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Abstract

This master thesis lays the groundwork for a stability analysis of wave maps on the
forward light cone which arise as solutions of a particular geometric wave equation.
The main functional analytical tool to tackle this problem will be semigroup theory.
Since the thesis is designed to be able to be read by a graduate student, after a short
introduction to the problem we are concerned with, the first chapter is an introduction to
the most important notions of elementary semigroup theory. The scope of the semigroup
theory presented extends to the often called Lumer-Phillips Theorem, inter alia giving
rise to solutions of abstract Cauchy problems. This will serve as the foundation for the
second chapter. The second chapter will be original work. The stability analysis will
be approached by the introduction of novel coordinates which will be called ”forward
self-similarity coordinates”. Through these coordinates, energy bounds for solutions of
the free wave equation in every odd dimension will be obtained, presented in semigroup
language. This embodies the main result in this chapter, also being the main result of
this thesis overall. The third and final chapter is a short discussion on how to place the
achieved results in the overall analysis of the non-linear analysis and how one would
proceed.
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Zusammenfassung

Diese Masterarbeit legt das Fundament zur Stabilitätsanalyse von Wellenfunktionen auf
dem Vorwärtslichtkegel welche als Lösungen einer bestimmten geometrischen Wellen-
gleichung auftauchen. Das Werkzeug aus der Funktionalanalysis das vorwiegend benutzt
wird ist die Halbgruppentheorie. Da die Arbeit für einen Masterstudenten verständlich
sein sollte, werden nach einer kurzen Einführung in das zu behandelnde Problem, im ers-
ten Kapitel die wichtigsten Begriffe der elementaren Halbgruppentheorie präsentiert. Der
Umfang der präsentierten Halbgruppentheorie reicht bis zu dem Lumer-Phillips Theo-
rem, mit welchem unter anderem Lösungen zu abstrakten Cauchy Problemen erzeugt
werden können. Dieses Ergebnis legt den Grundstein für das zweite Kapitel. Das zweite
Kapitel ist Originalwerk. Die Stabilitätsanalyse wird durch die Einführung von soge-
nannten ”forwärts selbstähnlichen Koordinaten” angegangen. Durch diese Koordinaten
werden obere Abschätzungen der Energie von Lösungen der freien Wellengleichung in
jeder ungeraden Dimension herausgearbeitet, die in Halbgruppensprache verfasst wer-
den. Dies verkörpert das Hauptresultat dieses Kapitels, welches zugleich das Hauptresult
der gesammten Arbeit darstellt. Das dritte Kapitel ist eine kurze Erläuterung wie die
erreichten Ergebnisse in der gesamten Analyse des nicht-linearen Problems einzuordnen
sind und wie man fortfahren würde.
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0.1. Notation

0.1. Notation

We fix some notation. In the first chapter some notions of functional analysis are ne-
cessary. Suppose E,F are Banach spaces, i.e. complete, normed vector spaces. A linear
function L : D(L) ⊂ E → F , where D(L) is the domain of L, is called (linear) operator
and rg(L) := L(D(L)) denotes the range of L. The space of linear operators from E to
F is denoted by L(E,F ), where we abbreviate by L(E) whenever E = F . One can equip
this space with several notions of convergence. Most notable are

• convergence with respect to the uniform operator norm ∥·∥O(E,F ) given by Tn
n−→ T

uniformly ⇐⇒ sup∥x∥F=1 ∥Tnx− Tx∥E
n−→ 0.

• strong (pointwise) convergence given by Sn
n−→ S strongly ⇐⇒ ∥Snx− Sx∥F

n−→ 0
for every x ∈ E.

For T ∈ L(E,F ) continuity with respect to the operator norm is easily seen to be
equivalent to requiring that it is bounded, i.e. there exists M < ∞ such that ∥Tx∥F ≤
M ∥x∥E for all x ∈ E. Expressions like ”the in general unbounded operator” are to be
understood as not yet being able to say whether the operator in question is bounded,
and possibly could be not bounded. A bounded, bijective operator whose inverse is
also bounded is called a homeomorphism. We often use the composition T ◦ S of two
operators T, S. Since we never multiply any operators we reserve the notation TS for
this composition. For the most important fundamental results in functional analysis used
in this thesis we invite the reader to check Appendix A, where also some further notions
(closed operators, exponential operators, resolvents etc.) can be found.
In the second chapter we work on a subset of R×Rn where the first coordinate is the time
variable and the second coordinate is the spatial variable. The underlying field is R, e.g.
the function space C∞(Ω) denotes the space of smooth functions mapping from Ω to R.
Slot derivatives ∂i range from 0, . . . , n where ∂0 concerns the time variable and the other

concern the spatial variable. Function tuples are denoted by bold letters, e.g. f =

(
f1
f2

)
.

A partial derivative acting on a function tuple is to be understood as component-wise

application of the derivative, e.g. ∂jf =

(
∂jf1
∂jf2

)
. Often times we will first introduce

operators formally, that is describing an equation this operator should satisfy, without
specifying the spaces on which said operator acts upon. This will be made evident by
the use of Fraktur font letters in the formal definition. When turning this definition into
a rigorous one, we will use the same letter in normal font, e.g. L will turn into L. We
shorten our notation by introducing on R+ the relation a ≲ b iff there exists a constant
C such that a ≤ Cb. Accordingly we define a ≳ b and the equivalence relation ≃. The
d-dimensional open ball centered at x of radius R is denoted by Bd

R(x). In the case of
x = 0 we abbreviate by Bd

R.
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1. Semigroup Theory

1.1. Motivation

In this section the semigroup theory required for the later sections will be developed. It
is mainly a revision of the first two chapters of [8], which is the standard literature for
semigroup theory nowadays. The results and techniques are very much inspired by [8]
and its origins in [9] and the author does not claim intellectual property of any of the
ideas or techniques involved. Most results are simply adjusted to better fit our setting
and most proofs are adjusted in a way the author found most intuitive.
To motivate the theory and establish the connections to our work, consider the following
problem. We want to work on the wave equation

□u(t, x) := (−∂2t + ∆x)u(t, x) = 0,

u(0, x) = u0(x),

∂0u(0, x) = u1(x),

for some functions u0, u1. Although explicit solutions to this problem are well known,
we tackle it in a different way to motivate our later approach.
We rewrite the problem into one where the emphasis lies on the spatial derivatives. This
is achieved by first rewriting the equation such that on one side there are only time and
on the other side only spatial derivatives, i.e.

∂2t u(t, x) = ∆xu(t, x),

and then introducing the variable ∂tu to rewrite this into the two dimensional problem

∂t

(
u(t, x)
∂tu(t, x)

)
=

(
∂tu(t, x)
∆xu(t, x)

)
.

Seeing the right hand side as a spatial operator L defined by L

(
f1
f2

)
=

(
f2

∆f1

)
acting

on the tuple u(t, ·) :=

(
u(t, ·)
∂tu(t, ·)

)
, we have ∂tu(t, ·) = Lu(t, ·), where we slightly abuse

the notation by writing Lu(t, x) := L(u(t, ·))(x). The initial condition translates to
Lu(0, x) = u(0, x). This is the standard starting point for semigroup theory. That is,
looking for solutions of the ordinary differential equation

∂tg(t) = Ag(t),

g(0) = I.
(1.1)

2



1.2. Uniformly continuous semigroups

As we will see in the following, the specifications made on which objects A and g are,
detrimentally vary the complexity of the problem. Let us take a step back and consider
problem (1.1) in its most elementary form. That is, suppose we are given A ∈ C and
g is a one dimensional function. Then (1.1) is solved by g(t) = eAt. We note that
ġ(0) := ∂tg(t) |t=0= A. Looking at this the other way around, the solution g emerges
from the mapping A 7→ eAt. This is exactly the approach we will successfully generalize
for a much wider class of problems, where A and g will be operators, A possibly even
being unbounded, as is the case for the differential operator L defined above. We will see
that even in these settings A generates g in a sense specified later. Let us try to solve
the problem in the case where the desired objects are operators. Suppose A and T (t)
are operators for every t and consider the operator problem

∂tT (t) = AT (t),

T (0) = I.
(1.2)

Inspired by the most simple case (1.1), we predict that T (t) := eAt is a solution to this
problem. However, there is one major complication in even writing down this desired
result. In contrast to bounded operators, in the case of unbounded operators it is not
clear at all, what the exponential function of an operator even means. There is no general
formula for the exponential function. We will establish assumptions on A for which we
can define eAt in a proper way, to then show that the problem (1.2) is indeed solved by
this exponential operator. This will be the content of the main result of this chapter,
known as the Lumer-Phillips Theorem. We start with solving the problem in the case of
bounded operators. We will see that in this case, all results resemble their counterparts
in the most elementary scalar case (1.1).

1.2. Uniformly continuous semigroups

Definition 1.2.1. A family (T (t))t≥0 of bounded, linear operators on a Banach space
X is called a semigroup, if it satisfies the functional equation,

(FE)

{
T (t+ s) = T (t)T (s) for all t, s ≥ 0,

T (0) = I,

which we call semigroup law.
Define ξ : R+ → L(X), t 7→ T (t). (T (t))t≥0 is said to be

• uniformly continuous, if ξ is continuous when L(X) is endowed with the uniform
operator topology, i.e. the topology on L(X) given by Sn

n−→ S ⇐⇒ ∥Sn − S∥O(X)

= sup∥x∥X=1 ∥Snx− Sx∥X
n−→ 0.

• strongly continuous, if ξ is continuous when L(X) is endowed with the strong opera-
tor topology, i.e. the topology on L(X) given by Sn

n−→ S ⇐⇒ ∥Snx− Sx∥X
n−→ 0,

for every x ∈ X.

3



1. Semigroup Theory

Remark 1.2.2. • Note that ξ describes (T (t))t≥0 as a function. While mapping to
bounded linear operators, ξ is not linear itself. Therefore we take caution in using
the words linear and bounded when abbreviating with T for (T (t))t≥0.

• It is evident that strong continuity is equivalently satisfied by requiring that the
orbit maps at every x ∈ X, ξx : t 7→ T (t)x are continuous. We will often use this
equivalent description.

The following lemma convinces us that, when encountering problem (1.2), semigroups are
the proper objects to deal with. It is a first result, which shows that uniform continuity
added to satisfying the semigroup law already implies differentiability. We will later
generalize this in a weaker sense to strong continuity. The following lemma contains
differentiation and integration of Banach- valued functions. Since this topic may be
lesser known to some readers we refer the interested reader to a short discussion in
Appendix A, where the most important notions are introduced and sources for literature
are mentioned.

Lemma 1.2.3. Suppose that (T (t))t≥0 is a uniformly continuous semigroup. Then it
solves the differential equation

(DE)

{
∂tT (t) = AT (t) for all t ≥ 0,

T (0) = I,

for some bounded A ∈ L(X), which satisfies AT (t) = T (t)A for all t ≥ 0.

Proof. Define

V (t) :=

∫ t

0
T (s) ds, t ≥ 0.

Since T is uniformly bounded on every interval [0, t], this is well-defined and by A.3

continuously differentiable with V̇ (t) = T (t). Since limt↓0
V (t)
t = V̇ (0) = T (0) = I,

we infer that there is t0 > 0 such that
∥∥∥V (t0)

t0
− I
∥∥∥
O(X)

< 1, hence the operator V (t0)
t0

and therefore V (t0) are invertible with continuously differentiable inverse. With this we
calculate

T (t) = V (t0)
−1V (t0)T (t) = V (t0)

−1

∫ t0

0
T (s+ t)ds = V (t0)

−1(V (t+ t0) − V (t)).

Since the right hand is continuously differentiable we have proved that so is T and we
compute

Ṫ (t) = lim
h↓0

T (t+ h) − T (t)

h
= T (t) lim

h↓0

T (h) − T (0)

h
= T (t)A,

where we have set A := limh↓0
T (h)−T (0)

h = Ṫ (0). Since T was shown to be continuously
differentiable (as a map R → (L(X), ∥·∥O(X))), A must be bounded. We also note that
since T (t + h) = T (h + t) in the above calculation we have that T (t)A = AT (t). This
proves the claim.
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1.2. Uniformly continuous semigroups

The following two lemmata give a precise description of uniformly continuous semigroups.
We will first show uniqueness and then give an explicit formula for the semigroup.

Lemma 1.2.4. For given A ∈ L(X), two uniformly continuous semigroups (T (t))t≥0,
(S(s))s≥0 satisfying (DE) must be the same.

Proof. Suppose (T (t))t≥0, (S(s))s≥0 both solve (DE). Then consider

Q : t 7→ T (t)S(s− t), 0 ≤ t ≤ s.

Q is differentiable with

Q̇(t) = AT (t)S(s− t) − T (t)AS(s− t) = 0, (1.3)

since A commutes with every T (t) and S(s). Hence Q is constant and

S(s) = Q(0) = Q(s) = T (s).

Thus T = S, as claimed.

We are trying to find an - and by the previous result the - explicit solution to (DE).
Inspired by the beginning of the chapter we suspect that the exponential operator plays
an important role. It is introduced in A.4 together with some very useful properties. The
importance of the exponential operator is that they are precisely the operators which
are uniformly continuous semigroups. We will show this by proving that for a bounded
operator A the family (etA)t≥0 is indeed a uniformly continuous semigroup, which by
Lemma 1.2.3 means that it solves (DE). By uniqueness, the desired result immediately
follows. The fact that the exponential operator is a semigroup is an immediate conse-
quence of the property in Lemma A.5 and the continuity of the exponential function in
the scalar case. For completeness we include it here.

Lemma 1.2.5. For a bounded operator A ∈ L(X) the family (etA)t≥0 is a uniformly
continuous semigroup.

Proof. By A.5 we have

e0A = I, e(t+s)A = etAesA.

This means that (etA)t≥0 satisfies (FE). Hence it is a semigroup and to check uniform
continuity, by ∥∥∥e(t+h)A − etA

∥∥∥
O(X)

≤
∥∥etA∥∥O(X)

∥∥∥ehA − I
∥∥∥
O(X)

,

it suffices to check that limh→0 e
hA = I. We compute∥∥∥ehA − I

∥∥∥
O(X)

=

∥∥∥∥∥
∞∑
k=1

hk

k!
Ak

∥∥∥∥∥
O(X)

≤
∞∑
k=1

|h|k

k!
∥A∥kO(X) = e|h|∥A∥O(X) − 1

h→0−−−→ 0.

Thus (etA)t≥0 is uniformly continuous and we are done.

5



1. Semigroup Theory

By uniqueness, see Lemma 1.2.4, we are now ready to summarize the precise form of
uniformly continuous semigroups. This is the content of the following theorem, for which
all the work has been done already.

Theorem 1.2.6. Every uniformly continuous semigroup (T (t))t≥0 is of the form

T (t) = etA,

where A is precisely the bounded operator A = Ṫ (0). Conversely, for every bounded
operator B ∈ L(X) on a Banach space X, (etB)t≥0 is a uniformly continuous semigroup.

This result demonstrates the importance of the operator Ṫ (0). Since the operator gene-
rates its respective semigroup, in the sense clarified in the previous lemma, it is worth
taking a closer look at the operator Ṫ (0) to understand the semigroup. Towards this end
and to compare it with a similar construction in the strongly continuous case, we give
it a fitting name.

Definition 1.2.7. Let (T (t))t≥0 be a uniformly continuous semigroup. The bounded
operator

L(X) ∋ Ṫ (0) = lim
h↓0

1

h
(T (h) − I)

is called the generator of (T (t))t≥0.

Having obtained a very satisfactory result for solving (DE) in the case of bounded
generators A, we immediately ask ourselves of its usefulness. Since we want to apply the
theory to differential operators - being unbounded in general - in place of the generator
we note that we have to generalize our theory.

1.3. Strongly continuous semigroups

The main result of the previous section was the inseparable relation between bounded
generators and uniformly continuous semigroups. If we want to develop our theory for
unbounded operators, we will therefore need another class of objects in place of uniformly
continuous semigroups. In this section it will be shown that strongly continuous semi-
groups are the objects desired. For the definition of strong continuity, we refer the reader
to Definition 1.2.1. Since uniform convergence is stronger than strong convergence, it is
clear that every uniformly continuous semigroup is also a strongly continuous one. The
converse is not true, as will be shown by an example further down in this section. It is
evident that strong continuity can also be expressed by saying that for every x ∈ X the
orbit map ξx : R≥0 → X, t 7→ T (t)x, is continuous. This should be compared with uni-
form continuity where it is required that the map ξ : R≥0 → (L(X), ∥·∥O(X)), t 7→ T (t),
is continuous. In this sense strong convergence is often referred to as pointwise conver-
gence. In Lemma 1.2.3 it was established that uniform continuity together with (FE)
implies differentiability of ξ. Hence we hope that strong continuity together with (FE)

6



1.3. Strongly continuous semigroups

still implied differentiability but now in the pointwise sense, i.e. differentiability of ξx
instead of ξ. To get used to strong continuity and to make our later life easier we first
gather some useful facts about strongly continuous semigroups. Since we are dealing with
pointwise convergence it is natural that some form of the uniform boundedness principle
will be useful. It is presented in general form in the appendix (Lemma A.6) and the next
lemmata are immediate consequences tailored to strongly continuous semigroups. First
let us start with an auxiliary lemma which is also very useful in itself as we will see later.
It states that semigroups which are strongly continuous in zero are uniformly bounded
on every compact interval.

Lemma 1.3.1. For a semigroup (T (t))t≥0 on a Banach space X, suppose that
limt↓0 T (t)x = x for every x ∈ X. Then for every t0 ≥ 0 there exists Mt0 such that

∥T (t)∥O(X) ≤Mt0

for every t ∈ [0, t0]. In particular, every strongly continuous semigroup is uniformly
bounded on every interval [0, t0].

Proof. We first show that there exists δ > 0 such that ∥T (·)∥O(X) is uniformly bounded
on [0, δ]. Assume towards contradiction that there was no such δ. Then there is a sequence
(δn) ↓ 0 such that ∥T (δn)∥O(X)

n→∞−−−→ ∞. But by the uniform boundedness principle

(Lemma A.6) there would then exist x ∈ X such that ∥T (δn)x∥X
n→∞−−−→ ∞, which

contradicts right continuity at zero for this particular x. Hence there exists Mδ > 1 such
that ∥T (t)∥O(X) ≤ Mδ for t ∈ [0, δ]. The last step is to use the semigroup law (FE)
to translate this boundedness to larger intervals. Indeed, for every t0 > 0 there exists
N ∈ N and 0 ≤ t1 < δ such that t0 = δN + t1. Hence

∥T (t0)∥O(X) ≤ ∥T (δ)∥NO(X) ∥T (t1)∥O(X) ≤MN+1
δ .

Since Mδ was chosen to be greater than 1 this estimate also holds for every 0 ≤ t ≤ t0.
This is what we wanted to show.

The next lemma is an immediate consequence. It gives us a simple way to check strong
continuity. The lemma states that strong continuity for semigroups is already implied
by strong right continuity at zero, which in hindsight shows that the assumption in the
previous lemma is precisely that (T (t))t≥0 is a strongly continuous semigroup.

