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Abstract
Background and objective  Agenesis of the maxillary lateral incisor occurs in up to 4% of all individuals and requires mul-
tidisciplinary treatment. Its developmental origins, however, are not fully understood. Earlier studies documented genetic 
factors contributing to agenesis but also an association with craniofacial morphology. In this study, we assessed the associa-
tion between maxillary morphology and lateral incisor agenesis by a geometric morphometric approach to disentangle the 
roles of developmental plasticity and genetic factors.
Materials and methods  We quantified the maxillary alveolar ridge by 19 two-dimensional landmarks on cross-sectional 
images of 101 computed tomography scans. We compared the shape and size of the alveolar ridge across patients with uni-
lateral or bilateral agenesis of maxillary lateral incisors and patients with extracted or in situ incisors.
Results  The maxillary alveolar ridge was clearly narrower in patients with agenesis or an extracted incisor compared to the 
control group, whereas the contralateral side of the unilateral agenesis had an intermediate width. Despite massive individual 
variation, the ventral curvature of the alveolar ridge was, on average, more pronounced in the bilateral agenesis group com-
pared to unilateral agenesis and tooth extraction.
Conclusions  This suggests that pleiotropic genetic and epigenetic factors influence both tooth development and cranial 
growth, but an inappropriately sized or shaped alveolar process may also inhibit normal formation or development of the 
tooth bud, thus leading to dental agenesis.
Clinical relevance  Our results indicate that bilateral agenesis of the lateral incisor tends to be associated with a higher need 
of bone augmentation prior to implant placement than unilateral agenesis.
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Introduction

After third molars and lower second premolars, maxillary 
lateral incisors are the third most common congenitally 
missing teeth [1, 2] with a reported prevalence of about 
4% [3]. Maxillary bone is a complex structure, surrounded 
by muscular, dental, and skeletal components, which con-
tribute to mastication, speech, and breathing [4]. Missing 
maxillary lateral incisors often pose a challenge to den-
tists and patients. There are four main treatment options 
for maxillary lateral incisor agenesis that typically require 
a multidisciplinary treatment approach: an implant-sup-
ported crown, a tooth-supported restoration, orthodontic 
space closure, or auto-transplantation [5–10]. An implant 
or transplanted root surface requires full bony coverage 
and, hence, a sufficiently sized alveolar process in this 
region. A sound understanding of maxillary form and the 
required alveolar characteristics are pivotal in the decision 
for the best treatment choice.

It has been shown that the anterior maxilla is prone to 
bone loss after tooth extractions in this area [11]. Resorp-
tive activity during postnatal ontogeny in the anterior part 
of the maxilla has been described by various authors [12, 
13]. Previous studies have suggested that the resorptive 
field within the anterior maxilla increases in size during 
ontogeny but also tooth extractions can lead to resorp-
tive alveolar ridge remodeling. In an earlier radiographic 
study on patients with congenitally missing maxillary 
lateral incisors, it has been shown that mesio-distal gap 
width negatively correlates with edentulous alveolar ridge 
dimensions, i.e., an increased gap width was associated 
with a reduced alveolar ridge dimension [14].

While these studies clearly document an influence of 
tooth extraction or agenesis on maxillary form, the influ-
ence of maxillary size and shape on dental agenesis is less 
obvious. Various studies indicate that dental agenesis may 
not be purely genetically determined [15–17] because it is 
also associated with craniofacial morphology [18–21]. As 
tooth development proceeds concomitantly with alveolar 
growth, alveolar dimensions may influence odontogenesis 
[20, 22]: a too small or inappropriately shaped alveolar 
process may inhibit normal formation or development of 
the tooth bud, leading to agenesis of a tooth in this ana-
tomical region. Beyond correlation studies, such an effect 
of skeletal dimensions on human tooth development can-
not be directly assessed, but comparative and experimen-
tal studies in animals are in line with this explanation. 
Evolutionary trends of tooth loss in primates and other 
mammals show particular patterns and tend to occur in 
the inverse order as they develop ontogenetically (i.e., 

the first tooth to be lost is the one that develops last in 
a certain class of teeth, e.g., lateral incisor, third molar) 
[23–25]. An evolutionary decrease in the number of teeth 
in primates is also associated with reduced demands on 
mastication and the size of the jaw [26, 27]. Similarly, it 
has been suggested that the reduction of the number of 
teeth in modern humans has resulted from the shortening 
of the jaws [28–30]. Also among modern humans, crani-
ofacial dimensions have been reported to correlate with 
third molar agenesis [31, 32].

