
Journal of Industrial Information Integration 28 (2022) 100350

A
2

Contents lists available at ScienceDirect

Journal of Industrial Information Integration

journal homepage: www.elsevier.com/locate/jii

Full length article

A hybrid metaheuristic solution approach for the cobot assignment and job
shop scheduling problem
Alexander Kinast a,∗, Roland Braune b, Karl F. Doerner b, Stefanie Rinderle-Ma c,
Christian Weckenborg d

a University of Vienna, Forschungsplattform Data Science, Kolingasse 14-16, 1090 Wien, Austria
b University of Vienna, Department of Business Decisions and Analytics, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
c Technical University of Munich, Department of Informatics, Chair for Information Systems and Business Process Management, Boltzmannstrasse
3, 85748 Garching, Germany
d Technische Universität Braunschweig, Institute of Automotive Management and Industrial Production, Mühlenpfordtstr. 23, 38106 Braunschweig, Germany

A R T I C L E I N F O

Keywords:
Hybrid genetic algorithm
Job shop scheduling
Biased random-key encoding
Collaborative robots
Variable neighborhood search

A B S T R A C T

Nowadays, many manufacturing companies are trying to improve the performance of their processes using
available innovative technologies such as collaborative robots (cobots). Cobots are robots with whom no
safety distance is necessary. Through cooperation with human workers, they can help increase the production
speed of existing workstations. The well-known job shop scheduling problem is, therefore, extended with the
addition of a cobot to the workstation assignment. The considered objective is to maximize the normalized
sum of production costs and makespan. To solve this problem, we propose a hybrid genetic algorithm with a
biased random-key encoding and a variable neighborhood search. The hybrid method combines the exploration
aspects of a genetic algorithm with the exploitation abilities of a variable neighborhood search. The developed
algorithm is applied to real-world data and artificially generated data. To demonstrate the performance of
this algorithm, a constraint programming model is implemented and the results are compared. Additionally,
benchmark instances from a related problem from the cobot assignment and assembly line balancing, have
been solved. The results from the real-world data show how much the objective function can be improved by
the deployment of additional robots. The normalized objective function could be improved by up to 54%
when using five additional cobots. As a methodological contribution, the biased random-key encoding is
compared with a typical integer-based encoding. A comparison with a dataset from the literature shows that
the developed algorithm can compete with state-of-the-art methods on benchmark instances.
1. Introduction

1.1. Overview

In modern industry, fully automated robots are already being fre-
quently used. Robots are able to repeatedly carry out the same static
task at a high speed and precision, although they are not suitable for
highly flexible production environments. In such production environ-
ments, human skills are used to get the desired flexibility.

However, in medium-sized companies, the deployment of robots
might be often too expensive, and thus, repetitive tasks are done man-
ually. A cheaper alternative to fully automated robots and pure manual
work is human–robot collaborations. Collaborative robots (cobots) dif-
fer from traditional robots in the sense that no safety distance is
necessary for cobots. In [1], it has been mentioned that if cobots are

∗ Corresponding author.
E-mail addresses: alexander.kinast@univie.ac.at (A. Kinast), roland.braune@univie.ac.at (R. Braune), karl.doerner@univie.ac.at (K.F. Doerner),

stefanie.rinderle-ma@tum.de (S. Rinderle-Ma), c.weckenborg@tu-braunschweig.de (C. Weckenborg).

in direct contact with humans, they move slower than typical robots
(around 0.5–1 m/s in comparison to the 1.6 m/s of a human actor).
Cobots can do some tasks on their own or in cooperation with a human
actor; however, since they move slower than a human, it is assumed
that they are also slow in executing tasks on their own as well. How-
ever, with its assistance to a human worker, the cooperative production
speed is greater than a human worker acting alone. According to their
manufacturers, they can do jobs like pick and place, screw driving,
injection molding, and many more [1].

An example of a typical cooperative task would be a human actor
placing a screw on a workpiece and the cobot screws it in. A cobot
is flexible in terms of production and can assist different types of
workstations. Since cobots are also mobile, it is assumed that the
vailable online 26 April 2022
452-414X/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a

https://doi.org/10.1016/j.jii.2022.100350
Received 22 March 2021; Received in revised form 26 November 2021; Accepted 2
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1 April 2022

http://www.elsevier.com/locate/jii
http://www.elsevier.com/locate/jii
mailto:alexander.kinast@univie.ac.at
mailto:roland.braune@univie.ac.at
mailto:karl.doerner@univie.ac.at
mailto:stefanie.rinderle-ma@tum.de
mailto:c.weckenborg@tu-braunschweig.de
https://doi.org/10.1016/j.jii.2022.100350
https://doi.org/10.1016/j.jii.2022.100350
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jii.2022.100350&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.
Fig. 1. Human-cobot interaction.

deployment and programming of a cobot can be done within half a
day. As the assignment of cobots to workstations is not very time-
consuming, the combined problem of cobot assignment and scheduling
can be considered an operational problem. A similar kind of motivation
can be found in [1].

This innovative form of human–robot interaction is used to increase
productivity and/or reduce the number of stressful tasks a human has
to carry out. In these human–robot collaborations, a human worker
acts closely together with a cobot, often on a single workspace on
the same workpiece/task. An example of a raising field in cobot ap-
plications is the end-of-life disassembly of electric vehicle batteries.
They must be disassembled for recycling purposes and have a high
negative impact on the environment if disposed in a wrong way. The
disassembly is not easy, since the battery contains substances that are
hazardous to humans, and it is important that the cells of the battery
are not damaged in the disassembling process. Additionally, these end-
of-life disassembling tasks might be of unpredictable volume and high
variations due to the difference in car models. Robots are not applicable
in such a disassembling process as there is much variation in the
types of battery. However, the processes of production and assembly
contain many steps that can be done by a cobot. Batteries are held
together by many screws, and screwing/unscrewing is a repetitive and
uninteresting task for a human. More details on battery disassembly can
be found in [2].

However, other examples also exist; in [3], two other electronic
devices, a camcorder and a PC have been described. Both products
consist of valuable materials, and a cobot could be used to assist a
human in different processing steps.

In Fig. 1, it can be seen that the cobot is placed in such a way that it
can interact with the human worker in different production processes.
By working closely together with a human actor, cobots can reduce the
costs and risks involved in this process.

Typically, in these production systems, the tasks need to be assigned
to specific workstations. As the assignment of cobots is not very time-
consuming, the assignment of cobots to workstations is considered an
operative problem. These cobots can be used to speed up bottleneck
workstations in a production process. Cobots could also be beneficial in
classical manufacturing processes. In the numerical study, a real-world
problem where engines, casings, and other machine parts are produced
is considered.

1.2. Related work and research contribution

A lot of research has been done in the field of job shop scheduling
since the late 1950s. Researchers have tried to optimize the problem
2

with different well-known performance measures or objective functions
such as makespan, mean flow time (the average time a single job
spends in the shop), or lateness of the jobs (how well due dates are
met). Various heuristics such as tabu search, genetic algorithms, and
variable neighborhood search have been used to solve the problem with
single or multiple objectives. In [4], an in-depth review of job shop
scheduling solution strategies has been done. A total of 62 papers have
been reviewed, and most of these papers are research papers that focus
on method development. Only around 8% address real-world industrial
applications.

In [5], an overview of the state-of-the-art research in the field of
genetic algorithms for the flexible job shop scheduling problem is given.
In this paper, 190 publications from the year 2001 to 2017 have been
reviewed. The two major research areas are genetic algorithms (with
79 publications) and hybrid genetic algorithms (with 75 publications).

In [6], a genetic algorithm is combined with a variable neighbor-
hood search to solve different deterministic benchmark instances for
the flexible job shop scheduling problem. The results show that the
hybrid genetic algorithm is a state-of-the-art algorithm that performs
remarkably on benchmark instances.

Another research direction focuses on the influence of disruptions
and rescheduling of processes. Examples of such disruptions are ma-
chine breakdowns, operator illness, new priority jobs, canceled jobs,
or changes in job deadlines. There are various methods of how to
react to such disruptions. One option would be full-reactive scheduling
with priority rules. This means that the decision of which task is to be
performed next is done locally on the machine. Each task gets assigned
a priority based on machine and job attributes. Another option would
be to schedule jobs in a more robust way so that even with machine
breakdowns, the objective function is influenced to the smallest extent
possible [7].

A different way to deal with uncertainties in production is the
application of fuzzy sets. They can be used to model the uncertainties
in a process such as uncertain processing time and uncertain due dates.
Based on these fuzzy sets, a satisfaction grade for different objective
values can be calculated. Meta-heuristics such as a genetic algorithm
can then be applied for the optimization of the satisfaction grade [8].

Some researchers even propose to apply deep reinforcement learn-
ing for job shop scheduling problems. Therefore, an agent-based learn-
ing approach could be used. This approach has a state that describes the
current situation of the environment and has actions that it can take.
When an action is taken, a positive or negative reward is received. This
is known as a short-term reward. It is also possible to add a so-called
Q-value that considers the long-term rewards of an action. Results that
can be achieved with these deep reinforcement learning approaches are
nowhere near what can be achieved with metaheuristics [9].

This paper is an extended version of [10] and the research contri-
bution of this paper is threefold. Based on the original paper, a new
method, the hybrid genetic algorithm has been developed here and the
numerical study has been expanded.

In Table 1, a comparison with the most related paper in the litera-
ture [1] is given. In this paper, the combined cobot assignment and
assembly line balancing problem was first introduced. The research
contribution of this paper is summarized in Table 1 and is:

• In the first entry of Table 1, it can be seen that the first research
contribution of this paper is the job shop scheduling problem
being extended with a cobot assignment problem.

• In Table 1 in the second and third entry, the second research
contribution can be seen. To solve the newly introduced problem,
we combine the exploratory strength of a genetic algorithm with
the exploitative aspects of a variable neighborhood search. A new
and alternative biased random-key encoding, developed in [11] is
used and a performance improvement compared to the standard
integer encoding is shown. The efficiency of the algorithm is also
shown by comparing it to a developed constraint programming

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.

2

2

p
r
a
p
w
s
p
a

c
c
w
p
s
a
s

w
i
p
a
t
p
r
b
t
p

m
w
D
s
t
g
h
w
s
i
f
t

Table 1
Literature comparison.

No. Category Weckenborg et al. Kinast et al.

1. Solved Problem ‘‘Combined cobot assignment and assembly line
balancing problem’’

‘‘Combined cobot assignment and assembly line
balancing problem’’ and ‘‘Combined cobot assignment
and job shop scheduling problem’’

2 Algorithms Mixed integer programming and genetic algorithm Constraint programming and genetic algorithm with
variable neighborhood search

3 Genetic algorithm encoding Integer-based encoding Integer-based and biased random-key encoded
4 Data set Generated data sets for the simple assembly line

balancing problem with cobot assignment with 20, 50,
and 100 tasks.

Real-world based job shop scheduling problem with
cobot assignment with up to 1265 tasks that have to
be scheduled to 54 workstations. Generated data sets
with up to 1200 tasks.
n

𝐹

A
p
c

(CP) model and by solving benchmark instances from the litera-
ture for the related cobot assignment and assembly line balancing
problem.

• In Table 1 in the fourth entry, the size of the solved instances
is shown. The third contribution is the managerial insights of
the savings when different numbers of cobots are used for the
combined cobot assignment and job shop scheduling problem for
real-world instances.

. Problem description

.1. Cobot assignment and job shop scheduling

Many companies nowadays already know what orders have to be
roduced over the next weeks or even months. Preparing sufficient
esources in order to handle all incoming orders is a tactical problem
s traditional resources such as workstations or employees need long
reparation times. Workstations need to be produced and installed,
hile workers need to be employed and trained. Typically, these re-

ources do not change after a planning period ends. In one planning
eriod, all existing orders need to be assigned to the given resources in
way that a given objective function is minimized.

This traditional resource planning problem cannot be applied if a
ompany has invested in innovative technology such as cobots. Since
obots have short setup times, they can be deployed to a bottleneck
orkstation before a new planning period starts. To fully utilize the
ossibilities that such technologies can offer, the classical job shop
cheduling problem has to be combined with a cobot to workstation
ssignment. This combined approach of cobot assignment and job shop
cheduling problem was first introduced in [10].

A typical job shop scheduling problem consists of jobs, tasks, and
orkstations. A job consists of a chain of tasks that must be processed

n a given order on specific workstations or on any workstation (sim-
lified job shop scheduling problem). This given order is modeled in
precedence graph. A task is a production step that is necessary for

he completion of a whole job, for example, mounting of a mechanical
art or screwing in screws. A precedence relationship could be that a
aw material needs to be formed in a melting furnace before it can
e further processed. For each task, a measured standard production
ime exists. In a deterministic version, it is assumed that this standard
roduction time is the time that a task needs to be completed.

