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Abstract

The consideration of heavy quark masses is of crucial importance in many phenomenolog-
ical applications in quantum chromodynamics, either because they represent important
corrections in precision calculations or because they introduce additional conceptual com-
plications. In this thesis, I tackle a wide range of aspects related to quark masses in the
theory of strong interactions, including technical calculations as well as theory innovations.
Essentially, this work is centered around four main results:

The first is a general formula for NLO massive event-shape cross sections. This formula
enables the computation of the NLO cross section with respect to any massive event shape
by providing simple analytic formulas for the distributional terms and a general instruction
for the algorithmic computation of the non-distributional terms. This represents a big
improvement compared to previous approaches, where calculations were performed from
the ground up, one type of event shape at a time, and mostly with only numerical results,
even for distributional terms.

The second result is the two-loop massive quark SCET jet function. This challenging-to-
compute quantity was the last missing piece to perform N3LL resummation for some event
shapes with massive quarks, including 2-jettiness.

Third, the MSR mass renormalization scheme is introduced, a low-scale generalization
of the MS mass with variable intrinsic scale. Together with R-evolution, its associated
renormalization group evolution, the MSR mass enables the systematic investigation of
issues related to the pole-mass renormalon and the resummation of potentially large
logarithms of mass-intrinsic scale ratios. Such logarithms are relevant in the conversion
between short-distance mass renormalization schemes and for the comparison of mass
values that were extracted at widely separated scales. Additionally, the MSR mass can be
extended to include the effects of lighter massive quark flavors, resulting in a systematic
and consistent matching and running procedure. That procedure can be used to decouple
the momentum modes in the pole-MS mass relation, which allows to systematically study
the pole-mass renormalon and its flavor-number dependence. Both the resummation of
logarithms of intrinsic scales and the systematic treatment of light massive flavors are
unique to the MSR mass scheme.

The fourth main result of this thesis is REvolver, a C++ library with additional Mathematica
and Python interfaces. REvolver implements the MSR mass, R-evolution, and the related
concepts in a user-friendly way, and is aimed both at theorists and experimentalists. The
provided functionalities include exact renormalization group running of the MS and MSR
masses as well as the strong coupling, conversions between various mass renormalization
schemes (with or without log-resummation via R-evolution), and the extraction of parame-
ters that are related to the pole-mass renormalon such as the pole-mass ambiguity. The
interaction with the library is based on the creation of so-called Core objects that encode a
physical scenario, and the extraction of values from them. This makes the use of REvolver
especially intuitive and streamlined. REvolver is the only public code that fully exploits
the features of the MSR mass and R-evolution in mass-scheme and renormalon-related
computations.

All results presented in this thesis represent essential contributions to the investigation
of quark mass effects, either by providing mass corrections for precision calculations or
by introducing new concepts, methods, and tools that lead to a better understanding or
facilitate computations.





Zusammenfassung

Die Berücksichtigung schwerer Quarkmassen ist in vielen phänomenologischen Anwen-
dungen der Quantenchromodynamik von entscheidender Bedeutung, entweder weil sie
wichtige Korrekturen bei Präzisionsrechnungen darstellen oder weil sie zusätzliche konzep-
tionelle Komplikationen mit sich bringen. In dieser Arbeit behandle ich eine Vielzahl von
Aspekten im Zusammenhang mit Quarkmassen in der Theorie starker Wechselwirkungen,
einschließlich technischer Berechnungen sowie theoretischer Innovationen. Im Wesentlichen
konzentriert sich diese Arbeit auf vier Hauptergebnisse:
Das erste ist eine allgemeine Formel für massive NLO Event-Shape-Wirkungsquerschnitte.
Diese Formel ermöglicht die Berechnung des NLO-Wirkungsquerschnitts in Bezug auf
einen beliebigen massiven Event-Shape, indem einfache, analyische Formeln für die dis-
tributionellen Terme und eine allgemeine Anleitung zur algorithmischen Berechnung der
nicht-distributionellen Terme bereitgestellt werden. Dies stellt eine große Verbesserung im
Vergleich zu den vorherigen Ansätzen dar, bei denen Berechnungen von Grund auf für
jeden Event-Shape durchgeführt wurden, meist nur mit numerischen Ergebnissen.
Das zweite Ergebnis ist die Zwei-Schleifen-SCET-Jet-Funktion für massive Quarks. Diese
schwer zu berechnende Größe war der letzte fehlende Beitrag, um für einige Event-Shapes
mit massiven Quarks, einschließlich 2-Jettiness, eine N3LL Resummation zu ermöglichen.
Drittens wird das MSR-Massenrenormierungsschema eingeführt, eine Verallgemeinerung
der MS-Masse für niedrige Energien mit variabler intrinsischer Skala. Zusammen mit
der R-Evolution, der damit verbundenen Renormierungsgruppengleichung, ermöglicht
die MSR-Masse die systematische Untersuchung von Problemen in Zusammenhang mit
dem Polmassen-Renormalon und die Resummierung potenziell großer Logarithmen von
massen-intrinsischen Skalenverhältnissen. Solche Logarithmen sind beispielsweise bei der
Konvertierung zwischen Short-Distance-Massenschemata, oder dem Vergleich von Massen-
werten relevant, die an weit separierten Energieskalen extrahiert wurden. Darüber hinaus
kann die MSR-Masse erweitert werden, um die Auswirkungen von leichteren massiven
Quark-Flavors einzubeziehen, was ein systematisches und konsistentes Matching- und
Evolutionsverfahren ergibt. Diese Prozedur kann zur Entkopplung von Impulsmoden in der
Pol-MS Massenrelation verwendet werden, was wiederum eine systematische Untersuchung
des Polmassen-Renormalons und seiner Flavor-Zahl-Abhängigkeit ermöglicht. Sowohl die
Resummierung von Logarithmen intrinsischer Skalen als auch die systematische Behandlung
von leichten massiven Flavors sind einzigartig für das MSR-Massenschema.
Das vierte Hauptergebnis dieser Arbeit ist REvolver, eine C++-Bibliothek mit zusätzlichen
Mathematica- und Python-Schnittstellen. REvolver implementiert die MSR-Masse, die
R-Evolution und die dazugehörigen Konzepte auf benutzerfreundliche Weise und richtet
sich sowohl an Theoretiker als auch an Experimentatoren. Die bereitgestellten Funktio-
nen umfassen die exakte Lösung der Renormierungsgruppengleichungen der MS- und
MSR-Massen sowie der starken Kopplung, Konvertierungen zwischen verschiedenen Mas-
senrenormierungsschemata (mit oder ohne log-Resummierung per R-Evolution) und die
Extraktion von Renormalon-bezogenen Parametern wie die Polmassen-Ambiguität. Die
Interaktion mit der Bibliothek basiert auf der Erstellung sogenannter Core-Objekte, die
ein physikalisches Szenario kodieren, und der Extraktion von Werten daraus. REvolver ist
der einzige öffentliche Code, der die Eigenschaften der MSR-Masse und der R-Evolution
bei Massenschema- und Renormalon-bezogenen Berechnungen vollständig ausnutzt.
Alle in dieser Arbeit vorgestellten Ergebnisse stellen wesentliche Beiträge zur Untersuchung
von Quarkmasseneffekten dar, entweder weil diese Massenkorrekturen für Präzisionsberech-
nungen liefern oder durch Einführung neuer Konzepte, Methoden und Werkzeuge, die zu
einem besseren Verständnis führen oder Berechnungen erleichtern.
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Preface

This thesis consists of three main parts:

Part I presents a short introduction to the topics covered in this thesis from a bigger-picture
point of view, as well as more detailed introductions to some of the relevant topics and
tools.

Part II summarizes and discusses the most important results of the publications in this
cumulative thesis, including outlooks with possible next steps and future developments.

Part III contains the articles published during my doctoral studies.

xi





Part I

Preamble





Chapter 1

The Golden Thread of this Thesis

The interest in quark masses and their effects on QCD-related observables in high-energy
physics is increasing in both the theoretical and experimental domain due to the high level
of precision in calculations and measurements. In addition, the prospect of a future linear
collider and the associated determinations of heavy quark masses demand further efforts
to improve the current understanding of heavy quarks and to provide further corrections
to existing results. Effects that until recently were considered insignificant, e.g. power
corrections in connection with massive quarks or more subtle issues such as the ambiguity
of the pole mass scheme and the meaning of directly reconstructed heavy quark masses,
are gaining more and more attention.

This thesis examines a wide range of phenomenological and theoretical aspects related to
quark mass effects in quantum chromodynamics. The contained studies and their results
will play an important role, not only at the precision frontier of the strong interactions
but also in more general considerations, e.g. related to mass renormalization schemes. All
results are, however, deeply related.

The main results of this thesis include

• the general computation of NLO massive event-shape cross sections (Chap. 5, sum-
marized in Chap. 3.1),

• the computation of the two-loop massive SCET jet function (Chap. 6, summarized in
Chap. 3.2),

• the introduction and extension of the MSR mass renormalization scheme and R-
evolution, together with their application to the investigation of the pole mass
renormalon (Chaps. 7 and 8, summarized in Chap. 3.3 and 3.4, respectively),

• the development of the C++ library REvolver to precisely and efficiently evolve and
convert quark masses renormalization schemes, by utilizing the frameworks developed
in the context of the MSR scheme (Chap. 9, summarized in Chap. 3.5).

All of these results are briefly described and contextualized below, with references to the
relevant chapters and sections in this work.

General Computation of NLO Event-Shape Cross Sections
The article that is presented in Chap. 5 deals with event shapes, a group of observables
with a long history of use in studies of the strong interactions, see Chap. 2.3.2, mainly in
the form of differential or cumulative cross sections. Most of the time, these computations
are carried out in the approximation that all quark flavors and hadronic final states are
massless. This can be a good approximation as long as the center of mass energy of the
collision is much larger than the respective particle masses. However, quark mass effects
can become important if the precision goal requires the inclusion of quark mass power
corrections or if one of the physical scales of the observed process is of the order of the mass.
The latter can happen, for example, if the collision energy of interest Q is of the order
of the mass, or in the context of the peak region of differential event-shape distributions
if the invariant mass of the jets is of the order of the mass, i.e. Q

√
e ∼ m, with e the
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event-shape value. In Chap. 5, a general and efficient method for the computation of
massive event-shape cross sections at next to leading order (NLO) in the strong coupling
is presented. The consequences of non-zero quark masses enter at two places: first, the
quark mass parameters are kept arbitrary in all matrix-element computations, so that our
results incorporate full quark mass dependence; second, we examine the effects of finite
masses on the observable definitions themselves, which leads to different “schemes” of
event shapes that can be exploited as a tool to suppress or enhance mass effects in the
respective observable and that reduce to the standard definitions in the massless limit. So
far, analytic results for massive event shapes, even at NLO, have been quite scarce and had
to be computed from scratch, one event shape at a time. The new approach presented here
introduces a completely general and simple method of obtaining differential and cumulative
NLO event-shape cross sections.

Two-Loop Massive SCET Jet Function
At the next perturbative level, NNLO, perturbative fixed-order results that include full
mass dependence are even rarer. However, most ingredients are known to determine
the distribution of many event shapes in the peak region where a large scale separation
enables the application of effective field theory (EFT) methods, see Chaps. 2.2.2 and
2.3.2. The peak of an e+e− event-shape distribution refers to phase-space regions with
back-to-back pencil-like jets, accompanied by soft radiation, in which the bulk of the
collision events is located. Using a combination of two EFTs, boosted Heavy Quark
Effective Theory (bHQET) and Soft Collinear Effective Theory (SCET), factorization
theorems have been established that divide, up to power corrections, the differential cross
section into independent quantities, where each encodes contributions from only one of
the characteristic, widely separated scales. The last missing piece to perform next-to-
next-to-next-to-leading-log (N3LL) resummation for some event shapes (e.g. 2-jettiness
and jet-mass distributions) was the two-loop contribution to the massive quark SCET jet
function. The calculation of this missing piece is presented in Chap. 6. This is a rather
challenging computation due to several factors: It is a two-loop computation that involves
two scales (the heavy quark mass as well as the invariant mass of the jet). Additionally, the
computation involves some specifics related to massive SCET, e.g. eikonal propagators that
give rise to rapidity divergences. The article also shows well that a deep understanding of
the conceptual backgrounds is of crucial importance even for rather technical calculations
by discussing extensively how collinear-soft subtractions in the massive SCET jet function
can be viewed from different perspectives and how they have to be treated to obtain correct
results.

MSR Mass, R-Evolution, and Renormalons
The fact that quark mass parameters lead to challenging problems in the calculation
described in the previous paragraph is not an isolated incident. More often than not,
quark masses induce or imply conceptual issues. Some critical examples that concern the
mass parameter itself are the pole mass renormalon and the right choice of a quark mass
renormalization scheme, see Chap. 2.3.1. Chaps. 7 and 8 address some of these issues. In
Chap. 7 the MSR mass scheme, a generalization of the MS mass for low renormalization
scales, is introduced in detail. The MS mass is suitable for renormalization scales that
are equal to or larger than the mass scale and has an intrinsic scale that is of the order
of the mass (i.e. if µ ∼ m there are no large logarithms). On the other hand, the MSR
mass scheme is suitable for renormalization scales below the mass scale and has a variable
intrinsic scale R. Together with R-evolution, its associated renormalization group evolution,
the MSR scheme is a valuable tool to investigate renormalon-related issues and to deal with
widely separated kinematic scales in precision physics applications. Using R-evolution, it is
possible to resum potentially large logarithms associated with ratios of intrinsic scales such
as those involved in the conversion of quark mass parameters between high- and low-scale
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short-distance renormalization schemes. At the same time, R-evolution can quantify the
asymptotic character of the series that is associated with the pole mass renormalon. This
is the first time a renormalization group equation can achieve this. The MSR mass concept
is extended in Chap. 8 to include the effects of lighter massive quark flavors, giving a
systematic and consistent matching and running procedure: in analogy to the evolution of
the strong coupling, light flavors are integrated out by applying flavor-threshold matching
at the appropriate scales, with intermediate flavor-number-dependent evolutions. Currently,
the MSR mass is the only mass renormalization scheme for which a procedure of this
type has been formulated systematically and consistently. In Chap. 8, this new formalism
is immediately applied to some interesting problems such as the asymptotic behavior of
the pole-MS mass relation with light massive flavor effects, and the determination of the
renormalon ambiguity of the pole mass.

REvolver
The MSR mass scheme, together with its renormalization group equation, the R-evolution
equation, is one of the main outcomes of this thesis and it is highly desirable that the
associated advantages and implications be made readily available to both theorists and
experimentalists. For this reason, the library REvolver was developed, which is presented
in Chap. 9. REvolver implements, in an easy-to-use way, all the concepts that are promoted
in Chaps. 7 and 8. The library is written in C++, with additional interfaces for use in
Mathematica notebooks and Python. Apart from exact renormalization group running of
the strong coupling αs as well as the MS and MSR masses, the library supports conversions
between various mass renormalization schemes (with or without log-resummation via
R-evolution) and the extraction of parameters that are related to the pole-mass renormalon,
always exploiting the full potential of the MSR mass. At the moment, only strong
interactions are implemented in REvolver. However, the code is easily extendable and
electroweak interaction might be implemented in the future. The user interaction with the
library is centered around creating so-called Core objects. Core objects encode physical
scenarios, i.e. specific values of the strong coupling, the number of flavors, and a spectrum
of quark mass values. In addition, a variety of optional parameters can be set, including
the number of perturbative orders of the evolution equations and matching conditions.
The user can interact with those objects e.g. by extracting quark masses in any scheme,
strong coupling values at any renormalization scale and flavor number scheme, or by
adding additional heavier quark flavors to the setup. The features of the MSR mass and
R-evolution, which are exploited in almost all routines of the library, have never been
implemented in a public code before. Also, the Core concept is new in this type of software
and makes the use of REvolver particularly intuitive and streamlined.

Taken together, the works presented in this thesis offer significant improvements for the
study of heavy quark masses on a very broad spectrum: general methods are developed, high-
order corrections are calculated, new theoretical concepts are introduced and computational
tools are built. All of this will make many precision computations including heavy quark
masses more precise, either directly or indirectly, and will improve the overall understanding
of quark mass effects.

The following chapters of this thesis are structured as follows: Chap. 2 presents a brief
introduction to the relevant topics, including multi-loop computations, effective field theory,
and renormalons. Chap. 3 contains summaries of all the articles and results that make
up the main part of this thesis and that are collected in Part III. In Chap. 4 I conclude
and give an outlook on possible next steps and future developments. Finally, Chaps. 5-9
contain the publications.1

1In the following, the term “Section” is always used to refer to sections of a reference or publication, while
the terms “Part” and “Chapter” are used to refer to parts of this thesis.





Chapter 2

Conceptual Overview

2.1 The Era of Precision Physics

Fundamental particle physics stands at the frontier of human understanding of physics at
small length scales and high energy, many orders of magnitude away from our everyday
life experiences. Although highly unintuitive at first glance, it has been possible to gain a
much deeper understanding of this regime in the past decades, using the mathematical
frameworks of relativity, quantum mechanics, and ultimately quantum field theory (QFT).
With the prediction of the positron as a consequence of the Dirac equation in 1928 [1]
and the following discovery in 1932 [2], an extraordinary run began: often, following the
constraints set by QFT and guided by principles such as symmetry and simplicity, new
particles were predicted that were often found with the exact properties as anticipated
by the theory. Some famous examples include the pion (prediction 1935 [3], discovery
1947 [4]), the neutrino (prediction 1930 [5], discovery 1956 [6]), quarks (prediction 1964 [7,8],
discovery 1969 [9]) and the W and Z bosons (prediction 1968 [10], discovery 1983 [11]).
Since the discovery of the Higgs boson in 2012 [12] (predicted 1964 [13, 14]), all of the
basic building blocks of the standard model of particle physics have been detected by
experiments. Now, theoretical particle physics is in need of new inspirations from unexpected
experimental results. Unfortunately, recent experiments at the LHC and other colliders
have not shown clear signals from as-yet-unknown particles, despite the presence of many
appealing extensions of the standard model such as supersymmetry and other “beyond the
standard model” theories.
Basically, there are two directions to push to find signals of “new physics” (whereby it should
be noted that categorization always means oversimplification): the high energy frontier, i.e.
to collide particles with more and more energy to produce heavier field excitations that
are visible as signals in the data; and the precision frontier, i.e. to carry out more and
more precise experiments, paired with ever more precise calculations, in order to find small
deviations from standard model predictions.
“Ever more precise calculations” does not just mean “lengthier calculations”: it turns
out that the demand for precision leads to many conceptual difficulties of various kinds,
forcing researchers to examine more subtle details and, consequently, to gain a deeper
understanding of the underlying principles and to develop new technical and conceptual
innovations. Some of them are briefly discussed in the following section.

2.2 Some Aspects of Precision Calculations in Collider
Phenomenology

2.2.1 Multi-Loop Computations

One large subarea in theoretical precision particle physics is concerned with the computation
of perturbative corrections that are related to high powers in the coupling, or equivalently,
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high numbers of loops in Feynman diagrams (multi-loop computations). Most of the time,
multi-loop refers to #loops≥ 2. To achieve novelties in this area, it is indeed necessary to
do very lengthy, sophisticated computations. However, the field of multi-loop computations
gives also rise to many interesting conceptual and technical innovations that contribute to
physics and mathematics alike.

In the following, some of the most important techniques are briefly reviewed, many of them
are applied in Chap. 6.

In order to deal with the very large number of Feynman integrals (the number of integrals
grows exponentially with the number of loops), new techniques and algorithms have been
developed to reduce the number of integrals to linearly independent ones (the master
integrals, MIs). At the same time, master integrals are usually easier to solve than the
original ones. The most widely known and used method is integration by parts (IBP)
reduction [15, 16] by using the Laporta algorithm [17]. IBP reduction makes use of a
fundamental property of dimensionally regularized integrals∫

ddk1 · · · ddkL f(k1, . . . , kL) , (2.1)

where ki are 4-vectors extended to d dimensions and f is an integrable function (the
dependence on variables other than the loop momenta is suppressed): namely, that surface
terms always vanish, i.e.∫

ddk1 · · · ddkL
d

dkµi
pµf(k1, . . . , kL) = 0 ∀i ∈ {1, . . . , L} , (2.2)

where pµ can, but does not have to be, one of the vectors ki. It is easy to see that,
by choosing suitable functions f in Eq. (2.2), it is possible to derive nontrivial relations
between the terms that result from an explicit evaluation of the derivative.

When applying this technique in practice, the first step usually is to reduce the number
of distinct propagators for each integral, e.g. by employing partial fraction relations and
by exploiting relations between linear dependent sets of propagators. The structures that
appear in the numerators of the integrands are modified as well to match the propagators in
the denominators, by using Passarino-Veltman reduction if necessary. After this procedure,
one usually obtains several sets (also called families or topologies) of integrals. Each
topology is characterized by a certain set of linearly independent propagators and consists
of the integrals that can be built from these propagators raised to arbitrary integer powers,
including zero. To IBP-reduce these sets, all possible IBP relations are derived for arbitrary
powers of the propagators in the individual families, and systematically applied until all
integrals can be expressed as a linear combination of a small set of MIs, usually by using
the Laporta algorithm mentioned above. The coefficients in these linear combinations
generally depend on the number of dimensions d and kinematic invariants. In modern
calculations around O(105)−O(106) equations are processed, leading to O(10)−O(100)
master integrals, even at two loops.

Automation plays an important role here, and most steps that are described in the previous
paragraph are indeed automated and implemented very efficiently in computer programs
such as AIR [18], FIRE [19], Kira [20], and Reduze [21]. It should also be mentioned
that there are alternatives to the Laporta algorithm, with individual advantages and
disadvantages, such as using symbolic reduction rules as employed in LiteRed [22].

Even after reducing the number of integrals to be solved and the powers of their propagators,
the solution of those integrals is not trivial. The development of useful techniques for
the solution of multi-loop integrals is a very active field of research and new methods
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are constantly developed. However, there are some standard techniques that are shortly
described in the following.

Feynman parametrization is one of the most popular methods due to its simplicity, broad
applicability in the one- and multi-loop context, and capability to be automatized. Let’s
consider a general dimensionally regularized Feynman integral

F (a1, . . . , aN ) =
∫ ddk1 · · · ddkL

Ea1
1 · · ·E

aN
N

, (2.3)

where
Ek ≡

∑
i≥j≥1

Aijk rirj −m
2
k + i0+ , (2.4)

are propagators that contain loop momenta ki, external momenta pi and masses mi, with
r = {k1, . . . , kL, p1, . . . }. Ak are coefficient matrices. It can be shown that, see e.g. Secs. 2.2,
2.3 and 3.4 of Ref. [23], the integral in Eq. (2.3) can be expressed as an integral over
Feynman parameters xi of the form

F (a1, . . . , aN ) =

(iπd/2)LΓ(∑i ai − Ld/2)∏
i Γ(ai)

∫ ∞
0

dx1 · · · dxN δ(1−
∑
i

xi)xa1−1
1 · · ·xan−1

N

U
∑

i
ai−(L+1)d/2

F
∑

i
ai−Ld/2

,

(2.5)

where the integral boundaries of the Feynman parameters xi are set to zero and infinity
for later convenience, and with U and F the Symanzik- or graph polynomials in xi

U = detM ,

F = detM(QM−1Q− J) . (2.6)

The matrix M , the vector Q, and the scalar J are independent of the loop-momenta ki
and defined via the equation

xiEi = −kiMijkj + 2Qjkj − J . (2.7)

The proof of Eq. (2.5) is relatively straightforward, but interesting: First, the identity

1
Ea1

1 · · ·E
aN
N

= Γ(∑i ai)∏
i Γ(ai)

∫ ∞
0

dx1 · · · dxN xa1−1
1 · · ·xaN−1

N

δ(1−∑i xi)
(∑k xkEk)

∑
i
ai
, (2.8)

is applied to the integrand in Eq. (2.3). Subsequently, the denominator of the integrand in
Eq. (2.8) can be transformed such that

xiEi = −kiMijkj + 2QJkj − J
= −`iMij`j +QiM

−1
ij Qj − J

= −αi`′i`′i +QiM
−1
ij Qj − J (2.9)

where the Einstein sum convention is used. In the second line, the integration variables k
are changed to ` = k−M−1Q to remove the integration variables from the second term. In
the last line, another variable `′ = PT` is introduced to diagonalize M in the first term via
PTMP = A, where P is an orthogonal matrix and A is a diagonal matrix with diagonal
entries αi. Remarkably, these transformations of the integration variables do not lead to
additional factors in the integrand, as the transformation to ` is a simple shift and P is an
orthogonal matrix and therefore |detP | = 1.
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After these transformations, the final result of Eq. (2.5) can be obtained by solving the
d-dimensional integrals one after another by using the standard formula∫ ddk

(−k2 +M2)a = iπd/2
Γ(a− d/2)

Γ(a) (M2)d/2−a . (2.10)

The determinant of M comes into equation Eq. (2.6) when the integration variables `′i are
rescaled to remove the factors αi before applying Eq. (2.10).

It is straight-forward to compute the Symanzik polynomials automatically and in further
consequence to automatically derive a standard integral form as shown in Eq. (2.5) from a
d-dimensional Feynman integral. It should be mentioned that, although the propagator
powers ai are assumed to be positive in most derivations, the formula can be analytically
continued to negative values such that propagators in the numerators can be treated
without further manipulations.

Let’s demonstrate the application of Eq. (2.5) with a simple example. Considering Eq. (2.7)
for the 1-loop Feynman integral

F (λ1, λ2) =
∫ ddk

(k2 −m2
1)λ1 [(q − k)2 −m2

2]λ2
, (2.11)

with positive integer propagator powers λi leads to

x1(k2−m2
1)+x2[(q−k)2−m2

2] = −k2(−x1−x2)+2(−x2q)·k−(m2
1x1+m2

2x2−q2x2) , (2.12)

and consequently, according to Eq. (2.6),

U = detM = −x1 − x2 , (2.13)
J = m2

1x1 +m2
2x2 − q2x2 , (2.14)

QM−1Q = x2
2q

2

(−x1 − x2) , (2.15)

⇒ F = (x1 + x2)(m2
1x1 +m2

2x2)− q2x1x2 . (2.16)

Inserting everything into Eq. (2.5) gives the Feynman parameter integral

F (λ1, λ2) =

iπd/2
Γ(λ1 + λ2 − 2 + ε)

Γ(λ1)Γ(λ2)

∫ ∞
0

dx1 dx2
δ(1− x1 − x2)xλ1−1

1 xλ2−1
2 (−x1 − x2)λ1+λ2−4+2ε

[(x1 + x2)(m2
1x1 +m2

2x2)− q2x1x2]λ1+λ2−2+ε .

(2.17)

When solving Feynman parameter integrals in the form of Eq. (2.5), the Cheng-Wu
theorem [24] is especially useful. It says that the delta function δ(1−∑N

i=1 xi) in Eq. (2.5)
can be exchanged with δ(1 − ∑i∈ν xi), where ν is an arbitrary non-empty subset of
{1, . . . , N}. The parameters that are not present in the delta functions are then integrated
over R+ as already suggested by the integration boundaries in Eq. (2.5).

The Cheng-Wu theorem is a remarkable fact that is easy to show: In the derivation of the
formula in Eq. (2.5), instead of using Eq. (2.8) for all propagators in the denominator, the
identity

1
Eaii E

aj
j

= Γ(ai + aj)
Γ(ai)Γ(aj)

∫ ∞
0

dxi xai−1
i

1
(xiEi + Ej)ai+aj

, (2.18)

is applied iteratively for a chosen subset of propagators that are previously left out of
Eq. (2.8). It is easy to see that this subset corresponds to the Feynman parameters that
are removed from the delta function in the final result.
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Coming back to the example with the Feynman parameter integral in Eq. (2.17), it is
interesting to consider two options of the delta function according to the Cheng-Wu theorem:
When δ(1−x1−x2) is chosen, the factors (x1 +x2) in the integrand can be eliminated. On
the other hand, choosing δ(1− x2) instead of δ(1− x1 − x2) allows setting x2 → 1 which
eliminates a different factor in the numerator and simplifies the denominator. The two
equivalent forms of Eq. (2.17) are

F (λ1, λ2)
δ(1−x1−x2)= iπd/2

Γ(λ1 + λ2 − 2 + ε)
Γ(λ1)Γ(λ2)

∫ 1

0
dx1

xλ1−1
1 (1− x1)λ2−1

[m2
1x1 +m2

2(1− x1)− q2x1(1− x1)]λ1+λ2−2+ε

δ(1−x2)= iπd/2
Γ(λ1 + λ2 − 2 + ε)

Γ(λ1)Γ(λ2)

∫ ∞
0

dx1
xλ1−1

1 (−1− x1)λ1+λ2−4+2ε

[(1 + x1)(m2
1x1 +m2

2)− q2x1]λ1+λ2−2+ε .

(2.19)

Another technique for solving loop integrals that is, in many variants, the one most
frequently used for non-trivial cases is evaluation by differential equations [25–27]. This
method is tailored on top of IBP reduction and exploits the fact that after differentiation
w.r.t. a kinematic invariant (masses, squared external momenta, etc.), the resulting integrals
are always elements of the same family as the original one and can therefore be re-reduced
by utilizing the same IBP relations. Consequently, having reduced a family of Feynman
integrals to a set of MIs Mi, i ∈ {1, . . . , N}, one can take the derivative w.r.t. a kinematic
invariant q of each Mi, apply IBP reduction to the outcome, and arrive at a system of
coupled differential equations

d ~M
dq = C(q)(q, ε) ~M , (2.20)

with the coefficient matrix C(q). Analogous to the usual IBP reduction, the elements
of the coefficient matrix generally depend on the number of dimensions d = 4 − 2ε and
the kinematic invariants (dependencies on invariants other than q itself are suppressed in
Eq. (2.20) for simplicity).

One of the advantages of this method is that the resulting differential equations can be
solved order by order in ε without any previous manipulations, given appropriate boundary
conditions. Usually, the MIs Mi are formally expanded in ε (in many cases the minimal
power n of εn is known from general considerations) and then solved up to the required
order in the computation of interest. This can make the procedure of solving the MIs much
easier since other methods (like Feynman parameters) do not immediately permit such an
expansion.

To fully determine the solution of the differential equations, boundary conditions at certain
points in the space of kinematic variables must be known. In the case of massive particles
this can be the solution of the massless variant (assuming the massless limit exists). Other
popular boundary values are p2 → 0 and p2 → ∞, respectively, where p is an external
momentum. In some cases, no additional boundary condition is needed due to consistency
arguments, e.g. the finiteness of the solution at specific points.

If solving the original system of differential equations in Eq. (2.20) is not possible in
practice, a common strategy is to try to bring the system to epsilon form [28]. Essentially,
this means to look for a system equivalent to Eq. (2.20) (by finding a different basis of MIs
M ′i) of the form

d ~M ′(q)
dq = εC ′(q)(q) ~M ′(q) , (2.21)
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with q the kinematic variable as in Eq. (2.20), and C ′(q)(q) the new coefficient matrix,
independent of ε and Fuchsian. Fuchsian means that the expansion of C ′(q)(q), in all its
singular points qj , has the form

C ′(q)(q → qj) =


1

q−qj

(
C
′(q)
j,0 + C

′(q)
j,1 (q − qj) + . . .

)
(qj 6=∞) ,

1
q

(
C
′(q)
j,0 + C

′(q)
j,1 q

−1 + . . .
)

(qj =∞) .
(2.22)

In this special form, the system in Eq. (2.21) can be solved trivially as a Laurent series.
However, up to now no generally applicable strategy to find the epsilon form as shown
in Eq. (2.21) is known. In general, not even the criteria for the existence of such a basis
are known, and for processes involving several legs or masses, the functions that make up
the analytic solutions (iterative integral functions) might not be known yet. There are
codes available that can automatically find the transformation to epsilon form in many
cases [29–31], as long as only one kinematic variable is involved.

The question of what classes of functions can appear in the analytic solutions of arbitrary
Feynman integrals is a heavily discussed topic on its own with many insights and innovations
in the past years, see e.g. Secs. 5.3–5.6 of Ref. [32] for a short overview.

In many cases, an analytic solution of multi-loop Feynman integrals is not feasible (or
necessary) and a numerical method can be used to evaluate them. The by far most popular
technique is sector decomposition [33–35]. This method starts with a Feynman integral as
shown in Eq. (2.5), i.e. expressed in terms of Feynman parameters, and, through clever
reparametrizations and splittings of the integrals, achieves a form where the poles in ε
are explicit. Consequently, subtraction methods can be used to achieve a series in ε with
finite ε-independent integrals as coefficient functions. These integrals can then be solved
numerically up to, in principle, arbitrary precision. Popular implementations of sector
decomposition are FIESTA [36] and pySecDec [37]. Obviously, sector decomposition is also
a valuable tool to check analytic solutions.

The obvious disadvantage of sector decomposition is that it does not provide any information
about the analytical structure of integral solutions. That fact is e.g. especially limiting
if distributional structures are involved (delta functions can obliviously not be resolved).
Also, if integrals depends on more than one kinematic variable, e.g. masses, those integrals
have to be evaluated at all parameter values separately since in general no functional form
can be extracted. Of course, a fit can be generated if the numeric evaluation at many
points is feasible.

For more details on the most important techniques in multi-loop computations and many
pedagogic examples, Ref. [23] is highly recommended.

Finally, it should be mentioned that, although the tools described above are extremely
useful, due to the unique structure of most multi-loop computations one can not fully rely
on standard recipes. In most cases, it is necessary to modify existing techniques, or even
to develop new ones.

2.2.2 Effective Field Theory and Renormalization

Effective field theory is a very rich and interesting field, with an abundance of good
articles and books. Any brief introduction must necessarily focus on a few aspects that
will hopefully give an interesting first overview and arouse interest in the subject. Some
particularly useful and interesting introductions to study after reading this section are
Refs. [38–40] and the references therein.
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The idea of effective theories is to construct theories that are tailored to a specific energy
scale or kinematic setup, where only the relevant degrees of freedom that are dynamical in
the considered setup are explicitly included in the theory.

This is a very natural thing to do. Basically, all subfields of physics, and all natural sciences,
are effective theories at a certain length scale: Fundamental particle physics describes the
dynamics of fundamental particles and therefore deals with length scales that are much
larger than the Planck length. Dynamics at the Planck length is therefore not relevant
and not part of the standard model. Atomic physics describes the dynamics of atoms.
Therefore, instead of quarks, whose dynamics take place at a much smaller length scale,
atomic nuclei are the relevant degrees of freedom. Thermodynamics describes the dynamics
at length scales much larger than individual molecules. Consequently, the dynamics of
individual molecules are not the relevant degrees of freedom, but instead, temperature,
pressure, etc. are.

Every length scale has its own distinct phenomena that can best be studied at their
characteristic length scales. Obviously, this approach works best if there is a large hierarchy
between scales.

Effective field theory, as used in many areas of physics, is a particularly systematic approach
to the principle described in the previous paragraphs. In particle physics, one mostly
uses Lagrangians to encode degrees of freedom and their interactions as quantum field
operators, i.e. as a Quantum Field Theory (QFT). Consequently, effective field theories in
particle physics are usually constructed by building quantum theoretic Lagrangians with
the appropriate symmetries and operators.

Schematically, the Lagrangian of an EFT has the form

LEFT =
∑
D≥0,i

c
(D)
i O

(D)
i

ΛD−d , (2.23)

where d is the number of spacetime dimensions, O(D)
i are local operators of mass dimension

D, c(D)
i are their dimensionless coefficients and Λ is the scale1 of “new physics”, i.e. the

scale at which the theory is not applicable anymore due to the appearance of new dynamical
degrees of freedom.

The sum over D in Eq. (2.23) has, in principle, infinitely many terms2 and can be seen
as an expansion in Λ−1. The number of terms in the sum over i on the other hand, i.e.
the sum of operators of the same mass dimension, is finite. In practice, the sum in D
is truncated depending on the demanded precision of the calculation and the physical
scales of the considered process. In general, matrix elements of an operator O(D)

i scale
like 〈O(D)

i 〉 ∼ mD, where m is the typical scale of the considered process. This is called
power counting, and determines which operator dimensions have to be included in the
computation of an observable to achieve a certain precision. It is of utter importance to
be consistent in the choice of operators that are included in the effective Lagrangian of
Eq. (2.23), i.e. after a certain maximal order in the power counting is chosen, it is required
to include all operators of that order. Otherwise, necessary cancellations can not happen,
including the cancellation of UV divergences with renormalization constants.

There exist two distinct approaches to constructing an effective Lagrangian as shown in
Eq. (2.23): top down and bottom up.

1In the following, “scale” refers to mass or energy scales.
2This means that EFT Lagrangians are in general “non-renormalizable”. However, an EFT can be

renormalized (i.e. there is a finite number of counterterms) at any fixed order in the power counting
parameter.
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The bottom-up approach is usually employed if the underlying theory is not known or a
systematic expansion is not feasible. To achieve the bottom-up construction of an EFT, the
appropriate symmetries and degrees of freedom of a system are specified and a Lagrangian
of the form of Eq. (2.23) that contains all terms consistent with these symmetries and
other fundamental properties of the theory (Lorentz invariance, unitarity, locality, etc.)
is written down. The values of the couplings can then be extracted from experiments or
from other methods that are capable to derive them from the underlying theory. One
prominent example of an EFT that is constructed in this way is chiral perturbation theory
(χPT) [41,42]. χPT describes the low energy dynamics of QCD where usual perturbation
theory can not be applied and the appropriate degrees of freedom are hadrons instead
of quarks and gluons. In that context, Λ = Λχ ∼ 1 GeV. The couplings can be fixed by
experiment or by Lattice QCD. χPT is an especially interesting example as it demonstrates
the emergence of distinct appropriate degrees of freedom compared to the underlying
theory.

In the top-down approach, one obtains the effective Lagrangian by starting from the
underlying theory from which the non-dynamical degrees of freedom are integrated out (by
formally evaluating the path integral in the generating functional over the heavy fields).
After that procedure, the resulting non-local Lagrangian is expanded in terms of local
operators3. In the following, I will focus on that approach as this is the appropriate way
for most EFT-related concepts in this thesis.

Before going into more detail, the close connection between EFT construction and renormal-
ization should be elaborated: due to the presence of UV divergences (i.e. divergences that
emerge from high energies) in quantum corrections in QFTs, regularization and renormal-
ization is required to obtain quantitative predictions. Essentially this means that physics
at high scales is modified in a way such that the related computations can be performed
without encountering ill-defined expressions (regularization) with a subsequent redefinition
of the theory parameters to absorb the divergences (and possibly finite contributions) that
arise when taking the limit back to the physical theory (renormalization).

This is very similar to what happens when an EFT is constructed: there is physics at high
energies that can not (or should not) be resolved, so the (non-dynamical) effects that come
from these scales are absorbed into the low-energy theory parameters. The similarity is no
coincidence: it is known that the standard model of particle physics is an effective field
theory and that there must be “new physics” at a certain “new physics scale” whose exact
value is not yet known4.

In the following, some fundamental concepts of renormalization and the construction of
EFTs are described on the same footing.

An intuitive approach to renormalization and EFT construction is to implement explicitly
a finite cutoff energy scale Λ, in analogy to the new physics scale in Eq. (2.23). Modes
that are related to degrees of freedom above Λ are integrated out and loop integrals are
cut off there, which renders them finite and introduces a dependence on the cutoff scale.
The effects of physics beyond the UV scale (after expanding in powers of Λ−1) can then
be absorbed into the remaining low-energy theory parameters e.g. by using a momentum
subtraction scheme. In a momentum subtraction scheme, the considered loop integral

3Under some conditions, non-local operators can appear in effective Lagrangians. One prominent example
is the SCET Lagrangian, where a non-local operator along a specific light-cone direction emerges as a
consequence of the non-local nature of collinear-soft interactions. However, the non-locality is of the
order of the hard scale in power counting.

4Standard Model Effective Theory (SMEFT) [43,44] takes this approach seriously and enables to study
composite operators of standard model fields with higher mass dimensions that encode traces of physics
beyond the standard model.
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is subtracted at a certain euclidean momentum value p2 = −µ2
M , where p is an external

momentum5. The momentum subtraction scheme is an example of a mass dependent
renormalization scheme.

The dependence of renormalized quantities on the renormalization scale µM that is in-
troduced through the renormalization scheme gives rise to the renormalization group
equation (RGE) and renormalization group evolution, which allow evolving the respective
quantities between renormalization scales through coupled differential equations. Given
a renormalized coefficient (e.g. a coupling or mass) c(µM ), and ignoring the subtlety of
operator mixing for simplicity, the RGE is given by

d
d logµM

c(µM ) = γc(µM ) c(µM ) , (2.24)

where γc(µM ) is called the anomalous dimension of c(µM ) and is usually expanded pertur-
batively. The RGE can be derived from the requirement that the theory is independent
of µM and its solution can be used to evolve the parameter c between different values of
µM (while keeping observables the same). This is a very important technique to sum up
large logarithms, see below. Quantities that depend on a renormalization scale and satisfy
an RGE are called running quantities, e.g. a mass parameter m(µM ) would be called a
running mass.

Before discussing the severe disadvantages of cutoff regularization and mass-dependent
regularization schemes, let’s look at the advantages: besides the fact that a cutoff and
momentum subtraction are intuitive concepts and seem to reflect the philosophy of EFTs,
the decoupling theorem [45] holds for mass-dependent renormalization schemes. This means
that the contribution of a particle with mass m vanishes automatically (“decouples”) if
m� µM , e.g. in the β-function coefficients that govern the renormalization group running
of a coupling. This is only possible due to the explicit dependence of the anomalous
dimension coefficients on the mass m, which gives renormalization schemes of this type
their name.

However, although intuitive, cutoffs and momentum subtractions introduce various severe
issues. Apart from the fact that an explicit cutoff breaks Lorentz and gauge invariance, which
must be restored tediously at the end of the computation, this approach to renormalization
is useless for EFT computations since the explicit introduction of the cutoff scale Λ in
loop integrals breaks the power counting of the EFT. Since, as argued above, the standard
model itself can be interpreted as an effective theory, a cutoff should not be used at all. In
addition, computations that utilize mass-dependent schemes and cutoffs are much harder to
do, which makes computations beyond one loop extremely demanding or even unfeasible.

To circumvent these problems, one should use regularization and renormalization schemes
that are easy to apply and that conserve symmetries and power counting. The de-facto
standard regularization+renormalization approach that is employed in high energy physics
today is dimensional regularization (DimReg) in combination with the (modified) minimal
subtraction (MS) scheme. The idea behind dimensional regularization is to analytically
continue the usual four spacetime dimensions to an in general arbitrary complex number
of d = 4− 2ε dimensions in loop integrals, i.e.

∫ d4p

(2π)4 → µ2ε
∫ ddp

(2π)d , (2.25)

5The momentum subtraction scheme and most other schemes can also be applied if regularization schemes
other than a cutoff are used. However, for simplicity, and since they both are considered to be “physical”
schemes, they are treated together here.
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where the renormalization scale µ is introduced to maintain the total dimensionality of the
expression. At the end of the computation, ε is expanded around zero, and, applying the
minimal subtraction scheme, the poles in ε are absorbed into the theory parameters.

Considering the great success and wide usage of DimReg+MS renormalization, it is rarely
discussed why DimReg works and how the scale µ can be interpreted, although it is always
stated, mostly vaguely, that µ can be seen as a “separation of high and low energy physics”.
An especially simple and vivid way to make many properties of DimReg+MS explicit
(although not a strict or general study) is e.g. illustrated in Sec. 2.4 of Ref. [46], which I
will briefly summarize in the following. Starting with the simple euclidean loop integral

I ≡
∫ d4k

(2π)4
1

(k2 +A2)α , (2.26)

with some integer α and a kinematics-type variable A, potentially containing external
momenta and masses, the dimensionally regularized version is

Iε = c(ε)
∫ d4−2εk

µ−2ε(2π)4−2ε
1

(k2
ε + k2 +A2)α , (2.27)

with c(ε) → 1 (ε → 0) and with the squared loop momentum explicitly separated into
the usual 4-dimensional part k2 and a term k2

ε that originates from the additional −2ε
dimensions. Solving only the integral over the extra dimensions gives

Iε = r(ε)
∫ d4k

(2π)4
1

(k2 +A2)α

(
k2 +A2

4πµ2

)−ε
, (2.28)

where r(ε) = c(ε)Γ(α+ ε)/Γ(α)→ 1 (ε→ 0). Evidently, the integral over the additional
dimensions gives rise to a convergence factor(

k2 +A2

4πµ2

)−ε
≡ ρ−ε = e−ε log ρ . (2.29)

This additional factor illustrates several properties of DimReg: physics is not changed for
| log ρ| � 1/ε, i.e. if the loop momentum k and the kinematic variable A are of the order
of µ. On the other hand, physics is changed if either k or A are significantly larger than
µ or if both variables are significantly smaller than µ. This illustrates that DimReg acts
as an UV as well as an IR regulator and that the renormalization scale µ controls what
is considered to be IR or UV. In other words, the choice of the renormalization scale µ
determines which physical scale is faithfully resolved.

MS is a mass-independent renormalization scheme, which means that the anomalous
dimension coefficients are independent of the heavy mass or the renormalization scale µ, i.e.
no unphysical scales appear. Consequently, however, the decoupling theorem does not hold
for mass-independent schemes (anomalous dimensions are the same at all scales without
further doings) such that heavy degrees of freedom have to be removed “by hand”. This
results in so-called matching corrections that guarantee that the effective theory (with the
heavy degree of freedom removed), and the underlying theory (that includes the heavy
degree of freedom) agree at the scale where the degree of freedom is removed, the matching
scale. If this is ignored, large (and wrong) logarithmic corrections appear in the calculation,
e.g. when running theory parameters to scales much smaller than the heavy mass.

In the matching procedure, one basically first integrates out the heavy degree of freedom,
which results in a new low-energy theory. Afterward, the dimensionally regularized
Lagrangians of the two theories are evaluated at the same renormalization scale (usually
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near the scale of the particle to be integrated out) and the effects of the heavy particle
are absorbed into the theory parameters of the low energy theory (order by order in
perturbation theory). The resulting matching corrections, which are independent of the
physics at low scales, make sure that high and low energy physics are the same at and
below the matching scale. This procedure is performed for all couplings that multiply EFT
operators.

The presence of the unphysical renormalization scale µ in the results of perturbative
calculations that use DimReg+MS (or µM in the momentum subtraction scheme) is a
feature rather than a bug: first of all, since all-order physical predictions can not depend
on µ, but results at a finite order in perturbation theory do, the variation of an observable
with the variation of µ is a measure of the remaining uncertainty due to higher-order
corrections. However, much more important and extremely valuable is the ability to resum
large logarithms by employing renormalization group evolutions.

The issue of large logarithms is a very common one. If the problem of interest depends on
several widely separated physical scales, this might lead to large logarithms of ratios of
these scales. In case these logarithms become too large in comparison to the coupling that
serves as the perturbative expansion parameter (i.e. α log = O(1)), the expansion breaks
down. As described earlier in this section, however, a large scale hierarchy gives rise to
the applicability of EFT methods: often it is possible to construct an EFT (or a tower
of EFTs), that allows to effectively separate the physics at the widely separated scales
such that perturbative predictions factorize. Factorization means that the mathematical
expressions that describe an observable decay into several factors, where each contains
the contribution from only one specific scale. Each of these factors then contains logs
of ratios of the respective characteristic scale and the renormalization scale µ, such that
each factor can be evaluated at a scale for which the logarithms are small. Subsequently,
renormalization group evolution is used to evolve each factor to a common scale. An
example of a factorization formula is discussed in Chap. 2.3.2 in the context of SCET and
event shapes.

It should be mentioned that some renormalization schemes have an intrinsic physical
scale themselves, which is especially pronounced e.g. in mass renormalization schemes.
Consequently, depending on the observable and characteristic scales of interest, the choice
of the renormalization scheme can already have a considerable impact on the precision of
the calculation, see Chap. 2.3.1 for more details.

The EFT approach will be applied to quark masses in the publications presented in Chaps. 7
and 8. In the latter, especially the process of integrating out light massive flavors can be
seen to follow the elaborations above. See also Chap. 2.3.1 for more details regarding the
renormalization of heavy quark masses.

2.3 Heavy Quark Masses in Precision Calculations

Quark masses are interesting for several reasons:

First of all, they are interesting on their own. The values of the mass parameters (or equiv-
alently the values of the respective Higgs Yukawa couplings) are fundamental parameters
of the standard model Lagrangian. Therefore, a deep understanding of the meaning and
consequences of the theory requires a deep understanding of these parameters.

Secondly, mass effects become more and more important due to the high precision of
calculations and experiments in recent years. In many phenomenological high-energy
computations, quark masses are set to zero. With the availability of more and more precise
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data and loop corrections, however, the finiteness of the heavy quark mass values can
not be neglected anymore, e.g. for precise determinations of the strong coupling by using
differential event-shape cross sections [47,48]. In the context of mass effects, it is important
to understand that these do not only refer to correction terms but that there exists a broad
range of aspects related to them.

Thirdly, one of the quark masses happens to be by far the largest mass value of all particles
that are considered fundamental in the standard model: the top quark, which has roughly
the mass of a gold atom. Consequently, the top quark has a special status among all
standard model particles and heavily contributes to electroweak and Higgs physics, with a
Yukawa coupling of order unity. Also, in many theories beyond the standard model, the
top quark plays a special role, either as a door to new phenomena or as an element of the
standard model that has to be modified, see Sec. 60.3.3 of Ref. [49] for a short review. In
the context of electroweak physics, especially the strong impact on the electroweak vacuum
stability [50–52], and electroweak fits of the Higgs boson should be mentioned. These fits
also serve as a consistency check of the standard model [53,54].

In many scenarios, it is useful to divide the six quark flavors into “heavy” and “light” ones,
depending on the size of their mass parameters in relation to the chiral symmetry breaking
scale Λχ ∼ 1 GeV [55]. Consequently, the charm, bottom, and top quarks are considered to
be “heavy”, while the down, up, and strange quarks are “light”. Light quark mass values
are usually determined within the frameworks of chiral perturbation theory [41, 42, 56],
lattice QCD [57], and QCD sum rules [58]. For the heavy flavors, the usual perturbative
techniques can be applied in many cases. In addition, the wide separation between the mass
values and the non-perturbative scale allows to construct effective field theories [59–61]
within which non-perturbative corrections can be examined systematically. However, also
in the case of heavy quarks, lattice approaches [57] or relativistic sum rules [62] can be
used, e.g. to study charm and bottom quark masses.

The following subsection 2.3.1 deals with quark mass renormalization schemes and the
associated conceptual issues. Due to confinement in QCD, quark masses are not physical
observables, but formal parameters in the action that depend on the renormalization scheme.
In comparison to leptons in the electroweak theory, this is much more pronounced for
quarks in QCD due to the strongly coupled character of the theory. Quarks do not exist as
physical particles or asymptotic states; and in practice, quarks are never observed directly
but as hadronic bound states. However, hadronization per se is not directly the reason for
the subtleties concerning quark masses: although the top quark does not hadronize due to
its short lifetime (∼ 10−25 seconds), all conceptual issues apply to it as well. It is essential
that, whenever a quark mass value is stated, the renormalization scheme and scale used to
define it are specified.

In the section after that, Chap. 2.3.2, event-shape observables are introduced and the
SCET factorization formula is discussed in that context, where the case of massless as well
as massive flavors is considered.

2.3.1 Quark Mass Renormalization Schemes and Renormalons

The quark mass parameters as they originally appear in the standard model Lagrangian
have to be renormalized, see Chap. 2.2.2. In other words, the UV divergences that arise
in the quark self-energy must be absorbed into the quark mass parameters by employing
an appropriate regularization technique and renormalization scheme. In addition to the
divergent contributions, finite parts can be absorbed as well. Here, the choice of the
renormalization scheme comes into play.



2.3 Heavy Quark Masses in Precision Calculations 19

At first, the obligation to choose which finite parts to absorb seems to be an additional
complication. However, in many observable predictions, a renormalization scheme can
be chosen that is especially suitable for the considered type of observable, physical setup,
or the energy scale. Choosing that scheme leads to better perturbative convergence and
smaller uncertainties of the prediction. With a large number of schemes to choose from
and very accurate determinations of various observables, it is necessary to have available
the tools (conceptually as well as practical) to convert between schemes in a precise way.

In perturbative QCD, most mass renormalization schemes carry an intrinsic physical
scale R, which can be interpreted as an effective energy cutoff where scales larger than
R are absorbed into the mass parameter. The cutoff scale is usually much larger than
the non-perturbative scale, R� ΛQCD. This is of great importance since the absorption
of non-perturbative scales into the mass parameter leads to strong IR sensitivity and
consequently to an IR renormalon, which is addressed later in this section.

Some mass renormalization schemes can be equipped with a renormalization group equation
(RGE) that relates two mass values in the same renormalization scheme at different
renormalization scales without introducing large logarithms, see also Chap. 2.2.2. Mass
schemes equipped with an RGE can be referred to as “running mass” schemes. Just like
the scheme itself, the related RGE might be more or less suitable for certain applications
and energy scales. This aspect will be discussed in more detail in the following paragraphs.
Note that the renormalization scale is in general not equivalent to the intrinsic scale.

To illustrate how intrinsic physical scales appear in quark mass renormalization schemes
and how the scheme-associated RGEs give rise to different kinds of renormalization scale
running, a few examples are given in the following. After briefly discussing the MS mass
as an example of a high-energy scheme, the low-energy 1S mass scheme is reviewed. This
sets the stage for introducing the MSR scheme, one of the central topics of this thesis.

The MS mass m(µ) is a running mass that is defined in analogy to the strong coupling,
i.e. it absorbs only the DimReg 1/εn>0 contributions into the mass parameter. In the
approximation that all quark flavors that are lighter than the heavy quark Q are massless,
the relation of the MS mass mQ(µ) of the quark Q to the pole mass mpole

Q is given by

mpole
Q −mQ(µ) = mQ(µ)

∞∑
n=1

n∑
k=0

aMS
n,k

(
α

(n`+1)
s (mQ(µ))

4π

)n
logk m(µ)

µ
, (2.30)

where {aMS
n,k} are the perturbative coefficients of the pole-MS relation, and (n` + 1) is the

flavor number scheme of the strong coupling with n` the number of flavors that are lighter
than the heavy quark Q. The intrinsic scale of the MS mass is the mass scale itself, i.e. if
µ ∼ mQ ≡ mQ(mQ) there are no large logarithms:

mpole
Q −mQ = mQ

∞∑
n=1

aMS
n

(
α

(n`+1)
s (mQ)

4π

)n
. (2.31)

Having a closer look at Eq. (2.31), the intrinsic scale of the mass scheme appears in two
places: as an argument in the strong coupling, and as a factor in front of the perturbative
expansion. Another feature that can be observed immediately is the natural flavor number
scheme (n`+1), i.e. the heavy quark itself is included as an active flavor. The MS scheme is
the de facto standard scheme for high-energy applications and is only physically meaningful
for scales µ & mQ. The latter is intuitive, due to the natural flavor number scheme as well
as the fact that the mass itself is the intrinsic scale, which should, however, be integrated
out for scales µ� mQ.
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The renormalization group equation of the MS scheme has the form

µ
dmQ(µ)

dµ = 2mQ(µ)
∞∑
n=0

γMS
n

(
α

(n`+1)
s (µ)

4π

)n
, (2.32)

and gives rise to logarithmic scale evolution. Eq. (2.32) is an appropriate RGE for high-
energy evolution (µ & mQ), as indicated by the scaling, as well as the fact that the strong
coupling is in the (n` + 1)-flavor scheme.

The low-energy case µ � mQ is e.g. relevant in the context of non-relativistic heavy
quarkonium where the non-relativistic quark velocity v gives rise to the low intrinsic scales
mQv and mQv

2, with mQ � mQv � mQv
2 � ΛQCD [61, 63].

An example of a popular low-scale scheme is the 1S mass m1S
Q [64–66], which is defined as

half the mass of the heavy quarkonium spin-triplet ground state. The perturbative relation
to the pole mass has the form

m1S
Q −m

pole
Q = MB

∞∑
n=1

c1S
n

(
α

(n`)
s (MB)

4π

)n
, (2.33)

with MB = CFαsm
pole
Q the inverse Bohr radius. The low-scale character of the 1S scheme is

apparent in two places: first, the natural flavor scheme is n`, which signals that the scheme
is defined at a scale where the heavy quark Q is integrated out. Second, the intrinsic scale
is the inverse Bohr radius, a scale much lower than the mass scale, e.g. for the top quark
MB ≈ 30 GeV.

The 1S mass scheme is not equipped with an RGE, i.e. it is not a running mass, since

µ
dm1S

Q

dµ = 0 . (2.34)

There exists a large number of other low-scale masses, and most of them show an analogous
structure, e.g. the PS [67], RS [68] or kinetic mass [69,70].

The MSR mass scheme [71–73] is one of the main results of this thesis and is introduced in
Chap. 7 (summarized in Chap. 3.3) and extended in Chap. 8 (summarized in Chap. 3.4).
The MSR scheme combines several ideas, each useful on its own: as will be explained in
the following, the MSR mass is the low-scale generalization of the MS mass and has a
variable intrinsic scale R. In addition, lighter massive flavors can be treated systematically
and consistently in the MSR mass scheme by consecutively applying matching and running
operations as known from the strong coupling evolution. The relation of the MSR mass
mMSR
Q (R) of the quark Q to the pole mass is given by

mpole
Q −mMSR

Q (R) = R
∞∑
n=1

an

(
α

(n`)
s (R)

4π

)n
, (2.35)

with an = aMS
n |nh=0

6. The removal of the heavy quark as an active flavor is achieved by
changing the flavor number scheme from (n`+1) to n`, by setting nh = 0 in the perturbative
coefficients, and by introducing the variable R as the new intrinsic scale, which results
in a MS-MSR matching condition. The MSR mass is defined directly via the pole-MS

6The general perturbative coefficients aMS
n of the relation between the pole and the MS scheme (ignoring

light massive flavors) depend on the number of massless flavors n` and the number of heavy flavors
nh, i.e. the number of active flavors as heavy as the considered heavy quark. In the usual MS scheme,
nh = 1, while in the MSR scheme the heavy flavor is not active and therefore nh = 0.



2.3 Heavy Quark Masses in Precision Calculations 21

mass relation and is thus directly related to the quark self-energy diagrams, automatically
inheriting all favorable infrared properties of the MS mass. The variable intrinsic scale
allows to control down to which scale self-energy contributions are absorbed into the mass
parameter.

The RGE that is associated to the MSR mass is called R-evolution and is given by

R
dmMSR

Q (R)
dR = −R

∞∑
n=1

γRn

(
α

(n`)
s (R)

4π

)n
. (2.36)

Note that in this special case, the evolution parameter R is the intrinsic scale. The linear
scaling of Eq. (2.36) as well as the n`-flavor scheme of the strong coupling indicate that this
is the appropriate RGE for low-scale evolution. The R-evolution equation has far-reaching
consequences and a very broad range of applications that are described in more detail in
Chaps. 3.3 and 3.4.

Eq. (2.35) shows that, in the formal limit R→ 0 of the MSR mass, the pole mass is obtained.
This illustrates that the pole mass is defined to absorb all quark self-energy contributions
down to zero momentum. At the same time, it can be seen that in practice one has to deal
with the QCD Landau pole in the strong coupling, which emphasizes that the value of
the pole mass is ambiguous. Due to the absorption of low IR contributions, the pole mass
suffers from an O(ΛQCD) renormalon [67,74]. The ambiguity is related to bad perturbative
behavior which can, depending on the scale, be already seen at low perturbative orders
in the relation between the pole and renormalon-free schemes. The pole-mass ambiguity
is therefore not only of theoretical but of phenomenological interest [75]. To illustrate
the renormalon-associated bad perturbative behavior, let’s consider the conversion of the
charm MS mass mc ≡ mc(mc) = 1.3 GeV to the pole scheme, which gives [76–83]

mpole
c = (1.3 + 0.2108 + 0.1984 + 0.2725 + (0.4843± 0.0005))GeV , (2.37)

up to 4-loop order in perturbation theory7, with α
(5)
s (MZ) = 0.118. The perturbative

coefficients that relate the pole mass to mass schemes that do not suffer from an O(ΛQCD)
renormalon diverge factorially with the perturbative order. All mass schemes that are
presented above, except for the pole mass, are (leading) renormalon free, as they only
absorb self-energy contributions down to a scale R � ΛQCD. Mass schemes with this
property are called short-distance schemes.

2.3.2 Event Shapes and their Factorization

The term “event shapes” refers to a class of observables with a long history of usage in
studies of the strong interaction [84, 85]. Event shapes are defined through the energy-
momentum distribution of final state particles in a collision experiment, or equivalently,
through their geometry. Originally, event shapes were mainly used in e+e− collisions and
deep inelastic scattering experiments. Today, however, the concept is quite general with
event shapes specifically constructed to be used in pp and other types of collisions [86, 87].
Mostly, computations and measurements of differential or cumulative cross sections with
respect to a specific event shape are compared to examine aspects of QCD, e.g. to extract
the value of the strong coupling.

In the context of high-energy collisions that involve strongly interacting particles, the
probability of observing certain final-state geometries is enhanced: events with one or
several jets of highly boosted, collinear particles, and isotropic, low-energy (“soft”) radiation.

7The uncertainty of the fourth order coefficient stems from the numerical methods employed in Ref. [83]
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The probability distribution in the space of final-state geometries therefore contains a lot
of information about the nature of the strong interaction. Event-shape observables make
this information accessible: they encode the geometry of the final-state 4-momenta in a
1-dimensional projection, i.e. in terms of a single number or a scalar quantity.

Popular event shapes include thrust [88, 89], hemisphere masses (left and right, heavy
and light) [90–92], C-parameter [93], and jet broadening [94]. These event shapes are
so-called 2-jet event shapes, which means that the event-shape value is minimal for the
configuration of only two narrow, pencil-like jets. In this final-state configuration, a large
scale hierarchy emerges between the collision energy, the energy scale of the collinear
particles in the jet and the energy scale of the soft radiation. Consequently, large logs
are present in the perturbative expansion that invalidate the fixed order results in the
corresponding phase-space region. These logarithms can be resummed using effective field
theory techniques.

In the context of jet physics with massless quarks, the effective theory of interest is
mainly Soft-Collinear Effective Theory [95–97] (SCET). SCET is a top-down EFT that
is constructed from QCD in the phase-space region in which mainly low-energy (soft)
and highly boosted (collinear) particles are present as degrees of freedom. If massive
quark flavors are considered, SCET (in the region p2 ∼ p2 −m2 ∼ m2, where p2 is the
squared invariant mass of the heavy-quark initiated jet and m is the mass of the heavy
quark) as well as boosted Heavy Quark Effective Theory [98,99] (bHQET) (in the region
p2 − m2 � m2 ≈ p2) are utilized. By using SCET, the leading-order differential cross
section in the SCET power counting parameter can be factorized into objects where each
encodes the physics at only one specific physical scale. The large logarithms can then be
resummed by applying renormalization group evolutions for each of the functions in the
factorization formula.

As an example, let’s have a look at the factorization formula of thrust, which is given by

τ ≡ 1−max
t̂

∑
i |t̂ · ~pi|∑
i |~pi|

, (2.38)

where the sum runs over all final state particles in a collider experiment with momenta
~pi. t̂ is called the thrust axis and is a unit vector that maximizes the second term. In the
approximation of massless quarks, the SCET factorization formula for the differential cross
section with respect to thrust is given by

1
σ0

dσ
dτ = QH(Q,µH)UH(Q,µH , µ)

∫
ds
∫

ds′ UJ(s− s′, µ, µJ)J(s′, µJ)

×
∫

d` US(`, µ, µS)S(Qτ − s/Q− `, µS) , (2.39)

with σ0 the total cross section at tree level. H, J and S are the hard, jet, and soft function,
respectively, which encode the relevant physics at the scale of the hard interaction, the
collinear particles in the jet, and soft radiation. In Eq. (2.39), all factorization functions
are written with their renormalization scale µi set such that no large logarithms arise
in the individual functions. The logarithms of ratios of the individual scales µi and
the global renormalization scale µ are resummed in the evolution kernels Ui that are
given by the solution of the renormalization group equations of the individual factorization
functions. Eq. (2.39) is valid up to power corrections in the SCET power counting parameter
λ ∼ max(τ1/2, (ΛQCD/Q)1/2). The unresummed power corrections can be determined by
computing dσ

dτ in fixed-order perturbation theory and subtracting the SCET expansion.

When the mass value m� ΛQCD of a heavy quark flavor becomes relevant, the massless
factorization formula that is shown in Eq. (2.39) needs to be generalized. With the mass
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m, an additional scale is introduced and its relation to the already present kinematic hard
(µH ∼ Q), jet (µJ ∼ Qλ), and soft (µS ∼ Qλ2) scales has to be inspected. Following the
EFT methodology, the massless factorization formula of Eq. (2.39) can be equipped with a
variable flavor number scheme [100–103]: the heavy quark mass m is integrated out (or
in) at a scale µm ∼ m, which results in associated matching factors and appropriate flavor
number schemes for quantities with scales above or below µm. In other words, the given
scale hierarchy of the kinematic scales µi and the mass scale µm determines whether the
heavy quark is treated as an active flavor in the respective factorization functions or not. If
the evolution of a factorization function between the intrinsic and the global factorization
scale crosses the mass scale µm, the quark is integrated out (or in) at that scale, leaving a
matching factor Mi. The evolution is performed with n` and (n` + 1) active flavors below
and above the mass scale, respectively, where n` is the number of massless quarks.

Where the mass scale is located in relation to the kinematic scales is described by kinematic
scenarios [102]: scenario I, II, III and IV refer to the setups where the mass is heavier than
the hard scale, between hard and jet scale, between jet and soft scale, and smaller than the
soft scale, respectively. To illustrate the variable flavor number scheme described above,
let’s take a look at scenario III: in that setup, the factorization formula is given by

1
σ0

dσ
dτ = QH(n`+1)(Q,µH)U (n`+1)

H (Q,µH , µJ)
∫

ds
∫

d`
∫

d`′
∫

d`′′ J (n`+1)(s,m, µJ)

× U (n`+1)
S (`′′, µJ , µm)M(n`+1)

S (`′ − `′′,m, µm, µS)U (n`)
S (`− `′, µm, µS)

× S(n`)
(
Q(τ − τmin)− s

Q
− `, µS

)
, (2.40)

where the global renormalization scale is set to the jet scale µJ for simplicity. In scenario III,
the mass scale µm is located between the jet scale µJ and the soft scale µS . Consequently,
the hard and jet function as well as their evolution kernels Ui are defined in the (n` + 1)-
flavor scheme, i.e. they include the heavy quark as an active flavor. In contrast, the soft
function at the soft scale µS is defined in the n`-flavor scheme, i.e. the heavy quark is not
an active flavor. The evolution of the soft function between the soft scale µS and the global
jet scale µJ crosses the mass scale µm. Therefore, the soft-function evolution, encoded in
the evolution kernels US , takes place with (n` + 1) active flavors between the jet and mass
scale, and with n` active flavors from the mass to the soft scale. At the mass scale, the
heavy quark is integrated out, resulting in a soft matching factor MS .

The factorization formulas in the other scenarios follow a similar pattern. An exception
is the bHQET scenario, in which the mass scale is very close to the jet invariant mass,
with fluctuations (p2 −m2)2 � m2. Under these circumstances, a new kind of logarithms
arises that can not be resummed by SCET. How to resum these logarithms by matching
bHQET to SCET, and a much more extensive discussion of scenarios, the associated scale
hierarchies and factorization formulas can be found in Refs. [104,105].

The approach to massive factorization formulas that is described in this section is called
the universal factorization approach. Another approach is mass mode factorization. The
differences, advantages, and disadvantages of the two approaches are discussed in Chap. 3.2
and in the publication that is presented in Chap. 6 in the context of the massive SCET jet
function.





Part II

Discussion





Chapter 3

Summaries

In the following, I summarize the work presented in the publications in this thesis, put
them into context, and give short outlooks on possible future works.

3.1 NLO Massive Event-Shape Differential and Cumulative
Distributions

The first issue that is dealt with in this thesis, see Chap. 5, is the computation of differential
and cumulative e+e− event-shape cross sections for stable massive quarks with full quark
mass dependence in an efficient and general way at NLO. Prior to this work, some
fixed-order results have been known [106–108], but all were computed on an individual
basis and mostly numerically. The issue at hand unfolds into several sub-issues: How
are the observable definitions themselves influenced by finite quark masses? How can
differential and cumulative event-shape distributions, including stable massive flavor effects,
be computed generally and efficiently? How does one get the coefficients of the delta- and
plus-distribution terms that are present in differential event-shape observables?

The necessity to reconsider event-shape definitions and to introduce different event-shape
mass schemes (not to be confused with mass renormalization schemes) for measurements
that involve massive particles was already pointed out in the past, e.g. in Refs. [109,110].
In these publications, however, event-shape definitions were examined in the context of
non-zero hadron masses and the related non-perturbative power corrections. Naturally, an
analog consideration is necessary in the context of non-zero quark masses, where many of the
issues discussed in earlier publications are present as well, see also Ref. [111]. Essentially,
massive schemes deal with the fact that event shapes were originally formulated for
massless particles. These original definitions, however, become ambiguous when generalized
to massive particles due to the fact that Ep 6= |~p | for massive particles, where ~p is the
3-momentum and Ep is the energy of a particle. As an example, we can consider the
popular event shape Thrust, defined as

τ ≡ 1∑
i |~pi|

min
t̂

∑
i

(|~pi| − |t̂ · ~pi|) , (3.1)

where the index i refers to all measured particles and t̂ is called the thrust axis. Thrust is
originally defined in the so-called P-scheme (where P stands for “momentum”), i.e. τ ≡ τP .
The substitution ~pi → (Epi/~pi)~pi does not have any effect for massless particles, but changes
the event-shape values for massive ones. This substitution defines the conversion from the
P-scheme to the so-called E-scheme (where E stands for “energy”). E-scheme thrust is
therefore given by

τE ≡ 1∑
iEpi

min
t̂

∑
i

(
Epi −

Epi
|~pi|
|t̂ · ~pi|

)
. (3.2)

Fig. 3.1 in this chapter shows the fixed-order NLO thrust distribution in the P- and
E-scheme for four different values of the reduced mass m̂ = m/Q, illustrating well how the
difference of their values grows with m̂.
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Figure 3.1: The thrust distribution in the P- and E-scheme for different values of the
reduced mass m̂. For small values of m̂, both schemes converge to the same
distribution, while their difference grows with large values of m̂. The shown
values were computed using the algorithm described at the end of this section.

Some event shapes, such as heavy jet mass in its original definition, are mixed and do
not belong exclusively to either of the two schemes described above. These definitions are
referred to as massive schemes or M-schemes and it can be useful to add massive-scheme
definitions to event shapes that are originally defined in the P- or E-scheme. For thrust,
the most popular massive scheme is called 2-jettiness and is given by

τJ ≡
1∑
iEpi

min
t̂

∑
i

(
Epi − |t̂ · ~pi|

)
. (3.3)

In the present work, event-shape mass schemes are reviewed and the differences in behavior
of different schemes are analyzed. One of the key findings is that E- and P-scheme event
shapes are insensitive to the quark mass effects at leading order, in contrast to M-scheme
ones. This observation can be made use of in setups where it is desirable to increase or
decrease quark mass sensitivity. For example, one might want to increase sensitivity in
mass measurements or other mass-related measurements, while it is desirable to decrease
the mass sensitivity for measurements that focus on the properties of the strong coupling.

The main aim of Chap. 5 is to develop a generally applicable method (analytical and/or
numerical) to compute precise predictions for event-shape distributions that involve massive
quarks. In this context, we achieve to show that, under a mild assumption, the NLO
differential cross section with respect to an observable e (with minimal value emin) generally
consists of a non-singular term and two types of Schwartz distributions at threshold
ē ≡ (e− emin) = 0: a delta function δ(ē) and a plus distribution

[1
ē

]
+
≡ lim

β→0

d
dē

[
Θ(ē− β)

∫ dē
ē

]
. (3.4)

The overall assumption is that e is linearly sensitive to soft dynamics, which is the case for
all event shapes of interest at the moment, including thrust, jet masses, C-parameter, jet
broadening, and angularities.

As a consequence, the differential cross section dσ/de for stable massive quarks with respect
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to an event shape e can always be written in the form1

1
σ0

dσ
de = R0(m̂)δ(e− emin) + CF

αs
π

{
Ae(m̂)δ(e− emin) +Bplus(m̂)

[ 1
e− emin

]
+

+ FNS
e (e, m̂)

}
+O(α2

s) , (3.5)

with the coefficient functions R0, Ae, Bplus and the NLO non-singular contribution FNS
e

as well as the reduced mass m̂ = m/Q. The non-singular term FNS
e does not contain any

Schwartz-Distributions (except for potential Heaviside functions) and is integrable.2

Furthermore, it is shown in the publication that the plus-distribution coefficient Bplus is
universal for infrared- and collinear-safe event shapes,

Bplus(m̂) =
(

3− v2

2 v2

)[
(1 + v2)Lv − v

]
, (3.6)

with v =
√

1− 4m̂ and Lv = log((1 + v)/2m̂). In contrast to the corresponding massless
expressions, the contributions from vector and axial-vector currents differ and are therefore
given separately in the first and second line in big parentheses in Eq. (3.6), respectively. On
the other hand, the delta-function coefficient Ae can be computed with a general formula
that involves only universal terms and a 1-dimensional integral Ie(m̂) which is given below
in Eq. (3.7) (see also Eq. (3.31) in the publication of Chap. 5 for details and the complete
formula).

The strategy to derive the general structure of event-shape distributions as shown in
Eq. (3.5), as well as the formulas for Ae and Bplus, it to choose a suitable momentum
parametrization that makes the soft limit, where the two Schwartz distributions are defined,
explicit and easily accessible: at NLO, the 3-particle final state consists of two quarks and
one gluon. Defining xi = 2Ei/Q for the final states (i = 1, 2 for the quarks, i = 3 for the
gluon), the chosen coordinates y and z are defined by x1 = 1−(1−z)y and x2 = 1−zy, such
that y = x3 and the soft limit is realized by y → 0. By conducting as many integrations as
possible in full generality and then carefully expanding in the dimensional regularization
parameter ε and applying soft subtractions in the remaining integrals, one arrives at the
expression in Eq. (3.5) and the explicit formulae for the coefficients therein. The delta-
function coefficient is given by a sum of universal terms and a non-universal term. The
universal terms contain logarithms, dilogarithms, and polynomials in m̂. The non-universal,
event-shape dependent term is given by a mass-dependent prefactor and the 1-D integral

Ie(m̂) = 1
2

∫ z+

z−
dz (1− z)z − m̂2

(1− z)2z2 log[fe(z)] , (3.7)

where
z± ≡

1± v
2 , fe(z) ≡

de(y, z)
dy

∣∣∣∣
y→0

. (3.8)

Ie can be solved analytically in most cases, with results in the E-, P- and M-scheme given in
App. D of Chap. 5 for Heavy Jet Mass, Thrust, C-Parameter, Broadening, and Angularities.
In case Ie can not be determined analytically, the integral can be solved numerically with
standard methods, as long one can determine the values of fe(z), at least numerically.

1This is a fixed-order statement. In a resummed computation more general Schwartz distributions can
appear. In a fixed-order expansion, they cancel with the limits of non-distributional contributions or
reduce to delta functions, plus distributions, and non-distributional terms.

2Here, the mass m is renormalized in the pole mass scheme.
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Figure 3.2: Schematic plot of a line of constant event-shape value (colored lines) in phase
space (black lines), parametrized by y and z. Some special points and lines
necessary to compute the non-singular contribution to the distribution of an
event shape e are annotated, such as the minimal and maximal value of z that
can be reached by an individual constant event-shape-value line, zmin and zmin,
respectively.

The same strategy of expanding in the soft limit yields a useful expression for the non-
singular term FNS

e (e, m̂), see Eq. (3.29) in the publication of Chap. 5. The expression
consists of y-z-parametrized phase-space integrals over the squared matrix element, con-
strained by delta and Heaviside functions that depend on the event-shape measurement
function. Although FNS

e can sometimes be computed analytically (see Sec. 5 of Chap. 5),
this is not feasible in most cases. However, the general expression for FNS

e derived in
Chap. 5 serves as a valuable starting point to develop numerical algorithms to compute
the non-singular contributions very accurately and quickly, see Sec. 4.3 of Chap. 5.

The algorithm developed in Chap. 5 computes the unbinned differential or cumulative
distribution of an event shape with in principle arbitrary precision3, given the event-shape
variable and its first derivative in terms of the phase-space parameters y and z. Given these
expressions, the task of computing the event-shape distribution (differential or cumulative)
numerically reduces to the geometric problem of finding the boundary points on the curves
of constant event-shape values in phase space, with a subsequent 1-dimensional integration,
see the blue and red colored curves in Fig. 3.2 in this chapter. In our implementation,
which is described in detail in Sec. 4.3. of Chap. 5, we first determine as many auxiliary
points as possible analytically (such as the phase-space point where the thrust axis can
be chosen to point in the direction of either of the 3-momenta of the particles involved
in the collision) and use the Brent algorithm to find boundary points numerically. The
instructions given in Chap. 5 are very general and can be readily applied to all common
event shapes, or, if necessary, easily extended to be applied to new or exotic event shapes.

The geometry of the y-z-parametrized phase space and constant event-shape lines is
illustrated in Fig. 3.2 in this chapter, where the phase space boundary is drawn as a black
line and an exemplary curve of constant event-shape value as the colored line sections.
Additionally, some special points of the event-shape curve required for the numerical
computation, such as the extrema in y and z, are marked with dashed lines.

Possible extensions of this work include a generalization to higher orders in perturbation
3These are the main advantages of the described technique compared to the common Monte Carlo method,

which relies on bins that in general have to be specified ahead, and for which the precision can not be
controlled independently.
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theory. The inclusion of N2LL contributions from SCET and bHQET has already been
achieved in Ref. [112].

The results and instructions presented in the publication in Chap. 5 are useful for anyone
interested in event-shape distributions that involve massive quark effects at NLO. The
results also represent an important input for future studies related to event-shape based
quark mass determinations, e.g. at a future linear collider.

3.2 Two-Loop Massive Quark Jet Functions in SCET

Fixed-order results for event-shape cross sections are most useful in the tail and far tail of
the distribution. In the peak and intermediate regions, however, large logarithms invalidate
the perturbative series due to large scale hierarchies and the resulting large logarithms.
These logarithms can be resummed using effective field theory techniques and factorization,
see Chap. 2.3.2.

Similar to fixed-order computations, most calculations of factorization-formula ingredients
focus on limiting cases: where all particles are massless (e.g. the massless SCET jet
function [113–115]) or where the heavy quark mass is of the order of the associated
jet invariant mass (e.g. the bHQET jet function [116]). These approximations are only
applicable near their expansion points and general massive results are necessary to achieve
high precision in the intermediate regions. General massive SCET results are available:
taking the event shape thrust as an example (see Chap. 2.3.2 of this thesis), all ingredients
to achieve N3LL resummation exist. The last missing piece has been the two-loop massive
quark SCET jet function, which describes collinear QCD radiation off a massive quark
that is produced at high energy. This missing piece is computed in the second publication
included in this thesis, see Chap. 6. The massive quark jet function is, just like most
factorization-formula ingredients, not only applicable to thrust but a rather universal
function that contributes to many processes like semileptonic meson decays4 and various
event shapes other than thrust.

The quark SCET jet-function matrix element for a jet initiated by the primary quark f in
light-like direction nµ is given by [96,98]

J
(n`+1)
f (p2,m2) = (2π)3

Nc p−
Tr
〈

0
∣∣∣ n̄/2χnf (0) δ(p++ p̂+) δ(p−+ Pn) δ(2)(p⊥+Pn⊥)χnf (0)

∣∣∣0〉
= Im

[
i

2πNc (n̄ · p)

∫
d4x e−ip·x Tr

〈
0
∣∣∣T{ n̄/2W †(0)ψf (0)ψf (x)W (x)

}∣∣∣0〉] , (3.9)

where the first line shows the original SCET definition and the second line shows the
jet-function matrix element in terms of QCD quark fields [114]. In the two-loop calculation
of the jet-function matrix element presented here, the latter option is adopted because it
leads to expressions that are easier to evaluate. In Eq. (3.9), the momentum four-vectors
are decomposed in lightcone components according to pµ = p−nµ/2 + p+n̄µ/2 + pµ⊥ with
n2 = n̄2 = 0, n̄ ·n = 2, and n ·p⊥ = n̄ ·p⊥ = 0. Pn and Pn⊥ are the SCET label momentum
operators and p̂+ is the operator of the small plus momentum [97]. χnf (x) is the SCET jet
field, Nc is the number of QCD colors, and W (x) is the n-collinear Wilson line expressed in
terms of QCD quark fields. For a more detailed explanation of the ingredients of Eq. (3.9),
I refer to Sec. 2 of Chap. 6 and the references therein.

4One example is semi-leptonic B → Xc ` ν decay: the phase-space region of the invariant mass of the
hadronic jet that originates from the decaying bottom quark is of order

√
ΛQCDmb and is well described

by SCET. In this context, the charm quark mass is of the order of the jet invariant mass and the
associated mass effect in the jet function must be included to obtain results with satisfying precision.
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The jet-function matrix element is in general infrared divergent and includes phase-space
regions that overlap with lower-virtuality regions that are already accounted for by other
functions in the factorization formula [98, 99]. To receive the infrared-finite jet function
and to avoid double counting, subtractions associated with the (equally infrared-divergent)
collinear-soft matrix element [117,118]

S (n`+1)(`,m) = 1
Nc

Tr
〈

0
∣∣∣T[V (0)†

n (0)X(0)
n (0)

]
δ(`− p̂+) T

[
X(0)†
n (0)V (0)

n (0)
]∣∣∣ 0〉 , (3.10)

are required, where Xn and Vn are collinear-soft Wilson lines, see Sec. 2 of Chap. 6. The
superscript (n` + 1) of S refers to a theory with n` massless and one heavy quark, see also
the explanation below Eq. (3.12). IR-subtractions via the collinear-soft matrix element is
an alternative approach to the widely used zero-bin subtractions [119].

The jet function presented in this work includes primary as well as secondary mass
effects, i.e. effects that come from the jet-initializing (primary) massive quark as well as
from (secondary) pair-produced virtual ones. An essential point that is discussed from
a new perspective in the present work is how to deal with collinear-soft subtractions
for contributions that contain secondary quark loops. These contributions are infrared
divergent if the quark anti-quark pair in the loop is massless, but infrared finite if the pair
is massive5.

As a consequence, one is left with two options to define the infrared-finite quark jet function
with secondary massive quarks: either the finite collinear-soft contributions that are related
to massive quark loops are subtracted nonetheless, or they are left unsubtracted. The
first option leads to the so-called universal (“uf”, see also Refs. [103, 120]) jet function
and the second option to the so-called mass mode (“mf”, see also Ref. [121]) jet function,
respectively. In terms of equations,

J
uf,(n`+1)
f (p2,m2) ≡

∫
d`J (n`+1)

f (p2 − (n̄ · p)`,m2)
(
S (n`+1)(`,m2)

)−1
, (3.11)

defines the universal jet function Juf
f , and

J
mf,(n`+1)
f (p2,m2) ≡

∫
d`J (n`+1)

f (p2 − (n̄ · p)`,m2)
(
S (n`)(`)

)−1
, (3.12)

defines the mass-mode jet function Jmf
f , where J

(n`+1)
f and S (n`+1) are respectively the

jet-function and collinear-soft matrix elements in a theory with n` massless and one heavy
quark, and S (n`) is the collinear-soft matrix element in a theory with only n` massless
flavors. The mass-mode jet function depends on the virtuality renormalization scale µ as
well as the rapidity renormalization scale ν and has no well-defined massless limit due
to arising infrared singularities6. On the other hand, the universal jet function depends
on the virtuality renormalization scale µ, but not on the rapidity renormalization scale
ν. Furthermore, the universal jet function converges to the known massless result for
m→ 0. Both jet-function definitions lead to equivalent results when correctly implemented
in the factorization formulas, but they allow to study secondary massive quark effects from
different perspectives.

5These finite contributions are related to mass-mode fluctuations with virtualities p2 ∼ m2. Mass modes
arise from collinear as well as soft phase-space regions and lead to rapidity divergences usually associated
with SCETII-type observables [102]. This issue also affects the computation of secondary massive quark
contributions to the jet function, see below.

6The non-existence of a massless limit of the mass-mode jet function is expected: since the massive flavor is
not included in the definition of the collinear-soft matrix element, the mass scaling is implicitly assumed
to be m2 ∼ p2 ∼ p2 −m2, i.e. the mass is not an infrared scale, see also the description of factorization
theorems below.
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Traditionally, the subtractions for secondary massive contributions are approached in the
context of soft mass-mode bin subtractions [102,103,122], entailing subtle issues concerning
power counting. In contrast, the strategy to subtract these modes from the jet-function
matrix element with the collinear-soft function is systematic and strongly connected to the
philosophy of interpreting the jet function as a matching function describing modes with
virtuality p2 −m2 ∼ p2.

Interpreting the jet function as such a matching function, the universal jet function of
Eq. (3.11) is the appropriate definition if m2 � p2 (i.e. if m is an IR scale), while the mass
mode jet function of Eq. (3.12) is the natural choice if m2 ∼ p2. However, the universal
jet function might also be used in the regime m2 ∼ p2 or any other hierarchy of m with
respect to the physical scales and the renormalization scale µ.

This interpolating property leads to the possibility to set up factorization theorems that
smoothly interpolate between all possible hierarchies with respect to the mass m [102,103,
120]. In this universal factorization approach, the same factorization formula can be used
for any scale hierarchy. Different scale hierarchies are accounted for by mass threshold
matching factors and by using the appropriate flavor number scheme for the individual
factorization functions. Rapidity logarithms do only appear in mass threshold matching
factors.

Let’s illustrate the universal factorization approach briefly by considering a setup with
the scale hierarchy s2/Q2 � m2 . s ∼ p2 � Q2. The corresponding leading power double
hemisphere mass factorization theorem in that approach for s2/Q2 < µ2 < m2, i.e. when
the SCET current and the jet functions are evolved below m, has the form

1
σ0

dσ
dM2

Q dM2
Q̄

= H
(n`+1)
Q (Q,µ)Hm

(
m,

Q

m
,µ

)∫
dsQ dsQ̄

∫
d`+ d`−

× Juf,(n`+1)
Q (M2

Q − sQ −Q`+,m2, µ) Juf,(n`+1)
Q (M2

Q̄
− sQ̄ −Q`

−,m2, µ)

×MJQ(sQ,m, µ)MJQ(sQ̄,m, µ)S(n`)(`+, `−, µ) , (3.13)

where Hm and MJQ are the quark mass threshold matching factors for the SCET current
and the universal jet function Juf

Q respectively. For m2 < µ2 < s, i.e. where the soft
function is evolved above m, the same factorization theorem has the form

1
σ0

dσ
dM2

Q dM2
Q̄

= H
(n`+1)
Q (Q,µ)

∫
d`+ d`−d`′+ d`′−

× Juf,(n`+1)
Q (M2

Q −Q`+,m2, µ)Juf,(n`+1)
Q (M2

Q̄
−Q`−,m2, µ)

×MS(`′+, `′−,m, µ)S(n`)(`+ − `′+, `− − `′−, µ) , (3.14)

where MS is the mass threshold matching factor for the soft function S.

Alternatively, in the mass mode factorization approach individual factorization formulas
are set up for each scale hierarchy of m with respect to the other physical scales [121].
Consequently, each of the factorization formulas is formulated in a way such that only the
strictly relevant modes appear for each kinematic scenario. The mass-mode factorization
approach is not only economical with respect to the modes present in the individual
factorization formulas but also especially transparent since collinear and soft mass-mode
contributions do appear explicitly in the formulas. Rapidity resummation is treated on the
same footing as virtuality resummation, namely by renormalization group evolutions of the
individual factorization-formula ingredients.

To illustrate that strategy, let’s again consider the hierarchy s2/Q2 � m2 � s ∼ p2 � Q2.
The corresponding factorization theorem in the mass mode factorization approach has the
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form
1
σ0

dσ
dM2

Q dM2
Q̄

= H
(n`+1)
Q (Q,µ)Hm,s

(
m,µ,

m

ν

)∫
d`+ d`−d`′+ d`′−

× J (n`+1)
q (M2

Q −Q`+ −Q`′+, µ) J (n`+1)
q (M2

Q̄
−Q`− −Q`′−, µ)

× Sc(`′+,m, µ, ν)Sc(`′−,m, µ, ν)S(n`)(`+, `−, µ) , (3.15)

where Hm,s is the soft mass mode contribution of the mass threshold hard function

Hm(m,Q/m,µ) = Hm,n(m,µ,Q/ν)Hm,n̄(m,µ,Q/ν)Hm,s(m,µ,m/ν) , (3.16)

Sc is the collinear-soft function

Sc(`,m, µ, ν) =
∫

d`S (n`+1)(`− `′,m, µ, ν)
(
S (n`)(`′, µ, ν)

)−1

= 1
n̄ · p

∫
dp′2 Jmf,(n`+1)

f ((n̄ · p)`− p′2,m2, µ, n̄ · p/ν)
(
J

uf,(n`+1)
f (p′2,m2, µ)

)−1
, (3.17)

and J
(n`+1)
q is the jet function for (n` + 1) massless quarks which coincides with the

universal jet function for vanishing quark mass, i.e. Juf,(n`+1)
Q (p2, 0, µ). The (infrared-

and rapidity-finite) collinear-soft function Sc encodes the pure collinear-soft contributions
associated to the massive quark flavor.

The factorization theorems (3.15), (3.13) and(3.14) provide identical descriptions for the
hierarchy s2/Q2 � m2 � s ∼ p2 � Q2 (up to suppressed quark mass power corrections).

For the hierarchy s2/Q2 � m2 ∼ s ∼ p2 � Q2, the mass mode factorization approach
states the factorization theorem

1
σ0

dσ
dM2

Q dM2
Q̄

= H
(n`+1)
Q (Q,µ)Hm,s

(
m,µ,

m

ν

)∫
d`+ d`−

× Jmf,(n`+1)
Q

(
M2
Q −Q`+,m2, µ,

Q

ν

)
J

mf,(n`+1)
Q

(
M2
Q̄
−Q`−,m2, µ,

Q

ν

)
× S(n`)(`+, `−, µ) . (3.18)

It is easy to see that Eq. (3.18) and the universal factorization theorems (3.13) and (3.14)
provide identical descriptions for s2/Q2 � m2 ∼ s ∼ p2 � Q2 owing to the consistency
relations

MJQ(s,m, µ) = H−1
m,n (m,µ,Q/ν)Sc(s/Q,m, µ, ν) , (3.19)

MS(`+, `−,m, µ) = Hm,s(m,µ,m/ν)Sc(`′+,m, µ, ν)Sc(`′−,m,µ,ν) , (3.20)

together with the definition of the collinear-soft function in Eq. (3.17) and the factorized
mass threshold hard function of Eq. (3.16).

For more details, see Sec. 4 of Chap. 6. For a more general description of factorization
theorems, see Chap. 2.3.2 of this thesis.

Apart from clarifying the conceptual issues described above, the main goal of the work in
Chap. 6 is to compute the two-loop contribution of the massive quark SCET jet function and
to present the associated calculations. As expected from a two-loop calculation with finite
mass values, elaborate tools developed by the multi-loop community in recent years have
to be employed to tackle the problem, including IBP reduction [123], differential-equation
techniques [25,124,125], and sector decomposition [126]. For our computation, the Feynman
diagrams that have to be evaluated can be separated into three classes: planar diagrams,
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Figure 3.3: Three exemplary Feynman diagrams that contribute to the two-loop massive
quark SCET jet function. The solid lines represent massive quarks, the curly
lines represent gluons and the dashed lines represent n-collinear (lightlike)
Wilson lines. The first diagram belongs to the family of planar topologies, the
second one is non-planar, and the third diagram encodes a contribution of
secondary massive quarks.

non-planar diagrams, and diagrams with secondary massive quarks. An exemplary diagram
is shown for each of these classes in Fig. 3.3 in this chapter. Each class of diagrams requires
a distinct strategy to solve them, determined by their complexity and their behavior in
the context of eikonal propagators and rapidity divergences. Eikonal propagators 1/(n · k)
(where n is a light-cone direction and k is a loop momentum) arise from Wilson-line
interactions and are the main special feature of this calculation in comparison to most
other multi-loop setups. Aside from the fact that many available multi-loop tools are not
capable of dealing with this special kind of propagator, the structure in general induces
rapidity divergences in Feynman integrals [102,127], i.e. singularities for (n ·k)/(n̄ ·k)→∞
or (n · k)/(n̄ · k)→ 0.

In the following, I shortly describe the strategies that are applied to solve the Feynman dia-
grams of the individual diagram classes (planar, non-planar, secondary massive) individually.
For a more detailed description, I refer to Sec. 5 of Chap. 6.

The class of planar diagrams can be solved in a straightforward way by applying IBP
reductions, Feynman parameters, and differential equations. Special care has to be taken
only when extracting the imaginary part from the general complex result (see Eq. (3.9)):
the imaginary part contains delta and plus distributions at s = p2 −m2, as well as their
derivatives, i.e. there are non-trivial structures at s = 0.

For the non-planar diagrams with Wilson-line interactions, the presence of eikonal propa-
gators leads to undefined and wrong results in the IBP reduction (when applied naively)
due to rapidity divergences, even for integrals that do not suffer from rapidity divergences
initially (i.e. before applying the IBP relations). When additional regulators are added to
solve this issue, the procedure becomes well-defined, but the reduction does not lead to a
strongly reduced number of easier-to-solve master integrals and is therefore useless. An
example of such a case is given in Eq. (5.13) in the publication of Chap. 6. Fortunately, in
the case of the two-loop SCET jet function the set of “problematic” non-planar diagrams
is small and they can be solved semi-analytically by utilizing analytic information from
bHQET and massless limits. Numerically, the semi-analytic contribution Gfit in the jet
function result is very small compared to all other ingredients, see Fig. 3.4 in this chapter.
Gfit is given in Eq. (3.16) in the publication of Chap. 6. A more general understanding of
arising rapidity divergences in IBP reductions and the development of new techniques that
deal with this issue are desirable and should be studied in future works.

The third class of diagrams, which encodes secondary massive quark contributions, requires
yet another special treatment: They are evaluated by making use of a dispersion integral
that connects the radiation of gluons with finite mass M with the diagrams in which the
massive gluon is exchanged with massive quark loops [102,103]. In other words, instead
of solving the massive quark loop diagrams directly, we first evaluate the diagrams where
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Figure 3.4: A double-logarithmic plot of the absolute values of the two-loop contribution to
the massive quark SCET jet function over the mass-scaled virtuality s/m2

t . The
plot illustrates well the impact of different contributions: the distributional part
(orange line) is by far the largest contribution for small and intermediate values
of s/m2

t , while the non-distributional part (blue line) takes over at s/m2
t & 30.

The non-distributional contribution that is computed numerically (purple line)
is always orders of magnitude smaller than the other contributions, except for
a small region around the zero-crossing of the jet function.

the quark-bubble-augmented gluon is replaced by a massive gluon with mass M and then
compute a dispersion integral over M that involves the absorptive part of the massive
quark loop. In the same computation, a gluon mass regulator Λ is incorporated to cleanly
separate UV from rapidity divergences7. The dispersion relation has the form

−igµρ

p2 − Λ2 + i0 Πρσ(p2,m2) −igσν

p2 − Λ2 + i0 = 1
π

∞∫
4m2

dM2

M2

−i(gµν − pµpν

p2 )
p2 −M2 + i0 Im

[
Π(M2,m2)

]

−
−i
(
gµν − pµpν

p2

)
p2 − Λ2 + i0 Π(0,m2) , (3.21)

where Π(p2,m2) is the gluon vacuum polarization function and m is the quark mass. To
solve the massive-gluon diagrams, it is often convenient to introduce Feynman parameters
and to subsequently separate the M →∞ contribution (which usually has a much simpler
structure than the original expression) from the rest (for which the limit ε → 0 can be
taken without any special treatment). For more details concerning the dispersion relation
and its application, see Sec. 5.3 of Chap. 6 and the references therein.

For a consistent treatment of cross terms in the renormalization procedure of the two-
loop secondary massive quark contributions, the 1-loop contribution to the jet function
matrix element has to be computed with the finite Λ gluon-mass regulator as well. This
does not lead to any issues. At higher orders, however, this strategy is nearly unfeasible

7It is important to take care of rapidity singularities and the associated large logarithms here since
secondary massive effects lead to “true” singularities of that type in collinear-soft factorization as known
from SCETII observables. The rapidity singularities in the jet-function matrix element either cancel
with the collinear-soft matrix element, or need to be renormalized. As described above, this leads to
two options to define the massive quark jet function.
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Figure 3.5: The scaled massive quark two-loop SCET jet function (solid black line) over
the mass-scaled virtuality s/m2

t , and its high-energy and heavy-quark limit
(dashed and dotted black lines, respectively). The fully massive result nicely
interpolates between the two limits. It is unexpected that the two limits are so
close to the full result in a very large range and mostly coincidental: adding an
additional power-correction term to the limits does not significantly increase
their area of validity, or even decrease it in the case of the high-energy limit.

since it involves the computation of all lower-order diagrams with an additional massive-
gluon regulator. This includes the various renormalization factors. The development and
investigation of new strategies and rapidity regulators to apply to the computation of
secondary mass contributions is an interesting project for future work.

The final result of the two-loop massive SCET jet function consists of delta and plus
distributions, standard functions, harmonic polylogarithms, elliptic functions, and one-
parameter integral functions. However, simple fit functions of the non-distributional results
are provided in Chap. 6 to make them easily applicable and implementable. The fit
functions only contain polynomials and logarithms of m2/p2, coincide with the known
massless and heavy-quark limits, and approximate the exact functions with a relative
precision of 0.5%. The complete final expressions as well as some of their limiting cases
and consistency checks are given in Sec. 3 of Chap. 6. The impact of the fully massive
result compared to the high-energy and heavy-quark limit is illustrated in Fig. 3.5 in this
chapter.

3.3 The MSR Mass and the O(ΛQCD) Renormalon Sum
Rule

It is striking that the implementation of mass parameters more often than not leads
to additional conceptual and technical issues in high-energy physics. As it turns out,
the mass parameter in itself already entails highly involved concepts: first of all, due
to confinement in QCD, quark masses are not physical observables and have to be seen
as abstract parameters in the QCD action, such that there is no one true physical way
of treating them. Additionally, the massive quark self-energy is UV divergent such that
the divergences have to be absorbed into the mass parameter by renormalization. The
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freedom to absorb additional finite contributions implies that one can define an in principle
arbitrarily large number of mass renormalization schemes. A well-chosen renormalization
scheme can, however, improve the overall precision of theoretical calculations in QCD and,
in many cases, simplify them.

An important problem in the context of mass renormalization schemes for high precision
quark mass determinations is the O(ΛQCD) renormalon of the pole mass [67, 74]. The
pole scheme is often employed when it is assumed that the renormalized mass parameters
can be interpreted as being the “physical” masses. For color-charged particles, however,
there is no pole in the propagator. An accordingly renormalized mass parameter suffers
from an O(ΛQCD) renormalon, entailing an inevitable ambiguity of its value. The bad
perturbative behavior is caused by the asymptotic nature of the series and renders the
fixed-order pole mass to be an order- and observable-dependent quantity. The pole mass
renormalization prescription is consequently inappropriate for precision determinations of
quark mass parameters. For a more detailed general introduction to mass renormalization
schemes, see Chap. 2.3.1 of this thesis.

In the work presented in Chap. 7, the low-scale short-distance MSR mass scheme is
discussed8 in detail and its fundamental aspects are discussed, assuming that all quark
flavors lighter than the considered heavy quark flavor are massless, e.g. the formulae
describing the top quark MSR mass mMSR

t do not contain any corrections from the non-
zero bottom quark mass, etc.9 In the same article, the MSR scheme is utilized to derive
analytic formulae related to O(ΛQCD) renormalons and the associated asymptotic high-
order behavior of perturbative series. Most importantly, an analytic expression for the
normalization of O(ΛQCD) renormalons is derived, called the renormalon sum rule. In the
following, the main concepts and results of Chap. 7 are reviewed.

The MSR mass of a heavy quark is defined via its perturbative series relating it to the pole
mass. Assuming all lighter massive flavors to be massless, the relation is given by

mpole
Q −mMSR

Q (R) = R
∞∑
n=1

an

(
α

(n`)
s (R)

4π

)n
, (3.22)

where the perturbative coefficients an are defined analogously to those for the MS mass
[76–83], but with the contributions from loops of the heavy quark Q in the associated
self-energy diagrams removed, see also Sec. 2 of Chap. 7.10

There are many ways to express the ideas leading to the defining formula in Eq. (3.22),
one of them is the following: we are interested in defining a well-behaved low-scale short-
distance mass scheme and are going to derive it in terms of a perturbative series relating
it to the pole mass scheme. We choose the MS mass as a starting point due to its good
infrared behavior and direct relation to quark self-energy diagrams. Since the low-energy
and high-order behavior of the pole mass are closely related due to its linear IR-sensitivity,
we consider the asymptotic high-order behavior of the pole-MS perturbative series to get
insights into the correct low-energy behavior. Asymptotically, the series depends only on
the number of massless quarks n`, but not on the heavy quark mass mQ. Furthermore, a
linear dependence on the renormalization scale emerges.

8Note that the MSR mass scheme was already introduced in Refs. [71, 128], but without a detailed
discussion as provided in Chap. 7.

9The extension of the MSR mass scheme that includes lighter massive flavor effects is discussed in Chap. 8
and summarized in Chap. 3.4 of this thesis.

10Note that in Chap. 7, two versions of the MSR mass are discussed: the natural and the practical definition.
Since the natural MSR mass definition is the conceptually cleaner one, I always refer to that definition
here.
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The reason for the asymptotic linear dependence on the renormalization scale can be easily
demonstrated in the large β0/LL approximation: in that approximation, the pole-MS mass
relation is given by

[mpole
Q −m]β0/LL = m

a1
2β0

∞∑
n=0

n!
(
β0αs(m)

2π

)n+1

= m
a1
2β0

∞∑
n=0

n!
(
β0αs(µ)

2π

)n+1 n∑
k=0

1
k! logk µ

m
, (3.23)

with m ≡ m(m). Consequently, the perturbative term of order n+ 1 and its asymptotic
form are given by

m
a1
2β0

(
β0αs(µ)

2π

)n+1 n∑
k=0

1
k! logk µ

m
∼ µ

a1
2β0

(
β0αs(µ)

2π

)n+1
. (3.24)

On the other hand, heavy quark flavors with mQ > ΛQCD do not contribute at asymptoti-
cally high orders, since heavy virtual quark loops act as infrared cut-offs that remove the
low-scale renormalon contributions [129].

Due to the linear dependence on the renormalization scale at high orders and the convergent
nature of diagrams with heavy-quark loops, the intrinsic natural scale of the MS mass, mQ,
can be replaced by an arbitrary scale R and the active number of flavors can be reduced
from (n` + 1) to n` without altering the series asymptotics. The resulting relation is then
used to define the MSR mass scheme with a matching relation connecting it to the MS
mass. This procedure leads to linear momentum scaling, the correct high-order/low-energy
behavior, which results in improved convergence at low energies.

The freely adjustable universal intrinsic scale R is one of the main features of the MSR
mass. The associated renormalization group equation

R
dmMSR

Q (R)
dR = −R

∞∑
n=0

γRn

(
α

(n`)
s (R)

4π

)n
, (3.25)

is called the R-evolution equation11. Here, γRn is the n-th perturbative coefficient of the
R-anomalous dimension, see also Sec. 3 of Chap. 7 for more details on the R-evolution
equation and its ingredients.

The scale R can be interpreted as an infrared cutoff, such that the MSR mass contains
on-shell self-energy corrections only from scales larger than R. This is also nicely illustrated
by the fact that in the formal limit R→ 0 the MSR mass agrees with the pole mass. In
practice, that limit is of course ambiguous (a manifestation of the renormalon ambiguity)
due to the Landau pole.

If R is set appropriately, the mass-dependent perturbative higher-order corrections of an
observable are resummed, i.e. radiative corrections with kinematic mass dependence are
minimized at higher orders and mass-dependent endpoints are not drastically modified by
higher-order corrections. Usually, the appropriate choice of R is the observable-dependent
intrinsic kinematic scale of the mass sensitivity. One can understand R as a resolution
scale below which the virtual self-energy corrections and real radiation corrections that
are soft in the heavy-quark rest frame are unresolved. This is analogous to choosing an
appropriate scale µ for the strong coupling and in stark contrast to the pole mass, where it
11Note that Eq. (3.25) is linear in the evolution scale R, which distinguishes it from most other common

renormalization group equations.
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Figure 3.6: The difference of the top quark MSR mass (n` = 5) at two different scales
R including contributions from one to four loops. Results are shown for the
difference between a high scale R1 = 161 GeV and two lower scales R2 = 2 GeV
(top two panels) and R2 = 50 GeV (lower two panels). The high and low scales
are connected by a fixed-order perturbation theory conversion (left two panels,
as a function of the scale µ in αs(µ)) or via R-evolution (right two panels, as a
function of the λ renormalization parameter).

is implicitly assumed that perturbative corrections can be resolved to arbitrarily low scales.
This assumption is the reason for the pole-mass renormalon ambiguity.

For further discussion of the physical interpretation of the scale R and R-evolution, see
Chap. 3.4 of this theses, where light massive flavor corrections are included and the physical
picture is refined further.

One of the main applications of the MSR mass concerns the extraction of mass values
from observables where the mass sensitivity is governed by widely separated physical scales.
This concerns, for example, the total cross section σtot and quarkonium masses with their
respective intrinsic scales, namely the center-of-mass energy Ec.m. and the inverse Bohr
radius mαs. Using the MSR mass, the respective appropriate intrinsic mass scales can
be set for each observable, i.e. R can be set at the order of the intrinsic scales, which
avoids large logarithms. Subsequently, R-evolution can be applied to evolve the mass values
to a single reference scale for comparison, while resumming potentially large logarithms
of scale ratios and free of the O(ΛQCD) renormalon. To demonstrate the impact of log-
resummation, Fig. 3.6 in this chapter shows the difference of MSR masses at different scales
R as computed by the fixed-order formula and the numerical evaluation of the R-evolution
equation, respectively. To introduce renormalization-scale variation into the R-evolution
equation, a λ-parameter is introduced by expanding αs(R) in terms of αs(λR). λ is then
varied in the range [1/2, 2] to estimate the remaining uncertainty that originates from the
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truncation of the R-anomalous dimension perturbative series.

Similar to the application of R-evolution to mass-extractions at widely separated physical
scales, it is possible to relate heavy quark mass values extracted in different mass renor-
malization schemes with widely separated intrinsic scales. Usually, a perturbative relation
between two short-distance mass schemes is derived by eliminating the pole mass system-
atically from the respective pole-short-distance conversion formulas. When employing
those formulas, it is of central importance that the strong coupling αs is taken in the same
flavor-number scheme and at the same scale µ. Otherwise, the renormalon and therefore
the bad perturbative behavior present in each of the perturbative relations to the pole
mass does not cancel properly. Depending on the intrinsic scales of the to-be-converted
mass schemes this can lead to large logarithms. By making use of the freely adjustable
intrinsic scale of the MSR mass and R-evolution as described in the previous paragraph,
the MSR mass is the optimal tool to circumvent the large-log problem: Let’s assume
we want to convert from scheme s1 with intrinsic scale R1 to scheme s2 with intrinsic
scale R2, with R1 � R2. The potentially large logarithms of the form log(R1/R2) can be
avoided by converting ms1 to the MSR scheme at the scale R1 in an intermediate step by
employing the fixed-order (FO) conversion formulas and using R-evolution in between R1
and R2 to resum large logarithms. Finally, mMSR can be converted to ms2 at the scale R2.
Schematically,

ms1 FO−→ mMSR(R1) RGE−→ mMSR(R2) FO−→ ms2 . (3.26)

One concrete example where this approach is useful is when converting the top quark mass
between the MS mass scheme for which the intrinsic scale is the top quark mass R1 = mt ≈
160 GeV itself, and the 1S mass, with the intrinsic scale R2 = M1S = 4/3αsmt ≈ 30 GeV,
i.e. the inverse Bohr radius. In Sec. 5 of Chap. 7, the relation of the MSR mass scheme to
various mass renormalization schemes is examined, such as the 1S [64–66], the PS [130],
and the MS mass.

From the paragraphs above, it is evident that the MSR mass scheme and R-evolution are
closely connected to the pole mass renormalon and the high-order asymptotic behavior of
the associated perturbative series. It turns out that if one has a closer look at the solution
of the R-evolution equation as shown in Eq. (3.25), valuable new insights into the nature
of the pole-MSR mass series and the O(ΛQCD) renormalon of the pole mass scheme can be
gained. The analytic solution to the evolution equation with the lower boundary R = 0,
which corresponds to the pole mass, is given by

mMSR
Q (R)−mpole

Q = −
∫ R′

0
dR′ γR(αs(R′))

= − ΛQCD

∫ ∞
tR

dt γR(t) b̂(t) e−G(t)

= ΛQCD

∞∑
k=0

eiπ(b̂1+k)Sk

∫ ∞
tR

dt t−1−k−b̂1e−t

= ΛQCD

∞∑
k=0

eiπ(b̂1+k)SkΓ(−b̂1 − k, tR) . (3.27)

That expression provides an interesting and useful alternative all-order representation of the
original perturbative pole-MSR mass series. Here, tR = −2π/(β0αs(R)), b̂1 = β1/(2β0) and∫ α1
α0

dα/β(α) =
∫ t0
t1

dt b̂(t) = G(t0)−G(t1). Sk = Sk({an}, {βn}) is a coefficient function of
the perturbative coefficients an and βn. Exact expressions are given in App. A of Chap. 7.
See also Sec. 4 of Chap. 7 for more details. Remarkably, the solution to the R-evolution
equation in Eq. (3.27) is equivalent to the Borel sum of the original series. The ambiguity
of the pole mass that is associated to the factorially divergent renormalon behavior of the
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perturbative pole-MSR mass series is encoded in the imaginary part of the incomplete
gamma function Γ(c, t) with t < 0 that arises in the integration over the Landau pole at
t = 0.

The sum over k in Eq. (3.27) represents a reordering of the pole-MSR perturbative series in
leading and subleading terms with respect to their numerical importance in the asymptotic
high-order behavior of the original series, where the first term k = 0 corresponds to the
leading large β0 contribution.

Taking Eq. (3.27) as a starting point, an analytic expression of the Borel transform of the
pole-MSR perturbative series is derived in Sec. 4.1 of Chap. 7 (I refer to that section for
details on the derivation), while keeping the useful ordering of the terms in the sum in k.
After applying some asymptotic expansions and functional identities, the Borel transform
with respect to αs(R) can be easily obtained12, giving

Bαs(R)
[
mMSR
Q (R)−mpole

Q

]
(u) = −N1/2

[
R

4π
β0

∞∑
`=0

g`
Γ(1 + b̂1 − `)

Γ(1 + b̂1)
(1− 2u)−1−b̂1+`

]

+ 2R
∞∑
`=0

g`Q`(u) , (3.28)

with the Borel variable u, and with N1/2 the normalization of the singular contributions
in the Borel transform, see also [68, 131–133]. In this context, “singular contributions”
mean the terms in Eq. (3.28) that are non-analytic at u ≥ 1/2, which corresponds to the
O(ΛQCD) renormalon in the original series. The normalization N1/2 in Eq. (3.28) is given
by

N1/2 = β0Γ(1 + b̂1)
2π

∞∑
k=0

Sk({an}, {βn})
Γ(1 + b̂1 + k)

, (3.29)

where Sk was already introduced in Eq. (3.27). This formula is called the O(ΛQCD)
renormalon sum rule and is, besides the MSR mass scheme, one of the main topics of the
work in Chap. 7.

