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Abstract 

Major depressive disorder (MDD) or clinical depression is a mental disorder that is 

characterized by low self-esteem, persistent sadness, and loss of pleasure in activities that are 

normally enjoyable. Modern ways of treatment have a response of only up to 65% and the 

response can usually be seen after 4-6 weeks of treatment. 

Understanding the interactions of brain regions of responders and non-responders can help to 

avoid trials of ineffective therapy and help in further research of the disease. Moreover, the 

choice of effective therapy leads to a decrease in costs for the treatment. We postulate, that 

patients who responded to antidepressant treatment have altered information patterns 

obtainable from EEG recordings compared to those who have not responded to it. One way of 

finding patterns in the data is by applying of clustering algorithms. A data basis of EEG 

recordings of patients with 19 electrodes is given.  

In this work, we apply the Interaction K-means (IKM) clustering algorithm on multi-trial EEG 

data of patients with major depressive disorder. This algorithm works effectively on multi-

variate time-series as well as it allows us to derive interaction patterns from the obtained results.  

We performed an exploratory analysis of the influence of preprocessing on the cluster purity 

of IKM on the EEG data set. Different preprocessing strategies to improve the clustering 

accuracy of the algorithm on the given data were proposed, namely bands extraction, Hilbert, 

Box-Cox and z-score transformations, and others. Also, the interaction between electrodes was 

explored. Additionally, the popular clustering methods were applied to the parameters 

(coefficients) derived from the data using the least squares method.  

The best clustering result is the one using the combination of the Box-Cox and z-score 

transformation methods and taking into consideration only Cz, Fp1, F3, F7, C3, T3, P3, T5, 

O1 electrodes (left-located electrodes including the central Cz). The cluster purity for this 

setting was 60.5%. Almost the same result was shown for clustering only on the Delta band 

obtained from the data of the same set of electrodes. The cluster purity was 60.3%. The same 

cluster purity was observed for the derived Hilbert amplitude from the Delta band from the 

data of the same set of electrodes. 

In the context of the current study, a CP of 60% for the IKM clustering algorithm applied to 

multi-trial EEG data of patients with major depressive disorder is a reasonable result. EEG data 

is known to be highly variable and noisy, and the underlying biological mechanisms of 

depression are complex and not fully understood. Therefore, achieving a CP of 0.6 or higher 

on this type of data is a challenging task, and the results obtained using the proposed 

preprocessing strategies are considered promising. 

When interpreting the data used for the best clustering, two electrodes were identified as the 

most discriminative among the clusters. They are P3 and T5 that located in the left and back 

regions of the head. In the first cluster, P3 and T5 have the strongest relationship with the Fp1 

and F3 (left and frontal-located electrodes) respectively. In the second cluster, P3 has a strong 

connection to F3, Fp1, F7 (left and frontal located) and Cz (centrally located) electrodes while 

T5 is strongly related to the O1 (left and back located) electrode. 

  



 

3 

 

Zusammenfassung 

Die Major-Depression oder klinische Depression ist eine psychische Störung, die sich durch 

ein geringes Selbstwertgefühl, anhaltende Traurigkeit und den Verlust der Freude an 

Aktivitäten, die normalerweise angenehm sind, auszeichnet. Moderne Behandlungsmethoden 

haben eine Ansprechrate von nur bis zu 65%, und die Reaktion ist in der Regel erst nach 4-6 

Wochen Behandlung zu sehen. 

Das Verständnis der Interaktionen zwischen den Hirnregionen von Patienten, die auf die 

Behandlung ansprechen und solchen, die nicht darauf ansprechen, kann helfen, unnütze 

Therapieversuche zu vermeiden und weitere Forschung zur Krankheit zu ermöglichen. Darüber 

hinaus führt die Wahl einer effektiven Therapie zur Verringerung der Kosten für die 

Behandlung. Wir postulieren, dass Patienten, die auf eine antidepressive Behandlung 

angesprochen haben, im Vergleich zu denen, die nicht darauf angesprochen haben, veränderte 

Informationsmuster aufweisen, die aus EEG-Aufzeichnungen abgeleitet werden können. Eine 

Möglichkeit, Muster in den Daten zu finden, besteht darin, Clustering-Algorithmen 

anzuwenden. Eine Datengrundlage von EEG-Aufzeichnungen von Patienten mit 19 Elektroden 

liegt vor. 

In dieser Arbeit wenden wir den Interaction K-means (IKM) Clustering-Algorithmus auf 

Multi-Trial-EEG-Daten von Patienten mit Major Depression an. Dieser Algorithmus 

funktioniert effektiv bei Multi-Variate Zeitreihen und ermöglicht es uns, Interaktionsmuster 

aus den erhaltenen Ergebnissen abzuleiten. Wir führten eine explorative Analyse des Einflusses 

der Vorverarbeitung auf die Clusterreinheit von IKM auf dem EEG-Datensatz durch. 

Verschiedene Vorverarbeitungsstrategien wurden vorgeschlagen, um die Clustering-

Genauigkeit des Algorithmus auf den gegebenen Daten zu verbessern, nämlich 

Bandextraktion, Hilbert-, Box-Cox- und Z-Score-Transformationen und andere. Auch die 

Interaktion zwischen den Elektroden wurde untersucht. Darüber hinaus wurden die beliebten 

Clustering-Methoden auf die aus den Daten abgeleiteten Parameter (Koeffizienten) 

angewendet, die mit der Methode der kleinsten Quadrate berechnet wurden. 

Das beste Clustering-Ergebnis ergibt sich aus der Kombination der Box-Cox- und Z-Score-

Transformation und der Berücksichtigung nur der Cz-, Fp1-, F3-, F7-, C3-, T3-, P3-, T5-, O1-

Elektroden (linksseitig gelegene Elektroden einschließlich der zentralen Cz). Die 

Clusterreinheit für diese Einstellung betrug 60,5%. Fast das gleiche Ergebnis wurde beim 

Clustering nur des Delta-Bandes aus den Daten desselben Elektrodensatzes erzielt. Die 

Clusterreinheit betrug 60,3%. Die gleiche Clusterreinheit wurde für die abgeleitete Hilbert-

Amplitude aus dem Delta-Band aus den Daten desselben Elektrodensatzes beobachtet. 

Im Kontext der vorliegenden Studie ist eine CP von 60% für den IKM-Clustering-Algorithmus, 

der auf Mehrfach-EEG-Daten von Patienten mit Major Depression angewendet wird, ein 

vernünftiges Ergebnis. EEG-Daten sind bekanntlich hoch variabel und rauschig und die 

zugrunde liegenden biologischen Mechanismen der Depression sind komplex und nicht 

vollständig verstanden. Daher ist es eine anspruchsvolle Aufgabe, auf diesem Datentyp eine 

CP von 0,6 oder höher zu erreichen, und die Ergebnisse, die mit den vorgeschlagenen 

Vorverarbeitungsstrategien erzielt wurden, gelten als vielversprechend. 

Bei der Interpretation der Daten, die für das beste Clustering verwendet wurden, wurden zwei 

Elektroden als am diskriminierendsten unter den Clustern identifiziert. Es handelt sich um P3 
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und T5, die sich in den linken und hinteren Regionen des Kopfes befinden. Im ersten Cluster 

haben P3 und T5 die stärkste Beziehung zu den Fp1- bzw. F3-Elektroden (links und frontal 

gelegen). Im zweiten Cluster hat P3 eine starke Beziehung zu den F3-, Fp1-, F7- (links und 

frontal gelegen) und Cz (zentral gelegen) Elektroden, während T5 stark mit der O1 (links und 

hinten gelegen) Elektrode verbunden ist. 
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1 Introduction 

1.1 Motivation 

Major depressive disorder impacts the lives of many people every day. It has serious health, 

social, and economic consequences for humanity. Also, there is a lack of objective methods to 

diagnose this disease. Thus, this study intends to provide methods for better understanding the 

major depressive disorder and to support clinicians in the process of diagnosing it to reduce 

both monetary and time costs. 

This Master’s thesis was written as a part of the joint international research project “Learning 

Synchronization Patterns in Multivariate Neural Signals for Prediction of Response to 

Antidepressants” of the Data Mining and Machine Learning Research Group of the University 

of Vienna, of the Institute of Computer Science, the Czech Academy of Sciences and the 

National Institute of Mental Health of the Czech Republic funded by public funding. 

1.2 Objectives and Contribution 

The main objective of the thesis was to cluster depressed patients, who were given 

antidepressant medications in two clusters: responders and non-responders. Additionally, this 

study intended to find interaction patterns between electrodes. The main clustering algorithm 

used was Interaction K-means for time series as proposed by Plant et al. in 2013.  

The contribution of this thesis was applying various preprocessing techniques to the EEG data 

basis to improve the results of the clustering. We applied such transformations as non-linear 

transformation, Box-Cox, discrete wavelet transformation, z-normalization, z-score, Z-

transform, bands extraction, Hilbert, exponential smoothing, and others.  

After obtaining the results from different clustering settings, the best one was using the 

combination of the Box-Cox and z-score transformation methods and taking into consideration 

only Cz, Fp1, F3, F7, C3, T3, P3, T5, O1 electrodes (left located electrodes including the central 

Cz). Thus, we concluded that these specific transformations together with only part of the 

electrodes works well for separating the data of depressed patients based on their response to 

the antidepressant treatment. 

Most of other preprocessing strategies did not provide any satisfactory results. We hypothesize 

that it can be since trajectories of time series of depressive patients are relatively uniform in 

the comparison, for example, to the epilepsy patients having seizures, which makes any 

differentiation/separability of subsets of patients to be hard. 

Given the challenging nature of multi-trial EEG data from patients with major depressive 

disorder, achieving a cluster purity (CP) value of 60% for the Interaction K-means (IKM) 

clustering algorithm is a reasonable outcome. EEG data is notoriously susceptible to high levels 

of variability and noise, and the underlying biological mechanisms behind depression are 

complex and not yet fully understood. Consequently, the results of the proposed preprocessing 

strategies are considered promising in achieving a CP of 0.6 or higher.  
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1.3 Thesis Structure 

The thesis has six chapters. In the introduction chapter, the motivation, objectives, and 

contribution as well as the thesis structure are presented. The second chapter explains the main 

concepts covered in this work such as major depressive disorder, electroencephalography, and 

time series. The third chapter covers the clustering principles of k-means, DBSCAN and 

hierarchical clustering. This chapter also covers the details of Interaction k-means (IKM) 

algorithm, its enhanced version where the dimension selection process was applied as well as 

the interpretation algorithm that is used to interpret the results of IKM. Also, the third chapter 

explains the measures used to measure the quality of clustering. The fourth chapter shows in 

detail the characteristics of the data used for this study, data analysis results and how the data 

was processed to be ready to be used by the clustering algorithms. The fifth chapter presents 

the results of the repeated experiment using IKM on the EEG data of alcoholics and non-

alcoholics, what data processing techniques were used to improve the results of IKM clustering 

and the results themselves and the chapter shows interpretation of the results obtained using 

IKM. Last but not least, the sixth section contains the conclusions of the work and ideas for 

possible future work. 
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2 Background 

2.1 Major Depressive Disorder 

Major depressive disorder (MDD) or clinical depression is a mental disorder characterized by 

low self-esteem, persistent sadness, and loss of pleasure in normally enjoyable activities. 16.6% 

of the population are estimated to have MDD one or more times during their lifetime (Kessler 

et al. 2005). 

The diagnosis of the disease is based on the person’s experience, behavior, and mental status 

examination such as Montgomery–Åsberg Depression Rating Scale (MADRS). No laboratory 

test can identify MDD (Patton, Glick, and American Dental Association 2016). MDD affects 

females twice as often as males and the common time of the disease offset is in a person’s 20s 

(Kessler and Bromet 2013). 

Currently, no mechanism can explain all aspects of the disease (Otte et al. 2016). It may be 

caused by a combination of psychological, environmental, and genetic factors with around 40% 

being genetic (Diagnostic and Statistical Manual of Mental Disorders: DSM-5TM, 5th Ed 

2013). Chronic health problems, a family history of the condition, major life changes, and the 

persistent use of drugs are possible risk factors (Diagnostic and Statistical Manual of Mental 

Disorders: DSM-5TM, 5th Ed 2013). 

MDD is typically treated with psychotherapy, antidepressant medication or brain stimulation 

such as repetitive transcranial magnetic stimulation (rTMS). Medication treatment seems to be 

effective but mostly in patients with severe depression (Fournier et al. 2010).  

MDD is associated with structural and functional abnormalities of some parts of the brain, 

which were linked with MDD (Rot, Mathew, and Charney 2009). Figure 2.1 represents the 

different effects of the disease on the brain regions. The anterior cingulate, prefrontal, and 

orbitofrontal cortices, subgenual cingulate, ventral striatum, amygdala, and hippocampus may 

show a decrease in volume in patients with depression, whereas brain activity may increase in 

the amygdala and orbitofrontal cortex. 
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Figure 2.1 – Structural and functional brain abnormalities in patients with major 

depressive disorder (Illustration from Rot, Mathew, and Charney 2009) . 