Lemma 1.3.2. Let (T (t))t≥0 be a semigroup on a Banach space X. The following are
equivalent:

(i) (T (t))t≥0 is strongly continuous.

(ii) limt↓0 T (t)x = x.

Proof. It is clear that (i) implies (ii). For (ii) ⇒ (i) we note that right continuity is an
immediate consequence of right continuity at 0 together with the semigroup property
(FE). Indeed,

lim
h↓0

∥T (t+ h)x− T (t)x∥X ≤ ∥T (t)∥O(X) lim
h↓0

∥T (h)x− x∥X = 0,

7



1. Semigroup Theory

where we used the operator norm property ∥Sx∥O(X) ≤ ∥S∥O(X) ∥x∥. For left continuity,
which we only have to show for t > 0, we observe for −t < h < 0 that

lim
h↑0

∥T (t+ h)x− T (t)x∥X ≤ lim
h↑0

∥T (t+ h)∥O(X) ∥x− T (−h)x∥X .

Since we have shown in the previous lemma that ∥T (·)∥O(X) is bounded on [0, t], the
expression on the right hand side is zero as a consequence of right continuity at zero. In
summary, t 7→ T (t)x is continuous at every t ≥ 0, which is what we wanted to show.

Lemma 1.3.1 also yields exponential boundedness on all of R+. This is concretized in
the following lemma.

Lemma 1.3.3. For every strongly continuous semigroup (T (t))t≥0 there is M > 0 and
ω ∈ R such that

∥T (t)∥O(X) ≤Meωt.

Proof. By Lemma 1.3.1 there is M > 1 such that ∥T (t)∥O(X) ≤ M for all t ∈ [0, 1].

Hence for t′ = N + δ with N ∈ N, 0 ≤ δ < 1 we have∥∥T (t′)
∥∥
O(X)

≤ ∥T (1)∥NO(X) ∥T (δ)∥O(X) ≤MN+1 = Melog(M)N ≤Meωt
′
,

where ω := log(M) > 0 and the last step follows from N ≤ t′ by construction. This
proves the claim.

In the proof of Lemma 1.3.1 we have already used the uniform boundedness principle.
For later uses, we will now present a version for semigroups. It shows that, like in the
case for scalar functions, pointwise convergence implies locally uniform convergence.

Lemma 1.3.4. Let (T (t))t≥0 be a strongly continuous semigroup on a Banach space X.
Then the map

K × C → X,

(t, x) 7→ T (t)x

is uniformly continuous on every pair of compact subsets K ⊂ R+, C ⊂ X.

Proof. Let ϵ > 0. Since K is compact, there is t0 such that K ⊂ [0, t0]. Hence, by
Lemma 1.3.1 there exists M < ∞ such that ∥T (t)∥O(X) ≤ M for all t ∈ K. Since C

is compact there exist n many xi ∈ C such that C ⊂
⋃n

i=1 Bϵ/M (xi). Let δ′ > 0 such
that ∥T (t)xi − T (s)xi∥X < ϵ for all i = 1, . . . , n whenever |t− s| < δ, which is possible
to find since (T (t))t≥0 is strongly continuous and there are only finitely many xi. For
general x ∈ C we find xi such that x ∈ Bϵ/M (xi) and compute

∥T (t)x− T (s)x∥X ≤ ∥T (t)x− T (t)xi∥X + ∥T (t)xi − T (s)xi∥X + ∥T (s)xi − T (s)x∥X
≤ ∥T (t)∥O(X) ∥x− xi∥X + ∥T (t)xi − T (s)xi∥X + ∥T (s)∥O(X) ∥xi − x∥X
≤ 3ϵ.

8



1.3. Strongly continuous semigroups

For every x, y ∈ C such that ∥x− y∥X ≤ ϵ/M this yields

∥T (t)x− T (s)y∥X ≤ ∥T (t)x− T (s)x∥X + ∥T (s)x− T (s)y∥X ≤ 4ϵ.

Set δ := min{δ′, ϵ/M}. The fact that Bδ(t, x) ⊂ Bδ(t)×Bδ(x) implies that for all (t, x) ∈
K ×C and for all (s, y) ∈ Bδ(t, x) we have ∥T (t)x− T (s)y∥X ≤ 4ϵ. This shows that the
map (t, x) 7→ T (t)x is uniformly continuous on K × C, which concludes the proof.

We will soon see, that it is sometimes much easier to prove semigroup properties not on
all elements of its domain, but on a dense subset. The next lemma should be seen as a
preparatory tool towards this analysis.

Lemma 1.3.5. Let (T (t))t≥0 be a semigroup on a Banach space X. The following are
equivalent:

(i) (T (t))t≥0 is strongly continuous.

(ii) There exist δ > 0,M > 1 and a dense subset D ⊂ X such that

(a) ∥T (t)∥O(X) ≤M for all t ∈ [0, δ],

(b) limt↓0 T (t)x = x for all x ∈ D.

Proof. With Lemma 1.3.1 the implication (i) ⇒ (ii) is clear. To prove the other direction,
we note that by Lemma 1.3.2 we only have to prove that limt↓0 T (t)x = x for all x ∈ X.
Since D is assumed to be dense, we find a sequence (xn)n≥0 ⊂ D that converges to x.
By triangle inequality we compute for every n ≥ 0

∥T (t)x− x∥X ≤ ∥T (t)∥O(X) ∥x− xn∥X + ∥T (t)xn − xn∥X + ∥xn − x∥X .

Using that the desired property is satisfied for all xn ∈ D and that ∥T (·)∥O(X) is bounded
on a right neighbourhood of 0, applying the limit t ↓ 0 to the above inequality yields

lim
t↓0

∥T (t)x− x∥X ≤ (M + 1) ∥x− xn∥X .

By letting n→ ∞ on the right hand side, we obtain the desired result.

Remember that our goal is to generalize the problem (DE) to unbounded operators A.
Since (DE) is presented with derivatives we still need to include differentiability into
our generalized theory. As commented on in the prelude to this chapter, we can only
hope for differentiability of the orbit map ξx instead of ξ. First, we again use the (FE)
property to make it easier to check for differentiability. This is the content of the next
lemma, whose claim and proof are very similar to its counterpart in the continuous case
(cf. Lemma 1.3.2).

Lemma 1.3.6. Let (T (t))t>0 be a strongly continuous semigroup on a Banach space X.
Consider for every x ∈ X the orbit map ξx : t 7→ T (t)x. The following are equivalent.

(i) ξx is differentiable on R+ with derivative ξ̇x(t) = T (t)ξ̇x(0) = ξ̇x(0)T (t).
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1. Semigroup Theory

(ii) ξx is right differentiable at 0.

Proof. We only have to prove (ii) ⇒ (i). Let x ∈ X. For right differentiability we use
(FE) to obtain for h > 0,∥∥∥∥1

h
(ξx(t+ h) − ξx(t))

∥∥∥∥
X

≤ ∥T (t)∥O(X)

∥∥∥∥1

h
(T (h)x− x)

∥∥∥∥
X

.

Letting h ↓ 0 and using right differentiability at 0 we conclude that ξx is right differen-
tiable at every t ≥ 0. For left differentiability we compute for −t < h < 0∥∥∥∥1

h
(ξx(t+ h) − ξx(t))

∥∥∥∥
X

≤ ∥T (t+ h)∥O(X)

∥∥∥∥1

h
(x− T (−h)x)

∥∥∥∥
X

.

Since ∥T (·)∥O(X) is bounded on [0, t] letting h ↑ 0 gives us left differentiability. In sum-
mary, ξx is differentiable on R+ for every x ∈ X and

ξ̇x(t) = lim
h↓0

1

h
(T (t+ h)x− T (t)x) = T (t)ξ̇x(0) = ξ̇x(0)T (t).

Now we know how to check for differentiability. In the case of uniformly continuous
semigroups, we showed in Lemma 1.2.3 that a uniformly continuous semigroup is actually
already differentiable. As was said earlier, we now hope to have a similar pointwise result.
It may be surprising that this will not be the case in general, at least not for every point.
To give some motivation why this should not be as surprising, we will show in the
following lemmata that if this was the case, then every strongly continuous semigroup
was already uniformly continuous. This, in hindsight, justifies the care we take in the
next definition. We now define the strongly continuous counterpart to the generator in
the uniformly continuous case (cf. Definition 1.2.7). But we will do so only for a subset
of our given Banach space, that is for the points where it exists.

Definition 1.3.7. Let (T (t))t≥0 be strongly continuous semigroup on a Banach space
X. The, in general unbounded, linear operator A : D(A) ⊂ X → X defined pointwise by

Ax := ξ̇x(0) = lim
h↓0

1

h
(T (h)x− x)

is called the generator of (T (t))t≥0. Its domain D(A) := {x ∈ X | ξx is right differentiable
in 0} is the subspace of X where it is ensured that this pointwise definition makes sense.

The small claim in the definition that A is linear, follows from linearity of each T (h)
and is left to check to the thorough reader. It is time for an example where we calculate
the generator of a semigroup. It also serves as an example to prove the long overdue
statement that not every strongly continuous semigroup is uniformly continuous.
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1.3. Strongly continuous semigroups

Example 1.3.8. Consider the translation semigroup (T (t))t≥0 acting on the Banach
space (C(R), ∥·∥∞) by T (t)f = f(t + ·). It is indeed a semigroup, since T (t + s)f =
f(t+ s+ ·) = T (t)T (s)f . To check strong continuity we see that

T (h)f = f(h+ ·),

converges to f for h ↓ 0 since f was assumed to be bounded and hence uniformly conti-
nuous. Let us calculate the generator A. The limit

lim
h↓0

T (h)f − f

h
= lim

h↓0

f(h+ ·) − f

h

exists exactly for those f which are differentiable and for which f ′ converges uniform-
ly. This shows that A is the differentiation operator Af = f ′ with D(A) = {f ∈
(C(R), ∥·∥∞) : f ′ ∈ (C(R), ∥·∥∞)}. One way to conclude that (T (t))t≥0 cannot be uni-
formly continuous is to observe the obvious fact that D(A) is a proper subset of
(C(R), ∥·∥∞). Another way, in view of Lemma 1.2.6, is to show directly that A is un-
bounded on (C(R), ∥·∥∞), which can be seen by using the sequence fn := sin(·n), for
which we have that ∥fn∥∞ = 1 for all n ∈ N but ∥Afn∥∞ = ∥n cos(·n)∥∞ = n→ ∞.

One question immediately coming to mind is how large the domain of A is. As commented
on before, it is a proper subset of X, differing from the case of uniformly continuous
semigroups. However if it was very small, or even empty, then we would have to make
further assumptions on the semigroups we are interested in to make this theory usable,
which was not desirable. The following lemmata reassure us that this cannot be the case.
The first lemma gives us an idea on which elements are the right candidates to show
that the domain is almost X, namely that D(A) is dense in X, which is the content of
the second lemma. Other helpful properties are also collected.

Lemma 1.3.9. Let (T (t))t≥0 be a strongly continuous semigroup on a Banach space X.
Its generator satisfies the following properties:

(i) T (t) maps D(A) to itself for every t ≥ 0. Indeed for x ∈ D(A) one has

d

dt
T (t)x = AT (t)x = T (t)Ax.

(ii) For every t ≥ 0, we have

T (t)x− x = A

∫ t

0
T (s)x ds if x ∈ X,

=

∫ t

0
T (s)Ax ds if x ∈ D(A).

In particular, for every x ∈ X, t ≥ 0 we have that
∫ t
0 T (s)x ds ∈ D(A).

11



1. Semigroup Theory

Proof. (i) is just a reformulation of Lemma 1.3.6(i) whenever Ax exists. To show (ii),
let x ∈ X, 0 < h < t. We compute

1

h

(
T (h)

∫ t

0
T (s)x ds−

∫ t

0
T (s)x ds

)
=

1

h

(∫ t+h

h
T (s)x ds−

∫ t

0
T (s)x ds

)
=

1

h

(∫ t+h

t
T (s)x ds−

∫ h

0
T (s)x ds

)
.

The left hand side converges to A
∫ t
0 T (s)x ds while the right hand side converges to

T (t)x−x when h ↓ 0 by A.3. Lastly let us prove the additional statement for x ∈ D(A).
For all s ∈ [0, t] we estimate∥∥∥∥T (s)

T (h)x− x

h
− T (s)Ax

∥∥∥∥
X

≤ ∥T (s)∥O(X)

∥∥∥∥T (h)x− x

h
−Ax

∥∥∥∥
X

≤ sup
s∈[0,t]

∥T (s)∥O(X)

∥∥∥∥T (h)x− x

h
−Ax

∥∥∥∥
X

.

Since ∥T (·)∥O(X) is bounded on [0, t] and limh↓0
1
h(T (h)x−x) = Ax we have on [0, t] uni-

form convergence of
(
T (·)T (h)x−x

h

)
1
h
∈N

to the integrable T (·)Ax. Hence we can exchange

limit and integral in the last step in the following equation. We compute

A

∫ t

0
T (s)x ds = lim

h↓0

1

h

(
T (h)

∫ t

0
T (s)x ds−

∫ t

0
T (s)x ds

)
= lim

h↓0

∫ t

0
T (s)

1

h
(T (h)x− x) ds =

∫ t

0
T (s)Ax ds,

which is what we wanted to prove.

This is now used to show that the generator (A,D(A)) admits nice properties.

Lemma 1.3.10. The generator (A,D(A)) of a strongly continuous semigroup (T (t))t≥0

is a densely defined, closed operator. It determines the semigroup uniquely.

Proof. We start by showing that A is closed. Let (xn)n∈N ⊂ D(A) be such that xn
n→∞−−−→

x and Axn
n→∞−−−→ y, where x, y ∈ X. We need to show that x ∈ D(A) with Ax = y. By

Lemma 1.3.9(ii) we have that for every n ∈ N

T (t)xn − xn =

∫ t

0
T (s)Axn ds.

Since ∥T (·)∥O(X) is bounded on [0, t], very similar to the previous proof we have by
uniform convergence of the integrand that by letting n→ ∞ we get

T (t)x− x =

∫ t

0
T (s)y ds.
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1.3. Strongly continuous semigroups

Multiplying by 1/t and then letting t ↓ 0 yields x ∈ D(A) with Ax = y. Hence A is closed.
Let us show that D(A) is dense in X. We have for every t > 0 and every x ∈ X that∫ t
0 T (s)x ds ∈ D(A) as a consequence of Lemma 1.3.9(ii). Hence also 1/t

∫ t
0 T (s)x ds ∈

D(A). Letting t ↓ 0 we have by A.3 that for any x ∈ X

D(A) ∋ 1

t

∫ t

0
T (s)x ds

t↓0−−→ x.

This shows that D(A) ⊂ X is dense. For uniqueness suppose A generated both (T (t))t≥0

and (S(t))t≥0. Then consider Qx(s) := T (t − s)S(s)x for 0 ≤ t ≤ s. For x ∈ D(A) we
note that the set{

S(s+h)x−S(s)x
h : h ∈ (0, 1]

}
∪ {AS(s)x} is compact and hence by Lemma 1.3.4 we have

that

1

h
(Qx(s+ h) −Qx(s)) =

1

h
(T (t− s− h)S(s+ h)x− T (t− s)S(s)x)

=
1

h
T (t− s− h)(S(s+ h)x− S(s)x) +

1

h
(T (t− s− h) − T (t− s))S(s)x

converge for h ↓ 0 to

Q̇x(s) = T (t− s)AS(s)x−AT (t− s)S(s)x.

This is zero by the commutative property of the generator shown in Lemma 1.3.9(i).
Hence we have that

T (t)x = Qx(0) = Qx(t) = S(t)x

for all x ∈ D(A). Since for every t ≥ 0, T (t), S(t) are continuous and D(A) is dense in
X we conclude that T (t) = S(t) for every t ∈ R+, which finishes the proof.

The closed graph theorem Lemma A.10 now yields the aforementioned fact, that if a
semigroup is strongly continuous and not uniformly continuous then the domain of the
generator cannot be the full domain of the semigroup.

Lemma 1.3.11. For a strongly continuous semigroup (T (t))t≥0 and its generator
(A,D(A)) the following are equivalent:

(i) The domain D(A) is all of X.

(ii) (T (t))t≥0 is uniformly continuous.

Proof. (ii) ⇒ (i) is clear since uniformly continuous operators are even differentiable in
the uniform operator topology as shown in Lemma 1.2.3. Hence this is in particular true
pointwise, which is the statement (i). For the other direction we have just shown that A
is a closed, densely defined operator. Thus the closed operator theorem yields that A is
bounded if it is defined everywhere. Then Theorem 1.2.6 together with the uniqueness
shown in the previous lemma yield that (T (t))t≥0 must be uniformly continuous.
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1. Semigroup Theory

Another implication of Lemma 1.3.10 is that we can now develop a spectral theory for
A, which is most times only meaningful when the operator of interest is closed. To this
end let us introduce some important notions.

Definition 1.3.12. Let A : D(A) ⊂ E → F be a linear operator between Banach spaces.
λ ∈ C is said to be in the resolvent set ρ(A) iff the operator λI − A, also defined on
D(A), is bijective onto F and its inverse is bounded. In this case we call (λ− A)−1 the
resolvent of A at λ, and denote it by R(λ,A). The complement of the resolvent set is
the spectrum σ(A).

Remark 1.3.13. In A.13 and its beforehand discussion we show that it follows from
the closed graph theorem that if A is closed, then existence of (λ−A)−1 already implies
its boundedness. Hence for our theory we do not need to check whether this inverse is
bounded when considering the generator A, for we have shown that generators are closed.

The resolvent will be the so far missing tool to connect generators to semigroups in the
strongly continuous case. Towards being able to work with the resolvent we first mention
two nice and helpful properties of semigroups which are used in many circumstances to
shorten and ease a proof and also to generate new semigroups. The first one is generating
new semigroups from given ones by conjugation.

Definition 1.3.14. Suppose (T (t))t≥0, (S(t))t≥0 are strongly continuous semigroups on
Banach spaces X,Y respectively. They are called similar if there exists a linear homeo-
morphism V : Y → X such that

V −1T (t)V = S(t),

for all t ≥ 0.

The following corollary shows that conjugation is a tool to construct new semigroups.

Corollary 1.3.15. Let V : X → Y be a homeomorphism between Banach spaces X,Y.
Suppose (T (t))t≥0 is a strongly continuous semigroup on Y . Then S(t) := V −1T (t)V
defines a strongly continuous semigroup on X.

Proof. Since V and V −1 are assumed to be continuous, conjugation with V preserves
strong continuity. For the semigroup law, we note that by the semigroup law of T we
have

S(t+ s) = V −1T (t+ s)V = V −1T (t)V V −1T (s)V = S(t)S(s),

for all t, s ≥ 0.

The following lemma shows that similarity preserves the one-to-one correspondence bet-
ween semigroups and generators in Lemma 1.3.10 in the most natural way.