The factor Q` in the second line of Eq. (3.28) is a regular polynomial and given by

Q`(u) =
∞∑
k=0

Sk

k+`−1∑
i=0

2iΓ(1 + b̂1 + i− `)
Γ(1 + b̂1 + k)Γ(i+ 1)

ui , (3.30)

and is finite at u = 1/2, i.e. the first line of Eq. (3.28) contains all terms that contribute to
the leading-renormalon singular behavior.

The renormalon sum rule shown in Eq. (3.29) can be used to probe any perturbative series
for an O(ΛQCD) renormalon. In practice, the infinite sum has to be truncated and a finite
value does, in principle, not provide a rigorous proof of the existence or non-existence of a
renormalon. However, the convergence of the known first terms to zero or a finite value
provides a strong hint whether a u = 1/2 renormalon is present or not.

In Secs. 4.3-4.5 of Chap. 7, interesting use cases of the renormalon sum rule are presented.
Three of them are summarized in the following paragraphs.

The most obvious application of the renormalon sum rule in Eq. (3.29) is to apply it to the
pole-MSR mass relation to determine the normalization N1/2 of the O(ΛQCD) pole mass
renormalon. Inserting the perturbative coefficients of the pole-MSR mass relation up to
12The inverse Borel transform is formally given by f(αs) =

∫∞
0 duBαs [f ](u), compare with the third line

of Eq. (3.27).
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Figure 3.7: The pole mass renormalon normalization N1/2 for n` = 5 determined by the
renormalon sum rule of Eq. (3.29) for different numbers of terms included in the
sum over k. The band around the red curve that represents the 4-loop result
relates to the numerical uncertainty of the 4-loop coefficient of the pole-MS
mass relation.

4 loops and the β-function coefficients up to 5 loops (which corresponds to summing the
series up to k = 3) results in the values

N1/2(n` = 3) = 0.526± 0.016 ,
N1/2(n` = 4) = 0.492± 0.020 ,
N1/2(n` = 5) = 0.446± 0.026 , (3.31)

see also Eqs. (4.12-4.14) in the publication of Chap. 7. The uncertainties quoted in
Eq. (3.31) are determined by substituting R→ λR during the derivation of the sum rule
and varying λ in the rage 1/2 < λ < 2. Analogously to using a renormalization-scale
variation to determine the uncertainty of a truncated perturbative series, the true value of
N1/2 is independent of R such that its variation with λ is a measure of the uncertainty
that is introduced by truncating the sum-rule series. For a visualization of the numerical
results of the sum rule for n` = 5 and at different loop orders including λ-variation, see
Fig. 3.7 in this chapter. The results quoted in Eq. (3.31) are fully compatible with previous
estimations of N1/2 [68, 133], where other methods were used.

Another interesting application of the findings related to the renormalon sum rule is the
derivation of a new formula that describes the asymptotic high-order behavior of the
perturbative pole-MSR (or pole-MS) mass relation. Starting from an intermediate result
of the derivation of Eq. (3.28), one can solve for an, resulting in

an = (2β0)n
n−1∑
k=0

Sk

n−1−k∑
`=0

g`(1 + b̂1 + k)n−1−`−k . (3.32)

This result is especially interesting, as the sum over k still involves the ordering of the
terms in leading and subleading contributions to the asymptotic high-order behavior.
Additionally, the formula involves information about the pure renormalon behavior as
well as the subleading contributions to the perturbative coefficients, such that the formula
reproduces the known coefficients an exactly, while describing their correct high-order
behavior beyond the known orders. This is in contrast to the well-known formula [134]

aasy
n = 4πN1/2(2β0)n−1

∞∑
`=0

g`(1 + b̂1)n−1−` , (3.33)
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Figure 3.8: Self-energy diagram of a top quark with virtual bottom and charm quark
loops, contributing to the relation between the top pole and MS masses. If the
bottom and charm quarks are treated as being massless, the loop momenta
are unrestricted and pick up contributions from non-perturbative regions. If
the bottom and charm quarks are treated as being massive (m > ΛQCD) the
virtual massive loops act as an infrared cutoff such that non-perturbative loop
momenta are suppressed. [Drawing provided by André Hoang.]

which takes into account only the non-analytic terms in u = 1/2 of the Borel transform of
the pole-MS mass relation. Here, (x)n is the Pochhammer symbol.

For numerical predictions of the perturbative coefficients of the pole-MSR and pole-MS
mass relation at the orders 5 ≤ n ≤ 9, I refer to Sec. 4.4 of Chap. 7 and specifically to
Tab. 2 in that section.

Finally, to demonstrate the applicability of the renormalon sum rule to perturbative series
that are not related to the pole mass, I state the results of applying the sum rule to the
perturbative series of the QCD β-function, which is known not to be plagued by a O(ΛQCD)
renormalon. For n` = 4, the sum rule yields

Nβ
1/2 = (0.829± 0.497,−0.004± 0.272, 0.065± 0.092, 0.038± 0.032) , (3.34)

order by order in k, where the stated uncertainties are again derived by varying λ in the
range [1/2, 2]. As expected, all estimates beyond the k = 0 result are compatible with 0,13

see also Sec. 4.5.4 of Chap. 7.

3.4 On the Light Massive Flavor Dependence of the Large
Order Behavior and the Ambiguity of the Pole Mass

In the previous section, the MSR mass and the pole mass renormalon have been discussed
under the assumption that all quark flavors lighter than the considered heavy quark are
massless. In Chap. 8, a systematic approach is developed that applies a pipeline of running
and matching operations to the pole-MS mass relation to systematically include the effects
of lighter quark flavors and to disentangle the different momentum regions in the relation.
This is done by exploiting the concept of the MSR mass and R-evolution. That new and
unique approach and the close connection of the MSR mass to the pole-mass renormalon
(see the previous section), open up a wide range of applications and topics to study, with
interesting implications.

Let’s first illustrate the impact of light massive flavors on the perturbative pole-MS mass
relation. Due to the linear low momentum sensitivity of the pole mass, the pole mass is
also linearly sensitive to effects related to lighter massive quarks q with masses mq > ΛQCD.
13Remember that the renormalon sum rule presented in this section does only probe for renormalon

ambiguities of O(ΛQCD), not for any higher power O(Λk>1
QCD) IR renormalons. However, the sum rule

can be easily modified to probe for higher-order renormalons.
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These quark masses change the IR sensitivity which entails modifications of the asymptotic
behavior of the pole mass. As mentioned in the previous section, virtual massive quark
loops act as an effective infrared cutoff in Feynman diagrams, which leads to a modified
renormalon structure [129], see Fig. 3.8 in this chapter for a graphical illustration. Due to
this infrared cutoff, the correct renormalon structure of the pole mass can only depend on
the number of massless flavors.

The starting point to study light massive quark corrections in a systematic manner is to
write the perturbative series that relates the pole and MS mass m(m) of the heavy quark
Q in the form

mpole
Q −mQ =

Renormalon corresponding to (nQ+1) massless flavors︷ ︸︸ ︷
mQ

∞∑
n=0

an(nQ + 1, 0)

α(nQ+1)
s (mQ)

4π

n +mQ ∆Q(mQ,mQ−1, . . . )︸ ︷︷ ︸
Renormalon corresponding to n0 massless flavors

,

(3.35)
with mQ = mQ(mQ). Here, nQ is the number of flavors lighter than the heavy quark Q,
and the arguments of the function ∆Q represent the masses of all massive quark flavors
that are lighter than the heavy quark Q, as well as the mass of the quark Q itself: mQ is
the mass of the heavy quark, mQ−1 is the mass of the next lighter quark, and so on.

In this formulation, the first term of Eq. (3.35) represents the pole-MS mass relation with
all masses of virtual quarks (including the heavy quark itself) set to zero: The coefficients
an(nQ + 1, 0) are the perturbative coefficients of the pole-MS mass series with (nQ + 1)
massless virtual quarks (first argument), and no virtual heavy quarks (second argument).
The second term of Eq. (3.35) encodes the finite mass corrections from all virtual quark
loops (originating from diagrams like the one shown in Fig. 3.8 in this chapter). More
explicitly, the quantity ∆Q(mQ,mQ−1, . . . ) can be expanded systematically in the form

∆Q(mQ,mQ−1, . . . ) = δ
(Q,q1,...,qn)
Q (1, rq1Q, . . . , rqnQ) + δ

(q1,...,qn)
Q (rq1Q, . . . , rqnQ)

+ · · ·+ δ
(qn)
Q (rqnQ) . (3.36)

The terms δ(q,q′,... )
Q (rqQ, rq′Q, . . . ) contain the mass corrections coming from the quark Q

on-shell self-energy Feynman diagrams with insertions of virtual massive quark loops. The
superscript (q, q′, . . . ) indicates that each diagram contains at least one insertion of the
massive quark q and in addition all possible insertions of the (lighter) massive quarks q′, . . .
as well as of massless quark and gluonic loops. From each diagram, the corresponding
diagram with all the quark loops in the massless limit is subtracted (because these terms
are already contained in an(nQ + 1, 0)) in the scheme compatible with the flavor number
scheme for the strong coupling αs. The fractions rqq′ = mq/mq′ stand for the ratios of MS
masses for massive quarks q and q′.

The unusual (and at first glance unnatural) structure of the arrangement of the terms in
Eq. (3.35) is essential to systematically disentangle light massive flavor effects flavor-by-
flavor and for properly defining the MSR mass with those effects included, as described in
this chapter.

As indicated by the braces in Eq. (3.35), the first term follows an asymptotic renormalon
behavior that corresponds to (nQ + 1) massless flavors, while the combined expression
suffers from a renormalon corresponding to n0 massless flavors, where n0 is the number of
quark flavors with masses mq < ΛQCD for which we can adopt the massless approximation.
So, there is a renormalon cancellation between the first and the second term. Considering
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the top quark (Q = t) with heavy bottom and charm quarks as an example, nt = 5 (such
that nt + 1 = 6) and n0 = 3.

The quantity ∆Q is known up to O(α3
s) for the insertion of light massive loops of one lighter

flavor in addition to the heavy quark Q [77,135]. Note that the renormalon cancellation
between the first and second term in Eq. (3.35) implies that the quantity ∆Q has itself a
divergent asymptotic perturbative series.

For a more detailed discussion of the light massive flavor correction term ∆Q, see Secs. 2.1
and 2.2 of Chap. 8.

It is natural to wonder whether the renormalon cancellation of the two terms in Eq. (3.35)
can be made explicit. In other words, to make explicit the n0 massless-flavor renormalon
behavior and the decoupling of massive flavors at asymptotically high orders.

The formalism that is developed in the work presented in Chap. 8 achieves exactly that.
This not only allows to work with light massive flavor corrections in a more systematic way,
but also to predict yet uncalculated perturbative orders of ∆Q, to describe their asymptotic
large-order behavior, and to derive a value for the best possible estimate of the top quark
pole mass that takes massive bottom and charm quarks into account.

The approach to disentangle the different momentum modes in the pole-MS mass relation
is inspired by the usual pipeline of renormalization group running and matching as known
e.g. from the strong coupling. To illustrate this, let’s start by integrating out the closed
virtual loops of the heavy quark Q, which results in the pole-MSR mass relation

mpole
Q −mMSR

Q (R) = R
∞∑
n=0

an(nQ, 0)

α(nQ)
s (mQ)

4π

n +mQ ∆Q(mQ,mQ−1, . . . ) . (3.37)

Note that the quantities ∆Q in Eq. (3.37) and ∆Q in the pole-MS mass relation of Eq. (3.35)
are different because all diagrams with virtual loops of the heavy quark Q are removed in
∆Q.

The associated matching contribution is the MS-MSR matching

mMSR
Q (mQ)−mQ = ∆m(nQ+1→nQ)

Q (mQ) + δm
(nQ+1→nQ)
Q,q1,...,qn

(mQ) . (3.38)

Here, ∆m(nQ+1→nQ)
Q is the renormalon-free matching contribution under the assumption

that all quarks lighter than the heavy quark Q are massless. The second term, δm(nQ+1→nQ)
Q,q1,...,qn

,
represents the renormalon-free contributions from virtual loops of massive quarks qi lighter
than the heavy quark Q. That second term starts at O(α3

s) and is quadratic in the mass
ratios rqiQ = mqi/mQ, with mqi the mass of the quark qi that is lighter than the quark
Q. Therefore, that term is extremely small (it does never exceed 0.01 MeV for all physical
cases) and can be neglected for practical purposes. Taking the top quark mass mt as an
example for the heavy quark Q, the contribution ∆m(6→5)

t contains the contributions from
virtual top loops, and δm(6→5)

t,b,c contains the contributions from diagrams that contain both
virtual top loops and the mass corrections (with respect to the case mb = mc = 0) arising
from the finite masses of virtual massive bottom or charm loops. An exemplary diagram
that contributes to ∆m(6→5)

t is shown in the top figure of Fig. 3.9 in this summary. For
explicit expressions of the two terms in Eq. (3.38), see Sec. 3.1 of Chap. 8, for numerical
values of ∆m(nQ+1→nQ)

Q in physical setups, see Tab. 3 in the same section.

The second type of matching that has to be considered for our goal to fully decouple all the
momentum regions in Eq. (3.35) results from integrating out contributions from massive
virtual loops of the next lighter massive flavor with respect to the heavy quark Q. In the
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→ ∆m(6→5)
t (mt)

−
→ δm

(t→b)
b,c (mb,mc)

Figure 3.9: Top figure: example diagram with a virtual top quark loop that contributes to
the top quark MS-MSR matching term ∆m(6→5)

t (mt). Bottom figure: example
diagrams that contribute to the top quark heavy quark symmetry breaking
term δm

(t→b)
b,c (mb,mc). [Drawings provided by André Hoang.]

case of the top quark, this concerns diagrams that contain virtual bottom loops. For the
purpose of deriving useful expressions for that matching contribution, it is helpful to note
that the pole-MSR mass relation of the heavy quark Q as given in Eq. (3.37) would be
equivalent to the pole-MS mass relation of the next lighter quark (Q− 1) for R = mQ−1 if
the virtual loops of all quark flavors lighter than the quark Q (including the next lighter
flavor) are treated as massless. This fact is far from trivial and a consequence of heavy
quark symmetry [59]. However, in the presence of lighter massive quarks, this is no longer
true. The associated correction can be encoded in a heavy quark symmetry breaking term.
The heavy quark symmetry breaking term for the top quark due to the finite bottom mass
is defined by [

mpole
t −mMSR

t (mb)
]
−
[
mpole
b −mb

]
=: δm(t→b)

b,c (mb,mc) . (3.39)

In words, this heavy quark symmetry breaking term encodes the difference between the
contributions of virtual massive bottom and charm quark loops in primary (i.e. external)
top-quark self-energy diagrams and virtual massive bottom and charm quark loops in
primary bottom-quark self-energy diagrams, see the bottom figure of Fig. 3.9 in this chapter
for an illustration. It is important to note that the heavy quark symmetry breaking term
is, just as the matching contributions from integrating out the heavy quark Q, renormalon
free: since the pole-mass renormalon does only depend on the number of massless flavors,
mpole
t and mpole

b do actually suffer from the same renormalon if lighter quark flavor masses
are accounted for, such that the renormalon cancels in the difference on the left-hand side
of Eq. (3.39).

Analogously, the heavy quark symmetry breaking term associated to the difference of virtual
finite-mass charm quark loops in bottom-quark and charm-quark self-energy diagrams is
given by [

mpole
b −mMSR

b (mc)
]
−
[
mpole
c −mc

]
= δm(b→c)

c (mc) . (3.40)

For explicit expressions and numerical values of the physical heavy quark symmetry breaking
terms, see Sec. 3.2 of Chap. 8 and Tab. 4 therein.

Combining the MS-MSR mass matching, the heavy quark symmetry breaking contributions,
and R-evolution, it is now possible to decouple the momentum regions in the pole-MS
mass relation of Eq. (3.35). For the top quark, with massive bottom and charm quarks,
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the decoupled version of Eq. (3.35) is

mpole
t −mt = ∆m(6→5)

t (mt) + ∆m(5)(mt,mb) + δm
(t→b)
b,c (mb,mc) + ∆m(5→4)

b (mb)

+ ∆m(4)(mb,mc) + δm(b→c)
c (mc) + ∆m(4→3)

c (mc)

+ ∆m(3)(mc, R) +R
∞∑
n=1

an(n` = 3, 0)
(
α

(3)
s (R)
4π

)n
, (3.41)

with R < mc and where ∆m(n`)(R,R′) is the solution of the R-evolution equation with n`
flavors, i.e.

∆m(n`)(R,R′) = mMSR
Q (R′)−mMSR

Q (R) =
∞∑
n=0

γR,(n`)n

∫ R

R′
dR

(
α

(n`)
s (R)

4π

)n+1

. (3.42)

The exact way how the decoupling formula in Eq. (3.41) is constructed ensures that the
R-evolution equation is mass independent and only depends on n`. This choice is not
unique: the article in Ref. [136] includes light massive flavors in the MSR mass definition in
a way that results in much more complicated and mass-dependent R-evolution equations.

Eq. (3.41) clearly illustrates the approach of repeated running and matching, evolving down
from the top quark mass scale, until all massive flavors are decoupled and all momentum
regions are disentangled and logarithms of quark mass ratios are resummed to all orders
through R-evolution. The O(ΛQCD) renormalon of the pole mass is contained solely in
the very last low-scale term of Eq. (3.41), which encodes the momentum region below
R < mc and has contributions only from the massless quark flavors (u, d, s). That last
term of Eq. (3.41) is universal for all massive on-shell renormalized quark flavors. This is a
profound result that is a consequence of heavy quark symmetry. All other terms shown in
Eq. (3.41) are O(ΛQCD) renormalon free.

It should be stressed again that, in order to obtain Eq. (3.41), it is essential to start from
the pole-MS mass relation as written in Eq. (3.35). Otherwise, the connection between
the MS and MSR mass of different massive flavors and, consequently, the possibility to
systematically exploit heavy quark symmetry, is obscured and far from obvious.

To understand the nature of Eq. (3.41), it is illustrative to have a closer look at it by
adding the right-hand side term by term, starting from the last one, and to write down the
respective fixed-order expressions:

R
∞∑
n=1

an(n` = 3, 0)
(
α

(3)
s (R)
4π

)n
→ mpole

c −mMSR
c (R)

+∆m(3)(mc, R) → mpole
c −mMSR

c (mc)
+∆m(4→3)

c (mc) → mpole
c −mc(mc)

+δm(b→c)
c (mc) → mpole

b −mMSR
b (mc)

+∆m(4)(mb,mc) → mpole
b −mMSR

b (mb)
... (3.43)

The individual expressions on the right-hand side of the arrow correspond to the sum of
all lines of the left-hand side up to that line. Obviously, a generalization of Eq. (3.41)
to other flavors is straightforward. A graphical illustration of the running and matching
contributions is depicted in Fig. 3.10 above.

The disentanglement of the series into a renormalon-plagued low-scale term that depends
only on the number of massless flavors (nf = 3 in a physical setup where we account for
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Figure 3.10: Graphical illustration of the running and matching contributions in the pole-
MS mass relations and their associated momentum region.

finite charm and bottom masses), and renormalon-free terms that have good convergence
properties, has interesting consequences that are immediately exploited in Secs. 3.3, 3.4,
3.5, and 4 of Chap. 8. In the following, some of them are shortly summarized.

First of all, the asymptotic high-order behavior of the pole-MS mass relation that includes
the effects from lighter massive flavors can be determined very easily by combining the
systematic decoupling that is described above with the methods described in Chap. 7 (and
summarized in Chap. 3.3 of this thesis), e.g. Eq. (3.32) of this section, which describes
the asymptotic high-order behavior of the perturbative pole-MS relation for the case of
massless lighter quarks: All terms in Eq. (3.41) except for the last low-scale one, which
carries the renormalon ambiguity, have excellent convergence properties. Therefore, the
high-order asymptotic behavior of the full series is only weakly affected by the known
perturbative corrections of these convergent contributions. The high-order asymptotic
behavior of the low-scale term on the other hand is given by Eq. (3.32) of this section.
This systematic approach is in contrast to other heuristic techniques that were used up to
now, e.g. by artificially enforcing light flavor decoupling [68]. As it turns out, the heuristic
technique works well for charm mass effects in the bottom quark, but gives wrong results
for bottom quark mass effects in the top quark. For more details and numerical results, I
refer to Sec. 3.5 of Chap. 8.

Secondly, due to the small size and excellent convergence properties of the heavy quark
symmetry breaking terms (for all physical setups, their overall size is only a few MeV, and
the size of the O(α3

s) contributions is only ∼ 1 MeV), the yet unknown O(α4
s) perturbative

coefficient of ∆Q in Eq. (3.37) (and equivalently ∆Q in Eq. (3.35)) can be predicted with a
precision better than 1 MeV. This can be achieved by approximating the unknown O(α4

s)
terms of the heavy quark symmetry breaking contribution with zero, and re-expanding the
resulting expression in terms of the original perturbative coefficients of Eq. (3.35). The
estimation of the O(α4

s) light massive flavor correction term for a single lighter massive
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quark flavor q is then given by

δ
(q)
Q,4(rqQ)

≈ rqQ

[
δ

(q)
q,4(1) +

(
6β(nQ)

0 δ
(q)
q,3(1) + 4β(nQ)

1 δ2(1)
)

ln
(
µ

mq

)
+ 12δ2(1)

(
β

(nQ)
0 log

(
µ

mq

))2 ]

−
(
6β(nQ)

0 δ
(q)
Q,3(rqQ) + 4β(nQ)

1 δ2(rqQ)
)

log
(
µ

mQ

)
− 12δ2(rqQ)

(
β

(nQ)
0 log

(
µ

mQ

))2

,

(3.44)

so that (see Eq. (3.37))

∆Q(mQ,mq) = δ
(q)
Q (rqQ) = δ2(rqQ)

α(nQ)
s (mQ)

4π

2

+
∞∑
n=3

δ
(q)
Q,n(rqQ)

α(nQ)
s (mQ)

4π

n ,
(3.45)

with rqQ = mq/mQ. The expression on the RHS of Eq. (3.44) should provide an approxi-
mation to δ(q)

Q,4 accurate to O(1 MeV). It is interesting to note that the rapid convergence
of the heavy quark symmetry breaking term and the resulting precision of the estimation
in Eq. (3.44) implies that the perturbative series of ∆Q is essentially completely governed
by its asymptotic high-order behavior already at O(α4

s). For a more detailed derivation
and numerical analyses, see Sec. 3.3 of Chap. 8.

Last but not least, the framework that is described in this section allows to determine the
top quark pole mass renormalon ambiguity and the best estimate of the top quark pole
mass with a rigorous implementation of bottom and charm mass effects. The strategy that
is used to determine the top pole mass ambiguity and the top pole mass best estimate is
the following:

First, we use the known asymptotic behavior of the renormalon series in Eq. (3.41) (the
last term) and the convergence properties of the other terms to determine the minimal
correction term to the pole-MSR mass series ∆(nmin) with ∆(n) = mpole(n)−mpole(n− 1),
where mpole(n) is the partial sum at O(αns ). There is a range of orders for which the
partially summed series grows linearly, i.e. where the correction terms have approximately
the same size. According to the theory of asymptotic series, this is the relevant range for
determining the ambiguity of the series and its best estimate. Consequently, we choose a
set of orders {n}f = {n : ∆(n) ≤ f∆(nmin)} with f & 1 a real number larger but close to
1 at a default renormalization scale. Finally, half the range of values that is covered by
mpole(n), n ∈ {n}f , including renormalization scale variation, is used as an estimate of the
top quark pole mass renormalon ambiguity. The best possible estimate is taken to be the
midpoint of the resulting range. This method respects heavy quark symmetry in the sense
that the resulting pole mass ambiguity is independent of the heavy quark mass value itself,
or equivalently, the value of R.

For the numerical evaluation, we choose f = 5/4, mt = 163 GeV, mb = 4.2 GeV, mc =
1.3 GeV and repeat the procedure for R = 163, 20, 4.2, 1.3 GeV. The renormalization scale
variation is performed in the range 1.5 ≤ µ ≤ 5 GeV for R = 1.3 GeV and R/2 ≤ µ ≤ 2R
otherwise.

The results for the best possible estimates of the top quark pole mass and the associated
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Figure 3.11: The top quark pole mass mpole
t as a function of the perturbative order with

mt = mt(mt) = 163 GeV. The central dots are obtained for the default renor-
malization scales for the strong coupling and the error bands represent the scale
variation as explained in the text. The light colored hatched horizontal bands
bounded by equal colored lines show the best possible estimate for the respec-
tive light-flavor-mass configuration. The results obtained for massless bottom
and charm quarks are colored black, the results for (mb,mc) = (4.2, 0) GeV
are colored in red, and the results for (mb,mc) = (4.2, 1.3) GeV are colored
blue. The top left panel shows results for R = 163 GeV, the top right panel
for R = 20 GeV, the bottom left panel for R = 4.2 GeV, and the bottom right
panel for R = 1.3 GeV.

ambiguity with massive bottom and charm quarks and for different values of R are

mpole
t

∣∣∣
R=163 GeV

= (173.165± 0.263) GeV ,

mpole
t

∣∣∣
R=20 GeV

= (173.161± 0.245) GeV ,

mpole
t

∣∣∣
R=4.2 GeV

= (173.259± 0.259) GeV ,

mpole
t

∣∣∣
R=1.3 GeV

= (173.159± 0.244) GeV . (3.46)

All values are perfectly compatible with each other, which is a valuable cross-check of our
method with respect to heavy quark symmetry. The mean over Eqs. (3.46) of the best
possible estimate is 173.186 GeV, while the mean of the ambiguity is 253 MeV. Note that,
due to heavy quark symmetry, the value of the pole mass ambiguity is universal for the
top, bottom, and charm quark (if mt, mb and mc are non-zero), i.e. this value is also valid
for the ambiguity of the bottom and charm quark pole masses.
In comparison, the result for the pole mass for massless bottom and charm quarks is
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173.150 GeV for the best possible estimate, and 182 MeV for the ambiguity. So, while the
value of the best possible estimate does not change significantly, the value for the ambiguity
is much smaller, as expected from Λ(n`=5)

QCD < Λ(n`=3)
QCD .

In Fig. 3.11 below, the pole mass as a function of the perturbative order, as well as the
pole mass ambiguity as determined with the described approach is shown for the individual
values of R and for different lighter flavor mass setups, i.e. massive bottom and charm,
massive bottom and massless charm, and massless bottom and charm. Note that the order
of the minimal correction term is lower for lower values of R.

The best possible estimate and ambiguity of the top quark pole mass was also discussed in
Ref. [133] by using a different approach with a resulting value of the ambiguity of 110 MeV.
However, as discussed in detail in Sec. 4 of Chap. 8, the approach of Ref. [133] does not
respect heavy quark symmetry and does not take light massive quark flavors into account
in a rigorous and systematic way.

For a more extensive discussion and numerical values, see Secs. 4.2-4.4 of Chap. 8.

3.5 REvolver: Automated Running and Matching of
Couplings and Masses in QCD

In Chaps. 7 and 8, summarized in Chaps. 3.3 and 3.4, new concepts and tools related to the
MSR mass are developed that are useful for a large group of researchers in the high-energy
community. To make the new developments easily available, we developed the C++ library
REvolver, which is presented and extensively documented in Chap. 9. The code is available
as open-source software and is aimed at both theorists and experimentalists. To make the
possible range of applications as broad as possible, the code provides additional interfaces
to Mathematica [137] as well as Python [138]. The examples in this section are given for
the Mathematica interface.

REvolver combines access to the innovations in Chaps. 7 and 8 with a rich set of stan-
dard features for coupling and mass evolution as well as the conversion between mass
renormalization schemes. This includes

• renormalization group evolution of the strong coupling, the MS as well as the MSR
mass (complex renormalization scales are supported) with automatic flavor number
matching, whereby the MSR mass is treated as the low-energy extension of the
MS mass. The implemented algorithms allow to solve the renormalization group
equations to in principle arbitrary precision, where the equations are treated as exact
up to the specified perturbative order;

• mass scheme conversions to and from various short distance masses. At the moment,
the following short-distance mass schemes are supported apart from the MS and
MSR mass:

– 1S scheme [64–66],

– kinetic scheme [139],

– potential subtracted scheme [130,140],

– renormalon subtracted scheme [68],

– RGI scheme [141].
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Figure 3.12: Diagrammatical illustration of the Core concept in REvolver. To create a
Core, some fundamental parameters have to be specified, such as the number
of quark flavors, a value of the strong coupling in a specified flavor number
scheme and at a specified scale, as well as quark mass values. A number of
optional parameters can be set as well. The Core object then provides all
functionalities of REvolver via member functions, such as the extraction of
coupling values, masses, etc. At Core creation, some fundamental parameters
such as strong coupling values at mass thresholds are precomputed and stored.

Here, the usual fixed-order conversion is supported as well as the conversion with
intermediate R-evolution to resum potentially large logarithms of the ratio of the re-
spective intrinsic scales. Whenever known, light massive flavor effects are implemented
consistently14;

• conversion to and from the fixed-order pole mass at arbitrary large perturbative
orders by utilizing the asymptotic renormalon behavior of the pole mass;

• conversion to and from the asymptotic pole mass, i.e. the best possible estimate of
its value;

• determination of the pole mass renormalon ambiguity, whereby the strategy developed
in Chap. 8 as well as the one applied in Ref. [133] can be applied;

• determination of the renormalon normalization N1/2 by utilizing the framework
developed in Chap. 7;

• determination of the QCD scale ΛQCD in different conventions.

The β-function, the anomalous dimensions, the matching coefficients, as well as the light
massive flavor corrections are implemented to the highest perturbative order currently
available, i.e. the 5-loop β-function, 5-loop MS-anomalous dimension, etc.

The codebase of REvolver is written in such a way that its functionalities can be easily
extended and modified in the future. This concerns minor additions such as the implemen-
tation of new loop corrections to mass scheme relations and anomalous dimensions, as well
as major extensions such as including electroweak interactions.

A fundamental concept of REvolver is the Core object, which can be viewed as the encoding
of a certain physical scenario, and from which all desired parameters like coupling and
mass values can be extracted, see Fig. 3.12 in this chapter for a diagrammatic illustration.
A physical scenario is defined by
14“Consistent” here means that in a conversion between short-distance masses, light massive flavor effects

are included up to the same perturbative order for both mass schemes. This is crucial for correct
renormalon cancellation.
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• an initial strong coupling value in a specified flavor number scheme and at a specified
scale,

• the total number of quark flavors,
• optional mass values for the quark flavors, specified either in the MS or MSR mass

scheme in a specified flavor number scheme and at a specified scale,
• the number of perturbative orders that should be used for the evolution and matching

of the running quantities,
• the matching scales.

For example, in Mathematica a simple Core with six quark flavors, with massive top,
bottom and charm quarks can be created by

alphaPar = {5, amZdef, mZdef};
mPar = {{4, 1.3, 1.3}, {5, 4.2, 4.2}, {6, 163.0, 163.0}};
CoreCreate["core1", 6, alphaPar, mPar]

Here, CoreCreate is the REvolver function to create a Core object, core1 is the name of
the newly defined Core, 6 is the total number of quark flavors, alphaPar defines the flavor
number scheme, value and renormalization scale of the strong coupling, and mPar is a list,
where each element specifies the flavor number scheme, value, and scale of a massive quark
flavor. In this example, the mass values are given in terms of m ≡ m(m), however, every
consistent flavor number scheme and scale can serve as an input. mPar has to be sorted in
ascending order with respect to the associated MS mass m.
The MS and MSR mass schemes are the fundamental schemes in the Core framework. The
mass parameters in mPar have to be given in one of these schemes, where the specified
flavor number scheme determines if the parameters are interpreted as MS or MSR (MS if
the concerned heavy quark flavor is included in the flavor number scheme, MSR otherwise).
Note that, although the Core object must be initialized with mass values in the MS or
MSR mass scheme, massive quark flavors with masses specified in other schemes can be
added to an already existing Core object by using dedicated member functions, see Sec. 6.3
of Chap. 9. Internally, quark masses are always converted to the MS mass m, which serves
as a starting point for all subsequent computations.
By default, renormalization group evolution and matching is performed by using all available
perturbative orders, and the matching scales are set to the MS mass m.
Optional parameters for the creation of a Core can be set in Mathematica via the options
parameter syntax. E.g. to create a Core with name core2 with the matching scale associated
to the charm quark mass set to 2mc instead of mc, the parameter fMatch can be set via

CoreCreate["core2", 6, alphaPar, mPar, fMatch->{2.0, 1.0, 1.0}]

where each element of fMatch corresponds to one massive quark flavor.
For more details on the creation of Core objects, including available additional parameters
and how to create Cores in C++ and Python, see Sec. 6.1 of Chap. 9.
In the following, I describe some examples to demonstrate a selection of the functionalities
that REvolver provides.
To extract couplings and masses from an existing Core object, one uses Core member
functions. In C++ and Python, the usual syntax for C++ member functions or Python
methods is used, while in Mathematica, the respective functions take the name of a Core
as an input. For example, the command
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In[]:= AlphaQCD["core1", -10.0 + 0.1 I]
Out[]= 0.11619771241600231 - 0.08307724827828394 I

extracts the strong coupling at the complex renormalization scale µ = (−10+0.1i) GeV from
the Core with the name core1. Due to the automatic matching procedure implemented
in REvolver, the flavor number scheme is automatically set to 5, since |µ| = 10.0005 GeV
exceeds the bottom mass value mb = 4.2 GeV in core1, but is smaller than the top mass
value mt = 163 GeV. If desired, the flavor number scheme can be set by hand with an
optional parameter, see Sec. 6.2.1 of Chap. 9.

Similarly, in analogy to the strong coupling, the MS or MSR mass is extracted with the
function MassMS in Mathematica, or with the associated Core member functions in C++
and Python. Again, automatic flavor matching is applied, with an optional parameter to
set the flavor number scheme by hand, see Sec. 6.2.1 of Chap. 9.

Dedicated member functions also exist for all other supported short-distance masses. For
example, to extract the potential subtracted mass of the 5-th lightest flavor (the bottom
quark in the physical setup of core1) at the scale 2 GeV, mPS(2 GeV), from the Core with
name core1, one can execute

In[]:= MassPS["core1", 5, 2.0]
Out[]= 4.521091787631138

Here, R-evolution is used automatically to resum potentially large logarithms of the intrinsic
scale ratio between 2 GeV and 4.2 GeV. Fixed-order conversion can be specified with an
optional parameter. For more details and optional parameters, see Sec. 6.2.2 of Chap. 9.

Finally, let’s demonstrate some functionalities related to the pole mass scheme.

To extract the fixed-order pole mass of the 6-th lightest quark (the top quark in the physical
setup of core1), at O(α16

s ) (for O(αn>4
s ) the asymptotic form as described in Chaps. 3.3

and 3.4 is used), converted from the 5-flavor scheme MSR mass with µ = R = 20 GeV, the
command

In[]:= MassPoleFO["core1", 6, 5, 20.0, 20.0, 16]
Out[]= 1190.2576448418606

is used. On the other hand, to return the best possible estimate of the top quark pole
mass, its ambiguity, and the order of the smallest correction term, one uses

In[]:= MassPoleDetailed["core1", 6, 10.0, "min"]
Out[]= {173.09681693689498, 0.1307735468951421, 4}

where the third argument specifies the scale R = 10 GeV and the fourth argument specifies
the method that is used to determine the returned values. In this case, the method min
is specified, which refers to the strategy of Ref. [133]. For more details on the pole-mass
related functions and the respective functions in the C++ interface, I refer to Sec. 6.2.3 of
Chap. 9.

At the beginning of this section, it is stated that renormalization group equations are solved
by REvolver up to in principle arbitrary precision15 at the specified perturbative order.
15In practice, the accuracy that can be achieved with REvolver is limited by the number of digits that a

double precision variable in C++ can handle.
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To demonstrate this capability, I shortly describe the iterative algorithm that is used to
solve the QCD β-function.

The QCD β-function is given by

µ
dαs(µ)

dµ = βQCD(αs(µ)) = −2αs(µ)
∞∑
n=0

βn

[
αs(µ)

4π

]n+1
, (3.47)

and its solution can be written as

log µ

µ0
=
∫ αµ

α0

dα
βQCD(α) = −2π

β0

∫ αµ

α0

dα
α2

[
1 +

∞∑
i=1

ci
( α

4π
)i]

, (3.48)

with αµ ≡ αs(µ), α0 ≡ αs(µ0). In the second term, the inverse β-function is simply
expanded in terms of the strong coupling. The series coefficients ci can be determined via
the recursive relation

cn+1 = −
n+1∑
i=1

cn+1−ibi , (3.49)

with bi ≡ βi/β0.

The integral in the last term of Eq. (3.48) can be easily solved term by term, which gives

log µ

µ0
= − 1

2β0

[
1
a0
− 1
aµ

+ c1 log
(
aµ
a0

)
+
∑
i=1

ci+1
i

(
aiµ − ai0

)]
, (3.50)

with ai ≡ αi/(4π).

A trivial transformation leads to

aµ = 1
1
aLL
µ

+ c1 log
(
aµ
a0

)
+∑

i=1
ci+1
i [aiµ − ai0]

. (3.51)

with the leading-log solution

aLL
µ = a0

1 + 2β0a0 log(µ/µ0) . (3.52)

Finally, Eq. (3.51) can be implemented as the iterative formula

[aµ]n+1 = 1
1
aLL
µ

+ c1 log
(

[aµ]n
a0

)
+∑

i=1
ci+1
i [([aµ]n)i − ai0]

. (3.53)

Note that in practice, there are two iterations to take care of in Eq. (3.53): The iteration
in n, and the infinite sum in the denominator.

Eq. (3.53) converges very quickly (usually a relative precision of around 10−15 can be
achieved after 10 iterations) and automatically deals with coupling evolutions to complex
scales, as the starting point is always the leading-log solution.
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Conclusions and Outlook

In this thesis, various aspects related to heavy quarks have been studied, in order to broaden
and deepen the understanding of conceptual issues, to provide the results of mass-related
corrections, and to develop computational tools and methods that incorporate the gained
conceptual insights and make them easily accessible. The results obtained are applicable
in many contexts, either combined or individually.

In the following, I recapitulate the results that are presented in the publications in Part. III
and summarized in Chap. 3 with a focus on potential use cases and future work.

In Chap. 5 (full article) and Chap. 3.1 (summary) a general method to compute differential
and cumulative NLO event-shape cross sections with stable massive quarks is developed.
As it turns out, differential cross sections for event shapes that are linearly sensitive to soft
momenta (which applies to all common event shapes such as 2-jettiness, C-parameter, jet
broadening, jet masses, and angularities) can be written as the sum of a delta-distribution
term, a plus-distribution term, and a non-distributional term. General formulas are derived
in Chap. 5 to compute the distributional terms analytically, and an algorithm is presented
that can compute the non-distributional term numerically (but unbinned) up to in principle
arbitrary precision without employing Monte Carlo methods. Interestingly, the coefficient
of the delta distribution can be written as a sum of terms that are universal for all event
shapes under very mild constraints, and an event-shape dependent 1-parameter integral that
depends only on the event-shape measurement function in the soft limit. The coefficient of
the plus distribution is universal for the same set of event shapes that contains all popular
event shapes such as thrust, C-parameter, hemisphere masses, broadening, and angularities.
The methods developed in Chap. 5 can be applied to differential as well as cumulative
cross sections and are numerically stable, even in the dijet region.

The results of Chap. 5 are useful for precision-calculations of event-shape cross sections
with massive quarks, even for newly defined observables. At future linear colliders that will
measure the top quark mass, the methods will help to facilitate the accurate computation of
NLO event-shape cross sections, and the analytic formula for the delta-function coefficient
can be used to supplement numerical methods that are not capable of properly resolving
that contribution.

In future work, the method that is presented in Chap. 5 can be extended with regard to
several factors:

• Although the formulas for the coefficients of the distributional terms can be readily
applied to event shapes with additional continuous parameters such as angularities, the
numerical algorithm is described only for event shapes without additional parameters.

• Observables that imply jet algorithms or are non-global in other ways can not be
treated with the methods described here. However, it might be possible to extend
the presented methods by applying a similar reasoning.

• The presented methods focus on event-shape distributions at O(αs). It might be
possible to extend some of the methods to O(α2

s), although this is most probably
an extensive task. Such a method would be extremely useful to attain even higher
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precision in event-shape cross section distributions with massive quarks, even if it
can only be applied to specific terms. General O(α2

s) results could also provide hints
regarding the universality of the coefficients of the distributional terms and provide
additional, possibly unforeseen general insights into the structure of event-shape cross
sections.

• A systematic inclusion of N2LL contributions from SCET and bHQET has already
been achieved in Ref. [112].

In addition, some of the results of Chap. 5 can be applied in other contexts. For example,
the delta-function coefficient that can be easily obtained with the presented formula can
be used as an IR subtraction in parton-level Monte Carlo generators.

In Chap. 6 (full article) and Chap. 3.2 (summary), the computation and results of the
NNLO (two-loop) corrections to the massive quark SCET jet function are presented. The
result includes the mass-dependencies that come from primary as well as secondary massive
quarks in full generality, i.e. without any additional expansions in the mass parameter.
The result is especially important in the phase-space region p2 ∼ p2 − m2 ∼ m2, i.e.
the intermediate region where neither the massless approximation m2/p2 → 0 nor the
super-massive approximation p2 −m2 → 0 can be trusted to provide accurate results.

The two-loop contribution to the massive quark SCET jet function depends on two scales:
the invariant mass of the jet p2, and the mass of the massive quark m. This makes the
calculation non-trivial. The most interesting technical issue, however, comes from the fact
that SCET Feynman diagrams contain Wilson lines that lead to eikonal propagators of
the form 1/n · k in Feynman integrals, where n is a light-like 4-vector and k is a loop
momentum. These eikonal propagators potentially give rise to rapidity divergences in loop
integrals. For some integral classes, namely the ones associated to non-planar Feynman
diagrams, the potential rapidity divergences prevent the naive application of the common
IBP reduction. Even for a rapidity-finite integral in this class, it can not be guaranteed that
the IBP relations only contain rapidity-finite integrals. An additional rapidity regulator can
be introduced to circumvent this issue, but this leads to a significantly increased number
of master integrals, for which several orders in the rapidity regulator have to be evaluated
in order to obtain all required terms. Fortunately, in the calculation of the two-loop jet
function, there are only two diagrams that are affected by this issue. Those diagrams
can be evaluated analytically in the massless and super-massive limit and the remaining
contribution can be evaluated numerically. Those numerical contributions are small in
comparison to the other terms in the two-loop contribution to the jet function.

The issue described in the previous paragraph gives rise to interesting future studies. The
complication of eikonal propagators and the associated potential rapidity divergences is
not only relevant for the two-loop jet function, but also for other quantities in SCET for
which, sooner or later, higher loop corrections will become relevant. It is therefore useful
and interesting to have a closer look at that problem. One possible solution could be a
new kind of rapidity regulator that does not blow up the number of master integrals, or a
modification to the Laporta algorithm.

Another interesting issue that appears in the computation of the massive two-loop jet
function is related to secondary massive quark contributions, i.e. contributions that come
from virtual massive quark loops. For those contributions, it is crucial to cleanly separate
rapidity, IR, and UV divergences. In Chap. 6 this is achieved by regulating IR divergences
with a gluon-mass regulator and, in addition, a symmetric η rapidity regulator [127, 142] if
required. The loop integrations are then carried out by using a dispersion relation. Due to
the gluon-mass regulator, all quantities that mix into the contributions that come from
secondary massive quarks must be computed with that regulator, including the 1-loop
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massive jet function and the mass renormalization factor. This is feasible in a two-loop
computation, at three loops, however, it is worthwhile to find alternative techniques. Similar
to the IBP-reduction problem, a new type of regulator might facilitate the computation, or
an entirely different approach could be developed to separate the types of divergences.

It is also described in Chap. 6 that there are in fact two options to define the massive quark
two-loop SCET jet function: To avoid double-counting and render the jet function IR-finite,
collinear-soft modes that are associated with massless virtual quark loops have to be
removed from the jet function matrix element. Traditionally, this is often done by applying
zero-bin subtractions. Alternatively, the mode subtraction can be performed via the so-
called collinear-soft matrix element, which is more intuitive and systematic. Collinear-soft
modes associated with massive quark loops are IR-finite and can be either subtracted
from the jet-function matrix element (the resulting jet function is called the universal jet
function) or left unsubtracted (resulting in the so-called mass-mode jet function). In the
mass-mode jet function case, the massive collinear-soft modes are handled separately in
the so-called collinear-soft function, while in the case of the universal jet function, the
collinear-soft modes are handled as parts of the jet function. The two definitions of the
jet function, universal and mass-mode, can both be employed in factorization theorems
and provide different perspectives on mode separation and log resummation, while giving
equivalent results.

The freedom of choice of how to subtract collinear-soft modes does not only apply to the
massive quark SCET jet function but is more general. For example, the reasoning also
applies for bHQET jet functions with lighter secondary massive quarks, which can be
explored in future work.

Finally, the contributions of virtual massive quark loops with masses that are different
from the primary quark mass to the 2-loop massive quark jet function can be computed
in a future project. Although lighter massive flavor corrections (e.g. bottom quark mass
effects in the top quark jet function) are small and are not relevant at the current level of
precision, the analytic form of the corrections and their expansions might provide insights
into the behavior and general structure of this kind of contributions.

The results of Chap. 6 were the last missing pieces to perform N3LL resummation for some
event shapes with massive quarks, including 2-jettiness. Consequently, many precision
analyses for those observables that already exist at NNLL can now be updated and made
even more precise. The results are most important in the “intermediate region” of the jet
invariant mass, in the transition between the peak and the tail.

In Chap. 7 (full article) and Chap. 3.3 (summary), the MSR quark mass renormalization
scheme, mMSR

Q (R), is discussed in detail, a low-scale short-distance scheme that is the
low-scale extension of the MS mass mQ(µ) for scales R below the heavy quark mass. The
MSR mass has a variable intrinsic scale R that is used to derive its R-evolution equation, a
renormalization group equation that is linear in the renormalization scale. Due to the clean
definition of the MSR mass through quark self-energy diagrams, and the adjustable scale
R, the MSR mass is the perfect tool for determining heavy quark masses from quark-mass
dependent observables governed by small dynamical scales and comparing them with mass
determinations that were carried out at higher scales. The accurate conversion between
mass renormalization schemes with widely separated intrinsic scales can be achieved by
employing the R-evolution equation to resum large logarithms. This is especially useful for
the top quark mass, for which the scale hierarchy between the mass scale and the optimal
kinematic scale where the mass is extracted can be very large.

In the formal limit R→ 0, the MSR mass is equivalent to the pole mass. However, this
limit is ambiguous since taking the limit requires circumventing the Landau pole in a
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non-unique way. This illustrates the O(ΛQCD) renormalon ambiguity of the pole mass.
The solution of the R-evolution equation with the lower scale set to zero encodes the same
contributions as the perturbative pole-MSR mass relation. However, the terms of the
solution of the R-evolution equation are re-arranged in comparison to the usual perturbative
relation such that they are ordered with respect to their numerical impact in the high-order
asymptotic behavior of the perturbative series. Also, the analytic solution makes the pole-
mass renormalon ambiguity explicit through a non-zero imaginary part. The expression is
equivalent to the Borel sum of the perturbative pole-MSR mass relation and can be used to
derive useful formulas for the high-order asymptotic behavior of the pole-MSR and pole-MS
mass relations as well as the normalization of their asymptotic renormalon behavior, N1/2.
The derived formula for the normalization is called the “O(ΛQCD) renormalon sum rule”
and can be applied to any perturbative series, not just the pole-MSR mass relation.

The renormalon sum rule can be used to probe any perturbative series for an O(ΛQCD)
renormalon by checking if the sum converges to zero or not. Since the renormalon sum rule
is a series that is always truncated in practice, the apparent convergence of the formula
is not a strict proof of the presence or absence of a renormalon. However, the result can
provide precious hints, as in most cases rigorous renormalon analyses are unfeasible.

The concept of the MSR mass is extended in Chap. 8 (full article) and Chap. 3.4 (summary)
to include effects of massive flavors that are lighter than the considered heavy quark.
Virtual quark loops of massive quarks with mass m > ΛQCD act as infrared cutoffs in
Feynman diagrams. Consequently, massive lighter flavors decouple in the asymptotic high
order behavior of the pole-MSR mass relation that is governed by the O(ΛQCD) renormalon
of the pole mass. The formalism that is developed in Chap. 8 makes this light-flavor
decoupling at high orders explicit by setting up a running and matching pipeline that
systematically disentangles the different momentum regions in the perturbative pole-MSR
or pole-MS mass relation. This is achieved by acknowledging that the pole-MSR mass
relation mpole

Q −mMSR
Q (R) contains the contribution from quark self-energy diagrams from

the energy range between 0 and R (or µ for the pole-MS mass relation). In the spirit of
effective field theory, that energy range can be factorized into regions with different active
flavor numbers by iteratively applying a running and matching procedure. The procedure is
analogous to the running and matching procedure that is known from the strong coupling
and resums potentially large logarithms of quark mass ratios.

By using this formalism, it is possible to study the light massive flavor corrections to the
pole-MSR and pole-MS mass relation in a new systematic way. The concepts of heavy
quark symmetry, heavy quark symmetry breaking, and flavor universality are explicit in
the formalism and can be studied systematically in that context, which was not possible
before.

By examining heavy quark symmetry breaking, analytic formulas for the asymptotic high-
order behavior of the light massive flavor corrections to the pole-MSR and pole-MS mass
relations can be derived and studied. Interestingly, it turns out that light massive flavor
corrections are governed by their larger-order behavior already at relatively low orders,
such that these corrections can be predicted with a precision of around 1 MeV already at
4-loop order. Explicit expressions are given in Sec. 3.3 of Chap. 8. Additionally, by using
the developed formalism, pole-mass differences (that are renormalon free) are computed
with a precision of 20 MeV.

An essential part of the work in Chap. 8 is the re-examination of the large order asymptotic
behavior of the pole mass and the numeric size of the associated renormalon ambiguity
with a special focus on the top quark. The very frequent use of the pole mass scheme for
the top quark, also in LHC analyses, makes the study of the size of the ambiguity especially
interesting. Once again, the running and matching formalism that is developed in the
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same article, and especially heavy quark symmetry, allow studying this problem in a new,
systematic way that does not rely on heuristics.

In agreement with the predictions of heavy quark symmetry, the value we determine for the
pole-mass renormalon ambiguity does not depend on the mass value of the heavy quark, or
on the number of lighter quark flavors with mass values mq > ΛQCD. With the method
that is developed in Chap. 8, the pole-mass renormalon ambiguity is determined to be
250 MeV. This value is in stark contrast to the value of 110 MeV that is determined in
Ref. [133] and that does not follow the constraints of heavy quark symmetry.

It is important to realize that the value of the pole-mass ambiguity of 250 MeV does only
incorporate the principle precision with which the pole-mass value can be determined,
and does not involve any other sources of uncertainty whatsoever. Also, in a practical
application, to achieve the best possible value of the pole mass, one has to incorporate
perturbative orders up to the minimal perturbative correction term to its value. The
required loop order depends on the typical physical scale of the process and is usually
beyond reach if that scale is of the order of the top quark. That being said, even if one only
considers the fundamentally irreducible ambiguity of 250 MeV, this is a practically relevant
issue for HL-LHC top quark mass measurements, which are projected to reach a precision
of 200 MeV [143]. However, even for LHC Run-2, the 250 MeV pole mass ambiguity is
practically relevant in precision measurements.

As a consequence, short-distance mass schemes, such as the MS or MSR scheme should be
used instead of the pole mass scheme to avoid the pole-mass ambiguity problem. The MS
and MSR mass schemes are perfectly suited for precision analyses of heavy quark masses:
They are short-distance masses, have a simple and clean definition, their renormalization
factor is known up to O(α4

s), and the effects of lighter massive flavors can be implemented
systematically. In addition, the relation between the MSR and the MS mass is known with
a precision of O(10 MeV).

In Chap. 9 (full article) and Chap. 3.5 (summary), the C++ library REvolver is presented
that features accurate conversions between the most popular mass renormalization schemes
and renormalization group evolution of masses and the strong coupling with automatic
flavor matching in QCD. REvolver introduces the concept of the Core object that encodes a
physical setup that includes values of the strong coupling and quark masses at specified scales
and flavor number schemes. R-evolution is used to resum potentially large logarithms in the
conversion between short-distance mass schemes. Furthermore, REvolver implements the
techniques that are developed in Chaps. 7 and 8. This includes the fixed-order conversions
to and from the pole mass at an arbitrary perturbative order by exploiting its know
asymptotic high-order behavior, and the conversion to and from the asymptotic pole mass,
i.e. its best possible value.

REvolver is aimed at theorists and experimentalists alike. In a phenomenological context,
REvolver was prominently used in Refs. [144,145] (the author of this thesis is a coauthor
of these references) to demonstrate the consistency of bottom-quark MS-mass values
measured at different characteristic dynamical scales with the MS renormalization-group
evolution as predicted by standard-model QCD. The mass values have been extracted at
the bottom quark mass scale mb itself (PDG world average, extracted at a typical scale
of the bottomonium mass), the Z-boson mass scale mZ (extracted from LEP and SLC
measurements at the Z-pole), and the Higgs-mass scale mH (extracted from Higgs-boson
branching-ratio measurements at the LHC). In the near future, when experimental data
from HL-LHC and other “Higgs factories” are available, studying the running of the bottom
quark mass and comparing theoretical predictions with actual mass-value measurements at
different energy scales can provide precise tests of standard-model QCD, e.g. by ruling out
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(or confirming) exotic heavy color-charged states. Having a tool like REvolver at one’s
disposal for studies of this kind will prove extremely valuable.

REvolver can be easily extended, such that newly derived loop corrections of anomalous
dimensions, matching factors, etc. can be easily added. The same is true for additional
renormalization schemes that might be of interest in the future.

In the long term, however, the most interesting and useful extension of REvolver is to
implement electroweak interactions and the accordingly interacting particle classes. In
that way, a Core could encode complete standard-model-like setups from which particle
masses or couplings can be extracted at arbitrary scales. By generalizing the algorithms
that were developed for the current version of REvolver, complex multi-interaction effects
can be included in renormalization scheme conversions as well as in running and matching
computations very accurately.

In order to illustrate once again the high relevance and usefulness of the works presented in
this thesis, let’s briefly consider the possible improvements to a currently much discussed
and very active research area, namely the top quark Monte Carlo mass interpretation
problem and the effort to calibrate it [128,146–150]. The most precise method for extracting
the top quark mass today is direct reconstruction [151]. This means that a kinematic fit is
made to top-mass sensitive observables that have been reconstructed from experimental
data, in order to determine the top quark mass parameter in a Monte Carlo simulation. The
problem of how this “Monte Carlo mass” can be related to a field-theoretically well-defined
mass scheme or even how the problem should be formulated or which uncertainty to assign is
not yet fully known. However, significant progress has been made in recent years [148–150],
e.g. it was shown that the Monte Carlo top quark mass is compatible with the MSR mass
mMSR(Λc) at the shower cutoff Λc within uncertainties [149]. The results presented in this
thesis can be used to improve existing and future studies in the following way:

• the results of Chap. 5, related to the general and efficient computation of NLO
massive event-shape distributions facilitate the extension of existing thrust-based
analyses to different event shapes by providing all fixed-order ingredients for N2LL
resummation. This helps in assessing the generality of existing analyses that use
thrust, with the constraint that Chap. 5 only deals with stable quarks;

• the two-loop massive quark jet function of Chap. 6 can be used, together with other
already known contributions, to increase the order of the theoretical computations
to N3LL. The two-loop massive quark jet function contains SCET non-singular
contributions and is especially important in the intermediate region between the peak
and the tail. The inclusion of this result would increase the precision of the current
analysis and further refine the estimate of compatibility between the Monte Carlo
mass and the MSR mass at the shower cut-off;

• the MSR mass in Chaps. 7 and 8, and the development of the REvolver library
presented in Chap. 9 facilitates and increases the speed of the numerical calibration
process. In addition, the extensive feature set and open-source nature of the code
enable the analyses involved to be easily extended, refined, and traceable.

Overall, the presented works do not only offer valuable advances in the field of high-energy
physics with regard to heavy quark masses but also open up the possibility of various
interesting follow-up works. I hope that the newly provided insights, results, and tools will
have long-term impacts due to their generality, extensibility, and the effort to make their
key results easily accessible.
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1 Introduction

Recent years have seen tremendous progress in the understanding and computation of

event-shape cross sections for e+e− machines such as LEP or the future linear and circular

colliders. This is mainly achieved with the use of factorized expressions (see e.g. refs. [1, 2])

derived in the frame of the effective field theory (EFT)1 known as Soft-Collinear Effective

Theory (SCET) [8–12]. The state of the art for massless event shapes is next-to-next-to-

leading-log (N2LL) [13–15] and next-to-next-to-next-to-leading-log (N3LL) [16–20].2 The

computation of the soft function has been fully automatized analytically at O(αs) in ref. [18]

and numerically at O(α2
s) in refs. [24, 25] (in those articles one can also find analytic results

for some event shapes such as C-parameter). Analytic fixed-order perturbative predictions

exist at O(αs) for thrust, heavy jet mass (HJM) and C-parameter, while for other event

shapes such as angularities or jet broadening, the cross sections can be expressed as a 1D

numerical integral. Numerical results exist at O(α2
s) [26, 27] and O(α3

s) [28–33]. In ref. [34]

the fixed-order cross sections for oriented event shapes have been computed up to O(α2
s).

These results have been used, in particular, to determine the strong coupling constant with

very high precision [14, 17, 35–39].

The theoretical knowledge for event shapes involving massive quarks is comparatively

much poorer. Fixed-order predictions have been obtained numerically at O(αs) (analytic

results at this order exist but are scarce) and O(α2
s) [40–42]. Factorization and resummation

for 2-jettiness with massive quarks [43, 44] has recently achieved N3LL precision through

the computation of matrix elements at two loops [45–49]. These results have been used

in ref. [50] to calibrate the Pythia 8.205 [51] top quark mass parameter in terms of the

short-distance MSR scheme [52, 53]. In this direction, further theoretical progress has been

made, and a pT cutoff as implemented in angular ordered parton showers has been included

in ref. [54]. Event-shapes for massive particles shall play an important role at the future

linear collider, where they will presumably be used to determine the top quark mass from

boosted events in a well defined scheme within quantum field theory. This measurement

is complementary to threshold scans with partially orthogonal experimental uncertainties.

Furthermore, from the conclusions that can be drawn from this article, they might also be

a useful tool to determine the strong coupling αs.

For a complete description of massive event shapes with N2LL accuracy in the peak

region where the SCET and bHQET effective theories can be applied,3 but also valid in the

tail and far-tail of the distribution, the resummed cross section has to be matched to the

fixed-order prediction at O(αs). In full generality, the differential cross section for massive

1Factorization formulas can also be derived in the Collins, Soper and Sterman (CSS) formalism [3–7].
2Resummation can also be worked out in the coherent branching formalism [21], which achieves N2LL

precision in an automated, numeric way [22, 23].
3The logarithmic counting refers to the kinematic limit p2

J ∼ m2
q ∼ Q2λ2, with pµJ the jet four-momentum

and λ de EFT power-counting parameter. In this limit, the set of terms summed up at leading log in the

cumulative cross section have the form logn+1(λ)αns for any integer n > 0. At threshold there are no double

logs and therefore the meaning of logarithmic accuracy is different.

– 2 –
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particles up to this order can be written as

1

σC0

dσC
de

= R0
C(m̂) δ(e− emin) + CF

αs
π
ACe (m̂)δ(e− emin) (1.1)

+ CF
αs
π
BC

plus(m̂)

[
1

e− emin

]
+

+ CF
αs
π
FNS
e (e, m̂) +O(α2

s) ,

with FNS
e a function regular at emin, the lower endpoint of the distribution, σC0 the massless

Born-cross section and R0
C the tree level R-ratio. The sub- and super-scripts C denote the

type of current considered (vector or axial-vector), omitted for FNS
e to keep the notation

simple. In this paper we compute the differential and cumulative cross sections for all

event shapes, for both vector and axial-vector currents, reaching the same standard as

for massless quarks at this order (where essentially all results are known analytically in

terms of relatively simple expressions), by obtaining analytical results for Ae and Bplus,

and computing FNS
e through 1-dimensional numerical integrals in a way which is almost

as precise and stable as for a full analytic result. Our calculation shows that Ae and FNS
e

depend on the specific event-shape variable, and Bplus is a universal function of the reduced

mass m̂ ≡ m/Q. This matching program has already been carried out in previous work [50]

in a less efficient way. While at the time of the “NLO revolution” the O(αs) results seem

completely standard, having a dedicated article on those is still useful because: a) known

results are mainly numeric and provided as binned distributions, which makes the matching

to resummed results unpractical, b) analytic results are faster and easier to implement;

c) non-zero quark masses entail that different event-shape schemes can be used, allowing

to control the sensitivity to the mass, to the best of our knowledge a possibility never

discussed so far;4 d) new strategies to efficiently compute the cross section are presented,

which we believe will be useful for future work; e) our results are an important input for

further studies of massive event shapes, which aim to improve our understanding of heavy

quark mass determinations in general. This article provides all ingredients that are needed

for a full N2LL computation in a way which is useful and easy to implement, and in that

sense it will be a reference for many future analysis in this field. In particular our results

will help to clarify the top quark Monte Carlo (MC) mass interpretation problem.

This article is organized as follows: in section 2 we introduce massive schemes, and

show how to implement them into massive event shapes. In section 3 we provide a direct

computation of our main analytic result, Ae, the coefficient of the delta function, comput-

ing the real and virtual contributions directly, canceling the infrared singularities explicitly.

Section 4 deals with FNS
e , describing our numerical algorithm, which is applied to differen-

tial and cumulative cross sections as well as moments. Analytic results for cross sections

of a few event shapes are shown in section 5. Our conclusions are summarized in section 7.

We provide a second analytic computation of the delta-function coefficient in appendix A,

requiring that the integration of the differential cross section over its entire physical range

4Schemes for event shapes were first introduced in ref. [55] to study hadron mass effects in hadronization

power corrections. Here we extend the analysis to heavy quarks, and study how to gain/loose sensitivity

to their mass.

– 3 –
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reproduces the total hadronic cross section. Applications of our master formula for a se-

lection of event shapes, analytic formulae for the massive total hadronic cross section and

some master integrals are provided in the remaining appendices.

2 Event shapes for massive particles

In this section we introduce generalizations of classic event shapes for massive heavy quarks,

for which we present analytic results of the delta-function coefficient in appendix D. These

generalizations go under the name of “mass schemes”, and have no effect on the partonic

cross section for massless particles, but for massive quarks dramatically modify the sensi-

tivity to their mass already at parton level even at the lowest order. This control on the

sensitivity to the mass is of high interest, and in particular sets the effective renormaliza-

tion scale of the heavy quark mass. No systematic study of these schemes exists yet for

massive quarks, and here we intend to fill this gap.

Mass schemes for event shapes were originally introduced to study non-perturbative

power corrections in the context of non-zero hadron masses [55, 56]. In the case of massless

quarks, partonic cross sections are unaffected by scheme changes, but power corrections

substantially depend on the scheme choice. In particular it has been shown that the

leading non-perturbative power correction is universal for the so-called E-scheme. They

have been also used to study power corrections in the dressed-gluon approximation [57] and

to determine the mass of heavy quarks in boosted events [44]. Due to increasing theoretical

and experimental precision, it is necessary to include the finite bottom quark mass in high-

precision calculations, e.g. for extracting the strong coupling constant [35]. On the other

hand, mass effects are dominant and have to be included when extracting the quark mass

itself or when carrying out mass-related studies such as analyzing the properties of the top

quark Monte Carlo mass parameter.

When using classical event shapes like thrust, C-parameter, jet broadening etc. in

presence of massive quarks, the way how one treats energies and three-momenta magnitudes

is important, since (unlike for massless particles) Ep 6= |~p |. To categorize different ways

of how to treat energies and three-momenta, several “schemes” can be defined for massive

event shapes, which are distinguished exactly by the way how Ep and |~p | are interpreted.

Obviously, all these schemes reduce to the original definition in the massless case.

Starting from the original definition of event shapes, the “E-scheme” is defined by the

replacement ~p→ (Ep/|~p |) ~p, while the “P-scheme” is defined by the substitution Ep → |~p |.
Some event shapes originally defined in P-scheme are thrust [58],

τ ≡ τP =
1

QP

∑
i

pi,⊥e−|ηi| =
1

QP
min
t̂

∑
i

(|~pi| − |t̂ · ~pi|) , (2.1)

C-parameter [59, 60] (it is often useful to define the reduced C-parameter as C̃ = C/6)

C ≡ CP =
3

2Q2
P

∑
i,j

|~pi||~pj | sin2 θij =
3

2

[
1− 1

Q2
P

∑
i,j

(~pi · ~pj)2

|~pi||~pj |

]
, (2.2)
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and broadening [61]

BT ≡ BP
T =

1

2QP

∑
i

pi,⊥ =
1

2QP

∑
i

(|~pi| − |t̂ · ~pi|)1/2(|~pi|+ |t̂ · ~pi|)1/2 , (2.3)

while angularities [62] were originally defined in the E-scheme:

τa ≡ τEa =
1

Q

∑
i

Ei
|~pi|

pi,⊥e−|ηi|(1−a) =
1

2Q

∑
i

Ei
|~pi|

(|~pi| − |t̂ · ~pi|)1−a
2 (|~pi|+ |t̂ · ~pi|)

a
2 , (2.4)

where η denotes the pseudo-rapidity, p⊥ ≡ |~p⊥| the transverse momentum measured with

respect to the thrust axis, and m⊥ ≡
√
p2
⊥ +m2 is the transverse mass. The P-scheme

version of angularities and E-scheme versions of the other event shapes listed here can

be found in appendix D. Note that the substitutions have to be done for the event-shape

normalization as well, such that E-scheme event shapes are usually normalized using Q =∑
iEp,i, while P-scheme event shapes are normalized by QP =

∑
i |~pi|. The definition of the

thrust axis itself does not change with the scheme, i.e. it is always defined with respect to

the original P-scheme thrust definition. The minimal value for these event shapes remains

emin = 0, meaning that these observables are insensitive to parton masses at leading order,

which can be useful in cases where mass effects are preferred to be small.

Some event shapes are, in their original definitions, neither P- nor E-scheme, some-

times referred to as “massive scheme” or “M-scheme”, usually containing full momentum

information.5 One of these is heavy jet mass [64–66], defined as the heavier of the two

hemisphere invariant masses, normalized by Q2

ρ =
1

Q2

( ∑
i∈heavy

pi

)2

, (2.5)

where the hemispheres are defined to be separated by the plane orthogonal to the thrust

axis. It can be useful to define massive scheme versions of other event shapes as well.

Examples include the massive version of thrust (2-jettiness) [67] and C-parameter (C-

jettiness) [57]. 2-jettiness is defined by generalizing the original definition to

τJ =
1

Q

∑
i

(|Ei| − |t̂ · ~pi|) , (2.6)

while C-jettiness is based on the Lorentz-invariant form

CJ =
3

2

[
2−

∑
i 6=j

(pi · pj)2

(pi · q)(pj · q)

]
, (2.7)

introduced in ref. [68], with q =
∑

i pi. These event shapes usually have a non-zero minimal

value emin 6= 0 and are therefore mass sensitive already at leading order. The increased

mass sensitivity can be useful when studying mass related issues, e.g. 2-jettiness was used

5For more detailed information on how to define consistent substitution rules, see ref. [63].
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Figure 1. Event-shape differential distributions for the vector current in the P (solid lines) and E

schemes (dashed lines). Panels (a), (b), (c), and (d) show the cross section for thrust, C-parameter,

jet broadening, and heavy jet mass, respectively. All curves are multiplied by e− emin, with e the

event-shape value and emin its minimal value, such that the cross section is finite for e = emin. Red,

blue, green and magenta show the results for m̂ = 0.1, 0.2, 0.3 and 0.4, respectively.

to calibrate the Pythia 8.205 MC top quark mass [50] and has been proposed to measure

the top quark mass at a future linear collider [44].

In appendix D we present some analytic results for the delta-function coefficients of

differential cross sections for the event shapes listed above in various schemes, together

with respective characteristic information on the event shapes.

Differential cross sections in the E- and P-schemes for a selection of event shapes can be

seen in figure 1. The plots have been generated using the algorithm described in section 4.3.

We do not show massive-scheme cross sections in this plot since their lower endpoint is

different from zero. We have chosen the plot-range of the P-scheme allowed values, since

they are mass-independent, and our y axis is in a logarithmic scale to make the curves

with small values of m̂ visible. In general E-scheme maximal values do depend on the
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Figure 2. Diagrammatic contribution to the O(α0
s) differential event shape distribution. The

diagram has to be squared and contributes only as a Dirac delta function.

2Real
<latexit sha1_base64="fn2fxAFuFqR2Vuf/fza6DMldiHU=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4kJJUQY9FLx6r2A9IQtlsN+3S3WzY3Qgl9Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5UcqZNq777aysrq1vbJa2yts7u3v7lYPDtpaZIrRFJJeqG2FNOUtoyzDDaTdVFIuI0040up36nSeqNJPJoxmnNBR4kLCYEWys5NeD80AJ9EAx71Wqbs2dAS0TryBVKNDsVb6CviSZoIkhHGvte25qwhwrwwink3KQaZpiMsID6luaYEF1mM9OnqBTq/RRLJWtxKCZ+nsix0LrsYhsp8BmqBe9qfif52cmvg5zlqSZoQmZL4ozjoxE0/9RnylKDB9bgoli9lZEhlhhYmxKZRuCt/jyMmnXa95FrX5/WW3cFHGU4BhO4Aw8uIIG3EETWkBAwjO8wptjnBfn3fmYt644xcwR/IHz+QMnuJCF</latexit>

⇥
<latexit sha1_base64="y3ZFcWqBEabekax7ttofWU1jMYg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0alXvolq7v6zUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPt3mPOA==</latexit>

 

<latexit sha1_base64="cBS0yauje8VRCgLBqJEMyhNoWK8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahp7JbBT2WevFYwX5Au5Rsmt3GZpMlyQpl6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzgoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTjpapIrRNJJeqF2BNORO0bZjhtJcoiuOA024wuZ373SeqNJPiwUwT6sc4EixkBBsrdQZNFkXVYbni1twF0DrxclKBHK1h+WswkiSNqTCEY637npsYP8PKMMLprDRINU0wmeCI9i0VOKbazxbXztCFVUYolMqWMGih/p7IcKz1NA5sZ4zNWK96c/E/r5+a8MbPmEhSQwVZLgpTjoxE89fRiClKDJ9agoli9lZExlhhYmxAJRuCt/ryOunUa95lrX5/VWk08ziKcAbnUAUPrqEBd9CCNhB4hGd4hTdHOi/Ou/OxbC04+cwp/IHz+QPzFI63</latexit>

!

<latexit sha1_base64="NugkpqXInq0Oms9qtfTefKeDFGs=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRZBL2W3Cnos9eKxgv2AdinZNLuNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRWiLSC5VN8CaciZoyzDDaTdRFMcBp51gfDvzO09UaSbFg5kk1I9xJFjICDZWavcbLIouBuWKW3XnQKvEy0kFcjQH5a/+UJI0psIQjrXueW5i/Awrwwin01I/1TTBZIwj2rNU4JhqP5tfO0VnVhmiUCpbwqC5+nsiw7HWkziwnTE2I73szcT/vF5qwhs/YyJJDRVksShMOTISzV5HQ6YoMXxiCSaK2VsRGWGFibEBlWwI3vLLq6Rdq3qX1dr9VaXeyOMowgmcwjl4cA11uIMmtIDAIzzDK7w50nlx3p2PRWvByWeO4Q+czx/0mI64</latexit>

(a)

+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>

2<latexit sha1_base64="jk/1fpohXujb3eq/tOFNvjxoFrw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZq1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8ffW+Mug==</latexit>

(b)

Figure 3. Contributions to the O(αs) differential cross section for event shapes. Panel (a) shows

the virtual contribution as twice the interference of the three-level and one one-loop diagrams, while

in panel (b) the two real-radiation diagrams that have to be added and squared are drawn.

reduced mass (see appendix D for some examples). Since the scheme dependence vanishes

for m = 0, curves are very similar for small values of the reduced mass, resulting in nearly

identical red lines in all four panels of the figure. As the mass increases, the differences

grow, and for m̂ = 0.4 the curves in both schemes are clearly different. We observe that

the cross section is smaller in the E-scheme for most of the spectrum.

3 Analytic results for the distributions at threshold

In this section we provide the computation of one of our main results, an integral expression

for the delta-function coefficient of event-shape differential cross sections in full QCD.

Obviously, the results are different for vector and axial-vector currents, but the computation

is analogous to both processes. Along the computation we show that the coefficient of

the plus distribution is the same for any observable linearly sensitive to soft momentum.

The delta-function coefficient receives contributions from the virtual- and real-radiation

diagrams, which are separately IR divergent, although the sum is finite. The Feynman

diagrams at LO and NLO are shown in figures 2 and 3, respectively. In the virtual

term, the divergence originates from a loop integration, while in the real-radiation it is a

consequence of the phase-space integration. The cancellation can be achieved by computing

the two terms explicitly, as in the approach followed in section 3.3 for the differential cross

section, or, in the case of inclusive quantities such as the total hadronic cross section,

by taking the imaginary part of the forward scattering amplitude. In this approach, IR

divergences that might appear in individual Feynman diagrams are always a consequence

of loop integrals. Furthermore, one never has to deal with squaring matrix elements. We
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exploit this fact in appendix A, and analytically compute the delta-function coefficient by

simply imposing that the differential cross section integrated across the whole spectrum

reproduces the total hadronic cross section.

3.1 Born cross section and O(α0
s) distribution

It is customary to present event-shape distributions normalized to the Born cross section,

which is defined as the cross section for massless quarks at tree-level in four dimensions.

The Born cross section is different for vector and and axial-vector currents: the former gets

contributions from both photon and Z-boson exchange, while the letter is mediated by the

Z boson only. Taking into account the finite width ΓZ of the Z boson, one obtains

σV0 =
Nc

3

4πα2
em

Q2

[
Q2
q +

v2
f (v2

e + a2
e)

(1− m̂2
Z)2 +

(
ΓZ
mZ

)2 +
2Qqvevq(1− m̂2

Z)

(1− m̂2
Z)2 +

(
ΓZ
mZ

)2
]
, (3.1)

σA0 =
Nc

3

4πα2
em

Q2

[
a2
q(v

2
e + a2

e)

(1− m̂2
Z)2 +

(
ΓZ
mZ

)2
]
,

with αem the electromagnetic coupling, m̂Z = mZ/Q the reduced Z-boson mass, Qq the

quark electric charge, Nc the number of colors, and ve and ae (vq and aq) the electron

(quark) vector and axial-vector couplings to the Z boson. Here and in what follows, the

leptonic trace is always computed in four dimensions. This poses no problem since we are

taking the electroweak interactions at leading order only. For non-zero quark masses, the

normalized tree-level cross section is different for vector and axial-vector currents:

σV0,m

σV0
≡ RV0 (m̂) =

(3− v2) v

2
,

σA0,m

σA0
≡ RA0 (m̂) = v3 , (3.2)

with v =
√

1− 4m̂2 the velocity of the on-shell massive quarks in the center of mass frame.

The functions RV0 and RA0 are shown graphically as a function of m̂ in figure 4(a). In the

massless limit RC0 (v = 1) = 1, while both vanish at threshold (v → 0). At O(α0
s) the

differential cross section is obviously

1

σC0

dσ0

de
= RC0 (m̂) δ(e− emin) , (3.3)

with C = V,A for vector and axial-vector currents, respectively, and emin the minimal

value the event shape can take.

3.2 Phase space and kinematic variables

In this section we introduce some notation and write down the 2- and 3-body phase space

in d = 4 − 2ε dimensions in terms of kinematic variables that facilitate our computation.

All masses appearing in this article are understood in the pole scheme. The phase space

for n particles in d = 4− 2ε dimensions is defined as∫
dΦn = (2π)d

∫ ( n∏
i=1

dd−1~pi
2Ei(2π)d−1

)
δ(d)

(
Pµ −

n∑
i=1

pµi

)
, (3.4)
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Figure 4. Massive total hadronic cross section for vector (blue) and axial-vector (red) currents, at

tree-level in panel (a) and one loop in panel (b).

with Ei =
√
|~pi|2 +m2

i , since the particles are on-shell. Let us start with the 2-body phase

space for particles with the same mass m:

Φ2 = (1− 4m̂2)
1
2
−ε Φm=0

2 , Φm=0
2 =

Γ(1− ε)
2 Γ(2− 2ε)

Q−2ε

(4π)1−ε , (3.5)

where, for convenience, we have factored out the d-dimensional 2-body phase space for

massless particles. For three particles, with particle 1 (quark) and 2 (anti-quark) having

the same mass m, while particle 3 (gluon) is massless, and adding the flux factor one

obtains

µ̃2ε

2Q2
P (Q, ε)

∫
dΦ3 =

(
4πµ̃2

Q2

)ε
256π3Γ(1− ε)

∫
dx1 dx2

{
(1− x1)(1− x2)(x1 + x2 − 1) (3.6)

− m̂2(2− x1 − x2)2
}−ε

,

P (Q, ε) ≡Φm=0
2 |ε→0

Φm=0
2

,

with xi = 2Ei/Q, and Ei the energy of the i-th particle such that energy conservation

implies x1 +x2 +x3 = 2. For convenience we have multiplied by the ratio of the d = 4 and

d = 4 − 2ε massless 2-body phase-space factors. This helps taking the ε → 0 limit after

canceling the IR divergences. Next we implement the following variable transformation:

x1 = 1 − (1 − z) y, x2 = 1 − z y, such that y = 2Eg/Q, which makes the soft limit y → 0

manifest:

µ̃2ε

2Q2
P (Q, ε)

∫
dΦ3 =

(
4πµ̃2

Q2

)ε
256π3Γ(1− ε)

∫
dy dz y1−2ε [ z(1− z)(1− y)− m̂2 ]−ε . (3.7)

This result shows how collinear singularities, that would be located at z = 0, 1 for massless

particles, are screened by the finite quark mass. In these coordinates the Dalitz region is
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Figure 5. Phase space diagram in (z, y) coordinates for two particles with equal mass (quark

and anti-quark) and a massless particle (gluon). The plot is generated with the numerical value

m/Q = 0.2. The available phase space is contained between the y = 0 and y = ymax(z) curves,

which intersect at the points (z = z±, y = 0). Blue lines split the phase space into regions where

the thrust axis points into the direction of the quark, anti-quark or gluon momenta. The three lines

meet at the point (1/2, ymiddle), marked by a blue dot.

parametrized as

0 ≤ y ≤ ymax(z) ≡ 1− m̂2

z(1− z)
, z− ≤ z ≤ z+ , (3.8)

z± ≡
1± v

2
.

In figure 5 we show the phase-space boundaries for the numerical value m̂ = 0.2. The

phase-space limits in the z variable satisfy z+z− = m̂2 and z+ + z− = 1, while the upper

limit in the y variable has its maximum at ymax(1/2) = v2. Another useful relation is given

by (z − z−)(z+ − z) = z(1 − z) − m̂2, a positive quantity inside the Dalitz region. In the

massless limit the Dalitz plot is simply a square: 0 ≤ y ≤ 1, |z| ≤ 1. The phase space (as

well as all matrix elements and event-shape measurement functions) are invariant under

the change z → 1− z (mirror symmetry with respect to the z = 1/2 vertical line), since all

results remain the same when exchanging quark and anti-quark.

For later use, it is convenient to split the 3-body phase space into regions where the

thrust axis points into the direction of the quark, anti-quark or gluon momenta. To that

end we define

yτ (m̂, z) =

√
1− 4m̂2(1− z2)− z

1− z2
, (3.9)

such that these three regions are given by

0 ≤ z ≤ 1

2
, 0 ≤ y ≤ yτ (m̂, z), quark ,

1

2
≤ z ≤ 1 , 0 ≤ y ≤ yτ (m̂, 1− z), anti-quark , (3.10)

0 ≤ z ≤ 1 , max [ yτ (m̂, z), yτ (m̂, 1− z) ] ≤ y ≤ ymax(z), gluon ,
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and the lines separating the three regions meet at the point ymiddle = 4
(√

1− 3m̂2−1/2
)
/3,

z = 1/2. The quark [anti-quark] boundary meets the phase-space boundary at z = m̂

[z = 1− m̂], y = (1− 2m̂)/(1− m̂).

The value of any event-shape variable for events with three particles in the final state

(two quarks and a gluon) can be expressed as a function of the reduced mass m̂ and the

z and y phase-space variables. This function, which is not always smooth or continuous,

will be referred to as the measurement function ê(y, z) (for simplicity we will omit its mass

dependence). Massive event-shape measurement functions ê(z, y) take their minimal value

if y = 0, regardless of the value of z, i.e. ê(z, 0) = emin, and in the soft limit y → 0 the

measurement function can be expanded as follows:6

ê(z, y) = emin + yfe(z) +O(y2) ≡ ē(y, z) +O(y2) , (3.12)

where we have defined the soft event-shape variable ē associated to e,7 with measure-

ment function ē(y, z) = emin + yfe(z). The soft event shape has the same minimal value

ēmin = emin as the original one, but has a different maximal value, generally larger, that is

attained at the highest point of the Dalitz plot, (z, y) = (1/2, v2), as can be seen in figure 6:

ēmax = emin + v2fe(1/2) . (3.13)

3.3 Direct computation of O(αs) results

In this approach we directly compute the differential distribution adding up real- and

virtual-radiation diagrams. Our computation reproduces the few known results (either

analytic or numeric), but is more general. In this approach for carrying out the calculation

we explicitly show how IR singularities cancel in the sum for IR safe observables already

at the differential level. We regulate them using d = 4 − 2ε dimensions (dimreg) and use

plus-distribution identities to keep the computations as general and simple as possible. We

have also written the 3-body phase space in a way in which IR singularities look as close

as possible to UV ones.

3.3.1 Virtual radiation

We start with the virtual radiation diagrams, which at this order have only two particles

in the final state and are common to all event shapes. The contribution to the differential

cross section at O(αs) comes from the interference of the tree-level and one-loop diagrams

(which have IR divergences treated in dimensional regularization), and since momenta

6We consider only the usual case of event shapes linearly sensitive to soft momentum, that is with

fe(z) 6= 0. For event shapes with quadratic (or higher) sensitivity to soft momenta, that is with

dnê(y, z)

dyn

∣∣∣∣
y=0

6= 0 , (3.11)

only for some n > 1, one finds that the differential distribution contains up to the (n− 1)-th derivative of

delta and plus distributions. Since those event shapes are scarce and of little interest, we do not show any

explicit results for them.
7See appendix D for some event-shape specific expressions for fe(z).
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Figure 6. Phase space diagram in (z, y) coordinates (black lines) showing curves with constant

value of the C-parameter measurement function in the soft limit C (blue lines) with m̂ = 0.2. The

lines correspond to 10 equally spaced values of C between 0 and 0.681. For the event shape maximal

value Cmax = v2fC(1/2), the corresponding contour line intersects with the phase space boundary

at one point only, the maximum (1/2, v2).

are fully constrained by energy-momentum conservation, it only contributes to the delta-

function coefficient. The general form of the vector and axial-vector massive form factors

up to one loop take the form8

V µ =

[
1 + CF

αs
π
A(m̂)

]
γµ + CF

αs
π

B(m̂)

2m
(p1 − p2)µ , (3.14)

Aµ =

[
1 + CF

αs
π
C(m̂)

]
γµγ5 + CF

αs
π

D(m̂)

2m
γ5 q

µ ,

with q = p1 + p2 the photon or Z-boson momentum, and pi the quark and anti-quark mo-

menta. The vector form factor satisfies the Ward identity qµV
µ = 0, while the longitudinal

part of the axial form factor does not contribute to the cross section. Their real parts take

the form [69, 70]

Re[C(m̂)] = Re[A(m̂)] +
4m̂2

v
Lv ,

Re[D(m̂)] = 2 m̂2

[
1− 2 + v2

v
Lv

]
,

Re[B(m̂)] =
2 m̂2

v
Lv , (3.15)

Re[A(m̂)] =

(
1 + v2

2v
Lv −

1

2

)[
1

ε
− 2 log

(
m

µ

)]
+Areg(m̂) ,

Areg(m̂) =
3

2
v Lv − 1 +

1 + v2

4v

[
π2 − 2L2

v − 2 Li2

(
2v

1 + v

)]
,

8Here we already include the wave-function renormalization in the OS scheme ZOS
q and the term coming

from pole mass renormalization.
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with

Lv ≡ log

(
1 + v

2m̂

)
. (3.16)

IR singularities look the same for both currents, and are fully contained in the transverse

form factors A and C (note that due to current conservation the form factors are UV finite,

and therefore all singularities left after carrying out the QCD renormalization program are

IR). The results are singular in the m̂→ 0 limit since collinear singularities are regulated

by the finite quark mass. Furthermore in this limit the longitudinal form factors B and D

vanish, and the transverse form factors become identical for the two currents.

The form factor contribution at O(αs) is

1

σC0

dσV2,virt

de
=
αs
π
CFR

virt
C (m̂) δ(e− emin) , (3.17)

Rvirt
V (m̂) = P (Q, ε) v1−2ε

{
2 Re[A(m̂)](1 + 2m̂2 − ε)− v2Re[B(m̂)]

}
= P (Q, ε)v

{
(3−v2)Re[A]− [1+2 log(v)]

(
1 + v2

v
Lv−1

)
− v2 Re[B] +O(ε)

}
,

Rvirt
A (m̂) = 2P (Q, ε)v3−2ε(1− ε) Re[C(m̂)]

= 2P (Q, ε)v3

{
Re[C]− [1 + 2 log(v)]

(
1 + v2

v
Lv −

1

2

)
+O(ε)

}
.

When adding these results to the real radiation contributions the 1/ε term present in the

A and C form factors cancel, along with the associated µ dependence.

3.3.2 Real radiation

Real radiation diagrams exhibit IR singularities in phase-space integrals, originating from

the zero gluon-momentum limit. The matrix element squared, summed over the polariza-

tion of final-state particles and averaged over the lepton spins can be written as

|
∑

spinMC |2

4σC0
=

256π2αsµ̃
2εCF

y2
MC(y, z, m̂, ε) , (3.18)

MC(y, z, m̂, ε) = M0
C(z, m̂) + εM1

C(z, m̂) + yMhard
C (y, z) +O(ε2) ,

M0
V (z, m̂) = −(1 + 2m̂2)M1

V (z, m̂) , M1
V (z, m̂) = −(1− z)z − m̂2

(1− z)2z2
,

M0
A(z, m̂) = −M1

A(z, m̂) = −v2M1
V (z, m̂) ,

with C = V,A labeling the current type and µ2 ≡ 4πµ̃2e−γE . We denote the pieces which

vanish for y → 0 as the “hard matrix elements” Mhard
C . Our results agree with those in

refs. [71–73] (note that there is a known sign error in ref. [71]). The hard matrix elements

can be further split as Mhard
C (y, z, m̂) = M2

C(z, m̂) + yM3
C(z, m̂), with

M2
C(z, m̂) = −

(
1 + 2m̂2

v2

)
1

z(1− z)
, (3.19)

M3
C(z, m̂) =

1

2z(1− z)

(
1

1 + 2m̂2

)
− 1 ,
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with the upper (lower) part of the expression in parentheses belonging to the vector (axial-

vector) current. The radiative one-loop contribution to the differential distribution, par-

tially expanded around ε = 0, reads

1

σC0

dσreal
C

de
= (3.20)

P (Q, ε)CF
αs
π

(
4πµ̃2

Q2

)ε
Γ(1− ε)

∫
dy dz

y1+2ε
[ z(1− z)(1− y)− m̂2 ]−ε δ[e− ê(y, z)]MC(y, z, m̂, ε)

= P (Q, ε)CF
αs
π

{
−δ(e− emin)

2

∫
dz

[
M1
C(z, m̂) +M0

C(z, m̂)

(
1

ε
+ 2 log

( µ
Q

)
− log

[
z(1− z)− m̂2

])]
+

∫
dz dy

[
M0
C(z, m̂)

[
1

y

]
+

+Mhard
C (y, z)

]
δ[e− ê(y, z)]

}
.

To get to the second line we have collected powers in y and used the identity

y−1−2ε = − 1

2ε
δ(y) +

[
1

y

]
+

+O(ε) , (3.21)

in the terms containing M0,1
C . The coefficient of the Dirac delta function is not yet fully

explicit, as the integral over the plus function still hides singular terms. The distributional

structure is completely determined in the y → 0 limit, therefore we add and subtract the

following term to the last integrand

M0
C(z, m̂)

[
1

y

]
+

δ[e− e(y, z)] , (3.22)

such that in the sum of the original and subtracted terms the plus prescription can be

dropped (this can be done because the integrand goes to zero linearly with y). This strategy

is similar to subtraction algorithms used in NLO and NNLO parton-level Monte Carlos to

achieve cancellation of IR singularities between real- and virtual-radiation contributions.

In our case, the subtraction helps isolating the distributional structure of the cross section.

For the added term we proceed as follows∫
dz dyM0

C(z, m̂)

[
1

y

]
+

δ[e− e(y, z)] Θ[ymax(z)− y] =∫
dz

M0
C(z, m̂)

fe(z)

[
fe(z)

e− emin

]
+

Θ
[
ymax(z)− h(e, z)

]
= (3.23)

−δ(e− emin)

∫
dzM0

C(z, m̂) log[fe(z)] +

[
1

e− emin

]
+

∫
dzM0

C(z, m̂) Θ
[
ymax(z)− h(e, z)

]
,

with

h(e, z) ≡ e− emin

fe(z)
, (3.24)

representing a curve in phase space defined by the condition ē(y, z) = e (that is, a contour

line with constant value of the soft event-shape measurement function). This line has

the important property of always intersecting with the phase-space boundary ymax at two
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symmetric points, which will be denoted by z±(e), as shown in figure 7 for the C-parameter

event shape. To get to the last line of eq. (3.23) we have used the rescaling identity[
logn(bx)

bx

]
+

=
1

b

{
logn+1(b)

n+ 1
δ(x) +

n∑
i=0

(
n

i

)
logn−i(b)

[
logn(x)

x

]
+

}
, (3.25)

and the fact that if e = emin then h(emin, z) = 0 and the constraint imposed by the Heaviside

function Θ[ymax(z)] is automatically satisfied [ since ymax(z) > 0 for z− ≤ z ≤ z+]. The

second term in the last line of eq. (3.23) is not a pure distribution yet, but can be converted

to such using the relation

f(x)

[
1

x

]
+

= f(0)

[
1

x

]
+

+
f(x)− f(0)

x
. (3.26)

Finally we arrive at∫
dz dyM0

C(z, m̂)

[
1

y

]
+

δ[e− e(y, z)] = −δ(e− emin)

∫
dzM0

C(z, m̂) log[fe(z)] (3.27)

+

[
1

e− emin

]
+

∫
dzM0

C(z, m̂)−
∫

dzM0
C(z, m̂)

Θ[e− emin − ymax(z)fe(z)]

e− emin
,

where we have used the identity Θ(x) + Θ(−x) = 1 in the last term. The Heaviside

theta function in the last integral requires h(e, z) > ymax(z), and therefore restricts the z

integration to the two disconnected segments shown in figure 7 as purple double-pointed

arrows: z− ≤ z ≤ z−(e) and z+(e) ≤ z ≤ z+, where z±(e) are the two solutions of the

equation e = ē[z, ymax(z)] that lay on the original integration path z− ≤ z ≤ z+. The

points z±(e) depend on e and fulfill z− < z−(e) < z+(e) < z+, since fe(z) is positive (given

that by definition e ≥ emin) . It is useful to write the Heaviside theta in the last term as

an integral over a Dirac delta function:

Θ[e− emin − ymax(z)fe(z)]

e− emin
=

∫
dy

Θ[y − ymax(z)]

y
δ[e− emin − yfe(z)] . (3.28)

These results provide the contribution of the real-radiation diagrams to the differential

cross section shown in eq. (1.1):

Ae(m̂) = Areal
e (m̂) +Rvirt

C (m̂) , (3.29)

Areal
e (m̂) = −P (Q, ε)

2

∫
dz

{
M1
C(z, m̂) +M0

C(z, m̂)

[
1

ε
+ 2 log

( µ
Q

)
−log

(
z(1− z)− m̂2

[fe(z)]2

)]}
,

Bplus(m̂) =

∫
dzM0

C(z, m̂) ,

FNS =

∫
dz dy

{
Mhard
C (y, z)δ[e− ê(y, z)] +

M0
C(z, m̂)

y

[
δ[e− ê(y, z)]

−Θ[y − ymax(z)] δ[e− ē(y, z)]− δ[e− ē(y, z)]

]}
≡ FNS

hard + FNS
soft .

In FNS (which can only be computed analytically for some simple event shapes), in those

terms where no explicit Heaviside function is shown, a Θ[ymax(z)− y] is understood. FNS
hard
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Figure 7. Phase space diagram in (z, y) coordinates (black solid lines) showing a curve with

constant value of the C-parameter event shape measurement function (red line) and its soft limit

(blue line), using m̂ = 0.2, C = 0.42. The latter corresponds to eq. (3.24), which cuts the phase-

space boundary at the points z±(C). The dashed lines divide the y = 0 axis into three segments,

marked with double-pointed arrows.

and FNS
soft correspond to the terms containing Mhard

C and M0
C , respectively. This interme-

diate result already shows that the coefficient of the plus distribution is identical for all

event shapes linearly sensitive to soft momentum. The non-singular term contains no dis-

tributions, and there is no singularity in the integration domain: the hard function tends

linearly to zero for y → 0, while the soft term contains one piece which is the difference

of two delta functions with the same y → 0 limit (therefore again going linearly to zero in

the soft limit), and a theta function such that small values of y are left out.

3.3.3 Final result for the direct computation

We first give an analytic expression for the Bplus coefficient in eq. (3.29). The z integration

is carried out using the first line in eq. (B.3), yielding

Bplus(m̂) =

(
3− v2

2 v2

)[
(1 + v2)Lv − v

]
, (3.30)

where again the first and second line of the expression in big parentheses correspond to

vector and axial-vector currents, respectively. The result exhibits a log-type singularity for

m → 0, since in that limit the log-plus distribution associated to collinear singularities is

no longer screened by the heavy quark mass.

To obtain the coefficient of the delta term we need to perform two integrals analytically,

which are given in eq. (B.3). Adding the results in eqs. (3.17) and (3.29) we cancel the

1/ε singularity along with the µ dependence. Therefore taking the limit ε→ 0 amounts to
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setting P (Q, ε)→ 1, and we get

AVe (m̂) = (1 + 2m̂2)

{
(1− 2m̂2)

[
Li2

(
−v(1 + v)

2m̂2

)
− 3 Li2

(
v(1− v)

2m̂2

)
+ 2 log2(m̂) + π2

− 2 log2

(
1 + v

2

)]
+ 2v

[
log(m̂)− 1

]
− 2Ie(m̂)

}
+(4 + v2 − 16m̂4)Lv ,

AAe (m̂) = v2

{
(4 + v2)Lv + 2v

[
log(m̂)− 1

]
− 2Ie(m̂) + (1− 2m̂2) (3.31)

×
[
Li2

(
−v(1 + v)

2m̂2

)
− 3 Li2

(
v(1− v)

2m̂2

)
+ π2 + 2 log2(m̂)− 2 log2

(
1 + v

2

)]}
,

where the only event shape dependent piece is the integral

Ie(m̂) =
1

2

∫ z+

z−
dz

(1− z)z − m̂2

(1− z)2z2
log[fe(z)] =

∫ 1/2

z−
dz

(1− z)z − m̂2

(1− z)2z2
log[fe(z)] , (3.32)

where we have used the z ↔ (1− z) symmetry to simplify the integration range.

4 Numerical algorithms

Before we describe the algorithms to compute the differential and cumulative event-shape

cross sections, we show how to write down the four-momenta of the three-particle phase

space in terms of the (z, y) coordinates. This is very useful to figure out an analytic expres-

sion for the event-shape measurement function. These expressions can in turn be used to

compute the values of emin and emax, and can be expanded around y = 0 to obtain fe(z).

Since we are not dealing with oriented event shapes, without any loss of generality we can

choose the three particles contained in the x−y plane, with the gluon 3-momenta pointing

into the positive z direction. With the notation p = [E, ~p ] = [E, px, py, pz] one has:9

pg =
y

2
[1, 0, 0, 1] ,

pq =

[
1− y(1− z)

2
, 0,
√

(1− y)(1− z)z − m̂2,
1− y(1− z)− 2z

2

]
, (4.1)

pq̄ =

[
1− yz

2
, 0,−

√
(1− y)(1− z)z − m̂2,

2z − 1− y z
2

]
.

The magnitude of the (anti-)quark three-momentum reads

|~pq̄| =
1

2

√
(1− y z)2 − 4m̂2 , |~pq| = |~pq̄|z→1−z , (4.2)

such that E-scheme 4-momenta are obtained by multiplying the spatial components in

eq. (4.1) by E/|~p |, while P-scheme 4-momenta require replacing the temporal component

by |~p |, see section 2. The thrust axis is simply ẑ when pointing in the gluon direction [ see

eq. (3.10) ], while it equals ~pq/|~pq| and ~pq̄/|~pq̄| when pointing to the quark and anti-quark

direction, respectively.

9One can generate vectors with non-zero x component by taking vector products, e.g. when computing

jet broadening.
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Since to compute the radiative tails of the distributions (either differential or cumu-

lative) and the moments of the differential distributions one only needs the real radiation

contribution, in this section we adopt the shorthand notation

MC(y, z) ≡MC(y, z, m̂, ε = 0) . (4.3)

4.1 Computation of moments

An especially convenient way to compute the n -th moment of the distribution is expressing

it in terms of the total hadronic cross section and displaced moments:

〈(e− emin)n〉 ≡ 1

σC0

∫ emax

emin

de (e− emin)n
dσ

de
, 〈(e− emin)0〉 = R(m̂) . (4.4)

The reduced moments at O(αs) and for n > 0 can be computed directly using a numerical

2D integration, which is convergent due to the insertion of the displaced measurement

function

〈(e− emin)n〉 = CF
αs
π

∫
dy dz [ ê(y, z)− emin ]n

MC(y, z)

y
+O(α2

s) . (4.5)

The integration can be carried out with a MC procedure, but it is faster and more efficient

to use a deterministic integrator in 2D. For our numerical checks we have used the dblquad

routine included in the scipy.integrate [74] python module. Finally, an efficient way of

numerically computing regular moments is

〈e〉n = enminR(m̂) + CF
αs
π

∫
dy dz [ê(y, z)n − enmin]

MC(y, z)

y
+O(α2

s) , (4.6)

such that the numerical integral is convergent and can be directly computed in a stan-

dard way.

4.2 Computation of cross sections using a MC

Before we describe our novel numerical algorithm to directly compute the differential and

cumulative cross sections, we briefly review how this is done using MC methods. The MC

can only access the radiative tail of the distribution, and therefore one needs to consider

only real radiation diagrams. To obtain the differential distribution one needs to integrate

over a Dirac delta function of the event-shape measurement function. Since there is no

known way of doing this in the MC approach, one instead bins the distribution, such

that the delta gets replaced by the difference of Heaviside functions. More specifically, by

integrating first over the event-shape bin we obtain

Σ(e2)− Σ(e1) =

∫
dy dz

y
de δ[e− ê(y, z)]MC(y, z) Θ(e− e1) Θ(e2 − e) = (4.7)∫

dy dz

y
Θ[ê(y, z)− e1] Θ[e2 − ê(y, z)]MC(y, z) .

The advantage of the MC method is that one can compute the binned distribution for all

event shapes in a single run. In practice one chooses a set of bins for each event-shape
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variable ahead of time. In our implementation of the MC algorithm, we match the (y, z)

phase space into the unit square with the following change of variables:

y = v2 t1 , z =
1

2
+

(
t2 −

1

2

)√
1− 4m̂2

1− y
, (4.8)

dy dz = v2

√
1− 4m̂2

1− y
dt1 dt2 .

Now eq. (4.7) has a nice interpretation in terms of MC’s: a) generate a sample of points in

the (t1, t2) unit square, compute for each one of them (y, z) and from that get numerical

values for all event-shape variables, matrix elements and the Jacobian; b) for each random

point and for every event shape, figure out which bin it corresponds to; c) add the numerical

values of the matrix element (times Jacobian) for each bin; d) normalize each bin to the

total number of points in the random sample. Statistical uncertainties can be obtained

in the usual way, and several independent runs can be combined. The method can of

course be refined using importance sampling, and in our numerical code we use the python

implementation of VEGAS [75]. The advantage of the MC is that a single run can be used

to compute the full distribution for all event shapes at once, and even to compute other

quantities such as moments of the distribution or the cumulative cross-section.

4.3 Direct computation of the differential cross section

In this section we describe an alternative method which does not have the limitations

inherent to a MC (can only compute binned cross sections, and in general one needs to

specify the bins ahead of time). The direct method computes directly the (unbinned)

differential cross section, and since it only uses “deterministic” integration methods, it can

in principle achieve arbitrary precision in very small run-time. The only requirement for

the method to be applicable is that one can compute the value of the event shape and

its first derivative in terms of the phase-space variables y and z. On the other hand, as

compared to the MC method, one needs to compute a numerical integral for each current,

each event shape and each point in the spectrum. We denote the radiative tail of the

distribution by Fe(e, m̂), defined as

Fe(e, m̂) ≡
Bplus(m̂)

e− emin
+ FNS

e (e, m̂) . (4.9)

Since we can compute Fe numerically with high precision and the values of Bplus and emin

are known analytically, FNS
e can be readily obtained. This is the last ingredient for the

full description of the O(αs) differential cross section. It should be noted that even in the

massless limit Fe(e, 0) is not always analytically known (e.g. for angularities or broadening).

On the other hand, in the m → 1/2 limit Fe(e, 1/2) = 0 and only singular terms survive,

which are analytically computed in section 3.

Let us first discuss how to obtain the cross section for a toy model: an event shape

whose measurement function coincides with the soft limit of some regular event shape. We

proceed by integrating the y variable analytically, followed by a numerical integration of
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the z variable. The z integration boundaries are set by z±(e), the intersection of h(e, z)

with ymax(z), see figure 7. Therefore we get

1

σC0

dσC
dē

= CF
αs
π

∫
dy dz

MC(y, z)

y
δ[ē− emin − yfe(z)] (4.10)

=
CF

ē− emin

αs
π

∫ z+(e)

z−(e)
dzMC

(
ē− emin

fe(z)
, z

)
.

To illustrate how the method works for “real” event shapes, let us assume for now

that we are dealing with an observable such that contour lines with constant event-shape

value (that is, that the curve defined by the condition ê(y, z) = e for some value of e sat-

isfying emin < e < emax) is continuous, convex and does not intersect with the phase-space

boundary (the method can be adapted for observables not satisfying this criteria, as will be

explained later). Every event shape we considered, except for 2-jettiness, C-jettiness and

HJM (that intersect with the phase-space boundaries for some values of e), and E-scheme

variables other than C-parameter (that are not continuous) satisfy this condition. Curves

for all event shapes which use the thrust axis have kinks, but this does not pose a problem

for the method. We proceed by integrating y with the Dirac delta function first, while the

z integral is performed numerically afterwards. The first step is finding the maximal and

minimal value of y in the contour line of constant event-shape value, which we call ymax(e)

and ymin(e), respectively. Since the curve is convex and symmetric under z → 1− z, these

two values are attained for z = 1/2. To find them, one has to solve the equation

ê
(
y,

1

2

)
= e , (4.11)

which can be done e.g. with the Brent algorithm [76]. In our numerical code we use the

function brentq from the scipy.optimize python module. The two roots are easily found

since ymin is between 0 and ymiddle, while ymax is between ymiddle and v =
√

1− 4m̂2, with

(0.5, ymiddle) being the point at which the lines that divide the phase space into regions

with the thrust axis pointing to the quark, anti-quark, or gluon 3-momentum coincide:10

ymiddle =
4

3

(√
1− 3m̂2 − 1

2

)
. (4.12)

In the second step we obtain the contour lines of constant e parametrized as two functions

of y. This is obtained by solving the equation ê(y, z) = e for z at a given value of y.

There are two solutions to this equation, which we call z±(e, y), but we will numerically

obtain only z−(e, y) < 1/2, since the other solution can be obtained by symmetry. Again,

we employ the Brent algorithm, since we know the solution is always contained between

z = 1/2 and the phase-space boundary zborder
− (y), which as a function of y is written as

zborder
± (y) =

1

2

(
1±

√
1− y − 4m̂2

1− y

)
. (4.13)

10This is the point in phase space at which most event shapes obtain their maximal value emax, or a value

very close to it. The algorithm can be slightly refined figuring out ahead of time at which exact value of y

emax is attained.
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In our numerical code we again use the brentq function. Since we compute the distribu-

tion solving the Dirac delta function in terms of the variable y, the next step is figuring

out the lower integration limit in the z variable, dubbed zmin(e). Since the integrand is

symmetric around z = 1/2, we will integrate in the range z = [ zmin(e), 1/2] and double the

result. The value of the point with the smallest z value for a given event-shape value e,

[ zmin(e), ycenter(e) ], is obtained numerically as the minimum of the function z−(e, y). The

minimum lies between the values ymax(e) and ymin(e) previously determined, and we use the

Brent algorithm implemented in the minimize scalar function from the scipy.optimize

python module, which finds the minimum in a given interval. The maximum event shape

value emax satisfies zmin(emax) = zmax(emax) = 1/2. The last ingredient we need to de-

termine before performing the numerical integral in z is the contour line of constant e as

a function of z. It is obtained by solving the equation ê(y, z) = e for y at a given value

of z, which has two solutions which we denote by y±(e, z), corresponding to the two ze-

roes of the Dirac delta function argument when integrating the y variable. The lower and

upper solutions are contained in the intervals [ ymin(e), ycenter(e) ] and [ ycenter(e), ymax(e) ],

respectively, and are easily found numerically, once again employing the Brent algorithm

already described. In figure 8 we show graphically the position of zmin,max(e), ycenter(e) and

ymin,max(e), as well as the curves y±(e, z), while figure 9 shows the zborder
± (z) and z±(e, z)

lines. Putting everything together, the differential distribution can be written as11

Fe(e, m̂) =

∫
dz dy

MC(y, z)

y
δ[e− ê(y, z)] = 2

∫ 1/2

zmin(e)
dz

∑
y=y±(e,z)

MC(y, z)

y
∣∣∣dê(y,z)dy

∣∣∣ , (4.15)

where the sum in y means that we evaluate the y-dependent expression for both y = y±(e, z)

and add the results. The derivative of the event-shape measurement function with respect

to y is performed analytically, while the value of y±(e, z) is obtained numerically with

the procedure outlined above. Our code computes the numerical integral using the python

quad function, which is the quadpack [77] package implementation of the scipy.integrate

module.

We close the section explaining how to modify the algorithm to compute E-scheme

thrust, broadening and HJM. The contour lines for these event shapes never intersect with

the phase-space boundaries (at most they are tangent to it at a single point), but are not

always continuous. It turns out that if τE < m̂, BE < m̂/2 or ρE < m̂(1 − 2m̂)/(1 −
m̂), the event-shape contour lines are continuous and convex, such that the algorithm

described above can be used. For larger values, the lines of constant event-shape value

show discontinuities exactly along the lines that delimit the regions with the thrust axis

11Note that it is also possible to integrate the delta function in terms of z, leaving a numerical y integral

Fe(e, m̂) = 2

∫ ymax(e)

ymin(e)

dy
MC(y, z)

y
∣∣dê(y,z)

dz

∣∣

∣∣∣∣∣
z=z−(e,y)

. (4.14)

We use this alternative expression to cross check our results. Both implementations agree within 15 digits.

We choose to integrate in y first because then a) event shapes with kinks in their curves with constant e

value can be treated with the algorithm just described, b) the algorithms for differential and cumulative

distributions are very similar.
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Figure 8. Phase space diagram in (z, y) coordinates (black lines) showing in red and cyan the con-

tour line with constant value of C-parameter, corresponding to the functions y+(e, z) and y−(e, z),

respectively. The two curves meet at the points [zmin,max(e), ycenter(e)], joined by the black, dashed

line. These curves meet the z = 1/2 vertical blue line for y = ymin,max(e), respectively. Dashed

magenta [green] lines mark the points of maximal and minimal values that y [z] can take within

the red curve. To generate this plot the values m̂ = 0.2 and C = 0.42 were used.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9. Phase space diagram in (y, z) coordinates depicted as green and black lines, corre-

sponding to the functions zborder
+ (z) and zborder

− (z), respectively. The red and magenta lines show

a contour line with constant value of C-parameter, corresponding to the functions z+(e, y) and

z−(e, y), respectively. To generate this plot the numerical values m̂ = 0.2 and C = 0.42 were used.

pointing in the gluon or (anti-)quark direction. Therefore we find it convenient to define

event-shape measurement functions in each of the three regions: êq(y, z), êq̄(y, z) and

êg(y, z). It is clear that one should first determine the intersection points of the contour

lines in the quark and gluon regions with yτ (m̂, z), defined in eq. (3.10), which we call

zq±(e) and zg±(e), with zq,g+ (e) = 1 − zq,g− . We find that in all cases zg−(e) > zq−(e). These

points are computed solving the equations êq[ yτ (m̂, z), z ] = e and êg[ yτ (m̂, z), z ] = e for
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Figure 10. Phase-space diagram in (z, y) coordinates (black curves) split by blue lines into regions

in which the thrust axis points in the direction of the quark, anti-quark or gluon momenta. In

green and red we show the contour lines for constant value of τE corresponding to the functions

y+(e, z) and y−(e, z), respectively. The two curves do not meet at any point, but intersect with

the boundary separating the gluon and quark regions at the points zq
−(e) and zg

−(e), marked with

dashed black lines. To generate this plot the parameters m̂ = 0.2 and τE = 0.27 were used.

z. In our code we employ the Brent algorithm again, and use that the solutions are to be

found in the interval z ∈ [m̂, 1/2].

