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Abstract

The problem of fitting martingales to given marginal distributions plays an
important role in financial mathematics. In particular, in pricing exotic
options. We therefore take a look at the work of Lowther [16], in which the
existence and uniqueness of the desired martingale is proved. We mostly
focus on the existence of the martingale. To this end we also point out the
essential notion of convex ordering, which is together with the assumption of
constant mean, required in order to fit martingales. By adding the condition
of weak continuity of the marginals and restricting ourselves to processes
that are strong Markov, we obtain uniqueness. Lastly, we clarify how fitting
martingales to given marginals is related to option pricing. We explain why
the Black-Scholes model is not optimal and furthermore we discuss stochastic
volatility models and the local volatility model, as more realistic extensions
of the Black-Scholes model.

Zusammenfassung

Die Zuordnung von Martingalen zu gegebenen Wahrscheinlichkeitsmaßen
spielt eine wichtige Rolle in der Finannzmathematik, insbesonders bei der
Bewertung von exotischen Optionen. Deswegen werfen wir einen Blick auf
die Arbeit von Lowther [16], in welcher die Existenz und die Eindeutigkeit
des entsprechenden Martingal bewiesen ist. Weiters betrachten wir den
essentiellen Begriff der konvexen Ordnung, welche mit der Annahme von
einem konstanten Mittelwert benötigt wird um Martingale mit vorgegebenen
Marginalen finden zu können. Durch das Hinzufügen von schwacher Stetigkeit
der Marginalen (als Bedingung) und der Einschränkung auf Prozessen, welche
die starke Markow-Eigenschaft auffüllen, erlangen wir Eindeutigkeit. Zuletzt
erklären wir, wie die Zuordnung von Martingalen zu gegebenen Marginalen
mit Optionsbewertung zusammen hängt. Wir erklären weshalb das Black-
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Scholes Modell nicht geeignet ist und weiters diskutieren stochastische Volatilitäts-
modelle und das lokale Volatilitätsmodell, als realistischere Erweiterungen
des Black-Scholes Modell.

2



Contents

1 Introduction 4

1.1 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 4

2 Convex order 5

2.1 Stochastic ordering . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Convex order in terms of call functions . . . . . . . . . . . . . 6
2.3 Convex order in terms of potential functions . . . . . . . . . . 9
2.4 Call transform and martingale . . . . . . . . . . . . . . . . . . 12

3 Existence of the martingale 13

3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Existence of martingale measure . . . . . . . . . . . . . . . . . 18
3.3 Continuity of the map to martingale measures . . . . . . . . . 27

4 The class of almost-continuous diffusions is not arbitrary 28

4.1 Extremal marginals . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Concluding the results . . . . . . . . . . . . . . . . . . . . . . 34

5 Application in financial mathematics 35

5.1 Black-Scholes model . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Stochastic volatility models . . . . . . . . . . . . . . . . . . . 38
5.3 Local volatility model . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Lowther’s contribution . . . . . . . . . . . . . . . . . . . . . . 41

3



1 Introduction

The paper of Lowther [16] deals with the problem of finding a martingale
fitting given marginal distributions. This problem was already studied by
many authors. Starting with Strassen [22] who showed that for a sequence of
probability measures (μn)n∈N, which have constant mean and are increasing
in convex order, there is a martingale (Xn)n∈N that fits these given marginal
distributions. Kellerer [14] extended this result to the case where the marginal
distributions μt and the martingale (Xt) are indexed by t ∈ R+.

Lowther’s further contribution to these results is that he showed that
these marginals can be fitted in a unique way by a martingale which lies in
a particular class of strong Markov processes. Showing this however requires
an extra condition on the marginal distributions. This condition is that
they need to be weakly continuous i.e. if tn → t then μtn(f) → μt(f) for
every continuous and bounded function f . Another consequence that comes
with this is that the resulting map from the sets of marginals to the set
of martingales is continuous. This means that a small change to marginal
distributions results in only a small change to the corresponding martingale
measure.

1.1 Structure of the thesis

The main focus of this thesis is the paper of Lowther [16]. It provides
a detailed description of some of the results there and also explains the
significance of these results in the context of financial mathematics.

In the second chapter we introduce the concept of convex ordering, which
is an essential concept for this topic. Further, we introduce the call transform
to represent the marginal distributions and briefly mention how the conditions
on the call transform lead to different results regarding the existence and
uniqueness of a martingale that fits the given marginal distributions.

The following third chapter gives a detailed description of the results
of [16] concerning the existence of the martingale fitting given marginal
distributions. Before diving into the proofs, we state all the essential definitions
and describe the setup for solving our problem. At the end, we state and
show in detail that the map that assigns the martingale measure to given
marginal distributions is continuous under certain conditions.

In the fourth chapter we again follow the results of [16] and establish in
detail why the class of almost-continuous diffusions is in fact not arbitrary.
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The last chapter of the thesis connects the previously mentioned results
with the field of financial mathematics. In particular, these results are related
to the problem of pricing exotic options. At first we take a look at the
Black-Scholes model and provide reasons why the assumptions of this model
do not reflect behavior on the real market properly. Next, the definitions
of stochastic volatility and local volatility models are given. These are
more realistic extensions of the Black-Scholes model. The local volatility
model is in fact a special case of the stochastic volatility model [19]. The
chapter is closed by explaining Lowther’s contribution to proving existence
and uniqueness of the stock price process obtained from the local volatility
model.

2 Convex order

2.1 Stochastic ordering

To be able to compare or order two random variables one can use different
types of measures. One example are location measures e.g. mean or median.
Second example are dispersion measures e.g. variance or standard deviation.
In this case the result however depends on the choice of the measure and
two different measures can lead to contradicting results. Therefore, it is
convenient to consider the concept of stochastic ordering and order random
variables after considering a whole class of measures producing the same
result. Most of this section relies on [21] and [1]. The latter also provides an
example of the use of convex ordering in finance.

First, we can consider stochastic orders that compare the location of
random variables. One of the most common orders in this sense is the usual
stochastic order. We say that the random variable X is stochastically larger
than the random variable Y and write X ≤st Y if and only if E[f(X)] ≤
E[f(Y )] for all increasing functions f . Intuitively, this means that Y is more
likely to take on larger values than X [21].

An example of a stochastic order that compares the dispersion of random
variables is the convex order. We say that the random variable X is smaller
than Y in the convex order and write X ≤cx Y if and only if E[f(X)] ≤
E[f(Y )] for all convex functions f . We can interpret this as Y being more
likely to take on extreme values [21].

One can also notice that X ≤cx Y implies that E[X] = E[Y ]. This can be
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shown by taking f1(x) = x and f2(x) = −x which are both convex functions
and so by assumption both E[X] ≤ E[Y ] and E[Y ] ≤ E[X] must hold and
therefore it follows that E[X] = E[Y ] [21].

Another consequence of X ≤cx Y is that V ar[X] ≤ V ar[Y ] which we can
obtain by applying the function f(x) = x2. This shows that convex ordering
strengthens ordering variables based on variance [1].

Convex order plays a key role in the problem of fitting martingales to given
marginals. We know that a sequence of marginal distributions (μn)n∈N is
increasing in the convex order if and only if there is a martingale (Xn)n∈N that
fits the given marginal distributions. The sufficiency follows from Strassen
[22] and the necessity of this condition comes from Jensen’s inequality by the
following

E[f(Xn)] = E[f(E[Xn+1|Xn])] ≤ E[E[f(Xn+1)|Xn]] = E[f(Xn+1)].

In particular, we can say that for two random variables X and Y , X ≤cx Y
holds if and only if they admit a coupling (X ′, Y ′) such that it is a martingale
i.e. E[Y ′|X ′] = X ′ a.s. [21].

2.2 Convex order in terms of call functions

The convex order can be characterized for example in terms of call functions
or potential functions. First, we take a look at the characterization through
call functions. In particular, the distribution μ can be represented by the
function

Cμ(x) =

∫
(y − x)+ dμ(y).

Furthermore, we can represent a family (μt)t∈R+
of marginal distributions by

C(t, x) =

∫
(y − x)+ dμt(y).

In financial terms, the function C(t, x) describes prices of call options with
strike price x and maturity t. This explains the term call function. The next
Lemma is based on results in [21].

Lemma 2.1. Given two random variables X and Y such that E[X] = E[Y ],
X ≤cx Y holds if and only if

E(X − c)+ ≤ E(Y − c)+ for all c ∈ R.
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This condition can be also written as∫ ∞

c

1− F (t) dt ≤
∫ ∞

c

1−G(t) dt for all c ∈ R,

where F and G are the respective distribution functions.

Proof. ⇒ This direction simply follows from the fact that f(x) = (x− c)+ is
a convex function.

⇐ We want to prove that E(X − c)+ ≤ E(Y − c)+ for all c ∈ R implies
E[f(X)] ≤ E[f(Y )] for every convex function f . Assume E[f(X)], E[f(Y )] <
∞ and take wlog f ≥ 0. Fix ε > 0. Now, we can choose an interval [−k, k]
such that ∫

[−k,k]c
f(x) dμX(x) < ε,

∫
[−k,k]c

f(y) dμY (y) < ε.

We approximate the function f on [−k, k] similarly as in [15]. The function
f is uniformly continuous inside the interval [−k, k] and therefore ∀ ε > 0 ∃
δ > 0 ∀x, y ∈ [−k, k] : |x− y| < δ ⇒ |f(x)− f(y)| < ε.