Lemma 1.3.16. Suppose we are given a homeomorphism V : Y → X and strongly
continuous semigroups (T (t))t≥0, (S(t))t≥0 on Banach spaces X,Y respectively with ge-
nerators AT , AS. Then V

−1T (t)V = S(t) for all t ≥ 0 if and only if
V −1ATV |{y∈Y :V y∈D(AT )} = AS.
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1.3. Strongly continuous semigroups

Proof. By uniqueness (Lemma 1.3.10) we only have to show that V −1ATV |V −1D(AT )

generates V −1T (t)V . Hence let us compute

lim
h↓0

V −1T (h)V y − y

h
= V −1 lim

h↓0

T (h)V y − V y

h
.

By definition of a generator, this limit exists exactly for the set {y ∈ Y : V y ∈ D(AT )}
and we can write V −1ATV y for such points. This finishes the proof.

The second property is the rescaling property.

Lemma 1.3.17. Let (T (t))t≥0 be a strongly continuous semigroup on a Banach space X
with generator (A,D(A)). Then any λ ∈ C yields another strongly continuous semigroup
(S(t))t≥0 by setting S(t) := e−λtT (t). The generator (B,D(B)) of S is given by B = A−λ
and D(B) = D(A).

Proof. Since the exponential function in the scalar case is continuous and satisfies
ea+b = eaeb we see that S is a semigroup which is strongly continuous. It is clear that
limh↓0

T (h)x−x
h − λx exists iff limh↓0

T (h)x−x
h does. Together with the computation

lim
h↓0

S(h)x− x

h
= lim

h↓0

e−λhT (h)x− T (h)x

h
+ lim

h↓0

T (h)x− x

h
= −λx+Ax,

we conclude (B,D(B)) = (A− λ,D(A)).

Let us remark on some of the uses of rescaling. We remember from Lemma 1.3.3 that eve-
ry strongly continuous semigroup T exhibits exponential boundedness, say ∥T (t)∥O(X) ≤
Meωt, for some M > 0, ω ∈ R. By the previous lemma multiplying T (t) with e−ωt yields
a semigroup S which now is bounded, in the sense that, ∥S(t)∥O(X) ≤M for all t. In the
special case where M can be chosen to be less than or equal to 1, S is called contractive.
A semigroup that is contractive is also called contraction semigroup. It will not surprise
the reader that many results regarding semigroups are much easier to prove if one ass-
umes bounded- or even contractiveness. The pleasant surprise is that one often is able
to generalize the desired result to arbitrary semigroups from contractive ones. Another
use of Lemma 1.3.17 is that when proving a result which shall hold for any semigroup,
one can assume a special form. This technique is made evident in the following lemma.
The lemma gives a useful description of the resolvent.

Lemma 1.3.18. Let (T (t))t≥0 be a strongly continuous semigroup on a Banach space X.
Then the resolvent of the generator (A,D(A)) admits the following form. Let λ ∈ C. If
Rint(λ)x :=

∫∞
0 e−λtT (t)x dt exists for all x ∈ X, then λ ∈ ρ(A) and R(λ,A) = Rint(λ).

Remark 1.3.19. To avoid confusion, it should be noted that the implicit limit in the defi-
nition of Rint(λ) is meant as a pointwise limit. That is, Rint(λ) = lims→∞

∫ s
0 e

−λtT (t) dt

in the strong operator topology, i.e.
∥∥Rint(λ)x−

∫ s
0 e

−λtT (t)x dt
∥∥
X

s→∞−−−→ 0, for every

x ∈ X. When writing
∫∞
0 e−λtT (t) dt we will always mean the operator defined pointwise
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1. Semigroup Theory

as the pointwise limit∫∞
0 e−λtT (t)dt (x) := lims→∞

∫ s
0 e

−λtT (t)x dt. This is not to be confused with the ope-

rator C for which
∥∥C −

∫ s
0 e

−λtT (t) dt
∥∥
O(X)

s→∞−−−→ 0, whose existence relies on the con-

vergence of
∫ s
0 e

−λtT (t) dt in the uniform operator topology, on which we make no as-
sumptions. However, in cases where C exists, C and Rint coincide, since convergence
with respect to the uniform operator norm is stronger than strong convergence.

Proof. Without loss of generality, we can assume λ = 0, since λ ∈ ρ(A) is equivalent to
0 ∈ ρ(A− λ), A− λ being the generator of the rescaled semigroup defined by e−λtT (t),
as we saw in the previous lemma. Hence we want to show that Rint(0) = (−A)−1, i.e.
ARint(0)x = −x for x ∈ X and Rint(0)Ax = −x for x ∈ D(A). To this end, let x ∈ X
and compute for h > 0

T (h) − I

h
Rint(0)x =

1

h

(∫ ∞

h
T (t)x dt−

∫ ∞

0
T (t)x dt

)
= −1

h

∫ h

0
T (t)x dt.

Taking the limit h ↓ 0 yields rgRint(0) ⊂ D(A) with ARint(0)x = −x. To show the other
direction, by Lemma 1.3.9(ii), we have

lim
s→∞

A

∫ s

0
T (t)x dt = lim

s→∞

∫ s

0
T (t)Ax dt = Rint(0)Ax

for x ∈ D(A). Since lims→∞
∫ s
0 T (t)x dt = Rint(0)x and A is closed we have that

Rint(0)x ∈ D(A) with Rint(0)Ax = ARint(0)x = −x for all x ∈ D(A). We conclude
Rint(0) = (−A)−1.

The following lemma is an easy consequence of the previous lemma. Its significance
arises from the fact that semigroups are exponentially bounded (cf. Lemma 1.3.3). It is
a very useful result, stating that the resolvent set of a generator always includes a right
halfplane. It also yields a scaling norm bound of the resolvent, which will be detrimental
in the following pages. In contrast to the remark to the previous lemma, here we do show
existence of the integral formula for the resolvent by proving its existence as an element
of the uniform operator topology. This then obviously implies its pointwise existence.

Lemma 1.3.20. Let (T (t))t≥0 be a strongly continuous semigroup on a Banach space
X with generator (A,D(A)), satisfying the growth bound

∥T (t)∥O(X) ≤Meωt (1.4)

for some constants M > 0, ω ∈ R. If Reµ > ω, then

(i) µ ∈ ρ(A) and Rint(µ) = R(µ,A) and

(ii) ∥R(µ,A)∥O(X) ≤
M

Reµ−ω .
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Proof. Since we have∥∥∥∥∫ s

0
e−µtT (t) dt

∥∥∥∥
O(X)

≤M

∫ s

0
e(−Reµ+ω)t dt

s→∞−−−→ M

Reµ− ω
, (1.5)

we even get convergence of
∫ s
0 e

−µtT (t) dt in the uniform operator topology. We invoke
Lemma 1.3.18 and its attached Remark 1.3.19 to conclude (i). The resolvent R(µ,A)
equaling Rint(µ) together with (1.5) then prove (ii).

Remark 1.3.21. By Lemma 1.3.3 there always exists a pair M,ω such that T satisfies
the above growth bound. In the context of spectral theory the previous lemma encourages
one to find the sharpest choice for these constants.

An important consequence is the following convergence property of the resolvent, which
suggests which elements to consider to define an exponential function for unbounded
operators.

Lemma 1.3.22. Let (A,D(A)) be the generator of a strongly continuous semigroup
(T (t))t≥0 on a Banach space X. Suppose T is bounded, i.e. there exists M > 0 such
that for all t > 0 it holds that ∥T (t)∥O(X) ≤M . Then the resolvent admits the following
convergence properties.

(i) limλ→∞ ∥λR(λ,A)x− x∥X = 0 for all x ∈ X.

(ii) limλ→∞ ∥λAR(λ,A)x−Ax∥X = 0 for all x ∈ D(A).

Proof. The boundedness assumption on T is equivalent to saying that ω can be chosen
to be 0 in Lemma 1.3.20. The identity

λR(λ,A)x− x = R(λ,A)(λ+A− λ)x = R(λ,A)Ax

for x ∈ D(A) together with the norm estimate for the resolvent in Lemma 1.3.20(ii) then
yield

∥λR(λ,A)x− x∥X = ∥R(λ,A)Ax∥X ≤ ∥R(λ,A)∥O(X) ∥Ax∥X ≤ M

λ
∥Ax∥X ,

which converges to 0 for λ→ ∞. This proves (i) for x ∈ D(A). Since the set {λR(λ,A) :
λ > 0} is uniformly bounded by M we may use the well-known fact, that for a bounded
sequence of operators on a Banach space, strong continuity on the whole space coincides
with strong continuity on a dense subset (see A.7), to conclude (i) for all x ∈ X. To
prove (ii) we use the commutative property of the resolvent on D(A)

AR(λ,A)x = R(λ,A)Ax,

which is proved in A.14. With this for every x ∈ D(A) we have

∥λAR(λ,A)x−Ax∥X = ∥λR(λ,A)Ax−Ax∥X ,

which converges to 0 for λ→ ∞ by (i). This completes the proof.
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Remember that our goal is to define the exponential operator etA for the unbounded
generator A of a semigroup. Item (ii) in the previous lemma yields a sequence of -as
we will soon see- bounded operators that can be defined on all of X, which on D(A)
approach A. Since we already know how to define the exponential function for bounded
operators, in turn yielding uniformly continuous semigroups (cf. Theorem 1.2.6), we hope
that defining the exponential of an unbounded operator as the limit of exponentials of
bounded ones will serve our purpose. The following theorem shows that this is indeed
true, at least when imposing some restrictions on A or equivalently on its resolvent
R(λ,A). The theorem together with a following consequence in the special case of Hilbert
spaces, are the main results of this chapter. There are different ways to restrict A to get
different satisfactory results. For our purpose, the following assumptions will serve best.
They are rather strict, consequently even yielding contraction semigroups, but will be
satisfied by our differential operator in the next chapter.

Theorem 1.3.23. Let (A,D(A)) be a linear operator on a Banach space X. The follo-
wing are equivalent:

(i) (A,D(A)) generates a strongly continuous contraction semigroup.

(ii) (A,D(A)) is closed, densely defined and for every λ > 0 one has λ ∈ ρ(A)
and ∥λR(λ,A)∥O(X) ≤ 1.

(iii) (A,D(A)) is closed, densely defined and for every λ ∈ C with Reλ > 0 one has
λ ∈ ρ(A) and ∥R(λ,A)∥O(X) ≤

1
Reλ .

Proof. Since (iii) trivially implies (ii), while (i) implies (iii) by Lemma 1.3.10 and
Lemma 1.3.20 (remember that contractive means that (M,ω) can be chosen to be (1, 0)
in (1.4)), we only have to show that (ii) implies (i). To this end we define on X the
aforementioned operators

An := nAR(n,A)

for every n ∈ N. We compute

An = n(n+A− n)(n−A)−1 = n2R(n,A) − nI

and

AnAm = nmAAR(n,A)R(m,A) = mAR(m,A)nAR(n,A) = AmAn, (1.6)

where we used the commutativity of resolvents with one another on all of X and of
the resolvent with A on D(A). This shows that the An are bounded operators for each
n ∈ N which commute with one another. In 1.3.22(ii) we have seen that (An)n converges
strongly to A. As mentioned before we are now interested in the existence of the strong
limit of the uniformly continuous semigroups

Tn(t) := etAn ,
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for then we hope that the family (T (t))t≥0 defined on X by T (t)x := limn→∞ Tn(t)x is
a strongly continuous semigroup with generator A. We mention that by A.5 Tm(s) and
Tn(t) commute for any n,m ∈ N, s, t ≥ 0. Let us first prove that for every x ∈ X, Tn(t)x
converges for n→ ∞. By noticing that

∥Tn(t)∥O(X) ≤ e−nten
2t∥R(n,A)∥O(X) ≤ 1, (1.7)

we again have a uniformly bounded sequence of operators, hence strong convergence on
all of X coincides with strong convergence on D(A) (A.7). So we only need to prove
convergence of Tn(t)x for x ∈ D(A). To this end for every x ∈ D(A), t ≥ 0 consider

Qx(s) := Tm(t− s)Tn(s)x, 0 ≤ s ≤ t. (1.8)

An application of the fundamental theorem of calculus for functions on Banach spaces
yields

Tn(t)x− Tm(t)x = Qx(t) −Qx(0) =

∫ t

0

d

ds
Qx(s) ds

=

∫ t

0
Tm(t− s)Tn(s)Anx− Tn(s)Tm(t− s)Amx ds

=

∫ t

0
Tm(t− s)Tn(s)(Anx−Amx) ds,

where the last two equalities hold by the commutativity of the family (Tn(t))n∈N,t≥0.
Taking norms gives

∥Tn(t)x− Tm(t)x∥X ≤ t ∥Anx−Amx∥X . (1.9)

Since by item (ii) in Lemma 1.3.22, (Anx)n converges to Ax, in particular it is a Cauchy
sequence. By the fact that X is complete together with (1.9) we have that for every
x ∈ D(A), (Tn(·)x)n converges uniformly on every interval [0, t0]. In particular we have
shown that for any t ≥ 0, x ∈ D(A), limn→∞ Tn(t)x exists, which is as we mentioned
before enough to conclude that it already exists for all x ∈ X. By (1.7) we see that
∥T (t)∥O(X) ≤ 1 for every t ≥ 0. In particular, T (t) is a bounded operator for every t ≥ 0.
As the pointwise limit of semigroups, (T (t))t≥0 satisfies (FE), hence is a semigroup itself.
For strong continuity we note that by (1.9) on every interval [0, t0] the orbit maps at
every x ∈ D(A)

ξx : t 7→ T (t)x (1.10)

are uniform limits of continuous functions, hence continuous itself. By Lemma 1.3.5 this
already shows that this is true for all x ∈ X. Altogether this means that (T (t))t≥0 is
a strongly continuous contractive semigroup. Lastly we want to show that A generates
(T (t))t≥0. First we highlight that the uniform convergence of (Tn(·)x)n for x ∈ D(A)
already implies that this is true for all x ∈ X, by Appendix A Lemma A.7. Let us
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denote the generator of (T (t))t≥0 by (B,D(B)). For x ∈ D(A) we have that on every
interval [0, t0]

ξx,n : t 7→ Tn(t)x (1.11)

converges uniformly to ξx. For the differentiated functions

ξ̇x,n : t 7→ Tn(t)Anx (1.12)

we have that they converge uniformly on [0, t0] to

ηx : t 7→ T (t)Ax. (1.13)

This is seen by the computation

sup
t∈[0,t0]

∥T (t)Ax− Tn(t)Anx∥X ≤ sup
t∈[0,t0]

∥T (t)Ax− Tn(t)Ax∥X

+ sup
t∈[0,t0]

∥Tn(t)Ax− Tn(t)Anx∥X

≤ sup
t∈[0,t0]

∥T (t)Ax− Tn(t)Ax∥X + ∥Ax−Anx∥X ,

(1.14)

where the right hand side converges to zero by the earlier remarks that Tn(·) converges
uniformly at Ax ∈ X and the strong convergence of (An)n to A on D(A). Together this
implies that ξx is differentiable with ξ̇x(0) = ηx(0). Hence D(A) ⊂ D(B) and Ax = Bx
for x ∈ D(A). Choose any λ > 0. By assumption λ − A is a bijection from D(A) onto
X. Since B is the generator of a strongly continuous contraction semigroup, Lemma
1.3.20 implies that λ ∈ ρ(B), whence λ−B is a bijection on D(B). Therefore and since
λ − A = λ − B on D(A), D(A) cannot be a proper subset of D(B) and we conclude
D(A) = D(B) and A = B. This means that (A,D(A)) generates (T (t))t≥0. This finishes
the proof.

This result will be sufficient for us. It should be mentioned that from here on out, one
could generalize this result in several directions, as is done in [8].

1.3.1. The Lumer-Phillips Theorem

We take a different route. Since our differential operators in the next chapter will (almost)
meet the assumptions, we are satisfied with the above form. However in the context
of differential operators one does not always start with a closed operator defined on
the domain given in the definition of our generator, but on some ”nicer” spaces. The
drawback is that one needs to include one step to be able to construct a semigroup,
namely taking the closure of said operator. One type of operators where this works very
nicely are the so called dissipative operators which will be introduced in the following.
Since the overlying space in the next chapter will be a Hilbert space, the rest of this
chapter is formulated in terms of Hilbert spaces.
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1.3. Strongly continuous semigroups

Definition 1.3.24. Let (A,D(A)) be a linear operator on a Hilbert space (H, ⟨·, ·⟩). A
is called dissipative if

Re⟨Ax, x⟩ ≤ 0. (1.15)

for all x ∈ D(A).

This is a special definition for operators on Hilbert spaces. Usually one defines dissipa-
tivity in a more general way, for operators on Banach spaces. The content of the next
lemma includes the usual definition.

Lemma 1.3.25. Let A : D(A) ⊂ H → H be a linear operator on a Hilbert space H. A
is dissipative if and only if for every λ > 0 and x ∈ D(A) the norm estimate

∥(λ−A)x∥H ≥ λ ∥x∥H (1.16)

holds.

Proof. Let λ > 0, x ∈ D(A). We calculate

∥(λ−A)x∥2H = λ2 ∥x∥2H − 2λRe⟨Ax, x⟩ + ∥Ax∥2H .

Since λRe⟨Ax, x⟩ ≤ 0 by assumption, taking roots proves one direction. For the other
direction, we first note that since the statements are trivially satisfied for x = 0, we can
w.l.o.g. assume that ∥x∥H = 1 (otherwise consider z = x/ ∥x∥H). For every λ > 0, define
xλ := (λ−A)x/ ∥(λ−A)x∥H . Then we have by (1.16)

λ ≤ ∥(λ−A)x∥H = ⟨(λ−A)x, xλ⟩ = λ⟨x, xλ⟩ − ⟨Ax, xλ⟩ = λRe⟨x, xλ⟩ − Re⟨Ax, xλ⟩.

Using Cauchy-Schwarz once in the first and once in the second inner product yields the
estimates

0 ≥ Re⟨Ax, xλ⟩, (1.17)

1 − 1

λ
∥Ax∥H ≤ Re⟨x, xλ⟩, (1.18)

for all λ > 0. Suppose x′ ∈ H is a weak accumulation point of (xλ)λ∈N, which exists
since the unit ball is weakly compact in Hilbert spaces. We have∥∥x′∥∥2

H
= ⟨x′, x′⟩ ≤ lim sup

λ→∞

∣∣⟨xλ, x′⟩∣∣ ≤ lim sup
λ→∞

∥xλ∥H
∥∥x′∥∥

H
=
∥∥x′∥∥

H
, (1.19)

which implies ∥x′∥H ≤ 1. (1.17) and (1.18) imply for λ′ → ∞, where (xλ′)λ′ is the
subsequence for which x′ is the weak limit, that 0 ≥ Re⟨Ax, x′⟩ and 1 ≤ Re⟨x, x′⟩. With
the second inequality and Cauchy-Schwarz, we compute

1 ≤ Re⟨x, x′⟩ ≤
∣∣⟨x, x′⟩∣∣ ≤ ∥∥x′∥∥

H
≤ 1, (1.20)

which means that we can write equality signs instead, yielding

⟨x, x′⟩ = ∥x∥2H =
∥∥x′∥∥2

H
. (1.21)

But this means that ∥x− x′∥2H = ⟨x − x′, x − x′⟩ = 0, hence x′ = x and by the above
Re⟨Ax, x⟩ ≤ 0. This is what we wanted to show.
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1. Semigroup Theory

We will mostly use this dissipativity property. To show that this is the right class of
operators to consider we collect several very useful properties.