2.2 Electroencephalography (EEG) 

Electroencephalography (EEG) is a method of medical diagnostics and research, which 

measures the spontaneous electrical activity of the brain. Voltage fluctuation in individual brain 

cells which react to the brain activities causes the potential difference. Therefore, with EEG it 

is possible to observe what brain activity happened at different times in the various regions. 

This method is non-invasive. 

Electrodes are placed along the scalp according to the International 10-20 system or its 

variations (Figure 2.2). The international 10-20 system is an internationally agreed method to 

describe and apply the location of electrodes (Herwig, Satrapi, and Schönfeldt-Lecuona 2003).  

The names of electrodes are based on the location where they are placed on the scalp. These 

locations include: frontopolar (Fp), anterior frontal (AF), frontal (F), central (C), temporal (T), 

parietal (P), occipital (O), frontocentral (FC), frontotemporal (FT), centroparietal (CP), 

temporal-posterior temporal (TP), and parietooccipital (PO) (Acharya et al. 2016). 

The electrodes are able to capture spatial information from a several square centimeters area of 

the scalp surface. However, the temporal resolution of these electrodes is often superior to their 

spatial resolution, indicating that they are better suited for detecting changes in activity over 

time rather than precise spatial localization.  

Frequencies of the EEG recording can be up to 1 kHz. The data coming from each electrode is 

a long time series with thousands of values. 
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Different brain activities happen to relate to different frequencies of the waveforms. The 

frequency ranges are usually identified as delta (0-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), 

beta(13-30Hz) and gamma (30-100 Hz) (Saby and Marshall 2012). 

The amplitude in lower frequency bands is bigger, however, the bands are noisier. The opposite 

applies to higher-frequency bands. Their amplitudes are smaller so is the noise. 

Delta (<4 Hz) frequencies are found frontally in adults. Normally, they relate to slow-wave 

sleep in adults and some continuous attention tasks (Kirmizi-Alsan et al. 2006). 

Theta frequencies (4-7 Hz) can be found in different locations that are not related to a task at 

hand. They happen when there is drowsiness in adults and teens, idling, and active repression 

of a response or action (Kirmizi-Alsan et al. 2006). 

Alpha frequencies (8-12 Hz) are usually present in posterior regions of the head, both sides. At 

rest, they are found in central sites (C3 and C4 electrodes). They are associated with a relaxed 

and reflecting state having eyes closed. Alpha waves are also more common in a coma. 

Beta frequencies (13-30 Hz) are low-amplitude waves that are found on both sides having 

symmetrical distribution. They identify active thinking, focus, high alert, and anxious brain 

states. 

Finally, gamma frequencies (30-100 Hz) are mainly found in the somatosensory cortex. They 

represent cross-modal sensory processing such as a combination of two different senses like 

sound and sight as well as short-term memory matching of recognized objects, tactile 

sensations, or sounds. 

With EEG, the immediate reaction to the stimulation can be seen. Moreover, this method is 

relatively simple as it does not require any personal computer support since the voltage changes 

can be written on continuous-form paper. 

 

Figure 2.2 – 19 electrode locations of (electroencephalography) recording . (“A” 

electrodes here refer to the ear electrodes that are attached to the mastoid bone 

behind the ear.) (Illustration from  Kruk et al. 2014). 

 



 

16 

 

2.3 Time-series 

Time series data, which represents a sequence of values or events observed at specific time 

points with a consistent interval between them (Data Mining 2012), is often found in various 

scientific fields such as weather forecasting, scientific experiments, stock market analysis, and 

medical diagnostics. The use of sensors and other data collection tools has led to a large amount 

of time series data that needs to be processed quickly or in real time. A scientific discipline 

dealing with time series called time series analysis aims to both model and forecasts this data. 

Modelling involves identifying patterns in the data while forecasting attempts to predict future 

values. 

Time series can be decomposed into four components: trend, cycles, seasonal, and irregular. 

The trend represents the overall direction of the data over a long period and is typically 

extracted using a moving average or least squares method. Cycles refer to long-term 

oscillations around the trend. Seasonal patterns are repetitive deviations that occur at specific 

times of the year and can be detected using autocorrelation analysis or seasonal index numbers. 

The irregular component represents random behavior introduced by uncertainties in the world. 

In many applications, time series data is multivariate, meaning that each time point is 

represented by a vector of multiple time series variables. Multivariate time series are useful for 

describing the interactions between these variables. 

Figure 2.3 represents the 19-dimensional time series from the EEG of a depressed patient. Each 

time series in this figure represents one electrode. In Figure, around 11 first seconds of a 

recording are represented. 

 

Figure 2.3 – 19 time-series of the EEG of the depressed patient . 
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3 Clustering Algorithms 

The ultimate goal of any clustering method is to divide a set of objects into groups, or clusters, 

such that objects within the same cluster are like each other, while objects from different 

clusters are highly dissimilar. The aim of this work is to cluster depression patients into two 

clusters and get the interaction patterns between subjects within these clusters. The main 

clustering algorithm used for this is the interaction K-means (IKM), introduced in (Plant et al. 

2013). This section covers the general principles of k-means, DBSCAN and hierarchical 

clustering as well as the details of IKM algorithm. 

3.1 k-means 

K-means clustering is a widely used method for partitioning a set of objects into clusters based 

on their similarity. This method was first proposed by (MacQueen 1967). It involves 

calculating the mean, or centroid, of each cluster and iteratively reassigning objects to their 

nearest centroid. The process begins with a randomly chosen set of 𝑘 objects as the initial 

centroids for the clusters. Then, the distance from each object to each centroid is calculated, 

and each object is assigned to the cluster with the nearest centroid. The centroids are then 

recalculated based on the objects in their respective clusters. This process is repeated until the 

error of the current partitioning is minimized. Usually, the function that is taken for calculating 

the error is the square-error function (Zherdin, 2016): 

𝐸 = ∑ ∑ |𝑜 − 𝑚𝑖|
2

𝑜∈𝐶𝑖

𝑘

𝑖=1

 

So, minimizing the sum of the squared distances of every object 𝑜 to its mean 𝑚𝑖 in each cluster 

𝐶𝑖 leads to the optimal solution. The iteration process in clustering should be stopped when the 

sequence of errors converges, and the clusters cease to change further.  

Figure 3.1 represents three clusters separated using the k-means algorithm. The colors and 

shapes encode objects that are relevant to the specific clusters. Clustering was done considering 

two features: texture and radius. 
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Figure 3.1 – Three clusters as an outcome of the k-means algorithm run with 

k=3. The separation was based on two variables: texture and radius  (Illustration 

from Harezlak, 2022).  

3.2 DBSCAN 

The main value of another clustering algorithm Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) is that it can find clusters of different shapes (Ester, 

Kriegel, and Xu, 1996). The basic concept is that clusters are determined by areas with a high 

concentration of objects, while regions with low object density define the boundaries between 

the clusters. 

In the density-based method, a cluster is defined as the largest set of objects that are connected 

by density. The main objects, which have a sufficient number of objects in their vicinity as 

determined by a predetermined threshold, are used as the foundation for the density 

connectivity. An object is considered directly density-reachable concerning the threshold from 

a core object if it lies within the threshold-defined neighbourhood of the core object. As a result, 

a density-based cluster, which is a maximal set of density-connected objects, is obtained. The 

other objects that do not belong to any cluster are considered to be a noise (Zherdin, 2016).  

Figure 3.2 shows the basic principles of the DBSCAN algorithm. There, red are main points, 

blue are border points and grey are noise points. The main points are those that meet the criteria 

of the cluster. In contrast, border points are those which do not fulfil the cluster criteria but are 

located within the vicinity of a main point. The DBSCAN algorithm follows two guidelines: 

(1) Points that are within the defined search radius of a main point are deemed to be part of its 

cluster, and (2) main points that have shared border points are part of the same cluster, as 

illustrated by p1 and p2 in Cluster 1 (DiFrancesco, Bonneau, and Hutchinson 2020). 
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Figure 3.2 – Two generated clusters using the DBSCAN algorithm ( Illustration 

from DiFrancesco, Bonneau, and Hutchinson 2020) .  

3.3 Hierarchical Clustering 

Hierarchical clustering is a method for constructing a hierarchical decomposition of objects, 

which is achieved through a dendrogram (El Bouchefry and de Souza 2020). There are two 

main types of hierarchical clustering, the agglomerative and the divisive methods. 

Agglomerative methods have a bottom-up approach, starting with individual clusters for each 

object and merging them iteratively until only one cluster remains. The divisive method starts 

with one cluster and iteratively partitions it into smaller clusters. 

In the agglomerative method, the steps are as follows: start with a set of clusters, each 

corresponding to an object. Then, merge the two closest clusters into a new parent inner node 

in the dendrogram. Repeat this process of finding and merging the closest clusters until only 

one cluster remains, which forms the dendrogram root. The methods differ in the way the 

distance between clusters is calculated (Zherdin, 2016). Figure 3.3 shows the process of the 

hierarchical clustering. 

 

Figure 3.3 – The results of hierarchical clustering presented as a tree of clusters 

called dendrogram (Illustration from Halkidi, 2009). 
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3.4 Interaction k-means 

The Interaction k-means algorithm is a partitioning clustering algorithm suitable to detect 

clusters of objects represented by time series with similar interaction patterns and was proposed 

by (Plant et al. 2013). The interaction patterns in this context are the relationship between 

different features of an object.  

In Figure 3.4, a data object is shown as a multivariate time series. This data object has multiple 

dimensions, some of which exhibit a pattern of interaction. Specifically, the time series of 

dimension dim12 can be represented as a linear combination of dimensions dim4, dim5, and 

dim6. It is worth noting that not all dimensions of the data object necessarily interact in this 

way. The figure only shows the dimensions that are involved in the interaction pattern for the 

sake of simplicity (Plant et al. 2013). 

 

Figure 3.4 – Interaction pattern between different time series. The signal dim12 

is represented by a linear combination of other dimensions, namely dim4, dim6, 

and dim5 (Illustration from Plant et al. 2013). 

 

3.4.1 Definitions 

Before explaining the specifics of the IKM algorithm, the formal definitions shall be made. All 

definitions in this section are taken from (Plant et al. 2013). The input to the algorithm is a set 

of objects. Each object O consists of multivariate time series. Object can be any entity, for 

example, an EEG data of a patient, the data from a sensor located in a house, the data of sensors 

that are used to track a subject motion and so on. Each time series has 𝑑 number of dimensions 

and consists of 𝑛 time points.  

Additionally, 𝑛∗ shows the number of time points for concatenated objects in a specific 

dimension. For example, if there are 3 objects each having the time series of length 200 in the 

dimension, then 𝑛∗ for this specific dimension is 600. 

3.4.2 Definition of Models 

The IKM calculates models for finding the interaction patterns between them as well as being 

able to allocate objects in the clusters. The algorithm can work with two types of models: linear 

and non-linear.  
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Linear model is defined as next: 

𝐴 = 𝑉 ∙ 𝑃 + 𝐸, 

• where 𝐴 ∈ ℝ𝑛∗
 is the vector of values for the dependent variable, 

• 𝑉 ∈ ℝ𝑛∗×|𝜐| is the matrix of independent variables, |𝜐| here is the number of these 

independent variables, 

• 𝑃 ∈ ℝ|𝜐| is the vector of coefficients of the model,  

• 𝐸 ∈ ℝ|𝜐| is the vector of errors. Errors are not assumed to be normal. 

Non-linear model is defined similarly to the linear one. The only difference is the application 

of the non-linear function 𝑓 to the multiplication of the matrix of independent variables 𝑉 and 

the vector of coefficients 𝑃 of the model: 

𝐴 = 𝑓(𝑉, 𝑃) + 𝐸, 

where 𝐴, 𝑉, 𝑃, 𝐸 are as defined for the linear model.  

3.4.3 Aggregative Pre-Computing 

The runtime of the IKM algorithm is largely determined by the number of objects being 

processed. Typically, only a few iterations are required, which keeps the overall complexity 

relatively low. The update step, however, is more computationally intensive as it involves 

matrix inversion and a greedy stepwise algorithm. Overall, the runtime of IKM scales linearly 

with the number of objects (Plant et al. 2013). 

The use of aggregative pre-computing, as inspired by (Chen et al. 2006), allows the algorithm 

to be virtually independent of the length of the time series. This means that the runtime of the 

algorithm is not significantly affected by the length of the time series being processed. 

According to (Chen et al. 2006) we compute 𝜃𝑖𝑗
∗ =  𝜃𝑗𝑖

∗ ≔  ∑ 𝑍𝑘𝑖 ∙ 𝑍𝑘𝑗 ,  𝑍 ≔ [𝑉|𝐴]𝑚∗

𝑘=1  for 

aggregation matrix 𝛩∗. Here and further the “∙” operation is the operation of multiplication. 

