddle which connects to a repelling cloed orbit. The red line indicated the
dividing curve, while the grey orbits indicate those orbits which bounded the
rectangle used in the Creation Lemma 4.9

positive node at the north pole and a negative node at the south pole. Now consider a
leaf l which winds from the north to the south pole and two different choices of dividing
curve given by transversal contact vectorfields Y and Y ′ respectively such that on one
the dividing curve is close to the south pole and on the other it is close to the north pole.
Now using Y , we can generate a positive node-saddle pair close to the south pole where
one of the stable separatrices of the saddle coincides with a strip of l. By the Theorem
above the convex isotopy can be chosen such that only a neighborhood of the south pole
is unchanged.

The same can be done for a negative node-saddle pair close to the north pole with
respect to Y ′, with an isotopy supported away from a neighborhood of the north pole.
These isotopies can be composed and thus one can create a retrograde saddle-saddle
connection on S2.

Remark 4.11. Using the Creation Lemma 4.9 one can convexly deform i(Σ) to a convex
surface Σ′ such that i(Σ) and Σ′ coincide outside an open triangle ∆ where one side is
the dividing curve and the other two sides are leafs close to l. In Figure 4.3 the case of
adding a saddle-node pair along a stable separatrix of a negative hyperbolic point which
limits from a repelling closed orbit is illustrated. Lemma 4.7 shows that i(Σ) and Σ′

coincide outside ∆. In addition, if l′ ̸= l is any leaf leaving ∆ through the side which is
part of the dividing curve, one may use the node flexiblity lemma 4.8 to ensure that l
and l′ form a smooth curve going through the new node n+.

The following Theorem was first observed by Honda [14, Theorem 3.7.]. Essentially, one
can realise any family of properly embedded curves as leafs of a characteristic foliation.
The only restriction to this is that one must be able to extend this characteristic foliation
to the complement, this for example prohibits that a curve cuts-off a region which has
trivial intersection with the dividing curve. Since then the region would have transverse
boundary and could only contain positive/negative nodes but not both, so the leafs do
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not have a valid limit set. Additionally, we need that the characteristic foliation close to
the dividing curve and the boundary is respected:

Theorem 4.12. (Realisation Lemma, [14, Theorem 3.7.]) Let Σ be a convex surface and
let ΓΣ be a dividing curve with a contact vectorfield X. Furthermore, let C ⊂ Σ be a
collection of properly embedded curves such that C ⋔ ΓΣ and each component of Σ \ C
intersects ΓΣ. Then there is a convexly isotopic surface i1(Σ), such that i1(C ′) is part of
the characteristic foliation, where C ′ is a family of properly embedded curves having the
same amount of intersection points with ΓΣ as C and C ′ is homotopic to C.

Proof. We follow the proof as it is outlined in the introductory lecture notes by Etnyre
[6, Theorem 2.28].

Homotop C in such a way that C ′ coincides with existing leafs close to its intersections
with the dividing curve and the boundary. Then we wish to construct a foliation which
fits together with C ′ and respects the previous foliation close to the boundary and close
to the dividing curve. So we consider the boundaries of the polygons formed by ∂Σ C ′

and ΓΣ. Now each of these polygons has a boundary component which is part of the
dividing curve, since C ′ is non-isolating. Assume we are considering a planar polygon
in the positive region of Σ, then along each boundary component which comes from C ′

either put a saddle whose unstable separatrices limit to its intersection with ΓΣ and if
there are none put a repelling closed orbit there. If there is an node at the boundary
of Σ (or a graph with nodal end) or a closed orbit of C ′ inside the polygon, then we
are fine. If there are none add an node in the interior. Connect all stable separatrices
to that repelling orbit, respectively node. Now the last step is to separate boundary
polygons from one another, since they are both outgoing there needs to be a separatrix
to separate the zones of influence of these boundary polygons. So add positive saddles
such that the unstable separatrices divide the polygon into regions, where there is exactly
one polygonal boundary component.

Iterate this construction for each component and this yields a foliation which is divided
by the dividing curve. The isotopy is guaranteed by Giroux’s flexibility Theorem 4.6.

Should a component be non-planar then one needs a different method to generate a
foliation for such a component. In the notes by Etnyre [6, Theorem 2.28] he does so
using the theory of Morse functions, but we will omit this approach. QED

The Theorem below, will come in handy in a special situation, which we will need later:
Recall the classification of closed orientable surfaces. These say that any closed orientable
surface is uniquely (up to diffeomorphism) classified by its Euler characteristic. Now
consider the unit disk Σ with n interior disks removed, then we can glue a second copy
of Σ to itself and this will double the characteristic foliation χ(Σ′) = 2χ(Σ) = 2(1 − n)
and produces a closed surface Σ′. In this manner we can produce any closed orientable
surface Σ′, together with ∂Σ ⊂ Σ′ which decompose Σ′ into planar regions. Using this, we
can deform any convex surface to admit an essentially planar characteristic foliation(see
Definition 2.17. This was first observed by Giroux [10, Lemme 2.9.]:
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Lemma 4.13. (Essential planarity realisation) Let Σ be a closed convex surface embed-
ded in a contact manifold (M, ξ). Then there is a convex isotopy of Σ such that the
characteristic foliation is essentially planar.

Proof. The idea is to take the set of embedded curves C above, which decomposes Σ into
two regions(if it is connected, otherwise iterate this argument) and use the Realisation
Lemma. However, this does not yield the desired decomposition, we need to make a
slight modification.

First deform C so that it is non-separating, by adding at least one intersection with
the dividing curve on each C. This homotopy of C does not change the condition that C
bisects Σ into planar regions, if we ensure that C does not add intersection with itself. So
it is just a deformation of the disk with n-holes. Then instead of adding positive saddles
at the appropriate points of C, we add a node, which is shielded from the interior of each
polygonal region by a saddle whose unstable separatrices leave the polygon parallel to
the arcs of C.

In this way, we realise C in such a way that it is foliated by positive nodes, negative
saddles and their stable separatrices. Thus there is a small tubular neighborhood A of
C such that all orbits leave transversally to its boundary. Now A and its complement
are both planar where A is a collection of annuli while the complement is a deformation
retract of Σ \ X. In addition the characteristic foliation points out of A and into the
complement, thus fulfilling the conditions of an essentially planar foliation. QED

4.2 Overtwisted disks

We will only briefly cover this topic and omit most details. A good ressource for this
discussion is the introductory book by Geiges [8, Chapter 4.5.].

Consider a convex surface Σ with a homotopically trivial component C of the dividing
curve. If Γ consists of more components than C then one can Legendrian realize a
slightly larger curve C ′ using the Realisation lemma 4.12. This will lead to a disk D2

with boundary C ′ which does not intersect the dividing curve, such a disk or the non-
existence of such disks is of fundamental importance:

Definition 4.14. Let D2 be a convex disk embedded into (M, ξ). If tb(D2, L) = 0 where
L is the boundary of D2. Then we call D2 an overtwisted disk.

