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Abstract
Generalizing the canonical symplectization of contact manifolds, we construct an infinite
dimensional non-linear Stiefel manifold of weighted embeddings into a contact manifold.
This space carries a symplectic structure such that the contact group and the group of
reparametrizations act in a Hamiltonian fashion with equivariant moment maps, respec-
tively, giving rise to a dual pair, called the EPContact dual pair. Via symplectic reduction,
this dual pair provides a conceptual identification of non-linear Grassmannians of weighted
submanifolds with certain coadjoint orbits of the contact group. Moreover, the EPContact
dual pair gives rise to singular solutions for the geodesic equation on the group of contact
diffeomorphisms. For the projectivized cotangent bundle, the EPContact dual pair is closely
related to the EPDiff dual pair due to Holm and Marsden.
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Infinite dimensional manifold · Non-linear Grassmannian · Non-linear Stiefel manifold
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1 Introduction

Every contact manifold gives rise to a symplectic manifold in a canonical way. If the contact
structure is described by a 1-form α on P , then this symplectic manifold can be described
as P × (R\0) with the symplectic form d(tα), where t denotes the projection onto the
second factor. Regarding the contact structure as a subbundle of hyperplanes, ξ ⊆ T P , and
denoting the corresponding line bundle over P by L := T P/ξ , this symplectization can
be described more naturally as M = L∗\P , with the symplectic form induced from the
canonical symplectic form on T ∗P via the natural vector bundle inclusion L∗ ⊆ T ∗P .

The group of contact diffeomorphisms, Diff(P, ξ), acts on M in a natural way, preserving
the symplectic structure. This action is in fact Hamiltonian and admits an equivariant moment
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map. This moment map identifies (unions of) connected components of the symplectization
M with certain coadjoint orbits of the contact group.

1.1 The EPContact dual pair

In this paper we will introduce a natural infinite dimensional generalization M of the sym-
plectization M = L∗\P with similar features. To this end we fix a closed manifold S, we
denote by |�|S its line bundle of densities, and we consider the space M of line bundle
homomorphisms from |�|∗S → S to L∗ → P which restrict to a linear isomorphism on each
fiber. Every volume density on S provides an identification M ∼= C∞(S,M) and permits
to regard elements � ∈ M as pairs consisting of a map ϕ : S → P together with a contact
form for ξ along this map. This space M can be equipped with the structure of a Fréchet
manifold in a natural way, and admits a canonical (weakly non-degenerate) symplectic form.
The symplectization M can be recovered by choosing S to be a single point.

The contact group acts on M in a natural way, preserving the symplectic structure. This
action is Hamiltonian and admits an equivariant moment map, see Proposition 2.4. Fur-
thermore, the group of reparametrizations, Diff(S), acts on M in a Hamiltonian fashion,
also admitting an equivariant moment map. On the non-linear Stiefel manifold of weighted
embeddings, E ⊆ M, the latter action is free. We show that the restrictions of these moment
maps to E ,

X(P, ξ)∗
JEL←−−−− E JER−−−−→ �1(S, |�|S) ⊆ X(S)∗, (1)

constitute a symplectic dual pair in the sense of Weinstein [34], see Theorem 2.6. Here
X(P, ξ) denotes the Lie algebra of contact vector fields on P , X(S) denotes the Lie algebra
of all vector fields on S, and �1(S, |�|S) denotes the space of smooth 1-form densities on
S. The moment maps are given by 〈JEL (�), X〉 = ∫

S �(X ◦ ϕ) for all X ∈ X(P, ξ), and
〈JER (�), Z〉 = ∫

S �(Tϕ ◦ Z) for all Z ∈ X(S).
Actually, wewill show a stronger statement: The groupDiff(S) acts freely and transitively

on the fibers of JEL , and the group Diff(P, ξ) acts locally transitive on the level sets of J
E
R , see

Proposition 4.2 and Theorem 3.5. Moreover, we will see that the level sets of both moment
maps are smooth submanifolds of E . The dual pair in (1) will be referred to as the EPContact
dual pair, because the left leg provides singular solutions of the EPContact equation, i.e., the
Euler–Poincaré equation associated with the group of contact diffeomorphisms.

Recall that the projectivized cotangent bundle of a manifold Q admits a canonical contact
structure. The EPContact dual pair corresponding to the projectivized cotangent bundle of
Q is closely related to the EPDiff dual pair, due to Holm–Marsden [18], associated to the
action of Diff(Q) and Diff(S) on T ∗ Emb(S, Q), the cotangent bundle of embeddings of S
into Q, see Sect. 5.1.

1.2 Coadjoint orbits of the contact group

The EPContact dual pair will be used to identify coadjoint orbits of the contact group via
symplectic reduction for the reparametrization action, following the general principle: Sym-
plectic reduction on one leg of a dual pair of moment maps leads to coadjoint orbits of the
other group. The same principle was used in [12], where symplectic reduction on the right leg
of the ideal fluid dual pair due to Marsden and Weinstein [26] led to coadjoint orbits of the
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Hamiltonian group consisting of symplectic submanifolds [16], resp. of weighted isotropic
submanifolds of the symplectic manifold [22, 35].

To make this more precise, consider the non-linear Grassmannian of weighted submani-
folds,G = E/Diff(S), consisting of pairs (N , γ )where N is a submanifold of type S in P and
γ : |�|∗N → L|∗N is an isomorphism of line bundles which may be regarded as being akin to a
trivialization of the contact structure along N . This space G is a Fréchet manifold in a natural
way and the projection E → G is a smooth principal bundle with structure groupDiff(S). The
moment map JEL descends to a Diff(P, ξ)-equivariant injective immersion G → X(P, ξ)∗,
which permits to identify orbits of the contact group in G with coadjoint orbits. Each 1-form
density ρ ∈ �1(S, |�|S) gives rise to a reduced space Gρ ⊆ G given by

Gρ = (JER )
−1(Oρ)/Diff(S) = (JER )

−1(ρ)/Diff(S, ρ),

where Oρ denotes the Diff(S)-orbit through ρ, and Diff(S, ρ) is the isotropy group of ρ.
Reduction works best for the zero level. The corresponding reduced space G0 coincides

with the subset of weighted isotropic submanifolds, Giso ⊆ G. We will see that Giso is
a smooth submanifold of G and that the action of the contact group on Giso admits local
smooth sections. In particular, this action is locally transitive. Hence, the restriction of the
moment map, Giso → X(P, ξ)∗, identifies (unions of) connected components of Giso with
coadjoint orbits of the contact group. Moreover, this identification intertwines the Kostant–
Kirillov–Souriau symplectic form with the reduced symplectic form on Giso. These facts are
summarized in Theorem 4.10.

The situation is more delicate with regard to reduction at more general levels. In this case
the reduced spaces are more singular subsets of G and it is unclear if the contact group acts
locally transitive on them. If ρ is a contact 1-form density on S, i.e., if ker ρ is a contact
structure on S, then the reduced space Gρ consists of certain weighted contact submanifolds
of P which are of type (S, ker ρ). This is an open condition on the submanifold in view of
Gray’s stability theorem. The condition on the weight, however, is rather singular: The space
of all admissible (for Gρ) weights on a fixed contact submanifold may be identified with
the Diff(S, ker ρ)-orbit of ρ. The situation is tamer if we specialize to 1-dimensional S, see
Example 4.16. In particular, (unions of) connected components in the spaces of weighted
transverse knots of fixed length in a contact 3-manifold, may be identified with coadjoint
orbits of the contact group.

1.3 Singular solutions of the Euler–Poincaré equation

Another motivation for studying the EPContact dual pair is the construction of singular
solutions of the geodesic equation on the group of contact diffeomorphisms equipped with a
right invariant Riemannian metric. This works analogous to the EPDiff equation, where the
EPDiff dual pair has been used by Holm and Marsden [18] to construct singular solutions
for the geodesic equation on the full diffeomorphism group. Similarly, point vortices in
two dimensional ideal fluid flow, a geodesic equation on the group of volume preserving
diffeomorphisms, have been described using a dual pair by Marsden–Weinstein [26]. The
same kind of argument has been applied for the Vlasov equation in kinetic theory by Holm–
Tronci [19] using the ideal fluid dual pair, and for the Euler–Poincaré equations on the group
of automorphisms of a principal bundle in [13] using the EPAut dual pair [10].

In all these cases the singular solutions of the system are obtained, via amomentmap, from
a collectiveHamiltonian dynamics on a symplecticmanifold, referred to asClebsch variables.
This moment map turns out to be the left leg of a dual pair associated to commuting actions
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on the manifold of embeddings, while the right leg moment map gives conserved quantities
by Noether’s theorem. We show that for the group of contact diffeomorphisms the situation
is similar.

To describe this in more detail, let us start by briefly reviewing the geodesic equation on
a Lie group with respect to a right invariant Riemannian metric. We write the inner product
on the Lie algebra g in the form (u, v) = 〈Qu, v〉, where the inertia operator Q : g → g∗ is
symmetric and strictly positive. Formally, the right trivialized geodesic equation on the Lie
algebra g is the Euler–Arnold equation,

d
dt u = − ad�

u u, (2)

where the adjoint of the adjoint action can be characterized by (ad�
u v,w) := (v, adu w)

for all u, v, w ∈ g. In other words, ad�
u = Q−1 ad∗

u Q, where ad∗
u : g∗ → g∗ denotes the

coadjoint action characterized by 〈ad∗
u m, v〉 = 〈m, adu v〉 for u, v ∈ g and m ∈ g∗.

Via Legendre transformation, using the momentumm := Qu, the Euler–Arnold equation
(2) becomes the Lie–Poisson equation,

d
dt m = − ad∗

u m, (3)

which is the Hamilton equation on the Poisson manifold g∗ for the Hamiltonian

h : g∗ → R, h(m) := 1
2 〈m, Q−1m〉.

Its solutions are confined to coadjoint orbits, the symplectic leaves of g∗.
Let us now turn to the group of contact diffeomorphisms on a contact manifold (P, ξ).

Recall that its Lie algebra can be canonically identified with the space of contact vector fields,
X(P, ξ) = 
∞(L), where L = T P/ξ . For simplicity, we will assume P to be closed. We
consider X(P, ξ)∗ = 
−∞(L∗ ⊗ |�|P ), the space of distributional sections of L∗ ⊗ |�|P ,
where |�|P denotes the bundle of densities on P . We assume that the inertia operator,
Q : 
∞(L) → 
∞(L∗ ⊗ |�|P ), is a pseudo-differential operator of real order s which is
symmetric, strictly positive, invertible, and its inverse, Q−1 : 
∞(L∗ ⊗ |�|P ) → 
∞(L), is
a pseudo-differential operator of order−s. Hence, the corresponding inner product, (u, v) =
〈Qu, v〉, generates the Sobolev Hs/2 topology on 
(L). Using elliptic theory, such inertia
operators can be easily constructed. For instance, we may use Q = φ(1 + �)s/2, where �
is a Laplacian acting on 
(L) which is non-negative and formally self-adjoint with respect
to a volume density on P and a fiberwise Euclidean metric on L , and φ : L → L∗ ⊗ |�|P
denotes the isomorphism of line bundles provided by these geometric choices.

The Hamiltonian function h(m) = 1
2 〈m, Q−1m〉 is well defined on
−s/2(L∗⊗|�|P ), the

space of sections which are of Sobolev class −s/2. Note that the Sobolev space 
−s/2(L∗ ⊗
|�|P ) is invariant under the coadjoint action of Diff(P, ξ). If k ∈ 
−∞(L � L) denotes the
Schwartz kernel of Q−1, then

h(m) = 1
2 〈k,m � m〉 = 1

2

∫

(x,y)∈P×P
m(x)k(x, y)m(y)

extends continuously (regularization) to m ∈ 
−s/2(L∗ ⊗ |�|P ). Assuming

s > dim P − dim S, (4)

the moment map JEL : E → X(P, ξ)∗ takes values in 
−s/2(L∗ ⊗ |�|P ) = 
s/2(L)∗.
Indeed, for� ∈ E the distribution JEL (�) is the push forward of a smooth section on S along
a smooth embedding S → P , cf. Remark 2.9. According to a standard property of the trace
map on Sobolev spaces, see for instance [31, Proposition 1.6 in Chapter 4], it thus provides
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a continuous functional on 
s/2(L). The map JEL is actually smooth into 
−s/2(L∗ ⊗ |�|P ).
Hence, the pull back of the Hamiltonian h to E ,

H : E → R, H := h ◦ JEL ,

is smooth. Although the symplectic form on E is only weakly non-degenerate, the function H
gives rise to a Hamiltonian vector field XH on (and tangential to) E , cf. the discussion in [5,
Section 4.2.2]. Indeed, since JEL is amomentmap,we formally have XH (�) = ζE

Q−1 JEL (�)
(�)

and thus

XH (�) = ζ L∗
Q−1 JEL (�)

◦ �, (5)

where ζE and ζ L∗
denote the infinitesimal Diff(P, ξ)-actions on E and L∗, respectively, cf.

(25) and (20) below. Bymicrolocal regularity, Q−1 JEL (�) is smooth along the submanifold N
in P determined by�, see for instance [32,Corollary 9.4 inChapter 7] or [15, Proposition 3.11
in Chapter IV§3]. Furthermore, since ζ L∗ : 
∞(L) → 
∞(T L∗) is essentially given by a
first order differential operator, it extends to distributional sections, and ζ L∗

Q−1 JEL (�)
is smooth

along L∗|N . In particular, the latter is smooth along � and thus XH (�) is a tangent vector
to E at �, cf. (5).

Every solution �t ∈ E of the Hamilton equation

d
dt�t = XH (�t ) (6)

provides a singular solution (peakons, filaments, sheets) ut := Q−1 JEL (�t ) ∈ 
s/2(L) of the
Euler–Arnold equation (2)withmomentummt := JEL (�t ) ∈ 
−s/2(L∗⊗|�|P ). The support
of the distributional momentum mt coincides with the smooth submanifold determined by
�t , and this also coincides with the singular support of ut . Due to the dual pair property,
each solution�t of (6) remains in a level of the other moment map, JER : E → X(S)∗, and is
thus confined to a Diff(P, ξ) orbit in E . Hence, its momentum mt = JEL (�t ) is constrained
to a coadjoint orbit.

If S is a single point, then the assumption in (4) implies that the distributional kernel k of
Q−1 is continuous. In this case we have E = L∗\P and H is given by the (smooth) restriction
of k to the diagonal.

The initial value problem for the EPContact equation has been studied by Ebin and Preston
in [5]. They consider inertia operators of the form Q = 1 + �, where the Laplacian is with
respect to a Riemannian metric which is adapted to the contact structure.

