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Abstract

This thesis studies three new non-relativistic quantum effects related to space and
time.

First, we determine that quantum theory with complex numbers predicts experimen-
tal results which are impossible in quantum theory with real numbers, as long as our
notions of causality are unchanged. For this, we propose an experiment analogous to a
Bell experiment, but in a more complicated causal network.

Second, we study a quantum particle in a line, and determine that there is a possibil-
ity that it can be observed in a distant region with a higher probability than a classical
particle with the same momentum distribution.

Finally, we characterize all the time translations that can be probabilistically applied
to an unknown quantum system of fixed dimension, and show that it is possible to rewind
qubits with a high probability of success.



Zusammenfassung v

Zusammenfassung

In dieser Doktorarbeit werden drei neue nicht-relativistische Quanteneffekten er-
forscht, die mit Raum und Zeit zusammenhängen.

Erstens stellen wir fest, dass die experimentellen Vorhersagen der Quantentheorie von
dem Zahlkörper des Hilbertraums abhängen, solange wir unsere Konzept von Kausalität
nicht ändern. Dafür stellen wir ein Experiment vor, dass den Bell-Test zu einem kom-
plexeren Netzwerk verallgemeinert. Dieses Experiment erlaubt es, komplexwertige und
reellwertige Quantentheorie gegeneinander zu testen.

Zweitens untersuchen wir ein Quantenteilchen in einer Dimension. Wir zeigen, dass es
möglich ist, es in einer entfernten Region mit höherer Wahrscheinlichkeit zu beobachten,
als jedes klassische Teilchen mit derselbe Impulswahrscheinlichkeitsverteilung.

Zum Schluss charakterisieren wir alle Zeittranslationen, die probabilistisch auf ein un-
bekanntes Quantensystem mit fester Dimension angewendet werden können. Wir zeigen,
dass es möglich ist, Qubits mit hoher Erfolgswahrscheinlichkeit zurückzuspulen.
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Chapter 1

Introduction

Our notions of space and time changed drastically at the beginning of last century,
in two very different ways. On one hand, from general relativity we get the idea that
space and time stand on equal footing, and that we should instead think of a space-time
Lorentzian manifold. On the other hand, in quantum mechanics we throw away com-
pletely the notion that particles are well-localized, and instead think of their position
as an observable that we can measure. However, there is no good notion of a time ob-
servable which encompasses all time-related measurements. Instead one has to carefully
explain every time what “time” one is talking about: evolution time, time of arrival, a
ticking clock, etc. Thus space and time are not on equal footing at all.

Combining these two (at first glance quite different) viewpoints is quite a tough
challenge, but crucial for quantum gravity. Thus, studying each one independently is also
of great value. In this thesis, we focus on space and time in non-relativistic quantum
physics. We introduce three new quantum effects which deepen our understanding of
their role in this theory.

In Chapter 2 we begin by studying space and time in the most minimal way: with
causal networks. A causal network is a directed acyclic graph which specifies which
parties in an experiment hold causal influence over other parties, as determined by the
finiteness of the speed of light. We study causal networks that go beyond the one needed
for Bell experiments. We determine that in certain causal networks the usual theory of
quantum mechanics predicts experimental outcomes which are not reproducible by real
quantum mechanics.

In Chapter 3 we study the movement of particles accross space in a simplified scenario.
Namely, we look at the probability of observing a one-dimensional system in a distant
region [a,∞) ⊂ R after we have determined that it originally was localized in region
[0, L] ⊂ R\ [a,∞). We show that there are quantum systems for which this probability is
greater than for any classical system with the same momentum distribution. This is a new
quantum effect, similar to tunneling, which we call quantum projectiles. We determine
that it is mathematically equivalent to some other effect called quantum backflow, where
a particle with positive momentum is seen to traverse backwards. We give new bounds
on the maximum advantage for such effects.

1



2 1. Introduction

Finally, in Chapter 4 we study evolution time on finite-dimensional quantum systems.
We are mainly interested in the so-called time translations, which are maps taking a
system to another point in its evolution curve. We characterize all the possible time
translations that can be probabilistically implemented in an unknown quantum system
of a fixed dimension. For qubits, we furthermore prove that there are protocols which
implement a “rewinding” with an arbitrarily high probability of success.

1. Content and structure of the thesis

This thesis is made up of four papers, which we have in part reorganized and expanded
without changing the results. Chapter 2 is based on [RTW+21], Chapter 3 on [TLN22],
and Chapter 4 on [TDN20; TDN23].

The goal was to make the reading experience more manageable, and perhaps also
serve as a lighter introduction to these papers, as much as time has allowed me. Some
explanations have been expanded and made more pedagogical, but some other parts
have also been summarized or removed for the sake of exposition, so that one should
also check the original papers for a more complete picture. A comparatively small part
of the thesis is taken verbatim from those papers. If this endeavor proves to be useful to
at least one person, I will be satisfied.

I have tried to make many of the symbols clickable. If you are reading this thesis
online you may notice that you can click on some unhighlighted parts such as the follow-
ing: “goto introduction”. Doing so will usually take you to their definition, or at least
to a part of the thesis where you can read more about it. This is an idea I’ve taken from
[Mar21], and I think it should be a more widespread practice. It would certainly have
made reading many papers much easier if they had been written this way.

I have also strived to make the thesis readable for a wider audience than the target-
audience of each paper, and more rigorous than usual. However, at some point a line
must be drawn, so I assume that the reader is familiar with functional analysis and
quantum mechanics, and some results are not formulated with full rigor. In the next
section I include a small guide of concepts and notation that I will use throughout the
thesis.

2. Basic definitions and notation

2.1. Functional analysis. Given a vector space V over a field K, we denote by L(V )
the set of K-linear maps from V to V , also called operators. If V is equipped with a
topology, this set may include maps which are not continuous. By GL(V ) we denote the
subspace of L(V ) consisting on maps which are invertible.

A Hilbert space is always denoted by H or K and, unless explicitely stated, may
have finite or infinite dimension. It is always separable, although most theorems work
for non-separable Hilbert spaces as well. It is always considered to be a vector space over
the complex numbers, except in Chapter 2, where Hilbert spaces over real numbers are
also considered. Elements of a Hilbert space are denoted by “kets” |ψ⟩, and elements
of the dual via Riesz theorem by “bras” ⟨ψ|, so that the scalar product of |ψ⟩ , |φ⟩ is
⟨ψ,φ⟩ ≡ ⟨ψ|φ⟩. The scalar product is always linear in the second variable. This is
dubbed the Dirac “bra-ket” notation.
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If H is a Hilbert space, we denote by B(H) the vector space of continuous linear
maps from H to H. The natural topology in this space is given by the operator norm

∥A∥ := sup
|ψ⟩∈H

∥A |ψ⟩∥H
∥|ψ⟩∥H

.

An operator A is of trace-class, A ∈ T (H), if for every orthonormal basis {|ψn⟩}∞n=1 of
H,

tr(A) :=
∞∑︂
n=1

⟨ψn|A |ψn⟩

is well-defined and independent of the choice of basis. In the subspace T (H) the natural

norm is the trace norm, defined as ∥A∥1 := tr
(︂√

AA†
)︂

.

We frequently consider unbounded maps. Such operators cannot be defined on all of
H but only on a subspace, which we require to be dense inH. WheneverH has unbounded
operators, we consider L(H) to be the set of unbounded operators. Note that it is not
a vector space, since the sum of two operators might not have a dense domain. The
subspace where an operator A is defined is called its domain of definition, and denoted by
Dom(A). Equality between unbounded operators A,B means that Dom(A) = Dom(B)
and A |ψ⟩ = B |ψ⟩ for all |ψ⟩ ∈ Dom(A).

The adjoint of an operator (A,Dom(A)) is (A†,Dom(A†)), where

Dom(A†) := {|φ⟩ ∈ H | ⟨φ|A is bounded in Dom(A)}

and for all |φ⟩ ∈ Dom(A†), A† |φ⟩ is the unique vector |φ′⟩ such that ⟨φ|A |ψ⟩ = ⟨φ′|ψ⟩
for all ψ ∈ Dom(A†). An operator is Hermitian or self-adjoint, if A = A†.

We avoid the notation A∗ for either the adjoint or the complex conjugation, in order
to avoid confusion. Instead, we denote complex conjugation with a line, as in z.

The spectrum of an operator A ∈ L(H) is the set of complex numbers λ ∈ C such
that (A− λ1H) does not have a continuous inverse. It is denoted by σ(A). Self-adjoint
operators have real spectrum.

A recurring Hilbert space that we are going to use is the space of square-integrable
functions of some measure space. It is defined as

L2(X, dµ) :=

{︃
f : X → C measurable

⃓⃓⃓ ∫︂
X
|f(x)|2dµ <∞

}︃
.

When the measure is understood from context, we omit it. R is always equipped with
the usual topology, and the Borel σ-algebra.

The Borel σ-algebra of a topological space X is the σ-algebra generated by the open
sets of the topology. It is denoted by B(X).

Whenever we have a linear map X : V →W , we can obtain a linear map

Xi : V1 ⊗ · · ·Vi−1 ⊗ V ⊗ Vi+1 ⊗ · · · ⊗ Vn −→ V1 ⊗ · · · ⊗ Vi−1 ⊗W ⊗ Vi+1 ⊗ · · · ⊗ Vn

for arbitrary vector spaces Vi, which are usually deduced from context, as

Xi := 1V1 ⊗ · · · ⊗ 1Vi−1 ⊗X ⊗ 1Vi+1 ⊗ · · · ⊗ 1Vn .
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Given a tensor product of Hilbert spaces HA⊗HB, the partial trace is a linear map

trB : L(HA ⊗HB)→ L(HA) ≡ L(HA)⊗K

L ↦→
∑︂
e∈B

(1HA
⊗ ⟨e|)L(1HA

⊗ |e⟩),

where B is an orthonormal basis of HB, and K is the base field (R or C). This is
only defined for trace-class operators. We also define the partial trace of a vector as
the partial trace on the projection on the subspace generated by said vector. That is,
trB(|ψ⟩AB) ≡ trB(|ψ⟩⟨ψ|).

2.2. Quantum information. We always work in units where ℏ = 1. Certain operators
and states of finite-dimensional Hilbert spaces are special for quantum information, and
have the following notation.

The Pauli matrices are

σx :=

(︃
0 1
1 0

)︃
, σy :=

(︃
0 −i
i 0

)︃
, σz :=

(︃
1 0
0 −1

)︃
Their eigenvectors are respectively denoted by |0⟩ , |1⟩ for σz (also called the computa-
tional basis),

|+⟩ :=
|0⟩+ |1⟩√

2
, |−⟩ :=

|0⟩ − |1⟩√
2

for σx, and

|i⟩ :=
|0⟩+ i |1⟩√

2
, |−i⟩ :=

|0⟩ − i |1⟩√
2

,

for σy. The Hadamard gate is defined as H |0⟩ = |+⟩, H |1⟩ = |−⟩. The Bell basis is
given by⃓⃓

ϕ+
⟩︁

:=
|00⟩+ |11⟩√

2
,
⃓⃓
ϕ−
⟩︁

:=
|00⟩ − |11⟩√

2
,
⃓⃓
ψ+
⟩︁

:=
|10⟩+ |01⟩√

2
,
⃓⃓
ψ−⟩︁ :=

|10⟩ − |01⟩√
2

.

These states in density matrix form are denoted by capital letters, as

Φ+ :=
⃓⃓
ϕ+
⟩︁⟨︁
ϕ+
⃓⃓
, Φ− :=

⃓⃓
ϕ−
⟩︁⟨︁
ϕ−
⃓⃓
, Ψ+ :=

⃓⃓
ψ+
⟩︁⟨︁
ψ+
⃓⃓
, Ψ− :=

⃓⃓
ψ−⟩︁⟨︁ψ−⃓⃓ .

The SWAP gate is defined as the unitary map in H⊗H that performs an exchange or
“swap”. That is, SWAP(|ψ⟩ ⊗ |ϕ⟩) := |ϕ⟩ ⊗ |ψ⟩.

A Completely Positive Trace-Preserving (CPTP) map, also called a quantum channel,
is a positive map Λ : T (H) → T (H) such that Λ ⊗ 1K is also positive for all K, and
tr(Λ(ρ)) = tr(ρ) for all ρ ∈ T (H).

2.3. Miscellaneous. The natural numbers N do not include 0. The monoid of natural
numbers together with 0 is denoted N0.

Given a ring R, we denote by Mn(R) the R-algebra of n × n matrices with entries
in R with the usual scalar product, matrix multiplication and addition. If R = C, we
denote by Un the n×n unitary matrices. If R = R, we denote by On the n×n orthogonal
matrices. For R = C, we call GLn the n × n invertible matrices. Finally, SLn is the
subspace of GLn of matrices with determinant 1.

C× is the multiplicative group of complex numbers except 0.
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An alphabet, usually denoted by Σ, is a set of symbols. Each symbol is called a
letter. A word of length n ∈ N with letters in Σ is a string of n letters. The empty word
is a word of length 0. The set of words of length n is denoted by Σn. We also denote

Σ≤n :=

n⨆︂
i=0

Σn, Σ∗ :=

∞⨆︂
i=0

Σn.

We can also impose some equivalence relation in Σ∗. The classes of equivalence are called
reduced words. In such a context, we redefine Σ≤n to be the set of reduced words with a
representative of length ≤ n.

The algebra of polynomials on n variables is denoted C[x1, ..., xn]. Sometimes we have
an involution ∗ acting on x1, ..., xn. This makes C[x1, ..., xn] a *-algebra defining ∗ on any
polynomial as an anti-linear and multiplicative extension of ∗ acting on the variables.
When this is the case, we denote it by C∗[x1, ..., xn]. The algebra of noncommutative
polynomials on n variables is denoted C[X1, ..., Xn]. That is, non-commutative variables
are denoted by capital letters. This is nothing but formal linear combinations of words
in X1, ..., Xn. In this case, we exclude the empty word. That is, there are no degree zero
monomials. This is because the coefficients are in C, while we are interested in evaluating
the polynomials in different C-algebras.





Chapter 2

Real Quantum Theory

This Chapter has been published as

• M.-O. Renou, D. Trillo, M. Weilenmann, T. P. Le, A. Tavakoli, N. Gisin, A.
Aćın, M. Navascués.
“Quantum theory based on real numbers can be experimentally falsified”
Nature 600, 625–629 (2021),

which is Reference [RTW+21], and to which all authors contributed equally.

The paper has been adapted for inclusion in this thesis, as follows. Section 2.2
corresponds to Appendix A of [RTW+21]. Section 3.3 corresponds to Appendix D of
[RTW+21]. Section 4 is the main contribution and corresponds to Appendices E through
H of [RTW+21]. The aforementioned Sections have been adapted to fit into the context
of the thesis. The other Sections of this Chapter introduce some mathematical and
physical preliminaries and contain no original work.

1. Introduction

Since the introduction of the Schrödinger equation, people have wondered why com-
plex numbers appear in our formulation of quantum mechanics. Until that moment, it
seemed that complex numbers were just a computational tool in wave mechanics, and
even Schrödinger himself objected to their use and tried to remove them from the for-
mulation of the theory. Many reasons have since then been given for the necessity of
complex numbers the most common one being the breakdown of tomographic locality
within real quantum mechanics [KM19]. But these are never experimentally checkable,
only of a philosophical nature.

In this Chapter, we show that there is a feasible experiment that falsifies real quantum
mechanics. To do this, we go beyond the usual Bell experiments [Bel64], and propose
an experiment in a non-trivial tripartite causal network. The standard Bell experiment
works as follows: two parties, Alice and Bob, are space-like separated. That is, any
action of Alice is independent of any action of Bob. However, they share a resource.
That is, two systems which in the past were together. This resource can be quantum

7



8 2. Real Quantum Theory

or classical, and there is a difference in the experimental results that Alice and Bob can
obtain depending on the case. Such a scenario is diagrammatized as in Figure 1

x y

a b

ψ

Figure 1. The causal structure of a Bell experiment. Here, Alice and Bob share a com-
mon quantum state ψ, and are able to perform measurements according to individual
classical settings x, y, resulting in classical outcomes a, b. The results of an experiment
are conditional probability distributions P(a, b|x, y), also called behaviours. Depending
on whether ψ is quantum or classical, the set of possible behaviours is different.

It turns out, that in such a scenario it is impossible to experimentally detect a
difference between real and complex quantum mechanics. However, by increasing the
complexity of our causal network, as first introduced by [Fri12] in the setting of quantum
mechanics, we can start detecting more subtle effects. In particular, we identify a simple
scenario for which the predictions of real quantum mechanics are different than those in
complex quantum mechanics, forever settling the debate over which theory we should
consider.

This Chapter is organized as follows. In Section 2 we introduce the mathematical
framework of the standard quantum theory with complex numbers. Then, in Section 3,
we introduce the theory of real quantum mechanics, and prove than in all easy causal
networks it can simulate complex quantum mechanics. Finally, in Section 4 we prove
that, in the bilocality scenario, there is an experiment which gives different results in
real and complex quantum mechanics.

2. Nonrelativistic Quantum Mechanics

2.1. The Hilbert space formulation of Quantum Mechanics. When forced to
produce a set of postulates for QM, people will usually start writing some list of state-
ments resembling the following:

(1) To a physical system A, there corresponds a separable Hilbert space HA, and a
particular state of A is given by a unit vector ψ ∈ HA.

(2) There is an operator H ∈ L(HA), called the Hamiltonian, such that the state of
a system changes in time as prescribed by the Schrödinger equation i∂tψ = Hψ.

(3) To a measurable quantity f of the system A, there corresponds a self-adjoint

operator f̂ ∈ L(HA) such that measuring f when A is in state ψ yields a

probability distribution of outcomes with moments Eψ [fn] = ⟨ψ| (f̂)n |ψ⟩.

These postulates form the basis of an operational theory, in which one identifies three
stages to any experiment: a preparation phase, where a particular system is prepared
in a particular state; an evolution phase, where the system exists and evolves in time;
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and a measurement phase, where some property of the system is measured. The three
stated postulates thus provide a mathematical framework in which to model any such
experiment: one need only to find an adecuate Hilbert space and operators to describe
their preparation, evolution and measurement stages.

In this Chapter we will not deal with the dynamical evolution given by Postulate (2).
As it is customary in quantum information, we set H ≡ 0 and evolve a system discretely
if we need to by applying unitaries.

Furthermore, one must include in the list of postulates some compositionality rule.
Since we can only do experiments with small parts of the universe, we need a way to
combine our descriptions of individual systems to get a description of a combined system.
The usual way to do this in QM is the following:

(4) The Hilbert space of a combined system AB is the tensor product of the Hilbert
spaces of system A and system B. That is, HAB = HA ⊗HB.

An independent preparation procedure for systems A and B then yields a
tensor product state ψ ⊗ φ ∈ HA ⊗HB.

A local operation on system A is given by an operator of the form f̂ ⊗1B ∈
L(HA ⊗HB).

This Postulate has been the subject of intense discussion. There is an alternative Pos-
tulate where instead of tensor products we consider commutation relations, as follows:

(iv) There is a Hilbert space HAB for the combined system AB. All operators that
correspond to local operations on system A commute with those that correspond
to local operations on system B.

Until recently, it was not known whether these two postulates gave equivalent pre-
dictions in Bell nonlocality experiments. In [JNV+20], it is finally shown that they give
rise to different theories, and therefore one must choose one.

2.2. The fourth postulate in Algebraic Quantum Field Theory. Many defenders
of Postulate (iv) argue from the point of view of Quantum Field Theory (QFT). Even
though any QFT is by construction (special) relativistic, in this section we argue that
Postulate (4) can still be recovered in some cases, and therefore shouldn’t be immediately
dismissed.

Algebraic Quantum Field Theory (AQFT) is famous for proposing the fact that the
local operations are the ones that commute with each other. More precisely, one of
the possible starting points of AQFT is a correspondence from certain (open, bounded,
contractible) regions of spacetime O in Minkowski space M to algebras of operators
A(O) acting on a single Hilbert space H [Haa12]. This algebra of operators is meant
to represent the operations that an experimenter might be able to perform in spacetime
region O, and is usually taken to be a C*-algebra. The axioms of AQFT are about the
properties of the map O → A(O), and we need discuss only a few.

(I) A local state in the spacetime region O corresponds to a unital linear functional
ψ : A(M)→ C such that ψ(xx∗) ≥ 0 for all x ∈ A(O).

(IV) Given two space-like separated regions of spactime OA and OB, the correspond-
ing operator algebras A(OA) and A(OB) commute.
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Postulate (IV) is the analogous of Postulate (iv) in AQFT, where furthermore there is a
single universal Hilbert space H on which all local operations act. There are also several
other Postulates about the structure of the correspondence O → A(O) so that it behaves
as we expect with respect to inclusion of spacetime regions, and so on. For example,
A(O) ⊂ A(M), and all algebras have a common unit element 1.

It is sometimes found that Postulate (I) admits states which are too general, and
several axioms to define a set of “physical” states have been tried over time. Of partic-
ular interest is the question: what states can an experimenter prepare? Certainly any
experimenter only has control over a small region of spacetime OA. And in order to
prepare a particular state in OA it is not unreasonable to require that some of the region
OA has to be shielded against external influences or devoted to experimental apparata.
Therefore, the final state lives in a strictly smaller region O.

Mathematically, we think of a map T : A(M)→ A(M) that performs this shielding
against external influence. The fact that the experimenter only has access to the local
region O translates to the property that T (y) = T (1)y for all y in the commutant of A(O)
in A(M), which we denote by A(O)′. Indeed, if someone is performing some operation
y in a spacelike separated region of spacetime, then y ∈ A(O)′ by Postulate (IV), and
a local shielding T should have no effect on y. However, we can allow a global effect
on the common unit element - we say that T is weakly localized. Under very standard
quantum mechanical assumptions (A(M) = B(H), A(O) is a von Neumann algebra on
H, T is normal and positive) it can be proven [Wer87] that weakly localized operations
are precisely the ones that admit the form

T : x ↦→
∑︂

c∗ixci

for ci ∈ A(O), x ∈ B(H).

Therefore, we say that a local state ψ on O can be prepared in the region OA
if there exists a weakly localized operation in a region OA such that O ⊂ OA and
T (x) = ψ(x)T (1) for all x ∈ A(O). With these definitions and assumptions, we have the
following:

Theorem 2.2.1 ([Wer87]). There is a local state on O prepared in the region OA if and
only if there exists a type I factor N such that A(O) ⊂ N ⊂ A(OA).

A von Neumann algebra N in H is a type I factor, by one of the many equivalent
definitions, if there exists a unitary U : H → HA⊗HB such that N = U∗(B(HA)⊗1B)U .
It therefore follows that, if we have two spacelike separated parties preparing local states
in regions O1 and O2, we have by Postulate (IV) and Theorem 2.2.1 that A(O1) ⊂
N ⊂ A(OA), and A(O2)

′ ⊂ A(OA)′ ⊂ N ′ ⊂ A(O1)
′. Therefore, there is a unitary

transformation such that

UA(O1)U
∗ ⊂ B(HA)⊗ 1B, UA(O2)U

∗ ⊂ 1A ⊗ B(HB),

and we recover the tensor product structure of Postulate (4).

In general, a correspondence O → A(O), where A(O) is a von Neumann algebra, is
said to have the split property if, whenever O1 ⊂ O2, there is a type I von Neumann al-
gebra N such that A(O1) ⊂ N ⊂ O2. This is usually taken as an extra axiom for AQFT,
but can also be recovered from thermodynamic considerations, from energy bounds, and
is satisfied in several well-known models such as free scalar fields, the Dirac field and some
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interacting models in 1 + 1d (see [FR20], and references within). Therefore, even though
there is a difference between Postulates (4) and (iv) in the context of Bell nonlocality, we
conclude that the physical one is Postulate (4) and that (iv) is purely of mathematical
and computational interest. Alternatively, for the more conservative reader, we claim
that Postulate (4) is a good enough approximation to study the composition of systems,
and therefore causal structures.

2.3. More on the Postulates of Quantum Mechanics.

2.3.1. Projection-Valued Measures. In general, Postulate (3) as stated is not enough to
obtain a probability distribution for the possible outcomes of a measurement [Ex. 3.14;
Sie17]. It is sufficient, however, if there is a finite number of possible outcomes, and this
is all we will look at in this Chapter. Nevertheless, in any situation, there is a canonical
way of choosing such a probability distribution, which is equally -or even more- important
as Postulate (3).

Definition 2.3.1 (PVM). Let Σ be a σ-algebra on a set Λ. Let H be a Hilbert space. A
Projector-Valued Measure (PVM) on (Λ,Σ) with values in B(H) is a map µ : Σ→ B(H)
such that

• For all E ∈ Σ, µ(E) is a projection.

• µ(∅) = 0, and µ(Σ) = 1H.

• For all |ψ⟩ ∈ H, and disjoint Ei ∈ Σ, µ (
⨆︁∞
i=1Ei) |ψ⟩ =

∑︁∞
j=1 µ(Ej) |ψ⟩.

• For all E,F ∈ Σ, µ(E ∩ F ) = µ(E)µ(F ).

From a PVM and a state |ψ⟩ ∈ H we can extract a proper probability measure on
(Λ,Σ), as

µψ : E ↦→ ⟨ψ|µ(E) |ψ⟩ .

So now we just need a way to obtain a PVM from a self-adjoint operator. This is
given by the spectral theorem.

Lemma 2.3.2 (Integration with respect to a PVM). Let µ be a PVM on a measurable
set (Λ,Σ) with values on B(H). Let f : Λ→ C be a measurable function. Let

Hf :=

{︃
|ψ⟩ ∈ H |

∫︂
Λ
|f(λ)|2dµψ <∞

}︃
.

Then there is a unique operator
∫︁
Λ fdµ with domain Hf such that

⟨ψ|
(︃∫︂

Λ
fdµ

)︃
|ψ⟩ =

∫︂
Λ
f(λ)dµψ.

Furthermore, Hf is dense in H and
∫︁
Λ fdµ is self-adjoint whenever f is real-valued.

Theorem 2.3.3 (Spectral theorem). Let A ∈ L(H) be a self-adjoint operator. There is
a unique PVM µA on (σ(A),B(σ(A))) with values in B(H) such that∫︂

σ(A)
λdµA = A.

Furthermore, for any n ∈ N, we have∫︂
σ(A)

λndµA = An.
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Proof. See, for example, Proposition 10.1 and Theorem 10.4 of [Hal13]. □

Using this, we can rewrite Postulate (3) in an equivalent manner, which is generally
more useful.

(3’) To a measurable quantity f of the system A with possible measurement out-
comes in Λ ⊂ R, corresponds a PVM µf on (X,B(X)) with values in B(H) such
that the probability measure of the outcomes of the measurement is given by

µfψ.

Indeed, supose we have such a PVM. Then the operator

f̂ :=

∫︂
Λ
λdµf

is self-adjoint by Lemma 2.3.2. Furthermore, we have that

⟨ψ| (f̂)n |ψ⟩ = ⟨ψ|
∫︂
Λ
λndµf |ψ⟩ =

∫︂
Λ
λndµfψ = Eψ [fn] ,

so that Postulate (3) holds.

On the other hand, if we have a self-adjoint operator f̂ , by the spectral theorem we

have a PVM µf̂ defined on its spectrum Λ, such that∫︂
Λ
λdµf̂ = f̂ .

Therefore,

Eψ [fn] =

∫︂
Λ
λndµf̂ψ = ⟨ψ|

∫︂
Λ
λndµf̂ |ψ⟩ = ⟨ψ| f̂n |ψ⟩ ,

so Postulate (3’) makes sense. However, Postulates (3) and (3’) are not exactly equivalent,
because if the self-adjoint operator is not bounded, then the proability measure that has

moments ⟨ψ| f̂n |ψ⟩ is in general not unique. Postulate (3’) simply gives a prescription
to choose one. However, it is the most natural choice, and therefore we shall work with
Postulate (3’).

The spectral theorem has one more important consequence, and it is that it allows
us to define an action of measurable functions on self-adjoint operators:

Definition 2.3.4 (Functional calculus). Let A a self-adjoint operator acting on H, and
f be a measurable function on (σ(A),B(σ(A))). We define

f(A) :=

∫︂
σ(A)

f(λ)dµA.

Note that it coincides with the usual definition of f(A) if f is a polynomial, and thus
already defined.

Remark 2.3.5 (Finite PVMs). In this Chapter we will be concerned only with experi-
ments that have a finite number of outcomes. In this case, all these theorems take on a
much simpler form. Indeed, if there is only a finite set of outcomes Λ = {λ1, ..., λn}, then
we see from the Definition that a PVM is a set {Pi}ni=1 of as many orthogonal projectors
of B(H) as outcomes, and they sum to the identity. Each Pi corresponds to µ(λi), and
they determine the PVM uniquely. Furthermore, a self-adjoint operator A with a finite
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spectrum Λ is defined on all of H by Lemma 2.3.2 and we have from the uniqueness in
that same lemma, that

A =

∫︂
Λ
λdµA =

n∑︂
i=1

λiPi.

Indeed,

⟨ψ|
n∑︂
i=1

λiPi |ψ⟩ =
n∑︂
i=1

λi ⟨ψ|µ(λi) |ψ⟩ =

∫︂
Λ
λdµψ.

For the rest of this Chapter, we will only consider measurements with a finite set of
outcomes.

2.3.2. Mixed states. Suppose we have a composite state on two systems, which are space-
like separated. That is, a vector in HA ⊗ HB. When we have two parties, Alice and
Bob, performing a measurement, we assume from Postulate (4) that the operator they
are measuring is a self-adjoint map of the form A⊗B ∈ L(HA⊗HB). However, we want
to be able to see things from the point of view of each of the parties. Until Alice meets
with Bob at some point in the future, she only sees a partial probability distribution of
the outcomes she measures (namely, the spectrum of A⊗ 1 which is the same as σ(A)).
In particular, we consider an outcome of such an experiment as a combined outcome of
Alice and Bob, and thus write

P(a, b|x, y) = ⟨ψ|Axa ⊗B
y
b |ψ⟩ ,

where {Axa}a are the PVMs associated to Ax for all x, and {By
b }b are the PVMs corre-

sponding to By for all y.

Since Alice only has access to a partial probability measure, there are many situations
in which we would also like to assign a state to Alice which reproduces this measure as
µAψ . If Alice and Bob obtain the behavior P(a, b|x, y) as a result of a measurement, then
that means that Alice must locally see the partial probability distribution

(1) PA(a|x) =
∑︂

b∈σ(By)

P(a, b|x, y) =
∑︂

b∈σ(By)

⟨ψ|Axa ⊗Bx
y |ψ⟩ = ⟨ψ|Axa ⊗ 1HB

|ψ⟩

What this means under our postulates is a vector |φ⟩ ∈ HA such that for any PVM
of Alice, we recover the correct behavior PA(a|x) = ⟨φ|Aax |φ⟩. However, this doesn’t
always exist.

Example 2.3.6. Let |ψ⟩ := (|00⟩ + |11⟩)/
√

2 ∈ C2 ⊗ C2. There is no vector |φ⟩ ∈ C2

such that ⟨φ|A |φ⟩ = ⟨ψ|A⊗ 1 |ψ⟩ for all projectors A ∈ L(C2).

Indeed, expand |φ⟩ = a |0⟩+ b |1⟩. Then,

⟨φ| |0⟩⟨0| |φ⟩ = |a|2 =
1

2
, ⟨φ| |1⟩⟨1| |φ⟩ = |b|2 =

1

2
.

However,

⟨φ| |+⟩⟨+| |φ⟩ =
|a+ b|2

2
=

1

2
, ⟨φ| |−⟩⟨−| |φ⟩ =

|a− b|2

2
=

1

2
.

And no two complex numbers a, b can satisfy this four equations simultaneously.
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This means that if we want to associate a local state to Alice we have to generalize
the notion of state itself. And there is an easy way to do this. Note from Eq. 1 that

PA(a|x) = tr((Axa ⊗ 1HB
) |ψ⟩⟨ψ|).

Therefore, by defining ρ := trB(|ψ⟩⟨ψ|) we have that

PA(a|x) = tr(Axaρ).

Now, from the rules of probability, we arrive at the usual definition for a state

Definition 2.3.7. A state on a Hilbert space H is a positive operator of trace one. We
denote the set of states as S(H).

Note that since a positive operator satisfies ⟨x| ρ |x⟩ ≥ 0, the trace is always well-
defined. That is, it doesn’t depend on the choice of orthonormal basis.

The states we have been using until now, vectors in the Hilbert space, correspond
to projectors onto a 1-dimensional subspace: ρψ := |ψ⟩⟨ψ|. These are called pure states,
while a general state is sometimes named a mixed state or a density matrix. Pure states
are particularly nice, and it turns out that by enlarging the Hilbert space we are working
with we can think of any mixed state as the restriction of a pure state to a subsystem:

Theorem 2.3.8 (Purification). Let ρ ∈ S(H). Then, there exists a vector |ψ⟩ = H⊗H
such that ρ = trH(|ψ⟩⟨ψ|).

Proof. Let {|ψi⟩}i be an orthonormal basis of H. Since

1 = tr(ρ) =
∑︂
i

⟨ψi| ρ |ψi⟩ ,

in particular it must be that ⟨ψi| ρ |ψi⟩ = 0 except at most for a countable number of i,
for which 0 ≤ ⟨ψi| ρ |ψi⟩ ≤ 1. Since

⟨ψi| ρ |ψi⟩ =

∫︂
σ(ρ)

λdµρψi
(λ),

and σ(ρ) ⊂ R+, this means that µρψi
(E) = 0 for all E ⊂ σ(ρ), except for a countable

number of ψi. But since µρψi
(E) = ⟨ψi|µρ(E) |ψi⟩, we have that {µρ(E)}E⊂σ(ρ) is a

countable set of projections. By definition of PVM, the image of each point in σ(ρ) has
to be an projection orthogonal to the others. Therefore, there is a countable number of
points in σ(ρ), and the spectral decomposition of ρ becomes

(2) ρ =
∑︂
i

⟨φi| ρ |φi⟩ |φi⟩⟨φi|

for some orthonormal basis {|φi⟩i} of H. Let then pi := ⟨φi| ρ |φi⟩. We define

|ψ⟩ :=
∑︂
i

√
pi |φi⟩ |φi⟩ ∈ H ⊗H.

Note that tr(ρ) = 1 implies that ⟨ψ|ψ⟩ = 1. Finally,

trH(|ψ⟩⟨ψ|) =
∑︂
j

pi |φi⟩⟨φi| |⟨φj |φi⟩|2 =
∑︂
i

⟨φi| ρ |φi⟩ |φi⟩⟨φi| = ρ.

□
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Note that in particular, we have proven that the spectrum of a state is in [0, 1], so
every state is a bounded operator. That is, S(H) ⊂ B(H).

2.3.3. Positive Operator-Valued Measures. Analogously, we may want to consider convex
combinations of measurement operators. For that, the definition given in Definition 2.3.1
is too restricted. In general, one considers

Definition 2.3.9 (POVM). Let Σ be a σ-algebra on a set Λ. Let H be a Hilbert space.
A Positive Operator-Valued Measure (POVM) on (Λ,Σ) with values in B(H) is a map
µ : Σ→ B(H) such that

• For all E ∈ Σ, µ(E) is a positive operator.

• µ(∅) = 0, and µ(Σ) = 1H.

• For all |ψ⟩ ∈ H, and disjoint Ei ∈ Σ, µ (
⨆︁∞
i=1Ei) |ψ⟩ =

∑︁∞
j=1 µ(Ej) |ψ⟩.

For a finite number of outcomes, a POVM is therefore nothing more than a finite set
of positive operators that add up to the identity.

In a setting where the Hilbert space is fixed, this more general concept is useful,
because the set of PVMs is not convex, but the set of POVMs is. Indeed, consider a set
of POVMs {µi}ni=1 on (Λ,Σ) with values on B(H). Then is it straightforward to check
that a convex combination

n∑︂
i=1

λiµi, λi ∈ R+,
n∑︂
i=1

λi = 1.

is also POVM. However, a convex combination of PVMs is not necessarily a PVM, since
the sum of projectors doesn’t have to be a projector.

However, in our setting this will never be the case. All of our optimization problems
also optimize over Hilbert spaces, and all of our measures are always defined on a nice
measurable space (a finite set of points where all subsets are measurable). In this case,
we have the following theorem, which we state in only the generality that we need.

Theorem 2.3.10 (Naimark). Let µ be a POVM over a finite space (X,B(X)) with values
in B(H). There exists a Hilbert space K, a bounded linear map L : K → H and a PVM
ν over (X,B(X)) with values in B(K) such that L†L = 1H

µ(E) = L†ν(E)L

Proof. We construct the PVM explicitely. Let K = H⊗CX . Note that from the spectral
theorem, we define, for x ∈ X,

ν(x) := 1H ⊗ |x⟩⟨x| ,

where {|x⟩}x∈X is defined to be an orthonormal basis of CX . Furthermore, let the map
L be defined as

L |ψ⟩ =
∑︂
x∈X

√︁
µ(x) |ψ⟩ ⊗ |x⟩ ,

where
√︁
µ(x) is defined via the functional calculus 2.3.4. It is quite easy to check that

with these definitions everythings works. Indeed, we have

L†L =
∑︂
x∈X

µ(x) = 1H, L†ν(x)L = µ(x),
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so that L†ν(E)L = µ(E) follows by linearity. □

And indeed POVMs are usually regarded as Projective Measurements restricted to
a lower dimension. Let µ be a POVM, and ν be a PVM as given by Naimark’s theorem
2.3.10. Note that if we have an experiment in which we obtain a certain outcome x with
probability P(x) = tr(µ(x)ρ), then from the cyclic property of the trace, we get

P(x) = tr
(︂
ν(x)LρL†

)︂
= tr(ν(x)ρ̃),

where ρ̃ := LρL† ∈ S(K). Therefore, the same probability distribution is obtained with
a PVM on the Hilbert space K, just by changing the state.

2.3.4. Integrals of states. Suppose we have a black box generating quantum states ρλ ∈
S(H) according to some probability measure dPΛ(λ) on a probability space (Λ,Σ,PΛ).
This is a quite important situation in Quantum Information Theory that we need to
describe in the framework that we have introduced. In particular, the output of said
black box must be described by a state in S(H). In order to get a correct description
we expect from the usual laws of probability, for any measurement {Aa}a we perform,
to obtain the distribution of outcomes

(3) P(a) =

∫︂
Λ

P(a, λ)dPΛ(λ) =

∫︂
Λ

tr(Aaρλ)dPΛ(λ).

If the probability measure PΛ is discrete and finitely supported, we can further sim-
plify ∫︂

Λ
tr(Aaρλ)dPΛ(λ) =

N∑︂
λ=1

tr(Aaρλ)PΛ(λ) = tr

(︄
Aa

(︄
N∑︂
λ=1

ρλPΛ(λ)

)︄)︄
.

