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Zusammenfassung

Beim maschinellen Lernen geht es häufig um die Konstruktion von Schranken für Probleme, bei denen
das Ziel darin besteht, einen Klassifikator mit Funktionen einer bestimmten Klasse aus Stichproben-
punkten zu approximieren. Wie eng die Schranken sind, hängt von den Annahmen über den zu
lernenden Klassifikator, die Verteilung der Daten und die Art der als Hypothesen verwendeten Funk-
tionen ab. Ziel dieser Arbeit ist es, solche Schranken für Fälle abzuleiten, in denen der Klassifikator
eine Menge mit Funktionen der Barron-Klasse als lokale Grenzen und ein neuronales Netz als Hy-
pothesenmenge ist. Eine weitere und zentrale Annahme wird über die Verteilung der Daten gemacht,
nämlich dass eine Randbedingung für die Verteilung gilt. Dies bedeutet, dass in einem Bereich um
die Grenze der zu lernenden Menge keine Daten gezogen werden können. Unter diesen Annahmen
zeigen wir, dass die obere Schranke für das Risiko optimal ist und nur polynomiell von der Dimension
abhängt.
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Abstract

Machine learning often deals with the construction of error bounds for problems where the goal is to
approximate a classifier with some functions of a certain class from sampled points. The tightness
of the bounds depends on the assumptions made about the classifier to learn, the distribution of the
data and the type of functions taken as hypotheses. This goal of this paper is to derive such bounds
for cases where the classifier is a set with functions of the Barron class as local boundaries and neural
network as hypothesis set. A further and central assumption is made about the distribution of the
data, namely that a margin condition on the distribution holds. This means that no data can be
sampled in an area around the boundary of the set to learn. Under these assumptions we show the
upper bound for the risk is optimal and only polynomially dependent of the dimension.
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Résumé

L’apprentissage automatique consiste souvent en la construction de borne d’erreur pour des problèmes
visant à approximer un classifieur par des fonctions d’un certain type à partir de points échantillonés.
L’acuité des bornes dépend des hypothèses faites sur le classifieur à estimer, la distribution suivie par
les échantillons et enfin les fonctions servant à l’estimation. Le but de cet article est de dériver ce
genre de bornes lorsque le classifieur est un ensemble dont les frontières sont localement des fonctions
de la classe Barron et les fonctions utilisées pour l’estimation des réseaux de neurones. Une hypothèse
cruciale est également faite, à savoir qu’une condition de marge existe sur les données. Cela veut
dire que la probabilité d’être tiré pour des points se situant dans une marge autour de la frontière de
l’ensemble à estimer est nulle. Sous ces conditions, nous montrons que la borne supérieure du risque
est optimale et dépend seulement de façon polynomiale de la dimension de l’ensemble.
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1 Introduction

1.1 Motivation

In this section we explain the general framework in which we work, namely statistical learning, as well
as the specific problem that motivates this work.

1.1.1 Statistical Learning Basics

This part is particularly addressed to readers unfamiliar with statistical learning, and we explain in it
the core ideas of this field met in this thesis. The principle of statistical or machine learning is to (as
the name tells it) learn something from samples, using an algorithm (and the computational power of
a computer). What does learning mean and what is this something which is learnt ? This something
is typically a function that associates to a certain data a certain value. Let us call it f. The function f
returns for some point x of a set X some other point y of a set Y . In the rest of this section, we will
assume that x ∈ Rd and y ∈ R :

f : X → Y, f(x) = y.

We say that f is a binary classifier if Y is a set of two elements (say {0, 1}). Note that this a
formalization of any process like this one : f is the function which tells from the age of a person
whether they qualifies to the reduced tickets at Vienna State Opera. The current policy at this Opera
House is that people under 27 benefit from the reduced tickets. The function can hence be written so
: ”If under 27 (excluded), then benefits ; if not, then does not benefit.”, or, denoting by x ∈ N the age
of the person and the set {does not benefit, benefits } by Y = {0, 1}:

f : N → {0, 1}, f(x) = 1x<27(x) =

{
1 if x < 27,

0 if x ≥ 27.

Now suppose that you know what is the policy lead by the Vienna State Opera but do not have
access to the limit age, and that you can only ask people at the end of a performance their age and
whether or not they benefited from reduced tickets. Finding an unknown function from samples is
precisely what statistical learning does. Formally, you have in this case a hypothesis set consisting
of all the functions of the form h(x) = 1x<n(x), n ∈ N, which we call H and samples that are the
people you meet at the end of a performance. It is very important to say that even though the
distribution D of their age can be anything, the assumption made in statistical learning is that the
samples are independent and identically distributed (i.i.d). This is a crucial and common assumption,
which basically says that the age and ticket status of a person you ask in front of the Opera do not
depend on the data of the others you meet and that you have on average for every age always the same
amount of people of this age every night. So suppose that you ask ten people and get the following
sample : S = {(65, 0), (34, 0), (42, 0), (13, 1), (71, 0), (11, 1), (73, 0), (23, 1), (87, 0), (84, 0)}. From
this sample you can form a hypothesis hS you hope close to f , using for example the smallest age
labelled 0 as guessed limit age (or the oldest labelled 1 if you met only people with reduced tickets).
For this sample, it would yield hS(x) = 1x<34. This hypothesis is right on this set, and we say that
hS has an empirical error or empirical risk equal to zero. Denoting it with R̂(h1) :

R̂(h1) =
1

10
·#{(xi, f(xi)) ∈ S : h1(xi) ̸= f(xi)} = 0.

This is how statistical learning works : trying to produce hypotheses that minimize the empirical risk
on a sample. This principle is called Empirical Risk Minimization (ERM). However, suppose that ten
percent of the Opera visitors are aged between 27 and 33 and that the distribution is uniform. It means
that the hypothesis hS fails on average to classify rightly every tenth visitor. We call this the true error
or risk, denoted R. Here R(hS) = 0.1. But suppose that ninety percent of the visitors are between 27
and 33, then the true error of hS would be 0.9, which is really bad ! Should we conclude that a classifier
obtained following an ERM rule has no guarantee to be an actual good classifier ? Fortunately, no. If
the proportion of people with age between 27 and 33 were of ninety percent, then the above sample
S would be pretty unlikely. The probability of running ten times in a row into a person not in this
category has indeed a probability of (1 − 0.9)10 = 10−10 ! If the sample were composed of hundred
people, such a sample (without people aged between 27 and 33) would have a probability of 10−100 etc.
Yet there exist plenty of other samples that lead to a classifier that has a big true error while being
with a zero empirical risk, therefore more computation is needed to infer the actual risk of a hS with no
empirical error (see [18] for a comprehensive account). But you can see here why the bigger the sample
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is, the unlikelier it becomes for a classifier with no empirical risk to be a bad classifier in general : this
would mean that the samples it was trained on were non representative of the true classification, which
turns less and less probable if the sample size grows, thanks to the i.i.d. assumption. This example
may give to the reader unfamiliar with these topics a rough insight of the Fundamental Theorem of
Statistical Learning ([18], Theorem 6.8, detailed in Section 3). This theorem says that there are (quite
widespread) configurations where when the empirical risk can be null, the true error is bounded by

something that decreases along with the increase of the sample size, namely at a rate of order log(n)
n

where n is the sample size. The main purpose of this work is to show that neural networks learning a
certain type of classifier (see Definition 3.4) can fulfill the conditions of the Fundamental Theorem of

Statistical Learning and therefore can achieve true error rates of log(n)
n .

1.1.2 Neural Networks and Barron functions : a Framework

[For all the technical details concerning neural networks, see Subsection 1.6.] A neural network is
roughly a highly parametrizable function made of some input and output layers, with some layers in
between. Each layer consists of neurons or computational units. These are functions that typically
output something between 0 and 1, whether or not the input exceeds a certain threshold (on of the
most used one is the ReLU function). The input for a neuron is a weighted sum of the outputs of the
precedent layer neurons. Even if able to approximate extremely complex functions, a neural network
stays a recursive sum of ReLU activated linear functions, which makes them easily trainable ([12, 14]).

The Barron class was introduced by the eponymous mathematician in [4, 2, 3]. The functions of
this class have a bounded first Fourier moment (see Definition 2.1), which allows them to be approx-
imated by neural networks independently of their ambient dimension (see Proposition 3.2). This is a
huge advantage these functions have, regarding the pitfall constituted by the curse of dimensionality
in machine learning. The issue here is that the sample complexity (the minimal number of samples
you need to probably achieve a certain risk) uses to grow exponentially with the ambient dimension
and the decrease of the risk. This problem occurs also when dealing with neural networks, concerning
their size and the magnitude of their parameters. The asset of the Barron class is a double one, as it
addresses the two curses : the one related to the complexity of the model (here neural networks) and
the one related to the sample complexity.