It appears to be interesting [4] to replace the class of inertia operators considered abovewith
operators in the Heisenberg calculus [3, 28, 30], a calculus of pseudo-differential operators
which is closely linked to the contact geometry on P . Using the Rockland theorem, one can
construct pseudo-differential operators Q : 
∞(L) → 
∞(L∗ ⊗ |�|P ) of Heisenberg order
s which are symmetric, strictly positive, invertible, and such that the inverse, Q−1 : 
∞(L∗⊗
|�|P ) → 
∞(L), is of Heisenberg order −s. For instance, we may use Q = φ(1 + �)s/2,
where� is a subLaplacian. Everythingmentioned above remains valid, provided the Sobolev
spaces are being replaced with the corresponding spaces in the Heisenberg Sobolev scale and
the assumption (4) is replaced by the stronger condition s/2 > dim P − dim S.

1.4 Structure of the paper

The remaining part of the paper is organized as follows. In Sect. 2 we construct the EPContact
dual pair. In Sect. 3 we show that the level sets of the right moment map are submanifolds on
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which the contact group acts locally transitive. In Sect. 4we study the reduced spaces obtained
by factoring out the group of reparametrizations. In Sect. 5.1 we compare the EPContact dual
pair for the projectivized cotangent bundle with the EPDiff dual pair of Holm and Marsden.
In Sect. 5.2 we provide a comparison with a dual pair due to Marsden and Weinstein for the
Euler equation of an ideal fluid.

2 Weighted non-linear Stiefel manifolds

The aim of this section is to construct the EPContact dual pair, see Theorem 2.6.

2.1 Canonical symplectization of contact manifolds

In this section we set up our notation and recall some well known facts about the symplec-
tization of contact manifolds. We emphasize the structure that will be generalized in the
subsequent sections. For more details we refer to [1, Appendix 4.E] and [25, Section 12.3].

Consider a contact manifold (P, ξ) where ξ ⊆ T P denotes the contact subbundle. We
write L := T P/ξ for the corresponding line bundle. The vector bundle projection of the dual
line bundle will be denoted by π L∗ : L∗ → P . The canonical projection T P → L permits
to regard the dual bundle as a subbundle of the cotangent bundle, L∗ ⊆ T ∗P . We denote by
θ L

∗ ∈ �1(L∗) the pull back of the canonical 1-form on T ∗P .1 Hence, the defining equation
for θ L

∗
is

θ L
∗

β (V ) = β(Tβπ
L∗ · V ), (7)

where β ∈ L∗
x , x ∈ P , and V ∈ TβL∗. The pairing in (7) can be viewed either as a pairing

between L∗
x and Lx by considering the class of Tβπ L∗ · V in Lx = Tx P/ξx , or as a pairing

between T ∗P and T P by considering β an element of L∗
x ⊆ T ∗

x P . It is well known that the
closed 2-form

ωL∗ := dθ L
∗ ∈ �2(L∗)

restricts to a symplectic form on M := L∗\P , which will be denoted by ωM = dθM . The
symplectic manifold (M, ωM ) is called the symplectization of the contact manifold (P, ξ).
Note that both forms are homogeneous of degree one with respect to the fiberwise scalar
multiplication δt : L∗ → L∗, that is δ∗

t θ
L∗ = tθ L

∗
and δ∗

t ω
L∗ = tωL∗

for all t ∈ R.

The action by the contact group

Let us write Diff(P, ξ) for the group of contact diffeomorphisms. Since contact diffeomor-
phisms preserve the contact subbundle ξ , the Diff(P, ξ)-action on P lifts to an action on
the total space of L∗. For g ∈ Diff(P, ξ), we let �L∗

g ∈ Diff(L∗) denote the corresponding
(fiberwise linear) diffeomorphism on L∗. Clearly, π L∗ ◦�L∗

g = g◦π L∗
, δt ◦�L∗

g = �L∗
g ◦δt ,

and�L∗
g2g1 = �L∗

g2 �
L∗
g1 for all g, g1, g2 ∈ Diff(P, ξ) and t ∈ R. Moreover, the contact group

action preserves θ L
∗
and ωL∗

, that is (�L∗
g )∗θ L∗ = θ L

∗
and (�L∗

g )∗ωL∗ = ωL∗
for all

g ∈ Diff(P, ξ). Noticing that the symplectic piece M ⊆ L∗ is invariant under the contact
group action, we write �M

g for the restricted action.

1 If ξ = ker α and L∗ ∼= P × R denotes the trivialization provided by α, then θ L
∗ = t(π L∗

)∗α, where t
denotes the projection onto the factor R.
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Let X(P, ξ) denote the Lie algebra of contact vector fields. Via the projection T P → L ,
every (contact) vector field gives rise to a section of L which may in turn be regarded as a
fiberwise linear function on the total space of L∗. This provides canonical identifications,

X(P, ξ) = 
∞(L) = C∞
lin(L

∗), X ↔ X mod ξ ↔ hX , (8)

where hX ∈ C∞
lin(L

∗) is the fiberwise linear function given by hX (β) = β(Xx ) for β ∈ L∗
x

and x ∈ P . Clearly, this identification is equivariant, i.e.,

(�L∗
g )∗hX = hg∗X (9)

for all g ∈ Diff(P, ξ) and X ∈ X(P, ξ).
For X ∈ X(P, ξ), we denote the corresponding fundamental vector field (infinitesimal

action) on the total space of L∗ by ζ L∗
X ∈ X(L∗). Clearly,

Tπ L∗ ◦ ζ L∗
X = X ◦ π L∗

, (10)

T δt ◦ ζ L∗
X = ζ L∗

X ◦ δt , (�L∗
g )∗ζ L∗

X = ζ L∗
g∗X , and [ζ L∗

X1
, ζ L∗

X2
] = ζ L∗

[X1,X2] for all X , X1, X2 ∈
X(P, ξ), g ∈ Diff(P, ξ) and t ∈ R. From the definition of θ L

∗
in (7) one immediately gets

i
ζ L

∗
X
θ L

∗ = hX (11)

for X ∈ X(P, ξ). Invariance of θ L
∗
and ωL∗

yields infinitesimal invariance L
ζ L

∗
X
θ L

∗ = 0

and L
ζ L

∗
X
ωL∗ = 0, respectively, for all X ∈ X(P, ξ). Using Cartan’s formula and (11), we

obtain

i
ζ L

∗
X
ωL∗ = −dhX (12)

as well as the following formula for the bracket of contact vector fields,

h[X ,Y ] = ζ L∗
X · hY = −ζ L∗

Y · hX = ωL∗
(ζ L∗

X , ζ L∗
Y ), (13)

for all X , Y ∈ X(P, ξ).
Over the symplectic piece M = L∗\P the Hamiltonian vector field corresponding to

hM
X := hX |M coincides with ζM

X := ζ L∗
X |M , see (12). Moreover, (13) implies

hM[X ,Y ] = {hM
X , hM

Y }, (14)

where the right hand side denotes the Poisson bracket on C∞(M). The formulas (12) and
(9) above imply that the action of Diff(P, ξ) on M is Hamiltonian with equivariant moment
map

J M : M → X(P, ξ)∗, 〈J M (β), X〉 := hM
X (β) = β(X), (15)

where β ∈ M and X ∈ X(P, ξ).

Remark 2.1 A slightly more explicit, yet less natural description is possible if the contact
structure is described by a contact form α ∈ �1(P), that is, if ξ = ker α. Such a contact
form provides a trivialization P × R ∼= L∗ ⊆ T ∗P , (x, t) ↔ tαx . Via this identification we
have θ L

∗ = t(π L∗
)∗α, and the fiberwise linear function hX from (8) becomes hX (x, t) =

t(iXα)(x) where x ∈ P and t ∈ R. A diffeomorphism g of P is a contact diffeomorphism
iff it preserves the contact form up to a conformal factor, i.e., iff there exists a (nowhere
vanishing) function ag on P such that g∗α = agα. Similarly, a vector field X on P is
a contact vector field iff it satisfies LXα = λXα, for a conformal factor λX ∈ C∞(P).
Both, the group action of Diff(P, ξ) and the Lie algebra action of X(P, ξ) on L∗, written
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in the trivialization L∗ ∼= P × R, involve the conformal factors. More explicitly, we have
�L∗

g (x, t) = (g(x), tag(x)) and ζ L∗
X (x, t) = (X(x), tλX (x)∂t ).

Coadjoint orbits

It is well known that each connected component of a symplectic manifold is equivariantly
symplectomorphic to a coadjoint orbit of its Hamiltonian group, see for instance [12]. We
will now formulate a similar statement for the group Diffc(P, ξ) of compactly supported
contact diffeomorphisms which can be considered as a special case of Theorem 4.10 below.

For β ∈ M , the isotropy subgroup Diffc(P, ξ ;β) is a closed Lie subgroup of Diffc(P, ξ).
Moreover, the map provided by the action, Diffc(P, ξ) → M , g �→ �M

g (β), admits a local
smooth right inverse defined in a neighborhood of β. In particular, the group Diffc(P, ξ) acts
locally and infinitesimally transitive on M , and the Diffc(P, ξ)-orbit through β is open and
closed in M . Denoting this orbit by Mβ , the map Diffc(P, ξ) → Mβ is a smooth principal
bundle with structure group Diffc(P, ξ ;β). Hence,

Mβ = Diffc(P, ξ)/Diffc(P, ξ ;β)
may be regarded as a homogeneous space. The moment map (15) induces an equivariant dif-
feomorphismbetweenMβ and the coadjoint orbit ofDiffc(P, ξ) through J M (β) ∈ X(P, ξ)∗.
By infinitesimal equivariance of J M and (13), this diffeomorphism intertwines the Kostant–
Kirillov–Souriau symplectic form ωKKS with ωM . Indeed, for β ∈ M and X , Y ∈ X(P, ξ),
we get

((J M )∗ωKKS)(ζM
X (β), ζM

Y (β))

= ωKKS
(
ζ
X(P,ξ)∗
X (J M (β)), ζ

X(P,ξ)∗
Y (J M (β))

)

= 〈J M (β), [X , Y ]〉 (15)= hM[X ,Y ](β)
(13)= ωM (ζM

X (β), ζM
Y (β)),

whence (J M )∗ωKKS = ωM .
In particular, each connected component of M is equivariantly symplectomorphic to a

coadjoint orbit of the identity component in Diffc(P, ξ). If P connected and the contact
structure is not coorientable, then M is connected, hence a coadjoint orbit of Diffc(P, ξ).

2.2 Momentmaps on amanifold of weightedmaps

In this section we introduce an infinite dimensional generalization L of L∗ that also carries
a canonical 1-form θL which is invariant under a natural Diff(P, ξ)-action.

To this end, we fix a closed manifold S. We let |�|S denote the line bundle of densities
[21,Chapter 16] on S, and we write π |�|S : |�|S → S for the corresponding vector bundle
projection. Recall that sections of |�|S can be integrated over S in a natural way. Every
orientation of S provides an isomorphism of line bundles |�|S ∼= �dim(S)T ∗S. A nowhere
vanishing density, i.e., a section in 
∞(|�|S\S), will be referred to as a volume density.

We denote the space of line bundle homomorphisms from |�|∗S → S to L∗ → P by

L := C∞
lin(|�|∗S, L∗) :=

{
� ∈ C∞(|�|∗S, L∗)

∣
∣
∣∀t ∈ R : � ◦ δ

|�|∗S
t = δL

∗
t ◦ �

}
.

There is a canonical map πL : L → C∞(S, P), characterized by

π L∗ ◦ � = πL(�) ◦ π |�|∗S , (16)
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A dual pair for the contact group 2945

for all � ∈ L. For the fiber over ϕ ∈ C∞(S, P) we have a canonical identification,

Lϕ := (πL)−1(ϕ) = 
∞(|�|S ⊗ ϕ∗L∗). (17)

The contact group Diff(P, ξ) acts from the left on L, and the reparametrization group
Diff(S) acts on L from the right in an obvious way. More explicitly, these actions are given
by

�L
g (�) := �L∗

g ◦ � and ψL
f (�) := � ◦ ψ

|�|∗S
f , (18)

where � ∈ L, g ∈ Diff(P, ξ), f ∈ Diff(S), and ψ
|�|∗S
f ∈ Diff(|�|∗S) denotes the induced

(fiberwise linear) action of Diff(S) on the total space of |�|∗S . The two actions onL commute,
and the map πL intertwines them with the corresponding actions on C∞(S, P) given by

�C∞(S,P)
g (ϕ) = g ◦ ϕ and ψ

C∞(S,P)
f (ϕ) = ϕ ◦ f ,

where g ∈ Diff(P, ξ), f ∈ Diff(S), and ϕ ∈ C∞(S, P). More explicitly, we have �L
g2g1 =

�L
g2 ◦ �L

g1 , π
L ◦ �L

g = �
C∞(S,P)
g ◦ πL, ψL

f1 f2
= ψL

f2
◦ ψL

f1
, πL ◦ ψL

f = ψ
C∞(S,P)
f ◦ πL,

and �L
g ◦ ψL

f = ψL
f ◦ �L

g , for g, g1, g2 ∈ Diff(P, ξ) and f , f1, f2 ∈ Diff(S).

Remark 2.2 Letμ ∈ 
∞(|�|S\S) be a volume density on S, i.e., a nowhere vanishing smooth
section of |�|S . Such a volume density provides an identification

L ∼= C∞(S, L∗), � ↔ φ = � ◦ μ̂,

where μ̂ ∈ 
∞(|�|∗S) denotes the section dual to μ, that is μ̂(μ) = 1. In this picture the
actions on L take the form

�L
g (φ) = �L∗

g ◦ φ and ψL
f (φ) = f ∗μ

μ
· (φ ◦ f ),

where φ ∈ C∞(S, L∗), g ∈ Diff(P, ξ) and f ∈ Diff(S).

