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Abstract

The specific relative entropy was introduced by N. Gantert in her dissertation, [3],
to measure the discrepancy between the laws of continuous processes. It arises as a
refinement of the standard relative entropy when the laws in question are mutually
singular. Recently, H. Föllmer has rekindled the interest on the subject in the work
[1] where the specific relative entropy appears in a novel transport-information in-
equality.
We first introduce all necessary concepts from stochastic analysis and some important
properties of relative entropy. With these at hand we summarize the fundamental
aspects of the specific relative entropy by discussing and illustrating the contribution
[3, Chapter 1] in detail. Here, the focus is on the specific relative entropy of the law
of a continuous martingale with respect to Wiener measure. The two main results in
that regard are: there exists a closed form expression for the specific relative entropy
in terms of the quadratic variation in the Gaussian case; and at least an inequality
holds in all generality.
This leads to the conjecture that this expression gives a formula for the specific
relative entropy in the general case as well. The main contribution of this thesis
is to verify this conjecture in two directions. Firstly, we consider a class of time-
inhomogeneous diffusions, so-called monotone transformations of Brownian motion.
Secondly, we consider time-homogeneous diffusions with rather regular coefficients.
In both cases we show the validity of the conjectured formula for the specific relative
entropy.

ii



Zusammenfassung

Die spezifische relative Entropie wurde von N. Gantert in ihrer Dissertation, [3], ein-
geführt um die Diskrepanz zwischen zwei Verteilungen stetiger Prozesse zu messen.
Sie tritt als Verfeinerung der gewöhnlichen relativen Entropie auf, wenn die betreffen-
den Verteilungen zueinander singulär sind. Kürzlich wurde durch die Arbeit [1] von
H. Föllmer, in der die spezifische relative Entropie in einer Transport-Informations
Ungleichung auftaucht, das Interesse an diesem Thema neu geweckt.
Wir beginnen damit alle nötigen Konzepte aus den Bereichen Stochastische Analysis
und relative Entropie betreffend vorzustellen. Anschließend fassen wir die fundamen-
talen Aspekte der spezifisch relativen Entropie zusammen, indem wir den Beitrag [3,
Chapter 1] detailliert erläutern. Dabei liegt der Fokus auf der spezifischen relativen
Entropie zwischen der Verteilung eines stetigen Martingals und dem Wiener Maß.
Die zwei Hauptresultate diesbezüglich sind, dass, im Falle eines Gaußprozesses, ein
geschlossener Ausdruck für die spezifisch relative Entropie bezüglich der quadrati-
schen Variation existiert und dass im allgemeinen Fall zumindest eine Ungleichung
gilt.
Dies lässt vermuten, dass dieser Ausdruck auch im allgemeinen Fall eine Formel für
die spezifische relative Entropie darstellt. Der Hauptbeitrag dieser Arbeit besteht
darin, die Vermutung in zwei Richtungen zu verifizieren. Wir betrachten eine Klas-
se Zeit-inhomogener Diffusionsprozesse, sogenannte monotone Transformationen der
brownschen Bewegung, ebenso wie Zeit-homogene Diffusionsprozesse mit recht star-
ken Regularitätsanforderungen an die Koeffizienten, und zeigen die Gültigkeit der
vermuteten Formel für die spezifische relative Entropie in diesen Fällen.
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1 Preliminaries

In this chapter we recall definitions and results needed in later chapters. We will
assume familiarity with measure-theoretic probability theory and concepts involving
discrete stochastic processes, Brownian motion and filtrations.

1.1 Relative Entropy

In the following we state some basic properties of the relative entropy between two
probability measures, see for example [4, Chapter 7].

Definition 1. Let µ and ν be probability measures on the same measurable space
(Ω,F).
Then the relative entropy between µ and ν is defined as,

H (µ | ν) :=


∫
Ω log dµ

dν dµ if µ ≪ ν

+∞ otherwise.

where dµ
dν is the Radon-Nikodym density of µ with respect to ν.

Example 1. Let m1,m2 ∈ R and σ1, σ2 > 0. Then

H
(
N (m1, σ

2
1) | N (m2, σ

2
2)
)
=

1

2

(
σ2
1

σ2
2

− 1 +
(m2 −m1)

2

σ2
2

− log
σ2
1

σ2
2

)
.

In the special case, where m1 = m2, we have,

H
(
N (m1, σ

2
1) | N (m1, σ

2
2)
)
= F

(σ2
1

σ2
2

)
,

where F (x) := 1
2(x− 1− log x).

Remark 1. For two probability measures µ and ν on some measurable space (Ω,F)

the relative entropy measures their ’distance’ in the following sense: It always holds
that H (µ | ν) ≥ 0 and equality holds if and only if µ = ν. However, the relative
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1 Preliminaries

entropy is not a metric, as it is not symmetric and does not satisfy the triangle
inequality.

Lemma 1. Let (X,A) and (Y,B) be measurable spaces, µ and ν probability measures
on (X,A) such that µ ≪ ν and T : X → Y such that A = σ(T ) := σ({T−1(B) : B ⊂
R Borel-measurable }). Then T (µ) ≪ T (ν) and

dT (µ)

dT (ν)
(T (x)) =

dµ

dν
(x) for ν-a.e. x ∈ X

and

H (µ | ν) = H (T (µ) |T (ν)) .

Lemma 2. For a random vector (V,W ) we denote by µV,W its law and by µV=v
W a

regular conditional distribution of W given V = v.
Let (X1, ..., Xn) and (Y1, ..., Yn) be random vectors. Then

H (µX1,...,Xn |µY1,...,Yn)

=

n∑
k=2

∫
H
(
µ
X1=x1,...,Xk−1=xk−1

Xk
|µY1=x1,...,Yk−1=xk−1

Yk

)
dµX1,...,Xk−1

(x1, ..., xk−1)

+ H (µX1 |µY1) .

Lemma 3. Let µ, ν be probability measures on (X,A) such that H (µ | ν) < ∞. Let
B ⊂ A be a sub-sigma algebra and µ|B, ν|B be the restrictions of µ and ν to B. Then

(i)
dµ|B
dν|B

= Eν

[
dµ

dν

∣∣∣B]

(ii)
H (µ|B | ν|B) ≤ H (µ | ν)
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1.2 Stochastic Analysis

1.2 Stochastic Analysis

Most concepts introduced here have more general analogues but we will restrict
ourselves to the framework needed later on. All processes considered here are real-
valued and we refer to processes with (almost sure) continuous sample paths as
continuous processes.

We start by recalling some important properties of martingales, see for example
[5].

Definition 2. Let (Ω,F , (Ft)t∈I ,P) be a filtered probability space, where I ⊂ R.
Let X = (Xt)t∈I be a process. Then X is a martingale (wrt. (Ft)t∈I) if

(i) X is adapted,

(ii) X is integrable, i.e. E[|Xt|] < ∞ for all t ∈ I,

(iii) for all s, t ∈ I such that s < t,

E[Xt | Fs] = Xs a.s.. (1.1)

If instead of (1.1) we have, E[Xt | Fs] ≥ Xs

(
E[Xt | Fs] ≤ Xs

)
, then X is called a

submartingale (supermartingale).

Before we focus on continuous martingales, we recall the following important fact
about convergence of discrete martingales.

Theorem 1 (Convergence theorem for uniformly integrable martingales). Let I =

N0 and let X = (Xn)n∈I be a uniformly integrable martingale on a filtered probability
space (Ω,F , (Fn)n∈I ,P). Then there exists some F∞ := σ(

⋃
n∈I Fn)-integrable ran-

dom variable Z such that Xn
n→∞−−−→ Z a.s. and in L1. Moreover, Xn = E[Z | Fn] for

all n ∈ I.

Remark 2. A martingale X = (Xn)n∈N0 of the form Xn = E[Y | Fn] for some Y ∈ L1

is called closed. In that case, X is uniformly integrable and Z = E[Y | F∞] a.s.,
where Z is the limiting random variable from Theorem 1.

From now on we will mostly be interested in index sets of the form [0, T ], where
T ∈ (0,∞). Throughout this and the following chapters we denote by λ := λ|[0,T ]

the restriction of Lebesgue measure to [0, T ].

Remark 3. We say a process X = (Xt)t∈[0,T ] is square-integrable if E[X2
t ] < ∞ for all

t ∈ [0, T ]. If X is a martingale, then X is square-integrable if and only if E[X2
T ] < ∞.

3



1 Preliminaries

Theorem 2 (Quadratic Variation). Let M be a continuous, square-integrable mar-
tingale. Then there exists a unique adapted, continuous, non-decreasing process ⟨M⟩
with ⟨M⟩0 = 0 such that M2 − ⟨M⟩ is a martingale. The process ⟨M⟩ is called the
quadratic variation process of M .

Theorem 3 (Doob’s L2-inequality). Let M be a continuous martingale. Then

E

[
sup
s∈[0,t]

M2
s

]
≤ 4E

[
M2

t

]
,

for all t ∈ [0, T ].

The goal now is to give a definition of the integral against Brownian motion. From
now on we fix a Brownian motion B on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P)
and assume the filtration is generated by B completed by P-Null sets.

Definition 3. Let H = (Ht)t∈[0,T ] be a process. We call H predictable if the map
H : [0, T ]× Ω → R is P-measurable, where

P := σ(X : X is a left continuous and adapted process)

= σ(A× (s, t] : s < t ∈ [0, T ], A ∈ Fs)

is called the predictable sigma algebra.

