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Abstract

Phylogenetic reconstruction requires making assumptions about the evolutionary
process underwent by the observed sequences. Since model misspecification can
impede a correct reconstruction, it is important to choose a realistic model and test
its adequacy.

In the first part of this thesis, we analyze the common assumption that all
sequences are possible along evolution. This assumption may be violated due to
restriction enzymes that cleave DNA at specific recognition sites, motivating our
description of the set of strings over a finite alphabet with taboos, that is, with
prohibited substrings. We consider the Hamming graph whose vertices are taboo-free
strings, and whose edges connect any two strings differing at a single site. Any walk
on this graph describes the evolution of a taboo-free sequence. We characterize when
the taboo-free Hamming graph and its suffix subgraphs are connected, concluding
that the existence of disconnected evolutionary paths in nature is possible, although
unlikely.

The second part of this thesis proposes new measures of phylogenetic information
to assess the reliability of conclusions drawn from phylogenetic inference. These
measures are the coherence of a branch, quantifying the dependence between two
adjacent clades, and the memory of a clade, which quantifies the identification of
the parent node of a clade. We explain the relationship of these measures with
the underlying tree structure of the phylogeny, and then apply them to describe
two problems of phylogenetics. First, we use the coherence to construct a powerful
test for saturation along a branch of a phylogeny. Secondly, the memory is used to
bound the information flow from children to parent node on a d-ary tree during the
reconstruction of the root identity.
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Kurzfasssung

Die phylogenetische Rekonstruktion erfordert Annahmen über den evolutionären
Prozess, den die beobachteten Sequenzen durchlaufen haben. Da ein falsches Modell
eine korrekte Rekonstruktion verhindern kann, sind die Auswahl eines realistischen
Modells und die Prüfung seiner Eignung wichtige Schritte.

Im ersten Teil dieser Arbeit analysieren wir die übliche Annahme, dass alle Se-
quenzen entlang der Evolution möglich sind. Diese Annahme kann durch Restrik-
tionsenzyme verletzt werden, die die DNA an bestimmten Erkennungsstellen schnei-
den. Dies motiviert unsere Beschreibung der Menge von Zeichenketten mit Tabus,
d.h. mit verbotenen Teilketten. Wir beschreiben den Hamming-Graphen, dessen
Knoten tabufreie Zeichenketten sind und dessen Kanten jede zwei Zeichenketten
verbinden, die sich an einer einzigen Stelle unterscheiden. Jede Irrfahrt auf diesem
Graphen räpresentiert die Entwicklung einer tabufreien Sequenz. Wir charakter-
isieren, wann der tabufreie Hamming-Graph und seine Suffix-Teilgraphen zusam-
menhängend sind. Unser Schluss ist, dass die Existenz von unverbundenen Evolu-
tionspfaden in der Natur möglich, wenn auch unwahrscheinlich ist.

Im zweiten Teil dieser Arbeit werden neue Maße der phylogenetische Informa-
tionen vorgeschlagen, um die Zuverlässigkeit eines bestimmten Evolutionsprozesses
zu bewerten. Diese Maße sind die Kohärenz eines Astes, die die Abhängigkeit zwis-
chen zwei benachbarten Gruppen quantifiziert, und das Gedächtnis einer Gruppe,
das die Identifizierung des Elternknotens einer Gruppe quantifiziert. Wir zeigen die
Beziehung zwischen diesen Maßen und der latenten Baumstruktur der Phylogenie.
Dann wenden wir diese Maße an, um zwei phylogenetische Probleme zu beschreiben.
Erstens verwenden wir die Kohärenz, um einen trennschärfen Test auf Sättigung ent-
lang eines Astes einer Phylogenie zu konstruieren. Zweitens wird das Gedächtnis
verwendet, um den Informationsfluss von Kindernknoten zu Elternknoten in einem
d-Weg Baum während der Rekonstruktion der Stammidentität zu begrenzen.
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Chapter 1

Introduction

The reconstruction of past events given some observed data is a familiar task. If a
friend arrives to a meeting with some delay and wet clothes, we may infer that the
rain caused both the delay and the wet clothes. This inference becomes superfluous
if, for example, our friend explains that the delay was due to some urgent and
unexpected duty.

In phylogenetics, we aim to reconstruct the evolutionary history of organisms
or species. In modern times, the observed data are either nucleotide or amino acid
sequences of currently living organisms. There are immensely many ways to explain
these observed data, and therefore we are obliged to make restrictive assumptions
about the possible reconstructions. As an example, we will always assume that all
nucleotide mutations are substitutions of one nucleotide by another, even though
insertions and deletions of nucleotides are not rare.

The different topics of this work share the focus on assessing whether a phylo-
genetic assumption is sensible or not. We could imagine a practitioner who, before
or after the reconstruction protocol, is unsure about the truth of the assumptions
made.

In Chapter 2, we study the assumption that all sequences are possible during
evolution. First we note that some prokaryotes have restriction enzymes which for-
bid some substrings in their genomes, which we call taboos. We model the evolution
of a sequence affected by taboos as a path on a graph. The nodes of this graph
are the allowed sequences, while edges represent the substitution of one nucleotide
by another. Interestingly, we can construct examples where just a few taboos suf-
fice to disconnect a taboo-free graph, questioning the general assumption that all
allowed sequences can be reached along evolution. The main purpose of Chapter 2
is characterizing the connectivity of all taboo-free graphs.

Chapter 3 has an abstract origin. We start by proposing new measures of phylo-
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genetic information, namely the memory of a clade and the coherence of a branch,
arguing that they adequately describe the structure of the latent phylogenetic tree.
To apply these measures, we formalize the concept of substitution saturation from
a statistical point of view. In essence, saturation occurs if we cannot reject the
null hypothesis that too many substitutions occurred as to provide any information.
Armed with this theoretical framework, we use the coherence of a branch to test
the assumption that two clades of a reconstructed tree have a detectable evolution-
ary history in common. Chapter 3 likely contains the most powerful results of this
thesis.

In Chapter 4, we analyze the following problem: Given a phylogenetic tree,
how much do we know about the identity of the ancestral sequences? We start
by quantifying identification using the norm of the memory vector, which is a very
similar measure to the memory of a clade studied in Chapter 3. Then we bound
the flow of the "amount of identification" from observed to unobserved sequences
following the Pruning algorithm to compute likelihoods in a phylogeny. Finally,
using this upper bound, we give sufficient conditions under which we cannot identify
the ancestral sequence at all, no matter how many descendant species are observed.

Chapter 1. Introduction 2



Chapter 2

Structure of the space of taboo-free
sequences

Publication history and status

Submitted on October 29th 2019 to the Journal of Mathematical Biology, accepted
for publication on August 19th 2020, published online on September 17th 2020.

C. Manuel and A. von Haeseler. Structure of the space of taboo-free sequences.
Journal of Mathematical Biology, 81(4):1029–1057, 2020

Abstract

Models of sequence evolution typically assume that all sequences are possible. How-
ever, restriction enzymes that cut DNA at specific recognition sites provide an exam-
ple where carrying a recognition site can be lethal. Motivated by this observation,
we studied the set of strings over a finite alphabet with taboos, that is, with pro-
hibited substrings. The taboo-set is referred to as T and any allowed string as a
taboo-free string. We consider the so-called Hamming graph Γn(T), whose vertices
are taboo-free strings of length n and whose edges connect two taboo-free strings if
their Hamming distance equals one. Any (random) walk on this graph describes the
evolution of a DNA sequence that avoids taboos. We describe the construction of
the vertex set of Γn(T). Then we state conditions under which Γn(T) and its suffix
subgraphs are connected. Moreover, we provide an algorithm that determines if all
these graphs are connected for an arbitrary T.

As an application of the algorithm, we show that about 87% of bacteria listed
in REBASE have a taboo-set that induces connected taboo-free Hamming graphs,
because they have less than four type II restriction enzymes. On the other hand,

3



four properly chosen taboos are enough to disconnect one suffix subgraph, and con-
sequently connectivity of taboo-free Hamming graphs could change depending on
the composition of restriction sites.

2.1 Introduction

In bacteria, restriction enzymes cleave foreign DNA to stop its propagation. To
do so, a double-stranded cut is induced by a so-called recognition site, a DNA
sequence of length 4−8 base pairs [Alberts et al., 2004]. As part of their restriction-
modification (R-M) system, bacteria can escape the lethal effect of their own restric-
tion enzymes by modifying recognition sites in their own DNA [Kommireddy and
Nagaraja, 2013]. Nevertheless, Gelfand and Koonin [1997] and Rocha et al. [2001]
found a significant avoidance of recognition sites in bacterial DNA, and Rusinov
et al. [2015] showed that this avoidance was characteristic of type II R-M systems.
Also in bacteriophages, the avoidance of the recognition sites is evolutionary advan-
tageous [Rocha et al., 2001], mainly for non-temperate bacteriophages affected by
orthodox type II R-M systems [Rusinov et al., 2018a]. Therefore in those instances
the recognition site is, as we call it, a taboo for host and foreign DNA.

Although avoidance of recognition sites is well studied, e.g. by Rusinov et al.
[2018b], taboo free DNA evolution has not yet been modelled. To initiate models
of sequence evolution with taboos, we studied the Hamming graph Γn(T), whose
vertices are strings of length n over a finite alphabet Σ not containing any taboos
of the set T as subsequence. Two vertices of the Hamming graph are adjacent if the
corresponding taboo-free strings have Hamming distance equal to one. In biological
terms, the sequences differ by a single substitution.

We note that, for a binary alphabet Σ = {0, 1} and taboo-set T = {11}, the
corresponding Hamming graphs Γn(T) are known as Fibonacci cubes. Some prop-
erties of the Fibonacci cubes like the Wiener Index or the degree distribution were
surveyed by Klavžar [2013]. Further results have been obtained for taboo-sets for-
bidding arbitrary numbers of consecutive "1"s, T = {1 . . . 1}, by Hsu and Chung
[1993], or when T = {s} for an arbitrary binary string s by Ilić et al. [2012]. Re-
cently, the equivalent problem of lattice paths that avoid some patterns has been
described using automata and generating functions by Asinowski et al. [2018, 2019].

We are not so much interested in enumerative properties of Hamming graphs.
We want to define conditions under which the Hamming graphs stay connected for
arbitrary finite alphabets and arbitrary finite taboo-sets. From an evolutionary point

Chapter 2. Structure of the space of taboo-free sequences 4



of view, connectivity guarantees that any taboo-free sequence can be generated by
point mutations from any initial taboo-free sequence without containing a taboo-
string during evolution. To include further biological realism, we will also study
the connectivity of subgraphs Γs

n(T) of the Hamming graph, where s is a taboo-free
suffix. Suffix s can be viewed as a conserved DNA fragment, that is, a sequence
that remained invariable during evolution [Shoemaker and Fitch, 1989, Fitch and
Margoliash, 1967].

The inclusion of Hamming graphs with a constant suffix provides more general
results, because Γe

n(T) = Γn(T), where e is the empty string. Given a taboo-set
T, if for every taboo-free string s and integer n the Hamming graph Γs

n(T) is con-
nected, then evolution can explore the space of taboo-free sequences by simple point
mutation, no matter which DNA suffix fragments remain invariable, as long as the
taboo-set T does not change in the course of evolution.

2.2 Motivating examples and non-technical presen-

tation of key results

Here, we give a non-technical description of the essential results to determine con-
nectivity. The subsequent sections provide a more technical and precise description
of the central results.

Consider an alphabet Σ, for example Σ = {0, 1}. In a Hamming graph of
length n, all possible words of length n are vertices, and two of these vertices
are joined by an edge if they differ in exactly one position. A taboo-set is a set
of forbidden subwords, such as T = {11, 000}. Then, to construct a taboo-free
Hamming graph Γn(T), we simply have to erase all words of the Hamming graph
of length n containing those taboos. Fig. 2.1 provides an example where Γn(T) is
disconnected for n ≥ 3.

Given some alphabet and some taboo-set, deciding whether graph Γn(T) is con-
nected is not a trivial task. To see this, consider the four-nucleotide alphabet
Σ = {A,C,G, T}, which is our main object of interest. Figure 2.2 shows the con-
nected graph Γ3(T) for taboo-set T = {AA,AC,AG,CA,CC,CG,GA,GC,GG}.
The word TTT is a cut vertex, meaning that taboo-set T∗ = T

⋃
{TTT} yields

the disconnected graph Γ3(T∗).

Since the addition or deletion of one single taboo can have such an impact on
connectivity, we need a tool to determine the structure of the taboo-free Hamming

Chapter 2. Structure of the space of taboo-free sequences 5



Figure 2.1: Graph Γn(T) for n ∈ [1, 5] for binary alphabet Σ = {0, 1} and
T = {11, 000}. Set Vn+1(T) is constructed by adding every allowed letter at the
beginning of each string in Vn(T).

graphs. This tool is described in full generality at the end of Section 2.8. In the
particular case when Σ = {A,C,G, T}, our results can be simplified as follows.

1) If the number of taboos is smaller than the size of the alphabet, that is if
|T| < 4, then all graphs Γs

n(T) are connected (Corollary 2.25.b). For example,
given T = {AATT,CCGG}, all taboo-free Hamming graphs are connected.

Similarly, if the size of the set of all starting letters of taboos is
smaller than the size of the alphabet, then all taboo-free Hamming
graphs are connected (Corollary 2.25.a). This applies for taboo-set
T = {AA,AC,AG,CA,CC,CG,GA,GC,GG}, because the set of initial let-
ters is {A,C,G} and |{A,C,G}| = 3 < 4.

2) Prop. 2.24 describes a slightly more complex sufficient condition to deter-
mine connectivity. Given T, delete the first letter of each taboo to con-
struct the set Ψ(T). For example, if T = {AAA,CCA,GGA, TTT}, then
Ψ(T) = {AA,CA,GA, TT}.

In set Ψ(T), consider every pair of strings with Hamming distances 1 or 0. For
example, the pair (AA,AA) has distance 0; the pair (AA,CA) has distance 1;
and the pair (AA, TT ) has distance 2. If every pair with Hamming distance 1

or 0 can be taboo-free extended to the left by the same letter, then all graphs
Γs
n(T) are connected.

For example, the pair (AA,AA) can be extended by C, because CAA is taboo-
free, and the pair (AA,CA) can be extended by T , because TAA and TCA are
taboo-free. After checking all possible pairs with Hamming distance 0 or 1, we
see that all such pairs in Ψ(T) are extendable to the left, and thus taboo-set
T generates connected taboo-free Hamming graphs.

Chapter 2. Structure of the space of taboo-free sequences 6



Figure 2.2: Graph Γ3(T), where Σ = {A,C,G, T} and
T = {AA,AC,AG,CA,CC,CG,GA,GC,GG}. Vertex TTT is a cut vertex,
because if we remove TTT and its incident edges (dashed lines, coloured red),
then the resulting graph is disconnected. Consequently, graph Γ3(T∗) induced by
taboo-set T∗ = T

⋃
{TTT} is disconnected. Red, blue and yellow edges connect

vertices with a different distribution of letter T .

3) If Prop. 2.24 cannot be applied, then we apply the characterization of Theorem
2.22. Assume for example that T = {AAA,CCA, TAA,GAA}. Since the pair
{AA,CA} ⊂ Ψ(T) with Hamming distance one is not taboo-free extendable
to the left by any letter, we proceed as follows. First we construct suf(T), the
set of all proper suffixes of T. In our example, suf(T) = {AA,CA,A, e}, where
e is the string with no letters. Now we consider, for every suffix r ∈ suf(T) the
graph Γr

|r|+M(T), where |r| is the length of r and M is the length of the longest
taboo(s) in T. If all graphs Γr

|r|+M(T) are connected, then every graph Γs
n(T)

is connected. In our example, graphs ΓAA
5 (T), ΓCA

5 (T), ΓA
4 (T) and Γ3(T) are

connected, implying that all taboo-free Hamming graphs are connected.

When graph Γr
|r|+M(T) is disconnected for some r ∈ suf(T), then suffix r

induces disconnected taboo-free Hamming graphs of the form Γr
n(T) for n ≥

|r| + M . Therefore evolution cannot explore the whole space of taboo-free
sequences. This is the case for taboo-set T∗ of Figure 2.2, where r = e yields
the disconnected graph Γ3(T∗).
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2.3 Outline

We will characterize taboo-sets T such that every Hamming graph of the form Γs
n(T)

is connected. To this end, we describe in Section 2.5 basic properties of taboo-sets
. In Section 2.6, we introduce a very general type of taboo-sets, called left proper
(Def. 2.4), which are our main object of study. In Prop. 2.11.b we show that,
to construct graph Γs

n(T), we only need the longest prefix of s which is a suffix
of a taboo, which we call s[1, ks]. In Section 2.7 we state the graph isomorphism
Γs
n(T) ≃ Γ

s[1,ks]
n (T) (Theorem 2.16). In Section 2.8 we explain how the edges of a

quotient graph are related to the structure of graph Γn
n(T) (Prop. 2.17).

Combining all these results, in Section 2.8 we characterize the connectivity of
Hamming graphs Γs

n(T). We prove by induction that the connectivity of a small
number of quotient graphs implies the connectivity of all Hamming graphs with long
suffixes (Prop. 2.20). This result can be used to prove connectivity of Hamming
graphs with short suffixes (Prop. 2.21). These two results yield the characterization
of the connectivity of every suffix Hamming graph in Theorem 2.22. Section 2.9
provides examples of bacterial taboo-sets and their connectivity.

2.4 Basic notations

We will introduce some standard notations concerning strings as well as some rele-
vant terms from graph theory.

2.4.1 Strings

We will use the term string to refer to a sequence of symbols over an arbitrary
finite alphabet Σ = {a1, · · · , am}, where m ≥ 2, while (DNA) sequence is re-
served for biological contexts, where the alphabet consists of the four nucleotides
Σ = {A,C,G, T}.

We denote the set of strings of length n over the alphabet Σ by Σn. The length
of a string s is denoted by |s|. The empty string will be denoted by e, and satisfies
|e| = 0 and {e} = Σ0.

Given a string s = b1 · · · bn ∈ Σn, the expression

s[i, j] :=

bi · · · bj if 1 ≤ i ≤ j ≤ n

e otherwise

denotes the substring of s starting at the i-th position and ending at the j-th

Chapter 2. Structure of the space of taboo-free sequences 8



position, and e when this substring is not well-defined (for example if j = 0). In
particular s[1, j] is a prefix of s that ends at position j and s[i, n] is a suffix of s
that starts at position i. A substring, prefix or suffix is called proper if it is not
the entire string s. For a set of strings S, we define the substrings from the ith
to the jth position of S as

S[i, j] := {s[i, j] | s ∈ S}.

We also need the set of proper suffixes of S, defined as

suf(S) :=
(⋃

s∈S

⋃
i∈[2,|s|]

s[i, |s|]
)⋃

{e}.

Where i ∈ [2, |s|] refers to all integers i within the interval [2, |s|]. It should not be
confused with substring s[2, |s|] of s.

Example 2.1. If S = {ACG, GGG, TTC, CC} then

suf(S) = {CG, G, GG, TC, C, e}.

If string s1 is substring of string s2, we write s1 ≺ s2, while s1 ̸≺ s2 denotes that
s1 is not a substring of s2. By convention, e ≺ s for any string s. For strings s1
and s2, we define s1s2 as the concatenation of s1 and s2. Note that es = se = s

for any s. For a string s and a set of strings S = {s1, · · · sk}, the concatenation of s
with all elements in S is denoted by s ◦ S := {ss1, · · · ssk}. If S1 and S2 are disjoint
sets, then the disjoint union of S1 and S2 will be denoted by S1

⊔
S2.

Finally, given two strings s1, s2 of equal length, d(s1, s2) denotes their Hamming
distance, that is, the number of positions at which the corresponding symbols differ.

2.4.2 Graph theory

We will use common graph theory terminology following Wilson [1986]. Let G =

(V,E) denote a simple, undirected graph with vertex set V and edge set E. We say
that graph G1 = (V1, E1) is subgraph of G2 = (V2, E2) if V1 ⊆ V2 and E1 ⊆ E2, and
we denote this as G1 ⊆ G2.

Given a graph G = (V,E) and a subset V1 ⊆ V , then the subgraph induced
by V1 in G, G(V1) = (V1, EV1), has vertex set V1 and, for any u, v ∈ V1, {u, v} ∈ EV1

iff {u, v} ∈ E.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, denoted by G1 ≃
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Figure 2.3: Example of a quotient graph. For G = (V,E) on the left hand side,
with V = {1, 2, 3, 4, 5, 6, 7, 8} and partition V = Va

⊔
Vb

⊔
Vc

⊔
Vd, we obtain the

quotient graph Q[G] on the right hand side.

G2, if there exists a bijection f : V1 → V2 such that, for every u, v ∈ V1, {u, v} ∈ E1

iff {f(u), f(v)} ∈ E2. That is, G1 and G2 are isomorphic if there exists an edge-
preserving bijection between their vertex sets.

We will also need the quotient graph, as defined by Sanders and Schulz [2013],
to study the connectivity of Hamming graphs. To define it, consider a graph G =

(V,E) and a partition of its vertex set V , namely V =
⊔

b∈J Vb for some index set J .
The quotient graph of G, denoted as Q[G] = (J,EJ), is the graph whose vertices
are J and such that {b1, b2} ∈ EJ iff an edge connects a vertex in Vb1 with a vertex
in Vb2 . Figure 2.3 gives an example of a quotient graph.

Our strategy to prove connectivity of taboo-free Hamming graphs will use the
following propositions, whose proof is simple enough to be omitted

Proposition 2.1. Consider graph G = (V,E) and partition V =
⊔

b∈J Vb.

If every induced subgraph G(Vb) for b ∈ J is connected and the quotient graph
Q[G] is connected, then G is connected.

Proposition 2.2. For graph G = (V,E), the following statements are equivalent:

• G is connected.

• For every partition of V , the quotient graph Q[G] is connected.

2.5 Properties of taboo-sets

We will repetadly use of the following terminology.

Definition 2.1.
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• A finite set of strings T such that every t ∈ T satisfies |t| ≥ 2 is called a
taboo-set.

• Strings in T are called taboos.

• The length of the longest taboo(s) in T will be denoted by
M := max {|t|}t∈T.

• A string is taboo-free if it does not contain any taboo of T as substring.

• Vn(T) denotes the set of taboo-free strings of length n.

• V s
n (T) denotes the set of strings in Vn(T) with suffix s.

• Similarly, sVn(T) denotes all strings in Vn(T) with prefix s.

With Definition 2.1 in mind, we can prove some simple properties of taboo-sets.

Proposition 2.3. Given taboo-sets T1 and T2, it holds that:

a) Set T1

⋃
T2 is a taboo-set

b) For n ∈ N, Vn(T1)
⋂
Vn(T2) = Vn(T1

⋃
T2).

c) If for every t1 ∈ T1 there exists t2 ∈ T2 such that t2 ≺ t1, then for any n ∈ N,
Vn(T2) ⊆ Vn(T1).

Proof.

a) Every t ∈ T1

⋃
T2 has length at least 2, and thus T1

⋃
T2 is a taboo-set.

b) All strings s ∈ Vn(T1)
⋂
Vn(T2) satisfy t1 ̸≺ s for all t1 ∈ T1 and t2 ̸≺ s for all

t2 ∈ T2 this is equivalent to s satisfying t ̸≺ s for all t ∈ T1

⋃
T2.

c) Consider s ∈ Vn(T2). Assume that s /∈ Vn(T1); then there exists t1 ∈ T1 such
that t1 ≺ s. But there also exists a t2 ∈ T2 such that t2 ≺ t1, and thus t2 ≺ s,
a contradiction. Hence s ∈ Vn(T1). ■

For a given n and T, we can find a taboo-set T′ ̸= T such that Vn(T) = Vn(T′).

In this sense, taboo-sets are not unique, as we illustrate in the following proposition.

Proposition 2.4. For a string t and n ≥ |t|+ 1, it holds that

Vn({t}) = Vn

(
(t ◦ Σ)

⋃
(Σ ◦ t)

)
.
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Proof.

• ⊆ : Any taboo in T1 := (t ◦ Σ)
⋃

(Σ ◦ t) has t ∈ T2 := {t} as substring, and
thus Prop. 2.3.c implies Vn({t}) ⊆ Vn((t ◦ Σ)

⋃
(Σ ◦ t)).

• ⊇ : Assume that there exists an s ∈ Vn((t ◦ Σ)
⋃
(Σ ◦ t)) with t ≺ s. Since

|s| = n and n ≥ |t|+ 1, the substring t is either preceded or followed by some
symbol a ∈ Σ. This contradicts {at, ta} ⊆ (t ◦ Σ) ∪ (Σ ◦ t). ■

Prop. 2.4 implies that, for any T, we can construct many taboo-sets T′ such that
Vn(T) = Vn(T′) as long as n ≥ max(M,M ′), where M and M ′ denote the length of
the longest taboo in T and T′, respectively.

Example 2.2. If T = T1

⊔
T2 with T2 = (t◦Σ)∪ (Σ◦ t), Prop. 2.3.a and 2.4 imply

that T′ := T1

⊔
{t} satisfies Vn(T) = Vn(T′) for any n ≥M . Repeating this process,

we can construct a taboo-set T′ such that (t ◦Σ)
⋃

(Σ ◦ t) ̸⊆ T′ for any string t and
satisfying Vn(T) = Vn(T′) for any n ≥M .

Example 2.2 and Prop. 2.4 motivate the following definition.

Definition 2.2. A taboo-set T is minimal if the following conditions hold:

a For every different t1, t2 ∈ T, it holds that t1 ̸≺ t2.

b For every j ∈ [0,M − 1] and s ∈ Vj(T), set (s ◦Σ)
⋃

(Σ ◦ s) is not a subset of
T.

Condition a) is easy to justify: If string AA is a taboo, it is re-
dundant that AAA be a taboo. Condition b) avoids unnecessarily compli-
cated taboo-sets. For example, using the four-nucleotide alphabet, taboo-set
T = {AAA,AAC,AAG,AAT,CAA,GAA, TAA} can be minimized as T′ = {AA}.
In general, one can minimize a taboo-set according to Example 2.2.

Since we want to study taboo-free strings of arbitrary lengths, we need conditions
to concatenate taboo-free strings such that the concatenated sequence is taboo-free.
The following result gives such a condition.

Proposition 2.5. Given taboo-set T, consider three strings s1, s2, s3 such that s1s2
and s2s3 are taboo-free and |s2] ≥M − 1. Then s := s1s2s3 is taboo-free.
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Proof. If |s1| = 0 and |s3| = 0, then s = s2 is taboo-free, as desired. Now assume
either |s1| > 0 or |s3| > 0, yielding n := |s1| + |s2| + |s3| ≥ M . For each i ∈ [1, n−
(M + 1)], the fact that |s2| ≥ M − 1 implies that either s[i, i+M − 1] ≺ s1s2 or
s[i, i+M − 1] ≺ s2s3, hence each s[i, i+M − 1] is taboo-free and the result follows.
■

2.6 Prefixes and suffixes of a taboo-free string

Given a taboo-free string s, the construction of set V s
n (T) for n > |s| depends on

which string w can be concatenated to the left side of s, such that ws ∈ Vn(T). This
motivates the following definition.

Definition 2.3. Given a taboo-set T, consider a taboo-free string s and k ∈ N0.
The k-prefixes of s are the elements of the set Lk(s), defined as

Lk(s) := {w ∈ Σk such that ws is taboo-free } = V s
|s|+k(T)[1, k].

If Lk(s) ̸= ∅, then we will say that s is k-prefixable.
Similarly, the k-suffixes of s, denoted Rk(s), are the strings w ∈ Σk such that
sw ∈ V|s|+k(T), that is, Rk(s) := sV|s|+k(T)[|s|+1, |s|+ k]. When Rk(s) ̸= ∅, we say
that s is k-suffixable.

Example 2.3. If Σ = {A,C,G, T} and T = {CAA,GAA, TAA}, then
L1(AA) = {A} and L2(AA) = {AA}. Hence string AA is 1-prefixable and 2-
prefixable. Moreover, R1(AA) = {A,C,G, T}, hence string AA is 1-suffixable.

By construction, given s ∈ V|s|(T), for any k ∈ N0 it holds that

V s
k+|s|(T) = Lk(s) ◦ s. (2.1)

That is, V s
k+|s|(T) is Lk(s) with s concatenated. Moreover, the following propo-

sition shows that the k-prefixes of a string s induce a disjoint partition of the set
V s
n (T).

Proposition 2.6. Given a taboo-set T and a taboo-free string s, consider integers
k ∈ N0 and n ≥ k + |s|. It holds that

V s
n (T) =

⊔
w∈Lk(s)

V ws
n (T).
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That is, the set V s
n (T) can be partitioned into the disjoint sets of taboo-free strings

of length n with suffix ws, where w ∈ Lk(s).

Proof. If s is not k-prefixable, then Lk(s) = ∅ and V s
n (T) = ∅, hence the equation

holds. Otherwise, the inclusion ⊇ is clear, while the ⊆ follows from the fact that, for
any string w ∈ Σk preceding the suffix s, this w must necessarily belong to Lk(s).
■

Clearly, if a taboo-free string s is k∗-prefixable, then it is also k-prefixable for
any integer k < k∗, while nothing can be said a priori about the case k > k∗.
Consequently, we need to find conditions under which one can concatenate at least
one symbol to the left of a taboo-free string. We will first introduce such taboo-sets
in Def. 2.4 and then characterize prefixability in Prop. 2.7.

Definition 2.4. A taboo-set T is called left proper if every s ∈ VM(T) is 1-
prefixable. Analogously, T is right proper if every s ∈ VM(T) is 1-suffixable.

Example 2.4. If Σ = {A,C,G, T} and T = Σ ◦ A, then AC ∈ V2(T) and AC is
not 1-suffixable. Thus, T is not left proper.

Proposition 2.7. Consider a left proper taboo-set T and a taboo-free string s such
that one of the following conditions holds:

a) |s| ≥M

b) |s| ≤M − 1 and s is (M − |s|)-prefixable

Then s is k-prefixable for every k ∈ N.