The space L can be equipped with the structure of a smooth Fréchet manifold such that
the identificationL ∼= C∞(S, L∗) in Remark 2.2 becomes a diffeomorphism, for each choice
of volume density μ. The map πL : L → C∞(S, P) is a smooth vector bundle. The tangent
space at � ∈ L can be canonically identified as

T�L =
{

η ∈ C∞(|�|∗S, T L∗)
∣
∣
∣
∣
∣

πT L∗ ◦ η = � and

∀t ∈ R : η ◦ δ
|�|∗S
t = T δL

∗
t ◦ η

}

. (19)

The actions of Diff(P, ξ) and Diff(S) on L are smooth. For X ∈ X(P, ξ) and Z ∈ X(S),
the corresponding fundamental vector fields are

ζLX (�) = ζ L∗
X ◦ � and ζLZ (�) = T� ◦ ζ

|�|∗S
Z (20)

where� ∈ L and ζ
|�|∗S
Z ∈ X(|�|∗S) denotes the fundamental vector field of the Diff(S)-action

on the total space of |�|∗S . Note that
Tπ |�|∗S ◦ ζ

|�|∗S
Z = Z ◦ π |�|∗S and

(
δ
|�|∗S
t

)∗
ζ

|�|∗S
Z = ζ

|�|∗S
Z . (21)

Clearly, (�L
g )

∗ζLX = ζLg∗X , ζ
L[X1,X2] = [ζLX1

, ζLX2
], TπL ◦ ζLX = ζ

C∞(S,P)
X ◦πL, (ψL

f )
∗ζLZ =

ζLf∗Z , ζ
L[Z1,Z2] = −[ζLZ1

, ζLZ2
], TπL ◦ ζLZ = ζ

C∞(S,P)
Z ◦ πL, and [ζLX , ζLZ ] = 0, where

g ∈ Diff(P, ξ), X , X1, X2 ∈ X(P, ξ), f ∈ Diff(S), Z , Z1, Z2 ∈ X(S).
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The canonical 1-form

Consider the 1-form θL on L defined by

θL(η) :=
∫

S
θ L

∗
(η), (22)

where η ∈ T�L and � ∈ L. Note here that, because of (19), inserting η into θ L
∗
leads to a

fiberwise linear map θ L
∗
(η) : |�|∗S → R which, when regarded as a section of |�|S , may be

integrated over S. By invariance of θ L
∗
, the 1-form θL is invariant under both actions, i.e.,

we have

(�L
g )

∗θL = θL and (ψL
f )

∗θL = θL

for all g ∈ Diff(P, ξ) and f ∈ Diff(S). The corresponding infinitesimal invariance reads

L
ζLX

θL = 0 and L
ζLZ

θL = 0,

where X ∈ X(P, ξ) and Z ∈ X(S).
Moreover, we introduce the 2-form ωL := dθL on L. By invariance of θL, this 2-

form is invariant under both actions too. More explicitly, we have (�L
g )

∗ωL = ωL and

(ψL
f )

∗ωL = ωL for g ∈ Diff(P, ξ) and f ∈ Diff(S), as well as infinitesimal invariance

L
ζLX

ωL = 0 and L
ζLZ

ωL = 0 for X ∈ X(P, ξ) and Z ∈ X(S). Clearly, see [9, 33],

ωL(η1, η2) =
∫

S
ωL∗

(η1, η2) (23)

where η1, η2 ∈ T�L and � ∈ L. As before, the fiberwise linear function ωL∗
(η1, η2) on

|�|∗S may be regarded as a section of |�|S which can be integrated over S.
The exact 2-form ωL = dθL is not (weakly) non-degenerate, because ωL∗

is not sym-
plectic on all of L∗. In the subsequent section, we will restrict to an invariant open subset ofL
on which ωL is (weakly) symplectic. On this symplectic part, both actions are Hamiltonian
with equivariant moment map. This is a well known formal consequence of the fact that
these actions preserve the 1-form θL, see for instance [25,Section 12.3]. The corresponding
Hamiltonian functions and moment maps are given by contraction of the fundamental vector
fields with the canonical 1-form. However, these geometric objects make sense on all of L.
Hence, we will now formulate their fundamental relations on L.

The left moment map

For X ∈ X(P, ξ), consider the function hLX : L → R defined by

i
ζLX

θL =: hLX . (24)

Using the infinitesimal invariance, L
ζLX

θL = 0, we obtain

i
ζLX

ωL = −dhLX (25)

analogous to (12), as well as

hL[X ,Y ] = ζLX · hLY = −ζLY · hLX = ωL(ζLX , ζ
L
Y ), (26)
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for all X , Y ∈ X(P, ξ), cf. (13). From the invariance of θL we obtain, cf. (9)

(�L
g )

∗hLX = hLg∗X and (ψL
f )

∗hLX = hLX (27)

for all f ∈ Diff(S), g ∈ Diff(P, ξ), and X ∈ X(P, ξ). We introduce a smooth map

JLL : L → X(P, ξ)∗ (28)

by putting 〈JLL , X〉 := hLX , that is,

〈JLL (�), X〉 := hLX (�) = θL(ζLX (�)), (29)

where � ∈ L and X ∈ X(P, ξ). The equations in (27) may be written in the form

〈JLL ◦ �L
g , X〉 = 〈�L

g , g
∗X〉 and JLL ◦ ψL

f = JLL , (30)

where g ∈ Diff(P, ξ), X ∈ X(P, ξ), and f ∈ Diff(S). Combining (24), (20), (22), (7), (10),
and (16), we obtain

hLX (�) =
∫

S
�(X ◦ ϕ), (31)

where ϕ ∈ C∞(S, P), � ∈ Lϕ = 
∞(|�|S ⊗ ϕ∗L∗), and X ∈ X(P, ξ) = 
∞(L), cf. (17)
and (8). Here we use the canonical contraction between L∗ ⊆ T ∗P and T P to obtain the
density �(X ◦ ϕ) ∈ 
∞(|�|S). More explicitly, the verification of (31) reads:

hLX (�)
(24)= θL(ζLX (�))

(20)= θL(ζ L∗
X ◦ �)

(22)=
∫

S
θ L

∗
(ζ L∗

X ◦ �)

(7)=
∫

S
�(Tπ L∗ ◦ ζ L∗

X ◦ �)
(10)=

∫

S
�(X ◦ π L∗ ◦ �)

(16)=
∫

S
�(X ◦ ϕ ◦ π |�|∗S ) =

∫

S
�(X ◦ ϕ).

The right moment map

For Z ∈ X(S), consider the function kLZ : L → R defined by

i
ζLZ

θL =: kLZ . (32)

Using the infinitesimal invariance, L
ζLZ

θL = 0, we obtain

i
ζLZ

ωL = −dkLZ (33)

as well as

kL[Z1,Z2] = ζLZ1
· kLZ2

= −ζLZ2
· kLZ1

= ωL(ζLZ1
, ζLZ2

), (34)

for all Z , Z1, Z2 ∈ X(S). From the invariance of θL we obtain

(�L
g )

∗kLZ = kLZ and (ψL
f )

∗kLZ = kLf∗Z (35)

for all g ∈ Diff(P, ξ), f ∈ Diff(S), and Z ∈ X(S). We introduce a smooth map

JLR : L → �1(S, |�|S) ⊆ X(S)∗ (36)
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by putting 〈JLR , Z〉 := kLZ , that is,

〈JLR (�), Z〉 := kLZ (�) = θL(ζLZ (�)), (37)

where � ∈ L and Z ∈ X(S). The equations in (35) may be written in the form

〈JLR ◦ ψL
f , Z〉 = 〈ψL

f , f∗Z〉 and JLR ◦ �L
g = JLR , (38)

where f ∈ Diff(S), Z ∈ X(S), and g ∈ Diff(P, ξ). In view of (32), (20), (22), (7), (16), and
(21), we have

kLZ (�) =
∫

S
�(Tϕ ◦ Z), (39)

where ϕ ∈ C∞(S, P),� ∈ Lϕ = 
∞(|�|S ⊗ϕ∗L∗), and Z ∈ X(S), cf. (17). As before, we
use the canonical contraction between L∗ ⊆ T ∗P and T P to obtain a density �(Tϕ ◦ Z) ∈

∞(|�|S). More explicitly, the verification of (39) reads:

kLZ (�)
(32)= θL(ζLZ (�))

(20)= θL(T� ◦ ζ
|�|∗S
Z )

(22)=
∫

S
θ L

∗
(T� ◦ ζ

|�|∗S
Z )

(7)=
∫

S
�(Tπ L∗ ◦ T� ◦ ζ

|�|∗S
Z )

(16)=
∫

S
�(Tϕ ◦ Tπ |�|∗S ◦ ζ

|�|∗S
Z )

(21)=
∫

S
�(Tϕ ◦ Z ◦ π |�|∗S ) =

∫

S
�(Tϕ ◦ Z).

It follows from (37) and (39) that JLR (�) is indeed a smooth 1-form density as indicated
in (36), i.e., JLR (�) ∈ �1(S, |�|S). More precisely, we have

λ
(
JLR (�)(Z)

) = (� ◦ λ)(Tϕ ◦ Z) (40)

for Z ∈ X(S) and λ ∈ 
∞(|�|∗S). Note that JLR (�) can also be characterized as the smooth
1-form density on S corresponding to the 1-homogeneous vertical 1-form�∗θ L∗

on the total
space of |�|∗S . More explicitly, we have

JLR (�) = �∗θ L∗
(41)

via the canonical identification

�1(S, |�|S) =
{
β ∈ �1(|�|∗S)

∣
∣
∣β is vertical and

(
δ
|�|∗S
t

)∗
β = tβ for all t ∈ R

}
. (42)

Here ρ ∈ �1(S, |�|S) corresponds to β ∈ �1(|�|∗S) given by β(W ) = w(ρ(Twπ |�|∗S · W ))

where w ∈ |�|∗S and W ∈ Tw|�|∗S .
Remark 2.3 Using a volume density μ on S to identify L ∼= C∞(S, L∗) as in Remark 2.2,
the differential forms θL and ωL become, see (22) and (23),

θL(η) =
∫

S
θ L

∗
(η)μ and ωL(η1, η2) =

∫

S
ωL∗

(η1, η2)μ, (43)

where φ ∈ C∞(S, L∗) and η, η1, η2 ∈ TφC∞(S, L∗) = {η ∈ C∞(S, T L∗) : πT L∗ ◦η = φ}.
For X ∈ X(P, ξ) and Z ∈ X(S), the fundamental vector fields ζLX and ζLZ identify to

ζLX (φ) = ζ L∗
X ◦ φ and ζLZ (φ) = Tφ ◦ Z + divμ(Z) · (R ◦ φ), (44)
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where divμ(Z) := LZμ
μ

denotes the μ-divergence, and R := ∂
∂t |t=1δ

L∗
t ∈ X(L∗) denotes the

Euler vector field of L∗. The functions hLX and kLZ become, see (31) and (39),

hLX (φ) =
∫

S
(φ∗hX )μ and kLZ (φ) =

∫

S
(φ∗θ L∗

)(Z)μ. (45)

Hence, the maps JLL and JLR identify to

JLL : C∞(S, L∗) → C∞(L∗)∗ → X(P, ξ)∗, JLL (φ) = φ∗μ (46)

JLR : C∞(S, L∗) → �1(S, |�|S) ⊆ X(S)∗, JLR (φ) = φ∗θ L∗ ⊗ μ (47)

where φ ∈ C∞(S, L∗) and we use the inclusion X(P, ξ) = C∞
lin(L

∗) ⊆ C∞(L∗), see (8).

2.3 The symplectic part

Let M ⊆ L = C∞
lin(|�|∗S, L∗) denote the open subset of line bundle homomorphisms

|�|∗S → L∗ which restrict to a linear isomorphism on each fiber,

M := C∞
lin, inj(|�|∗S, L∗). (48)

2 We will denote the restriction to M of any action, function, form, or vector field on L
considered above, by replacing the superscript L with M. Because L∗\P is symplectic, the
2-form ωM = dθM is (weakly) non-degenerate, whence symplectic, cf. (23).

The map πM : M → C∞(S, P) is a principal fiber bundle with structure group
C∞(S,R×), provided we restrict to the connected components of C∞(S, P) in the image of
πM. If ϕ is in one of these components, then the fiber Mϕ := (πM)−1(ϕ) may be canoni-
cally identified with the space of nowhere vanishing sections of the line bundle |�|S ⊗ϕ∗L∗,
cf. (17). Thus, disregarding the density part, Mϕ may be considered as the space of contact
forms for ξ along the map ϕ : S → P .

Clearly, M is invariant under the action of the groups Diff(P, ξ) and Diff(S). Since
both actions preserve the 1-form θM, they are Hamiltonian with equivariant moment maps
obtained by contraction of the 1-form with the infinitesimal generators, see for instance [25,
Section 12.3]. We summarize these facts in the following proposition.

Proposition 2.4 (a) The action of the group Diff(P, ξ) onM is Hamiltonian with an equiv-
ariant moment map JML : M → X(P, ξ)∗, given by

〈JML (�), X〉 = (i
ζMX

θM)(�) = hMX (�) =
∫

S
�(X ◦ ϕ), (49)

where � ∈ Mϕ and X ∈ X(P, ξ). Moreover, the moment map JML is Diff(S)-invariant.
More explicitly, we have (�M

g )∗ωM = ωM, i
ζMX

ωM = −d〈JML , X〉, 〈JML ◦ �M
g , X〉 =

〈�M
g , g∗X〉, and JML ◦ψM

f = JML where g ∈ Diff(P, ξ), X ∈ X(P, ξ), and f ∈ Diff(S).
(b) The action of the group Diff(S) on M is Hamiltonian with an equivariant moment

map JMR : M → �1(S, |�|S) ⊆ X(S)∗, given by

〈JMR (�), Z〉 = (i
ζMZ

θM)(�) = kMZ (�) =
∫

S
�(Tϕ ◦ Z), (50)

2 Using a volume density on S to identify L ∼= C∞(S, L∗) as in Remark 2.2, the space M corresponds to
C∞(S, L∗\P). When ξ = ker α for a contact form α, then the corresponding trivialization L∗ ∼= P × R

yields a further identification M ∼= C∞(S, P) × C∞(S,R×).
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where � ∈ Mϕ and Z ∈ X(S). Moreover, the moment map JMR is Diff(P, ξ)-invariant.
More explicitly, we have (ψM

f )∗ωM = ωM, i
ζMZ

ωM = −d〈JMR , Z〉, 〈JMR ◦ ψM
f , Z〉 =

〈ψM
f , f∗Z〉, and JMR ◦ �M

g = JMR , where f ∈ Diff(S), Z ∈ X(S), and g ∈ Diff(P, ξ).

Proof The statements in (a) follow immediately from (25), (29), (30), and (31). The statements
in (b) follow immediately from (33), (37), (38), and (39). ��
Remark 2.5 If S is a single point, then we recover the symplectization discussed in Sect. 2.1.
More precisely, in this case the canonical volume density on S provides a canonical iso-
morphism between the line bundles πL : L → C∞(S, P) and π L∗ : L∗ → P . Up to this
identification, we have �L

g = �L∗
g , for all g ∈ Diff(P, ξ), θL = θ L

∗
and ωL = ωL∗

.

Moreover, M = M and JML = J M . Clearly, the Diff(S)-action is trivial in this case and
JMR = 0.