1.1.3 Margin Condition

The idea of a margin condition on the distribution roots in the developing of the Support Vector
Machine (SVM) in the 1990s (cf. [20]), following a original idea by V. Vapnik in 1963 ([24]). SVM
rely on the idea that when learning a classifier, the classes can be linearly separated (if projected in
another space, or not). Typically, for a binary classifier in dimension two, the two classes are split into
two different half-planes and separated by a line. The assumption goes further than the mere linear
separability, since a margin between the classes is assumed : the minimal distance from the separating
plane is strictly positive for any sample. The framework evolved since, and the common framework
for binary classifiers is as follows : labelled points are generated by two random variables X ∈ Rd and
Y ∈ {−1, 1} following a joint distribution P . This means that unlike the assumptions in the basic
SVM model, the position of x ∼ X does not fully determine its label, rather a posterior probability
is introduced η(x) := P (Y = 1|X = x). The posterior probability addresses the quantification of the
noise in models where the classification highly depends on the coordinates of the data in the space,
but not in an absolute way. The concept of decision line emerges in this framework as the set of points
for which the classification is equivalent to coin-tossing, D = ∂{x ∈ Rd : η(x) < 1/2}. In [22, 15, 23]
among others (see the next subsection for more related works) the quantification of this noise is tackled.
Tsybakov in [23] introduced a first condition, often called margin condition although in this thesis we
will use a second common designation, noise condition. This low-noise condition holds if there exist a
q > 0 (the noise exponent) and some constant C > 0 such that for all t > 0 :

PX(|2η(x)− 1| ≤ t) ≤ Ctq. (1)

There are two ways of understanding this, either as a ”spatial” condition or as a ”probabilistic” one.
This means that this condition can be obtained through condition on the sample distribution X (in
this case, the condition states that it is unlikely for a point to be sampled in a noisy area) or on the
posterior distribution η (in this case, the bigger the exponent, the more deterministic is the label, i.e.
the less noise there is). Both interpretations are equivalent, but a second kind of margin condition was
introduced in [20] to highlight the ”spatial” interpretation. Recalling thatD = ∂{x ∈ Rd : η(x) < 1/2},
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and defining the following distance ∆(x,D) = infx′∈D ||x−x′||2 where we use the Euclidean norm, the
margin condition holds if there exist a p > 0 (the margin exponent) and some constant C > 0 such
that for all t > 0 :

PX(∆(x,D) ≤ t) ≤ Ctp. (2)

P = 0.5
P = 0.7

P = 0.9
9

P = 0.9

P = 0.0
1

Figure 1: Noisy case. The brighter the colors, the closer to 1/2 gets the probability P := η(x). Red
corresponds to the class 1 and blue to the -1 one.

P = 0.5
P = 0.7

P = 0.9
9

P = 0.9

P =
0.0

1

Figure 2: High noise exponent, ”spatial” point of view. In this figure, the importance of
the noise exponent is materialized by the greyed zone on which the probability of being sampled is
extremely low.

In this thesis, we are working in a noise-free margined framework, that is with infinite noise and margin
exponents. These assumptions ensure the absolutely deterministic characteristic of the classifier to
learn and a non zero distance for the samples to the decision line. To fit this framework, we still
have to reformulate our model a bit : first, we want to scale the data to have a margin equal to 1
(in order to have a probability of being inside the margin equal to zero) and second to define the
following distribution P (Y = 1|X ∈ Ω) = 1, P (Y = 1|X /∈ Ω) = 0 and P (Y = 1|X ∈ ∂Ω) = 1/2 (note
that PX(X ∈ ∂Ω) = 0). Thus we can rewrite our margin condition (Definition 2.3) in the terms of
[20].

1.2 Related Work

This thesis can be seen as an emphasis on some results of [16] and [9], since it is primarily the eval-
uation of the results of these two papers with a margin condition on the data sampling. We are
therefore following an approach aligned with these papers and the evolving in the same domain. For
these reasons we invite the reader to refer to the these papers for a a more detailed overview of the
works related to this thesis concerning the neural network part. We still highlight here [4, 2, 3] as these
are the papers where the curse of dimensionality breaking capacity of the Barron class was first proven.

Regarding the margin condition, [23] by Alexandre Tsybakov is the first paper that formalized the
idea of a low-noise condition, which is highly studied, so that it is sometimes referred as the Tsybakov
condition (see [22, 15, 26, 17, 7, 19, 21, 11, 1]). However, this thesis is focused on the another type
of margin condition we introduced (2). This spatial margin condition seems to have been first intro-
duced in [20]. It has been since directly studied in [8] where the distinction made between a noise-free
environment and the presence of a margin around the boundary for the sampling is crucial. Recently
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P = 0.5

P = 1

P = 0

P = 0.9
9

P = 0.0
1

Figure 3: High noise exponent, ”probabilistic” point of view. Here the high noise exponent
pushes the posterior probability η to extreme values (0 or 1), but there is no condition on the location
of the sampled points.

µ

Figure 4: Sampling in a noisy and unmargined case vs. case with q = p = ∞ and µ = 1. The
line represents η(x) = 1/2 and we see that without condition on the noise, points sampled in a ”red”
zone are labelled blue and vice-versa. On the contrary, infinite noise and margin exponents ensure no
overlapping of the classes and a margin around the boundary.
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[13] derived some bounds for the estimation of smooth functions with the help of deep neural networks
under the noise and margin conditions. Applied to Lipschitz functions, which is the case of Barron
functions (see [10], Theorem 3.3), the bound they derive for the risk is for p and q margin and noise
conditions, respectively:

R(h) ≲

(
log3 n

n

) q+1
(q+2)+(d−1)(q+1)/p

.

As written in the above subsection, in this thesis the assumption is that q = p = ∞, which would lead

to a bound of the order log3(n)
n .

1.3 Our Contribution

Our major contribution is the Theorem 4.3, i.e. the computation of a risk bound of order log(n)
n for

a class of deep neural networks learning the characteristic function of a set with piece-wise Barron
boundary following an ERM rule with n samples when a margin condition holds. This is the best
bound possible without more assumptions. This theorem is a direct consequence of the Theorem 3.7
that builds the adequate neural network class, which is a class of neural network whose empirical error
is limited around the boundary of the set. Note that neural networks in Theorem 3.7 are a slightly
modified version of the one used in [9], Theorem 3.7. The issue with [9] class is that the networks
differ from the classifier it learns on a set of bounded measure, that decreases along with the growth
of the sample size ; but while having an insignificant risk, there is no guarantee for the distance of the
misclassified points from the set boundary, which is problematic to achieve a zero empirical error, even
under a margin condition assumption. In total these two theorems yield that in classification problems
with margins and Barron functions as boundary, deep neural networks are always optimal without a
visible curse of dimension.

1.4 Outline

In Section 2, we begin with a first bound under margin condition in the simple case of a classifier of
the form 1f(x1,...,xd−1)>xd

where f is a function of the Barron class. In Section 3, we build a neural
network that is a modified version of one obtained in [9], and which approximates well a set with
piece-wise Barron boundary, making errors only around the boundary of the said set. In Section 4,
we draws the conclusions opened by the network in Section 3, i.e., that ERM in a realizable case with
neural network is possible in this situation.

1.5 Discussion

The kind of margin condition we deal with, that is a margin condition on the distribution may seem
a bit of a cheat-code, since assumptions about the distribution can lead to absolutely everything : the
No-Free-Lunch Theorem ([18], Theorem 5.1) states roughly that some misleading distribution always
exists whereas a distribution giving always the same point ensures the possibility of having a perfect
classifier with no risk at all. The question is then whether such an assumption is justified. In the
literature, the question, as far as we know, has never been addressed for itself when it comes to neural
networks, except in ([25]). However the assumption of a sort of no-man’s-land between two sets of
points with different labels is not new, and has even its dedicated model in supervised learning : the
Support Vector Machine (SVM). The assumption of a margin condition on the distribution is just the
reverse of a model that assumes the presence of noise, and both have their applications in the various
fields where machine learning is used.

1.6 Notations

Let us introduce in this section the notations we will use in this thesis :

General notations

• If we denote a number by a Greek letter without giving more precision on the set to which it
belongs, this means that it is a real number. For instance ”Let µ > 0” implies that µ ∈ R.