However, correlations between human cranial dimensions 
and dental agenesis not necessarily result from unidirectional 
pathways only, i.e., from the effects of dental agenesis on bone 
remodeling and the effects of bone dimensions on tooth devel-
opment. Certain genetic and epigenetic factors may addition-
ally influence the development of both the cranium and the 
teeth. The fact that the major genetic drivers of tooth develop-
ment, such as Shh and members of the Fgf, Wnt, and Bmp 
gene families, also determine craniofacial growth seems to 
support this “pleiotropy hypothesis” [33–35]. Such pleiotropic 
factors may also be reflected by the common co-occurrence of 
dental agenesis with other dental and craniofacial anomalies 
[36–38]. A morphometric study on mandibular form and sec-
ond premolar agenesis also concluded that (epi) genetic fac-
tors with influences on both skeletal and dental development 
most likely account for the observed skeleto-dental associa-
tions [20].

Geometric morphometric analyses, which potentially allow 
disentangling the roles of developmental plasticity and genetic 
factors, are rarely used in dentistry in general and in the study 
of dental agenesis specifically. Altogether, to the best of our 
knowledge, developmental origins of lateral incisor agenesis 
are still not fully understood and need to be further investi-
gated. Hence, in the present study, we assessed the association 
between maxillary morphology and lateral incisor agenesis 
by comparing the shape and size of maxillary cross-sections 
across adult patients with unilateral or bilateral agenesis of 
maxillary lateral incisors and patients with extracted or in situ 
incisors. Two-dimensional landmarks and semilandmarks 
were collected on cross-sections of CT scans and analyzed by 
geometric morphometric methods [39–41]. Based on these 
data, we aimed at testing three hypotheses [21]:

H1: Agenesis causes a change in maxillary morphology 
due to inadequate alveolar ridge development in the area of 
the missing tooth (maxillary plasticity).

H2: Agenesis is caused by spatial limitations within the 
maxilla (dental plasticity).

H3: Common genetic/epigenetic factors cause agenesis and 
affect maxillary form (pleiotropy).
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Material and methods

Imaging

The retrospective study sample consisted of 101 CT scans 
of patients treated at the University Clinic of Dentistry, 
Medical University of Vienna (see [14] for more details). 
All CT scans were indicated by the treating dentist at that 
time due to medical reasons following the ALARA princi-
ple and not due to study purpose. CT scans were recorded 
following a standard dental CT investigation protocol [42] 
and a high-resolution bone algorithm with a Tomoscan SR 
6000 (Philips Medical Systems, Eindhoven, the Nether-
lands; 75 mA, 120 kV, 2 s scanning time, 1 mm slice thick-
ness, field of view [FoV]: 90 mm) or with a Somatom Sen-
sation 4 (Siemens, Forchheim, Germany; 80 mA, 120 kV, 
1 s scanning time, 0.5 mm slice thickness, FoV: 90 mm). 
Ortho-radial multiplanar reconstructions were calculated 
orthogonally to a manually drawn central line of the jaw 
arch in the axial plane.

Patients were divided into three groups: agenesis of 
a lateral incisor, edentulous alveolar ridge at least three 
months after extraction of a lateral incisor, and a control 
group with lateral incisors in situ. If lateral incisors were 
missing bilaterally, one side was chosen by coin toss, and 
the other side was considered the contralateral side. CT 
scans were screened for the following inclusion criteria 
in order to reduce the effects of potentially confound-
ing factors: an age of 18 years or older at the time of the 
scan, presence of regularly erupted adjacent teeth, and a 
minimum mesio-distal gap dimension of 4 mm at the mar-
ginal bone level. Exclusion criteria were cleft lip and/or  

cleft palate, previous augmentation procedure, and a cystic 
lesion exceeding 5 mm in diameter at the time of tooth loss 
in the extraction group. All available CT scans between 
2004 and 2014 were screened for theses eligibility criteria. 
Patients fulfilling the criteria were included consecutively 
until the intended sample size was reached. Demographic 
data such as patient age and sex as well as data on ortho-
dontic treatment prior to CT scanning were acquired from 
the patients’ dental records.