2.4 A dual pair on the non-linear Stiefel manifold of weighted embeddings

We will now restrict to an open subset of M on which the Diff(S)-action is free. Let

E := Emblin(|�|∗S, L∗) (51)

denote the open subset of all (fiberwise linear) embeddings in L = C∞
lin(|�|∗S, L∗). Elements

of E are automatically isomorphisms on fibers, so E ⊆ M. We consider E as a non-linear
Stiefel manifold of weighted embeddings.3

We will denote the restriction to E of any action, function, form, or vector field on L
considered above, by replacing the superscript L with E . The map πE : E → Emb(S, P) is a
principal fiber bundle with structure groupC∞(S,R×), provided we restrict to the connected
components of Emb(S, P) in the image of πE . Since E is open in M, the symplectic form
ωM restricts to a symplectic form ωE on E . Hence, (E, ωE ) is a (weakly) symplectic Fréchet
manifold.

Note that E is invariant under the actions of Diff(P, ξ) and Diff(S). In view of Proposi-
tion 2.4, the restrictions of JML and JMR to E provide equivariant moment maps

X(P, ξ)∗
JEL←−−−− E JER−−−−→ �1(S, |�|S) ⊆ X(S)∗ (52)

for the actions of Diff(P, ξ) and Diff(S) on E , respectively.
A pair of equivariantmomentmaps for commutingHamiltonian actions of (infinite dimen-

sional) Lie groups G and H on an (infinite dimensional) symplectic manifold Q,

g∗ JL←−−−− Q
JR−−−−→ h∗,

is called a symplectic dual pair [34] if the distributions ker T JL and ker T JR are symplec-
tic orthogonal complements of one another: (ker T JL)⊥ = ker T JR and (ker T JR)⊥ =
ker T JL . Both identities are needed here, due to the weakness of the symplectic form. Let
gQ(x) := {ζ Q

X (x)|X ∈ g} denote the tangent space to the G-orbit at x ∈ Q. When

gQ = h⊥
Q and hQ = g⊥

Q, (53)

3 Using a volume density μ on S to identify L ∼= C∞(S, L∗) as in Remark 2.2, the subset E corresponds
to C∞(S, L∗\P) ∩ (πL)−1(Emb(S, P)). If, moreover, ξ = ker α, we get a further identification E ∼=
Emb(S, P) × C∞(S,R×).
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i.e., if the G-orbits and H -orbits are symplectic orthogonal complements of one another,
then the actions are said to be mutually completely orthogonal [23]. Since ker T JR = h⊥

Q ,
the first identity in (53) can be rephrased as the transitivity of the g-action on level sets of the
moment map JR , and similarly for the second identity.

Mutually completely orthogonality of the actions implies that JL and JR form a dual pair.
The reverse implication is not always true, due to the weakness of the symplectic form [11].

Theorem 2.6 The moment mappings JEL and JER in (52) form a symplectic dual pair, called
the EPContact dual pair. Moreover, the commuting actions of Diff(P, ξ) and Diff(S) on E
are mutually completely orthogonal, i.e., for each � ∈ E we have

{
ζEX (�)

∣
∣ X ∈ X(P, ξ)

} = {
ζEZ (�)

∣
∣ Z ∈ X(S)

}⊥

:= {
A ∈ T�E

∣
∣ ∀Z ∈ X(S) : ωE

�(A, ζ
E
Z (�)) = 0

}
(54)

as well as
{
ζEZ (�)

∣
∣ Z ∈ X(S)

} = {
ζEX (�)

∣
∣ X ∈ X(P, ξ)

}⊥

:= {
B ∈ T�E

∣
∣ ∀X ∈ X(P, ξ) : ωE

�(ζ
E
X (�), B) = 0

}
. (55)

Proof Suppose � ∈ E . The inclusion
{
ζEX (�)

∣
∣ X ∈ X(P, ξ)

} ⊆ {
ζEZ (�)

∣
∣ Z ∈ X(S)

}⊥

follows immediately from (27) and (25). To show the converse inclusion, suppose A ∈
{
ζEZ (�)

∣
∣ Z ∈ X(S)

}⊥
. The 1-form β := �∗i AωL∗ ∈ �1(|�|∗S), given by β(V ) =

ωL∗
�(y)(A(y), Ty�(V )) for all V ∈ Ty |�|∗S , satisfies

(
δ
|�|∗S
t

)∗
β = tβ, by homogeneity of

�, A, and ωL∗
. Thus, for all Z ∈ X(S),

0 = ωE (A, ζEZ (�))
(23)=

∫

S
ωL∗(

A, T� ◦ ζ
|�|∗S
Z

)=
∫

S
β
(
ζ

|�|∗S
Z

)
,

where the integrands are fiberwise linear functions on the total space of |�|∗S , which may
be regarded as sections of |�|S and integrated over S. By Lemma 2.7 below, there exists a
fiberwise linear function u ∈ C∞

lin(|�|∗S) such that β = du.
Because� is a fiberwise linear embedding, one can construct h ∈ C∞

lin(L
∗), i.e. h ◦ δL∗

t =
th for all t ∈ R, such that h ◦ � = u and dh ◦ � = i AωL∗

. Indeed, let ũ ∈ C∞
lin(L

∗) be
any fiberwise linear function with ũ ◦ � = u and write h = ũ + h′. Hence, it suffices to
construct h′ ∈ C∞

lin(L
∗) which vanishes along � and has prescribed derivative dh′ ◦ � =

i AωL∗ − (dũ) ◦ � along �. This is possible, since �∗(i AωL∗
) − �∗(dũ) = β − du = 0.

According to the identification (8), there exists a contact vector field X ∈ X(P, ξ) such
that h = −hX , hence

i Aω
L∗ = −dhX ◦ �

(12)= i
ζ L

∗
X ◦�ω

L∗
.

Since ωL∗
is non-degenerate over L∗\P , we conclude A = ζ L∗

X ◦ �, and using (20) we get
A = ζEX (�), whence (54).

It remains to check the other equality (55). The inclusion

{
ζEZ (�)

∣
∣ Z ∈ X(S)

} ⊆ {
ζEX (�)

∣
∣ X ∈ X(P, ξ)

}⊥
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follows immediately from (35) and (33), or (54). To show the converse inclusion, suppose

that B ∈ {
ζEX (�)|X ∈ X(P, ξ)

}⊥
. Hence, for all X ∈ X(P, ξ),

0 = ωE (ζEX (�), B)
(20)= ωE (ζ L∗

X ◦ �, B)
(23)=

∫

S
ωL∗

(ζ L∗
X ◦ �, B)

(12)= −
∫

S
(dhX ◦ �)(B),

and thus
∫
S(dh ◦�)(B) = 0, for all h ∈ C∞

lin(L
∗), cf. (8). This implies that B is tangential to

Ñ := �(|�|∗S). To see this, consider γ : |�|∗S → ann(T Ñ ) ⊆ T ∗L∗ satisfying πT ∗L∗ ◦ γ =
� and (T δL

∗
t )∗ ◦ γ ◦ δ

|�|∗S
t = γ for all t . Since � is a fiberwise linear embedding, there

exists h ∈ C∞
lin(L

∗) with h ◦ � = 0 and γ = dh ◦ �, hence
∫
S γ (B) = 0 for all such γ . We

conclude that B is tangential to Ñ . Consequently, there exists a vector field W on the total
space of |�|∗S such that B = T� ◦ W . Clearly, δ∗

t W = W , for all t ∈ R. Using Lemma 2.8

below, we conclude that there exists Z ∈ X(S) such that W = ζ
|�|∗S
Z . In view of (20), we

obtain B = ζEZ (�). This completes the proof of (55). ��
Lemma 2.7 Suppose β ∈ �1(|�|∗S) is a 1-form on the total space of |�|∗S, such that δ∗

t β = tβ
for all t ∈ R and

∫

S
β

(
ζ

|�|∗S
Z

)
= 0 (56)

for all Z ∈ X(S).4 Then β = diRβ where R = ∂
∂t |t=1δt ∈ X(|�|∗S) denotes the radial vector

field, i.e., the fundamental vector field of the action δt .

Proof We fix a volume density μ on S and identify |�|∗S ∼= S ×R correspondingly. The two
canonical projections shall be denoted by p : S × R → S and t : S × R → R, respectively.
The radial vector field becomes R = t∂t ∈ X(S × R). By homogeneity, β ∈ �1(S × R)

can be written in the form β = tp∗B + (p∗b)dt where B ∈ �1(S) and b ∈ C∞(S,R).
Moreover, for Z ∈ X(S), we have

ζ
|�|∗S
Z = p∗Z + (p∗ div(Z))t∂t , (57)

where LZμ =: div(Z)μ and p∗Z ∈ X(S × R) denotes the vector field which projects to Z
on S and 0 on R. Consequently,

β
(
ζ

|�|∗S
Z

)
= tp∗(iZ B + b div(Z)

)
.

Using Stokes’ theorem, we obtain
∫

S
β

(
ζ

|�|∗S
Z

)
=

∫

S

(
iZ B + b div(Z)

)
μ =

∫

S
(B − db) ∧ iZμ.

In view of the assumption (56), we conclude that B = db, whence diRβ = d(tp∗b) =
tp∗db + (p∗b)dt = tp∗B + (p∗b)dt = β, the desired relation. ��
Lemma 2.8 Suppose W is a vector field on the total space of |�|∗S, such that δ∗

t W = W for
all t ∈ R and such that

∫

S
dh(W ) = 0, (58)

4 Note that the integrand is a fiberwise linear function on the total space of |�|∗S , which may be regarded as
a section of |�|S and integrated over S.
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for all smooth, fiberwise linear functions h on the total space of |�|∗S. 5 Then W is a fun-
damental vector field of the natural Diff(S) action on |�|∗S, i.e., there exists Z ∈ X(S) such

that W = ζ
|�|∗S
Z .

Proof As in the proof of the preceding lemma we fix a volume density μ on S, we identify
|�|∗S ∼= S×R correspondingly, andwedenote the two canonical projections by p : S×R → S
and t : S×R → R. Hence, the vector fieldW can bewritten in the formW = p∗Z+(p∗w)t∂t
where Z ∈ X(S) andw ∈ C∞(S). Every function h̄ ∈ C∞(S) gives rise to a fiberwise linear
function h := tp∗h̄ on the total space of |�|∗S . Then

dh(W ) = tp∗(h̄w + dh̄(Z))

and Stokes’ theorem yields
∫

S
dh(W ) =

∫

S

(
h̄w + dh̄(Z)

)
μ =

∫

S
h̄
(
w − div(Z)

)
μ.

Using the assumption (58), we conclude thatw = div(Z). Consequently, see (57), we obtain

W = p∗Z + (p∗w)t∂t = p∗Z + (p∗ div(Z))t∂t = ζ
|�|∗S
Z . ��

Remark 2.9 Let us give a more explicit description of the EPContact dual pair if the contact
structure is described by a contact form, ξ = ker α, and a volume density μ on S has been
fixed. We have already pointed out before, see footnote 3, that these choices provide an
identification of the non-linear Stiefel manifold E with Emb(S, P) × C∞(S,R×). Via this
identification, the actions of Diff(P, ξ) from the left and Diff(S) from the right are

�E
g (ϕ, h) =

(

g ◦ ϕ,

(
g∗α
α

◦ ϕ

)

h

)

and ψE
f (ϕ, h) =

(

ϕ ◦ f , (h ◦ f ) f ∗μ
μ

)

,

where g ∈ Diff(P, ξ), f ∈ Diff(S), and (ϕ, h) ∈ Emb(S, P) × C∞(S,R×). Using the
identification X(P, ξ) = C∞(P) provided by the contact form α, the EPContact dual pair
(52) becomes

C∞(P)∗
JEL←−−−− Emb(S, P) × C∞(S,R×)

JER−−−−→ �1(S, |�|S) ⊆ X(S)∗ (59)

with moment maps

JEL (ϕ, h) = ϕ∗(hμ) and JER (ϕ, h) = ϕ∗α ⊗ hμ. (60)

This follows readily from the formulas provided in Remarks 2.2 and 2.3.

In view of Theorem 2.6 one might expect [2, 12] that the contact group acts locally tran-
sitive on the level sets of JER . This is indeed the case, see Theorem 3.5 in the subsequent
section. Moreover, one might expect that a coadjoint orbitO ⊆ X(S)∗ gives rise to a reduced
symplectic structure on the quotient (JER )

−1(O)/Diff(S) which is equivariantly symplec-
tomorphic to a coadjoint orbit of Diffc(P, ξ) via the symplectomorphism induced by the
moment map JEL . Below we will see that this can be made rigorous for coadjoint orbits
corresponding to isotropic embeddings, see Theorem 4.10.

5 Note that the integrand is a fiberwise linear function on the total space of |�|∗S , which can be regarded as a
section of |�|S and integrated over S.
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3 Level sets of the right momentmap

In this section we will show that each level set of the right moment map

JER : E → �1(S, |�|S) ⊆ X(S)∗

is a smooth splitting Fréchet submanifold in E . Furthermore, we will see that the contact
group acts locally transitive on each level set. More precisely, we will show that this action
admits local smooth sections and the isotropy groups are Lie subgroups. Hence, (unions of)
connected components of these level sets may be regarded as homogeneous spaces of the
contact group. These results are summarized in Theorem 3.5 below.

A similar transitivity statement has been established in [9, Proposition 5.5] using methods
quite different from the approach presented here.

Let π J 1L : J 1L → P denote the 1-jet bundle of sections of L . Recall that each section
h ∈ 
∞(L) gives rise to a section j1h ∈ 
∞(J 1L). We equip the total space of J 1L with the
contact structure uniquely characterized by the following property: A section s ∈ 
∞(J 1L)
has isotropic image iff there exists h ∈ 
∞(L) such that s = j1h.6 In this case h = π J 1L

L ◦ s,
where π J 1L

L : J 1L → L denotes the natural projection.
Consider the line bundle p : hom(p∗

1L, p
∗
2L) → P × P where p1, p2 : P × P → P

denote the two canonical projections. We let P := isom(p∗
1L, p

∗
2L) denote the open subset

of fiberwise invertible maps. We equip the total space of P with the contact structure

ξPa :={
A ∈ TaP

∣
∣ a

(
(Ta(p1 ◦ p)A) mod ξ(p1◦p)(a)

)=(Ta(p2 ◦ p)A) mod ξ(p2◦p)(a)
}
(61)

where a ∈ P .7 Note that a diffeomorphism g ∈ Diff(P) is contact if and only if there exists
a smooth map a : P → P with isotropic image satisfying p1 ◦ p ◦a = id and p2 ◦ p ◦a = g.
Moreover, in this case�L

g,x = a(x) in hom(Lx , Lg(x)), for all x ∈ P . Here�L
g,x denotes the

restriction of �L
g to the fiber Lx .

