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Abstract

We tested and improved a top quark mass calibration framework for Monte Carlo (MC)
event generators, that was originally used to calibrate the top mass parameter mMC

Pythia
of Pythia, using hadron level e+e− → tt̄ 2-Jettiness predictions, to field theoretically
well-defined renormalized Lagrangian masses, the MSR mass mMSR(R) and the pole mass
mpole. The current most precise top mass measurements specifically determine mMC, even
though its relation to the masses in the Standard Model Lagrangian is in general not fully
understood. The theoretical predictions employ two effective field theories, SCET and
bHQET, at N2LL +NLO accuracy. The O (ΛQCD) pole mass and soft function renormalon
ambiguities are canceled by using the MSR mass and the R-gap scheme respectively. In
this work we added two additional observables, sum of jet mass and modified jet mass, two
additional gap schemes and two other major MC generators, Herwig and Sherpa. We
achieved universal results for these observables and gap schemes, by using a more reliable
nonperturbative shape function parametrization and by including the leading kinematic
mass-dependent power corrections in the bHQET measurement function. Remaining
power corrections were reduced and estimated by parametrizing partial absorption of
power corrections from the nonsingular into the singular distribution. Our calibration
shows that the MC masses using standard tunes and the MSR mass at R = 1 GeV agree
with each other within uncertainties of 200 MeV, but the nonperturbative parameters for
our observables are measured to be vastly different for each MC.

Zusammenfassung

Wir haben ein Top-Quark-Massen-Kalibrierungs-Framework, basierend auf theoretischen
e+e− → tt̄ 2-Jettiness Berechnungen für hadronisierte Endzustände, für Monte-Carlo-
Event-Generatoren (MC) getestet und verbessert. Dieses System wurde ursprünglich
verwendet, um die Beziehungen zwischen dem Top-Massen-Parameter mMC

Pythia von Py-
thia und klar definierten renormierten Lagrangian-Massen, der MSR-Masse mMSR(R)
und der Polmasse mpole, zu bestimmen. Die zurzeit genauesten Messungen der Top-
Masse bestimmen spezifisch mMC, obwohl die Relation zwischen mMC und feldtheoretisch
renormierten Massen-Schemata im Standardmodell-Lagrangian im Allgemeinen nicht
vollständig verstanden ist. Die theoretischen Voraussagen verwenden zwei effektive Feld-
theorien, SCET und bHQET, mit N2LL +NLO Genauigkeit. Die O (ΛQCD) Polmasse-
und Soft-Funktion-Renormalon-Ambiguitäten werden mit der MSR-Masse und dem R-
Gap-Schema entfernt. In dieser Arbeit haben wir zwei zusätzliche Observablen, sum of jet
mass und modified jet mass, zwei zusätzliche Gap-Schemata und zwei andere bedeutende
MC Generatoren, Herwig und Sherpa, implementiert. Nach der Einführung einer ver-
lässlicheren nichtperturbativen Shape-Funktion-Parametrisierung und der Inklusion von
führenden kinematischen massen-abhängigen Power-Korrekturen in der bHQET Messfunk-
tion erhielten wir universelle Resultate für diese Observablen und Gap-Schemata. Die
restlichen Power-Korrekturen wurden durch eine Parametrisierung von partieller Absorp-
tion von Power-Korrekturen in die singuläre Verteilung reduziert und abgeschätzt. Unsere
Kalibrierungs-Resultate zeigen, dass die MC-Massen für die Standard-Tunes und die
MSR-Masse bei R = 1 GeV innerhalb der Unsicherheiten von 200 MeV miteinander über-
einstimmen. Bei den gemessenen nichtperturbativen Parametern für unsere Observablen
wurden jedoch große Unterschiede zwischen den MC Generatoren festgestellt.
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1. Introduction

The top quark mass parameter mt is one of most important parameters of the Standard
Model (SM). Due to its large size, it plays an important role in many quantitative and
conceptual aspects of the SM and beyond. The most precise determinations are obtained
by so called "direct measurements" where the kinematics of the top mass decay products
(jets and charged leptons) in tt̄ events are reconstructed and then compared to kinematic
distributions obtained from Monte Carlo (MC) event generator simulations. These MCs
are based on first principles QCD, but due to generality all parts of their ingredients,
e.g. the parton shower and hadronization use approximations or modeling, can have
systematic effects on the meaning of the top mass parameter mMC

t of these MCs. The
measured mass obtained by direct measurements is therefore specifically this MC mass
parameter mMC

t .
The current world average for direct measurements is mMC

t = 172.69± 0.30 GeV
[1], which uses, among others, the measurements mMC

t = 172.44± 0.48 GeV(CMS
combination) [2], mMC

t = 172.69± 0.48 GeV (ATLAS combination) [3] and mMC
t =

174.30± 0.65 GeV (Tevatron combination) [4]. Recently there has been a very precise
measurement not yet included in the world average mMC

t = 171.77± 0.38 GeV from
CMS [5]. Future projections for the HL-LHC indicate, that uncertainties as small as
200 MeV for individual measurements can be reached [6].

There have also been measurements of the pole mass, extracted from inclusive or
differential cross section measurements using theory prediction expressed in the pole
mass scheme. These measurements however have a lower sensitivity to mt than direct
measurements. The current world average is mpole = 172.5± 0.7 GeV [1].

The MC mass mMC
t has been frequently identified with the pole mass, but the pole mass

scheme is characterized by absorption of all self-energy corrections into its mass definition.
These corrections contain an O (ΛQCD) renormalon ambiguity, due to problematic infrared
contributions at the hadronization scale ∼ ΛQCD. This ambiguity conceptually limits the
precision to which the pole mass can be measured. The size of this ambiguity has been
estimated by two studies to amount to 110 MeV [7] or 250 MeV [8].

However, the parton shower in a MC has to impose an infrared cutoff scale on its shower
evolution. This introduces a resolution scale on the real and virtual radiation, which are
left unresolved below this scale. These unresolved corrections will therefore combine and
cancel the contributions that cause the renormalon ambiguity. These properties of the
MC have led to the conjecture, that mMC

t should be closely related to the MSR mass
with its infrared subtraction scale R, which acts like a resolution scale, set to the shower
cutoff scale Q0 [9, 10].

These uncertainties in the interpretation of the MC mass have led to a concerted effort
of the community into devising methods to obtain a better theoretical and numerical
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understanding of the relation between mMC
t and any well defined renormalized Lagrangian

QCD mass.
Recently there has been a theoretical determination of the Herwig mass scheme in

terms of the pole mass or the MSR mass, which quantified the corrections that arise from
the shower cutoff dependence [11].

Numerical efforts of understanding this relation on the other hand rely on comparison
of MC samples with state of the art hadron level QCD predictions for observables with
strong mass sensitivity, at a sufficiently high perturbative order to be able to fully control
the quark mass scheme dependence. Many of these strongly mass sensitive observables
require the use of effective field theories (EFT) that provide factorization theorems to
resum large logarithms of ratios of scales, which would otherwise spoil a fixed order (FO)
analysis, to all orders of perturbation theory. The description of at least the dominant non-
perturbative effects, used in these factorization theorems, can be consistently quantified
in a field theoretical framework.

These predictions can not only be used as a diagnostic tool to improve MC simulations,
but they also show promises for future experimental extractions of the top mass, once
suitable experimental measurements of these observables are possible.

Some of these results relevant to our work are the factorized hadron-level event shape
distribution for boosted top quark jets in the peak region for e+e− collisions [12, 13],
where the resummation has recently been extended to N3LL (next-to3 leading logarithmic
order) [14], a automated method to obtain fixed order NLO QCD massive event-shape
differential distributions [15], and for future comparison: boosted top jets with soft drop
grooming in pp collisions [16].

This master thesis is an direct update of the work presented in [17]. They calibrated the
Pythia MC top quark mass parameter using a N2LL EFT prediction of the hadron-level
boosted top quark 2-Jettiness distribution in the peak region for e+e− colliders, which
included power correction by matching to fixed order NLO QCD.

We used this framework to test the universal validity of the calibration results and the
effects of power corrections by using different observables and gap schemes. This has led
to the discovery of many issues that were not apparent with the original setup of [17]
and to subsequent improvements of this framework. The improved analysis was then, in
addition to Pythia, extended to the other major MC generators Herwig and Sherpa
to quantify how their masses relate to each other and the MSR mass and the pole mass.
The structure of this thesis is as follows: We describe all the ingredients of the

leading power EFT description (singular cross section) in Chap. 2, which includes the
factorization theorem, the description of nonperturbative effects, mass and soft gap
renormalon subtraction. In Chap. 3 we review the power correction contributions (non-
singulars) that arise when bHQET (boosted heavy quark effective theory) is matched
to SCET (soft collinear effective theory) and subsequently to fixed order QCD and we
present the expressions that are required for the description of the newly added observables.
Here we will also explain a possible prescription of absorbing power corrections into the
boundary conditions of the bHQET cross section. Chap. 4 shows how the ingredients
are combined and we state how perturbative scale variation is parameterized in terms of
so-called profile functions. In Chap. 5 we first review the fit procedure setup and the
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results of the original work, then we present a necessary improvement of the fitting process
of adding another fit parameter ∆0 to the analysis. At the end of this chapter we show
that the calibration framework does not give compatible results when the new observable
sum of jet mass (SJM) is used instead of 2-Jettiness. In Chap. 6 we investigate the
bHQET measurement function and discover that the leading power corrections responsible
for the observable differences can be accounted for by including power correction rescaling
factors of bHQET collinear and soft variables formulated directly within the measurement
function. In Chap. 7 we present the final fit results using different observables, soft
gap schemes, MC event generators and different power correction treatments. For the
final version of our calibration procedure we had to devise an optimized “partial absorb”
parametrization to estimate power correction uncertainties, since it became apparent that
the global observable independent power corrections are large after the treatment of the
leading observable dependent power corrections.
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2. Resummed Cross Section

2.1. Factorization Theorem in the Peak Region

A factorization theorem that resums large logs in the peak region of the 2-jettiness
distribution for e+e− → tt̄+X was derived in [12,13] by using a sequence of EFTs.

The observables1 τ for which the factorization theorem is valid have the same definition,
when first applying the power counting of SCET (soft-collinear effective theory) and then
the power counting of bHQET (boosted heavy quark effective theory):

τ ≈ (M2
t +M2

t̄ )/Q2, (2.1)

where Mt and Mt̄ are the invariant masses of the top and antitop hemisphere respectively
and Q is the center of mass energy of the colliding electron and positron. We have, for
the peak region that we are interested in, top and antitop jets that are characterized by
pencil-shaped, i.e. very narrow and collimated, cones that are aligned to the thrust axis.
The top and antitop hemispheres are defined by the plane perpendicular to the thrust
axis. The minimum value for these observables in the case of stable top quarks has the
form

τmin = 2m̂2 +O
(
m̂4
)
, (2.2)

with m̂ ≡ mt/Q. mt (≡ m) is the top quark mass parameter. In Sec. 3.2.3 we give details
on the observables that we consider in this work and we explain how the hemispheres are
exactly defined.
The scattering process exhibits large hierarchies of scales in the peak region of the

distribution. The top and antitop are produced from the two colliding particles with a
center of mass Energy Q. In the peak region the invariant masses Mt,t̄ are close to the
top mass

ŝt,t̂ ≡
st,t̄
m
≡
M2
t,t̄ −m

2

m
∼ Γ� m, (2.3)

where Γ is the top width and where we have defined the off-shellness variables ŝt,t̄ and st,t̄.
The quark and gluon fluctuations of the top and antitop jets that are compatible with
this off-shellness region have a so-called ultra-collinear scaling of momentum components.
In the top and antitop rest frames this scaling is homogeneous and has a size of ∼ Γ. The
scaling in the lab frame, which we define as the center of mass frame, is given in Sec. 6.2.
The smallest ultra-collinear component is power counted as ∼ m̂Γ. This expression is
used to define the homogeneous momentum scaling kµs ∼ Λ ∼ m̂Γ of the large angle soft

1We will use e synonymously for τ in later chapters. Both stand for generic thrust variables which give
the same expression as 2-Jettiness in the leading power counting of SCET+bHQET.
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fluctuations, that are responsible for the cross-talk between the two jets, where Λ ≥ ΛQCD

is the size of the soft momenta.
The fixed order perturbative description of this process exhibits large logarithms of

ratios of these momentum scales with Q� m� Γ > m̂Γ. These logarithms invalidate
the expansion in fixed orders of αs, since terms across different loop orders have to be
counted to have the same size. A precise calculation of the differential cross section in
the peak region therefore requires the introduction of effective field theories, which resum
logarithms of the same size across all orders of perturbation theory (see Tab. 4.1 for the
naming convention of the logarithmic resummation orders and which logarithms they
resum).
The authors of Refs. [12,13], which give the derivation of this factorization theorem,

first apply soft-collinear effective theory (SCET) to integrate out fluctuations at the
production scale Q, which leads to an expansion in m̂ = m/Q � 1 and resums logs of
τ ∼ m̂2. This theory can be used in the tail region where the off-shellness of the top
quark jets st,t̄ = M2

t,t̄ −m
2 are still of the size m2. In the peak region the fluctuations

are constrained to be much smaller, with the top width Γ acting as a lower bound to the
rescaled off-shellness Γ . ŝt,t̄ � m. They therefore use boosted heavy quark effective
theory (bHQET) to integrate out large momenta and resum logs of ŝ/m ∼ Γ/m. The
resulting bHQET event shape distribution reads

1

σ0

dσBHQET(τ)

dτ
= mtQ

2H
(6)
Q (Q,µH)U

(6)
HQ

(Q,µH , µm)H(6)
m (m, %, µm)U (5)

v (%, µm, µ)

×
∫

d`dŝ U
(5)
B (ŝτ − %`− ŝ, µ, µB)B(5)

τ (ŝ,Γt, δm, µB)

×
∫

d`′ dk U
(5)
S (`− `′, µ, µS)Ŝ(5)

τ (`′ − k, δ̄, µS)F (k − 2∆)

(2.4)

where the superscripts (6) and (5) indicate the number of active dynamical quark flavours,

% ≡ Q/m (2.5)

is the leading term of the on-shell top quark boost factor in the SCET limit and the
off-shellness variable

ŝτ ≡
Q2(τ − τmin)

m
(2.6)

is a generic observable defined by Eq. (2.1) shifted by its threshold τmin, which is given
in Eq. (2.2). Usually, the exact expression τmin for the specific observable considered
is used, since the O

(
m̂4
)
term turns out to have a large impact on the peak position.

These τmin expressions are given in Sec. 3.2.3 for observables relevant to this work. We
will see in Sec. 5.2.4 that including only this threshold correction, i.e. using the exact
τmin, is not enough to make fits for different observables agree in the extracted top mass.
The main ingredient in the solution of this problem is the inclusion of further mass power
corrections in the measurement function, which is presented in Chap. 6.
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Hard Matching Functions

The SCET hard function HQ is the squared Wilson coefficient obtained by matching
QCD and SCET currents at leading order in m̂. It contains the short distance dynamics
at the scale Q that were integrated out in SCET [13]

HQ(Q,µ) = 1 +
CFαs(µ)

4π

{
−2 log2

(
Q2

µ2

)
+ 6 log

(
Q2

µ2

)
− 16 +

7π2

3

}
. (2.7)

Similarly, Hm is the matching coefficient between SCET and bHQET. It contains
fluctuations at the top quark mass scale, that were integrated out in bHQET [13,18]

Hm(m,µm) = 1 +
CFαs(µm)

4π

{
2L2

m − 2Lm + 8 +
π

3

}
+
CFTFα

2
s(µm)

4π
log

(
m2

Q2

){
8

3
L2
m +

80

9
Lm +

224

27

}
.

(2.8)

where Lm = log
(
m2/µ2

m

)
. The 2-loop term, which is enhanced by a so-called rapidity

logarithm, is formally counted as α2
s log m̂2 ∼ O (αs) and is therefore included at N2LL.

This term appears because there are two types of fluctuations at the mass scale, collinear
and soft mass modes, which have the same invariant mass but different rapidities.

The bHQET Jet Function

The bHQET jet function describes the remaining leading order dynamics of the ultra-
collinear fluctuations along the top and anti-top directions

m2B(ŝ,Γ = 0, δm = 0, µ) = δ(ŝ)+
CFαs(µ)

4π

{
(8− π2)δ(ŝ) + 16Lµ1 (ŝ)− 8Lµ0 (ŝ)

}
, (2.9)

where Li are the standard plus distributions defined in Eq. B.4.
The leading finite width effects can be expressed as a convolution of the stable jet

function with a Breit-Wigner function

Bτ (ŝ,Γt, δm, µB) =

∫
dŝ′

π

2Γt
(ŝ− ŝ′)2 + (2Γt)2

Bτ (ŝ′,Γt = 0, δm, µB) (2.10)

where Γt is the top quark width.
The residual mass term δm specifies the renormalization scheme for the top mass. It

enters the threshold by the replacement ŝ→ ŝ− Q2

m
dτmin
dm δm. The mass schemes used in

this work are explained in Sec. 2.2.1.

The Soft Function and Nonperturbative Effects

The soft function accounts for the effects of large-angle soft radiation with respect to the
thrust axis. It also contains non-perturbative corrections due to hadronization effects. In
the tail region of the distribution where ` ∼ µS � ΛQCD it is sufficient to use an operator
product expansion (OPE) where the leading nonperturbative correction is given by one
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parameter Ω1, which describes how hadronization effects shift the perturbative cross
section. In the peak region one has to use a full model to quantify the modifications of
the peak shape caused by nonperturbative corrections. This can be achieved by including
the nonperturbative effects in a model function (shape function) F (k) [19], which is
convoluted with the leading term in the OPE, the perturbative soft function Ŝ(`)

S(`, µ) =

∫
dk Ŝ(`− k, µ)F (k − 2∆) (2.11)

Ŝ(`, µ) = δ(`) +
CFαs(µ)

4π

{
π2

3
δ(`)− 16Lµ1 (`)

}
(2.12)

The model function F (k) has support for k ≥ 0, peaks at k ∼ ΛQCD and is normalized
to unity. The parameter ∆ accounts for the average minimum hadronic energy deposit
in each hemisphere originating from the hadronic masses and is also referred to as the
‘gap’ [19].

For our numerical studies we use the shape function parametrization developed by
Ref. [20]

F (k;λ, {ci}) ≡
1

λ

[
N∑
n=0

cnfn

(
k

λ

)]2

(2.13)

fn(z) = 8

√
2z3(2n+ 1)

3
e−2zPn(g(z))

g(z) =
2

3
[3− e−4z(3 + 12z + 24z2 + 32z3)]− 1

(2.14)

where Pn are the Legendre polynomials. The normalization is fixed by
∑

i c
2
i = 1. We

truncate the sum over basis functions fn at N = 3, since this is sufficient to describe
corrections to the peak shape due to nonperturbative effects. The first term in the series
is a function with one peak. The terms with larger n have successively more oscillations
and are less important for the shape of the peak of the cross section, because the details
of the shape function will be smeared by the convolution. This conversely means that the
first moment and the width of the truncated sum have to be set accordingly. The width
can be adjusted with the parameter λ which will therefore be set at an appropriate value
somewhat close to ΛQCD. We will see in Chap. 5 that the first moment of the partial sum
is very sensitive to the choice of the reference value of the renormalon free gap parameter
∆(Rs, µS), which is defined in Eq. (2.18), at the reference scale Rs = µS = R∆. We will
demonstrate that ∆(R∆, R∆) should be determined by fitting it together with the mass
parameter.