We already encountered such disks in Example 3.5. The above method is one of the
major ways to find such disks. However reversely, if in each neighborhood of a surface
Σ there is an overtwisted disk and Σ has at least smooth boundary. Then one can
prove that Σ has a homotopically trivial component. Only the so-called tight sphere
(which we encountered in Example 3.21) has a dividing curve with a homotopically
trivial component. If it has exactly 1 component then the sphere is not overtwisted.

Lemma 4.15. (Giroux Criterion) Let Σ ̸= S2 be an embedded convex surface. If Σ has
a homotopically trivial component of the dividing curve, then in every neighborhood of Σ

53



there is an overtwisted disk. In other words, if there are no overtwisted disks in a neigh-
borhood of Σ then the dividing curve of Σ contains no homotopically trivial components.

Proof. We will only prove a partial result, assuming that the dividing curve of Σ has at
least two connected components. For the general case, see the lecture notes by Etnyre
[6, Theorem 3.1.] where the following proof is taken from.

Let Σ × R be a R-invariant neighborhood of Σ. Then let γ be a curve parallel to
the homotopically trivial component. Now one component of Σ \ γ which contains the
homotopically trivial component contains a component of the dividing curve and the
other piece of Σ \ γ also contains a component of the dividing curve, so we may realise
γ as a piece of the characteristic foliation using the Realisation lemma 4.12. This γ then
intersects no component of the dividing curve. Now γ bounds a disk and α = β ± dt
close to γ. Thus the Thurston-Bennequin map of γ does not map to either positive,
respectively negative preimages of the map defined in Definition 3.14. Thus the disk
bound by γ is an overtwisted disk.

Using Giroux’s flexibility theorem 4.1 we can realise an overtwisted disk in any neigh-
borhood Σ× (−ϵ, ϵ) of Σ. QED

As noted in the Introduction 1 the existence or lack of overtwisted disks is of funda-
mental importance.

Definition 4.16. Let U be an open neighborhood of a contact manifold (M, ξ), we call
U a tight neighborhood, if there are no overtwisted disks in U . We call (M, ξ) tight if
U =M is a tight neighborhood.

If M is not tight, it is called overtwisted.

Remark 4.17. The dichotomy of tight and overtwisted contact structures(those which
contain overtwisted disks) is of fundamental importance: Overtwisted contact structures
exist abundandly on every closed manifold and are essentially classified by homotopy (a
result due to Eliashberg [3, Theorem 1.6.1.]). On the other hand tight contact structures
need not exist on all manifolds. So there are several interesting classification results,
the most fundamental one is due to Bennequin [1, Théorème 1]: The standard contact
structure on R3 is tight.

One of the most important results is the following classification results due to Eliash-
berg:

Theorem 4.18. ([4, Theorem 2.1.3.]) Two tight contact structures ξ0 and ξ1 on B3,
which agree on a neighborhood of ∂B3 are isotopic relative to ∂B3.

4.3 Giroux’s normal form

Now, we come to one of the main theorems of this thesis: Giroux’s normal form.

Theorem 4.19. (Giroux normal form, [11], Lemma 15) Let (Σ× [−1, 1], ξ) be a contact
manifold, where Σ is a closed surface such that Σ−1 and Σ1 are convex. Then there is an
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isotopy relative to the boundary such that Σr is convex for all t, except for finitely many
ri, where the characteristic foliation on Σri fulfill:

(i) Each limit set is either a singularity or a closed orbit;

(ii) All singularities are either nodes or saddles;

(iii) All orbits are non-degenerate;

(iv) There is one and only one retrograde saddle-saddle connection.

In other words the characteristic foliation on Σri has a saddle-saddle connection bifurca-
tion whose saddle connection is retrograde.

Where Σ±1 is convex in the sense that there is a transversal contact vectorfield. By
possibly changing from Y to −Y this contact vectorfield can be assumed to be inward
pointing.

The most important steps of the proof are highlighted here, however we will not prove
the theorem in full detail. For example, we will omit some analytical considerations
which are due to Giroux [11].

A priori, we need the following lemma to obtain control over contact structures on
Σ × [−1, 1] where each Σr := Σ × {r} is divided by the same dividing curve Γr := Γr.
The following lemma is a combination of two results by Giroux [11, Lemme 2.4. and
Lemme 2.7.]. The proof is a variant of the one found in his original work.

Lemma 4.20. (Special case of the Realisation and Uniqueness Lemmas, [11, Lemme
2.4. and Lemme 2.7.]) Let ξ0 = ker(α0) be a contact structure on Σ× [−1, 1] such that
for β = α0|Σr there is a function v : Σ → R such that βr ∧ dv + vdβr > 0. Then ξ0 is
isotopic to a contact structure ξ1 relative to the boundary (i.e. there is a neighborhood
of Σ−1 and Σ1 such that ξ0 = ξ1) such that Σr for |r| < ϵ has any foliation F with a
representation β such that β ∧ dv + vdβ > 0.

Proof. Let ξ0 be represented by α0 = βr + u0rdr. Then denote by β′r the foliation which
is given by: β′r = βH(r) where H is a smooth transition function which agrees with r

close to r = −1 and r = 1 and is constantly 0 on r ∈ [−1
2 ,

1
2 ]. Denote by γr the family

of 1-forms which is obtained by realising F using Giroux’s flexibility theorem 4.6. This
can be done in such a way that γ0 = β0 and γ0 + vdr is a contact form. Then set
β1r = γH̃(r) where H̃ : [−1

2 ,
1
2 ] → [0, 1] is a smooth transition function which is constantly

0 on a neighborhood of −1
2 constantly 1 on a neighborhood of 0, constantly 1 on a

neighborhood of 1
2 and which coincides with β′r outside of [−1

2 ,
1
2 ].

By construction both β0r and β1r fulfill that βir + vds is a contact form for r constant.
Thus β0r + vdr and β1r + vdr are contact forms, if necessary by multiplying v by some
large constant λ, compare Equation 3.2.1. In addition, β0r = β1r for r close to −1 and 1,
so there are neighborhoods [−1,−1 + ϵ] and [1 − ϵ, 1] such that β1r + u0rdr satisfies the
contact condition as well. Now denote by u1r the function which is given by u0r close to
−1 and 1 and by λv for all r such that β0r ̸= β1r .
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Now α0 = β0r + u0rdr is convexly isotopic to β1r + u1rdr, since the contact condition
for such expansions (see Inequality 3.2.1) is convex linear in the u-component. Now set
βtr = (1 − t)β0r + tβ1r . This is constantly β0r = β1r if u1r ̸= λv and otherwise we observe
the following condition:

0 < βtr ∧ (λdv − β̇tr) + λvdβtr

which is fulfilled for all r and t if λ is sufficiently large. So β0r + u1rdr is isotopic to
α1 = β1r + u1rdr. Putting both isotopies together α0 is convexly isotopic to α1 and both
isotopies where supported away from r = −1, 1. QED

The second main tool is Sotomayor’s density Theorem which we restate here for con-
venience:

Theorem 4.21. (Sotomayor’s density Theorem, [21, Theorem II.2.]) Denote by X1 the
set of 1-parameter vectorfields (Xr)r∈[−1,1] such that:

(i) There is an open dense set J ⊂ [−1, 1] such that Σr is Morse-Smale for r ∈ Λ.