• On the other hand if we denote a number by a Latin letter without giving more precision on the
set to which it belongs, this means that it is an integer. For instance ”Let m > 0” implies that
m ∈ N∗.
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• Any statement beginning with something in the form ”Let a, b, c > 0” or ”Let f, g ∈ C∞” means
each time that the condition is valid for all the items mentioned. In the examples, the three
integers a, b and c are positive and both f and g are smooth functions.

• For d > 0, let x = (x1, ... , xd) ∈ Rd. For i ∈ N we write xi for the i -th coordinate and xi

designates the vector xi = (x1, ... , xi−1, xi+1, ... , xd) ∈ Rd−1.

• For d > 0, let a, b ∈ Rd, the notation [a, b] designates the set [a, b] = Πd
i=0[ai, bi] where we use

the Cartesian product.

• For some n, d > 0, let an ∈ Rd. Then for j > 0, an,j designates the j-th coordinate of the vector
an = (an,1, ... , an,d).

• For m ≤ n, we use the following notation : Jm,nK = [m,n] ∩ Z = {m,m+ 1, ... , n− 1, n}.

Notations related to functions and sets

• For a set A, 1A designates the indicator function or characteristic function of the set A :

1A(x) =

{
0 if x /∈ A,

1 if x ∈ A.

• For two sets A and B, the symmetric difference ∆ designates the set A∆B = (A \B) ∪ (B \A).

• For a set A, #A designates its cardinal.

• For a function f : X → Y , we denote by ||f ||sup := supx∈X |f(x)|.

• For a function f : X → Y , we denote by supp f :=

Notations concerning neural networks

••• We use σ to denote the ReLU function σ : R → [0,∞) :

σ(x) =

{
0 if x < 0,

x if x ≥ 0.

• When mentioning a neural network Φ, we refer to its architecture as follows : A = (n1, ..., nk),
where the network Φ has k layers with ni neurons on each of them. For such an architecture is
associated k weights and biases matrices : (Wi)

k
i=1 and (bi)

k
i=1. The weights matrices have the

size ni×ni−1 and biases ni×1. Note that the size of the first layer corresponds to the dimension
of the input, so n1 = d if the input is in Rd, and that for a binary classifier, the output layer has
only one neuron, so nk = 1. We use the notation RσΦ(x) to denote the output (or realization)
of Φ for x ∈ Rd as input. This corresponds to what the following process yields :

x0 = x ∈ Rd,

xi = σ

 ni∑
j=1

Wi−1xi−1 + bi−1

 , i ∈ J1, k − 1K,

xk =

nk∑
j=1

Wk−1xk−1 + bk−1.
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2 General Framework for Estimation under Margin Condi-
tion

We want to estimate functions of the form 1B where B is a set with a boundary that belongs to the
Barron class (see 2.1). Our goal is to show that if a margin condition holds (i.e. no point can belong
to an µ-tube around the boundary, see 2.3 below), then for 0 < α ≤ µ, any subset of the Barron class
of functions such that every Barron functions in general is at most α away from a function the set (we
call it an α-net) is an adequate hypothesis class, since it contains at least one function that performs
exactly the same classification than 1B . In other words, there exists a subset of the class (and we
will see hereinafter that it is a substantially smaller one) such that it suffices to look into it to find a
classifier doing the same thing as 1B .

First, let us define the general Barron class of functions :

Definition 2.1. [[9], Definition 2.1] Let ∅ ̸= X ⊂ Rd be bounded. A function f : X → R is said to
be of Barron class with constant C > 0, if there are x0 ∈ X, c ∈ [−C,C], and a measurable function
F : Rd → satisfying∫

Rd

|ξ|X,x0 · |F (ξ)| dξ ≤ C and f(x) = c+

∫
Rd

(
ei⟨x,ξ⟩ − ei⟨x0,ξ⟩

)
· F (ξ) dξ ∀x ∈ X, (3)

where we used the notation |ξ|X,x0 := supx∈X |⟨ξ, x− x0⟩|. We write Bd−1,C(X,x0) for the class of all
such functions.

The functions of Barron class have a bounded first Fourier moment. As we wrote in the introduction,
the Barron class provides us an excellent model of high dimensional decision boundaries. Now let us
define how they are used to build classifiers:

Definition 2.2. [[9], Definition 2.2] Let C > 0 and d ∈ N≥2. Let for X ⊂ [0, 1]d−1 and x0 ∈ X,
b ∈ Bd−1,C(X,x0). We call hb : X → {0, 1} a horizon function if :

hb(x) = 1b(xd)≤xd
.

Now, recall that we want to learn such a horizon function through points i.i.d. sampled from a certain
distribution D over the space. We first formalize what a margin condition on this distribution is.

Definition 2.3. Let C > 0, d ∈ N≥2 and b ∈ Bd−1,C . We say that a µ-margin condition holds if there
is a µ > 0 such that for Mµ,b := {x ∈ [0, 1]d, |b(x1, ..., xd−1)− xd| < µ}, the samples are drawn i.i.d.
from a distribution D on Rd such that :

Px∼D(x ∈Mµ,b) = 0.

Finally, we define the notion of an α-net :

Definition 2.4. [[16], Definition 3.9] Let C be a set of bounded real functions and α > 0. We say that
Nα ⊂ C is an α-net of C for the uniform norm if :

∀f ∈ C, ∃fα ∈ Nα s.t. ||f − fα||sup < α.

We now prove that if the margin condition is satisfied for a function hb, b ∈ Bd−1,C(X,x0), then
it is guaranteed that for all α smaller or equal than µ, at least one function of from an α-net of
Bd−1,C(X,x0) will perform exactly the same classification as hb.

Theorem 2.5. Let hb a horizon function with its associated boundary function b ∈ Bd−1,C(X,x0), x0 ∈
X ⊂ Rd≥2. If for µ > 0 a µ-margin condition holds with respect to the distribution D of the data over
X, then for all 0 < α ≤ µ and Nα an α-net of Bd−1,C(X,x0), there is a function b̃ ∈ Nα, such that
hb̃ = hb almost surely.

Proof. Let b ∈ Bd−1,C(X,x0) be the boundary function of hb. Define for 0 < α ≤ µ :

Bα := {bα ∈ Bd−1,C : ||bα − b||∞ < α}.
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The set Bµ is the set of all the functions of Bd−1,C(X,x0) that take on [0, 1]d−1 values that are within
the margin Mb,α ⊂Mb,µ.

We first show that : ∀x ∈ [0, 1]d ∩M c
b,α, ∀bα ∈ Bα, hbα(x) = hb(x).

For all points x ∈ [0, 1]d ∩M c
b,α and all bα ∈ Bα, it holds :

x /∈ {x ∈ [0, 1]d, |b(x1, ..., xd−1)−xd| ≤ α} =⇒ b(x1, ..., xd−1)−xd ≥ α or b(x1, ..., xd−1)−xd ≤ −α.

Thus : {
b(x1, ..., xd−1) ≥ xd =⇒ b(x1, ..., xd−1)− α ≥ xd,

b(x1, ..., xd−1) ≤ xd =⇒ b(x1, ..., xd−1) + α ≤ xd.

Moreover, by definition of Bα : b(x1, ..., xd−1)− α ≤ bα(x1, ..., xd−1) ≤ b(x1, ..., xd−1) + α.

Then : {
b(x1, ..., xd−1) ≥ xd =⇒ bα(x1, ..., xd−1) ≥ xd,

b(x1, ..., xd−1) ≤ xd =⇒ bα(x1, ..., xd−1) ≤ xd.

Since Px∼D(x /∈Mb,α) = 1, these two implications yield :

∀bα ∈ Bα, x ∼ D ∈ [0, 1]d =⇒ hbα(x) = hb(x) a.s.

Now, letNα be an α-net of Bd−1,C(X,x0). By definition, there is at least one b̃ ∈ Nα which is also in Bα.

Therefore, there is a horizon function hb̃ with b̃ ∈ N such that hb̃ = hb on [0, 1]d almost surely.

Now that we have proven that a subset of Bd−1,C suffices as a hypothesis set in order to be in a
realizable case, we will use the fact that it is a finite set to deduce the corresponding estimation rate.

Definition 2.6. [[16], Definition 3.9] Let α be a positive real number. We call α-covering entropy of
a set K the number:

MK(α) = ln(VK(α)) where VK(α) := min {|G| : G is an α-net of K}.