Therefore, defining the new operator

ρ :=
N∑︂
λ=1

ρλ PΛ(λ),

which clearly belongs to S(H), we would obtain a correct description of the system.
Similarly, when PΛ is continuous, we expect to obtain a state of the form

(4) ρ =

∫︂
Λ
ρλdPΛ(λ)

to describe the black-box system. We can always do this, if the map λ ↦→ ρλ is sufficiently
well-behaved. We need some sort of measurability property in order to ensure that the
integral of Equation (3) is well-defined no matter what measurement we decide to do.
However, it turns out that the weakest notion of measurability λ ↦→ tr{Aρλ} being
measurable and the integrals that we get out of that, coincide in the space of trace-class
operators over a separable Hilbert space with the notion of strong measurability and
Bochner integrability. Therefore, we may think of Equation (4) as a Bochner integral
without any loss of generality.

Of particular importance will be the fact that all continuous (with respect to the
topology of the trace-class operators) linear operators commute with the Bochner inte-
gral. This includes the trace and the partial trace.
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2.4. Other formulations of Quantum Mechanics. In Postulate (1) of the Hilbert
space formulation of QM, we associate a Hilbert space to each independent physical
system. A Hilbert space is usually a complex vector space, and QM makes no exception
to this. Furthermore, the evolution equation given in (2) makes explicit the imaginary
unit, and thus the use of complex numbers. Used to the role of complex numbers in
physics being purely computational, many people tried to formulate QM in a way that
avoids their use. This is, of course, possible. After all, one can rewrite complex numbers
as a pair of real numbers and call it a day. What is not so easy is, as we will see, to do
this while maintaining the locality structure given by Postulate (4).

There are a few other descriptions of quantum mechanics. One particularly helpful
one, which we will use in Chapter 3, is that of Wigner quasiprobability distributions.
In this approach the role of the usual quantum-mechanical amplitudes |ψ⟩ is played by
Wigner functions, which are real-valued functions on the phase space of the system. In
this case the composition of several systems also becomes complicated. There exist other
quasiprobability distributions, which are less frequently used.

There are other formulations such as Bohmian mechanics or the path-integral for-
mulation, which continue to use complex numbers, and therefore are not relevant for us
in this Chapter.

Some other attemps to formulate quantum theory with real numbers are again not
compatible with Postulate (4) [Stu60; ABW13].

3. Real Quantum Mechanics

What we call Real Quantum Mechanics (RQM) is not just a rewriting of QM where
we hide the complex numbers under the rug at the cost of giving up some physical aspect
of the theory, as it happens with the descriptions given in Sections ?? through ??. Each
of those are of independent interest, but the complex numbers mostly remain hidden in
their formulations.

For us, RQM consists simply in taking the framework of QM given by Postulates
(1)-(4) and imposing that all the mathematical objects are based on the field of real
numbers, other than the field of complex numbers.

3.1. The Postulates of Real Quantum Mechanics. The theory we call RQM is
therefore one satisfying the following Postulates:

(1R) To a physical system A, there corresponds a real separable Hilbert space HA,
and a particular state of A is given by a unit vector ψ ∈ HA.

(3R) To a measurable quantity f of the system A, there corresponds a self-adjoint

operator f̂ ∈ L(HA) such that measuring f yields a probability distribution of

outcomes with moments EA [fn] = ⟨ψ| (f̂)n |ψ⟩.
(4R) The Hilbert space of a combined system AB is the tensor product of the Hilbert

spaces of system A and system B. That is, HAB = HA ⊗HB.
An independent preparation procedure for systems A and B then yields a

tensor product state ψ ⊗ φ ∈ HS ⊗HB.
A local operation on system A is given by an operator of the form f̂ ⊗1B ∈

L(HA ⊗HB).
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At first sight it may seem that only Postulate (1R) is different from Postulate (1),
but the change of a complex Hilbert space to a real Hilbert space changes all operators
to be R-linear (rather than C-linear), and the tensor product to be over the field of real
numbers rather than over the field of complex numbers.

The theory of Section 2.3 remains unchanged. From Postulate (3R) we can also
get measurement operators, since the spectral theorem 2.3.3 also holds for self-adjoint
operators on a real Hilbert space [Remark 20.18; MV97]. In particular, we may also
formulate Postulate (3R) in the equivalent way

(3′R) To a measurable quantity f of the system A with possible measurement out-

comes in Λ ⊂ R, corresponds a PVM µf on (X,B(X)) with values in B(H) such
that the probability measure of the outcomes of the measurement is given by

µfψ.

Therefore, for any measurement with a finite number of outcomes, we have a corre-
sponding number of projections onto closed subspaces of the real Hilbert space H. One
also speaks of POVMs and mixed states. Note that the Purification theorem 2.3.8 holds
for real Hilbert spaces, as nothing in the proof requires complex numbers. Naimark’s
theorem 2.3.10 also holds for real spaces since in the proof one can use as K = H⊗ RX
and everything works the same way. Therefore we can usually restrict ourselves to PVMs
as well.

However, the locality structure given by the tensor product over R is quite different
from the one given by the tensor product over C, and is this what results in different
predictions. Let us illustrate this with a simple example.

Suppose that there are two parties, Alice and Bob, that share a quantum state. A
bipartite state ρ ∈ S(HA ⊗HB) is called separable if it can be written as a convex
combination of product states. If a state is not separable, then it is said to be entangled.
Entangled states are very important for quantum foundations [EPR35], and therefore
separable states form an important class of states to study. However, note that the
notion of separability depends on whether we consider QM or RQM.

Indeed, consider the eigenvectors |i⟩, |−i⟩ of σy.

Example 3.1.1 ([CFR00]). The state

(5) ρ :=
|i⟩⟨i| ⊗ |i⟩⟨i|+ |−i⟩⟨−i| ⊗ |−i⟩⟨−i|

2
is separable as a state in QM but it is not separable as a state in RQM.

Proof. Note that

(6) ρ =
1

8

⎛⎜⎜⎝
1 −i −i −1
i 1 1 −i
i 1 1 −i
−1 i i 1

⎞⎟⎟⎠+
1

8

⎛⎜⎜⎝
1 i i −1
−i 1 1 i
−i 1 1 i
−1 −i −i 1

⎞⎟⎟⎠ =
1

4

⎛⎜⎜⎝
1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1

⎞⎟⎟⎠ ,

so it is both a state in QM as well as in RQM. It is by construction separable. However, it
not real-separable. Indeed, suppose we could write it as a convex combination of product
states

ρ =

n∑︂
i=1

λiσi ⊗ ρi, λi ≥ 0,

n∑︂
i=1

λi = 1, σi, ρi ∈ S(R2).
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Then, we would have

ρTA =
n∑︂
i=1

λiσ
T
i ⊗ ρi =

n∑︂
i=1

λiσi ⊗ ρi = ρ.

However, since (|i⟩⟨i|)T = |−i⟩⟨−i|, we have

ρTA =
1

2
(|−i⟩⟨−i| ⊗ |i⟩⟨i|+ |i⟩⟨i| ⊗ |−i⟩⟨−i|) =

1

4

⎛⎜⎜⎝
1 0 0 1
0 1 −1 0
0 −1 1 0
1 0 0 1

⎞⎟⎟⎠
□

Note that the fact that we had a convex combination (instead of a usual linear
combination) did not play any role in the proof. Indeed, with the same argument we can
conclude that we cannot decompose ρ as an R-linear combination of real product states.
This is usually one of the main arguments previously used against RQM as a physical
theory. However, this cannot really be experimentally tested.

3.2. Simulation of QM in RQM in the Bell scenario. We want some argument
against RQM which can be detected experimentally. In Quantum Information, the ex-
perimentally available data consists on probability distributions of obtaining certain out-
comes given a certain measurement. Thus, if we can recover a probability distribution
obtained in an experiment using only RQM, we say that we have simulated QM with
RQM.

Consider the causal structure depicted in Figure 2.

x1 x2 ... xn

a1 a2 ... an

ψ

Figure 2. The causal structure of a multipartite Bell experiment. Here, n parties
share a common quantum state ψ and are able to perform measurements according to
individual classical settings xi, resulting in classical outcomes ai. We call this the Bell

scenario.

It was first proven in [PV08] that one can maximally violate any bipartite Bell in-
equality in RQM. In [MMG09] the authors further show that this is true of all Bell
experiments in the causal structures of Figure 2. We say that RQM can simulate QM in
these causal structures.

In order to prove that this is true we need two things. The first one is to give a
prescription that sends each party’s complex measurement operators to real measurement
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operators. The second one is a way to turn complex states into real states. The first one
is easy to do, for consider the matrix

J :=

(︃
0 −1
1 0

)︃
.

This matrix satisfies J† = JT = −J , J2 = −12 and JJ† = 12 and is therefore a good
candidate for the imaginary unit i. Indeed, if we substitute all imaginary units with J
we get a well-known representation of the complex numbers. For matrices, this takes the
following form:

Definition 3.2.1. For all n ∈ N and A ∈ Mn(C), denote by Re[A], Im[A] the entry-wise
real and imaginary parts of A, respectively. Note that this depends on the chosen basis.
Then, we define the R-linear map

f∗ : Mn(C) −→ M2n(R)

A ↦−→ Re[A]⊗ 12 + Im[A]⊗ J.

This map satisfies all the properties that we want for a proper simulation:

Lemma 3.2.2. For all A,B ∈ Mn(C), we have

1. f∗(A†) = f∗(A)T .

2. f∗(AB) = f∗(A)f∗(B).

3. f∗ is a positive map.

4. f∗(Un) ⊂ O2n. The image of a projective measurement is a projective measure-
ment. The image of a POVM is a POVM.

5. tr(f∗(A)f∗(B)) = 2Re[tr(AB)].

Proof. 1. Indeed, since taking an adjoint is the same a taking a transpose and complex
conjugating, we have Re[A†] = Re[AT ] = Re[A]T and Im[A†] = −Im[AT ] = −Im[A]T .
Therefore,

f∗(A†) = Re[AT ]⊗ 12 + Im[AT ]⊗ JT = f∗(A)T .

2. Since we can write A = Re[A] + iIm[A], we have that Re[AB] = Re[A]Re[B] −
Im[A]Im[B] and Im[AB] = Im[A]Re[B] + Re[A]Im[B]. Therefore,

f∗(A)f∗(B) = (Re[A]Re[B]−Im[A]Im[B])⊗12+(Im[A]Re[B]+Re[A]Im[B])⊗J = f∗(AB).

3. Note that a matrix is positive semidefinite if and only if it can be written as
A = BB† for some matrix B. Therefore, if A ≥ 0, then f∗(A) = f∗(B)f∗(B)T ≥ 0.

4. Since f∗(1n) = 12n, every claim follows from 1., 2., 3. and the linearity of f∗.

5. Since tr(J) = 0, we have

tr(f∗(A)f∗(B)) = tr(f∗(AB)) = 2 tr(Re[AB]) = 2Re[tr(AB)].

□

So this works exactly as we want to, except for property 4., which introduces an
extra factor of 2 in the trace. This is an artifact of having to double the dimension of
the system, and is the reason why we need a different map for states. Now, suppose that
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we are doing an experiment with a single system in a single laboratory. That is, we are
in the trivial causal structure given by Figure 3

x

a

ψ

Figure 3. The trivial causal structure of a single party quantum experiment.

In this case, simulating an experiment just means reproducing the statistics P(a|x) :=
tr(Aaρ), where, in the biggest possible generality, ρ is a density matrix and Aa a POVM
element. This is now quite simple to realize in RQM since, by Lemma 3.2.2 we have that
P(a|x) = tr(f∗(Aa)f

∗(ρ))/2. Since f∗(Aa) is also a POVM element, our correspondence
then works by sending states ρ ↦→ f∗(ρ)/2. Indeed, we know that positive operators are
sent to positive operators, so we only need to correct the trace for everything to work
out.

However, in the usual multipartite Bell scenario this simple strategy doesn’t work,
because our encoding of the quantum state includes a Hilbert space on which all parties
are acting - the one used . This can be corrected by changing our encoding of the state
in a way that respects the causality structure. The way to do this is to introduce a new
rebit for each party via the following states:

Definition 3.2.3. Let n ∈ N, y ≡ y1...yn ∈ {0, 1}n, h(y) :=
∑︁n

i=1 yi. We define the
following n-qubit states⃓⃓

0n
⟩︁

:=

√︃
1

2n−1

∑︂
h(y)even

(−1)
h(y)
2 |y⟩ ,

⃓⃓
1n
⟩︁

:=

√︃
1

2n−1

∑︂
h(y)odd

(−1)
h(y)−1

2 |y⟩ .

These states have the nice property that we can act locally with J on any subsystem
and the result is independent on which subsystem we have acted on. More precisely, we
have that

Lemma 3.2.4. For all i ∈ {1, ..., n}, we have

J i
⃓⃓
0n
⟩︁

=
⃓⃓
1n
⟩︁
, J i

⃓⃓
1n
⟩︁

= −
⃓⃓
0n
⟩︁
.

Proof. Note that J |0⟩ = |1⟩ and J |1⟩ = − |0⟩, and let

K :=

(︃
0 1
1 0

)︃
.

For any y ∈ {0, 1}n one has that J i |y⟩ = (−1)yiKi |y⟩. Let y ∈ {0, 1}n be such that
|y⟩ = Ki |y⟩. That is, y is obtained from y by negating the i-th component of y. We have
that h(y) = h(y) + (−1)yi , and each y with an even number of ones corresponds exactly
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to one y with an odd number of ones. Therefore,∑︂
h(y)even

(−1)
h(y)
2 J i |y⟩ =

∑︂
h(y)even

(−1)
h(y)
2

−yi |y⟩ =
∑︂

h(y)odd

(−1)
h(y)−1

2 |y⟩ ,

from which the first claim follows. The second claim is analogous. □

We are now able to define the encoding of our states. It is easier to first define the
enconding on vectors, rather than density matrices:

Definition 3.2.5. We define an enconding on states |ψ⟩ ∈ Cm = Cm1 ⊗ · · · ⊗ Cmn as

f∗ : Cm −→ R2nm = (Rm1 ⊗ R2)⊗ · · · ⊗ (Rmn ⊗ R2)

|ψ⟩ =

m∑︂
x=1

(ax + ibx) |x⟩ ↦−→ S

[︄
m∑︂
x=1

ax |x⟩
⃓⃓
0n
⟩︁

+ bx |x⟩
⃓⃓
1n
⟩︁]︄

= S
[︁
Re[|ψ⟩]⊗

⃓⃓
0n
⟩︁

+ Im[|ψ⟩]⊗
⃓⃓
1n
⟩︁]︁
,

where {|x⟩}mx=1 is some previously fixed orthonormal basis of Cm, n is the number of
parties in the Bell scenario and S is the linear map performing the system permutation

S : Rm1 ⊗ · · ·Rmn ⊗ R2 ⊗ · · · ⊗ R2 → (Rm1 ⊗ R2)⊗ · · · ⊗ (Rmn ⊗ R2).

The idea is that we will send each of the qubits forming the ancillary systems of⃓⃓
0n
⟩︁

and
⃓⃓
1n
⟩︁

to each party. Therefore, each party receives a real state of double the
dimension, which corresponds to the dimension of their encoded measurement operators
f∗, and thus can act with them. This strategy works as intended, obtaining the correct
probabilities:

Proposition 3.2.6. For all A ∈ Mmi(C), |ψ⟩ , |φ⟩ ∈ Cm1 ⊗ · · · ⊗Cmn, with respect to a
product basis,

1. f∗(Ai |ψ⟩) = f∗(A)if∗(|ψ⟩).
2. f∗(|φ⟩)T f∗(|ψ⟩) = Re[⟨φ|ψ⟩].

Proof. 1. Since we have a product basis, we have that taking real and imaginary parts
commutes with extending the operator A from acting on subsystem i to acting on the
global system. Furthermore, note that

Ai |ψ⟩ = Re[A]iRe[|ψ⟩]− Im[A]iIm[|ψ⟩] + i(Im[A]iRe[|ψ⟩] + Re[A]iIm[|ψ⟩]),
and thus,

S−1[f∗(Ai |ψ⟩)] = (Re[A]iRe[|ψ⟩]− Im[A]iIm[|ψ⟩])⊗
⃓⃓
0n
⟩︁

+ (Im[A]iRe[|ψ⟩] + Re[A]iIm[|ψ⟩])
⃓⃓
1n
⟩︁
.

On the other hand, using Lemma 3.2.4, we obtain

S−1[f∗(A)if∗(|ψ⟩)] = (Re[A]i ⊗ (12)i + Im[A]i ⊗ J i)(Re[|ψ⟩]⊗
⃓⃓
0n
⟩︁

+ Im[|ψ⟩]⊗
⃓⃓
1n
⟩︁

= (Re[A]iRe[|ψ⟩]− Im[A]iIm[|ψ⟩])⊗
⃓⃓
0n
⟩︁

+ (Im[A]iRe[|ψ⟩] + Re[A]iIm[|ψ⟩])
⃓⃓
1n
⟩︁

= S−1[f∗(Ai |ψ⟩)].

2. follows from a similar computation. □
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Therefore, if we have a mixed state to begin with, we can encode it by linearity as

|ψ⟩⟨φ| ↦→ f∗(|ψ⟩⟨φ|) := f∗(|ψ⟩)f∗(|φ⟩)T .

Using f∗ to encode the measurements and f∗ to encode the states we can perfectly
simulate any Bell experiment in the causal network given in Figure 2. Indeed, any such
experiment has as outcome a probability distribution of the form

P(a1, ..., an|x1, ..., xn) = tr(Ax11 ⊗ · · · ⊗A
xn
n ρ).

On the other hand, from Proposition 3.2.6, we deduce that

tr(f∗(Ax11 )⊗ · · · ⊗ f∗(Axnn )f∗(ρ)) = Re[tr(Ax11 ⊗ · · · ⊗A
xn
n ρ)].

Since probabilities are real numbers, both expressions are the same.

Remark 3.2.7. If n = 1 we can recover the encoding of states used in the trivial causal
structure of Figure 3. Indeed,

|ψ⟩⟨ψ| =
n∑︂

x,y=1

[(axay + bxby) + i(bxay − axby)] |x⟩⟨y| ,

and therefore

1

2
f∗(|ψ⟩⟨ψ|) =

1

2

n∑︂
x,y=1

(axay + bxby) |x⟩⟨y| ⊗ 12 + (bxay − axby) |x⟩⟨y| ⊗ J.

However, we have

f∗(|ψ⟩⟨ψ|) =
m∑︂

x,y=1

|x⟩⟨y| ⊗ (axay |0⟩⟨0|+ bxby |1⟩⟨1|+ bxay |1⟩⟨0|+ axby |0⟩⟨1|).

It is, it seems, a different encoding. On the other hand, consider the state i |ψ⟩ =∑︁m
x=1(−bx + iax) |x⟩. Since it only differs by a phase from ψ, all the statistics must also

coincide, and thus, we may also try simulating this state, as

f∗(i |ψ⟩⟨ψ| (−i)) =
m∑︂

x,y=1

|x⟩⟨y| ⊗ (bxby |0⟩⟨0|+ axay |1⟩⟨1| − bxay |0⟩⟨1| − axby |1⟩⟨0|).

From here, we obtain

1

2
f∗(|ψ⟩⟨ψ|) =

1

2
f∗(|ψ⟩⟨ψ|) +

1

2
f∗(i |ψ⟩⟨ψ| (−i)) = f∗((1 + i)/

√
2 |ψ⟩⟨ψ| (1− i)/

√
2).

That is, there is a phase for which both simulations coincide. Indeed, the map f∗ is only
defined on density matrices up to a phase

3.3. Simulation of QM in RQM in the PBR scenario. Consider the causal net-
work depicted in Figure 4. In a sense, it is the dual of a Bell scenario. Instead of
many parties performing independent measurements on a single quantum state, we have
a single party performing a measurement on many independent quantum states.
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ρ1 ρ2 ... ρn

a

x1 x2 xn

Figure 4. The causal structure dual to that of Figure 2. Here, a single party performs
a measurement on n independent quantum states, which are prepared according to
some classical settings xi, obtaining outcome a. We call this the PBR scenario.

Although it seems as simple as the trivial causal structure given in Figure 3, the
restriction on the state to be a product of many states has some interesting consequences,
as shown in [PBR12]. Now we show that all experiments in the PBR scenario are
reproducible in RQM, by giving another simulation, as in Section 3.2.

We have that any experiment performed on the PBR scenario outputs a behavior of
the form

P(a|x1, ..., xn) = tr(Aa(ρ
x1
1 ⊗ · · · ⊗ ρ

xn
n )).

In order to simulate this result on real Hilbert spaces, we again need an encoding for the
measurement operators, and one for the states. We will now provide a simulation which
is drastically different from that of Section 3.2.

Suppose that party i has mi possible preparation settings {1, ...,mi}. Then, we

associate to ρ
xmi
i an element of an orthonormal basis {|xj⟩}mi

xj=1 of Rmi . That is, we

encode ρxii as g∗(ρ
xi
i ) := |xi⟩⟨xi|. These are clearly trace 1 positive operators, and are

thus valid states.

On the other hand, we can now encode Aa as

Aa ↦→ g∗(Aa) :=
∑︂

x1,...,xn

P(a|x1, ..., xn) |x1, ..., xn⟩⟨x1, ..., xn| .

Since this is a diagonal matrix with positive entries, it is positive. On the other hand,
since P(a|x1, ..., xn) is a conditional probability distribution, we have that∑︂

a

g∗(Aa) = 1Rm1⊗···⊗Rmn ,

and thus {g∗(Aa)} are a POVM, and therefore a valid measurement.

Finally, by construction we have that

P(a|x1, ..., xn) = tr(g∗(Aa)(g∗(ρ
x1
1 )⊗ · · · ⊗ g∗(ρxnn ))).

4. The SWAP scenario

Consider now the causal network depicted in Figure 5. This is the next simplest
causal network after the ones studied in Sections 3.2 and 3.3.
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x y z

a ρ1 b ρ2 c

Figure 5. A causal network for a bilocality experiment

Since it is not a Bell scenario, the validity of the simulation strategy we saw in
Section 3.2 is not ensured. The main problem is Bob’s measurement operators. He is
acting on two Hilbert spaces, so according to the prescription given in Section 3.2, he
would receive two extra rebits used to encode the real and imaginary degrees of freedom,
so we cannot just double the dimension of his measurements via f∗, since then there
would be a dimension mismatch.

An obvious candidate would be to decompose each of Bob’s measurements B =∑︁n
i=1B

1
i ⊗B2

i and apply f∗ ⊗ f∗. However,

Proposition 4.0.1 (cf. Lemma 3.2.2). The map f∗ is not 2-positive. In particular,
f∗ ⊗ f∗ is not positive, and a POVM does not need to map to a POVM under f∗ ⊗ f∗.

Proof. Indeed, consider the state

⃓⃓
ψ+
⟩︁

:=
1√
2

(|00⟩+ |11⟩).

One has that ⃓⃓
ψ+
⟩︁⟨︁
ψ+
⃓⃓

=
1

4
(σx ⊗ σx − σy ⊗ σy + σz ⊗ σz + 12 ⊗ 12),

where σi are the Pauli matrices, and thus

f∗ ⊗ f∗(
⃓⃓
ψ+
⟩︁⟨︁
ψ+
⃓⃓
) =

1

4
(σx ⊗ 12 ⊗ σx ⊗ 12 − J ⊗ J ⊗ J ⊗ J + σz ⊗ 12 ⊗ σz ⊗ 12 + 116).

But this matrix has eigenvectors with eigenvalue −1/2. One of them is |0010⟩− |0111⟩+
|1000⟩+ |1101⟩. □

For example, then, this map will not properly encode a Bell measurement into RQM.
Of course, a priori it’s possible that we need to change the encoding again, as we had
to do from the trivial causal network to the Bell scenario. Or maybe it could be that
we have to combine the simulations provided in Sections 3.2 and 3.3. We prove in the
sequel that none of this is possible.

4.1. Imposibility of simulation of QM with RQM. We are going to work in the
slightly more general network given by Figure 6
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x y z

a ρ1 b ρ2 c

λ

Figure 6. The causal network for the SWAP scenario.

The only difference with the network presented in Figure 5 is that the quantum sys-
tems may be correlated with a classical variable. There are many reasons for considering
this more general network. First, the set of behaviors that can be obtained in this net-
work is convex, whereas the set obtained from Figure 5 is not. Second, it is more general
and our results apply to it. Finally, from an experimental point of view, it is complicated
to ensure that there are no classical correlations between the quantum systems.

We will other consider that each party has a finite number of inputs and outputs. We
denote the set of inputs as X ,Y,Z respectively for Alice, Bob and Charlie. Analogously,
we denote the sets of outputs by A,B, C, respectively. A behavior obtained as a result
of an experiment conducted in this causal network has the form

(7) P(a, b, c|x, y, z) =

∫︂
Λ

tr
(︂

(Axa ⊗B
y
b ⊗ C

z
c )(σλAB1

⊗ σλB2C)
)︂
dPΛ(λ),

where PΛ is a probability measure on Λ representing the classical correlations, and there
are four Hilbert spaces HA,HB1 ,HB2 ,HC such that σλAB1

∈ S(HA ⊗HB1), σλB2C
∈

S(HB2 ⊗HC) for all λ ∈ Λ, and {Axa}a∈A is a POVM with values in B(HA) for all
x ∈ X , {By

b }b∈B is a POVM with values in B(HB1 ⊗HB2) for all y ∈ Y, and {Czc }c∈C is
a POVM with values in B(HC) for all z ∈ Z.

Depending on if we are in QM or RQM the aforementioned Hilbert spaces will be
complex or real, and the tensor product will be over the complex or the real numbers. We
will show that there is a QM behavior in this causal network that cannot be reproduced
in RQM, by explicitely giving one.

Consider the scenario given by the causal network of Figure 6, with A = C = {−1, 1},
B = {0, 1, 2, 3}, X = {1, 2, 3}, Y = {1}, Z = {1, 2, 3, 4, 5, 6}. We define the behavior
PC(a, b, c|x, y, z) explicitely through Equation 7. We will set PΛ(λ) = δ(λ), so that the
behavior is also valid in the causal network of Figure 5. After removing all the superfluous
notation, we have

Definition 4.1.1 (Optimal complex behavior). We define the behavior

(8) PC(a, b, c|x, z) = tr
(︂

(Ã
x
a ⊗ B̃b ⊗ C̃

z
c)(σ̃AB1 ⊗ σ̃B2C)

)︂
.

explicitely by giving all the operators in the right-hand side. We let both states be the
maximally entangled qubit state

σ̃AB1 = σ̃B2C = Φ+.

Bob measures in the Bell basis. That is,

B̃0 = Φ+, B̃1 = Ψ+, B̃2 = Φ−, B̃3 = Ψ−.
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Finally, we define a PVM for Alice and Charlie via the spectral theorem 2.3.3 by giving
self-adjoint operators. That is, we define Ã

x
= Ã

x
1 − Ã

x
−1 and C̃

z
= C̃

z
1 − C̃

z
−1 as

Ã
1

= σz, Ã
2

= σx, Ã
3

= σy,

and, letting Dij := (σi + σj)/
√

2, Eij := (σi − σj)/
√

2, we set

C̃
1

:= Dzx, C̃
2

:= Ezx, C̃
3

:= Dzy, C̃
4

:= Ezy, C̃
5

:= Dxy, C̃
6

:= Exy.

By construction, this behavior admits a decomposition of the form given by Equation
7 in QM. We have used the complex numbers in this decomposition, and as we will see
this is unavoidable.

Theorem 4.1.2. [↓] The behavior PC(a, b, c|x, z) does not admit a decomposition of the
form given by Equation (7) in RQM. That is, if we require the Hilbert spaces and the
operators to be real, and the tensor product be over the real numbers.

In other words, if we are doing an experiment which can be modelled in the causal
network given by Figure 6, then it is impossible to get the behavior PC(a, b, c|x, z) as an
outcome of such an experiment within RQM.

The idea of the proof is as follows. First, we consider a linear functional on the
probabilities. We see that PC achieves the maximum possible value that this functional
can achieve in QM, and we use self-testing techniques to figure out which states we could
have started with. Using the self-tested state, we can apply local unitary transformations
and arrive at another state which cannot be prepared within this causal network in RQM,
thus showing that the initial state needs to live in a complex Hilbert space.

The linear functional is a variation on one introduced in [APVW16]. It is called
CHSH3 because it is the sum of three CHSH functionals:

Definition 4.1.3. Given some behavior P(a, b, c|x, z), we define

Sxzb :=
∑︂

a,c∈{−1,1}

acP(a, b, c|x, z).

We define now the linear functional

J b(P) := (−1)b2(S11
b + S12

b ) + (−1)b1(S21
b − S22

b )(9)

+ (−1)b2(S13
b + S14

b ) + (−1)b1+b2+1(S33
b − S34

b )

+ (−1)b1(S25
b + S26

b ) + (−1)b1+b2+1(S35
b − S36

b ),

where b ≡ b1b2 is the binary decomposition of the numbers 0 through 3.

Each line in equation (9) corresponds to some CHSH functional of the correlations
of Alice and Charlie conditioned on Bob having observed result b. A quick calculation
shows that

Lemma 4.1.4. J b(PC) = 6
√

2PC(b), and PC(b) = 1/4.

Proof. That the marginal PC(b) is well defined and independent of x, z follows from
equation (8). Let

ρb := trB1B2((1A ⊗Bb̃ ⊗ 1C)(Φ+ ⊗ Φ+)).
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One can compute by hand or remembering that this is precisely how to perform entan-
glement swapping [ZZHE93], that

ρb =
1

4
Bb̃.

In particular, tr(ρb) = PC(b) = 1/4. We may now write

PC(a, b, c|x, z) =
1

4
tr
(︂

(Ã
x
a ⊗ C̃

z
c)B̃b

)︂
The signs in equation (9) have been chosen so that, for each b, one gets the maximum
violation of the three CHSH inequalities that we are adding up, and therefore, we obtain
the result. □

The self-test of the CHSH3 was performed in [BŠCA18]. It needs the introduction of
the following notion:

Definition 4.1.5 (Regularized operators). Given any Hermitian operator A ∈ B(H), we
define its regularized version via the functional calculus 2.3.4

Â := f(A),

where f is the measurable function given by

f : R −→ R

x ↦−→

{︄
1 if x ≥ 0

−1 if x < 0

From the spectral decomposition, we see that this regularization procedure turns a
hermitian operator into a (hermitian) unitary operator with eigenvalues ±1. Note also

that ÂA = |A|.
We are now ready to prove the theorem.

Proof of Theorem 4.1.2. Suppose, by contradiction, that there is a probability dis-
tribution PΛ(λ), real Hilbert spaces HA,HB1 ,HB2 ,HC , measurement operators Axa ∈
B(HA), Bb ∈ B(HB1 ⊗ HB2), Czc ∈ B(HC) and states σAB1 ∈ S(HA ⊗HB1), σB2C ∈
S(HB2 ⊗HC) such that

PC(a, b, c|x, z) =

∫︂
Λ

tr
(︂

(Axa ⊗Bb ⊗ Czc )(σλAB1
⊗ σλB2C)

)︂
dPΛ(λ).

Since, as noted in Section 3.1, Theorem 2.3.10 and its consequences also hold in RQM,
we may assume that each party’s measurement operators form a PVM. Let us call

ρ :=

∫︂
Λ
σλAB1

⊗ σλB2CdPΛ(λ)

We have that, with probability P (b) = tr(ρ(1A ⊗Bb ⊗ 1C)), Bob observes outcome
b. Conditioned on this result, the joint statistics of Alice and Charlie are obtained from
the state

ρb :=
trB1B2((1HA

⊗Bb ⊗ 1HC
)ρ)

P(b)

as P(a, c|x, z, b) = tr((Axa ⊗ Czc )ρb).
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Consider now a purification (Theorem 2.3.8) of this state. That is, a state |ψb⟩ ∈
HA ⊗HC ⊗HP such that

P (a, c|x, z, b) = ⟨ψb|Axa ⊗ Czc ⊗ 1HP
|ψb⟩.

We will rename HC ≡ HC ⊗ HP and Czc ≡ Czc ⊗ 1HP
to simplify the notation. Let us

again call Ax := Ax1 −Ax−1 and Cz := Cz1 −Cz−1 the self-adjoint operators corresponding
to the PVM performed by Alice, and Charlie respectively. We consider the following
four variants of the CHSH3 operator

Ĵ b := (−1)b2A1(C1 + C2) + (−1)b1A2(C1 − C2)

+ (−1)b2A1(C3 + C4) + (−1)b1+b2+1A3(C3 − C4)

+ (−1)b1A2(C5 + C6) + (−1)b1+b2+1A3(C5 − C6),

where b = b1b2 is the binary representation of the numbers 0 through 3, and the tensor
product between Alice and Charlie’s observables is implied. For all b, this is a combina-
tion of 3 CHSH operators, and therefore it is called CHSH3. In particular, one has that
the average value corresponds to the value of the functional defined in Equation (9):

(10) ⟨ψb| Ĵ b|ψb⟩ =
J b(PC)

P(b)
= 6
√

2,

where the first equality follow from the fact that ⟨ψb|Ax ⊗ Cz|ψb⟩ = Sxzb /P (b) from the
spectral decomposition of Ax and Cz, and the second equality follows from Lemma 4.1.4.
Furthermore, we have the following sum-of-squares (SOS) decomposition:

√
2(6
√

2− Ĵ b) =

(︃
(−1)b2A1 − C1 + C2

√
2

)︃2

+

(︃
(−1)b1A2 − C1 − C2

√
2

)︃2

+

(︃
(−1)b2A1 − C3 + C4

√
2

)︃2

+

(︃
(−1)b1+b2+1A3 − C3 − C4

√
2

)︃2

(11)

+

(︃
(−1)b1A2 − C5 + C6

√
2

)︃2

+

(︃
(−1)b1+b2+1A3 − C5 − C6

√
2

)︃2

The tensor product with identites is again implied. Note that this is technically a sum

of hermitian squares (SOHS). That is, a decomposition of the form A =
∑︁

i PiP
†
i . This

is always the kind of decomposition that we want, since we need that each summand
is positive. When all the operators involved are hermitian, an SOHS is the same as
an SOS. In particular, since ⟨ψb| (6

√
2 − Ĵ b)|ψb⟩ = 0, by positivity we must have that

⟨ψb|P 2
i |ψb⟩ = 0 for all i in the SOS (6

√
2 − Ĵ b) =

∑︁
i P

2
i given by equation (11), and

therefore Pi|ψb⟩ = 0. Grouping terms, we get

(−1)b2A1 ⊗ 1HC
|ψb⟩ = 1HA

⊗ C1 + C2

√
2
|ψb⟩ = 1HA

⊗ C3 + C4

√
2
|ψb⟩,

(−1)b1A2 ⊗ 1HC
|ψb⟩ = 1HA

⊗ C1 − C2

√
2
|ψb⟩ = 1HA

⊗ C5 + C6

√
2
|ψb⟩,(12)

(−1)b1+b2+1A3 ⊗ 1HC
|ψb⟩ = 1HA

⊗ C3 − C4

√
2
|ψb⟩ = 1HA

⊗ C5 − C6

√
2
|ψb⟩.
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Let us now call

ZA := A1, XA := A2, Y A := A3,

ZC :=
C1 + C2

√
2

, XC :=
C1 − C2

√
2

, Y C :=
C3 − C4

√
2

,

in reference to the optimal complex operators. We will also continuously avoid writing
the tensor product in the notation. For example, Equation (12) looks like

(−1)b2ZA|ψb⟩ = ZC |ψb⟩, (−1)b1XA|ψb⟩ = XC |ψb⟩,

(−1)b1+b2+1Y A|ψb⟩ = Y C |ψb⟩.(13)

A different SOS decomposition of the CHSH inequality is also useful:

√
2(6
√

2−Ĵ b) =

(︃
C1 − (−1)b2A1 + (−1)b1A2

√
2

)︃2

+

(︃
C2 − (−1)b2A1 − (−1)b1A2

√
2

)︃2

+

(︃
C3 − (−1)b2A1 − (−1)b1+b2A3

√
2

)︃2

+

(︃
C4 − (−1)b2A1 + (−1)b1+b2A3

√
2

)︃2

(14)

+

(︃
C5 − (−1)b1A2 − (−1)b1+b2A3

√
2

)︃2

+

(︃
C6 − (−1)b1A2 + (−1)b1+b2A3

√
2

)︃2

With the usual argument then we have that

[︃
C1 − (−1)b2A1 + (−1)b1A2

√
2

]︃
|ψb⟩ = 0.

Therefore,

[︃
C1 +

(−1)b2A1 + (−1)b1A2

√
2

]︃ [︃
C1 − (−1)b2A1 + (−1)b1A2

√
2

]︃
|ψb⟩ = 0.

Since C1, A1 and A2 all square to the identity, the left hand side is (−1)b1+b2+1{A1, A2}/2.
In particular, we have {A1, A2}|ψb⟩ = 0. Similarly, one obtains that all of Alices observ-
ables anticommute on the subspace spanned by the |ψb⟩:

(15) {ZA, XA}|ψb⟩ = 0, {ZA, Y A}|ψb⟩ = 0, {XA, Y A}|ψb⟩ = 0.

We now proceed to use these relations to obtain a self-testing result. That is, there
is a local unitary operation that Alice and Charlie can perform to bring |ψb⟩ to certain
fixed states. Such a unitary, which we call U ⊗ V is defined in Figure 7. It is adapted
from the one used in [BŠCA18] so that it is a real operator.
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A′ H • H •

A′′ H • H

A ZA XA Y AXA

C Ẑ
C

X̂
C

Ŷ
C
X̂
C

C ′′ H • H

C ′ H • H •

Step 1 Step 2 Step 3 Step 4

Figure 7. Real local isometry U ⊗ V built from each party’s untrusted measurement
operators, written in circuit form. That is, the depicted maps are applied in from left to
right on the corresponding tensor product labelled by the wire. In particular, A denotes
the usual Hilbert space of Alice, HA, and A

′, A′′ denote each a two-dimensional (real)
Hilbert space, or rebit. Analogously for Charlie. For convenience, the map is divided
in four steps. H represents the Hadamard gate. A black dot together with a vertical
determines a controlled gate. That is, a gate applied coherently when the control qubit

is |1⟩.

Note that ZA, XA, Y A are unitary operators, while ZC , Y C , XC might not be. We
thus regularize Charlie’s operators. The important thing to note is that the regularized
versions of Charlie’s operators also satisfy the relations (13). Indeed, since

⃓⃓
ZA
⃓⃓

= 1 and
A ≤ |A| for any hermitian operator A,⃦⃦⃦

(Ẑ
C − ZC)|ψb⟩

⃦⃦⃦
=
⃦⃦⃦

(1− ẐCZC)|ψb⟩
⃦⃦⃦

=
⃦⃦

(1−
⃓⃓
ZC
⃓⃓
)|ψb⟩

⃦⃦
(16)

=
⃦⃦

(1−
⃓⃓
ZA
⃓⃓⃓⃓
ZC
⃓⃓
)|ψb⟩

⃦⃦
≤
⃦⃦

(1− ZAZC)|ψb⟩
⃦⃦

= 0.