Measurements

All images were arranged with the buccal side to the left 
and the palatal side to the right and presented in a random 
order to a single investigator (L.S.). For each individual, 
one cross-sectional picture was selected at either the mesio-
distal midpoint of the lateral incisor tooth crown (control 
group) or at the center of the gap between central incisor 
and canine (agenesis and extraction). All images were ran-
domized, and the following landmarks were digitized (see 
Fig. 1): (landmark 1) the most ventral point of the buccal 
curvature, (lm. 2 and 3) two points on the buccal and palatal 
alveolar crest, (lm. 4) the deepest point on the contour of the 
palatal curvature, and (lm. 5) one central point on the nasal 
floor. Landmarks 2 and 3 were placed at the same location 
on the alveolar ridge when no tooth was in situ. Additionally, 
14 semi-landmarks were placed approximately equidistantly 
along the buccal contour of the maxilla and the contour of 
the palate (lm. 6–19). The landmark configurations were 
scaled based on a measured scale bar, and oriented along the 
central axis of the alveolar ridge by projecting the landmarks 
of each configuration onto the two principal components of 
landmarks 1–5. Randomization of images and location of 

Fig. 1   Landmark scheme used 
in this study, shown once on 
a cross-section with a lateral 
incisor in situ (left) and once in 
a case of agenesis. Landmarks 
1, 2, and 3 are anatomical 
landmarks; the remaining 16 
landmarks (red dots) are sem-
ilandmarks. Landmarks 2 and 
3 (buccal and palatal alveolar 
crest) are placed at the same 
location on the alveolar ridge 
when no tooth was in situ
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landmarks were performed using tpsUtil (version 1.68) and 
tpsDIG2 (version 2.22; James Rohlf). To assess intra-rater 
reliability, 33 images of the agenesis group were measured 
twice in a random order.

Morphometric analysis

In total, the sample comprised 161 configurations (including 
the contralateral sides) of 19 landmarks each. The sample 
consists of seven subsets: unilateral agenesis (Auni, N = 12), 
bilateral agenesis (Abi, N = 25), tooth extraction (Ex, N = 24), 
control group with the incisors in place (CG, N = 40), con-
tralateral side of Auni (AuniCont, N = 13), contralateral side of 
Abi (AbiCont, N = 25), and contralateral side of Ex (ExCont, 
N = 20). The deviating sample sizes of the contralateral sides 
result from cases that had to be excluded because of image 
quality. Only landmarks 1, 2, and 3 were treated as fixed 
anatomical landmarks; all other 16 landmarks were treated 
as semilandmarks and their positions along the bone outline 
were estimated using the sliding landmark algorithm [43, 
44] (Fig. 1). This involves an iterative sliding of the sem-
ilandmarks along their outline curves so as to minimize the 
Procrustes distance, a measure of overall shape difference, 
between each configuration and the sample mean shape. The 
more common approach to minimize bending energy was 
not applicable here because the large-scale component of 
shape variation was not sufficiently constrained by the three 
anatomical landmarks. Thereafter, all configurations were 
superimposed by generalized Procrustes analysis [45, 46] in 
order to standardize for variation in overall location, scale, 
and orientation. Based on the resulting sets of Procrustes 
shape coordinates, group mean shapes were computed and 
analyzed by principal component analysis (PCA). Shape dif-
ferences were visualized by series of reconstructed shapes 
[39, 47]. Additionally, a between-group PCA of all individu-
als was performed [48]. Type I errors for multivariate differ-
ences in group mean shapes were estimated using permuta-
tion tests with 5000 random permutations and the Procrustes 
distance between the mean shapes as test statistic [41, 49].

In addition to shape, we also studied the size of the max-
illary cross-sections. But because the length and width of 
the alveolar ridge differed considerable in their statistical 
behavior and also in their functional relevance, the variation 
in the vertical and horizontal dimensions of the maxillary 
cross-sections was studied separately. To this end, the cen-
troid size (square root of the summed squared differences 
from the mean value) was computed separately for the x 
and y coordinates of each configuration. This allowed us 
to quantify variation in the overall length and width of the 
alveolar ridge, without referring to any single distance meas-
urement. Type I errors for differences in the vertical and 
horizontal dimensions were estimated by one-way ANOVA 
(histograms indicated no major deviations from normality). 

All morphometric and statistical analyses were performed 
in Mathematica 12 (Wolfram Research Inc.).

Intra-rater reliability was estimated by the intraclass cor-
relation coefficients (ICC) applied to the first two principal 
components as well as to the vertical and horizontal dimen-
sions of the maxillary cross-sections.