Lemma 1.3.26. Let A : D(A) ⊂ H → H be a dissipative operator on a Hilbert space
H. It admits the following properties.

(i) For every λ > 0 the operator (λ−A) is injective and∥∥(λ−A)−1z
∥∥
H

≤ 1

λ
∥z∥H

for every z ∈ rg(λ−A) = (λ−A)D(A).

(ii) (λ−A) is surjective for some λ > 0 iff it is surjective for every λ > 0.

(iii) A is closed iff rg(λ−A) is closed for all λ > 0.

(iv) A is closable if rg(A) ⊂ D(A). The closure A is again dissipative and satisfies
rg(λ−A) = rg(λ−A).

Proof. (i) Injectivity immediately follows from (1.16) in Lemma 1.3.25, since only 0 is
mapped to 0. The estimate then is just a reformulation of (1.16) for x = (λ−A)−1z.
(ii) Suppose λ > 0 is such that (λ−A) is surjective. By (i) the inverse of λ−A is bounded,
hence R(λ,A) exists. Since for µ ∈ (0, 2λ) we have that |µ− λ| < λ ≤ 1/ ∥R(λ,A)∥O(X),
the series representation for the resolvent (see Lemma A.15) yields that µ ∈ ρ(A). With
(i) we have the estimate ∥R(µ,A)∥O(X) ≤ 1/µ. With the same arguments, one shows
that (0, 4λ) ⊂ ρ(A) (for µ ∈ [2λ, 4λ) consider µ/2+ϵ). Proceeding this way, we eventually
get that (0,∞) ⊂ ρ(A), which is what we wanted to prove.
(iii) The operator A is closed if and only if λ−A is closed for any λ > 0. Since λ−A is
invertible on rg(λ−A) by (i) and the graph of λ−A is closed if and only if the graph of
(λ−A)−1 is closed, the previous is equivalent to requiring that (λ−A)−1 is closed. By
(i) this operator is bounded and hence by Lemma A.9 we conclude that this is equivalent
to D((λ−A)−1) = rg(λ−A) being closed.
(iv) By Corollary A.11 and its beforehand discussion, to show closability of A it suffices
to show that if (xn)n ⊂ D(A) is such that xn → 0 and Axn converges to some y ∈ H, it
must be that y = 0. Let us be given such a sequence (xn)n ⊂ D(A). By (1.16) we have
for n ∈ N, w ∈ D(A) and λ > 0∥∥λ2xn − λAxn + (λ−A)w

∥∥
H

= ∥(λ−A)(λxn + w)∥H ≥ λ ∥λxn + w∥H .

Letting n→ ∞ and dividing by λ yields∥∥∥∥−y + w − 1

λ
Aw

∥∥∥∥
H

≥ ∥w∥H .

By letting λ→ ∞ we obtain

∥−y + w∥H ≥ ∥w∥H .
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1.3. Strongly continuous semigroups

Since we have y ∈ rg(A) ⊂ D(A) by assumption, there exists a sequence (wm)m ⊂ D(A)
converging to y. Hence the above inequality implies for m→ ∞

0 ≥ ∥y∥H .

Hence we have shown that y = 0 and thus by Corollary A.11 closability. By construction
(cf. A.11 and its beforehand remarks) we have that D(A) is not only dense in D(A)
but for a given x ∈ D(A) there always exists a sequence (xn)n ⊂ D(A) converging to x
for which (Axn)n converges. The equivalent notion of dissipativity (1.16) is stable when
taking limits, which implies dissipativity for A. Also by the graph property G(λ−A) =
G(λ−A) we have for every λ > 0 that rg(λ−A) is dense in rg(λ−A). By (iii) the latter
is closed in H, hence rg(λ−A)= rg(λ−A), which was the only claim left to prove.

With these properties we can formulate the generation theorem in the final, most handy
form for us. Often times the following theorem is called the Lumer-Phillips-Theorem.
Since we already have done all the work, it can be formulated as almost a corollary of
the previous.

Theorem 1.3.27 (Lumer-Phillips). Let A : D(A) ⊂ H → H be a densely defined,
dissipative operator on a Hilbert space H. The following are equivalent.

(i) The closure A of A generates a strongly continuous contraction semigroup.

(ii) rg(λ−A) is dense in H for some (hence all) λ > 0.

Proof. (i) ⇒ (ii) : By Theorem 1.3.23 we have that (0,∞) ⊂ ρ(A), which means that
(λ−A) is surjective for all λ > 0. The claim then follows by item (iv) in Lemma 1.3.26
which states that rg(λ−A) = rg(λ−A).
(ii) ⇒ (i) : Let λ > 0 be such that rg(λ−A) is dense. By 1.3.26 (iv), we have that A is
closable and its dissipative closure A satisfies rg(λ−A) = H. Hence by item (ii) in the
same lemma, this property translates to all λ > 0, which means that (0,∞) ⊂ ρ(A). A
being closed, densely defined and dissipative together with Lemma 1.3.26(i) imply that∥∥λR(λ,A)

∥∥
O(X)

≤ 1. Hence we invoke Theorem 1.3.23 to conclude (i).

Note that the assumptions in the theorem do not explicitly call for properties of the
resolvent, in contrast to Theorem 1.3.23. The needed information is covered by requiring
that A shall be dissipative.
In the next chapter we will start with a differential operator defined on some tangible
space. By introducing an inner product on this space we will produce the overlying
Hilbert space as the completion of the original space with respect to the inner product.
Thus by construction the differential operator will be densely defined. We will have to
prove that it is dissipative and (λ−A) has dense range for some λ. By the Lumer-Phillips
theorem we are then provided with a strongly continuous semigroup generated by the
closure of said differential operator.
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2. Wave equation in forward self-similarity
coordinates

2.1. Introduction

2.1.1. Radiality

Let us start with a short discussion on radial functions. These are d-dimensional functions
whose whole information can be equivalently described on a 1-dimensional domain. To
be more precise, a d-dimensional function u : Rd → R is called radial, if there exists a
1-dimensional, even function pu : R → R for which

pu(|x|) = u(x) (2.1)

for all x ∈ Rd. As the name suggests, this means that u is only dependent on the radius.
pu is called the radial representative of u and is uniquely determined by u. This is since
on the positive reals it is given by (2.1) and on the negatives it is given by pu(−r) = pu(r)
since we assumed it to be even. It is an easy exercise to see that pu inhibits the regularity
of u and vice-versa. That is, u ∈ Ck(Rd,R) is equivalent to pu ∈ Ck(R,R). Most results
in this chapter will first be presented with respect to the radial representative. Slightly
abusing the language, we will still say that pu may be d-dimensional, emphasizing the
fact that it was generated by or will generate a d-dimensional function, despite being
one-dimensional itself. Operators will also be extended by radiality. That is, suppose pT
acts on the one-dimensional even function pu. Then we can define an operator T acting
on the d-dimensional radial function u, whose radial representative is pu by

Tu = ( pT pu)(|·|).

We will stay consistent in always using the ”hat”-notation (p) when radial representatives
or equivalently spaces of even functions are involved.

2.1.2. Wave maps in (1+3)-dimensional Minkowski space

We are interested in the wave maps equation, a generalization of the wave equation
where the unknown takes values in some Riemannian manifold. We are concerned with
the case in which the manifold is the 3-dimensional sphere. In this special case, a map
U : R× R3 → S3 ⊂ R4 is called wave map if it solves

∂µ∂µU + (∂µU · ∂µU)U = 0, (2.2)
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where µ ranges from 0 to 3 with ∂j = ∂j for j = 1, 2, 3 and ∂0 = −∂0 and the Einstein
summation convention is employed. With the corotational ansatz

U(t, x) =

(
sin(|x|u(t, x)) x

|x|
cos(|x|u(t, x))

)
where u(t, ·) is radial for every t ≥ 0, the system of equations (2.2) reduces to a single
semilinear wave equation. It is given by

(∂2t − ∂2r −
4

r
∂r)pu(t, r) +

sin(2rpu(t, r)) − 2rpu(t, r)

r3
= 0, (2.3)

where pu(t, ·) is the radial representative of u(t, ·) at every t ≥ 0. This interestingly is a 5-
dimensional rather than a 3-dimensional radial wave equation, which is seen by noticing
that the above can be written as

(∂t − ∆x)v(t, x) +
sin(|x| v(t, x)) − 2 |x| v(t, x)

|x|3
= 0,

where v : R×R5 → R has 5-dimensional spatial domain such that v(t, x) = pu(t, |x|). It is
readily seen that the geometric radial wave operator in (2.3) preserves symmetry, hence
the above equation also holds for r < 0, for we assumed that û(t, ·) is even at every
t ≥ 0. We also note by the series expansion of the sine that the singularity in the second
summand is removable and thus the second summand can be seen as a perturbation of
the cubic nonlinearity N(pv) = pv3.
This paper is mainly concerned with laying the groundwork for a forward stability ana-
lysis of the geometric wave equation (2.3) in the future light cone. To this end we will
introduce novel coordinates which will be called ”forward similarity coordinates”. In
these coordinates we will develop energy bounds for solutions of the free radial wave
equation in every odd spatial dimension, focusing on dimension 1,3 and 5. In more de-
tail, we will first produce an energy bound in dimension 1 which will then be lifted
in 2-dimensional steps by the descent method introduced for a related problem on the
complement of the future light cone in [1] and structurally revised in [6].

2.2. Coordinates

There exists a self-similar function explicitly given by ϕ∗(t, r) = 2 arctan(r/t), such that
ψ∗(t, r) := ϕ∗(t, r)/r is a solution to (2.3). ϕ∗ is usually used to demonstrate finite time
blow-up in the related problem where the ansatz to the wave maps equation (2.2) is

given by Ũ(t, x) =

(
sin(u(t, x)) x

|x|
cos(u(t, x))

)
. It has been shown that ϕ∗ is stable as a blow-up

solution in this case, first numerically in [2] and then rigorously as an accumulated result
of [5],[7],[3]. A more elegant proof was given in [4].
One could also consider ψ∗ for t → ∞ and ask whether ψ∗ is stable as a semi-global
solution to (2.3). In related problems, it has proved advantageous to adapt the coordinate
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2. Wave equation in forward self-similarity coordinates

system to ϕ∗. Our approach in this direction will be the introduction of novel coordinates,
which we will call forward self-similarity coordinates.
Let us introduce them step by step. Inspired by the properties of ϕ∗ we try to find a
coordinate pair Ψ(s, y) = (Ψ1(s, y),Ψ2(s, y)), satisfying the following properties:

(1) (a) Since our analysis will depend on the use of differential operators, the coor-
dinates should be smooth.

(b) To avoid having too complicated coordinates, we want the dependence of
Ψ1,Ψ2 from time and space to be multiplicative separable. That is, there
exist functions Ψ1,s,Ψ1,y,Ψ2,s,Ψ2,y such that Ψi(s

′, y′) = Ψi,s(s
′)Ψi,y(y′) for

i = 1, 2.

(c) They should be adapted to self-similarity. That is, the quotient of the new
variables should be independent of time, i.e. there exists a spatial function W
such that Ψ1(s, y)/Ψ2(s, y) = W (y).

(d) We are interested in forward stability. By the underlying wave equation struc-
ture, which means finite speed of propagation, it is sufficient to consider the
problem in a forward light cone. The behaviour which we want to understand
is when the coordinates approach infinity. There are 2 possibilities for this.
One, when approaching timelike infinity, which would also be perfectly cover-
ed by the time variable in the usual cartesian coordinates. The other however
is when we approach lightlike infinity, which in cartesian coordinates is ap-
proached when t and x grow proportionately. Since we are not interested at
all in spacelike infinity the cartesian space variable is not well suited to our
analysis, and can be seen as wasted. We would like to have access to light-
like infinity through the new spatial variable alone. That is why the spatial
dependence functions Ψ1,y respectively Ψ2,y should behave like |y| , y.

(e) To translate our results to the future we would like that for s > 0 each level
set {(Ψ1(s, y),Ψ2(s, y)) : y ∈ Y } lives (asymptotically) in its own future
light cone. Here Y denotes the domain of the spatial variable, which will be
specified later.

(2) We prefer to do our computations on a compact space, hence we would like to
compactify our spatial domain. This property is of rather technical nature and its
use is mainly to have easy access to the domain’s endpoints which then do not
have to be described as ”at ±∞”.

Let us construct our coordinates in two steps. For step (1) Property (c) in view of
(b) means that Ψ1,s/Ψ2,s ≡ C. We could choose Ψ1,s(s

′) = Ψ2,s(s
′) = s′. However,

using exponential time instead better suits our purpose, which is just attributed to the
fact that when using differential operators on the coordinates the exponential function’s
invariance under differentiation comes in handy. Hence we set Ψ1,s(s

′) = Ψ2,s(s
′) = es

′
.

Property (d) in view of (a) naturally gives rise to the Japanese bracket defined by

⟨y⟩ :=
√

1 + |y|2, which is a smoothened version of the absolute value. Hence we try
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Ψ1,y(y′) = ⟨y′⟩,Ψ2,y(y′) = y′ and check whether the corresponding coordinates already
satisfy property (e). It turns out that the level sets are hyperboloids which converge
asymptotically to the boundary of a future light cone. However, they all converge to
the same one, given by {(|y| , y) : y ∈ R}. To include a margin between two given level
sets, we manipulate Ψ1,y by adding 1, which would -by their multiplicative relation- be

equivalent to adding es
′

in Ψ1,s. That is Ψ1,y(y′) := 1 +
√

1 + |y|2. With this trick, one

calculates that the margin between two level sets, say of s1, s2, converges to |es1 − es2 |.
By this, the level set corresponding to time s0 has its own light cone given by {(es0 +
|y| , y) : y ∈ R}, which shows that these coordinates satisfy property (e). We have created

the coordinates Ψ(1)(s, y) :=

(
es(1 +

√
1 + |y|2), esy

)
. The final step is to bring these

coordinates into a form such that they satisfy (2). This is achieved by compactifying
Rd into Bd

π/2 by the introduction of the tangent. By writing y = |y| y
|y| we find the

conformal compactification K(y) = tan(|y|) y
|y| which just stretches Bd

π/2 to Rd. Together

with the function Ψ(1) constructed in step (1) we get Ψ := Ψ(1) ◦ (id×K). We have
Ψ(s, y) = (es(1 +

√
1 + tan(|y|)2), es tan(|y|) y

|y|) where
√

1 + tan(|y|)2 is easily seen to

be equal to 1
cos(|y|) . To summarize, we make the following definition.

Definition 2.2.1. In each spatial dimension d ≥ 1 the forward hyperboloidal self-
similarity coordinates (FHSC) are given by the map

Ψd :(0,∞) × Bd
π/2 → R× Rd,

(s, y) 7→
(
es(1 +

√
1 + tan(|y|)2), es tan(|y|) y

|y|

)
=

(
es +

es

cos(|y|)
, es tan(|y|) y

|y|

)
.

Remark 2.2.2. Let us comment on some of the properties of these coordinates. We
invite the reader to also consult figure 2.1.

• Ψd is a diffeomorphism onto the subset of the future lightcone
{(t, x) ∈ R× Rd : t ≥ 1 + |x|} explicitly given by

im(Ψd) =

{
(t, x) ∈ R× Rd : t ≥ 1 +

√
1 + |x|2

}
. Its inverse is

Ψ−1
d (t, x) =

(
log

(
t2 − |x|2

2t

)
, arctan

(
2t |x|

t2 − |x|2

)
x

|x|

)
.

• FHSC are well adapted to self-similarity. In particular, ϕ∗ in new coordinates is of
the form

ϕ∗ (t, r) = 2 arctan

(
es tan(y)

es(1 + 1
cos(y))

)
= 2 arctan

(
sin(y)

cos(y) + 1

)
= 2 arctan

(
tan

(y
2

))
= y.
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2. Wave equation in forward self-similarity coordinates

x

t

Fig. 2.1.: Forward self similarity coordinates. The hyperboloids are level sets of s, the
straight lines emerging from the origin are level sets of y. The dashed line
depicts the lower boundary of the future lightcone {(t, x) ∈ R×Rd : t ≥ 1+|x|}.
The lowest hyperboloid depicts the lower boundary of the coordinates and we
see that it asymptotically converges to the boundary of the lightcone.

• Ψd is compatible with radiality, that is we have (id× |·|) ◦ Ψd = Ψ1 ◦ (id× |·|).
One helpful implication is that when working with radial functions, the change of
coordinates does not change their radiality. Indeed, suppose we are given u in usual
cartesian coordinates (t, x) with radial representatives pu(t, ·) for every t. Then for
every s the function v(s, ·) is radial, where v := u ◦ Ψ−1

d . This is seen by defining
the radial representative of v(s, ·) by

v(s, y) = u

(
es +

es

cos(|y|)
, es tan(|y|) y

|y|

)
= pu

(
es +

es

cos(|y|)
, es tan(|y|)

)
=: pv(s, |y|).

The aforementioned is summarized in the following diagram:

u(t, x) v(s, y)

pu(t, |x|) pv(s, |y|)

Ψ−1
d

id×|·| ◦ id×|·|

Ψ−1
1

(2.4)

In these coordinates (use Ψ1) the 5-dim. radial wave equation in (2.3) becomes

1

e2s(1 + 1
cos(y))

2
□̃rad

5 v(s, y) +
sin(2es tan(y)v(s, y)) − 2es tan(y)v(s, y)

(es tan(y))3
= 0, (2.5)
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2.3. One dimensional free wave equation

where v = u ◦ Ψ1 is the function u in the new coordinates and □̃rad
d is the free radial

wave operator in forward similarity coordinates given explicitly by

□̃rad
d v(s, y) =∂2sv(s, y) − 2 cos(y)(cos(y) + 1)∂2yv(s, y) + 2 sin(y)∂syv(s, y)

+

(
1 + (d− 1)

cos(y) + 1

cos(y)

)
∂sv(s, y)

+

(
2 sin(y)(cos(y) + 1) − (d− 1)

(cos(y) + 1)2

sin(y)

)
∂yv(s, y).

(2.6)

In the context of semigroup theory we rewrite the equation □̃rad
d v(s, y) = 0 into a system

of two equations by considering the tuple v(s, ·) :=

(
v(s, ·)
∂sv(s, ·)

)
for every s ≥ 0. Then an

equivalent description of v solving the free radial wave equation can be given as

∂sv(s, ·) = Ldv(s, ·)

where Ld is with (2.6) formally defined via

Ldf =

(
[Ldf ]1
[Ldf ]2

)
,

where

[Ldf ]1 :=f2

[Ldf ]2 :=2(cos(·)2 + cos(·))f ′′1 − (2 sin(·)(cos(·) + 1) − (d− 1)
(cos(·) + 1)2

sin(·)
)f ′1

− 2 sin(·)f ′2 + (1 + (d− 1)
cos(·) + 1

cos(·)
)f2,

(2.7)

for f =

(
f1
f2

)
.

