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Abstract

The pairwise alignment of protein sequences is a central task in bioinformatics, which
helps to identify biological relationships between protein sequences. Alignments can
be performed with fast heuristics or with the exact Smith-Waterman algorithm, which
is guaranteed to find the optimal local alignment between two sequences. Because of
the quadratic time complexity of the Smith-Waterman algorithm, fast implementations
are needed for large-scale protein similarity searches. Therefore, various parallelization
approaches and adaptions for hardware accelerators (GPU, FPGA, Xeon Phi) have been
developed for the Smith-Waterman algorithm.

In this work, the performance of some of the fastest CPU and GPU Smith-Waterman
methods are compared under various parameter settings. The main result is that the
fastest CPU method SWIPE outperforms the fastest GPU method CUDASW++ 3 on a
full compute node with 24 CPU cores and 6 GPUs.

In the SIMAP (Similarity Matrix of Proteins) project, similarities between proteins of
complete genomes are computed using the Smith-Waterman algorithm with compositional
score adjustment. Because of the high runtime of the SIMAP workflow, in this work,
possibilities of reducing the runtime are explored. Runtime profiling of the SIMAP
workflow identified an inefficient compilation of a script and by optimizing the compilation
process the runtime could be reduced to about a third.
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Kurzfassung

Das paarweise Alignment von Proteinsequenzen ist eine zentrale Aufgabe der Bioin-
formatik, das dazu beiträgt, biologische Verwandtschaft zwischen Proteinsequenzen zu
erkennen. Alignments können mit schnellen Heuristiken oder mit dem exakten Smith-
Waterman-Algorithmus durchgeführt werden, welcher garantiert das optimale lokale
Alignment zwischen zwei Sequenzen findet. Aufgrund der quadratischen Zeitkomplexität
des Smith-Waterman-Algorithmus, sind für große Proteinvergleiche schnelle Implemen-
tierungen erforderlich. Daher wurden für den Smith-Waterman-Algorithmus verschiedene
Parallelisierungsmethoden und Anpassungen für Hardwarebeschleuniger (GPU, FPGA,
Xeon Phi) entwickelt.

In dieser Arbeit wird die Geschwindigkeit einiger der schnellsten Smith-Waterman-
Methoden für CPU und GPU unter verschiedenen Parametereinstellungen verglichen.
Das zentrale Ergebnis ist, dass die schnellste CPU-Methode SWIPE die schnellste GPU-
Methode CUDASW++ 3 auf einem vollen Rechenknoten mit 24 CPU-Kernen und 6 GPUs
übertrifft.

Im SIMAP-Projekt (Similarity Matrix of Proteins) werden Ähnlichkeiten zwischen Pro-
teinen kompletter Genome mit Hilfe des Smith-Waterman-Algorithmus mit compositional
score adjustment berechnet. Aufgrund der hohen Laufzeit des SIMAP-Workflows, werden
in dieser Arbeit Möglichkeiten zur Verringerung der Laufzeit untersucht. Durch die Erstel-
lung eines Laufzeitprofils für den SIMAP-Workflow wurde eine ineffiziente Kompilierung
eines Skripts festgestellt und nach Optimierung des Kompilierungsprozesses konnte die
Laufzeit auf etwa ein Drittel reduziert werden.
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1 Introduction

The introduction is structured into five parts.
In 1.1, heuristic methods and the exact Smith-Waterman algorithm for pairwise protein

sequence alignment are introduced. Parallelization strategies for accelerating the Smith-
Waterman algorithm and commonly used hardware platforms (CPU, GPU, FPGA, Xeon
Phi) are described.

Next, the compositional adjustment of substitution matrices which aims to improve
the accuracy of protein sequence alignments is introduced 1.2.

In 1.3, the concept of orthology is described.
In 1.4, the SIMAP (Similarity Matrix of Proteins) project [1] is introduced. SIMAP

represents a resource for pre-calculated protein similarities between complete genomes
and is used by the orthology databases eggNOG [2] and STRING [3].

1.1 Protein sequence alignment

Protein sequence alignment is a widely used and powerful method for the comparison of
proteins. Alignments can identify regions of similarity, which may be a consequence of
biological relationships between the sequences. Protein sequences that share a common
ancestor diverge over time by accumulating mutations followed by natural selection. The
most common mutations at the protein level are the substitution of amino acids and
the insertion or deletion of one or multiple amino acids [4]. A common application of
protein sequence alignments is the inference of homologous proteins, and subsequently
the inference of protein structure and function.

There exist various sequence alignment types. Pairwise sequence alignments are
performed to compare two biological sequences in order to find conserved regions between
the sequences. In the more sophisticated multiple sequence alignment, three or more
sequences are compared in order to identify evolutionary relationships among a set of
sequences. Furthermore, alignments can by global or local. In global alignment, the entire
sequences are aligned (end-to-end alignment), which is only suitable if the compared
sequences have approximately the same length and are rather similar [5]. Local alignments
find regions with the highest similarity between the sequences. It is also suitable for more
divergent or distantly related sequences, as it identifies conserved stretches while other
potentially non-homologous parts of the sequences are not aligned.

In this thesis, the focus lies on pairwise local sequence alignments of proteins. The
Smith-Waterman algorithm provides an optimal solution to this task, with the drawback
of being rather runtime intensive. In order to speed up the alignment, various heuristics
have been developed, which however are less sensitive than the Smith-Waterman algorithm.
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1 Introduction

In the following, heuristic approaches and the Smith-Waterman algorithm are described
in more detail.

1.1.1 Heuristic alignment algorithms

Most heuristic pairwise alignment programs follow the seed-and-extend paradigm, where
first short stretches of matching words ("seeds") between the compared sequences are
searched, which are then extended to a full local alignment. With this approach, most
pairs can be filtered out in the seed-searching phase, which speeds up the computation
considerably. However, some hits, especially between distantly related sequences, might
be missed due to this heuristic approach. The tradeoff between sensitivity and speed can
be adjusted by tuning threshold parameters of the programs and this tradeoff is the most
important measure for the comparison of the different methods. In the following, some of
the most widely used heuristic programs for pairwise sequence alignment are described.

BLAST

The BLAST (Basic Local Alignment Search Tool) algorithm is one of the first implemented
methods for similarity searches and is the most commonly used tool. BLAST has been
developed by Altschul et al. in 1990 [6] and has been constantly revised since then [7, 8].

The BLAST algorithm is based on the observation, that significant alignments likely
contain high-scoring segment pairs (HSPs), which are short local alignments without gaps
between the two sequences. In the first step, a list of all words of a specified length that
yield a score above a threshold when paired to the query sequence is generated. The
scoring is based on a substitution matrix. Afterwards, the database sequences are scanned
for exact matches to the words in the word list. An improved version of BLAST, called
gapped BLAST [7] requires two word matches in the same diagonal within a specified
distance in order to be a valid starting point for an extension. In a later improvement
of the algorithm [8], the two-hit method was again replaced by a one-hit method, but it
enables larger word sizes (and thus higher sensitivity) through the usage of a reduced
alphabet. The matched region is extended in both directions without allowing gaps until
the score drops below a threshold. This extended region represents an HSP - only HSPs
which are statistically significant are kept. For all remaining HSPs, a gapped extension,
parameterized by a substitution matrix and gap penalties, is performed, which represents
the final alignment. One of the main advantages of BLAST is the statistical assessment
of the significance of local similarities (Karlin-Altschul statistics [9]). The Expect value
(E-value) describes how many hits one expects to find by chance in a similarity search
given the scoring system and database size. The E-value is computed with the formula

E = Kmne−λS , (1.1)

where m is the query sequence length, n is the database size, S is the alignment score,
and K and λ represent parameters for the scoring system and the background amino acid
frequencies respectively. All hits with E-values below a specified threshold are reported.
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1.1 Protein sequence alignment

Besides the protein alignment program, the BLAST suite contains various programs
for nucleotide and translated nucleotide searches. BLAST is considered to be one of the
most sensitive heuristics, but it is relatively slow compared to other methods.

UBLAST

UBLAST [10] exploits the observation that similar sequences are likely to have multiple
short words in common. For each query, the database sequences are sorted in order of
decreasing number of unique words in common between the two sequences. For the first
few sorted database sequences it is then tested whether they represent hits via an approach
similar to BLAST. If several database sequences are rejected, the search is terminated.
With this heuristic, alignments are constructed only for few database sequences, which
makes it faster but also less sensitive compared to BLAST.

RAPSearch2

RAPSearch2 [11] is a fast protein similarity search tool and an improvement of RAPSearch
[12]. In this method, the seeds are based on a reduced amino acid alphabet, where similar
amino acids are clustered together and are represented by a single character [12]. The idea
behind this, is that with the reduced alphabet the minimal seed length can be increased
compared to the 20-amino acid alphabet. With this approach, about 3,000 times less
seeds have to be evaluated, which however comes with a small loss in sensitivity. The
heuristic extension algorithm is similar to BLAST.

DIAMOND

DIAMOND [13, 14] uses double indexing, where the seed locations in both the query and
database sequences are determined. In contrast, most other methods use a single indexing
of seed locations in the database. The double indexing increases the data locality and
avoids any memory latency-related bottlenecks. Moreover, DIAMOND uses spaced seeds,
where only a subset of the seed positions are used, and it uses a reduced amino acid
alphabet. Spurious hits are gradually filtered out via various heuristic filter stages and
potentially significant hits are aligned with the Smith-Waterman algorithm. According
to the authors, DIAMOND reaches the same sensitivity as BLAST, with a speedup of
80-360x [14].

MMseqs2

MMseqs2 (Many-against-Many sequence searching) [15] is a software suite for fast searching
and clustering of large datasets. The sequence search module consists of three consecutive
stages with increasing sensitivity and decreasing speed. In the k-mer match stage,
double similar-k-mer matches on the same diagonal are searched. In the ungapped
alignment stage, alignments on the diagonals with double k-mer matches are performed
with linear time complexity. The high-scoring alignments are passed to the final Smith-
Waterman alignment stage. In all three search stages, local compositional bias correction
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1 Introduction

is performed, which assigns lower scores to matches involving overrepresented amino
acids. Low-complexity regions in the database sequences are masked out during the k-mer
matching and ungapped alignment stages. In a benchmark test performed by the authors,
MMseqs2 reaches the sensitivity of BLAST while being 36 times faster [15].

