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Zusammenfassung 
 

Eine Kooperation zwischen Logistikdienstleistern stellt verschiedene Vorteile dar. Beispiele 

aus der Industrie und der Literatur zeigen, wie die horizontale Kollaboration in der Logistik 

zu Kosteneinsparungen im Transport, Umsatzerhöhungen und CO2-Einsparungen für das 

gesamte Netzwerk führen. Wesentlicher Teil der Kollaboration zwischen 

Logistikdienstleistern ist der Austausch von nicht-profitablen Kunden. Diese können sich 

für einen Dienstleister als nicht profitabel erweisen oder nicht optimal zu dessen 

existierenden Routen passen. Hingegen kann es eine Möglichkeit zur Umsatzerhöhung für 

einen anderen Dienstleister im Netzwerk darstellen, wenn der Kunde in die existierenden 

Routen effizienter integriert werden kann. Die Literatur unterscheidet zwischen dem 

Austausch von Einzelkunden und dem Austausch von Kundenbündeln, d.h. Gruppen von 

Kundenanfragen. Letzteres bietet mehrere Vorteile, vor allem die unterschiedliche 

Profitabilität eines Kunden, je nach dem, ob er einzeln oder in einem Bündel betrachtet wird. 

Demnach könnte ein Kunde allein unprofitabel für alle Teilnehmer eines Netzwerkes sein, 

jedoch einen Mehrwert für einen Dienstleister bieten, wenn das ganze Bündel wirtschaftlich 

attraktiv ist. Allerdings ist der Kundenaustausch in Bündeln mit einem kombinatorischen 

Problem verbunden. Für den Fall, dass 𝑛 unprofitable Einzelkunden ausgetauscht werden 

müssen, bestehen 2𝑛 − 1  verschiedene Kombinationen, in denen sie in Bündeln 

zusammengefasst werden können. Aus der Literatur geht hervor, dass solche Bündel mittels 

kombinatorischer Auktionen unter den Netzwerkmitgliedern gehandelt werden. Das 

bedeutet, dass Logistikdienstleister alle Bündel einer Auktion auswerten müssten, um einen 

Gebotspreis auszuhandeln. Da dieser Wert der Profitabilität eines Bündels entsprechen soll, 

wird er nach den Kosten für das Einfügen eines Bündels in eine bestehende Route berechnet. 

Das trägt dazu bei, dass ein Vehicle Routing Problem für jedes Bündel gelöst werden soll. 

Angesichts der Tatsache, dass das Vehicle Routing Problem als NP-Hard gilt, ist eine 

Gebotspreisberechnung für alle Bündelmöglichkeiten zeitlich undenkbar. Es wird in der 

Literatur anerkannt, dass nicht alle Bündel gleich profitabel sind und dass es ausreichend ist, 

wenn die Netzwerkteilnehmer nur für die attraktivsten Bündel ein Gebot abgeben können. 

Das kann die Problemgröße deutlich reduzieren und die Berechnung des Preisgebots wieder 

möglich machen. Das zweite Problem umfasst die Durchführbarkeit der Lösungen. 

Demnach ist darauf zu achten, dass alle Einzelkunden einmal erscheinen, wenn der 

Austausch in Bündeln erfolgt. Daher sind in der Literatur Methoden entstanden, bei welchen 

nur die attraktivsten Bündel, die zu durchführbaren Lösungen führen, für die Auktion 
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generiert werden können. In den letzten Jahren wurden verschiedene Heuristik-Methoden 

zu diesem Zweck vorgestellt. Darunter fällt der Ansatz von Gansterer & Hartl (2018), der 

einen effizienten evolutionären Algorithmus zur Generierung attraktiver durchführbarer 

Kundenbündel bereitstellt. Alle Methoden zu diesem Zweck basieren auf Heuristiken. Nach 

derzeitigem Wissensstand verwendet keiner Business Analytics Methoden, um attraktive 

Bündel für Auktionen zu generieren. Diese Arbeit soll diese Lücke füllen.  

Vergangene Auktionen bieten historische Daten von Kundenbündeln und dazugehörigen 

Gebotspreisen, die genutzt werden könnten, um ein Regressionsmodell zu trainieren. Damit 

können Gebotspreise für zukünftige Auktionen vorhergesagt werden, um nur attraktive 

Bündel den Netzwerkteilnehmern für die Gebotspreisbestimmung anzubieten. Dafür 

müssen neue Features berechnet werden, die die Bündel numerisch beschreiben, welche 

möglicherweise mit den Gebotspreisen korreliert sind, um diese effektiv vorherzusagen. Das 

Verfahren von Gansterer & Hartl (2018) wurde schon nachimplementiert und mittels 

existierender Instanzen getestet. Ein neues Business Analytics basierendes Verfahren kann 

daher implementiert werden und mit denselben Instanzen getestet werden, um seine 

Wirksamkeit zu prüfen. Ziel dieser Masterarbeit ist es zum einen, herauszufinden, ob die 

Implementierung einer solchen alternativen Methode zum vorgestellten Zweck möglich ist 

und zum anderen der Vergleich der Lösungsqualität und der Laufzeit beider Verfahren. 
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Abstract  
 

Cooperation between logistics service providers presents various advantages. Examples from 

industry and literature show how horizontal collaboration in logistics leads to cost savings in 

transport, increase in turnover and CO2 emissions savings for the entire network. An 

essential part of collaboration between logistics service providers is the exchange of non-

profitable customers. These may not be profitable for a service provider or may not fit 

optimally within the existing routes. On the other hand, it can represent an opportunity for 

another service provider in the network to increase revenue, if the customer can be integrated 

more efficiently into its existing routes. The literature distinguishes between the exchange of 

individual customers and the exchange of customer bundles, meant as groups of customer 

requests. The latter offers several advantages, most notably the different profitability of a 

customer depending on whether it is considered individually or in a bundle. Accordingly, a 

customer alone could be unprofitable for all participants in a network but offer added value 

for a service provider if the whole bundle is economically attractive. However, customer 

exchange in bundles is associated with a combinatorial problem. If 𝑛 unprofitable individual 

customers need to be exchanged, there are 2𝑛 − 1 different combinations in which they can 

be combined in bundles. The literature shows that such bundles are traded among network 

members by means of combinatorial auctions. This means that logistics service providers 

would have to evaluate all bundles in an auction in order to negotiate a bidding price. Since 

this value is supposed to correspond to the profitability of a bundle, it is calculated according 

to the cost of inserting a bundle into an existing route. This implies that a Vehicle Routing 

Problem should be solved for each bundle. Given that the Vehicle Routing Problem is NP-

Hard, a bidding price calculation for all bundle possibilities is unthinkable in terms of time. 

It is recognised in the literature that not all bundles are equally profitable and that it is 

sufficient if network participants can bid only for the most attractive bundles. This can 

significantly reduce the problem size and make the calculation of the bidding price feasible 

again. The second problem involves the feasibility of the solutions. Specifically, it must be 

ensured that all individual customers appear exactly once when the exchange is made in 

bundles. Therefore, methods have emerged in the literature where only the most attractive 

bundles leading to feasible solutions can be generated for the auction. In recent years, various 

heuristic methods have been presented for this purpose. These include the approach of 

Gansterer & Hartl (2018), which provides an efficient Genetic Algorithm for generating 

attractive feasible customer bundles. All methods for this purpose are based on heuristics. 



 vii 

To the best of my knowledge, none uses business analytics methods to generate attractive 

bundles for auctions. This thesis aims to fill this gap.  

Past auctions provide historical data of customer bundles and associated bidding prices that 

could be used to train a regression model. This can be used to predict bidding prices for 

future auctions in order to offer only attractive bundles to the network participants for price 

determination. To achieve this, new features that numerically describe the bundles that are 

possibly correlated with the bidding prices must be calculated in order to effectively predict 

them. The method by Gansterer & Hartl (2018) has already been re-implemented and tested 

using existing instances. A new business analytics-based procedure can therefore be 

implemented and tested with the same instances to verify its effectiveness. The aim of this 

master thesis is firstly to find out whether the implementation of such an alternative method 

is possible for the purpose presented and to compare the solution quality and the runtime of 

both methods. 
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1 Introduction 
 

In a competitive environment, companies may either classically directly compete against each 

other, or be part of collaborative networks. The latter has several advantages, such as the 

reduction of expected costs, possible revenue increase of the whole network, as well as 

increased efficiency, increased service levels and market shares, while contributing to the 

fulfilment environmental goals [19]. Collaborating companies sharing parts of their resources 

for more effective utilization can be referred as alliances [24]. Nowadays many companies or 

big corporations are part of collaborative networks or strategic alliances [22], the Deutsche 

Lufthansa for example is part of the Star Alliance, a strategic alliance of airlines with main 

hubs placed in different parts of the world. This enables the airlines to sell tickets to 

destinations which are not directly served by each of them, since every member can sell 

tickets for seats on other carriers’ aircrafts. Through these alliances, airlines can rely on a 

truly global network which guarantees the reachability of every point on earth, fostering 

economies of scale and above all economies of scope of the single alliance members [12]. 

In general, literature distinguishes between vertical and horizontal collaborations [9]. In the 

first case, companies which do not directly operate within the same business collaborate to 

take advantage of each other’s business area. An example of vertical collaboration is the 

alliance between the Deutsche Lufthansa AG and the Deutsche Bahn AG, whose seats on 

some trains are sold by the airline to make its customer reach secondary cities within 

Germany from its main hubs [46].  

 

Horizontal collaboration on the other hand describes cooperation between companies which 

operate within the same business area and would hence be direct competitors if they would 

not collaborate [9]. Wang et al. (2014) [43] considers horizontal collaboration to efficiently 

optimise the internal resources of each single member. Transportation logistics companies 

may leverage from this kind of collaboration, since it may be the case that, due to the 

operational planning of deliveries, which often occurs on daily basis, some customer requests 

do not efficiently fit in the route of one carrier but may be optimally delivered by another 

member of the network [5]. A horizontal collaborative network in transportation logistics is 

hence beneficial for the internal exchange of unprofitable customers within the members 

with the aim of maximising the total revenue of the whole alliance [18] or, alternatively, of 

minimising its total transportation costs [1]. In the context of collaboration among logistics 

carriers, Berger & Bierwirth (2010) [5] distinguishes two ways of exchanging customer 
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requests within such networks, namely single customer reassignment, and reassignment in 

customer bundles. In the first case, customers are reassigned one by one, a single unprofitable 

request for one carrier is transferred and integrated into the route of another member. In the 

second case, customers are grouped together into bundles, referred as groups of customer 

requests, and reassigned as such; this implies that the single unattractive requests may come 

from different members of the transportation network, but after these have formed a bundle, 

they are integrated into the route of one single carrier. It means, only one transporter takes 

over the whole requests placed in a bundle [18]. 

Literature states that companies have the interest of acquiring sets of customers instead of 

single ones [11], as in this way carriers are able to directly fulfil combination of requests. 

Bundles are particularly attractive since the value of a request could change significantly if 

other requests are combined [39]. Gansterer & Hartl (2018) [18] presents an example 

showing how a single extra request, which would represent a significant detour from the 

already predefined route of a carrier, would probably not be profitable alone; but suddenly 

becomes attractive if combined with another set of requests which bring extra revenue.  

 

2 Problem Definition 
 

Customer bundles may hence represent an opportunity for collaboration networks in 

transportation logistics, but this kind of customer reassignment is associated with issues of 

mathematical and combinatorial nature. The problem arises when dealing with the quantity 

of possible customer bundles that can be formed out of single unattractive requests, because 

if there are 𝑛 customers to be reassigned, there are 2𝑛 − 1 possibilities of generating possible 

bundles; this means that the problem size increases exponentially [18]. Since it is assumed 

that the attractiveness and the willingness to pay for the added customers contained in each 

of the bundles is based on the insertion cost of the latter into the existing route of a carrier 

[5], the more bundles are generated, the more Vehicle Routing Problems (VRP) must be 

solved to state these values. This increases the computational time of this problem 

significantly, given the NP-Hard nature of the VRP [30]. Generating all possible bundle 

combinations is hence not possible for large problem sizes, but on the other hand, different 

bundles have distinctive levels of attractiveness for the companies of the network [18]. The 

way how bundles of requests can be traded among the network’s members can be 

conceptualized as a decentralized combinatorial auction-based exchange system. Berger & 

Bierwirth, (2010) [5] presents a 5-phase combinatorial auction which aims at exchanging 
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customer bundles. For the scope of this thesis, only the first four phases are presented in 

figure 1. 

 

 

Figure 1 5-Phase Combinatorial Auction Procedure 

 

In the first phase, each carrier states which single requests will be placed in the customer 

pool, the blue boxes in figure 1 represent customer requests and the numbers represent their 

respective request IDs; it is assumed, that single requests that do not optimally fit in the 

existing routes of the carriers are placed in this virtual basket. Secondly, a central authority, 

which represents the auctioneer, generates the bundles out of the single requests in the 

customer pool. These bundles are then offered to the carriers as inseparable group of 

requests. In the third phase, carriers place bids on the proposed bundles according to the 

attractiveness of each single bundle for each of them. Following the example in figure 1, 

assuming that there are three carriers in a network, each of them places a bid for each 

proposed bundle, hence there will be three bids for every bundle. The red boxes in figure 1 

represent the bids of each single carrier, and the numbers inside represent the bidding values. 

The fourth phase called Winner Determination Problem states which carrier won which 

bundle according to the placed bids. In the fifth and last phase, profit is shared among the 

network’s members.  

The role of the auctioneer is crucial for the presented auction procedure since, as stated 

above, the auctioneer cannot simply offer all possible bundle combinations to the carriers, 

since it is assumed that the bidding prices, which reflect the attractiveness of each bundle for 

each of the carriers, are the results of the calculated VRPs to fit the bundles into their existing 

routes.  
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A possible solution to this problem is offering only a limited number of bundles in the 

bidding phase, which leads to a drastic problem size reduction and a consequential 

computational time reduction for the carriers to come up with bidding prices. More 

specifically, the auctioneer should propose only those bundles which are meant to be 

attractive for the carriers (i.e., ‘good bundles’) and directly discard all other bundles which 

are believed to be not of interest for the carriers [18]. 

A second problem for the auctioneer arises when dealing with the fourth phase of the 

described auction procedure, since the proposed bundles not only have to be attractive for 

the carriers but must also be able to build feasible solution sets, as described in [18]. A feasible 

solution consists of a set of bundles, in which each customer appears exactly once in the 

whole set, and no customers are missing. Since each bundle of the winning set will be 

assigned to a carrier, the feasibility of a solution implies that, after reassigning customers into 

bundles, no customers are delivered by multiple carriers and no customers are left out.  

 

 

Figure 2 Example of Sets of Bundles 

 

Figure 2 shows a feasible solution set and two infeasible ones, the outer boxes represent a 

set, while the inner boxes represent the bundles. Assuming that there are 6 customers that 

have to be reassigned, with respective IDs 1, 3, 5, 6, 8, 9 and two carriers in a network, the 

first set represents a feasible way of reassigning these customers into two bundles. On the 

other hand, the second and the third sets are not feasible solutions, since customer 9 would 

be delivered by both carriers after the reassignment in the second example, and in the last 

set, customer 9 would not be delivered at all.  

The auctioneer hence must consider that the proposed bundles are able to build feasible sets 

with each other.  
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The literature acknowledged the potential of customer exchange in request bundles as well 

as its combinatorial difficulty. In view of these facts, some recent papers present several 

creative ways of generating bundles which fulfil the described conditions.  

Existing literature makes use of different kinds of heuristic methods to solve the bundle 

generation problem. To the best of my knowledge, none of the papers that deal with 

customer bundle generation in the context of transportation logistics solves this problem 

with alternative techniques. 

Business analytics and data mining techniques can represent an alternative to heuristics, 

leveraging historical data and making use of machine learning algorithms to predict and 

generate attractive bundles.  

The Genetic Algorithm framework presented in Gansterer & Hartl (2018) [18] has already 

been implemented on artificially generated instances; the scope of this master thesis is to 

implement a new framework based on data mining procedures and a machine learning 

algorithm which aims at finding attractive feasible solutions for the bundle generation 

problem, without any size limitation constraints. The developed framework is then applied 

to the same instances on which the Genetic Algorithm has already been tested, in order to 

compare and contrast the effectiveness of the two approaches in terms of solution quality 

and of computational time. It must be pointed out, that the managerial objective of [18] is 

the maximisation of total network profit, the application of the algorithm on the proposed 

instances aims at minimising total transportation costs, the comparison of the two 

approaches in terms of solution quality will be hence based on this last criterion. Additionally, 

Gansterer & Hartl (2018) [18] considers a Pick-up and Delivery Problem, the re-implemented 

version of their approach can also solve a pure VRP, hence the development of the new 

framework focusses on the solution of this problem. 

To pursue the machine learning approach for the determination of attractive bundles, 

historical data is essential to train a machine learning model. Historical data are the bidding 

prices placed by the carriers for bundles in past auctions. In order to use these prices in a 

machine learning algorithm, the bundles must be numerically described by some features 

which depict the attractiveness of the bundles and can be used by the model to precisely 

predict the assignment costs of the bundles. The attractiveness of a bundle can be estimated 

by predicting its future bidding price. Since the latter is a continuous value, a regression 

model in machine learning must be chosen to solve this problem [44]. 

For a fair comparison with the approach presented in Gansterer & Hartl (2018) [18], the 

regression model approach has to be developed under the constraint that carriers do not 
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want to reveal sensitive pieces of information to the central auctioneer to assess the 

attractiveness of a bundle. For example, the carriers do not reveal any information about 

their existing routes, which would be a major piece of information to state whether a bundle 

of customers may be of interest for a carrier or not. Since this thesis aims at comparing the 

solution quality and the computational time of bundle generation of two described 

approaches, the focus is on the role of the auctioneer which offers the bundles, under which 

criteria customer requests are placed in the customer pool and the price generation in the 

proper bidding phase are out of scope.  

This thesis is structured as follows, section 3 presents an overview of recent literature on 

collaborative networks in transportation and reassignment in customer bundles, particularly 

focussing on their generation strategies; section 4 presents a brief theoretical background of 

the chosen machine learning models and their selected evaluation criteria. The data 

processing, the application of the machine learning models, and their evaluation is presented 

in section 5. Section 6 compares the performances of the machine learning-based bundle 

generation approach with the already present Genetic Algorithm. Final conclusions are 

derived in section 7.  