For E-scheme thrust and HJM one only needs to compute y−(e, z) and y+(e, z), which

now coincide with the contours in the quark and gluon regions, respectively. Therefore the

equations to solve are êq(y, z) = e and êg(y, z) = e, for which we use the Brent algorithm,

and use the fact that the solutions have to be contained in the ranges y ∈ [ 0, yτ (m̂, z) ]

and y ∈ [ yτ (m̂, z), ymax(z) ], respectively. In figure 10, for τE = 0.27 we show the functions

y±(e, z) in red and blue, as well as the points zq±(e) and zg±(e) with dashed black lines. The

cross section then is computed as

Fe(e, m̂) = 2

∫ 1/2

zq−(e)
dz

∣∣∣∣∣MC(y, z)

y dê(y,z)
dy

∣∣∣∣∣
y=y−(e,z)

+ 2

∫ 1/2

zg−(e)
dz

∣∣∣∣∣MC(y, z)

y dê(y,z)
dy

∣∣∣∣∣
y=y+(e,z)

. (4.16)

The most involved event shape is E-scheme broadening, which requires a specific algo-

rithm. For BE
T > m̂/2 but smaller than a certain critical value BE,crit

T , and for the small

range z ∈ [ zmin(e), zq−(e) ], there are two solutions to the equation êq(y, z) = e, which we

call y−(e, z) and yup(e, z). The value of zmin(e) is computed using the algorithm already ex-

plained for continuous event shapes, and the values of zq,g− (e) are computed as described in

the previous paragraph. In figure 11 we show the functions y±(e, z) and yup(e, z) in green,

red and cyan, respectively. The points zmin(e) and zq,g− (e) are marked with black, dashed

lines. Therefore, while for BT > BE,crit
T ,12 one simply uses eq. (4.16), if m̂/2 < BE

T < BE,crit
T

12The value of BE,critT is obtained solving zmin(BE,critT ) = zq−(BE,critT ). In practice we do not compute it

explicitly, but simply use eq. (4.16) if zmin(e) > zq−(e).
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Figure 11. Phase space diagram in (z, y) coordinates (black curves) split by blue lines into regions

in which the thrust axis points in the direction of the quark, anti-quark or gluon momenta. In

green, cyan and red we show the contour lines for constant value of τE corresponding to the

functions y+(e, z), yup(e, z) and y−(e, z), respectively. The cyan and green curves do not meet at

any point, but intersect with the boundary separating the gluon and quark regions at the points

zq
−(e) and zg

−(e), marked with dashed black lines. The cyan and red curves meet at the points

[ zq
min,max(e), ycenter(e)]. To generate this plot the values m̂ = 0.2 and BE

T = 0.2 were used.

the following expression has to be employed:

Fe(e, m̂) = 2

∫ zq−(e)

zmin(e)
dz

yup(e,z)∑
y=y−(e,z)

MC(y, z)

y
∣∣∣dê(y,z)dy

∣∣∣ + 2

∫ 1/2

zq−(e)
dz

∣∣∣∣∣MC(y, z)

y dê(y,z)
dy

∣∣∣∣∣
y=y−(e,z)

(4.17)

+ 2

∫ 1/2

zg−(e)
dz

∣∣∣∣∣MC(y, z)

y dê(y,z)
dy

∣∣∣∣∣
y=y+(e,z)

.

For e larger than a certain value eth, the contour lines for thrust, HJM and broadening

in the E-scheme exist only in the gluon region, or in other words, zq±(eth) = 1/2, such that

only the second term in eq. (4.16) contributes. emax obviously satisfies zg±(emax) = 1/2.

Some results for differential and cumulative distributions of 2-jettiness, C-jettiness and

HJM will be discussed in section 5.

4.4 Computation of the cumulative distribution

We define the cumulative distribution as

Σ(ec) =
1

σ0

∫ ec

0
de

dσ

de
= R0(m̂) Θ(ec − emin) + CF

αs
π

Σ1(ec) +O(α2
s) . (4.18)

Once again, since we can compute Σ1(ec) with very high precision, the non-singular ΣNS(ec)

function can be obtained by removing the contributions from the delta and plus functions,

which are known analytically. This is the last ingredient for the complete description of

the cumulative cross section at O(αs).
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The cumulative distribution provides an alternative, numeric way of computing the

delta coefficient, that will be used as an additional cross check of our computation in

section 4 (see appendix A)

Ae(m̂) = lim
ec→emin

Σ1(ec)−Bplus(m̂) log(ec − emin) . (4.19)

In practice one can compute the one-loop contribution to the cumulative distribution by

adding and subtracting the total hadronic cross section RC1 (m̂) = Σ1
C(emax), and then using

1−Θ(x) = Θ(−x), to obtain the relation

Σ1
C(ec) = RC1 (m̂)+Σ1

C(ec)−Σ1
C(emax) = RC1 (m̂)−

∫
dy dzΘ[ê(y, z)−ec]

MC(y, z)

y
. (4.20)

The functions RC1 are shown graphically in figure 4(b). The cancellation of IR singularities

is already realized in RC1 and the integral left over involves only real radiation. Since the

Heaviside function limits the y integration on the lower side, the integral is convergent, and

consequently can be carried out using standard methods. For instance, the MC method

described in section 4.2 can be easily adapted by simply summing up the events of all bins

with lower endpoint larger larger than ec.

In the rest of this section we describe a direct method along the lines of section 4.3.

We again start with our toy model, namely the event shape defined as the soft limit of

another variable:

Σ1
C(ēc) = RC1 (m̂)−

∫ z+(ēc)

z−(ēc)
dz

∫ ymax(z)

h(ēc,z)
dy

MC(y, z)

y
(4.21)

= RC1 (m̂)−
∫ z+(ēc)

z−(ēc)
dzMC [ ymax(z), h(ēc, z), z, m̂] ,

where, given that the matrix element is a rank-two polynomial in y, the innermost inte-

gration can be performed analytically∫ y2

y1

dy
MC(y, z)

y
≡MC(y1, y2, z, m̂) = M0

C(z, m̂) log

(
y1

y2

)
(4.22)

+M2
C(z, m̂) (y1 − y2) +

1

2
M3
C(z, m̂) (y2

1 − y2
2) .

The logarithm multiplying M0
C reflects the soft singularity and diverges if ēc = emin. The

z integration in eq. (4.21) can be easily performed numerically, and it corresponds to the

area marked with II in figure 21.13

For regular event shapes whose contour lines for constant e are continuous, convex

and do not intersect with the phase-space boundaries, the cumulative distribution can be

computed easily using the ingredients described in section 3.3:

Σ1
C(ēc) = RC1 (m̂)− 2

∫ 1/2

zmin(e)
dzMC [ y+(e, z), y−(e, z), z, m̂] . (4.23)

13Note that a “direct” computation of the cumulative distribution (not based on the difference with

respect to the total hadronic cross section), corresponds to the sum or areas marked as III and IV in

figure 21, which suffers from an IR singularity.
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The z integration is performed numerically as described in section 3.3. We have checked

that taking a numerical derivative of our cumulative distribution reproduces the differential

cross section as computed in the previous section.

For E-scheme thrust and HJM the above formula has to be modified. From the analysis

in the previous section and looking at figure 10, one can readily conclude that between zg−(e)

and zq−(e) the area to be integrated is limited by yτ (m̂, z) and y+(e, z), while between

between zq−(e) and 1/2 it is limited by y−(e, z) and y+(e, z):

Σ1
C(ēc) = RC1 (m̂)− 2

∫ zq−(e)

zg−(e)
dzMC [ y+(e, z), yτ (m̂, z), z, m̂] (4.24)

− 2

∫ 1/2

zq−(e)
dzMC [ y+(e, z), y−(e, z), z, m̂] .

Finally, for E-scheme broadening, if m̂/2 < BE
T < BE,crit

T one has to use the following

expression:

Σ1
C(ēc) = RC1 (m̂)− 2

∫ zq−(e)

zmin(e)
dzMC [ yup(e, z), y−(e, z), z, m̂]

− 2

∫ zq−(e)

zg−(e)
dzMC [ y+(e, z), yτ (m̂, z), z, m̂] (4.25)

− 2

∫ 1/2

zq−(e)
dzMC [ y+(e, z), y−(e, z), z, m̂] .

All the z numerical integrals in this section are performed using the python quadpack

implementation in the scipy module.

The cumulative distribution for event shapes whose contour lines intersect with the

phase space will be discussed in the next section taking 2-jettiness as an example.

5 Cross sections for mass-sensitive event shapes

As an application of the approach presented in this work, we now work out differential

and cumulative cross sections for those event shapes whose contour lines intersect with

the phase-space boundaries: HJM, 2-jettiness and C-jettiness. These happen to be the

most sensitive to the heavy quark mass, since their threshold gets displaced from zero

to a mass-dependent position. Analytic results for the differential 2-jettiness [78] and

C-jettiness distributions [79]14 are already known, but in this section we will carry out

the manipulations necessary to bring their computation into 1D integrals over z. We shall

show how to obtain analytical results for the differential heavy jet mass and cumulative

2-jettiness distributions. Since the coefficients of the delta functions are already collected

in appendix D and the plus-distribution coefficient is universal, the only missing piece is

the non-singular contribution, which can be computed in d = 4 dimensions.

14In this reference the coefficient of the delta function was determined numerically.
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5.1 Differential HJM

In order to derive the HJM differential distribution it is useful to split the phase space

into the usual three regions, as described by eq. (3.10) and shown in figure 5. For three

particles, one of them massless and the other two with same mass m, ρ(y, z) takes the

following form in these regions:15

ρq = m̂2 + yz , ρq̄ = m̂2 + y(1− z) , ρg = 1− y . (5.1)

Consequently, the measurement delta functions in the respective regions are very simple

and given by

δ(ρ− yz − m̂2) =
1

z
δ

(
y − ρ− m̂2

z

)
, δ[ρ− y(1− z)− m̂2] =

1

1− z
δ

(
y − ρ− m̂2

1− z

)
,

δ(ρ− 1 + y) . (5.2)

To figure out the correct integration boundaries for y and z we consider the quark and

anti-quark region first. In this region, the lines of constant ρ meet either the phase-space

boundary [ for ρ < m̂(1−m̂−m̂2)/(1−m̂) ], or the boundary to the gluon region (for larger

values). Defining ξρ ≡
√
t2ρ − 4ρ and tρ = 1+ρ−m̂2, the intersections with the phase-space

boundary are located at z = z1 ≡ (t−ξρ)/2 and z = 1−z1, while the intersections with the

gluon-region boundary are located at z = z2 ≡ (tρ − 1)/
√

(1− ρ)2 − 2m̂2(1 + ρ) + m̂4 and

z = 1−z2. The gluon region, on the other hand, contributes only for ρ > 4m̂2, intersecting

the phase-space boundary [ for ρ < m̂/(1− m̂) ] or the region boundary (for larger values).

The phase-space boundary intersections are located at z = z2
− ≡

[
1−
√

1− 4m̂2/ρ
]
/2 and

z = z2
+ ≡ 1 − z2

− for ρ < m̂/(1 − m̂), while the region boundary intersections are located

at z = z3
− ≡

[
1 −

√
(1− ρ2) + 4m̂2

]
/(1 − ρ) and z = z3

+ ≡ 1 − z3
−. All those cases are

shown in figure 12. Note that that the constant event-shape lines of the (anti-)quark and

the gluon region do not meet at the region boundaries.

Taking all this into account, the differential cross section in d = 4 is given by

Fρ(ρ, m̂) = 2

∫ 1
2

max(z1,z2)

dz

ρ− m̂2
MC

(
ρ− m̂2

z
, z

)
+

2 Θ(ρ−4m̂2)

1− ρ

∫ 1
2

max(z2−,z
3
−)

dzMC(1−ρ, z)

= f1[max(z1, z2)] + f2[max(z2
−, z

3
−)] , (5.3)

15The sum of hemisphere masses takes the same form in the last region, while in the first two regions the

squared mass gets a factor of 2. Therefore, the calculation presented in this section can be easily modified

to give results for this event shape.
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Figure 12. Three-particle phase space (black lines), thrust boundaries (blue lines) and constant ρ

value contour lines, with m̂ = 0.2.

with the integral solutions

fV1 (z) =
(1− 2z)

[
ρ(1− z)(ρ− 4z)− 2m̂2(ρ+ 2(1− 2ρ)z2 + 3ρz) + m̂4(1− z − 8z2)

]
2(1− z)z2(ρ− m̂2)

+

(
ρ− 2− 5m̂2 + 2

1− 4m̂4

ρ− m̂2

)
log

(
1− z
z

)
,

fA1 (z) = 4− 8m̂2(2 + ρ) + 8m̂4 +
1

2(ρ− m̂2)

{
(1 + 2m̂2)(ρ− m̂2)2

z2
+

4(1− 4m̂2)m̂2

1− z

− 2
ρ(2 + ρ)− 2m̂2ρ(5 + ρ) + m̂4(1 + 4ρ)− 2m̂6

z

+ 2
[

2− (2− ρ)ρ+ 2m̂2(ρ(ρ+ 3)− 5) + m̂4(9− 4ρ) + 2m̂6
]

log

(
1− z
z

)}
,

fV2 (z) =
1

t

{
[2− (2− t)t− 4m̂2t−8m̂4] log

(
1

z
− 1

)
−

(1−2z)
[
(1−z)z t2 + 2m̂2 + 4m̂4

]
(1− z)z

}
,

fA2 (z) =

[
2− 2t+ t2 + 2m̂2(t2 + 4t− 6) + 16m̂4

]
log
(

1
z − 1

)
− (1−2z)[t2(1−z)z+2m̂2−8m̂4]

(1−z)z
t

.

The integral boundaries arise as follows: while making use of the symmetry axis z = 1/2

by integrating z only up to 1/2 and multiplying by 2, the boundaries automatically choose

the appropriate intersection of the constant event-shape line with the phase-space or region

boundary.

5.2 Cumulative 2-jettiness

2-jettiness is defined as

τJ =
1

Q
min
n̂

∑
i

(Ei − |n̂ · ~pi|) , (5.4)

which, for the same setup of three partons, two of them massive, takes the simple form

τJ = min
[

1− y, 1− mod(y, z), 1− mod(y, 1− z)
]
, (5.5)
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with mod(y, z) ≡
√

(1− yz)2 − 4m̂2. The three values in the list correspond to the thrust

axis pointing into the direction of the gluon, quark and anti-quark momenta, respectively,

see eq. (3.10).

Therefore, in these three regions the measurement δ functions read

δ(τJ + y − 1) ,

δ[τJ + mod(y, z)− 1] =
tτ
zξτ

δ

(
y − 1− ξτ

z

)
, (5.6)

δ[τJ + mod(y, z)− 1] =
tτ

(1− z)ξτ
δ

(
y − 1− ξτ

1− z

)
,

with tτ = 1 − τJ , ξτ =
√
t2τ + 4m̂2. In analogy to the previous section, we analyze the

various intersections of the constant event-shape line with the phase-space and region

boundaries to figure out the correct integration limits: the constant event-shape line in

the gluon region is equivalent to the one for heavy jet mass in the previous section and

can be adopted. In the (anti-)quark region, the constant event-shape line intersects the

phase-space boundary for τJ < m̂/(1− m̂), or the boundary to the gluon region for larger

values. These intersections take place at z = z1
− ≡ (1 + τJ − ξτ )/2, z = z1

+ ≡ 1 − z1
−, and

z = z3
− ≡ (1 − ξτ )/t, z = z3

+ ≡ 1 − z3
−, respectively. In contrast to heavy jet mass, the

constant τJ -lines meet at the region boundaries, making the structure of the integration

boundaries simpler.

Using the expression in eq. (4.20) the cumulative distribution is given by

Σ1
C(τ cJ < 4m̂2) = RC1 (m̂)− 2

∫ 1
2

z1−

dz

∫ ymax(z)

1−ξ
z

dy
MC(y, z)

y
, (5.7)

Σ1
C(τ cJ > 4m̂2) = RC1 (m̂)− 2

∫ 1
2

max(z1−,z
3
−)

dz

∫ min[ymax(z),t]

1−ξ
z

dy
MC(y, z)

y
,

where the integral corresponds to the region in between the limiting value τ cJ and (poten-

tially) the phase-space boundary, see figure 13. All integrals can be computed analytically,

resulting in a long expression containing logs and dilogs. The expressions are available

from the authors on request.

5.3 C-jettiness

We finish the discussion on the computation of event-shape differential and cumulative

distributions with the special case of CJ , whose contour lines are continuous and smooth,

but can intersect with the phase-space boundaries in various ways, some of which are shown

in figure 14. For the cumulative distribution one can find a simple expression that covers

all possible scenarios

Σ1
C(ēc) = R1(m̂)− 2

∫ 1/2

zm(e)
dzMC [ min{ymax(z), y+(e, z)}, y−(e, z), z, m̂] , (5.8)

with zm the minimal value that z can attain in the contour line within the phase-space

boundaries. Therefore zm can be either zmin(e), the point at which the contour line has
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Figure 13. Three-particle phase space (black lines), thrust boundaries (blue lines) and constant

τJ value contour lines, with m̂ = 0.2.
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Figure 14. Three-particle phase space (black lines) showing contour lines for the C-jettiness event

shape in red (CJ = 0.6), blue (CJ = 0.804) and green (CJ = 0.96). The plot uses the numerical

value m̂ = 0.3.

infinite slope, or zcut
− , the point at which it intersects with the phase-space boundary on

the left side (if it intersects more than once, then the lower intersection has always smaller

z value). Analytic expressions for y±(z) can also be found. A careful examination of those

and their interplay with ymax allows to find a general analytic expression for zm. These

results are given in ref. [79]. The z integration has to be performed numerically, and we

use the quadpack package for that.

For the differential cross section one can also write down a unique expression by care-

fully defining the “upper” and lower contour lines

Fe(e, m̂) = 2

∫ 1/2

zm(e)
dz

∑
y=y±(e,z)

Θ[ymax(z)− y]
MC(y, z)

y
∣∣∣dê(y,z)dy

∣∣∣ . (5.9)
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Figure 15. Event-shape distributions for vector (solid curves) and axial-vector (dashed curves)

currents. Panels (a), (b), (c), and (d) show results for thrust, C-parameter, jet broadening, and

heavy jet mass, respectively. All curves are multiplied by e − emin, with e the event-shape value

and emin its minimal value, such that the cross section is finite for e = emin. Red, blue, green and

magenta lines show the results for m̂ = 0.1, 0.2, 0.3 and 0.4, respectively.

Here the Heaviside function splits the two z integrals in various sub-integrals corresponding

to different segments, which are sometimes disconnected. After a careful analysis one can

disentangle all possible scenarios that eq. (5.9) encompasses. These depend of course on

the value of CJ , but also on m̂. After working those out, the resulting z integrals can be

performed analytically in terms of incomplete Elliptic functions. A detailed computation,

together with the final analytic expressions, is given in ref. [79].

6 Numerical analysis

We start this section by showing differential cross section results for different values of

m/Q in figure 15. Since the only singular term at threshold diverges like ∼ 1/(e − emin),

we plot (e−emin) times the distribution, such that the curves are finite in the whole range.

We also use a logarithmic scale on the y axis to make the curves with small reduced mass
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Figure 16. The universal coefficient of the plus distribution BC
plus as a function of the reduced

mass m̂. We show the coefficient in the case of an axial-vector current (red solid line), a vector

current (blue solid line) and the SCET limit (black dashed line). The SCET limit agrees with both

the full QCD vector and axial cases in the limit m̂ → 0. We also show the respective threshold

limits as dotted lines, expanded up to O(v5). Both full QCD expressions approach zero in this

limit, as expected.

value more visible. We show results for the most common event shapes, namely thrust,

C-parameter, jet broadening and heavy jet mass in their original definition, although our

code can yield results for those in any other scheme.16 With the exception of HJM, emin

and emax are mass-independent, and therefore the main sensitivity of the cross section is

through the magnitude of the curves: smaller masses result in larger cross sections in the

tail. Vector and axial-vector cross sections are similar for small values of the reduced mass,

but clearly different for e.g. m̂ = 0.4. We observe that the axial-vector distributions are

always lower than their vector counterparts. That hierarchy is also true for the plus and

delta-function coefficients, as well as for the cumulative distribution. The HJM endpoints

are mass-dependent, such that ρmin [ρmax] increases [decreases] with m̂. Therefore for this

event shape (and all other mass-dependent ones) the mass sensitivity comes partly from

the cross-section magnitude, but mainly from the peak position [the peak is not visible in

the plots because of the (ρ − ρmin) factor, and the missing resummation and convolution

with a non-perturbative shape function].

In figure 16 we show the dependence of the plus-function coefficient on m̂. For very

small reduced masses one recovers the result predicted by SCET or bHQET,

BSCET
plus = −2 [ 1 + 2 log(m̂) ] , (6.1)

in which powers of m̂ are suppressed and the mass-dependence is purely logarithmic. Since

the squared matrix elements in QCD do not depend on log(m̂), the mass dependence of

BSCET
plus must come from phase-space restrictions and the event shape definition. Hence,

the massless limit has to be the same for both vector and axial-vector currents, as can

be seen in figure 16 or by Taylor expanding the corresponding analytic formulas [ as in

eq. (6.1) ]. For v → 0 both vector and axial-vector versions of Bplus tend to zero (faster for

the axial current), which can be explained by physical arguments. In the threshold limit,

16While the aim of figure 1 was to highlight the difference between schemes, here we want to show the

difference between vector and axial-vector currents, together with the mass dependence.
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Figure 17. Numerical determination of the plus-function coefficient. Panels (a), (b), (c) and (d)

correspond to m̂ = 0.1, 0.2, 0.3 and 0.4, respectively. In each panel curves converging to the upper

(lower) horizontal dashed line show vector (axial-vector) current results. The dashed lines show the

analytical result of Bplus for both currents. Thrust is shown in green, jet broadening in blue, and

reduced C-parameter (C̃ = C/6) in red.

all the energy coming from the e+e− collision is invested in creating a heavy qq̄ pair at rest.

Therefore either no gluon (or massless quark) is radiated, or they have zero energy and

momentum. No extra massive particles can be created. In this situation it is clear that

e = emin = emax, and therefore there is no radiative tail. Hence both the plus distribution

and non-singular cross section identically vanish, and only the delta function can remain.

As a numerical check of the universality of BC
plus, shown in figure 16, we use the fact that

Bplus = lim
e→emin

(e− emin)Fe(e, m̂) , (6.2)

to determine graphically the plus-function coefficient for three distinct event shapes. For

the vector and axial-vector currents separately, the cross sections approach the same

horizontal line, matching our theoretical prediction. We have shown this behavior for

m̂ = 0.1, 0.2, 0.3 and 0.4 in the four panels of figure 17. We have checked that univer-

– 33 –



100 Chapter 5. NLO Massive Event-Shape Differential and Cumulative Distributions

J
H
E
P
0
3
(
2
0
2
0
)
0
2
4

0.0 0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

(a)

0.0 0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

(b)

0.0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

20

25

30

35

(c)

0.0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

20

25

(d)

Figure 18. The delta-function coefficients for reduced C-parameter, thrust, heavy jet mass and

jet broadening (all in their original definitions) as a function of the reduced mass m̂. The red

solid lines show the coefficients for an axial-vector current, the blue solid lines for a vector current.

We also show the respective threshold limits as dotted lines, including terms up to O(v2). The

SCET limit, shown as black dashed lines, coincides with the vector as well as axial currents for

m̂ → 0. The values in the threshold limit are universal, approaching 3π2/4 and zero in the vector

and axial-vector cases, respectively.

sality holds for all 16 event shapes considered in this article, and for 50 values of the

reduced mass.17

In figure 18 we show the ACe coefficients as a function of the reduced mass for thrust,

C-parameter, jet broadening and heavy jet mass. We again see that in the SCET/bHQET

limit (m̂ → 0), the result for both currents is the same. This follows from the same

reasoning as in the previous paragraph. Moreover, since the axial total hadronic cross

section vanishes for v → 0, AAe also vanishes in this limit. Furthermore, AVe (m̂ = 1/2) =

RV1 (v = 0) = 3π2/4 takes the same value for all event shapes in the limit v → 0. This

can be easily understood since the event-shape dependent integral in eq. (3.32) appears

multiplied in eq. (3.31) precisely by the plus-function coefficient, and we already argued

that in the threshold limit Bplus → 0. Another interesting property of the Dirac delta-

17We have also checked analytically that Bplus coincides with the plus-distribution coefficient implied by

the high-energy limit of the bare one-loop massive hemisphere soft function, given in eq. (59) of ref. [80].
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function coefficient is that

lim
m̂→0

[AeM (m̂)−AeP (m̂)] = lim
m̂→0

[AeM (m̂)−AeE (m̂)] = constant , (6.3)

where the constant is the difference of the Fourier-space jet functions in the massive and

E/P schemes that appear in the bHQET factorization theorem for massive event shapes.

This shall be shown in more detail in ref. [81], but it is based on the fact that the hard

and Hm functions are the same for any event shape, and the soft function is the same

in any scheme since it is mass independent at one loop order. Therefore the consistency

condition requires that the jet anomalous dimensions and hence also the logs of m̂ are the

same in any scheme. Specifically, the logarithmic terms of the delta-function coefficients

in the SCET limit m̂→ 0 take the form

ASCET
eI

∣∣∣
log(m̂)

= 4 log2(m̂) + log(m̂) , (6.4)

for pure SCETI type event shapes like thrust, heavy jet mass and C-parameter, and

ASCET
eII

∣∣∣
log(m̂)

= 2 log2(m̂)− log(m̂) , (6.5)

for SCETII type ones like jet broadening. For similar reasons, the SCET/bHQET limit is

equal for the same event shape in the E or P scheme, as well as with normalization Q or

QP . In figure 19 we use eq. (4.19) to graphically determine the delta-function coefficient,

checking that it agrees with our analytic computation. To make it visually clearer, we

use logarithmic scaling in the horizontal axis, such that the log-subtracted cumulative

distribution becomes a horizontal line as the event-shape value approaches the threshold.

This plot also shows how reliable our numerical code is, even for very small values of the

event shape. We choose the same event-shape measurement functions and reduced-mass

values as for the rest of analyses in this section.

7 Conclusions

In this article we have shown how to accurately compute differential and cumulative mas-

sive event-shape distributions at O(αs). We have analytically calculated all singular terms:

the plus-distribution coefficient, which we found to be the same for all event shapes lin-

early sensitive to soft momenta, and the delta-function coefficient. In our computation

of the latter we add the contributions of virtual- and real-radiation diagrams, which are

individually IR-divergent, although the sum is finite. We find that the delta-function co-

efficient only depends on the soft limit of the event-shape measurement function, and can

be expressed as the sum of a universal term plus an observable-dependent integral times

the plus-function coefficient.

We have developed a numerical algorithm to compute the non-singular distribution

efficiently and with high accuracy which does not require binning the distributions. The

method directly solves the measurement delta function and figures out the integration

limits using standard numerical methods to find the roots of an equation or to minimize
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Figure 19. Numerical determination of the delta-function coefficient. Panel (a) is for thrust, (b)

for reduced C-parameter, (c) for heavy jet mass and (d) for jet broadening, respectively. Solid

(dashed) lines show the vector (axial-vector) current. Red, blue, green and magenta have reduced

masses of m̂ = 0.1, 0.2 0.3 and 0.4, respectively. Each curve becomes a horizontal line as the event

shape approaches its minimal value, reproducing exactly our analytic computations for Ae.

functions. The remaining integration is performed numerically. Our method serves for both

differential and cumulative cross sections, can be used for massless quarks, and provides

very accurate results even for extreme dijet configurations. Possible additional applications

of the algorithm are a) event-shape distributions depending on a continuous parameter,

such as angularities; b) non-global observables implying a jet algorithm and grooming, such

as Soft Drop [82]. Our approach is very different from conventional MC methods, which

are based on binned distributions. Although at O(αs) one does not yet need to implement

subtractions, our strategy to compute the delta-function coefficient could be implemented

in NLO parton-level MCs to achieve a much more effective cancellation of IR divergences,

that could happen at an early stage.

Extending our calculation of the singular terms to O(α2
s) could be possible, provided

one can find an analytic form for the event-shape measurement function in the soft limit.
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Computing the next order could provide hints to figure out if the universality of the plus

distribution holds to all orders. Another approach to compute the delta and plus distri-

butions at two loops is using EFT language. Since these parameters are defined in the

limit of very soft gluon momenta, one can imagine building an EFT of heavy quarks (not

necessarily boosted) interacting with soft particles (massless quarks or gluons), such that

Esoft � mq. In this way one could derive a factorized form for the cross section in terms

of a universal matching coefficient and an event-shape dependent soft function. This could

simplify the computation, since the cross section provided by the EFT would be already

purely singular, and the problem would be naturally split into simpler pieces, treating one

scale at a time. Moreover, such a theory would allow to sum large logarithms of ratios of

scales to all orders in perturbation theory. A step in this direction has been taken already

in ref. [80].

Our results will be a reference for ongoing and future research carried out in the context

of event shapes with massive particles. In particular they will play an important role in the

calibration of the MC top quark mass parameter, and will be even more relevant for the top

quark mass measurement program at future linear colliders. In this direction, the results

presented in this article will help computing efficiently e+e− event-shape distributions at

O(αs) for unstable top quarks, since in that case, the delta function that sits at threshold

for stable quarks radiates into the tail through the top decay products. Therefore, already

at O(αs) one has to deal with the cancellation of IR divergences away from threshold,

and our strategy for computing the delta-function coefficient could be adapted for this

situation.
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A Indirect computation

In this appendix we recover the main result of eq. (3.31) imposing that the integrated

event-shape distribution over its entire domain reproduces the known total hadronic cross

section. This method was discussed in the introduction as a way of obtaining, in a numeric

form, the delta-function coefficient if an analytic form for the differential cross section

is available in d = 4 dimensions. Here we show that if the event shape integration is

performed before the phase-space integrals, analytic results can be obtained for any event
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Figure 20. Phase space diagram in (z, y) coordinates (black lines) showing curves with constant

value of the C-parameter event-shape measurement function (in red) and for its soft limit (in

blue), for the same set of C values {0.42, 0.468, 0.516, 0.564, 0.612, 0.66, 0.708, 0.729, 0.747}, while

m̂ = 0.2. Red curves are always contained withing the phase-space boundaries, and the enclosed

area becomes smaller as the value of C approaches its maximum value, when it collapses to a single

point. Blue curves always intersect with the phase-space boundary, and have a finite extension even

for C = Cmax. Blue and red curves are similar for small values of y.

shape considered in this article. Moreover, the result is equivalent to what we have already

found by the direct computation.

Writing the massive total hadronic cross section as

R(m̂) = R0(m̂) + CF
αs
π
R1(m̂) +O(α2

s) , (A.1)

one observes the non-trivial constraint

R1(m̂) = Ae(m̂) +Bplus(m̂) log(emax − emin) +

∫ emax

emin

de FNS(e, m̂) , (A.2)

where FNS
e , defined in eq. (3.29), has to be integrated in the whole e domain [emin, emax].

This is done before integrating in y and z. The e integration in FNS
hard effectively only

replaces the Dirac delta function by 1, since the entire phase space is exactly covered by

the full event shape range,∫ emax

emin

de FNS
hard(e, m̂) =

∫
dz dyMhard

C (y, z, m̂) . (A.3)

It is convenient to write the soft non-singular distribution with explicit Heaviside functions

in y, such that the two terms with the soft measurement function in eq. (3.29) can be

added together

FNS
soft =

∫
dz dy

M0
C(z, m̂)

y
Θ(y)

{
Θ[ymax(z)− y] δ[e− ê(y, z)]− δ[e− ē(y, z)]

}
, (A.4)
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Figure 21. Phase space diagram in (z, y) coordinates (black lines) showing the curve for which the

C-parameter soft measurement function equals the maximum allowed value Cmax = 0.75. Different

colors correspond to the different integration regions of the soft non-singular distribution. To make

this plot we use the numerical value m̂ = 0.2.

understanding that the z integration is still between z− and z+. To evaluate the FNS
soft

contribution it is convenient to insert Θ(emax − e) before performing the e integral over the

Dirac delta functions. In this way we obtain∫ emax

emin

de FNS
soft(e, m̂) =

∫
dz dy

M0
C(z, m̂)

y
Θ(y)

{
Θ[ymax(z)−y]−Θ[h(emax, z)−y]

}
. (A.5)

Graphically, the integral of the first term corresponds to the areas marked as II, III and

IV in figure 21, while the second integral is the sum of regions I, III and IV. The sum of

III and IV corresponds to integrating the last term in eq. (3.29), while the pieces marked

with I are the integration of the one-to-last term in eq. (3.29). Adding the two terms, the

resulting y integration has the boundaries [h(emax, z), ymax(z)] in the whole z range, which

can be expressed as∫ emax

emin

de FNS
soft(e, m̂) =

∫ z+

z−
dzM0

C(z, m̂) log

[
1− m̂2

z(1−z)
emax−emin
fe(z,m̂)

]
, (A.6)

and graphically corresponds to subtracting the portions marked with I from the area labeled

II in figure 21. Combining this result with the plus function term and using eq. (3.29) the

dependence on emax cancels. The y integration can be performed analytically, giving

Bplus(m̂) log(emax − emin) +

∫ emax

emin

de FNS
soft(e, m̂)

=

∫
dzM0

C(z, m̂)

{
log

[
1− m̂2

z(1− z)

]
+ log[fe(z)]

}
, (A.7)∫

dy dzMhard
C (y, z) =

∫
dz

(
1− m̂2

z(1− z)

)[
M2
C(z, m̂) +

1

2
M3
C(z, m̂)

(
1− m̂2

z(1− z)

)]
.
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With this we conclude with the alternative, but analytically equivalent, expression for the

δ coefficient

Ae(m̂) = R1(m̂)−
∫ z+

z−
dz

{
M0
C(z, m̂)

[
log
[
z(1− z)−m2

]
− log[z(1− z)] + log[fe(z)]

]
+

(
1− m̂2

z(1− z)

)[
M2
C(z, m̂) +

1

2
M3
C(z, m̂)

(
1− m̂2

z(1− z)

)]}
. (A.8)

The integral over hard matrix elements can be performed using eqs. (B.2), while the other

integrals are explicitly given in eqs. (B.3). Using these analytic results we arrive at

AVe (m̂) =RV1 (m̂)− (3− v2)Ie(m̂)− (1 + 2m̂4)Lv −
v

4

[
11 + 34m̂2 − 8(3− v2) log

( v
m̂

)]
+2 v2

[
Li2

(
2v

1 + v

)
− 2 log

(v2

m̂

)
Lv + Li2

(
1−v

2

)
− Li2

(
2v

v−1

)
− Li2

(
1+v

2

)]
,

AAe (m̂) =RA1 (m̂)− 2v2Ie(m̂)− (1 + 2m̂2 − 6m̂4 + 12m̂6)Lv −
v

4

[
11− 68m̂2 + 12m̂4

−16v2 log
( v
m̂

)]
+ 2(1− 6m̂2 + 8m̂4)

[
Li2

(
2v

1 + v

)
+ Li2

(
1− v

2

)
− 2 log

(v2

m̂

)
Lv − Li2

(
2v

v − 1

)
− Li2

(
1 + v

2

)]
. (A.9)

Using the known results for the total hadronic cross section, collected for convenience in

eq. (C.1) of appendix C, it can be checked that the above result is analytically equivalent

to eqs. (3.31).

B Phase-space integrals

Almost every integral in the phase-space variable z we have computed for various event-

shape measurement functions can, due to the symmetry under z → 1 − z, be cast in the

one these forms:∫ z+

1
2

dz
log(z − a)

z
= Li2

(
1− 1 + v

2a

)
+ log

(
1 + v

2a

)
log

(
1− 2a+ v

2

)
(B.1)

− Li2

(
1− 1

2a

)
+ log

(
1

2
− a
)

log(2a) , a ≤ 1

2
,∫ z+

1
2

dz
log(a− z)

z
= Li2

(
1− 1 + v

2a

)
+ log

(
1 + v

2a

)
log

(
2a− 1− v

2

)
− Li2

(
1− 1

2a

)
+ log

(
a− 1

2

)
log(2a) , a ≥ z+ ,∫ z+

1
2

dz
log(z − a)

z2
=

1

a

{
log

(
1− 2a+ v

1 + v

)
− 2a log(2)− (1− 2a) log(1− 2a)

−
2a log

(
1−2a+v

2

)
1 + v

}
, a ≤ 1

2
,
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∫ z+

1
2

dz
log(a− z)

z2
=

1

a

{
log

(
− 1− 2a+ v

1 + v

)
− 2 a log(2)− (1− 2a) log(2a− 1)

−
2a log

(
−1−2a+v

2

)
1 + v

}
, a ≥ z+ .

For integrals in which no event-shape measurement function is involved, the results are

even simpler ∫ z+

z−

dz = v ,

∫ z+

z−

dz

z
=

∫ z+

z−

dz

1−z
= 2Lv , (B.2)∫ z+

z−

dz

z2
=

∫ z+

z−

dz

(1−z)2
=

v

m̂2
,

∫ z+

z−

dz

z3
=

∫ z+

z−

dz

(1−z)3
=

v

2m̂4
,∫ z+

z−

dz
log[z(1−z)− m̂2]

z2
=

∫ z+

z−

dz
log[z(1−z)− m̂2]

(1− z)2
=

2v log(v)− 2Lv
m̂2

,∫ z+

z−

dz
log[z(1−z)−m̂2]

z
=

∫ z+

z−

dz
log[z(1−z)−m̂2]

1− z
= Li2

(
2v

v−1

)
− Li2

(
2v

1+v

)
+4 log(v)Lv .

With these one can easily compute the integrals for the real radiation contribution∫ z+

z−

dz
(1− z)z − m̂2

(1− z)2z2
= 2

[
(1 + v2)Lv − v

]
∫ z+

z−

dz
(1−z)z − m̂2

(1− z)2z2
log[z(1− z)− m̂2] = 4Lv − 4 v log(v) + (1 + v2)

[
Li2

(
2v

v − 1

)
− Li2

(
2v

1 + v

)
+ 4 log(v)Lv

]
, (B.3)∫ z+

z−

dz
(1− z)z − m̂2

(1− z)2z2
log[z(1− z)] = (1 + v2)

[
Li2

(
1− v

2

)
− Li2

(
1 + v

2

)]
+ 2
[
(1+v2) log(m̂)+4m̂2

]
Lv−2v

[
1+2 log(m̂)

]
.

Note that the integrands given in eq. (B.3) are invariant under the substitution z → (1−z)

and therefore
∫ z+
z−

dz = 2
∫ 1/2
z−

dz = 2
∫ z+

1/2 dz.

C Total hadronic cross section

It is convenient to write the total hadronic cross section in the following way, such that it

can be implemented in eq. (A.9)

RV1 (m̂) = 4(1− 4m̂4)

[
3L2

v + 2 Li2

(
1− v
v + 1

)
+ Li2

(
v − 1

v + 1

)
− log

(
v2

m̂3

)
Lv

]
(C.1)

+ 2(3− 2m̂2 − 7m̂4)Lv + v

[
3

4
(1 + 6m̂2)− (3− v2) log

(
v2

m̂3

)]
,

RA1 (m̂) = 2 v2(1 + v2)

[
3L2

v + 2 Li2

(
1− v
v + 1

)
+ Li2

(
v − 1

v + 1

)
− log

(
v2

m̂3

)
Lv

]
+ 2(3− 11m̂2 + 5m̂4 + 6m̂6)Lv −

21

16
v − v3

[
2 log

(
v2

m̂3

)
− 15

8
− 3

16
v2

]
,

coinciding with ref. [83].
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D Analytic delta-function coefficients for some event shapes

In this appendix we present some analytic results for the delta-function coefficient of mas-

sive event-shape differential cross sections. Specifically, we list the following information:

• The general definition of the event shape e.

• The expression eq(y, z) describing the event shape in the phase-space region in which

the thrust axis t̂ is aligned with the quark momentum in terms of y, z. When eval-

uating the integral Ie, we use the z ↔ (1 − z) symmetry and integrate only in this

region.

• The minimal value of the event shape emin, valid to all orders in perturbation theory.

• The maximal value of the event shape emax, valid at one-loop level.

• The soft term fe(z) of the event shape required for the integral Ie, derived from

eq(y, z) and therefore valid in the same phase-space region only. It is straight forward

to obtain the expression for the region where t̂ is proportional to the anti-quark

momentum by applying the substitution z → (1− z).

• The solution of the integrals Ie(m̂), which can be inserted into eq. (3.31) or (A.9) to

obtain the delta-function coefficient ACe .

For simplicity, we define

r =
√

1− 3m̂2 , mod(y, z) =
√

(1− yz)2 − 4m̂2 ,

I(m̂) ≡
∫ 1

2

z−
dz

z(1− z)− m̂2

z2(1− z)2
=
(
1 + v2

)
Lv − v , (D.1)

frequently appearing in expressions for emax, eq(y, z) and relations between event shapes,

respectively. Moreover, we use the pseudo-rapidity η, transverse momentum p⊥ ≡ |~p⊥| and

transverse mass m⊥ ≡
√
p2
⊥ +m2 in some event-shape definitions, where the transverse

momentum is measured with respect to the thrust axis. The solutions of the integrals

needed to compute the various expressions for Ie(m̂), are provided in appendix B.

Sometimes it can be useful to define a P-scheme event shape eP,Q with 1/Qn normal-

ization instead of 1/QnP . The relation between the related event shape dependent integrals

Ie(m̂) is trivial, as long as emin = 0:

IeP,Q(m̂) = IeP (m̂) + n log(v) I(m̂) . (D.2)

Heavy jet mass.

Original definition

• ρ = 1
Q2

(∑
i∈heavy pi

)2

• ρq(y, z) = m̂2 + yz
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• ρmin = m̂2

• ρmax = (5− 4r)/3

• fρ(z) = z

• Iρ(m̂) =
1

4

[
(1 + v2)Li2

(
v + 1

v − 1

)
+
π2

6
(1 + v2)− 2v(v + 1)

− [1 + (4− v)v] log

(
1− v
1 + v

)
− 4v log

(
v + 1

2

)]
P-scheme

• ρP = 1
Q2
P

∑
i,j∈heavy(|~pi||~pj | − ~pi · ~pj)

• ρPq (y, z) = Q2

2Q2
P
y
[
mod(y, 1− z) + y(1− z) + 2z − 1

]
• ρPmin = 0

• ρPmax = 1/3

• fρP (z) = 2z+v−1
2v2

• IρP (m̂) = (1− 2m̂2)

[
Li2(1− v) + Li2

(
1

v + 1

)]
+

1

2
log

(
1 + v

1− v

)
[1− 2(1− 2m̂2) log(2v2)]− 1

2
(1− 2m̂2) log2(1− v)

− 1

3
(1− 2m̂2)[π2 − 3 log2(v + 1)]− v log(m̂) + v log(v)

E-scheme

• ρE = 1
Q2

∑
i,j∈heavy

EiEj
|~pi||~pj |(|~pi||~pj | − ~pi · ~pj)

• ρEq (y, z) = y(1−y(1−z))[mod(y,1−z)+y(1−z)−1+2z]
2 mod(y,1−z)

• ρEmin = 0

• ρEmax = (2−r)2
3

• fρE (z) = vfρP (z)

• IρE (m̂) = IρP (m̂) + log(v) I(m̂)
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Thrust / 2-jettiness.

P-scheme, original definition

• τ = 1
QP

∑
i pi,⊥e−|ηi| = 1

QP
mint̂

∑
i(|~pi| − |t̂ · ~pi|)

• τq(y, z) = mod(y, 1− z)−mod(y, z) + y

• τmin = 0

• τmax = ρPmax

• fτ (z) = fρP (z)

• Iτ (m̂) = IρP (m̂)

E-scheme

• τE = 1
QP

mint̂
∑

i
Ei
|~pi|(|~pi| − |t̂ · ~pi|)

• τEq (y, z) = 1
2

(
[1−y(1−z)][4m̂2+y2(1−z)z−1+y]

mod(y,z) mod(y,1−z) − y[1+(y−2)z]
mod(y,z) − y(1− z) + 1 + y

)
• τEmin = 0

• τEmax = ρEmax

• fτE (z) = fρE (z)

• IτE (m̂) = IρE (m̂)

2-jettiness

• τJ = 1
Q

∑
imi,⊥e−|ηi| = 1

Q mint̂
∑

i(Ei − |t̂ · ~pi|)

• τJ,q(y, z) = 1−mod(y, z)

• τJ,min = 1− v

• τJ,max = ρmax

• fτJ (z) = z/v

• IτJ (m̂) = Iρ(m̂)− log(v) I(m̂)
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C-parameter / C-jettiness. Here we provide results for reduced C-parameter C̃ = C/6.

The relation to the original version for the event shape dependent integral is simply

IC(m̂) = I
C̃

(m̂)− log(6) I(m̂) . (D.3)

P-scheme, original definition

• C̃ = 1
4

[
1− 1

Q2
P

∑
i,j

(~pi·~pj)2
|~pi||~pj |

]
• C̃q(y, z) = 2y [(1−y)(1−z)z−m̂2]

mod(y,1−z) mod(y,z)[mod(y,1−z)+mod(y,z)+y]

• C̃min = 0

• C̃max = 1/8

• f
C̃

(z) = (1−z)z−m̂2

v3

• I
C̃

(m̂) = (1− 2m̂2)

[
−2 log2(2m̂) + 2 Li2

(
1− v
1 + v

)
+ 2 log2(1 + v)− π2

3

+ 3 log(v) log

(
1− v
1 + v

)
+ 2 log(2) log

(
1− v
1 + v

)]
+ v log(v)− log

(
1− v
1 + v

)
E-scheme

• C̃E = 1
4

[
1− 1

Q2

∑
i,j

EiEj(~pi·~pj)2
|~pi|2|~pj |2

]
• C̃Eq (y, z)= y{m̂2[y(6(1−z)z+1)−3y2(1−z)z−4(1−z)z−1]−2m̂4(y−2)+(1−y)(1−z)z[1−y(1−z)](1−yz)}

mod2(y,z) mod2(y,1−z)

• C̃Emin = 0

• C̃Emax = 1/8

• f
C̃E

(z) = vf
C̃

(z)

• I
C̃E

(m̂) = I
C̃

(m̂) + log(v) I(m̂)

C-jettiness

• C̃J = 1
4

[
2− 1

Q2

∑
i 6=j

(pi·pj)2
EiEj

]
• C̃J,q(y, z) = z(1−z)y(1−y)+2m̂2(1−y)−2m̂4

(1−zy)[1−(1−z)y]

• C̃J,min = 2m̂2(1− m̂2)

• C̃J,max =

{
(1 + 16m̂2 + 32m̂4)/(1 + 2m̂2)2/8 (m̂ < 0.39307568887871164)

4m̂2(1 + 2m̂2)/(1 + 4m̂2)2 (m̂ > 0.39307568887871164)

• f
C̃J

(z) = z(1− z)− 2m̂4
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• I
C̃J

(m̂) =
1

2
(2m̂2 − 1)

{
−2Li2

(
1− v
1 + u

)
+ 2 Li2

(
1− u
1− v

)
− 2 Li2

(
1− u
1 + v

)
+ 2 Li2

(
1 + v

1 + u

)
+ log2

(
1− v
1 + v

)
+ 2 log

(
1− v
1 + v

)
log

[
(1 + u)(1 + v)

4

]}
− 1

2m̂2

[
log

(
1− v
1 + v

)
− u log

(
u− v
u+ v

)]
− v log

[
m̂2(1− 2m̂2)

]
with u ≡

√
1− 8m̂4.

Broadening.

P-scheme, original definition

• BT = 1
2QP

∑
i pi,⊥ = 1

2QP

∑
i(|~pi| − |t̂ · ~pi|)1/2(|~pi|+ |t̂ · ~pi|)1/2

• BT,q(y, z)= Q
QP

{√
mod(y,z) mod(y,1−z)−v2+y2(1−z)z+y

√
mod(y,z) mod(y,1−z)+v2−y2(1−z)z−y)

4mod(y,z)

+
y
√

[mod(y,z)+(2−y)z−1][mod(y,z)+1−(2−y)z]

4 mod(y,z)

}

• BT,min = 0

• BT,max = 1
2
√

3

• fBT (z) =

√
f
C̃

(z)

v

• IBT (m̂) = 1
2

[
I
C̃

(m̂)− log(v) I(m̂)
]

E-scheme

• BE
T = 1

2Q

∑
i
Ei
|~pi|(|~pi| − |t̂ · ~pi|)

1/2(|~pi|+ |t̂ · ~pi|)1/2

• BE
T,q(y, z) =

ymod(y,1−z)
√

(1−y)(1−z)z−m̂2

2 mod(y,z) mod(y,1−z)

+
(1−y(1−z))

√
mod(y,z) mod(y,1−z)−v2+y2(1−z)z+y

√
mod(y,z) mod(y,1−z)+v2−y2(1−z)z−y

4 mod(y,z) mod(y,1−z)

• BE
T,min = 0

• BE
T,max = 2−r

2
√

3

• fBET (z) = 1+v
2 fBT (z)

• IBET (m̂) = IBT (m̂) + log
(
v+1

2

)
I(m̂)
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Angularities. Here, we consider angularities in the parameter region a < 1 only. The

soft expansion of the event shape contains a term proportional to y2−a, which therefore

only contributes to fτa if a = 1. This case has already been considered separately since

τa → 2BT (a→ 1).

E-scheme, original definition

• τa = 1
Q

∑
i
Ei
|~pi|pi,⊥e−|η|(1−a) = 1

2Q

∑
i
Ei
|~pi|(|~pi| − |t̂ · ~pi|)

1−a
2 (|~pi|+ |t̂ · ~pi|)

a
2

• τa,q(y, z) = 1
2

{[
y[mod(y,z)−(2−y)z+1]

mod(y,z)

]a
2
[
y − y[1−(2−y)z]

mod(y,z)

]1−a
2

+ [1−y(1−z)][mod(y,z) mod(y,1−z)−v2+y2(1−z)z+y]1−a
2 [mod(y,z) mod(y,1−z)+v2−y2(1−z)z−y]

a
2

mod(y,z)mod(y,1−z)

}
• τa,min = 0

• τa,max = 3
a
2
−1(2− r)

• fτa<1(z) = (1+v−2z)
a
2 (v+2z−1)1−a

2

2v

• Iτa<1(m̂)=
1− a

4

{
(1 + v2)

[
2 Li2(1− v) + 2 Li2

(
1

1 + v

)
− 2 Li2

(
1− v
1 + v

)
− π2

3

− 1

2
log2

(
1− v
1 + v

)
+ log2(1 + v)

]
− 4v log(m̂)

}
−2 log

(
1− v
1 + v

)
+

1+v2

4

[
2Li2

(
1−v
1+v

)
− 1

2
log2

(
1−v
1+v

)
−2 log

(
1+v

2v

)
log

(
1−v
1+v

)
−π

2

3

]
P-scheme

• τPa = 1
QP

∑
i(|~pi| − |t̂ · ~pi|)

1−a
2 (|~pi|+ |t̂ · ~pi|)

a
2

• τPa,q(y, z) = 1
2

{[
y[mod(y,z)−(2−y)z+1]

mod(y,z)

]a
2
[
y − y[1−(2−y)z]

mod(y,z)

]1−a
2

+ [mod(y,z) mod(y,1−z)−v2+y2(1−z)z+y]1−a
2 [mod(y,z) mod(y,1−z)+v2−y2(1−z)z−y]

a
2

mod(y,z)

}
• τPa,min = 0

• τPa,max = 3
a
2
−1

• fτPa<1
(z) =

fτa<1 (z)

v

• IτPa = Iτa − log(v) I(m̂)
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define the SCET jet function, which we call universal and mass mode jet functions. They

are related to whether or not a soft mass mode (zero) bin subtraction is applied for the

secondary massive quark contributions and differ in particular concerning the infrared be-
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zero-bin subtraction concept is to define the SCET jet functions through subtractions re-
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1 Introduction

Gaining higher precision in theoretical predictions for the production of massive quarks

in hard particle collisions represents an important field of research in the context of the

LHC as well as future colliders (see e.g. refs. [1–3]). Factorized predictions are of special

relevance since they provide a separation of physical effects from different momentum scales

for cases where the scale hierarchies are large, such as for kinematic edges or endpoint

regions or when there are hierarchies between particle masses and dynamical scales. Once

factorization is established for a given observable, it can be written as a product or a

convolution of functions encoding the dynamics of particular phase space regions. The

resulting factorization formulae (or theorems) provide an approximation in the limit where

one can expand in the ratios of the hierarchical scales. This allows to sum large logarithms

related to these scales and in addition may provide the basis for a field theoretic treatment
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of low-energy hadronization effects for processes dominated by the strong interaction. As

such, factorization theorems provide important pieces of information that are not accessible

directly in corresponding calculations obtained in fixed-order perturbation theory within

full QCD. Factorization also entails that the various functions occurring in the factorization

theorems frequently have a universal character and can be applied for different processes.

For the description of the dynamics related to energetic radiation that is emitted

collinearly to a quark produced at high energy, the so-called quark jet function is an

essential ingredient in factorization theorems for a variety of processes where the inclusive

invariant mass of all the collinear radiation (including the energetic quark) enters. The

quark jet function was first introduced in the context of the factorization framework of the

Soft-Collinear Effective Theory (SCET) [4–6] for the theoretical description of inclusive

semileptonic or radiative B meson decays in the kinematic regions where the produced

hadrons form a jet. For the case of massless quarks the jet function is defined as a non-

local correlation function of two SCET massless quark jet fields. It was calculated at O(αs)

and O(α2
s) in refs. [7] and [8], respectively, and recently also the O(α3

s) corrections became

available in ref. [9]. These results are applicable for the treatment of light quarks but can

also be applied for massive quarks as long as the jet invariant mass
√
p2 is much larger

than the quark mass m, i.e. p2 � m2, and the associated mass corrections are negligible.

When quark mass effects are considered, it is useful to distinguish two types of mass

effects. One is related to the quark produced by the hard interaction and which initiates

the jet, called primary, and the other is related to quark-antiquark vacuum polarization

effects, called secondary. Interestingly, primary as well as secondary quark mass effects

introduce new kinds of subtleties.

For an inclusive jet initiated by a primary heavy quark and with invariant mass p2,

two kinematic regions where quark mass effects are important emerge: p2 ∼ p2−m2 ∼ m2

and p2 − m2 � m2 ≈ p2. The region p2 ∼ p2 − m2 ∼ m2, called SCET region, is

relevant for processes where the jet invariant mass is close to the primary quark mass m

but is also allowed to fluctuate at the same level. The corresponding jet function(s) can

be formulated with SCET massive collinear quark jet fields and require that the massless

quark SCET formalism is extended to account for mass effects modifying the propagation

and interactions of collinear quarks [10–12]. Jet functions of this kind are therefore called

SCET jet functions. In the context of bottom and charm quark production in hard collisions

the SCET regime p2 ∼ p2 − m2 ∼ m2 is essentially the only one that can ever arise in

practical applications where quark mass effects are important due to the sizable momentum

smearing coming from non-perturbative effects [13]. The region p2 − m2 � m2 ≈ p2,

also called bHQET limit or heavy quark limit, is relevant for processes where the jet

invariant mass is very close to the primary quark mass m and only allowed to fluctuate

at a scale much smaller than m. Here, the SCET description does not provide a full

separation of all dynamical effects because ŝ ≡ (p2 − m2)/m � m ≈
√
p2 emerges as a

new relevant scale. This separation is achieved in the context of boosted Heavy Quark

Effective Theory (bHQET) where the corresponding collinear SCET sector is matched

on a theory containing a super-heavy quark with its small offshell field component being

integrated out [12, 14]. Jet functions of this kind are therefore called bHQET jet functions.
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In practice, the bHQET limit p2 − m2 � m2 ≈ p2 can only arise in the context of top

quark production due to the large size of the top quark mass. Here, scales below the top

quark mass may be resolved and not smeared out by hadronization effects [13, 15].1 The

bHQET regime is particularly important for the theoretical understanding of top quark

mass determinations from observables tied to kinematic regions with top invariant masses

close to the reconstructed top quark resonance [18–20]. The O(αs) primary massive quark

SCET and the bHQET jet functions were calculated in ref. [14]. The O(α2
s) corrections to

the bHQET jet function were computed in ref. [21].

Secondary massive quark effects in a jet function occur at O(α2
s) (NNLO) in the fixed-

order expansion and thus only become relevant in high precision predictions. Their treat-

ment in a factorization approach that separates collinear and soft quantum fluctuations,

however, inevitably leads to SCETII-type rapidity singularities and associated large log-

arithms in factorization theorems for physical cross sections [22]. These large logarithms

contribute at the next-to leading logarithmic (NLL) order. They arise from modes of equal

virtuality (i.e. invariant mass k2 ∼ k+k− ∼ m2) but widely separated rapidity (i.e. the size

of the ratio k+/k−), see e.g. ref. [23]. The treatment of these rapidity singularities in the

context of jet functions is tied to the definition of jet functions being infrared finite (match-

ing) functions describing collinear fluctuations with virtuality of order p2. Traditionally

the required infrared (IR) subtractions are associated to so-called zero-bin subtractions [24]

(that can be understood from the point of view of the SCET label formalism [6], where

the collinear label momentum zero is removed as it may not be power-counted as con-

taining collinear modes) or are simply ignored [8] (since frequently they are related to

scaleless integrals that vanish identically in dimensional regularization). However, when

secondary massive quark effects (or, conceptually equivalent, the exchange of massive gauge

bosons [22]) are considered, these subtractions are associated to non-vanishing contribu-

tions that need to be computed and specified in a well-defined and systematic fashion.

Here, the concept of a zero-bin subtraction gets tied up with the concept of a soft mass

mode bin subtraction [22, 25, 26]. The O(α2
s) secondary massive quark corrections for the

SCET jet function for primary massless quarks with imposing zero-bin as well as soft mass

mode bin subtractions were calculated in ref. [26]. However, the difference between both

types of subtractions makes the treatment of secondary quark mass effects subtle since

the mass mode subtractions may or may not be associated to lower virtuality modes that

are, depending on the application, located in separated phase space regions (i.e. having

different power counting).

We propose that an alternative and in fact more transparent view is to associate

the subtractions needed to define the jet functions to so-called collinear-soft matrix ele-

ments [27, 28], an idea that was already explored in different contexts in refs. [29, 30]. This

leads to jet function results that agree with the results based on the zero-bin and mass

mode bin subtraction concepts, but avoids the need to impose power counting arguments

to determine whether a bin subtraction for a given diagram is relevant. Interestingly, there

are two alternative ways to define the subtractions which entail two options to define jet

1For similar discussions in the context of groomed jets see e.g. refs. [16, 17, 19].
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functions, both of which differ analytically once secondary quark mass effects at O(α2
s) are

accounted for. Both options differ in whether or not the collinear-soft matrix element used

for subtractions accounts for secondary massive quark corrections. The former option leads

to what we call “universal” jet functions which merge into the well known massless quark

jet functions in the limit m → 0 and which were already introduced in refs. [26, 31]. The

latter option leads to what we call “mass mode” jet functions, which are divergent in the

limit m → 0 and contain (universal) rapidity singularities. The mass mode jet functions

are analogous to a corresponding definition for invariant mass dependent beam functions

introduced in ref. [32]. Both types of jet functions are useful to gain a transparent view

on the treatment of secondary massive quark effects and can be employed in practical ap-

plications. They are also useful to better understand the relation between the secondary

massive quark factorization approaches provided in refs. [22, 26, 31] and in ref. [32] which

lead to equivalent results. We stress that the concepts of the “universal” and the “mass

mode” jet functions also applies to the analogous situation when the effects of massive

(e.g. electroweak) gauge bosons are accounted for. This is because the structure of the

relevant dynamical modes is equivalent [22]. For the exchange of massive gauge bosons,

however, the mass effects arise already at O(αem), αem being the electromagnetic coupling,

which will be explored elsewhere. Furthermore, the same concepts can also be applied for

invariant mass dependent beam functions [33].

The main aim of this paper is to present the O(α2
s) results (and some details of their

computation) for the primary massive quark SCET jet functions. They represent important

ingredients in factorization theorems for massive quark production within an inclusive jet

where the massive quark is produced by the hard interaction and where the jet masses

are similar in size to the mass of the quark. To illustrate the application of the universal

and the mass mode jet functions we also discuss their role in the equivalent factorization

approaches of refs. [22, 26] and [32] using as an example the double differential hemisphere

mass distribution in e+e− annihilation (for the hard production of a boosted massive quark-

antiquark pair). This discussion also clarifies the relation between both approaches and

furthermore emphasizes that a smooth dependence on the value of the quark mass m (in the

sense that assumptions on the hierarchy of m with respect to the other physical scales are

not mandatory) can be achieved with them. The latter issue was already fully accounted

for in refs. [22, 26, 31] but not explored in ref. [32]. On the other hand, in ref. [32] a more

systematic representation of the building blocks to sum virtuality and rapidity logarithms

on an equal footing was provided.

The content of the paper is organized as follows. In section 2 we set up our notation

and provide the definition of the universal and the mass mode SCET jet functions in the

context of subtractions based on collinear-soft matrix elements. In section 3 we present our

results for both SCET jet functions for massive primary quarks at O(α2
s) and show that

(and in which way) the results are consistent with respect to available O(α2
s) results in the

limit of massless quarks [8] and the bHQET limit [21]. The practical use of the jet functions

in the context of the factorization approaches of refs. [22, 26, 31] and of ref. [32] is discussed

in section 4 for the example of the double differential hemisphere mass distribution in e+e−

annihilation. The discussion should be sufficient to illustrate how the jet functions can be
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used for other processes in the context of QCD as well as the electroweak theory. Here,

we also show how both approaches, considered together, are useful to gain a clearer view

on the summation of virtuality and rapidity logarithms, the structure of collinear and

soft mass mode corrections and on how a smooth dependence on the quark mass m can

be achieved in practical applications. Section 5 contains details of the calculations for

the O(α2
s) corrections to the massive primary quark SCET jet functions. This section is

self-contained and focuses on computational details because the calculations are involved

and require specific methods for different types of diagrams that may be useful for similar

future work. The readers not interested in these technical details may skip this section

except for section 5.1 which summarizes the results for the jet-function and collinear-soft

matrix elements with different infrared regulators. In section 6 we provide a brief numerical

analysis of the universal primary massive quark SCET jet function at O(α2
s) in comparison

to the corresponding known result in the massless quark and the bHQET limits. Finally,

in section 7 we conclude. The paper also contains a number of appendices. In appendix A

we provide the expressions for the universal and the mass mode jet functions at O(α2
s) for

massless primary quarks for the sake of future use. The latter can be extracted from ref. [26]

but was not given there. The massless limit of the non-distributional corrections of the

primary massive SCET jet function is provided in appendix B, and a number of virtuality

and rapidity anomalous dimensions used in the discussion of section 4 are collected in

appendix C. Finally, in appendix D we provide the results for the two-loop master integrals

needed for our calculations.

2 Jet function definitions and notation

Quark jet functions in SCET are based on the vacuum correlator of two SCET jet fields,

encoding the inclusive collinear dynamics of quark fields coherently accounting for the

collinear gluon radiation from all other color sources of a process. We work in QCD with

n` massless quark flavors and one quark flavor Q with mass m. The SCET jet-function

matrix element (ME) for a jet initiated by the primary quark f in light-like direction nµ

(~n2 = 1) is given by [5, 12]2

J
(n`+1)
f (p2,m2) =

(2π)3

Nc p−
Tr
〈

0
∣∣∣ n̄/
2
χnf (0) δ(p+ + p̂+) δ(p− + Pn) δ(2)(p⊥ + Pn⊥)χnf (0)

∣∣∣0〉
= δ(p2 −m2) +O(αs) . (2.1)

We decompose four-vectors in lightcone components according to pµ = p−nµ/2+p+n̄µ/2+

pµ⊥ with n2 = n̄2 = 0, n̄ · n = 2, and n · p⊥ = n̄ · p⊥ = 0. The SCET label momentum

operators Pn and Pn⊥ yield the sum of the large minus and perpendicular light-cone

momentum labels of the fields on their right, respectively [6], while p̂+ is the momentum

operator of the small plus momentum. The trace is over color (Nc = 3) and spinor indices.

The SCET jet fields χnf (x) are defined by

χnf (x) = W †n(x)ξnf (x) , (2.2)

2We note that in this paper we write jet functions and jet-function MEs as functions of the invariant

mass p2 ≥ m2 in order to make all dependence on the quark mass m explicit.
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where ξnf (x) is the SCET primary quark field and the n-collinear Wilson line can be writ-

ten as

Wn(x) =
∑

perms

exp

(
−g
n̄ · P

n̄ ·An(x)

)
. (2.3)

The Wilson lines in eq. (2.1) encode the universal coherent dynamics of collinear gluons

coming from other color sources, which are boosted in direction ~̄n = −~n with respect to

the direction of motion of the primary quark. They entail that the jet-function ME is

gauge-invariant with respect to collinear gauge transformations [4].

After BPS field redefinition the collinear sectors of the (leading-order) SCET La-

grangian are equivalent to boosted versions of the QCD Lagrangian [4, 5]. We can thus

express the n-collinear jet-function ME also in terms of QCD quark fields as [8]

J
(n`+1)
f (p2,m2) =

1

4πNc (n̄ · p)

∫
d4x e−ip·x Tr

〈
0
∣∣∣ n̄/
2
W †(0)ψf (0)ψf (x)W (x)

∣∣∣0〉
= Im

[
i

2πNc (n̄ · p)

∫
d4x e−ip·x Tr

〈
0
∣∣∣T{ n̄/

2
W †(0)ψf (0)ψf (x)W (x)

}∣∣∣0〉] , (2.4)

with the corresponding QCD definition for the n-collinear Wilson line

W (x) = P exp

[
i g

∫ 0

−∞
ds n̄·A(x+ sn̄)

]
. (2.5)

In eq. (2.4) we have reexpressed the jet-function ME as the imaginary part of a jet field

correlator. Taking the imaginary part is equivalent to half the discontinuity w.r.t. s =

p2 − m2 > 0. In practice, for the computation of the two-loop corrections it is more

convenient to work with eq. (2.4) rather than with the corresponding SCET expression of

eq. (2.1), because the QCD Feynman rules are simpler than the SCET Feynman rules and

lead to less diagrams.

In eqs. (2.1) and (2.4) the quark flavor index f stands for the flavor of the incoming

primary quark and can either be one of the n` massless quarks, generically referred to as q,

or the massive quark Q. The argument m represents the dependence on the mass of quark

Q and arises either from secondary Q effects (due to gluon splitting) if the primary quark

is a massless flavor q or from primary and secondary Q effects. The superscript (n` + 1)

in eqs. (2.1) and (2.4) (and for ME definitions and factorization functions used throughout

this paper) indicates that we consider the MEs in the context of QCD with n` massless

quarks and the massive quark Q. We stress, however, that here and throughout this work

the superscript (n` + 1) (or n`) on MEs or factorization functions does not automatically

imply that also the corresponding flavor scheme for the MS strong coupling is used. The

latter can in principle be chosen independently, particularly for renormalization scales µ

close to the quark mass m. We therefore specify explicitly the flavor scheme of αs when

we quote results parametrized by either α
(n`)
s or α

(n`+1)
s .

It is well known [12, 14] that the jet-function MEJ
(n`+1)
f (p2,m2) defined in eqs. (2.1)

and (2.4) is per se not infrared-finite and commonly said to implicitly require as part of

its definition zero-bin subtractions [24] to avoid double counting concerning the collinear
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overlap with softer or lower virtuality regions described by other functions in factorization

theorems where the jet function appears. Alternatively, one can consider the jet function

as an IR-finite matching function that describes fluctuations with virtualities p2 −m2 ∼
p2 & m2 and that is defined by the jet-function ME J

(n`+1)
f (p2,m2) with additional (i.e.

independent) ME subtractions related to (soft and possibly collinear) modes at smaller

virtualities. So far in the literature the required subtractions, when they contributed non-

vanishing terms, were implemented mostly via the zero-bin [12, 14] or soft mass mode

bin [22, 26, 34] prescriptions that are imposed by hand. However, from the point of view

of being matching functions, the jet functions can also be defined in a conceptually more

systematic way by explicitly dividing out fluctuations with momenta n · k = k+ ∼ p2/Q

and virtualities k2 � p2 − m2 in terms of a so-called collinear-soft ME. This also has

the advantage that no additional power counting arguments are mandatory to identify

which contributions have to be accounted for (and which not), as it is necessary when

implementing a bin subtraction.

In case that all (n` + 1) quarks are massless this results in the jet function definition

J
(n`+1)
f (p2, 0) ≡

∫
d`J

(n`+1)
f (p2 − (n̄ · p)`, 0)

(
S (n`+1)(`, 0)

)−1
. (2.6)

Here S (n`+1)(`,m) is the collinear-soft ME of our (n` + 1) flavor theory (with n` massless

quarks q and one quark Q with mass m) and defined as3

S (n`+1)(`,m) =
1

Nc
Tr
〈

0
∣∣∣T[V (0)†

n (0)X(0)
n (0)

]
δ(`− p̂+) T

[
X(0)†
n (0)V (0)

n (0)
]∣∣∣ 0〉 , (2.7)

with the collinear-soft Wilson lines [27, 28]

Xn(x) =
∑

perms

exp

(
−g
n · P

νη/2

|n̄ · P|η/2
n ·Acs(x)

)
,

Vn(x) =
∑

perms

exp

(
−g
n̄ · P

νη/2

|n̄ · P|η/2
n̄ ·Acs(x)

)
, (2.8)

including the symmetric analytic rapidity regularization of ref. [23]. The inverse of the

collinear-soft ME is defined by the convolution∫
d`′S (n`+1)(`− `′,m)

(
S (n`+1)(`′,m)

)−1
= δ(`) , (2.9)

and we use the analogue relations for defining the inverse of all (factorization) functions

depending on dynamical variables. The combination of MEs in eq. (2.6) yields the well

known IR finite massless quark jet function at one [7], two [8] and three loops [9]. The

analogous definition (with the appropriate color representation for the Wilson lines) can be

applied also for the gluon jet function [35–37]. For (n`+1) massless quarks the subtraction

3Note that the collinear-soft matrix element is universal in the sense that it only depends on the color

representations of the partons involved as noted in ref. [27]. Therefore the result is equivalent to the one

given in eq. (B.51) of ref. [32] where massive quark effects in exclusive Drell-Yan were considered.
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of the low virtuality modes is from the purely computational point of view, however, not

strictly mandatory for computations of the jet function when dimensional regularization

for UV and IR divergences is used because then S (n`+1)(`, 0) yields vanishing scaleless

integrals beyond tree-level.

On the other hand, when considering the quark Q having a finite mass m, S (n`+1)(`,m)

is not anymore scaleless and yields non-vanishing O(α2
sCFTF ) contributions in dimensional

regularization due to mass mode fluctuations with virtualities k2 ∼ m2. We note that

the mass mode contributions in the collinear-soft ME S (n`+1)(`,m) are only related to

secondary effects of the massive quark Q due to closed Q loops, so that it is the same for

the jet functions for a massless and a massive primary quark.

Interestingly, secondary massive quark effects do not lead to IR divergences (as long

as one does not take the massless limit) that must always be subtracted. It is therefore

not mandatory to use the massive quark analogue of eq. (2.6) to define the jet function.

This is also related to the emergence of rapidity singularities, which one may not associate

to be of either UV or IR type and leads to two options to define the SCET jet function in

the context of QCD with n` massless flavors and one quark Q with mass m.

The first option is just the analogue of eq. (2.6) but with the (n`+1)st quark Q having

mass m,

J
uf,(n`+1)
f (p2,m2) ≡

∫
d`J

(n`+1)
f (p2 − (n̄ · p)`,m2)

(
S (n`+1)(`,m2)

)−1
. (2.10)

The primary jet-initiating quark flavor f can either be one of the n` massless quarks

q or the massive quark Q. Here the collinear-soft ME is calculated in the full (n` +

1) flavor theory and thus encodes in particular the secondary effects coming from the

massive quark Q. This jet function yields by construction the massless quark jet function

J
(n`+1)
f (p2, 0) of eq. (2.6) in the limit m → 0. J

uf,(n`+1)
f (p2,m2) and J

(n`+1)
f (p2, 0) have

the same anomalous dimension and are furthermore free of rapidity divergences as well

as of any large rapidity logarithms. For J
uf,(n`+1)
f (p2,m2) both cancel between J

(n`+1)
f

and S (n`+1). Upon renormalizing J
uf,(n`+1)
f the only dependence on a renormalization

scale is that on the virtuality scale µ. Following the philosophy of the SCET jet function

being a matching function describing fluctuations with virtuality p2 − m2 ∼ p2, the jet

function of eq. (2.10) is the mandatory definition for the case where m2 � p2 where the

quark mass m is an IR scale and mass effects represent power corrections. In that regime,

however, one may as well use the massless quark jet function J
(n`+1)
f (p2, 0). The jet function

J
uf,(n`+1)
f (p2,m2) can, however, also be employed for p2 ∼ p2 − m2 ∼ m2 following the

approach of refs. [22, 26] (originally developed for massless primary quark jet functions)

where universal hard, jet and soft (and in principle also invariant mass dependent beam)

functions can be defined valid for any value of m2, with respect to the other dynamic scales

and the renormalization scale µ. This approach makes the µ-evolution in n` or (n` + 1)

flavor schemes to sum virtuality logarithms particularly transparent and allows to formulate

factorization theorems that smoothly interpolate all possible hierarchies as far as the value

of m with respect to the other kinematic scales is concerned. The approach of refs. [22, 26]

also entails that rapidity singularities (and the respective resummation of logarithms) only

– 8 –
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arise within the mass threshold matching conditions for the individual hard, jet (as well as

beam) and soft factorization functions. Since these threshold matching conditions consist

of a few universal collinear and soft mass mode factors, there can be cancellations among

them in the context of a factorization theorem related to consistency relations. So mass

mode factors can arise in the matching conditions that are physically not relevant for a

particular observable and eventually cancel in the corresponding factorization theorem. We

call this the “universal factorization function” approach and therefore give the jet function

definition in eq. (2.10) the superscript “uf”. In the following we call it the “universal

jet function”.

The second option is to define the jet function in the presence of a massive quark by

J
mf,(n`+1)
f (p2,m2) =

∫
d`J

(n`+1)
f (p2 − (n̄ · p)`,m2)

(
S (n`)(`)

)−1
, (2.11)

where the collinear-soft ME is calculated in the n` flavor theory, i.e. containing the n`
massless quarks but not accounting for the massive quark Q. Like for the jet function

J
uf,(n`+1)
f , the primary jet-initiating quark f can either be one of the n` massless quarks

q or the massive quark Q. The jet function J
mf,(n`+1)
f is IR divergent for m → 0 and

furthermore has rapidity singularities that are treated by rapidity renormalization. So

upon renormalization, J
mf,(n`+1)
f depends on the (virtuality) renormalization scale µ and

in addition on the (rapidity) renormalization scale ν. Following the philosophy of the

SCET jet function being a matching function describing the fluctuations with virtuality

p2 − m2 ∼ p2, the jet function of eq. (2.11) is the natural option for the case where

m2 ∼ p2 ∼ p2 −m2, when the mass is not an IR scale. It has also been advocated for this

scale hierarchy in ref. [32] (originally developed for the massless primary quark and invariant

mass dependent beam function [38]). In the factorization approach of ref. [32] separate

factorization theorems are formulated for each possible hierarchy of the mass scale m with

respect to the other kinematic scales. The approach is not designed to provide smooth

dependence on m, but is more economical (in the sense of being minimalistic) concerning

the appearance of collinear and soft mass mode contributions so that no cancellations arise

between them in the context of a factorization theorem. Furthermore, the collinear and

soft mass mode contributions adopt the status of genuine factorization functions. The

resulting structure of factorization theorems makes the structure of ν-evolution to sum

rapidity logarithms particularly transparent as it appears at the same level as the virtuality

µ-evolution. We call this the “mass mode factorization” approach and therefore give the

jet function definition in eq. (2.11) the superscript “mf”. In the following we call it the

“mass mode jet function”.

The difference between both MS-renormalized massive quark jet function defini-

tions yields4

Sc(`,m, µ, ν) =
1

n̄ · p

∫
dp′2 J

mf,(n`+1)
f ((n̄ · p)`− p′2,m2, µ, n̄ · p/ν)

(
J

uf,(n`+1)
f (p′2,m2, µ)

)−1

=

∫
d`S (n`+1)(`− `′,m, µ, ν)

(
S (n`)(`′, µ, ν)

)−1
, (2.12)

4The inverse jet function is defined in analogy to eq. (2.9).
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and is called the “collinear-soft function” in ref. [32]. It is IR-finite for finite m and has a

dependence on the virtuality and the rapidity renormalization scales µ and ν, respectively.

In section 4 we illustrate the practical use of both types of jet functions and the two

factorization approaches of refs. [22, 26] and [32] exemplarily for the double differential

hemisphere mass distribution in e+e− collisions for the hierarchies m2 ∼ p2 ∼ p2−m2 and

m2 � p2. We also stress that the form of the collinear-soft ME of eq. (2.7) and the two

options of using either eq. (2.10) or eq. (2.11) for IR finite jet functions in the presence of

massive quarks can also be applied in a fully equivalent way for invariant mass dependent

beam functions [38] and the bHQET jet function [12, 14].5 The approach also applies in

an analogous way for the treatment of massive gauge bosons which is conceptually related

to the issues of secondary quark mass effects as was discussed in [22].

3 Analytic results: primary massive quark SCET jet functions

In this section we present the analytic results for the O(α2
s) primary quark SCET jet

functions. Details on the computation of the O(α2
s) corrections, which are all new, are

given in section 5. We use the abbreviations

a
(nf )
s ≡ α

(nf )
s (µ)

4π
and s ≡ p2 −m2 , (3.1)

for the strong coupling in the nf -flavor scheme and the squared jet function invariant mass

p2, respectively,

Lm ≡ log
m2

µ2
, (3.2)

as well as

Ln(x) ≡ 1

µλ

[
Θ(x) logn(x/µλ)

x/µλ

]
+

, (3.3)

for plus-distributions for a variable x having mass dimension λ, where µ is the common MS

renormalization scale. They are defined such that
∫ 1

0 dxLn(x) = 0. Furthermore we define

y ≡ m2

p2
, ȳ ≡ s

p2
= 1− y , Ly ≡ log(y) , Lȳ ≡ log(ȳ) . (3.4)

In the physical kinematic region we have 0 ≤ y, ȳ ≤ 1. Note that we also use the notation

Q ≡ (n̄ · p) = p− , (3.5)

and that we carry out all computations in d = 4− 2ε dimensions.

5In the context of bHQET [12, 14] we refer to the situation that some of the n` light flavors have finite

masses smaller than the mass m of the primary HQET quark, but larger than the hadronization scale

ΛQCD. The equivalence of the collinear-soft MEs (or the zero-bin subtractions) for SCET and bHQET is a

consequence of a rescaling property of the bHQET and SCET soft gluon eikonal couplings that can e.g. be

trivially seen from the structure of the zero-bin diagrams in both effective theories.
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3.1 Mass mode jet function

The result for the renormalized primary massive mass mode jet function J
mf,(n`+1)
Q , defined

in eq. (2.11), in the pole mass scheme at O(α2
s) can be written in the form

J
mf,(n`+1)
Q (p2,m2,µ,Q/ν) = δ(p2−m2)+a(n`)

s J
(1)
Q (p2,m2,µ) (3.6)

+
(
a(n`)
s

)2(
J

(2)
Q (p2,m2,µ)+J

(2),mf
Q,sec (p2,m2,µ,Q/ν)

)
+O

(
α3
s

)
,

where we adopt the n` flavor scheme for the strong coupling. This can be considered

the natural scheme choice for the mass mode jet function since it matches directly to the

bHQET jet function, see section 3.3. It is of course straightforward to switch to the (n`+1)

flavor scheme using eq. (3.30). At O(α2
s) we distinguish between the corrections from dia-

grams containing only one single quark Q line (J
(2)
Q ) and those from diagrams containing the

QQ̄ vacuum polarization correction (J
(2)
Q,sec). The mass mode jet function contains rapidity

singularities from the QQ̄ vacuum polarization diagrams which are renormalized following

the approach of [23, 39] and which lead to the dependence on the rapidity renormalization

scale ν. For the prototypical application of the mass mode jet function within factorization

theorems where all logarithms are resummed by explicit renormalization group evolution

factors the natural choice for the rapidity renormalization scale is ν ∼ Q. This is indicated

by the argument Q/ν. Throughout this paper we adopt this convention for the rapidity

scale ν in an analogous way. In case the natural choice for ν is process (or factorization

theorem) dependent, only ν appears as the argument.

The O(αs) contribution accounting for terms up to O(ε2) in order to maintain all

information mandatory for O(α2
s) calculations reads

J
(1)
Q (p2,m2,µ) =CF

{(
2L2

m+Lm−
π2

3
+8

)
δ(s)+(−4Lm−4)L0(s)+8L1(s) (3.7)

+G1Θ(p2−m2)

+ε

[(
3

2
L2
m−

2π2

3
Lm+16− 5π2

12
− 16ζ3

3

)
δ(s)+

(
−2L2

m−4Lm−8+π2
)
L0(s)

+(8+8Lm)L1(s)−8L2(s)+G
(ε)
1 Θ(p2−m2)

]
+ε2

[(
1

6
L4
m+

1

6
L3
m+

(
4− π2

6

)
L2
m+

(
−7π2

12
−4ζ3

)
Lm+32− 2π2

3
− π4

120
−5ζ3

)
δ(s)

+
(
−2

3
L3
m−2L2

m+(−8+π2)Lm−16+π2+
28ζ3

3

)
L0(s)

+
(
4L2

m+8Lm+16−2π2
)
L1(s)+(−8−8Lm)L2(s)+

16

3
L3(s)+G

(ε2)
1 Θ(p2−m2)

]}
.

Here, all distributional contributions are displayed explicitly and the non-distributional

contributions are contained in the functions

G1 =
1

s

[
ȳ2 + 4Ly

]
= − 4

m2
+O

( s

m4

)
, (3.8)

G
(ε)
1 =

1

s

[(
−ȳ2 − 4Ly

)
Lm + Ly

(
−8Lȳ + y2 − 2y + 5

)
− 2ȳ2Lȳ + ȳ2 + 6L2

y

]
(3.9)

=− 4

m2
(−2 log(ȳ/y)− Lm + 1) +O

( s

m4

)
,
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G
(ε2)
1 =

1

s

[(
Ly
(
8Lȳ − y2 + 2y − 5

)
+ 2ȳ2Lȳ − ȳ2 − 6L2

y

)
Lm +

(
ȳ2

2
+ 2Ly

)
L2
m (3.10)

+ L2
y

(
1

2

(
y2 − 2y + 13

)
− 12Lȳ

)
+ 2ȳ2L2

ȳ − 2ȳ2Lȳ −
1

4

(
π2 − 8

)
ȳ2 +

14

3
L3
y

+ Ly

(
− 2

(
y2 − 2y + 5

)
Lȳ + 8L2

ȳ + y2 − 2y − π2 + 9
)]

=
1

m2

[
(4− 8 log(ȳ/y))Lm − 8 log2(ȳ/y) + 8 log(ȳ/y)− 2L2

m + π2 − 8
]

+O
( s

m4

)
.

These functions do not contribute to the singular behavior in the bHQET limit s =

p2−m2 � m2 and thus represent power corrections in this kinematic region. They consti-

tute the so-called O(αs) bHQET non-singular corrections that are important for physical

factorization predictions in the region s . m2 to achieve a smooth transition between

bHQET and SCET factorization theorems [12, 13]. For completeness we also quoted the

s→ 0 limit of the G1-functions. The ε→ 0 limit of eq. (3.7) was already given in ref. [14],

and we refer to this reference for pictures of the Feynman diagrams and details of the

calculation. The determination of the O(ε) and O(ε2) contributions is straightforward.

The O(α2
s) contributions arising from Feynman diagrams containing only one single

quark Q line (see all diagrams in figure 1 with the diagrams (o)-(r) containing only massless

quark bubbles) read

J
(2)
Q (p2,m2,µ) =C2

F

{[
2L4

m+2L3
m+

(
33

2
−2π2

)
L2
m+

(
−56ζ3+

13

2
−π2

)
Lm (3.11)

−38ζ3−
π4

2
+

433

8
+π2

(
−1

3
−8log2

)]
δ(s)

+

[
−8L3

m−12L2
m+

(
20π2

3
−36

)
Lm+64ζ3+

20π2

3
−32

]
L0(s)

+
[
32L2

m+40Lm−
40

3

(
π2−6

)]
L1(s)+[−48Lm−48]L2(s)+32L3(s)

+G
(1Q)
CF

Θ(p2−m2)+G(3Q)Θ(p2−(3m)2)

}
+CFCA

{[(
367

18
− 2π2

3

)
L2
m+

(
20ζ3+

341

18
− 56π2

9

)
Lm−

188ζ3
9
− 2π4

15
+

60221

648

+π2
(

4log2− 169

54

)]
δ(s)

+
[
−22

3
L2
m+

4

9

(
3π2−100

)
Lm+

4

27

(
135ζ3−547+42π2

)]
L0(s)

+

[
88

3
Lm−

8π2

3
+

800

9

]
L1(s)− 88

3
L2(s)+G

(1Q)
CA

Θ(p2−m2)− 1

2
G(3Q)Θ(p2−(3m)2)

}
+CFTFn`

{[
−58

9
L2
m+

2

9

(
8π2−37

)
Lm+

1

162

(
288ζ3−6037+132π2

)]
δ(s)

+
[

8

3
L2
m+

128

9
Lm−

16

27

(
3π2−47

)]
L0(s)+

[
−32

3
Lm−

256

9

]
L1(s)+

32

3
L2(s)

+GTFΘ(p2−m2)

}
.
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The distributional contributions are again displayed explicitly. There are two sets of non-

distributional contributions. One set (∝ Θ(p2 − m2)) is related to terms that are non-

vanishing above the one-particle cut and the other (∝ Θ(p2 − (3m)2)) is related to terms

that are non-vanishing above the three particle QQQ̄ cut. Even though the term J
(2)
Q

exclusively arises from diagrams with one single quark Q line, see figure 1, three particle

QQQ̄ cuts can arise due to the antiparticle component of the quark Q propagator. The

non-distributional contributions ∝ Θ(p2 −m2) read

G
(1Q)
CF

=
1

s

{
L2
m

(
2ȳ2+8Ly

)
+Lm

[
4ȳ2Lȳ+Ly (16Lȳ−4(2(y−2)y+5))−7ȳ2−24L2

y

]
+Ly

[
4

ȳ

(
3y
(
y2+y+5

)
−13

)
Lȳ+24L2

ȳ−8Li2(−ȳ/y)− 2

ȳ

−2y
(
y(3y−17)+35

)
− 16π2

3
+47

]
+L2

y

[
−36Lȳ−

32

ȳ
+8y(y+5)+76

]
+2Lȳ

[
8Li2(−ȳ/y)+y(y(3y−17)+37)−7

]
−8(y−2)ȳL2

ȳ

+
4

ȳ

(
(2−21y)y+7

)
Li2(−ȳ/y)+32Li3(ȳ)−16Li3(−ȳ/y)+

97

90
π4yȳ (3.12)

+8(3y−13)ζ3ȳ+
1

3
π2ȳ
(
y(72log2−49)+15

)
+

68

3
L3
y−

3

2
y2−65y+

33

2
+Gfit(y)

}
=

1

m2

[
Lm

(
12−16log(ȳ/y)

)
−15.0log2(ȳ/y)+22.0992log(ȳ/y)−8L2

m−13.8568
]

+O
(
s

m4

)
,

G
(1Q)
CA

=
1

s

{
Lm

11

3

(
−ȳ2−4Ly

)
+2Ly

[
−2L2

ȳ+
(
−8

ȳ
+12y− 5

3

)
Lȳ

− 1

9ȳ

(
54ȳLi2(−ȳ/y)−3π2ȳ+y

(
3y(5y+18)+107

)
−212

)]
+L2

y

(
−2Lȳ+

16

ȳ
−28y+

25

3

)
+2(y−3)ȳL2

ȳ−
2

3

(
y(5y+17)+2

)
Lȳ

− 2

3ȳ

[
y
(

3y(y−24)+40
)
−7

]
Li2(−ȳ/y)−32Li3(ȳ)−24Li3(−ȳ/y)

+
4

9

(
9(13−3y)ζ3ȳ+46y2−17y+43

)
− 97

180
π4yȳ

− 1

3
π2ȳ
(
y(36log2−26)+9

)
−2L3

y−
Gfit(y)

2

}
(3.13)

=
1

m2

[
−0.5log2(ȳ/y)+26.2837log(ȳ/y)+

44

3
Lm−37.1102

]
+O

(
s

m4

)
,

GTF =
1

s

{
Lm

[
4

3
ȳ2+

16

3
Ly

]
+

8

3
ȳ2Lȳ+Ly

[
32

3
Lȳ+

4

9ȳ

(
y(6(y−3)y+29)−35

)]
− 2

9

[
24Li2(−ȳ/y)+y(19y−26)+43

]
− 32

3
L2
y

}
(3.14)

=− 8

9m2

(
6Lm+12log(ȳ/y)−19

)
+O

(
s

m4

)
.
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The non-distributional contributions ∝ Θ(p2 − (3m)2) read

G(3Q) =
1

s


√(

1−√y
)(

1+3
√
y
)(

3y2+44y−7
)(√

y+1
) E

((
1−3
√
y
)(

1+
√
y
)3(

1+3
√
y
)(

1−√y
)3
)

−
8
√

1+3
√
y
(
3y5/2−18y3/2+3y3+43y2−y+3

√
y−1

)
3
(
1−√y

)5/2 (
1+
√
y
) K

((
1−3
√
y
)(

1+
√
y
)3(

1+3
√
y
)(

1−√y
)3
)

+I3 (y)
8y (1+y)2

3ȳ

 (3.15)

=
π(p2−(3m)2)2

3456
√

3m6
+O

(
(p2−(3m)2)3

m8

)
.

The non-distributional contributions ∝ Θ(p2 −m2) coming from diagrams (b) and (c) in

figure 1 could only be computed numerically for general values of p2 and m2, and are

parametrized by the fit function Gfit which has the convenient form6

Gfit(y) = ȳ

[
c11

(
1

6
π2y + Lȳ

)
+ c12

(
L2
ȳ − 2yζ3

)
+ c21

(
1

6

(
π2 − 6

)
y + ȳLȳ

)
+ c22

(
ȳL2

ȳ − 2y(ζ3 − 1)
)

+ c23

(
1

15

(
π4 − 90

)
y + ȳL3

ȳ

)]
, (3.16)

with

c11 = −41.9008, c12 = 1.0, c21 = −20.2744, c22 = −10.5870, c23 = −7.1277 . (3.17)

With the values of the fitting parameters cij quoted in eq. (3.17) the fit function Gfit ap-

proximates the corresponding numerical results obtained in section 5.2.2 with a relative

precision of better than 0.5%. Also accounting for the intrinsic uncertainty of the numer-

ical results we reach an accuracy of at least 1% for Gfit. Besides that we note that the

contributions parametrized in the fit function account for less then 0.5% of the O(α2
s) cor-

rections for all physical values of y = m2/p2. So for all practical purposes the uncertainties

associated to Gfit are negligible, and we did not quote uncertainties in eq. (3.17).

The O(α2
s) contributions arising from Feynman diagrams containing the QQ̄ vacuum

polarization subdiagrams (see diagrams (o)-(r) in figure 1 with only massive quark bub-

bles) read

J
(2),mf
Q,sec (p2,m2, µ,Q/ν) = CFTF

{[
2L2

m +

(
2

3
+

8π2

9

)
Lm +

3139

162
− 4π2

3
+

8ζ3

3

−
(

8

3
L2
m +

80

9
Lm +

224

27

)
log

(
Q

ν

)]
δ(s) +G(3Q)

sec Θ
(
p2 − (3m)2

)}
, (3.18)

where again the distributional contributions are displayed explicitly. The dependence

on the rapidity renormalization scale ν is displayed explicitly in terms of the logarithm

6We note that the function Gfit contains contributions arising both from Q and QQQ̄ final states.

– 14 –



JHEP 08 (2019) 112 [arXiv:1912.08211] 135

J
H
E
P
0
8
(
2
0
1
9
)
1
1
2

log(Q/ν). In the (n` + 1) flavor scheme for the strong coupling the coefficient J
(2),mf
Q,sec is the

only one that is modified: J
(2),mf
Q,sec → J

(2),mf
Q,sec + 4/3LmJ

(1)
Q .

The non-distributional contributions arise entirely from the three particle QQQ̄ cut

and its result reads

G(3Q)
sec =

1

s

[
−

8
(
252y9/2 + 570y7/2 + 822y5/2 + 118y3/2 + 45y5 + 357y4 + 720y3 + 524y2

)
27
√

1 + 3
√
y
(
1−√y

)5/2 (√
y + 1

)3
×

8
(
y + 10

√
y + 5

)
9
√

1 + 3
√
y
(
1−√y

)5/2 (√
y + 1

)3 K

((
1− 3

√
y
) (

1 +
√
y
)3(

1 + 3
√
y
) (

1−√y
)3
)

+
2
√(

1−√y
)3 (

1 + 3
√
y
) (

81y4 + 54y3 − 24y2 − 54y + 71
)

27ȳ3
E

((
1− 3

√
y
) (

1 +
√
y
)3(

1 + 3
√
y
) (

1−√y
)3
)

+
32y1/4

(
15y3 + 27y2 + 25y + 5

)
9
√(

1−√y
)3 (

3
√
y + 1

)
ȳ

Π

((
1− 3

√
y
) (

1 +
√
y
)(

1−√y
)2 ;

(
1− 3

√
y
) (

1 +
√
y
)3(

1 + 3
√
y
) (

1−√y
)3
)

+
16

3
Î(y)

]
=

11π(p2 − (3m)2)2

5184
√

3m6
+O

(
(p2 − (3m)2)3

m8

)
. (3.19)

The non-distributional three particle QQQ̄ cut contributions in J
(2)
Q and J

(2)
Q,sec involve the

elliptic functions

K(m) ≡
∫ π

2

0
dt

1√
1−m sin2 t

, (3.20)

E(m) ≡
∫ π

2

0
dt
√

1−m sin2 t , (3.21)

Π(n;m) ≡
∫ π

2

0
dt

1

(1− n sin2 t)
√

1−m sin2 t
, (3.22)

and the integral functions

I3(y) =

∫ 1/y

9
dt

2 (t− 9)

(t− 1)
√

(
√
t+ 3)(

√
t− 1)3

K

((√
t− 3

) (√
t+ 1

)3
(
√
t+ 3)(

√
t− 1)3

)
, (3.23)

Ĩ(y) =

∫ 1
4

(1−√y)2

y
dz

√
z − y log

(
y−4z−1−

√
(y+4z−1)2−16yz

y−4z−1+
√

(y+4z−1)2−16yz

)
z3/2

, (3.24)

which can be readily evaluated numerically. For related discussions see e.g. ref. [40]. In

practical applications it is, however, useful to have an approximate representation of G(3Q)

and G
(3Q)
sec involving only elementary functions. Such approximate representations are
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provided by

G(3Q) ≈ 1

m2

{
c
CF (3Q)
1

[
81y2

(
9y +

1

4

)
log(9y)− 81

8
y2(9y − 1)(27y + 7)

]
+ c

CF (3Q)
2

[
81y2

(
81y2 − 1

3

)
log(9y)− 27y2(9y − 1)(45y − 3)

]
− 1

256
y(9y − 1)

[
− 243y2

(
− 64

(
176ζ3 − 209 + 8 log2 3− 8 log 3

)
+ 9
√

3π

+ 128π2(16 log 2− 11)
)

+ 9y
(
− 64

(
1584ζ3 − 1869 + 72 log2 3− 88 log 3

)
+ 45
√

3π + 1152π2(16 log 2− 11)
)

+ 256(4 log 3− 7)

]
+ 9y log(9y)

[
9y

(
1

18

(
−528ζ3 + 611− 24 log2 3 + 40 log 3

)
+

√
3π

128

+
1

3
π2(16 log 2− 11)

)
− 2

9

]}
(3.25)

=
9y

m2

[
− 1.4175(1− 9y) + 1.6758(1− 9y)2 − 0.5478(1− 9y)3 − 1.4175 log(9y)

+ 2.3420(1− 9y) log(9y)− 1.3552(1− 9y)2 log(9y) + 0.2085(1− 9y)3 log(9y)
]
,

G(3Q)
sec ≈

1

m2

{
cTF (3Q)

[
81y2

(
9y +

1

4

)
log(9y)− 81

8
y2(9y − 1)(27y + 7)

]
+
y(9y − 1)

3456

[
− 64

(
81y2

(
432ζ3 − 2053 + 576 log3 3 + 72 log2 3 + 816 log 3

)
+ 9y

(
−1296ζ3 + 6491− 1728 log3 3 + 360 log2 3− 2688 log 3

)
+ 4

(
359 + 144 log2 3− 348 log 3

) )
+ 8019

√
3πy(27y − 5)

+ 384π2
(

243y2(8 log 3− 9) + 9y(89− 72 log 3) + 8
)]

+ 9y log(9y)

[
9y
( 1

81

(
−144ζ3 + 863− 192 log3 3 + 168 log2 3− 448 log 3

)
+

11π

64
√

3
+

2

81
π2(24 log 3− 35)

)
− 4

81
(24 log 3− 29)

]
+

8

3
y log2(9y)

}
(3.26)

=
9y

m2

[
− 0.2586(1− 9y) + 0.5931(1− 9y)2 − 0.0707(1− 9y)3 − 0.2586 log(9y)

+ 0.7070(1− 9y) log(9y)− 0.3183(1− 9y)2 log(9y) + 0.2963 log2(9y)
]
,

with c
CF (3Q)
1 = −0.7298, c

CF (3Q)
2 = −0.2085, cTF (3Q) = −0.3183. They both approximate

the exact expressions to better than 0.5% over the physical kinematic range and provide

exact analytic results in the limit p2 → 9m2 and m→ 0. We also quoted a fully numerical

version of the expressions useful for practical applications.
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In analogy to the non-distributional terms at O(αs) the non-distributional G-functions

at O(α2
s) do not contribute to the singular contributions in the bHQET limit s = p2−m2 �

m2. They represent power corrections in this kinematic region and constitute the O(α2
s)

bHQET non-singular corrections. For completeness we also quoted the respective results in

the limit p2 → m2 (eqs. (3.12)–(3.14)) and in the limit p2 → 9m2 (eqs. (3.15) and (3.19)).

For completeness we also provide the result for the renormalized mass mode jet function

J
mf,(n`+1)
q (p2,m2, µ,Q/ν) for massless primary quarks in eq. (A.1), which can be extracted

from the calculations in ref. [26], but was not given in the literature before. The µ (virtu-

ality) and ν (rapidity) anomalous dimensions of the mass mode jet functions for massive

and massless primary quarks agree identically.

3.2 Universal jet function

The result for the renormalized primary massive universal jet function J
uf,(n`+1)
Q , defined

in eq. (2.10), in the pole mass scheme at O(α2
s) can be written in the form

J
uf,(n`+1)
Q (p2,m2, µ) = δ(p2 −m2) + a(n`+1)

s J
(1)
Q (p2,m2, µ) (3.27)

+
(
a(n`+1)
s

)2 (
J

(2)
Q (p2,m2, µ) + J

(2),uf
Q,sec (p2,m2, µ)

)
+O(α3

s) ,

where we adopt the (n` + 1) flavor scheme for the strong coupling, which is the natural

scheme choice for the universal jet function. The universal jet function does not contain

rapidity divergences and thus only depends on the UV renormalization scale µ coming from

dimensional regularization. The O(αs) coefficient J
(1)
Q and the O(α2

s) contribution from

diagrams containing only one single quark Q line J
(2)
Q (see all diagrams in figure 1 with the

diagrams (o)-(r) containing only massless quark bubbles) are identical to the mass mode

jet function and given in eqs. (3.7) and (3.11), respectively.

The O(α2
s) contributions arising from Feynman diagrams containing the QQ̄ vacuum

polarization subdiagrams (see diagrams (o)-(r) in figure 1 containing only massive quark

bubbles) read

J
(2),uf
Q,sec (p2,m2, µ) = CFTF

[(
32

9
L3
m +

70

9
L2
m +

754

27
Lm −

32ζ3

9
− 46π2

27
+

7075

162

)
δ(s)

+

(
−8L2

m −
128

9
Lm −

224

27

)
L0(s) +

32

3
LmL1(s)

+
4

3
LmG1Θ(p2 −m2) +G(3Q)

sec Θ(p2 − (3m)2)

]
, (3.28)

where again the distributional contributions are displayed explicitly. The non-distributional

contributions come from the single heavy quark Q cut and from the three particle QQQ̄

cut. The Q cut term is given in eq. (3.8) and arises from using the (n` + 1) flavor scheme

for the strong coupling. The QQQ̄ cut term G
(3Q)
sec is given in eq. (3.19).

The non-distributional G-functions represent power corrections in the bHQET limit

s = p2−m2 � m2 and represent O(α2
s) bHQET non-singular corrections. For completeness
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we also quoted the respective results in the limit p2 → m2 (eqs. (3.12)–(3.14)) and in the

limit p2 → 9m2 (eqs. (3.15) and (3.19)).

For completeness we also quote the result for the renormalized universal jet func-

tion J
uf,(n`+1)
q (p2,m2, µ) for primary massless quarks in eq. (A.6), which was computed in

ref. [26]. The renormalization Z-factor as well as the µ (virtuality) anomalous dimension of

the universal jet functions (to all orders as well as for primary massive and massless quarks)

agree with those of the well known massless quark jet functions [8].

3.3 Consistency checks and kinematic limits

There are a number of essential consistency properties the O(α2
s) primary massive quark jet

functions have to satisfy and which provide important consistency checks. These concern

the relation between the mass mode and universal jet functions, the limit of massless quarks

and the bHQET limit of a supermassive quark. We discuss them in the following.

As explained in section 2, the difference between the mass mode and the universal jet

functions is related to the collinear-soft function Sc [32] via eq. (2.12). Using the results

of eqs. (3.6) and (3.27) and accounting for the result for the renormalized collinear-soft

function determined in ref. [32], which in our notation has the form

Sc(`,m, µ, ν) = δ(`) +
(
a(n`)
s

)2
CFTF

{[(
8

3
L2
m +

80

9
Lm +

224

27

)
log

(
ν

µ

)
− 8

9
L3
m −

40

9
L2
m

+
4

27

(
3π2 − 112

)
Lm +

2

27

(
84ζ3 − 328 + 5π2

) ]
δ(`)

+

[
8

3
L2
m +

80

9
Lm +

224

27

]
L0(`)

}
+O(α3

s) , (3.29)

it is straightforward to check the validity of eq. (2.12). Here one has to account for the

decoupling relation

α(n`+1)
s (µ) = α(n`)

s (µ)

{
1− α

(n`)
s (µ)

4π
TF

[
4

3
Lm + ε

(
−2

3
L2
m −

π2

9

)

+ ε2

(
2

9
L3
m +

π2

9
Lm +

4ζ3

9

)
+O(ε3)

]}
+O(α3

s) , (3.30)

for αs in the n` and (n` + 1) flavor schemes (where we also displayed the O(ε) and O(ε2)

terms useful for divergent expressions). The sole dependence of the collinear-soft function

on the rapidity scale ν indicates that the natural choice for ν in general depends on the

process and the structure of the factorization theorem.

The definition of the universal jet function J
uf,(n`+1)
f given in eq. (2.10) entails that for

m → 0 it converges to the jet function J
(n`+1)
f for (n` + 1) massless quarks, see eq. (2.6),

which at O(α2
s) was computed in ref. [8]. In the limit m → 0, the non-distributional G-

functions also yield distributions and the corresponding limiting expressions are given in

appendix B. Accounting for these results our expression for universal jet function correctly

approaches the massless quark two-loop jet function for m→ 0.
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Finally, we discuss the bHQET limit s = p2−m2 � m2, the jet mass threshold region.

Taking the double differential hemisphere jet mass distribution in e+e− annihilation (w.r.t.

the thrust axis) as an example, one can consider the kinematic region where both jet masses

are close to threshold. The corresponding factorization theorem for boosted top quarks

(Q� m) has the form [12, 41]7

1

σ0

dσ

dM2
Q dM2

Q̄

= H
(n`+1)
Q (Q,µ)Hm

(
m,

Q

m
,µ

)∫
d`+ d`− S(n`)(`+, `−, µ)

× J (n`)
B

(
M2
Q −Q`+

m
−m,µ

)
J

(n`)
B

(
M2
Q̄
−Q`−

m
−m,µ

)

×

[
1 +O

(
mαs
Q

)
+O

(
m2

Q2

)
+O

(
s2
Q,Q̄

m4

)]
, (3.31)

where MQ,Q̄ stand for the hemisphere masses, σ0 denotes the tree level cross section for

e+e− → QQ̄. The term H
(n`+1)
Q is the hard function related to the matching of the QCD

QQ̄ current to the SCET massive quark dijet current at the scale Q and the term Hm is

the mass threshold hard function related to the matching of the SCET dijet current to

the bHQET current at the scale m. The terms J
(n`)
B and S(n`) denote the bHQET jet

function [12, 21] and dijet soft function, respectively. The soft function S(n`) describes

ultrasoft cross talk between the two jets at the scale sQ/Q. The bHQET jet function

J
(n`)
B [12, 21] describes the effects of the ultra-collinear radiation inside the jets (i.e. soft

radiation in the rest frame of the massive quarks) at the scales sQ,Q̄/m and contain all

the dynamical (ultra) collinear effects for sQ,Q̄ � m2. The mass threshold hard function

Hm(m,Q/m,µ) consists of n-collinear, n̄-collinear and soft mass mode contributions which

can be written in factorized form as [41]

Hm

(
m,

Q

m
,µ

)
= Hm,n

(
m,µ,

Q

ν

)
Hm,n̄

(
m,µ,

Q

ν

)
Hm,s

(
m,µ,

m

ν

)
. (3.32)

Each of the collinear (n, n̄) and soft (s) mass mode factors depends on the rapidity renor-

malization scale ν. The natural scaling for the collinear factors is ν ∼ Q and for the soft

factor it is ν ∼ m. They were calculated at O(α2
s) in ref. [41] (see eqs. (5.7) and (5.8) in

ref. [41] and note that Hm,n = Hm,n̄ for the symmetric regulator of ref. [23], see eq. (2.8)).

Up to power-suppressed (for sQ,Q̄ � m2) and non-distributional contributions the

factorization theorem in eq. (3.31) is also valid in the kinematic region sQ,Q̄ = p2
Q,Q̄
−m2 ∼

m2 . p2
Q,Q̄

. Interestingly, in ref. [32] it was pointed out in the context of invariant mass

dependent beam functions for exclusive Drell-Yan gauge boson production, that for this

kinematic region the collinear-soft function Sc describes dynamical fluctuations located in

the same phase space region as those contained in the jet function. The most economical

formulation (w.r.t. the number of factorization functions containing the dynamical effects

of the collinear and soft mass mode contributions) for sQ,Q̄ = p2
Q,Q̄
− m2 ∼ m2 ∼ p2

7Note that throughout this paper we do not account for renormalization group functions to sum (virtu-

ality or rapidity) logarithms in our discussions of factorization theorems in order to keep the notations brief.
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is therefore the one where the contributions of the collinear-soft function are included in

the definition of the (invariant mass dependent) beam function, which corresponds to the

mass mode definition of eq. (2.11). For the double differential hemisphere jet function this

implies that for sQ,Q̄ = p2
Q,Q̄
−m2 ∼ m2 ∼ p2

Q,Q̄
one can formulate a factorization theorem

of the form

1

σ0

d2σ

dM2
Q dM2

Q̄

= H
(n`+1)
Q (Q,µ)Hm,s

(
m,µ,

m

ν

)∫
d`+ d`− S(n`)(`+, `−, µ)

× Jmf,(n`+1)
Q

(
M2
Q −Q`+,m2, µ,

Q

ν

)
J

mf,(n`+1)
Q

(
M2
Q̄ −Q`

−,m2, µ,
Q

ν

)
×
[
1 +O

(
mαs
Q

)
+O

(
m2

Q2

)]
. (3.33)

This in turn implies the relation

J
mf,(n`+1)
Q

(
p2 → m2,m2, µ,

Q

ν

)
= Hm,n

(
m,µ,

Q

ν

)
J

(n`)
B

(
p2

m
−m,µ

)
+ non-sing. terms,

(3.34)

between the primary massive quark mass mode jet function and the bHQET jet function

up to non-singular terms integrable in p2 at the threshold m2. Using the O(α2
s) results

for the bHQET jet function (naturally given in the n`-flavor scheme for αs) in ref. [21]

(see eq. (39)), the collinear mass mode hard functions Hm,n in ref. [41] (see eq. (5.7)) and

our result for the mass mode jet function in eq. (2.11), accounting for the fact that all

G-functions are power-suppressed in the bHQET limit, it is straightforward to see that

the relation in eq. (3.34) is indeed satisfied. As discussed in more detail in section 5.2.2,

our calculations of the O(α2
s) corrections for the mass mode jet function provide a high

precision semi-analytic check of eq. (3.34) as some loop integrals could only be determined

by numerical methods. The relation (3.34) was then used as an input to analytically

parametrize the jet functions result of eqs. (2.11) and (2.10).

4 Alternative factorization approaches and practical use

The non-trivial conceptual aspect of the O(α2
s) primary massive quark SCET jet function

concerns the mass mode contribution due to secondary radiation. Since these are tied to

corrections arising from collinear as well as soft phase space sectors with invariant masses

of order the quark mass m, their treatment entails rapidity singularities (and the resum-

mation of associated logarithms) within a SCETII type approach regardless of whether the

observable is SCETI or SCETII. As already pointed out in section 2, in the literature two

alternative factorization formulations to account for mass mode corrections have been advo-

cated which are (or can be rendered) conceptually and phenomenologically equivalent due

to consistency relations. We emphasize that none of these approaches may be considered

superior to the respective other and, by emphasizing different and complementary aspects

of the mass mode effects, together provide a thorough and comprehensive treatment and

understanding from the conceptual as well as practical point of view.
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In this section we discuss the relation between the approaches employing the mass

mode and the universal jet functions for primary massive quarks and using the double

differential hemisphere mass distribution already introduced in section 3.3 as an example.

To keep the discussion brief we also restrict the discussion to the kinematic regions s2/Q2 �
m2 � s ∼ p2 � Q2 and s = p2−m2 ∼ p2 ∼ m2 where the quark mass effects calculated in

this paper are most relevant. We emphasize, however, that the discussion can be extended

in a straightforward way to all kinematic situations and also to other types of factorization

theorems where mass mode effects shall be treated (and where factorization functions other

than jet functions arise).

The universal factorization approach of refs. [22, 26, 31, 34] was devised with the

motivation to obtain universal hard, jet and soft functions defined such that they can

smoothly cover all possible choices for the quark mass m in the context of the strict

hierarchy s2/Q2 � s� Q2. The resulting factorization theorems therefore contain power

corrections w.r.t. mass mode contributions in at least some of the factors in any kinematic

region, which, in case they are known, may be expanded away accordingly if a smooth

description of mass effects is not wanted. The approach was also constructed to allow for

the formulation of universal and simple rules to implement the summation of logarithms

through flavor number dependent renormalization evolution factors of the hard, jet and

soft function for arbitrary choices of the global renormalization scale µ. The approach also

entails that only the hard, jet and soft functions and, depending on the choice of µ, their

respective threshold matching factors appear in the factorization theorems (in case they

are evolved through the massive quark flavor threshold). By construction in the universal

factorization approach, all rapidity logarithms (and their summations) are fully contained

within these individual quark mass threshold matching factors at the scale µm ∼ m.