1.1.2 Smith-Waterman algorithm

The Smith-Waterman algorithm [16] is a dynamic programming algorithm that computes
the optimal local alignment between two sequences in O(mn) time, where m and n are the
lengths of the sequences. It is parameterized by a substitution matrix and gap penalties.
The substitution matrix assigns scores to each pair of amino acids, which describes the
probability of an amino acid being replaced by another over evolutionary time. Commonly
used substitution matrices, like BLOSUM [17] and PAM [18], are log-odds matrices and
exist for various evolutionary distances. Gap penalties assign negative scores to gaps
(insertions/deletions) in the alignment. The simplest gap penalty types, are the constant
gap penalty, which assigns a fixed negative score to each gap, regardless of its length,
and the linear gap penalty, which scores gaps as the product of a fixed score and the
gap length. However, gaps which are multiple characters long, can result from a single
evolutionary event, which is why it makes sense to penalize a single longer gap less
than multiple gaps of length one. This is addressed by the affine gap penalty, which
consists of a gap opening penalty (penalty for starting a gap) and a gap extension penalty
(penalty for extending a gap by one) - the gap extension penalty is usually set to be
lower than the gap opening penalty. The affine gap penalty yields biologically realistic
alignments and is by far the most commonly used gap penalty type - it is implemented in
all Smith-Waterman implementations described in this thesis. The modifications to the
Smith-Waterman algorithm by Gotoh [19], enable the scoring with the affine gap penalty
while maintaining a time complexity of O(mn). There exist also other gap penalty types,
like double affine, logarithmic, log-affine, or convex, which are however rarely included in
Smith-Waterman implementations [20].

The recurrence of the Smith-Waterman algorithm with affine gap penalties is defined as

Hi,j = max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Hi−1,j−1 +M(q[i], d[j])

Ei,j

Fi,j

0

Ei,j = max

{︄
Ei,j−1 −Gext

Hi,j−1 −Gopen −Gext

Fi,j = max

{︄
Fi−1,j −Gext

Hi−1,j −Gopen −Gext

(1.2)
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1.1 Protein sequence alignment

Figure 1.1: Comparison of scalar and SIMD vector operations. (Figure from [22])

The query sequence q contains residues qi and the database sequence d contains
residues dj . The substitution matrix M contains scores for aligning two amino acids
M(q[i], d[j]). The costs for opening a gap and extending a gap are denoted by Gopen

and Gext respectively. The recurrence is initialized as H0,j = Hi,0 = E0,j = Fi,0 = 0 for
0 ≤ i ≤ |q| and 0 ≤ j ≤ |d|. Hi,j , Ei,j and Fi,j store the local optimal alignment scores of
the two prefixes qi and dj . E and F give the score for ending with a gap along q and d
respectively. The highest value in H gives the overall optimal local alignment score. In
order to obtain the optimal alignment path, a backtracking procedure is performed, by
starting from the highest scoring cell and following the optimal path until a cell with a
score of zero is reached [21].

Each cell in the alignment matrix is dependent on the upper, upper-left, and left cell
neighbors. This dependency determines the order in which the values of the matrix can
be computed.

1.1.3 Parallelization of the Smith-Waterman algorithm

Various parallelization strategies for the Smith-Waterman algorithm have been developed,
with the goal to reduce the runtime of the alignment task. The parallelization approaches
can be divided into vector-level, thread-level and process-level parallelization [22].

Vector-level parallelization can be achieved via the Single Instruction Multiple Data
(SIMD) method. With SIMD, instead of performing multiple sequential scalar operations,
a single operation can be performed on a whole data vector simultaneously Figure 1.1.
The SIMD paradigm can be used on CPU, GPU and FPGA architectures.

Thread-level parallelization describes the parallel execution of multiple threads. Multi-
threading can be implemented via tools like POSIX threads (pthreads), which is a low-level
API, or OpenMP [23], which is a higher-level API.

Process-level parallelization describes the parallel computation on distributed memory
systems - it enables the parallel computation on multiple compute nodes. This approach
is implemented via the Message Passing Interface (MPI) standard [24].

Thread-level and process-level parallelization can also be achieved manually, by dividing
the alignment workload in multiple chunks which then can be run in parallel. In the
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1 Introduction

Figure 1.2: Intra-sequence parallelization layouts. The three layouts differ in the
way the SIMD vectors (cells of the same color) are mapped to the matrix.
(Figure from [22])

following, intra-sequence and inter-sequence vector-level parallelization approaches for
the Smith-Waterman algorithm are discussed in more detail.

1.1.3.1 Intra-sequence parallelization

Intra-sequence parallelization accelerates the alignment of a single sequence pair [25]. The
parallelization can be achieved by computing multiple cells of the dynamic programming
matrix in parallel via a SIMD vector. These SIMD vectors can be mapped to the matrix
in three different ways, as depicted in Figure 1.2.

In the anti-diagonal layout or wavefront layout (first introduced by Wozniak [26],
Figure 1.2A), the SIMD vectors consist of cells from one anti-diagonal. This approach
has the advantage, that the elements from one vector are completely independent of each
other and can therefore be computed in parallel. However, as the length of the computed
anti-diagonal is not always divisible by the fixed length of the SIMD vector, the vectors
need to be filled with dummy symbols, which results in a waste of compute resources [22].
Furthermore, the loading of values along the anti-diagonal is less efficient compared to
vectors parallel to the query sequence [27].

In the sequential layout (presented by Rognes and Seeberg [27], Figure 1.2B) the SIMD
vector is parallel to the query sequence in a sequential manner. Because the elements
of a vector are not completely independent of each other (each element is dependent on
the element above it), at first, this dependency is ignored and any errors are corrected
afterwards. In this error correction loop, called Lazy-F evaluation (also referred to as
SWAT-like optimization in [27]), any errors in the F matrix and subsequently in the H
matrix are corrected. In most cases, the F-values are below a threshold and thus can be
ignored for the calculation of H-values, which greatly simplifies the calculation - otherwise,
the somewhat time-consuming error correction has to be performed and it is checked
whether a vertical gap yields a higher score than the initial stored score [27].
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1.1 Protein sequence alignment

Also in the striped layout (developed by Farrar [28], Figure 1.2C) the SIMD vector
is parallel to the query sequence, but this time in a striped manner. Compared to the
sequential layout, the error correction loop of the striped layout is more efficient, because
in the striped layout the data dependencies are moved from the inner loop (processing
the query sequence) to the outer loop (processing the database sequence) [28, 22]. This
means that the error correction has to performed only n times instead of mn times, where
m and n are the lengths of the query and database sequence respectively.

Farrar [28] performed a runtime comparison of the anti-diagonal [26], sequential [27]
and striped [28] layout implementations. With a gap open penalty of 10, gap extension
penalty of 1 and BLOSUM50 (BLOSUM62) substitution matrix, the achieved speeds
in MCUPS (million cell updates per second) are: anti-diagonal 351 (352), sequential
374 (816), and striped 1,817 (2,553). The performance of the anti-diagonal layout is not
affected by the scoring system. The error correction loop runtime of the sequential and
striped layout is affected by the scoring system - it takes longer if the H-values are high
and the gap penalties are small [28]. Overall, the striped layout clearly performs the best,
followed by the sequential layout.

1.1.3.2 Inter-sequence parallelization

In contrast to the intra-sequence parallelization, the inter-sequence parallelization approach
does not speed up a single alignment, but it processes multiple alignment pairs in parallel.
Therefore, this parallelization approach can only be applied if multiple alignments need
to be performed, but this is the case for most alignment tasks. Different layouts of
parallelizing the alignments are possible - commonly, either many one-to-one alignments
are performed, or many sequences are compared to one sequence (many-to-one layout).

1.1.4 Hardware platforms for the Smith-Waterman algorithm

Smith-Waterman implementations have been developed for different hardware platforms
(CPU, GPU, FPGA, Xeon Phi). In the following, the characteristics of the hardware
platforms are described and some of the best performing Smith-Waterman tools for
protein alignment are presented.

1.1.4.1 CPU

The central processing unit (CPU) is the central part of the computer, which performs all
types of data processing operations. The basic components of a CPU are the control unit
(orchestrates the execution of instructions), the arithmetic logic unit (performs arithmetic
and bitwise operations) and the registers (quickly accessible storage). While the processor
speed continuously increased over time due to increasing transistor counts and clock speed,
more recently the trend goes towards increasing the compute capability with multi-core
processors [29]. SIMD parallel processing on CPUs can be achieved via instruction set
extensions, such as Streaming SIMD Extensions (SSE) and Advanced Vector Extensions
(AVX).

7



1 Introduction

CPU Smith-Waterman implementations

SSW (Striped Smith-Waterman) [30] is an implementation for nucleotide and protein
sequences, which is available as a C/C++ library as well as a stand-alone tool. As the
name implies, SSW is an intra-sequence method, which uses the striped layout. It
is parallelized via SIMD and makes use of the Streaming SIMD Extensions 2 (SSE2)
instruction set. SSW is based on Farrar´s Striped Smith-Waterman [28] and SWPS3’s [31]
improvement, which got extended by including alignment information additional to the
optimal alignment score. It utilizes a query profile, which is calculated once for each query
sequence and serves as a query-specific substitution matrix, which minimizes memory
look-ups of substitution scores. Query/score profiles are commonly used techniques in
alignment tools [27, 28, 32, 25].

SWIPE [32] follows an inter-sequence SIMD parallelization approach for the alignment
of nucleotide and protein sequences. It was mainly written in C++ and partly in assembly
language, and it utilizes the SSE2 and SSSE3 instruction sets. In SWIPE, sixteen database
sequences are aligned in parallel to one query sequence, which means it follows the many-
to-one layout. The alignments are initially performed with a 7-bit routine, which is able
to calculate scores up to 127. In case of an overflow, an alignment is recalculated with a
wider score range using 16 bits or 63 bits.