The same is obviously true for the other operators XC , Y C . Putting Equations (13) and
(16) together, we have that

(−1)b2ZA|ψb⟩ = Ẑ
C |ψb⟩, (−1)b1XA|ψb⟩ = X̂

C |ψb⟩,

(−1)b1+b2+1Y A|ψb⟩ = Ŷ
C |ψb⟩.(17)

Let us now see what the action of the map defined on Figure 7 is. We proceed step
by step. For clarity of notation, we ignore the order of the tensor products, and instead
denote with subindices in which Hilbert spaces each vector lives.

Step 1. In this step we begin by initializing the state in

|0000⟩A′A′′C′C′′ |ψb⟩AC .
After application of the unitary maps of Step 1, we obtain

1

2
|++⟩A′′C′′ [(|00⟩A′C′ + (−1)b2 |11⟩A′C′)|ψb⟩AC

+ ((−1)b2 |01⟩A′C′ + |10⟩A′C′)Z
A|ψb⟩AC ],

where we have used Equation (17) and the fact that ZA is unitary and hermitian.
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Step 2. Recall that

H ⊗H
⃓⃓
ϕ+
⟩︁

=
⃓⃓
ϕ+
⟩︁
, H ⊗H

⃓⃓
ϕ−
⟩︁

=
⃓⃓
ψ+
⟩︁
,(18)

H ⊗H
⃓⃓
ψ+
⟩︁

=
⃓⃓
ϕ−
⟩︁
, H ⊗H

⃓⃓
ψ−⟩︁ = −

⃓⃓
ψ−⟩︁.

Therefore, after another round of Hadamard gates, we get{︄
1√
2
|++⟩A′′C′′ (|ϕ+⟩A′C′ |ψb⟩AC + |ϕ−⟩A′C′ZA|ψb⟩AC) if b2 = 0,

1√
2
|++⟩A′′C′′ (|ψ+⟩A′C′ |ψb⟩AC − |ψ−⟩A′C′ZA|ψb⟩AC) if b2 = 1.

Then, after applying the controlled X gates, using Equations (15) and (17), we
get{︄
1
2 |++⟩A′′C′′ (|00⟩A′C′ + (−1)b1 |11⟩A′C′)(1 + ZA)|ψb⟩AC if b2 = 0,
1
2 |++⟩A′′C′′ (|10⟩A′C′ + (−1)b1 |01⟩A′C′)XA(1− ZA)|ψb⟩AC if b2 = 1.

Let us call

O(b) :=

{︄
1√
2
(1 + ZA) if b2 = 0,

1√
2
XA(1− ZA) if b2 = 1,

and |φb⟩ := O(b)|ψb⟩. We can write⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|++⟩A′′C′′ |ϕ+⟩A′C′ |φb⟩AC if b = 00,

|++⟩A′′C′′ |ψ+⟩A′C′ |φb⟩AC if b = 01,

|++⟩A′′C′′ |ϕ−⟩A′C′ |φb⟩AC if b = 10,

|++⟩A′′C′′ |ψ−⟩A′C′ |φb⟩AC if b = 11,

We are going to define

|b⟩ :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|ϕ+⟩ if b = 00,

|ψ+⟩ if b = 01,

|ϕ−⟩ if b = 10,

|ψ−⟩ if b = 11.

With this notation, after Step 2 we are left with state |++⟩A′′C′′ |b⟩A′C′ |φb⟩AC .
This was to be expected, as the circuit until now is the famous SWAP circuit
[Figure 1; MYS12].

Step 3. The unitary in Step 3 takes this state to

|b⟩A′C′
1

2
(|00⟩A′′C′′ |φb⟩AC + |11⟩A′′C′′ Y

AXAŶ
C
X̂
C |φb⟩AC

+ |01⟩A′′C′′ Ŷ
C
X̂
C |φb⟩AC + |10⟩A′′C′′ Y

AXA|φb⟩AC).(19)



4. The SWAP scenario 33

However, note that Equations (15) and (17) imply

Ŷ
C
X̂
C |φb⟩ = (−1)b1+b2+1X̂

C
(1 + ZA)Y A|ψb⟩

= (−1)b1+b2Y A(1− ZA)XC |ψb⟩

= (−1)b2Y A(1− ZA)XA|ψb⟩

= (−1)b2Y AXA|φb⟩ if b2 = 0,

Ŷ
C
X̂
C |φb⟩ = (−1)b1 Ŷ

C
XA(1− ZA)XA|ψb⟩

= (−1)b1(1 +XA)Ŷ
C |ψb⟩

= (−1)b2+1(1 +XA)Y A|ψb⟩

= (−1)b2+1Y AXA|φb⟩ if b2 = 1.

Both these equations are concisely written as,

(20) Ŷ
C
X̂
C |φb⟩ = Y AXA|φb⟩.

Symmetrically in Y and X, one obtains

(21) X̂
C
Ŷ
C |φb⟩ = XAY A|φb⟩.

In particular, one more use of Equation (15) yields

Y AXAŶ
C
X̂
C |φb⟩ = −|φb⟩.

Therefore, Equation (19) becomes

|b⟩A′C′
1√
2

(
⃓⃓
ϕ−
⟩︁
A′′C′′ |φb⟩AC +

⃓⃓
ψ+
⟩︁
A′′C′′Y AXA|φb⟩AC)

Step 4. Finally, using equation (18), we obtain the final state

(22) |b⟩A′C′
1√
2

(
⃓⃓
ψ+
⟩︁
A′′C′′ |φb⟩AC +

⃓⃓
ϕ−
⟩︁
A′′C′′Y AXA|φb⟩AC).

Knowing what U ⊗ V |0000⟩A′C′A′′C′′ |ψb⟩ is, we now take the partial trace over sys-
tems AC. We have that

trAC(U ⊗ V |0000⟩A′C′A′′C′′ |ψb⟩) =
1

2
|b⟩⟨b|A′C′ ⊗ [(Φ− + Ψ+) ⟨φb|φb⟩

+ (
⃓⃓
ϕ−
⟩︁⟨︁
ψ+
⃓⃓

+
⃓⃓
ψ+
⟩︁⟨︁
ϕ−
⃓⃓
) ⟨φb|Y AXA |φb⟩]A′′C′′ .

However, combining equations (20), (21) and (15), we obtain

Y AXA|φb⟩ = O(b)Ŷ
C
X̂
C |ψb⟩

= (−1)b1O(b)XAŶ
C |ψb⟩

= (−1)b1+b2O(b)XAY A|ψb⟩

= (−1)b1+b2+1O(b)Y AXA|ψb⟩

= (−1)b2+1X̂
C

O(b)Y A|ψb⟩

= −X̂C
Ŷ
C |φb⟩

= −XAY A|φb⟩.
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Finally note that, since we are in a real Hilbert space, the scalar product is symmetric.
Therefore, since Alice operators are hermitian, we have

⟨φb|Y AXA |φb⟩ = ⟨φb|XAY A |φb⟩ = −⟨φb|Y AXA |φb⟩ ,

and therefore ⟨φb|Y AXA |φb⟩ = 0. On the other hand, by unitarity, the output state of
Step 2 must have norm 1, and thus ⟨φb|φb⟩ = 1. Therefore, the final state is

(23) |b⟩⟨b|A′C′ ⊗
[︃

Ψ+ + Φ−

2

]︃
A′′C′′

.

Now, if we average over Bob’s results, we obtain

(24)
3∑︂
b=0

P(b)

(︃
|b⟩⟨b|A′C′ ⊗

[︃
Ψ+ + Φ−

2

]︃
A′′C′′

)︃
=
1A′C′

4
⊗
[︃

Ψ+ + Φ−

2

]︃
A′′C′′

.

One can now appreciate that the state (Ψ+ + Φ−)/2 is exactly the same as the state
given in equation (5). Indeed, in the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}, and from equation (6),
we have

Ψ+ + Φ−

2
=

1

4

⎛⎜⎜⎝
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞⎟⎟⎠+
1

4

⎛⎜⎜⎝
1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

⎞⎟⎟⎠ =
|i⟩⟨i| ⊗ |i⟩⟨i|+ |−i⟩⟨−i| ⊗ |−i⟩⟨−i|

2
.

In particular, it is not equal to its own partial transpose, so that(︃
1A′C′

4
⊗
[︃

Ψ+ + Φ−

2

]︃
A′′C′′

)︃TA′A′′

̸= 1A′C′

4
⊗
[︃

Ψ+ + Φ−

2

]︃
A′′C′′

.

That is, our final state is not real-separable over the bipartition A′A′′|C ′C ′′. However,
to obtain this state we have performed the operation

3∑︂
b=0

P(b)trAC(U ⊗ V |ψb⟩AC |0000⟩A′C′A′′C′′)

= trAB1B2C((U ⊗ V )ρAB1B2C ⊗ |0000⟩⟨0000|A′C′A′′C′′ (U ⊗ V T )

=

∫︂
Λ

trAB1B2C((U ⊗ V )σλAB1
⊗ σλB2C ⊗ |0000⟩⟨0000|A′C′A′′C′′ (U ⊗ V )T ) dPΛ(λ)

=

∫︂
Λ

trAB1(U(σλAB1
⊗ |00⟩⟨00|A′A′′)U

T )⊗ trB2C(V (σλB2C ⊗ |00⟩⟨00|C′C′′)V
T ) dPΛ(λ),

which is manifestly real-separable over the bipartition A′A′′|C ′C ′′, reaching a contradic-
tion. □

Note that it is irrelevant for the proof whether Alice and Charlie can in practice
actually purify the system, or implement the unitaries given in Figure 7. Even if one
modifies RQM to, for example, exclude Hadamard gates from the theory, the proof still
reaches a mathematical contradiction: one can via some mathematical procedure obtain
a state with a property that it cannot have under our hypotheses.
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4.2. Robustness. Theorem 4.1.2 states that there is a behavior that we cannot repro-
duce exactly in RQM. However, a priori it could be possible to be able to approximate
PC(a, b, c|x, z) as much as possible. In this section, we refine the proof of Theorem 4.1.2
to show that this is not the case. More precisely, we show

Theorem 4.2.1. [↓] Let P(a, b, c|x, z) be a behavior with a well-defined marginal P(b)
such that ⃓⃓⃓⃓

P(b)− 1

4

⃓⃓⃓⃓
< εc, J b(P) > (6

√
2− εc) P(b)

for all b, and εc ≈ 7.18 ·10−5. Then, P(a, b, c|x, z) does not admit a decomposition of the
form given by Equation (7) in RQM.

The proof follows the same steps as the proof ot Theorem 4.1.2, but keeping track
of all the small errors that accumulate from the imperfect violation of the inequality.
The idea is to keep εc small enough so that after applying the unitary from Figure 7
and tracing out systems AC we are still away from the set of states that are invariant
under partial transposition of A′A′′. To make the estimates precise, we therefore need to
compute the distance from that set to the output state. There are a variety of possible
choices for the distance; we consider the distance given by the trace norm, and we’ll need
the following property:

Proposition 4.2.2 (The trace-norm is contractive under quantum channels). Let A ∈
T (H) be hermitian, S : T (H)→ T (H) a positive trace-preserving map. We have

∥S(A)∥1 ≤ ∥A∥1.

In particular, this holds for quantum channels. That is, CPTP maps.

Proof. Indeed, from the spectral theorem 2.3.3 we may decompose A = A+−A−, where
A+ := θ(A), A− := θ(−A) are positive operators. We also have |A| = A+ + A−. Notice
that for any positive operator, the trace norm is just the trace, and in general for any
hermitian operator we have ∥A∥1 = tr(|A|). Therefore,

∥S(A)∥1 =
⃦⃦
S(A+)− S(A−)

⃦⃦
1
≤
⃦⃦
S(A+)

⃦⃦
1

+
⃦⃦
S(A−)

⃦⃦
1

= tr
(︁
S(A+)

)︁
+ tr

(︁
S(A−)

)︁
= tr

(︁
S(A+ +A−)

)︁
= tr(|A|) = ∥A∥1

□

Lemma 4.2.3. Let STA be the set of states in HA′⊗HA′′⊗HC′⊗HC′′ which are invariant
under transposition on HA′ ⊗HA′′. Let

ρ∗ :=
1A′C′

4
⊗ Ψ+ + Φ−

2
=
1A′C′

4
⊗ |i⟩⟨i| ⊗ |i⟩⟨i|+ |−i⟩⟨−i| ⊗ |−i⟩⟨−i|

2

be the state that gives the contradiction in the proof of Theorem 4.1.2. Then,

inf
τ∈STA

∥τ − ρ∗∥1 = 1

Proof. We prove that 1 is both a lower and an upper bound. First, the upper bound.
Notice that for τ∗ := 1/16, we have

τ∗ − ρ∗ =
1A′C′

4
⊗
(︃
1A′′C′′

4
− Ψ+ + Φ−

2

)︃
=
1A′C′

4
⊗ Φ+ + Ψ− −Ψ+ − Φ−

4
.
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In particular,

∥τ∗ − ρ∗∥1 = tr

(︃
1A′C′

4

)︃
tr

(︃
Φ+ + Ψ− + Ψ+ + Φ−

4

)︃
= tr

(︃
1A′A′′C′C′′

16

)︃
= 1.

For the lower bound, we first compute
⃦⃦
ρ∗ − ρ∗TA′A′′

⃦⃦
1
. Writing

ρ∗ =
1

2

(︃
1A′ ⊗ |i⟩⟨i|A′′

2
⊗
1C′ ⊗ |i⟩⟨i|C′′

2
+
1A′ ⊗ |−i⟩⟨−i|A′′

2
⊗
1C′ ⊗ |−i⟩⟨−i|C′′

2

)︃
,

and recalling that |±i⟩⟨±i|T = |∓i⟩⟨∓i|, and that |i⟩⟨i| − |−i⟩⟨−i| = σy, we can see that

ρ∗ − ρ∗TA′A′′ =
1

2

(︃
1A′ ⊗ |i⟩⟨i|A′′

2
⊗ 1C′ ⊗ (σy)C′′

2
−
1A′ ⊗ |−i⟩⟨−i|A′′

2
⊗ 1C′ ⊗ (σy)C′′

2

)︃
=

1

2

1A′ ⊗ (σy)A′′

2
⊗
1C′ ⊗ σyC′′

2

=
1A′ ⊗ 1C′ ⊗ σy ⊗ σy

8
.

Thus,
⃦⃦
ρ∗ − ρ∗TA′A′′

⃦⃦
1

= 2. On the other hand, we define the quantum channel

S : HA′ ⊗HA′′ −→ HA′ ⊗HA′′

ρ ↦−→
∑︂

α′,α′′∈{i,−i}

⃓⃓
α′⟩︁⟨︁α′⃓⃓⊗ ⃓⃓α′′⟩︁⟨︁α′′⃓⃓ ρ ⃓⃓α′⟩︁⟨︁α′⃓⃓⊗ ⃓⃓α′′⟩︁⟨︁α′′⃓⃓ ,

where |i⟩, |−i⟩ are the eigenvectors of the Pauli y gate σy. Given that |i⟩, |−i⟩ form an
orthonormal set, it follows that S2 = S. Writing

ρ∗ =
1

2

(︃
1A′ ⊗ |i⟩⟨i|A′′

2
⊗
1C′ ⊗ |i⟩⟨i|C′′

2
+
1A′ ⊗ |−i⟩⟨−i|A′′

2
⊗
1C′ ⊗ |−i⟩⟨−i|C′′

2

)︃
it also becomes self-evident that S⊗1C′C′′(ρ∗) = ρ∗. From Proposition 4.2.2, we deduce
that we only need to consider states of the form S ⊗ 1C′C′′(τ) = τ . Any such state is of
the form

τ =
∑︂

α′,α′′∈{i,−i}

⃓⃓
α′⟩︁⟨︁α′⃓⃓

A′ ⊗
⃓⃓
α′′⟩︁⟨︁α′′⃓⃓

A′′ ⊗ τα
′α′′

C′C′′

for some arbitrary τα
′α′′

C′C′′ . On the other hand, since |α⟩⟨α|T = |−α⟩⟨−α| = σz |α⟩⟨α|σz, we

have that τTA′A′′ = (σz
⊗2⊗1C′C′′)τ(σz

⊗2⊗1C′C′′) for all τ fixed by S⊗1C′C′′ , including
ρ∗. Therefore, using Proposition 4.2.2, we obtain

⃦⃦
τTA′A′′

⃦⃦
1

= ∥τ∥1 for all such τ . Thus,

2 =
⃦⃦
ρ∗ − ρ∗TA′A′′

⃦⃦
1
≤ ∥ρ∗ − τ∥1 +

⃦⃦
ρ∗TA′A′′ − τ

⃦⃦
1

= 2∥ρ∗ − τ∥1,

whenever τTA′A′′ = τ , obtaining the promised lower bound. □

We are now ready to proof Theorem 4.2.1. We will follow the steps of the proof of
Theorem 4.1.2, while keeping track of all the errors that accumulate.

Proof of Theorem 4.2.1. Suppose that Alice, Bob and Charlie share states and mea-
surements in RQM which satisfy Equation (7), where the behaviour P(a, b, c|x, z) satisfies
that ⃓⃓⃓⃓

P(b)− 1

4

⃓⃓⃓⃓
< ε, J b(P) > (6

√
2− ε) P(b)
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for some ε > 0. Consider, as in the proof of Theorem 4.1.2, the purified states |ψb⟩,
which satisfy Equation (10) and thus we have

⟨ψb| Ĵ b|ψb⟩ =
J b(P)

P(b)
> (6
√

2− ε).

Equivalently, we obtain that

⟨ψb|
√

2(6
√

2− Ĵ b)|ψb⟩ <
√

2ε.

For small enough ε, we can approximate the self-tested states and measurements of the
proof of Theorem 4.1.2 using the same SOS decompositions for

√
2(6
√

2− Ĵ b). Indeed,
suppose √

2(6
√

2− Ĵ b) =
∑︂
i

P †
i Pi.

Then, it must be by positivity that ⟨ψb|P †
i Pi|ψb⟩ <

√
2ε for all i or, equivalently, that

∥Pi|ψb⟩∥ <
√︂√

2ε.

Let us then define ε1 :=
√︁√

2ε. As before, we also denote

ZA := A1, XA := A2, Y A := A3,

ZC :=
C1 + C2

√
2

, XC :=
C1 − C2

√
2

, Y C :=
C3 − C4

√
2

.

Note that now Equation (12) holds now only approximately, so we don’t have, for exam-
ple, that

1HA
⊗ C1 + C2

√
2
|ψb⟩ = 1HA

⊗ C3 + C4

√
2
|ψb⟩.

Therefore, in the definition of ZC that we are using, we have chosen the operator (C1 +
C2)/

√
2 over (C3 + C4)/

√
2, which are now different operators, even when restricted to

|ψb⟩. This choice in practice does not matter, since we are only using the fact that this
operator is ε1-close to ZA.

Using the SOS decompositions (11) and (14), we find that, analogous to Equations
(12, 15), that ⃦⃦⃦

((−1)b2ZA − ZC)|ψb⟩
⃦⃦⃦
,
⃦⃦⃦

((−1)b1XA −XC)|ψb⟩
⃦⃦⃦
,⃦⃦⃦

((−1)b1+b2Y A − Y C)|ψb⟩
⃦⃦⃦
≤ ε1(25)

and

(26)
⃦⃦
{ZA, XA}|ψb⟩

⃦⃦
,
⃦⃦
{ZA, Y A}|ψb⟩

⃦⃦
,
⃦⃦
{Y A, XA}|ψb⟩

⃦⃦
≤ 2(1 +

√
2)ε1

hold. Finally, Charlie’s regularized operators are also approximate equal to the unregu-
larized ones, as in Equation (16):

(27)
⃦⃦⃦

(Ẑ
C − ZC)|ψb⟩

⃦⃦⃦
,
⃦⃦⃦

(Ŷ
C − Y C)|ψb⟩

⃦⃦⃦
,
⃦⃦⃦

(X̂
C −XC)|ψb⟩

⃦⃦⃦
≤ ε1

Using all of these relations, we can bound the distance from the state obtained after
performing the isometry given in Figure 7 to |0000⟩A′A′′C′C′′ |ψb⟩ and then tracing out
systems AC to the state obtained in the ideal case, show in the proof of Theorem 4.1.2.
It is convenient to do this in several steps and use the triangle inequality. First, we just
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apply the isometry given in Figure 7. In the case where ε = 0, we found out that the
output state, given by Equation (22) is

|σb⟩ := |b⟩A′C′
1√
2

(
⃓⃓
ψ+
⟩︁
A′′C′′ |φb⟩AC +

⃓⃓
ϕ−
⟩︁
A′′C′′Y AXA|φb⟩AC).

Note now that since Alice and Charlie’s measurement operators are not ideal anymore,
this state is now in principle unnormalized. This is because the relations that we used
to arrive at this expression are not satisfied anymore. However, we can bound its norm
as follows

Lemma 4.2.4.

1− (3 +
√

2)ε1 ≤ ∥|σb⟩∥2 ≤ 1 + (3 +
√

2)ε1

Proof. Note that

∥|σb⟩∥2 =
1

2
(⟨φb|φb⟩+ ⟨φb|XAY AY AXA|φb⟩) = ⟨φb|φb⟩ .

Recalling the definition of |φb⟩ = O(b)|ψb⟩, we have

⟨φb|φb⟩ =
1

2
⟨ψb| (1± ZA)2|ψb⟩ = 1± ⟨ψb|ZA|ψb⟩,

where the sign depends on b. Therefore,
⃓⃓⃓
∥|σb⟩∥2 − 1

⃓⃓⃓
=
⃓⃓
⟨ψb|ZA|ψb⟩

⃓⃓
. The following

estimates are inspired by [MYS12],⃓⃓⃓
⟨ψb|ZA|ψb⟩+ ⟨ψb|ZAXAX̂

C |ψb⟩
⃓⃓⃓

=
⃓⃓⃓
⟨ψb|ZA|ψb⟩+ ⟨ψb| X̂

C
XAZA|ψb⟩

⃓⃓⃓
=
⃓⃓⃓
⟨ψb| (X̂

C
ZAX̂

C
+ X̂

C
XAZA)|ψb⟩

⃓⃓⃓
≤
⃦⃦⃦
X̂
C |ψb⟩

⃦⃦⃦⃦⃦⃦
(ZAX̂

C
+XAZA)|ψb⟩

⃦⃦⃦
≤ (4 + 2

√
2)ε1.⃓⃓⃓

⟨ψb|ZA|ψb⟩ − ⟨ψb|ZAXAX̂
C |ψb⟩

⃓⃓⃓
≤
⃦⃦⃦

(ZA(1−XAX̂
C

)|ψb⟩
⃦⃦⃦

≤
⃦⃦⃦
ZA(X̂

C −XA)|ψb⟩
⃦⃦⃦
≤ 2ε1,

where we used the Cauchy-Schwarz inequality as well as⃦⃦⃦
(ZAX̂

C
+XAZA)|ψb⟩

⃦⃦⃦
≤
⃦⃦⃦

(ZAX̂
C − ZAXA)|ψb⟩

⃦⃦⃦
+
⃦⃦
{XA, ZA}|ψb⟩

⃦⃦
≤ 2ε1+2(1+

√
2)ε1.

Therefore, we find that

(28)
⃓⃓
⟨ψb|ZA|ψb⟩

⃓⃓
≤ (3 +

√
2)ε1,

which implies the statement. □

With the norm controlled, we can now bound the distance between the actual state
that we get after applying the isometry defined in Figure 7 and this semi-ideal state. Let
us call |ρεb⟩ = U ⊗ V (|0000⟩A′A′′C′C′′ |ψb⟩AC). We have

Lemma 4.2.5.

∥|ρεb⟩ − |σb⟩∥ ≤ (15 + 13
√

2)ε1.
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Proof. The proof is a repeated application of the triangle inequality using every inter-
mediate step in the application of the unitary of Figure 7. We apply it step by step while
keeping track of all the errors that appear whenever we use one of the expressions (25),
(26), (27). For example, we first apply the Hadamard gates, and then the controled ZA

and Ẑ
C

gates, which return a state as written in the first line of “Step 1” below. Since so
far we did not use any of the approximate relations, the error incurred to in this step is
0, as written on the left of the state in “Step 1”. Next, we use the approximate relation

(25) to convert ZAẐ
C |ψb⟩ to (−1)b2ZAZA|ψb⟩ = (−1)b2 |ψb⟩, and similarly Ẑ

C |ψb⟩ to

Ẑ
A|ψb⟩, incurring into an error 2ε1, written on the left. Continuing this way through the

circuit, the intermediate expressions, together with their bounds, are the following:

Step 1: 0ε1 :
1

2

[︂
|00⟩+ |11⟩ZAẐC + |01⟩ ẐC + |10⟩ZA

]︂
|ψb⟩

2ε1 :
1

2

[︂
(|00⟩+ (−1)b2 |11⟩)1 + ((−1)b2 |01⟩+ |10⟩)ZA

]︂
|ψb⟩

Step 2: 0ε1 :
1

4

[︂
|00⟩ (1 + (−1)b2)(1 + ZA) + |11⟩ (1 + (−1)b2)XAX̂

C
(1− ZA)+

|01⟩ (1− (−1)b2)X̂
C

(1 + ZA) + |10⟩ (1− (−1)b2)XA(1− ZA)]
]︂
|ψb⟩

(3 +
√

2)ε1 :
1

4

[︂
(1 + (−1)b2)(|00⟩+ (−1)b1 |11⟩)(1 + ZA)+

(1− (−1)b2)((−1)b1 |01⟩+ |10⟩)XA(1− ZA)]
]︂
|ψb⟩

Note that in the last approximation, the two paths b2 = 0 and b2 = 1 have the same
upper bound.

The rest of the circuit does not involve A′C ′ so we can safely ignore them. For the
remaining steps we obtain

Step 3: 0ε1 :
1

2

[︂
|00⟩O(b) + |11⟩Y AXAŶ

C
X̂
C

O(b)+

|01⟩ Ŷ C
X̂
C

O(b) + |10⟩Y AXAO(b)
]︂
|ψb⟩

(8 + 10
√

2)ε1 :
1

2

[︂
|00⟩O(b) + |11⟩Y AXAY AXAO(b)

+ |01⟩Y AXAO(b) + |10⟩Y AXAO(b)
]︂
|ψb⟩

(2 + 2
√

2)ε1 :
1

2

[︁
(|00⟩ − |11⟩)O(b) + (|01⟩+ |10⟩)Y AXAO(b)

]︁
|ψb⟩

Step 4: 0ε1 :
1

2

[︁
(|01⟩+ |10⟩)O(b) + (|00⟩ − |11⟩)Y AXAO(b)

]︁
|ψb⟩

where we have taken the larger bound among the two b2 = 1 and b2 = 0 cases to get⃦⃦⃦
(Ŷ

C
X̂
C

O(b)− Y AXAO(b))|ψb⟩
⃦⃦⃦
≤ (20 + 8

√
2)ε1/

√
2 and(29) ⃦⃦

(Y AXAY AXAO(b) + O(b)))|ψb⟩
⃦⃦
≤ (8 + 4

√
2)ε1/

√
2 .(30)

By a series of triangle inequalities going through all the intermediate expressions, we get
the Lemma. □
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Finally, we consider these states after tracing out systems AC, since these are the
relevant states for the proof of Theorem 4.1.2. We will call σb := trAC(|σb⟩⟨σb|), and
ρεb := trAC(|ρεb⟩⟨ρεb|). Summing over all of Bob’s outcomes, we recover our state of interest

ρε :=
∑︂
b

P(b)ρεb.

Lemma 4.2.6. For small enough ε1,⃦⃦⃦⃦
⃦ρε −∑︂

b

P(b)σb

⃦⃦⃦⃦
⃦
1

≤ 2

⌜⃓⃓⎷(︄2 + (3 +
√

2)ε1
2

)︄2

−

(︄
1− (3 +

√
2)ε1 + (15 + 13

√
2)2ε12

2

)︄2

.

Proof. We are going to adapt an argument from [Theorem 3.33; Wat18] to unnormal-
ized states. Namely, since |ρεb⟩⟨ρεb| − |σb⟩⟨σb| has at most rank 2, let λ1, λ2 be its two
possibly non-zero eigenvalues. Then, we have

λ1 + λ2 = tr(|ρεb⟩⟨ρεb| − |σb⟩⟨σb|) = 1− ∥|σb⟩∥2

λ21 + λ22 = tr
(︁
(|ρεb⟩⟨ρεb| − |σb⟩⟨σb|)2

)︁
= 1 + ∥|σb⟩∥4 − 2|⟨ρεb|σb⟩|

2,

Solving explicitely for λ1, λ2 in this system of equations shows that

∥|ρεb⟩⟨ρεb| − |σb⟩⟨σb|∥1 = |λ1|+ |λ2| = 2

⌜⃓⃓⎷(︄1 + ∥|σb⟩∥2

2

)︄2

−
⃓⃓⟨︁
ρεb
⃓⃓
σb
⟩︁⃓⃓2
.

On the other hand,

⟨ρεb|σb⟩ =
1 + ∥|σb⟩∥2 − ∥ρεb − |σb⟩∥

2

2
.

The Lemma then follows by application of Lemmas 4.2.4 and 4.2.5. □

We will also now name the state obtained in Equation (23) by

ρ∗b := |b⟩⟨b|A′C′ ⊗
[︃

Ψ+ + Φ−

2

]︃
A′′C′′

.

Recall also from Equation (24) that the state from Lemma 4.2.3 we want to approximate
is ρ∗ =

∑︁
b ρ

∗
b/4.

Lemma 4.2.7.

∥σb − ρ∗b∥1 ≤ (7 + 3
√

2)ε1.

Proof. let us first separate the expression in the norm as

∥σb − ρ∗b∥1 ≤ |µ̂(b)|
⃦⃦
|b⟩⟨b| ⊗ (

⃓⃓
ϕ−
⟩︁⟨︁
ψ+
⃓⃓

+
⃓⃓
ψ+
⟩︁⟨︁
ϕ−
⃓⃓
)
⃦⃦
1

+ |µ(b)|
⃦⃦
|b⟩⟨b| ⊗ (

⃓⃓
ϕ−
⟩︁⟨︁
ϕ−
⃓⃓

+
⃓⃓
ψ+
⟩︁⟨︁
ψ+
⃓⃓
)
⃦⃦
1
,

where the coefficients simplify to

|µ(b)| = 1

2

⃓⃓
⟨ψb|ZA|ψb⟩

⃓⃓
and

|µ̂(b)| =

{︄
1
4

⃓⃓
⟨ψb| (1 + ZA)XAY A(1 + ZA)|ψb⟩

⃓⃓
b2 = 0

1
4

⃓⃓
⟨ψb| (1− ZA)XAY A(1− ZA)|ψb⟩

⃓⃓
b2 = 1.
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To bound |µ̂(b)|, let us consider

1

4

⃓⃓⃓
⟨ψb| (1 + (−1)b2ZA){XA, Y A}(1 + (−1)b2ZA)|ψb⟩

⃓⃓⃓
≤ 1

4

⃦⃦⃦
(1 + (−1)b2ZA)|ψb⟩

⃦⃦⃦⃦⃦⃦
{XA, Y A}(1 + (−1)b2ZA)|ψb⟩

⃦⃦⃦
≤ 1

2

⃦⃦⃦
{XA, Y A}(1 + (−1)b2ZA)|ψb⟩

⃦⃦⃦
≤ 1

2

(︂⃦⃦
{XA, Y A}|ψb⟩

⃦⃦
+
⃦⃦⃦
Ẑ
C{XA, Y A}|ψb⟩

⃦⃦⃦
+
⃦⃦⃦
{XA, Y A}((−1)b2ZA − ẐC)|ψb⟩

⃦⃦⃦)︂
≤ (4 + 2

√
2)ε1.

This, together with Equation (28), produces the desired bound as

∥σb − ρ∗b∥1 ≤ 2(|µ̂(b)|+ |µ(b)|) ≤ (4 + 2
√

2)ε1 + (3 +
√

2)ε1 = (7 + 3
√

2)ε1.

□

The theorem now follows from Lemmas 4.2.6, 4.2.7 and 4.2.3 as follows. We have,
using Lemmas 4.2.6, 4.2.7 and a small computation that, for ε ≤ εc and P(a, b, c|x, z)
satisfying the hypotheses of the Theorem,

∥ρ∗ − ρε∥1 ≤

⃦⃦⃦⃦
⃦ρε −∑︂

b

P(b)σb

⃦⃦⃦⃦
⃦
1

+

⃦⃦⃦⃦
⃦∑︂

b

P(b)σb − ρ∗
⃦⃦⃦⃦
⃦
1

< 1.

Therefore, by Lemma 4.2.3 we know that ρε is not invariant under transposition on
systems A′A′′. However, just like in Theorem 4.1.2, the way we have computed this state
would ensure that it would be invariant. Therefore, the original decomposition cannot
exist. □

4.3. Numerics. We have seen that there is a gap between the maximum value we can
achieve with the CHSH3 inequality in QM and RQM. However, this gap is, so far, too
small to be detectable in an actual experiment. In this Section, using standard numerical
tools, we prove the existence of a bigger gap.

4.3.1. Semidefinite Programming hierarchies. We have an optimization problem of the
form

sup
H,ρ,{Ai}i∈X ,{Bj}j∈B,{Ck}k∈Z

tr
(︂
Q(Ai, Bj , C

k)ρ
)︂

s.t. ρ is a state and Ai, Bj , C
k are measurement operators(31)

where Q is a given non-commutative tensor polynomial, such as CHSH3. In practice,
one usually forgets about the tensor product structure and includes the commutation
of variables corresponding to different parties as an extra constraint. Technically, this
changes the problem [JNV+20], but in practice this is good enough. That is, we usually
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have a problem of the form

sup
{Ai}ni=1,ρ,H

tr(p(A1, ..., An)ρ)(32)

s.t. H is a Hilbert space

Ai ∈ B(H) self-adjoint

ρ ∈ S(H)

hi(A1, ..., An) = 0, i = 1, ..., k

where hi are some non-commutative polynomials, such as [Ai, Aj ], A
2
i , or A2

i −A−i. This
kind of problems are hard since in particular they contain all polynomial optimization
problems, which are NP-hard [Lau09]. Our problem is particularly untractable, since we
are also optimizing over the class of all (real) Hilbert spaces. However, it is possible to
compute upper bounds with a hierarchy of Semidefinite Programs (SDPs), a collection
of a kind of problems which lie in P [VB96], each one giving a better upper bound than
the previous one.

The Navascués-Pironio-Aćın (NPA) hierarchy was introduced in [NPA07; NPA08]
precisely to do this. The idea is the following: suppose that there is a Hilbert space H, a
state ψ ∈ H and self-adjoint operators {Ax, Cz}i∈X ,k∈Z such that a certain conditional
probability distribution comes out as the result of a quantum experiment P(a, c|x, z) =
⟨ψ|AxaCzc |ψ⟩. We can assume that we have projective measurements and pure states,
since we are not restricting the Hilbert space dimension. If this is the case, then one
can also consider terms of the form ⟨ψ|w |ψ⟩, where w is a word on the letters Σ :=
{Axa, Czc }a∈A,c∈C,x∈X ,z∈Z of length n ∈ N. We always consider reduced words under the
equivalence relation given by

w1EEw2 ∼ w1Ew2 for all E ∈ Σ, w1, w2 ∈ Σ∗

w1A
x
aC

z
cw2 ∼ w1C

z
cA

x
aw2 for all x ∈ X , z ∈ Z, a ∈ A, b ∈ B, w1, w2 ∈ Σ∗

Consider now, for each n ∈ N the matrix

(33) Γn :=
(︂
⟨ψ|w†

iwj |ψ⟩
)︂
wi,wj∈Σ≤n

,

This is the Gram matrix of the vectors {w |ψ⟩}w∈Σ≤n , and is therefore positive semidefi-
nite. It is called a moment matrix. On the other hand, some of its entries are determined
by the fact that P(a, c|x, z) = ⟨ψ|AxaCzc |ψ⟩. So if we are maximizing a linear functional
on P(a, c|x, z) with the constraints that this behavior has to come from a quantum state
and commuting measurements, we can instead consider the problem of maximizing the
same functional with the constraint that the matrix Γn is positive semidefinite. For each
n ∈ N, this is now an SDP which provides an upper bound to the original problem, which
in the limit of n→∞ converges to the actual solution [NPA08]. Such a relaxation of an
optimization problem is called an SDP hierarchy.

Using words with letters in different alphabets, one can obtain variations of the NPA
hierarchy. Let us illustrate how this works via the standard example:

Example 4.3.1 (CHSH). We are trying to compute the optimal value of the CHSH
inequality with these techniques. That is, we want to solve the problem
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sup
H,ψ,{Ax,Cz}x,z=0,1

⟨ψ| (A0C0 +A1C0 +A0C1 −A1C1) |ψ⟩(34)

s.t. H is a Hilbert space

|ψ⟩ ∈ H, Ax, Cz ∈ B(H)

[Ax, Cz] = 0,

Ax† = Ax, Cz† = Cz, (Ax)2 = 1, (Cz)2 = 1.

The last constraint states that we have a dichotomic observable. We can therefore
construct the NPA hierarchy in the alphabet Σ := {Ax, Cz}x,z=0,1, with the equivalence
relations given by the constraints of the problem:

w1EEw2 ∼ w1w2 for all E ∈ Σ, w1, w2 ∈ Σ∗

w1A
xCzw2 ∼ w1C

zAxw2 for all x, z ∈ {0, 1}, w1, w2 ∈ Σ∗.

If we go to level 1 of the NPA hierarchy, we obtain the moment matrix

Γ1 =

⎛⎜⎜⎜⎜⎝
1 tr

(︁
A0ρ

)︁
tr
(︁
A1ρ

)︁
tr
(︁
C0ρ

)︁
tr
(︁
C1ρ

)︁
· 1 tr

(︁
A0A1ρ

)︁
tr
(︁
A0C0ρ

)︁
tr
(︁
A0C1ρ

)︁
· · 1 tr

(︁
A1C0ρ

)︁
tr
(︁
A1C1ρ

)︁
· · · 1 tr

(︁
C0C1ρ

)︁
· · · · 1

⎞⎟⎟⎟⎟⎠ .

Introducing a variable {d
w†

iwj
}wi,wj∈Σ≤1 for each entry of the matrix, and taking into

account all the relations coming from the constraints of the original problem, we can
relax the original problem to the following

sup
dw

dA0B0 + dA1B0 + dA0B1 − dA1B1

s.t. Γ1 ≥ 0,

dAx , dBy behave as P(0|x)− P(1|x),P(0|y)− P(1|y), respectively(35)

dAxBy behave as P(0, 0|x, y) + P(1, 1|x, y)− P(0, 1|x, y)− P(1, 0|x, y).

where

Γ1 :=

⎛⎜⎜⎜⎜⎝
1 dA0 dA1 dB0 dB1

· 1 dA0A1 dA0B0 dA0B1

· · 1 dA1B0 dA1B1

· · · 1 dB0B1

· · · · 1

⎞⎟⎟⎟⎟⎠ .