From this equation, the next terms can be derived (Plant et al. 2013): 

𝑉𝑇 ∙ 𝑉 = (𝜃𝑖𝑗
∗ ), for 1 ≤ 𝑖 ≤ 𝑑 − 1,  1 ≤ 𝑗 ≤ 𝑑 − 1  , 

𝑉𝑇 ∙ 𝐴 = (𝜃𝑖𝑗
∗ ), for 𝑖 = 𝑑,  1 ≤ 𝑗 ≤ 𝑑 − 1 

To find the 𝐸 the following reduction is applied (Plant et al. 2013): 

𝐸2 = ||𝐴 − 𝑉𝑃||
2

= (𝐴 − 𝑉𝑃)𝑇(𝐴 − 𝑉𝑃) = 𝐴𝑇𝐴 − 𝐴𝑇𝑉𝑃 − (𝑉𝑃)𝑇𝐴 + (𝑉𝑃)𝑇(𝑉𝑃) =

𝐴𝑇𝐴 − (𝑉𝑇𝐴)𝑇𝑃 − 𝑃𝑇(𝑉𝑇𝐴) + 𝑃𝑇(𝑉𝑇𝑉)𝑃, with (𝑉𝑇𝐴)  ∈  ℝ(𝑑−1) and (𝑉𝑇𝑉)  ∈

ℝ(𝑑−1)×(𝑑−1) and (𝐴𝑇𝐴) =  𝜃𝑑,𝑑 ∈  ℝ. 

The matrix 𝛩∗is calculated as (Plant et al. 2013): 

𝛩∗ =  ∑ 𝛩𝑖
|𝑂|
𝑖=1 , 

where |𝑂| is the number of objects in the cluster.   

For object 𝑖, 𝛩∗ is precalculated as (Plant et al. 2013): 
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(𝜃𝑖)𝑘𝑗 =  ∑ 𝑍𝑙𝑘 ∙ 𝑍𝑙𝑗

𝑚

𝑙=1

 

3.4.4 Distance Errors Used 

In addition to the calculation of an error for the algorithm in the form of a Euclidian distance, 

other types of distances were used for the calculations (Balazia et al. 2022): 

• Total (absolute) norm distance: 𝐸 = ||𝐴 − 𝑉𝑃|| with the resulting matrix from the 

difference ‖𝐵‖ =  ∑ |𝑏𝑖𝑗|𝑝
𝑖,𝑗=1  

• Max norm distance: 𝐸 = ||𝐴 − 𝑉𝑃||
𝑀

 with the resulting matrix from the difference 

‖𝐵‖
𝑀 = max

i,j=1,…,p
|𝑏𝑖,𝑗| 

• Hamming distance: 𝐸 =
(||max(𝐴,𝑉𝑃)||

2
− ||min(𝐴,𝑉𝑃)||

2
)

𝑛(𝑛−1)
 where max(∙,∙) and min(∙,∙) are 

matrices of element-wise minima and maxima, respectively. || ∙ ||2 represents the 

Frobenius norm of the matrix which is defined as ‖𝐵‖2 =  √∑ (𝑏𝑖𝑗)𝑝
𝑖,𝑗=1

2
 

• Jaccard distance: 𝐸 =
 ||min(𝐴,𝑉𝑃)||

2

||max(𝐴,𝑉𝑃)||
2

 where max(∙,∙) and min(∙,∙) as above. 

 

3.4.5 IKM Algorithm 

The diagram of the IKM algorithm is presented in Figure 2.5. All algorithms in this section are 

adopted from (Plant et al. 2013) or from (Böhm et al. 2009). 

Before the initiation of the algorithm, the next variables must be setup: 

• the number of algorithm initiations  

• the maximum number of steps that algorithm should go through 

• the 𝑘 number of clusters.  

Then, the next sequence of actions is performed: 

1. Randomly allocate objects with time-series to 𝑘 different clusters.  

2. Find coefficients of regression models for each cluster. 

3. Calculate the error of each object regarding each cluster. Errors are calculated 

considering every model in a cluster. For this purpose, the 𝐴 vector of dependent 

variables is eliminated from the object and the model created for this dependent variable 

is considered.  

4. Compare the errors of an object and allocate it to the cluster where its error is the 

smallest.  

5. Check if the algorithm reached the maximum number of steps or if clusters have not 

changed. If not, then repeat the steps 3-5.  

6. If the maximum number of steps has been reached or clusters changed, then calculate 

the objective function.  

7. Check if the number of initiations has not been exceeded. If not, then repeat the steps 

1-7. If the number has been exceeded, the algorithm is completed. 
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Figure 3.5 – A diagram representing the IKM algorithm (adopted from Plant et 

al. 2013). 

3.4.6 Model Finding 

Linear models involve solving multiple linear regression problems. One method for solving 

these problems is by using multiple least square regression. However, it is important to be 

aware of the issue of overfitting, which can occur when many dimensions are included in the 

model. This can lead to a model that is highly specific and not generalizable and may be 

difficult to interpret. To avoid overfitting, it is important to carefully select the set of 

explanatory variables for each model (Plant et al. 2013). For this selection, a greedy stepwise 

algorithm (Larose, 2015) is used. The Bayesian Information Criterion (BIC) is used as the 

evaluation criterion (George 2000). It  is done by balancing the fit of the model to the data with 

the complexity of the model. 

BIC is calculated using the next formula (Plant et al. 2013): 

BIC = -2 ∙ LL(n*, 𝜎)  + log(n*)(|𝜐| + 1), 

• where -2 ∙ LL(n*, 𝜎) term is goodness-of-fit and  

LL(n*, σ) =  − (
n∗

2
∙ log(2π) +

n∗

2
+

n∗

2
∙ log (σ)) is a log-likelihood, 

• 𝜎 is expressed as 𝜎 =
𝐸

𝑛∗, 

• log(n*)(|υ| + 1) is a penalty term that punishes overly complicated models. 

This algorithm is used in step 2 of the IKM algorithm described in the previous section. The 

diagram of the greedy stepwise algorithm is presented in Figure 3.6. 

 

Figure 3.6 – A diagram representing the model finding algorithm (Adopted from 

Böhm et al. 2009). 
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The model-finding algorithm finds coefficients 𝑃 for a dependent variable 𝐴. Before running 

the algorithm, the initial BIC value which is the big number enough (in this work the biggest 

float number for Python has been used) must be setup. Additionally, the relevant and temporary 

sets of dimensions must be created. 

Algorithm from (Böhm et al. 2009) performs the next actions: 

1. A dimension from matrix 𝑉 is chosen.  

2. If the dimension is in the set of the relevant dimensions and the set does not contain 

already 3 dimensions, then come back to step 1. If the dimension is in the relevant set 

of dimensions and the set contains already 3 dimensions, then remove the chosen 

dimension from the set of temporary dimensions. If the dimension is not in the set of 

relevant dimensions, then add this dimension to the set of the temporary dimensions. 

3. Calculate coefficients for the dimensions that are in the set of the temporary 

dimensions. 

4. Compute BIC is using the coefficients to evaluate the model.  

5. Compare BIC to the previous value. 

6. If BIC improved (the value is smaller than the previous one), then store it for the future 

comparison. Also, the coefficients for the current model are stored as the final 

coefficients. If BIC has not improved but not all dimensions from the matrix 𝑉 were 

considered, then steps 1-5 are repeated until all possible combinations of dimensions 

were used. If all dimensions were used, then calculate the error for the model containing 

only the relevant dimensions. 

7. After new values have been stored, check if the dimension was before in the set of the 

relevant dimensions. If yes, then remove the dimension from the set. If not, then add 

the dimension. 

8. Lastly, calculate the error for the model with containing only the relevant dimensions. 

As mentioned, the algorithm terminates when the BIC value was not improved. It means that 

decreasing variance by adding more dimensions did not improve the model or all possible 

dimensions were added and thus the variance was maximally decreased. 

3.5 Dimensions Selection 

To improve the results of the IKM, in particular, the clusters purity, the IKM was enhanced 

with the additional flow. The idea of this enhanced algorithm was to delete the dimensions the 

mean of which has the maximum or the minimum length to the mean of the whole dataset. 

Next are some definitions used in this algorithm: 

• 𝜇𝑑 =
∑ 𝑣𝑑𝑛

𝑛
𝑖=1

𝑛
 , where 𝜇𝑑 – is the mean across one dimension, 𝑣𝑑𝑛—is the value of a 

dimension (electrode) at time point 𝑛  

• 𝜇 =
∑ 𝜇𝑑

𝑛
𝑑=1

𝑑
, where 𝜇 is the mean across all time points, 𝑛 – is the total number of 

dimensions 

• 𝐷𝑑 = √(𝜇 − 𝜇𝑑)2, where 𝐷𝑑 is the distance between the mean across all time points 

and the mean across one dimension 

The dimensions selection algorithm was implemented in two configurations: 
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• Removing the dimensions where their mean has the maximum distance to the mean 

across all time points one by one 

• Removing the dimensions where their mean has the minimum distance to the mean 

across all time points one by one 

The enhanced algorithm is presented in Figure 3.7. 

 

Figure 3.7 – A diagram representing the dimension selection algorithm. 

Algorithm performs the next actions: 

1. Calculate the distances 𝐷𝑑 for each dimension 𝑑. 

2. Check if the number of the dimensions higher than the threshold value. If yes, run the 

IKM algorithm as presented in Figure 2.5. Otherwise, terminate the algorithm. 

3. Check if the clusters purity improved. 

4. If yes, update the clusters purity value. Otherwise, remove dimensions from each object 

that have either maximum or minimum distance (depends on the configuration of the 

algorithm) to the mean across all time points.  

The algorithm is terminated when the number of the dimensions is lower than some threshold 

value. 

3.6 Interpretation of the Results  

One benefit of using the IKM algorithm is the ability to interpret the interaction patterns that 

are detected. To make this easier, the focus shall be on a subset of the models that are most 

effective at distinguishing between different clusters. For each pair of clusters, a leave-one-out 

validation method is used to select the models that are most effective at discriminating between 

the clusters, using objects from the corresponding clusters (Plant et al. 2013). The diagram of 

the interpretation algorithm is presented in Figure 3.8. 
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Figure 3.8 – A diagram representing the interpretation algorithm (Adopted from 

Plant et al. 2013). 

Algorithm performs the next actions: 

1. Add objects to their corresponding clusters. 

2. Check if there are any objects that were not considered yet. If these objects are present, 

then continue the execution of the algorithm. Otherwise, terminate the algorithm. 

3. Choose a test object from the clusters and remove it from them.  

4. Find models for the clusters without a test object. 

5. Calculate an error for each model and sum them up to the previous calculated errors for 

each model, if any. Before adding the error the previous value it is multiplicated by the 

sign value. This sign value can be either 1 or -1. If we consider the object with regard 

to the cluster to which it belongs, then the sign is 1. If we consider the object belonging 

to the opposite cluster, then the sign is -1.  

6. Add test object back to the clusters. 

The algorithm terminates when there are no objects left in the clusters that are needed to be 

tested. Then, the errors of the models are sorted ascendingly. The best separation models should 

have the lowest value. It means that the error of an object in the “appropriate” cluster has a low 

enough value and the error from the cluster to which the object does not belong is high enough. 

If the error value is positive it means that there is a “noise” in the cluster. 

3.7 Criteria of the Quality of Clustering 

There are various criteria to measure the quality of clustering. As in (Plant et al. 2013), in this 

work, we use to evaluate clustering effectiveness the next measures: 

• Cluster purity (CP) 

• Rand Index (RI) 

• Information Criterion (IC) 

3.7.1 Cluster Purity 

Cluster purity (CP) is the ratio of the size of the class that has majority in a cluster with respect 

to the size of this class in a dataset (Xiaozhe Wang 2007). The CP is defined in the next way: 
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𝐶𝑃 =
𝐶𝑜𝑢𝑛𝑡𝑀

𝐶𝑜𝑢𝑛𝑡𝑂
 ∗ 100%  

 

• where 𝐶𝑜𝑢𝑛𝑡𝑀 is the number of elements of the dominant class in a considered cluster 

• 𝐶𝑜𝑢𝑛𝑡𝑂 is the overall number of elements of that class in a dataset.  

The resulting metric is obtained by averaging it among all clusters. The goal of a clustering is 

to achieve as high value of CP as possible. 

3.7.2 Rand Index 

The Rand Index (RI) is a metric used to evaluate clustering results, which is determined by 

counting the number of pairs of objects that belong to the same class and cluster, as well as the 

number of pairs of objects that belong to different classes and different clusters (Halkidi, 

Batistakis, and Vazirgiannis 2001). The RI is defined as (Halkidi, Batistakis, and Vazirgiannis 

2001): 

𝑅𝐼 =(𝑆𝑆 +𝑆𝑁)/(𝑆𝑆 +𝑆𝑁 +𝐷𝑆 +𝐷𝐷), 

• where 𝑆𝑆 is the number of occurrences of points that belong to the same cluster and to 

the same class,  

• 𝑆𝐷 is the number of occurrences of points that belong to the same cluster and to 

different classes,  

• 𝐷𝑆 is the number of occurrences of points that belong to different clusters and to the 

same class, 

• 𝐷𝐷 is the number of occurrences of points that belong to different clusters and to 

different classes 

The goal of a clustering is to achieve as high RI as possible. 

