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Abstract

Sequence simulations play a vital role in phylogenetic research as they enable the eval-

uation of phylogenetic models or methods. Moreover, with the increasing impact of

machine learning algorithms the simulations provide the huge amount of data required

for their training. To ensure that the simulated sequences are as realistic as possible

the simulations should be based on empirical data.

For this purpose, EvoNAPS, a database providing NAtural Parameter Settings of

EVOultionary models, was designed and implemented. Over 29,000 biological align-

ments from three different published sources were gathered. The alignments were then

analysed using the phylogenetic inference software IQ-Tree 2. From the results a huge

number of features regarding the alignments, the inferred phylogenetic trees as well as

the respective parameter estimates of the evolutionary model were extracted and stored

in the EvoNAPS database.

To date EvoNAPS holds over 64,000 phylogenetic trees and the respective model pa-

rameter estimates. EvoNAPS allows the retrieval of typical parameter settings for 286

different DNA and 364 different protein models. The database comes equipped with

various filter options that allow the user to find model parameter estimates, alignments

and/or trees that closely match the data they want to simulate.

Overall, the EvoNAPS database represents a valuable resource to those studying model-

based phylogenetics and will greatly aid and facilitate future phylogenetic studies.
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Zusammenfassung

Das Simulieren von Sequenzen spielt eine entscheidende Rolle in der phylogenetis-

chen Forschung, da es das Evaluieren von phylogenetischen Methoden oder Modellen

ermöglicht. Außerdem kann die große Menge an Daten, die für das Trainieren von so-

genannten
”
Machine-Learning-Algorithmen“, die immer mehr an Bedeutung gewinnen,

durch Sequenzsimulationen generiert werden. Um sicherzugehen, dass die simulierten

Sequenzen so realistisch wie möglich sind, sollten die Simulationen auf empirischen

Daten basieren.

Aus diesem Grund wurde EvoNAPS, eine Datenbank für Parameter-Einstellungen von

evolutionären Modellen und für phylogenetische Bäume, die auf empirischen Daten

basieren, entworfen und implementiert. Insgesamt wurden über 29.000 biologische

Alignments aus drei unterschiedlichen veröffentlichen Quellen gesammelt. Die Align-

ments wurden mithilfe des IQ-Tree2 Programms, einer Software für phylogenetische

Inferenz, analysiert. Eine große Menge an Eckdaten und Merkmalen der analysierten

Alignments sowie der abgeleiteten Bäume und dazugehörigen Modellparametern wurde

gesammelt und in der EvoNAPS Datenbank gespeichert.

EvoNAPS enthält über 64.000 phylogenetische Bäume und die dazugehörigen geschätzten

Modellparameter. Die Datenbank bietet typischen Parameter-Einstellungen von 286

unterschiedlichen DNA und 364 unterschiedlichen Protein Modellen. Außerdem ist

die Datenbank mit verschiedenen Filteroptionen ausgestattet, die es den Nutzenden

erlauben, Alignments, Bäume und/oder Parameter-Einstellungen von evolutionären

Modellen zu finden, die den zu simulierenden Daten möglichst ähneln.

Die EvoNAPS Datenbank stellt eine nützliche Ressource für all jene dar, die an mod-

ellbasierter Phylogenie forschen, und wird eine große Hilfestellung in zukünftigen phy-

logenetischen Studien sein.
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Chapter 1

Introduction and Motivation

Phylogenetics is the study of evolutionary relationships between biological entities such

as species or individual organisms (Felsenstein, 2004). While in the past such rela-

tionships were studied based on morphological data, nowadays mainly sequence data

is being used. The key assumptions in phylogenetics are that the sequences studied

are homologous, meaning they share a common ancestor sequence, and that the ob-

served differences between sequences are due to random mutation events that occurred

during evolution. The sequences are arranged into an alignment with n sites, whereas

each aligned site can be regarded as a sample of evolution (e.g., Mount, 2004, pp.183-

226, 284-327). The variation within the sampled sites reflect the evolutionary distance

between the sequences.

The results of phylogenetic analysis is usually a phylogenetic tree that was reconstructed

based on the alignment (e.g., Felsenstein, 2004; Graur and Li, 2000). The leaves in the

tree represent the taxa (or sequences) that are connected with each other via branches,

whereas the length of the branches reflect the evolutionary distances between sequences.
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8 CHAPTER 1. INTRODUCTION AND MOTIVATION

The inner nodes in a tree depict specification events (also called splits) and represent

a common ancestors sequence.

The number of possible trees that vary in their tree topologies (i.e., their conformation)

drastically increases with the number of sequences in the alignment (Felsenstein, 1978).

The challenge is to find the tree that best explains the data. This prompts a probabilistic

view on the trees. To calculate how probable it is to observe the data given a specific

tree requires an explicit model of sequence evolution as first described by Jukes and

Cantor (1969).

Typically sequence evolution is modelled according to a continuous-time Markov pro-

cess, whereas the mutation events are assumed to be Poisson-distributed (Bryant et al.,

2005). The states of the Markov process are either the c = 4 nucleotide bases for DNA

alignments or c = 20 amino acids for protein alignments. Each state x occurs with a

assumed frequency πx with
∑c

x=1 πx = 1. Changes (or substitutions) from any state x

to any other state y are modelled to occur with a relative substitution rate ρxy. Further-

more, these models make some fundamental assumptions regarding sequence evolution,

namely that sites evolve independently and that the Markov process is reversible and

stationary.

Various of these substitution models have been described in literature. (A list of models

can be viewed in the appendix in tables A.1 and A.2.) Furthermore, these models can be

extended to additionally incorporate rate heterogeneity among sites (RHAS). Popular

RHAS models are invariable sites models (+I ; Churchill et al., 1992), Gamma models

(+G ; Yang, 1994), a combination of the two (+I+G ; Gu et al., 1995) or free-rate models

assuming k rate categories (+Rk ; Soubrier et al., 2012).
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Among the plethora of models that have been described any can be chosen to be used

in phylogenetic tree reconstruction. The branch lengths of a tree inferred with an

explicit model of evolution correspond to the expected number of mutations per site.

Methods that use an explicit model for the inference of a tree are also referred to as

model-based methods. Among those, maximum likelihood (ML) methods as described

for phylogenetics by Felsenstein (1981) are very popular (Bryant et al., 2005). The key

idea behind ML methods is to assign likelihoods to each tree and to find the tree that

has maximum likelihood (ML tree).

Figure 1.1a depicts a typical model-based phylogenetic inference workflow. The first

step is to choose a fitting model of sequence evolution based on the alignment. This

step is also referred to as the model selection step. The second step entails the tree

search based on the alignment and chosen model.

A great challenge in the elaborated phylogenetics is that usually the true evolutionary

process underlying the studied sequences is unknown (Felsenstein, 2004). Accordingly,

the validation of the methods and models that have been used as well as the results

they produced is virtually impossible. Hence, phylogenetic studies have come to heavily

rely on simulated sequences as for them the underlying truth is known (e.g., Garland

et al., 1993; Tateno et al., 1994; Gaut and Lewis, 1995; Hillis, 1995; Kupczok et al.,

2010). Furthermore, with an increasing interest in machine learning algorithms, such as

Neural Networks (NN), sequence simulations can be used to provide the huge amount

of training data required.

Due to the widespread use and necessity of simulated alignments, it is of great impor-

tance to choose the input for the simulations carefully. Typically, sequence simulations

require a phylogenetic tree and values for the parameters of the chosen model of se-

quence evolution as input (see figure 1.1b). To make sure that the simulated sequences
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Figure 1.1: Workflows of phylogentic analysis: Figure (a) schematically depicts a typ-
ical model-based phylogenetic inference workflow. In the first step a model of sequence
evolution is selected. The second step involves the tree search based on the alignments
and the chosen model. Figure (b) sketches a typical workflow for generating simulated
sequences. The simulation of sequences typically requires a phylogenetic tree and an
explicit model of sequence evolution with its parameters as input. The generated se-
quences can in turn be used to evaluate phylogenetic methods.
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are not completely uncoupled from biological data, the input tree and model parame-

ters should be based on empirical data. However, it is unclear how parameter estimates

of the different evolutionary models and the branch lengths of the inferred trees are

distributed in biological data.

Here, we present EvoNAPS, a database for NAtural PArameter Settings of EVOlution-

ary models. The database provides parameter estimates based on biological data of

286 different DNA and 364 different protein models as well as over 32,000 ML trees.

The data for the database was created by applying a typical model-based phylogenetic

inference workflow (see figure 1.1a) on biological alignments that were gathered from

published sources.

Various features of each evaluated alignment and the inferred tree were gathered. Ex-

ample features are the number of sequences, sites or patterns for the alignment or tree

length, tree diameter and mean branch length for the tree. (A full list of gathered

features is provided in section 2.2.1 of the next chapter.) The gathered features can

be used to filter for alignments, model parameter estimates and/or trees that are of

interest to the user and are (based on) biological data.

The remainder of this chapter will give some additional insight on models of sequence

evolution and how they are parameterized (section 1.1). Furthermore, model selection

will be discussed in more detail in section 1.2.

In chapter 2 the sources of the gathered alignments (section 2.1) as well as the working

steps required to create the data for the EvoNAPS database will be discussed in detail

(sections 2.2). The architecture of the database will be elaborated on in section 2.3.

Example feature extractions from the EvoNAPS database will be given in chapter 3.
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1.1 Models of sequence evolution

This section will give more detailed information on models of sequence evolution. Note,

that it only focuses on the information that is relevant for this master thesis project.

For a more in-depth education refer to, e.g., chapter 5 in ”Fundamentals of Molecular

Evolution” by (Graur and Li, 2000, pp.165-248) or chapter 5 in the book ”Molecular

evolution” by (Li, 1997, pp.99-148). This section here will mainly follow the nomen-

clature and narrative as found in the chapter ”Likelihood calculations in molecular

Phylogenetics” by Bryant et al. (2005) of the book ”Mathematics of Evolution and

Phylogeny” by Gascuel (2005).

As has already been discussed above, there exists a plethora of evolutionary models that

have been described in literature (see tables A.1 and A.2 in the Appendix). While there

are simpler, tractable models as well as more complex and parameter-rich models, it

needs to be pointed out that all models are naturally approximations and simplifications

of the actual evolutionary process. In reality, evolution is so complex that a completely

accurate calculation of probabilities is impossible. However, even with the simplified

models as approximations remarkable results can be achieved (Bryant et al., 2005).

The most widely used models of evolution, and therefore the models of interest in this

thesis, are part of a restrictive class of Markov models. These models make a certain

set of assumptions regarding sequence evolution that will be discussed in 1.1.1 and can

be described with a set of parameters as discussed in 1.1.2 and 1.1.3.

1.1.1 Assumptions of models of sequence evolution

The evolutionary models covered in this master thesis project model mutations events

according to a continuous-time Markov chain with the number of mutations being Pois-

son distributed. These Markov models are restrictive in the sense that they make certain
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assumptions regarding sequence evolution, namely that sites evolve independently, and

that the Markov process is stationary and time reversible (Bryant et al., 2005).

Let us assume an alignment with n sites. Each site x can be in any of the defined

states with the number of states being c = 4 for DNA alignments or c = 20 for protein

alignments. Each state x occurs with a assumed frequency of πx with
∑c

x=1 πx = 1.

Substitutions from any state x to any other state y are modelled to occur with a relative

substitution rate of ρxy.

Independence of sites. The first simplifying assumption states that all sites n along

a sequence evolve independently. The probability of one sequence A evolving into

sequence B, therefore, equals the product of site probabilities across all sites n.

Stationarity. As time goes to infinity, the state frequencies will reach an equilibrium,

or stationary distribution π. If the initial frequencies of the sequence at the root of

a phylogenetic tree are in the stationary distribution, there will be no (observable)

change in state frequencies across the whole tree. The restrictive models covered here

all assume a stationary process and, therefore, assume that all node distributions in a

tree equal the stationary distribution, including the root and the leaves.

Time reversibility. The third assumption is that the substitutions in a sequence are

reversible. This means that the substitution rate from state x to state y equals the

substitution rate from state y to state x, ρxy = ρyx. Time reversibility greatly simplifies

the computation of likelihoods on a tree as the likelihood becomes independent of the

position of the root.
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1.1.2 Parameterization of the substitution model

Let us assume we want to model the evolution of a set of DNA sequences using a model

that fulfills the assumptions as discussed in 1.1.1. The possible states in the Markov

model correspond to the four nucleotide bases A,C,G and T . We assume station-

arity across the whole tree with equilibrium state frequencies π = (πA, πC , πG, πT )

and allow substitutions from any state x to any state y with x, y ∈ (A,C,G, T ).

As we assume time-reversibility this accounts for the six different substitution rates

ρAG, ρAT , ρCG, ρCT , ρGT . By convention the substitution rates are set to be relative to

rate ρGT = 1. Note, that substitutions from state x to the same state x are being

modelled, but to assure a stationary distribution across the tree their rates cannot be

chosen arbitrarily. This might be better understood when looking at formula 1.1 below.

The so-called instantaneous rate matrix Q combines the equilibrium state frequencies

π and substitution rates into a single rate matrix:

Q =


∗ ρACπC ρAGπG ρATπT

ρACπA ∗ ρCGπG ρCTπT

ρAGπA ρCGπC ∗ ρGTπT

ρATπA ρCTπC ρGTπG ∗

 (1.1)

Each row in Q stands for the initial state x, whereas the columns indicate the final state

y for any substitution from x to y. Note, that the diagonal entries of the matrix, marked

with ∗, must be chosen such that the rows sum up to zero. This ensures, as already

mentioned above, that the assumption of a stationary distribution across the tree is

respected. The diagonal entries do not hold biological meaning but are a mathematical

convenience.
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Overall, there are ten parameters in the rate matrix Q, namely the six substitution rates

and the four equilibrium frequencies. Because by convention the rates are normalized

to ρGT = 1 and the equilibrium frequencies need to sum up to 1, the number of free

parameters is reduced to eight. Different evolutionary models vary in the number and

kinds of restrictions they pose on the rate matrix Q.

Take for example the simplest model, the Jukes Cantor (JC) model (Jukes and Cantor,

1969). The JC model assumes equal state frequencies for the stationary distribution,

πA = πC = πG = πT = 0.25, and equal substitution rates. It is the most restrictive

model by restricting all frequencies and rates to be equal and, therefore, has zero degrees

of freedom.

A slightly more complex and less restrictive model is the F81 model, named after its

creator and creation year (Felsenstein, 1981). The F81 model allows for unequal state

frequencies, πA ̸= πC ̸= πG ̸= πT , but keeps equal substitution rates. Hence, the F81

model has three degrees of freedom.

The two models mentioned so far assume that each type of substitution occurs with the

same rate. However, in reality mutations between the same type of base (transitions)

happen with higher frequency than between different types of bases (transversions). For

example, mutations from the purine base adenine (A) to the purine base guanine (G)

happens with higher frequency than from purine base adenine to the pyrimidine base

cytosine (C). Taking these biological observations into account, the Kimura two param-

eters (K2P) model (Kimura, 1980) differentiates between transition and transversion

rates, ρAG = ρCT , ρAC = ρAT vs. ρCT = ρGT . The K2P model assumes equal state

frequencies and rate ρGT is set to 1. Thus, the model has one free parameter, the

transition rate.
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The most complex and least restrictive model that respects the assumptions mentioned

in 1.1.1 is the General Time Reversible (GTR) model (Tavaré, 1986). The GTR model

assumes unequal state frequencies and allows for six different relative substitution rates.

Therefore, the model has 8 degrees of freedom.

Many more substitution rate matrices Q, besides the four already mentioned, have been

described in literature. In this master thesis project we focus on the 22 named sub-

stitution rate matrices that are frequently used and implemented in most phylogenetic

inference software (see A.1).