4.3.2. The CHSH3 scenario. With these tools, we take a look at the inequality used to
prove Theorems 4.1.2 and 4.2.1

In this case, we consider the operator

Ĵ := (B00 +B10 −B01 −B11)A1(C1 + C2 + C3 + C4)

+ (B00 −B10 +B01 −B11)A2(C1 − C2 + C5 + C6)

+ (−B00 +B10 +B01 −B11)A3(C3 − C4 + C5 − C6).
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This corresponds to the sum of the operators corresponding to CHSH3 after Bob has
obtained a certain measurement outcome b. That is,

Ĵ =
3∑︂
b=0

Ĵ b.

Therefore, we have the following optimization problem

sup
H,ρ,{Ai}i∈X ,{Bj}j∈B,{Ck}k∈Z

tr
(︂
Ĵ ρ
)︂

s.t. H = HA ⊗HB1 ⊗HB2 ⊗HC
HA,HB1 ,HB2 ,HC are real Hilbert spaces

ρ =

∫︂
Λ
ρλ1 ⊗ ρλ2 dPΛ(λ)

ρλ1 ∈ S(HA ⊗HB1), ρλ2 ∈ S(HB2 ⊗HC)(36)

Ax ∈ B(HA), Bb ∈ B(HB1 ⊗HB2), Cz ∈ B(HC)

(Ax)† = Ax, (Cz)† = Cz, (Ax)2 = 1, (Cz)2 = 1,

Bb ≥ 0,

3∑︂
b=0

Bb = 1H.

We have to modify the NPA hierarchy to account for the novel constraints that appear
in our problem. In particular, the fact that we have real rather than complex Hilbert
spaces, and also the locality structure given by Postulate (4R) and the causal network of
Figure 6.

In order to do this, we introduce two changes to the usual NPA hierarchy. First, we
are going to consider, as in Theorems 4.1.2, 4.2.1 moment matrices for the behaviour
P(a, c|x, z, b) conditioned on Bob obtaining outcome b. Given a feasible point of Problem
(36), it must be

P(a, c|x, z, b) = tr((Axa ⊗ Czc )ωb),

where

ωb := trB1B2((1A ⊗Bb ⊗ 1C)ρ)

is an unnormalized state. Now, instead of the usual moment matrix for P(a, c|x, z, b) we
introduced a sort of bipartite moment matrix, first studied in [MBL+13], as follows.

Consider two alphabets, one for Alice ΣA := {Ax1}x∈X and one for Charlie ΣC :=
{Cz1}z∈Z . Since all measurement operators for Alice and Charlie are dichotomic, we only
need to consider one of the outcomes. Let us for the moment focus on Alice, although we
consider the following procedure for Charlie as well. We will in general consider reduced
words under the equivalence relations given by

w1EEw2 ∼ w1Ew2 for all E ∈ ΣA, w1, w2 ∈ Σ∗
A.

Usually, if Alice had state ρ we would consider the moment matrix given by

Γn =
(︂

tr
(︂
αjρα

†
i

)︂)︂
αi,αj∈Σ≤n

A

,
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as defined in Equation (33) for pure states. Equivalently, we consider the following map

Ωn
A(ρ) :=

∑︂
αi,αj∈Σ≤n

A

tr
(︂
αjρα

†
i

)︂
|αi⟩⟨αj | .

We already know that Ωn
A is positive, since for every state we get a moment matrix,

which is positive. But we can say a bit more.

Lemma 4.3.2. The map Ωn
A : T (HA)→ B(span(|αi⟩αi∈A)) is completely positive.

Proof. The map Ωn
A has a decomposition in Kraus operators Ωn

A(ρ) =
∑︁

nKnρK
†
n with

Kn =
∑︂

αj∈Σ
≤nA
A

|αj⟩⟨n|αj ,

where {|n⟩}n∈|HA| is an orthonormal basis of HA. This proves that the map is completely
positive. □

In particular, the map ΩnA
A ⊗ ΩnC

C is also positive. We define our moment matrix as

Γb := ΩnA
A ⊗ ΩnC

C (ωb),

where ωb is the shared state between Alice and Charlie that reproduces the conditional
statistics P(a, c|x, z, b). This moment matrix depends now on two parameters (nA, nC)
instead of one, but explicitely contains a bipartite structure which makes easy to impose
the extra constraints that we need in the formulation of our problem. In particular, Γb
are all positive by virtue of Lemma 4.3.2. Furthermore, notice that

∑︂
b

Γb = ΩnA
A ⊗ ΩnC

C

(︄∑︂
b

ωb

)︄
=

∫︂
Λ

ΩnA
A (trB1(ρλ1))⊗ ΩnC

C (trB2(ρλ2))dPΛ(λ).

is real-separable, and therefore (︄∑︂
b

Γb

)︄TA
=
∑︂
b

Γb.

Finally, we notice that some of the entries of this matrix are related to each other.

Because of the ciclicity of the trace, whenever α†
iαj = α†

kαl ≡ α, the coefficient of
|αi⟩⟨αj | is the same as that of |αk⟩⟨αl| in Ωn

A(ρ). Therefore, we may write in general

Γb =
∑︂

α∈Σ≤nA
A ·Σ≤nA

A ,γ∈Σ≤nC
C ·Σ≤nC

C

dbα,γM
α ⊗Nγ ,

for some real coefficients dbα,γ and matrices (Mα)a,a′ = δα,a′a† , (Nγ)c,c′ = δγ,c′c† .

As before, we now forget that these moment matrices come from a feasible point of
Problem (36) and we simply impose this extra constraint in the NPA hierarchy that we
obtain with these moment matrices. This turns out to be enough to witness a separation
between RQM and QM. The optimization problem that we solve is therefore formulated
as
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sup
d,P

J (P),

s.t. Γb ≥ 0,(︄∑︂
b

Γb

)︄TA
=
∑︂
b

Γb,

db
1,1 = P(b), dbAx

1 ,1
= PAB(1, b|x), db

1,Cz
1

= PBC(b, 1|z), dbAx
1 ,C

z
1

= P(1, b, 1|x, z),

P(a, b, c|x, z) ≥ 0,
∑︂
a

P(a, b, c|x, z) = PBC(b, c|z),
∑︂
c

P(a, b, c|x, z) = PAB(a, b|x),∑︂
a

PAB(a, b|x) =
∑︂
c

PBC(b, c|z) = P (b),
∑︂
b

P(b) = 1,

where the conditions on P(a, b, c|x, z) in the last two lines enforce that P corresponds
to a non-signalling, normalized tripartite distribution. We are able to solve this SDP at
level 2 for both Alice and Charlie, obtaining an upper bound for Problem 36 of 7.66,
which is manifestly much smaller than the 6

√
2 ≈ 8.48.

5. Discussion

In this chapter we have put the axioms of quantum theory to the test in the setting
of general causal networks, a setting in which the notion of time it simplified to its bare
bones, as we are only interested on possible causal influences between parties, and nothing
more. We have seen that, in the standard Bell scenario and in the less frequently used
PBR scenario, it doesn’t matter whether we use real or complex Hilbert spaces. In these
cases, all experimental results which are obtainable in QM are also obtainable in RQM.
However, in the SWAP scenario there is quite a considerable gap between the predictions
of both theories. It is so big, that it has already been detected experimentally [CWL+22;
LMW+22; WJG+22], although in [LMW+22] we use a slightly different inequality in
order to avoid having to do a Bell state measurement. It turns out that many functionals
can witness this separation between QM and RQM. For example, a systematic -but not
complete- numerical study was carried in [BB22]. We have also now found some simpler
functionals which witness this gap. However, many questions still remain open. For
example, what is the simplest scenario in which this gap appears? Having Charlie perform
so many measurements imposes a big constraint on how far up the NPA hierarchy we can
compute, so simpler scenarios are desirable to compute real values. Another important
question is to determine the actual value of these Bell inequalities in RQM. In this
Chapter we have presented upper bounds. We also have lower bounds determined from
seesaw optimization methods. However, the two types of bounds do not match.

Future work will address some of these and other questions. In the meantime, we
conclude that the correct field to consider for quantum mechanics is that of the complex
numbers.



Chapter 3

Quantum projectiles

This Chapter is currently under peer review in npj Quantum Information as

• D. Trillo, T. P. Le, M. Navascués.
“Quantum supremacy in mechanical tasks: projectiles, rockets and quantum
backflow”
arXiv:2209.00725,

which is Reference [TLN22], and to which all authors contributed equally.

The paper has been adapted for inclusion in this thesis, as follows. Section 2 intro-
duces all the necessary mathematical formalism with no original work, and can be seen
as an extension of Appendix A of [TLN22]. The rest of the paper has been reordered,
and some Sections have additional explanations, but are otherwise mostly unchanged.

1. Introduction

While current research in quantum theory focuses on the exploitation of quantum
effects in communication and computation scenarios, quantum systems are also known
to be advantageous for some mechanical tasks. A paradigmatic example is the tunnel-
ing effect, by which a quantum particle can be detected in regions of space that are
classically forbidden by energy considerations. Another example is quantum backflow, a
phenomenon in which a free quantum particle with positive momentum can be observed
to propagate backwards. This effect was first identified by Allcock in the context of the
time-of-arrival problem [All69], and later isolated by Bracken and Melloy [BM94]. More
recent examples of quantum supremacy in mechanical systems can be found in [Tsi06]
and [ZALS22].

However, the advantages that quantum mechanical systems might offer for trans-
portation, understood as the quick dispatch of massive particles through free space, are
unexplored. Admittedly, there has been a consistent effort to investigate the properties
of a hypothetical quantum time-of-arrival operator [MME07]. Perhaps due to its foun-
dational character, though, this research program has not produced so far any concrete
task where quantum mechanical systems have the upper hand.

47
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In this Chapter, we prove the supremacy of quantum mechanical systems over their
classical counterparts in a practical transportation task, which we call the projectile
scenario. We consider a situation where a non-relativistic one-dimensional quantum
particle (a projectile) of mass M > 0 is prepared in some bounded region of space B
and left to propagate freely. After some time ∆T , we measure if the particle is in some
distant target region R. For a fixed initial quantum state ρ with spatial support in B,
we compare the probability of detection in R with that of a classical particle, initially
prepared in B with the same momentum distribution as ρ.

We find that there exist what one might call ultra-fast states (ultra-slow states),
whose probability of detection in R at time ∆T is strictly greater (smaller) than that of
any classical particle. Measuring quantum supremacy in the ultrafast (ultraslow) regime
through the difference between the quantum and the maximum classical (the minimum
classical and the quantum) probabilities of arrival, we find that the maximum quantum
advantage in either case does not depend on the distance between the preparation and
target regions, but only on the parameter α := M |B|2/∆T . For finite values of α, the
maximum quantum-classical gap can be computed up to precision δ by diagonalizing an
N ×N matrix, with N = O (log (1/δ)).

We prove that the maximum quantum advantage, achieved in the limit α → ∞,
equals the Bracken-Melloy constant [BM94], which bounds the strength of quantum back-
flow, and which was numerically estimated to have the value cbm ≈ 0.038452 [PGKW05;
EFV05]. This conjectured value was, however, not computed with any rigorous error
bounds. In fact, until now there seemed to be no reason to believe that cbm was smaller
than 1. In this regard, we argue that 0.0315 ≤ cbm ≤ 0.0725, hence providing the first
non-trivial upper bound on cbm.

As we show, the appearance of cbm is not a coincidence: through simple metaplectic
transformations we connect the quantum projectile problem with a variety of scenarios
related to quantum backflow, such as quantum backflow itself, diffraction in time [Mos52]
and quantum backflow in the presence of a constant force [MB98]. All such effects are
therefore manifestations of the same mathematical phenomenon, seen through different
coordinate systems. In light of the recent interest in experimentally demonstrating quan-
tum backflow [PTMM13; EZB20; BG21; MYDP21], we argue that projectile scenarios
are more experimentally friendly and operationally interesting.

To arrive at a transportation task with a quantum advantage beyond the Bracken-
Melloy constant, we consider a scenario in which several projectiles are sequentially
released, namely, a quantum rocket. However, it turns out that cbm also limits the
advantage of a quantum rocket over a classical analog with the same lift-off zone, com-
bustion chamber size and rocket and fuel momentum distributions.

Nevertheless, we show that a superior quantum advantage can actually be attained
in a variant of the projectile scenario where the quantum projectile is compared with a
classical particle having the same position and momentum distributions.

The Chapter is structured as follows: in Section 2 we introduce the phase-space
formulation of quantum mechanics, along with all the mathematical background required
for it. Then, in Section 3 we study the projectile scenario, proving that it is equivalent
to quantum backflow and showing lower and upper bounds for cbm. Finally, in Section



2. Phase space QM 49

4, we study some generalized effects that can achieve a better quantum advantage than
the projectiles.

2. Phase space QM

2.1. Formally solving the Schrödinger equation. Since we want to measure a cer-
tain operator on our system after some time has elapsed, we are now in the situation
where we have to solve Schrödinger’s equation to determine the new state of the system.
Remember that Postulate (2) states that if |ψ(t)⟩ is the state of the system at time t,
then

i∂t |ψ(t)⟩ = H |ψ(t)⟩

for some self-adjoint operator H. Formally, a solution is then given by

|ψ(t)⟩ = e−iHt |ψ(0)⟩ .

We know that the operator e−iHt can be defined via the functional calculus 2.3.4. It also
turns out to have particularly nice properties.

Definition 2.1.1. A strongly continuous one-parameter unitary group on H is a set of
unitary operators {U(t)}t∈R such that, for all s, t ∈ R and |ψ⟩ ∈ H,

U(0) = 1H, U(s+ t) = U(s)U(t), lim
s→t
∥U(t) |ψ⟩ − U(s) |ψ⟩∥ = 0.

In general, a map U : X → B(H), whereX is a topological space, is said to be strongly
continuous if for all |ψ⟩ ∈ H the map Uψ : X → H defined as Uψ(x) := U(x) |ψ⟩ is
continuous. This is an important property that is needed for all the uniqueness theorems
of this Section.

Proposition 2.1.2. Let H be a self-adjoint operator on H, and U(t) := e−itH . Then
U(t) is a strongly continuous one-parameter unitary group, and for all |ψ⟩ ∈ Dom(H),
we have that |ψ(t)⟩ := U(t) |ψ(0)⟩ is also in the domain of H and solves the Schrödinger
equation.

Proof. [Proposition 10.14 and Lemma 10.17; Hal13] □

On the other hand, a famous theorem of Stone states that the converse also holds.
A strongly continuous one-parameter unitary group U(t) always has an infinitesimal
generator H such that U(t) = e−iHt.

Theorem 2.1.3 (Stone). Let U(t) be a strongly continuous one-parameter unitary group
on H. Then the operator

H |ψ⟩ := i lim
t→0

U(t) |ψ⟩ − |ψ⟩
t

,

where the limit is in the norm of H, is densely defined and self-adjoint. Furthermore,
U(t) = e−iHt for all t ∈ R.

Proof. [Section 10.2; Hal13] □
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In particular, postulating the Schrödinger equation is then the same as postulating
a strongly continuous unitary evolution.

In this Chapter, unlike in the previous one, we constantly deal with unbounded self-
adjoint operators. This is so because we are considering a particle in a line, and therefore
we have an operator As anticipated in Chapter 2, we will deal with a different formulation
of QM than the one given in Chapter 2.

2.2. The position and momentum operators. The physical system we are dealing
with in this Chapter is that of a non-relativistic particle of mass M on an infinite line.
We assume that it has no other degrees of freedom, so that it is free, or at most seeing
the action of a position-dependent potential V (x). Classicaly, such a system is described
by Hamilton’s canonical equations of motion on its phase space, which is the symplectic
space (R2, J). In canonical coordinates (q, p), the symplectic form J is represented by
the matrix

(37) J :=

(︃
0 1
−1 0

)︃
,

so that J(ξ, ξ′) := ξTJξ′ for all ξ, ξ′ ∈ R2, abusing the notation. Hamilton’s equations,
which are given by

dξi
dt

=
∑︂
j

Jij
∂H

∂ξj

for ξ ∈ R2, can thus be written as

dq

dt
= ∂pH,

dp

dt
= −∂qH.

Here, H ≡ H(q, p) = p2/2m+ V (q) is the Hamiltonian of the system.

We need to first figure out a description of this system in QM. Since we will only deal
with a single system, we only need to look at Postulates (1)-(3). However, the Postulates
like this don’t mean much. We also need a rule that tells us what Hilbert space to
use, how to assign an self-adjoint operator to an observable, and so on. In particular, we
need an operator that corresponds to position. Since, the possible outcomes of a position
measurement are all of R, we now from the spectral theorem 2.3.3 that such an operator
must be of the form

X :=

∫︂
R
xdµ(x),

for some PVM µ on (R,B(R)) with values on B(H). In particular, the existence of such a
PVM implies that the Hilbert space on which it takes values must be infinite dimensional.
But it is possible to say a lot more about the structure of the Hilbert space. In particular,
another formulation of the spectral theorem 2.3.3 states that it has to be a direct integral
of “generalized eigenspaces”, a notion which we introduce now for completeness.

In order to define an object which we can in good conscience call
∫︁
ΛHλdµ(λ), we

somehow need to able to talk about measurability of a map λ ↦→ Hλ. If all the Hilbert
spaces that we intend to integrate Hλ are separable, a simple way of doing this is to
choose an orthonormal basis {ej(λ)}∞i=1 ⊂ Hλ such that

⟨ei(λ)|ej(λ)⟩λ
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is a measurable function of λ. Note that this is possible only if the map λ ↦→ dimHλ is
measurable. Also, we need to extend the definition of orthonormal basis to include the
zero vector, in order to account for different dimensionality of the Hilbert spaces. Having
made such a choice, we can define measurability by appealing to the measurability of the
coordinate functions in such a basis.

Definition 2.2.1. Let (Λ,Σ, µ) be a measure space. We say that a collection {Hλ}λ∈Λ
of separable Hilbert spaces is measurable if it comes equipped with maps {ei}∞i=1 such
that for all i

ei : Λ→
⋃︂
Hλ, ei(λ) ⊂ Hλ, ⟨ei(λ)|ej(λ)⟩λ is a measurable map for all i, j

and for all λ ∈ Λ, the set {ei(λ) | ei(λ) ̸= 0}∞i=1 is an orthonormal basis of Hλ.

Given a map s : Λ→
⋃︁
λ∈ΛHλ such that s(λ) ∈ Hλ, we say that it is measurable if

λ ↦→ ⟨ei(λ)|s(λ)⟩λ
is measurable for all i ∈ N.

Note that with these definitions of measurability, the maps that we would like to
integrate are also measurable. For example

⟨︁
s(λ)

⃓⃓
s′(λ)

⟩︁
λ

=
∞∑︂
i=1

⟨ei(λ)|s(λ)⟩λ
⟨︁
ei(λ)

⃓⃓
s′(λ)

⟩︁
λ

is now measurable.

Definition 2.2.2 (Direct integrals). Let Hλ be a measurable collection of separable
Hilbert spaces, and (Λ,Σ, µ) a σ-finite measure space. We define the direct integral
of Hλ with respect to µ as the space of equivalence classes of almost-everywhere-equal
measurable sections s : Λ→

⋃︁
λ∈ΛHλ such that

∥s∥2 :=

∫︂
Λ
⟨s(λ)|s(λ)⟩λ dµ(λ) <∞,

with the scalar product given by⟨︁
s
⃓⃓
s′
⟩︁

:=

∫︂
Λ

⟨︁
s(λ)

⃓⃓
s′(λ)

⟩︁
λ
dµ(λ).

We denote such as space by ∫︂ ⊕

Λ
Hλdµ(λ).

Example 2.2.3. Consider the constant map x ↦→ Cx ≡ C for all x ∈ R, and choose the
standard orthonormal basis of C (that is, the number 1) for all x ∈ R.

L2(R) :=

∫︂ ⊕

R
Cdx,

where dx is the usual Lebesgue measure on R. Indeed, under our definition, elements
of the direct integral are equivalence classes of measurable maps s : R → C which are
square-integrable.
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Theorem 2.2.4 (Spectral theorem, second form). Let A be a self-adjoint operator acting
on a Hilbert space H. There exists a σ-finite measure µ on σ(A), a direct integral of
Hilbert spaces

K :=

∫︂ ⊕

σ(A)
Hλdµ(λ)

and a unitary map U : K → H satisfying

U(Dom(A)) =

{︄
s ∈

∫︂ ⊕

σ(A)
Hλdµ(λ)

⃓⃓⃓ ∫︂
σ(A)
∥λs(λ)∥2λdµ(λ) <∞

}︄
and

[UAU †(s)](λ) = λs(λ)

for all s ∈ U(Dom(A)).

Proof. [Theorem 10.9; Hal13] □

In some sense, the spaces Hλ are a sort of generalized eigenspaces for the operator
A. The spectral theorem 2.2.4 shows that the space on which the position operator acts
must be isometric to

(38)

∫︂ ⊕

R
Hxdµ(x)

for some measurable collection of Hilbert spaces Hx, and measure dµ(x). Not much
else can be said from general principles, and in fact the Hilbert spaces Hx depend on
the internal structure of the system that we are considering. For example, a particle
with spin might have a two-dimensional Hilbert space as its generalized eigenspaces. In
this Chapter, we consider the simplest Hilbert spaces given by Equation (38). That is,
the (equivalence classes of) square-integrable complex-valued functions L2(R, dx). These
choices correspond to a particle with no internal structure whatsoever.

The Hilbert space L2(R, dx) in which X acts as the multiplication operator, as in
Theorem 2.2.4, is refered to as the position representation. Consider here the original
version of the spectral theorem (Theorem 2.3.3). We may write

X =

∫︂
R
xdµX .

It is customary to write the PVM as dµX ≡ |x⟩⟨x| dx. This is quite intuitive, as if we
denote an abstract element of L2(R) as |ψ⟩ and then define ⟨x|ψ⟩ = ψ(x), we may write∫︂

R
ψ(x) |x⟩ dx := |ψ⟩ ,

as ⟨φ|
∫︁
R ψ(x) |x⟩ dx =

∫︁
R ψ(x) ⟨φ|x⟩ dx =

∫︁
R φ(x)ψ(x)dx = ⟨φ|ψ⟩. Similarly, for any nice

enough kernel K(x, y), we may define the operator(︃∫︂
R2

K(x, y) |x⟩⟨y| dxdy
)︃
|ψ⟩ =

∫︂
R2

K(x, y)ψ(y) |x⟩ dxdy
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Any such operator, if it is of trace-class and has enough regularity properties (see Section
2.3), has trace

∞∑︂
n=1

∫︂
R2

K(x, y)ψn(x)ψn(y)dxdy =
∞∑︂
n=1

∫︂
R
dyψn(y)

∫︂
R
dxK(x, y)ψn(x)

=

∫︂
R
dy

∞∑︂
n=1

ψn(y)

∫︂
R
dxK(x, y)ψn(x)

=

∫︂
R
dy ⟨y|

∞∑︂
n=1

⟨ψn|Ky⟩ |ψn⟩

=

∫︂
R
dy ⟨y|Ky⟩

=

∫︂
R
dyK(y, y).

for any orthonormal basis {ψn}∞n=1 of L2(R), and with ⟨x|Ky⟩ denoting the map K(x, y)
for a fixed y. Thus, for such an operator K it is legitimate to write

tr(K) =

∫︂
R
⟨x|K |x⟩ dx.

In this notation then, the PVM that we have is the map µX : B(R) → B(L2(R))
which assigns to every measurable subset E of R the projection

ΠEψ(x) := ψ(x)χE(x) =

(︃∫︂
R
χE(x) |x⟩⟨x| dx

)︃
|ψ⟩ ,

where χE is the characteristic function of E.

On the other hand, Stone’s theorem 2.1.3 provides a way to define a momentum
operator. It is easy to check that the operators U(t)ψ(x) := ψ(x − t) form a strongly
continuous one-parameter unitary group on L2(R). Since momentum is the infinitesimal
generator of translations, we define by analogy

Pψ(x) := i lim
t→0

ψ(x− t)− ψ(x)

t
= −i∂xψ(x).

Similarly, there is a decomposition for the momentum operator

P =

∫︂
R
pdµP =

∫︂
R
p |p⟩⟨p| dp.

and a Hilbert space L2(R, dp) where P acts as the multiplication operator. Mutatis
mutandi, we can repeat for P all the notational definitions we made for X. This is called
the momentum representation, and the unitary operator guaranteed by Theorem 2.2.4
that relates the position and momentum representations is the Fourier transform.

2.3. The Fourier transform. All missing proofs of this section can be found in any
standard reference for Fourier analysis.

Definition 2.3.1. Let f(x) ∈ L1(R). The Fourier transform of f is defined as

F [f ](p) :=
1√
2π

∫︂ ∞

−∞
f(x)e−ixpdx.
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The “inverse” Fourier transform of f is defined as

F−1[f ](p) :=
1√
2π

∫︂ ∞

−∞
f(x)eixpdx.

The Fourier transform and its “inverse”, acting on the same function, have the same
properties, and so we write them just for the Fourier transform. Note that the integral
is well-defined precisely because f is integrable. Inverse is in quotation marks, because
when these operators are inverses of each other depends on the function space we are
working with, as it will become clear in the following. For example, we have the following

Lemma 2.3.2 (Riemann-Lebesgue). The Fourier transform is a linear map F : L1(R)→
C0(R) ⊂ L∞(R). That is, it takes integrable functions to continuous functions vanishing
at infinity.

However, it can happen that the Fourier transform of an integrable function is not
integrable.

Example 2.3.3. The characteristic function of [−1, 1]

χ[−1,1](x) :=

{︄
1 if x ∈ [0, 1]

0 otherwise

has a non-integrable Fourier transform. Indeed, let g(p) := Fχ[−1,1](p). Then

g(p) =
1√
2π

∫︂ 1

−1
e−ixpdx =

1

2π

eip − e−ip

ip
=

√︃
2

π

sin p

p
.

The function sinc(x) := sinx/x is not integrable, since on any interval [(n−1)π, nπ] with
n ∈ N we have

|sinc(x)| ≥ sinx

nπ
.

On the other hand |sinx| is π−periodic. Let us call C :=
∫︁ π
0 |sinx|. Then∫︂ ∞

0
|sinc(x)| ≥ C

π

∞∑︂
n=1

1

n
=∞.

Therefore, a priori the inverse Fourier transform is not defined on the image of the
Fourier transform of L1(R). We can control the Fourier transform in this other way:

Theorem 2.3.4 (Plancherel). Let f, g ∈ L1(R) ∩ L2(R). Then F [f ] ∈ L2(R). Further-
more, ∫︂

R
F [f ](p)g(p)dp =

∫︂
R
f(x)F−1[g](x).

In particular, ∥F [f ]∥2 = ∥f∥2.

Since L1(R)∩L2(R) is dense in L2(R), Plancherel’s theorem 2.3.4 allows us to extend
Definition 2.3.1 to L2(R) by continuity (with respect to the L2-norm). On L2(R), the
Fourier transform is a unitary operator with inverse F−1.

By constraining even more the initial space we recover even better integrability prop-
erties of the Fourier transform. Recall the space of rapidly-decaying functions:
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Definition 2.3.5 (Schwarz space). We define the space of rapidly-decaying functions
(also known as Schwarz space, and its elements as test functions) the set

S(R) :=
{︂
φ ∈ C∞(R)

⃓⃓⃓ ⃦⃦⃦
xα∂βxφ(x)

⃦⃦⃦
∞
≤ ∞ ∀α, β ∈ N0

}︂
.

A similar definition holds of the domain space Rn by changing α, β to be multiindices in
Nn0 . The correct topology in this space is defined with respect to the family of norms

∥φ∥k := max
α+β≤k

⃦⃦⃦
xα∂βxφ(x)

⃦⃦⃦
∞
,

for k ∈ N. The test functions with this topology form a complete metrizable topological
vector space.

Note that, as sets, S(R) ⊂ L1(R) ∩ L∞(R) ⊂ L2(R), as for all φ ∈ S(R) one has∫︂
R
|φ(x)|dx =

∫︂
R

1

1 + x2
(1 + x2)|φ(x)|dx ≤

⃦⃦
(1 + x2)−1

⃦⃦
L1

⃦⃦
(1 + x2)φ(x)

⃦⃦
L∞ <∞.

Furthermore, since all smooth functions of compact support are in S(R), we have in
particular that S(R) is dense in L1(R) (in the L1-norm) and also dense in L2(R) (in the
L2-norm). Therefore, their Fourier transform is defined, and we also have

Proposition 2.3.6. If φ ∈ S(R), then F [φ] ∈ S(R). Furthermore, F : S(R)→ S(R) is
an isomorphism of topological vector spaces, with inverse F−1.

We are interested in the dual of this space:

Definition 2.3.7 (Tempered distributions). A tempered distribution T is an element of
the (topological) dual S ′(R) of the Schwarz space S(R).

Each test function ϕ (in fact, every function in L1(R) ∪ L∞(R)) defines a tempered
distribution Tφ as

Tφ(ψ) :=

∫︂
R
φ(x)ψ(x)dx.

It turns out that the inclusion S(R) ⊂ S ′(R) is dense in the weak topology. That is, for
all T ∈ S ′(R) there is a sequence {φn}∞n=1 ⊂ S(R) such that

T (ψ) = lim
n→∞

∫︂
R
φn(x)ψ(x)dx for all ψ ∈ S(R).

This density and , we may extend the definition of the Fourier transform to S ′(R), as
F [T ](φ) := T (F−1[φ]). Indeed, this definition is consistent with the injection S(R) ⊂
S ′(R) by Plancherel’s theorem 2.3.4:

F [Tφ](ψ) =

∫︂
R
φ(x)F−1[ψ](x)dx =

∫︂
R
F [φ](p)ψ(p)dp = TF [φ](ψ).

Finally, from Proposition 2.3.6, and Plancherel’s theorem 2.3.4 we obtain that F :
S ′(R)→ S ′(R) is also an isomorphism.

Example 2.3.8. Consider the function sgn(x) ∈ L∞(R). Since it is bounded, it defines
a tempered distribution Tsgn(x) but, as usual, we will abuse notation and simply refer to
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the tempered distribution also as sgn(x). On the other hand, the function 1/x defines a
tempered distribution by taking a Cauchy principal value on the integral. That is,

P.V.

(︃
1

x

)︃
(φ(x)) := lim

ε→0

∫︂
R\[−ε,ϵ]

1

x
φ(x)dx

is a continuous functional on S(R).

These two distributions are related by a Fourier transform:

F [sgn](p) =
1

i

2

π
P.V.

1

p
.

Other important properties of Fourier transforms are the following

Proposition 2.3.9. Let f(x) = f(−x) for some f ∈ L2(R). Then, F [f ](p) ∈ R for all
p ∈ R.

Theorem 2.3.10 (Convolution theorem). Let ψ ∈ S(R), K ∈ S ′(R). Then, for almost
all p ∈ R,

F
[︃∫︂

R
dλψ(λ)K(x− λ)

]︃
(p) =

√
2πF [ψ](p)F [K](p).

Finally, note that integration by parts gives for all ψ ∈ S(R):

pF [ψ](p) = F [−i∂xψ](p), −i∂pF [ψ] = F [xψ(x)]

These identities can also be extended to ψ ∈ S ′(R) with a suitable definition of ∂p. In
particular, this shows that indeed the position and momentum representation are related
via the Fourier transform, as stated in Section 2.2. From this, we can prove the following
widely used identity relating the position and momentum representations:

(39) dµX(x)dµP (p)“ = |x⟩⟨p| ⟨x|p⟩ dxdp” =
eixp√

2π
|x⟩⟨p| dxdp.

2.4. The Wigner function. As we have seen, the Fourier transform relates the po-
sition and momentum representations. It is also quite useful to do a partial Fourier
transform and work in phase space, where both position and momentum have equal
footing.

The Wigner function of a quantum state ρ ∈ S(L2(R)) is usually defined as

(40) Wρ(x, p) :=
1

2π

∫︂ ∞

−∞
dy
⟨︂
x− y

2

⃓⃓⃓
ρ
⃓⃓⃓
x+

y

2

⟩︂
eipy,

where we are working in the position representation. In order to make sense of this
integral, remember that a state ρ ∈ S(L2(R)) can be represented as an infinite convex
combination of pure states (cf. Equation (2))

ρ =
∞∑︂
i=1

λi |ψi⟩⟨ψi| , |ψi⟩ ∈ L2(R).

Then, equation (40) becomes

Wρ(x, p) :=
1

2π

∫︂ ∞

−∞
dy

∞∑︂
i=1

ψi

(︂
x− y

2

)︂
ψi

(︂
x+

y

2

)︂
eipy
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Let us now call

Dρ(x1, x2) :=

∞∑︂
i=1

λiψi(x1)ψi(x2),

where {ψi}∞i=1 is an orthonormal basis of L2(R), and λi ≥ 0,
∑︁∞

i=1 λi = 1. Then we have

Wρ(x, p) =
1

2π

∫︂ ∞

−∞
dyDρ

(︂
x− y

2
, x+

y

2

)︂
eipy.

This is a partial (inverse) Fourier transform. That is, a Fourier transform on only one
variable of a multivariable function. The properties of the Wigner function are intimately
tied to the properties of the Fourier transform.

In order to get integrable Wigner functions we define by analogy the following set of
states.

Definition 2.4.1 (Tempered state). We say that ρ ∈ S(H) is tempered if the defining
kernel Dρ(x1, x2) := ⟨x1| ρ |x2⟩ ∈ S(R2) is a test function.

We want to focus our analysis on such states, since they have very nice regularity
properties which are important in order to work with Wigner functions. Thankfully, we
don’t lose any generality because of the following

Lemma 2.4.2. The tempered states are dense in S(H) with the operator topology. Fur-
thermore, the span of pure tempered states is dense in S(H).

Proof. Indeed, let ε > 0, and take any state

ρ =
∞∑︂
i=1

λi |ψi⟩⟨ψi| , |ψi⟩ ∈ L2(R).

By definition there is an N ∈ N such that

ρN :=

∑︁N
i=1 λi |ψi⟩⟨ψi|∑︁N

i=1 λi

is ε/2-close to ρ in the operator topology. By taking a bigger N , we may also consider∑︁N
i=1 λi ≥ 1 − ε > 0. On the other hand, S(R) is dense in L2(R), so let |φi⟩ ∈ S(R)

be ε/4-close to |ψi⟩. Without loss of generality, we may consider ⟨φi|φi⟩ = 1. Then, the
state

σ :=

∑︁N
i=1 λi |φi⟩⟨φi|∑︁N

i=1 λi
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is tempered, and for all |ψ⟩ ∈ L2(R2)

⃦⃦
(σ − ρN ) |ψ⟩

⃦⃦
L2(R) =

1∑︁N
i=1 λi

⃦⃦⃦⃦
⃦
N∑︂
i=1

λi (⟨φi|ψ⟩ |φi⟩ − ⟨ψi|ψ⟩ |ψi⟩)

⃦⃦⃦⃦
⃦
L2(R)

≤
N∑︂
i=1

λi∑︁N
i=1 λi

(∥⟨φi|ψ⟩ |φi⟩ − ⟨φi|ψ⟩ |ψi⟩∥L2(R)

+ ∥⟨φi|ψ⟩ |ψi⟩ − ⟨ψi|ψ⟩ |ψi⟩∥L2(R))

≤
N∑︂
i=1

λi∑︁N
i=1 λi

2∥|ψ⟩∥L2(R)∥|φi⟩ − |ψi⟩∥L2(R)

≤ ε

2
∥|ψ⟩∥L2(R).

Therefore, σ is ε/2-close to ρN , which is ε/2-close to ρ, so σ is ε-close to ρ.

The second part follows. □

In general then, we will be able to determine the properties of any linear bounded
operator acting on S(H), by its action on pure states which are tempered. In particular,
we can restrict our study of Wigner functions to tempered states, for which all the
properties are easier to prove, although we continue to state all the theorems in generality.
In particular we have

Proposition 2.4.3 (Properties of the Wigner function). For all ρ ∈ S(L2(R)), the
Wigner function Wρ is well defined and satisfies the following:

(1) Wρ ∈ C0(R2) ∩ L2(R2).

(2) Wρ is in general not in L1(R2), but Wρ ∈ L1(R2) if ρ is tempered.

(3) Wρ takes values in R.
(4) tr{Aρ} = 2π

∫︁
R2 Wρ(x, p)WA(x, p)dxdp for A and ρ tempered.

(5) If ψ(x) = 0 for all x ∈ R for some convex region R ∈ R, then W|ψ⟩⟨ψ|(x, p) = 0
for all x ∈ R.

Proof. If ρ is a tempered state, this follows easily from the properties of the Fourier
transform given in Section 2.3, and the definition of the Wigner function.

□

Finally, we end this section by computing an important class of Wigner functions
that we need for our numerical investigations later.

Example 2.4.4 (The Wigner function of number states). Consider the operators |m⟩⟨n|,
where {|n⟩}∞n=1 represents the number basis of L2(R); that is,

⟨x|n⟩ =
√
πHn(x)e−

x2

2 ,

where Hn is the n-th Hermite polynomial. First note that, by linearity of the definition
of the Wigner function, for any state ρ =

∑︁N
m,n=1 ρmn |m⟩⟨n|, we have that

(41) Wρ(x, p) =
∑︂

ρmnW|m⟩⟨n|(x, p), ρmn = ⟨m| ρ |n⟩ .
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Now, take ρ to be a coherent state, i.e., ρ = |α⟩⟨α|, with

(42) |α⟩ = e−|α|2/2
∞∑︂
k=0

αk√
k!
|k⟩ ,

for |k⟩ an element of the number basis. It follows that

(43) ρmn = e−|α|2 α
mᾱn√
m!n!

.

On the other hand, the Wigner function of a coherent state is known to be [Bra21b]

(44) Wρ(x, p) =
1

π
e−r

2−2|α|2+
√
2(α(x−ip)+ᾱ(x+ip)),

with r :=
√︁
x2 + p2. Cancelling the factor e−|α|2 in both sides of Equation (41) and

expanding the remaining exponential in Equation (44) as a power series in α, ᾱ, we can
compare the coefficients multiplying αmᾱn on both sides of the resulting equation, thus
obtaining

(45) W|m⟩⟨n|(x, p) =

√
m!n!

π
e−r

2
min(m,n)∑︂
k=0

(−1)k

k!

(
√

2r)m+n−2k

(m− k)!(n− k)!
eiθ(n−m),

where θ = arg(x+ ip).

Note that in [Tsi06] Tsirelson provides the complex conjugated formula for the same
quantity. This mistake does not, however, invalidate the main result of [Tsi06], namely,
the computation of the spectrum of a given linear operator. This is so because the spectra
of a self-adjoint operator and its complex conjugate in a given basis coincide.

Next, we invoke Equation (45) to derive the matrix elements

Onm(ϕ) := ⟨n|Θ(cos(ϕ)X + sin(ϕ)P ) |m⟩

and show that

Onm(ϕ) =
√
m!n!

π

eiϕ(n−m)(in−m − im−n)

i(n−m)

m+n∑︂
k=max(m,n)

(−1)m+n−k2k−
m+n

2
−1Γ

(︁
k − m+n

2 + 1
)︁

(m+ n− k)!(k − n)!(k −m)!
.(46)

We will use this expression to lower bound the maximum quantum advantage in the
standard and restricted projectile scenarios. To begin, using Proposition 2.6.2 we obtain

(47) Onm(ϕ) =

∫︂
dxdpW|m⟩⟨n|(x, p)Θ(x cosϕ+ p sinϕ).

