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Abstract 

Muscle synergy analyses are used to increase our understanding of motor control. Spatially 

fixed synergy vectors coordinate multiple co-active muscles through activation commands, 

known as activation coefficients. To better understand motor learning, it is crucial to know 

how synergy recruitment varies during a learning task and different levels of movement 

proficiency. Within one session participants walked on a line, a beam, and learned to walk 

on a tightrope – tasks that represent different levels of proficiency. Muscle synergies were 

extracted over all conditions and the number of synergies was determined through the knee-

point of the total variance accounted for (tVAF) curve. We found that the tVAF of one 

synergy decreased with task proficiency (line < beam < tightrope). Additionally, trial-to-trial 

similarity and distinctness of synergy activation coefficients increased with proficiency and 

after a learning process. We conclude that precise adjustment and refinement of synergy 

activation coefficients play a crucial role in motor learning. 

Zusammenfassung 

Muskel-Synergie-Analysen werden eingesetzt, um unser Verständnis der motorischen 

Kontrolle zu verbessern. Definierte Synergievektoren koordinieren mehrere gleichzeitig 

aktive Muskeln durch Aktivierungskoeffizienten. Um motorisches Lernen besser zu 

verstehen, ist es entscheidend zu wissen, wie sich die Aktivierung von Synergien während 

einer Lernaufgabe und bei unterschiedlichen Bewegungsfertigkeiten verändert. 

Teilnehmende Personen dieser Studie gingen innerhalb einer Datenaufnahme über eine 

Linie, einen Balken und lernten auf einem Seil zu gehen. Diese Aufgaben repräsentieren 

verschiedene Fertigkeitsniveaus. Muskel-Synergien wurden über alle Aufgaben berechnet 

und die Anzahl der Synergien wurde durch den Kniepunkt der Gesamtvarianz (tVAF) Kurve 

bestimmt. Die tVAF bei einer Synergie nahm mit zunehmender Aufgabenfertigkeit ab (Linie 

< Balken < Seil). Darüber hinaus nahmen die Variabilität und Unterscheidbarkeit der 

Aktivierungskoeffizienten von Synergien nach einem Lernprozess und mit zunehmender 

Aufgabenfertigkeit zu. Daraus lässt sich schließen, dass eine präzise Anpassung und 

Verfeinerung der Aktivierungskoeffizienten von Synergien eine entscheidende Rolle im 

motorischen Lernen spielen. 
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1 Introduction 

The underlying mechanisms, by which the central nervous system controls movements and 

adapts during learning new movements, are still not fully understood. One common theory 

in in the field of motor control implies the idea of muscle synergies (Bizzi & Cheung, 2013; 

Bizzi et al., 1999; d'Avella & Bizzi, 2005). Put simply, muscle synergies refer to groups of 

co-active muscles, termed synergy vectors or motor modules, which are recruited by 

activation coefficients, corresponding to time-dependent control inputs of the central 

nervous system (Bizzi & Cheung, 2013; Bizzi et al., 1999). In line with Bernstein’s levels 

of movement construction (Bernstein, 1967; Profeta & Turvey, 2018), this simplifies the 

complex coordination of the large number of muscles in the human body by controlling the 

activation of a limited number of spatially fixed, and temporally independent motor modules, 

rather than individually controlling each muscle.  

Over the last two decades, muscle synergies, extracted from electromyography (EMG) 

recordings have been studied in healthy and pathological populations across various tasks. 

These studies have demonstrated the recruitment of similar motor modules in different 

movements, strengthening the concept of spatially fixed synergy vectors. So-called shared 

synergies describe similar movement fragments, which correspond to physical subtasks with 

the same mechanical goals (Nazifi et al., 2017). For example, shared synergies were found 

between walking and cycling (Barroso et al., 2014), walking and slipping (Nazifi et al., 

2017), walking and standing reactive balance tasks (Allen et al., 2020), stepping and non-

stepping postural behaviors (Chvatal et al., 2011), seated and standing cycling (Hug et al., 

2011; Turpin et al., 2017) or overground and treadmill running (Oliveira et al., 2016). To 

describe the complexity of motor control, the total variance in muscle activity accounted for 

(tVAF) by a given number of synergies, and the number of needed synergies (NoS) are 

widely utilized parameters. For instance, less synergies and higher tVAF – indicating lower 

motor complexity – were found in individuals with cerebral palsy (Shuman et al., 2017; 

Steele, Rozumalski, et al., 2015) or stroke (Clark et al., 2010; Van Criekinge et al., 2020) 

compared to unimpaired populations, and in younger compared to older adults during 

walking (da Silva Costa et al., 2020). 

It is generally accepted, that generating identical movements on successive attempts is 

impossible, due to an inherently noisy nervous system (Faisal et al., 2008). This noise can 

arise from either the central nervous system through movement planning or peripherical 
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structures (i.e.: force production by muscles). In 2017, Dhawale et al. reviewed recent studies 

regarding movement variability in motor learning, and concluded, that variability in the 

planning space is more likely a feature of motor system plasticity that drives motor learning, 

rather than unwanted noise. Moreover, this trial-to-trial variability decreases with increasing 

task proficiency (Cardis et al., 2018; Dhawale et al., 2017; Levy-Tzedek, 2017; Wu et al., 

2014), aligning with the principles of reinforcement learning (Dhawale et al., 2017). 

Reinforcement learning theory suggests that a system learns new behaviors through trial-

and-error (Kaelbling et al., 1996). Motor commands that lead to favorable outcomes (i.e.: 

successful execution of a movement task) are repeated, reinforced, and refined in subsequent 

attempts. In a study by Wu et al. (2014) participants were trained to replicate a curve shape 

using hand trajectories in a reaching task. They found that individuals who displayed higher 

kinematic variability prior to training showed faster rates of learning. Hence it seems that 

variability during the learning process increases the likelihood of finding the optimal motor 

command. 

To date, only few studies have examined the role of muscle synergies in movement learning. 

For instance, Sylos-Labini et al. (2022) compared walking trial-to-trial variability of 

temporal synergy activations across different age groups, ranging from neonates to adults. 

They observed a decrease in variability during locomotor development. Consistent with a 

prior study on locomotor development (Dominici et al., 2011), authors revealed that motor 

complexity and the number of synergies increased with age. In adults, changes of activation 

coefficients variability correlated with changes in bowling scores across sessions (Cheung, 

Zheng, et al., 2020). Comparing professional ballet dancers with individuals without any 

dancing or gymnastics experience, Sawers et al. (2015) revealed higher trial-to-trial 

similarity with higher beam walking proficiency. Additionally, dancers showed lower 

variability within synergy vectors and higher spatial distinctness between synergy vectors. 

Similarly, dance-based rehabilitation in individuals with Parkinson’s disease improved the 

consistency and distinctness of synergy vectors (Allen et al., 2017). All the mentioned 

studies were limited by either inter-participant variability (Hug, 2011; Pale et al., 2020; 

Scano et al., 2019; Sylos-Labini et al., 2022; Zhao et al., 2021), or inter-session variability 

(Hug, 2011; Kristiansen et al., 2016; Pale et al., 2020), which can be attributed to individual 

motor control differences and variations in skin-electrode impedance and electrode position. 

To the best of our knowledge, no study has yet examined changes in muscle synergies using 

a within-participant, within-session protocol. Therefore, the present study addresses this 
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research gap. Briefly, each participant walked on a line, a beam, and a tightrope. The choice 

of these three tasks was based on the progression from an easy, daily task with highest 

movement proficiency (line) to a more uncommon task that was still manageable for 

participants (beam) and finally to a new task, which could be learned within one data 

collection session (tightrope). The twofold aim of the study was to examine if motor 

complexity, trial-to-trial similarity of activation coefficient and activation coefficient 

distinctness differs: (1) between an early and a late stage of a learning process (i.e.: learning 

to walk on a tightrope); (2) between common and less common movement tasks – addressing 

movement proficiency. Subsequently, we investigated, if the contribution of synergies 

changes among learning or proficiency changes. The study primarily focused on muscle 

synergies, but trial-to-trial similarity of EMG envelopes and joint angles were also analyzed 

to gain a comprehensive understanding of variability in motor learning. Additionally, the 

study investigated whether the amount of muscle activity changes after learning, building on 

previous findings by Donath et al. (2016), who showed decreased muscle activity after 

slackline training. We hypothesize that motor complexity, activation coefficient distinctness 

and trial-to-trial similarity of synergy activation, EMG envelopes, and joint angles (1) gets 

higher during learning, and (2) is higher in more common movements. Furthermore, the 

study hypothesizes that the amount of muscle activity decreases during learning (1) and is 

lower in more common movements (2). 
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2 Materials and Methods 

2.1 Participants 

This study involved ten healthy participants (age: 25.2 ± 3.34 years; bodyweight: 69.9 ± 7.34 

kg; height: 1.76 ± 0.09 m; body-mass-index: 22.63 ± 1.51; 6 men and 4 women) without 

neurological or orthopedic impairments, who were not able to walk on a slackline or 

tightrope beforehand. The study was approved by the ethics committee of the University of 

Vienna (reference number: 00820) and participants gave written informed consent. 

2.2 Experimental Setup and Data Collection 

Each participant walked under different tasks: (a) a line taped on the ground (LINE; length: 

310 cm; width: 1.4 cm); (b) a beam (BEAM; length: 341.5 cm; width: 10 cm; height: 28.5cm) 

and (c) a tightrope (TIGHTROPE; length: 363 cm; diameter: 0.9 cm; height: 363 cm) 

spanned between two platforms (Figure 1). The learning process for walking on the 

TIGHTROPE was divided into two stages: TRfail and TRsucc. TRfail included the first five 

attempts where participants were able to perform at least one full gait-cycle of the right leg 

but were not able to successfully balance over the entire TIGHTROPE. TRsucc included the 

attempts where participants successfully balanced over the TIGHTROPE in four out of five 

consecutive attempts. A successful attempt was defined as walking over the whole 

TIGHTROPE and maintaining balance on the second platform. If a participant was able to 

successfully balance over the TIGHTROPE in two out of the first five attempts, the difficulty 

of the task was increased with visual constraints, by either an eye-patch over the left eye, or 

further by closing both eyes (if two of the first five trials were successful with the eye-patch). 