(ii) JC decomposes into three subsets J1 ∪ J2 ∪ J3 ∪ J4 ∪ J5:
a) r ∈ J1 is Kupka-Smale, i.e. all singularities and closed orbits are non-

degenerate and there are no saddle connections;

b) r ∈ J2 is Morse-Smale except for exactly 1 saddle-node;

c) r ∈ J3 is Morse-Smale except for exactly 1 composed focus;

d) r ∈ A4 is Morse-Smale except for exactly 1 degenerate closed orbit whose
second derivative is non-vanishing;

e) r ∈ A5 is Morse-Smale except for exactly 1 saddle-saddle connection. This
connection is either homoclinic or heteroclinic.

Then X1 is C∞-dense in the set of all 1-parameter vectorfields.

Now, we are ready to prove Giroux’s Dynamic Banalisation Lemma:

Theorem 4.22. (Giroux’s Dynamic Banalisation Lemma, [11, Lemme 2.10] Assume
that Σ × [−1, 1] is endowed with a contact structure such that Σ±1 are convex. Then
there is an isotopy relative to the boundary such that either Σr is convex or fulfills the
Poincaré-Bendixson property.

Proof. We outline here the original proof:
The main problem is that the Poincaré-Bendixson property is not an open condition.

However, essential planarity and a foliation having only isolated singularities are both
open conditions which are stronger than the Poincaré-Bendixson property so we wish to
change ξ to a contact structure such that:

• Each Σr is essentially planar for |r| ≤ 1− ϵ;
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• The singularities of Σr are isolated for each |r| ≤ 1− ϵ.

Since both Σ−1 and Σ1 are convex, there is a function v±1 : Σ → R such that
β±1 + v±1dr are contact. After a C∞-small perturbation we may assume that v−1

1 (0) is
transversal to v−1

−1(0) and the contact condition together with β±1 is still fulfilled. Since
the contact condition is open, we may assume without loss of generality that βr + v1dr
is a contact form for r ∈ [18 , 1] , similarly for v−1. Now let C be a set of curves which
decompose Σ into two planar regions, possibly isotoping C we may assume that each
component of C intersects both v−1

±1(0) and coincides with leaves of Σ± 1
2

close to v−1
±1(0).

Using the essentially planar realisation lemma 2.17, we may assume that there are foli-
ations F± which contain C as a collection of leafs and are divided by v−1

±1(0). This can
be achieved using Lemma 4.20.

Now using the following construction one can reparametrise Σ× [−1, 1] in such a way
that Σr is convex or it is essentially planar: Denote by Π± a retract of Σ± such that the
characteristic foliation of Σ± 1

2
are still transversal to ∂Π±. This is an open condition on

the characteristic foliations, thus we assume this is fulfilled on Σ× [−3
4 ,−

1
2 ]∪ [12 ,

3
4 ]. Then

we choose a strictly increasing function g : [−1, 1] → [−1, 1] which coincides with the
identity on [−1,−3

4 ]∪ [34 , 1] and maps [0, 1] into [12 , 1]. Denote by h : Σ× [−1, 1] → [−1, 1]
a smooth function which coincides with g on Π+ and with −g(−·) on Π− such that h(x, ·)
is strictly increasing and coincides with the identity on [−1,−3

4 ] ∪ [34 , 1]. Then we can
define the following isotopy:

ϕt(x, r) = (id, th(r, x) + (1− t)r)

Now for |r| ≥ 3
4 Σr is convex, since ϕt coincides with the identity. On the other hand

if |r| ≤ 3
4 , say r is positive, then ∂Π+

r decomposes Σr into planar regions such that the
characteristic foliation points out of Π+

r .
To use the Poincaré-Bendixson Theorem 2.16 on Σ±

r for each |r| ≤ 3
4 , we only need

that the singularities are isolated: So we apply Sotomayor’s density Theorem 4.21 on
Σ× [−3

4 ,
3
4 ] with the following C∞-smallness conditions:

(i) α1 = βr + H(r)tγ + urdr is contact for each t ∈ [0, 1] and r where H(r) is some
smooth cut off function which vanishes at 1

2 ;

(ii) The foliation given by βr +H(r)tγ is divided for |r| ≤ 1
2 and t ∈ [0, 1]:

(iii) The foliation induced by βr +H(r)tγ is essentially planar for |r| ≤ 1
2 .

Now, we may use Moser’s stability trick to obtain a contact isotopy from α to α1.
Since the level sets Σr for which |r| ≥ 1

2 are convex and the level sets for which |r| ≤ 1
2

fulfill the Poincaré-Bendixson property. QED

From this proof, we actually obtain more information: Namely that we can decompose
[−1

2 ,
1
2 ] into the regular values and the 4 different bifurcation sets J2, J3, J4 and J5,

57



Figure 4.4: The evolution of a retrograde saddle-saddle connection.

where J1 = ∅ since the foliations fulfill the Poincaré-Bendixson property. In addition
J3 = ∅ since a composed focus is an isochore singularity and the contact condition of α1

prevents those from appearing.
Now Theorem 2.22, tells us that Σr is only non-convex if r ∈ J4 ∪ J5

ret where J5
ret are

those values of J5 which possess a retrograde saddle-saddle connection. So, we need a
technique to achieve that J4 = ∅. This follows from the following isotopy theorem due
to Giroux:

Lemma 4.23. (Giroux [10, Lemme 15/16]) Let T be filled torus around a degenerate
closed orbit Cr′ such that there are no other closed orbits and singularities inside for r
close to r′. Then there is an isotopy of Σ× [−1, 1] supported inside T and for r close to
r′ such that there is a retrograde saddle-saddle connection at r′ and no degenerate closed
orbits for r close to r′ on Σr. The move creates 4 singularities e+,e−, h+ and h− along
Cr′. In addition, the retrograde saddle-saddle connection is the unique degeneration of
Cr′.

QED
In addition, a retrograde saddle-saddle connection is unstable in 1-parameter families

of characteristic foliations:

Theorem 4.24. (Giroux’s Crossing Lemma, [10, Lemme 2.14]) Let (Σ × [−1, 1], ξ) be
a contact manifold. Assume for r = 0 there is a retrograde saddle-saddle connection
C0 between h− and h+ in the characteristic foliation of Σ0. Furthermore let A be a
transverse arc to C0 that is positively co-orienting the foliation.

Denote by C−
r and C+

r the separatrices of h− and h+ respectively such that C−
0 = C+

0 .
Then the intersection point of A with C−+ r moves in the direction of the orientation of
A for small r, while the intersection point of A and C−

r moves in the opposite direction,
see Figure 4.4.

Before finishing the proof, we will restate Remark 2.35:

Remark 4.25. (i) J2 is isolated [21, Proposition 3.5.].