Proposition 2.7. [[9], Proposition 4.4] Given d ∈ N and C > 0, there exists a constant C0 =
C0(d,C) > 0 such that the covering entropy numbersMBd,C

of Bd,C(X,x0) with respect to the uniform

norm on [0, 1]d satisfy

MBd,C
(α) ≤ C0 · α−1/( 1

2+
1
d ) · (1 + ln(1/α)).

There is a finite subset of the Barron class which suffices as hypothesis set to achieve a perfect clas-
sification. We now prove the corresponding bounds in statistical learning. We first introduce some
definitions before stating the Proposition 2.9 from which we compute the bounds.

Definition 2.8. [[18], 2.2 and 3.2.2] Let A be an algorithm aiming at estimating a classifier h from a
sample S of size m drawn i.i.d. according to a distribution D. We define the empirical risk R̂h

S of the
algorithm A(S) as

R̂h
S(A(S)) =

1

m

∑
x∈S

1A(S)(x)̸=h(x)

and its generalization error, risk or true error R as

Rh
D(A(S)) = ES′∼Dm(R̂h

S′(A(S))) = Px∼D(A(S)(x) ̸= h(x)).

Proposition 2.9. [[18], Corollary 2.3] Let H be the hypothesis class and C ⊂ H be the concept
class. Let A be an algorithm aiming at learning c ∈ C, such that for each h ∈ H, and each sample
S = (xi, h(xi))

n
i=1 drawn i.i.d. according to a distribution D we have that :

R̂c
S(A(S)) = 0.
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Then, for every δ > 0, with probability 1− δ over the sampling of S,

Rc
D(A(S)) ≤

1

n

(
log|H|+ log

1

δ

)
.

Now we will combine the above proposition together with Theorem 2.5 and Proposition 2.7. We saw
that if one can manage to have a classifier inferred from a sample of size n > 0 with an empirical error
on this sample equals to zero and a finite hypothesis set, then the true error of this classifier will decay
with 1

n . Theorem 2.5 ensures that if a margin condition holds, then any hypothesis class containing a
net tighter than the margin contains at least a perfect classifier as well. It contains therefore a fortiori
at least one classifier with a zero empirical error on any sample. Moreover, thanks to Proposition 2.7,
this hypothesis set is finite. We can then apply Proposition 2.9 :

Theorem 2.10. For d ≥ 2 and C ∈ R∗, let b ∈ Bd−1,C(X,x0) and hb the associated horizon function.
Suppose that for µ > 0 a µ-margin condition holds w.r.t. the distribution D of the data over [0, 1]d. If
for 0 < α ≤ µ the hypothesis class H contains an α-net Nα of Bd−1,C(X,x0) and is finite, then there
exists an algorithm A estimating hb from a sample S of size n drawn i.i.d. according to the distribution
D such that ∀δ > 0:

R(A(S)) ≤ 1

n

(
MBd−1,C

(α) + log
1

δ

)
,

with probability 1− δ.

Proof. Since a µ-margin condition holds, Theorem 2.5 tells that for all 0 < α ≤ µ, any α-net Nα of
Bd−1,C(X,x0) contains at least one horizon function b̂ of a classifier that makes no error. Moreover,

Proposition 2.7 tells that this net is finite, with size MBd−1,C
(α) ≤ C0 ·α−1/( 1

2+
1

d−1 ) · (1+ ln(1/α)), C0

a constant. Therefore, if for 0 < α ≤ µ and Nα such a net, H ⊃ Nα, then there exists at least one
algorithm A such that :

R̂S(A(S)) = 0.

Indeed, you can always try out all the hypothesis set H in the worst case.

We conclude using Proposition 2.9.

Thus, we have an excellent risk rate in this configuration. Now, the question is whether we can
generalize this bound to sets that are only locally with Barron boundary and with neural networks.
Such a rate does not seem reachable with no more assumptions as a set of neural network with fixed
size is not finite. Still, we can compute some good bounds as even sets only locally Barron can be
approximated very well by neural networks as we prove in the next section.
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3 Approximation of a Barron-bounded Set by a Neural Net-
work

In this section, we study the question whether the rate 1
n , n being the sample size, or something similar

is achievable with neural networks. The issue here is that the size of a neural network class is not finite.
Therefore, using a set of neural network as hypothesis set is not compatible with the rate computed
in 2.10. However, while of infinite size, a class of neural networks with fixed numbers of layers and
neurons has a bounded VC-dimension. The Fundamental Theorem of Statistical Learning found in
[18] (Theorem 6.8) provides us with some bounds on the risk of an estimator following an ERM rule if
the hypothesis class to which the estimator belongs is of a bounded VC-dimension. We first state the
Fundamental Theorem of Statistical Learning :

Theorem 3.1. [[18], Theorem 6.8] Let H be a hypothesis class of functions from a domain X to {0, 1}.
Let C be the concept class and c ∈ C the classifier to learn. Assume that V Cdim(H) <∞ and that for
some distribution D over X it holds that : minh∈H Rc

D(h) = 0. Then, there is an absolute constant
K1 ∈ R such that with probability 1− δ over the sampling of S = (x1, ... , xn) ∼ Dn:

∀S ∼ Dn, ∃hS ∈ H s.t. R̂c
S(hS) = 0 and Rc

D(hS) ≤
log(n)

n
K1VCdim(H) +

K1

n
log(1/δ).

If one can prove that there exists a class of neural networks H such that for a certain distribution D
over X ⊂ Rd for which a margin condition holds, there is at least one classifier in H that makes no

error on a n-sized sample, then the true risk of this classifier would be equivalent to log(n)
n , which is

a highly satisfying rate. To this end, we prove in this section that neural networks can approximate
well the characteristic function of sets with Barron boundary. However, we won’t stick to the sole
sets with a single function of the Barron class as boundary, rather we prove that neural networks can
estimate the characteristic function of sets in Rd that can be approximated like sets with piece-wise
Barron boundary, not necessarily continuous (see Definition 3.4). We rely on the following Propsition
3.2 to prove that such a class of neural network set exists.

Proposition 3.2. [[9], Proposition 2.2] There is a universal constant κ > 0 with the following property:
For any bounded set X ⊂ Rd with nonempty interior, for all C ∈ R∗

+, x0 ∈ X and f ∈ Bd,C(X,x0),
and all N ∈ N, there is a shallow neural network Φ with 8N neurons in the hidden layer such that

∥f −RσΦ∥sup ≤ κ
√
d · C ·N−1/2.

Furthermore, one can choose all weights and biases of Φ to be bounded by(
5 + ϑ(X,x0)

)
·
(
1 + ∥x0∥1

)
·
√
C, where ϑ(X,x0) := sup

ξ∈Rd\{0}

(
∥ξ∥∞

/
|ξ|X,x0

)
.

The proof, given in appendix, relies on the fact that due to their boundedness Barron functions can be
rewritten as bounded expectation of half-spaces. This expectation of half-spaces is itself the realization
of a certain neural network, the parameters being distributed according to a distribution deriving from
the function. From this equality one can conclude the boundedness of the expectation of the norm of
the difference of the function and the neural network. Since the expectation is bounded, there exists
at least one realization for the parameters such that the norm of the difference itself is bounded, which
concludes the proof.

Remark : The quantity ϑ(X,x0) roughly speaking measures how big of a rectangle the set X contains.
More precisely, assume that X ⊃ [a, b] where bi − ai ≥ ε > 0 for all i ∈ d. Then we see with the
standard basis (e1, . . . , ed) of Rd that

ε |ξi| =
∣∣⟨ξ, a+ ε ei − x0⟩ − ⟨ξ, a− x0⟩

∣∣ ≤ |⟨ξ, a+i −x0⟩|+ |⟨ξ, a− x0⟩| ≤ 2 sup
x∈X

|⟨ξ, x− x0⟩|.

Since this holds for all i ∈ d, we see |ξ|X,x0
≥ ε

2 ∥ξ∥∞ and hence ϑ(X,x0) ≤ 2
ε . Note that since X has

nonempty interior, we can always find a sufficiently small non-degenerate rectangle in X; therefore,
|ξ|X,x0 ≳ ∥ξ∥ℓ∞ for all ξ ∈ Rd.

Now, for the sake of generality, we introduce the Barron approximation space, the space of functions
that can be approximated by a neural network like in Proposition 3.2.

15



Definition 3.3. [[9], Definition 3.1] Let d ≥ 2 and let X ⊂ Rd be bounded with nonempty interior.
For C ∈ R∗

+, we define the Barron approximation set BAd,C(X) as the set of all functions f : X → R
such that for every N ∈ N there is a shallow neural network Φ with N neurons in the hidden layer
such that

∥f −RσΦ∥sup ≤
√
d · C ·N−1/2

and such that all weights (and biases) of Φ are bounded in absolute value by

√
C ·
(
5 +x0∈X

[
∥x0∥1 + ϑ(X,x0)

])
, where ϑ(X,x0) := sup

ξ∈Rd\{0}

(
∥ξ∥∞

/
|ξ|X,x0

)
.