In scheduling problems, it is often the case that a company has
ultiple similar workstations that can do the same production task. A
orkstation can be either a machine or a station with human actors.
epending on the type of the machine or the number of workers, the

peed and production cost of such a workstation can vary. Worksta-
ions that can do the same tasks are grouped together as workstation
roups. We consider the workstations within a workstation group as
eterogeneous. In particular, when a cobot is assigned to a workstation
ithin a workstation group, the processing times of tasks on this

pecific workstation decreases. To find the best suiting workstation
n a workstation group for a task in order to improve the objective
unction, the classical job shop scheduling problem is extended with
he workstation assignment task, as already introduced in [12].
3

p

In our combined cobot assignment and scheduling problem, the
following decisions have to be made:

• As only a limited number of cobots can be bought at a time, at
which workstations should they be installed in a given planning
period?

• If tasks can be produced on multiple workstations, on which
workstation should a task be produced?

• If multiple tasks can be produced at the same time on a worksta-
tion, which task should be prioritized?

Different objective functions, which optimize this combined cobot as-
signment and job shop scheduling problem, can be used. An example
would be to minimize the production costs, which would result in
the highest profit for a predetermined set of orders. Only considering
profits or costs will not be applicable for a real-world production, since
the cheapest workstation in a group will then have more tasks assigned,
while the rest will be neglected. In real productions, a delayed delivery
of the ordered jobs will often have various different negative conse-
quences. To prevent such consequences, a second objective function
would be to minimize the makespan. However, this will lead to high
production costs since, regardless of the production costs, all worksta-
tions should keep producing in parallel. To find a good compromise,
the appropriate objective function will be a combination of these two
objective functions. Therefore, we normalize the production cost and
the makespan and factor them equally in the objective function. There
might be solutions where the reduced production cost outweighs an
increased makespan.

In [13], it is described how multiple objective values can be nor-
malized to have the same influence on the objective function. For each
objective function, a minimum Fmin and maximum Fmax value has to
be found. Based on this maximum and minimum, a range for the valid
values is calculated. With the following formula, the normalized value
is closer to 1 if the value is closer to the maximum:

𝑁 =
𝑣𝑎𝑙𝑢𝑒 − 𝐹min
𝐹max − 𝐹min

With this formula, the normalized value is closer to 1 if the value is
closer to the minimum:

𝑁 =
𝐹max − 𝑣𝑎𝑙𝑢𝑒
𝐹max − 𝐹min

Depending on the objective function, it might be better to produce
either on a faster workstation or on a workstation with less production
costs. This means the choice of the objective function will influence
on what workstations products are produced and where cobots are
installed. The fitness F of our general weighted objective function,
that is a combination of the normalized production cost ncost and the
ormalized makespan nmakespan, can be described as follows:

= 𝑛cost + 𝑛makespan

detailed problem description is given based on the simple example
rovided in Fig. 2. The main interest of this paper is to solve a combined
obot assignment and scheduling problem motivated by a real-world

roblem introduced by our industry partner. An example order from

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.
Fig. 2. Real-world problem overview.
the real-world dataset is the production of housing. Multiple tasks have
to be executed on base materials such as deburring, drilling, milling,
cutting a thread, checking the drilling, and packing. On the right-hand
side of Fig. 2, it is illustrated that the data contains orders (O1, O2,
O3) that group tasks (T1, . . . , T9) together. Tasks in that order have
a fixed sequence of production. The arrows indicate the precedence
relation. However, it is possible to produce tasks of other orders in
between two tasks of another order, as tasks preemption is not allowed
and tasks have a standard production time and costs (base duration
and base costs, respectively). For each task, the preceding tasks are
known and the required workstation group for the specific tasks are
given. Each workstation has a specific cost and speed factor. With these
factors and the standard production time and speed factor, the real
production time and real costs are calculated for each task assigned to
a workstation. Workstations that can process similar tasks are grouped
into workstation groups. These workstation groups can be seen on
the left-hand side of Fig. 2. Each workstation in such a group (G1,
G2, G3, G4) has individual production costs and production speed,
given by speed and cost factor, respectively. Based on the number of
produced products for a workstation in use, there will be setup, de-
setup, and production costs and times. The production costs and speed
can vary across several workstations in one workstation group. We
assume that cobots can be installed on all workstations. Furthermore,
we also assume that the tasks can be produced on all workstations of
that specific workstations group. In some real-world problem settings, it
can be the case that some specific tasks have a fixed workstation given.
For the workstations, the following different capacity modes exist:

• One product at a time (typical assembly workstation)
• Space capacity (e.g., an oven)
• Unlimited (assumed if the task is done externally)

2.2. Cobot assignment and assembly line balancing

In order to evaluate the performance of our developed algorithm,
we adapted our method such that it can be applicable to a related
problem already existing in the literature [1]. This related problem is an
assembly line balancing problem that has been extended with the help
of a cobot to a workstation assignment. In this problem, tasks can be
executed by the human worker, in collaboration of worker and cobot,
or by an individual cobot without human assistance.

In [1], a problem formulation of generalized assembly line balanc-
ing is proposed, which extends existing literature regarding the cobot
to workstation assignment. Benchmark instances provided by [14] are
adapted to cover for the extended scope of the problem. In Fig. 3,
a typical example of one instance of a problem in the literature has
been shown. On the left-hand side, general settings such as the number
of workstations or robots can be seen. In the middle, all tasks and
the production times of the tasks can be seen (task number and task
execution time for human, robot, or the collaborative execution). The
4

robot flexibility (RF) and cooperative flexibility (CF) in a general setting
Table 2
Indices used in the CP formulation.
𝑜 Order
𝑖 Task
𝑗 Task slice (relative to task)
𝑤 Workstation
𝑘 Machine (relative to workstation)

Table 3
Parameters used in the CP formulation.
𝑛𝑖 Number of slices for task 𝑖.
𝑚𝑤 Number of machines on workstation 𝑤.
𝑏 Number of available cobots.
𝛾𝑤 Speed factor of workstation 𝑤.
𝛿𝑤 Cost factor of workstation 𝑤.
𝜑 Cobot acceleration factor.
 Set of all orders.
 Set of all task indices.
𝑜 Set of task indices included in order 𝑜.
 Set of all workstations.
 𝑖 Set of all workstations on which task 𝑖 can be

produced.
 𝑤 Set of pairs (𝑖, 𝑗) (task 𝑖, slice 𝑗) that can be assigned

to workstation 𝑤.
𝜃(𝑖) Function yielding the order index of task 𝑖.
𝑝𝑖 Production/processing time of task 𝑖.
𝛶𝑤(𝑜, 𝑜′) Sequence-dependent setup time when changing from

order ID 𝑜 to 𝑜′ on workstation 𝑤.

describe the share of tasks that can be done by the cobot or collabora-
tively. In this simple example, 40% (8) of the tasks can be produced by
the cobot, 40% (8) of the tasks can be produced collaboratively, and all
tasks can be executed by a human alone. It is not necessary that a task
that can be produced collaboratively should be able to be produced by
a robot and vice versa. On the right-hand side, the precedence graph is
shown. To start a task, all preceding tasks have to be completed either
on the current workstation or a previous workstation.

3. A constraint programming formulation of the job shop schedul-
ing problem with cobot assignment

In this section, we present a Constraint Programming formulation
for the scheduling problem stated in Section 2.1. From a structural
point of view, the model aims at scheduling separate slices of tasks. Each
slice constitutes a piece of work in the given production context and all
pieces within a task are of the same (material) type. Let denote the set
of all orders and the set of all tasks. It is assumed that the tasks are
numbered consecutively across orders. The processing or production
time of a task 𝑖 ∈ is denoted by 𝑝𝑖 and applies to each slice 𝑗 of a
task. To simplify the notation, a slice 𝑗 of a task 𝑖 is also denoted by
the pair (𝑖, 𝑗) henceforth.

Let be the set of all workstations. The number of (parallel)
machines on a workstation 𝑤 ∈ is denoted by 𝑚 . Each task 𝑖 is
𝑤

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.
Fig. 3. Simple assembly line balancing problem overview.
Table 4
Interval variables used in the CP model formulation.

Symbol Optional Size Description

𝑈𝑖𝑗 no Represents the production time of slice 𝑗 of task 𝑖.

𝑉 𝑤𝑘
𝑖𝑗 yes 𝑝𝑖 ⋅ 𝛾𝑤 Optional interval for execution of task slice (𝑖, 𝑗) on machine 𝑘

of workstation 𝑤.

𝑉 𝑤𝑘
𝑖𝑗 yes 𝑝𝑖 ⋅ 𝛾𝑤 ⋅ 𝜑 Optional interval for cobot-assisted execution of task slice (𝑖, 𝑗)

on machine 𝑘 of workstation 𝑤.

𝐷′
𝑤𝑘 no 0 Dummy start interval for machine 𝑘 on workstation 𝑤.

𝐷′′
𝑤𝑘 no 0 Dummy end interval for machine 𝑘 on workstation 𝑤.

𝐵𝑤 yes Cobot master interval for workstation 𝑤.
Table 5
Sequence variable definition, one for each machine 𝑘 of workstation 𝑤.

Symbol Interval Var. Set Setup Type

𝛹𝑤𝑘

{𝑉 𝑤𝑘
𝑖𝑗 ∣ (𝑖, 𝑗) ∈ 𝑤}∪

{𝑉 𝑤𝑘
𝑖𝑗 ∣ (𝑖, 𝑗) ∈ 𝑤}∪

{𝐷′
𝑤𝑘 ∣ 𝑤 ∈ , 1 ≤ 𝑘 ≤ 𝑚𝑤}∪

{𝐷′′
𝑤𝑘 ∣ 𝑤 ∈ , 1 ≤ 𝑘 ≤ 𝑚𝑤}

(

∑

𝑖∈|1 | 𝑛𝑖
⏞⏞⏞
1,… , 1,

∑

𝑖∈|2 | 𝑛𝑖
⏞⏞⏞
2,… , 2,… , ||,… , ||,

|| + 1,… , || + 1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∑

𝑖∈|1 | 𝑛𝑖

,… ,

2 ⋅ || + 1,… , 2 ⋅ || + 1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2⋅
∑

𝑤 𝑚𝑤

)

assigned a set 𝑖 of eligible workstations on which it can be processed.
Each workstation has a speed factor 𝛾𝑤 and a cost factor 𝛿𝑤 both of
which are constant for all the machines on the workstation. Each slice
of a task requires exactly one machine at a time and the slices of a
task can be processed sequentially on a single machine, in parallel on
multiple machines, or in a mixed fashion.

If two slices of different orders are processed consecutively on the
same machine, the machine configuration has to be changed. First,
some work has to be done for the task that is processed earlier (the
leaving task) and after that, the machine has to be prepared for the next
(entering) task. These activities are referred to as de-setup (teardown)
and setup and covered in the CP formulation by means of sequence-
dependent setup times. In fact, the two activities, de-setup and setup,
are combined into a single one. The time required for this activity is
given by 𝛶𝑤(𝑜, 𝑜′), depending on the workstation 𝑤, and the orders 𝑜
and 𝑜′ to which the slices involved in the transition (from 𝑜 to 𝑜′) belong
to.

The CP model formulation is made up of different kinds of interval
variables as summarized in Table 4. Variables 𝑉 𝑤𝑘

𝑖𝑗 and 𝑉 𝑤𝑘
𝑖𝑗 are the core

variables, reflecting the different execution modes that are available for
a slice 𝑗 of task 𝑖. There is one optional interval for each workstation
𝑤 and machine 𝑘 on which the task can be executed, each of which
is set to a fixed size, that is, the production time 𝑝𝑖 multiplied with
the workstation’s speed factor 𝛾𝑤. The counterparts 𝑉 𝑤𝑘

𝑖𝑗 reflect the
corresponding cobot-assisted execution modes. To control the cobot
assignment itself, interval variables 𝐵𝑤 indicate the presence of a cobot
at a particular workstation 𝑤. Variables 𝑈 are for structural purposes
5

𝑖𝑗
only, to make sure that exactly one of the optional intervals 𝑉 𝑤𝑘
𝑖𝑗 and

𝑉 𝑤𝑘
𝑖𝑗 is chosen for a particular slice (𝑖, 𝑗).