Two methods which utilize the rather new AVX2 instruction set are the Parasail library
[33] which contains a Smith-Waterman implementation based on SSW, and libssa [34],
which follows a similar approach as SWIPE.

1.1.4.2 GPU

In the past, GPUs have been typically used to render computer graphics. Nowadays
they are also applied to various other tasks by performing general-purpose computing on
GPUs. While the CPU is latency-optimized and suitable for general computing, the GPU
is throughput-optimized and designed for specific compute tasks. A GPU consists of a
high number of cores, which enables its high parallel capability. With the development of
high-level languages, such as CUDA [35] and OpenCL [36], GPU programming became
more accessible for the scientific community.

Many GPU Smith-Waterman implementations, make use of the CUDA framework,
which is a parallel computing platform and API for NVIDIA GPUs. In a GPU program,
part of the code runs on the CPU (host code) and another part is offloaded to the GPU
via kernels that are launched from the CPU. In CUDA, each kernel is executed by multiple
threads in parallel. Threads are grouped into blocks, and blocks are grouped into a grid.
Before the computation, data has to be transferred from the CPU to the GPU, and after
the kernel has finished the results have to be copied back to the CPU. GPUs have a
complex memory hierarchy consisting of various memory levels with different access and
speed. When writing GPU programs, an optimized memory management is important
for achieving a good performance.

8



1.1 Protein sequence alignment

GPU Smith-Waterman implementations

CUDASW++ 3 [25] utilizes both CPU and GPU for the Smith-Waterman calculations.
First, the sequence alignment workload is distributed over all available CPUs and GPUs
based on their respective compute power. The CPU method is based on SWIPE - it
performs inter-sequence SIMD parallelization by aligning sixteen database sequences to
one query sequence in parallel. The GPU method is implemented conceptually similar
to the CPU method - it uses a GPU SIMD parallelization via CUDA PTX SIMD video
instructions and performs four alignments in parallel per thread. CUDASW++ 3 is an
improvement compared to CUDASW++ 2 [37], which uses only the GPU for the Smith-
Waterman calculations and uses the SIMT (single instruction, multiple threads) execution
model which enables less data parallelism compared to SIMD.

ADEPT [21] uses only the GPU for the Smith-Waterman calculations, while the CPU
is only involved in data preparation and data transfer between CPU and GPU. The
algorithmic approach follows the intra-sequence parallelization strategy with anti-diagonal
layout.

1.1.4.3 FPGA

A field-programmable gate array (FPGA) is an integrated circuit which can be configured
for specific tasks. It consists of an array of logic blocks, an interconnection network, I/O
blocks and memory blocks [38]. The wiring of the logic blocks can be programmed by
the user ("field-programmable") in order to create custom instruction pipelines for the
performed computation. FPGAs can also be flexibly re-programmed as needed. Compared
to CPUs and GPUs, FPGAs work on much lower clock frequencies and reach lower peak
performances, which is however often compensated by an increased performance efficiency
and lower energy consumption [39, 29]. FPGAs are capable of massively parallel operations
and can be used to accelerate specific parts of an algorithm. A drawback of FPGAs
is that its programming is very different from CPU or GPU programming and thus
difficult for many users. The configuration of FPGAs is usually specified via a hardware
description language, like VHDL and Verilog. However, more recent FPGAs also support
the high-level language OpenCL (based on the C programming language), which reduces
the programming costs and increases the portability of FPGA code [40].

FPGA Smith-Waterman implementations

OSWALD [40] is an implementation for protein Smith-Waterman database searches based
on Altera FPGAs. It follows a hybrid approach, which exploits both CPU and FPGA
simultaneously for the Smith-Waterman calculations. The CPU method utilizes SIMD
computing via SSE and AVX2 instruction sets, and the FPGA algorithm makes use of
pipeline and vectorial parallelism. The Smith-Waterman implementation follows the
inter-sequence parallelization scheme. OSWALD uses the OpenCL parallel programming
framework, which launches the kernels on the target device and handles the memory
management.

9



1 Introduction

Some other FPGA Smith-Waterman implementations make use of the systolic array
parallel processing approach [41, 42, 43]. SWIFOLD [44] and a proposed algorithm by
Oliveira et al. [45] represent methods for DNA alignment.

1.1.4.4 Xeon Phi

The Xeon Phi is a x86-based manycore processor developed by Intel which was launched
in 2010. It provides high multithreading capabilities, as Xeon Phi models contain up
to 72 cores and each core is able to run four hardware threads. It can be used as a
coprocessor chip or as a standalone CPU. Compared to GPU and FPGA accelerators,
Xeon Phi has the advantage that it is x86-compatible and has support for OpenMP and
MPI paradigms - thus it can run software developed for standard CPUs. Furthermore,
it supports a subset of Intel´s latest AVX-512 instruction set which enables the use of
512-bit SIMD vectors. However, it does not support AVX-512BW, which is needed for
low-range integer representations (8-bit), which would be optimal for Smith-Waterman
implementations [32, 46]. The Xeon Phi series was discontinued in 2020.

Xeon Phi Smith-Waterman implementations

SWIMM 2.0 [46] is an protein Smith-Waterman implementation based on AVX-512 vector
extensions. The method exploits data-level and thread-level parallelism. Data-level
parallelism is achieved via an inter-sequence SIMD approach with support for different
instruction sets (SSE4.1, AVX2, AVX-512F and AVX-512BW). Multithreading on the
multicore or manycore architectures is achieved via OpenMP. SWIMM 2.0 was tested by
the authors on two architectures: a Xeon Skylake CPU and a Xeon Phi. On the Xeon
Skylake processor, AVX-512BW and AVX2 achieved similar performances - the double
vector capacity by AVX-512BW is compensated by doubling the number of simultaneous
instructions by AVX2. On Xeon Phi, AVX2 performs the best - AVX-512F performs
clearly worse because of the lack of 8-bit integer operations.

SWAPHI [47] is another Smith-Waterman protein database search method designed
for Xeon Phis. It makes use of AVX-512 extension by using SIMD vectors split into 16
32-bit-wide lanes. The authors tested an intra-sequence model (based on Farrar´s striped
approach) and an inter-sequence model (similar to CUDASW++ 3), of which the latter
performed better.

1.2 Compositional adjustment of substitution matrices

Amino acid substitution matrices are central for protein alignment methods, which score
alignments based on substitution and gap scores. The most commonly used substitution
matrices, such as PAM and BLOSUM matrices, are constructed as log-odds matrices.
These are based on a statistical theory for ungapped local alignments, which assumes
a random protein model in which amino acids occur independently with background
frequencies p [48]. The score for an amino acid pair can be written in the form
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sij =
1

λ
ln(

qij
pipj

), (1.3)

where q represents the target frequencies which are always positive and sum to 1, and λ
is a positive scale factor for the matrix. Valid substitution matrices must have a negative
expected score and at least one positive entry [48]. Background and target frequencies
are derived from curated collections of alignments of homologous proteins. However,
the standard substitution matrices are only optimal for the comparison of proteins with
standard compositions (amino acid frequencies). For the comparison of proteins with
biased compositions these matrices are not ideal [49]. Proteins with nonstandard amino
acid compositions are not uncommon - examples are hydrophobic or cysteine-rich proteins
and proteins encoded by AT- or GC-rich genomes [49, 50].

The compositional adjustment of substitution matrices yields matrices which are better
suited for the comparison of proteins with divergent compositions [49]. The method
described here has been developed by Altschul et al. [48, 51, 49]. The method takes the two
compared sequences and a standard substitution matrix as an input, and transforms the
matrix into an adjusted matrix which is tailored to the compositions of the two compared
sequences. This task can be formulated by starting with a set of target frequencies q (as
given by the standard substitution matrix) and two sets of background frequencies P and
P ′ which are inconsistent with q. We then seek new target frequencies Qij which are as
close to the original target frequencies qij as possible, while satisfying the consistency
conditions

Pi =
∑︂
j

Qij ; P ′
j =

∑︂
i

Qij . (1.4)

In contrast to standard substitution matrices with a single set of background frequencies,
this method yields asymmetric target frequencies and thus asymmetric substitution scores,
which means that in the general case Qij ̸= Qji. The compositional adjusted matrices
with the background frequencies P and P ′ can be written as

Sij =
1

λ
ln(

Qij

PiP ′
j

). (1.5)

For the comparison of compositionally biased proteins, the compositionally adjusted
matrices yield on average improved alignments and alignment scores [49]. However,
according to the authors, it is not advisable to apply compositional adjustment universally
to all alignment pairs, but only if at least one out of the following four criteria is fulfilled
(conditional compositional adjustment mode) [49]:

• Length ratio: Compositional adjustment is performed if the sequence length ratio
of the longer to the shorter sequence is less than 3. For higher length differences,
the longer sequence might contain domains which are not present in the shorter
sequence, which makes the compositional adjustment unreliable.
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• Compositional distance: If the two compared sequences have rather similar compos-
itions, compositional adjustment is performed.

• Compositional angle: Compositional adjustment is performed if the two sequences
show a similar compositional drift compared to the standard amino acid composition.

• High pair frequencies: Compositional adjustment is performed if in either of the
two sequences the two most frequent amino acids account for a high proportion of
the total composition.

If all criteria fail for an alignment pair, composition-based statistics [52] are applied to
that pair. With composition-based statistics the whole substitution matrix is scaled by a
constant factor, which depends on the sequence compositions.

1.3 Orthology inference

The identification of homologous relationships of genes is central for comparative and
evolutionary genomics. Homologous genes can be further subdivided according to their
type of evolutionary relationship. Of great importance is the distinction between orthologs
and paralogs as defined by Walter Fitch [53]. Homologs resulting from a speciation event
are referred to as orthologs, while those resulting from a duplication event are called
paralogs. Orthologs are of particular importance because they can be seen as ’the same
gene’ in different species [54]. In most cases, they retain similar function and therefore they
are essential for the functional annotation of genomes. In contrast, paralogs frequently
tend to adopt different functional roles [55]. Moreover, the detection of orthologs plays a
key role in phylogenomics because they can be used to infer species trees [56].

There exist various orthology databases, which differ in the applied method to infer
the orthologs and in the covered taxonomic range. The Quest for Orthologs consortium
[57] compiled a comprehensive list of orthology database resources, which is available on
their website (https://questfororthologs.org/orthology_databases).