 

3 Literature Review 
 

Collaboration in different fields of transportation has been widely studied by the literature 

during the past decades; in the field of city logistics, this has an influence on sustainability 

issues as well, and it is therefore welcome by municipalities, which fund research in this field 

[18]. It is also acknowledged, that although transportation collaboration is a well-known topic, 

horizontal collaboration is not as deeply considered by the literature as vertical collaboration 

[29]. Horizontal collaboration is considered as a way to reduce costs by resource 

optimisation; asset repositioning or empty runs are considered potential hidden costs of each 

single logistics carrier, this kind of cost of doing business however can be drastically reduced 

if the carriers horizontally cooperate, as reported in [16]. The paper models carrier 

collaboration as a lane covering problem aiming at minimising asset repositioning; it 

implements a greedy algorithm to solve this problem and states that as the number of lanes 

increases, the asset repositioning ratio decreases, resulting in more efficient routes for a 

collaborating network of carriers. Laporte et al. (2007) [29] also explores the potential of 

horizontal collaboration among carriers, acknowledging that being part of a network brings 

to cost reductions achieved by a better and more equal distribution of resources such as the 
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minimisation of empty truck runs. The paper models the routes of the carriers as a pick-up 

and delivery problem with time window, which are considered as single depot if the carriers 

operate autonomously but become multi depot if they cooperate. The difference in the 

solutions of both approaches can be measured to assess the benefits of potential 

collaborations. The authors use a large neighbourhood search heuristic to solve the problem, 

given the NP-hard nature of the pick-up and delivery problem with time window; the 

heuristic is tested also on a small instance of two carriers with 50 requests each, and it is 

directly shown how collaborating routes bring to 12,46% cost reduction compared to a 

situation in which they would serve their requests completely on their own. The paper tests 

its approach on larger instances and on a real-world instance from Germany as well, also 

taking profit sharing into consideration, and concluding that single carriers are better off 

when pooling resources than operating singularly. 

Ergun et al., 2007 [15] also identifies empty relocations of trucks as a cost that a carrier may 

drastically reduce by taking part to a network in order to optimise routes striving for 

continuous loaded movements, reducing the need of relocation of the carriers. The paper 

acknowledges that collaboration networks are already present on the US market, which in 

real life made its member save on routing costs. Theoretically, the authors model this 

problem as a lane covering problem, which is solved using a heuristic method.  

Dahl & Derigs (2011) [10] as well acknowledges the potential of collaboration among carriers 

and developed a real-time collaborative decision support system which the authors call 

pool.tour. This decision support system leverages from data of the dispatchers of the 

network’s members, and a heuristic which processes information about orders, routes and 

vehicle positions makes continuous proposals for inserting requests into different tours. The 

authors tested the decision support system on a real-world currier network based in Europe 

for prolonged time and report the benefits of the usage of such system in terms of cost 

savings compared with isolated planning. The authors found out that such a system is 

beneficial for the network total cost saving, but they also acknowledge that the compensation 

system implemented in the decision support system is crucial for the success of such a tool 

and that different compensation schemas bring to different results in terms of total cost 

savings.  

Literature has dealt with the bundle generation problem alone as well, although this problem 

has not been deeply studied in recent years [42]. Berger & Bierwirth (2010) [5] not only 

introduces the auction-based decentralised planning system described above, but also tries 

to solve the bundle generation problem assuming size constraints; they offer all bundle 
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combinations in the auction, but they let the bidders place only one request into the customer 

pool to keep the problem size manageable.  

More recent papers allow larger problem sizes and use different methodologies to come up 

with the feasible-attractive bundles out of the whole possible combinations. Los et al. (2020) 

[32] overcomes the combinatorial auction with a central auctioneer and considers a multi-

agent approach, studying the effects of request bundling with such a method. The paper 

proposes a bundle generation based on a relatedness measure, whose idea is acknowledged 

to be taken from Ropke & Pisinger (2006) [38]. Since the authors consider the model as a 

pick-up and delivery problem, the selected bundles must contain requests whose pick-up or 

delivery locations of one order are similar to the pick-up or delivery locations of another 

order, so that the orders can be efficiently served together. The similarity of two pick-up and 

delivery locations are defined based on travel time and time windows. To test their bundling 

approach and the impact of bundling in request exchange, the authors created instances of 

2.000 orders and 150 carriers, the instances were tested by auctioning single requests to set a 

benchmark, and then the bundling procedure is introduced. The paper reports that when 

introducing the bundles, the travel costs decrease by roughly 4%. The authors directly 

acknowledge that the bundling brings benefits in terms of cost reduction, but it slows down 

the solving time of the instances by about 10 times. The authors also further tested the bundle 

benefits by changing the parameters of the instances, eventually considering 500 carriers, and 

concluded that bundling brings to cost reductions of 1,7% compared to single request 

reassignment, with the trade-off of increase computational time.  

Mancini & Gansterer (2022) [34] considers a Vehicle Routing Problem with occasional 

drivers and order bundles, the paper also acknowledges the fact that the bundle possibilities 

grow exponentially with the number of orders, and hence propose an agglomerative 

clustering procedure and a more innovative corridor-based bundle generation approach. The 

first method bundles requests together based on their geographical location, it is assumed 

that a bundle in which all requests are close to each other is profitable, since the driver can 

serve them all with relatively small marginal costs and therefore it brings benefits in terms of 

costs to place requests into bundles. The second more innovative method uses the direction 

of a driver as an attractiveness measure instead of the proximity of the clients, assuming that 

drivers may accept to deliver customers even if they are distant from each other, given that 

they are located on the original way of the driver or on the way home. They solve this 

problem using a Large Neighbourhood Search heuristic. As far as the computational study 

is concerned, the authors test the performance of the heuristic as well as the performance of 
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the two presented bundling methods on some generated instances. They conclude that the 

newer corridor-based bundling method outperforms the classical clustering-based approach, 

since the total costs decrease by 2,7%; in addition, they could demonstrate that this method 

generates few and attractive bundles, so that the computational time is reduced by 86,7%. It 

must be however pointed out that the authors consider a very special case of the VRP, namely 

the inclusion of occasional drivers, which perform the pick-up at the depot, drive to their 

destination and may choose whether to transport further goods on behalf of the shipping 

company. It is hence comprehensible that requests that are even distant from each other, but 

which lay on the way of the occasional drivers, are attractive for them. This approach 

however may have a different effect on regular drivers.  

Existing literature presents approaches in which bundles are generated by the auctioneer, like 

described in the introduction, or directly by the carriers themselves. This is the case presented 

in Triki et al. (2014) [42], which measures bundle synergy for effective bundle generation and 

implemented a sequential ascending and a sequential descending heuristic. Two different 

ways for measuring the synergy of a bundle are presented; a distance-based pairwise synergy 

and a hop-based pairwise synergy. The first method considers the distance between loads 

expressed in travel time between the origin of a load and the destination of its precedent load, 

so to measure time compatibility. The second measure is based on the number of empty 

relocations in a tour, the less relocations a truck needs in a tour the higher the synergy. As 

far as the two heuristics are concerned, the first method considers the bundle of maximal 

cardinality and computes the benefit of removing loads to the bundle, the second proposed 

method does the opposite, namely it starts with an empty set, and computes the incremental 

profit by adding requests to the bundles. Results show the superiority of the second method. 

Gansterer & Hartl (2018) [18] points out how the bundle generation made directly by the 

carriers enables them directly to generate attractive bundles, this comes however with the 

difficulty of finding a solution for the Winner Determination Problem, if for instance 

multiple carriers propose attractive bundles whose requests overlap each other.  

Recent literature focusses on efficient bundle generation acknowledging the fact that 

collaborative networks do bring benefits to their members, but the latter are not willing to 

share sensitive strategic pieces of information to the direct competitors. This is reported by 

Los et al. (2020) [32] and Gansterer & Hartl (2018) [18], the latter follows the 5-phase 

approach presented in [5], and lets a central authority generate the bundles out of the single 

requests placed in the pool by each carrier. To produce the bundles, the authors developed 

a Genetic Algorithm which generates attractive candidate solutions, which are sets of bundles 
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that satisfy the requirements described in the introduction. Acknowledging the reluctancy of 

the carriers to reveal sensible pieces of information to the central authority, the latter has to 

find an alternative way to approximate the attractiveness of the proposed bundles. The 

authors assume that attractive bundles have a high density, isolated from other bundles and 

whose requests can be fulfilled within short travel times. Accordingly, a proxy function to 

state the attractiveness of customer bundles based on non-sensitive parameters such as 

centroid of the bundle, its density, and its isolation with regards to the rest of the requests 

has been developed. This proxy function is then used as the fitness function of the Genetic 

Algorithm to determine the quality of the candidate solutions. To test their approach, the 

authors use instances which simulate a network of three carriers. The papers first presents a 

situation in which each carrier can submit 4 requests to the initial pool, and hence 4.095 

different bundles combinations can be generated; several bundle pool size limitations are 

tested out, showing how the larger the pool, the smaller the solution quality lost in percentage, 

although limiting the bundle pool to 500 has an impact of only 5,2% on average on solution 

quality, but the running time decreases from 47,6 to 5,5 seconds. The authors also test the 

case in which the carriers can submit 5 unattractive requests into the initial pool, leading to 

32.767 possible bundle combinations. The results confirm initial assumptions made by the 

authors, it is sufficient to generate few, attractive feasible bundles to achieve high quality 

results with a very compact running time. Due to the promising results in terms of running 

time of the framework, the Genetic Algorithm is applied to real-world size instances with 

210 requests, comparing the performances of an initial request pool of 45 and 90 requests, 

which can be processed in roughly 45 and 70 minutes respectively.  

 

4 Machine Learning Models & Evaluation Criteria 
 

As described in the section above, a dataset must be first created before a machine learning 

algorithm can be trained. More specifically, features which describe the bundles, that can be 

referred as independent variables in machine learning, must be engineered in order for a 

model to predict the bundle prices, referred as dependent variable. Since at this stage it is still 

unknown how the distribution of the data will look like and how complex the final model 

will be, machine learning algorithms of different natures are tested and compared. In order 

to state the most suitable machine learning algorithm for the described problem, 5 quality 

criteria are presented in section 4.2.   
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4.1 Machine Learning Models  
 

As simplest and quickest regression model, a linear regression is trained and used as initial 

benchmark for more complex algorithms. 

Furthermore, other 5 models have been chosen for this comparison, two additional linear 

models and three ensemble tree-based models. The linear models are Bayesian Ridge and 

Elastic Net Regressor, whereas the tree-based models are Gradient Boosting Regressor, 

XGB Regressor and LGBM Regressor. The ensemble models more complex and advanced 

than the linear models, and hence require higher training times, the reason of the comparison 

between these two kinds of models is to check whether more complex models bring benefits 

in terms of prediction performance compared to the linear models.  

 
Linear regression 

 
For regression it is meant the study of the statistical relationship between variables. A linear 

regression finds the linear relationship between one dependent variable and some 

independent variables. The goal of the linear regression model is to fit a line in the data so 

that the sum of squared residuals is minimised [45]. 

A dependent variable 𝑌 can be estimated by a linear function of the independent variables 

𝑋𝑖 with 𝑖 representing the number of the independent variables. Assuming that there are 

three independent variables, a linear regression function may be expressed as 

 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝜀 

 

with 𝜀 being a random error quantity with mean 0.  

The 𝛽𝑖 are the regressions coefficients that have to be estimated when fitting the model to 

the data to find the regression line which minimises the squared residuals [3]. For this work, 

the Linear Regression Class has been imported from the Python library scikit-learn [52].  

 

Elastic Net Regressor 

 

The Elastic Net Regressor is a hybrid linear regression model which combines the features 

of Lasso and Ridge regression [14]; hence these two special versions of linear regressions are 

briefly introduced first.  

Generally, if the regression coefficients in linear regression are unbounded, they can become 

very large, resulting in very high variance [6]. High variance may derive from overfitting the 
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regression line to the data, which is referred as the case in which a model is too well fitted 

for the training data, but is not able to generalize [37, Chapter 5], i.e., properly fit to the test 

data as well. Lasso and Ridge regression reduce model complexity and prevent overfitting 

[53].  

In Ridge regression the objective function of the linear regression is altered by adding the 

sum of the squared coefficients, multiplied by a parameter 𝜆. 𝜆 is used as penalty term, since 

it multiplies the squares of the regression coefficients, and the more the latter increase, the 

more penalized the objective function will be [53]. Since the square of the coefficients are 

taken, Ridge regression can be intended as a linear regression with the ℓ2 regularization [54]. 

Adapted from [55], Ridge regression can be mathematically represented as  

 

min
𝑤

‖𝑋𝑤 − 𝑦‖2
2 + 𝜆‖𝑤‖2

2 

 

Lasso regression works similarly to Ridge regression; a parameter 𝜆 regularizes the regression 

coefficients. This time however the absolute values of the latter are taken. Differently from 

the ℓ2 regularization, taking only the absolute values of the coefficients as penalty can make 

the latter become 0, and hence not part of the model anymore. It hence has the double 

benefit of reducing overfitting and automatically helps in feature selection [53].  

Adapted from [56], Lasso regression adds term 𝜆‖𝑤‖1, which is equivalent to the ℓ1 norm 

of the coefficient vector [56]. 

Since Elastic Net is a hybrid of Lasso and Ridge regression, the model is trained with both 

ℓ1 and ℓ2 norm for the coefficients’ vector [57]. The Elastic Net regression model is applied 

in this work by importing the associated class from the Python library scikit-learn [58]. The 

objective function that the algorithm minimises is the linear regression function with both 

penalty functions [57]. The advantage of such a regression model is that it comprises the 

benefits of the two original models Elastic Net is built upon, it is able to reduce the number 

of features used by the model, and at the same time construct more robust models for the 

generalization purpose [59]. 

 

 

 

 

 

 



 13 

Bayesian Ridge 

 

In contrast with the classical linear regression, where the current data is the only piece of 

information processed by the model to fit the regression line, the Bayesian approach fits a 

model to the data not only considering the current data, but also leveraging from past 

conditions [3]. 

Bayesian regression takes the uncertainty into consideration [4] using conditional 

probabilities. The prediction of a new value in Bayesian regression is derived by a probability 

distribution and is assumed to be Gaussian distributed with variance 𝜎2  [21, 47]. 

Mathematically, the probability distribution of the dependent variable can be formulated as 

reported in [46].  

 

𝑦~𝒩(𝛽𝑇𝑋, 𝜎2) 

 

The mean of the normal distribution is the product of the unknown parameters 𝛽 multiplied 

by the independent variables 𝑋 [47]. 

In Bayesian linear regression, not only the dependent variables but also the 𝛽 are assumed 

to be derived from a probability distribution [3]. The Bayesian linear regression is able to 

leverage from past experience, since it estimates the regression parameters 𝛽 calculating the 

conditional probability of the 𝛽  values given the data. This can be estimated using the 

Bayesian Rule. As stated above, the 𝑦 are normally distributed given a set of parameters 𝛽. 

This can be referred as the conditional distribution of 𝑦 given known values for the parameters 

𝛽 [3]. As mentioned, the parameters 𝛽 themselves also have an independent distribution 

themselves, the literature refers to this as prior distribution [3]. Following the notation of [33], 

let 𝐷  represent the data and 𝑤  the set of unknown parameters. Given these pieces of 

information, Bayes Rule allows to calculate the conditional probability of observing 𝑤 given 

the data with the formula 

 

𝑃(𝑤|𝐷) =
𝑃(𝐷|𝑤)𝑃(𝑤)

𝑃(𝐷)
 

 

MacKay (1992) [33] simplifies the Bayes Rule presenting the following interpretation of the 

formula.  
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𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑃𝑟𝑖𝑜𝑟

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 

 

The probability of observing the parameters 𝑤  given the Data is referred as Posterior 

Probability. This is calculated as the probability of observing the data given the parameters, 

referred as Likelihood multiplied by the prior probability, normalised by the probability of 

observing the data, described as Evidence. 

Bayesian Linear Regression allows to choose a predetermined probability for the prior if 

some domain knowledge about the data and its distribution is available. In case no significant 

pieces of information are known about the data, then a so-called non-informative prior, which 

decreases the influence on the outcome of the posterior distribution, can be chosen [4]. 

For this work the model is used importing the Bayesian Ridge class from the Python library 

scikit-learn [48]. The scikit-learn implementation of this model is based on the algorithm 

presented in [41]. It uses non-informative [49] conjugate priors [50] with parameters 𝑤, 𝛼 

and 𝜆, which are estimated during the model fitting [49].  

The priors over 𝛼 and 𝜆 have a Gamma distribution, there are four hyperparameters of these 

distributions, 𝛼1, 𝛼2, 𝜆1, 𝜆2 , which are also chosen in a non-informative manner with an 

initial default value of 10−6 [49]. 

In conclusion, the advantage of a Bayesian Linear Regression is that the model not only 

learns from the available data but can also incorporate prior knowledge and depict the 

uncertainty. This is possible as the model constructs an initial estimate, which is updated as 

soon as more data and past information become available [51]. 

 

Gradient Boosting Regressor 

 

The Gradient Boosting Regressor is an ensemble-based machine learning algorithm. An 

ensemble-based method is generally more complex than the linear methods described above 

since it can combine multiple algorithms with the aim of improving predicting performances. 

Combining many models is a way of fitting a model to more complex data structures without 

letting the single models become too complicated [28]. 

Gradient Boosting belongs to the Boosting algorithms, it combines multiple weak learners 

to compose the ensemble model. A weak learner is to be intended as a single model which 

performs only marginally better than the random [28]. 
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Gradient Boosting is an ensemble method whose learners are decision trees. The algorithm 

can be used for classification and regression purposes; as far as the latter is concerned, the 

Gradient Boosting Regressor initiates the estimation of the target variable just by calculating 

its mean. Successively it computes the error, namely the difference between the actual value 

of each datapoint and the estimated prediction value. This algorithm builds each successive 

learner based on the error of the previous one. From the second learner onwards, the 

decision trees do not aim at predicting the actual value of the target variable but the error. 

To prevent overfitting, each tree is scaled by a constant learning rate. By adding multiple 

scaled trees to the model, which iteratively predict the error of the previous learner, the 

ensemble model is created [28]. 

