

# **MASTERARBEIT / MASTER'S THESIS**

## Titel der Masterarbeit / Title of the Master's Thesis "Bestimmung der Reservoireigenschaften

## der Hauptdolomit-Formation"

verfasst von / submitted by Ivica Bandic, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Master of Science (MSc)

Wien, 2022 / Vienna 2022

Studienkennzahl It. Studienblatt / degree programme code as it appears on the student record sheet:

Studienrichtung It. Studienblatt / degree programme as it appears on

UA 066 815

degree programme as it appears on the student record sheet: Maste

Betreut von / Supervisor:

Masterstudium Erdwissenschaften Dr. Kurt Decker

II

#### Danksagung

Ein ganz großes Dankeschön an Dr. Kurt Decker und Dr. Helene Bauer! Vielen lieben Dank für die großartige Unterstützung und Zusammenarbeit.

Ich bedanke mich auch recht herzlich bei der Wien Energie für die Initiierung und Finanzierung dieses Projekts.

Des Weiteren möchte ich Dr. Thomas Gumpenberger für die tolle Zusammenarbeit, sowie die Organisation der Computertomographie der Bohrkerne und Porositätsmessungen im Labor der OMV in Gänserndorf, danken.

Danke an Herrn Brunnader vom Steinbruch Mineral (Gaaden) für die Unterstützung wie auch die Möglichkeit diese Forschungsbohrung durchzuführen.

Besonders bedanken möchte ich mich auch bei meinen Eltern und meiner Freundin für die Unterstützung und den tollen Rückhalt während meines ganzen Studiums!

## Inhaltsverzeichnis

| Danksagung III          |      |       |                                                              |      |
|-------------------------|------|-------|--------------------------------------------------------------|------|
| A                       | bbil | dun   | ngsverzeichnis                                               | VIII |
| Та                      | bel  | len   | verzeichnis                                                  | X    |
| Kı                      | urzf | assu  | ung                                                          | XI   |
| A                       | bstr | act . |                                                              | XII  |
| 1                       | E    | Einle | eitung und Zielsetzung                                       | 1    |
| 2                       | C    | Geol  | ologie                                                       | 2    |
|                         | 2.1  |       | Hauptdolomit                                                 | 4    |
|                         | 2.2  |       | Bohrplatz                                                    | 5    |
| 3                       | ł    | Hydı  | Irogeologische Grundbegriffe                                 | 7    |
|                         | 3.1  |       | Porosität                                                    | 7    |
|                         | 3.2  |       | Durchlässigkeitsbeiwert (Darcy-Gesetz)                       | 7    |
|                         | 3.3  |       | Permeabilität                                                | 8    |
| 4                       | ſ    | Met   | thodik                                                       | 9    |
|                         | 4.1  |       | Klüfte                                                       | 9    |
|                         | 4.2  |       | Störungsgesteine                                             | 12   |
|                         | 4.3  |       | Bohrung                                                      | 17   |
|                         | 2    | 4.3.1 | 1 Komponenten                                                | 19   |
|                         | 2    | 4.3.2 | 2 Bohrspülung                                                | 22   |
|                         | 4.4  |       | Bohrkerndokumentation                                        | 24   |
|                         | 4.5  |       | Porositäts- und Permeabilitätsbestimmung                     | 26   |
|                         | 2    | 4.5.1 | 1 Porositätsbestimmung nach ÖNORM EN 1936                    | 27   |
|                         | 2    | 4.5.2 | 2 Porositätsbestimmung mit dem Porosimeter (Coreval 700)     | 28   |
|                         | 2    | 4.5.3 | 3 Porositätsbestimmung mit dem Heliumporosimeter             | 29   |
|                         | 2    | 4.5.4 | 4 Permeabilitätsbestimmung mit dem Permeameter (Coreval 700) | 30   |
|                         | 4.6  | ,     | Bohrloch-Geophysik                                           | 31   |
|                         | 2    | 4.6.1 | 1 Kaliber Log                                                | 32   |
|                         | 2    | 4.6.2 | 2 Optisches Log                                              | 33   |
| 4.6.3<br>4.6.4<br>4.6.5 |      | 4.6.3 | 3 Akustisches Log                                            | 33   |
|                         |      | 4.6.4 | 4 Natural Gamma Ray                                          | 34   |
|                         |      | 4.6.5 | 5 Full Wave Sonic Log                                        | 35   |
| 4.6.6                   |      | 4.6.6 | 6 Dual Focused Electric Log (DFEL)                           | 37   |
|                         | 4.7  | ,     | Wasserdruck-Versuch (WD-Versuch)                             | 42   |
| 4.8 Consta              |      | 5     | Constant Head Test                                           | 51   |
|                         | 4.9  | )     | Computertomographie                                          | 52   |

|                  | 4.9.1 Zu |                      | Zusammenfassung der einzelnen Schritte        | 58  |
|------------------|----------|----------------------|-----------------------------------------------|-----|
| 5 Ergebnisse     |          | 59                   |                                               |     |
|                  | 5.1      | Aufs                 | schluss                                       | 59  |
|                  | 5.1.3    | 1                    | Strukturgeologische Aufnahmen                 | 59  |
|                  | 5.1.2    | 2                    | Schichtung                                    | 60  |
|                  | 5.1.3    | 3                    | Störungen                                     | 61  |
|                  | 5.1.4    | 1                    | Klüfte                                        | 63  |
|                  | 5.2      | Aufs                 | schlussproben                                 | 63  |
|                  | 5.2.1    |                      | ÖNORM Porosität                               | 63  |
|                  | 5.2.2    | 2                    | Porosimeter (Coreval 700)                     | 64  |
|                  | 5.2.3    | 3                    | Permeameter (Coreval 700)                     | 65  |
|                  | 5.3      | Boh                  | rkernproben                                   | 67  |
|                  | 5.3.2    | 1                    | Heliumporosität                               | 67  |
|                  | 5.4      | Boh                  | rlochgeophysikalische Untersuchungen          | 69  |
|                  | 5.4.2    | 1                    | Kaliber Log                                   | 69  |
|                  | 5.4.2    | 2                    | Akustisches- & Optisches Log                  | 69  |
|                  | 5.4.3    | 3                    | Natural Gamma Ray Log                         | 69  |
|                  | 5.4.4    | 1                    | Full Wave Sonic Log                           | 70  |
|                  | 5.4.     | 5                    | Dual Focused Electric Log (DFEL)              | 71  |
|                  | 5.4.6    |                      | Leitfähigkeitsmessung der Bohrspülung         | 73  |
|                  | 5.5      | WD                   | -Versuche                                     | 74  |
|                  | 5.6      | Con                  | stant Head Test                               | 75  |
|                  | 5.7      | Com                  | nputertomographie                             | 77  |
| 6 Interpretation |          | 81                   |                                               |     |
|                  | 6.1      | Porc                 | osität und Permeabilität von Aufschlussproben | 81  |
|                  | 6.2      | Boh                  | rkernproben                                   | 82  |
|                  | 6.3      | Boh                  | rlochgeophysik                                | 83  |
|                  | 6.3.2    | 1                    | Full Wave Sonic Log                           | 83  |
|                  | 6.3.2    | 2                    | Dual Focused Electric Log (DFEL)              | 84  |
|                  | 6.4      | Porc                 | ositäten der einzelnen Lithologien            |     |
|                  | 6.5      | Porc                 | o-Perm Korrelation                            | 90  |
|                  | 6.6      | Zusa                 | ammenfassung der Ergebnisse                   | 93  |
| 7                | Schl     | ussfc                | olgerung                                      | 99  |
| 8                | Lite     | Literaturverzeichnis |                                               |     |
| 9                | Anh      | Anhang               |                                               |     |
|                  | 9.1      | Boh                  | rprofil GAD-1                                 | 105 |

| 9.2                                                    | Bohrlochgeophysik                               |  |
|--------------------------------------------------------|-------------------------------------------------|--|
| 9.2.                                                   | Datentabelle Sonic-Log                          |  |
| 9.2.                                                   | 2 Datentabelle Widerstands-Log (DFEL)           |  |
| 9.3                                                    | WD-Auswertung                                   |  |
| 9.4 Computertomographie-Aufnahmen (Saggital & Coronal) |                                                 |  |
| 9.4.                                                   | Datentabelle: Porosität & Kluftintensität (P21) |  |

## Abbildungsverzeichnis

| Abbildung 1: Lokalität des Steinbruchs Gaaden in einer Geologischen Karte                       | 2   |
|-------------------------------------------------------------------------------------------------|-----|
| Abbildung 2: Profilschnitt Kalksburg - Vöslau                                                   | 3   |
| Abbildung 3: Gebankter Hauptdolomit, Aufschluss im Steinbruch Gaaden, Profil A                  | 4   |
| Abbildung 4: Intensive Klüftung der Hauptdolomit-Formation (FDC4)                               | 4   |
| Abbildung 5: Bohrlokalität im Steinbruch Gaaden                                                 | 5   |
| Abbildung 6: Geographische Lage des Steinbruchs Gaaden                                          | 6   |
| Abbildung 7: Erläuterung des Darcy-Gesetzes                                                     | 7   |
| Abbildung 8: Erläuterung der Einheit Darcy                                                      | 8   |
| Abbildung 9: Hauptdolomit FDC 1                                                                 | 10  |
| Abbildung 10: Kluftdichteklassen FDC2, FDC3 & FDC4                                              | 11  |
| Abbildung 11: Dilatationsbrekzie                                                                | 13  |
| Abbildung 12: Fluorol-Getränkter Dünnschliff der Probe PG DB 1 im Fluoreszenzmikroskop          | 14  |
| Abbildung 13: Kataklasit Typ 1 (Aufschlussprobe: PG 26/2)                                       | 15  |
| Abbildung 14: Kataklasit Typ 2 (Aufschlussprobe: PG 26/1 [A])                                   | 15  |
| Abbildung 15: Fluorol-Getränkter Dünnschliff der Probe PG 26/1 [A] im Fluoreszenzmikroskop      | 16  |
| Abbildung 16: Kataklasit Typ 3                                                                  | 16  |
| Abbildung 17: Ablauf eines Seilkernbohrverfahrens                                               | 17  |
| Abbildung 18: Bohrplatz mit dem Bohrgerät des Typs FRASTE MultidrillXL                          | 18  |
| Abbildung 19: Außenrohr mit diamantbesetzter Bohrkrone & Räumer                                 | 19  |
| Abbildung 20: Fangfedern in unterschiedlichen Ausführungen je nach Anwendungsfall               | 19  |
| Abbildung 21: Innenrohr mit Kernfanghülse & Liner                                               | 21  |
| Abbildung 22: Fangvorrichtung mit Klinkensystem.                                                | 21  |
| Abbildung 23: Bohrspülung Rücklauf                                                              | 22  |
| Abbildung 24: Absetzbecken der Bohrspülung & Bohr-Computer                                      | 23  |
| Abbildung 25: Bohrkemdokumentation                                                              | 24  |
| Abbildung 26: Kernkiste                                                                         | 25  |
| Abbildung 27: Plug-Bohrer & fertig zugeschnittener Plug                                         | 26  |
| Abbildung 28: Probenkammern des Heliumporosimeters & Quecksilberbad                             | 29  |
| Abbildung 29: Schematische Darstellung der "pressure falloff" - Methode                         | 30  |
| Abbildung 30: links: Schematische Darstellung einer Kalibersonde im Bohrloch                    | 32  |
| Abbildung 31: Verwendete Kalibersonde bei Bohrung GAD-1                                         | 32  |
| Abbildung 32: OBI Sonden-Kopf (Fugro)                                                           | 33  |
| Abbildung 33: Sinusartige Kluftabbildungen aus Bohrung GAD-1                                    | 34  |
| Abbildung 34: Schematische Darstellung einer Sonic-Sonde in einem Bohrloch                      | 35  |
| Abbildung 35: Prinzipieller Aufbau eines Dual Focused Electric Logs                             | 37  |
| Abbildung 36: Die durch den Bohrvorgang und die Bohrspülung entstehenden Zonen                  | 38  |
| Abbildung 37: Versuchsaufbau für WD-Versuche                                                    | 44  |
| Abbildung 38: Der bei Bohrung GAD-1 verwendete Doppelpacker                                     | 45  |
| Abbildung 39: Verfälschung der Ergebnisse durch Undichtigkeit                                   | 45  |
| Abbildung 40: Schematische Darstellung des hydrostatischen Drucks                               | 46  |
| Abbildung 41: Nach unterschiedlichen Methoden ermittelte Q-kf-Beziehungen                       | 50  |
| Abbildung 42: Schematische Darstellung des Constant Head Tests (Bohrung GAD-1)                  | 51  |
| Abbildung 43: CT-Aufnahme eines Bohrkerns mit Kernkiste & Liner und die zu analysierende Fläche | e53 |
| Abbildung 44: Unterteilung in die gewünschten Klassen                                           | 54  |
| Abbildung 45: Ergebnis nach der Bearbeitung durch das Programm.                                 | 55  |

| Abbildung 46:Verfeinerungsschritt                                                           | 55 |
|---------------------------------------------------------------------------------------------|----|
| Abbildung 47: Unbereinigtes- & bereinigtes Bild                                             | 56 |
| Abbildung 48: Bereinigtes Binärbild & Liniendarstellung                                     | 57 |
| Abbildung 49: Teilschritte der digitalen CT-Bildanalyse                                     | 58 |
| Abbildung 50: Schematische Darstellung der kartierten Aufschlusswände                       | 59 |
| Abbildung 51: Steil nach Süden einfallende Schichtflächen im Bereich des Bohrplatzes        | 60 |
| Abbildung 52: Schichtung im Hauptdolomit im Bereich um den Bohrplatz                        | 60 |
| Abbildung 53: Netzwerk von Störungen & Harnischfläche mit Striemung                         | 61 |
| Abbildung 54: Streichen und Einfallen von Störungen aus den Profilen A und B.               | 62 |
| Abbildung 55: Beispiele für Störungen mit Kataklasit (Störungsgesteine)                     | 62 |
| Abbildung 56: Abnahme der Porosität bei zunehmendem Umlagerungsdruck                        | 65 |
| Abbildung 57: Abnahme der Permeabilität bei zunehmendem Umlagerungsdruck                    | 66 |
| Abbildung 58: Heliumporosität von insgesamt 75 Bohrkernproben (GAD-1).                      | 67 |
| Abbildung 59: Sonic-Porosität (Wassersättigung von 100%)                                    | 70 |
| Abbildung 60: Sonic-Porosität (Wassersättigung von 88%)                                     | 71 |
| Abbildung 61: Widerstands-Porosität (Wassersättigung von 100%)                              | 72 |
| Abbildung 62: Widerstands-Porosität (Wassersättigung 88%)                                   | 72 |
| Abbildung 63: Errechnete Permeabilität der einzelnen WD-Versuche inkl. Constant Head Test   | 76 |
| Abbildung 64: Korrelation Widerstandslogporosität (DFEL shallow) und Kluftintensität (P21)  | 79 |
| Abbildung 65: Gegenüberstellung der Porositätswerte (DFEL shallow) und der P21-Werte        | 79 |
| Abbildung 66: Korrelation Soniclogporosität und Kluftintensität (P21)                       | 80 |
| Abbildung 67: Gegenüberstellung der Porositätswerte (Sonic-Log) und der P21-Werte           | 80 |
| Abbildung 68: Korrelation von Tauchwägung (ÖNORM 1936) & Gasporosimeter (Coreval 700)       | 81 |
| Abbildung 69: Gegenüberstellung Widerstands- & Sonic-Log in 1m-Abschnitten (100% Wassersä.) | 85 |
| Abbildung 70: Gegenüberstellung Widerstands- & Sonic-Log in 1m-Abschnitten (88% Wassersä.)  | 86 |
| Abbildung 71: Korrelation Widerstands- & Sonic-Log inkl. Bohrlochausbrüchen                 | 87 |
| Abbildung 72: Korrelation Widerstands- & Sonic-Log exkl. Bohrlochausbrüchen                 | 87 |
| Abbildung 73: Korrelation der mittleren Porosität der verschiedenen Lithologien             | 88 |
| Abbildung 74: Streuung der Heliumporosität von Bohrkernproben nach Lithologien              | 89 |
| Abbildung 75: Streuung der Porosität nach Lithologien (Widerstands-Log)                     | 89 |
| Abbildung 76: Streuung der Porosität nach Lithologien (Sonic-Log)                           | 90 |
| Abbildung 77: Korrelation der Permeabilität (WD-Versuche) und Porosität (Bohrlochgeophysik) | 91 |
| Abbildung 78: Korrelation der Permeabilität & Porosität ohne WD-Versuch Nr. 11              | 92 |
| Abbildung 79: Porositätsverlauf von Bohrung GAD-1                                           | 93 |
| Abbildung 80: Gemittelte Porosität (Bohrlochgeophysik) und Permeabilität                    | 94 |
| Abbildung 81: Porositätsverlauf von Bohrkernproben & Bohrlochgeophysik                      | 95 |
| Abbildung 82: Gemittelte Porosität (Bohrlochgeophysik) und Porositäten von Bohrkemproben    | 96 |
| Abbildung 83: Gemittelte Porosität (Bohrlochgeophysik) und Permeabilität.                   | 97 |
| Abbildung 84: Nach unterschiedlichen Methoden ermittelte Permeabilität                      | 98 |

## Tabellenverzeichnis

| 25 |
|----|
| 25 |
| 36 |
| 40 |
| 47 |
| 48 |
| 63 |
| 64 |
| 66 |
| 68 |
| 73 |
| 74 |
| 75 |
| 77 |
| 81 |
| 84 |
|    |

#### Kurzfassung

Im Zuge des Projekts "Geotief EXPLORE 3D" wurde eine etwa 50 m tiefe Forschungsbohrung in Gesteinen der Hauptdolomit Formation der Göller Decke im Steinbruch Gaaden bei Wien, in äquivalenter Position zu Speichergesteinen im Untergrund des Wiener Beckens durchgeführt. Letztere werden als potentielle Explorationsziele für tiefe Geothermie angesehen. Die Qualität eines geklüfteten Speichergesteins hängt von seiner Porosität und Permeabilität ab. Diese wird hauptsächlich durch Bruch- und Kluftnetzwerke bereitgestellt, deren Dimensionen mehrere Größenordnungen zwischen Mikroklüften mit Längen im Millimeter- Bereich und Brüchen mit hunderten Metern Länge abdecken. Um diese Größenordnungen abzudecken, wurde eine 50,5 m tiefe Kernbohrung abgeteuft, die bohrlochgeophysikalisch mit einer Serie von Logs dokumentiert wurde (Kaliber, akustisches und optisches Log, Natural Gamma Ray, Sonic und DFEL Widerstandslog). Zur Bestimmung der Eigenschaften der geklüfteten und gestörten Speichergesteine wurden Porositäts- und Permeabilitätsmessungen an Proben im Labor sowie im Bohrloch selbst mit unterschiedlichen Methoden in verschiedenen Maßstäben durchgeführt. Des Weiteren wurden Wasserdruck-Versuche (Lugeon-Tests) durchgeführt, die es ermöglichten, die Durchlässigkeit bzw. Permeabilität der Formation im Bohrloch zu bestimmen. Zur Unterstützung der Ergebnisse aus geophysikalischen Bohrlochdaten wurden Computertomographie-Aufnahmen (CTs) der Bohrkerne erstellt und analysiert. Ziel der digitalen Bildanalysen war eine computergestützte Ermittlung der Kluftintensität ausgedrückt durch P21-Werte (Länge der Klüfte pro Flächeneinheit in  $m/m^2$ ).

Porositätsbestimmungen aus Sonic und DFEL Widerstandslog ergaben Werte zwischen 4,6 % und 17,2 %. Der Vergleich mit im Labor bestimmten Daten aus den Bohrkernen zeigt, dass die geophysikalisch bestimmten Werte etwa um einen Faktor 2 überhöht sind. Die aus dem Widerstandslog ermittelten Porositätswerte korrelieren jedoch sehr gut mit der Kluftintensität P21. Lugeon-Tests ergaben Permeabilitäten zwischen 4 und 103 mD. Die Tests zeigen, dass sich verschieden dicht geklüftete Dolomite und Störungsgesteine durch ihre Permeabilität erheblich unterscheiden. Die höchste Permeabilität weisen extrem dicht geklüftete Dolomite auf. Die geringsten Werte treten in zementierten Bereichen auf. Ein über das gesamte offene Bohrloch (7,5 - 50,5 m) durchgeführter Constant Head Test ergab eine durchschnittliche Permeabilität von etwa 17 mD für die durchteufte Formation.

#### Abstract

As part of the "Geotief EXPLORE 3D" project, a 50m deep research borehole was drilled in rocks of the Hauptdolomit Fm. in the Gaaden quarry near Vienna, in an equivalent position to reservoir rocks in the subcrop of the Vienna Basin. The dolostones of the Hauptdolomit Fm. are considered as potential exploration targets for deep geothermal energy. The quality of a fractured reservoir rock depends on its porosity and permeability. This is mainly provided by fracture and fracture networks whose dimensions cover several orders of magnitude between microfractures with lengths in the millimetre range and faults with lengths of hundreds of metres. To cover these orders of magnitude, a 50.5 m cored research well was drilled and documented with a series of logs (Calliper, Acoustic and Optical log, Natural Gamma Ray, Sonic and DFEL resistivity log). To determine the properties of the fractured and faulted reservoir rocks, porosity and permeability measurements were carried out on samples in the laboratory and in the borehole itself using different methods at different scales. Furthermore, water pressure tests (so-called Lugeon tests) were performed, which made it possible to determine the permeability of the formation in the borehole. To support the results from geophysical borehole data, computed tomography (CT) scans of the drill cores were taken and analysed. The aim of the digital image analysis was the computer-aided determination of the fracture intensity in the drill cores (P21, length of the fracture traces per unit area; values in  $m/m^2$ ).

Porosity determinations from Sonic and DFEL resistivity logs returned values between 4,6 % and 17,2 %. Comparison with laboratory determined data from drill core shows that the geophysically determined values are exaggerated by a factor of about 2. However, the porosity values determined from the resistivity log correlate very well with the fracture intensity P21. Lugeon tests showed permeabilities between 4 and 103 mD. The tests show that dolomites and fault rocks with different fracture densities differ significantly in terms of their permeability. Extremely densely fractured dolomites have the highest permeability. The lowest values occur in cemented intervals of the drilled formation. A constant head test conducted over the entire open hole (7.5 - 50.5 m) returned an average permeability of approximately 17 mD for the drilled formation.

#### **1** Einleitung und Zielsetzung

Die Hauptdolomit-Formation ist ein geklüftetes und gestörtes Reservoirgestein, in dem Porosität und Permeabilität in erster Linie von Trennflächen unterschiedlicher Größenordnung getragen werden. Aufgrund der Abstände von Klüften, Störungen und anderen Trennflächen ist es nicht oder nur sehr eingeschränkt möglich, Porosität und Permeabilität eines repräsentativen Volumens (Reprentative Elementary Volume, REV) im Labor zu bestimmen. So zeigte sich etwa bei Permeabilitätsmessungen, für welche Plugs angefertigt werden müssen, dass diese nur bedingt gute Ergebnisse liefern. Dies liegt zum einen daran, dass Plugs keine repräsentativen Volumina für geklüftetes Gestein, mit Trennflächenabständen von mehreren Zentimetern, darstellen und zum anderen an der Schwierigkeit Plugs aus stark geklüfteten Gestein zu gewinnen. Meist gelingen diese nur aus stark zementierten Bereichen, welche jedoch auf Grund eben dieser Zementation kein repräsentatives Ergebnis für die gesamte Formation darstellen. Labormessungen der Permeabilität sind auf Gesteinsvolumina von wenigen 100 cm<sup>3</sup> beschränkt. Ähnliches gilt für die Porositätsbestimmungen (Kapitel 4.5).

Das Ziel der in dieser Arbeit durchgeführten Messungen und Versuche liegt daher in der Bestimmung der Reservoireigenschaften der Hauptdolomit-Formation an repräsentativen Gesteinsvolumina. Dazu wurde im Rahmen des Forschungsprojekts GeoTief EXPLORE der WienEnergie eine etwa 50 m tiefe Forschungsbohrung abgeteuft. Bohrlochversuche und bohrlochgeophysikalische Messungen sollten repräsentative Ergebnisse für die Durchlässigkeit von Gesteinsvolumina liefern, welche aufgrund der intensiven Klüftung bzw. des starken Zerlegungsgrades von Dolomit, nicht oder nur sehr schwer unter Laborbedingungen zu ermitteln sind. Die Widerstands- und Kompressionswellenmessungen sollten Porositätsdaten liefern, welche den Permeabilitätsdaten aus Wasserdruck-Versuchen (Lugeon-Test) aus bestimmten Bohrlochintervallen gegenübergestellt werden. Aus diesen Ergebnissen war eine empirische Funktion zu ermitteln, die es ermöglichen sollte, aus den geophysikalischen Bohrlochmessungen Porositätsdaten und Permeabilität für die einzelnen Litholologien bzw. den gesamten Bohrlochabschnitt zu berechnen.

1

#### 2 Geologie

Die nördlichen Kalkalpen erstrecken sich über 500 km vom Nord-Ostende der Schweiz bis Wien und sind ein Teil der Ostalpen. Sie gliedern sich in die tektonischen Haupteinheiten des Bajuvarikums, Tirolikums und Juvavikums. Das Tirolikum besteht aus drei Untereinheiten, hier von Norden nach Süden gegliedert: Reisalpendecke, Ötscher-Decke und Göller-Decke (Tollmann, 1966). Der Steinbruch befindet sich in Gaaden bei Mödling (Abbildung 6), etwa 20 km südlich von Wien gelegen, nahe des Westrandes des Wiener Beckens. Im Steinbruch liegen ausschließlich Gesteine der Hauptdolomit Formation (Obere Trias) vor, welche dem Göller Deckensystem (Abbildung 1, 2) zugeordnet wird.



Abbildung 1: Lokalität des Steinbruchs Gaaden in einer Geologischen Karte (Wessely, 2006, S. 108). Die strichlierte Linie zeigt einen Profilschnitt Kalksburg - Vöslau (siehe Abbildung 2).



Abbildung 2: Profilschnitt Kalksburg - Vöslau (Wessely, 2006, S. 162). Der rote Pfeil zeigt die Position des Steinbruchs Gaaden. Der Hauptdolomit hat in diesem Bereich eine Mächtigkeit von etwa 1000 - 1500m.

#### 2.1 Hauptdolomit

Der Hauptdolomit ist eine lithostratigraphische Einheit, die überwiegend aus Dolomit aufgebaut ist. Dabei handelt es sich um dolomitisiertes Kalkgestein, bei dem Magnesium primär anstelle von Calcium angereichert wurde. Tektonisch gehört der Hauptdolomit zum Oberostalpin. In den Nördlichen Kalkalpen kommt er im Bajuvarikum wie auch im Tirolikum vor und ist dort das flächenhaft bedeutendste Gestein. Seine Ablagerung erfolgte größtenteils in flachen Lagunenbereichen im Norium in einem Zeitraum von etwa 230 – 200 Mio. Jahren (Obertrias). Das Gestein hat eine bräunlich-graue Farbe mit deutlich geschichtetem Aufbau und intensiver Klüftung (Abbildung 3, 4). Er erreicht Mächtigkeiten von bis zu 2200 m (Tollmann, 1976).



Abbildung 3: Gebankter Hauptdolomit, Aufschluss im Steinbruch Gaaden, Profil A (siehe Kapitel 5.1).



Abbildung 4: Intensive Klüftung der Hauptdolomit-Formation (FDC4).

#### 2.2 Bohrplatz

Der Bohrplatz befindet sich in der untersten Etage des Steinbruchs Gaaden auf 362 m Seehöhe und wird nach Norden und Osten hin von einer durch den Abbau entstandenen Steilwand von etwa 15m Höhe umgeben. In diesen Wänden wurden zur geologischen Standorterkundung zwei Profile aufgenommen (Kapitel 5.1.1). Das Besondere an diesem Steinbruch ist seine stratigraphische und lithologische Analogie zu Reservoirgesteinen im Liegenden der miozänen Sedimente des Wiener Beckens, aus denen Erdöl und Erdgas gefördert wird (z.B., Schönkirchen Übertief, Strasshof, Reyersdorf; Wessely, 2006). Die Hauptdolomit-Formation wird derzeit auch als mögliches Reservoir für tiefe Geothermie exploriert. Die im Aufschluss Gaaden und in der Forschungsbohrung durchgeführten Porositätsund Permeabilitätsmessungen können, bei entsprechender Anpassung von Temperatur und Druck, auch auf die entsprechend tiefer liegenden Vorkommen übertragen werden.



Abbildung 5: Bohrlokalität im Steinbruch Gaaden, Blickrichtung Osten. Das Kreuz markiert die Position der Bohrung GAD-1. Rund um den Bohrplatz wurden zwei strukturgeologische Profile aufgenommen.



Abbildung 6: Geographische Lage des Steinbruchs Gaaden (Bohrplatz-Koordinaten: 48°03'54.3"N; 16°13'54.2"E).