3.7.3 Information Criterion 

An Information Criterion (IC) is a measure of entropy based on the empirical relationship 

between class labels and cluster labels. Conceptually, IC can be thought of as the number of 

bits required to encode the class labels of all objects, taking into account the information 

provided by the cluster labels (Dom 2013). IC is calculated using the next formula (Dom 2013): 

𝐼𝐶 = �̃�(𝐶|𝐾) +
1

𝑛
∑ log (ℎ(𝑘)+|𝐶|−1

|𝐶|−1
)

|𝐾|
𝑘=1 , 

• where �̃�(𝐶|𝐾) = − ∑ ∑
ℎ(𝑐,𝑘)

𝑛
log (

ℎ(𝑐,𝑘)

ℎ(𝑘)
)

|𝐾|
𝑘=1

|𝐶|
𝑐=1  is a conditional empirical entropy, 

• 𝐶 is class labels, 

• 𝐾 is cluster labels , 

• ℎ(𝑐,  𝑘) is the number of objects labelled class 𝑐 that are assigned to cluster 𝑘, 

ℎ(𝑐) ≡  ∑ ℎ(𝑐,  𝑘) 𝑘  and ℎ(𝑘) ≡  ∑ ℎ(𝑐,  𝑘)𝑐 . 

The goal of a clustering is to achieve as low IC as possible.  



 

28 

 

4 Data Sets and Methods 

4.1 Data Characteristics 

This section explains the datasets used when working on this thesis. 

4.1.1 Data of Alcoholic and Non-alcoholic Patients 

As reference data, the EEG recordings of alcoholic and non-alcoholic patients were used (EEG 

Database. 1999. UCI Machine Learning Repository.). The subjects in the study were exposed 

to either one or two visual stimuli, with the second stimulus being either identical or different 

from the first. The dataset consists of data from two subjects - one alcoholic and one non-

alcoholic – and includes 10 runs of EEG recordings for each of the three experimental 

conditions. Additionally, the data is collected from 64 electrodes. 

Moreover, this dataset was used to repeat the identical experiment as described by (Plant et al. 

2013) the aim of which was to cluster the EEG runs into groups based on whether the subject 

was alcoholic or non-alcoholic. The clustering is into two groups, as similarly required for the 

data basis of depressed patients, however the patients were presented with either a single 

stimulus or two stimuli, which consisted of pictures of objects, which is not the case for the 

data base of depressed patients. 

4.1.2 Data of Depressed Patients 

The main data was collected in the scope of the research by (Bučková et al. 2020). After 

eliminating data from subjects with distorted and not readable EEG recordings, the resulting 

dataset consisted of the data of 134 subjects. 93 of the subjects are women, and 41 are men 

with a mean age of 46 years. Every participant was recorded before and after the treatment 

which lasted for 4 weeks. 

19 standard electrode positions were used for the recordings, namely, Fp1, Fp2, F3, F4, C3, 

C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz. Patients were recorded for 10 

minutes, laying on a bed with elevated upper body at 30-45 degrees (semirecumbent position). 

The recording was done in a room with dimmed light. The patients had their eyes closed but 

their alert state was controlled by using acoustic stimuli when signs of drowsiness appeared in 

EEG. 

The data were downsampled to 250 Hz and the initial and last 30 seconds were removed. More 

details on the specific raw EEG pre-processing steps can be found in (Bučková et al. 2020). 

The data was provided in different formats. The main dataset (consisting of EEG recordings) 

was provided in the form of a MATLAB file and had the structure presented in Table 4.1. 
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Table 4.1 – Structure of the depressed patients’ dataset. Only first three rows are 

presented. 

ID Age Sex Visit Response Sampling 

rate 

EEG data 

"P001" 49 0 1 1 250 Structure data 

type of EEG 

data 

"P001" 49 0 2 1 250 Structure data 

type of EEG 

data 

"P002" 36 0 1 0 250 Structure data 

type of EEG 

data 

 

The supplementary dataset to the presented dataset contains all information as in the MATLAB 

file except for EEG data. This dataset is in Excel format. Its value is that it contains information 

about the results of MADRS questionnaires. 

4.2 Data Exploration 

Data exploration is an important step in data analysis because it allows understanding the 

properties and characteristics of a dataset. This section outlines some properties and 

relationships in the data. 

4.2.1 3-dimensional Trajectories of the EGG Data of Depressed Patients 

Figure 4.1 visualizes EEG data of the first visit of subject 1 who responded to the treatment.  

 

Figure 4.1 – EEG data of the first visit of the subject 1 who responded to the 

treatment. 

Figure 4.2 visualizes EEG data of the second visit of the same subject.  
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Figure 4.2 – EEG data of the second visit of the subject 1 who responded to the 

treatment. 

In these two figures, the x-axis represents time points, the y-axis shows the number of 

dimensions, and the z-axis represents the values of electrodes. From the figures, it can be seen 

that the all electrodes of this patient have very similar trajectories. It might be because the data 

was collected during the rested state. 

4.2.2 Comparison of Topomaps of Depression and Alcoholic EEG Data 

In this subsection, we compared the representation between the EEG data of alcoholics-non-

alcoholics and depressed patients. For this, we used topomaps. 

Figures 4.3 and 4.4 show the snapshots from the topomap of the EEG data in different periods. 

This EEG data is from alcoholic and non-alcoholic people. 

The difference between these two visualizations is quite noticeable. At the same time points, 

the activation of the subjects’ brains happens differently, probably due to the presence of the 

stimuli. 



 

31 

 

 

Figure 4.3 –Snapshots of a topomap of an alcoholic subject. 

 

Figure 4.4 –Snapshots of a topomap of an alcoholic subject . 

Figures 4.5 and 4.6 show the snapshots from the topomap of the EEG data in different periods 

of a depressed subject. These two figures represent the first and the second visit 

correspondingly. The subject is 25 years old, male, and responded to the treatment. 
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Here the difference between different snapshots at the same time is not very big compared to 

the example of alcoholic and non-alcoholic subjects.  

 

Figure 4.5 –Snapshots of a topomap of the first visit of a depressed subject. 

 

Figure 4.6 –Snapshots of a topomap of the second visit of a depressed subject . 
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It is noticeable that the depressed patient's topomaps exhibit greater similarity between their 

two visits when compared to the topomaps of both alcoholics and non-alcoholics, which 

display more noticeable differences. Additionally, the EEGs of alcoholics and non-alcoholics 

show more edge values than the EEG of a depressed patient.  

4.2.3 Coefficients Correlation Matrices 

Figure 4.7, relating to the depressed patients data, represents the correlation between cluster 

coefficients where clusters are ideal. The ideal clusters here are the two clusters that contain 

only responders and non-responders. The coefficients, therefore, were found for each cluster 

and Pearson’s correlation was applied to them. The coefficients were found with the formula 

provided in Section “Interaction k-means”. The matrix in figure 4.7, shows the correlation 

matrix between the first visit data of non-responders and the second visit data of responders. 

The coefficients of the 10th to 15th dimensions have a stronger positive correlation with other 

dimensions. 
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Figure 4.7 – Correlation matrix for the cluster coefficients of ideal clusters. The 

coefficients are calculated for the first visit non-responders and the second visit 

responders. 
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In Figure 4.8, on the other hand, slightly different behavior in the correlation can be observed. 

The correlation matrix was computed for the coefficients of the data of the first-day responders 

and the seventh-day responders. Here a very strong positive correlation between the 0th to 15th 

coefficients of responders can be observed from different visits as well as between coefficients 

of 16th to 18th. 

 

Figure 4.8 – Correlation matrix for the cluster coefficients of ideal clusters. The 

coefficients are calculated for the first visit responders and the second visit 

responders. 

Figure 4.9 represents the correlation matrix for each object's coefficients. The objects were 

preallocated in the ideal clusters and only then the coefficients were calculated (the similar 

approach as for the cluster coefficients). The only difference in the calculation approach from 
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the previous figures is that the coefficients in this situation are calculated for each object 

separately and not for the whole cluster. 

Overall, almost in all cases, the correlation between the coefficients of some objects can be 

observed in the middle of the set (as for object 34, for example). These middle-set coefficients 

of objects are strongly positively correlated with the coefficients of the other subjects. There is 

mostly no strong negative correlation.  

 

Figure 4.9 – Correlation matrix for coefficients of each object allocated in ideal 

clusters. The coefficients are calculated for the first visit non-responders and the 

second visit responders. 
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This section contains only some correlation matrices of ideal clusters. More correlation 

matrices can be found in Appendix A. 

4.2.4 Distances Between Coefficients 

Table 4.2 represents the Frobenius distance between coefficients of ideal clusters. The 

coefficients were obtained using the same method as in the previous examples of the 

coefficients correlation. The coefficients between non-responders and responders subjects have 

the largest difference. The difference between the responders of the first visit and the 

responders of the second visit is low. The same behavior is for the coefficients of non-

responders from different visits. 

Table 4.2 – Frobenius distance between coefficients of ideal clusters. 

 1st-visit-non-

responders 

2nd-visit-non-

responders 

1st-visit-

responders 

2nd-visit-

responders 

1st-visit-non-

responders 

0 0.531339 6.423986 6.487957 

2nd-visit-non-

responders 

0.531339 0 6.616068 6.67983 

1st-visit-

responders  

6.423986 6.616068 0 0.162086 

2nd-visit-

responders 

6.487957 6.67983 0.162086 0 

 

Table 4.3 represents the Frobenius distance between the coefficients of each object allocated 

to ideal clusters. The results are slightly different from the results of the previous section. The 

lowest distance is still between the subjects of the first visit who responded and the subjects of 

the second visit who responded. However, the second lowest distance is between the subjects 

of the first visit who did not respond and the subjects of the first visit who responded. The 

biggest distance is between the first visit non-responders and the second visit non-responders. 
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Table 4.3 – Frobenius distance between the coefficients of each object allocated 

to ideal clusters. 

 

1st-visit-non-

responders 

1st-visit-

responders 

2nd-visit-non-

responders 

2nd-visit-

responders 

1st-visit-non-

responders 0 1898.983 2275.569 1963.585 

1st-visit-

responders 1898.983 0 2132.343 1775.168 

2nd-visit-non-

responders 2275.569 2132.343 0 2107.632 

2nd-visit-

responders 1963.585 1775.168 2107.632 0 

 

4.3 General Data Preprocessing 

As was described in Section “Materials and Methods. Data Characteristics”, the data was 

provided in a MATLAB file. To make it acceptable by the algorithm, the data was transformed 

into text files, each corresponding to one subject. Columns in this text file represented the 

electrodes, rows – the time points. The name of each file encoded the information about the 

number of a dataset and the patient’s response to the treatment. To transform the data, the script 

written in MATLAB was used. 

For the runs of the algorithm, the datasets were concatenated. Concatenating the two datasets 

(i.e., combining them into a single dataset) provides a more complete picture of the changes in 

the patient's brain activity before and after treatment. It allows us to directly compare the EEG 

dynamics of the patient before and after treatment and identify any changes that may have 

occurred as a result of the treatment. 

The data of the first and second visits of each subject was simply concatenated one after another 

and an algorithm has been run on it. 
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4.4 Used Tools 

The authors of  paper (Plant et al. 2013) provided the source code of the algorithm written in 

Java programming language. It was recoded in Python programming language as using an 

algorithm in this language allowed to use many supporting and useful libraries for data 

preprocessing and analysis. These are just few of them: 

• Numpy (https://numpy.org/) for working with matrices 

• Math (https://docs.python.org/3/library/math.html) for calculations 

• Pandas (https://pandas.pydata.org/) for working with the Python data type dataframes 

• SciPy (https://scipy.org/) for using the optimized algorithms or mathematical 

operations such as Hilbert transform.  

• MNE (https://mne.tools/stable/index.html) for creating animated topographic maps. 
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5 Preprocessing Methods 

In this section we will present the setting of clustering parameter 𝑘 and all preprocessing 

methods we have applied to the data sets. 

5.1 Alcoholic and Control EEG Data 

As was mentioned before, the IKM algorithm was used for two datasets. The alcoholics-non-

alcoholics dataset was used as a benchmark to repeat the initial experiment in the original paper 

describing the algorithm (Plant et al. 2013). After the run, the results were repeated except for 

the Information Criterion metric which was slightly different from the original one. They are 

represented in Table 5.1. One can see that the cluster purity is 100% for this data set. 

Table 5.1 – Results of clustering on the alcoholic-non-alcoholic EEG dataset  with 

60 objects and 64 electrodes (dimensions) . 

Setting Cluster Purity Random Index Information 

Criterion 

Alcohol-control 

EEG data 

100% 1 0.05 

 

5.2 EEG Data of Depressed Patients 

All following results relate only to the EEG dataset of the depressed patients with 134 subjects 

and 19 electrodes. 

5.2.1 Determination of Optimal Number of Clusters 

To check if the optimal number of clusters corresponds to the number of classes present in the 

data (patients who responded to the treatment and those who did not) the elbow method (Cui 

2020) was used. The elbow method in cluster analysis is a way to determine the ideal number 

of clusters in a data set. It involves creating a plot that shows the explained variation versus the 

number of clusters and selecting the point at which the plot forms an "elbow" shape as the 

optimal number of clusters to use. 

Figure 5.1 shows the error value for different numbers of clusters. One can see from it that after 

two clusters the error does not change very significantly. However, it still changes noticeably 

when the number of clusters is three. Despite that, it would be hard to calculate the metrics for 

three clusters as there is no clear identification of what those metrics should be based on. For 

two clusters, this indication is as mentioned before the patients who responded well and who 

did not respond to the treatment. 
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Figure 5.1 – The plot of the clusters error value with regard to a number of 

clusters. 