Definition 4. We call a process simple, if it is of the form

Ht(ω) =

n∑
k=1

hk−1(ω)1(tk−1,tk](t),

for some n ∈ N, 0 = t0 < ... < tn = T and hk−1 bounded and Ftk−1
-measurable.

We denote the collection of all simple processes by S.

Theorem 4 (Itô Isometry). There exists a unique linear map

I : L2([0, T ]× Ω,P, λ⊗ P) → L2(Ω,F ,P)

such that,

(i) for H =
∑n

k=1 hk−11(tk−1,tk] ∈ S,

I(H) =

n∑
k=1

hk−1(Btk −Btk−1
)

4



1.2 Stochastic Analysis

and

(ii) for H ∈ L2([0, T ]× Ω,P, λ⊗ P),

∥H∥L2([0,T ]×Ω,P,λ⊗P) = ∥I(H)∥L2(Ω,F ,P).

Theorem 5. Let H be a predictable process such that E[
∫ T
0 H2

t dt] < ∞ and I the
map from Theorem 4. Then we can define a continuous process by IHt := I(H1[0,t]).
This process IH is a square-integrable martingale.

Definition 5. Let H be a predictable process such that E[
∫ T
0 H2

t dt] < ∞. Then we
define the Itô-integral of H wrt. B on the interval [s, t] ⊆ [0, T ] as,∫ t

s
Hu dBu := IHt − IHs ,

where (IHt )t∈[0,T ] is as in Theorem 5.

Remark 4. The Itô-isometry for the integral of H wrt. B becomes,

E
[∫ t

0
H2

s ds

]
= E

[(∫ t

0
Hu dBu

)2
]
.

Theorem 6. Let H be a predictable process such that E[
∫ T
0 H2

t dt] < ∞ and Mt =∫ t
0 Hu dBu. Then the quadratic variation process of M is given by ⟨M⟩t =

∫ t
0 H

2
s ds.

Remark 5. The definition of the Itô integral can be extended to predictable inte-
grands H such that

∫ T
0 H2

t dt < ∞ a.s. in a consistent way. However the resulting
process

∫ t
0 Hs dBs is then in general not a square-integrable martingale. We do not

give the details here since we will later always be in the situation covered by Defi-
nition 5, but we do not care if we encounter integrands that only satisfy the weaker
integrability condition above in the remainder of this chapter.

We now state the most general version of the Itô formula we will need.

Theorem 7 (Itô formula). Let H be a predictable, bounded process and Mt :=∫ t
0 Hu dBu and g ∈ C1,2([0, T ]× R). Then

g(t,Mt)− g(0,M0) =

∫ t

0
∂2g(s,Ms)Hs dBs +

∫ t

0
∂1g(s,Ms) +

1

2
∂22g(s,Ms)H

2
s ds

5



1 Preliminaries

Remark 6. In the context of Theorem 7, the process g(t,Mt) is a square-integrable
martingale if and only if E[

∫ T
0 ∂2g(s,Ms)

2H2
s ds] < ∞ and the ds-part vanishes.

We now introduce an example that combines several aspects of the theory so far
and that will play a role again in Chapter 3.

Example 2. Let f be measurable and such that E[f(B1)
2] < ∞. We can define a

martingale by
Mt := E [f(B1) | Ft] .

The martingale M has the special property that

Mt = f(t, Bt),

where f(t, x) :=
∫
R f(z+x) dN (0, 1− t)(z). This follows from the fact that B1−Bt

is independent from Ft and has law N (0, 1 − t), while Bt is Ft measurable. So we
have,

Mt = E [f(B1) | Ft] = E [f(B1 −Bt +Bt) | Ft] =

∫
R
f(z +Bt) dN (0, 1− t)(z).

Note that, even if f is not differentiable, the convolution with the Gaussian is regu-
larizing and therefore f(·, ·) ∈ C1,2([0, 1)× R). Now an application of Itô’s formula,
Theorem 7, yields,

Mt = M0 +

∫ t

0
∂2f(s,Bs) dBs +

∫ t

0
∂1f(s,Bs) +

1

2
∂22f(s,Bs) ds.

Since M is a square-integrable martingale by definition, by Remark 6 the finite
variation parts vanish and

Mt = E [f(B1)] +

∫ t

0
∂2f(s,Bs) dBs.

In particular this means

⟨M⟩t =
∫ t

0
∂2f(s,Bs)

2 ds.

We now turn to some basic results about stochastic differential equations. The
rest of this chapter follows [2, Chapter 5] if not stated otherwise. We consider the

6



1.2 Stochastic Analysis

stochastic differential equation (SDE) of the form,dXt = σ(t,Xt) dBt

X0 = x0,
(1.2)

where σ : [0, T ]× R → R is measurable and x ∈ R.
By a solution to (1.2) we understand a continuous and adapted process X such that,
for all t ∈ [0, T ],

Xt = x0 +

∫ t

0
σ(s,Xs) dBs a.s..

We will also refer to solutions of (1.2) as diffusions.

Definition 6. We call a solution X = (Xt)t∈[0,T ] to (1.2) unique if any other solution
X ′ = (X ′

t)t∈[0,T ] is such that, a.s.,

Xt = X ′
t for all t ∈ [0, T ].

Theorem 8 (Existence and Uniqueness). Let σ : [0, T ]×R → R be measurable and
assume there exists a constant K > 0 such that for all t ∈ [0, T ] and x, y ∈ R,

(i) |σ(t, y)− σ(t, x)| ≤ K|x− y|

(ii) |σ(t, x)| ≤ K(1 + |x|).

Then equation (1.2) has a unique solution X = (Xt)t∈[0,T ]. Moreover, X is a square-
integrable martingale.

Definition 7. We say that an adapted process X has the Markov property if, for
all t ∈ [0, T ],

L
(
(Xt+h)h∈(0,T−t] | Ft

)
= L

(
(Xt+h)h∈(0,T−t] |Xt

)
.

Remark 7. Let σ be as in Theorem 8. Let s ∈ [0, T ). Denote by Xs,x (for X0,x we
drop the superscript and write X) the unique solution todXt = σ(t,Xt) dBt t ∈ [s, T ]

Xs = x,

7



1 Preliminaries

which we understand to be adapted to the filtration generated by B̃h := Bs+h −Bs.
For s < t ∈ [0, 1], x ∈ R and A ⊂ R measurable, define P (t, A; s, x) := P(Xs,x

t ∈ A).
Then the solution X has the Markov property and (x,A) 7→ P (t, A; s, x) is a regular
conditional distribution of Xt given Xs, in particular,

P(Xt ∈ A | Fs) = P (t, A; s,Xs) a.s..

Definition 8. Let X be the solution to 1.2.

(i) We call the function P defined in Remark 7 a transition probability function
of X.

(ii) We call X time-homogeneous if P (t, A; s, x) = P (t−s,A; 0, x), i.e. its transition
probability function depends on s, t only through t− s.

(iii) If the measure A 7→ P (t, A; s, x) has a density for all x ∈ R, s < t ∈ [0, T ], i.e.
there exists a function p(t, y; s, x) defined for all x, y ∈ R, s < t ∈ [0, T ] such
that,

P (t, dy; s, x) = p(t, y; s, x) dy,

then we call p transition density function of X. In the time-homogeneous case
we write p(t− s, x, y).

Remark 8. If σ is as in Theorem 8 and additionally σ(t, x) = σ(x), then X is time-
homogeneous.

Example 3. For σ(t, x) = 1 we get P (t − s, · , x) = N (x, t − s) which has the
transition density

p(t− s, x, y) = γt−s(x, y) :=
1√

2π(t− s)
e
− (x−y)2

2(t−s)

Remark 9. If we strengthen the assumptions on σ from Theorem 8 such that

(i) there exists δ > 0 such that δ ≤ σ(t, x) ≤ 1
δ for all t ∈ [0, T ], x ∈ R and

(ii) there exists L > 0 such that |σ(t, y) − σ(s, x)| ≤ L(|y − x| + |t − s|) for all
s, t ∈ [0, T ], x, y ∈ R,

8



1.2 Stochastic Analysis

then the unique solution X to (1.2) has a transition density function p. Moreover,
the density p satisfies that there exist constants c, C > 0 such that,

p(t, y; s, x) ≤ C√
t− s

e−c
(x−y)2

t−s for all x, y ∈ R, s < t ∈ [0, T ].

See [2, Chapter 6], Theorem 5.4 for existence of the transition density function and
Theorem 4.5 for the Gaussian upper bound.

9





2 The specific relative Entropy

This chapter follows [3, Chapter 1] very closely. All concepts and statements can be
found there unless stated otherwise.
Let B = (Bt)t∈[0,1] be a Brownian motion (starting at 0) on some filtered probability
space (Ω,S,St,S). We consider the Wiener space (C,F), that is

C = C([0, 1]) = {ω : [0, 1] → R | ω is continuous }

and F := σ(Xt : t ∈ [0, 1]), where X = (Xt)t∈[0,1] is the canonical process , i.e.
Xt(ω) = ω(t). Further we consider the filtration Ft = σ(Xs : s ≤ t).
Let n ∈ N. For k = 1, ..., n, we will often write ∆n

kY := Y k
n
− Y k−1

n
for the k-th

increment of a process Y and similarly ∆n
kω := ω( kn)− ω(k−1

n ) for a function ω.

Definition 9. Let M1(C) be the collection of all probability measures on (C,F).