A mathematical formulation of the algorithm is presented in [17], simplified explanations are 

presented in [60] and [28], the latter summarizes the procedure with the following 8 steps.  

 

1. Definition of the learning rate 

2. Calculation of the target variable’s mean as initial prediction value 

3. Calculation of the residuals between the actual values and the mean  

4. Build a decision tree that predicts the residuals using existing features of the dataset  

5. Predict the residuals 

6. Add the new predicted values to the previous ones, all added values are scaled by the 

predefined learning rate  

7. Calculate the new residuals given the newest predicted values  

8. Keep building decision trees until the predefined ensemble size is reached  

 

Given a constant learning rate 𝑙, if the user specified the ensemble size being 𝑡, then the final 

predicted value 𝑝𝑡 is the result of the addition [28] 

 

𝑝𝑡 = 𝑚𝑒𝑎𝑛 + 𝑙𝑝1 + 𝑙𝑝2 + 𝑙𝑝3 + ⋯ + 𝑙𝑝𝑡 

 

For this work, the GradientBoostingRegressor available in the Python library scikit-learn [61] has 

been used. The parameters have been left to the default ones to train the model; hence the 

loss function is defined as the squared error, the learning rate of 0,1 and the ensemble size is 

100 [61].  
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XGB Regressor 

 

The Extreme Gradient Boost or XGBoost is a tree-based regression and classification 

algorithm presented by Chen & Guestrin (2016) [8]. Since the algorithm is presented in the 

mentioned paper, the latter can be considered as the reference for the entire subsection. The 

algorithm is available for regression and classification, given the objective of this thesis, only 

the first case is considered, referred as XGB Regressor. The purpose of the development of 

such algorithm was the necessity of creating an optimised version of the existing tree 

boosting algorithms in order to handle large amount of data in reasonable time; in fact, the 

authors claim that the proposed algorithm is ten times faster than existing popular solutions 

on single machine. The ways XGBoost optimises computational time are manifold, they 

comprehend algorithmic and machine usage optimisations as well as the ability of handling 

sparse data, and a novel procedure for tree split finding used in an Approximate Algorithm. 

There are various possibilities of constructing trees, depending on where the data is split; in 

order to evaluate the tree structures, a scoring function is used to assess its quality, the goal 

is to find the trees that best define the data. Finding the best split to construct a new branch 

however is an issue with large dataset, since each datapoint of each feature is a potential 

candidate for a new split. The paper acknowledges this problem and presents two Split Finding 

Algorithms. The first one is defined as the exact greedy algorithm, which enumerates all possible 

split candidates of all features, although this is extremely computationally expensive, 

XGBoost supports this kind of algorithm in its single machine version. The second method 

is presented as the Approximate Algorithm, which proposes candidate splits according to 

percentiles of feature distributions. Aggregating the data in such a manner is beneficial, since 

it significantly accelerates the computational time by reducing the number of split candidates. 

In addition, XGBoost is also optimised for split finding when the dataset is characterized by 

sparse data; the paper presents an additional algorithm for this purpose. The algorithm is 

claimed to be extremely efficient, since it processes only the non-missing values for a split 

and then calculates the gain of placing the missing values into the left or into the right branch, 

calculates the gain for both cases and returns the split and the direction with the highest 

score. XGBoost further optimises its runtime by leveraging from more efficient system 

settings. As far as the tree learning is concerned, the authors claim that data sorting is one of 

the most time-consuming parts of the entire procedure, hence the algorithm stores the data 

in in-memory units defined as blocks, the latter are stored in compressed column format, 

where the data is sorted by the feature values. When the exact greedy algorithm for split 

search is used, the entire dataset is pre-sorted and stored in a single block, which is then 
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scanned by the split algorithm; this data format is computed only once and is used for all 

ensemble iterations. Finally, the algorithm further optimises the runtime by storing the data 

required for the calculation of the similarity scores in the cache, for faster data access by the 

CPU.  

XGB Regressor is available as an open-source library for Python [62], which has been used 

for this work.  

The reason of the consideration of such algorithm for this work is not to exploit its full 

potentials of large data handling and parallelization, but to test whether a more efficient and 

quicker algorithm than the classical Gradient Boosting Regressor achieves the same result 

quality with lower computational time.  

 

LGBM Regressor 

 

Light Gradient Boosting Machine or LightGBM is another decision tree-based boosting 

algorithm developed by Microsoft Research in 2016 [63], which aims improving the 

performances of the classical Gradient Boosting Machine algorithm, especially in terms of 

computational time. The algorithm is presented in Ke et al., (2017) [27], hence the reference 

of this subsection can be referred to this paper. The strategies how LightGBM reduces its 

training time are manifold. Firstly, it is acknowledged that one of the main slowing factors 

of the Gradient Boosting Machine lies in training the decision trees, since this implies that 

the optimal splitting points must be found. In the base case, all datapoints are scanned and 

all splitting points are tested, until the best one is found; this allows to find the best split of 

a node, but it is extremely inefficient in terms of computational time and memory usage, if 

the size of the data is significantly large. To overcome this issue, LightGBM uses a histogram-

based splitting algorithm, which groups continuous values into bins and uses the latter to 

construct histograms; the split points are then tested on the feature histograms. The runtime 

complexity of this procedure is dependent on the amount of data multiplied by the number 

of features for constructing the histograms, and on the number of bins multiplied by the 

number of features to find the best splitting points. Since the number of bins is lower than 

the original number of datapoints, this procedure drastically reduces the computational time. 

Since this split finding procedure is dependent on the number of datapoints and the number 

of features, the authors developed procedures which reduce both and further increase the 

training performance of LightGBM. To reduce the number of datapoints while constructing 

new trees, the algorithm relies on Gradient-based One-side Sampling, which exploits the gradients 

for data sampling. It is based on the idea that an instance which has a small gradient is already 
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well-trained, since the training error is small, and it should not be processed any further. On 

the other hand, instances with high gradient are a sign of undertraining and should be used 

for additional information gain. Gradient-based One-side Sampling hence first sorts the data 

instances according to the absolute value of their gradient in descending order and selects a 

percentage 𝛼 of the top part of the sorted set, then it selects another percentage 𝛽 of the 

bottom part of the set to create the new sample for further training. Since selecting majorly 

only the instances with large gradient would change the distribution of the data, the algorithm 

scales the sample with small gradient by a constant 
1−𝛼

𝛽
. This new sample is then used for 

further learning.  

As far as dimensionality reduction is concerned, the authors developed a second algorithm 

which is referred as Exclusive Feature Bundling. The algorithm processes sparse mutually 

exclusive features, such as one-hot encoded features which describe categorical variables and 

bundles them into one single feature which preserves the meaning of the old ones. Since the 

number of bundles will be lower than the number of features, dimensionality can be reduced 

without any loss in accuracy, but significantly improving the training time.  

For this work, the LGBMRegressor class has been imported from the lightgbm library for 

Python [64], by default the model trains 100 boosted trees. 

As far as the training time is concerned, Ke et al., (2017) [27] uses XGBoost as the benchmark, 

since it was the fastest among the tested models; the authors show that their implemented 

new machine learning model outperforms the competitors. 

As for XGBoost, this model is considered in this work not to exploit its full potentials in 

handling very large and sparse data, but to study the performance of quicker alternatives than 

the classical Gradient Boosting Regressor for the scope of this work.  

 

4.2 Evaluation Criteria 
 

Once the dataset will be created and there will be a validation that the developed features are 

correlated with the bidding prices, a regression model must be chosen to make predictions 

for future auctions. The trade-off for the chosen model should be its performance with 

regard to the required regression task, its understandability and its efficiency in terms of 

training time. For this purpose, five quality criteria have been chosen and partially newly 

developed to select the best possible model. These criteria are the pure accuracy of the model 

in terms of 𝑟2, its training time, the ability to recognise the most attractive bundles, the model 
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rank accuracy in terms of Spearman’s ρ, and the ability to find the best possible winning 

bundle set.  

 

𝒓𝟐 

 

The classical 𝑟2 explains how well a model fits to the data, more specifically, how well the 

predicted values from the regression model match the actual values the model tried to predict. 

Mathematically, this is explained by variance of the predicted values divided by the variance 

of the data [20]. If the value of the 𝑟2 is equal to 1, it means that the model perfectly fits the 

data.  

 

Training time 

 

All models are evaluated according to the training times, independently from their prediction 

accuracies. Since the scope of this study is to find alternative solutions to the existing ones 

for the bundle generation problem, the chosen model must be able to be fitted to the existing 

data in reasonable time, to compete with the computational times of the other existing 

solutions and to be quicker than the base mathematical solution of complete bundle 

enumeration.  

 

Ability to recognise the most attractive bundles  

 

This quality criterion has been developed for the specific scope of this work. The ability to 

recognise the most attractive bundles is referred as the accuracy of a determined model in 

correctly predicting the exact bundles which are going to be offered in the bidding phase. 

For the scope of application of the models, this measurement is more meaningful than the 

mere  𝑟2, since it focusses on the accuracy in predicting the bidding price for the bundles 

which are of interest for the next phase, instead of the whole dataset.  

Firstly, it must be stated what is meant by attractive bundles for the purpose of this study. 

As stated above, the variable that the models try to predict is the bidding prices for all carriers; 

this value however does not reveal much information about the attractiveness of a bundle, if 

not put into context. As stated in the introduction, the purpose of trading customer requests 

grouped into bundles instead of as single ones is the different level of attractiveness of the 

same request alone or into a bundle. This piece of information can be directly derived from 

the bidding prices. As mentioned above, the bidding prices are assumed to reflect the cost 
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of including a bundle in the existing routes of each carrier, hence, the lower the bidding price, 

the better. The bidding price itself however is not an indicator of the attractiveness of 

inserting customer requests into a route of a specific carrier, since it does not reveal how 

many customers can be inserted into a route at the specific cost. Dividing the bidding prices 

by the number of customers reveals how much it would cost for a carrier on average, to 

insert each customer into the existing route. The price per customer can be now used as a 

measure of attractiveness for each bundle, since it tells whether each request is cheaper to be 

served alone, or in combination with other ones. Given that a bundle 𝐴, which contains only 

one request 𝑎 is traded at a price 𝑝; if a bundle 𝐵, which also contains request 𝑎 and other 

additional requests is also traded at the same price 𝑝, it implies that on average a carrier would 

be better off delivering request 𝑎 in bundle 𝐵, since the average delivery price per customer 

is lower, given the higher number of customers in bundle 𝐵.  

The values of the predicted bidding prices using the regression models can also be divided 

by the number of customers in the bundles to derive a predicted price per customer. Since 

the lower the price per customer the more attractive a bundle is meant to be, the dataset can 

be sorted ascendingly according to the price per customer to have a rank of bundles sorted 

by their attractiveness. The same can be done with the predicted price per customer; in this 

way the dataset is sorted by the predicted attractiveness. Once that the dataset has been 

sorted according to the level of attractiveness, the bundles in the top part of the dataset are 

the ones that will be offered to the carriers in the bidding phase. The first 𝑛 bundles from 

the sorted list can be selected for further processing. To state how well a model is able to 

recognise the 𝑛 most attractive bundles, the list of 𝑛 most attractive bundles according to 

the actual price per customer and the list of 𝑛 most attractive ones according to the predicted 

price per customer are compared. The comparison consists of checking how many bundles 

present in the first list have been preserved in the second one. Dividing this number by 𝑛 

gives a value between 0 and 1, with 0 indicating that the two sorted lists contain completely 

different bundles, and that no bundle has been classified correctly by the model, whereas a 

value of 1 would imply that the two lists are identical, and that the model classified all 𝑛 best 

bundles correctly. 

The best 𝑛 bundles according to the predicted price per customer are collected to build 

feasible sets for the bidding phase.  
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Rank accuracy – Spearman’s ρ 

 

The ability to recognise the most attractive bundles gives an overview about how many 

bundles are correctly classified among the very best 𝑛 ones according to the predicted price 

per customer. The measurement however is not able to tell whether the first best bundle 

according to the price per customer is also the first best one according to the predicted price 

per customer. In other words, it is not able to specify whether the ranking within the best 𝑛 

bundles has also been preserved. For this purpose, Spearman’s ρ reveals how much of the 

ranking has been preserved from the actual to the predicted list of best bundles. Spearman’s 

rank correlation coefficient takes the ranking of two sorted lists and the number of entries 

as input and gives a correlation value which ranks from 1 to -1, depending on whether the 

rankings of the two lists are in the exact same or opposite order, respectively. The rank 

correlation coefficient in terms of Spearman’s ρ is given by the relationship 

 

ρ = 1 − 6
∑ (𝑟(𝑥𝑖) − 𝑟(𝑦𝑖))2𝑛

𝑖=1

𝑛(𝑛2 − 1)
 

 

where 𝑟(𝑥𝑖) is the rank of the value 𝑥𝑖 in the first sorted list with 𝑖 = 1 … 𝑛 , and 𝑟(𝑦𝑖) is 

the rank of the value 𝑦𝑖 in the second sorted list with 𝑖 = 1 … 𝑛 [2, chapter 4]. 

 

Ability to find the best possible winning set  

 

Finally, the models are evaluated according to the ability of finding the best possible winning 

bundle sets. This criterion has also specifically been designed for the scope of this work. The 

models are compared by the ability of finding the best winning bundles in the same instance. 

As part of the computational study, this criterion will also be used to compare the 

performance of the final chosen model with the solutions given by the already implemented 

Genetic Algorithm.  

After that a model is fitted to the training dataset, which consists of a bunch of concatenated 

instances, a completely new one is used as test set. The bidding prices are predicted for each 

single carrier, the predicted price per customer is calculated and the dataset is then sorted 

according to these values. Successively, the best 𝑛 bundles are selected as candidates to build 

feasible sets. This is repeated for each carrier, if the alliance is composed by 𝑚 carriers, the 

final list of best bundles will have length 𝑚𝑛. Predicting bundle prices does not assure that 

all bundles are able to build feasible sets when combined; hence, all feasible sets of bundles 
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are built from the final list of best bundles, and the bundles which are meant to be attractive, 

but are not able to build any feasible set combined with other bundles are directly discarded 

and not processed any further. Before the bidding takes place, it is hence already known that 

the offered bundles can build feasible sets. As far as the actual bidding phase is concerned, 

for sake of simplicity, it is assumed that the bidding prices of the new auction are the actual 

original prices of the instance, hence the values that the models try to predict. Given that 

each carrier can receive up to one bundle, each set can consist of up to 𝑚 bundles and will 

have a related bidding price matrix, as shown in table 1, which represents a situation where 

𝑚 = 3. Assuming that there are 10 requests with IDs from 1 to 10 that must be reassigned, 

a possible winning set could look as following.  

 

Table 1 Example of a Bidding Price Matrix for a Feasible Set 

Bundle Set 

Bundles Bids Carrier 1 Bids Carrier 2 Bids Carrier 3 

[3,4,5,6] 50 80 90 

[1,2] 30 20 25 

[7,8,9,10] 60 70 80 

 

For each set of bundles, it must be assessed which carrier will acquire which bundle so that 

the total assignment cost is minimised.  

This issue refers to the well-known generalized assignment problem [35]. In the generalized 

assignment problem, there are 𝑛 jobs (the bundles in a set) that have to be assigned to 𝑚 

workers (the carriers). 𝑐𝑖𝑗 is defined as the cost of assigning job 𝑖 to worker 𝑗 (the bidding 

price). The set of jobs is defined as 𝐼 = {1 … 𝑛}, and the set of workers is defined as 𝐽 =

{1 … 𝑚}. The generalised assignment problem aims at minimising the total cost required to 

assign each job to one worker. For this, the binary variables 𝑥𝑖𝑗 are introduced, taking the 

value of 1 if bundle 𝑖 is assigned to carrier 𝑗, or 0 otherwise.  

The generalised linear assignment problem aims at solving the following LP [35].  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑗∈𝐽𝑖∈𝐼

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑖𝑗 = 1          ∀ 𝑗 ∈ 𝐽

𝑖∈𝐼

 

𝑥𝑖𝑗 = 1 𝑜𝑟 0           ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 
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This LP minimises the assignment cost of jobs to workers, the first constraint indicates that 

each job needs to be assigned to exactly one worker [35]. 

The generalized assignment problem also implies a constraint that the job assignments 

cannot exceed the number of resources available; in this study, since sets of only up to 𝑚 

bundles are built and 𝑚 is constant, this constraint can be omitted. Note that a set can also 

consist of < 𝑚 bundles; in this case, not all carriers will receive a bundle. This is also a 

feasible solution.  

The solution for this LP applied to very small matrices like the ones considered in this study 

can be found very quickly by the linear sum assignment function offered by the library 

scipy.optimise in Python [65].  

This small LP is solved for each set in the bidding phase. Each set will consequentially have 

an assignment cost, these are then sorted and the set with the smallest assignment cost is the 

one that is considered to include the bundles that have won the auction. Customer requests 

will be hence reassigned grouped into the bundles that are contained in the winning set.  As 

mentioned above, the same procedure is also conducted for finding the winning set with the 

framework described in [18]; this framework is able to generate bundles which are already 

able to build feasible sets with other generated bundles, hence there is no need of any 

feasibility check, as it happens in the regression model-based approach. The sets are therefore 

built, the original bidding prices are added, the LP is solved for each set and the set with the 

smallest assignment cost is the winning one.  

 

5 Data Processing & Evaluation 
 

 

5.1 Data Description 
 

In the instances used to conduct this study, the alliance consists of three carriers operating 

in the federal state of Vienna, Austria. In total there are 74 customers, and each carrier 

submits five presumably unattractive customers to the customer pool, the central authority 

then creates the bundles and offers them to the carriers.  

The only pieces of information known about the submitted customers are their geographical 

coordinates and two matrices reporting the distances and the travel times between the 

customers. The geographical locations of the depots of the carriers are also known. In total, 

20 instances are considered in this thesis.  
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Figure 3 represents the original setting of one example instance. The blue markers represent 

the customers, whereas the markers with colours other than blue represent the depots of the 

carriers.  

 

 

Figure 3 Geographical Representation of Customers and Depots 

  

Historical bidding data can be thought as a table of possible bundles and respective historical 

bidding prices placed by the network members, as shown in table 2.  