Evolution Factors

The evolution kernels UHQ , Uv, UB and US perform the renormalization group (RG)
evolutions for the hard function, the bHQET squared current

Jν ≡ Bτ ~ Sτ , (2.15)
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the jet function and the soft function respectively. They sum large logs between Q �
m� Γ > m̂Γ.
The hard function HQ is evolved through the SCET current evolution kernel UHQ

from the production scale µH ∼ Q to the mass scale µm ∼ m. The jet and soft function
are evolved from their respective scales µB & Γ and µS & m̂Γ to a scale µ and this
combination Jν at scale µ is then evolved with the bHQET current evolution kernel Uv
to µm. The cross section at any order is strictly invariant with respect to the choice of µ.

The hard evolution factors are multiplicative and only change the normalization, while
the soft and jet evolutions are given by convolutions. Their expressions and the anomalous
dimensions are given in App. A.1.

2.2. Renormalon Subtractions

2.2.1. Mass schemes

It is known that the pole mass in QCD has a O (ΛQCD) renormalon, caused by on-shell
quark self energy corrections which are linearly sensitive to small momenta. These
corrections are factorially divergent at large orders of the perturbation series and lead
to an ambiguity of the pole mass of around 110 MeV [7] or 250 MeV [8]. The pole mass
scheme has therefore been abandoned in high precision top, bottom and charm quark mass
analysis in favor of short distance quark mass schemes that do not have this renormalon.
The MS mass is such a mass scheme and the perturbative relation to the pole mass is
given by (mt ≡ m(5+1)

t (m
(5+1)
t ))

δm(mt) = mpole
t −mt = mt

∑
n=1

aMS
n (nl = 5, nh = 1)

[
α

(5+1)
s (mt)

4π

]n
(2.16)

in the approximation that the masses of all quarks lighter than the top quark are zero.
The coefficients aMS

n (nl, nh) are known analytically at O
(
αs, α

2
s, α

3
s

)
from Refs. [21–26].

Here, nl is the number of massless quarks and nh = 1 means that the corrections include,
apart from the nl massless quarks, also the virtual loops of the heavy top quark.
The subtraction term is O (mt), which is not compatible with the bHQET power

counting. We therefore use the MSR mass mMSR
t (R) [27], for which δm(R) ∼ αsR, such

that R can be adapted to be consistent with the power counting of the bHQET jet
function. There are two possible O (ΛQCD) renormalon free MSR mass prescriptions,
which differ by how virtual top quark loops are treated in the matching with the MS
mass, called the “natural” and the “practical prescription”. The natural MSR mass does
not absorb the self energy corrections that contain virtual top quark loops, while the
practical MSR mass accounts for the virtual corrections from the top quark when evolving
with R. We have used the practical prescription [27] in our analysis, since it was also
employed in the original top mass calibration analysis of [17] and because the difference
between the two prescriptions is quite small [27]. We have also tested the effect of using
the natural prescription in our fits and the differences for the fitted mass were below
10 MeV. The defining series for the practical MSR mass mMSRp

t (R) is obtained from the
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MS-pole perturbative series of Eq. (2.16) by rewriting α(5+1)
s (mt) as a series in α(5)

s (mt)
and then replacing mt by R [27]:

δmMSRp(R) = mpole
t −mMSRp

t (R) = R
∑
n=1

aMSRp
n (nl = 5)

[
α

(5)
s (R)

4π

]n
(2.17)

where the coefficients aMSRp
n (nl) and the solution of the R-evolution, that is the renor-

malization group evolution of mMSRp(R) with respect to the renormalization scale R, are
given in App. A.2. The subtraction series δmMSRp(R) has to be expanded in powers of
αs with its renormalization scale set to µB of the jet function to consistently cancel the
pole mass renormalon. Our profiles set the infrared subtraction scale R = µB so that
they automatically have a common renormalization scale.

2.2.2. Soft Gap subtraction schemes

The partonic soft function Ŝ also has a leading O (ΛQCD) renormalon which leads to
instabilities of the partonic threshold. It is independent of the pole mass renormalon,
which is isolated to the jet function, only an artifact of the pole mass prescription and
can be removed just by switching to a short distance mass scheme. The ambiguity in the
partonic soft function on the other hand is physical and related to a non-perturbative
effect. The corrections in the partonic soft function that cause the renormalon ambiguity
have to be canceled by an oppositely signed subtraction series δ̄(Rs, µS) contained in the
gap parameter ∆ which appears in the argument of the nonperturbative model function
F (k − 2∆). The RGE and scheme invariant gap parameter ∆ can therefore be split
into the gap subtraction series δ̄(Rs, µS) and a renormalon-free model parameter for the
hadronic threshold ∆(Rs, µS) [19]:

δ̄(Rs, µS) = ∆−∆(Rs, µS) = Rs
∑
i=1

di(Rs, µS)

[
α

(5)
s (µS)

4π

]i
, (2.18)

where, depending on the gap definition, the µS dependence of di(Rs, µS) either just
arises from a re-expansion of αs(Rs) in terms of αs(µS) or it contains a non-vanishing
anomalous dimension inherited from the soft function. So, the renormalon free gap
parameter ∆(Rs, µS) depends on the infrared subtraction scale Rs and for gap scheme
1, introduced below, also on the soft function renormalization scale µS . The Rs and µS
evolutions are given in App. A.2. The perturbative and nonperturbative thresholds are
renormalon free after splitting the gap parameter ∆

S(`, µS) =

∫
dk Ŝ(`− k, δ̄(Rs, µS), µS)F (k − 2∆̄(Rs, µS)) (2.19)

with the renormalon subtracted perturbative soft function

Ŝ(`, δ̄(Rs, µS), µS) = Ŝ(`− 2δ̄(Rs, µS), µS), (2.20)
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where we have indicated that, analogously to the pole mass renormalon subtraction, the
subtraction series has to be re-expanded in powers of αs(µS) to consistently cancel the
renormalon. A parametrization for suitable subtraction schemes, collectively referred to
as R-gap schemes, has been introduced in Ref. [14] by imposing a general condition on
the soft function at a point in position space. The solution is given by

δ̄(Rs, µS ; A, n, ξ) ≡


Rs
2ξ

dn

d log(iy)n
log
[
S̃τ (y, µS)

]
iy= ξ

Rs

if A=on

Rs
2ξ

dn

d log(iy)n
log
[
S̃τ (y,Rs)

]
iy= ξ

Rs

if A=off
(2.21)

where the position space soft function is defined as

S̃τ (y, µ) =

∫ ∞
−∞

d`+ e−iy`
+
Ŝτ (`+, µ) = exp

∑
i=1

[
α

(5)
s (µ)

4π

]i i+1∑
j=0

sij logj(ieγEyµ)

 ,

(2.22)
The coefficients sij can be generated according to Eq. (A.17). The switch A turns the non-
trivial anomalous dimension in µS on or off. When A=on the scale of the strong coupling
in the subtraction series is µS by construction, while A=off defines a gap subtraction
series that only depends on Rs. We remind the reader that the strong coupling of the
subtraction series for the latter case has to be expanded in terms of αs(µS), so that the
renormalon can be properly canceled. In this work we will use three different schemes to
test the gap dependence of the extracted fit parameters:

δ̄1(Rs, µS) ≡ δ̄(Rs, µS ; on, 1, e−γE )

δ̄2(Rs, µS) ≡ δ̄(Rs, µS ; off, 0, e5γE )

δ̄3(Rs, µS) ≡ δ̄(Rs, µS ; off, 0, 1)

(2.23)

The gap scheme 1 [28] was used in the original Pythia top mass calibration of Ref. [17]

δ̄1(Rs, µS) =
Rse

γE

2

∑
i=1

[
α

(5)
s (µS)

4π

]i i∑
j=0

(j + 1)si,j+1 logj
µS
Rs

(2.24)

The choice of n = 1 sets the first constant coefficient to s11 = 0. Thus, the infrared cutoff
scale Rs in this scheme has to be strictly set below the soft renormalization scale µS to
achieve a useful subtraction term with the proper sign at O (αs).
Gap scheme 3 was preferred in Ref. [17], since setting Rs in δ̄1 below µS ∼ ŝ/% in the

peak region led to instabilities at N3LL due to the larger values of αs(µS).

δ̄3(Rs, µS) =
Rs
2

∑
i=1

[
α

(5)
s (Rs)

4π

]i i+1∑
k=0

sikγ
k
E (2.25)

Scheme 3 is formally independent of the soft renormalization scale µS when the αs series
is summed to all orders. To properly cancel the renormalon in the soft function we have
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to expand the strong coupling in terms of αs(µS). In the notation of Eq. (2.18) we have

dgap 3
i (Rs, µS) =

i−1∑
j=0

dgap 3
ij logj

(
µS
Rs

)
(2.26)

with the coefficients given by the recursion relation

dgap 3
ij =

2

j

i−1∑
k=j

kdgap 3
k,j−1β

(5)
i−k−1

dgap 3
i0 = dgap 3

i (Rs, Rs),

(2.27)

where the QCD beta function coefficients are given in Eq. A.11
We have noticed in our numerical studies that δ̄3 has some unphysical behavior in the

transition from the peak to the tail region when paired together with the pole mass scheme
and using profile functions with fast changing scales. This is caused by large R-running
effects of gap scheme 3 at NLL when the scales start to grow right after the peak. The
thrust variable τ in the cross section argument always appears in combination with the
mass-dependent threshold and the soft gap in the form τ − 2[m2/Q2 + ∆/Q] (power
corrections are omitted here). At NLL + pole mass scheme, there are no subtraction terms
and only the gap ∆(Rs(τ)) runs as a function of τ . The combination τ − 2∆(Rs(τ))/Q
might therefore be constant or even decreasing as a function of τ if ∆(Rs(τ)) grows too
fast over some τ -range. This behaviour leads to stretched out peaks for profiles with
fast growing scales. The MSR mass running has the opposite sign so that its effect on
the cross section argument combination goes into the opposite direction. Accordingly,
using the MSR mass scheme together with the gap 3 scheme at NLL results in a better
behaviour of the cross section argument. The problematic large running effects of gap 3
led us to introduce the scheme gap 2

δ̄2(Rs, µS) =
Rs

2e5γE

∑
i=1

[
α

(5)
s (Rs)

4π

]i i+1∑
k=0

sik(6γE)k, (2.28)

which differs from gap 3 by setting ξ to e5γE instead of 1. This value removes the
unphysical behavior in the above stated cases and sets the numerical value of the order
αs subtraction halfway between gap 1 and gap 3.
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3. Nonsingular Corrections

The resummed cross section from the previous chapter, also referred to as the singular
cross sections, contains the leading distributional terms in a expansion in m/Q, ΛQCD/Q
and Γ/m and the correction are O (αsm̂), O (m̂Γ/Q), O

(
m̂2
)
and O (Γ/m) [12]. In

Ref. [17] the resummed bHQET distribution has been matched first to SCET and then
to the full QCD 2-Jettiness distribution at NLO (O (αs)) to also include these missing
power corrections in the fixed order expansion. We will in this chapter briefly review
the matching prescription and present the missing results required for the additional
observables sum of jet mass (sJM, or also referred to as hemisphere mass sum) and
“modified jet mass” (mJM).

3.1. QCD and SCET Nonsingular Distributions

We will use the term “QCD nonsingular” for corrections that come from QCD with respect
to SCET and “SCET nonsingular” for corrections that are obtained from SCET with
respect to bHQET. We will also freely switch between the two commonly used variable
names for a generic thrust variable: τ and e. They will be treated as synonyms of each
other. In our notation these letters and also the jet function variable ŝ can be read as
general expressions that are valid regardless of which prescription we use for the rescale
factors that are introduced by Eq. (6.1). The measurement function that includes the
rescaling factors rc and rs in the first line of Eq. (6.20), with ŝ = ŝ1 + ŝ2, will always
be correct for the definition of ŝ (and in extension also s = mŝ). The rescale factors rs
and rc should be set to 1 before we introduce them in Chap. 6. This just means that
we are using the “no rescale” prescription, i.e. we do not include power correction in
the factors that multiply the collinear variable ŝ and the soft variable `. In Chap. 6
we will restate general versions of those formulas where explicit factors of rs and rc are
missing. Setting rs and rc in these general formulas to 1 will always again recover the
corresponding formulas for the “no rescale” treatment.

The SCET and QCD matched cross section is given by

dσ

de
=

dσBHQET

de
+

dσnsb

de
+

dσns

de
. (3.1)

The SCET matching contribution dσnsb /de is defined by the terms missing in bHQET
when the bHQET jet scale µB and the SCET jet scale µJ meet at the mass scale µm

dσSCET

de

∣∣∣∣
µJ=µm

=

[
dσBHQET

de
+

dσnsb

de

]
µB=µm

. (3.2)
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The term dσnsb /de arises from the non-distributional part Jnsb(s = mŝ,m, µ) of the
SCET jet function JSCET(s, µ) [12], which is power suppressed in bHQET.

JSCET(s, µm) = HmBτ (s/m, µm) + Jnsb(s,m, µm) (3.3)

At N2LL this correction can therefore be simply expressed as the bHQET formula of
Eq. (2.4) with Bτ replaced by Jnsb [13]

dσnsb

de
=

dσBHQET

de

∣∣∣∣
B

(5)
τ (ŝ,Γt,δm,µB)→J(5)

nsb(mŝ,m,µB)

Jnsb(s,m, µ) =
CFαs(µ)

4π

[
2s

(s+m2)2
− 8

s
ln
(

1 +
s

m2

)]
θ(s)

(3.4)

The running of this SCET nonsingular jet scale has been changed compared to the original
Pythia calibration of [17] to not freeze out at µm, but to exactly follow the physically
more sensible bHQET jet scale µnsb = µB . Note that the SCET nonsingular is numerically
negligible small in the peak region, when compared to the distributional part of the QCD
nonsingulars.

The QCD nonsingulars are determined by setting all the scales in the SCET cross section
to a common scale and computing the difference to the QCD cross section normalized by
the massless quark tree-level cross section, the born cross section σC0

1

σC0

dσCns
de
≡ 1

σC0

dσCQCD

de
− 1

σC0

dσCSCET

de

∣∣∣∣
FO

= RC,ns
0 (m̂)δ(e− emin) +

CFαs
4π

{
AC,ns
e (m̂)δ(e− emin)

+BC,ns
plus (m̂)

[
1

e− emin

]
+

+ FNS,C
e (e, m̂)

} (3.5)

The born cross section σC0 , given in Eq. 3.9, depends on the current, axial-vector (C = A)
or vector current (C = V ), due to different contributions from the photon and the Z boson
to the propagator. The normalized QCD cross section (σC0 )−1 dσCQCD / de also depends
on C. In a strict treatment of power corrections the normalized SCET distribution
(σC0 )−1 dσCSCET /de is independent of C, but we want to keep Eq. (3.5) general, when
we start to include power corrections in the SCET cross section by absorbing them into
the coefficients of the delta and plus distribution, see Sec. 3.3. This absorption has to
be performed separately for vector and axialvector current and leads to a C dependence
also for the normalized redefined SCET distribution. After calculating the nonsingular
distribution for each current we can then obtain the final QCD nonsingular distribution
by adding both contributions

dσns

de
=

dσVns

de
+

dσAns

de
. (3.6)

We note that the coefficients of the distributions, i.e. RC,ns
0 , AC,ns

e and BC,ns
plus , are always

extracted from the standard form shown in Eq. (3.5), which restricts the delta and plus
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distribution arguments to be e − emin without any other multiplicative factors. This
standard form can always be obtained by applying the rescaling relation Eq. (B.6) to
plus functions and the standard rescaling formula to delta functions. This procedure
guarantees that all the coefficients in Eq. (3.5) are unambiguously defined even if we use
a power correction prescription, see Chap. 6, that rescales the argument of the SCET
cross section.
We also note that the QCD term in Eq. (3.5) contains different power corrections for

each of the observables that we consider, i.e. τ2, τm and τs , but for a fixed oberservable it
will not change due to any prescription that we introduce in this work, since our matched
cross section in Eq. (3.1) should always recover the QCD cross section in the fixed order
(FO) limit, i.e. when all renormalization scales are set to the same µ.

Conceptually, it is actually not required to explicitly calculate the nonsingular coef-
ficients in the second and third line of Eq. (3.5). Evaluating the SCET cross section
at fixed order directly and then subtracting it from the QCD distribution is the more
intuitive approach. In a numerical computation, however, it is more efficient to perform
calculations with the nonsingular coefficients rather than repeating each computation for
QCD and SCET separately and then taking the difference.

The fixed order SCET distribution1 that has to be subtracted from the QCD event-shape
distribution in 3.5 is given by [29]

1

σ0

dσSCET

de

∣∣∣∣
FO

= δ(e− emin) +
CFαs

4π

{
[2π2 + 4 log(m̂) + 16 log2(m̂)]δ(e− emin)

− 8[1 + 2 log(m̂)]

[
1

e− emin

]
+

+

[
2(e− emin)

(e− emin + m̂2)2
−

8 log
(
1 + e−emin

m̂2

)
e− emin

]
θ(e− emin)

}
(3.7)

3.2. QCD Massive Event-Shape Distribution

The full QCD calculation is required to obtain the QCD nonsingular distribution according
to Eq. (3.5). The QCD distribution has the general form

1

σC0

dσCQCD

de
= RC0 (m̂)δ(e− emin) +

CFαs
4π

{
ACe (m̂)δ(e− emin)

+ BC
plus(m̂)

[
1

e− emin

]
+

+ FNS,C
e (e, m̂)

}
+O

(
α2
s

)
.

(3.8)

The following subsections will list all the relevant formulas for the coefficients in this
equation and for the function FNS,C

e (e, m̂) for each observable e that we consider.