2.3. One dimensional free wave equation

We start in the simplest case. That is, we consider the one dimensional free wave equation

0 = □̃rad
1 v(s, y) =∂2sv(s, y) − 2 cos(y)(cos(y) + 1)∂2yv(s, y) + 2 sin(y)∂syv(s, y)

+ ∂sv(s, y) + 2 sin(y)(cos(y) + 1)∂yv(s, y).
(2.8)

Multiplying this equation by 1
1+cos(y) and testing with ∂sv(s, y) we formally find the

energy identity

d

ds

[∫ π
2

−π
2

cos(y)∂yv(s, y)2 dy +

∫ π
2

−π
2

1

2(1 + cos(y))
∂sv(s, y)2 dy

]
= −1

2
∂sv(s,−π

2
)2 − 1

2
∂sv(s,

π

2
)2.
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2. Wave equation in forward self-similarity coordinates

The computation that leads to this identity is part of the next lemma and can be verified
there.
This motivates the definition of the energy.

Definition 2.3.1. The energy E : C1[−π
2 ,

π
2 ] × C[−π

2 ,
π
2 ] → R is given by

E(f1, f2) =

∫ π
2

−π
2

cos(y)f ′1(y)2 dy +

∫ π
2

−π
2

1

2(1 + cos(y))
f2(y)2 dy.

The previous energy identity formulated in terms of the energy means, that if v solves the
1-dimensional wave equation in new coordinates, then the map s 7→ E (v(s, ·), ∂0v(s, ·)) is
positive and bounded by E (v(0, ·), ∂0v(0, ·)). For later purposes, we want to reformulate
this 1-dimensional bound into semigroup language. This will be done via an applica-
tion of the Lumer-Phillips-Theorem. Towards this end we define appropriate functions
spaces and a differential operator suitable to our problem for which we will then show
dissipativity and density of its range.

Definition 2.3.2. The vector space

C∞
odd

([
−π

2
,
π

2

])2
:=
{
f = (f1, f2) ∈ C∞

([
−π

2
,
π

2

])
× C∞

([
−π

2
,
π

2

])
: f1, f2 odd

}
equipped with the inner product inspired by the energy

(f | g)H1 :=

∫ π
2

−π
2

cos(y)f ′1(y)g′1(y) dy +

∫ π
2

−π
2

1

2(1 + cos(y))
f2(y)g2(y) dy (2.9)

is a pre-Hilbert space. By H1 we denote its completion, which makes it a Hilbert space.
We remember the operator L1 formally defined in (2.7)

L1

(
f1
f2

)
=

(
f2

2(cos(·)2 + cos(·))f ′′1 − 2 sin(·)(cos(·) + 1)f ′1 − 2 sin(·)f ′2 − f2

)
.

and define the operator L1 : D(L1) ⊂ H1 → H1 by D(L1) := C∞
odd

([
−π

2 ,
π
2

])2
and

L1f := L1f . By construction L1 is densely defined.

Lemma 2.3.3. The operator L1 is closable and its closure L1 generates a strongly
continuous contraction semigroup (S1(s))s≥0 on H1. In particular, we have the estimate
∥S1(s)f∥H1

≤ ∥f∥H1
for all s ≥ 0, for all f ∈ H1.

Proof. Our strategy will be to show dissipativity of L1 and density of λ−L1 for some po-
sitive λ to then invoke the Lumer-Phillips Theorem to obtain the result. For dissipativity
we have to show that (L1f | f)H1 ≤ 0 for all f ∈ C∞

odd

([
−π

2 ,
π
2

])2
. We compute

(L1f | f)H1 =

∫ π
2

−π
2

cos(y)f ′1(y)f ′2(y)dy

+
1

2

∫ π
2

−π
2

(
2 cos(y)f ′′1 (y) − 2 sin(y)f ′1(y) − 2 sin(y)f ′2(y) + f2(y)

1 + cos(y)

)
f2(y)dy
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2.3. One dimensional free wave equation

and by partially integrating the first term we note that it cancels with the second and
third term, which leaves us with

(L1f | f)H1 = −1

2

∫ π
2

−π
2

f2(y)

1 + cos(y)
(2f ′2(y) sin(y) + f2(y))dy.

By the fundamental theorem of calculus we have

f2

(
−π

2

)2
+ f2

(π
2

)2
=

∫ π
2

−π
2

∂y

(
sin(y)

1 + cos(y)
f2(y)2

)
dy

=

∫ π
2

−π
2

f2(y)

1 + cos(y)
(2f ′2(y) sin(y) + f2(y))dy,

hence we conclude that (L1f | f)H1 = −1
2f2

(
−π

2

)2 − 1
2f2

(
π
2

)2 ≤ 0. For density we show

that there exists λ > 0 such that rg(λ−L1) = D(L1) = C∞
odd

([
−π

2 ,
π
2

])2
. Let λ = 2 and

assume that g is such that (2 − L1)f = g for f ∈ C∞
odd

([
−π

2 ,
π
2

])2
. That is{

2f1 − f2 = g1,

−2(cos(·)2 + cos(·))f ′′1 + 2 sin(·)(cos(·) + 1)f ′1 + 2 sin(·)f ′2 + 3f2 = g2,
(2.10)

from which we see that 2 − L1 preserves smoothness and oddness. That is rg(2-L1) ⊂
D(L1). To show that these sets in fact are equal, we consider the inverse problem and

assume that g ∈ C∞
odd

([
−π

2 ,
π
2

])2
. We try to find f ∈ C∞

odd

([
−π

2 ,
π
2

])2
such that (2 −

L1)f = g. Towards this end, we equivalently write the above system as{
f2(y) = 2f1(y) − g1(y),

f ′′1 (y) − f ′1(y) sin(y)(3+cos(y))
cos(y)(cos(y)+1) − f1(y) 3

cos(y)(cos(y)+1) = −3g1(y)+2 sin(y)g′1(y)+g2(y)
2 cos(y)(cos(y)+1) .

Two fundamental solutions to the ODE in the second line are given by

ϕ1(y) =
(1 − sin(y))(1 + cos(y))

cos(y)2
, ϕ2(y) =

sin(y)(1 + cos(y))

cos(y)2
.

Thus, by variation of constants we get that

f1(y) = ϕ1(y)

∫ y

0

ϕ2(x)

W (x)
G(x)dx+ ϕ2(y)

∫ π
2

y

ϕ1(x)

W (x)
G(x)dx,

where W (x) := ϕ′1(x)ϕ2(x) − ϕ′2(x)ϕ1(x) = (1+cos(x))2

cos(x)3
is the Wronskian of ϕ1, ϕ2 and

G(x) := −3g1(x)+2 sin(x)g′1(x)+g2(x)
2 cos(x)(cos(x)+1) is the nonlinear part. That is

f1(y) =
(1 − sin(y))(1 + cos(y))

cos(y)2

∫ y

0

sin(x)

2(1 + cos(x))2
h(x)dx

+
sin(y)(1 + cos(y))

cos(y)2

∫ π
2

y

1 − sin(x)

2(1 + cos(x))2
h(x)dx,

(2.11)
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2. Wave equation in forward self-similarity coordinates

where h(x) = 3g1(x) + 2 sin(x)g′1(x) +g2(x). Note that h is an odd function and smooth,
by the assumptions on g1, g2. To see that f1 is odd we first rewrite it in a form where
this is more visible. Indeed, expanding the 1 − sin(·) terms yields,

f1(y) =
1 + cos(y)

cos(y)2

∫ y

0

sin(x)

2(1 + cos(x))2
h(x) dx

+
sin(y)(1 + cos(y))

cos(y)2

∫ π
2

y

1

2(1 + cos(x))2
h(x)dx

− sin(y)(1 + cos(y))

cos(y)2

∫ π
2

0

sin(x)

2(1 + cos(x))2
h(x)dx.

Hence by symmetry properties of the trigonometric functions and h, we compute

f1(−y) =
1 + cos(y)

cos(y)2

∫ −y

0

sin(x)

2(1 + cos(x))2
h(x) dx

− sin(y)(1 + cos(y))

cos(y)2

∫ π
2

−y

1

2(1 + cos(x))2
h(x)dx

+
sin(y)(1 + cos(y))

cos(y)2

∫ π
2

0

sin(x)

2(1 + cos(x))2
h(x)dx

= − 1 + cos(y)

cos(y)2

∫ y

0

sin(x)

2(1 + cos(x))2
h(x) dx

− sin(y)(1 + cos(y))

cos(y)2

∫ π
2

y

1

2(1 + cos(x))2
h(x)dx

+
sin(y)(1 + cos(y))

cos(y)2

∫ π
2

0

sin(x)

2(1 + cos(x))2
h(x)dx

= − f1(y),

where the second step follows from
∫ y
−y

1
2(1+cos(x))2

h(x)dx = 0, since h is odd. Thus

f1 is odd. It is also smooth on (−π
2 ,

π
2 ) as a composition of smooth functions. To see

smoothness at the endpoints, we note that by oddness it suffices to consider one of them.
Hence, let y ↑ π/2 in (2.11). Since 1−sin(y)

cos(y)2
= 1 + sin(y) we note that the first summand

is smooth at π/2. For the second summand of f1 in (2.11),

f12(y) :=
sin(y)(1 + cos(y))

cos(y)2

∫ π
2

y

1 − sin(x)

2(1 + cos(x))2
h(x)dx

a heuristic counting of zeros against singularities yields that we have 2 singularities from
cos(·)2 against 3 zeros, 1 from the integral border and the other 2 from 1 − sin(·) in the
integrand, by which we expect smoothness. To make this more rigorous, consider the
function h defined by

h(y) := f12

(
y +

π

2

)
=

sin(y + π
2 )(1 + cos(y + π

2 ))

cos(y + π
2 )2

∫ 0

y

1 − sin(x+ π
2 )

2(1 + cos(x+ π
2 ))2

h(x+
π

2
)dx,
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2.4. Connection to higher dimensions via stepwise descent

where the second equality follows from the change of variable Φ(x) = x + π
2 . Since

cos(·+ π
2 )2 and 1− sin(·+ π

2 ) both have a zero of order 2 at 0, Lemma B.3 shows that h
is smooth at 0. Hence f12 and thus f1 are smooth at π

2 . Since f2 = 2f1−g1, oddness and
smoothness for f2 immediately follow. Hence we have shown density and an invocation
of the Lumer-Phillips Theorem finishes the proof.

Lemma 2.3.3 gives an energy estimate for a solution of the 1-dimensional wave equation
in FHSC. We want to lift this estimate first to 3 and then to 5 dimensions. We will do
this step by step.

2.4. Connection to higher dimensions via stepwise descent

The following method relies on a particular property of solutions of the d-dimensional
radial wave equation. We will show that every d-dimensional solution induces a 1-
dimensional one. First we want to understand this procedure in usual cartesian coordi-
nates.

2.4.1. Formal descent in cartesian/ spherical coordinates

To this end we rewrite the cartesian wave equation into radial coordinates, since these
are evidently best suited to radial solutions. It should be mentioned that the expressions
”radial coordinates” and ”spherical coordinates” are used interchangeably, radial being
more fitting in our setting, while spherical is the wider-used expression with respect to
coordinates.
To shorten the notation, let us first introduce two important operators.

Definition 2.4.1. The radial d-dimensional Laplacian ∆rad
d and wave operator □rad

d are
formally defined by

∆rad
d := ∂2r +

d− 1

r
∂r,

□rad
d := −∂2t + ∆rad

d .

The following Lemma and Corollary validate the names of the introduced operators.
Since for radial functions a change in angle does not change the value of the function, in
the following we are not interested in the specific form of spherical coordinates other than
its radius. We only need that such a spherical transformation exists, which is well-known.

Lemma 2.4.2. For the radial coordinate transformation

Φ

x1. . .
xd

 =


√
x21 + · · · + x2d

f1(x1, . . . , xd)
. . .

fd−1(x1, . . . , xd)

 =:


r
ϕ1
. . .
ϕd−1



33



2. Wave equation in forward self-similarity coordinates

the Laplacian of a radial function u : Rd → R, ∆xu(x1, . . . , xd) :=
∑d

i=1 ∂
2
xi
u(x1, . . . , xd)

becomes in radial coordinates

∆rad
d v(r, ϕ1, . . . , ϕd−1),

where v(Φ(x1, . . . , xd)) = u(x1, . . . , xd). In particular, since u is radial and therefore v
is, ∆xu(x) = 0 is equivalent to ∆rad

d v(r, ϕ1, . . . , ϕd−1) = ∆rad
d v(r, 0, . . . , 0) = 0, which

means that the 1-dimensional radial representative ṽ of v, solves ∆rad
d ṽ(r) = 0.

Proof. Let u : Rd → R be radial and v such that v ◦ Φ = u. We are interested in
∆xu(x) =

∑d
i=1 ∂

2
i v(Φ(x1, . . . , xd)). Hence we calculate

∂2i (v ◦ Φ) =
d∑

j=1

d∑
k=1

∂k∂jv ◦ Φ · ∂iΦk · ∂iΦj + ∂jv ◦ Φ · ∂2i Φj ,

where Φl is the l-th component of Φ. Now, since v is radial we have ∂lv = 0 for all l ̸= 1,
which reduces the sum to ∂2i (v ◦ Φ) = ∂21v ◦ Φ · (∂iΦ1)

2 + ∂1v ◦ Φ · ∂2i Φ1. With

∂iΦ1(x1, . . . , xd) =
xi
r
,

∂2i Φ1(x1, . . . , xd) =
r − x2

i
r

r2
=
r2 − x2i
r3

,

we get

∆xu(x) =

d∑
i=1

∂2i v(Φ(x1, . . . , xd))

=

d∑
i=1

∂21v(Φ(x1, . . . , xd))
x2i
r2

+ ∂1v(Φ(x1, . . . , xd))
r2 − x2i
r3

=∂21v(r, ϕ1, . . . , ϕd−1) + ∂1v(r, ϕ1, . . . , ϕd−1))
dr2 − r2

r3
,

which proves the claim.

The following corollary just extends the previous result for the Laplacian to the wave
operator.

Corollary 2.4.3. The d-dimensional wave operator □du(t, x) = (−∂2t +∆x)u(t, x) takes
in radial coordinates the form □rad

d v(t, r, ϕ1, . . . , ϕd−1) whenever for all t the function
x 7→ u(t, x) is radial.

We are still due an explanation of how solutions of different dimensions are related. One
possible answer to this question is that one can construct 1-dimensional solutions from
higher dimensional ones in one go, as made evident in the following lemma. We will call
this operation the full descent in radial coordinates.
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2.4. Connection to higher dimensions via stepwise descent

Lemma 2.4.4. Let u : R → R be radial, smooth and a solution to the 3-dimensional
problem, i.e. ∆rad

3 u(r) = 0 and v : R → R be radial, smooth and a solution to the 5-
dimensional problem, i.e. ∆rad

5 v(r) = 0. Then solutions to the 1-dimensional problem
are given by r 7→ ru(r) and r 7→ 3rv(r)+r2∂rv(r), i.e. ∆rad

1 (ru(r)) = 0 = ∆rad
1 (3rv(r)+

r2∂rv(r)).

Proof. In three dimensions we have

∂2r (rũ(r)) = r(∂2r ũ(r) +
2

r
∂rũ(r)) = 0,

by the assumption on u. In five dimensions, multiplying and differentiating the assump-
tion on v leads to (4∂r + 6r∂2r + r2∂3r )ṽ(r) = 0. With this, we calculate

∂2r (3rṽ(r) + r2∂rṽ(r)) = 8∂rṽ(r) + 7r∂2r ṽ(r) + r2∂3r ṽ(r)

=
[
4∂rṽ(r) + 6r∂2r ṽ(r) + r2∂3r ṽ(r)

]
+ r

[
4

r
∂rṽ(r) + ∂2r ṽ(r)

]
=0,

since the expressions in the square brackets vanish.

Remark 2.4.5. This lemma can be extended to any odd dimension. The full descent
operator in arbitrary odd dimension d mapping a function f to the function

r 7→ (r−(d−3)∂r)
( d−3

2
)(rd−2f̃(r)) gives the desired result. Note that the functions in 3 and

5 dimensions from above coincide with this function, i.e. that this really is an extension
of the lemma. However, since we only need the lemma in the three- and five- dimensional
case, this will not be proved.

Since the dimension of the radial wave operator is fully encoded in its spatial derivatives
but not in the time derivatives and the full descent operator is independent of time,
replacing the Laplacian with the wave operator in the previous result is still valid. We
gather this observation in a corollary.

Corollary 2.4.6. Suppose u : R× R → R and v : R× R → R are such that □rad
3 u = 0

and □rad
5 v = 0. Then g1(t, r) := ru(t, r) and g2(t, r) := 3rv(t, r) + r2∂rv(t, r) solve

□rad
1 g = 0.

The key insight which heavily simplifies the analysis of higher dimensional solutions is
that the full descent in Lemma 2.4.4 can be broken down into step-wise descent. The
dimension is then not reduced from d to 1 in one go, but from d to d − 2 in each step.
The following definition exists towards this analysis.

Definition 2.4.7. For odd d ≥ 3, the d-dimensional descent operator Drad
d is defined

via

Drad
3 f(r) = rf(r),
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2. Wave equation in forward self-similarity coordinates

and

Drad
d f(r) = (d− 2)f(r) + r∂rf(r),

for d ≥ 5, odd.

With this definition at hand, we can formulate the intertwining identity for radial coor-
dinates, which validates the name of the descent operator by showing that it maps
d-dimensional to (d-2)-dimensional solutions of the wave equation.

Lemma 2.4.8. For d ≥ 3, odd, the radial Laplacian commutes with the radial descent
operator in that

∆rad
d−2D

rad
d = Drad

d ∆rad
d .

Proof. We only proof the cases d ∈ {3, 5}. The proof for d > 5 is similar straightforward.
Let f be a suitable function. For d = 3, we have

Drad
3 ∆rad

3 f(r) = r∂2rf(r) + 2∂rf(r) = ∆rad
1 [(·)f(·)](r) = ∆rad

1 Drad
3 f(r).

For d = 5, we have on the one side

∆rad
3 Drad

5 f(r) = (∂2r +
2

r
∂r)(3f(r) + r∂rf(r))

= (3∂2r + r∂3r + 2∂rr +
6

r
∂r + 2∂2r +

2

r
∂r)f(r)

= (r∂3r + 7∂2r +
8

r
∂r)f(r),

and on the other side

Drad
5 ∆rad

5 f(r) = S5(∂
2
r +

4

r
)f(r)

= (3∂2r +
12

r
∂r + r∂3r + r(− 4

r2
)∂r + 4∂2r )f(r)

= (r∂3r + 7∂2r +
8

r
∂r)f(r).

Again we extend this result to the wave operator.

Corollary 2.4.9. For d ≥ 3, odd, the radial wave operator commutes with the radial
descent operator in that

□rad
d−2D

rad
d = Drad

d □rad
d .