Thus, in all subsequent experiments, 𝑘 was chosen to be equal to two.  

5.2.2 Untransformed Data 

Table 5.2 shows the quality measures for results of the clustering on the untransformed data.  

This table will serve us for comparison whether the preprocessing and transformation methods 

applied to the EEG data improved the quality measures of the clustering.  

Table 5.2 – Results of clustering on the not-preprocessed EEG data of depressed 

patients. 

Setting Cluster Purity Random Index Information 

Criterion 

First visit 50.8% 0.5 0.33 

Second visit 50% 0.5 0.33 

Combined 50% 0.5 0.33 

 

One can see that untransformed data provided the results that could be obtained from separation 

data objects in two clusters by chance. 

5.2.3 Sinus Non-linear Function 

EEG data may have some characteristics that are related to the sinusoidal function, as both deal 

with oscillating patterns. The sinusoidal function is often used to model periodic phenomena, 

such as the alternating current of an electrical signal, and EEG data is characterized by various 

types of oscillations that occur in the brain. However, it is important to note that the relationship 

between sinusoidal functions and EEG data is not a simple one, and further research would be 

needed to fully explore any potential connections between the two. 
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We hypothesized that applying sinus function to the EEG data may increase the quality 

measures of clustering. 

To use any non-linear function with the IKM algorithm new dimensions of the data must be 

created. The number of new dimensions must be identical to the number of initial dimensions. 

The non-linear function must be applied to each data point in the new dimensions. For the data 

of depressed patients, 19 new dimensions (as there were 19 initial dimensions) with applied 

sinus function were created. 

Table 5.3 shows the results of the clustering of data with the applied sinus function  

Table 5.3 – Results of clustering on the data with applied sinus function. 

Setting Cluster Purity Random Index Information 

Criterion 

First visit 50.8% 0.5 0.33 

Second visit 51.6% 0.5 0.33 

Combined 50% 0.5 0.33 

 

One can see that sinus transformation had only a small influence on the increase of CP and no 

influence on other metrics.  

5.2.4 Downsampling 

We hypothesized that downsampling of the EEG data can improve the results of the algorithm 

because the data of depressed people is more complex than of the healthy people (Torre Luque 

and Bornas 2017).  

The data was downsampled in different ways: 

• One-thirds of the dataset were left: the initial, middle, and last parts 

• Every nth element was removed from the data 

• Every nth element was left in the data 

Tables 5.4-5.10 show the results of clustering on the data with the downsampling applied. 

Table 5.4 – Results of clustering on the initial one-third of the data.  

Setting Cluster Purity Random Index Information 

Criterion 

First visit 50.8% 0.5 0.33 

Second visit 51.6% 0.5 0.33 

Combined 50% 0.5 0.33 
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Table 5.5 – Results of clustering on the middle one-third of the data. 

Setting Cluster Purity Random Index Information 

Criterion 

First visit 50.8% 0.5 0.33 

Second visit 51.6% 0.5 0.33 

Combined 50% 0.5 0.33 

 

Table 5.6 – Results of clustering on the last one-third of the data. 

Setting Cluster Purity Random Index Information 

Criterion 

First visit 50.8% 0.5 0.33 

Second visit 51.6% 0.5 0.33 

Combined 51.6% 0.5 0.33 

 

Table 5.7 – Results of clustering on the data with every 5 th element removed. 

Setting Cluster Purity Random Index Information 

Criterion 

First visit 50.8% 0.5 0.33 

Second visit 51.6% 0.5 0.33 

Combined 50% 0.5 0.33 

 

Table 5.8 – Results of clustering on the data with every 10 th element removed. 

Setting Cluster Purity Random Index Information 

Criterion 

First visit 50.8% 0.5 0.33 

Second visit 51.6% 0.5 0.33 

Combined 50% 0.5 0.33 

 

Table 5.9 – Results of clustering on the data with every 5 th element left. 

Setting Cluster Purity Random Index Information 

Criterion 

First visit 50.8% 0.5 0.33 

Second visit 51.6% 0.5 0.33 

Combined 50% 0.5 0.33 
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Table 5.10 – Results of clustering on the data with every 10 th element left. 

Setting Cluster Purity Random Index Information 

Criterion 

First visit 50.8% 0.5 0.33 

Second visit 51.6% 0.5 0.33 

Combined 50% 0.5 0.33 

 

One can see that downsampling showed almost the same results as for sinus transformation 

and it again had only a small influence on the increase of CP.  

5.2.5 Dimensions selection 

We hypothesized selection of only some channels of the EEG data can improve the results of 

the IKM algorithm. To test this, we calculated the distance between the mean across all time 

points and the mean across one dimension and got the results for each dimension. Then 

depending on the configuration, we either removed a dimension with the minimum or the 

maximum result.  

Results from applying dimensions selection modification of the IKM algorithm (described in 

Section “Interaction k-means. Dimensions Selection”) are represented in the Table 5.11. For 

different configurations either 16 or 17 dimensions were selected out of 19.  

Table 5.11 – Results from applying dimensions selection modification of the IKM 

algorithm. 

Configuration Setting Cluster Purity Random Index Information 

Criterion 

Maximum 

distance 

First visit 50.8% 0.5 0.33 

Maximum 

distance 

Second visit 50.8% 0.5 0.33 

Maximum 

distance 

Combined 51.6% 0.5 0.33 

Minimum 

distance 

First visit 50.8% 0.5 0.33 

Minimum 

distance 

Second visit 51.6% 0.5 0.33 

Minimum 

distance 

Combined 50% 0.5 0.33 

 

One can see that these dimension selection methods had only a small influence on the cluster 

purity. The best settings are using the maximum distance approach on the combined data and 

the minimum distance on the second visit data. These strategies provided 51.6% cluster purity. 
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5.2.6 Box-Cox Transformation 

Box-Cox transformation is a type of power transformation that is used to create a monotonic 

transformation of data. A monotonic transformation is a mathematical function that preserves 

the relative order of the elements in a dataset. 

Box-Cox transformation can be used to stabilize the variance of a dataset and make it more 

normally distributed. Thus, we hypothesized that the stabilization of the variance by applying 

Box-Cox can improve the validity of the IKM algorithm applied to the data.  

The one-parameter Box–Cox transformation is defined as (Box and Cox 1964): 

𝑦𝑖
𝜆 =  {

𝑦𝑖
𝜆−1

𝜆
 𝑖𝑓 𝜆 ≠ 0,

ln 𝑦𝑖  𝑖𝑓 𝜆 = 0
, 

where 𝜆 is the power parameter. 

Before applying the Box-Cox transformation, firstly the data was transformed to have only 

positive numbers. To do it, the shift value must be calculated. The formula was used is the next: 

𝑆ℎ𝑖𝑓𝑡 𝑣𝑎𝑙𝑢𝑒 = |𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡|  +  1 

Then this number was added to each number in the dataset. 

 

The Table 5.12 shows the results of clustering with applied Box-Cox transformation 

Table 5.12 – Results of clustering on the data with applied Box -Cox 

transformation. 

Setting Cluster Purity Random Index Information 

Criterion 

First visit 51.6% 0.50 0.33 

Second visit 50.8% 0.50 0.33 

Combined 50.8% 0.50 0.31 

 

Again, one can see that Box-Cox transformation had only a small influence on the CP of the 

first visit and almost no influence on the second and combined visits. 

5.2.7 Discrete Wavelet Transformation 

A discrete wavelet transform (DWT) is a wavelet transform in which the wavelets are discretely 

sampled. A wavelet is a type of wave that oscillates and has a varying amplitude that starts at 

zero, increases or decreases, and then returns to zero one or more times.  

DWT is used to analyze signals and functions in order to extract both frequency and location 

information. Unlike Fourier transforms, which only provide frequency information, DWTs are 

able to provide both frequency and temporal resolution, making them useful for analyzing 

signals that vary over time. 
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In this thesis, the Daubechies 4 (db4) wavelet function was used to decompose EEG signals 

into five levels. The wavelet waveform is presented in Figure 5.2. The db4 wavelet function 

was chosen for its good time-frequency localization properties, which are important for 

accurately analyzing signals that vary over time (Murugappan, Ramachandran, and Sazali 

2010).  

 

Figure 5.2 -- The Wavelet Daubechies 4 (db4) waveform (Illustration from 

Belkhou, Jbari, and Belarbi 2017). 

 

Table 5.13 shows the results of clustering with applied Discrete Wavelet transformation.  

Table 5.13 – Results of clustering on the data with applied Discrete Wavelet 

transformation. 

Setting Cluster Purity Random Index Information 

Criterion 

First visit 51.6% 0.5 0.33 

Second visit 52.3% 0.5 0.33 

Combined 51.6% 0.5 0.33 

 

One can see that db4 transformation increased the CP more significantly than the previous 

transformations for all visits, in particular for the second visit. 

5.2.8 z-normalization 

EEG data is known for its high complexity, high dimensionality, non-stationary oscillations, 

and low signal-to-noise ratio. When collecting multi-trial EEG data, it is difficult to ensure that 

all the trials have the same phase or that the EEGs are recorded for the same length of time. 

This is due to the unpredictability and uncontrolled nature of brain activity during EEG 

recording sessions. Additionally, multi-trial EEG data may be incomplete, as some trials may 

be shorter or longer than others, or may be lost altogether. Finally, EEG data is often 

contaminated by various types of noise and artifacts, such as those resulting from 

environmental factors or unspecific brain activity, like eye blinks. These characteristics make 

it challenging to analyze and interpret multi-trial EEG data (Dai et al. 2018). 
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To address this issue and make the EEG data more amenable to clustering, it is common to 

apply z-normalization (Goldin and Kanellakis 1995) as a preprocessing step. This helps to 

make the data shift- and complexity-invariant, improving the performance of distance-based 

clustering methods. It helps to eliminate distortions in the data and reduce the impact of outliers 

on the similarities between the EEG trials (Dai et al. 2018). 

The z-normalization is defined as following: 

𝑒′ =  
𝑒− 𝜇(𝑒)

𝜎(𝑒)
, 

Where 𝜇(𝑒), 𝜎(𝑒) denote the mean and standard deviation of the data 𝑒, respectively. The data 

𝑒 is usually normalized such that 𝜇(𝑒) = 0 and 𝜎(𝑒) = 1. 

 

Table 5.14 shows the results of clustering with applied z-normalization. 

Table 5.14 – Results of clustering on the data with applied z-normalization. 

Setting Cluster Purity Random Index Information 

Criterion 

First visit 55.1% 0.5 0.33 

Second visit 52.2% 0.5 0.33 

Combined 51.4% 0.5 0.33 

 

One can see that z-normalization increased CP value more significantly than for all previous 

methods for the first visit, for the second visit and gave the CP comparable to db4 

transformation for combined data.  

5.2.9 z-score 

The z-score is a measure of how far a raw score (an observed value or data point) is from the 

mean in terms of the number of standard deviations. A z-score is calculated by the next formula 

(Kreyszig 1979): 

𝑧 =  
𝑥−𝑦

𝜎
, 

where: 

• 𝜇 is the mean of the population, 

• 𝜎 is the standard deviation of the population, 

• 𝑥 is the raw score.  

The raw scores below the mean are negative, above – positive. We hypothesized that this kind 

of normalization can better separate abnormal EEG activity. 

Table 5.15 shows the results of clustering with applied z-score measure. 
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Table 5.15 – Results of clustering on the data with applied z-score measure. 

Setting Cluster Purity Random Index Information 

Criterion 

First visit 50.8% 0.5 0.33 

Second visit 51.6% 0.5 0.33 

Combined 50% 0.5 0.33 

 

The z-score transformation did not improve the results of the clustering as much as the z-

normalization. The only slight improvement with regard to the random allocation of data 

objects was for the second visit data. 

5.2.10 Z-transform 

The Z-transform converts a sequence of real or complex numbers in the time domain, into a 

complex frequency-domain representation on the z-plane (Mandal 2020). 

The formula of Z-transform is the next (Sullivan 1996): 

𝑍[𝑥(𝑡)] = 𝑋(𝑧) =  ∑ 𝑥(𝑛)𝑧−𝑛

∞

𝑛= −∞

 

This equation is commonly known as the bilateral transform because it is defined for both 

positive and negative values of n. 

The value of 1j = 1 ∙ √−1 is a complex number represented as the imaginary unit in the 

complex number system. It is used as the variable 𝑧 in the Z-transform to represent a rotation 

of 90 degrees around the origin in the complex plane. This makes it a suitable choice as it 

allows Z-transform to capture the full range of frequencies in the signal. 

For this type of preprocessing, the magnitude which represents the amplitude of the signal at 

each frequency, and the phase which represents the phase shift at each frequency were 

calculated. For the magnitude the next formula was used: 

 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =  |𝑍(𝑥(𝑡))| 

For the phase, the counter-clockwise angle from the positive real axis on the complex plane in 

the interval (−𝜋, 𝜋] was calculated. 