The set BAd(X) =
⋃

C∈R∗
+
BAd,C(X) is called the Barron approximation space.

Remark : Thanks to Proposition 3.2, there is an absolute constant κ such that for all X ⊂ Rd and all
x0 ∈ X, the Barron class Bd,κC(X,x0) is included in BA(X).

Definition 3.4. [[9], Definition 3.3] Let d ≥ 2 and C ∈ R∗
+ and let Q = [a, b] ⊂ Rd be a rectangle. A

function hb : Q → R is called a Barron horizon function with constant C, if there are i ∈ J1, dK and
h ∈ BAd−1,C

(
Qi
)
where Qi = [ai, bi] as well as θ ∈ {±1} such that

hb(x) = 1θxi≤b(xi) ∀x ∈ Q.

We write BHd,C(Q) for the set of all such functions.

Finally, given M ∈ N and C ∈ R+, a compact set Ω ⊂ Rd is said to have a Barron class boundary with

constant B if there exist rectangles Q1, . . . , QM ⊂ Rd such that Ω ⊂
⋃M

i=1Qi where the rectangles
have disjoint interiors (i.e., Q◦

i ∩Q◦
j = ∅ for i ̸= j) and such that 1Qi∩Ω ∈ BHd,C(Qi) for each i ∈M .

We write BBC,M (Rd) for the class of all such sets. Also, a family (Qj)
M
j=1 of rectangles as above is

called an associated cover of Ω.

Definition 3.5. Let X ⊂ Rd≥2 be a set. We call boundary of X the set ∂X := {x ∈ Rd : ∀ν >
0,∃y, y′ ∈ B(x, ν), y ∈ X, y′ /∈ X} where B(x, ν) := {y ∈ Rd : ||x− y||2 < ν}.

Remark : For d ≥ 2 and C ∈ R∗, let b ∈ Bd,C and hb the associated horizon function. The set
X = {x ∈ Rd : hb(x) = 1} has the following boundary ∂X = {x ∈ Rd : b(xd) = xd}.

Definition 3.6. Let X ⊂ Rd≥2 be a set. For x ∈ Rd, we call distance of x from X the value
||x−X|| := inf{||x− y||2 : y ∈ X}.

We said at the beginning of this section that its goal was to prove that neural networks could learn
well the characteristic function of sets with piece-wise Barron boundary. To be more precise, what is
meant with ”learn well” is that the classifier obtained differs from the actual characteristic function on
an area whose size decreases along with the increase of the neural network size. Moreover, we prove
that this area corresponds to a tube of width of order 1√

N
, with the neural network having a number

of neurons linearly linked to some N > 0.

Theorem 3.7. Let d ≥ 2 and Ω ⊂ Rd such that for M > 0 and C ∈ R∗
+, Ω ∈ BBC,M (Rd). There

exists a neural network IN with three hidden layers and the ReLU activation function σ such that :

∀x ∈ Rd, ||x− ∂Ω|| > 3γN−1/2 =⇒ 1Ω(x) = RσIN (x), (4)

where γ := C
√
d− 1.

Moreover, 0 ≤ RσIN (x) ≤ 1 for all x ∈ Rd and the architecture of IN is given by

A = (d,M(N + 2d+ 2),M(4d+ 2),M, 1, 1).

Thus, IN has at most 7M(N + d) neurons and at most 54 d2 M N non-zero weights. The weights
(and biases) of IN are bounded in magnitude by d(4 + R)(1 + C) +

√
N(C−1 + C−1/2), where R =

supx∈Ω ||x||∞.

Proof. The proof consists in four steps that could be gathered together in two main parts. We first
approximate locally Ω on every cubes of its associated cover (steps 1, 2 and 3), then we build a network
from the local ones (step 4). Before starting, we want to reformulate a bit the assumptions made on
Ω.
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Let (Qm)Mm=1 be an associated cover of Ω : Qm = [am, bm] with am, bm ∈ Rd.

For some ε > 0 let us construct (Q̃m)Mm=1 where :

(Q̃m) := Πd
j=1[am,j − ε, bm,j + ε].

By the assumption that Ω ∈ BBC,M (Rd), there exist (fm)Mm=1 ⊂ BAC(Rd−1), i ∈ J1, dK and θm ∈
{−1, 1} such that :{

∀x ∈ Qm, 1Ω(x) = 1fm(xi)≥θmxi
,

∀x ∈ Qm, ∀y ∈ Q̃m \Qm, ||xi − yi||2 < ε =⇒ |fm(xi)− fm(yi)| < ε.

Now we can construct a neural network that approximates 1Ω by approximating successively the
(1Ω∩Qm)Mm=1.

Step 1 : local approximation of the (fm)Mm=1. As we said in Definition 3.4, there exists for
every Qm a function fm ∈ BAC(Rd−1), i ∈ J1, dK and θm ∈ {−1, 1} such that 1Ω∩Qm

= 1fm(xi)≥θmxi
.

From 3.3, there is as well a shallow neural network ImN with N neurons in the hidden layer such that
||fm − RσI

m
N ||sup ≤ γN−1/2 where γ := C

√
d− 1. The weights and biases of Imn are bounded by√

C ·
(
6 + ϑ(Qi

m, qm) + ||qm||1
)
, qm ∈ Qi

m.

Step 2 : approximation of the horizon functions hm(x) = 1θmxi≤fm(xi). Denoting :

i) Sm := {x ∈ Q̃m : fm(xi) ≥ θmxi},

ii) Tm := {x ∈ Q̃m : RσI
m
N (xi) ≥ θmxi}, it can easily be shown that :

Sm△Tm ⊂ {x ∈ Q̃m : |fm(xi)− θmxi| ≤ γN−1/2}.

This implies :

{x ∈ Q̃m : hm(x) ̸= 1Tm(x)} ⊂ {x ∈ Q̃m : |fm(xi)− θmxi| ≤ γN−1/2}.

Next, for τ > 0 define the ReLU approximated Heaviside function :

Hτ (x) = τ−1(σ(x)− σ(x− τ)).

We can compose this function with RσI
m
N (xi)− θmxi to approximate 1Tm

(x).

Defining RσJ
m
N (x) := HγN−1/2(RσI

m
N (xi)− θmxi), we have :

{x ∈ Q̃m : 1Tm(x) ̸= RσJ
m
N (x)} ⊂ {x ∈ Q̃m : |RσI

m
N (xi)− θmxi| ≤ γN−1/2}.

Moreover :

{x ∈ Q̃m : hm(x) ̸= RσJ
m
N (x)} ⊂ {x ∈ Q̃m : 1Tm(x) ̸= RσJ

m
N (x)} ∪ {x ∈ Q̃m : 1Tm

(x) ̸= hm(x)}.

Thus :

{x ∈ Q̃m : hm(x) ̸= RσJ
m
N (x)} ⊂ {x ∈ Q̃m : |fm(xi)−RσI

m
N (xi)|+ |RσI

m
N (xi)− θmxi| ≤ 2γN−1/2}.

Now, using the fact that for x ∈ Q̃m, |fm(xi)− θmxi| ≤ |fm(xi)− RσI
m
N (xi)|+ |RσI

m
N (xi)− θmxi|,

we can conclude that :

{x ∈ Q̃m : hm(x) ̸= RσJ
m
N (x)} ⊂ {x ∈ Q̃m : |fm(xi)− θmxi| ≤ 2γN−1/2}. (5)

Remark : This means that on a Qm, the neural network performs its error only within a 2γN−1/2-
margin around the actual Barron boundary.

Step 3 : restricting to Qm. Here, we want to construct an approximation of x→ 1Qm
(x)RσJ

m
N (x)

with the help of ReLU functions only. For j ∈ J1, dK, let tj : R → [0, 1] be
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tj(u) :=



0 if u ∈ R \ [aj − ε, bj + ε],

1 if u ∈ [aj , bj ],

u− aj
ε

if u ∈ [aj − ε, aj ],

bj − u

ε
if u ∈ [bj , bj + ε].

and

ηε(x, y) : Rd × R → R := σ

σ(y) + d∑
j=1

tj(xj)− d

 .