The machines on a workstation are renewable resources with unary
capacity and thus require a disjunctive scheduling approach. For this
purpose, the formulation relies on sequence variables 𝛹𝑤𝑘, with 𝑤 ∈
and 1 ≤ 𝑘 ≤ 𝑚𝑤. The definition of the sequence variables 𝛹 given in
Table 5 follows the scheme imposed by IBM ILOG CP Optimizer, but the
concept can be transferred to other scheduling-related CP frameworks
as well. To consider the sequence-dependent setup times, the definition
of the sequence variables requires information on the setup type of
each interval variable that can be part of the sequence. Assuming that
interval variables are sorted according to task (and thus order) indices
in ascending order, the setup type for all slices that belong to the first
order is therefore 1, and for all slices of the second order, 2, and
so on. Note that distinct setup types have to be used for variables
𝑉 , because the cobot-assisted execution also allows to speed up the
setup and de-setup activities. To achieve this, fictitious order indices
|| + 1, || + 2,… , 2 ⋅ || are assigned to the slices represented by
the 𝑉 intervals. To enforce initial setup and final teardown activities,
that is, before the first and after the last scheduled slice on a machine
respectively, two dummy interval variables of size 0 are added to each
machine’s sequence. The setup type of these dummy variables is set to
2 ⋅ ||+ 1. It must be remarked that functions 𝛶𝑤, essentially modeling
machine-specific setup matrices, are capable of taking arguments from
the extended range of order indices described above.

𝐶max = max
𝑤∈ ,1≤𝑘≤𝑚𝑤

endOf(𝐷′′
𝑤𝑘). (1)

𝑇𝐶 =
∑

𝑤∈

∑

(𝑖,𝑗)∈ 𝑤

∑

1≤𝑘≤𝑚𝑤

presenceOf(𝑉 𝑤𝑘
𝑖𝑗) ⋅ 𝑝𝑖 ⋅ 𝛾𝑤 ⋅ 𝛿𝑤

+
∑

𝑤∈

∑

(𝑖,𝑗)∈ 𝑤

∑

1≤𝑘≤𝑚𝑤

presenceOf(𝑉 𝑤𝑘
𝑖𝑗) ⋅ 𝑝𝑖 ⋅ 𝛾𝑤 ⋅ 𝜑 ⋅ 𝛿𝑤

+
∑

𝑤∈

∑

(𝑖,𝑗)∈ 𝑤

∑

1≤𝑘≤𝑚𝑤

𝛿𝑤

⋅ (𝛶𝑤(𝜃(𝑖), typeOfNext(𝛹𝑤𝑘, 𝑉
𝑤𝑘
𝑖𝑗))

+ 𝛶𝑤(𝜃(𝑖), typeOfNext(𝛹𝑤𝑘, 𝑉
𝑤𝑘
𝑖𝑗)))

(2)

We can now state the formulation itself, based on indices and param-
eters summarized in Tables 2 and 3, and the interval and sequence

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.
variables from Tables 4 and 5. As for the notation used in the tables, it
must be remarked that the model statement also uses the nomenclature
of IBM ILOG CP Optimizer but is still general enough to be realized
within other CP frameworks with dedicated support for scheduling
problems.

Eqs. (1) and (2) formally specify the two objective functions, namely
the makespan and the total production cost, as introduced in Sec-
tion 2.1. The makespan can simply be computed from the maximum
finish times of the terminal dummy interval variables on each ma-
chine. The production cost is the sum of all actually allocated machine
times (processing/production, setup and de-setup) multiplied by the
workstation-specific cost factors 𝛿𝑤.

Maximize
𝐶max − 𝐶max

𝐶max − 𝐶max
+ 𝑇𝐶 − 𝑇𝐶

𝑇𝐶 − 𝑇𝐶
(3)

subject to

alternative(𝑈𝑖𝑗 , {𝑉 𝑤𝑘
𝑖𝑗 ∣ 𝑤 ∈ 𝑖, 1 ≤ 𝑘 ≤ 𝑚𝑤}∪

{𝑉 𝑤𝑘
𝑖𝑗 ∣ 𝑤 ∈ 𝑖, 1 ≤ 𝑘 ≤ 𝑚𝑤}) ∀𝑖 ∈ ,∀1 ≤ 𝑗 ≤ 𝑛𝑖, (4)

startOf(𝑈𝑖,𝑗) ≤ startOf(𝑈𝑖,𝑗+1) ∀𝑖 ∈ ,∀1 ≤ 𝑗 < 𝑛𝑖, (5)
endBeforeStart(𝑈𝑖,𝑛𝑖 , 𝑈𝑖+1,1) ∀𝑜 ∈ ,∀𝑖 ∈ 𝑜, 𝑖 < |𝑜

|,

(6)
noOverlap(𝛹𝑤𝑘, 𝛶𝑤, 1) ∀𝑤 ∈ ,∀1 ≤ 𝑘 ≤ 𝑚𝑤,

(7)

span(𝐵𝑤, {𝑉 𝑤𝑘
𝑖𝑗 ∣ 1 ≤ 𝑘 ≤ 𝑚𝑤, (𝑖, 𝑗) ∈ 𝑤}) ∀𝑤 ∈ , (8)

∑

𝑤∈
presenceOf(𝐵𝑤) = 𝑏. (9)

The actual objective function used in the formulation is then given by
the sum of the normalized makespan and cost values, as can be seen
from Eq. (3). The normalization is based on minimum and maximum
values for each component objective, that is 𝐶max and 𝐶max for the
makespan, and 𝑇𝐶 and 𝑇𝐶 for the total production cost.

Constraints (4) ensure that exactly one execution mode is chosen
for each slice (𝑖, 𝑗). To reduce the symmetry, constraints (5) impose a
partial order between slices of the same task, still allowing that two
or more slices can be scheduled in parallel. The precedence among
tasks of the same order is accomplished through constraints (6), by
simply introducing end-before-start requirements between the last and
the first slice of two subsequent tasks. The no-overlap constraints
(7) are responsible for disjunctive scheduling on the machines, also
considering the sequence-dependent setup times. The span constraints
(8) enforce the presence of a cobot master interval 𝐵𝑤 as soon as at
least one slice is scheduled in a cobot-assisted execution mode on any
machine of workstation 𝑤. Constraints (9) finally limit the cobot usage
by placing an upper bound on the number of interval variables 𝐵𝑤 that
can be present.

4. Solution method

4.1. Overview

In [15], it has been described that the job shop scheduling problem
is an NP-hard problem. As described in Section 1.2, various metaheuris-
tics such as genetic algorithms or constraint programming approaches
have been applied successfully on large instances in the literature.
Metaheuristics are used to receive approximations to the global op-
timum of the problem-specific objective function [16]. As described
in the previous chapters, in this study, we have extended the job
shop scheduling problem with a cobot to workstation assignment. This
means that the number of decisions has increased. Therefore, it is
necessary to use state-of-the-art metaheuristics to solve this problem.

In recent years, the trend has been to combine different heuristics
to so-called hybrid metaheuristics to exploit the strengths of different
6

Fig. 4. Overview hybrid genetic algorithm.

metaheuristic search concepts. This research direction is pushed by the
fact that hybrid metaheuristics often outperform traditional heuristic
or metaheuristic approaches on hard optimization problems. By com-
bining the strengths of the individual algorithms, they are able to
work together, resulting in a synergy that can outperform individual
methods. An example of such a well-known hybrid metaheuristic is
the combination of population-based methods with local search meth-
ods. In such combinations, the exploratory nature of population-based
methods is combined with a local search on promising regions [17].

In Fig. 4, an overview of such a hybrid genetic algorithm has been
provided. The general idea of our algorithm is that promising solutions
of the genetic algorithm are improved by local search-based methods.
These improved solutions replace the original non-local optimized so-
lutions of the genetic algorithm. In [18], it is described that hybrid
genetic algorithms are also called memetic algorithms.

These memetic algorithms have been applied successfully to many
optimization problems, including classical job shop scheduling prob-
lems. In many cases, they outperform traditional algorithms by using
key features of several algorithms [19]. The intention is to combine
the exploratory features of the genetic algorithm with the capability
of the variable neighborhood search to intensify the search within the
promising regions of the search space.
Algorithm 1
Pseudo code genetic algorithm.

0 Initialize Initialize the population with random individuals
1 Evaluation Evaluate all individuals in the current generation
2 while(!termination) While termination criteria not reached
3 Selection Select parents for the new generation
4 Crossover Create children out of the parents
5 Mutation Mutate children based on a given probability
6 Create Generation Create a new generation based on the created

children
7 Evaluation Evaluate all individuals in the new generation
8 end while

4.2. Genetic algorithm

In Algorithm 1, the pseudocode for a generic genetic algorithm is
given. In line 0, it can be seen that the genetic algorithm starts by
creating a randomly initialized population. In line 1, it can be seen that
a fitness value is assigned to each individual in the initial generation.
In Algorithm 1 in line 2, it can be seen that this randomly generated
population is improved over the duration of the algorithm until a
stopping criterion is reached. Examples are a maximum number of
generations, a time limit, or the finding of an acceptable solution.

To generate new solutions, the algorithm uses the steps from Algo-
rithm 1 in lines 3 to 7 until a stopping criterion is reached:

• Selection: Selecting individuals from the current generation that
act as parents for the next generation. Fitter individuals have a
higher chance of being selected as a parent.

• Crossover: Taking two parents to create one or two new solutions
for the next generation. Different crossover variations exist.

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.

-

• Mutation: Changing a solution such that new points in the solu-
tion space are discovered. This should prevent premature conver-
gence of the algorithm.

• Create Generation: The generated solutions are used to create
the new generation in the genetic algorithm.

• Evaluation: Assigning a fitness value to every individual of the
current generation. The fitness value describes the quality of a
solution regarding the selected objective function.

The solution needs to be encoded such that the operators can work with
the representation. This means the operators have to be implemented
for each representation [20].

To get comparable results for an encoding of an individual, the
operators that are used in the genetic algorithm should be comparable
between different encodings. The following operators can be imple-
mented for integer and real value encoding and have been used in this
contribution:

• Fitness proportional selection: The chance of an individuum
to become a parent in the next generation is proportional to its
fitness. This means fitter individuals have a higher chance of
mating.

• Uniform some positions arithmetic crossover: Based on a prob-
ability, each position of the solution is crossed between two
parents. A parameter 𝛼 defines how close the solution is to either
parent one or parent two. For the integer-encoded solution, the
rounded version is used.

• All-positions manipulator: All positions of the vector are ma-
nipulated with a given strength that is defined by a parameter 𝛼.
For the integer encoded solution, a rounded version is used.

During the development of the genetic algorithm, other operators such
as a one-position manipulator and a single point crossover were tested.
However, by using these operators, the genetic diversity got lost after
some generations, and the results were significantly worse than those
generated with the operators described above.

4.2.1. Encoding and evaluation - real-world problem
In the real-world problem, each task can be produced on a group of

workstations. For all tasks that are produced on a workstation group
with more than one workstation, the workstation is encoded by a
double value. This double value is decoded during the evaluation. This
can be seen in the gray fields in Fig. 5.

The second value encoded for each task is a priority parameter. If
multiple tasks can be produced at a specific workstation, the task with
the highest priority is produced first. The priority can be seen in the
red fields in Fig. 5.

The last part that has to be encoded is the cobot assignment. This
is similar to the workstation encoding of the tasks. In the encoding,
a double value is used. This value will be decoded based on all the
available workstations that have no cobot assigned yet. An example
would be the case where there are 10 workstations to which no cobot
has been assigned. For each workstation, a biased random-key encoded
cobot would have a value within the range of 0.1. This means that
to assign a cobot to workstation 1, the value has to be between 0
(included) and 0.1 (excluded). Thus, the first yellow-encoded value in
Fig. 5 would mean that a cobot is assigned to workstation 1.

The biased random-key encoding is compared to a normal job shop
scheduling encoding where the tasks for workstations are encoded as
integer numbers with bounds depending on the number of available
workstations in the workstation group. If task 1 can be produced
on workstations 1 to 5, only integer numbers in this range will be
generated. Additionally, the priority and the cobot location are also
encoded as integer values. This means that all selection, mutation, and
crossover operators that can handle an integer array can be used to
generate new values for this encoding.
7

Fig. 5. Biased random-key encoding.

Fig. 6. Decoding and evaluation.

To evaluate a solution, the first step is to assign the available cobots
to the workstations. Each workstation has a property speed factor, cost
factor, capacity, and a property that defines if a cobot is assigned. If
a cobot is assigned to a workstation, it is assumed that the production
speed is increased by 30% [1]. This value is realistic for existing cobots,
but it can be also exchanged for different values. Additionally, each
workstation has a speed and cost factor that is applied to every task
produced on a specific workstation. The number of tasks that can be
carried out in parallel depends on the capacity of the workstation.

In the second step, all tasks are assigned to the workstations based
on the encoded value. Each workstation with remaining capacity checks
whether there are tasks to execute. All producible tasks (whose preced-
ing tasks have been finished) are sorted by priority, and the task with
the highest priority is produced next. When a task starts producing, its
finishing time is calculated based on the task duration, the speed factor
of the workstation, and whether a cobot is assigned to the workstation.
The cost for producing a task is based on the production cost of the
task and the cost factor of the workstation.

Some workstations have setup and de-setup times with a workstation
specific cost factor. Every time a new task is produced on the worksta-
tion, the resulting costs will be added to the objective function/fitness
function. If a workstation has a capacity, its costs are added only once
every time a new product of this task is generated. Since a cobot might
be able to assist a human worker in the setup process, it is assumed
that the setup speed also increases by 30%.