Now we can find N ∈ N such that the partition P of the interval [−k, k]
consists of points {i+m/2N : i ∈ {−k, ..., k− 1}, m ∈ N∪{0} and 0 ≤ m ≤
2N} and it holds that ‖P‖ < δ.

Next, we can find a piece-wise linear convex function g with breakpoints
in the points of the partition P , which equals f at these breakpoints. This
function can be written as a linear combination of functions a + bx, (x −
a1)+, ..., (x − an)+ because these functions form a basis for linear splines
defined on [−k, k] with the given breakpoints [9].

For any x ∈ [−k, k] there exists some i such that x ∈ [xi, xi+1], where
xi, xi+1 are points of the partition P . Since f and g are equal at the
breakpoints, we have |g(x) − f(x)| = |g(x) − g(xi) + f(xi) − f(x))| ≤
|g(x) − g(xi)| + |f(x) − f(xi)| < 2ε. This means that there is a sequence
of piece-wise linear functions of the form fn(x) =

∑l
i=0 bni

(x−ani
)++ax+ b

that converges point-wise to the function f on [−k, k].
By assuming E(X − c)+ ≤ E(Y − c)+ for all c we obtain

E[fn(X)] ≤ E[fn(Y )].
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Applying dominated convergence theorem to the above inequality leads to
E[f(X)] ≤ E[f(Y )] for every f convex on [−k, k]. Finally, we get the
alternative inequality by

E[(X − c)+] =

∫ ∞

0

P((X − c)+ ≥ t) dt

=

∫ ∞

0

P(X − c ≥ t) dt

=

∫ ∞

0

P(X ≥ t+ c) dt

=

∫ ∞

c

P(X ≥ t) dt

=

∫ ∞

c

1− F (t) dt.

Lemma 2.2. If we represent a family of marginal distributions (μt)t∈R+
that

are increasing in convex order and are weakly continuous in t by the function
C(t, x) =

∫
(y − x)+ dμt(y), it satisfies the following properties:

1. C(t, x) is convex in x.
2. C(t, x) is continuous and increasing in t.
3. C(t, x) → 0 as x → ∞, for every t ∈ R+.
4. There exists a ∈ R such that C(t, x) + x → a as x → −∞ for every
t ∈ R+. The real number a is in fact the mean of the distribution μt.

Proof. For the first property we want to show that

C(t, λx1 + (1− λ)x2) ≤ λ C(t, x1) + (1− λ) C(t, x2)

for every λ ∈ [0, 1]. This can be shown by using convexity of the function
f(x) = (x− c)+ as follows

C(t, λx1 + (1− λ)x2) =

∫
(y − (λx1 + (1− λ)x2))+ dμt(y)

≤ λ

∫
(y − x1)+ dμt(y) + (1− λ)

∫
(y − x2)+ dμt(y)

= λ C(t, x1) + (1− λ) C(t, x2).
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Continuity of C(t, x) in t follows from weak continuity of the marginals. The
fact that C(t, x) is increasing follows from the sequence of distributions being
increasing in convex order. The third property can be shown by the following

lim
x→∞

∫
(y − x)+ dμt(y) = lim

x→∞

∫ ∞

x

(y − x) dμt(y) = 0.

Finally, we prove the last property and show that the real number a is the
mean of the marginal distribution

lim
x→−∞

∫
(y − x)+ dμt(y) + x = lim

x→−∞

∫ ∞

x

(y − x) dμt(y) + x

= lim
x→−∞

(∫ ∞

x

y dμt(y)−
∫ ∞

x

x dμt(y)

)
+ x

= lim
x→−∞

(∫ ∞

x

y dμt(y) +

∫ x

−∞

x dμt(y)

)

= E[μt] = a.

2.3 Convex order in terms of potential functions

Here we consider the characterization through the potential function. More
specifically, the distribution μ can be represented by the function

uμ(x) =

∫
|y − x| dμ(y).

Furthermore, we can represent a family (μt)t∈R+
of marginal distributions by

u(t, x) =

∫
|y − x| dμt(y).

Lemma 2.3. Given uμ(x) =
∫ |y − x| dμ(y), we can obtain the following

formula for the distribution function Fμ:

Fμ =
u′
μ + 1

2
.
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Proof.

uμ(x) = Eμ|y − x|
=

∫
|y − x| dμ(y)

=

∫ ∞

0

P(|y − x| ≥ t) dt

=

∫ ∞

0

P(y − x > t) dt+

∫ 0

−∞

P(y − x ≤ t) dt

=

∫ ∞

0

P(y > t+ x) dt+

∫ 0

−∞

P(y ≤ t+ x) dt

=

∫ ∞

x

P(y > t) dt+

∫ x

−∞

P(y ≤ t) dt

=

∫ ∞

x

1− F (t) dt+

∫ x

−∞

F (t) dt

= lim
c→∞

∫ c

x

1− F (t) dt+ lim
c→∞

∫ x

−c

F (t) dt

u′
μ(x) = lim

c→∞
(1− F (c)− (1− F (x)) + F (x)− F (−c))

= 1− 1− (1− F (x)) + F (x)− 0

= 2F (x)− 1

At last, we get the formula F (x) =
u′
μ(x)+1

2
.

Lemma 2.4. (Theorem 3.A.2., [21]) Given two random variables X and Y
such that E[X] = E[Y ], X ≤cx Y holds if and only if

E|X − c| ≤ E|Y − c| for all c ∈ R.

Proof. ⇒ If X ≤cx Y , then E|X − c| ≤ E|Y − c| holds for all c ∈ R because
f(x) = |x− c| is a convex function.
⇐ We want to prove that E|X − c| ≤ E|Y − c| for all c ∈ R implies that
E[f(X)] ≤ E[f(Y )] for every convex function f . The function uμ(x) can be
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written in terms of the function Cμ(x) as follows

uμ(x) =

∫
|y − x| dμ(y)

=

∫
2 ((y − x)+ dμ(y)− 1

2
(y − x)) dμ(y)

= 2

∫
(y − x)+ dμ(y)−

∫
y dμ(y) + x

= 2 Cμ(x)− E[μ] + x.

(1)

From (1) we get the following

E|X − c| ≤ E|Y − c|
2E[(X − c)+]− E[X] + c ≤ 2E[(Y − c)+]− E[Y ] + c

E[(X − c)+] ≤ E[(Y − c)+].

(2)

This means that E|X − c| ≤ E|Y − c| for all c ∈ R implies E[(X − c)+] ≤
E[(Y − c)+] for all c ∈ R. Combining this with Lemma 2.1. gives the desired
result.

Similar properties as for the function C(t, x) hold also for the function
u(t, x).

Lemma 2.5. If we represent a family of marginal distributions (μt)t∈R+
that

are increasing in convex order and are weakly continuous in t by the function
u(t, x) =

∫ |y − x| dμt(y), it satisfies the following properties:
1. u(t, x) is convex in x.
2. u(t, x) is continuous and increasing in t.
3. There exists a real number a such that u(t, x)− x+ a → 0 as x → ∞ for
every t ∈ R+.
4. There exists a real number a such that u(t, x) + x − a → 0 as x → −∞
for every t ∈ R+.

The last two properties can be combined into a single property. There
exists a real number a such that u(t, x)− |x− a| → 0 as x → ±∞, for every
t ∈ R+.

Proof. The first two properties can be proved similarly as in Lemma 2.2. For
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the last property we do the following

lim
x→−∞

∫
|y − x| − |x− a| dμt(y) = lim

x→−∞

∫ x

−∞

(x− y) dμt(y) +

∫ ∞

x

(y − x) dμt(y)

− |x− a|
= lim

x→−∞

∫ ∞

x

y − x dμt(y) + x− a

= lim
x→−∞

∫ ∞

x

y dμt(y) +

∫ x

−∞

x dμt(y)− a

= lim
x→−∞

∫ ∞

x

y dμt(y)− a.

This limit is 0 if a = E[μt]. For x → ∞ the computation follows similarly.

2.4 Call transform and martingale

Let (μt)t∈R+
be a sequence of marginal distributions with constant mean

and let C(t, x) be a function associated to the distribution μt via the call
transform given by C(t, x) =

∫
(y − x)+ dμt(y).

As described in [2] and already hinted in the introduction, we get different
results for the existence and uniqueness of the martingale measure when
imposing different conditions on the function C(t, x).

By assuming that C(t, x) is increasing in t, we get that there exists a
martingale fitting the given marginal distributions. This result was proved
by Kellerer in [14]. This martingale is however not unique in general.

Adding the assumption that C(t, x) is also continuous in t, we get that
there exists a martingale fitting the given marginal distributions and furthermore
it is also unique if we restrict ourselves to the class of martingales that are
almost-continuous diffusions. This was proved by Lowther in [16] and it is
the main interest of this thesis.

This topic is furthermore discussed in the paper [6] by Dupire. It is showed
there that under more restrictive assumptions on C(t, x) we obtain existence.
These assumptions are C(t, x) being increasing and also differentiable in t. It
is mentioned there that under some technical assumptions, when restricting
ourselves to martingales that are continuous diffusions, we obtain uniqueness.
The prove was however provided by Lowther under weaker assumptions.
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3 Existence of the martingale

This chapter is about the already mentioned result which says that given a
sequence of marginal distributions which are weakly continuous and increasing
in the convex order, there not only exists a martingale fitting these distributions,
but it is also a strong Markov process. Before moving any further we define
some essential notions.

3.1 Definitions

The below given definitions come from [4] or alternatively [16].