#### 3 Hydrogeologische Grundbegriffe

#### 3.1 Porosität

Die Porosität ist eine dimensionslose Messgröße. Sie ist definiert als Quotient des gesamten Hohlraumanteils zum Volumen des Gesteinskörpers und wird in Prozent angegeben. Dabei handelt es sich um die Gesamtporosität (Totale Porosität). Die für die Durchlässigkeit bzw. Wasserbewegung maßgebliche Porosität ist jedoch die effektive (offene) Porosität, welche als Porenanteil eines Gesteinsvolumens, der einen hydraulischen Transport von Fluiden zulässt, definiert ist. Dabei wird nicht nur der Anteil an verbundenen Hohlräumen, sondern auch der Anteil an Haftwasser, berücksichtigt. Als Haftwasser wird das an Körner oder Kluftwandungen adhäsiv gebundene Wasser bezeichnet. Die maximale Schichtdicke des elektrostatisch gebundenen Haftwassers beträgt 4µm. Es kann also davon ausgegangen werden, dass Klüfte bzw. Hohlräume, deren Öffnungen kleiner als die doppelte Haftwasserdicke (8µm) sind, nicht mehr von Wasser durchströmt werden (Hölting & Coldewey, 2013).

#### 3.2 Durchlässigkeitsbeiwert (Darcy-Gesetz)

Der Durchlässigkeitsbeiwert k<sub>f</sub> (hydraulische Leitfähigkeit) beschreibt die Durchlässigkeit von Gesteinen und ist abhängig von den Eigenschaften des Fluids (Dichte, Viskosität, Temperatur) sowie des Fluidleiters (Poren, Trennflächen). Eine exakte Bestimmung des k<sub>f</sub>-Wertes ist nur bei einer laminaren Strömung möglich. Das Gesetz von Darcy (Abbildung 7) beschreibt das in einer Zeiteinheit durch eine bestimmte Querschnittsfläche eines porösen Mediums hindurchfließende Wasservolumen (Hölting & Coldewey, 2013).



- V Wasservolumen (m<sup>3</sup>/s)
- *k<sub>f</sub> Durchlässigkeitsbeiwert (m/s)*
- A durchflossene Fläche (m<sup>2</sup>)
- h Druckhöhenunterschied (m)
- I Fließlänge (m)
- h/l = i = hydraulischer Gradient(-)

Abbildung 7: Erläuterung des Darcy-Gesetzes (Hölting & Coldewey, 2013, S. 24).

#### 3.3 Permeabilität

Die Permeabilität K ist eine gesteinsspezifische Konstante, welche die Beschaffenheit eines Porensystems, unabhängig von den Fluideigenschaften (z.B. Viskosität), beschreibt (Hölting & Coldewey, 2013). Sie dient, ebenfalls wie der Durchlässigkeitsbeiwert k<sub>f</sub>, zur Quantifizierung der Durchlässigkeit von Gesteinen.

K = 1 D (Darcy), wenn 1 cm<sup>3</sup> einer Flüssigkeit mit einer dynamischen Viskosität  $\eta$  = 10-3 Pa·s in 1 Sekunde ein Gesteinsstück von I = 1 cm und einer Querschnittsfläche von A = 1 cm<sup>2</sup> bei einer Druckdifferenz  $\Delta p$  = 1,013·105 Pa zwischen Eintritts- und Austrittsstelle durchfließt (Abbildung 8).



Abbildung 8: Erläuterung der Einheit Darcy (Hölting & Coldewey, 2013, S.25).

#### 4 Methodik

#### 4.1 Klüfte

Klüfte (Extensionsbrüche) sind planare Spaltflächen, an denen kein makroskopischer Versatz erkennbar ist (Hancock, 1985). Sie bilden Wegsamkeiten für Fluide im geologischen Untergrund. Eine große Anzahl von offenen Klüften führt in undurchlässigen Gesteinen zu einer höheren Durchlässigkeit (Reuther, 2012). In den Kluftreservoiren der Hauptdolomit-Formation bilden sie den größten Teil der offenen Porosität und bestimmen maßgeblich die Permeabilität.

In dieser Arbeit werden zwei Verfahren für die Bestimmung der Kluftdichten beschrieben. Eine Möglichkeit die Kluftintensität quantitativ zu ermitteln, stellt der P21-Wert dar (Kapitel 4.9), welcher als Länge der Klüfte pro Flächeneinheit (m/m<sup>2</sup>) definiert ist (Dershowitz & Herda, 1992). Bei dem anderen Verfahren handelt es sich um ein semiquantitatives Klassifikationsverfahren, welches für die Beschreibung der Hauptdolomit-Formation entwickelt wurde (Decker, 2007; Bauer et al., 2016). Dabei werden vier Kluftdichteklassen (Fracture Density Classes, FDC) unterschieden. Dieses Klassifikationsverfahren erlaubt eine schnelle Abschätzung der Kluftdichtensitäten direkt im Gelände.

Die Kluftdichteklasse (Fracture Density Classes, FDC) eines Gesteinsvolumens ergibt sich aus der Anzahl der verschieden Kluftsets, dem durchschnittlichen Abstand zwischen den subparallelen Klüften eines Sets und der Größe der resultierenden Gesteinsbruchstücke (Abbildung 9, 10).

#### Fracture Density Class 1 (FDC1): gering geklüftetes Gestein.

FDC1 beschreibt Gesteinsvolumina mit weniger als 3 unterschiedlichen Kluftsets, oder bis zu 4 Kluftsets mit durchschnittlichen Kluftabständen von 10 cm oder mehr. (Keiner der in dieser Arbeit untersuchten Hauptdolomite entspricht dieser Kategorie)

#### Fracture Density Class 2 (FDC2): mäßig geklüftetes Gestein.

FDC2 beschreibt Gesteinsvolumina mit drei oder mehr leicht unterscheidbaren Kluftsets mit durchschnittlichen Abständen von 5 bis 10 cm. Die Kluftgeometrien erscheinen nicht zufällig. Sowohl die Anzahl der Kluftsets als auch die durchschnittlichen Abstände können variieren.

9

#### Fracture Density Class (FDC3): intensiv geklüftetes Gestein.

FDC3 beschreibt Gesteinsvolumina, in denen Kluftsets nur schwer zu unterscheiden sind oder in denen Kluftorientierungen zufällig erscheinen. Die durchschnittlichen Kluftabstände von etwa 1 bis 5 cm resultieren in vieleckigen Gesteinsbruchstücken mit wenigen Zentimetern Durchmesser. Sedimentäre Gefüge (Schichtung, Lamination) werden von der Klüftung nicht verdeckt.

#### Fracture Class (FDC4): extrem geklüftetes Gestein.

Die Kluftdichteklasse FDC4 beschreibt Gesteine mit zahlreichen Kluftsets unterschiedlicher Orientierung. Die Kluftorientierungen erscheinen zufällig, der Abstand zwischen den Klüften beträgt nur 1 cm oder weniger. Dadurch entstehen vieleckige Gesteinsbruchstücke, die im Durchmesser nur mehr 1 cm betragen. Durch die intensive Klüftung können sedimentäre Gefüge nur mehr schlecht oder gar nicht erkannt werden.



Abbildung 9: Hauptdolomit FDC 1 (Hainfeld, Rankenfels-Lunz Deckensystem).

| Kluftdichteklasse                        | AN COMPANY CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FDC 2                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Profil A: etwa 30%<br>Profil B: picht    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| angetroffen                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                          | a transfer a constraint of the second s |
| PG_FDC2.jpg                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Kluftdichteklasse                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FDC 3                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Profil A: etwa 50%<br>Profil B: etwa 85% |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PG_FDC3.jpg                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Kluftdichteklasse                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FDC 4                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Profil A: etwa 20%<br>Profil B: etwa 15% |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tion D. etwa 1576                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PG_FDC4.jpg                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Abbildung 10: Kluftdichteklassen FDC2, FDC3 & FDC4 inkl. prozentuellem Anteil im Aufschluss GAD-1.

#### 4.2 Störungsgesteine

In dieser Arbeit werden folgende Störungsgesteine unterschieden:

- Dilatationsbrekzien
- Kataklasite Typ 1
- Kataklasite Typ 2
- Kataklasite Typ 3

Brekzien (Abbildung 11, 12) enthalten zerbrochenes Ausgangsgestein und 0-10 % Matrix und/oder Zement. Als Dilatationsbrekzien werden alle Gesteine bezeichnet, bei denen es im Zuge der Störungsgesteinsgenese zu einer relativen Volumszunahme kommt. Das zusätzliche Volumen wird durch Calcit- oder Dolomitzemente, häufig auch unzementierte Hohlräume gebildet (Tarasewicz et al., 2005).

Kataklasite (Abbildung 13, 14, 15, 16) sind stark zerbrochene Gesteine, in denen es durch Kataklase (Abrasion von Gesteinsbruchstücken durch relative Bewegung und Rotation zueinander) zu einer unterschiedlich starken Reduktion der Korngröße kommt. Aufgrund des variierenden Matrixgehalts werden Kataklasite in drei Gruppen unterteilt:

#### Kataklasite Typ 1

Die charakteristische Mikrostruktur besteht aus eckigen bis kaum gerundeten Protolithkomponenten, deren Größe zwischen 1 mm und maximal 1 cm liegen. Die Sortierung ist schlecht, die umgebende Matrix besteht aus mechanisch zerkleinerten Kalzitzementen oder Ausgangsgestein.

#### Kataklasite Typ 2

Diese Kataklasite beinhalten schlecht bis gut gerundete Komponenten, die zum Teil deutlich rotiert sind, der Sortierungsgrad und der Anteil an Matrix ist etwas höher als bei Typ 1. Innerhalb dieser Kataklasite treten vermehrt (Spiegel-) Harnischflächen mit deutlichen Bewegungslinearen auf. In der Matrix kann sich eine Foliation subparallel zum Verlauf der Scherzone ausbilden.

#### Kataklasite Typ 3

Es handelt sich um feinkörnige, Matrix-reiche Gesteine. Die Komponenten sind im Allgemeinen besser sortiert und angerundet und schwimmen oft in der feinkörnigen Matrix. Diese treten in sehr eng begrenzten Zonen auf, die Mächtigkeit ist gering. (Bauer, 2010, S. 26)



Abbildung 11: Dilatationsbrekzie (Aufschlussprobe: PG DB 1).



Abbildung 12: Fluorol-Getränkter Dünnschliff der Probe PG DB 1 im Fluoreszenzmikroskop. Bei den grün leuchtenden Bereichen handelt es sich um Matrix- sowie Kluftporosität.



Abbildung 13: Kataklasit Typ 1 (Aufschlussprobe: PG 26/2).



Abbildung 14: Kataklasit Typ 2 (Aufschlussprobe: PG 26/1 [A]).



Abbildung 15: Fluorol-Getränkter Dünnschliff der Probe PG 26/1 [A] im Fluoreszenzmikroskop. Kataklasit Typ 2 (linker Bildbereich) & Kluftdichteklasse 4, FDC4 (rechter Bildbereich). Bei den grün leuchtenden Bereichen handelt es sich beim Kataklasit um Matrix- und bei FDC4 um Kluftporosität.



Abbildung 16: Kataklasit Typ 3, außerhalb der aufgenommenen Profile.

#### 4.3 Bohrung



Abbildung 17: Ablauf eines Seilkernbohrverfahrens (Quelle: http://www.angers-soehne.com)

Die Bohrung GAD-1 wurde im Seilkernbohrverfahren abgeteuft. Bei diesem Verfahren handelt es sich um ein Bohrverfahren mit Doppelkernrohr bei dem das Innenrohr mittels eines Seiles gezogen und nach Entleerung wieder ins Bohrloch eingeführt wird (Abbildung 17). Da der restliche Bohrstrang (Außenrohr) im Bohrloch verbleibt und somit auch die Aufgabe einer Schutzverrohrung übernimmt, ermöglicht dieses Verfahren eine effiziente Kerngewinnung mit großer Zeitersparnis. Der Bohrkern wird mit einem Stahlseil geborgen, das mit einer Fangvorrichtung an das innere Kernrohr ankoppelt. Internationaler Standard beim Seilkernbohrverfahren ist ein Kerndurchmesser von etwa 101 mm, welcher bei dieser Bohrung auch so realisiert wurde.



Abbildung 18: Bohrplatz mit dem Bohrgerät des Typs FRASTE MultidrillXL. Im Vordergrund sind das Bohrgestänge (Außenrohre) sowie mit geringerem Durchmesser die Innenrohre, die in das Bohrgestänge eingebaut werden, zu sehen.

Bei der Bohrung GAD-1 liegt der Durchmesser für den Bohrkern bei 101 mm. Das entsprechende Außenrohr hat einen Außendurchmesser von 178 mm und das entsprechende Innenrohr (=Standardseilkernrohr) hat einen Durchmesser von 146 mm.

### 4.3.1 Komponenten



Abbildung 19: Außenrohr mit diamantbesetzter Bohrkrone & Räumer.



Abbildung 20: Fangfedern in unterschiedlichen Ausführungen je nach Anwendungsfall.

Während der Kernbohrarbeit wird das komplette Seilkernrohr (Außenrohr, Innenrohr & Liner) in den Untergrund getrieben. Das Seilkernrohr besteht aus einem die Bohrkrone (Abbildung 19) antreibenden Außenrohr und einem von der Drehbewegung des Außenrohres entkoppelten Innenrohr. Das Innenrohr hat am vorderen Ende einen abschraubbaren Kernfangring und am Ende ein Klinkensystem (Abbildung 22) für die Fangvorrichtung. Das Innenrohr wird durch eine spezielle Arretierung mitgeführt. Nach jedem Kernmarsch muss das Bohrloch eine gewisse Zeit gespült werden, um das in Schwebe befindliche Bohrklein auszutragen. Zum Bergen des Bohrkerns wird der Bohrstrang leicht angezogen und das Innenrohr mittels Fangvorrichtung vom Außenrohr gelöst und durch eine Seilwinde geborgen. Beim Ziehen des Innenrohrs verbleibt der Bohrstrang (Außenrohr und Rohrverlängerungen) im Bohrloch und übernimmt besonders in brüchigen und instabilen Bohrlochbereichen die Funktion einer Hilfsverrohrung. Somit ist die Bohrlochwandung während des gesamten Bohrvorgangs geschützt. Nach Bergung des Innenrohrs (inkl. Kern) wird dieses auf eine Vorrichtung gelegt und vom Kernfangseil abgekoppelt. Im Anschluss wird die Kernfanghülse, die sich am unteren Teil des Innenrohrs befindet, abgenommen. Das Kernmaterial, das sich in der Kernfanghülse befindet, wurde im Falle der Bohrung GAD-1 auf Grund der Brüchigkeit des Dolomits beim Abnehmen vom Innenrohr immer komplett zerbrochen und lag somit nur mehr als loses Bruchmaterial vor (Abbildung 21). Nach Herunternehmen der Kernfanghülse wird dann der Liner aus dem Innenrohr geborgen. Der Liner (Abbildung 21) ist ein Kunststoffrohr, das passgenau im Innenrohr sitzt und das den eigentlichen Bohrkern aufnimmt und anschließend an der Oberfläche aus dem Innenrohr geborgen werden kann.



Abbildung 21: Innenrohr mit Kernfanghülse (links) und Innenrohr mit Liner nach Entfernen der Kernfanghülse (rechts).



Abbildung 22: Fangvorrichtung mit Klinkensystem.

#### 4.3.2 Bohrspülung

Die Versorgung der Bohrung mit der Bohrspülung erfolgte über ein Pumpensystem. Hierfür wurde aufgrund von Umweltauflagen nur reines Wasser verwendet. Das Wasser wurde aus einem Absetzbecken im Steinbruch entnommen. Von der Bohrfirma (Züblin) wurden 2 weitere Absetzbecken errichtet, in die die Bohrspülung fortlaufend rezykliert wurde. Hierfür wurde die Bohrspülung an der Geländeoberkante aufgefangen und über einen etwa 2 m langen Graben hin zu einer Pumpe abgeleitet (Abbildung 23), die das Wasser mit dem Bohrgut (Feinanteil) in die Absetzbecken abführte. Am Eintritt der Bohrspülung ins Absetzbecken (Abbildung 24) wurde während der Bohrung kontinuierlich die ruckgeführte Spülmenge gemessen, um im Vergleich mit der eingebrachten Spülmenge eine Übersicht über die Spülverluste zu erhalten.



Abbildung 23: Bohrspülung Rücklauf.



Abbildung 24: Absetzbecken der Bohrspülung (links) und Bohr-Computer (rechts).

Folgende Bohrparameter wurden während der gesamten Bohrtätigkeit durch das Computersystem aufgezeichnet (Abbildung 24):

- Bohrfortschritt (m/h)
- Anpressdruck (bar)
- Drehkopfdruck (bar)
- Drehzahl (U/min)
- Spül-Durchfluss (I/min)

#### 4.4 Bohrkerndokumentation

Nach Bergung der Kerne aus dem Innenrohr wurde zur weiteren Bearbeitung ein etwa 10 cm breiter und über die gesamte Kernlänge reichender Streifen aus dem Liner geschnitten, damit der Bohrkern begutachtet werden konnte (Abbildung 25). Zur Orientierung des Kerns wurden eine rote und eine schwarze Linie am Kern selber und am Liner angebracht (rote Linie ist am richtig oben/unten orientierten Kern immer rechts, Pfeilspitze zeigt nach unten) sowie die genaue Teufenangabe des Kerns vermerkt. Anschließend wurde direkt vor Ort eine erste Klassifizierung der Lithologie vorgenommen. Generell lässt sich sagen, dass die Kluftdichte in allen Bohrkernen sehr hoch ist. Ein wichtiger Unterschied liegt im Zementationsgrad. So ist der Dolomit in schlecht zementierten Arealen oft komplett zerbrochen und liegt nur mehr in Form loser Bruchstücke vor, während in anderen Bereichen eine starke Zementation für sehr kompakte Kernabschnitte sorgt. So können wenige cm des Kerns komplett zerbrochen vorliegen, während oberhalb und unterhalb der zerbrochenen Zone der Kern kompakt und intakt ist. Es konnten mit der Bohrung einige Störungszonen durchteuft werden. Diese zeichnen sich durch ein direktes Nebeneinander von stark zementierten Dilatationsbrekzien und Kataklasiten und sehr stark geklüfteten und teils nicht zementierten Zonen aus. Teilweise traten in diesen Bereichen hohe Kernverluste auf, da es gerade im Nahbereich von Störungszonen zu einer starken Klüftung des Dolomits kommt, die nicht durch Zementation begleitet ist. Nach Abschluss der Dokumentation wurden die Kerne (inkl. Liner) zur sicheren Verwahrung und den anschließenden Transport in Kernkisten geräumt (Abbildung 26).



Abbildung 25: Nach dem Ausschneiden eines Sichtfensters im schwarzen Liner werden am Kern und am Liner selbst eine rote (rechts) und eine schwarze/gelbe (links) Markierungslinie am Kern angebracht, damit der Kern später richtig orientiert werden kann (oben/unten). Zusätzlich werden die Teufenangaben angeschrieben.


Abbildung 26: Kernkiste.

Tabelle 1 zeigt eine Zusammenfassung der gesamten Bohrstrecke, bezüglich Kerngewinn (core recovery) und Kernverlust (core loss). Aufgrund sehr starker Zerlegung in den ersten 6 Metern konnte aus diesem Abschnitt kein Kern bzw. nur sporadisch Material gewonnen werden. Bis in eine Tiefe von 7,5 m wurde ein Standrohr installiert, um hohe Spülverluste in dieser Zone zu verhindern.

| Final Depth       | 50,44 m |  |
|-------------------|---------|--|
| Cored Interval    | 44,1 m  |  |
| Core Recovery     | 34,12 m |  |
| Core Loss         | 9,98 m  |  |
| Sporadic Recovery | 6,36 m  |  |

Tabelle 1: Kerngewinn der Bohrung GAD-1.

| Lithologie | [m]  | [%]   |
|------------|------|-------|
| core loss  | 9,98 | 22,63 |
| FDC4       | 7,19 | 16,3  |
| FDC4C      | 9,67 | 21,93 |
| FDC3       | 5,5  | 12,47 |
| FDC3C      | 3,79 | 8,59  |
| DB         | 4,29 | 9,73  |
| Cat1       | 2,45 | 5,56  |
| Cat2       | 1,23 | 2,79  |
| Gesamt:    | 44,1 | 100   |

Tabelle 2: Cored Interval nach Lithologie.

## 4.5 Porositäts- und Permeabilitätsbestimmung

Für jede Probe wurde jeweils am Probennahmepunkt eine Klassifizierung der Kluftdichte (FDC) vorgenommen. Dies gilt für Aufschlussproben wie auch für Bohrkernproben. Dabei wurde die Probennahme so gestaltet, möglichst viele unterschiedlich dicht geklüftete Dolomite abzubilden, um anschließend die Ergebnisse mit denen der geophysikalischen Bohrlochmessungen zu vergleichen. Die Probennahme im Aufschluss diente also auch als Hilfestellung für die geophysikalische Porositätsbestimmung, da die genommenen Proben den durch die Bohrung angetroffenen Gesteinen entsprechen. Die Schwierigkeit bei der Probennahme bestand darin, Proben zu entnehmen, die groß und stabil genug für die weiteren Laborbestimmungen sind. Die Kluftdichteklassen FDC3 & FDC4 bzw. Gesteine mit vermutlich großen Porositäts- und Permeabilitätswerten konnten nur in den wenigsten Fällen beprobt werden, da sie aufgrund eines hohen Zerlegungsgrades und fehlender Zementation bei nachfolgenden Bearbeitungen wie Bohren und Schneiden zerbrachen.

An der Universität Wien wurden Porositäts- und Permeabilitätsmessungen an den Aufschlussproben durchgeführt. Porositäten wurden mit der Tauchwägungsmethode nach ÖNORM EN 1936 und mit dem Gasporosimeter Vinci Coreval 700 ermittelt. Permeabilitätsmessungen wurden mit dem Gaspermeameter Vinci Coreval 700 durchgeführt. Des Weiteren wurden im Labor der OMV in Gänserndorf Porositäten von Bohrkernproben mit Hilfe eines Heliumporosimeters gemessen.



Abbildung 27: Plug-Bohrer (links) und fertig zugeschnittener Plug (rechts).

#### 4.5.1 Porositätsbestimmung nach ÖNORM EN 1936

Diese Methode ermöglicht die Messung von relativ großen Probestücken (bis ca. 1000 cm<sup>3</sup>), welche repräsentative Volumina (REVs) des untersuchten Gesteins darstellen. Dabei werden die Eigenschaften des Gesamtgesteins (Matrix, Makro- und Mikroklüfte) abgebildet. Als Messmedium dient Wasser. Die Messungen erfolgten am Institut für Geologie der Universität Wien.

Für die Porositätsbestimmung werden die Proben zuerst bei 105°C im Trockenschrank getrocknet um das Trockengewicht zu ermitteln. Dies geschieht in zwei Durchgängen, welche jeweils in einem Abstand von 24 Stunden durchgeführt werden. Wichtig dabei ist es eine Massenkonstanz, also eine maximale Gewichtsabweichung von 0,1 %, zu erreichen. Anschließend folgt die Messung des Nassgewichts und des Gewichts unter Auftrieb. Für diese Messung werden die Proben in ein Wasserbad gelegt und zwei Mal nach jeweils 24 Stunden gewogen. Mit den Gewichtsdaten von Trockengewicht, Nassgewicht und Gewicht unter Auftrieb werden Rohdichte und offene Porosität wie folgt berechnet:

$$\rho_b = \frac{m_d \cdot \rho_{rh}}{m_s - m_h} \qquad Formel 1$$

$$\rho_0 = rac{m_s - m_d}{m_s - m_h} \cdot 100$$
Formel 2

- *m<sub>d</sub>* Trockenmasse des Probekörpers (g)
- *m<sub>h</sub>* Masse des eingetauchten Probekörpers unter Auftrieb in Wasser (g)
- *m<sub>s</sub>* Masse des wassergesättigten Probekörpers (g)
- $\rho_b$  Rohdichte (kg/m<sup>3</sup>)
- $\rho_{rh}$  Dichte von Wasser (kg/m<sup>3</sup>)
- *p*<sub>0</sub> offene Porosität (%)

#### 4.5.2 Porositätsbestimmung mit dem Porosimeter (Coreval 700)

Das Coreval 700 der Firma Vinci Technologies ist ein automatisiertes, kombiniertes Permeameter und Porosimeter. Dieses Gerät ermöglicht, unter der Verwendung von N<sub>2</sub>-Gas, Reservoireigenschaften von zylindrischen Probekörpern (Plugs) mit 38 mm Durchmesser unter variablen Umlagerungsdrücken, wie sie in einem möglichen Reservoir herrschen, zu testen. Es können Drücke von 400 bis 10.000 psi (etwa 28 bis 690 bar) simuliert werden. Das Porenvolumen wird mit Hilfe einer gasgefüllten Referenzzelle und deren spezifischem Referenzvolumen errechnet (American Petroleum Institute, 2018).

Die totale und effektive Porosität wird wie Folgt berechnet:

$$Totale \ Porosit \ddot{a}t = \frac{TPV}{Vb} \qquad Formel \ 3$$

$$Effektive \ Porosit \ddot{a}t = \frac{PVe}{Vb} \qquad Formel \ 4$$

Vb Gesamtvolumen des Plugs

TPV Gesamtvolumen aller Hohlräume

PVe Volumen der vernetzten Hohlräume

Für die Porositätsmessungen wurden Umlagerungsdrücke zwischen 400 psi (~ 28 bar) und 6500 psi (~ 455 bar) simuliert. Die Messungen erfolgten am Institut für Geologie der Universität Wien.

## 4.5.3 Porositätsbestimmung mit dem Heliumporosimeter

Bei der Porositätsmessung mit Helium wird die Probe in eine Luftdicht verschlossene, zylindrische Probenkammer gelegt (Abbildung 28), in welcher anschließend durch das Einpressen von Helium, bei bekanntem Kammervolumen, das Matrixvolumen berechnet wird. Nach diesem Schritt erfolgt die Dichtebestimmung der Probe in einem Quecksilberbad (Abbildung 28). Der Vorteil von Quecksilber liegt darin, dass er durch seine ausgesprochen hohe Dichte (13,5 g/cm<sup>3</sup>) nicht in feine Öffnungen (Poren, Klüfte) dringt. Bei großen Probekörpern wäre eine sehr große Menge an Quecksilber nötig, daher erfolgt die Dichtebestimmung großer Probestücke in einem Wasserbad. Mit Hilfe des gemessenen Matrixvolumens und der Dichte wird die Porosität berechnet.



Abbildung 28: Probenkammern des Heliumporosimeters (links) und Quecksilberbad (rechts).

Hierfür wurden keine unterschiedlichen Umlagerungsdrücke simuliert. Die Porositätsmessung erfolge ausschließlich unter atmosphärischen Druckverhältnissen (≈ 1 bar). Die Messungen erfolgten im Labor der OMV AG Gänserndorf (Dr. Thomas Gumpenberger).

#### 4.5.4 Permeabilitätsbestimmung mit dem Permeameter (Coreval 700)

Die Ermittlung der Plug-Permeabilität erfolgte, wie schon die Plug-Porositätsermittlung, mit dem Coreval 700 Gerät der Firma Vinci Technologies. Die Bestimmung der Gas-Permeabilität (N<sub>2</sub>) erfolgt unter Verwendung der unsteady state (pressure falloff) – Methode (American Petroleum Institute, 1998), mit der das Gerät die Gas-Permeabilität von Gesteinszylindern in Millidarcy (mD) ermittelt. Länge und Durchmesser des Probekörpers werden mit einem digitalen Messschieber gemessen und eingegeben.



Abbildung 29: Schematische Darstellung der "pressure falloff" - Methode. Die Druckabfallvorrichtung besteht aus einem stromabwärts gelegenen Gasverteiler, der an einem Probenhalter befestigt ist, der in der Lage ist hydrostatische Spannungen auf einen zylindrischen Probekörper auszuüben.

Für alle Proben wurden Umlagerungsdrücke zwischen 400 psi und 6500 psi simuliert, um die Abnahme der Durchlässigkeit mit zunehmender Tiefe im Aquifer einschätzen zu können. Die Permeabilitätsmessung erfolgt gemeinsam mit der Porositätsbestimmung an Gesteinszylindern (Plugs) mit 38 mm Durchmesser (Abbildung 27). Die Probestücke sind kleiner als die Gesteinsvolumina, die für geklüftete Gesteine mit Trennflächenabständen von mehreren Zentimetern repräsentativ sind (REVs). Die Messungen wurden im PoroPerm-Labor des Instituts für Geologie der Universität Wien durchgeführt.

## 4.6 Bohrloch-Geophysik

Die bohrlochgeophysikalischen Untersuchungen der Bohrung GAD-1 wurden von der Firma FUGRO durchgeführt.

Zu den durchgeführten Untersuchungen zählt, in Reihenfolge der Durchführung:

- Kaliber Log (Bohrlochkontur)
- Acoustic Borehole Imager (trübes Bohrlochwasser)
- Optical Borehole Imager (klares Bohrlochwasser)
- Natural Gamma Ray (Feststellung toniger Kluftfüllungen)
- Full Wave Sonic Log (P- und S-Wellengeschwindigkeit)
- Dual Focused Electric Log (elektrischer Formationswiderstand)

Neben den oben genannten Untersuchungen wurden ebenfalls Leitfähigkeitsmessungen der Bohrlochspülung durchgeführt (Kapitel 5.4.6, Tabelle 11). Bei der elektrischen Leitfähigkeit [uS/cm] handelt es sich um den Kehrwert des spezifischen elektr. Widerstandes (Formel 5), welcher zusammen mit dem spezifischen Formationswiderstand zur Berechnung der Porosität dient (Kapitel 4.6.6).

$$LF = \frac{1}{R}$$
 Formel 5

LF elektrische Leitfähigkeit

*R* spezifischer elektrischer Widerstand

## 4.6.1 Kaliber Log

Kalibersonden werden eingesetzt, um die Kontur und den Durchmesser der Bohrung zu ermitteln (Abbildung 30). Sie bestehen aus einer Bohrlochsonde, die über 4 ausfahrbare Tast-Arme (Abbildung 30, 31) verfügt, die am unteren Ende der Messstrecke geöffnet werden und den Durchmesser des Bohrlochs während der Aufwärtsmessung der Strecke ablesen.