 

Table 2 Starting Situation of an Example Instance 

Bundles  Bids Carrier 0 Bids Carrier 1 Bids Carrier 2 

[0]  295 365 2176 

[11]  1091 1018 2666 

[0, 1, 11, 18, 25]  4567  5470 6181 

[1, 11, 12, 29, 40]  5869 5507 6645 

… … … … 

 

Starting from this initial situation and according to the available data, new features that 

numerically depict the bundles and have a positive correlation to the bidding prices must be 

engineered in order to train the regression model and predict prices for bundles prices in 

future auctions. The features should describe the bundles as accurately and effectively as 

possible, always taking the computational times into consideration. In the best case, a few 

and very simple to calculate features are sufficient to accurately predict bidding prices for 

future bundles. 
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5.2 Feature engineering  
 

The section below describes the new engineered features. The assumption that attractive 

bundles may be compact, dense, and cheap to deliver is taken from [18], but the ideas for 

the implementation of these specific features are taken from literature, personal knowledge 

in transportation logistics and personal thoughts.  The effectiveness of the engineered 

features will be tested in future steps. All features have been engineered in Python.  

 

Number of Customers 

 
As shown in table 1, a customer bundle is represented by none other than a list of customer 

IDs, it can be hence quickly determined how many customers there are in each bundle by 

counting the number of elements in each list. This is the first and simplest calculated feature, 

called number_of_customers.  

 

Bundle Centroid 

 
Each bundle can be also considered as a group of customers; since the coordinates of each 

customer are known, bundles can be represented as a set of points in a Euclidean space. As 

for a cluster of points in a two-dimensional space, bundles can also be represented by their 

centroids [31, Chapter 7]. These are calculated by taking the mean of all 𝑥 and 𝑦 coordinates 

of all customers belonging to a bundle. As a result, each bundle is described by just one point. 

A tuple representing the coordinates of the centroid of each bundle is temporarily added to 

the dataset for further calculations. An example of a bundle and its centroid is shown in 

figure 4, the blue markers represent the customers, whereas the green point marks the 

location of the centroid.  

 

 

Figure 4 Example of Customer Bundle and its Centroid 
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Originally, working with the bundles’ medoids, namely the most centrally located customer 

[40], was also taken into consideration. The idea was to save computational time by not 

calculating an extra point in the space, but to leverage from the existing ones, since the 

centroid is hardly ever a point in the data, whereas the medoid is by definition already 

contained [40]. However, to state which point is considered as medoid, the distances between 

all customers have to be calculated to determine the most centrally located one. Since this 

also requires computational time, and the bundle’s centroids were still needed to compute 

further features, the medoid idea was directly discarded.  

 

Sum of Squared Distances & Sum of Distances in Kilometres  

 
The idea of k-means clustering, whose idea is finding clusters considering their compactness, 

namely the sum of squared Euclidean distances from every point in the cluster to a cluster 

representative, the centroid [25], can be also applied to the customer bundles, where the 

points in the cluster are the customers’ requests. The objective function of k-means clustering 

aims at minimising this sum when finding clusters; in the case of the bundles, clusters are 

already given and for each of them the sum of squared distances from each customer to the 

centroid is calculated, following the idea that small values may indicate attractive bundles, 

since the customers are close to each other, and the bundle is hence very compact. Large 

values on the other hand indicate that customers in a bundle are far from each other, and it 

may not be so attractive for a carrier to deliver them as a single bundle. The sum of squared 

distances for each bundle is stored as a feature called distance_sum_squared. This 

idea can be further adapted to the purpose of this study. Since the instances contain real 

coordinates, the geographical distances between customers and centroids can be measured 

with an actual unit of measure and used as a real-world compactness measure. With the same 

lines of code and the same idea, the distance between each customer in a bundle and the 

centroid can be also calculated using the distance function of the Python built-in library Geopy. 

This function processes two points and respective tuples of real geographical coordinates 

and calculates the real distance in a standard unit of measure, in this case kilometres. The 

sum of real distances in kilometres from each customer in a bundle to its centroid used in 

this study is stored in the feature distance_sum_[Km].  
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Distances between Centroid and Depots 

 
Bundles’ centroids may also be used to assess the average distance of each bundle to the 

depots of the carriers, assuming that bundles which are closer to the depots may be more of 

interest, and hence more attractive for a carrier, compared to some other ones whose 

centroid lays further away. This piece of information can be acquired in very short 

computational time, since only one distance must be calculated for each bundle. The 

distances from each depot of the carriers to all bundles’ centroids are generated as three new 

features named distance_from_depot_1, distance_from_depot_2 and 

distance_from_depot_3, indicating the distances to the centroids of all bundles 

from depots of carriers 0, 1 and 2 respectively. Including the depots in the bundle description 

is also used to effectively describe bundles which contain only one customer; when 

considering the pure inter-bundle compactness, these special kinds of bundles will reasonably 

have 0 values for all measures, it does not necessarily mean though, that these kinds of 

bundles are the most attractive ones.  

 

Radius (from Gansterer & Hartl (2018)) 

 
Gansterer & Hartl (2018) [18] also develops descriptive features for the bundles for the 

objective function of their approach, one of them is the radius of a bundle. The same feature 

has been computed for this dataset as well. The authors consider the radius of a bundle as 

the average of the distances from each customer in a bundle to its centroid. This feature has 

been named radius in the dataset. 

 

Radius (Geometrical) 

 
A more classical geometrical concept of radius has also been calculated to describe the 

compactness of each bundle. The distance from the centroid to the furthest customer in a 

bundle is stored as new feature, implying that if this distance is small, the furthest customer 

in the bundle is still close to the centroid and hence the bundle is compact, if this distance is 

significant, the bundle will be loose and potentially unattractive. This measure is referred as 

max_distance. 
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Bundle Density 

 
Gansterer & Hartl (2018) [18] also defines a concept of density for each bundle; however, 

since they consider a pick-up and delivery problem, they consider the density being the 

average direct travel distance of all requests divided by the maximum distance of all requests 

to the bundle’s centroid.  

Since this study does not consider such a problem, the idea of calculating bundles’ density 

has been taken from the aforementioned paper, but the calculation approach is different. For 

the development of this dataset, the bundle density is calculated following the idea of the 

calculation of the population density of a city or Country. The population density is 

calculated as the number of inhabitants, or population size, divided by the unit of area [36]. 

In the case of a bundle, the number of inhabitants is represented by the number of customers 

in a bundle, whereas the area could be defined in many ways, since there are no legal 

boundaries of a bundle. For this feature, the surface of a bundle is considered as the area of 

the circle which includes all bundles in it; hence the radius 𝑟 of this circle is represented by 

the distance of the furthest customer from the bundle’s centroid. Then the area 𝐴 of the 

circle is calculated by the given formula 𝐴 = 𝜋𝑟2 .  Once this value is calculated for all 

bundles, since the number of customers in the bundles is already given as first described 

feature, it is sufficient to divide the latter by the area of the circle of each bundle to obtain 

the bundle density. This piece of information is stored in a column named 

bundle_density.  

 

Standard Deviation 

 
Since the centroid of the bundle is represented by the mean of the coordinates of all customer 

locations, a measurement of the compactness of a bundle can be represented by the standard 

deviation of the distances between the customers and the centroid. Since the standard 

deviation describes the dispersion of a set of values from the mean, as far as the bundles are 

concerned, a low standard deviation implies that the customers are very close to the centroid 

and hence the bundle is compact, a significant dispersion on the other hand is sign of a loose 

bundle. This feature is referred as standard_dev in the dataset. 
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Bundle Tour Estimation 
 

Lastly, as for [18], a rough idea of the cost to deliver each customer in a bundle in terms of 

the solution of a Travelling Salesman Problem (TSP) may give an additional hint about the 

attractiveness of the bundles. The TSP describes the problem of visiting each of the foreseen 

points exactly once, with the shortest possible tour [26]. Since the TSP is a NP-Hard problem 

[26], solving it to optimality for each single bundle would vanish the competitive advantage 

in terms of computational time of alternative methods compared to the full bundle 

enumeration in the bidding phase. The cost of the TSP should be hence approximated taking 

solution quality and computational time into consideration. For this, two approaches have 

been selected for testing; the one which brings the best performances for the regression 

models will be chosen for the final dataset.  

 
Regression-based Tour Length 

 
Firstly, a regression-based tour length approximation method presented in Çavdar & Sokol 

(2015) [7] has been implemented. This feature is referred as Tour_length_approx. The 

approach does not take distances between customers into consideration, the TSP 

approximation is based on calculations between customer coordinates and the central 

cartesian axes built on the centroid of each bundle. This method considers the dispersion in 

each dimension, namely the standard deviation of the coordinates in both dimensions; the 

closeness to the centre in terms of the average distance of the customers to the central 

cartesian axes, and the dispersion around the central axes, considered as the standard 

deviation of the distances from the nodes to the central cartesian axes. Based on these 

measurements, the authors estimate the cost of a TSP with the following formula:  

𝑇 ≈ 2,791 × √𝑛(𝑐𝑠𝑡𝑑𝑒𝑣𝑥𝑐𝑠𝑡𝑑𝑒𝑣𝑦) + 0,2669 × √𝑛(𝑠𝑡𝑑𝑒𝑣𝑥𝑠𝑡𝑑𝑒𝑣𝑦) ×
𝐴

𝑐𝑥𝑐𝑦
 . 

The formula has the following notation.  

▪ 𝑇: tour length  

▪ 𝑛: number of customers in a bundle 

▪ 𝑐𝑠𝑡𝑑𝑒𝑣𝑥, 𝑐𝑠𝑡𝑑𝑒𝑣𝑦: standard deviation of the absolute distances of the nodes to the 

horizontal and vertical axis  

▪ 𝑠𝑡𝑑𝑒𝑣𝑥, 𝑠𝑡𝑑𝑒𝑣𝑦 : standard deviation of the nodes’ horizontal and vertical 

coordinates  

▪ 𝐴 : area of the bundle, calculated with the method stated above 
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▪ 𝑐𝑥, 𝑐𝑦: average distance of the nodes to the central horizontal and vertical cartesian 

axes 

 

Tour Length with Cheapest Insertion Heuristic 

 
In the second place, a more classical TSP cost estimation has been calculated implementing 

a cheapest insertion heuristic for each bundle, since the distances between customers are 

known. The cheapest insertion heuristic iteratively inserts new customers in a graph 

calculating the cost of inserting the customer in every possible position of the existing route 

and picking the insertion position with the cheapest insertion cost [26]. In contrast to the 

first method, the cheapest insertion heuristic considers the actual distances between all 

customers, its solution is hence not an approximation as for the regression-based method, 

but the actual sum of distances of the found optimal solution.  

 

As far as the runtime complexities of the two methods are concerned, the regression-based 

method outperforms the cheapest insertion heuristic. The first method in fact does not 

consist of a proper algorithm, its computational complexity in Python is given by the 

calculation of the distances from each customer to the central cartesian axes and above all 

by the calculation of the standard deviations needed for the formula. The Cheapest Insertion 

Heuristic is a proper algorithm and could be most efficiently executed in time 𝑂(𝑛2 log 𝑛) 

[26]. 

The used code for the cheapest insertion heuristic has three nested loops, it has therefore a 

runtime complexity of 𝑂(𝑛3). 

The cheapest insertion heuristic is hence the feature with the highest computational 

complexity of the whole dataset.  

Both versions of the TSP cost approximation have been calculated for each bundle alone, 

and considering each of the single depots as the starting and ending point of each TSP. 

Including the depots in the TSP cost calculation highlights the different levels of 

attractiveness of the same bundle for the different carriers; for example, it may be assumed 

that bundles whose customers are close to each other, but generally very distant from the 

depot of one carrier are not as attractive as other bundles whose customers generally lay 

closer to the depot. The second reason for including the depots in the TSP calculations is to 

provide bundles with only one customer with a numerical description of the TSP other than 

0.  
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5.3 Features Evaluation  
 

5.3.1 Pearson’s Correlation Coefficient  

 
Since the features have been engineered according to assumptions and ideas from the existing 

papers, whose scopes however differ from the one of the presented methodology, it is still 

unknown whether they are able to describe the attractiveness of the past bundles. In other 

words, it is still not known how they are correlated to the bidding prices of the different 

carriers.  

Calculating the correlation coefficients of all features with regard to the bidding prices 

represents a way of understanding if the assumptions made in the feature engineering phase 

are reflected when considering the bidding prices. For this, Pearson’s Correlation Coefficient 

is used. Pearson’s Correlation Coefficient is a way of measuring the relationship between two 

statistical variables 𝑋 and 𝑌, which is assumed to be linear; it hence measures the linear 

correlation strength of the considered variables [23 Chapter 6]. The correlation coefficient is 

given by their covariance divided by the product of the standard deviations of the two 

variables [13 Chapter 4]. The correlation coefficient is hence represented by the following 

relationship. 

 

𝑟 =
𝑐𝑜𝑣𝑥𝑦

𝑠𝑥𝑠𝑦
 

 

Ideally, the absolute value of the correlation coefficients should be as close as possible to 1, 

to indicate a strong positive correlation between two variables. The closer to 0, the more 

uncorrelated two features are [23 Chapter 6]. The values of the Pearson’s correlation 

coefficients for all variables with regard to the bidding prices are reported in tables 3, 4 and 

5 below. The correlation coefficients for all created features have been sorted in a descending 

order. Since some features are calculated taking information about the depots of each single 

carrier into consideration, the correlation coefficients have been calculated with regard to the 

bidding prices of each carrier singularly. Correlations for features which include carrier 

information have been calculated regarding the bidding prices of the respective carrier only. 

The tables report the average correlation values of the features for all 20 instances.  
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Table 3 Feature Correlations Carrier 0 

Feature Correlatio

n 

Bids Carrier 0 1,000000 

cheapest_insert_depot_0 0,885510 

cheapest_insert 0,812964 

distance_sum_squared 0,803919 

Tour_length_approx_with_depot_

0 

0,800156 

distance_sum_[Km] 0,791232 

Tour_length_approx 0,765242 

number_of_customers 0,755851 

bundle_density 0,742186 

standard_dev 0,590554 

radius 0,580096 

max_distance 0,536066 

dist_from_depot_1 -0,054171 
 

Table 4 Feature Correlations Carrier 1 

Feature Correlatio

n 

Bids Carrier 1 1,000000 

cheapest_insert_depot_1 0,927401 

cheapest_insert 0,874118 

Tour_length_approx 0,859674 

Tour_length_approx_with_depot_

1 

0,856256 

distance_sum_[Km] 0,826611 

distance_sum_squared 0,802072 

number_of_customers 0,733959 

bundle_density 0,715502 

standard_dev 0,614350 

radius 0,600777 

max_distance 0,524052 

dist_from_depot_2 -0,020447 
 

 

Table 5 Feature Correlations Carrier 2 

Feature Correlation 

Bids Carrier 2 1,000000 

cheapest_insert_depot_2 0,939851 

Tour_length_approx_with_depot_2 0,881408 

Tour_length_approx 0,872513 

cheapest_insert 0,872067 

distance_sum_squared 0,835236 

distance_sum_[Km] 0,833249 

bundle_density 0,752626 

standard_dev 0,709238 

number_of_customers 0,706295 

radius 0,691614 

max_distance 0,619474 

dist_from_depot_3 0,306131 

 

It can be observed that almost all generated features have a positive correlation coefficient 

with the bidding prices of all carriers. The coefficients clearly show that the features which 

have the highest correlations to the bidding prices are the ones describing the bundles in 

terms of tour length. For all carriers, it can be observed that the tour length of a bundle 
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estimated using the cheapest insertion heuristic and taking its respective depot as starting and 

ending point of the TSP, is the feature with the highest correlation to the bidding prices. 

Even not considering information concerning the depots of the carrier, the TSP estimation 

of the isolated bundle with the cheapest insertion has a very strong correlation to all bidding 

prices, being the second strongest feature for two carriers, directly after the TSP estimation 

including the depot. The TSP length approximation using the regression-based approach is 

also relatively strongly correlated to the bidding prices; in two cases, including the depot as 

starting and ending point increases the correlation value to the target variable. For carrier 1, 

the correlation values of the two variants are almost identical. Its performance in terms of 

ranking however is not as stable as the cheapest insertion heuristic; for carriers 1 and 2, this 

feature is the one with the highest correlation after the TSP calculated with cheapest insertion, 

whereas for carrier 0, another feature has a slightly higher correlation than the regression-

based TSP. It is also worth noticing that the regression-based TSP with no depot information 

has a slightly higher correlation than its Cheapest Insertion equivalent for carrier 2. Features 

which describe the bundles in terms of compactness are also significantly correlated to the 

bidding prices for all carriers; the compactness measured as the sum of distances to the 

centroid also brings good correlation values, indicating that compact bundles are generally 

more attractive than loose ones. Describing a bundle in terms of its density taking the idea 

from the measurement of population density has also a positive correlation to the bidding 

prices for all carriers, with a correlation of over 0,7 for all cases. Other features do not bring 

the desired level of fitness to the bidding prices, the distance from the depots to the bundles’ 

centroid for example has low correlations in all three cases. It must be also mentioned that 

the correlation ranking is similar for all carriers, but the actual correlation values also vary 

from carrier to carrier, even for the features which do not take any information about the 

depot into consideration and are hence equal for all carriers. Since the data is artificially 

generated, a possible natural explanation of this phenomenon is not possible at this stage. 

To give a better visual overview of the correlations between the different types of created 

features and the bidding prices, the scatter plots of three example features, one describing 

the bundles in terms of TSP solution, one in terms of compactness and one in terms of 

density are presented in figures 5, 6 and 7 below. The visualizations have been generated in 

the visualization software Tableau.  

 



 34 

 

Figure 5 Correlation of Tour Length feature 

 

Figure 6 Correlation of Compactness feature 

 

 

Figure 7 Correlation of Density feature 

 

 

These examples describe only one randomly chosen feature per category for one random 

carrier in one instance. The very high correlation between the bidding prices and the TSP 

solved with cheapest insertion including the carrier depot is described by the shape of the 

data in the first scatter plot, whereas it can be observed how the features of the other two 

categories are directly proportional, but the scatter plot does not present a clear linear shape 

like in the case of the TSP, hence the positive correlation value, but not as high as for the 

first category.  