Results

We plotted the vertical and horizontal dimensions for the 
following seven subsets of the sample: unilateral agenesis 
(Auni, N = 12), bilateral agenesis (Abi, N = 25), tooth extrac-
tion (Ex, N = 24), control group with the incisors in place 
(CG, N = 40), contralateral side of Auni (AuniCont, N = 13), 
contralateral side of Abi (AbiCont, N = 25), and contralateral 
side of Ex (ExCont, N = 20). The overall width of the alveo-
lar ridge differed significantly among the seven groups (one-
way ANOVA, F = 8.87, p < 0.001), where the three agenesis 
groups (Auni, Abi, AbiCont) and the group with the extracted 
incisor had the narrowest alveolar ridge. The control group 
and the contralateral side of the extracted tooth had the wid-
est alveolar dimensions, and the contralateral side of the uni-
lateral agenesis had an intermediate width (Fig. 2A). In fact, 
the alveolar ridge was significantly narrower in AuniCont 
than in the control group (p = 0.042 despite the small size of 
the AuniCont sample), even though in both groups the incisor 
was in situ. The height of the alveolar ridge did not signifi-
cantly differ among the seven groups (ANOVA, F = 1.61, 
p = 0.15) and showed no systematic relationship with agen-
esis (Fig. 2B).

Figure 3 shows the first two principal components (PCs) 
of the group mean shapes of the seven groups, accounting 
for 93.6% of total shape variation. PC 1 corresponds to the 
relative width of the alveolar ridge and separates the groups 
with an incisor in situ (high PC scores) from those with a 
missing incisor (low scores). The ordination of the groups 
along PC1 closely resembles that of the average horizontal 
dimensions in Fig. 2A. PC 2 reflects the ventral curvature 
of the maxillary alveolar ridge (Fig. 3, Fig. 4A) and primar-
ily separates the two bilateral agenesis groups from those 
with unilateral agenesis and unilateral tooth extraction. In 
the bilateral agenesis group, this curvature was more pro-
nounced than in the unilateral agenesis and tooth extraction 
groups. Among the groups with an incisor in situ, the con-
tralateral side of unilateral agenesis (AuniCont) had the low-
est PC 2 scores, i.e., the most pronounced ventral curvature.

Individual variation within groups was relatively large 
(Suppl. Figure 1), but the unilateral and bilateral agen-
esis groups differed clearly in their mean score along PC 
2 (Fig. 4B). Because of the small unilateral agenesis sam-
ple (N = 12), the mean differences between bilateral and 
unilateral agenesis groups were at the border of statistical 
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significance (Auni vs. Abi p = 0.08, Auni vs. AbiCont p = 0.12). 
However, the mean shapes of both bilateral agenesis groups 
differed significantly from the unilateral extraction group 
(p = 0.008, p = 0.023).

Intraclass correlation coefficients were 0.96 and 0.88 
for PC1 and PC 2, respectively. The vertical and horizon-
tal dimensions both showed intraclass correlations of 0.93. 
This indicates a relatively small measurement error and high 
intra-rater reliability. But as these coefficients were calcu-
lated from individuals of the agenesis group only, intraclass 
correlations among groups is likely even higher than within 
group.
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Fig. 2   Box plots showing the distribution of overall width (A) and 
length (B) of the alveolar process at the upper lateral incisor in the 
seven groups. (Abi = bilateral agenesis; AbiCont = contralateral side of 
Abi; Auni = unilateral agenesis; Ex = tooth extraction; AuniCont = con-

tralateral side of Auni; ExCont = contralateral side of Ex; CG = control 
group). The black lines represent the group mean for each group and 
the white lines the median
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Fig. 3   The first two principal components (PCs) of the group mean 
shapes (group names as in Fig. 2). The maxillary shapes correspond-
ing to the extreme values along PC 1 and PC 2 are visualized by the 
gray polygons
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Fig. 4   A Twofold extrapolation of the shape variation along PC 2 as 
depicted in Fig.  3, which reflects the ventral curvature of the max-
illary alveolar ridge. These two shapes correspond to PC 2 scores 

of − 0.07 and 0.07, respectively. B Smooth histograms of the PC 2 
scores for the unilateral agenesis group (red) and the two bilateral 
agenesis groups (black, gray)
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Discussion

In this retrospective study, we compared the size and shape 
of the maxillary alveolar ridge in patients with bilateral or 
unilateral agenesis of the lateral incisor to patients with 
an extracted lateral incisor and patients with all lateral 
incisors in situ. We found that both the absolute dimen-
sions of the alveolar ridge as well as its cross-sectional 
shape vary strongly among individuals. The correspond-
ing statistical distributions overlapped among all groups. 
However, the average alveolar width (PC1) was clearly 
larger in the dentulous groups compared to patients with 
agenesis or extracted lateral incisors. Among edentulous 
groups, the shape of the ventral curvature of the alveolar 
ridge (PC 2) differed on average between bilateral agenesis 
and unilateral agenesis as well as post tooth extraction: in 
the bilateral agenesis group the buccal curvature of the 
alveolar ridge was most pronounced.