We will mostly be interested in laws of continuous martingales.

Definition 10. A probability measure Q ∈ M1(C) is called a martingale measure,
if the canonical process X is a martingale with respect to the filtration (Ft)t∈[0,1]

under Q. We denote the collection of all square-integrable martingale measures as
M2.

Remark 10. Recall that under Q ∈ M2, the quadratic variation process of X is the
unique adapted, continuous, non-decreasing process ⟨X⟩ with ⟨X⟩0 = 0 that satisfies,

X2 − ⟨X⟩ is a martingale.

Moreover, there exists a sequence (nl)l∈N such that Q-a.s for all t ∈ [0, 1],

nl∑
k=1

(X k
nl

∧t −X k−1
nl

∧t)
2 l→∞−−−→ ⟨X⟩t.

Let P,Q ∈ M1(C). Recall that the relative entropy of Q with respect to P is

11



2 The specific relative Entropy

defined as,

H (Q |P) :=


∫
C log

dQ
dP dQ if Q ≪ P

+∞ otherwise.

Obviously, the relative entropy as a measure of ’distance’ is only interesting if Q ≪ P.

Remark 11. It is therefore clear that relative entropy is not a suitable notion if
we consider martingale measures. Take as an example Q = L((σBt)t∈[0,1]) and
P = L((ηBt)t∈[0,1]), where σ, η ∈ R \ {0} such that σ2 ̸= η2. Then

2n∑
k=1

(X k
2n

∧t −X k−1
2n

∧t)
2 n→∞−−−→ σ2t for all t ∈ [0, 1] Q-a.s

2n∑
k=1

(X k
2n

∧t −X k−1
2n

∧t)
2 n→∞−−−→ η2t for all t ∈ [0, 1] P-a.s,

so that neither Q ≪ P nor P ≪ Q holds.

To go beyond the absolute continuous case, we define for all n ∈ N

Fn := σ(X k
n
: k = 0, 1, ..., n).

Even if Q is not absolutely continuous with respect to P on (C,F), we might have
absolute continuity if we restrict the measures Q and P to the smaller sigma algebras
Fn for all n ∈ N.

Definition 11. Let n ∈ N and P,Q ∈ M1(C) such that Q|Fn ≪ P|Fn . We denote
the Radon-Nikodym density of Q|Fn with respect to P|Fn on (C,Fn) as dQ

dP
∣∣
Fn , and

define

H (Q |P) |Fn :=


∫
C log

dQ
dP
∣∣
Fn dQ if Q|Fn ≪ P|Fn

+∞ otherwise.

The following observation will be useful many times.

Lemma 4. Let n ∈ N. Let P,Q be probability measures on (C,F) such that Q|Fn ≪
P|Fn. Then P-a.s.,

dQ
dP

∣∣∣
Fn

(ω) =
dLQ

(
X0,∆

n
1X, ...,∆n

nX
)

dLP
(
X0,∆n

1X, ...,∆n
nX
) (ω(0),∆n

1ω, ...,∆
n
nω) .

In particular,

H (Q |P) |Fn = H (LQ(X0,∆
n
1X, ...,∆n

nX) | LP(X0,∆
n
1X, ...,∆n

nX)) .

12



Moreover, if P and Q are such that X has independent increments. Then

H (Q |P) |Fn = H (LQ(X0) | LP(X0)) +
n∑

k=1

H (LQ(∆
n
kX) | LP(∆

n
kX)) .

Proof. The important observation is, that the map

πn : (C,Fn) → Rn+1

πn (ω) =


ω(0)

ω( 1n)− ω(0)
...

ω(1)− ω(n−1
n )


is measurable and πn(Q|Fn) = LQ

(
X0,∆

n
1X, ...,∆n

nX
)
. Now the statement follows

from Lemma 1. The additivity property then follows directly from Lemma 2.

Remark 12. Let Q,P ∈ M1(C) be such that X0 = x for some x ∈ R both Q-a.s.
and P-a.s.. Then we can disregard the slot for time 0 when computing the relative
entropy on the restrictions to Fn. Indeed, we have P-a.s.,

dLQ
(
X0,∆

n
1X, ...,∆n

nX
)

dLP
(
X0,∆n

1X, ...,∆n
nX
) (ω(0),∆n

1ω, ...,∆
n
nω) =

dLQ
(
∆n

1X, ...,∆n
nX
)

dLP
(
∆n

1X, ...,∆n
nX
) (∆n

1ω, ...,∆
n
nω) ,

and therefore,

H (Q |P) |Fn = H (LQ(∆
n
1X, ...,∆n

nX) | LP(∆
n
1X, ...,∆n

nX)) .

Definition 12. Let P,Q ∈ M1(C). Then the specific relative entropy of Q with
respect to P is defined as,

h(Q |P) := lim
n→∞

1

n
H (Q |P) |Fn

if the limit exists in [0,+∞].

Example 4. Going back to the measures in Remark 11, Q = L((σBt)t∈[0,1]) and
P = L((ηBt)t∈[0,1]) we can compute with Lemma 4 and the formula for the relative

13



2 The specific relative Entropy

entropy between two Normal random variables from Example 1,

H (Q |P) |Fn =

n∑
k=1

H (L(∆n
kσB) | L(∆n

kηB))

=

n∑
k=1

H
(
N (0, σ

2

n ) | N (0, η
2

n )
)

= n
1

2

(
σ2

η2
− 1− log

σ2

η2

)
.

For the specific relative entropy we therefore get,

h(Q |P) = lim
n→∞

1

n
H (Q |P) |Fn =

1

2

(
σ2

η2
− 1− log

σ2

η2

)
.

From now on we always take the reference measure to be Wiener measure W, i.e.
W = L(B) and assume Q ∈ M1(C) is such that X0 = 0 a.s.. In other words, Q is
concentrated on C0 := {ω : [0, 1] → R | ω is continuous, ω(0) = 0}. Since the same
is true for W, we are in the situation of Remark 12.

Remark 13. Recalling Lemma 3 we note that, if H (Q |W) < ∞, then h(Q |W) = 0.
See Proposition 3 in [1] for the following observation: Assume Q ≪ W. Then Q is
the law of a Brownian motion with absolute continuous drift. More concretely, Q is
such that Xt = Wt +

∫ t
0 b(s,X) ds, where W is a Brownian motion under Q and b is

a predictable process such that
∫ 1
0 b(s,X)2 ds < ∞ Q-a.s. In that case, we have,

H (Q |W) =
1

2
EQ

[∫ 1

0
b(s,X)2 ds

]
.

We note that the relative entropy is finite if and only if Q ≪ W and additionally
EQ

[∫ 1
0 b(s,X)2 ds

]
< ∞.

We will consider an example that should emphasize the following: The implica-
tion in Remark 13 cannot be reversed, i.e. the relative entropy being finite, is not
necessary for the specific relative entropy to vanish.

Example 5. Let Q be the law of (Bt + b(t))t∈[0,1], where b ∈ C0.
Note that the increments of X under Q are independent and for all s < t,

Xt −Xs ∼Q N (b(t)− b(s), t− s)

We can compute the relative entropy on Fn as before using Lemma 4 and the formula

14



for the relative entropy between Normal random variables,

H (Q |W) |Fn =

n∑
k=1

H
(
N (∆n

kb,
1
n) | N (0, 1

n)
)
=

n

2

n∑
k=1

(∆n
kb)

2.

So for the specific relative entropy, we have,

h(Q |W) = lim
n→∞

1

2

n∑
k=1

(∆n
kb)

2.

We see that if b is of bounded variation, then the specific relative entropy vanishes,
even if b is not absolutely continuous and thus H (Q |W) = ∞ by Remark 13.

The specific relative entropy can even be finite if we consider laws of processes
that do not have continuous sample paths.

Example 6. Let x ∈ [0, 1] be any irrational number. Let Q be the law of the process,
defined as,

Yt = Bt + 1(x,1](t).

Then Y has càdlàg sample paths and Q ∈ M1(D), where D = D([0, 1]) is the
Skorokhod space. Note that for all n ∈ N and k = 1, ..., n,

∆n
kY =

1 + ∆n
kB if x ∈ (k−1

n , kn ],

∆n
kB else.

We can compute,

H (Q |W) |Fn = H
(
N (1, 1

n) | N (0, 1
n)
)
=

n

2

and so h(Q |W) = 1
2 .

From now on we focus on martingale measures. First we consider a particular class
of measures in M2, for which the specific relative entropy with respect to Wiener
measure exists in [0,+∞] and is given by an explicit formula in terms of the quadratic
variation. For every a ∈ C0 that is non-decreasing we can define Qa := L(Ba(·)).
Then Qa ∈ M2 is Gaussian with independent increments and ⟨X⟩t = a(t).

We will restrict ourselves to the case that a is absolutely continuous. Equivalently,
there exists some σ ∈ L2(λ) such that a(t) =

∫ t
0 σ(s)

2 ds and the measure Qa is the

15



2 The specific relative Entropy

law of the process Y = (Yt)t∈[0,1] defined by,

Yt =

∫ t

0
σ(s) dBs.

For the general case see Theorem 1 in [3, Chapter 1].

Theorem 9. Let a(t) =
∫ t
0 σ(s)

2 ds for some σ ∈ L2(λ). Let Qa ∈ M2 be as defined
above. Then,

h(Qa |W) =
1

2

∫ 1

0
σ(s)2 − 1− log(σ(s)2) ds

= sup
n∈N

1

n
H (Qa |W) |Fn ∈ [0,∞].