 

5.3.2 Sequential Feature Selector 

 
After that the features have been created and it has been stated that they are all differently, 

but positively correlated to the bidding prices for all three carriers, it is still unclear which 

ones really bring benefits in predicting these prices in terms of model accuracy, and since all 

studied models work differently, it may also be the case that some features are more beneficial 

than others when applied to different models. In general, the prediction accuracy of a model 

may not improve if more and more features are added to the model [37 Chapter 5]. To 

accurately understand which variables help improving the prediction accuracy in terms of  

𝑟2, a Sequential Feature Selector has been applied when fitting all models. The Sequential 

Feature Selector is a tool available in Python from the library scikit-learn [66], it starts with 
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an empty set and iteratively adds one feature after the other into the model according to 

which ones bring the best performance improvement and evaluates the latter in terms of a 

scoring parameter after inserting each feature [67]. For this work, 𝑟2 has been chosen as 

scoring parameter. When adding new features does not bring any further benefit to the model, 

the selection stops [37 Chapter 5]. The tool then reports the model best 𝑟2 value together 

with the combination of feature which made the model achieve this value. The reason of the 

usage of such a tool is not only to understand which model achieves the best accuracy, but 

also which one requires the lowest number of features to be optimally trained, or which one 

requires features that are less expensive to compute than others.  

 

5.4 Evaluation of the Models and Dataset 
 

The Sequential Feature Selector evaluates the models in terms of 𝑟2. For the purpose of this 

study, the models will be tested according to the criteria described above. Besides the 

comparison of the training times, the study on the other quality criteria have been supported 

by the Sequential Feature Selector. This will not only provide an indication on which features 

to choose for the final study after that the best regression model will be chosen, but will also 

allow a fair comparison of the models among the different criteria, since the tool makes sure 

that each machine learning algorithm is always optimally trained. In order to evaluate the 

model with the support of the Sequential Feature Selector, some instances are used as test 

set and some different ones are used for testing.  

 

𝒓𝟐 
 

The Sequential Feature Selector has been applied on 7 different test instances for each of the 

models chosen for this study, since the features which have been calculated taking depot 

information of a specific carrier into consideration must be used only when calculating the 

bids of the corresponding member, the model fitting has been performed for each carrier 

singularly. The tables in the appendix report the best 𝑟2 values and the list of features which 

let the model achieve the reported 𝑟2 for each instance and each model. For each carriers 

the models have been divided into two tables, one reports the performance of the linear 

models, the other of the ensemble models. In total there are 126 𝑟2 values and groups of 

features to evaluate. 
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From the tables it can be clearly noticed that the application of different models has an 

influence in the best achievable 𝑟2 for each instance, and that the list of features which 

enables each model to achieve the best scoring value also varies depending on which model 

is trained. There are however some similarities, as anticipated in the correlation analysis, the 

feature which has the highest correlation with the bidding prices, namely the cheapest 

insertion including the depot, contributes to an improvement of the 𝑟2 values for all models 

in 100% of the cases.  

Table 6 reports the average number of features needed from each model in order to achieve 

the best possible 𝑟2 values among the tested instances.  

 
Table 6 Average Number of Features required by each Model 

Model Average number of features 

Linear Regression 8,0 

Bayesian Ridge 8,142857 

Elastic Net 8,428571 

XGB Regressor 6,0 

LGBM Regressor  6,142857 

Gradient Boosting Regressor 6,571429 

 

Elastic Net is the model which on average requires the highest number of features to achieve 

to be optimally trained, whereas the XGB Regressor needs the lowest number of features. 

In general, it can be observed how the linear methods on average must be trained with more 

features to reach the best accuracy score compared the ensemble algorithms. This may 

represent an advantage in choosing such a model, however, the significant different in 

training times between ensemble and linear model must also be taken into consideration. In 

addition, as stated above, despite the difference in the number of features needed by the 

different models, the most computational expensive one, namely the cheapest insertion, is 

the one always contributing to a 𝑟2 improvement. If the difference in the number of features 

chosen by the Sequential Feature Selector is represented by variables which are 

computationally cheap to calculate, the variation of the training times between the two main 

regression methods treated in this study may not justify the choice of an ensemble method 

only for the lower number of features needed.  

 

Despite the dissimilarities in the nature of the various regression models and the deriving 

difference in the features needed by each of the models to be optimally trained, the resulting 

average 𝑟2 values derived from the tested instances do not significantly differ among the 
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different models. Table 7 reports the average 𝑟2  values derived by applying Sequential 

Feature Selector to all models for the tested instances. 

 

Table 7 Average 𝑟2 achieved by each Model 

Model Average 𝒓𝟐 

Linear Regression 0,785952 

Bayesian Ridge 0,786372 

Elastic Net 0,724430 

XGB Regressor 0,760721 

LGBM Regressor  0,775621 

Gradient Boosting Regressor 0,761217 

 

It can be noticed how ensemble and linear models produce very similar results in terms of 

𝑟2 , nevertheless, the Bayesian Ridge is the model achieving the highest average 𝑟2 . All 

models were also able to achieve 𝑟2 values higher than 0,9 in some instances. Since the 

predictors perform roughly equally in terms of 𝑟2 and they require the most computationally 

expensive features to be optimally trained, looking at the training times may provide a better 

overview for preferring a model instead of another.  

 

Training Times 

 

The performance of the models in terms of training times is remarkably contrasting when 

comparing the different models. Table 8 reports the average training times for the three 

carriers of all models in one instance expressed in milliseconds. Since the size of all tested 

instances is identical, the training times of the models throughout the different instances are 

extremely stable.  

 

Table 8 Average Training Time required by each Model 

Model Training Time (ms) 

Linear Regression 123,546680 

Bayesian Ridge 292,697350 

Elastic Net 732,926448 

XGB Regressor 34.003,606002 

LGBM Regressor  3.594,304800 

Gradient Boosting Regressor 165.912,721634 

 

The table reports the critical difference in training times between the linear and the ensemble 

models. The simplest predictor, namely the linear regression, is also the one with the lowest 

training time; in general, all linear models can be trained within less than a second, whereas 
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the Gradient Boosting regressor requires almost 166.000 milliseconds, slightly less than 3 

minutes to be trained. It can be also noticed how the training times grow exponentially if 

compared to the linear regression. Compared to the simplest model, the Bayesian Ridge 

requires 2,3691 times more to be trained, the elastic net 5,9323 times more, the LGBM 

Regressor 29,0926, XGB Regressor 275,2288, and finally the Gradient Boosting Regressor 

is slower than the Linear Regression by a factor of 1.342,9152. Due to the extremely long 

training time of this last model and its non-outstanding performances compared to the other 

model, Gradient Boosting Regression has been directly discarded as optimal model choice 

from this moment of the study onwards.  

 

Ability to recognise the most attractive bundles  

 

Having acknowledge that the 𝑟2 values achieved by the models is relatively similar, but the 

linear models require in some cases more than 1.000 times less training time than the 

ensemble models, at first sight it may be concluded that the first ones are more suited for 

this regression problem. However, as stated above, the accuracy throughout the whole 

dataset is not primarily of interest for this study, as the models should be able to predict the 

attractive bundles.  

When considering the performance for predicting the best 500 bundles compared to the best 

500 actual ones, the models behave as shown in table 9. The reported numbers are the 

average percentage of recognized attractive bundles for each of the three carriers. This 

measure has been tested on 7 different instances.  

 

Table 9 Percentage of correctly-recognised Attractive Bundles 

Model % Attractive bundles 

Linear Regression 54,3905 

Bayesian Ridge 54,5048 

Elastic Net 50,7238 

XGB Regressor 53,5238 

LGBM Regressor  52,4190 

 

For this measure as well, the models tend to behave similarly, when considering the best 500 

bundles, all regressors are able to classify more than the half of the predicted bundles 

correctly. This result is very promising for all predictors, considering that this performance 

measure refers to the classification of 500 out of the 32.767 bundles of an instance, namely 

the 1,53% of the whole dataset. Since the regressors behave similarly, the difference in 
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training times still provides a driving factor for opting for a linear model instead of an 

ensemble one. 

 

Rank accuracy – Spearman’s ρ 

 

As far as the rank preservation is concerned, the models behave differently from each other, 

as reported in table 10. This reported number are the Spearman’s ρ average values of the tree 

carriers among the same tested instances of the measure above.  

 

Table 10 Spearman’s ρ achieved by each Model 

Model Spearman’s ρ 

Linear Regression 0,414450 

Bayesian Ridge 0,432178 

Elastic Net 0,404134 

XGB Regressor 0,366029 

LGBM Regressor  0,339750 

 

The table shows how on average the linear models can better preserve the ranking than the 

ensemble models, since the latter reach a Spearman’s ρ of below 0,4, whereas all linear models 

achieve results above 0,4, with the Bayesian Ridge being the model outperforming as far as 

this measure is concerned.  

 

Ability to find the best possible winning set  

 

With this measure the models are tested in their ability to find the bundles with successively 

lead to the cheapest possible bundle reassignment. The models have been tested on 8 

different instances, and 500 best bundles per carrier have been chosen to form the feasible 

sets. Table 11 reports the assignment costs of the winning set of bundles after that the auction 

has been run after the application of each model.  

 

 

 

 

 

 

 

 



 40 

Table 11 Result of the Winning Set after applying each Model 

Linear 

Regression 

XGB 

Regressor 

LGBM 

Regressor 

Bayesian 

Ridge 

Elastic Net 

4442 4402 4402 4442 4402 

3319 3297 3115 4059 2872 

3840 3840 3840 3840 3840 

2573 2676 2772 2573 2573 

4512 4512 4512 4512 4512 

3959 2850 2850 3959 2850 

3700 3945 3849 3700 3700 

4896 4896 4896 4896 4300 

 

Results show how the regression models differ from each other in terms of finding optimal 

assignment costs. In some instances, all algorithms find the same winning set with equal cost, 

whereas in other cases the ensemble models find different optimal solutions than the simpler 

regressors. It can be also clearly seen how more complex predictors do not necessarily imply 

better solutions than the linear methods, providing a hint that the choice of the latter is 

sufficient for the purpose of this study. It is worth noticing that the model which often 

outperforms the other regression models is the Elastic Net.  

 

Since the scope of this study is finding the best possible model which is able to solve the 

bundle assignment problem as optimally as possible; the positive performances of the Elastic 

Net in finding the best winning set make the regressor an ideal candidate for the final choice.  

 

5.5 Model Selection 
 

The different quality criteria for choosing the best model show that each one has its strengths 

and weaknesses, ensemble predictors require less features to be optimally trained, but the 

training time is significantly higher than the linear regressors; all models classify more than 

50% of the best 500 bundles correctly, but the linear ones can better preserve the rank, and 

as far as the last quality criterium is concerned, Elastic Net often finds the best assignment.  

Although Elastic Net performed well also when considering the other criteria, it never 

outperformed so clearly like in this last measure. In fact, when considering all other quality 

criteria, Bayesian Ridge always slightly performed better than any other model. To better 

understand why Elastic Net is able to find better winning partitions than other models, it is 

worth considering the same studied measures, this time applied to the extreme top part of 

the dataset, namely where the very best bundles should be found. To do so, the ability to 

find the most attractive bundles and the Spearman’s ρ measurements are repeated taking 
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only the best 50 bundles into consideration. Tables 12 and 13 report the values of the average 

percentage of recognised best bundles and the rank accuracy for the best 50 bundles 

respectively, comparing the Bayesian Ridge and the Elastic Net.  

 

Table 12 Percentage of the correctly-recognised 50 most Attractive Bundles 

Model % Attractive Bundles 

Bayesian Ridge 30,5714 

Elastic Net 31,5238 

 

Table 13 Spearman’s ρ for the 50 most Attractive Bundles 

Model Spearman’s ρ 

Bayesian Ridge 0,150012 

Elastic Net 0,376402 

 

When taking only the ability of classifying and preserving the rank of the 50 most attractive 

bundles, the superiority of the Elastic Net is clearly noticeable. In fact, the two models 

behave relatively similar when considering the percentage of the recognised attractive 

bundles, but when taking the ranking into consideration, it can be clearly seen how the rank 

accuracy of the Bayesian Ridge drastically sinks compared to its performance for the best 

500 bundles, while the Elastic Net is able to preserve its performance when switching from 

500 to only the top 50 bundles. This may explain the outstanding performances of Elastic 

Net in finding the best bundles to best solve the instances, although the results of the other 

measurements were not always the best for this regression model. Indeed, the scope of this 

study is not finding the best model to predict all prices as accurately as possible, but the one 

which is able to work best in the top part of the sorted dataset, where the most attractive 

bundles are to be found. Finding the regression model which can best preserve the ranking 

of the very best bundles is of primary interest, since preserving the ranking is for the scope 

of this study more significant than accurately predicting the prices. If the ranking of the 

sorted original dataset is preserved correctly, the actual predicted prices are not influent for 

solving the bundle assignment problem, since the regression model only serves the scope of 

predicting the most attractive bundles out of which candidate solutions for the final auction 

are built, and a correct ranking is sufficient to recognise the most attractive bundles.  

Since the Elastic Net fulfils this need, and due to its very efficient training time, it can be 

chosen as optimal regression model for this study.  
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5.6 Feature Choice for Elastic Net  
 

After that the regression model has been chosen, the last step for defining the overall model 

for the auctioneer is to define which features should be computed when a new set of bundles 

must be evaluated before an auction. To achieve this, it can be looked back at the data derived 

by the Sequential Feature Selector for Elastic Net and choose only the features which bring 

an improvement in the model performances and discard all the others for the final model. 

Since some features are related to one single carrier, the features which bring benefits to the 

prediction performances have been evaluated for each single member separately. Tables 14, 

15 and 16 report the relative percentage frequency of how often each feature brought 

benefits in terms of predicting performances among the tested instances. For sake of 

completion, the Sequential Feature Selector has been applied on five further instances on top 

of the ones already tested in the section above, for a total of 13 instances. If a feature always 

improved the performances of the regression model for all tested instances, the frequency 

will be 100%.  

 

Table 14 Relative Frequency of the Model Performance Increasing Features Carrier 0 

Sequential Feature Selector Elastic Net Carrier 0 

Feature  Relative Frequency (%) 

cheapest_insert_depot_0 100,000000 

standard_dev 92,307692 

number_of_customers 84,615385 

distance_sum_[Km] 84,615385 

dist_from_depot_1 76,923077 

max_distance 76,923077 

cheapest_insert 76,923077 

bundle_density 69,230769 

Tour_length_approx_with_depot_0 69,230769 

Tour_length_approx 53,846154 

radius 15,384615 
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Table 15 Relative Frequency of the Model Performance Increasing Features Carrier 1 

Sequential Feature Selector Elastic Net Carrier 1 

Feature  Relative Frequency (%) 

cheapest_insert_depot_1 100,000000 

dist_from_depot_2 100,000000 

standard_dev 92,307692 

distance_sum_[Km] 84,615385 

max_distance 76,923077 

Tour_length_approx 76,923077 

number_of_customers 76,923077 

cheapest_insert 61,538462 

bundle_density 61,538462 

Tour_length_approx_with_depot_1 53,846154 

radius 15,384615 

 

Table 16 Relative Frequency of the Model Performance Increasing Features Carrier 2 

Sequential Feature Selector Elastic Net Carrier 2 

Feature  Relative Frequency (%) 

cheapest_insert_depot_2 100,000000 

standard_dev 92,307692 

max_distance 84,615385 

distance_sum_[Km] 76,923077 

Tour_length_approx 76,923077 

Tour_length_approx_with_depot_2 76,923077 

number_of_customers 69,230769 

cheapest_insert 69,230769 

bundle_density 53,846154 

dist_from_depot_3 46,153846 

radius 30,769231 

 

From this percentage values it can be chosen which features it is worth keeping for the final 

model and which ones can be discarded. For example, both the cheapest insertion heuristic 

and the regression-based tour length approximation aim at describing a bundle in terms of 

TSP solution, hence it is sufficient taking only one measure for this description. As 

anticipated by the correlation analysis, the cheapest insertion heuristic including the depot is 

the feature with the highest correlation to the bidding price; this is confirmed by the 

Sequential Feature Selector, which identifies this feature as always improving the prediction 

performances in 100% of the tested instances and for all carriers. It can be also noticed how 
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the information related to the depot is crucial in order to make this feature extremely 

powerful in predicting bundle prices. In fact, while the cheapest insertion heuristic including 

the depot in the solutions improves the 𝑟2 in 100% of the cases, the cheapest insertion 

describing the single bundle improves the model performance in 76,92% of the cases for 

carrier 0, while for the other two carriers its frequency stays below 70%. For these reasons, 

it is worth sacrificing computational time to calculate the cheapest insertions with depot 

information for all three carriers in the feature calculation phase, keep this feature for the 

final model, and discard the regression-based tour length approximation. It is worth noticing 

how other features tend to contribute to a performance improvement in almost the totality 

of the tested instances, like the bundle density expressed in terms of standard deviation, 

which is added to the Elastic Net regressor by the Sequential Feature Selector in more than 

92% of the cases for all carriers; it is hence a reasonable decision to keep this feature for the 

final model. Bundle compactness expressed in terms of sum of distances from the centroid 

to each customer also brings positive effects to the predictions in most of the cases, more 

than 84% for the first two carriers, and in roughly 77% of the cases for carrier 2. Since the 

calculation of the centroid of each bundle is already needed for the calculation of the 

Standard Deviation feature, this feature can be included with very little computational effort. 

For the same reason, the distance from the centroid of each bundle to each of the three 

depots can be calculated extremely quickly, since it is only necessary to compute one distance 

per bundle, and this feature is partly extremely powerful, like in the case of carrier 1, where 

this kind of feature contributes to a model performance improvement in 100% of the cases. 

There are also good reasons to keep the number of customers in the final model, since the 

feature can be calculated within fractions of a second in Pandas, and for its effortless 

computational complexity and the ease of its concept, it provides good results in the 

improvement of the regression model, namely in almost 77% of the cases for carriers 0 and 

1, and almost 70% of the instances for carrier 2. The bundle density is related to the features 

which have already been chosen for being part of the final model, since it is calculated as the 

number of customers divided by the area of a bundle, whose radius is simply described as 

the distance to the furthest customer from the centroid, a measure which has already been 

computed for other chosen features such as the standard deviation. The bundle density 

contributes to an improvement of the 𝑟2 values in roughly 69%, 62% and 54% of the cases 

for the three carriers respectively, but the added computational effort for computing this 

extra feature is only a multiplication for the bundle area calculation and a division with the 

already present number of customers in a bundle, operations which can be performed by 



 45 

Pandas extremely efficiently within fractions of a second. Lastly, it is worth mentioning how 

the new concept of radius for this study, namely furthest distance of a customers from the 

centroid, also improve the model performances in the majority of the cases. This feature 

improves the 𝑟2 in about 77% of the cases for carriers 0 and 1, 85% for carrier 2. It can be 

noticed how some other features almost do not bring benefits to the model, such as the 

radius from [18], which for all carriers is the useless feature of the set; for this reason, this 

feature is directly discarded independently from its computational complexity.  