Alveolar ridge formation is strongly affected by tooth 
development and eruption [50]. In patients with agene-
sis of the upper lateral incisors, a labial concavity of the 
alveolar ridge is frequently present [51, 52]. Our results 
show a more pronounced ventral curvature of the alveolar 
ridge in individuals with bilateral lateral incisor agenesis 
in comparison to those with unilateral agenesis. This fits 
with the well-documented association of alveolar cross-
sectional form and tooth agenesis. It also appears to indi-
cate a positive correlation between the extents of these 
anomalies. Similar findings were reported for other teeth 
[53–56]. For instance, a previous study on lower second 
premolar agenesis revealed that cross-sectional mandibular 
size and shape significantly differs among individuals with 
and without agenesis of the lower second premolars [20].

Among our edentulous groups, the ventral curvature 
appeared least pronounced in patients, where the lateral 
incisor had been present but extracted. It is well docu-
mented that the residual alveolar ridge undergoes marked 
dimensional alterations after tooth extraction [57]: up 
to 35% bucco-oral width reduction within the first three 
months has been reported [58]. However, this reduction 
primarily occurs at the edge of the alveolar ridge, with a 
bucco-palatal width reduction resulting in a knife-edged 
shape rather than an accentuation of the ventral curvature.

Our first hypothesis, namely that the developing tooth 
affects maxillary growth, is clearly verified. Interestingly, 
we found that alveolar ridge shape differs on average 
between bilateral agenesis and the affected side of uni-
lateral agenesis, even though in both cases an incisor is 
absent. Similarly, we found that the alveolar width of the 
unaffected side of unilateral agenesis tends to be smaller 
than in the control group (p = 0.042 despite the small 
size of the AuniCont group), even though in both cases 

the incisor is in situ. Both findings cannot be explained 
by H1. Instead, they suggest that maxillary shape has an 
effect on dental agenesis (H2) or that both are influenced 
by a shared common factor (H3), e.g., some pleiotropic 
genes. Potentially, even all three causal pathways (H1–H3) 
could be present.

Without an experimental design, it is difficult to distin-
guish between H2 and H3 based on our morphometric data, 
but the overlap of the groups in their size and shape distri-
butions does not support a universal threshold of alveolar 
width necessary for dental development. However, such a 
threshold could depend on dental and cranial sizes, among 
other factors, and thus vary among individuals. From a sta-
tistical perspective, the relationship appears like a proba-
bilistic one: The narrower the alveolar ridge and the more 
concavely shaped its ventral curvature, the more likely is the 
agenesis of the lateral incisor.

Clinically, the treatment of a missing lateral incisor is 
dictated by the width of the alveolar ridge. It has been shown 
that straightforward implant placement in this region has a 
tendency to be less likely if the tooth is missing due to agen-
esis rather than extraction, i.e., the more pronounced buc-
cal curvature of the alveolar ridge might result in a higher 
need of bone augmentation prior to or in combination with 
implant placement than the crestal width. The present results 
suggest that this effect may be aggravated in cases of bilat-
eral agenesis.

Some limitations — primarily due to the retrospective 
design — should be considered. Several parameters that 
potentially affect post-extraction bone remodeling were not 
completely available for all patients and thus not considered 
in the analysis, for example, presence of systemic diseases 
and medication, smoking status, and the exact timepoint 
of tooth extraction. Nevertheless, the presence of any aug-
mentation material was defined as exclusion criterion and a 
minimum of 3 months passed between tooth extraction and 
CT recording. Another potential bias in the agenesis group 
is orthodontic treatment prior to CT scanning. This infor-
mation was available for 19 patients, of which 12 patients 
received treatment, including space opening in the region 
of the missing lateral incisor. However — as reported previ-
ously [14] — none of the parameters defining the alveolar 
ridge dimension (i.e., bucco-palatal width, area, and height) 
presented any significant differences between these two 
groups (i.e., space opening vs. no space opening).

Conclusions

In summary, we found an association of the maxillary 
alveolar ridge and agenesis of the lateral incisor, but this 
association is not only a simple, unidirectional result 
of the absent permanent tooth. Instead, a too small or 
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inappropriately shaped alveolar ridge may also inhibit 
normal formation or development of the tooth bud, thus 
leading to dental agenesis in this anatomical region. It is 
also possible that pleiotropic genetic and developmental 
factors influence both maxillary growth and dental devel-
opment. Presumably, all three causal pathways contribute 
to the observed association.
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