Let us consider the situation s2/Q2 � m2 . s ∼ p2 � Q2. The corresponding

leading power factorization theorem in the universal factorization function approach for

s2/Q2 < µ2 < m2 (when the SCET current and the jet functions are evolved below m) has

the form

1

σ0

dσ

dM2
Q dM2

Q̄

= H
(n`+1)
Q (Q,µ)Hm

(
m,

Q

m
,µ

)∫
dsQ dsQ̄

∫
d`+ d`−

× Juf,(n`+1)
Q (M2

Q − sQ −Q`+,m2, µ) J
uf,(n`+1)
Q (M2

Q̄ − sQ̄ −Q`
−,m2, µ)

×MJQ(sQ,m, µ)MJQ(sQ̄,m, µ)S(n`)(`+, `−, µ) , (4.1)

where Hm and MJQ are the quark mass threshold matching factors for the SCET current

and the universal jet function Juf
Q respectively. For m2 < µ2 < s (where the soft function

is evolved above m) the same factorization theorem has the form

1

σ0

dσ

dM2
Q dM2

Q̄

= H
(n`+1)
Q (Q,µ)

∫
d`+ d`−d`′+ d`′−

× Juf,(n`+1)
Q (M2

Q −Q`+,m2, µ)J
uf,(n`+1)
Q (M2

Q̄ −Q`
−,m2, µ)

×MS(`′+, `′−,m, µ)S(n`)(`+ − `′+, `− − `′−, µ) , (4.2)

where MS is the mass threshold matching factor for the soft function S. It is straightfor-

ward to consider other choices of µ as well.
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For a strong hierarchy m2 � s one may replace the universal primary massive quark jet

function J
uf,(n`+1)
Q by the jet function J

(n`+1)
q for (n`+1) massless quark flavors (calculated

at O(α2
s) in [8]). But using J

uf,(n`+1)
Q provides validity of eqs. (4.1) and (4.2) smoothly

covering all cases between m2 � s and m2 ∼ s. The resummation of virtuality logarithms

(with respect to µ) is achieved by the flavor number dependent µ-anomalous dimensions of

the hard currents and jet functions known from SCET (with (n` + 1) flavors) and bHQET

(with n` flavors) and of the soft function (with (n` + 1) flavors for scales above m and

n` flavors for scales below m). Furthermore one has to account for the natural scales of

the hard, jet and soft function being µQ ∼ Q, µJ ∼ s1/2 and µS ∼ s/Q, respectively.

In eq. (4.1) the mass threshold matching functions Hm and MJ account for the change

between (n` + 1)-flavor SCET evolution (above the mass threshold) and n`-flavor bHQET

evolution (below the mass threshold) for the hard current (see ref. [41]) and universal jet

function, respectively, at the mass threshold scale µm ∼ m. For the universal jet function

for a massive primary quark this matching relation reads

J
(n`)
B

(
p2

m
−m,µ

)
=

∫
dsMJQ(p2 − s,m, µ) J

uf,(n`+1)
Q

(
s,m2, µ

)
(4.3)

+ non-singular terms for p2 → m2 .

(The analogous relation for the massless primary quark case has been given in eq. (119)

of ref. [26].) In eq. (4.2) the mass threshold matching function MS accounts for the

corresponding change between the corresponding n`- and (n`+1)-flavor evolution of the soft

function (see eqs. (136) and (139) of ref. [26]). Rapidity logarithms and their summation

take place only inside each of the mass threshold matching functions Hm,MJQ andMS (see

for example eq. (3.32)), and the jet and soft functions are free of any rapidity logarithms.

The ν-anomalous dimensions are the same for primary massive and primary massless quarks

and were provided in refs. [31, 41]. Finally, consistency between eqs. (4.1) and (4.2) implies

the consistency identity

Hm

(
m,

Q

m
,µ

)
MJ(Q`+,m, µ)MJ(Q`−,m, µ) =MS(`+, `−,m, µ) . (4.4)

The mass mode factorization approach of ref. [32] was devised with the motivation to

formulate distinct and unique factorization theorems for the different possible scale hier-

archies of the mass m with respect to Q, s1/2 and s/Q, where the physically relevant n-

and n̄-collinear and soft mass mode effects appear explicitly within three distinct factors

to achieve a transparent and economic representation of their contributions. In contrast to

the universal factorization approach, the mass mode factorization approach does not result

in two options to formulate the same factorization theorem, such as eqs. (4.1) and (4.2),

which are equivalent due to consistency relations such as eq. (4.4). The factorization theo-

rems in the mass mode approach contain functions that have explicit µ and ν dependence,

and the summation of virtuality and rapidity logarithms is carried out on equal footing.

The summation of the associated logarithms, on the other hand (and in contrast to the

universal factorization approach), does explicitly involve consistency relations among the
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anomalous dimensions to allow for a transparent treatment of renormalization group evo-

lution with either n` or (n` + 1) dynamical flavors with respect to the mass threshold scale

m. In addition, in the formulation of the mass mode factorization approach of ref. [32] the

resulting factorization theorems have been free of any power corrections in the quark mass

m and did not provide a smooth dependence on the quark mass m. The latter is manda-

tory for smooth predictions of differential cross sections when the quark mass threshold

is crossed.

Let us consider the situation s2/Q2 � m2 � s ∼ p2 � Q2. The corresponding

factorization theorem in the mass mode factorization approach has the form

1

σ0

dσ

dM2
Q dM2

Q̄

= H
(n`+1)
Q (Q,µ)Hm,s

(
m,µ,

m

ν

)∫
d`+ d`−d`′+ d`′−

× J (n`+1)
q (M2

Q −Q`+ −Q`′+, µ) J (n`+1)
q (M2

Q̄ −Q`
− −Q`′−, µ)

× Sc(`′+,m, µ, ν)Sc(`
′−,m, µ, ν)S(n`)(`+, `−, µ) , (4.5)

where Hm,s is the soft mass mode contribution of the mass threshold hard function Hm

quoted in eq. (3.32), Sc is the collinear-soft function of eqs. (2.12) and (3.29), and J
(n`+1)
q

is the jet function for (n` + 1) massless quarks which coincides with the universal jet

function for vanishing quark mass, i.e. J
uf,(n`+1)
Q (p2, 0, µ). Since the factorization the-

orems (4.5) and (4.1) as well as (4.2) provide identical descriptions for the situations

s2/Q2 � m2 � s ∼ p2 � Q2 (up to suppressed quark mass power corrections), they

imply the following consistency relations for the mass threshold matching factors MJQ for

the universal function J
uf,(n`+1)
Q and MS for the soft function S(n`):

MJQ(s,m, µ) = H−1
m,n

(
m,µ,

Q

ν

)
Sc

(
s

Q
,m, µ, ν

)
, (4.6)

MS(`+, `−,m, µ) = Hm,s

(
m,µ,

m

ν

)
Sc(`

′+,m, µ, ν)Sc(`
′−,m, µ, ν) , (4.7)

where Hm,n and Hm,s are the collinear and soft mass mode contributions of the mass

threshold hard function Hm, see eq. (3.32), which appears in the universal factorization

theorem eq. (4.1).

In the situation s2/Q2 � m2 ∼ s ∼ p2 � Q2 the mass mode factorization approach

states the factorization theorem

1

σ0

dσ

dM2
Q dM2

Q̄

= H
(n`+1)
Q (Q,µ)Hm,s

(
m,µ,

m

ν

)∫
d`+ d`−

× Jmf,(n`+1)
Q

(
M2
Q −Q`+,m2, µ,

Q

ν

)
J

mf,(n`+1)
Q

(
M2
Q̄ −Q`

−,m2, µ,
Q

ν

)
× S(n`)(`+, `−, µ) . (4.8)

Using the consistency relations (4.6) and (4.7) as well as the relation between the mass mode

jet function Jmf
Q , the universal jet function Juf

Q and the collinear-soft function of eq. (2.12), it

is easy to see that eq. (4.8) and the universal factorization theorems (4.1) and (4.2) provide

identical descriptions for s2/Q2 � m2 ∼ s ∼ p2 � Q2. The relations and the analogous
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equivalence for eq. (4.5) show that the factorization theorem (4.5) — upon replacing the

massless quark jet function J
(n`+1)
q by the universal jet function J

uf,(n`+1)
Q — fully accounts

for the content of the factorization theorem (4.8) for s2/Q2 � m2 � s ∼ p2 � Q2. Thus

in this modified form, (4.5) is applicable for the entire region s2/Q2 � m2 . s ∼ p2 � Q2

and exactly equivalent to the universal factorization theorems (4.1) and (4.2).

Thus from a practical application point of view the mass mode factorization theo-

rems (4.5) and (4.8) can be considered as special cases of the universal factorization the-

orems (4.1) and (4.2). On the other hand, the mass mode factorization approach for the

case s2/Q2 � m2 � s ∼ p2 � Q2 makes explicit use of the collinear-soft function Sc and

provides a representation of the quark mass threshold matching factors for the jet and soft

functions that disentangle the relevant process-independent collinear and soft mass mode

contributions. So, eqs. (4.6) and (4.7) in connection with eq. (3.32) clarify the interplay of

the different elementary (collinear and soft) mass mode functions (Hm,n, Hm,n̄, Hm,s, Sc).

Interestingly, by simply replacing the collinear mass mode factors Hm,n and Hm,n̄ valid

for primary massive quarks by the corresponding mass mode factors for primary mass-

less quarks (see eqs. (4.10) and (4.12) in ref. [32] for analytic expressions) the analogous

versions of eqs. (3.32), (4.6) and (4.7) are also valid for the corresponding factorization the-

orems for primary massless quarks. In fact, upon making these modifications and replacing

the primary massive quark jet functions J
mf,(n`+1)
Q and J

uf,(n`+1)
Q by the corresponding jet

functions for primary massless quarks, eq. (4.1), (4.2) (and (4.5), (4.8)) agree identically

with the results given in ref. [26]. This demonstrates the universal structure of the mass

mode corrections and illustrates how to obtain them in an economic way in factorization

theorems for other applications.

Our final comment concerns the summation of logarithms. Combining the information

from the universal factorization and the mass mode factorization approaches provides a

modular and transparent method to resum virtuality as well as rapidity logarithms (where

we acknowledge, however, that complete treatments of correctly summing both types of

logarithms is available in both approaches, see [32] and [31]).

From the point of view of summing virtuality logarithms, the universal factorization

theorems (4.1) and (4.2) may be seen as more transparent and practical because all anoma-

lous dimensions coincide with those known from factorization theorems where secondary

massive quark effects (which entail rapidity singularities) are absent: one only has to keep

track of the dependence on the number of dynamical flavors nf being either equal to n`,

when the evolution is below the quark mass m or (n` + 1) when it is above. If we write the

virtuality µ-anomalous dimensions of the SCET and bHQET quark-antiquark production

currents (JSCET and JbHQET, respectively [12, 14]), the hard factor, the universal and

bHQET jet function, and the soft function in the form (ŝ = s/m)

d

d log µ
J (nf )

SCET(µ) = γ
(nf )
c (Q,µ)J (nf )

SCET(µ) ,

d

d log µ
J (nf )

bHQET(µ) = γ
(nf )
cB (Q,m, µ)J (nf )

bHQET(µ) ,

d

d log µ
H

(nf )
Q (Q,µ) =

(
γ

(nf )
Q (Q,µ) + γ

(nf )∗
Q (Q,µ)

)
H

(nf )
Q (Q,µ) , (4.9)
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d

d log µ
J

uf,(nf )
Q (p2,m2, µ) =

∫
dp′2 γ

(nf )
J (p2 − p′2, µ)J

uf,(nf )
Q (p′2,m2, µ) ,

d

d log µ
J

(nf )
B (ŝ, µ) =

∫
dŝ′ γ

(nf )
JB

(ŝ− ŝ′, µ)J
(nf )
B (ŝ′, µ) ,

d

d log µ
S(nf )(`+, `−, µ) =

∫
d`+

′
d`−

′
γ

(nf )
S (`+ − `+′, `− − `−′, µ)S(nf )(`+

′
, `−
′
, µ) ,

the µ-anomalous dimensions of the corresponding mass threshold matching factors appear-

ing in the factorization theorems (4.5) and (4.8) read

d

d log µ
Hm

(
m,

Q

m
,µ

)
=

[
γ(n`)
cB

(Q,m, µ) + γ(n`)∗
cB

(Q,m, µ) (4.10)

−
(
γ

(n`+1)
Q (Q,µ) + γ

(n`+1)∗
Q (Q,µ)

)]
Hm(Q,m, µ) ,

d

d log µ
MJQ (s,m, µ) =

∫
ds′

[
γ

(n`)
JB

(
s

m
− s′

m
,µ

)
− γ(n`+1)

J (s− s′, µ)

]
MJQ(s′,m, µ) ,

d

d log µ
MS

(
`+, `−, µ

)
=

∫
d`+

′
d`−

′
[
γ

(n`+1)
S

(
`+ − `+′, `− − `−′, µ

)
− γ(n`)

S (`+ − `+′, `− − `−′, µ)
]
MS(`+

′
, `−
′
, µ) .

Their form expresses the fact that the mass threshold matching functions Hm, MJ and

MS simply account for the appropriate change between (n` + 1) and n` flavor µ-evolution.

In this context one just has to take into account that for primary massive quarks the n`-

flavor evolution for the jet and the hard functions is carried out in bHQET. For sake of

completeness we have displayed all µ-anomalous dimensions up to O(α2
s) in appendix C.

From the point of view of summing rapidity logarithms the structure provided by the

mass mode factorization theorems (4.5) and (4.8) may be seen as most transparent because

the universal structure of the ν-anomalous dimensions of the collinear and soft mass mode

factors is fully determined by quoting the results

d

d log ν
Hm,n

(
m,µ,

Q

ν

)
= γν(m,µ)Hm,n

(
m,µ,

Q

ν

)
, (4.11)

d

d log ν
Hm,s

(
m,µ,

m

ν

)
= − 2γν(m,µ)Hm,s

(
m,µ,

m

ν

)
,

d

d log ν
Sc (`,m, µ, ν) = γν (m,µ) Sc (`,m, µ, ν) ,

d

d log ν
J

mf,(n`+1)
Q

(
p2,m2, µ,

Q

ν

)
= γν(m,µ) J

mf,(n`+1)
Q

(
p2,m2, µ,

Q

ν

)
.

Interestingly, owing to the consistency relations (3.32), (4.6) and (4.7), the ν-anomalous

dimensions of all collinear and soft mass mode factors are identical to all orders in αs up to

trivial factors and signs which are determined from the fact that the rapidity divergences

within each of the threshold matching functions Hm,MJQ andMS cancel. The consistency

relations also entail that the ν-anomalous dimensions of the collinear-soft function Sc and

the mass mode jet function J
mf,(n`+1)
Q are proportional to a δ-function. The convolution

in their anomalous dimension therefore reduces to a simple multiplication which we have
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already accounted for in the formulae above. The universal ν-anomalous dimension up to

O(α2
s) reads

γν(m,µ) = a2
sCFTF

(
8

3
L2
m +

80

9
Lm +

224

27

)
+O(α3

s) . (4.12)

To resum virtuality as well as rapidity logarithms in the universal factorization ap-

proach, one evaluates the factorization theorems of eqs. (4.1) or (4.2) and uses the µ-

anomalous dimensions in eq. (4.9) to sum all virtuality logarithms by evolving the hard

(H
(n`+1)
Q ), jet (J

uf,(n`+1)
Q ) and soft (S(n`)) functions from their natural scale to the global

renormalization scale. Whenever one of their µ-evolution crosses the mass threshold m, so

that the anomalous dimension is modified, the corresponding matching factor Hm, MJQ

or MS has to be included. The rapidity logarithms are fully contained within each of

the mass threshold matching factors Hm, MJQ and MS evaluated at µ ∼ m and can be

resummed by using (3.32), (4.6) and (4.7) and the ν-anomalous dimensions of eq. (4.11).

5 Calculation of massive quark jet functions at O(α2
s)

5.1 Comment on the calculations and summary of matrix element results

In this section we provide details on the calculation of the SCET primary massive quark jet

functions at O(α2
s). The universal and mass modes SCET jet functions differ concerning

the O(α2
sCFTF ) corrections coming from diagrams with secondary massive quarks (which

for the jet functions refers to diagrams with a closed massive quark-antiquark loop subdia-

gram). These corrections involve a number of conceptual and technical subtleties, and we

briefly address these in the following before presenting details of the computations in the

subsequent sections. We also summarize the individual results for the jet-function ME (cal-

culated in the subsequent sections) and the two collinear-soft MEs (extracted from [32])

which are needed to determine the universal and mass mode SCET jet functions. We

believe that this makes the conceptual subtleties of the calculations explicit.

The conceptual starting point is the calculation of the jet-function ME Jf (p2,m2),

defined in eq. (2.1), which is infrared divergent and defined in the (n` + 1) flavor theory.

The infrared finite universal jet function J
uf,(n`+1)
f (p2,m2) and the mass mode jet function

J
mf,(n`+1)
f (p2,m2) are then given via subtractions related to the likewise infrared divergent

collinear-soft MEs S (n`+1)(`,m) and S (n`)(`,m), respectively, defined in the (n`+1) flavor

theory (i.e. containing n` massless quarks and one quark Q with mass m, see eq. (2.7))

and in the n` flavor theory (i.e. containing only n` massless quarks), respectively. The

corresponding definitions are given in eq. (2.10) and eq. (2.11), respectively. We stress that

the concept of zero-bin subtractions [24] does not play any role in our calculation, and we

also believe that our approach can be generalized to other calculations in the context of

SCET factorization theorems. As already explained in section 1, the universal jet function

J
uf,(n`+1)
f (p2,m2) by construction approaches the well-known massless quark jet function [8]

in the limit m→ 0. It can therefore be thought of as the mandatory jet function definition

for m2 � q2 that involves subtractions related to the mass singularity coming from the
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secondary quark mass effects in this limit. On the other hand, the mass mode jet function

J
mf,(n`+1)
f (p2,m2) does not involve subtractions related to the secondary quark mass effects

and can be thought of as the jet function definition suitable for m2 ∼ q2, where the quark

mass m does not represent an infrared scale. It is useful for the computations to keep these

conceptual aspects of the two jet functions in mind, even though we emphasize that both

jet functions can be applied in a broader kinematic context and are related through the

collinear-soft function Sc(`,m) via eq. (2.12) (see the discussion in section 4).8

On the technical level an additional subtlety arises because it turns out that — at least

at this time — the only feasible way to determine the full set of O(α2
s) corrections is to use

two completely separate calculational schemes: one for the purely gluonic and the mass-

less quark corrections at O(α2
sC

2
F , α

2
sCFCA, α

2
sCFTFn`) and another one for the secondary

massive quark corrections at O(α2
sCFTF ). This separation arises because the O(α2

sCFTF )

secondary massive quark corrections involve rapidity singularities. To quantify them ana-

lytically it is mandatory to introduce an explicit dimensionful infrared regulator (for which

we adopt a gluon mass Λ), such that UV and rapidity divergences can be disentangled

and identified unambiguously. The treatment of subdivergences at O(α2
sCFTF ) then also

requires a calculation of the O(αs) corrections with a finite gluon mass for consistency.

These calculations have to be carried out for the jet-function ME Jf (p2,m2) and the

collinear-soft MEs S (n`+1)(`,m) and S (n`)(`,m) which also entails infrared gluon mass

dependent MS renormalization Z-factors for each of them. For the renormalized universal

and mass mode jet functions as well as for their virtuality and rapidity renormalization

group equations contributing at O(α2
sCFTF ) it can then be explicitly checked that the

dependence on the infrared gluon mass cancels. In contrast, the purely gluonic as well

as the massless quark corrections at O(α2
sC

2
F , α

2
sCFCA, α

2
sCFTFn`) (as well as the O(αs)

corrections) do not involve rapidity singularities and just using dimensional regularization

without an additional infrared regulator is in principle sufficient. In fact using this simpler

regularization is the only feasible way to compute the gluonic O(α2
s) corrections due to

their complexity. For these corrections then all diagrams contributing to the collinear-soft

MEs S (n`+1)(`,m) and S (n`)(`,m) lead to vanishing scaleless integrals which just turn all

1/εn IR singularities in the infrared divergent jet-function ME Jf (p2,m2) into 1/εn UV

singularities of the infrared finite jet functions J
uf,(n`+1)
f (p2,m2) and J

mf,(n`+1)
f (p2,m2).

Both jet functions thus agree concerning their O(αs) and O(α2
sC

2
F , α

2
sCFCA, α

2
sCFTFn`)

corrections. This justifies that for the O(α2
s) corrections involving only diagrams with mass-

less partons (in addition to the primary massive quark line), at least at the computational

level, the subtractions associated to collinear-soft MEs or zero-bins can be ignored. The

treatment of subdivergences in this calculation also requires the calculations of the O(αs)

corrections, which differ from the corresponding results with a gluon mass regulator. The

lack of having an infrared regularization scheme that allows the computation of all O(α2
s)

corrections in a uniform and manageable way entails that — at least at the present time

— the computation of the O(α3
s) corrections to the SCET jet functions in the presence of

massive quarks would represent an extremely challenging task.

8In previous literature on the factorization concerning secondary massive quark corrections these sub-

tleties were hidden.
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We present the calculations of the purely gluonic and massless quark corrections at

O(α2
sC

2
F , α

2
sCFCA, α

2
sCFTFn`) for the jet-function MEJf (p2,m2) in section 5.2, and those

of the secondary massive quark corrections at O(α2
sCFTF ) in section 5.3. The reader not

interested in the computational technical details may skip these two subsections. In the

following we summarize the analytic results for jet-function ME and the two collinear-

soft MEs within the two calculational schemes. Results needed for the calculation of the

O(α2
sC

2
F , α

2
sCFCA, α

2
sCFTFn`) corrections to the jet function are computed in the massless

gluon computational scheme (where the O(α2
sCFTF ) corrections cannot be given) and are

quoted with the subscript “����CFTF ”. In contrast all results needed for the calculation of the

O(α2
sCFTF ) terms from secondary mass effects are computed in the massive gluon com-

putational scheme (where the O(α2
sC

2
F , α

2
sCFCA, α

2
sCFTFn`) corrections cannot be given)

and are quoted with the subscript “CFTF ”. Note that we use this labeling also for the cor-

responding one-loop results that contribute (through the treatment of subdivergences) to

the determination of the respective renormalized two-loop jet functions and their anoma-

lous dimensions.9

In the computational scheme with a massless gluon the renormalized jet-function ME

can be written in the form

J
(n`+1)
Q (p2,m2,Λ2 = 0, µ,Q/ν)

∣∣∣
���CFTF

= δ(p2 −m2) + a(n`+1)
s J

(1)
Q (p2,m2, µ)

+
(
a(n`+1)
s

)2
J

(2)
Q (p2,m2, µ) +O(α3

s) , (5.1)

where the O(αs) coefficient J
(1)
Q (p2,m2, µ) agrees with the well-known one-loop SCET

primary massive quark jet function result from ref. [14] and is given up to O(ε2) in eq. (3.7).

The two-loop coefficient J
(2)
Q containing the O(α2

sC
2
F , α

2
sCFCA, α

2
sCFTFn`) corrections is

given in eq. (3.11). Both are free of rapidity divergences and therefore do not carry an

argument with respect to the rapidity renormalization scale ν. For convenience, we also

provide the corresponding renormalized result for the massless primary quark jet-function

ME J
(n`+1)
q (p2,m2,Λ2 = 0, µ,Q/ν)

∣∣∣
���CFTF

in appendix A.

The divergent Z-factor of the jet-function ME reads

Z
(n`+1)
JQ

(p2,m2,Λ2 = 0,µ,Q/ν)
∣∣∣
���CFTF

= δ(p2)+a(n`+1)
s CF

{[
4

ε2 +
3

ε

]
δ(p2)− 4

ε
L0(p2)

}
+
(
a(n`+1)
s

)2
{
CFTFn`

[(
4

ε3−
2

9ε2 +

(
−121

27
− 2π2

9

)
1

ε

)
δ(p2)+

(
− 8

3ε2 +
40

9ε

)
L0(p2)

]
+CFCA

[(
−11

ε3 +

(
35

18
− π2

3

)
1

ε2 +

(
−20ζ3+

1769

108
+

11π2

18

)
1

ε

)
δ(p2)

+

(
22

3ε2 +

(
2π2

3
− 134

9

)
1

ε

)
L0(p2)

]
+C2

F

[(
8

ε4 +
12

ε3 +

(
9

2
− 4π2

3

)
1

ε2 +
(

12ζ3+
3

4
−π2

)
1

ε

)
δ(p2)

+
(
−16

ε3 −
12

ε2

)
L0(p2)+

16

ε2L1(p2)

]}
+O(α3

s) . (5.2)

9We note that all statements made before in section 5.1 apply for massless (f = q) and massive primary

quarks (f = Q).
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By definition it contains all 1/ε-divergent terms and quantifies the difference between the

renormalized and bare jet-function MEs,

J
(n`+1),bare
Q (p2,m2, µ) =

∫
dp′2 Z

(n`+1)
J ,Q (p2 − p′2, µ)J

(n`+1)
Q (p′2, Z2

mm
2) . (5.3)

In the context of our jet-function ME computation it includes UV and IR divergent 1/ε

terms. We stress that, upon (literally) replacing the color factor CFTFn` by CFTF (n` + 1)

in eq. (5.2), one obtains the full O(α2
s) MS Z-factor for the universal SCET jet functions

J
uf,(n`+1)
f (for massless or massive primary quarks) as well as for the SCET jet function for

(n` + 1) massless quark flavors, where all 1/ε divergent terms are UV divergences.10 This

relation is required by consistency and can be used as a cross check for calculations.

In the massless gluon computational scheme the loop corrections to the bare collinear-

soft ME S (n`) are given by scaleless integrals and thus vanish to all orders in perturba-

tion theory

S (n`),bare(`,m,Λ = 0) = δ(`) . (5.4)

The corresponding bare collinear-soft ME S (n`+1), on the other hand, corresponds to

scaleless integrals only at O(αs) and O(α2
sC

2
F , α

2
sCFCA, α

2
sCFTFn`):

S (n`+1),bare(`,m,Λ = 0)
∣∣∣
���CFTF

= δ(`) +O(α3
s) . (5.5)

In the computational scheme with an infinitesimal gluon mass Λ the terms of the

renormalized jet-function ME relevant for the calculation of the O(α2
sCFTF ) secondary

quark mass effects read

J
(n`+1)
Q (p2,m2,Λ2, µ,Q/ν)

∣∣∣
CFTF

= δ(s) + a(n`+1)
s CF

{[
2L2

m + Lm + 2 log2

(
Λ2

µ2

)
+ 4 log

(
Λ2

µ2

)
log
(
Q

ν

)
+ 8

]
δ(s) +

[
−4Lm − 4 log

(
Λ2

µ2

)
− 4

]
L0(s) + 8L1(s)

+ Θ(p2 −m2)

[
s

(m2 + s)2 −
4 log

(
s
m2 + 1

)
s

]}
+
(
a(n`+1)
s

)2
CFTF

{[(
8

3
log2

(
Λ2

µ2

)
+

8π2

9
+

34

3

)
Lm +

8

3
L3
m +

10

3
L2
m

+ log

(
Q

ν

)(
16

3
log

(
Λ2

µ2

)
Lm −

80

9
Lm −

8

3
L2
m −

224

27

)
+

8ζ3
3
− 4π2

3
+

3139

162

]
δ(p2)

+

[(
−16

3
log

(
Λ2

µ2

)
− 16

3

)
Lm −

16

3
L2
m

]
L0(p2) +

32

3
LmL1(p2)

+ Lm

[
4s

3 (m2 + s)2 −
16 log

(
s
m2 + 1

)
3s

]
Θ(p2 −m2) +G(3Q)

sec Θ(p2 − (3m)2)

}
+O(α3

s) ,

(5.6)

10Note that the Z-factor for the mass mode jet function J
mf,(n`+1)
f can be obtained from the results for

the bare and renormalized jet-function MEJ (n`+1)
Q and collinear-soft ME S (n`). Because both are defined

in theories with different number of quark flavors, the Z-factor for the mass mode jet function cannot be

quoted in the MS scheme and in general has finite contributions.
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where G
(3Q)
sec is given in eq. (3.19). For convenience, we also provide the

analogous results for the renormalized massless primary quark jet-function ME

J
(n`+1)
q (p2,m2,Λ2, µ,Q/ν)

∣∣∣
CFTF

in appendix A. The MS renormalization Z-factor asso-

ciated with the jet-function ME contributions in eq. (5.6) (which is identical for massive

and massless primary quarks) accounts for UV and rapidity divergences and reads

ZJ (p2,m2,Λ2, µ,Q/ν)
∣∣
CFTF

= δ(p2)

+ a(n`+1)
s CF

{[
4

ε
− 4 log

(
Λ2

µ2

)
+O(ε)

]
1

η
+

[
3− 4 log

(
Q

ν

)]
1

ε

}
δ(p2)

+
(
a(n`+1)
s

)2
CFTF

{[
8

3ε2
− 40

9ε
+

8

3
L2
m +

(
80

9
− 16

3
log

(
Λ2

µ2

))
Lm +

224

27
+O(ε)

]
1

η

+

[
2− 8

3
log

(
Q

ν

)]
1

ε2
+

[
40

9
log

(
Q

ν

)
− 4π2

9
− 1

3

]
1

ε

}
δ(p2) +O(α3

s) . (5.7)

The corresponding results for the two different renormalized collinear-soft MEs are

S (n`)(`,m,Λ, µ, ν)
∣∣∣
CFTF

= δ(`)

+ a(n`)
s CF

{[
−4 log

(
ν

µ

)
log

(
Λ2

µ2

)
+ 2 log2

(
Λ2

µ2

)
+
π2

3

]
δ(`)− 4L0(`) log

(
Λ2

µ2

)}
+O(α3

s) , (5.8)

and

S (n`+1)(`,m,Λ, µ, ν)
∣∣∣
CFTF

= δ(`)

+ a(n`+1)
s CF

{[
−4 log

(
ν

µ

)
log

(
Λ2

µ2

)
+ 2 log2

(
Λ2

µ2

)
+
π2

3

]
δ(`)− 4L0(`) log

(
Λ2

µ2

)}
+
(
a(n`+1)
s

)2
CFTF

{[
− 8

9
L3
m +

(
8

3
log

(
ν

µ

)
− 40

9

)
L2
m

+ Lm

(
−16

3
log

(
Λ2

µ2

)
log

(
ν

µ

)
+

8

3
log2

(
Λ2

µ2

)
+

80

9
log

(
ν

µ

)
+

8π2

9
− 448

27

)
+

56ζ3

9
+

10π2

27
− 656

27
+

224

27
log

(
ν

µ

)]
δ(`)

+

[(
80

9
− 16

3
log

(
Λ2

µ2

))
Lm +

8

3
L2
m +

224

27

]
L0(`)

}
+O(α3

s) . (5.9)

Their respective MS renormalization Z-factors accounting for UV and rapidity diver-

gences read

Z
(n`)
S (`,m,Λ, µ, ν)

∣∣∣
CFTF

= δ(`) + 4 a(n`)
s CF

{[
1

ε
− log

(
Λ2

µ2

)
+O(ε)

]
1

η
δ(`)

+

[
− 1

ε2
+ log

(
ν

µ

)]
δ(`) + L0(`)

1

ε

}
+O(α3

s) , (5.10)

– 30 –



JHEP 08 (2019) 112 [arXiv:1912.08211] 151

J
H
E
P
0
8
(
2
0
1
9
)
1
1
2

and

Z
(n`+1)
S (`,m,Λ, µ, ν)

∣∣∣
CFTF

= δ(`) + 4 a(n`)
s CF

{[
1

ε
− log

(
Λ2

µ2

)
+O(ε)

]
1

η
δ(`)

+

[
− 1

ε2
+ log

(
ν

µ

)]
δ(`) + L0(`)

1

ε

}

+
(
a(n`+1)
s

)2
CFTF

{[
8

3ε2
− 40

9ε
− 16

3
log

(
Λ2

µ2

)
Lm +

8L2
m

3
+

80Lm
9

+
224

27

]
1

η
δ(p2)

+

[
− 4

ε3
+

(
20

9
+

8

3
log

(
ν

µ

))
1

ε2
+

(
−40

9
log

(
ν

µ

)
− 2π2

9
+

112

27

)
1

ε

]
δ
(
p2
)

+

[
8

3ε2
− 40

9ε

]
L0(p2)

}
+O(α3

s) . (5.11)

These results can be extracted from ref. [32], and we have explicitly cross checked

their results.11

From the results quoted above it is straightforward to obtain the results for the uni-

versal (see eqs. (2.10) and (3.27)) and the mass mode SCET jet functions (see eqs. (2.11)

and (3.6)). The virtuality and rapidity anomalous dimensions for the universal and mass

mode SCET jet functions (and the collinear-soft function) (see eqs. (4.9) and (4.11) and

appendix C) are related to the corresponding anomalous dimensions for the jet-function

and the collinear-soft MEs (see appendix C as well).

5.2 Gluonic and massless quark corrections

In figure 1 all two-loop Feynman diagrams relevant for the calculation of the two-loop

jet-function ME in eq. (2.4) using QCD Feynman rules and Feynman gauge are displayed.

In this section we discuss the computation of the O(α2
sC

2
F , α

2
sCFCA, α

2
sCFTFn`) correc-

tions using the computational scheme with a massless gluon, as explained in the previ-

ous subsection.

After evaluating the Dirac trace in eq. (2.4) the contribution of each diagram for the jet

function forward scattering ME can be expressed as a linear combination of dimensionally

regularized (d = 4− 2ε) scalar integrals of the generic form∫
ddk dd` [−n̄ · k]−c1 [−n̄ · `]−c2

[−k2]a1 [−`2]a2 [−(k − `)2]a3 [−(p+ k)2 +m2]b1 [−(p+ `)2 +m2]b2 [−(p+ k + `)2 +m2]b3

= −πd(−s)d−a1−a2−a3−b1−b2−b3(n̄ · p)−c1−c2I(−m2/p2; a1, a2, a3, b1, b2, b3, c1, c2) , (5.12)

where all propagator denominators have the usual −i0 term and the prescription s→ s+i0

for the jet virtuality s = p2 −m2 ≥ 0 is understood. In the second line we pulled out the

conventional factor of iπd/2 per loop integral. We also pulled out the factor (n̄ · p)−c1−c2 as

this dependence is fixed by the behavior of the integral under the rescaling of n̄ or Lorentz

covariance. The power of (−s) is then determined by choosing I to be dimensionless. This

11Note that eq. (B.55) of ref. [32] has a typo due to a missing global factor of 4.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

(l) (m) (n)

(o) (p) (q) (r)

Figure 1. QCD Feynman diagrams contributing to the jet field correlator in eq. (2.4) at two-loop

order in Feynman gauge. The dashed lines represent n-collinear (lightlike) Wilson lines. The gray

blob symbolizes the set of all 1-loop gluon self-energy subdiagrams. Left-right mirror graphs are

understood. Diagrams that are trivially zero (as n̄2 = 0) are not shown.

factor encodes the full s dependence in the massless limit (s → p2), where I becomes a

function of ε only.

The set of propagator denominators in eq. (5.12) does not represent a linearly inde-

pendent basis. Either a3 or b3 can be rendered zero by partial fraction decomposition. We

therefore can arrange all integrals into two integral families: family A, where b3 = 0, and

family B, where a3 = 0. Integrals where a3 = b3 = 0 are for convenience assigned to family

A. Some family B integrals with only two massive propagators can be mapped by loop

momentum shifts to family A. Diagrams (g) and (c) contain the top sector integrals of

family A and B, respectively (i.e. where all propagator powers are positive). We distinguish

two types of diagrams: the “planar” diagrams (e)-(q), which contain the leading color con-

tributions, and the “nonplanar” diagrams (a)-(d) which are proportional to C2
F −CFCA/2

and therefore color-suppressed. The planar diagrams only involve family A integrals, while

the “nonplanar” diagrams contain integrals of family A and B. Diagrams (r) are scaleless

and vanish.

The classification in family A and B integrals is useful for two reasons. The first is that

they are closed under integration by parts (IBP) reductions and require different sets of

IBP identities. The second is related to the different mathematical properties of family A

and B integrals. Family A integrals have at most two massive propagators and involve at

most harmonic polylogarithms in the ε expanded results. In contrast, family B integrals can
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contain elliptic functions in the ε expanded expressions, which makes their evaluation more

complicated. This is connected to the fact that they admit a triple massive-particle cut.

Moreover, we observed that some family B integrals (including cases with only two massive

propagators) are ill-defined in pure dimensional regularization due to rapidity singularities

even though the Feynman diagrams are individually rapidity finite. Further, using IBP

reductions on rapidity finite family B integrals can lead to rapidity singular integrals.

Therefore, the computations of family B integrals in general require a rapidity regulator.

Let us briefly illustrate this issue for the following rapidity-finite family B integral∫
ddk dd`

[−`2][−(p+ k)2 +m2][−(p+ `)2 +m2][−(p+ k + `)2 +m2][−n̄ · k]1+η

= −πd(−s)d−5(n̄ · p)−1−η I(−y; 0, 1, 0, 1, 1, 1, 1 + η, 0) , (5.13)

where we introduced an analytic rapidity regulator η for the k-integration, see e.g. refs. [23,

39, 42]. Applying the IBP relation

0 =
(
a1 − b1 + a1a

+
1 −

1 + y

1− y
b1b

+
1 − 2

y

1− y
b3b

+
3 + c1c

+
1 + b1b

+
1 a−1 + b3b

+
3 a−1

+ b3b
+
3 a−2 − a1a

+
1 b−1 − b3b

+
3 b−1 − b3b

+
3 b−2

)
I , (5.14)

where the bold letters represent operators that increase (+) or decrease (−) the corre-

sponding propagator powers in I, we obtain

I(−y; 0, 1, 0, 1, 1, 1, 1 + η, 0) = (1 + η) I(−y; 0, 1, 0, 1, 1, 1, 2 + η, 0)

− I(−y; 0, 1, 0, 0, 1, 2, 1 + η, 0) + I(−y; 0, 0, 0, 1, 1, 2, 1 + η, 0)

− 1 + y

1− y
I(−y; 0, 1, 0, 2, 1, 1, 1 + η, 0)− 2

y

1− y
I(−y; 0, 1, 0, 1, 1, 2, 1 + η, 0)

+ I(−y;−1, 1, 0, 2, 1, 1, 1 + η, 0) + I(−y;−1, 1, 0, 1, 1, 2, 1 + η, 0)

− I(−y; 0, 1, 0, 1, 0, 2, 1 + η, 0) . (5.15)

The first three integrals on the right hand side turn out to be individually rapidity divergent,

i.e. they have 1/η poles as can e.g. be checked numerically with the sector decomposition

program pySecDec [43]. These 1/η poles cancel in the sum. Without a rapidity regulator,

i.e. naively setting η = 0 in eq. (5.15) literally, however, gives an incorrect relation because

the term η I(−y; 0, 1, 0, 1, 1, 1, 2 + η, 0) leads to finite contributions which are missed when

the rapidity regularization is introduced after using the IBP relation. An analogous issue

also arises when using a dimensionful rapidity regulator such as the ∆ regulator proposed

in ref. [25]. We stress that the IBP reduction with a rapidity regulator (no matter of what

kind) in general leads to a substantially increased number of master integrals. Moreover,

these are typically more complicated to compute than comparable integrals where this kind

of problem does not arise and an additional rapidity regularization is not necessary.

Interestingly, the IBP reduction of family A integrals does not give rise to spurious

rapidity divergences and works consistently without any rapidity regulator in the standard

way. This is (currently) an empirical observation as we are lacking a simple systematic
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Figure 2. The seven master integrals of family A. Bold solid lines represent massive propagators,

thin solid lines represent massless propagators and dashed lines represent (lightlike) Wilson line

propagators. A dot on a line means that the associated propagator is squared. Note that the

offshell quark propagators ∝ 1/s are not included in the definition of the master integrals Mi and

are only drawn here for illustration. The corresponding solutions for the Ii according to eq. (5.12)

are given in appendix D.

criterion that would allow us to identify when the problem of spurious rapidity divergences

arises and to possibly avoid or treat them in an automatized way. We therefore explicitly

verified all family A integral reductions used in our computations numerically in order to

dispel any doubt about their validity. In this context the known (or easily computed)

massless primary quark limit of each individual diagram provides a valuable cross check of

our calculations.

The calculation of the planar diagrams (e)-(q) can thus be performed with standard

modern multi-loop technology as explained in section 5.2.1. For the nonplanar diagrams

(a)-(d), the issue of the spurious rapidity divergences and the elliptic nature of certain

family B integrals forced us to use different and less uniform methods as explained in

section 5.2.2. As a general strategy, we analytically compute the two-loop master integrals

for the jet field correlator to the required order in ε first, insert them into the different

diagrams, and finally take the imaginary part of the total contribution to the jet field

correlator according to eq. (2.4) for each color factor. The only exceptions are diagrams (b)

and (c), for which we take a different semi-numerical approach, as explained in section 5.2.2.

We renormalize the resulting jet-function MEs J
(n`+1)
Q

∣∣
���CFTF

according to eq. (5.3), i.e.

we absorb all divergent terms into the Z-factor, and we use the pole mass scheme for

the quark mass. The necessary counterterms for the pole mass m (and the MS coupling

α
(n`+1)
s ) can e.g. be found in ref. [44]. We note that in the pole mass scheme derivatives of

the distributions δ(s) and Ln(s) do not arise in the final result.

5.2.1 Planar diagrams

The calculation of the planar diagrams (e)-(q) (including only massless partonic loops in

the gluon self-energy) is rather straightforward. They involve O(100) family A integrals.

We reduced this set of integrals to the seven master integrals depicted in figure 2 using the

IBP program FIRE5 [45].

The master integrals M1-M5 can be computed using Feynman parameters for arbitrary

ε in terms of hypergeometric functions. They can be expanded in terms of harmonic
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polylogarithms (HPLs) [46, 47] with the help of the Mathematica package HypExp [48].

We also used the Mathematica package HPL [49] to exploit relations among the HPLs for

the simplification of expressions or to make their singular behavior for s → 0 explicit,

see below.

For M6, M7 we used the method of differential equations [50–52]. To this end we take

their derivatives with respect to y = m2/p2. The result can be expressed via IBP reduction

in terms of M1-M7. The coupled system of seven homogeneous first-order differential

equations can also be rewritten in terms of a coupled system of two first-order differential

equations for M6, M7 with linear combinations of M1-M5 as (known) inhomogeneous terms:

∂M6

∂y
= − (1− ε)2(1− y)

2εy2
M1 +

(1− 2ε)(1− ε)
2εy2

M2 −
(
2− 7ε+ 6ε2

)
(1− ε(5− y))

4ε2(1− y)y
M4

−
(1− 2ε)

(
(2− y2)ε− (2− 7ε)y

)
4ε2(1− y)2y

M5 −
ε(3− y)

y(1− y)
M6 +

3

2y
M7 , (5.16)

∂M7

∂y
=

1− 3ε+ 2ε2

y2
M2 +

2− 7ε+ 6ε2

y(1− y)
M4 −

(1− 2ε)(1 + y)

y(1− y)2
M5

− 4ε2

y(1− y)
M6 +

2ε

y(1− y)
M7 . (5.17)

These can be decoupled into two separate second-order inhomogeneous differential equa-

tions for M6 and M7. Upon expansion in ε these can be iteratively rewritten in second-order

inhomogeneous differential equations where only derivatives of expansion coefficients of M6

or M7 arise. These differential equations happen to have a particularly simple form be-

cause these derivatives appear in a combination, such that upon integration the resulting

differential equations only involve first derivatives of the expansion coefficients. Another

integration w.r.t. y then yields the result depending on two integration constants (bound-

ary values) that can be fixed by taking the (massless) limit y → 0, where the integrals are

known [8]. We give the explicit solutions for M1-M7 in appendix D. We checked all of them

numerically to the required order in ε using the Sector Decomposition codes FIESTA4 [53]

and pySecDec [43].

In order to take the imaginary part of the planar contributions we proceed as follows.

Defining f(s) as the contribution of the planar diagrams at the correlator level we want

to determine

Im[f(s+ i0)] =
1

2i
Disc[f(s)] =

1

2i
lim
β→0

[
f(s+ iβ)− f(s− iβ)

]
. (5.18)

The result involves the distributions δ(s) and Ln(s) and their derivatives prior to pole

mass renormalization. (These derivatives only arise from diagrams that contain quark

self-energy subdiagrams.) In practice we compute eq. (5.18) for s > 0 first. We write the

HPLs from the solutions of the master integrals with the help of the HPL package in a form,

where the branch cuts are made explicit as logn(−s/µ2) terms. We can now easily take

the imaginary part of these terms according to eq. (5.18). The remaining terms are regular

in s and thus do not contribute. In the next step we promote the terms logn(s/µ2)/s and

[n logn−1(s/µ2) − logn(s/µ2)]/s2 for s > 0 to the corresponding plus distributions Ln(s)
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and their derivatives, respectively. We fix the coefficient of the δ(s) term by evaluating the

imaginary part of the integral of f(s+ i0) over a small region around s = 0:

Im

[ ∫ Λ2

−Λ1

ds f(s+ i0)

]
with Λ1,Λ2 > 0 . (5.19)

The result is independent of Λ1, as the imaginary part of f(s+i0) does not have support for

s < 0. For Λ2 → 0 the result involves a constant and terms logk(Λ2)/Λm2 which match the

structure of the distributions Ln(s) and their derivatives. The constant term determines

the coefficient of δ(s) in Im[f(s+i0)]. The coefficients of first and second derivatives of δ(s)

are determined in an analogous way considering eq. (5.19) with additional weight functions

s and s2, respectively. Upon imposing pole mass renormalization all derivatives of δ(s) and

Ln(s) consistently cancel, which provides an important cross check.

5.2.2 Nonplanar diagrams

For the calculation of the nonplanar diagrams (a) and (d) we proceed in the same way

as described for the planar diagrams in the previous subsection. Regarding the IBP re-

ductions, no rapidity regulator is required for diagram (a), because it does not involve

any Wilson line propagators. In the reduction of diagram (d) issues related to spurious

rapidity divergences may in principle arise. However, we were able to exclude by hand IBP

relations such as eq. (5.14), which generate (possibly ill-defined) rapidity divergent inte-

grals at intermediate steps. Interestingly, diagram (d) then happens to reduce to already

known family A master integrals. We explicitly checked the IBP reduction numerically

using pySecDec [43] together with our analytical results for the master integrals.

For diagram (a) family B master integrals cannot be avoided and a suitable basis for

them is depicted in figure 3. It contains so-called sunrise and kite integrals for which generic

results can be found in the literature. All three master integrals admit a triple massive

particle cut, which is reflected by the Θ(p2 − (3m)2) = Θ(1− 9y) terms in their imaginary

part, and evaluate to (integrals of) elliptic functions. The master integrals contribute to

the jet field correlator with prefactors proportional to (−s− i0)−2ε and upon ε-expansion

in practice we only need the imaginary part of the combination (−s−i0)−2εMi when s > 0.

To determine the coefficients of the δ(s) and its derivatives we additionally need the first

few terms in the expansion of the master integrals in s = p2ȳ = p2(1− y). All these results

are given in appendix D. They are straightforwardly determined or directly taken from

refs. [54–56].

To compute diagrams (b) and (c) we are forced to take a different approach. The

reason is that diagram (b) and (c) already involve rapidity divergent family B integrals

before any reduction. These rapidity divergences cancel in the sum for each diagram.

An IBP reduction method without additional regulator, as used for diagram (d) therefore

seems impractical. Using a rapidity regulator, on the other hand, results in new types of

master integrals which involve three massive propagators, several massless propagators, as

well as regularized Wilson line propagators. Such integrals appear too difficult to be solved

with the tools at hand. We therefore decided to refrain from using IBP reductions and
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Figure 3. Master integrals of family B contributing to diagram (a). Bold solid lines represent

massive propagators, thin solid lines represent massless propagators. A dot on a line means that

the associated propagator is squared. The solutions for these offshell sunrise and kite type integrals

can be found in the literature. We give the results for their imaginary parts and small s expansion

necessary for our calculation in appendix D.

compute them directly using numerical methods and exploiting consistency conditions on

their analytical structure as explained in the following.

Numerical calculation of the contributions from diagrams (b) and (c). In a first

step we use the sector decomposition code pySecDec [43] to obtain numerical results for

the real and imaginary parts of the contributions of diagrams (b) and (c) to the jet field

correlator expanded in ε up to O(ε0). To this end we set µ2 = s, separately write the

integrands of the two diagrams in Feynman parameter representation and solve as many

integrals analytically as possible. For both diagrams four integrations over rational func-

tions of the parameters are remaining and are carried out with pySecDec. We furthermore

multiply the integrands by p2(1− y)2 = s2/p2 to render them dimensionless and to damp

the singular behavior in the (bHQET) limit y → 1. We then obtained numerical results at

100 points in the physical region 0 ≤ y < 1. From these numerical data points we verified

that the coefficients of the 1/ε poles together with the divergences of the already com-

puted diagrams correctly reproduce within numerical uncertainties (which are typically at

the sub-percent level) the divergence structure related to the renormalization Z-factor in

eq. (5.2). This provides an important cross check for our approach, in particular confirms

the correctness concerning the µ dependence.

Due to the multiplication of the factor p2(1 − y)2 = s2/p2 we do not have direct

numerical access to the coefficient of the δ(s) term. We will come back to this point at the

end of this subsection. However, analytic information on the contribution of diagrams (b)

and (c) to the jet-function ME is known in various kinematic limits. Using IBP reduction12

and the master integrals given in [8], it is straightforward to compute the diagrams in the

massless limit. Upon taking the imaginary part the result, including mirror diagrams, reads

J b+c
fin (p2, 0) = a2

s

(
C2
F −

CFCA
2

)[(
−10ζ3

3
− 68 + 2π2 +

π4

6

)
δ(p2)

+

(
−40ζ3 + 24 +

4π2

3

)
L0(p2) +

16

3
π2L1(p2)− 8L2(p2)

]
, (5.20)

where the 1/ε divergences have been subtracted. We can also extract the corresponding

expression in the bHQET limit (y → 1) from eq. (3.34). Combining the results for the

12Note that in the massless case no rapidity divergences arise.
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Figure 4. Left: Contribution of diagrams (b) and (c) to the jet-function ME finite part multiplied

with the singularity-damping factor p2(1−y)2 as a function of y ≡ m2/p2 for µ2 = s. The numerical

data from pySecDec is shown as the solid blue line. The associated numerical uncertainty is too small

to be visible in the plot. The corresponding heavy quark (bHQET) limit, according to eq. (5.21), is

shown as dashed green line. The dotted orange line represents the value of the jet-function ME times

damping factor in the massless limit (y = 0), i.e. to the L0(p2) term in eq. (5.20). Right: Difference

between numerical data points and analytic bHQET limit, normalized to the massless limit, for

µ2 = s. The error bars indicate the uncertainty of the numerical integration using pySecDec.

two-loop bHQET jet function J
(n`)
B [21] and the collinear mass mode matching coefficient

Hm,n [41] with our results for the other diagrams, we find

J b+c
fin (p2,m2) = a2

s

(
C2
F −

CFCA
2

){
δ(s)

[ (
−72ζ3 + 24 + 18π2

)
Lm

+

(
8π2

3
− 16

)
L2
m −

154ζ3

3
− π4

45
+

50π2

3
− 68− 24π2 log 2

]

+

[
16L2

m +

(
32− 16π2

3

)
Lm + 64ζ3 − 18π2

]
L0(s)

+

[
−64Lm +

32π2

3
− 32

]
L1(s) + 40L2(s) +O

(
m−2

)}
. (5.21)

Note that this expression contains all distributional terms in J b+c(p2,m2).

In the left panel of figure 4 we plot our (interpolated) numerical result for p2(1 −
y)2J b+c

fin (solid blue line) and the corresponding analytical expression for s� m2 according

to eq. (5.21) (dashed green line) for µ2 = s in the range 0 < y < 1. Note that for s > 0

and µ2 = s only the L0(s) term in eq. (5.21) survives. With the factor p2(1 − y)2 and

for µ2 = s → p2 > 0 the massless result in eq. (5.20) collapses to a single value, namely

the coefficient of the L0(p2) distribution. This is indicated by the dotted orange line

which agrees with the numerical data point at y = 0 within numerical uncertainty. We

also observe that in the limit y → 1 the numerical data and the bHQET curve correctly

approach each other nicely. To better illustrate this we show in the right panel of figure 4
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the difference between numerical data points and bHQET result normalized to the y = 0

value (dotted orange line in the left panel) in the range 0.95 < y < 1 including the numerical

uncertainties as quoted by pySecDec. We clearly see that for y & 0.996 the difference is zero

within the numerical uncertainties. This represents a strong cross check of our combined

numerical and analytical evaluation.

In order to obtain a practical fit function that parametrizes our numerical results

respecting at the same time the analytic constraints from the bHQET and massless limits

we proceed as follows. We start with an ansatz for J b+c
fin (p2,m2, µ2 = s) valid for s > 0 of

the form

sJ b+c
fin,ansatz(p

2,m2, µ2 =s) = a2
s

(
C2
F −

CFCA
2

) 2∑
m=0

3∑
n=0

cmn(1− y)m logn(1− y) . (5.22)

Note that we multiplied J b+c
fin (p2,m2) on the l.h.s. with the factor s. We can now fix13

c00 = −18π2 + 64ζ3, c01 =
16

3
(π2 − 6), c02 = 16, c03 = 0, (5.23)

by comparing eq. (5.22) in the (bHQET) limit y → 1 to the coefficient of L0(s) in eq. (5.21).

Similarly, we can take the massless limit (y → 0) of eq. (5.22) and compare it to the

coefficient of L0(p2) in eq. (5.20), which fixes

c10 = −c00 − c20 + 24 +
4

3
π2 − 40ζ3 . (5.24)

It is straightforward to generalize the ansatz function to arbitrary values of µ2 6= s

using the renormalization Z-factor in eq. (5.2) and our results from the other diagrams. The

full distributional ansatz J b+c
fin,ansatz(p

2,m2, µ2) for arbitrary µ and s ≥ 0 is then obtained

by promoting the logn(s/µ2)/s terms to Ln(s) distributions and adding the δ(s) term of

eq. (5.21). To also include the nontrivial analytic information from the δ(p2) term in the

massless quark result of eq. (5.20), we integrate the full distributional ansatz over a finite

interval around s = 0, take the limit m→ 0 and compare to the corresponding integral of

eq. (5.20). In this way we find the additional constraint

c20 = −π
2

6
c01 + 2ζ3c02 −

π4

15
c03 −

π2

6
c11 + 2ζ3c12 −

π4

15
c13 +

(
1− π2

6

)
c21 + 2(ζ3 − 1)c22

+

(
6− π4

15

)
c23 − 56ζ3 −

17π4

90
− 8π2(3 log 2− 2) . (5.25)

From the same computation (using arbitrary integration limits) one obtains analogous

constraints for c01, c02, and c03 which fully agree with eq. (5.23). This represents a nontrivial

check of our values for c01, c02, and c03 and implies consistency with the Lm dependent

terms in the δ(s) coefficient of eq. (5.21).

Furthermore, one can argue on physical grounds that

c13 = 0 , (5.26)

13We note that a numerical fit of the coefficients in eq. (5.23) from the numerical data points provides

results that agree with the values shown within numerical uncertainties.
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Figure 5. Fit functionGfit (dashed orange line) as given in eq. (3.16) compared to the (interpolated)

numerical data from pySecDec (solid blue line). The numerical uncertainties are too small to be

visible in the plot.

because we expect the first subleading bHQET power correction at two loops to have a

similar logarithmic structure as eq. (5.21), i.e. is should not contain any cubic logarithmic

terms.14 A dedicated numerical analysis in the bHQET regime confirms eq. (5.26) and

moreover yields

c12 = 1.0 . (5.27)

The values for the remaining coefficients in eq. (5.22) are obtained by a weighted fit to the

numerical data from pySecDec. We find

c11 = − 41.9008, c21 = − 20.2744, c22 = − 10.5870, c23 = − 7.1277 . (5.28)

With these values the ansatz approximates our numerical data points to a precision better

than 0.5%, while the uncertainty of the points themselves is at most 1%.

To check consistency of our numerical computation with the coefficient of δ(s) term

given in eq. (5.21), we performed the same fit as described above, but without including the

additional constraint of eq. (5.25). We find that the fitted value for c20 satisfies eq. (5.25)

within the numerical uncertainties. Since the massless limit for diagrams (b) and (c) was

explicitly computed, this consistency check reliably verifies the analytic input for the δ(s)

term in eq. (5.21).

Finally, we separate the analytical part in eq. (5.22) from the purely numerical part

given by the terms associated with the coefficients in eqs. (5.27) and (5.28), which we call

Gfit, see eq. (3.16). We plot the fit function Gfit(y) together with the associated numerical

results in figure 5. Since the relative contribution of Gfit(y) to the entire O(α2
s) corrections

of the jet-function ME is smaller then 0.5% in the whole physical range, we do not bother

to quote uncertainties in eqs. (5.27) and (5.28).

14Analogously, one could argue that there is no c23 term. Unlike the c13 term it is however regular for

y → 1 and we will use it to model other regular terms in our fit.
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Figure 6. One-loop Feynman diagrams with massive gluons required for the calculation of the

secondary mass effects, i.e. the O(α2
sCFTF ) terms, in the jet-function ME using the dispersion

relation in eq. (5.29). They are associated with the diagrams (o), (p), (q) and (r) in figure 1 with

a massive quark Q bubble. Left-right mirror graphs are understood.

5.3 Secondary massive quark corrections

In this section we compute the O(α2
sCFTF ) secondary massive quark corrections to the jet-

function ME Jf (p2,m2). The relevant Feynman graphs are diagrams (o), (p), (q) and (r)

in figure 1, where the vacuum polarization subdiagram is a massive quark Q bubble. We

adopt the approach of refs. [22, 26] where the corrections are calculated starting from the

O(αs) graphs describing radiation of a gluon with mass M . The corresponding one-loop

diagrams are shown in figure 6. In a second step a dispersion relation to account for

the gluon splitting into a pair of a quark and antiquark with mass m is applied. Using

the dispersion relation the gluon propagator with the insertion of the bare massive quark

vacuum polarization function in Feynman gauge and including the (infinitesimal) gluon

mass regulator Λ can be written as

−igµρ

p2 − Λ2 + i0
Πρσ(p2,m2)

−igσν

p2 − Λ2 + i0
=

1

π

∞∫
4m2

dM2

M2

−i(gµν − pµpν

p2 )

p2 −M2 + i0
Im
[
Π(M2,m2)

]

−
−i
(
gµν − pµpν

p2

)
p2 − Λ2 + i0

Π(0,m2) . (5.29)

Here Π(p2,m2) is the gluon vacuum polarization function arising from a massive quark

bubble defined by

ΠAB
µν (p2,m2) = −i(p2gµν − pµpν)Π(p2,m2)δAB ≡

∫
dx4 eipx〈0|TJAµ (x)JBν (0)|0〉 , (5.30)

with the vector current JAµ ≡ igQ̄TAγµQ. The imaginary part of the one-loop coefficient

Π(1) in d = 4− 2ε dimensions evaluates to (µ̃ ≡ µ eγE/2(4π)−1/2)

Im
[
Π(1)(p2,m2)

]
= Θ

(
p2−4m2

)
TF

(
p2

µ̃2

)−ε
24επ

3
2

+ε

Γ(5
2 − ε)

(
2m2

p2
+ 1− ε

)(
1− 4m2

p2

)1
2
−ε
.

(5.31)

Note that the Heaviside Θ-function restricts the gluon mass integration in the dispersion

relation to M > 2m. We could therefore safely set Λ = 0 in the first term of eq. (5.29).

Using eq. (5.29) for the gluon propagator with a heavy quark loop insertion in figure 1

(o), (p), (q) and (r) we see that we effectively need to compute the O(αs) jet-function ME

J
(1)
f with finite gluon mass M , i.e. the corresponding diagrams in figure 6. This is needed

– 41 –



162 Chapter 6. Two-Loop Massive Quark Jet Functions in SCET

J
H
E
P
0
8
(
2
0
1
9
)
1
1
2

for the contribution from the first term on the r.h.s. of eq. (5.29) (before integration over

M2). To include the contribution from the second term we also need the result expanded

for M → Λ�M,p2.

The pµpν terms on the r.h.s. of eq. (5.29) can be dropped in our computation due

to gauge invariance of quantum electrodynamics with a massive photon field [57, 58] and

the fact that the secondary O(α2
sCFTF ) massive quark corrections are up to color factors

identical in an Abelian gauge theory. Dropping the pµpν terms in eq. (5.29) we immediately

see that diagrams (q′) and (r′) are proportional to n̄ · n̄ = 0 and thus vanish.

The contribution of diagram (o′) to eq. (2.4) before taking the imaginary part reads

(s ≡ p2 −m2 + i0)

(o′) = −i 4αsCF µ̃
2ε

(2π)d(n̄ · p)s2

∫
ddk

(n̄ · k)(d− 2)s+ (n̄ · p)(4m2 − (d− 2)(2p · k + s))

[−(p+ k)2 +m2][−k2 +M2]
(5.32)

= αsCF
µ̃2ε Γ(ε)

21−2επ2−ε
1

s2

∫ 1

0
du

(ε− 1)s(u− 1) + 2m2((ε− 1)u− 1)

(M2(1− u) + u(s(u− 1) +m2u))ε
,

where the integration variable u represents a Feynman parameter. This expression is well-

behaved in the large M limit. It is convenient to separate the leading term for M →∞ in

d = 4− 2ε dimensions,

(o′)M→∞ = αsCFΓ(ε)2−1+2επ−2+ε

(
M

µ̃

)−2ε 2(2ε− 3)m2 + (−1 + ε)2s

(ε− 2)(ε− 1)s2
. (5.33)

In the remaining contribution, which vanishes for M2 →∞, we can safely set d = 4:

(o′)− (o′)M→∞ = −CFαs
2π2

1

s2

∫ 1

0
du
[
s(u− 1) + 2m2(1 + u)

]
(5.34)

×
[
log
(
M2(1− u)

)
− log

(
M2(1− u) + u(s(u− 1) +m2u)

)]
+O(ε) .

We now take the imaginary part according to eq. (5.18). For the non-logarithmic 1/s

and 1/s2 terms we use Im[(s + i0)−1] = −πδ(s) and Im[(s + i0)−2] = πδ′(s), respectively.

In addition, we get a nonzero contribution from the second logarithm in eq. (5.34) for

p2 > (M+m)2 which also restricts the relevant integration range of the Feynman parameter

u. Adding the O(αs) counterterm from the renormalization of m in the pole mass scheme

at tree level we obtain (ξ ≡
√

1− 4m2/M2)

Im
[
(o′)
]
− 2 asmδm

(1)
M δ′(s) = asCF

×

[
−Θ

(
p2 − (m+M)2

) √(M2 − s)2 − 4m2M2
[
4m4 + 2m2(M2 + 2s) + s(M2 − s)

]
s2(m2 + s)2

− 2 δ(s) eγEε
(
M

µ̃

)−2ε

Γ(ε)
ε− 1

ε− 2
+ δ(s)

3 ξ
(
2m4 −M4

)
log
(
m2

M2

)
2m4ξ

+ δ(s)
3
[(
−4m4 − 2m2M2 +M4

)
log
(

1−ξ
1+ξ

)
−m2ξ(3m2 + 2M2)

]
2m4ξ

]
+O(ε) . (5.35)
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Note that the δ′(s) terms from diagram (o′) and the contribution due to the quark pole

mass counterterm δmM (where the subscript indicates the nontrivial dependence on the

gauge boson mass M) cancel in the sum.

Diagram (p′) is rapidity divergent. With the symmetric η regulator [23, 39] we have

(p′) = −i8αsCF µ̃
2ενη

(2π)d
1

s

∫
ddk

n̄ · (p+ k)

[−(p+ k)2 +m2][−k2 +M2][−n̄ · k]1+η

= αsCF
µ̃2εΓ(ε)

π2−ε21−2ε

( n̄ · p
ν

)−η 1

s

∫ ∞
0

du dv
vu−η−1(u+ v)2ε+η−2δ(1− u− v)

(m2u2 + v (M2(u+ v)− su))ε
. (5.36)

To compute the integral we use the same approach as for diagram (o′). The M →∞ piece

is given by

(p′)M→∞ = αsCF 2−1+2επ−2+ε
( n̄ · p

ν

)−η (M
µ̃

)−2ε Γ(ε)Γ(2− ε)Γ(−η)

Γ(2− ε− η)

1

s
, (5.37)

and the remainder term reads

(p′)− (p′)M→∞ =
CFαs
2π2

1

s

∫ 1

0
du

1− u
u

(5.38)

×
[

log
(
M2(1− u)

)
− log

(
m2u2 + (1− u)

(
M2 − su

) )]
+O(ε, η) .

At this point the rapidity regularization has done its job and is in particular not needed

anymore for the dispersion integration. One may therefore expand in η keeping only the

divergent and finite terms. To take the imaginary part we proceed in the same way as for

diagram (o′).

Accounting for the equivalent contribution from the mirror diagram of (p′) the com-

plete result for the bare primary massive quark jet-function ME with gluon mass M to

O(αs) reads

J bare
Q (p2,m2,M2) = δ(s)

+ asCF

Θ
(
p2 − (m+M)2

)4 log

( √
(M2−s)2−4m2M2+M2+s

−
√

(M2−s)2−4m2M2+M2+s

)
s

−

(
2m2 + s

)√
(M2 − s)2 − 4m2M2

(
2m2 +M2 + 3s

)
s2 (m2 + s)2


+ δ(s)

[
2eγεΓ(ε)

(
M2

µ̃2

)−ε(
2

η
− 2 log

(
Q

ν

)
+ 2H1−ε −

ε− 1

ε− 2

)

+

(
4m4 − 10m2M2 + 3M4

)
log
(

1−ξ
1+ξ

)
2m4ξ

−
m2
(
−8m2 log

(
1−ξ

2

)
log
(
ξ+1

2

)
+m2 + 6M2

)
+
(
2m4 − 4m2M2 + 3M4

)
log
(
m2

M2

)
2m4




+O(ε, a2
s) , (5.39)
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where m is the quark pole mass and Hn denotes the n-th harmonic number. For the

expression shown here we have kept the exact dependence on d = 4 − 2ε for the terms

that need regularization in the M2 →∞ limit of the dispersion integration. Otherwise the

expansions in ε and η are carried out.

From eq. (5.39) we can determine the O(αs) bare primary massive quark jet-function

ME with the infinitesimal gluon mass regulator Λ,

J
bare,(1)
Q (p2,m2,Λ2) = CF

{[
4

ε
− 4 log

(
Λ2

µ2

)
+O(ε)

]
δ(s)

1

η
+

[
3− 4 log

(
Q

ν

)]
δ(s)

1

ε

+ δ(s)

[
2L2

m + Lm + 2 log2

(
Λ2

µ2

)
+ 4 log

(
Λ2

µ2

)
log

(
Q

ν

)
+ 8

]
(5.40)

+ L0(s)

[
−4Lm − 4 log

(
Λ2

µ2

)
− 4

]
+ 8L1(s) + Θ(s)

[
s

(m2 + s)2 −
4 log

(
s
m2 + 1

)
s

]}
.

We stress once again that a dimensionful regularization parameter such as the gluon mass

is mandatory to fully separate the rapidity and IR singularities such that all remaining 1/ε

terms are UV.

Using the dispersion identity eq. (5.29) the unrenormalized secondary massive quark

O(α2
sCFTF ) correction to the jet-function MEJQ(p2,m2) with an infinitesimal gluon mass

regulator reads

J
bare,(2)
Q (p2,m2,Λ2)

∣∣∣
CFTF

=
1

π

∞∫
4m2

dM2

M2
J

bare,(1)
Q (p2,m2,M2) Im

[
Π(1)(M2,m2)

]
−
(

Π(1)(m2, 0)− 4TF
3ε

)
J

bare,(1)
Q (p2,m2,Λ2) (5.41)

= Z
(2)
J (s,m2,Λ2, µ,Q/ν)

∣∣∣
CFTF

+ J
(2)
Q (p2,m2,Λ2, µ,Q/ν)

∣∣∣
CFTF

.

The 4TF /(3ε) term in the second line of eq. (5.41) is associated with the counterterm

coming from the heavy quark loop and is required to implement the MS strong coupling in

the (n`+1) flavor scheme. The dispersion integral in the first line of eq. (5.41) can be solved

analytically in terms of elementary functions and standard complete elliptic integrals using

Mathematica with appropriate changes of integration variables, except for the logarithmic

real radiation term shown in the second line of eq. (5.39). The latter can be integrated

numerically very efficiently. It contributes to the corrections related to the three-particle

QQQ̄-cut and corresponds to eq. (3.24). The final result for the finite (renormalized)

contribution J
(2)
Q

∣∣∣
CFTF

is displayed in eq. (5.6) and the divergent terms Z
(2)
J

∣∣∣
CFTF

are

given in eq. (5.7).

6 Numerical analysis

In this section we provide a brief numerical study concerning the structure and importance

of the O(α2
s) corrections to the primary massive quark SCET jet function. To be definite
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Figure 7. Left: Size of contributions to the O(α2
s) coefficient of the universal SCET massive

primary quark jet function from different color structures as a function of s/m2
t for µ =

√
s+5 GeV,

n` = 5 and m = mt = 173 GeV multiplied by (s/m2
t )1.3. Right: Double logarithmic plot of the

modulus of the full O(α2
s) corrections and the corresponding contribution coming from Gfit. We

also show the sum of all distributional O(α2
s) corrections and the non-distributional ones.

we use the universal jet function J
uf(n`+1)
Q (p2,m2, µ) of eq. (3.27) for the analysis since in

practice it is sufficient to formulate factorization theorems for all possible scale hierarchies,

see the discussion in section 4. We remind the reader that the universal SCET jet function

agrees with the massless quark SCET jet function in the limit m → 0, called “massless

limit” in the following. However, its relation to the bHQET jet function in the limit s =

p2−m2 → 0 involves the collinear-soft function Sc that is singular by itself in this kinematic

regime, see eqs. (2.11), (3.29) and (3.34). Since the bHQET factorization theorem (3.31)

and the factorization theorem for p2−m2 ∼ p2 . m2 (4.1) (which is identical to (4.2)) can

be smoothly connected, a comparison of the universal function J
uf(n`+1)
Q with its leading

singular limit for s = p2 −m2 → 0, called “heavy quark limit” in the following, correctly

visualizes the size of the mass corrections that are not captured by the leading power

bHQET factorization theorem in the region 0 < s = p2 −m2 . m2.

In the left panel of figure 7 the size of the contributions of the two-loop coefficient

J
(2)
Q (p2,m2, µ) + J

(2),uf
Q,sec (p2,m2, µ) coming from the different color structures is displayed

as a function of s/m2 = (p2 − m2)/m2 for µ =
√
s + 5 GeV. The terms proportional to

C2
F (green), CFCA (orange), CFTFn` (blue) and CFTF (red) are displayed individually

where we multiplied the factor (s/m2)1.3 to reduce the variation of the values over the

whole kinematic regime.15 The total coefficient is displayed in black. We see that the C2
F ,

CFCA and CFTFn` terms, not unexpectedly, provide the bulk of the O(α2
s) corrections, and

that the secondary heavy quark corrections are typically more than one order of magnitude

smaller. Interestingly, due to the behavior of the C2
F and CFCA terms, the O(α2

s) correction

changes sign at
√
p2 ≈ 1.1m which is well within the bHQET regime.

In the left panel of figure 7 we also show the total contribution of the fit function Gfit

15This convention is also adopted for figure 8. For all numerical discussions we adopt the renormalization

scale µ =
√
s+ 5 GeV and m = mt = 173 GeV.
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Figure 8. Left: O(αs) coefficient of the SCET massive primary quark jet function (black solid) in

comparison to the leading power results of the massless (black dotted) and bHQET (black dashed)

limit. Also shown are the curves including the respective next terms in the small mass and bHQET

expansions (gray dotted and dashed, respectively). Right: Analogous plot for the O(α2
s) coefficient

of the universal SCET massive primary quark jet function.

(purple dashed) which is part of the non-distributional terms G
(1Q)
CF

and G
(1Q)
CA

contained in

the C2
F and CFCA corrections, see eqs. (3.12) and (3.13) respectively. Typically, it makes up

for less than 1% of the total O(α2
s) correction, except close to the zero at

√
p2 ≈ 1.1m. This

is also shown in more detail in the right (double logarithmic) panel of figure 7 where the

modulus of the full O(α2
s) corrections (black) and the corresponding contribution coming

from the function Gfit (purple) are displayed. Since the O(αs) corrections to the jet function

do not have a zero (see below), the overall contribution of Gfit to the entire jet function

never exceeds the per mille level. In the right panel of figure 7 we have also shown the sum

of all distributional O(α2
s) corrections (brown) and the non-distributional ones (light blue)

which are constituted by the sum of all G-functions quoted in section 3. We see that the

non-distributional contributions are strongly suppressed compared to the distributional

terms in the bHQET region and still at least an order of magnitude smaller as long as

s . 10m2. In the high energy limit, however, there are strong cancellations between them

because the non-distributional corrections develop distributional terms in the limit m→ 0,

see appendix B. So the contributions of the non-distributional corrections are particularly

important for s/m2 & 10 where they are not at all negligible.

We also would like to show the numerical impact of the genuine SCET massive primary

quark jet function in comparison to the previously known jet functions for massless quarks

(i.e. its high energy limit s/m2 →∞) and for the bHQET limit s/m2 → 0. In the left panel

of figure 8 the full O(αs) coefficient J
(1)
Q (p2,m2, µ) is displayed (black solid) in comparison

to the singular results of the massless (black dotted) and bHQET (black dashed) limit. We

see that both expansions work well in the respective limits, but fail to provide reasonable

approximations in the intermediate regime 0.3 . s/m2 . 10 which corresponds to 1.1 .√
p2/m . 3. In the right panel of figure 8 the analogous results are shown for the O(α2

s)

coefficient J
(2)
Q (p2,m2, µ) + J

(2),uf
Q,sec (p2,m2, µ). Again, the massless as well as the bHQET

expansion work well in the respective limits. But, interestingly, both also approximate
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the exact result within 15 − 20% in the intermediate regime 0.3 . s/m2 . 10. That the

O(αs) and O(α2
s) correction of the universal SCET massive primary quark jet function

differ in this respect should be considered as an accidental feature. This can be seen by

also including the respective next terms in the small mass and bHQET expansions (which

represent terms belonging to subleading power expansions in massless quark SCET and

bHQET, respectively). These are shown as the gray dotted and dashed lines, respectively,

in figure 8. At O(αs) as well as O(α2
s) these subleading terms improve the approximation

of the exact results substantially into the intermediate regime 0.3 . s/m2 . 10. But we

see that, while at O(αs) they also improve the approximation to s/m2 ≈ 1, the same is

not true at O(α2
s).

7 Conclusions

In this work we have calculated the O(α2
s) corrections to the SCET jet functions for primary

massive quarks which are relevant for the inclusive description of jets initiated by massive

quarks produced by hard interactions with high energy. The result provides important

information for the intermediate region p2 ∼ p2 − m2 = s ∼ m2, where the previously

known O(α2
s) jet function results in the massless limit m2/p2 → 0 and in the bHQET limit

s→ 0 do not provide accurate approximations. Thus they represent the essential input to

achieve a coherent description that smoothly interpolates these two extreme limits.

The interesting conceptual feature of the primary massive quark SCET jet function is

that it can be defined in two different ways depending on whether — in addition to the

zero-bin subtractions — one imposes soft mass mode bin subtractions or not for diagrams

containing secondary massive quark effects, i.e. a massive quark-antiquark vacuum polar-

ization subdiagram. In the context of the view that jet functions require so-called zero-bin

subtractions [24] to constitute infrared finite factorization functions, the relevance of the

soft mass mode bin subtraction [22, 25] depends on the assumed power counting of the

quark mass w.r.t. the jet invariant mass. An alternative view, that leads to equivalent

results, but does not rely on a zero-bin expansion supplemented by power counting argu-

ments, is to define the jet function with a subtraction defined from a collinear-soft matrix

element [27, 28] where the effects of secondary massive quarks can be optionally included

or not. The collinear-soft matrix elements provide unambiguous prescriptions of the sub-

tractions eliminating the need to impose an additional power counting. The definitions

and the results for the collinear-soft matrix elements are identical for massless and massive

primary quarks and even apply for bHQET jet functions (to deal with corrections arising

from secondary massive quarks that are lighter than the super-heavy primary quark).

If the secondary massive quark is included in the collinear-soft matrix element the

resulting jet function is called universal jet function. The universal jet function reduces

to the massless quark jet function in the limit of zero quark mass and also has the same

virtuality (µ) anomalous dimension. It can be used for the kinematic region ranging from

m2 ∼ p2 ∼ p2−m2 down to the massless limit p2 � m2, where p2 is the squared jet function

invariant mass and m the mass of the primary quark. If the secondary massive quarks are

not included in the collinear-soft matrix element the jet function is called mass mode jet

– 47 –



168 Chapter 6. Two-Loop Massive Quark Jet Functions in SCET

J
H
E
P
0
8
(
2
0
1
9
)
1
1
2

function. It is infrared divergent for m→ 0 and has a virtuality and a rapidity anomalous

dimension. It can be used for the kinematic region m2 ∼ p2 ∼ p2−m2. The two types of jet

functions are related via the so-called collinear-soft function [32], and we have provided the

O(α2
s) results for both. We have also demonstrated how both jet functions are used in the

factorization approaches of refs. [22, 26, 41] and ref. [32] which were developed to deal with

the effects of secondary massive quarks in the context of factorization. While the approach

of ref. [32] provides a more transparent view on the modular structure of the collinear,

soft and collinear-soft mass modes, the approach of refs. [22, 26, 41] provides a method

with a smooth quark mass dependence that allows to treat the cases p2 −m2 � m2 ∼ p2

and p2 −m2 ∼ m2 ∼ p2 in a single factorization theorem. Taking a jet mass factorization

theorem with the primary massive quark SCET jet function as an example we have shown

how both approaches are related and in which way they are or can be rendered equivalent.

We emphasize that, considered together, both approaches provide a thorough view on the

field theoretic treatment of secondary massive quark effects within factorization approaches

that separate soft and collinear quantum effects.

Regarding the calculation, we have treated the two-loop secondary mass corrections

due to heavy quark loops separately from the corrections due to massless quark and gluon

loops. In fact, the correct treatment of the secondary mass corrections requires to carefully

disentangle UV, IR and rapidity divergences present in this case. This is achieved by em-

ploying a dimensionful IR regulator (in our case a small gluon mass). The loop integrations

are than carried out using the dispersive method of refs. [22, 26, 41].

The remaining O(α2
s) corrections (related to diagrams without a closed quark-

antiquark loop) have been carried out in pure dimensional regularization. We distinguished

two types of relevant diagrams: planar and nonplanar. While the contributions from the

planar diagrams can be obtained using standard modern multi-loop techniques, we faced

interesting technical issues in the calculation of the nonplanar diagrams. In particular, for

two nonplanar diagrams we have not been able to employ (standard automated) IBP reduc-

tions without generating spurious rapidity divergences that require an additional rapidity

regulator. The latter made the solution of the corresponding master integrals unfeasible.

We therefore treated these two diagrams in a semi-numerical approach exploiting analytic

information from the massless and bHQET limits. The corresponding numerical results are

very accurate and only represent a very small contribution to the full O(α2
s) corrections to

the jet functions. We have also provided precise numerical approximations of our analytic

results (involving elliptic functions) for practical implementations.
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A Other jet functions

The mass mode jet function for massless primary quarks at O(α2
s) has the form

Jmf,(n`+1)
q

(
p2,m2, µ,

Q

ν

)
= δ(p2) + a(n`)

s J (1)
q (p2, µ) (A.1)

+
(
a(n`)
s

)2
[
J (2)
q (p2, µ) + J (2),mf

q,sec

(
p2,m2, µ,

Q

ν

)]
+O(α3

s) ,

with

J (1)
q (p2, µ) = CF

{(
7− π2

)
δ(p2)− 3L0(p2) + 4L1(p2)

+ ε

[(
−28ζ3

3
+ 14− 3π2

4

)
δ(p2) +

(
π2 − 7

)
L0(p2) + 3L1(p2)− 2L2(p2)

]

+ ε2

[(
−7ζ3 + 28− 7π2

4
− π4

24

)
δ(p2) +

(
28ζ3

3
− 14 +

3π2

4

)
L0(p2)

+
(
7− π2

)
L1(p2)− 3

2
L2(p2) +

2

3
L3(p2)

]}
, (A.2)

J (2)
q (p2, µ) = C2

F

[(
−18ζ3 +

205

8
− 67π2

6
+

14π4

15

)
δ(p2) +

(
−8ζ3 −

45

2
+ 7π2

)
L0(p2)

+

(
37− 20π2

3

)
L1(p2)− 18L2(p2) + 8L3(p2)

]

+ CFCA

[(
−206ζ3

9
+

53129

648
− 208π2

27
− 17π4

180

)
δ(p2) +

(
40ζ3 −

3155

54
+

22π2

9

)
L0(p2)

+

(
367

9
− 4π2

3

)
L1(p2)− 22

3
L2(p2)

]

+ CFTFn`

[(
494

27
− 8π2

9

)
L0(p2) +

(
16ζ3

9
− 4057

162
+

68π2

27

)
δ(p2)

− 116

9
L1(p2) +

8

3
L2(p2)

]
, (A.3)

J (2),mf
q,sec

(
p2,m2, µ,

Q

ν

)
= CFTF

{[(
−8

3
L2
m −

80

9
Lm −

224

27

)
log

(
Q

ν

)
+ 2L2

m

+
2

9

(
3 + 4π2

)
Lm −

8ζ3

3
+

20π2

27
+

73

18

]
δ(p2) +GsecΘ

(
p2 − (2m)2

)}
, (A.4)
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Gsec =
1

p2

[
− 32

3
Li2

(
b− 1

1 + b

)
+

16

3
log

(
1− b2

4

)
log

(
1− b
1 + b

)
− 8

3
log2

(
1− b
1 + b

)

+

(
1

2
b4 − b2 +

241

18

)
log

(
1− b
1 + b

)
− 5

27
b3 +

241

9
b− 8π2

9

]

=
(p2 − (2m)2)7/2

560m9
+O

(
(p2 − (2m)2)9/2

m11

)
, (A.5)

where b ≡
√

1− 4m2/p2.

The universal jet function for massless primary quarks at O(α2
s) has the form [26]

Juf,(n`+1)
q (p2,m2, µ) = δ(p2) + a(n`+1)

s J (1)
q (p, µ)

+
(
a(n`+1)
s

)2 [
J (2)
q (p, µ) + J (2),uf

q,sec (p2,m2, µ)
]

+O(α3
s) , (A.6)

with

J (2),uf
q,sec (p2,m2, µ) = CFTF

{[
8

9
L3
m +

58

9
L2
m +

(
718

27
− 8π2

9

)
Lm

+
1531

54
+

10π2

27
− 80ζ3

9

]
δ(p2) +

[
−8

3
L2
m −

116

9
Lm −

224

27

]
L0(p2) +

16

3
LmL1(p2)

+GsecΘ
(
p2 − (2m)2

)}
. (A.7)

Both jet functions satisfy eq. (2.12) in the same way as the corresponding primary massive

jet functions.

The renormalized primary massless jet-function ME including contributions related to

1-loop corrections and secondary massive quark production at 2-loop in the computational

scheme with an infinitesimal gluon mass Λ is given by

J

(
p2, 0,Λ2, µ,

Q

ν

)∣∣∣∣
CFTF

= δ(p2) (A.8)

+ a(n`+1)
s CF

{[
2 log2

(
Λ2

µ2

)
+ 4 log

(
Λ2

µ2

)
log

(
Q

ν

)
− 2π2

3
+ 7

]
δ(p2)

+

[
−4 log

(
Λ2

µ2

)
− 3

]
L0(p2) + 4L1(p2)

}

+
(
a(n`+1)
s

)2
CFTF

{[(
8

3
log2

(
Λ2

µ2

)
+ 10

)
Lm + 2L2

m

+ log

(
Q

ν

)(
16

3
log

(
Λ2

µ2

)
Lm −

80

9
Lm −

8

3
L2
m −

224

27

)
− 8ζ3

3
+

20π2

27
+

73

18

]
δ(p2)

+

(
−16

3
log

(
Λ2

µ2

)
− 4

)
LmL0(p2) +

16

3
LmL1(p2) +GsecΘ(p2 − (2m)2)

}
+O(α3

s) .
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The O(αs) and O(α2
sC

2
F , α

2
sCFCA, α

2
sCFTFn`) corrections in the computational scheme

with a massless gluon in dimensional regularization analytically agree with those of the

massless quark SCET jet function, see [8, 26].

B G-functions in the limit m → 0

In the limit that the massive primary quark Q becomes massless the singular limits of the

non-distributional G-functions have the form

G1 =

(
−2L2

m−Lm−1− 2π2

3

)
δ(p2)+(1+4Lm)L0(p2)−4L1(p2)+O

(
m2

p4

)
, (B.1)

G
(ε)
1 =

(
−3

2
L2
m+

2π2

3
Lm−2−π

2

3
−4ζ3

)
δ(p2)

+(1+4Lm+2L2
m)L0(p2)+(−5−8Lm)L1(p2)+6L2(p2)+O

(
m2

p4

)
, (B.2)

G
(ε2)
1 =

[
− 1

6
L4
m−

1

6
L3
m+

(
−4+

π2

6

)
L2
m+

(
7π2

12
+4ζ3

)
Lm (B.3)

−4− 13π2

12
−π

4

30
−2ζ3

]
δ(p2)

+

[
2

3
L3
m+2L2

m+(8−π2)Lm+2−π
2

4

]
L0(p2)

+[−4L2
m−8Lm−9+π2]L1(p2)+

[
8Lm+

13

2

]
L2(p2)− 14

3
L3(p2)+O

(
m2

p4

)
,

G
(1Q)
CF

=

[
−2L4

m−2L3
m+

(
2π2− 35

2

)
L2
m+Lm

(
56ζ3−

27

2
+π2

)
(B.4)

−68ζ3+
43π4

30
+

125

2
+π2

(
24log2− 131

6

)]
δ(p2)

+

[
8L3

m+12L2
m+

(
38− 20π2

3

)
Lm−72ζ3+

π2

3
+

33

2

]
L0(p2)

+

[
−32L2

m−40Lm+
20π2

3
−45

]
L1(p2)+6[8Lm+5]L2(p2)−24L3(p2)+O

(
m2

p4

)
,

G
(1Q)
CA

=

[
1

9

(
6π2−179

)
L2
m+

1

9
Lm
(
−180ζ3−139+56π2

)
+42ζ3

+
7π4

180
− 508

9
+π2

(
25

27
−12log2

)]
δ(p2)

+
1

9

[
66L2

m+
(
391−12π2

)
Lm+180ζ3−34π2+172

]
L0(p2)

− 4

9

[
66Lm−3π2+106

]
L1(p2)+22L2(p2)+O

(
m2

p4

)
, (B.5)
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GTF =

[
58

9
L2
m+

(
74

9
− 16π2

9

)
Lm+

110

9
+

46π2

27

]
δ(p2)

+

[
−8

3
L2
m−

128

9
Lm−

86

9
+

8π2

9

]
L0(p2)+

[
32

3
Lm+

140

9

]
L1(p2)

−8L2(p2)+O
(
m2

p4

)
, (B.6)

G(3Q) =
[
L2
m+7Lm+88ζ3−91+π2(11−16log2)

]
δ(p2)+[−2Lm−7]L0(p2)

+2L1(p2)+O
(
m2

p4

)
, (B.7)

G(3Q)
sec =

2

81

[
−36L3

m−261L2
m+3

(
12π2−359

)
Lm+216ζ3+171π2−2783

]
δ(p2)

+
2

27

[
36L2

m+174Lm−12π2+359
]
L0(p2)− 4

9
[12Lm+29]L1(p2)

+
8

3
L2(p2)+O

(
m2

p4

)
. (B.8)

C Anomalous dimensions

The µ-anomalous dimensions as defined in eq. (4.9) are given by

γ
(nf )
c (Q,µ) =−γ(nf )

Q (Q,µ) , (C.1)

γ
(nf )
Q (Q,µ) = Γ

(nf )
cusp[αs] log

(−Q2−i0
µ2

)
+γ

(nf )
Q [αs] , (C.2)

γ
(nf )
Q [αs] =−6CFa

(nf )
s +

(
a

(nf )
s

)2
[
C2
F

(
−3+4π2−48ζ3

)
(C.3)

+CFCA

(
−961

27
− 11π2

3
+52ζ3

)
+CFTFnf

(
260

27
+

4π2

3

)]
+O(α3

s) ,

γ
(nf )
cB (Q,m,µ) =−Γ

(nf )
cusp[αs] log

(−Q2−i0
m2

)
+γ

(nf )
cB [αs] , (C.4)

γ
(nf )
cB [αs] = 4CFa

(nf )
s +

(
a

(nf )
s

)2
[
CFCA

(
196

9
− 4π2

3
+8ζ3

)
+CFTFnf

(
−80

9

)]
+O(α3

s) , (C.5)

γ
(nf )
J (p2,µ) =−2Γ

(nf )
cusp[αs]L0(p2)+γ

(nf )
J [αs]δ(p

2) , (C.6)

γ
(nf )
J [αs] = 6CFa

(nf )
s +

(
a

(nf )
s

)2
[
C2
F

(
3−4π2+48ζ3

)
(C.7)

+CFCA

(
1769

27
+

22π2

9
−80ζ3

)
+CFTFnf

(
−484

27
− 8π2

9

)]
+O(α3

s) ,

γ
(nf )
JB

(ŝ,µ) =−2Γ
(nf )
cusp[αs]L0(ŝ)+γ

(nf )
JB

[αs]δ(ŝ) , (C.8)
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γ
(nf )
JB

[αs] = 4CFa
(nf )
s +

(
a

(nf )
s

)2
[
CFCA

(
1396

27
− 23π2

9
−20ζ3

)

+CFTFnf

(
4π2

9
− 464

27

)]
+O(α3

s) , (C.9)

γ
(nf )
S (`+, `−,µ) = δ(`+)γ

(nf )
s (`−,µ)+δ(`−)γ

(nf )
s (`+,µ) , (C.10)

γ
(nf )
s (`,µ) = 2Γ

(nf )
cusp[αs]L0(`)+γ

(nf )
s [αs]δ(`) , (C.11)

γ
(nf )
s [αs] =

(
a

(nf )
s

)2
[
CFCA

(
−808

27
+

11π2

9
+28ζ3

)
+CFTFnf

(
224

27
− 4π2

9

)]
+O(α3

s) , (C.12)

Γ
(nf )
cusp = 4CFa

(nf )
s +

(
a

(nf )
s

)2
[
CFCA

(
268

9
− 4π2

3

)
+CFTFnf

(
−80

9

)]
+O(α3

s).

(C.13)

The µ- and ν-anomalous dimensions of the jet-function ME J
(n`+1)
f (p2,m2) and

the collinear-soft MEs S (n`+1)(`,m) and S (n`)(`), defined in analogy to eqs. (4.9)

and (4.11), read

γJ (p2, µ,Q/ν)
∣∣
CFTF

= a(n`+1)
s CF

[
6− 8 log

(
Q

ν

)]
δ(p2)

+
(
a(n`+1)
s

)2
CFTF

[
160

9
log

(
Q

ν

)
− 16π2

9
− 4

3

]
δ(p2) +O(α3

s) , (C.14)

γ
(n`)
S (`, µ, ν) = a(n`)

s CF

[
8 log

(
ν

µ

)
δ(`) + 8L0(`)

]
+O(α2

s) , (C.15)

γ
(n`+1)
S (`, µ, ν)

∣∣∣
CFTF

= a(n`+1)
s CF

[
8 log

(
ν

µ

)
δ(`) + 8L0(`)

]
+
(
a(n`+1)
s

)2
CFTF

[(
− 160

9
log

(
ν

µ

)
− 8π2

9
+

448

27

)
δ(`)− 160

9
L0(`)

]
+O(α3

s) ,

(C.16)

γν,J (m,Λ, µ)
∣∣
CFTF

= a(n`+1)
s CF

[
−4 log

(
Λ2

µ2

)]
+
(
a(n`+1)
s

)2
CFTF

[
− 16

3
log

(
Λ2

µ2

)
Lm +

8

3
L2
m +

80

9
Lm +

224

27

]
+O(α3

s) , (C.17)

γ
(n`)
ν,S (Λ, µ) = a(n`)

s CF

[
−4 log

(
Λ2

µ2

)]
+O(α2

s) , (C.18)

γ
(n`+1)
ν,S (m,Λ, µ)

∣∣∣
CFTF

= a(n`+1)
s CF

[
−4 log

(
Λ2

µ2

)]
+
(
a(n`+1)
s

)2
CFTF

[
− 16

3
log

(
Λ2

µ2

)
Lm +

8

3
L2
m +

80

9
Lm +

224

27

]
+O(α3

s) . (C.19)

The O(α2
sC

2
F , α

2
sCACF , α

2
sCFTFn`) contributions to the µ- and ν-anomalous dimensions

of the jet-function and collinear-soft MEs are unknown. We therefore only displayed the
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O(α2
sCFTF ) corrections coming from the massive quark Q, which is indicated by sub-

script “CFTF ”.

The virtuality µ-anomalous dimensions for the collinear-soft function Sc and the mass

mode jet function J
mf,(n`+1)
f are

γSc(`,m, µ, ν) = a2
sCFTF

[(
−32

3
Lm −

160

9

)
L0(`)

+

(
−32

3
log

(
ν

µ

)
Lm −

160

9
log

(
ν

µ

)
− 8π2

9
+

448

27

)
δ(`)

]
+O(α3

s), (C.20)

γJmf (p2,m2, µ,Q/ν)
∣∣
CFTF

= a(n`+1)
s CF

[
−8L0(p2) + 6δ(p2)

]
+
(
a(n`+1)
s

)2
CFTF

[(
32

3
Lm log

(
Q

ν

)
+

160

9
log

(
Q

ν

)
− 16π2

9
− 4

3

)
δ(p2)

− 32

3
LmL0(p2)

]
+O(α3

s) , (C.21)

where the remaining color factor contributions to γJmf at O(α2
s) (which do not arise from

diagrams containing the massive quark Q loop) coincide with the O(α2
s) contributions of

γ
(n`)
J given in eq. (C.6).

D Master integrals

The family A master integrals depicted in figure 2 evaluate to (y ≡ m2/p2, ȳ ≡ 1− y)

M1 = I(−y;0,0,0,1,1,0,0,0) = (−y/ȳ)2−2εΓ(ε−1)2 , (D.1)

M2 = I(−y;1,0,0,1,1,0,0,0) =−(−y/ȳ)2−2εΓ(ε−1)2
2F1(1,2−2ε;2−ε;1/ȳ) , (D.2)

M3 = I(−y;1,1,0,1,1,0,0,0) = (−y/ȳ)2−2εΓ(ε−1)2
2F1(1,2−2ε;2−ε;1/ȳ)2 , (D.3)

M4 = I(−y;1,0,1,0,1,0,0,0) =−2Γ(1−ε)Γ(ε)Γ(2ε−2)2F1 (2−2ε,2ε−1;2−ε;1/ȳ) , (D.4)

M5 = I(−y;1,0,1,0,2,0,0,0) =−Γ(1−ε)Γ(ε−1)Γ(2ε)2F1 (2−2ε,2ε;2−ε;1/ȳ) , (D.5)

M6 = I(−y;1,0,1,1,1,0,0,1) = e−2εγE

[
π2

12ε2

+
1

ε

(
1

6
π2H(−1;−y)−H(−2,−1;−y)+H(−2,0;−y)+

7ζ3

2

)
+7ζ3H(−1;−y)− 2

3
π2H(−2;−y)+H(−3,−1;−y)−H(−3,0;−y)+3H(−2,−2;−y)

+
1

3
π2H(−1,−1;−y)−3H(−2,0,0;−y)−2H(−1,−2,−1;−y)+2H(−1,−2,0;−y)

+
11π4

72
+O(ε)

]
, (D.6)
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M7 = I(−y;1,0,1,1,1,0,0,2) = e−2εγE

[
− 1

4ε3

+
1

ε

(
−H(−1,−1;−y)+H(−1,0;−y)+

5π2

24

)
− 1

6
π2H(−1;−y)−2H(−2,−1;−y)

+2H(−2,0;−y)+3H(−1,−2;−y)−3H(−1,0,0;−y)+
29ζ3

3

+ε

(
−2ζ3H(−1;−y)−π2H(−2;−y)+2H(−3,−1;−y)−2H(−3,0;−y)

+4H(−2,−2;−y)−7H(−1,−3;−y)+
5π2

6
H(−1,−1;−y)+

π2

3
H(−1,0;−y)

−4H(−2,0,0;−y)+4H(−1,−2,−1;−y)−4H(−1,−2,0;−y)

−4H(−1,−1,−1,−1;−y)+4H(−1,−1,−1,0;−y)+7H(−1,0,0,0;−y)+
497π4

1440

)
+O(ε2)

]
, (D.7)

where the H(~n;−y) denote HPLs according to the conventions of ref. [49].

The relevant imaginary parts and ȳ-expansions related to the family B master integrals

depicted in figure 3 were determined or directly taken from refs. [54–56] and read

M8 = I(−y;0,0,0,1,1,1,0,0) = e−2εγE

(
−y
ȳ

)1−2ε[
− 3

2ε2
−

1
−y+18

4ε

− 1

8

(
59+2π2

)
− 3ȳ

8
− 1

8

(
π2−7

)
ȳ2− 1

96

(
9π2−56

)
ȳ3+O

(
ε, ȳ4

)]
, (D.8)

Im
[
(−s−i0)−2εM8

] s>0
= Θ(1/9−y)

π

2ȳ

√
1−√y

√
3
√
y+1

×

[
8yK

((√
y+1

)3 (
3
√
y−1

)(√
y−1

)3 (
3
√
y+1

))+(
√
y−1)(1+3y)E

((√
y+1

)3 (
3
√
y−1

)(√
y−1

)3 (
3
√
y+1

))]
+O(ε), (D.9)

M9 = I(−y;0,0,0,2,1,1,0,0) = e−2εγE

(
−y
ȳ

)−2ε[ 1

2ε2
+

1

2ε
− 1

12

(
6−π2

)
−
(
π2

12
−1

)
ȳ− 1

32

(
4−π2

)
ȳ2+O

(
ε, ȳ3

)]
, (D.10)

Im
[
(−s−i0)−2εM9

] s>0
= −Θ(1/9−y)

π
√

3
√
y+1

3
√

1−√y

×

[
4(2
√
y−1) K

((√
y+1

)3 (
3
√
y−1

)(√
y−1

)3 (
3
√
y+1

))+3(
√
y−1)2 E

((√
y+1

)3 (
3
√
y−1

)(√
y−1

)3 (
3
√
y+1

))]
+O(ε) , (D.11)
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M10 = I(−y;1,1,0,1,1,1,0,0) = ȳ

−1

6
π2H(1;1/y)−2H(0,1,1;1/y)

+H(1,0,1;1/y)+
2

3

∫ ∞
9

dt
t−9

t−1
log

(
1− 1

yt

) 2K

(
(
√
t−3)(

√
t+1)

3

(
√
t−1)

3
(
√
t+3)

)
√(√

t−1
)3 (√

t+3
)
+O(ε) (D.12)

= ȳ

[(
17ζ3

4
− 3

2
π2 log2

)
+ȳ

(
3log(−ȳ)−log2 (−ȳ)− 3π2

16
− 5

2

)]
+O(ε, ȳ3) , (D.13)

Im
[
(−s−i0)−2εM10

] s>0
= ȳ π

Θ(1−y) [2 log(y) log(ȳ/y)−3Li2(−ȳ/y)]

−Θ(1/9−y)
4

3

∫ 1/y

9
dt
t−9

t−1

K

(
(
√
t−3)(

√
t+1)

3

(
√
t−1)

3
(
√
t+3)

)
√(√

t−1
)3 (√

t+3
)
+O(ε) . (D.14)

The remaining integral in eq. (D.14) can be evaluated numerically very efficiently. It

originates from the branch cut of the logarithm in the explicit integral in the full ε expanded

result for M10 given in eq. (D.12) when taking the imaginary part. The expansion of M10

around s ∼ 0, i.e. y ∼ 1, in eq. (D.13) was computed by expanding the integrand and

solving the resulting integrals using a PSLQ-type algorithm implemented in Mathematica.

All results stated in this appendix were checked numerically using sector decomposi-

tion.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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the simplest extension of the MS mass concept to renormalization scales � mQ. The MSR

mass depends on a scale R that can be chosen freely, and its renormalization group evo-

lution has a linear dependence on R, which is known as R-evolution. Using R-evolution

for the MSR mass we provide details of the derivation of an analytic expression for the
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1 Introduction

Achieving higher precision in theoretical predictions in the framework of quantum chromo

dynamics (QCD) is one of the main goals in high-energy physics and an essential ingredient

in the indirect search for physics beyond the Standard Model. In this endeavor accurate

determinations of the masses of the heavy charm, bottom and top quarks play an important

role since they enter the description of many observables that are employed in consistency
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tests of the Standard Model and in the exploration of models of new physics. Because

quark masses are formally-defined renormalized quantities and not physical observables,

the quantities from which the heavy quark masses are extracted need to be computed

in perturbative QCD to high order. Among the most precise recent high-order analyses

to determine the heavy quark masses are QCD sum rules and the analysis of quarkonium

energies for the charm and bottom quark masses [1–10] and the top pair production thresh-

old cross section at a future lepton collider for the top quark mass [11–13]. Over time all

of these analyses have been continuously updated and improved by computations of new

QCD corrections, and more are being designed and studied currently to also allow for more

precise determinations of the top quark mass from available LHC data [14–21].

In all the analyses of refs. [1–13] the use of short-distance mass schemes was essential to

achieve a well-converging perturbative expansion and a precision in the mass determination

well below the hadronization scale ΛQCD ∼ 200–300 MeV. The heavy quark pole mass

mpole
Q , which is the perturbation theory equivalent of the rest mass of an on-shell quark,

on the other hand, leads to a substantially worse perturbative behavior due to its linear

infrared-sensitivity, also known as the O(ΛQCD) renormalon problem [22, 23], and was

therefore not adopted as a relevant mass scheme for analyses where a precision better

than ΛQCD could be achieved. Nevertheless, the pole mass still served as an important

intermediate mass scheme during computations because it determines the partonic (but

unphysical) poles of heavy quark Green functions. Typical short-distance quark mass

schemes which have been employed were the renormalization-scale dependent MS mass

mQ(µ) and so-called low-scale short-distance masses such as the kinetic mass [24], the

potential-subtracted (PS) mass [25], the 1S mass [26–28], the renormalon-subtracted (RS)

mass [29] or the jet mass [30, 31]. The basic difference between the MS mass to the low-

scale short-distance mass schemes is that the perturbative coefficients of its relation to the

pole mass scale linearly with the heavy quark mass, mQ(µ)−mpole
Q ∼ mQ(αs + . . .), while

for the low-scale short-distance mass schemes the corresponding series scales linearly with

a scale R� mQ. This feature enables the low-scale short-distance quark mass schemes to

be used for predictions of quantities where the heavy quark dynamics is non-relativistic in

nature and fluctuations at the scale of mQ are integrated out. This is because radiative

corrections to the mass in such quantities involve physical scales much smaller than mQ.

One very prominent example in the context of top quark physics is the non-relativistic

heavy quarkonium dynamics inherent to the top-antitop pair production cross section at

threshold at a future lepton collider [11–13], where the most important dynamical scale

is the inverse Bohr radius mt αs ∼ 25 GeV � mt. On the other hand, the MS mass is

a good scheme choice for quantities that involve energies much larger than mQ, such as

for high-energy total cross sections, or when the massive quark causes virtual and off-shell

effects. This is because in such cases the heavy quark mass yields corrections that either

scale with positive or negative powers of mQ such that QCD corrections associated with

the mass have a scaling that is linear in mQ as well. The difference between the MS mass

and the low-scale short-distance masses is most important for the case of the top quark

because in this case the difference between mt and the dynamical low-energy scales can be

very large numerically.
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For the top quark mass there are excellent prospects for very precise measurements in

low-scale short-distance schemes such as the PS mass or the 1S mass from the top-antitop

threshold inclusive cross section at a future lepton collider [11–13]. Current studies indicate

that a precision well below 50 MeV can be achieved accounting for theoretical as well as

experimental uncertainties [32–34]. Currently, the most precise measurements of the top

quark mass come from reconstruction analyses at the LHC [35, 36] and the Tevatron [37]

and have uncertainties at the level of 500 MeV or larger. Moreover, the mass is obtained

from multivariate fits involving multipurpose Monte Carlo (MC) event generators and thus

represents a determination of the top quark mass parameter mMC
t contained in the par-

ticular MC event generator. Recently, a first high-precision analysis on how the MC top

quark mass parameter can be related to a field theoretically well-defined short-distance

top quark mass was provided in refs. [38, 39] and general considerations on the relation

were discussed in refs. [40, 41]. For the analysis, hadron level predictions for the 2-jettiness

distribution [42] for electron-positron collisions and O(αs) QCD corrections together with

the resummation of large logarithms at next-to-next-to leading order [31, 43, 44] were em-

ployed. Since the 2-jettiness distribution is closely related to the invariant mass distribution

of a single reconstructed top quark, the relevant dynamical scales inherent to the problem

are governed by the width of the mass distribution which amounts to only about 5 GeV

in the peak region of the distribution where the sensitivity to the top mass is the highest.

Interestingly, as was shown in ref. [38], the dynamical scales increase continuously consid-

ering the 2-jettiness distribution further away from the peak. In the analysis of [38] the

MSR mass scheme mMSR
Q (R) was employed which depends on a scale R and for which the

dependence on R is described by a renormalization group flow such that R can be continu-

ously adapted according to which part of the distribution is predicted. Other applications

of the MSR mass using a flavor number dependent evolution in R to account for the mass

effects of lighter quarks were given in refs. [45, 46]. In contrast to the µ-dependent MS

mass mQ(µ), which evolves only logarithmically in µ, the MSR mass has logarithmic as

well as linear dependence on R.

The MSR mass scheme was succinctly introduced in ref. [47] and discussed conceptually

in ref. [41], but a detailed discussion has so far not been provided. A key purpose of this

paper is to provide sufficient details such that phenomenological MSR mass analyses, such

as the results of ref. [38], can be easily related to other common short-distance mass schemes

that are being used in the literature.

The definition of the MSR mass given by the perturbative series for the MSR-pole

mass difference mMSR
Q (R) − mpole

Q is obtained directly from the MS-pole mass relation

mQ(mQ) −mpole
Q and is therefore the only low-scale short-distance mass suggested in the

literature that is derived directly from on-shell heavy quark self-energy diagrams just like

the MS mass.1 The MSR mass thus automatically inherits the clean and good infrared

properties of the MS mass. Furthermore, by construction, the MSR mass matches to the

MS mass for R = mQ(mQ) and is known to the same order as the series of mQ(mQ)−mpole
Q

1The name ‘MSR mass’ arises from a combination of the letters ‘MS’ standing for the close relation to

the MS mass and the letter ‘R’ standing for R-evolution.
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without any further effort, which is currently O(α4
s) from the results of refs. [48–55]. As

already argued in refs. [40, 47], the MSR mass can therefore be considered as the natural

modification of the “running” MS mass scheme concept for renormalization scales below

mQ, where the logarithmic evolution of the regular MS mass is known to be unphysical.

Since the MSR mass is designed to be employed for scales R < mQ, it can be useful —

for applications where a clean treatment of virtual massive-flavor effects is important —

to integrate out the virtual effects of the massive quark Q from the MSR mass definition.

We therefore introduce two types of MSR masses, one where the virtual effects of the

massive quark Q are integrated out, called the natural MSR mass, and one where these

effects are not integrated out, called the practical MSR mass. The difference between

these two versions of the MSR mass is quite small and very well behaved for all R values

in the perturbative region, and the practical definition should be perfectly fine for most

phenomenological applications. But the natural definition has conceptual advantages as

its evolution for scales R < mQ does not include the virtual effects of the massive quark

Q, which is conceptually cleaner since these belong physically to the scale mQ.

We note that the R-evolution concept of a running heavy quark mass scheme for

scales R < mQ elaborated in ref. [47] has already been suggested a long time ago in

refs. [56, 57]. The R-evolution equation we discuss for the MSR mass was already quoted

explicitly for the renormalization group evolution of the kinetic mass [24] at O(αs) in

these references, but the conceptual implications of R-evolution and its connection to the

O(ΛQCD) renormalon problem in the perturbative relations between short-distance masses

and the pole mass were first studied systematically in ref. [47]. The second main purpose

of this paper is to give further details on R-evolution and also to discuss its relation to

the Borel transformation focusing mainly on the case of the MSR mass. We note that the

concept of R-evolution is quite general and can in principle be applied to any short-distance

mass which depends on a variable infrared cutoff scale (such as the PS and the RS masses) or

to cutoff-dependent QCD matrix elements with arbitrary dimensions. In fact, R-evolution

has already been examined and applied in a number of other applications which include the

factorization-scale dependence in the context of the operator product expansion [58], the

scale dependence of the non-perturbative soft radiation matrix element in high-precision

determinations of the strong coupling from e+e− event-shape distributions [59–62], even

accounting for the finite mass effects of light quarks [63, 64] and hadrons [61, 65].

The basic feature of the R-evolution concept is that for the difference of MSR masses at

two scales, mMSR
Q (R)−mMSR

Q (R′), its linear dependence on the renormalization scale pro-

vides, completely within perturbation theory, a resummation of the terms in the asymptotic

series associated to the pole-mass renormalon ambiguity to all orders. The R-evolution then

resums the factorially growing terms in a systematic way that is O(ΛQCD)-renormalon free

and, at the same time also sums all large logarithms that arise if R and R′ are widely sepa-

rated. This cannot be achieved by more common purely logarithmic renormalization group

equations, but is fully compatible with a Wilsonian renormalization group setup. We note

that the summations carried out by the R-evolution was achieved prior to ref. [47] for the

RS mass in [66] (see also ref. [67]). Their method (and the RS mass) is based on using an

approximate expression for the Borel transform function. The summation for a difference
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of RS masses (for scales R and R′) is obtained by computing the inverse Borel integral over

the difference of the two respective Borel functions. This method and R-evolution lead to

consistent results, but the R-evolution does not rely on the knowledge of the Borel functions.

The essential and probably most interesting conceptual feature of the perturbative

series of the R-evolution equations is that it provides a systematic reordering of the terms

in the asymptotic series associated to the O(ΛQCD) renormalon ambiguity in leading, sub-

leading, subsubleading, etc. contributions. So using the analytic solution of the R-evolution

equations allows one to derive analytically (i.e. without any numerical procedure or model-

ing) the Borel-transform of a given perturbative series from the perspective that it carries

an O(ΛQCD) renormalon ambiguity. As a result one can rigorously derive an analytic ex-

pression for the normalization of the non-analytic terms in the Borel transform that are

characteristic for the O(ΛQCD) renormalon. The analytic result for this normalization

factor was already given and discussed in ref. [47], but no details on the derivation were

provided. We take the opportunity to show the details of the derivation here. We call the

analytic result for the normalization of the O(ΛQCD) renormalon ambiguity the O(ΛQCD)

sum rule, because it can be quickly applied to any given perturbative series. To demon-

strate the use and the high sensitivity of the O(ΛQCD) renormalon sum rule we apply it also

to a number of other cases, pointing out subtleties in its application to avoid inconsistencies

and misinterpretations of the results.

We note that also other methods to determine the normalization factor have been used.

In ref. [29] it was determined from a computation of the residue of the Borel transform of

the series following a proposal in ref. [68]. This approach, which we call Borel method can

also be carried out analytically and provides the correct result, but has been observed to

converge very slowly. We can identify the reason for this analytically from the solutions

for the R-evolution equations, and we also discuss the connection of this method to our

O(ΛQCD) sum rule based on explicit analytic expressions. In ref. [69] the normalization

factor was computed taking the ratio of the n-th term of the series to the asymptotic

behavior. This ratio method converges very fast and provides results very similar to the

O(ΛQCD) sum rule. Recently, the ratio method was applied in ref. [70], accounting for the

O(α4
s) corrections to the pole-MS mass relation [54, 55]. We show that our O(ΛQCD) sum

rule provides results that are in full agreement with the ones obtained in ref. [70] and also

leads to very similar uncertainties.