1This formula uses strict power counting, i.e. rs = 1 and rc = 1, see Eq. (6.22) for the general case
including mass-dependent measurement power corrections. We have also dropped the C superscript
since the normalized SCET cross section only depends on C when the “absorb” prescription is used,
see Sec. 3.3
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3.2.1. Born Cross Section

Event-shape distributions are customary normalized to the Born cross section defined as
the cross section for massless quarks at tree-level. The Born cross section can be split
into vector and axial-vector contributions σ0 = σV0 + σA0 . The former is mediated by both
photon and Z boson exchange, while the latter only contains Z boson contributions. They
are given by [29]

σV0 =
Nc

3

4πα2
em

Q2

Q2
q +

v2
q (v

2
e + a2

e)

(1− m̂2
Z)2 +

(
ΓZ
mZ

)2 +
2Qqvevq(1− m̂2

Z)

(1− m̂2
Z)2 +

(
ΓZ
mZ

)2


σA0 =

Nc

3

4πα2
em

Q2

 a2
q(v

2
e + a2

e)

(1− m̂2
Z)2 +

(
ΓZ
mZ

)2


(3.9)

with Nc the number of colors, αem the electromagnetic coupling, Qq the quark electric
charge, m̂Z = mZ/Q the reduced Z boson mass, ΓZ the finite width of the Z boson,
vi = (T i3 − 2Qi sin2 θW )/ sin(2θW ), ai = T i3/ sin(2θW ) the vector and axial couplings of
the electron or quark to the Z boson.
The finite quark mass tree level delta-distribution coefficients then read

RV0 (m̂) =
(3− v2)v

2
, RA0 (m̂) = v3 (3.10)

3.2.2. Phase Space and Kinematic Variables

For the calculation of the O (αs) distribution, which consists of the virtual radiation
contribution with back-to-back top and anti-top quarks and the real radiation contribution
with an additional real gluon in the phase space integral, we follow the instructions of [15].
We define the convenient phase space variables y and z

xq = 1− zy, xq̄ = 1− (1− z)y (3.11)

with xi = 2Ei/Q the fractional energy of particle i. Energy conservation xq + xq̄ + xg = 2
then fixes y = 2Eg/Q. The Dalitz region is parametrized as

0 <= y <= ymax(z) ≡ 1− m̂2

z(1− z)
, z− ≤ z ≤ z+,

z± ≡
1± v

2

(3.12)

with v =
√

1− 4m̂2 the velocity of an on-shell top quark in the center of mass frame.
The 3-body phase space can be split into three regions, which we call the quark-,

the antiquark- and the gluon-region. In the quark(antiquark)-region the thrust axis is
aligned with the quark(antiquark) momentum and it is alone in one hemisphere while the
antiquark(quark) and gluon momenta point into the other hemisphere. The gluon region
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describes a gluon traveling alone into one hemisphere with its momentum aligned with
the thrust axis while the quark and anti-quark travel into the other hemisphere. The
gluon region only contributes far away from the peak of our event-shape distributions.
The boundaries of these regions are given by [15]

quark− region : z− ≤ z ≤
1

2
, 0 ≤ y ≤ min[ymax(z), yτ (z)]

antiquark− region :
1

2
≤ z ≤ z+, 0 ≤ y ≤ min[yτ (1− z), ymax(z)] (3.13)

gluon− region : m̂ ≤ z ≤ 1− m̂, max[yτ (z), yτ (1− z)] ≤ y ≤ ymax(z),

where

yτ (z) =

√
1− 4m̂2(1− z2)− z

1− z2
(3.14)

separates the quark and gluon region. The phase space as well as matrix elements are
invariant under the transformation z → 1− z, i.e. mirror symmetric with respect to the
z = 1/2 vertical line. The quark and anti-quark regions are separated by this line and
this transformation interchanges the quark and anti quark regions and maps the gluon
region onto itself.
Expressions relating the observable to the phase space variables z and y, also called

measurement functions, can be calculated from the following expressions for the quark,
antiquark and gluon momenta (p̃µ ≡ pµ/Q = [E, pX , pY , pZ ]/Q) [15]:

p̃µg =
y

2
[1, 0, 0, 1]

p̃µq =

[
1− yz

2
, 0,−

√
(1− y)(1− z)z − m̂2,

2z − 1− yz
2

]
p̃µq̄ =

[
1− y(1− z)

2
, 0,
√

(1− y)(1− z)z − m̂2,
1− y(1− z)− 2z

2

] (3.15)

where we use capital letters to refer to Cartesian coordinates. The gluon three-momentum
has been aligned with the Z-direction and the scattering plane has been fixed to lie in
the X, Y plane. This is sufficient, because our event shapes as well as our phase space
variables, y and z, are invariant with respect to rotation of the coordinate system.

3.2.3. Observable Definitions and Properties

For the following subsections we will need the definitions of the observables that are
used in the calibration fits, the boundaries of the quark and gluon regions, and their
measurement functions in these regions. Our observables depend on the thrust axis which
appears in the definition of the conventional “thrust” event shape

T = max
t̂

∑
i |t̂ · ~pi|∑
i |~pi|

(3.16)

where the sum runs over all final state particles with momenta ~pi. This thrust definition
has its peak region located around the maximum value of T for the stable top quark
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distribution. The peak region is associated with 2-jet events. These are characterized
by two jets, consisting of highly boosted collinear particles traveling either parallel or
anti-parallel to the thrust axis, and large angle soft radiation in between the jet directions.
The plane perpendicular to the thrust axis separates the top and antitop hemispheres.
This separation plane is used to define other event shapes that depend on the invariant
mass of the sum of momenta in these hemispheres. Given Hemispheres a and b, we define
the dimensionless invariant masses as

ρa,b =
1

Q2
(
∑
i∈a,b

pi)
2 (3.17)

where the sum runs over all final state particles in either hemisphere a or b and Q is the
center of mass energy.
The observables that we consider are the same at leading order power counting in

SCET. Their differences lie in higher order power corrections. Our event shape variables
are defined so that the peak of the stable quark event shape distribution lies at τmin =
2m̂2 +O

(
m̂4
)
and the radiative tail continuous into the positive τ direction. Performing

fits using event shapes that differ in their power corrections will allow us to estimate how
important these corrections are. The m̂2 ∼ 1/10 corrections are numerically the largest
power corrections, and it is therefore these power corrections that we examine and treat
carefully.

Heavy Jet Mass (HJM)

This observable is not directly used for our fits, but the available results for the αs fixed
order distribution can be reused for other event shapes. It is given by the larger of the
two invariant hemisphere masses

ρ = max(ρa, ρb). (3.18)

We need the measurement functions for each of the phase space regions defined above
(3.13), that is ρ(y, z), to later perform the phase space integrals. The measurement
functions in the quark and gluon regions can be obtained by inserting Eq. (3.15) into
the observable definition while taking into account which particles are together in one
hemisphere. For the quark and gluon region we obtain

ρqu(y, z) = m̂2 + yz

ρgl(y, z) = 1− y
(3.19)

The expression for the antiquark region is not needed, because the antiquark contribution
to the event shape distribution is identical to the quark contribution.
We also have to determine the region boundaries, given by Eq. (3.13), in terms of ρ

values to determine which of the three phase space regions contribute to a specific ρ value

m̂2 ≤ ρqu ≤ (2r − 1)/3 + m̂2

4m̂2 ≤ ρgl ≤ (5− 4r)/3,
(3.20)
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where r =
√

1− 3m̂2. The minimum and maximum values are reached in the quark
region at the phase space points y = 0 and yτ (z = 1/2) respectively, in the gluon region
they are reached at ymax(z = 1/2) and yτ (z = 1/2) respectively. The gluon region only
contributes far away from the peak, so it will not affect our fit results.

Sum of Jet Mass (SJM)

Sum of jet mass, also referred to as hemisphere mass sum, is defined as the sum of the
invariant hemisphere masses

τs = ρa + ρb. (3.21)

The measurement functions in the quark and gluon regions are

τs,qu(y, z) = 2m̂2 + yz = ρqu(y, z) + m̂2

τs,gl(y, z) = ρgl(y, z)
(3.22)

These relations show that the contributions from the phase space regions are just shifted
by a constant for the quark region and identical for the gluon region when compared to
HJM. The τs ranges are therefore

2m̂2 ≤ τs,qu ≤ (2r − 1)/3 + 2m̂2

4m̂2 ≤ τs,gl ≤ (5− 4r)/3
(3.23)

Modified Jet Mass (MJM)

We define a new observable modified jet mass τm as a quadratic function of SJM so that
the leading O

(
m2/Q2

)
power correction between τm and the bHQET soft convolution

variable ` vanishes. The motivation for this definition is explained in Chap. 6.

τm(τs) = τs +
1

2
τ2
s (3.24)

Measurement functions are obtained by just inserting the SJM expressions into the
definition

τm,qu(y, z) = 2(m̂2 + m̂4) + (1 + 2m̂2)yz +
y2z2

2

τm,gl(y, z) = (1− y) +
1

2
(1− y)2

(3.25)

The event shape ranges can be directly obtained from Eq. (3.23) by applying the observable
definition on the boundaries, since Eq. (3.24) is strictly increasing within the phase space

τm,qu/gl,min/max = τm(τs = τs,qu/gl,min/max). (3.26)
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2-Jettiness (“thrust”)

2-Jettiness (τJ or τ2) is the observable which has been used in the original MC mass
calibration [17] . It is defined as 1− TQ where TQ is the conventional thrust variable Eq.
(3.16) with the sum over 3-momenta lengths in the denominator replaced by Q

τJ =
1

Q
min
t̂

∑
i

(Ei − |t̂ · ~pi|). (3.27)

We will sometimes also refer to 2-Jettiness as “thrust”, since we will not use any other
thrust definitions for our fits. The measurement functions are

τJ,qu(y, z) = 1−
√

(1− yz)2 − 4m̂2

= 1− v +
yz

v
+O

(
y2
)

τJ,gl(y, z) = ρgl(y, z)

(3.28)

The τJ ranges are

1− v ≤ τJ,qu ≤ (5− 4r)/3

4m̂2 ≤ τJ,gl ≤ (5− 4r)/3.
(3.29)

3.2.4. Delta- and Plus-Function Coefficients

The observables e that we use are at the threshold linear sensitive to the soft momentum
and can in the soft limit y → 0 be expanded as

e(y, z) = emin + yfe(z) +O
(
y2
)

(3.30)

The differences of the O (αs) delta distribution coefficients ACe (m̂) between these observ-
ables are fully determined by the coefficient fe(z) of the linear term [15]

AVe (m̂) = 4(1 + 2m̂2)

{
(1− 2m̂2)

[
Li2

(
−v(1 + v)

2m̂2

)
− 3 Li2

(
v(1− v)

2m̂2

)
+ 2 log2(m̂) + π2

− 2 log2

(
1 + v

2

)]
+ 2v[log(m̂)− 1]− 2Ie(m̂)

}
+ 4(4 + v2 − 16m̂4)Lv

AAe (m̂) = 4v2

{
(4 + v2)Lv + 2v[log(m̂)− 1]− 2Ie(m̂) + (1− 2m̂2)

×
[
Li2

(
−v(1− v)

2m̂2

)
− 3 Li2

(
v(1− v)

2m̂2

)
+ π2 + 2 log2(m̂)− 2 log2

(
1 + v

2

)]}
(3.31)

with Lv ≡ log[(1 + v)/(2m̂)] and the only event shape dependent term is

Ie(m̂) =

∫ 1/2

z−

dz
(1− z)z − m̂2

(1− z)2z2
log[fe(z)] (3.32)
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This integral is formulated in terms of the quark region boundaries, so the function fe(z)
has to be extracted from the quark region measurement function. For our observables
this term can be expressed as a combination of the HJM integral Iρ and the integral

I ≡
∫ 1/2

z−

dz
(1− z)z − m̂2

(1− z)2z2
= (1 + v2)Lv − v (3.33)

HJM:

Iρ(m̂) =
1

24

{
−12(v2 + 1) Li2

(
v + 1

2

)
+ π2(v2 + 1)− 6(v(v(2 + log2 2) + 2− 4 log 2) + log2 2)

+ 6 log(1− v)

(
(v2 + 1) log

4

1− v
− 4v

)
+ 6(v2 − 1) log

1− v
v + 1

} (3.34)

SJM:
Iτs(m̂) = Iρ(m̂) (3.35)

MJM:
Iτm(m̂) = Iρ(m̂) + log

(
1 + 2m̂2

)
I(m̂) (3.36)

2-Jettiness:
IτJ (m̂) = Iρ(m̂)− log(v)I(m̂) (3.37)

The coefficient of the plus-function is universal

Bplus(m̂) = 4

(
3− v2

2v2

)
[(1 + v2)Lv − v], (3.38)

where the upper (lower) element is the vector (axial-vector) current expression.

3.2.5. Radiative Tail

The event shape distribution away from the threshold (e > emin) can be written as a
phase space integral over the matrix element squared in four dimensions [15]

FCe (e, m̂) ≡
Bplus(m̂)

e− emin
+ FNS,C

e (e, m̂) =

∫
dz dy

MC(y, z)

y
δ[e− ê(y, z)] (3.39)

with
MC(y, z) = M0

C(z) + yM2
C(z) + y2M3

C(z)

M0
C(z) = 4

(
1 + 2m̂2

v2

)
(1− z)z − m̂2

(1− z)2z2

M2
C(z) = − 4

(
1 + 2m̂2

v2

)
1

z(1− z)

M3
C(z) = 4

[(
1

1 + 2m̂2

)
1

2z(1− z)
− 1

]
,

(3.40)
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where again upper (lower) elements correspond to vector (axial-vector) current expressions.
The delta function selects the constant event shape lines in the y-z plane. For the
observables used in this work one can write the result as a sum of contributions from the
quark and gluon regions

FCe (e, m̂) = 2
∑

i∈{qu,gl}

∫ 1
2

zimin

dz

∣∣∣∣∣∣MC(y, z)

y dê(y,z)
dy

∣∣∣∣∣∣
y=yi(e,z)

≡ 2FCe,qu(e, m̂) + FCe,gl(e, m̂)

. (3.41)

The lower integration limit zimin either coincides with the phase space boundary of Eq.
(3.12) or the quark-gluon-region boundary Eq. (3.14). The upper limit is 1/2 due to the
mirror symmetry around z = 1/2. The factor 2 in the first line of the equation above
therefore accounts for the anti-quark region (i = qu) and the second half of the gluon
region (i = gl).

HJM (Heavy Jet Mass)

The results for HJM are [15]

F Vρ,qu(ρ, m̂) =
(2− 4z)[ρ(1− z)(ρ− 4z)− 2m̂2(ρ+ 2(1− 2ρ)z2 + 3ρz) + m̂4(1− z − 8z2)]

(1− z)z2(ρ− m̂2)

+ 4

(
ρ− 2− 5m̂2 + 2

1− 4m̂4

ρ− m̂2

)
log

(
1− z
z

)
FAρ,qu(ρ, m̂) = 4[4− 8m̂2(2 + ρ) + 8m̂4] +

2

ρ− m̂2

{
(1 + 2m̂2)(ρ− m̂2)2

z2
+

4(1− 4m̂2)m̂2

1− z

− 2
ρ(2 + ρ)− 2m̂2ρ(5 + ρ) + m̂4(1 + 4ρ)− 2m̂6

z

+2[2− (2− ρ)ρ+ 2m̂2(ρ(ρ+ 3)− 5) + m̂4(9− 4ρ) + 2m̂6] log

(
1− z
z

)}
F Vρ,gl(ρ, m̂) =

4

t

{
[2− (2− t)t− 4m̂2t− 8m̂4] log

(
1

z
− 1

)
− (1− 2z)[(1− z)zt2 + 2m̂2 + 4m̂4]

(1− z)z

}

FAρ,gl(ρ, m̂) =
4[2− 2t+ t2 + 2m̂2(t2 + 4t− 6) + 16m̂4] log

(
1
z − 1

)
− (4−8z)[t2(1−z)z+2m̂2−8m̂4]

(1−z)z

t
(3.42)

given in terms of the lower integration limit z = zimin

zqu
min =

{
(tρ − ξρ)/2 m2 < ρ < m̂(1− m̂− m̂2)/(1− m̂)

(tρ − 1)/
√

(1− ρ)2 − 2m̂2(1 + ρ) + m̂4 larger values

zgl
min =

{
[1−

√
1− 4m̂2/ρ]/2 4m̂2 < ρ < m̂/(1− m̂)

[1−
√

(1− ρ)2 + 4m̂2]/(1− ρ) larger values,
(3.43)
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where we defined t ≡ 1− ρ, tρ ≡ 1 + ρ− m̂2, ξρ ≡
√
t2ρ − 4ρ. Here, “larger values” refers

to the rest of the event shape values up to the maximum value for either quark or gluon
region, which are given in Sec. 3.2.3

sJM (sum of Jet Mass) and mJM (modified Jet Mass)

The measurement functions of sJM and mJM, restricted to either quark or gluon region,
can be related to the HJM measurement function by a bijective map

e′(y, z; m̂) = e′(e(y, z; m̂); m̂). (3.44)

The differential distribution can therefore be obtained from the HJM results by means of
variable transformations∫

de FCe,i(e, m̂) =

∫
de′
∣∣∣∣ de

de′

∣∣∣∣FCe,i[e(e′; m̂), m̂] =

∫
de′ FCe′,i(e

′, m̂) (3.45)

We can for example obtain the sJM quark region contribution by inserting the inverse
of the measurement function Eq. (3.22) into the result for HJM in Eq. (3.42), if we set
e′ = τs,qu and e = ρqu

FCτs,qu(τs, m̂) = |1|FCρ,qu[ρ = τs − m̂2, m̂] (3.46)

2-Jettiness

The 2-Jettiness distribution has been calculated in [29] and reads in our notation

F VτJ ,qu(τ, m̂) =
2tτ

(z − 1)z2(ξ − t2τ − 4m2)
{4(z − 1)z2 tanh−1(1− 2z)

× (4m2ξ − 8m4 + (τ − 2)τ + 2)− (2z − 1)[4m2(2z((ξ − 1)z + 2− ξ)− 1)

+ 8m4z + (z − 1)((τ − 2)τ + 4(ξ − 1)z + 2− 2ξ)]}

FAτJ ,qu(τ, m̂) =
2tτ

(z − 1)z2(ξ − t2τ − 4m2)
{(2z − 1)[2m2((τ − 2)τ

+ 4z2(4ξ − (τ − 2)τ − 4) + z(3(τ − 2)τ + 10− 14ξ) + 4− 2ξ)

+ 8m4(z(5− 4z) + 1)− (z − 1)((τ − 2)τ + 4(ξ − 1)z + 2− 2ξ)]

+ 4(z − 1)z2 tanh−1(1− 2z)[2m2((τ − 2)τ + 2− 6ξ) + 24m4 + (τ − 2)τ + 2]}
FCτJ ,gl(τ, m̂) = FCρ,gl(τ, m̂)

(3.47)

with tτ ≡ 1− τ , ξ ≡
√
t2τ + 4m̂2 and z = zmin:

zqu
min =

{
(1 + τ − ξ)/2 1− v < τ < m̂/(1− m̂)

(1− ξ)/tτ larger values
(3.48)

27



3.3. Absorption of Nonsingular Coefficients

Instead of using strict power counting for the coefficients in the bHQET boundary
conditions HQ, Hm and Bτ , that is Eq. (2.7), (2.8) and (2.9), which we will call the “no
absorb” prescription, we can absorb the coefficients from the QCD nonsingular distribution
into these functions to assess how resummation of power suppressed corrections might
affect the results. In this sections we will describe the prescription of fully absorbing
all distributional (delta and plus function) power corrections. In section 7.1.2 we will
generalize this prescription to partial absorption. Hence we demand that the “full absorb”
or in short “abs” prescription sets the QCD nonsingular to

1

σC0

dσCabs,ns

de

!
=
CFαs

4π
FNS,C
e (e, m̂) +O

(
α2
s

)
(3.49)

where FNS,C
e (e, m̂) is the nondistributional part of the QCD nonsingular, see Eq. (3.8),

which we do not absorb since it is numerically insignificant. According to the definition
of the QCD nonsingular in the first line of Eq. (3.5) this then means, that our singular
bHQET distribution has to be modified, so that the sum of singular and nonsingulars at
fixed order still equals the QCD differential cross section. We can first split up the delta
and plus function coefficients as

RQCD
0 = 1 +Rabs

0 ≡ Rnewsing
0 , AQCD

e = Abase
e +Aabs

e , BQCD
plus = Bbase

plus +Babs
plus, (3.50)

where we have dropped the current superscript C from terms with “QCD”, “newsing” or
“abs” superscript. Here the “QCD” superscript terms are identical to the corresponding
coefficients in the fixed order QCD differential cross section Eq. (3.8). These terms
obviously do not depend on our treatment of power corrections. The “abs” superscript
terms are defined to be identical to the coefficients in the nonsingular distribution Eq. (3.5)
for the “no absorb” case. The “base” superscript terms are then identical to the coefficients
of the “no absorb” SCET distribution at fixed order Eq. (3.7). The bHQET boundary
conditions HQ, Hm and Bτ in Eq. (2.4) at N2LL are then replaced by corresponding
functions, here with a tilde, which contain power corrections [29]

1

σC0

dσCbHQET

de

∣∣∣∣∣
withAbs

= Rnewsing
0

1

σC0

dσCbHQET

de

∣∣∣∣∣
HQ→H̃Q,Hm→H̃m,B→B̃

H̃Q(µH) = HQ(µH) +
CFαs(µH)

4π
(1− ξJ − ξB)hcorr

H̃m(µm) = Hm(µm) +
CFαs(µm)

4π
ξJh

corr

m2B̃(ŝ, µB) = m2B(ŝ, µB) +
CFαs(µB)

4π

{
ξBh

corrδ(ŝ) + bcorr 1

m

[
1

ŝ/m

]
+

}
.