The conditions were recorded in the following order: (1) LINE-walking (startLine), (2) 

BEAM-walking (startBEAM), (3) start of learning process on the TIGHTROPE (TRfail) 

until (4) the end of learning process (TRsucc), (5) BEAM-walking (endBEAM), and (6) 

Line-walking (endLINE). To ensure consistent visual constraints across tasks for later 

comparisons, five trials with opened eyes, an eye-patch over the left eye and both eyes closed 

were recorded each time (start and end) for LINE and BEAM. As data from the first right 

stance phase was further analyzed, we aimed to minimize transient accelerations at the onset 

step (da Silva Costa et al., 2020; Oliveira et al., 2014; Shuman et al., 2017), by instructing 

participants to start each trial with their left leg. Only the stance phase was analyzed, to 

neglect highly variable movement times between stance and swing phases across conditions 

(Ghislieri et al., 2023; Hug, 2011). No additional constraints for pause time, step cadence, 



7 

 

step length, or hints for walking over the TIGHTROPE were given, to provide self-directed 

learning. 

 

Figure 1: Top image shows the upside-down gymnastics bench which was used for BEAM conditions. Bottom 

image shows the THIGHTROPE mounted on a rack between two platforms. 

Prior to the data collection, thirteen surface EMG sensors (eleven PicoEMG and two Mini 

Wave Infinity, Wave Plus wireless EMG system, Cometa, Milan, Italy) were placed on the 

trunk and right limb following the Seniam guidelines (Seniam.org) and recommendations 

from previous studies  (Huebner et al., 2015; Oshikawa et al., 2020; Vera-Garcia et al., 

2009): tibialis anterior (tib_abt), peroneus longus (per_long), soleus, gastrocnemius medialis 

(gast_med), vastus lateralis (vast_lat), rectus femoris (rect_fem), biceps femoris (bic_fem), 

semitendinosus (sem_tend), gluteus maximus (glut_max), rectus abdominis (rect_abd), 

extensor obliques (ext_obli), multifidus (multifid) and erector spinae iliocostalis (erec_spin). 

A baseline EMG signal of several seconds was collected (EMG_base) while participants lied 

in a supine and relaxed position on a massage table.  The standard Vicon Plug-in-Gait marker 

set (Vicon, Oxford, UK), including 21 reflective markers, were placed on the legs and the 

trunk of each participant (Kadaba et al., 1990). The heel and toe markers were placed on the 

shoes of participants, similar to Paterson et al. (2017). A 12-camera 3D motion capture 

system (Vicon, Oxford, UK) was used to record marker trajectories with a sampling rate of 

200 Hz, EMG data with 1000 Hz and ground reaction forces of one force plate with 1000 

Hz (Kistler Instrumente, Winterthur, Switzerland), simultaneously. In addition, participants 

wore in-shoe force sensor soles (loadsol®, Novel, Munich, Germany), which were used to 

determine stance phases. Insoles data was captured with 200 Hz (loadsol-s android 

application version 1.7.63) on a mobile phone (Huawei P30 Lite, Huawei, Shenzhen, China) 

and brought to zero level every 5 to 10 trials to minimize errors due to sensor drifts. Foot 

contact instances were determined by vertical contact forces over 30 Newton via custom 

scripts. Time synchronization between the Insole and Vicon data was achieved by 

participants stepping on a force plate at the beginning of each trial. The experimental data 
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was captured and processed using Vicon Nexus 2.12 software (Vicon, Oxford, UK). 

Subsequent analyses were conducted using Gnu Octave version 6.2.0 (Eaton et al., 2021) 

and MATLAB (R2022a, Mathworks Inc., Natick, USA). 

2.3 EMG processing 

Raw EMG signals were high-pass filtered at 25 Hz (4th-order Butterworth zero lag filter) to 

remove movement artefacts (Hug et al., 2012; Potvin & Brown, 2004; Shuman et al., 2017; 

van der Krogt et al., 2016), demeaned, full-wave rectified and low-pass filtered at 7 Hz (4th-

order Butterworth zero lag filter), similar to previous gait studies (Ballarini et al., 2021; 

Boccia et al., 2018; Kim et al., 2016; Rabbi et al., 2020; van den Hoorn et al., 2015). The 

low-pass cutoff frequency of 7 Hz was chosen as a compromise between the different 

movement times (Figure 8). After filtering, baseline noise was removed by subtracting the 

root-mean-square of the filtered EMG_base signal, to improve signal-to-noise ratio (Frey 

Law et al., 2010; Hiep Vu Nguyen et al., 2016; Roh et al., 2013; Turpin et al., 2021), and 

resulted negative values were set to zero. Based on a visual inspection of raw and filtered 

EMG envelopes, trials with artefacts were removed, resulting in four to five remaining trials 

per condition. Afterwards signals were time-normalized to 101 data points (100% of stance 

phase) and amplitude normalized to values between 0 and 1, where an amplitude of 1 was 

equal to the maximum activation amplitude of a muscle among all trials (Bianco et al., 2018; 

Clark et al., 2010; Ghislieri et al., 2023; Kim et al., 2016; Oliveira et al., 2014). 

2.4 Synergy extraction and determining the number of synergies 

For each participant, processed EMG signals of trials from all conditions were concatenated 

(Hagio et al., 2015; Hug et al., 2011) and muscle synergies were extracted according to the 

spatial/synchronous synergy model. According to this model, motor control of muscle 

activations (EMG signals), is described by a linear combination of a fixed spatial synergy 

vector and a time-varying activation coefficient (Ghislieri et al., 2023; Profeta & Turvey, 

2018; Turpin et al., 2021).  Non-negative-matrix-factorization (NNMF) has been shown to 

be the most appropriate method for extracting muscle synergies in walking (Rabbi et al., 

2020). Therefore, we used the “nmf_bpas” octave function (Kim & Park, 2008), an advanced 

algorithm of the classic NNMF (Lee & Seung, 2001; Paatero & Tapper, 1994; Seung & Lee, 

1999) to extract one to twelve (number of muscles -1) muscle synergies. Instead of random 

inputs, the NNMF was initialized with outputs of the nonnegative single-value-

decompensation with low-rank correction algorithm (Atif et al., 2019) to improve NNMF 
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(Atif et al., 2019; Boutsidis & Gallopoulos, 2008; Soomro et al., 2018; Turpin et al., 2021). 

Extracted synergy vectors were normalized to 1 based on their maximum values, and 

activation coefficients were multiplied by the same normalization values, to keep their 

product constant (Banks et al., 2017; Safavynia & Ting, 2012). More information regarding 

the synergy extracting procedure is provided in the supplementary material. 

The total variance accounted for (tVAF) was calculated for each number of extracted 

synergies (1 to 12). It quantifies the reconstruction accuracy after the factorization, and is 

defined as the uncentered Pearson’s correlation in percentage (Ballarini et al., 2021). To 

determine the number of synergies that represents motor control across all conditions (NoS), 

knee point analysis was employed (Ballarini et al., 2021; Ghislieri et al., 2023; Hug et al., 

2012; Tresch et al., 2006; Turpin et al., 2021). The knee-point (v) was defined as the point 

on the tVAF curve that exhibits the smallest angle among three adjacent points (v-1, v, v+1). 

This approach assumes that beyond the knee-point, only unstructured data or noise is 

explained by additional motor modules (Tresch et al., 2006). It was preferred over threshold-

based methods, as it has been shown to perform better (Ballarini et al., 2021) and is not 

affected by different low-pass filter cutoff frequencies (Hug et al., 2012). We further 

constrained our analysis by exclusively determining the knee-point for synergies with a 

tVAF exceeding 95%. This widely used threshold (Ballarini et al., 2021; Hagio et al., 2015; 

Hiep Vu Nguyen et al., 2016; Meyer et al., 2016; Rodriguez et al., 2013; Steele, Tresch, et 

al., 2015; van den Hoorn et al., 2015) was added based on visually observing sharp jumps in 

some tVAF curves, likely caused by the split of a synergy due to salient features (Ting & 

Chvatal, 2010). 

2.5 Assessment of trial-to-trial similarity 

The trial-to-trial similarity of synergy activation coefficients, EMG envelopes and joint 

angles were all quantified based on the same three parameters: the Pearson correlation 

coefficient (r), the maximum value of the normalized cross-correlation coefficient (rmax) and 

the lag time (lag% in % of the stance phase) where rmax occurred which represents the time 

shift between two curves. These parameters are widely used to quantify variabilities in 

synergy, EMG and kinematic waveforms (Banks et al., 2017; Barroso et al., 2014; Frère & 

Hug, 2012; Hug et al., 2011; Ivanenko et al., 2004; Ogihara et al., 2020; Turpin et al., 2017). 

We calculated them for every pairwise combination of trials in each condition within each 

synergy, muscle, and joint. The averaged value per condition represents the overall trial-to-

trial similarity for synergy activation coefficients, EMG envelopes and joint angles.  



10 

 

2.6 Synergy analyses 

We computed the tVAF using the EMG signals, synergy vectors and activation coefficients 

of each condition. Then, tVAF of one synergy (tVAF1) and tVAF at NoS (tVAFNoS) were 

compared across conditions to evaluate movement complexity (tVAF1) and the goodness of 

reconstruction (tVAFNoS). The distinctness of activation coefficients was determined by 

calculating the average value of all pairwise combinations of activation coefficients from 

different synergies within each trial for each condition. High values of r and rmax, along with 

small time-shifts (lag%), indicate a similarity in timing and a substantial amount of 

overlapping in synergy activations (Clark et al., 2010; Soomro et al., 2018). 

Additional to the overall trial-to-trial similarity of each condition, we aimed to reveal, if 

differences in the variability just occur in some synergies. To classify similar synergy vectors 

among participants, we used k-means clustering (kmeans function in Octave – see appendix) 

similar to recent synergy studies (Cheung, Zheng, et al., 2020; Kim et al., 2016, 2018; Scano 

et al., 2019; Sylos-Labini et al., 2022). We computed the k-means clustering solution for a 

range of two to twelve clusters and repeated the process 100 times. For each repetition and 

each number of clusters, we calculated the average silhouette value (Rousseeuw, 1987). The 

optimal number of clusters was then determined on the point at which the maximum 

silhouette values plateaued – indicating small within- and high between-cluster distances 

(Cheung, Zheng, et al., 2020) (Figure 4). Trial-to-trial similarity parameters (r, rmax, lag%) 

were calculated for synergies within the same cluster, for each condition. For instance, if a 

cluster consisted of eight synergy vectors, the trial-to-trial similarity of that cluster was 

determined by averaging the trial-to-trial similarity values of the eight synergies. To examine 

the task-specific relevance of individual synergies, tVAF by each synergy was computed for 

every trial. These tVAF values were then averaged across synergies within the same cluster. 