Definition 3.1. (Definition Section 35, [4]) Let (Xt)t≥0 be a sequence of
random variables on a probability space (Ω,F ,P) and adapted to the filtration
(Ft)t≥0. The sequence {(Xt,Ft) : t ≥ 0} is then a martingale if E[|Xt|] < ∞
and if E[Xt|Fs] = Xs for 0 ≤ s ≤ t.

Definition 3.2. (Section 35., [4]) Let τ be a random variable on a probability
space with filtration (Ft)t≥0. Then τ is called a stopping time (with respect
to the filtration (Ft)t≥0) if {τ ≤ t} ∈ Ft for all t ≥ 0.

Definition 3.3. (Chapter 9, [13]) Let X be a stochastic process indexed
by t ∈ [0,∞). Given any time t ∈ [0,∞), X is said to be continuous in
probability at time t if for all ε > 0

lim
s→t

P({ω ∈ Ω | |Xs(ω)−Xt(ω)| ≥ ε}) = 0.

Definition 3.4. (Definition 1.1., [16]) A real valued stochastic process X is
strong Markov if for every bounded and measurable function g : R → R and
every t ∈ R+ there exists a measurable function f : R+ × R → R such that

f(τ,Xτ ) = E[g(Xτ+t)|Fτ ]

for every finite stopping time τ .

Definition 3.5. (Definition 1.1., [16]) A real valued stochastic process X is
almost-continuous if it is càdlàg, continuous in probability and given any two
independent càdlàg processes Y, Z each with the same distribution as X and
for every s < t ∈ R+ we have

P(Ys < Zs, Yt > Zt and Yu = Zu for every u ∈ (s, t)) = 0.
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This property says that Y −Z cannot change sign without passing through
zero [16]. Furthermore, it is clear that continuous processes satisfy this
condition by the mean value theorem.

Definition 3.6. (Definition 1.1., [16]) A real valued stochastic process X is
an almost-continuous diffusion (ACD) if it is strong Markov and almost-continuous.

Furthermore, to represent the marginal distributions we use the below
defined space of functions.

Definition 3.7. (Definition 1.2., [16]) Let CP be the set of functions C :
R+ × R → R such that
1. C(t, x) is convex in x and continuous and increasing in t.
2. C(t, x) → 0 as x → ∞ for every t ∈ R+.
3. There exists a ∈ R such that C(t, x) + x → a as x → −∞ for every
t ∈ R+.

The first property is the same as saying that the marginals are increasing
in convex order and that they are weakly continuous. The last property is the
same as saying that they have constant mean. If a process X has marginals
consistent with some C ∈ CP , then

C(t, x) = E[(Xt − x)+]. (3)

Lemma 3.1. (Chapter 1, [16]) If X is a martingale which is continuous in
probability then C given by C(t, x) = E[(Xt − x)+] belongs to the space CP.

Proof. Most of these properties were already proved in Chapter 2. Convexity
of C(t, x) follows from convexity of the function f(x) = (y − x)+. The fact
that C is increasing in t follows from X being a process that is increasing in
the convex order, which follows from X being a martingale. This was also
pointed out in Chapter 2.

The property that C is continuous in t requires more calculations. To
prove this we need to show that if tn → t, it holds that C(tn, x) → C(t, x)
i.e. E[(Xtn − x)+] → E[(Xt − x)+].

For this we use the property that X is continuous in probability, which
means that for tn → t

lim
n→∞

P({ω ∈ Ω | |Xtn(ω)−Xt(ω)| ≥ ε}) = 0.

14



First we show that the variable (X − x)+ is continuous in probability i.e.
that the following holds

lim
n→∞

P({ω ∈ Ω | |(Xtn(ω)− x)+ − (Xt(ω)− x)+| ≥ ε}) = 0.

This can be shown by proving that for every n ∈ N we get

P({ω ∈ Ω | |(Xtn(ω)−x)+−(Xt(ω)−x)+| ≥ ε}) ≤ P({ω ∈ Ω | |Xtn(ω)−Xt(ω)| ≥ ε}).

The above is equivalent to showing

P({ω ∈ Ω | |Xtn(ω)−Xt(ω)| < ε}) ≤ P({ω ∈ Ω | |(Xtn(ω)−x)+−(Xt(ω)−x)+| < ε}).

We need to show that if ω is such that |Xtn(ω) − Xt(ω)| < ε than also
|(Xtn(ω)− x)+ − (Xt(ω)− x)+| < ε. There are two options, in the first case
ω is such that Xtn(ω), Xt(ω) ≥ x and so we get

|(Xtn(ω)− x)+ − (Xt(ω)− x)+| = |Xtn(ω)− x−Xt(ω) + x|
= |Xtn(ω)−Xt(ω)|
< ε.

The second case is when Xtn(ω) ≤ x and Xt(ω) ≥ x or vice versa. Wlog
assume the first case. We get |(Xtn(ω)−x)+−(Xt(ω)−x)+| = |−Xt(ω)+x| <
ε because x lies between Xtn and Xt. The last case when Xtn(ω), Xt(ω) < x
is clear. Because this holds for every n, we can conclude that the process
(X − x)+ is continuous in probability.

Furthermore, we assume that this variable is uniformly integrable and
therefore we can conclude that E[(Xtn −x)+] → E[(Xt−x)+] [3]. We proved
that C(t, x) is continuous in t. The last two properties are again proved in
Chapter 2.

Lemma 3.2. The distribution function can be recovered from the function C
by the following

Fμt
(x) = μt((−∞, x]) = 1 +

∂C(t, x)

∂x+

.
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Proof. We obtain this result by the following calculation

∂C(t, x)

∂x+

= lim
h→0+

C(t, x+ h)− C(t, x)

h

= lim
h→0+

limk→∞

∫ k

−k
(y − x− h)+ − (y − x)+

h
dμt(y)

= lim
k→∞

∫ k

−k

lim
h→0+

(y − x− h)+ − (y − x)+
h

dμt(y)

= lim
k→∞

∫ k

x

−1 dμt(y)

= −μt((x,∞))

1 +
∂C(t, x)

∂x+

= 1− μt((x,∞))

= μt((−∞, x]).

The main result of Lowther’s paper is the following theorem. In this
section we however focus mostly on the existence part.

Theorem 3.3. (Theorem 1.3., [16]) For any C ∈ CP there exists a unique
measure P on (D,F) under which X is an ACD martingale and C(t, x) =
E[(Xt − x)+].

The existence is going to be showed by taking limits of processes that are
ACD martingales and are matching the marginals at finite sets of times and
furthermore weak compactness will be used to ensure the existence of the
limit [16]. The uniqueness part of this result will not be proved here. The
proof can be however found in Chapter 4 of [16].

To begin with proving this result we are going to need some new definitions.
We are going to prove the existence of the martingale measure and for this
we introduce the measurable space of càdlàg real valued processes (D,F)
and the coordinate process X and XS as described in [16]. Let

D = {càdlàg functions ω : R+ → R},
X : R+ ×D → R, (t, ω) �→ Xt(ω) ≡ ω(t),

F = σ(Xt : t ∈ R+),

Ft = σ(Xs : s ∈ [0, t]).
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X is a càdlàg process adapted to (Ft)t≥0. For a subset S ⊆ R+, we take R
S

to be the set of real valued functions defined on S i.e. RS = {f : S → R}. We
consider it as a topological space under the topology of pointwise convergence
and we denote its Borel σ-algebra by FS. The coordinate process on RS is
denoted by XS

t . Moreover,

XS : S × RS → R, (t, ω) �→ XS
t (ω) ≡ ω(t).

This process is adapted to the natural filtration (FS
t )t∈R+

, which is given
by

FS
t = σ(XS

s : s ∈ S, s ≤ t).

PS is used to denote the measure on (RS,FS) obtained from the marginal
law of Xt under P with t ∈ S. In the following we understand P(X) to be
the collection of all probability measures on X.

Definition 3.8. (Chapter 1, [3]) Suppose that Pn,P ∈ P(X) where X is a
Polish space, i.e. a separable complete metric space. If

lim
n→∞

Pn(f) = P(f)

for every continuous and bounded function f , then we say that (Pn) converges
weakly to P and write Pn

w−→ P.

The condition ensuring weak convergence can also be written as
limn→∞ EPn

[f ] = E[f ] for every continuous and bounded function f . The
topology of weak convergence on the probability measures on (RS,FS) is the
topology generated by the maps P �→ EP[f ] for all real valued continuous and
bounded functions f in RS [16].

The last thing to define before we move to the next result is convergence
of measures in the sense of finite-dimensional distributions. Suppose Pn is
a sequence of probability measures on (D,F). We say that this sequence
converges in the sense of finite dimensional distributions to the probability
measure P if and only if PS

n → PS weakly for every finite subset S of R+ [16].
If S is countable then RS is a Polish space i.e. a separable complete metric

space as it has a countable dense subset consisting of ω with ω(t) rational
for t ∈ S and zero for all but finitely many t [16]. The topology is given by
the following complete metric

d(ω, ω
′

) =
∑
n

2−n min(|ω(sn)− ω(s
′

n)|, 1),

where S = {s1, s2, ...} [16].
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Theorem 3.4. (Theorem 15.39., [10]) Let P ⊂ P(X) and let X be a Polish
space. Then under the topology of weak convergence, P is relatively compact
if and only if P is tight.

Proof. This result is due to Prokhorov. The proof can be found e.g. in
[4].