The paper is organized as follows: in section 2 we provide the definition of the natural

and practical MSR masses, mMSRn
Q and mMSRp

Q , based on the perturbative series of the MS-

pole mass relation mQ(mQ)−mpole
Q , and we also analyze the difference between these two

MSR masses. This section provides the conventions we use for the coefficients of perturba-

tive series, but it can otherwise be skipped by the reader not interested in the MSR masses.

In section 3 we present the R-evolution equations which describe the scale dependence of

the MSR masses and we also show explicitly how the solutions of the R-evolution equations

sum large logarithms together with the high-order asymptotic series terms related to the

O(ΛQCD) renormalon. We in particular show for the top quark mass under which condi-

tions the use of the R-evolution equations and its resummation is essential and superior to
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renormalon-free fixed-order perturbation theory, which does not sum any large logarithms.

To our knowledge, such an analysis has not been provided in the literature before. We also

point out that the solution of the R-evolution equations is intrinsically related to carrying

out an inverse Borel transform over differences of functions in the Borel plane such that the

singularities related to the O(ΛQCD) renormalon cancel. In section 4 we present the analytic

derivation of the O(ΛQCD) renormalon sum rule and demonstrate its utility by a detailed

analysis concerning the normalization of the O(ΛQCD) renormalon ambiguity in the series

for the difference of the pole mass and the MSR masses. The derivation of the sum rule

allows to derive a new alternative expression for the high-order asymptotic behavior of a

series that contains an O(ΛQCD) renormalon which we discuss as well. To demonstrate the

high sensitivity of the sum rule and to explain its consistent (and inconsistent) application

we discuss its strong flavor number dependence and apply it to the massive quark vacuum

polarization function, the series for the PS mass-pole mass difference, the QCD β-function,

and the hadronic R-ratio. This section can be bypassed by the reader not interested in

applications of the O(ΛQCD) sum rule, but we note that section 4.5.3 discusses implications

for the PS mass that are relevant for section 5 and may be important for high-precision top

quark mass determinations. Some subtle issues in the relation of the MSR masses to the

PS, 1S and MS masses are discussed in section 5. Finally, we conclude in section 6. The

paper also contains two appendices. In appendix A we specify our convention for the QCD

β-function coefficients and present a number of expressions and formulae for coefficients,

quantities and matching relations that arise in the discussion of R-evolution, the O(ΛQCD)

renormalon and on various mass definitions throughout this paper. In appendix B we pro-

vide details on the relation of the Borel method and our sum rule method to determine

the normalization of the O(ΛQCD) renormalon ambiguity of the pole mass. Finally, in ap-

pendix C we quote the coefficients that define the PS and the 1S masses for the convenience

of the reader and also show how the MSR masses can be obtained from a given value of

the 1S mass in the non-relativistic and Υ-expansion counting scheme [26, 27].

2 MSR mass setup

2.1 Basic idea of the MSR mass

The MS mass mQ(µ) serves as the standard short-distance mass scheme for many high-

energy applications with physical scales of the order or larger than the mass of the quark

Q. It relies on the subtraction of the 1/ε divergences in the common MS scheme in the

on-shell self-energy corrections calculated in dimensional regularization. Despite the fact

that it is an unphysical (i.e. theoretically designed) mass definition, it is infrared-safe and

gauge invariant to all orders [48, 71] and its series relation to the pole mass mpole
Q thus

serves as the cleanest way to precisely quantify the renormalon ambiguity of the pole mass.

The relation of mQ ≡ m
(n`+1)
Q (m

(n`+1)
Q ) to the pole mass in the approximation that the

masses of all quarks lighter than Q are zero reads

mpole
Q −mQ = mQ

∞∑
n=1

aMS
n (n`, nh)

(
α
(n`+1)
s (mQ)

4π

)n
, (2.1)
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with

aMS
1 (n`,nh) =

16

3
, (2.2)

aMS
2 (n`,nh) = 213.437+1.65707nh−16.6619n` ,

aMS
3 (n`,nh) = 12075.+118.986nh+4.10115n2h−1707.35n`+1.42358nhn`+41.7722n2` ,

aMS
4 (n`,nh) = (911588.±417.)+(1781.61±30.72)nh−(60.1637±0.6912)n2h

−(231.201±0.102)nhn`−(190683.±10.)n`+9.25995n2hn`

+6.35819n3h+4.40363nhn
2
`+11105.n2`−173.604n3` ,

where α
(nf )
s stands for the strong coupling that renormalization-group (RG) evolves with

nf active flavors, see eq. (A.1). The coefficients aMS
n at O(αs, α

2
s, α

3
s) are known analytically

from refs. [48–53]. The O(α4
s) coefficient aMS

4 was determined numerically in refs. [54, 55],

and the quoted numerical uncertainties have been taken from ref. [55]. Using the method

of ref. [72] the uncertainties of the n`-dependent terms may be further reduced. Using

renormalon calculus [22, 23, 73] one can show that the high-order asymptotic behavior

series of eq. (2.1) has an ambiguity of order Λ
(n`)
QCD, which depends on the number of massless

quarks (indicated by the superscript) but is independent of the actual value of mQ.

A coherent treatment of the mass effects of lighter quarks is beyond the scope of this

paper, and we therefore use the approximation that all flavors lighter than Q are massless.

These mass corrections come from the insertion of massive virtual quark loops in the

self-energy Feynman diagrams and start at O(α2
s). At this order and at O(α3

s) the mass

corrections from the virtual massive quark loops have been calculated analytically for all

mass values in ref. [49] and [74], respectively. The dominant linear mass corrections at

O(α3
s) were determined in ref. [75]. At O(α4

s) and the mass corrections are not yet known,

but the corrections in the limit of large virtual quark masses are encoded in the ultraheavy

flavor threshold matching relations of the RG-evolution mQ(µ) at scales above mQ [76].

The idea of the MSR mass is based on the fact that the O(ΛQCD) ambiguity of the

perturbative series on the r.h.s. of eq. (2.1) does not depend on the value mQ, as already

mentioned above. This is an exact mathematical statement within the context of the calcu-

lus for asymptotic series and means that we can replace the term mQ by the arbitrary scale

R on the r.h.s. of eq. (2.1) and use the resulting perturbative series as the definition of the

R-dependent MSR mass scheme. It was pointed out in ref. [41] that, for a given value of R,

one can also interpret the MSR mass field theoretically as having a mass renormalization

constant that contains the on-shell self-energy corrections of the pole mass only for scales

larger than R. In other words, the pole mass and the MSR mass at the scale R differ

by self-energy corrections from scales below R: while the pole mass absorbs all self-energy

corrections for quantum fluctuations up to scales mQ, the MSR mass at the scale R absorbs

only self-energy corrections between R and mQ. Since the pole mass renormalon problem is

related to the self-energy corrections from the scale ΛQCD < R, this explains why the MSR

mass is a short-distance mass. In this illustrative context the MS mass absorbs no self-

energy corrections up to the scale mQ. Since the scale R is variable, the MSR mass can serve

as a short-distance mass definition for applications governed by different physical scales and
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thus can also interpolate between them. Since the MSR mass is expected to have applica-

tions primarily for R < mQ, it is further suitable to change the scheme from n`+1 dynamical

flavors, which includes the UV effects of the quark Q, to a scheme with n` dynamical flavors.

This can be achieved in two ways, either by simply rewriting α
(n`+1)
s in terms of α

(n`)
s , or

by integrating out the virtual loop corrections of the quark Q. This results in two different

ways to define the MSR mass, where we call the former the practical MSR mass and the

latter the natural MSR mass, either one having advantages depending on the application.

We note that the notion of a scale-dependent short-distance mass which was first

suggested in refs. [56, 57] has also been adopted for the kinetic [24], the PS [25], RS [29]

and jet masses [30, 43]. However, none of these short-distance masses is defined directly

from the on-shell self-energy diagrams of the massive quark Q such as the MSR mass. This

has a number of advantages, for example when discussing heavy flavor symmetry properties

in the pole-MS mass relation of different heavy quarks.

2.2 Natural MSR mass

The natural MSR mass definition is obtained by integrating out the corrections from the

heavy quark Q virtual loops in the self-energy diagrams of the massive quark Q, such that

its relation to the pole mass reads

mpole
Q −mMSRn

Q (R) = R
∞∑
n=1

aMS
n (n`, 0)

(
α
(n`)
s (R)

4π

)n
, (2.3)

where the coefficients are given in eq. (2.2). The natural MSR mass only accounts for

gluonic and massless quark corrections, and has a non-trivial matching relation to the MS

mass. The matching between the natural MSR mass and the MS mass can be derived from

the relation [mQ ≡ m(n`+1)
Q (m

(n`+1)
Q )]

mMSRn
Q (mQ)−mQ = mQ

∞∑
k=1

[
aMS
k (n`, 1)

(
α
(n`+1)
s (mQ)

4π

)k
− aMS

k (n`, 0)

(
α
(n`)
s (mQ)

4π

)k]
,

(2.4)

and will be discussed in more detail in section 5.3.

We note that, formally, the natural MSR mass (as well as the practical MSR mass

discussed in the next subsection) agrees with the pole mass in the limit R → 0. However,

taking this limit is ambiguous as it involves evolving through the Landau pole of the strong

coupling and dealing with its non-perturbative definition for |R | < ΛQCD. This issue is a

manifestation of the renormalon problem of the pole mass.

2.3 Practical MSR mass

The practical MSR mass definition is directly related to the MS-pole perturbative series

of eq. (2.1). To obtain its defining series one rewrites α
(n`+1)
s (mQ) as a series in α

(n`)
s (mQ)

in eq. (2.1) using the matching relation given in eq. (A.7) and then replaces mQ by R,

obtaining

mpole
Q −mMSRp

Q (R) = R
∞∑
n=1

aMSRp
n (n`)

(
α
(n`)
s (R)

4π

)n
, (2.5)
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with

aMSRp
1 (n`) =

16

3
, (2.6)

aMSRp
2 (n`) = 215.094− 16.6619n` ,

aMSRp
3 (n`) = 12185.− 1705.93n` + 41.7722n2` ,

aMSRp
4 (n`) = (911932.± 418.)− (190794.± 10.)n` + 11109.4n2` − 173.604n3` .

The practical MSR mass still accounts for the virtual corrections from the massive quark

Q with an evolving mass R and has the convenient feature that it agrees with the MS mass

at the scale of the mass to all orders in perturbation theory [mQ ≡ m(n`+1)
Q (m

(n`+1)
Q )]:

mMSRp
Q (mMSRp

Q ) = mQ(mQ) . (2.7)

The formula for the difference of the natural and practical MSR masses at the same

scale R up to O(α4
s) reads

mMSRn
Q (R)−mMSRp

Q (R) = R

[
1.65707

(
α
(n`)
s (R)

4π

)2
+
(
110.050 + 1.4236n`

)(α(n`)
s (R)

4π

)3
+
(
(344.± 31.)− (111.59± 0.10)n` + 4.40n2`

)(α(n`)
s (R)

4π

)4
+ . . .

]
. (2.8)

In figure 1 the difference between the natural and the practical MSR top quark masses

mMSRn
t (R) − mMSRp

t (R) is shown for R between 1 and 170 GeV (here n` = 5).2 The

numerical difference between these two masses is quite small. The natural MSR mass is

larger than the practical MSR mass and the difference increases with R reaching about

30 MeV at R = 170 GeV. The error bands reflect variations of the renormalization scale

µ in αs between R/2 and 2R, showing very good convergence, exhibiting a perturbative

error of ± 5 MeV for R ∼ 1 GeV and below ± 1 MeV for R & 3 GeV due to missing terms

of O(α5
s) and higher. This indicates that the different way how the natural and practical

MSR masses treat the virtual massive quark effects does not reintroduce any infrared

sensitivity, as is expected since the mass of the virtual quark provides an infrared cutoff.

The numerical uncertainties in the O(α4
s) correction are below the level of 0.1 MeV and

negligible. Note that the difference between the natural and the practical MSR masses at

the common scale R starts at O(α2
s) and that the uncertainty band from scale variation

is an underestimate at this lowest order. However, the series results and error bands at

O(α3,4
s ) show good behavior and convergence. In ref. [38] the practical MSR mass was

employed, but the numerical difference to the natural MSR mass is subdominant to the

uncertainties obtained in the analysis there.

In the rest of the paper we will simply use the notation of the MSR mass with the

definition mpole
Q − mMSR

Q (R) = R
∑

n an
[
αs(R)/(4π)

]n
when the difference between the

natural and practical definitions and the value of n` are insignificant but we will specify

explicitly our use of the practical or the natural MSR masses (or any other mass scheme)

and the massless flavor number n` for any numerical analysis.

2Throughout this article we use α
(nf=5)
s (mZ) = 0.118 and mZ = 91.187 GeV.
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Figure 1. Difference of the natural and practical MSR top quark masses (n` = 5) as a function of

R in GeV at two, three and four loop order (the one loop result vanishes). The uncertainty bands

are obtained from scale variations in αs(µ) with R/2 < µ < 2R.

3 R-evolution

The dependence of the MSR mass mMSR
Q on the scale R is described by the R-evolution

equation [47], which is derived from the logarithmic derivative of the defining equations (2.3)

and (2.5) and using that the pole mass is R independent:

R
d

dR
mMSR
Q (R) = −RγR(αs(R)) = −R

∞∑
n=0

γRn

(
αs(R)

4π

)n+1

, (3.1)

where

γR0 = a1 , (3.2)

γR1 = a2 − 2β0 a1 ,

γR2 = a3 − 4β0 a2 − 2β1 a1 ,

γRn = an+1 − 2
n−1∑
j=0

(n− j)βj an−j .

The overall minus sign on the r.h.s. of eq. (3.1) indicates that the MSR mass always de-

creases with R. Note that this equation applies to all MSR schemes and we have therefore

suppressed the superscript on the an’s. The crucial feature of the R-evolution equation is

that it is free from the O(ΛQCD) ambiguity contained in the series that relates the MSR

mass to the pole mass because the ambiguity is R-independent. This is directly related

to the fact that for determining the R-evolution equation also the overall linear factor of

R on the r.h.s. of eqs. (2.3) and (2.5) has to be accounted for. Therefore the R-evolution

equation does not only have a logarithmic dependence on R, as common to usual renor-

malization group equations (RGEs), but also a linear one. Both of these issues are actually

tied together conceptually. The numerical expressions for the coefficients γn for the natural

and practical MSR masses are given explicitly in eqs. (A.11) and (A.12). We implement
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renormalization scale variation in the R-evolution equation by simply expanding αs(R) in

eq. (3.1) as a series in αs(λR) and by varying λ, typically in the range 0.5 < λ < 2. In

principle one may also consider varying the boundaries of integration, as it is common for

usual RGEs, but only the former way of implementing scale variations in the R-evolution

leads to variations of the scale solely in logarithms, which is the standard used for the usual

logarithmic RGEs.

By solving the R-evolution equation one sums, at the same time and systematically,

the asymptotic renormalon series as well as the large logarithmic terms in mMSR
Q (R0) −

mMSR
Q (R1) to all orders in a manner free from the O(ΛQCD) renormalon:

mMSR
Q (R0)−mMSR

Q (R1) = −
∞∑
n=0

γRn

∫ R0

R1

dR

(
αs(R)

4π

)n+1

. (3.3)

It is straightforward to solve the R-evolution equation numerically and it shows very good

perturbative stability even for low values of R very close to the Landau pole [58] in the

perturbative strong coupling. Details of how to solve the R-evolution equations analytically

have already been given in [47] and shall not be repeated here.

It is instructive to briefly discuss what the solution of the R-evolution achieves by

considering the difference of the MSR mass, mMSR
Q (R0)−mMSR

Q (R1), in the context of fixed-

order perturbation theory (FOPT), where it is well-known that the renormalon ambiguity

contained in the series for mpole
Q −mMSR

Q (R0) and the series for mpole
Q −mMSR

Q (R1) only cancel

if one expands in αs with a common renormalization scale µ. This is nicely illustrated in the

β0/LL (leading log) approximation where the pole-MSR mass relation has the all order form

[
mpole
Q −mMSR

Q (R)
]
β0/LL

=
a1
2β0

R

∞∑
n=0

(
β0αs(R)

2π

)n+1

n! (3.4)

=
a1
2β0

R
∞∑
n=0

(
β0αs(µ)

2π

)n+1

n!
n∑
k=0

1

k!
logk

µ

R
.

The series by itself is divergent and not summable, but[
mMSR
Q (R0)−mMSR

Q (R1)
]
β0/LL

= (3.5)

=
a1
2β0

∞∑
n=0

(
β0αs(µ)

2π

)n+1

n!

(
R1

n∑
k=0

1

k!
logk

µ

R1
−R0

n∑
k=0

1

k!
logk

µ

R0

)

=
a1
2β0

∞∑
n=0

(
β0αs(R1)

2π

)n+1

n!

(
R1 −R0

n∑
k=0

1

k!
logk

R1

R0

)
,

is easily seen to be convergent. In the context of FOPT, when the sum over n is truncated,

the unavoidable appearance of large logarithms log(R0/R1) for let’s say R0 � R1 may

degrade the convergence and cause sizable perturbative uncertainties. Due to the addi-

tional linear dependence on R0 and R1, as shown in eq. (3.5), these logarithms cannot be

summed by common logarithmic renormalization group (RG) equations. The same type

of logarithms also appear for example in the relation of any other low-scale short-distance
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mass to the MS mass and their effects can be significant particularly for the top quark. By

solving the R-evolution equation one sums, at the same time and systematically, the asymp-

totic terms in the renormalon series as well as the large logarithmic terms in mMSR
Q (R0)−

mMSR
Q (R1) to all orders in a manner free from the O(ΛQCD) renormalon. It is again instruc-

tive to see how this is achieved in the β0/LL approximation of eq. (3.4), which explicitly

shows the factorial growth of the perturbative series. When calculating the derivative to get

the R-evolution equation, the whole series collapses exactly (i.e. without any truncation!) to[
R

d

dR
mMSR
Q (R)

]
β0/LL

= −a1R
(
αs(R)

4π

)
, (3.6)

which is the one-loop version of eq. (3.1). Moreover, the exact solution of the R-evolution

equation at this order

[
mMSR
Q (R0)−mMSR

Q (R1)
]
β0/LL

= − a1
∫ R0

R1

dR

(
αs(R)

4π

)
, (3.7)

can be easily seen to be exactly equal to the r.h.s. of eq. (3.5) which sums the renormalon

series and the large logarithms at the same time into a convergent series.

Conceptually, the solution of the R-evolution equation is directly related to the Borel

space integral over the Borel transform for the series for mMSR
Q (R0) − mMSR

Q (R1). Since

this has not been shown in [47] we briefly outline this calculation here at the β0/LL level.

Starting from eq. (3.7) one can shuffle the integration over R into an integral over αs(R)

by using the QCD β-function and the relation ΛLL
QCD = R exp (− 2π/β0αs(R)). Using the

variable t = − 2π/(β0αs(R)) one can then rewrite the integral as [ti = − 2π/(β0αs(Ri))]

[
mMSR
Q (R0)−mMSR

Q (R1)
]
β0/LL

= − a1
2β0

ΛLL
QCD

∫ t0

t1

dt

t
e− t (3.8)

= − a1
2β0

ΛLL
QCD

[∫ ∞
t1

dt

t
e− t −

∫ ∞
t0

dt

t
e− t
]
,

where the two integrals in the last line are just the difference of the MSR masses at R0,1 to

the pole mass, and the pole mass ambiguity is encoded in the singularity at t = 0, which

arises because t0,1 < 0,[
mMSR
Q (Ri)−mpole

Q

]
β0/LL

=
a1
2β0

ΛLL
QCD

∫ ∞
ti

dt

t
e− t . (3.9)

Upon changing variables to the Borel plane parameter u = −(t/ti−1)/2 and writing ΛQCD

in terms of Ri and αs(Ri) in both integrals, this gives

[
mMSR
Q (R0)−mMSR

Q (R1)
]
β0/LL

=

∫ ∞
0

du [B(R0, µ, u)−B(R1, µ, u)] e
− 4πu
β0αs(µ) . (3.10)

Here

B(R,µ, u) =
a1
2β0

R
( µ
R

)2u 1

u− 1
2

, (3.11)
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Figure 2. Difference of the natural top quark MSR mass (n` = 5) at two different scales R

including contributions from one to four loops. Results are shown for the difference between a high

scale R1 = 161 GeV and two lower scales R2 = 2 GeV (top two panels) and R2 = 50 GeV (lower

two panels). The high and low scales are connected by a fixed-order perturbation theory conversion

[left two panels, as a function of the scale µ in αs(µ)] or via R-evolution [right two panels, as a

function of the λ renormalization parameter].

is the well-known Borel transform with respect to αs(µ) of the β0/LL series in eq. (3.4).

In eq. (3.10) the singular and non-analytic contributions contained in the individual Borel

functions cancel and the integral becomes ambiguity-free.

To illustrate the impact of using R-evolution compared to using FOPT we show in

figure 2 the difference of natural MSR masses ∆mMSRn
t (R0, R1) ≡ mMSRn

t (R0)−mMSRn
t (R1)

for n` = 5 in fixed-order perturbation theory (FOPT) and with R-evolution. The curves

in figure 2a show ∆mMSRn
t for (R0, R1) = (2, 161) GeV in FOPT for the common renor-

malization scale µ between R0 and R1 at 1 loop (cyan), 2 loop (green), 3 loop (blue) and

4 loops (red). We see a good convergence for µ around
√
R0R1, but a deterioration of

the series when µ gets closer to either R0 or R1. For µ . 1/2
√
R0R1 the series even gets

out of bounds and breaks down completely. If one uses scale variation as an estimate of

the remaining perturbative error, one therefore obtains a significant dependence on the
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choice of the lower bound of the variation, and one has no other choice than to aban-

don in an ad hoc manner scales closer to R0 to estimate the scale variation error. The

curves in figure 2b show ∆mMSRn
t for (R0, R1) = (2, 161) GeV from numerically solving

the R-evolution equation as a function of the renormalization scale parameter λ between

0.5 and 2. The color coding for the order of the R-evolution equation used for the eval-

uation is the same as for figure 2a. As explained below eq. (3.1), the parameter λ is

the renormalization scaling parameter in the R-evolution equation which determines by

how much the scale in αs differs from the scale R. Thus a variation between 0.5 and 2

means that in the solution of the R-evolution equations scales between R/2 and 2R are

covered at each value of R along the evolution, which in this case includes scales between

1 and 322 GeV. Comparing the curves in figure 2a and 2b we see that the renormalization

scale variation in the R-evolved results is much smaller than the one of FOPT. For the

FOPT result with scale variation between
√
R0R1/2 — which we pick by hand — and R1

we obtain ∆mt = (9.838 ± 2.504, 8.981 ± 0.361, 9.465 ± 0.222, 9.427 ± 0.047) GeV at

(1, 2, 3, 4) loops. Using R-evolution with λ variation between 0.5 and 2 we obtain ∆mt =

(8.817 ± 1.059, 9.440 ± 0.246, 9.512 ± 0.040, 9.486 ± 0.025) GeV which is fully compatible

with the FOPT result, but shows more stability and smaller errors. It is also quite instruc-

tive to see that using R-evolution the 3-loop result is significantly closer to the 4-loop result

than the corresponding 3-loop FOPT result. The results show that for R0 � R1 employing

R-evolution to calculate MSR mass differences is clearly superior to FO perturbation theory.

To compare to a situation where the scales R0 and R1 are of similar size we have

also shown in figures 2c and 2d the results for ∆mt in FOPT and from R-evolution for

(R0, R1) = (50, 161) GeV. Here the results from both approaches are completely equivalent

showing that the logarithm log(R0/R1) is not large and the summation of the renormalon

contributions from higher orders only constitutes very small effects. Furthermore using

renormalization scales close to R0 or R1 in FOPT is not problematic. Numerically, using

FOPT with scale variations between R0 and R1 we obtain ∆mt = (5.618 ± 0.498, 5.928 ±
0.086, 5.961 ± 0.010, 5.954 ± 0.004) GeV at (1, 2, 3, 4) loops, while using R-evolution with

λ variations between 0.5 and 2 we obtain ∆mt = (5.555 ± 0.577, 5.919 ± 0.114, 5.959 ±
0.015, 5.954± 0.005) GeV. We find that FOPT and R-evolution give equivalent results even

for (R0, R1) = (20, 161) GeV, and that the use of R-evolution is essential for R0/R1 < 0.1.

Overall we see that, if R0 and R1 are of similar size, FO perturbation theory and R-

evolution lead to equivalent results, but that it is in general safer to use R-evolution. So

the situation is very similar to the one we encounter when considering the relation of the

strong coupling for two different renormalization scales.

We note that the possibility to sum the renormalon-type logarithms displayed in

eq. (3.5) by considering the Borel integral over the difference of Borel transforms as shown

in eq. (3.10) was pointed out already in ref. [66] prior to ref. [47]. However, this exact

equivalence [via a transformation of variables as given below eq. (3.9)] of R-evolution and

the method using the integration over Borel transform differences can only be analytically

shown at the β0/LL approximation. Beyond that, both approaches sum up the same type

of logarithms but differ in subleading terms. Numerically, both approaches converge to the

same result and have comparable order-by-order convergence. From a practical point of
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view, however, the concept of R-evolution may be considered more general. This is because

R-evolution can be applied directly to any series having the form of (2.3) or (2.5) while

using the Borel integration method requires that the corresponding Borel transforms are

known or constructed beforehand. For general series, such as for the difference of MSR

masses as discussed above, this is not possible without making additional approximations.

In practice, the approach of ref. [66] to sum the renormalon-type logarithms has therefore

only been applied for series (referred to as RS-schemes) which were explicitly derived from

a given expression for the Borel transform.

4 Analytic Borel transform and renormalon sum rule

Using the solution of the R-evolution equation it is possible to derive, analytically and rig-

orously, an expression for the Borel transform of the MSR-pole mass relation. This Borel

transform is designed to focus on the singular contributions that quantify the O(ΛQCD)

renormalon of the pole mass. This result was already quoted in the letter [47] where,

however, no details on the derivation could be given due to lack of space. In the follow-

ing we provide these details on how to obtain the analytic result for the normalization

of the singular terms. The analytic results for the normalization can be applied to other

perturbative series as a probe of O(ΛQCD) renormalon ambiguities, and we therefore call

it the O(ΛQCD) renormalon sum rule. This sum rule was first given in ref. [47], and is

very sensitive to even subtle effects if O(α4
s) corrections are known. We apply the sum

rule to obtain an updated determination of the size of the pole mass O(ΛQCD) ambiguity,

accounting for the O(α4
s) results of refs. [54, 55] which became available recently but were

unknown when ref. [47] appeared. To demonstrate the sum rule’s capabilities to probe

O(ΛQCD) renormalon ambiguities in perturbative series and to clarify subtleties in how to

use it properly, we also apply it to a few other cases. Interestingly, the analytic manipu-

lations arising in the derivation of the sum rule lead to an alternative expression for the

high-order asymptotic behavior of a series that contains an O(ΛQCD) renormalon. This

expression differs from the well known asymptotic formula which is known since a long

time from [77], and we therefore discuss it as well.

4.1 Derivation

The analytic derivation for the Borel transform of the MSR-pole mass relation starts from

its expression related to the solution of the R-evolution equation given in eq. (3.1) which

was already derived in ref. [47].

mMSR
Q (R)−mpole

Q = −
∫ R

0
dR̄ γR(αs(R̄)) (4.1)

= −ΛQCD

∫ ∞
tR

dt γR(t) b̂(t) e−G(t)

= ΛQCD

∞∑
k=0

eiπ(b̂1+k)Sk

∫ ∞
tR

dt t−1−k−b̂1e−t

= ΛQCD

∞∑
k=0

eiπ(b̂1+k) Sk Γ(− b̂1 − k, tR) ,
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where in the second line we changed variable to t = − 2π/(β0αs(R̄)) and used the iden-

tity (A.6) to scale out ΛQCD, and in the third line we employed the coefficients given in

eq. (A.15). The expression in eq. (4.1) gives an all-order representation of the original series

that is more useful for analyzing O(ΛQCD) renormalon issues than eqs. (2.3) and (2.5). This

is because using the R-evolution equation of eq. (3.1) (which is linear in R) and its solution,

provides, through the sum in k, a reordering of the original series in leading and subleading

series of terms from the perspective of their numerical importance in the asymptotic high

order behavior related to the O(ΛQCD) renormalon. This allows to derive rigorously a

representation of the Borel transform [given in eq. (4.7)] reflecting efficiently the hierarchy

of leading and subleading terms with respect to the O(ΛQCD) renormalon, which is the

information that is not contained in the original series. That such a separation is possible

in a systematic way may not be obvious, but it is achieved by the R-evolution equation. We

stress that the result of eq. (4.7) should not be considered as the exact expression for the

Borel transform because it does not encode information on possible poles (or non-analytic

cuts) other than at u = 1/2. We note that these poles and the associated renormalons can

be studied by considering solutions of R-evolution equations involving powers of R different

from the linear dependence shown in eq. (3.1), see [78].

We note that the expression in the last line of eq. (4.1), which involves the incomplete

gamma function Γ(c, t) =
∫∞
t dxxc−1e−x, also arises in the analytic solution of the mass

difference (3.3),

mMSR
Q (R0)−mMSR

Q (R1) = ΛQCD

∞∑
k=0

eiπ(b̂1+k) Sk
[
Γ(− b̂1 − k, t0)− Γ(− b̂1 − k, t1)

]
. (4.2)

Here the cut in the gamma functions Γ(c, t) for t < 0 cancels in the difference for each k in

the sum, and the result on the r.h.s. is real. We mention that the first term (k = 0) in the

sum over k provides the summation of the leading terms in the β0/LL approximation shown

in eqs. (3.5) and (3.7). In eq. (4.1) the cut still remains and arises from the integration

of the Landau pole in the strong coupling located at t = 0 in the integral in the next-

to-last line. The resulting imaginary part in the numerical expression corresponds to the

imaginary part that arises in the inverse Borel integral for mMSR
Q (R)−mpole

Q , see eq. (3.10),

and simply reflects the ambiguity of the pole mass. From the point of view of the analytic

solution of eq. (4.1) based on a perturbative expansion, the imaginary part is well-defined

and analytically unique.

To proceed we asymptotically expand the incomplete gamma function in inverse powers

of t (i.e. powers of αs)

ΛQCDeiπ(b̂1+k)Γ(−b̂1 − k, t) = −R
[
eG(t)e−t(−t)−b̂1

] ∞∑
m=0

Γ(1 + b̂1 + k +m)

Γ(1 + b̂1 + k)
(−t)−1−k−m

= −R
∞∑
`=0

g`

∞∑
m=0

Γ(1 + b̂1 + k +m)

Γ(1 + b̂1 + k)
(−t)−1−`−k−m , (4.3)

where the coefficients g` are given in eq. (A.13), and coincide with the sk coefficients defined

in ref. [77]. We stress that the equality in eq. (4.3) is the asymptotic expansion and is not
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an identity, so that the imaginary part due to the cut in the incomplete gamma function

does not arise on the r.h.s.. Inserting eq. (4.3) in eq. (4.1) gives

mMSR
Q (R)−mpole

Q = −R
∞∑
k=0

Sk

∞∑
`=0

g`

∞∑
m=0

Γ(1 + b̂1 + k +m)

Γ(1 + b̂1 + k)
(−t)−1−`−k−m . (4.4)

We then perform the Borel transform with respect to powers of αs(R) according to the

rule (−t)−1−n → 2 (2u)n/Γ(n+ 1) giving

Bαs(R)

[
mMSR
Q (R)−mpole

Q

]
(u) = (4.5)

= − 2R
∞∑
`=0

g`

∞∑
k=0

Sk

∞∑
m=0

Γ(1 + b̂1 + k +m)

Γ(1 + b̂1 + k)Γ(1 + k + `+m)
(2u)`+k+m

= − 2R
∞∑
`=0

g`

∞∑
k=0

Sk
(2u)`+k

Γ(1 + k + `)
2F1(1, 1 + b̂1 + k, 1 + k + `, 2u) .

Using identities for the hypergeometric function we can rewrite

(2u)`+k

Γ(1+k+`)
2F1(1,1+b̂1+k,1+k+`,2u) =

Γ(1+b̂1−`)
Γ(1+b̂1+k)

(1−2u)−1−b̂1+` (4.6)

− 1

(1+b̂1−`)Γ(k+`)
2F1(1+b̂1−`,1−k−`,2+b̂1−`,1−2u) ,

and the Borel transform can then be cast into the form [47]

Bαs(R)

[
mMSR
Q (R)−mpole

Q

]
(u) = −N1/2

[
R

4π

β0

∞∑
`=0

g`
Γ(1 + b̂1 − `)

Γ(1 + b̂1)
(1− 2u)−1−b̂1+`

]

+ 2R
∞∑
`=0

g`Q`(u) , (4.7)

where

N1/2 =
β0 Γ(1 + b̂1)

2π
P1/2 , (4.8)

P1/2 =
∞∑
k=0

Sk

Γ(1 + b̂1 + k)
,

and N1/2 and P1/2 are two conventions for the normalization. Here

Q`(u) =
∞∑
k=0

Sk (2u)k+`

(1 + b̂1 − `) Γ(k + `)
2F1(1, 1 + b̂1 + k, 2 + b̂1 − `, 1− 2u) (4.9)

=
∞∑
k=0

Sk

k+`−1∑
i=0

2i Γ(1 + b̂1 + i− `)
Γ(1 + b̂1 + k) Γ(i+ 1)

ui .

Setting u = 1/2 in eq. (4.9) one gets Q`(1/2) = 1/(1 + b̂1 − `)
∑∞

k=0 Sk/Γ(k + `). Since

the Sk coefficients are renormalon-free and further damped by the factorial in the denom-

inator, this sum is finite. Furthermore, the sum on the second line of eq. (4.7) is also
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finite for u = 1/2. Therefore one concludes that the sum of Q` coefficients is regular at

u = 1/2, implying that the first line of eq. (4.7) fully contains the leading-renormalon sin-

gular behavior. In ref. [47] the expression for the Borel transform in eq. (4.7) was given

using P1/2, but here we have shown an alternate convention with N1/2 which agrees with

the terms Nm and N discussed in refs. [8, 70], and hence eases comparison of our numer-

ical results with theirs. For the phenomenological relevant values n` = (3, 4, 5) we have

N1/2/P1/2 = (1.27, 1.18, 1.09). The analytic difference between these normalizations is that

P1/2 vanishes in the limit n` → −∞ while N1/2 is finite in this limit. We will predominantly

use N1/2 for the numerical examinations in the following subsections.

The manipulations that lead to the expressions for P1/2 and N1/2 involve the rear-

rangement of the infinite sums over ` and k in eq. (4.5). These can be seen to be identities

if one assumes that the QCD β-function and its inverse have some region of convergence.

In practice, because only the first few terms in perturbation theory are known and one

truncates the sums over ` and k, no formal convergence issue arises. We note that the

analytic manipulations involving the R-evolution equation and the derivation of eq. (4.7)

are also valid in schemes for the strong coupling other than MS, and to apply them to such

schemes one simply needs to account for the perturbative rearrangement for the coefficients

an and the QCD β-function due to the scheme change. As an example, all manipulations

and the results simplify considerably in a strong coupling scheme ᾱ where the coefficients

b̂n vanish for n > 1 and which also implies g` = 0 for ` > 0 and that the coefficients of

the QCD β-function have the exact form βn = β0(β1/β0)
n. Since such a scheme change

can be achieved via a relation of the form αs(µ) = ᾱ(µ) + [β2/β0 − (β1/β0)
2] ᾱ3(µ) + . . . ,

which does not contain any O(ᾱ2
s) term, the overall normalization of N1/2 (or P1/2) remains

unchanged [73]. In this scheme we have Sk>0 = γ̃Rk − b̂1γ̃Rk−1, and eq. (4.8) can be rewritten

in the equivalent form N1/2 = (β0/2π)Γ(1 + b̂1)
∑∞

k=0 γ̃
R
k (1 + k)/Γ(2 + b̂1 + k) and was

derived recently in ref. [79]. There is, however, no advantage in using this form, because

the coefficients γ̃Rk in the ᾱ scheme still have to account for the reordering of the series due

to the scheme change from αs to ᾱ. Other schemes, such as the ’t Hooft scheme, where all

coefficients of the QCD β-function beyond β0 and β1 vanish, have been studied in ref. [78].

We discuss the structure of the non-analytic terms multiplied by N1/2 in eq. (4.7)

in section 4.4 below. The second term in eq. (4.7) is purely polynomial and represents

contributions in the Borel transform B(u) that account for the portions in the original

series of eqs. (2.3) and (2.5) that go beyond the pure O(ΛQCD) renormalon corrections

that numerically dominate the series. These terms may include renormalon contributions

of a different kind [such as O(ΛQCD)k>1], which are however not probed by an R-evolution

equation that is linear in R [58]. Moreover, they account for the difference of the pure

O(ΛQCD) renormalon asymptotic form of the series (encoded in the value of N1/2) and the

actual coefficients of the original series given in eqs. (2.3) and (2.5). The latter are recovered

in the asymptotic limit were the sums over k and ` are carried out up to infinity. Note

that in practice, for a finite order determination of the Borel transform for a given value

of N1/2 or P1/2, one truncates the sum over k and ` in eq. (4.9), and in this case the terms

coming from the Q` represent finite polynomials. For the construction of a Borel transform

that reproduces the known coefficients exactly, it may then be more suitable to simply fit
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the coefficients of the remaining polynomial terms such that the known coefficients in the

original series are reproduced exactly.

4.2 Renormalon sum rule

The analytic expression for N1/2 is quite useful as it can be applied to any perturbative

series as a probe for O(ΛQCD) renormalons, given the information on the available coeffi-

cients of a perturbative series. We therefore call the formula for N1/2 (or equivalently P1/2)

in eq. (4.8) the O(ΛQCD) renormalon sum rule [47]. Formally to any given order in k, N1/2

is a linear functional acting on perturbative series in powers of αs since the coefficients Sk
in eq. (4.8) are linear in the coefficients an of the perturbative series, see eq. (A.15). So

given two series defined by the sequence {cn} = (c1, c2, . . . ) and {dn} = (d1, d2, . . . ), where

cn/dn are the coefficients of order [αs/(4π)]n in the series, one has

N1/2[{α cn + β dn}] = αN1/2[{cn}] + β N1/2[{dn}] . (4.10)

As a word of caution, we emphasize that applying the N1/2 sum rule to a truncated

series does (like any other type of renormalon calculus in the context of perturbative

QCD) not rigorously and mathematically prove or disprove the existence of an O(ΛQCD)

renormalon, since the existence of renormalons is by definition related to the asymptotic

high-order behavior and mathematically strict proofs, if they exist, are related to elaborate

all-order studies of Feynman diagrams. So using the sum rule should be better thought

of as an analytic projection of the known terms of a perturbative series onto the known

pattern of a pure O(ΛQCD) renormalon series, which is generated from the singular terms

in the Borel transform in eq. (4.7) that are multiplied by N1/2 or P1/2 and known to all

orders. This projection becomes more accurate the more terms of a series are known and

mathematically converges (only) if the yet unknown high order terms keep following the

renormalon pattern expected from the low order terms.3

Although the series in k for N1/2 in eq. (4.8) is not ordered in powers of the strong

coupling, it is possible to implement renormalization scale variation by rescaling R → λR

in the original series of eqs. (2.3) and (2.5) and subsequently expanding again in αs(R).

This leads to

S′0 = λS0 ,

S′1 = λ
[
S1 − S0 log λ

]
,

S′2 = λ
[
S2 − 2S1 log λ+ S0

(
log2 λ− (b̂2 + 2 b̂1) log λ

)]
,

S′3 = λ

[
S3 − 3S2 log λ+ S1

(
3 log2 λ− (b̂2 + 3 b̂1) log λ

)
+ S0

(
− log3 λ+

(
2 b̂2 +

9

2
b̂1

)
log2 λ+

(
3 b̂2 + b̂3 − b̂1(b̂2 + 3 b̂1)

)
log λ

)]
, (4.11)

3For example, applying the sum rule to a series that follows an O(ΛQCD) renormalon pattern up to order

m, but then changes to a convergent series beyond, the value of N1/2 approaches a finite value up to order

m, but then decreases and approaches zero when more terms beyond order m are included. Note however

that there is no reason to expect a perturbative series in QCD to behave in such a manner.

– 19 –



202 Chapter 7. The MSR Mass and the O(ΛQCD) Renormalon Sum Rule

J
H
E
P
0
4
(
2
0
1
8
)
0
0
3

0.8 1.2 1.6 2
0.3

0.4

0.5

0.6

N 1

2

(nl = 5)

1-loop

2-loops

3-loops

4-loops

Natural

Practical

(a)

2 3 4
0.3

0.4

0.5

0.6

order

N 1

2

(nl = 5)

Practical

Natural

(b)

Figure 3. N1/2(n` = 5) for the natural and practical top quark MSR masses. On panel (a) results

are shown as a function of λ including contributions from one to four loops. The size of the bands

at four loops reflects the error introduced by the numerical uncertainty in the O(α4
s) coefficient

for the MS-pole conversion series. On panel (b) results are shown as error bars in blue (red) for

the practical (natural) MSR masses at k-loops accounting also for the η parameter variation as

described after eq. (4.14).

and one can show that in the asymptotic limit, i.e. to all orders in k, the sum rule expression

for N1/2 or P1/2 is invariant under variations of λ. Thus for a finite order determination

of N1/2 the λ-dependence decreases with order, and the remaining variation with λ can be

taken as an estimate for the uncertainty due to the missing higher order terms in the same

way as renormalization scale variation in RG-invariant power series in αs is commonly

used to estimate perturbative uncertainties. The invariance under changes of λ is directly

related to the facts that the O(ΛQCD) renormalon ambiguity of the series in eqs. (2.3)

and (2.5) is R-independent and that carrying out the Borel transform of eq. (4.5) in the

previous section with respect to αs(µ) instead of αs(R) leads to the simple rescaling factor

µ/R of all the non-analytic terms proportional to N1/2.

4.3 Sum rule for the pole mass renormalon

We now apply the sum rule to the series of the MSR-pole mass relations to quantify the

O(ΛQCD) renormalon of the pole mass. Note, that to fully determine the order k result, the

O(αk+1
s ) (k+ 1)-loop corrections from eq. (2.3) and eq. (2.5) and the O(αk+3

s ) (k+ 2)-loop

correction to the QCD β-function, βk+1 need to be known. So at k = 3, both the recently

determined O(α4
s) 4-loop correction from eqs. (2.3) and (2.5) [54, 55] and the O(α6

s) 5-loop

correction to the QCD β-function [80] are required. To simplify terminology we call the

result that truncates the series for N1/2 after the k-th term the “(k+ 1)-loop” or “O(αk+1
s )

result”, referring to the order to which the series is being probed with the sum rule.

In figure 3a the numerical results for N1/2(n` = 5) are shown for the natural (solid

lines) and practical (dashed lines) MSR masses for 0.5 < λ < 2 using terms in the se-

ries for N1/2 up to k = 0 (cyan), k = 1 (blue), k = 2 (green) and k = 3 (red).

The thickness of the O(α4
s) curves correspond to the numerical error of the coefficients
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quoted in [55] and shown in eqs. (2.6) and (2.2) and indicates that this error is more than

an order of magnitude smaller than the uncertainty due to missing higher order terms

and therefore negligible. We therefore do not account for this uncertainty any further

and adopt the central values given in eqs. (2.6) and (2.2). Using the λ dependence in

the range 0.5 < λ < 2 as an error estimate due to the missing higher orders we ob-

tain for N1/2(n` = 5) at O(αks), k = (1, 2, 3, 4) the numerical results Nnat
1/2(n` = 5) =

(0.531 ± 0.318, 0.468 ± 0.104, 0.483 ± 0.029, 0.446 ± 0.024) for the natural MSR mass and

Nprac
1/2 (n` = 5) = (0.531± 0.318, 0.475± 0.109, 0.494± 0.032, 0.441± 0.033) for the practical

MSR mass. The central values are the mean of the respective maximal and minimal value

obtained in the range 0.5 < λ < 2. Both results are fully compatible, as is expected since

the difference of the natural and practical MSR masses is free from an O(ΛQCD) renor-

malon as already discussed in section 2.3. We see that the λ-dependence of N1/2 nicely

decreases when including more higher-order terms and that there is excellent convergence.

The convergence and the reducing λ-dependence both indicate that the numerical size of

the recently calculated 4-loop correction in the MS-pole mass relation [54, 55] is fully com-

patible with the expectations based on the knowledge of the corrections up to 3 loops and

the proposition that the MS-pole mass is dominated by an O(ΛQCD) renormalon behavior

already at the known low orders.

It is quite instructive that one can invert this line of arguments and use the sum rule as

a tool to determine a prediction for higher order terms in the perturbative series under the

assumption that the O(ΛQCD) renormalon-type behavior observed at lower orders persists

also at higher orders. Indeed, using for example the O(α3
s) result for the practical MSR

mass Nprac
1/2 (n` = 5) = 0.494 ± 0.032 and the coefficients aMSRp

1,2,3 of the relation between

practical MSR and pole masses [see eqs. (2.6)] and the β-function coefficients up to β4 as

an input, one can fit for the O(α4
s) coefficient giving aMSRp

4 (n` = 5) = 224620 ± 18656.

Converting to the (n`+1) flavor scheme we obtain for the O(α4
s) coefficient in the MS-pole

mass relation aMS
4 (n` = 5, 1) = 230192 ± 14747 compared to the result aMS

4 (n` = 5, 1) =

211807± 5504 from [54] and aMS
4 (n` = 5, 1) = 214828± 422 from ref. [55]. The prediction

for the O(α4
s) coefficient based on the sum rules has a larger error but is fully compatible

with the results from the explicit loop calculations. This is remarkable given that the sum

rule result is obtained with essentially no additional computational effort. We note that

estimates for the coefficient aMS
4 were given before for example in refs. [8, 81–84]. These

were not based on the renormalon sum rule but used available information on the high-order

asymptotics of the perturbative series (see section 4.4). The analyses of refs. [8] and [84]

were quoting an uncertainty for the estimate using the known corrections up to O(α3
s) and

obtained the results aMS
4 (n` = 5, 1) = 241920± 23552 and aMS

4 (n` = 5, 1) = 229632 + 7936
− 44800,

respectively, which are fully compatible with the sum rule estimate we showed above at

the same order.

The results for N1/2(n` = 5) represent the O(ΛQCD) renormalon ambiguity for the top

quark pole mass assuming that the other quark flavors including the charm and bottom

quarks are massless. The other cases of phenomenological interest are n` = 3 and n` = 4

and the corresponding results for the natural and practical MSR masses are given in table 1.

As our final results for the N1/2 values for the number of massless flavors n` = 3, 4, 5 we
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quote the 4-loop results for the natural MSR mass

N1/2(n` = 3) = 0.526± 0.016 , (4.12)

N1/2(n` = 4) = 0.492± 0.020 , (4.13)

N1/2(n` = 5) = 0.446± 0.026 . (4.14)

Note that the uncertainties are slightly larger than the ones quoted in table 1. Following

ref. [70] we have also included an additional uncertainty coming from varying the defining

coefficients aMS
n = aMS

n (n`, 0) of the natural MSR mass based on the idea that using the

association of R with the MS mass at the scale of the MS mass is in principle not mandatory.

Since one may as well consider different renormalization scales for the MS mass and the

O(ΛQCD) renormalon ambiguity is not affected by this choice, we have determined modified

coefficients an from eq. (2.3) by setting R = m
(n`)
Q (m

(n`)
Q ) and completely reexpanding the

series in terms of R′ = m
(n`)
Q (ηm

(n`)
Q ) using the RG equation for the MS mass for n`

dynamic flavors. Using the resulting series coefficients we have reevaluated the sum rule

using variations in η between 0.5 and 2 and added the resulting uncertainty (while keeping

λ = 1) quadratically to the ones shown in table 1 (which relate to the choice η = 1). The

results including the η variation are shown in figure 3b exemplarily for n` = 5.

The results of eqs. (4.12)–(4.14) are compatible with those given in refs. [8, 70]. For

example for n` = 5 [70] obtained 0.4616+0.027
−0.070 ± 0.002, where the first uncertainty is from

a double scale variation similar to ours and the second uncertainty is from the numerical

determination of the four loop coefficient. In refs. [8, 70] the determination of the nor-

malization N1/2 was based on the ratio method, which arises from a comparison of the

perturbative coefficients an from explicit QCD loop calculations to the coefficients aasyn of

the series generated by a pure O(ΛQCD) renormalon in eq. (4.16) based on the relation that

limn→∞ an/a
asy
n = 1. In ref. [8] the static QCD potential and the MS-pole mass relation

were studied, and in ref. [70] the MS-pole mass was examined. (In ref. [8] the static po-

tential based numbers are roughly 1.4σ higher than those in eqs. (4.12)–(4.14), which may

be related to the points discussed below in section 5.1 for the PS mass.) The agreement of

our sum rule results and those obtained from the ratio method in ref. [70] underlines the

capabilities of R-evolution and the renormalon sum rule concept.

In table 1 we have also shown the results for a number of other n` values as these

results are also of theoretical interest. Our results are in full agreement with and have

compatible uncertainties to the results given in table 1 of ref. [70] and in particular confirm

that N1/2 → 1 for n` → −∞, which is the classic large-n` limit where the perturbative

series are fully dominated by the massless quark bubble chain and the non-Abelian QCD

effects are diluted away. Our result for n` = 0 is also in agreement with ref. [8] and

the lattice determinations of refs. [69, 85], which found N1/2(n` = 0) = 0.600 ± 0.029,

N1/2(n` = 0) = 0.660±0.056 and N1/2(n` = 0) = 0.620±0.035, respectively. We note that

our analytic expression for N1/2 gets unstable and non-conclusive for 10 . n` . 30 which

is the so-called conformal region where the coefficient β0 of the QCD β-function becomes

small and in particular b̂1 = β1/(2β
2
0) becomes large. In this region the analytic formula

for N1/2 has singularities and does not approach any stable value. This is connected to the
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n` O(αs) O(α2
s) O(α3

s) O(α4
s)

N1/2(n`) from mMSRn
t

−1000000 0.531± 0.318 1.022± 0.378 0.817± 0.121 1.009± 0.068

−10 0.531± 0.318 0.654± 0.220 0.640± 0.062 0.684± 0.030

0 0.531± 0.318 0.558± 0.169 0.567± 0.058 0.582± 0.017

3 0.531± 0.318 0.514± 0.140 0.527± 0.046 0.526± 0.012

4 0.531± 0.318 0.494± 0.124 0.508± 0.039 0.492± 0.016

5 0.531± 0.318 0.468± 0.104 0.483± 0.029 0.446± 0.024

6 0.531± 0.318 0.434± 0.079 0.437± 0.027 0.381± 0.038

7 0.531± 0.318 0.387± 0.047 0.340± 0.059 0.271± 0.063

8 0.531± 0.318 0.184± 0.141 0.165± 0.142 0.053± 0.097

10 0.531± 0.318 − 3.381± 2.714 − 1.811± 0.492 − 2.434± 1.041

N1/2(n`) from mMSRp
t

−1000000 0.531± 0.318 1.022± 0.378 0.817± 0.121 1.009± 0.068

−10 0.531± 0.318 0.658± 0.222 0.641± 0.062 0.684± 0.028

0 0.531± 0.318 0.563± 0.172 0.572± 0.059 0.583± 0.016

3 0.531± 0.318 0.520± 0.144 0.535± 0.048 0.522± 0.017

4 0.531± 0.318 0.501± 0.129 0.517± 0.041 0.487± 0.023

5 0.531± 0.318 0.475± 0.109 0.494± 0.032 0.441± 0.033

6 0.531± 0.318 0.442± 0.083 0.457± 0.023 0.373± 0.052

7 0.531± 0.318 0.394± 0.050 0.366± 0.051 0.259± 0.083

8 0.531± 0.318 0.200± 0.134 0.201± 0.127 0.027± 0.132

10 0.531± 0.318 − 3.325± 2.681 − 1.638± 0.439 − 3.057± 0.649

Table 1. N1/2(n`) for the natural and practical heavy quark MSR masses. The results are given

for different theoretically interesting values of n` including contributions from one to four loops.

The errors shown are obtained from λ variations in the interval [0.5, 2] and the central values are

the mean value of the respective maximal and minimal values obtained in that interval.

fact that in this region no definite statement on the asymptotic large order behavior of the

perturbative series and in particular on the O(ΛQCD) renormalon can be made because the

infrared and ultraviolet structure of the QCD β-function strongly depend on a complicated

numerical interplay of the coefficients βi>0, which can become quite large and have different

signs. The unstable behavior of our analytical formula for 10 . n` . 30 differs from the

results obtained in refs. [8, 70], where the normalization N1/2 was observed being tiny.

However, as emphasized in ref. [70], this feature was an artifact of the ratio method used

in refs. [8, 70], and again indicates that in this n` region the canonical renormalon calculus

cannot be applied.
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In ref. [29] the Borel method to compute N1/2 was suggested based on the idea that the

Borel function (1−2u)1+b̂1Bαs(u) eliminates all non-analytic contributions in the first term

on the r.h.s. of eq. (4.7) and thus isolates the term N1/2 in the limit u→ 1/2 [68]. This ap-

proach entails that after the low-order terms in the expansion of the Borel transform Bαs(u)

around u = 0 are determined from the original series, one expands (1 − 2u)1+b̂1Bαs(u) in

powers of u and subsequently evaluates the resulting series for u = 1/2. The results of

refs. [29, 68] were based on the assumption that the analytic contributions [involving the

functions Q`(u)] on the r.h.s. of eq. (4.7) quickly tend to zero when multiplied by (1−2u)1+b̂1

and are unimportant. This is not the case, as the Taylor expansion (1 − 2u)1+b̂1 around

u = 0 converges very slowly to zero if one sets u = 1/2. This can be traced to the fact

that b̂1 is non-integer and in general the convergence radius of the binomial series is 1.

Here u = 1/2 corresponds exactly to the border of this radius. These terms are therefore

numerically sizable at any truncation order. As we show in appendix B, neglecting them

leads to a much larger dependence on the renormalization parameter λ at a given trun-

cation order. This is because the λ dependence of these terms is multiplied by a factor

converging to zero, but the convergence is rather slow. When many orders are included,

as shown in ref. [69] which accounted for terms up to O(α20
s ), the dependence vanishes

and the method converges to N1/2, which we have confirmed through a reanalysis. This

observation is consistent with the large scale uncertainties found in the detailed numerical

analysis of ref. [8]. The Borel method to determine N1/2 is therefore not very precise if only

the first few terms of the series are known. Interestingly, accounting for the analytic terms

on the r.h.s. of eq. (4.7), which are contained in the polynomials Q` and are computed sys-

tematically from R-evolution as shown in section 4.1, one can derive an improved version

of the Borel approach which agrees exactly with our sum rule formula of eq. (4.8). The

corresponding analytic calculation and a brief numerical analysis are given in appendix B.

4.4 Asymptotic higher order behavior

In this section we use the analytic manipulations that arise in the derivation of the sum rule

to derive an alternative expression for the high-order asymptotic form of a series containing

anO(ΛQCD) renormalon that differs from the well known formula derived in [77]. The latter

formula is related to the sum of the non-analytic terms, which are multiplied by N1/2 or

P1/2 in the Borel function of eq. (4.7), and reads[
mpole
Q −mMSR

Q (R)
]
asy

= N1/2R
∞∑
n=0

aasyn+1

(
αs(R)

4π

)n+1

(4.15)

= N1/2R

∞∑
n=0

4π (2β0)
n

(
αs(R)

4π

)n+1 ∞∑
`=0

g`
Γ(1 + b̂1 + n− `)

Γ(1 + b̂1)

= P1/2R

∞∑
n=0

(2β0)
n+1

(
αs(R)

4π

)n+1 ∞∑
`=0

g` Γ(1 + b̂1 + n− `) ,

giving the asymptotic form of the coefficients

aasyn = 4πN1/2(2β0)
n−1

∞∑
`=0

g` (1 + b̂1)n−1−` , (4.16)
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where (b)n = b (b + 1) · · · (b + n − 1) = Γ(b + n)/Γ(b) is the Pochhammer symbol. Given

the value for P1/2 or N1/2 the structure of the perturbative coefficients of eq. (4.15) is

completely fixed by the properties of the QCD β-function and does not depend any more

on the coefficients of the original series of eqs. (2.3) and (2.5). Thus eq. (4.15) has been

frequently used as the standard form for the asymptotic high-order behavior of perturbative

series dominated by an O(ΛQCD) renormalon. This is also reflected by the fact that the

imaginary part of the inverse Borel integration over the non-analytic terms in eq. (4.7) is

exactly proportional to ΛQCD

Im

∫ ∞
0

du

[
−N1/2R

4π

β0

∞∑
`=0

g`
Γ(1 + b̂1 − `)

Γ(1 + b̂1)
(1− 2u)−1−b̂1+`

]
e
− 4πu
β0αs(R) (4.17)

= P1/2 πΛQCD = N1/2
2π2

β0 Γ(1 + b̂1)
ΛQCD ,

with ΛQCD given in eq. (A.6). As a side remark, we note that inserting the series in

eq. (4.15), with a given value for N1/2, into the sum rule expression of eq. (4.8) one recovers

N1/2 in the limit of carrying out the sums over k, n and ` to infinity.

Interestingly, eq. (4.4) provides a remarkable alternative expression for the high-order

asymptotic of the MSR-pole mass series as it can be rewritten in the form

mpole
Q −mMSR

Q (R) =R
∞∑
n=0

(
αs(R)

4π

)n+1 n∑
k=0

n−k∑
`=0

(2β0)
n+1Sk g`

Γ(1+b̂1+n−`)
Γ(1+b̂1+k)

. (4.18)

In contrast to eq. (4.15) this expression still depends on the Sk coefficients non-trivially

and thus carries all the information contained in the original series due to the identity

an = (2β0)
n
n−1∑
k=0

Sk

n−1−k∑
`=0

g` (1 + b̂1 + k)n−1−`−k . (4.19)

This relation is interesting because it provides a separation of the coefficients of the original

series into leading and subleading terms with respect to the asymptotic high-order behavior.

So truncating the sums over k and ` in eq. (4.19) (e.g. accounting for the coefficients Sk and

g` up to the order they are known) provides the correct high-order asymptotic behavior for

n beyond the truncation order and, at the same time, reproduces exactly the coefficients

of the original series up to the truncation order.

Currently the coefficients an for the MSR-pole and the MS-pole mass relations are

known to order O(α4
s) and the QCD β-function is known to order O(α6

s) so that the

coefficients Sk and g` are known up to kmax = `max = 3. We may therefore write down

estimates for the still uncalculated coefficients an>4 using the expression

aasyn>4 = 4πN1/2 (2β0)
n−1

3∑
`=0

g` (1 + b̂1)n−1−` , (4.20)

which is the established formula from [77] shown in eq. (4.15), and

aasy ′n>4 = (2β0)
n

3∑
k=0

Sk

min(n−k−1,3)∑
`=0

g` (1 + b̂1 + k)n−1−`−k , (4.21)
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based on eq. (4.19), which encodes information on both the regular and asymptotic behavior

of the series.4 In table 2 we show estimates for the yet uncalculated coefficients a5≤n≤9
for the relations of the natural MSR mass and the MS mass mQ ≡ m

(n`+1)
Q (m

(n`+1)
Q ) to

the pole mass using eqs. (4.20) and (4.21) for n` = 3, 4, 5 and the results of eqs. (4.12)–

(4.14) for N1/2. The uncertainties for the coefficients aasyn are based on the uncertainties

shown in eqs. (4.12) – (4.14) and those for the coefficients aasy ′n are determined from λ

variations 1/2 < λ < 2, as explained in section 4.2 and η variations 1/2 < η < 2, as

explained below eq. (4.14). The coefficient estimates for the MS mass have been obtained

by using the second equality of (5.8) and eq. (A.7) to the order shown. We see that both

estimates are completely equivalent and have the same uncertainties. Our estimates for

the MS mass coefficients for n` = 5 also agree perfectly with those given in ref. [70] which

used the approach of eq. (4.20). We note that the relation (4.19) can also be inverted to

provide closed iterative expressions for the Sk coefficients to all orders, which are given in

appendix A and in particular in eq. (A.18).

We note that the asymptotic series coefficients aasyn in eq. (4.16) and the expression for

the coefficients an in eq. (4.19) allow for an alternative derivation of the renormalon sum

rule formula since the ratio an/a
asy
n approaches unity for n → ∞. Taking that ratio one

arrives at

N1/2
an
aasyn

=

(2β0)
n
n−1∑
k=0

Sk
n−1−k∑̀

=0

g` (1 + b̂1 + k)n−1−`−k

4π (2β0)n−1
∞∑̀
=0

g` (1 + b̂1)n−1−`

(4.22)

=
β0 Γ(1 + b̂1)

2π

n−1∑
k=0

Sk

Γ(1 + b̂1 + k)

n−1−k∑̀
=0

g` Γ(b̂1 + n− `)

∞∑̀
=0

g` Γ(b̂1 + n− `)
.

To the extent that the sums over k in the sum rule formula of eq. (4.8) and in eq. (4.22)

for n→∞ are convergent, one can use the Cauchy convergence criterion to show that the

expression of eq. (4.22) is equivalent to eq. (4.8) for n → ∞. This shows analytically the

equivalence of the ratio method and the sum rule.

4.5 Other applications of the sum rule

To conclude our considerations concerning the O(ΛQCD) renormalon sum rule we discuss in

this section a number of subtleties in its proper use and a few interesting applications. As

it is sufficient for the purpose of the examinations, we use for simplicity only λ variations,

as explained in section 4.2, when quoting uncertainties of the sum rule evaluated here.

4.5.1 Number of massless flavors

An important feature of the O(ΛQCD) renormalon sum rule is that it probes the infrared

sensitivity of the perturbative series, which physically depends on the number of massless

4One can easily write eq. (4.21) as the sum of eq. (4.20) and a term build from the inverse Borel transform

of the Q` polynomials defined in eq. (4.9).
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n` aMSRn
5 × 10−7 aMSRn

6 × 10−9 aMSRn
7 × 10−11 aMSRn

8 × 10−13 aMSRn
9 × 10−15

3 3.394± 0.105 3.309± 0.102 3.819± 0.118 5.093± 0.157 7.706± 0.238

4 2.249± 0.090 2.019± 0.081 2.147± 0.086 2.641± 0.106 3.687± 0.148

5 1.379± 0.080 1.128± 0.066 1.095± 0.064 1.231± 0.072 1.572± 0.091

aMSRn ′
5 × 10−7 aMSRn ′

6 × 10−9 aMSRn ′
7 × 10−11 aMSRn ′

8 × 10−13 aMSRn ′
9 × 10−15

3 3.393± 0.105 3.309± 0.102 3.819± 0.118 5.093± 0.157 7.706± 0.238

4 2.248± 0.090 2.019± 0.081 2.147± 0.086 2.641± 0.106 3.687± 0.148

5 1.378± 0.080 1.128± 0.066 1.095± 0.063 1.231± 0.072 1.572± 0.091

aMS
5 × 10−7 aMS

6 × 10−9 aMS
7 × 10−11 aMS

8 × 10−13 aMS
9 × 10−15

3 3.401± 0.105 3.315± 0.102 3.824± 0.118 5.099± 0.158 7.714± 0.239

4 2.255± 0.090 2.023± 0.081 2.151± 0.086 2.644± 0.106 3.692± 0.148

5 1.383± 0.080 1.130± 0.066 1.097± 0.064 1.233± 0.072 1.575± 0.091

aMS ′
5 × 10−7 aMS ′

6 × 10−9 aMS ′
7 × 10−11 aMS ′

8 × 10−13 aMS ′
9 × 10−15

3 3.400± 0.106 3.315± 0.103 3.824± 0.118 5.099± 0.158 7.714± 0.239

4 2.254± 0.091 2.023± 0.081 2.151± 0.086 2.644± 0.106 3.692± 0.148

5 1.382± 0.081 1.130± 0.066 1.097± 0.064 1.233± 0.072 1.575± 0.091

Table 2. Numerical estimates for the perturbative coefficients aMSRn
n (MSRn-pole mass relation

in eq. (2.3)) and aMS
n [MS-pole mass relation in eq. (2.1)] for 5 ≤ n ≤ 9 and n` = 3, 4, 5 using

formulae (4.20) and (4.21) for their asymptotic high-order behavior. The quoted errors arise from

λ and η variations in the interval [0.5, 2] and the central values are the mean of the maximum and

minimum values in that interval.

quarks, n`, one employs in the computation of the series. In a computation in QCD,

however, n` might not be equal to the number of active flavors, nf , which governs the

ultraviolet behavior and the renormalization group evolution of the strong coupling α
(nf )
s

and other renormalized quantities, and a naive application of the sum rule may lead to

inconsistent results. In such a case, the series in α
(nf )
s should be better converted to the

n`-flavor scheme for the strong coupling, α
(n`)
s , before its coefficients are inserted in the

sum rule expression. This can be either realized by simply rewriting α
(nf )
s as a series in

α
(n`)
s , as it is done in the definition of the practical MSR mass, or by integrating out the

effects of the nf − n` massive quarks, as it is done in the definition of the natural MSR

mass. The latter approach is the physically cleaner way (which was the reason for using

the name ‘natural’), but both approaches are consistent as far as the application of the

sum rule is concerned.

In the following we discuss the pitfalls of using the sum in an inconsistent way. To

discuss the issue we recall that, since the O(ΛQCD) renormalon sum rule is a functional

on the perturbative series, it can also be seen as a function N1/2[n`, {an}] acting on the

coefficients an of the [αs/(4π)]n terms in the series. As indicated, N1/2 is a function of the

number of massless flavors n` through its dependence on β0 and the coefficients b̂k, which
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appear in eq. (4.8) and a function of the coefficients an contained in the expressions for the

Sk as shown in eq. (A.15). The function N1/2[n`, {an}] is therefore probing the series defined

by the set of coefficients {an} with respect to an O(ΛQCD) renormalon for n` massless

flavors, and it is essential for the sum rule to work properly that the value of n` agrees with

the number of massless flavors used for the computation of the coefficients an. Let us now

apply the sum rule to the coefficients {aMS,n`
n } of the series for mpole

Q −mQ(mQ)(n`+1) in

eq. (2.1), which is a series in α
(n`+1)
s , but contains the effects of n` massless flavors. Here

we use the shorthand notation

aMS,n`
n ≡ aMS

n (n`, nh = 1) . (4.23)

To be specific we take n` = 5. Probing the series with respect to an O(ΛQCD) renor-

malon for n` + 1 = 6 massless flavors, in accordance with the scheme for αs, one obtains

N1/2[6, {a
MS,n`=5
n }] = (0.531± 0.318, 0.526± 0.1298, 0.623± 0.070, 0.6360± 0.016) at order

n = (0, 1, 2, 3), where the errors are obtained from varying λ in the range 0.5 < λ < 2

and the central values are the mean value of the respective maximal and minimal values

obtained in the λ variation. We see that the sum rule appears to approach a value that

is much larger than the correct result of eq. (4.14), but this is a consequence of an incon-

sistent application of the sum rule. Indeed, one can show by simple algebra in the β0/LL

approximation [where b̂i≥1 = βi≥1 = 0, aasy,n`n+1 = a1(2β0,n`)
nn! and β0,n` = 11 − 2/3n`]

that the order n expression for N1/2 that is obtained — when probing with respect to an

O(ΛQCD) renormalon for nf massless flavors — has the form

[
N

(n)
1/2[nf , {aasy,n`n }]

]
β0/LL

=
β0
2π

n∑
k=0

Sk
k!

=
a1
4π

(
β0,n`
β0,nf

)n
. (4.24)

As long as β0,n is a positive number this expression diverges for nf > n` in the limit

n → ∞, which explains the behavior of the sum rule results shown above. On the

other hand, the expression of eq. (4.24) converges to zero for nf < n`. So when prob-

ing the coefficients {aMS,n`
n } of the series for mpole

Q − mQ(mQ)(n`+1) with respect to an

O(ΛQCD) renormalon for n` − 1 = 4 massless flavors we obtain N1/2[4, {a
MS,n`=5
n }] =

(0.531±0.318, 0.433±0.089, 0.405±0.027, 0.327±0.051) at order n = (0, 1, 2, 3) which is a

sequence of decreasing terms, as expected from eq. (4.24), which in addition does not behave

in a stable way. But, again, the behavior is a consequence of an inconsistent application

of the sum rule. On the other hand, if we probe the coefficients {aMS,n`
n } of the series for

mpole
Q −mQ(mQ)(n`+1) with respect to an O(ΛQCD) renormalon for n` = 5 massless flavors

we obtain N1/2[5, {a
MS,n`=5
n }] = (0.531±0.318, 0.475±0.109, 0.494±0.032, 0.442±0.033) at

order n = (0, 1, 2, 3), which converges to the correct result of eq. (4.14). We also learn that

adopting for the strong coupling α
(nf )
s a flavor number scheme where nf agrees with the

number of massless flavors is clean conceptually, but not crucial numerically such that the

sum rule works reliably. This is related to the fact that the matching relation of the strong

coupling in different flavor number schemes does not suffer from an O(ΛQCD) renormalon

behavior.
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This brief examination above underlines the importance that the O(ΛQCD) sum rule,

which probes the infrared sensitivity of the perturbative series, is applied consistently with

respect to the number of massless quarks, which may not agree with the number of active

flavors in the normalization group equation that is governed by ultraviolet effects. Of

course this feature may as well be used as a tool, as studying the convergence of the sum

rule may be employed to determine the number of massless flavors used, let’s say, in a

numerical computation of a perturbative series.

4.5.2 Moments of the vacuum polarization function

The zero-momentum moments Mi, i = 1, 2, 3, . . ., of the massive quark Q vector current

correlator Π(q2), defined by [jµ(x) ≡ ψQ(x)γµψQ(x)]

Mi =
12π2Q2

Q

m!

di

dq2i
Π(q2)

∣∣∣∣∣
q2=0

, (4.25)

(
gµνq

2 − qµqν
)

Π(q2) = − i
∫

dx eiqx 〈0|Tjµ(x)jν(0)|0〉 ,

provide one of the most precise methods to determine the charm and bottom quark MS

masses [1–10] and are known to utterly fail in precision when expressed in terms of the

charm and bottom pole masses. This mass sensitivity comes from the fact that the per-

turbative series for the moments Mi is due to dimensional reasons proportional to m−2iQ in

the form Mi = m−2iQ

∑∞
n=0 ci,n(mQ)[α

(n`)
s (mQ)/(4π)]n, where n` is the number of massless

flavors and we use the n`-flavor scheme for the strong coupling.5 The moments Mi are

related to weighted integrals over the hadronic R-ratio of QQ production and thus free

from the O(ΛQCD) renormalon. They can be rewritten in the form

mQ −
(
Mi

ci,0

)− 1
2i

= m′Q

∞∑
n=1

ai,n[mQ,m
′
Q]

(
α
(n`)
s (m′Q)

4π

)n
, (4.26)

where mQ and m′Q may be in general different quark mass schemes.

The moments Mi are suitable quantities to discuss the parametric aspect of renormalon

ambiguities and how they affect the proper application of the O(ΛQCD) sum rule. The first

three moments M1,2,3 are known to O(α3
s) [86–96] and the corresponding series coefficients

ai,n for n` = 4 in the MS mass scheme mQ = m′Q = m
(n`+1)
Q (m

(n`+1)
Q ) and the pole mass

scheme mQ = m′Q = mpole
Q using the n`-flavor scheme α

(n`)
s for the coupling are quoted in

table 3. Applying the sum rule to the series for the M1,2,3 on the r.h.s. of eq. (4.26) in the

MS scheme we obtain for n` = 4, relevant for the bottom quark, the results

N i=1
1/2 = (0.477± 0.286,− 0.178± 0.261, 0.013± 0.036) , (4.27)

N i=2
1/2 = (0.241± 0.145,− 0.007± 0.083,− 0.029± 0.058) ,

N i=3
1/2 = (0.127± 0.076, 0.031± 0.026,− 0.029± 0.048) ,

5In the recent sum-rule analyses [1–10] for the bottom quark mass n` = 4 was used, while for charm mass

determinations n` = 3 was employed, and the (n` + 1) flavor scheme was employed for the renormalization

group evolution.
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i O(αs) O(α2
s) O(α3

s) O(αs) O(α2
s) O(α3

s)

ai,n[mpole,mpole] ai,n[m(m),m(m)]

1 10.1235 83.7296 4669.92 4.79012 − 10.7255 − 310.275

2 7.76049 120.609 4589.81 2.42716 13.5516 − 334.42

3 6.61153 127.821 4754.39 1.2782 14.6354 − 199.81

ai,n[mpole,m(m)] ai,n[mpole, M̃ ]

1 10.1235 137.721 5719.41 10.1235 186.214 5831.25

2 7.76049 161.998 5695.26 7.76049 180.834 6005.71

3 6.61153 163.082 5829.87 6.61153 171.533 6063.32

Table 3. ai,n(mQ,m
′
Q) coefficients of the perturbative expansion for the mass-subtracted linearized

moments, as displayed in eq. (4.26), at one (left column of each block), two (middle column of each

block), and three (right column of each block) loops. The numerical values correspond to the case

n` = 4, studied in this section. The table is split into four blocks: the upper left one corresponds

to the pole mass expansion in terms of the pole mass, the upper right one shows the MS mass

expansion in terms of the MS mass, the lower left block displays the pole mass expansion in terms

of the MS mass, and the lower right displays the linearized iterative expansion for the pole mass.

at order n = (0, 1, 2), where the errors are obtained by λ variations in the range 0.5 < λ < 2

and the central values are obtained from the mean of the respective maximal and minimal

values in the λ variation. We see that the results for N1/2 are compatible with zero beyond

O(αs) and have uncertainties that decrease with order, illustrating the known fact that the

series are free from an O(ΛQCD) renormalon in the MS mass scheme.

Applying the sum rule to the series for the M1,2,3 in the pole mass scheme

mQ = m′Q = mpole
Q the corresponding results for n` = 4 read

N i=1
1/2 = (1.007± 0.604, 0.092± 0.278, 0.510± 0.113) , (4.28)

N i=2
1/2 = (0.772± 0.463, 0.345± 0.094, 0.420± 0.012) ,

N i=3
1/2 = (0.658± 0.395, 0.416± 0.053, 0.424± 0.013) .

Apart from the outcome for M1, which still happens to have a rather large error at order

n = 2 the results converge to the result 0.42± 0.01 which is incompatible with the correct

result 0.49 ± 0.02 from eq. (4.13). So the O(ΛQCD) renormalon ambiguity inherent to

the coefficients in the series of eq. (4.26) in the pole mass scheme appears to be about

15% smaller than for the coefficients of the MSR-pole mass series analyzed before. The

discrepancy is resolved by the fact that in the pole scheme with both mQ = m′Q = mpole
Q

the r.h.s. of eq. (4.26) is expressed using the ambiguous pole mass as a parameter. As a

consequence, the perturbative coefficients of the series and factors of mpole
Q on the r.h.s.

share the full O(ΛQCD) pole mass renormalon ambiguity contained in the l.h.s. of eq. (4.26).

To recover the full O(ΛQCD) pole mass renormalon ambiguity in the coefficients on the

r.h.s. one has to rewrite the series on the r.h.s. in terms of parameters that are free from

the O(ΛQCD) renormalon ambiguity. This can be achieved by re-expanding the series for
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mpole
Q −(Mm/ci,0)

−1/(2i) completely in terms of the MS mass using m′Q = m
(n`+1)
Q (m

(n`+1)
Q ).

The resulting coefficients in powers of α
(n`)
s (m′Q) are given in the lower left column of table 3.

Using these coefficients, the renormalon sum rule applied to the series for the M1,2,3 and

n` = 4 gives

N i=1
1/2 = (1.007± 0.604, 0.350± 0.159, 0.547± 0.047) , (4.29)

N i=2
1/2 = (0.772± 0.463, 0.525± 0.078, 0.495± 0.032) ,

N i=3
1/2 = (0.658± 0.395, 0.535± 0.110, 0.501± 0.034) ,

at order n = (0, 1, 2). This is in full agreement with the result 0.49± 0.02 given in eq. (4.13),

and also shows a substantially better behavior for the moment M1.

As an alternative to using the series for mQ = mpole
Q and m′Q = m

(n`+1)
Q (m

(n`+1)
Q ), one

can also define M̃i ≡ (Mi/ci,0)
−1/2i and re-express the r.h.s. of eq. (4.26) perturbatively

in terms of m′Q = M̃i for the different moments. (We refer to ref. [1] for details on this

iterative procedure.) The resulting coefficients in powers of α
(n`)
s (M̃i) are given in the lower

right column of table 3. Using these coefficients, the renormalon sum rule applied to the

series for the M1,2,3 and n` = 4 gives

N i=1
1/2 = (1.007± 0.604, 0.604± 0.075, 0.493± 0.071) , (4.30)

N i=2
1/2 = (0.772± 0.463, 0.589± 0.109, 0.501± 0.056) ,

N i=3
1/2 = (0.658± 0.395, 0.568± 0.129, 0.516± 0.040) .

These results behave similarly to those of eq. (4.29) and are again in full agreement with

the result 0.49 ± 0.02 given in eq. (4.13).

This analysis underlines the importance of using renormalon-free parameters for se-

ries coefficients that are being probed with the O(ΛQCD) renormalon sum rule, but also

illustrates the high sensitivity of the sum rule to even subtle high order effects.

4.5.3 Infrared sensitivity of the PS mass definition

The PS (potential subtracted) mass [25] is based on the concept that the total static poten-

tial energy of a color singlet massive quark-antiquark pair with separation r, 2mpole
Q + V (r),

is O(ΛQCD) renormalon free. It is defined from the integral

mpole
Q −mPS

Q (µf ) = − 1

2

∫
|~q |<µf

d3~q

(2π)3
Ṽ (~q 2) , (4.31)

where Ṽ (~q 2) is the momentum-space static potential calculated in perturbation theory. To

the extent that the total static potential is a well-defined and unambiguous quantity, the PS

mass is free from anO(ΛQCD) renormalon. The coefficients of the series for mpole
Q −mPS

Q (µf ),

expressed as a series in powers of α
(n`)
s (µf )/(4π), are given in eq. (C.1).

We now apply the O(ΛQCD) renormalon sum rule to the relation of the pole mass to

the potential PS mass. The examination is of interest because the static potential has

infrared divergences starting at O(α4
s) arising from higher Fock QQ-gluon states which
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lead to retardation effects that invalidate the frame-independent static limit [97, 98]. The

definition of the PS mass at O(α4
s) and beyond is therefore known to depend on the scheme

used for the subtraction prescription for these infrared divergences. In refs. [99] the au-

thors defined the following convention: the infrared divergence in the O(α4
s) corrections to

the momentum-space static potential [100, 101] is regularized dimensionally (with the MS

convention for the definition of µ), and the 1/ε divergence together with the corresponding

logarithm log(µ/µf ) that arises from the integral over the momentum-space static poten-

tial in eq. (4.31) are subtracted. We call this the standard convention, and it leads to

the coefficient aPS4 shown in eq. (C.2), where the term with the logarithm log(µ/µf ) is

dropped. In a minimal subtraction convention, only the 1/ε divergence is subtracted and

the logarithmic term displayed in aPS4 remains. So the convention of ref. [99] is equivalent

to the choice µ/µf = 1 for the dimensional scale in the minimal subtraction convention.

Using the O(ΛQCD) renormalon sum rule we can now track quantitatively if and how

much the convention for the infrared subtraction may affect the higher-order behavior in the

PS-pole mass relation. Applying the sum rule to the PS mass in the standard convention

of ref. [99] we obtain for n` = 5, relevant for the top quark,

N
µ/µf=1

1/2 = (0.531± 0.318, 0.376± 0.057, 0.503± 0.078, 0.545± 0.045) , (4.32)

at order n = (0, 1, 2, 3), where the errors come from λ variations in the interval [0.5, 2]. The

order n = 3 result that involves the O(α4
s) coefficient aPS4 is 22% higher and within errors

only marginally compatible with the result N1/2(n` = 5) = 0.446±0.026 of eq. (4.14). This

indicates that aPS4 in the standard convention is somewhat larger than expected assuming

that the pole-PS mass series is dominated by the pole mass renormalon. The same obser-

vation has also been made in refs. [54, 102] in the context of relating the PS mass to the

MS mass.

It is interesting to consider other minimal subtraction scheme choices that differ from

the standard scheme by reasonable variations of the subtraction scale µ. For example, for

the choice µ/µf = 1/5 we obtain N
µ/µf=1/5

1/2 = 0.455 ± 0.021 at order n = 3 for n` = 5,

which is fully compatible with eq. (4.14). That the sum rule result for the PS mass agrees

with the correct result of eq. (4.14) much better for a smaller infrared subtraction scale

is quite suggestive because the infrared divergence in the static potential is known to be

physically regulated by the massive quark kinetic energy, which is of order ~q 2/mQ ∼ µfv

where v is the relative velocity, and hence is parametrically smaller than |~q | ∼ µf . We stress

that our analysis does neither validate nor invalidate the concept of the standard PS mass as

a suitable mass scheme to carry out ongoing high-precision threshold studies [11, 13], as the

sum rule only probes the calculated orders and the effect of the retardation singularity on

the perturbative coefficients in the static potential beyond O(α4
s) on the PS mass scheme is

unknown. However, the analysis demonstrates that the scheme dependence in the PS mass

coming from the infrared divergences in the static potential at O(α4
s) is not a numerically

irrelevant issue and may become even more serious beyond O(α4
s). As far as the known

O(α4
s) results are concerned the issue already seems to affect the relation of the standard

PS mass to the MSR and MS masses as discussed in section 5.1.
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4.5.4 QCD β-function and massless quark R-ratio

As the concluding part of the discussion in this section we now apply the O(ΛQCD) renor-

malon sum rule to series that are known not to be plagued by any O(ΛQCD) renormalon.

As examples we take the series for the QCD β-function with

aβn = βn−1 , (4.33)

as defined in eq. (A.1) and the hadronic R-ratio for n` massless quarks

R(s) = 3

n∑̀
f=1

Q2
f

[
1 +

∞∑
n=1

aRn

(
α
(n`)
s (
√
s)

4π

)n]
, (4.34)

where
√
s stands for the center-of-mass energy, with [103–107]

aR1 = 4 , (4.35)

aR2 = 31.7712− 1.8432n` ,

aR3 = − 424.764− 76.8083n` − 0.33152n2` ,

aR4 = − 40092.2 + 4805.12n` − 204.134n2` + 5.504n3` ,

and Qf stands for the quark electric charges. Applying the sum rule for n` = 4 to the

series for the QCD β-function we obtain

Nβ
1/2 = (0.829± 0.497,− 0.004± 0.272, 0.065± 0.092, 0.038± 0.032) , (4.36)

and applying it to the hadronic R-ratio we obtain

NR
1/2 = (0.398± 0.239,− 0.003± 0.1311,− 0.071± 0.105,− 0.009± 0.029) , (4.37)

at order n = (0, 1, 2, 3). The errors are obtained from the variation 0.5 < λ < 2. In

both cases all results for N1/2 beyond O(αs) are compatible with zero as expected. We

note that at least for the hadronic R-ratio it is known that its perturbative series given in

eq. (4.34) has a renormalon ambiguity that is suppressed and scales with the fourth power

of the hadronic scale ΛQCD. This leads to an ambiguity in the R-ratio of O(Λ4
QCD/s

2),

which is associated to the gluon condensate, and adding the effects of the gluon conden-

sate in the context of an operator product expansion in terms of low-energy QCD matrix

elements [108, 109] this ambiguity is compensated in a physical prediction. For the QCD

β-function no conclusive statements on a higher-order renormalon ambiguity exist. The re-

sults in eqs. (4.36) and (4.37) show that the O(ΛQCD) renormalon sum rule is only probing

for an O(ΛQCD) renormalon and not sensitive to any higher order renormalon ambiguity.

It is straightforward to generalize the sum rule discussed here to higher order renor-

malons, which has already been studied in ref. [78].

5 Relation to other short-distance masses

From the perturbative series that relate other short-distance masses to the pole mass it

is straightforward to determine the perturbative series for the difference of these short-

distance masses to the MSR masses by eliminating the pole mass systematically such that
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the O(ΛQCD) renormalon is canceled exactly. If regular fixed-order perturbation theory

can be applied this is achieved by simply using a common renormalization scale µ and

a consistent scheme for the strong coupling throughout the calculation when the pole

mass is eliminated order by order. The corresponding formulae and codes for the relation

of frequently used short-distance mass schemes (such as the kinetic mass [24], the PS

mass [25], the 1S mass [26–28], the RS mass [29] and the jet mass [30, 43]) to the MSR

masses can be obtained on request, and we therefore do not intend to cover all possible

cases in this paper. However, we will cover several of them explicitly since there are a

number of non-trivial practical and conceptual aspects that arise in the relation of the

MSR masses to a number of other short-distance mass schemes we would like to point out

in the following.

5.1 Potential subtracted mass

The relations of the PS mass [25] and the natural and practical MSR masses at the common

scale R up to O(α4
s) have the form [as ≡ α(n`)

s (R)/(4π)]

mPS
Q (µf =R)−mMSRn

Q (R) =R
{

[40.9928−3.6248n`]a
2
s+[963.44−184.87n` (5.1)

+0.422n2` ]a
3
s+
[
−(1749.±417.)−(11168.±10.)n`

+569.34n2`−0.89n3`−22739.57 log
( µ
R

)]
a4s+. . .

}
,

mPS
Q (µf =R)−mMSRp

Q (R) =R
{

[42.6499−3.6248n`]a
2
s+[1073.49−183.45n` (5.2)

+0.422n2` ]a
3
s+
[
−(1405.±418.)−(11279.±10.)n`

+573.74n2`−0.89n3`−22739.57 log
( µ
R

)]
a4s+. . .

}
.

For a conversion at the common scale µf = R the O(αs) corrections vanish identically

indicating that this is the natural way to carry out the conversion. As pointed out already

in section 4.5.3, the standard convention for the PS mass [99] corresponds to µ/µf = 1,

such that the logarithmic term in the O(α4
s) correction is eliminated. In table 4 we show

numerical results for the PS-MSR mass difference mPS
Q (µf = R)−mMSR

Q (R) for represen-

tative R values for n` = 5 (relevant to the top quark) and n` = 4 (relevant for the bottom

quark) at different orders in αs. The errors come from the variation of the renormalization

scale µ of the strong coupling in the interval [R/2, 2R], and the central values are the

mean of the respective maximal and minimal values obtained in that interval. In figure 4a

mPS
Q (µf = R) −mMSRn

Q (R) is shown at O(α2
s) (green), O(α3

s) (blue) and O(α4
s) (red) for

n` = 5 as a function of R between 20 and 160 GeV. The error bands are again obtained

from variations of µ in the interval [R/2, 2R]. For the top quark case (n` = 5) the PS and

the MSR masses differ by about 20 to 300 MeV for R values between 2 and 160 GeV and

for the bottom quark case (n` = 4) they differ by about 30 to 40 MeV for R values below

5 GeV. So the PS and the MSR masses are quite close numerically.

The conspicuous property of the relation of the standard PS mass to the MSR masses

at the common scale R is that the O(α4
s) correction is very large and far away from the
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R O(α2
s) O(α3

s) O(α4
s)
µ/µf=1 O(α4

s)
µ/µf=1/5

mPS
t (µf = R)−mMSRn

t (R) (n` = 5) [GeV]

2 0.031± 0.016 0.022± 0.004 − 0.027± 0.042 0.017± 0.006

5 0.037± 0.014 0.032± 0.002 0.007± 0.017 0.030± 0.002

10 0.050± 0.016 0.046± 0.002 0.024± 0.013 0.044± 0.002

40 0.110± 0.026 0.105± 0.003 0.081± 0.011 0.103± 0.001

80 0.174± 0.037 0.168± 0.003 0.138± 0.013 0.166± 0.002

160 0.282± 0.054 0.275± 0.005 0.236± 0.015 0.272± 0.002

mPS
t (µf = R)−mMSRp

t (R) (n` = 5) [GeV]

2 0.034± 0.018 0.028± 0.004 − 0.024± 0.043 0.020± 0.007

5 0.040± 0.015 0.037± 0.003 0.012± 0.017 0.034± 0.003

10 0.054± 0.017 0.052± 0.003 0.030± 0.013 0.050± 0.002

40 0.118± 0.028 0.118± 0.004 0.094± 0.011 0.116± 0.002

80 0.186± 0.039 0.188± 0.005 0.158± 0.013 0.186± 0.002

160 0.302± 0.058 0.306± 0.007 0.267± 0.015 0.303± 0.002

mPS
b (µf = R)−mMSRn

b (R) (n` = 4) [GeV]

2 0.044± 0.027 0.034± 0.007 − 0.041± 0.065 0.032± 0.005

3 0.041± 0.021 0.036± 0.005 − 0.003± 0.030 0.036± 0.002

4 0.042± 0.019 0.038± 0.004 0.010± 0.021 0.039± 0.001

mPS
b (µf = R)−mMSRp

b (R) (n` = 4) [GeV]

2 0.047± 0.029 0.040± 0.009 − 0.039± 0.068 0.034± 0.008

3 0.044± 0.022 0.041± 0.007 0.001± 0.031 0.039± 0.003

4 0.045± 0.020 0.043± 0.006 0.014± 0.022 0.043± 0.002

Table 4. Differences between the top mass in the PS and MSR schemes, showing both the natural

and practical MSR mass definitions. Results are given for various scales µf = R and orders in

αs. At O(α4
s) results are shown for two choices of the infrared subtraction scale, µ/µf = 1 and

µ/µf = 1/5.

O(α3
s) uncertainty band such that the O(α4

s) error band from scale variation is three to four

times larger than the O(α3
s) one. For the top quark (n` = 5) for R around 40 to 80 GeV, the

typical range employed in studies of top pair production at threshold [11], the O(α3
s) and

O(α4
s) central values differ by 23 MeV compared to scale variations of ± 4 MeV at O(α3

s)

and ± 12 MeV at O(α4
s). For R = 160 GeV, the O(α3

s) and O(α4
s) central values even

differ by 40 MeV compared to scale variations of about ± 4 MeV at O(α3
s) and ± 15 MeV

at O(α4
s). A similar observation was made earlier in ref. [54]. Given this situation it

is reasonable to use the difference of the O(α3
s) and O(α4

s) central values as the O(α4
s)

uncertainty due to the missing higher order terms rather than the scale variation, leading
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Figure 4. Difference between the natural MSR and PS (µf = R) top quark mass (n` = 5) as a

function of R in GeV at two, three and four loops (the one loop result vanishes). Results are shown

for two different choices of the IR subtraction scale, µ/µf = 1 and µ/µf = 1/5.

to uncertainties of about (20, 25, 30, 40) MeV at R = (10, 40, 80, 160) GeV. In ref. [54] the

O(α4
s) uncertainty in the relation between the MS mass mQ ≡ m

(n`+1)
Q (m

(n`+1)
Q ) and the

PS mass for µf = 20 GeV was quoted as 23 MeV, defined as half the size of the O(α4
s)

correction. This issue is directly related to our observation made in section 4.5.3 that

the O(α4
s) correction in the relation of the pole mass and the PS mass in the standard

scheme [99] (with infrared subtraction scale µ/µf = 1) is much larger than expected from

the O(ΛQCD) renormalon of the pole mass.

In section 4.5.3 we also found that for the PS top mass in the infrared subtraction

scheme with µ/µf = 1/5 there is much better consistency concerning the O(ΛQCD) sum

rule. Using the PS mass in this modified scheme the O(α4
s) corrections in this relation

to the MSR masses reduce substantially, as can be easily spotted from the corresponding

results in table 4 and in figure 4b: for the modified PS mass the O(α4
s) result for the PS-

MSR mass difference is fully compatible with the O(α3
s) result and leads to scale variations

that are about half the ones at O(α3
s). In this scheme it is therefore reasonable to quote

the scale variations as the remaining perturbative error at O(α4
s). For all R values above

2 GeV and n` = 4 and 5, the error in the O(α4
s) relation of the natural and the practical

MSR masses and the PS mass in the modified scheme with µ/µf = 1/5 for the infrared

scale is only about ± 2− 3 MeV.

One may alternatively make the conversion between the PS mass mPS
Q (µf ) and the MSR

masses mMSR
Q (R) for µf 6= R, where we expand consistently in αs(µ) with a common scale

µ. For the case µf < R we observe in general that the scale dependence of the O(α4
s) con-

version formula for the standard convention for the PS scheme, m
PS,µ/µf=1
Q (µf )−mMSR

Q (R),

decreases compared to the choice µf = R, but the size of the O(α4
s) correction is still many

times larger than the O(α3
s) scale variation. This can be seen for example for the case

(µf , R) = (50, 100) GeV were we obtain for n` = 5 the numerical results m
PS,µ/µf=1
Q (µf )−

mMSRn
Q (R) = (2.612± 0.143, 2.925± 0.042, 2.946± 0.005, 2.922± 0.005) GeV at O(α1,2,3,4

s )
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for the standard PS mass scheme with renormalization scale variation µf < µ < R. This

may be compared to the corresponding results for the modified PS mass scheme, which

read m
PS,µ/µf=1/5
Q (µf )−mMSRn

Q (R) = (2.612± 0.143, 2.925± 0.042, 2.946± 0.005, 2.939±
0.002) GeV and show again a fully consistent behavior between the O(α3

s) and O(α4
s) results

and their scale variations. On the other hand, for the case µf > R we observe in general

that, at each given order, the size of the scale dependence of m
PS,µ/µf=1
Q (µf )−mMSRn

Q (R) is

much smaller than the next correction. This can be seen for example for the case (µf , R) =

(50, 25) GeV were we obtain for n` = 5 the numerical results m
PS,µ/µf=1
Q (µf )−mMSRn

Q (R) =

(− 1.468 ± 0.091,− 1.456 ± 0.005,− 1.478 ± 0.004,− 1.504 ± 0.007) GeV at O(α1,2,3,4
s ) for

the standard PS mass scheme with the renormalization scale variation R < µ < µf . This

may be compared to the corresponding results for the modified PS mass scheme which read

m
PS,µ/µf=1/5
Q (µf )−mMSRn

Q (R) = (− 1.468±0.091,− 1.456±0.005,− 1.478±0.004,− 1.4767±
0.0003) GeV, and yet again show a better behavior. So, also when the conversion between

the standard PS mass and the MSR masses is carried out for µf 6= R, the size of the

O(α4
s) correction and not the usual renormalization scale variation must be taken as an

estimate for the remaining perturbative error. Since the O(α4
s) corrections are typically in

the range 20 – 40 MeV, making the conversion µf 6= R does not lead to any improvement

in the perturbative relation between the standard PS mass and the MSR masses.

We conclude that the conversion of the MSR masses to the PS mass in the standard

scheme of ref. [99] has, even at O(α4
s), perturbative uncertainties due to unknown higher-

order terms of about 20 – 40 MeV and that this behavior is related to the fact that the

O(α4
s) coefficient in the relation of the PS mass to the pole mass in the standard scheme

appears to be unnaturally large in the context of its expected size with respect to the pole

mass O(ΛQCD) renormalon ambiguity. On the other hand, using an infrared subtraction

scheme for the PS mass, where the subtraction scale is much lower, leads to a much

better perturbative behavior and to much smaller uncertainties in its relation to the MSR

masses. This observation is fully consistent with the conclusions from the renormalon sum

rule analysis we carried out for the PS mass in section 4.5.3. Since the MSR masses for

R = mQ are very close or identical to the MS mass mQ(mQ) the conclusions we draw on

the perturbative relation of the standard PS mass to the MSR masses also applies to the

perturbative relation of the standard PS mass to the MS mass. For R = mQ the O(α4
s)

correction is typically at the level of 40 MeV. We note that this issue of the standard

PS mass scheme becomes problematic once a precision in top quarks mass determinations

below 30 – 40 MeV can be reached. Given the projections of top mass determinations of a

future lepton collider, see e.g. [110, 111], this may become a pressing issue, but for current

studies of high-precision top quark mass determinations the standard PS mass scheme is

adequate for most applications.

5.2 1S mass

The 1S mass [26–28] is defined as half of the mass of the heavy quarkonium spin triplet

ground state. In terms of the pole mass the 1S mass is defined as

m1S
Q =mpole

Q +
[
CFα

(n`)
s (µ)mpole

Q

] ∞∑
n=1

n−1∑
k=0

cn,k

(
α
(n`)
s (µ)

4π

)n
logk

(
µ

CFα
(n`)
s (µ)mpole

Q

)
, (5.3)
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where the coefficients cn,k are known up to n = 4 and given for convenience in eq. (C.3).

Because the 1S mass originates from a calculation in the non-relativistic context, there

are a few subtleties when calculating its relation to the MSR masses so that the O(ΛQCD)

renormalon cancels properly.

For the case R ∼ mQ it is essential that terms of order [CFαsmQ]αns are formally

counted as O(αns ) in the conversion. This is because [CFαsmQ] is the inverse Bohr radius,

which is the relevant physical mass scale and should not be counted as an O(αs) correction.

This counting is called the Υ-expansion [26, 27] or the relativistic order counting, and

must also be used when relating the 1S mass to the MS masses in fixed-order perturbation

theory. The resulting formula for the 1S mass as a function of the MSR mass for µ = R

up to O(α4
s) reads [defining parameters MB = CFα

(n`)
s (R)mMSR

Q (R), RB = CFα
(n`)
s (R)R,

as = α
(n`)
s (R)/(4π), L = log(R/MB) which are all functions of R]

m1S
Q −mMSR

Q (R) = [Ra1+MB c1,0]as (5.4)

+[Ra2+RB a1 c1,0+MB(c2,0+c2,1L)]a2s

+
[
Ra3+RB

(
a2 c1,0+a1 (c2,0−c2,1(1−L))

)
+MB

(
c3,0+c3,1L+c3,2L

2
)]
a3s

+

[
R

(
a4−

RB

2mMSR
Q (R)

a21 c2,1

)
+RB

(
a3 c1,0+a2 (c2,0−(1−L)c2,1)

+a1 (c3,0−c3,1+(c3,1−2c3,2)L+c3,2L
2)
)

+MB

(
c4,0+c4,1L+c4,2L

2+c4,3L
3
)]
a4s .

Here an are the coefficients in the MSR scheme. The inverse of eq. (5.4) is given in eq. (C.4).

For the case R ∼ mQαs, which is relevant for non-relativistic applications where αs may

scale with the quark velocity αs ∼ v � 1, the non-relativistic counting R ∼ MB ∼ mQαs
should be used, such that the leading correction in the 1S-MSR mass difference is of order

α2
s. In this case the formula for the 1S mass as a function of the MSR mass for µ = R up

to O(α5
s) reads [MB = CFα

(n`)
s (R)mMSR

Q (R), as = α
(n`)
s (R)/(4π), L = log(R/MB)]

m1S
Q −mMSR

Q (R) =
[
Ra1 +MB c1,0

]
as (5.5)

+
[
Ra2 +MB (c2,0 + c2,1L)

]
a2s

+
[
R (a3 + 4π CF a1 c1,0) +MB(c3,0 + c3,1L+ c3,2L

2)
]
a3s

+
[
R
(
a4 + 4π CF a2 c1,0 + 4π CF a1

[
c2,0 − c2,1(1− L)

])
+MB

(
c4,0 + c4,1L+ c4,2L

2 + c4,3L
3
)]
a4s .

The inverse of eq. (5.5) is given in eq. (C.5). We note that in order to implement a general

renormalization scale µ in eqs. (5.4) as well as (5.5), also the dependence of MB on αs
needs to be accounted for consistently, which leads to quite involved expressions for the

relativistic counting of the Υ-expansion. For the top quark and R ∼ mtαs ∼ 30 GeV the

numerical difference between using the relativistic or the non-relativistic counting is below

10 MeV at the highest order and may be not significant. However, for all other cases the

difference can be more sizable such that a consistent use of the order counting is mandatory

in general.
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R m1S
t [GeV]

O(αs) O(α2
s) O(α3

s) O(α4
s)

160 167.934± 0.968 168.315± 0.151 168.397± 0.019 168.368± 0.021

O(α2
s) O(α3

s) O(α4
s) O(α5

s)

40 168.156± 0.113 168.409± 0.054 168.373± 0.019 168.372± 0.007
(± 0.113) (± 0.054) (± 0.021) (± 0.011)

35 168.197± 0.077 168.421± 0.048 168.365± 0.026 168.371± 0.006
(± 0.078) (± 0.049) (± 0.028) (± 0.011)

30 168.232± 0.037 168.434± 0.046 168.353± 0.036 168.372± 0.008
(± 0.038) (± 0.047) (± 0.038) (± 0.012)

Table 5. Results for the top mass in the 1S mass scheme at different orders using as input the

practical MSR mass mMSRp
t (mMSRp

t ) = 160 GeV. The results at the top of the table show the

1S mass using FOPT conversion in the relativistic order counting of eq. (5.4) with R = 160 GeV.

The conversion still contains large logarithms ln(mQ/MB). The lower three lines show the 1S mass

using R-evolution from 160 GeV to R = (30, 35, 40) GeV and then FOPT in the non-relativistic

order counting of eq. (5.5) with the scale R. The logarithms ln(mQ/MB) are then summed to all

orders, and the uncertainties are about a factor two smaller at the highest order. The uncertainties

shown are explained in detail in the text.

In the top line of table 5 the top quark 1S mass is shown for the practical MSR top

mass mMSRp
t (mMSRp

t ) = mt(mt) = R0 = 160 GeV using directly the relativistic conversion

of eq. (5.4) at O(αs) to O(α4
s), where the quoted uncertainties have been obtained by

renormalization scale variations
√
R0MB/2 < µ < R0 with MB = 23.2 GeV and the

central values are the mean of the respective maximal and minimal values obtained in

the scale variation. In the lower three lines the conversion to the 1S mass is achieved

by first using O(α4
s) R-evolution of mMSRp

t (160 GeV) to R = (30, 35, 40) GeV, which gives

mMSRp
t (R) = (167.181±0.010, 166.854±0.009, 166.535±0.008) GeV, where the uncertainties

are obtained by variations of λ in the interval [0.5, 2] and central values are the mean of

the respective maximal and minimal values. Then the non-relativistic formula of eq. (5.5)

is used to determine the 1S mass at O(α2
s) to O(α5

s). The quoted uncertainties are from

renormalization scale variations R/2 < µ < 2R. To these uncertainties the errors from

the R-evolution calculation just shown above still have to be added quadratically to obtain

the complete conversion uncertainty, which is shown in the parentheses. We see that the

direct relativistic conversion, which does not account for the resummation of logarithms

and renormalon corrections, leads to uncertainties of ± 20 MeV at highest order, compared

to ± (10 – 13) MeV for the conversion that uses R-evolution from 160 GeV down to non-

relativistic scales ∼MB. Given the projections of high precision top mass determinations at

future lepton colliders [110–112], the increased precision obtained by using the resummation

of higher order terms provided by R-evolution could be relevant, but for the conversion of

the MSR mass (and also the MS mass) to the 1S mass the fixed-order expansion is adequate

for most current applications in top quark physics.
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5.3 MS mass

The relation of the MSR masses to the MS mass is conceptually special since the MSR

masses are directly derived from the perturbative series of the pole-MS mass relation. The

concept of the MSR mass addresses the conceptual question of how the MS mass evolves for

scales much smaller than the quark mass. This question simply expresses the situation that

the MS mass mQ(µ) for µ� mQ can be readily computed solving its renormalization group

equation, but does not have any physical significance, because it breaks the power counting

of heavy quark problems involving (non-relativistic) physical scales much smaller than the

mass. This power counting breaking comes from the perturbative series of the pole-MS

mass relation that scales with mQ even for µ � mQ and which spoils the perturbative

series for non-relativistic problems where smaller dynamical scales govern the size of the

perturbative corrections and the scale mQ is integrated out and hence not a dynamical

scale any more.

Since the perturbative series for the pole-MSR mass relations scale with R, which is

adjustable, but also match to the pole-MS mass series for R = mQ, one can consider the

concept of the MSR mass mMSR
Q (µ) as the most reasonable answer of how the MS mass

concept should be extended to scales µ . mQ. Thus for µ . mQ R-evolution is the proper

concept of the renormalization group running of a heavy quark mass for scales below mQ.

Both the natural and the practical MSR masses differ by the way how the virtual massive

quark Q effects are treated in their matching relation to the MS mass at the scale µ ∼ mQ,

and this matching may be considered in analogy to the flavor-number matching of the

strong coupling schemes α
(n`)
s (µ) and α

(n`+1)
s (µ) when the scale µ crosses mQ. In this

context, the natural MSR mass is conceptually cleaner than the practical MSR mass, since

in the natural MSR mass the virtual massive quark loops are integrated out at the scale

µ = mQ, but this issue is irrelevant for practical applications, where the practical MSR

mass has an advantage due to its simpler matching relation to the MS mass.

The most efficient way to relate the MSR masses mMSRn
Q (R) and mMSRp

Q (R) to the MS

mass mQ(µ) is to (i) evolve the MSR masses from R to mQ using the R-evolution equations

eq. (3.3) with n` active flavors, (ii) employing the regular renormalization group equation

for mQ(µ) to evolve it from µ to mQ with (n` + 1) active flavors,

m
(n`+1)
Q (mQ) = m

(n`+1)
Q (µ) exp

[
−
∞∑
k=0

γ
(n`+1)
m,k

∫ logm2
Q

log µ2
d log µ̄2

(
α
(n`+1)
s (µ̄)

4π

)k+1 ]
, (5.6)

and then (iii) to apply the simple matching relations based on eq. (2.4) or eq. (2.7).

The solution of the R-evolution equation is [47] [tm = − 2π/(β0α
(n`)
s (mQ)),

tR = − 2π/(β0α
(n`)
s (R))]

mMSR
Q (mQ)−mMSR

Q (R) = −
∞∑
n=0

γRn

∫ mQ

R
dR

(
α
(n`)
s (R)

4π

)n+1

(5.7)

= ΛQCD

∞∑
k=0

eiπ(b̂1+k)Sk
[
Γ(− b̂1 − k, tm)− Γ(− b̂1 − k, tR)

]
,
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where ΛQCD and the coefficients γRn , Sk and b̂1 are given in eqs. (A.6), (3.1), (A.15)

and (A.4) and the series may be truncated at the desired order. The R-evolution equation

can be solved numerically or by using the analytic expression in the second line of eq. (5.7).

The matching relations for the MS and the natural MSR mass can be derived from

eq. (2.4) and written in various ways quoted in the following. From mQ ≡ m(n`+1)
Q (m

(n`+1)
Q )

one can determine mMSRn
Q (mQ) using the matching relations [As ≡ α

(n`+1)
s (mQ)/(4π),

as ≡ α(n`)
s (mQ)/(4π)]

mMSRn
Q (m

(n`+1)
Q )−m(n`+1)

Q (m
(n`+1)
Q ) (5.8)

= m
(n`+1)
Q (m

(n`+1)
Q )

{
1.65707A2

s + [110.05 + 1.424n`]A
3
s + [(352.± 31.)

− (111.59± 0.10)n` + 4.40n2` ]A
4
s

}
= m

(n`+1)
Q (m

(n`+1)
Q )

{
1.65707 a2s + [110.05 + 1.424n`] a

3
s + [(344.± 31.)

− (111.59± 0.10)n` + 4.40n2` ] a
4
s

}
,

where the superscript (n` + 1) is a reminder of the active flavors used to run the MS

mass. Given mMSRn
Q ≡ mMSRn,(n`)

Q (m
MSRn,(n`)
Q ) one can determine m

(n`+1)
Q (m

(n`+1)
Q ) by the

relations
[
Ās ≡ α(n`+1)

s (mMSRn
Q )/(4π), ās ≡ α(n`)

s (mMSRn
Q )/(4π)

]
m

(n`+1)
Q (m

(n`+1)
Q )−mMSRn,(n`)

Q (m
MSRn,(n`)
Q ) (5.9)

= m
MSRn,(n`)
Q (m

MSRn,(n`)
Q )

{
−1.65707 Ā2

s − [101.21 + 1.424n`] Ā
3
s

+ [(349.± 31.) + (103.35± 0.10)n` − 4.40n2` ] Ā
4
s

}
= m

MSRn,(n`)
Q (m

MSRn,(n`)
Q )

{
−1.65707 ā2s − [101.21 + 1.424n`] ā

3
s

+ [(357.± 31.) + (103.35± 0.10)n` − 4.40n2` ] ā
4
s

}
,

where the superscript (n`) is a reminder of the active flavors used to run the MSR mass.

We have displayed the matching relations both for the n` and the (n` + 1)-flavor scheme

for the strong coupling. The corresponding matching relations for the strong coupling at

the scales mQ and mMSRn
Q are shown for convenience in eqs. (A.7) and (A.9), respectively.

Numerically, mMSRn
t (mt)−mt(mt) is about 30 MeV for mt(mt) around 160 GeV. The

perturbative uncertainties in this matching relations from missing higher orders are 1 MeV

or lower for all massive quarks. The numerical uncertainties in the O(α4
s) coefficients given

in eqs. (5.8) and (5.9) are quoted from ref. [55] and smaller than 0.01 MeV. Thus the

matching relations can be taken as exact for all foreseeable applications.

The matching relations for the MS and the practical MSR mass simply reads

m
MSRp,(n`)
Q (m

MSRp,(n`)
Q ) = m

(n`+1)
Q (m

(n`+1)
Q ) , (5.10)

to all orders of perturbation theory, where in comparison to eq. (2.7) we have also explicitly

indicated the flavor number of the evolution of the MSR mass and the MS mass.
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Figure 5. Comparison of the scale dependence for the MS and the MSR top quark masses (n` = 5)

as a function of µ and R in GeV.

In figure 5 we show the scale dependence of the MSR masses mMSR
t (R) (red line) and

the MS mass mt(µ) (blue line) for m
(n`+1)
t (m

(n`+1)
t ) = 160 GeV. The difference between

the natural and practical MSR masses is not visible on the scale of this figure. The solid

curves represent the evolution of the masses in regions where they should be used for

physical applications in close analogy to the flavor-number-dependent scale dependence of

the strong coupling, while the dashed lines show their evolution beyond these regions. At

the scale 160 GeV the two mass schemes are matched via eq. (5.8), eq. (5.9) and eq. (5.10).

For R < mt the MSR mass mMSR
t (R) is substantially smaller than the MS mass mt(R)

and approaches the pole mass for R → 0. The MSR mass remains well defined for all

R & ΛQCD, whereas the exact value for the limit mMSR
t (R → 0) is ambiguous due to the

Landau pole in the evolution of the strong coupling in the R-evolution equation (5.7). This

illustrates the ambiguity of the pole mass concept.

6 Conclusions

This paper had two main aims. The first aim was to give a detailed presentation of

the MSR mass, which is an R-dependent short-distance mass designed for high-precision

determinations of heavy quark masses from quantities where the physical scales are smaller

than the quark mass, R < mQ. Since such scale hierarchies can only be really large for

the top quark, the MSR mass concept is most useful in the context of top quark physics,

but it may be useful for bottom and charm quark analyses as well. The MSR mass is

obtained from the results of heavy quark on-shell self-energy diagrams which is not the

case for any earlier low-scale short-distance mass given in the literature. The MSR mass

has therefore a very close relation to the well-known MS mass mQ(µ), and should be

viewed as the generalization of the MS mass concept for renormalization scales below mQ,

where the MS mass is known to be impractical and does not capture the proper physics.