(3.51)
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where we have now also dropped the current superscript C from hcorr and bcorr. The
O (αs) delta function correction hcorr and the plus function correction bcorr read

Rnewsing
0 hcorr = Aabs

e + log
(
m̂2rc

)
Rnewsing

0 bcorr −Rabs
0 Abase

e

Rnewsing
0 bcorr = Babs

plus −Rabs
0 Bbase

plus .
(3.52)

where the logarithm comes from rescaling of the plus function argument using Eq. (B.6),
because all Bplus coefficients are extracted from formulas where all plus functions appear
with the standard argument e− emin, see the discussions below Eq. (3.6), while we used
ŝ/m = (e− emin)/(m̂2rc) in the plus function argument2 in Eq. (3.51). This conversion
of plus function arguments generates terms in the delta function coefficient. The last
terms of the equations in Eq. (3.52) subtract O (αs) mixed terms generated by the global
multiplicative correction Rnewsing

0 = 1 +Rabs
0 in the first line of Eq. (3.51).

The soft function Sτ will not be modified, because m̂ corrections should factorize out
of the soft function, since fluctuations at the mass scale were already integrated out. Our
focus is only on the m2/Q2 power corrections since these are numerically the largest ones.
Other possible power corrections ∼ ΛQCD/Q or ∼ ΛQCD/m will not be treated separately,
since they are much smaller compared to the m2/Q2 power corrections.
The delta function correction hcorr cannot be uniquely assigned and has to be split

between the hard matching coefficients and the jet function. The fractional contributions
to H̃m and B̃ are governed by the parameters ξJ and ξB respectively. These parameters
are in principle not restricted to the range [0,1] since the term 1 − ξJ − ξB in H̃Q will
automatically compensate so that all contributions add to 1, but we will use the sensible
restriction 0 < ξi < 1 and ξJ + ξB < 1 to estimate this uncertainty in our numerical
analysis.

2The rescaling factor rc only appears when including additional power correction rescalings in the
bHQET measurement function as shown in Eq. (6.22) and Eq. (6.23). The factor rc is set to 1 if the
“rescale” prescription discussed in Chap. 6 is turned off. Our description here has been formulated to
be fully compatible with the “rescale” prescription. The formulas are general and all changes happen
implicitly. The origin of all differences for the rescale prescription, besides the rc in the ŝ, lie in
the coefficients Abase

e , Aabs
e , Bbase

plus and Babs
plus, which will contain additional terms log(rs) and log(rc),

which are 0 in the “no rescale” treatment. In the “rescale” case Abase
e and therefore also Aabs

e and hcorr

will acquire an explicit log(µ/Q) dependence in a next to leading power contribution (see Eq. (6.22)).
These terms will then be evaluated at the same scale as the strong coupling constant.
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4. Full Event Shape Distribution

4.1. Combining Ingredients

The full event shape distribution, that we use for the fits, is a sum of the bHQET cross
section σs, the SCET matching contribution σnsb and the QCD matching contribution
σns, presented in Chap. 2 and Chap. 3:

1

σ0

dσ(e)

de

=
1

σ0

∫
dŝdk

d(σ̂s + σ̂nsb + σ̂ns)

de

(
e− emin −

demin

dm
δm− mŝ

Q2
− k + 2δ̄

Q

)
×G(ŝ,Γ)F (k − 2∆),

(4.1)

where it is understood that, other than explicit appearances in the arguments shown,
emin = δm = δ̄ = Γ = 0 and that the mass appearing in the argument shown and the
denominator of ŝτ = Q2(e− emin − ...)/m refers to mMSR(R) in the MSR mass scheme
and to mpole in the pole mass scheme. Interpreting the mass in the denominator of ŝτ as
mpole = mMSR + δm in the MSR mass scheme would in any way lead to power suppressed
contributions after expanding in the δm ∼ ŝ ∼ Γt � mt bHQET power counting, which
are small compared to the more problematic m2/Q2 power corrections. The MSR mass
subtraction and the gap subtraction have to be expanded strictly in αs together with
the hard, jet and soft function to guarantee a correct order-by-order cancellation of the
renormalons in the jet and soft function. The same applies to the nonsingular parts.
The correct way to cancel the pole renormalon in pure bHQET would be to drop all
power corrections in demin / dm, but since we are using the exact threshold emin for the
singular distribution and since we are matching to full QCD we also have to include the
power corrections originating from the exact threshold in the subtraction series. The mass
parameter in the hard function Hm can be either expressed in the pole or MS mass and
the choice of mass scheme for the boost factor % = Q/m in Hm and the running factor Uv
is ambiguous with respect to bHQET power corrections. The differences of these choices
are found to be numerically small [18], so we have used the unexpanded pole mass for
these factors, see discussion in [14].

The function G(ŝ,Γ) is the Breit Wigner function appearing in Eq. (2.10) and F (k−2∆)
is the nonperturbative shape function, defined in Eq. (2.13), with the renormalon free
gap parameter. These two corrections have to be also applied to the nonsingulars. The
terms dσnsb /de and FNS,C

e , defined in Eq. (3.39), are regular functions and numerically
insignificant at the threshold. We have therefore dropped the convolution of G(ŝ,Γ) over
them.
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order log terms cusp non-cusp matching β[αs] γR δ

LL αnsL
n+1 1 - tree 1 - -

NLL αnsL
n 2 1 tree 2 1 -

N2LL αnsL
n−1 3 2 1 3 2 1

Table 4.1.: Required loop orders for resummation of αnsLn+1−k = O
(
αk−1
s

)
logarithmic

terms and same order Nk−1LO boundary conditions [30]. Cusp and non-cusp
anomalous dimensions and beta function coefficients are given in App. A.1.
Matching refers to the fixed order contributions, i.e. the bHQET and SCET-
nonsingular boundary conditions and the QCD-nonsingular given in Sec. 2.1
and Chap. 3. The R-anomalous dimension γR and the renormalon subtraction
series δ refer to both the soft gap and pole mass renormalon.

For our fits we use next-to-leading-logarithmic resummation (NLL) + LO boundary
conditions and N2LL + NLO. The required loop orders for the ingredients are listed in
Tab. 4.1. Note that in our code the αs and the MSR mass evolutions are fixed to 4-loop
and 3-loop respectively.

4.2. Profile Functions

The resummed cross section is strictly independent on the scale µ. It can therefore be set
arbitrarily. But, the dependence on the other renormalization scales µi (i = Q,m,B, S)
and Rj (j = m,S) only cancels order-by-order in αs. To estimate the uncertainty induced
by the choice of scales and to guarantee proper resummation of large logarithms, we will
use so-called profile functions. These are in general τ -dependent1 renormalization scales,
that are determined by the characteristic scales of the kinematics and dynamics in each
sector of the factorization theorem across different regions of the event shape distribution.
We adopt the parametrization for massive profile functions constructed in Ref. [29] and
their value ranges.

The hard function and mass matching scale are constant and their variation, given by
the rescaling parameter eH , is correlated to retain correct hierarchies between scales.

µH = eHQ

µm =
√
eHm.

(4.2)

All mass parameters in the profile functions use the profile mass, which we fix to the MSR
mass at R = 5 GeV. The τ -dependent jet and soft function scales are given by piecewise
functions, which describe the nonperturbative region (τ < t0), the resummation region
(t1 < τ < t2) and the fixed order region (τ > ts). In the nonperturbative region the scales
are frozen at a low but still perturbative value. In the resummation region the scales grow
steadily and in the fixed order region the scales are merged with the hard function scale
µH . These three regions are connected by transition regions which allow the piecewise

1We use τ and e interchangeably for a generic event shape variable.
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functions F (τ < t0) and G(τ > t1) for t0 < t1 to be smoothly joined (i.e. the function
and their first derivative are continuous) by double quadratic functions

ζ
[
{F := F (t0), f := F ′(t0)}, {G := G(t1), g := G′(t1)}, t0, t1, τ

]
=

{
F + f(τ − t0) + 4(G−F )+(3f+g)(t0−t1)

2(t0−t1) (τ − t0)2 t0 ≤ τ < t1−t0
2

G+ g(τ − t1)− 4(G−F )+(f+3g)(t0−t1)
2(t0−t1) (τ − t1)2 t1−t0

2 ≤ τ ≤ t1

(4.3)

The region boundaries are given by

t0 =
2

Q/1 GeV
+

d0

(Q/1 GeV)0.5
+ τmin

t1 =
2.25

(Q/1 GeV)0.75
+

d1

(Q/1 GeV)0.5
+ τmin

tb = τmin +
m̂2

rslopeeH

t2 = n2 + m̂

ts = ns + m̂,

(4.4)

where tb is the transition point for switching from bHQET to the SCET description. We
only need the distribution in the nonperturbative region and the transition region to
the resummation region, since we fit only in the peak region. It is therefore sufficient to
specify the profile functions up to tb.
The soft function scale is given by

µS(τ) =


µ0 τ < t0

ζ [µS(τ < t0), µS(τ > t1), t0, t1, τ ] t0 ≤ τ ≤ t1(
1 + nseS

ns+m̂−τmin

)
rslopeµH(τ − τmin) t1 < τ < tb.

(4.5)

The bHQET jet function scale reads

µJ(τ) =


1 + ẽJ(ts − t0)2µ̃J(t0) τ < t0

ζ [µJ(τ < t0), µJ(τ > t1), t0, t1, τ ] t0 ≤ τ ≤ t1
1 + ẽJ(ts − τ)2µ̃J(τ) t1 < τ < tb,

(4.6)

where µ̃J(τ) =
√
eHµS(τ)/m̂ and

ẽJ = eJ

[
ns − (t0 − τmin)

ts − t0

]2

(4.7)

The renormalization scale of the MSR mass mMSR
t (R) is set to the jet scale to avoid large

logarithms
Rm(τ) = µJ(τ). (4.8)
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n2 0.225 to 0.275
ns 0.375 to 0.425
d0 -0.05 to 0.05
d1 -0.05 to 0.05
µ0 2.5 to 3.5
rslope 2
eH 0.5 to 2
eS 1/1.13− 1 to 1.13− 1
eJ -3 to 0
nns -1, 0, 1

Table 4.2.: Parameter ranges for scale variation

The subtraction scale of the soft gap subtraction should in general also be set close to the
soft scale to avoid generating large logarithms. But it has been observed in Refs. [29, 30]
that for gap scheme 1 a nonvanishing logarithm at order αs is favorable for the soft
renormalon cancellation in the peak region, since the constant term of the one loop
subtraction for this scheme is zero. In this case the subtraction scale has to be set strictly
below the soft scale to obtain a nonvanishing and correctly signed order αs subtraction
term

RS(τ) =


0.75µ0 τ < t0

ζ [RS(τ < t0), RS(τ > t1), t0, t1, τ ] t0 ≤ τ ≤ t1
µS(τ) t1 < τ < tb

(4.9)

The other two schemes have finite constant terms at order αs, hence a more natural choice
for them would be to set RS(τ) exactly to the soft scale µS(τ). We have for simplicity
adopted the scheme 1 choice also for the other schemes. Fig. C.1 (in App. C.1) shows a
comparison of our final results for the default parameter settings presented here and with
the modification Rs = µS . The differences are discussed in App. C.1. The summary is,
that the fitted mass values are not affected by the choice. The fitted Ω1 values for gap 2
and gap 3 schemes also show insignificant differences, while setting Rs = µS for gap 1
scheme results in significant changes of the fitted Ω1.
The QCD nonsingular scale is set to a weighted average between hard and jet scale

µns(τ) = µH +
nns

2
(µJ(τ)− µH). (4.10)

The 501 profiles used in the fits are obtained by random sampling parameters in the
ranges given in Tab. 4.2. Each profile contains one value for each parameter.
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5. Fit Procedure Improvements

5.1. Fixed ∆0 Fits

5.1.1. Fit Procedure

We follow a standard χ2 fit for the top quark mass mt and the nonperturbative model
parameters c0 − c3 employed in Ref. [17], which we outline in the following. The ci
are restricted by c2

i = 1, so the actual fit parameters are three euclidean angels {a} =
(a0, a1, a2). The renormalon free gap parameter

∆0 ≡ ∆(R∆, µ∆) (5.1)

at the reference scales R∆ = µ∆ = 2 GeV is fixed at 0.05 GeV and λ = 0.5, unless
otherwise stated. The results are presented in the variables mt, the mean Ω1(R∆, µ∆) =∫

dk k
2F (k − 2∆0) and the variance Ω′2 =

∫
dk (k2 − Ω1(R∆, µ∆))2F (k − 2∆0) of the

nonperturbative model function (also called first and second cumulants) at the reference
scales. The factors of 1/2 adjust these results to single jet parameters. The values of Ω1

in the plots will always be shown converted to the one loop gap 1 scheme by adding the
difference of the one loop subtraction to provide better comparability of the results:

Ω1,plots = Ω1,gap i(R∆, µ∆) + [δ̄gap i(R∆, µ∆)− δ̄gap 1(R∆, µ∆)]one loop (5.2)

The red lines in the plots are given by the inverse of this conversion for a reference value
of Ω1,plots = 0.5 GeV and should serve as a visual indication of how large the conversion
correction in Eq. (5.2) is:

Ω1,redline,gap i = 0.5 GeV − [δ̄gap i(R∆, µ∆)− δ̄gap 1(R∆, µ∆)]one loop (5.3)

The reference data were binned distributions of either 2-Jettiness, sJM or mJM, which
we will here refer to as τ , obtained from the Monte Carlo generator for a e+e− → tt̄
process, each histogram contains 107 events. We used three different fit ranges around
the peak of the distribution. The fit range can be written as (x, y), with the minimum
and maximum value τmin and τmax defined as the position where the distribution drops
to a value given by a fraction of the value at the peak:

dσ(τmin)

dτ
= x

dσ(τpeak)

dτ
,

dσ(τmax)

dτ
= y

dσ(τpeak)

dτ
(5.4)

The three ranges used are (0.6, 0.8), (0.7, 0.8) and (0.8, 0.8).
Due to the functional relation between the top quark mass mt and the soft convolution

variable `, it is necessary to simultaneously include distributions at multiple center of mass

34



energies Q in the fit to break the degeneracy between mt and Ω1. We used five different
sets of Q values. They read in units of GeV: (700, 1000, 1400), (800, 1000, 1400), (700 –
1400), (600, 1000, 1400) and (600 – 1400). The ranges are in steps of 100 GeV. This gives
3 (ranges around peak) x 5 (Q sets) = 15 different “fit settings” of bins included in the fit
and the spread of these fit results estimates the “incompatibility” between theory and
Monte Carlo event generator description. To estimate the perturbative scale uncertainty
we use 501 sets of profile functions µi(τ) with parameters randomly varied in the ranges
stated in Tab. 4.2.

We followed these steps to obtain a central value and uncertainties for mt (and the
same for the cumulants):

1. For one fit setting i remove 1.5% of the upper and 1.5% of the lower values of the
501 best fit values from the variation over the profiles to remove potential outliers.
Let us call this cleaned up set {m}i.

2. Then take the central value mset,i = [max({m}i) + min({m}i)]/2 as the result for
this fit setting and half the range as the scale uncertainty ∆mset,i = [max({m}i)−
min({m}i)]/2.

3. Take the central value of the results for the 15 fit settings as the final result for mt:
mfit = [maxi(mset,i) + mini(mset,i)]/2.

4. Take the mean of the scale uncertainties for the 15 fit settings as the final perturbative
uncertainty : ∆mpert = [

∑
i ∆mset,i]/15.

5. Take half the range of the individual results for the 15 fit settings as incompatibility
uncertainty : mincomp = [maxi(mset,i)−mini(mset,i)]/2.

A best fit value for one profile and one fit setting is obtained by minimizing the χ2

function with respect to its arguments using the program Minuit, with

χ2(mt, {a}) =
∑
Q

∑
τmin≤τi<τmax

[
f theo
Q,i (mt, {a})− fmc

Q,i

]2

σ2
Q,i

(5.5)

The theory bin f theo
Q,i (mt, {a}) at observable value τi is defined as the difference of the

cumulant of the differential cross section at points τi and τi+1, which we call f̂ theo
Q,i (mt, {a}),

divided by the norm
∑

i f̂
theo
Q,i (mt, {a}). The Monte Carlo generator bin fmc

Q,i is defined
as the sum of events with τi < τ < τi+1, which we call f̂mc

Q,i, divided by the norm
Nmc
Q =

∑
i f̂

mc
Q,i. Both histograms are normalized to 1 across the fit range (τmin, τmax).

The error σQ,i is the statistical error of the event generator bin fmc
Q,i obtained by naively

dividing the bin errors ∆f̂mc
Q,i of the unnormalized bins f̂mc

Q,i by the norm Nmc
Q . This “naive”

bin error σQ,i ignores correlations between bins that are introduced through the division
of the original statistical independent errors ∆f̂mc

Q,i by the norm Nmc
Q .
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We also tested the strict statistical treatment of performing the fits with the χ2 values
obtained by using the full covariance matrix for the normalized bins. The differences
to the naive treatment of Eq. (5.5) for the fitted mass were at the sub-MeV level for
individual profile fits. In light of the negligible differences, we concluded that using the
naive bin errors for calculating the χ2 is sufficient.

The error bars shown in the results are obtained by quadratically adding the perturbative
and incompatibility uncertainty. The χ2/dof value quoted is an average over all profiles
and fit settings. The MSR mass results are quoted at the scale R = 1 GeV.
αs(mZ) on the theory side was fixed at the world average of 0.1181(13). Variations

within it’s errors induces an additional uncertainty in mfit of ' 20 MeV, which is not
shown in the results due to it’s negligible size compared to the other uncertainties.

The parameters of the Monte Carlo event generators were set to mMC
t = 173 GeV. The

top quark width was fixed for theory and event generator to Γt = 1.4 GeV. The generators
use a tree level e+e− → tt̄ matrix element, which goes through their respective internal
standard decayer, parton shower and hadronization model. Initial state radiation has
been turned off. For Pythia 8.305 [31] and Sherpa 2.2.11 [32] we use the default settings
and the default tune. The standard Herwig 7.2 [33] exhibited some unusual flattening of
its peak for smaller center of mass energies Q ' 600− 1000 GeV. We therefore received
an unpublished preliminary version from its developers [34], that fixes this issue, and has
its parameters re-tuned. That version is referred to as “FullTune” in our results.