Even though only substitution rate matrices of DNA sequence evolution models were

discussed so far, protein models can be described with similar rate matrices. When

modelling evolution of protein sequences, Q is a 20 × 20 matrix corresponding to 20

amino acids as states. Accordingly, there are 190 possible substitutions given the as-

sumed time-reversibility.

In practice substitution rates and state frequencies (given that they are modelled to

be unequal) in DNA models are estimated based on the alignment given the manage-

able size of free parameters they produce. For protein models, however, the number of

parameters to be estimated is so large that in practice rate matrices with fixed substitu-

tion rates and state frequencies are used. Sometimes the state frequencies are estimated

from the input data. Frequently used protein substitution rate matrices are listed in

table A.2.

1.1.3 Rate heterogeneity among sites (RHAS)

The evolutionary models mentioned so far assume that the substitutions across all sites

in a sequence occur with the same rate. However, this assumption is highly unrealistic.

In biological data sets there are typically fast and slow evolving sites corresponding to
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functional, highly conserved regions and less conserved regions in a sequence respec-

tively (Bryant et al., 2005).

One approach to incorporate substitution rate heterogeneity among sites (RHAS) is to

use invariable sites models (Churchill et al., 1992). The model extension (+I ) assumes

that a certain proportion of sites in an alignment is invariable (representing a subset of

constant sites). The remaining sites are assumed to evolve at the same rate. Invariable

sites models introduce an additional model parameter, which is the assumed proportion

of invariable sites.

Another popular approach is to model RHAS according to a Gamma (Γ) distribution

(Yang, 1994). In practice, the rates that are assumed to follow a Γ-distribution are

approximated using a discrete number of rates k (typically, between 4 and 8 rates).

The degree of influence of each rate category in comparison to each other is set to be

equal by cutting the Γ-distribution into k parts of equal size (equal in regards to the

area under the curve). The mean (or alternatively median) rates of each rate category

are then used to approximate Γ-distributed rates among sites. Gamma models (+G)

can be described with a single additional parameter, the shape parameter α of the

assumed Γ-distribution.

Should the number of invariable sites be non-negligible, a combination of the invariable

sites model and Gamma model (+I+G) has been shown to be a good approach for

estimating the variation of substitution rate among sites (Gu et al., 1995).

Even though Gamma models tend to be a well performing approximation, biological

data does not necessarily follow Γ-distributed substitution rates (Huelsenbeck and Hillis,

1993). Alternatively, RHAS can be modelled using, again, a number of discrete rates k,

but they do not have to follow a Γ-distribution or in fact any specific distribution. The
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proportion (or degree of influence) of each rate category can also be chosen freely and

are not assumed to be equal like in the Gamma model. These so-called probability-

distribution-free or free-rate (+R) models (Soubrier et al., 2012) introduce 2k additional

parameters to the evolutionary model, corresponding to the proportion and the rate of

each rate category.

Any given substitution rate matrix (see tables A.1, A.2) can be paired with any model

of RHAS as discussed above (+I,+G,+I+G,+R), resulting in a huge number of differ-

ent evolutionary models. Selecting the optimal model is a critical step in phylogenetic

analysis that can greatly affect the maximum likelihood estimation (Johnson and Om-

land, 2004). Given the large set of model candidates, model specification is a non-trivial

matter (Kalyaanamoorthy et al., 2017; Posada, 2008), which will be discussed in the

next section.

1.2 Model selection

The first step in a model-based phylogenetic analysis is to choose a model of sequence

evolution. To do so, the candidate models need to be evaluated in a process termed

model selection or model evaluation. The aim of model selection is to find the best

model among a set of model candidates (Kalyaanamoorthy et al., 2017; Posada, 2008).

Model selection is a problem not restricted to phylogenetics. Generally, a model per-

forms well if it manages to describe the observed data with high accuracy and, therefore,

can be regarded as a good approximation of the true underlying process. In that sense,

complex models will perform well due to their flexibility. However, there is a trade-off

between descriptive accuracy and parsimony (Burnham and Anderson, 2001; Wagen-

makers and Farrell, 2004). Parsimony hereby stands for being conservative in regards

of the number of parameters that need to be estimated. This trade-off exists as with
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each additional parameter the vulnerability of the model to random error increases.

Accordingly, it is not desirable to always choose the most complex model. The best

model should be the one that describes the data with adequate accuracy while using a

minimum number of parameters.

1.2.1 Selection criteria

In phylogenetic analysis, a still popular method for comparing multiple models is the

Likelihood Ratio Test (LTR; Solomon, 1975). However, LTR bears the disadvantage

that the models that are being compared need to be nested in each other. Furthermore,

LTR tends towards choosing the most complex model (Posada and Buckley, 2004).

Alternative and widely used methods for model selection that are not restricted to

nested models are information criteria. Akaike (1973) has shown that choosing the

model with lowest expected information loss is asymptotically equivalent to choosing a

model that has the lowest Akaike information criterion (AIC) value. The AIC value of

a model is easily computed given the likelihood L and the number of free parameters

k. AIC is defined as

AIC = −2 lnL+2k. (1.2)

Equation 1.2 shows how AIC rewards descriptive accuracy by incorporating L, and

penalizes lack of parsimony according to the number of free parameters k (in blue).

Here, the number of free parameters is given by the number of branch lengths and

the number of model parameters that need to be estimated. In a fully resolved tree

(containing only bifurcations) with s leaves (or taxa) the number of branches is given

by kB = (2 ∗ s− 3).

It has been shown that AIC is a good approximation for sufficiently large data sets.

However, for smaller data sets, with n/k < 40, a finite sample correction is recom-
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mended. The corrected AIC (AICc; Burnham and Anderson, 2003) is defined in equa-

tion 1.3. Here, the sample size n corresponds to the number of sites in the alignment.

AICc = −2 lnL+2k +
2k ∗ (k + 1)

n− k − 1
(1.3)

Despite its popularity and wide-spread use, some believe that AIC is too liberal and

tends to select overly complex models while neglecting sampling variability (Kass and

Raftery, 1995). Furthermore, AIC is not consistent in the sense that with a large

number of observations n, AIC tends to fail to recover the true low-dimensional model

(Bozdogan, 1987).

A popular alternative to the AIC is the Bayesian information criterion (BIC; Schwarz,

1978). BIC is defined as:

BIC = −2 lnL+k ∗ lnn (1.4)

BIC is an asymptotic approximation to the Bayesian model selection and is consistent

as n → ∞ (Schwarz, 1978).

Although the selection criteria mentioned so far are similar algebraically, they are mo-

tivated by different theories. There is no definite answer to the question which selection

criteria is the best. The choice depends on the goal the researcher wants to achieve,

higher accuracy or parsimony. Generally, if the emphasis lies on achieving a good pre-

diction, AIC or AICc tend to be the better choice for model selection but might choose

overly complex models (overfitting). On the other hand, if the emphasis lies on parsi-

mony, BIC might the better choice but one has to accept the likely error of underfitting

(Dziak et al., 2020).
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1.2.2 Akaike weights

All selection criteria mentioned so far can be used to select the best model among a

model candidate set. However, the value of the selection criterion alone does not give

any insights regarding to what extent the data supports the best model in comparison

to the remaining evaluated models. For this purpose, the so-called Akaike weights can

be calculated (e.g., Burnham and Anderson, 2001; Wagenmakers and Farrell, 2004).

To calculate the Akaike weight of model i, first the difference between the AIC of the

best model (the model with minimum AIC) and the AIC value of model i needs to be

calculated:

△i(AIC) = AICi −minAIC (1.5)

The Akaike weights are then calculated according to the following formula:

wi(AIC) =
exp {−1

2
△i (AIC)}∑K

k=1{−
1
2
△k (AIC)}

(1.6)

Akaike weights can be interpreted as the probability that model i is the best model

given the data and the set of candidate models (Wagenmakers and Farrell, 2004). Fur-

thermore, the strength of evidence in favour of one model i over another model j can

be calculated by dividing their Akaike weights, wi

wj
.

Weights for AICc can also be calculated by replacing the AIC values in equations 1.5

and 1.6 with AICc values. The same applies to BIC values, whereas BIC weights are

also referred to as “Schwarz” weights.

1.2.3 The ModelFinder algorithm

In this project we decided to use the IQ-Tree2 software as it offers the greatest number

of different evolutionary models (including free-rate models) and has integrated the
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ModelFinder algorithm (Kalyaanamoorthy et al., 2017) for efficient model selection.

Here, the ModelFinder algorithm will be discussed in detail.

There exists a vast number of evolutionary models that can be used for tree reconstruc-

tion as has been discussed in section 1.1. Ideally, a tree search is conducted using each

available evolutionary model to find the ML tree. However, this would be computa-

tionally exhaustive and would take an often unreasonable amount of time. Therefore,

heuristics are employed to find a model M among the model candidate set that fits the

alignment sufficiently well. The chosen model M will then be used in the subsequent

ML tree search. The ModelFinder algorithm (Kalyaanamoorthy et al., 2017) is such a

heuristic.

The idea behind the ModelFinder algorithm is to first build a fast, but reasonable tree

T based on the data D (further also referred to as initial tree). By default, tree T is

built based on the model GTR+I+G4 for DNA alignments and LG+I+G4 for protein

alignments. The likelihood L of each model M in the model candidate set is evaluated

on T ; L = (T,M |D). For the likelihood calculations the branch lengths of tree T are

allowed to be re-estimated but the tree topology stays the same to make the likelihoods

calculations of each model comparable. The best-fit model is then decided according

to their BIC values by default. However, the selection criterion can also be changed to

either AIC or AICc.

The candidate models available in ModelFinder also include free-rate models. Should

free-rate models be evaluated the default algorithm as discussed above is slightly mod-

ified. In this modified version there is a maximum number of free-rate categories

kmax that is being considered. After building a reasonable tree T , the likelihoods

L = (D|T,Mk) of the free-rate models with k rates (+Rk) are consecutively calculated

until kmax is reached, starting with k = 2. However, should the model with less free-
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rates perform better than the model with one more free-rate, BIC(Mk) > BIC(Mk−1),

then the algorithm stops evaluating any more free-rate models. This stopping condition

is based on the assumption that should model Mk+1 perform worse than model Mk,

then modelMk+2 will also fail to perform better.



Chapter 2

Resources and Methods

Building the EvoNAPS database entailed three separate working steps. First, biological

alignments from published sources were gathered (see section 2.1). Secondly, a scien-

tific workflow (Taylor et al., 2007) was created that applied to each alignment selects

the best-fit model from a vast model candidate set and subsequently builds a phyloge-

netic tree (see section 2.2). The third part included designing and implementing the

EvoNAPS database (see 2.3).

2.1 Gathering Alignments

In the course of this project alignments from three different sources were analysed. One

of them is the online repository “BenchmarkAlignments” consisting of 67 multi-gene

data sets provided by Rob Lanfear available on GitHub (Lanfear, 2019). Of those we

used 31 DNA data sets that were cut into declared partitions using the Python script

(AMAS.py) provided by Rob Lanfear. The resulting 1,839 partitions were scanned for

sequences only containing gaps which were excluded from the alignments.

24
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The second source is the OrthoMaM database (v. 10c Douzery et al., 2014), a databases

for mammalian marker sequences. Overall, 14,345 DNA alignments from OrthoMaM

were gathered.

The third source for alignments is the PANDIT (v. 17.0) database (Whelan et al., 2006),

a collection of multiple sequence alignments and phylogenetic trees that cover common

protein domains and their coding DNA sequences. In total 6,491 DNA alignments

and 6,614 protein alignments from the PANDIT database were analysed. Note that

alignments containing 3 or less sequences were discarded as they were deemed to not

contain enough information for proper parameter estimation.

2.2 Data Generation

A typical model-based pyhlogenetic workflow was applied on each of the alignments

gathered. The workflow includes a model selection step followed by a ML tree search

based on the best-fit model. The workflow will be discussed in detail in section 2.2.

2.2.1 Overview of the gathered features

From the alignments as well as the output produced by the workflow a multitude of

features are selected to be imported into the EvoNAPS database. The features can be

classified according to the entity they describe, namely the alignment, the sequences in

the alignment, the evaluated models during model selection, the (ML or initial) trees,

and the branches of the trees. The tables below list the selected features accordingly.

Table 2.1 shows the extracted features of the gathered alignments. Table 2.2 shows the

features of each sequence in the gathered alignments.

The gathered features of each model that was evaluated during model selection are

described in table 2.3. Note, that some features are model specific (e.g, a proportion
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Table 2.1: Alignment features stored in the EvoNAPS database.

feature details
1 # sequences
2 # sites (columns)
3 # parsimony informative sites
4 # singleton sites
5 # constant sites
6 fraction of wildcards and gaps
7 # distinct patterns
8 # sequences that failed the Chi2

test
Chi2 test to evaluate whether nucleotide
composition of the sequence matches nu-
cleotide composition of the alignment.

9 # identical sequences
10 # excluded sequences as will be further elaborated on in section

2.2.2.1

Table 2.2: Sequence features stored in the EvoNAPS database.

feature details
1 Sequence name as it appear in the original alignment
2 fraction of wildcards and gaps
3 whether the sequence passed or

failed the chi2 test
Chi2 test to evaluated whether nucleotide
composition of the sequence matches nu-
cleotide composition of the alignment.

4 whether the sequence was ex-
cluded from calculations

as will be further elaborated on in section
2.2.2.1

5 name of the sequences(s) the se-
quence is identical to

6 empirical state frequencies bases (DNA) or amino acids (protein)
7 sequence as it appears in the original alignment

(with wildcards and gaps)

of invariable sites, alpha value for Gamma models). The features also include the

calculated weights (of to the different information criteria as described in section 1.2)

of the model. The tree length (feature 19) was calculated based on the evaluated model

and is that of the initial tree. Note, that the tree topology of the initial tree remains
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Table 2.3: Features of the evaluated models stored in the EvoNAPS database.

feature details
1 model evaluated model
2 substitution rate matrix
3 RHAS model
4 # rate categories
5 logL the logarithmic likelihood of the initial

tree based on the evaluated model
6 AIC value Akaike (1973)
7 AIC weight
8 AICc value Burnham and Anderson (2003)
9 AICc weight
10 BIC value Schwarz (1978)
11 BIC weight
12 CAIC value consistent Akaike information criterion

(Bozdogan, 1987)
13 CAIC weight
14 ABIC value adjusted Bayesian information criterion

(Sclove, 1987)
15 ABIC weight
16 # free parameters
17 # free model parameters
18 # branches
19 tree length of the initial tree
20 proportion of invariable sites
21 shape parameter alpha
22 state frequencies of the assumed

stationary distribution
states are bases (DNA) or amino acids
(protein)

23 assumed relative substitution
rates

for DNA 6 rates, for protein 190 rates

24 proportion of the assumed rate
category

of up to ten rate categories (+R10 )

25 rate of the assumed rate category of up to ten rate categories (+R10 )

unchanged during the evaluation of the models, but that the branch lengths are re-

estimated based on the evaluated model. Hence, the tree length can vary between

evaluated models.
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Table 2.4: Tree features stored in the EvoNAPS database.

feature details

1 model model used in ML search or for the initial
tree

2 substitution rate matrix
3 RHAS model
4 # rate categories
5 logL the logarithmic likelihood of the tree
6 unconstrained logL
7 AIC value Akaike (1973)
8 AICc value Burnham and Anderson (2003)
9 BIC value Schwarz (1978)
10 CAIC value consistent Akaike information criterion

(Bozdogan, 1987)
11 ABIC value adjusted Bayesian information criterion

(Sclove, 1987)
12 # free parameters
13 # free model parameters
14 # branches
15 proportion of invariable sites
16 shape parameter alpha
17 state frequencies of the assumed

stationary distribution
states are bases (DNA) or aa (protein)

18 assumed relative substitution
rates

for DNA 6 rates, for protein 190 rates

19 proportion of the assumed rate
category

of up to ten rate categories (+R10 )

20 rate of the assumed rate category of up to ten rate categories (+R10 )
21 tree length
22 sum of internal branch lengths
23 tree diameter
24 minimum distance between pairs of sequences
25 maximum distance
26 mean distance
27 median distance
28 variance in distances

Cont’d on following page
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Table 2.4, cont’d

feature details

29 minimum branch length
30 maximum branch length
31 mean branch length
32 median branch length
33 variance in branch lengths
34 minimum internal branch length
35 maximum internal branch length
36 mean internal branch length
37 median internal branch length
38 variance in internal branch

lengths
39 minimum external branch length
40 maximum external branch length
41 mean external branch length
42 median external branch length
43 variance in external branch

lengths
44 Newick string of the tree

The relevant features gathered for each inferred tree (initial or ML) are shown in table

2.4. The features also include the parameter estimates of the model that has been used

to construct the tree. Note, that some features are model specific (e.g, a proportion of

invariable sites, alpha value for Gamma models) and some only exist for the ML tree

and not the initial tree (e.g., distances between pairs of sequences calculated based on

the tree).