A set of probability measures P on a Polish space is said to be tight if
for every ε > 0 there exists a compact set C with P(C) > 1− ε for all P ∈ P
[10]. By the previous theorem, P is then weakly compact (compact under
the topology of weak convergence) which means that for any sequence of
probability measures (Pn)n∈N which is tight, there is a probability measure
P and a subsequence Pnk

converging weakly to P. This result is used to
find martingale measures with specified marginals as limits of sequences [16].
Now that we have the essential definitions we can move on to the next result
which is the first step in proving the main theorem of this section.

3.2 Existence of martingale measure

Lemma 3.5. (Lemma 3.1., [16]) Let C ∈ CP and (Pn)n∈N be a sequence of
martingale measures on (D,F) such that EPn

[(Xt − x)+] → C(t, x) .
Then there exists a subsequence Pnk

and a martingale measure P on (D,F)
such that Pnk

→ P in the sense of finite-dimensional distributions. Furthermore,
X is a martingale under P, continuous in probability and satisfies EP[(Xt −
x)+] = C(t, x).

Proof. This proof provides a more detailed description of the proof in [16].
Choose t ∈ R+ and ε > 0. We get that for every K > 0,

Pn(|Xt| > K) = EPn
[1{|Xt|>K}]

≤ EPn
[(Xt −K + 1)+ + (Xt +K − 1)+ − (Xt +K)+ + 1]

→ C(t,K − 1) + C(t, 1−K)− C(t,−K) + 1.

The inequality is depicted in Figure 1. This can be made arbitrarily small
by making K large, hence we get that for every ε > 0 there exists a K > 0
such that Pn(|Xt| > K) < ε for every n.

Let S = {s1, s2, ...} to be a countable dense subset of R+ and let ε > 0.
We get that there exists a sequence Kn > 0 such that

Pn(|Xsn | > Kn) < 2−nε.

18



Figure 1: above inequality

Let A be a compact set consisting of all ω ∈ RS satisfying |ω(sn)| ≤ Kn,

PS
n(R

S \ A) ≤
∞∑
n=0

Pn(|Xsn | > Kn) <
∞∑
n=0

2−nε = ε.

This implies that
PS
n(A) > 1− ε ∀ n.

The sequence PS
n is therefore tight and so there exists a probability

measure Q on (RS,FS) and subsequence PS
nk

that converges weakly to Q.
From weak convergence we get that ∀ t ∈ S and x, y ∈ R

EQ[(X
S
t − x)+ − (XS

t − y)+] = lim
n→∞

EPn
[(Xt − x)+ − (Xt − y)+]

= C(t, x)− C(t, y).

By letting y go to infinity and by using dominated convergence theorem
we get the following

EQ[(X
S
t − x)+] = C(t, x),

where the right-hand side follows from the properties of elements in the set
CP.
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Now let s < t be in S, let Z : RS → R be FS
s -measurable, continuous and

such that ZXS
s is bounded, and 0 ≤ Z ≤ 1 then,

EQ[Z(X
S
s − x)+] = lim

n→∞
EPS

n
[Z(XS

s − x)+]

≤ lim
n→∞

EPS
n
[Z(XS

t − x)+]

≤ lim
n→∞

EPS
n
[Z(XS

t − x)+]− EQ[Z(X
S
t − y)+] + EQ[(X

S
t − y)+]

= lim
n→∞

EPS
n
[Z((XS

t − x)+ − (XS
t − y)+)] + C(t, y)

= EQ[Z((X
S
t − x)+ − (XS

t − y)+)] + C(t, y).

The first and last steps follow from weak convergence of the sequence of
measures PS

n, the second step follows from the sequence of measures being
increasing in the convex order and the third step follows from the previous
calculation and the fact that 0 ≤ Z ≤ 1. By repeating the same procedure
of letting y go to infinity and using dominated convergence theorem we get

EQ[Z(X
S
s − x)+] ≤ EQ[Z(X

S
t − x)+],

which means that (XS − x)+ is a submartingale with respect to the
measure Q. Proceeding further with the calculations we get

EQ[ZX
S
s ] = lim

x→−∞
EQ[Z(X

S
s − x)+ + x]

≤ lim
x→−∞

EQ[Z(X
S
t − x)+ + x]

= EQ[ZX
S
t ].

The first step and last step follow from the properties of functions in CP and
the middle step follows from the property of convex order. This shows that
XS is a submartingale with respect to Q.

Because C ∈ CP we get that EQ[X
S
t ] is constant across t ∈ S and because

XS is a submartingale with respect to Q we get that EQ[X
S
t |FS

s ]−XS
s ≥ 0.

From this we get

EQ[EQ[X
S
t |FS

s ]]− EQ[X
S
s ] = EQ[X

S
t ]− EQ[X

S
s ] = 0.

Because expected value of a non-negative random variable is zero also the
variable equals zero a.s. and so XS is a martingale with respect to Q.

Now we can extend XS
t to all t ∈ R+ by taking XS

t = EQ[X
S
u |Ft] for

all u ≥ t in S. In the next step we want to show that XS is continuous in
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probability. From the fact that it is a martingale it follows that it has a.s.
left and right limits XS

t− , X
S
t+ for t ∈ R+. By assuming that 0 ∈ S, taking the

difference of left and right limits of C(t, x) = EQ[(X
S
t − x)+] in t and using

continuity of C we get:

0 = EQ[(X
S
t+

− x)+ − (XS
t−

− x)+]

= EQ[1{XS
t+

, XS
t−

≥ x}(X
S
t+

−XS
t−
) + 1{XS

t+
≥ x, XS

t−
≤ x}(X

S
t+

− x)

+ 1{XS
t+

≤ x, XS
t−

≥ x}(−XS
t−

+ x)]

= EQ[1{XS
t−

> x}(X
S
t+

−XS
t−
) + 1{XS

t−
> x > XS

t+
or XS

t+
> x ≥ XS

t−
}(|XS

t+
− x|)]

= EQ[1{XS
t−

> x > XS
t+

or XS
t+

> x ≥ XS
t−

}(|XS
t+

− x|)].

This implies that Q(XS
t−

> x > XS
t+
) = Q(XS

t+
> x ≥ XS

t−
) = 0 for

every x because |XS
t+

− x| is non-negative and so we get XS
t+

= XS
t−
. We

already know that XS is a martingale and now we also know that it is
right-continuous in probability. This implies that there is a càdlàg version
and therefore there is a measure P on (D,F) satisfying PS = Q. We also get
that X is a martingale under P. It is furthermore continuous in probability.
Because S is dense in R+, by taking limits of t ∈ S we get EP[(Xt − x)+] =
C(t, x).

The next step is to show that Pn → P in the sense of finite dimensional
distributions. Suppose that this does not hold. This would mean that there
exists a random variable Z = f(Xt1 , ..., Xtm) for some finite subset F =
{t1, t2, ..., tm} of R+ where f : Rm → R for which EPn

[Z] → EP[Z]. We may
assume that there is some ε > 0 such that for every n it holds that

EPn
[Z] ≥ EP[Z] + ε.

We set S
′

= S ∪ F . By the previous results, passing to a further

subsequence we get that there is a measure P
′

on (D,F) such that PS
′

n →
(P

′

)S
′

. In particular, by restricting to S, (P
′

)S = limn→∞ PS
n = PS and

by right-continuity in t, it follows that P = P
′

and PS
′

n → PS
′

which is a
contradiction.

The following lemma will be used to construct ACD martingale measures
with specified marginals by taking limits of measures matching the marginals
at finitely many times [16].
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Lemma 3.6. (Lemma 3.2., [16]) Let (Pn)n∈N be a sequence of ACD martingale
measures on (D,F) and C ∈ CP be such that EPn

[(Xt−x)+] → C(t, x). Then
there exists a subsequence (Pnk

)k∈N converging in the sense of finite-dimensional
distributions to an ACD martingale measure P satisfying EP[(Xt − x)+] =
C(t, x).

Before we prove this we first state a few results from [18] that will help
prove the above lemma.

Lemma 3.7. (Lemma 3.2., [18]) Let P be a probability measure on (D,F)
under which X is continuous in probability. Then each of the following
statements implies the next.
1. X is an almost-continuous diffusion.
2. For every s < t ∈ R+, non-negative Fs-measurable random variables U, V ,
and real numbers a and b < c ≤ d < e we have

E[U1{Xs<a,d<Xt<e}]E[V 1{Xs>a,b<Xt<c}] ≤ E[U1Xs<a,b<Xt<c]E[V 1Xs>a,d<Xt<e].
(4)

3. X is almost-continuous.

Proof. The proof can be found in [18].

Corollary 3.8. (Corollary 3.12., [18]) Let (Pn)n∈N be probability measures
on (D,F) which satisfy property 2 of Lemma 3.7. If Pn → P in the sense of
finite-dimensional distributions on a dense subset of R+, then P also satisfies
this property.

Proof. The proof can be found in [18].

Definition 3.9. (Definition 4.1., [18]) Let X be any real valued and adapted
stochastic process. We shall say that it satisfies the Lipschitz property if for
all s < t ∈ R+ and every bounded Lipschitz continuous g : R → R with
|g′| < 1, there exists a Lipschitz continuous f : R → R with |f ′ | ≤ 1 and,

f(Xs) = E[g(Xt)|Fs]. (5)

Corollary 3.9. (Corollary 4.6., [18]) Let (Pn)n∈N and P be probability measures
on (D,F) such that Pn → P in the sense of finite-dimensional distributions
on a dense subset of R+. If the Lipschitz property for X is satisfied under
each Pn, then it is also satisfied under P.
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Proof. The proof can be found in [18].