Moreover,

1

n
log

dQa

dW

∣∣∣
Fn

L1(Qa)−−−−→ 1

2

∫ 1

0
σ(s)2 − 1− log σ(s)2 ds as n → ∞

if the right-hand side is finite.

Remark 14. Note that we obtain again Example 4 with η = 1 as a special case by
taking σ(s) = σ.

Proof. Under Qa the process X is Gaussian with independent increments and for all
s < t,

Xt −Xs ∼Qa N (0, a(t)− a(s))

Recall that H
(
N (0, σ2) | N (0, η2)

)
= F (σ

2

η2
), where F (x) = 1

2(x − 1 − log(x)). By
Lemma 4 and independence of increments under Qa as well as under W, we can
write,

H (Qa |W) |Fn =

n∑
k=1

H (LQa(∆n
kX) | LW(∆n

kX))

=

n∑
k=1

H
(
N (0, ∆n

ka) | N (0, 1
n))
)

=

n∑
k=1

F (n∆n
ka). (2.1)

Now let Bn := σ
(
(k−1

n , kn ] : k = 1, ..., n
)
. Since we have, a(t) =

∫ t
0 σ(s)

2 ds, where

16



σ2 ∈ L1(λ),

Eλ[σ
2 | Bn](t) = n

n∑
k=1

∆n
ka1( k−1

n
, k
n
](t).

We get in (2.1),

n∑
k=1

F (n∆n
ka) = n

∫ 1

0
F (n∆n

ka)1( k−1
n

, k
n
](s) ds

= n

∫ 1

0
F (Eλ[σ

2 | Bn](s))1( k−1
n

, k
n
](s) ds

and dividing by n, we obtain,

1

n
H (Qa |W) |Fn =

∫ 1

0
F (Eλ[σ

2 | Bn](s))1( k−1
n

, k
n
](s) ds.

We now use that the function F is convex and Jensen’s conditional inequality and
the tower property of conditional expectation to obtain an upper bound for all n ∈ N,

1

n
H (Qa |W) |Fn =

∫ 1

0
F (Eλ[σ

2 | Bn](s)) ds

≤
∫ 1

0
Eλ[F (σ2) | Bn](s) ds

=

∫ 1

0
F (σ(s)2) ds.

Note that Eλ[σ
2 | Bn] → σ2 λ-a.e., by the Lebesgue differentiation theorem. Using

the upper bound and the a.s. convergence we now get,∫ 1

0
F
(
σ(s)2

)
ds =

∫ 1

0
lim inf
n→∞

F
(
Eλ

[
σ2 | Bn

]
(s)
)
ds

≤ lim inf
n→∞

∫ 1

0
F
(
Eλ

[
σ2 | Bn

]
(s)
)
ds

≤ lim sup
n→∞

∫ 1

0
F
(
Eλ

[
σ2 | Bn

]
(s)
)
ds

≤
∫ 1

0
F (σ(s)2) ds,

where the first inequality is by Fatou’s lemma and F ≥ 0 and the last inequality by

17



2 The specific relative Entropy

the upper bound from above. We sum up,

h(Qa |W) = lim
n→∞

1

n
H (Qa |W) |Fn

= lim
n→∞

∫ 1

0
F (Eλ[σ

2 | Bn](s)) ds

= sup
n≥1

1

n
H (Qa |W) |Fn

=

∫ 1

0
F (σ(s)2) ds

which proves the first part of the theorem.

Now we assume that
∫ 1
0 σ(s)2 − 1 − log σ(s)2 ds < ∞ and in particular ∆n

ka > 0

for all n ∈ N and k = 1, ..., n. To show L1 convergence, note that by Lemma 4,

1

n
log

dQa

dW

∣∣∣
Fn

(X) =
1

n

n∑
k=1

log
dN (0, ∆n

ka)

dN (0, 1
n))

(∆n
kX)

=
1

2n

n∑
k=1

{
n(∆n

kX)2 −
(∆n

kX)2

∆n
ka

− log (n∆n
ka)

}
.

We will consider each of the three terms in the sum above individually. For the first

one, we show that
∑n

k=1(∆
n
kX)2

L2(Qa)−−−−→ a(1) as n → ∞. For all n ∈ N we can write,

EQa

( n∑
k=1

(∆n
kX)2 − a(1)

)2
 = EQa

( n∑
k=1

(
(∆n

kX)2 −∆n
ka
))2

 .

Expanding the square, the cross-terms vanish, since ∆n
kX and ∆n

i X are independent
for k ̸= i and EQa

[
(∆n

kX)2 −∆n
ka
]
= 0 and we get,

EQa

( n∑
k=1

(
(∆n

kX)2 −∆n
ka
))2

 =
n∑

k=1

EQa

[(
(∆n

kX)2 −∆n
ka
)2]

.

Factoring out (∆n
ka)

2 and since ∆n
kX√
∆n

ka
∼Qa N (0, 1) we have,

n∑
k=1

EQa

[(
(∆n

kX)2 −∆n
ka
)2]

=
n∑

k=1

(∆n
ka)

2EQa

[(
(∆n

kX)2

∆n
ka

− 1

)2
]

= EQa

[(
N (0, 1)2 − 1

)2] n∑
k=1

(∆n
ka)

2.

18



Summing up we have for all n ∈ N,

EQa

( n∑
k=1

(∆n
kX)2 − a(1)

)2
 = EQa

[(
N (0, 1)2 − 1

)2] n∑
k=1

(∆n
ka)

2

and
∑n

k=1(∆
n
ka)

2 → 0 as n → ∞ since a is non-decreasing.

Next, for every n ∈ N, for k = 1, ..., n,

∆n
kX√
∆n

ka
∼Qa N (0, 1) iid

and so by the Law of Large Numbers,

1

n

n∑
k=1

(∆n
kX)2

∆n
ka

L1(Qa)−−−−→ 1 as n → ∞.

Since we already know

lim
n→∞

EQa

[
1

2n

n∑
k=1

n(∆n
kX)2 −

(∆n
kX)2

∆n
ka

− log (n∆n
ka)

]
=

∫ 1

0
σ(s)2 − 1− log σ(s)2 ds

from the first part of the proof, we have for the deterministic term,

1

2n

n∑
k=1

log (n∆n
ka)

n→∞−−−→
∫ 1

0

1

2
log σ(s)2 ds,

which finishes the proof.

Next we consider more general martingale measures, again with absolutely con-
tinuous quadratic variation. In that case, we obtain a lower bound for the specific
relative entropy along the dyadic subsequence.

Theorem 10. Let Q ∈ M2 be such that X0 = 0 a.s. and ⟨X⟩t =
∫ t
0 σ(s,X)2 ds,

with σ ∈ L2(λ⊗Q) predictable. Then we have,

lim inf
n→∞

1

2n
H (Q |W) |F2n ≥ 1

2
EQ

[∫ 1

0
σ(s,X)2 − 1− log(σ(s,X)2) ds

]
. (2.2)

Proof. Let n ∈ N. We start by defining a new measure on (C,Fn).
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2 The specific relative Entropy

Let Qn be such that for k = 1, . . . , n

X k
n
−X k−1

n
| X0, ..., X k−1

n
∼Qn N

(
0, EQ

[
(∆n

kX)2 | X0, ..., X k−1
n

])
,

i.e. the new measure is defined such that the increments of X have the same condi-
tional variances as under Q.

Assume that H (Q |W) |Fn < ∞. Then it follows that, Q|Fn ≪ W|Fn , which
implies, Q|Fn ≪ Qn and Qn ≪ W|Fn , and thus we have,

dQ
dW

∣∣∣
Fn

=
dQ
dQn

∣∣∣
Fn

dQn

dW

∣∣∣
Fn

.

Now taking the logarithm and integrating with respect to Q yields,

H (Q |W) |Fn =

∫
C
log

dQ
dQn

∣∣∣
Fn

dQ+

∫
C
log

dQn

dW

∣∣∣
Fn

dQ

= H (Q |Qn) |Fn +

∫
C
log

dQn

dW

∣∣∣
Fn

dQ. (2.3)

In the remainder we will show that,

1

2n

∫
C
log

dQ2n

dW

∣∣∣
F2n

dQ

converges to the right-hand side of (2.2).
The statement then follows, since H (Q |Qn) |Fn ≥ 0 for all n ∈ N. We will assume
H (Q |W) |F2n < ∞ for all n ∈ N and thus (2.3) holds for all n ∈ N. The assumption
is justified, since otherwise the left-hand side in (2.2) is infinite and the inequality
trivially true. Note that for this argument we use that the dyadic numbers are nested.

Let Pn := σ
(
A × (s, t] | s < t ∈ {0, 1

n , . . . , 1}, A ∈ σ(X0, X 1
n
, ..., Xs)

)
. Since σ2 is

λ⊗Q-integrable, we can define,

σ2
n := Eλ⊗Q[σ

2 | Pn].

We have for every n ∈ N

σ2
n(t,X) = n

n∑
k=1

EQ

[∫ k
n

k−1
n

σ(s,X)2 ds | X0, ..., X k−1
n

]
(X)1( k−1

n
, k
n
](t).
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Note that this means,

X k
n
−X k−1

n
| X0, ..., X k−1

n
∼Qn N

(
0, 1

nσ
2
n(

k
n , X)

)
.