For all the reasons stated above, the following features are chosen for the final model.  

 

▪ Cheapest insertion including the depot 

▪ Standard deviation  

▪ Sum of distances from centroid in Kilometers 

▪ Furthest customer from centroid 

▪ Distance of from each depot  

▪ Number of customers  

▪ Bundle density  

 

6 Comparison of Machine Learning Approach vs. Genetic 
Algorithm 

 
The final model for generating attractive feasible bundles out of a new customer pool 

consists of the generation of all bundle possibilities, the calculation of the chosen features 

described above, the prediction of the bundle prices for each carrier, the sorting of the dataset 

according to the predicted bidding price, the selection of the best 𝑛 bundles for each carrier, 

and the construction of all feasible set of bundles according to the definition described in 

the introduction. The chosen machine learning model is the Elastic Net Regressor. To save 

computational time when applying the whole model, it is possible to exclude the training of 

the regression model when generating new bundles by letting the algorithm use already 

precomputed regression coefficients to predict new bidding prices.  

To do so, several historical training sets with all the calculated features are combined, and 

the Elastic Net is then fitted to this resulting dataset, and the resulting regression coefficients 

and the point of intercept are extracted. This procedure has been done using all the 20 

considered instances together, in order to make the extracted regression coefficients as 

robust as possible. Since there are features that only relate to one single carrier, and as 
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detected by the Sequential Feature Selector, features are sometimes not perceived equally by 

the different carriers, the regression coefficients and the points of intercept have been 

extracted for each single carrier separately. The regression coefficients and the point of 

intercept are used to predict the bidding prices for each bundle, replicating the procedure of 

the predict function of scikit-learn; the predicted bundle price is given by the dot product of 

the feature values and the regression coefficients, adding the point of intercept. Note that 

this procedure with the regression coefficient has been used only within computational study, 

since one the scopes of the latter is measuring the runtime of the bundle generation of both 

the procedure proposed in this thesis with the already given Genetic Algorithm, the runtime 

comparison of the different regression models has already been performed. The usage of the 

regression coefficients for predicting the bundle prices allows a direct running time 

comparison between the feature generation and the extraction of the feasible attractive 

bundles of the presented approach and the Genetic Algorithm, independently of the chosen 

regression model. To finalize the model, it must first be stated how many attractive bundles 

after the prediction should be considered in order to build feasible sets. To do so, the 

performances of the regression model in terms of finding the best winning set considering 

different 𝑛 best bundles have been compared to the performance of the Genetic Algorithm, 

integrating the new code generated for the presented approach into the existing framework.  

 

6.1 Choice of 𝒏 best bundles  
 

The number of bundles that allows the construction of feasible sets depends on how many 

best bundles are picked per carrier, after that the dataset has been sorted by the predicted 

price per customer. As mentioned in the introduction, a set of bundles can be considered 

feasible if and only if no customers are missing; considering a very few number of best 

bundles may decrease the computational time of the whole procedure, since the number of 

bundles which are able to build feasible sets will be presumably very low, but the possibility 

that within the very best bundles not all customers are present, and hence no feasible set can 

be built is also very likely. Table 17 reports the values of the best possible winning sets of 

the chosen regression model compared to the solution of the Genetic Algorithm as well as 

the pool size of best feasible bundles which enabled the model to come up with a solution. 

After the application of the regression model, 50, 100, 200, 500, 750 and 1000 best bundles 

per carrier have been selected, to study the variation in the solution quality as well as in the 

size of the bundle pool. It is already known that the Genetic Algorithm always produces 100 
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attractive feasible bundles. Each instance with varying 𝑛  is directly compared with the 

solution of the Genetic Algorithm to state how many best bundles the regression model 

requires to cope with the performance of the existing benchmark. This study has been 

conducted for all considered instances. A ‘worst-case’ set of bundles has been added to all 

instances, namely the original requests that each carrier placed in the customer pool before 

the attractive bundle generation. If no further feasible attractive bundles can be found, or if 

the solution quality of other sets of bundles is worse than the original assignment, the 

solution of the instance will be the original assignment. 

 

Table 17 Feasible-best Bundles' Pool Size & Winning Set Value for different values of 𝑛 and Genetic 
Algorithm 

Instance EN 𝒏 best bundles /GA Feasible bundle pool size Winning Set Value 

0 50 7 2676 

0 100 14 2676 

0 200 55 2676 

0 500 321 2622 

0 750 592 2622 

0 1000 876 2622 

0 GeneticAlgorithm 101 2676 

1 50 64 3169 

1 100 129 3169 

1 200 257 3169 

1 500 769 3169 

1 750 1372 3169 

1 1000 1927 3169 

1 Genetic Algorithm 101 3169 

2 50 3 3201 

2 100 32 3192 

2 200 98 3180 

2 500 314 3099 

2 750 474 3099 

2 1000 668 3099 

2 Genetic Algorithm 100 3180 

3 50 3 4318 

3 100 13 4318 

3 200 75 4318 

3 500 344 4318 

3 750 644 4318 

3 1000 941 4318 

3 Genetic Algorithm 100 4318 

4 50 6 3746 

4 100 41 3746 

4 200 118 3430 

4 500 568 3317 

4 750 862 3317 

4 1000 1120 3317 
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4 Genetic Algorithm 101 3430 

5 50 3 4306 

5 100 3 4306 

5 200 33 3530 

5 500 151 3530 

5 750 295 3336 

5 1000 506 3336 

5 Genetic Algorithm 101 3530 

6 50 3 3664 

6 100 3 3664 

6 200 18 3255 

6 500 356 3075 

6 750 954 3075 

6 1000 1496 3000 

6 Genetic Algorithm 100 3180 

7 50 3 4132 

7 100 4 4132 

7 200 50 3937 

7 500 142 3807 

7 750 278 3807 

7 1000 423 3807 

7 Genetic Algorithm 100 3914 

8 50 3 4621 

8 100 48 4275 

8 200 120 4087 

8 500 322 4087 

8 750 543 3895 

8 1000 805 3895 

8 Genetic Algorithm 101 3568 

9 50 3 3516 

9 100 3 3516 

9 200 61 3516 

9 500 344 3289 

9 750 590 3289 

9 1000 1089 3245 

9 Genetic Algorithm 101 3245 

10 50 3 3777 

10 100 3 3777 

10 200 26 3617 

10 500 264 3081 

10 750 342 3081 

10 1000 454 3081 

10 Genetic Algorithm 100 3341 

11 50 3 3501 

11 100 3 3501 

11 200 7 3066 

11 500 302 3066 

11 750 656 3066 

11 1000 1125 3066 

11 Genetic Algorithm 101 3066 

12 50 3 3507 
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12 100 3 3507 

12 200 11 3507 

12 500 88 3507 

12 750 284 3507 

12 1000 450 3507 

12 Genetic Algorithm 101 3507 

13 50 3 4197 

13 100 26 4197 

13 200 62 4197 

13 500 324 3843 

13 750 554 3843 

13 1000 778 3843 

13 Genetic Algorithm 101 3970 

14 50 3 3444 

14 100 3 3444 

14 200 3 3444 

14 500 136 3187 

14 750 310 3187 

14 1000 517 3154 

14 Genetic Algorithm 102 2584 

15 50 3 5073 

15 100 3 5073 

15 200 3 5073 

15 500 3 5073 

15 750 3 5073 

15 1000 5 4915 

15 Genetic Algorithm 101 3475 

16 50 3 3392 

16 100 36 3392 

16 200 138 3376 

16 500 470 3376 

16 750 946 3304 

16 1000 1432 3304 

16 Genetic Algorithm 100 3392 

17 50 3 3429 

17 100 3 3429 

17 200 28 2702 

17 500 266 2702 

17 750 664 2702 

17 1000 1096 2702 

17 Genetic Algorithm 100 2702 

18 50 3 3666 

18 100 16 3666 

18 200 55 3666 

18 500 223 3666 

18 750 606 3666 

18 1000 958 3666 

18 Genetic Algorithm 100 3666 

19 50 3 3611 

19 100 18 3217 

19 200 77 3217 
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19 500 521 3217 

19 750 1152 3217 

19 1000 1703 3217 

19 Genetic Algorithm 101 2999 

 

If considering only the best 50 attractive bundles per carrier to build feasible sets, it can be 

clearly seen how more than the half of the instances could not be solved if the original 

solution before the auction would not automatically belong to the feasible bundles set. A 

pool size of 3 bundles implies that no other bundles other than the original ones are able to 

build feasible sets, hence applying the whole algorithm would be pointless, since after all the 

computations, the solution would be equal to the original one. On the other hand, it must 

be also noticed, that 3 instances have a bundle pool greater than 3 after considering only 50 

bundles, implying that the algorithm already found alternative solutions other than the 

original one. Table 18 reports how many instances experienced an improvement in solution 

quality after increasing the number of considered best bundle per carrier.  

 

Table 18 Number of Instances whose solutions have been improved after increasing 𝑛 

𝒏 Best Bundles  n. of Improvements 

100 3 

200 11 

500 9 

750 3 

1000 4 

 

When doubling the number of best bundles considered after the bundle price prediction, 

considering 100 best bundles, the number of non-solvable instances, if not with the original 

solutions, drastically reduces. However, many instances are still not solvable without the 

‘worst-case scenario’, and sometimes the pool sizes include new bundles, but the value of 

the best set does not change, implying that returning the requests back to the original carriers 

is still the best solution. For other instances on the other hand, it can be appreciated how the 

increasing size of the bundle pool brings to an improvement of the solution quality, meaning 

that there are more feasible attractive bundles than the original solution; this can be seen in 

instance 2, 8 or 19, where considering 18 best bundles instead of 3 improves the solution 

from 3611 to 3217. Nevertheless, in only three instances out of 20 an improvement in 

solution quality is visible.  When considering 200 instead of 100 best bundles per customers 

to form feasible sets, the number of per-se unsolvable instances becomes very small, the 
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bundle pool size increases, but more than the half of the considered instances experience an 

improvement in solution quality, in fact, in 11 cases the solution quality is better than when 

considering only 100 best bundles. This implies that including more and more bundles per 

customer, increases the bundle pool on the one hand, but increases the chances of finding 

better sets. This is further confirmed when considering 500 best bundles per carrier; in this 

case, 9 instances out of 20 return a better solution than when considering 200 best bundles. 

When further increasing the number of best considered bundles however, the scenario 

slightly changes, now only three instances have a better solution than before, and when 

considering 1000 best bundles, hence when the best bundles pool consists of 3000 ones, only 

in 4 cases the solution could be further improved. These numbers reveal that increasing the 

size of the best bundles pool often brings to an improvement of the solution quality at the 

beginning, but then further less attractive bundles do not bring significant benefits.  

In addition, the improvement factor for varying 𝑛 best bundles should also be taken into 

consideration; for this, the average percentage solution improvement of all instances when 

augmenting the number of initially considered best bundles has been calculated, the results 

are reported in Table 19.   

 

Table 19 Percentage of Solution Improvement of the Instances for increasing 𝑛 

𝒏 Best Bundles Average % improvement 

100 0,933991195 

200 4,272348062 

500 2,693174423 

750 0,616313725 

1000 0,396340073 

 

It can be clearly seen how switching from 100 to 200 best bundles brings the major average 

improvement in percentage for all instances; nonetheless, increasing 𝑛 to 500 best bundles 

improves the solution on average by further 2,69%. Further increase in 𝑛 do not bring any 

significant improvements. This can be effortlessly visualized in figure 8. The chart represents 

the sum of average percentage improvements with increasing 𝑛 best bundles.  
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Figure 8 Average Percentage Improvement Curve for Increasing 𝑛 

 

The curve clearly shows how the solutions steadily improve up to 500 best bundles, until the 

curve flattens, this implies that it is worth considering up to 500 best bundles to build feasible 

sets, since it can be assumed that the solutions are on average better than with sets built on 

starting pools of 200 best bundles per carrier but, considering 𝑛 > 500 does not bring any 

further significant improvement.  

 

Furthermore, the feasible-best bundle pool size has also to be considered, since this 

influences the computational time of the whole process. Table 20 reports the average 

feasible-best bundle pool sizes out of all instances when considering each studied number of 

best bundles per carrier after the bidding price prediction. The third column reports the pool 

size increase factor with regard to the previous 𝑛 best bundles step.  
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Table 20 Average Feasible-best Bundles' Pool Size & Enlargement Factor for Increasing 𝑛 

𝒏 Best Bundles Average Pool Size Pool Enlargement Factor  

50 6,4 -  

100 20,2 3,15625 

200 64,75 3,20544554 

500 311,4 4,80926641 

750 606,05 1,94621066 

1000 918,45 1,51546902 

 

The average bundle pool size experiences significant enlargements with the increasing 

number of considered best bundles per carrier. When up to 200 best bundles are considered, 

the average bundle pool size is smaller than the one considered by the Genetic Algorithm, 

whereas when considering 500 best bundles and upwards the pool size skyrockets. The 

analysis of the effects of increasing 𝑛 best bundles revealed that the solutions improve 

significantly with 𝑛 = 500, this would imply an average bundle pool size of 311,4, which is 

almost 5 times larger than the pool built on the 200 best bundles. To understand whether 

this may compromise the running time of the whole process, an analysis on the variation of 

the running times of the auction process and winner determination process is conducted. 

Table 21 reports the running times of the bidding phase and of the winner determination for 

all instances and considered 𝑛 best bundles. 

 

Table 21 Running Times for Bidding & Winner Determination for different values of 𝑛 and Genetic 
Algorithm 

Instance EN 𝒏 best bundles /GA Runtime Bidding Runtime Winner Determination 

0 50 0,102513 0,034438 

0 100 0,148881 0,051251 

0 200 0,589238 0,097654 

0 500 3,504832 0,190361 

0 750 6,767382 0,162610 

0 1000 9,998785 0,244080 

0 Genetic Algorithm 1,206343 0,101044 

1 50 0,746952 0,107011 

1 100 1,572485 0,168867 

1 200 3,303166 0,190005 

1 500 9,780774 0,203515 

1 750 16,641416 0,349627 

1 1000 24,873133 0,434436 
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1 Genetic Algorithm 1,009394 0,117837 

2 50 0,029838 0,045163 

2 100 0,386419 0,034331 

2 200 1,054712 0,040295 

2 500 3,813429 0,083633 

2 750 5,489330 0,150858 

2 1000 7,912376 0,292706 

2 Genetic Algorithm 1.041722 1,152036 

3 50 0,029545 0,087474 

3 100 0,121848 0,085558 

3 200 0,866045 0,856927 

3 500 4,224689 0,129039 

3 750 7,212685 0,210619 

3 1000 11,185489 0,242957 

3 Genetic Algorithm 1,109804 0,335982 

4 50 0,089309 1,093371 

4 100 0,425162 0,040169 

4 200 1,380552 0,057897 

4 500 7,071213 0,223545 

4 750 9,876173 0,304413 

4 1000 13,206844 0,273875 

4 Genetic Algorithm 1,155031 0,072935 

5 50 0,031962 0,018372 

5 100 0,030629 0,076225 

5 200 0,499456 0,077478 

5 500 1,814540 0,149199 

5 750 3,898076 0,171253 

5 1000 6,391513 0,220582 

5 Genetic Algorithm 1,194048 0,084619 

6 50 0,029141 0,073611 

6 100 0,030367 0,086837 

6 200 0,240297 0,041980 

6 500 4,026330 0,148429 

6 750 11,296577 0,323217 

6 1000 17,262951 0,331931 

6 Genetic Algorithm 1,028025 0,064366 

7 50 0,029701 0,055059 

7 100 0,045888 0,024186 

7 200 0,636533 0,115846 
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7 500 1,644680 0,092414 

7 750 3,692092 0,138265 

7 1000 5,005581 0,218915 

7 Genetic Algorithm 1,054660 0,066714 

8 50 0,030346 0,111976 

8 100 0,554280 0,081911 

8 200 1,382931 0,085533 

8 500 4,096567 0,128680 

8 750 6,868336 0,202770 

8 1000 9,890025 0,261241 

8 Genetic Algorithm 1,080345 0,081976 

9 50 0,032366 0,086017 

9 100 0,031828 0,055685 

9 200 0,947667 0,091795 

9 500 4,020680 0,182157 

9 750 7,024912 0,270379 

9 1000 13,179972 21,745357 

9 Genetic Algorithm 1,132958 0,058953 

10 50 0,033166 0,100077 

10 100 0,031614 0,101458 

10 200 0,408896 0,206822 

10 500 2,815920 0,138822 

10 750 3,991750 0,435843 

10 1000 5,657592 0,172052 

10 Genetic Algorithm 1,162351 0,089550 

11 50 0,121116 0,086001 

11 100 0,029918 0,167795 

11 200 0,069322 0,020568 

11 500 3,462877 0,118072 

11 750 8,167918 0,210797 

11 1000 12,908495 0,318743 

11 Genetic Algorithm 1,089403 0,101044 

12 50 0,032401 0,091053 

12 100 0,029951 0,018751 

12 200 0,148349 0,051470 

12 500 1,171004 0,103186 

12 750 3,305224 0,147963 

12 1000 5,077821 0,158676 

12 Genetic Algorithm 1,090753 0,058673 
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13 50 0,030557 0,081085 

13 100 0,271470 0,092050 

13 200 0,654003 0,126206 

13 500 4,065536 0,128996 

13 750 6,606134 0,212244 

13 1000 9,666402 0,209202 

13 Genetic Algorithm 1,921175 0,173209 

14 50 0,047120 0,057523 

14 100 0,030631 0,087395 

14 200 0,048835 0,097996 

14 500 1,399440 0,116965 

14 750 3,434272 0,078184 

14 1000 5,903776 0,209644 

14 Genetic Algorithm 1,063834 0,068587 

15 50 0,030824 0,116500 

15 100 0,030133 0,027916 

15 200 0,027563 0,081511 

15 500 0,028831 0,050824 

15 750 0,029253 0,048227 

15 1000 0,046742 0,088092 

15 Genetic Algorithm 1,154673 0,146545 

16 50 0,026955 0,057851 

16 100 0,291400 0,018095 

16 200 1,365389 0,093873 

16 500 4,948384 0,118579 

16 750 9,469863 0,151469 

16 1000 14,546157 0,205001 

16 Genetic Algorithm 1,065736 0,085091 

17 50 0,027235 0,038001 

17 100 0,027212 0,014425 

17 200 0,259852 0,029434 

17 500 2,372467 0,066527 

17 750 6,421924 0,103988 

17 1000 10,649934 0,161618 

17 Genetic Algorithm 1,178284 0,068417 

18 50 0,027345 0,025172 

18 100 0,159241 0,017355 

18 200 0,562317 0,029227 

18 500 2,236021 0,080326 
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18 750 5,879341 0,092313 

18 1000 9,128290 0,151619 

18 Genetic Algorithm 1,342298 0,053873 

19 50 0,027964 0,017642 

19 100 0,157375 0,023567 

19 200 0,714622 0,036566 

19 500 5,073695 0,100903 

19 750 10,922360 21,954228 

19 1000 17,293613 52,980389 

19 Genetic Algoritm 1,006419 0,084173 

 

The running times do not experience significant variations with the increasing 𝑛 best bundles, 

although the numbers slightly increase when increasing 𝑛. Table 22 reports the average 

running times for bidding and winner determination of all instances with all possible 

increasing 𝑛. 