Proof. If condition a) applies, then the prefix s[1,M ] ∈ VM(T) is 1-prefixable, be-
cause T is left proper. That is, there exists a ∈ Σ with as ∈ V1+|s|(T). Proceeding
analogously with (as)[1,M ], we infer that s is 2-prefixable. Continuing with this
process, we deduce that s is k-prefixable for any k ∈ N.

If condition b) holds, then we can take any string in V s
M(T) and proceed as we did

assuming a). ■

We mainly study left proper taboo-sets due to Prop. 2.7, because the existence
of arbitrary k-prefixes is necessary in many of our proofs. Analogous results for right
proper taboo-sets are obtained by reversing the order of the symbols composing the
string.

According to Prop. 2.7, if the length of a taboo-free string is at least M , then the
taboo-free string can prefixed for arbitrary lengths. Otherwise, one needs to check
the (M − |s|)-prefixability of this string. To that end, the following result comes in
handy.
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Proposition 2.8. Consider a left proper taboo-set T and a taboo-free string s.

a) If |s| ≤M − 1 and s /∈ suf(VM(T)), then V s
n (T) = ∅ for n ≥M .

b) If either |s| ≥M or s ∈ suf(VM(T)), then V s
n (T) ̸= ∅ for n ≥ max(|s|,M).

Proof.

a) If 0 ≤ |s| ≤ M − 1 and s /∈ suf(VM(T)), since suf(V s
M(T)) ⊆ suf(VM(T)), it

holds that V s
M(T) = ∅. This implies that V s

n (T) = ∅ for every n ≥M , because
otherwise

∅ ⊊ V s
n (T)[n−M + 1, n] ⊆ V s

M(T),

which contradicts V s
M(T) = ∅.

b) If |s| ≥ M , since T is left proper, Prop. 2.7.a implies that s is k-prefixable
for every k ∈ N. Thus, V s

n (T) ̸= ∅. Similarly, if s ∈ suf(VM(T)), then s is
(M − |s|)-prefixable, and thus Prop. 2.7.b implies that s is k-prefixable for
every k ∈ N. ■

Note that, since the assumptions of Prop. 2.8.a are the negation of the assump-
tions of Prop. 2.8.b, in Prop. 2.8 we have proved that V s

n (T) = ∅ for n ≥ M iff
string s satisfies |s| ≤M − 1 and s /∈ suf(VM(T)).

To study the connectivity of Hamming graphs Γs
n(T), we need to know whether

two different strings have a k-prefix in common. Thus, we introduce the following.

Definition 2.5. Given a taboo-set T, we say that two taboo-free strings s1 and
s2 (maybe of different length) are left k-synchronized if Lk(s1)

⋂
Lk(s2) ̸= ∅. If

Rk(s)
⋂
Rk(r) ̸= ∅, then we say that s1 and s2 are right k-synchronized.

In words, two taboo-free strings are left k-synchronized if they are k-prefixable
by at least one string w. Clearly, two taboo-free strings s1, s2 that are left k∗-
synchronized are also left k-synchronized for any k ≤ k∗ (one simply has to "cut"
the k symbols on the left of Lk∗(s1)

⋂
Lk∗(s2)). The following proposition states

when we can also guarantee k-synchronization for k > k∗:

Proposition 2.9. Consider a left proper taboo-set T and two taboo-free strings s1, s2,
with length greater than zero, such that s1 and s2 are left (M−1)-synchronized. Then
s1 and s2 are left k-synchronized for any k ∈ N.
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Proof. If k ≤ M − 1, then the assertion is true since s1 and s2 are (M − 1)-
synchronized.

For k > M − 1, consider a string w ∈ LM−1(s1)
⋂
LM−1(s2). We know that

ws1 and ws2 are taboo-free strings with length at least M . Since T is left proper,
Prop. 2.7.a applied to ws1 and ws2 implies that ws1 and ws2 are k′-prefixable for
any k′ ∈ N. Therefore w is k′-prefixable for any k′ ∈ N. For any k′, take x ∈ Lk′(w)

and consider strings xws and xwr. The fact that |w| = M − 1, together with the
fact that xw and the pair ws1, ws2 are taboo-free, allows applying Prop. 2.5, hence
xws1 and xws2 are also taboo-free.

It follows that xw ∈ LM−1+k′(s1)
⋂
LM−1+k′(s2). With k := M − 1 + k′, the

result follows for any k > M − 1. ■

The following proposition provides a Hamming-distance based criterion to
quickly decide whether two taboo-free strings of length M are left k-synchronized.

Proposition 2.10. Consider a left proper taboo-set T. If all pairs s1, s2 ∈ VM(T)
with d(s1, s2) = 1 are left 1-synchronized, then all pairs s1, s2 ∈ VM(T) with
d(s1, s2) = 1 are left k-synchronized for all k ∈ N0.

Proof. Given any left 1-synchronized pair s1, s2 with d(s1, s2) = 1, there exists an
a ∈ Σ such that as1 and as2 are taboo-free. Since (asi)[1,M ] ∈ VM(T) for i ∈ {1, 2}
and the Hamming distance between these two strings is at most 1, as1, as2 are
1-synchronized, hence there exists a symbol b ∈ Σ such that bas1 and bas2 are
taboo-free, i.e. s1 and s2 are left 2-synchronized. Continuing with this process, it
follows that s1 and s2 are k-synchronized. ■

We will now discuss conditions that allow increasing the string length of an entire
set of taboo-free strings. To this end, consider two taboo-free strings s1, s and the
set V s1s

n+|s1|+|s|(T). It is generally not true that V s1s
n+|s1|+|s|(T) = V s1

n+|s1|(T) ◦ s, because
the concatenation of s to a taboo-free string from V s1

n+|s1|(T) can create a taboo
string around the junction of both strings. For the remainder of this section we will
discuss when the equality holds.

Definition 2.6. For a taboo-set T and a taboo-free string s, we define the length
of the longest taboo suffix-prefix match as

ks := max
{
i ∈ [0, |s|]

∣∣∣ s[1, i] ∈ suf(T)
}
,

i.e. ks denotes the length of the longest prefix of s being a proper suffix of a taboo.
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Note that the length ks is well defined, because s[1, 0] = e ∈ suf(T), hence
ks ∈ [0,min (M − 1, |s|)]. Using this length ks, in Prop. 2.11 we give conditions
implying that equality V s1s

n+|s1|+|s|(T) = V s1
n+|s1|(T) ◦ s holds.

Proposition 2.11. For a taboo-set T and a taboo-free string s, the following holds:

a) Take w ∈ ΣM−1 such that ws ∈ VM−1+|s|(T). Then for any n ≥M − 1,

V ws
n+|s|(T) = V w

n (T) ◦ s.

b) For any n ∈ N0 it holds that

V s
n+|s|(T) = V

s[1,ks]
n+ks

(T) ◦ s[ks + 1, |s|].

Proof.

a) The inclusion ⊆ is clear. The inclusion ⊇ follows from the fact that, if we are
given rw ∈ V w

n (T) such that ws ∈ VM−1+j(T), since |w| = M − 1, Prop. 2.5
yields that the concatenated string rws is taboo-free.

b) The result is obvious if |s| = 0 or n = 0, hence assume |s| > 0 and n > 0.

Clearly V s
n+|s|(T) ⊆ V

s[1,ks]
n+ks

(T)◦ s[ks+1, |s|]. For r ∈ Vn(T), consider rs[1, ks] ∈
V

s[1,ks]
n+ks

(T). We need to prove that the string

rs[1, ks]s[ks + 1, |s|] = rs

is taboo-free. But otherwise, since rs[1, ks] and s are taboo-free, there would
exist integers c, d such that 1 ≤ c ≤ |r| ≤ |r|+ks < d ≤ |r|+|s| and (rs)[c, d] ∈
T. Take k∗ := d − |r| > ks, which yields s[1, k∗] ∈ suf(T), contradicting the
maximality of ks. Hence rs is taboo-free, as desired. Note that the same
argument applies if ks = 0. ■

From Prop. 2.11.b we obtain two corollaries.

Corollary 2.12. Given a taboo-set T and a taboo-free string s, for any k ∈ N0 it
holds that

Lk(s) = Lk(s[1, ks]).
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Proof. By construction, Lk(s) = V s
|s|+k(T)[1, k]. Prop. 2.11.b yields

V s
k+|s|(T)[1, k] =

(
V

s[1,ks]
k+ks

(T) ◦ s[ks + 1, |s|]
)
[1, k] =

= V
s[1,ks]
k+ks

(T)[1, k] = Lk(s[1, ks]). ■

Corollary 2.13. For a taboo-set T and for any pair of taboo-free strings s1 and s2,
the following statements are equivalent for all k ∈ N0:

• s1 and s2 are left k-synchronized

• s1[1, ks1 ] and s2[1, ks2 ] are left k-synchronized.

Proof. Strings s1 and s2 are left k-synchronized iff Lk(s1)
⋂
Lk(s2) ̸= ∅. We just have

to apply Corollary 2.12. ■

Thus, the string s[1, ks], which is the longest prefix of s that matches a proper
suffix of the taboos, provides all the information we need to construct V s

n (T) or
Lk(s).

2.7 Isomorphisms between taboo-free Hamming

graphs

Here we will discuss isomorphism between Hamming graphs. Let us first introduce
the formal definition of a taboo-free Hamming graph.

Definition 2.7. The taboo-free Hamming graph of length n,
Γn(T) := (Vn(T), En(T)), is the graph with vertex set Vn(T) such that two
vertices u, v ∈ Vn(T) are adjacent if their Hamming distance equals 1, that is,
e = {u, v} ∈ En(T) iff d(u, v) = 1. Analogously, Γs

n(T) is the Hamming graph with
vertex set V s

n (T).

Examples of disconnected Hamming graphs are given in Figures 2.1 and 2.2.
When dealing with taboo-free Hamming graphs, the following proposition is a simple
way to establish graph isomorphisms.

Proposition 2.14. Consider a taboo-set T, a taboo-free string s and a taboo-free
string w satisfying ws ∈ V|w|+|s|(T). If V ws

n+|s|(T) = V w
n (T) ◦ s for some n ≥ |w|, then

Γws
n+|s|(T) and Γw

n (T) are isomorphic.
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Proof. By assumption, the vertex set of Γws
n+|s|(T) is V ws

n+|s|(T) = V w
n (T) ◦ s. Thus,

the map

f : V w
n (T) ◦ s→ V w

n (T)

rs 7→ r

is well defined and bijective. Moreover, f is an edge-preserving bijection: Given any
pair of strings r1, r2 ∈ Σn and any string s ∈ Σ|s|, then d(r1, r2) = 1 iff d(r1s, r2s) = 1.
■

Propositions 2.14 and 2.11.a imply that, for a taboo-free string s with |s| ≥ M ,
the graphs Γs

n+|s|(T) and Γ
s[1,M−1]
n+M−1 (T) are isomorphic. Furthermore Prop. 2.11.b

implies that Γs
n+|s|(T) ≃ Γ

s[1,ks]
n+ks

(T), which can be stated as follows.

Proposition 2.15. Consider a taboo-set T and a taboo-free string s. There exists
a unique w ∈ suf(T) such that w = s[1, ks]. Moreover, for any n ≥ 0,

Γs
n+|s|(T) ≃ Γw

n+|w|(T).

Prop. 2.15 does not describe in which cases V s
n+|s|(T) = ∅. However, if T is left

proper, Prop. 2.8 implies that this happens iff |s| ≤ M − 1 and s /∈ suf(VM(T)).
This suggests that we can state a version of Prop. 2.15 for left proper T. But first,
due to our interest in taboo-free strings of length M , we introduce the following.

Definition 2.8. Given a left proper taboo-set T, the long suffix classification
lsc(T) is defined as

lsc(T) := {w ∈ suf(T) such that ∃s ∈ VM(T) satisfying s[1, ks] = w},

that is, lsc(T) is the set of all suffixes of taboos that are the longest prefix of at least
one taboo-free string of length M .

Example 2.5. If Σ1 = {A,C,G, T} and T1 = {AA, CC, GG, TT}, then

lsc(T1) ⊆ suf(T1) = {A, C, G, T, e} = Σ1

⋃
{e}.

For any s ∈ V2(T1), we see ks > 0, hence e /∈ lsc(T1). Moreover,

{AC,CG,GT, TA} ⊆ V2(T1),

yielding lsc(T1) = Σ1. If we consider Σ2 := {A,C,G, T, C ′}, where C ′ could repre-
sent a 5-methylcytosine, and T2 := T1, then string s = C ′A satisfies ks = 0, hence
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lsc(T2) = suf(T2).

The following theorem classifies graphs Γs
n(T) for left proper T.

Theorem 2.16. Consider a left proper taboo-set T and a taboo-free string s such that
either |s| ≥ M or s ∈ suf(VM(T)). Then a unique w ∈ suf(VM(T))

⋂
suf(T) exists

such that w = s[1, ks], which satisfies Γs
n+|s|(T) ≃ Γw

n+|w|(T) for n ≥ 0. Moreover, if
|s| ≥M , then w ∈ lsc(T).

Proof. Prop. 2.8.b yields V s
n+|s|(T) ̸= ∅ for n ≥ 0, while Γs

n+|s|(T) ≃ Γ
s[1,ks]
n+ks

(T) for
n ≥ 0 follows from Prop. 2.15. Hence we can set w := s[1, ks], which by definition
belongs to suf(T). Since by assumption either |s| ≥M or s ∈ suf(VM(T)), it follows
from Prop. 2.7 that s is k-prefixable for any k, and thus also w := s[1, ks] is k-
prefixable. We consider x ∈ LM−ks(w), which satisfies xw ∈ VM(T). Therefore
w = (xw)[M − ks + 1,M ] ∈ suf(VM(T)). All in all, w ∈ suf(VM(T))

⋂
suf(T). This

w is trivially unique since ks is uniquely determined given s.
As for the case |s| ≥ M , the fact that s[1,M ] ∈ VM(T) and the definition of lsc(T)
implies that w ∈ lsc(T). ■

In formal terms, Theorem 2.16 states that the equivalence relation "being iso-
morphic" divides all graphs Γs

n+|s|(T) into equivalence classes. The representative
of each class is a graph Γw

n+|w|(T), where w ∈ suf(VM(T))
⋂
suf(T). When |s| ≥M ,

string w belongs to lsc(T). This is why lsc(T) is called the long suffix classification.

To efficiently compute lsc(T), we recommend that T be minimal. Theorem 2.16
implies that

lsc(T) ⊆ suf(VM(T))
⋂

suf(T), (2.2)

and thus we define the short suffix classification as

ssc(T) :=
(
suf(VM(T))

⋂
suf(T)

)
− lsc(T). (2.3)

The set ssc(T) is called short suffix classification because only when |s| < M

it can happen that a graph Γs
n+|s|(T) is represented by a graph Γw

n+|w|(T) with
w ∈ ssc(T). Note that, if a string w satisfies the condition |w| < M − 1 and
w ◦Ri(w) ⊆ suf(T) for some i ∈ [1,M − 1− |w|], then any s ∈ w ◦ Ri(w) satis-
fies s[1, ks + i] ∈ suf(T), hence w /∈ lsc(T). This property is used in the following
example.
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Example 2.6. If Σ1 = {A,C,G, T} and T1 = {AA, CC, GG, TT}, then it is clear
that e ∈ suf(VM(T))

⋂
suf(T), because the empty string e belongs to both sets. More-

over, e ̸∈ lsc(T1) due to e ◦ Σ ⊆ suf(T1). Therefore e ∈ ssc(T).

2.8 Connectivity of taboo-free Hamming graphs

We will make extensive use of the quotient graph to study the connectivity of taboo-
free Hamming graphs. Before we start with the technicalities, we briefly describe
our initial strategy.

For a Hamming graph Γn+j(T), let us consider two different subsets of its vertex
set, namely V sb

n+j(T) and V sc
n+j(T), where sb, sc ∈ Vj(T). These two subsets are

disjoint, so we can use the quotient graph Q[Γn+j(T)] to make each of them collapse
in a single vertex, represented respectively by sb and sc. We will prove in Prop. 2.17
that sb and sc are adjacent in Q[Γn+j(T)] iff strings sb and sc have Hamming distance
1 and are left n-synchronized. This is specially interesting, because we know from
Prop. 2.9 that two left (M − 1)-synchronized strings are left n-synchronized for any
n ∈ N. Thus, it is enough to know that sb, sc are adjacent in Q[Γ(M−1)+j(T)] to
claim that sb, sc are adjacent in all partition graphs Q[Γn+j(T)] for n ∈ N (that is
the essential content of Lemma 2.18). More formally, we have the following results.

Proposition 2.17. Given taboo-set T, j ∈ N0 and n ∈ N0, consider graph Γn+j(T)
and a subset S ⊆ Vn+j(T) partitioned as S =

⊔
b∈J V

sb
n+j(T), where sb are taboo-free

strings of length j. Consider moreover the quotient graph Q[Γn+j(T)(S)] = {J,EJ},
where Γn+j(T)(S) denotes the graph induced by S in Γn+j(T).

In these conditions, a pair of vertices b, c ∈ J is connected by an edge {b, c} ∈ EJ

iff the pair sb, sc is left n-synchronized and d(sb, sc) = 1.

Proof. By definition, b and c are adjacent in Q[Γn+j(T)(S)] iff in graph Γn+j(T) an
edge connects a vertex in V sb

n+j(T) with a vertex in V sc
n+j(T). Since d(sb, sc) ≥ 1, this

edge exists iff d(sb, sc) = 1 and there exists s ∈ Vn(T) such that ssb, ssc ∈ Vn+j(T).
The last condition is the definition of sb and sc being left n-synchronized. ■

The combination of Prop. 2.17 and Prop. 2.9 gives the following lemma.

Lemma 2.18. Given a left proper taboo-set T, a taboo-free string s and k ∈ N,
consider, for any n ≥ |s|+k, partition V s

n (T) =
⊔

w∈Lk(s) V
ws
n (T) and quotient graph
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Q[Γs
n(T)] = (Lk(s), ELk(s)). Then it holds that

Q[Γs
|s|+k(T)] ⊇ Q[Γs

|s|+k+1(T)] ⊇ · · · ⊇ Q[Γs
|s|+k+M−1(T)] =

= Q[Γs
|s|+k+M(T)] = Q[Γs

|s|+k+M+1(T)] = · · · .

If Q[Γs
|s|+k+M−1(T)] is connected, then Q[Γs

n(T)] is connected for n ≥ |s|+ k.

Proof. For some n0 ≥ |s| + k, consider an edge {wb, wc} of graph Q[Γs
n0
(T)], where

wb, wc ∈ Lk(s). We set sb := wbs and sc := wcs. Prop. 2.17 implies that wb and
wc are adjacent in Q[Γs

n0
(T)] iff sb and sc are are left (n0 − |s| − k)-synchronized

and d(wb, wc) = 1. Since sb and sc are left (n0 − |s| − k)-synchronized, they are also
left (n − |s| − k)-synchronized for any n ≤ n0, and thus wb and wc are adjacent in
Q[Γs

n(T)] for |s| + k ≤ n ≤ n0. Hence the decreasing chain of quotient graphs is
proven.

Now we will prove that this chain stabilizes after n = |s|+ k +M − 1. If
n0 − |s| − k =M − 1, then, according to Proposition 2.9, wb and wc are left k-
synchronized for arbitrary k, and thus Prop. 2.17 implies that wb and wc are adja-
cent in Q[Γs

n(T)] for arbitrary n ≥ |s|+ k. All in all, Q[Γs
n0
(T)] and Q[Γs

n(T)] have
the same edges, as desired.

Regarding connectivity, given graphs G1 and G2 with the same vertex set V1 = V2

such that G1 ⊆ G2, if subgraph G1 is connected, then G2 is connected. ■

Figure 2.4 visualizes Lemma 2.18 for alphabet Σ = {a, b, c}, taboo-set
T = {ba, aa, ac, cc} (which is left proper), suffix s = b and k = 1.

We are finally ready to study the connectivity of graphs Γs
n(T) for |s| ≥M . Let

us begin with the following lemma.

Lemma 2.19. Given a left proper T, for any w ∈ VM(T) consider the set V w
2M(T)

and partition
V w
2M(T) =

⊔
a∈L1(w)

V aw
2M (T),

inducing the quotient graph Q[Γw
2M(T)] = (L1(w), EL1(w)). Then the following state-

ments are equivalent:

a) For every w ∈ VM(T), Q[Γw
2M(T)] is connected.

b) For every w ∈ VM(T) and integer n ≥M , Γw
n (T) is connected.

Proof. Prop. 2.2 states that, in a connected graph, every quotient graph is con-
nected, and thus b) implies a) by considering n = 2M .
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Figure 2.4: Visualization of Lemma 2.18 for Σ = {a, b, c}, T = {ba, aa, ac, cc}, s = b
and k = 1. It holds that L1(b) = {a, b, c}.

Now we prove by induction that a) implies b). For n = M and w ∈ VM(T), we
have that

V w
M(T) = {w},

hence Γw
M(T) is connected. For the inductive step, assume that Γw

n (T) is connected
for every w ∈ VM(T) and up to an integer n ≥ M . We will prove that also every
Γw
n+1(T) is connected. Consider

V w
n+1(T) =

⊔
a∈L1(w)

V aw
n+1(T).

Let us write w separating the first M − 1 symbols from the last one, that is w = rc

for r ∈ ΣM−1 and c ∈ Σ. Then for any a ∈ L1(w), V aw
n+1(T) = V arc

n+1(T). Since
|r| = M − 1, Prop. 2.11.a implies V arc

n+1(T) = V ar
n (T) ◦ c, while the isomorphism

established in Prop. 2.14 yields

Γaw
n+1(T) = Γarc

n+1(T) ≃ Γar
n (T).

Thus, every Γaw
n+1(T) is connected, because the induction hypothesis implies that

Γar
n (T) is connected since ar ∈ VM(T). To prove that graph Γw

n+1(T) is connected,
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it remains to apply Prop. 2.1, so we need to prove that the quotient graph induced
by partition V w

n+1(T) =
⊔

a∈L1(w) V
aw
n+1(T), namely Q[Γw

n+1(T)], is connected.

We know that, given partition V w
2M(T) =

⊔
a∈L1(w) V

aw
2M (T), the quotient graph

Q[Γw
2M(T)] is connected. Applying Lemma 2.18 with s = w and k = 1, we get

the following chain of inclusions:

Q[Γw
M+1(T)] ⊇ Q[Γw

M+2(T)] ⊇ · · · ⊇ Q[Γw
2M(T)] =

= Q[Γw
2M+1(T)] = Q[Γw

2M+2(T)] = · · · .

Since Q[Γw
2M(T)] is connected, every quotient graph of the chain of inclusions is

connected, as shown in Lemma 2.18. In particular, graph Q[Γw
n+1(T)] is an element

of the chain of inclusions because n+ 1 ≥M + 1, so it is connected, as desired. ■

Lemma 2.19 is very interesting: We wanted to characterize the connectivity of
graphs Γs

n(T) for s ∈ VM(T) and n ≥ M . We have proved that it is enough to
study a finite number of graphs, namely Q[Γw

2M(T)] for s ∈ VM(T), that is, |VM(T)|
graphs. Let us summarize the connectivity results that follow from Lemma 2.19 and
Theorem 2.16.

Proposition 2.20. Given a left proper T, the following statements are equivalent:

a) For any taboo-free string s with |s| ≥ M and any integer n ≥ |s|, Γs
n(T) is

connected.

b) For any w ∈ VM(T) and any integer n ≥M , Γw
n (T) is connected.

c) For any r ∈ lsc(T), Γr
M+|r|(T) is connected.

d) For any r ∈ lsc(T), the partition V r
M+|r|(T) =

⊔
a∈L1(r) V

ar
M+|r|(T) induces a

connected partition graph Q[Γr
M+|r|(T)].

Proof. Implication a) ⇒ b) is obvious, while b) ⇒ a) is proven as follows: Given
V s
n (T), where s is a taboo-free string with |s| ≥ M , Prop. 2.11.a implies that
V s
n (T) = V

s[1,M−1]
n (T) ◦ s[M, j]. Since s[M, j] = s[M,M ]s[M + 1, j], applying Prop.

2.11.a again we have V s
n (T) = V

s[1,M ]
n (T) ◦ s[M + 1, j]. Prop. 2.14 yields the iso-

morphism Γs
n+j(T) ≃ Γ

s[1,M ]
n+M (T), and Γ

s[1,M ]
n+M (T) is connected due to s[1,M ] ∈ VM(T)

and the assumption of b). Thus, statements a) and b) are equivalent.

Implication b) ⇒ c) is consequence of Theorem 2.16. Moreover, c) ⇒ d) follows
from Prop. 2.2. It remains to prove d) ⇒ b), which we do as follows. Corollary 2.12
implies L1(w) = L1(w[1, kw]). Moreover, for any w ∈ VM(T) and a, b ∈ L1(w), we
claim that the following statements are equivalent:
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i) Strings aw and bw are left k-synchronized.

ii) Strings aw[1, kw] and bw[1, kw] are left k-synchronized.

Indeed, the implication i) ⇒ ii) is obvious, so let us prove ii) ⇐ i. Given a taboo-
free string s ∈ Vj(T) such that saw[1, kw] and sbw[1, kw] are taboo-free, we want to
prove that also saw and sbw are taboo-free. But if that were not the case, it would
be the consequence of either (saw)[c, d] ∈ T or (sbw)[c, d] ∈ T for some integers
1 ≤ c ≤ j < j +1+ kw ≤ d ≤ j +1+M . However, that contradicts the maximality
of kw, yielding ii) ⇐ i.

Our previous claim and Prop. 2.17 imply that, if r = w[1, kw] for some w ∈ VM(T),
given partition V r

M+|r|(T) =
⊔

a∈L1(r) V
ar
M+|r|(T), it holds that

Q[Γr
n(T)] ≃ Q[Γw

n (T)].

Theorem 2.16 implies that, for every w ∈ VM(T), there exists
r = w[1, kw] ∈ lsc(T). Applying Lemma 2.19, finally d) ⇒ b) follows. ■

It is worth noticing how simpler the connectivity problem has become. Ini-
tially, we were studying whether every Γs

n(T) with |s| ≥ M is connected, obtain-
ing in Lemma 2.19 that this is equivalent to the connectivity of graphs Γw

2M(T)
for w ∈ VM(T), which are |VM(T)| graphs. Now we see, using Prop. 2.20
and the fact that lsc(T) ⊆ suf(T), that we only need to prove the connectiv-
ity of | lsc(T)| ≤ | suf(T)| ≤ (M − 1)|T|+ 1 graphs, namely either Q[Γr

M+|r|(T)] or
Γr
M+|r|(T) for r ∈ lsc(T). We give an example.

Example 2.7. Take Σ = {A,C,G, T} and T = {AA, CCC}, which is left proper.
Using Prop. 2.20, since M = 3 and lsc(T) = suf(T) = {e, A, C, CC}, the connec-
tivity of graphs

Γe
3(T), ΓA

4 (T), ΓC
4 (T), ΓCC

5 (T)

implies that any Γw
n (T) with w ∈ suf(T) is connected. Proposition 2.15 implies that,

for any taboo-free string s and n ≥ |s|, Γs
n(T) is connected.

Prop. 2.20 characterizes the connectivity of every Γs
n+|s|(T) for |s| ≥ M . We

know from Theorem 2.16 that there exists r ∈ lsc(T) ⊆ suf(VM(T))
⋂
suf(T) such

that Γs
n+|s|(T) ≃ Γr

n+|r|(T). Since ssc(T) := suf(VM(T))
⋂
suf(T)− lsc(T), to com-

plete our characterization of the connectivity of every taboo-free Hamming graph,
some cases (such as Example 2.6) require considering the connectivity of graphs
Γp
n(T) for p ∈ ssc(T). We have the following.
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Proposition 2.21. Given a left proper T and p ∈ ssc(T), assume that, for every
r ∈ lsc(T), graph Γr

M+|r|(T) is connected. Given k ∈ N, if partition

V p
|p|+k+M−1(T) =

⊔
w∈Lk(p)

V wp
|p|+k+M−1(T)

satisfies that (wp)[1, kwp] ∈ lsc(T) for each w ∈ Lk(p), and moreover
Q[Γp

|p|+k+M−1(T)] is connected, then Γp
n(T) is connected for n ≥ |p|+ k.

Proof. For n ≥ |p|+ k, given partition

V p
n (T) =

⊔
w∈Lk(p)

V wp
n (T),

subgraphs Γwp
n (T) are connected due to (wp)[1, kwp] ∈ lsc(T). Moreover, since

Q[Γp
2M−1(T)] is connected, Lemma 2.18 with s = p implies that Q[Γp

n(T)] is con-
nected for n ≥ |p|+k. Thus, the quotient graph Q[Γp

n(T)] and all induced subgraphs
Γwp
n (T) are connected. The connectivity of Γp

n(T) follows applying Prop. 2.1. ■

In Prop. 2.21, one can always take k = M − |p| and just check if Q[Γp
2M−1(T)]

or Γp
2M−1(T) is connected for p ∈ ssc(T). Otherwise one can try k = 1 and increase

it progressively.

Example 2.8. If Σ = {A,C,G, T} and T = {AA, CC, GG, TT}, then it holds
that lsc(T) = {A,C,G, T} and ssc(T) = {e}. For r ∈ lsc(T), it can be proven that
Γr
3(T) is connected. Thus, Proposition 2.20 implies that every Γr

n(T) is connected
for r ∈ lsc(T) and n ≥ 1.

We can combine Propositions 2.20 and 2.21 to obtain our aimed characterization
of the connectivity of every suffix Hamming graph. We do so in the following
theorem.

Theorem 2.22. Given a left proper taboo-set T, the following are equivalent.

a) Consider, for every r ∈ lsc(T), partition V r
M+|r|(T) =

⊔
a∈L1(r) V

ar
M+|r|(T), and

for every p ∈ ssc(T), partition V p
2M−1(T) =

⊔
w∈LM−|p|(p) V

wp
2M−1(T).