Table 2.5 below depicts the features gathered for each branch. More details, especially

regarding the splitsize and path lengths (features 4-11), will be given in section 2.2.2.3.
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Table 2.5: Branch features stored in the EvoNAPS database.

feature details
1 branch type internal or external
2 branch length
3 splitsize
4 minimum path length in subtree 1 calculated as described in section 2.2.2.2
5 maximum path length in subtree

1
6 mean path length in subtree 1
7 median path length in subtree 1
8 minimum path length in subtree 2
9 maximum path length in subtree

2
10 mean path length in subtree 2
11 median path length in subtree 2

2.2.2 Technical details

To efficiently evaluate a large number of evolutionary models on the alignments gathered

from the different sources (see 2.1), a scientific workflow (Taylor et al., 2007) was imple-

mented using the scientific workflow management system Snakemake (v.5.9.1; Köster

and Sven, 2012; Mölder et al., 2021). The workflow relies on a customized version of

the IQ-Tree2 software (Minh et al., 2020), which will be discussed in detail in section

2.2.2.1 below.

Custom-made Python scripts were used to extract all relevant information and the

parameters of interest from the output files produced by IQ-Tree2. The results were

written into files especially designed to be imported into the EvoNAPS database. The

Python scripts will be discussed in detail in sections 2.2.2.2 and 2.2.2.3. An overview

of the workflow is depicted in figure 2.1.
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alignment

IQTree2mod

*. treefile*. log*.iqtree *. model.gz *. mldist *. uniqueseq.phy

--keep-ident

parse_parameters.py parse_tree.py

tree.tsvmodel.tsvseq.tsv branch.tsvali.tsv

Figure 2.1: The figure schematically depicts the workflow as implemented in Snake-
make. An alignment file serves as input (top). First, a modified version of IQ-Tree2 is
run on the alignment to both evaluate the different sequence evolution models as well
as search for a ML tree based on the best-fit model (according to BIC). Should there be
a uniqueseq.phy file among the output files generated by IQ-Tree2, then IQ-Tree2
is called again, this time with the additional flag keep-ident. The parameters and
information that will be imported into the EvoNAPS database is parsed out from the
IQ-Tree2 output files and then written into files designed to be imported into the EvoN-
APS database using the Python3 script parse parameters.py. Additionally, the
parse parameters.py script calls the parseTree function from the Python script
parse tree.py. The parseTree function filters all branch lengths from a tree given
in Newick format as well as calculates the paths to the leaves for each internal branch.
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2.2.2.1 Model evaluation and tree search

Besides the results of the tree search, the EvoNAPS database also stores the results of

model selection. Accordingly, the model performance as well as the parameter es-

timates of all evaluated models are of interest. However, the ”default” version of

IQ-Tree 2 (Minh et al., 2020) only returns the parameters of the model that was

used in the tree search (or best-fit model). Therefore, the IQ-Tree 2 source code (v.

2.2.0.5) available at https://github.com/iqtree/iqtree2/releases/tag/

v2.2.0.5 was modified accordingly and the parameters of all evaluated models were

written into the checkpoint file *model.gz. Additionally, the software was modified

so that the Newick string and model parameters of the initial tree are written into the

*.log file.

The command line option -m (model) as implemented in IQ-Tree2 prompts the user to

specify (a) model(s) to be evaluated or to be used in a tree search. In the workflow the

-m option was set to MFP. MF stands for ModelFinder (as has been described in section

1.2.3). Accordingly, extended model selection is performed on the input alignment that

includes free rate models. The P in MFP prompts IQ-Tree2 to immediately follow the

model selection with a tree search.

Furthermore, the --mrate option was set ”E,I,G,I+G,R”. The --mrate option

forces IQ-Tree2 to test all declared RHAS models for each substitution rate matrix.

Otherwise, a heuristic comes into play that determines early on which RHAS models

do not fit the alignment well and excludes them in the remaining model evaluations.

The option E stands for equal/homogeneous rates model (models assuming no RHAS).

https://github.com/iqtree/iqtree2/releases/tag/v2.2.0.5
https://github.com/iqtree/iqtree2/releases/tag/v2.2.0.5
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We used the default selection criterion (BIC) to choose the best-fit model. Addition-

ally, the --seqtype option was used to manually declare whether the investigated

alignment is a DNA or protein alignment.

Apart from the options mentioned, the default settings of IQ-Tree2 were used. For

more details regarding the options implemented in IQ-Tree2, please refer to the online

manual (Minh et al., 2022).

The substitution rate matrices that are evaluated when using the MFP option are the

22 DNA and 16 protein substitution rate matrices as described in table A.2 and table

A.1 respectively.

Should a DNA model assume unequal state frequencies, then IQ-Tree2 counts the nu-

cleotides in the alignment and assumes that their relative abundance is equal to the

stationary distribution. Models with such empirically estimated state frequencies are

marked with a +F flag according to the syntax used by IQ-Tree2.

The 16 protein rate matrices as described in table A.2 come with predefined amino acid

frequencies. Either the predefined frequencies are assumed (no addition to the model

name), or the state frequencies are empirically estimated (+F ). Accordingly, there are

32 different protein rate matrices.

As declared in the --mrate option, each of the rate matrices was evaluated assum-

ing the same substitution rate(s) across sites (+E), an invariable sites model (+I), a

Gamma model with four discrete rates (+G4), a combination of the two (+I +G4), or

using free-rate models (+Rk). The free-rate models assume at least 2 and at most 10

distribution-free rates k and were evaluated using the modified ModelFinder algorithm

as described in 1.2.3. Accordingly, each substitution rate matrix is paired with at least

two (+R2,+R3) and at most 9 free-rate models (k = 2...10).
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Overall, at least 132 and at most 286 DNA models and at least 168 and at most 364

protein models were evaluated on each alignment.

To reduce runtime IQ-Tree2 excludes sequences from its calculations should there al-

ready exist more than one identical sequence in the alignment. Accordingly, IQ-Tree2

keeps exactly two out of each set of identical sequences. In such cases, model se-

lection and the tree search are conducted on the reduced alignment as stored in the

*uniqueseq.phy file. In the final step of the analysis the excluded sequences are

added to the sub-tree in the ML tree where its identical sequences are located. The

length of the branch leading to the attached taxon is hereby set to zero (BL = 0).

In these cases, for the sake of data integrity we also want to apply the workflow on the

original alignment as the exclusion of sequences can influence parameter estimations

such as that of the stationary distribution. Accordingly, should an IQ-Tree2 run produce

a *uniqueseq.phy file, then IQ-Tree2 is applied on the alignment a second time, this

time with the --keep-ident flag (see figure 2.1). The --keep-ident flag ensures

that model evaluation and the tree search are conducted on the original alignment that

includes all sequences.

The relevant output files generated by IQ-Tree2 include the report file *.iqtree, the

log file *.log, the file with the Newick string of the ML tree *.treefile, the file

including the distances between each sequence in the alignment calculated based on the

best-fit model *.mldist, and the checkpoint file *.model.gz. Potentially, there is

also the alignment file with a reduced number of sequences *.uniqueseq.phy.

2.2.2.2 Getting branch lengths and path lengths from a Newick string

The IQ-Tree2 output files described above already contain most of the information we

are interested in, especially when it comes to basic information regarding the alignment
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Figure 2.2: A tree T connecting seven taxa A-G is shown. The external nodes (or
leaves) are depicted as white dots and the internal nodes as black dots. Branch e is
an external branch connecting taxon A (an external node) to the tree. Branch i is an
internal branch connecting two internal nodes. The red dotted line indicates the split
induced by branch i. The split separates tree T into two subtrees T1 and T2. The fat
red line represents the path from node C to branch i. Note, that that branch i itself is
not part of the path. The path ends at the earliest encountered node connected to the
internal branch i.

and the results of model evaluation (see features in tables 2.1, 2.2, 2.3). However, we

are interested in additional parameters especially regarding the resulting phylogenetic

trees (initial tree or ML tree) that are given in Newick format (Olsen, 1990).

Tree notations. Before proceeding, let us clarify some notations regarding pyhlo-

genetic trees. Depicted in figure 2.2 is a tree T connecting the seven taxa A-G. The

taxa are located at the leaves (or external nodes) of the tree (depicted as white dots).

A branch connecting a leaf to the tree is called an external branch (e.g., branch e).

Contrarily, an internal branch connects two internal nodes (depicted as black dots; e.g.,

branch i).
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A cut (or split) conducted on any branch on the tree can split the tree into two subtrees.

Notably, only splits conducted on internal branches are non-trivial. For non-trivial

splits both of the resulting subtrees contain more than one taxon as opposed to splits

conducted on external branches. As an example, the non-trivial split conducted on

branch i in tree T in figure 2.2 cuts the tree into two subtrees T1 and T2 (indicated as

red dotted line). The splitsize is defined as the number of taxa in the smaller subtree

(i.e. with less leaves). In our case, the splitsize of branch i is the number of taxa in

subtree T1, which is 3. The splitsize can give an approximation on how deep the branch

is located in the tree. However, it does not consider the actual distance (in terms of

branch lengths) to the leaves. Here, the calculation of path lengths in a tree is necessary.

The path length between any two nodes is defined as the sum of branch lengths of the

path connecting the two nodes. As a metric for the depth of a branch in the tree, the

path lengths from the leaves to that branch are of particular interest. As an example,

in figure 2.2 the path length from the leaf C to the internal branch i is highlighted

in red. Note, that the branch length of branch i is not added to the path length.

Instead, the lengths of the branches in the path starting from leaf C are summed up

until encountering the first internal node connecting to branch i. The mean path length

to the leaves in the smaller subtree T1 can be used as metric for the depth of branch i

in the tree.

Tree features. Above all, the tree features of interest are the branch lengths. The

length of a branch corresponds to the expected number of mutations per site along

that branch (Bryant et al., 2005). The choice of branch lengths can, therefore, greatly

influence the outcome of sequence simulations. Naturally, information whether the

branches are internal and external is also relevant. Additionally, the depth of a branch

in the tree is of interest as it enables the realization of complex simulation scenarios.
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Accordingly, two metrics, namely the splitsize and the mean path length to the leaves,

are calculated for each branch in the tree.

Obtaining branch lengths and path lengths. The phylogenetic trees inferred

with IQ-Tree2 are given in Newick format (Olsen, 1990). A Python (v.3.3.6) script,

parse tree.py, was written to infer branch and tree features from the Newick string.

In the script the SeqIO and Phylo module from the Biopython library (v.1.78; Cock

et al., 2009) as well as the NetworkX (v.2.2; Hagberg et al., 2008) and Pandas libraries

(v.1.1.3; McKinney, 2010) are used.

The tree in Newick format is read in and interpreted using the Phylo module. The

tree is then transformed into a undirected graph G with weighted edges using the

Phylo.to networkx() function.

It is straightforward to ascertain the branch lengths and the branch type, internal

or external, by simply traversing the graph G once. During the graph traversal the

weight of each visited edge is evaluated (which coincides with the length of the branch).

Additionally, the degree of each visited node is evaluated. An external node has degree

1, an internal node has a degree of at least 3. One graph traversal can be achieved in

O(n) time.

Obtaining the path lengths to the leaves for each internal branch is a bit more com-

plicated. An algorithm was implemented to obtain all path lengths in the tree during

two depth-first-search post-order graph traversals. This approach follows the idea used

in the “Recursive Puzzling Step Algorithm”, described in chapter “4.4.2. Recursive

Puzzling Step Algorithm” by Schmidt (2003, pp.31-36). The time complexity of the

graph traversals is O(n) and that of storing the path lengths during traversal for each

branch is also O(n). This yields an overall runtime of O(n2).
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Figure 2.3: The figure depicts four images (a-d) of a bi-directed graph representing
a fully resolved, unrooted phylogenetic tree. Each directed edge in the graph has the
same weight or branch length (represented by the number located at the centre of the
edges) in each direction. The edges connect the nodes A-H. Nodes A, C, E, G and
H only have one neighbouring node and, therefore, represent a leaf or taxon in the
phylogenetic tree. In the consecutive figures (a-d) an example of how the algorithm
that was implemented to calculate all path lengths in a graph is visualized. The graph
was traversed in the following order A → B → C → B → D → E → D → F → G →
F → H → F → D → D → B → A. The first step (a) shows the initialisation of
the algorithm. Step (b) shows how edges AB, CD and BD but not edge BC could be
cleared. Step (c) depicts the results from the first graph traversal. Not all edges could
be cleared as depicted in red. Therefore, a second graph traversal is necessary to clear
the remaining edges as depicted in (d).



CHAPTER 2. RESOURCES AND METHODS 39

In the first step of the algorithm graph G is redefined as a bidirected graph, whereas the

weight (or branch length) of edge XY between the nodes X and Y equals the weight

of reverse edge YX for any edge in the graph. During graph traversal each directed

edge is visited once and the path lengths are consequently calculated by summing up

the branch lengths of the traversed edges starting from the leaves.

Let us assume the toy example as depicted in figure 2.3. The graph depicted has 8

nodes A-H, five of which are leaves. The graph traversal is initiated by visiting node A

(see figure 2.3a). The neighbouring node B is visited by traversing edge AB. Because A

is a leaf the path length leading from A to B can be calculated, which is the weight of

edge PLAB = |AB| = [1]. The graph is further traversed by visiting neighbouring node

C by traversing edge BC (see 2.3b). In this case not all path lengths leading to C can

be calculated. There exit four paths leading to C, namely A → C,E → C,H → C and

G → C. So far only the path from the external node A to node C can be calculated,

because all the edges in the path A → C have already been visited.

More generally, the path lengths to a node Y can be calculated if the edge XY has been

cleared. An edge XY can only be cleared if all path lengths leading to its source node

X have already been calculated or, in other words, if all edges leading to X (except

reverse edge YX ) have also been cleared. Accordingly, looking back at the example

depicted in figure 2.3b, edge BC cannot yet be cleared.

Next, edge CB is traversed. Because C is an external node and edge CB is therefore

the only path leading to the target node B, the edge CB can be cleared. The path

length leading to B is the branch length of B, PLCB = |CB| = [2]. Next node D is

visited. All the edges leading to the source node B (except for DB) have been cleared,

namely AB and CB. Therefore, edge BD can also be cleared. The path lengths leading

to D can be calculated by adding the weight of edge BD (|BD| = 2) to the calculated
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path lengths of edges AB (PLAB = [1]) and edge CB (PLCB = [2]) respectively. The

path lengths leading to BD are therefore PLBD = [3, 4].

This procedure is continued until all edges in the graph have been traversed. However,

some edges could not be cleared in the first graph traversal (depicted in red in figure

2.3c). To clear the remaining edges a second graph traversal following the same pro-

cedure is necessary. Once the second graph traversal has finished, the algorithm has

succeeded in calculating all path lengths leading to each node in the graph (see figure

2.3d).