Abbildung 30: links: Schematische Darstellung einer Kalibersonde im Bohrloch (Bauer et. al. 2014, S. 344); rechts: Ausschnitt der gemessenen Bohrlochkontur GAD-1.



Abbildung 31: Verwendete Kalibersonde bei Bohrung GAD-1.

## 4.6.2 Optisches Log

Das Herzstück des optischen Logs ist ein festes axiales Kamera- und Spiegelsystem, das optische Bilder von der Bohrlochwand aufnimmt. Die Beleuchtung erfolgt durch eine Reihe weißer LEDs (Abbildung 32). Das OBI (Optical Borehole Imager) liefert ein Bild in nahezu echten Farben (Abbildung 33) und erfordert gute Sichtverhältnisse (Luft oder klares Wasser).



Abbildung 32: OBI Sonden-Kopf (Fugro).

## 4.6.3 Akustisches Log

Mit einem Akustik-Log wird die Bohrlochwand sehr detailliert abgetastet, sodass kleinere Störungen, Klüfte, Foliation und Lithologie-Wechsel erfasst werden können. Ein ABI (Acoustic Borehole Imager) erzeugt Bilder der Bohrlochwand, die auf der von der Bohrlochwand reflektierten Amplitude (Maß für die Reflexionseigenschaften des Gesteins) und der Laufzeit eines Ultraschallimpulses beruhen. Glatte oder harte Oberflächen reflektieren das Signal sehr stark, weiche, raue Oberflächen nur schwach. Risse und Klüfte liefern ebenfalls sehr geringe Amplitudenwerte. Ein Orientierungssystem in der Sonde sorgt für eine räumliche Einordnung der Messwerte (Abbildung 33). Dieses Verfahren ist, im Unterschied zu optischen Systemen, auch bei optisch nichttransparentem Bohrlochinhalt einsetzbar (Fricke & Schön, 1999).



Abbildung 33: Sinusartige Kluftabbildungen aus Bohrung GAD-1. Akustisches Log (links) und Optisches Log (rechts) aus unterschiedlichen Teufen.

#### 4.6.4 Natural Gamma Ray

Das Gamma-Ray-Log zeichnet die natürlich vorkommende Strahlung auf, die im umgebenden Bohrlochgestein von drei primären Isotopen (<sup>40</sup>Kalium, <sup>232</sup>Thorium und <sup>238</sup>Uran) stammt. Da in Tonmineralen diese Isotope besonders häufig vorkommen, lässt sich mit dem Gamma-Log der Tongehalt abschätzen. Als Einheit für die Gammaaktivität wird das API-Standardmaß (American Petroleum Institute/Houston, Texas) benutzt, welches durch ein Eichnormal, bestehend aus einem Betonblock mit definiertem Gehalt an <sup>40</sup>K, <sup>232</sup>Th und <sup>238</sup>U, definiert ist (Fricke & Schön, 1999).

#### 4.6.5 Full Wave Sonic Log

Beim Sonic-Log handelt es sich um die Aufzeichnung der Laufzeit einer elastischen Welle in einer Bohrung bzw. Formation. Über eine Ultraschall-Quelle wird eine P-Welle durch die Bohrspülung in die Formation gesendet. Die ursprüngliche P-Welle läuft an der Bohrlochwand als refraktierte P- und S-Welle entlang und erzeugt dabei ein sekundäres Wellenfeld, welches von mehreren Empfängern registriert wird (Abbildung 34). Dabei wird die Laufzeitdifferenz an zwei Empfängern ausgewertet (Bauer et al., 2014). Die Laufzeit einer solchen Welle in einem Gestein hängt ab von strukturellen Eigenschaften, der chemisch-mineralogischen Zusammensetzung, Temperatur, Druck und vom Porenraumanteil. Die Geschwindigkeit der seismischen Welle steigt mit der Dichte der Gesteine an. Nahezu porenfreie, kompakte Gesteine weisen im Sonic-Log geringere Laufzeiten auf als weniger dichte Gesteine. Die Laufzeit seismischer Wellen nimmt mit zunehmender Porosität oder in Kluft- und Störungszonen zu (Schön, 1983).



Abbildung 34: Schematische Darstellung einer Sonic-Sonde in einem Bohrloch (Bauer et al. 2014, S. 351).

Die auf Wyllie et al. (1956) zurückgehende Zeit-Mittel-Gleichung setzt die Kompressionswellengeschwindigkeit mit der Porosität eines Gesteins in Beziehung. Die Gleichung besagt, dass die auf dem Log aufgezeichnete Gesamtlaufzeit die Summe der Zeit ist, die die seismische Welle durch die Gesteinsmatrix, und die Zeit, die sie durch die Fluide in den Poren verbringt. Bei bekannter Matrix- & Porenfluid-Laufzeit kann die Porosität wie folgt bestimmt werden:

$$\phi = \frac{\Delta t_{log} - \Delta t_{ma}}{\Delta t_f - \Delta t_{ma}} \qquad Formel 6$$

φ Sonic-Porosität

 $\Delta t_{log}$  Schallwellen-Laufeit ( $\mu$ s/m)

 $\Delta t_{ma}$  Schallwellen-Laufzeit Gesteinsmatrix ( $\mu$ s/m)

 $\Delta t_f$  Schallwellen-Laufzeit Fluid ( $\mu$ s/m)

Für die Berechnung der Porosität wurden folgende Parameter (Tabelle 3) verwendet:

- $\Delta t_{matrix} = 142,7 \ \mu s/m \ und \ \Delta t_{fluid} = 715,3 \ \mu s/m \rightarrow bei \ 100 \ \% \ Wassers \ attigung$
- $\Delta t_{matrix} = 142.7 \,\mu$ s/m und  $\Delta t_{fluid} = 994.1 \,\mu$ s/m  $\rightarrow$  bei 88 % Wassersättigung

| Lithology (matrix)  | Compressional $\Delta t_{ma}$ ( $\mu$ sec/ft) | Shear $\Delta t_{ma}$ ( $\mu$ sec/ft) |
|---------------------|-----------------------------------------------|---------------------------------------|
| Sandstone           |                                               |                                       |
| Unconsolidated      | 58.8 or more                                  | 93                                    |
| Semiconsolidated    | 55.6                                          | 92.9                                  |
| Consolidated        | 52.6                                          | 92.9                                  |
| Limestone           | 47.6                                          |                                       |
| Dolomite            | 43.5                                          | 72                                    |
| Shale               | 167 to 62.5                                   |                                       |
| Salt (halite)       | 67                                            | 116                                   |
| Fluid               | $\Delta t_{\rm f}$ (µsec/ft)                  |                                       |
| Water with 20% NaCl | 189                                           |                                       |
| Water with 15% NaCI | 200                                           |                                       |
| Water with 10% NaCI | 208                                           |                                       |
| Water (pure)        | 218                                           |                                       |
| Oil                 | 238                                           |                                       |
| Methane             | 626                                           |                                       |
| Air                 | 910                                           |                                       |

Tabelle 3: Laufzeit-Werte für einige Lithologien und Fluide (Carmichael, 1982). 1  $\mu$ s/ft = 3,281  $\mu$ s/m.

#### 4.6.6 Dual Focused Electric Log (DFEL)

Mit Hilfe der fokussierenden Widerstandsmessung werden die spezifischen elektrischen Widerstände in einem Bohrloch gemessen. Focused Electric Logs basieren auf demselben Prinzip wie herkömmliche Widerstandsmessgeräte, nur wird bei ihnen mit zusätzlichen Steuerströmen der Messstrom seitlich (lateral) in das Gebirge bzw. die Formation gezwungen (Abbildung 35). Dies führt zu einer besseren vertikalen Auflösung und zu einer Anwendbarkeit auch in hochohmigen Formationen (bis 60.000 ohm-m). Je nach Elektrodenkonfiguration gibt es verschiedene Arten von Focused Electric Logs, eine häufig verwendete Konfiguration ist der DFEL (Dual Focused Electric Log) mit zwei Eindringtiefen, deep (LLD) & shallow (LLS). Auch mit dem DFEL wird ein scheinbarer spezifischer elektrischer Widerstand Ra gemessen, jedoch kommt dieser Wert, verglichen mit anderen Widerstandsmessverfahren, dem wahren Formationswiderstand Rt wesentlich näher: Ra  $\approx$  Rt (Fricke & Schön, 1999).



Abbildung 35: Prinzipieller Aufbau eines Dual Focused Electric Logs: Verlauf der Stromlinien für das tief eindringende (links) und flach eindringende (rechts) Log. Die Bereiche des Messstromes sind grau dargestellt (Schlumberger, 1997).

37

Die Hauptziele von Widerstandsmessgeräten sind die Bestimmung von Rt (nicht infiltrierte Zone) & Rxo (infiltrierte Zone). Dies wird durch den Einsatz von Geräten mit mehreren Untersuchungstiefen erreicht:

- deep-laterolog (LLD)  $\rightarrow$  nicht infiltrierte Zone (Rt)
- shallow-laterolog (LLS) → infiltrierte Zone (Rxo)

Die beim Bohren verwendete Flüssigkeit beeinflusst die Widerstandsmessungen. Während des Bohrens dringt die Bohrspülung in die Klüfte und Poren der Formation und verdrängt die ursprüngliche Formationsflüssigkeit. Die durch den Bohrvorgang entstehenden kleinen Partikel (Gesteinsmehl) legen sich an den Wänden des Bohrlochs ab (Mudcake), während das Filtrat in die Formation gedrückt wird (Fricke & Schön, 1999). Je nach Eindringtiefe der Bohrspülung in die Formation entstehen um das Bohrloch herum verschiedene Zonen (Abbildung 36).



Abbildung 36: Die durch den Bohrvorgang und die Bohrspülung entstehenden Zonen in einem Bohrloch (Schlumberger, 1997).

Der spezifische Widerstand in der infiltrierten Zone (flushed zone) entspricht dem spezifischen Widerstand des Bohrfiltrats und wird als spezifischer Widerstand in geringer Tiefe aufgezeichnet (Rxo  $\rightarrow$  LLS). Die nicht infiltrierte Zone (uninvaded zone) ist die am weitesten vom Bohrloch entfernte Zone. Der spezifische Widerstand in dieser Zone wird als Tiefenwiderstand aufgezeichnet (Rt  $\rightarrow$  LLD) und entspricht dem wahren spezifischen Widerstand der ursprünglichen Flüssigkeit und Formation, da in diese Zone keine Bohrspülung gelangt ist. Im Falle der Bohrung GAD-1 ist jedoch keine ursprüngliche Formationsflüssigkeit vorhanden, da die Bohrung vollständig im ungesättigten Bereich abgeteuft wurde. Somit beziehen sich die Widerstandswerte der Porenflüssigkeit nur auf die bei der Bohrung verwendete Spülflüssigkeit. Für die bohrlochgeophysikalischen Untersuchungen wurde das Bohrloch über einen langen Zeitraum mit eben dieser Flüssigkeit geflutet, um einen möglichst großen Bereich der Formation im Bohrloch zu sättigen.

Während des Bohrvorgangs wurden Proben der Bohrspülung aus mehreren Teufen entnommen, um die Leitfähigkeit zu messen. Für tonfreie Gesteine, bei denen die Matrixleitfähigkeit im Vergleich zur Porenwasserleitfähigkeit vernachlässigbar ist, gilt: Gesteinsleitfähigkeit  $\approx$  Porenwasserleitfähigkeit (Fricke & Schön, 1999). Dies führt zu den von Archie (1942) publizierten Gleichungen (Formel 7, 8), welche für die Porositätsberechnungen verwendet wurden. Da die Formation im Bohrloch vor den Messungen über einen langen Zeitraum mit Wasser (=Bohrspülung) gesättigt wurde und aufgrund der geringen Eindringtiefe des LLS (wenige dm), wurde zunächst von einer vollständigen (100 %) Wassersättigung (Formel 7) in diesem Bereich ausgegangen, daher  $R_{XO} = R_0$ .

$$F = \frac{R_0}{R_W} = \frac{a}{\phi^m}$$
 Formel 7  
$$\phi = \sqrt[m]{\frac{a \cdot R_W}{R_0}}$$

- a Tortuositätsfaktor
- m Zementationsexponent
- F Formationswiderstandsfaktor
- *R*<sub>0</sub> spezifischer Widerstand des (100%) wassergesättigten Gesteins
- *R<sub>w</sub>* spezifischer Widerstand des Porenwassers
- φ Porosität

Anschließend wurden auch Berechnungen für teilweise wassergesättigtes Gestein durchgeführt. Hierfür wurde die zweite Gleichung von Archie (1942) herangezogen:

$$F = \frac{R_t}{R_W} = \frac{a}{\phi^m \cdot S_W^n} \qquad Formel 8$$
$$\phi = \sqrt[m]{\frac{a \cdot R_W}{R_t \cdot S_W^n}}$$

- a Tortuositätsfaktor
- m Zementationsexponent
- n Sättigungsexponent
- S<sub>w</sub> Wassersättigung
- *R*<sub>t</sub> wahrer Formationswiderstand
- *R<sub>w</sub>* spezifischer Widerstand des Porenwassers
- φ Porosität

Der Zementationsexponent m ist ein wichtiger Parameter für die Anwendung der Gleichung von Archie. Theoretisch kann der Wert von m zwischen 1 für ein Bündel von Röhren, die die Probe in einer geraden Linie durchziehen und unendlich für eine völlig unverbundene Porosität liegen. Sind die Poren isolierter, nimmt m zu, während bei Klüften m abnimmt (Mendelson & Cohen, 1982). Als allgemeiner Durchschnittswert für typische Lagerstättengesteine wird a = 1, m = 2 und n = 2 angesetzt. Diese Werte wurden auch für die Bohrung GAD-1 herangezogen.

In Tabelle 4 sind einige Mittelwerte für verschiedene Gesteinsarten aufgelistet.

| Gesteinsart                              | а    | m       |
|------------------------------------------|------|---------|
| Sand, locker                             | 1    | 1,3 1,4 |
| Sandstein mäßig zementiert               | 0,7  | 1,9     |
| Sandstein gut zementiert                 | 0,5  | 2,2     |
| geringporöse Karbonate                   | 1    | 1,9     |
| Kalkstein, körnig                        | 0,55 | 1,9     |
| Kalkstein, grobkristallin                | 0,6  | 2,1     |
| Kalkstein, dicht feinkristallin, Dolomit | 0,8  | 2,3     |

Tabelle 4: Mittelwerte für die empirischen Größen a und m der Archie-Gleichung (Fricke & Schön, 1999).

Der Zementationsexponent m kann über die Porosität von Bohrkernproben und den dazugehörigen Formationsfaktor ermittelt bzw. abgeschätzt werden. Hierfür werden beide Seiten der Archie-Gleichung logarithmiert und Formel 7 nach m umgestellt (Picket, 1966). Unter der Annahme a = 1, gilt für die Bestimmung von m:

$$m = -\frac{\log(F)}{\log(\phi)}$$
 Formel 9

Für diese Methode müssten mehrere Plugs aus dem Bohrkern gewonnen werden, was jedoch aufgrund des starken Zerlegungsgrades in der vorliegenden Studie nicht möglich war.

#### 4.7 Wasserdruck-Versuch (WD-Versuch)

Der Wasserdruck-Versuch (auch WAP-, Packer- oder Lugeon-Test) ist ein in den 1930er Jahren von dem Schweizer Geologen Maurice Lugeon erarbeiteter Versuch, bei dem Wasser in einem definierten und mit Packern abgedichteten Abschnitt eines Bohrlochs verpresst wird. Das Hauptanwendungsgebiet dieses Versuchs liegt in der Wasserdurchlässigkeitsmessung von Festgesteinen. Unter einem konstanten Druck wird eine konstante Wassermenge in die zu untersuchende Zone verpresst. Aus dem Druck-Mengen-Verhältnis lassen sich der Durchlässigkeitsbeiwert (kf-Wert) berechnen bzw. abschätzen und Aussagen über das Verformungs- und Erosionsverhalten treffen. Für die Auswertung eines Wasserdruck-Tests werden folgende Annahmen getroffen:

- 1) unendliche Ausdehnung des Aquifers
- 2) homogene isotrope Gebirgsverhältnisse
- 3) stationärer Strömungszustand
- 4) der Wasserspiegel ändert sich infolge einer Wassereinpressung nicht
- 5) lineare Beziehung zwischen Wassermenge Q und dem Verpressdruck P
- 6) keine Packerumläufigkeiten

Einige dieser Annahmen treffen beim WD-Versuch nicht zu, so dass verschiedene Ansätze entwickelt wurden, bei denen auch das Verformungsverhalten geologischer Einheiten berücksichtigt wird (Heitfeld & Koppelberg, 1981).

Nach der von Zanger (1953) entwickelten Formel, die auf der Annahme einer kugelförmigen Ausbildung der Äquipotentialflächen beruht, gilt:

$$k_f = C_p \cdot \frac{Q_{WD}}{H_0}$$

Formel 10

mit

- *k<sub>f</sub>* Durchlässigkeitsbeiwert (m/s)
- $Q_{WD}$  Wassermenge pro Zeiteinheit ( $m^3/s$ )
- *H*<sub>o</sub> Druckhöhe im Bohrloch (m)
- *C*<sub>p</sub> *Formbeiwert*
- L Länge der Verpressstrecke (m)
- D Bohrlochdurchmesser (m)

Den Formbeiwert C<sub>p</sub> erhält man aus:

$$C_{p} = \frac{\left(\ln\frac{L}{D} + \sqrt{\left(\frac{L}{D}\right)^{2} - 1}\right)}{2\pi \cdot D \cdot \sqrt{\left(\frac{L}{D}\right)^{2} - 1}} \approx \frac{\ln\left(2\frac{L}{D}\right)}{2\pi \cdot L} \quad (f\"{u}r\ L \gg D) \qquad Formel\ 11$$

Für eine Radialströmung vom Bohrloch aus lässt sich der k<sub>f</sub>-Wert wie folgt bestimmen:

$$k_f = \frac{Q_{WD}}{2\pi \cdot L \cdot (H_0 - H_1)} \cdot ln \frac{r_1}{r_0} \qquad Formel \ 12$$

mit

r<sub>o</sub> Bohrlochradius (m)

*H*<sub>1</sub> Druckhöhe in der Entfernung r<sub>1</sub> vom Bohrloch (m)

Um k<sub>f</sub> nach dieser Gleichung (Formel 12) bestimmen zu können ist ein Piezometer und eine zweite Bohrung (Kontrollbrunnen) erforderlich, um H<sub>1</sub> in der Entfernung r<sub>1</sub> zu ermitteln. Da die Bohrung GAD-1 über dem Grundwasserspiegel aufhörte (ungesättigter Bereich) und auch kein Kontrollbrunnen vorhanden war und somit keine Druckhöhendifferenz ermittelt werden konnte, lässt sich diese Gleichung nicht anwenden. Näherungsweise kann man aber für eine genügend große Entfernung vom Bohrloch H<sub>1</sub> = 0 annehmen. Unter dieser Annahme geht die Gleichung von Earth Manual (1990) hervor, welche für die Auswertung der WD-Versuche bei der Bohrung GAD-1 verwendet wurde. Wenn für H<sub>1</sub> = 0 und r<sub>1</sub> = L angenommen wird, ergibt sich folgende Gleichung:

$$k_f = \frac{Q_{WD}}{2\pi \cdot L \cdot H_0} \cdot ln \frac{L}{r_0} \qquad Formel \ 13$$

Je nach Durchführung unterscheidet man Einfach- und Doppelpackertests (Abbildung 37).



Abbildung 37: Versuchsaufbau für WD-Versuche.

Bei dem Versuch muss das Bohrloch im Bereich des Testintervalls unverrohrt sein. Der Packer kann hydraulisch und pneumatisch zur Expansion gebracht werden. Um genaue Ergebnisse zu erzielen gilt es Wasserverluste durch Undichtigkeiten am Packer und Umläufigkeiten zu vermeiden (Abbildung 39). Bei diesem Effekt kann Wasser über ungünstig verlaufende Trennflächen oben und unten am Packer vorbei in das Bohrloch abwandern, anstatt in die Formation gepresst zu werden. Dadurch werden höhere Wassermengen registriert, als die Formation bzw. das Gebirge tatsächlich aufnehmen kann. Um diese Fehler weitestgehend zu vermeiden, muss für die Packerstellung ein, durch zu Hilfenahme Geophysikalischer Logs (z.B. Kaliber-Log), ebenmäßiger Abschnitt Bohrlochwand mit konstante m der Bohrlochdurchmesser ausgewählt werden.

44



Abbildung 38: Der bei Bohrung GAD-1 verwendete Doppelpacker.



Abbildung 39: Verfälschung der Ergebnisse durch Undichtigkeit des Packers (links) und Umläufigkeiten (rechts).

Der an der Oberfläche gemessene Druck, mit dem das Wasser in die Formation gepresst wird, entspricht nicht dem Wasserdruck im Testintervall. Zu dem an der Oberfläche gemessenen Einpressdruck P<sub>M</sub>, addiert sich der hydrostatische Druck P<sub>H</sub> der in der Druckleitung des Packers stehenden Wassersäule. Bei Einzelpacker- wie auch Doppelpacker-Versuchen wird P<sub>H</sub> von der Höhe der Pumpe (über Geländeoberkante - GOK) bis zur Mitte des abgegrenzten Testintervalls gerechnet (Abbildung 40). Bei Einfachpacker-Versuchen dient die Bohrlochsohle als untere Abgrenzung (Earth Manual, 1990). Der Druck im Testintervall setzt sich folgendermaßen zusammen:

$$P_{Testintervall} = P_H + P_M$$
 Formel 14



Abbildung 40: Schematische Darstellung des hydrostatischen Drucks.

Vor der Versuchsdurchführung wurde darauf geachtet das Bohrloch vollständig mit Wasser zu sättigen, um zu verhindern, dass beim Test nur der Aufsättigungsprozess, nicht aber die eigentliche Durchlässigkeit des Testintervalls, gemessen wird. Anschließend wurde Wasser unter verschiedenen Druckstufen eingepresst. Standard für diesen Versuch ist eine auf- und absteigende Druckstufenfolge in der Form A-B-C-B-A (5-7-10-7-5 bar), welche so auch bei der Bohrung GAD-1 angewandt wurde. Dabei wird jede Druckstufe so lange gehalten bis stationäre Verhältnisse eingetreten sind, also die eintretende Wassermenge pro Zeiteinheit konstant ist (Houlsby, 1976). Die bei der Wasserverpressung auftretenden Drücke und die durchfließenden Wassermengen werden gemessen und anschließend ausgewertet. Für die Auswertung der Ergebnisse werden die Wassermengen über den jeweiligen Druck im Testintervall in einem p-Q-Diagramm dargestellt, aus der sich die Fließ- bzw. Strömungsverhältnisse und in weiterer Folge die Beschaffenheit des Untergrundes ableiten lassen (Milanović, 1981). Grundsätzlich unterscheidet man zwischen 5 Grundformen der p-Q-Kurve (Tabelle 6).

Aus den Ergebnissen der Versuche lassen sich Lugeon-Werte (Formel 15) ableiten. Im Verlauf des WD-Versuchs erhält man 5 Lugeon-Werte, für jede Druckstufe einen. Diese Werte werden auf den von Lugeon (1933) ursprünglich verwendeten Standard-Verpressdruck P<sub>0</sub> von 10 bar umgerechnet. Die errechneten Lugeon-Werte eines Versuchs ergeben, ähnlich wie im oben erwähnten p-Q-Diagramm, ein Muster mit dem es laut Houlsby (1976) möglich ist eine Einschätzung der Fließverhältnisse vorzunehmen (Tabelle 6), um in weiterer Folge auf die Beschaffenheit im Untergrund schließen zu können (Tabelle 5).

Lugeon 
$$\left(\frac{l}{\min \cdot m \cdot bar}\right) = \frac{Q}{L} \cdot \frac{P_0}{P}$$
 Formel 15

mit

- Q Wassermenge pro Zeiteinheit (I/min)
- L Länge des Testintervalls (m)
- *P*<sub>o</sub> *Referenzdruck von 10 bar (bar)*
- P Druck im Testintervall (m)

| Lugeon   | Classification | Hydraulic Conductivity | Condition of Rock Mass       |
|----------|----------------|------------------------|------------------------------|
| Range    |                | Range [m/sec]          | Discontinuities              |
| < 1      | Very Low       | < 1 E-07               | Very tight                   |
| 1 - 5    | Low            | 1 E-07 - 6 E-07        | Tight                        |
| 5 - 15   | Moderate       | 6 E-07 - 2 E-06        | Few partly open              |
| 15 - 50  | Medium         | 2 E-06 - 6 E-06        | Some open                    |
| 50 - 100 | High           | 6 E-06 - 1 E-05        | Many open                    |
| > 100    | Very High      | > 1 E-05               | Open closely spaced or voids |

Tabelle 5: Interpretation von Lugeon-Werten (Quiñones-Rozo, 2010).

|             | Druckstufen                                         | Lugeon<br>Muster                                    | Q-P<br>Diagramm | Beschreibung                                                               | Repräsentativer<br>Lugeon-Wert                      |
|-------------|-----------------------------------------------------|-----------------------------------------------------|-----------------|----------------------------------------------------------------------------|-----------------------------------------------------|
| Laminar     | Stufe1<br>Stufe2<br>Stufe3<br>Stufe4<br>Stufe5      | Stufe 1<br>Stufe 2<br>Stufe 3<br>Stufe 4<br>Stufe 5 |                 | Alle Lugeon-Werte<br>sind ungefähr gleich<br>unabhängig vom<br>Wasserdruck | Durchschnitt der<br>Lugeon-Werte<br>für alle Stufen |
| Turbulent   | Stufe1<br>Stufe2<br>Stufe3<br>Stufe4<br>Stufe5      | Stufe 1<br>Stufe 2<br>Stufe 3<br>Stufe 4<br>Stufe 5 |                 | Lugeon-Werte<br>nehmen ab, wenn<br>die Wasserdrücke<br>steigen             | Geometrischer<br>Mittelwert<br>(1 & 5 Stufe)        |
| Verformung  | Stufe1<br>Stufe2<br>Stufe3<br>Stufe4<br>Stufe5      | Stufe 1<br>Stufe 2<br>Stufe 3<br>Stufe 4<br>Stufe 5 |                 | Die Lugeon-Werte<br>variieren<br>proportional zu den<br>Wasserdrücken      | Geometrischer<br>Mittelwert<br>(1, 2, 4, 5 Stufe)   |
| Auswaschung | Stufe 1<br>Stufe 2<br>Stufe 3<br>Stufe 4<br>Stufe 5 | Stufe 1<br>Stufe 2<br>Stufe 3<br>Stufe 4<br>Stufe 5 |                 | Lugeon-Werte<br>steigen im Laufe<br>des Tests                              | Höchster<br>Lugeon-Wert<br>(5 Stufe)                |
| Verfüllung  | Stufe 1<br>Stufe 2<br>Stufe 3<br>Stufe 4<br>Stufe 5 | Stufe 1<br>Stufe 2<br>Stufe 3<br>Stufe 4<br>Stufe 5 |                 | Lugeon-Werte<br>sinken im Laufe<br>des Tests                               | Finaler<br>Lugeon-Wert<br>(5 Stufe)                 |

Tabelle 6: Interpretation der Lugeon-Testergebnisse auf der Grundlage des Verhältnisses zwischen der Durchflussmenge Q [I/min] und dem Druck P [bar] (Houlsby, 1976; modifiziert von Reoper, 1992).