For r ∈ lsc(T), every partition graph Q[Γr
M+|r|(T)] is connected; for p ∈ ssc(T),

every partition graph Q[Γp
2M−1(T)] is connected; for p ∈ ssc(T), every graph

Γp
n(T) with |p|+ 2 ≤ n ≤M − 1 is connected.

b) For r ∈ lsc(T), graph Γr
M+|r|(T) is connected; for p ∈ ssc(T), graph Γp

2M−1(T)
is connected; for p ∈ ssc(T) and |p|+ 2 ≤ n ≤M − 1, every graph Γp

n(T) is
connected.
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c) For every taboo-free string s and n ≥ 0, graph Γs
|s|+n(T) is connected.

Proof. Prop. 2.2 states that the connectivity of a graph is equivalent to the con-
nectivity of each of its quotient graphs. Hence b) ⇒ a) follows, because if graphs
Γr
M+|r|(T) and Γp

2M−1(T) are connected, then also partition graphs Q[Γr
M+|r|(T)] and

Q[Γp
2M−1(T)] are connected. Since the implication c) ⇒ b) is obvious, it only remains

to prove a) ⇒ c).

Theorem 2.16 states that, when T is left proper, every nonempty
graph of the form Γs

n+|s|(T) is isomorphic to graph Γw
n+|w|(T), where

w = s[1, ks] ∈ suf(T)
⋂

suf(VM(T)). By construction, strings in suf(T)
⋂
suf(VM(T))

either belong to lsc(T) or ssc(T). Therefore, statement c) is equivalent to the
connectivity, for every n ≥ 0, of every Γr

n+|r|(T), where r ∈ lsc(T), and of every
Γp
n+|p|(T), where p ∈ ssc(T).

Assuming statement a), since every partition graph Q[Γr
M+|r|(T)] is connected for r ∈

lsc(T), Prop. 2.20 implies that every graph Γw
M+n(T) is connected, where w ∈ VM(T)

and n ≥ 0. For any r ∈ lsc(T), there exists by construction a w ∈ VM(T) such that
r = w[1, kw]. Since Γw

M+n(T) ≃ Γr
|r|+n(T) due to Prop. 2.15, it follows that a) implies

that every Γr
|r|+n(T) is connected, where r ∈ lsc(T) and n ≥ 0.

It remains to prove that a) implies that every Γp
|p|+n(T) is connected, where p ∈

ssc(T) and n ≥ 0. Since every partition graph Q[Γp
2M−1(T)] is connected, Prop. 2.21

with k =M − |p| implies that Γp
M+n(T) is connected for n ≥ 0. The connectivity of

graphs Γp
|p|+2(T), · · · ,Γ

p
M−1(T) is part of the assumptions of a), and graphs Γp

|p|+1(T)
and Γp

|p|(T) are trivially connected, finishing the proof. ■

In general, if T has just a few taboos, proving connectivity becomes easier since
most of strings are left k-synchronized. In Prop. 2.23 only previous results are used,
while in Prop. 2.24 we study this case more exhaustively in a self-contained manner.
Note that, when taboo-set T is minimal, the assumptions of Prop. 2.24 are much
easier to check.

Proposition 2.23. Given a left proper T such that every pair of strings
w1, w2 ∈ VM(T) with d(w1, w2) = 1 is left 1-synchronized, it holds that:

a) For any r ∈ lsc(T) and n ∈ N0, Γr
n+|r|(T) is connected.

b) For any p ∈ ssc(T) with connected Γp
M(T), Γp

n(T) is connected for n ≥M .

Proof. Prop. 2.10 implies that every pair w1, w2 ∈ VM(T) is left k-synchronized
for any k ∈ N. We know from Lemma 2.17 that left k-synchronization of two
strings with Hamming distance 1 indexing a partition as suffixes is equivalent to
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those two strings being adjacent in the partition graph. Therefore any quotient
graph Q[Γw

n (T)] = (L1(w), EL1(w)) induced by partition V w
n (T) =

⊔
a∈L1(w) V

aw
n (T)

is fully connected (that is, every two vertices are adjacent). In particular, every
Q[Γw

n (T)] is connected, and thus Prop. 2.20 implies a). Similarly with partition
V p

n(T) =
⊔

w∈LM−|p|(p) V
wp
n (T), since Q[Γp

n(T)] ≃ Γp
M(T) for n ≥ M , Prop. 2.21 im-

plies b). ■

Example 2.9. For Σ = {A,C,G, T} and T = {AA, CCC}, the strings Tw1 and
Tw2 are taboo-free for w1, w2 ∈ V3(T), hence they are left 1-synchronized. Since
lsc(T) = suf(T), for any taboo-free string s and n ≥ |s|, Γs

n(T) is connected.

Proposition 2.24. Given taboo-set T and set Ψ(T) :=
⋃

t∈T t[2, |t|], if every pair of
taboo-free strings w1, w2 ∈ Ψ(T) with |w1| ≥ |w2| and d

(
w1[1, |w2|] , w2

)
≤ 1 is left

1-synchronized, then it holds that:

a) Every taboo-free string is 1-prefixable. In particular, T is left proper.

b) Every two taboo-free strings s1, s2 with d(s1, s2) = 1 are left 1-synchronized.

c) Graph Γs
n(T) is connected for every taboo-free string s and n ≥ |s|.

Proof.

a) Consider any taboo-free string s. Assume that, for each a ∈ Σ, as is not
taboo-free, that is, that for some integer ca ≥ 2, (as)[1, ca] ∈ T. WLOG
assume ca1 ≤ · · · ≤ cam and consider s[1, cam − 1], which satisfies s[1, cam −
1] ∈ Ψ(T) since (ams)[1, cam ] ∈ T. By construction, for any a ∈ Σ, string
as[1, cam − 1] is not taboo-free. On the other hand, the Hamming distance
between s[1, cam − 1] ∈ Ψ(T) and itself is 0, and thus the assumption of the
statement implies that s[1, cam − 1] is left 1-synchronized with s[1, cam − 1].
In other words, a symbol a ∈ Σ exists such that as[1, cam − 1] is taboo-free,
which is a contradiction. All in all, s must be 1-prefixable. Taking s ∈ VM(T)
we see that T is left proper.

b) Given taboo-free strings s1, s2 such that d(s1, s2) = 1, assume that they
are not 1-synchronized. Then for every a ∈ Σ, either (as1)[1, ca] ∈ T or
(as2)[1, ca] ∈ T for some ca ≥ 2. Denote by C1 ⊆

⋃
a∈Σ{ca} those ca such

that (as1)[1, ca] ∈ T, and analogously with C2. If C1 were empty, then s2

would not be 1-prefixable, contradicting a). Thus, both C1 and C2 must
be nonempty. Consider d1 := max{c : c ∈ C1} and d2 := max{c : c ∈ C2}. It
holds that s1[2, d1] ∈ Ψ(T) and s2[2, d2] ∈ Ψ(T). Moreover, we have that the
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pair s1[2, d1], s2[2, d2] is not left 1-synchronized. Since d(s1, s2) = 1, that con-
tradicts the assumptions of the statement, hence s1 and s2 must be left 1-
synchronized, as desired.

c) Clearly Γs
|s|(T) is connected, so let us proceed by induction. Assume

Γs
n(T) is connected for a fixed n ≥ |s| and consider Γs

n+1(T). Since
V s
n+1(T) ⊆ Σ ◦ V s

n (T), if |V s
n (T)| = 1, then Γs

n+1(T) is connected. Otherwise
we take different s1, s2 ∈ V s

n+1(T); we will prove that they are connected. We
know that s1, s2 ∈ Σ ◦ V s

n (T), hence let us write s1 = c1w1 and s2 = c2w2 for
ci ∈ Σ and wi ∈ V s

n (T). If w1 = w2, the result is obvious, so assume w1 ̸= w2.

By hypothesis, Γs
n(T) is connected, and thus there exists a path of vertices of

V s
n (T), namely y1, · · · , yD, such that d(yi, yi+1) = 1, y1 = w1 and yD = w2. For

every j ∈ [1, D−1], the pair yj, yj+1 is left 1-synchronized, and thus there exists
bj ∈ Σ such that bjyj and bjyj+1 are taboo-free. Since d(bjyj, bjyj+1) = 1, bjyj
and bjyj+1 are adjacent in Γs

n+1(T). Moreover every pair of taboo-free strings
contained in Σ ◦ yi is adjacent for i ∈ [1, D − 1]. Since the relation "being
connected" is transitive, vertices s1 ∈ Σ ◦ y1 and s2 ∈ Σ ◦ yD are connected, as
desired. ■

Example 2.10. If Σ = {A,C,G, T} and T = {AA, CC, GG, TT}, then Ψ(T) =
{A,C,G, T}. Every pair of strings in Ψ(T) is left 1-synchronized, hence for every
taboo-free s and n ≥ |s|, Γs

n(T) is connected.

Now we aim to find an upper bound for the number of taboos needed to guarantee
connectivity of the graphs Γs

n(T). The following Corollary of Prop. 2.24 holds.

Corollary 2.25. Consider an alphabet Σ and a taboo-set T. The following holds:

a) If |T[1, 1]| < |Σ|, then for any taboo-free string s and n ≥ |s|, Γs
n(T) is con-

nected.

b) If |T| < |Σ|, then for any taboo-free string s and n ≥ |s|, Γs
n(T) is connected.

Proof.

a) Assume that taboo-free strings s1, s2 satisfy L1(s1)
⋂
L1(s2) = ∅. That is, for

each a ∈ Σ, either as1 or as2 has a taboo as prefix, contradicting |T[1, 1]| < |Σ|.
Therefore every two taboo-free strings are left 1-synchronized, so we can apply
Prop. 2.24.c, implying a).
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b) If |T| < |Σ|, then |T[1, 1]| < |Σ|. Thus, statement a) yields the result. ■

Corollary 2.25.b implies that, if |T| < |Σ|, then every Γs
n(T) is connected. In

Examples 2.11 and 2.12, we give examples of taboo-sets over an alphabet with
|Σ| = 2 and |Σ| > 2 symbols respectively, such that |T| = |Σ| and at least one suffix
graph is disconnected. In this sense, the upper bound |T| < |Σ| that guarantees
connectivity for every suffix graph cannot be improved.

Example 2.11. If Σ = {0, 1} and T = {10, 01}, then T is left proper and |T[1, 1]| =
|T[2, 2]| = 2 = |Σ|. For n ≥ 2, Vn(T) = {0 · · · 0, 1 · · · 1}, which makes Γn(T)
disconnected. The trivial graphs Γ0

n(T) and Γ1
n(T) are both connected.

Example 2.12. For m ≥ 3, Σ = {a1, · · · , am} and the left proper taboo-set

T = {a3a1, a4a1, a5a1, · · · , ama1}
⊔

{a1a2, a2a2},

we claim that Γa1
n (T) is disconnected for n ≥ 3. Indeed,

V a1
n (T) = V a1a1

n (T)
⊔

V a2a1
n (T) =

=
(
V a2a1a1
n (T)

⊔
V a1a1a1
n (T)

) ⊔ ( ⊔
i∈[3,m]

V aia2a1
n (T)

)
,

so take s ∈ V a2a1a1
n (T)

⊔
V a1a1a1
n (T) and r ∈

⊔
i∈[3,m] V

aia2a1
n (T). It holds that

d(s, r) ≥ 2, hence we found two disconnected components in graph Γa1
n (T). This

is coherent with |T[1, 1]| = |Σ| = m.

To generalize this example, for i ∈ N0, denote by si := a1
i)
· · ·a1 the concatenation of

i a1’s. The taboo-set

Ti = {a3si, a4si, · · · , amsi}
⊔

{a1a2si−1, a2a2si−1}

satisfies that graph Γsi
n (Ti) is disconnected for n ≥ i+ 2.

In this section, we have stated various results regarding the connectivity of every
suffix Hamming graph given a left proper taboo-set T. Up to Theorem 2.16, our
aim was to characterize the connectivity of every suffix Hamming graph. Then
we found sufficient conditions in Prop. 2.24 and Corollary 2.25 that are easier to
apply. When studying this connectivity problem, the practitioner should firstly try
to apply the results requiring easy-to-check assumptions, and increasingly use the
more complicated ones. Given a taboo-set T, a possible workflow would be the
following:
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1) We check if |T[1, 1]| < |Σ|. If it holds, we can apply Corollary 2.25.a. Otherwise
go to step 2)

2) In order to apply Prop. 2.24, we check if every pair of taboo-free strings
w1, w2 ∈ Ψ(T) with |w1| ≥ |w2| and d

(
w1[1, |w2|] , w2

)
≤ 1 is left 1-

synchronized. If it does not hold, go to step 3)

3) We check whether T is left proper (this holds in all the biological examples
that we considered so far). Otherwise redefine an equivalent left proper taboo-
set and apply the characterization of Theorem 2.22. Two possibilities can
arise: Either every suffix Hamming graph is connected, and thus evolution can
explore all the space of taboo-free strings; or some taboo-free strings belonging
to lsc(T) or ssc(T) induce disconnected suffix graphs Γs

n0
(T) for some n0 ≥ |s|+

M , implying that Γs
n(T) stays disconnected for n ≥ n0.

2.9 Examples of plausible bacterial taboo-sets

Taboo-sets as generated by the avoidance of restriction sites can assume various
levels of complexities. In this section, we discuss some examples from REBASE
[Roberts et al., 2014] using the theory developed in this work. Note that many
restriction enzymes of REBASE database have an unknown recognition site, hence
our taboo-sets may underestimate the actual amount of taboos. Before describing
the examples, we will briefly review essential nomenclature for DNA sequences.

DNA is double-stranded, where A pairs with T and G pairs with C, hence it
suffices to discuss only one of the strands. We adopt the convention that, given any
of the strands, the DNA sequence is always represented from the 5’ end to the 3’
end (which is chemically determined). As a consequence, given a DNA sequence,
its complementary DNA sequence, the one lying on the opposite strand, is
obtained by inverting the order of the symbols and carrying through substitutions
A ↔ T and C ↔ G. If a DNA sequence s is identical to its complementary DNA
sequence, we say that s is an inverted repeat [Ussery et al., 2008]. For example,
sequence CCGG is an inverted repeat.

The fact that DNA is double-stranded implies that each recognition site induces
taboos in pairs, namely itself and its complementary DNA sequence. For example,
if AGGGC is a recognition site, then also the complementary strand GCCCT is a
taboo. If, however, the recognition site is an inverted repeat such as TGCA, then
this pair is actually one single recognition site. Recognition sites of type II R-M
systems are nearly always an inverted repeat [Rusinov et al., 2015, Gelfand and
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Koonin, 1997], and therefore one recognition site induces one single taboo. This is
specially interesting because, according to Rusinov et al. [2015, 2018a], only type II
R-M systems induce taboos.

A permutation of the symbols of alphabet Σ does not alter any of the results that
we proved along this work. Moreover, by reversing the order of the symbols, any
statement regarding e.g. left-properness and suffixes has an analogous one in which
right-properness and suffixes are involved. On the other hand, taboo-sets induced
by restriction enzymes remain invariant when we interchange every recognition site
by its complementary sequence. Therefore, note that, for a bacterial taboo-set T,
if we prove that every graph Γs

n(T) is connected, then also every graph sΓn(T) is
connected.

2.9.1 A frequent case: Turneriella parva

The Turneriella parva (REBASE organism number 8970) strain produces a restric-
tion enzyme with recognition site GATC, an inverted repeat. Similarly, another of
its enzymes has recognition sites GGACC and GGTCC. Thus, these restriction
enzymes generate the taboo-set

TT.pa = {GATC}
⋃

{GGACC,GGTCC}. (2.4)

Since |TT.pa[1, 1]| < 4, Corollary 2.25.a implies that every graph Γs
n(TT.pa) is con-

nected. Therefore the evolution of the DNA sequences can potentially reach any
other taboo-free DNA sequence, no matter which suffix was conserved along this
process.

Among the 3623 bacteria in REBASE [2020b], only 465 have more than three
type II restriction enzymes. Assuming that only type II restriction enzymes induce
taboos, as stated by Rusinov et al. [2015, 2018a], Corollary 2.25.b implies that at
least 87% (3158/3623) of bacterial taboo-sets in REBASE [2020b] yield connected
taboo-free Hamming graphs. Similarly, at least 90% (139/153) of archea in REBASE
[2020a] induce connected taboo-free Hamming graphs, because they have less than
four type II restriction enzymes. The following example describes a more complex
collection of restriction enzymes.

2.9.2 Helicobacter pylori

In H. pylori 21-A-EK1, studied by Ailloud et al. [2019], many restriction enzymes
have been identified. For the sake of clarity, let us write TH.py =

AT
⋃

GT
⋃

CT
⋃

TT,
where aT denotes those taboos in TH.py whose first symbol is a ∈ Σ. Then we have

Chapter 2. Structure of the space of taboo-free sequences 32



AT ={AC ◦ Σ ◦GT},
GT =(GT ◦ Σ2 ◦ AC)

⋃
{GTCAC,GTGAC}

⋃
⋃

{GTAC,GAGG}
CT ={CCGG,CCTC,CATG},
TT ={TGCA},

(2.5)

where GT ◦ Σ2 ◦ AC represents taboos of the type GTabAC with a, b ∈ Σ, and so
on for analogous notations.

We want to apply Prop. 2.24. Take any r1, r2 ∈ Ψ(TH.py) and assume
that they are not left 1-synchronized. In particular WLOG we can assume that
T /∈ L1(r1), implying r1 = GCA. If C /∈ L1(r1), then r1 ∈ {CGG,CTC,ATG},
which contradicts r1 = GCA. Therefore it must be C /∈ L1(r2), yielding
r2 ∈ {CGG,CTC,ATG}. In any case, d(r1, r2) ≥ 2. Thus, for any w1, w2 ∈ Ψ(T)
with d

(
w1[1, |w2|] , w2

)
≤ 1, it holds that w1 and w2 are left 1-synchronized, so

Prop. 2.24 can be applied: Every graph Γs
n(TH.py) is connected and, in particular,

Γn(TH.py) is connected.

2.9.3 An imaginary bacterium

The taboo-set can significantly influence evolution in the cases where some Γs
n(T)

is disconnected. To explain this, we will create a plausible, nonexistent example.
Suppose that a strain of Bacterium imaginara has taboo-set

TB.im = {ACCC, TCCC,CGCC,GGCC}
⋃

{GGGT,GGGA,GGCG},

where the second set contains the complementary DNA sequences of the first set,
except that of GGCC, which is an inverted repeat. Thus, taboo-set TB.im is induced
by 4 restriction enzymes. At first glance, taboo-set TB.im seems less restrictive than
TH.py, which has 6 taboos of length four and 22 taboos of length five or more.

Proposition 2.24 cannot be applied because CCC and GCC are not left 1-
synchronized, and actually we can find a disconnected suffix graph. Let us take
V CCC
n (TB.im), which satisfies

V CCC
n (TB.im) = V GCCC

n (TB.im)
⋃

V CCCC
n (TB.im) =(

V AGCCC
n (TB.im)

⋃
V TGCCC
n (TB.im)

)⋃(
V GCCCC
n (TB.im)

⋃
V CCCCC
n (TB.im)

)
,
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implying that, for any strings s1 ∈ V GCCC
n (TB.im) and s2 ∈ V CCCC

n (TB.im), it holds
that d(s1, s2) ≥ 2. Thus, we found two disconnected components in ΓCCC

n (TB.im),
namely ΓGCCC

n (TB.im) and ΓCCCC
n (TB.im). All in all, the graph ΓCCC

n (TB.im) is dis-
connected for n ≥ 5.

This produces the following evolutionary implications: Assume that we have two
correctly aligned DNA fragments fα and fβ of the genome of Bacterium imaginara.
Assume moreover that we can write fα = rαGCCC and fβ = rβCCCC for some
strings rα and rβ, as also that the suffix CCC is invariable due to functional con-
strains. Then fα cannot have evolved from fβ by simple point mutations, because
at some point in evolution a taboo string is produced that is lethal for the carrier.
Thus, the standard models of sequence evolution [Strimmer and von Haeseler, 2009]
do not apply.

2.10 Concluding remarks

Using the results proven in this work, it is possible to decide whether every Hamming
graph Γs

n(T) is connected. The connectivity of the taboo-free Hamming graphs
induced by the restriction enzymes of the bacteria listed in REBASE could be quickly
analysed with our tools. Unfortunately, for many organisms listed in REBASE, the
recognition sites of restriction enzymes are not available.

Based on the current version of REBASE [2020b], we conclude using Corollary
2.25 that taboo-sets of at least 87% (3158/3623) of bacteria in REBASE induce
connected taboo-free Hamming graphs, because they have less than four type II
restriction enzymes. For larger taboo-sets, Prop. 2.24 can be used, as we did
in Subsection 2.9.2, or one can directly use the characterization of Theorem 2.22.
Thus, restriction enzymes in bacteria generally do not lead to any disconnected
taboo-free Hamming graph, and our models of sequence evolution are by and large
applicable. However, the influence of some missing sequences in the Hamming graph
on the estimation of evolutionary parameters deserves further investigations. We
also would like to emphasize that still many recognition sites have to be identified,
and thus it may be well possible that we find disconnected taboo-free Hamming
graphs in the next future.

We consider the formal framework developed in this paper as a first and neces-
sary step to understand the effect of restriction enzymes (and possibly other taboo
sequences) on the DNA composition of bacteria and viruses, or more generally on
the sequence space modelled as a Hamming graph. Consider, for example, the phy-
logenetic studies by Ailloud et al. [2019], where the H. pylori taboo-set TH.py of
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Subsection 2.9.2 was taken from. The following natural questions arise: How are
inferred evolutionary times between the two H. pylori populations affected by TH.py?
Has their GC content varied due to the taboos of restriction enzymes?

To answer such questions, we need to develop models of sequence evolution that
take taboos into account. Taboo avoidance induces complex dependencies along a
DNA sequence, which can be measured using Markov Chain Monte Carlo (MCMC)
simulations. If all taboo-free Hamming graphs Γs

n(T) are connected, then MCMC
methods are easy to apply [Manuel et al., unpublished]. A disconnected taboo-free
Hamming graph, however, leads to a reducible Markov chain, which complicates
simulation of taboo-free evolution.

Another application of our framework is the construction of combinations of
restriction enzymes that lead to a disconnected Hamming graph, and thus limit
evolutionary freedom. This may help to efficiently treat viral infections. Some
progress has been made in the usage of restriction enzymes for the treatment of viral
infections [Weber et al., 2014]. Since one or just a few SNPs can significantly alter
the symptoms or even the mortality associated to a pathogen [Collery et al., 2017,
Yuan et al., 2017], our characterization of the connectivity of taboo-free Hamming
graphs could help to delete SNPs from the viral genome that are detrimental to
humans. Although the treatment of an infection using restriction enzymes is mostly
unexplored, this work could be a first theoretical guide to a successful treatment.
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Chapter 3

New Measures of Phylogenetic
Information Allow to Test for
Saturation

Publication history and status

Manuscript in preparation. Authors: Cassius Manuel and Arndt von Haeseler.

Supplementary material: We include 8 Mathematica notebooks and two text files
respectively containing a two-sequence and a five-sequence SIV alignment, available
at https://ucloud.univie.ac.at/index.php/s/U9b7ynPA0eEGNtc.

Abstract

We introduce two new measures of information in a phylogenetic tree: The coherence
of a branch, which quantifies the dependence between the two clades split by the
branch, and the memory of a clade, which quantifies the identification of the parent
node of a clade. The interplay between these measures is described assuming a
stationary and reversible evolutionary process.

To apply these measures, we present the problem of substitution saturation in a
phylogeny. We define branch saturation as a statistical hypothesis and propose the
asymptotic test, whose statistic is based on the coherence. As a practical example,
we show that long branch repulsion can be resolved using the asymptotic test.
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3.1 Introduction

After the work of Shannon [1948], the entropy or "amount of choice" was accepted
as a useful measure of the information carried by a message. As a familiar exam-
ple, a receiver of a message may quantify the information received in bits, which
is a unit of entropy. In phylogenetics, each observed species in a rooted phylogeny
indeed receives a message (its orthologous nucleotide sequence), although our pur-
pose is to reconstruct what we cannot observe, namely the ancestral sequences and
the evolutionary process. This fundamental difference with respect to conventional
communication suggests that we can build a more specific theory of information to
assess phylogenetic reconstruction.

Since ancestral sequences cannot be observed, here we use the likelihood of each
nucleotide as a proxy for the identity of the site. Then, instead of the entropic
"amount of choice", the basis of our description of phylogenetic information is the
"amount of identification" of an ancestral sequence, which we call memory. More-
over, given two adjacent nodes A and B of the phylogenetic tree, we define the
coherence of branch AB as the "amount of dependence" between the two ances-
tral sequences at nodes A and B.

The memory and the coherence are not a direct function of the given multi-
ple sequence alignment, because they are model-dependent. We assume that sites
mutated independently as determined by a given reversible rate matrix Q and a
phylogenetic tree. This framework corresponds to the typical workflow of current
software implementations of phylogenetic reconstruction using a Maximum Like-
lihood Estimate (MLE) [Encyclopedia of Mathematics, 2021b], such as IQ-TREE
[Minh et al., 2020] and RaxML [Stamatakis, 2014].

To show the usefulness of these measures, we employ them to construct a con-
venient test for phylogenetic saturation. Intuitively, saturation is the occurrence of
too many mutations in an alignment as to provide information about its evolution-
ary history (cfr. Strimmer and von Haeseler [2009], Salemi [2009]). Starting from
Archie [1989], the first saturation tests were based on parsimonious reconstruction,
which we do not consider here.

Later on, Xia et al. [2003] proposed an entropy-based index of substitution satu-
ration that is applied to an alignment using the observed state distribution at each
site, recently used by Duchêne et al. [2021]. This index does not assume any rate
matrix or phylogenetic tree, being in this aspect less parameterized than our asymp-
totic test. However, lacking a tree-like structure, the saturation index cannot judge
whether some subset of the aligned species is informative.

Chapter 3. Measures of Phylogenetic Information and Saturation 40



By construction, the sample coherence of a branch is normally distributed and its
expected value decreases exponentially as the branch length increases. This simple
behaviour offers a useful tool to test for saturation, which can be viewed as an
statistical description of mixing. Probabilistic descriptions of the mixing of Markov
chains can be found e.g. in Levin and Peres [2017].

This work is structured as follows: We provide some introductory examples for
practitioners in Section 3.3. In Section 3.4, we formally introduce the elements of an
evolutionary process. Then, in Section 3.5, we reexplain the well-known computation
of likelihoods in a phylogenetic tree. In Section 3.6, we define our new measures of
phylogenetic information, namely the memory of a clade and the coherence of a
branch. These measures are eigendecomposed in Section 3.7.

Our core results describing the expectation and variance of the coherence are
stated in Section 3.8. The coherence emerges as a useful tool for asymptotic analysis
of the log-likelihood in Section 3.9. The asymptotic test for saturation is described
in Section 3.10 and employed in Section 3.11 to resolve long branch repulsion (LBR).

3.2 Results

Here we describe the memory of a clade and the coherence of a branch assuming
stationarity and reversibility. We then employ these measures to construct the so-
called asymptotic test for saturation. Our asymptotic test decides whether a branch
is saturated, that is, if too many mutations occurred along the tested branch as to
provide information.

Notably, the critical value of the asymptotic test can be computed analytically
and is easy to estimate (Eq. 3.68). Moreover, the power of the asymptotic test is
optimal for phylogenies close to saturation (Subsection 3.10.3).

As an application, in Section 3.11 we show that the asymptotic test can detect
Long Branch Repulsion (LBR), a problematic phenomenon where a tree is wrongly
reconstructed due to saturation. In particular, for each group of simulations with
sequence length n = 5000, the amount of wrong reconstructions after applying the
asymptotic test always stayed below 4%.

Moreover, we obtained a first moment estimate of the branch length between two
nodes on a tree (Eq. 3.45), so far lacking in the literature. This estimate, as also its
faster approximation of Eq. 3.46, can be used by practitioners aiming to accelerate
or even avoid the iterative Newton method [Encyclopedia of Mathematics, 2021a]
to compute the MLE of the branch length.
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Along the way to expose these results, we made other interesting observations
for phylogenetists: The likelihood of a branch length can have multiple maxima,
and thus the Newton method can output a suboptimal maximum (Appendix 3.E);
The divergence of the Newton method can be predicted using the dominant sample
coherence (Section 3.9, Cor. 3.5); A finite MLE is uninformative about the finiteness
of the true branch length (Section 3.D).

3.3 Examples of the Asymptotic Test

In Section 3.10, we formally introduce the concept of saturation and propose a test
for branch saturation. Although the theory leading to the asymptotic test may
be too technical for practitioners, its usage is relatively simple, as the examples
presented in this section will show.

The numerical analysis of Subsection 3.3.1 is included Supp. Notebook 7, while
those of Subsections 3.3.2 and 3.3.3 can be found in Supp. Notebook 8.

3.3.1 Saturation between two sequences

We are given an alignment of two DNA sequences y and z of length n = 100, which
we suspect that mutated from a common ancestor a very long time ago. We arrange
the alignment of sequences y and z as a 4 × 4 matrix N = (nij), where nij is the
number of sites where we observe nucleotide i in sequence y and nucleotide j in
sequence z. Following the order A,C,G, T , say that we obtain

N =


5 4 7 5

4 11 7 7

9 9 7 8

8 4 1 4


Somehow we infer that the model used to generate the alignment was the K80

model with transition-transversion ratio k = 2 [Kimura, 1980]. Thus the rate matrix
has the form

Q =
1

4


∗ 1 2 1

1 ∗ 1 2

2 1 ∗ 1

1 2 1 ∗

 ,
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where we divide by 4 to make the largest nonzero eigenvalue of Q be λ1 = −1,
which has multiplicity one and right eigenvector v1 = (−1, 1,−1, 1)T .