Indeed, this follows easily from,

1

n
σ2
n(

k
n , X) = EQ

[∫ k
n

k−1
n

σ(s,X)2 ds | X0, ..., X k−1
n

]

= EQ

[
EQ

[∫ k
n

k−1
n

σ(s,X)2 ds | F k−1
n

]
| X0, ..., X k−1

n

]
= EQ

[
EQ

[
(∆n

kX)2 | F k−1
n

]
| X0, ..., X k−1

n

]
= EQ

[
(∆n

kX)2 | X0, ..., X k−1
n

]

and since we have assumed Q|Fn ≪ W|Fn , we have σ2
n(

k
n , X) > 0 Q-a.s.. We can

now compute the Radon-Nikodym density of Qn with respect to W|Fn ,

dQn

dW

∣∣∣
Fn

(X) =
n∏

k=1

dLQn(∆n
kX | X0, ..., X k−1

n
)

dLW(∆n
kX | X0, ..., X k−1

n
)
(∆n

kX)

=
n∏

k=1

dN
(
0, 1

nσ
2
n(

k
n , X)

)
dN
(
0, 1

n

) (∆n
kX)

=
n∏

k=1

1√
σ2
n(

k
n , X)

exp

(
−n

2

(∆n
kX)2

σ2
n(

k
n , X)

+
n

2
(∆n

kX)2

)
.

Taking the logarithm and integrating with respect to Q and dividing by n, we get

1

n

∫
C
log

dQn

dW

∣∣∣
Fn

dQ =
1

n

n∑
k=1

EQ

[
n

2
(∆n

kX)2 − n

2

(∆n
kX)2

σ2
n(

k
n , X)

− 1

2
log σ2

n(
k
n , X)

]
.

(2.4)

Recall that for all n ≥ 1 and all k = 1, ..., n,

1

n
σ2
n(

k
n , X) = EQ

[
(∆n

kX)2 | X0, ..., X k−1
n

]
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2 The specific relative Entropy

and therefore with the tower property of conditional expectation,

EQ

[
n
(∆n

kX)2

σ2
n(

k
n , X)

]
= EQ

[
EQ

[
n
(∆n

kX)2

σ2
n(

k
n , X)

| X0, ..., X k−1
n

]]

= EQ

[
n

σ2
n(

k
n , X)

EQ

[
(∆n

kX)2 | X0, ..., X k−1
n

]]
= 1.

We continue in (2.4) with F (x) := 1
2(x− 1− log x) as before,

1

n

∫
C
log

dQn

dW

∣∣∣
Fn

dQ =
1

n

n∑
k=1

EQ

[
1

2
σ2
n(

k
n , X)− 1

2
− 1

2
log σ2

n(
k
n , X)

]

=
1

n

n∑
k=1

EQ
[
F (σ2

n(
k
n , X))

]
= EQ

[∫ 1

0
F (σ2

n(s,X)) ds

]
where we have used, that t 7→ σ2

n(t,X) is constant on intervals of the form (k−1
n , kn ].

We will now use that F is convex and apply Jensen’s inequality to obtain an upper
bound for all n ∈ N,

EQ

[∫ 1

0
F (σ2

n(s,X)) ds

]
= EQ

[∫ 1

0
F (Eλ⊗Q[σ

2 | Pn](s,X)) ds

]
≤ EQ

[∫ 1

0
Eλ⊗Q[F (σ2) | Pn](s,X) ds

]
= EQ

[∫ 1

0
F (σ(s,X)2) ds

]
,

the last equality is due to Fubini’s theorem for non-negative functions and the tower
property.
Now we restrict ourselves to the subsequence of dyadic numbers. Note that (P2n)n≥1

is a sequence of sigma algebras that increases to the predictable sigma algebra P.
Therefore, σ2

2n is a closed martingale with respect to (P2n)n∈N and from the conver-
gence theorem for uniformly integrable martingales, Theorem 1, it follows that,

σ2
2n(t,X)

n→∞−−−→ σ(t,X)2 λ⊗Q-a.s..
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With Fatou’s lemma and F ≥ 0 and the upper bound from before we get,

EQ

[∫ 1

0
F (σ(s,X)2) ds

]
= EQ

[∫ 1

0
lim inf
n→∞

F (σ2
2n(s,X)) ds

]
≤ lim inf

n→∞
EQ

[∫ 1

0
F (σ2

2n(s,X)) ds

]
≤ lim sup

n→∞
EQ

[∫ 1

0
F (σ2

2n(s,X)) ds

]
≤ EQ

[∫ 1

0
F (σ(s,X)2) ds

]
.

We conclude,

lim
n→∞

1

2n

∫
C
log

dQ2n

dW

∣∣∣
F2n

dQ = EQ

[∫ 1

0
F (σ(s,X)2) ds

]
.

Remark 15. Let Q ∈ M2 as before and such that H (Q |W) |F2n < ∞ for all n ∈ N.
Let Q2n be as in the proof above, then we recall,

1

2n
H (Q |W) |F2n =

1

2n
H(Q |Q2n)|F2n +

1

2n
EQ

[
log

dQ2n

dW

∣∣∣
F2n

(X)

]
.

The question that remains open is, if

1

2n
H(Q |Q2n)|F2n

n→∞−−−→ 0.

If so, then it follows from the proof that, at least along the subsequence of dyadic
numbers, the specific relative entropy is given by,

lim
n→∞

1

2n
H (Q |W) |F2n =

1

2
EQ

[∫ 1

0
σ(s,X)2 − 1− log σ(s,X)2 ds

]
. (2.5)

Remark 16. Note that all arguments in the proof of Theorem 10 and in Remark 15

still hold, if the sequence (2n)n∈N is replaced by (pn)n∈N for any p ∈ N and p ≥ 2.

Remark 17. Let Q ∈ M2 and ν⟨X⟩ be the random measure on [0, 1] with distri-
bution function ⟨X⟩. In the above theorem, the assumption ⟨X⟩t being absolutely
continuous means ν⟨X⟩ ≪ λ and dν⟨X⟩

dλ (t) = σ(t,X)2. So (2.2) takes the alternative
form,

lim inf
n→∞

1

2n
H (Q |W) |F2n ≥ 1

2
EQ
[
ν⟨X⟩([0, 1])− 1− H

(
λ | ν⟨X⟩

)]
.
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2 The specific relative Entropy

Formulated this way, (2.2) also stays true, if the measure Q is such that ⟨X⟩ is not
absolutely continuous. This extension of Theorem 10 can be found in [1], Theorem
17. In that case, the measure ν⟨X⟩ has Lebesgue decomposition ν⟨X⟩ = νXs + νXac ,

where νXs denotes the singular part of ν⟨X⟩ and σ(·, X)2 := dνXac
dλ . Then,

lim inf
n→∞

1

2n
H (Q |W) |F2n ≥ 1

2
EQ
[
ν⟨X⟩([0, 1])− 1− H

(
λ | ν⟨X⟩

)]
=

1

2
EQ

[∫ 1

0
σ(s,X)2 − 1− log σ(s,X)2 ds+ νXs ([0, 1])

]
.

Remark 18. It immediately follows that if Q ∈ M2 is such that h(Q |W) < ∞, then

σ(·, X)2 > 0 λ⊗Q-a.s.,

where σ2 is the Radon-Nikodym density of the the absolutely continuous part of the
measure ν⟨X⟩ as in Remark 17.
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3 The specific relative Entropy for two

classes of Diffusion Processes

As in the previous chapter, we consider a Brownian motion B = (Bt)t∈[0,1] on some
filtered probability space (Ω,S,St,S) and (C,F , (Ft)t∈[0,1]), where again

C = C([0, 1]) = {ω : [0, 1] → R | ω is continuous}

The canonical process X, the filtration (Ft)t∈[0,1] and sigma-algebras Fn are as in
Chapter 2. Now we will also consider laws of processes not concentrated on {ω ∈ C |
ω(0) = 0}, but instead we introduce the measures Wx := L(Bx), where Bx := B+x

for x ∈ R as reference measures. This will allow us to still always neglect time point
0 when computing the relative entropy on the restriction to Fn.

We start by verifying Formula (2.5) in the special case of the law of the martingale
defined as in Example 2 under certain constraints on the defining function f .

Theorem 11. Let f : R → R be a function such that:

(i) E[f(B1)
2] < ∞

(ii) f is continuously differentiable and f ′ > 0

(iii) f ′ satisfies, E[f ′(B1)
2] < ∞ and E[− log f ′(B1)] < ∞.

Let M = (Mt)t∈[0,1] be the martingale defined by

Mt := E [f(B1) | Ft]

and let Q be the law of M on (C,F).
Then

h(Q |Wx) = E

[∫ 1

0

1

2

{
∂2f(t, Bt)

2 − 1− log ∂2f(t, Bt)
2

}
dt

]
(3.1)

where f(t, y) :=
∫
R f(z + y) dN (0, 1− t)(z) and x := E[f(B1)].
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3 The specific relative Entropy for two classes of Diffusion Processes

Remark 19. From the discussion in Example 2 we know, Mt = f(t, Bt) and ⟨M⟩t =∫ t
0 ∂2f(s,Bs)

2 ds. Here we additionally require f to be strictly increasing, so that
for all t ∈ [0, 1] the function f(t, ·) is also strictly increasing and as a consequence
has an inverse f−1(t, ·) defined on f(t,R). This means also Bt can be recovered from
Mt, concretely f−1(t,Mt) = Bt. Define for all x ∈ f(t,R),

σ(t, x) := ∂2f(t, ·) ◦ f−1(t, x)

Then M satisfies the SDE,

dMt = σ(t,Mt) dBt

and we can write (3.1) as,

h(Q |Wx) = E
[∫ 1

0

1

2

{
σ(t,Mt)

2 − 1− log σ(t,Mt)
2
}
dt

]
= EQ

[∫ 1

0

1

2

{
σ(t,Xt)

2 − 1− log σ(t,Xt)
2
}
dt

]
Note that the integrability assumptions on f ′ capture that σ should not be ’too large’
or ’too close to 0’.