1.3.1 Methods for orthology detection

The methods for orthology inference can be classified into tree-based methods and graph-
based methods.

Tree-based methods involve explicit models of the evolutionary history of genes in the
form of gene trees. The most common approach is to combine such gene trees with species
trees via an approach called tree reconciliation, in order to distinguish orthologs and
paralogs [58]. The tree construction is performed either via distance-based (neighbor-
joining or UPGMA) or character-based (maximum parsimony or maximum likelihood)
methods [56].

Graph-based methods are based on pairwise sequence similarity searches. The approach
relies on the assumption, that a gene is more similar to its orthologous counterpart in
another species than to any other gene [59]. The most common approach to infer orthologs
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is the bidirectional best hit method, which assigns orthologous relationships via symmetric
best-matches [60]. This method requires a list of pairwise alignment scores between the
sequences of two genomes as an input, which is most commonly obtained via the BLAST
heuristic or the exact Smith-Waterman algorithm. There exist several clustering methods
in order to group orthologs from multiple genomes into orthologous groups.

Besides, there are also hybrid approaches which include phylogenetic trees as well as
sequence similarity-based methods [54]. There exist also approaches which additionally
make use of synteny information [54]. Synteny describes the conservation of local gene
order.

1.3.2 Comparison of orthology detection methods

Each method for the detection of orthology has its advantages and disadvantages and
the best choice depends on the use-case. In general, tree-based methods tend to be more
specific, while graph-based methods tend to be more sensitive [54]. The construction of
trees is computationally expensive and is therefore only feasible for smaller datasets [54].
Furthermore, tree-based methods have difficulties when genome evolution does not follow
a tree-like pattern, which is often the case for prokaryotes, where horizontal gene transfer
represents an important evolutionary factor [61]. A challenge for graph-based methods, is
the detection of differential gene loss. A paralogous pair might be falsely identified as
orthologous, if the corresponding true orthologs of the respective genes are missing in
both species [62]. Graph-based methods are easier to automate compared to tree-based
methods and can also handle large number of genomes [54].

1.4 SIMAP: the similarity matrix of proteins

Protein sequence similarity searches are a fundamental method in bioinformatics, which
build the basis of various bioinformatic tasks, such as the functional annotation of
proteins or the prediction of orthologous groups [63]. As the task of all-against-all protein
similarities of large databases is very computationally intensive, the Similarity Matrix of
Proteins (SIMAP) database aims to provide a pre-calculated similarity matrix [1].

The SIMAP 1 project run from 2004 to 2014. Its initial concept was to provide sequence
similarities of proteins from public databases and completely sequenced genomes. For
the computation, a two-step algorithm was applied - first, putative hits were searched
for with the FASTA heuristic [64], and then the remaining hits were re-calculated with
the exact Smith-Waterman algorithm. In later SIMAP versions, its functionality was
extended by including sequence-based features such as Interpro domains [65].

The database was frequently updated with newly available sequences. In these incre-
mental updates, each new sequence had to be aligned to itself and to all sequences of the
database, while the similarities between the old sequences did not have to be re-computed.
Nevertheless, with the exponential growth of the number of known protein sequences and
the resulting quadratic growth of the SIMAP database, a comprehensive database of all
known proteins became infeasible [63].
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The SIMAP 2 project started in 2015 and focuses on the main use case of SIMAP 1,
which was comparative genomics. It computes sequence similarities between proteins of
complete genomes, which forms the basis for large-scale inference of orthologous groups,
e.g. in eggNOG [2] and STRING [3]. The algorithm for the computation of sequence
similarities was modified, with the goal to become more sensitive, which means that
distantly related hits are found more frequently. Instead of filtering the hits with the
FASTA heuristic the new approach is based solely on the non-heuristic Smith-Waterman
algorithm. Furthermore, it includes compositional score matrix adjustment [48, 51, 49],
which is also used by default in protein-protein BLAST [6].

1.4.1 SIMAP workflow

The current SIMAP workflow consists of three alignment phases and is described below
in more detail.

Alignment phase 1

In the first alignment phase, all pairwise sequence pairs are computed with the Smith-
Waterman algorithm, which is parameterized by a substitution matrix, a gap open penalty
and a gap extension penalty. After this step, all pairs with scores below a specified
threshold are discarded. The computation is based on SWIPE and uses only the 7-bit
routine, which means that the scores are only calculated up to 127, which is sufficient
to test against the threshold which is lower than 127. In this alignment phase, the
low-complexity regions of query and database sequences are translated to ’X’. Low-
complexity filtering (performed by the program SEG [66]) prevents spurious hits because
of compositionally biased regions and therefore improves the reliability of the similarity
search.

Alignment phase 2

In the second alignment phase, the remaining pairs are computed again with the Smith-
Waterman algorithm, but this time with compositionally adjusted substitution matrices.
After this step, again all pairs below another threshold, which is higher than the phase 1
threshold, are discarded. The compositional score adjustment yields improved alignments
when applied to the comparison of proteins with biased composition [49], but it also
requires additional execution time, which is of particular importance in large-scale analyses.
Therefore, low-scoring pairs are filtered out in phase 1 - these pairs are very unlikely to
score higher than the second threshold with compositional score adjustment applied. The
two thresholds affect the tradeoff between sensitivity and runtime - lower thresholds lead
to more true positive hits, but also increase the runtime of the workflow. As in this phase,
each pair has a unique substitution matrix, the computation is performed with SSW
instead of SWIPE. Also in this alignment phase, the low-complexity regions of the query
and database sequences are masked. Here, the SIMAP workflow differs from BLAST,
where only the database is masked, which introduces asymmetry (scores might change
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if the query and database sequence are swapped). However, in SIMAP the symmetry
is important for two reasons - on the one hand, only half of the matrix (i.e. the upper
triangle) has to be computed which halves the overall workload, on the other hand, it
would not make sense to have two different scores for the same sequence pair.

Alignment phase 3

In the final alignment phase, the final score and alignment attributes are computed. The
score computation uses the default BLAST parameters (BLOSUM62, gap open: 11, gap
extension: 1) and is performed with SSW (for scores below 32,767) or SWIPE. The
alignment attributes (sequence identity, sequence similarity, alignment start and end
positions) are computed with SWIPE´s align function. For the compositional matrix
adjustment, both sequences are masked, while for the score calculation both sequences
are unmasked. All pairs are kept in this phase, and a result file with score and alignment
attributes of each pair is created.

1.5 Problem description and research goals

The SIMAP project computes sequence similarities between proteins of complete genomes,
which is a prerequisite for orthology inference. The method utilizes the exact Smith-
Waterman algorithm, which provides sensitive results, but has the drawback of being
runtime-intensive. The current SIMAP workflow was implemented in 2014. At that
time, the focus lay on the correct implementation of a workflow which fully relies on
the Smith-Waterman algorithm and makes use of compositional score adjustment, while
less attention was given to runtime optimization. The goal of this master project is to
improve the runtime of the SIMAP workflow, so that future SIMAP calculations remain
computationally feasible.

The first aim of this project, is to compare the runtime of the fastest available Smith-
Waterman implementations for protein sequence alignment. This runtime comparison
forms the basis for deciding which alignment tool is the best choice for SIMAP.

The next aim of this project, is to profile the SIMAP workflow, so that runtime-intensive
components of the workflow can be identified. Subsequently, modifications to the SIMAP
code with the aim of reducing the runtime should be implemented. The final SIMAP
version needs to be well tested, so that the correctness of future SIMAP calculations is
ensured.
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2 Data and Methods

All plots in this thesis have been created in Python with the matplotlib library.

2.1 Smith-Waterman comparison

2.1.1 Swiss-Prot sequence data

The UniProtKB/Swiss-Prot database (release 2022_02) [67] in FASTA format was
downloaded from https://ftp.uniprot.org. Swiss-Prot is a manually curated non-
redundant database of protein sequences.

All sequences which contain non-canonical or ambiguous amino acids are excluded from
the analysis. The Smith-Waterman programs handle these special amino acids differently
and thus would yield differing results. On the filtered dataset with only canonical amino
acids, the programs should yield identical scores for each pair, which makes the verification
of the correctness of the programs straightforward. Sequence statistics of the unfiltered
and filtered Swiss-Prot database are depicted in Table 2.1.

Swiss-Prot (unfiltered) Swiss-Prot (canonical only)
Sequence number 567,483 564,823
Total amino acids 204,940,973 203,990,116
Length 1st quartile 169 169
Length median 295 295
Length 3rd quartile 449 449

Table 2.1: Sequence statistics of the Swiss-Prot database for the unfiltered database (left)
and without non-canonical amino acid containing sequences (right).

2.1.1.1 Random sampling

For the various Smith-Waterman performance tests, random samples from the Swiss-Prot
dataset were drawn via the bioawk tool [68]. First, the dataset was filtered by the specified
sequence length range. As a next step, the specified number of sequences were randomly
selected. In cases, where the number of desired sequences was greater than the number of
sequences in the dataset, multiple copies of the same sequence were allowed - in order to
keep the headers in the created dataset unique, a number was added to it.
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2.1.2 Smith-Waterman program installation and parameters

SSW

The SSW software (v1.1) [30] was downloaded from https://github.com/mengyao/Com
plete-Striped-Smith-Waterman-Library and compiled as described in the README.
The provided Python interface, which is according to the authors about as fast as the
C/C++ interface, was used for calling the program. The pyssw.py script was modified to
only output results of pairs scoring higher than a specified threshold. Furthermore, the
ssw_lib.py script was extended with the BLOSUM45/50/62/80 substitution matrices.

SWIPE

The SWIPE (v2.1.0) [32] executable (source: https://github.com/torognes/swipe)
was used. The maximum expect value to show in the output was set to 1e6, the maximum
number of alignments and descriptions to show was set to the number of database
sequences.

CUDASW++ 3

The source code of CUDASW++ (v3.1.2) [25] has been downloaded from https://cuda
sw.sourceforge.net and has been compiled following the instructions on the website
using CUDA 11.6. The default query profile mode has been used for all calculations - the
query profile variant mode did not run successfully.