The objective function that is used to receive a fitness is currently
a combination of the normalized production cost and the normal-
ized makespan. The production cost is measured in cent, while the
makespan is measured in seconds.

𝐹 = 𝑛cost + 𝑛makespan

Every time the genetic algorithm creates a new encoded solution
(initialization and for every individual created using genetic operators),
the evaluation method described above is used to create a fitness value.
In Fig. 6, we can see that the encoded solution gets decoded and passed
to the evaluation method. After the decoding described above, our
tasks have all the properties from Fig. 2. Additionally, our tasks have
received a priority and a workstation where the tasks are being pro-
duced. For all workstations, the properties from Fig. 2 and an additional
property, if a cobot has been assigned, are set. In the evaluation, it is
checked whether there are any free workstations (workstations with
residual capacity) where tasks without non-produced preceding tasks
are waiting. If there are tasks waiting, they are ordered by priority

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.
Fig. 7. Biased random-key encoding - Literature data set.

and then assigned to the workstations. During production, the fitness
is increased by the base cost of a task multiplied by the cost factor of
the workstation. At the end of the evaluation, the fitness is increased
by the makespan multiplied by the defined factor.

Since all the steps in the evaluation are deterministic, the evaluation
method is deterministic and returns a fitness value to the optimization
algorithm.

4.2.2. Encoding and evaluation - assembly line balancing problem with
cobot assignment

To encode a solution of the literature problem, a similar approach to
the real-world problem biased random-key encoding is used. However,
the following important differences between the datasets have to be
considered:

• Each task can be produced on each workstation, not only on
workstations of a specified workstation group.

• The literature dataset is an assembly line balancing problem of
type two, which means that the fitness of one encoded solution is
equal to the cycle time.

• Instead of speeding up a workstation by 30%, there are three
different production modes. All tasks can be done by a human,
and a part of the tasks could be done by the robot (200% of the
human production time), whereas a part of the tasks can be done
cooperatively at 70% of the human production time.

The encoding used for the problem from the literature has been shown
in Fig. 7. Similar to the real-world problem, the cobot to workstation
assignment is encoded as biased random-key. Additionally, the red-
encoded values are used to assign a priority to all tasks, and tasks
with multiple production modes (human, robot, and cooperative) are
assigned a ‘‘produced by’’ value. This is the green value in the picture.
Since the makespan is used as the fitness value, one additional cycle
time value is encoded.

In Fig. 8, the evaluation of one encoded solution is shown. In the
first step, cobots are assigned to all the available workstations without
cobots based on a biased random-key. If five workstations are available,
each workstation has a range of 0.2. This means the biased random-key
0.1 would match the first workstation.

In Fig. 8, in step 2, a maximum cycle time is set for all workstations.
This cycle time limit can be estimated with the human production time
of all tasks and the number of workstations. The first important value
to be calculated is as follows:

ℎ𝑢𝑚𝑎𝑛_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑝𝑒𝑟_𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛

=
𝑠𝑢𝑚_𝑜𝑓 _ℎ𝑢𝑚𝑎𝑛_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓 _𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠

Without cobots, this corresponds to the lower bound on cycle time
assuming a perfectly smooth allocation of tasks to workstations. In prac-
tice, however, a perfectly smooth allocation of tasks to stations cannot
necessarily be achieved, as it assumes the divisibility of tasks. Please
consider an example with 100 tasks, 10 workstations, and an average
human production time of 20 time units. In this example, we would
have a human production time per workstation of 200 (100*20/10). If
8

one individual task, however, comprises a duration of more than 200
time units, this cycle time cannot be achieved. Therefore, the second
important value is the human production time of the longest individual
tasks. For further discussion of the bounds on the cycle time in assembly
line balancing problems, please refer to [21].

The encoded cycle time value is now decoded in the following way:

𝑚𝑎𝑥 = Max(ℎ𝑢𝑚𝑎𝑛_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑝𝑒𝑟_𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛,

𝑚𝑎𝑥_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑡𝑎𝑠𝑘)
𝑐𝑦𝑐𝑙𝑒_𝑡𝑖𝑚𝑒 = 𝑚𝑎𝑥 ⋅ (0.8 + 𝑒𝑛𝑐𝑜𝑑𝑒𝑑_𝑐𝑦𝑐𝑙𝑒_𝑡𝑖𝑚𝑒 ⋅ 0.4)

The base value of this formula is the maximum of the average human
production time per workstation and the longest individual task. Based
on the encoded cycle time, the cycle time limit for all workstations is
between 80% and 120% of this value. In Fig. 8, this can be seen after
step 2.

In Fig. 8, in step 3, we can see how tasks are assigned to the
workstations. For each empty workstation, the following steps are
repeated until no more tasks can be assigned:

• Get the list of producible tasks (all preceding tasks have been
finished);

• Find the next task that can be assigned to this workstation based
on the given task priority and the assigned production mode;

In Fig. 8, after step 3, we can see what a typical solution would look
like. The different production modes are colored (human: red; robot:
yellow; cooperative: violet), and the upper and lower parts of a work-
station symbolize the time of the worker and the robot, respectively.
Additionally, it can be seen that the real fitness of this individual might
be different than the calculated cycle time limit of the workstations. If
it is not possible to assign all tasks to the workstations because the cycle
time limit is too low, a penalty value is assigned to this solution.

4.3. Variable neighborhood search

A variable neighborhood search is a metaheuristic that uses a local
search method to systematically search neighborhoods with increasing
distances [22]. Since we only use the variable neighborhood search
in the hybrid genetic algorithm and not as an individual metaheuris-
tic, the encoding of the genetic algorithm is used. This encoding is
problem-dependent and has been described in detail in the previous
two sections. The neighborhood Nk(x) can be defined as all the solu-
tions that can be reached with k changes from a starting solution x.
Typical local search heuristics usually use k = 1. Since the variable
neighborhood search is only used in combination with the genetic
algorithm, the neighborhood of a solution is described in the next
chapter in the context of the hybrid genetic algorithm. In Algorithm
2, the basic steps of a variable neighborhood search are explained. To
start the metaheuristic, kmax is considered the maximum distance to
neighboring solutions and a termination criterion for how long each
neighborhood is searched. Examples of this termination criterion are
the maximum number of evaluated solutions or a time limit. After
initializing these variables, the main loop starts. In this main loop,
neighboring solutions are searched and evaluated until the termination
criterion is reached (e.g., evaluation of 20 neighboring solutions). In
Algorithm 2, from line 4 to line 7, we can see a first improvement
strategy. This means if any of the generated solutions x’ is better than
the current best solution x, the current 𝑥 is replaced by x’ and the
variable neighborhood search starts with 𝑘 = 1 at the new solution.
If no better solution is found in the current neighborhood until the
termination criterion is reached, k is increased by one, and the next

further away neighborhood will be searched. [22]

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.
Fig. 8. Biased random-key encoding - Visualize steps.
Algorithm 2
Pseudo code variable neighborhood search.

0 Define k = 1, kmax, termination Initialize the necessary variables
1 while(k <= kmax) Terminate once k is larger than kmax
2 while(!termination) Do until a specific number of solutions is

evaluated or time limit is reached
3 x’ = Nk(x) Get neighboring solution with k changes
4 if(x’ is better than x) If a better solution has been found
5 x = x’ Set x to new best
6 k = 1 Start vns again from new best with k = 1
7 go to line 1 Start next iteration of the main loop
8 end if
9 end while
10 k++ Increase k by one
11 end while

4.4. Hybrid genetic algorithm

In Algorithm 3, the basic concept of the evaluation method of the
hybrid genetic algorithm is shown. The code for the genetic algorithm is
similar to the code from Algorithm 1. Whenever the evaluated method
from Algorithm 3 is called, in line 1, we see that for every solution s
that is passed to this method, a fitness value 𝑥 is generated. In line 2,
it is checked if this fitness is within a certain range of the best fitness
found so far. If this is the case, a variable neighborhood search on this
solution is initiated. Pretests have shown that the best results can be
found if the variable neighborhood search is applied to solutions that
are within 10% of the best solution found so far.

To generate neighboring solutions k, changes are applied to the
initial encoded solution. Two different variants of changes are used to
generate neighboring solutions:

• Basic change
For the biased random-key encoding, one change is one value
of the vector that is replaced by a random real value between
0 (inclusive) and 1 (exclusive).

• Intelligent change
The first step of the intelligent change is to determine if the
change affects the task to workstation assignment, the task pri-
ority, or the cobot to workstation assignment.

– Task to workstation assignment
All workstations that are available in the workstation group
where the task should be produced are ordered by a factor
that is the multiplicative of production speed and produc-
tion cost. A rank-based selection is used to favor worksta-
tions with a low factor.

– Task priority
This is the same as for the basic change.

– Cobot to workstation assignment
9

All workstations from the base solution get a rank assigned
based on the created costs and a second rank that is based
on the production duration. Both rankings have the same
chance to be used for the cobot to workstation assign-
ment. Workstations that created high costs and workstations
that have long production times are favored for a cobot
assignment in the intelligent change.

Pretests have shown that the best results are found with 90% intelligent
changes and 10% basic changes. The k values that are used in this
algorithm are 1, 3, and 5. In line 5 of Algorithm 3, it can be seen that 50
neighboring solutions are generated for each k value. In the lines from
8 to 12, it can be seen that a first improvement strategy is used. This
means that if any generated solution is better than the original solution,
this solution becomes the new starting solution and the algorithm is
restarted with k = 1. If no improvement can be found in any of the 50
generated solutions of one k value, k is increased by 2. In Algorithm 3
in the lines 18 to 20, it can be seen that the fitness and individual are
stored, if they are better than the best individual that has been found
so far.

5. Numerical experiments

5.1. Dataset dimensions

The first dataset used for the computational studies is the dataset
provided by an industry partner. This dataset is used for the com-
bined cobot assignment and job shop scheduling problem and has the
following metrics:

• 54 workstations
• 210 orders
• 1265 tasks

It contains many typical elements of a job shop scheduling problem.
The dataset pertains to the production of mechanical parts such as
engines, pumps, and housings. The workstations are in the following
areas:

• Heat treatment furnaces
• Prefabrication
• Assembly

The current version of the evaluation is assumed to be fully determin-
istic.

Based on the real-world data set, 50 artificial data sets have been
added to compare the CP model with the hybrid genetic algorithm.
These artificial data sets have the following metrics:

• 30/50 workstations
• 50/100 orders

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.
Algorithm 3
Pseudo code - hybrid genetic algorithm evaluation.

Parameters: Parameters at the start of the program

BestSolution Best solution found so far
BestFitness Best fitness found so far
EvaluateSolution() Method to get the quality of

a passed individual
(depending on the problem)

VnsThreshhold Threshhold to check if the variable
neighborhood shearch should be applied

0 Evaluate(solution s)
1 x = EvaluateSolution(s)
2 if(x ≤ BestFitness * VnsThreshhold)
3 k = 1, kmax = 5
4 while(k ≤ kmax)
5 for(i = 0, i ≤ 50, i++)
6 s’ = Nk(x)
7 x’ = EvaluateSolution(s’)
8 if(x’ < x)
9 x = x’
10 s = s’
11 k = 1
12 goto line 3
13 end if
14 end for
15 k += 2
16 end while
17 end if
18 if(x ≤ BestFitness)
19 BestFitness = x
20 BestSolution = s’
21 end if
22 return x
g

• 300/600/1200 tasks

The amount of workstations is varied and it depends on the number
of different workstations used in the real-world data set. The data sets
with 1200 tasks are similar to the real-world data set and additionally,
there are two smaller versions with 600 and 300 tasks. The amount of
orders has been reduced to 50 and 100 for the task amount of 300/600
and 1200, respectively. This has been done to increase the number of
precedence relations. A full description of the generation of these data
sets can be found in Appendix A.

The second dataset used for the computational studies is the as-
sembly line balancing problem with cobot assignment used in [1]. The
dataset contains the following metrics:

• 3 problem sizes (small: 20 tasks; medium: 50 tasks; large: 100
tasks)

• 50 problems with 10 different parameter settings per problem

The following additional parameters were introduced to create the 10
different parameter settings:

• Robot flexibility (RF): The percentage of all tasks that can be
done by a robot

• Collaboration flexibility (CF): The percentage of all tasks that
can be done by the human in collaboration with the robot

• West ratio (WR): The average number of tasks per workstation
• Robot density (RD): The percentage of workstations that have a

cobot assigned

In Appendix B, the 10 different parameter settings for each problem can
be seen. To compare the developed algorithm with the existing results
in the literature, we used the first 30 instances of each size.

5.2. Overview

The first computational study is used to find a good solution for the
real-world problem provided by our industry partner. Therefore, the
following variations are compared on the combined cobot assignment
10

and job shop scheduling problem:
Table 6
Variations in the first computational study.