We ignore the evolutionary time t∗ between y and z. In particular, we even
ignore if t∗ → ∞, or equivalently, if sequences y and z were sampled at random
independently and have no evolutionary history in common. If we cannot reject the
null hypothesis t∗ → ∞, we say that branch yz is saturated. With this setup, is
branch yz saturated?

First of all, we need to choose a significance level, say α = 0.05. That means
that we are willing to wrongly reject t∗ → ∞ in 5% of cases. In a standard normal
distribution, the centile covering a 95% probability from −∞ to zα is zα ≈ 1.6. Now
we compute the so-called dominant sample coherence of branch yz (see Eq. 3.63
and Prop. 3.6.a) as

δ̂ = Ĉ1(y; z) = vT
1Nv1/n = 8/100 = 0.08.

The critical value of the asymptotic test is cS ≈ zα/
√
n ≈ 0.16 (Eq. 3.75). That

is, if δ̂ > cS, then we reject t∗ → ∞. Since 0.08 ̸> 0.16, we cannot reject t∗ → ∞
and conclude that branch yz is saturated with significance α = 0.05.

The main consequence of the saturation of branch yz is that we should not try
to compute an estimate t̂ of t∗. Any estimate t̂ is unreliable, since the given data
cannot reject that sequences y and z were sampled at random.

The matrix N used here was generated from an actual simulation where we
set true time t∗ = 3. A natural question is which minimum true time tS (called
saturation time) leads to an expected alignment where we remain in hypothesis
t∗ → ∞. Since λ1 = −1, we know that E[δ̂] = e−λ1t∗ = e−t∗ (Prop. 3.6.b). Thus the
saturation time is the solution of equation e−tS = cS ≈ 0.16, giving tS ≈ 1.8. We
plot tS as a function of the sequence length n in Figure 3.1.

3.3.2 Saturation of an external branch

In Supp. File SIV_5_species.txt we have a DNA alignment of length 3265 of the
ENV gene of 5 SIV samples, obtained from LANL [2020]. Due to their high rate
of mutation, phylogenies of SIV tend to vary depending on the data used for the
analysis [Salemi, 2009]. Using the asymptotic test, we can test if an alignment region
is not supporting a particular branch of the alignment. We will first focus on the
longest reconstructed branch.

We use IQ-TREE [Minh et al., 2020] with a GTR model to reconstruct the
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Figure 3.1: Plot of the saturation time tS as a function of the number of sites n
when λ1 = −1 has multiplicity one and α = 0.05. Since tS = − log (zα/

√
n), the

saturation time grows linearly on the logarithm of the sequence length.

phylogeny of these SIV species, assuming moreover a Gamma model with 4 rates
[Gu et al., 1995, Yang, 1994]. This implies that the evolutionary process starts by
assigning to each site one of 4 possible average rates of mutation. For each site,
the branch lengths of the original evolutionary tree are multiplied by their assigned
rate.

Attending to the MLE, the largest of this rates is f4 = 2.3. The reconstructed
phylogenetic tree multiplied by rate f4 is shown in Figure 3.2. Then we use maximum
likelihood to estimate which of the 3265 sites had rate f4, giving an alignment
region of length n = 1008. A necessary condition for this region to support the
branch between node A and SIV5 is a significant rejection of the hypothesis that
subsequence SIV5 was sampled independently from the rest of the alignment region.
Equivalently, we must reject hypothesis t∗ → ∞, where t∗ is the true time length t∗

between node A and sequence SIV5.
We choose significance level α = 0.05, giving the centile zα ≈ 1.6. Assume

that the largest nonzero eigenvalue of Q has multiplicity one with right eigenvector
v1 = (vA1 , v

C
1 , v

G
1 , v

T
1 ) and left eigenvector h1.

When considered independently, each site of the given alignment determines a
pattern ∂, which are strings of length m, with one nucleotide per aligned sequence
(see e.g. Table 3.1). As explained in Section 3.5, branch Ay splits each pattern ∂

into two subpatterns: the observed nucleotide i at sequence y, and the rest of the
pattern, say ∂A. Given ∂A, we can compute the normalized likelihood vector α̃∂A

as exemplified in Figure 3.3. If pattern ∂ = (∂A, i) is observed n∂ times, we compute
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SIV1
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Node

Figure 3.2: Reconstructed phylogenetic tree of the 5 SIV species for the region with
estimated rate category f4.

the dominant sample coherence of branch Ay (see Equations 3.63 and 3.37) as

δ̂ = Ĉ1(A;y) :=
∑
∂

n∂

n
(α̃∂A · h1)v

i
1. (3.1)

In general, we also need to compute the 11-projection of the sample memory at node
A (Eq. 3.43), which is M̂11(A) ≥ 0. Assuming a large n and using Eq. 3.73, the
critical value of the asymptotic test can be approximated as

cS ≈ zα√
n

√
M̂11(A) ≈ 0.05

√
M̂11(A). (3.2)

That is, if δ̂ > cS, then we reject t∗ → ∞. We compute δ̂ ≈ −0.05, while cS > 0

by construction. Since δ̂ < cS, we cannot reject t∗ → ∞ and conclude that, for the
region with reconstructed rate f4, the branch connecting node A and SIV5 is satu-
rated with significance α = 0.05. In informal terms, the region with reconstructed
rate f4 has not collaborated in the reconstruction of this branch. In this particular
case, since δ̂ < 0, any level of significance α leads to the same conclusion.

3.3.3 Saturation of an internal branch

In the previous subsection we could see that the asymptotic test does not depend
on the reconstructed length of the tested branch, in that case t̂ = 3. Consequently,
although it may seem intuitive that only long branches lead to branch saturation,
this is actually a wrong intuition, as clarified by the formalism of the asymptotic
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Figure 3.3: Diagram of the computation of the likelihood vector α∂A at node
A given pattern ∂ = CATTG, inducing subpattern ∂A = CATT . For a given
site, we recursively compute the likelihood vector at deeper nodes using Eq. 3.13.
Finally we obtain α∂A = 10−3(2, 4, 2, 7). The equilibrium distribution of the
rate matrix is π ≈ (0.33, 0.19, 0.23, 0.24), and the normalized likelihood vector
α̃∂A = α∂A/(α∂A · π) ≈ (0.6, 1, 0.5, 2). See Section 3.5 for more details.

test. To see an example, consider the shortest branch of the SIV phylogeny of Figure
3.2, which has length t̂ = 0.4 and induces the split 13|245 between the SIV species.
From now on, we refer to the parent node of clade 13 as node A, while the parent
node of clade 245 will be node B.

Again we choose significance level α = 0.05, giving the centile zα ≈ 1.6, and
consider the same rate matrix Q with left eigenvector h1. Branch AB splits each
pattern ∂ into subpatterns ∂A and ∂B, as described in Figure 3.4. Given ∂A, we
can compute the normalized likelihood vector α̃∂A as exemplified in Figure 3.4, and
proceed analogously with pattern ∂B. If pattern ∂ = (∂A, ∂B) is observed n∂ times,
we compute the dominant sample coherence of branch AB (see Equations 3.63 and
3.37) as

δ̂ = Ĉ1(A;B) :=
∑
∂

n∂

n
(α̃∂A · h1)(β̃∂B · h1). (3.3)

In general, we need to compute the 11-projections of the sample memories
M̂11(A) and M̂11(B) (Eq. 3.43), and the saturation coherence is

cS ≈ zα√
n

√
M̂11(A)M̂11(B) ≈ 0.05

√
M̂11(A)M̂11(B). (3.4)

In this particular case, however, we compute δ̂ = −0.03. Since cS > 0 by con-
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Figure 3.4: Diagram of the computation of the likelihood vectors α∂A at node A and
β∂B at node B given pattern ∂ = CATTG. Branch AB induces the split 13|245 and
thus subpatterns ∂A = CT and ∂B = ATG. For a given site, we recursively compute
the likelihood vector at deeper nodes using Eq. 3.13. After computing α∂A and
β∂B, the normalized likelihood vectors are α̃∂A = α∂A/(α∂A · π) ≈ (0.4, 1.3, 0.3, 2)
and β̃∂B = β∂B/(β∂B · π) ≈ (1.1, 1, 0.9, 1). Recall that the equilibrium distribution
is π ≈ (0.33, 0.19, 0.23, 0.24). See Section 3.5 for more theoretical details.

struction, it follows that δ̂ < cS, and thus branch AB is saturated with significance
α = 0.05. As we can see, the fact that branch AB is short did not play any role in its
saturation status. The emergence of short internal branches in saturated alignments
is clarified in Subsection 3.9.1.

Actually, performing the asymptotic test for all branches, we see that all branches
of the region with reconstructed rate f4 are saturated, because they have a negative
dominant sample coherence. The intuition emerges that the IQ-TREE reconstruc-
tion method has grouped under rate f4 all uninformative patterns. Consequently,
this region can be ignored without significantly affecting the phylogeny, or equiva-
lently we could just set f4 → ∞. All in all, the asymptotic test for saturation has
recognized, in a systematic way, a region not providing significant information for
the reconstructed phylogeny.

3.4 The Evolutionary Process and its Reconstruc-

tion

In a broad sense, an evolutionary process is a random variable that outputs
sequences (strings over an alphabet A of possible states) using a model of evolution.
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Here we only consider continuous Markov models of evolution, where each site of
the ancestral sequence mutates independently as determined by a rate matrix Q and
a tree with some branch lengths. Only substitutions are allowed under this model.

We will focus on processes assuming two properties: Stationarity, meaning that
the prior state distribution is the unique equilibrium distribution π = (πi) of matrix
Q, defined by equation πTQ = Q (see Prop. 3.1); and reversibility, meaning that
the detailed balance equations ΨQ = QTΨ hold, where Ψ = Diag (π). In this work,
italic bold letters as π always denote column vectors, while indices i ∈ A and j ∈ A
always refer to states of the alphabet A.

As an easy and important example, Figure 3.5 shows the evolutionary process
Eroot that outputs sequences y and z of length n as follows:

1) For each site s ∈ [n] := {1, · · · , n}, sample a state rs ∈ A independently, as
determined by the equilibrium distribution π of Q. This yields the ancestral
sequence r = r1 · · · rn.

2) Each state rs mutates for t∗1 time units as determined by Q, meaning that the
probability of state i ∈ A mutating to j ∈ A is pij(t∗1), where the transition
matrix is the exponential matrix (pij(t

∗
1)) = eQt∗1 (see Prop. 3.1). This yields

state ys, forming sequence y = y1 · · · yn.

3) Analogously, generate each state zs by mutating rs for t∗2 time units as deter-
mined by Q. This yields sequence z = z1 · · · zn.

r

zy

Figure 3.5: Diagram of the stationary and reversible evolutionary process Eroot.
Sequences y and z are the outcome of Eroot, which were obtained by mutating the
root r as determined by rate matrix Q.

The more general evolutionary process E on a tree with m leaves is constructed
analogously [Felsenstein, 2004]: At the root node R, we sample a sequence r as
determined by distribution π. Sequence r evolves independently towards each child
node of R, and we repeat this process until each of the m leaves receives a mutated
sequence lc = lc1 · · · lcn, where c ∈ [m].
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A realization of E is the alignment output by the process, that is, the ordered
set of sequences (l1, · · · , lm) at the leaves. For example, a realization of Eroot for
n = 3 using the nucleotide alphabet A = {A,C,G, T} could be an alignment (y, z)
as y = ACG and z = ACC. The s’th site of the alignment (l1, · · · , lm) is the
string l1s · · · lms , which belongs to set Am, that is, the set of strings of length m over
alphabet A. Each string ∂ ∈ Am is called a pattern.

If the process E is known, the probability that the alignment has pattern ∂ at
site s ∈ [n] is designated as Pr(∂). Conversely, given pattern ∂ at site s ∈ [n], the
likelihood of process E is Pr(∂ | E). Considering the whole given alignment, if
each pattern ∂ is observed n∂ times, then the log-likelihood of process E is

L(E) =
∑
∂

n∂ log Pr(∂ | E). (3.5)

Normally the true process E∗ that generated the data is (at least partially)
unknown. To estimate E∗, we use a maximum likelihood estimate (MLE). The
MLE is a process Ê with the highest log-likelihood among all processes, given the
observed alignment.

Notably, if the rate matrix Q is reversible and the process is stationary, then
the root R of the tree cannot be identified, in the sense that, for any process E,
any replacement of the root R on the tree gives the same probability Pr(∂ | E)
of observing pattern ∂. This property is called the Pulley principle, stated by
Felsenstein [1981].

The Pulley principle implies the equality Pr(∂ | Eroot) = Pr(∂ | Eseq), where
process Eseq, shown in Figure 3.6, has sequence y as root and t∗ = t∗1 + t∗2. For
future examples, we will focus on process Eseq, which is simpler than Eroot.

zy

Figure 3.6: Diagram of the stationary and reversible evolutionary process Eseq.
Sequences y and z are the outcome of Eseq. The root sequence y is sampled using
distribution π, while z is generated by mutating the root y as determined by rate
matrix Q.

As an example, if the rate matrix Q is fixed, the MLE of the true distance t∗

of process Eseq is obtained as follows. Let ij ∈ A2 denote the pattern where y
has state i and z has state j. It holds that Pr(ij | t) = πipij(t), where π = (πi)
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and eQt = (pij(t)). Given an alignment where pattern ij is observed nij times, the
log-likelihood of distance t between sequences y and z is

L(t) =
∑
i,j

nij log(πipij(t)). (3.6)

The MLE of t∗ is a time t̂ ∈ [0,∞] where L(t) reaches its absolute maximum.

3.5 Likelihood Vectors in a Phylogenetic Tree

In this section, we describe the likelihood vector, introduced by Felsenstein [1981]
as a tool to compute the likelihood Pr(∂ | E).

Consider an evolutionary process E on a tree rooted at R. The likelihood
vector at R given a pattern ∂ is a vector ρ∂ of probabilities assuming each
possible root identity; more formally, it is defined as

ρ∂ := (ρi∂) := (Pr(∂ | i at node R)), (3.7)

where i ∈ A and we omitted the assumption of process E for simplicity. Since∑
∂ Pr(∂ | i at node R) = 1 for all i ∈ A, it follows that∑

∂

ρ∂ = 1, (3.8)

where 1 is the column vector of 1’s. Moreover, using the law of total probability,
the likelihood of a process E given pattern ∂ is

Pr(∂ | E) =
∑
i

Pr(i at node R) Pr(∂ | i at node R) = π · ρ∂ , (3.9)

where "·" denotes the Euclidean dot product. Vector ρ∂ allows to compute the
likelihood Pr(∂ | E) more easily, because ρ∂ can be expressed in terms of likelihood
vectors induced by smaller subtrees. This method, described by Felsenstein [1981],
works as follows.

Consider a branch AB where the root R is lying, as shown in Figure 3.7. We
consider a split determined by branch AB, that is, we consider two subtrees rooted
at nodes A and B, called clades, namely a clade A with k leaves and a clade B with
the other m− k leaves, as Figure 3.7 shows. Note that clades are named after their
parent node. A pattern ∂ induces subpatterns ∂A and ∂B at the leaves of clades
A and B, as exemplified in Table 3.1. Conversely, the subpatterns ∂A and ∂B
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determine pattern ∂, because by construction all leaves are partitioned into those of
clade A and those of clade B.

Root R

Node BNode A

Figure 3.7: Diagram of the likelihood vectors at branch AB given ∂. Branch AB
splits the phylogeny into clades A and B, with respectively k and m − k leaves.
Each of these leaves has a nucleotide identity determined by pattern ∂. Likelihood
vectors α∂ and β∂ depend only on their respective clades A and B. The likelihood
vector ρ∂ is computed using vectors α∂ , β∂ and branch lengths t1 ≥ 0 and t2 ≥ 0.

Site 1 Site 2

1 C T
}
∂A2 C T

3 G T
∂B4 G T

5 G T

Table 3.1: Alignment of 5 sequences with 2 sites. We assume that branch AB splits
the phylogeny into a clade A with sequences 1 and 2 and a clade B with sequences 3,
4 and 5. At site 1, we observe pattern ∂ = CCGGG, inducing subpatterns ∂A = CC
and ∂B = GGG. At site 2, we observe pattern ∂ = TTTTT , inducing subpatterns
∂A = TT and ∂B = TTT .

Now imagine that we can observe only pattern ∂A and the process consists only
on clade A. We define the likelihood vector at node A given ∂A as

α∂A := (αi
∂A) := Pr(∂A | i at node A), (3.10)

where we omit the assumed evolutionary process. Analogously, the likelihood vector
at node B given ∂B is

β∂B := (βi
∂B) := Pr(∂B | i at node B). (3.11)

Recall that the probability of state i ∈ A mutating to j ∈ A in time t is pij(t),
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where eQt := (pij(t)). Using the law of total probability, the likelihood vector at
node R given only clade A is eQt1α∂A, or more explicitly,

eQt1α∂A = Pr(∂A | i at node R). (3.12)

Analogously, the likelihood vector at node R given only clade B is eQt2β∂B. We
define the entrywise product "◦" between two vectors v = (vi) and w = (wi) as
v ◦ w := (viwi). Since subpatterns ∂A and ∂B are a partition of ∂ and were
obtained independently from the sequence at R, we have

ρ∂ = (eQt1α∂A) ◦ (eQt2β∂B). (3.13)

This equation can be used to recursively compute the likelihood Pr(∂ | E). How-
ever, in this work the likelihood vectors α∂A and β∂B are not only a tool to compute
Pr(∂ | E), but also of fundamental importance to understand the phylogenetic rela-
tion between clades A and B. In particular, let us compute the likelihood Pr(∂ | t)
of the total branch length t := t1+ t2 between nodes A and B, represented in Figure
3.8. For simplicity, in likelihood Pr(∂ | t) we omit the assumption of the rest of
process E.

Node A Node B

Figure 3.8: Diagram of the branch AB of length t, whose log-likelihood Pr(∂ | t) we
want to compute.

Assuming a stationary and reversible rate matrix Q, the likelihood of the align-
ment is independent of the placement of the root, as implied by the Pulley Principle
[Felsenstein, 1981]. Thus we place the root R on node A, and the likelihood vector
ρ∂ can be inferred from Eq. 3.13 by setting t1 = 0 and t2 = t. This gives

ρ∂ = α∂A ◦ (eQtβ∂B). (3.14)

Therefore, given pattern ∂, the likelihood of branch AB having length t equals

Pr(∂ | t) = π · ρ∂ = π ·
(
α∂A ◦ (eQtβ∂B)

)
= α∂A

TΨeQtβ∂B, (3.15)
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where we set Ψ := Diag(π).

3.6 Measures of phylogenetic information

In this section, we present all definitions required to construct our measures of
phylogenetic information, which are the coherence of a branch and the memory of a
clade. The memory vector and its module as a measure of information were already
introduced by Manuel [2022]. Basic bounds involving these measures can be found
in Appendix 3.B.

3.6.1 The memory vector

All multiples Cρ∂ of the likelihood vector can be used to have an MLE of the ancestor
identity at the root. To have a unique representative of each ray of likelihood vectors,
we define the normalized likelihood vector at R given ∂ as

ρ̃∂ :=
ρ∂

π · ρ∂

=
ρ∂

Pr(∂)
, (3.16)

where recall that π · ρ∂ = Pr(∂) assuming stationarity. This normalization is very
convenient, because matrix eQt is an endomorphism of normalized likelihood vectors.
To see this more clearly, consider an evolutionary process E with a tree rooted at
node R with likelihood vector ρ∂ given pattern ∂. We can modify process E by
making the ancestral sequence at R mutate for t additional time units, as shown
in Figure 3.9. We say that the root of this modified process is eQtR, which has
likelihood vector eQtρ∂ given ∂. Our normalization is convenient because, when
rooted at node eQtR, we have

Pr(∂ | Root at eQtR) = πT eQtρ∂ = πTρ∂ = π · ρ∂ , (3.17)

and consequently the normalized likelihood vector at node eQtR is
eQtρ∂/(π · ρ∂) = eQtρ̃∂ . Therefore there is no need to renormalize after the
action of eQt.

The normalized likelihood vector is closely related to the posterior probabil-
ity after observing pattern ∂. Define the posterior distribution r∂ = (ri∂) as
ri∂ := Pr(i at node R | ∂), where i ∈ A. Then, using Bayes’ theorem and the sta-
tionary prior π, we get r∂ = π ◦ ρ̃∂ .

It is useful to know whether ρ∂ has nearly uniform entries, since uniformity
implies that it is difficult to estimate the ancestor identity at R. Moreover, ρ∂ is
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Node

Node

Figure 3.9: Diagram of a tree or clade whose parent node evolves t additional time
units.

uniform iff ρ̃∂ = 1, where 1 is the column vector of 1’s.

Motivated by this observation, we define the memory vector at R given
∂ as ρ̃∂ − 1. We can state analogous definitions for the clades of a tree. Given
a branch AB inducing subpattern ∂A, if clade A has likelihood vector α∂A, then
α̃∂A = α∂A/Pr(∂A), where Pr(∂A) = π ·α∂A assuming stationarity, and the mem-
ory vector at node A given ∂A is α̃∂A − 1. Similarly, the memory vector at node B
given ∂B is β̃∂B − 1, where Pr(∂B) = π · β∂B.

3.6.2 The coherence of a branch

Given two vectors v = (vi) and w = (wi), we define their π-inner product as

⟨v,w⟩π := π · (v ◦w) = vTΨw =
∑
i

πiviwi. (3.18)

Consider two adjacent nodes A and B on the tree, determining branch AB. We
define the coherence of branch AB given ∂, denoted as C∂(A;B), as the π-
inner product between the memory vectors at nodes A and B, namely

C∂(A;B) := ⟨α̃∂A − 1, β̃∂B − 1⟩π (3.19)

Developing the inner product, we obtain the alternative form

C∂(A;B) = ⟨α̃∂A, β̃∂B⟩π − 1, (3.20)
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where we used the fact that ⟨α̃∂A,1⟩π = ⟨β̃∂B,1⟩π = 1. The coherence quantifies
the dependence between the observation of patterns ∂A and ∂B, as formally stated
in Eq. 3.31. For statistical applications, the coherence given ∂ is of little use, since
∂ is a single observation among a potentially huge set Am. Therefore we define the
population coherence of branch AB as

C(A;B) := E[C∂(A;B)] =
∑
∂

Pr(∂)C∂(A;B). (3.21)

The population coherence quantifies the dependence between clades A and B, be-
cause it tends to zero as the true length of branch AB grows (see Prop. 3.2.c).

We will estimate the population coherence using the observed alignment as fol-
lows. Given an alignment of n sites where pattern ∂ is observed n∂ times, we define
the sample coherence of branch AB as

Ĉ(A;B) :=
∑
∂

n∂

n
C∂(A;B). (3.22)

3.6.3 The memory of a clade

The L2(π)-norm is the norm induced by the π-inner product. More explicitly, given
a vector v = (vi), we define its L2(π)-norm as

∥v∥π =
√

⟨v,v⟩π =

√∑
i

πiv2i . (3.23)

Consider any tree or subtree with root R and pattern ∂. We define the memory
M∂(R) of clade R given pattern ∂ as the squared L2(π)-norm of the memory
vector at R, namely

M∂(R) := ∥ρ̃∂ − 1∥2π. (3.24)

Abusing of the notation, we can write C∂(R;R) := M∂(R) in a strictly algebraic
sense, ignoring the fact that branch RR does not exist in our tree. As we did with
the coherence, we define the population memory of clade R as

M(R) := E[M∂(R)] =
∑
∂

Pr(∂)M∂(R). (3.25)

The population memory has a direct interpretation, since it is an average for all
patterns of the norm of ρ̃∂ − 1, which is small when the likelihood of the ancestral
states at the root is uniform. Thus M(R) quantifies the identification of the root,
that is, how confidently we expect to reconstruct the root ancestral state. In par-
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ticular, M(R) = 0 iff ρ̃∂ = 1 for all patterns ∂, meaning that no pattern provides
information about the ancestral root state.

To estimate M(R) given an alignment where pattern ∂ is observed n∂ times, we
define the sample memory of clade R as

M̂(R) =
∑
∂

n∂

n
M∂(R). (3.26)

3.7 Spectral Decomposition

In this section, the eigendecomposition of a reversible rate matrix is introduced,
giving us the eigendecomposition of the objects defined in Section 3.6. Explicit
examples of the eigendecomposition of the coherence and the memory are presented
in Appendix 3.A.

3.7.1 Decomposition of the rate matrix

Consider a rate matrix Q = (qij) with qii = −
∑

j ̸=i qij, that is, such that the sum of
each row of Q is 0. Along this work, we always assume that Q is irreducible,
meaning that we have a positive probability pij(t) > 0 of mutating from i to j for
all times t > 0. In the following proposition, we state the well known eigenvector
decomposition of a reversible rate matrix, similarly explained by Levin and Peres
[2017] (Chapter 1, Section 12.1).

Proposition 3.1. For an irreducible rate matrix Q = (qij) over an alphabet A of
K + 1 states, the following holds:

a) Matrix Q has eigenvalue λ0 = 0 with algebraic multiplicity 1. A right eigen-
vector of λ0 is 1, whose left eigenvector is the unique equilibrium distribution
πT > 0, defined by equation πTQ = πT . The rest of eigenvalues of Q are
complex number with strictly negative real part.

Finally, the exponential matrix eQt satisfies

eQt → 1πT as t→ ∞.

b) If matrix Q is reversible, then it has real eigenvalues 0 > λ1 ≥ · · · ≥ λK . More-
over, matrix Q has an orthogonal basis of right eigenvectors vk and left eigen-
vectors hT

k such that hk = π ◦vk = Ψvk for k ∈ [0, K], where v0 = 1, h0 = π
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and
Q = 1πT + v1h

T
1λ1 + · · ·+ vKhT

KλK .

Finally, the exponential matrix eQt can be computed as

eQt = 1πT + v1h
T
1 e

λ1t + · · ·+ vKhT
Ke

λKt.

3.7.2 Decomposition of the likelihood of a branch

If Q is reversible, then we can decompose the likelihood of a branch length of
Eq. 3.15, which assumes stationarity and the root placed at node A. Since
ΨeQt = ππT +

∑
k∈[K] hkh

T
ke

λkt, we have

Pr(∂ | t) = α∂A
TΨeQtβ∂B = Pr(∂A) Pr(∂B)+

∑
k∈[K]

(α∂A ·hk)(β∂B ·hk)e
λkt. (3.27)

Hoang et al. [2017] explain that, during likelihood computation assuming a reversible
process, instead of storing the likelihood vectors α∂ and β∂ , IQ-TREE stores the
quantities hk · α∂ and hk · β∂ for k ∈ [0, K], allowing a faster computation of the
likelihood Pr(∂ | t).

If subpatterns ∂A and ∂B were independent events, we would have
Pr(∂ | t) = Pr(∂A) Pr(∂B). Consequently, to measure the dependence between
events ∂A and ∂B, we define the dependence factor D(∂ | t) as

D(∂ | t) := Pr(∂ | t)
Pr(∂A) Pr(∂B)

= α̃T
∂AΨe

Qtβ̃∂B, (3.28)

which equals 1 if ∂A and ∂B are independent. The quantity α̃T
∂AΨ can be inter-

preted as the posterior state distribution given ∂A. In any case, using the eigende-
compostion of Eq. 3.27, we can write

D(∂ | t) = 1 +
∑
k∈[K]

(α̃∂A · hk)(β̃∂B · hk)e
λkt, (3.29)

showing an important property, namely the limit D(∂ | t) → 1 as t → ∞. In other
words, the subpatterns ∂A and ∂B become independent as the assumed branch
length t grows. This property also holds assuming only stationarity: If the tree is
rooted at A, substitute eQt → 1πT (Prop. 3.1.a) in Eq. 3.28, giving

D(∂ | t) → α̃T
∂Aππ

T β̃∂B = 1× 1 = 1. (3.30)

Note that α̃∂A · hk = a∂A · vk, where a∂A is the posterior distribution given
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∂A with prior π. This alternative expression is sometimes easier to handle. As an
example, if clade A is a single sequence and ∂A = i, then a∂A has a single nonzero
entry 1 at position i, and a∂A · vk = vik, where vk = (v0k, · · · , vKk ).

3.7.3 Decomposition of the coherence

The dependence factor is nearly a reformulation of the coherence, because the co-
herence between nodes A and eQtB is

C∂(A; eQtB) = ⟨α̃∂A, e
Qtβ̃∂B⟩π − 1 = α̃T

∂AΨe
Qtβ̃∂B − 1 = D(∂ | t)− 1. (3.31)

This gives the intuition that the coherence of branch AB vanishes as subpatterns
∂A and ∂B are close to independent. Since C∂(A; eQtB) = C∂(A;B) for t = 0, the
reversible decomposition of the dependence factor of Eq. 3.29 with t = 0 gives

C∂(A;B) =
∑
k∈[K]

(α̃∂A · hk)(β̃∂B · hk). (3.32)

Motivated by this decomposition, we define the k-projection of the coherence
of branch AB given ∂ = (∂A, ∂B) as

C∂
k (A;B) := (α̃∂A · hk)(β̃∂B · hk), (3.33)

and Eq. 3.32 can be rewritten as

C∂(A;B) =
∑
k∈[K]

C∂
k (A;B). (3.34)

The eigendecomposition of Eq. 3.29 further implies that the action of matrix eQt

gives
C∂(A; eQtB) =

∑
k∈[K]

eλktC∂
k (A;B), (3.35)

indicating that each k-projection decreases as an exponential decay of rate λk as the
assumed length of branch AB grows. Analogously, we define the k-projection of
the population coherence of branch AB as

Ck(A;B) := E[C∂
k (A;B)], (3.36)
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and the k-projection of the sample coherence of branch AB as

Ĉk(A;B) :=
∑
∂

n∂

n
C∂

k (A;B) =
∑
∂

n∂

n
(α̃∂A · hk)(β̃∂B · hk). (3.37)

3.7.4 Decomposition of the memory

Since for a clade R, we have M∂(R) = C∂(R,R) algebraically, Eq. 3.32 with α̃∂A =

β̃∂B = ρ̃∂ leads to the reversible decomposition

M∂(R) =
∑
k∈[K]

(ρ̃∂ · hk)
2. (3.38)

We define the kl-projection of the memory of clade R given ∂ as

M∂
kl(R) := (ρ̃∂ · hk)(ρ̃∂ · hl), (3.39)

and thus Eq. 3.32 is rewritten as

M∂(R) =
∑
k∈[K]

M∂
kk(R). (3.40)

When the transition matrix eQt acts on node R, Eq. 3.35 implies that

M∂(eQtR) =
∑
k∈[K]

e2λktM∂
kk(R). (3.41)

We further define the kl-projection of the population memory of clade R as

Mkl(R) := E[M∂
kl(R)], (3.42)

and the kl-projection of the sample memory of clade R as

M̂kl(R) =
∑
∂

n∂

n
M∂

kl(R) =
∑
∂

n∂

n
(ρ̃∂ · hk)(ρ̃∂ · hl). (3.43)

A very useful kl-projection of the population memory is obtained when the tree is
composed by a single sequence R = y. Then we have Mkl(y) = δkl (Prop. 3.6.f),
where δkl = 1 if k = l and δkl = 0 if k ̸= l.
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3.8 The Relation between Coherence and Memory

In this section, we describe the expectation and the variance of the coherence of
branch AB, with focus on the assumption that branch AB has infinite length. This
assumption is the basis of the tests for saturation described in Section 3.10.