To summarize, during the graph traversal each node in the graph is visited by choosing

a neighbouring node or target node Y of the current node X by traversing the edge

XY connecting the two nodes. To ensure that the graph is traversed completely the

following restrictions are posed on the decision on which neighbouring node N will

become the target node Y :

1. Node N can only become the target node Y if edge XN has not been traversed
yet.

2. Always make node N the target node Y if node N has not been visited yet.

3. Should node N have already been visited only make node N the target node if
there exist no other neighbouring node that fulfils requirement 2.

The algorithms can be summarized with the following steps:

1. Initialization: make a random node the start node X for traversal.

2. Visit source node X.

3. Find a target node Y that fulfils the requirements as discussed above. Stop the
graph traversal if no such node exists anymore.
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4. If all edges leading to X (except for edge YX ) are cleared, calculate the path
lengths leading to Y. Mark XY as being cleared.

5. Make target node Y the source node X. Go to step 2.

Given the path lengths leading to each node in the graph, statistics regarding the path

lengths found in the subtrees separated by an internal branch are now easily calculated.

The splitsize equals the number of paths (or leaves) found in the smaller subtree.

Finally, the parse tree.py script writes the branch lengths into a table as well

as the information whether the branch is internal or external. Should the branch be

internal, then the splitsize, statistics on the path lengths (mean PL, median PL, and

the variance in path lengths) of each subtree are stored. Additionally, the script returns

characteristics regarding the whole tree such as the tree length, tree diameter, the sum

of internal branch lengths as well as statistics describing the distribution of internal

and external branch lengths respectively (e.g., mean internal BL, mean external BL).

2.2.2.3 Feature extraction

We now have obtained features of the alignment, evaluated models and inferred trees as

stored in the IQ-Tree2 output files (section 2.2.2.1) and can infer additional parameters

for the generated trees using the parse tree.py script (section 2.2.2.2).

Next, the features need to be organised in a way that they can easily be imported

into the EvoNAPS database. For this purpose, the script parse parameters.py

written in Python (v.3.3.6) was used. The script relies on the data analysis library

Pandas (v.1.1.3; McKinney, 2010) and uses the SeqIO module from the Biopython

library (v.1.78; Cock et al., 2009) to read in the sequences from the alignment.

The necessary input for the parse parameters.py script are the original alignment

file, the output files generated by IQ-Tree2 and the parse tree.py script. The output
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are a total of five files in tab separated values (tsv) format. Each file corresponds to a

table in the EvoNAPS database, whereas the column names in the *.tsv files coincide

with that of the EvoNAPS tables respectively.

2.3 Database architecture

The EvoNAPS database should contain the original data sets (alignments) as well as the

results of the model evaluations and tree search. Hence, the sequences, evaluated models

and inferred trees need to be clearly assigned to any given alignment. Additionally,

the origin (see section 2.1) of the alignment should be clear. Therefore, a relational

and mostly hierarchical design of the EvoNAPS database is necessary. EvoNAPS was

implemented using the open-source MariaDB Server (v.10.0.13).

Overall, the EvoNAPS database is comprised of 13 tables, whereas in each table auto-

incremented integers serve as primary keys. For each table containing information of

DNA alignments there exists a corresponding table for protein alignments. The tables

are set in relation to each other by employing foreign keys. Data integrity is usually

kept by constraining a set of columns in the tables to form a unique key. An overview

of the database can be viewed in figure 2.4. The figure shows an Entity-relationship

(EER) diagram of EvoNAPS, whereas only primary (yellow) and foreign keys (red) as

well as columns involved in unique key constraints (blue) are depicted.

In the following, the tables in the EvoNAPS database will be discussed in more detail

especially in regards to what information each table contains and how they relate to

each other. The exact number of columns and column names, though not discussed

here, can be viewed in the tables in the appendix (see B).

The dataorigin table. At the top of the EvoNAPS database stands the dataorigin

table, which contains information regarding the origin of each alignment in EvoNAPS,
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namely PANDIT, Lanfear or OrthoMaM (see section 2.1). Each source database de-

scribed in the dataorigin table has a unique name DATABASE ID corresponding to

the name of the original database. The dataorigin table is connected to the align-

ments tables using the DATABASE ID in dataorigin as foreign key that connects to the

FROM DATABASE column in alignments. For more details, refer to section B.1 in the

appendix.

The alignments tables contain information regarding each alignment stored in the

database such as the number of sequences, sites, and patterns in the alignments. The

name of the alignment, ALI ID, must be unique (constraint). The column ALI ID

serves as foreign key in the sequences, modelparameters and trees tables. (See sections

B.4 and B.5 for more details.)

The sequences tables contain the sequences of each alignment stored in the align-

ments tables. Each sequence has an index SEQ INDEX starting with 1. Paired with

the ALI ID column the SEQ INDEX column forms a constraint (unique key) on the

sequences table. Accordingly, there can only be one sequence with index i for the same

alignment. This ensures that there can be multiple sequences for one alignment but

prevents the possible error that the same sequences are added to the database multiple

times. Besides the sequences themselves, information such as the nucleotide or amino

acid composition of the sequence are stored in the table. (See sections B.6 and B.7 for

more details.)

The modelparameters tables. The estimated parameters for the sequence evolu-

tion models that were evaluated on the alignments in the alignments table are stored

in the modelparameters table. The two tables are connected using the ALI ID column.

Each row in modelparameters includes the parameters of one evaluated sequence evo-

lution model such as the equilibrium state frequencies STAT FREQ *, the substitution
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Figure 2.4: The figure shows an enhanced Entity-relationship (EER) diagram of
the EvoNAPS database using Crow’s feet notation. For simplicity only primary and
foreign keys as well as columns involved in constraints are depicted. The database is
symmetric in the sense that, except for the dataorigin table, for each table containing
parameters and information of DNA alignments there exists a corresponding table for
protein alignments. The relational design of the database is depicted with the dotted
lines connecting the tables. Primary keys are depicted with a yellow symbol. If a
column is part of a constraint, it is depicted in blue. A column serving as a foreign key
is depicted with a red symbol. The figure was created using the reverse engineering
tools of the MySQL Workbench program available at https://www.mysql.com/
products/workbench/.

https://www.mysql.com/products/workbench/.
https://www.mysql.com/products/workbench/.
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rates RATE *, possibly the shape parameter alpha ALPHA, the proportion of invari-

able sites PROP INVAR, and so on. Additionally, information regarding how the model

performed is provided, such as the logarithmic likelihood (LOGL) and also the values

for AIC, BIC, AICc as well as their calculated weights. There exists a constraint on

the modelparameters table that forces the ALI ID, MODEL NAME and TIME STAMP

columns to form a unique key. This constraint ensures that the same results are not

added multiple times and/or that the data is not overwritten by possible future data

imports. The timestamp TIME STAMP is hereby taken from the *.iqtree output file.

This ensures that each model MODEL NAME that was evaluated on alignment ALI ID

in one IQ-Tree2 run (given by TIME STAMP) can only be added once. Furthermore, the

column IQTREE VERSION, which states the version of IQ-Tree that has been used to

evaluate the model, and the random number seed stored in the RANDOM SEED column,

ensure that an exact reproduction of the data is possible. The KEEP IDENT column

states whether IQ-Tree was run with the --keep-ident option (1) or not (0). (See

sections B.8 and B.9 for more details.)

The trees tables. For each alignment there are at least two trees stored in the trees

table: the initial tree T used for the evaluation of the candidate models and the ML

tree. Besides the trees, also the name of the model and the model parameter estimates

that were used for tree reconstruction are included. In case of DNA alignments, the

initial tree was always inferred using model GTR+I+G4, in case of AA alignments

model LG+I+G4 was used. The ML tree was inferred using the best-fit model M

that was determined during model selection. In comparison to the model parameters

as stored in the modelparameters tables, the parameters of the best-fit model M were

estimated based on the ML tree (and not the initial tree). Furthermore, the parameters

of model M were optimized on the ML tree in a step following the ML tree search.
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For each tree in the trees tables the NEWICK STRING, TREE LENGTH, the TREE DIA-

METER, and statistics regarding the branch length, e.g., MEAN BL, are stored. The

columns ALI ID, TIME STAMP and TREE TYPE form a unique key constraint to ensure

data integrity. The column TREE TYPE is simply a flag stating whether the concerned

tree is a ML tree or initial tree. Accordingly, there can at most be two trees with

the same ALI ID and TIME STAMP. The columns IQTREE VERSION, KEEP IDENT

and RANDOM SEED ensure data reproducibility. (See sections B.10 and B.11 for more

details.)

The branches tables. Each branch length (BL) in a tree is stored in the branches

table and is connected to its corresponding tree in the trees table via a foreign key

formed by ALI ID, TIME STAMP and TREE TYPE. Additionally, the columns forming

the foreign key are paired with the BRANCH INDEX, starting at 1, to form a unique

key constraint on the table. The constraint ensures that the same branches are not

added multiple times. The branches table include the branch lengths, characteristics

regarding the branch such as whether it is internal or external, its splitsize and statistics

regarding path lengths, e.g., MEAN PATH. Note that if the branch is external, then the

leaf connected to the branch coincides with the sequence stored in the sequences table

where SEQ INDEX equals the BRANCH INDEX. (See sections B.12 and B.13 for more

details.)

The models tables in the database gives a short description and overview of the

parameters of the different substitution rates matrices. The table is connected to the

trees and modelparameters table using the unique MODEL NAME column in the models

table that serves as foreign key connecting to the BASE MODEL column in both the

trees and modelparameters tables. (See sections B.2 and B.3 for more details.)



CHAPTER 2. RESOURCES AND METHODS 47

Overall, each alignment stored in the alignments table can be linked to its source

database as described in the dataorigin table. The sequences as they appear in the

original alignment are stored in the sequences table. The parameters of each sequence

evolution model evaluated on the alignment are stored in the modelparameters table.

The initial tree that was used for model evaluation as well as the inferred ML tree are

stored in the trees table. For each tree the branch lengths as well statistics regarding

its branches (e.g., splitsize, mean PL) are stored in the branches table.



Chapter 3

Results

The workflow that was introduced in section 2.2 was applied to the alignments from the

three sources that were described in section 2.1. Overall, 22,678 DNA alignments and

6,614 AA alignments were analysed. For each alignment the best-fit model (according

to BIC) was determined in a model selection step, which was then used in a ML tree

search. Overall, the model parameters of over 4.2 million evaluated DNA models and

over 2.5 million evaluated protein models were gathered. Furthermore, over 32,000 ML

trees were inferred from the alignments. Table 3.1 gives an overview of the size of

the EvoNAPS database. Notably, some of the trees and evaluated models stem from

additional IQ-Tree2 runs with enabled --keep-ident flag.

The EvoNAPS database comes equipped with various filter options that the user can

employ to search for data that closely matches the one they want to simulate. The

filter options can be classified according to the tables in the EvoNAPS database that

are being searched.

The alignments table can be used to filter for alignments that stem from a specific

source (using the FROM DATABASE column). Furthermore, one can restrict the search

48
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Table 3.1: Size of the EvoNAPS database. The keep-ident column states whether the
corresponding numbers were produced by IQ-Tree2 runs with (+) or without (-) the
--keep-ident option.

keep-ident DNA Protein
Alignments 22,678 6,614
Sequences 1,893,846 175,287
Model evaluations - 3,817,531 2,548,436
ML trees - 22,678 6,614
initial trees - 22,678 6,614
Model evaluations + 456,206 16,041
ML trees + 2,769 40
initial trees + 2,769 40
BLs 8,539,464 672,738

to alignments with a certain number of sequences, sites, patterns and/or parsimony

informative sites.

The modelparameters table can be searched for different evolutionary models of interest

and how well they performed in comparison to each other using, e.g., their Akaike or

Schwarz weights (Burnham and Anderson, 2001; Wagenmakers and Farrell, 2004).

The trees stored in the trees table can be filtered regarding their overall length, diame-

ter, the sum of internal BLs and/or mean BLs. Additionally, the parameter estimates

of the best-fit model are also included in the table.

The remainder of this chapter will give examples on how to use the provided features

and filter options to search for alignments, models parameter estimates and/or trees

stored in the EvoNAPS database.
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3.1 Extracting model parameter estimates

In this example we want to obtain model parameter estimates of the DNA sequences

evolution model GTR+I+G to use them as input for sequence simulations. The pa-

rameters estimates of interest are the equilibrium state frequencies, the relative sub-

stitution rates, the proportion of invariable sites (+I ) and the shape parameter alpha.

Furthermore, we want to restrict the search to model parameters that were estimated

on alignments that contain at least 10 sequences and with at least 100 aligned sites.

First of all, we are presented with two options, whether to search for model GTR+I+G

in the dna modelparameters or the dna trees table. Both tables include parameter

setting of evolutionary models that were estimated based on biological data. However,

the model parameters in the dna modelparameters table were calculated during model

selection and were estimated based on the initial tree. In comparison, the dna trees

table includes the parameter settings of the best-fit model that was used for the ML

tree search. Additionally, the model parameters were further optimized on the ML tree

in a final step during the pyhlogenetic analysis.

Accordingly, the advantage of searching in the dna trees table is that we always obtain

optimized parameters. However, the number of available parameter settings in the

dna trees table is considerably smaller than in the dna modelparameters table (see table

3.1). Should the user decide to search the dna modelparameters table to obtain a larger

number of and more diverse parameter settings, we recommend restricting the search

to models that fit the alignment considerably well using, e.g., their ”Schwarz” weights

(see chapter 1.2.2; Burnham and Anderson, 2001).

Independent on which table is chosen for the search, in both cases features found in the

dna alignments table are used to filter the results. These features are the number of
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Figure 3.1: The figure depicts the distribution of the parameters of the model
GTR+I+G4 exported from the EvoNAPS database after restricting the search to mod-
els that were evaluated on alignments with at least 10 sequences and at least 100 sites.
On the top the parameter distributions that were exported from the dna trees table
are visualized. Overall, 723 trees were found with the given restrictions. The search in
the dna modelparameters table was further restricted to only output result of models
that fit the data considerably well (wBIC > 0.5). Overall, 2048 evaluated models that
satisfied the restrictions were found in the dna modelparameters table. The resulting
parameter distribution are depicted on the bottom.
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sequences (≥ 10) and sites (≥ 100) in the alignment the model parameter estimations

are based on. Accordingly, the query created to fetch the model parameter estimates

joins the dna alignments table with either the dna trees or the dna modelparameters

table.

In our example, the search in the dna trees table results in 723 parameter settings

of model GTR+I+G4. The search in the dna modelparameters table is restricted to

models with a ”Schwarz” weight of wBIC ≥ 0.5, which results in a total of 2047 hits.

The distributions of the fetched model parameters are displayed in figure 3.1.

The obtained model parameter settings can directly be used as input for sequence

simulations. Accordingly, the number of different parameter settings coincides with the

number of hits in the database. However, sometimes there is a need for more diverse

and a greater number of parameter settings, e.g., for the generation of training data

for machine learning algorithms. In these cases, parameters can be sampled from the

individual parameter distributions (as depicted in figure 3.1) as opposed to the joint

distributions. Hence, the number of possible parameter settings is increased by the

number of possible combinations of the individual parameters. Note, however, that

with individual parameter sampling the dependencies between parameters are being

disregarded. Thus, while the individual parameter estimates are still based on biological

data, the combination of the sampled parameters might be unrealistic.

3.2 Extracting branch lengths

The choice of branch lengths can greatly influence the outcome of sequence simulation as

they represent the mean number of mutations per site along that branch. The branches

tables in the EvoNAPS database provide the user with branch lengths estimates based

on empirical alignments.
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Table 3.2: The table shows the number of hits in the EvoNAPS database obtained in
the search for branch length estimates of ML trees containing 60-80 taxa. The results
are broken down according to the source of the alignments the found trees are based
on (source) as well as the type of branch (internal or external) of the obtained branch
lengths.

source #trees #branches type mean BL max BL

DNA Lanfear 246
15,912 internal 0.03193 4.45185
16,650 external 0.10169 10.17519

DNA OrthoMaM 518
35,832 internal 0.02204 1.20669
37,386 external 0.03701 1.10516

DNA PANDIT 190
12,393 internal 0.18799 7.96281
12,963 external 0.45778 13.01255

AA PANDIT 208
13,680 internal 0.28576 13.20629
14,304 external 0.58002 10.18376

In our example we want to sample empirical branch length estimates for a tree contain-

ing 60-80 taxa and restrict the search to ML trees. Overall, EvoNAPS holds 1,162 trees

that fit the requirements, resulting in 159,120 branch length estimates to sample from.