The main feature of the MSR mass is that its renormalization group evolution is linear

and logarithmic in the scale R, compared to the purely logarithmic evolution of the MS
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mass. This linear scale dependence in the renormalization group flow of the MSR mass

is called R-evolution and the MSR mass is well defined for any R & ΛQCD. Formally, in

the limit R → 0, the MSR mass can be evolved to the pole mass. However, taking this

limit is ambiguous as it involves evolving the strong coupling through the Landau pole,

which illustrates the O(ΛQCD) ambiguity of the pole mass scheme. Since there are two

options to treat the corrections coming from virtual heavy quark loops in the heavy quark

self-energy diagrams, we defined two variants of the MSR mass, the natural MSR mass

mMSRn
Q (R), where these effects are integrated out, and the practical MSR mass mMSRp

Q (R),

where they are still included in the mass definition. Both MSR masses can be easily related

to all other short-distance mass schemes available in the literature. We have provided all

necessary formulae such that conversions can be carried out to O(α4
s) and we have discussed

in detail the cases where there are subtleties in the conversion.

The second aim of the paper was to give a detailed presentation of how R-evolution can

be used to derive an analytic expression for the normalization of the high-order asymptotic

behavior of the MSR-pole (or MS-pole) mass perturbative series related to the O(ΛQCD)

renormalon ambiguity contained in the pole mass. This analytic result can be applied to

any perturbative series and be used to probe the known coefficients for the series pattern

related to an O(ΛQCD) renormalon ambiguity. Since using the result does not involve

any numerical comparison of the series coefficients, but is a very simple analytic function

of the coefficients, we call it the O(ΛQCD) renormalon sum rule. Using the sum rule we

reanalyzed the O(ΛQCD) renormalon in the MSR-pole (and MS-pole) perturbative series

and showed that the sum rule results are fully compatible with previous available methods.

We examined the relation between these methods to our sum rule analytically and explained

the reason why one of them has very slow convergence. We also applied the sum rule to

a number of other quantities known to high order and demonstrated its high sensitivity.

These examples included the PS-pole mass relation, the moments of the massive quark

vacuum polarization, the hadronic R-ratio and the QCD β-function.
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A QCD β-function and coefficients

For the QCD β-function in the MS scheme we use the convention

dαs(R)

d logR
= β(αs(R)) = − 2αs(R)

∞∑
n=0

βn

(
αs(R)

4π

)n+1

, (A.1)

where β0 = 11−2/3n` with n` being the number of dynamical flavors. The coefficients are

known up to β4 from refs. [80, 114–119]. The equation can be used to write [αi ≡ αs(Ri),
t = − 2π/(β0αs(R))]

log
R1

R0
=

∫ α1

α0

dα

β(α)
=

∫ t0

t1

dt b̂(t) = G(t0)−G(t1) , (A.2)

where

b̂(t) = 1 +
∞∑
k=1

b̂k
tk
, G(t) = t+ b̂1 log(− t)−

∞∑
k=2

b̂k
(k − 1) tk−1

, (A.3)

and the first four coefficients relevant for renormalon sum rule applications up to O(α4
s) are

b̂1 =
β1
2β20

, b̂3 =
1

8β60
(β31 − 2β0 β1β2 + β20 β3), (A.4)

b̂2 =
1

4β40
(β21 − β0 β2) , b̂4 =

1

16β80
(β41 − 3β0 β

2
1 β2 + β20 β

2
2 + 2β20 β1 β3 − β30 β4) .

One can show the following recursion relation for the b̂k coefficients (b̂0 ≡ 1):

b̂n+1 = 2
n∑
i=0

b̂n−i βi+1

(−2β0)i+2
, (A.5)

which can be used for an automated computation. From eq. (A.2) one can also derive the

known relation

ΛQCD = Ri eG(ti) , (A.6)

that gives ΛNkLL
QCD if the series in G(ti) is truncated after the k-th term.

The matching relations for the strong coupling in the n` and the (n`+1)-flavor schemes

at the scale mQ ≡ m(n`+1)
Q (m

(n`+1)
Q ) read

α(n`)
s (mQ) = α(n`+1)

s (mQ)

[
1 + 0.152778

(
α
(n`+1)
s (mQ)

π

)2
(A.7)

+ (0.972057− 0.08465n`)

(
α
(n`+1)
s (mQ)

π

)3
+ . . .

]
,

α(n`+1)
s (mQ) = α(n`)

s (mQ)

[
1− 0.152778

(
α
(n`)
s (mQ)

π

)2
(A.8)

− (0.972057− 0.08465n`)

(
α
(n`)
s (mQ)

π

)3
+ . . .

]
.
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The matching relations for the strong coupling in the n` and the (n` + 1) flavor schemes

at the scale mMSRn
Q ≡ mMSRn,(n`)

Q (m
MSRn,(n`)
Q ) read

α(n`)
s (mMSRn

Q ) = α(n`+1)
s (mMSRn

Q )

[
1 + 0.152778

(
α
(n`+1)
s (mMSRn

Q )

π

)2
(A.9)

+ (0.93753− 0.08465n`)

(
α
(n`+1)
s (mMSRn

Q )

π

)3
+ . . .

]
,

α(n`+1)
s (mMSRn

Q ) = α(n`)
s (mMSRn

Q )

[
1− 0.152778

(
α
(n`)
s (mMSRn

Q )

π

)2
(A.10)

− (0.93753− 0.08465n`)

(
α
(n`)
s (mMSRn

Q )

π

)3
+ . . .

]
.

The R-anomalous dimension coefficients γRn take the following numerical values for the

natural MSR mass:

γRn0 =
16

3
, (A.11)

γRn1 = 96.1039− 9.55076n` ,

γRn2 = 1595.75− 269.953n` − 2.65945n2` ,

γRn3 = (12319.± 417.)− (9103.± 10.)n` + 610.264n2` − 6.515n3` ,

whereas for the practical MSR mass the coefficients are:

γRp0 =
16

3
, (A.12)

γRp1 = 97.761− 9.55076n` ,

γRp2 = 1632.89− 264.11n` − 2.65945n2` ,

γRp3 = (4724.± 418.)− (8784.± 10.)n` + 620.362n2` − 6.515n3` .

The uncertainties appearing in the coefficients γRn,Rp3 are from numerical errors in the

results of ref. [55]. They amount to an uncertainty in the solutions of the R-evolution

equation of 1 MeV or less for all relevant cases and are smaller than the uncertainty due

to missing higher orders. Therefore they can be neglected for all practical purposes.

The coefficients g` defined by the series
∑∞

`=0 g` (−t)−` ≡ eG(t) e−t (−t)−b̂1 relevant for

the renormalon sum rule up to O(α4
s) read

g0 = 1 , g1 = b̂2 , g2 =
1

2
(b̂22 − b̂3) , g3 =

1

6
(b̂32 − 3 b̂2 b̂3 + 2 b̂4) . (A.13)

One can proof the following recursion relation for g`:

gn+1 =
1

1 + n

n∑
i=0

(−1)i b̂i+2 gn−i , (A.14)

suitable for automated computation. The coefficients g` agree with the coefficients s` given

in refs. [73, 77].
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The coefficients Sk defined from the series
∑∞

k=0 Sk(−t)−k ≡ −tγR(t) b̂(t)e−G(t)et(−t)b̂1
relevant up to O(α4

s) read [γ̃Rk = γRk /(2β0)
k+1]

S0 = γ̃R0 =
a1
2β0

, (A.15)

S1 = γ̃R1 − (b̂1 + b̂2) γ̃
R
0 =

a2
4β20
− a1

2β0
(1 + b̂1 + b̂2) ,

S2 = γ̃R2 − (b̂1 + b̂2) γ̃
R
1 +

[
(1 + b̂1) b̂2 +

1

2
(b̂22 + b̂3)

]
γ̃R0

=
a3

8β30
− a2

4β20
(2 + b̂1 + b̂2) +

a1
2β0

[
(2 + b̂1) b̂2 +

1

2
(b̂22 + b̂3)

]
,

S3 = γ̃R3 − (b̂1 + b̂2) γ̃
R
2 +

[
(1 + b̂1) b̂2 +

1

2
(b̂22 + b̂3)

]
γ̃R1

−
[(

1 +
1

2
b̂1 +

1

6
b̂2

)
b̂22 +

(
1 +

1

2
b̂1 +

1

2
b̂2

)
b̂3 +

1

3
b̂4

]
γ̃R0

=
a4

16β40
− a3

8β30
(3 + b̂1 + b̂2) +

a2
4β20

[
(3 + b̂1) b̂2 +

1

2
(b̂22 + b̂3)

]
− 1

2

a1
2β0

[(
3 + b̂1 +

1

3
b̂2

)
b̂22 +

(
3 + b̂1 + b̂2

)
b̂3 +

2

3
b̂4

]
.

The relation between the Sk coefficients and the R-anomalous dimension can be compactly

written as follows:

Sk = γ̃Rk − (1− δk,0) (b̂1 + b̂2) γ̃
R
k−1 +

k−2∑
n=0

γ̃Rn

[
g̃k−n + (−1)k−nb̂k−n (A.16)

+

k−n−1∑
`=1

(−1)k−n−` g̃` b̂k−n−`

]
,

g̃n+1 = − 1

1 + n

n∑
i=0

(−1)i b̂i+2 g̃n−i , g̃0 = 1 . (A.17)

In addition one can use eq. (4.19) to write a recursion relation for the Sk coefficients, which

are then expressed in terms of ai :

Sk =
ak+1

(2β0)k+1
−

k−1∑
n=0

Sn

k−n∑
`=0

g` (1 + b̂1 + n)k−`−n , (A.18)

where (b)n = b (b + 1) · · · (b + n − 1) = Γ(b + n)/Γ(b) is the Pochhammer symbol. This

formula can be used for an automated implementation of Sk once the g` coefficients have

been computed. We note that in order to determine the coefficients Sk, one needs all terms

up to k loops in the R-evolution equation, and the (k + 1)-loop QCD β-function.

B Alternative derivation of the O(ΛQCD) renormalon sum rule

In section 4.1 we have shown how to directly derive the sum rule formula for N1/2 displayed

in eq. (4.8) from the computation of the Borel transform of eq. (4.7) starting from the

solution of the R-evolution equation given in eq. (4.1). There is an interesting alternative

way to determine the sum rule formula which starts from the Borel function Bαs(R)(u)

– 46 –



JHEP 04 (2018) 003 [arXiv:1706.08526] 229

J
H
E
P
0
4
(
2
0
1
8
)
0
0
3

given in eq. (4.7) without knowing the expression for N1/2. This expression is equivalent

to the Borel transform of the original series −R
∑∞

i=1 ai [αs(R)/(4π)]i which has the form:

Bαs(R)(u) = −R
∞∑
i=1

ai
ui−1

Γ(i)
β−i0 , (B.1)

in the fixed-order expansion in powers of the Borel variable u.

Consider now the modified Borel function (β0/4πR)(1 − 2u)1+b̂1Bαs(R)(u). Inserting

eq. (4.7) for Bαs(R)(u) one obtains:

β0
4πR

(1− 2u)1+b̂1Bαs(R)(u) = −N1/2

∞∑
`=0

g`
Γ(1 + b̂1 − `)

Γ(1 + b̂1)
(1− 2u)` (B.2)

+
β0
2π

(1− 2u)1+b̂1
∞∑
`=0

g` Q`(u) ,

where the role of analytic and non-analytic terms is just reversed compared to eq. (4.7).

Truncating the series in ` at order n (which corresponds to including the coefficients ai, Sk,

g` up to i = n+ 1, k = n and ` = n, respectively), one can see that expanding eq. (B.2) in

powers of u up to order n and taking the limit u→ 1/2 one singles out N1/2 on the r.h.s.:

−N (n)
1/2 +

β0
2π

n∑
k=0

k∑
m=0

n∑
i=k−m+1

i∑
`=0

(−1)m g` Si−` (B.3)

× Γ(2 + b̂1)

Γ(m+ 1) Γ(2 + b̂1 −m)

Γ(1 + b̂1 + k −m− `)
Γ(1 + b̂1 + i− `)Γ(k −m+ 1)

,

where N
(n)
1/2 refers to the (n+1)-loop approximation for N1/2. Applying the same procedure

to the Borel transform of eq. (B.1) and solving for N
(n)
1/2 one obtains:

N
(n)
1/2 =

1

4π

n∑
k=0

k∑
m=0

(−1)m

(2β0)k−m
Γ(2 + b̂1)ak−m+1

Γ(k −m+ 1)Γ(m+ 1)Γ(2 + b̂1 −m)
(B.4)

+
β0
2π

n∑
k=0

k∑
m=0

n∑
i=k−m+1

i∑
`=0

(−1)m g` Si−`

× Γ(2 + b̂1)

Γ(m+ 1)Γ(2 + b̂1 −m)

Γ(1 + b̂1 + k −m− `)
Γ(1 + b̂1 + i− `)Γ(k −m+ 1)

.

Although lengthier, it can be checked that this formula agrees exactly with the sum rule

of eq. (4.8) at (n+ 1)-loop order (i.e. when truncated with k ≤ n as shown).

In ref. [29] (see also ref. [68]), a version of the above considerations to determine the

normalization of the non-analytic terms in eq. (4.7), which we refer to as the Borel method,

was proposed. They made the additional assumption that the analytic terms on the r.h.s. of

eq. (4.7) can be neglected because they quickly tend to zero when multiplied by (1−2u)1+b̂1

in the limit u→ 1/2. Therefore they did not include the terms related to the polynomials

Q`. This leads to a formula for the normalization that only contains the first term on the
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Figure 6. Comparison of N
(n)
1/2 and N

(n)
m for n` = 5. Results are shown as a function of λ including

contributions from one to four loops.

r.h.s. of eq. (B.4), which they called Nm. After a bit of algebra, the double sum of this

term can be recast into a single summation, yielding:6

N (n)
m =

1

4π

n∑
m=0

(−b̂1)n−m am+1

(2β0)mm! (n−m)!
. (B.6)

However, the contribution from the second term on the r.h.s. of eq. (B.4) is actually not

negligible because it involves the expansion of the (1 − 2u)1+b̂1 and setting u = 1/2 after-

wards. In particular, the β-function coefficients βn>1 contained in the g` are essential for

the cancellation of the λ-dependence with n beyond 2-loop order, i.e. for n > 1.

This is shown in figure 6 where we plot N
(n)
1/2 (solid lines) and N

(n)
m (dashed lines)

obtained from the natural MSR mass for n = 0 (cyan), n = 1 (green), n = 2 (blue) and

n = 3 (red) for n` = 5 as a function of λ in the interval [0.5, 2]. We see that the results for

N
(n)
m differ substantially from N

(n)
1/2 showing that the terms neglected in the approach of

ref. [29] are numerically sizable and, in particular, do not decrease with the order n. More-

over, the results for N
(n)
m do not appear to show any reduced λ-dependence beyond 2-loop

order, in contrast to the results for N
(n)
1/2. Interestingly, in ref. [69] it has been shown that

6We note that no analytic formula for N
(n)
m was provided in ref. [29], and that eq. (B.6) correctly

encodes the prescription given there. In formula (7) of ref. [113] the following analytic double series formula

was given:

Nm =
1

ν

∞∑
m,n′=0

Γ(2 + b)(−1)mrn′(ν)

Γ(m+ 1)Γ(n′ + 1)Γ(2 + b−m)

(
2π

β0

)n′

(B.5)

=
1

4π

∞∑
m,n′=0

Γ(2 + b̂1)(−1)man′+1

Γ(m+ 1)Γ(n′ + 1)Γ(2 + b̂1 −m)

1

(2β0)n′ ,

where in the second line we have converted to our conventions for ease of comparison. Eq. (B.5) is not fully

specified because it does not provide a prescription how to systematically truncate the two series in order to

compute Nm at (n+1)-loop order. The sum for (1−2u)1+b̂1 =
∑∞
m=0(2u)mΓ(2+ b̂1)/[Γ(m+1)Γ(2+ b̂1−m)]

converges to zero at u = 1/2, while the other, which is eq. (B.1), is divergent for u = 1/2. To obtain

eq. (B.6) from eq. (B.5) one switches variable from (m,n′) to (k,m) with k = m + n′, and then finally

truncates with respect to the variable k.
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when many more terms of the expansion are known [they accounted for terms up to O(α20
s )

for the quark and gluino QCD static potential], eq. (B.6) does eventually converge to the

right value and shows reduced scale variation. We have numerically confirmed that using

series generated from the Borel function of eq. (4.7) setting (by hand) explicit expressions

for the functions Q`(u), such as Q`(u) = δ`,0. The eventual convergence at very high orders

n can be understood from the fact that the contributions in the asymptotic behavior of

the perturbative coefficients an that arise from the β-function coefficients βn>1 become 1/n

suppressed and eventually become also numerically small, see eqs. (4.16) and (4.19). But in

any case, its very slow convergence renders the Borel method less practical and less precise

for most phenomenological applications, for which only a few terms of the perturbative

expansion are known.

C Other short distance masses

The PS mass [25] is defined by the integral of the momentum space color singlet static

potential between a quark-antiquark pair, each having infinite mass. The relation of the

PS mass to the pole mass has the form

mpole
Q −mPS

Q (µf ) = µf

∞∑
n=1

aPSn

(
α
(n`)
s (µf )

4π

)n
, (C.1)

where the coefficients are known up to O(α4
s) based on refs. [100, 101, 120–124], and have

the form

aPS1 =
16

3
, (C.2)

aPS2 = 172.4444− 13.03704n` ,

aPS3 = 11111.55− 1522.482n` + 41.350n2` ,

aPS4 = 913336.84− 179514.95n` + 10535.70n2` − 172.72n3` + 22739.57 log

(
µ

µf

)
.

In the standard convention for the PS mass defined in ref. [99] the term log(µ/µf ) appearing

in aPS4 is set to zero.

The definition of the 1S mass [26–28] in terms of the pole mass is given in eq. (5.3)

and the coefficients cn,k up to O(α5
s) read [26–28, 124–126]

c1,0 = − 2.09440 , (C.3)

c2,0 = − 135.438 + 10.2393n` ,

c2,1 = − 92.1534 + 5.5851n` ,

c3,0 = − 11324.72 + 1372.745n` − 38.9677n2` ,

c3,1 = − 7766.02 + 1077.92n` − 33.5103n2` ,

c3,2 = − 3041.06 + 368.61n` − 11.1701n2` ,

c4,0 = − 1005116.33 + 176714.27n` − 10088.35n2` + 168.57n3` − 63574.35 log(α(n`)
s (µ)) ,

c4,1 = − 901778.56 + 162559.51n` − 9263.14n2` + 163.15n3` ,

c4,2 = − 303000.33 + 61184.26n` − 3823.90n2` + 74.47n3` ,

c4,3 = − 89204.48 + 16219.00n` − 982.97n2` + 19.86n3` .
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Employing the Υ-expansion (relativistic order counting) the formula for the MSR

masses as a function of the 1S mass up to O(α4
s) reads [M1S

B = CF α
(n`)
s (R)m1S

Q , AR =

CF α
(n`)
s (R), as = α

(n`)
s (R)/(4π), L = log(R/M1S

B )]

mMSR
Q (R)−m1S

Q =−
[
Ra1+M1S

B c1,0
]
as (C.4)

−
[
Ra2−M1S

B

(
AR c

2
1,0−c2,0−c2,1L

)]
a2s

−
[
Ra3+M1S

B

(
A2
R c

3
1,0−AR c1,0

(
2c2,0−c2,1+2c2,1L

)
+c3,0+c3,1L+c3,2L

2
)]
a3s

−
[
Ra4−M1S

B

(
A3
R c

4
1,0−A2

R c
2
1,0

(
3c2,0−

(
5

2
−3L

)
c2,1

)
+AR

(
c2,0
(
c2,0−(1−2L)c2,1

)
−(1−L)c22,1L+c1,0

(
2c3,0

−(1−2L)c3,1−2(1−L)c3,2L
))
−c4,0−c4,1L−c4,2L2−c4,3L3

)]
a4s .

Employing the non-relativistic order counting the formula for the MSR masses as a func-

tion of the 1S mass up to O(α5
s) reads [M1S

B = CF α
(n`)
s (R)m1S

Q , as = α
(n`)
s (R)/(4π),

L = log(R/M1S
B )]

mMSR
Q (R)−m1S

Q = −
[
Ra1 +M1S

B c1,0
]
as (C.5)

−
[
Ra2 +M1S

B

(
c2,0 + c2,1L

)]
a2s

−
[
Ra3 −M1S

B

(
4π CF c

2
1,0 − c3,0 − c3,1L− c3,2L2

)]
a3s

−
[
Ra4 −M1S

B

(
4π CF c1,0

(
2 c2,0 − (1− 2L) c2,1

)
− c4,0 − c4,1L− c4,2L2 − c4,3L3

)]
a4s .
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1 Introduction

The masses of the heavy charm, bottom and top quarks belong to the most important

input parameters in precise theoretical predictions of the Standard Model and models of

new physics. Due to the effects of quantum chromodynamics (QCD) and because quarks

are states with color charge, however, the mass of a heavy quark Q is not a physical

observable and should, in general, be better thought of as a renormalized and scheme-

dependent parameter of the theory. This concept is incorporated most cleanly in the

so-called MS mass mQ(µ), which is defined through the same renormalization prescription

as the MS QCD coupling αs(µ). It can be measured from experimental data very precisely,

but does not have any kinematic meaning, and it can be thought of incorporating short-

distance information on the mass from scales larger than µ. On the other hand, the
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so-called pole mass mpole
Q is defined as the single particle pole in correlation functions

involving the massive quark Q as an external on-shell particle, and it determines the

kinematic mass of the quark Q in the context of perturbation theory. It is therefore

unavoidable that the pole mass scheme appears in one way or another in higher order QCD

calculations involving external massive quarks. For perturbative predictions involving the

production of top quarks at hadron colliders, the pole mass scheme is therefore the main

top quark mass scheme used in the literature, and switching scheme is cumbersome since

these computations are predominantly numerical where the pole scheme provides the most

efficient approach for the computations. In refs. [1–8] the relation between the MS and the

pole mass has been computed up to O(α4
s) in the approximation that all quarks lighter than

Q are massless. Assuming the values mt ≡ mt(mt) = 163 GeV, mb ≡ mb(mb) = 4.2 GeV

and mc ≡ mc(mc) = 1.3 GeV we obtain1

mpole
t = 163 + 7.5040 + 1.6005 + 0.4941 + (0.1944± 0.0004) GeV , (1.1)

mpole
b = 4.2 + 0.3998 + 0.1986 + 0.1443 + (0.1349± 0.0002) GeV , (1.2)

mpole
c = 1.3 + 0.2108 + 0.1984 + 0.2725 + (0.4843± 0.0005) GeV , (1.3)

where the terms show the series in powers of the strong coupling αs(mQ) in the scheme

that includes Q as a dynamical flavor. The fourth order coefficient displays the numerical

uncertainties from [8], which are, however, much smaller than other types of uncertainties

considered in this paper.

The pole mass renormalization scheme is infrared-safe and gauge-invariant [1, 11], but

suffers from large corrections in the QCD perturbation series. This is because the pole mass

scheme involves subtractions of on-shell quark self energy corrections containing virtual

gluon and massless quark fluctuations which are linearly sensitive to small momenta. The

on-shell approximation of the self energy diagrams entails that this sensitivity increases

strongly with the order. The effect this has for the form of the corrections can be seen in

eqs. (1.1)–(1.3), which in the asymptotic large order limit have the form

mpole
Q −mQ(mQ) ∼ µ

∞∑
n=0

16

3
(2β

(n`)
0 )n n!

(
α
(n`)
s (µ)

4π

)n+1

, (1.4)

in the β0/LL approximation, which means that the terms in the QCD β-function,

dα
(n`)
s (µ)

d log µ
= β(n`)(αs(µ)) = − 2α(n`)

s (µ)
∞∑
n=0

β(n`)n

(
α
(n`)
s (µ)

4π

)n+1

, (1.5)

beyond the leading logarithmic level (i.e. βn>0) are neglected. Here n` is the number of

massless quark flavors.

The factorially diverging pattern of the perturbation series and the linear dependence

on the renormalization scale µ of the strong coupling displayed in eq. (1.4) are called the

1We assume α(5)(MZ) = 0.1180 for MZ = 91.187 GeV for the MS QCD coupling and account for 5-loop

evolution [9] and flavor matching at the scales mc,b,t [10], which gives α
(6)
s (mt) = 0.10847, α

(5)
s (mb) =

0.22430, α
(4)
s (mc) = 0.38208.
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O(ΛQCD) renormalon of the pole mass [12, 13]. The form of the series on the r.h.s. of

eq. (1.4) implies that at asymptotic large orders, and up to terms suppressed by inverse

powers of n, the series becomes independent of its intrinsic physical scale mQ. This and

the n-factorial growth is an artifact of the pole mass scheme itself and not related to

any physical effect. Technically this issue entails that for computing differences of series

containing O(ΛQCD) renormalon ambiguities using fixed-order perturbation theory one

must consistently expand in powers of the strong coupling at the same renormalization

scale such that the renormalon can properly cancel.

The O(ΛQCD) renormalon problem of the pole mass has received substantial attention

in the literature as it turned out to be not just an issue of pedagogical interest, but one

that is relevant phenomenologically [14]. This is because for µ = mQ the known coefficients

of the series in eqs. (1.1)–(1.3) agree remarkably well with the corresponding large order

asymptotic behavior already beyond the terms of O(αs) (so that the terms of the series are

known quite precisely to all orders) and because even for orders where the QCD corrections

still decrease with order they can be very large numerically and make phenomenological

applications difficult. The pole mass scheme has therefore been abandoned in high precision

top, bottom and charm quark mass analyses in favor of quark mass schemes such as MS

or low-scale short distance masses such as the kinetic mass [15], the potential-subtracted

(PS) mass [16], the 1S mass [17–19], the renormalon-subtracted (RS) mass [20], the jet

mass [21, 22] or the MSR mass [23, 24]. These mass schemes do not have an O(ΛQCD)

renormalon and are called short-distance masses. It is commonly agreed from many studies

that it is possible to determine short-distance masses with theoretical uncertainties of a

few 10 MeV [25, 26], and we therefore neglect any principle ambiguity in their values in

this paper.

Using the theory of asymptotic series one can show that the best possible approxima-

tion to the l.h.s. of eq. (1.4) is to truncate the series on the r.h.s. at the minimal term at

order nmin which is approximately nmin ≈ 2π/(β
(n`)
0 α

(n`)
s (µ)). The size of the correction

of the minimal term is approximately ∆(nmin) ≈ (4πα
(n`)
s (µ)/β

(n`)
0 )1/2Λ

(n`)
QCD, and there is

a region in the orders n around nmin of width ∆n ≈ (2π2/(β
(n`)
0 α

(n`)
s (µ)))1/2 in which all

series terms have a size close to the minimal term. At orders above nmin + ∆n/2 the series

diverges quickly and the series terms from these orders are useless even if they are known

through an elaborate loop calculation. The uncertainty with which the pole mass can be

determined in principle given the full information about the perturbative series is called

the pole mass ambiguity. It is universal, independent on the choice of the renormalization

scale µ and exists in equivalent size in any context without the possibility to be circum-

vented. However, the µ-dependence of nmin, ∆(nmin) and ∆n indicates that the way how

the renormalon problem appears in practical applications based on perturbative QCD can

differ substantially depending on the physical scale of the quantity under consideration

and the corresponding choice of the renormalization scale µ. Using the method of Borel

resummation the pole mass ambiguity can be estimated to be of order Λ
(n`)
QCD, where the

superscript (n`) stands for the dependence of the hadronization scale on the number of

massless quark flavors. The norm of the ambiguity, which we call N
(n`)
1/2 in this paper,

– 3 –
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and the resulting pattern of the large order asymptotic behavior of the series can be de-

termined very precisely and have been studied in many analyses (see e.g. the recent work

of refs. [24, 27–29]). However, when quoting a concrete numerical size of the ambiguity,

criteria common for converging series cannot be applied, and it is instrumental to consider

more global aspects of the series and the quantity it describes. An essential aspect of the

low-energy quantum corrections in heavy quark masses is heavy quark symmetry (HQS) [30]

on which we put particular focus in this work.

An issue that has received less attention in the literature so far is how the masses

of the lighter massive quarks affect the large order asymptotic behavior of the pole-MS

mass relation, where we refer to the effects of quarks with masses that are larger than

ΛQCD. These corrections come from insertions of virtual quark loops and are known up

to O(α3
s) [2, 31] from explicit loop calculations. It is known that the masses of lighter

massive quarks provide an infrared cutoff and effectively reduce the number n` of massless

flavors governing the large order asymptotic behavior [32]. Due to the n`-dependence of the

QCD β-function the finite bottom and charm quark masses lead to an increased infrared

sensitivity of the top quark pole mass and a stronger divergence pattern of the series, as

can be seen from eq. (1.4). The ambiguity therefore inflates following the n`-dependent

increase of ΛQCD. In refs. [33, 34] it was pointed out that the O(α2
s) andO(α3

s) virtual quark

mass corrections are already dominated by the infrared behavior related to the O(ΛQCD)

renormalon. In ref. [27] it was further observed that the O(α3
s) charm mass corrections

in the bottom pole-MS mass relation can be rendered small when the series is expressed

in terms of α
(n`=3)
s rather than α

(n`=4)
s , i.e. the charm quark effectively decouples. A

systematic and precise understanding of the intrinsic structure of the lighter massive quark

effects from the point of view of disentangling the different momentum modes and their

interplay has, however, not been provided so far in the literature. The task is complicated

since apart from being a problem in connection with the behavior of perturbation theory at

large orders, it also represents a multi-scale problem with scales given by the quark masses

as well as ΛQCD and where, for the top quark, logarithms of mass ratios can be large.

It is the main purpose of this paper to present a formalism that can do exactly that. It is

based on the concept of the renormalization group (RG) and allows to successively integrate

out momentum modes from the pole-MS mass relation of a heavy quark Q in order to

disentangle the contributions coming from the lighter massive quarks and to systematically

sum logarithms of the mass ratios. The approach allows to quantify and formulate precisely

the effects the masses of the lighter massive quarks have on the pole-MS mass relation and

therefore on the pole mass itself and may find interesting applications in other contexts. As

the essential new feature the RG formalism entails linear scaling with the renormalization

scale. The common logarithmic scaling, as known for the strong coupling, cannot capture

the linear momentum dependence of QCD corrections to the heavy quark mass for scales

below mQ. The formalism is in particular useful since it fully accounts for all aspects of

HQS. It can be used to concretely formulate and study in a transparent way two important

properties of the heavy quark pole masses following from HQS: (1) The pole mass ambiguity

is independent of the mass of the heavy quark and (2) the ambiguities of all heavy quarks

are equal up to power corrections of order Λ2
QCD/mQ.
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The essential technical tool to set up the formalism is the MSR mass mMSR
Q (R) [23, 24].

Like the perturbative series for the pole-MS mass relation, the pole-MSR mass relation is

calculated from on-shell heavy quark self energy diagrams, but has also linear dependence

on R. It is the basis of the RG formalism we propose, allows to precisely capture the

QCD corrections from the different quark mass scales and, in particular, to encode and

study issue (1) coming from HQS. The renormalization group evolution in the scale R is

described by R-evolution [23, 24], which is free of the O(ΛQCD) renormalon, and allows

to sum large logarithms of ratios of the quark masses in the evolution between the quark

mass scales. Using the concepts of the MSR mass and the R-evolution it is then possible

to relate the pole-MS masses of the top, bottom and charm quarks to each other. This

allows to systematically encode and study issue (2) coming from HQS, and to interpret the

small effects of HQS breaking as matching corrections in a renormalization group flow that

connects the QCD correction of the top, bottom and charm quarks. The resulting formula

can be used to specify the heavy quark pole mass ambiguity in the context of lighter massive

quarks and to derive a generalized expression for the large order asymptotic behavior

accounting accurately for the light massive flavor dependence. Concerning the accuracy of

our description of the virtual quark loop mass effects in the large order asymptotic behavior

we reach a precision of a few MeV, which applies equally for top, bottom and charm quarks.

The second main purpose of this paper is to use the RG formalism to specify concretely

the ambiguity of the top quark pole mass and also the pole mass of the bottom and charm

quarks assuming that their MS masses are given. We in particular address the question

how the outcome depends on different scenarios for treating the bottom and charm quarks

as massive or massless, and we explicitly take into account the consistency requirements of

HQS. The aim is to provide a concrete numerical specification of the ambiguity of the top

quark pole mass beyond the qualitative statement that the ambiguity is “of order Λ
(n`)
QCD”

and to make a concrete statement up to which principle precision the top quark pole mass

may still be used as a meaningful phenomenological parameter. We stress that in this

context we adopt the view that the pole masses have well-defined and unique meaning, so

that the pole mass ambiguity acquires the meaning of an intrinsic numerical uncertainty.

This differs from the view sometimes used in high-precision analyses, where the pole mass

is employed as an intrinsic order-dependent parameter to effectively parameterize the use

of a short-distance mass scheme.

Apart from specifying the ambiguity of the pole masses we are also interested in study-

ing the dependence of their value on the different scenarios for treating the bottom and

charm quarks as massive or massless. The issue is of particular interest for the top quark

pole mass which is still widely used for theoretical predictions and phenomenological stud-

ies in top quark physics. The top quark pole mass is, due to its linear sensitivity to

small momenta, also linearly sensitive to the masses of the lighter massive quarks. Since

many short-distance observables used for top quark pole mass determinations are at most

quadratically sensitive to small momenta, the dominant effects of the bottom and charm

masses may well come from the top quark pole definition itself. A large dependence of the

top quark pole mass value on whether the bottom and charm quarks are treated as massive

or massless would therefore affect the ambiguity estimate if one considers the top quark
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pole mass as a globally defined mass scheme (valid for any scenario for the bottom and

charm quark masses). We can address this question precisely because the RG-formalism

we use allows for very accurate numerical calculations of the lighter quark mass effects.

Within the size of the ambiguity, we do not find any such dependence. The outcome of our

analysis is that the top quark pole mass ambiguity, and the ambiguity of the bottom and

charm quark pole masses, is around 250 MeV.

Prior to this work the best estimate and the ambiguity of the top quark pole mass were

studied in ref. [28]. They analyzed the top quark pole-MS mass series of eq. (1.1) for µ = mt

and massless bottom and charm quarks and in an extended analysis also for massive bottom

and charm quarks. They argued that the ambiguity of the top, bottom and charm quark

pole masses amounts to 110 MeV. We believe that their ambiguity estimate of 110 MeV

is too optimistic, and we explain this in detail from the requirements of HQS. They also

quantified the bottom and charm mass effects coming from beyond the known corrections at

O(α2
s) and O(α3

s) by using a heuristic prescription based on an order-dependent reduction

of the flavor number. This does not represent a systematic calculation, but we find it to be

an adequate approximation for the task of estimating the top quark pole mass renormalon

ambiguity.

The paper is organized as follows: in section 2 we review the explicitly calculated

corrections up to O(α4
s) for the pole-MS and the pole-MSR mass relations for the case that

all quarks lighter than quark Q are massless and we explain our notation for parameterizing

the virtual quark mass corrections due to the light massive quarks. This notation is essential

for our setup of the flavor number dependent RG evolution of the MSR mass, which we

also review to the extend needed for our studies in the subsequent sections. We also

review known basic issues about the large order asymptotic behavior and the renormalon

ambiguity of the pole-MS and the pole-MSR mass relations, including their dependence

on the number of massless quarks. In section 3 we explain details about the matching

procedures that allow to integrate out the virtual corrections coming from the heavy quark

Q and the lighter massive quarks, and to relate the pole-MSR mass relation of quark Q

to the pole-MS mass relation of the next lighter massive quark, which is based on heavy

quark symmetry. These considerations and the numerical analysis of the latter matching

corrections allow us to derive a prediction for the yet uncalculated O(α4
s) virtual quark

mass corrections and to discuss the large order asymptotic form of the virtual quark mass

corrections. As an application of the RG formalism devised in our work we compute the

difference of the pole masses of the top, bottom and charm quarks. Since their differences

are short-distance quantities we can compute them with a precision of around 20 MeV.

We also analyze the validity of the effective flavor decoupling at large orders in the context

of the top quark pole mass. In section 4 we finally discuss in detail the best possible

estimate of the top quark pole mass and in particular its ambiguity in the context of three

different scenarios for the bottom and charm quark masses. We discuss these three scenarios

separately because the pole mass concept, strictly speaking, depends on the setup for the

lighter quark masses, and we also discuss our results in the context of adopting the view

that the top quark pole mass is a general concept. Finally, in section 5 we conclude. In

appendix A we provide explicit results for the virtual quark mass corrections at O(α3
s) in our
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notation, using the results from ref. [31], and we complete them concerning the corrections

coming from the insertion of two quark loops involving quarks with two arbitrary masses.

2 Preliminaries and notation

2.1 MS mass

The perturbative series of the difference between the MS mass mQ(µ) at the scale µ =

mQ(mQ) and the pole mass mpole
Q of a heavy quark Q is the basic relation from which we

start our analysis of the renormalon ambiguity of the pole mass. To be more specific we

consider

mQ ≡ m
(nQ+1)
Q (m

(nQ+1)
Q ) , (2.1)

which is the MS mass defined for (nQ + 1) active dynamical flavors, where

nQ ≡ number of flavors lighter than quark Q . (2.2)

In this work we use these two definitions for all massive quarks, and depending on the

context we also use the lower case letter q for massive quarks. We also define

n` ≡ number of flavors lighter than ΛQCD , (2.3)

which we strictly treat in the massless approximation.

Assuming that q1, . . . , qn are the massive quarks lighter than Q in the order of decreas-

ing mass (i.e. mQ > mq1 > . . . > mqn > ΛQCD with n < nQ and n` = nQ−n), the pole-MS

mass relation for the heavy quark Q can be written in the form

mpole
Q = mQ +mQ

∞∑
n=1

an(nQ + 1, 0)

(
α
(nQ+1)
s (mQ)

4π

)n
(2.4)

+mQ

[
δ
(Q,q1,...,qn)
Q (1, rq1Q, . . . , rqnQ) + δ

(q1,...,qn)
Q (rq1Q, . . . , rqnQ)

+ · · ·+ δ
(qn)
Q (rqnQ)

]
,

with

a1(nQ, nh) = 16
3 , (2.5)

a2(nQ, nh) = 213.437 + 1.65707nh − 16.6619nQ ,

a3(nQ, nh) = 12075.+ 118.986nh + 4.10115n2h − 1707.35nQ

+ 1.42358nh nQ + 41.7722n2Q ,

a4(nQ, nh) = (911588.± 417.) + (1781.61± 30.72)nh − (60.1637± 0.6912)n2h

− (231.201± 0.102)nh nQ − (190683.± 10.)nQ + 9.25995n2h nQ

+ 6.35819n3h + 4.40363nh n
2
Q + 11105. n2Q − 173.604n3Q ,

where α
(nQ+1)
s is the strong coupling that evolves with (nQ + 1) active dynamical flavors,

see eq. (1.5).
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The coefficients an(nQ, nh) encode the QCD corrections to mpole
Q −mQ for the case that

the nQ quarks lighter than Q are assumed to be massless, and nh = 1 is just an identifier for

the corrections coming from virtual loops of the quark Q. The coefficients a1,2,3 are known

analytically from refs. [1–6], and a4 was determined numerically in refs. [7, 8], where the

quoted numerical uncertainties have been taken from ref. [8]. In ref. [35] an approach was

suggested to further reduce the uncertainties of the nQ-dependent terms. The numerical

uncertainties of the coefficient a4 are, however, tiny and irrelevant for the analysis carried

out in this work. We quote them just for completeness throughout this work.

The terms δ
(q,q′,... )
Q (rqQ, rq′Q, . . . ) contain the mass corrections coming from the quark

Q on-shell self-energy Feynman diagrams with insertions of virtual massive quark loops.

We remind the reader that the quarks with mass below the hadronization scale are taken

as massless and do not contribute. The superscript (q, q′, . . . ) indicates that each diagram

contains at least one insertion of the massive quark q and in addition all possible insertions

of the (lighter) massive quarks q′, . . . as well as of massless quark and gluonic loops. From

each diagram the corresponding diagram with all the quark loops in the massless limit is

subtracted in the scheme compatible with the flavor number scheme for the strong coupling

αs. The fraction

rqq′ ≡
mq

mq′
, (2.6)

stands for the ratio of MS masses for massive quarks q and q′ as defined in eq. (2.1). In the

pole-MS mass relation for the heavy quark Q only mass ratios with respect to the heavy

quark mass mQ arise. By construction, the sum of all virtual quark mass corrections con-

tained in the functions δ
(q,q′,... )
Q (rqQ, rq′Q, . . . ) are RG-invariant and do not contain effects

from quarks heavier than the external quark Q. The effects on the mass of the quark Q

related to quarks heavier than Q are accounted for in the renormalization group evolution

of the MS mass mQ(µ) for scales µ > mQ and are not considered here. The virtual quark

mass corrections satisfy the following two relations to all orders of perturbation theory

δ
(q1,q2,...,qn)
Q (0, 0, . . . , 0) = 0 , (2.7)

δ
(Q,q1,...,qn)
Q (1, 0, . . . , 0) =

∞∑
n=2

[ an(nQ, 1)− an(nQ + 1, 0) ]

(
α
(nQ+1)
s (mQ)

4π

)n
. (2.8)

Due to eq. (2.8) the pole-MS mass relation of eq. (2.4) can be rewritten in the alternative

form

mpole
Q = mQ +mQ

∞∑
n=1

an(nQ, 1)

(
α
(nQ+1)
s (mQ)

4π

)n
+mQ

[
δ
(Q,q1,...,qn)
Q (1, rq1Q, . . . , rqnQ)− δ(Q,q1,...,qn)Q (1, 0, . . . , 0) (2.9)

+ δ
(q1,...,qn)
Q (rq1Q, . . . , rqnQ) + · · ·+ δ

(qn)
Q (rqnQ)

]
.

In the limit that all quarks lighter than Q are massless, all δ terms cancel or vanish in

eq. (2.9), and only the first line involving the an coefficients remains.
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The perturbative expansion of the virtual quark mass corrections in the pole-MS mass

relation of eq. (2.4) and (2.9) can be written in the form

δ
(q,q′,... )
Q (rqQ, rq′Q, . . . ) = δ2(rqQ)

(
α
(nQ+1)
s (mQ)

4π

)2

+
∞∑
n=3

δ
(q,q′,... )
Q,n (rqQ, rq′Q, . . . )

(
α
(nQ+1)
s (mQ)

4π

)n
, (2.10)

which together with eq. (2.8) implies that

δ2(1) = a2(nQ, 1)− a2(nQ + 1, 0) = 18.3189 ,

δ
(Q,q,q′,... )
Q,n (1, 0, 0, . . . ) = an(nQ, 1)− an(nQ + 1, 0) . (2.11)

The O(α2
s) correction comes from the on-shell self energy diagram of quark Q with the

insertion of a loop of the massive quark q. The result was determined analytically in

ref. [2]. At O(α3
s), in ref. [31], the virtual quark mass corrections were determined in a

semi-analytic form for arbitrary quark masses for insertions of loops of the quark Q and

one other massive quark q. The expressions for these virtual quark mass corrections are for

convenience collected in appendix A after adapting the results of ref. [31] to our notation.

We also provide the O(α3
s) result for insertions of loops with two arbitrary massive quarks,

which were not given in ref. [31]. The O(α4
s) virtual quark mass corrections have not been

determined through an explicit loop calculation.

One can interpret the MS mass mQ = m
(nQ+1)
Q (m

(nQ+1)
Q ) as the pole mass minus

all self-energy corrections coming from scales at and below mQ. So mQ only contains

mass contributions from momentum fluctuations from above mQ, which illustrates that

it is a short-distance mass that is strictly insensitive to issues related to low momentum

fluctuations at the hadronization scale ΛQCD. See figure 1 for illustration.

2.2 MSR mass and R-evolution

In order to integrate out high momentum contributions and formulate the renormalization

group flow of momentum contributions in the heavy quark masses we use the MSR mass

mMSR
Q (R) introduced in ref. [24],2 extending its definition to account for the mass effects

of the lighter massive quarks.

The MSR mass for the heavy quark Q is derived from on-shell self-energy diagrams just

like the pole-MS mass relation of eq. (2.4), but it does not include any diagrams involving

virtual loops of the heavy quark Q, i.e. the contributions from heavy quark Q virtual loops

are integrated out. Like the MS mass, the MSR mass is a short-distance mass, and since

the corrections from the heavy quark Q are short-distance effects, its relation to the pole

mass fully contains the pole mass O(ΛQCD) renormalon (just as the pole-MS mass relation

of eqs. (2.4) and (2.9)). Furthermore the MSR mass depends on the arbitrary scale R . mQ

2In refs. [23, 24] the natural and the practical MSR masses were introduced. In this paper we employ

the natural MSR mass and call it just the MSR mass for convenience.
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Figure 1. Graphical illustration of the physical contributions contained in the pole, MSR and MS

mass schemes coming from the different momentum scales for the case of the top quark. The quark

loops stand for the contributions of the virtual massive quark loops contained in the masses.

to describe contributions in the mass from the momenta below the scale mQ, and therefore

represents the natural extension of the concept of the MS mass for scales below mQ.

Assuming that q1, . . . , qn are the massive quarks lighter than Q in the order of decreas-

ing mass (i.e. mQ > mq1 > . . . > mqn > ΛQCD with n < nQ and n` = nQ − n), the MSR

mass mMSR
Q (R) is defined by the relation

mpole
Q = mMSR

Q (R) +R

∞∑
n=1

an(nQ, 0)

(
α
(nQ)
s (R)

4π

)n
+mQ

[
δ
(q1,...,qn)
Q (rq1Q, . . . , rqnQ) + · · ·+ δ

(qn)
Q (rqnQ)

]
, (2.12)

where the coefficients an are given in eqs. (2.5) and the perturbative expansion is in powers

of the strong coupling in the nQ-flavor scheme since the quark Q is integrated out. The

R-dependence of the strong coupling entails that the scale R has to be chosen sufficiently

larger than ΛQCD to stay away from the Landau pole. The definition generalizes the one

already provided in ref. [24], which only considered nQ massless quarks.

The notation used for the virtual quark mass corrections involving the functions

δ
(q,q′,... )
Q (rqQ, rq′Q, . . . ) is the same as the one for the MS mass described above, and their

sum is by construction RG-invariant. Their perturbative expansion has the form

δ
(q,q′,... )
Q (rqQ, rq′Q, . . . ) = δ2(rqQ)

(
α
(nQ)
s (mQ)

4π

)2

+

∞∑
n=3

δ
(q,q′,... )
Q,n (rqQ, rq′Q, . . . )

(
α
(nQ)
s (mQ)

4π

)n
, (2.13)
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where the coefficient functions δ
(q,q′,... )
Q,n (rqQ, rq′Q, . . . ) are identical to the ones appearing

in eq. (2.10).

In our definition of the MSR mass, the virtual quark mass corrections are independent

of R. This entails that the renormalization group evolution of the MSR mass in R does not

depend on the masses of the nQ lighter quarks. So mMSR
Q (R) is defined in close analogy

to the µ-dependent MS strong coupling and the MS masses, whose renormalization group

evolution only depends on the number of active dynamical quarks (which is typically the

number of quarks lighter than µ) and where mass effects are implemented by threshold

corrections when µ crosses a flavor threshold. Moreover, because the O(ΛQCD) renormalon

ambiguity of the series proportional to R is independent of R and because the corrections

from the virtual loops of the heavy quark Q are short-distance effects, the series of the pole-

MSR mass relation in eq. (2.12) suffers from the same O(ΛQCD) renormalon ambiguity as

the pole-MS mass relation of eqs. (2.4) and (2.9). It can therefore also be used to study

and quantify the O(ΛQCD) renormalon of the pole mass mpole
Q .

As explained below eq. (1.4), in order to expand the difference of MSR masses at two

scales R and R′ in the fixed-order expansion in powers of α
(nQ)
s it is necessary to do that at

a common renormalization scale µ so that the renormalon in the R-dependent corrections

of eq. (2.12) cancels order by order. This unavoidably leads to large logarithms if the scale

separation is large, similarly to when considering the fixed-order expansion of the difference

of the strong coupling at widely separated scales. To sum the logarithms in the difference

of MSR masses we use its RG-evolution equation in R, which reads

R
d

dR
mMSR
Q (R) = −RγR,(nQ)(α

(nQ)
s (R)) = −R

∞∑
n=0

γ
R,(nQ)
n

(
α
(nQ)
s (R)

4π

)n+1

, (2.14)

where the coefficients are known up to four loops and given by [23, 24]

γ
R,(nQ)
0 =

16

3
, (2.15)

γ
R,(nQ)
1 = 96.1039− 9.55076nQ ,

γ
R,(nQ)
2 = 1595.75− 269.953nQ − 2.65945n2Q ,

γ
R,(nQ)
3 = (12319.± 417.)− (9103.± 10.)nQ + 610.264n2Q − 6.515n3Q .

The difference of MSR masses at two scales R′ and R can then be computed from solving

the evolution equation

∆m(nQ)(R,R′) = mMSR
Q (R′)−mMSR

Q (R) =
∞∑
n=0

γ
R,(nQ)
n

∫ R

R′
dR

(
α
(nQ)
s (R)

4π

)n+1

, (2.16)

which accounts for the RG-evolution in the presence of nQ active dynamical quark flavors.

The RG-equation of the MSR mass has a linear as well as logarithmic dependence

on R and thus differs from the usual logarithmic RG-equations for αs and the MS mass.

Since its linear dependence on R allows to systematically probe linear sensitivity to small

momenta it can be used to systematically study the O(ΛQCD) renormalon behavior of
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Figure 2. Graphical illustration for pole-MS mass differences, the MSR-MS mass matching cor-

rections and MSR mass differences for different R scales. They constitute the major contributions

in the RG analysis of the heavy quark pole masses.

perturbative series [23, 24]. Since this is impossible for usual logarithmic RG-evolution

equations, eq. (2.14) was called the R-evolution equation in refs. [23, 24]. Continuing on

the thoughts made at the end of section 2.1 we note that one can interpret the MSR mass

mMSR
Q (R) as the pole mass minus all self-energy contributions coming from scales below R

and all virtual quark mass corrections from quarks lighter than Q, see figure 1. This also

illustrates that the MSR mass mMSR
Q (R) is a short-distance mass. The negative overall

sign on the r.h.s. of eq. (2.14) expresses that self-energy contributions are added to the

MSR mass when R is evolved to smaller scales, and that ∆m(nQ)(R,R′) for R > R′ is

positive and represents the self-energy contributions to the mass in the presence of nQ
active dynamical flavors coming from the scales between R′ and R. This is illustrated in

figure 2.

In the context of the analyses in this work the essential property is that the O(ΛQCD)

renormalon ambiguity in the series on the r.h.s. of eq. (2.12) is R-independent. This

entails that the R-evolution equation is free of the O(ΛQCD) renormalon, and solving the

R-evolution equation in eq. (2.16) allows to relate MSR masses at different scales in a way

that is renormalon free and, in addition, systematically sums logarithms ln(R/R′) to all

orders in a way free of the O(ΛQCD) renormalon. So the R-evolution equation resolves

the problem of the large logarithms that arise when computing MSR mass differences in

the fixed-order expansion. The integral of eq. (2.16) can be readily computed numerically,

and an analytic solution has been discussed in detail in [24]. The analytic solution also

allows to derive the large-order asymptotic form of the perturbative coefficients an. To

implement renormalization scale variation in eq. (2.16) one expands α
(nQ)
s (R) as a series in

α
(nQ)
s (λR), and by varying λ in some interval around unity. We note that in our analysis

we consider the top, bottom and charm mass scales, and using the R-evolution equation is

instrumental for our discussion of the top quark pole mass.

In table 1 we show numerical results for various MSR mass differences ∆m(nQ) relevant

in our examinations below for nQ = 3, 4, 5. We display the results obtained from using the
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O(αns ) ∆m(5)(163, 20) ∆m(5)(163, 4.2) ∆m(5)(163, 1.3)

n = 1 7.358± 0.811 8.536± 1.008 8.864± 1.047

n = 2 8.007± 0.168 9.336± 0.225 9.728± 0.311

n = 3 8.031± 0.024 9.368± 0.035 9.764± 0.066

n = 4 8.006± 0.009 9.331± 0.016 9.716± 0.023

O(αns ) ∆m(4)(163, 4.2) ∆m(4)(20, 4.2) ∆m(4)(4.2, 1.3)

n = 1 8.181± 1.026 1.153± 0.211 0.337± 0.098

n = 2 9.064± 0.270 1.326± 0.073 0.419± 0.063

n = 3 9.139± 0.054 1.346± 0.018 0.434± 0.026

n = 4 9.114± 0.014 1.337± 0.007 0.423± 0.017

O(αns ) ∆m(3)(163, 1.3) ∆m(3)(20, 1.3) ∆m(3)(4.2, 1.3)

n = 1 8.009± 1.044 1.419± 0.296 0.328± 0.106

n = 2 9.008± 0.404 1.691± 0.166 0.418± 0.078

n = 3 9.130± 0.126 1.741± 0.067 0.440± 0.037

n = 4 9.111± 0.032 1.729± 0.023 0.434± 0.020

Table 1. MSR mass differences ∆m(nQ)(R,R′) computed from R-evolution, for nQ = 3, 4, 5 active

dynamical flavors for scale differences involving top, bottom and charm masses and the scale 20 GeV.

The central values are obtained for λ = 1 and the uncertainties are symmetrized λ variations in

the interval [0.5, 2]. For entries involving the scale mc the interval [0.6, 2.5] is used for λ variations.

The numbers for ∆m(nQ)(R,R′) are given in units of GeV.

R-evolution equation at O(αns ) for n = 1, 2, 3, 4. The uncertainties are from λ variations

in the interval [0.5, 2] for the cases where scales above the charm mass scale 1.3 GeV are

considered, and in the interval [0.6, 2.5] for cases which involve the charm mass scale. We

see an excellent convergence and stability of the results and a significant reduction of scale

variation with the order, illustrating that the mass differences ∆m(nQ)(R,R′) are free of

an O(ΛQCD) renormalon ambiguity. For our analyses below we use the most precise O(α4
s)

results shown in the respective lowest lines.

2.3 Asymptotic high order behavior and Borel transform for massless lighter

quarks

In this section we review a number of known results relevant for the analyses in the sub-

sequent parts of the paper. The results are already known since refs. [12–14]. We adapt

them according to our notation and present updated numerical results accounting for the

recent perturbative calculations of the pole-MS mass relation and the QCD β-function.

The Borel transform of an αs power series

f(αs(R)) = R
∞∑
n=0

an+1

(
αs(R)

4π

)n+1

, (2.17)
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is defined as

B[f ](u) = R
∞∑
n=0

an+1
un

n!βn+1
0

, (2.18)

where β0 is the one-loop β-function coefficient in the flavor number scheme of αs. For the

approximation that all quarks lighter than the heavy quark Q are massless (i.e. n` = nQ)

the Borel transform of the series for the pole-MSR mass reads

B
[
mpole
Q −mMSR

Q (R)
]

(u) =

N
(n`)
1/2 R

4π

β
(n`)
0

∞∑
k=0

g
(n`)
k

Γ(1 + b̂
(n`)
1 − k)

Γ(1 + b̂
(n`)
1 )

(1− 2u)−1−b̂
(n`)
1 +k + . . . , (2.19)

where the non-analytic (and singular) terms multiplied by the normalization factor N
(n`)
1/2

single out the O(ΛQCD) renormalon behavior of the pole-MSR mass series and the ellipses

stand for contributions not affected by an O(ΛQCD) renormalon. Their form is unambigu-

ously determined by the coefficients β
(n`)
n of the QCD β-function in eq. (1.5), and the sum

over k parametrizes the subleading effects due to the higher order coefficients of the QCD

β-function. The coefficients g
(n`)
k can be determined from the recursion formulae [24]

b̂n+1 = 2
n∑

i=0

b̂n−i βi+1

(−2β0)i+2
,

gn+1 =
1

1 + n

n∑
i=0

(−1)i b̂i+2 gn−i (2.20)

with b̂0 = g0 = 1, where we dropped the superscript (n`) for simplicity. Currently, co-

efficients g
(n`)
k are known up to k = 3. The factor N

(n`)
1/2 precisely quantifies the overall

normalization of the O(ΛQCD) renormalon behavior and can be determined quite precisely

from the coefficients an(n`, 0) known from explicit computations. Accounting for the co-

efficients up to O(α4
s) the normalization was determined with very small errors for the

relevant flavor numbers n` = 3, 4, 5 in refs. [24, 27, 28], all of which are in agreement. We

use the results from ref. [24]:

N
(n`=3)
1/2 = 0.526± 0.012 ,

N
(n`=4)
1/2 = 0.492± 0.016 , (2.21)

N
(n`=5)
1/2 = 0.446± 0.024 .

The uncertainties are not essential for the outcome of our analysis and quoted for com-

pleteness. Their small size reflects that the large-order asymptotic behavior of the series is

known very precisely.

The inverse Borel transform∫ ∞
0

duB[f ](u) e
− 4πu
β0αs(R) , (2.22)
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has the same αs power series as the original series f(αs(R)) and provides the exact result

if it can be calculated unambiguously from the Borel transform B[f ](u). However, for the

case of eq. (2.19), due to the singularity at u = 1/2 and the cut along the positive real

axis for u > 1/2, the integral cannot be computed without further prescription and an

ambiguity remains. Using an iε prescription (1− 2u)α → (1− 2u− iε)α to shift the cut to

the lower complex half plane, the resulting imaginary part of the integral is

∆m
(n`)
Borel ≡

∣∣∣∣∣Im
∫ ∞
0

du exp

(
− 4πu

β
(n`)
0 α

(n`)
s (R)

)

×

[
N

(n`)
1/2 R

4π

β
(n`)
0

∞∑
k=0

g
(n`)
k

Γ(1 + b̂
(n`)
1 − k)

Γ(1 + b̂
(n`)
1 )

(1− 2u)−1−b̂
(n`)
1 +k

]∣∣∣∣∣
= N

(n`)
1/2

2π2

β
(n`)
0 Γ(1 + b̂

(n`)
1 )

Λ
(n`)
QCD , (2.23)

and represents a quantification of the ambiguity of the pole mass, where Λ
(n`)
QCD is given by

the expression (tR = −2π/β
(n`)
0 α

(n`)
s (R))

Λ
(n`)
QCD = R exp

(
tR + b̂

(n`)
1 log(−tR)−

∞∑
k=2

b̂
(n`)
k

(k − 1)tk−1R

)
. (2.24)

In this work we use this expression as the definition of ΛQCD for n` massless flavors. The

r.h.s. is R-independent, and truncating at k = 4 provides the results

Λ
(n`=3)
QCD = 253 MeV ,

Λ
(n`=4)
QCD = 225 MeV , (2.25)

Λ
(n`=5)
QCD = 166 MeV ,

with uncertainties below 0.5 MeV. Λ
(n`)
QCD increases for smaller flavor numbers n` since the

scale-dependence of αs, and thus also the infrared sensitivity of QCD quantities, increases

with n`. The expressions for ∆m
(n`)
Borel for the size of the imaginary part of the inverse Borel

transform in eq. (2.23) provide a parametric estimate for the ambiguity of the pole mass.

Using eqs. (2.21) and (2.25) they give ∆m
(3,4,5)
Borel = (329± 8, 295± 10, 213± 11) MeV which

are around a factor 1.3 larger than the corresponding values for Λ
(n`)
QCD.

From the expression for the Borel transform given in eq. (2.19) one can derive the

large order asymptotic form of the perturbative coefficients an of the pole-MSR mass series

(which describe the case that all quarks lighter than Q are massless, i.e. nQ = n`):

aasyn (n`, nh) = aasyn (n`, 0) = 4πN
(n`)
1/2 (2β

(n`)
0 )n−1

∞∑
k=0

g
(n`)
k

Γ(n+ b̂
(n`)
1 − k)

Γ(1 + b̂
(n`)
1 )

, (2.26)

where the value of nh is insignificant because the virtual effects of quark Q do not affect

the large order asymptotic behavior. The sum in k is convergent, and truncating at k = 3

one can use the results for n > 4 as an approximation for the yet uncalculated series

– 15 –
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n aasyn (n` = 3, 0) aasyn (n` = 4, 0) aasyn (n` = 5, 0)

5 (3.394± 0.077)× 107 (2.249± 0.075)× 107 (1.379± 0.074)× 107

6 (3.309± 0.075)× 109 (2.019± 0.067)× 109 (1.128± 0.060)× 109

7 (3.819± 0.087)× 1011 (2.147± 0.071)× 1011 (1.095± 0.059)× 1011

8 (5.093± 0.115)× 1013 (2.641± 0.088)× 1013 (1.231± 0.066)× 1013

9 (7.706± 0.175)× 1015 (3.687± 0.123)× 1015 (1.572± 0.084)× 1015

10 (1.305± 0.030)× 1018 (5.762± 0.192)× 1017 (2.250± 0.120)× 1017

11 (2.443± 0.055)× 1020 (9.964± 0.332)× 1019 (3.563± 0.191)× 1019

12 (5.014± 0.114)× 1022 (1.889± 0.063)× 1022 (6.190± 0.331)× 1021

Table 2. Coefficients of the pole-MSR mass series for an>4(n`, 0) for n` = 3, 4, 5 estimated from

the asymptotic formula of eq. (2.26) and with uncertainties from eq. (2.21).

coefficients. The results up to n = 12 for n` = 3, 4, 5 using the values for the N
(n`)
1/2 from

eq. (2.21) are displayed in table 2.

With the normalization factors N
(n`)
1/2 , which are known to a precision of a few percent

and which also entails the same precision for ∆m
(n`)
Borel and the asymptotic coefficients aasyn ,

the series for the pole-MSR and also for the pole-MS mass relation are essentially known

to all orders for the case of n` = nQ. The task to determine the ambiguity of the pole

mass involves to specify how this precisely known pattern limits the principle capability

to determine the pole mass numerically, see the discussion in section 4.1. In other words,

the ambiguity of the pole mass is known to be proportional to ∆m
(n`)
Borel or Λ

(n`)
QCD, but the

factor of proportionality has to be determined from an additional dedicated analysis.

3 Integrating out hard modes from the heavy quark pole mass

3.1 MSR-MS mass matching

Using the MSR mass we can successively separate off, i.e. integrate out, hard momentum

contributions from the pole-MS mass difference, mpole
Q −mQ. We start with the matching

relation between the MSR and the MS masses at the common scale µ = R = mQ, which can

be obtained by eliminating the pole mass from eqs. (2.9) and (2.12). The matching relation

accounts for the virtual top quark loop contributions and can be written in the form

mMSR
Q (mQ)−mQ = ∆m

(nQ+1→nQ)
Q (mQ) + δm

(nQ+1→nQ)
Q,q1,...,qn

(mQ) . (3.1)

The term ∆m
(nQ+1→nQ)
Q (mQ) contains the virtual top quark loop contributions in the

approximation that all nQ quarks lighter than quark Q are massless and has the form [24]

∆m
(nQ+1→nQ)
Q (mQ) = (3.2)

mQ

1.65707

(
α
(nQ+1)
s (mQ)

4π

)2

+ [110.05 + 1.424nQ]

(
α
(nQ+1)
s (mQ)

4π

)3

+
[
352.± 31.− (111.59± 0.10)nQ + 4.40n2Q

](α(nQ+1)
s (mQ)

4π

)4

+ . . .

 ,
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O(αns ) ∆m
(6→5)
t (mt) ∆m

(5→4)
b (mb) ∆m

(4→3)
c (mc)

2 0.021± 0.004 0.003± 0.001 0.002± 0.002

3 0.033± 0.003 0.006± 0.002 0.008± 0.005

4 0.032± 0.001 0.004± 0.001 0.005± 0.002

Table 3. The MSR-MS mass matching corrections for the top, bottom and charm quarks for

(mt,mb,mc) = (163, 4.2, 1.3) GeV, given in units of GeV. The uncertainties are obtained from

variations of the renormalization scale in the range 0.5mQ ≤ µ ≤ 2mQ for the top and bottom

quark and 0.65mc ≤ µ ≤ 2.5mc for the charm quark. The central value is the respective mean of

the largest and smallest values obtained in the scale variation.

where we expressed the series in powers of the strong coupling in the (nQ+1) flavor scheme.

The series only contains the hard corrections coming from the virtual heavy quark Q and

therefore does not have any O(ΛQCD) ambiguity, see figure 2 for illustration.

In table 3 the numerical values for ∆m
(nQ+1→nQ)
Q (mQ) are shown at O(α2,3,4

s ) for

the top, bottom, and charm quarks for (mt,mb,mc) = (163, 4.2, 1.3) GeV. Also shown

is the variation due to changes in the renormalization scale in the range 0.5mQ ≤ µ ≤
2mQ, for the top and bottom quark and 0.65mc ≤ µ ≤ 2.5mc for the charm quark.

The O(α3
s) corrections are quite sizable compared to the O(α2

s) contributions, but the

O(α4
s) corrections are small indicating that the O(α4

s) result and the uncertainty estimate

based on the scale variations can be considered reliable. Overall, the matching corrections

amount to 32, 4 and 5 MeV for the top, bottom and charm quarks, respectively with an

uncertainty at the level of 1 to 2 MeV. The numerical uncertainties of the O(α4
s) coefficients

displayed in eq. (3.2) are smaller than 0.1 MeV for all cases and therefore irrelevant for

practical purposes.

The term δm
(nQ+1→nQ)
Q,q1,...,qn

(mQ) represents the virtual top quark loop contributions arising

from the finite masses of the lighter massive quarks q1, . . . , qn. Since at O(α2
s) only the loop

of quark Q can be inserted, the series for δm
(nQ+1→nQ)
Q,q1,...,qn

(mQ) starts at O(α3
s), where only

self energy diagrams with one insertion of a loop of quark Q and one insertion of a loop of

one of the lighter massive quarks q1, . . . , qn can contribute. At O(α3
s) δm

(nQ+1→nQ)
Q,q1,...,qn

(mQ)

has the form

δm
(nQ+1→nQ)
Q,q1,...,qn

(mQ)

= mQ

{[
δ
(Q,q1,...,qn)
Q,3 (1, rq1Q, . . . , rqnQ)

− δ
(Q,q1,...,qn)
Q,3 (1, 0, . . . , 0)

](
α
(nQ+1)
s (mQ)

4π

)3

+ . . .

}

= mQ

{
n∑
i=1

[
14.2222 r2qiQ − 18.7157 r3qiQ +

(
7.3689− 11.1477 ln(rqiQ)

)
r4qiQ

+ . . .

](
α
(nQ+1)
s (mQ)

4π

)3

+ . . .

 , (3.3)
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where rqQ = mq/mQ, and for simplicity we suppress the masses of the quarks q1, . . . , qn

in the argument of δm
(nQ+1→nQ)
Q,q1,...,qn

. Starting at O(α4
s) the finite quark mass corrections

in δm
(nQ+1→nQ)
Q,q1,...,qn

(mQ) become also dependent on the flavor threshold corrections relating

α
(nQ)
s (mQ) and α

(nQ+1)
s (mQ). In eq. (3.3) we have also displayed the first terms of the

expansions in the mass ratios rqiQ. They start quadratically in the rqiQ indicating that the

corrections are governed by the scale mQ just like the matching term ∆m
(nQ+1→nQ)
Q (mQ)

and do not have any linear sensitivity to small momenta and the lighter quark masses, in

particular. This feature is realized at any order of perturbation theory.

Because the finite mass corrections δm
nQ+1→nQ
Q,q1,...,qn

(mQ) start at O(α3
s) and are quadratic

in the mass ratios rqiQ they are extremely small and never exceed 0.01 MeV for the top

quark (due to the finite bottom or charm masses) and the bottom quark (due to the

finite charm mass). We can expect that this is also exhibited at higher orders, so that

δm
(nQ+1→nQ)
Q,q1,...,qn

(mQ) can be neglected for all practical purposes and will not be considered

and discussed any further in this work.

3.2 Top-bottom and bottom-charm mass matching

Comparing the pole-MSR mass relation (2.12) for the heavy quark Q to the pole-MS

mass relation (2.4) for the next lighter massive quark q, one immediately notices that for

R = mq the corrections are identical in the approximation that in the virtual quark loops

all nQ lighter quarks (i.e. including the quark q) are treated as massless. This identity is a

consequence of heavy quark symmetry which states that the low-energy QCD corrections

to the heavy quark masses coming from massless partons are flavor-independent.

For the top MSR and the bottom MS masses (i.e. for Q = t and q = b) the resulting

matching relation reads[
mpole
t −mMSR

t (mb)
]
−
[
mpole
b −mb

]
= δm

(t→b)
b,c (mb,mc) , (3.4)

where δm
(t→b)
b,c (mb,mc) encodes the heavy quark symmetry breaking corrections coming

from the finite virtual charm and bottom quark masses. Their form can be extracted

directly from eqs. (2.4) and (2.12) and written in the form (rqq′ = mq/mq′)

δm
(t→b)
b,c (mb,mc) = mt

[
δ
(b,c)
t (rbt, rct) + δ

(c)
t (rct)

]
−mb

[
δ
(b,c)
b (1, rcb) + δ̄

(c)
b (rcb)

]
, (3.5)

where the first term on the r.h.s. (multiplied by mt) represents the virtual bottom and

charm mass effects from the top quark self energy and the second term (multiplied by mb)

represents the virtual bottom and charm mass effects from the bottom quark self energy.

Their explicit form up to O(α3
s) reads

mt

[
δ
(b,c)
t (rbt, rct) + δ

(c)
t (rct)

]
= mt [ δ2(rbt) + δ2(rct) ]

(
α
(5)
s (µ)

4π

)2

(3.6)

+mt

[
δ
(b,c)
t,3 (rbt, rct) + δ

(c)
t,3 (rct) + 4β

(5)
0 ln

(
µ

mt

)
[ δ2(rbt) + δ2(rct)]

](
α
(5)
s (µ)

4π

)3

+ . . . ,
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and

mb

[
δ
(b,c)
b (1, rcb) + δ

(c)
b (rcb)

]
= mb [ δ2(1) + δ2(rcb) ]

(
α
(5)
s (µ)

4π

)2

(3.7)

+mb

[
δ
(b,c)
b,3 (1, rcb) + δ

(c)
b,3(rcb) + 4β

(5)
0 ln

(
µ

mb

)
[ δ2(1) + δ2(rcb)]

](
α
(5)
s (µ)

4π

)3

+ . . . .

It is important that the quark mass corrections in (3.5) are expressed coherently in pow-

ers of αs at the common scale µ because the individual δn terms carry contributions that

modify the infrared sensitivity and therefore each contain O(ΛQCD) renormalon ambi-

guities. In eq. (3.4) these renormalon ambiguities mutually cancel. We also note that

δm
(t→b)
b,c (mb,mc) also depends on the top quark mass mt. We have suppressed mt in the

argument since δm
(t→b)
b,c (mb,mc) encodes symmetry breaking corrections due to the finite

bottom and charm quark masses.

For the bottom MSR and the charm MS masses the corresponding matching rela-

tion reads [
mpole
b −mMSR

b (mc)
]
−
[
mpole
c −mc

]
= δm(b→c)

c (mc) , (3.8)

with

δm(b→c)
c (mc) = mbδ

(c)
b (rcb)−mcδ

(c)
c (1) , (3.9)

where the first term on the r.h.s. (multiplied by mb) represents the virtual charm mass

effects from the bottom quark self energy and the second term (multiplied by mc) represent

the virtual charm mass effects from the charm quark self energy. Their explicit form up to

O(α3
s) reads

mb δ
(c)
b (rcb) = mb δ2(rcb)

(
α
(4)
s (µ)

4π

)2

+mb

[
δ
(c)
b,3(rcb) + 4β

(4)
0 δ2(rcb) ln

(
µ

mb

)](
α
(4)
s (µ)

4π

)3

+ . . . , (3.10)

and

mc δ
(c)
c (1) = mc δ2(1)

(
α
(4)
s (µ)

4π

)2

+mc

[
δ
(c)
c,3(1) + 4β

(4)
0 δ2(1) ln

(
µ

mc

)](
α
(4)
s (µ)

4π

)3

+ . . . , (3.11)

where again we expanded both terms consistently for a common renormalization scale µ

in the strong coupling.

In figure 3(a) the top-MSR bottom-MS mass matching correction δm
(t→b)
b,c (mb,mc) of

eq. (3.4) is displayed as a function of the renormalization scale µ at O(α2
s) (red dashed line)

and O(α3
s) (red solid line) for (mt,mb,mc) = (163, 4.2, 1.3) GeV. The matching correction

at O(α3
s) amounts to 6 MeV and has a scale variation of only 1 MeV for mb ≤ µ ≤ mt.
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Figure 3. (a) Top-MSR bottom-MS mass matching correction δm
(t→b)
b,c (mb,mc) at O(α2

s) (red

dashed curve) and O(α3
s) (red solid curve) over the renormalization scale µ. The virtual bottom

and charm mass effects to the top quark self energy of eq. (3.6) (green curves) and the virtual bottom

and charm mass effects to the bottom quark self energy of eq. (3.7) (blue curves) at O(α2
s) (dashed)

and O(α3
s) (solid). For the masses of the top, bottom and charm quarks the values (mt,mb,mc) =

(163, 4.2, 1.3) GeV are used. (b) Same quantities as in panel (a) for mc = 0. (c) The bottom-MSR

charm-MS mass matching correction δm
(b→c)
c (mc) at O(α2

s) (red dashed curve) and O(α3
s) (red

solid curve) over the renormalization scale µ. The virtual charm mass effects to the bottom quark

self energy of eq. (3.10) (green curves) and the virtual charm mass effects to the charm quark self

energy of eq. (3.11) (blue curves) are shown at O(α2
s) (dashed) and O(α3

s)(solid).

Compared to the O(α2
s) result we see a strong reduction of the scale-dependence at O(α3

s).

The final numerical results at O(α2
s) and O(α3

s) are shown in the second column of table 4

where the uncertainties are obtained from variations of the renormalization scale in the

range mb ≤ µ ≤ mt and the central values are the respective mean of the largest and

smallest values obtained in the scale variation. The corresponding results for a vanishing

charm quark mass are shown in figure 3(b) and the third column of table 4. We see that the

charm mass effects in the top-MSR bottom-MS mass matching correction δm
(t→b)
b,c (mb,mc)

are only around 1 MeV, and the stability for mc → 0 shows that the matching correction
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O(αns ) δm
(t→b)
b,c (mb,mc) δm

(t→b)
b,c (mb, 0) δm

(b→c)
c (mc)

2 0.007± 0.004 0.006± 0.004 0.004± 0.002

3 0.006± 0.001 0.005± 0.001 0.004± 0.001

Table 4. The top-bottom MSR-MS mass matching corrections, given in units of GeV, for finite

bottom and charm masses (second column), for finite bottom quark mass and massless charm quark

(third column), and the bottom-charm MSR-MS mass matching correction (fourth column). For

the finite masses of the top, bottom and charm quarks the values (mt,mb,mc) = (163, 4.2, 1.3) GeV

are used. The uncertainties are obtained from variations of the renormalization scale in the range

mb ≤ µ ≤ mt for δm
(t→b)
b,c and in the range mc ≤ µ ≤ mb for δm

(b→c)
c . The central values are the

respective mean of the largest and smallest values obtained in the scale variation.

is governed by scales of order mb and higher, which reconfirms the range mb ≤ µ ≤ mt for

the variation of the renormalization scale.

In figure 3(c) the bottom-MSR charm-MS mass matching correction δm
(b→c)
c (mc) of

eq. (3.8) is displayed as a function of the renormalization scale µ for mb = 4.2 GeV and

mc = 1.3 GeV at O(α2
s) and O(α3

s) using the same color coding and curve styles as for

figures 3(a) and 3(b). In the fourth column of table 4 the final numerical results at O(α2
s)

and O(α3
s) are shown using mc ≤ µ ≤ mb for the renormalization scale variation. The

stability and convergence is again excellent, and at O(α3
s) the matching correction amounts

to 4 MeV with an uncertainty of 1 MeV.

Given that the heavy quark symmetry breaking matching corrections δm
(t→b)
b,c (mb,mc)

and δm
(b→c)
c (mc) amount to only 4 to 6 MeV, we note that they may be simply neglected

in practical applications where they yield contributions that are much smaller than other

sources of uncertainties. In fact, this also applies to our subsequent studies of the top,

bottom and charm quark pole masses. However, we include them here for completeness.

Due to their small size, we have not explicitly included the heavy quark symmetry breaking

matching corrections in the graphical illustration of figure 2.

3.3 Light virtual quark mass corrections at O(α4
s) and beyond

The excellent perturbative convergence of the top-MSR bottom-MS mass matching cor-

rection δm
(t→b)
b,c (mb,mc) and of the bottom-MSR charm-MS mass matching correction

δm
(b→c)
c (mc) discussed in the previous section illustrates that they both are short-distance

quantities and free of an O(ΛQCD) renormalon ambiguity. This is also expected theoreti-

cally due to heavy quark symmetry. However, the facts that the overall size of the matching

corrections only amounts to a few MeV, and that the O(α3
s) corrections are only around

1 MeV allows us to draw interesting conceptual implications for the large order asymptotic

behavior of the virtual quark mass corrections in the mass relations of eqs. (2.4), (2.9)

and (2.12). We discuss these implications in the following. As a consequence we can pre-

dict the yet uncalculated virtual quark mass corrections at O(α4
s) to within a few percent

without an additional loop calculation and draw important conclusions on their properties

for the orders beyond.
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To be concrete, we consider the matching correction δm
(Q→q)
q (mq) between the MSR

mass of heavy quark Q and the MS mass of the next lighter massive quark q assuming

the massless approximation for all quarks lighter than quark q i.e. nQ = nq + 1 = n` + 1

and n` = nq being the number of massless quarks. This situation applies to the matching

relation for the top-MSR and the bottom MS masses for a massless charm quark or to the

matching relation between the bottom-MSR and the charm-MS masses.

In figure 3(a) we have displayed separately the virtual bottom and charm mass effects

to the top quark self energy of eq. (3.6) (green curves) and the virtual bottom and charm

mass effects to the bottom quark self energy of eq. (3.7) (blue lines) at O(α2
s) (dashed) and

O(α3
s) (solid). In figure 3(b) the charm quark is treated as massless in the same quantities.

In figure 3(c) the virtual charm mass effects to the bottom quark self energy of eq. (3.10)

and the virtual charm mass effects to the charm quark self energy of eq. (3.11) are shown

at O(α2
s) and O(α3

s) with the analogous line styles and colors. We see that both types of

contributions each are quite large and furthermore do not at all converge. The O(α3
s) cor-

rections are even bigger than the O(α2
s) corrections, which indicates that the corresponding

asymptotic large order behavior already dominates the O(α2
s) and O(α3

s) corrections.

The origin of this behavior has been already mentioned and is understood: the mass of

the virtual quark q acts as an infrared cutoff and therefore modifies the infrared sensitivity

of the self energy diagrams (of quark Q and of quark q) with respect to the case where the

virtual loops of quark q are evaluated in the massless approximation. As a consequence

these corrections individually carry an O(ΛQCD) renormalon ambiguity. Moreover, at large

orders in perturbation theory the sensitivity of the self energy diagrams to infrared mo-

menta increases due to high powers of logarithms from gluonic and massless quark loops.

As a consequence, at large orders, the finite mass effects of the virtual loops of quark q in

the self energy diagrams of quark Q and the self energy diagrams of quark q become equiv-

alent due to heavy quark symmetry. The strong cancellation in the sum of both types of

corrections in δm
(Q→q)
q (mq) (∼ 75% at O(α2

s) and & 90% at O(α3
s) for the cases displayed

in figure 3) thus confirms that the known O(α2
s) and O(α3

s) self energy corrections coming

from virtual quark masses are already dominated by their large order asymptotic behavior.

From the observations that the series for δm
(t→b)
b,c (mb,mc) and δm

(b→c)
c (mc) converge

very well and that their O(α3
s) corrections amount to only about 1 MeV, we can therefore

expect that the two types of corrections that enter δm
(t→b)
b,c (mb,mc) as well as δm

(b→c)
c (mc)

agree to even better than 1 MeV at O(α4
s) and beyond. This allows us to make an approx-

imate prediction for the yet uncalculated O(α4
s) finite mass corrections from virtual loops

of quark q in the pole-MS mass relations of quark Q of eqs. (2.4) and (2.9) by setting the

O(α4
s) correction in δm

(Q→q)
q (mq) to zero:

δ
(q)
Q,4(rqQ) (3.12)

≈ rqQ

[
δ
(q)
q,4(1)+

(
6β

(nQ)
0 δ

(q)
q,3(1)+4β

(nQ)
1 δ2(1)

)
ln

(
µ

mq

)
+12 δ2(1)

(
β
(nQ)
0 ln

(
µ

mq

))2
]

−
(

6β
(nQ)
0 δ

(q)
Q,3(rqQ) + 4β

(nQ)
1 δ2(rqQ)

)
ln

(
µ

mQ

)
− 12 δ2(rqQ)

(
β
(nQ)
0 ln

(
µ

mQ

))2

.
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Figure 4. (a) Prediction for the O(α4
s) virtual quark mass correction δ

(q)
Q,4(rqQ) for mq ≤ µ ≤ mQ

(green bands) for nQ = n` + 1 = 5 (lower band) and nQ = n` + 1 = 4 (upper band). The black

dashed lines show the prediction for µ = mQ which gives the simple approximation formula in

eq. (3.14). (b) The O(α3
s) virtual quark mass correction δ

(q)
Q,3(rqQ) for nQ = n` + 1 = 5 (red curve).

The green band is the prediction for δ
(q)
Q,3(rqQ) using the method of panel (a) for mq ≤ µ ≤ mQ

showing excellent agreement to the exact result within errors.

The prediction has a residual µ-dependence, which would vanish in the formal limit that

the virtual quark q mass corrections are entirely dominated by their large order asymptotic

behavior. Therefore the dependence on the scale µ can be used as an uncertainty estimate

of our approximation.

In figure 4(a) we show the prediction for δ
(q)
Q,4(rqQ) for mq ≤ µ ≤ mQ (green bands) for

nQ = nq + 1 = n` + 1 = 5 (lower band) and nQ = nq + 1 = n` + 1 = 4 (upper band). The

prediction satisfies exactly the required boundary condition δ
(q)
Q,4(0) = 0 and eq. (2.11) for

rqQ = 1 and provides an interpolation for 0 < rqQ < 1 with an uncertainty of ±3% (for

rqQ . 0.1) or smaller (for rqQ > 0.1). To judge the quality of the prediction we apply the

same method at O(α3
s) to “predict” δ

(q)
Q,3(rqQ) which gives

δ
(q)
Q,3(rqQ) ≈ rqQ

[
δ
(q)
q,3(1) + 4 β

(nQ)
0 δ2(1) ln

(
µ

mq

)]
− 4β

(nQ)
0 δ2(rqQ) ln

(
µ

mQ

)
. (3.13)

The result for the prediction of δ
(q)
Q,3(rqQ) is shown in figure 4(b) for nQ = nq+1 = n`+1 = 5.

The green band illustrates again the range of predictions for µ-variations mq ≤ µ ≤ mQ,

and represents an uncertainty of ±10% (for rqQ . 0.1) or smaller (for rqQ > 0.1). Compared

to the O(α4
s) result, the larger µ variation we observe at O(α3

s) is expected because the

infrared sensitivity is weaker and the large order asymptotic behavior is less dominating at

the lower order. The red curve is the exact result for δ
(q)
Q,3(rqQ) obtained from the results

in ref. [31], see also eq. (A.4). We see that the prediction is fully compatible with the exact

result and that the uncertainty estimate based on the µ-variation is reliable. The prediction

for δ
(q)
Q,3(rqQ) for nQ = nq+1 = n`+1 = 4 has the same good properties but is not displayed

since it is numerically very close to the prediction for nQ = nq + 1 = n` + 1 = 5.
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Overall, the examination shows that the prediction and the uncertainty estimate for

δ
(q)
Q,4(rqQ) can be considered reliable. We can also provide a very simple closed analytic

expression by evaluating eq. (3.12) for µ = mQ, which gives

δ
(q)
Q,4(rqQ) (3.14)

≈ rqQ
[
δ
(q)
q,4(1)−

(
6β

(nQ)
0 δ

(q)
q,3(1) + 4 β

(nQ)
1 δ2(1)

)
ln (rqQ) + 12 δ2(1)

(
β
(nQ)
0 ln(rqQ)

)2 ]
= rqQ

[
(203915.± 32.)− 22962. nQ + 525.2n2Q

+ (−130946.+ 13831. nQ − 328.5n2Q) ln(rqQ)

+ (26599.1− 3224.1nQ + 97.70n2Q) ln(rqQ)2
]
.

The expression depends via the boundary condition of eq. (2.11) entirely on the coefficients

an(nq, nh) of eq. (2.5), which for this case describe the corrections to the heavy quark q

self energy for the case that all lighter quarks are massless, and the coefficients of the β-

function. The expression is shown as the black dashed lines in figure 4(a) for nQ = n`+1 = 5

(lower line) and nQ = n` + 1 = 4 (upper line). This approximation for δ
(q)
Q,4(rqQ) has a

simple overall linear behavior on the mass ratio rqQ = mq/mQ. The behavior is just a

manifestation of δ
(q)
Q,4(rqQ) being dominated by the large order asymptotic behavior due to

its O(ΛQCD) renormalon ambiguity which is related to linear sensitivity to small scales.

The overall linear dependence of δ
(q)
Q,4(rqQ) on mq arises since the mass of quark q represents

an infrared cut and thus represents the characteristic physical scale that governs δ
(q)
Q,4(rqQ).

This also explains the origin of the logarithms shown in eq. (3.14): they arise because all

virtual quark mass corrections in eqs. (2.4), (2.9) and (2.12) are defined in an expansion

in αs(mQ). We note that for the O(α3
s) virtual massive quark correction δ

(q)
Q,3(rqQ) these

aspects were already discussed in ref. [34] and later in ref. [27], where a direct comparison to

the explicit calculations from ref. [31] could be carried out. These analyses were, however,

using generic considerations and were not carried out within a systematic RG framework.

The expression of eq. (3.14) is a special case of the general statement that the asymp-

totic large order behavior of the coefficients δ
(q)
Q,n(rqQ) can be obtained from the relation

δ2(rqQ)

(
α
(nQ)
s (mQ)

4π

)2

+

∞∑
n=3

δ
(q)
Q,n(rqQ)

(
α
(nQ)
s (mQ)

4π

)n
(3.15)

≈ rqQ δ
(q)
q (1) = rqQ

δ2(1)

(
α
(nQ)
s (mq)

4π

)2

+
∞∑
n=3

δ(q)q,n(1)

(
α
(nQ)
s (mq)

4π

)n  ,
where on the r.h.s. of the approximate equality α

(nQ)
s (mq) has to be expanded in pow-

ers of α
(nQ)
s (mQ), and we have δ2(1) = 18.3189, δ

(q)
q,3(1) = 1870.79 − 82.1208nQ and

δ
(q)
q,4(1) = (203915.± 32.)− 22961.6nQ + 525.216n2Q. The terms δ

(q)
q,n(1) for n > 4 can be

obtained from using eqs. (2.10) and (2.11) together with the large order asymptotic form

of the coefficients an shown in eq. (2.26), giving

δ
(q)
q,n>4(1) ≈ aasyn (nq)− aasyn (nq + 1) = aasyn (nQ − 1)− aasyn (nQ) , (3.16)
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where we would like to remind the reader that for the case we consider here we have

nQ = nq + 1 = n` + 1. Our examination at O(α3
s) and O(α4

s) above showed that this

relation provides an approximation for δ
(q)
Q,4 within a few percent. For the higher-order

terms δ
(q)
Q,n with n > 4 it should be even more precise, and we therefore believe that it

should be sufficient for essentially all future applications in the context of studies of the

pole mass scheme.

To conclude we note that it is straightforward to extend eq. (3.12) from the case of

having only one massive quark q being lighter than heavy quark Q, i.e. nQ = nq+1 = n`+1,

to the case of having a larger number of lighter massive quarks. For example for the

case that there are two massive quarks lighter than quark Q (let’s say q and q′, in order

of decreasing mass) with nQ = nq + 1 = nq′ + 2 = n` + 2, the generalization of the

approximation formula (3.12) reads

δ
(q,q′)
Q,4 (rqQ, rq′Q) + δ

(q′)
Q,4(rq′Q) ≈ rqQ

{
δ
(q,q′)
q,4 (1, rq′q) + δ

(q′)
q,4 (rq′q)

+
[
6β

(nQ)
0

(
δ
(q,q′)
q,3 (1, rq′q) + δ

(q′)
q,3 (rq′q)

)
+ 4β

(nQ)
1

(
δ2(1) + δ2(rq′q)

)]
ln

(
µ

mq

)
+ 12

(
δ2(1) + δ2(rq′q)

) (
β
(nQ)
0 ln

(
µ

mq

))2
}

(3.17)

−
[
6β

(nQ)
0

(
δ
(q,q′)
Q,3 (rqQ, rq′Q) + δ

(q′)
Q,3(rq′Q)

)
+ 4β

(nQ)
1

(
δ2(rqQ) + δ2(rq′Q)

)]
ln

(
µ

mQ

)
− 12

(
δ2(rqQ) + δ2(rq′Q)

) (
β
(nQ)
0 ln

(
µ

mQ

))2

.

3.4 Pole mass differences

Using the MSR mass we have set up a conceptual framework to systematically quantify

the contributions to the pole mass of a heavy quark coming from the different momentum

regions contained in the on-shell self energy diagrams. The pole mass of a heavy quark

Q contains the contributions from all momenta, while the MS mass mQ(µ) and the MSR

mass mMSR
Q (R) contain the contributions from above the scales µ and R, respectively (see

figure 1). The MSR mass is the natural extension of the MS mass, which is applied for

scales µ > mQ, to scales R < mQ, and obeys a RG-evolution equation that is linear in

R, called R-evolution [23, 24]. The R-evolution equation quantifies in a way free of the

O(ΛQCD) renormalon the change in the MSR mass when contributions from lower momenta

are included into the mass when R is decreased, as long as R > ΛQCD.

In section 3.1 we discussed the matching corrections ∆m
(nQ+1→nQ)
Q (mQ) that arise

when the virtual loop contributions of quark Q are integrated out by switching from mQ

to mMSR
Q (mQ). In section 2.2 we discussed the MSR mass difference ∆m(nQ)(R,R′) =

mMSR
Q (R′) −mMSR

Q (R), which is determined from solving the R-evolution equation of the

MSR mass and which systematically sums logarithms of R/R′. In section 3.2 we examined

the matching between the QCD corrections to the MSR mass of the heavy quark Q and the
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MS mass of the next lighter massive quark q, δm
(Q→q)
q,q′,... (mq,mq′ , . . . ) accounting for the mass

effects of the quarks q, q′, . . . . This matching is based on heavy quark symmetry and the

small numerical size of δm
(Q→q)
q,q′,... (mq,mq′ , . . . ) reflects that the symmetry breaking effects

due to the finite quark masses are quite small. These two types of matching corrections

and the R-evolution of the MSR mass each are free of O(ΛQCD) renormalon ambiguities

and show excellent convergence properties in QCD perturbation theory.

An interesting application is the determination of the difference of the pole masses of

two massive quarks. Due to heavy quark symmetry, the differences of two heavy quark

pole masses are also free of O(ΛQCD) renormalon ambiguities and can therefore be deter-

mined to high precision. The matching corrections discussed above and the R-evolution

of the MSR mass allow us to systematically sum logarithms of the mass ratios that would

remain unsummed in a fixed-order calculation, and to achieve more precise perturbative

predictions [24]. Taking the example of the top and bottom mass one can then write the

difference of the top quark pole-MS mass relation and the bottom quark pole-MS mass

relation in the form[
mpole
t −mt

]
−
[
mpole
b −mb

]
= ∆m

(6→5)
t (mt)+∆m(5)(mt,mb)+δm

(t→b)
b,c (mb,mc) . (3.18)

The analogous relation for the bottom and charm quarks reads[
mpole
b −mb

]
−
[
mpole
c −mc

]
= ∆m

(5→4)
b (mb) + ∆m(4)(mb,mc) + δm(b→c)

c (mc) . (3.19)

Each of the mass differences is the sum of universal matching and evolution building blocks

which each can be computed to high precision, as shown in tables 1, 3, 4.

The resulting relations between the top, bottom and charm quark pole masses read

mpole
t −mpole

b = [mt −mb] + ∆m
(6→5)
t (mt) + ∆m(5)(mt,mb) + δm

(t→b)
b,c (mb,mc) , (3.20)

mpole
b −mpole

c = [mb −mc] + ∆m
(5→4)
b (mb) + ∆m(4)(mb,mc) + δm(b→c)

c (mc) , (3.21)

mpole
t −mpole

c = [mt −mc] + ∆m
(6→5)
t (mt) + ∆m(5)(mt,mb) + δm

(t→b)
b,c (mb,mc)

+ ∆m
(5→4)
b (mb) + ∆m(4)(mb,mc) + δm(b→c)

c (mc) , (3.22)

and can be readily evaluated from the highest order results given in tables 1, 3, 4 for the

case (mt,mb,mc) = (163, 4.2, 1.3) GeV:

mpole
t −mpole

b = 158.800 + (0.032± 0.001) + (9.331± 0.016) + (0.006± 0.001) GeV

= 168.169± 0.016 GeV , (3.23)

mpole
b −mpole

c = 2.9 + (0.004± 0.001) + (0.423± 0.017) + (0.004± 0.001) GeV

= 3.331± 0.017 GeV , (3.24)

mpole
t −mpole

c = 171.500± 0.024 GeV , (3.25)

where we have added all uncertainties quadratically. We can compare our results for the

bottom-charm pole mass difference mpole
b −mpole

c to the result obtained in ref. [36] using a

fixed-order expansion at O(α3
s) for the mass difference. Their result was based on a linear
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approximation for the virtual charm quark mass effects derived in ref. [34] which is similar

to eq. (3.13), but used a numerical calculation of the coefficient linear in rqQ from ref. [37].

In this analysis the pole mass difference was used to eliminate the charm quark mass as a

primary parameter in the predictions. They determined mpole
b −mpole

c = 3.401±0.013 GeV

and obtained mc = 1.22 ± 0.06 GeV from the fits using mb = 4.16 ± 0.05 GeV as input.

Their result for mpole
b − mpole

c is consistent with ours, but one should keep in mind that

logarithms of mc/mb were not systematically summed and that their result also included

nontrivial QCD corrections to semileptonic B-meson decay spectra for B → Xc`ν and

B → Xsγ which were only known to O(α2
s). The mutual agreement is reassuring (also

for the theoretical approximations made in the context of the B meson analyses) and in

particular shows that the summation of logarithms of mc/mb is not essential for bottom

and charm masses, which is expected, and that the O(α4
s) corrections are tiny, which

can also be seen explicitly in our results. The larger error we obtain in our computation

of mpole
b − mpole

c arises from the renormalization scale variation in ∆m(4)(mb,mc) which

includes scales as low as 0.6mc while in their analysis the lowest renormalization scale

was mc. Similar determinations of bottom and charm quark masses from B-meson decay

spectra were carried out in refs. [38, 39], and they are also consistent with our result for

mpole
b −mpole

c .

For the case (mt,mb,mc) = (163, 4.2, 0) GeV, the difference between the top and

bottom pole masses reads

mpole
t −mpole

b = 158.800 + (0.032± 0.001) + (9.331± 0.016) + (0.005± 0.001) GeV

= 168.168± 0.016 GeV . (3.26)

This result differs from eq. (3.23) by only 1 MeV showing that the effects of the finite

charm quark mass are tiny in the difference of the top and bottom pole masses. The

uncertainties in the pole mass differences are between 16 and 24 MeV and should be

considered as conservative estimates of the theoretical uncertainties due to missing higher

order corrections.

3.5 Lighter massive flavor decoupling

Another very instructive application of the RG framework to quantify and separate the

contributions to the pole mass of a heavy quark coming from the different physical mo-

mentum regions is to examine the effective massive flavor decoupling at large orders. It

was observed in ref. [27] that the sum of the known O(α2
s) and O(α3

s) charm quark mass

effects in the bottom quark pole-MS mass series expressed in four flavor coupling α
(4)
s (mb)

(where they amount to about 35 MeV) are essentially fully captured simply by expressing

the series in the three flavor coupling α
(3)
s (mb) (where they amount to only −2 MeV). This

observation entails that one can simply neglect the charm quark mass corrections by com-

puting the bottom quark pole-MS mass relation right from start in the three flavor theory

without any charm quark (which corresponds to an infinitely heavy charm quark). This

effective decoupling of lighter massive quarks is obvious and truly happening at asymp-

totic large orders. The importance of the observation made in ref. [27] was that the finite
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charm quark mass corrections in the decoupled calculation at O(α2
s) and O(α3

s) were so

tiny that there was no need to compute them explicitly in the first place. If this decoupling

property would be true in general (i.e. the remaining light quark mass correction become

negligible) it would represent a great simplification because it may make an explicit cal-

culation of the lighter massive quark corrections and also the summation of the associated

logarithms irrelevant.

Using the RG framework for the lighter massive flavor dependence of the pole mass

we can examine systematically in which way this effective lighter massive quark decou-

pling property is realized. In the following we analyze this issue for (mt,mb,mc) =

(163, 4.2, 1.3) GeV. We start with the effects of the charm quark mass in the bottom

pole-MS mass relation examined in ref. [27]. Applying the same considerations as for the

pole mass differences in section 3.4 for this case we can write down the relation

mpole
b −

[
mb +mb

∞∑
n=1

an(n` = 3, 0)

(
α
(3)
s (mb)

4π

)n ]
(3.27)

= ∆m
(5→4)
b (mb) + ∆m(4)(mb,mc) + δm(b→c)

c (mc) + ∆m(4→3)
c (mc)

−∆m(3)(mb,mc)

= (0.004± 0.001) + (0.423± 0.017) + (0.004± 0.001) + (0.005± 0.002)

− (0.434± 0.020) GeV

= 0.002± 0.026 GeV . (3.28)

The r.h.s. represents a computation of the charm quark mass corrections that remain within

a calculation where the charm mass effects are approximated by making the charm infinitely

heavy (i.e. n` = 3). The individual numerical results have been taken from the highest order

results in tables 1, 3 and 4, and for the final numerical result we have conservatively added

all uncertainties quadratically. We see that these remaining corrections are essentially

zero, fully confirming the observation of ref. [27]. This is not surprising since the bottom

and charm quark masses are similar in size and the ratio mc/mb does not lead to large

logarithms. So the summation of these logarithms which is contained in our computation

does not make an improvement, and the agreement with ref. [27] simply represents a

computational cross check of both calculations. The scale uncertainty is larger than the

one shown in ref. [27] because we considered variations of the renormalization scale down to

µ = 0.6mc, which were not considered by them, and because we do not attempt to eliminate

the strong correlation in scale-dependence between ∆m(4)(mb,mc) and ∆m(3)(mb,mc) from

these low scales here.

Let us now investigate the case of the bottom quark mass corrections in the top quark

pole-MS mass relation assuming a massless charm quark. We can simply adapt eq. (3.27)

through trivial modifications and obtain the relation

mpole
t −

[
mt +mt

∞∑
n=1

an(n` = 4, 0)

(
α
(4)
s (mt)

4π

)n ]
(3.29)

= ∆m
(6→5)
t (mt) + ∆m(5)(mt,mb) + δm

(t→b)
b,c (mb, 0) + ∆m

(5→4)
b (mb)

−∆m(4)(mt,mb)
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= (0.032± 0.001) + (9.331± 0.016) + (0.005± 0.001) + (0.004± 0.001)

− (9.114± 0.014) GeV

= 0.258± 0.021 GeV .

We see that using the approximation of an infinitely heavy bottom quark for a calculation

of the bottom mass effects in the top quark pole-MS mass relation gives a result that is

about 260 MeV too small.

We can now go one step further and also consider the case where the masses of both

the bottom and charm quark are accounted for. Generalizing the previous two calculations

to this case is straightforward and we obtain

mpole
t −

[
mt +mt

∞∑
n=1

an(n` = 3, 0)

(
α
(3)
s (mt)

4π

)n ]
(3.30)

= ∆m
(6→5)
t (mt) + ∆m(5)(mt,mb) + δm

(t→b)
b,c (mb,mc)

+ ∆m
(5→4)
b (mb) + ∆m(4)(mb,mc) + δm(b→c)

c (mc) + ∆m(4→3)
c (mc)

−∆m(3)(mt,mc) .

= (0.032± 0.001) + (9.331± 0.016) + (0.006± 0.001)

+ (0.004± 0.001) + (0.423± 0.017) + (0.004± 0.001) + (0.005± 0.002)

− (9.111± 0.032) GeV

= 0.694± 0.040 GeV .

In this case using the approximation of infinitely heavy bottom and charm quarks for a

calculation of the bottom and charm mass effects in the top quark pole-MS mass relation

gives a result that is almost 700 MeV too small.

Our results show that the approximation of computing the lighter heavy flavor mass

corrections in a theory where these heavy flavors are decoupled is an excellent approxima-

tion for the charm mass corrections in the bottom quark pole mass, but it is considerably

worse for the top quark, where the discrepancy even reaches the 1 GeV level. The reason is

that the decoupling limit can in general not capture the true size of the lighter quark mass

effects if the hierarchy of scales is large. One should therefore not use this approximation

to determine bottom or charm quark mass effects for the top quark.

4 The top quark pole mass ambiguity

4.1 General comments and estimation method

In this section we address the question of the best possible approximation and the ambiguity

of the top quark pole mass mpole
t using the RG formalism for the top mass described in

the earlier sections. As a reminder and for illustration we show in figure 5 mpole
t as a

function of the order obtained from the series for mpole
t −mMSR

t (mt) in powers of α
(5)
s given

in eq. (2.12) for massless bottom and charm quarks, where the central dots are obtained

for the default choice of renormalization scale µ = mt in the strong coupling and the error
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Figure 5. Top quark pole mass as a function of order obtained from the MSR mass mMSR
t (mt)

(black) and mt = mt(mt) = 163 GeV (gray) for massless bottom and charm quarks. The central

dots refer to the renormalization scale µ = mt for the strong coupling. The error bars arise from

renormalization scale variation mt/2 ≤ µ ≤ 2mt. The gray horizontal band represents the region

mpole
t = 173.10± 0.07, which indicates the top quark pole mass and its scale uncertainty obtained

from mMSR
t (mt) at the 8th order.

bars represent the scale variation mt/2 ≤ µ ≤ 2mt. The corresponding results from the

series for mpole
t − mt given in eq. (2.4) in powers of α

(6)
s , also for massless bottom and

charm quarks, are shown in gray. We have used the asymptotic form of the perturbative

coefficients shown in table 2 for the series coefficients beyond O(α4
s).

3 We note that focusing

on the approximation of massless bottom and charm quarks by itself is phenomenologically

valuable because it is employed for most current predictions in the context of top quark

physics, and since the analytic expressions are most transparent for this case.

The graphics illustrates visually the problematic features associated to the top quark

O(ΛQCD) pole mass renormalon, and in particular the specific properties of the series for

µ ∼ mt already mentioned in section 1: the minimal term of the series is obtained at order

nmin = 8, which according to the theory of asymptotic series is the order that provides

the best possible approximation for the top quark pole mass. Furthermore, the corrections

are numerically close to the eighth order correction for the orders in the range 6 to 10, i.e.

∆n ≈ 5, for which the partially summed series increases linearly with the order. According

to the theory of asymptotic series it is this region of orders that is relevant for the size of the

principle uncertainty of this best approximation. We also see two very important practical

issues appearing already at lower orders which can make dealing with the pole mass in mass

determinations difficult: first, the higher order corrections are much larger than indicated

by usual renormalization scale variations of the lower order prediction and, second, the

common renormalization scale variation at any given truncation order is not an appropriate

3The uncertainties of the normalization factors N
(nQ)

1/2 are about an order of magnitude smaller than the

renormalization scale variation of the series beyond O(α4
s) and therefore not significant for our analysis.
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tool to estimate the perturbative uncertainty. In this context it is easy to understand that

specifying a concrete numerical value for the principle uncertainty of the top quark pole

mass is non-trivial even if the series is known precisely to all orders. So to obtain a top

quark pole mass determination with uncertainties close to the principle uncertainty within

a phenomenological analysis based on a usual truncated finite order calculation may be

quite difficult. As a comparison let us recall the much better perturbative behavior of a

series that is free of an O(ΛQCD) renormalon ambiguity such as the MSR mass differences

∆m(nQ)(R,R′) of eq. (2.16) with numerical evaluations given in table 1.

Prior to this work the issue of the best possible estimate and the ambiguity of the

top quark pole mass were already studied in ref. [28]. They examined the pole-MS mass

relation of eq. (2.4) for massless bottom and charm quarks (i.e. nQ = nt = n` = 5) and

their analysis addressed the numerical uncertainty of the top quark pole mass accounting

for all series terms displayed in figure 5 for µ = mt. They adopted a prescription given in

ref. [14], which defined the top quark pole mass uncertainty as the imaginary part of the

inverse Borel integral of eq. (2.23), ∆m
(n`=5)
Borel , divided by π, which gives about 65 MeV.

Since this agrees in size with the minimal series term4 they argued that ∆m
(n`=5)
Borel /π (or the

size of the minimal term) is a reliable quantification of the top quark pole mass ambiguity,

which they finally specified as 70 MeV. Interpreting the specification like a numerical

uncertainty, this gives mpole
t = 173.10 ± 0.07, which is shown in figure 5 as the thin gray

horizontal band. The uncertainty band is about the same size as the renormalization scale

variation of the series truncated at the eighth order.

We believe that quoting 70 MeV for the top quark pole mass ambiguity for massless

bottom and charm quarks is too optimistic. Given (i) the overall bad behavior of the series,

(ii) that there is a sizable range of orders where the corrections have very similar size and

(iii) that the partially summed series increases linearly with the order in the range 6 to 10

(∆n ≈ 5), we see no compelling reason to truncate precisely at the order nmin = 8 and to

quote a number at the level of the scale variation of the truncated series or the size of the

correction at this order as the principle uncertainty. Our view is also supported by heavy

quark symmetry (HQS) [30] which states that the pole mass ambiguity is independent of

the mass of the heavy quark up to power corrections of O(Λ2
QCD/mQ). This is the first

aspect following from HQS we discussed in section 1. HQS requires that the criteria and

the outcome of the method used to determine the top quark pole mass ambiguity are

independent of the top mass value (as long as it is sufficiently bigger than ΛQCD). So it

is straightforward to carry out a test concerning HQS by changing the value of mt while

keeping µ/mt = 1 and checking whether the approach to estimate the ambiguity provides

stable results.

Concerning ref. [28] this check is best carried out in the five-flavor scheme for the

strong coupling, and we therefore evaluate the size of the minimal term in the series for

4In ref. [14] the order of the minimal series term nmin and the size of the minimal term ∆(nmin) were

not chosen from the set of the actual series terms but computed from the minimum of a quadratic fit to the

series terms in the vicinity of the minimum, so that their nmin was a non-integer value and their ∆(nmin)

value is slightly smaller than the minimal term in the series. There are neither practical nor conceptual

advantages of this procedure, and the numerical results are unchanged within their errors if ∆(nmin) is

taken as the minimal terms in the series.
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mpole
t −mMSR

t (mt). Adopting the values 163, 20, 4.2, 2 and 1.3 GeV for mt we obtain 62, 75,

91, 113 and 131 MeV for the minimal term ∆(nmin). This behavior is roughly described by

the approximate formula ∆(nmin) ≈ (4πα
(n`=5)
s (µ)/β

(n`=5)
0 )1/2Λ

(n`=5)
QCD , already mentioned

in section 1 and shows that the basic dependence on µ is logarithmic. We can even render

the minimal term arbitrarily small if we adopt for mt values much larger than 163 GeV. We

see that ∆m
(n`=5)
Borel /π, which is independent of the top mass value and therefore proportional

to the ambiguity, agrees with the size of the minimal term only for µ ∼ 163 GeV, but

disagrees for other choices. So the line of reasoning used for the analysis of the top quark

pole mass ambiguity in ref. [28] is not independent of the top quark mass value, and one has

to conclude that the ambiguity must be larger than ∆m
(n`=5)
Borel /π and certainly larger than

130 MeV, which is the size of the minimal term for a very small value of mt. Concerning the

quoted numbers, we emphasize that we still discuss the case of massless bottom and charm

quarks. From the relation ∆n×∆(nmin) ∝ π2Λ(n`)
QCD/β0 ∝ ∆mBorel we see in particular that

a reliable method consistent with HQS has to explicitly account for the range nmin±∆n/2

in orders for which the terms in the series have values close to ∆(nmin). We stress that

the latter issue is not at all new and has been known since the work of refs. [12, 13]. It

was also argued in [28] that their approach to estimate the size of the top quark pole mass

ambiguity is consistent concerning that issue. However, their approach did not account for

the actual size of ∆n, which is about 5 for the case discussed in [28] and also shown in

figure 5.

In the following subsections we apply a method to determine the best possible estimate

and the ambiguity of the top quark pole mass which explicitly accounts for the range

nmin ± ∆n/2 in orders where the ∆(n) are very close to ∆(nmin). It also accounts for

the practical problems in an order-by-order determination of the pole mass from a series

containing the O(ΛQCD) renormalon which we discussed above in the context of figure 5.

To describe the method we define, for a given series to calculate the top quark pole mass,

∆(n) ≡ mpole
t (n)−mpole

t (n− 1) , (4.1)

where mpole
t (n) is the partial sum at O(αns ) of the series for the top quark pole mass that

contains the O(ΛQCD) pole mass renormalon, and thus ∆(n) is the n-th order correction.

The method we use is as follows:

1. We determine the minimal term ∆(nmin) and the set of orders {n}f ≡ {n : ∆(n) ≤
f ∆(nmin)} in the series for a default renormalization scale, where f is a number

larger but close to unity.

2. We use half of the range of values covered by mpole
t (n) with n ∈ {n}f evaluated for

this setup and include renormalization scale variation in a given range as an estimate

for the ambiguity of the top quark mass. We use the midpoint of the covered range

as the central value.

While nmin, ∆(nmin) and ∆n each can vary substantially depending on which setup one

uses to determine mpole
t , the method provides results that are setup-independent and is

therefore consistent with HQS. Through the RG formalism we developed in the previous
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sections we can explicitly implement the other important requirement of HQS, namely

that the ambiguities of the pole masses of all heavy quarks agree. To do this we apply our

method for three different scenarios which differ on whether the bottom and charm quarks

are treated as massive or massless and we furthermore study the pole-MSR mass difference

for different values of R.

4.2 Massless bottom and charm quarks

For the case that the bottom and charm quarks are treated as massless we can calculate

the top quark pole mass from the top MSR mass mMSR
t (R) at different scales R ≤ mt.