Die ermittelten Ergebnisse aus Wasserdruckversuchen dienen auch zur Bestimmung von Durchlässigkeiten in Form von  $k_f$ -Werten. Die Bestimmung kann mit verschiedenen theoretischen oder empirischen Verfahren erfolgen (Formel 13,16 & Abbildung 41). Aus den  $k_f$ -Werten kann in weiterer Folge die Permeabilität ermittelt werden. Die Permeabilität (K) lässt sich dann über die dynamische Viskosität ( $\eta$ ) des Wassers und seine Dichte ( $\rho$ ) berechnen (Formel 17). Für die Berechnung dieser Werte wurde die bei der Bohrung gemessene Wassertemperatur von 10°C herangezogen. Die Berechnung der kf-Werte erfolgte nach der Gleichung von Earth Manual (1990), wobei Formel 13 für die Auswertung der Einfachpacker-Versuche sowie den Constant Head Test (L > 10r) und Formel 16 für alle Doppelpacker-Versuche (L < 10r) herangezogen wurde:

$$k_f = \frac{Q_{WD}}{2\pi \cdot L \cdot H_0} \cdot ln \frac{L}{r_0} \qquad (bei \ L \ge 10r_0) \qquad Formel \ 13$$

$$k_f = \frac{Q_{WD}}{2\pi \cdot L \cdot H_0} \cdot \sinh^{-1} \frac{L}{2r_0} \quad (bei \ 10r \ge L \ge r_0) \quad Formel \ 16$$

 $sinh^{-1} x = \ln (x + \sqrt{x^2 + 1})$ 

- *k*<sub>f</sub> Durchlässigkeitsbeiwert (m/s)
- $Q_{WD}$  Wassermenge pro Zeiteinheit (m<sup>3</sup>/s)
- H<sub>o</sub> Druckhöhe im Bohrloch (m)
- L Länge der Verpressstrecke (m)

*r*<sub>o</sub> Bohrlochradius (m)

Für die Umrechnung der kf-Werte zu K-Werten gilt:

$$K = \frac{k_f \cdot \eta}{\rho \cdot g} \qquad Formel \ 17$$

- K Permeabilität (m²)
- *k<sub>f</sub>* Durchlässigkeitsbeiwert (m/s)
- $\eta$  Dynamische Viskosität Wasser (kg/m · s)
- $\rho$  Dichte Wasser (kg/m<sup>3</sup>)
- g Erdbeschleunigung (m/s<sup>2</sup>)

Für die Umrechnung der K-Werte von  $m^2$  zu D (Darcy) gilt:

 $1 D = 9,86923 \cdot 10^{-13} m^2$ 

$$1 Darcy (D) = 1000 Millidarcy (mD)$$



Abbildung 41: Nach unterschiedlichen Methoden ermittelte Q-kf-Beziehungen (Heitfeld & Heitfeld, 1989).

#### 4.8 Constant Head Test

Beim Constant Head Test handelt es sich, wie bereits beim WD-Versuch (Kapitel 4.7), um einen Wasserdurchlässigkeits-Versuch. Der Unterschied zum Wasserdruck-Versuch liegt darin, dass bei diesem Test keine Packer zum Einsatz kommen und auch kein zusätzlicher Druck ausgeübt wird. Das Bohrloch wird mit Wasser aufgefüllt. Anschließend wird über einen gewissen Zeitraum der Wasserspiegel im Bohrloch mit einem bestimmten Durchfluss Q (I/min) konstant gehalten. Der so ermittelte Q-Wert dient zur Berechnung des Durchlässigkeitsbeiwertes (k<sub>f</sub>) und in weiterer Folge zur Berechnung der Permeabilität (Formel 13 & 17). Als Druckhöhe H dient die Höhendifferenz zwischen Bohrlochsohle und dem konstant gehaltenen Wasserspiegel im Bohrloch (Abbildung 42).



Abbildung 42: Schematische Darstellung des Constant Head Tests (Bohrung GAD-1).

#### 4.9 Computertomographie

Zur Unterstützung der Porositäts- und Permeabilitätsanalyse aus Logs und Bohrlochversuchen wurden Computertomographie-Aufnahmen (CTs) der Bohrkerne durchgeführt und analysiert. Die Aufnahmen erfolgten im Labor CT-MRT Gänserndorf an einem medizinischen CT-Gerät (SOMATOM X.cite – SIEMENS) auf Veranlassung der OMV AG (Gänserndorf). Die Bilder [Format: DICOM] wurden von der OMV zur Verfügung gestellt.

Ziel der digitalen Bildanalysen war die computergestützte Ermittlung der Kluftintensität (P21-Werte in m/m<sup>2</sup>) in den Bohrkernen, wobei der P21 Wert als Länge der Klüfte pro Flächeneinheit definiert ist (Dershowitz & Herda, 1992). Die P21-Werte werden mit Porositätsdaten verglichen. Die hier beschriebene Methode wurde im Zuge dieser Arbeit eigens für die Forschungsbohrung GAD-1 entwickelt.

Das computergestützte P21-Analyseverfahren kann sowohl mikroskopische Aufnahmen gescannter Dünnschliffbilder sowie auch Bilder aus CT-Aufnahmen verwenden. Die Analyse wurde mit einer im Internet frei verfügbaren Software, ImageJ (Fiji, Version v1.53s), durchgeführt. Die Bilder wurden mit Hilfe eines Segmentation-Plugins (WEKA-Segmentation) gefiltert, so dass eine Unterscheidung in Kluft und Matrix erfolgen konnte. Die WEKA-Segmentierung ist ein Fiji-Plugin, das eine Sammlung von Algorithmen für maschinelles Lernen mit einer Reihe von ausgewählten Bildmerkmalen kombiniert, um pixelbasierte Segmentierungen zu erstellen. Weka (Waikato Environment for Knowledge Analysis) enthält Sammlung von Visualisierungstools für die Datenanalyse sowie grafische eine Benutzeroberflächen für den einfachen Zugriff auf diese Funktionen (Arganda-Carreras et al., 2017). Anschließend wurden die Bilder für die weitere Bearbeitung in 8-bit Graustufenbilder und in weiterer Folge in binäre Bilder umgewandelt. Die Umwandlung eines Graustufenbildes in ein Binärbild, bei dem Schwarz den zu untersuchenden Bereich und Weiß die Matrix darstellt, erfolgt durch die Definition eines globalen Schwellenwertes (thresholding) innerhalb eines 255-stufigen Graustufenhistogramms. In einem letzten Schritt erfolgt die Umwandlung der zu untersuchenden Bereiche in eine Liniendarstellung (Skeleton), bei der alle vom Programm ermittelten Klüfte als reine Linien dargestellt werden, um so anschließend den P21-Wert zu ermitteln.

52

## Schritt 1 & 2

Die Aufnahmen erfolgten Saggital, Coronal und Axial mit einer Schichtdicke von 1 mm. Für die Analyse der Kluftintensität (P21-Wert) wurden lediglich die Saggitalen und Coronalen Flächen mit dem maximalen Bohrkerndurchmesser ausgewählt (Abbildung 43). Anschließend erfolgte die Trennung der zu analysierenden Flächen von dem restlichen Bildmaterial (Kernkiste & Liner).



Abbildung 43: CT-Aufnahme eines Bohrkerns mit Kernkiste & Liner (links) und die zu analysierende Fläche (rechts).

## Schritt 3

In diesem Schritt erfolgt die Bearbeitung des Bildes mit Hilfe des Segmentation-Plugins (WEKA-Segmentation), bei dem das Bild in die gewünschten Klassen unterteilt wird (Abbildung 44, 45, 46). Wichtig dabei ist es, möglichst viele Bereiche innerhalb dieser Klassen zu markieren um die Genauigkeit der Analyse zu erhöhen. Dieses "Anlernen" des Programms erfolgt nur ein einziges Mal und wird anschließend bei allen Kernbildern angewandt um eine gleichbleibende Analyse zu gewährleisten.



Abbildung 44: Unterteilung in die gewünschten Klassen (Matrix: rot, Kluft: grün & Microkluft: lila).



Abbildung 45: Ergebnis nach der Bearbeitung durch das Programm.



falsch bzw. ungenau markierte Bereiche

Abbildung 46:Verfeinerungsschritt (links: Ausgangsbild, mitte: Verfeinerungsschritt & rechts: Endergebnis).

## Schritt 4 & 5

Im vierten Schritt erfolgt die Umwandlung in ein Binärbild, bei dem Schwarz den zu untersuchenden Bereich und Weiß die Matrix darstellt (Abbildung 47). Dies erfolgt durch die Definition eines globalen Schwellenwertes (thresholding) innerhalb des 255-stufigen Graustufenhistogramms.

In einem fünften Schritt wird das erstellte Bild bereinigt (Abbildung 47). Um gewisse Ungenauigkeiten aufgrund der Auflösung (1 Pixel = 250  $\mu$ m) zu eliminieren, werden in diesem Schritt alle Flächen < 0,5 mm<sup>2</sup> entfernt.



Abbildung 47: Unbereinigtes Bild (links) und bereinigtes Bild (rechts).

## Schritt 6

Im letzten Schritt erfolgt die Umwandlung der zu untersuchenden Bereiche in eine Liniendarstellung (Skeleton), bei der alle vom Programm ermittelten Klüfte als reine Linien dargestellt werden, um so anschließend den P21-Wert zu ermitteln (Abbildung 48).



Abbildung 48: Bereinigtes Binärbild (links) und Liniendarstellung (rechts).

# 4.9.1 Zusammenfassung der einzelnen Schritte



Abbildung 49: Teilschritte der digitalen CT-Bildanalyse (Anfang 1 - Ende 6).

# 5 Ergebnisse

## 5.1 Aufschluss

## 5.1.1 Strukturgeologische Aufnahmen

Um den Bereich des Bohrplatzes wurden strukturgeologische Aufnahmen entlang von zwei Profilen durchgeführt (Abbildung 50). Profilstrecke A streicht in etwa N-S (008-188 Streichrichtung) und verläuft damit annähernd senkrecht zum Streichen der Schichtung. Profilstrecke B streicht in etwa E-W (096-276 Streichrichtung) und folgt somit in etwa dem generellen Streichen.



Abbildung 50: Schematische Darstellung der kartierten Aufschlusswände.

Der Hauptdolomit in den Profilstrecken A und B zeigt eine deutliche, durchgängige Bankung und weist typische sedimentäre Fazieselemente wie Algenlaminite und Fenestralgefüge auf, welche jedoch nur in sehr vereinzelten Bänken auftreten. Die Farbe wechselt zwischen hellgrau und dunkelgrau, überwiegend handelt es sich aber um helle Dolomite.

## 5.1.2 Schichtung

Die Bankmächtigkeiten schwanken zwischen einigen Dezimetern und wenigen Metern. Das Einfallen der Schichten ist sehr gleichmäßig und wird weder durch Störungen oder Faltung stark verändert (Abbildung 51, 52). An den Schichtflächen treten vereinzelt Lagen von braunem, grünlich-gelblichem Ton auf. Tonige Lagen sind meist wenige mm, manchmal einige wenige cm mächtig. Vereinzelt treten an Schichtflächen bis zu 15 cm mächtige mergelige Lagen auf. Tonige Lagen mit Mächtigkeiten > 5 cm fehlen.



Abbildung 51: Steil nach Süden einfallende Schichtflächen im Bereich des Bohrplatzes (Profil A, Blickrichtung Osten).



Abbildung 52: Schichtung im Hauptdolomit im Bereich um den Bohrplatz.
#### 5.1.3 Störungen

Entlang der Profilstrecken A und B liegen zahlreiche Störungen vor. Generell gibt es eine Vielzahl von Orientierungen. Die häufigsten Störungen sind (N)NW-(S)SE streichende Störungen mit steilen Linearen (Abschiebungen), NE-SW streichende steile Blattverschiebungen (flache Lineare) sowie E-W streichende Störungen. Steilstehende Störungen sind meistens mehrere Meter lateral verfolgbar, einige können auch noch in der darüberliegenden Etage weiterverfolgt werden.

Vor allem von Profilmeter 30 - 64m (Profil A) finden sich vermehrt Störungen. In diesem Bereich bilden steil stehende und flacher einfallende Störungen ein durchgreifendes Netzwerk (Abbildung 53), welches die Schichtung komplett durchtrennt. Umgeben sind die Störungen von Zerrüttungszonen mit extrem stark geklüftetem (FDC4) Dolomit. Diese Zerrüttungszonen können einerseits stark zementiert sein, andererseits liegen auch kaum zementierte Bereiche vor. Im direkten Nahbereich der Störungsflächen finden sich zementierte Dilatationsbrekzien. Teilweise kann man offene Porenräume in den Brekzien beobachten.

Die Störungsflächen selber sind meist glatte (Spiegel-)Harnischflächen mit deutlicher Striemung (Abbildung 53). Assoziiert mit diesen Störungsflächen treten bei den großmaßstäblichen Störungen Kataklasite auf. Die Kataklasite sind generell geringmächtig, das heißt sie sind einige wenige cm bis wenige dm mächtig. Meistens handelt es sich um Typ-1 Kataklasite (Abbildung 55).



Abbildung 53: links: Netzwerk von steilstehenden und flach einfallenden Störungen (rote Linien) im Profil A, Bereich 56 - 64m; rechts: Harnischfläche mit Striemung im Profil A, Bereich 14m.



Abbildung 54: Streichen und Einfallen von Störungen aus den Profilen A und B.



Abbildung 55: Beispiele für Störungen mit Kataklasit (Störungsgesteine), die typischerweise mit distinkten (Spiegel)Harnischflächen assoziiert sind. Kataklasite sind wenige cm bis maximal 40cm mächtig. links: Störung Profil A, 31m; rechts: Störung Profil B, 16,5m.

#### 5.1.4 Klüfte

Entlang der aufgenommenen Profile entspricht der überwiegende Anteil des Hauptdolomits den Kluftdichtklassen 3 und 4, ist also stark bis extrem geklüftet, gefolgt von Arealen der Kluftdichteklasse 2 (FDC2), welche jedoch nur in Profil A (Ost-Wand) angetroffen wurde. Bereiche mit der Kluftdichteklasse 1 (FDC1) wurden in keinem der aufgenommenen Profile angetroffen. In Bereichen wo viele Störungen auftreten, ist der Dolomit sehr stark geklüftet. Je nach Zementationsgrad ist der Dolomit in diesen Bereichen kompakt oder komplett zerbrochen.

# 5.2 Aufschlussproben 5.2.1 ÖNORM Porosität

Im Steinbruch Gaaden wurden in den Aufschlussprofilen A und B insgesamt 8 Aufschlussproben für die Porositätsmessungen gewonnen. Dabei wurde eine Probe, die aus Kataklasit Typ 1 und 2 bestand, sowie die Probe einer Dilatations-Brekzie in zwei geteilt. Somit standen insgesamt 10 Proben für die Tauchwägung zur Verfügung. Davon stammen 2 Proben aus Gesteinen der Kluftdichteklasse 4 (FDC4), 2 Proben einer Dilatations-Brekzie, 5 Proben eines Kataklasit Typ 1 und eine Probe eines Kataklasit Typ 2 (Tabelle 7). Die Porosität schwankt zwischen 2,25 % (min) und 4,61 % (max), im Mittel beträgt sie 2,89 %.

| Probe       | Lithologie          | m <sub>d</sub> [g] | m <sub>h</sub> [g] | m <sub>s</sub> [g] | ρ <sub>b</sub> [kg/m³] | p <sub>0</sub> [%] |
|-------------|---------------------|--------------------|--------------------|--------------------|------------------------|--------------------|
| PG 34/2     | FDC4                | 2345,85            | 1498,65            | 2371,3             | 2687,6                 | 2,92               |
| PG 8/2      | FDC4                | 2290               | 1469,35            | 2310,85            | 2721,3                 | 2,48               |
| PG 26/1 [B] | Kataklasit Typ 1    | 4173,3             | 2671,75            | 4223,4             | 2688,7                 | 3,23               |
| PG 26/1 [A] | Kataklasit Typ 2    | 1448               | 926,85             | 1473,2             | 2650,3                 | 4,61               |
| PG 15 / SF1 | Kataklasit Typ 1    | 2277,6             | 1464,1             | 2296,3             | 2736,8                 | 2,25               |
| PG 8/1      | Kataklasit Typ 1    | 1489,15            | 956,25             | 1502,65            | 2736,8                 | 2,47               |
| PG DB 1 [A] | Dilatations Brekzie | 3973,25            | 2496,95            | 4013,1             | 2620,6                 | 2,63               |
| PG DB 1 [B] | Dilatations Brekzie | 2289,2             | 1432,75            | 2310,5             | 2608                   | 2,43               |
| PG 26/2     | Kataklasit Typ 1    | 2981,35            | 1909,3             | 3020,2             | 2683,7                 | 3,5                |
| PG 34/1     | Kataklasit Typ 1    | 4002,1             | 2556,8             | 4036,7             | 2701,7                 | 2,34               |
|             |                     |                    |                    | Mittelwert:        | 2683,55                | 2,886              |

Tabelle 7: Porosität von Aufschlussproben (ÖNORM EN 1936).

### 5.2.2 Porosimeter (Coreval 700)

Mit dem Gasporosimeter wurden Porositäten für 8 Plugs von Aufschlussproben bei stufenweise erhöhten Umlagerungsdrücken zwischen 400 – 6500 psi gemessen. Alle Probenkörper wurden aus den bereits mit der Tauchwägung (ÖNORM 1936) gemessenen Gesteinsproben hergestellt, nachdem diese wieder vollständig getrocknet waren. Die Porosität bei 400 psi liegt zwischen 2,22 % (min) und 7,69 % (max) mit einem Mittelwert von 5,20 %. Die beim höchsten Umlagerungsdruck (6500 psi) gemessenen Porositätswerte liegen zwischen 1,25 % (min) und 6,87 % (max) und betragen im Mittel 4,17 %. Abbildung 56 zeigt die Abnahme der Porosität bei steigendem Umlagerungsdruck. Insgesamt liegen die Porositätsverluste durch die Erhöhung des Umlagerungsdrucks von 400 psi auf 6500 psi zwischen 6,1 % und 43,5 % mit einem Mittelwert von 22,1 % (Tabelle 8).

| Probe    | Lithologie          | Porosität [%]<br>bei 400 psi | Porosität [%]<br>bei 6500 psi | Verlust<br>[absolut] | Verlust [%] |
|----------|---------------------|------------------------------|-------------------------------|----------------------|-------------|
| PG 34/2  | FDC4                | 3,96559                      | 3,24404                       | 0,72155              | 18,2        |
| PG DB1 A | Dilatations Brekzie | 7,09643                      | 4,22062                       | 2,87581              | 40,5        |
| PG 26/2B | Kataklasit Typ 1    | 6,48944                      | 5,58311                       | 0,90632              | 14          |
| PG 26/2A | Kataklasit Typ 1    | 5,5518                       | 5,05725                       | 0,49455              | 8,9         |
| PG 26/1B | Kataklasit Typ 1    | 5,3329                       | 5,01007                       | 0,32283              | 6,1         |
| PG 34/1B | Kataklasit Typ 1    | 2,21918                      | 1,25488                       | 0,9643               | 43,5        |
| PG 34/1A | Kataklasit Typ 1    | 3,26693                      | 2,11949                       | 1,14744              | 35,1        |
| PG 26/1A | Kataklasit Typ 2    | 7,69287                      | 6,86973                       | 0,82314              | 10,7        |
|          | Mittelwert:         | 5,2018925                    | 4,16989875                    | 1,03199              | 22,1        |

Tabelle 8: Porosität von Aufschlussproben bei 400 und 6500 psi.



Abbildung 56: Abnahme der Porosität bei zunehmendem Umlagerungsdruck (Aufschlussproben).

## 5.2.3 Permeameter (Coreval 700)

Mit dem Permeameter wurde die Permeabilität, aus den für die Tauchwägung wie auch den Porosimeter bereits verwendeten 8 Plugs, bei stufenweise erhöhten Umlagerungsdrücken von 400 - 6500 psi gemessen. Bei 400 psi zeigt sich eine Variation der Permeabilität (Klinkenberg-Permeabilität) von 0,01728 mD (min) bis 16,42 mD (max) mit einem Mittelwert von 4,60 mD. Beim höchsten Umlagerungsdruck von 6500 psi beträgt die Permeabilität 0,00013 mD (min) und 14,19 mD (max), im Mittel beträgt sie 3,86 mD. Abbildung 57 zeigt die Abnahme der Permeabilität bei steigendem Umlagerungsdruck. Insgesamt liegt der Verlust an Permeabilität durch die Erhöhung des Umlagerungsdrucks von 400 psi auf 6500 psi zwischen 12,9 % und 99,3 % mit einem Mittelwert von 52,9 % (Tabelle 9).

| Probe    | Lithologie          | Klinkenberg<br>Permeabilität<br>[mD] bei 400<br>psi | Permeabilität<br>[mD] bei<br>6500 psi | Verlust<br>[absolut] | Verlust [%] |
|----------|---------------------|-----------------------------------------------------|---------------------------------------|----------------------|-------------|
| PG 34/2  | FDC4                | 1,36441                                             | 0,81443                               | 0,54998              | 40,3        |
| PG DB1 A | Dilatations Brekzie | 0,06336                                             | 0,00045                               | 0,06291              | 99,3        |
| PG 26/2B | Kataklasit Typ 1    | 16,42421                                            | 14,1466                               | 2,27761              | 13,9        |
| PG 26/2A | Kataklasit Typ 1    | 1,80558                                             | 1,1329                                | 0,67268              | 37,3        |
| PG 26/1B | Kataklasit Typ 1    | 16,28473                                            | 14,19149                              | 2,09324              | 12,9        |
| PG 34/1B | Kataklasit Typ 1    | 0,01925                                             | 0,00013                               | 0,01912              | 99,3        |
| PG 34/1A | Kataklasit Typ 1    | 0,01728                                             | 0,00049                               | 0,01679              | 97,2        |
| PG 26/1A | Kataklasit Typ 2    | 0,81208                                             | 0,62175                               | 0,19033              | 23,4        |
|          | Mittelwert:         | 4,5988625                                           | 3,86353                               | 0,73533              | 52,9        |

Tabelle 9: Permeabilität von Aufschlussproben bei 400 und 6500 psi.



Abbildung 57: Abnahme der Permeabilität bei zunehmendem Umlagerungsdruck (Aufschlussproben).

# 5.3 Bohrkernproben5.3.1 Heliumporosität

Mit dem Heliumporosimeter wurden Porositäten von insgesamt 75 Kernproben aus unterschiedlichen Teufen und Lithologien im Labor der OMV Gänserndorf gemessen (Abbildung 58, Tabelle 10). Der Vorteil dieser Messung besteht darin, dass hierfür die Proben unregelmäßig geformt sein können. Dadurch hat sich die Probennahme, im Vergleich zu den Plugs, wesentlich einfacher gestaltet. Der Nachteil gegenüber Plugs liegt darin, dass keine Permeabilität gemessen werden kann. Die Messung erfolgte, nicht wie bei den oben genannten Plugs, unter verschiedenen Umlagerungsdrücken, sondern ausschließlich unter atmosphärischen Druckbedingungen. Die gemessene Porosität liegt zwischen 0,76 % (min) und 14,10 % (max) mit einem Mittelwert von 4,42 %. Die Standardabweichung liegt bei 2,47 % mit einer Varianz von 6,12 %.



Abbildung 58: Heliumporosität von insgesamt 75 Bohrkernproben (GAD-1).

| Teufe [m] | φeff [%] | Lithologie | Teufe [m] | фeff [%] | Lithologie |
|-----------|----------|------------|-----------|----------|------------|
| 2,4       | 2,95     | FDC3       | 27,5      | 5,17     | FDC4C      |
| 8,3       | 2,26     | FDC3       | 27,9      | 4,49     | Cat2       |
| 8,8       | 0,76     | FDC3       | 28,3      | 4,80     | Cat1       |
| 9,3       | 1,29     | FDC3       | 28,8      | 3,24     | DB         |
| 9,8       | 3,16     | FDC3       | 29,1      | 3,42     | DB         |
| 10,3      | 3,23     | FDC3       | 29,65     | 2,62     | FDC3       |
| 11        | 2,48     | FDC3       | 30,05     | 2,67     | FDC3       |
| 11,3      | 3,80     | FDC3       | 31,1      | 3,38     | FDC4       |
| 11,6      | 6,18     | FDC4       | 31,2      | 2,64     | FDC4       |
| 11,8      | 5,51     | FDC4C      | 32,17     | 3,87     | Cat1       |
| 12,3      | 5,54     | FDC4       | 36,2      | 3,96     | FDC3       |
| 12,8      | 5,27     | DB         | 36,25     | 4,89     | FDC3       |
| 14,15     | 3,53     | FDC4       | 36,7      | 4,24     | DB         |
| 14,3      | 3,23     | Cat1       | 37,3      | 4,35     | FDC4       |
| 15,2      | 3,53     | FDC3       | 37,4      | 3,87     | FDC4       |
| 15,25     | 1,59     | FDC3C      | 38,9      | 4,66     | FDC4       |
| 15,55     | 2,44     | FDC3       | 40,15     | 5,02     | Cat2       |
| 16,27     | 3,84     | Cat2       | 40,6      | 14,10    | Cat2       |
| 17,2      | 2,83     | Cat1       | 41,2      | 6,39     | FDC4       |
| 17,3      | 1,73     | FDC3C      | 41,8      | 6,59     | FDC4       |
| 18,25     | 3,23     | FDC3       | 42,1      | 5,85     | FDC4       |
| 18,4      | 2,34     | FDC3       | 42,55     | 3,75     | FDC4       |
| 18,4      | 2,15     | FDC3       | 43,55     | 4,22     | Cat2       |
| 19,03     | 0,85     | FDC3       | 43,85     | 5,42     | FDC4       |
| 19,68     | 6,11     | Cat1       | 44,41     | 6,64     | FDC4       |
| 19,8      | 1,15     | FDC3       | 44,75     | 3,93     | FDC4       |
| 20,7      | 5,92     | Cat1       | 45,2      | 7,38     | FDC4       |
| 21,25     | 2,56     | FDC4       | 46,3      | 9,52     | Cat1       |
| 21,65     | 2,21     | FDC4       | 46,35     | 8,92     | DB         |
| 21,8      | 5,57     | Cat1       | 46,95     | 11,26    | FDC4       |
| 22        | 0,85     | FDC3       | 47,14     | 9,41     | Cat1       |
| 22,5      | 2,01     | FDC3       | 47,15     | 6,09     | FDC4       |
| 22,8      | 1,68     | FDC3       | 48,9      | 7,82     | Cat1       |
| 23,61     | 6,04     | Cat2       | 49,05     | 8,15     | DB         |
| 24,11     | 3,77     | DB         | 49,45     | 6,08     | Cat1       |
| 25,13     | 4,64     | FDC4C      | 49,74     | 7,57     | DB         |
| 26,95     | 1,76     | FDC3C      | 50        | 5,23     | FDC4       |
| 27        | 2,26     | FDC3C      |           |          |            |

Tabelle 10: Helium-Porosität von Bohrkernproben (GAD-1). Insgesamt wurde die Porosität von 75 Proben gemessen.

## 5.4 Bohrlochgeophysikalische Untersuchungen

#### 5.4.1 Kaliber Log

Die Kaliber-Daten sind von guter Qualität und zeigen bis auf ein Paar wenige Lochausbrüche, wie zum Beispiel bei 14 und 18,5 m, keine nennenswerten Ausbrüche entlang der Bohrlochwand (Anhang 9.2). Die genannten Lochausbrüche sind auf Klüfte zurückzuführen. Es konnten keine großen Ausbrüche oder Auswaschungen (wash outs) nachgewiesen werden. Die Kaliber-Daten wurden zur Festlegung der Packer-Positionen bei den WD-Versuchen (um Umläufigkeiten aufgrund von Ausbrüchen aus der Bohrlochwand auszuschließen) und zur Bewertung des Sonic-Logs verwendet.

#### 5.4.2 Akustisches- & Optisches Log

Die Acoustic & Optical Borehole Imager lieferten sehr gute Aufnahmen der Bohrlochwand, mit deren Hilfe es möglich war, Trennflächen zu bestimmen (Anhang 9.2). Auf der Grundlage dieser Aufnahmen wurden Bohrkerne, bei denen die gleichen Trennflächen wie auf den Aufnahmen zu finden waren, mit den Logs korreliert und so eine Korrelation von Kern- und Log-Teufe hergestellt. Dies war nötig, da es aufgrund von Kernverlusten nicht immer möglich war, die geborgenen Bohrkerne einer exakten Teufe zuzuordnen. Des Weiteren konnten offene Spalten/Klüfte identifiziert werden, welche für die Interpretation der WD-Versuche wichtig waren.

#### 5.4.3 Natural Gamma Ray Log

Die gemessenen NGR-Werte (Anhang 9.2) schwanken grob im Bereich 50-100 API. Der Rückgang auf Werte um 70 API bei 7,5 m ist auf die Stahlverrohrung zurückzuführen.

#### 5.4.4 Full Wave Sonic Log

Die Kompressionswellengeschwindigkeit liegt grob im Bereich 3000-6000 m/s, die Scherwellengeschwindigkeit liegt im Bereich 2000-3000 m/s. Die nach der Zeit-Mittel-Gleichung (Kapitel 4.6.5, Formel 6) errechnete Porosität schwankt zwischen 4,35 % und 34,94 %, im Mittel liegt sie bei 14,41 % (Abbildung 59). Porositätswerte über 27 % sind auf Lochausbrüche zurückzuführen, welche eine Verfälschung der Messung zur Folge hatten. Mit einer angenommenen Wassersättigung von 88 % (Abbildung 60) statt 100 % (Abbildung 59) zeigt sich eine deutliche Verbesserung der Absolutwerte. Die Porosität schwankt dann zwischen 2,96 % (min) und 23,77 % (max), im Mittel beträgt sie 9,81 % (inkl. Lochausbrüche). In Kapitel 6.3.1 wird die Änderung der Wassersättigung näher ausgeführt.



Abbildung 59: Sonic-Porosität mit den Parametern:  $\Delta$ tmatrix=142,7 $\mu$ s/m und  $\Delta$ tfluid=715,3 $\mu$ s/m (entspricht einer Wassersättigung von 100%).



Abbildung 60: Sonic-Porosität mit den Parametern:  $\Delta$ tmatrix=142,7 $\mu$ s/m und  $\Delta$ tfluid=994,1 $\mu$ s/m (entspricht einer Wassersättigung von 88%).