Lemma 3.10. (Lemma 4.2., [18]) Let X be a càdlàg adapted real valued
process that satisfies the Lipschitz property. Then it is strong Markov.

Proof. The proof can be found in [18].

Corollary 3.11. (Corollary 4.4., [18]) Let X be an almost-continuous diffusion
that decomposes as

Xt = Mt +

∫ t

0

b(s,Xs)ds,

where M is a local martingale, b : R+ ×R → R is locally integrable and such
that there exists K ∈ R satisfying

b(t, y)− b(t, x) ≤ K(y − x)

for every t ∈ R+ and x < y ∈ R. Then e−KtXt satisfies the Lipschitz
property.

Proof. The proof can be found in [18].

Corollary 3.12. (Corollary 1.3., [18]) Let (Pn)n∈N be a sequence of probability
measures on (D,F) under which X is an ACD martingale. If Pn → P in the
sense of finite dimensional distributions on a dense subset of R+ and X is
continuous in probability under P, then it is an almost-continuous diffusion
under P.

Proof. Sketch of proof as found in [18]. In the first part, we prove that under
the above conditionsX is almost-continuous under P. X is an almost-continuous
diffusion under the measures Pn. It then follows by Lemma 3.7. that the
second condition of the lemma is also satisfied. Corollary 3.8. then implies
that the measure P also satisfies this property. Therefore, by using Lemma
3.7. again, we get that X is almost-continuous under P. By Corollary 3.11.,
e−KtXt satisfies the Lipschitz property under Pn and therefore by corollary
3.9. it satisfies the Lipschitz property also under P. Lemma 3.10. then
indicates that e−KtXt is strong Markov under P and so it follows thatX is also
strong Markov under P. Hence, we proved that X is an almost-continuous
diffusion under P.
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Proof. (Lemma 3.6.) This proof is based on the proof found in [16]. First,
we get from Lemma 3.5. that there exists a subsequence Pnk

converging
in the sense of finite-dimensional distributions to a martingale measure P.
Furthermore, we get that X is continuous in probability and it satisfies
E[(Xt − x)+] = C(t, x). From Corollary 3.12. it follows that X is an
almost-continuous diffusion.

In the last step to prove the existence of the ACD martingale measure
we need to show that it is possible to fit the marginals arbitrarily closely
[16]. One way to match the marginals at any finite set of times is to
use a Skorokhod embedding to time-change a Brownian motion [16]. This
procedure is described below and relies on [11]. The Skorokhod embedding
problem was first described and solved by Skorokhod, but since then it was
studied and extended by many authors. An overview of the history of the
solutions to different extensions of the problems can be found in [20].

The Skorokhod embedding theorem concerns the embedding of a given
law in Brownian motion by construction of a suitably minimal stopping time
[11]. It is showed there that for a martingale (Xt)0≤t≤1 with X0 ∼ μ0 and
X1 ∼ μ1, there is an upper bound with respect to stochastic ordering on the
law of S = sup0≤t≤1 Xt. This upper bound denoted by μ∗

0,1 ∈ P(μ0, μ1) =
{ν|ν is law of S and X ∈ M(μ0, μ1)} is attained and furthermore, the martingale
the maximum of which attains the upper bound is a (time-change of) Brownian
motion.

The following procedure of defining a suitable stopping time is based on
[16]. First, we fix C ∈ CP and take t0, t1 such that t0 < t1. We consider μt

to be the measure satisfying
∫
(y − x)+ dμt = C(t, x) for t = t0, t1. Next, we

define the distribution function F1(x) = C,2(t1, x+) + 1 = μt1((−∞, x]). For
u ∈ (0, 1) set β(u) = inf{x ∈ R : F1(x) ≥ u}, and let gu : [β(u),∞) → R be

gu(x) = C(t1, β(u)) + (x− β(u))(u− 1).

Next, α(u) ≥ β(u) is chosen to be such that gu(α(u)) = C(t0, α(u)). α(u)
is then uniquely defined in case when C(t1, β(u)) > C(t0, β(u)), otherwise set
α(u) = β(u). Next, we get another distribution function F ∗

0,1(x) = inf{u ∈
(0, 1) : α(u) > x}. It can be shown that it is right-continuous and increasing
from 0 to 1 so it is indeed another distribution function.
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Figure 2: Fitting marginals to C(t,x)

To define a stopping time τ we first consider a Brownian motion B with
initial distribution μt0 and St = sups≤t Bs is its maximum process. The
stopping time τ can then be defined by

τ = inf{t ∈ R+ : F1(Bt) ≤ F ∗
0,1(St)}. (6)

This means that Bτ is a uniformly integrable martingale and Bτ has the
law μt1 . This result is proved in [11] in Proposition 2.2 and Corollary 2.1.

Lemma 3.13. (Lemma 3.3., [16]) Let C ∈ CP and t0 < t1 ∈ R+. Then,
there exists an ACD martingale X such that E[(Xt − x)+] = C(t, x) for
t = t0, t1.

Proof. This proof is again based on the proof in [16]. Assume B as a
Brownian motion with initial measure μt0 and let τ be a stopping time as
in (6). We consider a function θ : (t0, t1) → R which can be any continuous
function increasing from −∞ to ∞. Specifically, we can consider

θ(t) =

⎧⎨
⎩

−∞, t ≤ t0
(t1 − t)−1 − (t− t0)

−1, (t0, t1)
∞, t ≥ t1.
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Figure 3: θ(t) on (t0, t1)

Next, we define stopping times

τt = inf{s ∈ R+ : Bs ≥ θ(t)}.
With this we can construct the ACD martingale by taking Xt = Bτt∧τ .

From Proposition 2.2 in [11] it follows that Xt0 has the distribution μt0 and
Xt1 has the distribution μt1 . Since Bτ is uniformly integrable, X will be a
martingale. If we consider T to be the first time for which τT ≥ τ , then

Xt =

{
max(B0, θ(t)), t < T
Bτ , t ≥ T.

X can only have a single jump at time T , where XT− ≥ XT . The last
thing that needs to be shown is that X is an almost-continuous diffusion.
First we check continuity in probability. It holds that Xt− ≥ Xt and because
X is a martingale we also have E[Xt−] = E[Xt]. This implies that Xt− = Xt

a.s.
The stopping times τt ∧ τ are hitting times of the strong Markov process

(Bt, St), where St = sups≤t Bs, so the time changed process (Xt, Sτt∧τ ) will
be also strong Markov. X must be strong Markov because Sτt∧τ = Xt if
Xt ≥ θ(t) and X is constant as soon as Xt < θ(t).

In the last step we show that X is almost-continuous. To this end we
choose a càdlàg process Y independent and identically distributed as X. If
we assume that Ys > Xs and Yt < Xt for s < t, then we can set T as the
first time at which YT < XT . It must hold that YT− = XT− = θ(T ). In fact,
T must be the first time at which YT− = XT−, and therefore it is previsible.
From X being a martingale we obtain E[XT−] = E[XT ] and E[YT−] = E[YT ]
and, as XT− ≥ XT , YT− ≥ YT , we have YT = XT .
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We can extend the above result to match marginals at a finite set of times.

Corollary 3.14. (Corollary 3.4., [16]) Let C ∈ CP and A ⊂ R+ be finite.
Then, there exists an ACD martingale measure P on (D,F) such that E[(Xt−
x)+] = C(t, x) for all t ∈ A.

Proof. This proof is based on the proof in [16]. First we consider a set
containing single a time A = {t}. We can take P to be the measure under
which Xt is independent of t with the required distribution. For a larger set
of times A = {t0 < t1 < ... < tn} we use induction on n. With this we assume
that there is an ACD martingale measure P1 matching the required marginals
at times t0, t1, ..., tn−1. By Lemma 3.13. there is an ACD martingale measure
P2 matching the marginals at times tn−1, tn. Xtn−1

must have the same
distribution under both P1 and P2. We can therefore join these two measures
together at time tn−1 to get P, which is the unique measure on (D,F) such
that

EP[AB] = EP1
[AEP2

[B|Xtn−1
]] = EP2

[EP1
[A|Xtn−1

]B]

for all bounded random variables A,B where A is Ftn−1
-measurable and B

is σ(Xt : t ≥ tn−1)-measurable. X is an ACD martingale under P on both
intervals, [0, tn−1] and [tn−1,∞), and so it follows that it is an ACDmartingale
under P on [0,∞).

Finally, we apply Corollary 3.14. to construct the required ACDmartingale
measure. With the next result we conclude the proof of the existence part of
Theorem 3.3.

Lemma 3.15. For every C ∈ CP there is an ACD martingale measure P on
(D,F) satisfying EP[(Xt − x)+] = C(t, x).

Proof. This proof is based on the proof in [16]. It follows by Corollary
3.14., that for every n there is an ACD martingale measure Pn satisfying
EPn

[(Xk/n − x)+] = C(k/n, x) for k = 0, 1, ..., n. This implies that EPn
[(Xt −

x)+] → C(t, x), so the existence of the ACD martingale measure P follows
from Lemma 3.6.

3.3 Continuity of the map to martingale measures

Using the fact that the ACD martingale measure is unique we prove the
following theorem.
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Theorem 3.16. (Theorem 1.4., [16]) For every C ∈CP denote the unique
ACD martingale measure given by Theorem 3.3. by PC. Then the function

CP → M(D), C �→ PC

is continuous, under pointwise convergence on CP and convergence in the
sense of finite-dimensional distributions on M(D).