Remark 2.4.10. Note that this is a pure operator identity and no assumptions (other
than differentiability) have to be made on f . In particular f does not have to be a solution
of any kind.
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2.4. Connection to higher dimensions via stepwise descent

2.4.2. Descent and ascent in FHSC

Now we want to have a similar intertwining identity in similarity coordinates. The equali-
ty which emerges by just rewriting the operators from the previous section into operators
in FHSC does not hold true. However the descent operators will be key in our later esti-
mates, hence we want an identity including them. Therefore we start by rewriting them
into the self similar setting. As we did in the previous section we formally introduce the
operators. But since this is the setting we are actually interested in, we also define them
properly afterwards, meaning that we also introduce the spaces on which the operators
act upon. This step was omitted in radial coordinates in the previous section, since the
previous section should only motivate the approach in a well-known setting.
In new coordinates we have

Drad
3 g(t, ·)(r) = rg(t, r) = es tan(y)u(s, y) =: u↓3(s, y) (2.12)

and for odd d ≥ 5

Drad
d g(t, ·)(r) = (d− 2)g(t, r) + r∂rg(t, r)

= (d− 2)u(s, y) + es tan(y)

(
−e

−s tan(y)

1 + 1
cos(y)

∂s + e−s cos(y)∂y

)
u(s, y)

= (d− 2)u(s, y) +

(
cos(y) − 1

cos(y)

)
∂su(s, y) + sin(y)∂yu(s, y) =: u↓d(s, y),

(2.13)

where in both cases u = g ◦ Ψ1, with Ψ1 being the transformation into similarity coor-
dinates

(s, y) 7→
(
es(1 +

√
1 + tan(y)2), es tan(y)

)
from the start of the chapter. We also gather the facts that

∂su
↓
3(s, y) = es tan(y)(u(s, y) + ∂su(s, y)) (2.14)

and

∂su
↓
d(s, y) = (d− 2)∂su(s, y) +

(
cos(y) − 1

cos(y)

)
∂2su(s, y) + sin(y)∂y∂su(s, y). (2.15)

As before it is advantageous to only work with spatial operators. This is done by refor-
mulating the problem into a two dimensional operator problem, by restricting ourselves
to solutions of the wave equation. We remember the start of this chapter (2.7) where we
showed that u solves the d-dimensional wave equation in self similar coordinates if and
only if

∂s

(
u(s, y)
∂su(s, y)

)
= Ld

(
u(s, ·)
∂su(s, ·)

)
(y),
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2. Wave equation in forward self-similarity coordinates

where the operator Ld was given by[
Ld

(
f1
f2

)]
1

=f2,[
Ld

(
f1
f2

)]
2

=2(cos(·)2 + cos(·))f ′′1 −
(

2 sin(·)(cos(·) + 1) − (d− 1)
(cos(·) + 1)2

sin(·)

)
f ′1

− 2 sin(·)f ′2 −
(

1 + (d− 1)
cos(·) + 1

cos(·)

)
f2.

Then we formally define the linear descent operators D↓
3, D

↓
d for odd d ≥ 5, by

D↓
3

(
f1
f2

)
:= tan(·)

(
f1

f1 + f2,

)
D↓

d

(
f1
f2

)
:= (d− 2)

(
f1
f2

)
+ sin(·)

(
f ′1
f ′2

)
+

cos(·) − 1

cos(·)
Ld

(
f1
f2

)
.

For the tuples u(s, y) :=

(
u(s, y)
∂su(s, y)

)
,u↓

3(s, y) :=

(
u↓3(s, y)

∂su
↓
3(s, y)

)
,u↓

d(s, y) :=

(
u↓d(s, y)

∂su
↓
d(s, y)

)
equation (2.12) with (2.14) and (2.13) with (2.15) then read

u↓
3(s, y) = esD↓

3u(s, ·)(y), u↓
d(s, y) = D↓

du(s, ·)(y). (2.16)

With these definitions at hand, we are now prepared to formulate the intertwining iden-
tity in self similar coordinates which is the self similar counterpart to Lemma 2.4.8. It
should be no surprise that the intertwining identity for the first step, i.e. from dimension
1 to 3 is different to all the others, since the descent operator is scaled with exponential
time in this case, as you can see in (2.16).

Lemma 2.4.11. The descent operators satisfy the intertwining identities

D↓
3L3 −L1D

↓
3 = −D↓

3,

D↓
dLd = Ld−2D

↓
d,

for odd d ≥ 5.

Proof. We will only sketch the proof, which is attributed to the fact that there are no
ingenious steps involved but an admittedly tedious computation. In dimension 3 we have

D↓
3L3f(y) = tan(y)

(
[L3f ]1(y)

[L3f ]2(y) + [L3f ]1(y)

)
= tan(y)

(
f2(y)

[L3f ]2(y) + f2(y)

)
,

and

L1D
↓
3f(y) =

 tan(y)(f2(y) + f1(y))

[L1(tan(·)f)]2(y) + [L1(tan(·)
(

0
f1

)
)]2(y)

 ,
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2.4. Connection to higher dimensions via stepwise descent

which shows that the equality is satisfied in the first component. Hence let us concentrate
on the second component. A straightforward computation yields the product rule

[L1(tan(·)g)]2(y) = tan(y)[L1g]2(y) + 2 cos(y)(cos(y) + 1)(tan′′(y)g1(y) + 2 tan′(y)g′1(y))

−2 sin(y)(cos(y) + 1) tan′(y)g1(y) − 2 sin(y) tan′(y)g2(y),

which we use to find that

[D↓
3L3f −L1D

↓
3f ]2(y) = tan(y)([(L3 −L1)f ]2(y) + f2(y)

− 2 cos(y)(cos(y) + 1)(tan′′(y)f1(y) + 2 tan′(y)f ′1(y))

+ 2 sin(y)(cos(y) + 1) tan′(y)f1(y) + 2 sin(y) tan′(y)f2(y)

+ 2 sin(y) tan(y)f ′1(y) + (tan(y) + 2 sin(y) tan′(y))f1(y),

which after a careful computation finally leads to

[D↓
3L3f −L1D

↓
3f ]2(y) = [−D↓

3f ]2(y).

This is what was left to show in dimension 3. In odd dimension greater than or equal
to 5 the proof is a similar straightforward, but even lengthier computation and will be
omitted.

This identity is an integral part of lifting our 1 dimensional estimates to 3 and 5 di-
mensional ones, as we will see in the following. First we need to specify on which spaces
the descent operator acts. In context of the intertwining identity and to connect to our
theory developed in the one dimensional case, we require the range of the descent ope-
rator to be the domain of the operator L1, i.e. smooth functions on [−π

2 ,
π
2 ] which are

odd. To find the appropriate domain for the descent operator, we first show that it has a
formal inverse and choose the domain of the descent operator as the range of its formal
inverse with domain C∞

odd([−π
2 ,

π
2 ]). These remarks show that the inverse of the descent

is at least as useful to our construction as the descent operator itself. Hence we give its
inverse its own name and develop the theory from there.

Lemma 2.4.12. There is a bijective, linear operator, called the 1-dimensional ascent
operator, A↑

1 : C∞
odd([−π

2 ,
π
2 ])2 → C∞

even,0([−π
2 ,

π
2 ])2 := {pf ∈ C∞

even([−π
2 ,

π
2 ])2 : pf1(

π
2 ) = 0 =

pf2(
π
2 )} such that A↑

1 = (D↓
3)

−1. In particular, the intertwining identity in Lemma 2.4.11
manifests itself as

pL3A
↑
1 −A↑

1L1 = −A↑
1,

where pL3 : C∞
even,0([−π

2 ,
π
2 ])2 → C∞

even,0([−π
2 ,

π
2 ])2 is given by pL3

pf := L3
pf .

Proof. To construct A↑
1 let pf and g be such that D↓

3
pf = g. That is{

tan(·) pf1 = g1,

tan(·)( pf1 + pf2) = g2.
(2.17)
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2. Wave equation in forward self-similarity coordinates

The inverse operation is then explicitly given by

pf = cot(·)
(

g1
g2 − g1

)
=: A↑

1g. (2.18)

To show surjectivity of A↑
1 assume that pf ∈ C∞

even,0([−π
2 ,

π
2 ])2. We need to find g ∈

C∞
odd([−π

2 ,
π
2 ])2 such that A↑

1g = pf . We start by considering the first component

sin(y)

cos(y)
pf1(y) = g1(y). (2.19)

From this we see that g1 is odd and smooth on (−π
2 ,

π
2 ) with g1(0) = 0. Using the

fundamental theorem of calculus with the fact that pf1(
π
2 ) = 0 and the change of variables

Φ(x) = (y − π
2 )(x+ π

2 ) we write the above as

g1(y) =
sin(y)

cos(y)

∫ y

π
2

pf ′1(x) dx =
sin(y)(y − π

2 )

cos(y)

∫ 1

0

pf ′1

((
y − π

2

)
x+

π

2

)
dx. (2.20)

We see that g1 is also smooth in a left neighbourhood of π
2 since

y−π
2

cos(y) describes a smooth
function and the integral term is smooth which is seen by an application of Lemma B.1
to the function g1(· + π

2 ). By the same arguments we show the claims for g2, which

yields surjectivity. Injectivity of A↑
1 follows by assuming that pf1 ≡ 0 ≡ pf2 in (2.17) since

smoothness of g1, g2 then dictates that g1 ≡ 0 ≡ g2.
The intertwining identity follows from the intertwining identity for the descent ope-
rator in Lemma 2.4.11 by composition with A↑

1 from the left and from the right. pL3

maps to C∞
even,0([−π

2 ,
π
2 ])2 since by the intertwining identity we have that rg(pL3) =

rg
(
A↑

1(L1 − I)(A↑
1)

−1
)
⊂ rg(A↑

1) = C∞
even,0([−π

2 ,
π
2 ])2. This ends the proof.

This result enables us to turn our formal definition of the 3-dimensional descent operator
into a rigorous one.

Corollary 2.4.13. The 3-dimensional descent operator pD↓
3 : C∞

even,0([−π
2 ,

π
2 ])2 →

C∞
odd([−π

2 ,
π
2 ])2 given by pD↓

3
pf := D↓

3
pf is bijective with inverse A↑

1.

By radiality we extend this result to radial functions whose domain is 3-dimensional.

Corollary 2.4.14. The 3-dimensional descent operator for 3-dimensional radial func-

tions D↓
3 : C∞

rad

(
B3

π
2

)2
→ C∞

odd([−π
2 ,

π
2 ])2 given by D↓

3f := pD↓
3
pf is bijective with inverse

qA↑
1, where

qA↑
1 : C∞

odd([−π
2 ,

π
2 ])2 → C∞

rad

(
B3

π
2

)2
is the operator mapping a function tu-

ple f to the 3-dimensional radial function qA↑
1f whose radial representative is A↑

1f , i.e.
qA↑
1f := A↑

1f(|·|). It satisfies the intertwining identity

D↓
3L3 − L1D

↓
3 = −D↓

3,

where L3 : C∞
rad

(
B3

π
2

)2
→ C∞

rad

(
B3

π
2

)2
is given by L3f := pL3

pf(|·|).
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2.4. Connection to higher dimensions via stepwise descent

We want to use a similar construction for the next step, i.e. transferring the 3-dimensional
result we just obtained into 5 dimensions. In contrast to the step from 1 to 3 dimensions
it is not evident what the range of the 3-dimensional ascent actually is, which is due to
the fact that regularity at the endpoints will not be fully preserved. Therefore we will
not further specify it other than providing an overlying target space where we ensure
that the range can be fully embedded into.

Lemma 2.4.15. There is a linear operator, called the 3-dimensional ascent operator,
pA↑
3 : C∞

even,0([−π
2 ,

π
2 ])2 → C1

even,0

(
[−π

2 ,
π
2 ]
)2 ∩ C∞

even((−π
2 ,

π
2 ))2 which is bijective onto its

image and such that pA↑
3 = (D↓

5)
−1. In particular, the intertwining identity in Lemma

2.4.11 manifests itself as

pL5
pA↑
3 = pA↑

3
pL3,

where pL5 : rg( pA↑
3) → rg( pA↑

3) is given by pL5
pf := L5

pf .

Proof. Since this is a longer proof we subdivide it into several steps.

(i) Construction of pA↑
3:

To construct pA↑
3, let pg ∈ C∞

even,0([−π
2 ,

π
2 ])2. We want to find pf such that D↓

5
pf = pg. That

is {
3 pf1 + sin(·) pf ′1 + cos(·)−1

cos(·)
pf2 = pg1,

3 pf2 + sin(·) pf ′2 + cos(·)−1
cos(·) [L5

pf ]2 = pg2.
(2.21)

Inserting the definition of L5 and putting the first into the second equation yields{
pf2 = cos(·)

cos(·)−1(−3 pf1 − sin(·) pf ′1 + pg1),

pf ′′1 + 4+cos(·)2
cos(·) sin(·)

pf ′1 + 3(2−cos(·)2)
cos(·)2 sin(·)2

pf1 = G,
(2.22)

where G(y) := 1
cos(y) sin(y)

(
2−cos(y)2

cos(y) sin(y)pg1(y) + (2 − cos(y))pg′1(y) + 1−cos(y)
sin(y) pg2(y)

)
denotes

the non-linear part in the second equation. When solving the second equation towards
pf1, we find the two fundamental solutions

pϕ11(y) :=
cos(y)3

sin(y)3
, pϕ12(y) :=

cos(y)2(cos(y) − 1)

sin(y)3
.

The Wronskian of pϕ11 and pϕ12 is W (y) := pϕ′11(y)pϕ12(y)− pϕ11(y)pϕ′12(y) = − cos(y)4

sin(y)5
. Then

variation of parameters yields the solution to the non-linear ODE

pf1(y) =a11pϕ11(y) + a12pϕ12(y) − pϕ11(y)

∫ y

0

pϕ12(x)

W (x)
G(x) dx− pϕ12(y)

∫ 0

y

pϕ11(x)

W (x)
G(x) dx

=a11pϕ11(y) + a12pϕ12(y) +
cos(y)3

sin(y)3

∫ y

0

cos(x) − 1

cos(x)3
H(x) dx

+
cos(y)2(cos(y) − 1)

sin(y)3

∫ 0

y

1

cos(x)2
H(x) dx,

(2.23)
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2. Wave equation in forward self-similarity coordinates

where H(x) := cos(x) sin(x)2G(x) = 2−cos(x)2

cos(x) pg1(x) + sin(x)(2 − cos(x))pg′1(x) + (1 −
cos(x))pg2(x) and a11, a12 ∈ R are to be specified later. From (2.22) we see that the
second components of the fundamental system are

pϕ21(y) :=
cos(y)

cos(y) − 1
(−3pϕ11(y) − sin(y)pϕ′11(y)) =

3 cos(y)3

sin(y)3
,

pϕ22(y) :=
cos(y)

cos(y) − 1
(−3pϕ12(y) − sin(y)pϕ′12(y)) =

cos(y)2(2 − 4 cos(y))

sin(y)3
.

This in turn means that pf2 is given by

pf2(y) =a21pϕ21(y) + a22pϕ22(y) + pϕ21(y)

∫ y

0

pϕ12(x)

W (x)
G(x) dx+ pϕ22(y)

∫ 0

y

pϕ11(x)

W (x)
G(x) dx

+
cos(y)

cos(y) − 1
pg1(y)

=a21pϕ21(y) + a22pϕ22(y) +
3 cos(y)3

sin(y)3

∫ y

0

cos(x) − 1

cos(x)3
H(x) dx

+
cos(y)2(2 − 4 cos(y))

sin(y)3

∫ 0

y

1

cos(x)3
H(x) dx+

cos(y)

cos(y) − 1
pg1(y),

(2.24)

with a21, a22 ∈ R. Hence to find pA↑
3, we consider the family of linear operators

(Aa11,a12,a21,a22)aij∈R defined by (2.23) and (2.24). We note that there is some choice to

be made now. Indeed, choosing the precise form of pA↑
3 is heavily connected to restricting

the space in which pA↑
3 maps into, i.e. requiring some properties of the target functions.

We want the target space to be so restrictive that there is only one possible quadruple
(a11, a12, a21, a22) for which Aa11,a12,a21,a22 satisfies all the assumptions. For our purpose

we require that the functions in the range of pA↑
3 should be smooth at 0. This is a sensible

requirement, for we do not expect irregular behaviour in the interior of [−π
2 ,

π
2 ] and the

functions in the domain of pA↑
3 are assumed to be smooth in particular in the interior of

[−π
2 ,

π
2 ]. We will see that this choice already yields a unique choice for (a11, a12, a21, a22).

This is an interesting fact, which should be kept in mind, since this means that choo-
sing the behaviour at 0 already dictates the behaviour at the boundary. We claim that
A0,0,0,0 is the operator we are searching for. If we can show that A0,0,0,0 meets all the
requirements, this already shows that this is the only choice for (a11, a12, a21, a22), since
every added non-trivial linear combination of pϕ11 and pϕ12 and of pϕ21 and pϕ22 is singular
at 0. So let us henceforth consider A0,0,0,0.

(ii) pA↑
3 = A0,0,0,0:

We start with the first component

pf1(y) =
cos(y)3

sin(y)3

∫ y

0

cos(x) − 1

cos(x)3
H(x) dx+

cos(y)2(cos(y) − 1)

sin(y)3

∫ 0

y

1

cos(x)2
H(x) dx,

(2.25)
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2.4. Connection to higher dimensions via stepwise descent

with H(x) = 2−cos(x)2

cos(x) pg1(x) + sin(x)(2 − cos(x))pg′1(x) + (1 − cos(x))pg2(x). Note that H

is an even function, which means that the integrands are and finally pf1 is. Thus for
the smoothness claim made in the statement of the lemma we only need to show that
pf1|(−π

2
,π
2
) ∈ C∞((−π

2 ,
π
2 )) and that pf1 is continuously differentiable in a left neighbour-

hood of π
2 with pf1(

π
2 ) = 0. In the interior of [0, π2 ], pf1 is smooth as a composition of

smooth functions. The task is to show smoothness at 0 and left continuous differentia-
bility at π

2 with pf1(
π
2 ) = 0. Towards this end, let us consider the part of pf1 that depends

on pg1 and the one that depends on pg2 separately. For the pg1-part that is

pf11(y) :=
cos(y)3

sin(y)3

∫ y

0

(cos(x) − 1)(2 − cos(x)2)

cos(x)4
pg1(x) dx

+
cos(y)3

sin(y)3

∫ y

0

(cos(x) − 1) sin(x)(2 − cos(x))

cos(x)3
pg′1(x) dx

+
cos(y)2(cos(y) − 1)

sin(y)3

∫ 0

y

(2 − cos(x)2)

cos(x)3
pg1(x) dx

+
cos(y)2(cos(y) − 1)

sin(y)3

∫ 0

y

sin(x)(2 − cos(x))

cos(x)2
pg′1(x) dx.