2.7 EMG analyses 

To quantify changes in the amount of muscle activity, the root-mean-square (RMS) of the 

preprocessed EMG signals of every trial was calculated and averaged across trials of the 

same condition, within each muscle. Additionally, to the overall trial-to-trial similarity 

(section 2.5), correlation values were also averaged for each muscle to evaluate, if variability 

in activation patterns only occurred in some muscles (results provided in appendix). 
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2.8 Kinematic analyses 

Joint angles were computed with OpenSim (Delp et al., 2007) using the recently introduced 

addBiomechanics.org application (Keenon et al., 2022). This application uses a bilevel 

optimization and enables to personalize musculoskeletal models and calculate joint angles 

in an easy and efficient way. We used the default option with the Rajagopal2015 model for 

human gait (Rajagopal et al., 2016). The computed joint angles were smoothened using a 6 

Hz low-pass filter (4th-order Butterworth zero lag filter) and time normalized to 101 

datapoints of the stance phases. The following joint angles of the right leg and trunk were 

examined: ankle plantar-/dorsiflexion, knee flexion/extension, hip flexion/extension, hip ab-

/adduction, hip internal/external rotation, lumbar flexion/extension, lumbar medial/lateral 

bending, and lumbar internal/external rotation. In addition to the overall trial-to-trial 

similarity (section 2.5), correlation values were also averaged for each joint separately, to 

evaluate, if variability in kinematics only occurred in some joints (results provided in 

appendix). 

2.9 Statistics 

We employed a two-way repeated measures ANOVA with TASK (LINE, BEAM, 

TIGHTROPE) and TIME as factors on all variables described above. The first time point 

(START) consisted of startLINE, startBEAM, and TRfail, while the second time point 

(END) included endLINE, endBEAM, and TRsucc. TASK was used to assess differences 

regarding task commonness – our second research question - including post hoc pairwise 

comparisons with Bonferroni correction. To address our first research question, i.e. changes 

during the learning process, – we calculated contrasts between TRfail and TRsucc. 

Furthermore, contrasts between startLINE and endLINE were examined as a baseline to 

assess the stability of the analyzed variable, as no differences were anticipated between the 

two LINE conditions. Additionally, contrasts between startBEAM and endBEAM were 

analyzed to explore potential transfer effects of learning from one balancing task 

(TIGHTROPE) to another (BEAM). Contrasts were conducted only if a significant 

difference was observed in any of the ANOVA outcomes (TASK, TIME, TASK*TIME). 

Prior, sphericity was checked with Mauchly-test (if necessary, Greenhouse-Geisser 

correction was applied), and normal distribution was verified with Shapiro Wilk-test. If the 

requirement of normal distribution was violated, an aligned-rank-transformation was 

performed. This transformation enabled us to conduct factorial ANOVA’s on nonparametric 
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data (Elkin et al., 2021; Higgins et al., 1990; Wobbrock et al., 2011) and was utilized with 

ARTool 2.1.2 software (Washington, USA). Statistical analyses were performed with JASP 

0.17.2 (Amsterdam, Netherlands). The alpha level was set at 0.05, and the results were 

reported at three levels of significance: p < 0.05, p < 0.01, and p < 0.001. 
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3 Results 

Participants required 2.6 ± 1.4 attempts (range: 1 to 5) to perform their first complete gait-

cycle with the right leg (TRfail) and 49.4 ± 22.8 attempts (range: 12 to 101) to complete the 

learning task (TRsucc). Two participants walked on the TIGHTROPE with visual constraints 

(1x eye-patch, 1x closed eyes). 

3.1 Muscle synergy analyses 

 

Figure 2: A: bars show the number of required synergies (NoS) for each participant (P1 – P10). B-C: the total 

variance accounted for one synergy (B: tVAF1) and NoS (C: tVAFNoS). D-F: Synergy activation coefficient 

distinctness measured by Pearson correlation (D: r), maximum cross-correlation coefficient (E: rmax) and lag 

at rmax (F: lag%). Violin plots: each colored circle represents one participant; thick lines represent mean 

values; white circles indicate median values; dark areas indicate quartiles. 

An average of 5.9 ± 1.1 NoS was determined among participants. For tVAF1 a significant 

effect of TASK (p < 0.001) was observed. Post hoc comparisons revealed that tVAF1 was 

higher in BEAM compared to LINE (p < 0.01) and TIGHTROPE was higher than both LINE 

and BEAM (p < 0.001). There were no significant differences in tVAFNoS. Regarding the 

distinctness of activation coefficients, the ANOVA revealed a significant effect of TASK 

for r (p < 0.05), where activation coefficients were more correlated to each other (p < 0.05) 

in TIGHTROPE compared to LINE and BEAM. There was no significant difference for rmax, 

but a significant effect of TASK (p < 0.001) and TIME (p < 0.05) in lag%. The lag% was 

higher in LINE than BEAM (p < 0.01) and TIGHTROPE had the lowest %lag (p < 0.001) 

(Figure 2). 
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Trial-to-trial similarity measured by r and rmax was affected by TASK (p < 0.001) and TIME 

(p < 0.01). r and rmax was the highest in LINE, followed by BEAM (rmax: p < 0.01; r < 0.001) 

and lowest in TIGHTROPE (both: p < 0.001). Contrasts showed an increase in similarity 

from startBEAM to endBEAM (both: p < 0.05) and TRfail to TRsucc (rmax: p < 0.05; r: p < 

0.001). There was no difference in lag% (Figure 3). 

 

Figure 3: Overall trial-to-trial similarity of synergy activation coefficients (C, top row), electromyography 

envelopes (EMG, middle row) and joint angles (bottom row), measured by Pearson correlation (r), maximum 

cross-correlation coefficient (rmax) and lag at rmax (lag%). Violin plots: each colored circle represents one 

participant; thick lines represent mean values; white circles indicate median values; dark areas indicate 

quartiles. 

Silhouette analyses yielded six clusters (Figure 4) which are indicated by # in the following 

paragraphs. Low tVAF values indicate low contribution of synergies to the condition. The 

tVAF of all clusters was significantly affected by TASK (#5: p < 0.05; #1, 3: p < 0.01; others: 

p < 0.001). In cluster 4, tVAF of BEAM was lower than LINE (p < 0.05) and the lowest in 

TIGHTROPE (p < 0.001). For the other clusters, tVAF of TIGHTROPE was higher than 

BEAM (#5, 6: p < 0.05; #2: p < 0.001) and LINE (#1, 3, 5: p < 0.01; #2, 6: p < 0.001). In 

BEAM it was higher than LINE (#2: p < 0.01). For cluster 2, ANOVA also revealed a 
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significant effect of TIME (p < 0.05), with lower tVAF in START compared to END, and 

the interaction TASK × TIME (p < 0.01). In cluster 6, contrasts showed a decrease of tVAF 

over time in BEAM (p < 0.05) (Figure 5). 

 

Figure 4: A: dashed lines show the average silhouette value for each clustering repetition (1 to 100). The 

arrow indicates the number of clusters, at which the maximum of averaged silhouette values among repetitions 

(solid line/circles) plateaued. B: sammon mapping (Sammon, 1969) of the six clusters. Marker-styles indicate 

different participants (P1 – P10), and marker-colors indicate different clusters. Numbers (1 to 6) indicate the 

position of the clusters’ centroids. 

Trial-to-trial similarity of cluster 1, 2, 4 and 5 was significantly affected by TASK in r and 

rmax  (rmax #5: p < 0.05; r #5: p < 0.01 others: p < 0.001), with higher LINE than TIGHTROPE 

for r (p < 0.001) and rmax (#5: p < 0.05; others: p < 0.001) and higher BEAM than 

TIGHTROPE for r (#5 p < 0.01; others: p < 0.001). rmax was higher in BEAM than 

TIGHTROPE in cluster 1 (p < 0.01), 2 and 4 (p < 0.001). Correlation was higher in LINE 

than BEAM in cluster 1, 2 (r and rmax: p < 0.05) and 4 (r: p < 0.01; rmax: p < 0.001). The lag% 

revealed a significant effect of TASK for cluster 1, 3, 4 and 5(#3: p < 0.05; #5: p < 0.05; #1, 

4: p < 0.001). LINE had lower lag% than BEAM (#1: p < 0.05) and TIGHTROPE (#5: p < 

0.01; #1, 4: p < 0.001). BEAM had lower lag% compared to TIGHTROPE (#1, 5: p < 0.01). 

Contrary, #3 had the lowest lag% in TIGHTROPE compared to the other two conditions (p 

< 0.05) (Figure 5, Figure 6). 
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Figure 5: A: muscle weightings of clustered synergies. Black borders are the cluster (Cl.) centroids, and 

colored bars (similar to Figure 4) represent the synergy vectors (syn.) that belong to this cluster. B-E: Violin 

plots represent the total variance accounted for (tVAF), pearson correlation coefficient (r), cross-correlation 

coefficient (rmax) and the lag-time (lag%) for each cluster. Violin plots: each colored circle represents one 

participant; thick lines represent mean values; white circles indicate median values; dark areas indicate 

quartiles. 

Significant effects of TIME were found for r in cluster 1 (p < 0.05), for rmax in cluster 4 and 

6 (p < 0.05) and for lag% in cluster 4 (p < 0.05) with lower correlations and higher lag% in 

START compared to END. A significant effect of TASK × TIME was only found for r in 

cluster 4 (p < 0.05). Contrasts revealed a significant increase of r or rmax from startLINE to 

endLINE in cluster 6 (rmax: p < 0.05), from startBEAM to endBEAM in cluster 2 (r: p < 

0.01) and from TRfail to TRsucc in cluster 1 (r: p < 0.05) (Figure 5, Figure 6). 
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Figure 6: All extracted synergy vectors (bar plots) and corresponding activation coefficients (waveform plots 

in the same column) for each condition of one participant (P8). Each waveform represents the activation 

coefficient of one trial. Bar colors indicate the cluster, which the motor module belongs to, and are the same 

as in Figure 4 and Figure 5. 
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3.2 EMG analysis 

Overall trial-to-trial similarity of EMG envelopes measured by r and rmax was significantly 

affected by TASK (p < 0.001), with LINE showing the highest correlation, followed by 

BEAM, and TIGHTROPE at last (r LINE vs BEAM: p < 0.01; others: p < 0.001). TIME 

influenced r (p < 0.01) and rmax (p < 0.05) and contrasts revealed lower r and rmax (p < 0.05) 

for startBEAM compared to endBEAM, and an increase in r (p < 0.01) between TRfail and 

TRsucc. The lag% was significantly affected by TASK (p < 0.01), with higher values in 

TIGHTROPE compared to LINE (p < 0.01). (Figure 3, Figure 7). 