The majority of trees were inferred based on DNA alignments from the OrthoMaM

database (518 trees), followed by DNA alignments provided by Rob Lanfear (246) and

AA alignments (208) and DNA alignments (190) from the PANDIT database (see table

3.2).

Figure 3.2 shows how the branch lengths are distributed. Evidently, the external

branches tend to be longer than the internal branches. Furthermore, branch length

estimates based on alignments from the PANDIT database tend to be considerably

higher than those of the Lanfear and OrthoMaM databases. This difference in branch

lengths reflect the general evolutionary distance between the sequences in the align-

ments, which are only mammalian in the OrthoMaM alignments, but can stem from

all domains in life in the PANDIT alignments.
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DNA_Lanfear DNA_OrthoMaM DNA_Pandit AA_Pandit
source

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

br
an

ch
 le

ng
th

external
internal
mean

Figure 3.2: Branch length distributions of trees with 60-80 taxa that were inferred
based on alignments from the different sources Lanfear, OrthoMaM and PANDIT.
The PANDIT data sets are further split into DNA and AA alignments (Lanfear and
OrthoMaM alignments are all DNA alignments). The boxplots show how the branch
lengths are distributed. The whiskers mark the 5th and 95th percentile. Outliers
were excluded for clarity. The distributions of branch lengths of external branches are
depicted in blue, those of internal branches in orange. The mean branch lengths are
indicated with a green triangle. The overall number of branch lengths as well as the
maximum values for the branch lengths for each data source can be viewed in table 3.2.

There are additional filter options should the user wish to also consider the evolutionary

distances between the taxa in the tree. These options are either the tree diameter (which

indicates the maximum path length between two taxa in the tree) or the pairwise

distances between sequences that were calculated using the best-fit model (see features

23-28 in table 2.4 on page 28).
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Figure 3.3: The figure shows how the summary statistics of the AA alignments in the
EvoNAPS database are distributed. The distributions include the summary statistics
of overall 6,654 AA alignments.

3.3 Extracting summary statistics

In this example, we want to extract the summary statistics of all protein alignments

found in the EvoNAPS database. So far, EvoNAPS holds 6,654 protein alignments, all

of which originate from the PANDIT database. Figure 3.3 shows the summary statistics

of the alignments, which include the number of sequences, columns and distinct patterns

as well as the proportion of sites that are parsimony informative, singleton, constant

or wildcards/gaps. While the maximum number of sequences in an alignment is 2,562,

the median number of sequences is 11.

3.4 Obtaining results of model selection

In this example, we want to obtain the results of model selection. For this purpose the

best-fit models from the trees tables were extracted. The two tables 3.3 and 3.4 show

how often DNA and protein model respectively were found to be the best-fit model

(according to BIC). The columns of the tables depict the RHAS, which are ordered

according to their number of free parameters from left to right. The substitution rate
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Table 3.3: The table shows the results of model selection by depicting how often which
DNA model was chosen as best-fit model (according to BIC). The substitution models
are ordered top to bottom according to how often they were found to be the best-fit
model. The RHAS models are ordered left to right according to the number of free
parameters of the model.
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F81+F 22 26 19 4 6 0 0 0 0 0 0 0 0 77 0.30
JC 39 19 34 1 9 0 0 0 0 0 0 0 0 102 0.40
TIMe 0 2 11 72 2 8 32 16 3 1 0 0 0 147 0.58
TIM2e 1 4 36 99 3 12 38 12 0 0 0 0 0 205 0.81
TNe 5 11 56 103 9 35 34 8 3 0 0 0 0 264 1.04
K3P 3 14 64 167 10 34 63 23 12 2 0 0 0 392 1.54
K3Pu+F 6 16 40 132 9 35 135 30 8 4 1 0 0 416 1.63
TPM2 6 24 224 284 15 41 84 16 8 0 0 0 0 702 2.76
TIM+F 1 9 38 211 3 51 361 124 20 6 0 0 0 824 3.24
HKY+F 45 104 256 200 23 56 173 23 1 0 0 1 1 883 3.47
TIM3e 1 0 63 405 7 65 334 87 10 1 1 0 0 974 3.83
TN+F 4 37 93 313 15 80 362 100 16 0 0 0 0 1020 4.01
TPM2u+F 7 33 129 315 15 46 386 84 15 1 0 0 0 1031 4.05
SYM 1 1 26 315 8 52 430 173 65 13 6 0 5 1095 4.30
K2P 48 133 469 327 46 96 81 17 2 1 0 0 0 1220 4.79
TIM2+F 4 6 53 449 9 62 566 155 37 6 2 1 2 1352 5.31
TVM+F 5 11 206 569 49 180 695 209 58 18 6 3 1 2010 7.90
TVMe 2 10 118 721 44 163 832 204 66 11 4 1 1 2177 8.56
TIM3+F 4 16 258 751 10 172 787 242 46 12 3 1 0 2302 9.05
TPM3u+F 45 106 868 661 79 142 405 84 6 0 1 0 0 2397 9.42
TPM3 28 64 596 895 44 186 735 54 10 1 1 1 0 2615 10.28
GTR+F 2 3 160 733 11 166 1302 618 185 36 14 7 5 3242 12.74
sum 279 649 3817 7727 426 1682 7835 2279 571 113 39 15 15 25447
% 1.10 2.55 15.00 30.37 1.67 6.61 30.79 8.96 2.24 0.44 0.15 0.06 0.06

matrices depicted in the rows are ordered according to how often they were part of the

best-fit model.

DNA models. Table 3.3 shows the results of model selection of the DNA alignments

by depicting how often which model was found to be best-fit model. The substitution

rate matrix most often found to be part of the best-fit model is the GTR rate matrix

comprising 3,242 of the 25,447 cases (12.74%). The RHAS model that was most fre-

quently part of best-fit model is the free-rate model with four free rates (+R4 ) and

accounts for 7,835 cases (30.79%). The Gamma model paired with a proportion of in-
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Table 3.4: The table shows the results of model selection by depicting how often
which protein model was chosen as best-fit model (according to BIC). The substitution
models are ordered top to bottom according to how often they were found to be the
best-fit model. The RHAS models are ordered left to right according to the number of
free parameters of the model
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LG 21 37 991 386 54 57 34 45 23 16 2 0 1 1667 25.05
Q.pfam 13 31 624 247 52 41 48 51 42 16 9 0 3 1177 17.69
Q.yeast 17 15 288 70 29 4 8 4 1 1 0 0 0 437 6.57
WAG 40 39 195 85 27 20 11 6 3 1 0 0 0 427 6.42
Q.insect 15 22 231 48 13 4 2 6 0 3 0 0 0 344 5.17
LG+F 0 0 163 68 7 10 12 16 6 7 2 0 0 291 4.37
Q.pfam+F 1 4 103 55 9 24 29 23 13 9 2 0 2 274 4.12
VT 36 31 93 35 19 16 14 12 4 0 1 0 0 261 3.92
Blosum62 18 14 45 25 11 11 5 5 1 1 0 0 0 136 2.04
PMB 28 13 47 12 9 3 3 1 2 0 0 0 1 119 1.79
Q.plant 4 5 85 20 1 1 1 0 1 0 0 0 0 118 1.77
Q.mammal 20 20 61 7 7 1 0 0 0 0 0 0 0 116 1.74
WAG+F 5 7 39 22 6 12 11 8 2 0 0 1 0 113 1.70
JTT 12 7 76 10 6 0 0 1 0 0 0 0 0 112 1.68
VT+F 2 3 37 13 6 10 8 7 4 3 2 0 0 95 1.43
FLU 10 4 66 5 6 2 1 0 0 0 0 0 0 94 1.41
mtZOA 3 1 69 3 7 0 2 1 1 0 0 0 0 87 1.31
Q.yeast+F 0 1 48 14 3 2 3 0 2 0 1 0 0 74 1.11
Q.insect+F 3 3 43 12 2 0 1 0 0 0 0 0 0 64 0.96
rtREV 1 7 42 6 4 1 0 1 0 0 0 0 0 62 0.93
JTTDCMut 5 10 34 9 2 0 0 0 0 0 0 0 0 60 0.90
cpREV 7 2 30 4 4 0 0 1 0 0 0 0 0 48 0.72
Q.bird 14 8 20 2 0 0 0 0 0 0 0 0 0 44 0.66
Blosum62+F 4 1 10 7 2 5 4 2 1 1 2 0 0 39 0.59
DCMut 5 6 23 2 0 0 1 0 0 0 0 0 0 37 0.56
JTT+F 0 1 19 5 1 1 4 2 0 0 0 0 0 33 0.50
PMB+F 0 0 17 3 2 2 5 1 0 1 1 0 1 33 0.50
Q.mammal+F 1 2 26 3 0 1 0 0 0 0 0 0 0 33 0.50
Dayhoff 6 7 17 2 0 0 0 0 0 0 0 0 0 32 0.48
mtInv+F 1 0 22 3 1 2 0 1 1 1 0 0 0 32 0.48
rtREV+F 2 0 20 3 0 0 1 1 1 0 0 0 0 28 0.42
FLU+F 1 2 19 1 1 2 0 0 0 0 0 0 0 26 0.39
cpREV+F 0 2 11 2 0 0 1 0 0 0 0 0 0 16 0.24
HIVb 5 2 8 1 0 0 0 0 0 0 0 0 0 16 0.24
Q.plant+F 0 0 11 2 1 2 0 0 0 0 0 0 0 16 0.24
JTTDCMut+F 2 0 10 2 0 0 0 0 0 0 0 0 0 14 0.21
Q.bird+F 3 3 5 1 0 0 0 0 0 0 0 0 0 12 0.18
HIVw 5 1 4 0 0 0 0 0 0 0 0 0 0 10 0.15
FLAVI 2 3 4 0 0 0 0 0 0 0 0 0 0 9 0.14
Dayhoff+F 1 2 2 1 0 0 0 0 0 0 0 0 0 6 0.09
mtMet 0 1 3 1 0 0 0 1 0 0 0 0 0 6 0.09
HIVb+F 1 0 4 0 0 0 0 0 0 0 0 0 0 5 0.08
HIVw+F 2 1 2 0 0 0 0 0 0 0 0 0 0 5 0.08
mtInv 2 0 3 0 0 0 0 0 0 0 0 0 0 5 0.08
mtZOA+F 0 0 4 0 0 0 0 0 0 0 0 0 0 4 0.06
DCMut+F 0 0 3 0 0 0 0 0 0 0 0 0 0 3 0.05
mtMet+F 2 0 1 0 0 0 0 0 0 0 0 0 0 3 0.05
mtREV 0 0 2 1 0 0 0 0 0 0 0 0 0 3 0.05
mtVer 1 1 0 1 0 0 0 0 0 0 0 0 0 3 0.05
FLAVI+F 1 0 1 0 0 0 0 0 0 0 0 0 0 2 0.03
mtREV+F 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0.03
mtMAM 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0.02
sum 322 320 3683 1199 292 234 209 196 108 60 22 1 8 6654
% 4.84 4.81 55.35 18.02 4.39 3.52 3.14 2.95 1.62 0.90 0.33 0.02 0.12
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variable sites (+I+G4 ) comes second by a small margin counting 7,727 cases (30.37%).

Overall, the model most often found to be the best-fit model is the GTR+R4 model

with 1,302 cases (5.12%).

AA models. Table 3.4 shows how often which protein sequence evolution model was

found to be best-fit model (according to BIC). The model most often found to be the

best-fit model is LG+I+G4 with 991 out of 6,654 cases (14.89%). The rate matrix LG

was part of the best-fit model in 25.05% of cases. The RHAS model +G4 was part

of the best-fit model in 55.35% of cases and model +G4+I in 18.02% of cases. Rate

matrices assuming the predefined equilibrium state frequencies of the matrix were part

of the best-fit model in 81.62% of cases as compared to using the empirical estimation

of frequencies (+F ) with 18.38%.

Note, that the displayed numbers in tables 3.3 and 3.4 also include the results of model

selection of IQ-Tree2 runs with --keep-ident flag. Hence, the number of conducted

model selections is greater than the number of alignments in the EvoNPAS database.



Chapter 4

Discussion

The EvoNAPS database holds parameter settings of numerous evolutionary models

and phylogenetic trees that are based on biological data. EvoNAPS allows the user to

explore how model and tree parameters are distributed in biological data in different

contexts by using the large number of available features as search filters. The last

chapter gave some examples on what features can be extracted and/or can be used for

filtering (sections 3.1-3.4).

So far, EvoNAPS holds data resulting from analysing alignments provided by Rob Lan-

fear (Lanfear, 2019) and that of the OrthoMaM (Douzery et al., 2014) and PANDIT

(Whelan et al., 2006) databases. Accordingly, the gathered features stored in EvoNAPS

are biased. The majority of DNA alignments originate from the OrthoMaM database

and, accordingly, hold strictly mammalian sequences. Protein alignments are still un-

derrepresented and consist of primarily small alignments (in regards to the number of

sequences; see figure 3.3). Hence, an expansion of the database with additional align-

ments is required to make EvoNAPS more representative. The expansion can easily be

achieved using the custom-made workflow as described in chapter 2.2).
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Notably, there exists a database similar in spirit to the EvoNAPS database, namely

the RAxML Grove database (Höhler et al., 2022). RAxML Grove provides over 60,000

phylogenetic trees and the respective model parameters estimates. They are based on

anonymized empirical alignments that were analysed using the RAxML (Stamatakis,

2014) or RAxML-NG (Kozlov et al., 2019) inference software on two web servers. Like

EvoNAPS, the RAxML Grove database was created to provide input for sequence

simulations that is based on empirical data.

However, there exist some clear difference between the two databases especially regard-

ing how the data that they hold was generated. For EvoNAPS we followed a typical

phylogenetic inference workflow that includes a model selection step as well as a tree

search using the best-fit model. The RAxML and RAxML-NG webserver offer the same

choice of models as the ones that were tested in our workflow (see section 2.2 for details).

However, the workflow provided on the two webserver does not include model selection

based on the alignment. Instead, the user can choose a model themselves. Hence, the

choice often falls onto popular models, but that do not necessarily fit the alignment

well. For instance, for DNA alignments the popular GTR rate matrix (Tavaré, 1986)

was chosen in 99% of cases, whereas the remaining rate matrices are underrepresented.

In comparison, the trees in the EvoNAPS database were inferred using the best-fit

model (according to BIC). As a result, the models used for the ML tree search are more

diverse as compared to those in RAxML Grove (see table 3.3). For example, DNA

models with the rate matrix GTR comprise 12.74% of cases in EvoNAPS (as compared

to 99% in RAxML Grove).

Additionally, besides the results of the tree search, also the detailed results of model

selection are included in the EvoNAPS database (as stored in the modelparameters

tables). Therefore, it is transparent how well the models fit the alignment in comparison
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to each other. Furthermore, the model parameters estimates of the evaluated models

can also be used as input for sequence simulations.

Another fundamental difference between the two databases is that in RAxML Grove

the alignments that have been used for parameter estimation were provided by the users

of the RAxML and RAxML-NG webserver and, hence, were anonymized. Checking the

original data sets and reproducing the results is, therefore, impossible. In comparison,

the alignments that have been used to create the data for EvoNAPS are known and

available as they were taken from published sources (see section 2.1).