ADEPT

The ADEPT library (v1.0) [21] was downloaded from https://github.com/mgawan/AD
EPT and has been built with including the Python module of ADEPT using CUDA 11.6.
The example script py_asynch_protein.py served as a template for calling the program.
The input sequence file reading was modified so that all-against-all alignments between
query and database sequences are performed. The calculation was performed in batches
of size 50,000 which is about the maximum possible batch size to run successfully.

2.2 SIMAP testing

The original SIMAP code was downloaded from https://github.com/tolot27/swipe/t
ree/sswlib - the new version is available at https://github.com/JoTue/swipe/tree/
sswlib_2022. The SIMAP code was compiled with the newest BLAST library (v2.13.0).
All SIMAP calculations were performed with following (default) parameters:

-M BLOSUM50 -G 13 -E 2 -m 88 -s2 -b <#db_sequences> -v <#db_sequences>
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2.2 SIMAP testing

2.2.1 Sequence data

Swiss-Prot

The same UniProtKB/Swiss-Prot database (release 2022_02) as in the Smith-Waterman
comparison tests was used. Here, sequences with non-canonical characters were not
filtered out.

ASTRAL40

The ASTRAL40 dataset (v1.55) [69] was downloaded from https://scop.berkeley.ed
u/astral/. It contains 2,577 protein domains with less than 40% identity to each other.

COG

The Clusters of Orthologous Genes (COG) database (2020 version) [70] was downloaded
from https://ftp.ncbi.nih.gov/pub/COG/COG2020/.

2.2.2 Data preparation

For all used protein sequence datasets, the low complexity regions were soft-masked
(converted into lowercase) via the tool SEG (with parameters: window size = 10, low
(trigger) complexity = 1.8 and high (extension) complexity = 2.1). In SIMAP, both the
query and the database are masked - otherwise the results would not be symmetrical.
SIMAP takes three input files as an input, the soft-masked query, the soft-masked database,
and a BLAST index of the hard-masked (lowercase characters converted to X) database.
The program makeblastdb (v2.9.0+) of the BLAST+ software suite was used to create the
BLAST index (-blastdb_version 4). The translation of lowercase characters into X or
uppercase was performed in Python with the Biopython module [71].

In all three alignment phases, hard-masked query and database sequences are used.
Only in the final score calculation step of phase 3, query and database sequences are
internally unmasked (all characters in uppercase).

19

https://scop.berkeley.edu/astral/
https://scop.berkeley.edu/astral/
https://ftp.ncbi.nih.gov/pub/COG/COG2020/




3 Results

3.1 Smith-Waterman performance comparison

The exact Smith-Waterman algorithm is a widely used local pairwise sequence alignment
method. Various implementations have been developed, which are often tailored to a
specific use case. In this project, the focus lies on the comparison of accelerated programs
which are suitable for protein database searches, as it is for example performed in the
SIMAP project. Four alignment tools are compared in more detail: the CPU methods
SSW and SWIPE, and the GPU methods CUDASW++ 3 and ADEPT - a description of
these methods can be found in 1.1.4. These are some of the most widely used and best
performing Smith-Waterman tools for protein database searches. Methods for FPGA and
Xeon Phi are not included because these hardware platforms are not available to me for
testing. Regarding the CPU methods with AVX2 support, I was not able to compile libssa
and SWIMM 2.0 (needs Intel compiler). Parasail performed worse than SSW (function:
parasail_sw_striped_profile_avx2_256_sat) in preliminary tests and was therefore not
included in the detailed comparison.

Usually, the publications of the alignment programs contain runtime comparisons to
other tools. These comparisons can give a good first impression of a tool’s performance,
however, the alignment parameters, used hardware, and compared tools are commonly
chosen so that the own program performs the best. For an objective assessment of the
performance of different programs, a performance comparison framework was created,
which is described in the following.

3.1.1 Framework for Smith-Waterman implementation comparison

The aim is to create a program that enables reproducible runtime comparisons of alignment
programs across different alignment parameter settings. The software consists of multiple
Python scripts and the repository is available on GitHub: https://github.com/JoTue/p
rotein_alignment. In the following, the various steps and functionalities of the program
are presented.

Input file preparation

The program takes query and database files in FASTA format as an input. These FASTA
files are converted to a layout which is suitable for all alignment programs. As ADEPT
fails to read multi-line records, all sequences are converted to a single line. Furthermore,
pipe characters in the header lead to different parsing of the header by the alignment
programs, which is why they are replaced by underscores. BLAST and SWIPE require
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a BLAST database of the database FASTA file as an input, which is created via the
makeblastdb command line tool from the BLAST suite. If multi-threading via xargs is
specified, the query file is split into multiple files. After splitting, each file approximately
contains the same number of residues, which assures that the workload for each thread is
similar.

Alignment

The compared alignment programs are available as command line tools. For each program,
a Python wrapper was written which calls the program with the specified alignment
parameters. One can specify the used substitution matrix, the gap open/extension
penalties, the minimum score of hits to be reported and the number of used CPU cores
and GPUs.

Before the alignment, the input files are copied to a specified temporary directory (e.g.
/tmp or /dev/shm). Reading from and writing to a temporary file system with high
read/write speed is important for a proper comparison. Alignment programs which are
I/O intensive (like SWIPE) would be more affected by slow read/write speeds than other
programs, which would severely bias the comparison.

Checking correctness of results

Checking that all alignment tools yield the correct results is an important part of the
comparison framework. One the one hand, this validates the correctness of the algorithms,
and on the other hand, it verifies the correct compilation and program invocation by the
user.

The comparison framework contains output file parsers for each alignment tool. These
convert the various output file formats into an unified format, which lists all hits with
the sequence header names and the alignment scores. In the comparison framework, the
results are checked by comparing the results of the different alignment tools with each
other. If the results of all programs agree, this indicates that the results are correct. There
are different levels of checking the results implemented. If an exact verification is required,
the scores of all hits are compared. As this verification is quite runtime intensive, one can
also specify to only compare the file sizes of the result files, which detects most errors.

Runtime analysis

The wall clock time of each program run is measured. The measured time interval
starts right before calling the program and ends after the program has finished. The
runtimes are written to a file and a bar plot is created. The runtimes are also converted
to GCUPS (billion cell updates per second) which is a commonly used measure of speed
for Smith-Waterman implementations. The GCUPS value is calculated by dividing the
total number of computed cells (total query residues times total database residues) by the
runtime. The GCUPS measure is particularly useful when comparing different alignment
experiments with differing input sequence sizes.
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If specified, besides the runtime also the CPU usage as measured by the /usr/bin/time
command is reported. This information is used to verify that the actual CPU usage
matches the theoretical CPU resources available for the calculation.

3.1.2 Performance comparison results

It is important to measure the effects of different parameters on the runtime of the
different programs. This enables us to find the best performing parameter settings for
each program and it shows the strengths and weaknesses of the individual programs.
In the following, four experiments are performed which each show the effect of varying
one parameter. If not stated otherwise, the following default settings are used for the
calculations:

• Input sequences: Randomly selected from Swiss-Prot, sequence lengths between
20 and 1,000

• Alignment parameters: BLOSUM62 substitution matrix, 11/1 gap open/exten-
sion penalties, minimum reported score: 55

• Computing resources: 1 CPU core (AMD EPYC 7272 2.9GHz; used for SSW,
SWIPE and CUDASW++ 3) and 1 GPU (PNY NVIDIA Tesla T4; used for CU-
DASW++ 3 and ADEPT)

• Performance measurement: Mean GCUPS value from three runs

3.1.2.1 Varying substitution matrix and gap penalties

The scoring system, which consists of a substitution matrix and gap penalties, has not
only an effect on the resulting alignment, but also on the runtime of the computation.
In Figure 3.1, four BLOSUM matrices (BLOSUM45/50/62/80), which are optimized
for different evolutionary distances, are compared. For each matrix, various gap open
and gap extension penalties were tested. The gap penalties tested here are the same as
those available in BLAST. The speed of SSW (around 1.3 GCUPS), CUDASW++ 3 (8-9
GCUPS) and ADEPT (2-3 GCUPS) is almost constant across all substitution matrices
and gap penalties, with the exception of the BLOSUM80 matrix, where all alignment tools
are considerably slower. The performance of SWIPE varies much more across the different
scoring parameters. Its speed is between 0.16 GCUPS (for BLOSUM80) and 8 GCUPS
(for BLOSUM62). Interestingly, SWIPE seems to be optimized for the BLOSUM62 matrix
and gap penalties of around 11/1, which is a commonly used scoring system and which is
the default gap penalty setting in BLAST.

3.1.2.2 Varying sequence matrix dimensions

Sequence similarity searches are performed by comparing a set of query sequences to
a sequence database. The number of sequences in the query and the database depend
on the use case. Although in the typical case, few query sequences are compared to a
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Figure 3.1: Performance dependency on substitution matrix and gap penalties.
Each plot shows the results for a different substitution matrix: BLOSUM45
(A), BLOSUM50 (B), BLOSUM62 (C) and BLOSUM80 (D). On the ho-
rizontal axis, the gap penalties are varied - the gap open penalty is written
above the gap extension penalty. The speed in GCUPS is shown for SSW
(blue), SWIPE (yellow), CUDASW++ 3 (green) and ADEPT (red). The query
consists of 128 sequences and the database of 65,536 sequences.
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Figure 3.2: Performance dependency on matrix dimensions. Calculations with
different query and database sizes are performed. The total workload amounts
to 226 alignment pairs in all calculations. The distribution of query and data-
base sizes is varied on the horizontal axis. The dimensions of query/database
sizes reach from 25/221 to 213/213.

large database, also queries and databases of the same size or even large queries and
small databases can be compared. In the Smith-Waterman implementations query and
database sequences are often treated differently (e.g. creation of query or score profiles
which allow efficient loading of substitution values).

As can be seen in Figure 3.2, the alignment programs are affected differently by
the matrix dimensions. For ADEPT, no effect can be seen. SSW is slightly faster
and SWIPE is nearly twice as fast with small queries compared to a quadratic matrix.
The performance of CUDASW++ 3 drastically drops as the database size gets smaller.
Apparently, CUDASW++ 3 cannot parallelize efficiently and thus wastes compute resources
if the database is too small.