 

Table 5.16 shows the results of clustering with extracted magnitude applying Z-transform while 

Table 5.17 shows the results of clustering with extracted phase applying Z-transform. 
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Table 5.16 – Results of clustering on the data with extracted magnitude applying 

Z-transform. 

Setting Cluster Purity Random Index Information 

Criterion 

First visit 53.3% 0.5 0.33 

Second visit 50.6% 0.5 0.33 

Combined 55.4% 0.5 0.33 

 

Table .517 – Results of clustering on the data with extracted phase applying Z -

transform. 

Setting Cluster Purity Random Index Information 

Criterion 

First visit 51.4% 0.5 0.33 

Second visit 51.7% 0.5 0.33 

Combined 50% 0.5 0.33 

 

One can see that clustering on the extracted magnitude applying Z-transform showed improved 

cluster purity for the combined and the first visit. For the extracted phase applying Z-transform, 

the results did not show any improvement in CP. 

5.2.11 Exponential Smoothing 

As it was already mentioned, EEG data tends to have non-stationary oscillations and high 

complexity. We decided to apply exponential smoothing to the EEG data to filter out noise 

irregular variations in the signal. In other words, the goal of this transformation is to make a 

smooth function out of the EEG signal.  

Exponential smoothing is a technique used to forecast the future values of a univariate time 

series based on past data. Exponential smoothing methods are used to create forecasts by taking 

a weighted average of past observations, where the weight of each observation decreases 

exponentially as it becomes older. This means that more recent observations are given more 

weight in the average (Hyndman, 2021). 

The simplest form for the simple exponential smoothing with the sequence that begins at 𝑡 = 0 

is defined as (Guthrie 2020): 

𝑠0 = 𝑥0 

𝑠𝑡 =  𝛼𝑥𝑡 + (1 − 𝛼)𝑠𝑡−1, 𝑡 >  0, 

where: 

• 𝛼 is the smoothing factor and 0 <  𝛼 < 1 

• the output of the exponential smoothing algorithm is commonly written as 𝑠𝑡. 
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Double exponential smoothing is a method that involves applying an exponential smoothing 

filter recursively twice. It is called "double" because it involves two applications of the 

exponential filter. 

The purpose of double exponential smoothing is to account for trends in a series of data by 

introducing a term that is updated using exponential smoothing. This helps to improve the 

accuracy of forecasts by considering the possibility that the data may not be stationary, but 

rather may have some form of trend. 

Double exponential smoothing has the next formulas (Guthrie 2020): 

𝑠0 = 𝑥0 

𝑏0 = 𝑥1 − 𝑥0 

And for 𝑡 > 0 by 

𝑠𝑡 =  𝛼𝑥𝑡 + (1 − 𝛼)(𝑠𝑡−1 + 𝑏𝑡−1),   

𝑏𝑡 =  𝛽(𝑠𝑡 − 𝑠𝑡−1) + (1 − 𝛽)𝑏𝑡−1, 

where: 

• 𝛼(0 ≤ 𝛼 ≤ 1) is the data smoothing factor 

• 𝛽(0 ≤ 𝛽 ≤ 1 is the trend smoothing factor 

• 𝑏𝑡 is the best estimate of trend at time 𝑡 

Triple exponential smoothing uses exponential smoothing three times. This type of smoothing 

involves calculating a trend line for a series of data, as well as seasonal indices that are used to 

adjust the values in the trend line based on the position of each time point within a repeating 

cycle of length 𝐿. 

For the exponential smoothing applied to the data, only the additive seasonality was considered. 

The next formulas are used in the triple exponential smoothing with additive seasonality 

(Guthrie 2020): 

𝑠0 = 𝑥0 

𝑠𝑡  =  𝛼(𝑥𝑡 − 𝑐𝑡−𝐿) + (1 − 𝛼)(𝑠𝑡−1 + 𝑏𝑡−1) 

𝑏𝑡 = 𝛽(𝑠𝑡 − 𝑠𝑡−1) + (1 − 𝛽)𝑏𝑡−1 

𝑐𝑡 = 𝛾(𝑥𝑡 − 𝑠𝑡−1 − 𝑏𝑡−1) + (1 − 𝛾)𝑐𝑡−𝐿, 

where: 

• 𝛼(0 ≤ 𝛼 ≤ 1) is the data smoothing factor, 

• 𝛽(0 ≤ 𝛽 ≤ 1) is the trend smoothing factor, 

• 𝛾(0 ≤ 𝛾 ≤ 1) is the seasonal change smoothing factor 

• 𝐿 is the length of the cycle of seasonal change.  

The formula for the initial trend estimate 𝑏0 is the next: 
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𝑏0 =
1

𝐿
(

𝑥𝐿+1 − 𝑥1

𝐿
+

𝑥𝐿+2 − 𝑥2

𝐿
+ ⋯ +

𝑥𝐿+𝐿 − 𝑥𝐿

𝐿
)  

A low value for alpha results in a line that changes smoothly, similar to a moving average with 

a large number of periods. On the other hand, a high value for alpha gives more weight to 

recent data, resulting in a line that more closely tracks the data. Taking in the consideration that 

the data consists of many data points, the 𝛼 = 0.05 was taken. 

Types of trend and seasonal components for double and triple exponential smoothing were 

chosen as additive. Additionally, for the triple exponential smoothing 12 seasonal periods were 

chosen. 

Tables 5.18-5.20 show the results of clustering with different applied exponential smoothing 

methods. 

Table 5.18 – Results of clustering on the data that was simple exponentially 

smoothed. 

Setting Cluster Purity Random Index Information 

Criterion 

First visit 50.8% 0.5 0.33 

Second visit 51.6% 0.5 0.33 

Combined 50% 0.5 0.33 

 

Table 5.19 – Results of clustering on the data that was double exponentially 

smoothed. 

Setting Cluster Purity Random Index Information 

Criterion 

First visit 51.6% 0.5 0.33 

Second visit 51.6% 0.5 0.33 

Combined 50% 0.5 0.33 

 

Table 5.20 – Results of clustering on the data that was triple exponentially 

smoothed. 

Setting Cluster Purity Random Index Information 

Criterion 

First visit 50% 0.5 0.33 

Second visit 50% 0.5 0.33 

Combined 50% 0.5 0.33 

 

All types of exponential smoothing did not bring any improvements for the clustering results.  
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5.2.12 EEG Bands Extraction 

As was already mentioned in the section “Electroencephalography (EEG)”, different brain 

activities are associated with different frequency ranges, which are generally classified as delta, 

theta, alpha, beta, and gamma. To extract these bands, the Butterworth filter was applied. 

The Butterworth filter is a type of filter used in signal processing that is designed to have a 

frequency response that is as flat as possible over a specified range of frequencies, called the 

passband (Acharya et al. 2016). 

The square function of the Butterworth filter defines it. The equation of it with applied bilinear 

transformation (Roberts and Roberts 1978) is 

|𝐻𝐵(𝑗𝜔)|2 =  [1 +
tan(

𝜔𝑇

2
)

tan(
𝜔𝑇

2
)
]

−2𝑛

, 

where: 

• 𝑇 is the sampling interval (Stearns and Hush 1990) 

• 𝜔 is the cutoff frequency 

• 𝑗 = (−1)
1

2 

• 𝑛 is the number of order of the filter. 

As suggested by (Jenkins and Nayeri 1986), a decomposed filter structure consisting of parallel 

or cascaded second-order sections is a superior one. A cascade of second-order sections is a set 

of cascaded second-order filters that can be combined to form a filter with any desired order. 

Thus, this type of structure was used when extracting EEG bands. 

Each second-order section consists of a single biquadratic section, which is a type of two-pole, 

a two-zero filter that can be implemented using a simple difference equation. The number of 

biquadratic sections was chosen to be 5, thus the resulting order of the final filter is 2*5 = 10. 

Typically, a fifth-order Butterworth filter is used for EEG bands extraction because it provides 

a good balance between attenuation in the stopband and preserving the signal in the passband. 

This order provides a steep roll-off while avoiding excessive signal distortion, which can occur 

with higher-order filters. Moreover, the frequency range of interest for EEG bands extraction 

is usually below 100 Hz, and a fifth-order Butterworth filter can provide sufficient attenuation 

at higher frequencies while preserving the signal in the frequency range of interest. 

Figure 5.3 represents the filtered bands of the EEG data of subject’s second visit. The first 

graph shows the original time-series of the first 1000 time points. All other graphs visualize 

delta, theta, alpha, beta and gamma bands in the mentioned order. We added this figure to show 

the output of the filtering, thus only the data for the second visit was chosen. 
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Figure 5.3 – Visualization of different bands of the depressed patient  for the 2nd 

visit 

5.2.13 Hilbert Transform 

This preprocessing strategy was used to extract the instantaneous phase and amplitude of a 

signal. To do so, first the so-called analytical signal was found. An analytic signal is a type of 

complex-valued function that is defined in such a way that it has no negative frequency 

components (Smith 2007). The real and imaginary parts of an analytic signal are two real-

valued functions that are related to each other in a specific way.  

The Hilbert transform is a mathematical operation that takes a function of a real variable, 𝑥(𝑡), 

and produces another function of a real variable, 𝐻(𝑥)(𝑡). It is a specific type of linear operator, 

which means that it follows certain rules for combining functions in a predictable way.  

The analytical signal using Hilbert transform is computed using the next formula (Scipy signal 

hilbert): 

𝑥𝑎 = 𝐹−1(𝐹(𝑥)2𝑈) = 𝑥 + 𝑖𝑦, 

where: 

• 𝐹 is the Fourier transform,  

• 𝑈 is the unit step function 

• 𝑦 is the Hilbert transform of 𝑥. 

The amplitude is then obtained by getting the absolute value of the analytical signal: 

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =  |𝑥𝑎| 

The phase of a signal can be wrapped or unwrapped. Wrapped phase is a phase representation 

that wraps the phase angle to a limited range, such as [−𝜋, 𝜋] or [0, 2𝜋], depending on the 

convention used. On the other hand, unwrapped phase is a phase representation that removes 

the wrapping and provides a continuous phase angle that can be easily interpreted. 
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The phase is obtained by calculating the unwrapped phase of the analytical signal. 

The Tables 5.21-5.22 show the results of clustering on the amplitude and phase of bands 

extracted from Hilbert transform operation. This clustering was done only on the combined 

EEG data. 

 

Table 5.21 – Results of clustering on the bands phase obtained from Hilbert 

transformation. 

Band Configuration Cluster Purity Random Index Information 

Criterion 

Delta Untransformed 52% 0.5 0.33 

Delta Z-score 52% 0.5 0.33 

Delta Box-Cox and Z-

score 

51% 0.5 0.33 

Theta Untransformed 52% 0.5 0.33 

Theta Z-score 52% 0.5 0.33 

Theta Box-Cox and Z-

score 

52% 0.5 0.31 

Alpha Untransformed 52% 0.5 0.32 

Alpha Z-score 52% 0.5 0.32 

Alpha Box-Cox and Z-

score 

54% 0.5 0.32 

Beta Untransformed 57% 0.51 0.32 

Beta Z-score 56% 0.5 0.33 

Beta Box-Cox and Z-

score 

53% 0.5 0.32 

Gamma Untransformed 54% 0.5 0.31 

Gamma Z-score 55% 0.5 0.31 

Gamma Box-Cox and Z-

score 

52% 0.5 0.33 

 

One can observe that the best CP was obtained by clustering on the untransformed Beta band 

phase obtained from Hilbert transformation of the data. This could be because individuals with 

anxiety type depression had significantly higher levels of beta 1 and beta 2 power compared to 

normal controls, specifically over the parietal and occipital regions for beta 1 and the frontal 

region for beta 2 as was shown in (Yamada et al. 1995). 
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Table 5.22 – Results of clustering on the bands amplitude obtained from Hilbert 

transformation. 

Band Configuration Cluster Purity Random Index Information 

Criterion 

Delta Untransformed 53% 0.5 0.33 

Delta Z-score 51% 0.5 0.33 

Delta Box-Cox and Z-

score 

53% 0.5 0.33 

Theta Untransformed 55% 0.5 0.32 

Theta Z-score 56% 0.5 0.32 

Theta Box-Cox and Z-

score 

52% 0.5 0.33 

Alpha Untransformed 52% 0.5 0.32 

Alpha Z-score 54% 0.5 0.32 

Alpha Box-Cox and Z-

score 

52% 0.5 0.33 

Beta Untransformed 54% 0.5 0.32 

Beta Z-score 50% 0.5 0.3 

Beta Box-Cox and Z-

score 

51% 0.5 0.33 

Gamma Untransformed 52% 0.5 0.3 

Gamma Z-score 50% 0.5 0.31 

Gamma Box-Cox and Z-

score 

51% 0.5 0.33 

 

The best result using this transformation techniques was clustering on the z-score transformed 

Hilbert amplitude of the theta band.  

 

5.2.14 Selected Electrodes 

Another hypothesis we postulated was to use only specific combination of electrodes for 

improving the clustering results. Thus, to test the hypothesis, the time-series of the chosen 

electrodes was left in the dataset and the time-series of other electrodes was removed. We have 

done these selections after consulting with the project partner who is a medical doctor in 

psychiatry. 