Using the MS-MSR mass matching contribution ∆m
(6→5)
t (mt) of eq. (3.2) and R-evolution

from the scale mt to R of eq. (2.16) with nt = 5 active dynamical flavors one can write the

top quark pole mass as

mpole
t = mt + ∆m

(6→5)
t (mt) + ∆m(5)(mt, R) +R

∞∑
n=1

an(n` = 5, 0)

(
α
(5)
s (R)

4π

)n
, (4.2)

where the sum of the second and third term on the r.h.s. is just mMSR
t (R) − mt. The

terms ∆m
(6→5)
t (mt) and ∆m(5)(mt, R) are free of an O(ΛQCD) renormalon ambiguity and

can be evaluated to the highest order given in tables 1 and 3. We can then determine the

best estimate of the top quark pole mass and its O(ΛQCD) renormalon ambiguity from the

R-dependent series which is just equal to mpole
t −mMSR

t (R). The outcome of the analysis

using the method described in section 4.1 for mt = 163 GeV and R = 163, 20, 4.2 and

1.3 GeV and f = 5/4 is shown in the upper section of table 5.

The entries are as follows: the second column shows mMSR
t (R)−mt = ∆m

(6→5)
t (mt) +

∆m(5)(mt, R) at the highest order. The third and fourth column show the order nmin

and ∆(nmin) for the default renormalization scale µ = R for the cases R = 163, 20 and

4.2 GeV and µ = 2mc for R = 1.3 GeV. The values for ∆(nmin) for R = 163 and 20 GeV

have an uncertainty because for these cases nmin > 4 and the values for ∆(n > 4) are

determined from the asymptotic large order values given in table 2 which have a numerical

uncertainty from the normalization factor N
(5)
1/2 in eqs. (2.21). The fifth column shows the

sum of the perturbative corrections beyond the explicitly calculated O(α4
s) terms up to

order nmin showing the amount of extrapolation needed to obtain the best possible top

quark mass based on the asymptotic approximation. The sixth column shows the set of

orders {n}f=5/4 for which ∆(n) ≤ f ∆(nmin) and which are used for determining the best

estimate and the uncertainty of the top quark pole mass. The seventh column then contains

the best estimate and the ambiguity of the series for mpole
t −mMSR

t (R) using the method

from section 4.1. To obtain the uncertainties we used renormalization scale variation for

α
(5)
s (µ) in the range R/2 ≤ µ ≤ 2R for the cases R = 163, 20, 4.2 GeV and in the range

1.5 GeV ≤ µ ≤ 5 GeV for R = 1.3 GeV. For R = 1.3 GeV we always use renormalization

scales µ of the strong coupling that are larger than 1.5 GeV because the dependence on the

renormalization scale grows rapidly for smaller scales. The last column contains the final

result for mpole
t combining the results for mMSR

t (R)−mt and mpole
t −mMSR

t (R) where the

uncertainties of both are added quadratically to give the final number for the ambiguity of
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mt = 163 GeV, mb = mc = 0 GeV, n` = nt = 5

R mMSR
t (R)−mt nmin ∆(nmin)

∑nmin
n=5 ∆(n) {n}5/4

mpole
t

− mMSR
t (R) mpole

t

163 0.032(1) 8 0.062(3) 0.310(17) {6, 7, 8, 9} 10.054(157) 173.086(157)

20 8.038(9) 6 0.075(4) 0.150(8) {5, 6, 7} 2.140(166) 173.178(166)

4.2 9.363(16) 4 0.091 0 {3, 4, 5} 0.832(217) 173.195(218)

1.3 9.748(23) 3 0.098 0 {2, 3, 4} 0.394(186) 173.142(187)

mt = 163 GeV, mb = 4.2 GeV, mc = 0 GeV, n` = nt − 1 = 4

R

mpole
t −mpole

b

+ mMSR
b (R)−mt nmin ∆(nmin)

∑nmin
n=5 ∆(n) {n}5/4

mpole
b

− mMSR
b (R) mpole

t

163 0.258(21) 7 0.087(3) 0.324(11) {6, 7, 8, 9} 9.904(227) 173.162(228)

20 8.035(17) 5 0.104(3) 0.104(3) {4, 5, 6} 2.120(211) 173.155(212)

4.2 9.372(16) 4 0.135 0 {3, 4} 0.855(211) 173.227(212)

1.3 9.795(23) 2 0.124 0 {1, 2, 3} 0.331(214) 173.126(215)

mt = 163 GeV, mb = 4.2 GeV, mc = 1.3 GeV, n` = nt − 2 = 3

R

mpole
t −mpole

c

+ mMSR
c (R)−mt nmin ∆(nmin)

∑nmin
n=5 ∆(n) {n}5/4

mpole
c

− mMSR
c (R) mpole

t

163 0.694(40) 7 0.098(2) 0.355(8) {6, 7, 8, 9} 9.471(260) 173.165(263)

20 8.076(33) 5 0.116(3) 0.116(3) {4, 5, 6} 2.085(243) 173.161(245)

4.2 9.371(31) 3 0.154 0 {3, 4} 0.888(257) 173.259(259)

1.3 9.805(24) 2 0.128 0 {1, 2, 3} 0.354(243) 173.159(244)

Table 5. Details of the numerical results of our method to determine mpole
t for the cases of

massless bottom and charm quarks (upper section), massless charm quarks (middle section) and

finite bottom and charm quarks (lower section) and exploring different setups to determine mpole
t .

The final respective results for mpole
t are shown in the last column. See the text for details. All

numbers for masses and mass differences are in units of GeV. Errors are quoted in parentheses.

mpole
t . These results are also displayed graphically in figures 6(a)–6(d) as the gray hatched

horizontal bands.

In figures 6 we have also shown in black the results for mpole
t (n) over the order n for the

different setups where the dots are the results for the default renormalization scales that are

used to determine nmin, ∆(nmin) and {n}f . The error bars represent the range of values

at each order of the truncated series coming from the variations of the renormalization

scale of the strong coupling. The black dot at n = 0 visible in figures 6(c), 6(d) shows the

highest order result for mMSR
t (R).

We see that the results for the top quark pole mass mpole
t for the different R values

are fully compatible to each other. In particular, the ambiguity estimates based on our

method agree within ±15% and average to 182 MeV. Furthermore, the central values for

the best estimates vary by at most 110 MeV and average to 173.150 GeV. It is reassuring

that the spread of the central values is smaller than the size of the ambiguity. We em-

phasize that the consistency of our results for the different R values to each other cannot

be interpreted in any way statistically since the analyses for different R values are not
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Figure 6. Top quark pole mass mpole
t as a function of order taking mt = mt(mt) = 163 GeV

as input and using different methods to obtain the best possible estimate and the ambiguity. The

central dots are obtained for the default renormalization scales for the strong coupling and the error

bands represent the scale variation as explained in the text. The light colored hatched horizontal

bands bounded by equal colored lines show the best possible estimate for the respective method also

given in the last column in table 5. All results obtained for massless bottom and charm quarks are

in black, all results for (mb,mc) = (4.2, 0) GeV are in red, all results for (mb,mc) = (4.2, 1.3) GeV

are in blue. Panel (a) shows results for R = 163 GeV, panel (b) for R = 20 GeV, panel (c) for

R = 4.2 GeV and panel (d) for R = 1.3 GeV.

theoretically independent. The agreement just shows that our method is consistent since

the best estimate (and also the ambiguity) of the top quark pole mass is independent of R.

Interestingly our estimate for the ambiguity of the top quark pole mass agrees quite well

with Λ
(n`=5)
QCD = 166 MeV given in eq. (2.24).

As already pointed out in section 4.1, the minimal correction ∆(nmin) increases from

around 60 MeV for R = 163 GeV to about 100 MeV5 for R = 1.3 GeV. At the same time,

5This number is obtained for the default renormalization scale µ = 2mc = 2.6 GeV. In the short analysis

of section 4.1 we quoted 131 MeV for the size of the minimal term for R = 1.3 GeV, which was obtained for

µ = 1.3 GeV.
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the order nmin where the minimal correction ∆(nmin) arises decreases from nmin = 8 at

R = mt down to nmin = 4 and 3 for R = 4.2 and 1.3 GeV. Moreover, the contribution in

the best estimate for mpole
t from orders beyond n = 4 until order nmin decreases from about

310 MeV at R = mt to about 150 MeV at R = 20 GeV. For R scales around the bottom

quark mass and below, where nmin ≤ 4, there is no need any more to extrapolate beyond

the explicitly calculated four orders to get the best value for mpole
t . This information is

not just of academic importance but it is also relevant for phenomenology: The MSR mass

mMSR
t (R) for some low scale R can serve as a low-scale short-distance mass for a physical

application where the characteristic physical scale is R. Typical examples include the top

pair inclusive cross section at the production threshold where R ∼ mtαs ∼ 25 GeV [25],

or the reconstructed invariant top quark mass distribution where R is in the range of 5 to

10 GeV [22, 40, 41]. The behavior of the series for mpole
t −mMSR

t (R) thus reflects the typical

behavior of the QCD corrections to the mass for the respective physical applications. The

observations we make for the R-dependence of the behavior of the series show that the

best possible determination of the top quark mass from an observable characterized by

a low characteristic physical scale can in general be achieved at a lower order and also

involves smaller perturbative corrections compared to an observable characterized by high

characteristic physical scales (such as inclusive top pair cross sections at high energies or

virtual top quark effects). This general property is also reflected visually in the graphical

illustrations shown in figure 6.

We note that our numerical analysis has a rather weak overall dependence on the

choice of f and that the results change by construction in a non-continuous way. Using

f = 4/3 only the outcome for R = 20 GeV is modified to mpole
t −mMSR

t (R) = 2.100±0.206.

Using f = 6/5 only the outcome for R = 163 GeV is modified to mpole
t − mMSR

t (R) =

10.088 ± 0.123. This leaves the overall conclusion about the ambiguity of the top quark

pole mass unchanged and we therefore consider f = 5/4 as a reasonable default choice.

Comparing our results to those of ref. [28], we find that our estimate of the top quark

pole mass ambiguity of 180 MeV exceeds theirs of 70 MeV by a factor of 2.5. The discrep-

ancy arises since their result was only related to the size of the minimal term ∆(nmin) for

an R value close to 163 GeV and did not account for the number of orders ∆n for which

the ∆(n) are close to the minimal term ∆(nmin). For R = 163 GeV we have ∆n = 4 for

f = 5/4 and we see the discrepancy is roughly compatible with ∆n/2. Since for other

choices of R the values of ∆(nmin) and ∆n vary individually substantially (while their

product is stable) we believe that a specification of the top quark pole mass ambiguity of

70 MeV is not consistent with heavy quark symmetry.

4.3 Massless charm quark

For the case of a massive bottom quark and treating the charm quark as massless we

can calculate the top quark pole mass from the bottom MSR mass mMSR
b (R ≤ mb) using

the top-bottom mass matching contribution δm
(t→b)
b,c (mb, 0) of eq. (3.5) for mc = 0 in

combination with the top and bottom MS-MSR mass matching contributions, ∆m
(6→5)
t (mt)

and ∆m
(5→4)
b (mb) of eq. (3.2) and R-evolution, see eq. (2.16), with nt = 5 active dynamical
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mt = 163 GeV, mb = 4.2 GeV, mc = 0 GeV, n` = nt − 1 = 4

R mpole
t mpole

b mpole
c

163 173.162± 0.228 4.994± 0.227 —

20 173.155± 0.212 4.987± 0.211 —

4.2 173.227± 0.212 5.059± 0.211 —

1.3 173.126± 0.215 4.958± 0.215 —

mt = 163 GeV, mb = 4.2 GeV, mc = 1.3 GeV, n` = nt − 2 = 3

R mpole
t mpole

b mpole
c

163 173.165± 0.263 4.996± 0.263 1.665± 0.262

20 173.161± 0.245 4.992± 0.245 1.661± 0.244

4.2 173.259± 0.259 5.090± 0.258 1.759± 0.258

1.3 173.159± 0.244 4.990± 0.244 1.659± 0.243

Table 6. Upper section: best estimate for the top and bottom quark pole masses for the case

(mt,mb,mc) = (163, 4.2, 0) GeV for R = 163, 20, 4.2, 1.3 GeV. Lower section: best estimate for

the top, bottom and charm quark pole masses for the case (mt,mb,mc) = (163, 4.2, 1.3) GeV for

R = 163, 20, 4.2, 1.3 GeV. All numbers are in units of GeV.

flavors from mt to mb and with nb = 4 active dynamical flavors from mb to R. The resulting

expression for the top quark pole mass systematically sums all logarithms log(mb/mt) and

uses that the bottom quark pole-MSR mass relation, which specifies the bottom quark

pole mass ambiguity, fully encodes the top quark pole mass ambiguity due to heavy quark

symmetry. The expression for the top quark pole mass we use reads

mpole
t = mt + ∆m

(6→5)
t (mt) + ∆m(5)(mt,mb) + δm

(t→b)
b,c (mb, 0) + ∆m

(5→4)
b (mb)

+ ∆m(4)(mb, R) +R

∞∑
n=1

an(n` = 4, 0)

(
α
(4)
s (R)

4π

)n
, (4.3)

where the sum of the first four terms on the r.h.s. is just mpole
t −mpole

b +mb, using eq. (3.20),

and the sum of the fifth and sixth term is the difference of the bottom MSR and MS masses

mMSR
b (R)−mb. Both quantities are free of an O(ΛQCD) renormalon ambiguity and can be

evaluated to the highest order given in tables 1, 3 and 4. We can then study the uncertainty

of the top quark pole mass and its O(ΛQCD) renormalon ambiguity from the R-dependent

series which is just equal to mpole
b −mMSR

b (R).

The outcome of the analysis using the method described in section 4.1 for (mt,mb) =

(163, 4.2) GeV as well as R = 163, 20, 4.2, 1.3 GeV and f = 5/4 is shown in the mid-

dle section of table 5. Except for the second and seventh column the entries are anal-

ogous to the analysis for mb = mc = 0 in section 4.2. Here, the second column shows

mpole
t −mpole

b + mMSR
b (R) −mt and the seventh shows mpole

b −mMSR
b (R), which contains

the O(ΛQCD) renormalon ambiguity. The default choices and the ranges of variation for
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the renormalization scale in the strong coupling in the series for mpole
b − mMSR

b (R) are

the same as for our analysis for mb = mc = 0 in section 4.2 for the corresponding R val-

ues. The last column contains again the final result for mpole
t combining the results for

mpole
t −mpole

b +mMSR
b (R)−mt and mpole

b −mMSR
b (R) where the uncertainties of both are

added quadratically. The results are also displayed graphically in figures 6(a)–6(d) as the

light red hatched horizontal bands. In the upper section of table 6 we also show the best

estimate for the bottom quark pole mass mpole
b obtained for the respective R values, which

can be obtained using eq. (4.3) and the result for the top-bottom pole mass difference of

eq. (3.26).

In figures 6 we have shown in red the results for mpole
t (n) over the order n for the

different setups where the dots are again the results for the default renormalization scales

that are used to determine nmin, ∆(nmin) and {n}f . The error bars are the range of

values coming from the variations of the renormalization scale of the strong coupling.

The red dots at n = 0 visible in figures 6(c) and 6(d) show the highest order results for

mpole
t −mpole

b +mMSR
b (R).

We again see that the results for the top quark pole mass for the different R values

are compatible each other. The ambiguity estimates average to 217 MeV. Interestingly

this estimate for the ambiguity of the top quark pole mass roughly agrees with Λ
(n`=4)
QCD =

225 MeV given in eq. (2.25). This is larger than Λ
(5)
QCD = 166 MeV since the infrared

sensitivity of the top quark pole mass increases when the number of massless quarks is

decreased (i.e. β
(4)
0 > β

(5)
0 ). Furthermore, we observe that the central values for the top

quark pole mass cover a range that is compatible with case of a massless bottom quark. The

central values average to 173.168 GeV which is about 20 MeV larger than for a massless

bottom quark, which is, however, insignificant given the range of values covered by the

central values or even the size of the ambiguity. So the bottom quark mass does essentially

not affect the overall value of the top quark pole mass. We also note that the minimal

corrections ∆(nmin) are all larger than the corresponding terms for the case of massless

bottom and charm quarks. For R = 4.2 and 1.3 GeV they amount to about 130 MeV.

4.4 Massive bottom and charm quarks

We now, finally, consider the case that both the bottom and the charm quark masses

are accounted for. Since this situation involves three scales, it is the most complicated

concerning matching and evolution that systematically sums logarithms log(mt/mb) and

log(mb/mc). However, the case can be treated in a straightforward way by iterating the

top-bottom mass matching procedure of the previous section one more time concerning the

bottom-charm mass matching. The resulting formula for the top quark pole mass reads

mpole
t = mt + ∆m

(6→5)
t (mt) + ∆m(5)(mt,mb) + δm

(t→b)
b,c (mb,mc)

+ ∆m
(5→4)
b (mb) + ∆m(4)(mb,mc) + δm(b→c)

c (mc) + ∆m(4→3)
c (mc) (4.4)

+ ∆m(3)(mc, R) +R

∞∑
n=1

an(n` = 3, 0)

(
α
(3)
s (R)

4π

)n
.
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The expression combines the top-bottom and bottom-charm mass matching contributions

δm
(t→b)
b,c (mb,mc) and δm

(b→c)
c (mc) from eqs. (3.5) and (3.9), respectively, and the top,

bottom and charm MS-MSR mass matching contributions ∆m
(6→5)
t (mt), ∆m

(5→4)
b (mb)

and ∆m
(4→3)
c (mc) of eq. (3.2). Furthermore it contains contributions from R-evolution

with nt = 5 active dynamical flavors from mt to mb, with nb = 4 active dynamical flavors

from mb to mc and with nb = 3 active dynamical flavors from mc to R. We do not employ

any evolution to scales below mc due to instabilities of perturbation theory for the charm

pole-MSR mass relation at such low scales but we can explore scales above mc using the

R-evolution.

On the r.h.s. of eq. (4.4) the sum of the first seven terms is just mpole
t − mpole

c +

mc, using eq. (3.22), and the eighth term is the charm MS-MSR matching contribution.

Both quantities are free from an O(ΛQCD) renormalon ambiguity and can be evaluated

to the highest order given in tables 1, 3 and 4. We can then study the ambiguity of

the top quark pole mass due to the O(ΛQCD) renormalon from the R-dependent series

which is just equal to mpole
c −mMSR

c (R). This relation specifies the charm quark pole mass

ambiguity, and it fully encodes the top and bottom quark pole mass ambiguities due to

heavy quark symmetry.

We note that among all the terms shown in eq. (4.4) the contributions from the MSR

mass differences ∆m(5)(mt,mb), ∆m(4)(mb,mc) and ∆m(3)(mc, R), determined with R-

evolution, and the series proportional to R, which contains the O(ΛQCD) renormalon,

constitute the numerically most important terms. They exceed by far the contributions

from the matching corrections, which amount to only 50 MeV and, therefore, fully encode

the large order asymptotic behavior of the top quark pole-MS mass series mpole
t −mt as

defined in eq. (2.4) in the presence of finite bottom and charm quark masses. The large

order asymptotic form of the coefficients in the expansion in powers of α
(6)
s (mt) may then

be determined directly from these terms for R = mc using the analytic solution for the MSR

mass differences provided in eq. (4.2) of ref. [24] and expanding in α
(6)
s (mt). However, the

resulting series suffers from the large logarithms involving the ratios of the top, bottom and

charm quark masses, and is therefore less reliable for applications than the result shown

in eq. (4.4).

The outcome of the analysis using the method described in section 4.1 for

(mt,mb,mc) = (163, 4.2, 1.3) GeV, as well as R = 163, 20, 4.2, 1.3 GeV and f = 5/4 is

shown in the lower section of table 5. Except for the second and seventh column the en-

tries are analogous to the previous two analyses in sections 4.2 and 4.3. Here, the second

column shows mpole
t −mpole

c + mMSR
c (R) −mt and the seventh shows mpole

c −mMSR
c (R),

which contains the O(ΛQCD) renormalon ambiguity of the top quark pole mass. The default

choices and the ranges of variation for the renormalization scale in the strong coupling in

the series for mpole
c −mMSR

c (R) are the same as for the two previous analyses in sections 4.2

and 4.3 for the corresponding R values. The last column contains again the final result for

mpole
t combining the results for mpole

t −mpole
c +mMSR

c (R)−mt and mpole
c −mMSR

c (R) where

all uncertainties are added quadratically. These results are also displayed graphically in

figure 6(a)–6(d) as the light blue hatched horizontal bands. In the lower section of table 6

– 39 –



282 Chapter 8. On the Light Massive Flavor Dependence of the Pole Mass

J
H
E
P
0
9
(
2
0
1
7
)
0
9
9

we also show the best estimate for the charm and bottom quark pole masses mpole
c and

mpole
b , respectively, for the different R values, which can be obtained using eq. (4.4) and

the result for the top-bottom and top-charm pole mass difference of eqs. (3.20) and (3.22).

In figure 6 we have also shown in blue the results for mpole
t (n) over the order n for

the different setups where the dots are again the results for the default renormalization

scales that are used to determine nmin, ∆(nmin) and {n}f . The error bars are the range

of values coming from the variations of the renormalization scale of the strong coupling.

The blue dots visible in figures 6(c) and 6(d) at n = 0 shows the highest order result for

mpole
t −mpole

c +mMSR
c (R).

We see that the results for the top quark pole mass for the different R values are again

fully consistent to each other. The ambiguity estimates average to 253 MeV, which is more

than twice the 110 MeV ambiguity obtained in ref. [28]. The reason for the discrepancy

is the same as for the analysis for massless bottom and charm quarks already explained

in sections 4.1 and 4.2, and we therefore do not discuss it here further. Concerning the

size of the minimal corrections ∆(nmin), we find that they reach 116, 154 and 128 MeV for

R = 20, 4.2 and 1.3 GeV, respectively, each of which is larger than 110 MeV. As in the two

previous analyses our result for the ambiguity agrees very well with the corresponding value

of ΛQCD, given in eq. (2.24), which in this case is also Λ
(n`=3)
QCD = 253 MeV. This is larger

than the uncertainties we obtained for the cases discussed in the two previous analyses,

where either the bottom and charm quarks were massless or just the charm quark, and thus

again follows the pattern that the infrared sensitivity of the top quark pole mass increases

when the number of massless quarks decreases (i.e. β
(3)
0 > β

(4)
0 > β

(5)
0 ).

Furthermore, we find that the central values for the top quark pole mass cover a range

that is within errors in agreement with the two previous analyses. The range is, however,

shifted slightly upwards by about 70 MeV with respect to the case of massless bottom and

charm quarks. For the value of the average we have 173.186 GeV which is about 40 MeV

higher than the average 173.150 GeV we obtained for massless bottom and charm quarks.

This shift may represent a slight trend, but it is overall insignificant compared to the range

of values covered by the central values or the size of the ambiguity. This shows that the

charm quark mass, like the bottom quark mass, does not affect the value of the top quark

pole mass. We can compare to the result of ref. [28], where they found that the finite

bottom and charm quark masses increase the top quark pole mass by 80 ± 30 MeV, where

the 30 is their estimate for the uncertainty in their computation of the bottom and charm

mass effects. This is consistent with the dependence on the bottom and charm masses

we find in our analysis. Their prescription was based on a successive order-dependent

reduction of the effective flavor number in the series motivated by the decoupling property

observed in ref. [27]. It incorporated some basic features of the bottom and charm mass

corrections beyond the third order but is otherwise heuristic and does not systematically

sum logarithms of mb/mt and mc/mt. The consistency shows that concerning the estimate

of the top quark pole mass ambiguity and within errors their prescription provides an

adequate approximation.
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4.5 Overall assessment for the pole mass ambiguity

The overall outcome of the analyses above concerning the best possible estimates (and the

ambiguities) of the top quark pole mass and the pole masses of the bottom and charm

quarks is summarized as follows:

1. Heavy quark symmetry states that the ambiguity of a heavy quark pole mass is

independent of the mass of the heavy quark and that the ambiguities of the pole

masses of all heavy quarks are equivalent. Our method for estimating the ambiguity

is insensible to the masses of the heavy quarks and, within any given setup for the

heavy quark mass spectrum, obtains the same ambiguities for all heavy quark pole

masses. It is therefore fully consistent with heavy quark symmetry.

2. Our examinations for different setups for the spectrum of the masses of the bottom

and charm quarks show that the top quark pole mass ambiguity increases when the

number n` of massless quarks is decreased (which arises when the number of lighter

massive quarks is increased). The numerical size we find agrees very well with Λ
(n`)
QCD

defined in eqs. (2.24). So our studies show that the well-accepted statement that

“heavy quark pole masses have an ambiguity of order ΛQCD” can be specified to the

more precise statement that “the ambiguity of the heavy quark pole masses is Λ
(n`)
QCD,

where n` is the number of massless quarks”.

3. Considering the value of the top quark pole mass (and not its ambiguity) we find

essentially no dependence on whether the bottom and charm quarks are treated

massive or massless. This also implies that there is no dependence on actual values

of the bottom and charm quark masses (which are know to a precision of a few 10 MeV

in the MS scheme). Likewise we also find that the value of the bottom quark pole

mass has no dependence on whether the charm quark is treated massive or massless.

These observations are important because, although the pole mass concept depends,

due to the linear sensitivity to small momenta, intrinsically on the spectrum of the

lighter massive quarks, they imply that one can give the top and the bottom quark

pole masses a unique global meaning irrespective which approximation is used for the

bottom and charm masses. In such a global context, however, one has to assign the

largest value for ΛQCD as the ambiguity of the pole mass. This value is obtained for

finite bottom and charm quark masses and amounts to 250 MeV which we adopt as

our final specification of the top quark pole mass ambiguity.

5 Conclusions

In this work we have provided a systematic study of the mass effects of virtual massive

quark loops in the relation between the pole mass mpole
Q and short-distance masses such

as the MS mass mQ(µ) and the MSR mass mMSR
Q (R) [23, 24] of a heavy quark Q, where

we mean virtual loop insertions of quarks q with ΛQCD < mq < mQ. In this context it

is well-known that the virtual loops of a massive quark act as an infrared cut-off on the

virtuality of the gluon exchange that eliminates the effects of that quark from the large
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order asymptotic behavior of the series. This effect arises from the O(ΛQCD) renormalon

contained in the pole mass which means that the QCD corrections have a linear sensitivity

of small momenta that increases with the order in the perturbative expansion. The primary

aim of this work was to study this effect in detail at the qualitative and quantitative level.

We established a renormalization group formalism that allows to discuss the mass effects

coming from virtual quark loops in the on-shell self energy diagrams of heavy quarks in a

coherent and systematic fashion. We in particular examined (i) how the logarithms of mass

ratios that arise in this multi-scale problem can be systematically summed to all orders,

(ii) the large order asymptotic behavior and structure of the mass corrections themselves

and (iii) the consequences of heavy quark symmetry (HQS).

The basis of our formalism is that the difference of the pole mass and a short-distance

mass contains the QCD corrections from all momentum scales between zero and the scale

at which the short-distance mass is defined, which is µ for the MS mass mQ(µ) or R for the

MSR mass mMSR
Q (R). The MSR mass mMSR

Q (R), which is derived from self energy diagrams

like the MS mass, is particularly suited to describe the scale-dependence for momentum

scales R < mQ since its renormalization group (RG) evolution is linear in R, called R-

evolution [23, 24]. When the finite masses of lighter heavy quarks are accounted for, the

MSR mass concept allows to establish a RG evolution and matching procedure where the

number of active dynamical flavors governing the evolution changes when the evolution

crosses a mass threshold and where threshold corrections arise when a massive flavor is

integrated out. This follows entirely the common approach of logarithmic RG equations

as known from the nf flavor dependent µ-evolution of the strong coupling α
(nf )
s (µ) and

reflects the properties of HQS.

Due to heavy quark symmetry, the procedure allows for example to relate the QCD

corrections in the top quark pole-MS mass difference mpole
t − mt(mt) that are coming

from scales smaller than the bottom mass, to the bottom quark pole-MS mass difference

mpole
b −mb(mb). This relation can be used to generically study and determine the large order

asymptotic behavior and the structure of the lighter virtual quark mass corrections in the

pole-MS mass difference of a heavy quark Q. Within the RG framework we have proposed,

we find that the bulk of the lighter virtual quark mass corrections is determined by their

large order asymptotic behavior already at O(α3
s) (very much like the QCD corrections for

massless virtual quarks), which confirms earlier observations made in refs. [33, 34] and [27].

Using our RG framework and heavy quark symmetry we used this property to predict the

previously unknown O(α4
s) lighter virtual quark mass corrections to within a few percent

from the available information on the O(α4
s) corrections for massless lighter quarks without

an additional loop computation, see eq. (3.14). Furthermore we calculated the differences

of the top, bottom and charm quark pole masses with a precision of around 20 MeV, and

we analyzed in detail the quality of the coupling approximation of ref. [27], which works in

an excellent way for the charm mass effects in the bottom quark pole mass, where in the

context of the top quark, it fails.

The second aim of the paper was to use the formalism to determine a concrete numerical

specification of the ambiguities of the heavy quark pole masses and in particular of the

top quark pole mass. This is of interest because the top quark pole mass is still the most
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frequently used mass scheme in higher order theoretical predictions for the LHC top physics

analyses. The ambiguity of the pole mass is the precision with which the pole mass can

be determined in principle given that the complete series is known. This ambiguity is

universal (i.e. it exists in equivalent size in any context and cannot be circumvented) and

its size can therefore be quantified from the relation of the pole mass and any short-distance

mass alone for which all terms in the series can be determined to high precision. With the

renormalization group formalism we have proposed we carried out an analysis accounting

explicitly for the constraints coming from HQS. HQS states (i) that the ambiguity of a

heavy quark is independent of its mass, and (ii) that the QCD effects in the heavy quark

masses coming from momenta below the lightest massive quark are all equivalent, which

implies that the ambiguities of all heavy quarks are equal.

With our formalism both aspects were incorporated and validated in detail at the

qualitative and quantitative level. We considered different scenarios for the treatment of

the bottom and charm quark masses and employed a method to estimate the ambiguity

that does not depend on the mass of the heavy quark in a way that is consistent with

heavy quark symmetry. For the case of massless bottom and charm quarks we found

that the ambiguity of the top quark pole mass is 180 MeV, when the charm quark is

massless we found 215 MeV and when the finite masses of both the bottom and charm

quarks are accounted for we obtained 250 MeV. Numerically, the ambiguity turns out be

essentially equal to the hadronization scale Λ
(n`)
QCD, defined in eq. (2.24), where n` is the

number of massless quarks. Thus, our analysis allows to specify the well-known qualitative

statement “the heavy quark pole masses have an ambiguity of order ΛQCD” to the more

specific statement “the ambiguity of heavy quark pole masses is Λ
(n`)
QCD, where n` is the

number of massless quarks”. This dependence of the top quark pole mass ambiguity on

the number of massless flavors is fully consistent with the behavior expected from the pole

mass renormalon. Furthermore, we have found that there is no significant dependence of

the central value of the top quark pole mass on whether the bottom and charm quarks are

treated as massive or massless.

Our results for the ambiguities differ considerably from those of ref. [28]. They esti-

mated the top quark pole mass ambiguity as 70 MeV for the case that bottom and charm

masses are neglected and as 110 MeV when the bottom and charm masses are accounted

for. We have shown in detail in which ways these values are incompatible with heavy quark

symmetry and why our ambiguity estimates should be considered more reliable.

If one considers the top quark pole mass as a globally defined mass scheme valid for all

choices of approximations for the bottom and charm quark masses, one should assign it an

intrinsic principle ambiguity due to the O(ΛQCD) renormalon of 250 MeV. We stress, that

this intrinsic uncertainty refers to the best possible precision with which one can in princi-

ple theoretically determine the top quark pole mass, and does not account in any way for

issues unrelated to the pole mass renormalon in applications for actual phenomenological

quantities, which typically involve NLO, NNLO or even NNNLO corrections from pertur-

bative QCD. Furthermore, in order to achieve this theoretical precision it is required to

have access to orders where the corrections (in the relation involving the pole mass) be-

come minimal. The order where this happens in an actual phenomenological analysis also
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depends on the typical physical scale (i.e. the value of R) governing the examined quantity.

If the top quark mass is determined from a quantity which has a low characteristic physical

scale (e.g. top pair production close to threshold, kinematic endpoints, reconstructed top

invariant mass distributions) then the minimal term is reached at very low orders, which

may well be within the orders that can be calculated explicitly. If the top quark mass is

determined from a quantity which has a high characteristic scale of the order or the top

quark mass (e.g. total inclusive cross sections at high energies, virtual top quark effects)

then the minimal term is reached only at high orders, which are not accessible to full per-

turbative computations. This also explains why top mass sensitive observables involving

low characteristic physical scales are more sensitive for top quark mass determinations than

observables involving high characteristic physical scales. So reaching the uncertainties in

top quark pole mass determinations that come close to the ambiguity limit is in general

much harder for observables governed by high physical scales.

Currently, the most precise measurements of the top quark mass from the D0 and

CDF experiments at the Tevatron [42, 43] and the ATLAS and CMS collaborations at

the LHC [44, 45] use the top reconstruction method and already reach the level of 500 to

700 MeV. Projections for LHC Run-2 further indicate that this uncertainty can be reduced

significantly in the future and may reach the level of 200 MeV for the high-luminosity LHC

run [46]. The outcome of our analysis disfavors the top quark pole mass as a practically

adequate mass parameter in the theoretical interpretation of these measurements.

As a final comment we would like to remind the reader that all tricky issues concerning

the convergence of the perturbative series and the way how to properly estimate the ambi-

guity of top quark pole mass become irrelevant if one employs an adequate short-distance

mass definition. This may of course not mean in general that switching to a short-distance

mass scheme will automatically lead to smaller uncertainties simply because other unre-

solved issues may then dominate. The outcome of our analysis, however, implies that even

reaching a 250 MeV uncertainty for the top quark pole mass in a reliable way within a

practical application is difficult. This is because the O(ΛQCD) renormalon prevents us-

ing common ways such as scale variation for the truncated series to estimate theoretical

uncertainties, and can affect the behavior of the series already at low orders where the

corrections still decrease. It is therefore advantageous to abandon the pole mass scheme

in favor of an adequately chosen short-distance mass at latest when the available QCD

corrections for a mass sensitive quantity yield perturbative uncertainties in the pole mass

that become of the order of its ambiguity, which we believe is when they approach 0.5 GeV.
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A Virtual quark mass corrections up to O(α3
s)

The virtual quark mass corrections of O(α2
s) were determined in ref. [2] and read

δ2(1) = 8

(
π2

3
− 1

)
= 18.3189 (A.1)

δ2(r) =
8

9
π2 +

16

3
ln2 r − 16

3
r2
(

3

2
+ ln r

)
+

16

3
(1 + r)(1 + r3)

(
π2

6
− 1

2
ln2 r + ln r ln(1 + r) + Li2(−r)

)
(A.2)

+
16

3
(1− r)(1− r3)

(
−π

2

3
− 1

2
ln2 r + ln r ln(1− r) + Li2(r)

)
.

The expansion of δ2 for small r has the form δ2(r) = (8π2/3)r− 16r2 + (8π2/3)r3 + . . .. At

O(α3
s) the virtual quark mass corrections were determined semi-analytically in ref. [31] for

the case of one more massive quark q in the heavy quark Q self-energy. The corrections

from the insertions of virtual loops of two different massive quarks q and q′ were not

provided and are given in eq. (A.12). In the following we provide the results for the full set

of O(α3
s) virtual quark mass corrections using the results from ref. [31] in the expansion

for mq/mQ � 1 adapted to our notation. The expressions for general mq/mQ, which

are extensive, can be downloaded at https://backend.univie.ac.at/fileadmin/user_

upload/i_particle_physics/publications/hpw.m.

We consider the O(α3
s) virtual quark mass corrections to the pole-MS mass relation

of the heavy quark Q coming from n lighter massive quarks q1, q2, . . . qn in the order of

decreasing mass and n` additional quarks lighter than ΛQCD, which we treat as massless.

So, the number nQ of quark flavors lighter than quark Q is nQ = n+ n`. The expressions

for the functions δQ,3 defined in eqs. (2.10) and (2.13) can be written in the form

δ
(Q,q1,q2,...,qn)
Q,3 (1, rq1Q, . . . , rqnQ) = h(1) + (nQ + 1) p(1) +

n∑
i=1

w(1, rqiQ) , (A.3)

δ
(q1,q2,...,qn)
Q,3 (rq1Q, rq2Q, . . . , rqnQ) = h(rq1Q) + nQ p(rq1Q) +

n∑
i=2

w(rq1Q, rqiQ) , (A.4)

δ
(qm,qm+1,...,qn)
Q,3 (rqmQ, rqm+1Q, . . . , rqnQ) = h(rqmQ) + (nQ −m+ 1) p(rqmQ)

+

n∑
i=m+1

w(rqmQ, rqiQ) . (A.5)

All three formulae follow the same general scheme, where the number multiplying the

function p(r) is just the number of massive quarks in the superscript plus the number of

massless quarks, n`. We have displayed them nevertheless for clarity. The explicit form of

the functions h, p and w is

h(1) = 1870.7877 , (A.6)

h(r) = r (1486.55− 1158.03 ln r)
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+ r2 (−884.044− 683.967 ln r) + r3 (906.021− 1126.84 ln r)

+ r4 (225.158 + 11.4991 ln r − 80.3086 ln2 r + 21.3333 ln3 r) (A.7)

+ r5 (126.996− 182.478 ln r) + r6 (−22.8899 + 38.3536 ln r − 54.5284 ln2 r)

+ r7 (15.3830− 34.8914 ln r) + r8 (2.52528− 3.82270 ln r − 20.4593 ln2 r) +O(r9) ,

and

p(1) = −82.1208 , (A.8)

p(r) =
32

27

∫ ∞
0

dz

[
z

2
+
(

1− z

2

)√
1 +

4

z

]
P

(
r2

z

)(
ln z − 5

3

)
(A.9)

= r (−66.4668 + 70.1839 ln r) + r2 14.2222 + r3 (15.4143 + 70.1839 ln r)

+ r4 (−23.1242 + 18.0613 ln r + 15.4074 ln2 r − 4.74074 ln3 r)− 31.5827 r5

+ r6 (11.9886− 1.70667 ln r)− 4.17761 r7 + r8 (2.40987− 0.161088 ln r) +O(r9) ,

as well as

w(1, 1) = 6.77871 , (A.10)

w(1, r) = r2 14.2222− 18.7157 r3 + r4 (7.36885− 11.1477 ln r)

+ r6 (3.92059− 3.60296 ln r + 1.89630 ln2 r)

+ r8 (0.0837382− 0.0772789 ln r + 0.457144 ln2 r) +O(r9) , (A.11)

w(r1, r2) = p(r2) +
32

27

∫ ∞
0

dz

[
z

2
+
(

1− z

2

)√
1 +

4

z

]
P

(
r21
z

)
P

(
r22
z

)
, (A.12)

where

Π(x) =
1

3
− (1− 2x)

[
2−
√

1 + 4x ln

(√
1 + 4x+ 1√
1 + 4x− 1

)]
, (A.13)

P(x) = Π(x) + lnx+
5

3
. (A.14)
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In this article we present REvolver, a C++ library for renormalization group evolution and automatic 
flavor matching of the QCD coupling and quark masses, as well as precise conversion between various 
quark mass renormalization schemes. The library systematically accounts for the renormalization group 
evolution of low-scale short-distance masses which depend linearly on the renormalization scale 
and sums logarithmic terms of high and low scales that are missed by the common logarithmic 
renormalization scale evolution. The library can also be accessed through Mathematica and Python
interfaces and provides renormalization group evolution for complex renormalization scales as well.

Program summary
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precision based on fast-converging iterative algorithms and analytic all-order expressions. Matching 
relations for the strong coupling at flavor thresholds are computed in a way that gives equal results 
for upward and downward evolution. Core objects allow to define an arbitrary number of physical 
scenarios for strong coupling values and quark mass spectra, where options for precision and matching 
scales can be set freely, and values for quark masses in all common schemes including the pole mass 
can be extracted. All REvolver routines are implemented entirely in C++ and can be accessed through
Mathematica and Python interfaces.
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1. Introduction

Quark masses are fundamental parameters of quantum chromodynamics(QCD) and their precise determination in adequate schemes 
and at appropriate renormalization scales is of high interest for theoretical as well as experimental studies of many processes. These can 
be governed by energy scales ranging from a few GeV (e.g. for hadronic states) up to several hundred GeV and even TeV scales (e.g. for 
particle collisions that take place at the Large Hadron Collider). One needs to employ the renormalization group evolution equations to 
reliably relate the values of quark masses defined at such widely different energy scales. An interesting situation arises if the dynamical 
scale governing the quark mass dependence of an observable is much smaller than the quark mass itself. In this case, the common 
running MS mass scheme, which obeys a renormalization group equation with logarithmic scale dependence, cannot be employed for 
high-precision applications, because it is only meaningful for scales of the order or larger than the mass. Rather, so-called low-scale short-
distance masses must be used, which obey renormalization group equations with linear scale dependence. The numerical impact of the 
renormalization group evolution is particularly important for the top quark mass where, due to its large value, significant scale hierarchies 
can arise.

Here we present REvolver, a C++ library with routines that provide renormalization-group resummed conversions between quark 
mass schemes defined at different renormalization scales, including scales much lower than the mass, where low-scale short-distance 
masses are employed, as well as above the mass value, where the MS mass is used. The routines are based on the creation of so-called
Core objects, each of which representing a certain physical scenario for the heavy quark masses (charm, bottom and top quarks, as 
well as hypothetical heavier flavors), the number of massless quarks and the strong coupling αs . In a single session, an (in principle) 
arbitrary number of Core objects can be created and managed. Each Core object can then provide values for the quark masses in the 
most popular low-scale short-distance schemes as well as for the MS mass and the strong coupling at any (real or complex-valued) 
renormalization scale and in any flavor number scheme, consistently accounting for flavor threshold effects and the resummation of large 
logarithms of all kinds. The basis of the quark mass evolution equations for scales below the respective mass is the renormalization group 
equation of the natural MSR mass (here simply called the MSR mass), which was provided in Refs. [1] together with a full treatment of 
flavor matching corrections when the evolution crosses the thresholds related to lighter massive quarks [2]. Furthermore, for each Core
object, options can be set to specify the perturbative precision in the flavor matching and the renormalization group evolution. Using all 
available theoretical input in the literature, see Sec. 8 for a detailed listing, it is possible to relate the MS, MSR and most other low-scale 
short-distance quark masses with a theoretical precision of 10 to 20 MeV (neglecting any parametric uncertainties). Quark mass values 
in the pole scheme cannot be defined at the same level of precision due to the pole mass renormalon ambiguity which decreases the 
accuracy by an order of magnitude [3,2]. REvolver offers the possibility to set up Core objects using pole masses as an input or to 
extract pole mass values from a Core object, but it treats the pole mass as a derived quantity where the user has to specify the way 
in which the pole mass value is defined. Furthermore, REvolver provides various options to account for the asymptotic higher order 
corrections of the pole mass and the pole mass renormalon ambiguity. All REvolver routines are implemented entirely in C++ and can 
be accessed through Mathematica and Python interfaces.

There is an existing C++ library accompanied by a Mathematica package called CRunDec and RunDec [4,5], respectively, which 
already provide many functionalities included in the REvolver library. We have cross checked in detail that any theoretical (perturbative) 
input implemented in CRunDec and RunDec agrees with the corresponding one employed for REvolver. We have furthermore checked 
that the numerical output of the routines provided in CRunDec/RunDec is in agreement with the equivalent routines of REvolver. The
REvolver library, however, exceeds CRunDec/RunDec
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(i) by providing the Core concept that allows to automatically create, extend and manage an arbitrary number of scenarios for strong 
coupling values, mass spectra and theory settings, and to extract quark masses and the QCD coupling in all flavor number schemes 
and at all scales,

(ii) by accounting for the renormalization group resummation of large logarithms and lighter massive quark flavor thresholds when 
dealing with quark masses at renormalization scales smaller than the quark mass, as well as for low-scale short-distance masses,

(iii) by giving access to machine-precision numerical routines that provide quasi-exact solutions of the renormalization group equations 
for the running masses and the strong coupling at complex scales, and

(iv) by providing routines to determine the asymptotic series for the pole mass to an arbitrary order that allow to extract different pole 
mass definitions and to quantify the pole mass renormalon ambiguity with various methods.

The emphasis of all REvolver functionalities is to provide integrated and easy-to-use routines, while maintaining the possibility to 
deviate from default settings and specify all available options, useful for high-precision phenomenological and conceptual QCD studies 
aiming for uncertainties at the level of 10 to 20 MeV for short-distance masses.

This article is organized as follows: In Sec. 2 essential terminology used for the description of the REvolver package is explained. In 
Sec. 3 we succinctly review the MSR mass and the R-evolution concepts [1,6] which are essential for the resummation of the logarithms 
mentioned above in bullet point (ii). Section 4 provides general information concerning the REvolver installation and setting up the
C++, Mathematica and Python interfaces. The philosophy of the Core concept is explained in Sec. 5, and Sec. 6 provides a structured 
introduction to all available REvolver routines. In Sec. 7 a sizable number of pedagogical examples for applications of REvolver
routines are provided, partly using the routine’s default settings, partly using alternative optional parameter setting, to demonstrate the 
versatility of REvolver for important phenomenological applications in the literature. It is recommended that the user consults the 
examples shown in this section, which are also collected in a Mathematica notebook, a Jupyter Notebook using the Python interface, 
and a C++ source file provided with the REvolver package. In Sec. 8 important references are provided which were used as the source 
for the higher order corrections implemented for the strong coupling and the mass schemes supported by REvolver. Here, also a detailed 
citation recommendation for these higher order corrections is provided. Section 9 contains a summary. Finally, some details concerning the 
algorithms used for Core creation and the quasi-exact solution of renormalization group equations are given in Appendix A. In addition, a 
number of essential formulae for implementation-dependent quantities are provided which cannot be found in the literature in the form 
used in REvolver.

2. Terminology

This article employs a particular terminology when referring to renormalization-scale dependent mass schemes and the pole mass:

• Running quark mass in the n f -flavor scheme m(n f )
q (μ): Refers to the MS mass if the flavor number n f includes this massive quark, and 

the MSR mass otherwise. For example, the running top quark mass at the scale μ in the 6-flavor scheme m(6)
t (μ) refers to the MS

mass m(6)
t (μ), and the running top quark mass at the scale μ in the 4-flavor scheme m(4)

t (μ) refers to the MSR mass mMSR,(4)
t (μ).

• Standard running mass mq: Refers to the MS mass in the flavor number scheme where all lighter quarks along with this quark are 
treated dynamically, evaluated at the scale of this mass. For example, the standard running top mass is the 6-flavor MS quark mass 
evaluated at the scale of this top mass: mt ≡ m(6)

t (m(6)
t ). The mass dependence of all flavor-threshold corrections is expressed in terms 

of the standard running mass.
• Asymptotic pole mass: Refers to the pole mass value obtained from the running mass defined by summing the perturbative series to 

the order of the minimal correction.
• Order-dependent pole mass: Refers to the pole mass value obtained from the running mass by truncating the perturbative series at a 

specified order.

3. The MSR mass and R-evolution

The natural MSR mass of a massive quark defined in Ref. [1] (and called just the MSR mass here) plays a central role in REvolver
and is a renormalization scale and flavor-number-dependent low-scale short-distance mass. It is derived from the MS mass and treated 
as the natural extension of the MS mass for renormalization scales below the mass of the quark. This combination of the scale-dependent 
MS and MSR masses extends the well known concept of flavor-number dependent renormalization group evolution and flavor threshold 
matching for scales above the quark mass (where the MS mass scheme is appropriate) to lower scales. In contrast to usual logarithmic 
renormalization scale evolution (as known from the MS masses or the strong coupling), the MSR mass renormalization group evolution is 
linear. This is consequence of the linear dynamical scaling that arises when the off-shell massive quark quantum fluctuations are integrated 
out in the nonrelativistic limit. Together with the flavor number dependent strong MS coupling, the MS and MSR masses form the basis 
of the core concept of REvolver and allow to also resum large logarithms involving low-scale short-distance mass schemes other than the 
MSR mass. This functionality is used by default in the REvolver routines (but can also be switched off by the user on demand). The MSR 
mass [1,2,6] has already been used in a number of applications, but we still find it warranted to briefly review its main concepts in this 
section. For simplicity, we consider the case in which all n� quarks lighter than q are massless. The reader is referred to Ref. [2] for the 
case with massive lighter quarks.

To define the MSR mass, one starts with the relation between the standard running mass and pole mass,

mpole
q − mq = mq

∞∑
n=1

aMS
n (n�,nh)

[
α

(n�+nh)
s (mq)

4π

]n

, (1)
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where n f = n� + nh is the number of active flavors, with n� being the number of massless quarks and nh = 1 referring to the quark q. 
Since the MSR mass is employed for renormalization scales below mq , one integrates out the virtual heavy quark loops by setting nh = 0. 
This allows to define a renormalization scale R smaller than mq and the corrections to the pole mass having a linear dependence on R to 
implement a consistent nonrelativistic scaling behavior. The MSR mass is thus defined by furthermore setting mq → R:

mpole
q − mMSR,(n�)

q (R) = R
∞∑

n=1

aMS
n (n�,0)

[
α

(n�)
s (R)

4π

]n

. (2)

In contrast to the MS mass, which has only logarithmic dependence on the scale μ, the MSR mass has an additional linear dependence 
on R . The MS and MSR masses can be related perturbatively and unambiguously through Eqs. (1) and (2) because the pole mass in both 
equalities is identical.1 The resulting perturbative series for the difference of two MSR masses at different renormalization scales R1 and 
R2 is renormalon free, as long as it is expressed in powers of the strong coupling at the same renormalization scale. As a result, for 
disparate values of R1 and R2 large logarithms will appear. These logarithms can be consistently summed up with the renormalization 
group equation

− d

dR
mMSR,(n�)

q (R) = γ M
R [α(n�)

s (R)] =
∞∑

n=0

γ R
n (n�)

[
α

(n�)
s (R)

4π

]n+1

. (3)

In contrast to the logarithmic renormalization group equations for the MS mass and the strong coupling, it shows a linear power scaling
and has therefore been dubbed as the R-evolution equation. The anomalous dimension coefficients γ R

n (n�) can be calculated from the 
relation [see Eq. (6) for the definition of the QCD β-function coefficients βi ]

γ R
n (n�) = aMS

n+1(n�,0) − 2
n−1∑
j=0

(n − j)β j aMS
n− j(n�,0) . (4)

The coefficients of the R-evolution equation have the following explicit form:

γ R
0 (n�) = 16

3 , (5)

γ R
1 (n�) = 96.1039 − 9.55076 n� ,

γ R
2 (n�) = 1595.75 − 269.953 n� − 2.65945 n2

� ,

γ R
3 (n�) = (12319. ± 417.) − (9103. ± 10.)n� + 610.264 n2

� − 6.515 n3
� .

The uncertainties in the O(α4
s ) coefficient arise from the numerical uncertainties in the relation between the MS and the pole masses at 

this order. In A.4 we present an efficient algorithm to exactly integrate Eq. (3).
Adopting appropriate values for R and n� the MSR mass mMSR,(n�)

q (R) can be related in a renormalon-free manner to any other low-
scale short-distance mass without the appearance of large logarithms and can thus be used to also resum potentially large R-evolution 
logarithms in the relation of other low-scale short-distance mass schemes. In the presence of massive quarks with masses lighter than mq , 
the MSR mass has an n�-dependent renormalization group evolution and flavor threshold corrections in close analogy to the renormaliza-
tion group evolution of the strong coupling and the MS mass. This allows for the resummation of large logarithms involving the masses 
of the lighter massive quarks. For details we refer to Ref. [2].

4. Setup

There are three ways to access the functionalities of the REvolver library:

• via the C++ library directly, which might be most suitable for extensive automated tasks and to interface with other libraries and 
codes,

• via the Wolfram Mathematica [7] interface (using WSTP/MathLink), which is suitable for interactive tasks and for using in parallel 
with other Mathematica features,

• via the Python [8] interface (generated using SWIG [9]) for usage in scripts and interactive execution in Jupyter notebooks [10].

4.1. Installation

Note that slightly more detailed instructions for installing the code, including Windows-specific commands, are given in the
README.md file provided with the source code. Here we only describe the installation procedure for Linux and MacOS, and only for
REvolver itself (not for CMake and other auxiliaries).

For the compilation of REvolver a C++11 compatible compiler is needed. The recommended (and tested) choices are gcc on Linux, 
Apple Clang on MacOS and MinGW on Windows. It is expected that REvolver compiles on other platforms and with different compilers 
as well, although this has not been tested and we do not provide any specific instructions.

1 This is consistent since the two series on the RHS of Eqs. (1) and (2) have the same leading linear and mass-independent renormalon ambiguity.
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We provide a CMake script with various options controlling which interfaces and demonstration codes are built. To use the script, at 
least version 3.1 of CMake is required.

If REvolver is to be used via Mathematica, Wolfram Mathematica is required in a version which supports WSTP or MathLink.
For the Python interface, at least version 3 of Python has to be installed, including the development packages. We note that the

Python interface is currently supported only on Linux and MacOS.
After downloading the code to the local hard drive, open a command line interface, navigate to the directory code/ and run the 

commands

$ mkdir build
$ cd build/

In the next step, the CMake script will be executed. Depending on which interfaces are to be prepared, various flags can be set:

• wolfr determines if the Mathematica interface is prepared (default: OFF),
• py determines if the Python interface is prepared (default: OFF),
• cpp_demo determines if the C++ demo executable is built (default: ON).

The static REvolver C++ library is always compiled. Note that to compile the C++ demo executable the library Quadpack++ [11] is 
used. However, no additional steps are required by the user since the library is provided with REvolver. Note that the Quadpack++ 
library is only compiled if the flag cpp_demo is set to ON.

To execute the CMake script with default flags and compile the code, one has to run the terminal commands

$ cmake ..
$ make install

or in general

$ cmake [(-D <flag>={ON|OFF})...] ..
$ make install

where <flag> is a placeholder for one of the flags listed above. For example, to prepare the Mathematica interface, but not the 
compilation of the C++ demo code one would use

$ cmake -D wolfr=ON -D cpp_demo=OFF ..
$ make install

The directory code/build/ can be safely removed after the compiling is done. The resulting libraries and executables can be found 
at the following locations:

• the static C++ library file:
code/lib/libREvolver.a

• the MathLink/WSTP executable, ready to be loaded in a Mathematica notebook:
code/bin/REvolver

• the Python module file and dynamic library, ready to be imported in a Python script:
code/pyREvolver/lib/pyREvolver.py
code/pyREvolver/lib/_pyREvolver.so

• the C++ demo executable:
code/bin/examples

4.2. General usage

C++ interface
To use the REvolver C++ static library, the respective header file has to be included which is done via

#include REvolver.h

and the library has to be properly linked when compiling the code. After including the header file, the implemented classes and routines 
are available in the namespace revo and accessible with the scope resolution prefix revo:: unless the instruction using namespace 
revo; has been invoked, such that the resolution prefix is not necessary.

For a demonstration, we refer to the source file code/examples/examples.cpp and the related executable code/bin/exam-
ples (if cpp_demo=ON was set).

Mathematica interface
To load the WSTP executable in a Mathematica notebook, execute

Install["<path to executable>/REvolver"]

6
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Fig. 1. Schematic structure of the class revo::Core in C++: the class contains an instance of the class revo::Alpha as a member providing functionalities related to the 
strong coupling such as running and matching, and an instance of the class revo::Mass providing functionalities related to the quark masses such as running, matching 
and conversion. revo::Mass uses revo::Alpha for coupling evolution, and revo is the namespace where all relevant REvolver classes are defined.

with <path to executable> referring to the directory path where the executable is located. For future convenience it might be useful 
to execute

CopyFile["<path to executable>/REvolver",
$UserBaseDirectory <> "/Applications/REvolver"]

which copies the executable to the user base directory of Mathematica, making it possible to load the executable with the command

Install["REvolver"]

in the future.
For a demonstration of how to load REvolver in a Mathematica notebook and a general overview of the available functions, see 

the demonstration notebook code/examples/examples.nb provided with the package.

Python interface
The module can be loaded in a Python script or Jupyter notebook with the usual syntax

import pyREvolver

assuming that pyREvolver.py and the shared library file (*.so) are located in the same folder as the script or notebook, or have been 
added to the module search path with the following command

import sys
sys.path.append(’<path to pyREvolver.py>’)

For a demonstration of how to load and use the module, see the Jupyter notebook code/examples/examples.ipynb provided 
with the package.

5. Core structure

As described in the introduction, all functionalities of the library are centered around instances of the class revo::Core (simply 
called “Core objects” or “Cores” in the following) each representing a certain physical scenario for the quark mass spectrum and the 
strong coupling and from which numerical values for quark masses and the strong coupling in specified schemes and at specified scales 
can be extracted. In principle, the number of Core objects defined at the same time is only limited by the available memory, regardless 
of the interface used.

The schematic structure of the class revo::Core in C++ is depicted in Fig. 1: the class has objects of the classes revo::Alpha
and revo::Mass as members. The class revo::Alpha has various member functions related to the strong coupling like running, 
matching and for obtaining the QCD scale �QCD. The class revo::Mass has member functions related to the evolution and matching of 
the running masses as well as the extraction of quark mass values in specified schemes. It uses an instance of the class revo::Alpha
to obtain the necessary coupling values. The respective member objects of the revo::Core class can be accessed through the member 
functions revo::Core::alpha() and revo::Core::masses(), respectively. The class revo::Core itself represents the frame to 
access these member functions and provides additional functionalities related to setting up a physical coupling and quark mass spectrum 
scenario, and extending an existing scenario by adding additional heavier massive quarks.

Although in principle possible, helper classes such as revo::Mass and revo::Alpha are not meant to be used outside Core
objects. All available functionalities can (and should) be accessed through Core objects.

When using the Mathematica interface, the specific structure of the classes are not relevant since the wrapper hides most details 
to fit into the Wolfram language syntax. To preserve the possibility to have multiple Cores defined at the same time in Mathematica, 
a unique name has to be specified for each Core instance, which is referred to when extracting mass and coupling values or when 
extending scenarios.

For concrete usage and examples we refer to Secs. 6 and 7.

6. Implemented functions

In the following descriptions and examples we will assume that the namespace revo has been introduced in the C++ code with the 
instruction

using namespace revo;

7
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such that the scope resolution prefix revo:: can be omitted, and that in Python the module was loaded with

from pyREvolver import *

to keep code snippets uncluttered.
The syntax and interface structure in Python is the same as in C++, with a few exceptions:

• If a constant of an enum class type has to be provided as an input, the scope resolution operator :: has to be exchanged with _, 
e.g. the enumerator MSbar of type MScheme has to be provided using MScheme_MSbar instead of MScheme::MSbar.

• The C++ function Mass::mPole allows for two optional pointer-type inputs to provide the possibility of accessing several output 
values (see Sec. 6.2.3). In Python, instead, within the class Mass the additional member function mPoleDetailed is provided 
which returns a tuple of values. In Mathematica the same functionality is provided by the function MassPoleDetailed.

• C++ specific syntax cannot be used, e.g. initializing an std::vector with an initializer list.

We will treat the C++ and Mathematica interfaces on an equal footing, always stating the C++ function prototypes and definitions 
first with the Mathematica ones following. We will then briefly describe the inputs and outputs, and in most cases give short examples. 
If not stated otherwise, the related Python syntax is the same as in C++. Also, to focus on the essential functionalities first, we will 
present all commands without optional parameters at the beginning and describe additional options in a second step. Note that the given 
function prototypes do not always correspond exactly to the ones present in the source codes to make the descriptions more transparent, 
e.g. for template functions in C++ or type restrictions in Mathematica.

For a more detailed and technical documentation of the full functionality and interface structure of the C++ library, please consider 
reading the online doxygen documentation (see https://revolver-hep .gitlab .io /REvolver).

A detailed documentation of the functions accessible via the Mathematica interface is available through the Mathematica internal 
documentation.

6.1. Constructing a Core and accessing scenario parameters

In the following we describe how to construct Cores in the various interfaces and how to read out their scenario parameters. The 
scenario parameters of a Core uniquely reflect its physical scenario. They include the total flavor number, the flavor number scheme, 
value as well as scale of the strong coupling specified at Core creation, the running masses at reference scales, the flavor matching scales, 
and the parameters that specify the precision of the theoretical input and scheme choices. The latter include the perturbative orders of 
renormalization group equations and threshold matching relations, the lambda parameters setting variations in renormalization group 
equations, the variation related to the uncertainty of the perturbative 4-loop pole-MS mass coefficient, and the coefficients of the QCD 
β-function. All scenario parameters, except for coupling and quark mass values, acquire default values if not specified at Core creation.

6.1.1. C++ / Python only: RunPar and RunParV
In the C++ and Python interfaces, the RunPar struct

struct RunPar {
int nf;
double value;
double scale;

};

is used to collect the parameters of the running coupling and masses. RunPar structs contain the active number of flavors nf spec-
ifying the flavor number scheme, the parameter (coupling or mass) value value and the respective renormalization scale scale. All 
numbers referring to quantities with dimensions of energy handled by REvolver (e.g. masses, renormalization scales or �QCD) are under-
stood in GeV units.

The related type RunParV is an alias for std::vector<RunPar>, i.e. a collection of RunPars.
In the following C++ example we define the RunPar structs alphaPar and alphaPar2 specifying flavor number schemes, val-

ues and renormalization scales for the strong coupling, and the RunParVs mPar and mPar2 containing three RunPars each, specifying 
values for running masses of charm, bottom and top quarks. alphaPar sets a realistic value for the strong coupling α(5)

s (mZ ) = 0.1181, 
while alphaPar2 contains parameters to specify the strong coupling α(4)

s (4.2 GeV). mPar defines standard running masses with re-
alistic values of charm, bottom and top quarks, namely mc = 1.3 GeV, mb =4.2 GeV, and mt =163 GeV, while mPar2 defines values 
for different flavor number schemes and scales, specifically m(6)

c (163.0 GeV) = m(6)
c (163.0 GeV), m(4)

b (4.2 GeV) = mMSR,(4)

b (4.2 GeV), and 
m(5)

t (4.2 GeV) = mMSR,(5)
t (4.2 GeV). In the Python example we only define alphaPar and mPar for brevity.

C++ example
RunPar alphaPar = {5, 0.1181, 91.187};
RunPar alphaPar2 = {4, 0.22491680889566054, 4.2};

RunParV mPar;
mPar.push_back({4, 1.3, 1.3});
mPar.push_back({5, 4.2, 4.2});
mPar.push_back({6, 163.0, 163.0});

8



302 Chapter 9. REvolver

A.H. Hoang, C. Lepenik and V. Mateu Computer Physics Communications 270 (2022) 108145

RunParV mPar2;
mPar2.push_back({6, 0.6173718176865822, 163.0});
mPar2.push_back({4, 4.20502733598667, 4.2});
mPar2.push_back({5, 172.37293079716443, 4.2});

Python example
alphaPar = RunPar(5, 0.1181, 91.187)

mPar = RunParV(3)
mPar[0] = RunPar(4, 1.3, 1.3)
mPar[1] = RunPar(5, 4.2, 4.2)
mPar[2] = RunPar(6, 163.0, 163.0)

mPar2 = RunParV(3)
mPar2[0] = RunPar(6, 0.6173718176865822, 163.0)
mPar2[1] = RunPar(4, 4.20502733598667, 4.2)
mPar2[2] = RunPar(5, 172.37293079716443, 4.2)

6.1.2. Constructing Core objects with masses
The prototypes for the functions constructing Cores in C++ and Mathematica, respectively, are

Core::Core(int nTot, const RunPar& alphaPar,
const RunParV& mPar);

CoreCreate[CoreName_String, nTot_Integer, alphaPar_List,
mPar_List]

with the mandatory input nTot, specifying the total number of quark flavors in the scenario, as well as the input parameters for the 
strong coupling and the quark masses. In C++, the coupling and mass parameters are given by RunPar structs and std::vectors
RunParV, respectively, which are described in Sec. 6.1.1, while in Mathematica, the parameter collections are given by lists and lists 
of lists, respectively. The argument CoreName in Mathematica specifies the user-defined unique name of the created Core instance. 
The given masses must be sorted in increasing order with respect to their standard running mass values starting with the lightest. The 
number of massless quarks in a Core is equal to nTot minus the number of elements in mPar. To construct a Core without massive 
quarks, see Sec. 6.1.3.

C++ example
The instructions

Core core1(6, alphaPar, mPar);
Core core2(6, alphaPar2, mPar2);

construct two Core objects named core1 and core2, respectively, with a total flavor number of 6, and the parameters determining the 
strong coupling and masses contained in alphaPar, alphaPar2, mPar and mPar2 as defined in the example of Sec. 6.1.1. These are 
the minimal set of parameters that have to be specified to create Core objects.

Mathematica example
To construct the same Cores in Mathematica one can use

alphaPar = {5, amZdef, mZdef};
mPar = {{4, 1.3, 1.3}, {5, 4.2, 4.2}, {6, 163.0, 163.0}};
CoreCreate["core1", 6, alphaPar, mPar]

alphaPar2 = {4, 0.22491680889566054, 4.2};
mPar2 = {{6, 0.6173718176865822, 163.0},

{4, 4.20502733598667, 4.2},
{5, 172.37293079716443, 4.2}};

CoreCreate["core2", 6, alphaPar2, mPar2]

using the predefined parameters amZdef = 0.1181 for the strong coupling and mZdef = 91.187 for the Z-boson mass.

Optional parameters
The Core constructor allows to set a number of optional parameters to control the flavor matching scales, the perturbative order of 

matching relations and renormalization group equations, to perform scale variation of the renormalization group equations, and to vary 
the 4-loop pole-MS mass coefficient within its error band. The values of these optional parameters are a defining property of the physical 
scenario represented by a Core object and respected by all functionalities related to numerical values of the strong coupling and the 
running masses.

The full C++ constructor prototype is

9
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Core::Core(int nTot, const RunPar& alphaPar,
const RunParV& massPar,
const doubleV& fMatch = doubleV(),
int runAlpha = kMaxRunAlpha,
double lambdaAlpha = 1.0,
int orderAlpha = kMaxOrderAlpha,
int runMSbar = kMaxRunMSbar,
double lambdaMSbar = 1.0,
int orderMSbar = kMaxOrderMSbar,
int runMSR = kMaxRunMSR,
double lambdaMSR = 1.0,
int orderMSR = kMaxOrderMSR,
double msBarDeltaError = 0.0);

with doubleV being an alias for std::vector<double> set by REvolver. If one of the optional parameters shown in the constructor 
above is explicitly specified, all parameters appearing prior in the argument list must be specified as well. The values kMaxRunAlpha,
kMaxOrderAlpha, kMaxRunMSR, kMaxOrderMSR, kMaxRunMSbar and kMaxOrderMSbar are predefined constants representing 
the respective defaults. In the Mathematica interface, the optional parameters of the same name can be set individually via the options 
parameter syntax, i.e. by adding opt->val after the last regular function input, as shown in the examples below.

The meaning of the optional parameters is as follows:

• fMatch: a vector / list containing elements {f1, f2, ...}, where fn specifies that the flavor matching scale μn for the n-th 
lightest massive quark threshold is fn times the standard running mass: μn = fn× mn .
Default: all fn are set to 1.0. (Note that the mass dependence of the flavor threshold corrections is expressed in terms of the 
standard running masses as well. The specification to use a different mass scheme to parameterize the flavor threshold corrections is 
not supported.)

• runAlpha: the loop order used for the running of the strong coupling. Default: highest available order which is 5.
• lambdaAlpha: a parameter probing the renormalization scale dependence of the QCD β-function. With respect to the perturbative 

series of the β-function truncated at the order set by runAlpha (used for the value 1.0), a (runAlpha+1) order term is estimated 
from renormalization scale variation (when a value different from 1.0 is specified): the estimate is obtained by expanding the original 
perturbative series β[αs(μ)] (truncated at order runAlpha) in terms of αs(lambdaAlpha×μ), truncating at order runAlpha. The 
result is expanded in αs(μ) truncating again at order (runAlpha+1). A variation around 1.0 of O(±10%) leads to an adequate 
uncertainty estimation for the known lower orders of the β-function, so that variations exceeding this range should be avoided. 
Default: 1.0.

• orderAlpha: the loop order used for the strong coupling flavor threshold matching relations. The renormalization scale dependence 
of these matching relations is precise to loop order orderAlpha and independent of the value specified for runAlpha. Default: 
highest available order which is 4.

• runMSbar: loop order used for the MS mass running. Default: highest available order which is 5.
• lambdaMSbar: a parameter probing the renormalization scale dependence of the anomalous dimension γ of the MS mass in anal-

ogy to the parameter lambdaAlpha. The variation is performed by expanding the original series for γ [αs(μ)] (truncated at order
runMSbar) in terms of αs(lambdaMSbar × μ), truncating at order runMSbar. A variation around 1.0 of O(±10%) leads to an 
adequate uncertainty estimation for the known lower orders of γ , so that variations exceeding this range should be avoided. Default: 
1.0.

• orderMSbar: loop order used for the flavor threshold matching relations of the MS masses. The renormalization scale dependence 
of these matching relations is precise to loop order orderMSbar and independent of the values specified for runAlpha and or-
derAlpha. Default: highest available order which is 4.

• runMSR: the loop order used for the MSR mass running. Default: highest available order which is 4.
• lambdaMSR: a parameter probing the renormalization scale dependence of the anomalous dimension γ R of the MSR mass in analogy 

to the parameters lambdaAlpha and lambdaMSbar. The variation is performed by expanding the original γ R [αs(R)] series (trun-
cated at order runMSR) in terms of αs(lambdaMSR× R), truncating at order runMSR. A variation around 1.0 by factors of around 
0.5 and 2 leads to an adequate uncertainty estimation for the known lower orders of the γ R , so that variations exceeding this range 
should be avoided. Default: 1.0.

• orderMSR: the loop order used for the flavor threshold matching relations of the MSR masses associated to the massive quark itself 
and all lighter massive quarks. The renormalization scale dependence of these matching relations is precise to loop order orderMSR
and independent of the value specified for runMSR, runAlpha and orderAlpha. Default: highest available order which is 4.

• msBarDeltaError: controls the error of the 4-loop coefficient in the pole-MS mass relation. Should be varied between −1 and 1
to scan the standard deviation as quoted in Ref. [12]. Default: 0.0.

• precisionGoal: the parameter setting the relative precision of all convergent infinite sums and iterative algorithms. The input 
value is clipped to the range [10−6, 10−15]. Default: 10−15 which we refer to as machine precision. The default should be adequate for 
most applications, but a lower precision goal may be specified for improving speed.

The quark mass dependence of all flavor matching relations (for the strong coupling and the running masses) is expressed in terms of 
the corresponding standard running masses mq . Changing this to an arbitrary mass scheme is not supported in REvolver. This concerns 
flavor threshold matching as well as perturbative reexpansions of the strong coupling in other flavor number schemes. The resulting 
numerical differences are, however, tiny and smaller than the corresponding perturbative uncertainties.
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C++ example
The instruction

Core core3(6, alphaPar, mPar, {2.0, 1.0, 1.0});

constructs a Core object named core3 with a total flavor number of 6 and the parameters specifying the strong coupling and masses 
contained in alphaPar and mPar, respectively, as defined in the example of Sec. 6.1.1. The matching scale of the flavor threshold related 
to the lightest massive particle is 2 × mc = 2.0 × 1.3 GeV.

Mathematica example
The command

CoreCreate["core3", 6, alphaPar, mPar,
fMatch->{2.0, 1.0, 1.0}]

has the same effect as the analogous C++ example, using the lists alphaPar and mPar defined in the previous example of this section.

6.1.3. Constructing Core objects without massive quarks
The functions with the prototypes

Core::Core(const RunPar& alphaPar);

CoreCreate[CoreName_String, alphaPar_List]

are used to construct a Core object with massless quarks only and without specifying any optional parameters. The parameters are 
analogous to the massive case described in Sec. 6.1.2.

Optional parameters
The full C++ constructor prototype for a Core with only massless quarks is

Core::Core(const RunPar& alphaPar,
int runAlpha = kMaxRunAlpha,
double lambdaAlpha = 1.0,
const doubleV& beta = doubleV());

where the optional variables runAlpha and lambdaAlpha are analogous to the massive case described in Sec. 6.1.2 and can be set in
Mathematica using option parameters. With the optional input beta (which is a constant reference to a std::vector<double> of 
arbitrary length) one can specify an arbitrary number of custom β-function coefficients. Their default values are the common MS QCD 
β-function coefficients up to 5 loops with all higher order coefficients set to zero. These are defined based on the β-function form

μ
dαs(μ)

dμ
= dαs(μ)

d ln(μ)
= βQCD(αs(μ)) = −2αs(μ)

∞∑
n=0

βn

[
αs(μ)

4π

]n+1

, (6)

where the elements of the C++ container beta correspond to the ordered list of coefficients β0, · · · , βn . Note that adding masses to Core
objects with custom β-function coefficients is not supported and that, depending on the choice of runAlpha not all coefficients specified 
by the user may be used.

In Mathematica the functionality of custom QCD β-function coefficients can be used with

CoreCreate[CoreName_String, alphaPar_List, beta_List]

with beta being the list of β-function coefficients and the additional option parameters already explained before.

6.1.4. Mathematica only: listing and deleting Cores
CoreList[]
CoreDelete[CoreName_String]
CoreDelete[CoreNames_List]
CoreDeleteAll[]

These commands list the names of the Cores currently defined, and delete specific or all Cores, respectively. The argument of
CoreDelete is a string referring to a Core name or a list containing several Core names.

Example
In[]:= CoreList[]
Out[]= {core1, core2, core3}

In[]:= CoreDelete["core3"]
CoreList[]

Out[]= {core1, core2}
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where the Core named core3 has been deleted from memory. We explicitly show In[] and Out[] to separate in- from out-put and 
assumed that definitions from previous examples are still valid.

6.1.5. Accessing Core parameters
A Core represents a certain physical scenario for the strong coupling and the quark mass spectrum that also depends on the theoretical 

approximations and conventions implemented (with optional/default parameters) specified at the time the Core was created. The scenario 
parameters of a Core (coupling, quark masses, theoretical approximations and conventions) unambiguously specify a given scenario and 
can be accessed by dedicated routines. Note that the scenario parameters of a Core for the strong coupling depend on the way how the 
strong coupling was specified when the Core has been created. Therefore it is possible to create two physically equivalent Cores with 
differing scenario parameters for the strong coupling.

While in C++ the scenario parameters of Core objects are returned from separate functions, some Mathematica commands print 
collections of them. The respective function prototypes in C++ are

int Core::nTot() const;
const RunPar& Alpha::defParams() const;
const doubleV& Core::standardMasses() const;
const doubleV& Core::fMatch() const;
int Core::getOrder(OrderPar para) const;
double Core::getLambda(LambdaPar para) const;
double Core::msBarDeltaError() const;
const doubleV& Core::betaCoefs(int nf) const;

returning the total number of flavors, the defining RunPar related to the coupling, an std::vector of the standard running masses in 
increasing order, an std::vector with the fn factors specifying the flavor matching scales, the perturbative orders used for coupling 
and mass evolutions, the lambda scaling parameters set for coupling and mass evolution, the variation parameter of the 4-loop coefficient 
in the pole-MS evolution, and the β-function coefficients in the nf-flavor number scheme.

The function inputs of the types defined as

enum class OrderPar {
runAlpha,
orderAlpha,
runMSbar,
runMSR,
orderMSbar,
orderMSR

};

and

enum class LambdaPar { lambdaAlpha, lambdaMSbar, lambdaMSR };

i.e. the enumerators of type OrderPar and LambdaPar, respectively, govern to which evolution (coupling, MS, MSR) or matching 
procedure the output of the functions getOrder and getLambda refers to.

In Mathematica, the parameters discussed above can be extracted using the functions

CoreParams[CoreName_String]
CoreParamsDetail[CoreName_String]
BetaCoefs[CoreName_String]

CoreParams returns from the specified Core a list containing the total number of flavors, the flavor number scheme, value and renor-
malization scale of the strong coupling specified at Core creation, and the standard running masses in increasing order. CoreParamsDe-
tail returns the coupling and mass values at all flavor matching scales (in the flavor schemes above as well as below the corresponding 
threshold), the flavor number scheme, value as well as scale of the strong coupling specified at Core creation, and all optional parameters 
set by CoreCreate and described in the C++ description above. BetaCoefs returns the β-function coefficients in all relevant flavor 
number schemes with the normalization as given in Eq. (6).

In addition to just printing the parameters, CoreParamsDetail allows for an optional parameter to which the parameters are saved 
as a nested list. The corresponding function prototype is

CoreParamsDetail[CoreName_String, output_Symbol]

where output is the symbol in which the list is stored.

C++ example
The instructions

core1.nTot();
core1.getOrder(OrderPar::runAlpha);

12
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return the total number of flavors and the perturbative order used in the running of the strong coupling, respectively, for the Core
named core1. They correspond to the values (int)6 and (int)5, respectively, given the definition of core1 from the C++ example 
of Sec. 6.1.2.

Mathematica example
In the following we show how the output of the functions CoreParams and BetaCoefs looks like for the Core named core1

given in the Mathematica example of Sec. 6.1.2:

In[]:= CoreParams["core1"]
Out[]= {6, {5, 0.1181, 91.187}, 1.3, 4.2, 163.}

showing the list containing the total number of flavors, the flavor number scheme, value and renormalization scale of the strong coupling 
given at Core creation, and the standard running masses in increasing order; and

In[]:= BetaCoefs["core1"]
Out[]= nl = 3: {9.,64.,643.833,12090.4,130378.}

nl = 4: {8.33333,51.3333,406.352,8035.19,58310.6}
nl = 5: {7.66667,38.6667,180.907,4826.16,15470.6}
nl = 6: {7.,26.,-32.5,2472.28,271.428}

showing the β-function coefficients in the relevant flavor number schemes.
The output of the function CoreParamsDetail is more extensive than that of CoreParams, giving

In[]:= CoreParamsDetail["core1"]
Out[]= ⎛

⎜⎜⎜⎝
[core1, 6] m1-threshold m2-threshold m3-threshold
aS-values {0.385234, 0.383676} {0.224917, 0.224684} {0.108577, 0.108555}
m1-values {1.30636, 1.3} {0.947058, 0.945337} {0.617575, 0.617372}
m2-values {4.64086, 4.62912} {4.20503, 4.2} {2.7438, 2.7429}
m3-values {172.819, 172.807} {172.383, 172.373} {163.032, 163.}

⎞
⎟⎟⎟⎠

aS input: {5,0.1181,91.187}
Matching f-factors: {1.,1.,1.}
runAlpha: 5
lambdaAlpha: 1.
orderAlpha: 4
runMSbar: 5
lambdaMSbar: 1.
orderMSbar: 4
runMSR: 4
lambdaMSR: 1.
orderMSR: 4
msBarDeltaError: 0.
precisionGoal: 1.*10^-15

for the Core named core1. The set of printed values represents the full physical content of a Core. Creating a new Core from this 
output in an arbitrary way leads to a physically equivalent core. So Cores are created in a self-consistent way. This is made possible 
because REvolver’s algorithm to solve the renormalization group evolution for the strong coupling provides (machine precision) exact 
solutions and because its algorithm for the flavor matching is self-consistent, see the routines described in Sec. 6.2.1. Therefore, all massive 
quarks consistently affect each others flavor number scheme dependent running values depending on the parameters specified at Core
creation.

For a demonstration, consider the output of CoreParamsDetail of the Core named core2

In[]:= CoreParamsDetail["core2"]
Out[]= ⎛

⎜⎜⎜⎝
[core2, 6] m1-threshold m2-threshold m3-threshold
aS-values {0.385234, 0.383676} {0.224917, 0.224684} {0.108577, 0.108555}
m1-values {1.30636, 1.3} {0.947058, 0.945337} {0.617575, 0.617372}
m2-values {4.64086, 4.62912} {4.20503, 4.2} {2.7438, 2.7429}
m3-values {172.819, 172.807} {172.383, 172.373} {163.032, 163.}

⎞
⎟⎟⎟⎠

aS input: {4,0.224917,4.2}
Matching f-factors: {1.,1.,1.}
runAlpha: 5

13
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lambdaAlpha: 1.
orderAlpha: 4
runMSbar: 5
lambdaMSbar: 1.
orderMSbar: 4
runMSR: 4
lambdaMSR: 1.
orderMSR: 4
msBarDeltaError: 0.
precisionGoal: 1.*10^-15

which is (apart from the Core name and the strong coupling specifications at Core creation) exactly the same. In fact, the numbers used 
to create core2 in the examples of Sec. 6.1.2 have been taken from the output of CoreParamDetails["core1"].

6.2. Extraction of masses and couplings

The following section presents the routines to extract the values for the strong coupling and the running quark masses in any flavor 
number scheme at any scale, as well as values in other quark mass schemes from a given Core.

6.2.1. Running masses and strong coupling
The functions with the prototypes

double Mass::mMS(int nfIn, double scale) const;
double Alpha::operator()(double scale) const;

MassMS[CoreName_String, nfIn_Integer, scale_Real]
AlphaQCD[CoreName_String, scale_Real]

are used to extract a running mass (i.e. the MS mass if the flavor number scheme includes this massive quark, the MSR mass otherwise) 
and strong coupling at a specific renormalization scale scale from a Core where the optional parameters valid in the creation of the
Core are respected. The functions furthermore use an automatic matching convention, which means that the flavor number scheme of the 
output is deduced automatically from scale, with flavor threshold matching at μn = fn× mn , see Sec. 6.1.2. nfIn specifies for which 
quark the running mass is returned and refers to the number of dynamical flavors of the associated standard running mass.

In C++, as indicated by the scope resolution prefixes of Mass::mMS and Alpha::operator(), these functions are not by them-
selves members of the class Core, but members of the classes Mass and Alpha respectively. Consequently, in practice they are accessed 
through the Core member functions Core::alpha and Core::masses (see Sec. 5 the following examples).

Note that matching at flavor thresholds is always done from below to above the thresholds, meaning that matching between n� and 
n� + 1 flavor schemes always uses the perturbative expansion in α(n�)

s . If this is not possible directly, e.g. when α(n�+1)
s is given and α(n�)

s
still needs to be determined, the solution is computed iteratively. This convention is strictly applied everywhere, and in particular for the 
determination of the Core parameters described in Sec. 6.1.5. For the computation of the renormalization group evolution equations (at 
any specified order) we use algorithms which are exact, i.e. they provide results with machine precision. This, in combination with the flavor 
matching convention, has the advantage that Cores are created in a self-consistent way. This means that a Core that is created from 
the coupling and the masses at any renormalization scales extracted from an existing core Core will lead to a Core that is physically 
equivalent within machine precision if all optional parameters are set to equivalent values.

Both functions above are also available in a version permitting complex-valued input for scale, resulting in a complex-valued output. 
The function prototypes in this case are

std::complex<double>
Mass::mMS(int nfIn, std::complex<double> scale);

std::complex<double>
Alpha::operator()(std::complex<double> scale);

MassMS[CoreName_String, nfIn_Integer, scale_Complex]
AlphaQCD[CoreName_String, scale_Complex]

and the flavor number scheme of the output is determined from the automatic matching conventions based on the absolute value of
scale.

Note that for applications where negative real values of scale are expected, the user of the C++ or Python interfaces should 
declare scale as complex-valued explicitly from the start so that the intrinsic C++ function evaluations can be performed. Otherwise, 
in such a case NaN will be returned. Using the Mathematica interface, the complex-valued declaration is automatically employed if
scale is negative real (or complex). In the way C++ treats the branch cuts of complex-valued functions involved in the calculations, this 
corresponds to adding an infinitesimally small positive imaginary part to scale.

In case the input parameter scale is not provided when executing Mass::mMS and MassMS, the routines return the respective 
standard running mass.

14
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C++ example
The instruction

core1.masses().mMS(6, 20.0);

returns the mass value of the heaviest of the six quarks defined in the Core named core1, referred to by the flavor number 6 of the 
corresponding standard running mass flavor scheme, at the scale 20.0 GeV with automatic flavor matching (performed at the standard 
running mass of the heaviest quark in core1). Referring to the corresponding quark mass as mt , the returned value (double)171.046
corresponds to mMSR,(5)

t (20.0 GeV).
The instruction

core1.alpha()(10.0);

returns the value of the strong coupling defined in the Core named core1 at the scale 10.0 GeV. Due to automatic matching the returned 
value (double)0.178468 refers to α(5)

s (10.0 GeV). Note that the Core member functions Core::alpha and Core::masses have 
been used to access member functions of the classes Alpha and Mass, see Sec. 5.

Mathematica example
The Mathematica command

In[]:= MassMS["core1", 5, 30.0]
Out[]= 3.199542552851507

returns the mass value of the next-to-heaviest of the six quarks defined in the Core named core1, referred to by the flavor number 5, 
at the scale 30.0 GeV. Referring to the corresponding quark mass as mb , due to automatic matching, the shown output corresponds to the 
MS mass m(5)

b (30.0 GeV). The command

In[]:= AlphaQCD["core1", -10.0 + 0.1 I]
Out[]= 0.11619771241600231 - 0.08307724827828394 I

returns the value of the strong coupling defined in the Core named core1 at the complex scale μ = (−10.0 + 0.1 i) GeV. Due to the 
automatic matching convention, the flavor number scheme is automatically chosen to be 5 since |μ| = 10.0005 GeV exceeds the standard 
running bottom mass in core1. Consequently the output refers to α(5)

s ((−10.0 + 0.1 i) GeV).

Optional parameters
Automatic matching at the flavor thresholds can be overruled using the additional input nfOut, which specifies the flavor number 

scheme. The function prototypes are

double Mass::mMS(int nfIn, double scale,
int nfOut = kDefault) const;

double Alpha::operator()(double scale,
int nfOut = kDefault) const;

MassMS[CoreName_String, nfIn_Integer, scale_Real,
nfOut_Integer:kDefault]

AlphaQCD[CoreName_String, scale_Real, nfOut_Integer:kDefault]

and analogously for complex-valued input. In C++ as well as in Mathematica, the value kDefault is a predefined constant, internally 
set to −1, specifying that the respective default values will be used.

6.2.2. Other short-distance masses
From a given Core, the extraction of values of quark masses in a number of other short-distance quark mass schemes is supported. This 

includes the renormalization group invariant (RGI) scheme [13] and the following low-scale short-distance mass schemes: 1S (1S) [14–
16], kinetic (Kin) [17], potential subtracted (PS) [18,19], and renormalon subtracted2 (RS) [20]. Note that the optional parameters setting 
the loop orders of the conversion formulae used for the extraction of these masses are independent of the loop order parameters specified 
during Core creation (runAlpha, orderAlpha, runMSbar, orderMSbar, runMSR, orderMSR), see Sec. 6.1.2.

The functions with the prototypes

double Mass::mRGI(int nfIn) const;
double Mass::m1S(int nfIn) const;
double Mass::mKin(int nfIn, double scaleKin) const;
double Mass::mPS(int nfIn, double muF) const;
double Mass::mRS(int nfIn, double scaleRS) const;

2 We implement only the “unprimed” version of the RS mass, which has a finite O(αs) term in its relation to the pole mass.
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MassRGI[CoreName_String, nfIn_Integer]
Mass1S[CoreName_String, nfIn_Integer]
MassKin[CoreName_String, nfIn_Integer, scaleKin_Real]
MassPS[CoreName_String, nfIn_Integer, muf_Real]
MassRS[CoreName_String, nfIn_Integer, scaleRS_Real]

extract from a Core a quark mass value in the specified short-distance scheme. The variable nfIn is again the specifier for the mas-
sive quark, referring to the number of dynamical flavors of the associated standard running mass. The variables scaleKin,3 muF and
scaleRS specify the renormalization scales of the kinetic, potential subtracted and renormalon subtracted masses, respectively. Note that 
the 1S, Kin, PS and RS masses are defined in (nfIn−1)-flavor schemes, while the RGI mass is defined in the nfIn flavor scheme.

In C++, all routines outlined above are member functions of the class Mass, as indicated by the scope resolution prefix Mass::, and 
are accessed through the Core member function Core::masses (see Sec. 5 and the following examples).

Without specifying any additional optional parameters, the extraction of the low-scale short-distance masses is done in the following 
default way: first, the running mass in the (nfIn− 1)-flavor scheme is determined at the intrinsic scale of the low-scale short-distance 
mass using R-evolution. The intrinsic scales of the Kin, PS and RS schemes are the respective values of 2×scaleKin, muf and
scaleRS, while for the 1S scheme it is the inverse Bohr radius Mq,B determined with the routine Mass::mBohr described below 
with default setting. Subsequently, the running mass is converted to the low-scale short-distance mass using both masses’ perturbative 
relation to the pole mass employing the strong coupling at the intrinsic scale, where the pole mass is then consistently eliminated to the 
corresponding order. The resulting relation is renormalon-free avoiding large logarithms. Whenever known, finite mass effects stemming 
from lighter massive quarks are taken into account in this relation, which is up to three loops for the pole mass relations of the 1S, PS
and Kin4 schemes. For the RS mass, finite lighter quark mass effects have not been explicitly specified in the literature. Note that the 
lighter quark mass effects in the perturbative relation between the pole and running (MS or MSR) masses are known to three loops. In the 
conversion between the running and the RS masses these lighter quark mass corrections are set to zero coherently everywhere to avoid 
upsetting the renormalon cancellation. Effective methods to simulate finite quark mass effects (e.g. by enforcing a change in the flavor 
number scheme of the strong coupling) are not implemented as regular REvolver functionalities, but can still be realized, as we show 
in the examples given in Sec. 7.

REvolver provides the routine Mass::mBohr to calculate the heavy quarkonium inverse Bohr radius Mq,B for a massive quark q. 
In the default setting, Mq,B is the root of the function f (x) = C F α

(n�)
s (x)mMSR,(n�)

q (x) − x, and determined using an algorithm based on a 
modified version of Dekker’s method. The corresponding routine is a global function and always uses machine precision. The inverse Bohr 
radius for a massive quark q can be extracted from a given Core through the functions with the following prototypes

double Mass::mBohr(int nfIn, double nb = 1.0) const;

MBohr[CoreName_String, nfIn_Integer, nb_Real:1.0]

where nfIn is the specifier for the massive quark and nb refers to an optional rescaling factor such that the inverse Bohr radius is 
determined from the equality Mnb

q,B = nbC F α
(n�)
s (Mnb

q,B)mMSR,(n�)
q (Mnb

q,B). This option is useful for scale variation e.g. in the context of 
higher excited heavy quarkonium states. For the computation of the intrinsic scale used for the 1S mass scheme conversions, nb is used 
with the default setting nb =1.

C++ example
The instruction

core1.masses().m1S(6);

returns the mass value in GeV units of the heaviest of the six quarks defined in the Core named core1, referred to by the flavor number 
6, in the 1S scheme, which is (double)171.517.

Mathematica example
The Mathematica command

In[]:= MassPS["core1", 5, 2.0]
Out[]= 4.521091787631138

returns the mass value of the next-to-heaviest of the six quarks defined in the Core named core1, referred to by the flavor number 5, 
in the potential subtracted scheme at the scale 2.0 GeV, i.e. mPS

b (2 GeV), referring to that quark mass as mb .

Optional parameters
The functions responsible for extracting quark mass values in short-distance mass schemes other than the running mass allow for 

several optional parameters whose nature is tied to the respective schemes. The full prototypes are given by

3 Following Refs. [21,22], the default value for the kinetic mass intrinsic scale (where the default log resummed conversion between the running and the kinetic masses is 
carried out, see below) is set to be twice its renormalization scale, 2×scaleKin.

4 For the kinetic mass REvolver adopts the definition of lighter massive quark corrections given in Ref. [22] where these quark mass corrections are absent in the flavor 
number scheme below the corresponding threshold and exclusively come from the flavor number decoupling relations of the strong coupling above the threshold.
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double Mass::mRGI(int nfIn,
int order = kMaxRunMSbar) const;

double Mass::m1S(int nfIn, int nfConv = kDefault,
double scale = kDefault,
Count1S counting = Count1S::Default,
double muA = kDefault,
int order = kMaxOrder1s) const;

double Mass::mKin(int nfIn, double scaleKin,
int nfConv = kDefault,
double scale = kDefault,
double muA = kDefault,
int order = kMaxOrderKinetic) const;

double Mass::mPS(int nfIn, double muF,
int nfConv = kDefault,
double scale = kDefault,
double muA = kDefault,
double rIR = 1,
int order = kMaxOrderPs) const;

double Mass::mRS(int nfIn, double scaleRS,
int nfConv = kDefault,
double scale = kDefault,
double muA = kDefault,
int order = kMaxRunMSR,
int nRS = kMaxRunAlpha - 1,
double N12 = kDefault) const;

MassRGI[CoreName_String, nfIn_Integer,
order_Integer:kMaxRunMSbar]

Mass1S[CoreName_String, nfIn_Integer,
nfConv_Integer:kDefault,
scale_Real:kDefault,
counting_String:"default",
muA_Real:kDefault,
order_Integer:kMaxOrder1s]

MassKin[CoreName_String, nfIn_Integer, scaleKin_Real,
nfConv_Integer:kDefault,
scale_Real:kDefault,
muA_Real:kDefault,
order_Integer:kMaxOrderKinetic]

MassPS[CoreName_String, nfIn_Integer, muF_Real,
nfConv_Integer:kDefault,
scale_Real:kDefault,
muA_Real:kDefault,
rIR_Real:1.0,
order_Integer:kMaxOrderPs]

MassRS[CoreName_String, nfIn_Integer, scaleRS_Real,
nfConv_Integer:kDefault,
scale_Real:kDefault,
muA_Real:kDefault,
order_Integer:kMaxRunMSR,
nRS_Integer:kMaxRunAlpha - 1,
N12_Real:kDefault]

where the variables kDefault, kMaxRunMSbar, kMaxRunMSR, kMaxOrder1s, kMaxOrderKinetic and kMaxOrderPs as well as 
the values "default" and Count1S::Default in Mathematica and C++, respectively, are predefined constants representing the 
respective default values. In C++ and Mathematica, if one of the optional parameters shown above is explicitly specified, all parameters 
appearing prior in the argument list must be specified as well.

In the following the meaning of the optional parameters is explained.
The extraction of the RGI mass has only one optional parameter, which is order, specifying the loop order of the β-function and MS

mass anomalous dimensions (which are taken equal) entering the conversion formula from the standard running mass, see Eq. (A.19). The 
default value is the highest available order, which is 5.

Considering the functions extracting low-scale short-distance masses, there are some optional parameters affecting the formulae used 
for the conversion computations:
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• nfConv: specifies the flavor number scheme of the running mass that is used in the conversion formula. For nfConv = nfIn -
1 the MSR scheme is used; for nfConv = nfIn the MS scheme is used. The strong coupling is always employed in the nfIn - 1
flavor scheme. Default: nfIn - 1.

• scale: specifies the scale of the running mass from which the conversion is determined. Default: intrinsic scale of the low-scale 
mass.

• muA: specifies the scale of the strong coupling used for the conversion. Default: intrinsic scale of the low-scale mass.
• order: specifies how many perturbative orders are used in the conversion. Default: Highest available order for the low-scale mass.

Note that for very heavy quarks (such as the top quark) specifications of the parameters nfConv, scale and muA that differ from their 
defaults can lead to large logarithmic corrections in the conversions involving low-scale short-distance masses. On the other hand, for 
the case of lighter massive quarks (such as the bottom and especially the charm quark) the default settings may lead to unphysically low 
scales causing perturbative instabilities. The parameters nfConv, scale and muA should therefore be used with some care.

Furthermore, for some low-scale masses there are additional optional parameters related to their definition and specific properties:

• counting: specifies the order counting used for the conversion computation to extract the 1S mass. The available options are
Count1S::Nonrelativistic and Count1S::Relativistic (enumerations of type Count1S) in C++, and "nonrela-
tivistic" and "relativistic" in Mathematica. For non-relativistic counting it is assumed that scale is of the same order 
as the inverse Bohr radius, which is much smaller than the quark mass value and both are counted as O(mnαs); for the relativistic 
counting it is assumed that scale is of the same order as the quark mass, and the inverse Bohr radius is counted as O(mn), see 
Sec. 5.2 of Ref. [1]. If one chooses to convert from the MS mass, only the relativistic counting is supported. Note that here the op-
tional parameter order always specifies how many non-zero terms are taken into account in the conversion series, e.g. in the case 
of non-relativistic counting order= 1 refers to O(mnα

2
s ), while it refers to O(mnαs) in the relativistic counting. (So for order= 1

the conversion formula is the same in both counting schemes.) To simplify language, we refer to a perturbative term in the 1S-pole 
mass relation as n-loop, if it is combined with the n-loop coefficient in the relation between the running mass and the pole mass, 
independent of the employed counting. Default: Count1S::Default and "default" for C++ and Mathematica, respectively, 
which corresponds to "nonrelativistic" for an MSR mass input and to "relativistic" for MS.

• rIR: specifies the ratio of the IR subtraction scale μIR with respect to the scale muF employed in the 4-loop term of the pole-PS 
mass relation, rIR= μIR/μF , see Secs. 4.5.3 and 5.1 of Ref. [1]. Default: 1.0, which corresponds to the definition given in Ref. [19].

• nRS: specifies the number of terms (used in the perturbative construction of the Borel function and the normalization N12) for the 
calculation of the coefficients of the pole-RS mass perturbation series, see Ref. [20]. Default: highest available order which is 4.

• N12: specifies the pole mass renormalon normalization constant employed in the pole-RS mass relation. Default: value computed by 
the sum rule formula employed by the routine Mass::N12 (C++) or N12 (Mathematica), see Sec 6.2.4, summing up nRS terms in 
the sum rule series using all available information on the QCD β-function and anomalous dimension of the MSR mass.

C++ example
The instruction

core1.masses().mKin(5, 2.0, 4, 5.0, 3.0, 2);

returns the kinetic mass value of the next-to-heaviest of the six quarks defined in the Core named core1, referred to by the flavor 
number 5 of the corresponding standard running mass flavor scheme. The intrinsic kinetic mass scale is set to 2 GeV, the conversion 
formula is applied to the MSR mass in the 4 flavor scheme at 5 GeV and with the renormalization scale of the strong coupling set to 3
GeV. Terms up to O(α2

s ) are included in the conversion formula. The returned value is (double)4.3105.

Mathematica example
The Mathematica command

In[]:= MassRS["core1", 6, 20.0, 6, 163.0, 60.0, 3]
Out[]= 170.48477730509723

returns the RS mass value of the heaviest of the six quarks defined in the Core named core1, referred to by the flavor number 6. The 
intrinsic scale of the RS mass is set to 20 GeV and the conversion formula is applied to the MS mass in the 6 flavor scheme. The MS
mass renormalization scale is specified to be 163 GeV, while the renormalization scale of the strong coupling is set to 60 GeV. The last 
parameter shown above specifies that three perturbative orders are used in the conversion. For nRS and N12 no inputs are specified, 
consequently the default setting is applied.

6.2.3. Pole mass
Quark mass values in the pole mass scheme can be extracted from a given Core. The pole mass scheme suffers from a renormalon 

ambiguity so that there are several options to quote a value. REvolver supports two ways of extracting pole quark mass values, accessible 
through the functions corresponding to the prototypes

double Mass::mPoleFO(int nfIn, int nfConv, double scale,
double muA, int order) const;

double Mass::mPole(int nfIn, double scale) const;

MassPoleFO[CoreName_String, nfIn_Integer, nfConv_Integer,
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scale_Real, muA_Real, order_Integer]
MassPole[CoreName_String, nfIn_Integer, scale_Real]

All parameters shown have to be specified by the user. For both routines the variable nfIn is the specifier for the quark whose pole 
mass value is extracted, referring to the number of dynamical flavors of the associated standard running mass, while scale specifies the 
scale of the running mass for which the conversion formula to the pole mass is employed. Furthermore, the loop orders of the various 
components entering the conversion formula used in the computation of the pole mass value are provided by the settings of the loop order 
parameters specified during Core creation (runAlpha, orderAlpha, runMSbar, orderMSbar, runMSR, orderMSR), see Sec. 6.1.2. 
Here the parameters runMSR and runAlpha are particularly important because they also set the loop order of the exact coefficients 
accounted for in the perturbative series between the MSR and the pole masses, see Eq. (A.28) in Sec. A.5. Because in REvolver matching 
is always applied at flavor thresholds, the latter series are the only ones being affected by the renormalon.

The functions Mass::PoleFO and MassPoleFO, respectively, return the pole mass using the conversion formula up to the order 
set by order from the running mass in the flavor number scheme specified by nfConf. The input parameter muA specifies the renor-
malization scale of the strong coupling used in the conversion formula. The input order allows, in principle, an arbitrarily large integer. 
For order≤ min(runMSR, runAlpha− 1) the exact perturbative coefficients up to this order are utilized in the relation between MSR 
and pole mass. For order> min(runMSR, runAlpha− 1) a renormalon-based asymptotic formula for the coefficients of the asymptotic 
series is used, see Eq. (A.28) in Sec. A.5 for details.

The functions Mass::Pole and MassPole, respectively, return the value of the asymptotic pole mass, i.e. the conversion is 
done by summing the perturbative series for the conversion formula relating running and pole mass to the order of minimal cor-
rection, again potentially employing the already mentioned asymptotic formula if the order of minimal correction is larger than 
min(runMSR, runAlpha− 1). The asymptotic pole mass is always determined from the MSR mass in the flavor number scheme where 
all massive quarks are integrated out regardless of the value of scale. The method used for the calculation of the asymptotic value is the 
minimal correction method ("min") described below.

C++ example
The instruction

core1.masses().mPole(5, 2.0);

returns the asymptotic pole mass of the next-to-heaviest of the six quarks defined in the Core named core1 in GeV units, referred to 
by the flavor number 5, using the minimal correction method, which is (double)4.91150. The scale employed for the running mass 
at conversion is 2 GeV.

Mathematica example
The Mathematica command

In[]:= MassPoleFO["core1", 6, 5, 20.0, 20.0, 16]
Out[]= 1190.2576448418606

returns the order-dependent pole mass value of the heaviest of the six quarks defined in the Core named core1, referred to by the 
flavor number 6. The conversion formula is applied to the respective MSR mass with 5 active flavors at the scale 20 GeV, choosing the 
same scale for the renormalization scale of the strong coupling. The perturbative series terms are summed up to O(α16

s ).5

Optional parameters
The functions Mass::mPoleFO and MassPoleFO in C++ and Mathematica, respectively, are completely general and do not sup-

port any additional optional parameters.
The full prototypes of the functions responsible for accessing the asymptotic pole mass are

double Mass::mPole(int nfIn, double scale,
double muA = kDefault,
PoleMethod method = PoleMethod::Default,
double f = 1.25,
double* ambiguity = nullptr,
int* nMin = nullptr) const;

MassPole[CoreName_String, nfIn_Integer, scale_Real,
muA_Real:kDefault,
method_String:"min",
f_Real:1.25]

MassPoleDetailed[CoreName_String, nfIn_Integer, scale_Real,
muA_Real:kDefault,
method_String,
f_Real:1.25]

5 The value obtained with this command is unphysically large due to the asymptotic (non-convergent) nature of the series that relate the pole mass and short-distance 
masses. This behavior is the origin of the ambiguity of the pole mass.
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where MassPoleDetailed in Mathematica is a function returning a list, containing the asymptotic pole mass, the associated 
renormalon ambiguity and the order of the minimal correction term, providing the functionality corresponding to the C++ routine
Mass::mPole (with specified optional pointer parameters ambiguity and nMin), see the descriptions below. In Python there is 
the analogous function Mass.MassPoleDetailed.

The meaning of the optional input parameters is as follows:

• muA: specifies the renormalization scale of the strong coupling in the conversion formula. The default is the value of scale.
• method: specifies the method used to obtain the asymptotic pole mass and the ambiguity. In C++ the available options are
PoleMethod::Min for the minimal correction term method, PoleMethod::Range for the range method and PoleMethod::
DRange for the corresponding discrete version, see the explanation below. In Mathematica these options correspond to the string 
inputs "min", "range" and "drange", respectively. The input method is optional if only the asymptotic pole mass is returned; 
the defaults in that case are PoleMethod::Min (C++) and "min" (Mathematica). The input method is not optional if the pole 
mass ambiguity is also returned, i.e. for MassPoleDetailed in Mathematica and when the optional pointer to ambiguity is 
given in C++.

• f: specifies a constant larger than unity multiplying the minimal correction for the methods "range" and "drange". Default: 1.25
• ambiguity: a pointer to double. If specified, the value of the pole mass ambiguity is saved in the variable pointed to (C++ only).
• nMin: a pointer to int. If specified, the order of the minimal correction term is saved in the variable pointed to (C++ only).

Note that for the Mathematica routine MassPoleDetailed the input variable method does not have a default and must always 
be specified (because it always returns a value for the pole mass). Calling the function with 4 arguments means that values are specified 
for the four input parameters CoreName, nfIn, scale, and method, while the variables muA and f are set to their default values.

The minimal correction method ("min") to obtain the asymptotic pole mass value and its ambiguity refers to the method suggested in 
Ref. [3] where the ambiguity is determined from the size of the minimal correction based on a quadratic function fitted to the smallest 
correction and the two neighboring corrections. However, in contrast to the procedure described in Ref. [3], REvolver accounts for the 
mass effects of lighter massive quarks by the exact expressions given in Ref. [2] instead of including them in an approximate way by 
flavor number scheme modifications of the strong coupling. Also, for coefficients of order higher than min(runMSR, runAlpha− 1) the 
asymptotic formula of Eq. (A.28) in Sec. A.5 is employed.

The drange (“discrete range”, "drange") choice refers to the method suggested in Ref. [2], where the pole mass value and its ambiguity 
are computed from the range in orders around the minimal term where the corrections are smaller than f times the minimal correction. 
The method range ("range") refers to a continuous generalization which is analogous but provides smoother results. Here the order-
dependent discrete-valued individual perturbative coefficients of the relation between the pole and running masses, as well as the related 
cumulant, are made continuous by a cubic interpolation. From these functions, the asymptotic pole mass value and the ambiguity are 
determined in analogy to the "drange" method. For all methods (including "range"), the returned order of the minimal correction 
term is an integer and refers to the original series without any interpolation.

C++ example
With the instructions

double ambiguity;
int nMin;
core1.masses().mPole(6, 10.0, 10.0, PoleMethod::Range, 1.25,

&ambiguity, &nMin);

first the variables nMin and ambiguity are initialized and pointers to them are passed in the call of the function Mass::mPole. The 
instruction returns the asymptotic pole mass value (double)173.107 for the heaviest of the 6 quarks of the Core named core1, 
obtained from the conversion formula for the running mass at the scale 10.0 GeV for 3 active flavors [mMSR,(3)

t (10, GeV)] using the range
method. The values of the pole mass ambiguity (double)0.179811, and the order of the minimal correction term (int)4 are stored 
in the variables ambiguity and nMin, respectively.

Mathematica example
The Mathematica command

In[]:= MassPoleDetailed["core1", 6, 10.0, "min"]
Out[]= {173.09681693689498, 0.1307735468951421, 4}

corresponds to the previous commands given in C++, however, here the minimal correction method is used. muA is automatically set to 
default value which is 10.0 in this case. The output list entries correspond to the asymptotic pole mass value, the ambiguity and the 
order of the smallest correction term, respectively.

6.2.4. Norm of the pole mass renormalon ambiguity
The pole mass renormalon normalization constant can be accessed using the functions with the following prototypes

double Mass::N12(double lambda = 1.0) const;
double Mass::P12(double lambda = 1.0) const;

N12[CoreName_String, lambda_Real:1.0]
P12[CoreName_String, lambda_Real:1.0]
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where the two functions correspond to the normalization conventions P1/2 and N1/2 = 	(1 + b̂1)β0 P1/2/(2π) as described in Ref. [1]. 
The routines employ the renormalon sum rule formula shown in Eq. (A.30) of App. A.6. The number of massless quarks for which the 
normalization is determined is tied to the Core used to extract the normalization. The optional input parameter lambda is a scaling 
parameter to estimate the uncertainty of the output (1.0 by default). The number of terms summed up in the sum rule formula is set by
runMSR specified at Core construction. The QCD β-function coefficients entering the sum rule formula are used up to runAlpha loop 
order, all higher order coefficients are set to zero, so that b̂1 = 0 when runAlpha = 1.

6.2.5. Extracting �QCD
The functions corresponding to the prototypes

double Alpha::lambdaQCD(int nf) const;

LambdaQCD[CoreName_String, nf_Integer]

return from a given Core the QCD scale �(nf)
QCD in the MS definition (see Ref. [23]) for the QCD coupling in the nf flavor scheme, utilizing 

the exponential formula given in Eq. (A.12) of App. A.2. The parameters runAlpha and lambdaAlpha specified at Core creation set the 
number of coefficients of the β-function used. The possible values for nf range from the number of massless quarks to the total number 
of quarks in the specified Core.

C++ example
The instruction

core1.alpha().lambdaQCD(3);

returns �(3)
QCD in the MS definition in GeV units from the scenario encoded in core1, corresponding to (double)0.335547

Optional parameters
The definition in which �QCD is extracted can be chosen with an optional parameter. The full function prototypes are

double Alpha::lambdaQCD(
int nf, LambdaConvention convention =

LambdaConvention::MSbar) const;

LambdaQCD[CoreName_String, nf_Integer,
convention_String:"MSbar"]

In addition to the conventional MS definition according to the PDG 2020 [23], which is the default, the “t-scheme” is supported 
referring to the definition based on the t-variable notations of Ref. [1]. To choose the t-scheme the optional parameter convention has 
to be set to LambdaConvention::tScheme and "tScheme" in C++ and Mathematica respectively. See App. A.2 for more details 
on the different conventions.

6.3. Adding masses to an existing Core

The following section presents routines to extend existing Core scenarios by adding one heavier massive quark. The mass value of 
the additional quark can be given as a running mass, in the pole mass scheme (order-dependent as well as asymptotic), or in any of the 
short-distance schemes described in Sec. 6.2.2, with the same obligatory and optional parameters. Unless the mass of the additional quark 
is already given in the running mass scheme, the quark mass value is first converted to the running mass (specified by the parameters). 
The value for the running mass is then added to the scenario. The optional parameter fnQ specifies the matching scale for the new 
threshold, analogous to the individual entries of fMatch at Core creation, see Sec. 6.1.2.

The routines employed for converting to the running mass are the exact inverse of those used for extracting mass values in the respec-
tive scheme. This is achieved by numerically inverting the respective relations with iterative algorithms.

The related function prototypes, including all relevant optional parameters are

void Core::addMsMass(int nf, double mass, double scale,
double fnQ = 1.0);

void Core::addPoleMass(double mPole, double scale,
double muA = kDefault,
PoleMethod method =
PoleMethod::Default,

double f = 1.25,
double fnQ = 1.0);

void Core::addPoleMassFO(double mPole, int nfConv,
double scale, double muA, int order,
double fnQ = 1.0);

void Core::addPSMass(double mPS, double muF,
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int nfConv = kDefault,
double scale = kDefault,
double muA = kDefault,
double rIR = 1,
int order = kMaxOrderPs,
double fnQ = 1.0);

void Core::add1SMass(double m1S,
int nfConv = kDefault,
double scale = kDefault,
Count1S counting = Count1S::Default,
double muA = kDefault,
int order = kMaxOrder1s,
double fnQ = 1.0);

void Core::addRGIMass(double mRGI,
int order = kMaxRunMSbar,
double fnQ = 1.0);

void Core::addRSMass(double mRS, double scaleRS,
int nfConv = kDefault,
double scale = kDefault,
double muA = kDefault,
int order = kMaxRunMSR,
int nRS = kMaxRunAlpha - 1,
double N12 = kDefault,
double fnQ = 1.0);

void Core::addKinMass(double mKin, double scaleKin,
int nfConv = kDefault,
double scale = kDefault,
double muA = kDefault,
int order = kMaxOrderKinetic,
double fnQ = 1.0);

in C++ and

AddMSMass[CoreName_String, NewCoreName_String, nf_Integer,
mass_Real, scale_Real]

AddPoleMass[CoreName_String, NewCoreName_String, mPole_Real,
scale_Real,
muA_Real:kDefault,
method_String:"min",
f_Real:1.25]

AddPoleMassFO[CoreName_String, NewCoreName_String,
mPole_Real, nfConv_Integer, scale_Real,
muA_Real, order_Integer]

AddPSMass[CoreName_String, NewCoreName_String, mPS_Real,
muF_Real,
nfConv_Integer:kDefault,
scale_Real:kDefault,
muA_Real:kDefault,
rIR_Real:1,
order_Integer:kMaxOrderPs]

Add1SMass[CoreName_String, NewCoreName_String, m1S_Real,
nfConv_Integer:kDefault,
scale_Real:kDefault,
counting_String:"default",
muA_Real:kDefault,
order_Integer:kMaxOrder1s]

AddRGIMass[CoreName_String, NewCoreName_String, mRGI_Real,
order_Integer:kMaxRunMSbar]

AddRSMass[CoreName_String, NewCoreName_String, mRS_Real,
scaleRS_Real,
nfConv_Integer:kDefault,
scale_Real:kDefault,
muA_Real:kDefault,
order_Integer:4,
nRS_Integer:kMaxRunAlpha - 1,
N12_Real:kDefault]
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AddKinMass[CoreName_String, NewCoreName_String, mKin_Real,
scaleKin_Real,
nfConv_Integer:kDefault,
scale_Real:kDefault,
muA_Real:kDefault,
order_Integer:kMaxOrderKinetic]

in Mathematica, where fnQ can be set by the option parameter syntax (fnQ -> <value>).
In Mathematica, adding a new heavier quark results in creating a new Core with a (not yet assigned) name specified in the 

obligatory input argument NewCoreName. This new Core is based on the Core with the name specified in CoreName containing only 
lighter massive quarks. The scenario parameters of the Core CoreName are passed on to the new Core named NewCoreName. If it 
turns out that the standard running mass associated to the mass to be added to a Core is not the heaviest one in the new configuration, 
an error is returned and the new Core is not created.