Proof. In the first part of the proof, we will compute H (Q |Wx) |Fn for any n ∈ N.
In the second part, we will show convergence of 1

nH (Q |Wx) |Fn .
(i) Fix n ∈ N. In the following denote Mn := (M 1

n
, ...,M1) and Bn analogously.

Since Q and Wx are both concentrated on {X0 = x}, we have,

H (Q |Wx) |Fn = H
(
LQ(X0, X 1

n
, ..., X1) | LWx(X0, X 1

n
, ..., X1)

)
= H

(
LQ(X 1

n
, ..., X1 |X0 = x) | LWx(X 1

n
, ..., X1 |X0 = x)

)
= H

(
L(M 1

n
, ...,M1) | L(Bx

1
n

, ..., Bx
1 )
)
, (3.2)

where Bx = B + x. The key to computing the expression above is that the random
vector Mn has an explicit density with respect to Lebesgue measure.

Define the map ϕn : Rn → Rn as,

ϕn (x1, . . . , xn) =


f( 1n , x1)

...
f(1, xn)
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Recall that f(t, ·) has an inverse f−1(t, ·) defined on f(t,R) for every t ∈ [0, 1]. Note
that this means that ϕn is invertible on ϕn(Rn) and

ϕ−1
n (x1, . . . , xn) =


f−1( 1n , x1)

...
f−1(1, xn)

 .

Moreover, f(t, ·) is continuously differentiable with strictly positive derivative for
every t ∈ [0, 1], ie. ∂2f(t, ·) > 0. The k-th entry of ϕn only depends on xk and
therefore we have for the Jacobian of ϕn,

Jϕn(x1, ..., xn) =
(
∂xif(

j
n , xj) : i, j = 1, ..., n

)
= diag

(
∂2f(

i
n , xi) : i = 1, ..., n

)
and for the Jacobian determinant,

det(Jϕn(x1, ..., xn)) =
n∏

k=1

∂2f(
k
n , xk) > 0

In particular ϕn and ϕ−1
n are continuously differentiable on their respective domains.

Since Mn = ϕn(B
n), where ϕn : Rn → ϕn(Rn) is a diffeomorphism and Bn has a

density p0n, also the vector Mn has a density qxn, which is given by,

qxn(·) = 1ϕn(Rn)(·)p0n ◦ ϕ−1
n (·) 1

det(Jϕn ◦ ϕ−1
n (·))

. (3.3)

Indeed, we have for every A ⊂ Rn measurable,

P (Mn ∈ A) = P
(
Bn ∈ ϕ−1

n (A)
)

=

∫
Rn

1ϕ−1
n (A)(y)p

0
n(y) dy

=

∫
ϕn(Rn)

1A(x)p0n(ϕ
−1
n (x))|det(Jϕ−1

n
(x))| dx

where the last equality follows from a change of variables y = ϕ−1
n (x) and together

with det(Jϕ−1
n
) = (det(Jϕn ◦ ϕ−1

n ))−1 we get (3.3).

Note that 1ϕn(Rn) = 1, L(Mn)-a.e. and explicitly writing out (3.3) we get with
x0 = x,
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3 The specific relative Entropy for two classes of Diffusion Processes

qxn(x)

=

(
2π

n

)−n
2

exp

(
−n

2

n∑
k=1

(f−1( kn , xk)− f−1(k−1
n , xk−1))

2

)
n∏

k=1

1

∂2f(
k
n , f

−1( kn , xk))
,

for L(Mn)-a.e. x = (x1, ..., xn) ∈ Rn.

We continue in (3.2) and write pxn for the density of (Bx
1
n

, ..., Bx
1 ),

H (Q |Wx) |Fn =

∫
Rn

log
qxn(x)
pxn(x)

dL(Mn)(x)

Note that, L(Mn)-a.e.,

log
qxn(x)
pxn(x)

=
n

2

n∑
k=1

(∆n
kx)

2 − n

2

n∑
k=1

(f−1( kn , xk)− f−1(k−1
n , xk−1))

2 −
n∑

k=1

log ∂2f(
k
n , f

−1( kn , xk)).

Recall that f−1(t,Mt) = Bt and so integrating with respect to L(Mn) yields,

H (Q |Wx) |Fn

= E

[
n

2

n∑
k=1

(M k
n
−M k−1

n
)2 − n

2

n∑
k=1

(B k
n
−B k−1

n
)2 −

n∑
k=1

log ∂2f(
k
n , B k

n
)

]

= E

[
n

2

∫ 1

0
∂2f(t, Bt)

2 dt− n

2
−

n∑
k=1

log ∂2f(
k
n , B k

n
)

]
,

which finishes (i).

For (ii), first observe that for all n ∈ N,

1

n
H (Q |Wx) |Fn = E

[∫ 1

0

1

2
∂2f(t, Bt)

2 dt− 1

2
− 1

2n

n∑
k=1

log ∂2f(
k
n , B k

n
)2

]
. (3.4)

In the remainder we will show that

lim
n→∞

E

[
1

n

n∑
k=1

log ∂2f(
k
n , B k

n
)

]
= E

[∫ 1

0
log ∂2f(t, Bt) dt

]
. (3.5)

We will use that ∂2f(t, Bt) is itself a continuous martingale. Indeed, it is of the form
∂2f(t, Bt) = E[f ′(B1)|Ft] a.s., where E[f ′(B1)

2] < ∞ by assumption.
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We have,

E

[
1

n

n∑
k=1

log ∂2f(
k
n , B k

n
)

]
= E

[∫ 1

0

n∑
k=1

log ∂2f(
k
n , B k

n
)1( k−1

n
, k
n
](t) dt

]

To use the martingale property of ∂2f(t, Bt), we first need to assign every interval
the value on its left endpoint,

E

[∫ 1

0

n∑
k=1

log ∂2f(
k
n , B k

n
)1( k−1

n
, k
n
](t) dt

]

= E

[∫ 1

0

n∑
k=1

log ∂2f(
k−1
n , B k−1

n
)1( k−1

n
, k
n
](t) dt

]
− C

n
,

where

C := E [log ∂2f(0, B0)− log ∂2f(1, B1)] = log
(
E
[
f ′(B1)

])
− E

[
log f ′(B1)

]
.

We have that C ≥ 0 by Jensen’s inequality, and C < ∞ due to the assumptions
E[f ′(B1)

2] < ∞ and E[− log f ′(B1)] < ∞.

Define the sigma algebras Pn := σ
(
(k−1

n , kn ]×A : k = 1, ..., n, A ∈ F k−1
n

)
and note

that,

Eλ⊗P [∂2f(·, B·) | Pn] =

n∑
k=1

n

∫ k
n

k−1
n

E
[
∂2f(s,Bs) | F k−1

n

]
ds1( k−1

n
, k
n
]

=

n∑
k=1

∂2f(
k−1
n , B k−1

n
)1( k−1

n
, k
n
],

by the martingale property.

Using that log is concave, we get for all n ∈ N,

E

[∫ 1

0

n∑
k=1

log ∂2f(
k−1
n , B k−1

n
)1( k−1

n
, k
n
](t) dt

]

= E
[∫ 1

0
logEλ⊗P [∂2f(·, B·) | Pn] dt

]
≥ E

[∫ 1

0
Eλ⊗P [log ∂2f(·, B·) | Pn] dt

]
= E

[∫ 1

0
log ∂2f(t, Bt) dt

]
,
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3 The specific relative Entropy for two classes of Diffusion Processes

where the last equality is due to Fubini and the tower property of conditional expec-
tation. The integrals appearing above are all well defined since log ∂2f(t, Bt) is λ⊗P
integrable. Indeed, the positive part of log ∂2f(t, Bt) is dominated by ∂2f(t, Bt),
which is square-integrable, and for the negative part, (log ∂2f(t, Bt))

−, this follows
from the fact that (log(·))− is convex and therefore t 7→ E [(log ∂2f(t, Bt))

−] is non-
decreasing with finite value for t = 1. This also justifies the application of Fubini’s
theorem.

By continuity,

n∑
k=1

log ∂2f(
k
n , B k

n
)1( k−1

n
, k
n
](t)

n→∞−−−→ log ∂2f(t, Bt) λ⊗ P-a.e.,

and additionaly, since log(x) ≤ x, for all n ∈ N,

n∑
k=1

log ∂2f(
k
n , B k

n
)1( k−1

n
, k
n
](t) ≤

n∑
k=1

∂2f(
k
n , B k

n
)1( k−1

n
, k
n
](t) ≤ sup

t∈[0,1]
∂2f(t, Bt)

and the expression on the right-hand side is λ⊗P-integrable by Doob’s L2-inequality
and therefore with Fatou’s lemma and the lower bound from above, we get

E
[∫ 1

0
log ∂2f(t, Bt) dt

]
≥ lim sup

n→∞
E

[∫ 1

0

n∑
k=1

log ∂2f(
k
n , B k

n
)21( k−1

n
, k
n
](t) dt

]

≥ lim inf
n→∞

E

[∫ 1

0

n∑
k=1

log ∂2f(
k
n , B k

n
)21( k−1

n
, k
n
](t) dt

]

= lim inf
n→∞

E

[∫ 1

0

n∑
k=1

log ∂2f(
k−1
n , B k−1

n
)1( k−1

n
, k
n
](t) dt

]
− C

n

≥ lim inf
n→∞

E
[∫ 1

0
log ∂2f(t, Bt) dt

]
− C

n
.