(ii) r ∈ J4 is either isolated or one of the following happens: [21, Remarks 2.8.b]
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a) The degenerate closed orbit is stable and unstable limit set of saddle separa-
trices. Then saddle-separatrices accumulate;

b) The degenerate closed orbit is not a limit of saddle separatrices but stable
and unstable limit set of another orbit. In this case degenerate closed orbits
accumulate.

(iii) r ∈ J5 the saddle separatrix is isolated or the following happens: [21, Remarks
4.8.1.]

a) The saddle connections has the same saddle as stable and unstable limit set.
Additionally another separatrix has the saddle connection as its limit set.
Then saddle connections accumulate.

Proof of Theorem 4.19. First we apply the Dynamics Banalisation Lemma 4.22 and ob-
tain an isotopy of the contact structure such that ξ is either convex or fulfills the Poincaré-
Bendixson Theorem. So Σr is convex if r /∈ J4∪J5

ret. Now by (iii)(a) above J5
ret is isolated

and may only accumulate around J4. In addition J4 is finite since a closed orbit divides
either Σ+ or Σ− into two different components where the foliation does not return to.
So we may apply Lemma 4.23 to achieve a contact structure ξ1 such that J4 = ∅. In
addition, since this isotopy replace all degenerate closed orbits with retrograde saddle
connection we only need to care about J5

ret. However, due to the Crossing Lemma 4.24
J5
ret may only consist of points which may only be finitely many since by Remark 4.25

saddle connections may only accumulate around homoclinic orbits. Since homoclinic or-
bits are prograde connections the level set r′ where one occurs has a neighborhood where
all foliations are divided. Thus J5

ret is isolated and thus finite.
QED

4.4 Bypasses

In this chapter, we will introduce the powerful technique of bypasses due to Honda [14].
Roughly speaking, a bypass on a convex surface is a transversal convex half-disk. These
bypasses can be attached to the convex surface and quantize its change to the dividing
curve. As we will prove at the end of this chapter, one can equivalently describe Giroux’s
normal form Theorem through bypass attachments (see Theorem 4.33). Though first,
we will make precise what "attaching" a convex surface means. The procedure to attach
bypasses presented here is due to Honda [14]. Our definition of what a bypass is, is
different from the original definition, however Honda has proven that both definitions
are actually equivalent. So, we will not deal with such details.

Consider two convex surfaces Σ and Σ′ meeting transversaly along a smooth boundary
component L. In general, we cannot just glue them, though if a neighborhood of L is
sufficiently regular, then we can do so:

Definition 4.26. Let Σ be an embedded surface with smooth boundary. We say that a
boundary component L of Σ has a standard neighborhood, if the characteristic foliation

59



on a neighborhood of L coincides with the foliation of {(x, y, z) : x = 0, y ≥ 0} in
(R2 × S1, ker(cos(2πnz)dx+ sin(2πnz)dy)) for some n.

If L is a smooth Legendrian curve in the interior of Σ, then we say that L has a
standard neighborhood, if the characteristic foliation coincides with the foliation of
{(x, y, z) : x = 0} in (R2 × S1, ker(cos(2πnz)dx+ sin(2πnz)dy)) for some n.

Remark 4.27. One may calculate that the Thurston-Bennequin invariant of L with
respect to a surface Σ which bounds L is −n if L has a standard neighborhood in Σ. If
Σ is convex then one may calculate the Thurston-Bennequin number of L as − |Γ∩L|

2 .

Now using this local model of L ⊂ Σ we see that there are lines of positive singularities
for z = k

n and lines of negative singularties for z = 2k+1
2n on this neighborhood of L.

Now if both Σ and Σ′ exhibit such neighborhoods of L = Σ ∩ Σ′. Then L can be
locally modelled by the following standard neighborhood (R2 × S1, ker(cos(2πnz)dx +
sin(2πnz)dy)) where L = {(x, y, z) : x = y = 0} and Σ = {(x, y, z) : x = 0, y ≥ 0}
and Σ′ = {(x, y, z) : x ≥ 0, y = 0} (see [6, Exercise 4.2.]). Note that in this local
model both d

dx and d
dy are contact vectorfields which are transversal to Σ, respectively

Σ′ close to L. Now one observes that the dividing curve of Σ induced by d
dx is along

the lines {(x, y, z) : x = 0, y ≥ 0, z = k
2n} for k = 1, . . . , 2n. Similarly for Σ′ where the

dividing curve induced by d
dy is given through {(x, y, z) : x ≥ 0, y = 0, z = k

2n − 1
4n}

for k = 1, . . . , 2n. Recall that the vectorfield extension lemma 4.5 justifies only looking
at partially defined contact vectorfields given that the foliations fulfill the Poincaré-
Bendixson property (which we always assume going forward).

Now one may connect Σ and Σ′ by removing a δ-neighborhood of L and replacing it
with {(x− δ)2+(y− δ)2 = δ2} which is convex as well (using the contact vectorfield − d

dr
which is induced by cylindrical coordinates (r, θ, z) instead of (x, y, z)). One may ap-
proximate the resulting convex C1-surface by a C∞-surface with the same characteristic
foliation. The important information however, is how the dividing curves link up: In the
above model Σ has dividing curves at {(x, y, z) : x = 0, y ≥ 0, z = k

2n} for k = 1, . . . , 2π

and Σ′ has dividing curves at {(x, y, z) : x ≥ 0, y = 0, z = k
2n − 1

4n}. Besides the area
close to the original boundary, Σ+Σ′ will have a decomposition into positive and nega-
tive areas that respects the ones coming from Σ and Σ′. So for k even there is a positive
area between k

2n and k+1
2n on Σ and a positive area on Σ′ between k

2n − 1
4n and k+1

2n − 1
4n .

So the dividing curve on Σ+Σ′ must connect k
2n to k

2n − 1
4n . Since this neighborhood is

bounded by Legendrian curves, one may use Lemma 4.5 to see that one may extend the
description of the dividing curve on this piece of Σ+Σ′ to the rest of this convex surface.

Attaching an annulus is of special importance: Assume that Σ and Σ′ = S1 × [0, 1]
intersect in the interior of Σ along a Legendrian knot L. Furthermore assume that
S1 × [0, 1] has a standard neighborhood in Σ′ and S1 × 0 = L has one as well in Σ, then
one can do a series of edge-roundings to attach the annulus to Σ′: The intersection of Σ
and Σ′ can be modelled in (R2×S1, ker(cos(2πnz)dx+sin(2πnz)dy)) as the intersection
of Σ = {(x, y, z) : x = 0} and Σ′ = {(x, y, z) : x ≥ 0, y = 0}. The idea then is thicken
Σ′ to Σ′ × [−ϵ, ϵ] via an extension of d

dy , where ϵ is chosen sufficiently small such that
Σ′ × {−ϵ, ϵ} still intersects Σ along a knot which has a standard neighborhood. This
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is possible since L ⊂ Σ has a small neighborhood L where it is normal, so a push-off
of L by d

dy (which is tangent to Σ) for sufficiently small values will still have a normal
neighborhood.