Algorithm Encoding Cobots

Genetic algorithm Integer encoding 0
Genetic algorithm Biased random-key encoding 0
Genetic algorithm Integer encoding 5
Genetic algorithm Biased random-key encoding 5

• No cobots assigned, 5 cobots assigned
• Biased random-key encoding, integer encoding

For each instance of the dataset, this results in four variations. These
can be seen in Table 6.

The goal of these calculations is to find out which algorithm/encodin
works best on the real-world problem and how much improvement can
be made with five cobots. The best algorithm/encoding combination
is then used to show how much improvement can be made with
the first cobot and how much this decreases with the deployment of
an additional cobot, i.e., we evaluate the marginal utility of cobots.
After analyzing the real-world problem, the best working algorithm
is compared to a CP solver running the model presented in Section 3
on the artificial data set. This comparison demonstrates the strengths
and weaknesses of the genetic algorithm in comparison to the CP
formulation.

In the final analysis, the developed algorithm is applied to a similar
problem (combined cobot assignment and assembly line balancing
problem) from the literature. Solving this problem should show that
our developed algorithm can compete with state-of-the-art algorithms
used on benchmark problems in the literature.

The algorithms/encodings were implemented using the program-
ming language C#. The integer-based encoding is represented by an
array of integer values. For each position of the vector, a lower and
upper bound is encoded as an integer value. In the biased random-key
encoding, a solution representation is a vector of double values with
the lower bound being 0 and the upper bound being 1 (excluded). This
double represents a real number with 8 bytes of memory. This means

it has a precision of 15–17 digits [23].

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.

T
i
e
t
c
p
t
b

A
i
i

s
e

a
n
c
r
m

v
‘
t

I
g
m
s
c

b
t
a
m
w

This simple representation allows metaheuristics such as a genetic
algorithms to easily create new solutions. This solution encoding has
already been successfully used for several classical optimization prob-
lems (including job shop scheduling problems), as well as real-world
applications [11].

The framework used to implement the encoding and run the genetic
algorithm was HeuristicLab. HeuristicLab is a framework for heuristic
and evolutionary algorithms that can be easily extended using a plugin-
based architecture [24]. The CP model described in Section 3 was
implemented and run using IBM ILOG CP Optimizer 12.10 as a com-
mercial solver. For all calculations, a computer with an Intel i7-8700
3.20 GHz CPU is used.

5.3. Combined cobot assignment and job shop scheduling problem

5.3.1. Real-world data
To increase the number of different test cases, three different ver-

sions of the large real-world dataset are calculated:

• Full dataset
• First and second half of the dataset
• Four quarters of the dataset

he full dataset, the halves, and the quarters of the data were evaluated
ndependently, respectively. The data is divided by adding orders until
.g., half of the tasks are in the data set half one. In all the versions,
he deployment of five cobots is compared to the deployment of no
obots. Based on [1], it can be assumed that a cobot will increase the
roduction speed of a workstation by 30%, which will, in turn, lead
o a cost reduction of 30%. The datasets in Tables 1 and 2 are named
ased on the following schema:

• ‘‘Item set identifier’’_‘‘Minimum job’’-‘‘Maximum job’’

n example for this naming is ‘‘I2_1-637,’’ which means that the unique
dentifier for the dataset is I2 and the jobs 1 to 637 have to be produced
n this data set.

This leads to a total of seven different test sets. For each test
et, with and without cobots, the biased random-key and the integer
ncoding was run 10 times.

The value received from the objective function is the fitness value
ssigned to a specific solution. Makespan and production costs are
ormalized in a way, that the normalized value is closer to 1 if it is
loser to the minimum. If these two values are summed up, the fitness
anges from zero (worst possible solution) to two (minimal cost and
akespan).

For the following results, the integer-based encoding has the abbre-
iation ‘‘Int’’ and the biased random-key encoding has the abbreviation
‘Real’’. The hybrid genetic algorithm and the genetic algorithm have
he following parameters set:

• Mutation rate: 5%
• Elite Solution: 1
• Individuals per generation: 100
• Maximization of the normalized value

n the first computational study, the integer-based encoding of the
enetic algorithm is compared to the biased random-key encoding. To
ake a fair comparison between the two algorithms, both stop after a

et time limit. These time limits change for different instance sizes and
an be seen in Table 7.

The lower bounds of one instance of the real-world data set have
een calculated by letting the hybrid genetic algorithm minimize both
he makespan and the cost separately with five cobots (three runs with
time limit of 300 min). The upper bounds have been calculated by
aximizing the makespan and the cost three times (for 300 min each)
11

ith no cobots present.
Table 7
Time limits for the real-world data set (in minutes).

Duration Full Halves Quarters

Short 100 30 10
Medium 200 60 20
Long 300 90 30

In Fig. 9, the average solution quality over all runs of the genetic
algorithm with zero and five cobots have been reported. The real-
encoded version yielded better results over all data sets and is on an
average 9.7% better than the integer encoded version. The full data
can be found in Appendix C.

Since the biased random-key encoding delivered better results over
all data sets, it is used as a base for the hybrid genetic algorithm and
is additionally compared to the results of the CP model.

Based on the findings of the first experiment, a hybrid genetic al-
gorithm has been started with the parameters described for the genetic
algorithm and with the following additional parameters that are neces-
sary for the variable neighborhood search. Based on experiments, the
variable neighborhood search is applied only when a newly generated
solution is within 10% of the best solution found so far. To generate
neighboring solutions, 90% of the changes are intelligent changes and
10% are basic changes. The distance to the neighborhood solutions
started with 𝑘 = 1 change and was increased by 2 if no better solution
could be found within the first 50 generated individuals. The variable
neighborhood search stopped once k became larger than 5. This means
that if a solution is within 10% of the best-found solution, at least 150
individuals in the neighborhood are generated and evaluated.

In Fig. 10, the average solution quality from the hybrid genetic
algorithm with five cobots with standard deviation is reported. The
time limits from Table 7 were also used for these experiments. By using
the hybrid genetic algorithm, the results from the genetic algorithm
with biased random-key encoding could be improved by another 2%.

The values in Fig. 10 for the halves and quarters are the average
values over both halves and all four quarters, respectively. The full data
can be found in Appendix D.

In Fig. 11, the average solution quality of the hybrid genetic al-
gorithm without cobot over ten runs can be seen. Upon comparison
of these results with those from Fig. 10, where the genetic algorithm
selects the workstations and five cobots should be deployed, it can be
seen that the solution quality drastically increases with the usage of
these cobots. Without cobots, the average solution quality is at 1.218
while the solution quality with five cobots averages at 1.737. This
means an average improvement of 42.6% can be reached in these
scenarios. The full data can be found in Appendix D.

To better understand the influence of cobots on the solution quality,
one instance was selected to evaluate an increasing number of cobots.
Therefore, the first half of the data set I2_1-637 was selected. For each
cobot, the instance was computed ten times.

In Fig. 12, the fitness value for different numbers of cobots can be
seen. It can be seen that the first deployed cobot has the highest impact
on the solution quality. The full data can be found in Appendix E.

In Fig. 13, the percentage improvement resulting from different
cobot numbers can be seen. The first cobot increases the fitness by
34.9%. The second cobot still improves the objective function by
15.9%. This decreases to 1.7% for the third, 1.7% for the fourth,
and 0.02% for the fifth cobot. These effects correspond to the law of
decreasing marginal returns.

The hybrid genetic algorithm with biased random-key encoding
performs well on the real-world data set in comparison to the genetic
algorithm. To prove its capability to solve the combined cobot assign-
ment and job shop scheduling problem, the hybrid genetic algorithm is
compared to the CP solver running the formulation stated in Section 3
on the real-world instance. For all real-world instances, the CP solver is
granted the same amount of time as the long run of the hybrid genetic

Journal of Industrial Information Integration 28 (2022) 100350

12

A. Kinast et al.

Fig. 9. Average solution quality - GA.

Fig. 10. Average results with standard deviation - Hybrid genetic algorithm - 5 Cobots.

Fig. 11. Average results with standard deviation - Hybrid genetic algorithm - 0 Cobots.

Fig. 12. I2_1-637 - Normalized fitness per cobot.

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.
Fig. 13. I2_1-637 - Percentage improvement per cobot.
Fig. 14. Comparison CP/Hybrid GA - 0 cobots.
Fig. 15. Comparison CP/Hybrid GA - 5 cobots.
algorithm from Table 7 (second column). If the CP solver calculates
the fitness for zero cobots of a specific data set, it is compared to the
average solution quality of the hybrid genetic algorithm of this specific
data set with zero cobots.

In Fig. 14, the hybrid genetic algorithm is compared to the CP
formulation with 0 cobots to assign. In this basic version, the CP solver
is able to find better solutions than the hybrid genetic algorithm in
three of seven instances. When looking at all data sets, the CP model
performs on average 15.6% worse than the hybrid genetic algorithm.
If the outlier in data set I4 is neglected, the solution quality is only
decreased by 4% compared to the average solution quality reported by
the hybrid genetic algorithm.

In Fig. 15, the solution quality of the hybrid genetic algorithm is
compared to the solution quality obtained from the CP model with
five cobots to assign. Due to the increased complexity of the cobot to
workstation assignment in the model, the CP solver is not able to find
solutions that can compete with the solutions from the hybrid genetic
algorithm. It is also worth noting that the best results found with the
13
CP model are for the four quarters I4 to I7 and hence the smallest data
sets, whereas the worst result is achieved for the full data set.

To allow for an even more thorough assessment of the solution
quality achieved by the hybrid genetic algorithm, we conducted addi-
tional CP solver runs involving considerably increased computational
resources and time limits. The idea was to specifically account for
the cobot-assisted scenario, in which the CP solver fails to deliver
objective function values greater than zero for the full and the two
halved data sets. The results of these experiments, as shown in Fig. 20
of Appendix G, indicate that the CP solution quality could be notably
improved but is still not sufficient to beat the hybrid GA in the cobot-
assisted scenario. Only for the 0 cobots case, the CP solutions are
consistently better than those provided by the hybrid GA.

5.3.2. Artificial data sets
To prove that the hybrid genetic algorithm is able to solve the

combined cobot assignment and job shop scheduling problem, an ad-
ditional 50 artificial data sets in five categories have been created.

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.
Fig. 16. Comparison - Artificial instances - CP model.
Fig. 17. Comparison - Artificial instances - No CP solution found (number of occurrences).
The data sets are named based on the amount of included tasks and
workstations according to the scheme ‘‘Tasks’’_‘‘Workstations’’. These
sets are grouped into three sizes:

• Small: 300_30
• Medium: 600_30, 600_50
• Large: 1200_30, 1200_50

The run time for the small, medium, and large data set is 60, 180,
and 300 min, respectively. The data sets are explained in detail in
Appendix A. If the CP model calculates the fitness for zero cobots of
a specific data set, it is compared to the average solution quality of the
hybrid genetic algorithm of this specific data set with zero cobots.

For each artificial data set, the bounds for the normalized ob-
jective function were computed in the following way: Upper bounds
on makespan and cost were taken from short runs of the CP solver,
stopping immediately as soon as the first feasible solution was found.
The lower bound on the makespan was derived from a parallel ma-
chine relaxation of the problem, using the mixed-integer programming
formulation of [25] as a basis. The lower bound on the cost was again
retrieved from the CP solver, in the form of the initial lower bound on
the cost objective.

In Fig. 16, the average solution quality achieved by the CP model
is shown. What can be seen here is that due to the complexity increase
when allowing the CP model to place cobots, it is unable to find better
solutions. The main factors are the amount of tasks and the amount of
workstations

In Fig. 17, it can be seen that the increased model complexity due
to an increasing amount of tasks and workstations will decrease the
ability of the CP solver to find solutions. It can be seen that the 600_30
instance is way easier to solve than the 600_50 instance, since the
average solution quality is way better and the CP solver is unable to
find a solution in two cases for the 600_50 instance. This increases to
9 instances for the 1200_50 instance. In Fig. 18, the average solution
quality of the hybrid genetic algorithm is shown. It can be observed
that the hybrid genetic algorithm generates good results for all cases
14

and is able to effectively utilize the additional cobots to improve the
solution quality. The average solution quality for the individual runs of
the CP model and the hybrid genetic algorithm with zero, five, and ten
cobots can be found in Appendix F.

Similar to the real-world instances, we also performed a comparison
between the hybrid GA’s results and those obtained from extended CP
runs. The details of these experiments and the associated comparison
can be found in Appendix G (Fig. 21). Despite the markedly increased
computational effort, the CP solutions are only slightly better than
those delivered by the hybrid GA with the original, restricted time
limits.