 

Table 22 Average Running time of Bidding & Winner Determination for different Values of 𝑛 

𝒏 Best Bundles Average Runtime Bidding Average Runtime Winner Determination 

50 0,08 0,12 

100 0,22 0,06 

200 0,76 0,12 

500 3,58 0,13 

750 6,85 1,29 

1000 10,49 3,95 

 

The averages of the runtimes of the bidding phases show that bundle pool size and runtime 

for bidding are positively correlated, whereas as far as the winner determination is concerned, 

its running time seems to be independent on the feasible-best bundle pool size up to 500 

best bundles, after this boundary, the running time increases as well. In every case, the 

running times are in absolute values efficient, apart from the case of 1000 best bundles, the 

sum of the running times of both steps stays below 10 seconds. Considering bundle pools 

made of 500 best bundles per carrier slows down the runtime of the bidding phase by almost 

5 times compared to 200 bundles, but in absolute values the runtime remains manageable. 

According to the average improvement curve and considering that a large feasible-best 

bundle pool does not significantly slow down the running time of the bidding process, it can 

be concluded that selecting 𝑛 = 500 is the best choice for the scope of this study. 
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6.2 Runtime Comparison 
 

The final regression model uses 500 best bundles per carrier to construct feasible sets. As far 

as the runtime comparison of the bundle generation approaches is concerned, the two 

algorithms have been applied to all 20 considered instances and the running times have been 

extracted. The running times expressed in seconds of the two approaches are presented in 

table 23.  

 

Table 23 Running Time Comparison of the two Approaches 

Instance Regression Model Approach Genetic Algorithm 

0 369,1589498 29,57036327 

1 371,6046634 28,58620914 

2 370,3192576 27,66807321 

3 371,1045674 30,2087037 

4 363,3090003 28,78536869 

5 366,3798671 30,24629144 

6 369,4167036 28,75963512 

7 370,1900364 30,25718478 

8 372,4060662 29,05922398 

9 362,271004 28,27399371 

10 362,7168789 29,62923289 

11 370,9454699 29,34155391 

12 362,5039806 28,28933318 

13 363,9000103 28,42990875 

14 367,9944328 29,24233868 

15 371,3369544 28,40571918 

16 359,554863 24,78009645 

17 359,2637531 25,68611899 

18 358,4440302 24,60742282 

19 359,4329124 23,91247534 

 

Unsurprisingly, the running times are relatively stable for both approaches, since the number 

of customers in the pool and the features to generate do not change. In terms of 

computational time, it can be clearly acknowledged how the Genetic Algorithm significantly 

outperforms the methodology proposed in this thesis. On average, an instance can be solved 

in 28,1896 seconds using the Genetic Algorithm, compared to the average 366,1127 seconds 

needed by the regression model approach. The average running time hence increases by a 
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factor of 12,98872. The reasons for the significantly weaker performances in terms of 

running time of the regression model approach are related to the nature of the created 

algorithm. Firstly, the running time of the algorithm highly depends on the chosen features 

to train the regression model with. For this choice, the Sequential Feature Selector has been 

utilized; this evaluates the effects of a determined feature on a regression model exclusively 

taking the prediction performance into consideration. Since this is a crucial factor for a 

successful prediction model, the features which brought most benefits to the model have 

been chosen for the final algorithm, although it has already been acknowledged that the 

features which bring more benefit to the regression model are also the ones which are more 

computationally expensive to calculate. This is the case of the cheapest insertion including 

the depot, since the heuristic itself already has an exponential runtime complexity, and the 

procedure has to be repeated for all carriers, due to the depot information changing each 

time. The second main reason for the higher computational time must be found in the nature 

of a regression model itself. A machine learning model learns from historical data and 

predicts a target variable, if this newly generated data has to be used for further applications, 

the data has to be further processed. In contrast with the Genetic Algorithm, which is able 

to directly generate attractive feasible bundles, it is possible to almost immediately state the 

attractiveness of the bundles according to the predicted price per customer, but a regression 

model is not able to check the feasibility of the solutions according to the needs of the bundle 

generation problem. Therefore, a feasibility check must be undertaken before the attractive 

bundles are offered to the carriers in the auction phase. It must be therefore acknowledged, 

that the regression model approach will always require a step more than the Genetic 

Algorithm for the solution of the bundle generation problem. A third issue with the proposed 

regression model approach arises with the definition of best bundles after that bidding prices 

have been predicted. As described above, the predicted bidding price per customer is 

calculated, the dataset is sorted ascendingly according to this value, and the best 500 bundles 

per carrier are selected. Since the considered instances always consist of three carriers, the 

algorithm constantly processes up to 1500 bundles for the feasibility check, it may be that 

the same bundle is in the best 500 for more than one carrier, in this case it is considered only 

once. Nevertheless, the number of bundles which form feasible set is unknown before the 

feasibility check and varies among the instances, whereas the genetic algorithm is designed 

in a way that always provides only 100 bundles for the auction phase, which are able to build 

feasible solution sets, as shown in table 17.  
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The table clearly shows the volatility of the bundle pool size of the regression model 

approach compared with the Genetic Algorithm; on average, the regression model approach 

provides a bundle pool of 311,4 bundles, which is more than three times higher than the 

Genetic Algorithm. Nonetheless, the reported values for the regression model approach 

confirm the absolute necessity of the feasibility check after the best bundles have been 

selected according to the predicted price per customer. Since the original best bundles pool 

consists of 1500 best bundles, an average feasible best bundles pool of 311,4 confirms that 

the majority of the originally found best bundles do not build feasible solutions, and hence 

can directly be discarded before the auction takes place. In fact, on average only 20,76% of 

the originally considered best bundles can be considered as feasible best bundles. Lastly, it 

must be acknowledged that although the final number of feasible best bundles does not have 

a significant impact on the running time of the bidding procedure, the more bundles must 

undergo the feasibility check, the slower the latter is.  

 

6.3 Evaluation of the two models and managerial implications  
 

Both presented methods achieve the purpose of the bundle generation problem, they are 

able to process a set of single requests and generate bundles which form feasible solutions, 

drastically reducing the problem size. The way how this is done however significantly differs 

between the two approaches.  

The Genetic Algorithm is a metaheuristic, which every time produces a set of solutions which 

is manipulated by different operators [18]. The quality of a candidate solution is evaluated by 

a fitness function, which numerically describes the created bundles through some quality 

criteria. The proposed framework is conceptualized in a way so that it produces only a limited 

number of bundles in the final bundles pool, which leads to feasible solution sets.  

The alternative method proposed in this thesis works in the opposite way. Since a regression 

model has to be trained, the bundles first have to be numerically described by some quality 

criteria, then the candidate solutions can be generated. Since the numerical features are 

calculated on the complete set of bundles, all of them are equally evaluated before the 

regression model is applied. Both frameworks work under incomplete information of the 

carriers, hence the features calculated process exclusively pieces of information regarding the 

requests in the pool and the carriers' depot. The number of features calculated for the new 

alternative approach does not significantly differ from the ones used for the fitness function 

of the Genetic Algorithm; in fact, the latter uses only 5 features, whereas the regression 

model in the end processes 7 features. These have been selected out of a feature pool 
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consisting of different measures; the final feature choice has been made by letting a 

Sequential Feature Selector pick only the features that more often bring improvements to 

the prediction performances of the chosen model. Although Gansterer & Hartl (2018) [18] 

states that building bundles with clustering algorithms such as the k-means approach did not 

bring to the desired results, evaluating bundles using its objective function, namely the sum 

of distances from the centroid, revealed to have a positive influence on the prediction 

performance on the chosen regression model, so that this feature has been included in the 

final feature set. In general, both the fitness function of the Genetic Algorithm and the 

features calculated for the regression model approach take bundle compactness, density, and 

tour length into consideration. How this is done, however, can be differently and freely 

interpreted. For example, measuring the compactness taking the idea from a statistical 

measure such as the standard deviation revealed to have a positive influence on the regression 

model predicting performances, while this is not considered by the Genetic Algorithm 

framework. Other features such as the density have been calculated differently in the two 

approaches, Gansterer & Hartl (2018) [18] describes the density as the average direct travel 

distance to all requests in a bundle divided by the furthest distance of a request from the 

bundle’s centroid. The alternative approach considers the density taking the idea from how 

population density of an area is calculated, namely the number of inhabitants divided by area, 

which in this case is computed as the area of the circle whose radius is the furthest distance 

of one request from the bundle’s centroid. This approach seems to work well for the chosen 

regression model, so that is has been included in the final feature set. The difference of the 

two approaches can be also seen in the discrepancy of the effects that the same features have 

on the final models; this is the case of what in [18] is presented as radius, which has been 

originally implemented in the exact same way in the new approach, nevertheless, the feature 

revealed to be relatively useless in helping the regression model improve the prediction 

performances, so that the feature has been finally discarded. Finally, both methodologies 

introduce a feature which describes the bundles in terms of tour length of the TSP, the 

Genetic Algorithm constructs an initial solution using a double insertion heuristic and 

optimises the solution with a local search method, while for the method proposed in this 

thesis, between a regression-based approach and a cheapest insertion heuristic, the latter 

revealed to bring more benefits to the final model, despite higher computational time. Finally, 

leveraging from depot information when calculating bundle tour lengths revealed to be the 

most powerful feature of the whole created dataset.  
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In contrast with the fitness function of the Genetic Algorithm, the engineered features for 

the regression model do not directly assess the attractiveness of a bundle, they are only used 

to predict bidding prices, and the attractiveness must be assessed with further steps. Since 

the bundles’ bidding prices of the considered instances are constructed on the cost of serving 

a determined bundle, the prices are among others correlated with the number of customers 

in a bundle. Since the objective of the tested instances is minimising total transportation costs, 

the lower the bidding price, the better. If taking the bidding prices into consideration, due to 

the reason stated above, bundles with less customers will tend to have lower prices that bigger 

bundles. Since this may be misleading and considering the main reason why it may be 

beneficial to put customers into bundles in the first place, namely that the level of 

attractiveness of a single request varies if combined with other requests, the predicted price 

per customer is calculated dividing the predicted bidding price by the given number of 

requests in each bundle. Normalising the bidding price by the number of customers provides 

a unified quality measure, which can be used as measure for assessing attractiveness for future 

steps. In contrast with the Genetic Algorithm, the regression model approach does not 

generate any new population, all bundles can be directly picked to form candidate solutions. 

The bundles are hence sorted ascendingly according to the proposed attractiveness measure 

and only a small set of the top part of the sorted dataset per carrier, where the predicted most 

attractive bundles are located, is used for further processing. This initial best bundle pool is 

then used for assessing which bundles build feasible solution sets if combined with each 

other and which ones do not; the latter are directly discarded and not processed any further. 

The remaining bundles form the final attractive feasible bundles pool. The dimension of this 

portion of the whole dataset, namely how many 𝑛 best bundles should be chosen per carrier 

for the feasibility check has been discussed in section 6.1. Since the feasibility of the solution 

must be assured, the procedure needs a consistent number of bundles, so that all initial 

requests appear in the set exactly once. Nevertheless, this may be overcome by assuming that 

the requests initially placed in the customer pool by each carrier are grouped into bundles 

according to which carrier they used to belong. This assures a worst-case feasible solution 

set, and in case no further better feasible sets can be found, the requests are returned to the 

carriers as they originally were.  

The empirical study has shown that the more bundles are placed in the initial attractive 

bundles pool, the higher the chances that a feasible solution other than the original one can 

be found, and that the solution quality generally improves; nevertheless, this comes with the 

cost of slightly increasing computational time due to the increasing size of the attractive 
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feasible bundles pool. The procedure has been set, so that 500 best bundles are selected after 

the predicted price per customer for each carrier is calculated. The performances of the 

proposed method in terms of solution quality and computational time of the bidding phase 

have been compared taking 50, 100, 200, 500, 750 and 1000 best bundles per carrier after the 

application of the regression model. A curve shows how the average solution quality of the 

instances improves as the number of considered best bundles increase, nevertheless, the 

curve flattens when considering 𝑛 > 500 best bundles. Considering that the feasible-best 

bundles pool size increases when increasing 𝑛, but the running time of the bidding phase is 

in absolute value very low, 𝑛 = 500 seemed to be the best trade-off for the purpose of this 

model.  

 

As far as the solution quality is concerned, choosing 𝑛 = 500 best bundles per carrier to 

form feasible sets showed that 15 out of 20 tested instances could be solved with equal or 

better solutions than the Genetic Algorithm. This shows that it is possible to implement an 

alternative Business Analytics-based approach for the bundle generation problem, and that 

this methodology reports equal or often improved solutions compared to the benchmark.  

As far as the computational time of the two approaches is concerned however, the Genetic 

Algorithm outperforms the newer method. The computational study showed how the 20 

considered instances could be solved in less than 30 seconds by the Genetic Algorithm, while 

on average it took roughly 6 minutes for the regression model approach to come up with a 

feasible solution with the set number of 𝑛 best bundles, and this running time comparison 

does not even take the training time of the Elastic Net regressor into consideration. It has 

been shown how the drastic difference in the running time does not significantly depend on 

the feasible-best bundle pool size, since the bidding phase is efficient for both proposed 

methods. The driving factor which makes the running time of the regression model approach 

skyrocket compared to the Genetic Algorithm is the feature calculation. It has been shown 

how the cheapest insertion heuristic brings the most benefits in terms of improvement of 

prediction quality of the regression model, but this is the feature with the slowest 

computational time among the ones chosen. On top of that, since the pieces of information 

concerning the depots of each carrier are considered singularly, the calculation of the TSP 

using the cheapest insertion heuristic has to be repeated as many times as the number of 

carriers in the network, hence three times for the considered instances. This not only slows 

down the running time of the whole procedure significantly but may represent an issue when 

considering the scalability of this methodology, in terms of number of bundles to process 
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and, above all, in terms of increasing number of carriers in a network. A second slowing 

factor of the regression model approach is represented by the transformation of the best 

bundle pool of 1500 bundles into the feasible-best bundle pool, since in contrast with the 

Genetic Algorithm, a feasibility check has to be undertaken before the bundles can be offered 

to the carriers, and the greater 𝑛 is, the more bundles must be processed for the feasibility 

check, the slower the procedure gets. Lastly, as for the Genetic Algorithm, the proposed 

methodology is able to drastically reduce the problem size compared to the original complete 

bundle enumeration. It must be acknowledged, that despite the fact that the regression model 

approach produces more than three times best bundles compared to the Genetic Algorithm, 

these represent on average the 0,95% of the 32.767 original bundles whose price has been 

predicted. This approach is hence able to reduce the problem size by more than 99%. The 

100 best feasible bundles found by the Genetic Algorithm represent the 0,3% of the original 

complete bundle enumeration, the difference between the two approaches is therefore only 

of 0,65%. 

 

As far as the managerial implications are concerned, Gansterer & Hartl (2018) [18] claims 

that due to the drastic problem size reduction and efficiency of their approach, they were 

able to solve real-world size instances with 210 requests, 45 or eventually 90 of which landed 

in the initial customer pool. Results show that the Genetic Algorithm was able to solve the 

instance of 45 requests in roughly 45 minutes, whereas for 90 requests it took around 71 

minutes. These instances were not compared to the proposed alternative approach, however, 

due to the limitations stated above, it may be concluded that the Genetic Algorithm is more 

efficient in solving larger instances as well. It must be pointed out however, that the authors 

tested their algorithm increasing the number of requests per carrier, but not the number of 

carriers themselves, whose potential increasing number could represent the major downside 

of the machine learning approach. 

Regarding the considered problem size and the tested instances, the alternative method 

proposed in this thesis could be implemented for the management of a real small network, 

since it has been shown that it partially outperforms the solution quality of the Genetic 

Algorithm, with the trade-off of the higher computational time. Nevertheless, it must be also 

acknowledged, that although the regression-based approach is by far computationally slower 

than the Genetic Algorithm, in absolute values the instances can still be solved in a reasonable 

computational time, namely within few minutes. 
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Both methodologies achieve their goal, the choice of one method instead of the other for 

the management of a real small network depends on the major needs and desire of the 

network members. If solution quality and derived routing cost reduction is the major scope 

of the network, then the regression model approach could be preferred, since it has been 

shown that it returns better or equal results than the Genetic Algorithm in 75% of the cases. 

If on the other hands the carriers have the need of quickly adjusting their current routes and 

acquire the new assigned bundles, then the Genetic Algorithm is the method to prefer. 

 

7 Conclusion 
 

This thesis presents an alternative, business analytics-based method for efficient request 

bundle generation in auction-based transportation collaborations. Until now, all proposed 

methods have been based on heuristics; hence, this thesis represents a novelty in the research 

in this field. Due to the uniqueness of this approach in the bundle generation literature, this 

thesis takes the Genetic Algorithm of Gansterer & Hartl (2018) [18] as benchmark for the 

computational study.  