Details on Data Processing

The input files for the event generators were modified according to the settings described
above, all other settings were kept at their standard values. We use the program Rivet [35]
paired with a custom written analysis to convert per event kinematic information into
histograms in the format yoda for our observables. This workflow works with all leading
Monte Carlo event generators, that support Rivet directly or the event record format
HepMC [36]. The MC produces events across the full event shape range and the choice
of the bin specification has no impact on the MC runtime. It is therefore safer to keep a
large range and use narrow bins, since wider bins can always be produced by merging
smaller bins. For the histograms we used 10000 evenly spaced bins between 0.0 and 0.5
for each of our observables and all Q values. This was also the width of the bins we used
in Eq. (5.5), since there was no obvious problem with this choice.
The theory cross section is generated in a Fortran program Caliper [37], which we

modified if necessary with our own code. The following steps have to be repeated for each
fit setting and each profile. We will in the following assume that the profile parameters
have been fixed. One can write the cross section as

∑
kl ckclfkl(τ ;mt, Q) using the double

sum in the shape function, as defined in Eq. (2.13), over the basis functions . We can
therefore save fkl(τ ;mt, Q) evaluated on a grid in mt, Q, τ , (k, l) (with fkl = flk), and
evaluate the sum over the ci analytically during the calculation of the χ2 fit function.
Recall that the shape function fit parameters are actually the euclidean angles aj in
ci({aj}) due to the normalization condition of the ci’s. Hence, the cross section will
depend on sines and cosines of these angles, which means that one has to sample multiple
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starting values to reliably find the true minimum of the fit function.
The τ values of the grid lie in a range between 0 and t1(mt = 177 GeV, Q, d1 = 0.25)

which is defined in Eq. (4.4). t1 with the given arguments will always be greater than
the boundary of our fit ranges τmax, which is given below Eq. (5.4). The range of our
MC histogram has also been chosen so that t1 will always lie inside it. The τ values of
the theory grid do not have to coincide with the MC histogram bin boundaries, because
we will interpolate over the τ values and then obtain a interpolation of the cumulant
from which the final theory bins, with matching boundaries, are calculated. To determine
appropriate τ values for our grid we first find the peak tpeak of the f00 distribution with the
Fortran routine compass_search [38] using the on-shell top threshold τmin as starting
value. Then we generate 15 evenly spaced points left of tpeak − 0.4(t1 − tpeak), the next
interval up to tpeak + 0.4(t1 − tpeak) is filled with 75 evenly spaced points, and the rest up
to t1 has 10 evenly spaced data points (each point contains τ , and the fkl’s). We checked
that this provided sufficient points around the peak to offer a good interpolation quality
for the fits.

The other dimensions of the grid were the Q values as given above and the mass (either
mpole or mMSR) in steps of 0.25 GeV between 170 GeV and 175 GeV.
The fits themselves were performed using a python script. At the beginning of the fit

one determines from the MC histograms the range of bins that satisfy the “above (x, y)
fraction of peak height” condition in Eq. (5.4) for each (x, y) and Q combination. The
fkl(τ,m,Q) are then turned into bins fkli(m,Q) with the same specifications as the MC
bins by using an integral over a spline interpolation. Before the interpolation over τ we
clean numerical outliers from the data, if there are any, but this might not be necessary
since outliers are also removed after the fits and one has to be careful for l 6= k, because
those functions are oscillatory. Finally, these bins are spline interpolated over mt. The χ2

in Eq. (5.5) with

f theo
Q,i (mt, {a}) =

∑
kl

ck({a})cl({a})fkli(mt, Q) (5.6)

can then be smoothly sampled by Minuit, without having to calculate the theory bins
from scratch for each evaluation.

5.1.2. Previous Calibration Results for PYTHIA

The original calibration of the Pythia MC top mass was carried out in Ref. [17]. The
same methodology as described in the previous section was applied to extract the top
mass. They used the observable 2-Jettiness and the gap 1 scheme defined in Eq. (2.24)
for the soft renormalon subtraction.
Their results are quoted in the left half of Tab. 5.1. They showed that mMC

t,Pythia
is indeed close to the MSR mass at R = 1 GeV and not a tree level or one-loop pole
mass. The perturbative uncertainties decreased when using NNLL instead of NLL theory,
but the incompatibility uncertainties remained comparable, as was expected. The pole
mass exhibited a large correction between orders, which is associated with the O (ΛQCD)
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order central perturb. incomp. central perturb. incomp.
mMSR
t,1 GeV N2LL 172.82 0.19 0.11 172.82 0.17 0.10

mMSR
t,1 GeV NLL 172.80 0.26 0.14 172.83 0.29 0.12

mpole
t N2LL 172.43 0.18 0.22 172.40 0.18 0.20

mpole
t NLL 172.10 0.34 0.16 172.06 0.34 0.16

Ω1 N2LL 0.42 0.07 0.03 0.43 0.06 0.03
Ω1 NLL 0.41 0.07 0.02 0.42 0.07 0.03

Table 5.1.: Calibration results from Ref. [17] for MSR(R = 1 GeV) mass, pole mass and
Ω1(R = 2 GeV, from simultaneous MSR mass fit) for Pythia 8.205 with
mMC
t = 173 GeV (left) and our new fits for Pythia 8.305 (right). Shown are

central values, perturbative and incompatibility uncertainties, all in GeV.

renormalon, while the MSR mass allowed a stable mass parameter extraction since it
does not suffer from these infrared corrections.
The right half of Tab. 5.1 shows our new fits for the current Pythia version 8.305,

which are up to rounding errors identical to the values that we obtained for an updated
fit, using our current setup, for the old version 8.205. The new results and those from
Ref. [17] are practically identical, which means that the changes made between both fits
only had a marginal effect. The differences, apart from the newer Pythia version were:

1. As noted below Eq. (3.4), the renormalization scale of nonsingular terms in the
jet function present in SCET, but not in bHQET, are now run down to the same
scale µB as the distributional terms in bHQET, rather than being frozen at the
mass mode matching scale µm. This effect is small since the contribution of this
nonsingular is small.

2. The interpolation over mt is now happening at the bin level and all parameters
are simultaneously minimized. The method used before was to first minimize with
respect to the shape function parameters at fixed mt giving χ2(mt, {amin(mt)}),
then interpolating this over mt and finding the minimum with respect to mt. Both
methods are equivalent if the grid in mt is fine enough.

3. The fit of [17] included 2 additional Q sets: (600− 900) and (700− 1000). We will
see in Sec. 5.1.4 that the shape function was not given enough freedom in its fit
parametrization to vary its Ω1. After fixing this issue these 2 Q sets which are very
restricted in their Q range will not be able to break the degeneracy between mt and
Ω1 well enough and lead to an increased spread of the individual best fit results and
an inaccurate estimate of the final uncertainties. For the old fit parametrization
on the other hand, removing these Q sets has minimal effects on the end results
because the inflexibility of Ω1 made the fits insensitive to the Q dependence of the
thrust peak position.

The Pythia 8.305 results from the fit of Ref. [17] will be shown as reference values in
the majority of plots in later parts of this thesis. They are labeled as “pythia8305”.
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Figure 5.1.: Gap dependence of fitted top mass mfit (either mMSR
t (R = 1 GeV) or mpole

t ),
the first moment Ω1 converted to the 1-loop gap 1 scheme, see Eq. (5.2),
and the variance Ω′2 of the shape function for N2LL and NLL orders. The
corrected Ω1 values for the same mass scheme and order don’t agree with each
other, because the shape function failed to adapt to the change in gap scheme.
Shifts in mfit partly compensate for the unchanging shape function, but due
to the different functional dependence on mfit and Ω1 the χ2 successively
worsens.

5.1.3. Gap Dependence

The first thing that has to be addressed is the insufficient flexibility of the original fit
parametrization of the non-perturbative shape function. For that we repeated the original
calibration shown in Tab. 5.1, that was using gap 1, also for gap 2 and gap 3. The fitted
parameters are plotted in Fig. 5.1. All fits in this chapter use the 2-Jettiness observable,
unless explicitly stated otherwise. The Ω1 plotted is converted to the 1-loop gap 1 scheme
as explained in Eq. (5.2), so that at least the N2LL Ω1 values for a fixed mass scheme
should agree with each other. But what we found is that the shape function has not
adapted at all to changes of the gap scheme, so the converted Ω1 exhibits shifts that
are exactly opposite to the expected change of the original values. The position of the
red vertical lines in these plots as defined in Eq. (5.3) give the Ω1 value in the original
scheme for a reference converted Ω1,gap1 = 0.5 GeV. The inability of the shape function
to change its first moment forces the mass parameter mfit to compensate for the change
in gap scheme, which makes the fitted mass values meaningless. One can also see that the
obtained χ2 values worsens quite dramatically for gap schemes that are more different.
That is because the functional dependence of the cross section on the mass and the soft
convolution variable is given in a leading approximation by the combination 2m̂2 + `/Q,
i.e. δm'̂ − Q

2mδΩ1. Thus, mfit can only compensate in an average fashion for bins with
different Q values.
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5.1.4. ∆0-Dependence

A parameter that is naturally connected to the first moment of the shape function and
the effects of the gap scheme is the renormalon free gap parameter ∆(Rs, µδ) defined in
Eq. (2.18) and we define its value at the reference scale as ∆0 ≡ ∆(R∆ = µ∆ = 2 GeV). If
we take the limit of using infinite basis functions of the nonperturbative model functions,
that is letting N → ∞ in Eq. (2.13), then all moments of the shape functions can
be accurately modeled without the need to explicitly insert a reference gap, that is
F [k − 2(∆(Rs, µδ)−∆0)− 2∆0;λ, c1, . . . , c∞] ' F [k − 2(∆(Rs, µδ)−∆0);λ, c′1, . . . , c

′
∞]

where ∆(Rs, µδ)−∆0 is just the gap running difference. In this limit ∆0 in

Ω1(R∆, µ∆) = ∆0 + λ(0.5c2
0 + 0.47c0c1 + . . .) (5.7)

is a superfluous parameter degenerate to a combination of ci’s. It would only be required
to at least be smaller than the first moment. Since we are only using 4 non-zero cis, which
amounts to 3 free parameters due to the normalization, it is possible that they are unable
to model the correct peak shape and peak position at the same time.

Fig. 5.2 shows the capability of the fitted ci’s to compensate for changes in ∆0. What
we see is that the ci dependent part of Eq. (5.7) is not adapting at all to changes of
∆0. This means that the ci’s are already determined by higher order moments of the
shape function and they effectively behave completely orthogonal to ∆0. The only fitted
parameter that reacted to the ∆0 change is the mass parameter mfit. As explained at
the end of the last subsection, a change of the first moment can be compensated by a Q
dependent shift of the mass δm'̂− Q

2mδΩ1. Since we are fitting simultaneously to multiple
Q values, the shift can only be done for an intermediate Q value, which explains the clear
increase of χ2 the farther Ω1 and mfit are from their optimal values. The changes of mfit

are relatively large even for small changes of ∆0. We therefore conclude, that ∆0 has to
be treated as a fit parameter to remove any bias in the fitted mass values.

5.1.5. λ-Dependence

We have also tested the dependence of the fitted parameters on the λ parameter of the
shape function in Eq. (2.13) at fixed ∆0 = 0.05 GeV.

The results for gap 1 are shown in Fig. 5.3. For the MSR mass fits λ = 0.5 GeV turns
out to be too small. For larger values of λ the fitted MSR mass is stable over a large
range with small increases of the uncertainty in the negative direction.

The pole mass fits are apparently very correlated with the choice of λ. The ∆0-fit data
point shows that the problem lies in the value of the fixed ∆0, which in combination with
restrictions from higher order moments effectively sets a lower bound for Ω1. Increasing λ
and thus the width of the basis functions of the shape function only worsens this problem.
Further tests in Sec. 5.2.2 on the λ dependence in combination with simultaneous ∆0 fits
will show that λ can be chosen in a reasonably large range with negligible effects on mfit.
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Figure 5.2.: Dependence of fitted parameters on ∆0 values in the range 0.05− 0.55 GeV
using gap 3 scheme. “pythia8305” is the gap 1 scheme result with ∆0 =
0.05 GeV listed on the right half of tab. 5.1 and is shown as reference. The
“fit” data point is obtained by also fitting for ∆0. We see that the other fit
parameters of the shape function are unable to compensate for changes of
∆0. In contrast, the fitted mass is strongly correlated with the value of ∆0.
The optimal values can clearly be determined by minimizing the χ2.

5.2. Variable ∆0 Fits

5.2.1. Fit Procedure Modification

We have demonstrated in the previous section, that the gap parameter ∆0 at the reference
scales as defined in Eq. (5.1) also has to be fitted for, so that the shape and the position
of the peak can be correctly described. We do this by adding this additional fit parameter
to the simultaneous fits for mfit and the shape function coefficient angles a. This modifies
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Figure 5.3.: Dependence of fitted parameters on λ values in the range 0.5− 1.7 GeV for
fixed ∆0 = 0.05 GeV and gap 1. The fitted MSR masses are stable over a
large range, if λ is not too small. The pole mass fits are apparently already
too constrained by the fixed ∆0 value (compare to the ∆0-fit data point), so
that larger λ values push the Ω1 and mfit even farther away.

the previous χ2 fit function introduced in Eq. (5.5) to:

χ2(mt,∆0, {a}) =
∑
Q

∑
τmin≤τi<τmax

[
f theo
Q,i (mt,∆0, {a})− fmc

Q,i

]2

σ2
Q,i

. (5.8)

We have two methods to deal with the additional ∆0 fit parameter. The first method
just uses the old ∆0 independent profiles. The second method is computationally much
faster and uses ∆0 dependent profiles.

Fits with ∆0-independent profiles

In this version the only change to the theory cross section is a reference gap ∆0 =
∆(R∆, µ∆) that can be fitted freely. To efficiently perform the fits we add an addi-
tional dimension to the grid, that we had before. This is handled the same way as
the mass grid dimension. We used steps of the size δ∆0 = 0.05 GeV. A range of
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∆0 ∈ [−1.00 GeV, 1.90 GeV] should be generally safe for all gaps, mass schemes and
orders, but due to the sheer size of the grid it might be more efficient to have smaller
customized ranges. The one-dimensional spline interpolation that was applied to the mass
dimension before is now replaced by a two-dimensional spline interpolation in the mass
and ∆0 direction. The equivalent of Eq. (5.6) now reads

f theo
Q,i (mt,∆0, {a}) =

∑
kl

ck({a})cl({a})fkli(mt,∆0, Q) (5.9)

where MINUIT is now able to smoothly sample in {a}, mt, and ∆0.

Fits with ∆0-dependent profiles

The second method relies on the fact that ∆0 always appears as a Q dependent shift of
the event shape e. Hence, we can use a grid with one fixed ∆0,grid value and generate
any other ∆0 cross section by sampling shifted points1:

dσ

de

(
e,∆′0

)
=

dσ

de′
(
e′,∆0,grid

)∣∣∣∣
e′=e−rs

∆′0−∆0,grid
Q

. (5.10)

But, this can only work if we also define the profile functions to behave the same way

µi(e,∆
′
0) ≡ µi

(
e− rs

∆′0 −∆0,grid

Q
,∆0,grid

)
. (5.11)

The transition points in Eq. (4.4) of the profiles already depend on a fitted quantity,
the profile mass mMSR

t (R = 5), which is obtained from the fitted mass parameter. This
allows the profiles to correctly adapt to changes of the peak position caused by changes of
the mass. Since Monte Carlo event generators don’t exactly behave like nature and their
hadronization models can be very different compared to each other, it would also make
sense to make the the transition points depend on the fitted Ω1, so that the profiles also
adapt to changes of peak position caused by different Ω1’s. The problem with Ω1 is that
its value as given in Eq. 5.7 is a function of soft shape function parameters, hence one
cannot in contrast to the mass, attribute Ω1 values to the grid, i.e. the profiles cannot
depend on a fitted Ω1 when using our method. The next best alternative is to use a ∆0

dependence as described above. This is equivalent with Ω1 dependence if we assume that
the other shape function parameters ci are constant. We define these new profiles to
be identical to the old profiles when ∆0 is at its old default value ∆match

0,gap 1 = 0.05 GeV
for the gap 1 scheme. For other gap schemes the old profiles are matched at the one
loop converted ∆0 value, i.e. Eq. (5.2) with the replacements {Ω1,redline,gap i → ∆match

0,gap i,
0.5→ 0.05}.

In practice we first save a grid with the same specifications as for the fixed ∆0 fits with
∆0 = ∆0,grid. The cumulant over the event shape variable τ is evaluated at the bin edges.

1Here, we have already displayed a power correction rs = 1 + #m̂2, that will be used when we consider
rescaling corrections starting with Chap. 6.
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Then we do a 2-D spline interpolation of the cumulant over mt and τ , which we define as
Fkl(τ,mt, Q). The bin values can still be defined as in Eq. (5.9) with the shape function
pieces now obtained by evaluating

fkli(mt,∆0, Q) = Fkl(τi+1 − rs
∆0 −∆0,grid

Q
,mt, Q)− Fkl(τi − rs

∆0 −∆0,grid

Q
,mt, Q)

(5.12)
which is much faster than before, since we can use an out of the box interpolator, the
Python class scipy.interpolate.RectBivariateSpline, that vectorizes the evaluation of Fkl
along the τ direction. The creation of the grids is obviously also faster and produces
smaller files due to the removal of the ∆0 grid dimension and this additionally reduces
the time required to distribute the grids to each node of the cluster during fits.

5.2.2. Choosing suitable λ for each Event-Generator

We still have to determine which λ should be used for the shape function. Fig. 5.4 shows
the λ dependence of fitted parameters if we use the old ∆0-independent profiles and
Pythia. It tells us, that as long as we chose λ large enough and at least within the range
plotted, we will obtain stable mass and Ω1 results. The Ω′2 value is less under control,
and it has little correlation with the other parameters, as long as, again, λ is large enough.
We see that λ = 0.5 is restricting the Ω′2 too much, so that the fitted distribution has a
too narrow width, which is clearly reflected in the much higher χ2 value.

This fitting method of using ∆0-independent profiles is very slow. In the following we
will show that using the ∆0-dependent profiles produces results that are compatible with
the results of the old method. The λ dependence for this new method and Pythia is
shown in Fig. 5.5. With this method the values have shifted slightly and the uncertainty
in some cases has increased. This might be explained by the circumstance that the
profiles already contained a variation for the transition points ti. Now that the profiles
also change with the fitted value of ∆0 we have introduced an additional variation. We
also noticed that the χ2 has decreased slightly overall. This is probably caused by the fit
trying to optimize the profile transition point through the value of ∆0. The fit results
of the new and the old method shown in Fig. 5.4 and Fig. 5.5 respectively are fully
compatible within errors, so we will from now on exclusively use ∆0-dependent profiles,
since they improve the computation time by an order of magnitude. The new method will
also lead to profiles that automatically adapt to event generators with larger Ω1 values.
The fitted parameters for Pythia in Fig. 5.5 stabilize around λ = 1.1 GeV. We take

this value as the default for Pythia since all other results for λ ∈ [0.7 GeV, 1.5 GeV] are
compatible with this choice. As before, λ = 0.5 GeV is clearly too limiting for the width
of the shape function.