For some alignment tasks, as for example in SIMAP, the matrix dimensions of the
individual jobs can be chosen freely - in these cases the optimal matrix dimensions for
the used alignment program should be chosen.

3.1.2.3 Varying sequence lengths

With increasing sequence lengths, the workload for the sequence alignment increases. In
Figure 3.3, the effect of the sequence lengths on the performance of the Smith-Waterman
programs is shown. The sequences are clustered into four length classes (20-150, 151-450,
451-750, 751-1,500). More than half of the Swiss-Prot sequences fall within the range of
151-450 (1st quartile: 169, median: 295, 3rd quartile: 449). In order to test the effect of
the sequence length of query and database sequences separately, all 16 combinations of
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query and database sequence length classes were calculated.
The performance of SWIPE is only slightly affected by the sequence lengths. The

overall trend for the other alignment programs, is that the GCUPS value increases with
increasing sequence lengths. Still, the runtime of an alignment between short sequences is
faster than for a alignment involving longer sequences, but the cell updates per second
are higher in the latter case. In other words, it is faster to fill one large alignment matrix
than many smaller matrices of the same combined size, because of computing overhead
besides the matrix filling. Particularly strong is the effect for SSW. By looking at the
runtime (not shown in the plot), it becomes apparent that the runtime of SSW increases
with increasing database sequence length, but the runtime does not increase with the
query sequence length. That means, in SSW, aligning a 100-residue query sequence to
a database sequence takes about as long as aligning a 1,000-residue query sequence to
the same sequence. A possible explanation for this behavior of the striped approach, is
that with increasing query length, the length of the stripes increases, which reduces the
relative importance of the dependency between the stripes [32].

3.1.2.4 Varying number of used CPUs/GPUs

In order to speed up the computation of alignments, multi-threading can be applied,
which allows to run multiple threads in parallel on multiple CPU cores and/or GPUs. In
Figure 3.4, the performance of the alignment programs with different number of CPU cores
and GPUs is shown. Multi-threading was achieved "manually" via the xargs command,
by first splitting the query file into equally sized chunks and then aligning each of the
chunks to the database via separate threads. With this approach, all programs scale
almost linearly with the used compute resources - CUDASW++ 3 scales sublinearly due to
its decrease in performance if the workload per thread gets too small. SWIPE contains an
in-built multi-threading mode, which however scales clearly worse than the approach via
xargs. Also in CUDASW++ 3 multiple CPUs and GPUs can be used for the calculations,
but also here the xargs approach performs better for high numbers of CPU cores and
GPUs. These results show, that it clearly pays off to perform multi-threading "manually"
by splitting the workload beforehand, instead of using the built-in multi-threading modes
of the alignment programs, which apparently are less efficient.

Interestingly, using the resources of the full compute node, SWIPE (using 24 CPU
cores) performs better than CUDASW++ 3 (using 24 CPU cores + 6 GPUs). Apparently,
the CPU computation of CUDASW++ 3, which is based on SWIPE, is clearly less efficient
than SWIPE.

3.1.2.5 Conclusion

The results of the performance comparison experiments point out the strengths and
weaknesses of each alignment method. SSW´s performance is rather constant across
different matrix dimensions and scoring systems and it performs best if the query sequence
lengths are rather long. The performance of SWIPE depends strongly on the used scoring
system. CUDASW++ 3 should be only used if the database size is rather high, otherwise
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3.1 Smith-Waterman performance comparison

Figure 3.3: Performance with varying sequence lengths. Sequences were clustered
into four length ranges: 20-150, 151-450, 451-750, 751-1,500. Each plot shows
the result for one query length range: 20-150 (A), 151-450 (B), 451-750 (C),
751-1,500 (D). All 16 combinations of query and database sequence lengths
were calculated. The query consists of 128 sequences and the database of
131,072 sequences. ADEPT failed in the setting where query and database
sequence lengths are both 751-1,500.
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Figure 3.4: Performance with different number of used CPUs/GPUs. Calculations
were performed with different number of CPU cores and GPUs, ranging from 1
CPU core/1 GPU up to 24 CPU cores/6 GPUs, which are the full computing
resources of the used compute node. The query consists of 256 sequences
and the database of 524,288 sequences. For all programs, multi-threading via
xargs was performed - for SSW and SWIPE the thread number is identical
to the number of used CPU cores, and for CUDASW++ 3 and ADEPT there
are as many threads as used GPUs. SWIPE and CUDASW++ 3 also have
multi-threading modes implemented, which are shown in the comparison.
ADEPT also has a mode for using multiple GPUs, which however could not
be run successfully. SSW does not provide multi-threading.
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it wastes many compute resources. The performance of ADEPT is quite constant across
all tested parameters.

For an overall comparison of the four alignment programs, Figure 3.2 is the most
suitable, as it shows the performance with a typical scoring system and average sequence
lengths and is therefore representative for most use cases. The single CPU/GPU peak
performances of each program (which is achieved for all programs at small query and large
database sizes) are: CUDASW++ 3 (27.5 GCUPS), SWIPE (10.2 GCUPS), ADEPT (3.4
GCUPS), SSW (1.5 GCUPS). So, the performances of the four programs are quite different.
For the CPU methods, SWIPE is about seven times faster than SSW. Regarding the GPU
methods, CUDASW++ 3 is about eight times faster than ADEPT. Also interesting is the
comparison between the best performing CPU and GPU methods - here, CUDASW++ 3
(1 CPU core + 1 GPU) is almost three times faster than SWIPE (1 CPU core). However,
considering the higher cost of GPUs compared to CPUs, SWIPE is probably preferable.
Furthermore, the GPU tools require more effort to correctly configure on the compute
system compared to CPU methods.

3.2 SIMAP

The SIMAP project computes sequence similarities between proteins of complete genomes.
Because of the high computational workload of the alignment tasks, a faster method
would be very beneficial. In the following, the runtime of the current SIMAP workflow is
profiled and improvements to the different phases of the workflow are discussed.

3.2.1 Profiling the SIMAP workflow

The first task, was to profile the SIMAP workflow, in order to get an overview over the
runtime performance of the different parts of the workflow. The SIMAP code was modified,
so that the times of the individual alignment phases are measured. The time measurement
is only performed if the SIMAP code is compiled with the "TIME_PAIRCOUNT"
compile option, which reports the runtime and number of processed alignment pairs of
each alignment phase. Although the additional overhead due to these measurements
is small, if the information is not needed, the code should be compiled without the
"TIME_PAIRCOUNT" option for optimal performance.

In Figure 3.5, the runtimes of the three alignment phases are depicted - phase 2 is
further split up into three parts: sequence composition calculation, matrix adjustment, and
sequence alignment. Phase 2 takes up by far the most runtime, while phase 1 and phase 3
combined amount to only around 12% of the runtime. Surprisingly, the alignment part in
phase 2 takes about nine times longer than the alignment in phase 1, although much less
alignment pairs are computed (the time per computed pair is about hundred times higher
in phase 2 compared to phase 1). However, one has to consider that the two alignment
settings are not the same - in phase 1, all pairs are computed with the same substitution
matrix, while in phase 2, each pair is computed with an unique compositionally adjusted
substitution matrix. SWIPE, the fastest Smith-Waterman implementation for CPU, can
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Figure 3.5: Runtime profiling of the SIMAP workflow. The overall runtime of
SIMAP is the combination of the runtimes of the three alignment phases. A
matrix of 8 million pairs from Swiss-Prot was computed using a single CPU
core.

only be applied in phase 1, because it computes multiple alignment pairs in parallel,
which is however only possible if all pairs are scored with the same substitution matrix.
Therefore, in phase 2, the slightly slower method SSW is used, which can be applied
because it computes only one alignment pair at a time.

3.2.2 SIMAP runtime improvements

In this chapter, modifications to the SIMAP workflow, with the aim to reduce the overall
runtime, are presented. The modifications involve the improvement of the alignment part of
phase 2, which could speed up the workflow considerably. A smaller runtime improvement
could be achieved by revising the sequence composition calculation. Furthermore, the code
was brought up to date, so that it makes use of the newest versions of the Smith-Waterman
programs and libraries. The new version of the SIMAP workflow is available on GitHub:
https://github.com/JoTue/swipe/tree/sswlib_2022.

3.2.2.1 Phase 2 alignment

As was already mentioned in 3.2.1, the computation of the alignments in phase 2 accounts
for more than two thirds of the overall runtime. This huge runtime of the phase 2
alignment (performed by SSW) compared to the phase 1 alignment (performed by
SWIPE) is surprising, as it does not fit the findings of the Smith-Waterman performance
comparison from 3.1.2 - there, SSW was only about seven times slower than SWIPE.

The alignment by SSW consists of two parts: the query profile creation, and the
Smith-Waterman algorithm. In alignment tasks where the same substitution matrix is
used for each pair, the query profile creation has to be performed only once for each query.
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However, in phase 2 of the SIMAP workflow, each pair uses a separate substitution matrix,
which is why the query profile creation has to be performed for each pair. This leads to
some extra overhead - however, the query profile creation takes up only around 5% of
the phase 2 alignment and therefore cannot not fully explain the high runtime. SSW is
built as a library, which provides an API that can be used by C++ programs. This is
utilized in the SIMAP workflow, where SSW´s alignment functions are directly included
and compiled together with the SIMAP code. However, the SSW library also provides
an command line executable - this executable was also used in the Smith-Waterman
performance comparison.

The plan was to replace the SSW alignment in phase 2 of SIMAP by the SSW
executable and to compare the runtimes of both versions. This new approach also
required a restructuring of the workflow. In the original SIMAP workflow it is iterated
over all query sequences, and in phase 1 one query sequence is compared to all database
sequences. For the remaining pairs, phase 2 and phase 3 are run directly after another for
each pair, before going to the next pair. In the new version, this would require to call the
SSW executable for each pair separately. However, repeatedly calling the SSW executable
would imply substantial overhead - in standard alignment tasks, the executable would be
called only once, taking all query and database sequences as an input. Therefore, the
workflow is changed, so that the phase 2 alignment is performed for all pairs of one query
sequence together, which means that the SSW executable is called only once for each
query sequence. Because the SSW executable reads the input from files, the query and
database sequences, and compositional adjusted substitution matrices are first written
to files. Furthermore, the SSW code had to be changed slightly, so that it reads in the
substitution matrices and creates query profiles separately for each pair.