It is well known [24,Corollary in Section 1] that there exists a contact diffeomorphism

J 1L ⊇ V
�−−→ U ⊆ P (62)

from an open neighborhood V of the zero section P ⊆ J 1L onto an open neighborhood U
of the diagonal P ⊆ P intertwining the contact structure obtained by restriction from J 1L
with the contact structure obtained by restriction from P . Moreover, for all x ∈ P , we have

�(0x ) = idLx . (63)

It is also well known, see [20,Theorem 43.19] for the coorientable case, that the map


∞
c (L) ⊇ W F−→ Diffc(P, ξ), F(h) := p2 ◦ p ◦ � ◦ j1h ◦ (

p1 ◦ p ◦ � ◦ j1h
)−1

,

(64)

provides a chart for the Lie group Diffc(P, ξ) at the identity, which is known as Lychagin
chart. Here W is a C∞-open neighborhood of zero such that, for each h ∈ W , the image of

6 If L ∼= P ×R is a trivialization of L , then J1L ∼= T ∗P ×R, and the contact structure can be described by
the contact form p∗θ − dt , where θ denotes the canonical 1-form on T ∗P , while p : T ∗P × R → T ∗P and
t : T ∗P × R → R denote the canonical projections.
7 If ξ = ker α, and P ∼= P × P × (R×) denotes the corresponding trivialization, then the contact structure
can be described by the contact form tp∗

1α − p∗
2α on P × P × (R×).
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j1h is contained in V and p1 ◦ p ◦� ◦ j1h as well as p2 ◦ p ◦� ◦ j1h are diffeomorphisms
of P . Clearly, F(0) = idP , see (63). Moreover, for h ∈ W and x ∈ P , we have

�L
F(h),x =

(
� ◦ j1h ◦ (

p1 ◦ p ◦ � ◦ j1h
)−1

)
(x) (65)

in hom(Lx , LF(h)(x)). In particular,

j1x h = 0 ⇔ F(h)(x) = x and �L
F(h),x = idLx . (66)

Lemma 3.1 For � ∈ E , the isotropy subgroup

Diffc(P, ξ ;�) = {g ∈ Diffc(P, ξ) : �E
g (�) = �}

is a splitting Lie subgroup of Diffc(P, ξ).

Proof Put ϕ = πE (�) ∈ Emb(S, P) and N := ϕ(S). For the chart F in (64) we obtain

F−1(Diffc(P, ξ ;�)
) = {

h ∈ 
∞
c (L)

∣
∣ ∀x ∈ N : j1x h = 0

} ∩ W,

see (66) and (18). Since N is a closed submanifold in P , the linear space on the right hand side
admits a linear complement in 
∞

c (L). To construct such a complement, let πW : W → N
denote the normal bundle of N , whereW = T P|N/T N ; fix a tubular neighborhoodW ⊆ P
of N such that N corresponds to the zero section in W ; and choose an isomorphism of line
bundles L|W ∼= (πW )∗L|N . This provides a linear map


∞(L|N ) ⊕ 
∞(L|N ⊗ W ∗) → 
∞(L|W ), (67)

by regarding sections of L|N as πW -fiberwise constant sections of L|W , and by regarding
sections of L|N ⊗ W ∗ as πW -fiberwise linear sections of L|W . Let χ ∈ C∞

c (W ,R) be a
compactly supported bump function such that χ ≡ 1 in a neighborhood of the zero section.
Multiplication with χ and extension by zero provides a linear map 
∞(L|W ) → 
∞

c (L).
Composing this with (67), we obtain a linear map we will denoted by

χ : 
∞(L|N ) ⊕ 
∞(
L|N ⊗ W ∗) → 
∞

c (L). (68)

The image of χ provides a linear complement of
{
h ∈ 
∞

c (L)
∣
∣ ∀x ∈ N : j1x h = 0

}
in


∞
c (L). Hence, Diffc(P, ξ ;�) is a splitting Lie subgroup of Diffc(P, ξ). ��

Suppose �1,�2 ∈ M, and write ϕi = πM(�i ) ∈ C∞(S, P). For x ∈ S consider the
restrictions to the fibers, �1,x : |�|∗S,x → L∗

ϕ1(x)
and �2,x : |�|∗S,x → L∗

ϕ2(x)
, and define a

smooth map G(�1,�2) : S → P by

G(�1,�2)(x) = (�1,x ◦ �−1
2,x )

∗ ∈ hom(Lϕ1(x), Lϕ2(x)) (69)

for x ∈ S. Clearly,

p1 ◦ p ◦ G(�1,�2) = ϕ1 and p2 ◦ p ◦ G(�1,�2) = ϕ2. (70)

Lemma 3.2 The map G(�1,�2) : S → P has isotropic image iff JMR (�1) = JMR (�2).
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Proof Suppose x ∈ S, Zx ∈ Tx S, 0 �= λx ∈ |�|∗S,x , and write a := G(�1,�2)(x). Then:

TxG(�1,�2) · Zx ∈ ξPa
(61)⇔ a

(
Ta(p1 ◦ p)TxG(�1,�2) · Zx mod ξ(p1◦p)(a)

)

= Ta(p2 ◦ p)TxG(�1,�2) · Zx mod ξ(p2◦p)(a)
(70)⇔ a

(
Txϕ1 · Zx mod ξ(p1◦p)(a)

) = Txϕ2 · Zx mod ξ(p2◦p)(a)
(69)⇔ �∗

1,x

(
Txϕ1 · Zx mod ξ(p1◦p)(a)

) = �∗
2,x

(
Txϕ2 · Zx mod ξ(p2◦p)(a)

)

⇔ λx
(
�∗

1,x

(
Txϕ1 · Zx mod ξ(p1◦p)(a)

)) = λx
(
�∗

2,x

(
Txϕ2 · Zx mod ξ(p2◦p)(a)

))

⇔ �1,x (λx )(Txϕ1 · Zx ) = �2,x (λx )(Txϕ2 · Zx )

(40)⇔ λx
(
JMR (�1)(Zx )

) = λx
(
JMR (�2)(Zx )

)

⇔ JMR (�1)(Zx ) = JMR (�2)(Zx )

The lemma follows at once. ��
For ρ ∈ �1(S, |�|S) we let

Eρ := (JER )
−1(ρ) = {

� ∈ E : JER (�) = ρ
}

denote the corresponding level set of the moment map JER : E → �1(S, |�|S) ⊆ X(S)∗.

Lemma 3.3 The level set Eρ is a smooth splitting Fréchet submanifold in E , for each ρ ∈
�1(S, |�|S).
Proof Fix �1 ∈ Eρ , put ϕ1 := πE (�1) ∈ Emb(S, P), and consider the submanifold N :=
ϕ1(S) of P . Let πW : W → N denote its normal bundle,W := T P|N/T N . Choose a tubular
neighborhoodW ⊆ P of N in P such that the zero section inW corresponds to N . As in the
proof of Lemma 3.1, we fix an isomorphism of line bundles,

L|W ∼= (πW )∗L|N (71)

and a compactly supported bump function χ ∈ C∞
c (W ,R) such that χ ≡ 1 on an open

neighborhood X of the zero section in W . The corresponding map (68) extends naturally to
a linear map χ̃ such that the following diagram commutes:


∞
c (L)

j1 �� 
∞
c (J 1L)


∞(L|N ) ⊕ 
∞(
L|N ⊗ W ∗) j1⊕id ��

χ

��


∞(
J 1(L|N )

) ⊕ 
∞(
L|N ⊗ W ∗)

χ̃

��
(72)

Here the component 
∞(J 1(L|N )) → 
∞
c (J 1L) of χ̃ is the tensorial map induced from the

map 
∞(L|N ) → 
∞
c (L) given by πW -fiberwise extension and multiplication with χ . The

line bundle isomorphism in (71) also provides an isomorphism


∞(
(J 1L)|N

) ∼= 
∞(
J 1(L|N )

) ⊕ 
∞(
L|N ⊗ W ∗). (73)

Using this isomorphism to replace the lower right corner in the diagram (72), we obtain
linear maps γ and 
∞(

(J 1L)|N
) → 
∞

c (J 1L), s �→ s̃, such that the following diagram
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commutes:


∞
c (L)

j1 �� 
∞
c (J 1L) s̃


∞(L|N ) ⊕ 
∞(
L|N ⊗ W ∗) γ ��

χ

��


∞(
(J 1L)|N

)

��

s
�

��

(74)

For every ν ∈ 
∞(W ) with ν(N ) ⊆ X we obtain a linear isomorphism

ν̃ : 
∞(
(J 1L)|N

) → 
∞(
ν∗(J 1L)

)
, ν̃(s) := s̃ ◦ ν. (75)

Moreover, ν̃ and its inverse ν̃−1 are given by first order differential operators depending
smoothly on ν. Furthermore, if ν(N ) ⊆ X and s ∈ 
∞((J 1L)|N ), then

s̃ ◦ ν has isotropic image in J 1L ⇔ s ∈ img (γ ), (76)

since s̃ is holonomic when restricted to fibers of πW . Also note that img(γ ) admits a closed
complementary subspace in
∞((J 1L)|N ). Indeed, the space of smooth sections in the kernel
of the canonical projection J 1(L|N ) → L|N provides a closed complement for the image of
j1 : 
∞(L|N ) → 
∞(J 1(L|N )). Taking the sum with 
∞(L|N ⊗ W ∗) and using (73), we
obtain a complementary subspace of img(γ ) in 
∞((J 1L)|N ).

Let V denote the C∞-open neighborhood of zero in 
∞((J 1L)|N ) consisting of all s ∈

∞((J 1L)|N ) with the following five properties:

(a) the image of s̃ is contained in V , cf. (62),
(b) p1 ◦ p ◦ � ◦ s̃ : P → P is a diffeomorphism,
(c) p2 ◦ p ◦ � ◦ s̃ : P → P is a diffeomorphism,
(d) the image of (p1 ◦ p ◦ � ◦ s̃)−1 ◦ ϕ1 : S → P is contained in X ⊆ W , and
(e) ψs := πW ◦ (p1 ◦ p ◦ � ◦ s̃)−1 ◦ ϕ1 : S → N is a diffeomorphism.

For s ∈ V we define νs := (p1 ◦ p ◦ � ◦ s̃)−1 ◦ ϕ1 ◦ ψ−1
s ∈ 
∞(W ). Hence,

νs ◦ ψs = (p1 ◦ p ◦ � ◦ s̃)−1 ◦ ϕ1. (77)

We will next show that the following map is a diffeomorphism


∞(
(J 1L)|N

) ⊇ V → U ⊆ {
G ∈ C∞(S,P) : p1 ◦ p ◦ G = ϕ1

}

s �→ Gs := � ◦ s̃ ◦ (
p1 ◦ p ◦ � ◦ s̃)−1 ◦ ϕ1 (78)

from V onto the C∞-open subset U in
{
G ∈ C∞(S,P) : p1 ◦ p ◦ G = ϕ1

}
consisting of all

G ∈ C∞(S,P) with the following five properties:

(a) p1 ◦ p ◦ G = ϕ1,
(b) the image of G is contained in U , cf. (62),
(c) the image of π J 1L ◦ �−1 ◦ G : S → P is contained in X ⊆ W ,
(d) ψG := πW ◦ π J 1L ◦ �−1 ◦ G : S → N is a diffeomorphism, and
(e) sG := ν̃−1

G

(
�−1 ◦ G ◦ ψ−1

G

) ∈ V , where νG := π J 1L ◦ �−1 ◦ G ◦ ψ−1
G ∈ 
∞(W ).

To see that (78) is a diffeomorphism, let s ∈ V and observe that (77) and (78) yield

Gs = � ◦ s̃ ◦ νs ◦ ψs (79)

as well as ψGs = ψs and νGs = νs . Hence, �−1 ◦ Gs ◦ ψ−1
Gs

= s̃ ◦ νGs and (75) gives

s = ν̃−1
Gs

(
�−1 ◦ Gs ◦ ψ−1

Gs

)
. (80)
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We conclude thatGs ∈ U and sGs = s, for all s ∈ V , see (j). This shows that the map U → V ,
G �→ sG , is left inverse to the map (78). To show that it is right inverse too, consider G ∈ U
and note that (75) and (j) yield s̃G ◦ νG = �−1 ◦ G ◦ ψ−1

G . Hence,

� ◦ s̃G ◦ νG ◦ ψG = G.

Composing with p1 ◦ p and using (b), (f) we obtain,

νG ◦ ψG = (
p1 ◦ p ◦ � ◦ s̃G

)−1 ◦ ϕ1.

Combining the latter two equations, we get

� ◦ s̃G ◦ (
p1 ◦ p ◦ � ◦ s̃G

)−1 ◦ ϕ1 = G.

In other words, GsG = G, for all G ∈ U , cf. (78). This shows that (78) is indeed a diffeo-
morphism. Using (76), (79), and the fact that � is a contact diffeomorphism we find

Gs has isotropic image in P ⇔ s ∈ img (γ ). (81)

The construction in (69), cf. also (70), provides a diffeomorphism

M ∼= {
G ∈ C∞(S,P) : p1 ◦ p ◦ G = ϕ1

}
, �2 �→ G(�1,�2).

Combining this with the diffeomorphism in (78), we see that the map


∞(
(J 1L)|N

) ⊇ V → E, s �→ �s, (82)

characterized by G(�1,�s) = Gs , is a diffeomorphism from V onto a C∞-open neighbor-
hood of �1 in E . Combining Lemma 3.2 with (81) and JER (�1) = ρ, we obtain

JER (�s) = ρ ⇔ s ∈ img(γ ). (83)

This shows that (82) is a submanifold chart for Eρ in E , centered a �1. ��
Lemma 3.4 The action of Diffc(P, ξ) on the level set Eρ admits local smooth sections, for
each ρ ∈ �1(S, |�|S).
Proof We continue to use the notation set up in the proof of Lemma 3.3. Using the commu-
tativity of the diagram (74) we obtain a linear map img(γ ) → 
∞

c (L), s �→ hs , such that
j1hs = s̃, for all s ∈ img(γ ). Using (65), (a), (b), and (c), see also (64), we find hs ∈ W and

�L
F(hs ),ϕ1(x) =

(
� ◦ s̃ ◦ (

p1 ◦ p ◦ � ◦ s̃
)−1

)
(ϕ1(x))

in hom(Lϕ1(x), LF(hs )(ϕ1(x))), for all x ∈ S and s ∈ img(γ ) ∩ V . Hence, see (78) and (82),
�L

F(hs ),ϕ1(x) = G(�1,�s)(x).