Then we can attach Σ′×{−ϵ, ϵ} to Σ\L× (−ϵ, ϵ). This leaves the upper boundaries of
Σ′×{−ϵ, ϵ} where one can attach S1×{1}× [−ϵ, ϵ] which is also convex since it consists
of parallely foliated Legendrian curves. Since this will be of importance, Figures 4.5 and
4.6 illustrate attaching an annulus with a negative boundary-parallel region:

The above example is already the main ingredient one needs to discuss bypasses:

Definition 4.28. Let Σ be a convex surface and Σ′ a convex annulus which intersects Σ
transversally along a Legendrian knot L and Σ′ is standardly foliated on a neighborhood
of its boundary components. We say that Σ′ is a bypass for Σ, if the dividing curve of Σ′

has exactly one component whose both ends are on L while all other components connect
different boundary components.

By a result of Kanda it is sufficient that Σ′ has standardly foliated neighborhoods of
its boundaries:

Lemma 4.29. (Kanda [15, Lemma 5.10.]) Let Σ be a convex surface and Σ′ an annulus
such that they intersect transversally along a Legendrian knot L ⊂ Σ. If Σ′ is standard
around L then there is a C0-small convex isotopy of Σ which is contained in a neighbor-
hood of L ⊂ Σ such that L is standard in Σ, Σ and Σ′ still intersect transversally along
L.

A bypass attachment is then the series of edge-roundings described above. In partic-
ular, from Figure 4.6 one can see the following theorem:

Theorem 4.30. (Bypass attachment, [14, Lemma 3.12.]) Let Σ′ be a bypass for a convex
surface Σ, then there is a neighborhood (Σ× [0, 1], ξ) of Σ∪Σ′ such that ξ is r-invariant
on Σ× [0, ϵ], Σ×{ϵ} is the original embedding and the dividing curve of Σ×{1} is related
to the dividing curve of Σ by the bypass attachment deformation, see Figure 4.7

For our purposes, we will need a definition of bypass attachment which is a bit more
general:

Definition 4.31. Let Σ and Σ′ be convex surfaces in a contact structure. We say that
Σ and Σ′ are related by a bypass attachment, if there are convex isotopies taking Σ to Σ1

and Σ′ to Σ′
1 such that Σ1 +A is Σ′

1, where A is a bypass for Σ1.

4.5 Proof of Theorem 1.1

One of the first tools found by Honda is that an annulus with several components of the
dividing curve which connect the same boundary to itself can be reduced to a bypass:

Theorem 4.32. (Imbalance Principle, Honda [14, Proposition 3.17.]) Let Σ′ = S1×[0, 1]
be a convex annulus inside a tight contact manifold with a boundary which has a standard
neighborhood. If tb(S1 × {0}) < tb(S1 × {1}) < 0 then there is a bypass along S1 × {0}
and thus on any convex surface Σ which intersects Σ′ transversally along S1 × {0}.
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Figure 4.5: Attaching a bypass: First there is only Σ and a transversal annulus. Then
we double the annulus and close of the top with a contact push-off of of the
upper boundary of the annulus. Then we use Edge-Rounding and glue all
components together.
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Figure 4.6: Attaching a bypass from bird’s-eye view. The second and third picture both
describe Σ + Σ′. The second picture has the old boundaries marked while
they are removed in the third picture to highlight the new dividing curve.
Straightening out this curve leads to the picture in Figure 4.7
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Figure 4.7: The evolution of a retrograde saddle-saddle connection.

Proof. Since the annulus in contained in a tight manifold it may not have any components
of the dividing curve which bound a disk. Furthermore S1 × {0} has −2tb(S1 × {0})
intersections with the dividing curve, while S1 × {1} has −2tb(S1 × {1}) many. Thus
one component of the dividing curve must start and end on S1×{0}. In particular there
must be a ∂-parallel one. Using the Legendrian realisation principle one can isotop Σ′

such that a curve C parallel to S1 × {0} is standardly foliated and Σ′ restricted to the
area between C and S1×{0} has exactly one component whose dividing curve intersects
S1 × {0} twice while all others connect C and S1 × {0}. QED

Now we will come to the original content of this thesis. Compare Theorem 4.19:

Theorem 4.33. Let (Σ × [−1, 1], ξ) be a contact manifold such that Σ−1 and Σ1 are
convex. Then there is an isotopy relative to the boundary such that Σr is convex except for
finitely many r1, . . . , rn. Additionally Σri−ϵ and Σri+ϵ are related by a bypass attachment
for sufficiently small ϵ > 0.

This is a direct corollary of the following lemma which we will prove in the rest of the
paper:

Lemma 4.34. Let (Σ× [−1, 1], ξ) be a contact manifold such that Σr for r ̸= 0 is convex.
Additionally, assume the characteristic foliation of Σ0 fulfills:

• Each limit set is either a singularity or a closed orbit;

• All singularities are either nodes or saddles;

• All orbits are non-degenerate;

• There is exactly one saddle-saddle connection which is retrograde;

• The foliation is essentially planar.

Then for ϵ sufficiently small there is a bypass relating Σ−ϵ and Σϵ.
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The first step is to normalise a neighborhood of the retrograde saddle-connection and
make sure that it changes the dividing curve as we would expect from a bypass:

Theorem 4.35. Assume (Σ × [−1, 1], ξ) is in Giroux normal form, with exactly one
non-convex level set at 0. Then for a sufficiently small ϵ > 0 there exists an isotopy of
Σ× [−ϵ, ϵ] such that:

(i) Σr for r ̸= 0 is moved by a convex isotopy;

(ii) There is a disk D ⊂ Σ with Legendrian boundary such that D0 contains the retro-
grade saddle connection. Its foliation is depicted in Figure 4.8;

(iii) The contact structure is r-invariant on (Π× [ϵ, ϵ], ξ), where Π denotes the comple-
ment of D.

Figure 4.8: The foliation of D−, D0 and Dϵ. Note that the change of the dividing curve
coincides with the way we would expect it to change if it came from a bypass
with a half-disk over D−1.

Proof. Denote by h+ and h− the saddles connected by the retrograde saddle connection.
Let p be a point on the retrograde saddle connection and denote by U a small neigh-
borhood of p. Choose coordinates on U such that the characteristic foliation is given by
β = gdy where Y > 0 now isotop β0 slightly contained in this neighborhood (using a
smooth cut-off function) so that β0 agrees with β0 = gdy + ϵdx in this neighborhood.
For ϵ small enough the corresponding αϵ = βr +Hϵdx+ urdr will still fulfill the contact
condition for H an appropriate cut-off function. Denote by Σ′ the surface obtained from
Σ by the isotopy gained from Moser’s stability trick as used in Lemma 3.25. Then Σ′

will be a convex surface: Since there was only one heteroclinic saddle-saddle connection
there is no accumulation of separatrices close to the retrograde saddle connection. So
we forced the separatrices of h− and h+ to miss one another and did not introduce any
new saddle-saddle connections for ϵ sufficiently small. In addition outside of Ū , Σ and
Σ′ overlap. So we obtain a contact vectorfield Y transverse to Σ′. Now consider the
vectorfield Y ′ which agrees with Y outside a neighborhood V ⊂ Σ × [−1, 1] of h+, h−
and the retrograde saddle connection and agrees with d

dr on a smaller neighborhood of
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the retrograde saddle connection. Thus Y ′ is transverse to Σ. Now, consider the flow of
Σ under Y ′ for small times. The pullback contact structure on Σ × (−ϵ, ϵ) will fix the
characteristic foliation on Σ×{0}. By the Reconstruction Lemma 3.24, the original con-
tact structure on Σ× (−ϵ, ϵ) (viewed as a subset of Σ× [−1, 1]) and the pullback contact
structure given by the flow are related by a contact isotopy (after possibly shrinking ϵ).