In the following proposition, we compute the expectation of the projections of
the coherence of a branch. The non-reversible analogous result is stated in Prop.
3.10.

Proposition 3.2. Consider a reversible and stationary evolutionary process on a
tree. If branch AB has true length t∗, then the following holds.

a) If t∗ → ∞, Ck(A;B) := E[C∂
k (A;B) | t∗ → ∞] = 0 for all k ∈ [K].

b) For any branch length t∗ ≥ 0, Ck(A;B) =
∑

l∈[K] e
λlt

∗
Mkl(A)Mkl(B).

Proof.

a) By making t∗ → ∞ in Eq. 3.27, it follows that ∂A and ∂B are independent
events. Thus the k-projection of the population coherence can be computed
as

E[(hk · α̃∂A)(hk · β̃∂B) | t∗ → ∞] = E[hk · α̃∂A]E[hk · β̃∂B]. (3.44)

Using linearity, we compute e.g. E[α̃∂A] =
∑

∂A α∂A = 1, and hk · 1 = 0.

b) Substituting Pr(∂) in the definition of Ck(A;B) as implied by Eq. 3.27, we
get

Ck(A;B) = Ck(A;B)− E[C∂
k (A;B) | t∗ → ∞] =

=
∑
∂

(hk · α̃∂A)(hk · β̃∂B)
(
Pr(∂A) Pr(∂B)

∑
l∈[K]

eλlt
∗
(hl · α̃∂A)(hl · β̃∂B)

)
=

=
∑
∂

Pr(∂A) Pr(∂B)(hk · α̃∂A)(hk · β̃∂B)
∑
l∈[K]

eλlt
∗
(hl · α̃∂A)(hl · β̃∂B) =

=
∑
l∈[K]

eλlt
∗ ∑

∂

Pr(∂A) Pr(∂B)(hk · α̃∂A)(hk · β̃∂B)(hl · α̃∂A)(hl · β̃∂B) =

=
∑
l∈[K]

eλlt
∗ ∑
∂A,∂B

Pr(∂A)(hk · α̃∂A)(hl · α̃∂A) Pr(∂B)(hk · β̃∂B)(hl · β̃∂B) =

=
∑
l∈[K]

eλlt
∗ ∑

∂A

Pr(∂A)(hk · α̃∂A)(hl · α̃∂A)
∑
∂B

Pr(∂B)(hk · β̃∂B)(hl · β̃∂B) =

=
∑
l∈[K]

eλlt
∗
Mkl(A)Mkl(B).
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Notably, Prop. 3.2.b gives a first moment estimate (FME) t̂ of the true length
t∗ of branch AB. Indeed, for any k ∈ [K], estimate t̂ is the solution(s) (if any) of
equation

Ĉk(A;B) =
∑
l∈[K]

eλl t̂M̂kl(A)M̂kl(B), (3.45)

which can be computed numerically. In Supp. Notebook 5 we see that, for k ̸= l,
E[Mkl(A)] is around two orders of magnitude smaller than E[Mkk(A)]. Moreover,
we have eλ1t∗ >> eλlt

∗ if λ1 > λl. Thus for any k such that hk has eigenvalue λ1, a
rough estimate of t∗ can be obtained assuming Mkl(A) ≈ 0 for k ̸= l, giving

t̂ ≈ 1

λk
log

( Ĉk(A;B)

M̂kk(A)M̂kk(B)

)
. (3.46)

Given the likelihood vectors α∂A and β∂B, this FME approximation is Θ(K) times
faster than one single iteration of the Newton method, computed as stated by Hoang
et al. [2017]. We further analyze this approximation in Subsec. 3.9.1.

The FME approximation of Eq. 3.46 is unnecessary when branch AB is external.
Indeed, if e.g. clade A is a single sequence y, then Mkl(y) = δkl (Prop. 3.6.f) and
Prop. 3.2.b gives the FME

t̂ =
1

λk
log

(Ĉk(y;B)

M̂kk(B)

)
. (3.47)

The following proposition describes the variance of the coherence assuming that
the true length of branch AB is infinity. Its non-reversible counterpart is stated in
Prop. 3.11.

Proposition 3.3. Consider a reversible and stationary process on a tree over an
alphabet with K+1 states. If branch AB has true length t∗, then the following holds.

a) For any subset S ⊆ [K] we have

Var[
∑
k∈S

C∂
k (A;B) | t∗ → ∞] =

∑
k,l∈S

Mkl(A)Mkl(B) ≤ K2.

b) Assume that
∑

k∈S C
∂
k (A;B) is not constant in ∂, as also that Q has eigen-

values 0 > λ1 ≥ · · · ≥ λK such that λ1 has multiplicity D ≤ K. Then, for
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t∗ <∞ large enough, ∑
k∈[D]

Ck(A;B) > 0.

Proof.

a) We know from Eq. 3.27 that t∗ → ∞ implies that ∂A and ∂B are independent
events. We also proved that E[C∂

k (A;B) | t → ∞] = 0 in Prop. 3.2.a.
Therefore

Var[
∑
k∈S

C∂
k (A;B) | t∗ → ∞] = E[(

∑
k∈S

C∂
k (A;B))2 | t∗ → ∞]. (3.48)

After expanding the squared sum (
∑

k∈S C
∂
k (A;B))2, note that

C∂
k (A;B)C∂

l (A;B) =M∂A
kl (A)M

∂B
kl (B). (3.49)

Thus we have

E[C∂
k (A;B)C∂

l (A;B) | t∗ → ∞] = (3.50)

=E[M∂A
kl (A)M

∂B
kl (B) | t∗ → ∞] =

= E[M∂A
kl (A)]E[M∂B

kl (B)] =Mkl(A)Mkl(B).

Summing for all k, l ∈ [S] we get the desired equality. Using Prop. 3.8.c with
n∂/n = Pr(∂), we obtain the inequality∑

k,l∈S

Mkl(A)Mkl(B) ≤ (
∑
k∈S

Mkk(A))(
∑
k∈S

Mkk(B)). (3.51)

In Prop.3.7.c, we proved that M(A) ≤ K, and thus
∑

k∈S Mkk(A) ≤M(A) ≤
K. Analogously we have

∑
k∈S Mkk(B) ≤ K, yielding the bound.

b) Using Prop. 3.2.b, we know that

e−λ1t∗
∑
k∈[D]

Ck(A;B) =
∑

k∈[D],l∈[K]

e(λl−λ1)t∗Mkl(A)Mkl(B) = (3.52)

=
∑

k,l∈[D]

Mkl(A)Mkl(B) + o(1), (3.53)

where we used the fact that e(λl−λ1)t∗ → 0 as t∗ → ∞ for any λl < λ1. Since
the variance of a nonconstant rv is positive, using item a) with S = [D], we
know that 0 <

∑
k,l∈[D]Mkl(A)Mkl(B). Thus for t∗ large enough, Eq. 3.53 is

positive, giving the result.
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3.9 Asymptotics of the Log-Likelihood of a Branch

The log-likelihood of a process E was introduced in Eq. 3.5. Considering the length
of branch AB as the only variable of a stationary process rooted at A, the log-
likelihood of branch length t equals

L(t) =
∑
∂

n∂ log Pr(∂ | t) =
∑
∂

n∂ log
(
α∂A

TΨeQtβ∂B

)
= (3.54)

=
∑
∂

n∂ log
(
⟨α∂A, e

Qtβ∂B⟩π
)
, (3.55)

where we substituted Pr(∂ | t) using Eq. 3.15 and the definition of the π-scalar
product of Eq. 3.18. We define the log-likelihood of independence as

L∞ :=
∑
∂

n∂

(
log Pr(∂A) + log Pr(∂B)

)
, (3.56)

which together with C∂(A; eQtB) = ⟨α̃∂A, e
Qtβ̃∂B⟩π−1 (Eq. 3.31) allows to rewrite

Eq. 3.55 as

L(t)− L∞ =
∑
∂

n∂ log
(
1 + C∂(A; eQtB)

)
. (3.57)

The well-known first order approximation log(1 + x) ≈ x for small x implies that,
for small C∂(A; eQtB), we have

L(t)− L∞ ≈ nĈ(A; eQtB), (3.58)

and thus the sample coherence emerges as a useful tool to describe the log-likelihood
for large t. Going further, if we assume reversibility, then the decomposition of the
coherence of Eq. 3.35 applied to Eq. 3.57 gives

L(t)− L∞ =
∑
∂

n∂ log
(
1 +

∑
k∈[K]

eλktC∂
k (A;B)

)
= (3.59)

=
∑
∂

n∂ log
(
1 +

∑
k∈[K]

eλkt(hk · α̃∂A)(hk · β̃∂B)
)
. (3.60)
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In the following proposition, we describe L(t) asymptotically.

Proposition 3.4. Given an alignment where pattern ∂ is observed n∂ times, assume
that the alignment is the realization of a stationary and reversible process on a tree
with rate matrix Q. If matrix Q has eigenvalues 0 > λ1 ≥ · · · ≥ λK such that λ1
has multiplicity D ≤ K, then the log-likelihood L(t) of branch AB having length t

satisfies the following.

a) L(t) ∼ L∞, that is, the quotient L(t)/L∞ → 1 as t→ ∞.

b) Define the dominant sample coherence as

δ̂ :=
∑
k∈[D]

Ĉk(A;B) =
∑
k∈[D]

∑
∂

n∂

n
(hk · α̃∂A)(hk · β̃∂B).

If δ ̸= 0, then L(t)− L∞ ∼ δ̂neλ1t.

Proof.
Note that, when either α∂ = 1 or β∂ = 1, the log-likelihood Pr(∂ | t) is

constant on t. Consequently, to avoid degenerated cases, assume that, for at least
one observed pattern, at least one entry of α∂ or β∂ is strictly smaller than 1,
implying (α∂A · π)(β∂B · π) < 1.

a) Using Eq. 3.56, L(t) − L∞ tends to zero as t → ∞, because log(1) = 0. To
prove L(t) ∼ L∞, it is enough to show that L∞ < 0. By assumption, for
some ∂, it holds that log(α∂A ·π) + log(β∂B ·π) < 0, and thus L∞ is strictly
negative.

b) Using L’Hôpital’s rule, it is enough to show that the derivative L′(t) satisfies
L′(t) ∼ δ̂nλ1e

λ1t. In the expression

[log
(
1 +

∑
k∈[K]

eλktC∂
k (A;B)

)
]′ =

∑
k∈[K] λke

λktC∂
k (A;B)

1 +
∑

k∈[K] e
λktC∂

k (A;B)
,

the denominator is asymptotically equivalent to 1. On the other
hand, if

∑
k∈[D]C

∂
k (A;B) ̸= 0, then the numerator is equivalent to

λ1e
λ1t

∑
k∈[D]C

∂
k (A;B), and o(eλ1t) otherwise. The equivalences can be

summed up due to the assumption δ̂ ̸= 0.

Figure 3.10 shows the limit of Prop 3.4.b for two sequences. Notably, Prop. 3.4.b
implies that whether L(t) increases or decreases for large t uniquely depends on the
sign of the dominant sample coherence δ̂, as stated in the following corollary.
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Figure 3.10: Plot of the difference (L(t)−L∞)/n and the dominant exponential decay
Ĉ1(y, z)eλ1t for the expected alignment of two sequences generated by a random
reversible rate matrix Q where λ1 has multiplicity D = 1. See Supp. Notebook 1.

Corollary 3.5. Given an alignment and assuming a stationary and reversible pro-
cess on a tree, the log-likelihood L(t) of branch AB having length t satisfies the
following.

a) If δ̂ > 0, then L(t) has local minimum L∞ when t→ ∞.

b) If δ̂ < 0, then L(t) has local maximum L∞ when t→ ∞.

If the log-likelihood L(t) has a unique maximum for t ∈ [0,∞], Corollary 3.5
characterizes the convergence of the Newton method in the search for the absolute
maximum of L(t). It is remarkable, however, that the log-likelihood can have multi-
ple maxima (even if infrequently), as explained in Appendix 3.E. For practitioners,
we recommend using Corollary 3.5 to predict the possible numerical divergence of
the Newton method.

3.9.1 The MLE and its asymptotic approximation

Interestingly, Corollary 3.5 implies that the MLE and the FME approximation of Eq.
3.46 behave similarly in extreme cases. Assume that the multiplicity of eigenvalue
λ1 is one. When C1(A;B) < 0, Corollary 3.5 implies that the MLE may output
t̂ → ∞. On the other hand, when C1(A;B) ≤ 0, in Eq. 3.46 it makes sense to
define log(C1(A;B)) := −∞, giving t̂ := ∞.

At the opposite extreme, when α̃∂A = β̃∂B for all ∂, then

Ĉ1(A;B) = M̂11(A) = M̂11(B), (3.61)

implying that t̂ ≤ 0 in Eq. 3.46. Since only nonnegative lengths are allowed, we
define t̂ := 0. Regarding the MLE, if we substitute α̃∂A = β̃∂B in the log-likelihood
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of Eq. 3.60, we obtain

L(t)− L∞ =
∑
∂

log
(
1 +

∑
k∈[3]

eλkt(hk · α̃∂A)
2
)
, (3.62)

which decreases in t. Due to restriction t̂ ≥ 0, we conclude that the MLE is t̂ = 0.
Thus again the FME approximation of Eq. 3.46 and the MLE coincide.

It is remarkable for practitioners that Eq. 3.62 reaches its absolute maximum in
[0,∞] at t = 0, no matter how mixed (that is, close to 1) the normalized likelihood
vector α̃∂A is. This explains why short internal branches may be estimated when re-
constructing saturated phylogenies, because saturation may imply α̃∂A ≈ 1 ≈ β̃∂B

for nearly all patterns ∂, leading to the MLE t̂ ≈ 0. It follows that a short MLE
reconstructed internal branch can also be saturated according to the asymptotic test
described in Section 3.10.

3.10 A Test for Branch Saturation

In this section, we will show that the sample coherence of a branch provides an
adequate tool to test for saturation. Notably, a raw MLE cannot detect satura-
tion (Appendix 3.D), implying that a test for saturation must be included in any
reconstruction protocol.

We define saturation formally in Subsection 3.10.1. Then, in Subsection 3.10.2,
we state the asymptotic test in its most general form, which is the most powerful
α-level test for long branches, as shown in Subsection 3.10.3. Simple versions of
the asymptotic test are stated in Subsection 3.10.4. The consequences of branch
saturation are described in Subsection 3.10.5.

3.10.1 Statistical definition of saturation

Given an alignment, we define saturation as the lack of significance to reject
the null hypothesis that the alignment was generated from an infinite
evolutionary process.

More concretely, given an alignment, we assume as usual that it is the realization
of a stationary and reversible process on a tree. We consider a branch AB on this
tree with true length t∗. We say that branch AB is saturated if we cannot reject the
null hypothesis that the true length t∗ of AB is infinite, that is, the null hypothesis
t∗ → ∞.
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We know from Eq. 3.27 that Pr(∂ | t) → Pr(∂A) Pr(∂B) as t → ∞. Conse-
quently, under the null hypothesis t∗ → ∞, subpatterns ∂A and ∂B are indepen-
dent. This means that each subpattern is the realization of an independent process
on clades A and B, respectively.

3.10.2 The asymptotic test

In Section 3.8, we computed the expectations and variances of any sum∑
k∈S C

∂
k (A;B) under hypothesis t∗ → ∞, where S is a subset of [K]. With these

results, many tests can be constructed using linear combinations of the projected co-
herences C∂

k (A;B). However, we are specially interested in constructing a powerful
test able to distinguish a large t∗ from t∗ → ∞.

To that end, assume that the rate matrix Q has eigenvalues 0 ≥ λ1 ≥ · · · ≥ λK ,
where λ1 has multiplicity D ≤ K, and consider the estimator

δ̂ :=
∑
k∈[D]

Ĉk(A;B) (3.63)

as defined in Prop. 3.4.b. We know that E[δ̂ | t∗ → ∞] = 0 (Prop. 3.2.a) and
E[δ̂] > 0 for large t∗ < ∞ (Prop. 3.3.b). Therefore, given a level of significance α,
we define the asymptotic test as:

"Reject t∗ → ∞ if δ̂ > cS", (3.64)

where the saturation coherence cS ∈ [0, 1] is chosen so that

Pr(δ̂ > cS | t∗ → ∞) = α. (3.65)

When δ̂ < cS, we say that branch AB is saturated (with significance α), because
we do not reject t∗ → ∞. Otherwise we say that branch AB is informative (with
significance α).

We can obtain an explicit expression for cS as follows. Recall that, if Var[X] =

σ2 and Xs ∼ X are i.i.d., then the variance of 1/n
∑

s∈[n]Xs is σ2/n. This fact,
combined with Prop. 3.3.a, gives

Var[δ̂ | t∗ → ∞] =
1

n

∑
k,l∈[D]

Mkl(A)Mkl(B), (3.66)

while E[δ̂ | t∗ → ∞] = 0 using Prop. 3.2.a. Thus assuming t∗ → ∞, we have the
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normal approximation

δ̂ ∼ N
(
0,

1

n

∑
k,l∈[D]

Mkl(A)Mkl(B)
)
, (3.67)

where N(µ, σ2) is the normal distribution. We infer the approximation of cS for
large n,

cS ≈ zα

√
1

n

∑
k,l∈[D]

Mkl(A)Mkl(B), (3.68)

where we define zα by Pr(Z > zα) = α for Z ∼ N(0, 1). Computing Mkl(A)Mkl(B)

is often unfeasible, since the set of possible patterns Am grows exponentially with m.
Although the sample statistics M̂kl(A)M̂kl(B) can be used as proxies, more formal
alternatives are described in Appendix 3.F.

3.10.3 Comparison to the likelihood-ratio test

Let us show that the asymptotic test has optimal power for large t∗. We start
by considering the likelihood-ratio test, which is the most powerful α-level test, as
proved by Neyman and Pearson [1933]. If the MLE is t̂ < ∞, we compare the
alternative hypothesis t∗ = t̂ versus the null hypothesis t∗ → ∞ using statistic
L(t̂)− L∞, or more explicitly

"Reject t∗ → ∞ if L(t̂)− L∞ > c", (3.69)

where c ∈ R>0 is chosen so that Pr(L(t̂)− L∞ > c | t∗ → ∞) = α.

Assuming that t̂ is far enough from the singularity of L(t), we can use the
approximation L(t̂) ≈ L∞ + δ̂neλ1 t̂ of Prop. 3.4.b, where δ̂ :=

∑
k∈[D] Ĉk(A;B).

This gives the test
"Reject t∗ → ∞ if δ̂ > e−λ1 t̂c/n", (3.70)

where c ∈ R>0 is chosen so that Pr(δ̂ > e−λ1 t̂c/n | t∗ → ∞) = α. Setting
cS := e−λ1 t̂c/n, we get the asymptotic test.

Notably, the asymptotic test does not depend on the MLE t̂, unlike the likelihood-
ratio test. This is an important advantage, since the numerical search for the ab-
solute maximum t̂ of L(t) may be impeded by the presence of local maxima, as
exemplified in Appendix 3.E.
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3.10.4 Simple asymptotic tests

The asymptotic test becomes much simpler if D = 1. Then δ̂ = Ĉ1(A;B) and Eq.
3.66 becomes

Var[Ĉ1(A;B) | t∗ → ∞] =
1

n
M11(A)M11(B), (3.71)

implying that the saturation coherence of Eq. 3.68 is

cS ≈ zα

√
M11(A)M11(B)

n
, (3.72)

and thus we reject hypothesis t∗ → ∞ if Ĉ1(A;B) > cS, or the upper bound of some
confidence interval around cS.

The asymptotic test is also simplified when applied to an external branch, mean-
ing that clade A or clade B is a single sequence. Assume for example that B = z,
and recall that Mkl(z) = δkl (Prop. 3.6.f). Then, Eq. 3.66 gives

Var[δ̂ | t∗ → ∞] =
1

n

∑
k∈[D]

Mkk(A), (3.73)

meaning that, for B = z, the variance of the sum of projected memories is the sum
of variances. In this case, we reject hypothesis t∗ → ∞ if δ̂ > cS, where

cS ≈ zα

√
1

n

∑
k∈[D]

Mkk(A). (3.74)

If also clade A is a single sequence, say A = y, then the evolutionary process is
Eseq (Figure 3.6) and the saturation coherence is

cS ≈ zα

√
D

n
. (3.75)

Hypothesis t∗ → ∞ is rejected if δ̂ > cS, or equivalently if
∑

k∈[D] v
T
kNvk/n > cS

(Prop. 3.6.a).

The simplest of all tests is obtained by considering process Eseq and D = 1,
where Ĉ1(y; z) = vT

1Nv1/n. If we set for example n = 10000 and significance level
α = 0.01, then since Pr(Z > 2.3) ≈ 0.01, the saturation coherence is cS ≈ 2.3/100.
Thus we reject t∗ → ∞ if vT

1Nv1/n > 0.023. Actually, in this very simple case, the
asymptotic test can be intuitively expressed in terms of evolutionary time. Con-
sider the saturation time tS := 1/λ1 log (cS) and the first moment estimate
t̂ := 1/λ1 log (v

T
1Nv1/n) (Eq. 3.47). Then branch yz is saturated with signifi-
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cance α iff t̂ > tS. In Figure 3.11, for various significances α, we represent the scaled
saturation time |λ1|tS as a function of the number of sites n.

α = 0.05

α = 0.01

α = 0.002

α = 0.0004

5000 1×104 5×104 1×105
Number of sites n

2.5

3.0

3.5

4.0

4.5

5.0

|λ1|tS

Figure 3.11: Log-linear plots of the scaled saturation time |λ1|tS as a function of
the number of sites n for α ∈ 0.25 × {5−1, 5−2, 5−3, 5−4}. Given α, the saturation
time grows as a linear function of the logarithm of the sequence length. See Supp.
Notebook 2.

3.10.5 The meaning of a saturated branch

In general, when a reconstructed process is given, we can apply the asymptotic test
looking for saturated branches. Rejecting saturation using the asymptotic test is
a necessary condition for a reliable reconstructed branch AB. Indeed, if a finite
branch AB is saturated, then a realization of the reconstructed process may lead to
an infinite estimate for this branch. This lack of reproducibility makes branch AB

unreliable, and therefore we remain in the null hypothesis that the true length t∗ of
AB is infinite.

Recall moreover that Pr(∂ | t) → Pr(∂A) Pr(∂B) as t→ ∞ (Eq. 3.27), and thus
hypothesis t∗ → ∞ implies that observations ∂A and ∂B are independent. On
the other side, since we assume a reversible process, the root of any phylogeny is
unidentifiable. Therefore, if branch AB is saturated, then the reconstructed tree
is composed by unrooted clade A (removing parent node A) independent from un-
rooted clade B (removing parent node B).

If unrooted clades A and B are binary trees and have respectively k and m− k

leaves with m − k ≥ k ≥ 2, then they have respectively 2k − 3 and 2(m − k) − 3

branches. There are (2k−3)(2(m−k)−3) possible topologies obtainable by placing
new parent nodes A′ and B′ at a branch of unrooted clades A and B, and then
joining A′B′. Any true topology obtained by determining branch A′B′ agrees with
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our reconstructed topology as long as we assume that branch A′B′ has infinite length
tA′B′ → ∞. In the particular case when A has k = 1 node, then the reconstructed
topology agrees with 2m−5 possible true topologies. This case is extensively studied
in Section 3.11 for m = 4 sequences.

Summarizing, in a practical case, a saturated branch AB can be explained in
three ways:

1 Too many mutations have happened due to t∗ being too large, or tA′B′ being
too large for some ignored branch A′B′ of the true tree. An alignment with
more sites may reject saturation, as represented in Figure 3.11.

2 Some sites are wrongly aligned. Under our assumptions, every insertion of sites
starts a new evolutionary history. In this case, the consequence of a saturated
branch AB is that, indeed, clades A and B have independent evolutionary
histories.

3 The assumed evolutionary process is misspecified. Either the tree topology,
the branch lengths or the rate matrix are wrong.

3.11 The Asymptotic Test Detects Long Branch Re-

pulsion

In this section we show that the asymptotic test is able to recognize and resolve
the phenomenon called long branch repulsion (LBR) in an alignment with 4

sequences. In particular, we apply the asymptotic test of Subsection 3.10.2 with
significance α = 0.01 assuming that the multiplicity of eigenvalue λ1 is one, that is,
D = 1. Using Eq. 3.72, the saturation coherence of any branch is

cS ≈ zα

√
M11(A)M11(B)

n
. (3.76)

For an external branch, say where A = y, we have M11(A) = 1 (Prop. 3.6.f) and
saturation coherence

cS ≈ zα

√
M11(B)

n
. (3.77)

To upper estimate the projected memories M11(B), we use estimator
M̂11(B) + 2ŝ, where ŝ is an upper bound of the standard deviation of any sam-
ple projected memory, giving confidence intervals of at least 95% (see Appendix
3.F). Using Prop. 3.7.f, we set ŝ :=

√
U min (K,U/4)/n.
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3.11.1 Description of LBR

LBR, described by Siddall [1998], is an artifact that can occur when an evolutionary
process is reconstructed using an MLE. It consists on the wrong reconstruction of
two sister sequences due to their long external branches, as exemplified in Figure
3.12. Parameters p and q determine the true length of two and three branches,
respectively.

True process E* Reconstructed process E

Figure 3.12: Graphic representation of LBR. In the true process E∗, the interior
branch induces split 12|34, while in the reconstructed tree the interior branch induces
split 13|24. By symmetry, LBR also occurs when the split 14|23 is induced by
the interior branch. When reconstructing process E, we only estimate the interior
branch r using an MLE (differing from Siddall [1998], who estimates more branches
simultaneously). For the wrong 13- and 14-topologies, if p is large and q is small,
then r is frequently close to 0.

In Eq. 3.103 we prove that deciding whether t∗ → ∞ on a branch AB is infeasible
using just a finite MLE. Recall moreover that t∗ → ∞ implies that clades A and B
are independent. Considering these results, the existence of LBR is not surprising:
If p is very large, then observations 3 and 4 are in practice independent of subtree
12. When reconstructing process E, sequences 3 and 4 are placed nearly at random
in the tree. Thus, under our reconstruction protocol, mainly the constrains over the
distance between sequences 1 and 2 determine the estimated topology.

3.11.2 How to apply the asymptotic test

In Figure 3.13, we have a typical case of the asymptotic test applied simultaneously
to all branches of the well reconstructed 12-tree and the wrongly reconstructed
13-tree. For both topologies, branches 3 and 4 are saturated, and therefore the
asymptotic test applied to the reconstructed 12− and 13−topologies implies the
following: Sequences 1 and 2 are distant around 2q time units, while sequences 3

and 4 were sampled independently.
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Asym. Test

12 Topology

Asym. Test

13 Topology

Asym. Test

Asym. Test

Figure 3.13: Graphic representation of the asymptotic test applied simultaneously to
the long branches of the 12− and 13-topology. We do not apply the test sequentially
to preserve the symmetry between sequences 3 and 4.

Intuitively, in Figure 3.13, parameter r of the 13-topology is close to 0 because
the resulting subtree 12 is a reliable estimate the true subtree 12. As explained
in Subsection 3.10.5, the tested 13-topology of Figure 3.13 does not contradict the
true 12-topology, because the tested 13-topology is actually agnostic regarding the
placement of sequences 3 and 4 in the tree. Note that this reasoning also applies
when only one of branches 3 and 4 is saturated, since both subtrees 123 and 124 are
subtrees of the true 12-topology.

The same way as branches are often optimized sequentially, also the asymptotic
test can be applied sequentially until all remaining branches reject saturation. An
example of the asymptotic test applied sequentially to the 12-topology is represented
in Figure 3.14. Again, the final tree states that sequences 1 and 2 are around 2q

time units apart, while sequences 3 and 4 were sampled independently from the rest
of the tree.

3.11.3 Simulations

In Supp. Notebook 6, using a fixed random reversible rate matrix Q and for four
pairs of parameters (p, q), we simulated 4 × 100 realizations of length n = 5000 of
the true process E∗ with a 12-topology.

Then we computed an MLE of the interior branch length and the true tree. After
this, we simultaneously applied the asymptotic test to branches 3 and 4 to obtain
their saturation status, abbreviated using the initials "i" for informative and "s" for
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Asym. Test

12 Topology

Asym. Test

Figure 3.14: Graphic representation of the asymptotic test applied sequentially to
the long branches of the 12-topology until all branches reject saturation.

saturated. For example, abbreviation is denotes that branch 3 is informative, while
branch 4 is saturated. A summary of these simulations is presented in Tables 3.2
and 3.3.