Table 5.23 represents the results of clustering on the left and right located electrodes as well as 

front and back located electrodes. The data for this clustering was not transformed in any way. 
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Table 5.23 – Results of clustering on the specific electrodes on the non-

transformed data. 

Location of 

electrodes 

Setting Cluster Purity Random Index Information 

Criterion 

Back First visit 52.1% 0.50 0.33 

Back Second visit 50.7% 0.50 0.33 

Back Combined 52.1% 0.50 0.33 

Front First visit 51% 0.5 0.33 

Front Second visit 50.9% 0.5 0.33 

Front Combined 50% 0.5 0.31 

Left First visit 50% 0.50 0.33 

Left Second visit 51.4% 0.50 0.33 

Left Combined 53.6% 0.50 0.33 

Right First visit 50% 0.50 0.33 

Right Second visit 50.9% 0.50 0.32 

Right Combined 51.4% 0.50 0.33 

 

These locations include the next electrodes: 

• Back: T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6 O1, O2 

• Front: T3, C3, Cz, C4, T4, F7, F3, Fz, F4, F8, Fp1, Fp2 

• Left: Fz, Cz, Pz, Fp1, F3, F7, C3, T3, P3, T5, O1 

• Right: Fz, Cz, Pz, Fp2, F4, F8, C4, T4, P4, T6, O2 

5.2.15 Clustering on Coefficients 

The definition of coefficients is presented in Section “Interaction k-means. General 

Definitions”. After coefficients extraction the k-means, DBSCAN and hierarchical 

agglomerative clustering algorithms were applied. 

To use these clustering methods on the data of multiple objects which is presented in the form 

of multi-dimensional matrices, the matrices were “flattened” such that all coefficients of one 

object represented a row in the dataset. First, the coefficients for the first and second visit were 

identified. Then, they were concatenated. Clustering was done on the resulting dataset. 

Table 5.24 represents the results of the clustering using different configurations. 

It can be seen, that in all configurations, the best run of the DBSCAN algorithm (based on the 

epsilon and minimum number of samples) identified only one cluster marking all points that 

were outside of this cluster as noise. Thus, the metrics of this algorithm were not considered in 

the table as they are not representative. 

Other algorithms such as agglomerative clustering and simple k-means did not show any 

significant results. The maximum cluster purity was 52% for several configurations. 
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Table 5.24 – Results of clustering on the coefficients obtained from the different 

parts of the data. 

Location 

of 

electrodes 

Algorithm Cluster 

Purity 

Random 

Index 

Information 

Criterion 

Comment 

Back DBSCAN 

(Epsilon = 6.5, 

minimum 

samples = 6) 

-- -- -- Only one 

cluster and 

noise 

Agglomerative 52.4% 0.5 0.32  

k-means 51.6% 0.5 0.32  

Front DBSCAN 

(Epsilon = 7, 

minimum 

samples = 6) 

-- -- -- Only one 

cluster and 

noise 

Agglomerative 50.1% 0.5 0.33  

k-means 50.1% 0.5 0.33  

Left DBSCAN 

(Epsilon = 43, 

minimum 

samples = 7) 

-- -- -- Only one 

cluster and 

noise 

Agglomerative 52.4% 0.5 0.32  

k-means 51.6% 0.5 0.32  

Right DBSCAN 

(Epsilon = 

47.5, minimum 

samples = 6) 

-- -- -- Only one 

cluster and 

noise 

Agglomerative 52.4% 0.5 0.32  

k-means 51.6% 0.5 0.32  

 

Another configuration of the clustering data included choosing 3 electrodes from the left 

hemisphere (Fp1, F7, F3) and applying this reduction to the matrices of coefficients. Thus, the 

resulting matrices got size 18 × 3. The results of the clustering are in Table 5.25. 
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Table 5.25 – Results of clustering on the reduced coefficients matrices .  

Algorithm Cluster Purity Random Index Information 

Criterion 

Comment 

DBSCAN 

(Epsilon = 49.5, 

minimum 

samples = 6) 

-- -- -- Only one cluster 

and noise 

Agglomerative 50% 0.5 0.3  

k-means 50% 0.5 0.3  

 

The further approach was to first reduce the dataset and leave only dimensions corresponding 

to the electrodes Fp1, F7, and F3. The next step was to calculate coefficients for the reduced 

dataset using the least squares method. The resulting matrix for each subject got size 2 × 3. 

The results of the clustering are in Table 5.26. 

Table 5.26 – Results of clustering on the coefficients matrices  of the reduced 

dataset.  

Algorithm Cluster Purity Random Index Information 

Criterion 

Comment 

DBSCAN 

(Epsilon = 2, 

minimum 

samples = 3) 

-- -- -- Only one cluster  

Agglomerative 50% 0.5 0.31  

k-means 50% 0.5 0.33  

 

The last two approaches did not show any improvements in the results. 

5.2.16 Different Distance Error Types 

As described in Section “Interaction k-means. Distance Errors Used”, different error types were 

used for clustering. The results are presented in Tables 5.27- 5.28. The combined dataset was 

used. Clustering using Hamming error was not possible due to the errors that this approach 

brought for calculations. 
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Table 5.27 – Results of clustering on the combined dataset with the different 

distance errors.  

Error Type Clusters Purity Rand Index Information 

Criterion 
Total 51.6% 0.50 0.33 

Max 53% 0.50 0.33 

Jaccard 57.8% 0.51 0.32 

 

Table 5.28 – Results of clustering on the combined dataset with the different 

distance errors considering only right located electrodes.  

Error Type Clusters Purity Rand Index Information 

Criterion 
Total 51.6% 0.5 0.33 

Max 53% 0.5 0.33 

Jaccard 57.8% 0.51 0.32 

 

One can see that clustering using Jaccard distance error brought the best CP results in both 

cases. 

5.2.17 Mixed Transformations  

This approach included mixing different transformation techniques such as, Box-Cox and z-

score. 

The detailed results are presented in Table C-1 in Appendix C. Some combination of settings 

was not feasible to be used for calculations because, for example, some of the matrices were 

singular as an outcome of the specific transformations on them. All clustering was done on the 

combined data. 

The best results were for the next setups: 

• Left located + Cz, Delta band, Euclidean error type with the cluster purity 60.3% 

• Left located + Cz, Hilbert amplitude, delta band, Euclidian error type with the cluster 

purity 60.3% 

• Left located + Cz, Box-Cox, z-score, Euclidian error type with the cluster purity 60.5% 

Figure 5.4 shows the electrodes chosen for the clustering to obtain the best clusters purity 

results. 
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Figure 5.4 – Marked in green are electrodes chosen for the clustering to obtain 

the best clusters purity results . 

Such improvement in the clusters purity might be supported by the theory that the left 

hemisphere is broadly associated with the emotions that are positively valenced, while the right 

hemisphere is broadly associated with the emotions that are negatively valenced (Gibson et al. 

2022).  

5.3 Interpretation of the Results 

To interpret the results, the algorithm described in Section “Interaction k-means. Model 

Finding” was used. I interpreted the results for the “ideal” clustering and the best clustering 

setup, namely Left located + Cz electrodes, Box-Cox, z-score and Euclidean error type. 

“Ideal” clustering means running the algorithm on the artificially ideally separated clusters. In 

each of these clusters, only subjects of one type are present. For example, cluster one would 

have only subjects that did not respond to the treatment and cluster two would have subjects 

that responded to the treatment. 

The first step in the interpretation was to extract coefficients for these two setups. For the 

“ideal” clustering, we found coefficients by applying the least squares method to the clustering. 

For the best clustering setting, the coefficients used in the best clustering were taken. 

The next step is to identify the most significant electrodes. To find out these electrodes, the 

interpretation algorithm shall be used as mentioned in Section “Interpretation of the Results”. 

The outcome of the algorithm is the list of errors for each dimension (electrode). This list shall 

be sorted ascendingly to identify the best discriminating models (the ones that are on the top 

of the sorted list). 

Taking several of the most significant electrodes, the investigation of what is their relationship 

to other electrodes can be done. To do so, the extracted coefficients mentioned in the first step 

shall be transformed to have their absolute value. Then, the strongest relationships are the ones 

with the highest value of coefficients. 
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As can be seen in Figure 5.5, the Euclidian errors of the electrodes of the “ideal” clusters all 

have positive values. It means that despite ideally separating subjects based on the response to 

the treatment criteria, many of the subjects should not belong to one cluster with other subjects 

according to the algorithm. The error of the electrodes in this case is bigger for the clusters to 

which the subjects were initially assigned and not for the opposite cluster. Thus, the 

interpretation of the relationship between electrodes in this situation can be hard and we are 

not able to make any conclusive statements.  

 

 

Figure 5.5 – Error values of electrodes models of “ideal” clusters. Positive 

values of errors here mean that most subjects were allocated in the wrong 

cluster. 

On the other hand, for the clustering on the left located + Cz electrodes applying Box-Cox and 

z-score transformations, all the Euclidian errors have negative values. Figure 5.6 represents 

these error values. From the graph, models of electrodes P3 and T5 distinguish the best among 

the defined clusters. 
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Figure 5.6 – Error values of Cz, Fp1, F3, F7, C3, T3, P3, T5, O1 models 

applying Box-Cox and z-score transformations for clustering. The smaller the 

error the better the model of the electrode discriminate among the clusters . 

Cluster 1 from the best clustering contained 41 non-responders and 26 responders. Cluster 2 

contained 27 non-responders and 40 responders. Thus, we called Cluster 1 “non-responders” 

cluster and Cluster 2 “responders” cluster. 

Figure 5.7 shows the relationship of the most discriminative electrodes to other electrodes in 

“non-responders” cluster. The electrodes express values corresponding to the scale. The values 

that are represented on the scale are absolute values of the coefficients. The darker the color 

the higher the value. It can be seen that P3 (green in the left figure) and T5 (green in the right 

figure) electrodes have the strongest relation to the Fp1 and F3 electrodes respectively (shown 

by arrows). The absolute values of coefficients of the Fp1 and F3 electrodes are 1.05 and 0.76, 

respectively. We can argue that P3 and Fp1, and T5 and F3 electrodes represent some 

interaction patterns for depressed patients that did not respond to the treatment.  
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Figure 5.7 – The electrodes for “non-responders”  cluster that discriminate the 

most (i.e., having the highest error value) among two clusters of the best 

clustering setting and their relationship to other electrodes .  

Figure 5.8 shows the relationship of the most discriminative electrodes to other electrodes in 

“responders” cluster. Here electrode P3 has the strongest relationship to electrode F3 and 

somehow a strong relationship to electrodes Fp1, F7 and Cz. The absolute values of coefficients 

of the F3, Fp1, F7 and Cz electrodes are 0.81, 0.65, 0.63, 0.6  respectively. On the other hand, 

electrode T5 has the strongest relationship to electrode O1. The value of the coefficient of the 

O1 electrode is 0.61. Here as well, we can argue that P3 and F3, Fp1, F7, Cz, and T5 and O1 

electrodes represent some interaction patterns for depressed patients that responded to the 

treatment. 
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Figure 5.8 – The electrodes for “responders” cluster that discriminate the most 

among two clusters and their relationship to other electrodes.   

Summing up these observations, one can see that the most discriminative electrodes for the 

clustering relate to different electrodes in their clusters. The P3 electrode in the “non-

responders” cluster is strongly related to the Fp1 electrode whereas in the “responders” cluster 

it strongly related not only to Fp1 but also to the F7, F3 and Cz where the relation to F3 is the 

strongest. On the other hand, in the “non-responders” cluster, the electrode T5 is strongly 

related to F3 electrode whereas in the “responders” cluster it has the strongest relation to the 

O1 electrode. 

It can be hypothesized that the different activities of the mentioned electrodes influence the 

allocating of a subject in one or another cluster. 
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6 Conclusion and Outlook 

Clinical depression, also known as Major Depressive Disorder (MDD), is a mental disorder 

that is characterized by a persistent feeling of sadness, low self-esteem, and a loss of interest 

in activities that once brought pleasure. Modern treatments for MDD only have a success rate 

of up to 65%, and the effects of treatment can take several weeks to be observed. To better 

understand the brain regions and possible patterns in them of those who respond to treatment 

and those who do not, and to improve the choice of effective therapies, we have used clustering 

algorithms to analyze multi-trial EEG data of MDD patients in this work. 

In this work, the Interaction K-means (IKM) clustering algorithm was applied to the EEG data. 

We used this algorithm to analyze multi-variate time-series data and this analysis allowed us 

to identify interaction patterns between brain regions. Various preprocessing strategies were 

used to improve the accuracy of the clustering results. The interaction between electrodes was 

also explored. Additionally, popular clustering methods such as k-means, DBSCAN, 

hierarchical clustering were applied to parameters derived from the data using the least squares 

method. 

The best clustering results were obtained using a combination of the Box-Cox and z-score 

transformation methods, and considering only the Cz, Fp1, F3, F7, C3, T3, P3, T5, and O1 

electrodes. The cluster purity (CP) for this setting was 60.5%. Similar results were obtained for 

clustering only the Delta band from the data of the same set of electrodes, with a cluster purity 

of 60.3%. The same cluster purity was observed for the derived Hilbert amplitude from the 

Delta band from the same set of electrodes. 