We can evaluate the right-hand side of the above equation by changing to polar coordi-
nates. The result is

(48) Onm(ϕ) =

√
m!n!

π
wnm

eiϕ(n−m)(in−m − im−n)

i(n−m)
,
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with

wnm :=

min(m,n)∑︂
k=0

(−1)k2
m+n

2
−k−1Γ

(︁
m+n
2 − k + 1

)︁
k!(m− k)!(n− k)!

=
m+n∑︂

k=max(m,n)

(−1)m+n−k2k−
m+n

2
−1Γ

(︁
k − m+n

2 + 1
)︁

(m+ n− k)!(k − n)!(k −m)!
,(49)

where, in the last step, we changed the sum variable k → m+n−k so that a comparison
with Equation (1.5) in [Tsi06] can be made.

As it turns out, the final expression for wnm can be written in terms of the generalized
hypergeometric function pFq. Thanks to such an identity, it is possible to compute wnm
accurately for large values of m,n, as we do in Section 3.1

2.5. The Weyl operators. We have argued that we should be considering the Hilbert
space L2(R, dx), in which the position operator consists on multiplication by x, and the
momentum operator is −i∂x. It is immediate to check that in this setting, these two
operators satisfy the famous canonical commutation relations (CCR)

(50) [X,P ] = i1L2(R).

However, the astute reader will notice that expression (50) is troublesome. On the left
hand side we have an operator which is not defined on all of L2(R), and so one has to
carefully consider domain issues in order to use the CCR to prove anything. This makes
the CCR ill-suited as a characterization of the operators X and P . It is better to instead
consider the strongly continuous one-parameter unitary groups that they generate. That
is, the operators e−iaX , e−ibP .

Proposition 2.5.1 (The exponentiated CCR). For the usual position and momentum
operators X,P acting on L2(R), it holds that

(51) e−iaXe−ibP = e−iabe−ibP e−iaX .

This is now a statement about bounded operators, so with it we never have to worry
about domain issues. If X,P were bounded operators, then Equation (51) would follow
from the usual Baker-Campbell-Hausdorff (BCH) formula

eAeB = eA+Be
1
2
[A,B], for all A,B such that [A, [A,B]] = [B, [A,B]] = 0.

However, not all (unbounded) operators that satisfy the CCR satisfy the exponentiated
CCR (51), as a result of domain technicalities on the CCR (50) [Example 14.5; Hal13].

Proof. Let ψ ∈ L2(R, dx). Since we defined P as the infinitesimal generator of trans-
lations, we have that (e−ibPψ)(x) = ψ(x − b). On the other hand, using the spectral
theorem 2.3.3, we have that (e−iaXψ)(x) = e−iaxψ(x). Therefore, (e−iaXe−ibP )ψ(x) =

e−iaxψ(x − b). On the other hand, (e−iabe−ibP e−iaXψ)(x) = e−iabe−ia(x−b)ψ(x − b) =
e−iaxψ(x− b). □

The power of using the exponentiated CCR instead of the CCR is manifest in the
celebrated theorem by Stone and von Neumann
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Theorem 2.5.2 (Stone-von Neumann). Let A,B be self-adjoint operators acting irre-
ducibly on a hilbert space H. If A,B satisfy the exponentiated CCR (51), then there
exists a unitary U : H → L2(R) such that

Ue−itAU † = e−itX , Ue−itBU † = e−itP .

If A,B do not act irreducibly on H, we can decompose H into a direct sum of Hilbert
spaces on which they do.

Proof. [vNeu31] □

One would also like to have something like a BCH formula for the operators X and
P . For this, we need to consider for a, b ∈ R the sum aX + bP . Again we immediately
have to deal with domain issues, which can be worked around. However, it is easier
to define the operator aX + bP using Stone’s theorem 2.1.3 on the appropiate strongly
continuous one-parameter unitary group. If the BCH formula held, we would have

e−it(aX+bP ) = ei
t2ab
2 e−iatXe−ibtP ,

so in order to seamlessly define aX + bP we can look at the right hand side.

Proposition 2.5.3. Let Ua,b(t) be operators on L2(R, dx) defined as

(Ua,b(t)ψ)(x) := (ei
t2ab
2 e−itaXe−itbPψ)(x) = ei

t2ab
2 e−itaxψ(x− tb).

for ψ ∈ L2(R, dx). These operators form a strongly continuous one-parameter unitary
group.

Proof. Proposition 13.5 Hall. □

We can now define aX+bP as the infinitesimal generator of Ua,b(t), and automatically
we get that its domain is dense on L2(R) and it is self-adjoint. It turns out that aX+bP ,
as one would näıvely define it, does satisfy the BCH formula in some dense domain, and
both definitions coincide [Section 14.2; Hal13]. Now that we have the generator, we
can forget about the one-parameter group. The following operators play an important
role in Weyl quantization.

Definition 2.5.4 (Weyl operators). For every a, b ∈ R, we define the following operator
on L2(R):

W(a, b) := ei(bX−aP ) = Ub,−a(−1) = e−
1
2
iabeibXe−iaP .

They satisfy the following relations

Proposition 2.5.5 (The Weyl relations).

W(a, b)W(a′, b′) = ei
ab′−a′b

2 W(a+ a′, b+ b′)
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Proof. Indeed, using the exponentiated CCR (51), we obtain

W(a, b)W(a′, b′) = e−i
ab+a′b′

2 eibXe−iaP eib
′Xe−ia

′P

= e−i
ab+a′b′

2 e−iab
′
eibXeib

′Xe−iaP e−ia
′P

= e−i
ab+a′b′+2a′b

2 ei(b+b
′)Xe−i(a+a

′)P

= e−i
a′b−ab′

2 W(a+ a′, b+ b′).

□

Note that the exponential contains the symplectic form ab′ − ba′ = J((a, b), (a′, b′)).
This hints already that the Weyl operators play a crucial role in the phase space for-
mulation of quantum mechanics. Another important property of the Weyl operators is
that they are strongly continuous as a map W : R2 → B(L2(R)). This, together with the
Weyl relations, also determine the Weyl operators up to a unitary transformation, in a
more general Stone-von Neumann theorem.

Theorem 2.5.6. Let U : R2 → B(H) be a strongly continuous map such that for all
(a, b) ∈ R2, the operator U(a, b) is a unitary which acts irreducibly on a Hilbert space H.
If U(a, b) satisfies the Weyl relations; that is,

U(a, b)U(a′, b′) = ei
ab′−a′b

2 U(a+ a′, b+ b′),

then there is a unitary V : H → L2(R2) such that for all (a, b) ∈ R2,

V U(a, b)V † = W(a, b).

The unitary V is unique up to a phase.

Proof. This is actually an intermediate step that von Neumann uses in [vNeu31] to
prove Theorem 2.5.2. □

2.6. Symmetries of phase space. As in every physical theory, the symmetries of our
objects of study will play an important role. The group of symmetries of a symplectic
space is called the symplectic group. Given a symplectic space (X,J), we have

Sp(X, J) := {A ∈ GL(X) | J(Ax,Ay) = J(x, y) for all x, y ∈ X}.

In our case of interest, the symplectic space is (R2, J), and we consider always canonical
coordinates (q, p), so that J is given by Equation (37). In this case, Sp(R2, J) is identified
with a subgroup of GL2(R), which we denote by Sp2(R). We have

Sp2(R) = {A ∈ GL2(R) | ATJA = J}.

Indeed, J(Ax,Ay) = (Ax)TJAy = xTATJAy = xTJy = J(x, y) for all x, y ∈ R2 if and
only if ATJA = J. Note now that

ATJA =

(︃
a c
b d

)︃(︃
0 1
−1 0

)︃(︃
a b
c d

)︃
=

(︃
0 det(A)

−det(A) 0

)︃
,

and therefore Sp2(R) = SL2(R).

Using the Weyl operators, we can get a unitary representation of Sp2(R) on L2(R).
Indeed, consider σ ∈ Sp2(R), and let us abuse the notation again to denote by σ(x, p)
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Name Group element σ Metaplectic group element Uσ

Translation τa,b W(a, b)

Shear Sν =

(︃
1 ν
0 1

)︃
e−iν

P2

2

Squeezing Dµ =

(︃
µ 0
0 1/µ

)︃
e−i logµ

XP+PX
2

Rotation Rα =

(︃
cosα − sinα
sinα cosα

)︃
e−iα

X2+P2

2

Reflection

(︃
1 0
0 −1

)︃
ρ ↦−→ ρ

Table 1. Image of the metaplectic representation σ ↦→ Uσ on the elements of the
affine symplectic group. Since every element σ of Sp2R = SL2(R) can be decomposed
as a product σ = RαDµSν with α, ν, µ ∈ R, and µ > 0, this is enough to recover all
unitaries. As proven in Corollary 2.6.1.1, the Wigner function is covariant with all
these transformations, including the reflection, albeit via an antiunitary map.

the action of σ on the vector with coordinates (x, p)T . It follows from the fact that
J(σ(x, p), σ(x′, p′)) = J((x, p), (x′, p′)) that

(52) W(σ(x, p))W(σ(x′, p′)) = ei
xp′−x′p

2 W(σ(x+ x′, p+ p′)).

It follows from von Neumann’s uniqueness theorem 2.5.6 that there exists a unitary
Uσ ∈ B(L2(R)) such that

(53) W(σ(x, p)) = UσW(x, p)U †
σ.

In particular, this correspondence is a projective representation, since the unitary Uσ is
unique up to a phase, and

W(σ1(σ2(x, p))) = Uσ1W(σ2(x, p))U
†
σ1 = Uσ1Uσ2W(x, p)U †

σ2U
†
σ1 = Uσ1σ2W(x, p)U †

σ1σ2 .

The image of Sp2(R) under the homomorphism σ ↦→ Uσ, together with the Weyl operators
is called the metaplectic representation. It is a projective representation of the affine
symplectic group; that is, Sp2(R) together with all phase space translations τa,b : (x, p) ↦→
(x + b, p + a), operations which also preserve the symplectic form J. The unitary maps
corresponding in the metaplectic representation to generators of the affine symplectic
group are easily determined to be those in Table 1.

Proof of Table 1. First, we note that the translations τa,b indeed satisfy the relations

τa,bτa′,b′ = τa+a′,b+b′ , στa,bσ
−1 = τσ(a,b),
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where σ is a shear, squeezing or rotation. Therefore, since the Weyl operators satisfy
relations (52, 53), we indeed have a projective representation of the affine symplectic
group.

Now, we check that the Uσ for σ ∈ Sp2(R) satisfy Equation (53). It turns out that any
at-most-quadratic combination of X and P which is symmetric is a self-adjoint operator
on a suitable domain which includes the tempered states. Since it is all we need, we
assume that we are acting on a tempered pure state. Then, let us check for example
Equation (53) for the shears. We work for simplicity in momentum representation:

e−iν
P2

2 W(x, p)eiν
P2

2 ψ̂(p′) = ei
xp
2 e−iν

P2

2 e−ixP eipXeiν
p′2
2 ψ̂(p′)

= ei
xp
2 e−iν

p′2
2 e−ixp

′
eν

(p′−p)2

2 ψ̂(p′ − p)

= ei
xp+νp2

2 e−ixp
′
e−ipp

′νψ̂(p′ − p)

= ei
(x+νp)p

2 e−i(x+νp)P eipX ψ̂(p′)

= W(x+ νp, p)ψ̂(p′).

Similar but lengthier computations show the same for the other generators of Sp2(R). □

The action of the metaplectic group induces an action on the Wigner functions. The
best way to see it is through the following alternative definition of the Wigner functions,
introduced in [Gro76]

Theorem 2.6.1. For all ρ ∈ S(L2(R)) tempered, we have

Wρ(x, p) =
1

π
tr
{︂
ρW(x, p)ΠW(x, p)†

}︂
,

where Π is the parity operator, defined as Πψ(x) := ψ(−x).

Proof. First note that

W(x, p)ΠW(x, p)†ψ(z) = eipXe−ixPΠeixP e−ipXψ(z)

= eipXe−ixPΠ(ei(−pz−xp)ψ(z + x))

= eipXe−ixP (ei(pz−xp)ψ(−z + x))

= e2ip(z−x)ψ(−z + 2x)

Let ρ = |ψ⟩⟨ψ| be tempered. Then the trace of ρW(x, p)ΠW(x, p)† is well defined, and
equal to

tr
{︂
ρW(x, p)ΠW(x, p)†

}︂
=

∫︂
R
dze2ip(z−x)ψ(−z + 2x)ψ(z)

=
1

2

∫︂
R
dyeipyψ

(︂
x− y

2

)︂
ψ
(︂
x+

y

2

)︂
= πWρ(x, p).

The claim follows from linearity and continuity. □

As a corollary, we can see how the metaplectic group transforms the Wigner function:
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Corollary 2.6.1.1. Let σ be an element of the affine symplectic group, and Uσ its
metaplectic representation. Then,

Wρ(σ
−1(x, p)) = W

UσρU
†
σ
(x, p).

Furthermore, as noted in Table 1, if σ is the reflection, then

Wρ(x,−p) = Wρ(x, p).

Proof. First, suppose that σ is a shear, a squeezing or a rotation. Then, using Equation
(53), one gets

Wρ(σ
−1(x, p)) =

1

π
tr
{︂
ρU †

σW(x, p)UσΠU †
σW(x, p)†Uσ

}︂
=

1

π
tr
{︂(︂
UσρU

†
σ

)︂
W(x, p)

(︂
UσΠU †

σ

)︂
W(x, p)†

}︂
.

On the other hand, UσΠU †
σ = Π. This can be determined by realizing that the

operators P 2, X2 + P 2, XP + PX all preserve parity. Indeed, we can decompose every
L2(R) function as a sum of an even and an odd part

ψ(x) =
ψ(x) + ψ(−x)

2
+
ψ(x)− ψ(−x)

2
=: ψeven(x) + ψodd(x),

and Πψeven = ψeven, Πψodd = −ψodd. We obtain a decomposition of L2(R) = L2
even(R)⊕

L2
odd(R). The aforementioned operators all respect this decomposition, as can be easily

checked on tempered functions, and so they commute with the parity operator.

Now suppose that σ is a translation. Then, we have from the Weyl relations that

Wρ(τ−a,−b(x, p)) = Wρ(x− a, p− b)

=
1

π
tr
{︂(︂

W(a, b)ρW(a, b)†
)︂
W(x, p)ΠW(x, p)†

}︂
Finally, for the reflection we have,

Wρ(x,−p) = Wρ(x,−p)

=
1

2π

∫︂
R
dye−ipy

⟨︂
x− y

2

⃓⃓⃓
ρ
⃓⃓⃓
x+

y

2

⟩︂
=

1

2π

∫︂
R
dyeipy

⟨︂
x− y

2

⃓⃓⃓
ρ
⃓⃓⃓
x+

y

2

⟩︂
= Wρ(x, p).

□

Consider now an affine-linear transformation of phase space σ, such that J(σ(x, p)) =
±J(x, p). It follows that σ can be decomposed as a product of the elements given by
Table 1, and thus

(54) Wρ(σ
−1(x, p)) = W

UσρU
†
σ
(x, p),

where by abuse of notation we define UσρU
†
σ ≡ ρ.

We end this Section by proving one last property of Wigner functions which we will
make continuous use of.
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Proposition 2.6.2. Let a, b, c ∈ R, f ∈ L∞(R) and ρ a tempered state.

tr(f(a1 + bX + cP )ρ) =

∫︂
R2

f(a+ bx+ cp)Wρ(x, p)dxdp.

Proof. Note first that A := a1 + bX + cP is a self-adjoint operator with continuous
spectrum R. This follows, for example, by noticing that the spectrum of the unitary
e−i(a1+bX+cP ) := e−iae−i(bX+cP ) is all the complex numbers of modulus 1. Indeed,
eiaXeicP has the same spectrum as eiaX , as can be seen by conjugating with the unitary
e−icP/2. In particular, we have that for all ψ, the measure µa1+bX+cP

ψ is absolutely

continuous with respect to the Lebesgue measure. Therefore, using the Radon-Nykodym
theorem, we obtain a measurable function g(z) such that dµAψ = g(z)dz. Furthermore,

since µAψ (R) = 1, the map g is in L1(R).

On the other hand, f is the Fourier transform of some other tempered distribution,
and we may write for all ψ ∈ S(R)∫︂

R
f(x)ψ(x)dx =: Tf (ψ) = lim

n→∞

∫︂
R
Fψn(x)ψ(x)dx

for some sequence of test functions ψn. Furthermore, from the functional calculus 2.3.4,
we have

tr(f(a1 + bX + cP )ρ) =

∫︂
R
f(z)dµAψ

=

∫︂
R
f(z)g(z)dz

= lim
n→∞

∫︂
R
F [ψn](z)g(z)dz

= lim
n→∞

∫︂
R
F [ψn](z)dµAψ

= lim
n→∞

tr(F [ψn](a1 + bX + cP )ρ).

This allows us to extend the functional calculus of a1+bX+cP to tempered distributions
in a weak sense. We consider now the test functions ψn. With the same arguments we
can see that

F [ψn](a1 + bX + cP ) =

∫︂
R
ψn(t)e−it(a1+bX+cP )dt.

Using the exponentiated CCR and the properties of Wigner functions 2.4.3 we arrive at

tr(F [ψn](aX + bX + cP )ρ) =

∫︂
R2

ψn(a+ bx+ cp)Wρ(x, p)dxdp,

from which the result follows. □

Conversely, we will see that for tempered states, for which the Wigner function is in-
tegrable, integrating the Wigner function over certain regions of phase-space corresponds
to computing the expectation value of some self-adjoint operator, as

(55)

∫︂
R2

χE(x, p)Wρ(x, p)dp = tr(AEρ).
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Figure 1. Projectile scenario. A projectile is prepared at time t = 0 in [0, L] and,
at time t = ∆T , we verify that it has reached region [a,∞). Maximum quantum
advantage in probability of arrival as compared to a classical particle is found to be
the Bracken-Melloy constant, 0.0315 ≤ cbm ≈ 0.038452 ≤ 0.0725.

3. Quantum Projectiles

We are now ready to introduce the task which is the topic of this Chapter. Our start-
ing point is a classical projectile of mass M , prepared at time t = 0 in the region [0, L]. At
time t = ∆T > 0, we observe whether the projectile has reached region [a,∞), with a > L
as in Figure 1). If we ignore where exactly in [0, L] the projectile was prepared, then
the probability of finding it in [a,∞) at time ∆T is, at most, Prob (p ≥M(a− L)/∆T ),
where p denotes the projectile’s linear momentum. This corresponds to a configuration
where the projectile was prepared at x = L at time t = 0. Similarly, the probabil-
ity to find the projectile in [a,∞) at time ∆T is, at least, Prob (p ≥Ma/∆T ), which
corresponds to an initial preparation at x = 0.

Now, let us assume that the projectile is, in fact, a quantum mechanical system.
Let S(R) denote the set of quantum states with spatial support in R ⊂ R. We will
omit the parentheses whenever R is an interval, and thus denote by ρ ∈ S[0, L] the
initial quantum state of the projectile. Analogously, we also denote by P(R) the set
of quantum states whose momentum has support in R ⊂ R. While the projectile is
freely propagating, its dynamics are governed by the kinetic Hamiltonian H = P 2/2M ,
where P denotes the projectile’s linear momentum operator. The probability to find the
quantum projectile in region [a,∞) after time ∆T can be found by simple application of
the Born rule: it is tr

(︁
UρU †Θ(X − a)

)︁
, where U := e−iH∆T and Θ is the Heaviside step

function. Furthermore, we can write the classical probability of success as

(56) Prob

(︃
p ≥ M(a− L)

∆T

)︃
= tr

{︃
Θ

(︃
P − M(a− L)

∆T

)︃
ρ

}︃
.

If, after time ∆T , the quantum projectile is found in [a,∞) with probability greater
than the classical maximum, we say that the projectile is ultra-fast. If, on the contrary,
the projectile is detected with probability lower than the classical minimum, we say that
the projectile is ultra-slow. To gauge how ultra-fast or ultra-slow a quantum projectile
in state ρ is, we consider the difference between the quantum and optimal classical
probabilities of arrival.
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Let us deal with the ultrafast case first. As we saw, the probability of success for
this task is given by tr

{︁
UρU †Θ(X − a)

}︁
. Furthermore, the unitary U corresponds to a

metaplectic representation of a shear, as proven in Table 1. Using Propositions 2.6.2,
2.4.3 and Equation (54), we find that

tr
(︂
UρU †Θ(X − a)

)︂
=

∫︂
R2

Θ(x− a)WUρU†(x, p)dxdp

=

∫︂
R2

Θ(x− a)Wρ(x−∆Tp/M, p)dxdp

=

∫︂
R2

Θ(x+ ∆Tp/M − a)Wρ(x, p)dxdp

= tr{Θ(X + ∆TP/M − a)ρ}.

Thus the quantum advantage, if it exists, is given by tr(ρΩF (M,a,∆T )), with

ΩF (M,a,∆T ) := Θ

(︃
X +

∆T

M
P − a

)︃
−Θ

(︃
∆T

M
P − a+ L

)︃
,

We wish to find the largest advantage achievable with a quantum projectile. That
is, we are interested in the quantity

φF (M,L, a,∆T ) := sup
ρ∈S[0,L]

tr(ρΩF (M,a,∆T )).

Now, given a set of states S and an operator A, we have, for any unitary U , that

sup
ρ∈S

tr(ρA) = sup
ρ∈USU†

tr
(︂
ρUAU †

)︂
= sup

ρ∈USU†
tr
(︂
U †ρUA

)︂
.

We next exploit this observation to prove that φF is just a function of α := ML2/∆T .
In particular, φF does not depend on a, the location of the target region: remarkably,
quantum projectiles are equally advantageous no matter how large the flight distance.

Let σ : R2 → R2 be an affine-linear transformation such that the linear part is
symplectic. Equivalently, we have that σ acting formally on the pair of operators (X,P )
formally satisfies [σ(X,P )1, σ(X,P )2] = [X,P ] = i. Let us call such maps metaplectic.
Then, as we have shown in Section 2.6, there exists a unitary Uσ such that

(57) tr
(︂
U †
σρUσf(a1 + bX + cP )

)︂
= tr(ρf(a1 + bσ(X) + cσ(P ))),

where we denote by σ(X) ≡ σ(X,P )1 and σ(P ) ≡ σ(X,P )2.

Now, consider the unitary V associated to the metaplectic map

(58)
x ↦−→

√︃
M

∆T
(x− L),

p ↦−→
√︃

∆T

M
p−

√︃
M

∆T
(a− L).

For α = ML2/∆T , it follows that

(59) φF (M,L, a,∆T ) = φ(α) := sup
ρ∈S[−

√
α,0]

tr(ρΩ),

where Ω := Θ(X + P ) − Θ(P ). Hence, φF is just a function of α. We call the right-
hand side of the above equation the standard problem. Note that the standard problem
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corresponds to determining the maximum quantum advantage of an ultrafast projectile
of mass M = 1, prepared in the region [−

√
α, 0], to be found in region [0,∞) after time

∆T = 1.

So far we have only considered ultrafast projectiles. For the ultraslow case, the story
is pretty much the same: namely, the minimum probability that a classical projectile,
prepared at time t = 0 in [0, L] with the same momentum distribution as the quantum
state ρ, reaches the target region at time t = ∆T is given by

Prob

(︃
p ≥ Ma

∆T

)︃
= tr

[︃
ρΘ

(︃
∆T

M
P − a

)︃]︃
,

and so the quantum advantage, if it exists, corresponds to tr(ρΩS(M,a,∆T )), with

ΩS(M,a,∆T ) := Θ

(︃
∆T

M
P − a

)︃
−Θ

(︃
X +

∆T

M
P − a

)︃
.

The maximum quantum advantage is thus

φS(M,L, a,∆T ) := sup
ρ∈S[0,L]

tr(ρΩS(M,a,∆T )).

As it turns out, φS = φ, and so the functions φF , φS are identical. Indeed, consider
the transformation

(60) σ(x, p) =

(︄
−
√︃

M

∆T
x,

√︃
∆T

M
p+

√︃
M

∆T
(x− a)

)︄
.

Since [σ(X,P )1, σ(X,P )2] = −i, this map does not define a unitary transformation over
the set of quantum states. Rather, it defines an anti-unitary transformation Uσ, as
explained in Section 2.6. Now, the argument above relating linear optimizations over
subsets of quantum states also extends to anti-unitary transformations. One can verify
that, applying Uσ to the standard problem with α = ML2/∆T , one ends up with the
definition of φS , and, therefore, φS(M,L, a,∆T ) = φ

(︁
ML2/∆T

)︁
.

We finish this section by introducing yet another projectile scenario. As before, we
wish the quantum projectile to have a larger probability of arrival, but this time we
award some advantage to the classical projectile: namely, we compare the probability
to detect the quantum projectile in the region [a,∞) with the maximum probability of
detecting the classical one in the larger region [a− b,∞), with b > 0. This problem can
be reduced, via the transformation (58), to an optimization of ⟨Θ(X + P )−Θ(P + β)⟩ρ
over ρ ∈ S[−

√
α, 0], with α = ML2/∆T , β = b

√︁
M/∆T . We denote this problem the

extended standard problem, with solution φ(α, β). Clearly, φ(α, β) is non-increasing in
β and φ(α, 0) = φ(α). Obviously, limβ→∞ φ(α, β) = 0, and so one cannot reduce the
extended standard problem to the standard problem.

3.1. Solving the standard problem: lower bounds. From the formulation of the
standard problem (59), one can immediately deduce that φ is a non-decreasing function
of α ∈ [0,∞), with φ(0) = 0 and φ(α) ≤ 1. It remains to see that φ(α) ̸= 0 for some
α. To do this, we need to study the spectrum of Ω := Θ(X + P ) − Θ(P ) restricted to
the space S[−

√
α, 0] ⊂ S(R). In position representation, we have the following integral

representation for Ω.
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Proposition 3.1.1.

(61) Ω
⃓⃓
S[−

√
α,0]

=
1

2π

∫︂
[−

√
α,0]2

dxdy
e

i
2
(y2−x2) − 1

i(y − x)
|x⟩⟨y|

Proof. We begin with the distributional identity

sgn z =
1

iπ
P.V.

∫︂
R

dt

t
eitz

given by Example 2.3.8. The operator Ω is defined via the functional calculus as

Θ(X + P )−Θ(P ) =
sgn(X + P ) + 1

2
− sgn(P ) + 1

2
=

1

2
(sgn(X + P )− sgn(P )).

We are now going to apply sgn(X + P ) and sgn(P ) to a tempered pure state. In this
case, we never encounter a problem exchanging integrals.

sgn(P ) =

∫︂
R

sgn p |p⟩⟨p| dp

=

√
2π

iπ
P.V.

∫︂
R

dt

t

∫︂
R
dpeitp |p⟩⟨p|

=
1

iπ

1√
2π

P.V.

∫︂
R

dt

t

∫︂
R2

dxdy

∫︂
R
dpeitpeip(x−y) |x⟩⟨y|

=
1

iπ

∫︂
R2

dxdyP.V.

∫︂
R

dt

t
δ(t+ x− y) |x⟩⟨y|

=
1

iπ
P.V.

∫︂
R2

dxdy
1

y − x
|x⟩⟨y|

Similarly,

sgn(X + P ) =
1

iπ
P.V.

∫︂
R2

e
i
2
(y2−x2)

y − x
|x⟩⟨y| .

□

Let K(x, y) be the kernel of this integral operator. If α > 0, then we can choose
z ∈ (−

√
α, 0) such that K(0, z) = K(z, 0)∗ ̸= 0. Since K(0, 0) = 0, by the determinant

criterion it follows that the 2× 2 matrix {K(x, y)}x,y=0,z is not negative semidefinite. In
particular, it has a positive eigenvalue λ, with eigenvector (c0, cz)

T . Now, consider the
ket

|ψε⟩ =
1√
ε

∫︂
[−

√
α,0]

dx(c0χ[−ε,0](x) + czχ[z−ε,z](x)) |x⟩ ,

where χC denotes the characteristic function of C ⊂ R. For small enough ε, |ψϵ⟩⟨ψϵ| ∈
S[−
√
α, 0] and ⟨ψε|Ω |ψε⟩ ≈ ελ > 0. We conclude that φ(α) > 0 for all α > 0, so

ultrafast and ultraslow states exist in all projectile scenarios.

The problem of computing φ(α) for different values of α is more convoluted. Note
that the kernel K(x, y) is analytic in x, y; hence, for x, y ∈ [−

√
α, 0], we can approximate

it up to arbitrary precision by a polynomial on x and y of sufficiently high degree. When
we replace K(x, y) by its N th order Taylor expansion, we arrive at a new operator ΩN ,
which can be shown to be close in operator norm to Ω, restricted to the subspace of wave
functions defined in [−

√
α, 0]. In turn, ΩN only has support on the finite-dimensional

subspace spanned by vectors of the form
∫︁
[−

√
α,0] dxx

k |x⟩, where k runs from 0 to the
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Figure 2. Solid blue: plot of φ(α) for α ∈ [0, 100], computed with precision δ = 10−4.

Dashed red: linear upper bound (2
√
3−3)α/24π. Dashed black: the conjectured value

of the Bracken-Melloy constant cbm

degree in x of the kernel of ΩN . Hence ΩN can be exactly diagonalized. The function
φ(α) thus computed is plotted for α ∈ [0, 100] in Figure 2. As it can be appreciated,
φ(α) roughly looks like a concave function, but not quite: at regular intervals, the slope
of the function becomes very small. Such ‘steps’ seem to decrease in amplitude as α
grows, and, actually, for α ≫ 1, the function appears to be well approximated by the
Ansatz r + sα−1/2.

In addition, via variational methods, we show that φ(∞) ≥ 0.0315. Recall that φ(∞)
is the result of maximizing tr(Ωρ) over all quantum states ρ ∈ S(−∞, 0]. Hence, any
quantum state satisfying this constraint gives a lower bound on φ(∞). For any ρ, we
can enforce this constraint by projection:

(62) ρ̂ :=
Θ(−X)ρΘ(−X)

1− ϵ
∈ S(−∞, 0]

with ϵ = 1− tr(Θ(−X)ρ). Using ∥Ω∥∞ ≤ 1, it is easy to prove that, for ρ = |ψ⟩⟨ψ|,

(63) tr(ρ̂Ω) ≥ tr(ρΩ)

1− ϵ
− 2

√︃
ϵ

1− ϵ
− ϵ

1− ϵ
.

which provides a way to lower bound φ(∞), given an arbitrary quantum state not nec-
essarily in S(−∞, 0].

Consider, thus, a state ρ with support in HN := span{|n⟩}Nn=0. The restrictions of
the operators Ω = Θ(X + P ) − Θ(P ) and Θ(−X) to HN can be computed through
Equation (46). Taking N = 1000, we find, via matrix diagonalization, the pure state
|ψ⟩ ∈ HN maximizing the overlap

(64) ⟨ψ| (ΩN + λΘ(−X)N ) |ψ⟩ ,
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with λ = 2500. Defining ρ⋆ := |ψ⟩⟨ψ|, we compute the averages tr
(︂
ρΩ̂
)︂

, tr(ρΘ(−X))

and, applying Equation (63), we find that φ(∞) ≥ 0.0315.A plot of the Wigner function
of a quantum state approximately in S(−∞, 0] and approximately achieving this value
can be found in Figure 4 (left).

3.2. Solving the standard problem: upper bounds. To grasp the maximum quan-
tum advantage, we need to study the limiting case α =∞. The problem thus consists in
determining the spectrum of Ω := Θ(X +P )−Θ(P ), restricted to the space L2(−∞, 0].
To study this case, it is convenient to switch to the Wigner function representation.

Recall now that, for any tempered state ρ, we have, by Proposition 2.6.2, that

tr(ρΩ) =

∫︂
R2

dxdpWρ(x, p)(Θ (x+ p)−Θ (p)).

The last factor on the integrand will vanish everywhere, except in the regions Λ+ =
{x+ p ≥ 0, p ≤ 0}, where it equals 1, and Λ− = {x+ p ≤ 0, p ≥ 0}, where it equals −1.
However, if ρ ∈ S(−∞, 0], then Wρ(x, p) = 0, for x > 0. Since (x, p) ∈ Λ+ implies x ≥ 0,
it follows that the first region does not contribute to the integration above. Hence,

φ(∞) = sup
ρ∈S[−∞,0]

−
∫︂
Λ−

dxdpWρ(x, p).

The problem of integrating Wigner functions over wedges (without any further con-
straints) was studied by Werner [Wer88] in the context of time-of-arrival operators. The
idea is that all wedges can be taken to each other via a metaplectic transformation, and
therefore it suffices to study the wedge [0,∞)× [0,∞). Under this transformation, φ(∞)
becomes

sup
ρ:tr(ρΘ(X+P ))=1

−
∫︂
[0,∞)2

dxdpWρ(x, p),

where we have used that S(−∞, 0] is the space of states that satisfy the condition
tr(ρΘ(−X)) = 1. Werner considers the operator corresponding to integrating Wigner
functions over the quadrant x, p ≥ 0, and numerically determines its spectrum to be
[−0.155940, 1.007678]. Therefore, φ(∞) ≤ 0.155940. This bound, however, does not
take into consideration the constraint tr(ρΘ(X + P )) = 1. To account for it, we add to
Werner’s operator a linear combination of operators corresponding to integrating Wigner
functions over hyperbolic regions in the quadrant x, p ≤ 0. Since our Wigner functions
vanish in that quadrant, the infimum of the spectrum of the new operator (which can
also be determined with the techniques in [Wer88]) also provides an upper bound for
φ(∞). We numerically find the bound φ(∞) ≤ 0.0725.

The problem of upper bounding φ(∞) is equivalent to that of lower bounding the
bottom of the spectrum of the operator A defined through tr(ρA) =

∫︁
R2 θ(x)θ(p)Wρ(x, p),

constrained to the space Q of wave-functions |ψ⟩ satisfying Θ(X + P ) |ψ⟩ = |ψ⟩.
Restricted to this space, A = A + B, for any operator B that integrates a Wigner

function on some region R ⊂ {(x, p) ∈ R2 : x+ p ≤ 0}. Therefore,

sup
B

inf{λ : λ ∈ σ(A+B)} ≤ inf{λ : λ ∈ σ(A|Q)}.

Unfortunately, computing integrals of Wigner functions on arbitrary regions of phase
space is arbitrarily complicated, so we must restrict ourselves to tractable regions.
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Define Rk := {(x, p) ∈ R2 : xp ≥ k, x ≤ 0, p ≤ 0}. Such hyperbolic regions are

invariant under the action of the squeezing group e−it(XP+PX), and it turns out that
the operator Bk representing integration over Rk can be block-diagonalized in a basis
{|η⟩+ , |η⟩−}η of squeezing generalized eigenvectors, exactly like Werner does for B0 in
[Wer88]. Hyperbolic regions were also independently considered in full generality in
[WB05], where the spectrum is also numerically computed. The result can only be
expressed as follows in terms of integrals which do not have an analytical expression, as
far as we are aware:

Theorem 3.2.1. For all k ≥ 0, we have

Bk =

∫︂ ∞

−∞
dη

∑︂
σ1σ2=+,−

Kk
σ1σ2(η) |η⟩σ1 ⟨η|σ2 ,

where

Kk
−−(η) := 0,

Kk
+−(η) :=

1

2πi

∫︂ ∞

0
dxeiηx

e−2kiCoth(x)

Cosh(x)
,

Kk
−+(η) := Kk

+−(η),

Kk
++(η) := lim

ε→0

∫︂ ∞

−∞
dxeiηx

e−2kiTanh(x)

εCosh(x) + 2iSinh(x)

Proof. For k ≥ 0,ε > 0

Ik,ε :=
1

2π

∫︂
R2

dpdqθ(−p)θ(qp− k)θ(−q)e−εpq
∫︂
R
dp′e−ip

′qψ

(︃
p+

p′

2

)︃
ψ

(︃
p− p′

2

)︃
=

1

2π

∫︂
R2

dpdp′θ(−p)ψ
(︃
p+

p′

2

)︃
ψ

(︃
p− p′

2

)︃(︃∫︂
R
dqθ(−q)θ(qp− k)e(−ip

′−εp)q
)︃
.

The last integral is easily computed for all p < 0 to be∫︂
R
dqθ(−q)θ(qp− k)e(−ip

′−εp)q =

∫︂ − k
p

−∞
e(−ip

′−εp)q =
[e(−ip

′−εp)q]
− k

p

−∞
−ip′ − εp

= −e
(ip′+εp)k

p

ip′ + εp
.

Substituting this back into the original integral, and performing the change of variables(︃
p1
p2

)︃
:=

(︃
1 1

2
1 −1

2

)︃(︃
p
p′

)︃
,

(︃
p
p′

)︃
:=

(︃
1
2

1
2

1 −1

)︃(︃
p1
p2

)︃
we obtain

Ik,ε =
1

2π

∫︂
R2

dp1dp2θ(−p1 − p2)ψ(p1)ψ(p2)
−e

2k(i(p1−p2)+ε
p1+p2

2 )
p1+p2

i(p1 − p2) + εp1+p22

=
−ekε

2π

∫︂
R2

dp1dp2ψ(p1)ψ(p2)
θ(−(p1 + p2))e

2ik
p1−p2
p1+p2

1
2ε(p1 + p2) + i(p1 − p2)

We are now going to divide this integral in four pieces

Ik,ε =
∑︂

σ1,σ2=+,−
Ik,εσ1,σ2
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corresponding to integrating over each of the four quadrants (sgn p1, sgn p2) = (σ1, σ2).

Then, for each integral Ik,εσ1σ2 we perform the change of variables pi = σie
2λi , so that

(65) Ik,εσ1,σ2 :=
−ekε

2π

∫︂
R2

dλ1dλ24e
2λ1+2λ2ψ(σ1e2λ1)ψ(σ2e

2λ2)κk,εσ1,σ2(λ1, λ2)

where

κk,εσ1,σ2(λ1, λ2) :=
θ(−σ1e2λ1 − σ2e2λ2)e

2ik
σ1e

2λ1−σ2e
2λ2

σ1e
2λ1+σ2e

2λ2

1
2ε(σ1e

2λ1 + σ2e2λ2) + i(σ1e2λ1 − σ2e2λ2)

=
e−λ1e−λ2θ(e−λ1e−λ2(−σ1e2λ1 − σ2e2λ2))e

2ik
e−λ1e−λ2 (σ1e

2λ1−σ2e
2λ2 )

e−λ1e−λ2 (σ1e
2λ1+σ2e

2λ2 )

e−λ1e−λ2(12ε(σ1e
2λ1 + σ2e2λ2) + i(σ1e2λ1 − σ2e2λ2))

= e−λ1e−λ2
θ(−σ1eλ1−λ2 − σ2eλ2−λ1)e

2ik
σ1e

λ1−λ2−σ2e
λ2−λ1

σ1e
λ1−λ2+σ2e

λ2−λ1

1
2ε(σ1e

λ1−λ2 + σ2eλ2−λ1) + i(σ1eλ1−λ2 − σ2eλ2−λ1)

=
e−λ1e−λ2

2
K̂
k,ε
σ1,σ2(λ1 − λ2),

with

K̂
k,ε
σ1,σ2(λ) := 2

θ(−σ1eλ − σ2e−λ)e
2ik

σ1e
λ−σ2e

−λ

σ1e
λ+σ2e

−λ

1
2ε(σ1e

λ + σ2e−λ) + i(σ1eλ − σ2e−λ)
.