This theorem says that given Cn → C pointwise, EPCn
[Z] → EPC

[Z] for
every Z = f(Xt1 , ..., Xtm) with t1, ..., tm ∈ R+ and f : Rm → R continuous,
bounded.

Proof. This proof is based on the proof in [16]. To prove continuity we show
that for Cn, C ∈ CP, if Cn → C, then PCn

→ PC . This will be proved by
contradiction. Therefore assume that PCn

� PC . This means that there
exists ε > 0 and a variable Z of the form Z = f(Xt1 , ..., Xtm) for t1, ..., tm ∈
R+ and f : Rm → R continuous and bounded, such that EPCn

[Z] ≥ EPC
[Z]+ε

infinitely often. We may assume that this holds for every n by passing to a
further subsequence if necessary. We already showed in Lemma 3.6 that by
passing to a further subsequence there exists an ACD martingale measure P

such that PCn
→ P and such that EP[(Xt − x)+] = C(t, x). By uniqueness

we get that P = PC and that is a contradiction.

4 The class of almost-continuous diffusions is

not arbitrary

In the previous chapter we showed that there exists an ACD martingale
measure fitting the marginal distributions. It can be furthermore shown that
the measure fitting the marginal distributions is in fact unique. This is proved
in Chapter 4 of [16]. In this section we are going to prove the following result.

Theorem 4.1. (Theorem 1.5., [16]) Suppose that we have a continuous map
from a dense subset S of CP to the martingale measures

S → M(D), C �→ QC

such that for every C ∈ S the equality EQC
[(Xt − x)+] = C(t, x) is satisfied.

Then QC = PC.
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4.1 Extremal marginals

This result suggests that the initial choice of the class of almost-continuous
diffusions was not random. The proof uses the fact that there are certain
marginal distributions for which there is only one possible martingale measure
[16]. These correspond to extremal elements of CP and they form a dense
subset of CP.

First, by checking that every convex combination of elements of CP still
belongs to CP, we note that the space CP is a convex subset of the space
of all real-valued functions on R+ × R [16]. For a convex subset of a vector
space we can define extremal points as points which cannot be expressed as
a convex combination of other elements in the set.

Definition 4.1. (Chapter 5, [16]) For a convex subset S of a vector space
V , an element x ∈ S is said to be extremal if given any y, z ∈ S and any
λ ∈ (0, 1) such that x = λy + (1− λ)z, then y = z = x.

In our setup, we call an element of CP extremal if it is extremal among
the convex set of elements of CP with the same initial value i.e. value at
t = 0.

Definition 4.2. (Definition 5.1., [16]) An element C ∈ CP is extremal if
given any C1, C2 ∈ CP and λ ∈ (0, 1) such that C1(0, x) = C2(0, x) = C(0, x)
∀x ∈ R and C = λC1 + (1− λ)C2, then C1 = C2 = C.

In the next step we are going to show that for this specific type of elements
in CP, there exists a unique martingale measure P.

Lemma 4.2. (Lemma 5.2., [16]) Let C ∈ CP be extremal. Then, there exists
a unique martingale measure P on (D,F) satisfying EP[(Xt−x)+] = C(t, x).

Proof. This proof is provides a more detailed explanation of the proof in [16].
In the previous chapter we already proved the existence part of this measure
in Theorem 3.3. Now we only need to prove the uniqueness part. First, we
are going to show that any measure P satisfying the conditions of the lemma
is Markov. In particular, we show that EP[(Xt−x)+|FT ] = EP[(Xt−x)+|XT ]
for any T ≥ 0.

Taking T ≥ 0 and FT -measurable random variable Z with 0 ≤ Z ≤ 1,
we define C1, C2 to be such that C1(t, x) = C2(t, x) = C(t, x) for t < T and

C1(t, x) = EP[ZEP[(Xt − x)+|XT ]] + EP[(1− Z)(Xt − x)+],

C2(t, x) = EP[(1− Z)EP[(Xt − x)+|XT ]] + EP[Z(Xt − x)+]
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for t ≥ T . It can be checked that C1, C2 ∈ CP, C1(0, x) = C2(0, x) = C(0, x)
and (C1 +C2)/2 = C. Because C is extremal we get that C1 = C = C2. For
t ≥ T , substituting C1(t, x) = EP[(Xt − x)+] into the above equation for C1

we get

EP[(Xt − x)+] = EP[ZEP[(Xt − x)+|XT ]] + EP[(1− Z)(Xt − x)+].

This can be simplified to

EP[Z(Xt − x)+] = EP[ZEP[(Xt − x)+|XT ]].

From this we get that EP[(Xt − x)+|FT ] = EP[(Xt − x)+|XT ] and so it
follows that X is Markov.

In the next step we are going to show there is only one such measure.
Assume P,Q are two martingale measures satisfying the conditions of the
lemma. Again choose T ≥ 0 and XT -measurable random variable Z with
0 ≤ Z ≤ 1, define C1, C2 by C1(t, x) = C2(t, x) = C(t, x) for t < T and

C1(t, x) = EP[Z(Xt − x)+] + EQ[(1− Z)(Xt − x)+],

C2(t, x) = EQ[Z(Xt − x)+] + EP[(1− Z)(Xt − x)+]

for t ≥ T . It can be again checked that C1, C2 ∈ CP, C1(0, x) = C2(0, x) =
C(0, x) and (C1 + C2)/2 = C. And because C is extremal we get that
C1 = C = C2. For t ≥ T , substituting C1(t, x) = EQ[(Xt − x)+] into the
above equation for C1 we get

EQ[(Xt − x)+] = EP[Z(Xt − x)+] + EQ[(1− Z)(Xt − x)+].

This can be simplified to

EP[Z(Xt − x)+] = EQ[Z(Xt − x)+].

for all t ≥ T . By the above we get that P and Q are both Markov measures
for X with the same pairwise and initial distributions and this implies P =
Q.

Because there exists a unique martingale measure for the extremal points,
we know this measure is in fact an ACD martingale measure. The next step
is to show that the extremal elements are dense in CP. To show this, we
will construct for a C ∈ CP an extremal element that matches C at any
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increasing sequence of times [16]. First, we show that there is an extremal
element matching C at two times t = t0, t1. The construction method used
will be the same as in Chapter 3 in Lemma 3.12. This was based on the
Skorokhod embedding described in [11]. The following procedure can be
found in [16].

For C ∈ CP let μt be the corresponding marginal distributions with∫
(y − x)+ dμt = C(t, x). Fixing t0 < t1, define the distribution function

F1(x) = C,2(t1, x+) + 1 = μt1((−∞, x]) and for u ∈ (0, 1) set
β(u) = inf{x ∈ R : F1(x) ≥ u}. For x ≥ β(u) set

gu(x) = C(t1, β(u)) + (x− β(u))(u− 1)

and define α(u) ≥ β(u) by gu(α(u)) = C(t0, α(u)). α(u) is uniquely defined
whenever C(t1, β(u)) > C(t0, β(u)), otherwise set β(u) = α(u).

We define C̃ : R+ ×R → R by setting C̃(t, x) equal to C(t0, x) for t ≤ t0,
C(t1, x) for t ≥ t1 and

C̃(t, x) =

⎧⎨
⎩

C(t1, x), x ≤ β(u)
C(t0, x), x ≥ α(u)
gu(x), β(u) < x < α(u)

(7)

for t0 < t < t1, where u(t) ≡ (t− t0)/(t1 − t0). Next we show that C̃ defines
an extremal element of CP matching C at t0 and t1.

Lemma 4.3. (Lemma 5.3., [16]) Suppose that C ∈ CP and t0 < t1 ∈ R+.
Then C̃ defined by (7) is an extremal element of CP such that C̃(t, x) equals
C(t0, x) for t ≤ t0 and C(t1, x) for t ≥ t1.

Proof. This proof follows the steps of this proof in [16]. It is not hard to see
that for t0 < t < t1, C̃(t, x) is a function convex in x between C(t0, x) and
C(t1, x). To show that C̃ ∈ CP it is enough to show that it is continuous
and increasing in t. We will focus on the interval (t0, t1), as this is where it
gets interesting.

First, we show that C̃ is increasing in t. For this, choose any s <
t ∈ (t0, t1). Then, u(s) ≤ u(t) and so β(u(s)) ≤ β(u(t)) follows from its
definition. For the case when x ≤ β(u(t)) we get by combining the results of
the case x ≤ β(u(s)) and β(u(s)) ≤ x ≤ β(u(t)) the following

C̃(t, x) = C(t1, x) ≥ C̃(s, x).
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For the case where x > β(u(t)), we have

C̃(t, x) = max(gu(t)(x), C(t0, x)) ≥ max(gu(s)(x), C(t0, x)) = C̃(s, x).

By combining all the results we see that C̃(t, x) is is increasing in t.

Figure 4: C̃(s, x) and C̃(t, x)

Next, we show that C̃ is continuous in t by showing that t �→ C̃(t, x) maps
the interval [t0, t1] onto [C(t0, x), C(t1, x)] and therefore must be continuous.
This is done by constructing C̃ such that C̃(t, x) = y for given x ∈ R and y
such that C(t0, x) < y < C(t1, x).