Table 3.2 shows that the saturation status of branches 3 and 4 is the same one for
all candidate topologies assuming that the true parameters are far enough from the
saturation threshold (in our case, somewhere around p = 2). Thus for most of true
parameters, the asymptotic test seems to remain invariant under a mild topological
misspecification as a leaf rearrangement. Moreover, as expected, branches 3 and 4

are more often saturated as p increases.

In Table 3.3 we see that the frequency of wrongly estimated topologies increases
with p, in agreement with Siddall [1998]. However, when the wrong 13- and 14-
topologies are the estimate and p = 3, nearly always (32/33) at least one of branches
3 and 4 is saturated. Since the subtrees 123 and 134 are subtrees of the true 12-
topology, those tested wrong estimates actually agree with the true 12-topology. For
p = 1.5, LBR is absent, and accordingly branches 3 and 4 are always informative.
When p = 2, closer to the saturation threshold, the asymptotic test has its poorest
relative performance, providing a wrong tested topology with status ii in half (4/8)
of the wrongly reconstructed topologies.

In absolute terms, however, Table 3.3 shows the usefulness of the asymptotic
test: For any choice of parameters, in at least 96% of repeats we either estimated
the correct 12-topology or found saturated branches in the 13- or 14-topology (thus
agreeing with the 12-topology).

Chapter 3. Measures of Phylogenetic Information and Saturation 74



(p, q) All ii All si/ All is All ss Conflict
(1.5, 0.3) 100 0 0 0
(2, 0.3) 47 25 9 19

(2.5, 0.3) 6 20 68 6
(3, 0.3) 1 6 93 0

Table 3.2: Summary of our simulations using a fixed rate matrix Q and the true
12-topology to generate alignments of length n = 5000. For each (p, q) and each
of the 100 repeats, we count in how many instances All candidate topologies have
the same saturation status for branches 3 and 4, using significance α = 0.01. If not
all candidate topologies have the same saturation status, we count it as a Conflict.
See Supp. Notebook 6.

(p, q) Estimated Topology Times ii is/si ss

(1.5, 0.3)
12 100 100 0 0

13 or 14 0 0 0 0

(2, 0.3)
12 92 43 28 21

13 or 14 8 4 4 0

(2.5, 0.3)
12 79 2 16 61

13 or 14 21 4 4 13

(3, 0.3)
12 67 0 0 67

13 or 14 33 1 6 26

Table 3.3: Summary of our simulations using a fixed rate matrix Q and the true
12-topology to generate alignments of length n = 5000. For each (p, q) and each of
the 100 repeats, we find the estimated topology by optimizing the interior branch
length of each topology. Then we compute the saturation status of branches 3 and 4
of the MLE using significance α = 0.01. In red, the wrong estimates after testing.
See Supp. Notebook 6.
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Our simulations show that, with this setup, LBR is mostly a consequence of
saturation and can be detected using the asymptotic test. In particular, the existence
of LBR does not imply that the MLE is "prone to failure" in the Farris zone. In
general, we cannot expect that any reconstruction method will always recover the
true topology no matter how long the true branches are. The virtue of ML, however,
is that using its estimated parameters we can test the quality of our reconstruction,
as we have exemplified in this section.

3.12 Conclusions and future research

Attending to our theoretical results, the coherence of a branch and the memory of a
clade provide well-behaved statistics describing the underlying tree structure of an
evolutionary process. Moreover, the asymptotic test is simple and powerful enough
to detect long branch repulsion in our simulations.

In order to systematically apply the asymptotic test to phylogenies obtained from
real data, future work should focus on its software implementation. Then, highly
mutated alignments such as the SIV sequences available at Los Alamos database
[Foley et al., 2020] could provide good examples of saturation, as we can see in
Subsection 3.3.2.

Once systematic data is available, the sample coherence could be compared to the
branch support values of the bootstrap [Felsenstein, 1985, Efron, 1992]. Intuitively,
a small sample coherence leads to branch saturation, which implies low branch sup-
port values, as exemplified by the wrong reconstructed topologies of Section 3.11.
However, we ignore up to which extent a big sample coherence implies a high boot-
strap support, even if saturation is rejected. Since the bootstrap is computationally
expensive, the sample coherence of a branch could offer an efficient alternative with
a solid theoretical basis.

Regarding generalizations, it is remarkable that the memory and the coherence
are well-defined also under nonreversible and nonstationary models of evolution, as
we have exemplified in Appendix 3.C. With this more general setup, Manuel [2022]
used the memory vector to upper-bound information flow on trees. However, the
relationship between these generalized measures and MLE reconstruction is more
complicated.

As an example, it seems feasible to construct a non-reversibility asymptotic test
for a branch AB rooted at A (see Appendix 3.C). However, testing other branches
not adjacent to the root requires recomputing the probability of observing each
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pattern under the null hypothesis. In contrast, other useful generalizations, such as
the inclusion of varying evolutionary rates in the alignment, are straightforward, as
exemplified in Subsection 3.3.2.

Appendix 3.A Explicit Computation with Two Se-

quences

To provide some examples, the process Eseq represented in Figure 3.6 has a simple
tree structure that allows to explicitly compute the coherence and the memory, as
we do in Prop. 3.6. We assume that clade A is composed uniquely by sequence
y, and thus write A = y, and similarly we set B = z. Given the alignment (y, z),
if pattern ij ∈ A2 is observed nij times, then we define the diversity matrix as
N := (nij). We define moreover the vector ny = (ni), where ni :=

∑
j nij, that is,

ni counts how many times state i was observed in sequence y. Recall also that the
Kronecker delta δkl equals 1 if k = l and 0 otherwise.

Proposition 3.6. Consider process Eseq with true transition matrix eQt∗ = (pij(t
∗)),

where the reversible rate matrix Q over K+1 states with equilibrium frequency π > 0

is assumed to be known. Then the following holds.

a) Ĉk(y; z) = vT
kNvk/n.

b) Ck(y; z) = eλkt
∗.

c) Ĉ(y; z) = −1 +
∑

i
nii

n
1
πi
.

d) C(y; z) = −1 +
∑

i pii(t
∗) =

∑
k∈[K] e

λkt
∗
.

e) M̂kl(y) = (vk ◦ vl) · ny/n.

f) Mkl(y) = δkl.

g) M̂(y) = −1 +
∑

i
ni

n
1
πi
.

h) M(y) = K.

Proof.

a) We write α̃∂A = (α̃i) and β̃∂B = (β̃i). If ∂ = (∂A, ∂B) = ij, then α̃∂A = ei/πi

and β̃∂B = ej/πj, where ei is the vector with 1 at the ith entry and 0 every-
where else. Recall that hk = vk ◦ π, and thus if we write vk = (vik), then
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C∂
k (y; z) = vikv

j
k . Therefore

Ĉk(y; z) :=
∑
ij

nij

n
C∂

k (y; z) =
∑
ij

nij

n
vikv

j
k = vT

kNvk/n.

b) Since Pr(ij) = πipij(t
∗), it holds that E[N/n] = ΨeQt∗ , where Ψ = Diag(π).

Taking the expected value in item a), we obtain

Ck(y; z) = vT
kΨe

Qt∗vk = hT
ke

Qt∗vk = eλkt
∗
. (3.78)

c) It holds that Cij(y; z) = δij/πi − 1. Therefore we have

Ĉ(y; z) =
∑
i

nii

n
(
1

πi
− 1)−

∑
i ̸=j

nij

n
=

∑
i

nii

n

1

πi
− 1, (3.79)

where we used the fact that
∑

ij nij = n.

d) To obtain the first equality, substitute E[nii/n] = πipii(t
∗) in item

c). To obtain the second equality, use item b) and the decomposition
C(y; z) =

∑
k∈[K]Ck(y; z). Alternatively, use the fact that the trace of a matrix

equals the sum of its eigenvalues.

e) For any pattern ∂ = i, M i
kl(y) = vikv

i
l , and thus

M̂kl(y) =
∑
i

ni

n
vikv

i
l = (vk ◦ vl) · ny/n.

f) It holds that E[ny/n] = π. Taking the expected value in item e), we have

Mkl(y) = (vk ◦ vl) · π = hk · vl = δkl. (3.80)

g) Just assume that z = y in the alignment of item c), implying nii = ni.

h) Using item f), M(y) =
∑

k∈[K]Mkk(y) =
∑

k∈[K] 1 = K.
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Appendix 3.B Bounds of the Coherence and the

Memory

In this section we state basic bounds involving the memory and the coherence. We
start with some bounds of the memory of a clade and its variance.

Proposition 3.7. Consider a process on a tree with a rate matrix over an alphabet
with K + 1 states and equilibrium frequency π > 0. Setting U := 1/mini πi − 1, for
any clade R, the following bounds hold assuming stationarity [s] and/or reversibility
[r].

a) M∂(R) ≤ U for any pattern ∂.

b) M̂(R) ≤ U for any alignment.

c) [s] M(R) ≤ K.

d) [r] |M̂kl(R)| ≤
√
M̂kk(R)M̂ll(R) ≤ U for any k, l ∈ [K].

e) [s,r] |Mkl(R)| ≤
√
Mkk(R)Mll(R) ≤ K for any k, l ∈ [K].

f) [s,r] Var[
∑

k∈S M
∂
kk(R)] ≤ U min(K,U/4) for any subset S ⊆ [K].

g) [s,r] Var[M∂
kl(R)] ≤ UK for any k, l ∈ [K].

Proof.

a) We know that M∂(R) = ∥ρ̃∂∥2π −1 and π · ρ̃∂ = 1. If we write ρ̃∂ = (ρ̃i), then

∥ρ̃∂∥2π =
∑
i

ρ̃2iπi ≤ max
i
ρ̃i ≤ 1/min

i
πi. (3.81)

b) Since M̂(R) is a weighed mean of memories M∂(R), it is consequence of item
a).

c) We know that M(R) = −1 +
∑

∂ Pr(∂)∥ρ̃∂∥2π. If we write ρ̃∂ = (ρ̃∂i ), Eq. 3.81
yields ∑

∂

Pr(∂)∥ρ̃∂∥2π ≤
∑
∂

Pr(∂)max
i
ρ̃∂i ≤

∑
∂

Pr(∂)
∑
i

ρ̃∂i . (3.82)

Now we write ρ∂ = (ρ∂i ). Since Pr(∂)ρ̃∂ = ρ∂ , the last term of Eq. 3.82 equals∑
∂

Pr(∂)
∑
i

ρ̃∂i =
∑
∂

∑
i

ρ∂i =
∑
i

∑
∂

ρ∂i =
∑
i

1 = K + 1, (3.83)
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where we used the definition ρ∂i = Pr(∂ | i at node R), and thus
∑

∂ ρ
∂
i = 1.

d) Apply the Cauchy-Schwartz inequality to sequences x∂ =
√
n∂/n|hk · ρ̃∂ |

and y∂ =
√
n∂/n|hl · ρ̃∂ |. For the second inequality, use the fact that

M̂kk(R) ≤ M̂(R) ≤ U .

e) For the first inequality, substitute n∂/n = Pr(∂) in the previous item. For the
second inequality, use the fact that Mkk(R) ≤M(R) ≤ K.

f) Inequality Var[
∑

k∈S M
∂
kk(R)] ≤ U2/4 is a direct consequence of Popoviciu’s

inequality on variances [Popoviciu, 1935], where we use the lower bound
0 ≤ M∂(R) and the upper bound M∂(R) ≤ U from item a). Inequality
Var[

∑
k∈S M

∂
kk(R)] ≤ UK is obtained by doing

Var[
∑
k∈S

M∂
kk(R)] ≤ E[(

∑
k∈S

M∂
kk(R))

2] ≤ UE[
∑
k∈S

M∂
kk(R)] ≤ UK, (3.84)

where we used the fact that
∑

k∈S Mkk(R) ≤M(R) ≤ K from item c).

g) As in Eq. 3.84, we do

Var[M∂
kl(R)] ≤ E[M∂

kl(R)
2] = E[M∂

kk(R)M
∂
ll (R)] ≤ UE[M∂

kk(R)] ≤ UK.

(3.85)

In Prop. 3.8, we state some Cauchy-Schwartz-like bounds of the projected sample
coherences of a branch. In particular, we prove that the coherence of a branch cannot
be greater than the geometric mean of the memories of the clades induced by this
branch. We omit the analogous results for the population coherence, since they are
just a particular case where n∂/n = Pr(∂). A similar bound is stated in Prop. 3.9,
without assuming reversibility.

Proposition 3.8. Consider a reversible evolutionary process on a tree. Given
branch AB, the following holds for any observed alignment.

a) |Ĉk(A;B)| ≤
√
M̂kk(A)M̂kk(B).

b) For any subset S ⊆ [K],

∑
k∈S

|Ĉk(A;B)| ≤
√

(
∑
k∈S

M̂kk(A))(
∑
k∈S

M̂kk(B)).
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c) For any subset S ⊆ [K],∑
k,l∈S

|M̂kl(A)M̂kl(B)| ≤
∑
k∈S

M̂kk(A)
∑
k∈S

M̂kk(B).

Proof.

a) Clearly |C∂
k (A;B)| =

√
M∂A

kk (A)M
∂B
kk (B). Applying the Cauchy-Schwartz in-

equality to sequences

x∂ =
√
M∂A

kk (A)n∂/n , y∂ =
√
M∂B

kk (B)n∂/n,

we obtain

|Ĉk(A;B)| ≤
∑
∂

√
M∂A

kk (A)n∂/n
√
M∂B

kk (B)n∂/n ≤

≤
√∑

∂

M∂A
kk (A)

n∂

n

∑
∂

M∂B
kk (B)

n∂

n
.

We obtain the result using
∑

∂B n∂ = n∂A, and
∑

∂A n∂ = n∂B.

b) Using item a), we can do

∑
k∈S

|Ĉk(A;B)| ≤
∑
k∈S

√
M̂kk(A)

√
M̂kk(B) ≤

√∑
k∈S

M̂kk(A)

√∑
k∈S

M̂kk(B),

where we applied the Cauchy-Schwarz to obtain the last inequality.

c) We know from Prop. 3.7.d that |M̂kl(A)| ≤
√
M̂kk(A)M̂ll(A) and

|M̂kl(B)| ≤
√
M̂kk(B)M̂ll(B), so it is enough to prove

∑
k,l∈S

√
M̂kk(A)M̂ll(A)

√
M̂kk(B)M̂ll(B) ≤

∑
k∈S

M̂kk(A)
∑
k∈S

M̂kk(B). (3.86)

The left hand side of Eq. 3.86 can be rewritten as

(
∑
k∈S

√
M̂kk(A)M̂kk(B))2, (3.87)

and thus Eq. 3.86 is consequence of the Cauchy-Schwartz inequality using

xk =

√
M̂kk(A) and yk =

√
M̂kk(B).
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Appendix 3.C Non-reversible processes

The non-reversible counterparts of three propositions of the article are stated here.

Proposition 3.9. Consider an evolutionary process over K + 1 states on a tree
rooted at A. Given branch AB, the following holds.

a) For any observed alignment, |Ĉ(A;B)| ≤
√
M̂(A)M̂(B).

b) Assuming stationarity, |C(A;B)| ≤ K.

Proof.

a) For the π-inner product, the Cauchy-Schwartz inequality reads

⟨α̃∂A − 1, β̃∂B − 1⟩π ≤ ∥α̃∂A − 1∥π∥β̃∂B − 1∥π.

This gives

|Ĉ(A;B)| ≤
∑
∂

∥α̃∂A − 1∥π∥β̃∂B − 1∥πn∂/n.

Applying the Cauchy-Schwartz inequality to sequences

x∂ = ∥α̃∂A − 1∥π
√
n∂/n , y∂ = ∥β̃∂B − 1∥π

√
n∂/n,

we obtain

|Ĉ(A;B)| ≤
∑
∂

∥α̃∂A − 1∥2πn∂/n
∑
∂

∥β̃∂B − 1∥πn∂/n.

Pattern ∂ can be partitioned as ∂ = (∂A, ∂B), and thus
∑

∂B n∂ = n∂A, and∑
∂A n∂ = n∂B, giving the result.

b) Consider an alignment such that n∂/n = Pr(∂) in item a). Then, use the
bounds M(A) ≤ K and M(B) ≤ K of Prop. 3.7.c.

Proposition 3.10. Consider a stationary process on a tree rooted at A. Given a
branch AB with true length t∗, it holds that

C(A;B) := E[C∂(A;B) | t∗ → ∞] = 0.
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Proof. We know from Eq. 3.30 that Pr(∂) → Pr(∂A) Pr(∂B). Recall moreover that
Eq. 3.8 implies that

∑
∂A α∂A =

∑
∂B β∂B = 1. Therefore

C(A;B) = −1 +
∑

∂A,∂B

Pr(∂A) Pr(∂B)⟨α̃∂A, β̃∂B⟩π = (3.88)

= −1 +
∑

∂A,∂B

⟨α∂A,β∂B⟩π = −1 +
∑
∂A

⟨α∂A,
∑
∂B

β∂B⟩π =

= −1 + ⟨
∑
∂A

α∂A,1⟩π = −1 + ⟨1,1⟩π = −1 + 1 = 0.

Proposition 3.11. Consider a stationary process on a tree rooted at A. Given a
branch AB with true length t∗, the following holds.

a) The coherence of a branch satisfies

Var[C∂(A;B) | t∗ → ∞] = E[C∂(A;B) | t∗ = 0] ≤ K

b) For any true branch length t∗, it holds that

C(A;B) ≥ 0.

If C∂(A;B) is not constant in ∂, then the inequality is strict.

Proof.

a) We know that Pr(∂) → Pr(∂A) Pr(∂B) (Eq. 3.30), and we proved in Prop.
3.10 that E[C∂(A;B) | t∗ → ∞] = 0. Thus we can compute

Var[C∂(A;B) | t∗ → ∞] = E[(C∂(A;B))2 | t∗ → ∞] = (3.89)

=
∑

∂A,∂B

Pr(∂A) Pr(∂B)⟨α̃∂A − 1, β̃∂B − 1⟩2π = (3.90)

=
∑

∂A,∂B

Pr(∂A) Pr(∂B)⟨α̃∂A − 1, β̃∂B − 1⟩π(⟨α̃∂A, β̃∂B⟩π − 1). (3.91)

(3.92)

Notice that Pr(∂A) Pr(∂B)⟨α̃∂A, β̃∂B⟩π = Pr(∂ | t∗ = 0) from Eq. 3.15. On
the other side,∑

∂A,∂B

Pr(∂A) Pr(∂B)⟨α̃∂A − 1, β̃∂B − 1⟩π = E[C∂(A;B) | t∗ → ∞] = 0.
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It follows that Eq. 3.91 can be rewritten as∑
∂A,∂B

Pr(∂ | t∗ = 0)⟨α̃∂A − 1, β̃∂B − 1⟩π = E[C∂(A;B) | t∗ = 0], (3.93)

giving the desired equality.

b) We know that Var[C∂(A;B) | t∗ → ∞] ≥ 0, being a strict inequality if
C∂(A;B) is not constant. Therefore item a) implies that

E[C∂(A;B) | t∗ = 0] ≥ 0. (3.94)

Since Eq. 3.94 applies for any two nodes A and B as long as the tree is rooted
at A, we know that

E[C∂(A; eQtB) | t∗ = 0] ≥ 0,

and thus it is enough to prove that, for any t ≥ 0,

E[C∂(A; eQtB) | t∗ = 0] = E[C∂(A;B) | t∗ = t]. (3.95)

By developing the first expression, where Pr(∂ | t∗ = 0) = ⟨α∂A,β∂B⟩π due
to Eq. 3.15, we obtain

E[C∂(A; eQtB) | t∗ = 0] = −1 +
∑

∂A,∂B

⟨α∂A,β∂B⟩π⟨α̃∂A, e
Qtβ̃∂B⟩π =

= −1 +
∑

∂A,∂B

⟨α∂A, e
Qtβ∂B⟩π⟨α̃∂A, β̃∂B⟩π = (3.96)

=
∑

∂A,∂B

Pr(∂ | t∗ = t)⟨α̃∂A − 1, β̃∂B − 1⟩π = (3.97)

= E[C∂(A;B) | t∗ = t], (3.98)

as desired.

Appendix 3.D The MLE Cannot Detect Saturation

Here we show that, when the MLE of a branch length is finite, we cannot draw any
conclusion about the finiteness of the true branch length.

Consider an alignment generated from a stationary and reversible process on a
tree. Consider a branch AB on this tree with true length t∗ and the log-likelihood
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L(t) of branch AB having length t (Eq. 3.60). The absolute maximum t̂ of function
L(t) is the MLE.

We can describe the MLE t̂ under the null hypothesis t∗ → ∞ using the dominant
sample coherence δ̂ defined in Prop. 3.4. Consider the eigenvalues 0 > λ1 ≥ · · · ≥ λK

of rate matrixQ, where λ1 has multiplicityD ≤ K. Assuming t∗ → ∞, the dominant
sample coherence δ̂, considered as a rv, satisfies that

E[δ̂ | t∗ → ∞] =
∑
k∈[D]

E[C∂
k (A;B) | t∗ → ∞] = 0, (3.99)

where we used Prop. 3.2.a. We define the variance σ2 := Var[δ̂ | t∗ → ∞].

Since we assume that the sites of an alignment are generated independently, the
integers n∂ are multinomially distributed with probabilities Pr(∂). Therefore, for
large n, each observed quantity n∂ can be approximated as the outcome a normal
distribution, as also the sample dominant coherence, which is a linear combination
of the integers n∂. In particular, using Eq. 3.99, it follows that the distribution of
statistical δ̂ assuming t∗ → ∞ can be approximated as

δ̂ ∼ N(0, σ2), (3.100)

where N(µ, σ2) denotes the normal distribution. In particular,

Pr(δ̂ ̸= 0 | t∗ → ∞) ≈ 1, (3.101)

and thus almost surely δ̂neλ1t is the dominant exponential decay of L(t), as implied
by Prop. 3.4.b. Moreover, by symmetry of the normal distribution around its mean,

Pr(δ̂ > 0 | t∗ → ∞) ≈ 1/2. (3.102)

When δ̂ > 0, the MLE t̂ is finite from Corollary 3.5. Consequently,

Pr(t̂ is finite | t∗ → ∞) ≥ Pr(δ̂ > 0 | t∗ → ∞) ≈ 1/2, (3.103)

no matter how large n is. All in all, under the null hypothesis t∗ → ∞, a finite MLE
t̂ is uninformative about the finiteness of the true time t∗.
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Appendix 3.E Examples of Multiple Maxima

Here we construct rate matrices inducing log-likelihoods L(t) with multiple maxima.
In Subsection 3.E.1, we describe an example of multiple maxima in one entry of the
matrix exponential eQt, and then in Subsection 3.E.2 we give more realistic examples
between two SIV sequences.

These examples show that branch length optimization in a phylogenetic tree
poses the additional problem of distinguishing local maxima from global max-
ima. In particular, in Subsection 3.E.2, multiple maxima were present in at least
0.35% (7/2000) and 1.25% (25/2000) of random rate matrices. Thus the occurrence
of multiple maxima when studying alignments close to saturation is not negligible
and should be taken care of for the Newton method.

3.E.1 Maxima for one entry of the matrix exponential

The numerical part of this subsection can be found in Supp. Notebook 3. Consider
the orthogonal base of right eigenvectors

U =


1 a −1 −c
1 −a −1 c

1 c 1 a

1 −c 1 −a

 , (3.104)

where c2 = 2− a2, making the module of each right eigenvector be 4. It holds that
U−1 = UT/4, in particular π = 1/4. Our reversible rate matrix will be

Q := U(δD∗)UT/4, (3.105)

where D∗ := Diag[0, t1, t2, t3] for negative real numbers ti, and δ is chosen so that∑
i qiiπi = Tr(Q)/4 = −1, making the expected number of substitutions per unit of

time be 1. Thus we can write D := δD∗ =: Diag[0, λ1, λ2, λ3], where λi = tiδ and we
assume 0 > λ1 > λ2 > λ3. Note that Q is symmetrical, making it easier to handle.

The eigenvector with eigenvalue λ1 is vT
1 := (a,−a, c,−c)T . From Prop. 3.1.b,

we know that
eQt = (pij(t)) =

1

4
11T +

1

4

∑
k∈[3]

vkv
T
k e

λkt. (3.106)

Assuming
√
2 > a > 0, the sign of every entry of v1v

T
1 /4 is determined, and thus

we know whether the dominant exponential decay vi1v
j
1e

λ1t/4 of pij(t) increases or
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decreases for large t. In particular, v11v21/4 = −a2/4 < 0, and thus p12(t) has a local
maximum as t→ ∞.

It remains to determine 0 > λ1 > λ2 > λ3 and
√
2 > a > 0 such that Q does not

have negative off-diagonal entries and moreover p12(t) has a finite local maximum
point. A satisfying determination is (t1, t2, t3) = (−1,−1.7,−6) and a = 0.2. The
existence of a finite local maximum point in entry p12(t) is clear from Figure 3.15.

1 2 3 4 5 6 7

0.20

0.25

0.30

Figure 3.15: Graphic (t, p12(t)) for t < 7. Entry p12(t) has an absolute maximum at
t ≃ 1.1. Moreover, by construction p12(t) has a local maximum when t → ∞, not
visible in this figure.

3.E.2 Maxima for two SIV sequences

For the numerical analysis of this subsection, see Supp. Notebook 4 and Supp.
File SIVTwoSequences.txt. We extract two SIV sequences from the ENV gene
alignment of year 2018 of an HIV database [LANL, 2020]. If we remove ambiguous
sites, SIV1 and SIV2 have a Hamming distance per site of 0.729295, suggesting the
possibility of saturation.

We generated random reversible rate matrices and checked whether a finite lo-
cal maximum point of L(t) existed that was smaller than L∞, occurring in 0.35%

(7/2000) of cases. The rate matrix QAtInf induces the log-likelihood L(t) shown in
Figure 3.16.

6 8 10 12 14

-0.0014

-0.0012

-0.0010

-0.0008

-0.0006

-0.0004

-0.0002

Figure 3.16: Graphic (t, L(t)− L∞) for 5 < t < 15 assuming rate matrix QAtInf for
the alignment of SIV1 and SIV2. Matrix QAtInf can be found in Supp. Notebook 4.
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Moreover, we numerically searched for rate matrices inducing two local maxima,
occurring in 12, 5% (25/2000) of cases. The rate matrix Q2Maxima induces the log-
likelihood L(t) shown in Figure 3.17.

2 4 6 8 10

-7395.0

-7394.5

-7394.0

-7393.5

-7393.0

-7392.5

-7392.0

Figure 3.17: Graphic (t, L(t)) for 1 < t < 10 assuming rate matrix Q2Maxima for the
alignment of SIV1 and SIV2. The log-likelihood L(t) has maximum points t1 ≈ 1.45
and t2 ≈ 3.66. Matrix Q2Maxima can be found in Supp. Notebook 4.

Appendix 3.F How to estimate the variance of the

coherence

In Eq. 3.68, we stated that the saturation coherence cS can be approximated as

cS ≈ zα

√
1

n

∑
k,l∈S

Mkl(A)Mkl(B).

If a clade A has a small number of leaves, then it is possible to compute Mkl(A)

numerically. Notably, if clade A is composed by a single sequence, we know that
Mkl(A) = δkl (Prop. 3.6.f). In more complicated instances, many alternatives are
possible. For example, enumerated increasingly in their computing cost and their
sharpness, we could do the following.

1. Use the upper bound Var[δ̂ | t∗ → ∞] ≤ K2/n (Prop. 3.3.a). Reject the null
hypothesis t∗ → ∞ if δ̂ > K/

√
n.

If D = [K], use the sharper bound Var[Ĉ(A;B) | t∗ → ∞] ≤ K/n (Prop.
3.11.b) and reject t∗ → ∞ if Ĉ(A;B) >

√
K/n.

2. Use the upper bound of Eq. 3.51

Var[δ̂ | t∗ → ∞] ≤ 1/n(
∑
k∈S

Mkk(A))(
∑
k∈S

Mkk(B)).

Then build confidence intervals of radius ϵ around â :=
∑

k∈S M̂kk(A) us-
ing Var[

∑
k∈S M̂kk(A)] ≤ U min(K,U/4)/n (Prop. 3.7.f). Reject t∗ → ∞ if
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δ̂ >

√
(â+ ϵ)(b̂+ ϵ)/n.

3. Build confidence intervals around each sample memory M̂kl(A) and M̂kl(B)

using the fact that Var[M̂∂
kl(R)] ≤ UK/n (Prop. 3.7.g). Use these confidence

intervals to construct a confidence interval around v̂ :=
∑

k,l∈S M̂kl(A)M̂kl(B)

with upper bound v̂ + ϵ. Reject t∗ → ∞ if δ̂ >
√

(v̂ + ϵ)/n.

All these upper bounds are more accurate as K2/n decreases. Another alter-
native, with a potentially much higher variance, follows from the upper bound
Var[

∑
k∈S C

∂
k (A;B)] ≤ E[(

∑
k∈S C

∂
k (A;B))2]. To estimate this expected value, use

the estimator ê :=
∑

∂ n∂/n(
∑

k∈S C
∂
k (A;B))2, whose variance is upper bounded

by U4/(4n), as implied by Popoviciu’s inequality (see Popoviciu [1935]) with up-
per bound U2. If we build the confident interval (ê − ϵ, ê + ϵ), reject t∗ → ∞ if∑

k∈S Ĉk(A;B) > (ê+ ϵ)/
√
n.
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Abstract

We consider an evolutionary process where a state was transmitted from the root of
a tree towards its leaves. The states at the leaves are observed, while at deeper nodes
we can compute the likelihood of each state given the observation using Felsenstein’s
Pruning algorithm. In this sense, information flows from child nodes towards the
parent node.

Here we find an upper bound of this children-to-parent information flow. To do
so, first we introduce the memory vector, whose norm quantifies whether all states
have the same likelihood. Then we find conditions such that the norm of the memory
vector at the parent node can be linearly bounded by the sum of norms at the child
nodes.