Possibly rescaling Y ′ by a constant factor this gives a new trivialisation of Σ×[−1, 1] as
a product (where r still denotes the coordinate on the second factor). We notice that this
isotopy fixes the characteristic foliation of Σ0, which is essentially planar and has only
isolated singularities. Both are open conditions, thus this is true for the whole isotopy
on Σ × (−ϵ, ϵ)(possibly shrinking ϵ again). Now by the Poincaré-Bendixson Theorem
2.16 all these characteristic foliations fulfill the Poincaré-Bendixson property. Since two
saddles not being connected by a saddle connection is an open condition, if there are
no degenerate closed orbits or Legendrian polygons, for possibly smaller times no new
saddle connections are introduced. Additionally by Giroux’s Crossing Lemma 4.24, the
only retrograde saddle connection on Σ × {0} is always unstable in contact structures.
Thus for sufficiently small times Σr for r ̸= 0 is moved by a convex isotopy.

Now we have that d
dr is contact away from V which is a neighborhood of the retro-

grade saddle connection and its saddles on Σ0. Now let us return to Σ′: This is a convex
surface with no saddle connections, thus the stable separatrices of h− and the unstable
separatrices of h+ cross the dividing curve associated to Y . Possibly shrinking the chosen
neighborhood V above, the dividing curve crosses these separatrices before it possibly
enters the neighborhood V . Now we use the Creation Lemma 4.9 and add positive singu-
larities along the stable separatrices of h+ and negative singularities along the unstable
separatrices of h+. The neighborhoods chosen can be made disjoint from V and thus
this isotopy of Σ′ is also an isotopy of Σ, compare Figure 4.9. Using Remark 4.11, one
can achieve that this isotopy is supported inside the area where Σ and Σ′ overlap.

Figure 4.9: A pictorial representation of the neighborhood V in light grey) while the
dark grey orbits indicate the rectangles used in the Creation Lemma 4.9 and
contain the isotopy away from V .

Now consider this isotopy on surfaces close to Σ0 in the contact structure created
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Figure 4.10: One possible characteristic foliation which contains D and can be realised
on a tight sphere S2. The blue arc denotes a possible choice of C.

above. This isotopy is transverse at all times to d
dr , so we may consider its push-off in

this direction. Our version of the Creation Lemma 4.9 preserves the Poincaré-Bendixson
character on Σ0 for all times thus a push-off of this isotopy in the r-direction will also
preserve the Poincaré-Bendixson property for nearby surfaces since the contact structure
is r-invariant there. The same argument as above, yields that there is a small neighbor-
hood of Σ0 such that each level set Σ × [−ϵ, ϵ] is moved by a convex isotopy except for
the 0-level.

Iterating this argument, we achieve the characteristic foliation depicted in Figure 4.8
on D0. By Remark 4.11 we may choose the isotopies in such a way that this disk has a
smooth boundary. QED

Using the contact vectorfield extension lemma 4.5, we can now see that the retrograde
saddle connection gives rise to the same change of dividing curve as a bypass attachment.
We wish to find a convex annulus which gives us the desired bypass. To do so, we will
first need to find a tight neighborhood of D0:

Lemma 4.36. After an isotopy of Σ×[−1, 1], we may assume that Σ0 has a characteristic
foliation as is given by Figure 4.10 and Σr for r ̸= 0 has the same characteristic foliation
which only differs inside Dr from this foliation. We call this larger disk D′

r.

Proof. This is a direct application of Giroux’s flexibility Theorem. By Lemma 4.7 this
isotopy can be chosen to be supported outside a neighborhood of D0. Since Σ× [−1, 1]
is R-invariant on Π× [−1, 1] it does not matter whether we do the change on Σ0 or Σr.
Since Dr is convex and is not moved this isotopy induces a convex isotopy on Σr. QED

Lemma 4.37. The disk D′
0 has a tight neighborhood.
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Figure 4.11: One possible characteristic foliation inside D−, respectively D+. The exten-
sion of C is drawn in blue.

Proof. As observed in Example 4.10, we have a retrograde saddle connection on an S2 in
the standard contact structure which is tight by Remark 4.17. Redoing all the previous
steps on S2 leads to an embedding of a sphere S2 which contains a disk whose foliation
agrees with the one on D′

0. Thus D′
0 has a tight neighborhood. QED

After possibly rescaling, we may assume that all D′×[−1, 1] have a tight neighborhood.

Lemma 4.38. For 0 < ϵ < 1 there is a convex isotopy of Dϵ and D−ϵ which fixes a
neighborhood of their boundary. Extending the isotopy to Σ−ϵ and Σϵ we may assume
that there are Legendrian knots L− and L+ on Σ−ϵ and Σϵ such that tb(L−,Σ−ϵ) = −8
and tb(L+,Σϵ) = −6. Additionally L− and L+ are extensions of C±ϵ.

Proof. This is achieved by using Giroux’s flexibility Theorem, using the foliations de-
picted in Figure 4.11. QED

Lemma 4.39. There is a convex annulus A whose boundaries are L+ and L−. This
annulus has a ∂-parallel region over D−ϵ which leads to a bypass inducing the desired
change of the dividing curve.

Proof. Now, we wish to consider an annulus A between L+ and L−: This annulus shall
be generated by a vectorfield Z which agrees with d

dr on a neighborhood of Πr, with Y−
close to Σ− and with Y+ close to Σ+, where Y− and Y+ are extensions of d

dr |Π×[−1,1]

given by the contact vectorfield extension lemma 4.5.
The characteristic foliation of the annulus A, where it is either generated by d

dr , Y− or
Y+ is already determined: Let Σ′ be parametrized by S1 × [0, 3] where S1 × [0, 1] is the
push-off of L− by Y−, S1 × [2, 3] is the push-off of L+ by Y+ and if S1 ∼= [0, 8]/ ∼ then
it is generated by d

dr on an open neighborhood of [0, 3]× [0, 3], where {0} × {0, 3} is the
strip above the negative node n− of the boundary of D− and {3} × {0, 3} is the strip
above the positive node n+ of the boundary of D+.
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Figure 4.12: The characteristic foliation on the annulus. Outside of the grey area we
know exactly how the characteristic foliation looks like and the red lines
indicate the 0-set of u′ while the black lines indicate lines of singularities.