Therefore,

K̂
k,ε
++(λ) := 0,

K̂
k,ε
+−(λ) :=

2θ(−λ)e2ikCoth(λ)

εSinh(λ) + 2iCosh(λ)
,

K̂
k,ε
−+(λ) := K̂

k,ε
+−(−λ),

Kk,ε
−−(λ) := − 2e2ikTanh(λ)

εCosh(λ) + 2iSinh(λ)
.

Substituting back into Equation (65), we obtain

Ik,εσ1,σ2 =
−eεk

2π

∫︂
R2

dλ1dλ2
√

2eλ1ψ(σ1e2λ1)
√

2eλ2ψ(σ2e
2λ2)K̂

k,ε
σ1,σ2(λ1 − λ2)

=
−eεk

2π

∫︂
R2

dλ1dλ2φσ1(λ1)φσ2(λ2)K̂
k,ε
σ1,σ2(λ1 − λ2),

where φσi(λ) :=
√

2eλψ(σie
2λ). We now see that we have a convolution, so we can use

the Convolution Theorem 2.3.10 to obtain

Ik,εσ1,σ2 = −eεk
∫︂
R
dηφσ1(η)φσ2(η)Kk,ε

σ1σ2(η),

where

Kk,ε
σ1σ2(η) =

1

2π

∫︂ ∞

−∞
eiηλK̂

k,ε
σ1σ2(λ).

Taking the limit ε→ 0, we obtain the desired result. □
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As proven in [Wer88], the operator A is block-diagonalized by the same unitary
transformation. Setting B =

∑︁
k bkBk, we thus have that the bottom of the spectrum of

Ã := A+B equals infη{λmin(Ã(η))}, where λmin(Z) denotes the minimum eigenvalue of

the matrix Z and {Ã(η) : η ∈ R} is a one-parameter family of 2× 2 matrices.

In this regard, the best combination we could find before the integrals defining the
entries of Ã(η) became too numerically unstable to be reliable is

Ã := A+ 0.7673B0 − 0.8767B0.1 + 0.09895B0.5,

whose spectrum as a function of η is shown in Figure 3.2.

Figure 3. The bottom of the spectrum of the operator Ã, restricted to each two-
dimensional subspace span{|η⟩+ , |η⟩−}. The horizontal line is -0.0725. This spectrum
was computed by numerically integrating with Mathematica, taking ε = 0.001 rather
than a limit.

In the next section, we will show that φ(∞) = cbm, the Bracken-Melloy constant
[BM94], which is conjectured to have the value 0.038452 [EFV05]. Our bounds 0.0315 ≤
cbm ≤ 0.0725 therefore support this widespread belief.

3.3. Quantum Backflow. As we have seen, the ultrafast (ultraslow) projectile problem
is equivalent to the standard problem, since a unitary (anti-unitary) transformation takes
us from the latter to the former. We next see that the standard projectile problem is
similarly connected to the most extreme manifestation of other quantum mechanical
effects. The exact correspondences are summarized in Table 2.

Let us start with the phenomenon of quantum backflow [All69; BM94; AGP16;
EFV05]. Consider a pure state that only has positive momentum and that is evolv-
ing freely. In position representation, we can write it as

ψ(x, t) =
1

2π

∫︂ ∞

0
dpeipxe−ip

2t/2Mϕ(p).
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Scenario Operator Set of states σ(x) σ(p) α

Standard
problem

Θ (P +X)−Θ (P ) S[−
√
α, 0] x p α

Ultrafast
projectile

Θ

(︃
X +

∆T

M
P − a

)︃
−Θ

(︃
∆T

M
P − (a− L)

)︃
S[0, L]

√︃
M

∆T
(x− L)

√︃
∆T

M
p−

√︃
M

∆T
(a− L)

ML2

∆T

Ultraslow
projectile

Θ

(︃
∆T

M
P − a

)︃
−Θ

(︃
X +

∆T

M
P − a

)︃
S[0, L] −

√︃
M

∆T
x

√︃
∆T

M
p+

√︃
M

∆T
(x− a)

ML2

∆T

Quantum
backflow

Θ

(︃
−X − ∆T

M
P

)︃
−Θ(−X) P[0,∞) −

√︃
∆T

M
p −

√︃
M

∆T
x ∞

Table 2. Most of the optimization problems considered in this paper are of the form
maxρ∈S tr(ρΩ), for some operator Ω and some set of states S. This table contains the
definitions of each problem and the reversible transformations mapping the standard
problem to any other. §(R) denotes the set of states with position support in R ⊂ R,
and P(R) denotes the set of states with momentum support in R ⊂ R. We use the
shorthand σ(x) := σ(x, p)1 and σ(p) := σ(x, p)2, and omit parentheses whenever R is

an interval.

for some function ϕ such that
∫︁∞
0 |ϕ(p)|2 = 1. The probability flux at the origin is

therefore

j(0, t) =
1

4Mπ

∫︂ ∞

0
dpdq(p+ q)eit(q

2−p2)/2Mϕ(p)ϕ(q),

and thus the integrated flux at the origin from time 0 to time ∆T is

∫︂ ∆T

0
dtj(0, t) =

1

2π

∫︂ ∞

0
dpdq

ei
∆T (q2−p2)

2M − 1

i(q − p)
ϕ(p)ϕ(q).

Note the similarity with Equation (61). Guided by classical intuition, one would expect
this integrated flux to be non-negative, since the particle is only moving to the right.
However, for some quantum states ϕ(x, t), this magnitude can be negative: in that case,
we speak of quantum backflow.

Alternatively, we can interpret quantum backflow as a decrease in the probability of
detecting a particle particle with positive momentum in the region [0,∞). This is so
because, by the continuity equation

∂

∂t
|ψ(x)|2 = − ∂

∂x
j(x, t),

the integrated flux satisfies:∫︂ ∆T

0
dtj(0, t) = ⟨ψ|U †Θ(X)U |ψ⟩ − ⟨ψ|Θ(X) |ψ⟩ ,

where |ψ⟩ =
∫︁
dxψ(x, 0) |x⟩ and U = e−i

P2

2M
∆T .
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Scenario Operator Set of states σ(x) σ(p) β

Extended standard
problem, α =∞ Θ(P +X)−Θ(P ) S(−∞, β] x p β

Generalized
quantum backflow

Θ

(︃
−X − ∆T

M
P

)︃
−Θ(−X) P[−γ,∞) −

√︃
∆T

M
p −

√︃
∆T

M
x

√︃
∆T

M
γ

Constant force
quantum backflow

Θ

(︃
−X − ∆T

M
P +

F∆T 2

2M

)︃
−Θ(−X) P[0,∞) −

√︃
∆T

M

(︃
p− F∆T

2

)︃
−
√︃

M

∆T
x

F∆T

2

Quantum reentry Θ

(︃
l −X − t2

M
P

)︃
−Θ

(︃
l −X − t1

M
P

)︃
S(−∞, 0]

√︃
MC

t1
(x− l)

√︃
M

t1C

(︃
l − x− t1

M
p

)︃
l

Table 3. Some of the problems which are (anti-)metaplectically equivalent to the semi-
infinite standard problem, with the same notation as in Table 2. In the last row, the
normalization factor of the metaplectic transformation is C := (t2 − t1)/t2.

Call P[0,∞) the space of all states with positive momentum support. From all the
above it follows that the maximum amount of backflow is given by

sup
ρ∈P[0,∞]

tr

(︃
ρ

(︃
Θ

(︃
−X − P ∆T

M

)︃
−Θ(−X)

)︃)︃
:= cbm,

where we used the identity Θ(z) = 1 − Θ(−z). The number cbm, known in the lit-
erature as the Bracken-Melloy constant [BM94], is thus the solution a problem of the
form supρ∈S tr(ρA), for some space of states S and some operator A. In fact, this prob-
lem can be obtained from the standard problem with α = ∞ via the anti-metaplectic
transformation σ(x, p) = (−p

√︁
∆T/M,−x

√︁
M/∆T ). Therefore, cbm = φ(∞).

Going through the literature on quantum backflow, one finds that cbm is conjectured
to have the value 0.038452 [EFV05]. This figure is obtained by fitting many points of

(an approximation to) the graph of φ(α) with the ansatz r− sα−1/2. To our knowledge,
prior to our work there were no rigorous upper bounds on cbm, and the best lower bound
fell 41% short of the conjectured value of the constant [HGL+13]. Our results in the
preceding section hence give mathematical support to the conjecture cbm ≈ 0.038452.

4. Some generalized effects

4.1. Generalized Quantum Backflow and related effects. In Table 3 we present
another set of quantum effects that are mathematically equivalent, not to the standard
problem, but to the extended standard problem with α =∞, which we express, via the
transformation σ(x, p) = (x − β, p + β), as an optimization of Ω over the set of states
S(−∞, β].

One of these effects is a variant of quantum backflow in which the particle evolves
in the presence of a constant force [MB98]. That is, with the Hamiltonian given by
H = P 2/2M − FX. In [Gou19] Goussev proves that this effect is at the same time
equivalent to something he calls quantum reentry. Quantum reentry is a generalization
of the famous diffraction in time of Moshinsky [Mos52], and consists in preparing a
particle in S(−∞, 0], letting it evolve and then measuring a negative probability flow in
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Figure 4. Wigner functions of (left) near-optimal state for the projectile scenario and
(right) conjectured-optimal state for the constrained projectile scenario. Both states
are obtained by truncating to the harmonic oscillator energy level N = 170. The left
state is the eigenstate of [Θ(−X)]170[(Θ(X+P )−Θ(P ))]170[Θ(−X)]170 with eigenvalue
0.0331, where [C]N denotes the restriction of the operator C to the subspace spanned
by the first N + 1 number states. The right state is the eigenstate of [Θ(X + P ) −
Θ(X)−Θ(P )]170 with eigenvalue 0.1113.

some point l ≥ 0. That is, the quantity under consideration is −
∫︁ t2
t1
dtj(l, t) for some

t2 > t1 > 0, which can again be easily transformed to the semi-infinite standard problem,
as also shown in Table 3. In particular, the maximum probability transfer in both these
effects is the same. This also answers the open question left in [Gou19] of physically
understanding the equivalence between quantum reentry and quantum backflow in the
presence of a constant force.

Finally, we note that the extended standard problem is equivalent to computing the
maximum expression of quantum backflow when the initial momentum is in the region
[−γ,∞) for some γ ∈ R, as shown in Table 3. Thus, when the initial momentum is
in this region, the probability “backflow” acts as if there were a constant force acting
on the system, since these two problems are again equivalent. This seems to have gone
unnoticed by Bracken, who studied the former effect in [Bra21a], despite having studied
the latter in [MB98] together with Melloy.

4.2. Quantum Rockets. The low value of cbm constitutes a severe obstruction to any
practical application of quantum systems for transportation tasks. How to overcome this
limit? A tempting idea is to consider scenarios where a transiting quantum projectile
launches a second quantum projectile. Iterating this procedure, we arrive at the notion
of a quantum rocket, i.e., a quantum mechanical system that, from time to time, throws
away some fuel mass in the direction opposite to the intended motion. Since this rocket
scenario encompasses the quantum projectile scenario, its maximum quantum advantage
is lower-bounded by the Bracken-Melloy constant. Furthermore, one would imagine that,
should we prepare the fuel in the right quantum state, the limited quantum advantage
present in quantum projectiles could be somehow bootstrapped, hence increasing the
overall advantage of the quantum rocket with respect to a classical rocket whose fuel
combustion has an identical momentum distribution.

Unfortunately, this is not the case, at least for a large class of quantum rockets.
Consider a minimal model for a quantum rocket, where, at time t, the rocket itself
is regarded as a 1-dimensional particle of mass M(t) and zero spin. The state of the
rocket at time t is therefore specified through a trace-class positive semidefinite operator
ρ(t) : L2(R)→ L2(R). For most of its flight, the rocket will be propagated by the kinetic
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Figure 5. Action of the rocket-fuel splitting map Υ.

Hamiltonian H = P 2
R/2M(t). At times 0 = t1 < t2 < ... < tN , though, the rocket’s free

evolution is interrupted: namely, at time tj the rocket burns and releases a predetermined
amount of fuel mj instantaneously, thus decreasing its overall mass by the same amount.

To model the instantaneous combustion of fuel of mass m < M , we consider a CPTP
map Υ that, acting on the rocket’s state ρ(t), returns a density matrix representing the
joint state of the fuel F and that of the rest of the rocket R, whose mass is now M −m,
see Figure 5.

Call XF , PF (XR, PR) the absolute position and momentum operators of the fuel (the
rest of the rocket), and let XCM , PCM (XREL, PREL) denote the canonical variables of
the center of mass (the relative coordinates between systems F and R), with:

XCM =
M −m
M

XR +
m

M
XF , PCM = PR + PF ,

XREL = XF −XR, PREL = −m
M
PR +

M −m
M

PF .(66)

Let UM,m be the (symplectic) unitary that switches between the R,F and CM,REL

representations and define ωCM,REL ≡ UM,mΥ(ρ)U †
M,m. Since Υ is an internal and

instantaneous operation, it cannot modify the rocket’s center of mass degree of freedom.
This means that trREL(ω) = ρ. For ρ = |ψ⟩⟨ψ|, this last relation implies that ω =
|ψ⟩⟨ψ| ⊗ σψ, for some quantum state σψ.

However, σψ must be independent of ψ. Otherwise, one could find two non-orthogonal
vectors ψ,ψ′ with the property that Υ(|ψ⟩⟨ψ|),Υ(|ψ′⟩⟨ψ′|) are more easily distinguishable
than |ψ⟩⟨ψ| , |ψ′⟩⟨ψ′|, which contradicts the contractivity of the trace norm under CPTP
maps (Proposition 4.2.2). Putting all together, we find that any rocket-fuel splitting map
Υ must be of the form

(67) Υ(ρ;σ,M,m) = U †
M,m(ρ⊗ σ)UM,m,

where σ is the state of the relative system rocket-fuel. It must be noted that σ should have
been prepared in the rocket’s combustion chamber. If we assume that the combustion
chamber is centered in the rocket’s center of mass and has length λ, then σ must have
spatial support in [−λ/2, λ/2].

In describing the overall flight of the rocket, we assume that, at time tj , the quan-
tum rocket, with mass Mj , will release a mass mj of fuel in state σj ∈ S[−λ/2, λ/2]
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(in the relative frame of reference). Hence, the mass and state of the rocket will be
instantaneously updated to Mj+1 = Mj −mj , ρ→ trF (Υ(ρ;σj ,Mj ,mj)).

We consider the probability to find the rocket at time tN+1 > tN in the region
[a,∞). This is to be compared with the maximum probability that an analog classical
rocket arrives at the same region in time tN+1. Like in the projectile scenario, this
classical rocket is assumed to have, at time t1, the same initial mass, initial momentum
distribution and initial spatial support as the quantum one. At time tj , this classical
rocket will burn a mass mj of fuel, and the phase space distribution of the classical fuel in
the fuel’s reference frame relative to the rocket is demanded to have the same momentum
distribution and spatial support as σj .

In these conditions, we now show that the difference between the quantum and
classical arrival probabilities is also limited by cbm. This no-go result crucially relies on
Equation (67), which expresses the assumption that the fuel’s interaction with the rocket
is instantaneous. Physically, this corresponds to a configuration where the combustion
chamber is open on both sides, i.e., the fuel is allowed to exit the rocket, not only against
the rocket’s direction of motion, but also towards it. Assumption (67) allows us to map
the computation of the rocket’s maximum quantum advantage to the standard problem
(with further state constraints) through a metaplectic transformation.

Theorem 4.2.1. The quantum advantage of rockets is also bounded by cbm

Proof. Under the assumption that the map (67) describes fuel combustion, consider
a rocket that, most of the time, freely propagates through space, except at times 0 =
t1 < t2 < t3 < ... < tN , when the rocket burns fuel instantaneously. We assume that,
initially, the state of the rocket’s center of mass is ρ ∈ S([0, l]), with canonical operators

X(0), P (0). At time tj , the rocket burns a fuel mass mj , hence reducing its mass to

Mj = M−
∑︁j

k=1mj , and experiencing a transformation ρ→ Υ(ρ;σ(j),Mj−1,mj), where

σ(j) ∈ S
[︁
−λ

2 ,
λ
2

]︁
of the fuel in the rocket’s reference frame, with canonical operators

X
(j)
REL, P

(j)
REL. Between the times tj and tj+1, the rocket propagates freely and thus its

canonical operators XR, PR experience the transformation

(68) XR → XR +
tj+1 − tj
Mj

PR, PR → PR.

Call X
(j)
R , P

(j)
R the canonical operators of the rocket at time tj , just before the new fuel

combustion. From Equations (66), (68) it is easy to see that they satisfy the relation

X
(j)
R = X

(j−1)
R − mj

Mj
X

(j)
REL +

1

Mj
P

(j−1)
R − 1

Mj −mj
P

(j)
REL,

P
(j)
R =

Mj −mj

Mj
P

(j−1)
R − P (j)

REL.(69)

Through repeated iteration of Equation (69), we can express the rocket’s final position

operator X
(N)
R as a linear combination of X

(0)
R , P

(0)
R and {X(j)

REL, P
(j)
REL}. That is, for

some real vectors c⃗, d⃗, we have X
(N)
R = c⃗ · X⃗ + d⃗ · P⃗ , where X⃗ = (X

(0)
R , X

(1)
REL, ...) and

P⃗ = (P
(0)
R , P

(1)
REL, ...). The probability of detecting the quantum rocket at time tN in
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[a,∞) and its classical counterpart is thus given by

(70)
⟨︂

Θ
(︂
c⃗ · X⃗ + d⃗ · P⃗ − a

)︂⟩︂
ρ
,

where ρ = ρ(0)⊗
⨂︁N

k=1 σ
(k). Since Equation (69) also holds for classical systems, so does

Equation (70), when we understand ρ as a product of probability densities. We now
consider a classical rocket with the same combustion schedule as the quantum one, and

such that the probability densities for the classical moment variables p
(0)
R , p

(1)
REL, p

(2)
REL, ...

respectively coincide with those of the states ρ(0), σ(1), σ(2), .... We further assume that
the distributions of the initial position of the rocket and the fuel explosions respectively
have supports [0, l] and

[︁
−λ

2 ,
λ
2

]︁
, just like in the quantum case. Then, the maximum

probability of detecting the classical rocket in [a,∞) at time tN is⟨︂
Θ
(︂
d⃗ · P⃗ − (a− L+)

)︂⟩︂
ρ
,

where

L+ := lmax(0, c0) +
λ

2

∑︂
k

|ck|.

The maximum advantage φR of such a quantum rocket is thus the result of maximizing

(71)
⟨︂

Θ
(︂
c⃗ · X⃗ + d⃗ · P⃗ − a

)︂
−Θ

(︂
d⃗ · P⃗ − (a− L+)

)︂⟩︂
ρ
,

over all separable states ρ = ρ(0)⊗
⨂︁N

k=1 σ
(k) such that ρ(0) ∈ S[0, l], σ(j) ∈ S

(︁[︁
−λ

2 ,
λ
2

]︁)︁
,

for j = 1, ..., N . Call ρ⋆ the corresponding maximizer (if the maximizer does not exist,
then the following argument still carries through if the average value of Equation (71)
with ρ = ρ⋆ is ϕR − ϵ).

Now, consider the commutator [c⃗ · X⃗, d⃗ · P⃗ ] = iβ, and assume that β > 0. Then,

X ≡ c⃗ · X⃗ →S X, P ≡ 1
β d⃗ · P⃗ , are canonically conjugated operators. Let ρ̃ be the result

of tracing out all degrees of freedom of ρ⋆, but that corresponding to X,P . Then we
have that

φR =
⟨︁
Θ (X + βP − a)−Θ

(︁
βP − (a− L+)

)︁⟩︁
ρ̃
,

with ρ̃ ∈ S[L−, L+], with

L− ≡ lmin(0, c0)−
λ

2

∑︂
k

|ck|.

Hence we end up computing φ under an extra restriction on the quantum states to be
optimized. Through the metaplectic transformation X → X − L−, P → P , we can map
this problem to an optimization over the operator

φR =
⟨︁
Θ
(︁
X + βP − a′

)︁
−Θ

(︁
βP − (a′ − L)

)︁⟩︁
ρ̃
,

over a constrained set of quantum states contained in S[0, L], with L = L+ − L−,

a′ = a− L−. This means that φR ≤ φ(L
2

β ) ≤ φ(∞) ≈ 0.038452.

If β < 0, we apply the time-reversal anti-unitary operator X
(0)
R → X

(0)
R , X

(j)
REL →

X
(j)
REL, P

(0)
R → −P (0)

R , P
(j)
REL → P

(j)
REL on the operator of Equation (71). This transfor-

mation does not affect the spatial support or separability of ρ, but effectively changes

the sign of d⃗; and thus, of the commutator, in which case the argument above carries
through.
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Finally, if β = 0, then c⃗ · X⃗, d⃗ · P⃗ are commuting operators, in which case Equation
(71) cannot have a value greater than 0.

The final conclusion is that a quantum rocket cannot be more advantageous than a
quantum projectile. □

4.3. Another kind of projectile. In view of the last result, it would be reasonable
not to expect significant gaps between the arrival probabilities of quantum and classical
particles. As it turns out, though, a simple variation of the way we compare classical
and quantum projectiles is enough to find quantum advantages for transportation way
beyond the Bracken-Melloy constant.

We have compared the behavior of a quantum projectile (or a rocket) with respect
to that of a classical one with the same momentum distribution and the same spatial
support at time t = 0. Could the quantum advantage be amplified if we demanded
further constraints on the initial position distribution µ(x)dx of the classical projectile,
besides its support? In the extreme case, we could demand µ(x)dx to coincide with the
position distribution of the quantum projectile.

Consider thus the following problem: let ρ denote the density matrix of a particle
of mass M , and let µ(x)dx, ν(p)dp be its position and momentum distributions at time
t = 0. As before, we let the projectile evolve freely for time ∆T and then check whether
the projectile is in [a,∞); call pq(ρ) the corresponding probability. How much does pq(ρ)
differ from the maximum arrival probability of an analog classical particle, with initial
position and momentum distributions µ(x)dx, ν(p)dp?

The maximum classical probability of arrival is

(72)

p⋆c(ρ) = sup

∫︂
dxdpW (x, p)Θ

(︃
x+ p

∆T

M
− a
)︃

s.t. ∀x, p,W (x, p) ≥ 0,∫︂
dpW (x, p) = µ(x),∫︂
dxW (x, p) = ν(p),

where W (x, p) represents the probability distribution of the classical particle in phase
space at time t = 0.

The maximum quantum-to-classical advantage in this projectile scenario is therefore
Φ⋆ = supρ∈SW(ρ), where W(ρ) := pq(ρ)− p⋆c(ρ). This is a nested max-min optimization
problem, whose solution can be proven independent of a,M,∆T by using the metaplectic

transformation X →
√︂

∆T
M X + a, P →

√︂
M
∆T P ..

Suppose that there existed a linear operator Z such that

(73) p⋆c(ρ) ≤ tr(Zρ),

for all states ρ. Then we could maximize the value

(74) WZ(ρ) := tr

[︃
ρ

(︃
Θ

(︃
X + P

∆T

M
− a
)︃
− Z

)︃]︃
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over all density matrices with support on the first N number states. The result would
provide us with a lower bound on Φ⋆. In addition, if the maximizer ρ⋆ satisfiedWZ(ρ⋆) >
0, then that state would be a good starting point for gradient ascent.

Now, how to identify an operator Z satisfying (73)? Let f, g : R→ R be two functions
such that

(75) Θ(x+ p∆T/M − a)− f(x)− g(p) ≤ 0,

for all x, p. Then, for any distribution W (x, p) in phase space with marginals µ(x), ν(p),∫︂
dxdpW (x, p)Θ(x+ p∆T/M − a) ≤∫︂
dxdpW (x, p)(f(x) + g(p)) =∫︂
dxµ(x)f(x) +

∫︂
dpν(p)g(p).(76)

It follows that the operator Z = f(X) + g(P ) fulfills condition (73). In fact, the dual of
problem (72) is the maximum of the right-hand side of eq. (76) over all such functions
f, g.

Take M = ∆T = 1, a = 0. We observe that the functions f = g = Θ satisfy (75),
and hence, the supremum of the spectrum of the operator Ω = Θ(X+P )−Θ(P )−Θ(X)
provides us with a lower bound for Φ⋆, as tr(ρΩ) ≥ Φ∗.

If we truncate this operator in the number basis, we are looking at the maximum

eigenvalue of the matrix (M(N)
nm : n,m = 0, ..., N), with

M(N)
nm = ⟨n| (Θ(X + P )−Θ(X)−Θ(P )) |m⟩ ,

For N = 170, the maximum eigenvalue of this matrix is 0.1113: the reader can find a
plot of the Wigner function of the corresponding eigenvector in Figure 4 (right). Taking
N = 1700, we obtain the tighter bound Φ⋆ ≥ 0.1228. The maximum quantum advantage
in this projectile scenario is therefore substantially greater than the conjectured value of
cbm, or even its upper bound 0.0725, derived in Section 3.2.

From all the above, it is thus natural to conjecture that the obtained value of 0.1228
is (close to) a local maximum of W, at least among quantum states with support in
{|n⟩ : n = 0, ..., 1700}.

On the other hand, note that after a suitable metaplectic transformation the problem

supρ tr(ρΩ) becomes supρ tr
(︂
ρΩ̃
)︂

, where

Ω̃ = 1−
2∑︂

k=0

Θ(Xk) = −1

2
1− 3

2

(︄
1

3

2∑︂
k=0

sgn(Xk)

)︄

with Xk := cos(2πk/3)X + sin(2πk/3)P . The operator
∑︁2

k=0 sgn(Xk)/3 is the one
studied by Tsirelson in [Tsi06]. The best known bounds for its spectrum are given in
[ZALS22]. Using Equation (D20) in [ZALS22], one obtains that Φ∗ ≥ −0.5 + 1.5 ×√

0.17491 = 0.1262. In particular, this shows how unreliable the numerical estimation
of these quantities is, even after using a basis with 1700 number states, and thus the
importance of getting good upper bounds as well as lower bounds.
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5. Discussion

In this Chapter, we have investigated how the dynamics of quantum and classical
projectiles differ, using the probability of arrival at a distant region of space as a figure
of merit. We found that non-relativistic quantum particles can arrive at a distant region
with higher or lower probability than any classical particle with the same initial spatial
support and momentum distribution. Curiously enough, the maximum gap between
quantum and classical probabilities is independent of the distance to the arrival region,
and just depends on the mass M and spatial support L of the projectile and its flying
time ∆T through the single parameter α = ML2/∆T . This is a new quantum effect
taking place on mechanical systems, like quantum tunneling and quantum backflow.

The discrepancy between the quantum and classical arrival probabilities is, however,
limited by the Bracken-Melloy constant cbm ≈ 0.038452. As we showed, the maximum
quantum advantage of rockets with an open combustion chamber is also bounded by
this value. Our no-go result does not apply, however, to rockets with a 1-side closed
combustion chamber, which just allows the fuel to exit the rocket opposite to its direction
of motion. Whether such rocket models are also limited by cbm, or on the contrary, they
can achieve arrival probabilities much higher than classical is an interesting topic for
future research.

In a similar direction, we showed that considerable quantum-classical gaps of at least
0.1262 can be observed if we demand classical projectiles to reproduce the initial position
distribution of the quantum projectile. It is an open problem whether this figure is indeed
close to the maximum quantum advantage, and whether this effect can be exploited for
real transportation tasks. This will be the topic of future work.



Chapter 4

Time translations

Sections 2 through 4 of this Chapter have been published as

• D. Trillo, B. Dive, M. Navascués.
“Translating Uncontrolled Systems in Time”
Quantum 4, 374 (2020),

which is Reference [TDN20]. It has been edited and reordered for inclusion in this
Chapter. Unlike in the previous Chapters, the mathematical preliminaries (the tensor
polynomials described in Sections 3.2 and 3.3) are an original contribution.

Section 5 of this Chapter has been published as

• D. Trillo, B. Dive, M. Navascués.
“Universal quantum rewinding protocol with an arbitrarily high probability of
success”
Phys. Rev. Lett. 130, 110201 (2023),

which is Reference [TDN23]. It is mostly the same, with Section 5.1 being the main
text of [TDN23] and Section 5.2 being the Appendix of [TDN23].

Since the papers are quite closely related, they have been merged into a single chapter.
A single Section 1 has been included as an introduction to both papers, and a single
Section 6 as a discussion to both papers.

1. Introduction

Transformations mapping a physical system to some other point on its free evolution
curve (see Figure 1) are known as time translations [AAPV90]. In quantum theory, the
effect of a time translation on a system evolving under a time-independent Hamiltonian
H0 can be described by a parameter t ∈ R. Indeed, such a system evolves under the
strongly continuous one-parameter unitary group U(t) := e−iH0t, so that if the system
starts in state |ψ0⟩ ∈ Dom(H0), the state at all times is described by

|ψ(t)⟩ = U(t) |ψ0⟩ .

85
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ψ
0

ψ(T')

T'

Figure 1. The normal time evolution of a system. On a Hilbert space (background
blue), an initial state |ψ0⟩ travels along the curve {|ψ(t)⟩ ≡ Ut |ψ0⟩}t∈R, where Ut is a
one-parameter strongly continuous unitary group with infinitesimal generator H0, the
Hamiltonian of the system. The parameter t ∈ R is the evolution time.

The goal of this Chapter is to study time translation protocols in the most general
setting possible. In particular, we are interested in protocols that work for every initial
state ψ0, and every Hamiltonian H0. It will turn out that the dimension of our system
d is the most important parameter that we have to consider. In particular, we take d
to be finite always. A nice consequence of this is that, in this Chapter, we will never
encounter any domain issues.

Definition 1.0.1 (Time translations). A time translation protocol P ≡ P(d, T, T ′) is a
completely positive (CP) map P such that given any d-dimensional system ρ0 evolving
under a Hamiltonian H0, and interacting with other systems via an interaction Hamil-
tonian HI ,

P(ρ0) = pe−iH0Tρ0e
iH0T ⊗ |success⟩⟨success| ,

where 0 < p ≡ p(H0, HI) ≤ 1 is the probability that P has succeeded, and the CP map
P is implemented in such a way that it takes a time T ′ for the output to appear.

The last part of the definition is crucial. Our goal is to use such a protocol to get the
system to parts of its evolution curve which are not accessible just by waiting a certain
time T ′, so we need to consider how long it takes for the protocol to be implemented.
Since our protocols are probabilistic by nature, we will consider them to be heralded.

For a general system, we consider four kinds of time translations, pictured in Figure
2. It is important to note that finite dimensional systems usually exhibit a periodic time
evolution, such as that of a rotating spin. In this case, evolution time is cyclic, and so
there really is no distintion between rewinding or fast-forwarding. However, since we
require our protocols to work for all Hamiltonians, we can always assume that we are in
a regime where this doesn’t happen.

There is much literature about time translations. The original paper [AAPV90] con-
siders a time-translation machine based on the concept of superoscillations. In this case,
the final state is only approximately in the evolution curve. Other techniques to imple-
ment specific time-translations include refocusing [SCHL16], Hamiltonian amplification
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(a)
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0

ψ(T')

ψ
final

T'

(b)

ψ
0

ψ(T')
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ψ
0

ψ(T')

ψ
final
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(d)

Figure 2. (a) A time translation corresponding to rewinding. That is, the final state
is equal to |ψ(−T )⟩ for some T ≥ 0. (b) A special type of rewinding happens when
the final state of the protocol is equal to the initial state. This is called resetting. (c)
A time translation corresponding to fast-forward. That is, the final state corresponds
to |ψ(T )⟩ for T > T ′. (d) The case where the final state of the protocol is |ψ(T )⟩ with
0 < T ≤ T ′ is a slow-down, and easy to achieve by waiting a certain amount of time
and then performing one of the other protocols.

[ABB+20], and the recent work on unitary inversions [QDS+19a; QDS+19b]. In all these
works, there is the implicit assumption that we can exert any operation we want on
our system. That is, the systems on which we act are controlled, meaning that we can
implement any interaction Hamiltonian that we want (or equivalently, arbitrary unitary
operations). We do away with this assumption, and refer to such protocols are universal.
A universal time-translation protocol must work even if we can only exert some unknown
unitaries on our system.

Furthermore, in [QDS+19a; QDS+19b], evolution time is substituted by the proxy
of number of gate applications, as it is usual in the quantum circuit model of quantum
computing. In particular, the system is assumed not to evolve unless being acted upon by
a unitary operator. We consider a more general model, although our results can always
be reformulated in the circuit model, since we always take care in having a minimal
amount of time for which we let our system evolve, and can thus think of the evolution
of our system as the application of a unitary a repeated number of times. This will
become clear in the formulation of the protocols.
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This Chapter is structured as follows. In Section 2, we introduce the model we work
with. We show how to obtain a purely mathematical problem from it. In Section 3,
we study this mathematical model; that is, matrix polynomials. We prove the existence
of many new kinds of matrix polynomials. In Section 4 we characterize all universal
time translation protocols. Finally, in Section 5, we prove that qubits have rewinding
protocols with arbitrarily high probability of success, at the cost of unbounded running
time.

2. The model

In order to describe our time translation protocols we consider an idealized model of
scattering particles, as shown in Figure 3. We consider a scenario where the experimental
setup consists of two parts: a controlled lab, where we assume that we have complete
control over quantum systems - which we call probes, and a scattering region, where n
unknown uncontrollable target systems live. We assume the following:

(1) All the target systems have a finite radius of interaction, and they are sufficiently
separated from one another so that they do not interact.

(2) All the target systems are identical. That is, they evolve under the same Hamil-
tonian H0 and interact with the probes under the same interaction Hamiltonian
HI .

(3) All the target systems stay in place throughout the whole process, even while
interacting with the probes.

(4) All the probes also have a finite radius of interaction, and there are paths
starting and finishing in the lab where a probe would interact with exactly one
target system.

Figure 3. The larg red discs labelled S1 and S2 are the target systems and their
interaction radius, which are well separated to ensure that the probes (small yellow
discs) only interact with one at a time. The left section is the preparation part of the
lab, where the probes are prepared in a desired quantum state. After scattering with
one of the systems, these probes are then measured in the rightmost section of the lab
in order to herald a successful run of the experiment.



2. The model 89

In this model, we can describe a time warping protocol as a procedure in which we
prepare probes, allow them to interact with the target systems and then measure them.

2.1. From scattering experiments to matrix polynomials and back. In this
section we describe a family of scattering protocols that we will call canonical. As we
will soon see, the effect of all such protocols on the target systems 1, ..., n is in one-to-
one correspondence with some mathematical entities that we dub homogeneous tensor
matrix polynomials.

We start by dividing a probe’s Hilbert space into the factors Hp,Hr, where Hp
denotes the probe’s internal degree of freedom; and Hr = L2(R3) is used to model the

position of the probe’s center of mass. Let {|i⟩}dpi=1 be an orthonormal basis for Hp, and
let R denote a qubit register within the lab.

Suppose that we prepare a probe in a superposition of states, one inside and another
one outside the lab, controlled by a qubit register R1. That is, the probe is in the state
1√
2
(|0⟩R |φ⟩pr + |1⟩R |1⟩p |Φ⟩r), where |φ⟩ is the state that allows the probe to interact

with system 1 or else be absorbed, |Φ⟩ is some bounded state within the lab. Such a
state exists because of the assumptions 1-4.

The world line marked by state |0⟩R hence propagates through the scattering region,
interacting with system 1, initially in state |ψ1⟩, until it re-enters the lab after time ∆t.
When the probe re-enters the lab, its spatial degree of freedom is projected onto the
state |φ̃⟩r, which we subsequently transform to the state |Φ⟩. The final (unnormalized)
joint state of system 1 and the lab is thus

(77)
1√
2

⎛⎝ dp∑︂
j=1

Xj |ψ1⟩ |0⟩R |j⟩p +X0 |ψ1⟩ |1⟩R |1⟩p

⎞⎠⊗ |Φ⟩r ,
where the d× d matrices X0, ..., Xdp are given by

X0 = e−iH0∆t,

Xj = ⟨j|p ⟨φ̃|r e
−i(H0+HP+HI)∆t |φ⟩pr ,(78)

for j = 1, ..., dp.

Since the state |Φ⟩ of the probe’s center of mass plays no further role, we will omit
it. Similarly, the states of the register and the internal degree of freedom of the probe,
can be combined into a single label j: the final state of the joint system can thus be

rewritten as 1√
2

∑︁dp
j=0Xj |ψ1⟩ |j⟩.

The first step of a canonical scattering protocol consists in simultaneously sending
a probe to each target system 1, ..., n in the above fashion. We invoke the targeting
assumption to ensure that each probe interacts only with its targeted system. This step
is iterated m times. Hence, at time T ′ = m∆t, each target system has interacted with
m probes.

The final step of a canonical scattering protocol consists in post-selecting the lab’s
degree of freedom to the pure state
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(79)
∑︂

ȷ⃗ 1,...,ȷ⃗ n

g∗
ȷ⃗ 1,...,ȷ⃗ n

⃓⃓
j11 , ..., j

1
m

⟩︁
⊗ · · · ⊗ |jn1 , ..., jnm⟩ ,

where each of the factors k = 1, ..., n above represents the part of the lab system entangled
with target system k due to the latter’s interaction with m probes.

Let |ψ1,...,n⟩ be the the initial state of the target systems 1, ..., n. Then, the final state
of systems 1 to n after a canonical scattering protocol is verified to be G(X) |ψ1,...,n⟩,
with G(X) given by

(80)
∑︂

ȷ⃗ 1,...,ȷ⃗ n

gȷ⃗ 1,...,ȷ⃗ nXj1m
· · ·Xj11

⊗ · · · ⊗Xjnm · · ·Xjn1
.

Expressions of the form G(X) will in the following be called homogeneous tensor matrix
polynomials of degree m (for n = 1, those reduce to the old notion of homogeneous matrix
polynomials of degree m). More formally, we define

Definition 2.1.1 (Tensor polynomial). A homogeneous tensor polynomial f on non-
commuting variables X1, ..., Xk of tensor degree deg⊗(f) = n with a tensor factors is an
expression of the form

f(X1, ..., Xk) :=

p∑︂
i=1

cif
(1)
i (X1, ..., Xk)⊗ · · · ⊗ f

(a)
i (X1, ..., Xk),

where f ji is a word of length exactly n in the alphabet given by Σ = {X1, ..., Xk}, and
ci ∈ C.