We also describe the reconstruction problem of estimating the ancestral state at
the root given the observation at the leaves. We infer sufficient conditions under
which the original state at the root cannot be confidently reconstructed using the
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observed leaves, assuming that the number of levels from the root to the leaves is
large.

4.1 Introduction

Clearly we know more about the genome of an observed species than about the
genome of its unobserved ancestors. Generalizing this observation, it is natural to
ask: Does our capability to identify ancestor genomes decrease as we go deeper
into the phylogenetic tree? An answer to this question depends on two opposing
tendencies: Intuitively, ancestor identification decreases if the observed species have
mutated more with respect to the ancestor, although it increases if more descendant
species are available to reconstruct the ancestor identity.

To formalize this intuition, assume a model of evolution where sites mutate in-
dependently as determined by some Markov matrices on a phylogenetic tree. Given
the observed species, Felsenstein’s Pruning algorithm allows to compute the likeli-
hood of each nucleotide at a site of an ancestral sequence. Recall that the Pruning
algorithm is a recursion where the likelihoods at each node are computed using the
likelihoods at its child nodes [Felsenstein, 1981]. Therefore we can imagine a flow of
information (the amount of identification) moving from the observed species towards
the deeper nodes of the tree. On every edge, this flow has a bigger leak as the num-
ber of mutations grows, although more children will provide a bigger information
flow towards the root.

As we can see, the measurement of identification is a fundamental aspect of this
description. However, the choice of a natural measure of identification is unclear.
For example, imagine that, at a site of an ancestor species, the likelihoods of the
DNA nucleotides A,G, T, C are respectively (0.2, 0.1, 0.1, 0.1). We see that the most
likely identity of this site is A (adenine), but how worse identified is this site in
comparison to a site with likelihoods (0.2, 0, 0, 0)?

In this work, we introduce a measure of identification, namely the L2(π)-norm
of the memory vector. This measure is applied to the Pruning algorithm to upper
bound the flow of information on a binary tree assuming a stationary and reversible
process. Then we analyze the general d-ary tree assuming that enough mixing has
occurred. As a theoretical application of our results, we give conditions for the
unsolvability of the reconstruction problem.

Notably, here we consider only the maximum likelihood (ML) reconstruction
method, since it has an optimal probability of a correct reconstruction (Theorem
17.2 of Guiasu [1977]). In particular, we give a central role to the likelihood vector,
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which vertebrates current software implementations of ML reconstruction [Minh
et al., 2020, Stamatakis, 2014]. Different reconstruction methods are analyzed by
Mossel and Peres [2003] and Gascuel and Steel [2014]. Similar bounds to ours,
directly depending on the entries of the rate matrix instead of the eigenvalues, are
stated by Mossel and Steel [2007].

This paper is structured as follows. The evolutionary process is introduced in
Section 4.2. Then, in Section 4.3, we describe the Pruning algorithm to compute
the likelihood vectors. In Section 4.4 we describe a measure of the information
carried by a likelihood vector, namely the L2(π)-norm of the memory vector. As
an instrumental step, we rewrite the likelihood vector using the memory vector in
Section 4.5.

In Section 4.6, we bound the information flow using a common setup, namely
a stationary and reversible continuous-time model of evolution on a binary tree.
Then we generalize this result for a d-ary tree in Section 4.7. Our core results are
Theorems 4.4 and 4.7, where we bound the memory vector norm at a parent node by
the memory vector norms at the child nodes. These theorems can be applied to trees
with a different transition matrix for every child node. The possible definitions of
unsolvability are explained in Section 4.8. Using the bounds of Theorems 4.4 and 4.7,
in Section 4.9 we give sufficient conditions on matrix P such that the reconstruction
problem is unsolvable.

4.2 The evolutionary process

We consider the following evolutionary process. At the root R of a tree, sample
a state from alphabet A = {0, 1, · · · , K} following distribution µ > 0. The tree is
d-ary, meaning that every node has at most d children.

The sampled state at R is then transmitted independently to each child node of
R through a noisy channel, described by an aperiodic, irreducible Markov matrix
P . In phylogenetics, the noisy channel is normally called transition matrix, as we
will do in this work. Thus in the transition matrix P = (pij), where i, j ∈ A, entry
pij is the probability of state i mutating to state j during transmission.

The transmission of states continues analogously until a state is transmitted to
every leaf of the tree. The ordered set of states at the leaves is called a pattern,
represented by symbol ∂. See Figure 4.1 for an example of this process with A =

{0, 1, 2, 3}. In this example, since the unique path from the root R to each of the
leaves has exactly 2 edges, we say that the tree has 2 levels. If the tree has m leaves,
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Figure 4.1: Example of an evolutionary process on a 2-level, incomplete 4-ary
tree. The ancestral state i ∈ A at the root R is sent independently to each node
A1, · · · , A4. The probability of i mutating to k during this transmission is pik.
Then, the state ic at each node Ac is sent independently to each of its child leaves,
with a probability pick of mutating to k during transmission. The observed pattern
is ∂ = 01302002, while the four subpatterns determined by clades A1, · · · , A4 are
∂1 = 01, ∂2 = 30, ∂3 = 200 and ∂4 = 2.

then the set of possible patterns is Am, that is, the strings of length m over alphabet
A. Thus in Figure 4.1, the set of possible patterns is A8.

4.3 Likelihoods on a d-ary Tree

The Pruning algorithm to recursively compute the likelihood of a model given a pat-
tern was introduced by Felsenstein [1981]. In this section, we rephrase the Pruning
algorithm for a d-ary tree with a different transition matrix for each child node.

We want to compute the likelihood of each state at the root R given pattern ∂.
To that end, we define the likelihood vector at the root as

ρ∂ := (Pr(∂ | R = 0), · · · ,Pr(∂ | R = K)). (4.1)

Note that the likelihood vectors satisfy the equality∑
∂∈Am

ρ∂ = 1, (4.2)

where 1 is the vector of 1’s.

Figure 4.2 shows the root R and its d transition matrices P1, · · · , Pd with their
respective child nodes A1, · · · , Ad. Abusing of the notation, we define clade Ac as
the subtree rooted at node Ac containing all descendant nodes from Ac. The leaves
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R

Figure 4.2: Diagram of a d-ary tree. The state at node Ac, for c ∈ [d], was obtained
by transmitting the state at the root R using transition matrix Pc. The likelihood
vector ρ∂ at R satisfies ρ∂ = c∈[d] Pcαc.

of clade Ac determine subpattern ∂c. Considered independently, each clade allows to
compute a likelihood vector αc at the root Ac given subpattern ∂c. More explicitly,
we define

αc := (Pr(∂c | Ac = 0), · · · ,Pr(∂c | Ac = K)). (4.3)

The Pruning algorithm consists in expressing ρ∂ in terms of the likelihood vectors
α1, · · · ,αd. Using the law of total probability, the likelihood vector at the root R
considering only clade Ac is Pcαc. More explicitly,

Pcαc = (Pr(∂c | R = 0), · · · ,Pr(∂c | R = K)). (4.4)

Now we use the fact that the state at each node Ac was obtained independently
from the state at R. This implies that ρ∂ equals the entrywise product of all
likelihood vectors Pcαc. To visualize this better, if we focus on state R = 0, it holds
that

Pr(∂ | R = 0) =
∏
c∈[d]

Pr(∂c | R = 0). (4.5)

We denote the entrywise product between two vectors v = (vi) and w = (wi)

as v ◦w := (viwi). Given vectors v1, · · · ,vd, their entrywise product is denoted as

c∈[d] vc := v1 ◦ · · · ◦ vd. With this notation, we can write

ρ∂ =
c∈[d]

Pcαc. (4.6)

Now we just have to proceed analogously: Every vector αc can be expressed in
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terms of the child nodes of Ac, and so on, until we eventually arrive to the likelihood
vectors at the leaves. The likelihood vector at a leaf where state i was observed is
the canonical vector ei, composed by 0’s except for a 1 at coordinate i. Thus the
Pruning algorithm is a recursion based on Eq. 4.6 where the leaves have known
likelihood vectors and the computation proceeds towards the root of the tree.

Often one needs to compute Pr(∂), that is, the probability of observing pattern
∂. This computation requires the assumption of some prior state distribution µ > 0

at node R. The law of total probability implies that

Pr(∂) = µ · ρ∂ , (4.7)

where ” · ” denotes the Euclidean dot product.

4.4 The memory vector

4.4.1 The equilibrium distribution

The equilibrium distribution of a Markov matrix plays a fundamental role in this
work. The necessary preliminaries about the equilibrium distribution can be sum-
marized as follows (see Levin and Peres [2017], Chapter 1 and Section 12.1).

Proposition 4.1. For an irreducible and aperiodic Markov matrix P , the following
holds:

a) Matrix P has a unique equilibrium distribution π > 0, defined by equation
πTP = πT .

b) Matrix P has eigenvalue θ0 = 1 with algebraic multiplicity 1, and the other
eigenvalues {θ1, · · · , θK} ⊂ C have a module smaller than 1. We assume
1 > |θ1| ≥ · · · ≥ |θK |.

c) If P is reversible, all eigenvalues are real. Moreover, matrix P has an orthogo-
nal basis of right eigenvectors vk and left eigenvectors hT

k such that hk = π◦vk

for k ∈ [0, K], where v0 = 1, h0 = π and

P = 1πT + v1h
T
1 θ1 + · · ·+ vKhT

KθK .

4.4.2 General properties of the norm

For some definitions of this subsection, we follow the notation of Levin and Peres
[2017], Section 12.5. Given distribution π > 0, for any two vectors x = (xi) and
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y = (yi) where i ∈ A, we define the π-inner product as

⟨x,y⟩π := π · (x ◦ y) =
∑
i

πixiyi. (4.8)

The π-inner product induces the L2(π)-norm, defined as

∥x∥π :=
√
⟨x,x⟩π =

√∑
i

πix2i . (4.9)

As in every inner product space, the triangle inequality holds. Explicitly,

∥x+ y∥π ≤ ∥x∥π + ∥y∥π. (4.10)

Denote the Euclidean norm of x as ∥x∥ :=
√∑

i x
2
i , and the uniform norm as

∥x∥∞ := maxi|xi|. A weighted sum is not greater than its biggest summand, and
therefore ∥x∥π ≤ ∥x∥∞. Moreover, since |xi| ≤ ∥x∥ for all i and

√
miniπi∥x∥ ≤

∥x∥π, it holds that

∥x∥π ≤ ∥x∥∞ ≤ ∥x∥ ≤ ∥x∥π√
mini πi

. (4.11)

An important reason to use the L2(π)-norm is that a vector cannot increase
its L2(π)-norm when we centralize its entries with weights π, as described in the
following proposition.

Proposition 4.2 (Centralizing inequality). Given vector x, the L2(π)-norm satis-
fies

∥x− 1⟨x,1⟩π∥2π = ∥x∥2π − ⟨x,1⟩2π.

In particular, it holds that

∥x− 1⟨x,1⟩π∥π ≤ ∥x∥π.

Proof. Developing the π-inner product, we obtain〈
x− 1⟨x,1⟩π,x− 1⟨x,1⟩π

〉
π
= ⟨x,x⟩π − 2⟨x,1⟩2π + ⟨x,1⟩2π⟨1,1⟩π. (4.12)

Since ⟨1,1⟩π = 1, it follows that

∥x− 1⟨x,1⟩π∥2π = ∥x∥2π − ⟨x,1⟩2π,
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as desired. To obtain the inequality, use the fact that ⟨x,1⟩2π ≥ 0, giving

∥x− 1⟨x,1⟩π∥2π ≤ ∥x∥2π.

4.4.3 Properties of the memory vector

Given a pattern ∂, consider the likelihood vector ρ∂ at node R. Consider moreover
the equilibrium distribution π > 0 of the Markov matrix P .

Definition 4.1. The normalized likelihood vector at R given ∂ is defined as

ρ̃∂ :=
ρ∂

ρ∂ · π
.

Moreover, we say that the distribution rπ := ρ̃∂ ◦ π is the posterior distribution at
R assuming stationarity.

Recall that, under stationarity, we have µ = π, and thus Pr(∂) = ρ∂ · π as
implied by Eq. 4.7. Thus rπ is indeed the posterior distribution given ∂, as implied
by Bayes’ theorem.

To see the usefulness of the normalized likelihood vector, imagine that, during the
process of transmission through transition matrix P , node R received its state from a
node called PR, as shown in Fig. 4.3. Then, given ∂, node PR has likelihood vector
Pρ∂ . Importantly, since πTPρ∂ = πTρ∂ = π · ρ∂ , it follows that the normalized
likelihood vector at node PR is P ρ̃∂ . Thus vector P ρ̃∂ is already normalized, that
is, matrix P is an endomorphism of normalized likelihood vectors.

We have ⟨ρ̃∂ ,1⟩π = ρ̃∂ · π = 1, and thus if ρ̃∂ := (ρ̃i∂), then for all i ∈ A,

ρ̃i∂ ≤ 1/πi ≤ 1/min
i
πi, (4.13)

A useful upper bound of the norm of a normalized likelihood vector is

∥ρ̃∂∥2π = rT
π ρ̃∂ ≤ max

i
ρ̃i∂ ≤ 1

mini πi
. (4.14)

However, we are more interested in the norm of ρ̃∂ − 1. Intuitively, as ρ̃∂

approaches 1, all ancestral states become equally likely, that is, pattern ∂ becomes
less informative. This motivates the following definition.
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Node

Node

Figure 4.3: Diagram of the action of transition matrix P . We denote by PR the
node from which node R received its state through transition matrix P . Given ∂, if
node R has likelihood vector ρ̃∂ , then node PR has likelihood vector P ρ̃∂ .

Definition 4.2. We say that vector ρ̃∂ − 1 is the memory vector at node R given
∂.

When needed, the memory vector will be denoted as m, with adequate indices
depending on the context. The memory vector satisfies

0 ≤ ∥ρ̃∂ − 1∥2π = ⟨ρ̃∂ − 1, ρ̃∂ − 1⟩π = ∥ρ̃∂∥2π − 1 ≤ 1

mini πi
− 1, (4.15)

that is, the L2(π)-norm of any memory vector is upper bounded by
√

1/mini πi − 1.
Assuming stationarity, the expected value of the norm of the memory vector can be
bounded using the following result, proved in Appendix 4.B.

Proposition 4.3. Consider a stationary process on a tree with m leaves. If the
alphabet A has K + 1 states, then it holds that

E[∥ρ̃∂ − 1∥π] :=
∑
∂∈Am

Pr(∂)∥ρ̃∂ − 1∥π ≤
√
K.

4.4.4 The reversible case

If the transition matrix P is reversible, then the eigendecomposition of Prop. 4.1.c
applies, yielding simple ways to describe the L2(π)-norm and the action of P . Indeed,
using decomposition I = 1πT +

∑
k∈[K] vkh

T
k where hk = π ◦vk, we can rewrite the

L2(π)-norm as

∥ρ̃∂∥2π = rT
π ρ̃∂ = rT

πIρ̃∂ = 1 +
∑
k∈[K]

(ρ̃∂ · hk)
2 ≥ 1. (4.16)
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Regarding the action of a reversible Markov matrix P on a normalized likelihood
vector α̃, it can be alternatively described as

P α̃ = 1+
∑
k∈[K]

θk(α̃ · hk)vk, (4.17)

where we used the eigendecomposition of Prop. 4.1.c, P = 1πT +
∑

k∈[K] θkvkh
T
k .

Recall that the eigenvalues θk satisfy 1 > |θ1| ≥ · · · ≥ |θK |. Using Equations 4.15
and 4.16 with ρ̃∂ = P α̃, the memory vector at node PA satisfies

∥P α̃− 1∥2π =
∑
k∈[K]

θ2k(α̃ · hk)
2. (4.18)

Interestingly, this yields the bound

∥P α̃− 1∥2π ≤ θ21
∑
k∈[K]

(α̃ · hk)
2 = θ21 ∥α̃− 1∥2π, (4.19)

or taking the square root,

∥P α̃− 1∥π ≤ |θ1| ∥α̃− 1∥π. (4.20)

Hence the L2(π)-norm of the memory vector decreases at least by a factor of |θ1|
under the action of the reversible matrix P . In Appendix 4.A, we compute a weaker
bound if P is not reversible.

4.5 Rewriting the likelihood vectors

In this section, we will rewrite the likelihood vectors described in Section 4.3. We
assume that all matrices Pc have the same equilibrium distribution π. Recall
that the normalized likelihood vectors are defined as ρ̃∂ := ρ∂/(ρ∂ · π), and analo-
gously α̃c := αc/(αc · π). Assuming prior µ = π, it holds that Pr(∂) = ρ∂ · π and
Pr(∂c) = αc · π. Thus we define Prπ(∂) := ρ∂ · π and Prπ(∂c) := αc · π

The normalized likelihood vectors are useful to identify the dependence between
the subpatterns ∂1, · · · , ∂d composing pattern ∂. Indeed, since ρ∂ = c∈[d] Pcα̃c and
Prπ(∂) = ρ∂ · π, it holds that

Prπ(∂) = Prπ(∂1, · · · , ∂d) =
( ∏

c∈[d]

Prπ(∂c)
)(

π ·
c∈[d]

Pcα̃c

)
, (4.21)

showing that the dependence factor between observations ∂1, · · · , ∂d is
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π · c∈[d] Pcα̃c. We additionally define the probability of observing ∂ assuming
subpattern independence,

PrIND(∂) :=
∏
c∈[d]

Prπ(∂c) (4.22)

and the dependence factor D(∂) of the subpatterns of ∂,

D(∂) := π ·
c∈[d]

Pcα̃c, (4.23)

yielding the relationship
Prπ(∂) = D(∂)PrIND(∂). (4.24)

By introducing α̃c := αc/Prπ(∂c) and the memory vectors mc := Pcα̃c − 1 in
equation ρ∂ = c∈[d] Pcα

c
∂ , we obtain

ρ∂

PrIND(∂)
=

c∈[d]

(
1+mc

)
=

= 1+
∑
p∈[d]

∑
C∈([d]p ) c∈C

mc. (4.25)

This equation combined with Prπ(∂) = ρ∂ · π = D(∂)PrIND(∂) gives

D(∂) =
Prπ(∂)

PrIND(∂)
=

ρ∂

PrIND(∂)
· π =

= 1 +
∑
p∈[d]

∑
C∈([d]p )

π ·
c∈C

mc, (4.26)

where the terms where p = 1 vanish, because πT (Pcα̃c − 1) = 1 − 1 = 0. The
expanded products of Equations 4.25 and 4.26 will be useful to bound information
flow in Sections 4.6 and 4.7.

4.6 Information flow on a binary tree

The stationary and reversible process on a binary tree (d = 2) using a continuous
Markov model of evolution is a common setup for practitioners. With this setup,
in this section we introduce the bounds of information flow on a tree with long
branches.

Consider a reversible rate matrix Q with eigenvalues 0 > λ1 ≥ · · · ≥ λK . For
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any evolutionary time t ≥ 0, the reversible Markov matrix eQt has real eigenvalues
1 > eλ1t ≥ · · · ≥ eλKt. Every edge e of the evolutionary tree has a branch length te,
determining its associated transition matrix Pe = eQte .

The Pulley principle, introduced by Felsenstein [1981], states that the root of a
reversible process is unidentifiable. Thus the placement of the root with reversible
Q is arbitrary, implying that we can compare the expected norm of the memory
vector E[∥ρ̃∂ − 1∥π] at each point of a tree assuming that this point were the root.
Thus the expected memory vector norm gives a way to distinguish which point of a
tree is the least identified.

However, the computation of E[∥ρ̃∂ −1∥π] on a tree with m aligned sequences is
unfeasible for large m, since it requires summing over (K + 1)m patterns. Alterna-
tively, one could estimate E[∥ρ̃∂ − 1∥π] using a large number of observed patterns
∂, although here we do not consider sampling strategies.

Instead, a way to compare the identification of points on a phylogenetic tree
is the usage of general upper bounds depending only on the branch lengths of the
tree. We introduce the following upper bound, which is only effective when the tree
considered has long branches.

Theorem 4.4. Consider the evolutionary process of Figure 4.2, where we assume
stationarity, d = 2 and transition matrices Pc = eQtc. We denote the equilibrium
distribution of Q as π = (πi) and define H :=

√∑
i 1/πi.

Consider moreover the normalized likelihood vector ρ̃∂ at R and memory vectors
mc := Pcα̃c − 1 at nodes PcAc given their respective subpattern ∂c. The following
holds.

a) Set E[∥mc∥π] :=
∑

∂c
Pr(∂c)∥mc∥π. We have the bound

E[∥ρ̃∂ − 1∥π] ≤ E[∥m1∥π] + E[∥m2∥π] +HE[∥m1∥π]E[∥m2∥π].

b) Assuming reversibility, if we define E(R) := E[∥ρ̃∂ − 1∥π] and
E(Ac) := E[∥α̃c − 1∥π] =

∑
∂c
Pr(∂c)∥α̃c − 1∥π, then

E(R) ≤ eλ1t1E(A1) + eλ1t2E(A2) + eλ1(t1+t2)HE(A1)E(A2).

Proof.
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a) Since we assume stationarity, we know that ρ̃∂ := ρ∂/Pr(∂), while
Pr(∂) = D(∂)PrIND(∂) as defined in Eq. 4.24. Therefore

D(∂)∥ρ̃∂ − 1∥π = ∥ ρ∂

Pr(∂)
D(∂)− 1D(∂)∥π =

= ∥ ρ∂

PrIND(∂)
− 1D(∂)∥π. (4.27)

Eq. 4.25 gives ρ∂/PrIND(∂) = 1+m1+m2+m1◦m2, while Eq. 4.26 implies
D(∂) = 1 + π · (m1 ◦m2). Using the triangle inequality, we obtain

D(∂)∥ρ̃∂ − 1∥π ≤ ∥m1∥π + ∥m2∥π + ∥m1 ◦m2 − 1(π · (m1 ◦m2))∥π
≤ ∥m1∥π + ∥m2∥π + ∥m1 ◦m2∥π, (4.28)

where we used the centralizing inequality of Prop. 4.2.

For any vector x, we have ∥x∥π = ∥x◦π1/2∥, where the exponentiation occurs
entrywise and ∥ · ∥ denotes the standard Euclidian norm. Moreover, Lemma
4.12, proved in Appendix 4.B, states that ∥ i xi∥ ≤

∏
i ∥xi∥. Therefore

∥m1 ◦m2∥π = ∥π1/2 ◦m1 ◦m2∥ = ∥π−1/2 ◦ (π1/2 ◦m1) ◦ (π1/2 ◦m2)∥ ≤

≤ ∥π−1/2∥∥π1/2 ◦m1∥∥π1/2 ◦m2∥ = H∥m1∥π∥m2∥π. (4.29)

Therefore Equations 4.28 and 4.29 give

D(∂)∥ρ̃∂ − 1∥π ≤ ∥m1∥π + ∥m2∥π +H∥m1∥π∥m2∥π. (4.30)

Taking the expected value of Eq. 4.28 under distribution
PrIND(∂) = Pr(∂1) Pr(∂2), where PrIND(∂)D(∂) = Pr(∂) due to station-
arity, it follows that

E[∥ρ̃∂ − 1∥π] ≤ E[∥m1∥π] + E[∥m2∥π] +HE[∥m1∥π]E[∥m2∥π]. (4.31)

b) Due to reversibility, Eq. 4.20 using the Markov matrix P = eQtc gives
∥mc∥π ≤ |θ1| ∥α̃c − 1∥π, where θ1 = eλ1tc . This inequality, applied to item
a), gives the result.

Branch lengths and rate matrices can be inversely rescaled, because
eQt = e(Q/C)(Ct). For simplicity, we will choose the rescaling constant C = |λ1|,
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R

Figure 4.4: Diagram of the recursive computation of the upper bound of
the expected memory vector norm at the root (grey circle) for a four-state
alphabet and equilibrium distribution π = (1, 2, 3, 4)/10, giving H ≈ 4, 56.
Blue numbers indicate branch length. Initially, the upper bound at the
leaves is

√
3 ≈ 1, 73. Then we apply Eq. 4.32 recursively towards

the root, giving e.g. E(A1) ≤
√
3e−2 +

√
3e−3 + 3e−5H ≈ 0.4 and

E(R) ≤ E(A1)e
−1 + E(A2)e

−1 + E(A1)E(A2)e
−2 ≤ 0.35.

implying that Theorem 4.4.b reads

E(R) ≤ e−t1E(A1) + e−t2E(A2) + e−(t1+t2)HE(A1)E(A2). (4.32)

Theorem 4.4 can be compared to the recursive formula of the Pruning algorithm
of Eq. 4.6, namely ρ̃∂ = (eQt1α1) ◦ (eQt2α2). Analogously, we can recursively use
Eq. 4.32 to bound the expected norm of the memory vector at the root of a tree.
As shown in Figure 4.4, at the leaves we can use the bound E[∥ρ̃∂ − 1∥] ≤

√
K

[Prop. 4.3], and then recursively use Eq. 4.32 to bound the norm at the deeper
parent nodes. By convention, no upper bound can be greater than

√
K, as implied

by Prop. 4.3.

4.7 A bound of information flow on a d-ary tree

It is well known that, for x ≈ 0, one can use the approximation (1 + x)n ≈ 1 + nx.
In this sense, for numbers close to 1, multiplication can be approximated by addition.
Similarly, to prove Theorem 4.6, we need to bound the entrywise product by a sum
of vectors using the following lemma, proved in Appendix 4.B.

Lemma 4.5. For any integer d ≥ 2 and reals S ∈ (0, 2) and ϵ > 0, if
S ≤ 4ϵ/(1 + 2ϵ), then

(1 +
S

d
)d < 1 + (1 + ϵ)S. (4.33)
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If memory vectors mc = Pcα̃c − 1 approach 0, then Pcα̃c ≈ 1 and the entrywise
product c∈[d] Pcα̃c can be approximated by 1+

∑
c∈[d] mc. A more subtle argument

yields a linear bound of a memory vector given pattern ∂ using subpatterns ∂c, as
explained in Theorem 4.6. We use vectors Pcα̃c just to make the connection to other
results clear, and we could write any normalized vectors β̃c instead.

Theorem 4.6 (Hadamard-product upper bounds of the memory vector). In the
evolutionary process of Figure 4.2, assume the stationary prior µ = π, as also that
all matrices Pc have the same equilibrium distribution π.
Consider the normalized likelihood vector ρ̃∂ at R and the normalized likelihood
vectors Pcα̃c = 1+mc at nodes PcAc. Then, under the assumption that, for some
ϵ > 0,

∑
c∈[d] ∥mc∥∞ ≤ 4ϵ/(1 + 2ϵ) for all patterns ∂, it holds that

E[∥ρ̃∂ − 1∥π] < (1 + ϵ)
∑
c∈[d]

E[∥mc∥π]. (4.34)

Proof. First of all, since in Eq. 4.24 we stated that Prπ(∂) = D(∂)PrIND(∂), it
holds that

D(∂)∥ρ̃∂ − 1∥π = ∥ ρ∂

Prπ(∂)
D(∂)− 1D(∂)∥π =

= ∥ ρ∂

PrIND(∂)
− 1D(∂)∥π (4.35)

Now we can use Equations 4.25 and 4.26, where we expanded ρ∂/PrIND(∂) and
D(∂), giving

D(∂)∥ρ̃∂ − 1∥π = ∥1+
∑
p∈[d]

∑
C∈([d]p ) c∈C

mc − 1
(
1 +

∑
p∈[d]

∑
C∈([d]p )

π ·
c∈C

mc

)
∥π =

= ∥
∑
p∈[d]

∑
C∈([d]p ) c∈C

mc − 1
(
π ·

∑
p∈[d]

∑
C∈([d]p ) c∈C

mc

)
∥π

= ∥
∑
p∈[d]

∑
C∈([d]p ) c∈C

mc − 1⟨1,
∑
p∈[d]

∑
C∈([d]p ) c∈C

mc⟩π∥π. (4.36)

Using the centralizing inequality of Prop. 4.2, we obtain

D(∂)∥ρ̃∂ − 1∥π ≤ ∥
∑
p∈[d]

∑
C∈([d]p ) c∈C

mc∥π = (4.37)

= ∥
c∈[d]

(1+mc)− 1∥π = (4.38)

= ∥ |
c∈[d]

(1+mc)− 1| ∥π, (4.39)
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where |·| denotes the entrywise absolute value. We have the entrywise inequality

|
c∈[d]

(1+mc)− 1|≤
c∈[d]

(1+ |mc|)− 1, (4.40)

and the Arithmetic-Geometric Mean Inequality applied to c∈[d](1+ |mc|) implies
that, in an entrywise manner,

0 ≤
c∈[d]

(1+ |mc|)− 1 ≤
(
1+

∑
c∈[d]|mc

∂ |
d

)d

− 1,

where the exponentiation occurs entrywise. Consequently

∥
c∈[d]

(1+mc)− 1∥π ≤ ∥
(
1+

∑
c∈[d]|mc

∂ |
d

)d

− 1∥π. (4.41)

We write |mc|= (|m0
c |, · · · , |mK

c |). Lemma 4.5 with S =
∑

c∈[d]|mi
c| for i ∈ A

further implies that, if we have
∑

c∈[d] ∥mc∥∞ ≤ 4ϵ/(1 + 2ϵ), then the following en-
trywise inequality holds

(
1+

∑
c∈[d]|mc

∂ |
d

)d

− 1 < (1 + ϵ)
∑
c∈[d]

|mc
∂ |. (4.42)

Therefore, assuming that
∑

c∈[d] ∥mc∥∞ ≤ 4ϵ/(1 + 2ϵ) for all ∂, and combining
Equations 4.39, 4.41 and 4.42, it holds that

D(∂)∥ρ̃∂ − 1∥π < (1 + ϵ)∥
∑
c∈[d]

|mc
∂ |∥π ≤

≤ (1 + ϵ)
∑
c∈[d]

∥ |mc| ∥π = (1 + ϵ)
∑
c∈[d]

∥mc∥π, (4.43)

where we applied the triangle inequality. Recall that Pr(∂) = D(∂) PrIND(∂) due to
stationarity. Taking the expected value of both sides using distribution PrIND(∂),
under which random variables mc are independent, we get

E[∥ρ̃∂ − 1∥π] < (1 + ϵ)
∑
c∈[d]

E[∥mc∥π], (4.44)

as desired.