As can be seen in Figure 3.6 (middle column), this new implementation which uses the
SSW executable performs clearly better and reduces the overall runtime of the SIMAP
workflow by half. The alignment part of phase 2 becomes about seven times faster.
However, there is some additional overhead due to writing the sequences and substitution
matrices to files. The new implementation brought the desired performance improvement,
but the reason of the low performance of the original implementation remained unclear.
After investing much time in tweaking the SSW alignment functions in the SIMAP code,
which all brought no improvements, I finally found out that the error was not in the
code itself, but in the compilation of the code. While the compilation of the SWIPE
scripts of SIMAP was performed "correctly" via compilation into object files followed by
linking into an executable, for the SSW script (ssw.cc) no object file was created explicitly.
Although this produced a correctly working executable, it was poorly optimized. After
improving the compilation process by also producing an object file for the SSW script,
the performance improved significantly (Figure 3.6, last column). The alignment in phase
2 slightly surpassed the performance of the implementation using SSW executable and
also the phase 3 alignment became faster. Furthermore, the extra workload of writing
the sequences and substitution matrices to files is omitted. The overall runtime of the
SIMAP workflow could be reduced to about a third of the runtime of the original version.
Compared to the version using the SSW executable, the new version is not only more
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Figure 3.6: Runtime improvement of phase 2 alignment. The runtimes of the
original SIMAP workflow, the version using the SSW executable in phase 2,
and the version with an optimized compilation are compared. A matrix of 8
million pairs from Swiss-Prot was computed using a single CPU core.

performant, but also has the advantage of simplifying program usage and maintainability,
since it does not require an SSW executable file. Therefore, the new SIMAP workflow
implementation contains the original alignment code, but with an optimized compilation
procedure.

3.2.2.2 Phase 2 sequence composition calculation

The compositional matrix adjustment function, takes the sequence compositions (amino
acid frequencies of a sequence) as an input. Both, sequence composition calculation and
matrix adjustment are performed by functions from the BLAST library. In the current
SIMAP implementation, for each query sequence it is iterated over the database sequences
which remained after phase 1, and the sequence compositions are computed. This is
inefficient, because the sequence compositions of one database sequence will be computed
multiple times (for each comparison to a query sequence separately).

In the new implementation, the compositions of all database sequences are computed
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once at the beginning of the workflow and they are stored in a data structure. This
reduces the runtime complexity from O(N²) to O(N), where N is the number of database
sequences. As each sequence composition is represented by an array of 28 amino acid
frequencies, the additional memory requirement of storing them is negligible and it does
not increase the peak memory usage of the SIMAP workflow.

Although, due to this change the composition calculation becomes more efficient, the
effect on the overall runtime is very small because the composition calculation took up
less than 1% of the runtime anyway. Initially, I thought the runtime of the composition
calculation is higher, because in SIMAP calculations where the input sequences are not
copied to a temporary directory with high read/write speed (which is bad practice), the
composition calculation accounts for about 5% of the overall runtime. Although, the
improvement is quite small, the new SIMAP version contains the improved composition
calculation procedure.

3.2.2.3 Updating scripts, libraries and compiler

The current SIMAP workflow was implemented in 2014, which means that various parts of
the SIMAP code are outdated and should therefore be brought up-to-date. New versions
of the SWIPE and SSW scripts have become available and they have been updated in
the SIMAP code. Furthermore, the SIMAP code can now be compiled with the newest
BLAST library (2.13.0) and the newest GNU Compiler Collection (12.2.0), which required
some minor modifications in the SIMAP code. Altogether, these changes merely affect
the runtime of the SIMAP workflow, but it is important to keep software up-to-date in
order to assure that it compiles and runs on the latest computing systems.

3.2.2.4 Validation of new implementation

In order to validate the correctness of the new SIMAP implementation, its results are
compared to the old SIMAP implementation, which is assumed to be correct. For the
validation, all-against-all calculations of all Swiss-Prot sequences are performed. Such a
thorough testing is important, because some errors might only occur in special sequences
or alignments - possible sources of error for alignment methods are very short/long
sequences, sequences with non-canonical amino acids, or alignments without positive
optimal scores. In a smaller test with randomly selected sequences, possible bugs could
be missed. The reported alignment attributes for a pair in the SIMAP results file are:
sequence IDs, score, alignment coordinates, and percentage of similar/identical matches.

All results files of the separate SIMAP jobs were compared via the command-line tool
diff, which compares two files line-by-line and reports any differences. The results of the
two SIMAP versions are not completely identical. There are some pairs with slightly
differing scores and also some additional hits in the new implementation. By taking a
closer look at those pairs, it became apparent that all differing pairs contain sequences
with (non-canonical) selenocysteine residues. The reason for the different scores lies in
the different BLAST library versions the SIMAP implementations are compiled with
(old version: 2.2, new version: 2.13). In SIMAP, the BLAST library is used for the
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compositional matrix adjustment. Since BLAST 2.4, selenocysteine is scored as cysteine
instead of as ’X’ (unspecified or unknown amino acid), which explains the differing
alignment scores between the two versions. All pairs, which do not contain selenocysteine,
have identical scores and alignment attributes.

Besides checking the correctness of the results, the runtimes of the two versions were
measured. In order to use the compute resources on the compute cluster efficiently, the
workload was split up into small jobs which each run about 1-3 hours. However, the
hardware and available number of CPU cores were not the same for all jobs. Nevertheless,
on average the compute environment used for the calculations of both SIMAP versions
was very similar, and therefore, also the runtimes are comparable.

The total runtimes were 425 hours for the old version and 160 hours for the new version.
Estimating that on average 14 CPU cores were used for the calculations, the runtimes
per CPU core were 5,948 hours (248 days) for the old version and 2,242 hours (93 days)
for the new version. So, in this calculation the runtime of the new version was about 38%
of the old version.

3.2.2.5 Runtime comparison of old and new SIMAP version

In Figure 3.7 the runtimes of the old and new SIMAP version are compared. The new
version contains the improved sequence composition calculation and the optimized SSW
script compilation, which is mainly responsible for the runtime improvement. In the
shown example, the runtime was reduced to one third of the original version. In the new
version, the runtime fractions of the different phases are: Phase 1 (26%), Phase 2 - matrix
adjustment (50%), Phase 2 - alignment (18%) and Phase 3 (6%).

3.2.3 Further SIMAP modifications

Besides the implemented improvements presented in the previous chapter, two further
modifications to the SIMAP workflow, with the aim to reduce the phase 2 runtime, have
been developed. However, these modifications have an effect on the accuracy of the
SIMAP results - they are therefore not part of the default SIMAP parameter settings,
but they can be applied by setting command line options.

3.2.3.1 Skipping phase 2 for high-scoring pairs

In phase 1, scores up to 127 are computed and all pairs with scores higher than a specified
threshold (default: 55) are kept for phase 2. In phase 2, all pairs with compositionally
adjusted scores higher than another threshold (default: 75) are kept for phase 3. However,
pairs with very high (unadjusted) scores (e.g. >100) are very likely to have adjusted
scores higher than 75 - for these pairs it would be unnecessary to perform the phase 2
alignment, as they could be bypassed directly to phase 3.

A new option was added to the SIMAP workflow, which allows to set a threshold score
- all pairs with phase 1 scores higher than this threshold are bypassed directly to phase 3.
The lower the threshold, the more pairs skip phase 2 and the lower the overall runtime,
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Figure 3.7: Runtime comparison of original and new SIMAP implementation.
The phase 2 composition calculation and alignment, as well as phase 3 are
faster in the new version. A matrix of 8 million pairs from Swiss-Prot was
computed using a single CPU core.

but also the higher the number of "wrongly" bypassed pairs (pairs which would have
lower adjusted scores than the phase 2 threshold).

In Figure 3.8A the impact of different thresholds for skipping phase 2 on the runtime
is compared. Regardless of the threshold, the runtime stays constant. The reason for
this lies in the score distribution of the alignment pairs (Figure 3.8B), which shows that
there are very few pairs with very high scores and most pairs lie in a grey zone where
its more accurate to use composition adjustment to determine if the pair is a hit. As an
example, if pairs scoring at least 100 are bypassed directly to phase 3, only about 1.4%
(8,672 out of 623,912 pairs) of the pairs are bypassed (Table 3.1). Furthermore, some
pairs were bypassed to phase 3 which would have adjusted scores below 75, which means
that the results of the SIMAP run are not identical to the default version. However, one
can debate whether it makes sense to include these pairs in phase 3 - this slightly reduces
the specificity, but it might prevent that some true hits are filtered out because of reduced
compositionally adjusted scores.

3.2.3.2 Changing thresholds for performing matrix adjustment

The matrix adjustment of phase 2 accounts for about 50% of the total runtime and is
the most runtime intensive part of the new SIMAP workflow, which is why reducing its
runtime would be very beneficial. The matrix adjustment is performed via the BLAST
library. However, as the authors of the matrix adjustment method stated, it is not
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Figure 3.8: Comparison of different score thresholds for skipping phase 2. A
matrix of 8 million pairs from Swiss-Prot was computed on a single CPU
core. (A) The runtimes of four runs with varying thresholds (75, 100, 127,
none) are plotted. (B) The score distribution (with parameters: standard
BLOSUM50, gap open: 13, gap extension: 2) of alignment pairs with scores
above 55 is shown.
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Skipping threshold Skipped pairs Phase 3 pairs
75 27,968 (4.5%) 36,262
100 8,672 (1.4%) 26,032
127 5,819 (0.9%) 25,725

None 0 (0.0%) 25,673

Table 3.1: Comparison of the results of different score thresholds for skipping
phase 2. A matrix of 8 million pairs from Swiss-Prot was computed and the
percentage of skipped pairs out of the total 623,912 pairs that remained in
phase 2 are denoted. The number of pairs which are computed in phase 3 are
denoted in the last column.

advisable to perform matrix adjustment universally for all pairs, but only if certain
sequence composition criteria are fulfilled. Therefore, the conditional matrix adjustment
mode is the default mode in BLAST as well as in SIMAP - only if at least one of the four
criteria is fulfilled, matrix adjustment is applied to the pair, otherwise, composition-based
statistics are used, which is much less runtime intensive. However, in calculations involving
randomly selected Swiss-Prot sequences (Figure 3.7), matrix adjustment was applied to
about 88% of the pairs. Therefore, the question arises whether more stringent criteria
thresholds provide similarly accurate results, while saving runtime by performing matrix
adjustment for fewer alignment pairs.