Using (69) we obtain

�∗
s,x ◦ �L

F(hs ),ϕ1(x) = �∗
1,x ,

and dualizing yields

�L∗
F(hs ),ϕ1(x) ◦ �1,x = �s,x

for all x ∈ S and s ∈ img(γ ) ∩ V . Hence, in view of (18), we get

�E
F(hs )(�1) = �s,

for all s ∈ img(γ ) ∩ V . As (82) restricts to a chart, img(γ ) ∩ V → Eρ , for the manifold Eρ ,
the lemma follows. ��
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Combining Lemmas 3.1, 3.3, and 3.4 we obtain the following result:

Theorem 3.5 Suppose ρ ∈ �1(S, |�|S). Then the level set Eρ is a smooth splitting Fréchet
submanifold of E . For� ∈ Eρ , the isotropy subgroupDiffc(P, ξ ;�) is a closed Lie subgroup
of Diffc(P, ξ). Moreover, the map provided by the action, Diffc(P, ξ) → Eρ , g �→ �E

g (�),
admits a local smooth right inverse defined in a neighborhood of � in Eρ . In particular, the
groupDiffc(P, ξ) acts locally and infinitesimally transitive on Eρ , and theDiffc(P, ξ)-orbit
of � is open and closed in Eρ . Denoting this orbit by Eρ

�, the map Diffc(P, ξ) → Eρ
� is a

smooth principal bundle with structure group Diffc(P, ξ ;�). Hence,

Eρ
� = Diffc(P, ξ)/Diffc(P, ξ ;�)

may be regarded as a homogeneous space.

4 Weighted non-linear Grassmannians

We continue to consider a manifold P endowed with a contact structure ξ , and a closed
manifold S. Recall that the Diff(S) action is free on the non-linear Stiefel manifold E of
weighted embeddings. We will now factor out this action and consider the corresponding
space G = E/Diff(S) of unparametrized weighted submanifolds of P .

4.1 Principal bundles over non-linear Grassmannians

Let GrS(P) denote the non-linear Grassmannian of all smooth submanifolds of P which
are diffeomorphic to S. It is well know that GrS(P) can be equipped with the structure of a
Fréchet manifold such that the canonical map Emb(S, P) → GrS(P) becomes a principal
bundle with structure group Diff(S).

Consider the space of weighted submanifolds

G :=
{

(N , γ )

∣
∣
∣
∣
N ∈ GrS(P) and
γ ∈ 
∞(|�|N ⊗ L|∗N ) a nowhere vanishing section

}

. (84)

The Diff(P, ξ)-actions on P and on L∗ induce a left action on G. For g ∈ Diff(P, ξ) we let
�G

g denote the corresponding action on G, that is, �G
g (N , γ ) = (g(N ), g∗γ ).

Remark 4.1 If ξ = ker α, then the contact form α provides a trivialization L∗ ∼= P×Rwhich
permits to identify G with a weighted non-linear Grassmannian,

G ∼= Gr wtS (P) := {
(N , ν)

∣
∣ N ∈ Gr S(P) and ν ∈ 
∞(|�|N\N )

}
, (85)

by identifying (N , ν) with (N , ν ⊗ α|N ) ∈ G. The weighted Grassmannian can be equipped
with a smooth structure such that the canonical forgetful map GrwtS (P) → GrS(P) is a
smooth fiber bundle. Indeed, it can be canonically identified with the bundle associated
to the principal fiber bundle Emb(S, P) → GrS(P) via the Diff(S)-action on the space

∞(|�|S\S) of volume densities on S. Note that the induced smooth structure on G does
not depend on the contact form α for ξ . Via the identification (85), the Diff(P, ξ)-action
becomes

�G
g (N , ν) =

(

g(N ),
g∗α
α

∣
∣
∣
g(N )

g∗ν
)

, (86)

where g ∈ Diff(P, ξ) and (N , ν) ∈ GrwtS (P). Indeed, g∗(ν⊗α|N ) = g∗α
α

∣
∣
g(N )

g∗ν⊗α|g(N ).
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The space G in (84) can be equipped with the structure of a smooth manifold such that
the canonical forgetful map

πG : G → GrS(P)

becomes a smooth fiber bundle with typical fiber 
∞(|�|S\S). Indeed, if (N , γ ) ∈ G, then
locally around N , the contact structure on P is coorientable and can be described by a contact
form. We can therefore use Remark 4.1 to equip G with a smooth structure. In view of (86)
the Diffc(P, ξ)-action on G is smooth.

To an element� ∈ E = Emblin(|�|∗S, L∗) over the embedding ϕ = πE (�) ∈ Emb(S, P)
we associate a pair (N , γ ) ∈ G in the following way: N = ϕ(S) and γ is the composition
of � (corestricted to L∗|N ) with the isomorphism |�|∗ϕ : |�|∗N → |�|∗S induced by the
diffeomorphismϕ : S → N . It is easy to see that themapq : E → G, givenbyq(�) = (N , γ ),
is a smooth principal bundlewith structure groupDiff(S).We summarize this in the following
Diff(P, ξ)-equivariant commutative diagram:

E
q

��

πE
�� Emb(S, P)

��
G πG

�� GrS(P)

(87)

By Diff(S) invariance, see Proposition 2.4(a), the moment map JEL descends to a smooth
map

JGL : G → X(P, ξ)∗, JGL ◦ q = JEL . (88)

In view of (49) we have the explicit formula

〈JGL (N , γ ), X〉 =
∫

N
γ (X |N ), (89)

where (N , γ ) ∈ G and X ∈ X(P, ξ). On the right hand side X is regarded as a section of
L , see (8), restricted to N and contracted with γ to produce a density on N which can be
integrated.8

Proposition 4.2 The following assertions hold true:

(a) The map JGL : G → X(P, ξ)∗ is a Diff(P, ξ)-equivariant injective immersion.
(b) We have Diff(P, ξ ; (N , γ )) = Diff(P, ξ ; JGL (N , γ )), where the left hand side denotes

the isotropy group of (N , γ ) ∈ G and the right hand side denotes the isotropy group of
JGL (N , γ ) ∈ X(P, ξ)∗ for the coadjoint action.

(c) The group Diff(S) acts freely and transitively on level sets of JEL : E → X(P, ξ)∗.

Proof In view of Proposition 2.4(a), the smooth map JGL is Diff(P, ξ)-equivariant. It
follows from the dual pair symplectic orthogonality condition (55) that JGL is immer-
sive. To check injectivity, suppose (N1, γ1) and (N2, γ2) are two elements in G such that
JGL (N1, γ1) = JGL (N2, γ2). Since γi is nowhere vanishing, we have supp(J

G
L (Ni , γi )) = Ni ,

8 Using a contact form α to identify G ∼= GrwtS (P) as in Remark 4.1, the map (89) is simply

〈JGL (N , ν), X〉 =
∫

N
α(X)|N ν.
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see (89), whence N1 = N2. Assume, for the sake of contradiction, γ1 �= γ2. Then there
exists X̄ ∈ 
∞(L|N ) such that 〈γ1, X̄〉 �= 〈γ2, X̄〉 with respect to the canonical pairing
between 
∞(|�|N ⊗ L|∗N ) and 
∞(L|N ). Extending X̄ to a global section X ∈ 
∞(L), we
obtain 〈JGL (N1, γ1), X〉 �= 〈JGL (N2, γ2), X〉 using (89). Since this contradicts our assumption
JGL (N1, γ1) = JGL (N2, γ2), we must have γ1 = γ2. This shows that J

G
L is injective.

The assertion about the isotropy groups in (b) follows readily from the injectivity and
equivariance of JGL . The assertion in (c) also follows from the injectivity statement in (a),
since the Diff(S)-action on the fibers of q : E → G is free and transitive. ��

4.2 Right leg symplectic reduction

In this section we study the spaces obtained by symplectic reduction for the right moment
map JER : E → �1(S, |�|S) ⊆ X(S)∗. For a 1-form density ρ ∈ �1(S, |�|S) we put

Gρ := q(Eρ),

where Eρ = (JER )
−1(ρ). By Diff(S)-equivariance of JER , and since Diff(S) acts transitively

on the fibers of q : E → G, the definition of Gρ may be rephrased equivalently as

q−1(Gρ) = Eρ · Diff(S) = (JER )
−1(ρ · Diff(S)). (90)

Here ρ ·Diff(S) ⊆ �1(S, |�|S) ⊆ X(S)∗ denotes the coadjoint orbit through ρ. Note that q
induces a bijection

Gρ = (JER )
−1(ρ · Diff(S))/Diff(S) = Eρ/Diff(S, ρ), (91)

where Diff(S, ρ) = { f ∈ Diff(S) : f ∗ρ = ρ} denotes the isotropy group of ρ. Thus, Gρ is
the underlying set of the symplectically reduced space at ρ.

We have the following more explicit description of Gρ :

Lemma 4.3 For each ρ ∈ �1(S, |�|S) we have
Gρ = {

(N , γ ) ∈ G
∣
∣(N , ι∗Nγ ) ∼= (S, ρ)

}
.

Here ιN : N → P denotes the inclusion and the pull back ι∗Nγ ∈ �1(N , |�|N ) =

∞(|�|N ⊗ T ∗N ) is defined as the composition |�|∗N

γ−→ L|∗N ⊆ T ∗P|N T ∗ιN−−−→ T ∗N.9

Proof Consider � ∈ E over ϕ := πE (�) ∈ Emb(S, P) and put (N , γ ) := q(�). By
definition of q , we have ϕ(S) = N and the “triangle” on the top of the following diagram
commutes:

|�|∗S
JER (�)

��

�
�� L|∗N

��

|�|∗N
ι∗N γ
��

γ
��

|�|∗ϕ
��

T ∗S T ∗P|NT ∗ϕ�� T ∗ιN �� T ∗N

T ∗ϕ

��

The left rectangle in this diagram commutes in view of the formula for JER in (50); the
right rectangle commutes in view of the definition of ι∗Nγ ; and the “triangle” at the bottom

9 Because γ is nowhere vanishing, the kernel of ι∗N γ : T N → |�|N coincides with ξ |N ∩ T N .
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commutes trivially. We conclude that (N , ι∗Nγ ) ∼= (S, JER (�)) via ϕ. Hence, (N , ι∗Nγ ) ∼=
(S, ρ) iff (S, JER (�)) ∼= (S, ρ). The latter, in turn, holds iff there exists f ∈ Diff(S) with
JER (�) = f ∗ρ, i.e., iff� ∈ (JER )

−1(ρ ·Diff(S)). Using the description (90) of Gρ we obtain
the lemma. ��
Remark 4.4 We have seen in Remark 4.1 that the choice of a contact form α on P permits
to identify G with a weighted Grassmannian. Under this identification, the reduced space
becomes

Gρ ∼= {
(N , ν) ∈ GrwtS (P) : (N , ι∗Nα ⊗ ν) ∼= (S, ρ)

}
. (92)

Remark 4.5 A general fiber of the forgetful map πG : G → GrS(P) will intersect several of
the spaces Gρ , for many different ρ. A notable exception are fibers over isotropic submani-
folds, cf. (95) in the subsequent section.

Remark 4.6 We do not expect Gρ to be a (smooth) submanifold in G for general ρ.

4.3 Weighted isotropic non-linear Grassmannians

We will now specialize to the isotropic case, ρ = 0. Let us introduce the notation

E iso := (πE )−1(Embiso(S, P)) = (JER )
−1(0) = E0, (93)

where Embiso(S, P) denotes the space of isotropic embeddings, cf. (41), (47), or (60). This
can equivalently be characterized as the elements in E = Emblin(|�|∗S, L∗) which restrict to
isotropic embeddings |�|∗S\S → L∗\P = M .10

Let GrisoS (P) denote the space of isotropic submanifolds of type S and consider the space
of all weighted isotropic submanifolds of type S,

Giso := (πG)−1(GrisoS (P))

= {(N , γ )|N ∈ GrisoS (P), γ ∈ 
∞(|�|N ⊗ L∗|N ) nowhere vanishing}. (94)

In view of (87) and (93) we have q−1(Giso) = E iso = (JER )
−1(0). Hence, Giso coincides with

the reduced space Gρ for ρ = 0, i.e.,

G0 = (JER )
−1(0)/Diff(S) = Giso = (πG)−1(GrisoS (P)). (95)

Remark 4.7 If α is a contact form for ξ , then isotropic submanifolds N are characterized by
ι∗Nα = 0 and the identification in Remark 4.4 becomes

G0 = Giso ∼= {
(N , ν) : N ∈ GrisoS (P) and ν ∈ 
∞(|�|N\N )

}
. (96)

Lemma 4.8 The subset GrisoS (P) is a smooth splitting submanifold of GrS(P).

Proof This follows from the tubular neighborhood theorem for contact structures near
isotropic submanifolds, see [14,Theorem 2.5.8] or [24,Theorem 1]. Since we were not able
to locate this statement in the literature, we will sketch a proof below.

Suppose S ∼= N ⊆ P is an isotropic submanifold, and let E := T N⊥/T N denote its
conformal symplectic normal bundle, see [14,Definition 2.5.3]. Using the relative Poincaré

10 Using a volume density μ on S to identify L ∼= C∞(S, L∗) as in Remark 2.2, the subset E iso corresponds
to C∞(S,M) ∩ (πL)−1(Embiso(S, P)). If moreover ξ = ker α, then the corresponding diffeomorphism
L ∼= C∞(S, P) × C∞(S) provides an identification E iso ∼= Embiso(S, P) × C∞(S,R×).

123



A dual pair for the contact group 2963

lemma, one easily constructs a 1-form ε on the total space of E such that (1) ε vanishes along
the zero section; (2) iXdε = 0 for every vector X tangent to the zero section; and (3) such that
(dε)|N represents the conformal symplectic structure on each fiber of E , cf. the proof of [24,
Proposition in Section 4]. Hence α := p∗

1ε + p∗
2θ + dt is a contact form in a neighborhood

of the zero section of E ⊕ T ∗N × R, where p1, p2, t denote the canonical projections onto
the three summands, and θ denotes the canonical 1-form on T ∗N . Assuming, for simplicity,
that the contact structure on P is coorientable near N , the tubular neighborhood theorem
for isotropic submanifolds asserts that there exists a contact diffeomorphism ψ between an
open neighborhood of the zero section in E ⊕ T ∗N ×R and an open neighborhood of N in
P which restricts to the identity along N . Using this diffeomorphism, we obtain a manifold
chart for GrS(P) centered at N by assigning to a smooth section σ of E ⊕ T ∗N ×R, which
is sufficiently C1-close to the zero section, the submanifold ψ(σ(N )) in P . As ψ is contact,
the part of GrisoS (P) covered by this chart corresponds to sections σ ∈ 
∞(E ⊕ T ∗N × R)

such that σ ∗α = 0. Identifying 
∞(E ⊕ T ∗N × R) = 
∞(E) × �1(N ) × C∞(N ) and
writing σ = (s, β, f ) accordingly, the latter condition is equivalent to s∗ε + β + d f = 0.
Hence, GrisoS (P) corresponds to the part of the chart domain contained in the splitting linear
subspace


∞(E) × C∞(N ) ⊆ 
∞(E) × �1(N ) × C∞(N ) = 
∞(E ⊕ T ∗N × R),

(s, f ) �→ (s,−s∗ε − d f , f ).