Interestingly, using Eq. 4.43 we can upper bound the module ∥ρ̃∂ − 1∥π by
bounding the dependence factor D(∂) close enough to 1. Such a bound is stated in
Proposition 4.13 [Appendix 4.B]. This means that, along the proof of Theorem 4.6,
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we implicitly bounded the module ∥ρ̃∂ − 1∥π for a given pattern ∂.

Theorem 4.6 does not consider the child nodes Ac, but only the parent nodes
PcAc. Moreover, we did not mention how to make the memory vectors at PcAc

small enough to satisfy the assumption of Theorem 4.6. These particularities are
considered in Theorem 4.7, which is our core result bounding the information flow on
trees from children to parent node. Intuitively, if many mutations have occurred, one
expects that information flows somehow decreasingly from the leaves towards the
root. Theorem 4.7 formalizes this intuition, sub-additively bounding the memory
vector norm at the root R by the sum of norms at its child nodes Ac.

Theorem 4.7 (Root-Children upper bounds of the memory vector). In the evolu-
tionary process of Figure 4.2, assume the stationary prior µ = π, as also that all
matrices Pc have the same equilibrium distribution π.
Consider moreover the normalized likelihood vector ρ̃∂ at R and the normalized
likelihood vectors α̃c at child nodes Ac. Moreover assume that, for some constants
Cc > 0 and for any normalized likelihood vector α̃, we have the bound

∥Pcα̃− 1∥π ≤ Cc ∥α̃− 1∥π.

In these conditions, if

∑
c∈[d]

Cc ≤
mini πi√
1−mini πi

4ϵ

1 + 2ϵ

for some ϵ > 0, then it holds that

E[∥ρ̃∂ − 1∥π] < (1 + ϵ)
∑
c∈[d]

CcE[∥α̃c − 1∥π].

Proof. To apply Theorem 4.6, we need the fulfillment for all patterns
∂ = (∂1, · · · , ∂d) of inequality∑

c∈[d]

∥Pcα̃c − 1∥∞ ≤ 4ϵ/(1 + 2ϵ).

Since ∥x∥∞ ≤ ∥x∥π/mini
√
πi as stated in Eq. 4.10, it holds that

∑
c∈[d]

∥Pcα̃c − 1∥∞ ≤ 1

mini
√
πi

∑
c∈[d]

∥Pcα̃c − 1∥π. (4.45)
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We bounded the L2(π)-norm of any memory vector in Eq. 4.15, implying∑
c∈[d]

∥Pcα̃c − 1∥π ≤
∑
c∈[d]

Cc∥α̃c − 1∥π ≤ (4.46)

≤
√

1

mini πi
− 1

∑
c∈[d]

Cc. (4.47)

Consequently, to apply Theorem 4.6 it is enough that

1

mini
√
πi

√
1

mini πi
− 1

∑
c∈[d]

Cc ≤
4ϵ

1 + 2ϵ
,

or equivalently

∑
c∈[d]

Cc ≤
mini πi√
1−mini πi

4ϵ

1 + 2ϵ
. (4.48)

Finally, Equation 4.46, combined with Theorem 4.6, yields the desired result.

4.8 Definition of unsolvability

The reconstruction problem consists in estimating the ancestral state at the root R
given a pattern ∂ [Mossel, 2001b]. The tree, the prior µ and transition matrix P

are known. Notably, the ML estimate has the highest probability of a correct recon-
struction among all reconstruction methods (Theorem 17.2 of Guiasu [1977]). After
computing the posterior state distribution r∂ at the root given ∂, the ML estimate
is the state with the maximum posterior probability, also called the Maximum A
Posteriori (MAP) estimate.

If we assume a prior state distribution µ = (µ0, · · · , µK) and the likelihood
vector at the root R is ρ∂ , then Bayes’ theorem implies that the posterior state
distribution is

r∂ =
ρ∂ ◦ µ
Pr(∂)

=
ρ∂ ◦ µ
ρ∂ · µ

. (4.49)

If we write r∂ = (r0, · · · , rK), then the MAP estimate is a state i ∈ A such that
ri = maxi ri, and the MAP probability of a correct reconstruction is maxi ri.

In a evolutionary process on a d-ary tree, we want to describe when the root state
cannot be confidently reconstructed, assuming that the tree has a large number of
levels g. In general, the transition matrices of the evolutionary process can be
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different, although in Section 4.9 we focus on the case when all transition matrices
are equal to P . We introduce the following definition.

Definition 4.3. When r∂ ̸= µ, we say that pattern ∂ is informative, because the
observation of ∂ influences the posterior. In contrast, we say that pattern ∂ is
uninformative when r∂ = µ.

Since r∂ = ρ∂ ◦ µ/(ρ∂ · µ), pattern ∂ in uninformative iff ρ∂ is uniform, which
occurs iff ρ̃∂ = 1. Therefore the informal condition ρ̃∂ − 1 ≈ 0 is a compact way to
summarize the lack of information provided by a pattern ∂.

Instead of focusing on a single pattern, we will use an average of the norms of
ρ̃∂ −1 over all possible patterns ∆g at the leaves of a g-level tree, which grows with
g. Explicitly, we consider the expected value

E[ ∥ρ̃∂ − 1∥π] =
∑
∂∈∆g

Pr(∂)∥ρ̃∂ − 1∥π, (4.50)

which has a growing number of summands as g → ∞. Recall that finite-dimensional
norms are equivalent (see Steven G. Johnson [2020]), meaning that they differ at
most by a multiplicative constant. Thus we can state the following definition.

Definition 4.4. We say that the reconstruction problem is unsolvable when, for
some norm ∥ · ∥∗,

E[ ∥ρ̃∂ − 1∥∗] → 0 as g → ∞.

Differently explained, the reconstruction problem is unsolvable when patterns are
expectedly uninformative as g grows.

This definition of unsolvability is equivalent to the definition studied by Mossel
[2001a], as stated in Appendix 4.C, where we also prove that the prior µ does not
influence unsolvability as long as µ > 0. Thus we will assume µ = π > 0, that is, a
stationary process.

The unsolvability of the reconstruction problem has been studied repeatedly
[Mossel, 2001b]. As proven by Mossel and Peres [2003], assuming any 2 × 2 tran-
sition matrix over a binary alphabet, the reconstruction problem is unsolvable if
d|θ1| < 1. Similarly, assuming a Jukes-Cantor (JC) transition matrix over any al-
phabet, the reconstruction problem is unsolvable if d|θ1| < 1 [Mossel and Peres,
2003]. Recall that a JC transition matrix has all its off-diagonal entries identical.
Solvable examples when d|θ1| > 1 are described by Mossel [2001a].
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4.9 Bounds of unsolvability

In this section, we state some bounds of the unsolvability of the reconstruction
problem. The bound of Prop. 4.8 deals with a binary tree and a reversible transition
matrix, while the bound of Prop. 4.9 applies to any d-ary tree and nearly any
transition matrix.

Proposition 4.8. Consider an irreducible, aperiodic and reversible Markov matrix
P over K + 1 states with absolutely largest non-unitary eigenvalue θ1. Given the
equilibrium distribution π of P , set H :=

√∑
i 1/πi.

Then, on a binary tree, the reconstruction problem using transition matrix P is
unsolvable if

|θ1| <
−1 +

√
1 +H

√
K

H
√
K

.

Proof. We can assume a stationary prior due to Prop. 4.14 We can use Theorem
4.4.a with a reversible transition matrix P for both child nodes of R. The bound of
Eq. 4.20 gives ∥P α̃c−1∥π ≤ |θ1|∥α̃c−1∥π. Define E(A) := maxc∈{1,2} E[∥α̃c − 1∥π].
Thus Theorem 4.4.a gives

E(R) ≤ 2|θ1|E(A) + |θ1|2HE(A)2. (4.51)

Applying Eq. 4.51 recursively, a sufficient condition for unsolvability is that the
upper bound of the expected memory vector norm monotonously decreases towards
zero as we go deeper in the tree towards the root. Define function f(x) = 2x|θ1| +
H|θ1|2x2 and note that Eq. 4.51 can be stated as E(R) ≤ f(E(A)). Function f(x)

has only two fixed points satisfying f(x) = x, namely x1 = 0 and

x2 =
1− 2|θ1|
|θ1|2H

. (4.52)

We assume |θ1| < 1/2, implying that x2 > 0 and f(x) < x when x ∈ (x1, x2).
WLOG we can assume E(A) > 0, and thus inequality f(E(A)) < E(A) holds if

E(A) < x2. (4.53)

Since E(A) ≤
√
K from Prop. 4.3, a sufficient condition is

√
K < x2. Substituting

x2 using Eq. 4.52 and solving for |θ1|, under the assumption |θ1| < 1/2, a sufficient
condition for unsolvability is therefore

|θ1| <
−1 +

√
1 +H

√
K

H
√
K

. (4.54)
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Figure 4.5: Plots of the unsolvability bound U(p) of Eq. 4.57 as a function of the
first entry p ∈ [0.01, 0.99] of the equilibrium distribution π(p) defined in Eq. 4.56.
For any reversible transition matrix with equilibrium distribution π(p), if |θ1|<
U(p), then the reconstruction problem is unsolvable. For an arbitrary alphabet,
the speculative best bound of 1/2 has been proven only for a JC transition matrix
[Mossel, 2001b].

It remains to show that Eq. 4.54 implies that |θ1| < 1/2. Writing H
√
K = ψ > 0,

this implication is equivalent to

√
1 + ψ < 1 +

ψ

2
, (4.55)

which squaring both sides yields the obvious 0 < ψ2/4, as desired.

Our bound is not sharp, although it is more general than the bound of Mossel
[2001b]. To visualize this, consider the stationary distribution

π(p) = (p,
1− p

K
, · · · , 1− p

K
). (4.56)

Then H(p) =
√

1/p+K/(1− p) and the upper bound of Prop. 4.8 is

U(p) =
−1 +

√
1 +H(p)

√
K

H(p)
√
K

, (4.57)

represented in Figure 4.5 for p ∈ [0.01, 0.99] respectively assuming a binary, nu-
cleotide and amino acid alphabet. This result can be compared with the speculative
best possible bound on a binary tree, which is 1/2 assuming a JC transition matrix
[Mossel, 2001b].

Now we will use Theorem 4.7 to obtain an upper bound for unsolvability on a
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d-ary tree that admits nearly any transition matrix.

Proposition 4.9. Given any irreducible and aperiodic Markov matrix P , assume
that, for some C > 0 and for any normalized likelihood vector α̃, we have the bound

∥P α̃− 1∥π ≤ C ∥α̃− 1∥π.

Then, on a d-ary tree, the reconstruction problem using transition matrix P is un-
solvable if

Cd < min
{1

3
,
8

5

mini πi√
1−mini πi

}
.

Proof. Recall that we can assume a stationary prior due to Prop. 4.14. We want to
apply Theorem 4.7 with all constants Cc equal to C. WLOG we can assume that
the d-arity of the tree is complete (every children makes exactly d-children), because
the conditions of Theorem 4.7 apply also for a parent node with less than d children.

Consider the normalized likelihood vectors at the leaves, from now on l̃c where
c ∈ {1, · · · , dg}. The recursive application of Theorem 4.7 yields that

E[∥ρ̃∂ − 1∥π] < (1 + ϵ)gCg
∑
c∈[dg ]

E[∥l̃c − 1∥π], (4.58)

while the upper bound of the norm of any memory vector (Eq. 4.15) gives

E[∥ρ̃∂ − 1∥π] < (1 + ϵ)gCg
∑
c∈[dg ]

√
1

mini πi
− 1 =

= (1 + ϵ)gCgdg
√

1

mini πi
− 1. (4.59)

Recall that the reconstruction problem is unsolvable iff E[∥ρ̃∂−1∥π] tends to 0 as
g grows. Thus the reconstruction problem is unsolvable if the condition of Theorem
4.7 holds and moreover

(1 + ϵ)Cd < 1, (4.60)

as implied by the bound of Eq. 4.59. To make the following bounds hold simulta-
neously,

Cd <
1

1 + ϵ

Cd ≤ mini πi√
1−mini πi

4ϵ

1 + 2ϵ
, (4.61)

Chapter 4. A Bound of Information Flow on Trees 114



the optimal ϵ is the one making the two bounds coincide, although this intersec-
tion depends on mini πi. For the sake of clarity, set ϵ = 2, yielding the result.

Prop. 4.9 assumes that any memory vector decreases at least by a factor of C
under the action of P . We have inferred such bounds in Equations 4.20 and 4.65
(Appendix 4.A), giving the following corollaries.

Corollary 4.10. Consider any irreducible, aperiodic and reversible Markov matrix
P with non-unitary absolutely largest eigenvalue θ1. Then, on a d-ary tree, the
reconstruction problem using transition matrix P is unsolvable if

|θ1|d < min
{1

3
,
8

5

mini πi√
1−mini πi

}
.

Corollary 4.11. Consider any irreducible and aperiodic Markov matrix P with
largest singular value σ1. Then, on a d-ary tree, the reconstruction problem using
transition matrix P is unsolvable if

σ1d <
mini

√
πi

maxi
√
πi

min
{1

3
,
8

5

mini πi√
1−mini πi

}
.

The bounds of Corollaries 4.10 and 4.11 are weak compared to the speculative
best possible bound |θ1|d < 1, although this speculative bound has been proven only
for JC transition matrices [Mossel, 2001b].

In this section we assumed the same transition matrix P for all edges, but
Theorem 4.7 is very versatile and can be applied in multiple scenarios. We can,
for example, allow a different transition matrix for every child node as long as π is
the equilibrium distribution. This is specially useful for continuous Markov models
of evolution, where every transition matrix eQte has the same equilibrium distribu-
tion π as the rate matrix Q.

4.10 Conclusion

As we have shown, the L2(π)-norm of the memory vector is a natural formalization
of the concept of "amount of identification". Importantly, the L2(π)-norm of the
memory vector has an intuitive behaviour, growing with the number of children
available and decreasing exponentially with the evolutionary time.

Future theoretical work could focus on making sharper our bounds of identifica-
tion flow. With our approach, we compute bounds for every pattern (as Eq. 4.43)
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and then take the expected value. Directly bounding the expected value could lead
to some improvements. Another alternative strategy could be to avoid the usage of
different norms, which debilitates e.g. Theorem 4.7 (concretely in Eq. 4.45).

From a practical perspective, the L2(π)-norm of the memory vector can be used
to distinguish poorly identified ancestors in a phylogeny. However, the memory
vector is specially interesting for stationary and reversible processes, whose root is
unidentifiable due to the Pulley principle [Felsenstein, 1981]. Any possible root R
determines an expected norm E[∥ρ̃∂ − 1∥π], which can be estimated using a large
number of observed patterns. Therefore, given an alignment of DNA or amino
acid sequences, we can distinguish the least identified root of the reconstructed
tree. This distinction among roots can be valuable to assess other rooting methods.
Alternatively, to benefit from the linear properties of the inner product, also the
expected squared norm E[∥ρ̃∂ − 1∥2π] could be employed.

Appendix 4.A A general bound of the norm growth

The bounds of norm growth as the one of Eq. 4.20 are useful for our proofs. Without
the assumption that matrix P be reversible, a general bound similar to Eq. 4.20 as

∥P α̃− 1∥π ≤ C ∥α̃− 1∥π (4.62)

for some constant C > 0 is more difficult to obtain, since matrix P may have
complex eigenvalues or not diagonalize. A weak bound using well known properties
of the singular value decomposition (explained in Horn and Johnson [1991]) can be
obtained as follows. Fist of all recall that, at a node PR, the normalized likelihood
vector is P ρ̃∂ . Therefore the memory vector at node PR is P ρ̃∂ − 1. Moreover,
since P1 = 1, it holds that

P ρ̃∂ − 1 = P (ρ̃∂ − 1),

that is, matrix P is an endomorphism of memory vectors. Now let us define Π :=

1πT and Ψ := Diag(π). Since P1 = Π1 = Πα̃ = 1 for any normalized likelihood
vector α̃, it holds that

P α̃− 1 = (P − Π)(α̃− 1). (4.63)

Notably, matrix P − Π has eigenvalues 0, θ1, · · · , θK , although we only need its
singular values. Consider the largest singular value σ1 of P − Π, which satisfies
σ1 ≥ |θ1| and thus may be larger than 1 (see Horn and Johnson [1991]). Let ∥ · ∥
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denote the matrix norm induced by the Euclidean norm. It holds that

∥P α̃− 1∥π = ∥(P − Π)(α̃− 1)∥π =

= ∥
√
Ψ(P − Π)(α̃− 1)∥ ≤ ∥

√
Ψ∥ ∥P − Π∥ ∥α̃− 1∥, (4.64)

where the inequality follows because induced norms are sub-multiplicative. Since
the Euclidean matrix norm coincides with the spectral norm, ∥

√
Ψ∥ = maxi

√
πi and

∥P − Π∥ = σ1. This together with ∥x∥ ≤ ∥x∥π/mini
√
πi gives

∥P α̃− 1∥π ≤
maxi

√
πi

mini
√
πi
σ1∥α̃− 1∥π, (4.65)

and thus the bound of Eq. 4.62 holds for C = σ1maxi
√
πi/mini

√
πi. This bound

is specially weak when mini
√
πi << maxi

√
πi.

Appendix 4.B Technical results

Proposition (Proof of Prop. 4.3). Consider a stationary process on a tree with m
leaves. If the alphabet A has K + 1 states, then it holds that

E[∥ρ̃∂ − 1∥π] :=
∑
∂∈Am

Pr(∂)∥ρ̃∂ − 1∥π ≤
√
K.

Proof. Since Var[∥ρ̃∂ − 1∥π] ≥ 0, we have

E[∥ρ̃∂ − 1∥π]2 ≤ E[∥ρ̃∂ − 1∥2π]. (4.66)

Using Eq. 4.14, we know that ∥ρ̃∂ − 1∥2π ≤ maxk ρ̃
k
∂ − 1. If we define ρ∂ := (ρk∂),

substituting Pr(∂) = π · ρ∂ due to stationarity, we can do

E[∥ρ̃∂ − 1∥2π] ≤ −1 +
∑
∂

Pr(∂)max
k
ρ̃k∂ =

= −1 +
∑
∂

max
k
ρk∂ ≤ −1 +

∑
∂

∑
k

ρk∂ ≤ K, (4.67)

where we used the fact that
∑

∂ ρ∂ = 1. All in all, combining Equations 4.66 and
4.67 we infer

E[∥ρ̃∂ − 1∥π] ≤
√
K, (4.68)

as desired. Note that this bound is sharper than the upper bound
√

1/mini πi − 1

obtainable from Eq. 4.14, since 1/mini πi ≥ K + 1.
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Lemma (Proof of Lemma 4.5). For any integer d ≥ 2 and reals S ∈ (0, 2) and
ϵ > 0, if S ≤ 4ϵ/(1 + 2ϵ), then

(1 +
S

d
)d < 1 + (1 + ϵ)S. (4.69)

Proof. Expanding (1 + S
d
)d, Eq. 4.69 is equivalent to

∑
c∈[2,d]

(
d

c

)
Sc

dc
< ϵS. (4.70)

Since 0 < S < 2, we have the bound

∑
c∈[2,d]

(
d

c

)
Sc

dc
<

∑
c∈[2,d]

Sc

c!
<

∑
c∈[2,∞]

Sc

2c
=

S2

2(2− S)
. (4.71)

It is easy to see that, for S ∈ (0, 2), inequality

S2

2(2− S)
≤ ϵS (4.72)

holds iff
S ≤ 4ϵ

1 + 2ϵ
, (4.73)

and the result follows.

Lemma 4.12. Given vectors x1, · · · ,xd, let ∥ · ∥ denote the standard Euclidian
norm. It holds that

∥
c∈[d]

xc∥ ≤
∏
c∈[d]

∥xc∥, (4.74)

with equality for d ≥ 2 iff there exists a vector e with a single nonzero entry such
that xc ∝ e for all c ∈ [d].

Proof. The case d = 1 is trivial, and the case d = 2 is

∥x1 ◦ x2∥ ≤ ∥x1∥∥x2∥, (4.75)

which assuming x1 and x2 have respectively entries xk1 and xk2 is equivalent to∑
k

(xk1)
2(xk2)

2 ≤ (
∑
k

(xk1)
2)(

∑
k

(xk2)
2). (4.76)

Last inequality is clearly true since the summands of the LHS are a subset of the
summands of the RHS. To apply induction, we assume that the inequality is true

Chapter 4. A Bound of Information Flow on Trees 118



for some d ≥ 2 and prove it for d+ 1. It holds that

∥
c∈[d+1]

xc∥ = ∥(x1 ◦ x2) ◦
c∈[3,d+1]

xc∥ ≤ ∥x1 ◦ x2∥
∏

c∈[3,d+1]

∥xc∥, (4.77)

where we used the induction hypothesis with the d vectors x1 ◦ x2 and xc for
c ∈ [3, d+ 1]. using Eq. 4.75, the inequality follows.

Note that, for the equality in Eq. 4.75 to occur, it is necessary that vectors x1

and x2 have only one and the same nonzero entry. Using a symmetric argument,
for the equality in Eq. 4.74 to occur, it is necessary that x1, · · · ,xd have only one
and the same nonzero entry. It is easy to see that this is also a sufficient condition.

Proposition 4.13 (Mixing of the dependence factor). In the evolutionary process
of Figure 4.2, assume that all matrices Pc have the same equilibrium distribution
π. Consider moreover the normalized likelihood vector ρ̃∂ at R and the normalized
likelihood vectors Pcα̃c = 1+mc at nodes PcAc. Then, under the assumption that∑

c∈[d] ∥mc∥∞ ≤ 4ϵ/(1 + 2ϵ), the dependence factor satisfies

|D(∂)− 1| < ϵ
∑
c∈[d]

∥mc∥∞ ≤ 4ϵ2

1 + 2ϵ
.

Proof. Let us bound the dependence factor D(∂) using the expansion of Eq. 4.26.
First, we denote by |mc| the vector obtained by taking the absolute value of each
entry of mc, and thus write |mc| = (|m0

c |, · · · , |mK
c |). Using the fact that a weighted

sum is smaller than its biggest term, plus the Arithmetic-Geometric Mean inequality,
we obtain

|D(∂)− 1| = |π ·
∑

p∈[2,d]

∑
C∈([d]p ) c∈C

mc|

≤ max
i

∑
p∈[2,d]

∑
C∈([d]p )

∏
c∈C

|mi
c|=

= max
i

∏
i∈[c]

(1 + |mi
c|)−

∑
c∈[d]

|mi
c|−1 ≤

≤ max
i

(1 +

∑
c∈[d]|mi

c|
d

)d −
∑
c∈[d]

|mi
c|−1. (4.78)

Using Lemma 4.5, if
∑

c∈[d]|mi
c|< 4ϵ/(1 + 2ϵ) for all i, then the expression of Eq.
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4.78 can be upperly, strictly bounded by ϵmaxi
∑

c∈[d]|mi
c|. Moreover, it is clear that

∑
c∈[d]

|mi
c|≤

∑
c∈[d]

∥mc∥∞.

Therefore, assuming that the last sum is smaller than 4ϵ/(1 + 2ϵ), the dependence
factor D(∂) satisfies

|D(∂)− 1| < ϵmax
i

∑
c∈[d]

|mi
c|≤

≤ ϵ
∑
c∈[d]

∥mc∥∞, (4.79)

proving the first inequality of the statement. The second inequality follows by
reusing the assumption

∑
c∈[d] ∥mc∥∞ ≤ 4ϵ/(1 + 2ϵ).

Appendix 4.C Equivalent definitions of unsolvabil-

ity

Unsolvability for 2-dimensional or highly symmetric transition matrices was studied
in Mossel [2001a] using the Total Variation (TV) distance.

Definition 4.5 (Unsolvability in Mossel [2001a]). We say that the reconstruction
problem is TV-unsolvable if the likelihood vector ρ∂ = (ρ0∂, · · · , ρK∂ ) satisfies, for all
i ̸= j ∈ A, ∑

∂∈∆g

|ρi∂ − ρj∂|→ 0 as g → ∞.

Now define Eπ
∂ [∥ρ̃∂ − 1∥∗] as the expected value of ∥ρ̃∂ − 1∥∗ with prior µ = π.

Recall that µ > 0 by definition and π > 0 due to Prop. 4.1.a. In Prop. 4.14, we
prove that Definitions 4.4 and 4.5 are equivalent.

Proposition 4.14. The following statements are equivalent:

a) The reconstruction problem is unsolvable.

b) The reconstruction problem is unsolvable with stationary prior µ = π.

c) The reconstruction problem is TV-unsolvable.

Proof.
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• a) ⇐⇒ b): Since Prπ(∂) = π · ρ̃∂ and Pr(∂) = µ · ρ̃∂ , it holds that

Pr(∂)min
i
πi ≤ Prπ(∂) ≤

Pr(∂)
mini µi

, (4.80)

and consequently

E∂[∥ρ̃∂ − 1∥∗] min
i
πi ≤ Eπ

∂ [∥ρ̃∂ − 1∥∗] ≤
E∂[∥ρ̃∂ − 1∥∗]

mini µi

. (4.81)

These chain of inequalities implies that E∂[∥ρ̃∂−1∥∗] → 0 iff Eπ
∂ [∥ρ̃∂−1∥∗] → 0,

as desired. Note that we can chose any prior as long as it has positive entries.

• b) ⇐⇒ c): If we write ρ̃∂ = (ρ̃0∂, · · · , ρ̃K∂ ), we can do∑
∂∈∆g

|ρi∂ − ρj∂|=
∑
∂∈∆g

Prπ(∂)|ρ̃i∂ − ρ̃j∂|= Eπ
∂ [|ρ̃i∂ − ρ̃j∂|] (4.82)

We have the inequality

|ρ̃i∂ − ρ̃j∂|≤ |ρ̃i∂ − 1|+|ρ̃j∂ − 1|, (4.83)

and consequently unsolvability in expectation (using the L1-norm) implies TV-
unsolvability. Conversely, since π is a distribution and π · ρ̃∂ = 1, it holds
that

|ρ̃i∂ − 1| = |
∑
j

ρ̃i∂πj −
∑
j

ρ̃j∂πj|=

= |
∑
j ̸=i

πj(ρ̃
i
∂ − ρ̃j∂)|≤

∑
j ̸=i

πj|(ρ̃i∂ − ρ̃j∂)|. (4.84)

Thus if Eπ
∂ [|ρ̃i∂ − ρ̃j∂|] → 0 for all i ̸= j then E∂[∥ρ̃∂ − 1∥1] → 0, as desired.
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Chapter 5

Conclusion and Outlook

This thesis emphasised the fundamental importance of theory. We did so because
a solid theory provides both a constructive way to infer new results and an efficient
way to dismiss unrealistic assumptions.

In Chapter 2, we characterized the connectivity of taboo-free graphs whose
taboos do not change in time. However, taboo-sets often vary along evolution.
As shown by Rusinov et al. [2015], the lifespan of the taboo-set determines up to
which extent taboos are actually avoided. Thus a natural follow-up of Chapter 2
would be the simulation of taboo-free evolution. Manuel et al. [unpublished] pre-
pared such simulations, but the quantitative influence of taboo-free evolution on
sequence evolution seemed too weak to be significant for real data. All in all, we can
argue that taboo-sets typically have little impact on phylogenetic inference. This is
reassuring for all applications.

In Chapter 3 we proposed new measures of phylogenetic information. Although
the spectral decomposition of the coherence and the memory seems technical (Sec.
3.7), our results show the big potential of these new measures for phylogenetics.
Indeed, we obtained not only an unprecedentedly simple estimate of branch length
in Eq. 3.45, but also the asymptotic test for saturation, which has nearly optimal
power and does not depend on the estimated length of the branch tested (Sec. 3.10).

Leaving aside our new measures of information, the statistical definition of sat-
uration using hypothesis testing (Subsec. 3.10.1) could be applied to more conven-
tional measures, as the entropy. Thus we expect this formalization to be useful for
future research. Another important observation is given in Subsec. 3.10.5: In a re-
constructed tree, saturated branches can be relocated anywhere in the tree without
significantly affecting the tree log-likelihood. Thus every saturated branch enlarges
the space of equally good tree topologies. This is a similar phenomenon to that
of terraces, where the lack of genes by some species leads to a large space of true
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topologies explaining the data equally well [Sanderson et al., 2011].

Future work should elucidate whether conflicting phylogenies using real data are
a consequence of branch saturation. A significant conflict would be the placement
of the Last Universal Common Ancestor (LUCA) in the tree of life, typically on
the branch between Bacteria and the rest of living organisms [Brown and Doolittle,
1995], but for a minority studies elsewhere, e.g. inside Bacteria [Cavalier-Smith,
2006].

Regarding Chapter 4, Theorems 4.4 and 4.7 are very general and allow a big space
of rate matrices. This generality shows how naturally the norm of the memory vector
can quantify identification, giving good reasons to explore its usage. Considering the
results of Chapter 3, we believe that the memory at the root M(R) := E[∥ρ̃∂ − 1∥2π]
better adapts to phylogenetic reconstruction than the expected norm E[∥ρ̃∂ − 1∥π]
studied in Chapter 4. Indeed, the asymptotics of the log-likelihood stated in Section
3.9 show the importance of the linear properties of the coherence and the memory.
If we define the saturation center of a tree as the root with the minimum sample
memory M̂(R), future work could compare the saturation center with the root ob-
tained from some rooting method. The relative location of the saturation center and
the root could provide valuable insights about the evolutionary process underwent
by past species, for example a higher rate of substitution in a particular clade of the
tree.
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