The amount of muscle activation measured by RMS revealed a significant effect of TASK, 

in all muscles, apart from soleus (glut_max: p < 0.01; others: p < 0.001). RMS of gast_med 

was lower in TIGHTROPE than BEAM (p < 0.05) and LINE (p < 0.001). For the other 

muscles, RMS was higher in TIGHTROPE than BEAM (glut_max: p < 0.05; tib_ant, 

bic_fem: p < 0.01; others: p < 0.001) and LINE (p < 0.001). In four muscles BEAM was also 

higher than LINE (rect_fem, multifid: p < 0.05; per_long, erec_spin: p < 0.01).  There was 

a significant effect of TIME (rect_fem; bic_fem, glut_max: p < 0.05; tib_ant soleus, 

gast_med, sem_tend, erec_spin: p < 0.01; vast_lat, rec_abd, ext_obli: p < 0.001), and TASK 

× TIME (ext_obli: p < 0.05; tib_ant, vast_lat, sem_tend: p < 0.01; rec_abd, multifid, 

erec_spin: p < 0.001) on muscle activations. Contrasts revealed a higher muscle activation 

in startLINE than endLINE for two muscles (gast_med: p < 0.05, sem_tend: p < 0.01), 

startBEAM than endBEAM for four muscles (soleus, rect_fem, rec_abd: p < 0.05; tib_ant: 

p < 0.01), and TRfail than TRsucc for ten muscles (tib_ant, soleus, gast_med, erec_spin: p 

< 0.01; vast_lat, sem_tend, glut_max, rec_abd, ext_obli, multifid: p < 0.001) (Table 1). 
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Table 1: Muscle activations (root-mean-square) for all conditions and muscles. M and SD represent the mean 

and standard deviation values across all participants. ANOVA revealed significant effects of TASK in all 

muscles apart from soleus. Significant differences observed by contrasts are indicated by *. 

 LINE BEAM TIGHTROPE 
 start end start end fail succ 

  M SD M SD M SD M SD M SD M SD 

tib_ant 0.13 0.07 0.14 0.07 0.22* 0.09 0.16* 0.07 0.33* 0.07 0.27* 0.08 

per_long 0.19 0.05 0.17 0.05 0.24 0.04 0.23 0.04 0.37 0.06 0.35 0.07 

soleus 0.26 0.07 0.23 0.07 0.27* 0.06 0.24* 0.04 0.31* 0.10 0.25* 0.08 

gast_med 0.32* 0.06 0.29* 0.06 0.29 0.05 0.27 0.05 0.24* 0.08 0.20* 0.06 

vast_lat 0.14 0.09 0.12 0.07 0.17 0.10 0.15 0.08 0.32* 0.07 0.24* 0.08 

rect_fem 0.05 0.03 0.04 0.02 0.07* 0.04 0.06* 0.02 0.21 0.09 0.17 0.08 

bic_fem 0.09 0.05 0.08 0.07 0.11 0.07 0.11 0.08 0.25 0.08 0.20 0.09 

sem_tend 0.17* 0.09 0.13* 0.08 0.17 0.08 0.16 0.09 0.29* 0.08 0.20* 0.08 

glut_max 0.12 0.05 0.11 0.04 0.15 0.06 0.15 0.05 0.22* 0.09 0.18* 0.08 

rec_abd 0.03 0.03 0.02 0.03 0.05* 0.05 0.04* 0.03 0.17* 0.08 0.10* 0.08 

ext_obli 0.05 0.03 0.04 0.02 0.09 0.06 0.07 0.03 0.23* 0.07 0.17* 0.07 

multifid 0.12 0.04 0.14 0.06 0.17 0.04 0.16 0.07 0.28* 0.04 0.21* 0.06 

erec_spin 0.05 0.02 0.05 0.03 0.10 0.04 0.08 0.05 0.29* 0.03 0.20* 0.05 

 

3.3 Kinematic analysis 

Overall trial-to-trial similarity of joint angles, quantified by r, rmax and lag%, was 

significantly affected by TASK (p < 0.001). LINE exhibited the highest correlations and 

lowest lag%, followed by BEAM, and TIGHTROPE (rmax LINE vs BEAM: p < 0.01; lag% 

LINE vs BEAM: p < 0.05; others: p < 0.001). There was a significant effect of TIME on r 

(p < 0.05), with lower r in START compared to END, and a significant interaction effect of 

TASK × TIME (p < 0.05). For rmax, TIME had a significant effect (p < 0.01), with an increase 

observed between START and END. All contrasts were significant (p < 0.05). Likewise, 

lag% was significantly influenced by TIME (p < 0.01). Contrasts revealed higher lag% in 

startLINE and TRfail compared to endLINE and TRsucc, respectively (p < 0.05) (Figure 3, 

Figure 7). 
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Figure 7: Muscle activation (example of two muscles) and joint angle waveforms (example of two joint angles) 

from one participant (P8). Each waveform represents one trial per condition. vast lat = vastus lateralis; glut 

max = gluteus maximus; flex = flexion; ext = extension. 
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4 Discussion 

The aim of the study was to increase our insights in motor learning using synergy analysis 

by employing a within-participant, within-session study design. We observed higher 

distinctness and trial-to-trial similarity of activation coefficients with increasing movement 

proficiency. Furthermore, the analyses revealed that the contribution of specific synergies 

varies across tasks, and muscle activity decrease throughout the learning process. 

Over half a century ago Bernstein (1967) proposed, that people restrict the number of degrees 

of freedom to simplify coordination in early learning stages. Steele et al. (2015) found higher 

overlapping of synergy activation coefficients with the occurrence of biomechanical and task 

constraints. The current study showed higher tVAF1 and overlapping of synergy recruitment 

– both indicating higher coactivation of synergy vectors – in movements with lower 

proficiency. Taken these findings together, we suggest that freezing the number of degrees 

of freedom in early learning is a result of coactivating synergy vectors. In consequence, high 

tVAF values might be caused by overlapping synergy activations and not necessarily mean 

a simpler motor control due to a decreased number of synergies. This theory is supported by 

previous studies on impaired and unimpaired populations. Clark et al. (2010) found similar 

synergy vectors in locomotion for stroke survivors and unimpaired individuals, if the same 

number of synergies were extracted, rather than the number determined by a tVAF threshold. 

The authors concluded that not the spatially synergy vectors differ, but they were 

computationally merged through the factorization algorithm due to their overlapping 

recruitment profiles. Similarly, merging of synergy vectors was found in locomotion of 

individuals post-stroke (Mizuta et al., 2022) and with Parkinson’s disease (Ghislieri et al., 

2023), and in reaching tasks after cortical lesions (Cheung et al., 2012). A higher amount of 

shared synergies between overground walking and balancing tasks was found in expert 

dancers compared to individuals with no dancing experience (Allen et al., 2020; Sawers et 

al., 2015), in post-stroke survivors compared to unimpaired individuals (Allen et al., 2019), 

and after a dance-based rehabilitation in individuals with Parkinson’s disease (Allen et al., 

2017). Two of these studies (Allen et al., 2017; Sawers et al., 2015) also found lower 

distinctness of synergy vectors in groups with fewer shared synergies. The lower distinctness 

of computed vectors may be a result of higher overlapping of activation coefficients, which 

can compromise the accuracy of extracted synergy vectors. This phenomenon has been 

observed in previous studies on real and simulated datasets (Soomro et al., 2018; Steele, 

Tresch, et al., 2015; Tresch et al., 2006), where increased temporal overlap of activation 
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coefficients led to merging of synergies due to the underlying assumptions of factorization 

algorithms. Consequently, these inaccurately extracted synergy vectors could explain the 

lower number of shared synergies. In the current study we also found a low number of shared 

synergies when computing them separately for each condition, but similar synergies when 

computing them over all conditions (see appendix). This suggests that with proficiency 

overlapping of activation coefficients reduced, rather than the number of shared synergies 

changed. This concept should be addressed in further studies. 

An important feature of motor learning is motion fusion, also called coarticulation, which 

describes the combination of individual movement primitives into a smooth action. More 

precisely, the velocity peaks of two movements gradually disappear during learning. 

Typically, motion fusion is assessed by examining velocity peaks in hand trajectories during 

tasks that involve precise movements, such as following a specific curvature on a monitor. 

(Flash & Hochner, 2005; Friedman & Korman, 2019; Sosnik et al., 2004; Sporn et al., 2022). 

At first glance, our findings of higher activation distinctness with proficiency may seem to 

contradict the concept of motion fusion. However, further analysis (results not presented) 

revealed that the timing of velocity peaks in knee and ankle flexion/extension became more 

synchronized with higher proficiency. This suggests that improved coordination of synergy 

activation timing leads to motion fusion and ultimately results in smoother movements. Even 

thought we did not find significant changes in tVAF1 and distinctness between TRfail and 

TRsucc, these factors might change during learning and were potentially not significantly 

affected in the current study due to still quite low movement proficiency (4 out of 5 

successful attempts) after learning. 

Analysis on muscle activations revealed that all muscles apart of the gastrocnemius medialis 

were more activated in TIGHTROPE compared to LINE and BEAM. Moreover, the amount 

of activation was higher in TRfail than TRsucc for most muscles (Table 1). A decrease in 

muscle activity during learning has previously been observed (Donath et al., 2013; Donath 

et al., 2016). Keller et al. (2012) found reduced H-reflexes after a slackline training, which 

could explain less muscle activity with higher proficiency, due to less coactivation of agonist 

and antagonist muscles among a joint. In addition to this feedback-theory, we introduce a 

feedforward-approach. Our assumption is that synergies that are relevant for specific 

subtasks at a given time need to dominate over other synergies that may be activated at 

similar timings but are irrelevant to those subtasks. As proficiency increases and there is 
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higher distinctness among activation coefficients, synergies for the relevant subtasks can be 

less activated. 