Choose any x, y ∈ R with C(t0, x) < y < C(t1, x), and choose b < x to
minimize u = (C(t1, b) − y)/(x − b). To show that this exists we note that
choosing b small enough so that C(t1, b)− C(t0, b) < y − C(t0, x) gives

(C(t1, b)− y)/(x− b) < (C(t0, b)− C(t0, x))/(x− b) ≤ 1

where the first step follows from the inequality C(t1, b) − C(t0, b) < y −
C(t0, x). The limit as b → −∞ is 1 and so it must have a minimum by
continuity.

By choosing t for which u(t) = 1−(C(t1, x)−y)/(b−x) gives C,2(t1, b+) ≥
u − 1 ≥ C,2(t1, b−). By this it follows that C̃(t, x) = C(t1, b) + (x −
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b)(1 − u) = y. Hence, the map t �→ C̃(t, x) maps the interval [t0, t1] onto
[C(t0, x), C(t1, x)] and it must be continuous.

Next, we need to show that C̃ is extremal. Suppose that C̃ = λC1 +(1−
λ)C2 for C1, C2 ∈ CP, λ ∈ (0, 1), and

C1(0, x) = C2(0, x) = C̃(0, x) = C(t0, x).

To show that C1 = C2 = C̃, we use the fact that if a non-trivial convex
combination of two increasing functions is constant, then those functions
must also be constant. In particular, C̃(t, x) = C̃(t1, x) = C(t1, x) for all
t ≥ t1 so we must also have Ci(t, x) = Ci(t1, x) for i = 1, 2 and t ≥ t1 and
C̃(t, x) = C̃(t0, x) = C(t0, x) for t ≤ t0 so Ci(t, x) = Ci(0, x) = C(t0, x) for
i = 1, 2 and t ≤ t0.

It remains to check the interval (t0, t1). We choose t ∈ (t0, t1), set α =
α(u(t)) and β = β(u(t)) and look separately at cases x ≤ β, x ≥ α and
x ∈ (β, α).

If x ≤ β, C̃(t, x) = C̃(t1, x) by definition of C̃ and so Ci(t, x) = Ci(t1, x)
for i = 1, 2. Alternatively, if x ≥ α then C̃(t, x) = C̃(t0, x). Therefore,
Ci(t, x) = Ci(t0, x) = C(t0, x).

For x ∈ (β, α)

λ(C1),2(t, x+) + (1− λ)(C2),2(t, x+) = C̃,2(t, x+) = u(t)− 1.

Because the functions (Ci),2(t, x+) are increasing functions of x, this
means that they are constant for x ∈ (β, α). With this we get that Ci(t, x)
are linear functions of x over (β, α). So far, we have shown that

Ci(t, x) =

⎧⎨
⎩

Ci(t1, x), x ≤ β
C(t0, x), x ≥ α
((α− x)Ci(t1, β) + (x− β)C(t0, α))/(α− β), β < x < α.

Suppose that there exists an x ∈ R for which C1(t1, x) < C(t1, x). Choose
t such that u(t) = C,2(t1, x+) + 1 and set β = β(u(t)), α = α(u(t)). From
this it follows that β ≤ x < α, so by using the fact that C1(t, x) and C(t, x)
are convex in x and increasing in t we get

(C1),2(t1, x+) ≥ (C(t0, α)− C1(t1, β))/(α− β)

≥ (C(t0, α)− C(t1, β))/(α− β)

≥ C,2(t1, x−).
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Taking the right hand limits in x we obtain (C1),2(t1, x+) ≥ C,2(t1, x+).
For C1(t1, x) > C(t1, x), the above argument and C2(t1, x) < C(t1, x) give

(C2),2(t1, x+) ≥ C,2(t1, x+) and this implies (C1),2(t1, x+) ≤ C,2(t1, x+).
The function g(x) = (C(t1, x) − C1(t1, x))

2 has a non-positive derivative
everywhere and must be therefore decreasing. The limit g(x) → 0 as x →
±∞ implies that g is identically 0. So, C1(t1, x) = C(t1, x). It follows that
C1 = C.

By the previous lemma, we may construct an extremal element of CP
matching C at an increasing sequence of times [16].

Corollary 4.4. (Corollary 5.4., [16]) Suppose that C ∈ CP and t0 < t1 <
... ↑ ∞ are in R+. There is an extremal C̃ ∈ CP such that C̃(tk, x) = C(tk, x)
for each k.

Proof. This proof is based on the proof in [16]. First, let us assume that wlog
t0 = 0. By the previous lemma we know that there exists an extremal C̃k ∈
CP such that C̃k(t, x) equals C(tk−1, x) for t ≤ tk−1 and equals C(tk, x) for
t ≥ tk (k = 1, 2, ...).

Now, define C̃ by C̃(t, x) = C̃k(t, x) for tk−1 ≤ t < tk. Clearly, C̃ ∈ CP.
It only needs to be shown that it is extremal. To this end, suppose that

C̃ = λC1 + (1− λ)C2 (8)

for λ ∈ (0, 1), C1, C2 ∈ CP, and C1(0, x) = C2(0, x) = C(0, x).
Using induction on k to show that C1(t, x) = C2(t, x) = C(t, x) for t ≤ tk.

For k = 0 it is a requirement. Assume k ≥ 1 and that this holds for t ≤ tk−1.
If we take the function θ(t) ≡ (t ∧ tk) ∨ tk−1, which takes values in [tk−1, tk],
then C̃(θ(t), x) = C̃k(t, x) is extremal and by the equality in (8) we get that
C̃k(t, x) = C1(t, x) = C2(t, x) for tk−1 ≤ t ≤ tk. It follows by induction that
C̃ = C1 = C2.

Finally, we complete the proof of Theorem 4.1. We show that C �→
PC given by Theorem 4.1 is the unique continuous map to the martingale
measures matching all possible sets of marginals [16].

4.2 Concluding the results

Proof. (Theorem 4.1.) This proof is based on the proof in [16]. Choose any
C ∈ S and let Z be a random variable of the form

Z = f(Xt1 , ..., Xtm)
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for t1, ...tm ∈ R+ and f : Rm → R be continuous and bounded. We need to
show that EQC

[Z] = EPC
[Z].

From Corollary 4.4. we obtain a sequence (Cn)n∈N of extremal elements
of CP such that Cn(k/n, x) = C(k/n, x) for all k ∈ N such that k ≤ n. This
gives Cn → C.

Because S is dense in CP, there is a sequence (Cn,m)m∈N such that d(Cn,m, Cn) →
0 as m → ∞, where d is the metric on CP given by

d(C1, C2) = sup{|C1(t, x)− C2(t, x)| ∧ 2−|x|−t : (t, x) ∈ R+ × R}.
Now, fix n ∈ N. By EQCn,m

[(Xt−x)+] → Cn(t, x), Lemma 3.5. shows that
by potentially passing to a subsequence, there exists a martingale measure P
satisfying the equation

Cn(t, x) = EP[(Xt − x)+],

and such that QCn,m
→ P in the sense of finite-dimensional distributions as

m → ∞. However, Cn is extremal and therefore by Lemma 4.2., P = PCn
.

For every n we can choose an mn ∈ N such that

d(Cn,mn
, Cn) < 2−n,

∣∣∣EQCn,mn
[Z]− EPCn

[Z]
∣∣∣ < 2−n.

In particular, d(C,Cn,mn
) ≤ d(Cn, Cn,mn

) + d(C,Cn) ≤ d(C,Cn) + 2−n

so the continuity of C �→ QC gives that QCn,mn
tends to QC in the sense of

finite-dimensional distributions as n → ∞. Similarly, PCn
tends to PC. This

gives

|EPC
[Z]− EQC

[Z]| = lim
n→∞

∣∣∣EPCn
[Z]− EQCn,mn

[Z]
∣∣∣ ≤ lim

n→∞
2−n = 0.

5 Application in financial mathematics

The already mentioned result of Lowther (Theorem 3.3.) states that given
a sequence of marginal distributions satisfying certain assumptions, there
exists a a unique ACD martingale which is consistent with the marginals.
Furthermore, in [18] it is stated under which assumption the martingale is
continuous. The result is presented in the lemma below. The proof can be
found in [18] at the end of Chapter 3.
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Lemma 5.1. (Lemma 1.4., [18]) Let X be an almost-continuous process. If
the support of Xt is connected for every t in R+ outside of a countable set
then X is continuous.

This result of Lowther can be translated into finance by taking the marginal
distributions to be the risk-neutral probability densities ϕt of the stock price
St that are obtained from the prices of European call options through the
equality C(t, x) = Eμt

[(St − x)+]. Finding the full risk-neutral diffusion
process of the stock price then leads to being able to price American and
exotic i.e. path-dependent options [6].

This chapter relies mostly on [12] (5.1), Gatheral’s book [8] (5.2), Dupire’s
work in [6] (5.2, 5.3), [19] (5.3) (contains extensive descriptions of the models
defined below) and [5] (5.4). Before going further, let us briefly define some
necessary notions. The definitions below can be found in e.g. [7].

We understand a European contingent claim to be a non-negative random
variable defined on (Ω,F ,P). It is an asset, the future payoff of which is
contingent (dependent) on the price behaviour of the underlying securities,
which is an uncertain event. Furthermore, we call it a derivative of the
underlying asset X if it is measurable with respect to σ(X) = σ(X1, ..., XT ).
European call options are of the form Ccall = (XT −K)+ and European put
options are of the form Cput = (K − XT )+. They are modelled easily as
the right to exercise the option only comes at a fixed time of maturity T ,
as opposed to e.g. American options for which the holder has the right to
exercise the option at any time before or at time of maturity.