Restricting A to the section S1 × [0, 1] where the annulus is a push-off of L− under
a convex vectorfield. So let α = β + udY− be the convex representation on Σ−. From
this we see immediately that: α|S1×[0,1] = udY− so there are lines of singularities above
u = 0 with signs given by the sign of du. Thus there are positive singularities on Σ′ if
L+ crossed from a negative area of Σ into a positive one. Since there are 8 intersections
with the dividing curve, we have 8 such lines of singularities. WLOG, these lines of
singularities are at {k + 1

2} on S1 = [0, 8]/ ∼. In fact, this is a standard neighborhood
of the boundary L− and thus there is a representation of α over S1 × [0, 1] × R as
ker(cos(πz)dy − sin(πz)dx). This representation remains true on a neighborhood of
[3, 8]/ ∼ ×[0, 3], since d

dr is a contact vectorfield. The only area that we do not have
such a representation yet on is (0, 3)× [2, 3]. There we have a single line of singularities,
as there is only one intersection with the dividing curve of L+ inside D+ϵ. Considering
everything, we obtain a representation of α = β′+u′ds, where u′ = 0 if x = 0, 3, 4, 5, 6, 7
or x = 1, 2 and y ∈ [0, 1] and β′ is a 1-form on Σ′′ which induces the foliation depicted
in Figure 4.12.

Now we will use a slight variation of C∞-genericity of Morse-Smale vectorfields on
[0, 3] × [1, 2] and change β′ to β′′ such that β′′ agrees with β′ outside a neighborhood
of this rectangle. That this kind of change is possible was first observed by Honda
[14, Proposition 3.1.]: First we need to put nodal ends on the lines of singularities at
x = 1

2 ,
3
2 ,

5
2 and y = [0, 1], respectively x = 3

2 , y = [2, 3]. To do so, we add δH(x, y) d
dx

to X where H is supported inside a neighborhood of the lines {k
2} × [12 , 1] in such a

way that there is a half-nodal singularity at {k
2} × {1

2}. Depending on the sign of the
singularities one has to adapt the sign of H. In addition, one chooses δ > 0 sufficiently
small such that the change induced on β′ still leads to a contact form. Now, using the
Giroux-Peixoto Lemma 3.25 we obtain a C∞-small γ such that β + H̃γ is Morse-Smale
on the interior of [0, 3] × [1, 2] and which does not create new singularities on a small
annulus A′ around [0, 3] × [1, 2]. By construction there was such a non-singuar annulus
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already and being non-singular is an open condition. H̃ is then a smooth cut-off function
supported outside of A′ ∪ [0, 3] × [1, 2] and thus Hγ is preserved on the complement of
A′ ∪ (0, 3)× (1, 2).

Now observe that this new foliation on A is Poincaré-Bendixson. Indeed either any
half-orbit remains in A′ ∪ [0, 3] × [1, 2] which is planar and has only finitely many sin-
gularities and thus is Poincaré-Bendixson. If the other half-orbit limits to a singularity
on the complement, the limit is exactly 1 singularity by the previous characterisation.
In addition, one observes that any closed orbit on Σ′ must be contractible (the lines of
singularities away from A′∪[0, 3]×[1, 2] prevent any such orbits) and thus it would bound
an overtwisted disk which by the tightness assumption is impossible. Finally should a
retrograde saddle connection appear in A′ ∪ [0, 3] × [1, 2] one may choose a C∞-small
change to disconnect them, similarly to the one done in the beginning of the proof of
Theorem 4.35. Saddle connections completely contained in [0, 3] × [1, 2] are prevented
but they may appear in A′.

Now after this isotopy the annulus A is convex and fulfills the conditions of the Im-
balance Principle so there must be at least one ∂-parallel component at the boundary
S1 × {0} by Theorem 4.32. We will show there must be one enclosing the Legendrian
divide {11

2} × [0, 12 ]. There are two main observations:

• There can be no ∂-parallel components of the dividing curve of A enclosing the
lines of singularities at 1

2 and 21
2 .

• The lines of singularities originating at {k+ 1
2}×{0, 3} are in the same component of

the dividing curve and there are no others in the same component for k = 3, 4, 5, 6, 7.

The second point implies that for k = 3, 4, 5, 6, 7 there must be a component of (some
choice of) the dividing curve originating in (k − 1

2 , k + 1
2) × {0} and terminating in

(k − 1
2 , k + 1

2) × {3}. The first point eliminates the other options. There are then two
possible options left for the dividing curve. Both of which include a ∂-parallel component
enclosing the line of singularities at {1 + 1

2} × [0, 1] which leads to the desired bypass
attachment.

The first point is easy to see: If there was a ∂-parallel component above these lines
of singularities this would result in bypass attachments. However if one where to attach
those bypasses these would result in overtwisted disk components of the dividing curve
of Σ in the tight neighborhood which is impossible, compare Figure 4.13. The second
bullet point follows directly by the initial discussion of the foliation on this part of the
annulus which remained unchanged by the isotopy. QED

After this very technical result, we are not yet done. All we have achieved up to now,
is that we have two convex surfaces Σ−+A and Σ+ which have the same dividing curve,
however we still need to find a convex isotopy which transports one into the other. To
do so, we will once again use the tightness of D′ × [−1, 1]:

Lemma 4.40. (Conclusion of Theorem 4.33) Σ− +A is convexly isotopic to Σ+.
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Figure 4.13: Attaching a bypass along the other components will result in homotopically
trivial components. The attachment arcs are drawn in black, while the rest
of L is drawn in blue.

Proof. We know Σ− + A =: Σ̃ and Σ+ have the same dividing curve and their charac-
teristic foliations agree outside the disk D′. So we may isotop Σ̃ such that it has the
same characteristic foliation as Σ+ with an isotopy contained away from the boundary of
L := ∂D′. Now there is a standardly foliated annulus L′× [−1

2 ,
1
2 ] between Σ and Σ+, for

which the disks cut-off by L′ agree. As before, we may use the edge rounding result and
glue these disks to the annulus to obtain an S2 which bounds a tight B3. Analogously
one may consider D2 × [−1, 1] with the R-invariant contact structure which induces the
characteristic foliations of D′

+ on each level set. This also leads to a tight B3.
Using Eliashbergs Theorem 4.18 we may isotop the original contact structure of B3

to coincide with the contact structure which has the same foliation on each level set of
D′. After this isotopy there is an extension Y of d

dr |(Σ\D′) × [−ϵ, ϵ] which is a contact
vectorfield and whose flow transports Σ̃ to Σ+. QED

Proof of Theorem 4.33. First, we use Giroux’s normal form Theorem 4.19 to isotop the
contact structure relative to the boundary such that each level set of Σ× [−1, 1] is convex
except for finitely many values r1, . . . , rn where the characteristic foliation of Σri fulfills
the following:

(i) All singularities are either saddles or nodes;

(ii) All closed orbits are non-degenerate;

(iii) There is a single saddle-saddle connection which is convex;
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(iv) The foliation is essentially planar.

So for an i, we must now find a bypass relating Σri−ϵi to Σri+ϵi for a sufficiently small
number ϵi such that the only bifurcation value of the family of foliations in the range
[ri − ϵi, ri + ϵi] is at ri.