Now we can build the neural network Lm
N s.t. RσL

m
N (x) = ηε(x,RσJ

m
N (x)) and note that :

{x ∈ Rd : 1Qm
(x)RσJ

m
N (x) ̸= RσL

m
N (x)} ⊂ Q̃m \Qm,

as well as :
suppRσL

m
N ⊂ suppRσJ

m
N ⊂ Q̃m, (6)

since RσJ
m
N (x) = 0 =⇒ RσL

m
N (x) = 0.

To conclude this step, note that Lm
N yields the same result as Jm

N (which is the approximation of
hm) on Qm and vanishes outside Q̃m. The challenge now is to build a single overall network we want
as close as possible to Lm

N on Q̃m.

Step 4 : concatenation of the networks. Consider the smoothed sum of the (Lm
N )Mm=1 :

RσIN (x) = σ

(
M∑

m=1

RσL
m
N (x)

)
.

Note that for m ≤M, x ∈ Qm, we have RσIN (x) ≥ RσL
m
N (x).

Let m ≤ M . We now show that IN error area is included in the following tube around the boundary
of Ω :

{x ∈ Qm : hm(x) = 1θmxi≤fm(xi) ̸= RσIN (x)} ⊂ {x ∈ Qm : ||x− ∂Ω|| ≤ 3γN−1/2}

It holds that :

{x ∈ Qm : hm(x) ̸= RσIN (x)} ⊂ {x ∈ Qm : hm(x) ̸= RσL
m
N (x)} ∪ {x ∈ Qm : RσL

m
N (x) ̸= RσIN (x)}.

We denote the first member of this union QL̸=h
m := {x ∈ Qm : hm(x) ̸= RσL

m
N (x)} and the second one

QL ̸=I
m := {x ∈ Qm : RσL

m
N (x) ̸= RσIN (x)}.

We will now prove that on x ∈ QL̸=h
m \ QL̸=I

m as well as on QL ̸=I
m , the network IN makes errors

only if evaluated on points that are at a distance smaller than 3γN−1/2 from the boundary of Ω.

i) If x ∈ QL̸=h
m \QL̸=I

m , we have by definition:

RσIN (x) = RσL
m
N (x).

But Step 3 lead to :
∀x ∈ Qm, RσL

m
N (x) = RσJ

m
N (x).

Therefore for x ∈ QL̸=h
m \QL ̸=I

m , we have RσIN (x) = RσJ
m
N (x) and (5) yields :

{x ∈ QL ̸=h
m \QL ̸=I

m : RσI
m
N (x) ̸= hm(x)} ⊂ {x ∈ Qm : |fm(xi)− θmxi| ≤ 2γN−1/2}.

This can be reformulated into :

∀x ∈ QL̸=h
m \QL ̸=I

m , RσIN (x) ̸= hm(x) =⇒ ||x− ∂Ω|| ≤ 2γN−1/2.
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ii) Otherwise, if x ∈ QL̸=I
m , we have :

RσIN (x) > RσL
m
N (x) = RσJ

m
N (x).

But remark that RσIN (x)−RσJ
m
N (x) ≤

∑M
k=1,k ̸=mRσL

k
N (x). Then

RσIN (x)−RσJ
m
N (x) > 0 =⇒ ∃k ∈ J1,MK \ {m}, RσL

k
N (x) > 0.

Therefore, we have that if x ∈ QL ̸=I
m , then x ∈ suppRσL

k
N . But from 6 we know that suppRσL

k
N ⊂

suppRσJ
k
N . From 5 we also know that suppRσJ

k
N ⊂ supphk(x)∪{x ∈ Q̃k : |fk(xl)−θkxl| ≤ 2γN−1/2},

for some l ∈ J1,MK. Thus:

∀x ∈ Q̃k, x ∈ suppRσL
k
N =⇒ ||x− Q̃k ∩ Ω|| ≤ 2γN−1/2.

We infer from this that : ∀x ∈ Qk, x ∈ suppRσL
k
N =⇒ ||x−Qk ∩ Ω|| ≤ 2γN−1/2 + ε.

Moreover, since the cubes are disjoint, we know that the points of QL ̸=h
m in suppRσL

k
N , while close to

it, cannot be in Qk ∩ Ω :

x ∈ QL ̸=I
m =⇒ ∃k ∈ J1,MK \ {m}, ||x− ∂(Qk ∩ Ω)|| ≤ 2γN−1/2 + ε. (7)

The last problem is that points can be close to the boundary of Qk ∩ Ω, but ”deep inside” Qm ∩ Ω.
∂(Qk ∩ Ω) being only included in ∂Ω but not equal to it, we have to fix this problem. For x ∈ Qm :

RσJ
m
N (x) = 1 =⇒ RσJ

m
N (x) = RσL

m
N (x) = RσIN (x).

Thus :
RσL

m
N (x) ̸= RσIN (x) =⇒ RσJ

m
N (x) < 1.

From the latter follows :

QL̸=I
m ⊂ {x ∈ Qm : |fm(xi)− θmxi| ≤ 2γN−1/2} ∪ Ωc.

So if we restrict QL ̸=I
m to Ω, points of this set cannot be at a distance from ∂Ω greater than 2γN−1/2 :

∀x ∈ QL ̸=I
m ∩ Ω, ||x− ∂Ω|| ≤ 2γN−1/2.

Moreover, from 7 : x ∈ QL ̸=I
m ∩ Ωc =⇒ ||x− ∂Ω|| ≤ 2γN−1/2 + ε.

Finally :
∀x ∈ QL ̸=I

m , RσIN (x) ̸= hm(x) =⇒ ||x− ∂Ω|| ≤ 2γN−1/2 + ε.

Setting ε = γN−1/2, and recalling that {x ∈ Qm : RσIN (x) ̸= hm(x)} = QL ̸=h
m ∪ QL̸=I

m :

∀x ∈ Qm, RσIN (x) ̸= hm(x) =⇒ ||x− ∂Ω|| ≤ 3γN−1/2.

Moreover, Ω ⊂ ∪N
m=1Qm, therefore if x /∈ ∪N

m=1Qm, then 1Ω(x) = 0. So, if RσIN (x) ̸= 1Ω(x) outside

the union of the (Qm)
M
m=1, then it means that RσIN (x) > 0 and hence that for some m ∈ J1,MK,

RσL
m
N (x) > 0. This can happen only at a distance at most 2γN−1/2 + ε = 3γN−1/2 from ∂Ω. We can

conclude the proof :

∀x ∈ Rd, RσIN (x) ̸= hm(x) =⇒ ||x− ∂Ω|| ≤ 3γN−1/2.
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4 Related Estimation Bounds

We are able to quantify and bound an area around the boundary of a set where neural networks
learning the indicator function of said set will fail. In this section, we link this result to the margin
condition described in Section 2. Indeed, if we know that such a margin condition holds and have
a neural network that makes errors exclusively within the margin (this neural network exists, as we
stated it in Theorem 3.7), we have thereby a classifier that makes no error at all. The VC-dimension
of a set of neural networks with bounded numbers of layers and neurons being in addition bounded
(from Theorem 2.1 in [6]), we can apply Theorem 3.1 to compute some bounds for this classifier risk.

We first need to make some slight technical adjustments before stating the theorem, just in order
to suit the framework of [6], where classifiers do not output into {0, 1} but rather into {−1, 1} :

Definition 4.1. We define the following function sign : R → {−1, 1}, sign(x) = −1 if x ≤ 0 and sign(x) =
1 if x > 0.

Definition 4.2. We also define the following function for Ω ⊂ Rd :

χΩ : Rd → {−1, 1}, χΩ(x) =

{
−1 if x /∈ Ω,

1 if x ∈ Ω.

Theorem 4.3. Let d ≥ 2 and Ω ⊂ Rd such that for M > 0 and C ∈ R∗
+, Ω ∈ BBC,M (Rd). Let D be

a distribution over Rd. Suppose that for µ > 0, a margin condition holds :

Px∼D
(
x ∈ {y ∈ Rd : ||x− ∂Ω|| > µ}

)
= 1. (8)

Then, there exist K1,K2 ∈ R, absolute constants, and a class of ReLU neural networks N (A) with
architecture detailed below such that, for n > 0, with a probability 1 − δ regarding the sampling of
S = (x1, ... , xn) ∼ Dn :

∀S ∼ Dn, ∃Φ∗
S ∈ N (A) s.t. #{x ∈ S : sign(RσΦ

∗
S(x)) ̸= χΩ(x)} = 0, (9)

and :

Px∼D(sign(RσΦ
∗
S(x)) ̸= χΩ(x)) ≤

log(n)

n
K1K2M

2d2N log(dMN) +
K1

n
log(1/δ). (10)

Or, in a summarized way :

∀S ∼ Dn,∃Φ∗
S ∈ N (A), s.t. R̂χΩ

S (sign(RσΦ
∗
S)) = 0 and RχΩ

D (sign(RσΦ
∗
S)) ≤

log(n)

n
O(log(d)d2).