# 5.4.5 Dual Focused Electric Log (DFEL)

Der gemessene Formationswiderstand ist generell hoch, im Mittel etwa 4000 Ohmm. Die nach Archie (1942) errechnete Porosität (Kapitel 4.6.6, Formel 7) schwankt zwischen 3,57 – 16,61 %, im Mittel beträgt sie 8,32 % (Abbildung 61). Mit einer angenommenen Wassersättigung von 88 % (Abbildung 62) statt 100 % zeigt sich im Vergleich zum Sonic-Log nur eine leichte Veränderung. So schwankt die Porosität nach dieser Korrektur zwischen 4,05 % und 18,87 %, im mittel beträgt sie 9,46 %. Jedoch zeigt sich bei einer Wassersättigung von 88 % (Kapitel 4.6.6, Formel 8) eine wesentlich bessere Korrelation zwischen Widerstand- und Sonic-Log. In Kapitel 6.3.1 wird diese Korrektur näher ausgeführt. Vergleicht man die hier ermittelten Porositätswerte mit denen von Bohrkernproben, zeigt sich eine sehr gute Übereinstimmung in der Schwankungsbreite. Ein direkter Vergleich kann jedoch nur mit Vorsicht vorgenommen werden, da die Bohrkernproben keine repräsentativen Volumina für geklüftetes Gestein mit Kluftabständen von mehreren cm darstellen. So zeigt sich bei einer direkten Gegenüberstellung der Porositätswerte von Bohrlochgeophysik und Bohrkern aus gleicher Teufe ein Teils großer Unterschied, dennoch schwanken sie in einem ähnlichen Bereich.



Abbildung 61: Widerstands-Porosität mit den Parametern: m=2, a=1, n=2 und Sw (Wassersättigung)=1.



Abbildung 62: Widerstands-Porosität mit den Parametern: m=2, a=1, n=2 und Sw (Wassersättigung)=0,88.

# 5.4.6 Leitfähigkeitsmessung der Bohrspülung

| Teufe [m] | Leitfähigkeit [uS/cm] | Temperatur [°C] | spez. elektr. Widerstand [Ωm] |
|-----------|-----------------------|-----------------|-------------------------------|
| 10,5      | 521,23                | 10              | 19,19                         |
| 26,75     | 532,77                | 10              | 18,77                         |
| 34,6      | 517,34                | 10              | 19,33                         |
| 49,3      | 445,16                | 10              | 22,46                         |
|           |                       |                 | Mittelwert: 19,94             |

Tabelle 11: Gemessene Leitfähigkeit der Bohrspülung und der daraus errechnete spezifische elektrische Widerstand.

In Anhang 9.2 liegen die Messergebnisse der geophysikalischen Bohrlochuntersuchungen in Form von Bohrlochplots vor.

#### 5.5 WD-Versuche

Das Ziel der WD-Versuche war, alle Lithologien (FDC3, FDC4, Kataklasite & Dilatationsbrekzien) sowie längere Teststrecken, die verschiedene Lithologien enthalten, zu testen und Durchlässigkeiten für verschiedene Gesteinstypen zu bestimmen. Die Auswertung der Wasserdruck-Versuche zeigt, dass die Durchlässigkeit bzw. Permeabilität der Formation im Bereich um das Bohrloch als gering bis moderat eingestuft werden kann (Tabelle 5). Es zeigt sich eine Variation der Permeabilität von etwa 4 mD bis 103 mD (Tabelle 12 & Abbildung 63). Im Mittel beträgt die Permeabilität 41,6 mD. Des Weiteren zeigt sich, dass Testintervalle in denen durch zu Hilfenahme der Bohrkerne ein erhöhter Anteil an Zementation festgestellt werden konnte, die niedrigsten Permeabilitätswerte aufweisen. Wohingegen Testintervalle ohne feststellbare Zementation oder in denen es aufgrund eines starken Zerlegungsgrades (FDC 4, unzementiert) zu Kernverlusten kam, eine besonders hohe Permeabilität aufweisen. Die Einzelpacker-Versuche (WD 1–4) zeigen sehr ähnliche, für die angetroffenen Lithologien realistische Werte. In Anhang 9.3 liegt die Auswertung aller Versuchsdaten aus den Wasserdruck-Versuchen vor.

| WD Nr. | Teufe   |         | Lithologie       | Lugeon | kf       | К      |
|--------|---------|---------|------------------|--------|----------|--------|
|        | von [m] | bis [m] |                  |        |          |        |
| WD 1   | 49,5    | 50,44   | FDC4C, DB        | 2,23   | 1,51E-07 | 21     |
| WD 2   | 48,5    | 50,44   | FDC4C, DB        | 2,21   | 1,92E-07 | 26,7   |
| WD 3   | 46,5    | 50,44   | FDC4C, DB        | 1,84   | 1,95E-07 | 27,08  |
| WD 4   | 42,5    | 50,44   | FDC4C, core loss | 1,31   | 1,63E-07 | 22,67  |
| WD 5   | 47,8    | 48,3    | FDC4C            | 1,16   | 5,98E-08 | 8,03   |
| WD 6   | 41,7    | 42,2    | FDC4C, core loss | 2,1    | 1,08E-07 | 14,55  |
| WD 7   | 38,5    | 39      | FDC4             | 7,32   | 3,78E-07 | 50,69  |
| WD 8   | 34,5    | 35      | core loss        | 14,88  | 7,68E-07 | 103,01 |
| WD 9   | 31,6    | 32,1    | DB, Cat2         | 7,54   | 3,89E-07 | 52,17  |
| WD 10  | 27,8    | 28,3    | Cat2, Cat1       | 10,43  | 5,39E-07 | 72,24  |
| WD 11  | 24,3    | 24,8    | FDC3C, FDC3      | 14,88  | 7,68E-07 | 103,01 |
| WD 12  | 22,4    | 22,9    | FDC3C, FDC3      | 0,77   | 3,99E-08 | 5,35   |
| WD 13  | 20,9    | 21,4    | FDC4C, DB        | 0,58   | 2,99E-08 | 4,01   |
| WD 14  | 17,2    | 17,7    | FDC3C            | 9,47   | 4,89E-07 | 65,55  |
| WD 15  | 11.2    | 11.7    | core loss. FDC4C | 6.92   | 3.57E-07 | 47.94  |

Tabelle 12: Ergebnisse der WD-Versuche (kf: Durchlässigkeitsbeiwert [m/s], K: Permeabilität [mD], L: Lugeon-Wert [l/min\*m\*bar]). In der Lithologiespalte sind die 2 jeweils höchst Anteiligen Lithologien vermerkt (die vollständige Auflistung ist Anhang 9.3 zu entnehmen).

#### 5.6 Constant Head Test

Aufgrund einer relativ groben Justierung der Bohrspülungsvorrichtung, mit der dieser Versuch durchgeführt wurde, lässt sich die eingebrachte Wassermenge zwischen 13 – 20 Liter/Minute eingrenzen. Für den Constant Head Test wurde der Wasserspiegel der Bohrspülung im Bohrloch über einen Zeitraum von etwa 30 Minuten konstant gehalten. Die Auswertung ergibt eine Permeabilität von 13,61 mD (min) und 20,94 mD (max), im Mittel beträgt sie 17,28 mD (Tabelle 13). Damit liegt der Wert unter dem Mittelwert (41,6 mD) der Packer-Versuche. Dies lässt sich damit erklären, dass bei diesem Versuch eine Teststrecke von etwa 43 m (gesamtes Bohrloch exkl. Verrohrung) getestet wurde. Im Vergleich dazu wurde bei den Packer-Versuchen eine Gesamtstrecke von etwa 13 m getestet. Somit kann angenommen werden, dass diverse ungetestete Bereiche des Bohrlochs bzw. der Formation eine geringe Permeabilität aufweisen.

| Q          | 13 - 20               | [l/min] |
|------------|-----------------------|---------|
| Q          | 0,0002167 – 0,0003333 | [m³/s]  |
| н          | 50,44                 | [m]     |
| L          | 42,94                 | [m]     |
| r          | 0,073                 | [m]     |
| Verrohrung | 7,5                   | [m]     |
| kf         | 1,02E-07 – 1,56E-07   | [m/s]   |
| К          | 13,61 – 20,94         | [mD]    |

Tabelle 13: Auswertung - Constant Head Test



Abbildung 63: Errechnete Permeabilität (Formel 13, 16, 17) der einzelnen WD-Versuche inkl. Constant Head Test.

## 5.7 Computertomographie

Die Ergebnisse der Bildanalyse von 32 CT-Scans, die eine Gesamtmächtigkeit der Formation von etwa 18,3 m aus der stark geklüfteten Hauptdolomit Fm. abdecken, zeigen P21-Kluftintensitäten von etwa 125 bis 490 m/m<sup>2</sup>. Tabelle 14 zeigt die einzelnen CT-Intervalle und den prozentuellen Anteil der jeweiligen Lithologie.

|        | Lithologie [%] |      |       |      |       |    |      |      |
|--------|----------------|------|-------|------|-------|----|------|------|
| CT-Nr. | Teufe [m]      | FDC4 | FDC4C | FDC3 | FDC3C | DB | Cat1 | Cat2 |
| 1      | 10,60-10,87    |      | 100   |      |       |    |      |      |
| 2      | 11,85-12,85    |      | 75    |      |       | 25 |      |      |
| 3      | 12,85-13,85    |      | 91    |      |       | 9  |      |      |
| 4      | 13,85-14,15    |      | 100   |      |       |    |      |      |
| 5      | 14,60-15,15    | 49   |       | 51   |       |    |      |      |
| 6      | 15,31-16,04    | 11   |       |      | 89    |    |      |      |
| 7      | 16,31-16,91    | 17   |       |      | 40    |    | 43   |      |
| 8      | 17,33-18,20    |      |       |      | 100   |    |      |      |
| 9      | 19,20-19,60    | 15   | 80    |      |       |    | 5    |      |
| 10     | 19,92-20,35    | 25   | 67    |      |       | 8  |      |      |
| 11     | 20,80-21,73    |      | 80    |      |       | 20 |      |      |
| 12     | 22,40-23,18    |      |       | 26   | 74    |    |      |      |
| 13     | 23,66-24,05    |      | 59    |      |       |    |      | 41   |
| 14     | 24,29-24,71    |      |       |      | 100   |    |      |      |
| 15     | 25,43-25,89    | 67   | 33    |      |       |    |      |      |
| 16     | 28,73-29,48    |      |       |      |       | 56 | 44   |      |
| 17     | 30,24-30,62    | 60   |       | 31   |       | 9  |      |      |
| 18     | 31,12-31,62    | 30   |       |      |       | 60 |      | 10   |
| 19     | 31,62-32,09    |      |       |      |       | 96 |      | 4    |
| 20     | 39,05-39,45    | 45   |       |      |       | 55 |      |      |
| 21     | 40,12-41,12    |      | 20    |      |       |    | 80   |      |
| 22     | 41,44-41,99    |      | 78    |      |       | 22 |      |      |
| 23     | 42,30-42,88    |      | 100   |      |       |    |      |      |
| 24     | 42,88-43,40    | 19   | 81    |      |       |    |      |      |
| 25     | 43,40-44,20    | 14   | 35    |      | 18    |    |      | 33   |
| 26     | 44,50-45,20    |      | 88    |      |       | 12 |      |      |
| 27     | 45,69-46,26    | 35   |       |      | 51    | 14 |      |      |
| 28     | 46,39-46,89    | 70   | 20    |      |       | 10 | 1    |      |
| 29     | 47,45-47,60    | 13   | 87    |      |       |    |      |      |
| 30     | 47,60-48,37    |      | 100   |      |       |    |      |      |
| 31     | 48,37-48,75    |      | 55    |      |       | 45 |      |      |
| 32     | 48,89-49,04    |      |       |      |       | 94 | 6    |      |

Tabelle 14: Prozentuelle Verteilung der Lithologie in den jeweiligen CT-Intervallen.

Die P21-Werte korrelieren gut mit den durchschnittlichen Porositäten aus Widerstandsmessungen (DFEL shallow) aus demselben Tiefenintervall. So ergibt sich aus den P21-Werten von insgesamt 32 CTs und den Geophysikdaten aus der jeweils entsprechenden Teufe ein Korrelationskoeffizient von R = 0,82 (Abbildung 64, 65). Die durchgeführten Bildanalysen zeigen somit eine sehr gute Korrelation von Kluftintensität und Porosität. Eine mögliche Erklärung für etwaige Abweichungen kann wie folgt beschrieben werden. Bei den stärker abweichenden CTs handelt es sich um Bohrkerne, deren Teufe aufgrund von teilweisen Kernverlusten nicht oder nur unzureichend mit den Geophysikdaten korreliert werden konnten. Somit war es nicht möglich, die Bohrkerne bzw. CTs der exakten Log-Teufe zuzuordnen. Eine weitere Erklärung könnte sein, dass aufgrund starker Zerlegung bzw. Beanspruchung bei der Bohrkernbergung künstlich erzeugte Klüfte entstanden sind, welche bei der Bildanalyse zu verfälschten P21-Werten führten. Des Weiteren zeigt sich eine vergleichsweise schlechte Korrelation der P21-Werte mit den Porositätswerten aus dem Sonic-Log (Abbildung 66, 67). Diese Auffälligkeit wird in Kapitel 6.3.1 näher ausgeführt. Für die Korrelation (alle 32 CTs) der P21-Werte und der Porosität aus dem Widerstands (DFEL shallow)-Log wurde folgende empirische Funktion bestimmt:

$$p_0 = (0,0273 \cdot P_{21}) + 2,0016$$
 Formel 19

*P*<sub>21</sub> Kluftintensität (m/m<sup>2</sup>)*p*<sub>0</sub> Porosität (%)

- Korrelationskoeffizient **R** = 0,8212
- Determinationskoeffizient R<sup>2</sup> = 0,6745

Zum Vergleich, die Korrelation zwischen P21 und der Porosität aus dem Sonic-Log:

- Korrelationskoeffizient **R** = 0,3414
- Determinationskoeffizient R<sup>2</sup> = 0,1166

In Anhang 9.4 sind alle CT-Aufnahmen in Form von Bildern und die jeweilige P21-Auswertung als Tabelle beigefügt.



Abbildung 64: Korrelation der aus dem Widerstands-Log (DFEL shallow;, m=2, a=1, n=2, Sw=0,88) berechneten Porositätsdaten und den P21-Werten (Kluftintensität) der CT-Bildanalyse: alle Daten (32 CT-Aufnahmen).



Abbildung 65: Gegenüberstellung der Porositätswerte aus dem Widerstands-Log (DFEL shallow; m=2, a=1, n=2, Sw=0,88) und der P21-Werte aus den CT-Aufnahmen.



Abbildung 66: Korrelation der Porositätsdaten aus dem Sonic-Log ( $\Delta$ tmatrix=142,7 $\mu$ s/m und  $\Delta$ tfluid=994,1 $\mu$ s/m – entspricht einer Wassersättigung von 88%) und den P21-Werten (Kluftintensität) der CT-Bildanalyse: alle Daten (32 CT-Aufnahmen).



Abbildung 67: Gegenüberstellung der Porositätswerte aus dem Sonic-Log ( $\Delta$ tmatrix=142,7 $\mu$ s/m und  $\Delta$ tfluid=994,1 $\mu$ s/m – entspricht einer Wassersättigung von 88%) und der P21-Werte aus den CT-Aufnahmen.

### 6 Interpretation

#### 6.1 Porosität und Permeabilität von Aufschlussproben

Ein Vergleich der Porosität von Aufschlussproben aus Tauchwägung und Gasporosimeter zeigt, dass die Werte zwischen 2,25 % (min) und 8,88 % (max) schwanken. Dabei fällt auf, dass sich die Porositätsdaten der Tauchwägung zum Teil deutlich von denen des Gasporosimeter unterscheiden (Tabelle 15). Tendenziell sind die Gasporosimeter-Werte höher als die der Tauchwägung. Bei der Korrelation aller Daten zeigt sich nur eine mäßige Übereinstimmung, entfernt man jedoch den Ausreißer (PG DB 1A), verbessert sich die Korrelation deutlich (Abbildung 68). Dies lässt sich auf die Unterschiede zwischen den Methoden und die Verwendung von Wasser bzw. Stickstoff zur Bestimmung der Porosität zurückführen. Bei der Messung mit Gas werden auch die sehr feinen Klüfte und Poren erfasst, während dies bei der Sättigung mit Wasser womöglich nicht der Fall ist. Wie in Kapitel 3.1 erwähnt, können Klüfte und Porenräume welche kleiner als 8 µm sind, aufgrund von Haftwasser nicht von Wasser durchströmt werden.

|             |            | Porosität (plugs - atmos. Druck) | Porosität (Tauchwägung) |
|-------------|------------|----------------------------------|-------------------------|
| Probe       | Lithologie | [%]                              | [%]                     |
| PG 34/2     | FDC4       | 5,44                             | 2,92                    |
| PG 26/1 [B] | Cat1       | 6,23                             | 3,23                    |
| PG 26/1 [A] | Cat2       | 7,9                              | 4,61                    |
| PG DB 1 [A] | DB         | 8,88                             | 2,63                    |
| PG 26/2 -B  | Cat1       | 7,71                             | 3,5                     |
| PG 26/2 -A  | Cat1       | 6,86                             | 3,5                     |
| PG 34/1 -B  | Cat1       | 3,13                             | 2,34                    |
| PG 34/1 -A  | Cat1       | 3,97                             | 2,34                    |

Tabelle 15: Porositätswerte von Aufschlussproben aus Tauchwägung (ÖNORM 1936) & Gasporosimeter (Coreval 700).



Abbildung 68: Korrelation von Tauchwägung (ÖNORM 1936) & Gasporosimeter (Coreval 700): Gesamtdaten (links) und Daten ohne Ausreißer PG DB 1A (rechts).

Die Messungen der Plugs bei zunehmendem Umlagerungsdruck ergeben eine teils signifikante Abnahme der Porosität und Permeabilität (Kapitel 5.2). Zu Beginn der Druckerhöhung sind die Druckverluste am größten und nehmen mit steigendem Umlagerungsdruck ab. Insgesamt liegen die Porositätsverluste durch die Erhöhung des Umlagerungsdrucks von 400 psi auf 6500 psi zwischen 6,1 % und 43,5 % mit einem Mittelwert von 22,1 %, die der Permeabilität (Klinkenberg) zwischen 0,01728 mD und 16,42 mD mit einem Mittelwert von 4,60 mD. Die höchsten Porositätsverluste betragen 35,1 – 43,5 % und treten bei Proben auf, die auch sehr hohe Permeabilitätsverluste zeigen (97,2 – 99,3 %). Dies lässt sich damit erklären, dass eine Erhöhung der Umlagerungsdrücke die Schließung der Klüfte und Porenräume bewirkt. Die Auswirkungen auf die Permeabilität sind dabei wesentlich größer als auf die Porosität, da die Schließung feinster Klüfte und Porenräume zwar einen Vergleichsweise kleinen Einfluss auf die Porosität, jedoch aber einen großen Einfluss auf die Permeabilität hat. Aufgrund der relativ kleinen Datenmenge von Aufschlussproben (Tauchwägung und Plugs), haben diese Ergebnisse eine nur vergleichende bzw. unterstützende Aussagekraft in Bezug auf die restlichen Methoden dieser Arbeit.

#### 6.2 Bohrkernproben

Die Messung von Bohrkernproben galt als wichtigster Schritt für die Gegenüberstellung bzw. Kalibrierung der Bohrlochgeophysik. Die Probennahme wurde so gestaltet, dass möglichst viele Proben aus unterschiedlichen Lithologien und Teufen entnommen wurden, um ein breites Spektrum an Daten zu gewinnen. Aufgrund der allgemein bekannten Probleme bei der Probengewinnung aus geklüfteten Gesteinen war es nicht möglich, Plugs für Permeabilitätsmessungen zu gewinnen. Stattdessen konnten unregelmäßig geformte Proben gewonnen und auf ihre Porosität, jedoch nicht auf ihre Permeabilität getestet werden. Dies ermöglichte eine Einschätzung der Porosität und ihrer Schwankungsbreite. Trotz der geringen Probenvolumina und dem daraus resultierenden mäßigen, repräsentativen Charakter für geklüftetes Gestein dienten diese Proben als Anhaltspunkte für die Porosität der im Bohrloch angetroffenen Formation. Die so ermittelte Porosität schwankt zwischen 0,76 % - 14,10 % und beträgt im Mittel 4,42 %.

82

# 6.3 Bohrlochgeophysik6.3.1 Full Wave Sonic Log

Bei Anwendung der Zeit-Mittel-Gleichung (Kapitel 4.6.5) für die Berechnung der Porosität auf geklüftetes Festgestein ergeben sich gewisse Schwierigkeiten. Der direkte Vergleich mit Porositätswerten aus Tauchwägung, Porosimeter (Coreval 700), Heliumporosimeter und der Porositätsbestimmung nach Archie (1942) zeigt, dass aus dem Sonic-Log meist deutlich höhere Werte abgeleitet werden. Ein möglicher Grund für die höheren Werte könnte die hohe Kluftdichte des Dolomits sein, welche aufgrund der Geometrie der Klüfte einen anderen Effekt auf den Wellenweg haben als z.B. die poröse Geometrie von Sandsteinen (Schön, 1983). So korreliert etwa die Widerstands-Porosität gut mit der Kluftintensität (R<sup>2</sup>=0,67), während die Sonic-Porosität nur sehr schlecht korreliert (R<sup>2</sup>=0,11). Ein weiterer Grund könnte eine falsche Annahme der Matrix-Laufzeit sein. Für eine genaue Berechnung wäre eine individuell ermittelte Matrixlaufzeit entscheidend (Schön, 1996), die hier verwendete Matrix-Laufzeit ist jedoch ein Mittelwert für Dolomit, welcher aufgrund der hier angetroffenen Lithologien (z.B. Brekzie, Kataklasit) womöglich zu verfälschten Ergebnissen führt. Des Weiteren ist auch die Wassersättigung der Formation von großer Bedeutung, wenn es um die genaue Anwendung der Zeit-Mittel-Gleichung geht. So zeigt sich bei der Gegenüberstellung mit den nach Archie ermittelten Werten, dass bei einer Annahme von 88% Wassersättigung die beiden Methoden wesentlich besser korrelieren. Vergleicht man die durchschnittliche Porosität der einzelnen Lithologien, zeigt sich weiters, dass bei 100 % Wassersättigung die beiden Methoden im Mittel um etwa 5,77 % (Absolut-Wert) und bei 88 % Wassersättigung im Mittel nur noch um 0,23 % voneinander abweichen (Tabelle 16). Des Weiteren führen laut Schön (1996) wassergesättigte Bedingungen, gut verdichtete Gesteine und Gesteine unterhalb einer Tiefe von 2000 m zu besseren Übereinstimmungen. Die so neu ermittelte Porosität streut zwar weiterhin stark, was womöglich auf Messverfälschungen aufgrund von Lochausbrüchen zurückzuführen ist, jedoch sind die neuen Werte in einem Schwankungsbereich, der vor allem im direkten Vergleich mit den Porositätswerten aus den Bohrkernproben realistischer ist. Auch unabhängig der Wassersättigung geben die Werte eine erwartete Zunahme der Porosität mit zunehmender Kluftdichte wieder.

| Lithologie          | Widerstand<br>Porosität [%] | Sonic<br>Porosität [%] | Lithologie          | Widerstand<br>Porosität [%] | Sonic<br>Porosität [%] |
|---------------------|-----------------------------|------------------------|---------------------|-----------------------------|------------------------|
| core loss           | 11,28                       | 12,08                  | core loss           | 9,92                        | 17,76                  |
| FDC4                | 10,25                       | 9,78                   | FDC4                | 9,02                        | 14,38                  |
| FDC4C               | 8,28                        | 9,15                   | FDC4C               | 7,29                        | 13,45                  |
| FDC3                | 7,83                        | 8,91                   | FDC3                | 6,89                        | 13,1                   |
| FDC3C               | 6,62                        | 7,31                   | FDC3C               | 5,83                        | 10,74                  |
| DB                  | 9,71                        | 9,48                   | DB                  | 8,55                        | 13,94                  |
| Cat1                | 10,45                       | 10,33                  | Cat1                | 9,2                         | 15,19                  |
| Cat2                | 9,18                        | 8,42                   | Cat2                | 8,08                        | 12,38                  |
|                     |                             |                        |                     |                             |                        |
| Mittelwert          | 9,2                         | 9,43                   | Mittelwert          | 8,1                         | 13,87                  |
| Differenz (absolut) |                             | 0,23                   | Differenz (absolut) |                             | 5,77                   |

Tabelle 16: Änderung der Wassersättigung und ihr Einfluss auf die Schwankungsbreite der Porosität. Links: Widerstands-Log (DFEL shallow; m=2, a=1, n=2, Sw=0,88) & Sonic-Log ( $\Delta$ tmatrix=142,7 $\mu$ s/m und  $\Delta$ tfluid=994,1 $\mu$ s/m) [88% Wassersättigung], Rechts: Widerstands-Log (DFEL shallow; m=2, a=1, n=2, Sw=1) & Sonic-Log ( $\Delta$ tmatrix=142,7 $\mu$ s/m und  $\Delta$ tfluid=715,3 $\mu$ s/m) [100% Wassersättigung].

#### 6.3.2 Dual Focused Electric Log (DFEL)

Die nach Archie (1942) ermittelte Porosität (Kapitel 4.6.6) schwankt zwischen 4,05 % (min) und 18,87 % (max), im Mittel beträgt sie 9,46 %. Generell lässt sich sagen, dass die aus dem DFEL (shallow) errechneten Porositäten gut mit den aus dem Sonic-Log bestimmten korrelieren (Tabelle 16). Was die absoluten Werte angeht, zeigt sich eine gute Übereinstimmung mit den Porositätswerten der Bohrkernproben. Ähnlich wie beim Sonic-Log gibt es gewisse Schwierigkeiten bei der genauen Auswertung der Messungen. Bei der Anwendung der Archie-Gleichung ist der Zementationsexponent (*m*) von großer Bedeutung und somit ausschlaggebend für die Porositätsermittlung. Für eine genauere Analyse und die Bestimmung von *m* wäre ein Gamma-Gamma-Density-Log (Gesteinsdichte-Log) hilfreich gewesen. Aufgrund der Bestimmungen im Steinbruch Gaaden war es leider nicht möglich, ein Dichte-Log anzuwenden, da die entsprechende Sonde eine schwach radioaktive Quelle enthält. Somit blieb für die Abschätzung des Zementationsexponenten *m* nur der Weg über Mittelwerte aus der Literatur. So wie bei der Sonic- & Helium-Porosität zeigt sich auch hier eine erwartete Zunahme der Porosität mit zunehmender Kluftdichte, welche unabhängig der Absolutwerte die relativen Porositätswerte glaubhaft macht (Abbildung 74, 75, 76).

#### 6.3.2.1 Korrelation Widerstands (DFEL shallow)-& Sonic-Log

Die Gegenüberstellung von Widerstands- & Sonic-Log wurde hier in 1m-Schritten durchgeführt und für jeden Meterabschnitt eine mittlere Porosität ermittelt. Dies hatte den Grund, dass die beiden Messungen mit unterschiedlicher Tiefenauflösung durchgeführt wurden. So erfolgte die Widerstandsmessung in 15 cm Intervallen (273 Messpunkte), während es beim Sonic-Log 10 cm Intervalle (415 Messpunkte) waren (Anhang 9.2.1, 9.2.2). Somit erschwerte sich die Gegenüberstellung aller Messwerte und wurde hier für eine bessere Übersicht in 1 m- Schritten dargestellt. Die Abbildungen 69 und 70 zeigen die so ermittelten Werte und die Verbesserung der Schwankungsbreite beider Methoden aufgrund unterschiedlicher Wassersättigung. Abbildung 71 und 72 zeigen die Korrelation dieser beiden Logs bei 88 % Wassersättigung, mit und ohne Entfernung der Daten von Abschnitten mit Bohrlochausbrüchen. Die gesamte Bohrlochkontur ist in Anhang 9.2 ersichtlich.



Abbildung 69: Gegenüberstellung Widerstands (DFEL shallow; m=2, a=1, n=2, Sw=1) - & Sonic-Log ( $\Delta$ tmatrix=142,7 $\mu$ s/m und  $\Delta$ tfluid=715,3 $\mu$ s/m) in 1m-Abschnitten (100% Wassersättigung).



Abbildung 70: Gegenüberstellung Widerstands (DFEL shallow; m=2, a=1, n=2, Sw=0,88) - & Sonic-Log ( $\Delta$ tmatrix=142,7 $\mu$ s/m und  $\Delta$ tfluid=994,1 $\mu$ s/m) in 1m-Abschnitten (88% Wassersättigung).



Abbildung 71: Korrelation Widerstands (DFEL shallow; m=2, a=1, n=2, Sw=0,88) - & Sonic-Log ( $\Delta$ tmatrix=142,7 $\mu$ s/m und  $\Delta$ tfluid=994,1 $\mu$ s/m) mit Werten aus Bereichen mit Bohrlochausbrüchen (88% Wassersättigung).



Abbildung 72: Korrelation Widerstands (DFEL shallow; m=2, a=1, n=2, Sw=0.88) - & Sonic-Log ( $\Delta$ tmatrix=142,7 $\mu$ s/m und  $\Delta$ tfluid=994,1 $\mu$ s/m) ohne Werte von Bereichen mit Bohrlochausbrüchen (88% Wassersättigung).