This shows that GrisoS (P) is a splitting smooth submanifold of GrS(P). ��

Remark 4.9 Lemma 4.8 implies that Embiso(S, P) is a smooth splitting submanifold of
Emb(S, P), because the natural map Emb(S, P) → GrS(P) is a (locally trivial) smooth
principal bundle with typical fiber Diff(S). Since πE : E → Emb(S, P) is a (locally trivial)
smooth fiber bundle, this also implies that E iso is a smooth submanifold of E , see (93). Using
the isotropic isotopy extension theorem for contact manifolds, see [14,Theorem 2.6.2] for
instance, one can show that the group Diffc(P, ξ) acts locally and infinitesimally transitive
on E iso. Hence, for ρ = 0, Theorem 3.5 is essentially known.

As mentioned before, one expects that connected components of Giso, endowed with a
reduced symplectic form, are symplectomorphic to coadjoint orbits of Diffc(P, ξ) via the
restriction of JGL : G → X(P, ξ)∗. The following theorem makes this precise.

Theorem 4.10 (a) The subset Giso is a smooth splitting submanifold of G. Moreover, the map
provided by the action, Diffc(P, ξ) → Giso, g �→ �G

g (N , γ ), admits a local smooth right

inverse defined in a neighborhood of (N , γ ) in Giso. In particular, the group Diffc(P, ξ)
acts locally and infinitesimally transitive on Giso, and theDiffc(P, ξ)-orbit of (N , γ ) is open
and closed in Giso. Denoting this orbit by Giso

(N ,γ ), the smooth map Diffc(P, ξ) → Giso
(N ,γ ) is

locally trivializable with structure group Diffc(P, ξ ; (N , γ )) and induces a bijection

Giso
(N ,γ ) = Diffc(P, ξ)/Diffc(P, ξ ; (N , γ )).

(b) The projection q restricts to a smooth principal bundle qiso : E iso → Giso with structure
group Diff(S). The restriction of the symplectic form ωE to E iso descends to a (reduced)
symplectic form ωGiso

on Giso. The Diff(P, ξ)-equivariant injective immersion

JG
iso

L : Giso → X(P, ξ)∗, 〈JGiso

L (N , γ ), X〉 =
∫

N
γ (X |N ),

123



2964 S. Haller, C. Vizman

provided by restriction of JGL from (89), identifies Giso
(N ,γ ) with the coadjoint orbit through

JGL (N , γ ) of the contact group Diffc(P, ξ), such that

(JG
iso

L )∗ωKKS = ωGiso
, (97)

where ωKKS denotes the Kostant–Kirillov–Souriau symplectic form on the coadjoint orbit
through JGL (N , γ ), cf. Remark 4.11 below.

Remark 4.11 To avoid discussing differential forms on coadjoint orbits, we consider the
Kostant–Kirillov–Souriau form on the coadjoint orbit through JGL (N , γ ) as a formal object

only. We actually work with its pull back along JG
iso

L , that is, the well defined smooth 2-form
on Giso characterized by

((JG
iso

L )∗ωKKS)(ζG
iso

X (N , γ ), ζG
iso

Y (N , γ )) := 〈JGiso

L (N , γ ), [X , Y ]〉, (98)

where X , Y ∈ X(P, ξ) and (N , γ ) ∈ Giso. To motivate this definition, recall that for a
Lie algebra g the Kostant–Kirillov–Souriau symplectic form on the coadjoint orbit through
λ ∈ g∗ is (formally) given by

ωKKS(ζ
g∗
X (λ), ζ

g∗
Y (λ)) = 〈λ, [X , Y ]〉,

where X , Y ∈ g and ζg
∗

X denotes the infinitesimal coadjoint action. Since JG
iso

L is equivariant,
we are being lead to (98).

Proof of Theorem 4.10 We have already observed that GrisoS (P) is a smooth submanifold of
GrS(P), see Lemma 4.8. Since the forgetful map πG : G → GrS(P) is a smooth fiber bundle,
we conclude that Giso is a smooth submanifold of G, see (94). In particular, the map provided
by the action p : Diffc(P, ξ) → Giso, p(g) = �G

g (N , γ ), is smooth. Using local sections of
E iso → Giso and the fact that the Diffc(P, ξ)-action on E iso admits local smooth sections, see
Theorem 3.5, we readily see that the Diffc(P, ξ)-action on Giso admits local smooth sections.
If U is an open subset in Giso

(N ,γ ) and if σ : U → Diffc(P, ξ) is such a local section, then

p−1(U ) → U × Diffc(P, ξ ; (N , γ )), g �→ (p(g), σ (p(g))−1g) (99)

is a Diffc(P, ξ ; (N , γ ))-equivariant local trivialization with inverse (x, h) �→ (σ (x)h).11

In view of E iso = q−1(Giso), the smooth principal bundle q : E → G restricts to a smooth
principal bundle q iso : E iso → Giso with structure group Diff(S). By Proposition 4.2 the map

JG
iso

L is a Diff(P, ξ)-equivariant injective immersion. In view of (the trivial inclusion in)
Eq. (55), we have ωE (ζEX , ζ

E
Z ) = 0 for all X ∈ X(P, ξ) and Z ∈ X(S). Since Diffc(P, ξ)

acts infinitesimally transitive on E iso, the 1-form ωE (−, ζEZ ), thus, vanishes when pulled
back to E iso. Hence, the restriction of ωE to E iso is vertical. We conclude that there exists
a unique 2-form ωGiso

on Giso such that (q iso)∗ωGiso
coincides with the pull back of ωE

to E iso. Clearly, ωGiso
is closed. The 2-form ωGiso

is (weakly) non-degenerate in view of
(the non-trivial inclusion in) Equation (55). From (98), (29), (26) and the equivariance of

q we immediately obtain (q iso)∗(JG
iso

L )∗ωKKS = (q iso)∗ωGiso
, whence (97). The remaining

assertions are now obvious. ��
Remark 4.12 We expect that the isotropy group Diffc(P, ξ ; (N , γ )) in Theorem 4.10(a) is a
closed Lie subgroup in Diffc(P, ξ). If this is the case then the local trivializations in (99) are

11 We do not claim that Diffc(P, ξ ; (N , γ )) is a submanifold of Diffc(P, ξ).
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diffeomorphisms, hence the map Diffc(P, ξ) → Giso
(N ,γ ) is a smooth principal bundle with

structure group Diffc(P, ξ ; (N , γ )) and Giso
(N ,γ ) may be regarded as a homogeneous space in

the category of smooth manifolds.
In any case, one can equip Diffc(P, ξ ; (N , γ )) with the smooth Frölicher structure, see

[20, Section 23] and [6–8], induced from the ambient Lie group Diffc(P, ξ). Then the local
trivializations in (99) are diffeomorphisms of Frölicher spaces and Giso

(N ,γ ) may be regarded
as a homogeneous space in the sense of Frölicher spaces.

Example 4.13 If S is the circle S1 and P is a 3-dimensional contact manifold, then the
weighted non-linear Grassmannian G becomes the manifold of weighted (unparametrized)
knots in P , and Giso is the (symplectic) manifold of weighted Legendrian knots in P . By
Theorem4.10, its connected components can be identifiedwith coadjoint orbits of the identity
component of the contact group.

4.4 Weighted contact non-linear Grassmannians

Let us now consider a 1-form density ρ ∈ �1(S, |�|S) of contact type, i.e., ker ρ ⊆ T S is
assumed to be a contact hyperplane distribution. Then the reduced spaceGρ , see (91), consists
of weighted contact submanifolds. More precisely, according to Lemma 4.3 we have

Gρ ⊆ (πG)−1(Grcontact(S,ker ρ)(P, ξ)), (100)

where Grcontact(S,ker ρ)(P, ξ) ⊆ GrS(P) denotes the subset of contact submanifolds which are of
type (S, ker ρ). In contrast to the isotropic case, see (95), the inclusion (100) is strict.

The maps in (87) restrict to a Diff(P, ξ)-equivariant commutative diagram

Eρ

qρ

��

∼=
πEρ

�� Embcontact(S,ker ρ)(P, ξ)

��
Gρ πGρ

�� Grcontact(S,ker ρ)(P, ξ)

(101)

where Embcontact(S,ker ρ)(P, ξ) ⊆ Emb(S, P) denotes the subset of contact embeddings inducing
the contact structure ker ρ on S.

Lemma 4.14 If ρ ∈ �1(S, |�|S) is a contact 1-form density, then the following hold true:

(a) Grcontact(S,ker ρ)(P, ξ) is an open subset of GrS(P).
(b) Embcontact(S,ker ρ)(P, ξ) is an initial Fréchet submanifold of Emb(S, P).
(c) The natural map

Embcontact(S,ker ρ)(P, ξ) → Grcontact(S,ker ρ)(P, ξ)

is a smooth principal bundle with structure group Diff(S, ker ρ).
(d) The natural map

L|Embcontact
(S,ker ρ)(P,ξ)

(πL,JLR )−−−−−→ Embcontact(S,ker ρ)(P, ξ) × 
∞(
(T S/ ker ρ)∗ ⊗ |�|S

)

is a diffeomorphism of Fréchet manifolds, providing a Diff(S, ker ρ)-equivariant trivi-
alization of the bundle πL : L → C∞(S, P) over Embcontact(S,ker ρ)(P, ξ).
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(e) The map πE : E → Emb(S, P) restricts to a diffeomorphism of Fréchet manifolds,

Eρ ∼= Embcontact(S,ker ρ)(P, ξ).

Proof (a) follows from the Gray stability theorem, see [14, Theorem 2.2.2]. Locally around
points in Grcontact(S,ρ) (P, ξ), the Gray stability theorem permits to construct cross sections of

the Diff(S)-bundle Emb(S, P) → GrS(P) which take values in Embcontact(S,ker ρ)(P, ξ). Such
a local cross section, defined on an open subset U in GrS(P), provides a local trivializa-
tion of Diff(S)-bundles, U × Diff(S) ∼= Emb(S, P)|U , which maps U × Diff(S, ker ρ)
onto Embcontact(S,ker ρ)(P, ξ)|U . Recall that Diff(S, ker ρ) is a Fréchet Lie group, and the natural
inclusion into Diff(S) is initial, see [20, Theorem 43.19]. Whence (b) and (c).

Since ρ is nowhere vanishing, the map in (d) is a bijection. This map is smooth because
the inclusion Embcontact(S,ker ρ)(P, ξ) ⊆ Emb(S, P) is initial. To see that its inverse is smooth
too, we fix a vector bundle homomorphism σ : T S/ ker ρ → T S splitting the canonical
projection T S → T S/ ker ρ. LetW denote the set of embeddings ϕ ∈ Emb(S, P) for which
the composition

T S/ ker ρ
σ−→ T S

Tϕ−→ ϕ∗T P → ϕ∗L

is an isomorphism of line bundles over S. Clearly, W is an open neighborhood of
Embcontact(S,ker ρ)(P, ξ) in Emb(S, P). We obtain a smooth map

s : W × 
∞(
(T S/ ker ρ)∗ ⊗ |�|S

) → L,
characterized by πL(s(ϕ, β)) = ϕ and JLR (s(ϕ, β)) ◦ σ = β, for all ϕ ∈ W and β ∈

∞(

(T S/ ker ρ)∗ ⊗ |�|S
)
. Its restriction provides the smooth inverse for the map in (d).

Restricting the diffeomorphism in (d) to the level set Eρ , we obtain a diffeomorphism
Eρ ∼= Embcontact(S,ker ρ)(P, ξ) × {ρ}, whence (e). ��

A preliminary extended version of this paper contains an example [17,Proposition 4.20]
which shows that for general contact 1-form densities ρ ∈ �1(S, |�|S) the continuous
bijection

Eρ/Diff(S, ρ) → (JER )
−1(ρ · Diff(S))/Diff(S) = Gρ (102)

induced by the natural inclusion is not a homeomorphism with respect to the quotient topolo-
gies. Note that since q : E → G admits local smooth sections, the quotient topology (Frölicher
structure) on the right hand side in (102) coincides with the one induced from G. Hence, for
(N , γ ) ∈ Gρ the map provided by the action, Diff(P, ξ) → Gρ , g �→ �G

g (N , γ ), does not
admit a continuous local (with respect to the trace topology induced from G) right inverse
defined in a neighborhood of (N , γ ).

The diffeomorphism in Lemma 4.14(e) induces a natural homeomorphism:

Eρ/Diff(S, ρ) ∼= Embcontact(S,ker ρ)(P, ξ) ×Diff(S,ker ρ)
Diff(S, ker ρ)

Diff(S, ρ)
.

Note that the isotropy group Diff(S, ρ) is akin to the group of strict contact diffeomorphisms.
The diffeomorphism in Lemma 4.14(d) induces a diffeomorphism

G|Grcontact
(S,ker ρ)(P,ξ)

∼= Embcontact(S,ker ρ)(P, ξ) ×Diff(S,ker ρ) 

∞(

((T S/ ker ρ)∗ ⊗ |�|S)\S
)

which restricts to a natural homeomorphism,

Gρ ∼= Embcontact(S,ker ρ)(P, ξ) ×Diff(S,ker ρ) Oρ, (103)
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where Gρ is equipped with the topology induced from G and Oρ denotes the Diff(S, ker ρ)-
orbit of ρ equipped with the topology induced from �1(S, |�|S). The fact that the map
in (102) fails to be a homeomorphism is reflected by the fact that the canonical continuous
bijection Diff(S,ker ρ)

Diff(S,ρ) → Oρ is not homeomorphic. The remarks in this paragraph remain true
if the topologies are replaced with the corresponding Frölicher structures.

Remark 4.15 Let ρ ∈ �1(S, |�|S) be a contact 1-form density. Since Gρ may not be a
manifold, we refrain from considering the Kostant–Kirillov–Souriau form on Gρ . However,
formally pulling back the Kostant–Kirillov–Souriau form along JE

ρ

L : Eρ → X(P, ξ)∗, we
obtain a well defined smooth 2-form (JE

ρ

L )∗ωKKS on Eρ , characterized by

((JE
ρ

L )∗ωKKS)(ζE
ρ

X (�), ζE
ρ

Y (�)) := 〈JEρ

L (�), [X , Y ]〉,
where � ∈ Eρ and X , Y ∈ X(P, ξ), cf. Remark 4.11 and Theorem 3.5. Proceeding exactly
as in the proof of Theorem 4.10, we see that this coincides with ωEρ

, the pull back of the
symplectic form ωE to Eρ , i.e.,

(JE
ρ

L )∗ωKKS = ωEρ

.