Integration by parts in the terms with the derivative and the fact that the occurring
boundary terms cancel out each other yield

pf11(y) =
cos(y)3

sin(y)3

∫ y

0

−2(cos(x) − 1)(1 + sin(x)2)

cos(x)4
pg1(x) dx

+
cos(y)2(cos(y) − 1)

sin(y)3

∫ 0

y

cos(x) − 1 − sin(x)2

cos(x)3
pg1(x) dx.

Since cos(·) − 1 and sin(·)2 vanish quadratically at zero, the first item of Lemma B.3
enables us to conclude that pf11 is smooth at 0. By the boundary assumption on pg1 we
can invoke the second item of Lemma B.3 for the function q := f̂11(· − π

2 ). It yields that

q ∈ C1(−π
2 , 0]), with q(0) = 0, which means that pf11 ∈ C1((0, π2 ]) with pf11(

π
2 ) = 0. We

emphasize the important fact, that Lemma B.3(ii) can also be applied in the case where
pg1 is only continuously differentiable instead of smooth in a left neighbourhood of π

2 .
This is of importance when generalizing this proof into higher dimensions. For the part
of pf1 that depends on pg2 we compute

pf12(y) :=
cos(y)3

sin(y)3

∫ y

0

−(1 − cos(x))2

cos(x)3
pg2(x) dx

+
cos(y)2(cos(y) − 1)

sin(y)3

∫ 0

y

1 − cos(x)

cos(x)2
pg2(x)dx.

Lemma B.3 again yields that pf12(y) is smooth at 0. At π
2 we even have two times

continuous differentiability with pf12(
π
2 ) = 0. We conclude that pf1 is smooth at 0 as
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2. Wave equation in forward self-similarity coordinates

a sum of the smooth functions pf11 and pf12 and continuously differentiable at π
2 with

pf1(
π
2 ) = 0.

Let us turn to the second component

pf2(y) =pϕ21(y)

∫ y

0

pϕ12(x)

W (x)
G(x) dx+ pϕ22(y)

∫ 0

y

pϕ11(x)

W (x)
G(x) dx+

cos(y)

cos(y) − 1
pg1(y)

=
3 cos(y)3

sin(y)3

∫ y

0

cos(x) − 1

cos(x)3
H(x) dx+

cos(y)2(2 − 4 cos(y))

sin(y)3

∫ 0

y

1

cos(x)3
H(x) dx

+
cos(y)

cos(y) − 1
pg1(y).

From equation (2.22) we see that pf1 being even implies that pf2 is even, too. For the
smoothness claimed, let us again consider the part that depends on pg1 first. That is

pf21(y) :=
3 cos(y)3

sin(y)3

∫ y

0

(cos(x) − 1)(2 − cos(x)2)

cos(x)3
pg1(x) dx

+
3 cos(y)3

sin(y)3

∫ y

0

sin(x)(cos(x) − 1)(2 − cos(x))

cos(x)3
pg′1(x) dx

+
cos(y)2(2 − 4 cos(y))

sin(y)3

∫ 0

y

2 − cos(x)2

cos(x)3
pg1(x) dx

+
cos(y)2(2 − 4 cos(y))

sin(y)3

∫ 0

y

sin(x)(2 − cos(x))

cos(x)2
pg′1(x) dx

+
cos(y)

cos(y) − 1
pg1(y).

Since the integrands are the same in pf21 and pf11, partial integration yields the same
integral term. The slight difference is that the boundary terms do not cancel out each
other at y and we get

pf21(y) =
3 cos(y)3

sin(y)3

∫ y

0

−2(cos(x) − 1)(1 + sin(x)2)

cos(x)4
pg1(x) dx

+
cos(y)2(2 − 4 cos(y))

sin(y)3

∫ 0

y

cos(x) − 1 − sin(x)2

cos(x)3
pg1(x) dx

+

(
3(cos(y) − 1)(2 − cos(y))

sin(y)2
− (2 − 4 cos(y))(2 − cos(y))

sin(y)2
+

cos(y)

cos(y) − 1

)
pg1(y).

A small computation shows that the coefficient of pg1 equals the non-singular 8 cos(y)−10
cos(y)+1 .

Thus we can conclude again by the first item in Lemma B.3 that pf21 is smooth at 0
and hence in all of (−π

2 ,
π
2 ). The same arguments as for pf11 with the additional fact that

g1(
π
2 ) = 0 show that pf21 is continuously differentiable at π

2 with pf21(
π
2 ) = 0. For the part
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2.4. Connection to higher dimensions via stepwise descent

of pf2 that depends on pg2 we compute

pf22(y) :=
3 cos(y)3

sin(y)3

∫ y

0

−(1 − cos(x))2

cos(x)3
pg2(x) dx

+
cos(y)2(cos(y) − 1)

sin(y)3

∫ 0

y

1 − cos(x)

cos(x)2
pg2(x) dx,

and by the same arguments we conclude that pf22 is smooth at 0 and hence in (−π
2 ,

π
2 ),

continuously differentiable at π
2 and pf22(

π
2 ) = 0. Hence we can say the same for pf2

and this finally shows the desired result, namely that rg(A0,0,0,0) = C∞
even((−π

2 ,
π
2 ))2 ∩

C1
even,0([−π

2 ,
π
2 ])2. Together with the short discussion before this step we thus found the

desired operator and will henceforth write pA↑
3 for A0,0,0,0.

(iii) pA↑
3 is injective:

The last step is to show that pA↑
3 is injective. This is an easy consequence of the con-

struction of pA↑
3 since we constructed it in a way such that it is a formal inverse of D↓

5 for

functions defined in the interior of [−π
2 .

π
2 ]. Hence assuming that pf1 ≡ 0 ≡ pf2 in (2.21)

together with the smoothness assumption on pg is readily seen to imply that pg1 ≡ 0 ≡ pg2.

We conclude that pA↑
3 is bijective onto its range and we can define pL5 the way we did,

since like in the 3-dimensional case (cf. Lemma 2.4.12) its image is a subset of the ran-
ge of the ascend operator as a consequence of the intertwining identity. This ends the
proof.

Again let us formulate this in terms of the descent operator.

Corollary 2.4.16. The 5-dimensional descent operator pD↓
5 : rg( pA↑

3) → C∞
even,0([−π

2 ,
π
2 ])

given by pD↓
5
pf := D↓

5
pf is bijective with inverse pA↑

3.

And also by radiality for 5-dimensional radial functions.

Corollary 2.4.17. The 3-dimensional ascent operator for 3-dimensional radial functi-

ons qA↑
3 : C∞

rad

(
B3

π
2

)2
→ C∞

even

(
B5

π
2

)2
∩C1

0

(
B5

π
2

)2
mapping a function tuple f with radial

representative pf to the 5-dimensional radial function qA↑
3f whose radial representative is

pA↑
3
pf , i.e. qA↑

3f := pA↑
3
pf(|·|), is bijective onto its image. Its inverse D↓

5 : rg( qA↑
3) → C∞

rad(B3
π
2
)

given by D↓
5g := pD↓

5pg(|·|) satisfies the intertwining identity

D↓
5L5 = L3D

↓
5,

where L5 : rg( qA↑
3) → rg( qA↑

3) is given by L5f := pL5
pf(|·|).

In general, for odd dimension d ≥ 7 we can copy the proof of the 5-dimensional case,
which is due to the fact that D↓

d is almost the same as D↓
5 only differing in the first
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2. Wave equation in forward self-similarity coordinates

coefficient. The other difference is that we now already start with a function space which
contains functions which do not have to be smooth but only continuously differentiable in
π
2 . In the proof of the 5-dimensional case we remarked that this does not change the result
however. That is, the (d−2)-dimensional ascent preserves continuous differentiability at
the endpoints. Let us present the result for general d ≥ 7.

Lemma 2.4.18. For odd d ≥ 5 one can successively find a linear operator, called the
d-dimensional ascent operator, pA↑

d : rg( pA↑
d−2) ⊂ C1

even,0

(
[−π

2 ,
π
2 ]
)2 ∩ C∞

even((−π
2 ,

π
2 ))2 →

C1
even,0

(
[−π

2 ,
π
2 ]
)2 ∩ C∞

even((−π
2 ,

π
2 ))2, which is bijective onto its image such that pA↑

d =

(D↓
d+2)

−1. In particular, the intertwining identity in Lemma 2.4.11 manifests itself as

pLd+2
pA↑
d = pA↑

d
pLd,

where pLd+2 : rg( pA↑
d) → rg( pA↑

d) is given by pLd+2
pf := Ld+2

pf .

Hence we can introduce the d-dimensional descent operator for d ≥ 7.

Corollary 2.4.19. For odd d ≥ 7 the d-dimensional descent operator pD↓
d : rg( pA↑

d−2) →
rg( pA↑

d−4) given by pD↓
df := D↓

df is bijective with inverse pA↑
d−2.

And also by radiality for d-dimensional radial functions.

Corollary 2.4.20. For odd d ≥ 5, the d-dimensional ascent operator for d-dimensional

radial functions successively defined by qA↑
d : rg( qA↑

d−2) → C∞
even

(
Bd+2

π
2

)2
∩ C1

0

(
Bd+2

π
2

)2
mapping a function tuple f with radial representative pf to the (d+2)-dimensional radial

function qA↑
df whose radial representative is pA↑

d
pf , i.e. qA↑

df := pA↑
d
pf(|·|), is bijective onto

its image. Its inverse D↓
d+2 : rg( qA↑

d) → rg( qA↑
d−2) given by D↓

d+2g := pD↓
d+2pg(|·|) satisfies

the intertwining identity

D↓
d+2Ld+2 = LdD

↓
d+2,

where Ld+2 : rg( qA↑
d) → rg( qA↑

d) is given by Ld+2f := pLd+2
pf(|·|).

2.4.3. Main result via full descent

It is finally time to lift the semigroups estimate to higher dimensions. To be able to
formulate them, we need to introduce norms on the function spaces we found in the
previous section. To this end, first let us summarize what we have shown so far by
defining the full descent operator, which is just the successive application of each 2-step
descent operator.

Lemma 2.4.21. For odd d ≥ 3, there is a bijective, linear operator Dd : rg( qA↑
d−2) →

C∞
odd([−π

2 ,
π
2 ]) such that

Ldf = D−1
d (L1 − I)Ddf . (2.26)
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2.4. Connection to higher dimensions via stepwise descent

Proof. Define Dd := D↓
3◦D

↓
5◦· · ·◦D

↓
d. Successive application of the intertwining identities

then show that

D↓
dLdf + D↓

df = L3D
↓
df + D↓

df = L1D
↓
df .

Subtracting D↓
df and applying the inverse of D↓

d then yields the claim.

Note that D−1
d = qA↑

d−2 ◦ qA↑
d−4 ◦ · · · ◦ qA↑

1. Now we lift the space H1 (cf. Def. 2.3.2) into
higher dimensions using the above defined full descent operator. Since the full descent
is linear and bijective the following definition indeed defines an inner product.

Definition 2.4.22. For odd d ≥ 3 consider the inner product

(f | g)Hd
:= (Ddf | Ddg)H1

on rg( qA↑
d−2) and denote by Hd the completion of the space, making it a Hilbert space.

By ∥·∥Hd
we denote the norm induced by the inner product.

It is a straightforward functional analytical exercise to see that Dd extends to a homeo-
morphism from Hd to H1. For its construction, consider the equivalence class f ∈ Hd,
i.e. there is a representative (fk)k ⊂ rg( qA↑

d−2) of f such that (fk)k is Cauchy w.r.t. ∥·∥Hd
.

By definition of Hd, (Ddfk)k is a Cauchy sequence in H1, i.e. is a representative of
some g ∈ H1. One checks that setting Ddf := g then yields the desired well-defined,
homeomorphic extension. Let us gather this fact in a corollary.

Corollary 2.4.23. The full descent operator Dd extends to a homeomorphic operator
in (L(Hd,H1), ∥·∥O(Hd,H1)

).

The 1-dimensional semigroup estimate (cf. Lemma 2.3.3) then translates in the following
way, producing the main result of this master thesis.

Theorem 2.4.24. Let d ≥ 3 be odd. The operator Ld : rg( qA↑
d−2) ⊂ Hd → Hd is closable

and its closure

Ld = D−1
d (L1 − I)Dd, D(Ld) = D−1

d D(L1) (2.27)

generates the strongly continuous semigroup

Sd(s) = e−sD−1
d S1(s)Dd (2.28)

with growth bound

∥Sd(s)f∥Hd
≤ e−s ∥f∥Hd

(2.29)

for all f ∈ Hd, s ≥ 0.
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2. Wave equation in forward self-similarity coordinates

Proof. By Lemma 2.4.21 and Lemma A.12 we have that Ld = D−1
d (L1 − I)Dd with

D(Ld) = {f ∈ Hd : Ddf ∈ D(L1)}. Hence Ld generates the conjugated, rescaled semi-
group Sd(s) = e−sD−1

d S1(s)Dd by Lemmata 1.3.16 and 1.3.17. The growth bound then
follows from the growth bound of S1 in Lemma 2.3.3 by

∥Sd(s)f∥Hd
= e−s

∥∥D−1
d S1(s)Ddf

∥∥
Hd

= e−s
∥∥S1(s)D

−1
d f
∥∥
H1

≤ e−s
∥∥D−1

d f
∥∥
H1

= e−s ∥f∥Hd

for all s ≥ 0.
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3. Outlook

As mentioned in the introduction, estimating the free wave evolution is but a starting
point for the actual analysis of the underlying geometric wave equation. This chapter
will serve as a future prospect of the next steps. Since this is still currently researched
by the author, this chapter should rather be seen as a heuristic explanation of the main
ideas.

3.1. Understanding the main result

While Theorem 2.4.24 gives a full description of the free wave evolution in every odd di-
mension, it needs some work to be unpacked into an explicit form. For one that is, giving
an explicit description of the Hilbert spaces Hd involved in the estimates in Theorem
2.4.24. Remember that norms on these Hilbert spaces were introduced implicitly as the
norm of the explicit Hilbert space H1 after application of the descent operator. Since
H1 was introduced as a weighted L2-based Hilbert space we expect that Hd is also some
weighted L2- based Hilbert space. However finding its explicit form proves more difficult
than one may anticipate. The solution to this problem would enable one to really calcu-
late with these norms. Connected to this may also be an explicit description of the range
of the ascend operators, instead of only providing an overlying function space the way
we did. Completing both of these steps would end the analysis on the free wave equation
and one would be ready to introduce the geometric non-linearity into the analysis.

3.2. Introduction of the non-linearity

This will most likely be done by invoking Duhamel’s formula to dissect the problem into
the linear and non-linear part. The analysis on the linear part is then readily accessible
by the results in this work while the analysis of the non-linear part generally is handled
by a fix point argument. It is hoped and expected that these topics appear in future
works by the author.
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Appendix

A. Functional analytical background of semigroup theory

Banach space valued differentiation and integration

When working with semigroups, not only differentiation, which is easily understood
as the limit of a difference quotient, but also integration can be very useful. There
are several ways to extend scalar integration to its Banach-valued counterpart. When
wanting to extend the Lebesgue integral the most widely used notion is the so called
Bochner integral. However, for our purpose, we will be satisfied with an extension of
the Riemann integral. Just like in the scalar case, in the Banach valued case we define
the integral as the limit of Riemann sums. Since we are only working with continuous
operators (either T : R+ → L(X), t 7→ T (t) or Tx : R+ → X, t 7→ T (t)x) and we are only
interested in integrals on a compact interval, the same arguments for continuous functions
in the scalar case, show that this limit exists. All properties of Riemann integrals used in
this paper are proved exactly as in the scalar case, just by replacing the absolute values
by the respective norms. We list them in the following. The interested reader is invited
to delve into a more involved discussion of this topic in e.g. [[9], III.].

Definition A.1. Suppose E is a Banach space and consider an operator S : R+ → E.

• We define formal differentiation by

Ṡ(t) :=
d

dt
S(t) := lim

h→0

1

h
(S(t+ h) − S(t)),

where the limiting process takes place in the topology of E. If this limit exists,
we call S differentiable at t. The usual terminology concerning differentiability
follows. We will use the dot notation interchangeably with d

dt and ∂t. We also

have the product rule ∂t(T (t)S(t)) = Ṫ (t)S(t) + T (t)Ṡ(t) where we remind the
reader that contrary to the name of this rule, the operators are composed and not
multiplied.

• Let t0 ≥ 0. A tagged partition P of [0, t0] is a tuple of finite sequences (xk)nk=0 and
(sk)n−1

s=0 such that 0 = x0 < x1 < · · · < xn = t0 and sk ∈ [xk, xk+1]. The mesh of
P , denoted by |P |, is the length of the largest interval, i.e. max1≤i≤n(xi − xi−1).
A refinement of P is a tagged partition Q = ((yk)mk=0, (rk)m−1

k=0 ) of [0, t0] such that
m > n and for every 0 ≤ i ≤ n we have xi ∈ (yk)mk=0 and si ∈ (rk)m−1

k=0 . The
Riemann sum of a Banach-valued function S : [0, t0] → E with respect to P is
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A. Functional analytical background of semigroup theory

defined as

∑
(S, P ) :=

n−1∑
k=0

S(sk)(xk+1 − xk).

The formal Riemann integral of S, denoted by
∫ t0
0 S(t) dt, is the limit of the

Riemann sums in E, when the partitions get finer. That is∫ t0

0
S(t) dt := lim

n→∞

∑
(S, Pn)

where (Pn)n is a refining sequence, that is a sequence of tagged partitions such
that each partition refines its predecessor and |Pn|

n−→ 0. If this limit exists and is
independent of the refining sequence used, we call S integrable on [0, t0].

Corollary A.2. Suppose S : R+ → E is continuous. Consistent with the scalar case the
integral admits its usual properties (linearity, triangle inequality, etc.) and in particular
the following properties.

• S is integrable on [0, t0] for all t0 > 0.

• The fundamental theorem of calculus.

• The dominated convergence theorem.

• Suppose E = (L(X), ∥·∥O(X)) for a Banach space X. It follows that Sx : R+ →
X, t → S(t)x is continuous for every x ∈ X. We also have that (

∫ t0
0 S(t) dt)x =∫ t0

0 S(t)x dt. Note that this is non-trivial fact, since on the one side the limiting
process of the Riemann sums happens in L(X) while on the other side it happens
in X.

We collect one important convergence property of the integral which we will use several
times.

Lemma A.3. Suppose X is a Banach space. Let (T (t))t≥0 be a uniformly continuous
semigroup and (S(t))t≥0 be a strongly continuous semigroup on X. Then for every t ≥ 0

lim
h↓0

1

h

∫ t+h

t
T (s) ds = T (t)

and

lim
h↓0

1

h

∫ t+h

t
S(s)x ds = S(t)x

for every x ∈ X.
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Proof. We only prove it in the case of uniform continuity, since the other case is a
straightforward adjustment. For h > 0, we note that 1

h

∫ t+h
t T (s) ds = T (t) 1

h

∫ h
0 T (s) ds

from which it suffices to prove limh↓0
1
h

∫ h
0 T (s) ds = I to show the claim. We compute∥∥∥∥1

h

∫ h

0
T (s) ds− I

∥∥∥∥
O(X)

=
1

h

∥∥∥∥∫ h

0
T (s) ds− hI

∥∥∥∥
O(X)

=
1

h

∥∥∥∥∫ h

0
T (s) − I ds

∥∥∥∥
O(X)

≤ 1

h

∫ h

0
sup

s′∈[0,h]

∥∥T (s′) − I
∥∥
O(X)

ds ≤ sup
s′∈[0,h]

∥∥T (s′) − I
∥∥
O(X)

,

which converges to 0 for h ↓ 0, since (T (t))t≥0 was assumed to be a uniformly continuous
semigroup. In the case of strong continuity, one can do the same computation pointwise
with the appropriate norm.