(11)
The architecture A of the networks of N (A) is given by

A = (d,M(N + 2d+ 2),M(4d+ 2),M, 1, 1),

where N >
(

3γ
µ

)2
with γ := C

√
d− 1.

Thus, IN has at most 7M(N + d) neurons and at most 54 d2 M N non-zero weights. The weights
(and biases) of IN are bounded in magnitude by d(4 + R)(1 + C) +

√
N(C−1 + C−1/2), where R =

supx∈Ω ||x||∞.

Remark : This is the best rate possible without any further assumption.

Proof. This theorem is again a direct consequence of the ”Fundamental Theorem of Statistical Learn-
ing” found in [18] and stated in this thesis as Theorem 3.1. We first have to prove that if a margin condi-
tion holds for D, the classN (A) fulfills the condition of containing a classifier with a zero risk. We made
this assumption : Px∼D

(
x ∈ {y ∈ Rd : ||x− ∂Ω|| > µ}

)
= 1. Moreover, Theorem 3.7 tells that for

N >
(

3γ
µ

)2
, there exists a neural network with architecture A = (d,M(N+2d+2),M(4d+2),M, 1, 1)

such that :
∀x ∈ Rd, ||x− ∂Ω|| > µ =⇒ 1Ω(x) = RσIN (x).

So : Px∼D (1Ω(x) = RσIN (x)) ≥ Px∼D
(
x ∈ {y ∈ Rd : ||x− ∂Ω|| > µ}

)
= 1.
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We conclude that : Px∼D (1Ω(x) = RσIN (x)) = 1, which is equivalent to R1Ω

D (RσIN ) = 0.

We now build the following neural network Φ∗ ∈ N (A), such that : RσΦ
∗(x) = RσIN (x)− 1

2 .

Note that if RσIN (x) = 1Ω(x), then sign(RσΦ
∗(x)) = χΩ(x). Therefore :

Px∼D (sign(RσΦ
∗(x)) = χΩ(x)) = 1 and RχΩ

D (sign(RσΦ
∗)) = 0.

We set H := {sign ◦RσΦ : Φ ∈ N (A).} Thus, there exists a classifier h = χ ◦ RσIN ∈ H with a zero
risk (and therefore a empirical error null as well). Moreover, Theorem 2.1 in [6] tells us that the VC
dimension of H is bounded as follows :

∃K2 ∈ R, VC(H) ≤ K2M
2d2N log(dMN) <∞.

We can apply Theorem 3.1 and this concludes the proof.
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A Proof of Proposition 3.2

This proof is a reformulation of the proof of [[9], Proposition 2.2], itself a modified version of the
proof of [[2], Theorem 2]. The main difference with [9] lays in the order of the arguments and in the
notation.

Proof. The main idea of the proof is to rewrite a Barron function as an expectation of indicators of
half-spaces. By definition of what a Barron function is, this expectation is bounded and indicators of
half-spaces can be well approximated by ReLU functions, that is by neural networks. Therefore one
can bound the norm of the difference between the actual function and its approximation by ReLU
neural networks. There are three steps : first writing f as an expectation. Then approximating this
expectation by expectation of neural networks and derive the bound from this approximation.

First step - writing f as an expectation of half-spaces : Let us define f0 : X0 → R, f0(x) =
f(x+x0)−c and F0 : Rd →, F0(ξ) = ei⟨x0,ξ⟩F (ξ). We also note Ω = (Rd\{0})× [0, 1] and ξ∗ = ξ/|ξ|X0

.
Using the polar representation of the Fourier transform F0(ξ) = |F0(ξ)|eiθξ , applying a change of
variable and taking the real part of the obtained integral, one can rewrite f0 as :

f0(x) =

∫
Ω

(
1(0,∞)(−⟨ξ∗, x⟩ − t)− 1(0,∞)(⟨ξ∗, x⟩ − t)

)
· |F0(ξ)| · sin(t|ξ|X0

+ θξ) · |ξ|X0
dtdξ.

Defining :

• s(ξ, t) = sign(sin(t|ξ|X0
+ θξ)),

• γ(ξ, t) = |F0(ξ)| · sin(t|ξ|X0 + θξ) · |ξ|X0 ,

• Γx(ξ, t) = 1(0,∞)(−⟨ξ∗, x⟩ − t)− 1(0,∞)(⟨ξ∗, x⟩ − t),

• ||u(ξ, t)||Ω =
∫
Ω
|u(ξ, t)|dξdt for a measurable function u,

we can rewrite f0 again :

f0(x) = ||γ(ξ, t)||Ω ·
∫
Ω

Γx(ξ, t) · s(ξ, t) ·
|γ(ξ, t)|

||γ(ξ, t)||Ω
dtdξ.

Note that p(ξ, t) := |γ(ξ,t)|
||γ(ξ,t)||Ω is a probability density function, well-defined since ||γ(ξ, t)||Ω > 0. We

derive from this the probability measures

dµ± :=
1s(ξ,t)=±1 · p(ξ, t)

||1s(ξ,t)=±1 · p(ξ, t)||Ω
dtdξ

and the following functions f±(x) :=
∫
Ω
Γx(ξ, t)dµ±(ξ, t) such that :

f0 = v · (V+ · f+ − V− · f−), (12)

where v = ||γ(ξ, t)||Ω and V± = ||1s(ξ,t)=±1 · p(ξ, t)||Ω.

We now have an expression of f0 as linear combination of expectations of half-spaces. Note that
bounding the approximation by a single-layered neural network with 4N neurons of the f± suffices
to reach the general approximation, since this linear combination is easily realizable with a neural

network. Let us therefore prove that for some 0 ∈ R : ||f± − RσΦ±||sup ≤ N−1/2 ·
(

C
vV±

+ κ0
√
d
)
,

with 4N neurons and weights bounded by 4 + ϑ(X,x0).

Second step - approximating f by an expectation of ReLU neural networks. We approximate
the indicators of half-spaces by some neural networks, which allows us to approximate f, expectation
of indicators of half-spaces as seen in 12, by an expectation of neural networks. First, let us define for
ε > 0:

Hε : R → [0, 1], Hε(x) =
1

ε
(σ(x)− σ(x− ε)) ,

and remark that Hε = 1(0,∞) on R \ (0, ε). We can use it to approximate Γx with :

Nε,x : Ω → [−1, 1], Nε,x(ξ, t) = Hε(−⟨ξ∗, x⟩ − t)−Hε(⟨ξ∗, x⟩ − t).
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Note that Nε,x = Γx on Ω with t /∈ J
(ε)
ξ,x := [−⟨ξ∗, x⟩−ε, −⟨ξ∗, x⟩]∪ [⟨ξ∗, x⟩−ε, ⟨ξ∗, x⟩]. Using the fol-

lowing bounds 0 ≤ p(ξ, t) ≤ v−1|ξ|X0 |F (ξ)| and (by definition of the Barron class)
∫
Rd |ξ|X0 |F (ξ)|dξ ≤

C, we have : ∣∣∣f±(x)− ∫
Ω

Nε,x(ξ, t) dµ±(ξ, t)
∣∣∣ ≤ ∫

Rd\{0}

∫ 1

0

2 · 1
J

(ε)
ξ,x

(t) · 1

V±
p(ξ, t) dt dξ

≤ 4ε

v V±

∫
Rd

|ξ|X0 · |F (ξ)| dξ ≤
4εC

v V±
.

Choosing ε := 1
4N

−1/2 and defining f±,ε : X0 → R, f±,ε(x) =
∫
Ω
Nε,x(ξ, t) dµ±(ξ, t), the above in-

equality yields ∥f± − f±,ε∥sup ≤ N−1/2 · C
v V±

.

Third step - Using bounds for empirical processes to complete the proof. Let us denote
by N the class of shallow neural networks with four neurons on the hidden layer such that for Φ ∈
N , RσΦ(x) = (ξ, t) → Nε,x(ξ, t) − λ, λ ∈ R. There exists a bound on the VC-dimension of this class
[[5], Theorem 6] :

VC({1g>0 : g ∈ N}) ≤ κ1d.