Tensor polynomials have only recently been picked up by the mathematics community
[Pro20]. There, it is also interesting to consider non-homogeneous polynomials, such as
expressions of the form of X1 ⊗X2X3. Their notion of degree is then slightly different.

We just established that the effect of any canonical protocol is to propagate the target
systems by a homogeneous tensor matrix polynomial. Conversely, for any homogeneous
tensor matrix polynomial G(X) of degree m, one can, by choosing the post-selection state
(79) appropriately, devise a canonical scattering protocol that makes systems 1, ..., n leap
to a state proportional to G(X) |ψ1,...,n⟩. Thus, there exists a correspondence between
tensor polynomials and canonical scattering protocols with the following properties:

Number of targets −1 ←→ Number of tensor products
Dimension of target ←→ Size of matrix variables
Dimension of probes +1 ←→ Number of variables
Number of probes (per target) ←→ (Tensor) degree of the polynomial

With the above definition, the duration of a canonical scattering protocol is propor-
tional to the number of probes that we send to each system. More concretely,

(81) T ′ = deg⊗(f)∆t,

where ∆t is the time that we allow the target systems to evolve freely or interact with
the probes at each step of the protocol.

Note that there may exist other scattering protocols (not necessarily canonical) which
map to the same tensor polynomial. In fact, some of those will have a higher probability
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of success, or are experimentally preferable. This is illustrated with an example in Section
4.3.

With this map, we may reduce the problem of finding interesting universal protocols
to the problem of finding interesting tensor polynomials. For example, suppose that
there is a tensor polynomial Ω(X,Y ) with two tensor factors such that, for any d × d
matrices A,B,

Ω(A,B) = SWAP.

Then, under the assumptions 1−4, this means that there is a protocol PΩ that takes any
d-dimensional states |ψ0⟩ , |φ0⟩ from |ψ0⟩ ⊗ |φ0⟩ to |φ0⟩ ⊗ |ψ0⟩. That is, we are able to
perform a universal permutation operation, no matter how the systems evolve or interact
with other systems.

2.2. Other implementations. As we have anticipated, one should not take seriously
the model presented in Section 2 as a scattering model. Our assumptions 1-4 can at
most be satisfied approximately, and in that case the protocols that we describe will at
most only work approximately. Rather, one should see this probe model as a motivation
on how to physically realize the matrix polynomials. As long as one can think of a way
to do this with their system of choice, then the protocols are physical and the theorems
hold.

For example, maybe one is limited on the dimensionality of the probes they have
access to. The index j of each variable Xj in the matrix polynomials only varies over
0, ..., dp, but for our constructions below we require a potentially very large number of
matrix variables. This can be achieved by considering the action of several probes one
after the other on the same system as the effect of a single virtual probe of much larger
dimension. That is, by sending D probes one after the other to a single system, we get
access to matrix products of the form XjD ...Xj1 , which we can relabel as X̃k where k
now varies over 0, ..., (dp + 1)D − 1. By also rescaling the unit of time in the protocols
from ∆t to D∆t, we can construct polynomials as if the probes had arbitrary dimension,
even if the physical probes have no internal degrees of freedom at all (dp = 1).

In fact, canonical scattering protocols can always be introduced for the case dp = 1. In
this predicament, there are just two physical matrix variables to play with: X0 (absence
of a probe) and X1 (presence of a probe), so that the protocol consists on switching
some Hamiltonians on and off. By regarding D = 2 consecutive probes as a single
virtual probe, our new matrix variables are X0X0, X0X1, X1X0, X1X1: for d > 1 and
generic matrices X0, X1, such matrix products are expected to span a 4-dimensional
matrix space. Furthermore, by taking D sufficiently high, for generic X0, X1 we expect
the resulting matrix products to span the whole set of d × d matrices. At that point,
we can model fully generic matrix variables by linear combinations of {X̃k}k. That is
how one can propagate systems 1, ..., n by tensor matrix polynomials of arbitrarily many
variables.

3. Matrix polynomials

As we have seen, our protocols are equivalent to matrix polynomials. Thus, we turn
to the mathematical problem of finding interesting matrix polynomials. The key to study
polynomials in matrix algebras is the Cayley-Hamilton theorem:
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Theorem 3.0.1 (Cayley-Hamilton). Let A ∈ Mn(C). Then A is a zero of its characteristic
polynomial. That is,

pA(A) :=

n∑︂
i=0

ciA
i = 0,

where ci is the coefficient of λi in pA(λ) := det(λ1−A).

Proof. Indeed, if v is an eigenvector of A with eigenvalue λ, then pA(A)v = pA(λ)v = 0.
Therefore, if A is diagonalizable, one has pA(A) = 0. The set of diagonalizable matrices is
dense, and since the map X ↦→ pX(X) is polynomial in the entries of X, it is continuous.
Therefore, pA(A) = 0 for all A ∈ Mn(C). □

3.1. Central polynomials. Two classes of non-commutative polynomials are specially
important to us.

Definition 3.1.1 (Polynomial identities). Let p ∈ C[X1, ..., Xk] be a non-zero non-
commutative polynomial, A an algebra. We say that p is a polynomial identity (PI) for
A if, for all A1, ..., Ak ∈ A,

p(A1, ..., Ak) = 0.

Definition 3.1.2 (Central polynomials). Let p ∈ C[X1, ..., Xk] be a non-commutative
polynomial, A an algebra. We say that p ∈ C[X1, ..., Xk] is a central polynomial if
p(A1, ..., Ak) is in the center of A for all A1, ..., Ak ∈ A and p(A1, ..., Ak) ̸= 0 for some
A1, ..., Ak ∈ Mn(C).

Since the center of the ring of matrices is just those matrices proportional to the
identity, we have that, if p(X1, ..., Xk) is a central polynomial for Md(C), then

p(A1, ..., Ak) ∝ 1.

Therefore, central polynomials correspond to resetting protocols, under the correspon-
dence explain in Section 2.1.

Example 3.1.3. The non-commutative polynomial

p(X,Y ) := [X,Y ]2 = XYXY −XY Y X − Y XXY + Y XY X

is central for M2(C). Indeed, the Cayley-Hamilton theorem 3.0.1 for 2×2 matrices reads

pA(A) = A2 − tr(A)A+ det(A)1 = 0,

and therefore [A,B]2 = −det([A,B])1 ∝ 1 for all A,B ∈ M2(C). Note that the propor-
tionality constant depends on the matrices, and that is is non-zero except in a measure-
zero set. These are usual properties of these polynomials.

Another important property of central polynomials which we will use later is that
they are polynomial identites when restricted to a smaller dimensional matrix space:

Proposition 3.1.4. Let p(X1, ..., Xk) be a central polynomial for Md(C). Then p is a
PI for Md′(C) as long as d′ < d.

Proof. Indeed, consider the algebra embedding φ : Md′(C) ↪→ Md(C) which takes a
matrix A to A ⊕ 0d−d′ . It follows that λ1 = p(φ(A1), ..., φ(Ak)) = φ(p(A1, ..., Ak)) =
p(A1, ..., Ak) ⊕ 0d−d′ therefore, it must be λ = 0 for all A1, ..., Ak ∈ Md′(C) and thus
p(A1, ..., Ak) = 0 for all A1, .., Ak ∈ Md′(C). □
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It was shown for the first time in [For72] that there is a central polynomial in Md(C)
for all d ∈ N. The construction is as follows.

Theorem 3.1.5 ([For72]). For all d ∈ N, there exists a homogeneous noncommutative
polynomial F (Y,X1, ..., Xd) which is central in Md(C), linear in the variables X1, ..., Xd

and of degree d2.

Proof. We first define the linear map

φ : C[x1, ..., xd+1] −→ C[X,Y1, ..., Yd]

xa11 · · ·x
ad+1

d+1 ↦→ Xa1Y1X
a2Y2 · · ·XadYdX

ad+1 .

Let G(X,Y1, ..., Yd) be the image under this map of the polynomial

g(x1, ..., xd+1) :=
∏︂

2≤i≤d
(x1 − xi)(xd+1 − xi)

∏︂
2≤j<k≤d

(xj − xk)2.

Note that there are exactly 2(d− 1) + (d− 1)(d− 2) terms in this product, and therefore
G has degree (d− 1)d+ d = d2. Then, Formanek’s polynomial is

F (X,Y1, ..., Yd) :=
d∑︂
i=1

G(X,Yσi(1), ..., Yσi(d)),

where σ is the cyclic permutation of (1, 2..., d). Indeed, this polynomial is linear in
Y1, ..., Yd, homogeneous in X, and of degree d2. We just need to check now that it is
a central polynomial. As before, we argue by continuity that it is enough to check this
for X diagonalizable. Also by linearity, we only need to evaluate Yk to some elementary
matrix |ik⟩⟨jk|. We begin by evaluating X to be a diagonal matrix Λ := diag(λ1, ..., λd).
We have

Λa1 |i1⟩⟨j1|Λa2 |i2⟩ · · · ⟨jd−1|Λad |id⟩⟨jd|Λad+1 = λa1i1 · · ·λ
ad
id
λ
ad+1

jd
|i1⟩⟨j1| · · · |id⟩⟨jd| ,

and therefore

G(Λ, |i1⟩⟨j1| , ..., |id⟩⟨jd|) = g(λi1 , ..., λid , λjd) |i1⟩⟨j1| · · · |id⟩⟨jd| .

However, g was explicitely constructed to that g(λi1 , ..., λid , λjd) is zero unless perhaps
jd = i1 and i1, ..., id are all distinct, in which case

g(λi1 , ..., λid , λjd) =
∏︂

1≤i<j≤d
(λi − λj)2 =: D(Λ)

is the discriminant of {λ1, ..., λd}. On the other hand, |i1⟩⟨j1| · · · |id⟩⟨jd| is non-zero iff
j1 = i2, ..., jd−1 = id. Since we have the additional constrain that jd = i1, in this situation
we have that

G(Λ, |i1⟩⟨j1| , ..., |id⟩⟨jd|) = D(Λ) |i1⟩⟨i1|
and

F (Λ, |i1⟩⟨j1| , ..., |id⟩⟨jd|) = D(Λ)

d∑︂
k=1

|ik⟩⟨ik| = D(Λ)1.

By linearity, F (Λ, B1, ..., Bd) ∝ 1 for all B1, ..., Bd ∈ Md(C). Now note that for all
invertible A, one has

F (AΛA−1, AB1A
−1, ..., ABdA

−1) = AF (Λ, B1, ..., Bd)A
−1 ∝ 1.
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Therefore, F (Λ, B1, ..., Bd) holds when Λ is a diagonalizable matrix and, by continuity,
for any matrix. □

There are today more illuminating proofs of the existence of central polynomials, but
we are particularly interested in the properties of Formanek’s polynomial, since they will
allow us to construct optimal rewinding protocols. As a corollary, we get that there exist
central polynomials of arbitrarily high degree. These correspond to rewinding protocols
of arbitrarily high duration.

Corollary 3.1.5.1. For allm ≥ d2, there is a homogeneous central polynomial for Md(C)
of degree m with the same number of variables.

Proof. Indeed, suppose C(X1, ..., Xk) is a central polynomial of degree nd, linear in X1.
Then,

C′(Y1, ..., Yk) := C(Y m−nd+1
1 , Y2, ..., Yk)

is also a central polynomial. To see that it is not a PI, consider some diagonalizable
matrices A1, ..., Ak ∈ Md(C) such that C(A1, ..., Ak) ̸= 0. Then,

C′
(︃
A

1
m−nd+1

1 , A2, ..., Ak

)︃
̸= 0.

□

3.2. Permutation polynomials. After central polynomials, the next most natural
object are polynomials that are proportional to a fixed matrix other than the identity,
since the existence of such polynomials would allow us to probabilistically implement
fixed gates other than time translations. Of particular interest are multipartite gates
like the SWAP, which permutes two systems. In general, if we have more than 2 target
systems, one can perform any permutation using SWAP gates. In this section, we’ll see
that this is actually the most general fixed transformation that we can do with tensor
polynomials.

Theorem 3.2.1 (Schur-Weyl duality). Let V be some finite dimensional complex vector
space. Consider the following natural representation of the permutation group Sn on V ⊗n

given by the linear extension of

σ(v1 ⊗ · · · ⊗ vn) := vσ−1(1) ⊗ · · · ⊗ vσ−1(n), σ ∈ Sn, v1, ..., vn ∈ V.

and the diagonal representation of GL(V ), given by the linear extension of

g(v1 ⊗ · · · ⊗ vn) := gv1 ⊗ · · · ⊗ gvn, g ∈ GL(V ), v1, ..., vn ∈ V.

Then, C[GL(V )] and C[Sn] are centralizers of each other in L(V ⊗n).

Proof. An excellent exposition is given in [Aub]. □

Theorem 3.2.2. Let p(X1, ..., Xk) be a tensor polynomial with n tensor products, such
that p(A1, ..., Ak) ∝ M for all A1, ..., Ak ∈ Md(C), with M ∈ Md(C)⊗n. Then, M is
a linear combination of permutation matrices or p(A1, ..., Ak) = 0 for all A1, ..., Ak ∈
Md(C).
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Proof. We are going to suppose that there exists A1, ..., Ak such that p(A1, ..., Ak) ̸= 0.
Note that any tensor polynomial p(X1, ..., Xk) satisfies

p(UX1U
−1, ..., UXkU

−1) = U⊗np(X1, ..., Xk)U
⊗−n

for all U ∈ GLd. Therefore, if p(A1, ..., Ak) ∝ M for all A1, ..., Ak ∈ Md(C), where
M ∈ Md(C)⊗n is a fixed matrix, then since there is a set of matrices for which the
proportionality constant is not zero, we must have U⊗nMU⊗−n = λUM for all invertible
U as well. Note that

1 = λUU−1 = λUλU−1 ,

so that λ : GLd → C× is a group homomorphism. However, all such maps factor
through the determinant. Indeed, suppose that x, y ∈ GLd. We have λxyx−1y−1 =
λxλyλx−1λy−1 = λxx−1yy−1 = 1, so the commutator subgroup [GLd,GLd], defined as the

subgroup generated by all words of the form xyx−1y−1, is in the kernel of λ. Therefore,
there is a unique homomorphism f such that the following diagram commutes.

GLd C×

GLd/[GLd,GLd]

λ

f
π

Here, π is the canonical projection onto the quotient group. However, [GLd,GLd] = SLd.
Since GLd/SLd = C×, with the canonical projection given by the determinant, we have
as expected that λ factors through the determinant.

GLd C×

C×

λ

f
det

On the other hand λαU = λU for every α ∈ C×. Since there is always an α that makes
αU have determinant 1, we have that λ is a constant function, and thus λU = 1. But
that means that U⊗nM = MU⊗n for all U ∈ GLd. By Schur-Weyl duality 3.2.1, it must
be that M ∈ C[Sd]. That is, M is a linear combination of permutation matrices. □

That is, the most general gates we can implement with out protocols are at most
linear combinations of permutation matrices.

Definition 3.2.3 (Permutation polynomials). Let p(X1, ..., Xk) be a tensor polynomial
with n tensor products. We say that p is a permutation polynomial if p is not a PI, and
there is an M ∈ C[Sn] ⊂ L((Cd)⊗n) such that

p(A1, ..., Ak) ∝M, ∀A1, ..., Ak ∈ Md(C).

Since the identity is a permutation, this concept is a generalization of central poly-
nomials. Indeed, note that Theorem 3.2.2 says that, when there are no tensor products,
the only matrix polynomials which, when evaluated with matrices of a certain size, are
always proportional to a fixed matrix are central polynomials or polynomial identities.

Example 3.2.4 (A SWAP polynomial). Recall first that

(82) SWAP = 1⊗ 1 + σx ⊗ σx + σy ⊗ σy + σz ⊗ σz.



96 4. Time translations

The idea is that, since we know how to construct polynomials which end up being propor-
tional to 1 when evaluated on 2×2 matrices, to find polynomials that are proportional to
the different Pauli matrices. We know from Theorem 3.2.2 that they don’t exist, but we
can work around this by allowing our polynomials to output the pauli matrices in different
bases. We are going to look for three matrix polynomials fx(X,Y ), fy(X,Y ), fz(X,Y )
which have the properties of the Pauli matrices when evaluated on 2× 2 matrices. That
is, that they square to the identity and that they anticommute. From the Cayley-
Hamilton theorem 3.0.1 we know that any traceless 2× 2 matrix squares to the identity
up to a proportionality constant. Therefore, we consider commutators. We have for all
A,B ∈ M2(C) that

{[A,B], [[A,B], B]} = [A,B]2B −B[A,B]2 ∝ B −B = 0.

Thus, we can define fx(X,Y ) := [X,Y ], fy(X,Y ) := [[X,Y ], Y ] and fz := fxfy. The
image of these polynomials on 2× 2 matrices is a projective representation of the Pauli
group which lifts to an irreducible injective representation, known to be unitarily equiv-
alent to the Pauli matrices. If we now call f0(X,Y ) := [X,Y ]2, we have what we were
looking for. However, the proportionality constant in all these polynomials is in princi-
ple different, so we cannot add them together and recover the SWAP. In order to correct
this, we make use of the fact that all our polynomials squared are central polynomials.
Remembering that, we see that

fSWAP := fxfxf0 ⊗ fyfyf0 + fxfyfy ⊗ fxf0f0 + fyfxfx ⊗ fyf0f0 + fxfyf0 ⊗ fxfyf0.

This is a non-homogeneous tensor polynomial in two variables X,Y . This stems from
the fact that fx and fy do not have the same degree, and therefore can be corrected
by redefining fx(X,Y ) := [X2, Y 2] and fy(X,Y ) := [[X2, Y ], Y ]. The anticommutation
relations still hold thanks to the Cayley-Hamilton theorem 3.0.1. Therefore, with these
definitions, for all A,B ∈ M2(C),

fSWAP(A,B) = λ2xλ
2
yλ

2
0(A,B)SWAP.

The polynomial we have just constructed has degree 12 + 12. Comparing this ex-
ample to Example 3.1.3, which shows the simplest central polynomial, one hopes that
there will be simpler SWAP polynomials. It turns out not so be so easy. For us, having
a homogeneous tensor polynomial is quite important, since these are the polynomials
that we can implement in our model, and this forces an increase in the degree of the
polynomial. We can numerically determine that the simplest SWAP polynomial has 40
summands and is of degree 5. If one is not concerned with that, however, one can do
better, as shown by [Pro22]. For 2-variables homogeneous tensor polynomials, we believe
the simplest SWAP polynomial to be
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Ω̃(V,W ) :=VWWVW ⊗ VWWVW − VWWVW ⊗WWV VW(83)

−VWWWV ⊗ VWWVW + VWWWV ⊗ VWWWV

+VWWWV ⊗WVWVW − VWWWV ⊗WWVWV

−VWWWW ⊗ VWVWV + VWWWW ⊗WV VWV

−WVWWV ⊗ VWWVW −WVWWV ⊗ VWWWV

+WVWWV ⊗WVWVW +WVWWV ⊗WWWV V

−WVWWW ⊗ VWVWV +WVWWW ⊗ VWWV V

+WVWWW ⊗WVWV V −WVWWW ⊗WWV V V

+WWVWV ⊗ VWWVW −WWVWV ⊗ VWWWV

−WWVWV ⊗WVWVW +WWVWV ⊗WVWWV

−WWVWW ⊗ VWV VW +WWVWW ⊗ VWVWV

+WWVWW ⊗WV V VW −WWVWW ⊗WV VWV

+WWWV V ⊗ VWWWV −WWWV V ⊗WVWVW

+WWWV V ⊗WWV VW −WWWV V ⊗WWWV V

+WWWVW ⊗ VWVWV −WWWVW ⊗ VWWV V

−WWWVW ⊗WVWV V +WWWVW ⊗WWV V V

−WWWWV ⊗ V VWWV +WWWWV ⊗ VWV VW

+WWWWV ⊗ VWVWV −WWWWV ⊗WV V VW

−WWWWV ⊗WVWV V +WWWWV ⊗WWV V V

+WWWWW ⊗ V VWV V −WWWWW ⊗ VWV V V.

Such a complicated polynomial will necessarily give a very low probability of success.
Nonetheless, we can generalize Theorem 3.1.5 for permutation polynomials. That is,
we prove that they exist. An alternative less pedestrian proof of existence of SWAP

polynomials can be found in [Pro22].

Theorem 3.2.5 (Existence of permutation polynomials). For all d, n ∈ N, and M ∈
Sn ⊂ L((Cd)⊗n) there exists a homogeneous tensor polynomial PM with n tensor products
which is proportional to M when evaluated on Md(C).

Proof. The basic construction block of the proof is the existence of a SWAP polynomial
for all dimensions d and n = 2 parties. Indeed, let Ω be such a SWAP polynomial. Then,
consider the tensor polynomial

Ωij := Ω⊗
⨂︂
k ̸=i,j

Ck,

where Ck is a central polynomial of the same degree as Ω. This polynomial exists by
Corollary 3.1.5.1. If necessary, we first artificially increase the degree of Ω. The poly-
nomial Ωij now is always proportional to a SWAP in systems i, j and the identity in the
other systems. Given that we can decompose any permutation as a product of swaps,
we may equally construct a product of polynomials Ωij to recover a polynomial which is
proportional to any permutation π when evaluated on Md(C).
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Conversely, in order to build a SWAP polynomial, we are going to construct polyno-
mials which project to the symmetric and the antisymmetric subspaces of Cd⊗Cd. That
is, consider the symmetric and the antisymmetric subspaces, defined as

Sym2(Cd) := {z ∈ Cd ⊗ Cd | SWAPz = z} Λ2(Cd) := {z ∈ Cd ⊗ Cd | SWAPz = −z}.

They have dimensions

dS =
d(d+ 1)

2
dA =

d(d− 1)

2
,

respectively. Indeed, a basis of Sym2(Cd) is {ei⊗ei, ei⊗ej +ej⊗ei}dj>i=1, and a basis of

Λ2(Cd) is given by {ei ⊗ ej − ej ⊗ ei}dj>i=1. Let us call ΠSym2(Cd),ΠΛ2(Cd) the projectors

onto these subspaces. Note that

SWAP = ΠSym2(Cd) −ΠΛ2(Cd).

This decomposition, rather than Equation (82) is what we are going to use, but in general
following the steps of Example 3.2.4.

Let us then call CS(Z1, ..., ZmS ), CA(Z1, ..., ZmA) central polynomials for matrices of
dimensions dS , dA, respectively. Let us now consider matrices of size d2 × d2 acting on
Cd ⊗ Cd = Sym2(Cd) ⊕ Λ2(Cd). Note that any matrix C in the linear span of {V ⊗
V }V ∈Md(C) commutes with the SWAP, and preserves the symmetric and antisymmetric
subspaces, so that we may write

(84) S =

(︃
SS 0
0 SA

)︃
,

where SS ∈ MdS (C) and SA ∈ MdA(C), and we consider a basis given by a basis of
Sym2(Cd), and then a basis of Λ2(Cd).

Now, given a certain amount of matrix variables X1, ..., Xm, consider linear combi-
nations Si(X1, ..., Xm) of the letters {Xj ⊗Xj , Xj ⊗Xk +Xk ⊗Xj}mj,k=1 such that

(85) S(X1, ..., Xm) := CS(S1(X1, ..., Xm), ..., SmS (X1, ..., Xm))

is not a PI. Such combinations must exist, as we will see a posteriori. Now, for all
A1, ..., Am ∈ Md(C), we have

S(A1, ..., Am) =(︃
CS(S1(A1, ..., Am)S , ..., SmS (A1, ..., Am)S) 0

0 CS(S1(A1, ..., Am)A, ..., SmS (A1, ..., Am)A)

)︃
∝
(︃
1S 0
0 0A

)︃
= ΠSym2(Cd),

where we have used Proposition 3.1.4 together with the fact that dA < dS . The propor-
tionality constant is not zero, because the span of {Xj ⊗Xj , Xj ⊗Xk + Xk ⊗Xj}mj,k=1

is equal to the matrices of the form given by Equation (84), as a quick dimension count
shows. Therefore, using linear combinations of said matrices, we can construct any ma-
trix in MdS (C) as Si(A1, ..., Am)S , and CS is not a PI, so there must be some combination
which gives a non-zero proportionality constant.

Similarly, we can construct a tensor polynomial which plays the role of the antisym-
metric projector. To this effect, we now consider the antisymmetric part of Md2(C). That
is linear combinations of the letters {Yj⊗Yk−Yk⊗Yj}mj,k=1. Such matrices anticommute
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with the SWAP, and therefore interchange the spaces Sym2(Cd) and Λ2(Cd). That is, they
correspond to matrices of the form

A =

(︃
0S A1

A2 0A

)︃
.

Conversely, every matrix of this form, can be written as such a linear combination, again
since the dimensions of both spaces are the same. Let us call, as usual, Yj ∧ Yk :=
Yj ⊗ Yk − Yk ⊗ Yj . Then, consider the polynomials

Pijkl(Y1, ..., Ym) := (Yi ∧ Yj)S(Y1, ..., Ym)(Yk ∧ Yl),

where S is the polynomial defined in Equation (85). It follows that, when evaluated on
d× d matrices, one obtains

Pijkl(A1, ..., Am) ∝ (Ai ∧Aj)
(︃
1S 0
0 0

)︃
(Ak ∧Al) =

(︃
0S 0
0 A

)︃
for some A ∈ MdA(C). Conversely, any matrix of this form can be obtained in this way,
and therefore, the polynomial

A(Y1, ..., Ym) := CA(A1(Y1, ..., Ym), ..., AmA(Y1, ..., Ym))

is not a PI for some linear combinations of the letters {Pijkl(Y1, ..., Ym)}mi,j,k,l=1, which

we denote by Ai(Y1, ..., Ym). It follows that

A(A1, ..., Am) ∝ ΠΛ2(Cd)

for all A1, ..., Am ∈ Md(C).

In order to substract this polynomials to obtain a SWAP polynomial, we need to make
sure that they have the same proportionality constants in S,A, and that they have the
same degree. Otherwise, we won’t get a homogeneous tensor polynomial. To correct
this second part we may use the same trick as in Example 3.2.4. That is, using the
polynomials S(IS ⊗ IS) and A(IA ⊗ IA), where IS ,IA are central polynomials for Md(C)
of sufficiently high degree, so that we can make deg(S) + deg(IS) = deg(A) + deg(IA)
.These exist due to Corollary 3.1.5.1. We rename S and A to be such polynomials.

In order to correct the first part, we consider yet another polynomial F (T1, ..., Tm),
this time central for matrices of size d2 × d2. The new polynomial

F̃ (X1, ..., Xm, Y1, ..., Ym, Z1, ..., Z2m) :=

F ([S(X1, ..., Xm) +A(Y1, ..., Ym)][Z1 ⊗ Z2][S(X1, ..., Xm) +A(Y1, ..., Ym)], ...,

[S(X1, ..., Xm) +A(Y1, ..., Ym)][Z2p−1 ⊗ Z2p][S(X1, ..., Xm) +A(Y1, ..., Ym)]).

is a homogeneous central tensor polynomial for Md(C), since F is a homogeneous central
polynomial and all matrices are in the span of elementary tensors. On the other hand,
we may write it as

F̃ = SF 1S + SF 2A+AF 3S +AF 4A
for some tensor polynomials F 1, F 2, F 3, F 4.

Now, let f(X1, ..., Xm, Y1, ..., Ym, Z1, ..., Z2p) be such that

F̃ (A1, ..., Am, B1, ..., Bm, C1, ..., C2p) = f(A1, ..., Am, B1, ..., Bm, C1, ..., C2p)1d2
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for all A1, ..., Am, B1, ..., Bm, C1, ..., C2p ∈ Md(C). We have that

f(A1, ..., C2p)ΠSym2(Cd) = ΠSym2(Cd)F̃ (A1, ..., C2p)ΠSym2(Cd)

= S(A1, ..., Am)F 1(A1, ..., Cm)S(A1, ..., Am)

Analogously,

A(B1, ..., Bm)F 4(X1, ..., Z2p)A(B1, ..., Bm) = f(A1, ..., C2p)ΠΛ2(Cd)

Therefore, we define

Ω := SF 1S −AF 4A.

□

3.3. Time translating polynomials. We proceed now to construct polynomials which
perform a wide variety of universal time translation protocols. As we will see in The-
orem 4.0.1, these polynomials are going to provide a full list of allowed universal time
translation protocols.

3.3.1. Rewinding polynomials. Consider Formanek’s polynomials F (X,Y1, ..., Yd) con-
structed in Theorem 3.1.5. We construct a new family of “rewinding polynomials”
implicitely by evaluating F on X and Yi = ZiX

s. It follows that

F (X,Z1X
s, ..., ZdX

s) = R(X,Z1, ..., Zd)X
s ∝ 1.

for some other polynomial R. Since F has degree d2 + 1, and is linear in Y1, ..., Yd, we
get that R must have degree d2 + (d− 1)s and is linear in Z1, ..., Zd. On the other hand,
if we evaluate R on d× d matrices V,W1, ...,Wd, we have

R(V,W1, ...,Wd)V
s ∝ 1.

Therefore,

R(V,W1, ...,Wd) ∝ V −s, W1, ...,Wd ∈ Md(C), V ∈ GLd.

For n = 2 parties, we consider the following “fast-rewinding” tensor polynomials:

D(X,Y1, ..., Ym) := (R(X,Y1, ..., Ym)⊗ 1)Ω(X,Y1, ..., Ym)

· (1⊗R(X,Y1, ..., Ym))Ω(X,Y1, ..., Ym).

When evaluated on d× d matrices V,W1, ...,Wm, we have

D(V,W1, ...,Wm) ∝ (V −s ⊗ 1)SWAP(1⊗ V −s)SWAP = (V −2s ⊗ 1).

In general, we define for n parties the polynomials

Dj := RjΩ
jkRkΩ

jk,

where Rj is a short-hand to introduce the polynomial R in system j: 1⊗· · ·⊗R⊗· · ·⊗1.
This tensor polynomial, when evaluated on d× d matrices V,W1, ...,Wm, satisfies

Dj(V,W1, ...,Wm) = V −ns
j .
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3.3.2. Fast-forwarding protocols. Consider the 2-tensor polynomal defined as

(86) E(X,Y1, ..., Ym) := (Xs ⊗ 1)Ω(X,Y1, ..., Ym)(1⊗Xs)Ω(X,Y1, ..., Ym),

where Ω is a SWAP polynomial, proven to exist in Theorem 3.2.5. Note that this is a
polynomial of tensor degree s+ 2 deg Ω. Evaluated on d× d matrices V,W1, ...,Wm, we
obtain a matrix proportional to

E(V,W1, ...,Wm) ∝ (V s ⊗ 1)SWAP(1⊗ V s)SWAP = V 2s ⊗ 1.

In general, we define for n parties,

Ej(X,Y1, ..., Ym) := Xs
j

∏︂
k ̸=j

Ωjk(X,Y1, ..., Ym)Xs
kΩjk(X,Y1, ..., Ym),

where Xs
j again denotes the expression 1⊗· · ·Xs⊗· · ·1, where Xs is in position j. This

tensor polynomial, when evaluated on d× d matrices V,W1, ...,Wm, satisfies

Ej(V,W1, ...,Wm) ∝ Vjns.

4. All the time translations

We are now ready to state the main result of this Chapter. A theorem characterizing
all the possible universal time translation protocols:

Theorem 4.0.1. [⇒] [⇐] Let P(d, (T1, ..., Tn), T ′) be a universal time translation proto-
col of duration T ′ acting on n target systems of dimension d, each evolving freely under
a Hamiltonian H0 and interacting with a probe system with a bounded Hamiltonian HI ,
such that system j is sent to state e−iH0Tj |ψj⟩. Then, it must be that

(87)
∑︂
i:Ti>0

Ti +
∑︂
i:Ti<0

|Ti|(d− 1) ≤ nT ′.

Conversely, if (d, (T1, ..., Tn), T ′) satisfy Equation (87) with a strict inequality, then there
is a universal time translation protocol with such parameters that works for almost all
H0, HI with a non-zero probability of success.

Before proceeding to prove this theorem, let us look more closely at the meaning. If
we only have one target system (n = 1), then Equation (87) means that

− T ′

d− 1
≤ T1 ≤ T ′.

That is, a protocol applied to a single system cannot perform fast-fowarding, and the
amount of time that it can rewind is bounded by the dimension. However, if we have
more than one system, the more interesting protocols become available. For example,
we may achieve target times of (nT ′, 0, ...0) or (−nT ′/(d− 1), 0, ..., 0) with a protocol of
running time T ′. That is, we are transfering the time from the extra target systems to
the first one in order to break the limits of a protocol acting on a single system.

Equivalently, we may rephrase Equation (87) as a set of properties that evolution
time must follow.

• Evolution time cannot be created.

• Evolution time can be transferred between two identical systems at no cost.

• Evolution time of a system of dimension d can be inverted at a cost (d− 1).
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• Evolution time can be destroyed.

All the universal time translation protocols that exist are the ones that allowed by
this “axioms”.

4.1. Existence. Let us begin by proving the “only if” part of Theorem 4.0.1.

Proof of Theorem 4.0.1, ⇐. First note that to get all protocols satisfying Equation
(87), one only needs to achieve the “extremal” protocols with output times (0, ...,−nT ′/(d−
1), ...0) and (0, ..., nT ′, ...0), as every other output time can be achieved by waiting for a
while and then performing some of these protocols for a shorter period of time T ′′.

Using the canonical correspondence described in Section 2.1, we obtain for each of
the polynomials described in this Section protocols by taking V = e−iH0∆t, and suitable
Wi that require the same amount of time ∆t to be implemented. These protocols take
an amount of time given by Equation (81), and so we must consider the degree of our
polynomials. We have that

deg⊗(Dj) = 2deg⊗(Ω) + deg⊗(R) = 2deg⊗(Ω) + d2 + (d− 1)s.

Therefore, we have a protocol of duration

(88) T ′ = (2deg⊗(Ω) + d2)∆t+ (d− 1)s∆t

with output times (0, ...,−ns∆t, ..., 0).

On the other hand, for the fast-forward polynomial we have

deg⊗(Ej) = 2deg⊗(Ω) + s,

from which we obtain a protocol of duration

(89) T ′ = 2deg⊗(Ω)∆t+ s∆t

that achieves output times (0, ..., ns∆t, ..., 0).

Choosing a sufficiently small interaction time ∆t and a sufficiently big s we can get
Equations (88 and 89) to indeed describe the total duration of the protocol T ′, if it was
fixed before hand. Making ∆t even smaller if necessary, we can get any protocol given
by Equation (87).

□

4.2. Necessary limits. To prove that Equation (87) is also necessary, we resort to the
Dyson series:

Theorem 4.2.1 (Dyson). Let H0, HI be self-adjoint operators acting on H, with HI ∈
B(H). Then, the operator

U(t) =
∞∑︂
j=0

(−i)j
∫︂
t≥t1≥...≥tj≥0

dt1 · · · dtje−iH0(t−t1)HIe
−iH0(t1−t2)HI · · ·(90)

· · · e−iH0(tj−1−tj)HIe
−iH0tj

is a strongly continuous one-parameter unitary group, which describes the evolution of a
system evolving under H0 +HI .
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Proof of Theorem 4.0.1, ⇒. We consider first the case where we have just one target
system. Before we switch on the interaction, we consider that the target system and

probe i are evolving under the independent hamiltonians H0 and H
(i)
P , respectively. In

particular, we assume that H0 and HP :=
∑︁N

i=1H
(i)
P commute. We consider Dyson’s

series 4.2.1 with free Hamiltonian H0 +
∑︁N

i=1H
(i)
P .

Whatever post-selection we might be applying to the probes will just affect system 1
through the bipartite terms HI in Equation (90). Taking into account that e−i(HP+H0)t =
e−iHP te−iH0t = e−iH0te−iHP t, we may group the terms of the form eiHP tkHIe

−iHP tk+1 and
so after measuring we are left with a continuous linear combination of terms of the form

(91) Π1e
−iH0t1Π2e

−iH0t2 ...,

where
∑︁

i ti = t, and the Πj depend on the Hamiltonians HI , HP and the measurement
outcome.

In general in a protocol we take the segment [0, T ′] and choose some sequence of
times 0 = T0 < T1 < ... < TM = T ′. Between times Ti and Ti+1 we can decide whether
we send some probes to interact with the target system of not. If we do not, the target
system evolves via the operator e−iH0(Ti+1−Ti). Otherwise, it evolves via an operator that
we can decompose as before in terms of the form of Equation (91). At the end of the
protocol, after the post-selection, we thus have a linear combination of terms of the form
of Equation (91), but with

∑︁
i ti = T ′.

Therefore, the target system will have a state proportional to∑︂
j

Aj |ψ1⟩⟨ψ1|A†
j ,

where |ψ1⟩ is the initial state of the target, the index j labels the measurement outcomes
that we post-select to and Aj is an operator which can be expressed as a continuous
linear combination of terms of the form of Equation (91) with

∑︁
i ti = T ′.

Suppose now that we have one target, and we are interested in effecting the trans-
formation |ψ1⟩ ↦→ eiH0T |ψ1⟩. We must therefore have∑︂

j

Aj |ψ1⟩⟨ψ1|A†
j ∝ e

−iH0T1 |ψ1⟩⟨ψ1| eiH0T1 ,

with T1 ≡ −T < 0. It follows by convexity that the above equation can hold for some non-
zero proportionality scalar only when all the non-zero Aj ’s are proportional to eiH0T . Let
then A be one of such non-zero terms {Aj}j corresponding to one possible measurement
result of the probes. From the above, we have that

(92) A ∝ eiH0T .

for all Hamiltonians H0, HI , HC .

Suppose then that there exists such an operator A, and let H0 be any generic Hamil-
tonian such that the proportionality constant of Equation (92) does not vanish, for
some fixed HI , HP . Since H0 is a generic operator acting on a d-dimensional Hilbert

space, it must admit a Jordan decomposition of the form B−1H0B =
∑︁d

i=1 αi |i⟩⟨i|, with

{αk}dk=1 ⊂ C, for some invertible d× d matrix B. Since A = f(α⃗)eiH0T for some scalar
f(α⃗), we have that
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(93) ⟨j| Ã |j⟩ = f(α⃗)eiαjT ,

for j = 1, ..., d, where here Ã denotes B−1AB. On the other hand, braketing Equation
(91) between ⟨j|B−1 •B |j⟩ we obtain∑︂

ℓ1,ℓ2,...

⟨j| Π̃1 |ℓ1⟩ ⟨ℓ1| Π̃2 |ℓ2⟩ · · · e−i(αℓ1
t1+αℓ2

t2+··· ),

where we are again denoting Π̃i := B−1ΠiB. By grouping the terms in the exponent with

the same αi we may write each term as some coefficient times e−iα⃗·t⃗, where now t⃗ lives
in Rd, but still satisfies

∑︁
i ti = T ′ and positivity. Therefore, the full linear combination

can be written as

(94) ⟨j| Ã |j⟩ =

∫︂
T
cj(t⃗)e−iα⃗·t⃗dt⃗,

by choosing appropiate coefficients cj(t⃗), and where T := {t⃗ ∈ Rd, ti ≥ 0,
∑︁

i ti = T ′}.
From Equations (93) and (94), it follows that f(α⃗) admits the decompositions

f(α⃗) =

∫︂
Tj
c̃j(t⃗)e−iα⃗·t⃗dt⃗,

for j = 1, ..., d. Here Tj = {t⃗ ∈ Rd, ti ≥ Tδij ,
∑︁

i ti = T ′ + T}.
Now, express the vector α⃗ ≡ β⃗ + iγ⃗ in terms of its real and imaginary parts β⃗, γ⃗.