Despite we could improve the CP, the Rand index (RI) and information criterion (IC) were not 

improved. Several potential reasons for this can be considered, such as the EEG data lacking 

discriminatory features for clustering, the high complexity of EEG data, limitations of the 

algorithm used, or the data set being too small to yield significant improvements. It should be 

noted that the EEG data was obtained from depressed patients, and the underlying neurological 

differences in these patients may have influenced the observed clustering results. Further 

research is necessary to gain a better understanding of the underlying factors that affect 

clustering results in this context. 

Two electrodes, P3 and T5, were identified as the most discriminative among the clusters. In 

the cluster of non-responders, P3 and T5 were strongly related to the Fp1 and F3 electrodes, 

respectively. In the cluster of responders, P3 had strong relationships to the F3, Fp1, F7, and 

Cz electrodes, while T5 was strongly related to the O1 electrode. 

Based on the identified electrodes and their relationships within and between clusters, it is 

possible to make some observations and hypotheses about the underlying neurological 

differences between responders and non-responders in the context of depression. We can 

hypothesise that the observed differences in electrode relationships between responders and 

non-responders may be related to underlying differences in neural connectivity or functional 

networks. Furthermore, it is possible that the identified electrodes and their relationships may 

have clinical implications for predicting treatment response in depressed patients. For example, 

future studies could investigate whether measuring activity in these specific electrode locations 

could be used as a biomarker for predicting treatment response in depressed patients. 
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We are aware that our results are the first attempt in exploratory analysis of the depressive 

patient’s data set. The fact, that trajectories of time series of depressive patients are relatively 

uniform in the comparison to the epilepsy patients having seizures, makes our analysis a hard 

task, however worth of the further effort. 

Further work on the improvement of the results might include using the phase models with sine 

or cosine. Additionally, the bigger dataset can be used for metrics improvement. Last but not 

least, the dataset with some stimuli might also improve the outcome of the IKM. 
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Appendices 

Appendix A. Cluster Coefficients Correlation Matrices 

In Section “Data Sets and Methods. Data Exploration” we presented some correlation matrices 

for clusters coefficients of ideal clusters. These correlation matrices we created for different 

combinations of depression patients visits and their response to the treatment. This Appendix 

contains the rest of those matrices. 

 

Figure A-1 – Correlation matrix for cluster coefficients of ideal clusters. The 

coefficients are calculated for the first visit non-responders and the second visit 

non-responders.  
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In Figure A-1, one can see that coefficients of 8th to 15th dimensions of one visit have stronger 

positive correlation with the similar dimensions from another visit. 

 

Figure A-2 – Correlation matrix for cluster coefficients of ideal clusters. The 

coefficients are calculated for the first visit non-responders and the first visit 

responders.  

In Figure A-2, one can see that there is a stronger positive correlation between 14th and 15th 

coefficients of responders with coefficients 0th to 15th of non-responders. 
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Figure A-3 – Correlation matrix for cluster coefficients of ideal clusters. The 

coefficients are calculated for the first visit responders and the second visit non-

responders.  

In Figure A-3, one can see that there is a stronger positive correlation between coefficients of 

0th to 15th dimensions of non-responders from the second visit with 10th to 15th dimensions of 

the first visit. 
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Figure A-4 – Correlation matrix for cluster coefficients of ideal clusters. The 

coefficients are calculated for the second visit non-responders and the second 

visit responders.  

In Figure A-4, one can see that there is a stronger positive correlation between coefficients of 

10th to 15th dimensions of responders from the second visit with 0th to 15th dimensions of 

responders from the same visit. 
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Appendix B. Each Object Coefficients Correlation Matrices 

In Section “Data Sets and Methods. Data Exploration” we presented some correlation matrices 

for coefficients of each object allocated in ideal clusters. These correlation matrices we created 

for different combinations of depression patients visits and their response to the treatment. This 

Appendix contains the rest of those matrices. 

 

Figure B-1 – Correlation matrix for coefficients of each object alloc ated in ideal 

clusters. The coefficients are calculated for the first visit non -responders and the 

second visit non-responders. 
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Figure B-2 – Correlation matrix for coefficients of each object allocated in ideal 

clusters. The coefficients are calculated for the first visit non-responders and the 

first visit responders.  
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Figure B-3 – Correlation matrix for coefficients of each object allocated in ideal 

clusters. The coefficients are calculated for the first visit responders and the 

second visit responders.  



 

78 

 

 

Figure B-4 – Correlation matrix for coefficients of each object allocated i n ideal 

clusters. The coefficients are calculated for the first visit responders and the 

second visit non-responders. 
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Figure B-5 – Correlation matrix for coefficients of each object allocated in ideal 

clusters. The coefficients are calculated for the second visit non-responders and 

the second visit responders.  

In all correlation heatmaps presented in Figures B1-B5, one can see the strong positive 

correlation between some coefficients of some subjects. Almost in all cases this correlation can 

be observed in the middle of the set (such as for an object 34, for example). These middle-set 

coefficients of subjects are strongly positively correlated with the coefficients of most of the 

other subjects. No strong negative correlation in all settings can be observed. 
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Appendix C. Clustering Results on the Different Parts of Electrodes Using 

Mixed Transformations 

This Appendix contains the results of clustering on the different parts of electrodes and using 

mixed transformations. Table C-1 shows these results. The most significant results are for the 

combinations: 

• Left located + Cz, Delta band, Euclidean error type with the cluster purity 60.3% 

• Left located + Cz, Hilbert amplitude, delta band, Euclidian error type with the cluster 

purity 60.3% 

• Left located + Cz, Box-Cox, z-score, Euclidian error type with the cluster purity 60.5% 

Table C-1 – Results of clustering on the different parts of electrodes and using 

mixed transformations. 

Electrodes 

locations 

Transforma

tion 

Clusters 

Purity 

Rand Index Information 

Criterion 

Error Type 

Left located 

+ Cz  

Z-transform 
magnitude 

50.8% 0.50 0.30 Euclidean 

Left located 

+ Cz  

Hilbert 
phase 

51.5% 0.50 0.33 Euclidian 

Left located 

+ Cz  

Hilbert 
amplitude 

55.3% 0.50 0.33 Euclidian 

Left located 

+ Cz  

Delta band 60.3% 0.52 0.32 Euclidian 

Left located 

+ Cz  

Hilbert 
phase, delta 
band 

54.3% 0.50 0.33 Euclidian 

Left located 

+ Cz  

Hilbert 
amplitude, 
delta band 

60.3% 0.52 0.32 Euclidian 

Left located 

+ Cz  

Theta band 56.6% 0.51 0.33 Euclidian 

Left located 

+ Cz  

Hilbert 
phase, theta 
band 

54.3% 0.50 0.33 Euclidian 

Left located 

+ Cz  

Hilbert 
amplitude, 
theta band 

56.6% 0.51 0.33 Euclidian 

Left located 

+ Cz  

Beta band 55.7% 0.50 0.32 Euclidian 

Left located 

+ Cz  

Hilbert 
phase, beta 
band 

50.0% 0.50 0.33 Euclidian 

Left located 

+ Cz  

Hilbert 
amplitude, 
beta band 

55.7% 0.50 0.32 Euclidian 
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Electrodes 

locations 

Transforma

tion 

Clusters 

Purity 

Rand Index Information 

Criterion 

Error Type 

Left located 

+ Cz  

Gamma 
band 

50.0% 0.50 0.33 Euclidian 

Left located 

+ Cz  

Hilbert 
phase, 
gamma band 

51.7% 0.50 0.33 Euclidian 

Left located 

+ Cz  

Hilbert 
amplitude, 
gamma band 

50.0% 0.50 0.33 Euclidian 

Left located 

+ Cz  

Alpha band 55.1% 0.50 0.33 Euclidian 

Left located 

+ Cz  

Hilbert 
phase, alpha 
band 

52.8% 0.50 0.33 Euclidian 

Left located 

+ Cz  

Hilbert 
amplitude, 
alpha band 

55.1% 0.50 0.33 Euclidian 

Left located 

+ Cz  

Box-Cox, z-
score 

60.5% 0.52 0.32 Euclidian 

Left located 

+ Cz  

Box-Cox, z-
score 

50.0% 0.50 0.33 Jaccard 

Left located 

+ Cz  

Box-Cox, z-
score 

56.9% 0.51 0.33 Total 

Left located 

+ Cz  

Box-Cox, z-
score 

56.1% 0.50 0.33 Max 

Left located 

+ Cz  

Box-Cox, z-
score 

50.0% 0.50 0.33 Jaccard 

Left located 

+ Cz  

Box-Cox, z-
score 

50.0% 0.50 0.32 Hamming 

Left located 

+ Cz  

Box-Cox, z-
normalizatio
n 

50.7% 0.50 0.33 Euclidian 

Left located Box -Cox 50.8% 0.50 0.33 Euclidian 

Left located z-score 54.4% 0.50 0.33 Euclidian 

Left located Box -Cox, z-
score 

54.5% 0.50 0.33 Euclidian 

Right 

located 

Box -Cox 50.8% 0.50 0.31 Euclidian 

Right 

located 

z-score 53.0% 0.50 0.33 Euclidian 

Right 

located 

Box -Cox, z-
score 

53.1% 0.50 0.33 Euclidian 

Front 

located 

Box -Cox 51.6% 0.50 0.31 Euclidian 

Front 

located 

z-score 54.5% 0.50 0.33 Euclidian 
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Electrodes 

locations 

Transforma

tion 

Clusters 

Purity 

Rand Index Information 

Criterion 

Error Type 

Front 

located 

Box -Cox, z-
score 

55.3% 0.50 0.33 Euclidian 

Back 

located 

Box -Cox 50.8% 0.50 0.33 Euclidian 

Back 

located 

z-score 51.3% 0.50 0.33 Euclidian 

Back 

located 

Box -Cox, z-
score 

54.5% 0.50 0.33 Euclidian 

Left located Box-Cox, 
Hilbert 
phase 

54.5% 0.50 0.33 Euclidian 

Left located Box-Cox, 
Hilbert 
amplitude 

50.8% 0.50 0.33 Euclidian 

Right 

located 

Box-Cox, 
Hilbert 
phase 

52.3% 0.50 0.33 Euclidian 

Right 

located 

Box-Cox, 
Hilbert 
amplitude 

50.8% 0.50 0.31 Euclidian 

Front 

located 

Box-Cox, 
Hilbert 
phase 

51.7% 0.50 0.32 Euclidian 

Front 

located 

Box-Cox, 
Hilbert 
amplitude 

51.6% 0.50 0.31 Euclidian 

Back 

located 

Box-Cox, 
Hilbert 
phase 

55.0% 0.50 0.33 Euclidian 

Back 

located 

Box-Cox, 
Hilbert 
amplitude 

50.8% 0.50 0.33 Euclidian 

Right 

located 

Z-transform 
magnitude 

52.7% 0.50 0.33 Euclidian 

Right 

located 

Box-Cox, Z-
transform 
magnitude 

50.8% 0.50 0.31 Euclidian 

Right 

located 

Z-transform 
phase 

50.9% 0.50 0.33 Euclidian 
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Appendix D. Results Interpretation Details 

This Appendix contains the visuals of the relationships between electrodes in “ideal clusters” 

as well as in clusters of the best clustering setting which is applying Box-Cox and z-score 

transformation to the left hemisphere electrodes + Cz electrode. The first cluster is the cluster 

with non-responders, the second is the cluster with responders in both cases.  

 

Figure D-1 – Relationships between electrodes of  the first cluster with non-

responders of “ideal” clusters . 

From Figure D-1, one can see that electrodes O2, F7, F8, T3, T4, T5 and finally T6 have strong 

relationship almost to all other electrodes. On the other hand, the electrodes Fz, Cz and Pz have 

not very strong relation to all other electrodes. 
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Figure D-2 – Relationships between electrodes of the second cluster with 

responders of “ideal” clusters . 

From Figure D-2, one again can see that electrodes O2, F7, F8, T3, T4, T5 and finally T6 have 

strong relationship almost to all other electrodes. However, the number of those other 

electrodes is lower than it was for the “non-responders” cluster. The electrodes Fz, Cz and Pz 

have not a strong relation to all other electrodes but the electrode Pz has the slightly stronger 

relation to other electrodes comparing to the “non-responders” cluster. 
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Figure D-3 – Relationships between electrodes of the first cluster  obtained with 

the clustering setting of applying Box-Cox and z-score transformations on the 

left hemisphere electrodes + Cz. 

In Figure D-3, one can see that F3, P3 and T3 have very strong relation to the electrode Fp1. 

On the other hand, C3 electrode does not show a very strong relation to other electrodes. 
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Figure D-4 – Relationships between electrodes of the second cluster obtained 

with the clustering setting of applying Box-Cox and z-score transformations on 

the left hemisphere electrodes + Cz. 

In Figure D-4, one can see that C3 electrode has a very strong relationship to the Fp1 electrode. 

On the other hand, Fp1, F7 and Cz do not show a very strong relation to other electrodes. 

Overall, we can see that the relationships between electrodes is different among clusters. 

Further research is needed to find what are the causes of these differences and how they can be 

explained. 

 