One notices that each level-set Σr for r ∈ [ri − ϵi, ri) is convexly isotopic. The same
is true for the positive half-interval (ri, ri + ϵi]. Thus it does not matter for which exact
value we find the bypass attachment. After we apply the sequence of convex isotopies to
some Σ− and Σ+ given in Lemma 4.35, Lemma 4.36 and Lemma 4.38, we use Lemma
4.39 to find a bypass A which we may attach to Σ−. Finally Lemma 4.40 tells us that
Σ− +A is convexly isotopic to Σ+.

QED

72



Bibliography

[1] Daniel Bennequin. “Entrelacements et équations de Pfaff”. In: Third Schnepfenried
geometry conference, Vol. 1 (Schnepfenried, 1982). Vol. 107. Astérisque. Soc. Math.
France, Paris, 1983, pp. 87–161.

[2] Andreas Cap. Analysis on Manifolds. 2021. url: https://www.mat.univie.ac.
at/~cap/files/AnaMF.pdf.

[3] Y. Eliashberg. “Classification of overtwisted contact structures on 3-manifolds”.
In: Invent. Math. 98.3 (1989), pp. 623–637. url: https://doi.org/10.1007/
BF01393840.

[4] Yakov Eliashberg. “Contact 3-manifolds twenty years since J. Martinet’s work”.
In: Ann. Inst. Fourier (Grenoble) 42.1-2 (1992), pp. 165–192. url: http://www.
numdam.org/item?id=AIF_1992__42_1-2_165_0.

[5] Yakov Eliashberg and Maia Fraser. “Topologically trivial Legendrian knots”. In:
J. Symplectic Geom. 7.2 (2009), pp. 77–127. url: http://projecteuclid.org/
euclid.jsg/1239974381.

[6] John Etnyre. CONVEX SURFACES IN CONTACT GEOMETRY: CLASS NOTES.
url: https://etnyre.math.gatech.edu/preprints/papers/surfaces.pdf.

[7] John Boyd Etnyre. Symplectic constructions on 4-manifolds. Thesis (Ph.D.)–The
University of Texas at Austin. ProQuest LLC, Ann Arbor, MI, 1996, p. 131. url:
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=
info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:
pqdiss:9719350.

[8] Hansjörg Geiges. An introduction to contact topology. Vol. 109. Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 2008, pp. xvi+440.
url: https://doi.org/10.1017/CBO9780511611438.

[9] Emmanuel Giroux. “Convexité en topologie de contact”. In: Comment. Math. Helv.
66.4 (1991), pp. 637–677. url: https://doi.org/10.1007/BF02566670.

[10] Emmanuel Giroux. “Structures de contact en dimension trois et bifurcations des
feuilletages de surfaces”. In: Invent. Math. 141.3 (2000), pp. 615–689. url: https:
//doi.org/10.1007/s002220000082.

[11] Emmanuel Giroux. “Sur les transformations de contact au-dessus des surfaces”. In:
Essays on geometry and related topics, Vol. 1, 2. Vol. 38. Monogr. Enseign. Math.
Enseignement Math., Geneva, 2001, pp. 329–350.

[12] M.W. Hirsch. Differential Topology. Graduate Texts in Mathematics. Springer New
York, 2012.

73

https://www.mat.univie.ac.at/~cap/files/AnaMF.pdf
https://www.mat.univie.ac.at/~cap/files/AnaMF.pdf
https://doi.org/10.1007/BF01393840
https://doi.org/10.1007/BF01393840
http://www.numdam.org/item?id=AIF_1992__42_1-2_165_0
http://www.numdam.org/item?id=AIF_1992__42_1-2_165_0
http://projecteuclid.org/euclid.jsg/1239974381
http://projecteuclid.org/euclid.jsg/1239974381
https://etnyre.math.gatech.edu/preprints/papers/surfaces.pdf
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9719350
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9719350
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9719350
https://doi.org/10.1017/CBO9780511611438
https://doi.org/10.1007/BF02566670
https://doi.org/10.1007/s002220000082
https://doi.org/10.1007/s002220000082


[13] Ko Honda. NOTES FOR MATH 599: CONTACT GEOMETRY. url: https :
//www.math.ucla.edu/~honda/math599/notes.pdf.

[14] Ko Honda. “On the classification of tight contact structures. I”. In: Geom. Topol.
4 (2000), pp. 309–368. url: https://doi.org/10.2140/gt.2000.4.309.

[15] Yutaka Kanda. “On the Thurston-Bennequin invariant of Legendrian knots and
non exactness of Bennequin’s inequality”. In: Inventiones mathematicae 133 (1998),
pp. 227–242.

[16] L. Kronecker, K. Hensel, and Deutsche Akademie der Wissenschaften zu Berlin.
Leopold Kronecker’s werke: Herausgegeben auf veranlassung der Königlich preussis-
chen akademie der wissenschaften. Leopold Kronecker’s werke: Herausgegeben auf
veranlassung der Königlich preussischen akademie der wissenschaften Bd. 1. B.G.
Teubner, 1895.

[17] Patrick Massot. url: https://www.imo.universite-paris-saclay.fr/~pmassot/
en/exposition/gallerie_contact/index.html.

[18] John Milnor. Topology from the Differentiable Viewpoint. University Press of Vir-
ginia, 1965.

[19] M. M. Peixoto. “Structural stability on two-dimensional manifolds”. In: Topology 1
(1962), pp. 101–120. url: https://doi.org/10.1016/0040-9383(65)90018-2.

[20] Dan Rust. url: https://math.stackexchange.com/questions/909171/1-
dimensional-foliation-on-a-surface.

[21] J. Sotomayor. “Generic one-parameter families of vector fields on two-dimensional
manifolds”. In: Inst. Hautes Études Sci. Publ. Math. 43 (1974), pp. 5–46. url:
http://www.numdam.org/item?id=PMIHES_1974__43__5_0.

[22] G. Teschl. Ordinary Differential Equations and Dynamical Systems. Graduate stud-
ies in mathematics. American Mathematical Society, 2012.

74

https://www.math.ucla.edu/~honda/math599/notes.pdf
https://www.math.ucla.edu/~honda/math599/notes.pdf
https://doi.org/10.2140/gt.2000.4.309
https://www.imo.universite-paris-saclay.fr/~pmassot/en/exposition/gallerie_contact/index.html
https://www.imo.universite-paris-saclay.fr/~pmassot/en/exposition/gallerie_contact/index.html
https://doi.org/10.1016/0040-9383(65)90018-2
https://math.stackexchange.com/questions/909171/1-dimensional-foliation-on-a-surface
https://math.stackexchange.com/questions/909171/1-dimensional-foliation-on-a-surface
http://www.numdam.org/item?id=PMIHES_1974__43__5_0

	Introduction
	Foliations on surfaces
	Morse-Smale foliations
	Non-isochore and divided foliations
	Generic 1-parameter families of foliations

	3-dimensional contact topology
	Moser's stability trick
	Surfaces in contact manifolds

	Convex surfaces
	Flexibility of convex surfaces
	Overtwisted disks
	Giroux's normal form
	Bypasses
	Proof of Theorem 1.1