Chapter 5

Conclusion and Outlook

Phylogenetic studies heavily rely on simulated data. However, it is often unclear how the

choose the input for sequence simulations. For this purpose the EvoNAPS database was

built. It is a database providing parameter estimates of numerous models of sequence

evolution as well as phylogenetic trees that are based on biological data.

To built the EvoNAPS database, biological alignments from published sources were

gathered and analysed by applying a typical model-based phylogenetic workflow. The

workflow includes a model selection step with subsequent ML tree search and relies on

the phylogenetic inference software IQ-Tree2 (Minh et al., 2020) as well as custom-made

Phyton scripts. The alignments and inferred trees as well as corresponding model pa-

rameter estimates were extracted from the results and stored in the EvoNAPS database.

Additionally, various features regarding the alignment, the evaluated models and phy-

logenetic trees were gathered to serve as filter options in the database. These filter

options allow the user to find alignments, models and/or trees that fit the data they

want to simulate.
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So far, EvoNAPS holds over 22,600 DNA and over 6,600 protein alignments that were

gathered from three published sources. The sources are the online repository of Rob

Lanfear (Lanfear, 2019), the PANDIT database (Whelan et al., 2006) and the Or-

thoMaM database (Douzery et al., 2014). The EvoNAPS database holds over 64,000

phylogenetic trees (ML or initial) with the corresponding branch length estimates. The

database provides model parameter estimates of 286 different DNA models and 364

different protein models. Overall, the parameter estimates of over 6.3 million model

evaluations are stored in EvoNAPS.

Additional alignments will be added to the database to make the data in EvoNAPS

more representative. This expansion can be easily achieved by using the custom-made

workflow that was discussed in chapter 2.2. Potential future sources for additional

alignments are the Selectome (Moretti et al., 2014) and TreeBase (Carroll et al., 2007)

databases.

Furthermore, a potential future project involves assigning taxonomic identifies accord-

ing to the NCBI Taxonomy Database (Schoch et al., 2020) to the sequences in the

alignments. The identifies can then serve as filters, but also provide a form of measure-

ment for which taxa are well and which are still under-represented in the EvoNAPS

database.

Yet another future project could entail including additional models of sequence evo-

lution to the EvoNAPS database. So far, only the restrictive models as discussed in

section 1.1 (and listed in A.1 and A.2 in the appendix) were evaluated. Potential

additional models that are also implemented in IQ-Tree2 are the Lie-Markov models

(Woodhams et al., 2015; Hannaford et al., 2020).
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Overall, the EvoNAPS database presents a valuable resource to those studying model-

based phylogenetics. EvoNAPS will greatly aid future phylogenetic research, especially

when expanded.



Appendix A

Substitution rate matrices

Table A.1: Named DNA substitution rate matrices implemented in IQ-Tree 2.

Model df Comment

JC 0 Equal substitution rates and equal base frequencies
(Jukes and Cantor, 1969).

K2P 1 Unequal transition/transversion rates and equal
base freq (Kimura, 1980).

K3P 2 Three substitution types model and equal base freq
(Kimura, 1981).

TNe 2 Like TN but equal base freq.
TPM2 2 AC=AT, AG=CT, CG=GT and equal base freq.
TPM3 2 AC=CG, AG=CT, AT=GT and equal base freq.
F81 3 Equal rates but unequal base freq (Felsenstein,

1981).
TIM2e 3 Like TIM2, see below, but equal base freq.
TIM3e 3 Like TIM3, see below, but equal base freq.
TIMe 3 Like TIM, see below, but equal base freq.
HKY 4 Unequal transition/transversion rates and unequal

base freq (Hasegawa et al., 1985).

Cont’d on following page
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Table A.1, cont’d

Model df Explanation

TVMe 4 Like TVM but equal base freq.
K3Pu 5 Like K3P but unequal base freq.
SYM 5 Symmetric model with unequal rates but equal base

freq (Zharkikh, 1994).
TN 5 Like HKY but unequal purine/pyrimidine rates

(Tamura and Nei, 1993).
TPM2u 5 Like TPM2 but unequal base freq.
TPM3u 5 Like TPM3 but unequal base freq.
TIM 6 Transition model, AC=GT, AT=CG and unequal

base freq.
TIM2 6 AC=AT, CG=GT and unequal base freq.
TIM3 6 AC=CG, AT=GT and unequal base freq.
TVM 7 Transversion model, AG=CT and unequal base freq.
GTR 8 General time reversible model with unequal rates

and unequal base freq (Tavaré, 1986).
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Table A.2: Named protein substitution rate matrices implemented in IQ-Tree 2.

Model Region Explanation

Blosum62 nuclear BLOcks SUbstitution Matrix (Henikoff and
Henikoff, 1992).

cpREV chloroplast chloroplast matrix (Adachi and Hasegawa,
1996).

Dayhoff nuclear General matrix.
DCMut nuclear Revised Dayhoff matrix (Kosiol and Gold-

man, 2005).
FLAVI viral Flavivirus (Le and Vinh, 2020)
FLU viral Influenza virus (Dang et al., 2010).
HIVb viral HIV between-patient matrix HIV-Bm

(Nickle et al., 2007).
HIVw viral HIV within-patient matrix HIV-Wm

(Nickle et al., 2007).
JTT nuclear General matrix (Jones et al., 1992).
JTTDCMut nuclear Revised JTT matrix (Kosiol and Goldman,

2005).
LG nuclear General matrix (Le and Gascuel, 2008).
mtART mitochondrial Mitochondrial Arthropoda (Abascal et al.,

2007).
mtMAM mitochondrial Mitochondrial Mammalia (Yang et al.,

1998).
mtREV mitochondrial Mitochondrial Vertebrate (Adachi and

Hasegawa, 1996).
mtZOA mitochondrial Mitochondrial Metazoa (Rota-Stabelli

et al., 2009).
mtMet mitochondrial Mitochondrial Metazoa (Le et al., 2017).
mtVer mitochondrial Mitochondrial Vertebrate (Le et al., 2017).
mtIn mitochondrial Mitochondrial Inverterbrate (Le et al.,

2017).
PMB nuclear Probability Matrix from Blocks, revised

BLOSUM matrix (Veerassamy et al., 2003).
Q.bird nuclear Q matrix estimated for birds (Minh et al.,

2021).

Cont’d on following page
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Table A.2, cont’d

Model Region Explanation

Q.insect nuclear Q matrix estimated for insects (Minh et al.,
2021).

Q.mammal nuclear Q matrix estimated for mammals (Minh
et al., 2021).

Q.pfam nuclear General matrix estimated from Pfam ver-
sion 31 (2017) database.

Q.plant nuclear Q matrix estimated for plants (Minh et al.,
2021).

Q.yeast nuclear Q matrix estimated for insects (Minh et al.,
2021).

rtREV viral Retrovirus (Dimmic et al., 2002).
VT nuclear General ‘Variable Time’ matrix (Müller and

Vingron, 2000).
WAG nuclear General matrix (Whelan et al., 2006).



Appendix B

Tables of the EvoNAPS database

A detailed description of the tables found in the EvoNAPS database can be found in

the sub-chapters below.

Note, that sometimes the tables containing information regarding DNA and protein

alignments are identical (e.g., the alignments tables). However, in some tables there

are differences in the number and kind of columns (e.g., sequences, modelparameters,

trees tables).

B.1 Table: dataorigin
Content: The dataorigin table holds information regarding the original sources of the
alignments in the EvoNAPS database.

Constraints:

• PRIMARY KEY (DATABASE KEY)

• UNIQUE KEY (DATABASE ID)
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Table B.1: The dataorigin table.

Column Name Datatype Comment

DATABASE KEY int(11) Autoincremented primary key.
DATABASE ID varchar(100) This field holds the name of the source

database, which in turn serves as the ID of
said database. The entries of this column
must be unique.

DOI varchar(100) States the DOI of the paper describing the
source database, should there exist one.

PUBMED ID varchar(100) States the PUBMED-ID of the paper de-
scribing the source database, should there
exist one.

LAST UPDATED varchar(100) States the date the source database was last
updated, if available.

SEQ TYPE varchar(100) States whether the source database holds of
DNA and/or protein alignments.

DESCRIPTION text A text field that gives a short description of
the source database.

SIZE text States the number of alignments the source
database holds.

COMMENT text An optional text field for any comments re-
garding the source database.

B.2 Table: aa models
Content: The aa models table lists the different protein substitution rate matrices that
were tested in the EvoNAPS workflow and includes the assumed amino acid frequencies
and substitution rates.

Constraints:

• PRIMARY KEY (MODEL KEY)

• UNIQUE KEY (MODEL NAME)
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Table B.2: The aa models table.

Column Name Datatype Comment

MODEL KEY int(11) Autoincremented primary key.
MODEL NAME varchar(100) Name of the protein model (substitution

rate matrix). The name must be unique.
REGION varchar(50) States the region of the cell where the pro-

teins from which the substitution rate ma-
trix was derived from are abundant. Op-
tional, default is NULL.

EXPLANATION varchar(100) This field contains a short description of the
model.

STAT DIS TYPE varchar(50) This field states whether the state frequen-
cies of the stationary distribution assumed
in the model are empirical (counted fre-
quencies from the alignment) or if they are
predefined by the model.

FREQ A decimal(10,9) Either NULL if STAT DIS TYPE= ’empir-
ical’. Else, the frequency of the amino acid
alanine (A) assumed by the model.

. . . . . . . . .
FREQ V decimal(10,9) Either NULL if STAT DIS TYPE= ’empir-

ical’. Else, the frequency of the amino acid
tyrosine (Y) assumed by the model.

RATE AR decimal(15,9) The substitution rate from aa A to aa R
assumed by the model.

. . . . . . . . .
RATE YV decimal(15,9) The substitution rate from aa Y to aa V

assumed by the model.
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B.3 Table: dna models
Content: The dna models table lists the different DNA substitution rate matrices that
were tested in the EvoNAPS workflow.

Constraints:

• PRIMARY KEY (MODEL KEY)

• UNIQUE KEY (MODEL NAME)

Table B.3: The dna models table.

Column Name Datatype Comment

MODEL KEY int(11) Autoincremented primary key.
MODEL NAME varchar(100) Name of the DNA model (substitution rate

matrix). The name must be unique.
FREE
PARAMETERS

int(11) States the number of free parameters of the
model.

BASE
FREQUENCIES

varchar(30) States whether the assumed base frequen-
cies of the model are uniform (0.25 for each
base) or unequal.

SUBSTITUTION
RATES

varchar(100) States (possible) restrictions the model has
on the substitution rates.

EXPLANATION varchar(100) This field contains a short description of the
model.

SUBSTITUTION
CODE

varchar(100) This field shows the substitution code of the
rate matrix.



APPENDIX B. TABLES OF THE EVONAPS DATABASE 73

B.4 Table: aa alignments
Content: The aa alignments table holds general information and characteristics re-
garding each protein alignment in the database.

Constraints:

• PRIMARY KEY (ALI KEY)

• UNIQUE KEY (ALI ID)

• FOREIGN KEY (FROM DATABASE) REFERENCES dataorigin
(DATABASE ID)

Table B.4: The aa alignments table.

Column Name Datatype Comment

ALI KEY int(11) Autoincremented primary key.
ALI ID varchar(250) Name of the alignment (alignment ID).

Must be unique.
FROM
DATABASE

varchar(100) States from which original database the
alignemnt stems from (e.g. PANDIT).
Serves as foreign key to connect to the
dataorigin table.

DESCRIPTION varchar(100) A field that can hold an optional comment
regarding the alignment. This can be left
blank and the default value is accordingly
NULL.

SEQUENCES int(11) This column states how many seqeunces
(taxa) the alignemnt holds.

COLUMNS int(11) This column states how many sites
(columns) the alignemnt has / states the
length of the alignment.

PARSIMONY
INFORMATIVE
SITES

int(11) States the number of parsimony informative
sites in alignment.

SINGELTON
SITES

int(11) States the number of singelton sites in align-
ment.

Cont’d on following page
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Table B.4, cont’d

Column Name Datatype Comment

CONSTANT SITES int(11) States the number of constant sites in align-
ment.

FRAC
WILDCARDS GAPS

decimal(5,4) States the fraction of wildcards and gaps in
the alignment.

DISTINCT
PATTERNS

int(11) States the number of distinct patterns in
alignment.

FAILED CHI2 int(11) States the number of sequences that failed
the chi2 (chi-squared) test. The test exam-
ines whether the nucleotide composition of
the sequences matches the mean nucleotide
frequencies across all sequences.

IDENTICAL SEQ int(11) States the number of identical sequences in
the alignment, should there be any. Default
is NULL.

EXCLUDED SEQ int(11) States the number of excluded sequences in
the alignment, should there be any. Default
is NULL.

B.5 Table: dna alignments
Content: The dna alignments table lists the different DNA substitution rate matrices
that were tested in the EvoNAPS workflow.

Constraints:

• PRIMARY KEY (ALI KEY)

• UNIQUE KEY (ALI ID)

• FOREIGN KEY (FROM DATABASE) REFERENCES dataorigin
(DATABASE ID)
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Table B.5: The dna alignments table.

Column Name Datatype Comment

ALI KEY int(11) Autoincremented primary key.
ALI ID varchar(250) Name of the alignment (alignment ID).

Must be unique.
FROM
DATABASE

varchar(100) States from which original database the
alignemnt stems from (e.g. PANDIT).
Serves as foreign key to connect to the
dataorigin table.

DESCRIPTION varchar(100) A field that can hold an optional comment
regarding the alignment. This can be left
blank and the default value is accordingly
NULL.

SEQUENCES int(11) This column states how many seqeunces
(taxa) the alignemnt holds.

COLUMNS int(11) This column states how many sites
(columns) the alignemnt has / states the
length of the alignment.

PARSIMONY
INFORMATIVE
SITES

int(11) States the number of parsimony informative
sites in alignment.

SINGELTON
SITES

int(11) States the number of singelton sites in align-
ment.

CONSTANT SITES int(11) States the number of constant sites in align-
ment.

FRAC
WILDCARDS GAPS

decimal(5,4) States the fraction of wildcards and gaps in
the alignment.

DISTINCT
PATTERNS

int(11) States the number of distinct patterns in
alignment.

FAILED CHI2 int(11) States the number of sequences that failed
the chi2 (chi-squared) test. The test exam-
ines whether the nucleotide composition of
the sequences matches the mean nucleotide
frequencies across all sequences.

Cont’d on following page
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Table B.5, cont’d

Column Name Datatype Comment

IDENTICAL SEQ int(11) States the number of identical sequences in
the alignment, should there be any. Default
is NULL.

EXCLUDED SEQ int(11) States the number of excluded sequences in
the alignment, should there be any. Default
is NULL.

B.6 Table: aa sequences
Content: The aa sequences table holds the sequences of each protein alignment in the
EvoNAPS database as well as information regarding each sequence.

Constraints:

• PRIMARY KEY (SEQ KEY)

• UNIQUE KEY (ALI ID,SEQ INDEX)

• FOREIGN KEY (ALI ID) REFERENCES aa alignments (ALI ID)

Table B.6: The aa sequences table.

Column Name Datatype Comment

SEQ KEY int(11) Autoincremented primary key.
ALI ID varchar(250) Name of the alignment (alignment ID).

Serves as foreign key to connect to the
aa alignments table.

SEQ INDEX int(11) This column holds the unique index (inte-
ger starting with 1) for each sequence of an
alignment.

SEQ NAME varchar(250) States the name of the sequence as it ap-
pears in the original alignment.

FRAC
WILDCARDS GAPS

decimal(10,9) States the fraction of wildcards and gaps in
the sequence.

Cont’d on following page
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Table B.6, cont’d

Column Name Datatype Comment

CHI2 P VALUE decimal(7,2) States the p-value of the Chi-Square test
for the sequence. The Chi-Square test tests
whether the amino acid composition of the
sequence fits the mean aa frequencies across
all sequences in the alignment.