We repeated the same test for Herwig and Sherpa, the results are plotted in Fig. 5.6
and Fig. 5.7 respectively. The behaviour of Herwig with respect to λ variation is similar
to Pythia. Here we also chose λ = 1.1 GeV as default. In contrast, Sherpa’s distributions
turn out to be wider when using equivalent generator settings. As a consequence, the
compatible λ values are larger and we have to chose λ = 1.3 GeV as default for Sherpa.
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Figure 5.4.: Dependence of fitted parameters on λ values in the range 0.5− 1.5 GeV using
old ∆0-independent profiles and Pythia. mfit and Ω1 are very stable starting
from λ = 0.7 GeV. (Thin horizontal lines separate different combinations
of mass scheme and perturbative order, the ordering is the same as for the
“pythia8305” data points.)
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Figure 5.5.: Dependence of fitted parameters on λ values in the range 0.5− 1.5 GeV using
∆0-dependent profiles for Pythia. We chose λ = 1.1 GeV as default for
Pythia.
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Figure 5.6.: Dependence of fitted parameters on λ values in the range 0.5− 1.5 GeV using
∆0-dependent profiles for Herwig. We chose λ = 1.1 GeV as default for
Herwig.
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Figure 5.7.: Dependence of fitted parameters on λ values in the range 0.5− 1.7 GeV using
∆0-dependent profiles for Sherpa. We chose λ = 1.3 GeV as default for
Sherpa.
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5.2.3. Results of improved Fit Procedure

Figure 5.8.: Dependence of fitted parameters on different gap schemes using variable ∆0

fit method for 2-Jettiness (referred to as thrust) and sJM (sum of jet mass).
The fitted values for Ω1 now agree with each other at N2LL for different gap
schemes. The mass can now also be correctly extracted without interference
from the shape function. The combinations of pole mass and gap 3 result
in large scale uncertainties due to the extreme running of gap 3. Note that
2-Jettiness and sJM fits exhibit large differences in extracted mass and Ω1

After determining how to best perform the variable ∆0 fits in the last subsection, we
are now able to test if our fitting procedure has improved compared to the old method.
For that, we repeat the gap scheme dependence fit using the new fit method. The results
for 2-Jettiness (denoted as thrust in these plots) are plotted in the upper half of Fig. 5.8.
It is very clear that, in contrast with the old method shown in Fig. 5.1, the new method
provides very stable extracted masses, regardless of the gap scheme used. The reason
is that the fits automatically adjust ∆0 so that the difference in the gap subtraction is
compensated for. This is evident in the agreement of the fitted N2LL values for the Ω1

parameter. Remember that all plots show Ω1 corrected to the one-loop gap 1 scheme.
The combination of pole mass and gap 3 at N2LL exhibits large uncertainties due to large
running effects specific to gap 3. This problem does not appear for the MSR mass, since
MSR mass and gap 3 have opposite signed subtractions, thus the overall subtraction does
not cause perturbative problems. The validity of this new approach is also reflected in
the dramatic improvement of the χ2/d.o.f values for measurements that rely on the two
new gap schemes, while the fits using the old gap scheme have also achieved significantly
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lower χ2/d.o.f values.

5.2.4. First Test of Universality

Given that our shape function parametrization now works reliably, we can turn our
attention to study the universality of our “bHQET + nonsingulars" approach with respect
to different observables. The fit results for the sJM (sum of jet mass) observable is plotted
in the lower half of Fig. 5.8. The extracted mass values are about 400 MeV smaller than
the corresponding masses obtained from the 2-Jettiness distributions. This difference is a
systematic effect and turns out to be related to the difference in the power corrections for
these two observables and its size is between one to two times the uncertainty that we
obtained from perturbative scale and fit range variations.
We already know, that 2-Jettiness has large power corrections in its threshold τmin =

1−
√

1− 4m̂2 = 2m̂2 +O
(
m̂4
)
, whereas sJM does not. So one could speculate that sJM

is better suited for the SCET power counting and produces more reliable fit results. But
this would make the obtained result even more perplexing, because the extracted sJM
mass values are actually much lower than the theoretical expectation of the Monte Carlo
generator mass being close to the MSR mass at R ∼ 1 GeV [9, 10]. Also recall that we
are already using a prescription of including the exact threshold in the bHQET cross
section, so the disagreement observed should not originate from the power corrections in
the threshold.

Apart from the disagreement in the mass values, we also observe a systematic increase
of the fitted Ω1 values of about 150 MeV. We will see in the next chapter that relative
power corrections between the threshold τmin and the soft function convolution variable `
explain these shifts.
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6. Kinematic Mass Power Corrections

6.1. Measurement Function

In this chapter we will identify the m̂2 ∼ 1/10 power corrections in the bHQET measure-
ment function. We will focus specifically on these corrections since all the other possible
power corrections that we have mentioned in the intro of Chap. 3 are in the peak region
parametrically significantly smaller. The original factorization theorem in [12] can be
read as a differential distribution in the variables k+

n , k
−
n̄ and k+

s , k
−
s̄ , where ` = k+

s + k−s̄
is the argument of the thrust soft function Sτ (`) and ŝ = ŝ1 + ŝ2 = k+

n + k−n̄ (see Eq.
(6.8)) is the argument of the thrust jet function Bτ (ŝ). This distribution generates the
event shape distribution by the measurement function1

Q[e− emin(m̂)] = rc(m̂)m̂(k+
n + k−n̄ ) + rs(m̂)(k+

s + k−s̄ ). (6.1)

The leading expressions for the power counting in m̂ are emin = 2m̂2, rc = 1 and rs = 1.
The m̂4 correction in the threshold emin is equivalent to a O

(
mtm̂

2
)
≈ several GeV

shift of mt in the resummed cross section and attempting to formally compensate this
correction in the nonsingular distribution as defined in the first line of Eq. 3.5 would
essentially lead to a large positive (the original QCD) and a large negative peak in the
matching correction. This would undermine the purpose of using resummation. The
original calibration of Pythia using the 2-Jettiness event shape therefore included the
exact perturbative threshold at emin(m̂) in the singular factorization-theorem.

The collinear rescaling factor rc mainly modifies the width of the jet function (see Eq.
6.20), since it is peaked close to the origin. rc should therefore only have a small impact
on mt.

The soft rescaling factor rs in principle represents corrections of the same power as rc,
but the combination with the first moment of the soft shape function Ω1, which contains
the hadronic threshold, effectively causes an O (m̂Ω1) shift of the fitted calibration result
for the top mass due to a shift of the peak position2. Matching to perturbative QCD also
cannot account for this shift since it mainly originates from a non-perturbative correction.
This problem can only be fixed by applying the measurement correction consistently to
singular and nonsingular parts.

1The variables k+
n and k−n̄ are the components of the residual collinear momenta in the rest frames of

the top and anti-top respectively. The factor that boosts them into the lab frame is contained in the
prefactor rcm̂.

2An O
(
m̂2Λ

)
correction in the measurement function can be related to an O (m̂Λ) shift in mt, since

a mass shift in the threshold has the form (m + δm)2/Q2 ≈ m̂2 + m̂(2δm)/Q, while the rescaling
corrections are power counted as m̂(m̂Λ)/Q.
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In the following sections we will show the definitions of the collinear and soft variables
and their power counting, calculate the rescale factors for relevant observables and show
how the factorization theorem and the nonsingular corrections have to be modified.

6.2. Rescale Factors for Event Shapes

We set the light cone four vectors parallel to the thrust axis

nµ = (1, ~n), n̄µ = (1,−~n) (6.2)

with the unit vector ~n pointing into the top quark hemisphere. Four vectors can then be
decomposed as

pµ = p+ n̄
µ

2
+ p−

nµ

2
+ pµ⊥ (6.3)

which defines the light cone coordinates (p+, p−, p⊥) = (n · p, n̄ · p, p⊥). The inner product
then reads pµqµ = (p+q− + p−q+)/2 + p⊥

µq⊥µ. The n and n̄ hemispheres are separated
by the plane perpendicular to ~n. The total momentum going into the n hemisphere can be
split into the momentum of an on-shell top quark traveling parallel to the thrust axis, the
sum of ultra-collinear momenta kn =

∑
kn,i, and the sum of soft momenta ks =

∑
ks,i.

The n̄ momenta are split analogously

pn = mv+ + kn+ + ks

pn̄ = mv− + kn̄− + ks̄.
(6.4)

where this is a component-wise equation in the lab frame (which we will define to be the
center of mass frame). The +(−) subscript indicates a boost of the components from the
on-shell top (anti-top) “rest” frame to the lab frame.

The four-velocity of the on-shell top and anti-top in their respective zero three momen-
tum frames is v = (1, 1, 0⊥). The transformation to the lab frame reads v+ = (λ, λ−1, 0⊥)
and v− = (λ−1, λ, 0⊥) with the boost factor given by

λ ≡ 1− β
2m̂

≈ m̂ (6.5)

where we will in this section use the letter β =
√

(Q/2)2 −m2/(Q/2) =
√

1− 4m̂2 as the
velocity of the on-shell top quark in the lab frame.

The soft momenta ks,i belong to large angle gluon radiation in the n hemisphere and
the sum of these parton momenta is defined as ks = (k+

s , k
−
s , k

⊥
s ) ' (Λ,Λ,Λ). The soft

momentum ks̄ in the n̄ hemisphere has the same scaling. These soft momenta are in the
peak region parametrically smaller than the top width Λ & m̂Γ.

The ultra-collinear momenta correspond to quark and gluon fluctuations that are small
in the top rest frame kn,i ' Λ/m̂ & Γ. The sum of these ultra-collinear parton momenta
is defined in the top rest frame as kn = (k+

n , k
−
n , k

⊥
n ) ' (Λ/m̂,Λ/m̂,Λ/m̂). In the lab

frame the components are given by kn+ = (λk+
n , λ

−1k−n , k
⊥
n ) ' (Λ,Λ/m̂2,Λ/m̂). The

momenta kn̄ and kn̄− are defined analogously for the n̄ hemisphere.
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The definitions above will be used to calculate the measurement function for the
observables that we consider. The collinear momenta in the final results will be expressed
in terms of k+

n and k−n̄ , i.e. components defined in the top and antitop rest frame
respectively. The thrust jet function Bτ (ŝ), however, is defined with an off-shellness
argument ŝ = ŝ1 + ŝ2, where ŝ1 and ŝ2 are the off-shellnesses ŝ1/2 = (p2

1/2 −m
2)/m of

the collinear top and antitop momenta respectively, p1 = pn − ks and p2 = pn̄ − ks̄. To
relate these two expressions we have to first expand the off-shellness in the SCET power
counting and then insert our bHQET expressions. The SCET momentum decomposition
is given by [12]

p1 = (p+
1 , p

−
1 , p

⊥
1 ) = (p+

1 , p̃1 + k−n,SCET, p
⊥
1 ) (6.6)

where the label momentum p̃1 ∼ Q is large and the other momenta are residual and are
power counted to have the same size. By first applying this power counting and then
identifying the label and residual momenta with bHQET momenta we obtain the invariant
mass

p2
1 ≈ p̃1p

+
1 = (mv−+)(mv+

+ + k+
n+) = m2 +mk+

n . (6.7)

The expression for the n̄ hemisphere is calculated analogously and we finally obtain the
expressions for the off-shellness variables

ŝ1 = (p2
1 −m2)/m ≈ k+

n

ŝ2 = (p2
2 −m2)/m ≈ k−n̄

(6.8)

2-Jettiness

The definition of 2-Jettiness is

QτJ = min
t̂

∑
i

(Ei − |t̂ · ~pi|). (6.9)

We replace the thrust axis t̂ with the light-cone vector ~n that was chosen to lie along the
thrust axis, so we can assign the momenta to their hemispheres.

QτJ =
∑

~n· ~pa>0

(Ea − ~n · ~pa) +
∑
~n· ~pb<0

(Eb + ~n · ~pb)

= p+
n + p−n̄

(6.10)

This turns out to be exactly the total plus(minus) momenta in the n(n̄) hemisphere. Now
we just plug in Eq. (6.4)

QτJ = Q(1− β) +
1− β
2m̂2

m̂
(
k+
n + k−n̄

)
+
(
k+
s + k−s̄

)
. (6.11)

The extracted corrections read

emin = 1− β rc =
1− β
2m̂2

rs = 1 (6.12)

= 2m̂2 + 2m̂4 + 4m̂6 +O
(
m̂8
)

= 1 + m̂2 +O
(
m̂4
)

Note that 2-Jettiness has rs = 1, i.e. there is no power correction for the soft rescaling
factor.
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SJM

sJM is the sum of hemisphere invariant masses

Qτs =
1

Q
(p2
n + p2

n̄) ≈ 1

Q
(p+
n p
−
n + p−n̄ p

+
n̄ ) (6.13)

We can replace the p−n (p
+
n̄ ) components with p+

n (p
−
n̄ ) using the relations

p−n + p+
n = Q+ 2∆E

p−n̄ + p+
n̄ = Q− 2∆E.

(6.14)

∆E(−∆E) is the sum of the residual energy in the n(n̄) hemisphere and inherits a power
counting of ∆E = [(k−n+ + k−s ) + (k+

n+ + k+
s )]/2 ' Λ/m̂2. Inserting everything into the

definition

Qτs = 2Qm̂2 + β
1− β
2m̂2

m̂
(
k+
n + k−n̄

)
+ β

(
k+
s + k−s̄

)
+O

(
Λ2

Qm̂2

)
(6.15)

gives us the corrections for sJM

emin = 2m̂2 rc = β
1− β
2m̂2

rs = β (6.16)

= 1− m̂2 +O
(
m̂4
)

= 1− 2m̂2 +O
(
m̂4
)

How to include these corrections

We see that 2-Jettiness and sJM have a collinear rescaling, which is opposite in sign.
2-Jettiness has no power corrections for the soft rescaling factor while the sJM rescaling
factor contains power corrections. This suggests that sJM will suffer from threshold shifting
effects due to kinematic power correction interacting with nonperturbative corrections.
There are now two possible ways to test the impact of these corrections:

1. Modify the measurement function in the original factorization theorem to incorporate
the power corrections. This is presented in the next section.

2. Define a new observable as a function of sJM that is cured from the leading soft
rescaling. This new observable can be tested with the standard measurement
function or a corrected one. This will allow us to test if the power corrections to rs
are the main issue to address.

MJM

This new observable which we will call modified jet mass (mJM) can be defined as a
polynomial in τs. A quadratic function is sufficient to remove the leading soft rescaling

τm = τs +
1

2
τ2
s . (6.17)
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Inserting the measurement function for τs into this definition results in

Qτm = 2Q(m̂2 + m̂4) + (1 + 2m̂2)β
1− β
2m̂2

m̂
(
k+
n + k−n̄

)
+ (1 + 2m̂2)β

(
k+
s + k−s̄

)
+O

(
Λ2

Qm̂2

)
(6.18)

and gives us the corrections for mJM

emin = 2m̂2 + 2m̂4 rc = (1 + 2m̂2)β
1− β
2m̂2

rs = (1 + 2m̂2)β (6.19)

= 1 + m̂2 +O
(
m̂4
)

= 1− 6m̂4 +O
(
m̂6
)
.

This observable has the same leading m̂2 corrections as 2-Jettiness. That means that
mJM and 2-Jettiness distributions will be very similar, but the experimental data will still
be based on the sJM data, which contains large corrections. This will accordingly serve
as check for how well the leading kinematic power corrections can describe the differences
between these two observables.

6.3. Factorization Theorem Modifications

We will schematically show how the bHQET factorization theorem is modified due to
the corrected measurement function. The functions here are already RGE evolved to a
common scale µ and the hard matching factors are combined into one function H. We
use the more commonly used symbols ŝ and ` instead of k+

n and k+
s .

1

σ0

dσbHQET

de

∣∣∣∣
resc.

= Q2H(Q,m, µ)

∫
d`dŝ1 dŝ2 [mBn(ŝ1,Γ, µ)][mBn̄(ŝ2,Γ, µ)]Sτ (`, µ)

× δ[Q2(e− emin)− rcm(ŝ1 + ŝ2)− rsQ`]

=
Q2

rc
H(Q,m, µ)

∫
d`dŝ Bn

[
Q2(e− emin)− rsQ`

rcm
− ŝ,Γ, µ

]
[mBn̄(ŝ,Γ, µ)]Sτ (`, µ)

=
mQ2

rc
H(Q,m, µ)

∫
d`Bτ

[
Q2(e− emin)− rsQ`

rcm
,Γ, µ

]
Sτ (`, µ)

=
mQ2

rc
H(Q,m, µ)

∫
d`dŝ dk Bτ

[
Q2(e− emin)− rsQ`

rcm
− ŝ, µ

]
G(ŝ,Γ)

× Ŝτ (`− k, δ̄, µ)F (k − 2∆)

=
mQ2

rc
H(Q,m, µ)

∫
d`dŝ dk Bτ

[
Q2(e− emin)− rsQ(`+ k)

rcm
− ŝ, µ

]
Ŝτ (`, δ̄, µ)

×G(ŝ,Γ)F (k − 2∆)

=
1

σ0

∫
dŝ dk

dσ̂s
de

(
e− rc

mŝ

Q2
− rs

k

Q
, emin, rc, rs,Γ = 0

)
G(ŝ,Γ)F (k − 2∆)

(6.20)
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In the second line we replace s1 by using the delta function. The third line uses the
definition of the thrust jet function as a convolution of the hemisphere jet functions
Bτ = Bn ~ Bn̄. In the fourth line we write the jet function as a convolution with a
Breit Wigner function G(ŝ,Γ) and the soft function as a convolution of perturbative
soft function and nonperturbative model function F (k − 2∆). In the second to last line
we just redefine the soft convolution variable so that the convolution variable of the
nonperturbative model function appears together with the observable. This form shows
how the convolutions over the Breit Wigner function the soft perturbative function and
the nonperturbative model functions have to be modified. In the last line we combine
all non-model-dependent parts into a “perturbative” cross section, which should be seen
as the counterpart to the perturbative QCD cross section with stable top quark. So the
remaining convolutions over the model functions should be implemented the same way
for the nonsingular cross section as shown in Eq. 6.21.

Note, that the ρ in Uv in A.1 has to be replaced now by by the exact boost factor λ−1 =
rs/(rcm̂) to make the running µ independent. The pole mass renormalon cancellation
is implemented as before by the replacement rule emin → emin − demin

dm δm as explained
below Eq. (4.1).

6.4. SCET Nonsingular Modifications

Recall that the exact threshold has already been included in our singular distribution by
the prescription e− 2m̂2 → e− emin. We have also seen that the nonsingular contribution
from SCET to the full cross section in the peak region has been numerically much smaller
than the bHQET singular and the QCD nonsingular contributions. We will therefore
adopt a minimal modification prescription to keep the SCET nonsingular small by using
the same rescaled measurement function as in the bHQET case. This will exactly match
the bHQET jet function onto the distributional parts of the SCET jet function and what
remains is the nondistributional part. That is, we replace Bτ [ŝ, µ] in the rescaled cross
section in the second to last line of Eq. (6.20) with Jnsb(s = mŝ,m, µ) which is defined in
Eq. (3.4) to obtain the rescaled SCET nonsingular (To be concrete, ŝ is exactly the first
argument of Bτ [ŝ, µ] in the line mentioned, which contains all the the rescale factors. Also
note that we have not smeared nondistributional parts with the Breit Wigner function in
the numerical code).

6.5. QCD Nonsingular Modifications

At the end of Sec. 6.3 we have already mentioned that the convolution variables over the
model-dependent functions G(ŝ,Γ) and F (`) should be modified the same way as for the
bHQET cross section. This is done for consistency, but it might only have a negligible
numerical effect, since it is a subleading power correction.

1

σ0

dσns

de
=

1

σ0

∫
dŝdk

dσ̂ns

de

(
e− rc

mŝ

Q2
− rs

k

Q
,Γ = 0

)
G(ŝ,Γ)F (k − 2∆) (6.21)
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The perturbative nonsingular cross section is still defined as in Eq. (3.5), but we now
have to restate the fixed order SCET cross section result with explicit factors of rs and rc
that have been set to 1 in Eq. (3.7):

1

σ0

dσSCET

de

∣∣∣∣
resc.,FO

= δ(e− emin)

+
CFαs(µ)

4π

{
[2π2 + 4 log(m̂) + 16 log2(m̂)]δ(e− emin)− 8[1 + 2 log(m̂)]

[
1

e− emin

]
+

}

+
CFαs(µ)

4π

{
8[(1 + Lc + 2Lm)Lc − L2

s + 2(Lc − Ls)Lµ]
}
δ(e− emin)

+
CFαs(µ)

4π
{16(Ls − Lc)}

[
1

e− emin

]
+

+
CFαs(µ)

4π

2

 e− emin

(e− emin + rcm̂2)2
−

4 log
(

1 + e−emin
rcm̂2

)
e− emin

 θ(e− emin)

+O
(
α2
s

)
.