For 1-dimensional S the situation is as nice as one could wish for:

Example 4.16 Let us specialize to the circle, S = S1. In this case, any contact 1-form density
ρ ∈ �1(S, |�|S) gives rise to an orientation and a Riemannian metric on S. We write

√|ρ|
for the induced volume density on S, and denote the total volume by vol(ρ) := ∫

S

√|ρ|.
Using parametrization by arc length it is easy to see that two contact 1-form densities lie
in the same Diff(S)-orbit iff they have the same total volume. In particular, these orbits are
closed submanifolds in�1(S, |�|S). Moreover, parametrization by arc length provides local
smooth sections for the Diff(S)-action on said orbits. Note that Diff(S, ker ρ) = Diff(S) in
this case.

Suppose (P, ξ) is a contact manifold and let ρ ∈ �1(S, |�|S) be a contact 1-form density
on S = S1. Using (103) we conclude that Gρ is a closed submanifold of G. Parametrization
by arc length provides local smooth sections of Eρ → Gρ and the latter is a locally trivial
smooth principal bundle. Note that the structure group Diff(S, ρ) ∼= SO(1) is a closed Lie
subgroup of Diff(S). Using Theorem 3.5, we conclude that the Diffc(P, ξ)-action on Gρ

admits local smooth sections. Hence, its orbits are open and closed subsets in Gρ which
may be identified with coadjoint orbits of the contact group via the restriction of JGL . The
symplectic form on E gives rise to a reduced symplectic form on Gρ which coincides with the
pull back of the Kostant–Kirillov–Souriau symplectic form via JGL as in Theorem 4.10(b). If
P is 3-dimensional, then Gρ is a (symplectic) manifold of weighted transverse knots.

A slightly more explicit description can be given if the contact structure is admits a contact
form, ξ = ker α. Then, via the identification in Remark 4.4, we have

Gρ ∼= {
(N , ν) ∈ Gr wtS1(P)

∣
∣ ι∗Nα �= 0, vol (ι∗Nα ⊗ ν) = vol (ρ)

}
,

for every contact 1-form density ρ.

5 Relation with other dual pairs

5.1 Comparison with the EPDiff dual pair

A pair of moment maps has been introduced by Holm and Marsden [18] in relation to the
EPDiff equations, describing geodesics on the group of all diffeomorphisms. The leftmoment
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map provides singular solutions of these equations, whereas the right moment map provides
a constant of motion for the collective dynamics of these singular solutions. In this section
we relate the EPDiff dual pair of a manifold with the EPContact dual pair of its projectivized
cotangent bundle.

Recall that the projectivized cotangent bundle,

P := P(T ∗Q) = (T ∗Q\Q)/R× p−→ Q,

admits a canonical contact structure [1,Appendix 4] given by

ξ� = (T� p)
−1(ker β), (104)

where � ∈ P and β ∈ T ∗Q is any non-zero element of �. As the natural action of Diff(Q)

on P preserves the contact structure ξ , we obtain an injective group homomorphism

Diff(Q) → Diff(P, ξ).

The line bundle L∗ associated with the projectivized cotangent bundle, see Sect. 2.1, is
naturally isomorphic to the canonical line bundle over P:

γ = {(�, β)|� ∈ P, β ∈ �} .
Indeed, the vector bundle homomorphism χ : γ → T ∗P over the identity on P , given by
χ(�, β) := β ◦ T� p, induces an isomorphism of line bundles, χ : γ → L∗. Furthermore,

χ∗θ L∗ = pr∗2 θT
∗Q, (105)

where pr2 : γ → T ∗Q denotes the canonical projection, i.e., the blow-up of the zero section
in T ∗Q, and θT

∗Q denotes the canonical 1-form on T ∗Q. One readily checks:

Lemma 5.1 The map κ : L∗ → T ∗Q, κ := pr2 ◦χ−1 is a vector bundle homomorphism over
the bundle projection p,

L∗ κ ��

π L∗
��

T ∗Q

πT∗Q
��

P
p �� Q

with the following properties:

(a) κ is equivariant over the homomorphism Diff(Q) → Diff(P, ξ).
(b) κ restricts to a diffeomorphism from L∗\P onto T ∗Q\Q.
(c) κ∗θT ∗Q = θ L

∗
.

Composition with κ provides a map

L = C∞
lin(|�|∗S, L∗) κ∗−−−−→ C∞

lin(|�|∗S, T ∗Q) = T ∗C∞(S, Q)reg

where T ∗C∞(S, Q)reg denotes the regular part of the cotangent bundle. The identification
on the right hand side is provided by the canonical pairing between 
∞(|�|S ⊗η∗T ∗Q) and
the tagent space TηC∞(S, Q) = 
∞(η∗T Q) at η ∈ C∞(S, Q). Via this identification, the
canonical 1-form on T ∗C∞(S, Q)reg can be written in the form

θT
∗C∞(S,Q)reg(A) =

∫

S
θT

∗Q(A), (106)
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where A is a tangent vector at � ∈ T ∗C∞(S, Q)reg. The differential dθT
∗C∞(S,Q)reg is the

canonical (weakly non-degenerate) symplectic form on T ∗C∞(S, Q)reg.
The cotangent lifted actions of the groupsDiff(Q) andDiff(S) on themanifoldC∞(S, Q)

preserve the canonical 1-form θT
∗C∞(S,Q)reg . In particular, these actions areHamiltonianwith

equivariant moment maps [18], JSing : T ∗C∞(S, Q)reg → X(Q)∗,

〈JSing(�), Y 〉 = θT
∗C∞(S,Q)reg

(
ζ
T ∗C∞(S,Q)reg
Y (�)

)
=

∫

S
�(Y ◦ η), (107)

and JS : T ∗C∞(S, Q)reg → �1(S, |�|S) ⊆ X(S)∗,

〈JS(�), Z〉 = θT
∗C∞(S,Q)reg

(
ζ
T ∗C∞(S,Q)reg
Z (�)

)
=

∫

S
�(Tη ◦ Z), (108)

respectively, where η ∈ C∞(S, Q) and � ∈ T ∗
η C

∞(S, Q)reg = 
∞(|�|S ⊗ η∗T ∗Q). Here

ζ
T ∗C∞(S,Q)reg
Y and ζ

T ∗C∞(S,Q)reg
Z denote the fundamental vector fields on T ∗C∞(S, Q)reg

corresponding to the (infinitesimal) action of Y ∈ X(Q) and Z ∈ X(S), respectively.
These maps and the moments maps in (28) and (36) fit into the following diagram:

X(P, ξ)∗

i∗
��

L
JLL��

κ∗
��

JLR �� �1(S, |�|S) ⊆ X(S)∗

X(Q)∗ T ∗C∞(S, Q)reg
JSing�� JS �� �1(S, |�|S) ⊆ X(S)∗

(109)

Here i∗ denotes the dual of the Lie algebra homomorphism i : X(Q) → X(P, ξ) corre-
sponding to the homomorphism of groups Diff(Q) → Diff(P, ξ). Clearly, i∗ is equivariant
over the homomorphism Diff(Q) → Diff(P, ξ). Note that via (8) and κ , the Lie algebra
X(P, ξ) = C∞

lin(L
∗) may be regarded as the space of homogeneous functions on T ∗Q\Q,

while the image of i consists of those which extend to fiberwise linear functions on T ∗Q.
Recall the open symplectic part M = C∞

lin, inj(|�|∗S, L∗) in L and let T ∗C∞(S, Q)×reg
denote the open subset of the regular cotangent bundle that corresponds to the space
C∞
lin, inj(|�|∗S, T ∗Q) of smooth maps which are linear and injective on fibers.

Proposition 5.2 The diagram (109) commutes. The map κ∗ is equivariant over the homo-
morphism Diff(Q) → Diff(P, ξ) and also Diff(S)-equivariant. It restricts to a symplectic
diffeomorphism from M onto T ∗C∞(S, Q)×reg.

Proof The map κ∗ is equivariant over the homomorphism Diff(Q) → Diff(P, ξ) since κ

has the same property, see Lemma 5.1(a). Clearly, κ∗ is Diff(S)-equivariant too. Hence, the
fundamental vector fields are κ∗-related, that is,

T κ∗ ◦ ζLi(Y ) = ζ
T ∗C∞(S,Q)reg
Y ◦ κ∗ and T κ∗ ◦ ζLZ = ζ

T ∗C∞(S,Q)reg
Z ◦ κ∗ (110)

for Y ∈ X(Q) and Z ∈ X(S). Using Lemma 5.1(c), (22), and (106), we obtain

(κ∗)∗θT
∗C∞(S,Q)reg = θL. (111)

Combining the latterwith the first equation in (110),we see that the square on the left hand side
in (109) commutes, cf. (107) and (29). Combining (111) with the second equation in (110),
we see that the square on the right hand side in (109) commutes, cf. (108) and (37). Using
Lemma 5.1(b) we see that κ∗ restricts to a diffeomorphism from M onto T ∗C∞(S, Q)×reg
which is symplectic in view of (111). ��
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Restricting the actions and moment maps in the first row in the diagram (109) to the non-
linear Stiefelmanifold E = Emblin(|�|∗S, L∗) ofweighted embeddings, we get the EPContact
dual pair from Theorem 2.6. The pair of moment maps in the second row, when restricted to
the open subset T ∗ Emb(S, Q)×reg, form a symplectic dual pair [9]:

X(Q)∗
JSing←−−−−− T ∗ Emb(S, Q)×reg

JS−−−−→ �1(S, |�|S) ⊆ X(S)∗, (112)

namely the EPDiff dual pair of Holm and Marsden [18].

5.2 Comparison with the dual pair for the Euler equation

A dual pair of moment maps associated to the Euler equations of an ideal fluid has been
described by Marsden and Weinstein [26]; it justifies the existence of Clebsch canonical
variables for ideal fluid motion and also explains the Hamiltonian structure of point vortex
solutions in a geometric way. In this section we relate the EPContact dual pair to the ideal
fluid dual pair, via the symplectization of the contact manifold.

Recall the symplectic manifold M = C∞
lin, inj(|�|∗S, L∗) with Hamiltonian actions of the

groups Diff(P, ξ) and Diff(S) and moment maps JML and JMR from Sect. 2.3. We fix a
volume density μ on S. The latter provides an identification

ιμ : M → C∞(S,M) (113)

given by ιμ(�) := � ◦ μ̂, where μ̂ ∈ 
∞(|�|∗S) denotes the section dual to μ. Here M =
L∗\P ⊆ T ∗P is the symplectization of the contact manifold (P, ξ), equipped with the exact
symplectic form ωM = dθM obtained by restricting the cotangent bundle symplectic form,
cf. Sect. 2.1. As the action of the contact group on M is symplectic, we have an (injective)
group homomorphism Diff(P, ξ) → Diff(M, ωM ).

There is a natural (exact) symplectic form on C∞(S,M), that can be described by

ω
C∞(S,M)
φ (U , V ) =

∫

S
ωM (U , V )μ, (114)

where U , V ∈ 
∞(φ∗T M) = TφC∞(S,M) are vector fields along φ ∈ C∞(S,M). The
right action of Diff(S, μ) on C∞(S,M) is Hamiltonian, with equivariant moment map:

JC
∞(S,M)

R : C∞(S,M) → �1(S)
μ= �1(S, |�|S) ⊆ X(S)∗ → X(S, μ)∗.

Here the first arrow is given by pull back of θM ; the second identification is via the volume
density μ; the third is the inclusion of smooth sections into distributional sections of T ∗S ⊗
|�|S ; and the fourth map is the dual of the canonical inclusion X(S, μ) ⊆ X(S). We write
this as

JC
∞(S,M)

R (φ) = φ∗θM ⊗ μ i.e. 〈JC∞(S,M)
R (φ), X〉 =

∫

S
(φ∗θM )(X)μ, (115)

where φ ∈ C∞(S,M) and X ∈ X(S, μ).
Via the Lie algebra homomorphism C∞(M) → Xham(M, ωM ), the Poisson algebra

C∞(M) acts from the left on C∞(S,M) in a Hamiltonian fashion with equivariant moment
map JC

∞(S,M)
L : C∞(S,M) → C∞(M)∗ given by

JC
∞(S,M)

L (φ) := φ∗μ i.e. 〈JC∞(S,M)
L (φ), h〉 =

∫

S
(φ∗h)μ, (116)
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where φ ∈ C∞(S,M) and h ∈ C∞(M).
The four moment maps mentioned in this section fit into the following diagram:

X(P, ξ)∗ M
JML��

∼= ιμ

��

JMR �� X(S)∗

i∗
��

C∞(M)∗
j∗
��

C∞(S,M)
JC

∞(S,M)
L��

JC
∞(S,M)

R �� X(S, μ)∗

(117)

Here j : X(P, ξ) → C∞(M), j(X) := hM
X , denotes theLie algebra homomorphismprovided

by (8), see also (14). In view of (9), j is equivariant over the homomorphism Diff(P, ξ) →
Diff(M, ωM ). Note that the composition of j with the action C∞(M) → Xham(M, ωM )

yields a Lie algebra homomorphism X(P, ξ) → Xham(M, ωM ) ⊆ X(M, ωM ) corre-
sponding to the homomorphism of groups Diff(P, ξ) → Diff(M, ωM ), see (12). Finally,
i : X(S, μ) → X(S) denotes the natural inclusion, which is clearly equivariant over the
inclusion Diff(S, μ) ⊆ Diff(S).

Proposition 5.3 The diagram (117) commutes. The map ιμ in (113) is a symplectic diffeo-
morphism which is equivariant over the inclusion Diff(S, μ) ⊆ Diff(S) and equivariant
over the homomorphism Diff(P, ξ) → Diff(M, ωM ).

Proof Clearly, ιμ is an equivariant diffeomorphism, see Remark 2.2. It is symplectic in view
of (43) and (114). The right hand side of the diagram commutes in view of (47) and (115).
The left hand side of the diagram commutes in view of (46) and (116). ��

The first row in (117) becomes the EPContact dual pair from Theorem 2.6 when restricted
to the non-linear Stiefel manifold E = Emblin(|�|∗S, L∗) of weighted embeddings. In the
second row, by restricting the actions and moment maps to the open subset Emb(S,M) ⊆
C∞(S,M) of embeddings, we obtain a symplectic dual pair, see [9] and [11,Section 4.2]:

C∞(M)∗
JEmb(S,M)
L←−−−−−−−− Emb(S,M)

JEmb(S,M)
R−−−−−−−−→ X(S, μ)∗, (118)

namely the ideal fluid dual pair of Marsden and Weinstein [26].
Note that the image ιμ(E) is an open subset (strict, in general) of Emb(S,M):

ιμ(E) = {φ ∈ C∞(S,M) : πM ◦ φ ∈ Emb(S, P)},
where πM : M → P denotes the restriction of the canonical projection π L∗ : L∗ → P .
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