#### 6.4 Porositäten der einzelnen Lithologien

Bei den Porositäten der einzelnen Lithologien zeichnet sich ein sehr ähnlicher Verlauf zwischen den verschiedenen Methoden ab. Die Streuung der aus dem Widerstands-Log bestimmten Daten ist weniger stark wie die der Daten aus dem Sonic-Log, dennoch ergeben sich sehr ähnliche Mittelwerte. Die Werte der einzelnen Lithologien sind verglichen mit den Werten aus dem Heliumporosimeter (Bohrkernproben, Abbildung 74) überhöht, liegen aber in einem realistischen Bereich, vor allem was die relativen Verhältnisse zueinander betrifft. So haben bei den bohrlochgeophysikalischen Methoden die Kernverlustbereiche die höchsten Porositäten, was wiederum die Vermutung bestätigt, dass es sich dabei um extrem geklüftete und inkohäsive FDC4-Bereiche handelt, welche aufgrund ihrer starken Klüftung bzw. ihres hohen Zerlegungsgrades zu Kernverlusten geführt haben. Somit ergibt sich beim Zusammenlegen der beiden Bereiche (core loss & FDC4) ein Mittelwert von 10,76 % beim Widerstands-Log (DFEL shallow) und 10,93 % beim Sonic-Log. Des Weiteren ergeben die zementierten FDC3-Bereiche, wie es zu erwarten war, die niedrigsten Porositäten. Alle Mittelwerte und das Ausmaß der Streuung für alle Methoden sind den Abbildungen 74, 75 und 76 zu entnehmen.



Abbildung 73: Korrelation der mittleren Porosität der verschiedenen Lithologien, bestimmt aus Widerstands-Log (DFEL shallow; m=2, a=1, n=2, Sw=0,88) & Sonic-Log ( $\Delta$ tmatrix=142,7 $\mu$ s/m und  $\Delta$ tfluid=994,1 $\mu$ s/m) [88% Wassersättigung].



Abbildung 74: Streuung der Heliumporosität von Bohrkernproben nach Lithologien inkl. jeweiligem Mittelwert.



Abbildung 75: Streuung der Porosität nach Lithologien inkl. jeweiligem Mittelwert. Widerstands-Log DFEL shallow mit den Parametern: m=2, a=1, n=2 und Sw (Wassersättigung)=0,88.



Abbildung 76: Streuung der Porosität nach Lithologien inkl. jeweiligem Mittelwert. Sonic-Log mit den Parametern:  $\Delta$ tmatrix=142,7µs/m und  $\Delta$ tfluid=994,1µs/m (entspricht einer Wassersättigung von 88%).

#### 6.5 Poro-Perm Korrelation

Für die PoroPerm-Korrelation wird die Permeabilität aus WD-Versuch und der aus Widerstands (DFEL shallow)- & Sonic-Log für das entsprechende Testintervall gemittelten Porosität herangezogen. Die Packer-Tests wie auch der Constant-Head-Test ergeben laut Quiñones-Rozo (2010) eine geringe bis moderate Durchlässigkeit bzw. Permeabilität. Die zwei höchsten Werte liegen bei etwa 103 mD, wobei einer dieser Bereiche einer Kernverlustzone und der andere einem Bereich der überwiegend aus FDC3 besteht, entspricht. Beim letzteren (WD 11) stimmt die Permeabilität nicht mit der angetroffenen Lithologie überein, da für Dolomite mit dieser Kluftdichteklasse so hohe Werte nicht zu erwarten sind und auch der Optische Log keine offenen Klüfte in diesem Tiefenintervall (24,3 – 24,8 m) angezeigt hat. Des Weiteren zeigt sich bei der Korrelation der Permeabilität und der Porosität aus den entsprechenden Teufen, dass die Entfernung dieses Wertes die Korrelation um etwa 92 % verbessert (Abbildung 78).

All das lässt darauf schließen, dass es bei dem Packer-Test aus dieser Teufe zu einer Messungenauigkeit gekommen ist. Dies kann, wie bereits in Kapitel 4.7 (Abbildung 39) erwähnt, an den möglichen Messverfälschungen, wie etwa Umläufigkeit oder Undichtigkeit, liegen. Die restlichen Permeabilitätswerte zeigen eine Korrelation von  $R^2 = 0,47$  mit den Porositätswerten.



Abbildung 77: Korrelation der Permeabilität aus WD-Versuchen und der aus Widerstands-Log (DFEL shallow; m=2, a=1, n=2, Sw=0,88) & Sonic-Log ( $\Delta$ tmatrix=142,7 $\mu$ s/m und  $\Delta$ tfluid=994,1 $\mu$ s/m) für das entsprechende Testintervall gemittelten Porosität.



Abbildung 78: Korrelation der Permeabilität aus WD-Versuchen und der aus Widerstands-Log (DFEL shallow; m=2, a=1, n=2, Sw=0,88) & Sonic-Log ( $\Delta$ tmatrix=142,7 $\mu$ s/m und  $\Delta$ tfluid=994,1 $\mu$ s/m) für das entsprechende Testintervall gemittelten Porosität, ohne WD-Versuch Nr. 11.

Für die Korrelation der Permeabilität aus WD-Versuchen und der aus Widerstands (DFEL shallow)- & Sonic-Log gemittelten Porosität wurde folgende empirische Funktion bestimmt:

$$K = 1,6501 e^{0,2922 \cdot p0}$$
 Formel 20

K Permeabilität (mD)

- Korrelationskoeffizient **R** = 0,7127

- Determinationskoeffizient R<sup>2</sup> = 0,4655



# 6.6 Zusammenfassung der Ergebnisse

Abbildung 79: Porositätsverlauf von Bohrung GAD-1, links: Widerstands-Log (DFEL shallow, m=2, a=1, n=2, Sw=0,88), mitte: Sonic-Log ( $\Delta$ tmatrix=142,7 $\mu$ s/m und  $\Delta$ tfluid=994,1 $\mu$ s/m) und rechts: Gemittelter Wert aus beiden Methoden.

Abbildung 80 zeigt die Porosität und Permeabilität der einzelnen Lithologien. Die aus den Logs (DFEL shallow und Sonic) ermittelte Porosität ist, wie in Kapitel 6.4 bereits erwähnt, etwas überhöht. Die Permeabilität, welche auf Grundlage der WD-Versuche ermittelt wurde, ist nicht nur in Bezug auf die relativen Werte der einzelnen Lithologien zueinander, sondern auch auf die Absolutwerte, als realistisch einzustufen. Zwar basieren die Werte auf der PoroPerm-Korrelation (Kapitel 6.5, Formel 20), jedoch haben Absolutwert-Änderungen der Porosität keine großen Auswirkungen auf die so ermittelte Permeabilität, da diese fast ausschließlich an die WD-Versuche gebunden ist.



Abbildung 80: Gemittelte Porosität aus Widerstands-Log (DFEL shallow, m=2, a=1, n=2, Sw=0,88) & Sonic-Log ( $\Delta tmatrix=142,7\mu s/m$  und  $\Delta tfluid=994,1\mu s/m$ ) mit der entsprechenden, nach der PoroPerm-Korrelation (Kapitel 6.5, Formel 20) berechneten, Permeabilität.



Heliumporositäten (Bohrkernproben) und gemittelte Porosität aus Widerstands-Log (DFEL shallow)- & Sonic-Log [%]

Abbildung 81: Porositätsverlauf von Bohrkernproben (Heliumporosimeter) & Bohrlochgeophysik mit dem gemittelten Wert aus Widerstands-Log (DFEL shallow, m=2, a=1, n=2, Sw=0,88) & Sonic-Log ( $\Delta$ tmatrix=142,7 $\mu$ s/m und  $\Delta$ tfluid=994,1 $\mu$ s/m).

Abbildung 81 zeigt die Gegenüberstellung der Porositätsverläufe von Bohrkernproben und bohrlochgeophysikalischen Logs. Aufgrund der Tiefenauflösung der Logs (Widerstands- & Sonic-Log) und der Probengröße der Bohrkernproben ist eine direkte Gegenüberstellung wenig zufriedenstellend. So zeigt sich bei den Bohrkernproben eine stark ausgeprägte welche bei den Logs aufgrund der größeren gemessenen Schwankungsbreite, Gesteinsvolumina weniger stark ausgeprägt ist. Des Weiteren zeigt sich, dass die gemessene Durchschnittsporosität der beiden Logs etwa doppelt so hoch wie die der Bohrkernproben ist, was, zumindest zu einem gewissen Teil auf die bereits erwähnte Probengröße und womöglich auch auf die sehr viel geringere Anzahl an Messungen der Bohrkernproben zurückzuführen ist. Abbildung 82 zeigt die Unterschiede der Porosität nach Lithologie und Messmethode. Die Porosität der Bohrlochgeophysik zeigt durchwegs höhere Werte. Besonders Auffällig hierbei sind die Unterschiede der einzelnen Lithologien. Während FDC4 & die Störungsgesteine einen sehr ähnlichen Differenz-Faktor aufweisen, zeigen die FDC3-Bereiche im Mittel einen etwa doppelt höheren Faktor. Dies bestätigt die Annahme, dass die Probengröße der Heliummessungen kein repräsentatives Volumen für geklüftetes Gestein mit Kluftabständen von mehreren Zentimetern darstellt.



Abbildung 82: Gemittelte Porosität aus Widerstands-Log (DFEL shallow, m=2, a=1, n=2, Sw=0,88) & Sonic-Log ( $\Delta$ tmatrix=142,7 $\mu$ s/m und  $\Delta$ tfluid=994,1 $\mu$ s/m) und Porositäten von Bohrkernproben (Heliumporosimeter) aufgeteilt nach Lithologie. Der Differenzfaktor zeigt den Porositätsunterschied der beiden Methoden.


Abbildung 83: Gemittelte Porosität aus Widerstands-Log (DFEL shallow, m=2, a=1, n=2, Sw=0,88) & Sonic-Log ( $\Delta$ tmatrix=142,7 $\mu$ s/m und  $\Delta$ tfluid=994,1 $\mu$ s/m) und die nach der PoroPerm-Korrelation [Formel 20] berechnete Permeabilität.



Abbildung 84: Nach unterschiedlichen Methoden ermittelte Permeabilität (nach der PoroPerm-Korrelation [Formel 20] ermittelte Permeabilität und aus WD-Versuchen und dem Constant Head Test ermittelte Permeabilität).

#### 7 Schlussfolgerung

Die bohrlochgeophysikalischen Messungen und Versuche decken, verglichen mit Plugs, sehr viel größere Gesteinsvolumina ab, wodurch die daraus gewonnenen Permeabilitätsdaten wesentlich repräsentativer sind. Aufgrund der intensiven Klüftung bzw. des starken Zerlegungsgrades von Dolomit und der dadurch schwierigen Beprobung unter Laborbedingungen zeigt sich ein großer Vorteil dieser Versuche. Die aus CT-Aufnahmen ermittelte Kluftintensität (P21) zeigt eine gute Korrelation mit der durchschnittlichen Porosität aus Widerstandsmessungen, jedoch eine schlechte Korrelation der durchschnittlichen Porosität aus Kompressionswellenmessungen aus demselben Tiefenintervall. Dies unterstreicht den Einfluss Klüften auf die von Genauigkeit von Kompressionswellenmessungen und die daraus ermittelte Porosität. Generell gab es gewisse Schwierigkeiten bei der Berechnung der Porosität aus den beiden Logs. So zeigte sich etwa beim Widerstands-Log, dass für eine genauere Berechnung der Porosität die Bestimmung des Zementationsexponenten von großer Bedeutung ist, dieser jedoch aufgrund eines fehlenden Dichte-Logs und/oder der Unmöglichkeit, Plugs aus den Bohrkernen zu gewinnen, nur über Mittelwerte aus der Literatur abgeschätzt werden konnte. Des Weiteren ist auch die Wassersättigung der Formation um das Bohrloch von Entscheidender Bedeutung.

Die nach Abstimmung aller Parameter für Sonic und Widerstandslog ermittelte mittlere Porosität von 9,6 % (4,6 bis 17,2 %) ist im Vergleich mit der mittleren (Helium)Porosität aus Bohrkernproben von 4,4 % (0,76 bis 14,1 %) deutlich höher, besonders für die der geklüfteten Gesteine bzw. Lithologien. Die von Störungsgesteinen gemessenen Porositätswerte sind weniger stark erhöht. Dies liegt an der Probengröße der Heliummessungen, welche für Störungsgesteine (Brekzien, Kataklasite) aufgrund ihrer homogeneren Struktur repräsentativer ist. Die aus Logs ermittelten Porositätswerte der einzelnen Lithologien sind verglichen mit den Werten aus dem Heliumporosimeter (Bohrkernproben) zwar überhöht, bilden aber Porositätsunterschiede zwischen unterschiedlichen Lithologien realistisch ab. Für extrem geklüftete (FDC4) Intervalle wurden mit petrophysikalischen Methoden deutlich höhere Porositätswerte bestimmt als für intensiv geklüftete Abschnitte (FDC3). Gleiches gilt für unzementierte und zementierte Bereiche der Formation.

99

Die Permeabilitätsergebnisse aus Wasserdruck-Versuchen zeigen Permeabilitäten von 4 bis 103 mD. Die höchsten Werte wurden mit ca. 22 bis 103 mD in Dolomit der Kluftdichteklasse FDC4 gemessen (extrem geklüfteter unzementierter Dolomit). Zementierte Dolomite (FDC3 und FDC4) zeigen Permeabilitätswerte zwischen 4 und 65 mD. Zwei Messungen aus Störungsgesteinen (Kataklasit, Dilatationsbrekzie) ergaben Werte von 52 und 72 mD.

Verglichen mit den aus Aufschlussproben gewonnenen Plugs sind die Permeabilitätswerte aus den Wasserdruck-Versuchen deutlich höher. Dies liegt, ähnlich wie bei den oben genannten Porositätsmessungen, an der Probengröße und dem Zementationsgrad der Plugs. Anders als bei den Porositätsmessungen aus den Logs, sind die Ergebnisse der Wasserdruck-Versuche nicht nur in Bezug auf ihre Lithologien und der relativen Werte zueinander, sondern auch in Bezug auf ihre Absolutwerte als realistisch einzustufen. Aus der Korrelation der so bestimmten Permeabilität und der Log-Porosität aus dem entsprechenden Tiefenintervall ließ sich eine Funktion ermitteln, mit der es möglich war, Permeabilitäten über den gesamten Bohrlochabschnitt zu extrapolieren. Die aus 14 Wasserdruck-Versuchen ermittelte durchschnittliche Permeabilität von 37 mD ist etwas höher als der Wert von 17 mD, der mit einem Constant Head Test über das gesamte offene Bohrloch (7,5 - 50,5 m) durchgeführt wurde. In Anbetracht der hier verwendeten unterschiedlichen Methoden und möglicher Messungenauigkeiten, zeigt sich dennoch eine durchaus realistische Schwankungsbreite der Porosität sowie auch der Permeabilität.

#### 8 Literaturverzeichnis

Archie, G. (1942). The Elecrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. *Transactions of AIME*, *146*, 54-62

Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin, J., Cardona, A. & Sebastian Seung, H. (2017). Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. *Bioinformatics*, *33*(15), 2424-2426.

Bauer, H. (2010). Deformationsprozesse und hydrogeologische Eigenschaften von Störungszonen in Karbonatgesteinen (Magisterarbeit, Universität Wien). utheses.univie.ac.at. https://utheses.univie.ac.at/detail/7824#

Bauer, H., Schröckenfuchs, T.C., & Decker, K. (2016). Hydrogeological properties of fault zones in a karstified carbonate aquifer, (Northern Calcareous Alps, Austria). Hydrogeology Journal, 24: 1147-1170, DOI 10.1007/s10040-016-1388-9

Bauer, M., Freeden, W., Jacobi, H. & Neu, T. (Hrsg.). (2014). *Handbuch Tiefe Geothermie: Prospektion, Exploration, Realisierung, Nutzung.* Springer

Carmichael, R. S. (1982). Handbook of Physical Properties of Rocks (2. Aufl.). CRC Press Inc.

Decker, K. (2007). Dolomite Fracture And Fault Analysis, Outcrop Study Steinbruch Gaaden. Unpublished report to OMV AG, Vienna, 2007.

Dershowitz, W. S. & Herda, H.H. (1992). Interpretation of fracture spacing and intensity. Proceedings of the 32nd US Symposium on Rock Mechanics (USRMS), Santa Fe, New Mexico, 757-766 8 (American Rock Mechanics Association).

Earth Manual (1990). A water resources technical publication: A guide to the use of soils as foundations and as construction materials for hydraulic structures (part 2), 3rd edn., 1267 pp., US. Depart. Int., Bureau of Reclamation, Washington

Fricke, S. & Schön, J. (1999). Praktische Bohrlochgeophysik. Enke.

Hancock, P. L. (1985). Brittle microtectonics: principles and practice. *Journal of Structural Geology*, 7(3-4), 437-457.

Heitfeld, K. H. & Heitfeld, M. (1989). Auswertung von WD-Testen bei speziellen geologischen Verhältnissen. *Vorträge der 7. Nationalen Tagung für Ingenieurgeologie*, Bensheim, 185-199.

Heitfeld, K. & Koppelberg, W. (1981). Durchlässigkeitsuntersuchungen mittels WD Versuchen. *Zentralblatt für Geologie und Paläontologie*, 634-661.

Houlsby, A. C. (1976). Routine Interpretation Of The Lugeon Water-Test. *Quarterly Journal of Engineering Geology and Hydrogeology*, *9*, 303-313.

Hölting, B. & Coldewey, W. G. (2013). *Hydrogeologie: Einführung in die Allgemeine und Angewandte Hydrogeologie* (8. Aufl.). Springer.

Lugeon M. (1933). Barrages et géologie. Méthodes de recherches. terrassement et imperméabilisation. Impr. la Concorde; Dunod éditeur

Mendelson, K. & Cohen, M. (1982). The effects of grain anisotropy on the electrical properties of sedimentary rocks. *Geophysics, 47,* 257-263.

Milanović, P. T. (1981). *Karst hydrogeology*. Water Resources Publications.

Pickett, G.R. (1966). A review of current techniques for determination of water saturation from Logs. *SPE J. Pet. Technol.,* 1425–1435.

Quinones-Rozo, C. (2010). Lugeon test interpretation, revisited. In: Collaborative management of integrated watersheds, *U.S. Society of Dams, 30th Annual Conference,* 405-414.

ÖNORM EN 1936: Prüfverfahren für Naturstein - Bestimmung der Reindichte, der Rohdichte, der offenen Porosität und der Gesamtporosität.

Reuther, C. D. (2012). *Grundlagen der Tektonik: Kräften und Spannungen der Erde auf der Spur.* Springer

Roeper, T.R., Soukup, W. G. & O'Neill, R. L. (1992). The Applicability of the Lugeon Methods of Packer Test Analysis to Hydrogeologic Investigation. Focus Conference on Eastern Regional Groundwater Issue, National Groundwater Association, Dublin, 8(3), 29-36.

Schlumberger 1997. Log Interpretation Charts

Schön. (1983). *Petrophysik: physikalische Eigenschaften von Gesteinen und Mineralen; mit 70 Tabellen*. Enke.

Schön. (1996). *Physical properties of rocks: fundamentals and principles of petrophysics* (1. ed.). Pergamon.

Tarasewicz, J. P. T., Woodcock, N.H. & Dickson, J. A. D. (2005). Carbonate dilatation breccias: Examples from the damage zone to the Dent Fault, northwest England. *GSA Bulletin*, *117/5-6*, 736-745.

Tollmann, A. (1966). Tektonische Karte der nördlichen Kalkalpen. 1. Teil: Der Ostabschnitt. *Mitteilungen der Geologischen Gesellschaft in Wien, 59*, 231-253.

Tollmann, A. (1976). Monographie der nördlichen Kalkalpen: Analyse des klassischen nordalpinen Mesozoikums: Stratigraphie, Fauna und Fazies der Nördlichen Kalkalpen. Deuticke.

Wessely, G. (2006). *Niederösterreich: 26 Tabellen*. Geologische Bundesanstalt.

Wyllie, M. R. J., Gregory, A.R. & Gardner, L.W. (1956). Elastic Wave Velocities in Heterogeneous and Porous Media. *Geophysics*, *21(1)*, 41-70.

Zangar, C. N. (1953). Theory and Problems of Water Percolation. *Engineering Monograph, 8,* Bureau of Reclamation.

### 9 Anhang

#### 9.1 Bohrprofil GAD-1

| 0,00               | 0,00                                    | <u>. 0 e                                   </u>                                 | GOK                      | -17,00               |
|--------------------|-----------------------------------------|---------------------------------------------------------------------------------|--------------------------|----------------------|
| -0,50-             | n<br>n                                  | 4 6 5 6<br>2 6 6 6<br>2 6 6 6<br>4 6 6 6<br>6 6 6 6                             |                          | -17,50-              |
| -1,00-             | 6<br>6                                  | 6 5 6<br>6 6 6 6<br>6 6 6 6<br>7 6 6 6 6<br>7 6 6 6 6 6                         |                          | -18,00-              |
| -1,50 -            | a<br>2                                  |                                                                                 |                          | -18,50-              |
| -2,00 -            | a<br>0                                  |                                                                                 |                          | -19,00-              |
| -2,50-             | n.<br>6                                 |                                                                                 |                          | -19,50 -             |
| -3,00 -            | מ<br>מ<br>ג                             | 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                         | no or only sporadic core | -20,00               |
| -3,50 -            | 0.<br>0.<br>                            | 2020 0020<br>2020 0020<br>2020 0020<br>2020 0020                                | recovery                 | -20,50 -             |
| -4,00 -            | 6.<br>6.                                | 2 0 2 0<br>2 0 0 0<br>2 0 0 0<br>2 0 0 0<br>2 0 0<br>2 0 0<br>2 0 0<br>2 0<br>2 |                          | -21,00-              |
| -4,50 -            |                                         |                                                                                 |                          | -21,50-              |
| -5,00 -            |                                         |                                                                                 |                          | -22,00-              |
| -5,50-             | a<br>a                                  |                                                                                 |                          | -22,50 -             |
| -6,00-             | 6,36 a <sup>6</sup>                     | 200<br>200<br>200<br>200<br>200<br>2000                                         |                          | -23,00               |
| -6,50 -            |                                         |                                                                                 |                          | -23,50 -             |
| -7,00 -            | 7 40                                    |                                                                                 | FDC4                     | -24,00-              |
| -7,50 -            | 7,78                                    |                                                                                 | core loss                | -24,50 -             |
| -8,00 -            | 8,18<br>8,28                            | ~ ~~                                                                            | FDC3                     | -25,00 -             |
| -8,50              | 8,46                                    |                                                                                 | FDC3<br>core loss        | -25,50-              |
| -9,00 -<br>-9,50 - | - A - A - A - A - A - A - A - A - A - A | - Ky Ky Ky                                                                      | FDC3                     | -26,00 -<br>-26,50 - |
| -10,00 -           | 14<br>14<br>14                          | and the second                                                                  |                          | -27,00-              |
| -10,50 -           | 10,60                                   | and and                                                                         | EDC4C                    | -27,50               |
| -11,00 -           | 10,87<br>10,97<br>11,30                 |                                                                                 | FDC4<br>FDC3             | -28,00 -             |
| -11,50 -           | 11.57                                   |                                                                                 | core loss                | -28,50               |
| -12,00 -           |                                         | 123 <mark>15</mark> ,223<br>123<br>123                                          | FDC4C                    | -29,00 -             |
| -12,50 -           | <u>12,60</u>                            | 2828 28289                                                                      | Dilation Breccia         | -29,50 -             |
| -13,00 -           | 12,04                                   |                                                                                 |                          | -30,00               |
| -13,50 -           |                                         |                                                                                 | FDC4C                    | -30,50-              |
| -14,00-            | 14,15<br>14,30                          |                                                                                 | core loss                | -31,00-              |
| -14,50-            | 14,60<br>14,87                          |                                                                                 | Cataclasite 1<br>FDC4    | -31,50-              |
| -15,00 -           | <u>15,19</u><br><u>15,29</u>            |                                                                                 | FDC3<br>FDC3C            | -32,00-              |
| -15,50-            | 15,39                                   | 14                                                                              | FDC4<br>FDC3C            | -32,50-              |
| -16,00-            | 16,04<br>16,26                          |                                                                                 | FDC3                     | -33,00 -             |
| -16,50-            | 16,47<br>16,57<br>16,81                 |                                                                                 | FDC4<br>FDC3C            | -33,50 -             |
| -17,00             | 17,10                                   | 0 0 0 0                                                                         | Cataclasite 1            | -34,00-              |