Note that the fact that we are actually using ξ∗ = ξ
|ξ|X0

implies the use of a map Θ : Ω → Rd × [0, 1],Θ(ξ, t) = (ξ∗, t)

to have for all λ ∈ R :
{1Nε,x>λ : x ∈ X0} ⊂ {1g◦Θ>0 : g ∈ N}.

This map does not change the VC dimension and thus : VC({1Nε,x>λ : x ∈ X0}) ≤ κ1d.

Now, applying the following proposition [[9], Proposition A.1]:

Proposition A.1. There is a universal constant κ > 0 with the following property: If (Ω,F , µ) is a
probability space, if a, b ∈ R with a < b, and if ∅ ≠ G ⊂ {g : Ω → [a, b] : g measurable} satisfies

d := sup
λ∈R

({Ig,λ : g ∈ G}) <∞, where Ig,λ : Ω → {0, 1}, ω → 1g(ω)>λ,

then for any n ∈ N and S = (X1, . . . , Xn)
i.i.d.∼ µ, we have

ES

[
sup
g∈G

∣∣∣EX∼µ[ g(X) ]− 1

n

n∑
i=1

g(Xi)
∣∣∣] ≤ κ · (b− a) ·

√
d

n
,

we can derive the following bound, since E(ξ,t)∼µ± [Nε,x(ξ, t)] = f±,ε(x) :

E
[
sup
x∈X0

∣∣f±,ε(x)−N−1∑N
i=1Nε,x(ξi, ti)

∣∣] ≤ κ2 ·
√

κ1d
N .

for (ξi, ti)
i.i.d∼ µ±.

Using that for a random variable defined on a probability space Ω with a distribution P , EP (X(ω)) ≤ a
implies that there exists ω̂ ∈ Ω such thatX(ω̂) ≤ a, we have for one specific realization

(
(ξ1, t1), . . . , (ξN , tN )

)
∈

ΩN that

sup
x∈X0

∣∣∣f±,ε(x)−
1

N

N∑
i=1

Nε,x(ξi, ti)
∣∣∣ ≤ κ

√
dN−1/2.

Since we have :

1

N
Nε,x(ξi, ti) =

ε−1

N
·
(
σ
(
−⟨ξ∗i , x⟩ − ti

)
− σ

(
−⟨ξ∗i , x⟩ − ti − ε

)
− σ

(
⟨ξ∗i , x⟩ − ti

)
+ σ

(
⟨ξ∗i , x⟩ − ti − ε

))
,

we can conclude that the average 1
NΣN

i=1Nε,x(ξi, ti) that approximates well f± can be implemented by
a shallow ReLU network with 4N neurons in the hidden layer. Setting RσΦ±(x) :=

1
NΣN

i=1Nε,x(ξi, ti)
and defining :

RσΦ(x) := c+ v V+ ·RσΦ+(x− x0)− v V− ·RσΦ−(x− x0).
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Because of f(x) = c+ f0(x− x0) = c+ v V+ · f+(x− x0)− v V− · f−(x− x0) and 0 < v ≤ C, we have :

∥f −RσΦ∥sup ≤ N−1/2 ·
(
v V+ ·

(
C

v V+
+ κ0

√
d
)
+ v V− ·

(
C

v V−
+ κ0

√
d
))

= N−1/2 ·
(
2C + vκ

√
d
)
≤
(
2 + κ0

√
d
)
· C ·N−1/2 ≤ κ

√
d · C ·N−1/2

Regarding the weights, recalling that by definition ||ξ∗i ||∞ ≤ ϑ(X,x0), |ti| ≤ 1 and ε = 1
4N

−1/2

implying that ε−1/N ≤ 4, we can see that the weights are bounded by 4 + ϑ(X,x0). Note that the
change of variable x− x0 → x increases the bound for the magnitude of the weights by a (1 + ||x0||1)
factor.

B Neural network architecture and bounding the weights in
3.7

In this appendix we give the details of the architecture and weights boundedness of the neural network
IN in Theorem 3.7. Our network being almost the exact same as in [[9], Theorem 3.7], our proof is an
adaptation of the one presented in this paper.

We can use the Figure 5 to visualize the neural network approximating 1Ω on a rectangle Qm.

x

x πm(x) π̃m(x)

x RσI
m
N (πm(x)) −θmπ̃m(x)

x ([RσI
m
N ] ◦ πm − θmπ̃

m)(x)

x RσJ
m
N (x) = Hτ (([RσI

m
N ] ◦ πm − θmπ̃

m)(x))

(x, Jm
N (x))

Lm
N (x)

id πm π̃m

id ImN t 7→ −θmt

id + +

id Hτ

↪→ ↪→

Lm
N

Input

Layer 1

Layer 2

Figure 5: Visualization of the neural network Lm
N for the case of a rectangle Qm. This figure is taken

from the proof of [[9] Theorem 3.7]

In the following, we explicitly describe each of the layers of the network computing Lm
N ; we then

describe how these networks are combined to obtain IN .

Description of the layers :

• The input layer will be of dimension d since the input x is in Rd.
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• The first hidden layer consists of 2d neurons computing σ(±xi), i ∈ 1, d, N ones computing
Rm

N (xi) and 2 computing σ(±θmxi), respectively. Note that pim and π̂m are the projections of x

to xi and xi.

• The second hidden layer will compute RσJ
m
N , as well as the ti(ui) to compute in the next

layer RσL
m
N . The latters need 4d neurons (four per coordinate) to be computed and RσJ

m
N (x) =

Hτ

(
RσI

m
N (πm(x))−θmπ̃m(x)

)
can be computed with two neurons in the following way : RσJ

m
N (x) =

1
τ (ψ1(x)− ψ2(x)) where

ψ1(x) := σ
(
D +

N∑
k=1

Ckϕk(x)− σ
(
θmπ̃

m(x)
)
+ σ

(
−θmπ̃m(x)

))
and

ψ2(x) := σ
(
D +

N∑
k=1

Ckϕk(x)− σ
(
θmπ̃

m(x)
)
+ σ

(
−θmπ̃m(x)

)
− τ
)
,

and τ = γN−1/2.

• The third hidden layer is made of one neuron computing :

ηε(x,RσJ
m
N (x)) = RσL

m
N (x) = σ

(
1
ε

d∑
i=1

(
t1i − t2i − t3i + t4i

)
(xi) +

1
τ

(
ψ1(x)− ψ2(x)

)
− d

)
.

• The fourth one with one neuron is the one where the outputs of each RσL
m
N are summed and

smoothed with σ.

• The last layer is the output one, one neuron too.

Thus, IN can be realized by a ReLU neural network with 4 hidden layers, architecture

A =
(
d, M(N + 2d+ 2), M(4d+ 2), M, 1, 1

)
,

and d+ 1 +M(N + 6d+ 5) + 1 ≤ 7M(N + d) neurons.

To estimate the number of non-zero weights of IN ,W (IN ), a bound can be found by taking the product
of the number of neurons on every pair of consecutive layers in the Lm

N networks, summing up over the
layers, multiplying by M , adding M to account for the weights of the final output layer, and finally
adding the total number of non-input neurons to account for the biases. This yields

W (IN ) ≤M ·
(
d(N + 2d+ 2) + (N + 2d+ 2)(4d+ 2) + (4d+ 2) · 1

)
+M +MN + 6Md+ 5M + 1,

which gives the following estimation : W (IN ) ≤ 54Md2N .

Bounding the magnitude of the weights and biases:

We use for this the definition of ϑ in Proposition 3.2, namely ϑ(Qm, qm) ≤ γ−1N1/2. Moreover
∥qm∥1 ≤ (d− 1)R, so the magnitudes of weights and biases for ImN , are bounded as follows :

√
B · (6 + ϑ(Qm, qm) + ∥qm∥1) ≤

√
B · (6 + γ−1N1/2 + dR),

and therefore the overall bound for the first layer is
√
B · (6 + γ−1N1/2 + dR) + 1.

For the second layer, the weights corresponding to the first 4d neurons are bounded by 1 + ε+R and
for the last 2 neurons again by 1 +

√
B · (6 + γ−1N1/2 + dR). Finally for the third layer, the weights

and biases are bounded by max(1ε ,
1
τ , d) ≤ d+ γ−1N1/2.

Wrapping everything up and using classical estimates such
√
B ≤ 1 + B and the fact that d ≥ 2, the

weights of IN have magnitudes bounded by

max
{
1 + 6

√
B +

√
Bγ−1N1/2 +

√
BdR, 1 + ε+R, d+ γ−1N1/2

}
≤ d(4 +R)(1 +B) +

√
N ·

(
B−1 +B−1/2

)
.
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