CHI2 PASSED tinyint(1) States whether the sequence passed (1) or
failed (0) the Chi-Square test.

EXCLUDED int(11) States whether the sequence has been ex-
cluded from IQ-Tree calculations (without
the flag --keep-ident). IQ-Tree ex-
cludes a sequence from its computations if
there already exist at least two identical se-
quences in the alignment.

IDENTICAL TO varchar(10000) States to which sequence(s) the sequence is
identical to, if such (a) sequence(s) exist(s).

FREQ A decimal(10,9) The frequency of the amino acid alanine (A)
in the sequence.

. . . . . .
FREQ V decimal(10,9) The frequency of the amino acid tyrosine

(V) in the sequence.
SEQ mediumtext This text field contains the sequence (with

wildcards and gaps) as it appears in the
alignment.

B.7 Table: dna sequences
Content: The dna sequences table holds the sequences of each DNA alignment in the
EvoNAPS database as well as information regarding each sequence.

Constraints:

• PRIMARY KEY (SEQ KEY)

• UNIQUE KEY (ALI ID,SEQ INDEX)

• FOREIGN KEY (ALI ID) REFERENCES dna alignments (ALI ID)
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Table B.7: The dna sequences table.

Column Name Datatype Comment

SEQ KEY int(11) Autoincremented primary key.
ALI ID varchar(250) Name of the alignment (alignment ID).

Serves as foreign key to connect to the
dna alignments table.

SEQ INDEX int(11) This column holds the unique index (inte-
ger starting with 1) for each sequence of an
alignment.

SEQ NAME varchar(250) States the name of the sequence as it ap-
pears in the original alignment.

FRAC
WILDCARDS GAPS

decimal(10,9) States the fraction of wildcards and gaps in
the sequence.

CHI2 P VALUE decimal(7,2) States the p-value of the Chi-Square test
for the sequence. The Chi-Square test
tests whether the nucleotide composition of
the sequence fits the mean dna frequencies
across all sequences in the alignment.

CHI2 PASSED tinyint(1) States whether the sequence passed (1) or
failed (0) the Chi-Square test.

EXCLUDED int(11) States whether the sequence has been ex-
cluded from IQ-Tree calculations (without
the flag --keep-ident). IQ-Tree ex-
cludes a sequence from its computations if
there already exist at least two identical se-
quences in the alignment.

IDENTICAL TO varchar(10000) States to which sequence(s) the sequence is
identical to, if such (a) sequence(s) exist(s).

FREQ A decimal(10,9) The frequency of the base adenine (A) in
the sequence.

FREQ C decimal(10,9) The frequency of the base cytosine (C) in
the sequence.

FREQ G decimal(10,9) The frequency of the base guanine (G) in
the sequence.

FREQ T decimal(10,9) The frequency of the base thymine (T) in
the sequence.

Cont’d on following page
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Table B.7, cont’d

Column Name Datatype Comment

SEQ mediumtext This text field contains the sequence (with
wildcards and gaps) as it appears in the
alignment.

B.8 Table: aa modelparameters
Content: The aa modelparameters table holds the results of model selection. The
performance of each evaluated model (LogL, AIC, BIC,...) is documented as well as
the parameters of the model (state frequencies, rates, shape parameter alpha,...).

Constraints:

• PRIMARY KEY (MODELTEST KEY)

• KEY (BASE MODEL)

• UNIQUE KEY (ALI ID,TIME STAMP,MODEL)

• FOREIGN KEY (ALI ID) REFERENCES aa alignments (ALI ID)

• FOREIGNKEY (BASE MODEL) REFERENCES aa models (MODEL NAME)

Table B.8: The aa modelparameters table.

Column Name Datatype Comment

MODELTEST KEY int(11) Autoincremented primary key.
ALI ID varchar(250) Name of the alignment (alignment ID).
IQTREE VERSION varchar(100)
RANDOM SEED int(11) The random number seed used by IQ-Tree.
TIME STAMP datetime The timestamp as it appears in the *.iqtree

output file. The timestamp enables map-
ping of the tested model to one IQ-Tree run.

Cont’d on following page



80 APPENDIX B. TABLES OF THE EVONAPS DATABASE

Table B.8, cont’d

Column Name Datatype Comment

MODEL TYPE varchar(100) The type of model testing or the type of
models that were tested in the IQ-Tree run.
Will mostly be MF (the models included in
the default ModelFinder algorithm).

KEEP IDENT tinyint(1) Boolean stating whether the
--keep-ident flag has been enabled (1)
or disabled (0) in the IQ-Tree run.

MODEL varchar(100) Name of the tested model
BASE MODEL varchar(100) Name of the substitution rate matrix used

in the model.
MODEL RATE
HETEROGENEITY

varchar(100) Name of the model of rate heterogeneity
(should one have been employed).

NUM RATE CAT int(11) Number of rate categories assumed by the
model.

LOGL decimal(21,9) Logarithmic likelihood
AIC decimal(21,9)
WEIGHTED AIC float
CONFIDENCE
AIC

tinyint(1) Boolean stating whether the weighted AIC
is above 0.05 (1) or under (0).

AICC decimal(21,9)
WEIGHTED AICC float
CONFIDENCE
AICC

tinyint(1) Boolean stating whether the weighted
AICC is above 0.5 (1) or under (0).

BIC decimal(21,9)
WEIGHTED BIC float
CONFIDENCE
BIC

tinyint(1) Boolean stating whether the weighted BIC
is above 0.05 (1) or under (0).

CAIC decimal(21,9)
WEIGHTED CAIC float
CONFIDENCE
CAIC

tinyint(1) Boolean stating whether the weighted
CAIC is above 0.05 (1) or under (0).

ABIC decimal(21,9)
WEIGHTED ABIC float

Cont’d on following page
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Table B.8, cont’d

Column Name Datatype Comment

CONFIDENCE
ABIC

tinyint(1) Boolean stating whether the weighted
ABIC is above 0.05 (1) or under (0).

NUM FREE
PARAMETERS

int(11) Number of free parameters
(=NUM MODEL PARAMETERS+
NUM BRANCHES).

NUM MODEL
PARAMETERS

int(11) Number of free parameters of the model of
sequence evolution

NUM BRANCHES int(11) Number of branches in the phylogenetic
tree. In a fully resolved tree: 2n-3 (with
n taxa).

TREE LENGTH decimal(15,9) Length of the tree (might differ for the dif-
ferent models as the branch lengths are be-
ing re-estimated during model evaluation).

PROP INVAR decimal(10,9) Proportion of invariable sites in case the +I
model of rate heterogeneity was employed.
Else, NULL.

ALPHA decimal(15,9) Shape parameter alpha should an Gamma
+G4 model have been employed. Else,
NULL.

STAT FREQ TYPE varchar(100) This field states whether the state frequen-
cies of the stationary distribution assumed
in the model are empirical (counted fre-
quencies from the alignment) or if they are
predefined by the model (model).

STAT FREQ A decimal(10,9) The stationary frequency of the amino acid
alanine (A) assumed by the model.

. . . . . .
STAT FREQ V decimal(10,9) The stationary frequency of the amino acid

tyrosine (V) assumed by the model.
PROP CAT 1 decimal(10,9) The proportion of the first rate category

(should the model assume different rates
across sites).

Cont’d on following page
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Table B.8, cont’d

Column Name Datatype Comment

REL RATE CAT 1 decimal(15,9) The rate of the first rate category (should
the model assume different rates across
sites).

. . . . . .
PROP CAT 10 decimal(10,9) The proportion of the tenth rate category

(should there exist one).
REL RATE CAT 10 decimal(15,9) The rate of the tenth rate category (should

there exist one).

B.9 Table: dna modelparameters
Content: The dna modelparameters table holds the results of model selection. The
performance of each evaluated model (LogL, AIC, BIC,...) is documented as well as
the parameters of the model (state frequencies, rates, shape parameter alpha,...).

Constraints:

• PRIMARY KEY (MODELTEST KEY)

• KEY (BASE MODEL)

• UNIQUE KEY (ALI ID,TIME STAMP,MODEL)

• FOREIGN KEY (ALI ID) REFERENCES dna alignments (ALI ID)

• FOREIGN KEY (BASE MODEL) REFERENCES dna models
(MODEL NAME)

Table B.9: The dna modelparameters table.

Column Name Datatype Comment

MODELTEST KEY int(11) Autoincremented primary key.
ALI ID varchar(250) Name of the alignment (alignment ID).
IQTREE VERSION varchar(100)
RANDOM SEED int(11) The random number seed used by IQ-Tree.

Cont’d on following page
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Table B.9, cont’d

Column Name Datatype Comment

TIME STAMP datetime The timestamp as it appears in the *.iqtree
output file. The timestamp enables map-
ping of the tested model to one IQ-Tree run.

MODEL TYPE varchar(100) The type of model testing or the type of
models that were tested in the IQ-Tree run.
Will mostly be MF (the models included in
the default ModelFinder algorithm).

KEEP IDENT tinyint(1) Boolean stating whether the
--keep-ident flag has been enabled (1)
or disabled (0) in the IQ-Tree run.

MODEL varchar(100) Name of the tested model
BASE MODEL varchar(100) Name of the substitution rate matrix used

in the model.
MODEL RATE
HETEROGENEITY

varchar(100) Name of the model of rate heterogeneity
(should one have been employed).

NUM RATE CAT int(11) Number of rate categories assumed by the
model.

LOGL decimal(21,9) Logarithmic likelihood
AIC decimal(21,9)
WEIGHTED AIC float
CONFIDENCE
AIC

tinyint(1) Boolean stating whether the weighted AIC
is above 0.05 (1) or under (0).

AICC decimal(21,9)
WEIGHTED AICC float
CONFIDENCE
AICC

tinyint(1) Boolean stating whether the weighted
AICC is above 0.5 (1) or under (0).

BIC decimal(21,9)
WEIGHTED BIC float
CONFIDENCE
BIC

tinyint(1) Boolean stating whether the weighted BIC
is above 0.05 (1) or under (0).

CAIC decimal(21,9)
WEIGHTED CAIC float
CONFIDENCE
CAIC

tinyint(1) Boolean stating whether the weighted
CAIC is above 0.05 (1) or under (0).

Cont’d on following page
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Table B.9, cont’d

Column Name Datatype Comment

ABIC decimal(21,9)
WEIGHTED ABIC float
CONFIDENCE
ABIC

tinyint(1) Boolean stating whether the weighted
ABIC is above 0.05 (1) or under (0).

NUM FREE
PARAMETERS

int(11) Number of free parameters
(=NUM MODEL PARAMETERS+
NUM BRANCHES).

NUM MODEL
PARAMETERS

int(11) Number of free parameters of the model of
sequence evolution

NUM BRANCHES int(11) Number of branches in the phylogenetic
tree. In a fully resolved tree: 2n-3 (with
n taxa).

TREE LENGTH decimal(15,9) Length of the tree (might differ for the dif-
ferent models as the branch lengths are be-
ing re-estimated during model evaluation).

PROP INVAR decimal(10,9) Proportion of invariable sites in case the +I
model of rate heterogeneity was employed.
Else, NULL.

ALPHA decimal(15,9) Shape parameter alpha should an Gamma
+G4 model have been employed. Else,
NULL.

STAT FREQ TYPE varchar(100) This field states whether the state frequen-
cies of the stationary distribution assumed
in the model are empirical (counted fre-
quencies from the alignment) or if they are
predefined by the model (model).

STAT FREQ A decimal(10,9) The stationary frequency of the base ade-
nine (A) assumed by the model.

STAT FREQ C decimal(10,9) The stationary frequency of the base gua-
nine (G) assumed by the model.

STAT FREQ G decimal(10,9) The stationary frequency of the base cyto-
sine (C) assumed by the model.

STAT FREQ T decimal(10,9) The stationary frequency of the base
thymine (T) assumed by the model.

Cont’d on following page
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Table B.9, cont’d

Column Name Datatype Comment

RATE AC decimal(15,9) Assumed relative substitution rate from A
to C.

RATE CA decimal(15,9) Assumed relative substitution rate from C
to A.

. . . . . .
RATE GT decimal(15,9) Assumed relative substitution rate from G

to T.
RATE TG decimal(15,9) Assumed relative substitution rate from T

to G.
PROP CAT 1 decimal(10,9) The proportion of the first rate category

(should the model assume different rates
across sites).

REL RATE CAT 1 decimal(15,9) The rate of the first rate category (should
the model assume different rates across
sites).

. . . . . .
PROP CAT 10 decimal(10,9) The proportion of the tenth rate category

(should there exist one).
REL RATE CAT 10 decimal(15,9) The rate of the tenth rate category (should

there exist one).
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B.10 Table: aa trees
Content: The aa trees table contains a set of phylogenetic trees as well as the param-
eters of the assumed model of sequence evolution. The trees are either a fast-ML tree
used in the model evaluation or a maximum likelihood (ML) tree inferred using the
best-fit model.

Constraints:

• PRIMARY KEY (TREE KEY)

• KEY (BASE MODEL)

• UNIQUE KEY (ALI ID,TIME STAMP,TREE TYPE)

• FOREIGN KEY (ALI ID) REFERENCES aa alignments (ALI ID)

• FOREIGN KEY (BASE MODEL) REFERENCES aa models
(MODEL NAME)

Table B.10: The aa trees table.

Column Name Datatype Comment

TREE KEY int(11) Autoincremented primary key.
ALI ID varchar(250) Name of the alignment (alignment ID).
IQTREE VERSION varchar(100)
RANDOM SEED int(11) The random number seed used by IQ-Tree.
TIME STAMP datetime The timestamp as it appears in the *.iqtree

output file. The timestamp enables map-
ping of the tested model to one IQ-Tree run.

MODEL TYPE varchar(100) The type of model testing or the type of
models that were tested in the IQ-Tree run.
Will mostly be MF (the models included in
the default ModelFinder algorithm).

TREE TYPE varchar(100) States the type of the tree. It is either initial
(fast ML tree used for model evaluation) or
ML (maximum likelihood tree).

Cont’d on following page
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Table B.10, cont’d

Column Name Datatype Comment

CHOICE CRITERIUMvarchar(100) States the choice criterium used to select
the model for the ML tree search. In case
of an initial tree, this field is left empty
(NULL).

KEEP IDENT tinyint(1) Boolean stating whether the
--keep-ident flag has been enabled (1)
or disabled (0) in the IQ-Tree run.

MODEL varchar(100) Name of the tested model
BASE MODEL varchar(100) Name of the substitution rate matrix used

in the model.
MODEL RATE
HETEROGENEITY

varchar(100) Name of the model of rate heterogeneity
(should one have been employed).

NUM RATE CAT int(11) Number of rate categories assumed by the
model.

LOGL decimal(21,9) Logarithmic likelihood
UNCONSTRAINED
LOGL

decimal(21,9) Unconstrained logarithmic likelihood

AIC decimal(21,9)
AICC decimal(21,9)
BIC decimal(21,9)
CAIC decimal(21,9)
ABIC decimal(21,9)
NUM FREE
PARAMETERS

int(11) Number of free parameters
(=NUM MODEL PARAMETERS+
NUM BRANCHES).

NUM MODEL
PARAMETERS

int(11) Number of free parameters of the model of
sequence evolution

NUM BRANCHES int(11) Number of branches in the phylogenetic
tree. In a fully resolved tree: 2n-3 (with
n taxa).

PROP INVAR decimal(10,9) Proportion of invariable sites in case the +I
model of rate heterogeneity was employed.
Else, NULL.
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Table B.10, cont’d

Column Name Datatype Comment

ALPHA decimal(15,9) Shape parameter alpha should an Gamma
+G4 model have been employed. Else,
NULL.

STAT FREQ TYPE varchar(100) This field states whether the state frequen-
cies of the stationary distribution assumed
in the model are empirical (counted fre-
quencies from the alignment) or if they are
predefined by the model (model).

STAT FREQ A decimal(10,9) The frequency of the amino acid alanine (A)
assumed by the model.