Unfortunately, the interface to the BLAST library functions does not allow to set
custom thresholds for the criteria. Therefore, I modified the BLAST library functions,
so that they take threshold values for the criteria (length ratio, compositional distance,
compositional angle) as an input. If non-default thresholds are used, the SIMAP code has
to be compiled with this modified BLAST library version and with setting the compile
option "COMPO_THRESHOLDS". This complicates the maintainability of the code, as
the modifications to the BLAST library would have to be redone when newer BLAST
versions become available.

In order to compare the accuracies of different criteria thresholds, two datasets are
used: the ASTRAL40 database and the COG database. For each dataset, all-against-all
alignments were performed and the alignment scores were sorted. By traversing through
all scores from high to low, the number of added true positives (the sequences of the
pair are from same ASTRAL-classification/COG) and false positives were identified. In
Figure 3.9, the results are depicted. Unexpectedly, for both datasets the mode without
matrix adjustment performed the best, followed by the conditional mode with custom
(more stringent) thresholds. Furthermore, the less pairs for which matrix adjustment
is done, the faster is the workflow (Table 3.2). So, according to these experiments, the
compositional matrix adjustment would be obsolete. However, I want to point out that
compositional matrix adjustment is well established in protein database searches (e.g.
default in BLAST) and it has been tested previously that SIMAP homology searches
with compositional adjustment are beneficial for eggNOG orthology assignments.
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Figure 3.9: Plotting true positive against false positive predictions for different
compositional matrix adjustment modes. All-against-all alignments
were performed for the ASTRAL40 (A) and COG dataset (B). The alignment
scores were sorted in decreasing order and the alignment pairs were classified as
either true or false positive. The compared compositional matrix adjustment
modes are: no adjustment (blue), conditional adjustment with customized
thresholds (length ratio: 1.5, compositional distance: 0.08, compositional
angle: 35) (orange), conditional adjustment with default thresholds (length
ratio: 3.0, compositional distance: 0.16, compositional angle: 70) (green),
unconditional adjustment (red).
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ASTRAL40 COG

Adjustment mode Runtime (sec) Adj. pairs (%) Runtime (sec) Adj. pairs (%)

No adjustment 72 0 439 0

Conditional (custom) 146 43 1119 40

Conditional (default) 203 90 1621 91

Unconditional 214 100 1698 100

Table 3.2: Runtime and percentage of pairs for which compositional adjust-
ment was performed. The results for four different compositional matrix
adjustment modes and two datasets (ASTRAL40 and COG dataset) are shown.
As expected the runtime increases with the number of pairs for which matrix
adjustment is performed. In the "no adjustment" mode, the alignment phase 2
is skipped completely.
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The aim of this thesis was to benchmark accelerated Smith-Waterman programs and to
improve the runtime of the SIMAP workflow, which is used to perform exact pairwise
sequence alignments between proteins of complete genomes. In the following, the results
of this work and potential future SIMAP improvements are discussed.

4.1 Possible future SIMAP improvements

For the runtime optimization of the SIMAP workflow, its runtime profiling was crucial.
This lead to the detection of an inefficient compilation of the SSW-script. The optimization
of the compilation brought the main improvement of the new SIMAP version and the
runtime of the workflow could be reduced to about a third, which will save compute
resources for future SIMAP calculations. The runtime profiling of the workflow can
also guide future efforts to improve it. The Smith-Waterman calculations account for
only about half of the runtime, while the other half is taken up by the computation of
composition adjusted matrices. For this thesis, my task was to remain the results of the
old workflow unchanged, as it has been tested for subsequent integration into eggNOG
and STRING workflows. However, in the future, parts of the SIMAP workflow such as
the composition adjustment could be changed. Any changes always have to planned with
the tradeoff between sensitivity and speed in mind.

4.1.1 Changing the Smith-Waterman method

One of the main ideas to improve the SIMAP workflow in the beginning of the project
was to replace the Smith-Waterman programs included in SIMAP by faster methods,
which was also the motivation behind the performed Smith-Waterman comparison in 3.1.

In this work, four Smith-Waterman programs for CPU (SSW and SWIPE) and GPU
(CUDASW++ 3 and ADEPT) were compared under various parameters. When comparing
methods for different hardware, besides the runtime also the cost of the hardware is
crucial for the decision which method is the best choice for large scale analyses like for
SIMAP. Although the best performing GPU method CUDASW++ 3 is faster than the
best performing CPU method SWIPE on a single GPU to single CPU core comparison,
SWIPE performs better on a full compute node with 24 CPU cores and 6 GPUs. In
addition, the cost of the used 2x12-core CPU is clearly lower compared to the six GPUs.
Another drawback of Smith-Waterman implementations for GPU is that they require
more effort by the user to correctly configure, which is tedious if the compute environment
changes or GPUs/GPU nodes with different specifics are used for the computations.
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In SIMAP, two different alignment settings occur. In phase 1, all pairs are computed
with the same standard substitution matrix, which is performed by SWIPE. In phase
2 and phase 3, unique compositionally adjusted substitution matrices are used for each
pair, which is performed by SSW.

In phase 1, SWIPE could be replaced by CUDASW++ 3. CUDASW++ 3 (using 1 CPU
core + 1 GPU) is about three times faster than SWIPE (using 1 CPU core). Phase 1
amounts for about 26% of the overall runtime, which means that a faster method would
have a significant effect on the overall runtime. However, because of the higher costs of
GPU and higher availability of CPU resources on compute clusters, SWIPE seems to be
the better choice at the moment.

In phase 2 and phase 3, the fast inter-sequence parallelization methods SWIPE and
CUDASW++ 3 cannot be directly applied because of the differing substitution matrices
due to the compositional adjustment. In SSW, the additional overhead due to changing the
substitution matrix between the alignment pairs is rather small. ADEPT is like SSW an
intra-sequence parallelization method, which is about twice as fast on one GPU compared
to SSW on one CPU core - nevertheless, it is not straightforward to adapt the algorithm
of ADEPT to use separate substitution matrices for each pair, and such adaption might
reduce the performance substantially. To my knowledge, there exist also no other GPU
methods for Smith-Waterman alignments with compositionally adjusted matrices. Also
regarding CPU methods, I could not find methods which are particularly designed for
such a task, although in SSW such adaption is quite trivial. It would be interesting to
explore, whether SWIPE could be adapted to use separate substitution matrices in a
manner so that it is still faster than SSW. This would require a re-implementation of the
score profile creation in SWIPE.

The two CPU methods compared in this work rely on the rather old SSE2 and SSSE3
SIMD instruction set extensions. Since then, newer instruction sets with additional
instructions and wider vectors have become available (SSE4, AVX, AVX2, AVX-512).
Especially, the AVX2 instruction set seems promising as it doubles the vector size
compared to SSEx and many modern CPUs support AVX2. Only few Smith-Waterman
methods have been developed for AVX2 - the Parasail library contains a Smith-Waterman
implementation which is based on SSW, and libssa is based on SWIPE. SWIMM 2.0
can utilize AVX2 or the newer AVX-512 instruction set, which again doubles the vector
size compared to AVX2. In future studies, I suggest to further explore CPU Smith-
Waterman implementations based on newer instruction sets and to evaluate possibilities
for integrating them into SIMAP.

4.1.2 Changing the compositional matrix adjustment method

In the following, alternatives to the compositional matrix adjustment method, which
accounts for about half of the SIMAP runtime, are discussed. The currently implemented
method has been developed by Altschul et al. [48, 51, 49] and is described in detail in
1.2. This approach is well established and it is used by default in all BLAST programs
involving protein sequences. To my knowledge, there are no similar methods for the
automatic compositional adjustment of substitution matrices. There are several other

42



4.1 Possible future SIMAP improvements

methods, which focus on constructing matrices for specific organisms (Plasmodium [72, 73]
and Mollicutes [74]) or protein classes (transmembrane proteins [75, 76, 77]) with biased
compositions. However, these methods require substantial curatorial effort and are less
suitable for general approaches like SIMAP, which is used for comparing protein sequences
of all kind of organisms and protein classes.

A recent and quite different approach is taken by the DEDAL algorithm [78]. DEDAL
(Deep Embedding and Differentiable ALignment), is a deep learning model, which aims to
improve the detection and alignment accuracy of remote homologs. The Smith-Waterman
alignment of DEDAL uses position-specific substitution scores and gap penalties. In the
training phase, the parameterization of the scoring parameters is learned by end-to-end
optimization based on a large set of known alignments. A contextual embedding of the
sequences is used, where each position-specific score depends on the full sequence. A
drawback of DEDAL is that its Smith-Waterman implementation is considerably slower
compared to the standard (position-unspecific) Smith-Waterman methods, which makes
its inclusion in SIMAP infeasible, even when low-scoring pairs are filtered out beforehand
(like in phase 1 of SIMAP).

An idea for a new approach, is to learn the composition adjusted matrices (from the
Altschul et al. method) from the sequence compositions via a machine learning model. In
the original method the matrices are calculated via an iterative procedure (Newtonian
method) which is rather runtime intensive. The goal of the new approach would be to
approximate the matrix adjustment, which should speed up the procedure while ideally
maintaining similar accuracy. Assuming an amino acid alphabet of length 20, the machine
learning model would take a standard substitution matrix and two vectors of length 20
as an input (the sequence compositions), and would need to output a 20x20 adjusted
substitution matrix. Training data could be generated by the original method. The
performance and feasibility of this idea would have to be tested. The new method could
also directly benefit BLAST searches, as there the same compositional adjustment method
is used.
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