## 9.2.1 Datentabelle Sonic-Log

| Tiefe | dtp    | dts    |
|-------|--------|--------|-------|--------|--------|-------|--------|--------|-------|--------|--------|-------|--------|--------|-------|--------|--------|-------|--------|--------|
| [m]   | [µs/m] | [µs/m] |
| 7,50  | *)     | *)     | 13,60 | 308    | *)     | 19,70 | 190    | 359    | 25,80 | 207    | 482    | 31,90 | 187    | 381    | 38,00 | 250    | 478    | 44,10 | 240    | 447    |
| 7,60  | 298    | *)     | 13,70 | 303    | *)     | 19,80 | 192    | 344    | 25,90 | 225    | 472    | 32,00 | 196    | 380    | 38,10 | 251    | 467    | 44,20 | 252    | 449    |
| 7,70  | 309    | *)     | 13,80 | 310    | *)     | 19,90 | 193    | 343    | 26,00 | 246    | 461    | 32,10 | 212    | 389    | 38,20 | 259    | 447    | 44,30 | 247    | 434    |
| 7,80  | 289    | *)     | 13,90 | 317    | *)     | 20,00 | 204    | 353    | 26,10 | 250    | 455    | 32,20 | 231    | 421    | 38,30 | 253    | 433    | 44,40 | 236    | 424    |
| 7,90  | 227    | 404    | 14,00 | 318    | *)     | 20,10 | 206    | 346    | 26,20 | 235    | *)     | 32,30 | 270    | 472    | 38,40 | 253    | 444    | 44,50 | 235    | 430    |
| 8,00  | 183    | 357    | 14,10 | 311    | *)     | 20,20 | 202    | 340    | 26,30 | 228    | *)     | 32,40 | 288    | 481    | 38,50 | 264    | 464    | 44,60 | 235    | 436    |
| 8,10  | 214    | 403    | 14,20 | 293    | *)     | 20,30 | 199    | 339    | 26,40 | 230    | *)     | 32,50 | 244    | 460    | 38,60 | 266    | 463    | 44,70 | 238    | 435    |
| 8,20  | 229    | 409    | 14,30 | 269    | *)     | 20,40 | 197    | 337    | 26,50 | 231    | *)     | 32,60 | 226    | 457    | 38,70 | 268    | 466    | 44,80 | 242    | 438    |
| 8,30  | 228    | 424    | 14,40 | 241    | *)     | 20,50 | 194    | 328    | 26,60 | 233    | *)     | 32,70 | 231    | 441    | 38,80 | 268    | 458    | 44,90 | 239    | 428    |
| 8,40  | 226    | 420    | 14,50 | 219    | 395    | 20,60 | 188    | 320    | 26,70 | 242    | *)     | 32,80 | 209    | 396    | 38,90 | 257    | 433    | 45,00 | 226    | 410    |
| 8,50  | 226    | 416    | 14,60 | 209    | 392    | 20,70 | 183    | 325    | 26,80 | 246    | *)     | 32,90 | 189    | 374    | 39,00 | 250    | 426    | 45,10 | 214    | 405    |
| 8,60  | 226    | 425    | 14,70 | 206    | 383    | 20,80 | 188    | 334    | 26,90 | 247    | *)     | 33,00 | 188    | 391    | 39,10 | 250    | 429    | 45,20 | 214    | 418    |
| 8,70  | 216    | 427    | 14,80 | 205    | 367    | 20,90 | 201    | 336    | 27,00 | 252    | 456    | 33,10 | 190    | 400    | 39,20 | 257    | 429    | 45,30 | 221    | 426    |
| 8,80  | 202    | 396    | 14,90 | 203    | 353    | 21,00 | 209    | 340    | 27,10 | 258    | 454    | 33,20 | 192    | 390    | 39,30 | 250    | 432    | 45,40 | 226    | 418    |
| 8,90  | 205    | 377    | 15,00 | 203    | 347    | 21,10 | 210    | 351    | 27,20 | 243    | 448    | 33,30 | 196    | 396    | 39,40 | 227    | 458    | 45,50 | 220    | 403    |
| 9,00  | 224    | 389    | 15,10 | 200    | 346    | 21,20 | 202    | 362    | 27,30 | 253    | 455    | 33,40 | 203    | 421    | 39,50 | 215    | 458    | 45,60 | 210    | 382    |
| 9,10  | 227    | 393    | 15,20 | 193    | 352    | 21,30 | 195    | 357    | 27,40 | 259    | 456    | 33,50 | 215    | 445    | 39,60 | 214    | 448    | 45,70 | 202    | 381    |
| 9,20  | 222    | 400    | 15,30 | 187    | 354    | 21,40 | 201    | 334    | 27,50 | 246    | 449    | 33,60 | 228    | 459    | 39,70 | 220    | 462    | 45,80 | 195    | 388    |
| 9,30  | 218    | 408    | 15,40 | 186    | 343    | 21,50 | 206    | 323    | 27,60 | 233    | 446    | 33,70 | 233    | 447    | 39,80 | 233    | 473    | 45,90 | 196    | 396    |
| 9,40  | 226    | 408    | 15,50 | 185    | 339    | 21,60 | 207    | 322    | 27,70 | 227    | 454    | 33,80 | 226    | 425    | 39,90 | 242    | 465    | 46,00 | 208    | 408    |
| 9,50  | 239    | 412    | 15,60 | 183    | 350    | 21,70 | 206    | 328    | 27,80 | 227    | 446    | 33,90 | 226    | 417    | 40,00 | 256    | 457    | 46,10 | 215    | 422    |
| 9,60  | 239    | 436    | 15,70 | 182    | 368    | 21,80 | 207    | 328    | 27,90 | 219    | 424    | 34,00 | 233    | 415    | 40,10 | 266    | 487    | 46,20 | 224    | 425    |
| 9,70  | 231    | 440    | 15,80 | 181    | 375    | 21,90 | 210    | 337    | 28,00 | 212    | 419    | 34,10 | 235    | 416    | 40,20 | 270    | 524    | 46,30 | 236    | 425    |
| 9,80  | 218    | 440    | 15,90 | 180    | 369    | 22,00 | 210    | 341    | 28,10 | 211    | 422    | 34,20 | 239    | 423    | 40,30 | 271    | 533    | 46,40 | 241    | 430    |
| 9,90  | 203    | 428    | 16,00 | 185    | 358    | 22,10 | 205    | 337    | 28,20 | 216    | 442    | 34,30 | 249    | 438    | 40,40 | 274    | 534    | 46,50 | 241    | 439    |
| 10,00 | 210    | 407    | 16,10 | 198    | 373    | 22,20 | 197    | 331    | 28,30 | 224    | 462    | 34,40 | 259    | 448    | 40,50 | 262    | 507    | 46,60 | 239    | 438    |
| 10,10 | 205    | 374    | 16,20 | 206    | 377    | 22,30 | 193    | 322    | 28,40 | 231    | 451    | 34,50 | 265    | 461    | 40,60 | 246    | 452    | 46,70 | 241    | 426    |
| 10,20 | 197    | 356    | 16,30 | 216    | 374    | 22,40 | 192    | 313    | 28,50 | 233    | 446    | 34,60 | 275    | 474    | 40,70 | 242    | 423    | 46,80 | 241    | 409    |
| 10,50 | 190    | 252    | 16,40 | 217    | 202    | 22,50 | 100    | 212    | 20,00 | 233    | 439    | 24,70 | 200    | 4/3    | 40,80 | 230    | 414    | 46,90 | 223    | 392    |
| 10,40 | 202    | *)     | 16,50 | 215    | 392    | 22,00 | 188    | 313    | 28,70 | 233    | 423    | 34,00 | 291    | 407    | 40,90 | 220    | 200    | 47,00 | 212    | 364    |
| 10,50 | 202    | *)     | 16.70 | 225    | 305    | 22,70 | 100    | 350    | 28.90 | 224    | 430    | 35,00 | 205    | 400    | 41,00 | 212    | 300    | 47,10 | 217    | 370    |
| 10,00 | 10/    | 342    | 16.80 | 225    | 400    | 22,80 | 206    | 378    | 20,90 | 234    | 430    | 35,00 | 295    | 473    | 41,10 | 212    | 380    | 47,20 | 212    | 370    |
| 10,70 | 182    | 345    | 16.90 | 226    | 400    | 23.00 | 200    | 382    | 29,00 | 240    | 429    | 35,10 | 295    | 497    | 41,20 | 211    | 369    | 47,30 | 210    | 377    |
| 10,90 | 184    | 346    | 17.00 | 226    | *)     | 23.10 | 202    | *)     | 29.20 | 223    | 424    | 35.30 | 284    | 484    | 41.40 | 214    | 364    | 47.50 | 212    | 364    |
| 11.00 | 201    | 346    | 17,10 | 228    | *)     | 23,20 | 204    | *)     | 29,30 | 234    | 419    | 35,40 | 271    | 460    | 41.50 | 214    | 364    | 47,60 | 213    | 361    |
| 11,10 | 216    | 407    | 17,20 | 232    | *)     | 23,30 | 204    | *)     | 29,40 | 249    | 424    | 35,50 | 269    | 445    | 41,60 | 207    | 361    | 47,70 | 225    | 363    |
| 11,20 | 220    | 423    | 17,30 | 241    | *)     | 23,40 | 185    | *)     | 29,50 | 266    | 448    | 35,60 | 258    | 444    | 41,70 | 201    | 361    | 47,80 | 228    | 374    |
| 11.30 | 221    | 422    | 17.40 | 263    | *)     | 23,50 | 170    | *)     | 29,60 | 274    | 455    | 35,70 | 243    | 444    | 41.80 | 199    | 374    | 47,90 | 233    | 379    |
| 11,40 | 217    | 418    | 17,50 | 269    | *)     | 23,60 | 180    | *)     | 29,70 | 274    | 438    | 35,80 | 261    | 441    | 41,90 | 199    | 375    | 48,00 | 230    | 376    |
| 11,50 | 218    | 416    | 17,60 | 238    | *)     | 23,70 | 198    | *)     | 29,80 | 260    | 421    | 35,90 | 261    | 429    | 42,00 | 199    | 374    | 48,10 | 225    | 373    |
| 11,60 | 219    | 414    | 17,70 | 200    | *)     | 23,80 | 205    | 373    | 29,90 | 238    | 416    | 36,00 | 249    | 416    | 42,10 | 199    | 384    | 48,20 | 208    | 355    |
| 11,70 | 209    | 404    | 17,80 | 181    | *)     | 23,90 | 214    | 377    | 30,00 | 225    | 421    | 36,10 | 237    | 417    | 42,20 | 199    | 390    | 48,30 | 203    | 343    |
| 11,80 | 203    | 398    | 17,90 | 183    | *)     | 24,00 | 214    | 401    | 30,10 | 222    | 433    | 36,20 | 228    | 435    | 42,30 | 202    | 390    | 48,40 | 221    | 358    |
| 11,90 | 205    | 397    | 18,00 | 168    | *)     | 24,10 | 186    | 400    | 30,20 | 222    | 436    | 36,30 | 234    | 473    | 42,40 | 206    | 388    | 48,50 | 226    | 365    |
| 12,00 | 209    | 395    | 18,10 | 171    | *)     | 24,20 | 179    | 354    | 30,30 | 226    | 452    | 36,40 | 242    | 486    | 42,50 | 206    | 386    | 48,60 | 226    | 368    |
| 12,10 | 211    | 390    | 18,20 | 191    | *)     | 24,30 | 179    | 328    | 30,40 | 231    | 468    | 36,50 | 256    | 469    | 42,60 | 206    | 382    | 48,70 | 226    | 372    |
| 12,20 | 213    | 377    | 18,30 | 235    | *)     | 24,40 | 186    | 365    | 30,50 | 236    | 467    | 36,60 | 263    | 449    | 42,70 | 207    | 386    | 48,80 | 226    | 379    |
| 12,30 | 215    | 370    | 18,40 | 301    | *)     | 24,50 | 199    | 447    | 30,60 | 246    | 435    | 36,70 | 264    | 447    | 42,80 | 202    | 384    | 48,90 | 226    | 380    |
| 12,40 | 209    | 371    | 18,50 | 340    | *)     | 24,60 | 207    | 459    | 30,70 | 253    | 419    | 36,80 | 253    | 430    | 42,90 | 189    | 370    | 49,00 | 223    | 381    |
| 12,50 | 208    | 375    | 18,60 | 345    | *)     | 24,70 | 218    | 408    | 30,80 | 254    | 416    | 36,90 | 230    | 413    | 43,00 | 180    | 352    | 49,10 | *)     | *)     |
| 12,60 | 221    | 376    | 18,70 | 330    | *)     | 24,80 | 230    | 410    | 30,90 | 254    | 433    | 37,00 | 219    | 395    | 43,10 | 179    | 344    |       |        |        |
| 12,70 | 237    | 376    | 18,80 | 299    | *)     | 24,90 | 234    | 427    | 31,00 | 258    | 463    | 37,10 | 212    | 373    | 43,20 | 183    | 361    |       |        |        |
| 12,80 | 240    | 380    | 18,90 | 266    | *)     | 25,00 | 235    | 435    | 31,10 | 258    | 449    | 37,20 | 213    | *)     | 43,30 | 199    | 381    |       |        |        |
| 12,90 | 229    | 380    | 19,00 | 239    | *)     | 25,10 | 234    | 431    | 31,20 | 239    | 418    | 37,30 | 222    | *)     | 43,40 | 214    | 395    |       |        |        |
| 13,00 | 216    | 372    | 19,10 | 217    | *)     | 25,20 | 230    | 427    | 31,30 | 232    | 419    | 37,40 | 234    | *)     | 43,50 | 212    | 400    |       |        |        |
| 13,10 | 212    | 366    | 19,20 | 201    | *)     | 25,30 | 227    | 427    | 31,40 | 238    | 449    | 37,50 | 251    | *)     | 43,60 | 198    | 398    |       |        |        |
| 13,20 | 227    | *)     | 19,30 | 203    | *)     | 25,40 | 221    | 433    | 31,50 | 255    | 458    | 37,60 | 245    | *)     | 43,70 | 190    | 397    |       |        |        |
| 13,30 | 254    | *)     | 19,40 | 203    | *)     | 25,50 | 209    | 429    | 31,60 | 246    | 450    | 37,70 | 235    | 464    | 43,80 | 196    | 400    |       |        |        |
| 13,40 | 285    | *)     | 19,50 | 190    | 372    | 25,60 | 201    | 428    | 31,70 | 212    | 423    | 37,80 | 259    | 466    | 43,90 | 213    | 408    |       |        |        |
| 13,50 | 307    | *)     | 19,60 | 187    | 365    | 25,70 | 198    | 459    | 31,80 | 192    | 394    | 37,90 | 259    | 476    | 44,00 | 228    | 427    |       |        |        |

## 9.2.2 Datentabelle Widerstands-Log (DFEL)

| Depth | deep  | shallow | Depth | deep  | shallow | Depth | deep  | shallow | Depth | deep | shallow | Depth | deep | shallow | Depth | deep | shallow |
|-------|-------|---------|-------|-------|---------|-------|-------|---------|-------|------|---------|-------|------|---------|-------|------|---------|
| [m]   | [Ωm]  | [Ωm]    | [m]   | [Ωm]  | [Ωm]    | [m]   | [Ωm]  | [Ωm]    | [m]   | [Ωm] | [Ωm]    | [m]   | [Ωm] | [Ωm]    | [m]   | [Ωm] | [Ωm]    |
| 7,62  | 118   | 124     | 14,63 | 5022  | 4185    | 21,64 | 3815  | 3372    | 28,65 | 3071 | 2504    | 35,66 | 2333 | 1918    | 42,67 | 3828 | 3199    |
| 7,77  | 740   | 725     | 14,78 | 6187  | 5083    | 21,80 | 3862  | 3358    | 28,81 | 3247 | 2662    | 35,82 | 2508 | 2057    | 42,83 | 3527 | 3028    |
| 7,93  | 1643  | 1541    | 14,94 | 5352  | 4422    | 21,95 | 9830  | 7324    | 28,96 | 3100 | 2556    | 35,97 | 2325 | 1933    | 42,98 | 3533 | 2992    |
| 8,08  | 3111  | 3127    | 15,09 | 6568  | 5419    | 22,10 | 15523 | 12420   | 29,11 | 3639 | 2983    | 36,12 | 2640 | 2188    | 43,13 | 3788 | 3209    |
| 8,23  | 6207  | 5984    | 15,24 | 9924  | 8110    | 22,25 | 13309 | 11214   | 29,26 | 2742 | 2201    | 36,27 | 2646 | 2219    | 43,28 | 3683 | 3113    |
| 8,38  | 4949  | 4615    | 15,39 | 10408 | 8431    | 22,40 | 10714 | 8621    | 29,42 | 2518 | 2041    | 36,43 | 2194 | 1851    | 43,44 | 3204 | 2701    |
| 8,54  | 4694  | 3892    | 15,55 | 9765  | 7817    | 22,56 | 20004 | 15719   | 29,57 | 2776 | 2267    | 36,58 | 2320 | 1970    | 43,59 | 2764 | 2350    |
| 8,69  | 5035  | 4099    | 15,70 | 9169  | 7524    | 22,71 | 17979 | 14114   | 29,72 | 2824 | 2295    | 36,73 | 2457 | 2065    | 43,74 | 3093 | 2676    |
| 8,84  | 3863  | 3221    | 15,85 | 9857  | 7977    | 22,86 | 12949 | 10473   | 29,87 | 3988 | 3079    | 36,88 | 3068 | 2521    | 43,89 | 3322 | 2822    |
| 8,99  | 8665  | 7378    | 16,00 | 8787  | 7297    | 23,01 | 10408 | 8585    | 30,02 | 3729 | 2938    | 37,04 | 3315 | 2716    | 44,05 | 2626 | 2215    |
| 9,15  | 11604 | 9301    | 16,16 | 7777  | 6352    | 23,17 | 6762  | 5455    | 30,18 | 3490 | 2762    | 37,19 | 2729 | 2216    | 44,20 | 2155 | 1824    |
| 9,30  | 11442 | 9263    | 16,31 | 6238  | 5161    | 23,32 | 4069  | 3355    | 30,33 | 2738 | 2142    | 37,34 | 3513 | 2883    | 44,35 | 2029 | 1758    |
| 9,45  | 7309  | 6194    | 16,46 | 6229  | 5186    | 23,47 | 4838  | 4059    | 30,48 | 2783 | 2201    | 37,49 | 3302 | 2665    | 44,50 | 2873 | 2454    |
| 9,60  | 6143  | 5224    | 16,61 | 8779  | 7125    | 23,62 | 6419  | 5398    | 30,63 | 2667 | 2173    | 37,64 | 1963 | 1682    | 44,66 | 2858 | 2416    |
| 9,76  | 2795  | 2374    | 16,77 | 7747  | 6246    | 23,78 | 7965  | 6457    | 30,79 | 2600 | 2146    | 37,80 | 2008 | 1634    | 44,81 | 2580 | 2212    |
| 9,91  | 2003  | 1730    | 16,92 | 9589  | 7444    | 23,93 | 3977  | 3156    | 30,94 | 2400 | 1967    | 37,95 | 1845 | 1511    | 44,96 | 2876 | 2430    |
| 10,06 | 1790  | 1608    | 17,07 | 11675 | 9394    | 24,08 | 3354  | 2700    | 31,09 | 2132 | 1771    | 38,10 | 1797 | 1471    | 45,11 | 2786 | 2326    |
| 10,21 | 3389  | 2969    | 17,22 | 11374 | 9072    | 24,23 | 8175  | 6565    | 31,24 | 1321 | 1090    | 38,25 | 2163 | 1773    | 45,26 | 2395 | 2031    |
| 10,37 | 8412  | 7064    | 17,38 | 5341  | 4234    | 24,39 | 11323 | 8800    | 31,40 | 1552 | 1300    | 38,41 | 2115 | 1723    | 45,42 | 2494 | 2126    |
| 10,52 | 11315 | 9126    | 17,53 | 2542  | 2178    | 24,54 | 6268  | 5217    | 31,55 | 3504 | 2804    | 38,56 | 2082 | 1679    | 45,57 | 3476 | 3021    |
| 10,67 | 9790  | 7919    | 17,68 | 6303  | 4460    | 24,69 | 4662  | 3927    | 31,70 | 2945 | 2325    | 38,71 | 1756 | 1411    | 45,72 | 5082 | 4356    |
| 10,82 | 8761  | 6805    | 17,83 | 11024 | 8786    | 24,84 | 3326  | 2679    | 31,85 | 2301 | 1884    | 38,86 | 1624 | 1327    | 45,87 | 4190 | 3520    |
| 10,97 | 8392  | 6776    | 17,99 | 12734 | 10116   | 25,00 | 3424  | 2765    | 32,01 | 2544 | 2076    | 39,02 | 1341 | 1110    | 46,03 | 2504 | 2146    |
| 11,13 | 5105  | 4451    | 18,14 | 10013 | 7665    | 25,15 | 3639  | 3015    | 32,16 | 2695 | 2181    | 39,17 | 1571 | 1281    | 46,18 | 2534 | 2191    |
| 11,28 | 3864  | 3457    | 18,29 | 6647  | 5513    | 25,30 | 3296  | 2716    | 32,31 | 2272 | 1912    | 39,32 | 1514 | 1236    | 46,33 | 3434 | 2964    |
| 11,43 | 4176  | 3419    | 18,44 | 3507  | 2842    | 25,45 | 2953  | 2406    | 32,46 | 1868 | 1538    | 39,47 | 1317 | 1067    | 46,48 | 3530 | 3034    |
| 11,58 | 5218  | 4278    | 18,59 | 2734  | 2286    | 25,61 | 3529  | 2924    | 32,62 | 2256 | 1898    | 39,63 | 1208 | 987     | 46,64 | 2721 | 2335    |
| 11,74 | 7809  | 6243    | 18,75 | 5569  | 4850    | 25,76 | 5175  | 4090    | 32,77 | 2392 | 1942    | 39,78 | 1287 | 1046    | 46,79 | 2856 | 2461    |
| 11,89 | 9128  | 7418    | 18,90 | 5087  | 4396    | 25,91 | 5323  | 4172    | 32,92 | 2597 | 2146    | 39,93 | 1245 | 1031    | 46,94 | 3836 | 3256    |
| 12,04 | 9272  | 7449    | 19,05 | 3797  | 3256    | 26,06 | 3748  | 2997    | 33,07 | 4928 | 3956    | 40,08 | 1173 | 987     | 47,09 | 5222 | 4248    |
| 12,19 | 9312  | 7352    | 19,20 | 4677  | 4052    | 26,21 | 3543  | 2866    | 33,23 | 3888 | 3123    | 40,24 | 1099 | 938     | 47,25 | 4859 | 4452    |
| 12,35 | 7316  | 6165    | 19,36 | 3715  | 3109    | 26,37 | 3732  | 3002    | 33,38 | 3499 | 2783    | 40,39 | 1097 | 937     | 47,40 | 3162 | 2802    |
| 12,50 | 6324  | 5151    | 19,51 | 3120  | 2638    | 26,52 | 3464  | 2830    | 33,53 | 2362 | 1916    | 40,54 | 987  | 848     | 47,55 | 3184 | 2635    |
| 12,65 | 7649  | 6238    | 19,66 | 9583  | 8440    | 26,67 | 4029  | 3297    | 33,68 | 2489 | 2017    | 40,69 | 972  | 842     | 47,70 | 3474 | 2912    |
| 12,80 | 8267  | 6744    | 19,81 | 13400 | 11047   | 26,82 | 3675  | 3059    | 33,83 | 2065 | 1700    | 40,85 | 1555 | 1384    | 47,86 | 3314 | 2819    |
| 12,96 | 9420  | 7558    | 19,97 | 15255 | 12670   | 26,98 | 3237  | 2655    | 33,99 | 2203 | 1826    | 41,00 | 2265 | 1965    | 48,01 | 3447 | 2920    |
| 13,11 | 9194  | 7338    | 20,12 | 15110 | 12362   | 27,13 | 3471  | 2812    | 34,14 | 2537 | 2030    | 41,15 | 2528 | 2161    | 48,16 | 3783 | 3217    |
| 13,26 | 7045  | 5515    | 20,27 | 9640  | 7985    | 27,28 | 3335  | 2703    | 34,29 | 2051 | 1632    | 41,30 | 2932 | 2516    | 48,31 | 4093 | 3471    |
| 13,41 | 5256  | 4179    | 20,42 | 9104  | 7585    | 27,43 | 3760  | 3046    | 34,44 | 1959 | 1577    | 41,45 | 3421 | 2903    | 48,47 | 3162 | 2850    |
| 13,57 | 7381  | 5973    | 20,58 | 15227 | 12517   | 27,59 | 3506  | 2795    | 34,60 | 2081 | 1672    | 41,61 | 3149 | 2671    | 48,62 | 3109 | 2651    |
| 13,72 | 7518  | 5981    | 20,73 | 13768 | 11704   | 27,74 | 3686  | 2892    | 34,75 | 1938 | 1572    | 41,76 | 3178 | 2766    | 48,77 | 3668 | 3172    |
| 13,87 | 5688  | 4624    | 20,88 | 11862 | 9709    | 27,89 | 4028  | 3130    | 34,90 | 1929 | 1577    | 41,91 | 3748 | 3250    | 48,92 | 3157 | 2761    |
| 14,02 | 4597  | 3749    | 21,03 | 12068 | 10091   | 28,04 | 4308  | 3392    | 35,05 | 1814 | 1507    | 42,06 | 3349 | 2872    | 49,07 | 3270 | 2881    |
| 14,18 | 3862  | 3253    | 21,19 | 10642 | 8971    | 28,20 | 3745  | 2957    | 35,21 | 1816 | 1496    | 42,22 | 2988 | 2642    |       |      |         |
| 14,33 | 4830  | 4061    | 21,34 | 8192  | 7133    | 28,35 | 3068  | 2482    | 35,36 | 1431 | 1172    | 42,37 | 3236 | 2695    |       |      |         |
| 14,48 | 5419  | 4517    | 21,49 | 8397  | 7238    | 28,50 | 3082  | 2484    | 35,51 | 1353 | 1127    | 42,52 | 3533 | 3000    |       |      |         |

## 9.3 WD-Auswertung

### WD 1, Testintervall: 49,5 – 50,44 m



| R [m] | L [m] | Stufe | H [m] | Q [m³/s]    | kf [m/s]   | K [mD]      |
|-------|-------|-------|-------|-------------|------------|-------------|
| 0,073 | 0,94  | 1     | 52,5  | 1,83333E-05 | 1,5117E-07 | 21,00440307 |
|       |       | 2     | 72    | 1,66667E-05 | 1,0021E-07 | 13,92337325 |
|       |       | 3     | 101,5 | 1,83333E-05 | 7,819E-08  | 10,86434641 |
|       |       | 4     | 72    | 1,66667E-05 | 1,0021E-07 | 13,92337325 |
|       |       | 5     | 52,5  | 1,83333E-05 | 1,5117E-07 | 21,00440307 |

#### Testintervall: 48,5 – 50,44 m



| R [m] | L[m] | Stufe | H [m] | Q [m³/s]    | kf [m/s]   | K [mD]      |
|-------|------|-------|-------|-------------|------------|-------------|
| 0,073 | 1,94 | 1     | 52    | 3,66667E-05 | 1,8984E-07 | 26,3773863  |
|       |      | 2     | 71,5  | 0,00005     | 1,8827E-07 | 26,15939137 |
|       |      | 3     | 101   | 0,00008     | 2,1325E-07 | 29,6300433  |
|       |      | 4     | 71,5  | 5,33333E-05 | 2,0082E-07 | 27,9033508  |
|       |      | 5     | 52    | 3,66667E-05 | 1,8984E-07 | 26,3773863  |

#### Testintervall: 46,5 – 50,44 m



| R [m] | L [m] | Stufe | H [m] | Q [m³/s]    | kf [m/s]   | K [mD]      |
|-------|-------|-------|-------|-------------|------------|-------------|
| 0,073 | 3,94  | 1     | 51    | 6,16667E-05 | 1,9491E-07 | 27,08225498 |
|       |       | 2     | 70,5  | 8,33333E-05 | 1,9054E-07 | 26,47488986 |
|       |       | 3     | 100   | 0,000116667 | 1,8806E-07 | 26,13071629 |
|       |       | 4     | 70,5  | 8,33333E-05 | 1,9054E-07 | 26,47488986 |
|       |       | 5     | 51    | 6,16667E-05 | 1,9491E-07 | 27,08225498 |

#### Testintervall: 42,5 – 50,44 m



| R [m] | L[m] | Stufe | H [m]         | Q [m³/s]   | kf [m/s]   | K [mD]      |
|-------|------|-------|---------------|------------|------------|-------------|
| 0,073 | 7,94 | 1     | 49            | 0,000085   | 1,6313E-07 | 22,66708359 |
|       |      | 2     | 68 <i>,</i> 5 | 0,00010667 | 1,4644E-07 | 20,3474951  |
|       |      | 3     | 98            | 0,000145   | 1,3914E-07 | 19,33368895 |
|       |      | 4     | 68,5          | 0,00010333 | 1,4186E-07 | 19,71163588 |
|       |      | 5     | 49            | 0,000085   | 1,6313E-07 | 22,66708359 |

# Testintervall: 47,8 – 48,3 m

| Stufe        | Ø Druck [bar] | Ø Menge [l/min]  | Lugeon-Wert            |
|--------------|---------------|------------------|------------------------|
| 1            | 5,175         | 0,4              | 1,54589372             |
| 2            | 7,175         | 0,4              | 1,114982578            |
| 3            | 10,175        | 0,6              | 1,179361179            |
| 4            | 7,175         | 0,4              | 1,114982578            |
| 5            | 5,175         | 0,2              | 0,77294686             |
|              |               | Q-P Diagramm     |                        |
| 0,7          |               |                  | 2                      |
| 0,6          |               |                  |                        |
| 0,5          |               | 1 2 7 4          |                        |
| [u]u 0,4     |               |                  |                        |
| <b>o</b> 0,3 |               | 5 -              |                        |
| 0,2          |               |                  |                        |
| 0,1          |               |                  |                        |
| 0            |               |                  |                        |
| 0            | 2             | 4 6 8<br>P [bar] | 10 12                  |
|              | Lithologie    | Lugeo<br>(Tu     | on-Muster<br>Irbulent) |
|              |               | 1 2              |                        |
|              | 100           | 3                |                        |
|              | FDC4C         | 0 0,5            | 1 1,5 2                |

| R [m] | L[m] | Stufe | H [m]  | Q [m³/s]    | kf [m/s]   | K [mD]      |
|-------|------|-------|--------|-------------|------------|-------------|
| 0,073 | 0,5  | 1     | 51,75  | 6,66667E-06 | 7,979E-08  | 10,70216238 |
|       |      | 2     | 71,75  | 6,66667E-06 | 5,7549E-08 | 7,718981226 |
|       |      | 3     | 101,75 | 0,00001     | 6,0871E-08 | 8,164671788 |
|       |      | 4     | 71,75  | 6,66667E-06 | 5,7549E-08 | 7,718981226 |
|       |      | 5     | 51,75  | 3,33333E-06 | 3,9895E-08 | 5,351081188 |

# Testintervall: 41,7 – 42,2 m

| Stufe    | Ø Druck [bar]       | Ø Menge [l/min]  | Lugeon-Wert           |
|----------|---------------------|------------------|-----------------------|
| 1        | 5,175               | 0,7              | 2,70531401            |
| 2        | 7,175               | 0,7              | 1,951219512           |
| 3        | 10,175              | 1                | 1,965601966           |
| 4        | 7,175               | 0,7              | 1,951219512           |
| 5        | 5,175               | 0,5              | 1,93236715            |
|          |                     | Q-P Diagramm     |                       |
| 1,2      |                     |                  |                       |
| 1        |                     |                  | 3                     |
| -        |                     |                  |                       |
| 0,8      |                     | 1 2              |                       |
| Ē        |                     | • •              |                       |
| 0,6 []/] |                     | 5                |                       |
| 0,4      |                     |                  |                       |
| 0,2      |                     |                  |                       |
| 0        |                     |                  |                       |
| 0        | 2                   | 4 6 8<br>P [bar] | 10 12                 |
|          | Lithologie          | Luge<br>(L       | on-Muster<br>.aminar) |
|          | 12                  | 1                |                       |
|          |                     | 2                |                       |
|          |                     | 3                |                       |
|          | 88                  | 4                |                       |
|          |                     | 5                |                       |
|          | ■ FDC4C ■ core loss | 0 1              | 2 3                   |

| R [m] | L[m] | Stufe | H [m]  | Q [m³/s]    | kf [m/s]   | K [mD]      |
|-------|------|-------|--------|-------------|------------|-------------|
| 0,073 | 0,5  | 1     | 51,75  | 1,16667E-05 | 1,3963E-07 | 18,72878416 |
|       |      | 2     | 71,75  | 1,16667E-05 | 1,0071E-07 | 13,50821715 |
|       |      | 3     | 101,75 | 1,66667E-05 | 1,0145E-07 | 13,60778631 |
|       |      | 4     | 71,75  | 1,16667E-05 | 1,0071E-07 | 13,50821715 |
|       |      | 5     | 51,75  | 8,33333E-06 | 9,9737E-08 | 13,37770297 |