This proves (3.5) and we get in (3.4),

lim
n→∞

1

n
H (Q |Wx) |Fn =

1

2
E
[∫ 1

0
∂2f(t, Bt)

2 − 1− log ∂2f(t, Bt)
2 dt

]
.
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Next, we consider the stochastic differential equation,dMt = σ(t,Mt) dBt

M0 = x,
(3.6)

where σ : [0, 1] × R → R measurable and x ∈ R. Under the assumptions on the
diffusion coefficient σ from Remark 6 (in particular a unique solution exists) the
specific relative entropy with respect to Wiener measure (if it exists) is finite.

Lemma 5. Let σ : [0, 1]× R → R satisfy that

(i) there exists δ ∈ (0, 1] such that δ ≤ σ(t, x) ≤ 1
δ for all t ∈ [0, 1] and x ∈ R

(ii) there exists a constant L > 0 such that |σ(t, y)− σ(s, x)| ≤ L(|y − x|+ |t− s|)
for all x, y ∈ R and s, t ∈ [0, 1].

Let Mx = (Mx
t )t∈[0,1] be the solution to (3.6) with law Qx on (C,F). Then there

exists a constant C ≥ 0 such that,

1

n
H (Qx |Wx) |Fn < C for all n ∈ N.

In particular,

lim sup
n→∞

1

n
H (Qx |Wx) |Fn < ∞.

Proof. To ease notation we write M for Mx. Let γt(·, x) be the Gaussian density
with mean x and variance t. Denote by Q the probability transition function of M
from Remark 7 and P the probability transition function with density γ·(·, ·). From
Remark 9 we know M has a transition density function q(t, y; s, x) that satisfies:
There exist C, c > 0 such that,

q(t, y; s, x) ≤ C√
t− s

e−c
(x−y)2

t−s for all s < t ∈ [0, 1] and x, y ∈ R.

Similar as in Lemma 4, we have by Lemma 2 and the Markov property,

H
(
L(M0,M 1

n
, . . . ,M1) | L(Bx

0 , B
x
1
n

, . . . , Bx
1 )
)

=
n∑

k=1

∫
R2

log
Q( kn , dx k

n
; k−1

n , x k−1
n
)

P ( kn , dx k
n
; k−1

n , x k−1
n
)
dL(M k−1

n
,M k

n
)(xk−1, xk)

=

n∑
k=1

∫
R2

log
q( kn , xk;

k−1
n , xk−1)

γ 1
n
(xk; , xk−1)

dL(M k−1
n
,M k

n
)(xk−1, xk)
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3 The specific relative Entropy for two classes of Diffusion Processes

=

n∑
k=1

E

log q( kn ,M k
n
; k−1

n ,M k−1
n
)

γ 1
n
(M k

n
;M k−1

n
)

 .

Together with the Gaussian upper bound and since

n∑
k=1

E
[
(M k

n
−M k−1

n
)2
]
= E

[∫ 1

0
σ(t,Mt)

2 dt

]
∈ [δ2,

1

δ2
]

we get,

1

n
H (Qx |Wx) |Fn =

1

n

n∑
k=1

E

log q( kn ,M k
n
; k−1

n ,M k−1
n
)

γ 1
n
(M k

n
,M k−1

n
)


≤ 1

n

n∑
k=1

E
[
log(C

√
2π)− cn(M k

n
−M k−1

n
)2 +

n

2
(M k

n
−M k−1

n
)2
]

≤ log(C
√
2π)− cδ2 +

1

2δ2
,

for all n ∈ N.

Now we restrict ourselves to diffusion coefficients that do not depend on the time
variable t. In particular, a solution is time-homogeneous. Let σ : R → R be measur-
able and consider the SDE, dMt = σ(Mt) dBt

M0 = x,
(3.7)

for x ∈ R.
In the next lemma our assumptions on σ guarantee that a unique solution exists

and that it has a transition density function. But more importantly they allow us to
derive estimates on the transition density. These will then be the key to computing
the specific relative entropy between the laws of two martingales arising as solutions
of such SDEs.

Lemma 6. Let Mx be the solution to (3.7) and let σ satisfy,

(i) σ : R → R+ is twice continuously differentiable

(ii) for some L ∈ R we have max{∥σ′∥∞, ∥σ′′∥∞} < L

(iii) there exists δ ∈ (0, 1] such that δ ≤ σ(x) ≤ 1
δ for all x ∈ R.
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Let p(t, x, y) be the transition density function of Mx. Then there exist constants C1

and C2, depending only on δ and L, such that, for all t ∈ (0, 1] and x, y ∈ R:

(i)

p(t, x, y) ≥ e−C2t 1√
2πt

√
σ(x)

σ(y)

1

σ(y)
e
− 1

2t

(∫ y
x

1
σ(u)

du
)2

(ii)

p(t, x, y) ≤ eC1t 1√
2πt

√
σ(x)

σ(y)

1

σ(y)
e
− 1

2t

(∫ y
x

1
σ(u)

du
)2

Proof. Let g : R → R be the strictly increasing and surjective function defined by

g(y) :=

∫ y

x

1

σ(u)
du,

and g−1 its inverse. By Itô’s lemma we have

g(Mx
t ) = Bt −

1

2

∫ t

0
σ′(Mx

s ) ds.

Hence Yt := g(Mx
t ) satisfies Yt = Bt +

∫ t
0 b(Ys)ds, where b := −1

2σ
′ ◦ g−1.

For any Φ ≥ 0 measurable and bounded, we have

E [Φ(Mx
t )] = E

[
Φ(g−1(Yt))

]
= E

[
Φ(g−1(Bt)) exp

(∫ t

0
b(Bs) dBs −

1

2

∫ t

0
b(Bs)

2 ds

)]
= E

[
Φ(g−1(Bt)) exp

(∫ Bt

0
b(u) du− 1

2

∫ t

0
b′(Bs) ds−

1

2

∫ t

0
b(Bs)

2 ds

)]
(3.8)

where the second equality is due to Girsanov’s theorem (applicable as σ′ is bounded),
whereas the last equality follows from∫ Bt

0
b(u) du =

∫ t

0
b(Bs) dBs +

1

2

∫ t

0
b′(Bs) ds,

which is just Itô’s lemma applied to the function f(z) :=
∫ z
0 b(u) du.

To get an upper bound for (3.8) note that,

−b′ − b2 ≤ −b′ =
1

2
(σ · σ′′) ◦ g−1 ≤ L

2δ
(3.9)
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3 The specific relative Entropy for two classes of Diffusion Processes

which implies,

exp

(
−1

2

∫ t

0
b′(Bs) ds−

1

2

∫ t

0
b(Bs)

2 ds

)
≤ exp (t

L

4δ
).

Inserting in (3.8) with C1 :=
L
4δ yields,

E [Φ(Mx
t )] ≤ exp (tC1)E

[
Φ(g−1(Bt)) exp

(∫ Bt

0
b(u) du

)]
. (3.10)

Note that

b = −1

2
σ′ ◦ g−1 = −1

2

(σ ◦ g−1)′

σ ◦ g−1
= −1

2
(log ◦σ ◦ g−1)′

and g−1(B0) = g−1(0) = x. Therefore

∫ Bt

0
b(u) du = −1

2
log

(
σ(g−1(Bt))

σ(g−1(B0))

)
= log

√
σ(x)

σ(g−1(Bt))
.

We can now rewrite the expectation on the right-hand side of (3.10) by using this
observation and then expressing it in terms of the density of Bt. The desired repre-
sentation then follows from a change of variables with y = g−1(z), namely:

E
[
Φ(g−1(Bt)) exp

(∫ Bt

0
b(u) du

)]
= E

[
Φ(g−1(Bt))

√
σ(x)

σ(g−1(Bt))

]

=

∫
R
Φ(g−1(z))

√
σ(x)

σ(g−1(z))

1√
2πt

exp

(
−z2

2t

)
dz

=

∫
R
Φ(y)

√
σ(x)

σ(y)

1√
2πt

exp

(
−g(y)2

2t

)
g′(y) dy

=

∫
R
Φ(y)

√
σ(x)

σ(y)

1√
2πt

exp

(
− 1

2t

(∫ y

x

1

σ(u)
du

)2
)

1

σ(y)
dy.

We conclude that

E [Φ(Mx
t )] ≤ exp (tC1)

∫
R
Φ(y)

√
σ(x)

σ(y)

1√
2πt

exp

(
− 1

2t

(∫ y

x

1

σ(u)
du

)2
)

1

σ(y)
dy.

As this holds for all Φ ≥ 0 measurable and bounded, this proves the desired upper
bound.
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The lower bound follows analogously by replacing (3.9) with

−b′ − b2 =
1

2
(σσ′′) ◦ g−1 − (

1

2
σ′ ◦ g−1)2 ≥ −

(
Lδ

2
+

L2

4

)
.