5.4. Combined cobot assignment and assembly line balancing problem

The second computational analysis should compare the developed
algorithm with the existing methods in the literature. Therefore, the
algorithm is compared to the genetic algorithm and the mixed integer
programming developed for [1]. Most of the small instances have been
solved optimally by the mixed integer programming. Therefore, the
goal is to reach the optimal solution or to come as close to it as possible.
This is different for the large instances, as the complexity increases, it
is not possible anymore to solve them optimally within a reasonable
amount of time. For the large instances, the results have to be compared
to those from the genetic algorithm developed in [1].

As stated above, the first 30 instances of each size are used for the
comparison. In the literature dataset, the genetic algorithm was run
until no improvement could be reached within 1000 generations. For
these runs, an average run time over all instances has been reported.

For easy instances of one size, the average run time will be too long
and the algorithm might find the best solution very fast. However, for
hard instances, the algorithm might have less time than the genetic
algorithm used in [1]. The average run time used in the literature is
as follows:

• Small instances: 114 s
• Medium instances: 666 s
• Large instances: 2994 s

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.
Fig. 18. Comparison - Artificial instances - hybrid genetic algorithm.
The mixed integer programming has the following run time limitations:

• Small instances: 7200 s
• Medium instances: 7200 s
• Large instances: 28800 s

For our computational experiments, we use a similar, however, fixed
time limitation. This should make our results easier to reproduce and
better comparable for other researchers’ study purposes. Based on the
results from the first computational experiment, we know that the
additional cobots will greatly increase the complexity of the problem.
The used time limits were as follows:

• Small instances: 150 s
• Medium instances: 1000 s
• Large instances: 3600 s

The following results were created using the hybrid genetic algorithm
with the biased random-key encoding on the literature dataset. In the
literature dataset, each instance was calculated 10 times and the best
result was reported. Therefore, in this computational study, the same
rules apply–each calculation is carried out 10 times and the best result
is reported. For the following results, the hybrid genetic algorithm is
the algorithm that was developed in this paper. The genetic algorithm
is the algorithm that was used in [1].

The performance value that is used to compare the hybrid genetic
algorithm with the genetic algorithm or the mixed integer program-
ming from the literature is calculated by dividing the hybrid genetic
algorithms solution through the solution of the genetic algorithm or
mixed integer programming. A comparison, for example is that all small
instances are generated by averaging this value over all calculated
instances.

In the small dataset, we can assume that in all cases where we
found the result from the mixed integer programming, we identified
the best possible result. Upon comparison with the genetic algorithm,
it was discovered that the reported genetic algorithm results could be
improved 4 times, our hybrid genetic algorithm tied with the genetic
algorithm 22 times, and 4 times, no solution as good as the reported
genetic algorithm solution could be found.

When we look at the quality over all the 30 instances, the hybrid
genetic algorithm can be found within 0.2% of the genetic algorithm
and within 0.7% of the mixed integer programming.

The robot density is the main factor that increases computational
complexity for this dataset. With a robot density of 0, no cobot can
be assigned to workstations. This means that these instances should
be easier to solve than those with a high robot density, where the
algorithm has to decide where to place cobots and how tasks are
produced on workstations with cobots.

In Table 8, the results of the hybrid genetic algorithm are grouped
by the three different robot densities that have been used in this study.
With the average computational time, the less complex instances with
a robot density of 0 could be easily found and even improved. For
15
Table 8
Comparison to the small dataset based on robot density.

Robot density 0 0.2 0.4
GA 99.73% 100.08% 100.56%
MIP 100.00% 100.57% 101.30%

Table 9
Comparison to the medium dataset based on robot density.

Robot density 0 0.2 0.4
GA 99.93% 100.78% 101.93%
MIP 100.20% 100.44% 101.53%

Table 10
Comparison to the large dataset based on robot density.

Robot density 0 0.2 0.4
GA 98.88% 100.87% 102.65%
MIP 100.75% 98.92% 103.28%

complex instances with a robot density of 0.4, just the average time
is not enough; therefore, the results are worse than those found in the
literature. All computed data values can be found in Appendix H.

In the medium dataset, only three instances could be improved.
However, even if the best results are not found as often as in the
literature dataset, the algorithm is only 1% worse than the results of
the genetic algorithm and 0.8% worse than the results of mixed integer
programming.

In Table 9, the results are grouped again by robot density. Similar
to the results from the small dataset, the algorithm can find better or
comparable results for instances with a robot density of 0 or 0.2 but
does not find as good results for a robot density of 0.4. The full data
can be found in Appendix I.

In the seven cases, the reported results from the large instances of
the genetic algorithm could be improved. The overall solution quality is
1.2% worse than the solution quality of the genetic algorithm and 1.3%
worse than the solution quality of the mixed integer programming.
Please note that the mixed integer programming only found solutions
for 17 out of the 30 instances.

In Table 10, the results of the large dataset are grouped by robot
density. The results are quite similar to the results of the small and
medium datasets. For instances with a robot density of 0 and 0.2,
the algorithm delivers even better results than the genetic algorithm
and the mixed integer programming from the literature. For instances
with a robot density of 0.4, the run time is not long enough to find
comparable results. The full data can be found in Appendix J.

To allow a fairer comparison of our hybrid genetic algorithm with
the algorithm from the literature on instances with a robot density of
0.4, all such instances are calculated again with doubled time limits
(small: 300 s; medium: 2000s; large: 7200s). The reported quality
develops as follows: Small instances:

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.
Fig. 19. Comparison GA/HGA/CP - 5 cobots.
• GA: 100.56% ⇒ 99.53%
• MIP: 101.30% ⇒ 100.24%

Medium instances:

• GA: 101.93% ⇒ 101.38%
• MIP: 101.53% ⇒ 100.99%

Large instances:

• GA: 102.65% ⇒ 102.02%
• MIP: 103.28% ⇒ 102.78%

It can be seen that with a fairer time limit, the results come quite
close to those reported in the literature dataset. This means even if our
hybrid genetic algorithm was developed for a real-world dataset, it can
compete with state-of-the-art algorithms from the literature. The full
computational results can be found in Appendices K–M.

6. Main findings

In this paper, a new combined cobot assignment and job shop
scheduling problem was introduced that should be solved based on data
from a real-world company. The optimization goal was to minimize the
makespan and the production costs simultaneously. For this purpose,
we employed a combined objective function based on a normalization
scheme.

In the first computational experiments, where a genetic algorithm
was used to solve this problem, an integer based encoding was com-
pared to a biased random-key encoding. In these experiments, the
results from the biased random-key encoding were 9.7% better than
the results from the integer encoding.

Based on these findings, a hybrid genetic algorithm with biased
random-key encoding was proposed. This hybrid genetic algorithm
combines the exploratory strengths of a genetic algorithm with the
exploitatory strengths of a variable neighborhood search. To further
improve the strengths of the variable neighborhood search, changes
to the current solution are based on properties of the base solution.
This means, when generating a neighboring solution, it is more likely
that a cobot is assigned to a workstation that had high costs or a long
makespan in the original solution.

In Fig. 19, it can be seen that the genetic algorithm and the hybrid
genetic algorithm manage to produce good solutions for the real-
world problem with 5 cobots. However, with the improvements, the
hybrid genetic algorithm is able to improve the solutions of the genetic
algorithm by another 2%. The implemented CP model is able to solve
the problem to a certain degree. Especially small instances without
16
cobots to assign can be solved in a way that they can compete with
the solutions from the hybrid genetic algorithm.

An additional important finding of this paper is that the first de-
ployed cobot in a production environment has the highest impact on
the objective function. In the investigated real-world data set, the
objective function could be improved by 35% by the first cobot. This
value quickly decreases, with additional cobots that are deployed to the
production environment.

To have an additional comparison between the hybrid genetic algo-
rithm and the CP formulation, 50 artificial data sets have been created.
The results on these data sets look similar to the results from the real-
world instances. Small instances without cobots to assign can be solved
pretty well with the CP model. However, this changes drastically when
the problem setting allows more cobots to be assigned.

The best working algorithm from the first computational experi-
ment, the hybrid genetic algorithm with biased random-key encoding,
is changed in a way that it is able to solve a similar problem, namely
the cobot assignment and assembly line balancing problem from the
literature. A major problem in this comparison is that the complexity of
the instances fluctuates greatly. The focus of our comparison was on the
complex instances with cobots to be assigned and therefore we admit-
ted longer but fixed computation times. With these considerations, the
developed hybrid genetic algorithm is able to compete with the results
reported in the literature.

7. Outlook

The real-world problem and data set used is a representative data
set for medium- to large-sized job shop scheduling problems. It should
be possible to achieve similar results with other real-world data sets.

When applied to other real-world problems, the objective function
might not be clear. Therefore, hybrid multi-objective algorithms such as
the NSGA-II in [26] could be used to optimize multiple objective values
and generate a Pareto optimal front (solutions that are not dominated
by other solutions) that could be presented to a domain expert.

The developed hybrid genetic algorithm with the biased random-
key encoding delivered very good results for both the combined cobot
assignment and job shop scheduling and the combined cobot and
assembly line balancing problems. Additionally, environmental uncer-
tainties can be included in further research. It might be interesting
to see how the flexibility of cobots can be used to assist bottleneck
workstations in case of machine breakdown.

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.

c
w
S

s
m
g
w

W

I
w
t
p

CRediT authorship contribution statement

Alexander Kinast: Conceptualization, Methodology, Software, Data
uration, Writing – original draft. Roland Braune: Methodology, Soft-
are, Formal analysis, Writing – review & editing. Karl F. Doerner:
upervision, Conceptualization, Writing – review & editing. Stefanie

Rinderle-Ma: Supervision, Conceptualization, Writing – review & edit-
ing. Christian Weckenborg: Resources, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We are thankful that the RISC Software GmbH allowed us to use
the simulation framework, Easy4Sim. This simulation framework was
used to assign a fitness value to an individual in the genetic algorithm.
Additionally, we are grateful for the real-world dataset provided in
cooperation with our industry partner.

Appendix A. Artificial data sets

To have additional data sets for the comparison between the hybrid
genetic algorithm and the CP model, 50 artificial data sets in five
categories have been created. In the following Table, these categories
can be seen. In the paper, the categories will be named ‘‘Tasks’’_
‘‘Workstations’’. An example would be 300_30 which is the first cat-
egory in the table. For each data set, solutions with zero, five, and
ten cobots have been created. This means that the hybrid genetic
algorithm, as well as the CP model have evaluated 150 solutions for
this comparison. The run time is 60, 180, and 300 min for data sets
with 300, 600, and 1200 tasks, respectively.

Workstations Workstation groups Orders Tasks
30 10 50 300
30 10 50 600
50 10 50 600
30 10 100 1200
50 10 100 1200

The instances are created in such a way that they are not easy to
olve. In comparison to the real-world instances (where workstations
ight be bottlenecks depending on the current orders), all workstation

roups have an equal amount of tasks assigned. Tasks are generated
ith the following properties:

• Amount: 1–10
• Production time: 100–200
• 50% chance for setup time in the range: 30–100
• 50% chance for de-setup time in the range: 30–100

orkstations are generated with the following properties:

• Production type

– 50%: Serial workstation with capacity 1
– 50%: Parallel workstation with capacity 2–6

• Time factor: 0.75–1.25
• Cost factor: 0.75–1.25

f more than one part is produced successively on one capacity of a
orkstation, the setup time is only necessary before the first amount

hat is produced and the de-setup time is only necessary after the last
roduced amount.
17
Appendix B. Parameter settings literature

In the following table, the different settings for the literature data
set can be seen. The west ratio defines the number of workstations,
based on the instance size. An example would be a west ratio (average
number of tasks per workstation) of 2 in a small instance with 20 tasks.
This would lead to 10 workstations. The robot density (percentage of
workstations that have a cobot) will define how much workstation can
get a cobot assigned. The robot flexibility (percentage of tasks that can
be done by a cobot) and the collaborative flexibility (percentage of
tasks that can be done collaborative) define the share of tasks that can
be done by the robot or in collaboration.

Scenario RF CF West ratio Robot density
1 0 0 2 0
2 0.2 0.2 2 0.2
3 0.4 0.4 2 0.2
4 0.2 0.2 2 0.4
5 0.4 0.4 2 0.4
6 0 0 4 0
7 0.2 0.2 4 0.2
8 0.4 0.4 4 0.2
9 0.2 0.2 4 0.4
10 0.4 0.4 4 0.4

Appendix C. Computational results of the genetic algorithm on the
real-world data set

The following Table C.1 shows the average solution quality of the
genetic algorithm (integer and real encoding) over ten runs for zero
and five cobots.

Appendix D. Computational results of the hybrid genetic algo-
rithm on the real-world data set

The following Table D.1 shows the average solution quality of the
hybrid genetic algorithm over ten runs for zero and five cobots.

Appendix E. Solution quality per number of cobots

In the following table, the fitness values for the data set I2_1-637
with changing numbers of cobots can be seen.