In C++ the new heavier quark is added directly to the Core from which the member function is called. This saves resources and 
copying the old Core can be easily done applying the assignment operator =, see the C++ example below.

C++ example
With the instructions

RunParV mPar4;
mPar4.push_back({4, 1.3, 1.3});
mPar4.push_back({5, 4.2, 4.2});
Core core4(5, alphaPar, mPar4);
Core core5 = core4;
core5.add1SMass(171.51726494075493);

in the first line, the std::vector<RunPar> mPar4 is declared, and subsequently filled in the next two lines according to Sec. 6.1.1
with information on two massive quarks. Together with alphaPar taken from the example in Sec. 6.1.1, it is the input for creating the
Core named core4 in the third line, containing a total of 5 quark flavors. In the fifth line a copy of core4, named core5, is produced. 
In the last line a heavier quark with a mass value in the 1S scheme is added to core5 which contains a total number of 6 flavors. The 
input value for the 1S mass is taken from the C++ example of Sec. 6.2.2 where the 1S mass value was extracted from core1. Therefore
core5 and core1 contain physically equivalent scenarios. core4 has not been modified by adding the additional heavier quark and 
consequently its scenario still contains 5 quark flavors.

Mathematica example
The command

In[]:= mPar4 = {{4, 1.3, 1.3}, {5, 4.2, 4.2})};
CoreCreate["core4", 5, alphaPar, mPar4]
Add1SMass["core4", "core5", 171.51726494075493]

has the same effect as the C++ example. First a list mPar4 is defined, containing the standard running masses of two quarks, which are 
used as an input for creating core4 with a total number of 5 flavors. In the next line the new Core named core5 is created, which is 
a copy of core4, to which a heavier quark is added with a mass value specified in the 1S scheme.

7. Applications and pedagogical examples

In this section we demonstrate some of the features provided by REvolver in a number of concrete examples as they may arise in 
practical applications. We give the examples in terms of Mathematica code since, due to its interactive nature, it is especially suitable 
for that purpose. We provide all examples given here as a Mathematica notebook, as Python code in form of a Jupyter Notebook as 
well as C++ code, together with the library. For sake of clarity, all digits of the Mathematica output are displayed.

7.1. Cores without massive quarks

7.1.1. Strong coupling evolution
Strong coupling from inclusive jet cross sections

In this first application we demonstrate one possible way to make use of the strong coupling evolution in REvolver by reproducing 
and analyzing some results of Ref. [24], where the CMS collaboration carried out a strong coupling measurement from inclusive jet cross 
sections in different pT bins based on 8 TeV LHC data. In that publication, the evolution of the strong coupling from different values of 
Q (the average pT in the bins) to mZ was carried out with n f = 5 active flavors and 2-loop accuracy. In the following, we focus on the 
result α(5)

s (Q ) = 0.0822+0.0034
−0.0031 for Q = 1508.04 GeV shown in Table 5 of that article.

In a first step the relevant values can be defined by

In[]:= {aQCentral, Q} = {0.0822, 1508.04};
{aQMin, aQMax} = aQCentral + {-0.0031, 0.0034};
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and the respective Cores for the central, upper and lower strong coupling values, setting the strong-coupling evolution to 2-loop order, 
can be created by

In[]:= CoreCreate["central2", {5, aQCentral, Q},
runAlpha -> 2];

CoreCreate["min2", {5, aQMin, Q}, runAlpha -> 2];
CoreCreate["max2", {5, aQMax, Q}, runAlpha -> 2];

The central value of α(5)
s (mZ ) can then be extracted by

In[]:= amZCentral2 = AlphaQCD["central2", mZdef]
Out[]= 0.11616452350227859

coinciding with α(5)
s (mZ ) = 0.1162, as given in Ref. [24]. Likewise the quoted uncertainties +0.0070

−0.0062 are easily reproduced by executing

In[]:= (AlphaQCD[#, mZdef] & /@ {"max2","min2"}) - amZCentral2
Out[]= {0.007009865309335922, -0.006168760659529524}

Note that in the Mathematica interface the variable mZdef has the predefined value 91.187 GeV.
For comparison, we also employ 5-loop evolution for the strong coupling, resulting in equivalent numbers after rounding:

In[]:= CoreCreate["central5", {5, aQCentral, Q},
runAlpha -> 5];

CoreCreate["min5", {5, aQMin, Q}, runAlpha -> 5];
CoreCreate["max5", {5, aQMax, Q}, runAlpha -> 5];

In[]:= amZCentral5 = AlphaQCD["central5", mZdef]
AlphaQCD[#, mZdef] & /@ {"max5", "min5"} - amZCentral5

Out[]= 0.11624523920392597
Out[]= {0.007030395615252941, -0.006184136846029031}

Note that the specification of the running order runAlpha -> 5 at Core creation is not mandatory since 5-loop running is the default. 
We show the specification to be explicit.

We now have a look at the perturbative uncertainty of these results. One approach to estimate the perturbative uncertainty of the 
given 2-loop result is to consider the difference of the values obtained by 2-loop and 1-loop evolution. This can be easily computed using
REvolver by creating a new Core with specified 1-loop coupling evolution:

In[]:= CoreCreate["central1", {5, aQCentral, Q},
runAlpha -> 1];

amZCentral2 - AlphaQCD["central1", mZdef]
Out[]= 0.0017745561167654411

The obtained conservative perturbative error estimate is about 25% of the stated experimental error. For the highest available perturbative 
order for running, 5 loop, this proportion shrinks to 0.005%:

In[]:= CoreCreate["central4", {5, aQCentral, Q},
runAlpha -> 4];

amZCentral5 - AlphaQCD["central4", mZdef]
Out[]= 3.573226484421266*^-7

A different approach to estimate the perturbative error of α(5)
s (mZ ) is to vary the β-function scaling parameter λ (controlled by the 

optional parameter lambdaAlpha) as described in Sec. 6.1.2. In Fig. 2 the value of α(5)
s (mZ ) is shown, obtained by evolving the strong 

coupling down from α(5)
s (1508.04 GeV) with different loop orders in the evolution equation and with varying values of λ; the value of 

α
(5)
s (mZ ) obtained by including one more perturbative order in the evolution with λ = 1 (which corresponds to the standard form of the 

β-function) is subtracted. We observe that, to reproduce a value near to the one obtained with one more perturbative order included in 
the running, λ has to be varied by about 10% around 1, as already described in Sec. 6.1.2.

Assuming this to be also the appropriate range to estimate the perturbative uncertainty of the 5-loop result, the error can be estimated 
by scanning over λ values. Employing REvolver for this task, we first define a list of 20 logarithmically distributed values of λ in the 
appropriate range

In[]:= lamList = 1.1^Range[-1, 1, 2/19];

and create one Core for each value in λ. For convenience, the Core names are set to the associated λ values

In[]:= CoreCreate[ToString[#], {5, aQCentral, Q},
lambdaAlpha -> #] & /@ lamList;
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Fig. 2. Values of α(5)
s (mZ ) over the β-function scaling parameter λ, obtained by evolving the strong coupling down from α(5)

s (1508.04 GeV) with different loop orders in 
the evolution equation. The value of α(5)

s (mZ ) computed by including one more perturbative order in the evolution with λ = 1 is subtracted to highlight for which ranges 
of λ both results for α(5)

s (mZ ) coincide or come close. The results indicate that a variation for λ of about 10% around 1 is a reasonable range to estimate the perturbative 
uncertainty.

Fig. 3. Variation of α(5)
s (mZ ) with λ, obtained by evolving the strong coupling down from α(5)

s (1508.04 GeV) with 5-loop accuracy. The value of αs(mZ ) for λ = 1 is subtracted. 
Varying λ in a range of about 10% around 1 the value of αs(mZ ) changes by 10−7.

The span of values of α(5)
s (mZ ) corresponding to the range in λ can then be obtained with

In[]:= aLamList = AlphaQCD[ToString[#], mZdef] & /@ lamList;

The central value of this range and the associated error are consequently given by

In[]:= (Max[aLamList] + {1, -1} * Min[aLamList])/2
Out[]= {0.11624517272452983, 1.0224197660724244*^-7}

giving the same order of magnitude as the conservative approach. The variation in λ of α(5)
s (mZ ) when employing 5-loop running is also 

depicted in Fig. 3.

7.1.2. Complex renormalization scales
In this application we illustrate the REvolver functionality to determine the strong coupling αs(μ) at complex scales μ. To this end 

we consider the analyses in Refs. [25,26], where the perturbative QCD corrections δ(0) to the inclusive τ hadronic width were considered in 
fixed-order perturbation theory (FOPT) as well as contour-improved perturbation theory (CIPT). In the second reference a scheme different 
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from the usual MS definition is used for αs . We exploit this fact to demonstrate the ability of REvolver to deal with user-defined 
β-function coefficients.

Hadronic τ decay
In CIPT, determining δ(0) involves integrating over powers of the strong coupling α(3)

s (μ) multiplied with a kinematic weight function 
in the complex μ2 plane along a circle with radius m2

τ

δ
(0)
CI =

∞∑
n=1

cn,1 J a
n(m

2
τ ) ,

J a
n(m

2
τ ) = 1

2π i

∮
|x|=1

dx

x
(1 − x)3(1 + x)

[
α

(3)
s (

√−mτ x)

π

]n

, (7)

where the coefficients cn,1 are given in Eqs. (2.13), (2.15) and (3.10) of Ref. [25]. In that article, 4-loop running for the strong coupling was 
used, as well as the input value α(3)

s (mτ ) = 0.34. To reproduce the numbers for δ(0)
CI given in Eq. (3.9) of Ref. [25] we first define variables 

accounting for the employed input values

In[]:= {nfa, aTau, mTau} = {3, 0.34, 1.77686};
{c11, c21, c31, c41, c51} =

{1, 1.640, 6.371, 49.076, 283};

and a function to compute J a
n(m2

τ )

In[]:= Ja[n_, core_] := 1/(2 Pi)
NIntegrate[(1 - E^(I phi))^3 (1 + E^(I phi))

(AlphaQCD[core, Sqrt[-mTau^2 E^(I phi)]]/Pi)^n,
{phi, 0, 2 Pi}];

where we change variables via x = exp(iφ). Furthermore, we define a Core with 4-loop running for the coupling

In[]:= CoreCreate["CI4", {nfa, aTau, mTau}, runAlpha -> 4]

All requirements are now set to reproduce the numbers given in Eq. (3.9) of Ref. [25]

In[]:= Ja[1, "CI4"]*c11
Ja[2, "CI4"]*c21
Ja[3, "CI4"]*c31
Ja[4, "CI4"]*c41
Ja[5, "CI4"]*c51

Out[]= 0.14789839179248082 + 0. I
Out[]= 0.02968556861749222 - 1.3583618952083769*^-18 I
Out[]= 0.0121854520515486 + 4.947098114161149*^-18 I
Out[]= 0.008592183988059407 - 8.468364884304664*^-19 I
Out[]= 0.0037863076541974016‘ - 9.919281576456942*^-19 I

with full agreement.
We can now easily inspect the corrections induced by the 5-loop running of the strong coupling by creating an appropriate Core

In[]:= CoreCreate["CI5", {nfa, aTau, mTau}, runAlpha -> 5];

and evaluating

In[]:= Ja[1, "CI5"]*c11
Ja[2, "CI5"]*c21
Ja[3, "CI5"]*c31
Ja[4, "CI5"]*c41
Ja[5, "CI5"]*c51

Out[]= 0.14775354880331787 - 8.834874115176436*^-18 I
Out[]= 0.02960219692750483 - 1.811149193611169*^-18 I
Out[]= 0.012122455789576415 + 3.4080009230887917*^-18 I
Out[]= 0.008521503950040327 - 1.6936729768609328*^-18 I
Out[]= 0.0037376807938461127 - 1.5260433194549141*^-18 I

We observe a small negative O(1%) shift in the individual coefficients. Note that the explicit specification of the running order runAl-
pha -> 5 at Core creation is not mandatory since 5-loop running is the default. We included it to be explicit.
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Hadronic τ decay with C-scheme strong coupling
We now turn to Ref. [26] for which we reproduce the value quoted for δ(0)

CI in Eq. (22). To obtain this number the 3-flavor strong 
coupling, the related β-function coefficients and the coefficients cn,1 were converted to a class of schemes for the strong coupling where 
the β-function adopts the following exact all order form

β̂(α̂s) = −2α̂s

α̂s
4π β0

1 − α̂s
4π

β1
β0

= −2α̂s

∑
i=0

β̂i

(
α̂s

4π

)i+1

, (8)

where β̂i = β0(β1/β0)
i . Within that class of schemes one needs to fix a parameter C to uniquely specify the strong coupling. This pa-

rameter was set to C = −1.246 in Eq. (22) of Ref. [26] with the argument that the unknown 5-loop coefficient can then be neglected 
resulting in the value δ(0)

CI (α̂(mτ ), C = −1.246) = 0.1840 ± 0.0062. The quoted uncertainty refers to the size of the 4-loop correction term. 
Solving Eq. (6) of the reference paper to convert the quoted value of the MS strong coupling α(3)

s (mτ ) = 0.316 to the scheme described 
above leads to α̂s(mτ , C = −1.246) = 0.477. The transformed coefficients cn,1 can be extracted from Eq. (12) therein. REvolver allows 
the order-by-order specification of user-defined β-functions, so we expand β̂(α̂s) up to O(α̂11

s ).
We define the relevant input values related to α̂s , the coefficients cn,1 and β̂i for n f = 3 with

In[]:= {nfa, aTau, mTau} = {3, 0.477, 1.77686};
{c11, c21, c31, c41} =

{1, 1.640 + 2.25 c, 7.682 + 11.38 c + 5.063 c^2,
61.06 + 72.08 c + 47.4 c^2 + 11.39 c^3} /.

c -> -1.246;
betaHat = 9. * (64/9)^Range[0, 9];

and the related Core

In[]:= CoreCreate["Hat", {nfa, aTau, mTau}, betaHat]

Reusing the function Ja[n_, core_] as defined in the previous example we obtain

In[]:= Ja[1, "Hat"]*c11 + Ja[2, "Hat"]*c21 +
Ja[3, "Hat"]*c31 + Ja[4, "Hat"]*c41

Out[]= 0.18403340012158337 - 1.0177988675705949*^-17 I

for δ(0)
CI (α̂(mτ ), C = −1.246) and

In[]:= Ja[4, "Hat"]*c41
Out[]= 0.006222359703784199 - 2.951274747776552*^-19 I

for the last correction term. Both the central value and the size of the last correction term are in perfect agreement with Ref. [26].

Cauchy integral theorem for the strong coupling
It is worth mentioning that Cauchy’s integral formula can be utilized to check the numerical quality of the coupling evolution routine 

implemented in REvolver. For example, valuating α(3)
s (2 GeV) directly as well as by employing Cauchy’s integral formula with a radius 

of 1 GeV gives equivalent results up to machine precision

In[]:= mu0 = 2;
aDirect = AlphaQCD["CI5", mu0]
aResidue =
1/(2 Pi) NIntegrate[AlphaQCD["CI5", mu0 + E^(I phi)],
{phi, 0, 2 Pi}, PrecisionGoal -> 10]

aResidue - aDirect
Out[]= 0.3169005366613899
Out[]= 0.31690053666139 + 1.1043592643970545*^-17 I
Out[]= 1.1102230246251565*^-16 + 1.1043592643970545*^-17 I

For all practical purposes the solution for the strong coupling evolution provided by REvolver based on a given QCD β-function can 
be considered as exact.

7.2. Cores with one massive quark

In the previous sample applications the impact of flavor thresholds was not considered. In the following we discuss examples where 
threshold effects associated to one massive quark are accounted for.
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7.2.1. Strong coupling with a flavor threshold
Strong coupling from multijet events

We consider Ref. [27], where the strong coupling value was determined by the ATLAS collaboration from transverse energy-energy 
correlations in multijet events based on 8 TeV LHC data. The measurements were made for different values of the transverse momentum 
sum HT2 of the two leading jets. All values of HT2 considered in that analysis were much larger than the top quark mass, consequently 
the associated respective strong coupling values α(6)

s (Q ) are defined in the 6-flavor scheme. In Tabs. 2 and 3 of Ref. [27] values for 
α

(6)
s (Q ) and the associated results for α(5)

s (mZ ) are quoted. For the strong coupling running an approximate analytic 2-loop solution 
of the evolution equation was used accounting for continuous matching at the top quark mass (which is correct for 1-loop matching 
when the matching scale is at the top quark mass). In the following, we focus on the associated results α(5)

s (mZ ) = 0.1186+0.0090
−0.0047 and 

α
(6)
s (810 GeV) = 0.0907+0.0052

−0.0026, where for simplicity, we added the respective upper and lower uncertainties in quadrature. We reproduce 
the asymmetric uncertainties for α(6)

s (810 GeV) for the given α(5)
s (mZ ) range and start by defining the relevant parameters for the 5-flavor 

coupling α(5)
s (mZ ), where we set the top quark standard running mass to mt = 163 GeV

In[]:= {amZCentral, Q, mtmt} = {0.1186, 810, 163};
{amZMax, amZMin} = amZCentral + {0.0090, -0.0047};

Next we create the Cores for our evaluation (including a CoreDeleteAll[] to remove older cores)

In[]:= CoreDeleteAll[]
CoreCreate["central2", 6, {5, amZCentral, mZdef},
{{6, mtmt, mtmt}}, runAlpha -> 2]

CoreCreate["max2", 6, {5, amZMax, mZdef},
{{6, mtmt, mtmt}}, runAlpha -> 2]

CoreCreate["min2", 6, {5, amZMin, mZdef},
{{6, mtmt, mtmt}}, runAlpha -> 2]

To obtain the 6-flavor strong coupling values at Q = 810 GeV including the error range we simply evaluate

In[]:= aQCentral2 = AlphaQCD["central2", Q, 6]
AlphaQCD[#, Q, 6] & /@ {"min2", "max2"} - aQCentral2

Out[]= 0.09079931707610696
Out[]= {-0.002757013433150532, 0.005129916277931454}

agreeing very well with the result given in Ref. [27].
We investigate this setup with two-loop evolution further by determining the uncertainty related to varying the matching scale ac-

counting for the top threshold corrections at one loop. This is easily done using REvolver by creating a set of Cores with a range 
of f-parameters. To this end we first define a table containing 20 logarithmically scaled f-parameters in the range [1/2, 2], which cor-
responds to matching scales between one half and twice the standard running top mass. Subsequently the table is used to create the 
corresponding set of Cores

In[]:= list2 = 2^Range[-1, 1, 2/19];
In[]:= CoreCreate[ToString[#] <> "run2", 6,

{5, amZCentral, mZdef}, {{6, mtmt, mtmt}},
runAlpha -> 2, orderAlpha -> 1,
fMatch -> {#}] & /@ list2;

Finally, we can determine a list of the corresponding strong coupling values α(6)
s (810 GeV) and compute the central value as well as the 

error range

In[]:= aQList2 = AlphaQCD[ToString[#] <> "run2", Q, 6] & /@
list2;

(Max[aQList2] + {1, -1} * Min[aQList2])/2
Out[]= {0.09081555469961156, 0.00009936201139525841}

The perturbative uncertainties associated to the threshold corrections are about 3% of the quoted experimental error.
Employing 5-loop instead of 2-loop running for the strong coupling and 4-loop matching corrections we obtain

In[]:= CoreCreate["central5", 6, {5, amZCentral, mZdef},
{{6, mtmt, mtmt}}, runAlpha -> 5]

CoreCreate["max5", 6, {5, amZMax, mZdef},
{{6, mtmt, mtmt}}, runAlpha -> 5]

CoreCreate["min5", 6, {5, amZMin, mZdef},
{{6, mtmt, mtmt}}, runAlpha -> 5]

In[]:= aQCentral5 = AlphaQCD["central5", Q, 6]
AlphaQCD[#, Q, 6] & /@ {"min5", "max5"} - aQCentral5

Out[]= 0.09078701609518454
Out[]= {-0.00275523573924355, 0.0051259314534172346}
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for α(6)
s (810 GeV) and its upper and lower uncertainty and

In[]:= CoreCreate[ToString[#] <> "run5", 6,
{5, amZCentral, mZdef}, {{6, mtmt, mtmt}},
runAlpha -> 5, fMatch -> {#}] & /@ list2;

In[]:= aQList5 = AlphaQCD[ToString[#] <> "run5", Q, 6] & /@
list2;

(Max[aQList5] + {1, -1} * Min[aQList5])/2
Out[]= {0.09078682756270738, 1.9445996186917558*^-7}

for the central value and error estimate derived from varying the matching scale. Within the experimental uncertainties as quoted in 
Ref. [27] using 2-loop evolution and continuous matching is perfectly adequate.

Strong coupling from inclusive jet cross sections
We return to the analysis of Ref. [24] and investigate the impact of a top quark threshold on the values given there, staying with 2-loop 

running as employed in that reference. In the following we create Cores with the given range of values of α(5)
s (mZ ) = 0.1162+0.0070

−0.0062 and 
determine the strong coupling α(6)

s (1508.04 GeV) in the 6-flavor scheme instead of the 5-flavor coupling α(5)
s (1508.04 GeV) determined 

in Ref. [24]. After defining the parameters

In[]:= {amZCentral, Q, mtmt} = {0.1162, 1508.04, 163};
{amZMax, amZMin} = amZCentral + {0.007, -0.0062};

and creating the respective Cores, accounting for the standard running top quark mass mt = 163 GeV and default 4-loop matching

In[]:= CoreCreate["central2", 6, {5, amZCentral, mZdef},
{{6, mtmt, mtmt}}, runAlpha -> 2];

CoreCreate["min2", 6, {5, amZMin, mZdef},
{{6, mtmt, mtmt}}, runAlpha -> 2];

CoreCreate["max2", 6, {5, amZMax, mZdef},
{{6, mtmt, mtmt}}, runAlpha -> 2];

we obtain

In[]:= aQCentral2 = AlphaQCD["central2", Q, 6]
(AlphaQCD[#, Q, 6] & /@ {"min2","max2"}) - aQCentral2

Out[]= 0.08406136347372324
Out[]= {-0.003262229612787812, 0.0035626775539831235}

for the central value and the upper and lower uncertainties, respectively. Comparing these values to α(5)
s (1508.04 GeV) = 0.0822+0.0034

−0.0031, 
quoted in Ref. [24], we observe a positive shift of about 0.002 in the central value. This already amounts to about 60% of the given 
experimental error, illustrating that flavor-thresholds effects can lead to significant changes.

7.2.2. Asymptotic pole and low-scale MSR mass
To demonstrate the REvolver functionalities related to mass conversions accounting for flavor threshold effects, we investigate how 

much the asymptotic top quark pole mass mpole
t as well as the top MSR mass at 2 GeV mMSR

t (2 GeV) would change if the strong coupling 
value quoted in Ref. [24] αs(1508.04 GeV) = 0.0822+0.0034

−0.0031 would be interpreted as a 6-flavor compared to a 5-flavor result. After defining 
the relevant constants and Cores (we keep using the values of Q and mtmt already defined in the previous section)

In[]:= aQ = 0.0822;
CoreCreate["5", 6, {5, aQ, Q}, {{6, mtmt, mtmt}}];
CoreCreate["6", 6, {6, aQ, Q}, {{6, mtmt, mtmt}}];

where we have employed default highest-order precision for coupling and mass evolution and flavor threshold matching, we first extract 
mMSR

t (2 GeV) from both Cores and then determine their difference:

In[]:= mMSR25 = MassMS["5", 6, 2]
mMSR26 = MassMS["6", 6, 2]
mMSR25 - mMSR26

Out[]= 172.45858180514585
Out[]= 172.10074770514723
Out[]= 0.3578340999986267

For the asymptotic pole masses we obtain

In[]:= mPole5 = MassPole["5", 6, mtmt]
mPole6 = MassPole["6", 6, mtmt]
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mPole5 - mPole6
Out[]= 172.8732843267365
Out[]= 172.4868549739421
Out[]= 0.3864293527944085

where we adopted mt = 163 GeV as the conversion scale for the asymptotic pole mass determination. The differences we obtain amount 
to 358 MeV and 386 MeV, both of which exceed the uncertainty of the current world average for direct top mass measurements [23].

7.2.3. Bottom and charm quark short-distance masses
Bottom MS mass at high scales

In Ref. [28] the partonic cross section for Higgs production via bottom quark fusion was presented. This involves the bottom running 
mass at the Higgs scale mH = 125.09 GeV, quoted to be m(5)

b (mH ) ≡ m(5)

b (mH ) = 2.79 GeV using 4-loop MS-mass running, α(5)
s (mZ ) =

0.118 and the bottom quark standard running mass mb = 4.18 GeV, see Table 2 therein. We can reproduce this relation in REvolver by 
defining the relevant parameters

In[]:= {mH, amZ, mbmb} = {125.09, 0.118, 4.18};

and creating a corresponding Core

In[]:= CoreDeleteAll[]
CoreCreate["b", 5, {5, amZ, mZdef}, {5, mbmb, mbmb},

runMSbar -> 4]

The value of m(5)

b (mH ) can now be extracted with

In[]:= MassMS["b", 5, mH]
Out[]= 2.78854676339097

showing perfect agreement with Ref. [28].

Bottom quark PS and 1S masses
In Ref. [29] the conversion between the MS and various low-scale short-distance masses was carried out with 4-loop fixed-order 

formulae. To illustrate the functionalities of REvolver for mass conversions we now consider the values of the PS and 1S bottom quark 
masses given in Table II of that article. We start defining the input parameters α(5)

s (mZ ) = 0.1185, mb = 4.163 GeV and μ f = 2.0 GeV 
for the strong coupling, the standard running bottom mass and the bottom PS mass renormalization scale, respectively, as specified in 
Ref. [29],

In[]:= {amZ, mbmb, mufB} = {0.1185, 4.163, 2.0};

and the related Core

In[]:= CoreCreate["b", 5, {5, amZ, mZdef},
{{5, mbmb, mbmb}}, fMatch -> {2.0}]

Following Ref. [29] we set the bottom quark matching scale to twice the standard running bottom mass. Comparing the 4-loop value 
for the bottom PS mass mPS

b (2 GeV) = 4.483 GeV quoted in Ref. [29] and obtained by REvolver we obtain

In[]:= mbPSRef = 4.483;
mbPSREvo = MassPS["b", 5, mufB, 5, mbmb, mbmb]
mbPSREvo - mbPSRef

Out[]= 4.484037803646092
Out[]= 0.0010378036460920725

where, following Ref. [29], the conversion is carried out using the fixed-order relation between the standard running and PS masses using 
the standard running mass mb as the renormalization scale for the strong coupling.

The small difference of about 1 MeV results from the fact that in REvolver all conversions between mass schemes are based on 
formulae starting from the value of the running mass, while in Ref. [29] the conversion was obtained the other way around, i.e. the 
running mass was computed starting from a value in the PS scheme. The difference is naturally covered by the perturbative uncertainty 
and not relevant for practical purposes.

In the previous example we have used REvolver to determine the PS from the standard running mass mb . The conversion in the 
opposite direction can be achieved using the REvolver functionality to add a heavier mass to an existing Core, see Sec. 6.3. To determine 
the standard running mass we first create a Core containing 4 massless flavors

In[]:= anf4mu3 = AlphaQCD["b", 3.0, 4];
CoreCreate["O4", {4, anf4mu3, 3.0}]
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which requires the 4-flavor strong coupling α(4)
s (3 GeV) as an input, which here we obtain from the previously created Core named b.

We now create a new Core with name b2 by adding the bottom PS mass mPS
b (2 GeV) = 4.483 GeV to the Core named O4, reusing 

the parameters mbPSRef and mufB defined in the previous example as well as the matching scale factor 2.0, specified by the option 
parameter fnQ

In[]:= AddPSMass["O4", "b2", mbPSRef, mufB, 5, 4.2,
4.2, fnQ -> 2.0]

Internally, first the 5-flavor running mass is determined and subsequently used to create the 5-flavor Core named b2. To match precisely 
the conversion method used in Ref. [29] we set the running mass scale and the renormalization scale of the strong coupling for that 
conversion to 4.2 GeV here.

Reading out the resulting bottom quark standard running mass results in

In[]:= MassMS["b2", 5]
Out[]= 4.1621220500397325

with the expected 1 MeV difference to the value mb = 4.163 GeV quoted in the reference paper. This difference arises here again because 
the numerical conversion formulae employed in REvolver are exactly invertible, i.e. they produce the same numerical mass differences 
regardless in which way the conversion is carried out.

Note that the default REvolver routines convert from the MSR mass to a low-scale short-distance mass at the intrinsic scale of 
the low-scale short-distance mass (see Sec. 6.2.2) to resum potentially large logarithms involving the ratio of the quark mass and the 
renormalization scale. In the example above, we have, however, explicitly set the input parameter nfConv of the function MassPS to 5 to 
enforce conversion at the scale of the MS mass (which is the approach used in Ref. [29] and which does not resum these logarithms). The 
result including log-resummation via R-evolution differs by around 15 MeV and can be extracted by using the corresponding REvolver
commands with default parameter settings. For example, converting from the standard running mass to the PS mass we obtain

In[]:= MassPS["b", 5, mufB]
Out[]= 4.468247788253957

where nfConv is automatically set to 4 and R as well as the renormalization scale of the strong coupling are set to mufB.
The corresponding (log-resummed) conversion from the PS mass to the standard running mass is achieved by adding to the Core

named O4 the bottom quark PS mass mPS
b (2 GeV) = 4.483 GeV, specifying log resummation via R-evolution. The associated new Core

named b3 is created by

In[]:= AddPSMass["O4", "b3", mbPSRef, mufB, fnQ -> 2.0]

resulting in a bottom quark standard running mass of

In[]:= MassMS["b3", 5]
Out[]= 4.176206116625182

At this point it should be mentioned that for bottom quarks large scale hierarchies cannot arise, such that the log-resummed conversion 
is not superior and the difference between the fixed-order and the log-resummed conversions may be better considered as a scheme 
variation. To illustrate this we show, order by order, the bottom quark PS mass computed in the fixed-order expansion as well as by 
utilizing R-evolution:

In[]:= MassPS["b", 5, mufB, 5, mbmb, mbmb, 1.0, #] & /@
{1, 2, 3, 4}

MassPS["b", 5, mufB, 4, mufB, mufB, 1.0, #] & /@
{1, 2, 3, 4}

Out[]= {4.371486051575019, 4.452182487749768,
4.484416838176134, 4.484037803646092}

Out[]= {4.456398324160689, 4.487678320598545,
4.494296775616467, 4.468247788253957}

Next, we consider the 1S scheme. Comparing the 1S bottom quark mass m1S
b = 4.670 GeV quoted Ref. [29] and obtained in REvolver

using the relativistic counting and conversion at the high scale mb (which again agrees with the approach used in Ref. [29] and does not 
account for the resummation of logarithms involving the bottom mass and inverse Bohr radius) we obtain

In[]:= mb1SRef = 4.670;
mb1SRevo = Mass1S["b", 5, 5, mbmb, "relativistic"]
mb1SRevo - mb1SRef

Out[]= 4.671281708897272
Out[]= 0.0012817088972720825

Again, the 1 MeV discrepancy emerges from the perturbative difference between converting from or to the standard running mass. 
For comparison, we also present the corresponding 1S mass value accounting for log-resummation via R-evolution. This can be achieved 
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by calling the routine Mass1S without any optional parameters. This implies that the default setting is used, namely that the 1S mass 
is converted from the MSR mass at the inverse Bohr radius Mq,B (the intrinsic scale of the 1S mass, see Sec. 6.2.2) and that non-
relativistic counting is applied. The bottom 1S mass is, however, sensitive to the ultra-soft scale M2

q,B/mb , related to logarithms of the 
strong coupling. This entails that for the conversion from the MSR mass (at the inverse Bohr radius) a scale larger than Mq,B may be 
adopted as the renormalization scale for the strong coupling to avoid perturbative instabilities.6 Adopting 2Mq,B for the renormalization 
scale of the strong coupling, the 1S mass accounting for log-resummation is obtained by

In[]:= MbB = MBohr["b", 5]
Mass1S["b", 5, 4, MbB, "nonrelativistic", 2*MbB]

Out[]= 1.8792648142678285
Out[]= 4.6676688462595175

The result differs by 4 MeV to the one using fixed-order conversion. As for the bottom PS mass, there is no conceptual improvement 
using log-resummation. This can again be seen from comparing the 1S mass values at lower orders. Order by order, the values of the 
bottom quark 1S mass, derived in fixed-order and with R-evolution, respectively, are given by

In[]:= Mass1S["b", 5, 5, mbmb, "relativistic", mbmb, #] & /@
{1, 2, 3, 4}

Mass1S["b", 5, 4, MbB, "nonrelativistic", 2*MbB,
#] & /@ {1, 2, 3, 4}

Out[]= {4.516545706062886, 4.64055194539697,
4.680062686477036, 4.671281708897272}

Out[]= {4.609340303152403, 4.666301702298438,
4.6809114692112495, 4.6676688462595175}

Of course one can also convert from the 1S scheme to the standard running mass using the routine Add1SMass, shortly demonstrated 
in the following.

Reusing the Core named O4, which contains 4 massless quarks, we create a new Core with name b4 by adding the bottom 1S mass 
using fixed-order conversion

In[]:= Add1SMass["O4", "b4", mb1SRef, 5, mbmb,
"relativistic", mbmb, fnQ -> 2.0]

which results in the following bottom quark standard running mass:

In[]:= MassMS["b4", 5]
Out[]= 4.161807379452769

again with the expected 1 MeV difference to the value mb = 4.163 GeV quoted in Ref. [29], related to invertible numerical conversion 
algorithm employed in REvolver. The analogous procedure for converting the 1S mass to the standard running mass using R-evolution 
can be performed by executing

In[]:= Add1SMass["O4", "b5", mb1SRef, 4, MbB,
"nonrelativistic", 2*MbB, fnQ -> 2.0]

In[]:= MassMS["b5", 5]
Out[]= 4.165169213761735

Charm and bottom quark RS masses
In Ref. [30] the charm quark RS mass mRS

c (ν f ) = 1.202 GeV at the scale ν f = 1 GeV was extracted from charmonium bound states 
masses, given in Eq. (2.15) of that paper. The RS mass was converted to the standard running charm mass mc = 1.217 GeV with 4-loop 
fixed-order formulae for α(5)

s (mZ ) = 0.1184 and using μc = 1.27 GeV as the charm threshold matching scale. The renormalization scale of 
the strong coupling was set to νc = 1.5 GeV and the pole mass renormalon normalization constant for n f = 3 active flavors was quoted 
to be Nm = 0.5626. This relation can be easily reproduced with REvolver. First, we set the relevant variables

In[]:= {amZ, Nm} = {0.1184, 0.5626};
{mcmc, mcmcMatch, nufc, nuc} =
{1.217, 1.27, 1.0, 1.5};

{mbmb, mbmbMatch} = {4.185, 4.2};

and create the respective Core

In[]:= CoreDeleteAll[]
CoreCreate["cb", 5, {5, amZ, mZdef},
{{4, mcmc, mcmc}, {5, mbmb, mbmb}},
fMatch -> {mcmcMatch/mcmc, mbmbMatch/mbmb}]

6 This issue does not arise for the top quark due to is large mass value.
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We include the standard running bottom mass mb = 4.185 GeV with the corresponding threshold matching scale μb = 4.2 GeV to 
enable automatic matching of the strong coupling constant which is given at μ = mZ . The charm quark RS mass computed by REvolver
and the difference to the value quoted in the reference paper are given by

In[]:= mcRSRef = 1.202;
mcRSREvo = MassRS["cb", 4, nufc, 4, mcmc, nuc,

4, 4, Nm]
mcRSRef - mcRSREvo

Out[]= 1.201144351209422
Out[]= 0.0008556487905779786

showing agreement at the sub-MeV level.
In Ref. [30] also the bottom quark RS mass value mRS

b (ν f ) = 4.379 GeV at the scale ν f = 2 GeV was extracted from bottomonium 
meson masses [see Eq. (2.3) of that paper] and subsequently converted to the standard running bottom mass mb = 4.379 GeV with 4-loop 
fixed-order formulae using μb = 4.2 GeV as the bottom threshold matching scale and νb = 2.5 GeV as the renormalization scale of the 
strong coupling. The charm mass corrections in the perturbative relation between the RS and the MS mass have been implemented in 
an effective way by evaluating the conversion series that relates the MS and the RS masses for the bottom quark and n� massless quarks 
for n� = 3 dynamical flavors, but using the 3-flavor strong coupling α(3)

s computed with the charm mass threshold properly accounted 
for. This treats the charm quark as a decoupled flavor. The REvolver RS mass routines do not directly provide this functionality, but in 
the following we show how this evaluation can still be carried out in REvolver. We first set the necessary parameters not yet defined 
before

In[]:= {nufb, nub} = {2.0, 2.5};

and compute the 3-flavor strong coupling α(3)
s (μc) at the charm matching scale μc = 1.27 GeV, taking into account the bottom as well as 

charm quark thresholds in the usual way

In[]:= as3 = AlphaQCD["cb", mcmcMatch, 3];

Next, we define a Core with decoupled charm quarks by using the precomputed n f = 3 strong coupling and specifying a total number 
of 4 flavors, including 3 massless flavors and the massive bottom quark as the 4-th flavor

In[]:= CoreCreate["b", 4, {3, as3, mcmcMatch},
{4, mbmb, mbmb}, fMatch -> {mbmbMatch/mbmb}]

Setting all previously defined scales we get

In[]:= mbRSRef = 4.379;
mbRSREvo = MassRS["b", 4, nufb, 4, mbmb, nub,

4, 4, Nm]
mbRSREvo - mbRSRef

Out[]= 4.379013026999629
Out[]= 0.00001302699962923981

for the bottom quark mass in the RS scheme with a negligible difference to the value quoted in the reference article.
We can also convert from the bottom RS to the standard running mass using the REvolver routine AddRSMass. To do that, we first 

create a Core containing the 3 massless non-decoupled flavors with

In[]:= CoreCreate["O3", {3, as3, mcmcMatch}]

and subsequently create a new Core with name b2 by adding the bottom RS mass to the Core with name O3 setting the various input 
parameters in analogy to the example above, i.e. using fixed-order conversion

In[]:= AddRSMass["O3", "b2", mbRSRef, nufb, 4, 4.2, nub, 4,
4, Nm]

Internally, first the 5-flavor running mass is determined and subsequently used to create the Core named b2. We set the running mass 
scale for that conversion to 4.2 GeV.

Extracting the bottom quark standard running mass from the newly created Core results in

In[]:= MassMS["b2", 4]
Out[]= 4.184987620121892

Bottom quark kinetic masses
In Ref. [21] the 3-loop corrections to the perturbative relation between the pole and kinetic quark mass schemes have been determined 

for the case of one massive quark and n� massless quarks. Here we show how to employ REvolver to reproduce the values for the 
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bottom quark kinetic mass mkin
b (μ) at the scale μ = 1 GeV given in Eq. (8) of that paper, obtained by converting from the standard 

running mass mb = 4.163 GeV.
The conversion from mb to the bottom kinetic mass was considered using the perturbative series computed with the massive bottom 

quark and n� massless quarks for n� = 4 (i.e. with the charm quark treated as massless) with the result mkin
b (μ) = 4.523 GeV, as well as 

for n� = 3 (i.e. with the charm quark treated as decoupled) with the result mkin
b (μ) = 4.521 GeV. The first case can be reproduced in a 

straightforward way with REvolver as it corresponds to a realistic physical scenario.
First we define the relevant parameters

In[]:= {mbmb, amZ, muCutb} = {4.163, 0.1179, 1.0};

and create a Core in which the charm quark is treated as massless

In[]:= CoreDeleteAll[];
CoreCreate["b4", 5, {5, amZ, mZdef},
{{5, mbmb, mbmb}}]

The value obtained by REvolver and the difference to the value quoted in Ref. [21] is

In[]:= mKinb4Ref = 4.523;
mKinb4REvo = MassKin["b4", 5, muCutb, 5, mbmb, mbmb]
mKinb4REvo - mKinb4Ref

Out[]= 4.523457226246508
Out[]= 0.0004572262465085686

i.e. there is perfect agreement.
The second case is in close analogy to the treatment of the RS mass just discussed above and requires that the conversion series, which 

relates the MS and the kinetic mass for the bottom quark and n� massless quarks, is evaluated for n� = 3 dynamical flavors, but using the 
3-flavor strong coupling α(3)

s computed with the charm mass threshold properly accounted for. REvolver does not provide functionality 
to carry out this conversion directly, but in the following we show how this evaluation can still be performed.

To obtain the n f = 3 strong coupling in the usual way, we first create a new Core involving a massive bottom as well as charm quark

In[]:= mcmc = 1.263;
CoreCreate["bc", 5, {5, amZ, mZdef},
{{4, mcmc, mcmc}, {5, mbmb, mbmb}}]

and extract α(3)
s (mb)

In[]:= a3mbmb = AlphaQCD["bc", mbmb, 3];

Next, we create the Core to be employed for the mass scheme conversion. We use the computed n f = 3 strong coupling and specify 
a total number of 4 flavors with 3 massless flavors and the massive bottom quark

In[]:= CoreCreate["b3", 4, {3, a3mbmb, mbmb},
{{4, mbmb, mbmb}}]

The value of the kinetic bottom quark mass computed by REvolver and the difference to the corresponding result quoted in Ref. [21]
can now be obtained by

In[]:= mKinb3Ref = 4.521;
mKinb3REvo = MassKin["b3", 4, muCutb, 4, mbmb, mbmb]
mKinb3Ref - mKinb3REvo

Out[]= 4.520784332346221
Out[]= 0.00021566765377922792

The numbers are in perfect agreement.
In Ref. [22] the lighter flavor mass corrections to the relation between the pole and kinetic masses were computed explicitly up to 

O(α3
s ). These corrections are implemented in REvolver. They have the property that they exclusively come from the flavor number 

decoupling relations of the strong coupling, and they are also referred to as “scheme B” in that reference. In Eq. (79) of that reference 
the bottom quark kinetic mass mkin

b (1 GeV) = 4.526 GeV was obtained using α(5)
s (mZ ) = 0.1179 for the strong coupling, the charm quark 

running mass mc(2 GeV) = 0.993 GeV and the bottom quark standard running mass mb = 4.136 GeV. For the calculation, fixed-order 
conversion was applied using the standard running bottom mass mb as the renormalization scale of the strong coupling. To reproduce the 
result with REvolver we define the input values with

In[]:= {amZ, mc3, mbmb} = {0.1179, 0.993, 4.163};

and the related Core with
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In[]:= CoreDelete["bc"]
CoreCreate["bc", 5, {5, amZ, mZdef},

{{4, mc3, 3}, {5, mbmb, mbmb}}]

The bottom quark kinetic mass extracted by REvolver and its difference to the reference value are returned by

In[]:= mbKinRef = 4.526;
mbKinREvo = MassKin["bc", 5, 1.0, 5, mbmb, mbmb]
mbKinRef - mbKinREvo

Out[]= 4.527084826155039
Out[]= -0.0010848261550391314

The small deviation of 1 MeV originates from the fact that in Ref. [22] the light massive flavor corrections related to the charm quark are 
parametrized in terms of mc(3 GeV), while in REvolver they are parametrized in terms of the charm standard running mass mc .

Performing the same conversion with R-evolution to resum logarithms of the intrinsic physical scales of the mass schemes gives

In[]:= MassKin["bc", 5, 1.0]
Out[]= 4.53472077059131

i.e. the bottom quark kinetic mass with log-resummation is larger by about 7 MeV. We note that, following Ref. [22], the default value for 
the kinetic mass intrinsic scale (where the default log-resummed conversion between the running and the kinetic mass is carried out) is 
set to be twice its renormalization scale, that is, 2 GeV in the example above.

7.2.4. Top quark mass at low scales
We return to Ref. [29] and investigate the top quark mass conversion between the MS and various short-distance schemes with 4-loop 

accuracy. This concerns Table I of that article.
Following Ref. [29] we first define the values for the strong QCD coupling α(5)

s (mZ ) = 0.1185, the top quark standard running mass 
mt = 163.643 GeV and the renormalization scale of the PS mass μ f = 20 GeV

In[]:= {amZ, mtmt, mufT} = {0.1185, 163.643, 20.0};

and a Core with a top threshold matching scale of twice the top standard running mass

In[]:= CoreDeleteAll[]
CoreCreate["t", 6, {5, amZ, mZdef}, {{6, mtmt, mtmt}},
fMatch -> {2.0}]

In analogy to Sec. 7.2.3, we evaluate the PS and 1S top quark mass employing REvolver and determine the difference to the values 
m1S

t = 172.227 GeV and mPS
t (20 GeV) = 171.792 GeV quoted in the reference paper by converting directly from the MS scheme, leading to

In[]:= mtPSRef = 171.792;
mtPSRevo = MassPS["t", 6, mufT, 6, mtmt, mtmt]
mtPSRevo - mtPSRef

Out[]= 171.7950829141975
Out[]= 0.0030829141975061702

for the PS scheme, and

In[]:= mt1SRef = 172.227;
mt1SRevo = Mass1S["t", 6, 6, mtmt, "relativistic"]
mt1SRevo - mt1SRef

Out[]= 172.2298841816133
Out[]= 0.0028841816132967324

for the 1S scheme, respectively.
As already described in Sec. 7.2.3, the small difference (of about 3 MeV) results from the fact that in REvolver conversion is based 

on formulae where the (standard) running mass is taken as the input, while in Ref. [29] the conversion was carried out starting from the 
PS and 1S masses.

We now investigate the influence of large logarithms of the ratio between the top quark mass and the intrinsic scale of the respective 
short-distance schemes. For the top quark the impact of the summation of these logarithms can be significant. To this end we consider 
the convergence of the perturbative series relating the standard running top mass mt to the PS mass mPS

t (20 GeV), the 1S mass m1S
t as 

well as the running mass m(5)
t (2 GeV).

Using fixed-order conversion (without log-resummation) from mt and using mt as the renormalization scale, the top PS mass at 4
loops, and the corresponding corrections of order O(αn

s ) with 1 ≤ n ≤ 4 amount to

In[]:= MassPS["t", 6, mufT, 6, mtmt, mtmt]
Table[
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MassPS["t", 6, mufT, 6, mtmt, mtmt, 1.0, n] -
MassPS["t", 6, mufT, 6, mtmt, mtmt, 1.0, n - 1],

{n, 1, 4}]
Out[]= 171.7950829141975
Out[]= {6.636196514422409, 1.199280138792858,

0.26779429813998945, 0.048811962842222556}

On the other hand, employing R-evolution to first evolve down to the PS mass renormalization scale μ f = 20 GeV and then converting 
to the PS mass at that scale, which is REvolvers default procedure, we obtain

In[]:= MassPS["t", 6, mufT]
Table[
MassPS["t", 6, mufT, 5, mufT, mufT, 1.0, n] -
MassPS["t", 6, mufT, 5, mufT, mufT, 1.0, n - 1],

{n, 1, 4}]
Out[]= 171.79912206134247
Out[]= {0., 0.06895809427228983,

0.001838267705210228, -0.01976315025407871}

We observe that the corrections are considerably smaller when R-evolution is accounted for and that there is a difference of around 
4 MeV in the final 4-loop converted values for the two approaches. The O(αs) correction term is zero in the case of the log-resummed 
conversion since the 1-loop perturbative coefficients of the PS and MSR masses coincide.

For the conversion to the 1S mass the observation regarding fixed-order versus log-resummed conversion is similar. In the fixed-order 
case we get

In[]:= Mass1S["t", 6, 6, mtmt, "relativistic", mtmt]
Table[
Mass1S["t", 6, 6, mtmt, "relativistic", mtmt, n] -
Mass1S["t", 6, 6, mtmt, "relativistic",
mtmt, n - 1], {n, 1, 4}]

Out[]= 172.2298841816133
Out[]= {7.129280949172028, 1.227243021981991,

0.21914263057425387, 0.01121757988499894}

while the log-resummed evaluation gives again substantially smaller corrections:

In[]:= mBohr = MBohr["t", 6]
Mass1S["t", 6, 5]
Table[
Mass1S["t", 6, 5, mBohr, "nonrelativistic",
mBohr, n] - Mass1S["t", 6, 5, mBohr,
"nonrelativistic", mBohr, n - 1], {n, 1, 4}]

Out[]= 32.11684612826197
Out[]= 172.20797480544945
Out[]= {1.1666583987086199, 0.18536848855083576,

-0.047109547951663444, -0.010351024770614004}

where the inverse Bohr radius, i.e. the intrinsic scale of the 1S mass, is shown as the first output for completeness.
Finally, we investigate the effect of log-resummation on the computation of the top quark 5-flavor running mass at 2 GeV, m(5)

t (2 GeV), 
when converting from m(5)

t (mt). For simplicity we create a new Core named t, this time where for the top threshold matching scale the 
default value, the top quark standard running mass, is adopted:

In[]:= CoreDelete["t"]
CoreCreate["t", 6, {5, amZ, mZdef},

{{6, mtmt, mtmt}}];

Now we extract the value of the 5-flavor MSR mass m(5)
t (mt) at the scale of the standard top running mass from this Core as a reference

In[]:= m5mt = MassMS["t", 6, mtmt, 5]
Out[]= 163.67571467667918

REvolver does not provide fixed-order conversions of the running masses between two different renormalization scales. It is, how-
ever, possible to access these fixed-order corrections through the pole mass routine MassPoleFO. Care has to be taken that the two calls 
of the MassPoleFO routines involve the same renormalization scale (which here is the standard running mass) to ensure that the pole 
mass renormalon is properly canceled:
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In[]:= FOTab =
MassMS["t", 6, 2.0, 5] -

MassPoleFO["t", 6, 5, 2.0, mtmt, #] +
MassPoleFO["t", 6, 5, mtmt, mtmt, #] & /@

{0, 1, 2, 3, 4};
FOTab[[5]]
Table[FOTab[[n]] - FOTab[[n - 1]], {n, 2, 5}]

Out[]= 173.2337130005733
Out[]= {7.46778271952536, 1.5242807051151317,

0.4246371655552821, 0.14129773369833742}

The difference of the two calls of the MassPoleFO routine removes the log-resummed corrections from the output of MassMS and 
replaces it by the corresponding fixed-order terms. As for the above examples, we first display the m(5)

t (2 GeV) value at O(α4
s ) and the 

fixed-order perturbative correction terms at order O(αn
s ) with 1 ≤ n ≤ 4.

For the investigation of the correction terms in the case of R-evolution we create four Cores, setting the respective loop order n of 
the R-evolution equation to 1 ≤ n ≤ 4

In[]:= CoreCreate["t-R" <> ToString[#], 6, {5, amZ, mZdef},
{{6, mtmt, mtmt}}, runMSR -> #] & /@ {1, 2, 3, 4};

The four Cores differ only by the loop order used for R-evolution, but employ the default 4-loop matching to determine m(5)
t (mt) from 

the standard running mass mt . The value of m(5)
t (2 GeV) corresponding to 4-loop running and the corrections coming from the individual 

running orders can be extracted with

In[]:= MassMS["t-R4", 6, 2.0]
RevoTab = MassMS["t-R" <> ToString[#], 6, 2.0] & /@

{1, 2, 3, 4};
RevoTab = Prepend[RevoTab, m5mt];
Table[RevoTab[[n]] - RevoTab[[n - 1]], {n, 2, 5}]

Out[]= 173.36186564820926
Out[]= {8.841888795217045, 0.8531892592812653,

0.035471795296302844, -0.044398878264530595}

where the first entry in the curly brackets is the difference between m(5)
t (mt) and m(5)

t (2 GeV) obtained with 1-loop R-evolution, while 
the subsequent entries refer to the differences to the previous order in m(5)

t (2 GeV) obtained when adding the 2-, 3- and 4-loop terms 
to the R-evolution anomalous dimension. Once again we observe that the convergence is much better when using R-evolution, and that 
the corresponding results are more precise than using fixed-order conversion. Using 4-loop R-evolution leads to a value for m(5)

t (2 GeV)

that is about 130 MeV higher than when using 4-loop fixed-order conversion. This difference is consistent with the size of the 4-loop 
fixed-order correction of 141 MeV, when adopting the latter as an uncertainty for the 4-loop fixed-order conversion.

We see that the higher order corrections to the R-evolution anomalous dimension lead to very small effects, so that one could worry 
that their size may not reflect the perturbative uncertainty at the corresponding loop order. A different way to estimate perturbative 
uncertainties is to perform λ-variation in the R-evolution equation, which we shortly demonstrate in the following.

We create a set of Cores with λ values in the range 1/2 ≤ λ ≤ 2 and for various loop orders in the R-evolution equation. The Cores 
are created with

In[]:= list2 = 2^Range[-1, 1, 2/49];
Outer[

CoreCreate["t-l" <> ToString[#2] <> "-R" <>
ToString[#1], 6, {5, amZ, mZdef},

{{6, mtmt, mtmt}}, lambdaMSR -> #2,
runMSR -> #1] &, {1, 2, 3, 4}, list2];

and the table containing the corresponding values of m(5)
t (2 GeV) is generated by

In[]:= mListRevo =
Outer[
MassMS["t-l" <> ToString[#2] <> "-R" <>

ToString[#1], 6, 2.0, 5] &, {1, 2, 3, 4},
list2];

Order by order, the values of the λ variations divided by two are then given by

In[]:= Table[(Max[mListRevo[[n]]] - Min[mListRevo[[n]]])/2,
{n, 1, 4}]

Out[]= {1.082493387031036, 0.2525991201191715,
0.041115232629010734, 0.02465406235192802}
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The values of λ variations are consistent with the size of the corrections to the R-evolution equation and substantially smaller than the 
size of the fixed-order corrections, illustrating that resumming logarithms via R-evolution leads to a more precise mass conversion than 
using fixed-order corrections.

7.2.5. Running masses for complex renormalization scales
REvolver provides the functionality to determine running masses at complex renormalization scales. In analogy to Sec. 7.1.2, we 

demonstrate the quality of the running mass evolution in the complex plane by showing numerical consistency for the high-scale (MS) 
running top quark mass concerning the Cauchy’s integral formula, where we adopt muMS= 350 GeV for the central scale and 174 GeV for 
the radius of the Cauchy integral. We set up a Core with the top quark standard running mass mt = 163 GeV and subsequently determine 
the central running mass and the corresponding value using the residue theorem

In[]:= CoreCreate["O", 6, {5, amZdef, mZdef},
{{6, 163, 163}}]

In[]:= {muMS, rMS} = {350, 174};
mMSDirect = MassMS["O", 6, muMS, 6]
mMSResidue =
1/(2 Pi)
NIntegrate[MassMS["O", 6, muMS + rMS E^(I phi), 6],
{phi, 0, 2 Pi}, PrecisionGoal -> 10]

mMSResidue - mMSDirect
Out[]= 154.072755231406
Out[]= 154.07275523140612 + 4.240739575284689*^-16 I
Out[]= -1.1368683772161603*^-13 - 4.240739575284689*^-16 I

Both results are in perfect agreement reflecting the high numerical precision of the evolution routines implemented in REvolver.
This high numerical precision is also maintained at much smaller renormalization scales (where perturbation theory in general is less 

reliable). We demonstrate this for the top quark running (MSR) mass at a central scale of 2 GeV and a radius of 1 GeV for the Cauchy 
integral:

In[]:= muR = 2;
mRDirect = MassMS["O", 6, muR, 5]
mRResidue =
1/(2 Pi)
NIntegrate[MassMS["O", 6, muR + E^(I phi), 5],
{phi, 0, 2 Pi}, PrecisionGoal -> 10]

mRResidue - mRDirect
Out[]= 172.64605095372784
Out[]= 172.64605095372804 + 4.417437057588218*^-18 I
Out[]= 1.9895196601282805*^-13 + 4.417437057588218*^-18 I

7.2.6. Top quark pole masses
The pole mass scheme suffers from an O(�QCD) renormalon, which entails that its perturbative relation to a short-distance mass 

involves a factorially divergent perturbative series and an associated ambiguity in its value [31,32,3,1]. The pole mass (and its value) can 
either be treated as an order-dependent concept or one can assign its value to be in the region where the perturbative series reaches 
its minimal correction term (and the partial sum of the perturbative series increases linearly), sometimes called the asymptotic region. 
We call the latter value the “asymptotic pole mass”. The associated ambiguity arises from the principle ignorance where precisely to 
truncate the partial sum within the asymptotic region. Different lines of reasoning have been proposed concerning the determination of 
the asymptotic value and the associated ambiguity, see Refs. [1,3] for recent analyses.

REvolver provides functionalities to extract the order-dependent as well as the asymptotic pole mass value from a Core. In case of 
the asymptotic value and the associated ambiguity, REvolver provides routines employing a number of different methods and allowing 
for various options as explained in Sec. 6.2.3. In the following we demonstrate some of these functionalities reproducing results quoted in 
Refs. [3] and [1] focusing on the scenario of the top quark with massless bottom and charm quarks. Scenarios with massive bottom and 
charm quarks are treated in Sec. 7.3.4.

Minimal correction approach for the pole mass ambiguity
First, we consider Ref. [3] where the top quark pole mass renormalon ambiguity quoted in Eq. (4.7) is determined from the perturbative 

series between the pole mass and the standard running mass for the case where the bottom and charm mass effects are ignored. To 
reproduce the result we define the top standard running mass value used in Ref. [3]

In[]:= mtmt = 163.508;

and create an associated Core

In[]:= CoreDeleteAll[]
CoreCreate["t", 6, {5, amZdef, mZdef},
{{6, mtmt, mtmt}}]
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We execute the function MassPoleDetailed to extract the asymptotic pole mass value, the ambiguity, and the order of the smallest 
correction term. The method adopted in Ref. [3] to determine the pole mass ambiguity was associated to the size of the minimal correction 
and is accessed in REvolver specifying the min method:

In[]:= MassPoleDetailed["t", 6, mtmt, mtmt, "min"]
Out[]= {173.60839591880665, 0.06443134543422957, 8}

Furthermore the third and fourth arguments are set to the standard running top mass mtmt to mimic the choices adopted in Ref. [3]. 
The choice of arguments when calling the function MassPoleDetailed ensures that the analyzed series is the one for the difference 
between pole and the (5-flavor) MSR mass at the scale mtmt and that the renormalization scale for the strong coupling is mtmt as well. 
The values for the asymptotic pole mass and its ambiguity quoted in Eq. (4.8) in Ref. [3] are 173.608 GeV and 67 MeV, respectively. The 
asymptotic value is in perfect agreement. The small discrepancy of 3 MeV in the ambiguity is related to the fact that REvolver uses 
the perturbative series for the relation between the pole and the MSR mass for the routine MassPoleDetailed while in Ref. [3] the 
relation between the pole and the standard running mass was considered.

Asymptotic series for the pole-MS mass relation
The method of estimating higher order coefficients in the pole-MS relation employed by REvolver is described in Sec. 4.4 of Ref. [1]

and relies on an asymptotic formula that can, depending on the specified options, reproduce the exactly known coefficients, see Eq. (A.28)
in Sec. A.5.

The values of the asymptotic coefficients can be easily read out using the function MassPoleFO. For the orders 5–9 REvolver
returns

In[]:= (MassPoleFO["t", 6, 5, mtmt, mtmt, #] -
MassPoleFO["t", 6, 5, mtmt, mtmt, # - 1])/

(mtmt * (AlphaQCD["t", mtmt, 5]/(4 Pi))^#) & /@
Range[5, 9]

Out[]= {1.4248584469453057*^7, 1.1661884055877335*^9,
1.1323781055413771*^11, 1.2729796430260885*^13,
1.6260702903901682*^15}

for aMSR ′
n (i.e. the series coefficients for the MSR and pole mass difference) and

In[]:= (MassPoleFO["t", 6, 6, mtmt, mtmt, #] -
MassPoleFO["t", 6, 6, mtmt, mtmt, # - 1])/

(mtmt * (AlphaQCD["t", mtmt, 6]/(4 Pi))^#) & /@
Range[5, 9]

Out[]= {1.429074531848818*^7, 1.1687368433901165*^9,
1.1344063409072752*^11, 1.2749318929376549‘*^13,
1.6282469370459092*^15}

for aMS ′
n (i.e. the series coefficients for the standard running and pole mass difference), agreeing well with Table 2 of Ref. [1] within errors. 

The deviation from the central values quoted in that table arises because in Ref. [1] the central values of asymmetric uncertainty intervals 
have been quoted.

Asymptotic series for the pole-MS mass relation and the asymptotic pole mass
Having access to the pole mass at in principle arbitrary order using conversion from MS and MSR masses at arbitrary renormalization 

scales, REvolver allows to easily reproduce the numbers utilized to produce Fig. 6 of Ref. [2], where the order-dependent top quark pole 
mass was shown. We create a new Core to switch to the top standard running mass value mt = 163 GeV in accordance with Ref. [2]

In[]:= mtmt = 163;
CoreDeleteAll[]
CoreCreate["t", 6, {5, amZdef, mZdef},
{{6, mtmt, mtmt}}]

Converting directly from the MS mass at the scale mt , including scale variation in the range mt/2 ≤ μ ≤ 2mt the pole mass, order by 
order 0 ≤ n ≤ 12, is given by

In[]:= Table[{{ord, MassPoleFO["t", 6, 6, mtmt, mtmt, ord]},
{MassPoleFO["t", 6, 6, mtmt, mtmt/2, ord] -
MassPoleFO["t", 6, 6, mtmt, mtmt, ord],

MassPoleFO["t", 6, 6, mtmt, 2*mtmt, ord] -
MassPoleFO["t", 6, 6, mtmt, mtmt, ord]}},

{ord, 0, 12}]
Out[]= {{{0, 163.}, {0., 0.}},

{{1, 170.5097731904309},
{0.7122980457679375, -0.5972354956839183}},
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Fig. 4. Top quark pole mass mpole
t as a function of the perturbative order for massless bottom and charm quarks, converted from the MS mass (upper left panel) or the MSR 

mass (other panels) at different scales of R . The central dots are obtained for the default renormalization scales for the strong coupling, the error bars represent the scale 
variation. This corresponds to the black dots and error bars in Fig. 6 of Ref. [2].

{{2, 172.11277687226905},
{0.27618516105792423, -0.3086769323029728}},

{{3, 172.6079790748946},
{0.12091854036228256, -0.15116686757511388}},

{{4, 172.80297651883814},
{0.06337072738099891, -0.08027361964516899}},

{{5, 172.9150350500228},
{0.04822992022724293, -0.05421541398965246}},

{{6, 172.99420261176041},
{0.04210709824803871, -0.043768064396573436}},

{{7, 173.06058298165766},
{0.042838521236177485, -0.04090645714344987}},

{{8, 173.1250293570062},
{0.04963473302441912, -0.04338206485874707}},

{{9, 173.19612979388887},
{0.0644919645042421, -0.05147133915082236}},

{{10, 173.28398617671283},
{0.09283257854019666, -0.06758882965976909}},

{{11, 173.40418238677069},
{0.14657118914180955, -0.09737521610099975}},

{{12, 173.58454177427788},
{0.2518136273276639, -0.1527834480848469}}}

Analogous commands can be used to extract the relevant values of the pole mass when converting from the MSR scheme at various 
scales of R . Utilizing these numbers it is now straightforward to reproduce Fig. 6 of Ref. [2] for vanishing bottom and charm mass (black 
dots in Ref. [2]), see Fig. 4.7 The asymptotic value which can be assigned to the pole mass lies in the region where the series grows 
linearly, which is in Fig. 4, roughly in the region around 173 GeV. This is confirmed by the output of the command MassPoleDetailed, 
which gives

In[]:= MassPoleDetailed["t", 6, mtmt, mtmt, "min"]
Out[]= {173.07508395890844, 0.06445302708283407, 8}

7 Note that the upper left panel of Fig. 4 (corresponding to the numbers given above) shows the conversion directly from the standard MS mass instead of the MSR mass 
at the high scales.
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Fig. 5. Comparison of the pole mass ambiguity estimating strategies available in REvolver obtained from the series between the pole mass and the running mass 
m(5)

t (R) = mMSR
t (R) for the case that all quarks lighter than the top quark are considered to be massless. The figure shows the size of the ambiguity of the top quark 

pole mass in GeV as estimated by the min (blue lower curve), drange (orange upper curve) and range (green middle curve) strategies over the scale R . (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

In[]:= MassPoleDetailed["t", 6, mtmt, mtmt, "range"]
Out[]= {173.07976320487433, 0.12605058936964042, 8}

In[]:= MassPoleDetailed["t", 6, mtmt, mtmt, "drange"]
Out[]= {173.1081654841447, 0.16284602132711257, 8}

for the three methods to estimate the asymptotic pole mass supported by REvolver from the relation between the pole and the MSR 
mass m(5)

t (mt) at the scale 163 GeV. While the estimation of the ambiguity can vary by more than a factor of 2 depending on the 
employed strategy, the estimated asymptotic pole mass is fairly stable.

Fig. 5 shows a comparison of the three strategies of estimating the pole mass ambiguity implemented in REvolver from the per-
turbative series between the pole mass and the running (MSR) mass m(5)

t (R) = mMSR
t (R) at the scale R . The plot is produced with the 

command

In[]:= LogLinearPlot[
{MassPoleDetailed["t", 6, R, "min"][[2]],
MassPoleDetailed["t", 6, R, "drange"][[2]],
MassPoleDetailed["t", 6, R, "range"][[2]]},

{R, 2, mtmt}, PlotRange -> {0.05, 0.26}]

omitting all options related to plot styling and annotations for brevity.
The figure shows the size of the ambiguity of the top quark pole mass in GeV as estimated by the strategies over the scale R , 

specifying the scale in the perturbative relation between the pole and running mass. All quarks lighter than the top quark are considered 
to be massless. Due to its discrete nature, the drange method produces a discontinuous curve, while the continuous version range
provides a very stable result. The min method leads to an ambiguity estimate that is logarithmically decreasing with R .

7.3. Cores with multiple massive quarks

7.3.1. Strong coupling and �QCD
Strong coupling evolution through multiple flavor thresholds

In Ref. [33] the 3-flavor strong coupling value α(3)
s (mτ ) was determined from hadronic e+e− R-ratio data for c.m. energies below the 

charm production threshold. For this determination, fixed-order (FO) as well as contour-improved (CI) perturbation theory were applied, 
and the corresponding values α(3)

s (mτ )FO = 0.298 and α(3)
s (mτ )CI = 0.304 were subsequently converted to α(5)

s (mZ ) employing the 4-loop
beta function as well as the 3-loop matching relations at the charm and bottom thresholds. The respective values for the strong coupling 
at the Z-scale were quoted in Eq. (4.7) of that reference as α(5)

s (mZ )FO = 0.1158 and α(5)
s (mZ )CI = 0.1166, respectively.

For the conversion, the values mc = 1.28 GeV and mb = 4.2 GeV were used for the charm and bottom standard running masses, 
respectively, and the charm and bottom threshold matching scales were set to μc = 2.0 GeV and μb = 4.0 GeV, respectively. To reproduce 
the conversion with REvolver we define these input values with

In[]:= mTau = 1.77686;
{mcmc, mbmb} = {1.28, 4.2};
matchList = {2.0/mcmc, 4.0/mbmb};
{amTauFO, amTauCI} = {0.298, 0.304};

and define one Core for each value of α(3)
s (mτ )

In[]:= CoreCreate["FO", 5, {3, amTauFO, mTau},
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{{4, mcmc, mcmc}, {5, mbmb, mbmb}}, runAlpha -> 4,
orderAlpha -> 3, fMatch -> matchList]

CoreCreate["CI", 5, {3, amTauCI, mTau},
{{4, mcmc, mcmc}, {5, mbmb, mbmb}}, runAlpha -> 4,
orderAlpha -> 3, fMatch -> matchList]

where the parameters relevant for running and matching were set with the optional parameters runAlpha, orderAlpha and fMatch.
The values of α(5)

s (mZ ) can now be easily extracted by

In[]:= AlphaQCD["FO", mZdef, 5]
AlphaQCD["CI", mZdef, 5]

Out[]= 0.11581049250660494
Out[]= 0.11662117512902259

in full agreement with Eq. (4.7) of Ref. [33].
Similarly, in Ref. [34] α

(3)
s (mτ ) was determined from τ decay data and converted to α(5)

s (mZ ) employing 4-loop evolution and matching. 
We update the values for the standard running bottom and charm masses to the ones in the reference paper and define the value of 
α

(3)
s (mτ ) as given in Eq. (19) therein as well as the associated Core

In[]:= {mcmc, mbmb} = {1.286, 4.164};
amTau = 0.332;

In[]:= CoreDeleteAll[]
CoreCreate["O", 5, {3, amTau, mTau},
{{4, mcmc, mcmc}, {5, mbmb, mbmb}}, runAlpha -> 4]

where, following Ref. [34], the strong coupling evolution is set to 4-loop precision. We focus on the central value here for brevity. The 
value of α(5)

s (mZ ) can now easily be extracted with

In[]:= AlphaQCD["O", mZdef, 5]
Out[]= 0.12019776978833413

agreeing with Eq. (20) of Ref. [34].

Flavor number dependence of the QCD scale �(n f )

QCD

To demonstrate the capability of REvolver to extract �(n f )

QCD in various flavor number schemes we consider Ref. [35], where α(5)
s (mZ ) =

0.1179 has been determined by the ALPHA collaboration and values for �(nf )
QCD with 3 ≤ n f ≤ 5 were determined, see Eqs. (4.14) as well as 

(5.3) and (5.4) of that reference.

To reproduce the �(n f )

QCD values with REvolver we create a Core with massive bottom and charm quarks (with standard running mass 
values taken from the PDG [23]) and define the value of α(5)

s (mZ ) to be the one given in the reference paper

In[]:= {amZ, mcmc, mbmb} = {0.1179, 1.27, 4.18};

In[]:= CoreDeleteAll[]
CoreCreate["O", 5, {5, amZ, mZdef},
{{4, mcmc, mcmc}, {5, mbmb, mbmb}}]

We now extract �(n f )

QCD in the n f = 5 , 4 , 3 flavor schemes in the so-called MS scheme [see Eq. (A.13) in App. A.2] with

In[]:= LambdaQCD["O", 5]
LambdaQCD["O", 4]
LambdaQCD["O", 3]

Out[]= 0.20745573124097272
Out[]= 0.288991643859333
Out[]= 0.33153068987761314

The numbers are in exact agreement with the values shown in Ref. [35].

7.3.2. Top quark running mass at low scales
In Ref. [36] a calibration analysis was provided which suggested that the top quark running mass mt (1 GeV) agrees within theoretical 

uncertainties with the MC top mass parameter mMC
t of the Pythia event generator. Specifically, the authors quote a value of mt(1 GeV) =

172.82 ± 0.19 GeV for a calibration with mMC
t = 173 GeV, given in Table 1. That analysis was carried out in the approximation of massless 

bottom and charm quarks. Here we demonstrate how REvolver can be used to investigate how finite charm and bottom quark masses 
affect the value of the standard running mass mt calculated from mt(1 GeV). As an estimate of the uncertainties we quote the difference 
of the values computed using 4- and 3-loop R-evolution.
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To this end we create six Cores: two with massless bottom and charm quarks, two with a massless charm quark and a massive 
bottom quark, and two with massive bottom and charm quarks, employing mc = 1.27 GeV and mb = 4.18 GeV for the standard running 
charm and bottom quark masses. Among the two respective Cores one employs 3-loop and the other 4-loop precision for the R-evolution 
equation:

In[]:= {mcmc, mbmb, mt1} = {1.27, 4.18, 172.82};

In[]:= CoreDeleteAll[]
CoreCreate["t4", 6, {5, amZdef, mZdef}, {{5, mt1, 1}},
runMSR -> 4]

CoreCreate["t3", 6, {5, amZdef, mZdef}, {{5, mt1, 1}},
runMSR -> 3]

CoreCreate["bt4", 6, {5, amZdef, mZdef},
{{5, mbmb, mbmb}, {4, mt1, 1}}, runMSR -> 4]

CoreCreate["bt3", 6, {5, amZdef, mZdef},
{{5, mbmb, mbmb}, {4, mt1, 1}}, runMSR -> 3]

CoreCreate["cbt4", 6, {5, amZdef, mZdef},
{{4, mcmc, mcmc}, {5, mbmb, mbmb}, {3, mt1, 1}},
runMSR -> 4]

CoreCreate["cbt3", 6, {5, amZdef, mZdef},
{{4, mcmc, mcmc}, {5, mbmb, mbmb}, {3, mt1, 1}},
runMSR -> 3]

The Core setups specify that mMSR
t (1 GeV) = 172.82 GeV is the running top quark mass in the scheme in which all massive flavors 

above the scale of 1 GeV are integrated out. It is easy to extract the top quark standard running masses and their uncertainties from the
Cores above with

In[]:= MassMS["t4", 6]
MassMS["t4", 6] - MassMS["t3", 6]

Out[]= 163.00308510782256
Out[]= 0.05105270648016358

In[]:= MassMS["bt4", 6]
MassMS["bt4", 6] - MassMS["bt3", 6]

Out[]= 162.94352028117146
Out[]= 0.050962554040836494

In[]:= MassMS["cbt4", 6]
MassMS["cbt4", 6] - MassMS["cbt3", 6]

Out[]= 162.92268002391415
Out[]= 0.049529435610025985

where the first numbers refer to the setup with massless bottom and charm quarks and the last ones to the one where bottom and charm 
quarks have mass.

We observe that the finite bottom mass lowers the standard top running mass by around 60 MeV and the finite charm mass decreases 
the standard top running mass by about another 20 MeV. The perturbative uncertainty of the conversion amounts to around 50 MeV in 
all cases. Together, the finite charm and bottom masses lower the standard running top mass by about 80 MeV, which is larger than the 
perturbative uncertainty.

7.3.3. Charm mass effects for the bottom quark mass
To demonstrate the effect of lighter massive flavors in conversions between short-distance mass schemes we consider Ref. [37], where 

effects of the finite charm quark mass on bottom quark mass determinations from ϒ mesons were (calculated and) examined. In Eq. (99) 
of that paper the bottom standard running mass is computed from the 1S mass m1S

b = 4.7 GeV with and without the contribution of the 
charm standard running quark mass mc = 1.5 GeV. The strong coupling value was set to α(4)

s (m1S
b ) = 0.216. We define these parameters 

with

In[]:= {mb1S, mcmc, amb1S} = {4.7, 1.5, 0.216};

and create two 4-flavor Cores, one with a massless charm quark and one with the charm mass given above

In[]:= CoreDeleteAll[]
CoreCreate["c0", {4, amb1S, mb1S}]
CoreCreate["cm", 4, {4, amb1S, mb1S},
{{4, mcmc, mcmc}}]

We then create two additional Cores by adding the bottom quark 1S mass m1S
b = 4.7 GeV to the existing Cores, where, following 

Ref. [37], the perturbative order of its relation to the standard running mass is O(α3
s ) and the relativistic (“upsilon-expansion”) counting 

scheme is adopted.
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Fig. 6. Top quark pole mass mpole
t as a function of the perturbative order with bottom and charm quark masses set to zero (left blue), massless charm quark (middle orange) 

and massive bottom and charm masses (right green). The conversion is performed from the MS mass. The central dots are obtained for the default renormalization scales for 
the strong coupling μ = mt , the error bars represent the scale variation mt/2 ≤ μ ≤ 2 mt . (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

In[]:= Add1SMass["c0", "bc0", mb1S, 5, mb1S, "relativistic",
mb1S, 3]

Add1SMass["cm", "bcm", mb1S, 5, mb1S, "relativistic",
mb1S, 3]

We have furthermore set the running mass scale and the renormalization scale of the strong coupling to m1S
b and the parameter nfConv

to 5 to specify direct conversion without R-evolution to be in accordance with the computation carried out in Ref. [37].
Extracting the standard mass from the massless charm Core gives

In[]:= MassMS["bc0", 5]
Out[]= 4.190311348710497

in perfect agreement with mb = (4.7 − 0.382 − 0.098 − 0.030) GeV = 4.190 GeV as quoted in Ref. [37]. For the standard mass from the 
massive charm Core we get

In[]:= MassMS["bcm", 5]
Out[]= 4.178691644159289

with a sub-MeV difference to the reference value mb = (4.7 − 0.382 − (0.098 + 0.0072) − (0.03 + 0.0049)) GeV = 4.178 GeV.

7.3.4. Top quark pole masses
In the following we investigate the influence of massive bottom and charm quarks on the perturbative series relating the top quark 

standard running mass and the pole mass.

Pole-MS mass series dependence on lighter massive quarks
In Ref. [2] the dependence of the high-order asymptotic series for the top quark pole-MS mass relation on finite bottom and charm 

quark mass was examined and an algorithm to determine explicit analytic formulae (accounting for the semianalytical results given in 
Ref. [38]) were provided, which are implemented in REvolver. Explicit results for the asymptotic series coefficients beyond O(α4

s ) were 
provided in Ref. [2] for the scenarios of massless bottom and charm quarks, massive bottom and massless charm quarks as well as massive 
bottom and charm quarks. To compare the results of REvolver to those of Ref. [2] we set the appropriate relevant parameters for the 
standard running charm, bottom and top quark masses as well as for the strong coupling and create the Cores for the three scenarios

In[]:= {mcmc, mbmb, mtmt} = {1.3, 4.2, 163};
{amZ, mZ} = {0.118, 91.187};

In[]:= CoreDeleteAll[]
CoreCreate["tbc", 6, {5, amZ, mZ},
{{4, mcmc, mcmc}, {5, mbmb, mbmb}, {6, mtmt, mtmt}}]

CoreCreate["tb", 6, {5, amZ, mZ},
{{5, mbmb, mbmb}, {6, mtmt, mtmt}}]

CoreCreate["t", 6, {5, amZ, mZ}, {{6, mtmt, mtmt}}]

The perturbative series relating the standard running mass and the pole mass can be generated as shown in Sec. 7.2.6 and depicted in 
the upper left panel of Fig. 4 for massless bottom and charm quarks. In Fig. 6 we show the result of repeating this procedure for each 
of the Cores created above. It is clearly visible that for each additional accounted massive quark flavor the series diverges faster and 
consequently the respective pole mass ambiguity increases.

In accordance with Ref. [2] we read out the value of the asymptotic top quark pole mass, the associated ambiguity and the order of 
the minimal correction term from each Core employing the drange approach, which is based on all series terms in the superasymptotic 
region, by executing
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In[]:= MassPoleDetailed["t", 6, mtmt, "drange"]
MassPoleDetailed["tb", 6, mtmt, "drange"]
MassPoleDetailed["tbc", 6, mtmt, "drange"]

Out[]= {173.09649964256326, 0.16178589168021063, 8}
Out[]= {173.17525229067104, 0.2336983055654116, 7}
Out[]= {173.17973196293923, 0.26632540751468525, 7}

The three results agree with the numbers given in Table 5 of Ref. [2] within uncertainties.8

We now return to Ref. [3]. There, finite charm and bottom quark mass effects on the value of the top quark asymptotic pole mass were 
quantified by an approximate and heuristic method utilizing order-dependent light flavor decoupling in the strong coupling. A numerical 
value for the resulting ambiguity of the asymptotic pole mass was quoted in Eq. (5.1) of that paper using size of the minimal correction 
of the asymptotic series.

Fixing the value of the top, bottom and charm quark standard running masses to the values given in Ref. [3] and creating an associated
Core

In[]:= {mtmt, mbmb, mcmc} = {163.508, 4.2, 1.3};

In[]:= CoreCreate["tbc2", 6, {5, amZdef, mZdef},
{{4, mcmc, mcmc}, {5, mbmb, mbmb}, {6, mtmt, mtmt}}]

we obtain

In[]:= MassPoleDetailed["tbc2", 6, mtmt, mtmt, "min"]
Out[]= {173.61531203486197, 0.10050070355543994, 7}

where we employ the min method to match the approach used in Ref. [3]. The asymptotic pole mass value and the associated ambiguity 
are quoted as 173.667 GeV and 108 MeV, respectively, in that reference and differs by around 50 and 8 MeV, respectively, to the result 
provided by REvolver. The difference is mainly related to the exact treatment of light massive flavor corrections provided by REvolver.

Normalization of the pole mass renormalon
Finally, we demonstrate REvolver’s capability to compute the normalization N(n�)

1/2 of the pole mass renormalon for a given number 
n� of massless quark flavors. Reusing the Cores created in one of the previous examples, the value of the normalization for n� = 3, 4, 5
can be extracted with

In[]:= N12[#] & /@ {"tbc","tb","t"}
Out[]= {0.5371120004494861, 0.5055628679671248,

0.4612967890971816}

in excellent agreement with the corresponding values N(n�=3,4,5)
1/2 = {0.5370 ±0.0011, 0.5056 ±0.0015, 0.4616 ±0.0020} given for μ/m = 1

in Table 1 of Ref. [3].
In Eq. (2.21) of Ref. [2] the λ-parameter was varied in the range 1/2 ≤ λ ≤ 2, and the associated central value and uncertainty of the 

renormalon normalization N(n�)
1/2 were determined. The corresponding values for n� = 3, 4, 5 can be reproduced by REvolver with

In[]:= list2 = 2^Range[-1, 1, 2/19];

In[]:= N3Tab = N12["tbc", #] & /@ list2;
(Max[N3Tab] + {1, -1} * Min[N3Tab])/2

Out[]= {0.5256087104548577, 0.011913515642471062}

In[]:= N4Tab = N12["tb", #] & /@ list2;
(Max[N4Tab] + {1, -1} * Min[N4Tab])/2

Out[]= {0.4916415824077933, 0.016342715842279004}

In[]:= N5Tab = N12["t", #] & /@ list2;
(Max[N5Tab] + {1, -1} * Min[N5Tab])/2

Out[]= {0.44606744334202203, 0.023867353429116556}

in perfect agreement with the values N(n�=3,4,5)
1/2 = {0.526 ± 0.012, 0.492 ± 0.016, 0.446 ± 0.024}, quoted in Eq. (2.21) of Ref. [2].

8. Theoretical input

The perturbative coefficients of the QCD β-function, that is the renormalization group equation of the MS strong coupling α(n f )
s (μ) in 

a given n f flavor number scheme, are known to five loops and can be found in Refs. [39–46]. If REvolver is used for scenarios with 

8 The 10 MeV discrepancy in the asymptotic pole mass value is because in Ref. [2], an additional λ variation was applied in the estimate of the asymptotic coefficients and 
the quoted coefficients were the central values of the obtained intervals. REvolver does not support this functionality.

45



Comput. Phys. Commun. 270 (2022) 108145 [arXiv:2021.01085] 339

A.H. Hoang, C. Lepenik and V. Mateu Computer Physics Communications 270 (2022) 108145

massless quarks only, it is recommended to cite those references. The perturbative coefficients for the strong coupling flavor matching 
relation at the quark thresholds are known up to four loops and can be found in Refs. [47–50]. If REvolver is used for strong coupling 
evaluations in different flavor number schemes involving massive quark threshold matching, these references should be cited.

The perturbative coefficients of the relation between the MS mass m(n f )
q (μ), for the case where n f − 1 is the number of flavors lighter 

than the massive quark q, and the pole mass mpole
q for the case that all lighter quarks are massless, are known to four loops and can be 

found in Refs. [51–53,12]. If REvolver is used to compute relations between the MS mass and the pole mass when all lighter quarks are 
massless, these references should be included. The two- and three-loop corrections coming from the masses of lighter massive quarks can 
be found in Refs. [52] and [38,54], respectively. It would be appropriate to also cite these references, if REvolver is used to compute lighter 
massive flavor effects in the relation between the MS mass and the pole mass of a heavy quark. The perturbative coefficients of the MS
mass renormalization group equations (relevant for renormalization scales above the mass of quark q) are known to five loops and can 
be found in Refs. [55–58]. These references should be cited whenever the code is used to compute the running of the MS mass in any 
flavor scheme that includes the heavy quark itself. The perturbative coefficients of the flavor matching relations needed when the running 
MS mass evolves to scales beyond even heavier massive quarks are known up to four loops and can be found in Refs. [47,59]. These 
references should be included, if the MS mass is evaluated in different flavor number schemes involving threshold matching associated to 
even heavier massive quarks.

The MSR mass mMSR,(n�)
q (μ) is derived from the perturbative relation between the pole mass and the standard running mass mq by 

integrating out the quark flavor q, see Sec. 3. Thus, all perturbative properties of the MSR mass are derived from expressions known 
for the MS scheme from the references mentioned in the previous paragraph. The MSR mass concept was first suggested in Ref. [6]
and allows to consistently consider renormalization group evolution for scales μ below the quark mass mq , called “R-evolution”. The 
perturbative coefficients of (i) the relation between the MSR mass mMSR,(n�)

q (μ), where n� is smaller or equal to the number of flavors 
lighter than the massive quark q, and the pole mass mpole

q , (ii) the matching relation of the MSR mass to the MS mass, and (iii) its n�

flavor-number-dependent renormalization group equation for the case that all lighter quarks are massless (which are all known to four 
loops) can be found in Ref. [1]. The MSR mass scheme implemented in REvolver is called the “natural” MSR mass scheme in Ref. [1]. 
The two- and three-loop corrections coming from the masses of lighter massive quarks including the flavor matching relations, when the 
MSR mass evolution crosses a lighter massive quark threshold, can be found in Ref. [2]. The results for the lighter massive quark effects 
given in Ref. [2] involve a parametrization of the results provided in Ref. [38] (in terms of coefficients δ2 and δ(q,q′,...)

Q ,n ) that accounts 
for theoretical interrelations of the different contributions not considered in Ref. [38], and allows for a straightforward generalization for 
the case of multiple lighter massive quark flavors. The parametrization is also fully compatible with the recent analytic updates on the 
three-loop corrections given Ref. [54] within a few MeV. The expression for δ2 used in REvolver has been given in Ref. [2]. The concrete 
expressions for the other coefficients δ(q,q′,...)

Q ,n have been taken from Ref. [60]. If REvolver is used to calculate the MSR mass of a massive 
quark in the case that all lighter quarks are massless, Refs. [1,2] should be cited. If REvolver is used to calculate the MSR mass in different 
flavor number schemes involving flavor threshold matching as light massive quark thresholds Ref. [2] should be cited. The possibility 
to resum (large) logarithms in the relation between short-distance quark mass definitions involving scales below the quark mass scale 
(e.g. concerning the ratio of the heavy quark mass and a lighter quark mass) is currently only provided through the MSR mass, which is 
therefore the primary short-distance mass scheme for scales below the quark masses contained in the REvolver core objects. If REvolver is 
used to resum such logarithms in the relation of short-distance masses (even not involving the MSR directly), this MSR mass functionality 
is used as an intermediate step, and it is appropriate to cite Ref. [1,6].

The quark mass dependence of the formulae of the flavor threshold matching relations for the flavor-number-dependent strong cou-

pling α(n f )
s (μ), the MS mass m(n f )

q (μ) and the MSR mass mMSR,(n�)
q (μ) implemented in REvolver are expressed in terms of the standard 

running mass mq . Changing the scheme of the quark mass in these matching relations is not supported in REvolver because the corre-
sponding numerical impact is tiny and negligible for practical applications where large logarithmic corrections are properly resummed.

The perturbative coefficients of the relation between the kinetic and pole mass, assuming lighter massive quarks to be massless, can be 
found in Refs. [17,21]. The 1S mass scheme was first suggested in Refs. [15,14]. The perturbative coefficients for the 1S mass scheme have 
been derived in Refs. [15,14,61,19,62–64]. The perturbative coefficient for the PS mass scheme, first suggested in Ref. [18], can be obtained 
from Refs. [18,19] using analytic results for the static potential as given in Refs. [65–71]. The relation connecting the RS and pole mass 
schemes is described in Refs. [30,20] and references therein. Whenever values for any of these masses are obtained through REvolver, 
the corresponding references should be mentioned. The lighter massive flavor corrections in the relation to the pole mass are known for 
the kinetic [22], 1S [72,73] and PS masses [74]. For the 1S mass REvolver currently only accounts for the fixed-order corrections in the 
relation to the pole mass. Therefore, if lighter quarks are considered massive, the appropriate references should be cited.

To compute the RGI mass [13] the standard formula is evaluated as described below Eq. (A.20).

9. Summary

In this article we have presented REvolver, a C++ library for carrying out state-of-the-art renormalization group evolution and flavor 
matching for the QCD coupling and quark masses, and conversion between the most common quark mass renormalization schemes. For 
short-distance quark masses the achievable precision is at the level of 10 to 20 MeV. In addition to similar libraries that are already 
available REvolver offers the Core concept, that allows to define and manage different physical scenarios for coupling and quark mass 
values, and to carry out renormalization group summation of logarithms from scales above and below the quark masses. REvolver
supports, in particular, the summation of logarithms described by the R-evolution equation, which describes the linear scale evolution 
characteristic to low-scale short-distance masses, and it accounts for the flavor threshold corrections that arise in this linear scale evolu-
tion. Furthermore, REvolver provides access to the asymptotic perturbative relations to the pole mass to in principle any perturbative 
order, and it provides quasi-exact solutions to the renormalization group equations (i.e. exact up to machine-precision) for complex renor-
malization scales. The REvolver library can be also accessed through Mathematica and Python interfaces. We have provided a large 
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number of examples for the most common applications, which are shipped along with the library in the form of Mathematica and 
Jupyter notebooks, as well as a C++ program.
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Appendix A. Algorithms to solve the differential equations

In this appendix some details on the algorithms used in REvolver are provided.

A.1. Core creation

For the creation of a Core, values for the strong coupling and the running masses of the nq massive quarks at specified scales and 
in specified flavor-number schemes, as well as the total number of flavors nT , are provided by the user.9 Let us call the corresponding 
tuples {nα, α(nα)

s (μα), μα} for the strong coupling and {kn, m(kn)
qn (Rn), Rn}, with max[kn, nα] ≤ nT , 1 ≤ n ≤ nq , for the nq massive quarks, 

where q1 refers to the lightest and qnq to the heaviest massive quark. In a first step REvolver determines the values of the standard 
running masses mqn . Subsequently, the following strong coupling and running mass values at each flavor threshold matching scale μn

are obtained: α(nT +n−1−nq)
s (μn), α(nT +n−nq)

s (μn) and m
(nT +n−1−nq)
n (μn), m

(nT +n−nq)
n (μn). These numbers serve as the initial conditions to 

compute αs and the running masses mqn at any renormalization scale and in any specified flavor-number scheme. We have implemented 
into our code a fast multi-dimensional recursive algorithm that solves the coupled system of equations to the specified precision.

The determination of the standard running masses mqn in the algorithm is particularly important since the flavor matching scales μn

are specified as dimensionless coefficients times mqn . If at the i-th iteration the standard running masses are [mqn ]i , the numerical values 
[mqn ]i+1 at step (i + 1) are computed evolving (and matching if necessary) the quark masses m(kn)

qn (Rn) from the user-specified μ = Rn , 
for which the numerical value of the mass was provided, to μ = [mqn ]i . To do that, before running the masses, the program computes 
the values of αs at the various thresholds μn using [mqn ]i as well. After each iteration is carried out, the new standard running masses 
are compared to the previous ones, and if their largest relative deviation is smaller than the required precision, the process stops. In the 
initial step it is assumed that [mqn ]i=0 = m(kn)

qn (Rn). We checked that the algorithm is very robust and converges quickly even for very 
extreme starting conditions such as a charm quark mass defined with k1 = 6 active flavors taking for R1 a very large scale, together with 
a top quark mass defined at R3 = 1 GeV with k3 = 3 active flavors. There is the possibility that the algorithm does not converge, if a 
particular sequence of [mqn ]i -values repeats itself. This is avoided by adopting, after the 20-th iteration (i ≥ 21) the linear combination 
(1 − damp)[mqn ]i + damp[mqn ]i−1, with damp being a random number between 0 and 0.2, as the outcome of the i-th iteration.

To compute the strong coupling flavor matching REvolver takes as exact the upward relation (at the user-specified loop order)

α
(n�+1)
s (μn) = α

(n�)
s (μn)

{
1 +

∑
i=1

[
α

(n�)
s (μn)

4π

]i

ξi(n�)

}
, (A.1)

where ξi may depend on log(mqn /μn). This means that the values for α(n�)
s (μn) and α(n�+1)

s (μn) in REvolver always satisfy exactly 
Eq. (A.1). If α(n�)

s (μn) is given, the value of α(n�+1)
s (μn) is computed directly from Eq. (A.1). If, on the contrary, α(n�+1)

s (μn) is given and 
α

(n�)
s (μn) shall be obtained, our program numerically inverts Eq. (A.1) in an iterative way as described in the following. For simplicity we 

omit the argument μn and write [α(n�)]k for the k-th iteration value. The value at the (k + 1)-th step the reads

[α(n�)]k+1 = α
(n�+1)
s (μn)

1 + ∑
i=1

( [α(n�)]k
4π

)i
ξi(n�)

, (A.2)

where for the first iteration [α(n�)]k=0 = α
(n�+1)
s (μn) is adopted. The algorithm converges very quickly, even for α(n�+1)

s (μn) values as large 
as 0.69. For smaller values of the strong coupling, and specially if μn 
 mqn , the RHS of Eq. (A.2) is very weakly depending on α(n�)

k (since 
the 1-loop term is very small or vanishing) and only a few iterations are necessary. If α(n�+1)

s (μn) is larger than 0.69, there is no solution 
to Eq. (A.1) and the iterative procedure will fail. In those cases the program will return the leading order solution α(n�)

s (μn) = α
(n�+1)
s (μn). 

If the solution exists, the algorithm converges as well, because the slope of the left-hand-side is smaller than unity in absolute value.

9 The Core contains nT − nq massless quarks, and the standard running mass of the n-th massive quark is defined with nT + n − nq active flavors. In the Core the strong 
coupling and the running masses can be evaluated in a n f flavor number scheme with nT − nq ≤ n f ≤ nT , i.e. for nq + 1 different flavor number schemes.
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A.2. Strong coupling

For the QCD β-function at N-loop order (where N is the integer value specified in the variable runAlpha), see Eq. (6), the coefficients 
bi are defined by

βN
QCD(αs) ≡ − α2

s

2π
β0

[
1 +

N−1∑
i=1

( αs

4π

)i
bi

]
, bi ≡ βi

β0
. (A.3)

The algorithms implemented in REvolver provide solutions for the strong coupling differential equation based on the N-loop β-function 
that are numerically exact (within the specified precision) and do not involve any additional approximation related to N-loop precision. 
The associated coefficients cN

n , which parametrize the associated inverse QCD β-function, are defined by

1

βN
QCD(αs)

= −2π

β0

1

α2
s

[
1 +

∑
i=1

cN
i

( αs

4π

)i
]
, (A.4)

where, except for N = 1, the sum extends to infinity10 even though there is a finite limit N in the sum defining βN
QCD (for N = 1 one has 

cN
i = 0 for all i ≥ 1). The (infinite set of) cN

i coefficients can be computed in terms of N − 1 coefficients b1, . . .bN−1 using the recursive 
relation shown in Eq. (A.5). The convergence radius of the series is set by the distance from the origin to the nearest pole in the complex 
plane, which is equivalent to the smallest module of the β-function roots (excluding the double pole at the origin), which are in general 
complex numbers. Hence the convergence radius depends both on the number of flavors and the loop order N . It increases with the 
number of flavors and decreases with the loop order N , and in all cases is much larger than any physical value of αs that may arise in 
phenomenological applications.

For convenience we define b0 = cN
0 = 1, which allows to write

cN
n+1 = −

min(N−1,n+1)∑
i=1

cN
n+1−i bi . (A.5)

Many analytic formulae implemented in REvolver use the t-variable formalism [6,1] which is based on the definition

t = −2π

β0

1

αs
, (A.6)

which gives the relation

d ln(μ) = −b̂N(t)dt , (A.7)

for the renormalization scale μ where

b̂N(t) = − 2π

β0 t2βN
QCD

(− 2π
β0

1
t

) ≡ 1 +
∑
i=1

b̂N
i t−i , (A.8)

with b̂N
n = (−1)ncN

n /(2β0)
n , which implies b̂N

0 = 1.11 The cN
n and b̂N

n coefficients are obtained numerically whenever needed and stored in 
a member vector (whose length is extended if necessary) such that they are not re-computed again when used later. For the integral of 
Eq. (A.7) it is useful to define the following polynomial in 1/t expressed in terms of b̂N

i :

G̃ N(t) ≡
t∫

−∞
dt′

[
b̂N(t′) − 1 − b̂N

1

t′

]
= −

∑
n=1

b̂N
n+1

n
t−n . (A.9)

For N = 1 one has G̃ N(t) = 0 while for N ≥ 2 the sum in G̃ N(t) always extends to infinity. The exponential of this expression defines the 
coefficients gN

� upon reexpansion in powers of 1/t , eG̃ N (t) ≡ ∑
�=0 gN

� (−t)−� , which can be computed with the recursive relation

gN
n+1 = 1

n + 1

n∑
i=0

(−1)i b̂N
i+2 gN

n−i , (A.10)

where gN
0 = 1. It is also necessary to define the coefficients that result from expanding e−G̃ N (t) ≡ ∑

�=0 g̃N
� (−t)−� in an analogous way. 

They can be computed with a very similar recursive algorithm

g̃N
n+1 = − 1

n + 1

n∑
i=0

(−1)i b̂N
i+2 g̃N

n−i , (A.11)

10 The notation where the upper limit of the sum is omitted signifies that the REvolver algorithms employ the number of terms mandatory to reach numerical results 
that are exact within the specified precision. The analogous notation is used for other formulae shown below.
11 The b̂N

i should not be confused with the bi coefficients defined in Eq. (A.3).
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where g̃N
0 = 1. Once again one has gN

n = g̃N
n = 0 for n ≥ 1 when N = 1. Both g and g̃ coefficients are computed when first needed and 

then are conveniently stored in member vectors for later use.
The QCD scale �QCD,t in the t-scheme [1] is defined by

�N
QCD,t = μ e

G N
(− 2π

β0
1

αs(μ)

)
, (A.12)

where G N(t) = t + b̂N
1 log(−t) + G̃ N (t) (where we recall that b̂N

i>0 = 0 if N = 1). The summation for the function G̃ N in Eq. (A.9) is 
terminated after the relative size of the last term compared to the associated partial sum is smaller than the specified precision. Since in 
the evaluation of Eq. (A.12) the exact solution of the strong coupling differential equation with N-loop β-function βN

QCD (see next section) 
for αs(μ) is used, the numerical value of �N

QCD does (within the specified precision) not depend on μ. For the evaluation in REvolver
the value μ = 100 GeV is always used. The values for the QCD scale are computed for each number of active flavors and stored as 
members of the class. For cases in which αs is very large, the sum G N may not converge within the specified precision after adding 200
terms and REvolver will return NaN (see below why the limit is set to 200). Again, this only happens for unphysical αs values.

For the QCD scale in the MS definition, �QCD,MS (following [23]), we use the formula

�N
QCD,MS

= 2b̂N
1 �N

QCD,t , (A.13)

therefore both schemes coincide for N = 1.
The algorithm used by REvolver to solve the differential equation for the strong coupling is based on variable separation. Defining 

�μ ≡ log(μ/μ0), αμ ≡ αs(μ), α0 ≡ αs(μ0) and a ≡ αs/(4π) one can expand 1/βN
QCD as in Eq. (A.4) and integrate term by term. This gives

�μ =
αμ∫

α0

dα

βN
QCD(α)

=− 1

2β0

[
1

a0
− 1

aμ
+ cN

1 log

(
aμ

a0

)
+

∑
i=1

cN
i+1

i
(ai

μ − ai
0)

]
. (A.14)

where the sum on the RHS is carried out until the last term added is smaller than the specified precision.
We now describe the algorithm to determine aμ from the algebraic equation (A.14). At leading-log (LL), i.e. using the 1-loop β-function 

(N = 1), one has βn>0 = 0 and the solution is aLL
μ = a0/(1 + 2β0a0�μ). For N ≥ 2 the LL solution is used to rewrite Eq. (A.14) in the form

1

aμ
= 1

aLL
μ

+ cN
1 log

(
aμ

a0

)
+

∑
i=1

cN
i+1

i
(ai

μ − ai
0) , (A.15)

which is solved recursively. In this iterative procedure, the (n + 1)-th iteration value for the N-loop strong coupling is obtained from the 
n-th iteration one by the relation

[aμ]n+1 = 1

1
aLL
μ

+ cN
1 log

( [aμ]n
a0

)
+ ∑

i=1
cN

i+1
i [([aμ]n)i − ai

0]
. (A.16)

With the initial choice [aμ]N
0 ≡ aLL

μ it is ensured that the correct solution is obtained in all cases. The iterative method converges provided 
that (i) the solution exists and (ii) the (absolute value of the) slope of the right-hand-side function is smaller than 1. The second condition 
is always satisfied, and the former will be discussed later in this paragraph. Since β1 > 0 we have that aLL

μ < aμ , and the solution beyond 
1-loop order is approached from below. The iterative procedure is carried out until the numerical value of aμ does not change within the 
specified precision, with a maximum allowed number of 200 iterations.

The convergence radius for the infinite sum over cN
i+1 in Eq. (A.16) is the same as for the inverse β-function in Eq. (A.4). However, due 

to technical limitations related to double-precision floating numbers, REvolver cannot carry out the sum for αs values arbitrarily close 
to the convergence radius within the specified precision. If after adding 200 terms this precision is not met, the recursive procedure to 
obtain αs will stop and NaN will be returned. This happens for αs � 0.7, hence outside the range of any physical application.

A.3. MS and RGI masses

The K -loop renormalization group equation (where K is the integer value specified in the variable runMSbar) for the MS quark mass 
mq(μ) has the form

dmq(μ)

d ln(μ)
= 2mq(μ)γ K

m (αs) = 2mq(μ)

K−1∑
n=0

γn

[
αs(μ)

4π

]n+1

, (A.17)

which implies logarithmic scale evolution. The REvolver algorithm provides (within the user specified precision) the exact solution of 
Eq. (A.17) employing the N-loop strong coupling described in Sec. A.2. Changing the integration variable from ln(μ) to αs followed by 
separation of variables, and using the mass mq(μ0) at the scale μ0 as the initial value, the analytic solution reads

mq(μ)=mq(μ0)exp

[
2

αμ∫
α0

dα
γ K

m(α)

βN
QCD(α)

]
≡ mq(μ0)exp

[
ω̃(N,K )(μ0,μ)

]
, (A.18)
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which defines the running kernel ω̃(N,K )(μ0, μ). The REvolver algorithm determines ω̃(N,K )(μ0, μ) from the Taylor series of the inte-
grand in α where each term is integrated individually. The result can be written in the form [ai = αs(μi)/(4π)]

ω̃(N,K )(μ1,μ2)=− 1

β0

[
γ0 log

(
a2

a1

)
+ (1 − δN,1δK ,1)

∑
n=1

(an
2 − an

1)d(N,K )
n

]
, (A.19)

where the coefficients d(N,K )
n , defined for n > 0, are non-zero if either N or K are larger than 1. We also have d(1,K )

n = γn/β0 if n < K and 
zero otherwise. They are given by the following expression

d(N,K )
n ≡ 1

n

min(n,K−1)∑
i=0

cN
n−i γi , (A.20)

where the terms cN
i arise in the expansion of the inverse β-function (A.4). REvolver carries out the sum in Eq. (A.19) until the relative 

size of the last computed term with respect to the associated partial sum is below the user specified precision. The convergence radius of 
the infinite sum is the same as for the inverse β-function in Eq. (A.4). In practice, if convergence is found when computing αs , the sum 
for the computation of ω̃(N,K ) is going to be convergent as well. If no convergence is found, NaN is returned.

The RGI-mass m̂q is obtained from the MS mass mq(μ) by removing its scale-dependence writing ω̃(N,K )(μ0, μ) = ω̃(N,K )(μ) −
ω̃(N,K )(μ0) with

ω̃(N,K )(μ) = − 1

β0

[
γ0 log

(
aμ

π

)
+ (1 − δN,1δK ,1)

∑
n=1

d(N,K )
n an

μ

]
. (A.21)

This leads to the definition m̂q ≡ mq(μ) exp[−ω̃(μ)]. REvolver uses the N-loop exact solution for aμ and the K -loop solution for mq(μ), 
which ensures that the value obtained for the RGI-mass is μ-independent. In REvolver the computation of ω̃(μ) is carried out in the 
same way as for the MS mass explained above. For the numerical calculation μ is set to the standard running mass, μ = mq .

A.4. MSR mass

The M-loop renormalization group equation for the MSR mass mMSR
q (R) (where M is the integer value specified in the variable run-

MSR) has the form

dmMSR
q (R)

d ln(R)
= −R γ M

R [αs(R)] = −R
M−1∑
n=0

γ R
n

[
αs(R)

4π

]n+1

, (A.22)

and implies logarithmic and linear scale dependence. The coefficients γ R
n are obtained from the series relating the pole and MSR masses 

using Eq. (3.2) of Ref. [1]. The REvolver algorithm provides (within the user specified precision) the exact solution of Eq. (A.22) employ-
ing the N-loop strong coupling described in Sec. A.2. In the following we provide details of the algorithm’s mathematical derivation.

Switching to the t-variable formalism [6,1] one obtains re-scaled γR coefficients:

γ M
R

(
−2π

β0

1

t

)
≡

M−1∑
n=0

γ̃ R
n (−t)−n−1, γ̃ R

n = γ R
n

(2β0)n+1 . (A.23)

These can be used to define the series coefficients S(N,M)
j in the expansion of the product function γ M

R (− 2π
β0

1
t )b̂N(t)e−G̃ N(t) ≡∑

j=0 S(N,M)
j (−t)− j−1 in powers of 1/t , see Sec. A.2. The coefficients have the form

S(N,M)
j =

min(M−1, j)∑
k=0

γ̃ R
k

j−k∑
i=0

(−1)i b̃N
i g̃N

j−i−k , (A.24)

which implies that S(1,M)

k = γ̃ R
k for k < M and S(1,M)

k = 0 for k ≥ M . The difference of MSR masses at the renormalization scales R1

and R2, �MSR(R2, R1) ≡ mMSR
q (R2) − mMSR

q (R1), can be computed from Eq. (A.22) by integrating over αs (or t) using the relation R =
�N

QCDe
−G N

[− 2π
β0

1
αN

s (R)

]

�
(M,N)
MSR (R2, R1) = −�N

QCD

α2∫
α1

dα

βN(α)
e
−G N

[− 2π
β0

1
α

]
γ M

R (α) (A.25)

= �N
QCD

t2∫
t1

dt b̂N(t)e−G̃ N(t)γR

(
−2π

β0

1

t

)
e−t(−t)−b̂N

1

= �N
QCD

∑
j=0

S(N,M)
j

t2∫
t1

dt e−t(−t)−1−b̂N
1 − j
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≡ �N
QCD

∑
j=0

S(N,M)
j [I(b̂N

1 , j, t2) − I(b̂N
1 , j, t1)] ,

where in the first line we have used βN (α)dR = �N
QCDe

−G N
[− 2π

β0
1

αN
s (R)

]
dα, in the second we have switched variables to t and in the third we 

used the definition of the coefficients in Eq. (A.24). Using integration by parts repeatedly one can write I(b̂N
1 , j, t) in terms of I(b̂N

1 , 0, t)

I(b̂N
1 , j, t) = 1

(1 + b̂N
1 ) j

[
I(b̂N

1 ,0, t) + e−t
j∑

i=1

(1 + b̂N
1 )i−1(−t)−i−b̂N

1

]
, (A.26)

with (a)n = 	(a + n)/	(a) being the Pochhammer symbol. The exponential contained in I(b̂N
1 , 0, t) can be expanded in powers of t (with 

infinite convergence radius) and each term can be integrated separately. In practice, the algorithm computes the difference

I(b̂N
1 ,0, t2) − I(b̂N

1 ,0, t1) =
∑
i=0

1

i!
(−t2)

i−b̂N
1 − (−t1)

i−b̂N
1

b̂N
1 − i

, (A.27)

terminating the infinite sum once the specified precision is achieved, and the result for this difference is saved, such that it needs to 
be computed only once for each computation of �(M,N)

MSR (R2, R1). In case b̂N
1 = 0 the i = 0 term in Eq. (A.27) is replaced by ln(t1/t2). 

Furthermore, the values of the Pochhammer symbols in the formula Eq. (A.26) are computed only once in one Core object and stored for 
later use. Likewise, since the sum in Eq. (A.26) depends on j only through its upper limit, its value is stored and updated as j grows by 
one unit.

REvolver computes the (infinite) sum over j in Eq. (A.25) by truncating it once the desired precision is achieved. The convergence 
radius of the j sum coincides with that of the inverse β-function explained in Sec. A.2. So, if convergence is found for the evolution of 
the strong coupling αs , the sum in Eq. (A.25) converges as well. If no convergence is found for the sum or for the strong coupling, NaN is 
returned. REvolver stores in a member vector the values of S(M,N)

j after they are computed the first time, such that their values can be 
recycled in later evaluations of R-evolution.

A.5. Asymptotic pole mass coefficients

For the asymptotic formulae for the O(�QCD) renormalon-dominated perturbative coefficients of the relation between the MSR and 
pole masses (see Eqs. (2.1) and (2.3) in Ref. [1]), always defined in the flavor number scheme where all massive quarks are integrated out, 
we use the expression

an = (2β0)
n

kmax[n−1]∑
k=0

S(N,M)

k

�max[n−1−k]∑
�=0

gN
� (1 + b̂N

1 + k)n−1−�−k , (A.28)

where

kmax[m] =min[m, M − 1] , (A.29)

�max[m] =max[min(m, N − 2),0] .
The integers N and M are explained in App. A.2 and A.4. The asymptotic formula (A.28) depends on the number of massless quarks 
(entering the expressions for the QCD β-function coefficients βi and the coefficients S(N,M)

k and gN
� ) and was derived in Ref. [1] [see 

Eq. (4.19) in that reference]. It has the property that it reproduces the exact coefficients an up to O(αmin[M,N−1]
s ). In contrast to the 

expression given in Ref. [1], Eq. (A.28) displays concrete truncation prescriptions for the sums as a function of the loop order variables.

A.6. Renormalon sum rule

To extract the pole mass renormalon normalization N1/2 from a Core, the following formula is used:

N1/2 = β0

2π

M∑
k=0

S(N,M)

k

(1 + b̂N
1 )k

. (A.30)

The formula was derived in Ref. [1], and Eq. (A.30) is adapted to account for the optional parameters used in REvolver. In analogy to 
Eq. (A.28), N1/2 is always evaluated in the flavor number scheme where all massive quarks are integrated out. The expression for the 
coefficients S(N,M)

k is given in Eq. (A.24) while bN
1 has been defined in Eq. (A.8).
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