This implies

exp

(
−1

2

∫ t

0
b′(Bs) ds−

1

2

∫ t

0
b(Bs)

2 ds

)
≥ exp (−tC2),

where C2 :=
Lδ
4 + L2

8 .

Remark 20. In Lemma 5 the estimate from Remark 9 lead to finiteness of the specific
relative entropy. Now, Lemma 6 allows us to gauge small-time behaviour of the
solution Mx more precisely and will lead to a closed-form expression for the specific
relative entropy.

Remark 21. The two-sided estimate on the transition density function in Lemma 6

allows us to consider more general reference measures than Wiener measure W. We
take the new reference measure to be the law of Nx, which is solution to the SDE,dNt = η(Nt) dBt

N0 = x,
(3.11)

where η : R → R measurable.

Theorem 12. Assume the coefficients σ, η : R → R+ both satisfy the assumptions of
Lemma 6.
Let Mx be the solution to (3.7) and Nx the solution to (3.11) and call Qx and Px

their respective laws in (C,F). Then

(i) the specific relative entropy of Qx with respect to Px exists, and

(ii) it has the closed form

h(Qx |Px) =
1

2
E
[∫ 1

0

{
σ(Mx

s )
2

η(Mx
s )

2
− 1− log

σ(Mx
s )

2

η(Mx
s )

2

}
ds

]
. (3.12)

Remark 22. Recalling that X stood for the canonical process, Formula (3.12) be-
comes

h(Qx |Px) =
1

2
EQx

[∫ 1

0

{
σ(Xs)

2

η(Xs)2
− 1− log

σ(Xs)
2

η(Xs)2

}
ds

]
.
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Note that this is consistent with Example 4 in Chapter 2 by taking σ(x) = σ and
η(x) = η.

Remark 23. By taking η(x) = 1, we recover Formula 2.5 from Chapter 2, as a special
case.

Proof. Let q(t, x, y) and p(t, x, y) be the transition density functions of Mx and Nx

respectively. To ease notation we now drop the superscript x from M and N . As in
the proof of Lemma 5, we have,

H (Qx |Px) |Fn = H
(
L(M0,M 1

n
, . . . ,M1) | L(N0, N 1

n
, . . . , N1)

)
=

n∑
k=1

E

[
log

q( 1n ,M k−1
n
,M k

n
)

p( 1n ,M k−1
n
,M k

n
)

]
.

Define,

dσ(x, y) :=

∫ y

x

1

σ(u)
du,

analogously for η. By Lemma 6 for the upper bound of q and the lower bound of p,
we derive the existence of a constant C such that for all x, y ∈ R, t ∈ (0, 1]:

log
q(t, x, y)

p(t, x, y)
≤ Ct+

1

2
log

σ(x)η(y)

σ(y)η(x)
− log

σ(y)

η(y)
− 1

2t
dσ(x, y)

2 +
1

2t
dη(x, y)

2.

Therefore, for all n ∈ N and any k = 1, . . . , n:

E

[
log

q( 1n ,M k−1
n
,M k

n
)

p( 1n ,M k−1
n
,M k

n
)

]

≤ E

[
C

n
+

1

2
log

σ(M k−1
n
)η(M k

n
)

σ(M k
n
)η(M k−1

n
)
− log

σ(M k
n
)

η(M k
n
)

− n

2
dσ(M k−1

n
,M k

n
)2 +

n

2
dη(M k−1

n
,M k

n
)2

]
. (3.13)

Summing over k = 1, . . . , n the log
σ(M k−1

n
)η(M k

n
)

σ(M k
n
)η(M k−1

n
) terms form a telescopic sum. So

for all n ∈ N:

36



1

n
H (Qx |Px)

≤ 1

n

n∑
k=1

E

[
C

n
+

1

2
log

σ(M k−1
n
)η(M k

n
)

σ(M k
n
)η(M k−1

n
)
− log

σ(M k
n
)

η(M k
n
)

− n

2
dσ(M k−1

n
,M k

n
)2 +

n

2
dη(M k−1

n
,M k

n
)2

]

=
C

n
+ E

[
1

2n
log

σ(M0)η(M1)

σ(M1)η(M0)
− 1

n

n∑
k=1

log
σ(M k

n
)

η(M k
n
)

− 1

2

n∑
k=1

dσ(M k−1
n
,M k

n
)2 +

1

2

n∑
k=1

dη(M k−1
n
,M k

n
)2

]
(3.14)

We now show that (3.14) converges to the right-hand side of (3.12). Firstly, since
σ and η are bounded away from 0 and bounded from above, it is clear that,

lim
n→∞

E
[
1

2n
log

σ(M0)η(M1)

σ(M1)η(M0)

]
= 0.

Furthermore for almost every ω ∈ Ω the map t 7→ log(σ(Mt(ω))
η(Mt(ω))

) is continuous, so
that

n∑
k=1

log
σ(M k

n
(ω))

η(M k
n
(ω))

1( k−1
n

, k
n ]
(t)

n→∞−−−→ log
σ(Mt(ω))

η(Mt(ω))
λ⊗ P− a.e.

Since the left-hand side above is bounded uniformly in n, we have by dominated
convergence

lim
n→∞

E

[
1

n

n∑
k=1

log
σ(M k

n
)

η(M k
n
)

]
= lim

n→∞
E

[∫ 1

0

n∑
k=1

log
σ(M k

n
)

η(M k
n
)
1( k−1

n
, k
n ]
(s) ds

]

= E
[∫ 1

0
log

σ(Ms)

η(Ms)
ds

]
.

Next, Itô’s lemma applied to the function F (z) :=
∫ z
0

1
η(u) du yields,

∫ Mt

0

1

η(u)
du =

∫ t

0

σ(Mu)

η(Mu)
dBu − 1

2

∫ t

0

η′(Mu)

η(Mu)2
σ(Mu)

2 du.
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Thus we have,

E

[
1

2

n∑
k=1

dη(M k−1
n
,M k

n
)2

]

= E

1
2

n∑
k=1

∫ M k
n

M k−1
n

1

η(u)
du

2
= E

[
1

2

n∑
k=1

(
F (M k

n
)− F (M k−1

n
)
)2]

=
1

2

n∑
k=1

E

[(∫ k
n

k−1
n

σ(Mu)

η(Mu)
dBu

)2

−
∫ k

n

k−1
n

σ(Mu)

η(Mu)
dBu

∫ k
n

k−1
n

η′(Mu)

η(Mu)2
σ(Mu)

2 du

+
1

4

(∫ k
n

k−1
n

η′(Mu)

η(Mu)2
σ(Mu)

2 du

)2 ]

= E

[
1

2

∫ 1

0

(
σ(Mu)

η(Mu)

)2

du− 1

2

n∑
k=1

∫ k
n

k−1
n

σ(Mu)

η(Mu)
dBu

∫ k
n

k−1
n

η′(Mu)

η(Mu)2
σ(Mu)

2 du

+
1

2

n∑
k=1

1

4

(∫ k
n

k−1
n

η′(Mu)

η(Mu)2
σ(Mu)

2 du

)2 ]
.

The expression above converges to E
[
1
2

∫ 1
0

(
σ(Mu)
η(Mu)

)2
du

]
as n → ∞. Indeed, since

∥η′∥∞ < L and σ, η ∈ (δ, 1δ ), we have that for k = 1, ..., n,

E

[∣∣∣∣∣
∫ k

n

k−1
n

σ(Mu)

η(Mu)
dBu

∣∣∣∣∣
]
≤

E

(∫ k
n

k−1
n

σ(Mu)

η(Mu)
dBu

)2
 1

2

=

(
E

[∫ k
n

k−1
n

σ(Mu)
2

η(Mu)2
du

]) 1
2

≤
√

1

n

1

δ2
,

and therefore∣∣∣∣∣
n∑

k=1

∫ k
n

k−1
n

σ(Mu)

η(Mu)
dBu

∫ k
n

k−1
n

η′(Mu)

η(Mu)2
σ(Mu)

2 du

∣∣∣∣∣ ≤ L

δ4
1

n

n∑
k=1

∣∣∣∣∣
∫ k

n

k−1
n

σ(Mu)

η(Mu)
dBu

∣∣∣∣∣ L1

−→ 0
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as n → ∞. Moreover,

n∑
k=1

(∫ k
n

k−1
n

η′(Mu)

η(Mu)2
σ(Mu)

2 du

)2

≤
n∑

k=1

L2

δ8
1

n2
=

L2

δ8
1

n

L1

−→ 0 as n → ∞,

which yields

lim
n→∞

E

[
1

2

n∑
k=1

dη(M k−1
n
,M k

n
)2

]
= E

[∫ 1

0

1

2

(
σ(Mu)

η(Mu)

)2

du

]
. (3.15)

Lastly, the same arguments with η replaced by σ, show

lim
n→∞

E

[
1

2

n∑
k=1

dσ(M k−1
n
,M k

n
)2

]
=

1

2
.

We conclude that

lim sup
n→∞

1

n
H (Qx |Px) ≤ 1

2
E
[∫ 1

0

σ(Ms)
2

η(Ms)2
− 1− log

σ(Ms)
2

η(Ms)2
ds

]
.

Analogously, by the lower bound for q and the upper bound for p from Lemma 6,
applied in (3.13), we get:

lim inf
n→∞

1

n
H (Qx |Px) ≥ 1

2
E
[∫ 1

0

σ(Ms)
2

η(Ms)2
− 1− log

σ(Ms)
2

η(Ms)2
ds

]
,

which finishes the proof.
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