Cobots 0 1 2 3 4 5
Run 1 1.15 1.57 1.76 1.77 1.78 1.79
Run 2 1.17 1.58 1.77 1.77 1.79 1.79
Run 3 1.16 1.56 1.78 1.75 1.80 1.77
Run 4 1.17 1.57 1.76 1.75 1.79 1.80
Run 5 1.16 1.56 1.76 1.79 1.79 1.78
Run 6 1.15 1.57 1.77 1.77 1.79 1.79
Run 7 1.16 1.57 1.77 1.78 1.79 1.79
Run 8 1.16 1.57 1.77 1.77 1.77 1.79
Run 9 1.15 1.53 1.77 1.76 1.78 1.79
Run 10 1.16 1.57 1.58 1.77 1.79 1.80
Average 1.16 1.56 1.75 1.77 1.79 1.79

Appendix F. Artificial instances - GA/CP

In the following table, the average objective value for all instances
of one category of the artificial data set can be seen.

Datasets 300_30 600_30 600_50 1200_30 1200_50
GA - 0 cobots 0.75 0.73 0.41 0.61 0.48
GA - 5 cobots 0.98 0.93 0.48 0.78 0.58
GA - 10 cobots 1.12 1.08 0.57 0.95 0.67
CP - 0 cobots 0.41 0.28 0.32 0.10 0.19
CP - 5 cobots −0.61 −1.51 −4.11 −2.85 −5.31

CP - 10 cobots −0.17 −2.14 −4.49 −2.87 −5.24

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.
Table C.1

Data set I1_1-1261 I2_1-637 I3_638-1261 I4_1-319 I5_320-637 I6_638-958 I7_959-1261

int - 0 cobots 1.09 1.07 1.05 1.14 1.16 1.14 1.24
real - 0 cobots 1.18 1.15 1.14 1.22 1.23 1.25 1.36
int - 5 cobots 1.58 1.60 1.31 1.68 1.67 1.48 1.61
real - 5 cobots 1.79 1.78 1.50 1.81 1.81 1.69 1.73
Table D.1

Hybrid GA I1_1261 I2_1–637 I3_638–1261 I4_1–319 I5_320–637 I6_638–958 I7_959-1261

0 Cobots 1.18 1.15 1.14 1.22 1.23 1.25 1.36
5 Cobots 1.80 1.79 1.50 1.81 1.82 1.70 1.74
Fig. 20. Hybrid GA vs. CP (long run): normalized objective function values for real instances.
Appendix G. Hybrid GA vs. CP long runs - a comparison based on
normalized objective function values

In addition to the CP runs using the same time limits as for the hy-
brid GA, we also ran the CP solver with strongly boosted computational
resources and relaxed time limits. Preliminary attempts showed that it
was not possible to achieve substantial improvements when relying on
the original normalized objective function. Therefore, we adopted the
following two-stage approach: for each instance without cobots, we first
performed a pure makespan minimization run for twelve hours using
six parallel worker threads. In a second step, the CP model is run with
the objective of cost minimization but with an upper bound constraint
on the makespan. The upper bound is set to the best makespan found
during the first stage. Note that this process can be considered a
lexicographic approach as known from multi-objective optimization,
however, with the single-objective problems not solved to optimality.
The reason for the relative order of the two objectives is that when
minimizing the makespan, the production costs stay within reasonable
bounds. When minimizing just the costs (without any constraint on the
makespan), it becomes immediately clear from the model definition
that only the assignment of tasks to workstations and machines matters,
without any consideration of start and completion times. Hence, the
resulting schedule will not be usable.

To accelerate the second stage CP runs, we used the solutions from
stage one to ‘‘warm-start’’ the solver. Furthermore, we fed the first stage
solutions obtained for the zero-cobots scenario into the runs based on
five and ten cobots (again as warm-start solutions) to make sure that
the solver always finds at least one feasible solution.

Based on the stage two results, the individual objectives are finally
combined to a normalized objective value in the same fashion as
described in Sections 5.3.1 and 5.3.2 for the real-world and the artificial
data set, respectively. Figs. 20 and 21 give an overview of the obtained
average normalized values. Note that the results reported for the hybrid
GA were obtained using the original restricted time limits and thus
coincide with those presented in Figs. 14, 15 and 18.
18
For Appendices J–M, the computational results from the small in-
stances can be seen. The first six columns are used to identify the data
set from the literature. The last three columns show the best result that
have been found by:

• GA: Genetic algorithm from the literature

– GA Gap: Gap between the genetic algorithm and the best
found solution

• MIP: Mixed integer programming from the literature

– MIP Gap: Gap between the mixed integer programming and
the best found solution

• HGA: Hybrid genetic algorithm that has been developed in this
paper

– HGA Gap: Gap between the hybrid genetic algorithm and
the best found solution

Appendix H. Computational results small data set

See Table H.1.

Appendix I. Computational results medium data set

See Table I.1.

Appendix J. Computational results large data set

See Table J.1.

Appendix K. Robot density 0.4 - small instances

See Table K.1.

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.
Fig. 21. Hybrid GA vs. CP (long run) - normalized objective function values for artificial instances.
Table H.1

Id Stations Size Robots RF CF GA MIP HGA GA Gap MIP Gap HGA Gap

442 5 20 0 20 20 595 595 595 0 0 0
442 5 20 1 20 20 587 587 587 0 0 0
442 5 20 2 20 20 536 536 536 0 0 0
442 10 20 0 20 20 343 343 343 0 0 0
442 10 20 2 20 20 322 320 320 2 0 0
442 10 20 4 20 20 320 320 320 0 0 0
442 5 20 1 40 40 568 568 568 0 0 0
442 5 20 2 40 40 522 522 522 0 0 0
442 10 20 2 40 40 309 309 309 0 0 0
442 10 20 4 40 40 305 291 299 14 0 8
441 5 20 0 20 20 580 580 580 0 0 0
441 5 20 1 20 20 556 556 556 0 0 0
441 5 20 2 20 20 506 506 506 0 0 0
441 10 20 0 20 20 321 321 321 0 0 0
441 10 20 2 20 20 321 321 321 0 0 0
441 10 20 4 20 20 321 321 321 0 0 0
441 5 20 1 40 40 556 556 556 0 0 0
441 5 20 2 40 40 506 506 506 0 0 0
441 10 20 2 40 40 321 321 321 0 0 0
441 10 20 4 40 40 321 321 321 0 0 0
165 5 20 0 20 20 576 576 576 0 0 0
165 5 20 1 20 20 528 526 528 2 0 2
165 5 20 2 20 20 489 489 489 0 0 0
165 10 20 0 20 20 307 302 302 5 0 0
165 10 20 2 20 20 298 285 293 13 0 8
165 10 20 4 20 20 262 262 281 0 0 19
165 5 20 1 40 40 526 524 530 2 0 6
165 5 20 2 40 40 489 488 489 1 0 1
165 10 20 2 40 40 277 277 284 0 0 7
165 10 20 4 40 40 270 260 274 10 0 14
Table I.1

Id Stations Size Robots RF CF GA MIP HGA GA Gap MIP Gap HGA Gap

455 13 50 0 20 20 457 456 456 1 0 0
455 13 50 3 20 20 424 422 426 2 0 4
455 13 50 5 20 20 416 416 423 0 0 7
455 25 50 0 20 20 304 304 304 0 0 0
455 25 50 5 20 20 304 304 304 0 0 0
455 25 50 10 20 20 304 304 304 0 0 0
455 13 50 3 40 40 417 417 422 0 0 5
455 13 50 5 40 40 398 398 409 0 0 11
455 25 50 5 40 40 304 304 304 0 0 0
455 25 50 10 40 40 304 304 304 0 0 0
454 13 50 0 20 20 568 568 568 0 0 0
454 13 50 3 20 20 522 540 527 0 18 5
454 13 50 5 20 20 506 506 525 0 0 19
454 25 50 0 20 20 396 396 396 0 0 0
454 25 50 5 20 20 396 396 396 0 0 0

(continued on next page)
19

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.
Table I.1 (continued).
Id Stations Size Robots RF CF GA MIP HGA GA Gap MIP Gap HGA Gap

454 25 50 10 20 20 396 396 396 0 0 0
454 13 50 3 40 40 520 522 527 0 2 7
454 13 50 5 40 40 496 504 513 0 8 17
454 25 50 5 40 40 293 293 300 0 0 7
454 25 50 10 40 40 293 293 299 0 0 6
53 13 50 0 20 20 937 924 935 13 0 11
53 13 50 3 20 20 855 858 873 0 3 18
53 13 50 5 20 20 818 825 858 0 7 40
53 25 50 0 20 20 560 560 560 0 0 0
53 25 50 5 20 20 560 560 560 0 0 0
53 25 50 10 20 20 560 560 560 0 0 0
53 13 50 3 40 40 854 862 862 0 8 8
53 13 50 5 40 40 811 829 848 0 18 37
53 25 50 5 40 40 560 560 560 0 0 0
53 25 50 10 40 40 560 560 560 0 0 0
Table J.1

Id Stations Size Robots RF CF GA MIP HGA GA Gap MIP Gap HGA Gap

451 25 100 0 20 20 1046 1024 1036 22 0 12
451 25 100 5 20 20 991 1003 0 12
451 25 100 10 20 20 946 972 998 0 26 52
451 50 100 0 20 20 605 566 566 39 0 0
451 50 100 10 20 20 568 566 2 0
451 50 100 20 20 20 612 566 46 0
451 25 100 5 40 40 962 1057 995 0 95 33
451 25 100 10 40 40 908 944 972 0 36 64
451 50 100 10 40 40 595 566 29 0
451 50 100 20 40 40 570 566 4 0
328 25 100 0 20 20 576 565 575 11 0 10
328 25 100 5 20 20 525 537 545 0 12 20
328 25 100 10 20 20 501 504 530 0 3 29
328 50 100 0 20 20 322 322 322 0 0 0
328 50 100 10 20 20 322 322 0 0
328 50 100 20 20 20 322 322 0 0
328 25 100 5 40 40 526 540 541 0 14 15
328 25 100 10 40 40 486 500 520 0 14 34
328 50 100 10 40 40 322 322 0 0
328 50 100 20 40 40 322 322 0 0
19 25 100 0 20 20 912 906 920 6 0 14
19 25 100 5 20 20 848 879 878 0 31 30
19 25 100 10 20 20 813 826 857 0 13 44
19 50 100 0 20 20 548 548 548 0 0 0
19 50 100 10 20 20 548 548 0 0
19 50 100 20 20 20 548 548 0 0
19 25 100 10 40 40 791 820 838 0 29 47
19 25 100 10 40 40 791 820 838 0 29 47
19 50 100 10 40 40 548 548 0 0
19 50 100 20 40 40 548 548 0 0
Table K.1

Id Stations Size Robots RF CF GA MIP HGA GA Gap MIP Gap HGA Gap

442 5 20 2 20 20 536 536 536 0 0 0
442 10 20 4 20 20 320 320 320 0 0 0
442 5 20 2 40 40 522 522 522 0 0 0
442 10 20 4 40 40 305 291 299 14 0 8
441 5 20 2 20 20 506 506 506 0 0 0
441 10 20 4 20 20 321 321 321 0 0 0
441 5 20 2 40 40 506 506 506 0 0 0
441 10 20 4 40 40 321 321 321 0 0 0
165 5 20 2 20 20 489 489 489 0 0 0
165 10 20 4 20 20 262 262 281 0 0 19
165 5 20 2 40 40 489 488 489 1 0 1
165 10 20 4 40 40 270 260 274 10 0 14
Appendix L. Robot density 0.4 - medium instances

See Table L.1.
20
Appendix M. Robot density 0.4 - large instances

See Table M.1.

Journal of Industrial Information Integration 28 (2022) 100350A. Kinast et al.
Table L.1

Id Stations Size Robots RF CF GA MIP HGA GA Gap MIP Gap HGA Gap

455 13 50 5 20 20 416 416 423 0 0 7
455 25 50 10 20 20 304 304 304 0 0 0
455 13 50 5 40 40 398 398 409 0 0 11
455 25 50 10 40 40 304 304 304 0 0 0
454 13 50 5 20 20 506 506 525 0 0 19
454 25 50 10 20 20 396 396 396 0 0 0
454 13 50 5 40 40 496 504 513 0 8 17
454 25 50 10 40 40 293 293 299 0 0 6
53 13 50 5 20 20 818 825 858 0 7 40
53 25 50 10 20 20 560 560 560 0 0 0
53 13 50 5 40 40 811 829 848 0 18 37
53 25 50 10 40 40 560 560 560 0 0 0
Table M.1

Id Stations Size Robots RF CF GA MIP HGA GA Gap MIP Gap HGA Gap

451 25 100 10 20 20 946 972 998 0 26 52
451 50 100 20 20 20 612 566 46 0
451 25 100 10 40 40 908 944 972 0 36 64
451 50 100 20 40 40 570 566 4 0
328 25 100 10 20 20 501 504 530 0 3 29
328 50 100 20 20 20 322 322 0 0
328 25 100 10 40 40 486 500 520 0 14 34
328 50 100 20 40 40 322 322 0 0
19 25 100 10 20 20 813 826 857 0 13 44
19 50 100 20 20 20 548 548 0 0
19 25 100 10 40 40 791 820 838 0 29 47
19 50 100 20 40 40 548 548 0 0
References

[1] C. Weckenborg, K. Kieckhäfer, C. Müller, M. Grunewald, T.S. Spengler, Balancing
of assembly lines with collaborative robots, Bus. Res. 13 (1) (2020) 93–132,
http://dx.doi.org/10.1007/s40685-019-0101-y.