The current study revealed a decrease of trial-to-trial variability during learning, and with 

higher proficiency (Figure 3). These findings strengthen previous studies on trial-to-trial 

variability as outlined in the introduction (Cardis et al., 2018; Cheung, Zheng, et al., 2020; 

Dhawale et al., 2017; Levy-Tzedek, 2017; Sawers et al., 2015; Sylos-Labini et al., 2022; Wu 

et al., 2014). Regarding the overall trial-to-trial similarity of synergy vectors, we found a 

transfer effect of a balancing training on the TIGHTROPE to the BEAM. However, there 

were no differences between startLINE and endLINE suggesting that differences did not 

occur due to movement-artefacts or sensor-noise. Through cluster analysis we were able to 

detect whether changes in variability happen in all synergy vectors and interestingly, cluster 

6 did not reveal any changes in variability due to proficiency or learning. Surprisingly, in 

cluster 3, lag% was lowest in TIGHTROPE. An explanation could be, that in order to 

perform a step, regardless of the task and proficiency, activation patterns of these synergy 

vectors have to be quite specific and do not allow much trial-to-trial variability. On basis of 

our analyses, we can only speculate about this feature. The other clusters showed that trial-

to-trial similarity increases with movement proficiency. While we observed an increase of 

trial-to-trial similarity from startBEAM to endBEAM and from TRfail to TRsucc in certain 

clusters, other clusters showed no changes throughout the learning process. This suggests 

that early learning is driven by an increase in the consistency of certain synergies, while 

other synergies increase their consistency during a later learning stage, i.e.: with higher 

proficiency levels. A noteworthy finding from the cluster analysis was that high trial-to-trial 

variability did not necessarily correspond to the contributions of synergies to the task. While 

most synergies contributed more in TIGHTROPE, cluster 4 - primarily formed by shank 

muscles - actually contributed more in LINE. Interestingly, despite its higher contribution in 

LINE, cluster 4 also exhibited the highest trial-to-trial variability in TIGHTROPE (Figure 

5). 

For a more comprehensive understanding of changes in trial-to-trial variability, we also 

examined variability of EMG envelopes and joint angles (Figure 3). Overall EMG and joint 

angle variability were similar to overall synergy variability regarding task proficiency. 

Surprisingly, overall trial-to-trial similarity of kinematic data was not only higher with 

proficiency and after learning, but also in endLINE compared to startLINE. Therefore, we 

hypothesize that synergies reflect motor planning through the central nervous system, while 
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kinematics are more affected by peripherical noise in the movement execution (Dhawale et 

al., 2017; Faisal et al., 2008). 

Stance phases duration differed between tasks and between TRsucc and TRfail. Namely, 

stance phases were shorter in TRsucc than TRfail (appendix). This explains the smoother 

synergy activation patterns in LINE and BEAM compared to TIGHTROPE (Hug, 2011) 

(Figure 6). One could assume higher trial-to-trail variability in TIGHTROPE as a result of 

less smoothed activation coefficients, but this would not explain variability differences 

between LINE and BEAM, as stance duration was not different between these two tasks. To 

further evaluate if our findings were affected by the different task durations, we modified 

the low-pass cutoff frequency for each trial, based on its duration and repeated our main 

analyses on synergies. Detailed information and results for the additional analyses are 

provided in the appendix. Briefly, these analyses showed similar results according to trial-

to-trial similarity and distinctness between the tasks. However, when comparing TRfail to 

TRsucc, not only trial-to-trial similarity, but also distinctness of activation coefficients 

revealed an increase. In summary, we drew the same conclusions based on the additional 

and the main analyses. Namely, fine tuning of synergy recruitment, i.e. increasing trial-to-

trial similarity and activation distinctness, is important for motor learning. We hypothesize 

that after a more completed learning process (i.e. all attempts of TIGHTROPE walking are 

successful) both will increase even more and precede similar levels like BEAM and LINE. 

In the field of motor learning and development three theories are widely discussed (Sylos-

Labini et al., 2022). The strict nativist view proposes that locomotor modules remain 

robustly conserved into adulthood, supported by the spatial synergy model (Ghislieri et al., 

2023; Turpin et al., 2021) and studies observing basic stepping patterns in newborns 

(Ivanenko et al., 2013).  The learning hypothesis suggests that unstructured movement 

patterns are transformed into structured solutions during development through the 

interaction between the body and the environment, evidenced by studies showing high trial-

to-trial variability in early learning (Cardis et al., 2018; Cheung, Zheng, et al., 2020; Dhawale 

et al., 2017; Levy-Tzedek, 2017; Sawers et al., 2015; Sylos-Labini et al., 2022; Wu et al., 

2014). A combined approach posits the existence of conserved movement patterns enriched 

with new patterns to represent a wider range of tasks. This concept has been recently 

supported by muscle synergy analysis in locomotion development (Sylos-Labini et al., 

2022). In line with this, Cheung et al. (2020) observed both, consistent and variable synergies 

during running development. Here, we found similar synergy vectors across tasks. In a 
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subsequently analysis we confirmed this finding, by extracting synergy vectors separately 

for each condition. Briefly we found that similar motor control was utilized for all tasks. A 

more detailed discussion of this analysis is provided in the appendix. Beside similar synergy 

vectors, we observed higher variability in their activations in low proficiency levels. 

Furthermore, certain synergy vectors showed minimal contribution to LINE and BEAM 

tasks but were important for TIGHTROPE, indicating an enrichment of the motor control 

repertoire. These findings provide support for the combined nativist and learning theory. 

Our study included two notable limitations. Firstly, due to the intra-session design, we 

captured a limited number of gait cycles per condition. Oliveira et al. (2014) suggested to 

extract muscle synergies over a minimum of 20 concatenated steps to account for trial-to-

trial variability in movement execution. To address this, we performed our main analysis on 

concatenated data of all conditions, providing a larger sample size of 24 to 30 stance phases 

per participant. Secondly, we considered the learning process to be complete when 

participants successfully walked across the entire tightrope in four out of five consecutive 

attempts, which may not reflect a high level of proficiency. Nonetheless, despite this 

limitation, we observed significant changes from TRfail to TRsucc in most analyzed 

parameters. 

In summary, our study aimed to investigate motor learning using synergy analysis through 

a within-session, within-participant study design. We found that increasing movement 

proficiency led to higher distinctness and trial-to-trial similarity of synergy activation 

coefficients. Our findings suggest that freezing the number of degrees of freedom in early 

learning is a result of higher temporal overlap of synergy recruitment. Furthermore, our 

results support the notion that variability during the learning process increases the likelihood 

of finding the optimal motor command. We conclude that finetuning of synergy recruitment 

is crucial for motor learning.  
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Appendix 

Synergy extraction – spatial synergy model 

As mentioned in the main section, the spatial synergy model describes EMG signals as a 

linear combination of fixed synergy vectors and time dependent activation coefficients 

(Ghislieri et al., 2023; Profeta & Turvey, 2018; Turpin et al., 2021). The mathematical 

concept behind this, is presented in equation (1), where E is the EMG matrix, C the activation 

coefficient, W the synergy vector and e the residual error. Subscript mus indicates the 

number of muscles (here 13) and tps the number of timepoints (here the number of all trials 

per participant multiplied with 101).  Note that k represents the number of extracted 

synergies and ranges from 1 to 12 (mus -1) in the current study, while g represents the 

synergy number (1 to k). The NNMF algorithm (Lee & Seung, 2001; Paatero & Tapper, 

1994; Seung & Lee, 1999) aims to obtain the smallest possible residual error in this equation 

by updating C and W over numerous iterations. 

(1)      𝐸𝑚𝑢𝑠 ×𝑡𝑝𝑠 =  ∑ 𝐶(𝑔)𝑘×𝑡𝑝𝑠 𝑊(𝑔)𝑚𝑢𝑠×𝑘 + 𝑒

𝑘

𝑔=1

 

We used an advanced non-negative-matrix-factorization (NNMF) algorithm introduced by 

Kim & Park (Kim et al., 2016) based on the block principal pivoting method for the non-

negativity constrained least squares problem. In this method, convergence is reached as a 

stop criterium, in contrast to the classic NNMF method which could get stuck in local 

minima. Hence, we used the “nmf_bpas” octave function where 50 to 5000 iterations were 

allowed, to reach a convergence criterium of 10-5 for f in equation (2). Both, α and β are the 

mean of E (but one could give each an individual initial guess instead), and the subscript F 

indicates the Frobenius norm. 

(2)      𝑓(𝑊, 𝐶) =   
1

2
(‖𝐸 − 𝑊𝐶‖𝐹

2 + 𝛼 ‖𝑊‖𝐹
2 + 𝛽‖𝐶‖𝐹

2  

It has been shown, that the number of needed iterations at which a NNMF algorithm 

converges and its final solution is strongly affected by the initialization (= first guess) of W 

and C, that are - if not specified - random inputs (Atif et al., 2019; Boutsidis & Gallopoulos, 

2008; Zheng et al., 2007). Recently, initialization methods like single-value-decompensation 

(SVD), principal-component-analysis, or spatial distributions gained some attention in 

muscle synergy analyzes due to their positive effects of hastening the NNMF algorithm and 
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performing better when activation coefficients of the different synergies are more correlated 

(Soomro et al., 2018; Turpin et al., 2021). Therefore, we here used the NNSVDLRC 

(nonnegative single-value-decompensation with low-rank correction) function introduced 

by Atif et al. (2019) with default inputs (stop criterion: 0.05; maximum number of iterations: 

20) to obtain better initial guesses for W and C. This algorithm was designed for an improved 

performance on low ranks (k) which are important in muscle synergy analysis. 

k-means clustering 

As mentioned in the main section, we used octave’s in-built “kmeans” function to cluster 

similar synergies among participants. The following properties were applied: squared 

Euclidean distance; k-means++ initialization algorithm; maximum iteration number of 10100 

to reach a change of any centroid less than 0.0001; 5000 replicates. 

Task duration 

Methods  

Previous studies found shorter gait-cycle durations after locomotor development (Ivanenko 

et al., 2013; Sylos-Labini et al., 2022; Yang & Gorassini, 2006). To evaluate if stance-phase 

durations were shorter with higher proficiency and after a learning process, durations of all 

trials within one condition were averaged and compared across conditions with a 2-way 

ANOVA (see main section statistics). 

 

Figure 8: Stance phase duration (in seconds [s]) of each condition. Violin plots: each colored circle represents 

one participant; thick lines represent mean values; white circles indicate median values; dark areas indicate 

quartiles. 

Results 

A significant effect of TASK (p < 0.001), TIME (p < 0.05) and the interaction TASK × 

TIME (p < 0.05) was found on the duration of stance phases. TIGHTROPE had longer stance 
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phases (p < 0.001) than LINE and BEAM, with no difference between the latter two. 

Contrasts showed significantly shorter stance phases in TRsucc than TRfail (p < 0.05) 

(Figure 8). 