5.1 Black-Scholes model

In the Black-Scholes model, the stock price is assumed to follow dynamics
given by the stochastic differential equation (SDE)

dSt = μStdt+ σStBt,

where μ is a drift parameter, σ > 0 is a constant volatility parameter and Bt

is the standard Brownian motion. It can be shown that under the risk-neutral
measure, μ = r − q, where r is the constant interest rate and q is the
continuous dividends function [12]. The analytical solution to this SDE is
given by

St = S0 exp

((
μ− σ2

2

)
t+ σdBt

)
.
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Assuming that the market is arbitrage free and complete i.e. there exists
an equivalent martingale measure and every contingent claim is attainable
(can be hedged with the traded asset and a risk-free asset), we can determine
the price of a contingent claim as it’s discounted expected values under the
unique equivalent martingale measure [19]. In particular, the price of a call
and put option is then given by

C(S,K, T − t) = D(t, T )EQ[(ST −K)+]

P (S,K, T − t) = D(t, T )EQ[(K − ST )+],

where Q is the risk-neutral measure and

D(t, T ) = exp

(
−
∫ T

t

r(k)dk

)

is the discount factor and r = r(t) is a deterministic interest rate [12].
It is assumed that all trading strategies are self-financing and admissible

i.e. the value of the replicating portfolio is bounded below by zero [19]. Here,
the martingale representation theorem is used to construct the replicating
strategy. Furthermore, the discounted value of a contingent claim is given
by the initial cost of setting up the replicating strategy and the gains from
trading [19].

Knowing ST we obtained the option prices. Reversing the process and
first observing the market price pT,K of a chosen option CT,K where T is the
maturity and K is the strike price, we can determine the unique σ = σ(T,K)
such that the Black-Scholes formula reproduces the given market price pT,K .
The resulting σ is the so called implied volatility and the collection of all such
implied volatilities is called volatility surface [12, 19]. Applying this process
on real option prices we may notice that the volatility is increasing with
respect to T and convex with respect to K which contradicts the assumption
of the Black-Scholes model that the volatility is constant. As stated in [12],
by plotting the implied volatility with respect to the varying parameter K
we get a graph shape know as the volatility smile if it slopes upward on both
ends or volatility skew if it slopes upward only on the left side. A volatility
smile is more typical for stock options and volatility skew is more usual for
index options [12].
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Figure 5: volatility smile and volatility skew

5.2 Stochastic volatility models

The above leads to the question if one can find a model that would overcome
this gap between the assumptions of the Black-Scholes model and the real
market behavior i.e. take into account the non-constant nature of volatility.
From a practical point of view, the motivation for finding a better model
is that using the Black-Scholes model requires continuously changing the
volatility assumption in order to match the market prices [8]. The class of
stochastic volatility models deals with the issue of constant volatility in the
Black-Scholes model [8].

Here it is assumed that not only the asset price is random but also the
volatility. It furthermore assumes that the dynamics is separate for the stock
price and the volatility and it is given by the SDEs

dSt = μtStdt+
√
σtStdB

S
t

dσt = α(t, σt, St)dt+ ηβ(t, σt, St)
√
σtdB

σ
t

with
〈dBS

t , dB
σ
t 〉 = ρdt,

where μt is instantaneous drift of stock price returns, η is the volatility of
volatility, ρ is the correlation between random stock price returns and changes
in σt and Bt is again the standard Brownian motion [8].
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5.3 Local volatility model

As stated in [6] adding a non-traded source of risk such as the already
mentioned stochastic volatility or e.g. jumps or transaction costs leads to
losing completeness of the market i.e. losing the ability to hedge options
with the underlying asset of the model. In the stochastic volatility model we
added an extra source of randomness to the volatility. Therefore, without
volatility being a traded asset, the model becomes incomplete [19].

Because completeness is important for arbitrage pricing and hedging,
Dupire shows how to build a model that maintains completeness and also
is compatible with the observed smiles at all maturities. He shows that it is
possible to find a risk-neutral process the dynamics of which follows the SDE

dSt = μtStdt+ σ(St, t)StBt. (9)

Here, the volatility σ is a deterministic function of time t and the price of
the underlying asset St. The model which he introduced is called the local
volatility model. The results in [6] show how to hedge and price any American
or path-dependent options by observing European option prices.

Knowing the prices of all path-dependent options is equivalent to knowing
the full (risk-neutral) diffusion process of the stock price [6]. Knowing all
European option prices is equivalent to knowing only the probability densities
of the stock price at different times, conditional on its current value [6].
The full diffusion contains much more information than the conditional laws,
as distinct diffusions may generate identical conditional laws [6]. Dupire
however shows that restricting ourselves to risk-neutral diffusions, we can
retrieve from the conditional laws the unique risk-neutral diffusion which
generates the prices.

The process of obtaining exotic option prices from European option prices
is described below and is based on [8]. In the following we assume the stock
price diffuses with risk-neutral drift μ(t) = r(t) − D(t) and local volatility
σ(St, t) as in (9). Knowing the European option prices we can determine the
risk-neutral probability density of the stock price being equal to K at time
T from the equation

C(S0, K, T ) =

∫ ∞

0

(ST −K)+ϕT (ST , T ;S0)dST (10)

where ϕT (ST , T ;S0) is the pseudo-probability density of the final stock price

39



at time T , by differentiating twice with respect to K and thus obtaining

ϕT (K,T ;S0) =
∂2C

∂K2
(K,T ;S0).

In this context, the function C(t, x) =
∫
(y − x)+ dμt(y) represents the

option prices for different strikes and maturities. The marginal distributions
μt are the marginal probabilities of the underlying stock price under the
risk-neutral measure.

Differentiating (10) with respect to T gives

∂C

∂T
=

∫ ∞

0

dST

{
∂

∂T
ϕ(ST , T ;S0)

}
(ST −K)+

=

∫ ∞

0

dST

{
1

2

∂2

∂S2
T

(σ2S2
Tϕ)−

∂

∂ST

(μSTϕ)

}
(ST −K)+,

as ϕ(ST , T ;S0) evolves according to the Fokker-Planck equation

1

2

∂2

∂S2
T

(σ2S2
Tϕ)− S

∂

∂ST

(μSTϕ) =
∂ϕ

∂T
.

Integrating by parts twice gives

∂C

∂T
=

σ2K2

2
ϕ+

∫ ∞

K

dSTμSTϕ

=
σ2K2

2

∂2C

∂K2
+ μ(T )

(
−K

∂C

∂K

)
.

The above is the Dupire equation in case the underlying stock has risk-neutral
drift μ. The forward price of the stock at time T is given by

FT = S0 exp

{∫ T

0

dtμt

}
.

Expressing the option price as a function of the forward price, we would get

∂C

∂T
=

σ2K2

2

∂C2

∂K2
,

where C now represents C(FT , K, T ). This leads to

σ2(K,T, S0) =
∂C
∂T

1
2
K2 ∂2C

∂K2

.
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This derivation is borrowed from [8]. Knowing the European option prices
we can compute the right-hand side and so given all European option prices
for all strikes and maturities we obtain unique local volatilities. Thus we
found a formula for the diffusion parameter (local volatility) of the unique
risk neutral diffusion process which generates these prices i.e. the diffusion
parameter of (9).

Knowing all these marginal densities therefore leads to finding a unique
diffusion if we restrict ourselves to risk-neutral diffusions. This determines
the prices of all path-dependent options. Knowledge of the whole process
allows for the pricing of path-dependent options by e.g. Monte-Carlo methods
and American options by e.g. dynamic programming [6].

5.4 Lowther’s contribution

As described in the previous subsections, knowing the option prices C(t, x)
for all maturities 0 ≤ t ≤ T and strikes x is equivalent to knowing the
marginal distributions (μt)0≤t≤T for the stock price process. The goal is to
find a martingale measure under which the stock price process fits the given
marginal distributions. Furthermore, we also restrict ourselves to processes
that are continuous and Markov and assume that C(t, x) is increasing in t,
convex in x and sufficiently smooth. We have seen in the previous subsection
that Dupire introduced the diffusion

dSt = μtStdt+ σ(St, t)StBt

for 0 ≤ t ≤ T , where

σ2(K,T, S0) =
∂C
∂T

1
2
K2 ∂2C

∂K2

.

This serves as means for showing existence of the desired process under the
given conditions. In the following we are concerned about uniqueness of such
a process. We expect the unique solution to be equal to Dupire’s solution.
We know that Dupire stated in [6] that uniqueness is obtained under certain
technical assumptions, this was however not proved.

Dupire’s process is a continuous martingale satisfying the Markov property.
Lowther showed in [16] and [17] that Dupire’s solution is unique within the
class of processes that are strong Markov martingales and admit continuous
paths. His result in [17] is the following.
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Theorem 5.2. (Theorem 1.2., [17]) Let X and Y be R-valued continuous,
strong Markov martingales. If for every t ∈ R+, Xt and Yt have the same
one-dimensional marginal distributions, they also have the same joint distribution.

In [5] it is discussed if it is not sufficient to consider only Markov processes
instead of strong Markov processes in Lowther’s results. The mentioned
question is if there exist two processes, one a continuous strong Markov
martingale and second a continuous Markov martingale not satisfying the
strong Markov property with the same absolutely continuous (or even more
regular) marginals and the answer turns out to be yes. Furthermore Theorem
4.3 of [5] provides a sufficient set of regularity assumptions to reason Dupire’s
statement in [6] that under some regularity assumptions there is a unique
diffusion process.
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