Exponential operators

Lemma A.4. For a bounded operator A : X → X on a Banach space X define for every
t ∈ R,

etA :=

∞∑
k=0

tk

k!
Ak.

For every t ∈ R, the series converges in (L(X), ∥·∥O(X)) with the estimate∥∥etA∥∥O(X)
≤ e|t|∥A∥O(X) .

Proof. Consider for N ∈ N the partial sum SN :=
∑N

k=0
tk

k!A
k. For every M < N ∈ N

we have by the submultiplicativity of the operator norm

∥SN − SM∥O(X) ≤
N∑

k=M+1

|t|k

k!
∥A∥kO(X) .

The later converges to 0 for M,N → ∞, since it can be estimated by the tail of∑∞
k=0

|t|k
k! ∥A∥kO(X) = e|t|∥A∥O(X) . Hence (SN )N is Cauchy, thus converges, for

(L(X), ∥·∥O(X)) is complete. Its limit etA then satisfies
∥∥etA∥∥O(X)

≤ e|t|∥A∥O(X) , which is

seen by defining S−1 := 0 and taking M = −1 and N → ∞ in the above inequality.

Lemma A.5. Let X be a Banach space. For bounded operators B1, B2 ∈ L(X) for which
B1B2 = B2B1, it holds that

eB1eB2 = eB1+B2

In particular for a bounded operator A ∈ L(X),

e(t+s)A = etAesA.
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Proof. With the same steps as in the scalar case, one shows that for bounded, linear
operators C,D of the form

C =

∞∑
k=0

Ck, D =

∞∑
k=0

Dk,

such that at least one of the series absolutely converges, the formula for the Cauchy
product

CD =

∞∑
k=0

k∑
i=0

Ck−iDi

holds. With this we observe

eB1eB2 =
∞∑
k=0

1

k!
Bk

1

∞∑
k=0

1

k!
Bk

2 =
∞∑
k=0

k∑
i=0

1

(k − i)!
Bk−i

1

1

i!
Bi

2 =
∞∑
k=0

1

k!

k∑
i=0

(
k

i

)
Bk−i

1 Bi
2

= eB1+B2 ,

where the last step follows from the binomial formula for operators, which holds when
the operators in question commute. This ends the proof.

Uniform boundedness

The following fundamental result in functional analysis establishes a connection between
pointwise boundedness and uniform boundedness for linear operators, i.e. strong conti-
nuity to uniform continuity. It is often referred to as the uniform boundedness principle
or Banach-Steinhaus Theorem after its original publishers. The following formulation
is a special result where the operators act on Banach spaces, in which case the result
can be formulated rather strongly. For the proof of this well-known result we refer to
reader to any literature covering elementary functional analysis, for example ([10], p.45,
Theorem 2.6).

Lemma A.6 (uniform boundedness principle). Suppose X,Y are Banach spaces and let
(L(X,Y ), ∥·∥O(X)) be the space of all bounded, linear operators from X to Y . Suppose
F ⊂ L(X,Y ) is a collection of bounded, linear operators. Then if

sup
T∈F

∥Tx∥Y <∞ for all x ∈ X,

already

sup
T∈F

∥T∥O(X,Y ) <∞.

The next lemma is of similar nature, in that it also establishes a stronger form of con-
vergence by a seemingly weaker form. To be more precise, it shows that in the event of
a uniform bound convergence in the uniform and also strong operator norm is already
given by convergence on a dense subset.
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Lemma A.7. Let t0 > 0 be such that {Sn(t)}n∈N,t∈[0,t0] is a family of uniformly bounded
operators on a Banach space X, i.e. there exists anM > 0 such that for all t ∈ [0, t0], n ∈
N

∥Sn(t)∥O(X) ≤M. (.1)

Let D ⊂ X be a dense subspace. Then

(i) Let t ∈ [0, t0]. For n→ ∞, Sn(t) converges strongly in L(X,X) iff Sn(t) converges
strongly in L(D,X).

(ii) For all x ∈ X, for n → ∞, Sn(·)x converges uniformly on [0, t0] iff it does so for
all x ∈ D.

Proof. In both cases we only need to prove from right to left. For (i) let t ∈ [0, t0] and
let us denote by S(t) the element in L(D,X) to which Sn(t) strongly converges. The
operator norm of S(t) (on D) is bounded by M since

∥S(t)∥O(D,X) = sup
∥x∥X=1,x∈D

∥S(t)x∥X ≤ sup
∥x∥X=1

∥∥∥ lim
n→∞

Sn(t)x
∥∥∥
X

≤ lim
n→∞

sup
∥x∥X=1

∥Sn(t)x∥X

≤M,

as a consequence of (.1). We claim that S(t) can be extended to all of X by S(t)x :=
limm→∞ S(t)xm for a sequence (xm)m ⊂ D converging to x ∈ X. Existence of this limit
follows from the completeness of X by noticing that (S(t)xm)m is Cauchy, since S(t) is
bounded on D. S(t) being bounded on D also implies that the limit is independent of
the converging sequence used. Hence S(t) is well-defined. One observes that by taking
limits, the operator norm of S(t) is bounded by M on X. We claim that the extended
S(t) is the strong limit of Sn(t) in L(X,X). Indeed, for D ⊃ (xm)m → x ∈ X, by triangle
inequality we have

∥S(t)x− Sn(t)x∥X ≤∥S(t)x− S(t)xm∥X + ∥S(t)xm − Sn(t)xm∥X
+ ∥Sn(t)xm − Sn(t)x∥X

≤2M ∥x− xm∥X + ∥S(t)xm − Sn(t)xm∥X .

(.2)

Since we assumed strong convergence on D the expression on the right hand side can
be made arbitrary small by choosing m and n large enough. Hence we have proven that
Sn(t) attains a strong limit even in L(X,X), which is what is needed for (i). The proof
for (i) is easily adjusted to prove (ii), by again using (.2) to translate convergence on all
of X to convergence only on D.

Closed operators

Definition A.8. Let A : D(A) ⊂ X → Y be a linear operator between Banach spaces
X and Y . Define the graph of A as the set

G(A) := {(x,Ax) : x ∈ D(A)}.

A is called closed, if G(A) is closed in X × Y with respect to the product topology.
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For operators on Banach spaces, an equivalent description of closedness is given by
sequential closedness. That is, A is closed if and only if for every sequence (xn)n ⊂ D(A)
which converges to some x ∈ X and for which (Axn)n converges to some y ∈ Y , it must
be that x ∈ D(A) and Ax = y. In the case of operators which are bounded on their
domain, it is equivalent to look for closedness of the domain.

Lemma A.9. Let A : D(A) ⊂ X → Y be a linear operator between Banach spaces X
and Y . Suppose A is bounded, i.e. there exists M > 0 such that ∥Ax∥Y ≤ M ∥x∥X for
all x ∈ D(A). The following are equivalent.

(i) D(A) is closed.

(ii) A is closed.

Proof. (i) ⇒ (ii) : Suppose D(A) ∋ xn
n→∞−−−→ x ∈ X and Axn

n→∞−−−→ y ∈ Y . Since
D(A) is closed we have x ∈ D(A) and ∥y −Ax∥Y = limn→∞ ∥A(xn − x)∥Y = 0, by
boundedness of A. Hence A is closed.
(ii) ⇒ (i) : Let D(A) ∋ xn

n→∞−−−→ x ∈ X. Since A is bounded we have that (Axn)n is a
Cauchy sequence. It converges since Y is complete. Since A is closed, we conclude that
x ∈ D(A).

We include the following well-known result in functional analysis, called the closed graph
theorem. It establishes a very important connection between closed operators and con-
tinuous operators. For the proof we refer the interested reader to ([10], pp. 50-51, Pro-
position 2.14, Theorem 2.15).

Lemma A.10 (closed graph theorem). Suppose A : X → Y is a linear operator between
Banach spaces X and Y . The following are equivalent:

(i) A is closed.

(ii) A is bounded.

An operator A is called closable if there exists a closed extension, i.e. a closed operator B
with D(A) ⊂ D(B) and B|D(A) = A. One readily sees, by sequential closedness, that this
is exactly the case whenever for two sequences in D(A), (x1n)n, (x

2
n)n which converge to

some x ∈ X, and for which the limits of (Ax1n)n, (Ax
2
n)n exist, these limits must coincide.

The minimal closed extension is called the closure of A, denoted by A. The procedure
to obtain this operator should be intuitive. Take the closure of G(A) and define A via
the added points. That is, suppose D(A) ∋ xn → x such that (Axn)n converges. Then
x ∈ D(A) with Ax := limn→∞Axn, which is well-defined in the case of closability. Then
A is necessarily a closed operator with G(A) = G(A). By linearity, that is by considering
the sequence (x1n − x2n)n, one can restrict the assumption above to null sequences. We
collect this fact in the following corollary.

Corollary A.11. Suppose A : D(A) ⊂ X → Y is a linear operator between Banach
spaces X and Y . A is closable iff for every sequence (xn)n ⊂ D(A) for which xn → 0
and existence of the limit Axn → y ∈ Y are satisfied, we have y = 0. If A is closable, its
closure A satisfies G(A) = G(A).
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The following Lemma states that closability is stable under similarity.

Lemma A.12. Let C : Y → X be a linear homeomorphism between Banach spaces
X,Y and suppose B : D(B) ⊂ X → X is a closable linear operator. Then the operator
A defined by

A := C−1BC : D(A) ⊂ Y → Y,

D(A) := {y ∈ Y : Cy ∈ D(B)}, is closable with

A = C−1BC,

and D(A) = {y ∈ Y : Cy ∈ D(B)}.

Proof. By the above corollary, for closability it suffices to consider null sequences. The-
refore assume D(A) ∋ yn → 0 such that limn→∞Ayn =: z exists. We need to show
that z = 0. By definition of D(A) we have that (Cyn)n ⊂ D(B). Since C is assumed to
be continuous and linear it follows that Cyn

n→∞−−−→ 0 and that Cz = C limn→∞Ayn =
limn→∞BCyn. In particular, limn→∞BCyn exists. Hence limn→∞BCyn = 0, for B is
assumed to be closable. By continuity and linearity of C−1 we conclude z = 0.
With very similar arguments one proves that conjugation with a linear homeomorphism
preserves closedness. That means, C−1BC|{y∈Y :Cy∈D(B)} is indeed closed, since B is

closed. Hence what is left to prove to show that A is indeed of the given form, is that
C−1BC|{y∈Y :Cy∈D(B)} is the minimal closed extension of B. Assuming the contrary, con-

jugation with C−1|{x∈X:x∈D(B)} would generate a closed extension of B whose graph was

a proper subset of the graph of B, contradicting the minimality of B. This finishes the
proof.

Closedness is an assurance that the operator in question is in several ways well-behaved.
While closedness and continuity do not imply each other in general, the closed graph
theorem (Lemma A.10) states that they do, if the operator is everywhere-defined. In the
general case, operators satisfying one or the other still share nice properties. The inverse
of a closed, injective operator defined on the operators range is necessarily closed again,
which is a simple consequence of the fact that their graphs are flipped versions of each
other. This gains its significance when trying to develop a meaningful spectral theory.
Indeed, suppose A is a closed operator such that λ − A is bijective for some λ ∈ C.
Since λ− A is necessarily closed too, injectivity implies that its inverse is closed. Since
(λ−A)−1 is everywhere-defined, for λ−A is surjective, the closed graph theorem states
that it must be bounded. Conversely, suppose that λ ∈ C is in the resolvent set of A,
i.e. λ−A is bijective and its inverse is bounded. The other direction of the closed graph
theorem then implies that (λ − A)−1 must be closed. It in particular being injective,
means that λ − A, hence also A, are closed. We summarize the above in the following
corollary.

Corollary A.13. Let A : D(A) ⊂ X → X be a linear operator on a Banach space X.
Suppose there exists λ ∈ C such that λ−A is bijective. The following are equivalent.
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A. Functional analytical background of semigroup theory

(i) A is closed.

(ii) (λ−A)−1 is bounded.

Having developed the connection between closedness and resolvents, let us collect some
facts about the latter.

Resolvents

Lemma A.14. Let (A,D(A)) be a linear operator on a Banach space X. For λ ∈ ρ(A)
there is on D(A) the commutative property

AR(λ,A) = R(λ,A)A.

Proof. We have that D(A) = D(λ − A) and R(λ,A) maps D(λ − A) to itself, for it is
the inverse of λ−A. Hence for x ∈ D(A) we compute

λR(λ,A)x−R(λ,A)Ax = R(λ,A)(λ−A)x = x = (λ−A)R(λ,A)x

= λR(λ,A)x−AR(λ,A)x.

Subtraction of λR(λ,A)x yields the desired result.

Lemma A.15. Let (A,D(A)) be a linear operator on a Banach space X. Suppose λ ∈
ρ(A). Then for every µ ∈ C such that |µ− λ| < 1/ ∥R(λ,A)∥Op it follows that µ ∈ ρ(A)
with

R(µ,A) =

∞∑
k=0

(µ− λ)kR(λ,A)k+1.

Proof. Since

µ−A = µ− λ+ λ−A = ((µ− λ)R(λ,A) − I)(λ−A)

is invertible for ∥(µ− λ)R(λ,A)∥Op < 1, which meets the assumption, the inverse is
given by

(µ−A)−1 =
∞∑
k=0

(µ− λ)kR(λ,A)kR(λ,A).

We use Corollary A.13 first for λ from (ii) to (i) to conclude that A is closed and then
for µ from (i) to (ii) to conclude that (µ−A)−1 is bounded. Hence µ ∈ ρ(A) and we are
allowed to write R(µ,A) for the above sum, which finishes the proof.
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B. Smoothness and singularities

Lemma B.1. Let g ∈ Ck+1(R). Then the function f defined by

f(y) :=

∫ 1

0
g′(yx) dx

is k- times continuously differentiable.

Proof. We first show that f is continuously differentiable. Towards this end, consider for
0 < h < 1 ∫ 1

0

g′((y + h)x) − g′(yx)

h
dx.

Since for all x ∈ [0, 1], y 7→ g′(yx) is continuously differentiable, the mean value theorem

states that there is ξ ∈ [y, (y + h)] such that g′((y+h)x)−g′(yx)
h = g′′(ξx)x. For all h < 1

this is uniformly bounded on [0, 1] by C := supx∈[0,1] ∥g′′∥L∞([yx,(y+1)x]). Since constant
functions are integrable on [0, 1] the dominated convergence theorem tells us that we can
exchange limit and integration and thus we get

f ′(y) =

∫ 1

0
g′′(yx)x dx,

which describes a continuous function. For general k ∈ N we get by the same arguments
that

f (k)(y) =

∫ 1

0
g(k+1)(yx)xk dx.

Hence f is as smooth as claimed.

Lemma B.2. Suppose g ∈ C∞(R) has a zero of order k ∈ N at a ∈ R. Then there exists
f ∈ C∞(R) such that g(y) = (y − a)kf(y) and f(a) ̸= 0.

Proof. Otherwise considering the function g(·−a) we can w.l.o.g. assume that a = 0. By
the fundamental theorem of calculus and the change of variables Φ(x) = yx, we write

g(y) =

∫ y

0
g′(x) dx = y

∫ 1

0
g′(yx) dx.

By Lemma B.1, we have that f1(y) :=
∫ 1
0 g

′(yx) dx is smooth. We also note that f1(y) =
g(y)/y has a zero of order k − 1 at 0. Repeating this procedure k times yields a smooth
fk such that g(y) = ykfk(y). It follows that fk(0) ̸= 0 and we are done.

Lemma B.3. Let m,n ∈ N such that −m+ n ≥ −1. Suppose g, h ∈ C∞((−π
2 ,

π
2 )) such

that g, h have zeroes at 0 of order m,n respectively.
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B. Smoothness and singularities

(i) Then f defined by

f(y) :=
1

g(y)

∫ y

0
h(x) dx,

is smooth at 0.

(ii) Suppose additionally n ≥ 1, a < 0 and let p ∈ C1((−π
2 , 0]) with p(0) = 0. Then the

function k defined by

k(y) := h(y)

∫ y

a

p(x)

g(x)
dx

is left continuously differentiable at 0 with k(0) = 0.

Proof. (i): By smoothness and Lemma B.2 there are smooth functions ϕg, ϕh which do
not vanish in a neighbourhood U of 0 such that g(y) = ymϕg(y), h(y) = ynϕk(y). Hence
via the substitution Φ(x) = yx we get

f(y) =
1

ymϕg(y)

∫ y

0
xnϕh(x) dx =

yn+1−m

ϕg(y)

∫ 1

0
xnϕh(yx) dx,

which is smooth on U , proving the first claim.
(ii) : Use the same notation as in part (i). Now we have

k(y) = ynϕh(y)

∫ y

a

p(x)

xmϕg(x)
dx.

To prove that k is as smooth as claimed it suffices to show the claim for the function
k̃ := k/ϕh, by smoothness of ϕh. We first show that k̃ is left continuous at 0 with

k̃(0) = 0. Towards this end, we write k̃ = k̃n
k̃d

where the numerator and denominator of

k̃ are given by k̃n(y) :=
∫ y
a

p(x)
xmϕg(x)

dx, k̃d(y) := 1
yn . We note that limy↑0

∣∣∣k̃n(y)
∣∣∣ ≤ ∞ =

limy↑0

∣∣∣k̃d(y)
∣∣∣. To apply L’Hôspital’s rule, we compute

lim
y↑0

k̃′n(y)

k̃′d(y)
= lim

y↑0

p(y)y−mϕg(y)−1

−n
yn+1

= lim
y↑0

−p(y)yn+1−m

nϕg(y)
,

which is 0 for n ≥ m − 1 since p(0) = 0. Hence k̃ is left continuous at 0 with k̃(0) = 0.
To show the claimed differentiability, we compute

k̃′(y) = nyn−1

∫ y

a

p(x)

xmϕg(x)
dx+

yn−mp(y)

ϕg(y)
.

By again invoking L’Hôspital’s rule and a computation similar to above, the continuity
of the first summand is equivalent to the continuity of the function y 7→ p(y)yn−m at 0.
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For n ≥ m this is a consequence of the continuity of p. For n = m − 1 we have by the
fundamental theorem of calculus that since p(0) = 0

p(y)

y
=

1

y

∫ y

0
p′(x) dx =

∫ 1

0
p′(yx) dx.

Hence y 7→ p(y)/y is left continuous at 0 by Lemma B.1. This also shows the claim for
the second summand, which finishes the proof.
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