EMG – trial specific low pass cutoff frequency 

Methods 

Reviews by Hug et al. (2011) and Turpin et al. (2021) call for greater awareness of the choice 

of cutoff frequencies for low-pass filters, prior to synergy extraction. Simply put, a lower 

cutoff frequency leads to a smoother EMG envelope. This ‘wider’ activation profile contains 

less variation and probably more overlap between different muscle profiles, which naturally 

affects synergy results. Several studies have investigated the effect of different low-pass 

filters on extracted motor modules. For instance, lower cutoff frequencies led to a higher 

total variance accounted for (tVAF) at a given number of synergies, which consequently also 

affected the choice of the required synergy number (NoS) for a movement (Hug, 2011; Hug 

et al., 2012; Kieliba et al., 2018; Shuman et al., 2017; van der Krogt et al., 2016). However, 

Hug et al. (2012) showed, that NoS was not affected by different cutoff frequencies, when 

the knee-point method was applied (as also used in the current study) in contrast to fixed 

thresholds (e.g. tVAF ≥ 90%). Moreover, low-pass filters also altered synergy vectors W 

and activation coefficients C extracted via NNMF (Kieliba et al., 2018; Shuman et al., 2017). 

This is not only a problem when various studies are compared, but also matters when 

movements with different duration times are investigated within the same study (Hug, 2011). 

To address this issue recent studies tried to gain similar smoothed electromyography (EMG) 

profiles by determining the low-pass cutoff frequency in relation to movement duration, e.g. 

5 – 12 Hz for 60 – 140% of an optimal pedaling rate according to pedaling rates (Hug et al., 

2011), 9 Hz for walking and 12 Hz for pedaling based on a machine learning pattern 

recognition algorithm (Hug et al., 2019), or by dividing a fixed cutoff frequency by the trial 

specific duration, i.e. 3.5 Hz/duration for treadmill walking (Meyer et al., 2016) and 7 

Hz/duration for overground walking of post-stroke patients (Banks et al., 2017). For the 

current study, we used the same procedure as Banks et al. (2017) and determined a trial 

specific cutoff frequency for the low-pass filter - 7 Hz/trial-duration. All other EMG 

processing and synergy extraction steps were done the same way as our main analysis (main 

section). We aimed to determine whether the different durations would alter our main 

synergy results in terms of complexity, distinctness, and trial-to-trial variability. Figure 9 

shows, how different cutoff frequencies affect EMG smoothing. 
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Figure 9: Example of the influence of different cutoff frequencies on EMG smoothing of four muscles (one trial 

per condition, of one participant). The solid lines represent the fixed low-pass cutoff frequency (7 Hz), and the 

dashed lines represent the duration-dependent cutoff frequency (7 Hz/trial duration). The duration of the trials 

is shown on the y axis and given in seconds [s]. 

Results 

An average of 5.6 ± 2.22 NoS was determined among participants. For tVAF1 a significant 

effect of TASK (p < 0.001) was observed, with highest tVAF1 in TIGHTROPE, followed 

by BEAM and LINE at last (p < 0.001). There was also a significant effect of TASK in 

tVAFNoS (p < 0.05) which was higher in TIGHTROPE compared to LINE (p < 0.05). 

Regarding the distinctness of activation coefficients, the ANOVA revealed a significant 

effect of TASK for r (p < 0.02), rmax and %lag (p < 0.001). Activation coefficients were more 

correlated to each other (r: p < 0.01; rmax: p < 0.001) in TIGHTROPE compared to LINE and 
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BEAM. The lag% was higher in LINE than BEAM (p < 0.05) and lowest in TIGHTROPE 

(p < 0.001). Additionally, rmax was significantly affected by the interaction TASK × TIME 

(p < 0.05), where contrasts revealed a decrease during learning on the TIGHTROPE (p < 

0.05) ( Figure 10). 

Regarding trial-to-trial similarity, there was a significant effect of TASK (p < 0.001) on r, 

with highest correlations in LINE, followed by BEAM (p < 0.01) and TIGHTROPE at last 

(p < 0.001). Correlation was also significantly affected by TIME (p < 0.05), where contrasts 

revealed an increase during learning on the TIGHTROPE (p < 0.05). There were no 

significant differences in cross-correlations rmax and %lag ( Figure 10, Figure 11). 

 

Figure 10: Synergies were extracted of EMG signals filtered with the duration-dependent cutoff frequencies. 

A: bars show the number of required synergies (NoS) for each participant (P1 – P10). B-C: the total variance 

accounted for one synergy (B: tVAF1) and NoS (C: tVAFNoS). D-F: Synergy activation coefficient distinctness 

and G-I: trial-to-trial similarity measured by Pearson correlation (D, G: r), maximum cross-correlation 

coefficient (E, H: rmax) and lag at rmax (F, I: lag%). Violin plots: each colored circle represents one participant; 

thick lines represent mean values; white circles indicate median values; dark areas indicate quartiles. 
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Figure 11: All extracted synergy vectors (bar plots) and corresponding activation coefficients (waveform plots 

in the same column) for each condition of one participant (P3). Each waveform represents the activation 

coefficient of one trial. 

Muscle synergy extraction from each condition independently 

Methods 

To investigate whether similar motor modules were utilized across different walking 

conditions, we performed individual synergy extraction for each condition using the 

procedures described in the main paper. For this purpose, we concatenated the EMG matrices 

within each condition, and employed NNSVDLRC and NNMF. We performed two widely 

used analyses on this data. In the first step of our analysis, we compared synergy vectors 

across all possible pairs among conditions using the Pearson correlation coefficient (r). A 
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pair of synergy vectors was considered as similar (= shared), if r > 0.684, which corresponds 

to the critical value of r for 13 muscles at p = 0.01 (Allen et al., 2020; Allen et al., 2019; 

Allen et al., 2017; Chvatal et al., 2011; Frère & Hug, 2012; Safavynia & Ting, 2012; Zhao 

et al., 2021). To account for variations in the number of synergies (NoS) across conditions 

and participants, we visualized the number of shared synergies (nshared) as percentage. The 

percentage of shared synergies (%nshared) was calculated using equation (3), where subscripts 

condition1 and condition2 indicate the two compared conditions (e.g., startLINE and 

endLINE).  

(3)     %𝑛𝑠ℎ𝑎𝑟𝑒𝑑 = 100 
𝑛𝑠ℎ𝑎𝑟𝑒𝑑

𝑚𝑖𝑛 (𝑁𝑜𝑆𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1, 𝑁𝑜𝑆𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛2)
  

In the second step, we reconstructed synergy activation coefficients for all conditions using 

the synergy vectors (W) from either startLINE or startBEAM. We employed a commonly 

used reconstruction algorithm (Boccia et al., 2018; Frère & Hug, 2012; Gizzi et al., 2011; 

Hug et al., 2011; Kristiansen et al., 2016; Muceli et al., 2010; van den Hoorn et al., 2015) 

based on the updating rule for NNMF proposed by Lee and Seung (2001), as described in 

equations (4). W from one condition was held fixed (suffix: fix) to reconstruct C (suffix: 

rec), with the corresponding EMG matrix (E) from another condition. After an initial random 

guess for the reconstruction matrix, numerous iterations (n, here ranging from 50 to 5000) 

were made until the function f(W,C) reached a convergence criterion (10-5) described in 

equation (5). Subscripts i and j indicate the row and column, while superscript T indicates 

the transposed matrix. Crec was used to calculate the reconstructed tVAF (tVAFrec), 

together with E and Wfix. Consistent with previous studies (Boccia et al., 2018; Heales et 

al., 2016; Oliveira et al., 2016), synergy vectors were assumed to be similar across conditions 

if the tVAFrec exceeded 80%. 

(4)     𝐶𝑟𝑒𝑐𝑖𝑗
(𝑛)

= 𝐶𝑟𝑒𝑐𝑖𝑗
(𝑛−1)

(
(𝑊𝑓𝑖𝑥𝑇 𝐸)𝑖𝑗

 (𝑊𝑓𝑖𝑥𝑇 𝑊𝑓𝑖𝑥 𝐶𝑟𝑒𝑐(𝑛−1))𝑖𝑗
) ; 

(5)     𝑓(𝑊𝑓𝑖𝑥, 𝐶𝑟𝑒𝑐) =
‖𝐸 − 𝑊𝑓𝑖𝑥 𝐶𝑟𝑒𝑐‖𝐹

√𝑚 𝑛
 

Results 

Figure 12 shows the high amount of shared synergy vectors across the LINE and BEAM 

tasks for all participants. A high range, and on average a smaller %nshared was found between 

LINE or BEAM conditions with TIGHTROPE conditions across participants. 

Reconstruction procedures revealed, that tVAFrec was > 80% in all participants, for all LINE 
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and BEAM conditions. In contrast, only six participants exceeded the threshold in 

TIGHTROPE conditions, if activation coefficients were reconstructed by synergy vectors of 

startLINE. If activation coefficients were reconstructed by startBEAM, tVAFrec of one 

participant was under our criterium for TRfail and two participants for TRsucc (Figure 12). 

 

Figure 12: A: The percentage of shared synergy vectors (n%shared) for all possible pairs of condition 

comparisons. B-C: the tVAF of reconstructed activation coefficients (tVAFrec) of the synergy vectors of either 

startLINE (B) or startBEAM (C) for all participants (P) and conditions. Violin plots: each grey circle 

represents one participant; thick lines represent mean values; white circles indicate median values; dark areas 

indicate quartiles. 

Discussion 

Here we want to deeper discuss our approach on extracting synergies over different 

conditions. Similar tVAFNoS values (main section) indicate, that extracted synergies reflect 

EMG variability equally among conditions. However, computing muscle synergies over 

different conditions has previously been done only in few studies (Chvatal & Ting, 2013; 

Hagio et al., 2015; Hug et al., 2011; Roh et al., 2012; Safavynia & Ting, 2012). We here 

utilized this approach due to the following four considerations: (1) similar movement goals 

are controlled via similar muscle synergies, (2) the small number of trials within each 

condition, (3) computing trial-to-trial similarity among similar synergy vectors, and (4) the 

computational problem of extracting accurate synergies, if activation coefficients timing 

overlaps. 
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(1) As outlined in the introduction, an important feature of motor control is the recruitment 

of similar synergy vectors for similar mechanical goals across various tasks (Allen et al., 

2020; Barroso et al., 2014; Chvatal et al., 2011; Hug et al., 2011; Nazifi et al., 2017; Oliveira 

et al., 2016). In the current study, the same movement goal – performing a step – was 

intended in all conditions. Therefore, we hypothesized that similar synergy vectors were 

used. In an additional analysis, synergies were extracted from each condition independently 

(Chvatal & Ting, 2013; Hagio et al., 2015; Hug et al., 2011) to verify this assumption. In a 

first step, we analyzed the percentage of shared synergy vectors (r > 0.684 (Allen et al., 2020; 

Allen et al., 2019; Allen et al., 2017; Chvatal et al., 2011; Frère & Hug, 2012; Safavynia & 

Ting, 2012; Zhao et al., 2021)). While a high percentage of vectors was shared among LINE 

and BEAM conditions, less synergies were shared if LINE and BEAM conditions were 

compared to TRfail or TRsucc (Figure 12). In a second step, we reconstructed the activation 

coefficients of all conditions with synergy vectors of startLINE or startBEAM. We found 

sufficient reconstruction performance (tVAF > 80% (Boccia et al., 2018; Heales et al., 2016; 

Oliveira et al., 2016)) for all LINE and BEAM conditions (Figure 12). When reconstructing 

TIGHTROPE conditions from startLINE, 6 participants achieved a tVAF above 80%, while 

for startBEAM, it was achieved by 9 participants in TRfail and 8 participants in TRsucc. 