## Testintervall: 38,5 – 39 m

| Stufe | Ø Druck [bar] | Ø Menge [l/min]  | Lugeon-Wert |
|-------|---------------|------------------|-------------|
| 1     | 5,175         | 2                | 7,729468599 |
| 2     | 7,175         | 2,5              | 6,968641115 |
| 3     | 10,175        | 3,8              | 7,469287469 |
| 4     | 7,175         | 2,6              | 7,24738676  |
| 5     | 5,175         | 1,9              | 7,342995169 |
|       |               | Q-P Diagramm     |             |
| 4     |               |                  | 3           |
| 3,5   |               |                  |             |
| 3     |               | 4                |             |
| 2 5   |               |                  |             |
| 2,5   |               | - 2              |             |
| 2 []  |               |                  |             |
| 1,5   |               | 5                |             |
| 1     |               |                  |             |
| 0,5   |               |                  |             |
| 0     |               |                  |             |
| 0     | 2             | 4 6 8<br>P [bar] | 10 12       |
|       |               |                  |             |
|       | Lithologie    | Luge             | on-Muster   |
|       |               | (Ve              | rrormung)   |
|       |               | 1                |             |
|       |               | 2                |             |
|       |               | 3                |             |
|       | 100           |                  |             |
|       |               |                  |             |
|       |               |                  |             |
|       | = FDC4        | 6,5 7            | 7,5 8       |

| R [m] | L[m] | Stufe | H [m]  | Q [m³/s]    | kf [m/s]   | K [mD]      |
|-------|------|-------|--------|-------------|------------|-------------|
| 0,073 | 0,5  | 1     | 51,75  | 3,33333E-05 | 3,9895E-07 | 53,51081188 |
|       |      | 2     | 71,75  | 4,16667E-05 | 3,5968E-07 | 48,24363266 |
|       |      | 3     | 101,75 | 6,33333E-05 | 3,8552E-07 | 51,70958799 |
|       |      | 4     | 71,75  | 4,33333E-05 | 3,7407E-07 | 50,17337797 |
|       |      | 5     | 51,75  | 3,16667E-05 | 3,79E-07   | 50,83527129 |

## Testintervall: 34,5 – 35 m

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L.A            | Lugeon-weit            |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|--|--|--|--|--|
| 1 5,175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4              | 15,4589372             |  |  |  |  |  |
| 2 7,175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,7            | 13,1010453             |  |  |  |  |  |
| 3 10,175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5,7            | 11,2039312             |  |  |  |  |  |
| 4 7,175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,5            | 12,54355401            |  |  |  |  |  |
| 5 5,175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,7            | 14,29951691            |  |  |  |  |  |
| Q-P Diagramm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                        |  |  |  |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 3                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4              |                        |  |  |  |  |  |
| Image: Constraint of the second sec |                |                        |  |  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                        |  |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                        |  |  |  |  |  |
| 0 2 4 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 8<br>• [bar] | 10 12                  |  |  |  |  |  |
| Lithologie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lugeo<br>(Tu   | on-Muster<br>Irbulent) |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>2<br>3    |                        |  |  |  |  |  |
| 100<br>• core loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 5 0 5        |                        |  |  |  |  |  |

| R [m] | L[m] | Stufe | H [m]  | Q [m³/s]   | kf [m/s]    | K [mD]     |
|-------|------|-------|--------|------------|-------------|------------|
| 0,073 | 0,5  | 1     | 51,75  | 6,6667E-05 | 7,97897E-07 | 107,021624 |
|       |      | 2     | 71,75  | 7,8333E-05 | 6,76197E-07 | 90,6980294 |
|       |      | 3     | 101,75 | 0,000095   | 5,78279E-07 | 77,564382  |
|       |      | 4     | 71,75  | 0,000075   | 6,47422E-07 | 86,8385388 |
|       |      | 5     | 51,75  | 6,1667E-05 | 7,38055E-07 | 98,995002  |

## Testintervall: 31,6 – 32,1 m

| Stufe        | Ø Druck [bar]              | Ø Menge [l/min]         | Lugeon-Wert              |
|--------------|----------------------------|-------------------------|--------------------------|
| 1            | 5,175                      | 1,9                     | 7,342995169              |
| 2            | 7,175                      | 2,2                     | 6,132404181              |
| 3            | 10,175                     | 3,2                     | 6,28992629               |
| 4            | 7,175                      | 2,5                     | 6,968641115              |
| 5            | 5,175                      | 2                       | 7,729468599              |
|              |                            | Q-P Diagramm            |                          |
| 3,5          |                            |                         | 3                        |
| 3            |                            |                         |                          |
| 2,5          |                            | 4                       |                          |
| [uim])       |                            | 2                       |                          |
| <b>o</b> 1,5 |                            |                         |                          |
| 1            |                            |                         |                          |
| 0,5          |                            |                         |                          |
| 0            |                            |                         |                          |
| 0            | 2                          | 4 6 8<br><b>P [bar]</b> | 10 12                    |
|              | Lithologie                 | Luge<br>("              | eon-Muster<br>Turbulent) |
|              |                            | 1 2                     |                          |
|              | 94                         | 3                       |                          |
|              | ■ DB ■ FDC4 ■ Kataklasit 2 | 0 2                     | 4 6 8 10                 |

| R [m] | L [m] | Stufe | H [m]  | Q [m³/s]    | kf [m/s]    | K [mD]      |
|-------|-------|-------|--------|-------------|-------------|-------------|
| 0,073 | 0,5   | 1     | 51,75  | 3,16667E-05 | 3,79001E-07 | 50,83527129 |
|       |       | 2     | 71,75  | 3,66667E-05 | 3,16518E-07 | 42,45439674 |
|       |       | 3     | 101,75 | 5,33333E-05 | 3,24648E-07 | 43,5449162  |
|       |       | 4     | 71,75  | 4,16667E-05 | 3,59679E-07 | 48,24363266 |
|       |       | 5     | 51,75  | 3,33333E-05 | 3,98948E-07 | 53,51081188 |

## Testintervall: 27,8 – 28,3 m

| Stufe           | Ø Druck [bar]             | Ø Menge [l/min] | Lugeon-Wert            |  |  |  |  |  |
|-----------------|---------------------------|-----------------|------------------------|--|--|--|--|--|
| 1               | 5,175                     | 2,9             | 11,20772947            |  |  |  |  |  |
| 2               | 7,175                     | 3,5             | 9,756097561            |  |  |  |  |  |
| 3               | 10,175                    | 4,4             | 8,648648649            |  |  |  |  |  |
| 4               | 7,175                     | 3,2             | 8,919860627            |  |  |  |  |  |
| 5               | 5,175                     | 2,5             | 9,661835749            |  |  |  |  |  |
|                 | Q-P Diagramm              |                 |                        |  |  |  |  |  |
| 5               |                           |                 |                        |  |  |  |  |  |
| 4,5             |                           |                 | 3                      |  |  |  |  |  |
| 4               |                           | 2               |                        |  |  |  |  |  |
| 3,5             |                           |                 |                        |  |  |  |  |  |
| 3               |                           | 4               |                        |  |  |  |  |  |
| <b>u</b><br>2,5 |                           | •               |                        |  |  |  |  |  |
| Δ               |                           | 5               |                        |  |  |  |  |  |
| 2               |                           |                 |                        |  |  |  |  |  |
| 1,5             |                           |                 |                        |  |  |  |  |  |
| 1               |                           |                 |                        |  |  |  |  |  |
| 0,5             |                           |                 |                        |  |  |  |  |  |
| 0               |                           |                 |                        |  |  |  |  |  |
| 0               | 2                         | 4 6 8           | 10 12                  |  |  |  |  |  |
| P [bar]         |                           |                 |                        |  |  |  |  |  |
|                 | Lithologie<br>4           | Luge<br>(T      | on-Muster<br>urbulent) |  |  |  |  |  |
|                 |                           | 1               |                        |  |  |  |  |  |
|                 |                           | 2               |                        |  |  |  |  |  |
|                 | 96                        | 3               |                        |  |  |  |  |  |
|                 |                           |                 |                        |  |  |  |  |  |
|                 |                           | 5               |                        |  |  |  |  |  |
|                 | Ratakiasit 1 Katakiasit 2 | 0 5             | 10 15                  |  |  |  |  |  |

| R [m] | L[m] | Stufe | H [m]  | Q [m³/s]    | kf [m/s]   | K [mD]      |
|-------|------|-------|--------|-------------|------------|-------------|
| 0,073 | 0,5  | 1     | 51,75  | 4,83333E-05 | 5,7848E-07 | 77,59067723 |
|       |      | 2     | 71,75  | 5,83333E-05 | 5,0355E-07 | 67,54108573 |
|       |      | 3     | 101,75 | 7,33333E-05 | 4,4639E-07 | 59,87425978 |
|       |      | 4     | 71,75  | 5,33333E-05 | 4,6039E-07 | 61,75184981 |
|       |      | 5     | 51,75  | 4,16667E-05 | 4,9869E-07 | 66,88851485 |

## Testintervall: 24,3 – 24,8 m

| Stufe               | Ø Druck [bar]                      | ØMenge | [l/min]    |            | Lugeon-Wert |  |  |  |
|---------------------|------------------------------------|--------|------------|------------|-------------|--|--|--|
| 1                   | 5,175                              |        |            | 4,2        | 16,23188406 |  |  |  |
| 2                   | 7,175                              |        |            | 4,9        | 13,65853659 |  |  |  |
| 3                   | 10,175                             |        |            | 5,8        | 11,4004914  |  |  |  |
| 4                   | 7,175                              |        |            | 4,4        | 12,26480836 |  |  |  |
| 5                   | 5,175                              |        |            | 3,5        | 13,52657005 |  |  |  |
| Q-P Diagramm        |                                    |        |            |            |             |  |  |  |
| 7                   |                                    |        |            |            |             |  |  |  |
| 6                   |                                    |        |            |            | 3           |  |  |  |
|                     |                                    |        |            |            | -           |  |  |  |
| 5                   |                                    | 1 –    | 2          | $\nearrow$ |             |  |  |  |
| _ 4                 |                                    | •      | 4          |            |             |  |  |  |
| , min               |                                    |        |            |            |             |  |  |  |
| Ξ<br>σ <sub>3</sub> |                                    | 5      |            |            |             |  |  |  |
|                     |                                    |        |            |            |             |  |  |  |
| 2                   |                                    |        |            |            |             |  |  |  |
| 1                   |                                    |        |            |            |             |  |  |  |
|                     |                                    |        |            |            |             |  |  |  |
| 0                   |                                    |        |            |            |             |  |  |  |
| 0                   | 2 4                                |        | 6<br>[her] | 8          | 10 12       |  |  |  |
|                     |                                    | r      | [Dai]      |            |             |  |  |  |
|                     | Lithologie                         |        |            | Lugeo      | on-Muster   |  |  |  |
|                     | 2                                  |        |            | (14        | i bulchty   |  |  |  |
|                     | 16                                 |        | 1          |            |             |  |  |  |
|                     |                                    |        | 2          |            |             |  |  |  |
|                     | 82                                 |        | 3          |            |             |  |  |  |
|                     |                                    |        | 4          |            |             |  |  |  |
|                     |                                    |        | 5          |            |             |  |  |  |
|                     | <pre>coreloss = FDC3 = FDC3C</pre> |        | 0          | 5          | 10 15 20    |  |  |  |

| R [m] | L[m] | Stufe | H [m]  | Q [m³/s]   | kf [m/s]    | K [mD]      |
|-------|------|-------|--------|------------|-------------|-------------|
| 0,073 | 0,5  | 1     | 51,75  | 0,00007    | 8,37792E-07 | 112,372705  |
|       |      | 2     | 71,75  | 8,1667E-05 | 7,04971E-07 | 94,55752002 |
|       |      | 3     | 101,75 | 9,6667E-05 | 5,88424E-07 | 78,92516062 |
|       |      | 4     | 71,75  | 7,3333E-05 | 6,33035E-07 | 84,90879349 |
|       |      | 5     | 51,75  | 5,8333E-05 | 6,9816E-07  | 93,64392079 |

## Testintervall: 22,4 – 22,9 m

| 1 5,175 0,2 0,772946   2 7,175 0,2 0,5574912   3 10,175 0,2 0,3931203   4 7,175 0,2 0,5574912   5 5,175 0,2 0,772946 | ,77294686<br>557491289 |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|
| 2 7,175 0,2 0,5574912   3 10,175 0,2 0,3931203   4 7,175 0,2 0,5574912   5 5,175 0,2 0,772946                        | 557491289              |  |  |  |  |
| 3 10,175 0,2 0,3931203   4 7,175 0,2 0,5574912   5 5,175 0,2 0,772946                                                |                        |  |  |  |  |
| 4 7,175 0,2 0,5574912   5 5,175 0,2 0,772946                                                                         | 393120393              |  |  |  |  |
| 5 5.175 0.2 0.772946                                                                                                 | 557491289              |  |  |  |  |
|                                                                                                                      | ,77294686              |  |  |  |  |
| Q-P Diagramm                                                                                                         |                        |  |  |  |  |
| 0,25                                                                                                                 |                        |  |  |  |  |
|                                                                                                                      |                        |  |  |  |  |
| 1 2 3                                                                                                                |                        |  |  |  |  |
| 0,2                                                                                                                  |                        |  |  |  |  |
| 5 4                                                                                                                  |                        |  |  |  |  |
| 0.15                                                                                                                 |                        |  |  |  |  |
|                                                                                                                      |                        |  |  |  |  |
|                                                                                                                      |                        |  |  |  |  |
| or <sub>0,1</sub>                                                                                                    |                        |  |  |  |  |
|                                                                                                                      |                        |  |  |  |  |
|                                                                                                                      |                        |  |  |  |  |
| 0,05                                                                                                                 |                        |  |  |  |  |
|                                                                                                                      |                        |  |  |  |  |
|                                                                                                                      |                        |  |  |  |  |
|                                                                                                                      | 12                     |  |  |  |  |
| P [bar]                                                                                                              | 12                     |  |  |  |  |
| - Free 1                                                                                                             |                        |  |  |  |  |
| Lithologie Lugeon-Muster                                                                                             |                        |  |  |  |  |
| (Turbulent)                                                                                                          | (Turbulent)            |  |  |  |  |
|                                                                                                                      |                        |  |  |  |  |
|                                                                                                                      |                        |  |  |  |  |
|                                                                                                                      |                        |  |  |  |  |
|                                                                                                                      |                        |  |  |  |  |
| 5                                                                                                                    |                        |  |  |  |  |
| ■ FDC3C ■ FDC3 0 0.2 0.4 0.6 0.8                                                                                     | 0.8 1                  |  |  |  |  |

| R [m] | L [m] | Stufe | H [m]  | Q [m³/s]    | kf [m/s]    | K [mD]      |
|-------|-------|-------|--------|-------------|-------------|-------------|
| 0,073 | 0,5   | 1     | 51,75  | 3,33333E-06 | 3,98948E-08 | 5,351081188 |
|       |       | 2     | 71,75  | 3,33333E-06 | 2,87743E-08 | 3,859490613 |
|       |       | 3     | 101,75 | 3,33333E-06 | 2,02905E-08 | 2,721557263 |
|       |       | 4     | 71,75  | 3,33333E-06 | 2,87743E-08 | 3,859490613 |
|       |       | 5     | 51,75  | 3,33333E-06 | 3,98948E-08 | 5,351081188 |

## Testintervall: 20,9 – 21,4 m

| Stufe              | Ø Druck [bar] | Ø Menge [l/min]  |             | Lugeon-Wert            |  |  |  |  |  |
|--------------------|---------------|------------------|-------------|------------------------|--|--|--|--|--|
| 1                  | 5,175         |                  | 0,2         | 0,77294686             |  |  |  |  |  |
| 2                  | 7,175         |                  | 0,2         | 0,557491289            |  |  |  |  |  |
| 3                  | 10,175        |                  | 0,2         | 0,393120393            |  |  |  |  |  |
| 4                  | 7,175         |                  | 0,2         | 0,557491289            |  |  |  |  |  |
| 5                  | 5,175         |                  | 0,1         | 0,38647343             |  |  |  |  |  |
|                    | Q-P Diagramm  |                  |             |                        |  |  |  |  |  |
| 0,25               |               |                  |             |                        |  |  |  |  |  |
| 0,2                |               |                  |             | • 3                    |  |  |  |  |  |
| 0,15<br>[uim<br>/] |               |                  |             |                        |  |  |  |  |  |
| 0,1                |               | 5                |             |                        |  |  |  |  |  |
| 0,05               |               |                  |             |                        |  |  |  |  |  |
| 0                  |               |                  |             |                        |  |  |  |  |  |
| 0                  | 2             | 4 6<br>P [bar]   | 8           | 10 12                  |  |  |  |  |  |
|                    | Lithologie    | L                | ugeo<br>(Tı | on-Muster<br>Irbulent) |  |  |  |  |  |
|                    | 92            | 1<br>2<br>3<br>4 |             |                        |  |  |  |  |  |
|                    | ■ DB ■ FDC4C  | 5 0 0,2          | 0,4         | 4 0,6 0,8 1            |  |  |  |  |  |

| R [m] | L[m] | Stufe | H [m]  | Q [m³/s]    | kf [m/s]   | K [mD]      |
|-------|------|-------|--------|-------------|------------|-------------|
| 0,073 | 0,5  | 1     | 51,75  | 3,33333E-06 | 3,9895E-08 | 5,351081188 |
|       |      | 2     | 71,75  | 3,33333E-06 | 2,8774E-08 | 3,859490613 |
|       |      | 3     | 101,75 | 3,33333E-06 | 2,029E-08  | 2,721557263 |
|       |      | 4     | 71,75  | 3,33333E-06 | 2,8774E-08 | 3,859490613 |
|       |      | 5     | 51,75  | 1,66667E-06 | 1,9947E-08 | 2,675540594 |

## Testintervall: 17,2 – 17,7 m

| Stufe                      | Ø Druck [bar] | Ø Menge [l/min] |              | Lugeon-Wert            |  |  |  |  |
|----------------------------|---------------|-----------------|--------------|------------------------|--|--|--|--|
| 1                          | 5,175         |                 | 2,5          | 9,661835749            |  |  |  |  |
| 2                          | 7,175         |                 | 3,2          | 8,919860627            |  |  |  |  |
| 3                          | 10,175        |                 | 4,3          | 8,452088452            |  |  |  |  |
| 4                          | 7,175         |                 | 3,1          | 8,641114983            |  |  |  |  |
| 5                          | 5,175         |                 | 2,4          | 9,275362319            |  |  |  |  |
| Q-P Diagramm               |               |                 |              |                        |  |  |  |  |
| 5                          |               |                 |              |                        |  |  |  |  |
| 4,5                        |               |                 |              | . 3                    |  |  |  |  |
| 4                          |               |                 |              |                        |  |  |  |  |
| 3,5                        |               | 2               |              |                        |  |  |  |  |
| 3<br>[uim] 2,5<br>Ø<br>2   |               | 1 4             |              |                        |  |  |  |  |
| 1,5                        |               |                 |              |                        |  |  |  |  |
| 1                          |               |                 |              |                        |  |  |  |  |
| 0,5                        |               |                 |              |                        |  |  |  |  |
| 0                          |               |                 |              |                        |  |  |  |  |
| 0 2 4 6 8 10 12<br>P [bar] |               |                 |              |                        |  |  |  |  |
|                            | Lithologie    |                 | Lugec<br>(Tu | on-Muster<br>irbulent) |  |  |  |  |
|                            | FDC3C         | 7,5 8           | 8,5          | 5 9 9,5 10             |  |  |  |  |

| R [m] | L [m] | Stufe | H [m]  | Q [m³/s]    | kf [m/s]    | K [mD]      |
|-------|-------|-------|--------|-------------|-------------|-------------|
| 0,073 | 0,5   | 1     | 51,75  | 4,16667E-05 | 4,98686E-07 | 66,88851485 |
|       |       | 2     | 71,75  | 5,33333E-05 | 4,60389E-07 | 61,75184981 |
|       |       | 3     | 101,75 | 7,16667E-05 | 4,36246E-07 | 58,51348115 |
|       |       | 4     | 71,75  | 5,16667E-05 | 4,46002E-07 | 59,8221045  |
|       |       | 5     | 51,75  | 0,00004     | 4,78738E-07 | 64,21297426 |

## Testintervall: 11,2 – 11,7 m

| Stufe                                 | Ø Druck [bar]              | Ø Menge [l/min] | Lugeon-Wert |  |  |  |  |
|---------------------------------------|----------------------------|-----------------|-------------|--|--|--|--|
| 1                                     | 5,175                      | 1,5             | 5,797101449 |  |  |  |  |
| 2                                     | 7,175                      | 2,5             | 6,968641115 |  |  |  |  |
| 3                                     | 10,175                     | 3,5             | 6,87960688  |  |  |  |  |
| 4                                     | 7,175                      | 2,6             | 7,24738676  |  |  |  |  |
| 5                                     | 5,175                      | 2               | 7,729468599 |  |  |  |  |
|                                       |                            | Q-P Diagramm    |             |  |  |  |  |
| 4                                     |                            |                 |             |  |  |  |  |
| 3,5                                   |                            |                 | 3           |  |  |  |  |
| 3                                     |                            | 4               |             |  |  |  |  |
| 2,5                                   |                            |                 |             |  |  |  |  |
| 2 [/win]                              |                            | 5 2             |             |  |  |  |  |
| 1,5                                   |                            |                 |             |  |  |  |  |
| 1                                     |                            |                 |             |  |  |  |  |
| 0,5                                   |                            |                 |             |  |  |  |  |
| 0                                     |                            |                 |             |  |  |  |  |
| 0 2 4 6 8 10 12<br>P[bar]             |                            |                 |             |  |  |  |  |
| Lithologie Lugeon-Muster<br>(Laminar) |                            |                 |             |  |  |  |  |
|                                       | 26 20                      | 1<br>2<br>3     |             |  |  |  |  |
|                                       | 54                         | 4 5             |             |  |  |  |  |
|                                       | ■ FDC3 ■ core loss ■ FDC4C | 0 2 4           | 6 8 10      |  |  |  |  |

| R [m] | L [m] | Stufe | H [m]  | Q [m³/s]   | kf [m/s]    | K [mD]      |
|-------|-------|-------|--------|------------|-------------|-------------|
| 0,073 | 0,5   | 1     | 51,75  | 2,50E-05   | 2,99211E-07 | 40,13310891 |
|       |       | 2     | 71,75  | 4,1667E-05 | 3,59679E-07 | 48,24363266 |
|       |       | 3     | 101,75 | 5,8333E-05 | 3,55084E-07 | 47,6272521  |
|       |       | 4     | 71,75  | 4,3333E-05 | 3,74066E-07 | 50,17337797 |
|       |       | 5     | 51,75  | 3,3333E-05 | 3,98948E-07 | 53,51081188 |

# 9.4 Computertomographie-Aufnahmen (Saggital & Coronal)

1. ↓ LOG-Depth 10,60 - 10,87m



2. ↓ LOG-Depth 11,85 - 12,85m





**3.** ↓ LOG-Depth 12,85 - 13,85m



4. ↓ LOG-Depth 13,85 – 14,15m



#### 5. ↓ LOG-Depth 14,60 – 15,15m



6. ↓ LOG-Depth 15,31 – 16,04m





**7.** ↓ LOG-Depth 16,31 – 16,91m







9. ↓ LOG-Depth 19,20 – 19,60m



**10.** ↓ LOG-Depth 19,92 – 20,35m





**11.** ↓ LOG-Depth 20,80 – 21,73m





**12.** ↓ LOG-Depth 22,40 – 23,18m



**13.** ↓ LOG-Depth 23,66 – 24,05m



**14.** ↓ LOG-Depth 24,29 - 24,71m



**15.** ↓ LOG-Depth 25,43 – 25,89m



**16.** ↓ LOG-Depth 28,73 - 29,48m



**17.** ↓ LOG-Depth 30,24 - 30,62m



**18.** ↓ LOG-Depth 31,12 – 31,62m





**19.** ↓ LOG-Depth 31,62 – 32,09m



**20.** ↓ LOG-Depth 39,05 – 39,45m



**21.** ↓ LOG-Depth 40,12 - 41,12m



**22.** ↓ LOG-Depth 41,44 – 41,99m





**23.** ↓ LOG-Depth 42,30 - 42,88m



**24.** ↓ LOG-Depth 42,88 - 43,40m





**25. ↓** LOG-Depth 43,40 - 44,20m



**26.** ↓ LOG-Depth 44,50 - 45,20m



**27.** ↓ LOG-Depth 45,69 - 46,26m





**28.** ↓ LOG-Depth 46,39 – 46,89m




**29.** ↓ LOG-Depth 47,45 – 47,60m



**30.** ↓ LOG-Depth 47,60 – 48,37m



**31.** ↓ LOG-Depth 48,37 – 48,75m





**32.** ↓ LOG-Depth 48,89 – 49,04m



**33.** ↓ LOG-Depth 49,04 – 49,94m



**34.** ↓ LOG-Depth 49,94 – 50,29m



## 9.4.1 Datentabelle: Porosität & Kluftintensität (P21)

| СТ  | Teufe       | Porosität<br>(Widerst.) | Porosität<br>(Sonic) | Porosität<br>(Mittelwert) | A: p21 (CT) | B: p21 (CT) | Mittelwert<br>A & B |
|-----|-------------|-------------------------|----------------------|---------------------------|-------------|-------------|---------------------|
| Nr. | [m]         | [%]                     | [%]                  | [%]                       | [m/m²]      | [m/m²]      | [m/m²]              |
| 1   | 10,60-10,87 | 5,73                    | 5,86                 | 5,79                      | 119,09      | 132,65      | 125,87              |
| 2   | 11,85-12,85 | 6,27                    | 8,55                 | 7,41                      | 294,88      | 218,9       | 256,89              |
| 3   | 12,85-13,85 | 6,66                    | 14,1                 | 10,38                     | 308,2       | 219,57      | 263,88              |
| 4   | 13,85-14,15 | 8,23                    | 20,07                | 14,15                     | 196,89      | 230,24      | 213,57              |
| 5   | 14,60-15,15 | 7,03                    | 7,24                 | 7,14                      | 199,36      | 188,88      | 194,12              |
| 6   | 15,31-16,04 | 5,74                    | 4,82                 | 5,28                      | 210,39      | 165,28      | 187,83              |
| 7   | 16,31-16,91 | 6,49                    | 9,03                 | 7,76                      | 149,88      | 176,55      | 163,22              |
| 8   | 17,33-18,20 | 7,1                     | 7,95                 | 7,52                      | 174,5       | 162,34      | 168,42              |
| 9   | 19,20-19,60 | 8,13                    | 6,33                 | 7,23                      | 234,41      | 222,1       | 228,25              |
| 10  | 19,92-20,35 | 5,15                    | 6,84                 | 5,99                      | 211,4       | 198,22      | 204,81              |
| 11  | 20,80-21,73 | 6,44                    | 7                    | 6,72                      | 201,76      | 229,19      | 215,47              |
| 12  | 22,40-23,18 | 5,19                    | 6,33                 | 5,76                      | 220,22      | 174,62      | 197,42              |
| 13  | 23,66-24,05 | 8,02                    | 6,99                 | 7,51                      | 169,47      | 173,23      | 171,35              |
| 14  | 24,29-24,71 | 6,71                    | 6,47                 | 6,59                      | 153,32      | 134,43      | 143,88              |
| 15  | 25,43-25,89 | 8,89                    | 7,91                 | 8,4                       | 319,27      | 351,41      | 335,34              |
| 16  | 28,73-29,48 | 10,33                   | 11,34                | 10,84                     | 226,1       | 225,05      | 225,58              |
| 17  | 30,24-30,62 | 10,6                    | 10,5                 | 10,55                     | 256,23      | 244,32      | 250,27              |
| 18  | 31,12-31,62 | 12,79                   | 11,95                | 12,37                     | 295,52      | 295,81      | 295,67              |
| 19  | 31,62-32,09 | 10,78                   | 7,61                 | 9,19                      | 251,21      | 217,99      | 234,6               |
| 20  | 39,05-39,45 | 15,48                   | 11,63                | 13,55                     | 529,7       | 448,77      | 489,23              |
| 21  | 40,12-41,12 | 15,64                   | 12,25                | 13,94                     | 495,37      | 420,55      | 457,96              |
| 22  | 41,44-41,99 | 9,47                    | 7,29                 | 8,38                      | 288,58      | 246,8       | 267,69              |
| 23  | 42,30-42,88 | 9,32                    | 7                    | 8,16                      | 296,05      | 285,89      | 290,97              |
| 24  | 42,88-43,40 | 9,28                    | 5,62                 | 7,45                      | 291,29      | 236,35      | 263,82              |
| 25  | 43,40-44,20 | 10,39                   | 8,6                  | 9,5                       | 325,91      | 270,01      | 297,96              |
| 26  | 44,50-45,20 | 10,45                   | 10,28                | 10,36                     | 243,7       | 223,05      | 233,38              |
| 27  | 45,69-46,26 | 9,49                    | 8                    | 8,74                      | 225,72      | 262,48      | 244,1               |
| 28  | 46,39-46,89 | 9,65                    | 11,16                | 10,4                      | 293,54      | 246,22      | 269,88              |
| 29  | 47,45-47,60 | 9,75                    | 8,57                 | 9,16                      | 322,5       | 297,83      | 310,17              |
| 30  | 47,60-48,37 | 9,31                    | 9,15                 | 9,23                      | 324,84      | 299,46      | 312,15              |
| 31  | 48,37-48,75 | 9,26                    | 9,59                 | 9,42                      | 257,08      | 271,34      | 264,21              |
| 32  | 48,89-49,04 | 9,57                    | 9,56                 | 9,56                      | 241,88      | 288,96      | 265,42              |
| 33  | 49,04-49,94 | 11,73                   | 10,31                | 11,02                     | 314,8       | 397,7       | 356,25              |
| 34  | 49,94-50,29 | 7,54                    | 8,29                 | 7,91                      | 215,6       | 190,2       | 202,9               |