(6.22)

The sum over all lines except the last one is identical to

mQ2

rc
H(Q,m, µH = µ, µm = µ)

∫
d`Bτ

[
Q2(e− emin)− rsQ`

rcm
,Γ = 0, µB = µ

]
Ŝτ (`, µs = µ).

(6.23)
The first two lines of Eq. (6.22) are just the distributional part with rs and rc set to
1, this is identical to the distributional part of Eq. (3.7). The additional distributional
terms that are produced by the measurement function rescalings are gathered in the third
and forth line. The logarithms

Lc = log rc, Ls = log rs, Lm = log m̂, Lµ = log
µ

Q
(6.24)

appear after using the plus function rescaling relation Eq. (B.6). Note that there is an
explicit logarithm of µ which should be canceled by corrections in the hard functions in
a complete treatment of mass power corrections. For our observables the nonsingular
plus distribution coefficient Bns

plus is still observable independent after rescaling and the
differences between observables for the order αs nonsingular delta function coefficient Ans

e

start at m̂4 after rescaling (m̂2 before rescaling). This suggests, that the leading fixed
order observable differences at O

(
m̂2
)
are completely explained by argument rescalings

of the leading power distributions (and obviously the shift of the threshold). The last
line, finally, is the contribution from the nondistributional part, which is numerically
insignificant in the peak region.
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7. Results

7.1. Analysis of Power Corrections

7.1.1. Fits: Rescale Prescription

We have tested the effects of the measurement mass power corrections derived in chapter
6 and different prescriptions (“absorb”, “no absorb”) of including the remaining fixed order
power corrections, which are described in Sec. 3.3. The results for Pythia using gap 2
are compiled in Fig. 7.1. Other combinations of gap and MC generator do not contain
any qualitative differences relevant to the discussion of power corrections.
The first part labeled “default” contains the standard “no absorb” and “no rescaling

factors” results. The new observable mJM (modified jet mass), that was introduced at the
end of Sec. 6.2 as a quadratic function of sJM, was designed to remove the leading soft
rescaling correction appearing in the sJM measurement function (this has automatically
set both rescale factors rc and rs and the threshold emin of mJM to have the same m̂2

corrections as 2-Jettiness). This data point is therefore based on sJM event generator data
and the agreement with the 2-Jettiness data point signifies, that the problematic relative
power corrections between sJM and 2-Jettiness are well described by the kinematic power
corrections in the measurement function.
The “abs” labeled points are obtained by absorbing the coefficients of delta and plus

distributions from the QCD nonsingulars into the corresponding coefficients of the bHQET
cross section. The remaining regular QCD nonsingulars and SCET nonsingulars are
numerically tiny in the peak region, thus all perturbative fixed order power corrections at
the given order are essentially absorbed into the resummed cross section. The improved
agreement between NLL and N2LL extracted MSR masses for measurements of the same
observable, i.e. when only comparing points with the same color, is the consequence of
resummation also acting on sub power terms. According to the rescale identity Eq. (B.6)
a rescaling of the plus distribution is equivalent to changing coefficients of distributions.
That means that absorbing all fixed order QCD coefficients should automatically also
contain all corrections that would be added by applying the rescale prescription to the
perturbative distribution. The rescale corrections that cannot be accounted for in this
way are the rescalings of the Breit Wigner (probably small effect) and soft shape function
convolution variables. These missing corrections are responsible for the clearly still
incompatible sJM data point

The results of only applying the rescale factors rs and rc in the measurement function
to the cross section are plotted in the “rescale” part. We see good agreement between
all observables for both mass and Ω1 values. The factor rs has successfully repaired the
relation between the event shape variable and the soft function convolution variable. The
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Figure 7.1.: Fit results for Pythia using gap 2. The different sections are: “default" has
no rescaling and no absorb, “abs” absorbs coefficients of distributions from
the nonsingular cross section into the resummed cross section but has no
rescaling, “rescale” contains both soft and collinear rescalings rs and rc but
no absorb, “rescale + abs” has absorption and contains both rescale factors.

rescale prescription reduces the observable differences of the nonsingular coefficients by
one power of m̂2 as we have stated at the end of Sec. 6.5, but it turns out that the now
largely observable equivalent (in the sense that they have the same m̂2 corrections apart
from those in emin) N2LL nonsingulars have significantly increased in size when compared
to the “default” prescription in the first panel. This explains the rather large shift of the
N2LL results in the wrong direction.

The final prescription for including power corrections is to apply both rescale factors and
then to absorb the the remaining power corrections. In the figure this version is referred
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to as “rescale + abs”. The main correction that is missing from the “abs” prescription,
i.e. the rescaling of the soft shape function convolution variable, is now also included,
which leads to 2-Jettiness and mJM results that are comparable to the “abs” results and
a repaired sJM result.

We can conclude, that the rescale prescription is mandatory for consistent results. But,
we have also discovered that rescaling leads to relative large global (i.e. universal for τ2,
τm, τs) power corrections and subsequently a large sensitivity to the “absorb” prescription.
In the next sections we will devise a procedure to obtain a reasonable estimate for these
power correction uncertainties.

7.1.2. Partial Absorption of Power Corrections

In section Sec. 3.3 we described the prescription of fully absorbing all distributional
QCD power corrections into bHQET, so that only the non-distributional term, which is
numerically negligible in the peak regions, remains in the nonsingular, see Eq. (3.49).
We will now use a parametrization that will allow us to exactly specify how much of the
distributional contributions should remain in the nonsingular. In this partial absorption
prescription we set the nonsingular to

1

σC0

dσCparAbs,ns

de

!
= RC,ns

0 (ξA0; m̂)δ(e− emin) +
CFαs

4π

{
AC,ns
e (ξR0, ξA1; m̂)δ(e− emin)

+BC,ns
plus (ξR0, ξB1; m̂)

[
1

e− emin

]
+

+ FNS,C
e (e, m̂)

}
,

(7.1)

where the coefficients are parametrized by (we will now for readability drop the current
superscript C and the m̂ dependence in the argument)

Rns
0 (ξA0) = (1− ξA0)Rns

0 (0)

Ans
e (ξR0, ξA1) = (1− ξA1)Ans

e (ξR0, 0)

Bns
plus(ξR0, ξB1) = (1− ξB1)Bns

plus(ξR0, 0)

(7.2)

and the baseline for the ξA1, ξB1 parametrization is given by

Ans
e (ξR0, 0) = Ans

e (0, 0)− ξR0R
ns
0 (0)As

e(0, 0)

Bns
plus(ξR0, 0) = Bns

plus(0, 0)− ξR0R
ns
0 (0)Bs

plus(0, 0)
(7.3)

The fixed order (FO) contribution of the singular cross section after absorption is then
given by the FO QCD coefficients defined in Eq. (3.8) minus the contribution, that
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remains in the nonsingular

RQCD
0 −Rns

0 (ξA0) = 1 +Rns
0 (0)−Rns

0 (ξA0)︸ ︷︷ ︸
Rabs

0

≡ Rnewsing
0

AQCD
e −Ans

e (ξR0, ξA1) = As
e(0, 0)︸ ︷︷ ︸
Abasee

+Ans
e (0, 0)−Ans

e (ξR0, ξA1)︸ ︷︷ ︸
Aabse

BQCD
plus −B

ns
plus(ξR0, ξB1) = Bs

plus(0, 0)︸ ︷︷ ︸
Bbase

plus

+Bns
plus(0, 0)−Bns

plus(ξR0, ξB1)︸ ︷︷ ︸
Babs

plus

,

(7.4)

where Rs
0(ξA0 = 0), As

e(ξR0 = 0, ξA1 = 0), Bs
plus(ξR0 = 0, ξB1 = 0) are the delta and plus

distribution coefficients of the FO singular distribution before any absorption, given in
Eq. (3.7) and (6.22), and Rns

0 (0), Ans
e (0, 0), Bns

plus(0, 0) are the nonsingular coefficients
before any absorption defined in Eq. 3.5. The right hand sides of Eq. (7.4) have the form
of Eq. (3.50) where the “base” superscript terms are identical and the “abs” superscript
terms are modified due to the remaining nonsingulars. We can therefore directly use
Eq. 3.51 with these definitions of “base”, “abs” and “newsing” terms to obtain the correct
modification of the bHQET cross section. It is clear from the equations above, that the
sum of the resulting singular and nonsingular distributions will automatically add up to
the QCD distribution at FO for any choice of the parameters ξA0, ξR0, ξA1 and ξB1.

Let us now explain the meaning of these parameters. ξA0 is the fractional amount of the
original tree level delta function nonsingular coefficient, that is absorbed into the bHQET
distribution. Hence, 1− ξA0 is the fractional amount that remains in the nonsingular. At
NLL, ξA0 = 0 therefore corresponds to the “no absorb” prescription and ξA0 = 1 to the
“full absorb” prescription.
ξA1 and ξB1 do the same for the order αs delta function and plus distribution coefficients

respectively. ξA1 = 1 or ξB1 = 1 again correspond to full absorption, i.e. the nonsingular
coefficient vanishes. However the baseline for the parametrization, that is the nonsingular
coefficients for ξA1 = 0 or ξB1 = 0, can be taken either as the nonsingular coefficients
before any absorption Ans

e (0, 0), Bns
plus(0, 0) or as the recalculated nonsingular coefficients

after absorption of the tree level coefficient, treated as part of a global multiplicative
factor, as it is illustrated by the first line of Eq. (3.51). This global factor contains the
tree level power corrections, but it will also add power corrections to the order αs singular
FO coefficient due to mixed terms of the form (power correction × αs leading power).
The parameter ξR0 then governs how much of these mixed terms we consider to be part
of the baseline for the ξA1 and ξB1 parametrization. ξR0 = 0 sets the baseline to the
order αs nonsingular coefficients before any absorption and ξR0 = ξA0 sets the baseline to
the recalculated nonsingular coefficients after absorption of the tree level coefficient as a
global factor.
For example, the choice ξA0 = 1, ξR0 = ξA0, ξA1 = ξB1 = 0 means that the tree level

coefficient is fully absorbed, the order αs nonsingular baseline is recalculated and we
absorb nothing from this recalculated αs nonsingular. For this choice the new bHQET
hard and jet functions in Eq. 3.51 are identical to the old ones before any absorption:
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H̃Q = HQ, H̃m = Hm, B̃ = B. The only change is the global factor Rnewsing
0 = 1 +Rabs

0

in front of everything.
For the second example we take the choice ξA0 = 1, ξR0 = 0, ξA1 = ξB1 = 0. The tree

level coefficient is still fully absorbed, but now the order αs nonsingular baseline does
not change due to the absorbed tree level coefficient, we then proceed to absorb nothing
measured from this baseline. The resulting order αs nonsingular coefficients are therefore
exactly the same as in the “no absorb” case. However, the new bHQET hard and jet
functions are now different than the old ones before any absorption: H̃Q 6= HQ, H̃m 6= Hm,
B̃ 6= B, since the mixed terms produced by the global factor Rnewsing

0 have to be canceled
explicitly at one loop, so that the global factor is effectively removed from the order αs
singular distribution. This choice ξR0 = 0 is useful to quantify how much each coefficient
of the “no absorb” nonsingular distribution separately affects the fit result. Each of the
nonsingular coefficients in this case interpolates independently between the “no absorb”
prescription value and 0 (“full absorb”). This version will however provide unrealistic
and over-conservative estimates of power correction uncertainties, if the global Rnewsing

0

factor in the singular distribution generates the correct power corrections at order αs by
itself. To avoid a subtraction of these correct terms in the singular distribution we would
therefore use ξR0 = ξA0, so that the order αs nonsingular coefficients now interpolate
between the recalculated nonsingular coefficients, that have a smaller absolute value than
before, and 0. For our analytic FO expressions the tree level coefficient seems to indeed
factorize to a large extend.
The QCD tree level coefficient absorbed into the singular as a global multiplicative

factor Rnewsing
0 = RQCD

0 = 1 + Rns
0 (0) produces by itself all next to leading m̂2 power

corrections of the plus distribution coefficient BQCD
plus . Note, that this only happens in

the full “rescale” prescription case, because kinematic power corrections would otherwise
be missing. The first interesting thing that happens is that RV,QCD

0 6= RA,QCD
0 and

BV,QCD
plus 6= BA,QCD

plus , but
BV,QCD

plus

RV,QCD
0

=
BA,QCD

plus

RA,QCD
0

, (7.5)

i.e. the tree level coefficients are different for vector and axial-vector currents and the
same applies to the plus distribution coefficients, but the ratios are exactly the same.
This supports the treatment of the tree level coefficient as global factor. Furthermore, we
can now subtract the singular contribution from the tree level subtracted plus function
coefficient

BQCD
plus

RQCD
0

−Bs
plus(0, 0) = −32 log(m̂)m̂4 +O

(
m̂6
)
. (7.6)

This shows, that we only need the assumption that RQCD
0 is a global factor, to account for

all next to leading power m̂2 corrections in BQCD
plus . It should be clear, that the kinematic

corrections from the rescale prescription, given in Eq. (6.22) have been taken into account
in Bs

plus(0, 0) to obtain the expression above. It should also be mentioned, that the
corrections in RV,QCD

0 start at m̂4, while those in RA,QCD
0 start at m̂2. The leading m̂2
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corrections of BV,QCD
plus are therefore accounted for by rescale corrections alone. All the

objects in the equation above are, at least for the observables that we use, observable
independent.
The same treatment applied to the order αs delta function coefficient cannot account

for all leading power m̂2 corrections, which is not surprising, because it is very probable
that these power corrections will also appear in the hard functions. We nevertheless
observe that the corresponding nonsingulars are significantly reduced.
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Figure 7.2.: Order αs nonsingular plus distribution (left) and delta distribution (right)
coefficients with (yellow) and without (blue) absorption of tree level delta
function coefficient as global factor. Shown separately for vector (solid) and
axial-vector (dashed) current. The top mass is set to 173 GeV.

Fig. 7.2 shows the nonsingular coefficients with and without absorbing the tree level
coefficient as a global factor for vector and axial-vector contributions. These values have
to be multiplied with the vector and axial-vector born cross section, given in Eq. (3.9),
respectively to obtain their relative contribution to the total nonsingular coefficients. The
range of the born cross section ratios within our Q-range is σV0 /σA0 ∈ [3.67, 3.80]. In
these plots we have included all rescale prescription corrections in the singular coefficients,
except for the log µ

Q correction shown in Eq. (6.22), which can be treated separately due
to its µ dependence and its observable independence.
Below Eq. (6.22) we stated that the differences between our observables for the

order αs nonsingular coefficient Ans
e start at power m̂4 after the rescale prescription

(m̂2 before rescale prescription). This difference is further reduced after absorbing the
tree level coefficient RQCD

0 into the singular as global factor, the difference now starts
at m̂6. The reason is that a m̂2n term in the observable independent Bns

plus coefficient
leads to observable dependent rescaling corrections starting at m̂(2+1)n. These observable
differences then finally end up in Ans

e after using the rescaling identity (B.6) to bring the
arguments into the standard form shown in Eq. (3.5). Since the absorption of RQCD

0 as
a global factor moves all m̂2 terms of BQCD

plus and its associated m̂4 rescale corrections
into the singular distribution, the remaining nonsingular coefficient Bns

plus starting at m̂4

can only lead to m̂6 rescaling corrections in Ans
e . The Ans

e plot in Fig. 7.2 is therefore
representative for any of our observables (Bns

plus plot is observable independent).
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Figure 7.3.: Fit results using partial absorption parametrization. R0000B00: no ab-
sorb, R1000B00: tree level coefficient absorbed as global factor, R1010B00:
both delta coefficients absorbed, R1000B10: tree level and plus distribution
absorbed, R1010B10: all distributional nonsingulars absorbed.
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7.1.3. Fits: Partial Absorption

Effects of Nonsingular Coefficients and Uncertainty Estimate

Fig. 7.3 shows fit results with different partial absorb parameters. The kinematic rescaling
factors are from now on always included as default. Our naming scheme is given by

R xx
10×ξA0

(−)10×ξA1

(m)yy B (m)zz

(−)10×ξB1

, (7.7)

where the ξ’s have been defined and explained in Sec. 7.1.2. We will always set
ξR0 = ξA0, so that ξA1 and ξB1 correspond to fractional absorption of the remaining
nonsingulars after absorbing the tree level coefficient 1 +Rabs

0 (ξA0) as global factor.
We saw in the last section, that absorbing the tree level coefficient as global factor also

leads to large analytical cancellations of terms in the order αs nonsingular coefficients.
This is also reflected in the fit results. All tree level absorbed versions with different
combinations of absorption of the remaining order αs nonsingular coefficients, between
no absorb and full absorb, are very close to the treatment, where all distributional
nonsingulars are fully absorbed.
In the next Fig. 7.4 we show fits with a larger variation of the remaining order αs

nonsingular coefficients. We let αs delta function and plus distribution parameters change
in a correlated way, to avoid numerical cancellations of these nonsingulars due to their
signs. The labels are explicitly explained in the figure caption. R10m20Bm20 sets the
remaining order αs nonsingular to 3 times the standard R1000B00 nonsingular. We see
in this extreme case, i.e. R10m20Bm20, that the N2LL MSR fits are still very insensitive
to these nonsingulars, whereas the N2LL pole fits show a relative large increase of their
uncertainties. This means that the nonsingulars are relative large again (about 3/5 of “no
absorb” nonsingular but with slightly shifted peak position) and that this choice would
lead to an overestimate of the uncertainties. Also note, that the large uncertainty in the
fitted N2LL MSR Ω1 value for R10m20Bm20 is due to some very small peak like features
at the side of the actual peak caused by negative nonsingulars, that are miss-recognized
for some few profiles, due to the normalization applied over the fit range. This problem
could be fixed by carefully restricting the fit range of ∆0. In general, the fit parameters
show a very mild dependence on variations of the order αs absorption parameters.