Turpin et al. (2017) found that some synergies were barely activated in cycling with low 

exercise intensity, which could lead to poor performances of factorization methods in 

detecting them (Tresch et al., 2006; Turpin et al., 2021). Similarly, in our study, we observed 

differences in the contribution of synergy vectors across conditions (Figure 5). Cluster 2, 

primarily composed of trunk muscles, had a tVAF below 10% for LINE and BEAM 

conditions but exceeded the threshold for TIGHTROPE. This may explain the relatively 

lower reconstruction accuracy of TIGHTROPE compared to LINE and BEAM conditions 

since these synergies were probably not captured by extracting synergies separately. 

Furthermore, cluster 1, predominantly composed of quadriceps and gluteus muscles, 

exhibited a tVAF below 10% in most LINE synergies but only in some BEAM synergies, 

which could explain higher reconstruction accuracies of TIGHTROPE when using 

startBEAM rather than startLINE. The reconstruction results, combined with cluster 

analyses, indicate that there is a presence of similar synergy vectors across tasks, but 

additional synergies are either added or more activated during balancing tasks. The low 

percentage of shared synergies in some participants may be due to the difficulty of accurately 

extracting synergy vectors when their activation timing overlaps (see below). 
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(2) Several studies proposed the importance of variability in EMG data by concatenated trials 

for synergy computation (Oliveira et al., 2014; Ranganathan & Krishnan, 2012; Steele, 

Tresch, et al., 2015; Turpin et al., 2021). Oliveira et al. (2014) suggested to compute muscle 

synergies over a minimum of 20 concatenated gait-cycles. Due to the within-session design 

of the current study, each condition only included four to five stance-phases. Concatenating 

data of all conditions resulted in a total of 24 to 30 stance phases per participants. 

(3) To ensure that the variability of activation coefficients could be meaningful quantified, 

the same synergy vectors were used across conditions. This is in line with Cheung et al. 

(2020) who first clustered synergy vectors among bowling sessions and reconstructed EMG 

matrices of each session with the cluster centroids. 

(4) Increasing the time overlap (= correlation) of synergy activation coefficients in simulated 

or real datasets, decreases the accuracy of extracted synergy vectors. Namely, with sufficient 

coupling, synergy vectors merged, due to underlying assumptions of factorization algorithms 

(Soomro et al., 2018; Steele, Tresch, et al., 2015; Tresch et al., 2006). In our opinion, the 

distinctness and timing of activation coefficients might reflect an essential feature for 

movement proficiency and learning. Calculating muscle synergies over all conditions may 

overcome limitations of extracting algorithms. 

With this additional analysis we showed that similar synergies were utilized through the 

tasks. Moreover, we hypothesize that calculating synergies over different tasks with similar 

movement goals (i.e.: performing a step), provides salient information in synergy analysis. 
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Results of individual muscles and joints 

Muscle activations individual 

Trial-to-trial similarity in muscle activation patterns measured by Pearson correlation 

coefficient (r) was significantly affected by TASK in all muscles apart from rec_abd and 

ext_obli (tib_ant, per_long: p < 0.05; rect_fem: p < 0.01; others: p < 0.001). Trial-to-trial 

similarity was smaller for TIGHTROPE than BEAM in eight muscles (vast_lat: p < 0.05; 

soleus, gast_med, bic_fem, sem_tend, glut_max, multifid, erec_spin: p < 0.001), and smaller 

for TIGHTROPE compared with LINE in all muscles (tib_ant, per_long: p < 0.05; rect_fem: 

p < 0.01; others: p < 0.001). Trial-to-trial similarity was smaller for BEAM compared to 

LINE in five muscles (soleus, rect_fem: p < 0.05; multifid: p < 0.01; gast_med, erec_spin: p 

< 0.001). Additionally, similarity was significantly affected by TIME (per_long, gast_med, 

glut_max: p < 0.05), and TASK × TIME (gast_med, glut_max: p < 0.05; soleus: p < 0.01) 

in three muscles. Contrasts revealed higher similarities in endBEAM than startBEAM 

(gast_med, multifid: p < 0.05, erec_spin: p < 0.01) and TRsucc than TRfail (per_long, 

gast_med, glut_max: p < 0.05) (Table 2). 

Table 2: Mean (M) and standard deviation (SD) among participants of for trial-to-trial similarity measured 

by Pearson correlation coefficient r for all conditions and muscles. ANOVA revealed significant effects of 

TASK in all muscles apart from rec_abd and ext_obli. Significant differences observed by contrasts are 

indicated by *. 

 LINE BEAM TIGHTROPE 
 start end start end fail succ 

  M SD M SD M SD M SD M SD M SD 

tib_ant 0.49 0.22 0.60 0.17 0.43 0.15 0.45 0.20 0.36 0.19 0.36 0.21 

per_long 0.49 0.22 0.61 0.20 0.45 0.16 0.48 0.22 0.31* 0.16 0.44* 0.19 

soleus 0.84 0.07 0.80 0.10 0.64 0.18 0.67 0.17 0.23 0.19 0.31 0.18 

gast_med 0.83 0.08 0.83 0.08 0.61* 0.21 0.69* 0.19 0.17* 0.16 0.31* 0.11 

vast_lat 0.78 0.20 0.73 0.28 0.56 0.23 0.60 0.20 0.31 0.18 0.41 0.16 

rect_fem 0.62 0.23 0.63 0.31 0.36 0.28 0.47 0.33 0.24 0.13 0.36 0.18 

bic_fem 0.66 0.20 0.70 0.18 0.55 0.29 0.60 0.16 0.27 0.17 0.31 0.11 

sem_tend 0.63 0.27 0.76 0.17 0.62 0.24 0.65 0.18 0.23 0.14 0.26 0.16 

glut_max 0.81 0.08 0.79 0.18 0.61 0.23 0.70 0.20 0.14* 0.18 0.32* 0.12 

rec_abd 0.15 0.23 0.02 0.12 0.13 0.20 0.08 0.09 0.11 0.07 0.11 0.14 

ext_obli 0.28 0.18 0.26 0.23 0.16 0.21 0.29 0.16 0.07 0.11 0.18 0.18 

multifid 0.82 0.09 0.85 0.06 0.57* 0.25 0.68* 0.16 0.10 0.10 0.17 0.18 

erec_spin 0.62 0.14 0.69 0.18 0.35* 0.21 0.49* 0.20 0.10 0.08 0.11 0.10 
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Trial-to-trial similarity measured by cross-correlation coefficient (rmax) was significantly 

affected by TASK in six muscles (soleus, gast_med, glut_max, ext_obli, multifid, erec_spin: 

p < 0.001), where TIGHTROPE similarity was smaller than BEAM (soleus: p < 0.05; others: 

p < 0.001) and LINE (p < 0.001). BEAM similarity was smaller than LINE in four muscles 

(soleus: p < 0.05; gast_med, multifid, erec_spin: p < 0.001). Additionally, similarity was 

also significantly affected by TIME in four muscles (per_long, soleus, gast_med, multifid, 

erec_spin: p < 0.05) with higher similarities in END, and TASK × TIME in soleus (p < 0.05). 

Contrasts revealed higher similarities in endLINE than startLINE (erec_spin: p < 0.05), 

endBEAM than startBEAM (soleus, gast_med, erec_spin: p < 0.05) and TRsucc than TRfail 

(multifid: p < 0.05; soleus: p < 0.01) ( 

Table 3). 

Table 3: Mean (M) and standard deviation (SD) among participants of for trial-to-trial similarity measured 

by the maximum cross-correlation coefficient rmax for all conditions and muscles. ANOVA revealed significant 

effects of TASK in soleus, gast_med, glut_max, ext_obli, multifid and erec_spin. Significant differences 

observed by contrasts are indicated by *. 

 LINE BEAM TIGHTROPE 
 start end start end fail succ 

  M SD M SD M SD M SD M SD M SD 

tib_ant 0.81 0.06 0.83 0.06 0.85 0.04 0.86 0.04 0.87 0.04 0.87 0.07 

per_long 0.88 0.05 0.90 0.04 0.87 0.05 0.87 0.06 0.88 0.02 0.90 0.03 

soleus 0.96 0.02 0.95 0.02 0.91* 0.04 0.93* 0.03 0.87* 0.04 0.90* 0.03 

gast_med 0.95 0.03 0.95 0.03 0.88* 0.04 0.92* 0.04 0.84 0.03 0.86 0.04 

vast_lat 0.91 0.05 0.89 0.08 0.85 0.08 0.87 0.06 0.86 0.05 0.86 0.06 

rect_fem 0.85 0.09 0.85 0.08 0.80 0.07 0.84 0.09 0.82 0.06 0.84 0.06 

bic_fem 0.83 0.06 0.84 0.07 0.84 0.05 0.83 0.05 0.82 0.04 0.80 0.04 

sem_tend 0.86 0.07 0.89 0.05 0.85 0.08 0.86 0.03 0.83 0.05 0.80 0.07 

glut_max 0.92 0.04 0.92 0.04 0.88 0.06 0.90 0.05 0.77 0.06 0.79 0.08 

rec_abd 0.72 0.07 0.72 0.06 0.74 0.07 0.72 0.05 0.69 0.04 0.71 0.08 

ext_obli 0.82 0.04 0.82 0.04 0.81 0.05 0.82 0.03 0.72 0.05 0.76 0.05 

multifid 0.90 0.05 0.92 0.03 0.83 0.07 0.86 0.05 0.72* 0.06 0.76* 0.07 

erec_spin 0.83* 0.05 0.89* 0.07 0.76* 0.08 0.80* 0.07 0.67 0.03 0.68 0.07 
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The lag% was significantly affected by TASK for all muscles apart from multifid and 

erec_spin (tib_ant, per_long, soleus, rec_abd: p < 0.05: gast_med; rect_fem, bic_fem, 

multifid: p < 0.01; others: p < 0.001). lag% was significantly lower in TIGHTROPE than 

BEAM for per_long (per_long: p < 0.05). For all other muscles TIGHTROPE had a higher 

lag% than LINE (tib_ant, gast_med, rec_abd: p < 0.05; soleus, rect_fem, bic_fem, multifid: 

p < 0.01; others: p < 0.001) and for sem_tend and glut_max also than BEAM (p < 0.001). 