This thesis shows that it is possible to leverage historical data of customer bundles and 

respective bidding prices for the generation of future attractive ones given the problem 

presented and that the results can compete with the benchmark values provided by the 

literature. It is shown how with non-strategic pieces of information, features that are highly 

correlated with the bidding prices can be generated, and a quick linear regression model can 

effectively predict bidding prices for future auctions. The prediction model itself is not able 

to generate attractive-feasible bundles, hence data has to be manipulated for the presented 

scope. A unique measurement for attractiveness and an upper bound which defines the area 

of the attractive bundles have to be defined. The latter is represented by the choice of the 𝑛 

best bundles. Results show that the presented alternative approach can effortlessly compete 

with the benchmark methodology as far as the quality of the produced results is concerned, 

nonetheless, the running time aspect could be improved.  

The major limitation of this approach is the computation of some of the chosen features to 

train the regression model, since, due to performance reason, it has been chosen to include 

depot information in the features calculation. This makes the features tailor-made for each 

carrier, the obvious downside is that a feature must be calculated for each member of the 

network, significantly compromising the scalability of this approach.  
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It must be also pointed out that the code created for feature calculation has not been subject 

to significant optimization checks on the programming techniques and functions used. 

This thesis may serve as starting point for future research in business-analytics techniques 

for the presented problem. This study shows that such a technique can compete and partially 

outperform an existing framework in terms of solution quality, and some aspects of the new 

developed framework could be further optimised. After that the most suitable 𝑛 best bundles 

have been chosen according to the conducted study, this number remained fixed throughout 

this work. Results show that sometimes a lower 𝑛 was sufficient to achieve the desired result, 

and sometimes the algorithm would have needed more bundles to find better solutions than 

the benchmark. The development of technique which dynamically changes 𝑛 could represent 

an opportunity for future development build on this thesis.  

Testing the algorithm with real-world data of a small transportation network would be the 

way forward towards the implementation of this bundle generation tool in a real-world 

setting. Real data would allow the calculation of new features which could potentially 

describe the bundles even more powerfully for a more effective attractiveness assessment, 

leveraging for example from traffic data. Another advantage of such an approach for the 

bundle generation problem is the adaptability of the machine learning model; in a real-world 

setting, the model could be trained with more and more data as soon as it becomes available, 

so that it can learn new patterns and make up-to-date predictions. Future research should 

hence focus on the implementation of a machine learning-based bundle generation tool in a 

real-world setting, given the promising results of the developed framework in the considered 

artificially generated instances. 
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Appendix 
 
Table 24 Sequential Feature Selector Linear Models – Carrier 0 

Linear Regression Bayesian Ridge Elastic Net 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_1 

• max_distance 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_0 

• cheapest_insert_depot_0 

• 0,72306163284865 

• number_of_customers 

• distance_sum_[Km] 

• dist_from_depot_1  

• radius 

• max_distance 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_0 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,723438091721442 

• number_of_customers 

• distance_sum_[Km] 

• dist_from_depot_1 

• max_distance 

• standard_dev 

• cheapest_insert_depot_0 

• 0,6761067603178099 

• number_of_customers 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• standard_dev 

• Tour_length_approx_with_depot_0 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,7284509788930814 

• number_of_customers 

• distance_sum_[Km] 

• dist_from_depot_1  

• radius 

• standard_dev 

• Tour_length_approx_with_depot_0 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,7285642586941504 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_1 

• max_distance 

• bundle_density 

• 'standard_dev 

• Tour_length_approx_with_depot_0 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,4474820588882646 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• Tour_length_approx_with_depot_0 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,5716648827886674 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• Tour_length_approx_with_depot_0 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,5716366618020549 

• number_of_customers 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_0 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,5293611906331234 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• max_distance 

• bundle_density 

• Tour_length_approx_with_depot_0 

• cheapest_insert_depot_0 

• 0,7621454846746601 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_1 

• max_distance 

• bundle_density 

• Tour_length_approx_with_depot_0 

• cheapest_insert_depot_0 

• 0,7655595245204829 

• number_of_customers 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• max_distance 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_0 

• cheapest_insert_depot_0 

• 0,561630342443003 

• number_of_customers 

• distance_sum_[Km] 

• dist_from_depot_1 

• max_distance 

• cheapest_insert_depot_0 

• 0,6483459767719564 

• number_of_customers 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• max_distance 

• cheapest_insert_depot_0 

• 0,6482804067453423 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_1 

• max_distance 

• bundle_density 

• standard_dev 

• cheapest_insert_depot_0 

• 0,6311213498879554 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_1 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_1 

• number_of_customers 

• Tour_length_approx 

• dist_from_depot_1 

• max_distance 
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• radius 

• max_distance 

• bundle_density 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,748543049820739 

• radius 

• max_distance 

• bundle_density 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,7485591956088661 

• bundle_density 

• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,6844676429573227 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• max_distance 

• bundle_density 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,5992644143824694 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• max_distance 

• bundle_density 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,599276885323465 

• number_of_customers 

• distance_sum_[Km] 

• dist_from_depot_1 

• max_distance 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_0 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,532177575328677 

 

 
Table 25 Sequential Feature Selector Ensemble Models – Carrier 0 

XGB Regressor LGBM Regressor Gradient Boosting Regressor 

• Tour_length_approxdist_from_depot_

1 

• Radius 

• max_distance cheapest_insert 

• cheapest_insert_depot_0 

• 0,730002177025398 

• dist_from_depot_1 

• radius 

• max_distance 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,7558361736869577 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• max_distance 

• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,7334917648453992 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,6890057294126217 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• max_distance 

• bundle_density 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,7329054995095626 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,6900347753657707 

• distance_sum_[Km] 

• dist_from_depot_1 

• cheapest_insert_depot_0 

• 0,539153907409619 

• distance_sum_[Km] 

• dist_from_depot_1 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,532337515538671 

• distance_sum_[Km] 

• dist_from_depot_1 

• cheapest_insert_depot_0 

• 0,5429993412195316 

• number_of_customers 

• dist_from_depot_1 

• radius 

• max_distance 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,6558064707258047 

• dist_from_depot_1 

• radius 

• max_distance 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,714083643429561 

• number_of_customers 

• dist_from_depot_1 

• radius 

• max_distance 

• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,6545421614182398 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• max_distance 

• bundle_density 

• Tour_length_approx_with_depot_0 

• cheapest_insert 

• cheapest_insert_depot_0 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• max_distance 

• bundle_density 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,6826311716245141 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• max_distance 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_

0 
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• 0,657874011878507 • cheapest_insert 

• cheapest_insert_depot_0 

• 0,656474876275875 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• max_distance 

• bundle_density 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,6741333089702367 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• max_distance 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_

0 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,7032981566971952 

• distance_sum_[Km] 

• dist_from_depot_1 

• radius 

• max_distance 

• bundle_density 

• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,6744991311416404 

• Tour_length_approx 

• dist_from_depot_1 

• radius 

• max_distance 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,5945145430038539 

• dist_from_depot_1 

• radius 

• max_distancecheapest_insert 

• cheapest_insert_depot_0 

• 0,6286538717123574 

• Tour_length_approx 

• dist_from_depot_1 

• radius 

• max_distance 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,5986237930750951 

 

 
Table 26 Sequential Feature Selector Linear Models – Carrier 1 

Linear Regression Bayesian Ridge Elastic Net 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• max_distance 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_1 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,8783475418632009 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_1 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,8784875656045136 

• number_of_customers 

• Tour_length_approx 

• dist_from_depot_2 

• radius 

• max_distance  

• bundle_density 

• standard_dev 

• cheapest_insert_depot_1 

• 0,6738880221615816 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• max_distance 

• bundle_density 

• Tour_length_approx_with_depot_1 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,8450186128940341 

• number_of_customers 

• Tour_length_approx 

• dist_from_depot_2 

• radius 

• max_distance 

• bundle_density 

• standard_dev 

• cheapest_insert_depot_1 

• 0,8462207936953237 

• number_of_customers 

• distance_sum_[Km] 

• dist_from_depot_2 

• max_distance 

• standard_dev 

• Tour_length_approx_with_depot_1 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,815227797217535 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• radius 

• max_distance 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_1 

• cheapest_insert 

• cheapest_insert_depot_1 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• radius 

• max_distance 

• bundle_density 

• Tour_length_approx_with_depot_1 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,7517875160563449 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• max_distance 

• bundle_density 

• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,666588503881068 
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• 0,7506037949485354 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• max_distance 

• bundle_density 

• Tour_length_approx_with_depot_1 

• cheapest_insert_depot_1 

• 0,9235098499533857 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• radius 

• max_distance 

• bundle_density 

• cheapest_insert_depot_1 

• 0,9235701770270474 

• distance_sum_[Km] 

• dist_from_depot_2 

• cheapest_insert_depot_1 

• 0,9055033013650589 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_1 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,8266027206982169 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_1 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,8265285365698724 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• max_distance 

• bundle_density 

• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,7767414618037446 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• max_distance 

• standard_dev 

• Tour_length_approx_with_depot_1 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,751541085184877 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• max_distance 

• standard_dev 

• Tour_length_approx_with_depot_1 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,7515627699926533 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• radius 

• standard_dev 

• Tour_length_approx_with_depot_1 

• cheapest_insert_depot_1 

• 0,6995794517297733 

• Tour_length_approx 

• distance_sum_[Km] 

• radius 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_1 

• cheapest_insert_depot_1 

• 0,8340728019809056 

• number_of_customers 

• Tour_length_approx 

• radius 

• max_distance 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_1 

• cheapest_insert_depot_1 

• 0,8334624898703972 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• max_distance 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_1 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,8149423974986194 

 

 
Table 27 Sequential Feature Selector Ensemble Models – Carrier 1 

XGB Regressor LGBM Regressor Gradient Boosting Regressor 

• max_distance 

• bundle_density 

• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,8030317569182681 

• dist_from_depot_2 

• radius 

• max_distance 

• bundle_density 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,8232311131555463 

• dist_from_depot_2 

• radius 

• max_distance 

• bundle_density 

• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,8084205933073884 

• number_of_customers 

• distance_sum_[Km] 

• dist_from_depot_2 

• radius 

• max_distance 

• dist_from_depot_2 

• radius 

• bundle_density 

• Tour_length_approx_with_depot_1 

• cheapest_insert 

• number_of_customers 

• dist_from_depot_2 

• max_distance 

• standard_dev 

• cheapest_insert_depot_1 
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• bundle_density 

• Tour_length_approx_with_depot_1 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,8381465442470166 

• cheapest_insert_depot_1 

• 0,8394157515298654 

• 0,8341971700394716 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• radius 

• bundle_densitycheapest_insert 

• cheapest_insert_depot_1 

• 0,6904176617859078 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• radius 

• max_distance 

• bundle_density 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,710297874823095 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2' 

• radius 

• bundle_density 

• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,6917989701065188 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• radius 

• max_distance 

• bundle_density 

• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,9222479976965747 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2' 

• radius 

• max_distance 

• bundle_density 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,9267693335392997 

• number_of_customers 

• Tour_length_approx 

• dist_from_depot_2 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_1 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,9217953681809247 

• Tour_length_approx 

• dist_from_depot_2 

• max_distance 

• bundle_density 

• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,796851528830359 

• Tour_length_approx 

• dist_from_depot_2 

• radius 

• max_distance 

• bundle_density 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,8081423519132793 

• Tour_length_approx 

• dist_from_depot_2 

• radius 

• max_distance 

• bundle_density 

• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,7980361782219921 

• Tour_length_approx 

• dist_from_depot_2 

• radius 

• max_distance 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_1 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,6964979793784836 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2 

• radius 

• max_distance 

• Tour_length_approx_with_depot_1 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,7107182486503038 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_2  

• radius 

• max_distance 

• standard_dev 

• Tour_length_approx_with_depot_1 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,6949519814540236 

• Tour_length_approx 

• dist_from_depot_2 

• radius 

• max_distance 

• cheapest_insert_depot_1 

• 0,823970428359868 

• Tour_length_approx 

• dist_from_depot_2 

• radius 

• max_distance 

• cheapest_insert 

• cheapest_insert_depot_1 

• 0,8226788055189589 

• Tour_length_approx 

• dist_from_depot_2 

• radius 

• max_distance 

• standard_dev 

• cheapest_insert_depot_1 

• 0,8257821970710889 

  

 
Table 28 Sequential Feature Selector Linear Models – Carrier 2 

Linear Regression Bayesian Ridge Elastic Net 

• Tour_length_approx 

• dist_from_depot_3 

• max_distance 

• Tour_length_approx 

• dist_from_depot_3 

• max_distance 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_3 
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• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_0 

• 0,8450230914382377 

• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8450236105268221 

• max_distance 

• standard_dev 

• Tour_length_approx_with_depot_2 

• cheapest_insert_depot_2 

• 0,8334542410461842 

• number_of_customers 

• Tour_length_approx 

• radius 

• max_distance 

• bundle_density 

• Tour_length_approx_with_depot_2 

• cheapest_insert_depot_2 

• 0,8584857811161595 

• number_of_customers 

• Tour_length_approx 

• radius 

• max_distance 

• bundle_density 

• Tour_length_approx_with_depot_2 

• cheapest_insert_depot_2 

• 0,8585315525329008 

• number_of_customers 

• distance_sum_[Km] 

• max_distance 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_2 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8503203625495775 

• number_of_customers 

• distance_sum_[Km] 

• dist_from_depot_3 

• max_distance 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_2 

• cheapest_insert_depot_2 

• 0,8187969515535725 

• number_of_customers 

• distance_sum_[Km] 

• dist_from_depot_3 

• radius 

• max_distance 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_2 

• cheapest_insert_depot_2 

• 0,8197284554079483 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_3 

• max_distance 

• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8085187793883432 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_3 

• radius 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_2 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8945771155863792 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_3 

• radius 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_2 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,894777785644042 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_3 

• max_distance 

• standard_dev 

• Tour_length_approx_with_depot_2 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8561767945746892 

• Tour_length_approx 

• dist_from_depot_3 

• radius 

• max_distance 

• bundle_density 

• Tour_length_approx_with_depot_2 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8723017157117662 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_3 

• radius 

• max_distance 

• bundle_density 

• Tour_length_approx_with_depot_2 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8718563270412625 

• Tour_length_approx 

• distance_sum_[Km] 

• radius 

• max_distance 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_2 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,85102630545572 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_3 

• max_distance 

• Tour_length_approx_with_depot_2 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8871609413434381 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_3 

• max_distance 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8874456140844227 

• number_of_customers 

• Tour_length_approx 

• dist_from_depot_3 

• bundle_density 

• Tour_length_approx_with_depot_2 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8816486581065416 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_3 

• standard_dev 

• cheapest_insert_depot_2 

• number_of_customers 

• distance_sum_[Km] 

• dist_from_depot_3 

• radius 

• max_distance 

• standard_dev 

• number_of_customers 

• Tour_length_approx 

• dist_from_depot_3 

• radius 

• max_distance 

• bundle_density 
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• 0,7374653329183902 • cheapest_insert_depot_2 

• 0,739513634428336 

• standard_dev 

• Tour_length_approx_with_depot_2 

• cheapest_insert_depot_2 

• 0,717076631212314 

 
 

Table 29 Sequential Feature Selector Ensemble Models – Carrier 2 

XGB Regressor LGBM Regressor Gradient Boosting Regressor 

• Tour_length_approx 

• dist_from_depot_3 

• radius 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8476877534590358 

• dist_from_depot_3 

• radius 

• max_distance 

• bundle_density 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8500941264786748 

• number_of_customers 

• dist_from_depot_3 

• radius 

• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,847329968445867 

• number_of_customers 

• distance_sum_[Km] 

• dist_from_depot_3 

• radius 

• max_distance 

• cheapest_insert_depot_2 

• 0,8546778881547743 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_3 

• radius 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8527049549376216 

• number_of_customers 

• distance_sum_[Km] 

• dist_from_depot_3 

• radius 

• max_distance 

• standard_dev 

• cheapest_insert_depot_2 

• 0,8550469022492431 

• Tour_length_approx 

• dist_from_depot_3 

• max_distance 

• Tour_length_approx_with_depot_2 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8196533964088415 

• distance_sum_[Km] 

• dist_from_depot_3 

• radius 

• max_distance 

• bundle_density 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8275546839005784 

• number_of_customers 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_3 

• radius 

• max_distance 

• standard_dev 

• Tour_length_approx_with_depot_2 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8205786547567296 

• number_of_customer 

• dist_from_depot_3 

• radius 

• bundle_density 

• standard_dev 

• Tour_length_approx_with_depot_2 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8808294493406645 

• number_of_customers 

• dist_from_depot_3 

• radius 

• max_distance 

• bundle_density 

• Tour_length_approx_with_depot_2 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8905434405998994 

• distance_sum_[Km] 

• dist_from_depot_3 

• radius 

• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8796283410819268 

• Tour_length_approx 

• dist_from_depot_3 

• radius 

• max_distance 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8718373893627709 

• dist_from_depot_3 

• radius 

• max_distance 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8694197491669714 

• Tour_length_approx 

• dist_from_depot_3 

• radius 

• max_distance 

• bundle_density 

• standard_dev 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8714859350650445 

• distance_sum_[Km] 

• dist_from_depot_3 

• radius 

• max_distance 

• bundle_density 

• standard_dev 

• distance_sum_[Km] 

• dist_from_depot_3 

• radius 

• max_distance 

• bundle_density 

• cheapest_insert 

• Tour_length_approx 

• distance_sum_[Km] 

• dist_from_depot_3 

• radius 

• max_distance 

• bundle_density 
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• Tour_length_approx_with_depot_2 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8806898693743662) 

• cheapest_insert_depot_2 

• 0,8849642457405691 

• standard_dev 

• Tour_length_approx_with_depot_2 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,8809564710613056 

• Tour_length_approx 

• dist_from_depot_3 

• radius 

• max_distance 

• bundle_density 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,7081210772932145 

• dist_from_depot_3 

• radius 

• max_distance 

• bundle_density 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,7217651125818345 

• number_of_customers 

• Tour_length_approx 

• Radius 

• max_distance 

• cheapest_insert 

• cheapest_insert_depot_2 

• 0,7048834136502158 
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