Based on these results and on the analytical properties of these coefficients, presented
in Sec. 7.1.2, we decided for the uncertainty estimate of these power corrections to always
fully absorb the tree level coefficient as global factor, that is ξA0 = ξR0 = 1, and to include
the order αs parameters as independent random parameters in our 501 profiles. We use
the range −1 < ξA1 < 1 and −1 < ξB1 < 1. This corresponds to a variation between
full absorb R1010B10 and R10m10Bm10, where the latter has 2x of the nonsingulars
of R1000B00. This should provide a reasonably conservative estimate of the remaining
power corrections given the analytical results that are currently available to us. This final
version is already included in Fig. 7.4 with the label “parAbs” and it is per construction
compatible with all other reasonably parametrized fit results.
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Figure 7.4.: Fit results using partial absorption parametrization. R0000B00: no ab-
sorb, R1000B00: tree level coefficient absorbed as global factor. Taking
the nonsingulars in R1000B00 as x, the nonsingulars in the following ver-
sions are R10m20Bm20: 3x, R10m10Bm10: 2x, R1010B10: 0x, R1020B20:
−x. parAbs: independent random profile variation of ξA1 and ξB1 between
R10m10Bm10 and R1010B10.
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Figure 7.5.: Gap scheme and partial vs. full absorb comparison for Pythia

Soft Gap Scheme Comparison for different MCs

In Fig. 7.5, 7.6 and 7.7 we show gap comparisons and “partial absorb” (“parAbs”) versus
“full absorb” (“abs”) for Pythia, Herwig, and Sherpa respectively. First, we can
conclude based on these figures, that using partial absorption to provide an uncertainty
estimate of power corrections does not change the qualitative behavior of the fits compared
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Figure 7.6.: Gap scheme and partial vs. full absorb comparison for Herwig

to a fully absorbed treatment. This applies to every single fit and also to those that
exhibit irregularities. We can therefore restrict ourselves to the more conservative “parAbs”
version, to discuss gap related behaviour, since this is also the version that will be used
to present the final results.
Gap 1 and gap 2 show very similar results overall. The fitted MSR mass values are

in general compatible between all gaps. The gap 3 has better convergence for the MSR
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Figure 7.7.: Gap scheme and partial vs. full absorb comparison for Sherpa

Ω1 values between orders. But gap 3 has problems, when used to fit the pole mass:
Gap 3 exhibits large scale dependence. For the NLL cross section this means, that the
combination of event shape variable and gap parameter τ − τmin(m)− rs2∆(Rs(τ))/Q
in the argument of the factorization theorem is close to stationary or not monotonously
increasing as a function of τ right after the peak for some profiles with fast changing
scales. This leads to a stretched peak shape or a double peak, which are responsible for
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the large errors seen in the fits. In the NLL MSR case this problem does not happen,
since the scale dependence of the mass mMSR(R(τ)) in the threshold τmin(mMSR) has the
opposite sign, which partially cancels the gap running numerically. Gap 3 also has some
issues when used for N2LL pole fits, due to the large gap subtraction δ̄3(Rs), which leads
to worse perturbative convergence. This problem also does not occur for N2LL MSR fits,
because the mass subtraction term δmMSR(R) combines with the gap subtraction into a
small total subtraction, since they contribute with opposite signs. Hence, gap 3 pole NLL
and N2LL results are in general less reliable than those using the other gaps.

Gap 2 provides overall MSR mass fits with the smallest uncertainties. The gap 2 pole
fits are also in general very similar to the gap 1 results, but for Sherpa we can see some
irregularities, which do not occur for the other MCs and which might therefore be caused
by some peculiar combination of factors.

7.2. Final Results

Our final results for the three event generators Pythia, Herwig and Sherpa are shown
in Fig. 7.8, 7.9 and 7.10 for the three gap schemes respectively. Details on the generator
settings and versions are given in the last paragraph below Eq. (5.5). The errors of these
results contain an estimate of remaining power correction uncertainties obtained by profile
variations of nonsingular partial absorb parameters described in the last sections. We
also explained in the last section why for pole mass fits the gap 3 results are less reliable
than those using other gaps.
The Monte Carlo event generator mass parameters mMC using standard tunes agree

with each other and the MSR(R = 1 GeV) mass within our uncertainties of about 200 MeV.
For Herwig it is known that its mass parameter depends on the shower cutoff Q0 [11],
where a change of Q0 by about 1 GeV is related to a ∼ 200 MeV change of the meaning
of the mass. These similar fitted masses therefore suggest, that the theoretical differences
between different MC masses are also of about the same size.

In contrast, the parameters for the soft shape function that we obtain are vastly different
for different MCs. These differences are also reflected in the Monte Carlo distributions,
that are used for these fits, which look completely different and do not agree with each
other at all. The differences of the fitted Ω1’s are equivalent to differences, which increase
with Q, of the peak positions of about up to 3 GeV in units of the jet mass, defined
as mJ = Q

√
τ/2, for which the peak position value is close to the top quark mass

mJ,peak ∼ mt. The large Ω2 value of Sherpa reflects an ∼ 1.5 times wider peak compared
to the other MCs. This suggests, that the MC generator description of nonperturbative
soft effects using their standard tunes does not work well for our observables. But it
seems, that by simultaneous fits of the shape parameters, we can successfully separate
the problematic soft behaviour from the collinear physics and therefore obtain the correct
mass dependencies of these MC event generators.
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Figure 7.8.: Final results for Pythia, Herwig (FullTune) and Sherpa using gap 1. The
“pythia8305” reference points use the old method from [17]. The improved
results are obtained from the event shapes 2-Jettiness (thrust), sum of jet
mass (sJM) and modified jet mass (mJM). The ordering of the sections is:
MSR N2LL, MSR NLL, pole N2LL and pole NLL.
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Figure 7.9.: Final results for Pythia, Herwig and Sherpa using gap 2.
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Figure 7.10.: Final results for Pythia, Herwig and Sherpa using gap 3.
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8. Conclusions

We have tested the original Monte Carlo event generator top quark mass calibration
framework of [17] using different observables and soft gap schemes. We discovered that
the original fit parametrization required an additional fit parameter to correctly work with
these changes and to guarantee an unbiased determination when using the original setup.
This improvement is not only necessary to correctly capture the effects of different gaps,
but also to reliably obtain non-perturbative shape function parameters and to quantify
inconsistencies arising from insufficient treatment of power corrections.
These inconsistencies of the original treatment of power corrections occurred for ob-

servables, that have (m/Q)2 power correction in the relation between the event shape
variable and soft momenta. Our new “rescale” prescription, which includes these power
corrections in the bHQET measurement function, cures the leading power corrections
between observables, both collinear and soft, which leads to very consistent fit results
between different observables.

The inclusion of these kinematic measurement power corrections made apparent, that
global observable independent power corrections are also sizable and that there is a relative
large difference between including these fixed order QCD matched power corrections as a
fixed order correction (nonsingular) or fully absorbing them into the boundary conditions
of bHQET, which was called “absorb” prescription in Ref. [29].
We analyzed the nonsingular coefficients and showed that absorbing only the scale

independent tree level coefficient as global factor multiplying the bHQET cross section also
completely accounted for the leading power corrections of the order αs plus distribution
coefficient and a large part of the order αs delta function coefficient. Based on these
facts we were able to provide a reasonable uncertainty estimate of these remaining power
corrections in our final version of the mass calibration procedure, with only minimal
increases in the total uncertainty.
This optimized procedure was finally used to calibrate the top quark masses of the

major Monte Carlo event generators on the market, Pythia, Herwig and Sherpa, to
the MSR and pole mass using 3 observables and 3 soft gap schemes. The results are
plotted in Fig. 7.8, 7.9, and 7.10.

Both observable and soft gap dependencies are well controlled due to the improvements
that we have implemented. We have shown that the differences between the Monte Carlo
mass schemes using their standard tunes are small and within ∼ 200 MeV for the central
values and ∼ 500 MeV using the full uncertainty ranges.

The non-perturbative soft behaviour, which we successfully separated from the mass
dependence, was in contrast vastly different between MC generators for the type of
observables that we used. These differences are reflected in a clear incompatibility of
the distributions produced by these MC generators and they are quantified by the soft
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shape function parameters that we simultaneously fitted together with the mass parameter.

This calibration framework can be used to confirm analytical results for the MC
mass scheme dependence, if they are available (e.g. Herwig [11]). It can also be used
to troubleshoot and improve Monte Carlo event generators and their models for this
kinematic phase space region.
Our theoretical description can be improved by including the known N3LL bHQET

ingredients. Ref. [14] has already tested the convergence behaviour of this additional
order for bHQET alone, but the nonsingular contribution has to be still worked out for a
complete description.

Further theoretical improvements can be achieved by investigating the leading (m/Q)2

power corrections in a strict EFT framework to exactly determine the correct resummation
contributions for these power corrections. We know that compared to the strict leading
power bHQET description, these corrections will be large. If this strictly derived theory
result falls within the reasonable estimates of our power correction improved description,
then we expect a relatively small improvement of our MSR mass fit results and a significant
reduction of our pole mass fit N2LL uncertainties, since those were rather sensitive to our
uncertainty estimate parametrization.
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A. Evolutions

A.1. Evolution Factors and Anomalous Dimensions

We follow the notation and convention of Ref. [14], except our Γcusp has CF absorbed.
The RGE evolution factors read [13]

UHQ(Q,µ0, µ1) = e
KHQ

(
µ0

Q

)ωHQ
Uv(ρ, µ1, µ0) = eKv%−ωv

UF (t, µ1, µ0) =
eKF (eγE )ωF

Γ(−ωF )
Lµ0

0,ωF
(t)

(A.1)

where F ∈ {Bτ , Sτ} and Lµ0,ωF is the fractional plus distribution defined in App. B. They
are the solutions to the renormalization group equations

µ
d

dµ
HQ(Q,µ) =

[
ΓH [αs] ln

(
µ

Q

)
+ γHQ [αs]

]
HQ(Q,µ)

µ
d

dµ
Jν(τ, µ) =

(
Γv[αs] ln ρ−1 + γv[αs]

)
Jν(τ, µ)

µ
d

dµ
F (t, µ) =

∫ +∞

−∞
dt′ γF (t− t′, µ)F (t′, µ)

γF (t− t′, µ) = − ΓF [αs]LµF0

(
t− t′

)
+ γF [αs]δ(t− t′)

(A.2)

with Jν defined as the squared bHQET current Bτ ~ Sτ , the running of this combination
is not a convolution anymore. ΓF is the cusp anomalous dimension and γF is the non-
cusp anomalous dimension. Note, that the implementation of power corrections in the
measurement function discussed in Chap. 6 rescales the boost between the soft and
ultra-collinear momenta, as a consequence ρ has to be replaced by the exact on-shell
top quark boost factor rs/(rcm̂) to obtain consistent running, that is independent of the
arbitrary starting scale of Uν .

The evolution kernels are given by [αi ≡ αs(µi)]:

ω(Γ;µ1, µ0) =

∫ α1

α0

dα

β(α)
Γ[α]

K(Γ, γ, j;µ1, µ0)− ω (γ;µ1, µ0) = j

∫ α1

α0

dα

β(α)
Γ[α]

∫ α

α0

dα′

β(α′)

(A.3)

where j is the mass dimension of the variable in the logarithm of the cusp piece. Given
our notation in Eq. A.2 all j = 1, except for Jν for which j = 0. The results at N2LL
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read [30]

ωN3LL(Γ;µ1, µ0) = − Γ0
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Γ2

Γ0
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} (A.4)

KN2LL(Γ, γ, j;µ1, µ0) =
jΓ0

4β2
0

{
4π

rα0
(r log r + 1− r) +

(
Γ1

Γ0
− β1

β0

)
(r − 1− log r)

− β1

2β0
log2 r +

α0

4π

[(
Γ1β1

Γ0β0
− β2

1

β2
0

)
(r − 1− r log r)−B2 log r

+

(
Γ2

Γ0
− Γ1β1

Γ0β0
+B2

)
r2 − 1

2
+

(
Γ1β1

Γ0β0
− Γ2

Γ0

)
(r − 1)

]}
+ ωNLL(γ;µ1, µ0),

(A.5)

where r = α1/α0 depends on the 4-loop running coupling and B2 = β2
1/β

2
0 − β2/β0. The

QCD beta function and the cusp and non-cusp anomalous dimensions are given by the
series

dαs(µ)

d logµ
= β[αs] = −2αs

∞∑
n=0

βn

(αs
4π

)n+1
, Γ[αs] =

∞∑
n=0

Γn

(αs
4π

)n+1
, (A.6)

where Γ stands for either ΓF , γF or the QCD cusp anomalous dimension Γcusp. The cusp
anomalous dimensions are proportional to Γcusp [13, 18,39–42]

ΓBτ [αs] = Γν [αs] = −ΓSτ [αs] = 4Γcusp(5)[αs]

−ΓHQ [αs] = 4Γcusp(6)[αs]
(A.7)

with the universal cusp anomalous dimension coefficients given by

Γcusp
0 =

16

3
, Γcusp

1 =
1072

9
− 16

3
π2 − 160

27
nf ,

Γcusp
2 = 1960− 2144

9
π2 +

176

15
π4 + 352ζ3 +

(
−5104

27
+

320

27
π2 − 832

9
ζ3

)
nf −

64

81
n2
f .

(A.8)

Consistency in the running gives the relation

γν [αs] = γBτ [αs] + γSτ [αs] (A.9)

and the expressions for the noncusp anomalous dimensions read

γ
HQ
0 = −16, γ

HQ
1 = −7976

27
− 136

9
π2 +

736

3
ζ3 +

(
1040

81
+

16

9
π2

)
nf ,

γBτ0 =
32

3
, γBτ1 =

11168

27
− 184

9
π2 − 160ζ3 +

(
−1856

81
+

16

27
π2

)
nf , (A.10)

γSτ0 = 0, γSτ1 = −6464

27
− 88

9
π2 + 224ζ3 +

(
896

81
− 16

27
π2

)
nf .
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The beta function coefficients are given by [43]

β0 = 11− 2

3
nf , β1 = 102− 38

3
nf , β2 =

2857

2
− 5033

18
nf +

325

54
n2
f ,

β3 =
149753

6
+ 3564ζ3 +

(
−1078361

162
− 6508

27
ζ3

)
nf +

(
50065

162
+

6472

81
ζ3

)
n2
f +

1093

729
n3
f .

(A.11)

A.2. R-Evolution

The MSR mass and soft gap scheme R-RGE can be determined from the fact that
mpole = mMSR(R) + δm(R) and ∆ = ∆̄(R,R) + δ̄(R,R) are scale independent. Given a
perturbative series of the form

f(R) = const.−R
∞∑
n=1

[
αs(R)

4π

]n
fn (A.12)

the R-RGE can be written as

df(R)

d lnR
= R

df(R)

dR
= −R

∞∑
n=0

γf,Rn

[
αs(R)

4π

]n+1

(A.13)

with the anomalous dimension coefficients reading

γf,Rn = fn+1 − 2

n−1∑
j=0

(n− j)βjfn−j , (n ≥ 1)

γf,R0 = f1

(A.14)

The solution for the evolution is therefore

f(R1)− f(R0) = −
∞∑
n=0

γf,Rn

∫ R1

R0

dR

[
αs(R)

4π

]n+1

. (A.15)

For f(R) = mMSRp(R) we have fn = aMSRp
n (nl) as defined in Eq. (2.17) and given by [27]

aMSRp
1 (nl) =

16

3
, aMSRp

2 (nl) =
307

2
+

16

3
π2 +

16

9
π2 log 2− 8

3
ζ3 + nl

(
−71

9
− 8

9
π2

)
,

aMSRp
3 (nl) = 12185.− 1705.93nl + 41.7722n2

l .

(A.16)

For f(R) = ∆̄(R,R) we use fn = di(R,R) as defined in Eq. (2.18). These in turn depend
on the coefficients in the exponent of the position space soft function as defined in Eq.
2.22, which can be generated by [14]

smn = s[0]
mn[β] + s[1]

mn[β] + s[2]
mn[β], (A.17)
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where each term follows a recursion relation for m > 1 and 1 ≤ n− k ≤ m− 1

s[k]
mn[β] =

2

n

m−1∑
i=n−k

i si(n−1)[β]βm−i−1, (A.18)

and the independent starting values (with m ≥ 1) read

s
[0]
m0[β] = sm0, s

[1]
m1[β] = γSτm−1, s

[2]
m2[β] =

1

2
ΓSτm−1. (A.19)

The anomalous dimensions are listed in the previous section and the relevant non-
logarithmic terms are given by [13,44]

s10 = −4π2

3
s20 =

2

405

(
25740ζ3 + 756π4 − 13065π2 − 21400

)
+

4

243

(
−468ζ3 + 231π2 + 40

)
nf .

(A.20)

Gap 2 and 3 are µ independent, but gap 1 inherits a non-trivial µ anomalous dimension
from the soft function and hence requires an additional µ evolution. This µ-RGE reads [29]

µ
d

dµ
∆̄1(R,µ) = −µ d

dµ
δ̄1(R,µ) = 2ReγEΓcusp[αs], (A.21)

which follows from the gap definition 2.23 and the soft function RGE in position space,
and where the cusp anomalous dimension are given in Eq. (A.8). The solution is

∆̄1(R,µ)− ∆̄1(R,µ0) = 2ReγEω(Γcusp, µ, µ0), (A.22)

with the evolution kernel as defined in Eq. (A.3).
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B. Distributions

The plus function with a fractional exponent 1 + ω and ω < 1 is defined by [13][
Θ(x)

(x)1+ω

]
+

≡ lim
β→0

[
θ(x− β)

(x)1+ω
− δ(x− β)

β−ω

ω

]
. (B.1)

Expanding this equation for small ω gives the definition for the logn(x)/x plus distri-
bution for n ≥ 0:[

Θ(x) logn x

x

]
+

≡ lim
β→0

[
θ(x− β) logn x

x
− δ(x− β)

logn+1 x

n+ 1

]
. (B.2)

Integrating with this distribution over a test function f(x) gives

∫ ∆

0
dx

[
Θ(x) logn x

x

]
+

f(x) =

∫ ∆

0
dx

f(x)− f(0)

x
logn x+ f(0)

logn+1 ∆

n+ 1
(B.3)

These plus distributions appear in the jet and soft function and their evolutions. We will
use a shorthand notation for them:

Lµ0,ω (`) ≡ 1

µj

[
Θ(`)

(`/µj)1+ω

]
+

Lµn (`) ≡ 1

µj

[
Θ(`) logn(`/µj)

`/µj

]
+

(B.4)

where the exponent j is the mass dimension of the variable `. In the case of an dimensionless
argument we will also use the notation[

1

e

]
+

≡
[

Θ(e)

e

]
+

(B.5)

An useful identity to rescale the plus function argument for e.g. matching purposes is
given by [13]

κ

[
θ(x) logn(κx)

κx

]
+

=
logn+1(κ)

n+ 1
δ(x) +
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x

]
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.

(B.6)
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C. Additional Analysis

C.1. Comparison: Rs < µS and Rs = µS

Fig. C.1 shows how modifying the analysis for the final result for Pythia shown in
Fig. 7.5 by setting the soft gap subtraction scale Rs to the soft scale µS affects the fitted
results. The default profiles set Rs below µS , see Eq. (4.9). The fitted mass values are
not affected by the different choices of Rs. The fitted Ω1 values of gap scheme 2 and
3 show insignificant differences. The fitted Ω1 values for gap scheme 1 received large
shifts which was expected. The gap parameter and also Ω1(Rs, µS), which is a function
of the gap parameter, are extracted from the cross section which uses a dynamical scale
µS(τ), that is higher than the reference scales, which are used to quote the result for the
fitted Ω1(R∆ = 2 GeV, µ∆ = 2 GeV) values. For Rs = µS the scheme 1 gap parameter
∆(Rs, Rs) does not run with the scale Rs at NLL, since the first R-anomalous dimension
is zero. When Rs is below µS , however, it is possible for the scheme 1 gap parameter to
run down to the reference scales. This explains the difference at NLL. For Rs = µS at
N2LL, the scheme 1 gap parameter is able run with the two-loop R-anomalous dimension,
but the gap cannot subtract O (αs) corrections, since the non-log one loop term in the
subtraction series is zero. When Rs < µS at N2LL, the finite logarithmic term of the
series in Eq. (2.24) can be used as an effective subtraction term. These factors contribute
to the differences at N2LL.
The consistency of the fitted mass values for all gap schemes indicates, that our

calibration method correctly absorbs soft gap related differences into the fitted Ω1 values.
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Figure C.1.: Rs < µS vs. Rs = µS comparison for Pythia. The upper half, with Rs < µS ,
is identical to Fig. 7.5. The lower half sets Rs = µS .
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