BEAM had higher lag% than LINE in three muscles (gast_med, bic_fem: p < 0.05; vast_lat: 

p < 0.01) ( 

Table 4). 

Table 4: Mean (M) and standard deviation (SD) among participants of for trial-to-trial similarity measured 

by the lag time lag% at the maximum cross-correlation coefficient for all conditions and muscles. ANOVA 

revealed significant effects of TASK in all muscles apart from multifid and erec_spin.  

 LINE BEAM TIGHTROPE 
 start end start end fail succ 

  M SD M SD M SD M SD M SD M SD 

tib_ant 6.06 7.58 5.55 5.02 5.60 4.01 6.64 4.88 9.26 5.93 10.24 7.67 

per_long 6.84 3.79 5.54 4.41 7.62 3.88 7.06 3.44 5.13 3.06 3.82 2.20 

soleus 1.98 0.63 2.95 1.46 4.58 1.11 3.66 2.13 6.95 4.92 6.09 3.09 

gast_med 2.94 1.18 2.72 0.81 5.63 2.33 4.39 1.76 6.68 4.49 6.56 3.79 

vast_lat 2.89 3.32 3.39 7.39 7.09 7.59 5.04 3.76 6.93 2.86 7.99 4.22 

rect_fem 3.30 3.89 6.44 11.24 7.06 7.24 9.08 11.58 10.93 3.64 8.76 4.60 

bic_fem 7.43 9.48 5.74 10.69 5.51 6.17 5.98 5.98 6.60 3.78 12.33 5.80 

sem_tend 3.92 5.89 3.10 5.58 5.23 8.82 1.63 1.83 8.37 5.12 9.17 5.52 

glut_max 2.16 1.10 3.19 3.85 5.20 4.17 5.33 6.02 13.76 4.57 11.47 7.26 

rec_abd 17.52 8.52 20.07 5.64 16.26 8.22 17.80 8.88 11.81 3.78 12.80 6.11 

ext_obli 8.43 6.32 8.07 5.82 7.45 3.80 8.62 5.34 8.63 5.16 9.14 6.11 

multifid 0.90 0.61 3.78 6.61 4.95 5.35 4.32 7.74 6.98 4.70 6.22 6.70 

erec_spin 7.94 8.33 10.15 14.38 15.95 12.86 14.14 17.25 11.02 7.92 12.78 8.24 

 

Joint abbreviations 

Joints: ankle plantar-/dorsiflexion (ankle), knee flexion/extension (knee), hip 

flexion/extension (hip_f), hip ab-/adduction (hip_a), hip internal/external rotation (hip_r), 

lumbar flexion/extension (lum_f), lumbar medial/lateral bending (lum_b), and lumbar 

internal/external rotation (lum_r). 
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Joint angles individual 

Trial-to-trial similarity measured by Pearson correlation coefficient (r) was significantly 

affected in all joints by TASK (ankle: p < 0.01; others: p < 0.001). TIGHTROPE similarity 

was always lower than BEAM (ankle; p < 0.05; others: p < 0.001) and LINE (ankle: p < 

0.01; others: p < 0.001). BEAM similarity was lower than LINE in three joints (knee, hip_a: 

p < 0.05; lum_b: p < 0.001). It was also significantly affected by TIME in some joints (hip_a, 

hip_r, lum_r: p < 0.05; ankle, hip_f: p < 0.01), with lower similarity in START than END. 

Additionally, a significant effect of TIME × TASK was found in two joints (hip_r: p < 0.01; 

hip_f: p < 0.001). Contrasts showed that r was lower in startLINE than endLINE (hip_a: p < 

0.05) and TRfail than TRsucc (ankle: p < 0.05) (Table 5). 

Table 5: Mean (M) and standard deviation (SD) among participants of for trial-to-trial similarity measured 

by Pearson correlation coefficient r for all conditions and joint angles. ANOVA revealed significant effects of 

TASK in all joints Significant differences observed by contrasts are indicated by *. 

 LINE BEAM TIGHTROPE 
 start end start end fail succ 

  M SD M SD M SD M SD M SD M SD 

ankle 0.95 0.04 0.97 0.02 0.92 0.07 0.94 0.06 0.77* 0.21 0.88* 0.06 

knee 0.97 0.02 0.97 0.02 0.93 0.07 0.91 0.07 0.53 0.31 0.54 0.27 

hip_f 0.96 0.10 0.99 0.01 0.95 0.14 0.97 0.04 0.66 0.32 0.88 0.12 

hip_ab 0.89* 0.15 0.96* 0.02 0.69 0.35 0.76 0.28 0.19 0.20 0.31 0.20 

hip_r 0.94 0.13 0.97 0.01 0.90 0.20 0.96 0.05 0.55 0.36 0.76 0.17 

lum_f 0.71 0.18 0.69 0.24 0.46 0.28 0.56 0.31 0.01 0.17 0.22 0.28 

lum_b 0.88 0.16 0.90 0.15 0.40 0.33 0.56 0.32 0.08 0.18 -0.04 0.21 

lum_r 0.93 0.14 0.98 0.02 0.82 0.26 0.88 0.26 0.31 0.29 0.38 0.38 
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Trial-to-trial similarity measured by cross-correlation coefficient (rmax) was significantly 

affected by TASK in all joints (lum_f: p < 0.05; hip_f, hip_r: p < 0.05; others: p < 0.001). 

TIGHTROPE similarity was lower than BEAM in six joints (ankle, lum_f, lum_b: p < 0.05; 

knee, hip_a, lum_r: p < 0.001) and LINE in all joints (hip_f, hip_r: p < 0.05; lum_f: p < 0.01; 

othert: p < 0.001). BEAM similarity was lower than LINE in lum_b (p < 0.01). It was also 

significantly affected by TIME in two joints (lum_r: p < 0.01; lum_f: p < 0.001), with lower 

similarity in START than END. Additionally, a significant effect of TIME × TASK was 

found in lum_r (p < 0.05). Contrasts showed that rmax was lower in startBEAM than 

endBEAM (lum_f, lum_b: p < 0.05) and TRfail than TRsucc (lum_f: p < 0.01) (Table 6). 

Table 6: Mean (M) and standard deviation (SD) among participants of for trial-to-trial similarity measured 

by the maximum cross-correlation coefficient rmax for all conditions and joint angles. ANOVA revealed 

significant effects of TASK in all joints Significant differences observed by contrasts are indicated by *. 

 LINE BEAM TIGHTROPE 
 start end start end fail succ 

  M SD M SD M SD M SD M SD M SD 

ankle 0.94 0.05 0.97 0.01 0.89 0.11 0.93 0.05 0.73 0.18 0.81 0.15 

knee 0.97 0.06 0.98 0.01 0.96 0.08 0.97 0.04 0.95 0.04 0.96 0.03 

hip_f 0.96 0.08 0.99 0.01 0.94 0.13 0.97 0.03 0.95 0.03 0.96 0.03 

hip_ab 0.97 0.03 0.99 0.01 0.92 0.07 0.90 0.13 0.56 0.19 0.66 0.14 

hip_r 0.90 0.13 0.96 0.04 0.87 0.14 0.93 0.04 0.78 0.19 0.86 0.17 

lum_f 0.83 0.20 0.90 0.17 0.79* 0.19 0.91* 0.14 0.61* 0.17 0.80* 0.16 

lum_b 0.85 0.08 0.88 0.15 0.65* 0.18 0.68* 0.19 0.49 0.09 0.49 0.13 

lum_r 0.92 0.07 0.95 0.03 0.82 0.16 0.88 0.15 0.50 0.20 0.65 0.21 
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The lag% was significantly affected by TASK in five joints (hip_r, lum_f: p < 0.01; hip_a, 

lum_b, lum_r: p < 0.001). TIGHTROPE had a higher lag% than BEAM in four joints (hip_a, 

hip_r, lum_r: p < 0.01; lum_b: p < 0.001) and LINE in all five joints (hip_r, lum_r: p < 0.01; 

other: p < 0.001). BEAM had a higher lag% than LINE in two jonts (hip_a: p < 0.05; lum_b: 

p < 0.001). There was a significant effect of TIME in five joints (hip_a, lum_f, lum_r: p < 

0.01; knee, hip_r: p < 0.001) with higher lag% in START. Additionally, there was a 

significant effect of TASK × TIME in three joints (knee, hip_a: p < 0.01; hip_r: p < 0.001). 

Contrasts revealed higher lag% in startLINE than endLINE in hip_a (p < 0.05). For lum_f, 

startBEAM and TRfail had significantly higher lag% compared to endBEAM and TRsucc 

(p < 0.01), respectively (Table 7). 

Table 7: Mean (M) and standard deviation (SD) among participants of for trial-to-trial similarity measured 

by the lag time lag% at the maximum cross-correlation coefficient for all conditions and joint angles. ANOVA 

revealed significant effects of TASK in hip_r, hip_a, lum_b, lum_f. Significant differences observed by contrasts 

are indicated by *. 

 LINE BEAM TIGHTROPE 
 start end start end fail succ 

  M SD M SD M SD M SD M SD M SD 

ankle 0.22 0.44 0.00 0.00 4.35 12.2 1.04 2.85 8.75 18.91 3.18 8.21 

knee 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.09 0.00 0.00 

hip_f 2.76 8.73 0.00 0.00 2.00 6.32 0.00 0.00 0.89 1.86 0.23 0.74 

hip_a 2.42* 4.79 0.55* 0.56 7.51 9.51 7.75 11.83 32.02 15.47 21.63 10.85 

hip_r 3.82 9.94 0.22 0.40 4.68 12.77 0.86 1.17 13.14 13.23 3.30 8.99 

lum_f 10.92 15.24 4.03 10.93 17.89* 17.68 4.44* 11.05 24.66* 16.25 11.48* 11.94 

lum_b 2.62 5.32 5.71 14.86 19.90 14.77 19.23 17.12 40.14 8.57 44.70 12.60 

lum_r 2.55 6.77 0.49 1.05 8.85 13.36 4.74 11.61 31.68 18.03 18.96 14.74 
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