. . . . . .
STAT FREQ V decimal(10,9) The frequency of the amino acid tyrosine

(V) assumed by the model.
PROP CAT 1 decimal(10,9) The proportion of the first rate category

(should the model assume different rates
across sites).

REL RATE CAT 1 decimal(15,9) The rate of the first rate category (should
the model assume different rates across
sites).

. . . . . .
PROP CAT 10 decimal(10,9) The proportion of the tenth rate category

(should there exist one).
REL RATE CAT 10 decimal(15,9) The rate of the tenth rate category (should

there exist one).
TREE LENGTH decimal(15,9) Total length of the tree (sum of all branch

lengths).
SUM IBL decimal(15,9) Sum of internal branch lengths
TREE DIAMETER decimal(15,9) The tree diameter states the furthest dis-

tance (sum of BLs) between two taxa in the
tree.

DIST MIN decimal(15,9) Minimal distance between two sequences in
the alignment caculated using the best-fit
model. In case of initial tree, this field will
be NULL.

Cont’d on following page
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Table B.10, cont’d

Column Name Datatype Comment

DIST MAX decimal(15,9) Maximum distance between two sequences
in the alignment calculated using the best-
fit model. In case of initial tree, this field
will be NULL.

DIST MEAN decimal(15,9) Mean distance between two sequences in
the alignment calculated using the best-fit
model. In case of initial tree, this field will
be NULL.

DIST MEDIAN decimal(15,9) Median distance between two sequences in
the alignment calculated using the best-fit
model. In case of initial tree, this field will
be NULL.

DIST VAR decimal(15,9) Variation in distances between any two se-
quences in the alignment calculated using
the best-fit model. In case of initial tree,
this field will be NULL.

BL MIN decimal(15,9) Shortest branch in the tree
BL MAX decimal(15,9) Longest branch in the tree.
BL MEAN decimal(15,9) Mean branch length in the tree.
BL MEDIAN decimal(15,9) Median branch length in the tree.
BL VAR decimal(15,9) Variation in branch lengths in the tree.
IBL MIN decimal(15,9) Shortest internal branch in the tree
IBL MAX decimal(15,9) Longest internal branch in the tree.
IBL MEAN decimal(15,9) Mean internal branch length in the tree.
IBL MEDIAN decimal(15,9) Median internal branch length in the tree.
IBL VAR decimal(15,9) Variation in internal branch lengths in the

tree.
EBL MIN decimal(15,9) Shortest external branch in the tree
EBL MAX decimal(15,9) Longest external branch in the tree.
EBL MEAN decimal(15,9) Mean external branch length in the tree.
EBL MEDIAN decimal(15,9) Median external branch length in the tree.
EBL VAR decimal(15,9) Variation in external branch lengths in the

tree.
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Table B.10, cont’d

Column Name Datatype Comment

POT LBA 7 int(11) States if there exists a potential long branch
attraction (LBA) problem in the tree. As-
suming that the long branches need to be
at least 7 times larger than the short and
internal branch.

POT LBA 8 int(11) States if there exists a potential long branch
attraction (LBA) problem in the tree. As-
suming that the long branches need to be
at least 8 times larger than the short and
internal branch.

POT LBA 9 int(11) States if there exists a potential long branch
attraction (LBA) problem in the tree. As-
suming that the long branches need to be
at least 9 times larger than the short and
internal branch.

POT LBA 10 int(11) States if there exists a potential long branch
attraction (LBA) problem in the tree. As-
suming that the long branches need to be
at least 10 times larger than the short and
internal branch.

NEWICK STRING mediumtext This field contains the Newick string of the
phylogenetic tree.

B.11 Table: dna trees
Content: The dna trees table contains a set of phylogenetic trees as well as the pa-
rameters of the assumed model of sequence evolution. The trees are either a fast-ML
tree used in the model evaluation or a maximum likelihood (ML) tree inferred using
the best-fit model.

Constraints:

• PRIMARY KEY (TREE KEY)

• KEY (BASE MODEL)
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• UNIQUE KEY (ALI ID,TIME STAMP,TREE TYPE)

• FOREIGN KEY (ALI ID) REFERENCES dna alignments (ALI ID)

• FOREIGN KEY (BASE MODEL) REFERENCES dna models
(MODEL NAME)

Table B.11: The dna trees table.

Column Name Datatype Comment

TREE KEY int(11) Autoincremented primary key.
ALI ID varchar(250) Name of the alignment (alignment ID).
IQTREE VERSION varchar(100)
RANDOM SEED int(11) The random number seed used by IQ-Tree.
TIME STAMP datetime The timestamp as it appears in the .iqtree

output file. The timestamp enables map-
ping of the tested model to one IQ-Tree run.

MODEL TYPE varchar(100) The type of model testing or the type of
models that were tested in the IQ-Tree run.
Will mostly be MF (the models included in
the default ModelFinder algorithm).

TREE TYPE varchar(100) States the type of the tree. It is either initial
(fast ML tree used for model evaluation) or
ML (maximum likelihood tree).

CHOICE CRITERIUMvarchar(100) States the choice criterium used to select
the model for the ML tree search. In case
of an initial tree, this field is left empty
(NULL).

KEEP IDENT tinyint(1) Boolean stating whether the
--keep-ident flag has been enabled (1)
or disabled (0) in the IQ-Tree run.

MODEL varchar(100) Name of the tested model
BASE MODEL varchar(100) Name of the substitution rate matrix used

in the model.
MODEL RATE
HETEROGENEITY

varchar(100) Name of the model of rate heterogeneity
(should one have been employed).

NUM RATE CAT int(11) Number of rate categories assumed by the
model.

Cont’d on following page
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Table B.11, cont’d

Column Name Datatype Comment

LOGL decimal(21,9) Logarithmic likelihood
UNCONSTRAINED
LOGL

decimal(21,9) Unconstrained logarithmic likelihood

AIC decimal(21,9)
AICC decimal(21,9)
BIC decimal(21,9)
CAIC decimal(21,9)
ABIC decimal(21,9)
NUM FREE
PARAMETERS

int(11) Number of free parameters
(=NUM MODEL PARAMETERS+
NUM BRANCHES).

NUM MODEL
PARAMETERS

int(11) Number of free parameters of the model of
sequence evolution

NUM BRANCHES int(11) Number of branches in the phylogenetic
tree. In a fully resolved tree: 2n-3 (with
n taxa).

PROP INVAR decimal(10,9) Proportion of invariable sites in case the +I
model of rate heterogeneity was employed.
Else, NULL.

ALPHA decimal(15,9) Shape parameter alpha should an Gamma
+G4 model have been employed. Else,
NULL.

STAT FREQ TYPE varchar(100) This field states whether the state frequen-
cies of the stationary distribution assumed
in the model are empirical (counted fre-
quencies from the alignment) or if they are
predefined by the model (model).

STAT FREQ A decimal(10,9) The frequency of the base adenine (A) as-
sumed by the model.

STAT FREQ C decimal(10,9) The frequency of the base guanine (G) as-
sumed by the model.

STAT FREQ G decimal(10,9) The frequency of the base cytosine (C) as-
sumed by the model.

Cont’d on following page
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Table B.11, cont’d

Column Name Datatype Comment

STAT FREQ T decimal(10,9) The frequency of the base thymine (T) as-
sumed by the model.

RATE AC decimal(15,9) Assumed relative substitution rate from A
to C.

RATE CA decimal(15,9) Assumed relative substitution rate from C
to A.

. . . . . .
RATE GT decimal(15,9) Assumed relative substitution rate from G

to T.
RATE TG decimal(15,9) Assumed relative substitution rate from T

to G.
PROP CAT 1 decimal(10,9) The proportion of the first rate category

(should the model assume different rates
across sites).

REL RATE CAT 1 decimal(15,9) The rate of the first rate category (should
the model assume different rates across
sites).

. . . . . .
PROP CAT 10 decimal(10,9) The proportion of the tenth rate category

(should there exist one).
REL RATE CAT 10 decimal(15,9) The rate of the tenth rate category (should

there exist one).
TREE LENGTH decimal(15,9) Total length of the tree (sum of all branch

lengths).
SUM IBL decimal(15,9) Sum of internal branch lengths
TREE DIAMETER decimal(15,9) The tree diameter states the furthest dis-

tance (sum of BLs) between two taxa in the
tree.

DIST MIN decimal(15,9) Minimal distance between two sequences in
the alignment caculated using the best-fit
model. In case of initial tree, this field will
be NULL.

Cont’d on following page
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Table B.11, cont’d

Column Name Datatype Comment

DIST MAX decimal(15,9) Maximum distance between two sequences
in the alignment calculated using the best-
fit model. In case of initial tree, this field
will be NULL.

DIST MEAN decimal(15,9) Mean distance between two sequences in
the alignment calculated using the best-fit
model. In case of initial tree, this field will
be NULL.

DIST MEDIAN decimal(15,9) Meadian distance between two sequences in
the alignment calculated using the best-fit
model. In case of initial tree, this field will
be NULL.

DIST VAR decimal(15,9) Variation in distances between any two se-
quences in the alignment calculated using
the best-fit model. In case of initial tree,
this field will be NULL.

BL MIN decimal(15,9) Shortest branch in the tree
BL MAX decimal(15,9) Longest branch in the tree.
BL MEAN decimal(15,9) Mean branch length in the tree.
BL MEDIAN decimal(15,9) Median branch length in the tree.
BL VAR decimal(15,9) Variation in branch lengths in the tree.
IBL MIN decimal(15,9) Shortest internal branch in the tree
IBL MAX decimal(15,9) Longest internal branch in the tree.
IBL MEAN decimal(15,9) Mean internal branch length in the tree.
IBL MEDIAN decimal(15,9) Median internal branch length in the tree.
IBL VAR decimal(15,9) Variation in internal branch lengths in the

tree.
EBL MIN decimal(15,9) Shortest external branch in the tree
EBL MAX decimal(15,9) Longest external branch in the tree.
EBL MEAN decimal(15,9) Mean external branch length in the tree.
EBL MEDIAN decimal(15,9) Median external branch length in the tree.
EBL VAR decimal(15,9) Variation in external branch lengths in the

tree.
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Table B.11, cont’d

Column Name Datatype Comment

POT LBA 7 int(11) States if there exists a potential long branch
attraction (LBA) problem in the tree. As-
suming that the long branches need to be
at least 7 times larger than the short and
internal branch.

POT LBA 8 int(11) States if there exists a potential long branch
attraction (LBA) problem in the tree. As-
suming that the long branches need to be
at least 8 times larger than the short and
internal branch.

POT LBA 9 int(11) States if there exists a potential long branch
attraction (LBA) problem in the tree. As-
suming that the long branches need to be
at least 9 times larger than the short and
internal branch.

POT LBA 10 int(11) States if there exists a potential long branch
attraction (LBA) problem in the tree. As-
suming that the long branches need to be
at least 10 times larger than the short and
internal branch.

NEWICK STRING mediumtext This field contains the Newick string of the
phylogenetic tree.
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B.12 Table: aa branches
Content: The aa branches table contains information regarding the branches of the
phylogenetic trees stored in the aa trees table. Each line contains information regarding
one branch such as the branch type, the branch length, the splitsize, etc.

Constraints:

• PRIMARY KEY (BRANCH KEY)

• UNIQUE KEY (ALI ID,BRANCH INDEX,TIME STAMP,TREE TYPE)

• KEY (ALI ID,BRANCH INDEX,TREE TYPE)

• FOREIGNKEY (ALI ID,TIME STAMP,TREE TYPE) REFERENCES aa trees
(ALI ID,TIME STAMP,TREE TYPE)

Table B.12: The aa branches table.

Column Name Datatype Comment

BRANCH KEY int(11) Autoincremented primary key.
ALI ID varchar(250) Name of the alignment (alignment ID).
TIME STAMP datetime The timestamp as it appears in the *.iqtree

output file. The timestamp, paired with
the alignment ID and tree type, enables the
mapping of each branch to a phylogenetic
tree in the dna trees table.

TREE TYPE varchar(100) The type of tree: initial or ML. The tree
type, paired with the alignment ID and time
stamp, enables the mapping of each branch
to a phylogenetic tree in the dna trees table.

BRANCH INDEX int(11) Index of the branch. Should the branch
be external, then the index connected to
a taxon coincides with the SEQ INDEX
of the corresponding sequence in the
aa sequences table with the same ALI ID.

BRANCH TYPE varchar(30) States the type of branch, either internal or
external

BL decimal(15,9) Branch length.

Cont’d on following page
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Table B.12, cont’d

Column Name Datatype Comment

SPLIT SIZE int(11) States the split size (number of taxa in the
smaller subtree). For external branches, the
splitsize is always 1.

MIN PATH 1 decimal(15,9) Shortest path length to the leaves in the
smaller subtree.

MAX PATH 1 decimal(15,9) Longest path length to the leaves in the
smaller subtree.

MEAN PATH 1 decimal(15,9) Mean path length to the leaves in the
smaller subtree.

MEDIAN PATH 1 decimal(15,9) Median path length to the leaves in the
smaller subtree.

MIN PATH 2 decimal(15,9) Shortest path length to the leaves in the
larger subtree.

MAX PATH 2 decimal(15,9) Longest path length to the leaves in the
larger subtree.

MEAN PATH 2 decimal(15,9) Mean path length to the leaves in the larger
subtree.

MEDIAN PATH 2 decimal(15,9) Median path length to the leaves in the
larger subtree.

B.13 Table: dna branches
Content: The dna branches table contains information regarding the branches of the
phylogenetic trees stored in the dna trees table. Each line contains information regard-
ing one branch such as the branch type, the branch length, the splitsize, etc.

Constraints:

• PRIMARY KEY (BRANCH KEY)

• UNIQUE KEY (ALI ID,BRANCH INDEX,TIME STAMP,TREE TYPE)

• KEY (ALI ID,BRANCH INDEX,TREE TYPE)

• FOREIGN KEY (ALI ID,TIME STAMP,TREE TYPE) REFERENCES
dna trees (ALI ID,TIME STAMP,TREE TYPE)
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Table B.13: The dna branches table.

Column Name Datatype Comment

BRANCH KEY int(11) Autoincremented primary key.
ALI ID varchar(250) Name of the alignment (alignment ID).
TIME STAMP datetime The timestamp as it appears in the *.iqtree

output file. The timestamp, paired with
the alignment ID and tree type, enables the
mapping of each branch to a phylogenetic
tree in the dna trees table.

TREE TYPE varchar(100) The type of tree: initial or ML. The tree
type, paired with the alignment ID and time
stamp, enables the mapping of each branch
to a phylogenetic tree in the dna trees table.

BRANCH INDEX int(11) Index of the branch. Should the branch
be external, then the index connected to
a taxon coincides with the SEQ INDEX
of the corresponding sequence in the
aa sequences table with the same ALI ID.

BRANCH TYPE varchar(30) States the type of branch, either internal or
external

BL decimal(15,9) Branch length.
SPLIT SIZE int(11) States the split size (number of taxa in the

smaller subtree). For external branches, the
splitsize is always 1.

MIN PATH 1 decimal(15,9) Shortest path length to the leaves in the
smaller subtree.

MAX PATH 1 decimal(15,9) Longest path length to the leaves in the
smaller subtree.

MEAN PATH 1 decimal(15,9) Mean path length to the leaves in the
smaller subtree.

MEDIAN PATH 1 decimal(15,9) Median path length to the leaves in the
smaller subtree.

MIN PATH 2 decimal(15,9) Shortest path length to the leaves in the
larger subtree.

MAX PATH 2 decimal(15,9) Longest path length to the leaves in the
larger subtree.

Cont’d on following page
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Table B.13, cont’d

Column Name Datatype Comment

MEAN PATH 2 decimal(15,9) Mean path length to the leaves in the larger
subtree.

MEDIAN PATH 2 decimal(15,9) Median path length to the leaves in the
larger subtree.
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