Fixing γ⃗, we have that the above expressions depend on β⃗ as

f(α⃗) =

∫︂
Tj
c̃j(t⃗, γ⃗)e−iβ⃗·t⃗dt⃗.

for some new coefficients c̃. In particular, for all k, j ∈ {1, ..., d},∫︂
Tj
c̃j(t⃗, γ⃗)e−iβ⃗·t⃗dt⃗ =

∫︂
Tk
c̃k(t⃗, γ⃗)e−iβ⃗·t⃗dt⃗.

This holds for all β⃗ ∈ Rd. Multiplying the above expression by eiβ⃗·t⃗0 for some t⃗0 and

integrating with respect to β⃗ one can see that c̃j(t⃗0, γ⃗) must vanish if t⃗0 ∈ Tj \ Tk.
Therefore, we may write

f(α⃗) =

∫︂
∩jTj

c̃(t⃗, γ⃗)e−iβ⃗·t⃗dt⃗.

Any t⃗ ∈ ∩jTj satisfies ti ≥ T and
∑︁d

i=1 ti = T + T ′. Combining these two expressions,

we conclude that, for all γ⃗ for which f(α⃗) does not vanish, dT ≤
∑︁d

i=1 ti = T +T ′. That
is,

(95) (d− 1)|T1| ≤ T ′.

Note that the argument above does not invoke at any point the uncontrollability of
system 1: it holds even if we know the form of the operators {Πi}i in Equation (91). In
fact, it holds if we further know the similarity transformation that diagonalizes H0.

We can now build from this result to the general scenario. Suppose that, through a
scattering experiment of duration T ′, we were able to induce a transformation of the type
A ∝ U(T1, ..., Tn) :=

⨂︁n
j=1 e

−iH0Tj , for some times T1, ..., Tn. Let us assume, w.l.o.g.,
that T1, ..., Tk < 0, and Tk+1, ..., Tn ≥ 0.
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Now, let B be the similarity transformation that diagonalizes H0, i.e., B−1H0B =∑︁
i αi |i⟩⟨i|, and consider the operator

Ã :=
d−1∏︂
j=1

(︁
B⊗nΓj(B−1)⊗n

)︁
A
(︁
B⊗nΓ−j(B−1)⊗n

)︁
,

with Γ = 1
⊗k ⊗ Γ̃

⊗n−k
, where Γ̃ :=

∑︁d
i=1 |i⟩ ⟨i⊕ 1| and ⊕ is addition modulo d. Noting

that, for any d × d diagonal matrix Y ,
∏︁d−1
j=1 Γ̃

j
Y Γ̃

−j
= det(Y )Y −1, we have that Ã ∝

U((d− 1)T1, ..., (d− 1)Tk,−Tk+1, ...,−Tn).

Finally, define the linear map Λ : M⊗n
d →Md by

Λ(X) :=
∑︂

i1,...,in−1

(1⊗ ⟨i1| ⊗ · · · ⊗ ⟨in−1|)X

(|i1⟩ ⊗ · · · ⊗ |in−1⟩ ⊗ 1) .

This map implements the linear extension of the operation

Λ(X1 ⊗ · · · ⊗Xn) = X1 · · ·Xn,

so it follows that

Λ(Ã) ∝ U

(︄
(d− 1)

k∑︂
i=1

Ti −
n∑︂

i=k+1

Ti

)︄
,

i.e., Λ(Ã) is a rewinding transformation for 1 target system. Clearly, Λ(Ã) can be
expressed as linear combinations of product operators of the form Equation (91) for
n = 1, with the particularity that

∑︁
i ti = (d− 1)nT ′. By Equation (95) we have, then,

that the total rewinding time (d − 1)
∑︁k

i=1 |Ti| +
∑︁n

i=k+1 |Ti| is upper bounded by nT ′.
That is ∑︂

i:Ti>0

Ti +
∑︂
i:Ti<0

|Ti|(d− 1) ≤ nT ′

as stated in Equation (87). □

4.3. Different protocols implementing the same polynomials. The goal of this
section is to show by means of a concrete examples all the steps involved in designing a
scattering protocol from a given polynomial.

Let R(V,W ) = [W,V ]V s[W,V ] be the polynomial we want to implement. We know
that this effects the transformation V −s on qubits (see Eq.(6)). We will show three
different ways to propagate targte system 1 by R(V,W ). First, we expand the terms to
write

(96) R = WV V sWV − VWV sWV −WV V sVW + VWV sVW.

By the correspondence given in Section B, we know we can implement this with a canon-
ical scattering protocol that sends s+ 4 one-dimensional probes.

This corresponds to sequentially preparing s+ 4 probes in the state

(97)
1√
2

(︁
|0⟩R |φ⟩r + |1⟩R |Φ⟩r

)︁
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(we assume that dp = 1, so we do not bother introducing system r). Then, conditioned
on all such probes having returned to the lab, we post-select the lab register to the
many-body state

(98)
1√
4

(|01⟩ |0⟩⊗s |01⟩ − |01⟩ |0⟩⊗s |10⟩ − |10⟩ |0⟩⊗s |01⟩+ |10⟩ |0⟩⊗s |10⟩) |ϕ⟩p .

This is very inefficient, as by inspection we see that for s∆t units of time we could
just let the system evolve naturally. So the second implementation uses only 4 probes:
sending the s probes of the intermediate steps will only decrease the probability of success
because we need to post-select to the state of not having sent them.

Lastly, it is possible to implement the same polynomial with only 2 probes. Instead
of using the initial state of a probe as a superposition of sending it and not sending it,
we put it in a superposition of sending it at time 0 and at time ∆t. We again label these
with a qubit register |0⟩R and |1⟩R, respectively. After 2∆t time units, the state of the
joint system target-register will be

(99)
1√
2

(VW |ψ1⟩ |0⟩R +WV |ψ1⟩ |1⟩R)

where we ignore the internal state of the probe. If we do this once, let the system
evolve for s∆t time units, and then send another probe in the same initial state, we get
polynomial R after post-selecting the lab register on state

(100) (
1√
2

(|0⟩R − |1⟩R))⊗2.

We now move on to the implementation of a protocol that involves two different
target systems, specifically, one that transfers time. A family of polynomials to do this
is given by Equation (86):

(101) E(V,W ) := (V s ⊗ 1)Ω(V,W )(1⊗ V s)Ω(V,W ),

where Ω is any polynomial which is proportional to a SWAP. For example, we can use the
polynomial given by Equation (83). The time warping polynomial we obtain this way is
very long, but expanding it we get

(102) E(V,W ) = V sVWWVWVWWVW ⊗ VWWVWV sVWWVW + · · ·

A possible way to obtain from E(V,W) a time translation protocol would be to use the
correspondence of Section 2.1, to send 10 + s one-dimensional probes to each system.
This is done by sequentially preparing each of the s+ 10 pairs of probes in the state

(103)
1√
2

(︁
|0⟩R |φ1⟩r + |1⟩R |Φ⟩r

)︁
⊗ 1√

2

(︁
|0⟩R |φ2⟩r + |1⟩R |Φ⟩r

)︁
where |φ1⟩ , |φ2⟩ are the states required to make a probe interact only with target system
1 and 2, respectively. We remind the reader that such states exist by virtue of our
working assumptions.

Conditioned on the return of all the probes, we post-select the lab register on the
state

(104)
1

40
(|1011010110⟩ |0⟩⊗s ⊗ |10110⟩ |0⟩⊗s |10110⟩+ · · ·
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System 1 System 2

5Δt

5Δt

sΔt

5Δt

sΔt

Figure 4. A schematic representation of a fast-forwarding protocol. The
vertical arrows represent unperturbed evolution of the target systems. Blue and red
regions correspond, respectively, to times in which we are sending probes to apply a
protocol that performs a SWAP gate.

However, there is a better way to do this, as in the previous example, with only 10
probes for each system. To do this we consider implementing a single SWAP, we do this
by preparing 5 pairs of probes in the state (103) and post selecting the lab register on

the (normalized) state that encodes the polynomial. For example, for the polynomial Ω̃
this state would be

(105)
⃓⃓
ϕΩ̃
⟩︁

=
1√
40

(︁
|10110⟩R ⊗ |10110⟩R − |10110⟩R ⊗ |10011⟩R − ...

Our protocol is schematically shown in Figure 4. First we sequentially prepare and
release 5 probe pairs in state (103) to systems 1, 2 at times {0,∆t, ..., 4∆t}. Then,
while we let system 2 evolve naturally for s time units, we sequentially release five
more probes in state 1√

2
(|0⟩R |φ1⟩r + |1⟩R |Φ⟩r)

)︁
to interact with system 1, at times

{5∆t, ..., 9∆t}. After that, we let system 1 evolve naturally for s time units. Meanwhile,
at times {5∆t + s∆t, ..., 9∆t + s∆t}, we sequentially prepare five more probes in state
1√
2
(|0⟩R |φ2⟩r + |1⟩R |Φ⟩r)

)︁
; those will interact with system 2. After time 10∆t+ s∆t has

elapsed, we postselect the registers in the lab to the state |ϕΩ⟩ ⊗ |ϕΩ⟩.
The final state of the system after the post-selection, and keeping track of the nor-

malization of the states, is now

(106)
1

40

1

210
E(V,W ) |ψ1,2⟩ = λV 2s ⊗ 1 |ψ1,2⟩ ,

where λ is a scalar that depends on V and W . That is, by following this protocol, we
will have made system 1 evolve by T1 = 2s∆ time units in time s∆t + 10∆t, and the
probability of success of the protocol is |λ|2.

Using the SWAP polynomial given in Equation (83) to construct
⃓⃓
ϕΩ̃
⟩︁

and averaging
over V and W according to the Haar measure, we get an average success probability of
approximately 2 × 10−4. While this may be too small to be of practical importance, it
is still large enough to be detectable experimentally. Furthermore, it may be possible to
boost this probability significantly by increasing the number of probes used to implement
the SWAP. It would also be possible to increase the probability of success by post-selecting
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on a larger dimensional space that is spanned by multiple vectors encoding different SWAP
polynomials.

5. High probability rewinding for qubits

As we have seen, the probability of successfully time warping a system can become
extremely low. A natural question arises, can we increase the probability of success of
our protocols? If one takes a look at the protocol given in [QDS+19a; QDS+19b], it
is immediate to notice that, although it is probabilistic, a failure can be corrected. In
the following, we show that a similar scheme can work in the uncontrolled setting for a
certain rewinding protocol on qubits.

5.1. The protocol. Given a time unit ∆t > 0, we introduce a universal physical process
that rewinds any two-level quantum system by any amount T = s∆t, where s is an
arbitrary natural number. This process, acting on a target system with free Hamiltonian
H0, will propagate the target’s initial quantum state by eiH0s∆t, thus leaving the target
on the state it had s∆t time units before the experiment started.

The basic building block of the protocol is the gate Q depicted in Figure 5 (a).
Denoting by |ψ⟩ the state of the target, this gate performs the transformation

(107) Q |ψ⟩ |→⟩ ∝ [V,W ] |ψ⟩ |↑⟩+ {V,W} |ψ⟩ |→⟩ .

Here W := e−iH0∆t and V denotes an unknown linear map, detailed below. The kets
|→⟩ , |↑⟩ respectively label a left-to-right and a bottom-up trajectory of the target system,
as seen in Figure 5 when the letter Q is upright. If, right after implementing Q, we
measure the target’s motion degree of freedom in the {|↑⟩ , |→⟩} basis, the target will be
propagated by either {V,W} or [V,W ], depending on the measurement result.

We next dedicate some lines to explain how to universally realize the gate Q, also
known in the literature as SWITCH [CDPV13], for some uncharacterized matrix V . Let
O be a repeatable physical operation (e.g.: switching on a magnetic field, releasing an
electron) of duration τ , whose effect on the target’s internal degree of freedom is to
propagate its ket by some unknown operator V . This can be achieved by, e.g., switching
on an interacting Hamiltonian for some time τ , or, as described in Section 2, by making
the target unitarily interact with a probe, which is post-selected onto a given pure state
after the interaction. Note that V will be a unitary matrix in the first case and non-
unitary in the second.

Given the ability to conduct any such operation O, one can implement the gate Q
by playing with the motion degree of freedom of the target: it suffices to put the latter
in an equal superposition of two paths. In the first path, the target is allowed to evolve
freely for time ∆t and then we act on it with O for time τ . In the second path, we first
act on the target with O for time τ and then we let it evolve freely for time ∆t. The
state of the target at this stage will thus be proportional to VW |ψ⟩ |γ1⟩+WV |ψ⟩ |γ2⟩,
where γ1, γ2 denote the two trajectories. Next we make the two trajectories interfere, by
conducting the unitary operation

|γ1⟩ ↦→
1√
2

(|→⟩ − |↑⟩) , |γ2⟩ ↦→
1√
2

(|→⟩+ |↑⟩)
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(a) (b)

(c)

Figure 5. (a) The gate Q specified by Eq.(107). This quantum operation, the building
block of the whole protocol, can be implemented in different ways depending on the
physical systems under consideration. The figure shows a possible way to implement
Q on photons with an interferometer. (b) A schematic of the full protocol without
corrections. (c) A schematic of a level n correction. This figure substitutes each Q in
part (b). Following any path in the figure that ends up in the top left outputs a state
proportional to [V,W ] |ψ⟩.

(in optical systems, this can be achieved with a balanced beam splitter), arriving at
equation (107).

The gist of the protocol is to apply the gate Q over and over to the target until it
reaches a state proportional to W−s |ψ⟩ = eiH0s∆t |ψ⟩. To achieve this goal, we rely on
three general properties of 2× 2 matrices.

Lemma 5.1.1. Let V,W be 2× 2 matrices and n ∈ N0. Then, tr([V,W ]{V,W}n) = 0.
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Proof. By the Caley-Hamilton theorem, for n ≥ 2, the 2× 2 matrix {V,W}n is a linear
combination of 1, {V,W}. Hence, it is enough to show that the lemma holds for n = 0, 1,
and this is a simple consequence of the cyclicity of the trace. □

Proposition 5.1.2. Let V,W be arbitrary 2 × 2 matrices, and define x ≡ [V,W ], y ≡
{V,W}. Then we have that:

(a) x2 ∝ 12.

(b) If W is invertible, then, for any natural number s, xW sx ∝W−s.

(c) For any natural number n, ynxyn ∝ x.

Proof. Now, note that any 2×2 traceless matrix can be written as a linear combination
of the Pauli matrices σX , σY , σZ , and thus its square is proportional to the identity
matrix. This applies to the commutator [V,W ], the matrix polynomial W s[V,W ] and,
by Lemma 5.1.1, to [V,W ]{V,W}n. We thus have that, for all 2× 2 matrices,

[V,W ]2 ∝ 1,

W s[V,W ]W s[V,W ] ∝ 1,

[V,W ]{V,W}n[V,W ]{V,W}n ∝ 1.(108)

If W is invertible, then we can multiply the second expression by W−s on the left
and arrive at the identity

(109) [V,W ]W s[V,W ] ∝W−s.

Similarly, multiplying the third line of equation (108) by [V,W ] on the left and
invoking the first line, we arrive at

(110) {V,W}n[V,W ]{V,W}n ∝ [V,W ].

Note that the last step is only rigorous if the proportionality factor in the expression
[V,W ]2 ∝ 1 is non-zero. As it turns out, by the Cayley-Hamilton theorem, this factor is
−det([V,W ]). Let us then prove that the relation also holds for det([V,W ]) = 0.

Define the matrices x ≡ [V,W ], y ≡ {V,W} and z ≡ ynxyn. The matrices x and
z have in this case rank at most 1. Since both x, z have zero trace (z, by virtue of
Lemma 5.1.1), it follows that one can write them as x = λ

⃓⃓
ϕ
⟩︁⟨︁
ϕ⊥
⃓⃓
, z = ν

⃓⃓
φ
⟩︁⟨︁
φ⊥⃓⃓, where⟨︁

ϕ
⃓⃓
ϕ⊥
⟩︁

=
⟨︁
φ
⃓⃓
φ⊥⟩︁ = 0. Now, by the third line of equation (108), xz ∝ 1. Since the

left-hand side of the relation has rank at most one, it follows that xz = 0. This is only
possible if ν = 0 (note that λ = 0 implies ν = 0), in which case z = 0 ∝ x; or if λ, ν ̸= 0
and

⟨︁
ϕ⊥
⃓⃓
φ
⟩︁

= 0, from which z ∝ x. In either case, relation (110) holds.

The first line of equations (108), (109) and (110) are, respectively, the 2× 2 matrix
relations (a), (b), (c) claimed to hold in Proposition 5.1.2. This finishes the proof.

□
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We remark that the proportionality factors on the right-hand sides of equations (a)-
(c) are functions of the entries of the matrices V,W , and might vanish for some values
of V,W .

Proposition 5.1.2 suggests a simple method to bring the target system to state
W−s |ψ⟩ through consecutive uses of gate Q. First, we aim to effect the transforma-
tion |ψ⟩ → x |ψ⟩. Once there, all we have to do is wait for time s∆t and manage to
enforce the transformation x once more. The final state will then be xW sx |ψ⟩, that, by
relation (b), is proportional to the state W−s |ψ⟩ = eiH0s∆t |ψ⟩. In that case, the target
will have been translated by −s∆t time units.

The shortest way to rewind the system hence requires two applications of gate Q, see
Figure 5 (b). Provided that, after measuring in the {|↑⟩ , |→⟩} basis, the target system
emerges from gate Q through its vertical output port, the system will have been acted
upon by x. Next, we wait for time s and then we input the system in Q again. If, once
more, the target exits the gate through its vertical port, then we can guarantee that the
rewinding process took place.

It could happen, though, that the target exits the first gate through its horizontal
port. In that case, the system will be propagated by y instead of x. To proceed with
the rewinding protocol, we must eliminate this operator. A possible path out is given
by taking n = 1 in relation (c), namely, by the identity yxy ∝ x. It follows that, if we
make the system pass through two more Q gates and it exits the first one through the
vertical port; and the second one, through the horizontal port, the system will end up in
a state proportional to x |ψ⟩. The situation is thus the same as if the target had exited
through the vertical port in the original Q gate, see Figure 5 (c). Hence we can wait for
s∆t time units before trying to effect another transformation x on the system.

By virtue of relations (a)-(c) in Proposition 5.1.2, whichever sequence of ports the
system happens to exit will propagate the target by an operator of the form xyn or yn. In
the first case, n consecutive exits through the horizontal port of gate Q will propagate the
system by x. In the second one, a vertical detection, followed by n consecutive horizontal
ones, will have the same effect. Hence, no matter how advanced the protocol is, there
always exists a chance of bringing the target to the terminal configuration xW sx |ψ⟩, as
sketched in Figure 5 (c). Note that relations (a)-(c) hold even if the matrices V,W are
not unitary. The protocol can thus be used, e.g., to rewind a two-level system undergoing
a continuous decay governed by a non-Hermitian Hamiltonian, such as a neutral kaon
[Kab68]. In this case, however, the terminal configuration is not ensured.

Notice as well that, should we enforce any limit m on the number of times that
gate Q can be applied, the running time of the protocol would be upper bounded by
T ′ = m(∆t + τ) + s∆t (recall that τ is the time it takes to implement the operation
O). On the other hand, the protocol, if successful, would rewind the target system by
an amount T = s∆t. Hence T ′ = T +O(1) and, by the results of Sections 2 and 3, this
implies that such an ‘m-trimmed’ universal rewinding protocol runs on asymptotically
minimal time in the limit T →∞.

It remains to be seen how likely it is that the (trimmed or untrimmed) protocol
succeeds. In principle it could be that, even allowing an unlimited number of uses of
gate Q, the system never reaches a terminal configuration xW sx |ψ⟩. In this regard,
note that, if the physical operation O has no effect whatsoever on the target (namely, if
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V = e−iH0τ ), then the latter will keep evolving unperturbed, no matter how many times
we act on it with the Q gate. More generally, one can see that the rewinding protocol
will fail with certainty whenever [V,W ] = 0.

The condition [V,W ] = 0, violated by generic interactions V,W , requires a high
degree of fine-tuning if the experimental setup is capable of perturbing the target system
at all. One therefore wonders what the chances of success are when [V,W ] ̸= 0.

Using techniques from probability theory [Wil91], we prove in Section 5.2 that, pro-
vided that V,W are unitary and [V,W ] ̸= 0, the target will reach the pattern xW sx |ψ⟩
after a random finite number of uses of Q with probability 1. Moreover, we show how
to compute the probability of success of an m-trimmed protocol given a lower bound on
∥[V,W ]∥. See Figure 6.
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Figure 6. The protocol’s probability of success psuccA of implementing operation A
(vertical axis) as a function of the number m of uses of gate Q (horizontal axis), for
different values of the probability p of exiting the Q gate through the vertical port (as
proven in Section 5.2, p depends on V,W , but not on the state of the target). (a)
The probability of successfully implementing [V,W ] (b) The probability of successfully
rewinding the system for the full adaptive protocol. Note that this is not the square of

(a).

5.2. Proofs. We begin by defining and proving the validity of a completely abstract
protocol, without considering any implementation details. In this protocol, the system
of interest is C2, and the other system acts as an ancilla that heralds the success of the
protocol. We need to have control over the ancillary system.

Let V,W be 2× 2 matrices. We define a gate Q acting on C2 ⊗ ℓ2(Z× {−1, 1}) as

Q |ψ⟩ |n, z⟩ =
1

2
[V,W ] |ψ⟩ |n,−z⟩+

1

2
{V,W} |ψ⟩ |n− z, z⟩ .

We now show that Protocol 5.2.1 does what we claim. This will require several
intermediate results. We begin by showing that if the protocol terminates, the output
is indeed the rewound state that we are after. In fact, we show something slightly more
general. Let us call, as in the previous section x ≡ [V,W ] and y ≡ {V,W}.

Lemma 5.2.2. In Protocol 5.2.1, the state in line 6, after having obtained outcome (n, z)
is

|ψ⟩ ∝ θ(n)x
z+1
2 yn |ψ0⟩+ (1− θ(n))x−

z−1
2 y−nW sx |ψ0⟩ ,

where θ(n) = 1 if n > 0 and 0 otherwise. In particular, the output of Protocol 5.2.1 is
proportional to xW sx |ψ0⟩, and thus equal to W−s |ψ0⟩.
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Protocol 5.2.1 An adaptive protocol to rewind qubits

Input: Initial target state |ψ0⟩ ∈ C2. Matrices V,W ∈M2(C) such that [V,W ] ̸= 0, and
W is invertible, s ∈ N.

1: Initialize the target |ψ⟩ ← |ψ0⟩.
2: Initialize the ancilla |φ⟩ ← |0,−1⟩.
3: Apply Q to the combined state |ψ⟩ |φ⟩.
4: Measure the ancilla in the basis {|m,w⟩}m∈Z,w∈{−1,1}.
5: (n, z)← Outcome of measurement
6: |ψ⟩ ← Target state after measurement.
7: if (n, z) = (0, 1) then
8: Apply W s to |ψ⟩.
9: |φ⟩ ← |0, 1⟩.

10: else if (n, z) = (0,−1) then
11: return |ψ⟩.
12: else
13: |φ⟩ ← |n, z⟩.
14: end if
15: goto 3.

Proof. Recall the relations shown in Proposition 1 of the main text: x2 ∝ 1, xW sx ∝
W−s, ynxyn ∝ x. These give rise to a word problem that we now proceed to solve. Note
also that, it is only possible to get a measurement outcome (n, z) with n > 0 before
obtaining the measurement outcome (0, 1) and from that moment onwards it is only
possible to get n < 0 until the protocol terminates. Therefore, the problem is naturally
divided in the cases n > 0 and n < 0. Let us proof the result in the case n > 0, the other
one being completely symmetric, but using W sx |ψ0⟩ as the initial state.

We proceed by induction in the amount of times m we have reached line 6. For
m = 1, the outcome obtained is either (1,−1) or (0, 1), and the target state updates
as we say in line 6. Suppose now that we have obtained outcome (n, z) with n > 0 in
loop iteration m > 1. This means that in loop m − 1 we had obtained either outcome
(n+ z, z) or outcome (n,−z), which also have n > 0. Then the update rule says that, in
the first case, we have by induction and the simplification rules that

yx
z+1
2 yn+z |ψ0⟩ ∝

{︄
yn |ψ0⟩ if z = −1,

xyn |ψ0⟩ if z = 1.

In the second case, from the update rule and the simplification rules, we have

xx
−z+1

2 yn |ψ0⟩ ∝

{︄
yn if z = −1,

xyn if z = 1,

as required. □

Note that after each loop the ancillary system is always in a particular state |n, z⟩
and so the measurement is always a two outcome measurement. In fact, we can always
implement this protocol with a qubit and something to keep track of the measurement
outcomes. We now show that the probability of either outcome is always independent of
the state of the system.
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Lemma 5.2.3. Let V,W be 2× 2 unitary matrices. Then, the probability

p = ⟨n,−z|Q |ψ⟩ |n, z⟩

is independent of |ψ⟩.

Proof. We apply the Cayley-Hamilton theorem to the 2×2 matrix VWV †W †, obtaining

(111) (VWV †W †)2 − tr(VWV †W †)VWV †W † + det
(︂
VWV †W †

)︂
= 0,

The last determinant equals 1. Thus, Multiplying the above expression by WV on the
left and by W †V † on the right, we find that

(112) V †W †VW +W †V †WV = tr(VWV †W †)1.

Now, the probability p of measuring the ancillary system and obtaining result (n, z) is

(113)
1

4
⟨ψ| [V,W ]†[V,W ] |ψ⟩ =

1

4
⟨ψ| 21− V †W †VW −W †V †WV |ψ⟩

By Equation (112), the last expression just depends on the invariant tr
(︁
VWV †W †)︁ and

not on the state itself. □

This independence on the state and the fact that the state only depends on the
outcome measuremt allows us to model the evolution of the target state |ψ⟩, at each loop
of the protocol, as a classical particle undergoing a random walk in the directed graph
shown in Figure 7.

0 1 · · ·

0 1 · · ·

−1

−1

· · ·

· · ·

Figure 7. A random walk modelling the word problem. In this directed graph
we consider the following situation. We label (n,−1) ≡ n and (n, 1) ≡ n. Thus,
starting in position 0 at t = 0, at each loop of the protocol the classical particle moves
along a vertical edge with probability p and along a horizontal one with probability
1− p. The goal is to get back to 0 at a positive finite time. A move along a horizontal
edge corresponds to the operation |ψ⟩ ↦→ {V,W} |ψ⟩ on the target system, and a move
along a vertical edge to the operation |ψ⟩ ↦→ [V,W ] |ψ⟩.

After each loop of the protocol, the particle can move in the horizontal direction with
probability 1 − p: this corresponds to measuring the quantum target leaving a Q gate
and obtaining outcome (n − z, z), hence propagating the current quantum state by the
operator {V,W}. Alternatively, with probability p, the classical particle will move in the
vertical direction of the graph. This corresponds to measuring the target leaving the Q
gate and obtaining outcome (n,−z), which propagates its state by [V,W ].
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If the initial position of the classical particle is 0, then, by the time the particle
reaches 0, the quantum target system will have been propagated by [V,W ]. This is
independent of the graph path taken by the classical particle, by virtue of Lemma 5.2.2.

Once the classical particle is in 0, we would stop the random walk momentarily and
let the quantum target system evolve freely for s∆t time units. Then we would act
again with the Q gate on the system, thus continuing the random walk until the classical
particle arrives at 0, at which point the target has been propagated by xW sx and hence
it would have been rewound.

We will next prove that the probability that the classical particle comes back during
its random walk to 0 in finite time is 1. For this, we will use standard notation and
techniques which can be found for example, in [Wil91]. This proves that Protocol 5.2.1
terminates in a finite amount of time with probability 1. Since the waiting time does
not affect the probability of success of the protocol, we set s = 0 for the remainder of
the discussion.

Let {Sn}n≥0 be the sequence of random variables which describe this random walk
when starting in the state S0. We define the hitting time of node a from state b as the
random variable

Tb→a := inf{n > 0 | Sn = a, S0 = b},

which takes values in N∪{+∞}. The probability of successfully finishing the protocol in
m steps is therefore given by P(T0→0 = m). To calculate this probability we will exploit
the symmetries of the graph. All basic concepts about random walks that we use in the
proof can be found, for example, in [Wil91].

Theorem 5.2.4. For all natural m ≥ 1 and all p ∈ [0, 1], with the convention that
00 = 1,

P
(︂
T0→0 = 2m− 1

)︂
=

m∑︂
n=1

(−1)n+1

(︃
1/2

n

)︃(︃
1− 2n

m− n

)︃
(2p)2n−1(2p− 1)m−n,

P
(︂
T0→0 = 2m

)︂
= 0.

Remark 5.2.5. The use of 00 = 1 in Theorem 5.2.4 is justified in two ways. First, when
p ̸= 1/2 there is no indeterminacy in the formula, which is a continuous function of p.
Taking the limit p→ 1/2 we obtain

(114) P
(︂
T0→0 = 2m− 1

)︂
= (−1)m+1

(︃
1/2

m

)︃
,

so regarding 00 as 1 is the natural choice to make the probability continuous on p.
Furthermore, equation (114) is also the probability for the hitting time of the origin in a
simple symmetric random walk of the integers starting at the origin. Closer inspection of
our graph reveals that indeed, when p = 1/2 (and only in this case), these two processes
are equivalent for the purposes of this random variable. This is therefore the correct
formula for p = 1/2.

We proceed to prove Theorem 5.2.4.
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Proof. We define the generating function

f (α) := E
[︂
αT0→0

]︂
=

∞∑︂
n=1

P
(︂
T0→0 = n

)︂
αn.

Note that in principle this is only correctly defined for α < 1, as the probability of having
an infinite hitting time could be non-zero. The correctness of the last equality is justified
a posteriori, when we will see that limα→1− f(α) = 1. For the time being, assume that
0 < α < 1. We have

f (α) = E
[︂
αT0→0 | S1 = 0

]︂
P
(︁
S1 = 0

)︁
+ E

[︂
αT0→0 | S1 = 1

]︂
P (S1 = 1)

= pE
[︂
αT0→0 | S1 = 0

]︂
+ (1− p)E

[︂
αT0→0 | S1 = 1

]︂
= pα+ (1− p)E

[︂
αT0→0 | S1 = 1

]︂
.

However, the graph is invariant under horizontal translations, so

P
(︂
T0→0 = n | S1 = 1

)︂
= P

(︂
T1→0 = n− 1

)︂
= P

(︂
T0→−1 = n− 1

)︂
.

Therefore,

E
[︂
αT0→0 | S1 = 1

]︂
=

∞∑︂
n=2

P
(︂
T1→0 = n− 1

)︂
αn = αE

[︂
αT0→−1

]︂
.

We can divide the process of getting to −1 from 0 in two parts: by going for the first
time to 0 from 0 and then visiting −1 from 0 also for the first time. The probabilities
are decomposed as follows:

P
(︂
T0→−1 = n

)︂
= P

(︂
inf{k > T0→0 | Sk = −1, ST0→0

= 0, S0 = 0} = n
)︂

=
∑︂
m<n

P
(︂
T0→0 = m

)︂
P
(︁
inf{k > m | Sk = −1, Sm = 0} = n

)︁
=
∑︂
m<n

P
(︂
T0→0 = m

)︂
P
(︁
T0→−1 = n−m

)︁
= P

(︂
T0→0 + T0→−1 = n

)︂
,

where we have used the Markov property in the third step. Note that by the strong
Markov property, inf{k > T0→0 | Sk = −1, ST0→0

= 0} (which has the same distribution

as T0→−1) is independent of T0→0. In particular,

E
[︂
αT0→−1

]︂
= E

[︂
αT0→0

]︂
E
[︂
αT0→−1

]︂
= E

[︂
αT0→0

]︂
E
[︁
αT0→1

]︁
,

where the last equality follows from the reflection symmetry of the graph.

Repeating the arguments made at the beginning for T0→0 we get that

E
[︁
αT0→1

]︁
= αpE

[︂
αT0→−1

]︂
+ (1− p)α.

Combining everything,

f(α) = pα+
(1− p)2α2f(α)

1− pf(α)α
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or the second degree equation

αpf(α)2 + (α2 − 2pα2 − 1)f(α) + pα = 0,

which has the solutions

1 + 2pα2 − α2 ±
√︁

(1 + 2pα2 − α2)2 − 4p2α2

2pα
.

The correct behaviour as α→ 0+ is obtained with the minus sign in front of the square
root, so let us expand this one as a power series on α centered at zero:

f(α) =
1 + 2pα2 − α2 −

√︁
(1 + 2pα2 − α2)2 − 4p2α2

2pα

=
−(1 + 2pα2 − α2)

∑︁∞
n=1(−1)n

(︁
1/2
n

)︁ (︂ 2pα
1+2pα2−α2

)︂2n
2pα

=
∞∑︂
n=1

(−1)n+1

(︃
1/2

n

)︃(︃
2pα

1 + 2pα2 − α2

)︃2n−1

=
∞∑︂
n=1

(−1)n+1

(︃
1/2

n

)︃
(2p)2n−1α2n−1

(︃
1

1 + (2p− 1)α2

)︃2n−1

=
∞∑︂
n=1

(−1)n+1

(︃
1/2

n

)︃
(2p)2n−1α2n−1

∞∑︂
k=0

(︃
1− 2n

k

)︃
(2p− 1)kα2k

=

∞∑︂
m=1

∑︂
n+k=m

(−1)n+1

(︃
1/2

n

)︃(︃
1− 2n

k

)︃
(2p)2n−1(2p− 1)kα2n+2k−1

=
∞∑︂
m=1

m∑︂
n=1

(−1)n+1

(︃
1/2

n

)︃(︃
1− 2n

m− n

)︃
(2p)2n−1(2p− 1)m−nα2m−1,

from which the statement follows. Note that

lim
α→1−

f(α) =
2p−

√︁
(2p)2 − 4p2

2p
= 1,

so that P
(︂
T0→0 < +∞

)︂
= 1, like we had anticipated.

□

To get now the probability of successfully resetting at a particular time, we can just
use the formula we just got and compute (as we did in the previous proof for T0→−1):

P
(︁
T0→0 = t

)︁
=
∑︂
k+l=t

P
(︂
T0→0 = k

)︂
P
(︂
T0→0 = l

)︂
.

The result is the following formula:
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Corollary 5.2.5.1. For all natural m ≥ 1 and all p ∈ [0, 1], with the convention that
00 = 1,

P
(︁
T0→0 = 2m

)︁
=

m∑︂
k=1

k∑︂
i=1

m−k+1∑︂
j=1

(−1)i+j
(︃

1/2

i

)︃(︃
1/2

j

)︃(︃
1− 2i

k − i

)︃
· · ·

· · ·
(︃

1− 2j

m− k + 1− j

)︃
(2p)2(i+j−1)(2p− 1)m+1−(i+j),

P
(︁
T0→0 = 2m− 1

)︁
= 0.

Note in particular that P(T0→0 <∞) = 1.

For completeness, we now combine all the statements we have proven.

Theorem 5.2.6. Let H0 and HI be hermitian operators acting on C2, |ψ0⟩ ∈ C2 an

initial state, T > 0 an amount of time to rewind, and V := e−iHIτ ,W := e−iH0T/s for
some s ∈ N, τ > 0, such that [V,W ] ̸= 0.

Then, for every 0 < q < 1 there is a natural number m ∈ N such that Protocol 5.2.1
terminates after m iterations with probability bigger or equal to q, outputing the state
eiH0T |ψ0⟩.

Proof. Indeed, from Lemmas 5.2.2 and 5.2.3 we deduce that the probability that the
random walk described in Figure 7 with parameter p = 1/2 − tr

(︁
VWV †W †)︁ starting

at 0 goes back to 0 in m steps coincides with the probability that protocol 5.2.1 stops
after a m iterations. This probability tends to one, since p is not zero due to the
fact that [V,W ] ̸= 0. We can then use Corollary 5.2.5.1 to compute an m such that
P(T0→0 <∞) ≥ q. □

6. Discussion

We have studied time-translations in the most general setting possible. That is, of
an uncontrolled system with uncontrolled operations. This is a generalization to the
uncontrolled setting of other work [QDS+19a; QDS+19b]. One wonders which results
from the controlled world are generalizable to the uncontrolled setting. We have seen
that all the possible time translations attainable in this setting are the ones that satisfy
Theorem 4.0.1. The conditions in 4.0.1 are equivalent to the following postulates:

• Evolution time cannot be created.

• Evolution time can be transferred between two identical systems at no cost.

• Evolution time of a system of dimension d can be inverted at a cost (d− 1).

• Evolution time can be destroyed.

We are led to conclude that evolution time behaves like a sort of resource that we can use
for our operations. Furthermore, our work has introduced tensor polynomials, garnering
the interest of mathematicians working in PI-rings [Pro20]. Many of the problems that
we want to solve, including generalizing our adaptive protocol for higher dimensional sys-
tems, and for SWAP polynomials, other kinds of time translations, etc. can be rewritten
in this algebraic language. Even though this mapping makes it seem like answering these
questions is hopeless, it also opens a new avenue to tackle such problems, which we will
undertake in future work.
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Some of these protocols have been implemented with optical systems in the lab
[GXL+20; LYW+20; SST+23]. In particular, in [SST+23] we further show that our
qubit protocol exhibits a quantum advantage over universal time translation protocols
where the probes are classical systems.

Recently, the breakthrough paper [YSM22] has shown that there is, in the controlled
setting for qubits, a deterministic protocol which inverts a unitary in finite time. This is
something that can never be translated to the uncontrolled setting, which is by nature
purely probabilistic and therefore our qubit results is equally optimal. Left to do is to
see if this can also be achieved for higher dimensional systems, and for time translations
other than rewindings.





Chapter 5

Discussion

In this thesis, we have learned that real Hilbert spaces are not enough to describe
tripartite nonlocality experiments, analogous to how local hidden variable theories are not
enough to describe Bell experiments. We have found a new quantum effect experienced
by the simplest mechanical system of all: a particle moving freely in a line. We proved
that this effect is as powerful as quantum backflow and that, in some sense, they are
equivalent. This has helped us give new upper bounds on the strength of quantum
backflow. Finally, we have studied time translations in a completely uncontrolled system.
We have seen that many of the results that work in the controlled case also work in this
setting, although by using much more complicated protocols.

We have discussed each result and its implications in more detail in the respective
discussion Sections on each Chapter. Roughly, all of these are new effects which shed a
bit more light about the role of space and time in quantum mechanics, and have already
led to many interesting experiments [CWL+22; LMW+22; WJG+22; GXL+20; LYW+20;
SST+23] and mathematical developments [Pro20; Pro22]. However, there is still much
to be done.
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