[2] K. Wegener, W.H. Chen, F. Dietrich, K. Dröder, S. Kara, Robot assisted disassem-
bly for the recycling of electric vehicle batteries, in: The 22nd CIRP Conference
on Life Cycle Engineering, Vol. 29, 2015, pp. 716–721, http://dx.doi.org/10.
1016/j.procir.2015.02.051.

[3] A. Weigl-Seitz, K. Hohm, M. Seitz, H. Tolle, On strategies and solutions for
automated disassembly of electronic devices, Int. J. Adv. Manuf. Technol. 30
(5–6) (2006) 561–573, http://dx.doi.org/10.1007/s00170-005-0043-8.

[4] C. Banu, B. Serol, A research survey: review of AI solution strategies of job shop
scheduling problem, J. Intell. Manuf. 26 (2013) 961–973, http://dx.doi.org/10.
1007/s10845-013-0837-8.

[5] M.K. Amjad, S.I. Butt, R. Kousar, R. Ahmad, M.H. Agha, Z. Faping, N. Anjum,
U. Asgher, Recent research trends in genetic algorithm based flexible job shop
scheduling problems, Math. Probl. Eng. 2018 (2018) http://dx.doi.org/10.1155/
2018/9270802.

[6] G. Zhang, L. Zhang, X. Song, Y. Wang, C. Zhou, A variable neighborhood
search based genetic algorithm for flexible job shop scheduling problem, Cluster
Comput. 22 (5) (2019) 11561–11572, http://dx.doi.org/10.1007/s10586-017-
1420-4.

[7] Q. Djamila, S. Petrovic, A survey of dynamic scheduling in manufacturing
systems, J. Sched. 12 (2009) 417–431, http://dx.doi.org/10.1007/s10951-008-
0090-8.

[8] F. Carole, P. Sanja, A genetic algorithm for the real-world fuzzy job shop
scheduling, Lecture Notes in Comput. Sci. (2005) http://dx.doi.org/10.1007/
11504894_71.

[9] B. Cunha, A.M. Madureira, B. Fonseca, D. Coelho, Deep reinforcement learning
as a job shop scheduling solver: A literature review, 2020, http://dx.doi.org/10.
1007/978-3-030-14347-3_34, HIS 2018, AISC 923, 350–359.

[10] A. Kinast, K.F. Doerner, S. Rinderle-Ma, Biased random-key genetic algorithm
for cobot assignment in an assembly/disassembly job shop scheduling problem,
Procedia Comput. Sci. 180 (2021) 328–337, http://dx.doi.org/10.1016/j.procs.
2021.01.170.

[11] M.L. Lucena, C.E. Andrade, M.G. C.Resende, F.K. Miyazawa, Some extensions of
biased random-key genetic algorithms, in: Proceedings of the XLVI Symposium of
the Brazilian Operational Research Society, Salvador, Brazil, 2014, http://www.
din.uem.br/sbpo/sbpo2014/pdf/arq0357.pdf. (Accessed 26 November 2021).

[12] N. Sridhar, M.V. Raj, K.C. Sekar, Minimizing manufacturing cost in flexible job-
shop scheduling problems, in: International Journal of Artificial Intelligence and
Mechatronics, Vol. 1, 2013, pp. 2320–5121, http://www.ijaim.org/download/
conference/ICEA/Mech-1_Final.pdf. (Accessed 26 November 2021).
21
[13] B. Qu, P. Suganthan, Multi-objective evolutionary algorithms based on the
summation of normalized objectives and diversified selection, Inform. Sci. 180
(17) (2010) 3170–3181, http://dx.doi.org/10.1016/j.ins.2010.05.013, Including
Special Section on Virtual Agent and Organization Modeling: Theory and
Applications.

[14] A. Otto, C. Otto, A. Scholl, Systematic data generation and test design for solution
algorithms on the example of SALBPGen for assembly line balancing, European J.
Oper. Res. 228 (1) (2013) 33–45, http://dx.doi.org/10.1016/j.ejor.2012.12.029.

[15] Y.N. Sotskov, N.V. Shakhlevich, NP-hardness of shop-scheduling problems with
three jobs, Discrete Appl. Math. 59 (3) (1995) 237–266, http://dx.doi.org/10.
1016/0166-218X(95)80004-N.

[16] B. Chen, C. N.Potts, J.W. Gerhard, A Review of Machine Scheduling: Complexity,
Algorithms and Approximability, Kluwer Academic Publishers, 1998, pp. 21–169,
http://dx.doi.org/10.1007/978-1-4613-0303-9_25.

[17] C. Blum, J. Puchinger, G. Raidl, A. Roli, et al., A brief survey on
hybrid metaheuristics, in: Proceedings of BIOMA, 2010, pp. 3–18,
https://www.researchgate.net/publication/228365733_A_brief_survey_on_hybrid_
metaheuristics. (Accessed 26 November 2021).

[18] S. Meeran, M. Morshed, A hybrid genetic tabu search algorithm for solving
job shop scheduling problems: A case study, J. Intell. Manuf. 23 (4) (2012)
1063–1078, http://dx.doi.org/10.1007/s10845-011-0520-x.

[19] L. Gao, G. Zhang, L. Zhang, X. Li, An efficient memetic algorithm for solving
the job shop scheduling problem, Comput. Ind. Eng. 60 (4) (2011) 699–705,
http://dx.doi.org/10.1016/j.cie.2011.01.003.

[20] M. Affenzeller, S. Wagner, S. Winkler, A. Beham, Simulating evolution: Basics
about genetic algorithms, in: Genetic Algorithms and Genetic Programming:
Modern Concepts and Practical Applications, CRC Press, 2009, pp. 0–10, http:
//dx.doi.org/10.1201/9781420011326.

[21] A. Scholl, Balancing and Sequencing of Assembly Lines, Physica-Verlag HD, 1999.
[22] N. Mladenović, P. Hansen, Variable neighborhood search, Comput. Oper. Res.

24 (11) (1997) 1097–1100, http://dx.doi.org/10.1016/S0305-0548(97)00031-2.
[23] Microsoft documentation, 2021, https://docs.microsoft.com/en-us/dotnet/

csharp/language-reference/builtin-types/floating-point-numeric-types. (Accessed
26 November 2021).

[24] S. Wagner, G. Kronberger, A. Beham, M. Kommenda, A. Scheibenpflug, E. Pitzer,
S. Vonolfen, M. Kofler, S. Winkler, V. Dorfer, M. Affenzeller, Architecture and
design of the HeuristicLab optimization environment, in: Advanced Methods
and Applications in Computational Intelligence, Springer, 2014, pp. 197–261,
http://dx.doi.org/10.1007/978-3-319-01436-4_10.

[25] S. Martello, F. Soumis, P. Toth, Exact and approximation algorithms for
makespan minimization on unrelated parallel machines, Discrete Appl. Math.
75 (2) (1997) 169–188, http://dx.doi.org/10.1016/S0166-218X(96)00087-X.

[26] M. Frutos, A.C. Olivera, F. Tohmé, A memetic algorithm based on a NSGAII
scheme for the flexible job-shop scheduling problem, Ann. Oper. Res. 181 (1)
(2010) 745–765, http://dx.doi.org/10.1007/s10479-010-0751-9.

http://dx.doi.org/10.1007/s40685-019-0101-y
http://dx.doi.org/10.1016/j.procir.2015.02.051
http://dx.doi.org/10.1016/j.procir.2015.02.051
http://dx.doi.org/10.1016/j.procir.2015.02.051
http://dx.doi.org/10.1007/s00170-005-0043-8
http://dx.doi.org/10.1007/s10845-013-0837-8
http://dx.doi.org/10.1007/s10845-013-0837-8
http://dx.doi.org/10.1007/s10845-013-0837-8
http://dx.doi.org/10.1155/2018/9270802
http://dx.doi.org/10.1155/2018/9270802
http://dx.doi.org/10.1155/2018/9270802
http://dx.doi.org/10.1007/s10586-017-1420-4
http://dx.doi.org/10.1007/s10586-017-1420-4
http://dx.doi.org/10.1007/s10586-017-1420-4
http://dx.doi.org/10.1007/s10951-008-0090-8
http://dx.doi.org/10.1007/s10951-008-0090-8
http://dx.doi.org/10.1007/s10951-008-0090-8
http://dx.doi.org/10.1007/11504894_71
http://dx.doi.org/10.1007/11504894_71
http://dx.doi.org/10.1007/11504894_71
http://dx.doi.org/10.1007/978-3-030-14347-3_34
http://dx.doi.org/10.1007/978-3-030-14347-3_34
http://dx.doi.org/10.1007/978-3-030-14347-3_34
http://dx.doi.org/10.1016/j.procs.2021.01.170
http://dx.doi.org/10.1016/j.procs.2021.01.170
http://dx.doi.org/10.1016/j.procs.2021.01.170
http://www.din.uem.br/sbpo/sbpo2014/pdf/arq0357.pdf
http://www.din.uem.br/sbpo/sbpo2014/pdf/arq0357.pdf
http://www.din.uem.br/sbpo/sbpo2014/pdf/arq0357.pdf
http://www.ijaim.org/download/conference/ICEA/Mech-1_Final.pdf
http://www.ijaim.org/download/conference/ICEA/Mech-1_Final.pdf
http://www.ijaim.org/download/conference/ICEA/Mech-1_Final.pdf
http://dx.doi.org/10.1016/j.ins.2010.05.013
http://dx.doi.org/10.1016/j.ejor.2012.12.029
http://dx.doi.org/10.1016/0166-218X(95)80004-N
http://dx.doi.org/10.1016/0166-218X(95)80004-N
http://dx.doi.org/10.1016/0166-218X(95)80004-N
http://dx.doi.org/10.1007/978-1-4613-0303-9_25
https://www.researchgate.net/publication/228365733_A_brief_survey_on_hybrid_metaheuristics
https://www.researchgate.net/publication/228365733_A_brief_survey_on_hybrid_metaheuristics
https://www.researchgate.net/publication/228365733_A_brief_survey_on_hybrid_metaheuristics
http://dx.doi.org/10.1007/s10845-011-0520-x
http://dx.doi.org/10.1016/j.cie.2011.01.003
http://dx.doi.org/10.1201/9781420011326
http://dx.doi.org/10.1201/9781420011326
http://dx.doi.org/10.1201/9781420011326
http://refhub.elsevier.com/S2452-414X(22)00021-8/sb21
http://dx.doi.org/10.1016/S0305-0548(97)00031-2
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/floating-point-numeric-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/floating-point-numeric-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/floating-point-numeric-types
http://dx.doi.org/10.1007/978-3-319-01436-4_10
http://dx.doi.org/10.1016/S0166-218X(96)00087-X
http://dx.doi.org/10.1007/s10479-010-0751-9

	A hybrid metaheuristic solution approach for the cobot assignment and job shop scheduling problem
	Introduction
	Overview
	Related work and research contribution

	Problem description
	Cobot assignment and job shop scheduling
	Cobot assignment and assembly line balancing

	A constraint programming formulation of the job shop scheduling problem with cobot assignment
	Solution method
	Overview
	Genetic algorithm
	Encoding and evaluation - real-world problem
	Encoding and evaluation - assembly line balancing problem with cobot assignment

	Variable neighborhood search
	Hybrid genetic algorithm

	Numerical experiments
	Dataset dimensions
	Overview
	Combined cobot assignment and job shop scheduling problem
	Real-world data
	Artificial data sets

	Combined cobot assignment and assembly line balancing problem

	Main findings
	Outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Artificial data sets
	Appendix B. Parameter settings literature
	Appendix C. Computational results of the genetic algorithm on the real-world data set
	Appendix D. Computational results of the hybrid genetic algorithm on the real-world data set
	Appendix E. Solution quality per number of cobots
	Appendix F. Artificial instances - GA/CP
	Appendix G. Hybrid GA vs. CP long runs - a comparison based on normalized objective function values
	Appendix H. Computational results small data set
	Appendix I. Computational results medium data set
	Appendix J. Computational results large data set
	Appendix K. Robot density 0.4 - small instances
	Appendix L. Robot density 0.4 - medium instances
	Appendix M. Robot density 0.4 - large instances
	References

